PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

March 2004

PREPARED FOR

PSEG Services Corporation 80 Park Plaza Newark, NJ 07102

ARCADIS

Bradley D. Pierce Staff Scientist

Peter N. Milionis_PG

Project Mapager

Scott J. Potter, RhD, RE Principal Engineei

Remedial Investigation Report

PSEG Nuclear LLC Salem Generating Station Hancock's Bridge, New Jersey

Prepared for PSEG Services Corporation 80 Park Plaza Newark, NJ 07102

Prepared by: ARCADIS G&M, Inc. 6 Terry Drive, Suite 300 Newtown, Pennsylvania 18940 Tel 267.685.1800 Fax 267.685.1801

Our Ref: NP000571.0003

Date: March 2004

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential, and exempt from disclosure under applicable law. Any dissemination, distribution, or copying of this document is strictly prohibited.

Table of Contents

. 8

i

Executive Summary

1 -	Intro	duction	
	1.1	Project B	ackground
	1.2	Investiga	tion Objectives
	1.3	Report O	rganization
2	Histo	ory of Sta	ition Operations
	2.1	Operatin	g History
		2.1.1	Area of Concern
		2.1.2	Historical Spills and Releases
		2.1.3	Constituents of Concern
	2.2	Regulato	ry Review
3	Stat	ion Settir	g
	3.1	Land Use	9
	3.2	Estuarine	e Location
	3.3	Topogra	ohy and Station Drainage
	3.4	Climate a	and Precipitation
	3.5	Regional	Geology and Hydrogeology
		3.5.1	Hydraulic Fill
		3.5.2	Riverbed Deposits
		3.5.3	Kirkwood Formation
		3.5.4	Vincentown Formation
		3.5.5	Hornerstown-Navesink Aquitard
		3.5.6	Mt. Laurel-Wenonah Aquifer
		3.5.7	Matawan Aquitard
		3.5.8	Magothy Aquifer
		3.5.9	Raritan Confining Unit
		3.5.10	Raritan Formation
		3.5.11	Potomac Group

		3.5.12	Wissahickon Formation	15
4	Facil	ity Const	ruction and Local Geology	16
	4.1	Pre-Facili	ty Construction	16
	4.2	Facility Co	onstruction	16
		4.2:1	Construction of the Cofferdam	17
			4.2.1.1 Construction Within the Cofferdam	18
			4.2.1.1.1 Lean Concrete	18
	·		4.2.1.1.2 Structural Concrete	19
			4.2.1.1.3 Structural Fill	20
		4.2.2	Construction of the Service Water Intake Structure	20
		4.2.3	Construction of the Service Water Pipes	21
		4.2.4	Construction of the Circulating Water Intake Structure	21
		4.2.5	Construction of the Circulating Water Pipes	21
		4.2.6	Sheet Pile – Circulating Water Intake Structure to the Service Water Intake Structure	22
	4.3	Local Geo	ology	22
5	Initia	I Station	Investigation Activities	24
	5.1	Phase I		25
	5.2	Phase II		26
	5.3	Phase III		27
6	Rem	edial Inv	estigation - March 2003 through February 2004	29
	6.1	New Mon	itoring Well Installation – May through June 2003	29
		6.1.1	Objectives	29
		6.1.2	Field Implementation	30
	6.2	Supplem	ental Remedial Investigation – July through September 2003	31
		6.2.1	Objectives	31
		6.2.2	Field Implementation	32
		6.2.3	Results	33
	6.3	Monitorin	g Well Installation Activities – September through October 2003	34

ii

	6.3.1	Objectives	34
	6.3.2	Field Implementation	35
6.4	Monitorin	g Well Installation Activities – January through February 2004	36
	6.4.1	Objectives	36
	6.4.2	Field Implementation	38
. 6.5	Monitorin	g Well Sampling and Analysis	39
6.6	Hydroged	ologic Investigation Activities	41
	6.6.1	Evaluation of Tidal Influence	41
	6.6.2	Evaluation of Groundwater Elevations	42
		6.6.2.1 Shallow, Water-Bearing Unit	42
		6.6.2.2 Vincentown Formation	42
	•	6.6.2.3 Evaluation of Vertical Groundwater Gradients	42
	6.6.3	Evaluation of the Kirkwood Formation	43
	6.6.4	Aquifer Characterization	43
		6.6.4.1 Slug Tests	43
		6.6.4.2 Pumping Tests	44
		6.6.4.2.1 Well AB	44
		6.6.4.2.2 Well AC	45
		6.6.4.2.3 Well AD	.45
		6.6.4.2.4 Well Al	45
	ŕ	6.6.4.2.5 Well AJ	45
		6.6.4.2.6 Well AM	46
		6.6.4.2.7 Well S	46
Hydı	ogeologi	ic Evaluation	47
7.1	Local Hy	drogeology – Pre-Facility Construction	47
7.2	Local Hy	drogeology - Current	47
	7.2.1	Groundwater Flow - Shallow, Water-Bearing Unit	47
	7.2.2	Groundwater Flow - Vincentown Formation	48
	7.2.3	Vertical Gradients	49
7.3	Tidal Eva	aluation Results	49

7

iii

Table of Contents

			· .	
	7.4	Evaluatior	n of the Kirkwood Formation	4 <u>9</u>
	7.5	Aquifer Cl	naracteristics	49
		7.5.1	Slug Test Results	49
		7.5.2	Pumping Test Results	50
	•		7.5.2.1 Well AB	50
			7.5.2.2 Well AC	50
			7.5.2.3 Well AD	51
	•		7.5.2.4 Well Al	51
			7.5.2.5 Well AJ	51
			7.5.2.6 Well AM	51
			7.5.2.7 Well S	52
8	Analy	ytical Res	sults	53
	8.1	Soil Samp	les	54
	8.2	Groundwa	ater Samples	55
·		8.2.1	Summary of Analytical Data for Wells Screened in the Vincentown Formation (Wells L, K, P, Q, and V)	55
		8.2.2	Summary of Analytical Data for Wells Screened in the Shallow, Water Bearing Unit Within the Limits of the Cofferdam (Wells M, N, O, R, AC, and AE)	57
		8.2.3	Summary of Analytical Data for Wells Screened in the Shallow, Water-Bearing Unit Outside of the Cofferdam (Wells S, T, U, V, W, Y, Z, AA, AB, AD, and AF)	59
	8.3	Delaware	River Tritium Concentrations	62
9	Fate	and Tran	sport Analysis	64
	9.1	Constituer	nt Pathways – Advective Water Movement	64
	9.2	Water Bal	ance Estimate of Groundwater Velocities	65
	9.3	Sorptive F	Processes	67
	9.4	Degradati	on	68
	9.5	Dispersio	n · · · ·	68
	9.6		je Dating and Groundwater Travel Time	69
10	11-+4			-74
10	Hear	Health and Environmental Risk Assessment 71		

iv

		· · · ·	• • •
1Ó.1	On-Site	Environmental Data for Tritium	71
10.2	Off-Site	Environmental Data for Tritium	71
10.3	Methodo	logy for Health and Environmental Risk Assessment	72
	10.3.1	Identification of Exposure Pathways	72
	10.3.2	Identification and Characterization of Potentially Exposed Individuals and Biota	73
	10.3.3	Approach to Calculation of Doses to Humans and Comparisons with Applicable Standards	73
	10.3.4	Approach to Calculation of Doses to Biota and Comparisons with Applicable Guidance	74
	10.3.5	Approach to Calculation of Health Risks to Humans	75
10.4	Assessn	nent of Potential Off-Site Exposures of Humans and Biota	76
Соп	clusions	and Recommendations	77
11.1	Conclus	ions	77
11.2	Recomm	nendations	78
Ref	erences		79

References

Table of Contents

Table	es	
	1	Physical and Chemical Properties of Constituents of Concern
	2	Phase I Investigation Results
	3	Phase II Investigation Results
	4	Well Details
	5	Supplemental Investigation Details
	6	Supplemental Investigation Results
	7	Field Parameters
	8	Groundwater Elevation Measurements
	9	Pumping Test Field Observations
	10	Slug Test Results - Estimates of Hydraulic Conductivity
	11	Pumping Test Results – Aquifer Parameters
· .	12	Groundwater Analytical Results
Figu	res	
	1	Station Location
	2	Station Layout
	3	Regional Cross Sections
	4	Surface Elevation of the Kirkwood Formation
	5	Station Cross Section A – A'
	6	Station Cross Section B – B'
	7	Station Cross Section C – C'
	8	Station Cross Section D – D'
	9	Station Cross Section E – E'
	10	Phase I and II Sample Locations
	11	Monitoring Well Network
	12	Supplemental Investigation Sample Locations
	13	Supplemental Investigation Results
	14	Groundwater Elevation Contours – Shallow, Water-Bearing Unit (February 20, 2004)

15 Groundwater Elevation Contours – Vincentown Formation (High – High Tide)

Table of Contents

vii

- 16 Groundwater Elevation Contours Vincentown Formation (Low High Tide)
- 17 Groundwater Elevation Contours Vincentown Formation (Low Low Tide)
- 18 Hydraulic Conductivities and Travel Time Calculations
- 19 Relationship Between Dispersivity and Travel Distance

Appendices

- A. Investigations of Salem Unit 1 Fuel Pool Leakage Final Report Summary
- B. Section C ISRA Non-Applicability Application (Station Operational History).
- C. Well Details (Boring Logs, Well Completion Details, Well Completion Records, and Survey Form Bs)
- D. Tidal Evaluation Results
- E. Evaluation of Water Levels in the Vincentown Formation
- F. Slug Test Results
- G. Pumping Test Results
- H. Dissolved Gas, Technetium-99 and Groundwater Age Determination Results for the PSEG Nuclear, LLC Salem Generating Station
- I. Tritium Trend Plots for the Station Monitoring Wells
- J. A Perspective on Radiation Doses and Health Risks from Ingestion of Tritium in Drinking Water and Potential Impacts on Aquatic and Terrestrial Biota

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

Executive Summary

ARCADIS, Inc. (ARCADIS), on behalf of PSEG Services Corporation ("PSEG SC"), has prepared this Remedial Investigation Report to document the findings of a remedial investigation conducted at the PSEG Nuclear, LLC Salem Generating Station (the "Station") located on Artificial Island in Lower Alloways Creek Township, Salem County, New Jersey. The groundwater investigation was conducted in accordance with the scope of work defined in the Remedial Investigation Work Plan ("June 2003 RIWP") and the Initial Groundwater Investigation Report and Remedial Investigation Work Plan Addendum ("RIWP Addendum") that were submitted to the New Jersey Department of Environmental Protection ("NJDEP") in June 2003 and January 2004, respectively. The scope of work outlined in these documents was designed to investigate the discovery of tritium in the shallow, water-bearing unit adjacent to Unit 1 of the Salem Generating Station.

The remedial investigation was initiated in September 2002 following the detection of lowlevel radioactive contaminants on the shoes of Station technicians. Initial investigations indicated that the source of the low-level radioactive contaminants was water seeping through small cracks in the 78-foot Mechanical Penetration Room of the Unit 1 Auxiliary Building. Further investigation revealed a second leak at the 92-foot elevation of the Unit 1 Spent Fuel Pool cooling line, adjacent to the pipe penetration through the concrete wall. Analytical results of water samples collected from the leaks indicated that the water had characteristics of Spent Fuel Pool water and that a leak from the Spent Fuel Pool system had likely occurred.

The Salem Generating Station Unit 1 Spent Fuel Pool is lined with stainless steel. Behind the stainless steel liner are liner drains (commonly referred to as "telltale drains") that are used as a combined leak monitoring, collection, and drainage mechanism. On January 31, 2003, a fiber optic examination of two of the telltale drains indicated that mineral deposits had formed a blockage in them. The blockage obstructed the flow of water in these drains resulting in the accumulation of Spent Fuel Pool water, which likely migrated along the paths of least resistance (e.g., a pipe conduit, construction joints, or cracks in the concrete) and ultimately manifested at the crack in the wall in the 78-foot elevation Mechanical Penetration Room and through the gap/penetration where the Spent Fuel Pool cooling return lines intersects the wall at the 92-foot elevation. The mineral deposits have subsequently been removed to restore flow in the telltale drains.

Further investigations conducted within the Station indicated that water from the Spent Fuel Pool had migrated to the Styrofoam-filled seismic gap located between the Unit 1 Fuel Handling Building and the Auxiliary Building. Along the narrow western and southern ends of the Seismic Gap, a flow path exists between the Styrofoam and foundation soils. As such, the potential exists for water in the seismic gap to migrate beyond the limits of the

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

ES-2

engineered structures of the Station. Remedial investigation activities were initiated to determine if the Spent Fuel Pool water that had accumulated in the seismic gap had migrated beyond the limits of the engineered features of the building and into the environment (i.e., soil and groundwater in contact with the seismic gap).

Initially, eight groundwater monitoring wells (Wells K through R) were installed in January and February 2003 at locations adjacent to and around the perimeter of the Salem Unit 1 Fuel Handling Building. Analytical results of groundwater samples collected from these monitoring wells indicated that a potential release of water from the Spent Fuel Pool or other plant source to the environment had likely occurred. At this time, the subject remedial investigation was initiated.

The scope of work proposed in the June 2003 RIWP and the RIWP Addendum was designed to determine if the tritium detected in groundwater samples collected from monitoring wells installed adjacent to Salem Unit 1 is a result of a release to the environment from the Unit 1 Spent Fuel Pool, a non-authorized release from other onsite operating or maintenance activities, or elevated background levels of tritium from authorized releases and other operating practices. The proposed scope of work was also designed to assess the potential for: 1) tritium to migrate beyond the property boundaries; 2) human health and environmental risks associated with the tritium detected in groundwater; and, 3) the need for any further action.

The scope of work presented in the June 2003 RIWP and the RIWP Addendum consisted of the following: 1) the installation of an additional 21 monitoring wells and two replacement monitoring wells; 2) the collection and analysis of groundwater samples from the monitoring well network, including a one time event for groundwater age determination and for technetium-99 to definitively identify the Spent Fuel Pool as the source of the tritium; 3) an evaluation of the local and regional geology and hydrogeology including a review of published information and the performance of water level gauging events, slug tests and pumping tests; 4) an evaluation of tidal influences on select water-bearing units beneath the Station; 5) an evaluation of possible sources of the tritium detected in groundwater; 6) an evaluation of facility construction details and the preparation of detailed cross sections to identify potential migration pathways from the seismic gap and to highlight the principal components of the conceptual site model; 7) fate and transport analysis including the refinement of the conceptual site model, the delineation of groundwater flow pathways, and fate and transport calculations to estimate the age of the tritium release and groundwater flow velocity; and, 8) to assess potential health risks to humans and potential impacts to aquatic and terrestrial biota. The following sections provide a summary of the details and results of the remedial investigation activities.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

Well Installation, Groundwater Sampling and the Supplemental Investigation

The initial investigation included the installation and sampling of eight monitoring wells or direct-push points (Well K through Well R; M and R being direct-push points). Analytical results of groundwater samples collected from the monitoring wells indicated that tritium was detected at concentrations above 3,000 picocuries per liter (pCi/L), the interim further investigation criterion proposed in the June 2003 RIWP, in groundwater samples collected from Monitoring Wells M, N, O and R. Tritium was also detected in the groundwater sample collected from Well N on January 30, 2003 at a concentration above the New Jersey Groundwater Quality Criterion (GWQC) for tritium in groundwater of Class IIA aquifers (20,000 pCi/L).

Monitoring Wells S through W were installed between May 5 and June 18, 2003 and existing Monitoring Wells M and R were replaced with properly constructed and developed monitoring wells. **Figure ES-1** shows the monitoring well network installed during the remedial investigation. Following installation and development of the new monitoring wells, groundwater samples were collected from the wells and analyzed by Maplewood for tritium, sodium, boron, and gamma-emitting isotopes. All samples were non-detect for gamma-emitting isotopes. In July 2003, all tritium concentrations, with the exception of Monitoring Wells M and S, were below the GWQC of 20,000 pCi/L. The replacement well for Monitoring Well M, within the cofferdam, indicated a tritium concentration of approximately 62,000 pCi/L and Well S, screened in the shallow, water-bearing unit outside of the cofferdam, indicated a tritium concentration of 3,500,000 pCi/L.

A "supplemental" groundwater investigation was initiated in July 2003 in response to the detections of tritium in groundwater samples collected from Well S. The objectives of the supplemental investigation were as follows: 1) determine if the tritium measured in groundwater samples collected from Well S was migrating towards the property boundary; 2) delineate the vertical and horizontal extent of the tritium in groundwater in the vicinity of Well S; and 3) evaluate the potential sources of tritium in Well S. The supplemental investigation consisted of collecting grab groundwater samples from direct-push boreholes and temporary well points screened at various depths and locations along the site boundary, as well as surrounding Well S. Groundwater samples were submitted for analysis for tritium, boron, and gamma-emitting isotopes.

Figure ES-2 shows the 37 proposed boring locations; samples were collected at as many as three depths at each location. Borings 1 through 8 were proposed to evaluate concentrations along the site perimeter to assess the potential for off-site migration. Borings 9 through 18 and Borings 31 through 37 were proposed near Station infrastructure to identify possible sources of tritium. These potential sources include the liquid radioactive waste ("rad waste") line, the Unit 1 Spent Fuel Pool, the Unit 1 refueling water

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

storage tank, and the Unit 1 primary water storage tank. Borings 19 through 30 were proposed in the vicinity and downgradient of Well S to determine the extent of tritium in groundwater.

The findings from the supplemental investigation are summarized as follows: (1) the limit of groundwater concentrations above the GWQC for tritium (20,000 pCi/L) was defined as shown on **Figure ES-2**; (2) an expanded area in the vicinity of Well S with tritium levels above 500,000 pCi/L was quantified as shown on **Figure ES-2**; (3) a completed pathway between a potential source and groundwater was not identified, but tritium concentrations and groundwater flow direction indicate that the southern end of the seismic gap is the likely source of tritium in groundwater; and (4) extensive on-site monitoring of shallow groundwater indicates no tritium above permissible levels has migrated to the Station boundary.

Following completion of the supplemental investigation, the RIWP Addendum was prepared and submitted to the NJDEP-BNE presenting the details and results of remedial investigation activities completed to date. The RIWP Addendum proposed additional remedial investigation activities designed to complete the delineation of groundwater impacts, and the hydrogeologic characterization of the shallow, water-bearing unit. The proposed remedial investigation activities included the installation of 16 additional groundwater monitoring wells.

Between September 2003 and February 2004, the 16 additional groundwater monitoring wells proposed in the RIWP Addendum were installed at the Station. Initially, Monitoring Well Y, Well Z, and Wells AA through AF were installed. Following the collection and analysis of groundwater samples from these wells, and a re-evaluation of groundwater flow dynamics within the shallow, water-bearing unit, Monitoring Well AG (Shallow and Deep), Well AH (Shallow and Deep), Well AJ, Well AJ, Well AL, and Well AM were installed to fill data gaps identified. The locations of the wells are shown of **Figure ES-1**.

Groundwater monitoring activities have been ongoing since the installation of Wells K through R during initial Station investigation activities. Initially, groundwater samples were collected on a weekly basis. As the additional monitoring wells were installed, and as a database of groundwater analytical results for the monitoring wells was generated, the monitoring well sampling program was modified. The sampling program is being adaptively managed to provide the investigational data required to meet the current investigation objectives and evaluate changes in tritium concentrations. The adaptive sampling management program is designed to ensure representative data are collected that meet the objectives of the investigation and provide the information necessary to evaluate plume dynamics and migration. The current monitoring plan specifies either biweekly, monthly, or quarterly sampling based upon the analytical history of each well.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

Groundwater samples are analyzed for tritium, major cations and anions, and gamma emitting isotopes. Analysis of groundwater samples collected from most of the Station Monitoring Wells has also included a single event analysis for groundwater age determination (by tritium – helium-3 age dating). As proposed in the RIWP Addendum, Tc-99 was also analyzed as a single-event analysis for select monitoring wells to assist in the determination of the source of the tritium.

Groundwater Flow

Groundwater elevations in monitoring wells screened in the shallow, water-bearing unit within the limits of the cofferdam are generally higher than groundwater elevations in monitoring wells screened in the shallow, water-bearing unit outside the limits of the cofferdam. Groundwater flow in the shallow, water-bearing formation is generally from the center of the island (northeast of the Salem Generating Station) towards the Delaware River. Due to permeability differences between the structural fill and the hydraulic fill, groundwater is mounded within the area of the cofferdam. Groundwater flows radially outward from the cofferdam, and the observed mounding effect dissipates quickly.

Water levels in the Vincentown Formation, because it is a confined-unit, are tidally influenced. Water levels can vary as much as four feet per tide cycle depending on the proximity of the well to the Delaware River. To more accurately assess groundwater flow conditions in the Vincentown Formation, water level and tide data were evaluated to characterize groundwater flow conditions during various stages of the tide cycle of the Delaware River. Groundwater flow direction in the Vincentown Formation oscillates with the tides. During the high tide stage of the tide cycle groundwater flow in the Vincentown Formation is perpendicular from the shoreline of the Delaware River in the west and south towards the center of Artificial Island. During the low tide stage of the tide cycle groundwater flow in the Vincentown Formation is from the center of Artificial Island towards the Delaware River. During an intermediate stage of the tide cycle, an observed groundwater saddle is present between the Station and the Delaware River. Groundwater flow to the north and east of the saddle is to the south and east.

Aquifer Testing

Eight pumping tests were performed on seven wells (Wells AB, AC, AD, AI, AJ, AM, and S) to quantify the hydrogeologic characteristics (e.g., hydraulic conductivity) of the shallow, water-bearing unit within the limits of and just south of the cofferdam. The pumping test results indicate a range of transmissivity of 0.337 ft²/day to 27.7 ft²/day and hydraulic conductivities of 0.03 ft/day to 2.77 ft/day.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

Tidal Investigation

Pressure transducers were installed in Wells L, M, and W between July 29 and August 5, 2003 to evaluate the tidal influences of the Delaware River on site water levels. Well W installed in the riverbed sands and gravels, and Well M screened in the structural fill within the cofferdam showed no water-level response to tidal variations. Well L installed in the Vincentown Formation (the first confined aquifer beneath the site) has a four foot change in water level in response to a six foot change in tide. This response is likely caused by changes in the hydraulic head exerting force on the clay, confining-unit (the aquitard overlying the Vincentown), which based upon site lithology, extends westward beneath the Delaware River. These data indicate that tidal variations in the Delaware River have no effect on the movement of tritiated groundwater identified in the surficial aquifer (sediments above the clay, confining-unit).

Analytical Results

In accordance with the scope of work presented in the June 2003 RIWP and the RIWP Addendum, samples of environmental media (i.e., soil and groundwater) have been collected from various media at the Station to determine the magnitude and extent of the release of water from the Spent Fuel Pool. Additionally, samples were collected from the Spent Fuel Pool, the telltale drains, and from the various sample locations established within the facility. Collectively, the data indicate that water from the Spent Fuel Pool leaked behind the stainless-steel liner into the obstructed telltale drains, migrated through construction joints or minor cracks in the structural concrete and accumulated in the Styrofoam-filled seismic gap. Once there, the Spent Fuel Pool water seeped into the foundation soils along the southern side of the seismic gap. This release of Spent Fuel Pool water has resulted in an area of impacted groundwater extending from the south side of the seismic gap to the circulating water discharge pipes (see Figure ES-2).

The water samples collected from within the facility indicated concentrations of tritium, boron, and various gamma-emitting isotopes typical of Spent Fuel Pool water. Groundwater samples collected from outside the facility, which were analyzed for the same suite of parameters, have indicated concentrations of tritium, boron, and one slightly elevated concentration of Tc-99 that suggest that water from the Spent Fuel Pool is the likely source.

The area of groundwater containing elevated tritium extends from the southern end of the Styrofoam seismic gap located between the Salem Auxiliary Building and the Salem Unit 1 Auxiliary Building in a southerly direction toward the circulation water discharge pipes. Groundwater with tritium at concentrations exceeding any regulatory limit has not migrated to the property boundary of the Station. Elevated levels of tritium have only been detected

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

in groundwater samples collected from the shallow, water-bearing unit. There is no evidence that suggests that water from the Spent Fuel Pool has migrated to an underlying aquifer as confirmed by groundwater samples collected from monitoring wells screened in the Vincentown Formation.

Fate and Transport Analysis

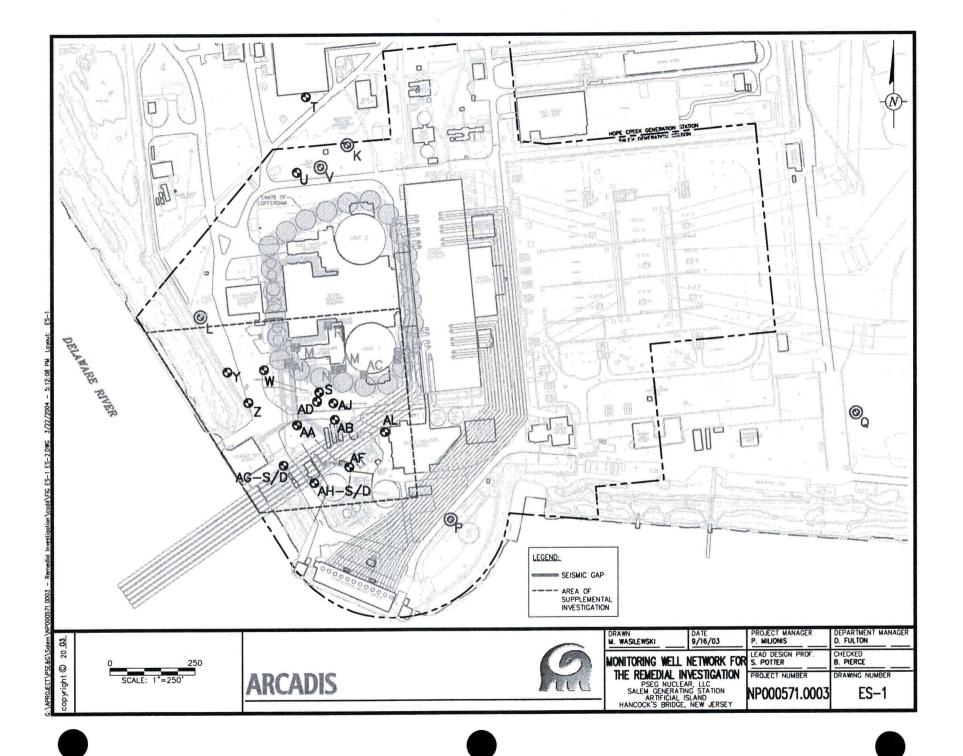
Shallow groundwater in the vicinity of the Station has been impacted by a release of water from the Spent Fuel Pool. The pathway from the building to the environment cannot be documented with absolute certainty; however, site evidence indicates the seismic gap between the Salem Unit 1 Fuel Handling Building and Auxiliary Building is the primary release point. The groundwater travel time between the primary release point and the 500,000 pCi/L contour was computed using observed water levels, aquifer properties, facility operations data, groundwater recharge, and helium to tritium ratios. Collectively, these data indicate that the groundwater plume is between 5 and 10 years old.

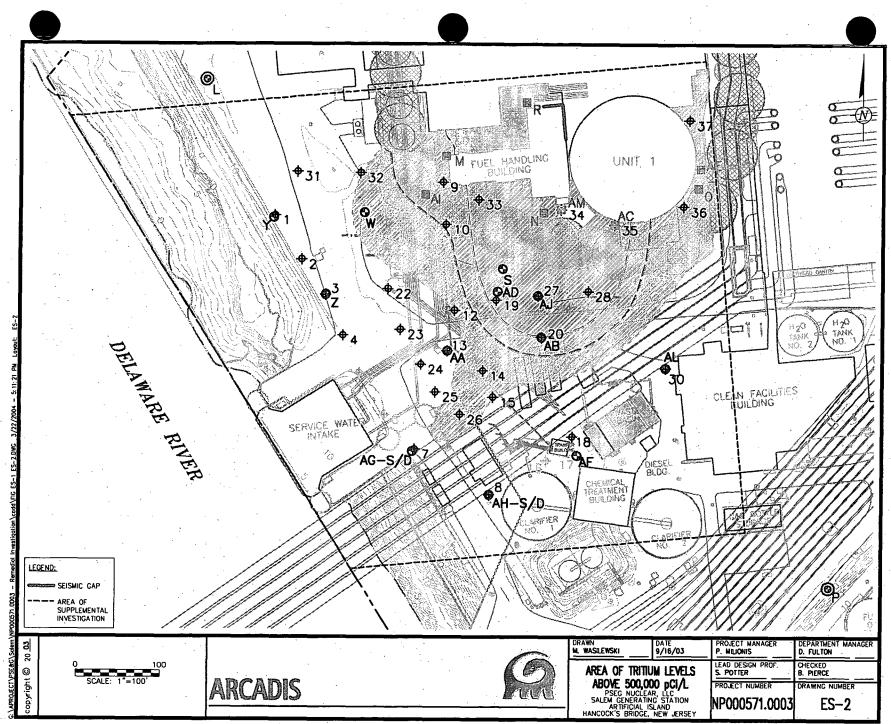
Health and Environmental Risk Assessment

The principal radionuclide of concern for this remedial investigation is tritium in shallow groundwater adjacent to Salem Generating Station Unit 1. To date, a completed exposure pathway to humans from tritium in shallow groundwater has not been established, nor is there any evidence that significant exposures of biota have occurred.

Conclusions

The results of remedial investigation activities conducted at the PSEG Nuclear, LLC Salem Generating Station, which were conducted in response to the detection of tritium in groundwater, indicate that the source of tritium detected in groundwater was the Spent Fuel Pool, the tritium release to the environment has been stopped, and that tritium has not migrated to the property boundary above any regulatory limit. The following bullets provide a more detailed description of the investigation findings:


There was a release of water from the Spent Fuel Pool system resulting from blockage of the telltale drains by mineral precipitates. The telltale drains are a leak monitoring, collection, and drainage mechanism specifically designed to collect leakage that may accumulate behind the stainless steel liner of the Spent Fuel Pool and Refueling Canal. The blockage of the telltale drains resulted in the accumulation of water from the Spent Fuel Pool system (between the liner and the concrete wall) that created hydrostatic head and facilitated migration to the Styrofoam-filled seismic gap located between the Salem Unit 1 Fuel Handling Building and Auxiliary Building. The mineral precipitates have been physically


ES-7

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

removed to ensure the proper operation of the telltale drains. The process of monitoring the telltale drains is routinely performed to ensure that blockage does not reoccur. Permanent seismic gap drains are being installed on Salem Units 1 and 2, to permit identification, sampling, and drainage of any accumulated water in the seismic gap, and to create an ingradient to the gap;

- The release of water from the Spent Fuel Pool system was investigated through the sampling of monitoring wells installed in the area of Salem Unit 1. The groundwater analytical data collected from the monitoring well network were used to delineate an area of groundwater in the shallow, water-bearing unit that contains elevated tritium. Gamma-emitting isotopes were also monitored in the groundwater samples collected from the monitoring wells because the suspected source of the tritium was the Spent Fuel Pool. No plant related gamma-emitting isotopes have been detected in groundwater samples collected from the monitoring wells;
- The area of groundwater containing elevated tritium extends from the southern end of the Styrofoam seismic gap located between the Salem Unit 1 Fuel Handling Building and the Auxiliary Building in a southerly direction toward the circulation water discharge pipes. Groundwater with tritium at concentrations exceeding any regulatory limit has not migrated to the property boundary of the Station;
 - Elevated levels of tritium have only been detected in groundwater samples collected from the shallow, water-bearing unit. There is no evidence that suggests that water from the Spent Fuel Pool has migrated to an underlying aquifer as confirmed by groundwater samples collected from monitoring wells screened in the Vincentown Formation; and,
- A completed exposure pathway to humans from tritium in shallow groundwater has not been established, nor is there any evidence that significant exposures of biota have occurred.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

1

ARCADIS, Inc. ("ARCADIS"), on behalf of PSEG Services Corporation ("PSEG SC"), has prepared this Remedial Investigation Report ("RIR") to document the findings of a remedial investigation conducted at the PSEG Nuclear, LLC Salem Generating Station (the "Station") located on Artificial Island in Lower Alloways Creek Township, Salem County, New Jersey. The Station location and layout are shown on **Figures 1** and **2**, respectively. The remedial investigation was conducted in accordance with the Remedial Investigation Work Plan ("June 2003 RIWP") that was submitted to the New Jersey Department of Environmental Protection Bureau of Nuclear Engineering ("NJDEP-BNE") in June 2003. The scope of work outlined in the June 2003 RIWP was designed to investigate the discovery of tritium in the shallow, water-bearing unit at the Station.

A document entitled, "Initial Groundwater Investigation Report and Remedial Investigation Work Plan Addendum" ("RIWP Addendum") was submitted to the NJDEP in January 2004. The RIWP Addendum contained the initial results of the remedial investigation and, based on these results, proposed certain modifications to the June 2003 RIWP.

This RIR contains the results of remedial investigations as described in both the June 2003 RJWP and the RIWP Addendum. The remedial investigation produced a comprehensive body of knowledge regarding the tritium discharge, its fate in the environment, and the physical environment at and in the vicinity of the Station. The findings presented in this RIR will be used as the basis for the development of a remedial action strategy and work plan that will be submitted to the NJDEP-BNE under separate cover.

1.1 Project Background

On September 18, 2002, the Station Radiation Protection staff reported measuring lowlevel radioactivity on the shoes of technicians inside the radiologically controlled Auxiliary Building. An initial facility investigation led to the discovery of a radioactive "chalk-like" substance adhering to the west wall in the 78-foot Mechanical Penetration Room of the Unit 1 Auxiliary Building. The buildup of the "chalk-like" deposits was removed and an active seep of water into the 78-foot Mechanical Penetration Room was observed. Further investigation revealed a second leak at the 92-foot elevation of the Unit 1 Spent Fuel Pool cooling line, adjacent to the pipe penetration through the concrete wall.

As presented in Section 5, sample points were established for the collection and analysis of water samples from the observed leaks. Samples collected from the sample points were analyzed for tritium, major cations and anions, and gamma-emitting isotopes to determine the concentrations of constituents of concern in the water samples, to evaluate the potential age of the leak, and to evaluate a potential source of the water. Analytical results of the samples indicated that the water from both leaks had characteristics of Spent Fuel Pool water and that a leak from the Spent Fuel Pool system had likely occurred.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

The Salem Generating Station Unit 1 Spent Fuel Pool is lined with stainless steel. Behind the stainless steel liner are liner drains (commonly referred to as "telltale drains") that are used as a combined leak monitoring, collection, and drainage mechanism. The telltale drains are specifically designed to collect leakage that may accumulate behind the stainless steel liner of the Spent Fuel Pool and Refueling Canal. There are ten telltale drains associated with the Salem Generating Station Unit 1 Spent Fuel Pool that are identified as Drain Nos. 1 through 10. There are seven telltale drains associated with the Salem Generating Canal that are identified as Drain Nos. 11 through 17 are designed to monitor, collect, and drain leakage from the Refueling Canal that is associated with the Spent Fuel Pool.

A series of water samples was collected from the telltale drains to characterize the water that had accumulated. Analytical results of the water samples, discussed in further detail in Section 5, indicated that the likely source of water in the Spent Fuel Pool telltale drains was Spent Fuel Pool water, while the source of water in the Refueling Canal telltale drains indicated a possible mixing of water from the Spent Fuel Pool system with sodium, which is uncharacteristic of water from the Spent Fuel Pool system. A lack of chloride detected in water samples collected from the Refueling Canal telltale drains suggests that the sodium concentrations are likely from the interaction of the Spent Fuel Pool water with the structural concrete.

On January 31, 2003, a fiber optic examination of the telltale drains indicated a blockage by mineral deposits of the No. 4 and No. 5 drains beneath the welds in the stainless-steel liner of the Spent Fuel Pool, which obstructed the flow of water that leaked behind the stainless-steel liner. While obstructed, the flow of water from leak(s) in the Spent Fuel Pool liner was likely forced between the liner plates and the structural concrete base and walls of the Fuel Handling Building to establish hydraulic equilibrium with the water level in the Spent Fuel Pool. The Spent Fuel Pool water likely migrated along the paths of least resistance (e.g., a pipe conduit, construction joints, or cracks in the concrete) and ultimately manifested at the crack in the wall in the 78-foot elevation Mechanical Penetration Room and through the gap/penetration where the Spent Fuel Pool cooling return lines intersects the wall at the 92-foot elevation.

The mineral deposits were physically removed from the telltale drains to restore flow, which was measured to be approximately 100 gallons per day (gpd), which is within the design parameters of the leak detection, collection and monitoring system and is processed through the routine waste treatment processes. The process of monitoring and removing the mineral deposits, as needed, has been and will continue to be conducted to ensure that the telltale drains do not become obstructed in the future.

Analytical results of water samples collected from the observed leaks (78-foot elevation Mechanical Penetration Room and through the gap where the Spent Fuel Pool cooling

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

3

return lines intersects the wall at the 92-foot elevation) and subsequent investigations of the Unit 1 telltale drains indicated that further investigation was necessary to: 1) characterize the observed leaks and determine their source; 2) determine the extent of the leaks within the Salem Generating Station Auxiliary and Spent Fuel Pool Buildings; and, 3) determine the extent of the impact from the leak, if any, into the environment (soil and groundwater in contact with the engineered features of the Station).

Further investigations indicated that water from the Spent Fuel Pool had migrated to the Styrofoam-filled seismic gap located between the Unit 1 Fuel Handling Building and the Auxiliary Building. The details and results of sampling activities that were conducted within the facility to identify the source of the water observed in the 78-foot elevation Mechanical Penetration Room and through the gap where the Spent Fuel Pool cooling return lines intersects the wall at the 92-foot elevation are summarized in Section 5 and are presented in detail in the Investigations of Salem Unit 1 Fuel Pool Leakage – Final Report Summary provided in **Appendix A**.

The Styrofoam-filled seismic gap is approximately six-inches wide and extends vertically from grade (100 feet Plant Datum [PD]) to the top of the concrete foundation of the Fuel Handling Building. A discussion of the lean concrete foundation is presented in Section 4.2.1. The Styrofoam was originally used as a concrete form for the surrounding concrete pour. The Styrofoam was left in place to serve as a seismic gap. Along the narrow western and southern ends of the Seismic Gap, a flowpath exists between the Styrofoam and foundation soils. As such, the potential exists for water in the seismic gap to migrate beyond the limits of the engineered structures of the Station and into the environment.

Following the discovery of water characteristic of the Spent Fuel Pool in the Styrofoamfilled seismic gap, remedial investigation activities were initiated to determine if Spent Fuel Pool water that had accumulated in the seismic gap had migrated beyond the limits of the engineered features of the building and into the environment (i.e., soil and groundwater in contact with the seismic gap). Initially, eight groundwater monitoring wells (Wells K through R) were installed in January and February 2003 adjacent to and around the perimeter of the Fuel Handling Building. Analytical results of groundwater samples collected from these monitoring wells (discussed in more detail in Section 4.2) indicated that a potential release of water from the Spent Fuel Pool or other plant source to the environment had likely occurred. At this time, the subject remedial investigation was initiated.

1.2 Investigation Objectives

As presented in Section 5.3, analytical results of groundwater samples collected from monitoring wells installed adjacent to and around the perimeter of the Unit 1 Fuel Handling Building indicated concentrations of tritium above the New Jersey Groundwater Quality

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

Criteria ("GWQC") of 20,000 picocuries per liter ("pCi/L"). Other radionuclides were not detected in the groundwater samples at concentrations above background levels.

The scope of work proposed in the June 2003 RIWP and the RIWP Addendum was designed to determine if the tritium detected in groundwater samples collected from monitoring wells installed adjacent to Salem Unit 1 is a result of a release to the environment from the Unit 1 Spent Fuel Pool, a non-authorized release from other onsite operating or maintenance activities, or elevated background levels of tritium from authorized releases and other operating practices. The proposed scope of work was also designed to assess the potential for: 1) tritium to migrate beyond the property boundaries; 2) human health and environmental risks associated with the tritium detected in groundwater; and, 3) the need for any further action.

1.3 Report Organization

This report provides relevant background information, the details and results of remedial investigation activities conducted to date, and proposed activities in the following sections:

- Section 2 History of Station Operations;
- Section 3 Station Setting;
- Section 4 Facility Construction and Local Geology;
- Section 5 Initial Station Investigation Activities;
- Section 5 Remedial Investigation Activities;
- Section 7 Hydrogeologic Evaluation;
- Section 8 Analytical Results
- Section 9 Fate and Transport Results
- Section 10 Health and Environmental Risk Assessment;
- Section 11 Conclusions and Recommendations; and,
- Section 12 References

The <u>History of Station Operations</u> section (Section 2) presents information on the Station operating history, historical releases, the area and constituents of concern, as well as regulatory information about the Station.

The <u>Station Setting</u> section (Section 3) presents a description of the setting of the Salem Generating Station, including land use, the estuarine location, topography and station drainage, climate and precipitation, and regional geology and hydrogeology.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

5

The <u>Facility Construction and Local Geology</u> section (Section 4) presents conditions at Artificial Island prior to the construction of the Station and details how the facility construction has altered the local geology.

The <u>Initial Station Investigation Activities</u> section (Section 5) presents the details and results of the initial investigation activities conducted to identify a source of the radioactivity, to characterize the extent of the release within the facility, and to determine if the release of water from the Spent Fuel Pool system has migrated beyond the seismic gap.

The <u>Remedial Investigation Activities</u> section (Section 6) presents a detailed summary of the remedial investigation activities that have been conducted following the submittal of the June 2003 RIWP and the subsequent RIWP Addendum. This section includes the details for the initial station investigation activities, including sampling conducted.

The <u>Hydrogeologic Evaluation</u> section (Section 7) provides the results of hydrogeologic investigation activities, including slug tests and pumping tests, designed to characterize groundwater movement at the Station.

The <u>Analytical Results</u> section (Section 8) provides a summary of analytical results for samples collected to date. The analytical results section includes a discussion regarding the distribution of tritium in groundwater and the results of tritium age-dating analysis and technetium-99 (Tc-99) analysis.

The <u>Fate and Transport Results</u> section (Section 9) discusses potential flow pathways from the facility and the rate of migration of tritium in groundwater.

The <u>Health and Environmental Risk Assessment</u> section (Section 10) presents a discussion regarding potential exposure pathways and the methodology used for evaluating the risk associated with the exposure pathways.

The <u>Conclusions and Recommendations</u> section (Section 11) presents a summary of the findings of the remedial investigation and recommendations for further actions based on the findings.

A list of References is presented in Section 12.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

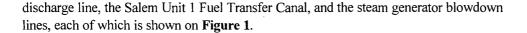
2 History of Station Operations

The following sections present information on the operating history of the Station, the area and constituents of concern, historical spills and releases, as well as regulatory information about the Station.

2.1 Operating History

PSEG Nuclear, LLC operates and is part owner of the Salem Generating Station located on Artificial Island in Lower Alloways Creek Township, Salem County, New Jersey. PSEG Nuclear, LLC (57.41%) and Exelon (42.59%) jointly own the Station. The Salem Generating Station is adjacent to the Hope Creek Generating Station, also located on Artificial Island. Both the Salem and Hope Creek Generating Stations (the Stations) are located on the eastern bank of the Delaware River. The Salem Generating Station encompasses an approximate 26-acre portion of the approximately 740-acre Artificial Island site.

The Salem Generating Station is composed of two nuclear generating units (Units 1 and 2) and one distillate oil fueled combustion turbine unit (Unit 3). Commercial operations of Units 1 and 2 commenced in 1976 and 1981, respectively. The combustion turbine unit commenced operations in 1972. The nuclear generating units operate as base load units and the combustion turbine unit operates as a peaking unit. The Salem Generating Station has a combined generating capacity of over 2,300 MW. Over its operational life, the Salem Generating Station has experienced no significant changes in its operation.


A detailed description of Salem Generating Station's operations and operational history, was prepared for Exhibit C of the September 1999 Industrial Site Recovery Act (ISRA) Non-Applicability Application, as is included in this RIR as **Appendix B**.

2.1.1 Area of Concern

The remedial investigation proposed in the June 2003 RIWP focused on tritium detected in groundwater adjacent to the Salem Generating Station Unit 1 Fuel Handling Building. As stated in Section 1.2, the primary objective of the remedial investigation was to determine if the tritium detected in groundwater samples collected from monitoring wells installed adjacent to Salem Unit 1 is a result of a release to the environment from the Unit 1 Spent Fuel Pool, a non-authorized release from other onsite operating or maintenance activities, or elevated background levels of tritium from authorized releases and other operating practices. Although the suspected source of the tritium in groundwater was the Spent Fuel Pool water that had accumulated in the seismic gap, other potential sources of tritium were evaluated to determine if they were the primary source, or likely contributors to the elevated levels of tritium. These potential sources included the radioactive liquid waste

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

7

To evaluate the radioactive liquid waste discharge line and the Unit 1 Fuel Transfer Canal, PSEG Nuclear, LLC, performed local leak rate tests. Additionally, a pressure test was performed on the radioactive liquid waste discharge line. According to PSEG Nuclear, LLC, the results of both the local leak rate tests and the pressure test indicated that the radioactive liquid waste discharge line and the Unit 1 Fuel Transfer Canal are functioning properly and are not considered sources of tritium (PSEG, verbal communication 2004). The steam generator blowdown lines, which typically contain tritium at concentrations of approximately 6,000 pCi/L, are not considered a significant source of tritium. As such, the steam generator blowdown lines were not tested for integrity.

In addition to the potential point-source contributors of tritium, potential non-point sources such as historical spills and releases were also considered. A summary of historical spills and releases reported within the area of investigation are presented in Section 2.1.2.

2.1.2 Historical Spills and Releases

To evaluate potential sources of the tritium detected in groundwater adjacent to the Salem Generating Station Unit 1 Spent Fuel Pool, PSEG Nuclear, LLC conducted a review of historical data and interviewed Station personnel regarding any historical spills or releases in the area of investigation. According to PSEG Nuclear, LLC, the results of the evaluation indicated that reported events in the area of investigation generally occurred during the early years of the Station's construction and operation (PSEG, verbal communication 2004). Historical spills or releases were reported to the appropriate agencies to the extent that they met the reporting thresholds in affect at the time and resulted in leaks that were managed through the Station's radioactive liquid waste system without entering the environment or to the soil that was removed and properly disposed off-site. These events did not likely result in the elevated levels of tritium detected in groundwater samples collected from Station monitoring wells. This is evidenced by the difference between the recent groundwater analytical results and the quantity and concentration of tritium reported during these events and the corrective actions taken at the time of the events.

2.1.3 Constituents of Concern

The remedial investigation was initiated when water samples collected from the Styrofoamfilled seismic gap indicated the presence of tritium, boron, and various gamma-emitting radioisotopes typical of water from the Spent Fuel Pool. The physical and chemical properties of the constituents detected in the water samples from the seismic gap, are summarized in **Table 1**. These constituents are routinely monitored in groundwater samples collected from the Station monitoring wells. Other than tritium and boron, the physical

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

8

properties of the constituents identified in the seismic gap will limit their potential migration in the environment. For example, the gamma-emitting cations (e.g., strontium-90, cesium-137, and cobalt-60) in water will tend to bind strongly to soil particles causing them to migrate at least 100 times slower than groundwater. Tc-99, another constituent of spent fuel pool water, has "intermediate" mobility in groundwater (10 to 20 percent of the rate of groundwater). Tritium and boron do not adsorb strongly to soils and migrate with groundwater. No plant related gamma-emitting isotopes have been detected to date in groundwater samples collected from monitoring wells installed at the Station; however, PSEG SC continues to analyze groundwater samples collected from the monitoring wells for gamma-emitting isotopes because the suspected source of the tritium is the Spent Fuel Pool.

The primary constituent of concern for this investigation is tritium in groundwater. Tritium is a radioactive isotope of the element hydrogen. Molecular hydrogen can exist in over 40 forms, most commonly hydrogen, deuterium, and tritium. Tritium is a hydrogen atom that has two additional neutrons in its nucleus. Tritium occurs naturally in the upper atmosphere when high-energy cosmic radiation bombard atmospheric nitrogen and oxygen and splits off a tritium nucleus (spallation); however, the predominant sources of tritium in the post-nuclear era (i.e., anthropogenic tritium) are the explosions of nuclear weapons, the byproduct of nuclear reactors, and commercial production for use in various self-luminescent devices. Although tritium can occur as hydrogen gas, it is most commonly found as a liquid. Tritium, like non-radioactive hydrogen, reacts with oxygen to form tritiated water. Tritiated water is colorless and odorless, has a half-life of 12.3 years, and emits low-energy beta particles that can be measured by liquid scintillation. Standard scintillation methods can routinely detect tritium concentrations of 200 pCi/L and greater.

As proposed in the June 2003 RIWP, two action levels were defined for tritium in groundwater to assist in the evaluation of data generated through the investigation. These action levels are the Interim Further Investigation Criterion and the Further Action Criterion. The Interim Further Investigation Criterion for this investigation is 3,000 pCi/L. The Further Action Criterion for tritium in groundwater is 20,000 pCi/L, which is the New Jersey Groundwater Quality Criteria for tritium in Class II A aquifers. These criterion were used to evaluate the need for further delineation and characterization for tritium detected in groundwater, and the need for any further action (i.e., remediation).

2.2 Regulatory Review

Regulatory oversight for the Salem Generating Station, and other nuclear generating stations, is provided by both federal and state agencies. These agencies ensure that the stations are designed, constructed, licensed and operate in a manner that maximizes the safe containment and management of radioactive materials. These agencies also ensure that

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

9

sufficient funding mechanisms have been established, are adequately funded, and will be available to decommission the nuclear generating stations at the end of their life cycle.

On the federal and state levels, the United States Nuclear Regulatory Commission (USNRC) and NJDEP-BNE conduct licensing and oversight of nuclear generating facilities. Oversight by the NJDEP-BNE and USNRC includes inspections of nuclear power plants and conducting environmental radiological monitoring.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

3 Station Setting

The following sections provide information regarding the setting of the Salem Generating Station, including land use, the estuarine location, topography and station drainage, climate and precipitation, and regional geology and hydrogeology. A more detailed description of the setting of the Station is included in Section C of the ISRA Non-Applicability Application, which is provided in **Appendix B** to this report.

3.1 Land Use

PSEG Nuclear LLC owns and/or controls an approximately 740-acre area of Artificial Island that is situated adjacent to and surrounds the Salem and Hope Creek Generating Stations. This area contains administrative and support facilities used by the Stations, the Hope Creek Switch Yard, the Salem Switch Yard, and undeveloped vacant land. With the exception of the Salem Generating Stations (Units 1 through 3) and the Salem Switchyard, the remaining acreage is considered to be the Hope Creek Generating Station.

The zoning classification for the Salem Generating Station is industrial. The land adjacent to the Salem Generating Station is zoned for industrial and residential or agricultural use.

3.2 Estuarine Location

The Salem Generating Station is located on a portion of Artificial Island that borders the Delaware Estuary. The Estuary, in the location of the Salem Generating Station, is a tidal, brackish river, located in an area designated as Zone 5 by the Delaware River Basin Commission (DRBC).

The United States Army Corps of Engineers, beginning in the early twentieth century, created Artificial Island by depositing dredge spoils within a diked area established around a natural sand bar that projected into the Delaware River. Prior to construction of the Salem Generating Station, the property was vacant, undeveloped, low-lying land.

3.3 Topography and Station Drainage

The topography at the Salem Generating Station is relatively flat with limited local relief. Topographic contours for the Station are included on **Figure 2**.

Stormwater is managed in accordance with the Salem Generating Station New Jersey Pollution Discharge Elimination System (NJPDES) permit and Stormwater Pollution Prevention Plan. Stormwater is collected in storm drains and routed to the Delaware River for discharge. The locations of the storm drains are included on **Figure 2**. Stormwater

10

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

from the principle petroleum storage and handling areas is routed to the oil/water separator prior to discharge.

3.4 Climate and Precipitation

Salem County is located in southwestern New Jersey. The county's climate is considered to be humid and temperate, as the climate in this county is readily influenced by its proximity to the Delaware Bay. Coastal storms are not uncommon in this region and can produce high winds and heavy rainfall, which can cause wind damage and flooding in low-lying areas (USDA, 1969).

Wind direction in this region is dependent upon the season; during the summer, winds are typically from the southwest while during the winter, winds are commonly from the northwest. Temperatures vary by season and the maximum expected high temperature for a given year is 96 degrees Fahrenheit, while the minimum expected yearly low temperature is minus 2 degrees Fahrenheit. The average annual precipitation total is 39.9 inches.

3.5 Regional Geology and Hydrogeology

The Salem Generating Station is located on the east edge of the Delaware River, seven miles north of the Delaware Bay, eight miles southeast of the City of Salem and about 40 miles south of Philadelphia, Pennsylvania. The Station is located in the Atlantic Coastal Plain Physiographic Province, approximately 19 miles southeast of the contact between the coastal plain sediments and the Appalachian Highlands. This area is characterized by relatively flat to gently undulating terrain, underlain by unconsolidated sediments that increase in thickness to the southeast.

The coastal plain sediments were deposited in marine and non-marine environments. The sediments are between 1,500 and 2,000 feet thick in the vicinity of the Station, and unconformably overlie bedrock. These sediments range in age from Holocene to Cretaceous (0 to 146 million years old), and are comprised of clay, silt, sand, and gravel. Published geologic mapping indicates that the basement rock beneath these sediments (in the area of the Station) is metamorphic schist of the Wissahickon Formation, which is Pre-Cambrian in age (570 to 900 million years old) (USGS 1999).

The shallow, water-bearing unit at the Station consists of approximately 25 to 35 feet of dredge spoils (hydraulic fill), structural fill material, tidal marsh deposits and riverbed deposits. The structural fill replaced the dredge spoils and natural deposits in select locations at the facility during construction of the Station. Additional information regarding the construction of the facility and the composition and nature of the structural fill are provided in Section 4.2.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

The geologic formations beneath the shallow, water-bearing unit, in order of increasing depth, are as follows: the Kirkwood Formation; the Vincentown Formation; the Hornerstown-Navesink Aquitard; the Mount Laurel-Wenonah Formations; the Matawan Formation; the Magothy Formation; the Raritan Confining Unit and Aquifer; the Potomac Group; and, the Wissahickon Formation. Regional cross sections trending northeast to southwest (A-A') parallel to the Delaware River, and northwest to southeast (B-B') perpendicular to the river are provided on **Figure 3** (USGS 1999).

The following sections describe in more detail the units of the coastal plain sediments that are encountered in the vicinity of the Station.

3.5.1 Hydraulic Fill

Artificial Island is composed largely of hydraulically placed dredge spoils from construction and maintenance of nearby navigational channels by the United States Army Corps of Engineers. The hydraulic fill is not considered a source of drinking water.

3.5.2 Riverbed Deposits

A relatively thin layer of riverbed deposits underlies the more recent native and anthropogenic deposits composing Artificial Island. The layer consists of an approximate five- to ten-foot layer of discontinuous Quaternary Age deposits consisting primarily of sand with some gravel, silt and clay. The unit appears as a discrete deposit in some borings (Wells U and V). The results of aquifer tests conducted previously have shown the riverbed deposits to have a hydraulic conductivity on the order of 0.01 to 1 ft/day (Dames & Moore 1988, 1974).

3.5.3 Kirkwood Formation

The Kirkwood Formation, which consists of an upper clay-unit and a basal sand unit, separates the Vincentown Formation from the hydraulic fill and riverbed deposits of the shallow, water-bearing unit. The Kirkwood Formation consists of gray clay with trace silt and gravel, and is laterally extensive in the area of the investigation (see **Figure 4**). Conflicting geologic reports suggest that the geologic unit previously interpreted as the Kirkwood Formation may in fact be the Pleistocene Van Sciver Lake Bed deposits (USGS 1979 and 1999). To determine the relative age of this underlying unit, samples of the clay obtained during the drilling of Well V (see Section 6.5) were analyzed to determine the relative age of the unit, which is interpreted to be the Kirkwood Formation based on the age data.

The Kirkwood Formation occurs at or near the surface and is considered unconfined in Salem and Gloucester Counties (USGS 1999). The Kirkwood Formation is composed of

12

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

micaceous sands and diatomaceous clay, trends from the northeast to the southwest, and dips to the east-southeast. The sand content increases to the east-northeast where the Kirkwood includes the Atlantic City 800-foot sand. In the vicinity of Artificial Island, the unit is primarily composed of hard clays with trace fine micaceous sand and a basal sand unit directly overlying the Vincentown Formation. The basal unit of the Kirkwood Formation is a fine to medium micaceous sand with varying silt content that coarsens with depth (Dames & Moore July 1976). The upper clay in the Kirkwood Formation is considered an aquitard for the Vincentown Formation and the overlying basal sand unit.

3.5.4 Vincentown Formation

The Vincentown Formation is an aquifer of minor importance in some areas. In the vicinity of the Station, the Vincentown Formation has chloride concentrations of 1,800 to 4,300 mg/L preventing the aquifer from being used as a potable water source (Dames & Moore 1988). The Vincentown Formation outcrops over a small area of central Salem County, and trends northeast to southwest and dips to the east-southeast. The Vincentown Formation is composed of sands to silty sand characterized by a glauconitic quality. Confined by the overlying Kirkwood Formation, the Vincentown Formation extends southeast from Keasby Creek to Stow Creek with the greatest thickness (approximately 60 feet) coinciding with Alloways Creek (USGS 1999). The Vincentown thins and narrows to the northeast reaching a minimum thickness between Glassboro and Berlin before again increasing in thickness and lateral extent. The results of aquifer and laboratory tests have shown the Vincentown Formation to have a hydraulic conductivity on the order of 1 to 10 ft/day (USGS 1999; Dames & Moore 1988). The Hornerstown-Navesink Aquitard underlies the Vincentown Formation.

3.5.5 Hornerstown-Navesink Aquitard

The Hornerstown-Navesink Aquitard is considered to be part of a composite confining unit that includes the less permeable portions of the Vincentown and Piney Point Formations. The aquitard is composed of clayey to silty glauconitic green and black sands with a relatively low permeability (USGS 1999). The results of aquifer tests indicate that the Hornerstown-Navesink Aquitard has a vertical hydraulic conductivity on the order of 0.01 ft/day in Salem County (USGS 1999). Qualitative evidence indicates that leakage occurs from the Vincentown through the Hornerstown-Navesink Aquitard to the underlying Mt. Laurel-Wenonah Aquifer (Dames & Moore 1988).

3.5.6 Mt. Laurel-Wenonah Aquifer

The Mt. Laurel-Wenonah Aquifer is considered to be a major aquifer for the region and is composed of slightly glauconitic sand and increasing silt with depth. The Mt. Laurel-Wenonah aquifer is also identified as existing in Delaware by the Delaware Geological

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

Survey (DGS). The depth to the top of the Mt. Laurel-Wenonah Aquifer is approximately 173 feet in the vicinity of the Station, with the outcrop area extending from slightly west of Salem and extending approximately halfway to Pennsville (Dames & Moore December16, 1968; USGS 1999). The aquifer has a strike of northeast-southwest and dips to the east-southeast. The maximum thickness of the aquifer is approximately parallel to strike and is coincident with Williamstown and Stow Creek. The results of aquifer tests have shown the Mt. Laurel-Wenonah Aquifer to have a hydraulic conductivity on the order of 0.01 to 10 ft/day and a storativity on the order of 1×10^{-5} to 1×10^{-4} (USGS 1999). The Matawan Aquitard underlies the Mt. Laurel-Wenonah Aquifer.

3.5.7 Matawan Aquitard

The Matawan Aquitard is a composite unit including the Woodbury Clay and Merchantville Formations. The aquitard is predominantly composed of micaceous and glauconitic clay with some sand present. This unit is a major aquitard, conforming to regional strike and dip that may contain a thin water bearing sand in some areas. The New Jersey Geologic Survey (1995) defined the leakance of the aquitard as being on the order of $1x10^{-11}$ to $1x10^{-8}$ feet/day/foot (day⁻¹) in Salem and Gloucester Counties with the greater values in the western portions of the counties. The Matawan Aquitard is the confining unit for the Magothy Aquifer.

3.5.8 Magothy Aquifer

The Magothy Aquifer is composed of fine to coarse-grained sand with local beds of dark gray lignitic clay, and is located at a depth of 445 feet with a thickness of 50 to 100 feet in the vicinity of the Station (Dames & Moore December16, 1968; USGS 1999). The Magothy outcrops just west of Pennsville with the outcrop area following the regional strike of the coastal plain sediments. The Magothy Aquifer dips and thickens to the southeast (USGS 1999), and has been documented by the DGS as existing in Delaware. The results of aquifer tests have shown the Magothy to have a hydraulic conductivity on the order of 100 ft/day and a storativity on the order of 1×10^{-3} (USGS 1999; NJGS 1995). The Magothy Formation is separated from the Raritan Formation by an unnamed confining unit.

3.5.9 Raritan Confining Unit

The confining unit separating the Magothy and Raritan aquifers is composed primarily of dense clay at an approximate depth of 490 feet with a thickness of 190 feet including a 22-foot thick sand unit (Dames & Moore December16, 1968; 1988). A leakance on the order of 10^{-11} day⁻¹, increasing up dip, has been used by the NJGS (1995) to characterize the movement of water through the confining unit to the underlying Raritan Aquifer.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

15

3.5.10 Raritan Formation

The Raritan Formation is composed of sand with traces of silt and with occasional lenses of clay appear with increasing frequency down dip. The Raritan is a major aquifer for the region conforming to the regional strike and dip (USGS 1999). The Raritan Aquifer consists of two sandy zones beneath the Station. The first is the 22-foot thick sand mentioned above at a depth of 688 feet often identified with the Raritan Confining Unit. The second includes a 35- and a 24-foot sand located at depths of 766 and 811 feet below ground surface (bgs), respectively (Dames & Moore December 16, 1968). The total thickness of the Raritan Aquifer has not been well quantified in eastern New Jersey (USGS 1999); however, it tends to thicken down dip, has an approximate thickness of 100 feet beneath the Station, and its maximum identified thickness occurs between Pennsville and Salem. The results of aquifer tests have shown the hydraulic conductivity of the Raritan Formation to be on the order of 1 to 1,000 ft/ day and storativity to be on the order of 1×10^{-3} to 1×10^{-4} (USGS 1999; Dames & Moore 1988). The Raritan Formation is separated from the Potomac Group by a discontinuous confining unit (USGS 1999).

3.5.11 Potomac Group

The Potomac Group is an undifferentiated series of gravel, sand, silt and clay layers separated from the Raritan in some areas by a confining unit. Down dip, the Raritan and Potomac are undifferentiated (USGS 1983). The Potomac Formation is thought to be more than 250 feet thick and is located at a depth of approximately 836 feet beneath the Station with the uppermost sand occurring at 860 feet bgs (Dames & Moore December16, 1968; USGS 1999). The results of aquifer tests in Gloucester County have shown the group to have a hydraulic conductivity on the order of 100 ft/day and a storativity on the order of 1×10^{-5} to 1×10^{-4} (Barksdale et al. 1958). The Potomac Group is underlain by Pre-Cretaceous bedrock of the Wissahickon Formation (USGS 1999)

3.5.12 Wissahickon Formation

Located at a depth of approximately 1,400 feet, the Wissahickon Formation is primarily composed of metamorphic gneiss and schist (Hardt and Hilton 1969). The bedrock is not considered a significant source of groundwater.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

4 Facility Construction and Local Geology

The construction of the Salem Generating Station has caused significant changes to the local geology and hydrogeology. Within the footprint of the cofferdam surrounding Units 1 and 2, the majority of original Artificial Island materials were removed to a depth of 70 feet bgs. Beyond the limits of the cofferdam, sheet piling was driven into the Kirkwood Formation and left in place, portions of the riverbed deposits were excavated and replaced with structural fill, other portions of the riverbed deposits were chemically grouted thereby changing their physical properties, and the foundations of structures, utilities, as well as various buried piping systems, extend below the water table affecting groundwater flow. These issues and their potential influence on groundwater flow and transport are discussed in further detail in Section 8. The following sections describe the conditions at Artificial Island prior to the construction of the Station, and detail how the construction of the Station has altered the local geology.

4.1 Pre-Facility Construction

The Station is located on the southern tip of what was once a natural sand bar projecting into the Delaware River. The area between the sand bar and the mainland had been used as a dredge spoil deposit area. In 1899, a timber sheetpile wall was installed around the perimeter of the sand bar. Over the next 50 or so years the area was used as a spoil deposit area for material collected during the dredging of the Delaware River. Riprap was added to the perimeter when the timbers began to degrade (Dames & Moore February 1974, June 1977). The area landward of Artificial Island has remained a tidal marsh.

4.2 Facility Construction

The construction of the Station has resulted in significant changes to the local geology. It was necessary to remove and rework much of the soil in the area of the present investigation in order to facilitate construction of the Station. This construction process was guided in part by the recommendations of the geotechnical investigation of Artificial Island (Dames and Moore August 28, 1968). This study recommended that the containment, fuel handling and auxiliary buildings be constructed upon a foundation mat placed at a depth of 50 to 70 feet bgs in the Vincentown Formation and recommended that the turbine, service and administration buildings be placed on pilings driven into the Vincentown Formation. This section describes the construction of the Station, which has had a significant impact on local hydrogeology in the area of the investigation. Facility construction details are highlighted on cross section diagrams through various Station features (**Figures 5** through **9**)

16

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

17

4.2.1 Construction of the Cofferdam

The recommendations for the containment, fuel handling, and auxiliary buildings (primary or Class I structures) were implemented by first constructing a cellular cofferdam of welded interlocking sheet piling. The extent of the cofferdam is shown on **Figure 2** and in profile on **Figures 5** and **6**. The cellular cofferdam, which encircled the excavation for all the Class I structures, was constructed at an approximate depth of 23 feet below existing grade (approximately 77 feet plant datum [PD] or -12.92 feet above mean sea level [amsl NAVD 1988]). The cofferdam consists of 24 circular cells, approximately 60.5 feet in diameter with connecting arcs, that were advanced approximately 10 feet into the Vincentown Formation to an elevation of 17 feet PD (-72.92 feet amsl). The cofferdam sections are of two different heights, 50 feet and 60 feet. The elevation of the top of the cofferdam is 77 feet PD (-12.92 feet amsl) on the north, south and west sides. The elevation of the eastern side is 67 feet PD (-22.92 feet amsl) providing access and a foundation for the return circulating water pipes and associated thrust block.

The inside area of the cofferdam sections were excavated to elevation 27 feet PD (-62.92 feet amsl). A vertical steel wall was added inside each individual cofferdam section to divide the sections approximately in half. The inner half of the individual cofferdam sections, or the section facing the building foundations, was then filled to the top with lean concrete. The area contained by the entire cofferdam structure was then excavated to the Vincentown Formation for placement of the lean concrete mat that served as the foundation for the construction of the structures within the cofferdam. During this stage of the excavation, qualified personnel visually inspected the bottom of the excavation to verify that the excavation had reached the top of Vincentown Formation prior to placing any lean concrete.

Prior to the completion of the excavation, at approximately elevation 45 feet PD (-44.92 feet amsl), 15 exploratory borings were drilled through the remaining Kirkwood Formation and into the underlying Vincentown to verify the depth to the formation. These additional borings showed no measurable differences from the study borings. After the Vincentown Formation had been exposed, an additional six test borings were advanced in the excavated area into the underlying Vincentown Formation to verify and ensure that the Vincentown Formation directly supported the foundation mat. Four of these borings were drilled under the Unit 2 Reactor Containment and two borings were drilled under the Unit 1 Reactor Containment. All of the borings penetrated a minimum of 20 feet into the underlying Vincentown Formation. Based on a review of available documents, the top of the Vincentown Formation in the area of the cofferdam ranges between 27 and 30 feet PD (-62.92 to -65.92 feet amsl).

When the surface of the Vincentown Formation was reached, the area was cleared of loose soil and lean concrete was poured directly onto the exposed Vincentown Formation.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

Because the latter stages of the excavation were performed in freezing temperatures, a layer of material was left in place to insulate the Vincentown Formation until the concrete was ready to pour. In cases where the top of the Vincentown Formation did freeze prior to pouring of the concrete, the frozen soils were excavated or thawed prior to starting the pour. The station construction drawings indicate that the base of the first lean concrete pour was at 30 feet PD (-59.92).

4.2.1.1 Construction Within the Cofferdam

The cofferdam serves as a basin in which the Class I structures were constructed. Prior to construction of the primary structures, a lean concrete mat was placed on top of the Vincentown Formation for support of the structures. Following placement of the lean concrete, the Auxiliary Building, Fuel Handling Buildings and Reactor Containment Buildings were constructed. The remainder of the excavation within the cofferdam was then backfilled with structural fill meeting the design specifications of the Station. The following sections provide the details of these construction activities.

4.2.1.1.1 Lean Concrete

The lean concrete was placed in multiple pours. The initial lean concrete pour had a uniform thickness of 5.75 feet within the entire cofferdam area and went from elevation 30 feet to 35.75 feet PD (-59.92 to -54.17 feet amsl). As noted previously, the top of the Vincentown Formation in the area of the Station varies between 27 and 30 feet PD (-62.92 to -65.92 feet amsl). Review of available documentation indicates that the base for the first lean concrete pour was essentially uniform at 30 feet PD (-62.92 feet amsl) and that a soil blanket up to 3 feet thick in some areas was placed on top of the Vincentown Formation.

The second lean concrete pour went from elevation 35.75 feet PD (-54.17 feet amsl) to 45.75 feet PD (-44.17 feet amsl) for an overall thickness of 10 feet. The second pour covered the entire area within the cofferdam with the exception of the Reactor Pit within the Containment Building and the RHR pump pit within the Auxiliary Building. These areas did not receive additional lean concrete beyond the first pour.

The third lean concrete pour went from elevation 45.75 feet PD (-44.17 feet amsl) to 59.75 feet PD (-30.17 feet amsl) for an overall thickness of 14 feet. The third pour covered the entire area within the cofferdam except for the Reactor Pit within the Containment Building, and the residual heat removal (RHR) pump pit within the Auxiliary Building. In the area of the Auxiliary Building along the station centerline, the third pour only reached an elevation of 53.75 feet PD (- 36.17 feet amsl). There is also a sloped area running southeast from the RHR pump pit within the Auxiliary Building up to the cofferdam area that did not reach an elevation 53.75 feet PD (- 36.17 feet amsl).

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

The fourth and fifth lean concrete pours were limited to the area under the Fuel Handling Buildings and a portion of the Auxiliary Buildings. The fourth pour went from elevation 59.75 feet PD (-29.17 feet amsl) to an elevation of 69.75 feet PD (-19.17 feet amsl). The fifth pour brought the elevation of the lean concrete to 77.75 feet PD (-12.17 feet amsl). The overall thickness of the fourth and fifth pours combined was 18.25 feet 3 inches. The primary purpose of these pours was to provide the base for the Fuel Handling Building.

After the lean concrete pour was completed, the subgrade exterior walls and foundations were waterproofed. A rubber waterproof membrane was installed under all foundations and was extended vertically up to 6 inches below yard grade. The horizontal waterproofing membrane was constructed of 1/16-inch thick Ethylene Propylene Diene Monomers (EPDM rubber). A 1/8-inch thick hard board was installed over the membrane and then a concrete protection course approximately 3 inches thick was installed over the hard board. After construction, the waterproofing membrane was extended vertically up the foundation walls with 3/64-inch thick nylon reinforced rubber that was protected with 1/8-inch thick hardboard.

The individual foundations for the Reactor Containments, Auxiliary, and Fuel Handling Buildings were placed on top of the completed lean concrete. These buildings were designed to be separate structures sitting on the same base mat of lean concrete. To accomplish this design, the base mat structural concrete for these buildings was kept as separate structures with seismic clearance between the base mats.

4.2.1.1.2 Structural Concrete

Auxiliary Building

The base mat structural concrete under the Auxiliary Building in the area of the RHR pump pit starts at elevation 36 feet PD (-53.92 feet amsl) and extends up to approximate elevation 45 feet PD (-44.92 feet amsl). In the area of the Containment Building sumps this base mat extends from elevation 36 feet PD (-53.92 feet amsl) to an elevation of 60 feet PD (-29.92 feet amsl) where it completes the foundation structure for the. Containment Building base mat. The base mat structural concrete under the center section of the Auxiliary Building starts at elevation 54 feet PD (-35.92 feet amsl) and extends up to elevation 64 feet PD (-25.92 feet amsl). The remainder of the Auxiliary Building walls and levels are continued up from these base mats to complete the structure.

Reactor Containment

The structural concrete base mat for the Containment Building that completed the reactor pit area to an approximate elevation of 52 feet PD (-37.92 feet amsl) and the remainder of

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

the containment base mat to an elevation of 75.5 feet PD (-14.42 feet amsl). This surface was then covered with a stainless steel liner plate and topped with concrete. The total thickness of the stainless steel liner and concrete is 0.5 feet. Once the reactor pit area base mat was completed to an elevation of 59.75 feet PD (-30.17 feet amsl), the reactor containment base mats for Salem Units 1 and 2 were poured in 6 and 8 circular segments, respectively. Vertical construction joints were constructed with expanded wire mesh. No horizontal joints were permitted. This flat concrete base mat is approximately 16-feet thick with a liner plate located on top of this mat. Once the base mat and liner plate was completed, the finished concrete floor of the containment was poured and the containment structure completed.

The underground portion of the containment structure is waterproofed in order to avoid seepage of groundwater through cracks in the concrete. The waterproofing consists of an impervious membrane that is placed under the mat and on the outside of the walls. The EPDM membrane is designed to resist tearing during handling and when backfill is placed against it.

Fuel Handling Building

The Fuel Handling Building base mat structural concrete was poured from the top of the lean concrete at approximate elevation 77.75 feet PD (-12.17 feet amsl). The Spent Fuel Pool and the Fuel Transfer Pool were included in the first two structural concrete pours with approximate base elevations of 89.5 feet PD (-0.42 feet amsl) and 86 feet PD (-3.92 feet amsl), respectively.

4.2.1.1.3 Structural Fill

The soils removed from within the cofferdam were not used to backfill the completed structure because the hydraulically placed fill underlying Artificial Island did not meet the building design specifications for the Station. Therefore, it was necessary to import construction or structural fill to build the facility. The structural fill was placed between and around the Auxiliary Building, Fuel Handling Buildings, Units 1 and 2, portions of the cofferdam, above the return circulating water pipes, and from the top of the Kirkwood Formation to the land surface in the portions of the area between the cofferdam and the circulating water discharge pipes. This material was used extensively in the area of Unit 1 and the circulation water pipes.

4.2.2 Construction of the Service Water Intake Structure

The service water intake structure, shown on **Figure 2**, was constructed by driving sheet piles into the Vincentown Formation, and dewatering and excavating the enclosed soils (Dames & Moore August 28, 1968). The foundation of the structure lies upon a lean

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

concrete pour placed upon the top of the Vincentown Formation. The base of the lean concrete is at elevation 45 to 50 feet PD (-44.92 to -39.92 feet amsl) (Dames & Moore June 3, 1970). This structure extends from the top of the Kirkwood Formation to the land surface preventing groundwater flow from this area to the Delaware River.

4.2.3 Construction of the Service Water Pipes

The original material in the locations of the service water pipes was excavated to the top of the riverbed deposits that overly the Kirkwood Formation. Structural backfill was placed above the riverbed deposits. The structural fill was compacted to 98 percent of optimum and used as the foundation for the service water lines (Dames & Moore August 28, 1968). Compaction is the process of increasing soil unit weight by forcing soil solids into a tighter state and reducing soil voids. This process strengthens soils and reduces hydraulic conductivity. Optimum compaction is the maximum soil weight that can be achieved at a given moisture content. The service water lines are two-foot diameter and are located at varying depths below ground surface throughout the area of investigation. The location of the lines is shown on **Figure 2**.

4.2.4 Construction of the Circulating Water Intake Structure

The circulating water intake structure is shown on **Figure 2**. The area of the intakes for the circulating water pipes was dredged to elevation 56 feet PD (-33.92 feet amsl). The surrounding structure was constructed on piles cut off at elevation 56 feet PD (-33.92 feet amsl). The top of the Vincentown Formation in this area is between elevation 40 and 53 feet PD (-49.92 and -36.92 feet amsl) (Dames & Moore June 3, 1970). This structure extends from the top of the Kirkwood Formation to the land surface preventing groundwater flow from this area to the Delaware River.

4.2.5 Construction of the Circulating Water Pipes

Water in the circulating water system is drawn from near shore, through 12, 7-foot diameter water intake lines. Water passes through the turbine building and returns to the Delaware River through 6, 10-foot diameter pipes extending approximately 500-feet off shore and discharging at an elevation of 53 feet PD (-36.92 feet amsl). The location of the lines is shown on **Figure 2**. The return circulating water lines are an important subsurface feature affecting groundwater flow in the area of investigation. They were constructed by sheet piling and excavation dewatering of the overlying sediments to the top of the Kirkwood Formation. Concrete footers were constructed perpendicular to the pipes from the turbine building to the shoreline. Between the concrete footers, crushed compacted concrete was placed. The surface of this foundation is sloped uniformly from an elevation of approximately 65 feet PD (-24.92 feet amsl) near the shore to about 75 feet PD (-14.92 feet amsl) near the turbine building. Following construction, lean concrete was poured between

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

the pipes. These pipes and underlying foundations are a buried flow barrier, extending vertically 15 to 20 feet from the top of the Kirkwood Formation limiting southward groundwater movement. Construction of the return circulating water pipes were completed by placement and compaction of structural fill from near the top of the pipes to the present land surface.

4.2.6 Sheet Pile – Circulating Water Intake Structure to the Service Water Intake Structure

Groundwater movement toward the Delaware River is also restricted between the Circulating Water and the Service Water Intake Structures by interlocking sheet pile. The sheet piling is considered to be good barrier to flow as cathodic protection is used to control corrosion. The sheet piling was driven through the surficial aquifer into the first aquitard beneath Artificial Island (the Kirkwood Formation) during construction of the Salem Generating Station. The sheet piling is located as shown on **Figure 9**. Where the sheet piling is indicated using a dark black line, the elevation of the top is above the current water table; the sheet piling acts as a dam limiting the horizontal movement of water. Where the sheet piling is indicated using a gray line, the elevation of the top is below the current water table; groundwater is moving across the top of the sheet piling toward the Delaware River.

4.3 Local Geology

Certain information made available through the design and construction of the Station were used in conjunction with data obtained during the remedial investigation to define the geology as it currently exists. The Station geology is tied into the regional geology via the Vincentown Formation. During construction many areas were excavated down to the top of the Vincentown Formation, as such, it is a logical reference point. In the vicinity of the Station, the Vincentown Formation is overlain by the Kirkwood Formation, including the Kirkwood basal sand unit and the Kirkwood Aquitard, the riverbed deposits, hydraulically placed dredge spoils, and in some locations structural backfill. In most cases, the properties of these formations have been described in the above sections.

The upper surface of the Vincentown Formation in the area of the Station ranges between 27 and 30 feet PD (-62.92 to -65.92 feet amsl). The Vincentown is composed of glauconitic sands to silty sands with varying degrees of calcite cementation. The Kirkwood basal sand overlies the Vincentown Formation in the vicinity of the Station.

The Kirkwood basal sand is a reddish brown fine to medium sand coarsening with depth. The sand is variable in thickness at the Station and has been misidentified as the deeper aquifer in previous investigations (Dames & Moore May 23, 1974). Pumping tests conducted in the Kirkwood basal sand and Vincentown Formation have shown the units to

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

23

have a hydraulic conductivity on the order of 1×10^{-3} cm/s and a storativity with a magnitude on the order of 1×10^{-4} to 1×10^{-3} (Dames & Moore May 23, 1974).

The Kirkwood Aquitard extends from the top of the Kirkwood basal sand to approximately 60 feet PD (-30.53 feet amsl). The Kirkwood Aquitard is composed of hard tan to gray clay with some sand and silt ten to twenty feet in thickness. The Kirkwood Aquitard is overlain by the riverbed deposits of the shallow, water-bearing unit.

The riverbed deposits are a dense, dark gray to tan, fine to medium sand with varying gravel content. With an upper elevation of approximately 65 feet PD (-25.53 feet amsl), the riverbed sand and gravel ranges in thickness from approximately 1 to 9 feet at the facility. The riverbed sand and gravel is overlain by hydraulic fill in some areas and structural fill in others, and is considered a leaky confined aquifer (Dames & Moore February 27, 1981 and December 23, 1992).

The hydraulic fill is a dark gray estuarial silt and clay with a hydraulic conductivity 1,000 to 10,000 times less than the underlying riverbed sand and gravel unit (Dames & Moore December 23, 1992). The hydraulic fill extends approximately from an elevation of 35 feet PD (-55.53 feet amsl) to surface grade in areas that remained undisturbed during the construction of the generating station. In other areas, the hydraulic fill has been entirely removed and replaced with structural fill.

The structural fill used at the station was obtained from a number of sources in New Jersey and Delaware. One fill source used in the area of this investigation was the Hinchner Pit. While the location of the borrow source was not identified, the material was described as yellowish-brown fine to medium sand with a trace of silt and clay (Dames & Moore June 20, 1972).

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

24

5 Initial Station Investigation Activities

Samples of leaking water were collected from three locations in an effort to characterize the nature of the leak detected from the west wall of the 78-foot Mechanical Penetration Room of the Unit 1 Auxiliary Building and from the penetration of the Unit 1 Spent Fuel Pool cooling line at the 92-foot elevation. The three sample locations were as follows:

- A drip bag was installed at the crack in the wall of the 78-foot Mechanical Penetration Room;
- A catch tray with a sample tube was placed under the Spent Fuel Pool cooling line at the interface between the Auxiliary Building and the Fuel Handling Building; and,
- A sample tube was established in the water stop located at the penetration between the Auxiliary Building and the Fuel Handling Building.

Samples collected from these locations were analyzed for tritium, major cations and anions, and gamma-emitting isotopes to determine the concentrations of constituents of concern in the water samples and to evaluate a potential source of the water. Analytical results of the samples were compared with analytical results of water samples collected from the Spent Fuel Pool and the telltale drains. The analytical results of the initial samples from these locations indicated that the water from the leaks had characteristics of Spent Fuel Pool water and that a leak from the Spent Fuel Pool system had occurred.

A series of samples from these initially established locations, as well as other locations subsequently established within the Station were collected and analyzed to characterize the leak from the Spent Fuel Pool system within the limits of the facility structures. The results of these sampling activities are presented in the Investigations of Salem Unit 1 Fuel Pool Leakage – Final Report Summary, which is provided in **Appendix A**.

An investigation of environmental media (i.e., groundwater and soil) in response to the leak from the Spent Fuel Pool was initiated in October 2002. These activities were conducted in three distinct phases (herein identified as Phase I, II, and III) each designed to determine the nature and extent of the release of water from the Spent Fuel Pool. Phases I and II of the investigation consisted of the collection and analysis of samples from within the facility structures, from the shallow, groundwater unit beneath the Station, and from select production and monitoring wells located adjacent to the Station. Sections 5.1 and 5.2 present the details of Phases I and II, respectively. Details of Phase III investigation activities, which included the installation and sampling of eight groundwater monitoring wells (Wells K through R), are presented in Section 5.3.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

5.1 Phase I

The objectives of Phase I of the investigation were to further characterize the leak in the 78foot elevation Mechanical Penetration Room, and to assess the likelihood that the leak had migrated to other locations within the Station, or beyond the limits of the Station structures and into the environment. The sampling program that comprised Phase I of the investigation included the following:

- Two groundwater samples were collected from inside the area through the "Door to Nowhere" in the 100-foot elevation Auxiliary Building. The sample locations consisted of the following:
 - Above the fuel transfer canal in the space between the Containment Building and the Fuel Handling Building (Sample A1). This required the removal of sandbags to a depth that groundwater was encountered.
 - Immediately inside the door to the right and next to the Fuel Handling Building (Sample A2).
- A groundwater sample was collected from inside the security gate at the northeast corner of the Fuel Handling Building yard area (Sample B).
- Water samples were collected from catch basins numbers 26 (Sample C26) and 33 (Sample C33).
- A water sample was collected from the drain line located in the 78-foot elevation Mechanical Penetration Room (Sample D).
- An additional water sample was collected from the active drip located in the area of the crack observed in the 78-foot elevation Penetration Room (Sample E).

The Phase I sample locations are shown on **Figure 10**. The groundwater samples (Samples A1, A2, and B) were discrete samples collected from a depth of four to five feet bgs (plant datum, [PD], 96 to 95 feet) in the area surrounding the Mechanical Penetration Room. The water samples collected from the catch basins (Samples C26 and C33), the drain line located in the 78-foot elevation Mechanical Penetration Room (Sample D), and the active drip from the crack in the wall of the 78-foot elevation Mechanical Penetration Room were grab samples. The samples (both water and groundwater) were analyzed onsite for gamma emitting isotopes. The analysis of Sample E included boron.

Analytical results of the water samples collected during Phase I are summarized in **Table 2**. Analytical results of water samples collected in the shallow subsurface (five feet bgs) did

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

26

not indicate concentrations of target analytes that would indicate a release of water from the Spent Fuel Pool.

Analytical results of Sample E, collected from the active drip in the crack observed in the 78-foot elevation penetration room, indicated a boron concentration of 2,600 milligramsper liter (mg/L), a cesium-134 (Cs-134) concentration of 118,000 pCi/L, and a cesium-137 (Cs-137) concentration of 320,000 pCi/L. These concentrations are characteristic of water from the Spent Fuel Pool.

5.2 Phase II

The objective of Phase II of the investigation was to evaluate the extent of contamination in groundwater and the Styrofoam-filled seismic gap between the Salem Auxiliary Building and the Salem Unit 1 Fuel Handling Building. The sampling program that comprised Phase II of the investigation is described in more detail below:

On December 12 and 13, 2002, the PSEG Salem Generating Station Chemistry Division (PSEG Chemistry) collected groundwater samples from select production and monitoring wells installed within the vicinity of the Station. The samples were collected to assess whether the leak detected within the facility had migrated beyond the engineered structures of the Station. The groundwater samples were submitted to the PSEG SC Maplewood Laboratory and Testing Services (Maplewood) for analysis for tritium and gamma-emitting isotopes. The water sample collected from Well G was also analyzed for sodium, chloride, and boron, Analytical results of the groundwater samples, summarized in Table 3, did not indicate concentrations of constituents of concern above expected background concentrations. Although the radium detected in the Hope Creek and Salem production wells is naturally occurring, the concentrations indicated by groundwater samples collected from the wells were above the New Jersev Drinking Water Standard. Since the production wells may be used for drinking water, the NJDEP requested that PSEG Nuclear, LLC collect water samples from the facility water distribution network and submit those samples for gross alpha analysis. Analytical results of the water samples did not indicate gross alpha activity above 5 pCi/L. As such, further radium analysis of the wells is not required.

On December 19 and 20, 2002, two direct-push discrete water samplers (DP-1 and DP-2) were advanced into the Styrofoam-filled Seismic Gap between the Salem Auxiliary Building and the Salem Unit 1 Fuel Handling Building. The water samplers consisted of one and one quarter-inch steel rods with a two-foot mill slotted sample screen. Water samples were obtained using quarter-inch polyethylene tubing and a peristaltic pump. The locations of DP-1 and DP-2 are

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

27

shown on **Figure 10**. DP-1 was installed vertically along the northeast exterior wall of the Fuel Handling Building. DP-2 was installed on a 45-degree angle from the area of the "door to nowhere" into the Styrofoam to a depth that corresponded with the leak observed at the 78-foot elevation in the Mechanical Penetration Room. Analytical results of water samples collected from DP-1 and DP-2, summarized in **Table 3**, indicated concentrations of constituents of concern (primarily boron and tritium) that are consistent with Spent Fuel Pool water.

Results of the Phase II investigation indicated that water in the Styrofoam-filled Seismic Gap and the water observed leaking into the 78-foot elevation of the Mechanical Penetration Room had characteristics of Spent Fuel Pool water and likely had accumulated when the Spent Fuel Pool telltale drains had become obstructed.

5.3 Phase III

Phase III of the investigation was initiated following the discovery of water containing boron and various radioisotopes characteristic of water from the Spent Fuel Pool in the Styrofoam-filled Seismic Gap and was designed to determine if water leaking from the Spent Fuel Pool had migrated into the environment (i.e., soil and groundwater underlying the facility) adjacent to the Fuel Handling Building. This phase of the investigation involved the installation and collection of groundwater samples from eight monitoring wells adjacent to and around the perimeter of the Fuel Handling Building.

The installation of the eight monitoring wells was completed in two sub-phases (III (a) and III (b)). The locations of the Sub-Phase III (a) and Sub-Phase III (b) Monitoring Wells are shown on **Figure 11**. Monitoring Wells M, N, O, and R installed during Phase III (a), were installed at locations between the Phase II direct push discrete water samplers (DP-1 and DP-2) and the cofferdam, which bounds the perimeter of the Salem Generating Station foundation. The Sub-Phase III (a) wells were installed to a total depth of 20 feet bgs. The depths of the wells considered the elevation of the lean concrete foundation within the cofferdam. As discussed in Section 4.2.2, the elevation of the lean concrete foundation is approximately 78 feet PD. Each monitoring well was constructed with a ten-foot screened interval (10 to 20-feet bgs). Monitoring Wells M and R are constructed of 1¼-inch steel and were installed using direct push (i.e., Geoprobe®) technology due to access restrictions. Monitoring Wells N and O are constructed of two-inch PVC and were installed using hollow-stem auger drilling equipment.

Monitoring Wells K, L, P, and Q installed during Phase III (b), were installed outside the limits of the cofferdam. The Sub-Phase III (b) wells were installed into the Vincentown Formation using hollow-stem auger drilling equipment to a total depth of 80 feet bgs (20 feet PD), which corresponds with an elevation of ten feet below the Salem Generating Station foundation. The Sub-Phase III (b) monitoring wells, designed to monitor

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

28

groundwater quality outside of the cofferdam, were constructed with a ten-foot screened interval (70 to 80-feet bgs) and are constructed of two-inch diameter PVC well materials. A summary of the well construction details for the Station monitoring wells is presented in **Table 4**, and well construction logs and boring logs are included in **Appendix C**.

Following installation and development of the monitoring wells, groundwater samples were collected on a periodic basis to assess groundwater quality. Details of the groundwater sampling activities are presented in Section 6.5. Analytical Results of the groundwater sampling activities, which are discussed in detail in Section 8, indicate that tritium was detected above the Interim Further Investigation Criterion for tritium (3,000 pCi/L) in groundwater samples collected from Monitoring Wells M, N, O, and R. In addition, tritium was detected above the laboratory detection limit in the groundwater samples collected from Monitoring Wells M, N, O, and R. In addition, tritium was detected above the laboratory detected in the groundwater sample collected from Monitoring Well N on January 30, 2003 at a concentration above the New Jersey Groundwater samples collected from the Phase III monitoring wells indicated that the release of water from the Salem Generating Station Unit 1 Spent Fuel Pool had potentially migrated beyond the Styrofoam-filled Seismic Gap and into the environment. Additional investigation activities were then initiated to determine the source of the tritium detected in groundwater.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

29

6 Remedial Investigation - March 2003 through February 2004

The remedial investigation of the release of water from the Spent Fuel Pool system was conducted between March 2003 and February 2004 in accordance with the June 2003 RIWP and the RIWP Addendum. The remedial investigation proposed in the June 2003 RIWP and the RIWP Addendum was based on the results of the three-phased initial investigation that was described in Section 5 of this report. The remedial investigation was designed to determine: 1) the source of the tritium in groundwater; 2) the extent of tritium in groundwater; 3) the fate and transport of tritium in groundwater; 4) the potential for tritium to migrate beyond the property boundaries; 5) human health and environmental risks associated with the tritium detected in groundwater; and, 6) the need for any further action.

The following sections provide the details of the remedial investigation. The results of remedial investigation activities are presented in subsequent sections of this report.

6.1 New Monitoring Well Installation – May through June 2003

Five locations were identified for the installation of additional monitoring wells. Details regarding these wells and their installation are provided in the following sections.

6.1.1 Objectives

Five additional groundwater monitoring wells (Wells S through W) and two replacement groundwater monitoring wells (Wells M and R) were installed at pre-determined locations surrounding Salem Unit 1 to evaluate the extent of tritium in groundwater, and to evaluate groundwater flow dynamics in the shallow, water-bearing unit. The locations of the monitoring wells are shown on **Figure 11**. The specific purposes for each of the monitoring wells are as follows:

- Monitoring Wells S and W were installed south and southwest of the cofferdam to characterize groundwater quality and flow conditions in an area downgradient of the Salem Generating Station Unit 1 Spent Fuel Pool between the cofferdam and the Delaware River;
- Monitoring Wells T, U, and V were installed north of the cofferdam to characterize groundwater quality and flow conditions upgradient of the cofferdam both in the shallow water-bearing unit and the Vincentown Formation; and,
- Replacements for the existing Monitoring Wells M and R were installed to allow for the collection of groundwater samples in the area of these wells from properly constructed and developed monitoring wells.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

6.1.2 Field Implementation

Between May 5 and June 18, 2003, Monitoring Wells S through W were installed. In addition, existing Monitoring Wells M and R, which were originally installed as temporary wells constructed of mill-slotted Geoprobe[®] sample rods, were replaced with properly constructed and developed monitoring wells. The monitoring wells were installed by CT&E Environmental Services, Inc. of West Creek, New Jersey using a combination of direct-push, hollow-stem auger, and mud rotary drilling equipment. ARCADIS personnel supervised monitoring wells is presented in **Table 4**. Appendix C presents the boring logs, well completion details, NJDEP Bureau of Water Allocation Monitoring Well Records, and Monitoring Well Certification Forms (Form B) for the wells.

Monitoring Wells S through W were constructed with two-inch diameter Schedule 40 PVC casing and well screen (0.010 slot). Well V, which is screened in the Vincentown Formation, is constructed with a six-inch diameter Schedule 40 PVC outer casing. The replacement monitoring wells for Well M and Well R were constructed of one-inch diameter Schedule 40 PVC casing and well screen (0.010 slot). A gravel pack consisting of Morie No. 1 sand was installed to a minimum of one foot above the top of the well screen. The remainder of the borehole was grouted with neat cement containing approximately five percent bentonite. The grout was installed in the annular space around the casing using a grout pump and a tremie-pipe.

Monitoring Wells S, T, U, and W were installed at various locations outside of the cofferdam. The wells were constructed with screened intervals in the hydraulic fill and riverbed deposits encountered above the Kirkwood Formation. The screened intervals for these wells range from 22 to 37 feet bgs. Monitoring Well V, installed north of the cofferdam, is constructed with a screened interval from 70 to 80 feet bgs in the deeper Vincentown Formation.

The monitoring wells were developed using a combination of surging and pumping techniques. Development of the monitoring wells was considered complete when the discharge appeared to be sediment free. Following installation, Stires Associates, P.A., a licensed New Jersey surveyor, surveyed the monitoring wells. Top of casing elevations, reported in elevations relative to plant datum, are included in **Table 4**. Monitoring Well Certification Form Bs for the wells are included in **Appendix C**. In August 2003, PSEG Nuclear, LLC conducted a separate survey to determine the relationship between plant datum and mean sea level (NAVD 1988). The results of the survey indicate that the conversion factor from plant datum to NAVD 1988 is -89.92 (i.e., to convert from plant datum to NAVD 1988 subtract 89.92 feet).

Investigation-derived waste (IDW) (i.e., drill cuttings, purge water, and decontamination materials) generated during the installation of the monitoring wells was containerized in 55-

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

31

gallon steel drums and labeled for identification. Characterization and disposal of the IDW was in accordance with Station radiological controls and waste management programs. During monitoring well installation activities, Station personnel from radiation protection monitored radioactivity in the work area to ensure the safety of project personnel and as a preliminary screening measure for IDW.

6.2 Supplemental Remedial Investigation – July through September 2003

Following installation of Monitoring Wells S through W and replacement monitoring wells for Wells M and R, an initial round of groundwater samples was collected during the weeks of June 30 and July 7, 2003. Analytical results of these groundwater samples, which are discussed in detail in Section 8, indicated that tritium was detected in the groundwater sample collected from Monitoring Well S at a concentration of 3,530,000 pCi/L. Based on the results of the groundwater sample collected from Monitoring Well S, a supplemental remedial investigation was implemented to assess the extent of tritium as indicated by this well. The details and results of the supplemental remedial investigation are presented in the following sections.

6.2.1 Objectives

In an effort to characterize groundwater in the vicinity of Monitoring Well S and to investigate the source of tritium detected in groundwater samples collected from the well, a supplemental remedial investigation was initiated. The objectives of the supplemental remedial investigation were to: 1) determine if the tritium indicated by the groundwater sample collected from Monitoring Well S had migrated to the river; 2) delineate the vertical and horizontal extent of the tritium in groundwater in the vicinity of Monitoring Well S; and 3) evaluate the potential sources of tritium in Monitoring Well S.

To achieve the objectives of the supplemental investigation, the groundwater sampling program was expanded significantly. The expanded groundwater sampling program consisted of the collection of grab groundwater samples from various depths at locations along the Delaware River, and surrounding Well S. The samples were then submitted for analysis for tritium, boron, and gamma-emitting isotopes. The groundwater sampling program designed to achieve the objectives of the investigation consisted of the collection of three proposed groundwater samples from discrete intervals in 37 proposed borings. The locations of the borings are shown on **Figure 12**. The specific purposes of the proposed borings were as follows:

Borings 1 through 8 were advanced along the Station boundary with the Delaware River. The purpose of the borings was to evaluate concentrations of tritium and other analytes in groundwater as it approached the Delaware River.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

Borings 9 through 18 and Borings 31 through 37 were advanced within the vicinity of Station infrastructure identified as possible sources of tritium in groundwater. These potential sources include the "rad-waste" line, the Unit 1 Spent Fuel Pool, the Unit 1 refueling water storage tank, and the Unit 1 primary water storage tank.

Borings 19 through 30 were advanced in the vicinity and downgradient of Well S to evaluate the extent of tritium indicated by groundwater samples collected from the well.

The following sections provide the details of the field implementation and analytical results obtained through the implementation of the supplemental remedial investigation.

6.2.2 Field Implementation

The supplemental remedial investigation was initiated in July 2003 following the detection of elevated concentrations of tritium in Monitoring Well S. As stated previously, the objectives of the supplemental investigation were to determine the extent of migration of the tritium, as indicated by Well S, and to assess the lateral and vertical extent and potential sources of the tritium in groundwater.

Borings were advanced at the locations shown on **Figure 12** using truck mounted Hurricane[®] direct-push drilling equipment to the sample target depths. The Hurricane[®] rig was operated by ADT Diamond Drilling, Inc. of Neptune, New Jersey. Prior to advancing the borings, Underground Services, Inc. of West Chester, Pennsylvania cleared the borings to a depth of ten feet bgs using SoftDig[®] technology (a vacuum excavation system). Subsurface structures, which prohibited the advancement of borings, were encountered in the locations of Borings 5, 6, 11, 16, 17, 21, and 29 through the use of SoftDig[®]. In these circumstances, attempts to advance the borings were abandoned.

Once cleared, groundwater samples were collected from the borings through the use of a Geoprobe[®] SP-15 screened point sampler advance to select target depths. Typically, the target depths for the collection of groundwater samples were as follows: 1) 11 to 15 feet bgs; 2) 21 to 25 feet bgs; and, 3) 31 to 35 feet bgs. These target intervals were chosen to evaluate groundwater at or near the water table surface, in the riverbed deposits or other sediments encountered just above the Kirkwood Formation, and some intermediate sample interval. The target sample intervals were modified in the field based on field conditions and observations, as necessary.

In several locations, the shallower target intervals (11 to 15 feet and 21 to 25 feet) yielded too little groundwater to collect a sufficient volume of water for analysis. In these locations, one-inch diameter Schedule 40 PVC temporary wells were installed to facilitate

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

the collection of groundwater. The temporary wells were installed using two and a quarter inch diameter Geoprobe[®] well installation rods with an expendable point. Drilling equipment and sampling devices (e.g., the SP-15 sampler) were decontaminated between sample locations.

Maplewood Testing Services personnel (Maplewood) collected the groundwater samples using peristaltic pumps. New sample tubing was used at each sample location to prevent cross contamination between sample locations. A sufficient volume of water was collected from each sample location to analyze for tritium. Groundwater samples were collected from select borings to be analyzed for major cations and anions and gamma emitting isotopes.

The groundwater samples were submitted to the Salem Generating Station Chemistry Department (Chemistry) for initial screening for tritium and gamma-emitting isotopes. If groundwater samples did not indicate a concentration of tritium above the Station Chemistry lower level of detection (LLD), the sample was sent to the Maplewood laboratory for analysis using more sensitive equipment.

The advancement and subsequent sampling of 30 out of the 37 proposed borings was completed successfully. **Table 5** presents a summary of the details of the supplemental remedial investigation. The results of the investigation are presented in the following section.

6.2.3 Results

The laboratory analytical results for the supplemental remedial investigation are summarized in **Table 6** and are included on **Figure 13** along with the analytical results of groundwater samples collected from the Station monitoring wells. Groundwater analytical results for samples collected from the borings advanced beyond the limits of the defined plume demonstrate that there has not been a release of tritium or gamma-emitting isotopes to the river above any regulatory limits. In addition, the groundwater analytical results for samples collected from borings located at the southern and eastern limits of the supplemental investigation generally define the extent of groundwater containing tritium; however, the results of the supplemental investigation have identified an expanded area in the vicinity of Monitoring Well S with elevated levels of tritium in groundwater. This area of groundwater has been identified on **Figure 13** as an area with tritium levels above expected background concentrations in groundwater samples collected during the supplemental investigation.

The results of the supplemental investigation were not able to complete a pathway between a potential source of primary water and Well S. Based on the distribution of tritium, and

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

water levels observed in Monitoring Wells R and N (i.e., the hydraulic gradient in the seismic gap is from the northern to southern end), the likely source of tritium in the shallow, water-bearing unit is the southern end of the Seismic Gap, which is in direct contact with foundation soils. In order to further characterize groundwater flow within the shallow, water-bearing unit, and to establish permanent groundwater monitoring points, additional monitoring wells were required. Following completion of the supplemental investigation, the RIWP Addendum was prepared and submitted to the NJDEP-BNE presenting the details and results of remedial investigation activities completed to date. The RIWP Addendum proposed additional remedial investigation activities designed to complete the delineation of groundwater impacts, and the hydrogeologic characterization of the shallow, water-bearing unit. The proposed remedial investigation activities included the installation of 16 additional groundwater monitoring wells.

Between September 2003 and February 2004, the 16 additional groundwater monitoring wells proposed in the RIWP Addendum were installed at the Station. Initially, Monitoring Well Y, Well Z, and Wells AA through AF were installed. Following the collection and analysis of groundwater samples from these wells, and a re-evaluation of groundwater flow dynamics within the shallow, water-bearing unit, Monitoring Well AG (Shallow and Deep), Well AH (Shallow and Deep), Well AJ, Well AJ, Well AL, and Well AM were installed to fill data gaps identified. Sections 6.3 and 6.4 provide the details of these monitoring well installation activities.

6.3 Monitoring Well Installation Activities – September through October 2003

Between September 22 and October 8, 2003, eight additional groundwater monitoring wells (Wells Y, Z and AA through AF) were installed at various locations adjacent to Salem Unit 1 to establish permanent groundwater monitoring locations between the Station and the Delaware River, to further characterize the extent of tritium in groundwater with concentrations above the New Jersey Groundwater Quality Criterion of 20,000 pCi/L, and to evaluate groundwater flow dynamics in the shallow, water-bearing unit. The following sections present the details of the well installation activities.

6.3.1 Objectives

The specific purposes for each of the Monitoring Wells are as follows:

 Monitoring Wells Y and Z were installed in the locations of supplemental investigation Borings 1 and 3, respectively. These wells were installed to characterize groundwater quality and flow conditions in an area downgradient of the Salem Generating Station Unit 1 Spent Fuel Pool between the cofferdam and the Delaware River;

34

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

35

Monitoring Wells AA and AB were installed in the locations of supplemental investigation Borings 13 and 20, respectively. These wells were installed to characterize groundwater quality and flow conditions in an area south and southeast of Monitoring Well S, respectively;

- Monitoring Well AC was installed near the location of supplemental investigation Boring 35, as close to the Styrofoam-filled seismic gap as practical. This well was installed to characterize groundwater quality and flow conditions directly south of the Styrofoam-filled seismic gap and to the east of the Unit 1 equipment hatch;
- Monitoring Well AD was installed at a location outside of the cofferdam and within the area of groundwater containing tritium to further characterize groundwater quality and flow conditions. This well was also used for performing a pumping test to evaluate aquifer parameters;
- Monitoring Well AE was installed in the location of supplemental investigation Boring 37. This well was installed in a location east of the Salem Generating Station Unit 1 to characterize groundwater quality and flow conditions in this area; and,
- Monitoring Well AF was installed in the location of supplemental investigation Boring 18. This well was installed to characterize groundwater quality and flow conditions in an area south of the circulating water discharge pipes.

6.3.2 Field Implementation

Monitoring Wells Y, Z and AA through AF were installed by A.C. Schultes, Inc. of Woodbury Heights, New Jersey using hollow-stem auger drilling equipment. ARCADIS personnel supervised monitoring well installation activities. The locations of the monitoring wells are shown on **Figure 11**. A summary of the well construction details for the Station monitoring wells is presented in **Table 4**. **Appendix C** presents the boring logs, well completion details, NJDEP Bureau of Water Allocation Monitoring Well Records, and Monitoring Well Certification Forms (Form B) for the wells.

Other than Well AD, the monitoring wells were constructed with two-inch diameter Schedule 40 PVC casing and well screen (0.010 slot). Well AD was constructed with sixinch diameter Schedule 40 PVC casing and well screen (0.010 slot). A gravel pack consisting of Morie No. 1 sand was installed to a minimum of one foot above the top of the well screen. The remainder of the borehole was grouted with neat cement containing approximately five percent bentonite. The grout was installed in the annular space around the casing using a grout pump and a tremie-pipe.

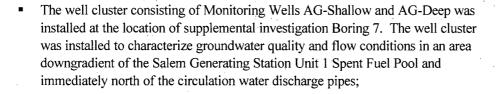
PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

36

Other than Well AC and Well AE, which were installed within the limits of the cofferdam, the boreholes for the wells were advanced to the depth that the Kirkwood Formation was encountered. The Kirkwood Formation was confirmed at each of the monitoring well locations through the collection of split-spoon samples. The wells were then constructed with ten-foot screened intervals exposed to the hydraulic fill and riverbed deposits directly above the Kirkwood Formation. The screened intervals for these wells ranges from a minimum top of casing depth of 26 feet bgs to a maximum bottom of screen depth of 42 feet bgs. This screened interval was chosen to monitor groundwater directly above the Kirkwood Formation in the zone of the shallow, water-bearing unit that had the potential for exhibiting the highest hydraulic conductivity (i.e., the riverbed deposits).

Well AC and Well AE, installed within the limits of the cofferdam, were advanced to the lean concrete foundation. The lean concrete was encountered at depths of 25 and 27.5 feet bgs in Well AC and Well AE, respectively. The wells were constructed with ten-foot screened intervals directly above the lean concrete. This screened interval was chosen to monitor groundwater directly above the lean concrete.

The monitoring wells were developed using a combination of surging and pumping techniques. Well AD, which was originally being considered for use during a long-term pumping test, was also developed using a chemical development agent (BMR®). Development of the monitoring wells was considered complete when the discharge appeared to be sediment free. Following installation, Stires Associates, P.A., a licensed New Jersey surveyor, surveyed the monitoring wells. IDW was handled in a manner similar to the description provided in Section 6.1.


6.4 Monitoring Well Installation Activities – January through February 2004

Following installation and development of the additional monitoring wells in September and October 2003 (Wells Y, Z and AA through AF), groundwater monitoring activities were initiated to determine the extent of delineation, and to identify data gaps that may be present in the existing monitoring well network. Groundwater monitoring activities consisted of the collection and analysis of groundwater samples from the recently installed wells and the collection and evaluation of two rounds of synoptic water levels from all of the Station monitoring wells. Based on the results of the groundwater monitoring activities, several data gaps were identified within the existing monitoring well network. As a result, eight additional monitoring wells (Wells AG-Shallow, AG-Deep, AH-Shallow, AH-Deep, AI, AJ, AL, and AM) were installed at the Salem Generating Station.

6.4.1 Objectives

The purposes for the additional monitoring wells are as follows:

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

 The well cluster consisting of Monitoring Wells AH-Shallow and AH-Deep was installed at the location of supplemental investigation Boring 8. The well cluster was installed to characterize groundwater quality and flow conditions in an area downgradient of the Salem Generating Station Unit 1 Spent Fuel Pool and immediately south of the circulation water discharge pipes;

Monitoring Well AI was installed in the location of supplemental investigation Boring 9. This well was installed to further characterize groundwater quality and flow conditions within the cofferdam. Following installation, a pump test was performed on this well to evaluate aquifer parameters and potential remedial alternatives for the tritium in groundwater (e.g., capture of the tritiated water through pumping and permitted discharge);

 Monitoring Well AJ was installed outside of the cofferdam within the area of groundwater indicating relatively high concentrations of tritium. This well was used for performing a pumping test to evaluate aquifer parameters, and potentially may be incorporated into a remedial action designed to capture the groundwater containing tritium;

- Monitoring Well AL was installed in the location of supplemental investigation Boring 30. This well was installed to characterize groundwater quality and flow conditions south of the Salem Generating Station Unit 1 Spent Fuel Pool and the circulation water discharge pipes; and,
- Monitoring Well AM was installed near the location of supplemental investigation Boring 34, as close to the Styrofoam-filled seismic gap as practical. This well was installed to characterize groundwater quality and flow conditions directly south of the Styrofoam-filled seismic gap and to the west of the Unit 1 equipment hatch.

An additional monitoring well (Well AK) was proposed for the location of supplemental investigation Boring 28; however, due to plans for an additional structure to be erected at the proposed well location, the well was not installed. Other locations for the well were considered, but attempts to install the well were abandoned due to the existence of significant subsurface infrastructure in this location and the proximity of the proposed well to existing wells.

37

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

38

6.4.2 Field Implementation

Between January 14 and February 18, 2004, Monitoring Wells AG-Shallow, AG-Deep, AH-Shallow, AH-Deep, AI, AJ, AL, and AM were installed. Talon Drilling of West Trenton, New Jersey installed the monitoring wells using hollow-stem auger drilling equipment. ARCADIS personnel supervised monitoring well installation activities. The locations of the monitoring wells are shown on **Figure 11**. A summary of the well construction details for the Station monitoring wells is presented in **Table 4**. **Appendix C** presents the boring logs, well completion details, NJDEP Bureau of Water Allocation Monitoring Well Records, and Monitoring Well Certification Forms (Form B) for the wells.

Well clusters were installed at the locations of Well AG (Shallow and Deep) and Well AH (Shallow and Deep). The well clusters, completed within the same borehole, were constructed with screened intervals from 15 to 25 feet bgs and 30 to 40 feet bgs. The screened intervals, which were designed to provide a vertical profile of tritium immediately downgradient of the sheetpiling through which the circulation water discharge pipes penetrate, are separated by approximately four-feet of grout. The wells within each cluster are constructed of one-inch diameter Schedule 40 PVC casing and well screen (0.010 slot). A gravel pack consisting of Morie No. 1 sand, which grades to Morie No. 00 sand over the last foot, was installed to approximately one foot above the top of the well screen. The remainder of each borehole was grouted with neat cement containing approximately five percent bentonite. The grout was installed in the annular space around the casing using a grout pump and a tremie-pipe. Details regarding the installation of the remaining wells are as follows:

Well AI and AM were installed within the limits of the cofferdam. The boreholes for these wells were advanced to the depth that lean concrete was encountered. The wells were then constructed with ten-foot screened intervals immediately above the lean concrete. These wells were constructed with four-inch diameter Schedule 40 PVC casing and well screen (0.010 slot).

Well AJ was installed outside of the limits of the cofferdam within the area exhibiting elevated (greater than 500,000 pCi/L) levels of tritium. The borehole for well AJ was advanced to the depth that the Kirkwood Formation was encountered, which was confirmed through the collection of split-spoon samples. Well AJ was constructed with four-inch diameter Schedule 40 PVC casing and well screen (0.010 slot). The well was constructed with a 25-foot screened interval installed immediately above the Kirkwood Formation.

Well AL, installed beyond the limits of the cofferdam and directly south of the circulation water discharge pipes, was installed to a depth of 25 feet bgs. Well AL was completed with a ten-foot screened interval designed to monitor groundwater

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

39

above and downgradient of the circulation water discharge pipes. The well was constructed with two-inch diameter Schedule 40 PVC casing and well screen (0.010 slot).

A gravel pack consisting of Morie No. 1 sand was installed to a minimum of one foot above the top of the well screens. The remainder of each borehole was grouted with neat cement containing approximately five percent bentonite. The grout was installed in the annular space around the casing using a grout pump and a tremie-pipe. The monitoring wells were developed using a combination of surging and pumping techniques. Development of the monitoring wells was considered complete when the discharge appeared to be sediment free. Following installation, Stires Associates, P.A., a licensed New Jersey surveyor, surveyed the monitoring wells. IDW was handled in a manner similar to the description provided in Section 6.1.

6.5 Monitoring Well Sampling and Analysis

Groundwater monitoring activities have been ongoing since the installation of Wells K through R during Phase III of the initial Station investigation activities. Initially, groundwater samples were collected on a weekly basis. As additional monitoring wells were installed, and as a database of groundwater analytical results for the monitoring wells was generated, the monitoring well sampling program was modified. Groundwater samples are analyzed for tritium, major cations and anions, and gamma emitting isotopes. The sampling program is being adaptively managed to provide the investigational data required to meet the current investigation objectives and evaluate changes in tritium concentrations. Currently, the sampling program design for the Station monitoring wells consists of the following:

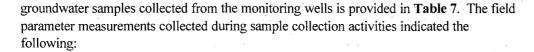
- Due to the relatively low levels of tritium (typically less than 1,000 pCi/L) historically detected in groundwater samples collected from Wells L, P, Q, T, U, and V, and the "natural" (or ambient) levels of tritium detected using low-level tritium in-growth techniques (detection limit approximately 1.5 pCi/L), these wells are currently sampled on a quarterly basis and the frequency may be reduced to semi-annual in the near future;
- Wells K, R, W, and AF are currently sampled on a monthly basis but are being evaluated for a reduced frequency based on consistent analytical results below the level of detection;
- Wells such as M, N, O, AA, AB, AC, AD, and AE, which indicate concentrations of tritium above 20,000 pCi/L, are currently sampled on a monthly basis. These wells are monitored to evaluate current plume dynamics and migration; and,

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

40

Recently installed monitoring wells, such as Wells AG through AM, are currently sampled on a bi-weekly basis to establish an analytical history for these wells.
 Following development of the analytical history, the sample frequency will be modified based on similar factors as explained above.

The adaptive sampling management program is designed to ensure representative data are collected that meet the objectives of the investigation and provide the information necessary to evaluate plume dynamics and migration.


Analysis of groundwater samples collected from most of the Station Monitoring Wells has also included a single event analysis for groundwater age determination (by tritium – helium-3 age dating). As proposed in the RIWP Addendum, Tc-99 was also analyzed as a single-event analysis. The Tc-99 analysis, which was performed in lieu of iodine-129, was performed to assist in the determination of the source of the tritium. The iodine-129 analysis could not be performed due to unavailability of analysis equipment at Purdue University. Analytical results of groundwater samples collected through December 2003 are discussed in Section 8 of this report.

To minimize the influence of turbidity, groundwater samples are collected in accordance with the low-flow sampling procedure outlined in the Quality Assurance Project Plan (QAPP), which was included as an appendix to the June 2003 RIWP. The use of low-flow purging and sampling procedures results in the collection of groundwater samples from monitoring wells that are representative of groundwater conditions in the geologic formation. This is accomplished by minimizing stress on the geologic formation and minimizing disturbance of sediment that has collected in the well (*Groundwater Sampling Procedure, Low Stress (Low Flow) Purging and Sampling*, United States Environmental Protection Agency Region II, March 1998).

As outlined in the low-flow sampling standard operating procedure (SOP) provided in the QAPP, low-flow purging and sampling involves lowering a QED[®] Micropurge ³/₄-inch diameter bladder pump (model SP-³/₄-P) to the midpoint of the screened interval of the monitoring wells. The wells are then purged at a constant rate maintained at or below 200 milliliters per minute. The water level in the well being sampled is monitored during purging, and the pumping rate is adjusted to minimize drawdown. A properly calibrated Micropurge Basics Flow Cell Model MP20DT is used to collect field parameter measurements every five minutes from the recovered groundwater. The parameters include dissolved oxygen (DO), oxidation-reduction potential (ORP), specific conductivity, pH, and temperature.

Once the field parameters stabilize (no more than 10 percent fluctuation over three measurements), a sample is collected. The sample is collected directly from the pump discharge line, which is disconnected from the influent line of the flow-through cell to facilitate sample collection. A summary of stabilized field parameters (final readings) for

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

- Temperature ranged from 12.50 to 32.69 degrees Centigrade (°C).
- Specific conductivity ranged from 15.10 to 0.19 millisiemens per centimeter (mS/cm).
- pH ranged from 4.96 to 8.32 standard units (su).
- ORP ranged from -219 to +484 millivolts (mV).
- DO concentrations ranged from 0.04 to 8.02 milligrams per liter (mg/L).

The relatively wide range of temperatures is likely due to the influence of the facility infrastructure. The wells indicating higher temperatures are screened in the shallow, water-table aquifer in areas adjacent to subsurface structures that cause an increase in subsurface temperature (e.g., steam blow down lines).

Before sampling and between each well, all non-dedicated field equipment (e.g., submersible pumps and water-level indicators) is decontaminated following the procedures outlined in the QAPP. Purge water generated during sampling is containerized pending disposal in accordance with Station radiological controls and waste management programs.

6.6 Hydrogeologic Investigation Activities

The following sections provide the details of the site-specific hydrogeologic investigation activities detailed in the June 2003 RIWP and RIWP Addendum. These activities include the collection of groundwater elevation data from Station monitoring wells to evaluate groundwater flow conditions in the shallow, water-bearing unit; the monitoring of groundwater elevations in the Vincentown Formation to evaluate groundwater flow conditions during various points in the tide cycle; the performance of slug tests and pumping tests on various monitoring wells; the evaluation of tidal influences on the various hydrogeologic units encountered beneath the Station; and, the evaluation of a clay sample from the Kirkwood Formation to accurately characterize this unit. The results of the site-specific hydrogeologic investigation activities are presented in Section 6.

6.6.1 Evaluation of Tidal Influence

Between July 29 and August 5, 2003, data logging miniTROLL pressure transducers were installed in Monitoring Wells L, M, and W to evaluate the tidal influences of the Delaware River on water levels in the Vincentown Formation (Well L), the hydraulic fill and river bed deposits (Well W), and the structural fill within the cofferdam (Well M). The miniTROLLs were programmed to record data on 15-minute intervals throughout the period of record. In addition to the water-level information from the wells, actual tidal data

41

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

from the Reedy Point, Delaware tidal station (USGS Station No. 8551910), and precipitation data from the weather station located approximately 0.9 miles east of the Salem Generating Station were obtained.

Following completion of the tests, the data were downloaded from the miniTROLLs and evaluated using Win-Situ software. The tidal data from Reedy Point and precipitation data obtained from the Station were also evaluated. An analysis of the tidal evaluation data and results are presented in Section 7.3.

6.6.2 Evaluation of Groundwater Elevations

As presented in Section 7.3, water levels in the Vincentown Formation are influenced by tidal fluctuations in the Delaware River, while water levels in the shallow, water-bearing unit are not tidally influenced. As such, the approach to evaluating groundwater elevations in these units varied. The following sections provide the details for the evaluation of groundwater elevations in these units.

6.6.2.1 Shallow, Water-Bearing Unit

To characterize groundwater flow conditions in the shallow, water-bearing unit, water level measurements were collected from the monitoring wells during six synoptic events conducted on June 26, July 28, August 15, October 14, and November 6, 2003 and February 20, 2004. A summary of the water level measurements is presented in **Table 8**. The results of the water level measurement events are discussed in Section 7.2.1.

6.6.2.2 Vincentown Formation

To characterize groundwater flow conditions in the Vincentown Formation, continuous data logging pressure transducers were installed in Well K, Well L, Well P, Well Q, and Well V from January 12 through 19, 2004. Tide data for the same time period were obtained from the tide station located at the Hope Creek Generating Station. The data obtained from these wells and the tide station were evaluated to characterize groundwater flow conditions in the Vincentown Formation during various stages of the tide in the Delaware River. The results of the groundwater elevation data for the Vincentown Formation are presented in Section 7.2.2.

6.6.2.3 Evaluation of Vertical Groundwater Gradients

To evaluate the vertical gradient between the shallow, water-bearing unit, relative groundwater elevations for the units, calculated from water level measurements obtained on June 26, July 28, August 15, October 14, and November 6, 2003, were compared. The results of this evaluation are presented in Section 7.2.3.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

6.6.3 Evaluation of the Kirkwood Formation

Conflicting geologic reports suggest that the clay, confining unit that separates the riverbed deposits and hydraulic fill of the shallow, water-bearing unit from the Vincentown Formation is either the Miocene Kirkwood Formation or the Pleistocene Van Sciver Lake Bed deposits (USGS 1979 and 1999). In order to determine the relative age of the clay, confining-unit, samples of the clay obtained during the drilling of Well V were submitted to Lehigh University for pollen analysis. Results of the age determination analysis are presented in Section 7.4.

6.6.4 Aquifer Characterization

To evaluate aquifer parameters (e.g., hydraulic conductivity) for the shallow, water-bearing unit and the Vincentown Formation, slug tests and pumping tests were performed on various monitoring wells. The details of these tests are presented in the following sections.

6.6.4.1 Slug Tests

ARCADIS collected slug test data from Monitoring Wells N, O, and U in August 2003. The purpose of the slug tests was to obtain preliminary estimates of hydraulic conductivity for the structural fill encountered within the cofferdam and the hydraulic fill and riverbed deposits. Pumping tests were performed to obtain a more refined estimate of the hydraulic conductivity and other aquifer parameters for the various components of the shallow, water-bearing unit. Details regarding the proposed pumping tests are included in Section 7.4.1.

The slug tests were performed by first programming and installing an In-Situ[®] miniTROLL-30 PSIA pressure transducer and data logger (miniTROLL) in the test well. Programming the miniTROLLs consisted of entering the test start time (projected to be approximately 15 minutes following installation of the miniTROLLs into the test well) and data collection interval (minimum of 1.5 seconds). Following installation of the miniTROLL into the test well, the water level in the well was allowed to stabilize. (If the water level had stabilized by the time the miniTROLL was scheduled to start recording data, the slug was introduced to the well. If the water level had not stabilized, the water level was allowed to stabilize before introducing the slug.) The slug that was used for the tests is a three-foot long, one and a half (1.5) inch diameter, solid Schedule 80 PVC rod. In a two-inch diameter well, the slug will displace the water table approximately 1.7 feet (i.e., 0.27 gallons).

Upon introducing the slug to the test well to start the falling head test, the time and depth to water were recorded. During the test, the depth to water was periodically recorded to compare the water-level readings recorded by the miniTROLL. Once the water table had

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

recovered to within 90 percent of static, the slug was removed to start the rising head test. Again, depth to water measurements and the time were recorded initially after removing the slug and periodically during the test. The test was considered complete once the water table had recovered to within 90 percent of static. The same process was repeated for each test well. An analysis of the slug test data and results are presented in Section 7.4.1.

6.6.4.2 Pumping Tests

Between January 30 and February 4, 2004, eight aquifer pumping tests were conducted on seven monitoring wells (Wells AB, AC, AD, AI, AJ, AM, and S) screened in the shallow, water-bearing unit. The tests, which consisted of both a pumping phase and a recovery phase, were performed to quantify the hydrogeologic characteristics (e.g., hydraulic conductivity) of this unit within the limits of and just south of the cofferdam.

The pumping tests were performed by first installing a variable rate two-inch submersible Grundfos® pump in the test well. A miniTROLL data logging pressure transducer was then programmed and installed in the test well. Programming the miniTROLLs consisted of entering the test start time (projected to be approximately 15 minutes following installation of the miniTROLLs into the test well) and data collection interval (logarithmic). Following installation of the miniTROLL into the test well, the water level in the well was measured and manually recorded. The pumping test was then initiated.

The wells were tested at pumping rates ranging from 0.25 to 2.0 gallons per minute (gpm). Pumping rates maintained during the pumping portion of the test were confirmed through the use of a digital flow meter and through manual flow rate calculations using a calibrated receptacle and a stopwatch. Recovery data were monitored until the water level in the well had recovered to a minimum of 85% of the static water level measured at the start of the test. The water generated during the tests was pumped directly into 55-gallon steel drums. Following completion of the tests, water in the drums was transferred to a storage tank pending characterization and disposal, which was coordinated by PSEG Nuclear, LLC personnel. Details regarding the pumping tests performed on the individual wells are provided in the following sections. Field observations made during the tests are summarized in **Table 9**. Results of the pumping tests are presented in Section 7.4.2.

6.6.4.2.1 Well AB

The pumping test conducted on Well AB consisted of a 304-minute step-drawdown test. The steps of the test were performed at the following pumping rates: 0.25 gpm; 0.5 gpm; 1.0 gpm; and, 2.0 gpm. Drawdown stabilized in the well during each pumping rate. The total volume of water recovered during the pumping test was approximately 280 gallons. The maximum drawdown observed in the well was approximately 16 feet from the static water level.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

45

6.6.4.2.2 Well AC

The pumping test conducted on Well AC consisted of a 283-minute step-drawdown test, which was conducted concurrently with a pumping test on Well AM. The steps of the test were performed at the following pumping rates: 0.25 gpm; 0.5 gpm; and, 0.75 gpm. Drawdown stabilized in the well during the 0.25 gpm and 0.5 gpm pumping rates but the well was not able to maintain a pumping rate of 0.75 gpm. The total volume of water recovered during the pumping test was approximately 116 gallons. The maximum drawdown observed in the well was approximately 10.3 feet from the static water level.

6.6.4.2.3 Well AD

The pumping test conducted on Well AD consisted of a 331-minute step-drawdown test, which was conducted concurrently with the development of Well AJ. A noticeable effect of the development of Well AJ was observed in the water levels measured in Well AD. The steps of the test were performed at the following pumping rates: 0.25 gpm and 0.5 gpm. Drawdown stabilized in the well during the 0.25 gpm pumping rate but the well was not able to maintain a pumping rate of 0.5 gpm. The total volume of water recovered during the pumping test was approximately 85 gallons. The maximum drawdown observed in the well was approximately 17 feet from the static water level.

6.6.4.2.4 Well Al

The pumping test conducted on Well AI consisted of a 315-minute step-drawdown test. The steps of the test were performed at the following pumping rates: 0.25 gpm; 0.5 gpm; and, 0.75 gpm. Drawdown stabilized in the well during the 0.25 gpm and the 0.5 gpm pumping rates but the well was not able to maintain a pumping rate of 0.75 gpm. The total volume of water recovered during the pumping test was approximately 145 gallons. The maximum drawdown observed in the well was approximately 11.6 feet from the static water level.

6.6.4.2.5 Well AJ

The pumping test conducted on Well AJ consisted of a 275-minute step-drawdown test, which was conducted concurrently with the pumping test on Well S. The steps of the test were performed at the following pumping rates: 0.25 gpm and 0.5 gpm. Drawdown stabilized in the well during the 0.25 gpm pumping rate but the well was not able to maintain a pumping rate of 0.5 gpm. The total volume of water recovered during the pumping test was approximately 75 gallons. The maximum drawdown observed in the well was approximately 23.2 feet from the static water level.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

46

6.6.4.2.6 Well AM

The pumping test performed on Well AM consisted of a 202-minute test that was effectively separated into two separate time frames (i.e., an initial portion and a subsequent portion). The test on Well AM was also performed concurrently with the pumping test performed on Well AC.

The initial portion of the test was performed at the following pumping rates: 0.25 gpm and 0.5 gpm. Drawdown stabilized in the well during the 0.25 gpm pumping rate but the well was not able to maintain a pumping rate of 0.5 gpm. The total volume of water recovered during the initial portion of the test was approximately 40 gallons. The maximum drawdown observed in the well during this portion was approximately 12.3 feet from the static water level.

Prior to initiating the subsequent portion of the test, the water level in the well was allowed to recover to within 90-percent of the static water level. This required approximately 90 minutes. The subsequent portion of the test on Well AM was conducted at a pumping rate of 0.33 gpm. Drawdown in the well had not stabilized at the time the subsequent portion of the test was terminated, and approximately 18 gallons of water were recovered during this portion of the test.

6.6.4.2.7 Well S

The pumping test conducted on Well S consisted of a 305-minute test, which was conducted concurrently with the pumping test on Well AJ. The pumping test was conducted at a pumping rate of 0.25 gpm. Drawdown in the well began to stabilize at this pumping rate near the end of the pumping phase of the test. The total volume of water recovered during the pumping test was approximately 77 gallons. The maximum drawdown observed in the well was approximately 20 feet from the static water level.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

47

7 Hydrogeologic Evaluation

The following sections provide the results of the site-specific hydrogeologic investigation activities detailed in the June 2003 RIWP and RIWP Addendum, as well as a hypothesis regarding groundwater flow at the facility prior to construction of the cofferdam and other facility structures, which have had a significant impact on groundwater flow. As presented in Section 5, the site-specific hydrogeologic investigation activities included the collection of groundwater elevation data from Station monitoring wells to evaluate groundwater flow conditions in the shallow, water-bearing unit; the monitoring of groundwater elevations in the Vincentown Formation to evaluate groundwater flow conditions during various points in the tide cycle; the performance of slug tests and pumping tests on various monitoring wells; the evaluation of tidal influences on the various hydrogeologic units encountered beneath the Station; and, the evaluation of a clay sample from the Kirkwood Formation to accurately characterize this unit.

7.1 Local Hydrogeology – Pre-Facility Construction

The Station is located on the southern tip of what was once a natural bar projecting into the Delaware River. The groundwater flow conditions present in the natural bar would have been typical of those present on any island composed of unconsolidated materials. Water would move away from the axis of the bar in either direction with semi-radial flow occurring at the ends of the bar.

The area between the bar and the mainland had been formerly used as a dredge spoil area. In 1899, a timber sheetpile wall was installed around the perimeter of the bar. Over the next 50 or so years the area was used as a spoil deposit area for material obtained during the dredging of the Delaware River by the United States Army Corps of Engineers. Riprap was added to the perimeter when the timbers began to degrade (Dames & Moore February 1974, June 1977). The area landward of Artificial Island has remained a tidal marsh.

7.2 Local Hydrogeology - Current

The following sections provide the results of the site-specific hydrogeologic investigation activities. Detailed water level measurements have been collected from site monitoring wells as well as the site tidal station to determine groundwater flow directions and surface water/groundwater interactions. The results of these activities are summarized below.

7.2.1 Groundwater Flow - Shallow, Water-Bearing Unit

ARCADIS personnel performed site-wide monitoring well gauging events on June 26, July 28, August 15, October 14, and November 6, 2003 and February 20, 2004. The depth-to-water in each well was measured relative to the top of the well casing using an electronic

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

48

water-level indicator. Using the gauging measurements and the surveyed top of casing elevations, groundwater elevations were calculated for each well. **Table 8** provides a summary of the groundwater elevation data.

As summarized in **Table 8**, groundwater elevations in monitoring wells screened in the shallow, water-bearing unit within the limits of the cofferdam are generally higher than groundwater elevations in monitoring wells screened in the shallow, water-bearing unit outside the limits of the cofferdam. Water-table elevations have generally decreased across the site since June 2003. A groundwater elevation contour map for the shallow, water-bearing unit based on the February 20, 2004 data is presented on **Figure 14**. Groundwater flow is generally from the center of the island (northeast of the Salem Generating Station) towards the Delaware River. Due to permeability differences between the structural fill and the hydraulic fill, groundwater is mounded within the area of the cofferdam. Groundwater flows radially outward from the cofferdam, and the observed mounding effect dissipates quickly.

7.2.2 Groundwater Flow - Vincentown Formation

As presented in Section 7.3, water levels in the Vincentown Formation, because it is a confined-unit, are tidally influenced. Water levels can vary as much as four feet per tide cycle depending on the proximity of the well to the Delaware River. To more accurately assess groundwater flow conditions in the Vincentown Formation, data logging pressure transducers were installed in Well K, Well L, Well P, Well Q, and Well V from January 12 through 19, 2004. Tide data for the same time period were obtained from the tide station located at the Hope Creek Generating Station. The water level and tide data were evaluated to characterize groundwater flow conditions during various stages of the tide cycle of the Delaware River.

Graphs of water levels for the individual wells and the tide data are presented as Figures E– 1 through E–6 in **Appendix D**. The tide data was evaluated to determine the highest tide (high-high tide), the lowest tide (low-low-tide), and an intermediate high tide (low-high tide) observed during the monitoring period. Corresponding water levels in the monitoring wells were noted for these stages of the tide cycle, and groundwater elevations were calculated. Groundwater elevation contours for the high-high tide, the low-high tide, and the low-low tide are presented on **Figures 15**, **16**, and **17**, respectively.

Groundwater flow direction in the Vincentown Formation oscillates with the tides. During the high-high tide stage of the tide cycle (**Figure 15**), groundwater flow in the Vincentown Formation is perpendicular to the shoreline of the Delaware River in the west and south towards the center of Artificial Island. During the low-high tide stage of the tide cycle (**Figure 16**), an observed groundwater saddle is present between the Station and the Delaware River. Groundwater flow to the north and east of the saddle is to the south and

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

east. Groundwater flow to the south and west of the saddle is to the north and east. During the low-low tide stage of the tide cycle (**Figure 17**), groundwater flow in the Vincentown Formation is from the center of Artificial Island towards the Delaware River.

7.2.3 Vertical Gradients

As summarized in **Table 8**, groundwater elevations in the Vincentown Formation are generally two to four feet lower than the hydraulic head in the shallow, water-bearing unit. This indicates that the potential for downward vertical migration of groundwater exists.

7.3 Tidal Evaluation Results

The results of the tidal investigation were consistent with previous tidal studies (Dames & Moore January 4, 1968). Approximately four feet of tidal response was observed in Well L (screened within the Vincentown Formation). Well W, screened within the shallow, waterbearing unit, showed a negligible tidal response. Similarly, Well M, located within the cofferdam on the west end of the Salem Unit 1 Fuel Handling Building exhibited no discernable tidal response. These tidal data indicate that the Kirkwood Aquitard effectively isolates the riverbed deposits from tidal fluctuations in the Vincentown Formation and there are no tidal influences in the aquifer where tritium has been detected. Plots depicting the tidal evaluation analyses are provided in **Appendix E**.

7.4 Evaluation of the Kirkwood Formation

Conflicting geologic reports suggest that the clay, confining unit that separates the riverbed deposits and hydraulic fill of the shallow, water-bearing unit from the Vincentown Formation is either the Miocene Kirkwood Formation or the Pleistocene Van Sciver Lake Bed deposits (USGS 1979 and 1999). In order to determine the relative age of the clay, confining-unit, samples of the clay obtained during the drilling of Well V were submitted to Lehigh University for pollen analysis. Results of the age determination analysis indicate that the clay, confining-unit is late Miocene or Pliocene in age (Yu 2003). As such, the clay, confining-unit is interpreted as the Kirkwood Formation.

7.5 Aquifer Characteristics

The following sections provide the results of the slug tests and pumping tests performed on the various monitoring wells at the Station.

7:5.1 Slug Test Results

Slug tests were performed on Monitoring Wells N, O, and U to quantify hydraulic properties in the unconfined aquifer. The field procedure followed for these tests are

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

discussed in Section 6.6.4.1. The slug test data generated from these wells were evaluated using the Bouwer and Rice (1976) method. The primary assumptions of this analysis are: 1) the flow field is steady and laminar near the well; 2) the aquifer is homogenous and isotropic within the zone of influence; and 3) the well screen is clean.

Table 10 provides a summary of the hydraulic conductivity values estimated from the slug tests. Plots of the slug test analyses are provided in **Appendix F**. Monitoring Wells N and O are screened in the structural fill. The estimated hydraulic conductivity at Well N is between 0.09 and 0.14 ft/day. The estimated hydraulic conductivity at Well O is between 3.6 and 4.3 ft/day. The variation in hydraulic conductivity between wells reflects not only differences between soils and well construction, but also slug test procedures in general. Slug tests displace only a small volume of water in the vicinity of the well, thereby stressing only a small portion of the aquifer. The discrepancy between sampling points is not atypical. The estimated hydraulic conductivity value for Monitoring Well U screened in the riverbed deposits was 2.95 ft/day.

7.5.2 Pumping Test Results

As presented in Section 6.6.4.2, eight pumping tests were performed on seven wells (Wells AB, AC, AD, AI, AJ, AM, and S) to quantify the hydrogeologic characteristics (e.g., hydraulic conductivity) of the shallow, water-bearing unit within the limits of and just south of the cofferdam. The data collected during the pumping and recovery phases of the pumping tests were analyzed using AQTESLOV for Windows (HydroSOLVE, 1996). The results of the individual pumping tests, which are discussed in the following sections, are summarized in **Table 11**. The pumping test results indicate a range of transmissivity of 0.337 ft²/day to 27.7 ft²/day and hydraulic conductivities of 0.03 ft/day to 2.77 ft/day.

7.5.2.1 Well AB

Details of the analysis of the pumping and recovery phases of the step-drawdown test performed on Well AB are presented on Figures H-1 and H-2 in **Appendix G**, respectively. The average transmissivity and hydraulic conductivity calculated from the pumping data for the various steps are 27.7 ft²/day and 2.77 ft/day, respectively. The transmissivity and hydraulic conductivity calculated from the recovery data are 22.7 ft²/day and 2.27 ft/day, respectively.

7.5.2.2 Well AC

Details of the analysis of the pumping and recovery phases of the step-drawdown test performed on Well AC are presented on Figures H-3 and H-4 in **Appendix G**, respectively. The average transmissivity and hydraulic conductivity calculated from the pumping data for the various steps are 12.6 ft^2/day and 1.26 ft/day, respectively. The transmissivity and

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

hydraulic conductivity calculated from the recovery data are $1.67 \text{ ft}^2/\text{day}$ and 0.17 ft/day, respectively.

7.5.2.3 Well AD

Details of the analysis of the pumping and recovery phases of the step-drawdown test performed on Well AD are presented on Figures H-5 and H-6 in **Appendix G**, respectively. The average transmissivity and hydraulic conductivity calculated from the pumping data for the various steps are 0.942 ft²/day and 0.09 ft/day, respectively. The transmissivity and hydraulic conductivity calculated from the recovery data are 0.937 ft²/day and 0.09 ft/day, respectively.

7.5.2.4 Well Al

Details of the analysis of the pumping and recovery phases of the step-drawdown test performed on Well A1 are presented on Figures H-7 and H-8 in **Appendix G**, respectively. The average transmissivity and hydraulic conductivity calculated from the pumping data for the various steps are 7.97 ft²/day and 0.80 ft/day, respectively. The transmissivity and hydraulic conductivity calculated from the recovery data are 2.10 ft²/day and 0.21 ft/day, respectively.

7.5.2.5 Well AJ

Details of the analysis of the pumping and recovery phases of the step-drawdown test performed on Well AJ are presented on Figures H-9 and H-10 in **Appendix G**, respectively. The average transmissivity and hydraulic conductivity calculated from the pumping data for the various steps are $1.73 \text{ ft}^2/\text{day}$ and 0.09 ft/day, respectively. The transmissivity and hydraulic conductivity calculated from the recovery data are $0.56 \text{ ft}^2/\text{day}$ and 0.03 ft/day, respectively.

7.5.2.6 Well AM

Details of the analysis of the first portion of the pumping and recovery phases of the stepdrawdown test performed on Well AM are presented on Figures H-11 and H-12 in **Appendix G**, respectively. The average transmissivity and hydraulic conductivity calculated from the pumping data for the various steps are 1.40 ft²/day and 0.14 ft/day, respectively. The transmissivity and hydraulic conductivity calculated from the recovery data are 0.572 ft²/day and 0.06 ft/day, respectively.

Details of the analysis of the second portion of the pumping and recovery phases of the step-drawdown test performed on Well AM are presented on Figures H-13 and H-14 in **Appendix G**, respectively. The transmissivity and hydraulic conductivity calculated from

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

52

the pumping data are 1.08 ft²/day and 0.11 ft/day, respectively. The transmissivity and hydraulic conductivity calculated from the recovery data are 0.338 ft²/day and 0.03 ft/day, respectively.

7.5.2.7 Well S

Details of the analysis of the pumping and recovery phases of the constant-rate test performed on Well S are presented on Figures H-15 and H-16 in **Appendix G**, respectively. The transmissivity and hydraulic conductivity calculated from the pumping data are 1.70 ft²/day and 0.17 ft/day, respectively. The transmissivity and hydraulic conductivity calculated from the recovery data are 1.10 ft²/day and 0.11 ft/day, respectively.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

53

8 Analytical Results

In accordance with the scope of work presented in the June 2003 RIWP and the RIWP Addendum, samples have been collected from various media at the Station to determine the magnitude and extent of the release of water from the Spent Fuel Pool. Soils samples were obtained during the installation of the monitoring wells, grab groundwater samples were collected at various depths using direct push methods, and groundwater samples were collected using low flow sampling methods from the Station monitoring wells. Throughout the investigation, samples were also collected from the Spent Fuel Pool, the telltale drains, and from the various sample locations established within the facility (see **Appendix A**). Collectively, the data indicate that water from the Spent Fuel Pool leaked behind the stainless-steel liner into the obstructed telltale drains, migrated through curing cracks in the structural concrete and accumulated in the Styrofoam-filled seismic gap. Once there, the Spent Fuel Pool water, for which there is a flowpath to foundation soils, seeped into the foundation soils along the southern side of the seismic gap. This release of Spent Fuel Pool water has resulted in an area of impacted groundwater extending from the south side of the seismic gap to the circulating water discharge pipes.

The water samples collected from within the facility indicated concentrations of tritium, boron, and various gamma-emitting isotopes typical of Spent Fuel Pool water. Groundwater samples collected from outside the facility, which were analyzed for the same suite of parameters, have indicated concentrations of tritium, boron, and one slightly elevated concentration of Tc-99 that suggest that water from the Spent Fuel Pool is the probable source. The data generated during the remedial investigation, both from within the facility and groundwater samples collected from the Station monitoring wells, indicate that the removal of the mineral deposits from the telltale drains has resulted in the proper operation of the leak detection, collection and monitoring system. Analytical results of water samples collected from the drill points established within the seismic gap (DP-1 and DP-2), which initially indicated that the water in the gap was mostly Spent Fuel Pool water, have indicated decreasing concentration trends of Spent Fuel Pool constituents. As presented in **Appendix B**, the most recent water samples collected from the seismic gap indicate that the water is approximately three-percent Spent Fuel Pool water.

Additional evidence that suggests that the hydraulic head created by the blockage in the telltale drains has been removed and that Spent Fuel Pool water is no longer migrating to the seismic gap is the concentration trend of tritium in groundwater samples collected from Well AC. This well, which is installed near the contact of the southern end of the seismic gap with foundation soils, has indicated the highest concentrations of tritium and boron in groundwater and is therefore considered the source area monitoring well. Groundwater samples collected from Well AC have indicated stable concentrations of tritium indicating that the source of the tritium has been removed. Future groundwater samples collected from Well AC should indicate a decreasing trend for tritium and boron concentrations.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

54

As stated in Section 1.1, the telltale drains are routinely monitored to ensure that mineral deposits do not accumulate and result in an additional discharge of tritium and other constituents to the seismic gap. To further ensure that the seismic gap does not provide a pathway for the migration of constituents of concern to the environment, gap drains are currently being designed and will be installed to permit detection, sampling, and draining of water (both groundwater and water from other sources) that accumulates in the seismic gaps will be characterized by Salem Units 1 and 2. The water that accumulates in the seismic gaps will be characterized by Salem Chemistry and will be handled in accordance with Station procedures. Characterization samples collected from the seismic gap drains will provide an additional line of evidence to suggest that the corrective actions taken by PSEG Nuclear, LLC have resulted in the proper functioning of the telltale drains. The drain will also provide control for residual contamination within the Unit 1 seismic gap resulting from the accumulation of Spent Fuel Pool water by permitting controlled draining of the residual contamination.

The analytical results of soil and groundwater samples collected following the initiation of the remedial investigation are presented in the following sections. Radiation protection personnel screened soil samples obtained during the installation of the Station monitoring wells for gamma-emitting isotopes. Groundwater samples collected from the monitoring wells following installation were submitted to Salem Chemistry, Maplewood and the University of Rochester for various analyses. Collectively, the data generated during the investigation was evaluated to determine that the investigation objectives were meet. As discussed previously, the investigation objectives were to determine the source, the extent, and the risk associated with the tritium in groundwater.

8.1 Soil Samples

Salem Chemistry analyzed soil samples collected from the borehole cuttings of the Station monitoring wells for gamma-emitting isotopes to determine the appropriate disposal technique based on Station procedures. The soil samples were composite samples (one sample per drum) of cuttings obtained during the monitoring well installation and vacuum excavation activities. According to PSEG, soil samples were non-detect for plant related gamma-emitting isotopes, with the exception of one of the nine soil samples collected from the cuttings of Well T (PSEG, verbal communication 2004). Well T is located to the north of the Salem Generating Station. The plant related gamma-emitting isotope identified in the Well T cuttings is not related to the tritium investigation based on the distance and orientation from the area of concern. Gamma-emitting isotopes were not detected in the other well installation soil samples.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

8.2 Groundwater Samples

A total of 29 monitoring wells have been installed at various locations surrounding the Station to delineate the extent of groundwater impacts from the release of water from the Spent Fuel Pool. Numerous water quality samples have been collected from the Station monitoring wells. The groundwater samples have been analyzed to assess natural geochemistry, as well as facility-related constituents. As presented in Section 6.5, groundwater samples were initially collected on a weekly basis; however, as the number of monitoring wells increased and the analytical history of the individual monitoring wells was established, the sampling program was modified. The current monitoring plan specifies either biweekly, monthly, or quarterly sampling based upon the analytical history of each well.

Groundwater samples were submitted to Maplewood and/or Salem Chemistry for analysis for tritium, major cations and anions (sodium and boron), and gamma-emitting isotopes. A summary of the analytical results obtained from Maplewood and Salem Chemistry is presented in **Table 12**, and the analytical results for tritium are shown on **Figure 13**. As presented in Section 5.2.5, a separate set of groundwater samples was collected to perform a one-time analysis for groundwater age determination (by tritium – helium-3 ratio), dissolved gases, and Tc-99. The research analytical laboratory at the University of Rochester performed these analyses. Analytical results obtained from the University of Rochester are provided in **Appendix H**.

Analytical results for the groundwater samples, which are discussed in the following sections, were evaluated based on the water-bearing zone in which the monitoring wells are screened. The three primary water-bearing units being investigated beneath the Station are: 1) the Vincentown Formation; 2) the shallow, water-bearing unit within the limits of the cofferdam; and, 3) the shallow, water-bearing unit outside of the limits of the cofferdam.

8.2.1 Summary of Analytical Data for Wells Screened in the Vincentown Formation (Wells L, K, P, Q, and V)

With the exception of Wells K and V, analytical results of groundwater samples collected from monitoring wells screened in the Vincentown Formation do not indicate concentrations of tritium above regional background concentrations. Analytical results of groundwater samples collected from Wells K and V indicate tritium concentrations between 185 pCi/L and 1,200 pCi/L, which may be a result of tritiated water from Station activities 20 years ago that recharged to the aquifer. Analytical results of the groundwater samples obtained from the Vincentown Formation indicate concentrations of Tc-99 (0.8 pCi/L) consistent with the ambient abundance of this constituent in precipitation in the 1970s. Plant-related gamma-emitting isotopes have not been detected in groundwater samples collected from the monitoring wells screened in the Vincentown Formation. Based

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

on groundwater flow directions and dissolved methane concentrations detected in the groundwater samples, recharge to the Vincentown Formation is likely to occur from areas north and east of the plant. The following bullets provide an evaluation of the analytical results for the individual monitoring wells screened in the Vincentown Formation.

Well K – Tritium has not been detected in groundwater samples collected from Well K at concentrations above the further investigation criterion (3,000 pCi/L). A trend graph of tritium concentrations is presented on Figure I-1, in **Appendix I**. Analytical results of groundwater samples collected from Well K consistently indicate tritium concentrations between 500 and 1,200 pCi/L. The groundwater age investigation (**Appendix H**) of Well K indicates that tritiated water recharged at about 3,000 to 5,000 pCi/L approximately 19 years ago and has traveled to the upper part of the Vincentown Formation. The most likely source for this recharge is east of Well K. The level of Tc-99 is 0.8 pCi/L, consistent with post-nuclear background for the eastern United States 25 years ago.

➤ Well L – Tritium has not been detected in groundwater samples collected from Well L at concentrations above the further investigation criterion (3,000 pCi/L). Analytical results from Maplewood for groundwater samples collected from Well L are below the laboratory detection limit. Results from the University of Rochester indicate a tritium concentration of 45 pCi/L. The groundwater age analysis indicates that the water at Well L recharged about 21 years ago consistent with local precipitation 20 to 25 years ago. Groundwater at Well L is approximately the same age as groundwater at Well K, consistent with recharge that occurred 20 years ago. The absence of tritium above the laboratory detection limit suggests that there is no major pathway for tritiated water into the Vincentown Formation.

Well P – Tritium has not been detected in groundwater samples collected from Well P at concentrations above the further investigation criterion (3,000 pCi/L). Analytical results from Maplewood for groundwater samples collected from Well P indicate tritium concentrations between 465 pCi/L and the laboratory detection limit. Results from the University of Rochester measured 58 pCi/L with a groundwater age of about 13 years. Well P is located downgradient, south of Salem Unit 1.

Well Q – Tritium has not been detected in groundwater samples collected from Well Q at concentrations above the further investigation criteria (3,000 pCi/L). Analytical results from Maplewood for groundwater samples collected from Well Q are all below the laboratory detection limit. Low-level tritium analysis performed at the University of Rochester indicates a tritium concentration of 1.5 pCi/L, which is typical of precipitation that recharges prior to the onset of the

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

nuclear era (ca. 1950). Elevated levels of dissolved methane in Well Q at 38 cc/kg (1.7mmol/kg) and less than solubility levels for argon and nitrogen indicate the point of recharge to be within the marshes that border the plant to the east.

- Well V Tritium has not been detected in groundwater samples collected from Well V at concentrations above the further investigation criterion (3,000 pCi/L). A trend graph of tritium concentrations is presented on Figure I-8, in Appendix I. Analytical results from Maplewood for groundwater samples collected from Well V indicate tritium concentrations between 185 pCi/L and 549 pCi/L. Laboratory analyses from the University of Rochester were 549 pCi/L. Groundwater age dating indicates the local groundwater in Well V is 15.4 years old. Groundwater samples collected from this well indicated a dissolved methane concentration of 15.4 cc/kg methane and dissolved neon and argon concentrations below atmospheric solubility, indicating recharge from the marshes to the east.
- 8.2.2 Summary of Analytical Data for Wells Screened in the Shallow, Water Bearing Unit Within the Limits of the Cofferdam (Wells M, N, O, R, AC, and AE)

Analytical results of the groundwater samples indicate that tritium has been detected above 3,000 pCi/L (the Interim Further Investigation Criterion for Tritium) in groundwater samples collected from Monitoring Wells M, N, O, AC, AE and R installed within the limits of the cofferdam. Analytical results of groundwater samples collected from Well M, N, and AC have indicated concentrations of tritium above the further action criteria of 20,000 pCi/L. While they indicate elevated concentrations of tritium, they do not indicate elevated levels of plant related gamma-emitting isotopes or Tc-99. Tritium concentrations have been steady throughout the period of investigation, consistent with the hypothesis that draining of the seismic gap and the unplugging of the telltale drains has stopped the further migration of Spent Fuel Pool water out of the seismic gap. Tc-99 has been detected between 0.2 to 0.7 pCi/L, consistent with background concentrations.

Well M – Prior to the replacement of Well M in May 2003, tritium concentrations detected in groundwater samples collected from Well M indicated a steady decrease in concentrations from 18,700 pCi/L on February 12, 2003 to 8,800 pCi/L on April 30, 2003. This well was replaced to conform to New Jersey well construction requirements with the new screen interval a few feet deeper than the original; the well was drilled to refusal. The analytical results of groundwater samples collected from the replacement well were initially 126,000 pCi/L, and have steadily declined to 11,400 pCi/L. Current concentrations are consistent with concentrations measured before the well was replaced. A trend graph of tritium concentrations is presented on Figure I-2, in Appendix I. The groundwater age dating indicates the water became isolated from the atmosphere less than 0.1 years ago. Boron concentrations in Well M are between 0.222 mg/L and 0.320 mg/L,

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

58

consistent with background for Artificial Island. The Tc-99 concentration for this well is 0.5 pCi/L, also consistent with background.

Well N – Initial groundwater samples collected from Well N indicated concentrations of tritium above the further action criteria for tritium (20,000 pCi/L). A groundwater sample collected from Well N on January 30, 2003 indicated a concentration of tritium of 69,000 pCi/L. Concentrations detected in groundwater samples collected from Well N have declined steadily in subsequent monitoring to 6,460 pCi/L. A trend graph of tritium concentrations is presented on Figure I-3, in **Appendix I**. Boron concentrations are between 0.197 and 0.409 mg/L consistent with background levels for Artificial Island. Groundwater age dating suggests an age of about 1 year. The Tc-99 concentration in this well is 0.4 pCi/L, near the background value of 0.5 pCi/liter.

Well O – Analytical results of groundwater samples collected from Well O have consistently indicated concentrations of tritium above the further investigation criterion (3,000 pCi/L) during 2003. Analytical results of groundwater samples collected from Well O by Maplewood indicate tritium concentrations between 1,220 and 13,400 pCi/L. A trend graph of tritium concentrations is presented on Figure I-4, in **Appendix I**. Concentration fluctuations have stabilized and are approximately 7,000 pCi/L. Boron concentrations have ranged from 0.071 and 0.305 mg/L consistent with background levels for Artificial Island. Groundwater age dating indicates the water is 0.22 years old. The Tc-99 concentration in this well is 0.2 pCi/L, near the background value of 0.5 pCi/liter.

Well R – Analytical results of groundwater samples collected from Well R have detected concentrations of tritium at or above the further investigation criterion (3,000 pCi/L). Tritium concentrations have steadily decreased from 13,900 pCi/L on February 26, 2003 to 2,550 pCi/L on December 12, 2003. A trend graph of tritium concentrations is presented on Figure I-5, in Appendix I. Groundwater age dating results suggest an age of about 1.2 years. Boron concentrations have ranged from 0.229 and 0.511 mg/L consistent with background levels for Artificial Island. The Tc-99 concentration in this well is 0.4 pCi/L, near the background value of 0.5 pCi/liter.

Well AC – Analytical results of groundwater samples collected from Well AC have indicated the highest concentrations of tritium in Site monitoring wells (15,000,000 pCi/L). Tritium concentrations have ranged from 10,700,000 pCi/L and 15,000,000 pCi/L. A trend graph of tritium concentrations is presented on Figure I-13, in **Appendix I**. Groundwater age dating and Tc-99 analysis have not been completed in this well because of the high levels of tritium. The boron concentration was measured between 253 mg/L and 332 mg/L. Comparison of

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

59

tritium concentrations in Well AC to the Spent Fuel Pool indicates local groundwater is 5.5 to 7.5 percent Spent Fuel Pool. Comparison of the boron concentrations in Well AC to Spent Fuel Pool indicates that local groundwater is between 11 and 15 percent Spent Fuel Pool water. The difference in the percentages of Spent Fuel Pool water indicates either a 50% degradation in tritium (the water is about 12 years old) or that the plume is stratified across the well screen. Given the close proximity of Well AC to the seismic gap, the most likely interpretation is that the plume is stratified.

Well AE – Analytical results of groundwater samples collected from Well AE have detected concentrations of tritium at or above the further investigation criterion (3,000 pCi/L). Tritium concentrations have ranged from 5,990 pCi/L to 16,100 pCi/L. A trend graph of tritium concentrations is presented on Figure I-15, in Appendix I. Groundwater age dating results suggest an age of about 0.33 years. The boron concentration was measured at 0.234 mg/L consistent with background levels for Artificial Island. The Tc-99 concentration in this well is 0.7 pCi/L, near the background value of 0.5 pCi/liter.

8.2.3

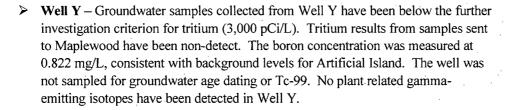
Summary of Analytical Data for Wells Screened in the Shallow, Water-Bearing Unit Outside of the Cofferdam (Wells S, T, U, V, W, Y, Z, AA, AB, AD, and AF)

The wells installed in the shallow, water-bearing unit outside of the limits of the cofferdam are screened either just above the Kirkwood Formation, or in the interval indicating the highest tritium concentrations during the Supplemental Investigation. The samples indicate that tritium has been detected above 3,000 pCi/L (the Interim Further Investigation Criterion for Tritium) in Wells S, W, AB, and AD. Wells S, AB, and AD also have indicated concentrations of tritium above the further action criteria of 20,000 pCi/L. Groundwater samples collected from these monitoring wells did not indicate concentrations of plant-related gamma-emitting isotopes. Groundwater samples collected from Well W indicated a concentration of Tc-99 above background for Artificial Island. When analyzed, there are elevated levels of boron where tritium is greater than 20,000 pCi/L. Consistent with conditions inside the cofferdam, tritium concentrations have been steady throughout the period of investigation. Tc-99 has been detected between 0.2 and 4.1 pCi/L, consistent with background concentrations or slightly higher in the groundwater sample from Well W.

Well S – Groundwater samples collected from Well S detected concentrations of tritium above the further action criteria for tritium (20,000 pCi/L). Concentrations of tritium in Well S have ranged from 1,420,000 to 3,530,000 pCi/L with a declining trend over the period of investigation. A trend graph of tritium concentrations is presented on Figure I-6, in Appendix I. Boron concentration has been sampled once at 57.4 mg/L, indicating Spent Fuel Pool water. Comparing tritium concentrations in local groundwater to SFP indicate 0.7% to 1.7% Spent

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

60


Fuel Pool water. The boron sample indicates a composition of about 2.5% Spent Fuel Pool water. This reduced tritium concentration indicates an age of approximately 6.9 years. Groundwater age dating comparing helium to tritium ratios suggests an age of about 0.7 years. No plant related gamma-emitting isotopes have been detected in Well S. The Tc-99 concentration in this well is 0.5 pCi/L, equal to the background value. Groundwater samples collected from Well S were also analyzed for strontium-89 and strontium-90. Analytical results of these groundwater samples did not indicate concentrations of these constituents above the laboratory detection limit.

Well T – Groundwater samples collected from Well T have been below the further investigation criteria for tritium (3,000 pCi/L). All samples sent to Maplewood were non-detect for tritium while the one sample sent to the University of Rochester detected 257 pCi/L. Boron concentrations ranged from 0.601 mg/L to 0.680 mg/L consistent with background levels for Artificial Island. Groundwater age dating suggests an age of about 1.6 years. No plant related gamma-emitting isotopes have been detected in Well T. The Tc-99 concentration in this well is 0.7 pCi/L, slightly above the background value of 0.5 pCi/L.

Well U – Groundwater samples collected from Well U been below the further investigation criterion for tritium (3,000 pCi/L). Tritium results from samples sent to Maplewood ranged from non-detect to 203 pCi/L while the one sample sent to the University of Rochester detected 78 pCi/L. A trend graph of tritium concentrations is presented on Figure 1-7, in **Appendix I**. Boron concentrations ranged from 0.341 mg/L to 0.421 mg/L consistent with background for Artificial Island. Groundwater age dating suggests an age of about 4.1 years. No plant related gamma-emitting isotopes have been detected in Well U. The Tc-99 concentration in this well is 0.5 pCi/L, equal to the background value.

Well W – Groundwater samples collected from Well W have been above the further investigation criterion for tritium (3,000 pCi/L). Tritium results from samples ranged from 6,010 pCi/L to 15,500 pCi/L. The one sample sent to the University of Rochester detected 13,062 pCi/L. A trend graph of tritium concentrations is presented on Figure I-9, in Appendix I. Boron concentrations range from 0.464 mg/L to 0.591 mg/L consistent with background levels for Artificial Island. The groundwater age determination for a groundwater sample collected in July 2003 had a significant uncertainty likely related to the monitoring well installation. The groundwater age of 4.1 years. No plant related gamma-emitting isotopes have been detected in Well U. The Tc-99 concentration in this well is 4.1 pCi/L, slightly above the expected background value.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

Well Z – Groundwater samples collected from Well Z have been below the further investigation criterion for tritium (3,000 pCi/L). Tritium results from samples sent to Maplewood ranged from non-detect to 729 pCi/L while the one sample sent to the University of Rochester detected 729 pCi/L. A trend graph of tritium concentrations is presented on Figure I-10, in Appendix I. The boron concentration was 0.498 mg/L, which is consistent with the background level for Artificial Island. Groundwater age dating suggests an age of about 3.2 years. No plant related gamma-emitting isotopes have been detected in Well U. The Tc-99 concentration of the groundwater sample collected from this well is 0.4 pCi/L, slightly below the background value of 0.5 pCi/L.

Well AA – Tritium concentrations in groundwater samples collected from Monitoring Well AA have been below the further investigation criterion for tritium (3,000 pCi/L). Tritium results from samples sent to Maplewood ranged from 613 pCi/L to 785 pCi/L while the one sample sent to the University of Rochester detected 734 pCi/L. A trend graph of tritium concentrations is presented on Figure I-11, in Appendix I. The boron concentration was 0.247 mg/L, which is consistent with the background level for Artificial Island. Groundwater age dating suggests an age of about 2.1 years. No plant related gamma-emitting isotopes have been detected in Well AA. The Tc-99 concentration of the groundwater sample collected from this well is 0.5 pCi/L, equal to the background value.

Well AB – Groundwater samples collected from Well AB detected concentrations of tritium above the further action criterion for tritium (20,000 pCi/L). Concentrations of tritium detected in groundwater samples collected from Well AB have ranged from 280,000 to 409,000 pCi/L. A trend graph of tritium concentrations is presented on Figure I-12, in Appendix I. Boron analysis has not been performed on groundwater samples collected from this well due to elevated tritium results. Comparing tritium concentrations in local groundwater to Spent Fuel Pool indicate that the groundwater is 0.14% to 0.20% Spent Fuel Pool water. Groundwater age dating suggests an age of about 1.38 years. No plant related gamma-emitting isotopes have been detected in Well AB. The Tc-99 concentration in the groundwater sample collected from this well is 0.4 pCi/L, slightly below the background value of 0.5 pCi/L.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

62

Well AD – Groundwater samples collected from Well AD detected concentrations of tritium above the further action criterion for tritium (20,000 pCi/L).
Concentrations of tritium detected in groundwater samples collected from Well AD have ranged from 220,000 to 487,000 pCi/L. A trend graph of tritium concentrations is presented on Figure I-1, in Appendix I. Boron analysis has not been performed on groundwater samples collected from this well due to elevated tritium results. Comparing tritium concentrations in local groundwater to Spent Fuel Pool indicates that 0.11% to 0.24% of the ground water is Spent Fuel Pool water. Water samples from this well were not analyzed for age dating or Tc-99. No plant related gamma-emitting isotopes have been detected in Well AD.

Well AF – Groundwater samples collected from Well AF did not detect tritium concentrations above the further investigation criterion for tritium (3,000 pCi/L). Concentrations in Well AF have ranged from non-detect to 330 pCi/L. The analytical results of the low-level tritium analysis performed at the University of Rochester indicated a tritium concentration of 245 pCi/L. The groundwater age determination for the sample collected from Well AF indicates an age of approximately 10 years. A trend graph of tritium concentrations is presented on Figure I-14, in Appendix I. Boron has been detected at concentrations between 0.380 mg/L and 0.429 mg/L consistent with background levels for Artificial Island. The Tc-99 concentration detected in the groundwater sample collected in this well is consistent with regional background concentrations. No plant related gamma-emitting isotopes have been detected in Well AF.

8.3 Delaware River Tritium Concentrations

1.

Based on the analytical results of groundwater samples collected from the monitoring wells placed near the Station boundary with the Delaware River, the tritium detected in the shallow, water-bearing unit is not releasing to the Delaware River at concentrations that could violate any exiting standard.

A groundwater model is being developed that will provide a quantitative assurance that the tritium in the shallow, water-bearing unit will continue to meet all off-site regulatory standards for tritium. Sampling and analysis of the Delaware River in the vicinity of Salem is routinely conducted and reported under the Radiological Environmental Monitoring. Program ("REMP"). A surface water sampling program was evaluated and determined to be impracticable. The tritium contamination in the shallow, water-bearing unit would not be expected to be discernable in the Delaware River even if a release occurred because:

Based on the location and extent of the plume as determined by site sampling, tritium concentrations from the shallow, water-bearing unit would not be detected in the Delaware River;

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

63

The ambient tritium levels fluctuate in the environment as shown in the historical Radiological Environmental Monitoring Reports (RERRs) submitted annually. There is no viable method of distinguishing low level ambient tritium in the Delaware River from any shallow, water-bearing unit discharge;

3.

4.

5.

2.

The volume, velocity, and bi-directional tidal flow of the Delaware River prevent making generalizations regarding the transport of tritium in the river and distinguishing between potential sources including routine permitted discharges; and,

Analyses conducted on shallow, water-bearing unit show the only facility related parameter to be tritium; no plant related gamma emitters have been detected. Therefore, there are no "tracer" parameters that can be used to define the source of any tritium detected; and,

Delaware River sediment sampling would not provide any useful data regarding a potential release of tritium from the shallow, water-bearing unit as tritium is water and will not adsorb to soil or sediment.

Based on these evaluations, no sampling of the Delaware River water or sediment for tritium has been conducted for this remedial investigation. A mathematical model of the potential concentrations in the Delaware River will be developed to provide the information for adapting the remedial action plan to ensure there is no release to the Delaware River above a regulatory standard as well as validating that there is no significant impact to the environment. The model will serve as the basis for evaluating tritium mass flux to the Delaware River and to assess remedial system performance.

The groundwater flow model will be constructed using the computer program MODFLOW, a publicly available groundwater flow simulation program developed by the USGS. MODFLOW is thoroughly documented, widely used by consultants, government agencies and researchers, and is consistently accepted in regulatory proceedings. The hydrogeologic studies conducted and samples collected for the tritium investigation will be used to define model parameters.

A solute transport model will be used to simulate the movement of tritium considering the processes advection, dispersion, and radioactive decay. The solute transport modeling will be performed using MT3D, a three-dimensional solute transport program developed by the US Environmental Protection Agency. MT3D is used in conjunction with MODFLOW, thereby providing a seamless transition from the groundwater flow model to the solute transport modeling. Similar to MODFLOW, MT3D is thoroughly documented and routinely used in regulatory proceeding.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

64

9 Fate and Transport Analysis

Shallow groundwater in the vicinity of the Station has been impacted by a release of water from the Spent Fuel Pool. The pathway from the building to the environment cannot be documented with absolute certainty; however, site evidence indicates the seismic gap between the Salem Unit 1 Fuel Handling Building and Auxiliary Building is the primary release point. The origin of the water in the seismic gap is the Spent Fuel Pool and the pathway from the Spent Fuel Pool is discussed in Section 5. This release has resulted in a plume of boron and tritium extending south-southwest from this point-of-origin as shown on Figure 13; no other contaminates of significance have been detected in the affected area. The fate and transport of this plume is assessed in this section to determine flow pathways and the rate of migration.

Quantification of solute migration requires specification of various transport parameters and processes that control the rate, movement, mixing, sorption, and degradation of a contaminant in the subsurface. Advection defines the process of contaminant migration due to the movement of groundwater. Dispersion accounts for the spreading and mixing of the constituent due to heterogeneities and non-ideal flow paths in the soil that cause variations in the groundwater velocity as well as Fickian diffusion driven by concentration gradients. Sorption refers to the partitioning of a contaminant between the liquid and solid phases of the aquifer. Degradation is the mass decay of a contaminant as a result of physical, chemical, and biological activity within the aquifer. Each of these processes and their effect on the movement of site related constituents along flow pathways are summarized in the following sections.

9.1 Constituent Pathways – Advective Water Movement

Water-level measurements taken in monitoring wells distributed spatially across the site and distributed within several depth intervals provide the necessary information to describe the direction of groundwater movement. These water-level measurements are combined with effective porosity and hydraulic conductivity measurements to determine the rate or speed of groundwater movement. In general, water-level measurements are used to define the slope of the water table (gradient) and direction of movement; groundwater moves down the slope or gradient from high water table elevations to lower water table elevations. Water level elevations, hydraulic gradients, and groundwater flow directions for the shallow, water-bearing unit are presented on **Figure 14**. Based upon both water levels and constituent concentrations, the primary flow pathways are away from the seismic gap toward the south-southwest. Along individual flow paths there is a decrease in both waterlevel elevations and concentrations of isotopes of interest.

The movement of a solute with the groundwater, or advective transport, can be computed using Darcy's Law. Darcy's Law is written as follows:

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

q = K i

 $v = \frac{q}{\theta}$

where, q is the Darcian flux (ft³/day/ft² or ft/day), K is the hydraulic conductivity (ft/day), and *i* is the hydraulic gradient (ft/ft). Aquifer testing at the Site (Section 7.5) has determined that the mean hydraulic conductivity of the soils affected by tritium to be approximately 0.4 ft/day. The average hydraulic gradients are approximately 0.008 ft/ft and 0.004 ft/ft inside and outside the cofferdam, respectively. Therefore, the specific discharge of groundwater inside and outside the cofferdam is 0.0032 ft/day and 0.0016 ft/day, respectively. Since water can only move through the pore spaces, these values are not the velocities at which groundwater is moving. The average linear velocity of groundwater is higher as water moves only through the voids or pore spaces of the soil:

where v is the velocity (ft/day) and θ_e is the effective porosity (ft³/ft³). The effective porosity for the unconsolidated sediments at the site was assumed to be 0.20. This value is consistent with estimates developed by the USEPA (1989) that indicate most medium to coarse-grained soils (Unified Soil Classification System textural groups GW, GP, GM, GC, SW, SP, SM, and SC) have an effective porosity of approximately 0.2. The groundwater velocity inside and outside the cofferdam computed from the average flow rates and an effective porosity of 0.2, are 5.8 ft/yr (0.0032/0.2*365) and 2.9 ft/yr (0.0016/0.2*365), respectively. Applying the higher of these velocities over the groundwater pathway between the seismic gap and the 500,000 pCi/L contour, indicates the plume is 31 years old. This travel time or age of the tritium plume is inconsistent with facility data, other observed, modeled, and calculated data, and it is longer than the facility has been in operation. These slow travel velocities indicate that the hydraulic conductivity value from the pumping tests are biased low; the use of drawdown data in the pumping well as the only observation point for each test precludes assessment of well efficiency which increase drawdown in the pumping well. The pumping test data and analysis did provide accurate information concerning sustained yield for the design of a groundwater containment system.

9.2 Water Balance Estimate of Groundwater Velocities

To assess this discrepancy and develop a better estimate of groundwater velocities and travel times, an alternative method based upon continuity and a water balance approach, was used to estimate the hydraulic conductivity and groundwater velocities. The plume and the impacted groundwater are located in a hydrologically isolated portion of the facility; the source for all of the groundwater within the plume, originates from within the plume. Therefore, if we know how much water is moving along a flow path (the recharge rate), the length of the flow path (seismic gap to the 500,000 pCi/L isopleth), the saturated thickness of the aquifer (about 15 feet within the cofferdam and 35 feet outside the

(1)

(2)

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

(3)

cofferdam), and hydraulic gradient (the water table slope is 0.008 inside the cofferdam and 0.004 outside the cofferdam), an effective or mean hydraulic conductivity can be computed.

Figure 18 illustrates the idealized flow path from the seismic gap to the 500,000 pCi/L isopleth. The total flow per unit width at a point along this pathline is:

$$q = Kib$$

where b is the saturated aquifer thickness. Equation (3) is also equal to the cumulative recharge upgradient from a point where (3) is applied:

 $q = LN \tag{4}$

where N is the recharge and L is the upgradient flow path length. Recharge or percolation is the flux to the water table; a portion of precipitation impacts the land surface, a portion runs off, the remainder infiltrates into the groundwater, and the fraction that infiltrates which does not become evapotranspiration is recharge. The total length of a flow path from the seismic gap to the 500,000 pCi/L isopleth is approximately 186 feet, 102 feet from the seismic gap to the limit of the cofferdam (section 1), with an additional 84 feet from the limit of the cofferdam to the 500,000 pCi/L contour (section 2). If we equate equations (3) and (4), assume a recharge rate of 8 in/year, and apply them to section 1 of the flowpath on **Figure 18**, we can write the following:

 $K_1 i_1 b_1 = L_1 N$

 $K_1 \times 0.008 \frac{ft}{ft} \times 15 ft = 102 ft \times 0.67 \frac{ft}{yr}$

$$K_1 = \frac{102 \times 0.67}{0.008 \times 15} = 570 \frac{ft}{yr} \text{ or } 1.6 \frac{ft}{day}$$

In summary, if the percolation rate is approximately 8 in/yr, the effective hydraulic conductivity of the saturated soils above the cofferdam is about 1.6 ft/day. Similarly, if the recharge rate were 16 in/yr, the effective hydraulic conductivity of the saturated soils above the cofferdam would be double or about 3.2 ft/day.

Repeating these calculations for Section 2 of the flowpath on **Figure 18**, and noting that the total amount of water through this section also includes the flow through section 1, we can write the following:

$$K_{2}i_{2}b_{2} = L_{1}N + L_{2}N = N(L_{1} + L_{2})$$

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

67

 $K_2 \times 0.004 \frac{ft}{ft} \times 35 \, ft = 0.67 \frac{ft}{vr} (102 \, ft + 84 \, ft)$

 $K_2 = \frac{186 \times 0.67}{0.004 \times 35} = 890 \frac{ft}{yr} \text{ or } 2.4 \frac{ft}{day}$

In summary, if the percolation rate is approximately 8 in/yr, the effective hydraulic conductivity of the saturated soils outside the cofferdam is about 2.4 ft/day. Similarly, if the recharge rate were 16 in/yr, the effective hydraulic conductivity of the saturated soils outside the cofferdam would be double or 4.8 ft/day.

Consistent with Section 9.1 above, groundwater velocities were computed using these alternative hydraulic conductivity values developed using equations (3) and (4). The groundwater velocity inside and outside the cofferdam computed from the average hydraulic gradients, an effective porosity of 0.2, and a recharge rate of 8 in/yr are 23.4 ft/yr (1.6*0.008/0.2*365) and 17.5 ft/yr (2.4*0.004/0.2*365), respectively. Similarly, if the recharge rate were 16 in/yr, then the groundwater velocity inside and outside the cofferdam would be 46.7 ft/yr (3.2*0.008/0.2*365) and 35.0 ft/yr (4.8*0.004/0.2*365), respectively. Applying these velocities over the groundwater pathway between the seismic gap and the 500,000 pCi/L contour, the plume is between 4.6 and 9.2 years old. This estimated age of the tritium plume is consistent with general hydrogeologic conditions and available facility operation records, and groundwater age results.

9.3 Sorptive Processes

The term sorption refers to the removal of a solute from solution through association with a solid surface. This attraction between a soil surface and a solute can result from a number of forces. The effects of these forces or processes are commonly described by sorption isotherms. These isotherms assume that when a solution contacts a solid, the solute will tend to transfer from liquid to solid until the concentration of solute in solution is in equilibrium with the soil concentration. These processes, especially for inorganic compounds, tend to be pH dependent, not always completely irreversible, and site specific. With respect to the constituents found in groundwater at the Salem site, this process has no effect on the movement of tritiated water and only a minor effect on the movement of boron; however, this process is important to understanding why the other dissolved constituents identified in the seismic gap have not been found in Site monitoring wells.

Table 1 summarizes the complete list of constituents found in the Spent Fuel Pool and potentially in the seismic gap and adjacent groundwater as well as their sorptive characteristics to soil. Columns 4 and 5 summarize the range in literature reported distribution coefficients. The distribution coefficient (K_d) is defined as follows:

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

$K_{d} = \frac{Soil Concentration}{Dissolved Concentration}$

Therefore, the higher the distribution coefficient, the more strongly a constituent will stick (i.e., adsorb and absorb) to soils. The range in values reported in **Table 1** is most strongly correlated to pH and amount of clay or fines in site soils. Solutes dissolved in low pH water in soils without fine materials will tend to adsorb to soils and have K_d in the lower reported range. Solutes dissolved in neutral pH water (consistent with site conditions) with a quantifiable fraction of fine sediments (the site soils have a minimum of 5% silt and clay) will tend not to adsorb to soils and have K_d in the lower reported range. This process of exchange and interaction between solute and soil will also cause solutes to move slower than the groundwater. This ratio of the groundwater velocity to the solute velocity is caused the retardation factor. The retardation factor can be computed from the distribution coefficient using the following equation:

(5)

 $R_f = 1 + \frac{\rho_b K_d}{\theta}$

(6)

where ρ_b is the bulk density. Gamma emitting isotopes are absent from site monitoring wells because they have adsorbed to soils near the seismic gap and are moving at only a fraction of the speed of the tritium and boron.

9.4 Degradation

With the exception of boron, all site related constituents degrade. Table 1 summarizes the half-lives for each constituent.

9.5 Dispersion

Dispersion is the process whereby contaminants spread over a greater region than would be predicted solely from the average linear groundwater velocity. Dispersion occurs at multiple scales. The primary cause of dispersion is variations in groundwater velocity, on a microscale by variations in pore size and on a macroscale by variations in hydraulic conductivity. The hydrodynamic dispersion tensor is complex. For isotropic media, the dispersion coefficient written to incorporate molecular diffusion (described by Fick's Law), is calculated as follows:

 $D_c = \alpha_d v + D$

(7)

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

where D_c is the dispersion coefficient [L²/T], α_d is the dispersivity [L], v is the groundwater velocity [L/T], and D the molecular diffusion coefficient [L²/T].

While the general process of dispersion is understood, the dispersivity of a formation is not easily measured or quantified at the field scale. Therefore, as dispersion is related to porewater velocities, plume travel distance is the single most important factor that can be correlated to dispersivity. This general relationship is best illustrated in a figure developed by Gelhar et al. (1992). If we consider Figure 19, the scale of the plume is about 180 ft (60 m), which corresponds to a longitudinal dispersivity of approximately 3.3 m. The groundwater velocity is about 9 m/yr, and molecular diffusion for most common ions is on the order of $2x10^{-9}$ m²/s (or 0.0631 m²/yr). Substituting these values into equation (7), yields:

$$D_{c} = 3.3m \times 9\frac{m}{yr} + 0.0631\frac{m^{2}}{yr}$$
$$D_{c} = 29.7\frac{m^{2}}{yr} + 0.0631\frac{m^{2}}{yr}$$

Comparison of the above two terms, indicates that movement of the primary constituents at the site (tritium and boron) is primarily an advectively driven process as the first term is approximately 500 times larger than the second. The site data also reflects this, with slightly elevated levels of tritium extending approximately 75 feet downgradient of the leading edge of the center of mass of the plume.

9.6 Tritium Age Dating and Groundwater Travel Time

The most effective use of groundwater age dating in transport analyses is in the determination of the vertical component of groundwater velocity and the recharge rate to the aquifer. The shallow wells inside of the cofferdam (Wells N, O, M, and AE) have effectively "zero tritium-³He ages" because of the shallow depth of the wells below the water table, the screened interval's exposure to air (i.e., interval above the water table) and the introduction of atmospheric gases during monitoring well installation activities. The wells outside of the cofferdams (Wells S, AA, and AB) that are directly downgradient from the seismic gap have ages from which one can estimate recharge. For Well S, the calculation of age determination has tritium moving over the top of the cofferdam (at -13feet and zero tritium-³He age) to the mid-point of the screened interval at S (-18 feet) or 5 vertical feet in 0.7 years (7 \pm 2 feet/yr). This change in vertical elevation for the tritium plume is equivalent to a recharge of 16 in/yr (assumes a porosity of 0.2). A similar calculation for Well AB, as the plume moves from -13 feet at the cofferdam to -23 feet at the well, yields a recharge rate of 17 in/yr (vertical movement of 10 feet in 1.4 years). A similar calculation can be made for Well AA. Because AA is not tritium contaminated, the flow line did not originate at the lean concrete at the top of the cofferdam but rather at the

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

seasonally low water table in the vicinity of well S. The "clock" for this age system is not set until approximately 3 feet below the water table. Thus, we have the flow from -3 feet to -18 feet (mid-point of screen) in 2.1 years or 7 feet/yr, equal to 16 in/yr of recharge. The agreement in recharge estimates for the three wells is somewhat fortuitous but it can reasonably be characterized as 16 +/-4 in/yr or about 40% of annual precipitation. This estimate of 40% is consistent with other flow systems that have limited evapotransporation (i.e., no grass or trees). Other wells that are screened at the 35-foot level (Wells Z, U, T, and W) have ages of about 3 to 4 years for 20-25 feet of vertical travel, equal to a vertical velocity of 6 to 8 feet/yr. The recharge estimate can then be used in the water balance calculation (Section 9.2) to estimate horizontal transport. The calculations based on groundwater ages agree with the estimates based on the physical properties of the structural fill (e.g., aquifer pumping tests) and water balance calculations.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

10 Health and Environmental Risk Assessment

The principal radionuclide of concern for this remedial investigation is tritium in shallow groundwater adjacent to Salem Generating Station Unit 1. To date, a completed exposure pathway to humans from tritium in shallow groundwater has not been established, nor is there any evidence that significant exposures of biota have occurred. However, since the remedial investigation is continuing, there is a still a possibility that findings might indicate that significant amounts of tritium have migrated to off-site locations, or could be expected to do so, under certain conditions. Therefore, there should be a conceptual approach that outlines the methodology that will be followed in assessing potential impacts on human health and the environment from any such occurrence. This conceptual approach is presented in Section 6.3, following brief discussions of on-site and off-site environmental data for tritium.

10.1 On-Site Environmental Data for Tritium

Concentrations of tritium in groundwater samples taken over time from monitoring wells on the Salem Site provide the most important data set for characterizing the inventory of tritium that could potentially migrate to off-site locations. If transport from shallow groundwater to off-site locations were observed or assumed to occur, data from monitoring wells would be used as input to an analysis of environmental transport to locations where humans or biota could be exposed. Data on concentrations over time at various on-site locations could be used to calibrate a dynamic environmental transport model to project future releases. Knowledge of the age of tritium in on-site environmental samples is needed to determine if releases occurred many years ago or are recent and, perhaps, continuing at the present time.

10.2 Off-Site Environmental Data for Tritium

The program of off-site environmental monitoring at the Salem Station has not detected tritium in environmental media or biota at concentrations above the lower limit of detection in routine sampling procedures. Routine off-site environmental monitoring data will continue to be examined for indications that tritium in shallow groundwater at the Salem Station has migrated beyond the Station boundary.

In evaluating environmental monitoring data, it is important to recognize that all environmental media and living organisms contain low levels of tritium from two sources that are unrelated to operations at the Salem Station: (1) naturally occurring tritium that is continually produced by interactions of cosmic radiation with constituents of the earth's atmosphere, and (2) tritium that was injected into the atmosphere during the period of above-ground testing of nuclear weapons that ended in the early 1960s. Tritium from those sources occurs as tritiated water, which is transported in the environment and incorporated

PSEG Nuclear, LLC. Salem Generating Station Hancock's Bridge, New Jersey

72

into tissues of all organisms by the natural movement of water. This remedial investigation is concerned only with uncontrolled or unexpected releases of tritium to off-site locations, but not with levels due to natural production in the atmosphere and residual contamination from nuclear-weapons testing.

10.3 Methodology for Health and Environmental Risk Assessment

The following sections discuss the steps to be taken to perform a health and environmental risk assessment if tritium were released, or assumed to be released, to locations beyond the site boundary under uncontrolled or unpermitted conditions.

10.3.1 Identification of Exposure Pathways

Since tritium in the environment normally is in the form of tritiated water, exposures of humans and biota occur as a result of intakes of contaminated water by various pathways. When tritium is found in groundwater or surface water, the most important pathway of exposure of humans often is direct consumption of tritium in drinking water obtained from a contaminated source. Consumption of contaminated plant and animal products, including fish, also can be important exposure pathways for humans. A third potential exposure pathway for humans is inhalation and skin absorption of tritiated water vapor. This pathway can be important if an on-site release of tritiated water vapor occurs and airborne tritium is transported to off-site receptor locations. External exposure to tritium is not a concern, because tritium emits only very low-energy electrons (beta particles) that cannot penetrate the outer dead layer of skin.

Doses and risks to humans occur only when there is a completed exposure pathway. If no exposure pathways are known to exist, an assumption that humans are being exposed to known sources of tritium in the environment (either on-site or off-site) can be made for the purpose of obtaining bounding estimates of potential doses and risks. For example, direct consumption of tritium in shallow groundwater at the Salem site can be assumed, even though that pathway is precluded by institutional controls that are maintained at the site. Such bounding analyses are hypothetical, but they are useful in evaluating the potential importance of assumed levels of environmental contamination. However, it is important to emphasize that calculated doses are credible only if there is a completed exposure pathway.

Doses to aquatic and terrestrial biota due to tritium in the environment normally can be estimated on the basis of an assumption that organisms reside in a contaminated medium (e.g., surface water) and that concentrations of tritium in tissues of organisms are the same as concentrations of tritium in water in the medium. Since tritium in the environment behaves in the same way as water, tritium is not concentrated in tissues of organisms compared with levels in contaminated environmental media.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

73

10.3.2 Identification and Characterization of Potentially Exposed Individuals and Biota

A realistic assessment of doses and risks to humans requires knowledge of the locations and living habits of potentially exposed individuals. However, for purposes of a bounding analysis, it is often assumed that humans are exposed at locations of highest concentrations in the environment beyond the site boundary, even though there may be no receptors at those locations at the present time. Assumptions about locations and exposures of potential receptors can be based on readily available demographic information on the local population, augmented by standard assumptions about living habits of typical members of the general public. The level of detail in characterizing potential receptors should be commensurate with expected levels of environmental contamination and associated doses and risks.

A detailed characterization of local flora and fauna is not required in evaluating impacts of tritium (and other radionuclides) on biota, because current guidance on protection of biota is based on assumptions about the effects of ionizing radiation on the most sensitive species of aquatic animals and terrestrial plants and animals. Thus, an assessment of potential impacts on biota can be based on an assumption that all organisms are located where the highest concentrations of tritium in environmental media occur.

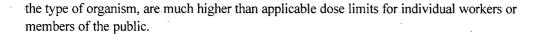
10.3.3 Approach to Calculation of Doses to Humans and Comparisons with Applicable Standards

On the basis of estimated concentrations of tritium in environmental media, including their dependence on time, and assumptions about exposure pathways, it is a straightforward procedure to estimate radiation doses to humans. In general, dose is calculated as the product of an activity concentration of tritium in a material (air, water, or foodstuff) used by humans, an assumed intake of that material by ingestion, inhalation, or skin absorption, and estimated doses per unit activity intake of tritium by each route.

Using the drinking water pathway as an example, the dose to an exposed individual is calculated as the product of (1) the concentration of tritium in the source of water being consumed, (2) the quantity of water consumed over the period of concern, and (3) the dose per unit activity intake of tritium by ingestion. The first factor is based on environmental measurements or projections of future contamination; the second factor is an appropriate assumption for the exposure pathway of concern, such as a consumption rate of 2 liters (L) per day of drinking water; and the third factor is a standard value calculated by the International Commission on Radiological Protection (ICRP), with an appropriate modification that takes into account the biological effectiveness of beta particles emitted in tritium decay. An example dose calculation for tritium in drinking water is given in **Appendix I** (Kocher 2003).

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

A number of regulatory standards are applicable to control of exposures to tritium at the Salem Station. In regard to releases of tritium beyond the Station boundary, the applicable standards include (1) the NRC's radiation protection standards for the public in 10 CFR Part 20, which specify limits on concentrations of tritium (and other radionuclides) in air or water at the boundary and also specify that annual doses to individual members of the public from airborne releases shall comply with standards established by the EPA under the Clean Air Act in 40 CFR Part 61, and (2) the EPA's uranium fuel-cycle standards in 40 CFR Part 190, which specify limits on annual doses to individual members of the public from all release and exposure pathways combined. The two EPA standards differ from the NRC standards in 10 CFR Part 20 in that they apply at locations where members of the public are exposed, rather than at the Station boundary. The standard for airborne releases of tritium in EPA's Clean Air Act standards is a limit on annual effective dose equivalent of 10 mrem, and the limit for all release pathways in EPA's fuel-cycle standards is an annual dose equivalent to the whole body of 25 mrem. The effective dose equivalent and dose equivalent to the whole body are assumed to be the same for tritium.


The NRC's 10 CFR Part 20 also includes requirements for protection of workers within the Station boundary in the form of limits on annual effective dose equivalent and limits on concentrations of radionuclides in air and water. In addition, the EPA's drinking water standards in 40 CFR Part 141, which specify concentration limits for individual radionuclides in drinking water, are applied as groundwater protection requirements by the State of New Jersey. The drinking water standard for tritium is a concentration limit of 20,000 pCi/L. A comprehensive assessment of potential impacts of releases on humans should include comparisons of measured or calculated concentrations or doses with relevant regulatory requirements.

10.3.4 Approach to Calculation of Doses to Biota and Comparisons with Applicable Guidance

Measured or calculated concentrations of tritium in environmental media, especially surface water, also are used to estimate doses to aquatic and terrestrial biota. Because tritium in the environment behaves the same as water, doses to biota are calculated on the basis of an assumption that the activity per unit mass of water in tissues of organisms is the same as the activity per unit mass of water in the environmental medium to which an organism is exposed. Bounding estimates of dose to biota can be based on the highest measured or projected concentrations in water.

The NRC and EPA have not established standards to limit radiation exposures of biota. However, guidance on dose limits for biota, which are intended to ensure adequate protection of populations of the most sensitive species, has been developed by expert groups and adopted by the U.S. Department of Energy; this guidance is summarized in **Appendix I**. The consensus dose limits for biota, which are 0.1 or 1 rad/day depending on

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

10.3.5 Approach to Calculation of Health Risks to Humans

Once doses to humans are estimated, the associated risks to human health, specifically the risks of cancer incidence associated with an exposure, can be estimated on the basis of an assumption about the cancer risk per unit dose. Estimates of cancer risk assume that any additional dose entails some risk and that risk is proportional to the dose from exposure to the source of concern. For purposes of assessing cancer risks in general terms, exposure over a lifetime often is assumed, and the assumed risk per unit dose is an average value over an individual's normal life span of about 70 years. An example calculation of the lifetime risk of cancer incidence from consumption of tritium in drinking water is given in **Appendix I**.

Estimates of health risks from exposure to tritium, or any other environmental contaminant, can be used to provide a perspective on the significance of estimated exposures. By comparing calculated cancer risks with other risks experienced in everyday life, including unavoidable risks from exposure to natural background radiation, a frame of reference that would allow affected individuals to judge the significance of potential exposures is provided.

For example, a useful frame of reference for evaluating the significance of doses due to releases of tritium would be to compare estimated doses with doses from exposure to naturally occurring tritium produced in the atmosphere and tritium produced by atmospheric testing of nuclear weapons. Doses from these sources are unavoidable and are experienced by all members of the public. The National Council on Radiation Protection and Measurements (NCRP) has estimated that the annual dose from exposure to naturally occurring tritium produced in the atmosphere is about 0.001 millirem (mrem), and the annual dose from exposure to tritium produced by atmospheric testing of nuclear weapons currently is about 0.003 mrem (NCRP 1979). In comparison, the total annual dose from all sources of natural background radiation is about 100 mrem, excluding indoor radon, and about 300 mrem if indoor radon is included.

Estimates of health risks as described above are not relevant for biota, because cancer is not a biological effect of concern and current guidance on dose limits is based on an assumption that all species will be adequately protected if doses are maintained below specified limits, even though individual members of species may be harmed. Potential impacts on species can be indicated in a general way by comparing estimated doses with dose limits in the guidance. The lower the estimated doses relative to the limits, the greater the margin of safety in protecting species of aquatic and terrestrial biota.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

10.4 Assessment of Potential Off-Site Exposures of Humans and Biota

There is no evidence to date to indicate that a significant quantity of tritium in groundwater has migrated or is presently migrating beyond the boundary of the Salem site. Elevated levels of tritium have been found only in the water table aquifer on the site, and there is no evidence that tritium in shallow groundwater has migrated directly to the Delaware River or to an underlying aquifer that provides a source of drinking water for the local population. Thus, on the basis of present knowledge, an exposure pathway to humans beyond the site boundary or to biota has not been completed, and there is no basis for performing an assessment of potential off-site exposures of humans and biota.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

77

11 Conclusions and Recommendations

The following sections provide conclusions and recommendations based on the results of remedial investigation activities conducted to date.

11.1 Conclusions

The following detailed conclusions are presented that support the evidence that the source of tritium detected in groundwater was the Spent Fuel Pool, the tritium released to the environment has been stopped, and that tritium has not migrated to the property boundary above any regulatory limit:

1. There was a release of water from the Spent Fuel Pool system resulting from blockage of the telltale drains by mineral precipitates. The telltale drains are a leak monitoring, collection, and drainage mechanism specifically designed to collect leakage that may accumulate behind the stainless steel liner of the Spent Fuel Pool and Refueling Canal. The blockage of the telltale drains resulted in the accumulation of water from the Spent Fuel Pool system (between the liner and the concrete wall) that created hydrostatic head and facilitated migration to the Styrofoam-filled seismic gap located between the Salem Unit 1 Fuel Handling Building and Auxiliary Building. The mineral precipitates have been physically removed to ensure the proper operation of the telltale drains. The process of monitoring the telltale drains is routinely performed to ensure that blockage does not reoccur. Permanent seismic gap drains are being installed to facilitate control of the accumulation of water in the seismic gap, and to create an ingradient to the gap;

- 2. The release of water from the Spent Fuel Pool system was investigated through the sampling of monitoring wells installed in the area of Salem Unit 1. The groundwater analytical data collected from the monitoring well network were used to delineate an area of groundwater in the shallow, water-bearing unit that contains elevated concentrations of tritium. Gamma-emitting isotopes were also monitored in the groundwater samples collected from the monitoring wells because the suspected source of the tritium was the Spent Fuel Pool. No plant related gamma-emitting isotopes have been detected in groundwater samples collected from the monitoring wells;
- 3. The area of groundwater containing elevated tritium extends from the southern end of the Styrofoam seismic gap located between the Salem Auxiliary Building and the Salem Unit 1 Reactor Containment Building in a southerly direction toward the circulation water discharge pipes. Groundwater with tritium at concentrations

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

exceeding any regulatory limit has not migrated to the property boundary of the Station;

4. Elevated levels of tritium have only been detected in groundwater samples collected from the shallow, water-bearing unit. There is no evidence that suggests that water from the Spent Fuel Pool has migrated to an underlying aquifer as confirmed by groundwater samples collected from monitoring wells screened in the Vincentown Formation;

5. A completed exposure pathway to humans from tritium in shallow groundwater has not been established, nor is there any evidence that significant exposures of biota have occurred.

11.2 Recommendations

Based on the conclusions of the remedial investigation, the following recommendations are presented:

 Continued groundwater monitoring should be conducted on a periodic basis. This groundwater monitoring should include the collection of groundwater samples from monitoring wells screened in the shallow, water-bearing unit on a monthly or quarterly basis, to be determined based on quantitative parameters. During these sampling events, depth to water-level measurements should be collected from site monitoring wells. Groundwater samples should also be collected from monitoring wells screened in the Vincentown Formation on a semi-annual basis.

2. A pilot test should be conducted to evaluate the feasibility of groundwater extraction, to provide engineering data to support the extraction system design, and to initially contain the further migration of tritium in groundwater near Salem Unit 1.

3. A Remedial Action Workplan (RAW) should be prepared in accordance with the Technical Requirements for Site Remediation (N.J.A.C. 7:26E). The RAW will be submitted within 90 days of approval of the Remedial Investigation Report.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

- ARCADIS, June 2003; Remedial Investigation Work Plan, PSEG Nuclear LLC, Salem Generating Station, Hancock's Bridge, New Jersey.
- ARCADIS, January 2004; Initial Groundwater Investigation Report and Remedial Investigation Work Plan Addendum, PSEG Nuclear LLC, Salem Generating Station, Hancock's Bridge, New Jersey.
- Dames & Moore, August 28, 1968, Report, Foundation Studies, Proposed Salem Generating Station.
- Dames & Moore, December16, 1968, Report, Groundwater Supply Investigation, Salem Generating Station.
- Dames & Moore, April 9, 1969, Supplemental Report, Control of Excavation, Salem Generating Station.
- Dames & Moore, June 3, 1970, Report, Supplementary Studies, Proposed Salem Generating Station.
- Dames & Moore, June 20, 1972, Report, Consultation, Proposed Heavy Equipment Haul Road, Salem Generating Station.
- Dames & Moore, February 7, 1974, Design, High Water Levels, Proposed Hope Creek Generating Station.
- Dames & Moore, May 23, 1974, Report, Foundation Studies, Proposed Hope Creek Generating Station.
- Dames & Moore, July 6,1976, Report Auxiliary Boring Program Along Service Water Supply Lines, Hope Creek Generating Station.
- Dames & Moore, June 1977, Evaluation of Shoreline Stability, Hope Creek Generating Station.
- Dames & Moore, February 27, 1981, Final Report, Seismic Ground Motion and Site Stability Evaluation at the Controlled Facilities Building, Salem Generating Station.
- Dames & Moore, 1988, Final Report, Study of Long-Term Groundwater Withdrawals and Water-Supply Alternatives, Salem and Hope Creek Generating Stations.

PSEG Nuclear, LLC Salem Generating Station Hancock's Bridge, New Jersey

80

Dames & Moore, December 23, 1992; Report, Geotechnical Investigation and Evaluation, Proposed Oil-Water Separator Basin, Salem Generating Stations.

- NJGS, 1995, Geologic Survey Report GSR 38, Ground-Water Flow Conditions in the Potomac-Raritan-Magothy aquifer System, Camden Area, New Jersey.
- United States Department of Agriculture (USDA) Natural Resources Conservation Service National Water & Climate Center. 1988. *Field Office Guide to Climatic Data*, last revised 18 November 1998.
- USGS, 1979, Geological Survey Professional Paper 1067-D, Upper Cenozoic Sediments of the Lower Delaware Valley and the Northern Delmarva Peninsula, New Jersey, Pennsylvania, Delaware, and Maryland.

USGS, 1999, Water-Resources investigations report 98-4136, Hydrogeology of, Water Withdrawal from, and Water levels and Chloride Concentrations in the Major Coastal plain Aquifers of Gloucester and Salem Counties, New Jersey. West Trenton New Jersey.

· · · · · · · · · · · · · · · · · · ·				K _d (mL/g	i)		Retardation F	actor		
	Molecular	Specific			Recommended ³		Maximum	Recommended ³	Half-Life	Half-Life Units
Constituent of Concern	Weight (g/mol)	Gravity ²	Minumum	Maximum		Minimum			2.758	
Antimony-125	124.905	6.68	0	10,000	3,981	1	68,901	27,431	10.53	years
Barium-133	132.906	3.62	NR	NR	. –		-		1	years
Barium-140/Lanthanum-140	139.911/139.909	3.62	NR	NR				-	12.75/1.678	days
Berium-7	7.0169		NR	NR				· · · · · · · · · · · · · · · · · · ·	53.28	days
Boron	10.811	2.34	0	3,990	0 -	1.00	27,492	1	NR	a
Cerium-141	140.908	6.77	10	10,000	1,000	69.9	68,901	6,891	32.5	days
Cerium-144	143.914	6.77	10	10,000	1,000	69.9	68,901	6,891	284.6	days
Cesium-133	132.906	1.93	1	100,000	501	7.89	689,001	3,454	NR	
Cesium-134	133.907	1.93	1	100,000	501	7.89	689,001	3,454	2.065	years
Cesium-137	136.907	1.93	1	100,000	501	7.89	689,001	3,454	30.2	years
Chromium-51	50.945	7.15	- 1	1,000	40	7.89	6,891	275	27.7	days
Cobalt-58	57,936	8.86	0.1	1,000	10	1.689	6,891	70	70.88	days
Cobalt-60	59.934	8.86	. 0.1	1,000 ·	· 10	1.689	6,891	70	5.271 .	years
lodine-129	128.904	4.93	0.001	1	0.20	1.00689	. 9	· 2	1.70E+07	years
lodine-131	130,906	4.93	0.001	2	0.20	1.00689	15 ·	2	8.04	days
Iron-59	58.935	7.87	NR	NR ·			-	- .	44.51	days
Manganese-54	53.94	7.3	NR	NR		· _ ·	·	-	312.1 .	days
Molybdenum-99	98.908	10.2	0	100	-	1	690	· · - ·	2.748	days
Potassium-40	39,964	0.89	NR	NR		· _	-	- '	1.26E+09	years
Radium-Natural (Ra-226)	226.0254	5	5	1,000,000	100	35.45	6,890,001	690	1599	years
Ruthenium-103	102.906	12.1	100	1,000	158	690	6,891	1,093	39.27	days
Ruthenium-106	105.907	12.1	100	1,000	158	690	6,891	1,093	1.02	years
Silver-110M	109,906	10.5	10	1,000	100	69.9	6,891	690	249.8	days
Sodium-22	21.994	0.97	NR	NR	· _		-	· _	2.605	years
Technetium-99	98.906	11	0	100	0.001	1	690	1	2.13E+05	years
Tellurium-129M	128.906	6,24	NR	NR		-	-	-	33.6	days
Tellurium-132	131.909	6.24	NR	NR	- ·		-	· _ · · ·	3.26	days
Thorium-232	232.038	11.7	10	100,000	100	69.9	689,001	690	1.40E+10	years
Thorium-234	234.044	11.7	10	100,000	100	69.9	689,001	690	24.1	days
Tritium	3.016	0.2693	0.001	0	0.001	1.00689	1	1 .	12.33	years
Uranium-235	235.044	19.1	0.1	1,000,000	40	1.689	6,890,001	275	7.04E+08	years
Zinc-65	64.929	7.14	0.1	10,000	. 16 ·	1.689	68,901	110	243.8	days
Zirconium-95/Niobium-95	94,908	6.52	260	500		1792.4	3,446	-	64.02	days

Table 01. Physical and Chemical Properties of Constituents of Concern, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

NOTES:

¹ Assumes an effective porosity of 0.25 and a bulk density of 1.7225

NR Not Reported

² Value for the stable isotope

³ Based on Looney et al., 1988

Boron K a values The table presents the entire range reported in the literature, mostly derived from soil systems. It is likely that Ka is negligible in low clay, sandy aquifer sediments.

References:

Looney, B.B., Grant, M.W., King, C.M., 1987, Estimation of Geochemical Parameters for Assessing Subsurface Transport at the Svannah River Plant: DPST-85-904. Spitz K. and Moreno, J., 1996, A Practical Guide to Groundwater and Solute Transport Modeling: John Wiley and Sons, New York. Montgomery J.H., 2000, Groundwater Chemicals Desk Reference: Lewis Publishers, Boca Raton. Lide, D.R., 2003, CRC Handbook of Chemistry and Physics, 83rd Edition: CRC Press, Boca Raton.

Table 02. Groundwater Analytical Results, Phase I Investigation, October through November 2002,PSEG Salem Generating Station, Hancock's Bridge, New Jersey.

			Samp	le Identification	¹ and Collection	Date	· · · ·	·
Constituent of Concern	A2 10/02/02	B 10/03/02	C26 10/04/02	C33 10/04/02	A1 10/04/02	E 10/05/02	A2 11/22/02	A2 11/22/02
Major Cations and Anions (mg/L)		· · · ·						
Boron	NA	NA	NA	NA	NA	2,600	NA	NA
Gamma Emmitting Isotopes (pCi/L)								
Potassium-40	1,490	3,780	5,960	6,450	NA	NA	1,760	1,970
Cesium-134	NA	NA	NA	NA	NA	118,000	NA	NA
Cesium-137	NA	· NA	NA	NA	NA	320,000	NA	NA

<u>Notes:</u> mg/L pCi/L

pCi/L NA Milligrams per liter Picocuries per liter

Constituent not analyzed

Bold values exceed the laboratory detection limit.

Corresponds with sample locations shown on Figure 10.

Table 03. Groundwater Analytical Results, Phase II Investigation, December 2002, PSEG Salem Generating Station, Hancock's Bridge, New Jersey.

Sample	Sample	Sodium	Chlorine	Boron	Tritium			1		Ga	amma Emmitting Is	otopes (pCi/L)					•
Identification ¹	Date	(mg/L)	(mg/L)	(mg/L)	(pCi/L)	Potassium-40	Chromium-51	Manganese-54	Cobalt-58	Cobalt-60	Antimony-125	Iodine-131	Cesium-134	Cesium-137	Radium-Nat	Thorium-234	Uranium-235
Production Wel	ls and Observation	Wells				•							· ·				1
HC-1	12/12/2002	ŇA	NA	NA	<160	53.3	<6.64	<0.881	<0.892	<1.25	<2.87	<0.863	<0.614	<1.18	17.6	NA	NA
HC-2	. 12/12/2002	NA	NA	NA -	<166	75.0	<6.80	<0.822	<1.11	<0.985	<1.99	<0.992	<0.895	<1.86	51.9	NA	NA
PW-2	12/12/2002	NA	NA	NA	<167	66.3	<6.81	<0.649	<0.747	<1.02	<2.33	<0.936	<0.841	<1.11	58.0	NA	NA
PW-5	12/12/2002	NA	NA	NA	<162	43.7	<4.01	<1.20	<0.793	<0.681	<1.37	<0.457	<0.803	<1.31	17.0	NA	NA
PW-6	12/12/2002	NA	NA 🕚	NA	<156	42.4	<6.45	<0.902	<0.630	<0.813	<1.45	<0.601	<0.541	<0.850	18.0	NA	NA
Obs G	12/13/2002	NA	NA	NA	<169	64.2	<6.62	<1.28	<0.988 .	<1.26	<3.75	<0.842	. <1.19 .	<1.66	221	42.10	3.90
Obs J	12/13/2002	NA	NA	NA	<161	31.0	<5.72	<0.424	<0.562	<0.788	<1.95	<0.685	<0.832	<0.780	19.2	53.10	1.79
Direct-Push Dis	screte Water Sample	s			· · ·										•		
DP-1	12/19/02 14:37	14.0	5.5	1,705	137,000,000	NA	NA	NA	NA	6,779	24,870	NA	75,790	254,100	NA	NA	NA
DP-1	12/20/02 9:30	10.4	0.33	1,968	120,000,000	, ŊA	NA	1,057	1,025	2,107	1,776	2,591	40,570	132,600	ŅA	NA	NA
DP-2	12/20/02 13:00	98.0	0.39	684	69,800,000	NA	NA	234	NA	•NA	· NA	794	23,760	72,710	NA.	NA	NA
DP-2	12/20/02 13:25	40.6	0.43	1,293	121,000,000	NA	NA .	201	NA	316	NA	1,595	19,650	64,930	NA	NA	NA
DP-2	12/20/02 14:00	22.6	0.50	1,725	182,000,000	· NA ·	NA	697	NA ·	.784	NA	2,134	32,290	102,800	NA	NA	NA
DP-2	12/20/02 14:40	23.3	0.56	1,771	179,000,000	NA	NA ·	972	638	3,877	3,635	2,362	40,240	133,900	NA	NA	NA

<u>Notes:</u> mg/L

Milligrams per liter

pCi/L Picocuries per liter

14.0 Result was detected above laboratory method detection limit. Laboratory method detection limit.

<6.64

Analyte was not detected; laboratory detection limit is not known. ND Constituent not analyzed.

NA

Corresponds with sample locations shown on Figure 10.

l of l

Table 04.

Well Construction Details, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

					ŕ		· · ·		• .		
Well ID	Installation Date	Purpose	Construction Details	Diameter (inches)	Total Depth (feet bgs)	Monitoring Interval (feet bgs)	Monitored Hydrogeologic Unit	MP Elevation (feet RPD)	MP Elevation (feet amsl)	Northing (NAD 83)	Easting (NAD 83)
Well K	Feb-03	Monitoring	Sch-40 PVC	2	80.0	70.0 - 80.0	Vincentown ¹	102.00	12.08	231,435	199,697
Well L	Jan-03	Monitoring	Sch-40 PVC	2	80.0	70.0 - 80.0	Vincentown ¹	101.46	11.54	230,933	199,263
Well M	May-03	Monitoring	Sch-40 PVC	1	20.0	10.0 - 20.0	Cofferdam ²	102.17	12.25	230,843	199,546
Well N	Jan-03	Monitoring	Sch-40 PVC	2	20.0	10.0 - 20.0	Cofferdam ²	101.65	11.73	230,777	199,661
Well O	Jan-03	Monitoring	Sch-40 PVC	2	20.0	10.0 - 20.0	Cofferdam ²	101.33	11.41	230,804	199,839
Well P	Mar-03	Monitoring	Sch-40 PVC	2	80.0	70.0 - 80.0	Vincentown ¹	101.13	11.21	230,336	200,000
Well Q	Mar-03	Monitoring	Sch-40 PVC	2	80.0	70.0 - 80.0	Vincentown ¹	106.59	16.67	230,645	201,196
Well R	Jun-03	Monitoring	Sch-40 PVC	ັ 1	19.0	9.0 - 19.0	Cofferdam ²	102.35	12.43	230,906	199,640
Well S ⁴	May-03	Monitoring	Sch-40 PVC	2	34.7	24.7 - 34.7	Shallow ³	99.04	9.12	230,711	199,613
Well T	Jun-03	Monitoring	Sch-40 PVC	2	31.2	21.2 - 31.2	Shallow ³	104.13	14.21	231,575	199,575
Well U ⁴	May-03	Monitoring	Sch-40 PVC	. 2	32.2	27.2 - 32.2	Shallow ³	98.57	8.65	231,370	199,618
Well V ⁴	Jun-03	Monitoring	Sch-40 PVC	2	79.5	69.5 - 79.5	Vincentown ¹	98.74	8.82	231,355	199,548
Well W ⁴	Jun-03	Monitoring	Sch-40 PVC	2	35.0	25.0 - 35.0	Shallow ³	98.69	8.77	230,777	199,450
Well Y	Sep-03	Monitoring	Sch-40 PVC	2	37.0	27.0 - 35.0	Shallow ³	101.81	11.89	230,771	199,343
Well Z	Sep-03	Monitoring	Sch-40 PVC	2 ·	37.5	27.5 - 37.5	Shallow ³	101.86	11.94	230,681	199,399
Well AA4	Sep-03	Monitoring	Sch-40 PVC	2	36.0	26.0 - 36.0	Shallow ³	99.07	9.15	230,603	199,541
Well AB ⁴	Oct-03	Monitoring	Sch-40 PVC	. 2	42.0	32.0- 42.0	Shallow ³	98,93	9.01	230,623	199,677
Well AC ⁴	Sep-03	Monitoring	Sch-40 PVC	2	24.0	14:0 - 24.0	Cofferdam ²	98.77	8.85	230,724	199,725
Well AD ⁴	Oct-03	Monitoring	Sch-40 PVC	6	43,0	33.0 - 43.0	Shallow ³	98.99	9.07	230,684	199,607
Well AE	Oct-03	Monitoring	Sch-40 PVC	2	37.5	27.5 - 37.5	Cofferdam ²	101.54	11.62	230,829	199,845
Well AF	Oct-03	Monitoring	Sch-40 PVC	2	45.0	35.0 - 45.0	Shallow ³	101.61	11.69	230,491	199,702
Well AG-Shallow	Feb-04	Monitoring	Sch-40 PVC	1	24.2	14.2 - 24.2	Shallow ³	99.29	. 9.37	230,496	199,508
Well AG-Deep	Feb-04	Monitoring	Sch-40 PVC	1	40.0	30.0 - 40.0	Shallow ³	99.20	9.28	230,496	199,508
Well AH-Shallow	Feb-04	Monitoring	Sch-40 PVC	1 ·	24.5	14.5 - 24.5	Shallow ³	102.58	12.66	230,450	199,596
Well AH-Deep	Feb-04	Monitoring	Sch-40 PVC	· 1 ·	40.0	30.0 - 40.0	Shallow ³	102.70	12.78	230,450	199,596
Well AI	Jan-04	Monitoring	Sch-40 PVC	4	22.0	12.0 - 22.0	Cofferdam ²	98,79	8.87	230,798	199,521
Well AJ	Jan-04	Monitoring	Sch-40 PVC	4	35.3	15.3 - 35:3	Shallow ³	98.85	8.93	230,670	199,665
Well AL	Jan-04	Monitoring	Sch-40 PVC	2	25.3	15.3 - 25.3	Shallow ³	99.13	9.21	230,594	199,806
Well AM	Jan-04	Monitoring	Sch-40 PVC	4	20.9	10.9 - 20.9	. Cofferdam ²	98.55	8.63	230,762	199,680

Notes: MP bgs

RPD

amsł

2

3

۵

Measuring Point

Below ground surface

Relative to plant datum

Relative to mean sea level (NAVD 1988).

Monitoring well is screened in the Vincentown Formation.

Monitoring well is screened in the shallow, water-bearing unit at a location within the limits of the cofferdam.

Monitoring well is screened in the shallow, water-bearing unit at a location outside the limits of the cofferdam.

The surface completions of Monitoring Wells S, U, V, W, AA, AB, AC, and AD were converted from above-grade to flush-grade in February 2004.

		· · ·	Groundwater Samp	ole Interval (ft bg	s)		Groundwater Sa	ample Analysi	is ·
Boring Identification	Comments/Details	11 to 15 ¹	21 to 25 ¹	15 to 25 ²	$o 25^2$ $31 \text{ to } 35^1$ Tritium - Salem ³ Tritium - Maplewood ⁴ X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X	Boron	Gamma- Emitting Isotopes ⁵		
1 .	· · · · ·	X	X		x	X	X	X	x
2				X	x	X	X	X	x
3 ·				X	X	X	X .	Х	. <u>x</u>
4	``````````````````````````````````````			X	X	X	X	X	X
5	Unable to advance boring due to obstruction.			· :					
. 6	Unable to advance boring due to obstruction.				·	 *			
7		· X	x		X	X	X	X	X
. 8		·		· X	X	X		· 	
9	Equipment refusal encountered at 22 ft bgs.		X(18-22)	'		X			
10	Equipment refusal encountered at 21.5 ft bgs.		X(17.5-21.5)		·	. X		·	
11	Unable to advance boring due to obstruction.			·					
12		X(8-9)	·	X		X	X		X

Page 1 of 3

 Table 05. Supplemental Groundwater Investigation Details, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

Notes:

ft bgs - Feet below ground surface.

¹ Groundwater samples collected from the 11 to 15, 21 to 25 and 31 to 35 foot below ground surface intervals were collected using the Geoprobe® four-foot SP-15 Screened Point Groundwater Sampler.

² Groundwater samples collected from the interval of 15 to 25 foot below ground surface were collected from a temporary one-inch diameter PVC well. The temporary wells were installed to facilitate the collection of groundwater samples in areas/intervals that did not yield sufficient groundwater.

³ Refers to the PSEG Nuclear, LLC Station Chemistry. Initial analysis of groundwater samples was conducted at the on-site laboratory for screening purposes. If tritium concentrations indicated by the groundwater sample were below the detection limits of Station chemistry, the sample was submitted to Maplewood Testing Services for analysis.

⁴ Maplewood Testing Services.

⁵ The list of gamma-emitting isotopes included: Potassium-40; Actinium-228; Lead-221; Bismuth-212; Thallium-208; Thorium-234; Lead-214; Bismuth-214; Cesium-137; and, Uranium-235

-- Indicates that either a sample was attempted and was unsuccessful, the collection of water from the interval was not attempted, and/or the analysis was not performed.

X - Indicates that a groundwater sample was collected from the listed sample interval, unless otherwise indcated (e.g., "18-22), and was subsequently analyzed for the indicated parameters.

Page 2 of 3

Table 05. Supplemental Groundwater Investigation Details, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

			Groundwater Sam	ple Interval (ft bg	(S)	Groundwater Sample Analysis				
Boring Identification	Comments/Details	11 to 15 ¹	21 to 25. ¹	15 to 25 ²	31 to 35 ¹	Tritium - Salem ³	Tritium - Maplewood ⁴	Boron	Gamma- Emitting Isotopes ⁵	
13				·X		X	X			
14			·	X .	X .	X	X ·			
15				X	X	x	X		X	
16 ·	Unable to advance boring due to obstruction.									
17	Unable to advance boring due to obstruction.				·		· · · ·			
18				X	X	X				
19		x		X(14-18)		X		. <u> </u>		
20			. 	X	. X	X				
· 21	Unable to advance boring due to obstruction.		· ·						·	
22	Equipment refusal encountered at 33 ft bgs.	X .	X	·	X(29-33)	<u>,</u> X	· X		X	
23				x	x	X	X		X	
24					x	· X	X		X	

Notes:

ft bgs - Feet below ground surface.

¹ Groundwater samples collected from the 11 to 15, 21 to 25 and 31 to 35 foot below ground surface intervals were collected using the Geoprobe® four-foot SP-15 Screened Point Groundwater Sampler.

² Groundwater samples collected from the interval of 15 to 25 foot below ground surface were collected from a temporary one-inch diameter PVC well. The temporary wells were installed to facilitate the collection of groundwater samples in areas/intervals that did not yield sufficient groundwater.

³ Refers to the PSEG Nuclear, LLC Station Chemistry. Initial analysis of groundwater samples was conducted at the on-site laboratory for screening purposes. If tritium concentrations indicated by the groundwater sample were below the detection limits of Station chemistry, the sample was submitted to Maplewood Testing Services for analysis.

⁴ Maplewood Testing Services.

⁵ The list of gamma-emitting isotopes included: Potassium-40; Actinium-228; Lead-221; Bismuth-212; Thallium-208; Thorium-234; Lead-214; Bismuth-214; Cesium-137; and, Uranium-235.

-- Indicates that either a sample was attempted and was unsuccessful, the collection of water from the interval was not attempted, and/or the analysis was not performed.

X - Indicates that a groundwater sample was collected from the listed sample interval, unless otherwise indcated (e.g., "18-22), and was subsequently analyzed for the indicated parameters.

Table 05 - Supplemental Investigation Details

Page 3 of 3

		(Groundwater Sam	ple Interval (ft bg	Groundwater Sample Analysis				
Boring Identification	Comments/Details	11 to 15 ¹	21 to 25 ¹	$15 \text{ to } 25^2$	31 to 35 ¹	Tritium - Salem ³	Tritium - Maplewood ⁴	Boron	Gamma- Emitting Isotopes ⁵
25	Equipment refusal encountered at 25 ft bgs.	'		X		X	X		X
26	Equipment refusal encountered at 32 ft bgs.		'	X	X(28-32)	x	X		X
27		X	·		x	. X	X		X
28		X	X ·		. X	x	X		X
29	Unable to advance boring due to obstruction.								
30			·	x	. X	X			
31				x	X(34-38)	x	· ·	·	
32				x	X(34-38)	X			
33	Equipment refusal encountered at 19 ft bgs.		X(9-19)			X			
34	Equipment refusal encountered at 22 ft bgs.		X(12-22)	·		X		·	
35	Equipment refusal encountered at 24 ft bgs.		X(14-24)			X	·		
36	Equipment refusal encountered at 16 ft bgs.	×				X .			
37	Boring was not advanced deeper than 25 ft bgs.			X	,	x			

 Table 05. Supplemental Groundwater Investigation Details, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

Notes:

ft bgs - Feet below ground surface.

Groundwater samples collected from the 11 to 15, 21 to 25 and 31 to 35 foot below ground surface intervals were collected using the Geoprobe® four-foot SP-15 Screened Point Groundwater Sampler.

² Groundwater samples collected from the interval of 15 to 25 foot below ground surface were collected from a temporary one-inch diameter PVC well. The temporary wells were installed to facilitate the collection of groundwater samples in areas/intervals that did not yield sufficient groundwater.

³ Refers to the PSEG Nuclear, LLC Station Chemistry. Initial analysis of groundwater samples was conducted at the on-site laboratory for screening purposes. If tritium concentrations indicated by the groundwater sample were below the detection limits of Station chemistry, the sample was submitted to Maplewood Testing Services for analysis.

⁴ Maplewood Testing Services.

⁵ The list of gamma-emitting isotopes included: Potassium-40; Actinium-228; Lead-221; Bismuth-212; Thallium-208; Thorium-234; Lead-214; Bismuth-214; Cesium-137; and, Uranium-235.

-- Indicates that either a sample was attempted and was unsuccessful, the collection of water from the interval was not attempted, and/or the analysis was not performed.

X - Indicates that a groundwater sample was collected from the listed sample interval, unless otherwise indcated (e.g., "18-22), and was subsequently analyzed for the indicated parameters.

Table 05 - Supplemental Investigation Details

		-				Gamma-Emitting	g Isotopes (pCi/L)	
Boring	Sample Interval (ft	Tritium	(pCi/L)	Boron (ug/L)	Potassium - 40	Bismuth - 212 (Thorium - 232)	Thorium - 234 (Uranium - 238)	. Uranium - 23
Identification	bgs)	Salem ¹	Maplewood ²	Maplewood ²	Maplewood ²	Maplewood ²	Maplewood ²	Maplewood
	11 - 15	<6,800	<138					
- 1	21 - 25	<5,960					·	·
	31 - 35	<5,740	<139	812	81.5	<4.45	84.7	5.59
2	15 - 25	<5,190	<145	578 ·	<23.5 .	<6.70	<103	<4.47
2 .	31 - 35	<5,380	206	635	<26.8	<4.35	<69.1	[°] <4.53
3	15 - 25	<4,740	.<140	641	97.9	· <13.8	<11.0	4.76
3	31 - 35	<5,420	986	393	<80.2	<6.33	<50.0	<3.78
	15 - 25	<5,790	<142	626	65.4	<13.1	175 ·	4.75
• 4	31 - 35	<5,520	271	.457	<10.2	<4.99	<50.2	<1.78
	11 - 15	<5,020	<142	266	51.3	<5.45	<128	<5.05
7	21 - 25	<5,020	222	318	75.5	<7.47	<46.0	<3.88
	31-35	<5,090	2.545	690	71.9	<4.33	<38.5	<2.63
	15 - 25	<6,670	1,175	206	. 57.0	<4.80	<7.91	<3.87
8.	- 31 - 35	<14,600	1,731	510	<42.6	<4.78	. 199	4.53
9	18 - 22	80,800	-					
10	17.5 - 21.5	21,300				·		
······	8-9	<4,540	1,941	. 365	<14.7	<3.68	169	6.00
12	15 - 25	<4,380	1,814	291	82.7	<8.57	187	3.90
13	15 - 25	<5,410	579	457	46.6	<10.7	165	6.47
	15 - 25	5,860	8,674		<15.0	<3.68	198	5.27
14	31-35	<5,590	10,190			·	- '	
	15 - 25	<5,210	726	407	96.5	.18.5	<119	5.83
15	31 - 35	<5,170	756	411	<56.0	<3.94	<144	<4.61
	15 - 25	<15,500	499	143	50.2	15.2	209	6.17
18	31 - 35	<14,600	396	675	99.0	<7.48	<112	<5.31
	11 - 15	114,000	-				-	
19	14 - 18	591,000	 .			·	·	
	15 - 25	461,000				- ·	-	
20	31 - 35	172,000	_	-		· · ·		'
	11 - 15	<4,750	920	408	<34.9	<4.13	<105	<2.98
22	21 - 25	<4,700	1,433	268	<22.7	<4.10	150	<1.27
22	29 - 33	<6,020	8,449	301	<35.3 .	<13.5	180	6.59
·	15 - 25	<3,920	567		<56.0	<5.09	<40.3	<4.23
23	31 - 35	<7,210	474	344	· · · ·			· _ ·

Table 06. Supplemental Groundwater Investigation Results, PSEG Nuclear, LLC, Salem Generating Station, Artificial Island, Hancock's Bridge, New Jersey.

1 of 2

<u>Notes:</u> ft bgs

<.

--

Feet below ground surface. Picocuries per liter.

pCi/L

ug/L micrograms per liter.

Less than the laboratory detection limit.

Constituent not analyzed.

Refers to PSEG Nuclear, LLC Station Chemistry. If tritium concentrations indicated by a groundwater sample were below the detection limits of Station chemistry, the sample was submitted to Maplewood Testing Services for analysis. Initial analysis of groundwater samples was conducted at the Salem on-site laboratory for screening purposes. Maplewood Testing Services.

Table 06 - Supplemental Investigation Results

			•			Gamma-Emitting	g Isotopes (pCi/L)	
Boring	Sample Interval (ft	Tritiun	ı (pCi/L)	Boron (ug/L)	Potassium - 40	Bismuth - 212 (Thorium - 232)	Thorium - 234 (Uranium - 238)	Uranium - 235
Identification	bgs)	Salem	Maplewood ²	Maplewood ²	Maplewood ²	Maplewood ²	Maplewood ²	Maplewood ²
24	31 - 35	<4,790	361	188	43.1	<9.04	<130	<3.87
25	15 - 25	<4,610	1,500	409	<48.4	<5.82	<120	<4.52
- 26	15 - 25	<4,500	4,127	582 .	97.6	<9.56	<62.6	<5.52
- 26	28 - 32	6,760						
27	11-15	620,000 .		-				
27	. 31 - 35	<4,930	1,028	710	67.5	<6.63	<61.7	<3.21
	11-15	45,000				`	·	, °
28	21 - 25	1,980,000		·				-
	31 - 35	<5,140	1,794	660	95.4	<6.55	<109	<4,55
. 30 .	15 - 25	<14,900	406	339	70.2 -	<5.83	152	<1.46
- 50	- 31 - 35	<15,500	<142	228	<14.4	<4.38	143	3.71
31	15 - 25	<15,500	<140			. .		
31	34 - 38	<15,500	<141	-	47.9	<4.61	<63.9	<3.35
32	15 - 25	<15,500	<139	793	197	<13.0	· 457	<10.0
. 32	34 - 38	<15,700	168	-	<11.6	<6.11	. <72.2	<4.38
33	9 - 19	1,080,000					1	
34	12 - 22	698,000		-		·	-	
35	14 - 24	1,250,000	·	·				
36	11 - 16	<15,300	11,404		'			-
37	15 - 25	<15,200	4,550	181	<42.8	16.8	<91.2	<4.15

Table 06. Supplemental Groundwater Investigation Results, PSEG Nuclear, LLC, Salem Generating Station, Artificial Island, Hancock's Bridge, New Jersey.

Notes:

ft bgs Feet below ground surface. Picocuries per liter.

pCi/L ug/L

<

micrograms per liter. Less than the laboratory detection limit.

2

Constituent not analyzed.

Refers to PSEG Nuclear, LLC Station Chemistry. If tritium concentrations indicated by a groundwater sample were below the detection limits of Station chemistry, the sample was submitted to Maplewood Testing Services for analysis. Initial analysis of groundwater samples was conducted at the Salem on-site laboratory for screening purposes. Maplewood Testing Services.

2 of 2

nvestigation Results Table 06 - Supplement

Field Parameter Measurements, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

	·			Para	meter		
Observation Well Identification	Date	pH (SU)	Specific Conductance (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Oxidation- Reduction Potential (mV)
Well K	04/29/03	7.10	8.58	18.5	0.37	18.23	21
	05/05/03	6.80	7.55	12.0	0.23	14.90	-107
· .	05/20/03	7.13	7.68	13.2	0.22	16.93	-174
· · ·	05/28/03	7.17	7.84	15.1	0.20	15.97	-153
•	.06/04/03	7.04	7.92	14.4	0.14	14.91	-173
	06/10/03	7.10	7.06	14.4	0.25	17.44	-140
	06/17/03	7.18	7.02	17.8	0.10	16.00	-184
· .	06/24/03	7.11	8.62	1.8	0.16	17.61	-186
	06/30/03	7.30	8.28	11.1	0.14	18.52	-142
	07/16/03	7.24	8.23	6.5	0.19	18.31	-102
	07/29/03	7.19	·8.47	7.0	0.13	18.09	-127
	08/12/03	6.95	8.37	1.6	• 0.21	. 19.06	-58
	08/27/03	6.91	8.17	5.6	0.41	19.75	-64
· · · ·	09/09/03	6.93	8.01	5.5	0.72	18.89	-38
4. State 1997	09/25/03		8.3	5.8	1.67	18.51	-22
	10/06/03	6.75	8.29	20.0	2.44	17.22	-14
	11/09/03	6.84	8.19	3.1	0.30	15.75	-25
Well L	04/29/03	7.40	14 .11	13.3	0.36	16.35	-75
•	05/05/03	7.00	13.29	· 11.0	1.35	12.50	-166
	05/15/03	7.45	13.12	6.3	0.42	15.09	-183
	05/20/03	7.38	12.98	8.8	0.22	15.48	-201
	05/28/03	7.39	13.52	11.0	0.34	15.04	-160
· .	06/04/03	7.31	13.44	10.0	0.29	14.64	-191
	06/10/03	7.45	11.98	9.4	0.20	16.94	-150
	06/17/03	7.38	12.03	13.2	0.18	15.59	-185
	06/24/03	7.36	14.90	1.2	0.18	16.70	-199
	06/30/03	7.43	14.14	9.7	0.17	17.32	160
	07/29/03	7.40	14.29	11.0	0.14	16.99	-140
	08/27/03	7.08	14.07	9.4	0,13	17.67	-35
	09/25/03	7.37	14.41	3.9	0.12 [·]	17.65	19
, ·	12/16/03	7.09	14.27	8.1	0.11	• 13.60	52

mg/L mV

NTU °C

mS/cm

<u>Notes:</u> The values presented in the table are stabilized, final readings during purging.

Standard Units SU

Milligrams per liter; equivalent to parts per million

Millivolts

Microsiemens per centimeter

Nephelometric turbidity units

Degrees Celsius

Field Parameter Measurements, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

				· Parat	neter		
Observation Well Identification	Date	pH (SU)	Specific Conductance (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Oxidation- Reduction Potential (mV)
Well M	04/30/03	7.17	0.42	16.6	7.64	21.34	35
	07/09/03	6.84	0.43	125.0	0.14	28.42	-27
	07/23/03	6.81	0.43	59.0	0.11	28.89	-39
	08/06/03	6.75	0.44	120.0	0.13	30.08	-19
	08/20/03	6.70	0.43	100.0	0.15	30.53	85
	09/04/03	6.72	0.42	134	0.10	30.71	163
	09/16/03	6.72	0.42	71.5	0.25	32.69	. 197
	10/03/03	6.77	0.43	· 150.0	0.13	28.53	24
	10/20/03	6.71	0.44	30.5	0.12	27.55	.27
	12/04/03	6.85	0.39	22.3	0.11	19.48	95
Well N	04/30/03	5.70	0.37	3.8	2.18	20.14	484
	05/06/03	5.65	0.31	7.9	3.40	19.60	239
	05/21/03	5.9Ò	0.38	6.7	3.25	19.75	194
	05/27/03	5.80	0.35	38.8	3.29	20.23	283
	06/04/03	5.80	0.31	11.1	2.18	20.11	-58
	06/11/03	5.66	0.28	8.1	1.70	21.83	151
	06/19/03	5.63	0.29	25.1	1.24	22:21	. 194
	06/25/03	5.61	0.30	1.6	1.24	23.06	165
	07/10/03	5.66	0.29	24.8	1.31	24.88	294
	07/25/03	5.70	0.31	2.0	1.63	26.83	120
	08/20/03	5.53	0.31	10.0	1.65	27.89	188
	09/04/03	5.77	3.65	2.0	2.03	27.45	263
	09/17/03	⁻ 5.81	0.37	3.2	2.88	28.52	330
	10/03/03	5.95	0.405	.13.5	3.19	27.42	190
	11/03/03	6.02	0.39	76.1	1.98	25.61	299
	12/12/03	5.92	0.42	6.1	0.79	22.23	86

Notes:

°C

 The values presented in the table are stabilized, final readings during purging.

 SU
 Standard Units

 mg/L
 Milligrams per liter; equivalent to parts per million

 mV
 Millivolts

 mS/cm
 Microsiemens per centimeter

 NTU
 Nephelometric turbidity units

Nephelometric turbidity units Degrees Celsius

Field Parameter Measurements, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

· ·	· · ·		· · · ·	Para	meter	•	· · · · · · · · · · · · · · · · · · ·
Observation Well Identification	Date	pH (SU)	Specific Conductance (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Oxidation- Reduction Potential (mV)
Well O	04/29/03	7.25	0.21	3.5	0.30	16.39	[,] NA
· · ·	05/06/03	6.99	0.19	1.8	0.50	16.00	-144
	05/23/03	7.28	0.20	4.9	0.32	18.87	-119
	05/28/03	7.40	0.23	6.5	0.39	17,92	-134
	06/03/03	7.01	0.24	6.1	0.55	18.95	-82
	06/10/03	7.10	0.21	10.6	0.54	20.30	-123
	06/17/03	7.08	0.21	10.2	0.66	20.33	-91
	06/24/03	6.84	0.27	0.0	0.76	22.49	· -88
	07/09/03	7.05	0.27	. 0.0	0.41	23.81	-46
	07/25/03	6.79	0.25	0.0	0.82	25.27	-11
	08/20/03	6,66	0.30	4.6	0.40	27.68	80
	09/03/03	6.96	0.26	0.0	0.74	27.94	42
	09/15/03	7.11	0.26	0.0	0.59	28.50	31
	10/03/03	6.74	0.45	4.9	0.26	26.24	129
	10/20/03	6.58	0.71	0.0	0.28	25.07	-35
	11/17/03	6.68	0.42	3.8	0.21	.22.25	-43
	12/18/03	6.20	2.49	2.1	. 1.40	14.48	290
· Well P	04/29/03	6.74	10.39	29.5	0.94	15.16	· -40
	05/05/03	6.50	9.94	13.4	0.48	12.90	-175
1	05/15/03	6.80	10.50	17.6	0.19	14.68	-166
	05/20/03	6.83	10.38	15.8	0.33	16.22	-178
	05/31/03	6.69	12.30	20.6	0.18	17.00	-137
	06/04/03	6.75	10,84	24.3	0.10	14.25	-181
	06/10/03	6.75 ·	9.78	33.0	0.50	17.43	-165
	06/17/03	6.79	9.98	40.2	0.17、	15.72	-176
	06/24/03	6.86	12.29	· 20.0	0.21	17.44	-181
	07/16/03	6.88	11.91	46.7	0.18	18.44	-120
	08/13/03	6.39	12.29	56.0	0.13	18.38	-105
	09/08/03	6.52	11.78	9.9	0.10	18.29	-76
-	10/06/03	6.41	12.38	14.0	0.09	17.22	-96

mS/cm

NT.U

°C

 Notes:

 The values presented in the table are stabilized, final readings during purging.

 SU
 Standard Units

mg/L mV

Milligrams per liter; equivalent to parts per million Millivolts

Microsiemens per centimeter

Nephelometric turbidity units

Degrees Celsius

3.of 7

Field Parameter Measurements, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

•	[Para	meter		
Observation Well Identification	Date	pH (SU)	Specific Conductance (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Oxidation- Reduction Potential (mV)
Well Q	04/30/03	6.46	13.69	20.0	0.20	14.55	-48
	05/06/03	6.34	12.01	. 99.6	0.16	15.30	-123
	05/12/03	6.28	12.43	38.9	0.36	16.56	-76
· · · ·	05/19/03	6.42	12.61	159	0.12	16.19	-170
	05/30/03	6.35	14.80	173.0	0.22	16.88	-113
	06/05/03	6.43	11.80	15.4	0.17	15.31	-157
	06/11/03	6.35	11.74	. 12.6	0.14	17.64	-145
	06/16/03	6.48	12.00	16.5	0.16	16.64	-152
	06/23/03	6.24	15,10	8.3	0.18	16.99	-99
	07/17/03	6.39	13.87	11.0	0.31	17.10	-86
	08/13/03	6.25	14.11	14.2	0.14	18.98	-85
	09/10/03	6.14	13.75	11.4	0.09	16.58	13
	10/07/03	6.01	14.44	0.0	0.16	16.61	169
	11/09/03	5.98	14.06	4.2	0.17	13.86	102
Well R	04/30/03	6.74	0.54	15.8	8.02	18.72	33
'	07/09/03	8.20	0.60	85	0.12	24.33	-189
	07/25/03	7.30	0.57	21.6	0.12	25.52	-99
	08/06/03	8.11	0.60	145	0.10	26.17	-99
	08/20/03	6.76	0.58	280	0.19	27.13	84
	09/17/03	8.32	0.63	27.3	· 0.16	26.03	-
	10/03/03	6.66	0.64	19.8	0.12	24.48	178
	10/21/03	6.58	0.65	24.9	0.12	22.86 ·	197
· ,	12/05/03	6.31	0.64	24.8	0.13	15.87	279
Well S	07/09/03	6.89	0.72	5.9	0.12	19.20	-128
	07/21/03	7.05	0.69	9.6	0.13	20.80	-107
	08/07/03	6.58	6.70	32.4	0.08	19.85	-73
· ·	08/21/03	6.92	0.62	-65.0	0.15	21.77	0
	09/15/03	6.58	0.62	23.7	0.10	21.63	-23
	10/04/03	6.29	0.63	40.8	0.13	20.75	61
	10/13/03	6.43	0.67	15.0	0.10	21.11	0
	10/20/03	5.98	0.70	39.0	0.10	19.54	145.
	11/09/03	6.42	0.63	13.6	0.11	18.40	-42
	11/26/03	6.57	0.62	64.4	0.28	17.67 [.]	278

Notes:

°С

The values presented in the table are stabilized, final readings during purging. SU Standard Units mg/L mV Milligrams per liter; equivalent to parts per million Millivolts mS/cm Microsiemens per centimeter NTU Nephelometric turbidity units **Degrees Celsius**

Table 07 - Field Parameters

Field Parameter Measurements, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

			······································	Para	meter	·	···· · · · · · · · · ·
Observation Well Identification	Date	pH (SU)	Specific Conductance (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Oxidation- Reduction Potential (mV)
Well T	07/02/03	NA	NA	NA	NA	NA	NA
	07/10/03	6.86	6.35	3.0	0.10	17.80	-149
	07/15/03	6.81	6.34	4.2	0.18	19.07	101
• •	07/30/03	6.88`	6.43	4.9	0.19	18.52	-92
	08/12/03	6.83	6.41	0.5	0.10	19.99	100
	08/28/03	6.61	6.27	59.1	. 0.13	18.85	12
	09/09/03	6.71 ·	6.18	38.9	0.07	19.23	-55
	09/25/03	7,07	6.33	50.0	0.09	19.53	-84
	10/06/03	6.51	6.08	14.6	0.16	18.31	90
	12/12/03	6.51	6.41	69.9	0.06	15.85	-21
Well U	07/02/03	NA	NA.	NA	NA	NA	NA
	07/10/03	6,91	1.57	6.7	0.13	16.45	-136
	07/16/03	6.85	1.53	5.6	0.09	17.91	-140
	07/29/03	6.96	. 1.52	20.8	0.09	17.88	-128
	08/12/03	6.81	1.59	0.4	0.10	18.72	-117
	08/27/03	6.75	1.49	21.0	0.09	[·] 19.05	-94
	09/08/03	6.54	1.48	14.1	0.09	17.74	-46
	09/25/03	7.07	1.43	24.9	0.12	18.98	-63
	10/06/03	6.45	1.52	23.1	0.06	17.29	-65
	12/12/03	6.38	1.52	11.0	0.06	14.36	0
Well V	07/02/03	NA	NA	NA	NA	NA	NA
	07/21/03	7.14	3.91	14.9	0.16	. 19.64	-29
,	07/29/03	7.06	3.90	7.2	0.11	18.61	-95
	08/12/03	6.80	3.85	0.0	0.11	18.82	-24
	08/22/03	6.81	3.83	3.5	0.15	19.66	-10
•	09/09/03	6.72	3.89	0.0	0.08	18.80	-41
	09/25/03	7.30	4.05	0.6	0.20	18.99	12
	10/06/03	6.65	3.69	0.0	0.07	17.94	-85
,	12/12/03	6.51	3.68	1.7	0.09	14.07	⊡ 14

Notes: The values presented in the table are stabilized, final readings during purging. SU Standard Units Milligrams per liter; equivalent to parts per million Millivolts mg/L mν mS/cm NTU Microsiemens per centimeter Nephelometric turbidity units °C **Degrees** Celsius

Table 07 - Field Parameters

Date	pH (SU)	Specific Conductance (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	
07/07/03	6.80	2.29	1.0	0.48	19.78	I
07/21/03	6.80	2.36	2.0	0.14	20.74	
08/07/03	5.62	0.35	17.0	1.68	26.89	l
08/19/03	6.73	2.39	8.0	0.12	20.34	l
09/03/03	6.63	2.33	3.3	0.10	19.25	l
09/15/03	6.72	2.34	0.5	0.13	20.37	l
10/03/03	6.53	2.35	2.3	0.11	19.39	l
10/20/03	6.24	2.67	0.0	0.13	17.81	l
11/17/03	6.43	2.46	2.6	0.23	17.72	l
12/16/03	6.49	2.16	6.0	0.09	15.11	
10/27/03	6.92	7.42	34.2	0.32	16.29	ſ
11/09/03	6.55	7.52	3.7	0.67	15.44	ł
11/24/03	6.92	7.49	5.6	0.11	15.73	
12/12/03	6.43	7.46	5.8	0.11	13.53	l

11.5

42.0

28.2

19.5

20.6

9.9

53.0

49.2

14.7

18.3

10.0

58.7

31.9

16.2

24.6

5.1

50.3

25.0

12.9

38.0

14.4

Parameter

Table 07.Field Parameter Measurements, PSEG Nuclear, LLC, Salem Generating Station,
Hancock's Bridge, New Jersey.

7.5

3.90

3.99

4.00

3.98

3.92

2.21

2.24

2.21

2.19

1:96

1.79

1.82

1.90

1.85

1.89

0.45

0.43

0.48

0.44

0.44

- NI	0	to	c	٠
1.4	υ	ιe	5	

Observation

Well

Identification

Well W

Well Y

· Well Z

Well AA

Well AB

Well AC

12/22/03

10/27/03

11/09/03

11/24/03

12/12/03

12/22/03

10/27/03

11/10/03

11/24/03

12/10/03

12/22/03

10/28/03

11/02/03

11/17/03

12/04/03

12/16/03

10/28/03

11/03/03

11/18/03

12/05/03

12/18/03

6.33

7.10

6.71

7.06

6.62

6.51

5.74

5.73

6.03

5.02

4:96

6.41

6.32

6.13

6.45

6.31

6.68

6.65

6.39

6.52

6.49

 The values presented in the table are stabilized, final readings during purging.

 SU
 Standard Units

 mg/L
 Milligrams per liter; equivalent to parts per million

 mV
 Millivolts

 mS/cm
 Microsiemens per centimeter

 NTU
 Nephelometric turbidity units

 °C
 Degrees Celsius

6 of 7

Oxidation-

Reduction

Potential (mV)

-108

-104

308

-74 -35

-24

45 125

-24 8

108

259

255

141

186

-37

206

120

55

76

10

80

57

236

76

29

205

17

87

-27

-16

0.429

-219

304

101

14.25

17.25

16.18

16.21

14.41

15,13

18.17

17.79

17.72

18.70

15.54

22.95

23.28

22.12

20.04

19.22

24.61

24.38

23.41

21.88

20.25

0.09

0.08

0.58

0.07

0.07

0.09

0.08

0.15

0.11

0.16

0.26

0.12

0.05

0,14

0.11

0.07

0.24

0.30

0.17

0.27

0.05

Field Parameter Measurements, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

	[· · · ·	Para	meter	· .	• •
Observation Well Identification	Date	pH (SU)	Specific Conductance (mS/cm)	Turbidity (NTU)	Dissolved Oxygen (mg/L)	Temperature (°C)	Oxidation- Reduction Potential (mV)
Well AD	10/27/03	7.12	1.90	24.0	0.07	20.28	-72
	11/02/03	6.67	1.98	16.3	0.06	21.36	64
	11/17/03	6.52	2.18	21.8	0.22	18.72	15
	12/04/03	6.76	1.60	4.6	0.08	17.69	81
	12/16/03	6.08	1.45	11.1	0.13	17.36	-12
Well AE	10/27/03	6:64	0.27	11.4	0.10	24.98	-60
	11/02/03	6.19	0.25	13.6	0.44	25.18	-60
	11/17/03	6.15	0.25	2.9	0.16	23.64	-25
	12/04/03	6.32	0.23	2.3	0.23	19.83	83
	12/18/03	5.60	0.22	1.6	0.36	17.09	288
Well AF	10/27/03 11/10/03 11/24/03 12/13/03 12/22/03	7.11 6.73 7.01 6.39 6.41	4.10 3.00 3.65 3.36 3.36 3.36	101.0 55.4 9.5 21.7 2.9	0.04 0.09 0.07 0.11 0.06	20.43 19.68 20.51 18.50 18.19	-99 20 -30 238 3
Minimum	Measurement	8.32	15.10	280.0	8.02	32.69	484
	Measurement	4.96	0.19	-65.0	0.04	12.50	-219
	Measurement	6.65	4.73	23.1	0.48	19.58	-4

Notes:

°C

 The values presented in the table are stabilized, final readings during purging.

 SU
 Standard Units

 mg/L
 Milligrams per liter; equivalent to parts per million

 mV
 Millivolts

 mS/cm
 Microsiemens per centimeter

 NTU
 Nephelometric turbidity units

Degrees Celsius

Table 07 - Field Parameters

Table 08, Groundwater Elevations, PSEG Salem Generating Station, Hancock's Bridge, New Jersey.

Screened Interval - Typical (ft bgs)	Monitored Lithologic Unit	Well Identification	Water-Level Elevation (ft rpd) 26-Jun-2003	Water-Level Elevation (A amsi) 26-Jun-2003	Water-Level Elevation (fr rpd) 28-Jul-2003	Water-Level Elevation (ft amsl) 28-Jul-2003	Water-Level Elevation (fr.pd) 15-Aug-2003	Water-Level Elevation (ft antsl) 15-Aug-2003	Water-Level Elevation (ft rpd) 14-Oct-2003	Water-Level Elevation (ft antsi) 14-Oct-2003	Water-Level Elevation (fl rpd) 6-Nov-2003	Water-Level Elevation (ft amsi) 6-Nov-2003	Water-Level Elevation (ft rpd) 20-Feb-2004	Water-Level Elevation (ft amst) 20-Feb-2004
		Well M	95.11	5.19	94.56	4.64	94,74	4.82	93.58	3.66	93.37	3.45	93.51	3.59
		· Well N	94.33	4,41	93.55	3.63	93.73	3.81	93.00	3.08	92.76	2.84	92.29	2.37
	Shallow, Water-	Well O	95.17	5.25	94.50	4.58	44.79	4.87	93.45	3.53	93.57	3.65	92,47	2.55
10 10 20	Bearing Linit (Inside	Well R 🔪	96.50	6.58	95.86	5.94	96.04	6.12	94.44	4.52	94.65	4.73	94.84	4.92
101020	the Limits of	Well AC		[_]			. . ·		93.01	3.09	92.82	2.90	NM	NM
1	Cofferdam)	Well AE	- ⁻	-	-	-		~	93.15	3.23	94.32	4.40	92.13	2.21
		Well A1	. .	1 - 1	. –			- 1	-		-	~	92,21	2,29
	Note and Land	Mean	95.28	5.36	94.62	4.70	94.83	4.91	93.44	3.52	93.58	3.66	92.91	2.99
		Well S	92.95	3.03	92.46	2.54	92.54	2.62	92.44	2.52	92.10	2.18	91,57	1.65
i	The second se	Welii T	92.95	3.03	92.66	. 2.74	92.62	2.70	92.74	2.82	92.06	2.14	91,76	1.84
i		wentú	93.20	3.28	92.85	2.93	92.82	2.90	92.79	2.87	92.14	2.22	91.87	1.95
1		Well W	92.86	2.94	92.41	2.49	92.41	2.49	92.29	2.37	91.79	1.87	91,41	1.49
1	1.2007	Well Y					-	-	92.09	2.17	91.68	1.76	91,19	1.27
1		Well Z	- · ·	-	-	1.4	-	·	92.07	2.15	91.70	1.78	91.13	1.21
1	Sec. And Mark	Well AA	-	· · ·		- 1			91.97	2.05	91.57	1.65	91.08	1.16
· ·	Shallow, Water-	Weit AB	· -			- · · ·		-	92.31	2.39	92.03	2.11	91.53	1.61
25 to 35	Bearing Unit	Well AD] []	-] –] '	92.17	2.25	91.80	1.88	91,24	1.32
251033	(Outside the Limits	Well AF	- 1	-	· -		-	- 1	92.18	2.26	91.80	1:88	91.23	1.11
1 .	- of Collerdam)	Well AG (Shallow)		- 1	- 1] -	- '			-	~	90.92	1.00
1		Well AG (Deep)	-	-		- 1	- ·	(– I	- '	-	- 1	· ~ ·	90.85	0.93
1	情報對於自己的	Well AH (Shallow)	+	- 1	-					-	-	~	90,45	0.53
	[新聞記》][新聞記》][A]	Well AH (Deep)			-	- 1	· -	-	- 1	- 1	- 1	~	90.71	0.79
1		Well AJ	-	-		-		- 1	-	-		. ~	91.40	1.48
	- 1971年1月	Well AL						-	-	~	-	.~	93.11	3.19
	· 深下: 学师 段韵	Well AM	=	=	=	=	±	=	= .	± 1	=	=	92,30	2.38
		Mean	92.99	3.07	92.60	2.68	. 92.60	2.68	92.31	2.39	91.87	1.95	91.40	1.48
	1998年1月21日日	Well K	91.36	1.44	90.98	1.06	\$0.84	0.92	91.90	1.98	90.12	0.20	NM	NM
		Well L	91.35	1.43	90.61	0.69	90.54	0.62	92.42	2.50	91.91	1.99	NM	NM
70 10 80	Vincentown	Well P	91.32	1.40	90.67	0.75	90.37	0.45	92.35	2.63	93.23	3.31	NM	NM
701080	Formation	Well Q	91.29	- 1.37	89.90	-0.02	91.08	1.16	91.51	1.59	91.18	1.26	. NM	NM
1		Well V	91.58	1.66	91.08	1.16	90.92	1.00	22.00	2.08	91.32	1.40	<u>NM</u>	MM
1 .		Mean	91.38	1.46	90.65	0.73	90.75	9.83	92.08	2.16	91.55	1.63	NM	NM

1 of 1

말고

Notes

Lithologic units correspond with those outlined on cross sections A-A' through E-E'. The shallow, water-bearing unit consists of the structural and hydrautic fill and the Lithologic units correspond with those outlined on cross sections A-A' through E-B.' The thallow, water-bearing unit consists of inverted depositions. The shallow, water-bearing unit's sequirated from the Vincentown Formation by the Kirkwood Formation. Monitoring will not installed at the time of the water level gauging event. Water level measurement not collected. For theory mound surface. Elevation (in feet) relative to plant datum. Feet above meass tak level (NAVD 1088). Mean tide level at Artificial Island is 0.11 feet (NAVD 1988).

--NM ft bygs ft rpd ft annsl

Table 08 - Water Levels

Table09. Summary of Field Observations - Aquifer Pumping Tests, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

Well ID	Date of Test	Test No.	Total Depth of Well (ft) ²	Depth to Static Water Level (ft) ²	Duration of Pumping Phase of Test (min)	Approximate Discharge Rates (gpm)	Duration of Discharge Rate (min)	Displacment at	Radius of well (in)	Volume of Well (gal) ³	Volume of Water Produced (gal)
AM ¹	2/4/2004	1	20.9	6.74	140	0.25 0.5	80 60	5.4 12.3	0.17	48.5	40
AM ¹	2/4/2004	2	20.9	7.5	62	0.33	62	9.1	0.17	45.9	18
S	2/2/2004	1	37.2	11.83	305	0.25	305	19.9	0.08	74.6	77
AC	2/4/2004	- 1	27	9.64	283	0.25 0.5 0.75	78 174 31	2.3 6.4 10.3	0.08	51.0	116
AJ ¹	2/2/2004	1	35.3	8.16	275	0.25 0.5	148 127	7.3 23.2	0.17	93.0	75
AI ¹	2/3/2004	1	22	10.63	315	0.25 0.5 0.75	80 175 60	3.3 6.6 11.6	0.17	38.9	145
AD	1/30/2004	1 .	45.5	10.44	331	0.25	205 126	8.6 17.0	0.25	148.1	85
AB	1/29/2004	1	44.5	11.1	304	0.25 0.5 1 2	60 70 94 80	1.5 3.3 6.2 16.0	0.08	98.2	280

Notes:

¹ Well not completed, top of well approximately at land surface.

² From measuring point, approximately 2.5 feet above land surface.

³ included volume of gravel pack

ft = feet

gal = gallons

Table 09 - Pumping Test - Field Observations

1 of 1

Table 10. Slug Test Results, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

Well Identification	Monitored Lithologic Unit ¹	Test Type	Hydraulic Conductivity Results (ft/day)	Hydraulic Conductivity Results (cm/s)
Well N	Engineered Fill	Falling Head	0.144	5.07 x 10 ⁻⁵
	(10 to 20 ft bgs)	Rising Head	0.0928	3.28 x 10 ⁻⁵
Well O	Engineered Fill	Falling Head	3.62	1.28 x 10 ⁻³
	(10 to 20 ft bgs)	Rising Head	4.26	1.50 x 10 ⁻³
Well U	Vincentown formation	Falling Head	2.95	1.04 x 10 ⁻³
	(70 to 80 ft bgs)	Rising Head	NA	NA

Notes	
1	Lithologic units correspond with those outlined on cross sections A-A' through E-E'.
ft/day	Feet per day.
cm/s	Centimeters per second.
ft bgs	Feet below ground surface.
NA	Data not available. Test not performed

Table 10 - Slug Test Results

		Pum	ping	Reco	very
Well ID	Date of Test	Transmissivity (ft ² /day)	Hydraulic Conductivity (ft/day)	Transmissivity (ft ² /day)	Hydraulic Conductivity (ft/day)
AM ¹	2/4/2004	1.403	0.14	0.572	0.06
AM ²	2/4/2004	1.079	0.11	0.338	0.03
S	2/2/2004	1.701	0.17	1.096	0.11
AC	2/4/2004	12.63	1.26	1.672	0.17
AJ	2/2/2004	1.73	0.09	0.56	0.03
AI	2/3/2004	7.97	0.80	2.101	0.21
AD	1/30/2004	0.942	0.09	0.937	0.09
AB	1/29/2004	27.67	2.77	22.69	2.27

Table 11. Summary of Aquifer Pumping Test Results, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

Notes:

¹ Results of the step drawdown test.

² Results of the constant rate test.

 $ft^2/day =$ square feet per day. ft/day - feet per day.

Table 11 - Pumping Test - Results

· · · · · · · · · · · · · · · · · · ·					·		•		
Well	Sample	Tritium	Major Catior	ns and Anions		Gamma-E	Emmitting Isotope	s (pCi/L)	·
Identification	Date	(pCi/L)	Boron (ug/L)	Sodium (mg/L)	Potassium-40	Radium-Natural	Thorium-232	Thorium-234	Uranium-235
К'	02/05/03	1,120	738	1,060	82.4	23.7	· <6.51	<50.4	4.90
K ²	02/05/03	1,070			·		- -		
к	02/12/03	506	557	727					
к	02/27/03	1,170	803	1,210	<20.4	9.24	<9.31	128	5.76
к	03/14/03	937	1,380	1,200			-	 ·	
К	03/18/03	875	1,190	1,060	·		-	-	÷ .
к	03/26/03	822	966	1,070			-		
к	03/31/03	677	1,150	1,190			. <u></u>		
к	04/09/03	1,010	1,290	1,290				÷ .	
К	04/17/03	1,170	1,160	1,370		·	1	· ·	÷
К	04/21/03	911		1,240	·		-	'	<u></u>
К	04/29/03	833		1,240		·		, ,	'
К	05/05/03	948	 ·	1,210			·	·	,
К	05/20/03	878	1,240	1,200	. '		· -		
Κ.	05/28/03	859	1,020	1,210	·		-	·	·
К	06/04/03	921	980	1,240					
к	06/10/03	897	1,260	1,260		 '	-		
К	06/17/03	894	1,040	1,220			- '		
к	06/24/03	783	1,080	1,250				-	
К	06/30/03	914	1,190	1,300	61.0	<1.31	<4.40	241	6.06
K	07/16/03	870	1,140	1,300	<13.6	6.24	<4.81	<59.6	8.23
ĸ	07/29/03	950	988	1,240	<18.1	<3.93	<6.81	166	5.57
К	08/12/03	845	1,130	1,190	57.4	<4.62	<3.61	132	5,82
К.	08/27/03	852	1,020	1,220	41.3	<2.15	<5.16	160	4.79
К	09/09/03	653	1,160	1,170	<21.4	<2.69	<6.02	<80.0	<5.50
.K	09/25/03	713	816	1,280	57.6	<3.13	<4.69	135	<4.87
К	10/06/03	880	1,150	1,250					
К	11/09/03	891	919	1,330	'				·

Notes:

2

ug/L. Micrograms per liter

mg/L Milligrams per liter

pCi/L Picocuries per liter

1,120 Constituent was detected above the laboratory method detection limit.

<20.4 Constituent was not detected above the laboratory detection limit.

-- Constituent not analyzed.

Grab groundwater sample collected during monitoring well installation.

Samples were re-analyzed to compare results.

r = r m

•	:						· · · ·		
Weil	Sample	Tritium	Major Catior	ns and Anions		Gamma-I	Emmitting Isotope	s (pCi/L)	
Identification	Date	(pCi/L)	Boron (ug/L)	. Sodium (mg/L)	Potassium-40	Radium-Natural	Thorium-232	Thorium-234	Uranium-235
,	·								
L	01/27/03	<151 .	533	1,900		·			
L	03/14/03	<143				 '	-	-	
Ľ	03/18/03	<143				. /		'	
L	03/26/03	· <141	· _		-				
L ·	04/02/03	<153	2,170	2,260	· ·		. .		·
Ĺ	04/08/03	<142			·	·	·	 · · ·	
Ľ.	04/15/03	<141		<u></u>			-	· . .	
· Ĺ	04/24/03	<139					< 	·	··
L	04/29/03	<141	-	'				-	
L	05/05/03	<134		. . .	·	-	-	- `	
. L .	05/15/03	<144	-	¹	·		· · · ·	·	·
L	05/20/03	<144					-	· -	- 1 a
	05/28/03	<141	. • 			 ·	¹		·
L	06/04/03	<140	· · · ·		-		. - .*		
• L	06/10/03	<137					. .		
L ·	06/17/03	<141		- '			. ¹ - 1	-	
L.	06/24/03	<141	1				·*		
L	06/30/03	<140	2,080	2,490	<95.3	<5.55	<19.1	447	12.3
L '	07/29/03	<141	1,860	. 2,360	· <9.99	6.47	<5.08	264	9.55
L·	08/27/03	<142	1,950	2,330				. . .	
Ľ	09/25/03	<140	1,620	2,490	.	-			-
L	12/16/03	·· <146	·		-	-		-	
M ¹	02/12/03	18,700	252	23.0	146	12.9	<13.3	<43.2	7.10
M	02/12/03	14,400	168	23.0	64.7	<2.84	<6.48	123	<1.22
M	03/03/03	9,420	163	26.6	62.7	<2.44	<4.54	<42.8	<2.90
M	03/10/03	15,000	234	23.6		-2.11	_	-	
M	03/17/03	10,600	207	22.2		. · ·			
M	03/24/03	10,100	171	26.3	-				
· M	03/31/03	11,000	161	23.1		·	-		
M M	03/31/03	9,260	101	23.1					
M	• 04/14/03	9,200 9,600	186	23.9			· · ·	-	
IM	04/14/03	9,000	100	23.3		-			
Notes:			4		· · · · .				

Notes:

---1

ug/L. Micrograms per liter Milligrams per liter mg/L

pCi/L Picocuries per liter

18,700 Constituent was detected above the laboratory method detection limit.

Constituent was not detected above the laboratory detection limit. <141

Constituent not analyzed.

Grab groundwater sample collected during monitoring well installation.

Well	Sample	Tritium	Maior Cation	is and Anions		Gamma-F	Emmitting Isotope	s (nCi/L)	
Identification	Date	(pCi/L)	. Boron (ug/L)	Sodium (mg/L)	Potassium-40	Radium-Natural	Thorium-232	Thorium-234	Uranium-235
.3		·				· · · ·	· · · · ·		· · · ·
M ³	04/21/03	8,880	. -	22.5		-	-	- '	
M ³	04/30/03	. 8,800	-	23.7			· -		
M ³ .	07/09/03	126,000	307	20.8	<23.7	43,9	<3.70	· <83.2	. <4.13
M,	07/23/03	113,000	234	22.0	78.1	<2.97	<7.30	<82.4	<4.52
Ń	08/06/03	73,200	242	21.9	53.1	16.1	<4.38	<38.9	. <2.88
М	08/20/03	62,000	274	22.5	48.1	<2.17	<4.08	169	<4.31
М	09/04/03	35,300	222	22.8	63.2	12.7	<4.48	178	<337
м	09/16/03	28,400	320	24.5	47.7	7.26	<3.97	<148	<412
М	10/03/03	25,400	266	25.0	49.0	11.8	<4.46	¹¹⁶	<479
М	10/20/03	16,380	· · .			·		.	<u></u>
М	12/04/03	9,010	 *·			_	-		
М	01/06/04	11,400		. – .	·		-		·
N ¹	01/30/03	69,000	339	14.3	<41.2	32	<5.25	<38.4	<3.37
N ²	01/30/03	58,400	370	14.4		-	 .		
N	02/10/03	15,600	276	10.6	-		·		
N	03/04/03	2,770	197	34.3	62.5	43.9	<7.23	<47.0	4.99
·' N	` 03/14/03	2,670	408	24.0			· -		
N	03/17/03	3,830	362	20.5		-			
N	03/25/03	3,480	238	18.1	·			· _	
N	04/04/03	3,560	210	19.6	-	-	·	-	
N	04/11/03	3,730	249	19.3		-		'	-
N	04/16/03	3,910	228	22.2		-	· -	· ••	
N	04/25/03	4,600		16.2		-			
N	04/30/03	9,370	. –	15.8			-		
N	05/06/03	9,830	-	19.8		~			
N	05/21/03	7,480	299	19.2	. –		-		-)
N	05/27/03	7,130	225	17.6			-		
N	06/04/03	5,480	233	20.0		-			
N .	06/11/03	4,990	304	19.8		-		-	

· <u>Notes:</u>

2

3

ug/L <u>Micrograms per liter</u>

mg/L Milligrams per liter pCi/L Picocuries per liter

pCi/L Picocur 18,700 Constitu

Constituent was detected above the laboratory method detection limit.
 Constituent was not detected above the laboratory detection limit.

<141 Constituent was not detected -- Constituent not analyzed.

-- Constituent not analyzed.

Grab groundwater sample collected during monitoring well installation.

Samples were re-analyzed to compare results.

Well M was replaced in May 2003 with a properly constructed Monitoring Well. Prior to this, Well M was installed as a temporary well constructed with mill-slotted steel

3 of 10

,									
Well	Sample	Tritium		ns and Anions			Emmitting Isotope		····
Identification	Date	(pCi/L)	Boron (ug/L)	Sodium (mg/L)	Potassium-40	Radium-Natural	Thorium-232	Thorium-234	Uranium-235
N	06/19/03	5,680	217	18.4		-	- .	· _	
N	06/25/03	5,060	268	17.1	 ·			·	
. N	07/10/03	5,020	268	17.5	<21.1	5.37	<4.48	<64.5	8.10
N	.07/25/03	5,220	217	19.6	<13.0	<2.38	<4.19	153	<4.52
N	08/07/03	5,110	210	23.5	· <15.4	14.7	<4.70	<93.5	11.0
N	08/20/03	5,850	247	20.4	<9.32	<2.41	<4.00	<160	<4.06
N	09/04/03	5,660	334	22.8	<16.1	<1.75	<4.54	<52.9	3.96
N	09/17/03	6,160	267	22.4	67.9	<2.51	<5.90	<57.1	<4.81
. N	10/03/03	5,740	240	24.0	<31.7	6.37	<3.87	166	<1:25
N	11/03/03	5,560	-	-		-		·	
N	12/12/03	6,010	- ·			·	-	j -	 .
N	01/20/04	6,460	-	·		-	- ·	-	
0 ¹	01/29/03	1,220	156	40.5	930	62.9	88.5	177	16.5
O ²	01/29/03	1,400	172	40.4	_				
0	02/10/03	10,300	97	13.2	-				
ŏ	02/21/03	.7,370	89	15.4	-				
õ	02/28/03	11,700	89	17.0	<14.8	9.12	<6.97	120	4.04
Ö.	03/04/03	8,800	71	20.8					
ŏ	03/13/03	12,300	108	15.5				,	· · ·
õ	03/17/03	11,000	83	11.9		· · ·			
õ	03/25/03	8,660	98	11.7	·				
· Õ ·	03/31/03	8,010	64	13.9		·			
Ő.	04/07/03	7,290	77	8.8		·			·
0	04/15/03	12,400	85	10.0					
° Õ	04/21/03	11,800		11.5			·		_
· Õ	04/29/03	10,500		12.3		·			
õ	05/06/03	10,200		11.2			<u>.</u>		
õ	05/21/03	11,100	108	10.3			·		·
ŏ	05/28/03	12,700	183	11.9				· 	
~	05/20/05	•-,, ••							

4 of 10

Table 12. Groundwater Analytical Results, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

Notes:

1

2

ug/L Micrograms per liter

Milligrams per liter mg/L Picocuries per liter

pCi/L 12,400

Constituent was detected above the laboratory method detection limit.

Constituent was not detected above the laboratory detection limit. <16.1 ----

Constituent not analyzed.

Grab groundwater sample collected during monitoring well installation.

Samples were re-analyzed to compare results.

Table 12 - Groundwater Analytical Results

Weil	Sample	Tritium	Major Cation	s and Anions		Gamma-F	mmitting Isotope	s (nCi/L)	
Identification	Date	(pCi/L)	Boron (ug/L)	Sodium (mg/L)	Potassium-40	Radium-Natural	Thorium-232	Thorium-234	Uranium-235
Tuesmijeunen		(P012)	20101 (1g. 2)	(
· 0.	06/08/03	12,200	140	13.5				-	
· · O·	06/10/03	12,800	183	14.3			- 1		·
0	06/17/03	10,300	204 ·	14.9		· ·			
0	06/24/03	13,400	252	14.7		'		 , .	'
Ο.	07/09/03	9,100	272	14.6	<21.2	<2.66	<6.62	<123	. <3.43
0	07/25/03	7,710	234	13.5	<37.8	6.34	<4.13	<199	3.95
0	08/06/03	8,300	240	14.4	39.2	10.8	<4.26	<148	<4,13
• • • •	08/20/03	7,440	305	13.9	<16.4	<2.58	<3.82	164	<4.31
O .	09/03/03	6,400	282	13.5	46.2	<2.58	<3.82	164	<4.31
0	09/15/03	5,110	270	12.9	<2.62	6.13	<6.96	58.2	<3.52
0	10/03/03	6,980	233	23.2	4.30	10.7	<3.55	<92.9	. <3.45
0	10/20/03	6,700	· 201	47.0	'	·			
0	12/18/03	7,060	 .			·	1	<u></u>	
P ¹ -	02/06/03	<153	-				'	-	-
P	02/21/03	<148	· ·					· * * *	·
Р	03/13/03	303	417	1,080		· - '		· - ·	
Р	03/18/03	465	199	699		 ,			
Ρ.	03/26/03	<143	336	· 698			·	·	·
P	04/03/03	<154	241	1,110			-		
Р	04/24/03	<139					·	-,	
Р	04/29/03	<144		· 				. –	·
· P	05/05/03	<134		 1 1				- ·	·
Р	05/20/03	<145	-					-	
Р	05/30/03	<142				· - ·	1		
Р	06/04/03	<141				·	- 1	-	
Р	06/10/03	<138					·]		
Р	06/17/03	<141						'	
P	06/24/03	<141				·		·	'
P	07/16/03	<141	485	1,580	60.7	<3.56	<5.04	127	3.46
Р	08/13/03	<140	480	1,570	47.5	3.21	<4.54	<1.98	. <4.34
Р	.09/09/03	<147	645	1,560	63.8	11.8	6.19	54.8	<5.02
Р	10/06/03	<143	481	1,610					
							·		

Notes:

ug/L Micrograms per liter

mg/L Milligrams per liter

pCi/L Picocuries per liter

303 Constituent was detected above the laboratory method detection limit.

<3.56 Constituent was not detected above the laboratory detection limit.

-- Constituent not analyzed.

Grab groundwater sample collected during monitoring well installation.

6 of 10

Table 12. Groundwater Analytical Results, PSEG Nuclear, LLC, Salem Generating Station, Hancock's Bridge, New Jersey.

Well	Sample	Tritium	Major Cation	ns and Anions		Gamma-I	Emmitting Isotope	es (pCi/L)	
Identification	Date	(pCi/L)	Boron (ug/L)	Sodium (mg/L)	Potassium-40	Radium-Natural	Thorium-232	Thorium-234	Uranium-235
· Q ·	. 03/14/03	<143		-	-	·	·	-	
Q	03/19/03	<143	-			1			-
Q	03/24/03	<143	-			-	·		-
· Q	04/23/03	<139	1 	. 				-	
Q	04/30/03	<142			·	· · · ·	-	· -	
· Q ·	05/06/03	<135			-	·		-	
Q	05/12/03	<144	-	· ·			- `	-] — .`
Q	· 05/19/03	<144	1-	·	مت			- · .	· -
. Q	05/30/03	<140		· —,	·	-		· -	-
Q ·	06/05/03	<139	- · ·	-		s., *	-	<u> </u>	-
Q.	06/11/03	<138	, 		·			·	-
· Q	06/16/03	· <141	- '				·	,	-
Q	06/23/03	<143	·	· . -		'			
Q	07/17/03	<141	340	2,100	151	<5.78	<13.9	<88.4	8.99
Q	08/13/03	<142	315	1,830	85.7	5.63	<4.09	<7.45	<3.06
Q	09/10/03	<148	247	1,790	86.8	30.2	<5.42	98.1	· 5.53 ·
Q	10/07/03	<144	331	1,920			· · · .		
Q	11/09/03	<142	317	1,930				·	
R ^{1.2}	02/26/03	13,900	288	42.6	258	15.0	<8.58	122	7.49
R ² .	03/03/03	7,490	229	37.3	80.5	7.37	· <8.73 ·	144	5.75
R ²	03/10/03	6,170	270	28.7	· · ·		<u>. </u>		
R ²	03/17/03	7,270	269	33.4		<u> </u>		-	
R ² .	03/25/03	6,810	248	32.4	·	_ '	· _ ·	- 1	
R ²	04/01/03	6,740	216	34.8	· _			· · ·	_
R ²	. 04/08/03	5,940	251	33.3	· _ ·				
R ²	04/14/03	5,890	255	33.4			_	·	
R ²	04/22/03	5,800		32.6		_			
R^2	04/22/03	5,260				-			
R	07/09/03	3,270	511	31.8 57.4	58.2	33.4	<4.73	<36.6	<3.18
ĸ	. 07/09/03	. 3,270	311	57.4	30.2	33.4	~4.73	~30.0	~3.18

Notes: úg/L

2.

Micrograms per liter mg/L Milligrams per liter

Picocuries per liter

pCi/L 6,740

'Constituent was detected above the laboratory method detection limit. <4.73

Constituent was not detected above the laboratory detection limit.

Constituent not analyzed.

Grab groundwater sample collected during monitoring well installation.

Well R was replaced in May 2003 with a properly constructed Monitoring Well. Prior to this, Well R was installed as a temporary well constructed with mill-slotted steel :

Well	Sample	Tritium	Major Cation	ns and Anions		Gamma-I	Emmitting Isotope	s (nCi/L)	
Identification	Date	(pCi/L)	Boron (ug/L)	Sodium (mg/L)	Potassium-40	Radium-Natural	Thorium-232	Thorium-234	Uranium-23
R	07/25/03	2,940	403	48.7	<14.2	<2.40	<4.91	226	<3.98
R	08/06/03	2,860	457	53.6	52.2	14.0	<4.29	112	<4.03
R	08/20/03	2,861	505	48.1	92.1	<2.46	<5.91	<78.0	<3.43
R -	09/04/03	2,987	567	45.6	<18.0	6.2	<4.20	<78.7	<2.61
R	09/17/03	. 2,797	472	49.6	59.3	5.8	<4.48	139	<4.35
R	10/03/03	2,740	402	51.8	61.6	11.8	<4.51	<49.7	<2.92
R	10/21/03	2,650	-	· –	- <u></u> - 1	<u> </u>			
R	12/05/03	2,550	367	49.9	·	-		-	
S	07/09/03	3,530,000	57,400	67.0	<19.4	52.0	<5.06	<50.6	<9.62
· S ²	07/09/03	3,450,000			·				
S	08/07/03	2,920,000			·*		<u> </u>	-	
S	08/21/03	2,570,000	· · · ·		<u> </u>	· · · ·		·	
s	09/03/03	2,390,000	<u> </u>	·	-	· _	·	_	
s /	09/15/03	2,340,000	-					-	
s	10/04/03	2,180,000	·		_		· ·		
s	10/13/03	2,030,000	-					-	 `
S	10/20/03	2,060,000	· <u>·</u>		_			_	·
S	11/09/03	1,960,000	-		·		·]	-	
S	11/26/03	2,660,000		_					
S	01/20/04	1,420,000	. –			-	·	-	·
Т	07/10/03	<147	680	1,040	51.0	87.7	<4.67	111	<1.53
Т	07/15/03	<140	645	1,150	63.4	43.2	<7.56	<114	<3.85
Т	07/30/03	<141	601	969	72.3	<3.41	<4.49	<49.8	<3.33
Т	08/12/03	<140	637	- 931	59.7	3.67	<4.38	<91.2	<3.01
Ť	08/28/03	<141	660	896	73.3	11.4	.<4.31	121	6.17
T ·	09/09/03	<147	633	899	75.5	18.7	<4.40	184	<3.61
Ť	09/25/03	<142	633	912	<3.94	7.35	<5.87	<68.3	<5.08
Т	10/06/03	<146	650	966		-			
Т	12/12/03	<149	·		·		'	-	

Notes:

2

ug/L <u>Micrograms per liter</u>

mg/L Milligrams per liter

pCi/L Picocuries per liter

680 Constituent was detected above the laboratory method detection limit.

<3.41 Constituent was not detected above the laboratory detection limit.

· Constituent not analyzed.

Samples were re-analyzed to compare results.

						<u> </u>		•	
Well	Sample	·Tritium	Major Catior	s and Anions		Gamma-H	Emmitting Isotope	s (pCi/L)	
Identification	Date	(pCi/L)	Boron (ug/L)	Sodium (mg/L)	Potassium-40	Radium-Natural	Thorium-232	Thorium-234	Uranium-235
<u>.</u>						. <u> </u>	·····		
U	07/10/03	<136	389	178	88.4	13.6	<7.18	<48.6	<4.55
U	07/16/03	146	380	175	77.4	14.5	<4.56	<35.2	<4.01
U	07/29/03	· <141	421	146	53.2	<3.09	<4.05	153	<3.90
, U	08/12/03	<139	341	. 139	64.6	<2.13	<4.65	201	<1.16
U	08/27/03	<143	347	144	<43.3	4.20	<4.55	<136	<3.62
U	09/09/03	148	. 376		<36.8	<3.97	<4.60	107	5.30
U	09/25/03	<139	335	155	· <23.3	<1.79	<4.58	<46.9	<3.59
, ∙U .	10/06/03	203	354	: 140	· ·	-	-	···	
Ū	12/12/03	<148	-		·	1		· - ·	· -
. v	07/21/03	334	489	609	43.0	<1.86	<4.01	<5.68	<2.78
v	07/29/03	285	431	592	47.4	<3.26	<4.71	164	<4.63
v	08/12/03	278	495	568	39.0	.<1.60	<3.95	<143	<2.47
v .	08/27/03	338	607	584	<16.8	<1.81	<3.97	<53.3	< 3.21
v	09/09/03	337	571	582	<15.7	<4.35	<4.06	116	5.23
v	09/25/03	261	472	670	<43.5	·<1.79	<4.30	· 171	4.65
v	10/06/03	185	463	543				· – · ·	
· V .	11/19/03	· 549	 .'			-		- ·	,
V ·	12/12/03	207	-	· 		-	. '		-
. w .	07/07/03	10,500	490	220	<15.9	9.51	<3.36	98.2	<4.56
W ·	07/21/03	11,100	491	227	67.7	<1.73	<3.11	<59.0	<2.65
w	[·] 08/06/03	11,500	464	211	74.2	<2.78	<7.46	<94.1	. <4.62
• w	08/07/03	6,010				-	·		
: w	08/19/03	7,660	591	215	60.1	<2.43	<5.86	<135	<5.29
w	09/03/03	8,110	533	222	<45.1	<1.76	<3.82	111	5.80
W	09/15/03	8,710	566	237	55.2	<2.43	<4.33	158 .	<1:23
w	10/03/03	. 11,100	455	240	<68.1	<3.82	<6.46	<51.9	<5.91
w	10/21/03	8,260		'		- 1	- 1	·	
w	11/17/03	12,200	'	· · - · ·			 ,• • • •	. ·	
w	11/19/03	13,200	· · _ ·	K 1			*	. - .	- '
w	12/16/03	15,500					-	· <u>-</u> ·	
W	01/14/04	11,400				-	-		-

<u>Notes:</u> mg/L

Milligrams per liter pCi/L Picocuries per liter

10,500 Constituent was detected above the laboratory method detection limit.

<148 Constituent was not detected above the laboratory detection limit.

Constituent not analyzed.

Table 12 - Groundwater Analytical Results

Well	Sample	Ťritium	Major Catio	ns and Anions		Gamma-E	mmitting Isotope	s (pCi/L)	
Identification	Date	(pCi/L)	Boron (ug/L)	Sodium (mg/L)	Potassium-40	Radium-Natural	Thorium-232	Thorium-234	Uranium-235
Y	10/27/03	<142						<u> </u>	
Y	11/09/03	<143		·					
Y	11/19/03	<3,750					·	. - .	
Y	11/25/03	<141	822	1,070	·			· ••	
Y	12/12/03	<148		·			·		
·Y	12/22/03	<147				1 - 1 <u>-</u>			
Z	10/27/03	573					-		·
Z	11/09/03	<140		· •	'	· - ·		<u></u>	1
Z	11/19/03	729						<u> </u>	- 1
Z	11/24/03	583	498	519					
Z	12/12/03	621			· ·			-	
Z	12/22/03	659	- -		· · · ·		-	-	
AA	10/27/03	613				·			
AA	11/10/03	645	·	. · -					.
AA	11/19/03	734							
AA	11/24/03	639	247 -	253	·	[
AA .	12/10/03·	· 785		 .	17 June -				
AA	12/22/03	682	•	· _				'	
AA	01/06/04	713	-			· ·	 .	·	
AB	10/28/03	292,000		,			-	. 	
AB	11/02/03	280,000				· _			
AB	11/19/03	321,000			 /	· ·			· · ·
AB	12/04/03	409,000			·		_	<u> </u>	
AB .	12/16/03	396,000	,	·	·	·		- · · -	
AB	01/14/03	281,000							

Notes: mg/L

Milligrams per liter pCi/L Picocuries per liter

613

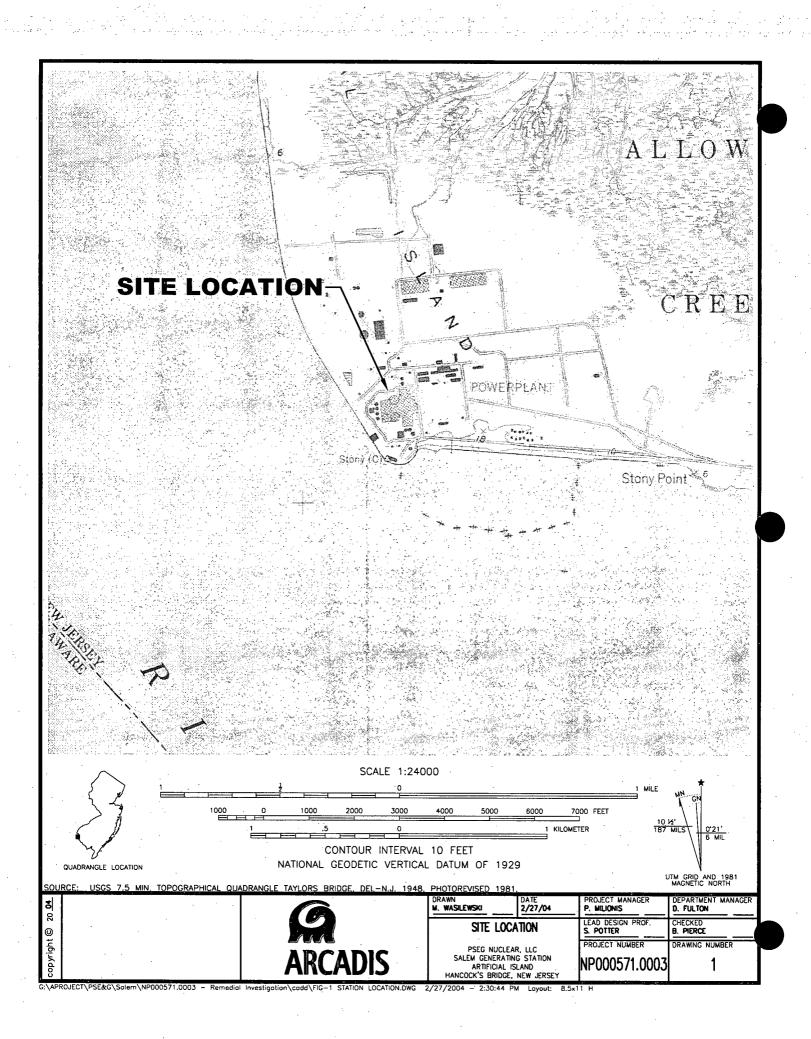
Constituent was detected above the laboratory method detection limit. <140 Constituent was not detected above the laboratory detection limit.

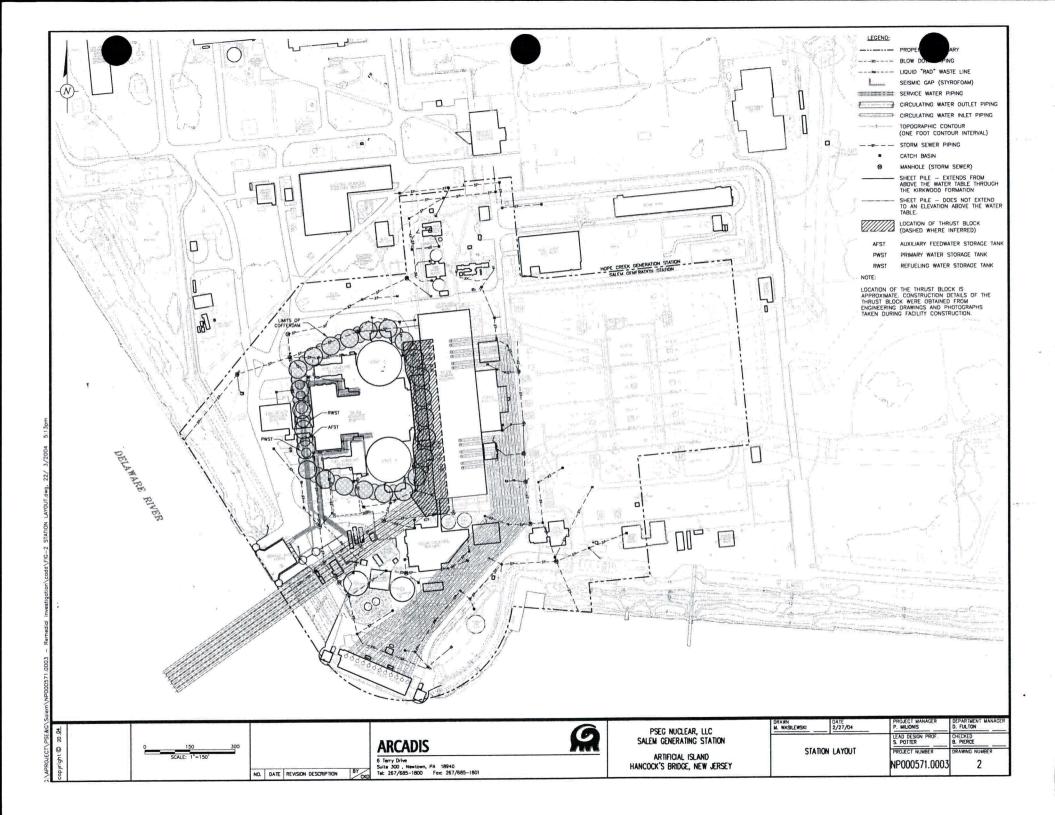
Constituent not analyzed.

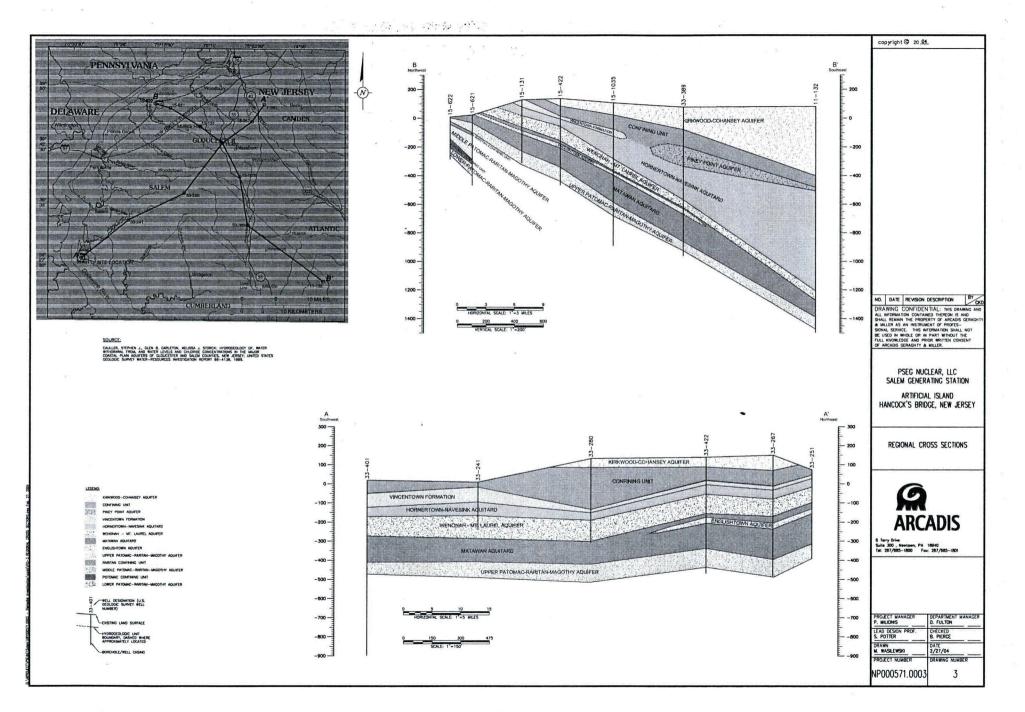
9 of 10

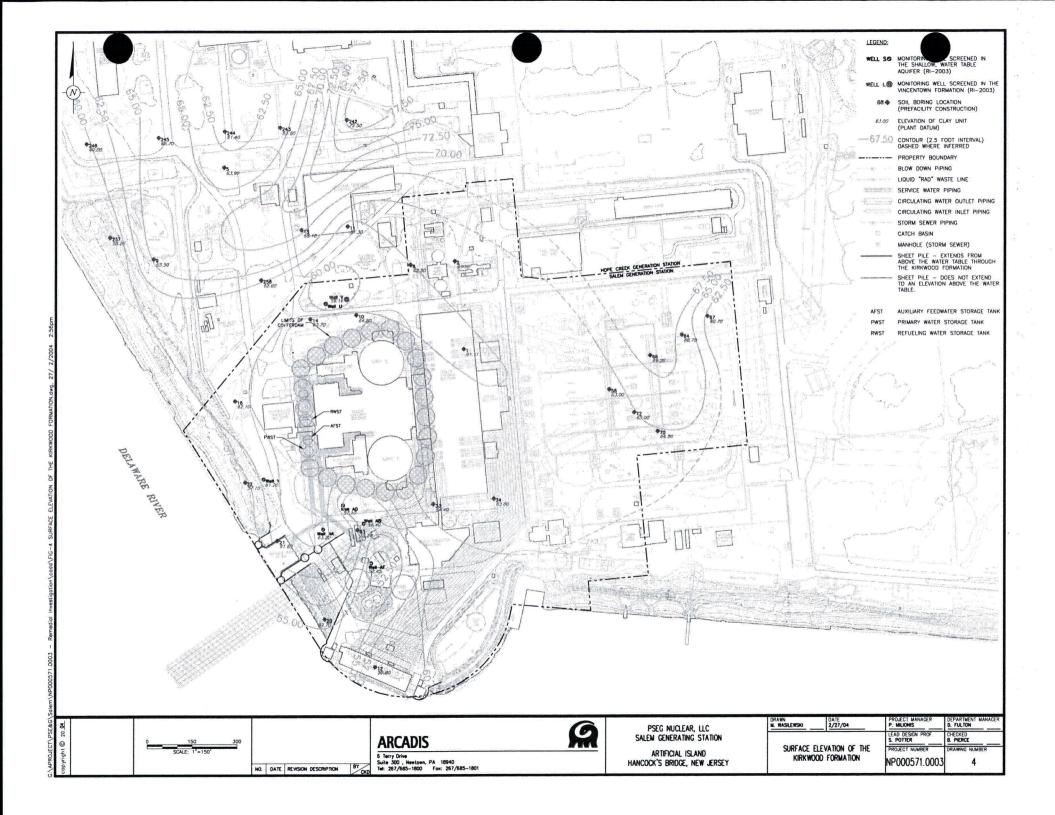
	· · · · · · · · · · · · · · · · · · ·		·	··					
Well	Sample	Tritium	. Major Catior	ns and Anions		Gamma-E	Emmitting Isotope	s (pCi/L)	
Identification	Date	(pCi/L)	Boron (ug/L)	Sodium (mg/L)	Potassium-40	Radium-Natural	Thorium-232	Thorium-234	Uranium-235
AC	10/28/03	10,900,000	253,000	30.8			-	-	
AC ·	11/03/03	14,200,000	332,000	30.4	·	_	<u> </u>	<u> </u>	-
AC	11/18/03	14,200,000		50.4			· · · ·	_	
AC	12/18/03	15,000,000							
AC	01/20/04	10,700,000			-	-		,	:
AC	• 01/20/04	10,700,000	-		-				
AD ·	· 10/27/03 ·	244,000			<u>_</u>	_ `	'		·
AD	11/02/03	242,000		. ·	: <u>-</u>	 ·	 ·		
AD	11/17/03	225,000	· _ 1		·			· ·	· ·
AD	12/04/03	392,000		<u> </u>	_		· ,		·
AD	12/16/03	487,000							·
AD .	01/14/04	220,000	_			_	_		
AE	10/27/03	5,990	· - · ·	· `	-	-	. 	-	·
AE	· 11/02/03 ·	5,710			'	·	-	·]	
AE	11/19/03	6,910	234	14.2	-	·	·	·	:
AE	12/04/03.	6,310	·	-					
AE .	12/18/03	16,100	· · -		-		· ·		
AE	01/14/04	· 12,600			-			·	· ·
·	10/07/03	(142	200						·
AF AF	10/27/03	<142 242	380	227	-				
AF	11/10/03	330							
AF	11/10/03	256				· - · ·	- 1	-	·
AF	11/24/03	230	429	545		-		-	· ·
AF	12/10/03	343		343		I			
AF '	12/22/03	302	-						_
<u>, , , , , , , , , , , , , , , , , , , </u>	12/22/03							-	

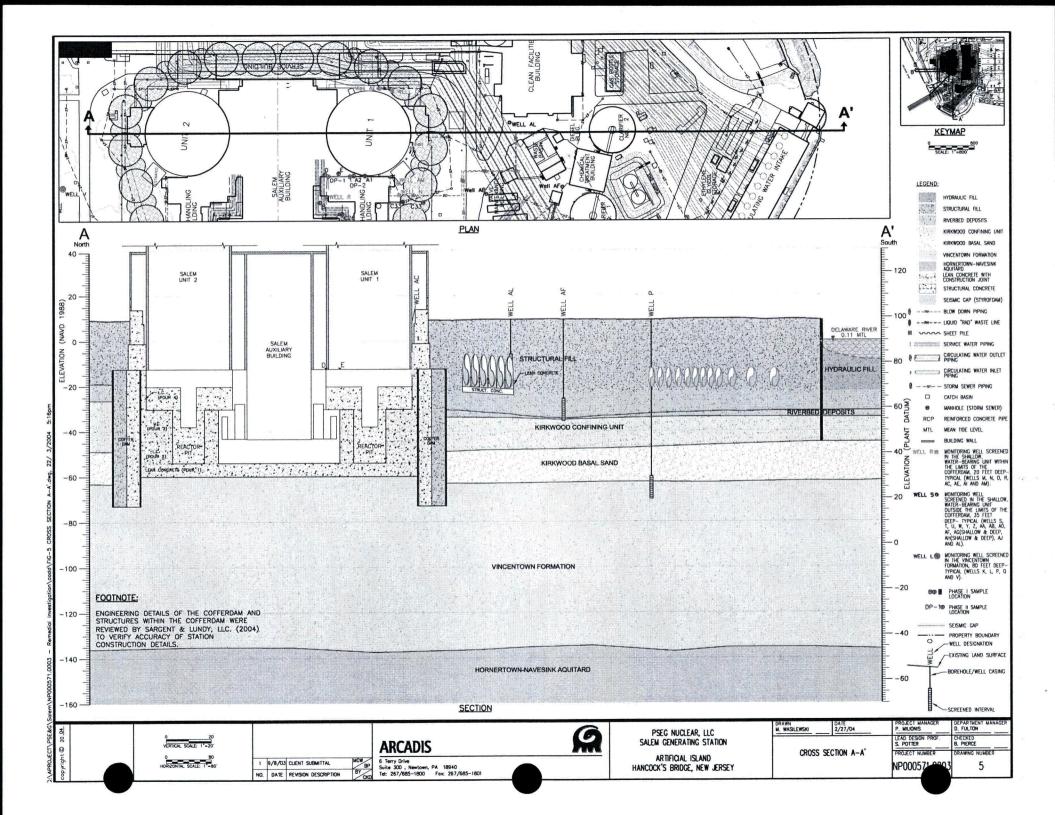
Notes:

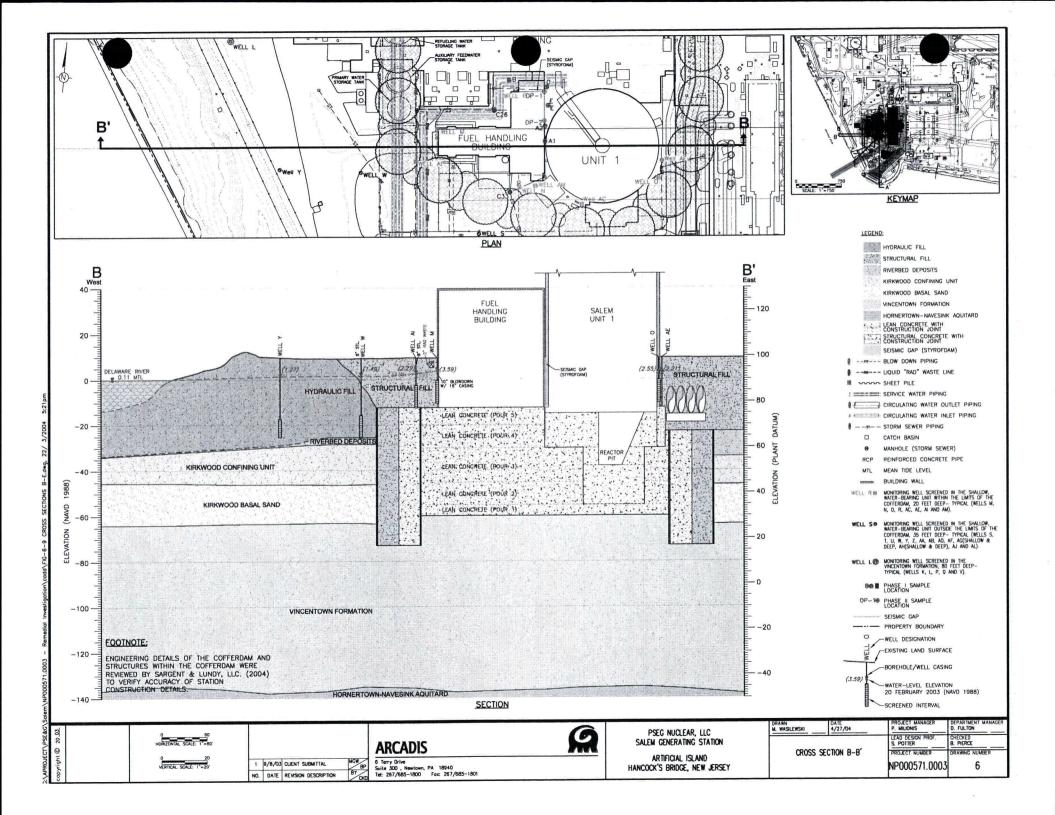

mg/L Milligrams per liter

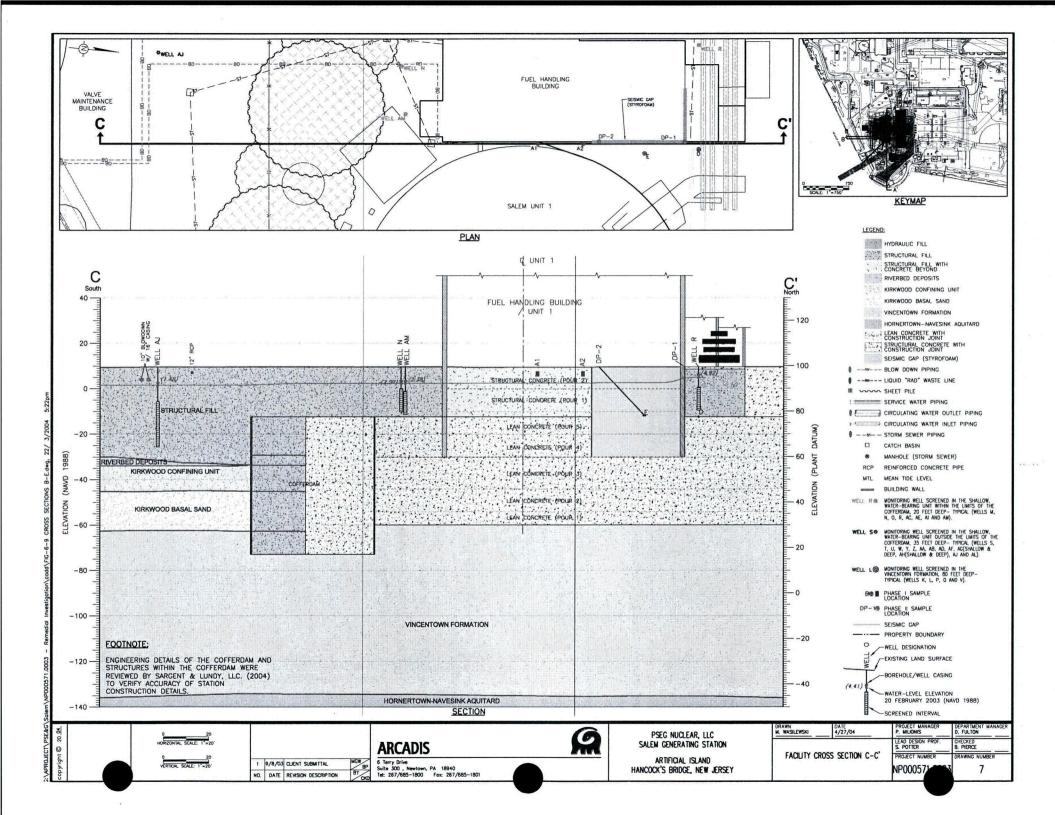

pCi/L Picocuries per liter

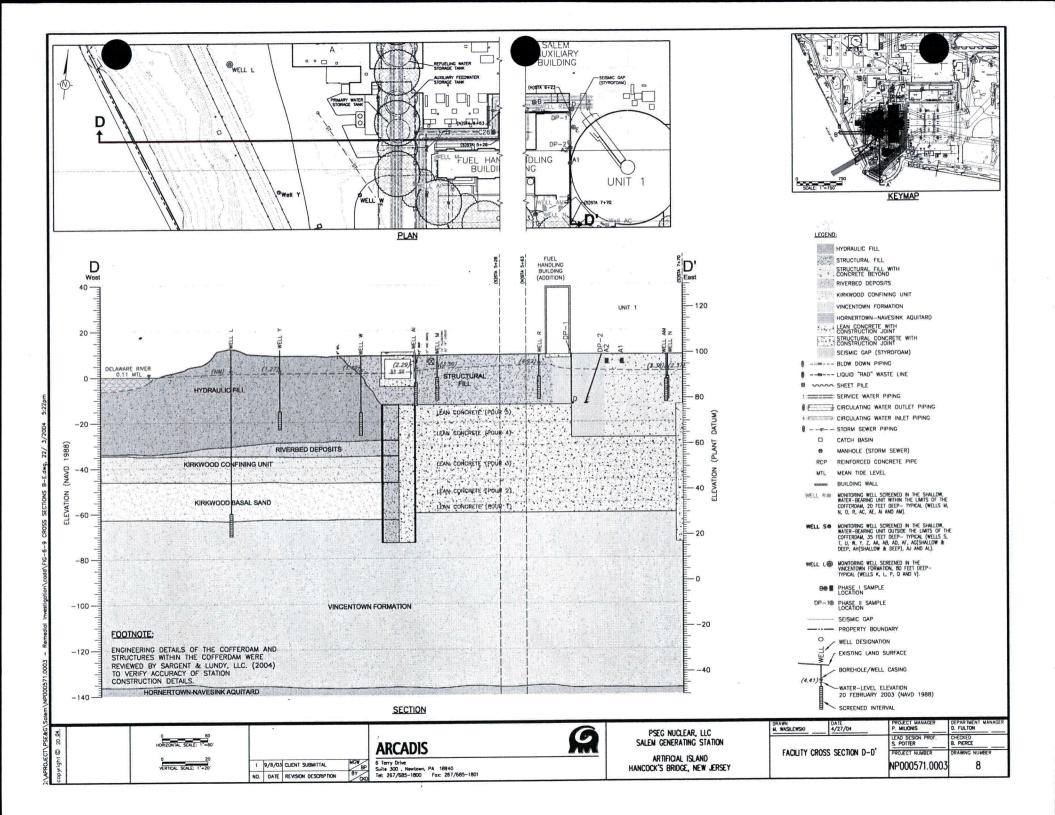

242 Constituent was detected above the laboratory method detection limit.

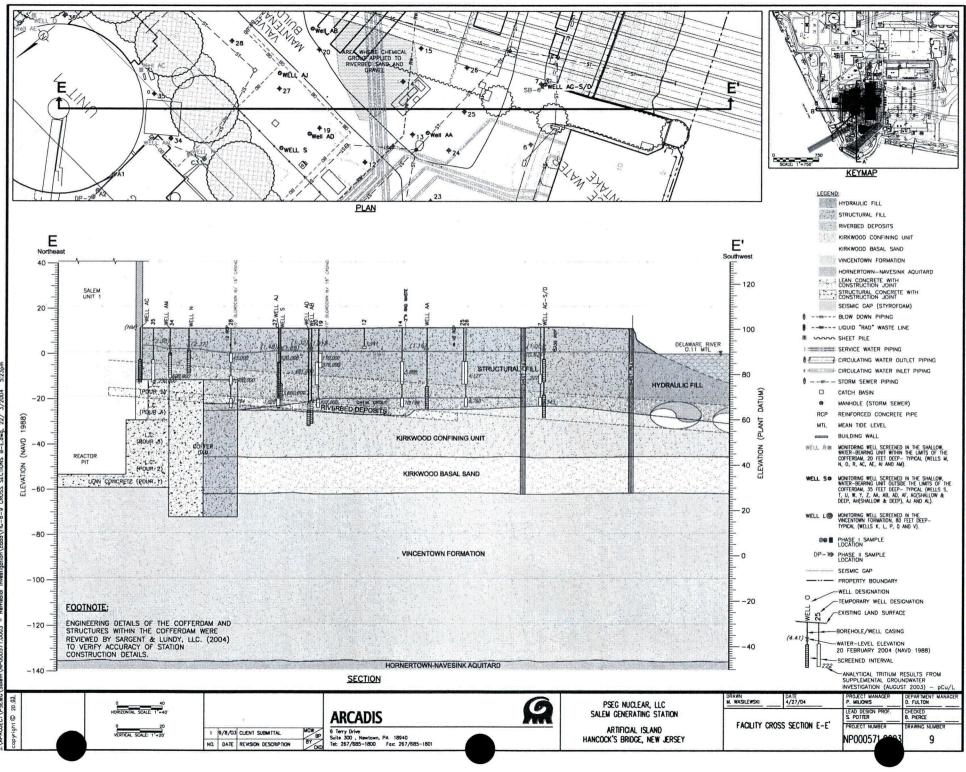

- <142 . Consti
- Constituent was not detected above the laboratory detection limit. Constituent not analyzed.

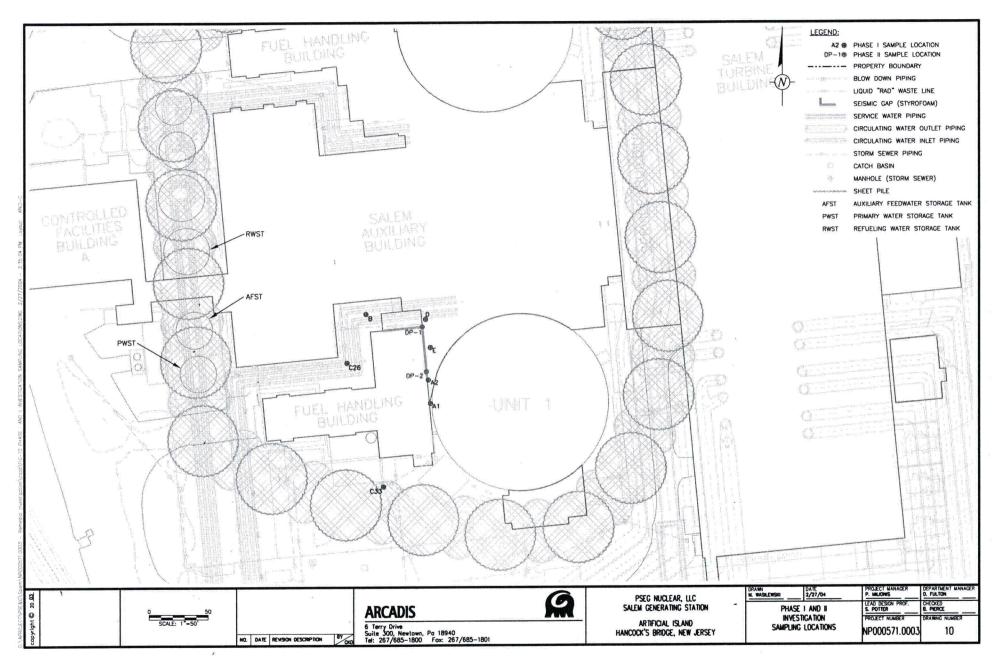

Table 12 - Groundwater Analytical Results



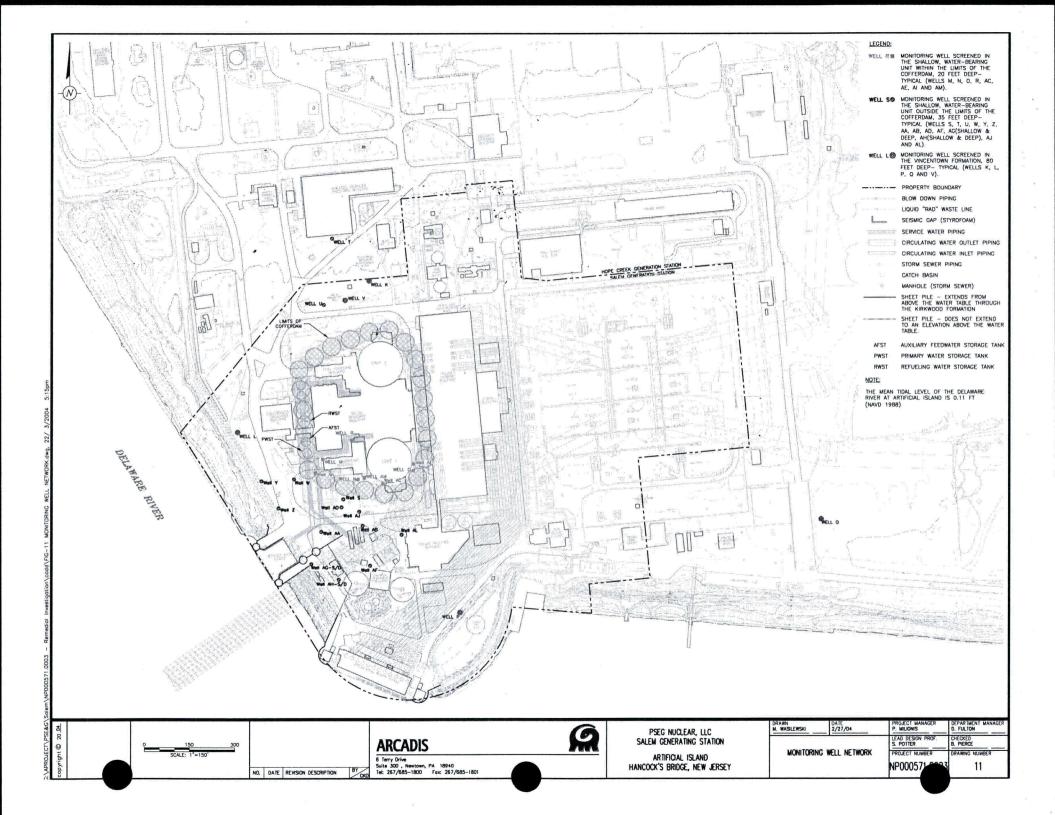


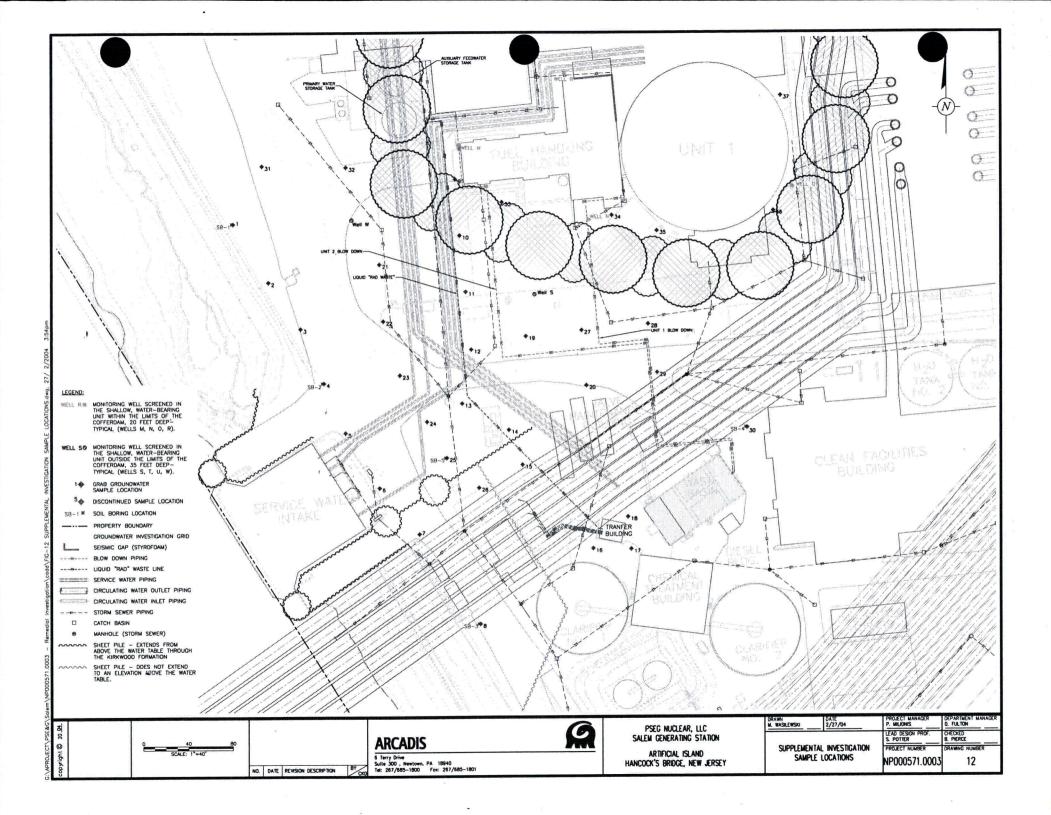




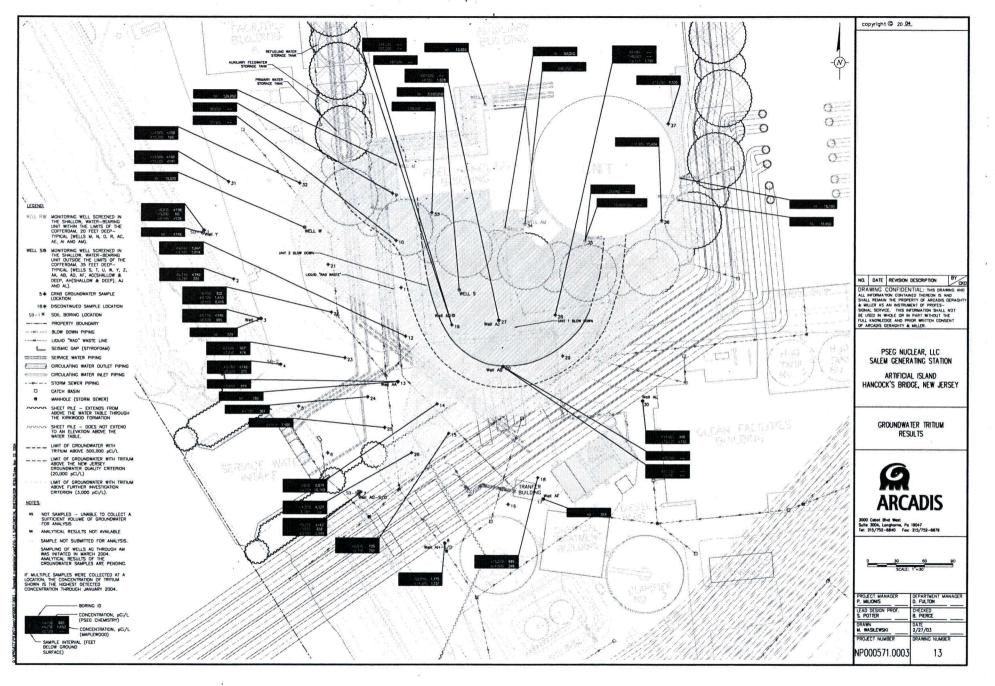


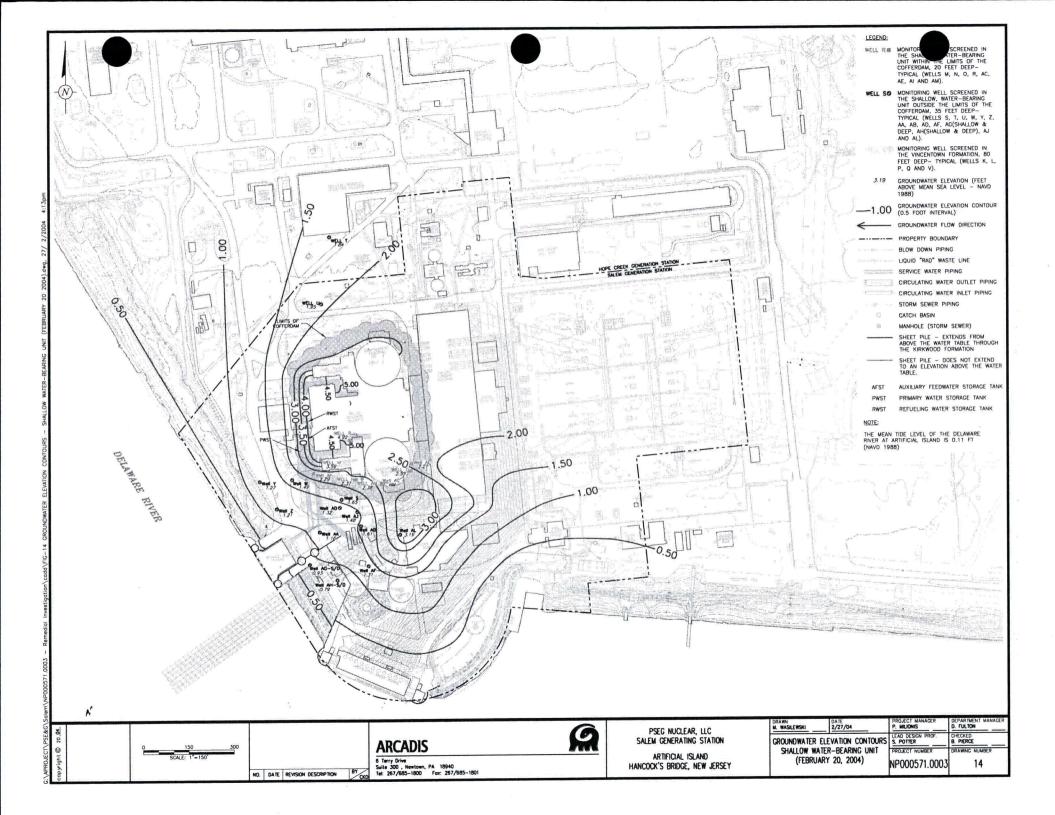
::\APROJECT\PSE&C\Salem\NP000571.0003 - Remetial Investigation\cadd\FG-6-9

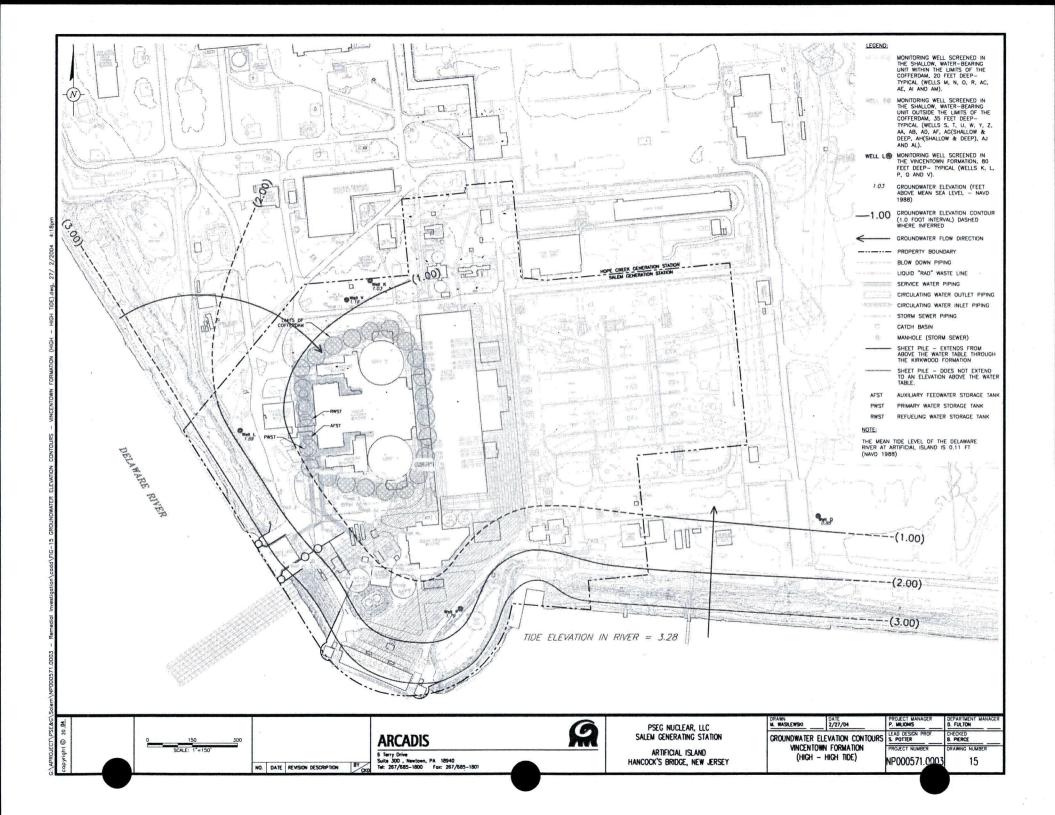


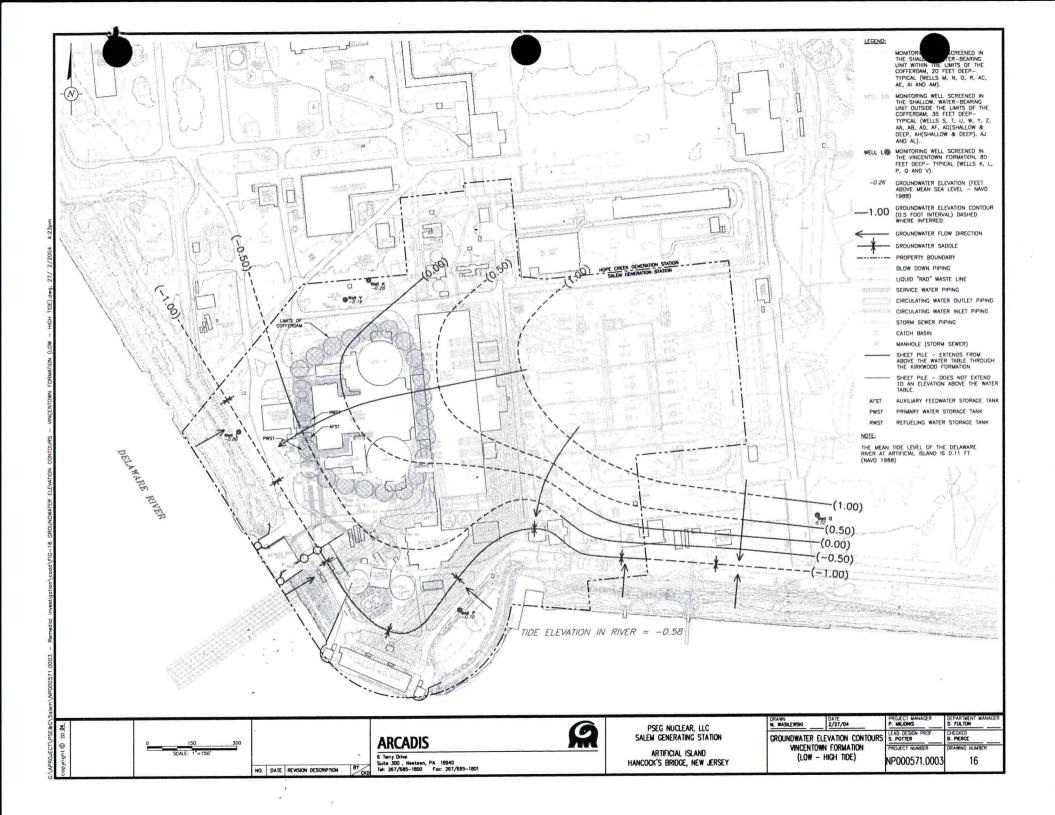

~

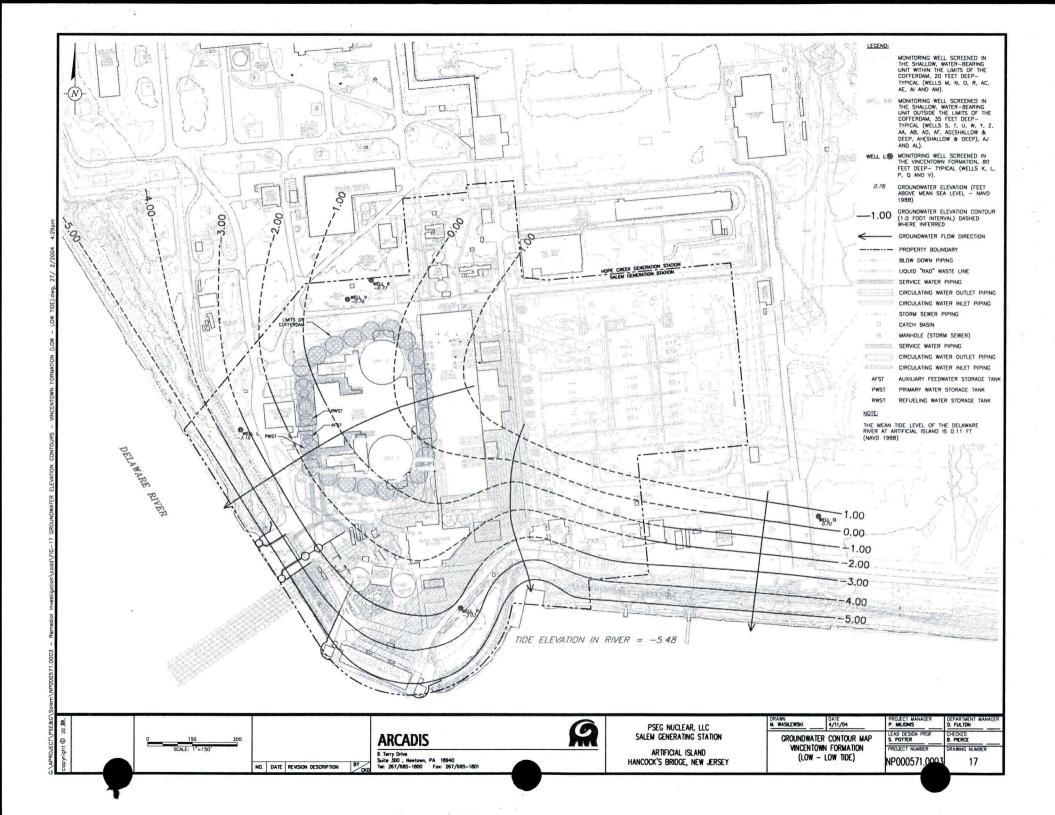
. i

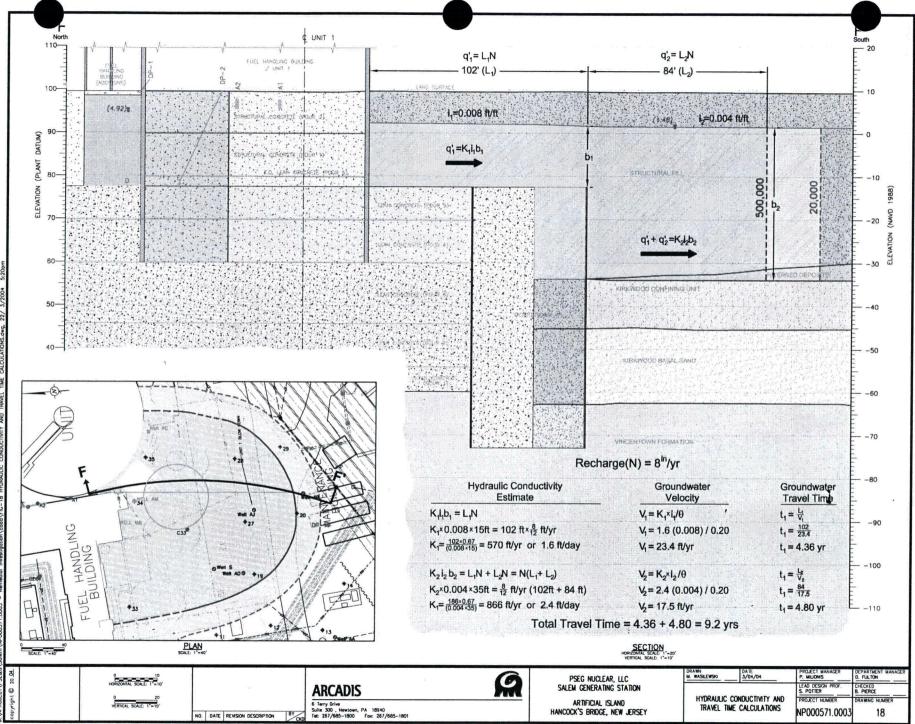

11

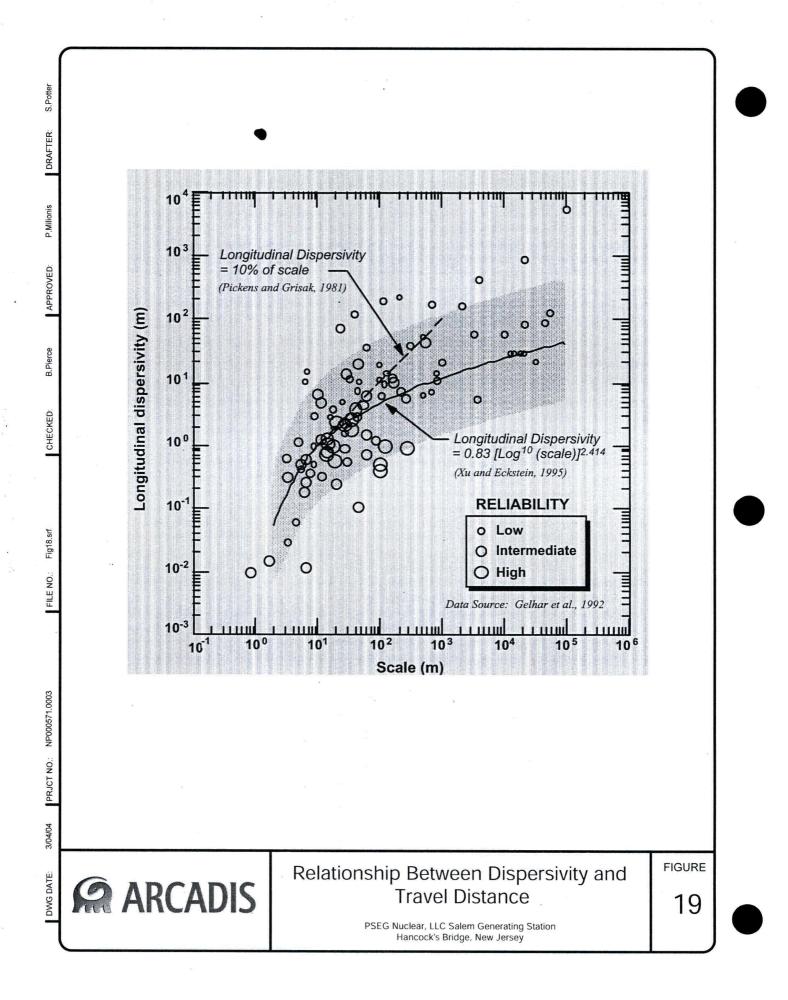







and the second second





Appendix A

.. •

·. -

Investigations of Salem Unit 1 Fuel Pool Leakage – Final Report Summary

INVESTIGATIONS OF SALEM UNIT 1 FUEL POOL LEAKAGE

FINAL REPORT SUMMARY

FEBRUARY 23, 2004

PSEG NUCLEAR LLC RADIATION PROTECTION/CHEMISTRY SUPPORT P.O. BOX 236 HANCOCKS BRIDGE, NEW JERSEY 08038

ABSTRACT

On September 18, 2002 radioactive contamination in the 78-Foot Mechanical Penetration Room in the Unit 1 Auxiliary Building had characteristics of Spent Fuel Pool (SFP) water. Preliminary conclusions from sample results during the initial Phase I investigations prompted an extensive investigation to characterize the source of activity and leakage paths. This evaluation documents the pathway for leakage from the SFP to the liner surrounding the SFP; blockage in the telltale drains; seepage through construction joints in the liner into the Styrofoam Seismic Gap between the Auxiliary Building and the Fuel Handling Building. The seepage is confirmed by monitoring the 78-Foot Mechanical Penetration Room wall, the Spent Fuel Pool cooling line at the interface between the Auxiliary and Fuel Handling Building, the water stop (boot) at the penetration between the Auxiliary Building and the Fuel Handling Building, and two drill points in the Styrofoam. The testing results indicate that build-up of SFP water behind the liner has been ongoing for at least five years on the basis of cesium activity ratios, and that water from the sampling points is consistent with boron and tritium levels in the Unit 1 Spent Fuel Pool. The telltale drains were snaked on January 29, 2003 and following days. Water then freely drained from the telltales, thereby reducing both the amount of water and the time that SFP water stayed in the leakage collection system (i.e. the space between the liner and the concrete enclosure). Water from the telltales (after snaking) drained at about 100 gpd and had characteristics that more closely resembled SFP water with less indication of interactions with the concrete enclosure. By February 7th, "cleared" telltales had reduced the hydraulic pressure and effectively stopped the seepage around the Auxillary and Fuel Handling Building. In February 2003, 45 gallons of water were pumped from Drill Pont No. 1, thereby significantly reducing the amount of water in the Styrofoam Seismic Gap. Further investigation during 2003 indicated that the composition of the water that migrated back into the gap was most likely a mixture of SFP water (3%) that had migrated beyond the gap and groundwater (97%). Again, boron and tritium confirm the link to the SFP, whereas cesium and cobalt activity are at very low or non-detectable levels because of interactions with concrete and soil surfaces. Water from the SFP continues to drain through the telltales at the rate of about 130 gpd (as of January 29th 2004). Most of the water drips through Telltale No. 2 with tritium levels that reflect the changes in the SFP tritium (50% increase during 2003). Cesium activity ratios in the telltales do not change in response to introduction of SFP demineralizers, again reflecting the strong role that concrete surfaces play in controlling cesium levels.

Background for Investigation

The Spent Fuel Pool (hereafter referred to as SFP) liner drains (telltale drains) are a leakage detection system designed to collect water from the SFP that migrates through the stainless steel liner into the concrete enclosure surrounding the SFP. Work orders, interim reports and discussions with Salem personnel have indicated that the Unit 1 telltale drains have performed this function since early in the operation of the plant. At some unknown point in the past, chemical deposits (originally assumed to be boric acid- now shown to be a mix of boric acid and other crystals such as calcium carbonate) began to interfere with the drainage system. The space between the stainless steel liner and concrete enclosure of the SFP began to collect water with characteristics of the SFP. On September 18, 2002, Radiation Protection reported the detection of low-level radioactivity on several technicians' shoes. Investigations indicated a "calcium-like" substance adhering to the west wall in the 78-Foot Mechanical Penetration Room had measurable radionuclide contamination (Notification No. 20114071). These deposits were removed and an active flow of water into the room was then noted. Phase I investigations indicted that the leak had characteristics of Spent Fuel Pool water (see Table 1) and more samples were collected to characterize the source of activity and possible leakage paths. Another leak was subsequently discovered around the Unit 1 Spent Fuel Pool cooling line return on the 92-Foot Elevation (relative to a plant surface elevation of 100 feet). This leak was separated into the return line at the interface between the Auxiliary Building and Fuel Handling Building and the water stop (boot) at the penetration between the Auxiliary Building and the Fuel Handling Building. The following sample points were routinely monitored for radioactivity and compared with activity in the SFP and the telltale drains:

- A drip bag was constructed on the 78-Foot Mechanical Penetration Room wall to collect water. This is the "Drip Bag" sample.
- A catch tray with a sample tube was placed under the Spent Fuel Pool cooling line at the interface between the Auxiliary and Fuel Handling Building on December 17, 2002. This sample was designated as the "Short" sample because of the length of the sample line.
- A sample tube was inserted in the water stop (boot) located at the penetration between the Auxiliary Building and the Fuel Handling Building. This sample was designated as the "Long" sample because of the length of the sample line.
- Two drill points (Drill Point No. 1 and Drill Point No. 2) were inserted into the Styrofoam between the Auxiliary Building and the Fuel Handling Building (often referred to as the Seismic Gap).
- Water that accumulated between the Unit 1 Containment and the Auxiliary Building (1BD41).

Because of low flow from the leakage collection system of about 6 gallons/day (as well as other factors), the telltale drains were snaked on January 29 and following days. Water then freely drained from the telltales, thereby reducing both the amount of water and the time that SFP water stayed in the leakage collection system. Water from the telltales (after snaking) drained at about 100 gpd and had characteristics that more closely resembled SFP water with less indication of interactions with the concrete enclosure. Fiber optic examinations of the telltale drains on January 31st showed blockage in No. 4 and 5 drains beneath the welds, creating a dam effect. The probe inserted beyond this point indicated chemical deposits (originally assumed to be boric acid

crystals) had formed. Flow from leakage of the SS liner was forced between the liner plate and concrete providing water to other channels. Rather than draining out, the blockage diverted the water along the space between the SS liner and the concrete, eventually seeping out at the 78-Foot Elevation in the Mechanical Penetration Room. Water also seeped out of the gap where the Spent Fuel Pool cooling return line intersects the wall at the 92-Foot Elevation. Over time, the water apparently migrated and reached the void space between the Auxiliary Building and Containment. *Figure 4* shows these locations.

By February 7, 2003, "cleared" telltales had reduced the hydraulic pressure in the leakage collection system and samples from the Drip Bag, "Short," and "Long" sample points could not be obtained because the flow had stopped (or nearly so). Minor amounts of water could be obtained from the sampling points at infrequent intervals in 2003. In February 2003, 45 gallons of water were pumped from Drill Point No. 1, thereby significantly reducing the amount of water in the Styrofoam Seismic Gap. Some water migrated back into the gap and samples were collected when sufficient water was present or about every two months). All radionuclide characteristics from the sampling program waters supported the scenario described above.

Summary of Evaluation Methodology

Characteristics of SFP Water

Radioactive water from the SFP of a PWR (Pressurized Water Reactor) will contain approximately constant levels of boron, tritium, cesium, and cobalt activities (subject to radioactive decay). To detect and quantify leakage from the Spent Fuel Pool, the results are interpreted using the assumptions that the Spent Fuel Pool water typically contains a distinctive radionuclide fingerprint and that interaction with solid surfaces (e.g. concrete) can alter the activity levels dramatically:

- Boron at approximately 2300 ppm and tritium at 0.2 μCi/mL (increasing during 2003 to 0.3 μCi/mL see Figure 1, Tables 1 and 5). These two tracers are relatively inert and typically migrate with minimal reactivity to concrete or soil (termed "conservative" behavior in the literature).
- Cesium-134 (¹³⁴Cs has a 2.062 year half-life) and ¹³⁷Cs (30.17 year half-life) activity in the SFP results from refueling operations and leaching from rods stored in the pool. The activity levels and ratio can change during the course of a fuel cycle. Demineralizers effectively remove cesium from the SFP and change the activity by more than a factor of ten (see Figure 1). Because of difference in half-lives but similar chemical behavior the ratio of cesium activity can provide some qualitative measure of the approximate timing of any release and migration of SFP water. However, cesium interacts strongly with both concrete and soil to retard the migration away from the SFP (i.e. most of the cesium remains sorbed on the concrete enclosure of the SFP. This strong interaction with soil and concrete surfaces also complicates the straightforward use of cesium activity ratios.

• Cobalt Activity: ⁵⁸Co (70.80 day half-life) and ⁶⁰Co (5.271 year half-life) will have a characteristic activity ratio after refueling operations that will drop rapidly as the ⁵⁸Co decays.

Cobalt also interacts strongly with soil and concrete with typically a lower mobility than cesium.

• The presence of short-lived radionuclides such as ¹³¹I (a nuclide that does not adsorb to solid surfaces) would be indicative of rapid transport of SFP water from pool to sample point. Only during an October 21,2002 fuel movement (Mode 6) were any shorter-lived radionuclides (i.e., ¹³¹I) detected.

Although assumed to have a constant radionuclide inventory, activity levels in the SFP do change in response to the use of a mixed-bed resin demineralizer (to reduce radioactive cations and anions in the SFP water) and to operational events such as refueling. After an interval of time, the levels return to an approximately "steady state" condition (where production and removal rates are equivalent and levels remain constant). However, water analyzed many years after migration from the SFP (or other source) may be difficult to trace to a particular event because of non-unique activity ratios and chemical interactions with concrete and soil. Both cesium and cobalt activity levels (relative to tritium or boron) from SFP leakage will be different than activity in the Spent Fuel Pool because of these chemical and physical interactions (plus decay of short-lived cesium and cobalt). Activity ratios of a given element (i.e., cesium or cobalt) may provide an indication of the age of the leak and/or the extent of the interaction with solid surfaces because of the very different half-lives of the two isotopes. As seen in Tables 1 and 2, the cesium and cobalt activity ratios are much lower for the sampling points vs. the SFP and strongly point to both age of the leak and chemical/physical interactions with the surrounding concrete and soil. Because demineralizers reduce all reactive cations (and anions) in the SFP water, any measurable cation concentration (such as sodium) could indicate introduction of groundwater and/or leaching of sodium from the concrete. Boron and tritium levels showed a "qualitative" inverse relationship with sodium (higher sodium in some samples- e.g. 1BD41- that have lower tritium) that may indicate mixing with groundwater, although the correlation is far from exact.

Conclusions from Radionuclide Evaluation

The results from the radionuclide investigations produce the following conclusions about the leakage collection system (telltale drains). This system was designed to collect and drain the water that migrated through the stainless steel liner of the SFP. All available reports and data indicated that the Unit 1 telltale drains had performed this function since early in the operation of the plant. At some unknown point in the past, the precipitation of chemical deposits (originally assumed to be boric acid; calcium carbonate has also been detected) began to interfere with the drainage system. The space between the stainless steel liner and concrete enclosure of the SFP began to collect SFP water. In October 2002, a number of seepage points appeared in the Auxiliary Building and were collected for radionuclide analysis. They indicated that water from the leakage collection system had seeped/migrated to several sampling sites (see Figure 4 for locations and background investigation for description). Table I summarized the average results for samples collected for the Phase II investigation (prior to snaking of the telltales drains) (Figures 5 through 10 graph the time series of the data and discussion of the individual sampling points follows this section). The following major conclusions result from the Phase II samples in January 2003 (prior to snaking):

- The samples from the Spent Fuel Pool telltale drains, the 78-Foot Elevation Drip Bag, and the water in the Styrofoam between the Fuel Handling Building and the Auxiliary Building had common isotopic characteristics. Boron and tritium levels are equivalent to SFP water (90 to 100% of SFP level). Sodium was between 2 and 15 ppm indicating minimal groundwater input and/or leaching of structural material. Cesium and cobalt absolute activities were more than a factor of five lower than the SFP (8 to 20% of SFP) and the activity ratios were indicative of extensive interaction with the concrete and structural materials.
- The samples from the canal telltale drains and the water stop (boot) located at the penetration between the Auxiliary Building and the Fuel Handling Building ("Long" sample) had common characteristics. Boron and tritium were at 60% to 70% of SFP water; elevated sodium suggested that groundwater mixed with these two sources (although the potential pathway for groundwater ingress was unclear). The canal telltales and "Long" sample also had very low ⁶⁰Co activity, suggesting a strong interaction with structural materials or soil.
- Water in the space between the Unit 1 Containment and the Auxiliary Building (1BD41 sample) had characteristics of Spent Fuel Pool water that left the pool more than five-years ago and was subject to extensive interaction with structural materials. Cesium-137 activity is nearly 70 times lower than SFP and cobalt activity is at or near ND (non-detectable) levels. Higher sodium with some chloride indicated a groundwater component and/or interaction with solid surfaces. Most likely, SFP water had migrated from the leakage collection system over time through a six-inch gap between buildings and mixed with groundwater (70% SFP-30% groundwater) (although the pathway is not clear).
 - The whole question surrounding the seepage of groundwater into the various sampling points is problematic. The pathways are not defined but average water table elevations are about 5 feet bgs (95 feet plant datum) vs. sampling points between 78 and 92 feet (plant datum). Thus for most of the past twenty years there has been a hydrostatic head driving water through cracks and construction joints into the Auxiliary and Fuel Handling Building. In the absence of any radionuclide contamination, this small amount of water that seeps into the building would not be noticed (most or all would evaporate rather than pool). The presence of sodium in a sample does not automatically "fingerprint" groundwater as the source of the sodium. If sodium and chloride are not "balanced" and the levels of tritium and boron are near or at SFP values (e.g. Drip Bag samples), then most likely the sodium has been released from leaching of the concrete/structural materials. On the other hand if tritium and boron are at some % of SFP values (e.g. Canal Telltales and 78' Long –Table 1) and sodium is elevated, then the sodium may come from seepage of groundwater into the facility or mixing with periodic precipitation and structural concrete. A complete structural analysis of potential seepage paths is not required for analysis of the source of the SFP water.
- Iodine-131 in selected samples was related to Mode 6 operation (part of 1R15 refueling) during October 2002. ¹³¹I leached from rods stored in the fuel racks during the refueling operations. This water, containing ¹³¹I, leaked and mixed with existing water (¹³¹I-free) in the space between the SS liner and the concrete enclosure of the SFP. Cesium activity ratios for

the sampling points reflect water that has interacted with the concrete as opposed to "zeroage" SFP water. The ¹³¹I activity suggests a relatively rapid migration of small amounts of SFP water to the sampling points. Iodine-131 activity has not been detected in samples after January 2003, supporting the link to the refueling operation and not some other leakage path.

TABLE 1: AVERAGE COMPOSITION AND ACTIVITY LEVELS DURI	ING STABLE
PERIODS FOR PHASE II SAMPLE POINTS (January 2003)	

	AVERAGE RESULT DURING STABLE PERIODS							
Constituent	1 SFP	Pool Telltales*	Canal Telltales*	78 "Short"	Drip Bag	78 "Long"	Drill Points	1BD41
Na, ppm		6.2	122	2.8	14.7	26.8	6.02	59.7
Cl, ppm	0.0012			0.09	0.52	10.6	0.41	· 12.1
Iron, ppm				0.03	0.10	0.47	5.15	0.04
Boron, ppm	2316	2257	1465	2292	2605	1365	2119	1208
H-3	1.93E-01	1.78E-01	. 1.31E-01	1:91E-01	1.81E-01	1.18E-01	1.88E-01	1.19E-01
H-3 Ratio to SFP		92%	68%	99%	94%	61%	97%	62%
¹³¹ I, Mode 6**	5.96E-04	4.25E-04	ND	4.24E-04	4.05E-04	3.12E-04	3.84E-04	1.28E-04
¹³⁴ Cs	2.18E-03	5.34E-05	5.11E-05	3.01E-04	5.84E-05	8.62E-05	4.01E-05	6.22E-06
¹³⁷ Cs	2.17E-03	1.67E-04	1.87E-04	4.52E-04	1.73E-04	2.02E-04	1.31E-04	3.06E-05
137Cs Ratio to SFP		7.7%	8.6%	20.8%	8.0%	9.3%	6.0%	1.4%
⁵⁴ Mn	4.10E-05	2.38E-06	ND	9.07E-06	1.39E-06	1.87E-06	1.22E-06	ND
⁵⁸ Co, Mode 6**	8.02E-03	2.46E-05	2.72E-05	9.00E-04	ND	1.05E-04	8.43E-07	ND
⁶⁰ Co	9.82E-04	5.88E-05	8.06E-06	2.12E-04	3.56E-07	2.86E-05	1.02E-06	9.99E-08
¹²⁵ Sb	1.07E-05	2.59E-05	2.12E-06	9.40E-06	ND	3.62E-06	1.82E-06	ND
¹³⁴ Cs/ ¹³⁷ Cs	1.02	0.33	0.22	0.67	0.34	0.42	0.31	0.20
⁵⁸ Co/ ⁶⁰ Co	8.27	0.83	2.74	4.21	0.0	3.59	0.53	-

ND = Not detected in samples analyzed.

Units for concentrations of radionuclides are presented in microcuries per milliliter (?Ci/mL)

*Before snaking telltale drains.

**Shorter-lived activities were decay-corrected to October 21, 2002 22:42 when Mode 6 (fuel movement) was established.

"Snaking " of the Telltale Drains

Because of low flow from the leakage collection system (as well as other factors), the telltale drains were snaked on January 29 and following days. Fiber optic inspection confirmed that the drains had been generally cleared. Water then freely drained from the telltales, thereby reducing both the amount of water and the time that SFP water stayed in the leakage collection system. Water from the telltales (after snaking) drained at about 100 gpd and this rate has continued to the present, as measured by the building sump pump (February, 2004). Most of the water (about 500 ml/min) drained through Telltale No.2. By February 7, 2003, "cleared" telltales had reduced the hydraulic pressure and samples from the Drip Bag, "Short," and "Long" sample points could not be obtained at regular intervals because the flow had stopped (or nearly so). The results obtained during 2003 (after snaking) are summarized in Table 2:

After the "snaking" operation, the telltale (TT) samples closely resembled the SFP water (see time series in Figures 1 and 2). In boron and tritium, the match is almost exact, reflecting the fact that neither constituent reacts with the concrete materials in the SFP. Cesium-137 activity was 75% of SFP at No. 1 TT and 16% at No. 8 TT; the cesium activity ratios (0.89 - 0.64) and the ⁶⁰Co activity (64% to 2%) also decrease in a similar fashion reflecting an increase in flow path and time for chemical interactions from No. 1 TT to No. 8 TT.

Water from the SFP continues to drain through the telltales at the rate of about 130 gpd (as of January 29th 2004). Most of the water drips through No. 2 TT and has tritium levels that reflect the changes in the SFP during 2003 (from 0.2 μ Ci/ml to 0.3 μ Ci/ml). Cesium ratios in the telltales did not change dramatically in response to introduction of SFP demineralizers in October 2003, again reflecting the strong role that concrete surfaces play in controlling cesium levels. Figure 2 does show a consistent drop in Cesium-137 activity for Telltale No.2 during 2003 as the cesium on the surface of the concrete exchanges with low cesium in the demineralized SFP water to "buffer" the activity level.

After "snaking of the telltales", sampling points outside the concrete enclosure had a lower overall yield as well as a lower contribution of water from the leakage collection system. Tritium dropped to 14% (of SFP) at BD41 to 31% at the Drip Bag (Table 2). The tritium level in the Styrofoam Seismic Gap dropped to 3% of SFP levels from about 70% prior to "snaking" the drains. The low tritium level at Drill Point No. 1 resulted from inflow of groundwater or precipitation into the Seismic Gap, driven by the change in hydrostatic head when water was pumped from the Seismic Gap. Cesium-activity levels were 2 to 8% of SFP (with the exception of a single Drip Bag sample that was not replicated). Cesium activity ratios were comparable to pre-snaking ratios and reflect long-term interaction with the concrete enclosure of the SFP. Cobalt activity is at or near non-detectable (ND) and <1% of SFP because of strong adsorption to structural material.

• The interpretation and results from the individual sampling locations during 2002 and 2003 are presented in the sections that follow and are used to support the above conclusions. The time series is typically divided into "pre and post – snaking", pre and post refueling operation.

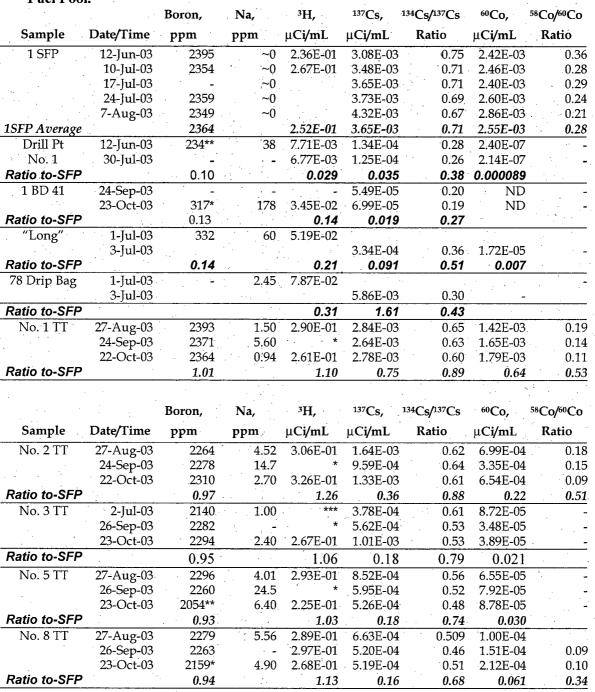
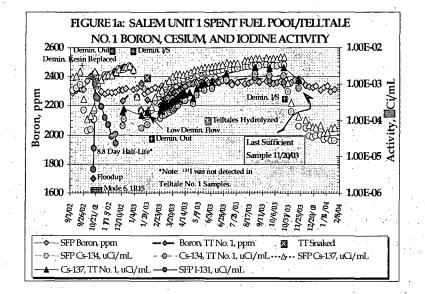
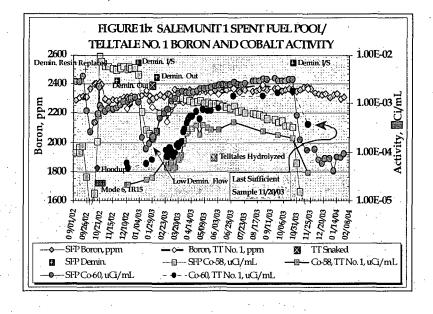
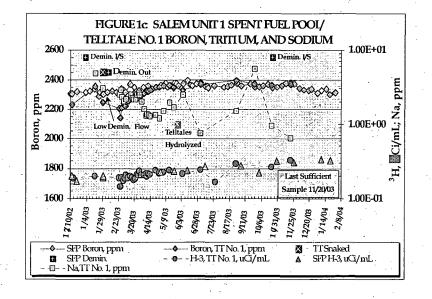


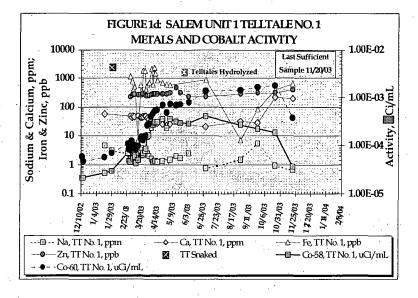
 Table 2. Activity in Selected Samples (Averages after Snaking) Ratios to Unit 1 Spent

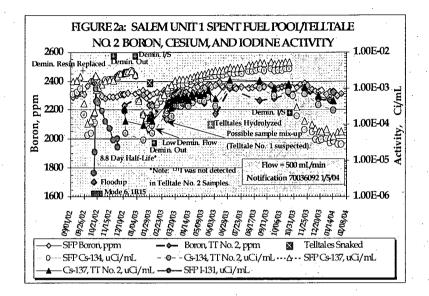
 Fuel Pool.

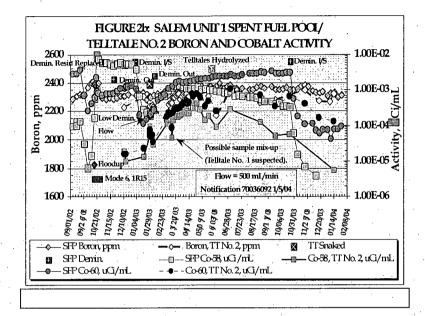

* Suspect Value

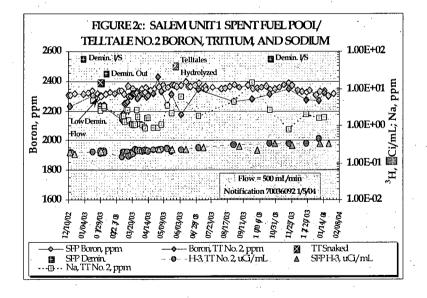

**Re-analysis

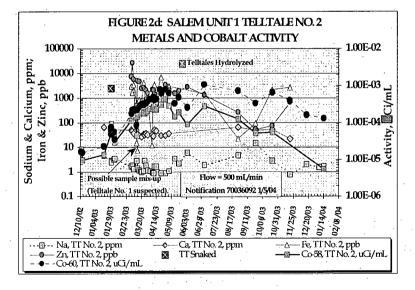

***Insufficient sample

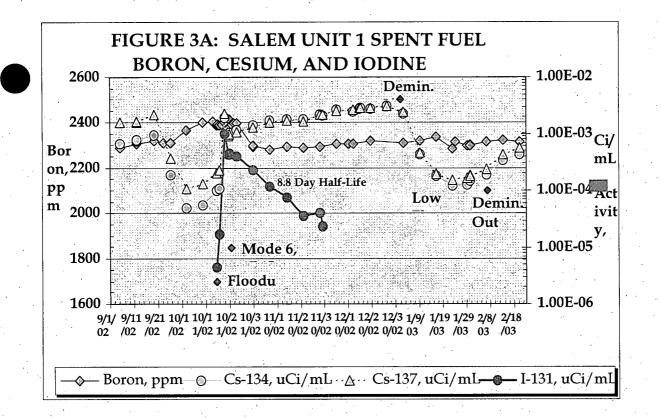


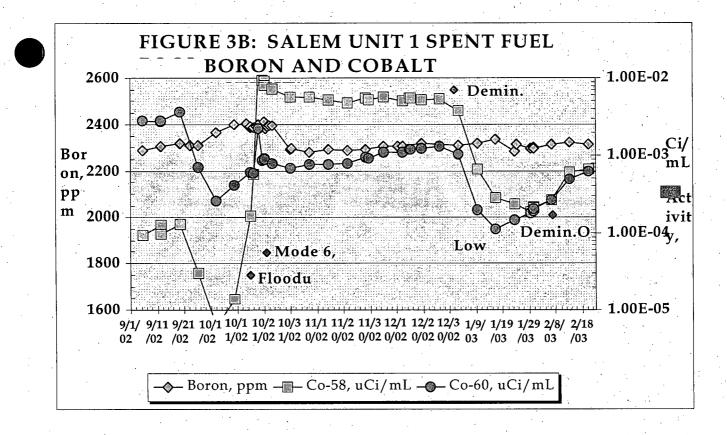












Time Series of Individual Sampling Locations

SALEM UNIT 1 SPENT FUEL POOL - (Recent History)

Salem performs weekly boron and gamma isotopic analyses and monthly impurity (e.g., chloride, fluoride, and sulfate) analyses of the Spent Fuel Pool water. The normal sample point is the Spent Fuel Pump discharge pressure tap and is representative of water re-circulated in the Spent Fuel Pool through the unit's heat exchanger (note that water beneath the fuel racks could be relatively stagnant and only mix with the rest of the SFP by thermal convection). Figures 3A and 3B show historic boron levels in the Salem Spent Fuel Pools based on routine analyses. Salem Unit 1 prepared for a scheduled refueling outage in October 2002. Salem Chemistry personnel have noticed a faint "bathtub" ring of white crystals at the wall interface of the pool surface that suggests decreasing water level and deposition of trace levels of boric acid. Boron levels in the Unit 1 Spent Fuel Pool decreased prior to the refueling outage ; the result of a combination of evaporation, leakage of SFP water through the SS liner and makeup with de-mineralized (boron-free) water. Mass balance calculations are not sufficiently sensitive to estimate leakage rates because the evaporation term is a number of times greater than the leakage rate through the SS liner (which by October 2002 had slowed considerably (< 10gpd) as the water level in the concrete enclosure reached the level of the SFP, thereby eliminating the hydrostatic driving force).

Salem Unit 1 entered Mode 3 for 1R15 (refueling operation) on October 10, 2002. The cavity was flooded on October 15th and Mode 6 was established on October 21st. During refueling, the water in the canal is connected to the Spent Fuel Pool when the gate is open, but recirculation between the Spent Fuel Pool and the canal is limited. The significance of flooding was that reactor coolant was mixed with refueling water and activity levels in the Spent Fuel Pool increased.

Iodine-131 and ⁵⁸Co activity reported after October 21st was decayed-corrected to October 21st when Mode 6 was established to enable comparisons of isotopes with different halflives. Iodine-131 was not detected in the bulk Spent Fuel Pool water after November 29th (Figure 3A); sample size and the counting interval were not optimized to detect ¹³¹I prior to the recent investigation. The average decay-corrected level of ¹³¹I was 5.96 x 10⁻⁴ μ Ci/mL. Several samples (see Table 3) detected ¹³¹I activity after October 21, suggesting a relatively short pathway from the SFP to sampling points such as the Styrofoam Seismic Gap.

The Spent Fuel Pool de-mineralizer was placed in service January 1, 2003. Activity levels decreased by approximately a factor of ten as the resin effectively reduced radioactive cesium and cobalt (Figures 3A and 3B). Antimony-125 could now be detected because spectral interferences were reduced. Cobalt and cesium activities had begun to increase because of low flow in the demineralizer and continued to increase after removal of the demineralizer on February 6th. Prior to placing the demineralizer in service, the average ¹³⁴Cs/¹³⁷Cs activity ratio was 1.02, whereas the average decay-corrected (to Mode 6 on October 21, 2002) ⁵⁸Co/⁶⁰Co activity ratio was 8.27. After the demineralizer was placed in service, the cesium activity ratio decreased from 1.02 to 0.80 and the cobalt activity ratio decreased from a decay-corrected value of approximately 8.27 to

2.9. This is explained by isotopic equilibration with accumulated cesium on the demineralizer resin and differences in removal efficiency for ⁵⁸Co relative to ⁶⁰Co with the purification media used in the demineralizer vessel.

On January 30, 2003 special sampling techniques were used to safely sample water underneath the fuel racks in the Unit 1 Spent Fuel Pool and water at the bottom of the canal. For comparison a separate sample was collected near the surface of the Spent Fuel Pool. These sample results are summarized in Table 3 and provide important conclusions:

- Water in the Unit 1 Spent Fuel Pool at the normal sampling point, near the pool surface, and beneath the fuel racks was homogeneous with little temperature gradient.
- The special sample analysis results do not indicate that a difference exists in the water chemistry beneath the fuel racks and the circulating water; after the demineralizer was placed in service January 1, 2003, the pool water was homogeneous by January 30th.
- The special sampling did not establish that ¹³¹I levels were higher in the bottom of the pool prior to placing the demineralizer in service. With an 8.04 day half-life, insufficient ¹³¹I activity remained by January 30th to provide confirmation.
- The demineralizers were taken out of service in late January 2003. Cesium and cobalt activity levels gradually increased throughout 2003 (Figure 1). Tritium also showed a slight increase throughout 2003. Cesium and cobalt activity dropped again when the de-mineralizers were placed into service in late October 2003.

In conclusion, activity in the Unit 1 Spent Fuel Pool increased during refueling operations as expected and decreased when the demineralizer was placed in service on January 1, 2003. The expectation is that samples from leakage paths from the Spent Fuel Pool would eventually show decreasing activity levels and changing activity ratios, providing a means to estimate the migration time (however, the strong interaction of cesium and cobalt with concrete surfaces obscured any simple correlation). Temperature, boron, tritium, cesium and cobalt activity indicate homogeneity in the SFP. Activity levels from the bottom of the pool, where assemblies with defective rods are stored, were equivalent to surface SFP water at 29 days after the demineralizer was placed in service. During 2003, nuclear operations continued in a normal mode and activity levels in the SFP stabilized over the course of the year (slight increase in activity from February to October). In October, the demineralizer was returned to service and cesium and cobalt activity levels dropped dramatically in the SFP. Because of the strong interaction of cesium and cobalt activity levels and activity levels are surfaces, the telltale drain samples did not show a dramatic change because the large amount of cesium present on the surfaces of structural material "buffered" the cesium activity.

SPENT FUEL POOL LINER DRAINS

The Salem Unit 1 Spent Fuel Pool liner drains (e.g., telltale drains) are a leak detection/collection system designed to collect leakage beneath the stainless steel liner. Telltale drains No. 1 through 10 receive the leakage from the Spent Fuel Pool, whereas drains No. 11 through 17 receive the leakage from the refueling canal, which is deeper than the Spent Fuel Pool (Tables 3 and 4). Three sets of samples were collected from the telltale drains (prior to the "snaking" operation. The first set was taken December 11 - 12, 2002 and the second set was

taken December 14, 2002 by collecting water dripping from each drain. The average leakage was equivalent to approximately 5.8 gpd. Drains No. 1, 2, 4, and 6 of the Spent Fuel Pool and No. 14 of the canal had the highest leakage; no leakage was noted for No. 7, 10, 11, and 12. Caps were placed on the drains and removed January 17, 2003 for the third set of samples.

Tables 2-4 summarize boron, impurities, tritium, and gamma activity from the samples collected. Time series are graphed in Figures 1 and 2. Boron and tritium levels in the telltale drain samples provided a direct correlation with the Spent Fuel Pool, whereas cesium and cobalt activities (and ratios) were expected to provide a possible indication of sample age and extent of interaction with structural material. Sodium levels may provide an indication of groundwater intrusion and/or leaching from structural materials. Chloride should balance sodium if groundwater is present. pH changes may indicate interactions of the boric acid with structural materials. On January 29, 2003 the telltale drains were individually snaked; the water collected, analyzed, and reported in Tables 2-4. Collectively, the telltale drain data indicate the following:

Boron and tritium data from the Unit 1 Spent Fuel Pool telltale drains indicate that the pool water was the source (Figures 1 and 2), whereas the canal telltale drains indicate possible mixing with groundwater (10 to 20%). Sodium levels for the SFP drains were reasonably consistent at <1ppm. In Telltale No. 14 and No. 16 (from the canal liner), sodium was 69.7 ppm and 329 ppm, respectively. Boron and tritium in the canal telltale drains were lower than typical levels in the pool drains, and sodium was also much higher, suggesting dilution by groundwater (although the sodium was not balanced by chloride ion) and/or release of sodium from the interactions with structural materials.</p>

- Iodine-131 (8.04 day half-life), when detected, was present in selected samples from telltale samples from the Spent Fuel Pool but not present in the telltale samples from the canal area. When decay-corrected to Mode 6 (the time of fuel movement), the average level was 71% of the average SFP decay-corrected activity of ¹³¹I. This comparison strongly suggests that the Spent Fuel Pool was the source of the ¹³¹I activity. The lack of detected ¹³¹I activity in the telltale drain samples after December 14, 2002 also points to the refueling operation as the source of the activity which became too low to measure after two months of decay.
- Cobalt-58 was not detected in all samples in which ¹³¹I was detected, suggesting interactions of cobalt with structural materials (e.g., concrete) that does not adsorb iodine. The ¹³¹I-to-¹³⁷Cs activity ratio corrected to Mode 6 for drains No. 3, 4, 5, and 6 was 5.2, compared to 0.36 for the Spent Fuel Pool. Substantial uptake of cesium by structural materials had occurred, to reduce cesium activity by about 90%. Cesium and cobalt activity levels in the telltale drain samples were small fractions of levels in the Spent Fuel Pool water analyzed, most likely as a result of interactions with structural materials. The ¹³⁴Cs-to-¹³⁷Cs activity ratio (0.19 – 0.85) and ⁵⁸Co-to-⁶⁰Co activity ratio (0.20 – 2.01) in the telltale drain samples were also lower than average ratios for the Spent Fuel Pool (1.02 and 8.27, respectively). The cesium and cobalt in telltale drain water had exchanged (to isotopic equilibration) with "old" cesium and cobalt (low ⁵⁸Co and ¹³⁴Cs activity), adsorbed to the structural concrete. Thus, even if the path is short (from SFP to telltale) the cesium and cobalt exchange rapidly with the large amount of cesium and cobalt on the concrete and will reflect the activity ratio of the adsorbed fraction (i.e. "old") rather than the activity ratio of the SFP (i.e., "young").

Because ¹³¹I only weakly adsorbs to concrete and migrates at the rate of water flow, levels of ¹³¹I activity are present soon after the refueling operation was completed.

- Antimony-125 was detected in only one telltale drain sample from the canal and in several of the pool telltale drain samples. Antimony-125 (2.77 year half-life) is a decay product of ¹²⁵Sn (9.64 day half-life), an activation product of ¹²⁴Sn (5.79% in nature), which is in the zirconium alloy cladding. Leakage from water in the pool in contact with fuel rods would explain the ¹²⁵Sb in the samples.
- The average pH of pool drains No. 1, 3, 4, 5, and 6 sampled January 17th was 7.10 compared to an expected pH for approximately 2,257 ppm boron of 4.56. The average pH of canal drains No. 13 and 14 was 7.79 compared to an expected pH of approximately 4.80 for 1465 ppm boron. The neutral to basic pH indicates interactions with structural materials and/or mixing with groundwater. The calcium carbonate in concrete would neutralize the hydrogen ions in boric acid to increase the pH to neutral without changing the borate content of the water. Cation exchange of hydrogen ion for sodium and potassium in the concrete would cause both an increase in the pH and in the sodium and potassium concentration.

After snaking on January 29th significant tan or brown debris, characteristic of rust deposits, flushed from drains No. 2, No. 3, No. 6, and No.14. The debris was not magnetic. The water initially flowed from drain No. 2 at approximately 1 gpm after snaking, decreasing to about 1 liter per minute. Telltale No. 2 continued to drain at about 0.5 liters/min through 2003. The other drains had at least a factor of ten lower flow. The data in Table 3 suggest that the operation allowed accumulated water to drain, and resulted in an increase in both the ⁵⁸Co level and ⁵⁸Coto 60 Co activity ratio [1.5 to approximately 3.2 (decay-corrected to Mode 6)]. Fiber optic inspections on January 31, 2003 indicated deposits (originally thought to be boric acid) behind the telltale drains. The restriction of flow forced leaking water to the build up in the leakage collection system. The formation of deposits suggests that the leakage had occurred over many years, which helps to explain the age characteristics of cesium and cobalt activity in the telltale drain samples. The drip rate from telltale drains was approximately 5.8 gpd prior to snaking. After snaking, initially water freely flowed from the telltale drains, diminishing to steady drips; however, the rate was not accurately measured for an extended period. Snaking was repeated February 21, 2003 and the flow was measured at 22 liters per hour (139 gpd) from the sump pump. This rate continued throughout 2003.

Deposits on the wall area above the pitchdown trench, which receives the drips from the telltale drains, had an average 134 Cs-to- 137 Cs- activity ratio of 0.13. Decay of an initial source with an activity ratio of 1.02 (SFP water) would require 6.5 years to decrease to an activity ratio of 0.13; an upper limit age of the activity on the wall. The calculated "age" was about three years if one used an activity ratio typical of the telltale drains (0.3 to 0.4). Cobalt activity was not detected in the white deposits, confirming the slow migration rate of cobalt in contact with concrete.

In summary, water beneath the fuel racks is postulated to be leaking into the telltale drains beneath the Unit 1 Spent Fuel Pool, and water beneath the canal is postulated to be leaking into the telltale drains beneath the canal area. Groundwater may be mixing with the water in the drains beneath the canal based on lower tritium and higher sodium levels (although the pathway is not

clear) and/or interactions with the structural concrete is occurring. Very limited mixing with groundwater in the drains beneath the Spent Fuel Pool has occurred.

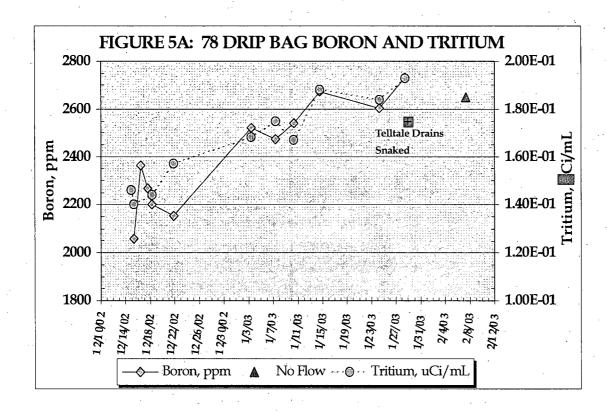
- Cesium activity ratios suggested a "history" equivalent to approximately five years based on an initial ¹³⁴Cs-to-¹³⁷Cs activity of 1.02 (SFP) that decayed to 0.22 (telltales). Most of the reduction in activity has taken place through a process of isotopic exchange between cesium in the water and cesium on concrete surfaces. The chemical behavior of cesium strongly favored adsorption to solid surfaces. [Cesium-134 decays with a 2.062 year halflife and ¹³⁷Cs decays with a 30.17 year half-life.]
- Iodine-131 was detected in selected samples after a refueling operation (only) and demonstrates that a radioisotope that only weakly adsorbs to solid surfaces can migrate rapidly in this environment from source to sampling point.
- Snaking initially increased the flow rate, allowing the accumulated water to be purged from the leakage collection system. After snaking the cobalt activity level also increased in the No. 2 drain with an increase in the ⁵⁸Co-to-⁶⁰Co activity ratio, indicating a more recent history and a better comparison to cobalt activity in the Spent Fuel Pool.
- Figures 1 and 2 show the activity levels in the Telltale drains Nos.1 and 2 through 2003. Of particular importance was the fact that during the interval that the demineralizers were in service (January and October through December 2003) the cesium activity dropped by more than a factor of ten in the SFP; the telltale drains did not show a similar drop. This supports the hypothesis of a strong adsorbtion coefficient for cesium and that the cesium activity is buffered by interaction between the water in the leakage collection system and the concrete surfaces.
- Tritium in the SFP increased by about 50% during 2003 and Telltale No.2 displayed a similar trend to the SFP that confirmed the direct connection between the SFP and Telltale No. 2.

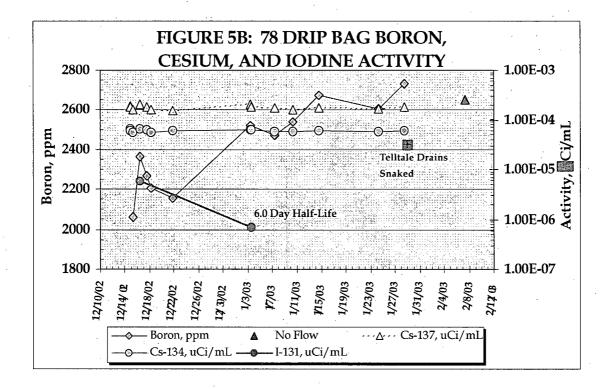
78-Foot Mechanical Penetration Area Drip Bag

Sampling of the 78-Foot Elevation Mechanical Penetration wall began on December 11, 2002. Tables 2 and 3 summarize results and compare average levels in the Drip Bag to the Unit 1 Spent Fuel Pool and telltale drains. The boron, tritium, iodine (two samples), and cesium activity for the Drip Bag is equivalent to the average telltale activity. Figures 5A through 5D show boron, activity levels, and sodium as a function of time. Boron and tritium gradually increased with time, whereas cesium activity was relatively constant; ⁵⁸Co activity was not detected and ⁶⁰Co levels were low and only detected when the sample size and counting intervals were increased. By February 7, 2003, the snaking of the telltales had reduced the hydraulic pressure and the seepage stopped. Tables 2 and 3 and Figures 5A-D show the following:

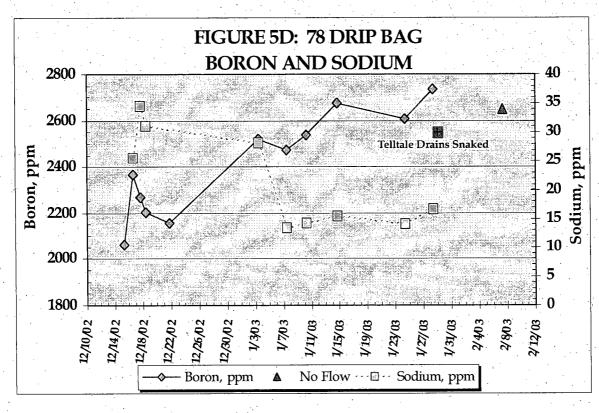
• Boron and tritium suggest Spent Fuel Pool water migrated through the SFP leakage collection system. Boron and tritium levels in samples collected in the drip bag increased over time as indicated in Figure 5A, possibly as a result of source water displacing groundwater. The boron was 2735 ppm in the most recent sample; levels that are higher than the Spent Fuel Pool; evaporation (and possible dissolution of previously deposited boric acid) may explains the elevated boron level . The increase in boron and tritium corresponds to a decrease in sodium (Figure 5D), suggesting less dilution by groundwater

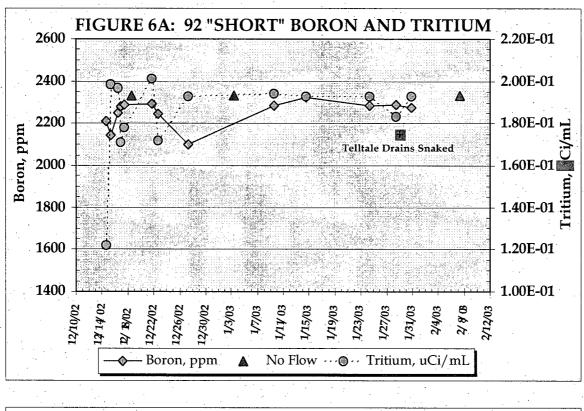
and/or less chemical interaction with structural material over time (chloride was less than 1 ppm, a level that would support the latter conclusion).

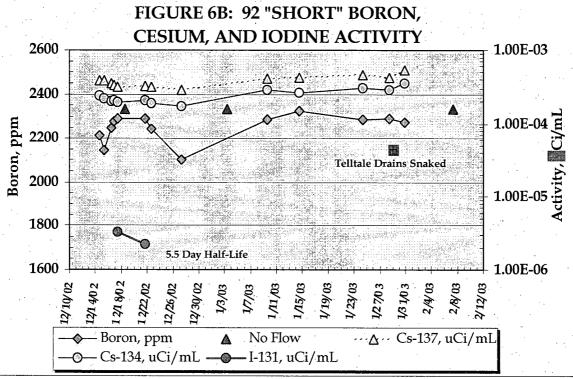

- The extremely low cesium and cobalt activity levels compared to the Unit 1 Spent Fuel Pool levels (but similar to telltale drain samples) may be explained by interactions with structural materials; the cesium activity ratio also linked the Drip Bag samples to the telltale drain. Low sodium and chloride levels also indicate a low level of groundwater dilution (chloride was less than 1 ppm). Relatively constant cesium levels indicate equilibrium with construction materials/concrete.
- The relatively low ¹³⁴Cs-to-¹³⁷Cs activity ratio in the Drip Bag samples (0.34 average) indicates "old" cesium that has adsorbed to the walls of the leakage collection system and matches the cesium ratio in the telltale drain samples (0.33 average prior to snaking). This conclusion is supported by non-detectable ⁵⁸Co (70.80 day half-life) and detectable ⁶⁰Co (5.27 year half-life) only in counting large samples.
- Iodine-131 (8.04 day half-life) was detected in two samples after the drip bag was established. When decay-corrected to the time Mode 6 was established for 1R15, the activity levels match levels in the Unit 1 Spent Fuel Pool. This fact and the lack of detected ¹³¹I activity in later samples point to the refueling operation as the source of ¹³¹I. Iodine does not adsorb strongly to surfaces, as cesium and cobalt do, and may explain why the iodine signal reflects "young" water while the cesium activity reflects "old" water.
 - Iron was measured in selected samples and present at 0.09 to 0.48 ppm. The source of iron is uncertain and two scenarios are most plausible. The concern is boric acid corrosion of rebar in the concrete. If iron rebar corrodes under reducing conditions (Fe metal would oxidize to Fe(II)aqueous; although the rate is certainly much lower than under oxidizing conditions i.e. when oxygen is present), soluble Fe(II) is formed. Groundwater also contains high levels of mobile Fe(II). Groundwater Fe(II) occurs when bacteria reduce FeO(OH) in soils to soluble Fe(II). The Fe acts as an electron acceptor bacterial oxidation of organic matter. Soluble Fe in groundwater can be as high as 5ppm in organic rich sediments of coastal marshes. In either scenario, when soluble Fe(II) is exposed to air (oxygen), insoluble Fe(III) hydroxides form, leading to the familiar yellow to orange to red staining patterns from Fe(OH)₃, FeOOH, and Fe₂O₃. An extensive structural review is underway by plant personnel to understand the source of the iron.
- The pH of the Drip Bag sample collected January 28, 2003 was 7.16 rather than an expected pH of 4.45 for 2735 ppm boron as boric acid. The concrete can neutralize the hydrogen ions via exchange of sodium and potassium in the concrete for hydrogen ion.

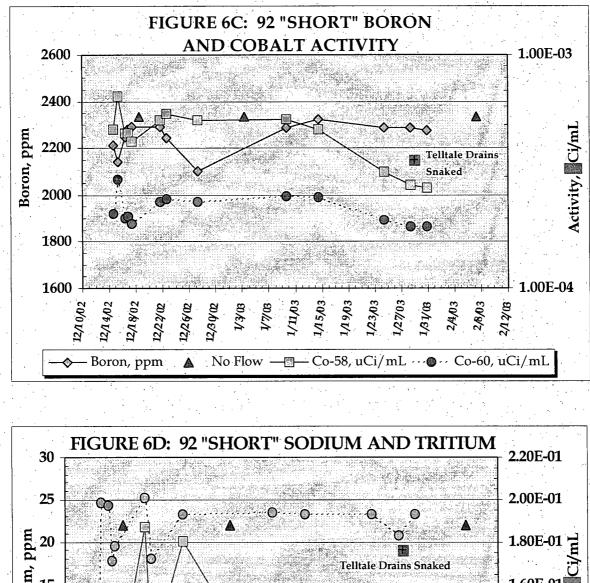

In conclusion, the 78-Foot Mechanical Penetration Area Drip Bag samples match reasonably well with the Unit 1 Spent Fuel Pool telltale drains. The water in the SFP leakage collection system has been modified from the original SFP activity ratios via interaction with structural material. Possible minor dilution with groundwater may occur for the Drip Bag sample (although chloride was less than 1 ppm). The cesium activity ratio and levels match, but cobalt activity levels in the drip bag are lower as explained by additional uptake (interaction) with structural materials. Cesium and cobalt activity levels through January 28, 2003 did not decrease when the Unit 1 Spent Fuel Pool demineralizer was placed in service January 1st, suggesting that the cesium and

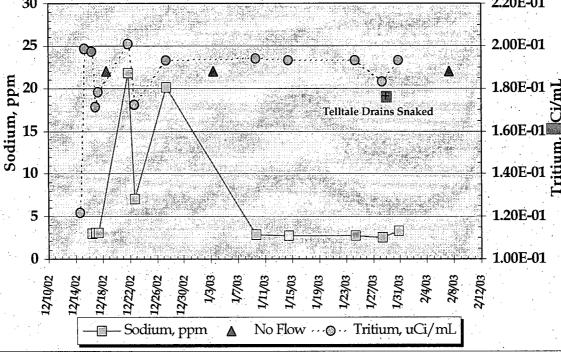
cobalt activity in the leakage collection system are controlled by surface interactions between the concrete and the water.




FIGURE 4: LOCATION OF SAMPLES TO CHARACTERIZE SALEM UNIT 1 SPENT FUEL POOL LEAKAGE (Not to Scale) 110' Fuel Handling Ground Level (100') Aux Building 100′ Building Groundwater (96') "Long" (Boot) and "Short" (Cooling Line Fuel Pool Cooling Line **Return) Samples** (92') 90' **Telltale Drains on 84 Elevation at** Weeping Wall 78' approximately 86 Feet 78-Foot Elevation 84') Mech Penetration Proposed Sample Drip Bag Samples Depth (80') 78' Elevation 80′ Cofferdams (67'&79') 70′ General location of 1BD41 60' 43' Concrete Styrofoam







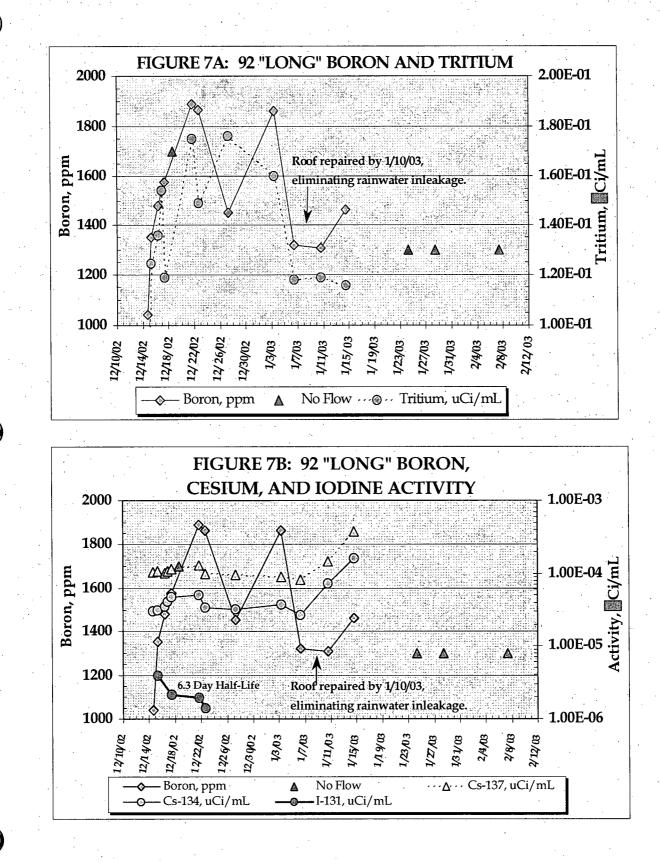
Spent Fuel Pool Cooling Line Return at the Auxiliary and Fuel Handling Building Interface ("Short" Sample)

Water was dripping from the annular space around the Spent Fuel Pool cooling return line at the interface between the Auxiliary Building and Fuel Handling Building. A catch tray with a sample tube was installed on December 17, 2002 to divert and collect the water, which ranged from 0 to 0.039 gpm (14.5 gpd average) between December 22, 2002 and January 7, 2003. Because of the length of the sample tube, the sample point was designated as the "Short" sample. Tables 2 and 3 summarize analysis results from this sample and Figures 6A through 6D show trends over time. The analysis results indicate the following:

- The "Short" sample was not water currently re-circulating in the Unit 1 Spent Fuel Pool (i.e., a leak in the cooling return line is not indicated).
- Once the sample source was separated, the boron and tritium levels were relatively constant and indicate Spent Fuel Pool water modified by interaction with structural material (e.g. concrete). Most likely this water originated in the leakage collection system of the SFP.
- Sodium levels initially were erratic, but became stable and relatively low. Sodium levels were much higher than levels expected in the Spent Fuel Pool but comparable to water in the leakage collection system. This suggested that interactions with structural materials released sodium to water in the leakage collection system (also explains the increase in pH) and this water migrated to the "Short" sample. Chloride levels were less than 0.1 ppm and suggest minimal involvement of groundwater.
- Cesium and cobalt activity levels were relatively stable and intermediate between levels in the Unit 1 Spent Fuel Pool and the telltale drains. The ¹³⁴Cs-to-¹³⁷Cs activity ratio averaged 0.67 (compared to 1.02 for the Spent Fuel Pool and 0.33 for the average telltale), and the decay-corrected ⁵⁸Co-to-⁶⁰Co activity averaged 4.21 compared to 8.27 for the Spent Fuel Pool. This suggests a more recent history and/or less interaction with structural concrete than the Drip Bag or telltale samples. The higher activity ratios suggest a shorter and quicker pathway for migration from the SFP to the "Short" sampler. Because both cesium and cobalt activity levels were lower than corresponding levels in the Spent Fuel Pool, both dilution and interaction with structural materials was indicated,
- Iodine-131 (8.04 day half-life) was detected in two samples. When decay-corrected to the time Mode 6 was established for 1R15, the activity levels match levels in the Unit 1 Spent Fuel Pool (and the telltale drains for the pool and 78-foot elevation Drip Bag) reasonably well. This linked the iodine activity to the refueling operation and a postulated leak from areas in the Spent Fuel Pool that contained defective rods from 1R15.
- Iron levels were low, indicating relatively little contact with corroding ferrous materials or iron in groundwater.
- The pH of the "Short" sample collected January 28, 2003 was 6.47 rather than an expected pH of 4.55 for 2290 ppm boron as boric acid. It is not as basic as the Drip Bag sample perhaps indicative of a shorter travel time or direct mixing of SFP water with water from the leakage collection system.

After the telltale drains were snaked on January 29, 2003, the flow from the "Short" sample decreased. When the caps were placed on the drains, the flow resumed. Radiation Protection

personnel noted this correlation on three occasions. By February 7, 2003, flow was insufficient to obtain a sample. This behavior supported a hypothesis that water from leakage from the pool liner was restricted and being forced into the region between the concrete and the liner, eventually issuing through the opening where the cooling line return pipe intersects the wall. In conclusion, the "Short" sample indicated a more recent history and less interaction with the structural material than other samples (such as the Drip Bag or telltale drains) as compared with water in the Unit 1 Spent Fuel Pool after 1R15. Interactions with structural materials and dilution with an "older" source (e.g. water from the leakage collection system) can explain cesium and cobalt activity levels being lower than corresponding levels in the Spent Fuel Pool. Cesium and cobalt activity levels in the "Short" sample were higher than corresponding levels in the telltale drain samples or the 78-Foot Elevation Drip Bag sample, suggesting less opportunity for interactions with structural materials. Cesium and cobalt activity levels in the telltale drain sample were higher than corresponding levels in the "Short" sample were higher than corresponding levels in the Spent Fuel Pool. After snaking, the telltale drains showed more common characteristics with the "Short" sample (before it dried up).


Water Stop (Boot) Around the Fuel Handling Building Concrete Plug at 92-Foot Elevation ("Long" Sample)

A rupture in the boot occurred on December 14, 2002 and the flow eventually stabilized. A long tube was inserted to divert the water, hence the designation of "Long" sample. The flow rate ranged from 0 to 1 gpm, averaging approximately 51.4 gpd between December 21, 2002 and January 7, 2003. The flow appeared to be affected by rainfall (as noted by Radiation Protection personnel) because leakage from the roof between the Auxiliary Building and the Fuel Handling Building near the service water pit, resulted in rainwater in the penetrations area in the 12 Service Water Valve Room; repairs were completed January 10, 2003. Precipitation data showed a direct correlation between the daily rainfall and increasing the "Long" sample flow rate, which was not indicated for the "Short" sample. Results for the "Long" sample are summarized in Tables 2 and 3 and plotted in Figures 7A through 7D. Boron, tritium, gamma activity, and sodium levels were more variable than for other sample points, suggesting mixing with other sources (such as rainfall). Boron generally followed tritium, suggesting a common source. The following conclusions result from evaluating Table 3 data and Figures 7A through 7D:

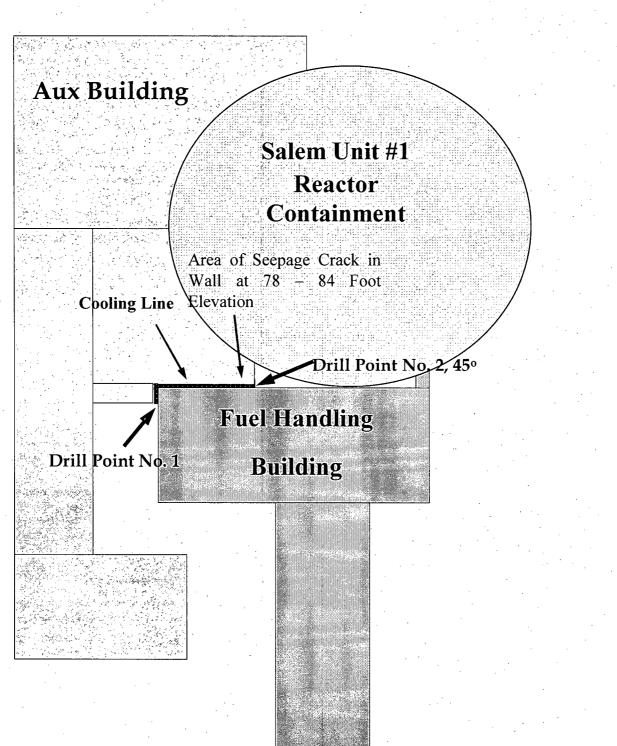
- After the "long" tube was inserted into the "boot" on December 14th boron, tritium, and sodium increased for about three weeks. This suggests that the initial samples contained higher levels of groundwater .In early January 2003, chloride concentrations increased and tritium and boron decreased, suggesting a quick response of this sampling point to changing environmental variables.
- Cesium activity levels were relatively stable (¹³⁷Cs <10% of SFP water) until January 6, 2003, after which time levels increased as tritium and boron decreased. The average ¹³⁴Cs-to-¹³⁷Cs activity ratio prior to January 6, 2003 was 0.36, similar to "old" cesium activity present in the leakage collection system.
- Cobalt activity was more variable and was not detected in several samples. The average ⁵⁸Co-to-⁶⁰Co activity ratio based on ⁵⁸Co activity (decay-corrected to Mode 6) was 3.59, suggesting that a small fraction of the water came from the previous refueling operation.

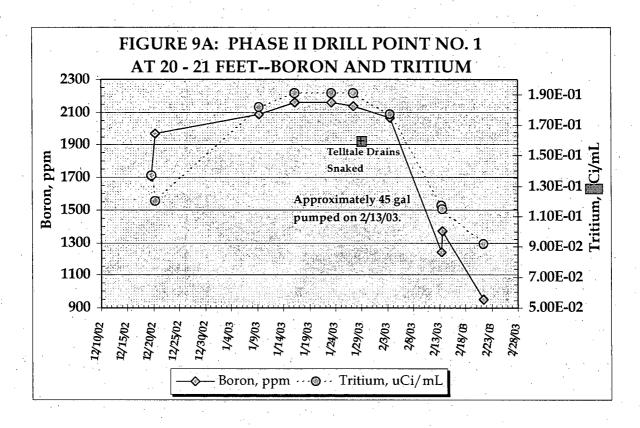
• Iodine-131 was detected in four sample and related (in time) to the Mode 6 refueling operation, contributing "recent" radioisotopes to the SFP inventory.

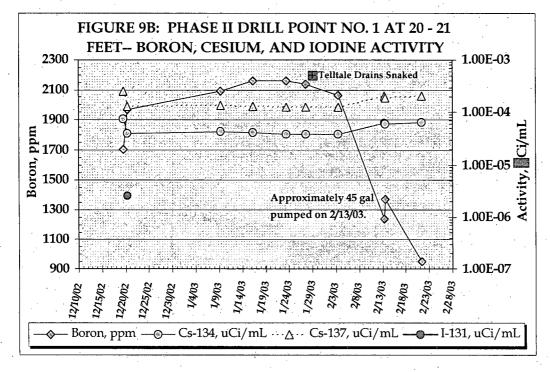
On the average, the "Long" sample showed similar characteristics to the water in the telltale drains. A mixture of groundwater and/or rainfall reduced activity of tritium to about 70 to 90% of the level in the leakage collection system. ¹³¹I and ⁵⁸Co activity in some samples, linked in time to Mode 6 refueling, suggested that at least a small fraction of recent SFP or canal water could migrate (through the SS liner of the SFP- most likely) to the "Long" sample at 92-foot elevation. After January 24th the sample point dried up because of limited groundwater ingress with lack of precipitation and eventually from the "snaking" of the telltales that drained the water from the leakage collection system of the SFP.

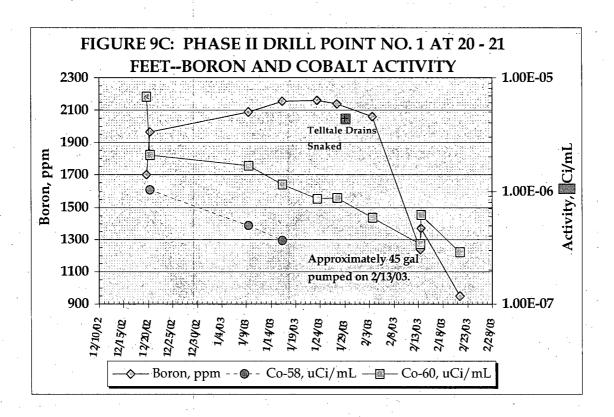
STYROFOAM SEISMIC GAP- AUXILARY BUILDING AND THE FUEL HANDLING BUILDING

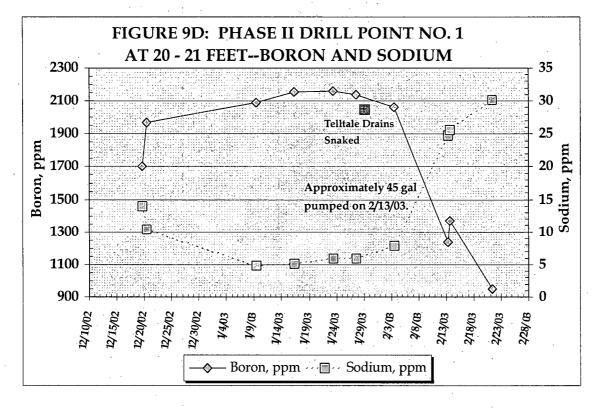
Two drill points were installed in the Styrofoam between the Salem Auxiliary Building and the Fuel Handling Building on December 19 and 20, 2002. The drill points consisted of a 1-1/4inch direct push sampler with a 2-foot mill-slotted well point. The samples were obtained using 1/4-inch tubing and a pump. Drill Point No. 1 was installed vertically along the northeast exterior wall of the Fuel Handling Building as shown in Figure 8. Drill Point No. 2 was installed on a 45-degree angle into the Styrofoam from the "Door to Nowhere" (100-Foot Elevation of Auxiliary Building, opening to the outside of the Fuel Handling Building on the right and Containment on the left) near the area for the 78 Drip Bag sample in the Auxiliary Building. Tables 2 and 3 summarize results through February 21, 2003. Figures 9A through 9D showed Drill Point No. 1 trends and Figures 10A through 10D showed Drill Point No. 2 trends. The Table 3 data and plots showed the following:

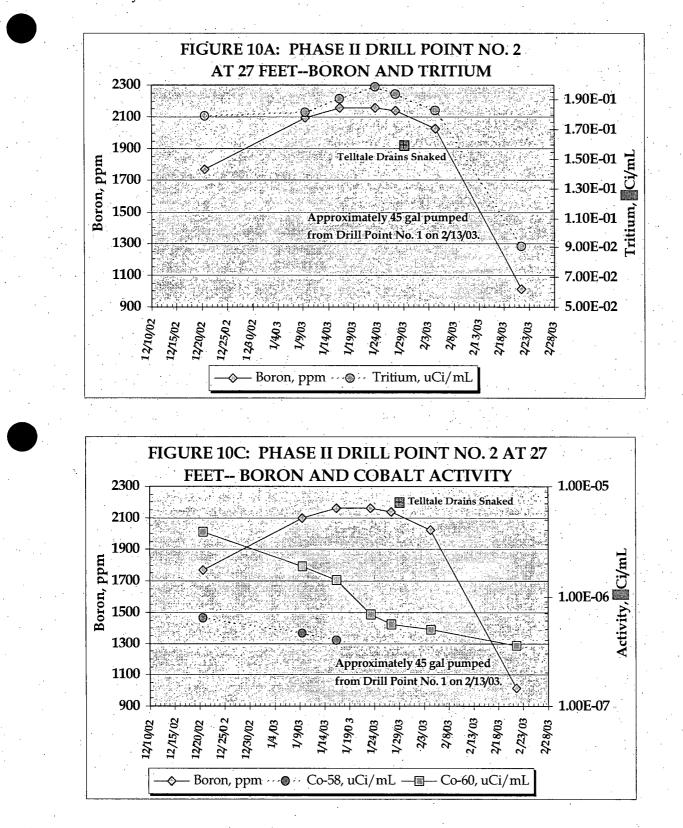

- The initial samples indicated groundwater mixed with water containing activity levels similar to the leakage collection system. Once purged of the groundwater component, boron, tritium, and cesium activity levels were stable and identical to water from the SFP telltales (or the 78-Foot Drip Bag sample). After stable conditions were attained, Drill Point No. 1 and Drill Point No. 2 were essentially equivalent.
- The average ¹³⁴Cs-to-¹³⁷Cs activity ratio of 0.31 and the average decay-corrected ⁵⁸Co-to-⁶⁰Co activity ratio of 0.90 suggested "old" activity that resulted from isotopic equilibration with the concrete enclosure of the SFP.
- Iodine-131 was detected in selected samples up to January 9, 2003. Decay-corrected ¹³¹I activity supports the link between ¹³¹I and the Mode 6 refueling operation.
- Activity levels through January 28, 2003 were reasonably stable, with no effect from use of the demineralizer after January 1, 2003. The water in the Styrofoam Seismic Gap was not directly related to the water in the Spent Fuel Pool (based on cesium and cobalt activity) but rather had flowed through the SS liner of the SFP and into the leakage collection system. Interaction with the walls of the concrete enclosure reduced the cesium and cobalt activity.

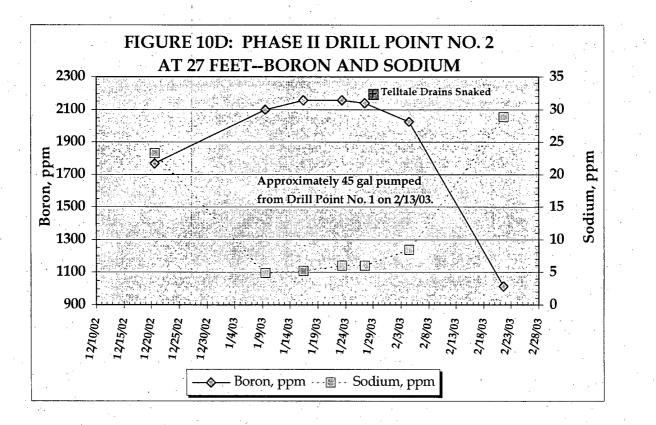

Water in the seismic gap was a cause of concern because of its elevated tritium activity and its ability to migrate away from the Containment building and to contaminate groundwater. On February 6 through 13, 2003, 45 gallons of water were extracted from the Styrofoam at Drill Point No. 1. As shown in Figures 9A and 10A, boron and tritium decreased and sodium increased as shown in Figures 9D and 10D. Cesium activity remained constant and ⁶⁰Co decreased (⁵⁸Co had not been detected since January 16th). Cesium adsorbs strongly onto surfaces and the cesium activity reflects an isotopic exchange between the water and structural material near the Seismic Gap. The snaking the telltale drains eliminated the source of SFP water to the Seismic Gap and removal of the water in the Seismic Gap allowed ambient groundwater to flow into the region. Boron and tritium levels dramatically dropped from SFP levels to less than 50% of SFP activity in one week. The important conclusion was that the chemical and radionuclide characteristics for both drill points were identifiable to the Spent Fuel Pool telltale drains, and the combined effects of snaking telltale drains and pumping the water out of the Styrofoam was effective in dramatically reducing boron, tritium, and cobalt activity. Samples collected during the


e ga est

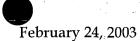

summer of 2003 (Table 2) at Drill Point No. 1 had decreased levels of tritium (3% of SFP), consistent with the stoppage of the leak to the Styrofoam Seismic Gap and the subsequent inflow of groundwater to the Styrofoam. Cesium and cobalt activity are also very low, near ND levels.


FIGURE 8: LOCATION OF DRILL POINTS DECEMBER 19 - 20, 2002





OTHER SAMPLE LOCATIONS


Table 4 summarizes analysis results for miscellaneous samples withdrawn at various Salem Unit 1 and Unit 2 locations. Evaluation of these data indicate the following:

- The Unit 1 RWST after 1R15 was not the source of contamination on the basis of tritium level (1.26 E-1 µCi/mL versus 1.91 E-1 µCi/mL average in the "Short" sample) and average ⁵⁸Co-to-⁶⁰Co activity ratio (1.51 versus 4.21 average in the "Short" sample, decay corrected to Mode 6).
- Although the 12 RHR floor drain indicated cesium and cobalt contamination, boron was not detected in deposits collected in the area.
- The stalactites in the RAP tank area (this the <u>RWST</u>, <u>AFST</u>, and <u>PWST</u>) did not contain boron; leakage from the RWST to this area was eliminated on this basis.
- Three samples of seepage water between the Unit 1 Containment and Auxiliary Building (1BD41) suggest a link to the leakage collection system on the basis of boron (1208 ppm average) and tritium (1.19E-1 μ Ci/mL average). Water from the leakage collection system could possibly migrate in the void between buildings and accumulate over time. The ¹³⁴Cs-to-¹³⁷Cs activity ratio of 0.20 indicates "old" activity, consistent with the telltale samples. A low ⁶⁰Co level was detected, but interactions with structural materials will reduce cobalt in liquid samples. The 59.7-ppm sodium (average) and 12.1-ppm chloride level indicates some groundwater, and/or leaching from structural materials. The source of ¹³¹I, seen in many of the telltale, drill point and seepage samples most likely related to the refueling in October 2002.

TABLE 6. SUMMMARY OF SPECIAL ANALYSIS RESULTS OF SALEM UNIT 1 FUEL POOL INVESTIGATIONS--MISCELLANEOUS SAMPLES

	Sample	Conce	entration	, ppm		A	ctivity at S	Sample T	ïme, μCi/	mL		Mode 6	μCi/mL	Cs-134/	Co-58/
Sample Location	Date/Time	Na	Cl	Boron	H-3	I-131	Cs-134	Cs-137	Co-58	Co-60	Sb-125	I-131	Co-58	Cs-137	Co-60
I RWST	12/17/02 8:10			2367	1.26E-01		3.89E-04	3.61E-04	3.29E-03	1.77E-04			5.72E-03	1.08	32.3
Puddle Around U1 RWST	9/27/02 9:00						2.94E-05	5:56E-05	6.08E-05	5.41E-05	2.99E-05			0.53	
Rainwater Puddle Around U1/U2 RWSTs	9/27/02 9:00						2.90E-05	5.05E - 05	1.04E-06	9.78E-07				0.57	
Puddle Around U1 RWST	12/15/02 8:30			0	7.81E-06									·	
Rainwater Puddle Around U1 RWST	12/21/02 17:50		• .	0	4.45E-05							· .			
Puddle Around U1 RWST	12/22/02 16:30			0	3.25E-04										
Water from Void Between Aux Bldg and Unit 1 Containment (1BD41)	12/24/02 10:00				1.11E-01	5.39E-07	4.66E-06	2.31E-05				1.28E-04		0.20	

37

TABLE 6 (continued). SUMMMARY OF SPECIAL ANALYSIS RESULTS OF SALEM UNIT 1 FUEL POOL INVESTIGATIONS--MISCELLANEOUS SAMPLES

	Sample	Conce	entration	, ppm		A	ctivity at	Sample T	ime, μCi	/mL		Mode 6	μCi/mL	Cs-134/	Co-58/
Sample Location	Date/Time	Na	Cl	Boron	H-3	I-131	Cs-134	Cs-137	Co-58	Co-60	Sb-125	I-131	Co-58	Cs-137	Co-60
Water from Void Between Aux Bldg and Unit 1 Containment (1BD41)	1/16/03 9:05	72.3	12.1	1159	1.12E-01		7.54E-06	3.72E-05		9.29E-08				0.20	
Water from Void Between Aux Bldg and Unit 1 Containment (1BD41)	2/19/03 9:50	47.0			1.34E-01		6.47E-06	3.16E-05		1.07E-07				0.21	
Water from Void Between Aux Bldg and Unit 2 Containment (2BD41)	1/17/03 8:35			<3.3	2.41E-05										
Unit 2 Cable Tunnels Under South RAP Tank	1/9/03 10:50			0			5.49E-08	1.92E-07		1.68E-07				. 0.29	
U1 12 RHR-Wall Across from Ladder	1/2/03 10:00		1.2	0				1.1					·	· .	
U1 12 RHR–Floor Drain	1/2/03 10:02			0	· · · ·			1.42E-04		2.81E-03	1. 1. j.				
U1 12 RHR-12SJ147	1/2/03 10:05			0		:	4		7:83E-05	8.18E-05	e i		1.59E-04		1.94
Pipe Trench North RAP Tanks Overhead Stalactites	1/15/03 13:12			0					· .						

Summary

The Salem Unit 1 Spent Fuel Pool has experienced leakage through the SS liner into the leakage collection system that surrounded the SFP. Over time chemical deposits in the telltale drains restricted flow and caused a buildup of water in the concrete enclosure surrounding the SFP. This water has seeped through the enclosure and migrated to several unexpected locations; the area behind the 78-Foot Mechanical Penetration Room wall in the Auxiliary Building, the Spent Fuel Pool cooling line at the interface between the Auxiliary and Fuel Handling Building, the water stop (boot) located at the penetration between the Auxiliary Building and the Fuel Handling Building, and Styrofoam Seismic Gap between the Fuel Handling Building and the Auxiliary Building. The water in question had many characteristics of Spent Fuel Pool water (e.g., boron and tritium levels), but low cesium and cobalt activity levels and activity ratios suggested extensive interactions with structural materials (e.g. concrete). Iodine-131 in selected samples when decay corrected to Mode 6 during 1R15 refueling, were comparable to levels in the Spent Fuel Pool. This finding for ¹³¹I, which does not interact with concrete, suggests relatively rapid migration of SFP water through the SS liner and ultimately seeping through construction joints and/or cracks in the concrete enclosure of the SFP. Iodine-131 activity was not detected at other times, suggesting that the refueling operations were the source. None of the samples points showed the effects of placing the Spent Fuel Pool demineralizer in service January 1, 2003 because cesium and cobalt activity levels and ratios are controlled by exchange with solid surfaces (e.g. concrete). Flow rates at seepage points dropped dramatically (or stopped) after the telltale drains were snaked and normal flow in the leakage collection system resumed (at about 100 gpd). Because of more rapid throughput of water to the telltales after snaking, the activity levels in the telltales more closely resembled SFP water (e.g. Telltale No.2 tritium level increased by about 50% through 2003 in response to a similar increase in the SFP). In October 2003, the use of demineralizers reduced SFP cesium and cobalt by more than a factor of ten; a similar decrease was not observed in the Telltale No. 2 because of the buffering effect of the cesium that strongly sorbed to the surfaces of the SFP concrete enclosure. Removal of the water in the Styrofoam Seismic Gap on February 13,2003 reduced activity levels of tritium to 3% of SFP levels in the Gap via groundwater inflow. Less than 5 gallons of water could be withdrawn from the gap on two occasions and the activity levels were at about 3% of SFP for tritium and <<1% for cobalt and cesium activity.

<u>3</u>9

TABLE 3. SUMMMARY OF SPECIAL ANALYSIS RESULTS OF SALEM UNIT 1 SPENT FUEL POOL LINER DRAINS PRIOR TO SNAKING (TELLTALE DRAINS)

	Concentration, ppm	mu		Activity a	Activity at Sample Time, µCi/mL	, μCi/mL			Mode 6 µCi/mL		Cs-134/ C	Co-58/
Sample Location Fe	Na	l Boron	H-3	I-131 Cs-134	Cs-137	Co-58	C0-60	Sb-125	I-131	Co-58 C	Cs-137 (Co-60
Average SFP 1- water Bottom of Canal AVERAGE POOL DRAINS: AVERAGE CANAL DRAINS	6:24 122	2316 2314 2314 2257 1465	€ € € 2316 1.93E-01 2314 2.09E-01 2257 1.74E-01 4.74E-06 1465 1.31E-01		€ € € € 2.18E-03 2.17E-03 5.53E-03 2.02E-03 2.04E-03 2.72E-03 5.34E-05 1.67E-04 1.29E-05 5.11E-05 1.87E-04 1.31E-05		€ € 9.82E-04 9.44E-06 8.88E-04 3.20E-05 5.88E-05 2.59E-05 8.06E-06 2.12E-06		22430.42	8.02E-03 7.28E-03 2.46E-05 2.72E-05	1.02 0.99 0.33 0.22	8:27 8.2 8.2 8.2 0:83 2:74
Ratio Pool Drains:1 SFP Ratio Canal Drains:1 SFP AVERAGE/78 MECH DRIP BAG DRIP BAG Ratio 78 Drip Bag:Pool Telltale	0* 1 1 4.7 2.36	0.97 0.63 0.52 2605 1.15	.97 0.92 63 0.68 505 1.81E.01 7.04E-07 .15 1.02	0.025 0.023 0.04E-07 5.84E-05 1.09	25 0.077 23 0.086 35 1.73E-04 99 1.04		0.06 0.008 3:56E-07 0.006	2.74 0.22 4	0.71 0.00 405E-04 0.95	0.0031 0.0034 0.34 1.02	0.33	0.33
Drauns Ratio 78 Drip Bag:1 SFP AVERAGE "SHORT" <0.03 SAMPLE Ratio to Pool Telltales	2.82 0.45	1.12 0.09 2292 1.02	0.98 1.91E-01 2 1.07	1.12 0.98 0.027 2292 1.91E-01 2.76E-06 3.01E-04 1.02 1.07 5.63	27 0.08 14 4:52E-04 3:74E-04 53 2.71	3:74E-04	0.00036 2.12E-04 3.60	0.68 0.33 9.40E-06 4.24E-04 9.00E-04 0.36 1.00 36.5	0.68 .24E-04 1.00	0.33 9.00E-04 36.5	0.67 2.01	4.21 5.08
			- millition (30 i/ml).									

Units for concentrations of radionuclides are presented in microcuries per m

TABLE 3 (continued). SUMMMARY OF SPECIAL ANALYSIS RESULTS OF SALEM UNIT 1 SPENT FUEL POOL LINER DRAINS PRIOR TO SNAKING (TELLTALE DRAINS)

		Concentratio	on, ppm				Activity at S	Sample Tim	e, µCi/mL			Mode 6	uCi/mL	Cs-134/	Co-58/
Sample Location	Fe	Na	Cl	Boron	Н-3	I-131	Cs-134	Cs-137	Co-58	. Co-60	Sb-125	I-131	Co-58	Cs-137	Co-60
Ratio to No. 2 Telltales	-	1.05		1.03	0.99	·····	3.86	2.84		3.59	0.82	_	4.61	1.37	1.31
Ratio to 78 Drip Bag	>0.33	0.19	0.18	0.88	1.05	. •	5.15	. 2.62		595		1.05	• •	1.97	
Ratio to 1 SFP				0.99	0.99		0.14	0.21		0.22	1.00	0.71	0.11	0.66	0.51
AVERAGE "LONG"	0.47	26.8	10.6	1365	1:18E-01	1.84E-0	6 8.62E-05	2.02E-04	4.69E-05	5 2.86E-05	3.62E-06	3:12E-04	1.05E-04	0.42	3:59
Ratio to "Short"	14.4	9.9	113.2	0.60	0.62		0.29	0.45		0.13	0.39	0.74	0.12	0.63	0.85
Ratio to Canal		0.22		0.93	0.90		1.69	1.08		3.54	1.71		3.85	1.93	1.31
Ratio to 1 SFP				0.59	0.61		0.04	0.093		0.029	0.38	0.52	0.013	0.41	0.43
		•			1										
Ave. Well No. 1 (21	5.15	6.02	0.41	2119	1.88E-01	1.86E-0	6 4.01E-05	1:31E-04	4.29E-07	7 1.02E-0 6	1.82E-06	3.84E-04	8.43E-07	0.31	0.53
Ft), No. 2 (27 Ft)	F1 0	0.41	0.70	0.01	1.04			0.7(2.97		0.05		0.01	
Ratio to 78 Drip Bag	51.2	0.41	0.79	0.81	1.04		0.69	. 0.76		2.87	0.10	0.95	0.00004	0.91	0.12
Ratio to "Short"	156	2.13	4.36	0.92	0.98		0.13	0.29		0.0048	0.19	0.91	0.00094	0.46	
Ratio to "Long"	10.9	0.22	0.039	1.55	. 1.60		0.47	0.65		0.036	0.50	1.23		0.74	
Ratio to Pool Telltales		0.97	• •	0.94	1.06		0.75	0.78		0.017	0:07	0.90	0.034	0.93	0.64
Ratio to 1 SFP		• .		0.91	0.97		0.018	0.06		0.001		0.64	0.000105	0.30	0.064

41

TABLE 3 (continued). SUMMMARY OF SPECIAL ANALYSIS RESULTS OF SALEM UNIT 1 SPENT FUEL POOL LINER DRAINS PRIOR TO SNAKING (TELLTALE DRAINS)

	Sample		Concentrat	ion, ppr	n		A	ctivity at S	Sample Ti	me, µ Ci/m	L		Mode 6	μ <mark>Ci/m</mark> L	Cs-134/	Co-58/
Sample Location	Date/Time	Fe	Na	Cl	Boron	H-3	I-131	Cs-134	Cs-137	Co-58	Co-60	Sb-125	I-131	Co-58	Cs-137	Co-60
Trench Below Drains	9/30/02 10:35							2.34E-04	7.23E-04		1.00E-03	2.51E-04		•	0.32	•
Telltale No. 1 (Pool)	12/11/02 16:30				2232	<u>.</u>		7.01E-05	1.72E-04	2.14E-05	5.90E-05		• • •	3.52E-05	0.41	0.60
Telltale No. 1 (Pool)	12/14/02 6:00					1.86E-01	•	1.08E-04	2.07E-04	2.11E-05	4.65E-05			3.56E-05	0.52	0.77
Telltale No. 1 (Pool)	1/17/03 13:05		4.76		2355	1.95E-01		6.01E-05	1.40E-04	2.63E-05	5.66E-05	9.32E-06		6.21E-05	0.43	1.10
Telltale No. 2 (Pool)	12/11/02 16:45				2229			2.27E-04	2.68E-04	1.92E-05	1.57E-05			3.16E-05	0.85	2.01
Telltale No. 2 (Pool)	12/14/02 6:00				۰.	1.85E-01	• *	5.71E-05	1.24E-04	9.71E-06	1.56E-05	1.83E-05		1.64E-05	0.46	1.05
Telltale No. 2 (Pool)	1/17/03 13:07		4.74		2301			3.69E-05	9.59E-05	1.33E-05	2.23E-05	1.78E-05		3.13E-05	0.38	1.40
Telltale No. 3 (Pool)	12/12/02 17:30		1	,	2263		4.83E-06	1.27E-05	4.82E-05		2.81E-05		4.20E-04	4	0.26	
Telltale No. 3 (Pool)	12/14/02 11:45				. 1	1.64E-01	2.35E-06	1.17E-05	5.12E-05		2.42E-05		2.37E-0	4	0.23	
Telltale No. 3 (Pool)	1/17/03 13:09		3.44		2259	1.94E-01		1.02E-05	4.32E-05		3.22E-05				0.24	
Telltale No. 4 (Pool)	12/11/02 16:45				2230		7.43E-06	2.93E-05	8.52E-05	4.32E-06	2.41E-05	2.33E-05	5.91E-0	4 7.10E-06	0.34	0,29
Telltale No. 4 (Pool)	12/14/02 6:00	•			· · · ·	1.65E-01	3.20E-06	5.04E-05	1.12E-04	5.79E-06	1.93E-05	2.54E-05	3.17E-0	4 9.76E-06	0.45	0.51

42

TABLE 3 (continued). SUMMMARY OF SPECIAL ANALYSIS RESULTS OF SALEM UNIT 1 SPENT FUEL POOL LINER DRAINS PRIOR TO SNAKING (TELLTALE DRAINS)

	Sample		Concentr	ation, ppm			A	ctivity at S	Sample Ti	me,µCi∕m	L		Môde 6	μ Ci/mL	Cs-134/	Co-58/
Sample Location	Date/Time	• Fe	Na	Cl	Boron	H-3	I-131	Cs-134	Cs-137	Co-58	Co-60	Sb-125	I-131	Co-58	Cs-137	Co-60
Telitale No. 4 (Pool)	1/17/03 13:12		4.56		2301	1.85E-01		2.93E-05	8.09E-05	5.00E-06	3.19E-05	1.50E-05		1.18E-05	0.36	0.37
Telltale No. 5 (Pool)	12/12/02 17:30				2357		2.93E-06	2.25E-05	7.38E-05		3.78E-05		2.54E-04		0.30	
Telltale No. 5 (Pool)	12/14/02 11:45	•				1.34E-01	2.92E-06	2.40E-05	8.25E-05		4.15E-05		2.95E-04		0.29	
Telitale No. 5 (Pool)	1/17/03 13:15		3.34		2232	1.90E-01		2.09E-05	6.43E-05		4.59E-05				0.33	
Telltale No. 6 (Pool)	12/11/02 16:45				2221	· · ·	8.80E-06	2.86E-05	1.07E-04		2.54E-05	1.48E-05	7.00E-04		0.27	
Telltale No. 6 (Pool)	12/14/02 6:00.	-	<u>·</u>			1.35E-01		4.98E-05	1.39E-04	3.29E-06	2.80E-05	1.50E-05	,	5.54E-06	0.36	0.20
Telltale No. 6 (Pool)	1/17/03 13:19		7.84		2402	1.91E-01		2.62E-05	1.05E-04		1.76E-04	4.73E-05			0.25	
Telltale No. 8 (Pool)	12/12/02 17:30				2290		5.27E-06	8.05E-05	3.88E-04		2.87E-05	1.25E-05	4.58E-04		0.21	
Telltale No. 8 (Pool)	12/14/02 11:45					1.71E-01	5.48E-06	7.00E-05	3.38E-04		2.61E-05	· ·	5.54E-04		0.21	· .
Telltale No. 8 (Pool)	1/17/03 13:21		12.1		2304			7.07E-05	3.48E-04		4.52E-04	1.05E-04			0.20	
Telltale No. 9 (Pool)	12/12/02 17:30				2271			6.95E-05	3.31E-04		3.22E-05				0.21	
Telitale No. 9 (Pool)	12/14/02 11:45			· · · · · · · · · · · · ·		1.72E-01	4.24E-06	6.49E-05	3.49E-04		3.14E-05		4.29E-04		0.19	
Telitale No. 9 (Pool)	1/17/03 13:23		9.16		1861			5.12E-05	2.55E-04		1.12E-04	6.62E-06			0.20	
AVERAGE POO	L DRAINS:		6.24		2257	1.74E-01	4.74E-06	5.34E-05	1.67E-04	1.29E-05	5.88E-05	2.59E-05	4.25E-04	2.46E-05	0.33	0.83

TABLE 3 (continued). SUMMMARY OF SPECIAL ANALYSIS RESULTS OF SALEM UNIT 1 SPENT FUEL POOL LINER DRAINS PRIOR TO SNAKING (TELLTALE DRAINS)

	Sample		Concentratio	on, ppm		8.2	Activity at S	Sample Ti	me, μCi/m	iL		Mode	6μCi/mL	Cs-134/	Co-58/
Sample Location	Date/Time	Fe	Na	CI B	loron H-3	I-131	Cs-134	Cs-137	Co-58	Co-60	Sb-125	I-131	Co-58	Cs-137	Co-60
Telltale No. 11 (Canal)	1/17/03 13:26			- <u></u>			3.03E-06	1.76E-05	1.66E-06	3.48E-06			3.91E-06	0.17	1.12
Telltale No. 13 (Canal)	12/12/02 17:30				2085		8.54E-05	4.10E-04			· .			0.21	•
Telltale No. 13 (Canal)	12/14/02 11:45		• • •		1.49E-0	1	8.63E-05	3.68E-04	+					0.23	
Telltale No. 13 (Canal)	1/17/03 13:28	•	48.4		1.92E-0	1	5.77E-05	2.66E-04	ļ	9.90E-07	2.12E-06			0.22	
Felltale No. 14 (Canal)	12/11/02 16:50				1703		5.18E-05	2.12E-04	1.11E-05				1.82E-05	0.24	• •
Telitale No. 14 (Canal)	12/14/02 6:00	1.00	• • • •		1.12E-0	1	7.11E-05	2.12E-04	9.92E-06	4.05E-06	•		1.67E-05	0.34	4.13
Felltale No. 14 (Canal)	1/17/03-13:30	1.1	69.7	· •.	1665 1.59E-0	1	5.02E-05	1.82E-04	2.97E-05	2.37E-05			7.01E-05	0.28	2.95
Felltale No. 15 (Canal)	1/17/03 13:30		40.7					7.34E-06			• .		•	0.00	,
Felltale No. 16 (Canal)	1/17/03 13:34		329		408 4.40E-0	2	3.31E-06	1.29E-05				· · · · · · · · · · · · · · · · · · ·		0.26	
AVERAGE CAN	AL DRAINS		122 -		1465 1.31E-0	ly system	5.11E-05	1.87E-04	(1.31E-05	8.06E-06	2.12E-06		2.72E-05	0.22	2.74
Ratio Pool Dra	ins:1 SFP			(0.97 0.92		0.025	. 0.077		0.060	2.74	0.71	0.0031	0.33	0.10
Ratio Canal Dra	ains:1 SFP		- ,	(0.63 0.68		0.023	0.086	-	0.008	0.22	0.00	0.0034	0.21	0.33

Note: Bolded values were used in averages. Mode 6 for 1R15 was established 10/21/02 22:42. Units for concentrations of radionuclides are presented in microcuries per milliliter (?Ci/mL)

TABLE 3B: SUMMMARY OF SPECIAL ANALYSIS RESULTS OF SALEM UNIT 1 SPENT FUELPOOL LINER DRAINS AFTER SNAKING (TELLTALE DRAINS)

· · · ·	Sample		Concentra	tion, ppn	1		A	ctivity at S	Sample Ti	me, µCi/m	Ŀ		Mode 6	μ Ci/mL	Cs-134/	Co-58/
Sample Location	Date/Time	Fe	Na	Cl	Boron	H-3	I-131	Cs-134	Cs-137	Co-58	Co-60	Sb-125	1-131	Co-58	Cs-137	Co-60
Telltale No. 1								<u> </u>								
Ave Before Snaking			4.76		2294	1.91E-01		7.95E-05	1.73E-04	2.30E-05	5.40E-05	9.32E-06	· ·	4.43E-05	0.45	0.82
After Snaking	1/29/03 10:30		3.04		2242			7.65E-05	1.70E-04	2.91E-05	6.90E-05	2.63E-05		7.71E-05	0.45	1.12
Telltale No. 2																
Ave Before Snaking	· ·		4.74		2265	1.89E-01		1.07E-04	1.63E-04	1.41E-05	1.79E-05	1.80E-05		2.64E-05	0.56	1.49
After Snaking	1/29/03 10:25	· · · ·	2.84		2229	1.97E-01		7.04E-05	1.50E-04	5.51E-05	4.85E-05	1.26E-05	•	.1.46E-04	0.47	3:01
	1/29/03 10:50		2.84		2230	1.76E-01		7.23E-05	1.49E-04	9.24E-05	7.31E-05	1.27E-05		2.45E-04	0.48	3.35
	1/29/03 14:00		2.42		2237	2.01E-01		7.60E-05	1.50E-04	7.36E-05	5.97E-05	1.24E-05	· ·	1.95E-04	0.51	3.27
	2/3/03 14:30		3.10	- * <u>-</u>	2241	2.00E-01		9.33E-05	1.87E-04	4.03E-05	5.46E-05	8.27E-06		1.12E-04	0.50	2.05
Telltale No 3			•												. ,	
Ave Before Snaking			3.44		2261	1.79E-01	3.59E-06	1.15E-05	4.75E-05	· ·	2.82E-05		3.29E-04		0.24	
After Snaking	1/29/03 9:45		5.42	· .	- 2217			3.36E-05	9.70E-05	8.44E-06	6.12E-05	1.46E-05		2.23E-05	0.35	0.36
Telltale No 5	1				-				· · · ·			· · ·				
Ave Before Snaking			3.34	• • •	2295	1.62E-01	2.92E-06	2.25E-05	7.35E-05		4.17E-05		2.75E-04	-	0.31	
After Snaking	1/29/03 10:15		8.08		2349			4.26E-05	1.48E-04		1.00E-04				0.29	

TABLE 3B (continued): SUMMMARY OF SPECIAL ANALYSIS RESULTS OF SALEM UNIT 1 SPENT FUEL POOL LINER DRAINS AFTER SNAKING (TELLTALE DRAINS)

·	Sample		Concentra	tion, ppn	1	·	A	ctivity at S	Sample Ti	me, μCi/m	L ·		Mode 6	μCi/mL	Cs-134/	·Co-58/
Sample Location	Date/Time	Fe	Na	CI	Boron	H-3	1-131	Cs-134	Cs-137	Co-58	Co-60	Sb-125	I-131	Co-58	Cs-137	Co-60
Telltale No 6					· ·											
Ave Before Snaking			7.84		2312	1.63E-01		3.48E-05	1.17E-04	3.29E-06	7.65E-05	2.57E-05	7.00E-04	5.54E-06	0.29	0.20
After Snaking	1/29/03 12:00		.5.40		2206			3.98E-05	2.72E-04	8.48E-07	7.43E-05	7.23E-06		2.25E-06	0.15	0.0
Telltale No 8	1		· · ·									<u> </u>			·	
Ave Before Snaking			12.1		2297	1.71E-01	5.37E-06	7.37E-05	3.58E-04		1.69E-04	5.89E-05	5.06E-04		0.21	
After Snaking	1/29/03 10:25		12.4	<u> </u>	2123	· .		6.28E-05	2.91E-04		3.25E-05	7.74E-06			0.22	<u> </u>
Telltale No 9			· · ·	· · .							- <u>-</u>		·			
Ave Before Snaking			9.16		2066	1.92E-01	4.24E-06	6.19E-05	3.11E-04		5.86E-05	6.62E-06	4.29E-04	· .	0.20	
After Snaking	1/29/03 10:35		. 1	· · · ·	-2145			5.53E-05	3.23E-04	-	1.01E-04	•			0.17	
Telltale No 13														· · · · ·		
Ave Before Snaking	· · · · · · · · · · · · · · · · · · ·		48.4		2085	1.71E-01		7.65E-05	3.48E-04		9.90E-07	2.12E-06	·		0.22	
After Snaking	1/29/03 13:35				1806	1.93E-01		5.19E-05	2.44E-04		2.22E-06	4.30E-06			0.21	
Telitale No 14						,							• • .			
Ave Before Snaking			69.7		1684	1.35E-01		5.77E-05	2.02E-04	1.69E-05	1.39E-05		·	3.50E-05	0.29	· 3.54
After Snaking	1/29/03 9:08		66.0		1637	.1.79E-01	- <u></u>	3.78E-05	1.74E-04	2.18E-05	9.02E-05	2.52E-05	<u> </u>	5.76E-05	0.22	0.64

46

Felltale		LR.		Na,	K.	Ca,	Mg,	Zn.	Cr,	Ni,	Fe.	Boron,		Act	tivity: μCi	/mL		134Cs/	58C
No.	Date/Time	mL/min	pН	ppm	ppm	ppm	ppm	ppb	ppb	ppb	ppb	ppm	³ H	- ¹³⁴ Cs	137Cs	58Co	⁶⁰ Co	¹³⁷ Cs	60 C
No. 1	8/27/03 8:30		6.18	1.50	15.4	32.3	0.689	288	<u><8.06</u>	98.9	<u>≤</u> 7.15	2393	2.90E-01	1.86E-03	2.84E-03	2.68E-04	1.42E-03	0.65	0.1
	9/24/03 9:19			5.60	4.06	28.2	0.574	312	<u><8.06</u>	113	84.7	2371		1.67E-03	2.64E-03	2.24E-04	1.65E-03	0.63	0.1
	10/22/03 2:20		6.19	0.94	1.55	220	0.548	316	12.2	139	395	2364	2.61E-01	1.67E-03	2.78E-03	1.88E-04	1.79E-03	0.60	0.
	11/20/03 10:30		6.06	0.65	1.34	205	0.510 ·	. 414	10.6	36.7	657	2367	3.27E-01	7.51E-04	1.26E-03	3.67E-05	3.70E-04	0.59	0.
	12/22/03 9:00		No san	ıple					· · ·			· · · ·		-				· · ·	
	1/14/04 8:45	<1	No san	nple									· ·						ŀ
No. 2 [.]	8/27/03 8:30		6.84	4.52	9.35	• 62.1	1.70	- 266	⁻ 9.66	45.5	21.5	2264	3.06E-01	1.02E-03	1.64Ē-03	1.23Ė-04	6.99E-04	0.62	0.
	9/24/03 9:19			14.7	8.38	48.8	1.81	53.6	<u><8.06</u>	26.0	94.3	2278		6.17E-04	9.59E-04	.5.12E-05	3.35E-04	0.64	0.
	10/22/03 2:20		6.74	2.70	8.25	53.6	1.50	71.0	11.8	53.7	2155	2310	3.26E-01	8.19E-04	1.33E-03	5.60E-05	6.54E-04	0.61	0.
	11/20/03 10:30	····	6.19	0.79	7.34	21.3	0.60	- 626	13.5	33.7	2668	2347	3.20E-01	6.72E-04	1.12E-03	ND	4.00E-04	0.60	1.
	12/17/03 9:00		6.77	2.08								2274	3.21E-01	3.46E-04	6.16E-04	ND	1.62E-04	0.56	
	1/6/04 12:20		6.67	1.60								2268.	4.36E-01	ND	ND	ND	ND	ND	
	1/6/04 13:00	500										· · · ·	····						÷
	1/14/04 8:00	500	6.66	1.70		· ·					•	2319		2.45E-04	4.60E-04	5.50E-06	1.29E-04	0.53	0.
No. 3	8/27/03 8:45		No san	nple					· ·	·									· ·
	9/26/03 10:40				59.6	57.2	1.95	6196	<u><</u> 8.06	10.8	≤7.15	2282		3.00E-04	5.62E-04	ND	3.48E-05	0.53	
	10/23/03 0:50		6.94	2.40	102	55.0	• 1.82	11,900	10.1	≤10.0	53.5	2294	2.67E-01	5.33E-04	1.01E-03	ND	3.89E-05	0.53	
	11/20/03 10:30		6.78	3.39	.18,3	70.5	2.08	534	11.4	≤10.0	1132	2463	2.93E-01	5.37E-04	8.86E-04	ND	8.68E-05	0.61	
	12/17/03 9:00		7.14	5.33								2210	•	2.38E-04	4.67E-04	ND	8.93E-05	0.51	
	1/14/04 8:05	0.14								,									
No. 4	8/13/03 13:00		Insuffic	cient sam	ole														
	9/26/03 10:40		•		250	61.9	2.30	113 -	<u>≤</u> 8.06	<u>≤</u> 10.0 .	90.3	2279		4.05E-04	6.69E-04	ND	6.17E-05	0.61	
	10/23/03 0:50		7.05	4.30	15.0	83.8	2.91	954	9.91	<u>≤</u> 10.0	271	2378	2.80E-01	6.09E-04	1.03E-03	ND	9.27E-05	0.59	
	11/20/03 10:30		7.16	6.20	21.0	115	4.00	861	11.3	≤10.0	13.5	2254	3.12E-01	2.57E-04	5.32E-04	ND	4.41E-05	0.48	
	12/17/03 9:00		7.33	5.73								2224	3.21E-01	2.15E-04	4.62E-04	ND	5.85E-05	0.46	

,

				TABI	LE 4:	UNII	1 TE	LLTA	LE A	NAL	YSIS S	SUMN	ARY,	Contin	ued	•	 	••••	
Telltale		LR,		Na,	К,	Ca,	Mg,	Zn,	Cr,	Ni,	Fe,	Boron,			tivity: μCi			¹³⁴ Cs/	58Co/
No.	Date/Time	mL/min		ppm	ppm	ppm	ppm	ppb	ppb	ppb	ppb	ppm	H	¹³⁴ Cs	¹³⁷ Cs	58Co	⁶⁰ Co	¹³⁷ Cs	⁶⁰ Co
No. 5	8/27/03 8:30		6.90	. 4.01	11.7	67.5	2.36	52.8	8.71 .	<u>≤10.0</u>	26.7	2296	2.93E-01	4.74E-04		ND	6.55E-05	0.56	· 7.
	9/26/03 10:40.		н Н. 1	24.5	15.7	108	3.35	573	<u><</u> 8.06	<u>≤10.0</u>	<u>≤</u> 7.15	2260	1. A.	3.07E-04	5.95E-04	ND	7.92E-05	0.52	-
	10/23/03 0:50		7,16	6.40	17.4	119	4.02	1253	10.1	<u>≤</u> 10.0	24.6	2054	2.25E-01	2.52E-04	5.26E-04	ND	8.78E-05	.0.48	
	11/20/03 10:30		7.17	6.00	13.3	119	3.92	1514	9.62	12.2	16.4	2246	3.16E-01	2.18E-04	4.88E-04	ND	6.44E-05	0.45	-
	12/17/03 9:00		7.64	6.70	11 A. A. A.	•.	•			,		2203	3.18E-01						
:	1/14/04 8:15	0.18		·			· · .				. ·								
No. 6	8/27/03 8:30	· · .	7:16	7.03	15.3	99.0	3.72	≤11.3	≤8.06	16.7	19.3	2231	2.87E-01	2.83E-04	6.17E-04	2.14E-05	1.15E-04	0.46	0.19
· ·	9/26/03 10:40			30.8	223	220	3.82	31.6	<u>≤</u> 8.06	<u><10.0</u>	<u>≤</u> 7.15	2236		2.05E-04	5.23E-04	ND	6.02E-05	0.39	- ,
	10/23/03 0:50		7.21	6.40	19.6	. 130	3.73	59.4	11.8	10.1	19.8	2124	2.17E-01	1.69E-04	4.18E-04	ND	6.30E-05	0.40	
. 7	11/20/03 10:30		7.24	7.21	21.0	. 130	. 3.81	55.2	11.3	≤10.0	.22.0	2250	3.05E-01	2.13E-04	5.46E-04	ND	7.49E-05	0.39	
	12/17/03 9:00		7.59	6.68					· · · ·			2190	3.21E-01	1.86E-04	4.20E-04	ND	5.80E-05	0.44	-
	1/14/04 8:20	0.27			. ÷						· .		1947 - 19						
No. 8	8/27/03 8:30			5,56	13.6	108	3.27	534	8.28	15.5	170	2279	2.89E-01	3.33E-04	6.63E-04	ND	1.00E-04	0.50	-
<u> </u>	9/26/03 10:35			÷.	8.05	135	2.99	453	<u>≤8.06</u>	≤10.0	16.6	2263	2.97E-01	2.41E-04	5.20E-04	1.43E-05	1.51E-04	0.46	0.09
	10/23/03 0:50		7.16	4.90	9.47	108	3.06	330	÷-11.4 °,	21.3	2114	2159	2.68E-01	2.66E-04	5.19E-04	2.22E-05	2.12E-04	0.51	0.10.
	11/20/03 10:30		7 18	5.98	21.2	118	3.64	309	11.6	19.0	2561	2264	3.17E-01	2.96E-04	6.49E-04	ND	1.52E-04	0.46	-
	12/17/03 9:00		7.40	5.30		· .						2110	3.37E-01	2.65E-04	5.54E-04	ND	1.62E-04	0.48	-
	1/14/04 8:25	0.68	•			• •				· ·		4						•	· · · ·
No. 9	8/27/03 8:30	· · ·			15.2	185	3.70	13,390	9.97	109	<u><</u> 7.15		1.19E-01	7.58E-05	2.95E-04	ND	2.18E-04	0.26	
	9/26/03.10:35				15.6	145	4.02	16,400	≤8.06	91.9	·19.2	2445							
	10/23/03 0:50		No san	ple			· ·	-	;									•	
	11/20/03 10:30		No sair	ple						· · · ·					·				
	12/17/03 9:00		No san	ple															
	1/14/04 8:45	<1	No sam	ple									5 g.	-		· .			
No. 10	1/14/04 8:45	<1	No san	iple ·	- <u>-</u>						1. 1. je	1.1					аналанан аларынан ала Солонулган аларынан ал		
No. 11	1/14/04 8:45	· <1	No sam	ple				· · · ·							10 A. 1				¥.•
No. 12	1/14/04 8:45	<1	No san	ıple														1. j. n.	
No.13	1/14/04 8:30	<1	No sam	iple								· · · ·							
No. 14	1/14/03 8:35		No sam				<u> </u>								- <u></u>				
No. 15	1/14/04 8:45	· ·	No sam											<u> </u>		· · ·		•	
No. 16	1/14/04 8:45		No sam	,					· · ·				· · · ·			· · · · ·	<u> </u>	· · ·	
No. 17	1/14/04 8:45	· .	No sam																· · ·

February 24, 2003 TABLE 5: SALEM UNIT 1 SPENT FUEL POOL ANALYSIS SUMMARY

T	-		 	·				
	Boron,		Ac	tivity, μCi	/mL		¹³⁴ Cs/	⁵⁸ Co/
Date/Time	· ppm [†]	³ H	¹³⁷ Cs	⁶⁰ Co	⁵⁸ Co	⁶⁰ Co	¹³⁷ Cs	⁶⁰ Co
08/07/03 14:40	2349		2.90E-03	4.32E-03	6.12E-04	2.86E-03	0.67	0.21
08/13/03 13:13	7		2.88E-03	4.40E-03	6.08E-04	2.85E-03	0.66	0.21
08/14/03 9:15	2353		1 . N					
08/20/03 8:00	2364	194 	3.10E-03	4.80E-03	5.71E-04	2.86E-03	0.65	0.20
08/28/03 9:20	2374 ·		3.28E-03	5.07E-03	5.36E-04	3.19E-03	0.65	0.17
09/04/03 8:00	-2359	2.73E-01	3.07E-03	4.91E-03	4.75E-04	3.05E-03	0.63	0.16
09/18/03 8:45	2370		3.39E-03	5.29E-03	4.68E-04	3.28E-03	0.64	0.14
09/25/03 10:30	2350	·	3.08E-03	4.75E-03	4.04E-04	2.89E-03	0.65	0.14
10/02/03 9:55	2351	2.23E-01	3.12E-03	4.92E-03	4.26E-04	2.92E-03	0.64	0.15
10/09/03 0:55	2358	1997 - 19	3.11E-03	4.83E-03	3.41E-04	2.92E-03	0.64	0.12
10/16/03 8:55	2366		3.53E-03	5.45E-03	3.48E-04	3.08E-03	0.65	0.11
10/22/03 22:15	2345					1997 - N. 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 199 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		
10/23/03 0:05	2.19		3.39E-03	5.45E-03	3.22É-04	3.10E-03	0.62	0.10
10/30/03 0:30	2348	3.20E-01	6.05E-04	1.06E-03	5.83E-05	5.69E-04	0.57	0.10
11/06/03 5:35	2357		1.69E-04	3.06E-04	1.52E-05	1.79E-04	0.55	0.085
11/12/03 23:00	2375				1 a			
11/20/03 8:15	2383		6.94E-05	1.26E-04	6.94E-06	1.09E-04	0.55	0.063
11/26/03 12:50	. 2370 .	3.02E-01						
12/04/03 8:45	2339		6.01E-05	1.01E-04	ND	1.11E-04	0.60	<u> 1</u>
12/11/03 9:15	2329	· ·	3.83E-05	7.53E-05	3.83E-06	6.94E-05	0.51	0.055
12/18/03 8:50	2325 .		3.50E-05	6.49E-05	ND ·	5.81E-05	0.54	· · · -
12/23/03 8:10	2336		3.74E-05	6.33E-05	ND	7.37E-05	0.59	_
01/01/04 8:30	2307		3.87E-05	7.34E-05	ND	7.44E-05	0.53	. - 1
01/08/04 8:05	2327	3.32E-01	2.97E-05	4.49E-05	ND	4.06E-05	0.66	-
01/15/04 8:05	2333	·.	3.28E-05	4.74E-05	ND	7.89E-05	0.69	- 1
01/21/04 13:15	2298			· · ·	1			
01/21/04 17:10	2299							· · ·
01/22/04 8:15		3.25E-01	2.76E-05	6.13E-05	ND	7.68E-05	0.45	
01/29/04 8:10	2313		2.82E-05	6.36E-05	ND	9.14E-05	0.44	-

Appendix B

1.1

Section C – ISRA Non-Applicability Application (Station Operational History)

Exhibit C Salem and Hope Creek Generating Station Assessments

Salem Generating Station Assessment

÷.,

Table of Contents

11

1.	Introduction	1
2.	Salem Generating Station Characteristics	2
	2.1. Station Description and Setting	2
	2.2. Station Processes and Operations	2
	2.2.1. Nuclear Electric Generating Process	2
	2.2.2. Support Processes and Operations	
	2.3. Environmental Setting	
	2.3.1. Surrounding Land Use and Surface Waters	17
	2.3.2. Topography and Surface Drainage	18
	2.3.3. Geology	. 18
	2.3.4. Hydrogeology	19
	2.4. Environmental Characterization and Remedial Activities	20
3.	Liability Screening, Characterization, and Valuation	21
	3.1. Candidate Liability Screening and Identification	
	3.2. Liability Characterization	
	3.3. Liability Valuation	22
	3.3.1. Decision Tree	22
	3.3.2. Remedy Probability Assignments and Remedy Cost Calculations	22
	3.3.3. Liability Expected Value Computation	
Bib	oliography	24
Fic	jures	
-	gure 2-1: Map Showing the Salem and Hope Creek Generating Station	28
Fig	gure 2-2: Major Operational Features Associated with the Salem Generating	
	tion	
Fig	gure 2-3: Pressurized Water Reactor	30
Fig	gure 2-4: Salem Generating Station Operations	31
Ta	bles	
	ble 2-1: Hazardous Wastes On Site	
	ble 2-2: Current Hazardous Substances and Related Pollution Prevention System	
	ble 2-3: Historic Operations and Related Pollution Prevention Systems	
	ble 2-4: Pollution Prevention Plans	
	ble 2-5: Summary of Discharge Investigations and Remediation Cases	
	ble 3-1: Liability Screening—Salem Generating Station	
	ble 3-2: Liability Characterization—Salem Generating Station	
	ble 3-3: Liability Decision Tree—Salem Generating Station	
Tal	ble 3-4: Liability Valuation—Salem Generating Station	51

Appendix to Exhibit C

i

Introduction

1.

Public Service Electric and Gas Company ("PSE&G") is making an application to the New Jersey Department of Environmental Protection ("NJDEP") for a determination of the applicability of the requirements of the Industrial Site Recovery Act ("ISRA") with respect to PSE&G's transfer of generation-related assets to an affiliate. This application contains detailed information on PSE&G's generation-related assets, identifies potential environmental liabilities related to these assets, calculates the expected value of these liabilities, and presents relevant financial information concerning the affiliate.

PSE&G's generation-related assets include steam electric generating units and combustion turbine electric generating units. The steam electric generating units use both fossil and nuclear fuels. The Salem Generating Station ("Salem") consists of two nuclear-fueled steam electric generating units and one combustion turbine unit fueled by distillate oil. Nuclear-fueled steam electric generating units present a potential for radioactivity to impact the environment. Because of this and other potential impacts, the United States Nuclear Regulatory Commission ("USNRC") has been empowered to strictly regulate all aspects of Salem related to radiological controls. The Appendix to this Exhibit describes this strict regulatory program and how it applies to the design, construction, licensing, operation, monitoring, and decommissioning of Salem so as to ensure that potential radiological impacts are minimized and addressed in the unlikely event that this becomes necessary. This Exhibit describes all major aspects of Salem's electric generating processes, including those associated with radioactivity. This Exhibit presents the expected value of potential environmental liabilities associated with the non-radiological aspects of Salem's electric generating process. However, the expected value of any potential environmental liabilities associated with radioactivity is not calculated for the reasons discussed in the Appendix to this Exhibit.

Although unique features exist, steam electric generating stations that use nuclear fuel employ the same basic processes as are employed by steam electric generating stations that use fossil fuels. Since many of the processes conducted at Salem are the same as those conducted at PSE&G's other steam electric generating stations, the information set forth in Exhibit B to the Memorandum in Support of Applicability Determination provides a useful reference for understanding certain processes present at Salem. Based on the station-specific information as supplemented by Exhibit B, Exhibit C to the Memorandum in Support of Applicability Determination environmental liabilities for the processes not associated with releases of radioactivity and calculates their expected value using the methodology and approach described in Exhibit A to the Memorandum in Support of Applicability Determination.

2. Salem Generating Station Characteristics

2.1. Station Description and Setting

PSE&G operates and is a part owner of Salem which is located on Artificial Island in Lower Alloways Creek Township, Salem County, New Jersey (see Figure 2-1). Salem is jointly owned as follows: PSE&G (42.59 percent), Philadelphia Electric Company ("PECO") (42.59 percent), Atlantic Electric Company (7.41 percent), and DELMARVA Power and Light Company (7.41 percent). Salem is situated adjacent to the Hope Creek Generating Station ("Hope Creek" and together with Salem, the "Stations"), which is also located on Artificial Island. The Stations are located on the eastern bank of the Delaware River. Salem is approximately 26 acres in size. At any one time during the operational history of Salem, the electric generation and ancillary facilities occupied only a portion of the property.

PSE&G owns and controls an approximately 600-acre area of Artificial Island that is situated adjacent to and surrounds Salem and Hope Creek. This area contains certain administrative and support facilities that are used by both Salem and Hope Creek, the Hope Creek Switchyard, the Salem Switchyard, and certain undeveloped vacant land. With the exception of the Salem Switchyard, this area is evaluated as part of the Hope Creek Generating Station.

The zoning classification for the Salem property is industrial. The land adjacent to Salem is zoned for industrial and residential or agricultural use, but falls under statutes that restrict development.

2.2. Station Processes and Operations

Salem is composed of two nuclear generating units and one combustion turbine unit fueled by distillate oil. Commercial operations of Unit 1 commenced in 1976 and commercial operations of Unit 2 commenced in 1981. The combustion turbine unit commenced operations in 1972. The nuclear generating units operate as base load units and the combustion turbine unit is a peaking unit. Salem has a combined generating capacity of approximately 2,250 MW. Over its operational life Salem has experienced no significant changes in its operation. Figure 2-2 is a site plan showing the major operational features associated with Salem.

Section 2.2.1 describes the nuclear electric generating process, while Section 2.2.2 describes the support processes and operations, including those associated with electric generation and those that support electric generation.

2.2.1. Nuclear Electric Generating Process

The primary difference between nuclear fuel electric generation and fossil-fueled electric generation is that a nuclear reactor replaces the boiler to generate heat for the production of steam to drive the turbine generator. Salem's reactors are Pressurized

Water Reactors ("PWR"), with a generating capacity of 1,106 MW each (see Figure 2-3).

Water used as reactor coolant in the production of electricity is obtained from on-site wells and demineralized using resins to remove impurities prior to introduction to the system. Reactor coolant is pumped at high pressure through the reactor core in a closed loop system called the Reactor Coolant System ("RCS"), described in further detail below. The reactor coolant is heated by the reactor core and is then pumped under high pressure from the reactor core to the steam generators, where it heats the water in the steam generator to produce steam in a second closed loop system, referred to as the secondary cooling system. The reactor coolant recirculates from the steam generators back to the reactor core to continue the cycle. Once the steam is produced in the steam generators, the nuclear generating unit processes are essentially the same as the fossilfueled steam electric generating processes. The steam produced in the steam generators is transferred to the turbine generator to generate electricity. Exhaust steam from the turbine passes into the condensers where it is cooled and condensed using Delaware River water as non-contact cooling water in the Circulating Water System ("CWS"). The condensate is returned to the steam generators as feed to continue the cycle. After passing once through the condenser, the non-contact cooling water is returned to the River.

Gases are removed from the condenser to improve steam cycle efficiency. There are stationary radiological monitors at the condenser, which continuously monitor the removed gases for radioactivity. This monitoring is described in the Appendix to this Exhibit.

Reactor coolant becomes radioactive during this process as a result of fission products from fuel rods, activation of corrosion products, and radiolytic decomposition of the reactor coolant. Salem is designed to control this radioactivity and to provide for its appropriate management. A portion of the reactor coolant is continuously let down and treated in demineralizers to remove both radioactivity and impurities in order to maintain reactor coolant quality. Most of this reactor coolant is returned to the system, but the letdown process does generate certain liquid, solid, and gaseous radioactive wastes. Radioactive and other gases accumulate in the reactor coolant and are removed by degassing during the letdown process. These gases are managed as gaseous radioactive wastes. Small amounts of the reactor coolant are also periodically removed from the system to maintain equilibrium and are managed as a liquid radioactive wastes is discussed below.

Nuclear generating stations are designed and constructed to incorporate a series of overlapping physical barriers and boundaries to contain radioactivity to protect public safety and the environment. This overlapping system of barriers and boundaries embodies the "defense in depth" principle that constitutes the foundation for the USNRC licensing requirements for nuclear generating stations. Barriers are physical containments include various components of the Nuclear

Steam Supply System ("NSSS"), including but not limited to the fuel rods and the RCS; the reactor containment; and the Radiologically Controlled Area ("RCA"). The boundaries, which are defined areas within which specified radiological controls are required, are the Protected Area and the Owner Controlled Area ("OCA"). These barriers and boundaries are discussed below.

2.2.1.1. Nuclear Steam Supply System

The NSSS is the system by which steam is generated at Salem to produce electricity. It consists of the fuel rods and the RCS, and is designed to function as a barrier to contain radioactivity, and thereby prevent any unplanned releases. The function of the fuel rods and the RCS and associated systems as barriers is described below.

2.2.1.1.1. Fuel Rods

The PWR uses uranium dioxide as fuel. Pellets of uranium dioxide in a ceramic matrix are sealed inside 12-foot-long zirconium-alloy tubes called fuel rods, which are arranged in bundles called fuel assemblies. The fuel assemblies are inserted vertically into the reactor vessel (which is a large carbon steel tank approximately seven inches thick with a stainless steel liner, filled with water) in a precise grid pattern known as the reactor core.

The ceramic matrix provides voids that allow for thermal and gaseous expansion within the fuel rods during the fission process without deforming the fuel rods. The zirconium alloy is used for the fuel rods due to its strength and corrosion resistance. The fuel rods are designed to contain fission gasses generated during the fission process and, therefore, most of the radioactivity. The fuel rods prevent the contact of the reactor coolant water with the fuel and limit the release of fission products to the reactor coolant water. The small amounts of radioactivity released to the reactor coolant are managed as described below in connection with the letdown process for maintaining reactor coolant quality and RCS equilibrium. Thus, the fuel rods provide the first barrier for the control of radioactivity.

2.2.1.1.2. Reactor Coolant System

The RCS includes: the reactor vessel; four coolant loops connected in parallel to the reactor vessel, each of which contains a circulating pump and a steam generator; and a pressurizer. The pressurizer includes relief valves and a relief tank and appurtenant piping. These elements compose the closed loop system, in which heat is transferred from the reactor to the reactor coolant for the steam generation process. Thus, this system contains or transports all fluids coming from, or going to, the reactor core. All components of this system are constructed of or lined with corrosion-resistant stainless steel and are designed to contain the pressure of the system. The RCS is designed to accommodate water volume, temperature, and pressure changes. Protection from overpressure of the RCS is provided by the pressurizer relief system. The pressurizer relief system releases steam from the top of the pressurizer, which is quenched and directed to the pressurizer relief tank. The resultant liquid in the pressurizer relief tank is managed in the radioactive liquid waste system.

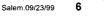
The RCS is a closed loop system, located entirely within the Reactor Containment Building, and constitutes the Reactor Coolant Pressure Boundary ("RCPB"), the second barrier for the control of radioactivity.

2.2.1.2. Reactor Containment Building

The Reactor Containment Building contains the NSSS, which as indicated above includes the fuel rods and the RCS. It is a domed, reinforced concrete structure and extends about 190 feet above grade. The Reactor Containment Building has a 16-foot-thick concrete base, which is constructed atop a 30-foot-thick concrete foundation. The containment building is constructed of reinforced concrete; the walls are 4.5 feet thick and the hemispherical dome is 3.5 feet thick. A steel liner, ranging from 0.25 to 0.75 inches thick, is attached to the interior wall of the containment building for impact protection. The underground portion of the containment building is waterproofed with an impervious membrane to prevent seepage of groundwater.

The Reactor Containment Building, its access openings and penetrations, and related safety systems are virtually air-tight. The Reactor Containment Building is designed, consistent with applicable USNRC regulatory requirements, to contain the energy released and the resultant pressure build-up following a loss-of-coolant accident ("LOCA") as well as to contain the atmosphere of the building under normal operating conditions. Under operating conditions, it is isolated from the ambient atmosphere, and there are no gaseous releases from the Reactor Containment Building. Periodic grab samples of the air within the Reactor Containment Building are collected and analyzed. The Reactor Containment Building contains systems to filter the air, if necessary, and then to purge the air through the Plant Vent. Releases from the Plant Vent are continuously monitored by Salem's Radiation Monitoring System, and periodic grab samples are collected and analyzed pursuant to Salem's radiological effluent release program, as described in the Appendix to this Exhibit.

The Reactor Containment Building is specially controlled and monitored to ensure the integrity of the equipment, processes, and structures it contains, to control exposure to radioactivity, and to prevent unplanned releases of radioactivity. It has secured ingress and egress points to help achieve these objectives. Prior to leaving, personnel and equipment are monitored for radioactive contamination. This monitoring is conducted using portable survey meters. In the event of an elevated reading, the source of the contamination would be identified and the individual or equipment would be decontaminated prior to leaving the Reactor Containment Building.


The Reactor Containment Building constitutes the third barrier for the control of radioactivity.

2.2.1.3. Radiologically Controlled Area

The Radiologically Controlled Area ("RCA") is an area at Salem that is specially designed, controlled, and monitored to ensure the integrity of the equipment, processes, and structures it contains; to control exposure to radioactivity; and to prevent transfer of radioactivity beyond the RCA. While all areas of the RCA are subject to control, most

areas within the RCA do not have elevated levels of radioactivity. Those areas within the RCA that have elevated levels of radioactivity are subject to special controls related to access, as discussed below. Radiation monitoring conducted in the RCA is discussed in the Appendix to this Exhibit.

All of the equipment, processes, and structures discussed above in Sections in 2.2.1.1 and 2.2.1.2 are located within the RCA. The RCA also contains other equipment, processes, and structures. In addition to the Reactor Containment Building, the structures within the RCA include the auxiliary buildings and the fuel handling buildings. These buildings are constructed of reinforced concrete. The auxiliary buildings house radioactive waste handling and management systems and certain safety systems, which are discussed below. The RCA also houses other auxiliary systems such as fire protection systems, component cooling systems, and ventilation systems. The auxiliary and fuel handling buildings' ventilation systems are designed to maintain a slight negative pressure within these buildings to ensure that no unmonitored releases of airborne radioactivity will occur.

All areas within the auxiliary and fuel handling buildings that potentially have radioactivity have ventilation systems that route ambient air to the Plant Vent (located at the top of the containment building) for controlled and monitored release to the environment. There are stationary radiological monitors at the Plant Vent that continuously monitor for radioactivity. Periodic grab samples are also collected from the Plant Vent and analyzed for radioactivity. These monitoring programs are described in the Appendix to this Exhibit.

The fuel handling buildings contain the new fuel storage areas and the spent fuel pools. New fuel is stored in strategically located, separate dry concrete storage vaults in specially designed fuel storage racks. The concrete storage vaults protect the fuel from any design basis accidents. The storage racks are configured to prevent a fission chain reaction of the stored fuel. As stored, the new fuel has very low levels of natural radioactivity.

Similar to new fuel, spent fuel is stored in the strategically located pool with concrete walls that protect the spent fuel from any design basis accidents. The spent fuel is stored in a pool of borated water in specially designed storage racks configured to prevent a fission chain reaction of the stored fuel. Boron is added to the water as an additional means to absorb neutrons, further reducing the potential for fission to occur in the spent fuel pool. The borated water is recirculated to cool the spent fuel. The water from the spent fuel pool is routed to demineralizers and heat exchangers and then returned to the pool. Fuel is placed in and removed from the reactor in accordance with the operating license Technical Specifications and Station operating procedures.

Approximately every 18 months, 30 to 50 percent of fuel rods are removed from each reactor vessel and transported within enclosed structures within the RCA for storage in the spent fuel pool. Following safe shutdown of the reactors, the removal process involves the following steps: (1) the reactor vessel head is removed and stored inside the Reactor Containment Building using a specially designed, in-situ crane; (2) the reactor vessel cavity is filled with borated water; (3) the spent fuel rods are removed from the reactor vessel using the in-situ crane and placed in borated water in a specially designed canal, which is equipped with rails; (4) the spent fuel rods are directed via rail through the canal to the spent fuel pool in the fuel handling building; and (5) the spent

fuel rods are removed from the canal in the fuel handling building using a specially designed in-situ crane, which places them in the spent fuel pool. A similar process is used to move new fuel from the new fuel storage area to the reactor vessel.

Once the refueling process is complete, excess water from the reactor vessel cavity and the water from the canal are drained and stored for reuse in the fuel handling process. Enhanced radiological controls, including enhanced radiation monitoring, are implemented throughout the refueling process pursuant to USNRC requirements.

The RCA has a single, monitored ingress and egress point (the control point) to control normal access to the RCA and to prevent the transfer of radioactivity beyond the RCA. Controls on the ingress are discussed below. Prior to leaving, personnel and equipment are monitored for radioactive contamination. This monitoring is conducted by both radiation protection personnel and stationary electronic monitoring devices. In the event of an elevated reading, the source of the contamination would be identified and the individual or equipment would be decontaminated prior to leaving the RCA. This monitoring is discussed in the Appendix to this Exhibit.

The RCA constitutes an additional barrier for the control of radioactivity from Salem.

2.2.1.4. Protected Area

The Protected Area is an area, common to both Salem and Hope Creek, inside the established security fence line. It encompasses the entire RCAs for both Salem and Hope Creek, as well as a designated area surrounding the RCAs. The security fence line consists of two separate fences: an inner fence and an outer fence. Each fence is constructed of seven-foot-high steel chain link fencing topped with one foot of barbed wire. The two fences are separated by a 25-foot area known as the "Isolation Zone." No personnel or equipment is permitted in the Isolation Zone. There are motion sensitive detectors located in the Isolation Zone to provide a continuous alarm function.

The entire Protected Area, including the Isolation Zone, is monitored by roving security patrols and a continuously operating closed-circuit television system, which provide information on movements of individuals and vehicles to the security force, which is on duty 24 hours a day. Stationary radiation monitoring devices are located throughout the Protected Area. These are discussed in the Appendix to this Exhibit.

The Protected Area has a single, secured ingress point, the primary purpose of which is to prevent unauthorized access to the Stations. This single ingress point also serves as the sole egress point to prevent the transfer of radioactivity beyond the Protected Area. Controls on ingress are discussed below. Prior to leaving, personnel and equipment are monitored for radioactive contamination. This monitoring is conducted by stationary electronic monitoring devices. In the unlikely event of an elevated reading, the source of the contamination would be identified, appropriate corrective action taken, and the incident reported to the USNRC.

2.2.1.4.1. Protected Area Access

As indicated above, the Protected Area is the area inside an established security fenceline, which encompasses the entire RCAs for both Salem and Hope Creek, as well as a designated area surrounding the RCAs, and which has a single, secured ingress and egress point. Personnel and vehicle access for the Stations is provided through a common point, the Security Center. Access is limited and strictly controlled in accordance with USNRC requirements. Personnel granted access to the Protected Area must be specially trained and have a security clearance or must be escorted by personnel with the required training and clearance. Escorts must remain with visitors at all times. All personnel entering the Protected Area must pass through a metal detector, an explosives detector, and sensitive radiation monitors. These devices ensure that no unauthorized materials are brought into the Protected Area. Drivers of vehicles seeking access to the Protected Area must pass through the same security systems as visitors on foot after which their vehicles are appropriately processed for entry and escorted to their destination by security personnel. As indicated above, movements of individuals and vehicles within the Protected Area are monitored by security cameras and roving patrols.

As also discussed above, ingress to the RCA is through a single point of entry (the "Control Point"). Individuals seeking access to the RCA must have first passed through the controls associated with entry to the Protected Area, discussed above. Radiation Protection Personnel are stationed at the entrance to the RCA and ensure that only authorized individuals gain access.

Individuals seeking access to the RCA must have been issued a Radiation Work Permit by Salem's Radiation Protection Department. Radiation Work Permits are issued only for specific tasks and activities and limit access to specified areas, all of which are indicated on the Permit.

Each individual entering the RCA must be equipped with a personal radiation monitoring device, the sophistication of which is dependent upon the work being performed and the areas being accessed. These monitors measure, record, and indicate a total radiation dose to which an individual is exposed while in the RCA. Certain of these monitors are equipped with an alarm function that activates when predetermined dose limits are approached.

2.2.1.5. Owner Controlled Area

The area owned and controlled by the Company outside the Protected Area is known as the Owner Controlled Area ("OCA"). The OCA contains a number of support operations, including the Stations' administrative support building, employee and visitor parking areas, contractor trailer facilities, and a network of roads. The area of the OCA immediately outside of and adjacent to the outer security fence is maintained as an "exclusion zone" by security personnel and is continuously monitored by security cameras. The OCA is also monitored by roving security patrols. This area provides an additional buffer between the Stations and the public at large.

2.2.1.6. Station Safety Systems

Salem has several systems that are designed to safely shut down the reactor, maintain adequate reactor cooling after shutdown, and contain radioactivity primarily for the purpose of ensuring the protection of the public and the environment in the event of a design basis accident. Salem has never experienced a design basis accident. Certain of these systems may be used to support safe, normal, shutdown operations.

2.2.1.7. Radioactive Waste Management Systems

Gaseous, liquid, and solid wastes are generated within the RCA. These wastes are managed as radioactive unless and until measurements demonstrate otherwise. Salem's radioactive waste management systems, typically referred to as "radwaste systems," provide for the collection, processing, monitoring, and release or disposal of radioactive material in liquid, gaseous, and solid form from Salem. Salem's Operating License requires that the radwaste systems be operated and maintained to ensure that the release of radioactivity is kept as low as reasonably achievable ("ALARA"). Salem's Operating License imposes limitations on all radiological effluents, compliance with which will ensure that the ALARA standard is met. Salem's operating procedures and the USNRC's requirements, as discussed in the Appendix to this Exhibit. A report of the monitoring results is filed with the USNRC and the BNE semi-annually. The radiological waste management system, in concert with Salem's radiation monitoring programs, ensures that any release of radioactivity is protective of public safety and the environment.

2.2.1.7.1. Gaseous Waste

Gases accumulate in the reactor coolant, are removed in the letdown process, as discussed above, and are then managed as a gaseous radioactive waste via the radioactive gaseous waste system. This system consists primarily of piping, waste gas compressors, and waste gas decay tanks. The gases removed in the letdown process are compressed and directed to the decay tanks, where they are stored for a discrete period of time to allow for decay of radionuclides. The gases in the decay tanks are sampled and analyzed pursuant to the radiological effluent release program to determine when appropriate radioactive decay has occurred. Once appropriate decay has occurred and requisite Station approvals have been received, the gases are released to the Plant Vent. Gaseous releases from the tank are monitored continuously, and an automatic shutoff valve will activate to terminate the release if predetermined setpoints are reached. All gaseous releases are also continuously monitored at the Plant Vent for gross radioactivity pursuant to Salem's Radiation Monitoring System are described in the Appendix to this Exhibit.

As previously discussed, the Reactor Containment Building purge system, and the auxiliary building and the fuel handling building ventilation systems, route and manage exhaust air (which may contain radioactivity) for release through the Plant Vent. These purge and ventilation systems include HEPA (high-efficiency particulate air) and

Salem.09/23/99 10

charcoal filtration, as necessary, to remove airborne particulates and certain gases prior to release of any gaseous effluent to the atmosphere. The management of the exhaust sa harri a carta

11

Salem.09/23/99

air through the Reactor Containment Building purge system and the auxiliary building and fuel handling building ventilation systems includes radiation monitoring which is described in the Appendix to this Exhibit.

2.2.1.7.2. Liquid Waste

Salem generates liquid radioactive wastes in the course of ordinary operations. These wastes are generated by leakage from equipment, system water sampling, intentional system bleeds, drainage, and dewatering of solid radioactive wastes. All liquid wastes generated within the RCA are handled as radioactive and managed through the Radioactive Liquid Waste System ("RLWS"). This system collects liquid wastes through a network of drains and pipes which direct the wastes to stainless steel holding tanks for management prior to reuse or discharge.

The liquid wastes in these RLWS tanks are sampled and analyzed for levels of radioactivity. If appropriate, the liquid wastes are treated to reduce radioactivity, using primarily filtration and/or demineralization. When treatment is complete, the wastes are transferred to stainless steel monitor tanks. The monitor tanks are isolated (to prevent the addition of more wastes), recirculated to mix the contents, and sampled to measure for radioactivity. The radioactivity level is evaluated against the radioactive effluent limitations contained in the Technical Specifications. If the radioactive effluent limitations are met and requisite Station approvals are received, the radioactive liquid waste may be manually released in a controlled manner from the monitor tanks to Salem's cooling water for discharge to the Delaware River. If the effluent limitations are not met, the wastes are subjected to further treatment. The RLWS discharge piping contains radiation monitors that will activate automatic isolation valves to terminate the discharge if predetermined setpoints are reached. As discussed in the Appendix to this Exhibit, the results of this liquid effluent sampling are reported to the USNRC and the BNE semi-annually.

2.2.1.7.3. Solid Waste

Solid radioactive wastes are generated from either dry or wet processes. Dry, solid radioactive wastes include materials such as removed components, anti-contamination clothing, ventilation filters, rags, and debris. These materials are collected throughout the RCA and accumulated in the radioactive waste handling area in the auxiliary building. These materials are then placed in USDOT-specification shipping containers (e.g., 55-gallon drums) that have been approved by the USNRC. Solid radioactive wastes generated from wet processes (e.g., demineralizer resins, water filters) are dewatered and placed in special USNRC and USDOT-specification shipping containers (e.g., casks). The area in which solid radiological waste is packaged and stored on site contains stationary instrumentation installed as part of the Radiation Monitoring System area-wide monitors that continuously measure ambient radioactivity levels. The results of this monitoring are displayed, recorded, and alarmed in Salem's Control Room. Documentation of these results is made available for USNRC inspection.

The outside of the solid radioactive waste shipping containers is surveyed for radioactive materials and radiation levels before transfer to a licensed radioactive

material transporter for delivery to the USNRC-licensed disposal site (e.g., Barnwell, S.C.). As discussed in the Appendix to this Exhibit, the volume of, and the quantity of radioactivity in, the radioactive solid waste sent off site for disposal are reported to the USNRC and the BNE semi-annually.

2.2.2. Support Processes and Operations

There are a number of processes and operations that support the nuclear electric generating process in addition to those described above. These additional processes and operations, for the most part, are located outside the RCA. Salem is designed and operated so that these additional processes and operations are not exposed to radioactive materials.

Support processes and operations began at Salem circa 1970 in connection with construction activities. The function of these operations shifted from construction support to operations support when the nuclear units began commercial operation. Other support processes and operations that were not required for construction support became operational in 1976. There have been relatively few modifications to these processes and operations since 1976.

Sections 2.2.2.1 through 2.2.2.7 of this Exhibit describe the various auxiliary and support processes and operations employed at Salem. Exhibit B to the Memorandum in Support of Applicability Determination contains a more detailed review of certain aspects of these processes and operations.

Representative inventories of hazardous waste generated at Salem and Hope Creek are presented in Table 2-1 (PSE&G jointly manages hazardous wastes from both Stations). The current inventory of hazardous substances at Salem is presented in Table 2-2. Table 2-3 describes relevant information regarding Station facilities and their historic operations for each relevant potential candidate liability issue identified in Exhibit A to the Memorandum in Support of Applicability Determination. Table 2-4 provides information regarding the various pollution prevention plans developed and implemented at Salem. Figure 2-4 summarizes major operating components of Salem relative to fossil fuel use and wastewater effluents. Radioactive wastes are managed separately, as discussed above and in the Appendix to this Exhibit.

2.2.2.1. Auxiliary Boilers (1972–Present)

Salem has two auxiliary boilers that commenced operations circa 1972. Distillate oil has been the only fuel source for the boilers for the life of Salem. The auxiliary boilers are located in the house heating boiler building north of the turbine building. The boilers have been used as a general steam source and for building heating.

2.2.2.2. Emergency Generators (1976–Present)

Salem has six emergency generators that were made available for operations in 1976. Distillate oil has been the only fuel used in the generators. The generators are located in the auxiliary building. Generally, the electricity needed for normal operations of Salem

e de la companya de Esta de la companya d Esta de la companya de

is generated by the Station itself. When Salem is not generating electricity, it obtains power from off-site sources. In the unlikely event that off-site power were not available

.

. مادر درم معملی مادر مدر

Salem.09/23/99 14

when Salem was not generating electricity, the emergency generators would provide electricity to Salem to maintain safe shutdown conditions. These units have not been operated other than for periodic testing to ensure operability.

2.2.2.3. Combustion Turbine Unit (1972–Present)

There is one combustion turbine unit at Salem to provide peaking capabilities during periods of high demand. The unit was installed in a metal housing on a concrete foundation. Distillate oil is the only fuel source for the combustion turbine unit. The fuel is stored in the 840,000-gallon above ground, diked storage tank that was installed in 1970, as discussed below.

The combustion turbine unit has a purge oil collection system to collect unburned fuel that remains in the engine each time a unit is shut down. The system typically collected less than five gallons of fuel each time the unit shut down. As originally constructed, the purge oil tanks for this unit were underground. The system consisted of two 55-gallon tanks and associated valves and piping. In the early 1990s, these purge oil tanks were replaced with sumps that are routed to the high-volume oil/water separator system. Separated oil is managed in accordance with applicable regulations.

2.2.2.4. Distillate Oil Storage and Handling

The primary fossil fuel used at Salem has been distillate oil. This fuel is used to generate electricity at the Unit 3 combustion turbine, to power the emergency diesel generators, and in the auxiliary boilers. The distillate oil is stored in an 840,000-gallon above ground, diked storage tank, which was constructed in 1970 and remains in use. This tank was constructed consistent with the design criteria for distillate oil tanks described in Exhibit B to the Memorandum in Support of Applicability Determination.

Distillate oil was initially delivered to Salem by barge. Since circa 1972, distillate oil has been delivered by tank truck. Distillate oil is unloaded from tank trucks at a designated area and is pumped via underground pipeline to the storage tank. The designated tank truck unloading area is currently curbed and has secondary containment. Piping from the storage tanks to the emergency generators, the boilers, and the combustion turbine unit is also underground.

2.2.2.5. Electric Transmission and Distribution Equipment

Salem uses a switchyard that is located on property immediately adjacent to Salem property. It became operational in 1976 when Salem began commercial operation. The switchyard occupies approximately eight acres, as shown in Figure 2-1. These facilities contain mineral oil-filled transformers and other miscellaneous mineral oil-filled equipment. The switchyard has been expanded and upgraded over the life of Salem; specifically, eight of its 16 transformers were added in 1992. There are also a number of mineral oil-filled transformers located outside the switchyard, some of which are located adjacent to Salem's electric generating units. The design and operation of the electrical equipment is consistent with that discussed in Exhibit B to the Memorandum in Support of Applicability Determination.

There are approximately 70 pieces of mineral oil-filled electrical equipment (e.g., transformers) at Salem. PSE&G implemented a survey of certain mineral oil-filled equipment at Salem in the late 1980s. This survey indicated that some of the mineral oil-filled equipment was PCB-contaminated. Based upon the results of this survey, in 1990, Salem initiated a comprehensive program to retrofill any mineral oil-filled electrical equipment that contained mineral oil with PCB concentrations in excess of 50 ppm, and to label the mineral oil-filled equipment pursuant to applicable regulatory requirements. This program was completed circa 1993, and currently there is no mineral oil-filled electrical equipment at Salem containing mineral oil with measured PCB concentrations in excess of 50 ppm.

Mineral oil in the electrical equipment is maintained using mobile filtering equipment, as described in Exhibit B to the Memorandum in Support of Applicability Determination.

2.2.2.6. Wastewater Effluents

Liquid radiological waste management is discussed above and in the Appendix to this Exhibit. Management of liquid radiological effluent releases including monitoring is discussed in the Appendix to the Exhibit.

The primary wastewater effluent generated at Salem has been and remains non-contact cooling water. Non-contact cooling water is discharged to the Delaware River in accordance with Salem's National or New Jersey Pollutant Discharge Elimination System ("NJPDES") permit. Other wastewater effluents at Salem include non-radioactive liquid waste, discharges from the high-volume oil/water separator system, and stormwater. The volumes of these other effluents are significantly lower than those of the non-contact cooling water flow. All wastewater discharges from Salem have been authorized by Salem's NJPDES permit since 1975, before Salem began commercial operation.

Wastewater treatment systems for the effluents discussed in this section were constructed at different times during the life of Salem to enable Salem to comply with the effluent limitations contained in applicable NJPDES permits. Non-radioactive liquid wastewaters include those from demineralizers, condensate polishers, the nonradioactive wastewater treatment system laboratory, building sumps, and roof drains. Non-radioactive liquid wastewaters have always been treated in a wastewater treatment plant prior to discharge to the river in accordance with Salem's NJPDES permit. Prior to 1988, the non-radioactive liquid waste was routed to an equalization basin where the pH was increased with caustic to facilitate precipitation. Decant water from this basin was discharged with the non-contact cooling water to the river in compliance with Salem's NJPDES permit. In 1988, the non-radioactive wastewater treatment plant was upgraded and expanded. The wastewater is collected in an equalization basin where sodium hypochlorite may be added to reduce total organic carbon. The effluent from the equalization basin is routed to clarifiers for settling. If necessary, caustic may be added to promote settling. The final effluent is discharged with the non-contact cooling

water to the river in compliance with Salem's NJPDES permit. The wastewater treatment plant is operated by a licensed operator.

Prior to 1994, process water with the potential to contain oil was treated in three skim tanks. In 1994, the oil/water separator was installed. Treated water from the skim tanks and, subsequently, from the oil/water separator has been discharged to the river in accordance with Salem's NJPDES permit.

Stormwater is managed in accordance with Salem's NJPDES permit and Stormwater Pollution Prevention Plan. Stormwater is collected in storm drains and routed to the river for discharge in accordance with Salem's NJPDES permit. Stormwater from the major petroleum storage and handling areas is routed to the oil/water separator prior to discharge.

Prior to 1990, Salem sanitary wastewater was treated in a 10,500-gallon extended aeration tank and a 20,000-gallon rotating biological contactor. In 1990, a sewage treatment plant was constructed at Hope Creek, which began receiving Salem's sanitary wastewater. All solids were removed from the sanitary treatment system and disposed in accordance with applicable regulations. The treatment system structures were removed, soil samples were collected and analyzed, and the area was graded. Closure documentation was submitted to the NJDEP in accordance with applicable regulations.

2.2.2.7. Auxiliary and Maintenance Processes

The auxiliary and maintenance processes associated with Station operations and conducted outside the RCA are generally the same as those processes described in Exhibit B to the Memorandum in Support of Applicability Determination for steam generating units. For the nuclear electric generating unit, these processes include water conditioning, non-contact cooling, equipment cleanings, and equipment lubrication. For the combustion turbine unit, these processes include engine cleanings, purge oil collection, and equipment lubrication.

2.3. Environmental Setting

2.3.1. Surrounding Land Use and Surface Waters

Salem is located on the Delaware Estuary. The Estuary, in the location of Salem, is a tidal, brackish river, located in an area designated as Zone 5 by the Delaware River Basin Commission.

Artificial Island was created by the U.S. Army Corps of Engineers, beginning early in the twentieth century. Hydraulic dredging spoils were deposited within a diked area established around a natural bar that projected into the river. Prior to construction of Salem, the property was vacant, undeveloped, low-lying land.

The zoning classification of the property is industrial. The land adjacent to the property on which Salem is located is zoned for industrial and residential or agricultural use, but

falls under statutes that restrict development. The nearest resident in New Jersey is three miles away.

2.3.2. Topography and Surface Drainage

The topography at Salem is nearly flat. Stormwater management is as described above. There are no permanent bodies of surface water on the property.

2.3.3. Geology

Salem and Hope Creek are underlain by approximately 25 feet of engineered fill composed mainly of dredge spoils (PSE&G, 1987; PSE&G, 1999). The engineered fill consists of silt, silty clay, sand, and gravel (Dames & Moore, 1974). Due to the composition of the engineered fill, the hydraulic conductivity of this material is very low, severely limiting the extent and rate of vertical movement of liquids through the medium. Below the engineered fill there is five feet of tidal marsh deposits, consisting of silty peat and organic silt and meadow mat (Thor, 1982; Warren George, 1970). The tidal marsh deposits are semi-confining. Beneath the tidal marsh deposits are approximately ten feet of discontinuous Quaternary Age riverbed deposits of sand and gravel (Davisson, 1979; Thor, 1982). The discontinuous riverbed deposits occur from 30 to 40 feet below ground surface ("bgs"). Below the ten-foot-thick discontinuous riverbed deposits is the Miocene Kirkwood Formation. The Kirkwood Formation is dark grav clay with some silt and layers of fine-grained micaceous quartz sand. The Kirkwood Formation is approximately 15 feet thick at the property and occurs from approximately 40 to 55 feet bgs (Dames & Moore, 1970; Rosenau and others, 1969; PSE&G 1987).

Below the Kirkwood Formation, the Paleocene-Eocene Vincentown Formation is encountered at 55 feet bgs to a depth of approximately 135 feet bgs (Dames & Moore, 1970; Dames & Moore, 1974). The Vincentown Formation is a competent, greenishgray, fine to medium sand with some silt and shell fragments and some feldspar and glauconite (Dames & Moore, 1970; PSE&G, 1987). Beneath the Vincentown Formation lies the Paleocene Hornerstown Formation. The Hornerstown Formation is primarily a glauconitic sand and occurs from 135 feet bgs to approximately 145 feet bgs (Davisson, 1979).

Beneath the Hornerstown Formation lies the Upper Cretaceous Navesink Formation, which consists of glauconitic sand. The Navesink Formation is encountered from approximately 145 to 170 feet bgs. Beneath the Navesink Formation lies the Upper Cretaceous Mount Laurel-Wenonah Formation, which is clayey medium sand with some gravel, feldspar, and glauconite (PSE&G, 1987). At the property and regionally, the Mount Laurel-Wenonah Formation is approximately 100 feet thick and occurs from approximately 170 to 270 feet bgs (Rosenau, 1969; Dames & Moore, 1974).

Regionally, over 1,000 feet of Upper Cretaceous sediments lie beneath the Mount Laurel-Wenonah Formation. These formations collectively overlie crystalline bedrock and include in descending order: the Marshalltown Formation (gray fine sand), the Englishtown Formation (yellow-brown fine sand), the Woodbury Clay (dark gray, stiff,

silty clay), the Merchantville Formation (dark green clay), the Magothy Formation (coarse to fine silt with little, fine sand), and the Raritan and Potomac Formations (interbedded sand, gravelly sand, and clay) (Dames & Moore, 1974; Rosenau, 1969).

Bedrock at the property is the Late Precambrian Wissahickon Schist, which underlies the entire Upper Cretaceous sedimentary package in the region. The Wissahickon Schist is encountered at depths up to 1,500 feet bgs at the property (Rosenau, 1969).

2.3.4. Hydrogeology

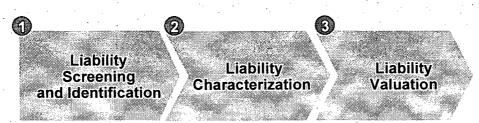
There are four aquifers directly beneath the property: a shallow aquifer and three deep aquifers. The shallow aquifer occurs from 10 to 40 feet bgs. The shallow aquifer is within the engineered fill, tidal marsh sediments, and discontinuous Quaternary riverbed deposits (Dames & Moore, 1974). In general, the engineered fill and tidal marsh deposits have low permeabilities (Dames & Moore, 1974; PSE&G, 1987). Occasional lenses of sand within the engineered fill may contain perched water within a few feet of the ground surface (Dames & Moore, 1974). The groundwater in the shallow aquifer is generally brackish, with flow to the southeast and a gradient of approximately 0.007ft/ft (Rosenau, 1969; Dames & Moore, 1974). The Kirkwood Formation, which is composed of Miocene clays, occurs from 40 to 55 feet bgs and is considered a confining layer which separates the shallow aquifer above from the first deep aquifer (PSE&G, 1984).

The first of the deep aquifers beneath the property occurs from 55 to 135 feet bgs and is the Paleocene-Eocene Vincentown Formation. The Vincentown Formation is a semiconfined to confined aquifer under artesian conditions (Dames & Moore, 1974) and is underlain by the leaky confining units in the Hornerstown and Navesink Formations. The confining units of the Hornerstown and Navesink Formations occur from 135 to 170 feet bgs (Dames & Moore, 1974). Groundwater in the Vincentown aquifer generally flows from north to south with a gradient of approximately 0.003 ft/ft (Dames & Moore, 1974). Regionally, the Vincentown aquifer is a water-producing aquifer, which supplies some of the domestic wells within Salem County (PSE&G, 1984; Rosenau, 1969). Groundwater in this aquifer is moderately hard with a high iron content (Rosenau, 1969; Dames & Moore, 1974). However, salt-water intrusions occur within this aquifer near the Delaware River, where water quality is brackish and nonpotable (Rosenau, 1969).

The second deep aquifer is confined and occurs in the Upper Cretaceous Mount Laurel-Wenonah Formations at depths from 170 to 270 ft bgs. The Mount Laurel-Wenonah aquifer is bounded above by the confining units of the Hornerstown and Navesink Formations. Two potable and fire-water supply wells at the property can produce from this aquifer, although these wells are not typically used. Below the Mount Laurel-Wenonah aquifer lies the Marshaltown Formation (Rosenau, 1969).

The third deep aquifer is confined and is the Cretaceous Potomac-Raritan-Magothy (PRM) Aquifer System, which is the primary water-producing aquifer in the State of New Jersey. In Salem County, the PRM Aquifer System occurs at depths in excess of

500 feet bgs. At the property, four potable and fire-water supply wells produce from this aquifer system at depths ranging from 800 to 1,100 feet bgs. This aquifer system is bounded above by the Merchantville Formation and below by the crystalline basement of the Wissahickon Schist.


The crystalline basement rock of the Wissahickon Schist is not considered a productive aquifer and only locally transmits water along fractures and faults (Rosenau, 1969). Salem County has no known wells that produce water from this formation (Rosenau, 1969).

2.4. Environmental Characterization and Remedial Activities

Table 2-5 summarizes the nature of and results from environmental characterization and remedial activities conducted at the property.

3. Liability Screening, Characterization, and Valuation

The liability estimation process applied at each generation-related asset followed a step-wise procedure, as shown schematically below. This process is discussed in detail in Exhibit A to the Memorandum in Support of Applicability Determination.

The liability estimation process produces a quantitative estimate of the expected value for Salem's potential remediation liabilities. This section presents the results of the liability screening, characterization, and valuation for this Station.

3.1. Candidate Liability Screening and Identification

Candidate Liability Issues and associated Liability Elements that are potentially applicable to all generation-related assets were developed as discussed in Exhibit A to the Memorandum in Support of Applicability Determination. Each Candidate Liability Issue and Liability Element was evaluated based on the asset-specific data collected pursuant to the data collection protocol described in Exhibit A to the Memorandum in Support of Applicability Determination to determine:

- 1. Whether the activity or source existed at this generation-related asset;
- 2. Whether an environmental investigation has been conducted or chemical data were collected that demonstrate that contamination is not present at this generation-related asset with respect to a particular activity or source; or
- 3. Whether structural or engineering systems, such as full secondary containment, could have prevented a liability from arising at this generation-related asset.

Liabilities were screened out for this generation-related asset if: (1) an activity never existed at the property; (2) there is convincing documentation that issues never existed or have been eliminated through remediation or other corrective action; or (3) there have been structural or engineering systems that would have prevented a liability issue from arising. If any of a Candidate Liability Issue's Liability Elements was determined to be applicable to this generation-related asset, it was retained for characterization and valuation.

Table 3-1 provides the results of the liability screening for this generation-related asset and the rationale for the screening decisions.

3.2. Liability Characterization

For each retained Liability Issue and Liability Element, pertinent information collected using the data collection protocol was used to determine the number of Liability Units ("Liability Enumeration"), the aggressiveness of remedial effort (i.e., high, medium, or low intensity) ("Remedy Intensity"), and the physical extent of remedial effort ("Remedy Scale"). These were each determined employing the standard decision rules set forth in Exhibit A to the Memorandum in Support of Applicability Determination.

The results of the liability characterization are presented in Table 3-2.

3.3. Liability Valuation

As described in Exhibit A to the Memorandum in Support of Applicability Determination, the Liability Valuation step consists of three activities: decision tree configuration, liability evaluation, and expected value computation. This step produced a quantitative estimate of this generation-related asset's potential remediation liabilities.

3.3.1. Decision Tree

Table 3-3 is the remediation decision tree for this generation-related asset. This decision tree incorporates all Candidate Liability Issues retained for this generation-related asset as well as the investigation and monitoring activities. The decision tree is composed of a series of columns, each of which represents a Candidate Liability Issue. Remedy scenarios available to address each Issue are arrayed vertically in each column.

Remedy scenarios consist of a number of remedial technologies. The remedy scenarios included in the decision tree for each Liability Issue are those that we determined, based on our professional judgment, to best reflect the feasible choices available to remedy that particular Liability Issue. Remedial scenarios were considered for each Liability Issue retained to address all media of concern through either institutional controls, engineering controls, or active treatment. The selection of remedy scenarios and remediation technologies is detailed in Exhibit A to the Memorandum in Support of Applicability Determination.

3.3.2. Remedy Probability Assignments and Remedy Cost Calculations

For each retained Liability Issue, a probability was assigned to each remedy scenario that represents the probability that, following a site investigation, the remedy scenario would be selected and approved by the NJDEP. These probabilities were determined employing the standard decision rules set forth in Exhibit A to the Memorandum in Support of Applicability Determination. The decision rules identify the probability allocation for each Liability Issue first by reference to investigation effort, remedial alternative, or monitoring effort, as appropriate, and then by reference to Remedy Intensity. The remedy probability allocations for this generation-related asset are presented in the decision tree, Table 3-3.

The capital and operating costs of each remedy scenario in the decision tree were determined following the procedures outlined in Exhibit A to the Memorandum in Support of Applicability Determination. The remedy scenario costs were calculated using the scale inputs set forth in Table 3-2 and Arthur D. Little's in-house remediation cost database, which is based on standard remediation engineering cost assumptions. The present value of each remedy was calculated using accepted financial analysis principles and incorporating assumptions about the timing of remedial actions as well as discount and inflation rates. Key assumptions incorporated into the cost calculations are set forth in Exhibit A to the Memorandum in Support of Applicability Determination.

3.3.3. Liability Expected Value Computation

The liability valuation expected value computation was performed using a Microsoft® Excel spreadsheet-based cost-estimating model for the decision tree shown in Table 3-3. The model calculated the expected value for this generation-related asset by multiplying the probability assigned to each remedy alternative by the cost of that alternative and adding the calculated probability-weighted cost of all the remedy alternatives for that Liability Issue. The total expected value for this generation-related asset is the sum of the expected values for each Liability Issue.

The summary spreadsheet tabulating the remedy scenarios in the decision tree, present value costs, probabilities, and expected values is shown in Table 3-4. The total expected value cost estimate for this generation-related asset is \$1,901,055.

23

Bibliography

Audits

- 1. Internal PSE&G Corporate Audit Report, October 1989.
- 2. Internal PSE&G Corporate Audit Report, July/August 1993.
- 3. Internal PSE&G Corporate Audit Report, July/August 1998.

Environmental Permits and Related Documents

- 1. Dredge and Fill Permit, U.S. Army Corps of Engineers, No. NAPOR-R-970, June 23, 1975.
- 2. Dredge and Fill Permit, New Jersey Department of Environmental Protection, No. 85-0938-1.
- 3. Water Discharge Permit, National Pollutant Discharge Elimination System (NPDES), No. NJ0005622, March 31, 1975.
- 4. Water Discharge Permit, New Jersey Pollutant Discharge Elimination System (NJPDES), No. NJ0005622, March 6, 1981.
- 5. Water Discharge Permit, New Jersey Pollutant Discharge Elimination System (NJPDES), No. NJ0005622, December 1, 1985.
- 6. Water Discharge Permit, New Jersey Pollutant Discharge Elimination System (NJPDES), No. NJ0005622, September 1, 1994.
- 7. Waterfront Development Permit, New Jersey Department of Environmental Protection, 1704-90-0001.8, Exp. February 22, 2000.
- 8. Riparian License, New Jersey Department of Environmental Protection, 69-80.
- 9. Maintenance Dredging and Desilting Operations, U.S. Army Corps of Engineers, CENAP-OP-R-199501755-45, April 15, 1996

Agency Enforcements

- 1. Citation from NJDEPE for water discharge violations, August 1988.
- 2. Citation from NJDEPE for water discharge violations, November 1988.

24

3. Citation from USCG for spill discharge violations, November 1988. Citation from NJDEPE for water discharge violations, March 1989. 4. Citation from USEPA for water discharge violations, June 1989. 5. Citation from USEPA for water discharge violations, July 1989. 6. Citation from USEPA for water discharge violations, September 1989. 7: 8. Citation from USEPA for water discharge violations, February 1990. 9. Citation from USEPA for water discharge violations, April 1990. 10. Citation from USEPA for spill violations, February 1991. 11. Citation from USEPA for water discharge violations, January 1991. 12. Citation from USEPA for water discharge violations, March 1991. 13. Citation from NJDEPE for water discharge violations, August 1992. 14. Citation from USCG for spill violations, December 1992. 15. Citation from NJDEPE and USCG for spill violations, February 1993. 16. Citation from NJDEPE and USCG for spill violations, May 13, 1993. 17. Three citations from USCG for spill violations, September 1993. 18. Citation from USCG for spill violations, May 24, 1995. 19. Citation from USCG for spill violations, October 1, 1995. 20. Citation from USCG for spill violations, April 1997. 21. Citation from USCG for spill violations, June 13, 1997.

Pollution Prevention Plans

1. Discharge Prevention, Containment, and Countermeasures Plan; Discharge Cleanup and Removal Plan; Spill Prevention, Containment, and Countermeasures Plan (DPCC/DCR/SPCC), 1978; last updated July 1999.

Salem.09/23/99

25

- 2. Best Management Practices (BMP) Plan, 1985.
- 3. Stormwater Pollution Prevention Plan, 1998.
- 4. Facility Response Plan, February 1993.
- 5. RCRA Contingency Plan, February 1998.
- 6. Wastewater Treatment Plant Operations and Maintenance Manuals, 1996.
- 7. Regulatory Reporting Guide, January 1997.

Spills and Discharges

- 1. Spill Incident Reports: 1973 to 1985 reported to U.S. Coast Guard.
- 2. Spill Incident Reports: 1988 to Present reported to NJDEP.

Maps and Photos

- 1. Aerial Viewpoint. Photograph, March 11, 1940. (1":1667').
- 2. Aerial Viewpoint. Photograph, February 18, 1951. (1":1667').
- 3. Aerial Viewpoint. Photograph, March 1, 1962. (1":1500').
- 4. Aerial Viewpoint. Photograph, March 14, 1974. (1":1500').
- 5. Aerial Viewpoint. Photograph, March 6, 1987. (Scale not available.)
- 6. Aerial Viewpoint. Photograph, March 13, 1996. (1":1000').
- 7. Aerial Viewpoint. Photograph, March 16, 1996. (1":1000').

Geology and Hydrogeology

- 1. Dames & Moore, 1970. Circulating Water Intake Structure, Service Water Intake Structure, And Circulating Water Discharge Piping for Salem Nuclear Generating Station Units No. 1 and No. 2., Detail Specification No. 70-7272. 67 borings.
- Dames & Moore, 1974. Report: Foundation Studies for Proposed Hope Creek Generating Station, Lower Alloways Creek Township, NJ. For PSE&G. 43 pp. Figures.

- 3. Davisson, M. T. and Rempe, D. M., 1979. Report on Pile Load Test Program and Recommendations for Installation of Piling at Miscellaneous Structures Hope Creek Generating Station for PSE&G, Champaign, IL., July. 16 pp. Figures.
- 4. Thor Engineers, P.A., 1982. Report on Soils Investigation Hope Creek Generating Station Access Road Widening, Salem, New Jersey. Project No. 03682. 8 pp. Figures.
- 5. PSE&G, 1984. Hope Creek Generating Station Final Environmental Statement.
- 6. PSE&G, 1987. Salem Generating Station Updated Final Safety Analysis Report Controlled Document, December 4 (last update) to Nuclear Regulatory Agency.
- 7. PSE&G, 1999. Groundwater Conservation Plan and Drought Emergency Water Supply Plan.
- 8. Richards, H. G., Olmsted, F. H., and Ruhle, J. L., 1962. Generalized Structure Contour Maps of the New Jersey Coastal Plain, NJ, Department of Conservation and Economic Development, Geological Report Series No. 4.
- Rosenau, J. C., Lang, S. M., Hilton, G. S., Ronnie, J. G., 1969. Geology and Groundwater Resources of Salem County, New Jersey, U.S.G.S., Special Report No. 33, 142.
- 10. Warren George, Inc., 1970. Test Borings for Salem to New Freedom South Transmission Line. Test Boring Logs for PSE&G.

Other

1. PSE&G database of underground storage tanks and related files of registrations and/or removal.

Figure 2-1: Map Showing the Salem and Hope Creek Generating Station

. . .

ne ut kohende der Mehrere er er er

a)

Figure 2-2: Major Operational Features Associated with the Salem Generating Station


ang kenalan sebut penalah sebut kenalah sebut penalah sebut penalah sebut penalah sebut penalah sebut penalah s Sebut penalah sebut penalah

Figure 2-3: Pressurized Water Reactor

Salem.09/23/99 30

a a star a st A star a star

Figure 2-4: Salem Generating Station Operations

Table 2-1: Representative Hazardous Wastes for Salem and Hope Creek Generating Stations

Waste Stream	Amount (1997)
Contaminated solids and debris (toxic) containing benzene (D018)	413 lbs.
Contaminated solids and debris (toxic) containing chromium (D007)	1,614 lbs.
Contaminated water (toxic), containing chromium (D007)	5,572 lbs.
Oil and other liquid hydrocarbon waste (toxic), containing 1,1,1-trichloroethane (F001)	434 lbs.
Oil and other liquid hydrocarbon waste (toxic), containing oil, benzene, and tetrachloroethylene (D018, D029, D039, D040, F001)	20,627 lbs.
Paint-related waste (ignitable) containing petroleum hydrocarbons (D001)	739 lbs.
Paint-related waste (ignitable) debris, containing petroleum hydrocarbons (D001)	11,169 lbs.
Paint-related waste (ignitable) labpack, containing petroleum hydrocarbons (D001)	1,485 lbs.
Paint-related waste (ignitable, toxic), containing mineral spirits and methyl ethyl ketone (D001, D035)	9,025 lbs.
Photography development (reactive) waste, containing reactive sulfides (D003)	3,869 lbs.
Process chemicals (corrosive) in labpacks containing acid and amine solutions (D002)	208 lbs.
Process chemicals (corrosive) in labpacks containing hydroxides or various acids and bases (D002)	304 lbs.
Process chemicals (corrosive, ignitable) containing methanol and potassium hydroxide (D001, D002, F003)	125 lbs.
Process chemicals (corrosive, ignitable) in labpacks containing amine solutions or petroleum acids and acid (D001, D002)	134 lbs.
Process chemicals (corrosive, ignitable, toxic) containing acetic acid and formic acid (D001, D002, U123)	125 lbs.
Process chemicals (corrosive, ignitable, toxic) containing sulfuric acid, nitric acid, and silver (D001, D002, D011)	175 lbs.
Process chemicals (corrosive, ignitable, toxic) in labpacks containing sodium dichromate and sulfuric acid (D001, D002, D007)	40 lbs.
Process chemicals (corrosive, toxic) containing mercuric nitrate and sodium hydroxide (D002, D009)	8 lbs.
Process chemicals (corrosive, toxic) containing organic acids, inorganic acids, and chromium (D002, D007)	58 lbs.
Process chemicals (ignitable) containing ammonium persulfate (D001)	2 lbs.
Process chemicals (ignitable) containing benzyl peroxide (D001)	18 lbs.
Process chemicals (ignitable) containing iron and copper (D001)	25 lbs.

Table 2-1: Representative Hazardous Wastes for Salem and Hope Creek Generating Stations (continued)

Waste Stream	Amount (1997)
Process chemicals (ignitable) containing permanganates (D001)	1 lbs.
Process chemicals (ignitable) containing peroxides (D001)	15 lbs.
Process chemicals (ignitable) containing petroleum distillates (D001)	1,237 lbs.
Process chemicals (ignitable) containing sodium nitrite (D001)	20 lbs.
Process chemicals (ignitable, toxic) containing acetone and benzene (D001, D018, F003)	70 lbs.
Process chemicals (ignitable, toxic) containing mercuric nitrate (D001, D009)	7 lbs.
Process chemicals (ignitable, toxic) containing sodium hypochlorite and silver (D001)	8 lbs.
Process chemicals (toxic) containing arsenic (D004)	125 lbs.
Process chemicals (toxic) containing barium, chromium, and silver (D005, D007, D011)	41 lbs.
Process chemicals (toxic) containing mercuric acetate (D009)	5 lbs.
Process chemicals (toxic) containing mercury (D009)	16 lbs.
Process chemicals (toxic) in labpacks containing silver (D011)	5 lbs.
Solvent waste (ignitable) from cleaning and degreasing, containing mineral spirits (D001)	2,758 lbs.
Solvent waste (ignitable) from laboratory samples; containing isopropanol (D001)	826 lbs.
Solvent waste (toxic) from cleaning and degreasing in labpacks containing 1,1,1-trichloroethane (F002)	8 lbs.

Note: Hazardous wastes reported in this table are the total types and quantities of hazardous waste generated on Artificial Island. Data were obtained from the annual hazardous waste report submitted in February 1998 to the NJDEP for calendar year 1997.

Table 2-2: Current Hazardous Substances and Related Pollution Prevention Systems

Source,	Container Type	Hazardous Substance	Product Quantity	Containment Type
Hydrocarbon Sources		Danaranak menerunan da salah dan kasa perjekaran dara perjekaran dara perjekaran dari perjekaran dari bertaran		
Main fuel oil storage tank and truck unloading area	Steel tank	Distillate oil	840,000 gallons	Gravel dike with impermeable membrane liner
70 pieces of (active) outside mineral oil-filled electrical equipment	Steel housing	Mineral oil	172,647 gallons total	Housekeeping; concrete pad and curbed with crushed rock bottom; diversion to oil/water separator
4 storage tanks	Steel tank	Distillate oil	120,000 gallons total	Concrete room encloses each tank
13 lube oil storage tanks and associated truck unloading areas	Steel tank	Petroleum lube oil	101,800 gallons total	Housekeeping; concrete floor; diversion to oil/water separator
2 oil/water separators	Steel tank	Oil/water mix	80,000 gallons total	Concrete containment
3 tanks	Concrete tank	Oil/water mixtures	30,000 gallons	Housekeeping
2 pieces of (inactive) spare mineral oil-filled transformers	Steel housing	Mineral oil	22,500 gallons total	Housekeeping; concrete pad
Sludge storage tank and transfer area	Steel tank	Oily sludge	5,000 gallons	Concrete containment
2 storage tanks and associated transfer area	Steel tank	Waste oil	4,000 gallons total	Integral steel inside concrete
6 smaller day tanks	Steel tank	Distillate oil	3,300 gallons total	Concrete curb/floor

Table 2-2: Current Hazardous Substances and Related Pollution Prevention Systems (continued)

Source	Container Type	Hazardous Substance	Product Quantity	Containment Type
5 smaller storage tanks located in the boiler building and the pump house	Steel tank	Distillate oil	1,600 galions total	Concrete curbing; pad diversion to oil/water skimmer
Chemical Sources		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
Clarifier No. 1 and 2	Coated carbon steel tank	Process wastewater	880,000 gallons	Housekeeping; concrete floor
Waste equalization basin	Fiberglass-lined concrete tank	Process wastewater	240,000 gallons	Housekeeping; concrete floor
4 waste tanks (low and high conductivity)	Coated concrete tank	Process wastewater	195,000 gallons total	Housekeeping; concrete floor; diversion to chemical waste tank
2 storage tanks (Unit Nos. 1 and 2) and truck unloading areas	Durakane fiberglass-lined steel tank	Sodium hypochlorite (15%) solution	176,000 gallons	Earth dike (sand, gravel, and clay); asphalt sprayed; concrete/asphalt floor
5 caustic storage tanks and associated truck unloading areas	Durakane fiberglass-lined steel tank, epoxy enamel- coated steel tank	Sodium hydroxide (50%) solution	17,500 gallons	Caustic-resistant concrete dike/floor; diversion to chemical waste tank
4 storage tanks and truck unloading areas	Lined or resin-coated steel tank	Sulfuric acid (98%)	12,500 gallons total	Acid-resistant dike/ flooring, diversion to chemical waste tank
4 smaller tanks	Fiberglass tank, coated concrete tank, lined steel tank	Process wastewater	12,250 gallons total	Housekeeping; concrete flooring diverted to larger process waste tanks
2 spray additive tanks and truck unloading areas	Steel tank	Sodium hydroxide	8,000 gallons total	Housekeeping; concrete building and floor

Table 2-2: Current Hazardous Substances and Related Pollution Prevention Systems (continued)

Source	Container Type	Hazardous Substance	Product Quantity	Containment Type
1 ethylene glycol storage tank	Steel tank	Ethylene glycol (antifreeze)	5,200 gallons	Steel
3 storage tanks at Unit No. 1 turbine, and truck unloading areas	Steel tank	Ammonia hydroxide (<28%) solution	4,000 gallons total	Concrete curbing; diversion to chemical waste tank
2 component coolant system surge/mix tanks (Unit Nos. 1 and 2)	Steel tank	Potassium chromate	4,000 gallons total	Housekeeping; concrete floor
4 storage tanks for the Unit No. 1 turbine	Steel tank	Hydrazine (5-35%) solution	850 gallons total	Housekeeping; concrete floor; diversion to chemical waste tank

Table 2-3: Historic Operations and Related Pollution Prevention Systems

Operation	Description (Type, Use, Activity, Materials, etc.)	Size	Dates of Operation	Original Pollution Prevention Controls and Systems	Upgrades (Items and Dates)
Hydrocarbon	Sources		• • • • • • • •	·	· · · · · · · · · · · · · · · · · · ·
USTs	One removed fiberglass distillate oil storage tank, located at the TSC	2,000 gallons	Unknown– 1989	None	N/A
ASTs	Salem Main Fuel Tank: Distillate Oil	840,000 gallons	1970– Present	Concrete dike on Delaware River side of containment, gravel dike; periodic integrity testing	Impermeable liner on gravel dike added in 1990.
Transfer Pipelines	All fuel oil piping from distillate oil tank to day tanks, generators, and combustion turbine unit is underground, single-walled and has no leak detection.	N/A	1971– Present	None	None
Combustion Turbine Units	Unit No. 3 combustion turbine has underground purge oil collection tank that collects unburned oil when engines are shut down.	55 gallons	1971– Present	Two underground 55-gallon steel tanks	Tanks replaced in 1991 with sump directed to high-volume oil/water separator.

Table 2-3: Historic Operations and Related Pollution Prevention Systems (continued)

Operation	Description (Type, Use, Activity, Materials, etc.)	Size	Dates of Operation	Original Pollution Prevention Controls and Systems	Upgrades (Items and Dates)
Oil-Containing Electric T&D Equipment	One 500kv switchyard at each generating station; mineral oil-filled containers that require regular mineral oil changeouts via mobile filtering equipment.	7.5–8 acres	1976– Present	Traprock; inspection/ housekeeping; generally concrete containment, drain to treatment system	None

38 Salem.09/23/99

Table 2-4: Pollution Prevention Plans

Plan	Coverage	Original Date	Status/ Last Update
Discharge Prevention, Containment, and Countermeasures Plan Discharge Cleanup and Removal Plan (DPCC/SPCC/DCR)	Management of petroleum and other hazardous substances. The plans include provisions for spill prevention, spill response, inspection of storage and containment areas, training of personnel, etc.	1978	July 1999
Spill Prevention Control and Countermeasures Plan		Approximately 1978	
Best Management Practices (BMP) Plan	Management of hazardous substances to prevent unauthorized discharges to ground and surface waters.	1985	1999
Stormwater Pollution Prevention Plan	Management of stormwater runoff to prevent contamination.		September 1998
Facility Response Plan	Management of major sources of oil storage and transfer on navigable waters.	February 1993	February 1998
Underground Storage Tank Release Response Plan	Management of response to releases from underground storage tanks.		No underground storage tanks on site
RCRA Contingency Plan	Management of releases of hazardous waste. This information is shared with Local Emergency Planning Committees.		February 1998
Non-Radioactive Waste Operations and Maintenance Manual	Procedures for operations and maintenance of the treatment facility under routine and emergency conditions.	1985	July 1996
Low-Volume Oily Waste Operations and Maintenance Manual	Procedures for operations and maintenance of the treatment facility under routine and emergency conditions.	1985	July 1996
Cooling Tower Manual Operations and Maintenance Manual	Procedures for operations and maintenance of the treatment facility under routine and emergency conditions.	1985	July 1996
Sewage Treatment Plant Operations and Maintenance Manual	Procedures for operations and maintenance of the treatment facility under routine and emergency conditions.	1985	March 1999
Emergency Response Guide ND.FP-EO.ZZ-0002(Z)	Substance-specific procedures for responding to releases and spills of hazardous substances.		November 1992

Table 2-4: Pollution Prevention Plans (continued)

Plan	Coverage	Original Date	Status/ Last Update
Regulatory Reporting Guide ECG Att. 16	Reference guidelines for reporting and documenting environmental incidents.		January 1997
Operations Manual for Fuel Transfer Operations By Barge	Management of fuel transfer operations from barges.		N/A

Table 2-5: Summary of Discharge Investigations and Remediation Cases

Location	Case Number	Issue	Outcome
Unit No. 3 Gas	91-01-23-1549-05	Discharge	MOA executed 4/93
Turbine		discovered during removal of two 55-	Soil remediation and RAR completed.
		gallon oil collection USTs.	NJDEP issued No Further Action letter 11/5/94.
		 Investigation concluded that soil contamination was 	
		result of historic discharges from Gas Turbine Unit.	
Auxiliary Building	95-11-15-1210-31	 Historic leaks of No. 2 fuel oil line to 	 Determination that none of the impacted area had a concentration of TPH exceeding the 10,000 ppm cleanup level.
		the Auxiliary Building between 1978 and 1980.	 Groundwater was tested in the area of the leak and no VOCs or SVOCs were detected.
			 Based on TPH concentrations and the absence of impacted water, no soil was removed from the area.
			 Results were submitted to the NJDEP in December 1996 and the NJDEP determined that N.J.A.C. requirements were satisfied.

Table 3-1: Liability Screening—Salem Generating Station

Candidate Liability Issue	lssue Retained	Element Retained	Rationale for Screening Decision
Investigation	Yes		✓ Investigation is retained as an issue at all sites where any candidate liability issue is retained.
Ash Ponds	No		X Issue does not exist at Salem.
Coal Pile	No	· · ·	X Issue does not exist at Salem.
Hydrocarbon Sources	Yes		✓ One or more elements were retained.
USTs		Yes	✓ One UST was removed from Salem in 1989. There are insufficient data to warrant exclusion as an element.
ASTs—distillate oil	•	Yes	✓ Salem has one distillate oil AST. There are no site-specific data to warrant exclusion as an element.
ASTs—heavy oil		No	X Element does not exist at Salem.
Transmission pipelines		No	X Element does not exist at Salem.
Transfer pipelines		Yes	 Underground transfer pipelines exist at Salem. There are no site-specific data to warrant exclusion as an element.
Combustion turbine units		No	X One combustion turbine unit exists at Salem. Two former underground purge oil collection tanks were removed in 1990. Soil remediation related to purge oil tanks occurred in the area of the former tanks. In November 1994, the NJDEP issued an NFA letter for soil and groundwater at the combustion turbine unit. The existing purge oil collection tanks are contained inside a concrete vault. Therefore, the element is not retained.
Oil-containing electric T&D equipment		Yes	 Element exists at Salem. There are no site-specific data to warrant exclusion as an element.
Miscellaneous spills		Yes	✓ Spill records date back to 1986. There are no records of spills prior to 1986 to warrant exclusion as an element.

Table 3-1: Liability Screening—Salem Generating Station (continued)

Candidate Liability Issue	lssue Retained	Element Retained		Rationale for Screening Decision
Chemical Sources	Yes		~	One or more elements were retained.
Boiler operations and maintenance processes		No	х	The auxiliary boiler building foundation is poured concrete that provides containment for operations and maintenance processes.
Bulk storage and handling areas		Yes	•	Element exists at Salem. There are no site-specific data to warrant exclusion as an element.
Waste disposal		Yes	✓.	There are no site-specific data to warrant exclusion as an element.
Miscellaneous spills		Yes	•	Spill records date back to 1986. There are no records of spills prior to 1986 to warrant exclusion as an element.
PCB Sources	Yes		~	One or more elements were retained.
Oil-containing electric T&D equipment		Yes	~	Salem has oil-filled equipment that was in service when PCBs were in use. There are insufficient site-specific data to warrant exclusion as an element.
Gas condensate blowdown		No	X	Element does not exist at Salem.
On-Site Fill	No		Х	No elements were retained.
Historic fill		No	X	The property was made by deposition of hydraulic fill from USACOE dredging at depth of the Delaware River channel. The majority of the filling occurred prior to 1940. Therefore, it is not retained as an element.
Ash fill	.*	No	х	Element does not exist at Salem.
Dredge spoils		No	X	Element does not exist at Salem.
On-Site Surface Water, Drainages, and Wetlands	Yes	· · ·	√	Element exists at Salem and there are potential upgradient sources associated with Station operations.
Monitoring	Yes		1	Monitoring is retained as an issue at all sites where any candidate liability issue is retained.

Table 3-2: Liability Characterization—Salem Generating Station

			Remedy Intensity			Remedy Scale		
Issue	Element	Number of Units	Impact Potential	Mitigating Factors	Intensity	Scale per Unit	Volume (c.y.)	Area (s.f.)
Investigation		N/A	N/A	N/A	M (16 liability units)	N/A	N/A	N/A
Ash Ponds		N/A	N/A	N/A	N/A	N/A	N/A	N/A
Coal Pile	· · · · · ·	N/A	N/A	N/A	N/A	N/A	N/A	_ N/A
Hydrocarbon So	ources	·	<u>I</u>		· · ·	· · · ·	<u> </u>	
	USTs	1	Potential pathway to groundwater and Delaware River and wetlands	 UST removed in 1989 in accordance with applicable regulations. Total: 1 	M	Default scale of 200 cy/tank. Assume depth of 9 feet and surface area of 600 sf/ tank.	200	600
	ASTs— distillate oil	1	Potential pathway to groundwater and Delaware River and wetlands	 The AST has had an earthen dike or other containment throughout its history, has been upgraded to meet API requirements, and an impermeable liner has been installed. Total: 1 	Μ	Default scale of 400 cy/unit. Assume depth of 3 feet and surface area of 3,600 sf/ unit.	400	3,600
	ASTs—heavy oil	N/A	N/A	N/A	N/A	N/A	N/A	N/A
· · · ·	Transmission Pipelines	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table 3-2: Liability Characterization—Salem Generating Station (continued)

· *	· · ·		Remedy Intensity			Remedy Scale		
lssue	Element	Number of Units	Impact Potential	Mitigating Factors	Intensity	Scale per Unit	Volume (c.y.)	Area (s.f.)
	Transfer Pipelines	1	Potential pathway to groundwater and Delaware River	None	Μ	Default scale of 400 cy/unit. Assume depth of 3 feet and surface area of 3,600 sf/ unit.	400	3,600
	Combustion Turbine Units	• N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Oil-Containing Electric T&D Equipment	1	Potential pathway to groundwater and Delaware River	 Presence of traprock or containment limits impact to soil. Total: 1 	M	Default scale of 200 cy/ unit. Assume depth of 3 feet and surface area of 1,800 sf/unit.	200	1,800
	Miscellaneous Spills	1	Potential pathway to groundwater and Delaware River	None	Μ	Default scale of 200 cy/ station. Assume depth of 3 feet and surface area of 1,800 sf/ station.	200	1,800
Total		5			М		1,400	11,400

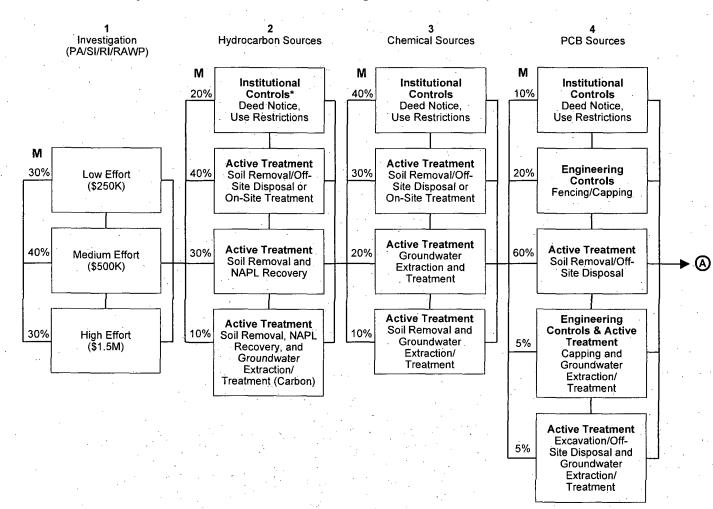
Table 3-2: Liability Characterization—Salem Generating Station (continued)

issue			Remedy intensity			Remedy Scale		
	Element	Number of Units	Impact Potential	Mitigating Factors	Intensity	Scale per Unit	Volume (c.y.)	Area (s.f.)
Chemical Sour	rces		••••••••••••••••••••••••••••••••••••••			• • • • • • • • • • • • • • • • • • •		
	Boiler Operations and Maintenance Processes	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Bulk Storage and Handling Areas	1	Potential pathway to groundwater and Delaware River	 Areas have been contained since circa 1990. Total: 1 	M	Default scale of 100 cy/ station. Assume depth of 3 feet and surface area of 900 sf/ station.	100	900
	Waste Disposal	. 1	Potential pathway to groundwater and Delaware River	None	M	Default scale of 100 cy/ station. Assume depth of 3 feet and surface area of 900 sf/ station.	100	900

Table 3-2: Liability Characterization—Salem Generating Station (continued)

			Remedy Intensity			Remedy Scale		
Issue	Element	Number of Units	Impact Potential	Mitigating Factors	Intensity	Scale per Unit	Volume (c.y.)	Area (s.f.)
	Miscellaneous Spills		Potential pathway to groundwater and Delaware River	None	M	Default scale of 100 cy/ station. Assume depth of 3 feet and surface area of 900 sf/ station.	100	900
Total		3			м		300	2,700
PCB Sources	• <u>·</u> ·····		•				· · · · · · · ·	
	Oil-Containing Electric T&D Equipment	7	Potential pathway to groundwater and Delaware River and to Station personnel	Presence of traprock or containment limits impact to soil. Total: 1	M	Default scale of 60 cy/ station. Assume depth of 3 feet and surface area of 540 sf/ station.	420	3,780
· .	Gas Condensate Blowdown	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		7			M		420	3,780

Table 3-2: Liability Characterization—Salem Generating Station (continued)


			Remedy Intensity			Remedy Scale		
Issue	Element	Number of Units	Impact Potential	Mitigating Factors	Intensity	Scale per Unit	Volume (c.y.)	Area (s.f.)
On-Site Fill		· · ·				· ·		
	Historic Fill	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Ash Fill	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Dredge Spoils	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total		N/A			N/A		N/A	N/A
On-Site Surface Water, Drainages, and Wetlands		1	Potential pathway to wetland ecological communities	 No visual indication of stress or impact. Receives tidal flushing. Total: 2 		100% of on- site water, drainage, and wetlands area downgradient from potential sources. Assume depth of 2 feet and 10% of total volume for remediation.	32	4,375
Monitoring		N/A	N/A	N/A	M Average remedy intensity is medium.	12 wells (4 liability issues)	N/A	N/A

Salem.09/23/99

.

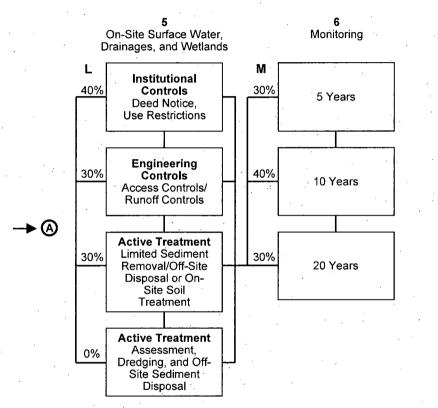
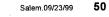

48

Table 3-3: Liability Decision Tree—Salem Generating Station



*Institutional controls are also assumed as a component of all engineering controls and active treatment remedies.

Table 3-3: Liability Decision Tree—Salem Generating Station (continued)

*Institutional controls are also assumed as a component of all engineering controls and active treatment remedies.

Salem Generating Station

	ttem	1 - Investigation	Π			nem (rem	4 • H	ydrocarbon So	urces		
·			· .								
Scenario	1	Cost	Prob.	Γ	Expected Value	Scenario		Cost	Prob.	1	xpected Value U.S. \$
	-	U.S. \$ 238.318	<u>M</u>	L-	U.S. \$ 71,495	Institutional Controls	_	U.S. \$ 11.396	M	<u> </u>	
Low Effort	5	238,318	0.30	5	/1,495	Institutional Controls	\$	11,396	0.20	5	2,279
•						Soil Removal/Off-Site Disposal or On-Site	ľ	· .			
Medium Effort	15	476,636	0.40	\$	190,654	Treatment	\$	214,070	0.40	5	85,62
High Effort	s	1.429.907	0.30	ļ,	. 428.972	Soil Removal and NAPL Recovery	s	. 270.362	0,30	s	81,10
righ Elloit	1	1,425,507	0.30	Ľ.	420,5/2	Necovery	3	270,302	0,50	Ļ.	01,10
						Soil Removal, NAPL Recovery, and			in an		
						Groundwater Extraction					
· · · · ·						/Treatment (Carbon)	\$	1,556,661	0.10	\$	155,666
1	1										
	1		1,00	\$. 691,121				1.00	\$	324,682
				\$	691,121					\$	324,682
	item 5 -	Chemical Sour		\$	691,121		tem (6 - PCB Source		\$	324,682
Scenario	Item 5 -	Chemical Sour		5			tem (,	
	Item 5 -		ces	5	Expected	Scenario	tem	5 - PCB Source . Cost	3	,	xpected
	item 5 -	Cost	res Prob.	5	Expected Value		tem (Cost	s Prob.	,	xpected Value
Scenario		Cost U.S. \$	ces Prob. M		Expected Value U.S. \$	Scenario	-	Cost U.S. \$	s Prob. M	Ę	xpected Value U.S. \$
Scenario Institutional Controls Soil Removal/Off-Site	item \$ -	Cost	res Prob.	\$	Expected Value		tem (Cost	s Prob.	,	xpected Value U.S. \$
Scenario		Cost U.S. \$ 11,396	ces Prob. M		Expected Value U.S. \$	Scenario Institutional Controls	-	Cost U.S. \$	s Prob. M	E S	xpected Value
Scenario	5.	Cost U.S. \$	Prob. M 0.40	5	Expected Value U.S. \$ 4,558	Scenario Institutional Controls	5	Cost U.S. \$ 11,396	3 Prob. M 0.10	E S	xpected Value U.S. \$ 1,140
Scenario Institutional Controls Soil Removal/Off-Site Sisposal or On-Site reatment	5.	Cost U.S. \$ 11.396 173,164	Prob. M 0.40	5	Expected Vatue U.3. \$ 4,558 51,949	Scenario Institutional Controls Fencing/Capping Soli Removal/Off-Site	5	Cost U.S. \$ 11,396	3 Prob. M 0.10	5 5	xpected Value U.S. \$ 1,140
Scenario Institutional Controls Soil Remova/Off-Site Sisposal or On-Site reatment Groundwater Extraction	\$. \$.	Cost U.S. \$ 11,396	Prob. M 0.40 0.30	5	Expected Vatue U.3. \$ 4,558 51,949	Scenario Institutional Controls Fencing/Capping	s s	Cost U.S. \$ 11,396 41,025	9 Prob. M 0.10	5 5	xpected Value U.S. \$ 1,140 8,205
Scenario Institutional Controls Soli Removal/Off-Site Xisposal or On-Site reatment Groundwater Extraction Groundwater Extraction	\$. \$.	Cost U.S. \$ 11.396 173,164	Prob. M 0.40 0.30	5	Expected Vatue U.3. \$ 4,558 51,949	Scenarlo Institutional Controls Fencing/Capping Soil Removal/Off-Site Disposal	s s	Cost U.S. \$ 11,396 41,025	9 Prob. M 0.10	5 5	xpected Value U.S. \$ 1,140 8,205
Scenario Institutional Controls Sol Removal/Off-Site Neposal or On-Site reatment Groundwater Extraction and Treatment Sol Removal and	\$. \$.	Cost U.S. \$ 11.396 173,164	Prob. M 0.40 0.30	5	Expected Value U.S. \$ 4,558 51,949 255,351	Scenario Institutional Controls Fencing/Capping Soil Removal/Off-Site Disposal Capping and	s s	Cost U.S. \$ 11,396 41,025	9 Prob. M 0.10	5 5 5	xpected Value U.S. \$ 1,140 8,205
Scenario Soli Removal/Ort-Site Soli Removal/Ort-Site reatment Groundwater Extraction on Treatment Soli Removal and Soundwater	\$. \$.	Cost U.S. \$ 11,396 173,164 1,276,755	Prob. M 0.40 0.30	5	Expected Value U.S. \$ 4,558 51,949 255,351	Scenario Institutional Controls Fencing/Capping Soil Removal/Off-Site Disposal Capping and Capping and Capping and	s s	Cost U.S. \$ 11.396 41,025 115,278	3 Prob. M 0.10 0.20 0.60	5 5 5	xpected Value U.S. \$ 1,140 8,205 69,167
Scenario Soli Removal/Ort-Site Soli Removal/Ort-Site reatment Groundwater Extraction on Treatment Soli Removal and Soundwater	\$. \$.	Cost U.S. \$ 11,396 173,164 1,276,755	Prob. M 0.40 0.30	5	Expected Value U.S. \$ 4,558 51,949 255,351	Scenario Institutional Controls Fencing/Capping Soil Removal/Off-Site Disposal Gapping and Groundwater Extraction/Off-Site Disposal and Groundwater	\$ \$ \$	Cost U.S. \$ 11,396 41,025 115,278 1,317,781	Prob. M 0.10 0.20 0.60	5 5 5	xpected Value U.S. \$ 1,140 8,205 69,167 65,885
Scenario Soli Removal/Ort-Site Soli Removal/Ort-Site reatment Groundwater Extraction on Treatment Soli Removal and Soundwater	\$. \$.	Cost U.S. \$ 11,396 173,164 1,276,755	Prob. M 0.40 0.30	5	Expected Value U.S. \$ 4,558 51,949 255,351	Scenario Institutional Controls Fencing/Cepping Soil Removal/Off-Site Disposal Capping and Groundwater Extraction/Off-Site Disposal and	s s	Cost U.S. \$ 11.396 41,025 115,278	3 Prob. M 0.10 0.20 0.60	5 5 5	xpected Value U.S. \$ 1,140 8,205 69,167

Table 3-4: Liability Valuation—Salem Generating Station

item 8 - On-Site	Surf	ace Water, Draina	iges, and W	/etj2	ands .	ttem 9 - Monitoring					E	Total xpected Value	1888	
Scenario		Cost	Prob.		Expected Value	Scenario		Cost	Prob. M	E	xpected Value		• •.	
Institutional Controls	s	U.S. \$ 7,517	0.40	\$	U.S. \$ 3,007	Monitoring - 5 years	\$	U.S. \$ 97,580	0.30	\$	U.S. \$ 29,274	ł		.
Access Controls/ Runoff Controls Limited Sediment Removal/Off-Site Disposal or On-Site Soil Treatment	s	127.006 67.086	0.30			Monitoring - 10 years Monitoring - 20 years	5	147.096 216.759	0.40		58,838			
Assessment, Dredging, and Off-Site Sediment Disposal		341.780	0.00		· · .			<u> </u>					• •	
· · · · ·			1.00	\$	61,235				1.00	\$	153,140	\$	1,901,0	55
Discount Rate Inflation Rate Start Year of Remedia	tior	· ·			7% 2% 4				•			-	. • .	

Salem.09/23/99 51

Appendix C

Well Details (Boring Logs, Well Completion Details, Well Completion Details, Well Completion Records, and Survey Form Bs)

ARCADIS Sample/Core Log

Boring/Well	We	II M		Project/No.	PSEG Nuclear, LLC Salem	Generrating Stati	on/NP000571.000	2 Page1_of1
Site Location	Artificial Isl	and, Hanco	ck's Bridge, New Jerse	y		Drilling Started <u>5/3/2003</u>	Drilling Completed	5/3/2003
Total Depth	Drilled	20.0	Feet		Hole Diameter 5.25		ype of Sample/ Coring Device	<u>NA</u>
Length and of Coring D		5.25 inche	s by 5.0 feet hollow-ste	m augers			Sampling In	terval <u>NA</u> feet
Land-Surfac	ce Elev.	99.26	feet	• •	X Surveyed	Estimated D	Datum Plant Datum	n
Drilling Flui	d Used	None		· .		•	Drilling Met	hod Hollow Stem Auger
Drilling Contractor		CT&E Env	vironmental Services, Ir	IC.		C	Driller Nick	Helper Larry
Prepared By		Jon Rutled	ige				lammer Veight <u>NA</u>	Hammer Drop <u>NA inches</u>
Sample/Core (feet below la	and surface)	Core Recovery	Blow	PID Reading		۰. ۱		
From	To	(feet)	· · · · · · · · · · · · · · · · · · ·	(ppm)	Sample/Core Description			
0.0	10.0	'			Borehole advanced to 10	0.0 feet below gro	ound surface usir	g vacuum excavation.
11.5	20.0				SAND, medium, brown,	some silt, wet, sl	ight hydrocarbon	odor.
		· ·	· · ·		Description from cutting	s.	*	
20.0	· .				End of boring. Boring co	ompleted as Mon	itoring Well M.	
							·	
•							1. A. 1. A.	·* .
	1					+ 		1 T.
								:
· .							•	
	· .						•	на страна (1996) Страна (1996)
					·.		5. 1.	
					· .		5	1
	1					·····		
		· .						
		1	· · ·				• •	
	1			· ·			• • •	
				· · ·	······································			
L				•				

Boring/Wel	uWe	II R	·. ·.	Project/No.	PSEG Nuclear, LLC Sale	m Generrating Sta	ation / N	P000571.0002	Page			
Site Location	Artificial Isl	and, Hanco	ck's Bridge, New Jerse	ey		Drilling Started <u>6/3/200</u>)3	Drilling Completed	6/3/200	3		
Total Depth	h Drilled	19.0	Feet	•	Hole Diameter 3.25	inches	Type of Coring	f Sample/ Device	NA		÷ •	
Length and of Coring D		3.25 inche	s by 4.0 feet	•		Sampling Inte				NA	feet	
Land-Surfa			feet	· .·	X Surveyed						<u> </u>	
Drilling Flu	id Used	None	· · · · · ·				_	Drilling Metho	od Direct Push			
Drilling Contractor		CT&E Env	vironmental Services, Ir	1C.		Driller Jeff				Helper Steve		
Prepared By	· :	Jon Rutied		• •	· · · · · · · · · · · ·		- Hamme Weight	er	– Hamm Drop		inches	
Sample/Core (feet below la		Core Recovery (feet)	Blow Counts	PID Reading (ppm)	Sample/Core Description		_ vveign					
0.0	3.0		`	·	Description from cutting	gs: SAND, reddis	sh to ye	llowish orang	e, some	silt, clay	/ and	
· .	· ·		· · · ·		gravel.							
3.0	12.0				Description from cutting				······			
					Borehole advanced to						lion.	
12.0	19.0				Boring advanced from A sample/core desription				····			
		<u> </u>			19.0' due to the nature				1112.0 8		·	
19.0					End of boring. Boring					۰.		
						: :	• •					
		L										
		<u> </u>	•							• • · · · ·		
					· .					·		
						· · · · · · · · · · · · ·			· •		· .	
					·····	· · · · · · · · · · · · · · · · · · ·	· · · · ·					
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·										
		1.										
					-							
		<u> </u>										
				·.								
		<u> -</u>										
		┢───			· · · · · · · · · · · · · · · · · · ·]	

Boring/Well	We	II S	• • • •	Project/No.	PSEG Nuclear, LLC Salem Generrating Station/NP000571.0002 Page 1 of 1
Site Location	Artificial Isl	and, Hanco	ck's Bridge, New Jerse		Drilling Drilling Started 5/29/2003 Completed 5/29/2003
			· · · · ·	•.	Type of Sample/
Total Depth	Drilled	36.0	Feet		Hole Diameter 2 inches Coring Device Split-Spoon
Length and of Coring D		2 feet by 2	inches		Sampling Interval 5_feet
Land-Surfac	e Elev.	99.61		feet	X Surveyed Estimated Datum Plant Datum
Drilling Flui	d Used	None			Drilling Method Hollow Stem Auger
Drilling Contractor	· ·	CT&E Env	ironmental Services, Ir	1C.	Driller Marc Helper Steve
Prepared By		Jon Rutleo	lge		Hammer Hammer Weight 140 pounds Drop 36 inches
Sample/Core	Depth		· · · ·		(1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
(feet below la		Core	Blow .	PID	
From	То	Recovery (feet)	Counts	Reading (ppm)	Sample/Core Description
					0.0 - 9.5' Vacuum excavation to identify subsurface utilities
9.5	11.5	2.0	7-9-11-15	0.0	9.5 - 14.0' orange, silty medium SAND with gravel
14.0	16.0	1.9	12-15-16-17	0.0	14.0 - 19.0' tan, clayey medium SAND with gravel
19.0	. 21.0	2.0	8-9-13-15	0.0	19.0 - 20.7' light brown, medium SAND with gravel
5	. *				20.7 - 24.0' gray, medium SAND with gravel
24.0	26.0	2.0	140 lbs/0.9'-2-3	·· 0.0	24.0 - 25.7' gray, CLAY with trace fine sand and mica
					25.7 - 26.0' gray, fine sandy CLAY with trace mica
29.0	31:0	2.0	140 lbs/0.5'-2-1-2	1.0	26.0 - 34.4' gray, CLAY with trace fine sand and mica
34.0	36.0	2.0	2-2-8-14	0.0	34.4 - 36.0' gray, medium SAND with gravel and trace mica
					36.0' End of Boring
				,	
		· .			
			·		
				`	
	· .				
				• • •	
			·		
·			· .		

Soil Boring Logs - Wells M and R through W xls 3/9/2005

Boring/Wel	i <u>W</u> e	II T		Project/No.	PSEG Nuclear, LLC Salem Generrating St	ation/NP000571.0002 Page 1 of 1
Site Location	Artificial Isl	and, Hanco	ock's Bridge, Nev	v Jersev	Drilling Started 6/5/20	Drilling 03 Completed 6/5/2003
Total Depth	Drilled	35.5	Feet		Hole Diameter 2 inches	Type of Sample/ Coring Device Split-Spoon
Length and of Coring D		2 feet by 2	inches	• •		Sampling Interval5_feet
Land-Surfa	ce Elev.	100.97	- ·	feet	X Surveyed Estimated	Datum Plant Datum
Drilling Flui	d Used	None	1. 1. 1.			Drilling Method Hollow Stem Auger
Drilling Contractor	CT&F Envi	ronmental	Services, Inc.			Driller Marc Helper Steve
Prepared	<u>orac cinn</u>		Services, ma.			Hammer Hammer
Ву	Jon Rutled	ge				Weight 140 pounds Drop 36 inches
: Sample/Core	Depth					· · ·
(feet below la		Core	Blow	PID		
From	То	Recovery (feet)	Counts	Reading (ppm)	Sample/Core Description	· .
					0.0 - 9.5' Vacuum excavation to identit	fy subsurface utilities
9.5	11.5	2.0	2-2-2-2	0.0	9.5 - 14.9' gray, CLAY with trace fine s	
14.5	16.5	2.0	5-4-3-3	0.0	14.9 - 15.4' gray, medium SAND with	trace clay and mica
19.5	21.5	2.0	1-2-2-3	0.0	15.4 - 26.0' gray, CLAY with trace fine	sand and mica
24.5	26.5	2.0	1-2-2-4	0.0	26.0 - 26.5' gray, fine sandy CLAY wit	h trace mica
29.5	31.5	2.0	3-3-21-50	0.0		
31.5	33.5	2.0	25-30-20-15	0.0	26.5 - 33.2' gray, medium SAND with	gravel and trace mica
33.5	35.5	0.0	140 lbs/2.0'	NA	33.2 - 33.5' gray, CLAY with trace mic	a
					35.5' End of Boring	
					· · ·	
						·
				· ·		
					· · · · · · · · · · · · · · · · · · ·	

Boring/Well	We	<u>II U</u>	· · ·	Project/No.	PSEG Nuclear, LLC Salem Generrating Station/NP000571.0002 Page 1 of 1
Site Location	Artificial Isi	and, Hanco	ck's Bridge, New	/ Jersey	Drilling Drilling Started 5/28/2003 Completed 5/28/2003
Total Depth	Drilled	.36.0	Feet	· .	Type of Sample/ Hole Diameter 2 inches Coring Device Split-Spoon
Length and of Coring D		2 feet by 2	2 inches		Sampling Interval 5 feet
Land-Surfac	e Elev.	99.54	_	feet	X Surveyed Estimated Datum Plant Datum
Drilling Flui	dUsed	None			Drilling Method Hollow Stem Auger
Drilling Contractor		CT&E Env	vironmental Servi	ices, Inc.	Driller Marc Helper Steve
Prepared By		Jon Rutle	dge	· · ·	Hammer Hammer Weight 140 pounds Drop 36 inches
Sample/Core				<u> </u>	
(feet below la	To	Core Recovery (feet)	Blow Counts	PID Reading (ppm)	Sample/Core Description
	·				0.0 - 9.0' Vacuum excavation to identify subsurface utilities
9.0	11.0	2.0	7-3-4-4	78.1	9.0 - 9.7 black, fine sandy SILT with trace mica; hydrocarbon odor
					9.7 - 14.0' gray, silty fine SAND with trace mica; hydrocarbon odor
14.0	16.0	2.0	5-4-3-3	38.5	14.0 - 20.0' gray, fine SAND with trace silt and mica; hydrocarbon odor
19.0	.21.0	2.0	1-2-1-2	7.6	20.0 - 29.0' gray, fine sandy CLAY with trace mica
24.0	26.0	2.0	2-2-1-2	7.2	
29.0	31.0	2.0	16-20-28-30	20.2	29.0 - 32.0' gray, medium SAND with gravel
34.0	36.0	1.7	11-7-6-8	8.6	32.0 - 36.0' gray, CLAY with trace fine sand and mica
	<u>.</u>		· · · · · · · · · · · · · · · · · · ·		36.0' End of Boring
	<u> </u>		·		
	· · ·				
· .	· .			<u> </u>	
	<u></u>				
\ .		Į			
	ļ		· · · · ·		
			· · ·		
	· · ·	<u>.</u>			
· · · · · ·					
	<u> ·</u>			·	

Soil Boring Logs - Wells M and R through W.xls 3/9/2005

.

Boring/Well	We	ell V	· .	Project/No.	PSEG Nuclear, LLC Salem Generrating Station/NP000571.0002 Page 1 of 2
Site Location	Artificial Is	land, Hanco	ck's Bridge, New Jer	sey	Drilling Drilling Started 6/6/2003 Completed 6/12/2003
Total Depth	Drilled	80.0		Feet	Type of Sample/ Hole Diameter2_inches Coring Device Split-Spoon
Length and of Coring D		2 feet by 2	inches		Sampling Interval <u>Continous</u>
Land-Surfac	e Elev.	99.16		feet	X Surveyed Estimated Datum Plant Datum
Drilling Flui	dUsed	None	· · ·		Drilling Method Mud Rotary
Drilling Contractor		CT&E Env	rironmental Services,	Inc.	Driller Marc Helper Steve
Prepared By		Jon Rutled	lge		Hammer Hammer Weight 140 pounds_Drop36 inches
Sample/Core (feet below la From		Core Recovery (feet)	Blow Counts	PID Reading (ppm)	Sample/Core Description
					0.0 - 10.0' Vacuum excavation to identify subsurface utilities
10.0	12.0	2.0	1-1-3-2	0.0	10.0 - 12.0' gray, fine sandy CLAY with trace mica
12.0	14.0	2.0	3-1-1-2	0.0	12.0 - 14.0' gray, fine sandy CLAY with trace mica
14.0	16.0	2.0	3-3-1/1.0'	0.0	14.0 - 16.0" gray, CLAY with trace medium sand and mica
16.0	18.0	2.0	3-1-1-3	0.0	16.0 - 18.0' gray, CLAY with trace fine sand and mica
. 18.0	20.0	2.0	140 lbs./1.0'-2-1	0.0	18.0 - 20.0' gray, CLAY with trace fine sand and mica
20.0	22.0	2.0	1-2-2-2	0.0	20.0 - 22.0' gray, CLAY with trace fine sand and mica
22.0	24.0	2.0	140 lbs./1.0'-3-3	0.0	22.0 - 24.0' gray, CLAY with trace fine sand and mica
.24.0	26.0	2.0	3-2-3-2	0.0	24.0 - 26.0' gray, CLAY with trace fine sand and mica
26.0	28.0	2.0	140 lbs./1.0'-3-3	0.0	26.0 - 28.0' gray, fine sandy CLAY with trace mica
28.0	30.0	2.0	3-2-2-3	0.0	28.0 - 30.0' gray, fine sandy CLAY with trace mica
30.0	32.0	2.0	8-9-11-15	0.0	30.0 - 31.3' gray, fine sandy CLAY with organic material
					31.3 - 32.0' gray, medium SAND
32:0	34.0	2.0	15-20-25-23	0.0	32.0 - 33.5' gray, silty medium SAND
· ·					33.5 - 33.6' purple, fine SAND with gravel
· ·				<u> </u>	33.6 - 34.0' brown, medium to coarse SAND with grave
34.0	36.0	1.0	20-18-15-9	0.0	34.0 - 36.0' gray, medium to coarse SAND with gravel
36.0	38.0	2.0	6-6-8-15	0.0	36.0 - 36.8' gray, medium to coarse SAND with gravel
					36.8 - 38.0' gray, CLAY
38.0	40.0	0.5	7-8-8-10	0.0	38.0 - 40.0' gray, GRAVEL with trace clay

-33

ARCADIS GERAGHTY & MILLER Sample/Core Log (Cont.d)

Boring/Well

Prepared by

Jon Rutledge

Well V

Sample/Core Depth (feet below land surface) Core PID Recovery Readino From · Sample/Core Description То (feet) (ppm) 40.0 - 42.0' gray, CLAY with trace silt and grave! 40.0 42.0 2.0 7-7-8-12 0.0 42.0 44.0 2.0 5-7-9-12 0.0 42.0 - 44.0' gray, CLAY with trace silt 44.0 46.0 2.0 7-9-12-12 0.0 44.0 - 44.6' gray, GRAVEL (cave-in) 44.6 - 46.0' gray, CLAY with trace silt 46.0 - 46.2' gray, GRAVEL (cave-in) 46.0 48.0 2.0 9-9-10-13 0.0 46.2 - 48.0' gray, CLAY with trace silt 6-8-9-10 48.0 - 50.0' gray, CLAY with trace silt 48.0 50.0 2.0 0.0 50.0 - 52.0' gray, CLAY with trace silt 50.0 2.0 5-5-6-10 0.0 52.0 54.0 2.0 10-11-12-13 0.0 52.0 - 53.6' gray, CLAY 52.0 53.6 - 54.0' dark purple, silty sandy CLAY with trace mica 2.0 10-13-17-17 54.0 - 56.0' red, clayey fine SAND with trace mica 54.0 56.0 0.0 56.0 58.0 2.0 8-11-25-22 0.0 56.0 - 57.5' reddish gray, clayey fine SAND with trace mica 57.5 - 58.0', reddish gray, fine SAND with trace mica 58.0 60.0 2.0 12-12-9-9 0.0 58.0 - 60.0' gray, fine SAND with trace mica 60,0 62.0 1.7 8-11-20-21 0.0 60.0 - 62.0' gray, fine SAND with trace mica 62.0 64.0 2.0 8-10-15-25 0.0 62.0 - 64.0' gray, fine SAND with trace silt and mica 24-24-18-10 66.0 0.9 64.0 - 66.0' gray, medium to coarse SAND with gravel 64.0 0:0 66.0 68.0 4-4-6-12 66.0 - 67.2' gray, medium to coarse SAND with gravel 1.4 0.0 67.2 - 68.0' green, fine SAND with trace silt 68.0 70.0 1.5 15-15-13-23 0.0 68.0 - 70.0' grayish green, fine SAND with trace silt

2 of 2

Page

Soil Boring Logs - Wells M and R through W.xls 3/9/2005

70.0

72.0

74.0

76.0

78,0

72.0

74.0

76.0

78.0

80.0

2.0

2.0

1.5

2.0

1.0

16-16-20-22

20-20-31-20

48-50/0.3'

30-18-23-30

30-70-50/0.2

0.0

0.0

0.0

0.0

0.0

70.0 - 72.0' green, fine SAND with trace silt and gravel

76.0 - 78.0' olive green, fine SAND with trace silt

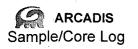
78.0 - 80.0' olive green, fine SAND with trace silt

80.0' End of Boring

72.0 - 74.0' greenish black, fine to medium SAND with fragments of seashells

74.0 - 76.0' dark green, fine SAND with trace fragments of seashells

Boring/Wel	we	li W	· ·	Project/No.	PSEG Nuclear, LLC Sale	m Generrating St	ation/NP	000571.0002	2 Page	<u>1</u> of	1
Site		÷	•			Drilling		Drilling			
Location	Artificial Isl	and, Hanco	ck's Bridge, New Jerse	ey	· · · · · · · · · · · · · · · · · · ·	Started 6/2/200)3	Completed	6/3/200	3	
Total Depth	n Drilled	36.0		Feet	Hole Diameter 2	_inches	Type of Coring	Sample/ Device	Split-Sp	boon	• •
Length and	Diameter							·.			
of Coring D	evice	2 feet by 2	inches		· · · · ·		. .	Sampling In	terval	5	feet
Land-Surfa	ce Elev.	99.36		feet	XSurveyed	Estimated	Datum	Plant Datum	<u> </u>		
Drilling Flui	d Used	None					-	Drilling Meth	hod	Hollow.	Stem Auger
Drilling Contractor		CT&E Env	vironmental Services, In	nc.		•.	Driller	Marc	Helper	Steve	
Prepared							- Hamm	er .	- Hamme	эг	
Ву	<u></u>	Jon Rutied	lge				Weight	140 pounds	Drop	36	inches
Sample/Core (feet below la		Core	Blow	PID				-			
	ine cana,	Recovery	Counts	Reading							
From		(feet)		(ppm)	Sample/Core Description	· · · · · · · · · · · · · · · · · · ·					
		· .			0.0 - 9.5' Vacuum exca	avation to identif	y subsu	rface utilitie	s		
9.5	11.5	1.6	15-20-22-22	0.0	9.5 - 16.2' brown, med	lium to coarse S	AND wi	th gravel			
14.5	16.5	0.3	1/0.9'-2-2	0.0	16.2 - 18.0' gray, medu	um sandy CLAY					
18.0	20.0	2.0	1/1.5'-2 ;	0.0			· ·				
24.0	26.0	2.0	140 lbs/0.5-1-1-2	0.0	· ·	1.				•	
29.0	31.0	1.9	140 lbs/2.0'	. 0.0	18.0 - 34.3' gray, CLA'	Y with trace fine	sand a	nd mica			
34.0	36.0	2.0	6-8-3-4	0.0	34.3 - 36.0' gray, claye	ey fine SAND					
					36.0' End of Boring	· ·					•.
			· ·					• •			
						•					
						. •					
· .				÷.,							
								÷			
									· .		
	<u> </u>		:	· ·				۰.		•	
						<u></u>	. ·			·.	
	1										
	1										
	<u> </u>	1						<u>.</u>			、
	<u> </u>		· · ·	t				• . •			



ARCADIS Sample/Core Log

Boring/Wel	Well Y	ч. т. м. ц. т.		Project/No.	PSEG Nuclear, LLC Salem Generating Station / NP000571.0003Page 1 of 1
Site					Drilling Drilling
Location	Artificial Isl	and, Hanco	ck's Bridge, New Jerse	ey .	Started 9/27/2003 Completed 9/27/2003
1.1				1 (17) : 	Type of Sample/
Total Depth	Drilled	40.0	Feet		Hole Diameter 9.0 inches Coring Device Split-spoon (2-inches by 2-feet)
Length and of Coring D		9.0-inch b	y 5.0-feet hollow-stem a	augers.	Sampling Interval <u>5.0</u> feet
Land-Surfa	ce Elev.	99.20	feet		X Surveyed Estimated Datum NAVD 1988
Drilling Flui	d Used	None	•••		Drilling Method Hollow-Stem Auger
Drilling Contractor		A.C. Schu	ltes, Inc.		Driller C. Warren Helper W. Powers
Prepared By		Christophe	er Sharpe	terita Alterita	Hammer Hammer Weight 140 lbs Drop 30 inches
Sample/Core	Denth				
(feet below la	-	Core Recovery	Blow Counts	PID Reading	
From	To '	(feet)		(ppm)	Sample/Core Description
0.0	10.0				Borehole advanced to 10 feet below ground surface using vacuum excavation.
14.0	16.0	2.0	1/0/1/0		SILT, dark gray, trace sand, fining with depth, wet.
19.0	21.0	2.0	0/0/1/1		SILT, dark gray, trace sand, stiffening with depth, wet.
24.0	26.0	1.5	1/3/4/5	· ·	SILT, dark gray, trace sand.
29.0	31.0	2.0	1/2/1/2		First 1.0 feet: SILT, dark gray; Next 1.0 feet: SILT, with clay and some sand,
		'			sand increasing with depth.
34.0	36.0	2.0	2/3/5/6		First 1.0 feet: SILT, dark gray; Next 1.0 feet: CLAY, gray, stiff.
37.0	39.0	1.5	3/1/0/1	·	First 1.0 feet: SILT, dark gray; Next 0.5 feet: CLAY, gray and tan, stiff.
40.0					End of boring. Boring completed as Monitoring Well Y.
	• • •				
·					
	· .				
		- h			
	· ·	<u> </u>			
		<u> </u>			
		<u> </u>			
<u> </u>	L	l	l	L.	

Soil Boring Logs - Wells Y through AF xls 3/9/2005

Boring/Wel	I Well Z			Project/No.	PSEG Nuclear, LLC Salem Generating Station / NP000571.0003 Page 1 of 1
Site Location	Artificial Isl	land, Hanco	ck's Bridge, New Jerse	ey	Drilling Drilling Started <u>9/30/2003</u> Completed <u>9/30/2003</u>
Total Depth	ı Drilled	38	Feet		Type of Sample/ Hole Diameter 9.0 inches Coring Device Split-spoon (2-inches by 2-feet)
Length and of Coring D	· ·	9.0-inch b	y 5.0-feet hollow-stem	augers.	Sampling Interval 5.0 feet
Land-Surfa	ce Elev.	99.3	feet		X Surveyed Estimated Datum NAVD 1988
Drilling Flui	d Used	None			Drilling Method Hollow-Stem Auger
Drilling Contractor		A.C. Schu	Ites, Inc.		Driller C. Warren Helper W. Powers
Prepared By		Christoph	er Sharpe		Hammer Hammer Weight 140 lbs Drop <u>30 inches</u>
Sample/Core (feet below la		Core Recovery	Blow Counts	PID Reading	
From .	То	(feet)		(ppm)	Sample/Core Description
0	10		·		Borehole advanced to 10 feet below ground surface using vacuum excavation.
15	17	. 2	2/1/1/1		SILT, dark gray with trace fine sand (diesel odor).
20	22	2	0/1/0/1		SILT, dark gray with trace fine sand.
25	27	2	0/0/2/1		CLAY, dark gray with some silt and trace fine sand.
27	29	2	1/2/2/2		SILT, dark gray with some clay and fine to medium sand,
· ·	·				coarsening with depth.
29	31	2 ·	2/1/1/1		SILT, dark gray with some clay and trace sand.
			<u> </u>	<u></u>	(Distict 0.05 to 0.1 foot organic horizon @ 1.2 ft)
31	33	2	15/20/44/33		First 1.5 feet: SILT, dark gray with some clay and trace sand.
				·	Next 0.25 foot: SAND with gravel.
				·'	Next 0.25 foot: SAND, brown, medium-fine.
33_	35	2	10/11/29/44		First 0.25 foot: SAND, cemented gray
			<u></u>		Next 1.75 feet: SAND, dark gray with gravel.
35	37	2	2/9/15/25		First 1.2 feet: SAND, dark gray silty.
		·			Next 0.8 foot: SAND, brown with gravel.
37					End of boring. Boring completed as Monitoring Well Z.
				<i>,</i>	

Boring/Well	Well AA	\	_	Project/No.	PSEG Nuclear, LLC Salem Generating Station / NP000571.0003Page 1 of 1
Site Location	Artificial Isl	and, Hanco	ock's Bridge, New Jerse	ey.	Drilling Drilling Started 9/30/2003 Completed 9/30/2003
Total Depth	Drilled	36.5	Feet		Type of Sample/ Hole Diameter 9.0 inches Coring Device Split-spoon (2-inches by 2-feet)
Length and	Diameter	4.1	-		
of Coring D	evice	9.0-inch b	y 5.0-feet hollow-stem a	augers.	Sampling Interval 5.0 feet
Land-Surfac	ce Elev.	99.20	feet	•	X Surveyed Estimated Datum NAVD 1988
Drilling Flui	d Used	None	· · · ·		Drilling Method Hollow-Stem Auger
Drilling Contractor	• :	A.C. Schu	ultes, Inc.		Driller C. Warren Helper W. Powers
Prepared By		Christoph	er Sharpe		Hammer Hammer Weight 140 lbs Drop 30 inches
Sample/Core (feet below la	-	Core	Blow	PID	
From	То	Recovery (feet)	Counts	Reading (ppm)	Sample/Core Description
0	10				Borehole advanced to 10 feet below ground surface using vacuum excavation.
15	17	1.5	4/8/12/19		SAND, tan, with gravel and silt.
20	22	1.9	3/7/14/22		SAND, tan, with gravel and silt.
25	27	2	5/12/16/33		SAND, tan, with gravel and silt.
30	32	1.8	1/2/6/14	•	SAND, tan, with gravel and silt.
35	37	2	8/6/7/8		First 1.0 foot: SAND, tan, with gravel and silt.
					Next 1 foot: CLAY, stiff gray (Kirkwood).
36.5					End of boring. Boring completed as Monitoring Well AA.
				· · ·	
-		i	· · ·		
	:				
		· .	· · · · ·		
•	:	-			
	+	-			
· ·					
				<u> </u>	
		-			
	1	1 .	· · ·		

Boring/Well	Well AB	1	_	Project/No.	PSEG Nuclear, LLC Salem Generating Station / NP000571.0003 Page 1 of 1
Site Location	Artificial Isl	and, Hanco	ock's Bridge, New Jerse	y	Drilling Drilling Started 10/2/2003 Completed 10/2/2003
· · · .					Type of Sample/
Total Depth	Drilled	43	Feet		Hole Diameter 9.0 inches Coring Device Split-spoon (2-inches by 2-feet)
Length and of Coring D		9.0-inch b	y 5.0-feet hollow-stem a	augers.	Sampling Interval 5.0 feet
Land-Surfac	ce Elev.	99.10	feet	•	X Surveyed Estimated Datum NAVD 1988
Drilling Flui	d Used	None	·		Drilling Method Hollow-Stem Auger
Drilling Contractor		A.C. Schu	ultes, Inc.		Driller C. Warren Helper W. Powers
Prepared By		Christoph	er Sharpe		Hammer Hammer Weight <u>140 lbs</u> Drop <u>30 inches</u>
Sample/Core (feet below la		Core	Blow	PID	
From	To .	Recovery (feet)	Counts	Reading (ppm)	Sample/Core Description
0	10				Borehole advanced to 10 feet below ground surface using vacuum excavation.
15	17	1.2	3/4/4/5		SAND, tan, with gravel and silt.
20	22	2	7/7/12/24		SAND, tan, with gravel and silt.
25	27	2	4/12/5/7	·	SAND, tan, with gravel and silt.
30	32	1.2	5/4/5/3		SAND, tan, with gravel and silt.
35	37	2	5/7/7/13		First 1.8 feeet: SAND, tan, with gravel and silt .
	<u>.</u>		· · ·		Next 0.4 foot: SAND, dark gray, medium (petroleum odor).
37	39	2	13/27/13/15		First 1.6 feet: SAND, tan, with gravel and silt .
					Next 0.4 foot: SAND, dark gray, clayey.
39	41	2	8/8/8/11		First 0.3 foot: SAND, gray.
			· _ ·		Next 1.4 feet: SAND, tan, with gravel and silt
			·		Next 0.3 foot: SAND, gray.
41	43	2	7/5/3/5		First 1 foot: SLOUGH.
				·	Next 0.6 foot: SAND, gray, medium.
					Next 0.3 foot: CLAY, gray, stiff.
43.0					End of boring. Boring completed as Monitoring Well AB.
	1				· · ·

Boring/Wel	I Well AC	;		Project/No.	PSEG Nuclear, LLC Salem Generating Station / NP000571.0003 Page 1 of 1
Site		1 N.			Drilling Drilling
Location	Artificial Is	and, Hanco	ock's Bridge, New Jerse	y ·	Started <u>9/26/2003</u> Completed <u>9/26/2003</u>
			· ·	· .	Type of Sample/
Total Depth		24.5	Feet	. · ·	Hole Diameter 9.0 inches Coring Device Split-spoon (2-inches by 2-feet)
Length and					
of Coring D			by 5.0-feet hollow-sterr	augers.	Sampling Interval <u>5.0</u> feet
Land-Surfa	ce Elev.	99.00	feet		X Surveyed Estimated Datum NAVD 1988
Drilling Flui	id Used	None		<u> </u>	Drilling Method Hollow-Stem Auger
Drilling	· · ·				
Contractor		A.C. Schu	iltes, inc.		Driller C. Warren Helper W. Powers
Prepared By		Christoph	er Sharpe		Hammer Hammer Weight 140 lbs Drop 30 inches
- ,					
Sample/Core (feet below la		Core	Blow	PID	
	una sunacc)	Recovery	Counts	Reading	
From	To ·	(feet)	1	(ppm)	Sample/Core Description
0	10 .				Borehole advanced to 10 feet below ground surface using vacuum excavation.
10	12	1.6	5/7/6/6		SAND, tan, with gravel and silt
15	17	1.6	4/13/10/17		SAND, tan, with gravel and silt.
20	22	2	3/5/8/10	'	First 1.8 feet: SAND, tan, with gravel and silt .
	`				Next 0.2 foot: SAND, gray, coarse-medium with red-brown clay.
22	.24	2	4/3/5/6		First 1.5 feet: SAND, tan, with gravel and silt.
					Next 0.5 feet: SAND, gray to brown, with gravel and silt.
24	24.5	0.2	NA		First 0.2 foot: Tan silt & sand w/ gravel.
	· · .			· ·	
					Refusal
24.5					End of boring. Boring completed as Monitoring Well AC.
	<u> </u>			. <u> </u>	
. ·				· · · · ·	
			1 A A A A A A A A A A A A A A A A A A A	ļ	
				· · ·	
· · · ·			1	1	
	-	<u> </u>		+ <u></u>	
			· · · · · · · · · · · · · · · · · · ·		
				<u> </u>	
1	1 .	ſ	1	1	

Boring/Well	Well AD		-	Project/No.	PSEG Nuclear, LLC Salem Generating Station / NP000571.0002 Page 1 of 1
Site					Drilling Drilling
Location	Artificial Isl	and, Hanco	ock's Bridge, New Jerse	ý	Started 10/3/2003 Completed 10/3/2003
Total Depth	Drilled	44	Feet		Type of Sample/ Hole Diameter <u>9.0</u> inches Coring Device <u>Split-spoon (2-inches by 2-feet)</u>
Length and	Diameter	• •			
of Coring D	evice	9.0-inch b	y 5.0-feet hollow-stem	augers.	Sampling Interval 5.0 feet
Land-Surfac	ce Elev.	99.10	feet		X Surveyed Estimated Datum NAVD 1988
Drilling Flui	d Used	None			Drilling Method Hollow-Stem Auger
Drilling Contractor		A.C. Schu	iltes, Inc.		Driller C. Warren Helper W. Powers
Prepared By		Christoph	er Sharpe		Hammer Hammer Weight 140 lbs Drop 30 inches
a					
Sample/Core (feet below la		Core	Blow	PID	
(·····;	Recovery	Counts	Reading	
From	То	(feet)	· · ·	(ppm)	Sample/Core Description
0	10				Borehole advanced to 10 feet below ground surface using vacuum excavation.
15	. 17	2	1/0/0/1	· · · ·	CLAY, dark gray with silt and organic material.
20 .	22	2	0/0/0/0		CLAY, dark gray with silt and organic material.
25	27	2	1/0/1/1	·	First 1 foot: CLAY, dark gray with silt and organic material.
			*. 		Next 1 foot: SAND, dark gray with silt.
30	32	2	0/1/2/1		CLAY, dark gray with silt and organic material (phragmites).
				·	First 1 foot: SILT, dark gray with sand.
					Next 1 foot: SAND, dark gray, with silt.
37	. 39	2 ·	3/7/8/5		First 1 foot: CLAY, dark gray, sandy.
			·		Next 1 foot: SAND, gray to brown with gravel.
39	41	2	9/12/6/5		First 0.5 foot: SLOUGH.
					Next 0.5 foot: SAND, gray, interbedded with dark gray organic material
		·			(rhythmites).
		·	;		Next 0.5 foot: CLAY, dark gray.
·					Next 0.5 foot: SAND, tan, medium.
41	43	2	3/5/5/5	·	First 1 foot: SAND, gray to brown with gravel.
					Next 1 foot: CLAY, dark gray, stiff.
44.0					End of boring. Boring completed as Monitoring Well AD.
	· ·		•		

Boring/Well	Well AE			Project/No.	PSEG Nuclear, LLC Salem Generating Station / NP000571.0003 Page 1 of 1
Site Location		and, Hanco	ock's Bridge, New Jerse	ey .	Drilling Drilling Started 10/2/2003 Completed 10/2/2003
Total Depth	Drilled	28	Feet		Type of Sample/ Hole Diameter 9.0 inches Coring Device Split-spoon (2-inches by 2-feet)
Length and of Coring D		9.0-inch b	y 5.0-feet hollow-stem	augers.	Sampling Interval 5.0 feet
Land-Surfac	ce Elev.	99.30	feet		X Surveyed Estimated Datum NAVD 1988
Drilling Flui	d Used	None			Drilling Method Hollow-Stem Auger
Drilling Contractor	· .	A.C. Schu	ites, Inc.		Driller C. Warren Helper W. Powers
Prepared By	·	Christoph	er Sharpe		Hammer Hammer Weight 140 lbs Drop 30 inches
Sample/Core (feet below la	•	Core Recovery	Blow Counts	PID Reading	
From	То	(feet)		(ppm)	Sample/Core Description
0	10				Borehole advanced to 10 feet below ground surface using vacuum excavation.
15	.17.	2	8/9/18/20		SAND, tan, with gravel and silt.
20	22	2	14/14/25/32		SAND, tan, with gravel and silt.
22	24	2	10/7/13/18		SAND, tan, with gravel and silt.
24	26 _	2	6/13/21/20		SAND, tan, with gravel and silt.
26	28	1.5	15/16/34/30		First 1.6 feet: SAND, tan, with gravel and silt.
	<u> </u>				Next 0.1 foot: CONCRETE chips, w gravel.
28.0				``	End of boring. Boring completed as Monitoring Well AE:
·				· · ·	
· .				:	•
		1.1.1			
	1				
	<u> </u>		1	1.	

Boring/Well	Well AF	:		Project/No.	PSEG Nuclear, LLC Salem Generating Station / NP000571.0002 Page 1 of 1	
Site Location	Artificial Isl	and, Hanco	ock's Bridge, New Jers	ey	Drilling Drilling Started 10/1/2003 Completed 10/1/2003	
		·			Type of Sample/	-
Total Depth	Drilled	49.0	Feet		Hole Diameter 9.0 inches Coring Device Split-spoon (2-inches by 2-fe	eet)
Length and of Coring De		9.0-inch b	y 5.0-feet hollow-stem	augers.	Sampling Interval 5.0 feet	
Land-Surfac	e Elev.	99.20	feet		X Surveyed Estimated Datum NAVD 1988	
Drilling Flui	d Used	None		·	Drilling Method Hollow-Stem Auger	
Drilling Contractor		A.C. Schu	utes, Inc.		Driller C. Warren Helper W. Powers	
Prepared By			er Sharpe		Hammer Hammer Weight 140 lbs Drop 30 inches	
· ·			· · ·		······································	
Sample/Core (feet below la	•	Core Recovery	Blow Counts	PID Reading		
From	То	(feet)	T	(ppm)	Sample/Core Description	
0	10				Borehole advanced to 10 feet below ground surface using vacuum excavation.	
. 15	17	1.4	0/4/4/2		SAND, tan, with gravel and silt.	
20	22	1.5	4/3/8/14		SAND, tan, with gravel and silt.	
25	_27	2	3/6/10/9		First 0.6 foot: SAND, tan, with gravel and silt.	
			`		Next 0.6 foot: SAND, gray, with gravel and clay.	
					Next 0.6 foot: SAND, tan, with gravel and silt.	
30	32	2	2/1/2/2		First 0.33 foot: Tan silt & sand w/ gravel. Next1 foot gray clay,	
·					Next 0.66 foot gray silty sand.	
32	34	2	4/9/13/13	·	First 0.66 foot: CLAY, gray with sand.	
				. 	Next 0.6 foot: SAND, dark gray, clayey.	
-					Next 0.6 foot: SAND, gray.	
34	. 36	2	5/6/5/37	·	SAND, gray with red gravel at the tip.	
36	38	2	16/16/13/22		SAND, gray, medium.	
38	. 40	2	7/6/9/20		SAND, gray with greenish sand at tip.	
40 .	42	2	10/13/24/24		SAND, gray with greenish sand at tip.	
43	45	2	8/8/8/6		SAND, dark gray with gravel.	
45	47	2	3/5/5/7	⁻	First 1.5 feet: SAND, silty with some gravel.	
	· 		·		Next 0.25 foot: SAND, greenish.	
					Next 0.25 foot: CLAY, gray.	
47	49	2	5/4/5/6		First 1 foot: SLOUGH (loose sand, silt & clay). Next 1 foot: CLAY dark gray.	
49.0		·		·	End of boring. Boring completed as Monitoring Well AF	

ARCADIS Sample/Core Log

Boring/Wel	ii_Well A	G-Shal	low and Deep	Project/No.	PSEG Nuclear, Salem Ger	nerating Station/I	NP000571.0003	Page <u>1</u> of <u>1</u>
Site Location	Artificial Isl	and, Hanco	ock's Bridge, New Jerse	ey		Drilling Started 2/9/200	Drilling 04 Completed	02/09/04
Total Depti	n Drilled	40.0	Feet		Hole Diameter7	inches	Type of Sample/ Coring Device	Split-Spoon
Length and of Coring D		2 feet by 2	2 inches				Sampling In	erval <u>5</u> feet
Land-Surfa	ce Elev.		_	feet	XSurveyed	Estimated	Datum NAD 83	
Drilling Flu	id Used	None			· · ·		Drilling Meth	nod Hollow Stem Auger
Drilling			· · · · ·			-		
Contractor		Talon Dril	ling Company		· · · · ·	•	Driller Joe A.	Helper Bill B.
Prepared By		Jon Rutle	dge				Hammer Weight 140 pounds	Hammer _Drop36 inches
	and surface)	Core Recovery	Blow Counts	PID Reading				
From	То .	(feet)		(ppm)	Sample/Core Description			
· · ·		1.			0.0 - 10.0' Vacuum exc	avation to ident	ify subsurface utiliti	es
10.0	12.0	NR	4-2-3-3	NA	10.0 - 18.0' Tan, fine to	medium SANE), well sorted, wet	
13.0	15.0	1.2	4-3-3-3	0.0		·	·····	
18.0	20.0	1.0	7-5-4-3	0.0	18.0 - 24.7' Tan, fine to	medium SANE	, well sorted, trace	silt, wet
23.0	25.0	0.8	3-2-1-2	0.0	24.7 - 28.0' Black, silty	fine SAND, we	ll sorted, wet	
28.0	30.0	2.0	1-2-1-2	0.0	28.0 - 29.1' Grey, fine S	SAND, well sort	ed, trace silt, wet	· · · · · · · · · · · · · · · · · · ·
					29.1 - 33.0' Black to gre	ey, fine sandy, v	well sorted, SILT wi	th gravel, wet,
	· · · ·				organic oc	lor	· · · ·	
33.0	35.0	NR	5-5-6-5	NA	33.0 - 38.0' Black, fine	SAND and SIL	T with GRAVEL, we	et
38.0	40.0	1.5	6-6-5-5	0.0	38.0 - 39.2' Dark grey,	fine SAND, wel	I sorted, trace silt, v	vet
. • •					39.2 - 39.6' Grey, silty f	ine to coarse S	AND, poorly sorted	, with gravel, wet
			*		39.6 - 40.0' Grey, silty f	fine sandy CLA	Y with gravel, wet	
					,		•	· .
	1				40.0' End of boring			
	:				, , , , , , , , , , , , , , , , , , , 	· · ·		
		· ·	· · · · ·	1	1			· ,
		t.		1				· · · · · · · · · · · · · · · · · · ·
-	T		4		· · · · · · · · · · · · · · · · · · ·			

Soil Boring Logs - Wells AG through AM xls 3/9/2005

Boring/We	⊪ <u>Well</u> A	H-Shal	low and Deep	Project/No.	PSEG Nuclear, Salem Generating Station/NP000571.0003 Page 1 of 1
Site Location	Artificial Isl	and, Hanco	ock's Bridge, New Jerse	≥y	Drilling Drilling Started 2/4/2004 Completed 02/04/04
Total Depti	h Drilled	40.0	Feet	,	Type of Sample/ Hole Diameter7_inches Coring Device Split-Spoon
Length and of Coring D		2 feet by 2	2 inches		Sampling Intervat <u>5</u> feet
Land-Surface Elev.			-	feet	X Surveyed Estimated Datum NAD 83
Drilling Flu	Drilling Fluid Used		None		Drilling Method Hollow Stem Auger
Drilling Contractor		Talon Dril	ling Company		Driller Joe A. Helper Bill B.
Prepared By		Jon Rutle	dge	·	Hammer Hammer Weight 140 pounds Drop 36 inches
Sample/Core (feet below I	e Depth land surface) To	Core Recovery (feet)	Blow Counts	PID Reading (ppm)	Sample/Core Description
					0.0 - 10.0' Vacuum excavation to identify subsurface utilities
10.0	12.0	0.9	2-2-2-2	0.0	10.0 - 15.0' Tan, medium SAND, well sorted, trace silt, wet
15.0	17.0	1.5	3-2-1-2	0.0	15.0 - 25.0' Tan, medium SAND, well sorted, wet
20.0	22.0	·0.8	2-2-2-140 lbs./0.5'	0.0	25.0 - 30.0' Light grey to tan, fine to medium SAND, well sorted, trace gravel,
25.0	27.0	· 0.7	3-2-140 lbs./1.0'	0.0	wet
30.0	32.0	2.0	Rods/0.5'-8-11-20	0.0	30.0 - 32.7' Grey, fine to medium SAND, well sorted, trace silt, wet
					32.7 - 33.0' Black, GRAVEL, trace fine sand and silt, wet
33.0	35.0	0.2	4-1-2-1	0.0	33.0 - 39.5' Black, fine sandy SILT with gravel, wet
35.0	37.0	NR	Rods/2.0'	0.0	
38.0	40.0	1.5	3-5-6-6	0.0	39.5 - 40.0' Grey to black, medium to coarse SAND, poorly sorted, with gravel,
					trace silt, wet
-	· · · · · · · · · · · · · · · · · · ·				
		· ·			40.0' End of boring
· · ·					
·				·	· ·
		<u> </u>			· · ·
·			· ·	· · ·	
1 ·	· ·		1. · · ·		

 \mathcal{A}

Soil Boring Logs - Wells AG through AM.xls 3/9/2005

R	ARCADIS
Sampl	e/Core Log

Boring/Well	We			Project/No.	PSEG Nuclear, Salem Generating Station/NP000571.0003 Page 1 of 1
Site Location	Artificial Isl	and, Hanco	ck's Bridge, New Jers	ey	Drilling Drilling Started <u>1/20/2004</u> Completed <u>1/20/2004</u>
Total Depth	Drilled	22.0	Feet		Type of Sample/ Hole Diameter 10 inches Coring Device Split-Spoon
Length and I of Coring De		2 feet by 2	inches	· · ·	Sampling Interval <u>5</u> feet
Land-Surfac	e Elev.	·		feet	X Surveyed Estimated Datum NAD 83
Drilling Fluid	Used	None		<u> </u>	Drilling Method Hollow Stem Auger
Drilling Contractor		Talon Drill	ing Company		Driller Joe A. Helper Joe K.
Prepared By	•	Jon Rutled	lge		Hammer Hammer Weight <u>140 pounds</u> Drop <u>30 inches</u>
Sample/Core (feet below lar From		Core Recovery (feet)	Blow Counts	PID Reading (ppm)	Sample/Core Description
					0.0 - 10.0' Vacuum excavation to identify subsurface utilities
10.0	12.0	1.2	9-16-19-18	. 0.0 .	10.0 - 15.0' Brown, fine to medium SAND, poorly sorted, with gravel and
					trace silt, wet
15.0	17.0	1.0	4-9-12-12	88.2	15.0 - 20.0' Brown, silty fine to medium SAND, poorly sorted, wet,
20.0	22.0	1.3	7-8-9-15	5.1	diesel fuel odor, sheen from 16.5 - 17.0'
	<u> </u>				20.0 - 22.0' Brown, fine to medium SAND, poorly sorted, with trace silt, wet
					diesel fuel odor, sheen from 20.9 - 21.1'
					22.0' Auger refusal on lean concrete
				. e	
		、 、			
,					
				,	

Soil Boring Logs - Wells AG through AM xls 3/9/2005

Boring/Well	Wel	IAJ		Project/No.	PSEG Nuclear, Salem Generating Station/NP000571.0003 Page 1 of 1
Site			- ,		Drilling Drilling
Location	Artificial Isl	and, Hanco	ock's Bridge, New Jer	sey	Started 1/22/2004 Completed 1/22/2004
Total Depth	Drillod	38.0	Feet		Type of Sample/ Hole Diameter 10 inches Coring Device Split-Spoon
•			-		
Length and of Coring De		2 feet by 2	2 inches	•	Sampling Interval 5 feet
Land-Surfac		,	·	feet	X Surveyed Estimated Datum NAD 83
Drilling Flui	d Used	None	· · ·	· .	Drilling Method Hollow Stem Auge
Drilling	· · ·				
Contractor		Talon Dril	lling Company		Driller Joe AHelper Not Applicable
Prepared By		Jon Rutle	dge		Hammer Hammer Weight 140 pounds Drop 30 inches
Sample/Core	Depth .				
(feet below la	•	Core	Blow	PID	
From	То	Recovery (feet)	Counts	Reading	Sample/Core Description
				(ppm)	
					0.0 - 10.0' Vacuum excavation to identify subsurface utilities
10.0	12.0	1.1	6-9-12-12	0.0	10.0 - 15.8' Orange to tan, fine to medium SAND, poorly sorted, with gravel
					and trace silt, wet
15.0	17.0	1.5	2-2-2-3	0.0	15.8 - 25.0' Black to grey, clayey fine sandy SILT with trace mica,
20.0	22.0	1.0	5-5-7-4	0.0	organic odor, wet
25.0	27.0	2.0	1-1-2-2	0:0	25.0 - 28.0' Black to grey, fine sandy clayey SILT with trace mica,
27.0	29.0	2.0	3-4-4-5	. 0.0	organic odor, wet
28.0	30.0	2.0	1-1-2-2	0.0	28.0 - 28.4' Brown, silty fine to medium SAND, poorly sorted, with gravel, wet
30.0	32.0	2.0	6-6-7-6	0.0	28.4 - 32.0' Grey, fine sandy silty CLAY with trace mica, wet
32.0	34.0	1.1	5-5-3-3	0.0	32.0 - 34.0' Grey, fine sandy silty CLAY with trace mica and gravel, wet
34.0	36.0	2.0	6-7-8-7	0.0	34.0 - 34.9' Grey, fine sandy silty CLAY, wet
. 36.0	38.0	2.0	7-7-8-10	0.0	34.9 - 35.2' Grey, silty clayey fine to medium SAND, poorly sorted, with gravel,
					wet
					35.2 - 38.0' Grey to brown, very stiff CLAY with trace mica,
					(Kirkwood Formation), wet
			-		
					38.0' End of boring
			100 A		
<u> </u>					

Soil Boring Logs - Wells AG through AM xis 3/9/2005

ARCADIS Sample/Core Log

Boring/Well	Wel	IAL	4	Project/No.	PSEG Nuclear, Salem Generating Station/NP000571.0003 Page 1 of 1
Site Location	Artificial Isl	and, Hanco	ck's Bridge, New Jerse	Эу	Drilling Drilling Drilling Started 1/21/2004 Completed 1/21/2004
	1 1 A			· . · ·	Type of Sample/
Total Depth	Drilled	26.0	Feet	the state	Hole Diameter 7 inches Coring Device Split-Spoon
Length and of Coring D		2 feet by 2	inches		Sampling Interval 5_feet
Land-Surfac	ce Elev.			feet	X Surveyed Estimated Datum NAD 83
Drilling Flui	d Used	None		<u></u>	Drilling Method Hollow Stem Auger
Drilling		Talon Drill	ing Company		Driller Joe A. Helper Not Applicable
Contractor			ing company	<u> </u>	
Prepared By	•	Jon Rutled	lge		Hammer Hammer Weight 140 pounds Drop <u>30 inches</u>
Sample/Core (feet below la		Core Recovery (feet)	Blow Counts	PID Reading (ppm)	Sample/Core Description
					0.0 - 10.0' Vacuum excavation to identify subsurface utilities
9.0	11.0	0.5	2-2-4-5	0.0	11.0 - 21.0' Orange to brown, fine to medium SAND, poorly sorted, with gravel
15.0	17.0	1.2	9-7-6-5	0.0	and trace silt, wet
17.0	.19:0	0.4	5-5-4-3	0.0	
19.0	21.0	. 0.8	7-8-9-11	0.0	
24.0	26.0	1.4	9-13-23-24	0.0	21.0 - 26.0' Orange to brown, silty fine to medium SAND, poorly sorted, with
	1		•		gravel, wet
			· · · · · ·		
		<i>a</i> .			26.0' End of boring
•				• • · · ·	
2		· .			
		•			
	1 1 1				

Soil Boring Logs - Wells AG through AM.xls 3/9/2005

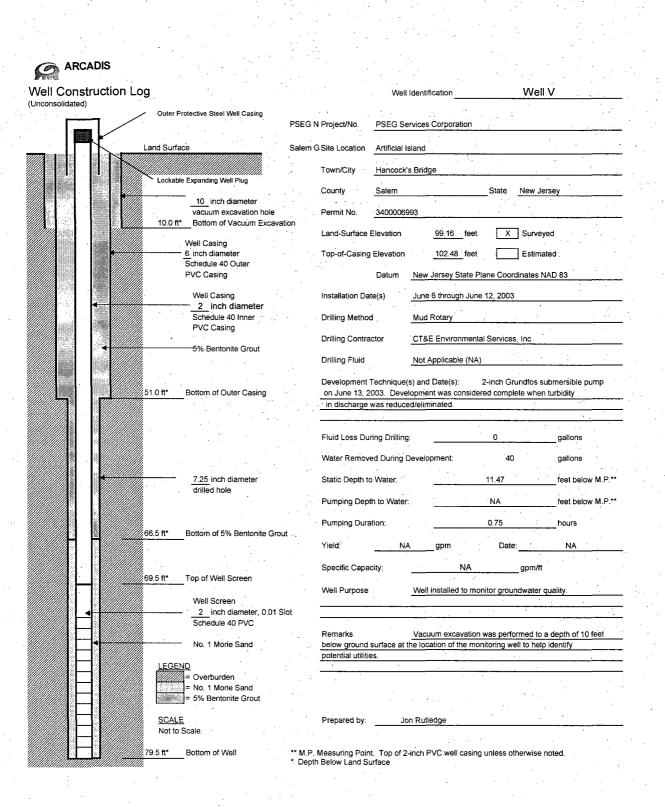
Boring/We	u Wel	IAM		Project/No.	PSEG Nuclear, Salem Generating Station/NP000571.0003 Page 1 of 1	
Site Location	Artificial Isl	and, Hanco	ock's Bridge, New Jerse	Эу	Drilling Drilling Started 1/152004 Completed 1/15/2004	
			· ·		Type of Sample/	1
Total Depti	h Drilled	20.9	Feet		Hole Diameter 10 inches Coring Device Split-Spoon	
Length and of Coring D		2 feet by 2	2 inches		Sampling Interval	
Land-Surface Elev.				feet	X Surveyed Estimated Datum NAD 83	·
Drilling Flu	id Used	None			Drilling Method Hollow Stem Au	ger
Drilling Contractor	· · · ·	Talon Dril	ling Company		Driller Joe A. Helper Joe K.	
Prepared By		Jon Rutle	dge		Hammer Hammer Weight 140 pounds Drop 30 inches	;
Sample/Core (feet below I	e Depth land surface) To	Core Recovery (feet)	Blow Counts	PID Reading (ppm)	Sample/Core Description	
•					0.0 - 10.0' Vacuum excavation to identify subsurface utilities	
10.0	12.0	1.2	9-13-12-8	. 0.0	10.0 - 16.5' Tan to orange, medium to coarse SAND, poorly sorted, with	
15.0	. 17.0	1.1	4-16-17-34	0.0	gravel, wet	
20.0	20.8	0.5	9-50/0.3'	0.0	16.5 - 20.0' Tan fine to medium sandy, poorly sorted, SILT, wet	
					20.0 - 20.9' Grey, silty medium to coarse SAND, poorly sorted, wet	
					20.9' Auger refusal on lean concrete	
· · ·						
			· · · · ·			
				•		
	· .					
			· .			

Soil Boring Logs - Wells AG through AM.xls 3/9/2005

_	
1	
	_

	Log	Well Identification Well M
(Unconsolidated)	Outer Protective Steel Well Casing	
		Project/No. PSEG Nuclear, LLC - Salem Generating Station/NP000571.0002
	and Surface	Site Location Salem Generating Station - Artificial Island
		Town/City Hancock's Bridge
	Lockable Expanding Well Plug	County Salem State New Jersey
		Permit No. 3400006990
		Land-Surface Elevation 99.26 feet X Surveyed
	8 inch diameter	Top-of-Casing Elevation 102.17 feet Estimated
	vacuum excavation hole	Datum New Jersey State Plane Coordinates NAD 83
	Well Casing	Installation Date(s) May 5, 2003
	1 inch diameter	
	Schedule 40 PVC	Drilling Method Hollow Stem Auger
	5% Bentonite Grout	Drilling Contractor CT&E Environmental Services, Inc
		Drilling Fluid Not Applicable (NA)
	7.5 ft* Bottom of 5% Bentonite Grout	Development Technique(s) and Date(s): Peristaltic pump on May 5, 2003. Development was considered complete when turbidity in discharge
		was reduced/eliminated.
	10.08 ft*	
	Top of Pre-packed Well Screen	Fluid Loss During Drilling: 0 gallons
	0.0 ft*Bottom of Vacuum Excavation	Water Removed During Development: 10 gallons
		Static Depth to Water: NA feet below M.P.*
		Pumping Depth to Water: NA feet below M.P.*
	Pre-packed Well Screen 1 inch diameter, 0.01 Slot	Pumping Duration: 0.75 hours
	Schedule 40 PVC	
	3.25 inch diameter	Yield: <u>NA</u> gpm Date: <u>NA</u>
	drilled hole	Specific Capacity: NA gpm/ft
	LEGEND	Well Purpose Well installed to monitor groundwater quality.
	= Overburden	
		Remarks Vacuum excavation was performed to a depth of 10 feet
	= No. 1 Morie Sand	below ground surface at the location of the monitoring well to help identify potential utilities.
	= 5% Bentonite Grout	
	 SCALE	
	Not to Scale.	Prepared by: Jon Rutledge
		Measuring Point. Top of 2-inch PVC well casing unless otherwise noted. h Below Land Surface

II Construction		14/-11/0
ell Constructior	1 LOg	Well Identification Well R
	Outer Protective Steel Well Casing	
		Project/No. PSEG Nuclear, LLC - Salem Generating Station/NP000571.0002
	Land Surface	Site Location Salem Generating Station - Artificial Island
		Town/City Hancock's Bridge
	Lockable Expanding Well Plug	County Salem State New Jersey
		Permit No. 3400006991
		Land-Surface Elevation 99.82 feet X Surveyed
	6 inch diameter	Top-of-Casing Elevation 102.35 feet Estimated
	vacuum excavation hole	Datum New Jersey State Plane Coordinates NAD 83
	Well Casing 1 inch diameter	Installation Date(s) June 6, 2003
	Schedule 40 PVC	Drilling Method Hollow Stem Auger
		Drilling Contractor CT&E Environmental Services, Inc
		Drilling Fluid Not Applicable (NA)
		Development Technique(s) and Date(s): Peristaltic pump on June 6, 2003.
	7 ft* Bottom of 5% Bentonite Grout	Development was considered complete when turbidity in discharge
		was reduced/eliminated
	XX ft*	
	Top of Pre-packed Well Screen	Fluid Loss During Drilling: 0 gallons
	10.0 ft* Bottom of Vacuum Excavation	Water Removed During Development: 10 gallons
		Static Depth to Water: 6.91 feet below M.P.**
		Pumping Depth to Water: NA feet below M.P.**
	Pre-packed Weil Screen	Pumping Depth to Water: NA feet below M.P.**
	Pre-packed Well Screen <u>1</u> inch diameter, 0.01 Slot Schedule 40 PVC	Pumping Depth to Water: NA feet below M.P.** Pumping Duration: 0.5 hours
	inch diameter, 0.01 Slot	Pumping Depth to Water. NA feet below M.P.**
	<u>1</u> inch diameter, 0.01 Slot Schedule 40 PVC	Pumping Depth to Water: NA feet below M.P.** Pumping Duration: 0.5 hours
	1_inch diameter, 0.01 Slot Schedule 40 PVC 3.25 inch diameter	Pumping Depth to Water: NA feet below M.P.** Pumping Duration: 0.5 hours Yield: NA gpm Date: NA
		Pumping Depth to Water: NA feet below M.P.** Pumping Duration: 0.5 hours Yield: NA gpm Date: NA Specific Capacity: NA gpm/ft
		Pumping Depth to Water: NA feet below M.P.** Pumping Duration: 0.5 hours Yield: NA gpm Date: NA Specific Capacity: NA gpm/ft Well Purpose Well installed to monitor groundwater quality.
		Pumping Depth to Water: NA feet below M.P.** Pumping Duration: 0.5 hours Yield: NA gpm Date: NA Specific Capacity: NA gpm/ft
	1_inch diameter; 0.01 Slot Schedule 40 PVC 	Pumping Depth to Water: NA feet below M.P.** Pumping Duration: 0.5 hours Yield: NA gpm Date: NA Specific Capacity: NA gpm/ft Well Purpose Well installed to monitor groundwater quality. Remarks Vacuum excavation was performed to a depth of 10 feet below ground surface at the location of the monitoring well to help identify
		Pumping Depth to Water: NA feet below M.P.** Pumping Duration: 0.5 hours Yield: NA gpm Date: NA Specific Capacity: NA gpm/ft Well Purpose Well installed to monitor groundwater quality. Remarks Vacuum excavation was performed to a depth of 10 feet below ground surface at the location of the monitoring well to help identify
	1_inch diameter; 0.01 Slot Schedute 40 PVC 	Pumping Depth to Water: NA feet below M.P.** Pumping Duration: 0.5 hours Yield: NA gpm Date: NA Specific Capacity: NA gpm/ft Well Purpose Well installed to monitor groundwater quality. Remarks Vacuum excavation was performed to a depth of 10 feet below ground surface at the location of the monitoring well to help identify
	1_inch diameter; 0.01 Slot Schedute 40 PVC 	Pumping Depth to Water: NA feet below M.P.** Pumping Duration: 0.5 hours Yield: NA gpm Date: NA Specific Capacity: NA gpm/ft Well Purpose Well installed to monitor groundwater quality. Remarks Vacuum excavation was performed to a depth of 10 feet below ground surface at the location of the monitoring well to help identify potential utilities.
		Pumping Depth to Water: NA feet below M.P.** Pumping Duration: 0.5 hours Yield: NA gpm Date: NA Specific Capacity: NA gpm/ft Well Purpose Well installed to monitor groundwater quality. Remarks Vacuum excavation was performed to a depth of 10 feet below ground surface at the location of the monitoring well to help identify


ARCADIS			
Well Constructi	onlog	Well Identification Well S	
(Unconsolidated)		Well Identification Well S	
	Outer Protective Steel Well Casing	Project/No. PSEG Nuclear, LLC - Salem Generating Station/NP000571.0002	
	Land Surface	Site Location Salem Generating Station - Artificial Island	
	Lockable Expanding Well Plug	Town/City Hancock's Bridge	•
	Lockable Expanding Well Plug	County Salem State New Jersey	
		Permit No. 3400006999	
41.45		Land-Surface Elevation 99.61 feet X Surveyed	
	8 inch diameter	Top-of-Casing Elevation 102.5 feet Estimated	•
		Datum New Jersey State Plane Coordinates NAD 83	,
	Well Casing2_inch diameter	Installation Date(s) May 29 and 30, 2003	
	Schedule 40 PVC	Drilling Method Hollow Stem Auger	
	5% Bentonite Grout	Drilling Contractor CT&E Environmental Services, Inc	
		Drilling Fluid Not Applicable (NA)	• •
	10.0 ft*Bottom of Vacuum Excavation	Development Technique(s) and Date(s): Peristaltic pump on June XX, 2003. Development was considered complete when turbidity in discharge	
		was reduced/eliminated	
		Fluid Loss During Drilling: 0 gallons	
		Water Removed During Development: 22 gallons	
	7.25 inch diameter	Static Depth to Water: NA feet below M.P.**	
	drilled hole	Pumping Depth to Water: 9.77 feet below M.P.**	
		Pumping Duration: 0.9 hours	
	22.5 ft* Bottom of 5% Bentonite Grout	Yield: <u>NA</u> gpm Date: <u>NA</u>	
	_	Specific Capacity: NA gpm/ft	
	24.7 ft* Top of Well Screen	Well Purpose Well installed to monitor groundwater quality.	
	Well Screen <u>2</u> inch diameter, 0.01 Slot		
	Schedule 40 PVC	Remarks Vacuum excavation was performed to a depth of 10 feet	
	No. 1 Mone Sand	below ground surface at the location of the monitoring well to help identify potential utilities.	
	LEGEND - Overburden		*
	= No. 1 Morie Sand		
	SCALE	Prepared by: Jon Rutledge	
	Not to Scale.		

.

Well Identification Well T
Project/No. PSEG Nuclear, LLC - Salem Generating Station/NP000571.0002
Site Location Salem Generating Station - Artificial Island
Town/City Hancock's Bridge
County Salem State New Jersey
Permit No. 3400006992
Land-Surface Elevation 100.97 feet X Surveyed
Top-of-Casing Elevation 104.13 feet Estimated
Datum <u>New Jersey State Plane Coordinates NAD 83</u>
Installation Date(s) June 5, 2003
Drilling Method Hollow Stem Auger
Drilling Contractor CT&E Environmental Services, Inc
Drilling Fluid Not Applicable (NA)
Development Technique(s) and Date(s): Whale pump on June 13, 2003. Development was considered complete when turbidity in discharge
was reduced/eliminated.
Fluid Loss During Drilling: 0 gallons
Water Removed During Development: 35 gallons
Static Depth to Water: 11.33 feet below M.P.**
Pumping Depth to Water: NA feet below M.P.**
Pumping Duration: 0.5 hours
Yield: NA gpm Date: NA

v*
Well Purpose Well installed to monitor groundwater quality.
Remarks Vacuum excavation was performed to a depth of 10 feet below ground surface at the location of the monitoring well to help identify
potential utilities.
Descend has for Data day
Prepared by: Jon Rutledge

a service de la superior de la supe La superior de la sup La superior de la sup

Construction Log		Well Identifi	cation	Well	<u>U</u>
Outer Protective Steel Well Cas	ing	-			e di terrette de la constante d
	Project/No.	PSEG Nuclear, I	LLC - Salem Ge	enerating Station/N	P000571.0002
Land Surface	Site Location	Salem Generatir	ng Station - Artif	ficial Island	, i i i
		· · · · · · · · · · · · · · · · · · ·			
Lockable Expanding Well Plug	Town/City	Hancock's Bridg		• .1	
	County	Salem		State New Je	rsey
	Permit No.	3400006994			
	Land-Surface	Elevation	99.54 feet	X Survey	ed
8 inch diamete	r Top-of-Casin	a Elevation	101.54 feet	Estima	ited
vacuum excavatio			<u> </u>		· · · ·
		Datum <u>New</u>	Jersey State Pla	ane Coordinates N	AD 83
Well Casing	Installation D	ate(s) May 2	28 and 29, 2003	<u> </u>	
2 inch diame Schedule 40 PVC	Drilling Metho	d <u>Holio</u>	w Stem Auger	· · · · · · · · · · · · · · · · · · ·	· · · ·
	Drilling Contr	actor CT&E	E Environmental	I Services, Inc	· · ·
5% Bentonite Gro	ut Drilling Fluid	Not A	Applicable (NA)		
	an an tha Thu	· · · ·			
10.0 ft* Bottom of Vacuum	•	t Technique(s) and t was considered co		Whale pump on . urbidity in dischard	•
	was reduced		<u> </u>		
	· · · · · · · · · · · · · · · · · · ·				
	Fluid Loss D	uring Drilling:	<u> </u>	0	gallons
	Water Remo	ved During Develor	pment:	55	gallons
7.25 inch diamet	r Static Depth	to Water		8.53	feet below M.P.
drilled hole					
	Pumping De	oth to Water:		NA	feet below M.P.
	Pumping Du	ation:	<u> </u>	1	hours
Bottom of 5% Bento	nite Grout Yield:	NA	gpm .	Date:	NA
27.2 ft* Top of Well Screen	Specific Cap	acity:	NA	gpm/ft	
	Well Purpose	e <u>Well</u>	installed to mor	nitor groundwater o	quality.
Well Screen 2 inch diamet	er. 0.01 Slot			·	<u> </u>
Schedule 40 PVC					· · ·
	Remarks			was performed to a	
No. 1 Morie Sand	below ground potential utili	surface at the loca	ation of the mon	itoring well to help	identify
	potential utili	iles.	·····		
Overburden				. ,	
= No. 1 Morie Sand					
= 5% Bentonite Gro	ut			• • • • • •	t e t
	• •	· · · · ·			· ·
SCALE	Prepared by	Jon Rutle	edge	·	<u></u>
Not to Scale.		and the second second		1.1	

less an an an an

ાયલા પ્રાથમિક શાકી તે

Well Construction Log (Unconsolidated)

(Unconsolidated)		
	Outer Protective Steel Well Casing	
	Pi	гс
		,
	Land Surface S	ite
	Т	0
	Lockable Expanding Well Plug	
	C	0
		7
	P	2
		0
	La	21
		-
	8 inch diameter T	0
	vacuum excavation hole	
	Well Casing In	
		15
	Schedule 40 PVC D	Pri P
	D	r
	5% Bentonite Grout	
	D	ri
	10.0 ft* Bottom of Vacuum Excavation D)e
	//////	N
	F	ΊL
	V v	Va
	7.25 inch diameter S	sta
	drilled hole	
		۰u
	P	, U
	23.2 ft* Bottom of 5% Bentonite Grout	
		'ie
		16
		Sp
	25.0 ft* Top of Well Screen	
		N
	Well Screen	
	2_inch diameter, 0.01 Slot	
	Schedule 40 PVC	
	F	₹¢
	No.1 Morie Sand b	e
	LEGEND	
	= No. 1 Morie Sand	
	= 5% Bentonite Grout	
	SCALE F	٦r
	Not to Scale.	ľ
	35.0 ft*Bottom of Well ** M.P. Me	ó.
	35.0 ft Bottom of Weil * Depth B	
	Dopard	~

	vveii idei	ntification	Well	<u>Wege</u>
1. T.				
^o roject/No.	PSEG Nuclea	ar, LLC - Salem C	Generating Station/N	P000571.0002
Site Location	Salem Gener	ating Station - Ar	tificial Island	
Town/City	Hancock's Br	idge		
County	Salem			ersey
^o ermit No.	3400006995			
and-Surface E	Elevation	99.36 feet	X Survey	/ed
Fop-of-Casing	Elevation	101.67 feet	Estima	ated
	Datum <u>Ne</u>	w Jersey State F	Plane Coordinates N	NAD 83
nstallation Dat	e(s) Ju	ne 2 and 3, 2003		
Drilling Method	1 <u>H</u> a	bliow Stem Auge	r i e e	
Drilling Contra	ctor <u>C</u>	F&E Environmen	tal Services, Inc	<u> </u>
Drilling Fluid	N	ot Applicable (NA	,) ¹	e Alexandre Alexandre
			Whale pump on turbidity in dischar	
				1
Fluid Loss Dur			0	gallons
		elopment:	015	gallons gallons
	ing Drilling: ed During Dev	elopment:		gallons
Water Remove	ing Drilling: ed During Devr o Water:	elopment:	15	
Water Remove Static Depth to	ing Drilling: ed During Devi o Water: h to Water:	elopmént: 	15 9.03	gallons feet below M.P.
Water Remove Static Depth to Pumping Dept	ing Drilling: ed During Devi o Water: h to Water:	elopmént:	15 9.03 NA	gallons feet below M.P. feet below M.P.
Water Remove Static Depth to Pumping Dept Pumping Dura Yield	ing Drilling: ed During Deve o Water: h to Water: tion: <u>NA</u>	· · · · · · · · · · · · · · · · · · ·	<u>15</u> 9.03 NA 0.2	gallons feet below M.P. feet below M.P. hours NA
Water Remove Static Depth to Pumping Dept Pumping Dura Yield: Specific Capad	ing Drilling: ed During Devr b Water: h to Water: tion: <u>NA</u>	gpm NA	15 9.03 NA 0.2 Date:	gallons feet below M.P. feet below M.P. hours NA
Water Remove Static Depth to Pumping Dept Pumping Dura	ing Drilling: ed During Devr b Water: h to Water: tion: <u>NA</u>	gpm NA	15 9.03 NA 0.2 Date:gpm/ft	gallons feet below M.P. feet below M.P. hours NA
Water Remove Static Depth to Pumping Dept Pumping Dura Yield Specific Capae Well Purpose	ing Drilling: ed During Devr b Water: h to Water: tion: <u>NA</u> city:	gpm NA /ell installed to m	15 	gallons feet below M.P. feet below M.P. hours NA
Water Remove Static Depth to Pumping Dept Pumping Dura Yield: Specific Capae Well Purpose Remarks	ing Drilling: ed During Devr o Water: h to Water: tion: <u>NA</u> city: <u>Vi</u>	gpm NA /ell installed to m acuum excavatio	15 9.03 NA 0.2 Date: gpm/ft onitor groundwater n was performed to	gallons feet below M.P. feet below M.P. hours NA quality. a depth of 10 feet
Water Remove Static Depth to Pumping Dept Pumping Dura Yield: Specific Capae Well Purpose Remarks	ing Drilling: ed During Devr b Water: h to Water: tion: <u>NA</u> city: <u>v</u> surface at the	gpm NA /ell installed to m acuum excavatio	15 	gallons feet below M.P. feet below M.P. hours NA quality. a depth of 10 feet

Prepared by: Jon Rutledge

leasuring Point. Top of 2-inch PVC well casing unless otherwise noted. Below Land Surface

Well Construction Log	Well	Identification	Well	Y
(Unconsolidated)				
Outer Protective Steel Well Casing	Project/No. PSEG	Nuclear, LLC - Salem	Generating Station	/ NP000571.0003
↓ Land Surface	Site Location	Artificial Island, Ha	ancock's Bridge, Ne	w Jersev
Lockable Expanding Well Plug	Town/City Hancock			
	County	Salem	_State	New Jersey
	Permit No.		340007078	
	Land-Surface Elevation	<u>99.20</u> feet	X Surveye	ed .
	Top-of-Casing Elevation	101.81 feet	Estimat	ted
vacuum excavation hole	Datum	NAVD 1988		
Well Casing	Installation Date(s)	September 27, 2003	j .,	
2 inch diameter Schedule 40 PVC	Drilling Method	Hollow-Stem Auger		· ·.
				*
5% Bentonite Grout	Drilling Contractor	A.C. Schultes, Inc.		
	Drilling Fluid	Not Applicable (NA)	<u> </u>	······································
10.0 ft* Bottom of Vacuum Excavation	Development Technique October 7, 2003. Develo		Submersible pun	np on
	turbidity in discharge was			
		· · · · · · · · · · · · · · · · · · ·		na de la trace. Na
	Fluid Loss During Drilling	g: · · ·	0	gallons
	Water Removed During I	Development:	50	gallons
6.25 inch diameter	Static Depth to Water:		10	feet below M.P.**
drilled hole	Pumping Depth to Water	· · · · ·	27	feet below M.P.**
	Pumping Duration:	and the second	2.9	hours
25.0 ft* Bottom of 5% Bentonite Grout				
	Yield: <u>1</u>	gpm	Date: October	7,2003
27.0 ft* Top of Well Screen	Specific Capacity:	0.06	gpm/ft	
Well Screen	Well Purpose	Well installed to mo	nitor groundwater q	uality.
			· · · · · · · · · · · · · · · · · · ·	
Schedule 40 PVC	Remarks	Vacuum excavation	was performed to a	depth of 10 feet
No. 1 Morie Sand	below ground surface at to potential utilities.	the location of the mo	nitoring well to help	identify
				·····
= Overburden = No. 1 Morie Sand			•	
= 5% Bentonite Grout				
SCALE Not to Scale.	Prepared by: Chris	stopher Sharpe		
				the second
37.0 ft* Bottom of Well ** M.P.	Measuring Point. Top of 2			

<u>ant see</u>

					•
· · ·					2.5.7
	Well Construction		Well Identification	Well Z	. •
	(Unconsolidated)				
	<u> </u>	✓———Outer Protective Steel Well Casing ↑ 3 Feet	Project/No. PSEG Nuclear, LLC	- Salem Generating Station / NP000571.0003	
		- Sreel			• •
		↓ Land Surface	Site Location Artificial Isl	and, Hancock's Bridge, New Jersey	
· ·			Town/City Hancock's Bridge		
$(1+\varepsilon)^{2} = (1+\varepsilon)^{2} = (1+\varepsilon$		Lockable Expanding Well Plug	County Salem	State New Jersey	
· · ·					•
· · ·			Permit No.	340007079	
			Land-Surface Elevation 99.30	feet X Surveyed	
н. 1911 г. – 1911 г. – 1		8 inch diameter	Top-of-Casing Elevation 101.86	5 feet Estimated	• •
		vacuum excavation hole			-
1. A.			Datum NAVD 1988		• .
		Well Casing	Installation Date(s) September 3	30, 2003	•
		2 inch diameter Schedule 40 PVC	Drilling Method Hollow-Sterr	n Auger	
					• ,
		5% Bentonite Grout	Drilling Contractor A.C. Schulte	s inc.	• • .
			Drilling Fluid Not Applicat	ple (NA)	<u>-</u> ** -**
· · .			Development Technique(s) and Date(s): Submersible pump on	· . ·
· ·		10.0 ft* Bottom of Vacuum Excavation	October 7, 2003. Development was co	nsidered complete when	• ·
Ň.			turbidity in discharge was reduced/elim	inated.	-
y .					
· *			Fluid Loss During Drilling:	0 gallons	
1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -			Water Removed During Development:	50gallons	•
interna.		6.25 inch diameter	Static Depth to Water:	10.5 feet below M.P.**	• • •
,		drilled hole	Dumaian Darith ta Mistan	OA 5	
L.			Pumping Depth to Water:	feet below M.P.**	
			Pumping Duration:	1 hours	
		25.5 ft*	Yield: 2 gpm	Date: October 7, 2003	en Nogel
			· · · · · · · · · · · · · · · · · · ·		-
		27.5 ft* Top of Well Screen	Specific Capacity:	0.14 gpm/ft	•••
• •			Well Purpose Well installe	d to monitor groundwater quality.	-
. •		Well Screen 2 inch diameter, 0.01 Slot			<u> </u>
		Schedule 40 PVC			- 11 H.
		No. 1 Morie Sand	Remarks Vacuum exc below ground surface at the location of	cavation was performed to a depth of 10 feet	- .
1			potential utilities.	are memoring worker help identity	
			· . · · · · · · · · · · · · · · · · · ·		.
· · ·		= Overburden			
		= 5% Bentonite Grout	en de la companya de La companya de la comp		
• .		<u>SCALE</u>	Prepared by: Christopher Sharp	e	
		Not to Scale.			-
		37.5 ft* Bottom of Well ** M.P	Measuring Point. Top of 2-inch PVC we	Il casing unless otherwise noted	
			th Below Land Surface		

Well Const Unconsolidated)		_og		Well Identification	Well AA	· · · · · · · · · · · · · · · · · · ·	÷
Unconsolidated)		Outer Protective Steel Well Casing 3 Feet	Project/No.	PSEG Nuclear, LLC - Salem	Generating Station / NF	2000571.0003	•
	↓	Land Surface		Artificial Island, Ha	ncock's Bridge, New Je	rsey	÷
			Town/City H	ancock's Bridge		· · · · · · · · · · · · · · · · · · ·	1 e
			–		Chata Maria		
	۰ ۱		County	Salem	. .	i Jersey	
			Permit No.	3	40007080	·	
			Land-Surface Ele	vation <u>99.20</u> feet	X Surveyed	· ·	
		8_ inch diameter vacuum excavation hole	Top-of-Casing Ele	evation <u>101.56</u> feet	Estimated		
			· ·. D	atum <u>NAVD 1988</u>			
		Well Casing	Installation Date(s	s) September 30, 2003	······································		
		2_inch diameter Schedule 40 PVC	Drilling Method	Hollow-Stem Auger			
			Drilling Contracto	· · · · ·			·
		5% Bentonite Grout			· · · · ·	· · · · · · · · · · · · · · · · · · ·	· · ·
			Drilling Fluid	Not Applicable (NA)		· .	
	1	10.0 ft* Bottom of Vacuum Excavation		hnique(s) and Date(s): Development was considered	Submersible pump or complete when	<u>1</u>	
			turbidity in discha	rge was reduced/eliminated.		· · ·	
			Fluid Loss During	Drilling:	ga	allons	
			Water Removed I	During Development:	ga	allons	
		6.25 inch diameter drilled hole	Static Depth to W	ater:	fe	et below M.P.**	.*
			Pumping Depth to	o Water:	fe	et below M.P.**	•
			Pumping Duration	n:	1 ho	ours	1 x
		24.0 ft* Bottom of 5% Bentonite Grout	Yield:	1.8 gpm	Date: October 7, 20	103	
			· _	•••			
		26.0 ft* Top of Well Screen	Specific Capacity	0.16	gpm/ft	÷.,	
		Well Screen	Well Purpose	Well installed to mor	nitor groundwater quality	· · · · · · · · · · · · · · · · · · ·	
		2_ inch diameter, 0.01 Slot Schedule 40 PVC		· · · ·			
			Remarks		was performed to a dep		•
		No. 1 Morie Sand	below ground sur potential utilities.	face at the location of the mor	itoring well to help ident	ify	
		LEGEND With the second s					** w
		= No. 1 Morie Sand					1
		= 5% Bentonite Grout		· · · · · · · · · · · · · · · · · · ·	· ·		
		<u>SCALE</u> Not to Scale	Prepared by:	Christopher Sharpe	······································		
		•		op of 2-inch PVC well casing			

Well Constructio	n Log	Well Identification Well AB
(Unconsolidated)	Outer Protective Steel Well Casing	Project/No. PSEG Nuclear, LLC - Salem Generating Station / NP000571.0003
	↓ Land Surface	Site Location Artificial Island, Hancock's Bridge, New Jersey
		Town/City Hancock's Bridge
	Lockable Expanding Well Plug	County Salem State New Jersey
		Permit No 340007081
		Land-Surface Elevation 99.10 feet X Surveyed
	8_ inch diameter	Top-of-Casing Elevation 101.83 feet Estimated
	vacuum excavation hole	Datum NAVD 1988
	Well Casing	Installation Date(s) October 2, 2003
	2_inch diameter Schedule 40 PVC	Drilling Method Hollow-Stem Auger
	5% Bentonite Grout	Drilling Contractor A.C. Schultes, Inc.
		Drilling Fluid Not Applicable (NA)
	10.0 ft* Bottom of Vacuum Excavation	Development Technique(s) and Date(s): <u>Submersible pump on</u> October 7, 2003. Development was considered complete when
		turbidity in discharge was reduced/eliminated.
		Fluid Loss During Drilling: 0 gallons
		Water Removed During Development: 50 gallons
	6.25 inch diameter	Static Depth to Water: 9.5 feet below M.P.**
	drilled hole	Pumping Depth to Water: 19.7 feet below M.P.**
		Pumping Duration: 1.3 hours
	30.0 ft* Bottom of 5% Bentonite Grout	Yield: 1.25 gpm Date: October 7, 2003
		Specific Capacity: 0.12 gpm/ft
	32.0 ft* Top of Well Screen	Well Purpose Well installed to monitor groundwater quality.
	Well Screen 2 inch diameter, 0.01 Slot	
	Schedule 40 PVC	Remarks Vacuum excavation was performed to a depth of 10 feet
	No. 1 Morie Sand	below ground surface at the location of the monitoring well to help identify potential utilities.
	= Overburden = No. 1 Morie Sand	
	= 5% Bentonite Grout	
	<u>SCALE</u> Not to Scale.	Prepared by: Christopher Sharpe
	42.0 ft* Bottom of Well ** M.	P. Measuring Point. Top of 2-inch PVC well casing unless otherwise noted.

and a strain of the strain A strain of the A strain of the strain of the

.

. .

	>	
	tion Log	Well Identification Well AC
Unconsolidated)	Outer Protective Steel Well Casing	
	↑ 3 Feet	Project/No. PSEG Nuclear, LLC - Salem Generating Station / NP000571.0003
	↓ Land Surface	Site Location Artificial Island, Hancock's Bridge, New Jersey
		Town/City Hancock's Bridge
	Lockable Expanding Well Plug	County Salem State New Jersey
		Permit No. 340007082
		Land-Surface Elevation <u>99.00</u> feet X Surveyed
	15 inch diameter vacuum excavation hole	Top-of-Casing Elevation 101.25 feet Estimated
		Datum NAVD 1988
	Well Casing 6 inch diameter	Installation Date(s) September 26, 2003
	Schedule 40 PVC	Drilling Method Hollow-Stem Auger
		Drilling Contractor A.C. Schultes, Inc.
	5% Bentonite Grout	Drilling Fluid Not Applicable (NA)
		Development Technique(s) and Date(s). Submersible pump on
	10.0 ft* Bottom of Vacuum Excavation	October 7, 2003. Development was considered complete when
		turbidity in discharge was reduced/eliminated.
		Fluid Loss During Drilling: 0 gallons
		Water Removed During Development: 50 gallions
	13.00 inch diameter.	· · · · · · · · · · · · · · · · · · ·
	drilled hole	
		Pumping Depth to Water: 19.8 feet below M.P.
	12.0 ft* Bottom of 5% Bentonite Grout	Pumping Duration: 1 hours
	12.0 IL BORON OF 370 BERIONILE GROU	Yield: 1 gpm Date: October 7, 2003
		Specific Capacity: 0.09 gpm/ft
	14.0 ft* Top of Well Screen	Well Purpose Well installed to monitor groundwater quality.
	Well Screen	
	6_ inch diameter, 0.01 Slot Schedule 40 PVC	· · · · · · · · · · · · · · · · · · ·
	No. 1 Morie Sand	Remarks Vacuum excavation was performed to a depth of 10 feet below ground surface at the location of the monitoring well to help identify
		potential utilities.
	LEGEND = Overburden	
	= No. 1 Morie Sand	
	= 5% Bentonite Grout	
	SCALE Not to Scale	Prepared by: Christopher Sharpe
	Not to Scale.	
		1.P. Measuring Point. Top of 2-inch PVC well casing unless otherwise noted. Lepth Below Land Surface
		oper bolow carlo condob

II Construction	Log	Well Identification Well AD
nsolidated)	Outer Protective Steel Well Casing	
	Site Protective Site Protecting	Project/No. PSEG Nuclear, LLC - Salem Generating Station / NP000571.0003
	Land Surface	Site Location Artificial Island, Hancock's Bridge, New Jersey
		Town/City Hancock's Bridge
	Lockable Expanding Well Plug	County Salem State New Jersey
		Permit No 340007083
		Land-Surface Elevation 99.10 feet X Surveyed
	8_ inch diameter	Top-of-Casing Elevation 101.35 feet Estimated
	vacuum excavation hole	Datum NAVD 1988
	Well Casing	Installation Date(s) October 3, 2003
	2_inch diameter Schedule 40 PVC	Drilling Method Hollow-Stem Auger
		Drilling Contractor A.C. Schultes, Inc.
	5% Bentonite Grout	Drilling Fluid Not Applicable (NA)
	10.0 ft* Bottom of Vacuum Excavation	Development Technique(s) and Date(s): Submersible pump on October 7, 2003. Development was considered complete when
		turbidity in discharge was reduced/eliminated. Development was halted several
		times as a result of a lack of water in the well.
		Fluid Loss During Drilling: 0 gallons
		Water Removed During Development: 64 gallons
	6.25 inch diameter	Static Depth to Water: 7.5 feet below M.P.**
	drilled hole	Pumping Depth to Water: 35.5 feet below M.P.**
		Pumping Duration: 5.15 hours
	30.0 ft* Bottom of 5% Bentonite Grout	Yield: NA gpm Date: October 7, 2003
		Specific Capacity: NA gpm/ft
	33.0 ft* Top of Well Screen	Well Purpose Well installed to monitor groundwater quality.
	Well Screen	
	2 inch diameter, 0.01 Slot	
	Schedule 40 PVC	
		Remarks Vacuum excavation was performed to a depth of 10 feet
	No. 1 Morie Sand	below ground surface at the location of the monitoring well to help identify potential utilities.
	LEGEND	potertual danibeo.
	= Overburden	
	= No. 1 Morie Sand	
	= 5% Bentonite Grout	
	SCALE Not to Scolo	Prepared by: Christopher Sharpe
	Not to Scale.	

na por portes. Antes de portes des

l Construction	· .		Well Ider	ntification	We	<u>II A</u> E
\square	Outer Protective Steel Well Casing 3 Feet	Project/No.	PSEG Nuc	lear, LLC - Saler	n Generating Sta	tion / NP000571.0003
	Land Surface	Site Location	, F	Artificial Island, H	ancock's Bridge,	New Jersey
		Town/City	Hancock's Br	idge		
	Lockable Expanding Well Plug	County		Salem	State	New Jersey
		Permit No.			340007083	
		Land-Surface E	levation	<u>99.30</u> feet	X Surv	eyed
	8_ inch diameter	Top-of-Casing I	Elevation	101.54 feet	Estir	nated
	vacuum excavation hole	• •	Datum <u>NA</u>	VD 1988		
	Well Casing	Installation Date	e(s) <u>Oc</u>	tober 2, 2003		<u> </u>
	2 inch diameter Schedule 40 PVC	Drilling Method	Ho	llow-Stem Auger	• . •	
		Drilling Contrac	tor <u>A.</u>	C. Schultes, Inc.	· · · · ·	
	5% Bentonite Grout	Drilling Fluid	No	t Applicable (NA)	· · · · ·
	· · · ·	Development T	echnique(s) a	nd Date(s):	Submersible	oump on
	10.0 ft* Bottom of Vacuum Excavation			nt was considere luced/eliminated.	ed complete when	۱ <u>.</u>
	· .					
		Fluid Loss Duri	ng Drilling:		0	gallons
		Water Remove	d During Deve	elopment:	25	gallons
	6.25 inch diameter drilled hole	· Static Depth to	Water:		7.5	feet below M.P.*
		Pumping Depth	to Water:		22.5	feet below M.P.**
		Pumping Durat	ion:		1	hours
	13.5 ft* Bottom of 5% Bentonite Grout	Yield:	0.8	gpm	Date: Octo	ber 7, 2003
	· · ·	Specific Capac	ity:	0.05	gpm	/ft
	17.5 ft* Top of Well Screen	Well Purpose	. W	ell installed to mo	onitor groundwate	er quality.
	Well Screen 2 inch diameter, 0.01 Slot	······································				
H	Schedule 40 PVC	Remarks	 Va	acuum excavatio	n was performed	to a depth of 10 feet .
	No. 1 Morie Sand		urface at the l		pnitoring well to h	
	LEGEND Overburden		·····		· .	
	= No. 1 Morie Sand				2.14	•
	SCALE	Prepared by:	Christoph	ner Sharpe		
	SCALE Not to Scale	Frepared by:	Chinstop	iei onaipe		

an de la composition A de la composition de A de la composition de

ARCADIS			
Well Construction	Log	Well Identification Well AF	
(Unconsolidated)	Outer Protective Steel Well Casing		
	↑ 3 Feet	Project/No. PSEG Nuclear, LLC - Salem Generating Station / NP000571.0003	
	Land Surface	Site Location Artificial Island, Hancock's Bridge, New Jersey	
		Town/City Hancock's Bridge	
	Lockable Expanding Well Plug	County Salem State New Jersey	
		Реппit No. 340007085	•
		Land-Surface Elevation 99.20 feet X Surveyed	
	9 inch diamator		
	8_inch diameter vacuum excavation hole		
		Datum NAVD 1988	
	Well Casing 2 inch diameter	Installation Date(s) October 1, 2003	
	Schedule 40 PVC	Drilling Method Hollow-Stem Auger	
	5% Bentonite Grout	Drilling Contractor A.C. Schultes, Inc.	
		Drilling Fluid Not Applicable (NA)	
		Development Technique(s) and Date(s): Submersible pump on	
	10.0 ft [*] Bottom of Vacuum Excavation	October 7, 2003. Development was considered complete when turbidity in discharge was reduced/eliminated.	
		Fluid Loss During Drilling: 0 gallons	
		Water Removed During Development: 50 gallons	
	6.25 inch diameter	Static Depth to Water: 10 feet below M.P.**	
	drilled hole	Pumping Depth to Water: 13.5 feet below M.P.**	
		Pumping Duration: 0.75 hours	
	30.0 ft* Bottom of 5% Bentonite Grout		. ·
	35.0 ft* Top of Well Screen	Specific Capacity: 0.71 gpm/ft	
H	Well Screen	Well Purpose Well installed to monitor groundwater quality.	
	2 inch diameter, 0.01 Slot Schedule 40 PVC		
		Remarks Vacuum excavation was performed to a depth of 10 feet	
	No. 1 Morie Sand	below ground surface at the location of the monitoring well to help identify potential utilities.	
	<u>LEGEND</u> = Overburden		
	= No. 1 Mone Sand		
	Letter	Dranarad hy Christianhar Shama	
	<u>SCALE</u> Not to Scale.	Prepared by: Christopher Sharpe	
	45.0 ft* Bottom of Well ** M.F	Measuring Point. Top of 2-inch PVC well casing unless otherwise noted.	

in the second second

ARCADIS

Well Construction Log Well Identification Well AG Shallow and Deep (Unconsolidated) Project/No. PSEG Nuclear, LLC - Salem Generating Station/NP000571.0003 8-inch Diameter Standard Flushgrade Well Vault Land Surface Salem Generating Station - Artificial Island Site Location Town/City Hancock's Bridge County Salem State New Jersey Lockable Expanding Well Plug Permit No. 3400007135 (Shallow) and 3400007153 (Deep) Land-Surface Elevation feet X Surveyed 10 inch diameter Top-of-Casing Elevation Г Estimated feet vacuum excavation hole New Jersey State Plane Coordinates NAD 83 Datum Well Casing February 9 and 10, 2004 Installation Date(s) 1 inch diameter Schedule 40 PVC Drilling Method Hollow Stem Auger Drilling Contractor Talon Drilling Company -5% Bentonite Grout Drilling Fluid Not Applicable (NA) 10 ft* Bottom of Vacuum Excavation 12.5 ft Bottom of 5% Bentonite Grout Development Technique(s) and Date(s): February 11, 2004 Surging with 0.75-inch surge block and pumping with peristaltic pump. 13 ft* Bottom of No. 00 Morie Sand 藻 關穩 14.2 ft* Top of Well Screen Development was considered complete when turbidity in discharge was reduced/eliminated. No. 1 Morie Sand Well Screen Fluid Loss During Drilling: Not Applicable gallons 1 inch diameter, 0.01 Slot Schedule 40 PVC Water Removed During Development: 16 galions 7 inch diameter 9.52 (shallow) and 9.71 (deep) feet below M.P.** Static Depth to Water: drilled hole Pumping Depth to Water: Not Applicable feet below M.P.** 24.2 ft* Bottom of Well/Top of 5% Pumping Duration: 0.75 hours Bentonite Grout Yield: Not Applicable gpm Date: February 10, 2004 - 5% Bentonite Grout Specific Capacity: Not Applicable gpm/ft Bottom of 5% Bentonite Grout 28.4 ft* 附相相相 29 ft* Bottom of of No. 00 Morie Sand Well Purpose Well installed to monitor groundwater quality 30 ft* Top of Well Screen Well Screen 1 inch diameter, 0.01 Slot Schedule 40 PVC Remarks Vacuum excavation was performed to a depth of 10 feel No. 1 Morie Sand below ground surface at the location of the monitoring well to help identify potential utilities EGEND = Overburden

= 5% Bentonite Grout

= No. 00 Morie Sand = No. 1 Morie Sand

Bottom of Well

統領

SCALE Not to Scale.

40 ft*

Prepared by: Jon Rutledge

** M.P. Measuring Point. Top of 1-inch PVC well casing unless otherwise noted. * Depth Below Land Surface

يحساد دودأن الاخادواف المفاقعة

Mell Cr	onstruction	log		\A/ell	Identification	Well AH Shallow and Deep
Unconsolid		Log	•	vven		
E		Outer Protective Steel Well Casing	Project/No.	PSEG NL	uclear LLC - Sa	alem Generating Station/NP000571.0003
	K.			· .		· · ·
		Land Surface	Site Location	Salem G	enerating Static	on - Artificial Island
			Town/City	Hancock	s Bridge	· · · · · · · · · · · · · · · · · · ·
			County	Salem		State New Jersey
		Lockable Expanding Well Plug	Permit No.	3400007	136 (Shallow) a	nd 3400007154 (Deep)
			Land-Surface	Elevation	. <u> </u>	feet X Surveyed
	•	10_ inch diameter	Top-of-Casing	g Elevation		feet Estimated
		vacuum excavation hole		Datum	New Jersev S	State Plane Coordinates NAD 83
		Well Casing 1 inch diameter	Installation Da	ate(s)	February 4 ar	nd 5, 2004
		Schedule 40 PVC	Drilling Metho	bd	Hollow Stem	Auger
			Drilling Contra	actor	Talon Drilling	Company
	-	5% Bentonite Grout	Drilling Fluid		Not Applicab	lo (λ Δ)
		10 ft* Bottom of Vacuum Excavation	Daming Fluid	÷		
		13 ft* Bottom of 5% Bentonite Grout			(s) and Date(s)	
<u>a</u>	翻	13.5 ft* Bottom of No. 00 Morie Sand 14.5 ft* Top of Well Screen				pumping with peristaltic pump. when turbidity in discharge was
			reduced/elimi			
		No. 1 Morie Sand	Fluid Loss Du	uring Drilling	- .	Not Applicable galions
		inch diameter, 0.01 Slot			,	
		Schedule 40 PVC	Water Remov	ved During	Development:	20 gallons
		inch diameter	Static Depth	to Water:	13.58	(shallow) and 12.92 (deep) feet below M.I
	I H 🖉	drilled hole	Pumping Dep	pth to Wate	r:	Not Applicable feet below M.
		24.5 ft* Bottom of Well 25.2 ft* Top of Bentonite Grout	Pumping Dur	ration:		1 hours
			Yield:	Not App	plicable_gpm	Date: February 10, 2004
		5% Bentonite Grout	Specific Cap	acity:	Not A	Applicable gpm/ft
		28.5 ft* Bottom of 5% Bentonite Grout		1. A.A.		· · · · ·
16	相即將課	29 ft* Bottom of of No. 00 Morie Sand 30 ft* Top of Well Screen	Well Purpose	9	Well installed	to monitor groundwater quality.
	_	Well inch diameter, 0.01 Slot				· · · · · · · · · · · · · · · · · · ·
	H	<u>1</u> Schedule 40 PVC	Remarks		Vacuum exc	avation was performed to a depth of 10 feet
	⊢ ←	No. 1 Morie Sand		d surface at		the monitoring well to help identify
			potential utili	ties.		
	H	LEGEND With a construction				
		= 5% Bentonite Grout	<i>2</i>		•	· .
	H		· · ·	•		
			Prepared by:	:J	on Rutledge	· · · ·
	H	<u>SCALE</u> Not to Scale.		•	*	
	H		P. Measuring Poi	int. Top of '	1-inch PVC wel	I casing unless otherwise noted.

'].

II Construction Log	,		Well ident			ell Al
2 Feet by	2 Feet Flushgrade Well Vault	Project/No.	PSEG Nuclear	, LLC - Salem C	enerating Statio	n/NP000571.0003
Land St	urface	Site Location	Salem Genera	ting Station - Ar	tificial Island	· · ·
		Town/City	Hancock's Brid	lge		
		County	Salem		State New	Jersey
Loci	able Expanding Well Plug	Permit No.	3400007137			
		Land-Surface I	Elevation	feet	X Sun	veyed
	<u>16_</u> inch diameter	Top-of-Casing	Elevation	feet	Esti	mated
	vacuum excavation hole		Datum <u>Nev</u>	v Jersey State F	lane Coordinate	s NAD 83
	Well Casing	Installation Dat	e(s) Jan	uary 20, 2004		
	<u>4</u> inch diameter Schedule 40 PVC	Drilling Method	Holl	ow Stem Auger		
		Drilling Contra	ctor <u>Talo</u>	on Drilling Com	bany	
	5% Bentonite Grout	Drilling Fluid	Not	Applicable (NA)	
9 ft* .	Bottom of 5% Bentonite Grout	Development	 Fechnique(s) an	d Date(s):	Februarv	2 and 3, 2004
10 ft*	Bottom of Vacuum Excavation				with 4-inch subm	
	and granular bentonite seal	Development v reduced/elimir		complete when	turbidity in disch	arge was
11 ft*	Bottom of No. 00 Morie Sand	reduced/elimir				<u></u> .
		Fluid Loss Du	ing Drilling:	Nc	t Applicable	gallons
12 ft*	Top of Well Screen	Water Remove	ed During Devel	opment:	90	gallons
	inch diameter	Static Depth to	Water:		7.61	feet below M.P.**
	drilled hole	Pumping Dept	h to Water:	Nc	t Applicable	feet below M.P.*
		Pumping Dura	tion:		2	hours
		Yield:	0.5	gpm	Date:	February 3, 2004
		Specific Capa	city:	Not Applica	ible gpm	/ft
		Well Purpose	We	l installed to mo	nitor groundwate	er quality.
	Well Screen 4 inch diameter, 0.01 Slot	. ·	· · ·			, , , , , , , , , , , , , , , , ,
	Schedule 40 PVC					
		Remarks				to a depth of 10 feet
		below ground potential utilitie		cation of the mo	nitoring well to h	elp identify
	<u>GEND</u>	Potential utility				
	= Overburden	- N-		·····		· ·
	= 5% Bentonite Grout					
	= Granular Bentonite Seal					
	= No. 1 Morie Sand	Prepared by:	Jon Ru	liedge		
3333 — 3 <i>3333333333</i>						

	-
-	

Well Construction Log (Unconsolidated)

Well Identification		V	VellAJ
	1.		•

	. /	2 Feet by 2	Feet Flushgrade Well Vault
	1	Land Surfa	ace
· · 🕅	∎k [†]		
1			
	and the second	k i	
		Lockat	le Expanding Well Plug
			· · ·
		į .	
		<u> </u>	 <u>16</u> inch diameter
			vacuum excavation hole
		· ·	
			Well Casing
		<u> </u>	- 4 inch diameter
			Schedule 40 PVC
		<u> </u>	5% Bentonite Grout
		<i>"</i>	
			and the second
		10.0 ft*	Bottom of Vacuum Excavation
		210.0 m	Bolion of vacuum Excavation
		·	
			· .
		<i>l</i> ,	
			10 inch diameter
			drilled hole
		/12 ft*	Bottom of 5% Bentonite Grout
		13 ft*	Bottom of Granular Bentonite Sea
	1111111111	4	Bottom of No. 00 Morie Sand
		14 ft*	Bottom of No. 00 Mone Sand
			· ·
		15.3 ft*	Top of Well Screen
		<u>,</u>	
		· ·	Mall Core on
		<i></i>	Well Screen
		<u> </u>	 4 inch diameter, 0.01 Slot
			Schedule 40 PVC
		· · ·	
		<u>.</u>	No. 1 Morie Sand

EGEND

開始距

SCALE Not to Scale. 35.3 ft*____Bottom of Well

= Overburden = 5% Bentonite Grout = Granular Bentonite Seal

= No. 00 Morie Sand = No. 1 Morie Sand

Project/No.	PSEG Nu	iclear, LLC - Salem Ge	enerating Station/NI	2000571.0003
Site Location	Salem Ge	enerating Station - Arti	ficial Island	· · · · · · · · · · · · · · · · · · ·
Town/City	Hancock	s Bridge	• •	т.
County	Salem	· .	State New Jer	sey
Permit No.	34000071	138		
Land-Surface	Elevation	feet	X Surveye	bed
Top-of-Casing	Elevation	feet	Estimat	ed
	Datum	New Jersey State Pl	ane Coordinates N	AD 83
Installation Da	te(s)	January 23, 2004		and the second sec
Drilling Metho	d	Hollow Stem Auger	· · · ·	•
Drilling Contra	ictor	Talon Drilling Comp	any	
Drilling Fluid		Not Applicable (NA)		
Surging with 4	l-inch surge was consid	(s) and Date(s): e block and pumping v lered complete when t		sible
Fluid Loss Du		a: Not	Applicable	gallons
Water Remov		·	130	gallons
Static Depth to	o Water:		8.14	feet below M.P.**
Pumping Dep			Applicable	feet below M.P.**
Pumping Dura		· · · · · · · · · · · · · · · · · · ·	3.5	hours
Yield:	0.2	25 gpm	Date: Ja	 mauary 30, 2004
Specific Capa	<u>.</u>	Not Applica		
Well Purpose	-	Well installed to mo		iuality.
		· · · · · · · · · · · · · · · · · · ·		
Remarks below ground potential utiliti		Vacuum excavation the location of the mo		
				· ·
Dreasted by:		an Putlodae	• •	•

** M.P. Measuring Point. Top of 4-inch PVC well casing unless otherwise noted. * Depth Below Land Surface

ell Cor	nstructio	on Log	1	Well Ider	ntification	Well	AL
CONSUMA	eu)	•				4	
	/	8-inch Diameter Standard Flushgrade Well Vault	Project/No.	PSEG Nuclea	ar, LLC - Salem (Generating Station/	NP000571.0003
Ø		Land Surface	Site Location	Salem Gener	ating Station - A	rtificial Island	·····
	r 🖉		Town/City	Hancock's Br	idge		
	1 N		County	Salem		State New J	
	' 🕅			<u> </u>			- ·
		Lockable Expanding Well Plug	Permit No.	3400007140			
			Land-Surface	Elevation	feei	X Surve	yed
		<u>10_</u> inch diameter	Top-of-Casing	Elevation	feel	Estim	ated
		vacuum excavation hole		Datum Ne	w Jersey State	Plane Coordinates	
	•	Well Casing 2 inch diameter	Installation Da	te(s) Ja	nuary 21, 2004		
		Schedule 40 PVC	Drilling Metho	а. <u>Но</u>	blow Stem Auge	r	
			Drilling Contra	ctor Ta	Ion Drilling Corr	, ipany	
		5% Bentonite Grout	Drilling Fluid	 Nia	ot Applicable (Ń		· . ·
			Drilling Fluid		or Applicable (14)	<u>v</u>	• •
		10.0 ft* Bottom of Vacuum Excavation		Technique(s) a		February 3 with 2-inch subme	and 4, 2004
		Bottom of Vacuum Excavation				turbidity in dischar	The second s
			reduced/elimin		•		ě
			Fluid Loss Du	rina Drillina:	N	ot Applicable	gallons
		-					
			valer Remov	ed During Deve	elopment.	80	gallons
		7 inch diameter drilled hole	Static Depth to	Water:	<u> </u>	7.09	feet below M.P.*
			Pumping Dep	h to Water:	. N	ot Applicable	feet below M.P.*
		12 ft* Bottom of 5% Bentonite Grout 13 ft* Bottom of Granular Bentonite Seal	Bumping Dur	tion		1.5	bours
		13.5 ft* Bottom of No. 00 Morie Sand	Pumping Dura		·	1.5	hours
			Yield:	1	gpm	Date:	February 3, 2004
			Specific Capa	city:	Not Applic	ablegpm/fi	
		15.3 ft* Top of Well Screen			all installed to m		
		Well Screen	Well Purpose	vv	en installed to m	onitor groundwater	quanty.
		2 inch diameter, 0.01 Slot					
		Schedule 40 PVC	Remarks	Va	acuum excavatio	n was performed to	a depth of 10 feet
]₄	No. 1 Morie Sand				onitoring well to hel	
			potential utiliti	es.			
	┫┛╢╢	LEGEND - Overburden					
	1	= 5% Bentonite Grout					
] [/////	Granular Bentonite Seal	,			· · · ·	
	┥	離課数 = No. 00 Morie Sand	Property how	In- 7			
	┨╏╢╢╢	SCALE	Prepared by:	Jon R	utledge		
	1 1////////////////////////////////////	Not to Scale.					

			• ;		
Vell Construction	on Log	-	Well Identification	W	/ell AM
nconsolidated)	· · · ·		·	· ·	
/	2 Feet by 2 Feet Flushgrade Well Vault	Project/No.	PSEG Nuclear, LLC -	Salem Generating Sta	tion/NP000571.0003
	Land Surface	Site Location	Salem Generating Sta	tion - Artificial Island	
		Town/City	Hancock's Bridge		
		County	Salem	State Ne	ew Jersey
	Lockable Expanding Well Plug	Permit No.	3400007141		· · · ·
		Land-Surface	Elevation	feet XS	Surveyed
	16 inch diameter	Top-of-Casing	g Elevation	feet	stimated
	vacuum excavation hole		· · · · ·	State Plane Coordina	ates NAD 83
	Well Casing	Installation Da			· · · ·
		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	· · · · · · · · · · · · · · · · · · ·		 . ·
	Schedule 40 PVC	Drilling Metho			
	5% Bentonite Grout	Drilling Contra	actor Talon Drillin	ng Company	<u> </u>
	8.5 ft* Bottom of 5% Bentonite Grout	Drilling Fluid	Not Applica	ible (NA)	
Malian Kanto	9.5 ft* Bottom of No. 00 Morie Sand		Technique(s) and Date(ary 2 and 3, 2004
	10.0 ft* Bottom of Vacuum Excavation		4-inch surge block and p was considered completed		
	TOP OF Weil Screen	reduced/elimi	·····		
		· .			·
		Fluid Loss Du		Not Applicable	gallons
		Water Remov	ed During Development) gallons
	10_inch diameter drilled hole	Static Depth 1	o Water:	6.91	feet below N
		Pumping Dep	oth to Water:	Not Applicable	feet below N
		Pumping Dur	ation:	2	hours
		Yield:	0.25 gpm	Date:	February 4, 2004
		Specific Capa	acity: No	t Applicable g	pm/ft
		Well Purpose	Well install	ed to monitor groundw	vater quality
	Well Screen		. <u></u>	· · · · ·	
	4_inch diameter, 0.01 Slot Schedule 40 PVC		· · · · ·		
	No. 1 Morie Sand	Remarks below ground	Vacuum ex I surface at the location of	cavation was perform of the monitoring well t	
		potential utilit			· · · · · · · · · · · · · · · · ·
	LEGEND Coverburden	<u> </u>	······		
	= 5% Bentonite Grout	• •	· •		
	= No. 00 Morie Sand = No. 1 Morie Sand				•
		Prepared by:	Jon Rutledge	<u>. </u>	
	SCALE Not to Scale.	•	• ×	•	
			nt. Top of 4-inch PVC w		

Name of Owner	PSE&G Salem Generating Facility		· .	
Name of Facility	PSE&G Salem Generating Facility			· · · · · · · · · · · · · · · · · · ·
Location	Lower Alloways Creek, Salem County	· · ·		
UST Number:	SRP Case No.:			
	'S CERTIFICATION			
Well Permit Number				· · · ·
i ilis number must be	permanently affixed to the well casing.			· · ·
Owners Well Numbe	r (As shown on application or plans)	Well K	· · ·	
	ates NAD 83 (to the nearest 1/10 of second)			•
		· ·· · · · ·		
0	est	Latitude: North	<u>39° 27' 51.08"</u>	·
tew Jersey State Fiz	ne coolumates <u>NAD 85</u> to heatest 10 feet.			
	orth231,435	East	199,697	<u></u>
	Inner Casing (Cap off) at			
	nearest 0.01' in relation to permanent			
on-site datum)		<u>Rim 102.36 PV</u>	C 102.00 ground	99.71
assume datum of 10 submitted electronic accuracy of 0.2'.)	datum (benchmark, number/description and eleva 0', and give approximate actual elevation. Please ally, the EDSA manual specifies the well elevati nent N 5+0, E 2+0 Elevation 102.78 scaled act	e note that, if informat on to be reported acco	tion from the well	is to be
Significant observat				
Significant Observat	ions and notes:	· · ·		<u> </u>
AUTHENTICATIO	<u>N</u>			
document and all at information, I belie	alty of law that I have personally examined a tachments and that, based on my inquiry of thos	e individuals immedi	iately responsible	for obtaining the
if I make a false st	eve the submitted information is true, accurate ting false, inaccurate, and incomplete informatio atement that I do not believe to be true. I am ute, I am personally liable for the penalties.	on and that I am comm	nitting a crime in	the fourth degree

hl (Wall

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

<u>6/16/2003</u> DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER

Location JST Number: <u>LAND SURVEYOR'S CE</u> Well Permit Number: This number must be perm	Lower Alloways	<u>enerating Facility</u> <u>Creek, Salem County</u> <u>SRP Case N</u>		······································		
IST Number: AND SURVEYOR'S CF Vell Permit Number: 'his number must be perm	ERTIFICATION			<u> </u>	- .	
ST Number:	ERTIFICATION			<u> </u>	- .	
AND SURVEYOR'S CE 'ell Permit Number: his number must be perm		SRP Case N	lo.:	· · .		. •
ell Permit Number: his number must be pern				· · · · · ·		
his number must be perm	nanently affixed t					.,
· ·	nanently affixed t	·				
ware Wall North (A		o the well casing.	· · · · · · · · ·	ч. Это стал		$\{ i \in I_{i,j} \}$
WHEIS WELL NUMBER LAS	s shown on applic	ation or plans)	Well	L		· ·
eographic Coordinates 1	NAD 83 (to the n	earest 1/10 of second)			· · · ·	
_			·	* * *		
ongitude: West	<u>75° 32' 14.4</u>		Latitude: No	th <u>39° 2</u>	2 <u>7' 46.07"</u>	
New Jersey State Plane C	coordinates NAD	83 to nearest 10 feet:				
North	230,933	· · ·	East	190	0.263	
Elevation of Top of Inner	r Casing (Cap off) at		<u>.</u>		· .
Reference mark (to neare	st 0.01' in relatio	n to permanent				
on-site datum)		· ·		PVC 101.	46 ground	9.34
accuracy of 0.2'.) Site Monument	t N 5+0. E 2+0 El	evation 102.78 scale	d actual <u>elevation</u> 10			
· · · · · · · · · · · · · · · · · · ·						n an
Significant observations	and notes:				·····	
· · · ·				»		
AUTHENTICATION			· · · · ·	· · · · · · · · · · · · · · · · · · ·		

۰.,

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

ame of Owner PSE&G Salem Generating Facility			· · · · · · · · · · · · · · · · · · ·	
ame of Facility PSE&G Salem Generating Facility	· · · · · · · · · · · · · · · · · · ·			
Deation Lower Alloways Creek, Salem County		 •	· .	
ST Number: SRP Case No.:				
AND SURVEYOR'S CERTIFICATION				
/ell Permit Number:		×		
his number must be permanently affixed to the well casing.		· .	• • •	
wners Well Number (As shown on application or plans)	MW-M		. *	
eographic Coordinates NAD 83 (to the nearest 1/10 of second)			•	
ongitude: West 75° 32' 10.79"	Latitude: North	39° 27' 45.20"		
New Jersey State Plane Coordinates NAD 83 to nearest 10 feet:	· · · · · · · · · · · · · · · · · · ·			
North 230.843	East	199,546		
Elevation of Top of Inner Casing (Cap off) at		· · ·		
Reference mark (to nearest 0.01' in relation to permanent		· . ·		
on-site datum)	<u>_Rim 102.37_PV</u>	C 102.17 ground 9	99.26	
Source of elevation datum (benchmark, number/description and eleva assume datum of 100', and give approximate actual elevation. Please submitted electronically, the EDSA manual specifies the well elevation accuracy of 0.2'.)	note that, if information to be reported acc	tion from the well ording to <u>NAVD</u>	is to be	
Site Monument N 5+0, E 2+0 Elevation 102.78 sc	aled actual elevation	10		
Significant observations and notes:	· · · · · · · · · · · · · · · · · · ·		····	
AUTHENTICATION				
<u>HO MANINGATION</u>				

document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

7/08/2003 DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

Name of Owner	PSE&G Salem Generating Facility	
Name of Facility	PSE&G Salem Generating Facility	
Location	Lower Alloways Creek, Salem County	
UST Number:	SRP Case No	• • • • • • • • • • • • • • • • • • •
Well Permit Number:		
This number must be	permanently affixed to the well casing.	
	r (As shown on application or plans) ates <u>NAD 83 (</u> to the nearest 1/10 of second)	Well N
Longitude: Wo New Jersey State Pla	est <u>75° 32' 09.31"</u> ne Coordinates <u>NAD 83</u> to nearest 10 feet:	Latitude: North <u>39° 27' 44.57"</u>
No	orth230,777	East199,661
	Inner Casing (Cap off) at nearest 0.01' in relation to permanent	<u></u>
Source of elevation assume datum of 10 submitted electronic accuracy of 0.2'.)	0', and give approximate actual elevation. Plea	evation/datum. If an on-site datum is used, identify he se note that, if information from the well is to be ation to be reported according to <u>NAVD 1988</u> to an

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

6/16/2003

DATE

RICHARD C. MATHEWS

GS29353

PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

Name of Owner	PSE&G Salem G	enerating Facility	•			
Vame of Facility	DSE & C. Salam C	enerating Facility			•	
tanic of Facility	PSE&O Salem O	cherating racinty				
ocation	Lower Alloways	Creek, Salem County				
JST Number:		SRP Case N	0.:	· · ·		
AND SURVEYOR	'S CERTIFICATION	Ξ.			· · · ·	. · · ·
Well Permit Number						
This number must be	permanently affixed to	o the well casing.		н 1. т		
Owners Well Numbe	r (As shown on applic	ation or plans)		Well O		
	ates NAD 83 (to the ne					
Longitude: W	est <u>75° 32' 07.0</u>	5"	Latitude:	North	<u>39° 27' 44.85"</u>	
New Jersey State Pla	ne Coordinates NAD					
N	orth 230,804			East	199,839	•
Elevation of Top of	Inner Casing (Cap off)	at				
Reference mark (to :	nearest 0.01' in relation	n to permanent				· ·
on-site datum)			Rim 1	<u>01.76 PV</u>	C 101.33 ground	<u>1 99.20</u>
assume datum of 10 submitted electronic accuracy of 0.2'.)	0', and give approximates ally, the EDSA manual manual sector of the EDSA manual sector of the secto	mber/description and e ate actual elevation. Ple l specifies the well elev	ase note that, i vation to be rep	f informat orted acco	ion from the well	is to be
Site Monu	ment N 5+0, E $2+0$ Ele	vation 102.78 scaled	actual elevatio	<u>n 10</u>		
Significant observat	ions and notes:		· · · · ·	· · · ·		

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

6/16/2003

DATE

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

RICHARD C. MATHEWS

<u>GS29353</u>

PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

Name of Owner	PSE&G Salem Generating	Facility	······		
Name of Facility	PSE&G Salem Generating	g Facility			·
Location	Lower Alloways Creek, S	alem County			
UST Number:		SRP Case No.:_			
	R'S CERTIFICATION	• • •			
Well Permit Numb					
This number must	be permanently affixed to the well	l casing.			
Owners Well Num	ber (As shown on application or p	lane)	Well P		
	linates <u>NAD 83 (to the nearest 1/1</u>				
T an alter 1			Latitude: North_	209 271 40 25"	
	West <u>75° 32' 04.93"</u> Plane Coordinates <u>NAD 83</u> to nea	rest 10 feet	Lautude: North	39 21 40.25	
INCW JUISEY State	Flate Coordinates IVAD 65 to hea	101000		· ·	
	North 230,336		East	200,000	
	of Inner Casing (Cap off) at		•		
	to nearest 0.01' in relation to perm	anent		2010140	00.00
on-site datum)			<u>Rim 101.56 PV</u>	/C 101.13 ground	99.00
assume datum of submitted electro accuracy of 0.2'.	on datum (benchmark, number/des 100', and give approximate actual nically, the EDSA manual specific) nument N 5+0, E 2+0 Elevation 10	elevation. Please the well elevation	note that, if informa n to be reported acc	tion from the well	is to be
Significant obser	vations and notes:				•
organiteant obser			······		
••••••••••••••••••••••••••••••••••••••					
AUTHENTICA	<u>FION</u>				
document and al information, I b	benalty of law that I have person l attachments and that, based on r elieve the submitted information mitting false, inaccurate, and inco	ny inquiry of thos	e individuals immed and complete. I a	liately responsible in aware that the	for obtaining the re are significant

if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the

Phi Mashing

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

violation of any statute, I am personally liable for the penalties.

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER

6/16/2003 DATE

Name of Owner	PSE&G Salem Generating Facility	•		-	
Name of Facility	PSE&G Salem Generating Facility				·
Location	Lower Alloways Creek, Salem County				
UST Number:	SRP Case No.:				-
Well Permit Number:		• •			
This number must be	permanently affixed to the well casing.	· · ·			*
	r (As shown on application or plans) ttes <u>NAD 83 (</u> to the nearest 1/10 of second)	Well Q		· · .	
•	est <u>75° 31' 49.72"</u> ne Coordinates <u>NAD 83</u> to nearest 10 feet:	Latitude: North	<u>39° 27' 43.45</u>	33	
Elevation of Top of	rth <u>230,645</u> Inner Casing (Cap off) at	East	201,196		ı
Reference mark (to 1 on-site datum)	earest 0.01' in relation to permanent	<u>Rim-107-03</u> PV(C 106.59 ground	1104.45	
assume datum of 10 submitted electronic accuracy of 0.2'.)	datum (benchmark, number/description and elev D', and give approximate actual elevation. Pleas ally, the EDSA manual specifies the well elevat te Monument N 5+0, E 2+0 Elevation 102.78 s	e note that, if informat ion to be reported acco	ion from the we ording to <u>NAVI</u>	ll is to be	е,
	ions and notes:				
AUTHENTICATIC	<u>2N</u>			· · ·	
document and all a information, I beli penalties for submi	alty of law that I have personally examined a trachments and that, based on my inquiry of the eve the submitted information is true, accurate tring false, inaccurate, and incomplete information tratement that I do not believe to be true. I an	se individuals immedi e and complete. I an on and that I am comm	iately responsibles a aware that the nitting a crime in the second second second second second second second se	e for obtaining ere are signif n the fourth de	g the icant egree

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

violation of any statute, I am personally liable for the penalties.

<u>7/1/2003</u> DATE

.

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

Name of Owner	PSE&G Salem Generating Facility	
Name of Facility	PSE&G Salem Generating Facility	
· · ·		
Location	Lower Alloways Creek, Salem County	
UST Number:	SRP Case No.:	
LAND SURVEYO	OR'S CERTIFICATION	
Well Permit Numb	ber:	
This number must	t be permanently affixed to the well casing.	
Owners Well Nurr	nber (As shown on application or plans)	<u>MW-R</u>
Geographic Coord	dinates NAD 83 (to the nearest 1/10 of second)	
	West 75° 32' 09.60"	Latitude: North <u>39° 27' 45.84"</u>
New Jersey State	Plane Coordinates NAD 83 to nearest 10 feet:	
		-
	North230,906	East199,640
	of Inner Casing (Cap off) at	
	(to nearest 0.01' in relation to permanent	Dim 102 42 DVC 102 25 mm 100 82
on-site datum)		Rim 102.42 PVC 102.35 ground 99.82
assume datum of	f 100', and give approximate actual elevation. Please onically, the EDSA manual specifies the well elevation	on to be reported according to <u>NAVD 1988</u> to an
Significant obser	rvations and notes:	
· · · ·		
<u>AUTHENTICA</u>	TION	
document and a	ill attachments and that, based on my inquiry of tho	and am familiar with the information submitted in the se individuals immediately responsible for obtaining the
mormation, I b	believe the submitted information is true, accurat	e and complete. I am aware that there are significa

penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

1

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

7/08/2003 DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER

. ______

Name of Owner PSE&G Salem Generating Facility		
Name of Facility PSE&G Salem Generating Facility		
Location Lower Alloways Creek, Salem County		
UST Number: SRP Case No	D.:	· ·
LAND SURVEYOR'S CERTIFICATION		
Well Permit Number: This number must be permanently affixed to the well casing.		· · ·
Owners Well Number (As shown on application or plans)	MW S	
Geographic Coordinates <u>NAD 83</u> (to the nearest 1/10 of second)		
Longitude: West <u>75° 32' 09.92''</u>	Latitude: North 39° 27'	43.92"
New Jersey State Plane Coordinates NAD 83 to nearest 10 feet:		L.
North 230,711	East199,61	3
Elevation of Top of Inner Casing (Cap off) at	· ·	
Reference mark (to nearest 0.01' in relation to permanent on-site datum)	PVC 99.04	<u>1</u>
Source of elevation datum (benchmark, number/description and el	evation/datum. If an on-site datum	in used identification
assume datum of 100', and give approximate actual elevation. Plea submitted electronically, the EDSA manual specifies the well elev accuracy of 0.2'.) 	ase note that, if information from the ation to be reported according to \underline{N}	he well is to be <u>IAVD 1988</u> to an
submitted electronically, the EDSA manual specifies the well elev accuracy of 0.2'.) 	ase note that, if information from the ation to be reported according to <u>N</u> n 102.78 scaled actual elevation 10	he well is to be <u>IAVD 1988</u> to an
submitted electronically, the EDSA manual specifies the well elev accuracy of 0.2'.)	ase note that, if information from the ation to be reported according to <u>N</u> n 102.78 scaled actual elevation 10	he well is to be <u>IAVD 1988</u> to an

document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

2/23/04 DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

Name of Owner	PSE&G Salem Generating Facility	· · · ·	· · · · · · · · · · · · · · · · · · ·		
Name of Facility	PSE&G Salem Generating Facility	·			•
Location	Lower Alloways Creek, Salem County				•
UST Number:	SRP Case No.	•	· · · · ·		
LAND SURVEYOR	'S CERTIFICATION		•		
Well Permit Numbe	G		· · ·		
This number must b	e permanently affixed to the well casing.	· · · · ·	. •		
0		337, 11 77	•	· · ·	
	er (As shown on application or plans)	Well T	·····		
Geographic Coordin	nates NAD 83 (to the nearest 1/10 of second)			· .	
Longitude: W	Vest 75° 32' 10.53"	Latitude: North	39° 27' 52.45"	÷.,	
•	ane Coordinates NAD 83 to nearest 10 feet:	Laulade. Noral_			-
riew bersey blate 1	ane Coordinates <u>IVAD 85</u> to hearest 10 feet.			• •	
N	orth 231.575	East	199.575	·.	. •
	Inner Casing (Cap off) at	· · · · · · · · · · · · · · · · · · ·		•	· · ·
	nearest 0.01' in relation to permanent		• • •		
on-site datum)		Rim 104.39 P	VC 104.13 ground	100.97	
					-
assume datum of 10 submitted electronic accuracy of 0.2'.)	datum (benchmark, number/description and ele 00', and give approximate actual elevation. Pleas cally, the EDSA manual specifies the well elevat	se note that, if information to be reported acc	ation from the well	is to be	
Site Mon	ument N 5+0, E 2+0 Elevation 102.78 scaled a	ctual elevation 10		<u>.</u> .	
			·	· ·	
Significant observa	tions and notes:				_
•		· · · ·			•
·		······			
AUTHENTICATI	<u>ON</u>		· · · · · · · · · · · · · · · · · · ·	· ·	·.
document and all a	nalty of law that I have personally examined attachments and that, based on my inquiry of the ieve the submitted information is true, accura	ose individuals immed	liately responsible	for obtain	ining th

if I make a false statement that I do not believe to be true. I a m a lso a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

SEA

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

RICHARD C. MATHEWS

GS29353

PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER 6/16/2003 DATE

Name of Owner PSE&G Salem Generating Facility	
Name of Facility PSE&G Salem Generating Facility	
Location Lower Alloways Creek, Salem County	
UST Number: SRP Case No.:	
LAND SURVEYOR'S CERTIFICATION Well Permit Number:	
This number must be permanently affixed to the well casing.	
Owners Well Number (As shown on application or plans)	<u>MW U</u>
Geographic Coordinates <u>NAD 83 (</u> to the nearest 1/10 of second)	
Longitude: West <u>75° 32' 09.95"</u> New Jersey State Plane Coordinates <u>NAD 83</u> to nearest 10 feet:	Latitude: North <u>39° 27' 50.43"</u>
North 231,370	East199,618
Elevation of Top of Inner Casing (Cap off) at Reference mark (to nearest 0.01' in relation to permanent	
on-site datum)	RIM 99.19 PVC 98.57
Source of elevation datum (benchmark, number/description and eleva assume datum of 100', and give approximate actual elevation. Please submitted electronically, the EDSA manual specifies the well elevation accuracy of 0.2'.)	note that, if information from the well is to be on to be reported according to <u>NAVD 1988</u> to an
Site Monument N 5+0, E 2+0 Elevation 1	
Significant observations and notes:	
AUTHENTICATION	
I certify under penalty of law that I have personally examined a	nd am familiar with the information submitted in th

document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER 2/23/04 DATE

Name of Owner	PSE&G Salem Generating Facility			
Name of Facility	PSE&G Salem Generating Facility			- · ·
Location	Lower Alloways Creek, Salem County		·	
UST Number:	SRP Case N	0.:		
LAND SURVEYOR'S Well Permit Number				
	ermanently affixed to the well casing.			
Owners Well Number	(As shown on application or plans)	MW V		
Geographic Coordinate	es <u>NAD 83 (to the nearest 1/10 of second</u>)		•	• •
Longitude: Wes		Latitude: North _	<u>39° 27' 50.27''</u>	
	e Coordinates <u>NAD 83</u> to nearest 10 feet:		· · · ·	· .
	h231,355 ner Casing (Cap off) at	East	199,548	······································
	arest 0.01' in relation to permanent	RIM 99.	0 <u>3 PVC 98.74</u>	•
assume datum of 100'	atum (benchmark, number/description and e , and give approximate actual elevation. Ple ly, the EDSA manual specifies the well elev Site Monument N 5+0, E 2+0 Elevation	ase note that, if informat vation to be reported acc	tion from the well is ording to <u>NAVD 19</u>	to be
Significant observatio	ns and notes:	· · · · · · · · · · · · · · · · · · ·		
AUTHENTICATION	I			
	ty of law that I have personally examined chments and that, based on my inquiry of t			

information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

_____2/23/04 _____DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

ame of Owner PSE&G Salem Generating Facility		· · · · · · · · · · · · · · · · · · ·	
ame of Facility PSE&G Salem Generating Facility	· · · ·		
ocationLower Alloways Creek, Salem County	:		
JST Number: SRP Case No.:		· · · · · · · · · · · · · · · · · · ·	
AND SURVEYOR'S CERTIFICATION	· .		
Vell Permit Number: This number must be permanently affixed to the well casing.		· · · · ·	. •
Owners Well Number (As shown on application or plans)	MW		
Geographic Coordinates NAD 83 (to the nearest 1/10 of second)	· · · ·		
Longitude: West <u>75° 32' 12.01"</u> New Jersey State Plane Coordinates <u>NAD 83</u> to nearest 10 feet:	Latitude: No	rth <u>39° 27' 44.55</u>	
North 230,777	Fast	199,450	
Elevation of Top of Inner Casing (Cap off) at	Lust		
Reference mark (to nearest 0.01 ⁷ in relation to permanent on-site datum)	RIM	1 98.99 PVC 98.69	
Source of elevation datum (benchmark, number/description and eleva assume datum of 100', and give approximate actual elevation. Please submitted electronically, the EDSA manual specifies the well elevati accuracy of 0.2'.)	note that, if info on to be reported	ormation from the we l according to <u>NAVD</u>	ll is to be
Site Monument N 5+0, E 2+0 Elevation 1	02.78 scaled act	ual elevation 10	······································
Significant observations and notes:			<u> </u>
	· · · · ·		
AUTHENTICATION I certify under penalty of law that I have personally examined a	1 0 11		

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

Marker (-

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER <u>2/23/04</u> DATE

ame of Owner PSE&G Salem Generating Facility	· · · · · · · · · · · · · · · · · · · ·	· ·		
ame of Facility PSE&G Salem Generating Facility		·	· · · · · · · · · · · · · · · · · · ·	
ocation Lower Alloways Creek, Salem County				1 .
ST Number: SRP Case No.:				
AND SURVEYOR'S CERTIFICATION				
Vell Permit Number: his number must be permanently affixed to the well casing.				
wners Well Number (As shown on application or plans)	MW-Y			
eographic Coordinates <u>NAD 83</u> (to the nearest 1/10 of second)	· · · · ·	•	· · ·	•
ongitude: West 75° 32' 13.36"	Latitude: North _	<u>39° 27' 44.47</u>	>	
New Jersey State Plane Coordinates NAD 83 to nearest 10 feet:			· · ·	
North 230,771	East	199,343		
Elevation of Top of Inner Casing (Cap off) at				
Reference mark (to nearest 0.01' in relation to permanent on-site datum)	Casing 102.31 1	PVC 101.81 Gro	und 99 2	
Source of elevation datum (benchmark, number/description and elevals sume datum of 100', and give approximate actual elevation. Please submitted electronically, the EDSA manual specifies the well elevat accuracy of 0.2'.) Site Monument N $5 + 0$, E $2 + 0$ Elevation 102.78	e note that, if informa ion to be reported acc	tion from the we ording to <u>NAVE</u>	ll is to be	
Significant observations and notes:				
	· .			
	· · · · · · · · · · · · · · · · · · ·			

document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also aware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

<u>10/22/03</u> DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

Iame of Owner PSE&G Salem Generating Facility			• . ,
ame of Facility PSE&G Salem Generating Facility			
Cation Lower Alloways Creek, Salem County			-
ST Number: SRP Case No.:	·····	,	
AND SURVEYOR'S CERTIFICATION			
Well Permit Number:			
This number must be permanently affixed to the well casing.			
Numero Well Number (As shares as an listing or plane)	MW-Z	· .	
Dwners Well Number (As shown on application or plans) Geographic Coordinates <u>NAD 83 (to the nearest 1/10 of second)</u>			-
Longitude: West 75° 32' 12.64"	Latitude: North	39° 27' 44.59"	
New Jersey State Plane Coordinates <u>NAD 83</u> to nearest 10 feet:			
North 230,681	East	199,399	
Elevation of Top of Inner Casing (Cap off) at			
Reference mark (to nearest 0.01' in relation to permanent			
on-site datum)	Casing 102.39 I	PVC 101.86 Ground 99.3	
assume datum of 100', and give approximate actual elevation. Please submitted electronically, the EDSA manual specifies the well elevat accuracy of 0.2'.) Site Monument N $5 + 0$, E $2 + 0$ Elevation 102.78	ion to be reported acc	ording to <u>NAVD 1988</u> to	an
	•	200	
Significant observations and notes:	·	······································	_
	·		
		······	
Significant observations and notes:	se individuals immed te and complete. I a on and that I am com	liately responsible for obt m aware that there are a mitting a crime in the fou	ainir signi rth d

10/22/03

DATE

Ralal (Marhur PROFESSIONAL LAND SURVEYOR'S SIGNATURE

GS29353 RICHARD C. MATHEWS PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

Name of Owner PSE&G Salem Generating Facility	
Name of Facility PSE&G Salem Generating Facility	
Location Lower Alloways Creek, Salem County	
UST Number: SRP Case No.: SRP Case No.:	
Well Permit Number: This number must be permanently affixed to the well casing.	
Owners Well Number (As shown on application or plans) Geographic Coordinates <u>NAD 83 (to the nearest 1/10 of second)</u>	MW AA
Longitude: West <u>75° 32' 10.81"</u>	Latitude: North 39° 27' 42.83"
New Jersey State Plane Coordinates NAD 83 to nearest 10 feet:	
North 230,603 Elevation of Top of Inner Casing (Cap off) at Reference mark (to nearest 0.01' in relation to permanent	East199,541
on-site datum)	RIM 99.30 PVC 99.07
Source of elevation datum (benchmark, number/description and eleva assume datum of 100', and give approximate actual elevation. Please submitted electronically, the EDSA manual specifies the well elevation accuracy of 0.2'.)	note that, if information from the well is to be
Site Monument N 5+0, E 2+0 Elevation 1	02.78 scaled actual elevation 10
Significant observations and notes:	
·	
AUTHENTICATION	
I certify under penalty of law that I have personally examined and document and all attachments and that, based on my inquiry of thos information, I believe the submitted information is true, accurate penalties for submitting false, inaccurate, and incomplete informatio if I make a false statement that I do not believe to be true. I am violation of any statute, I am personally liable for the penalties.	e individuals immediately responsible for obtaining the and complete. I am aware that there are significant n and that I am committing a crime in the fourth degree
Raff C Martin	
PROFESSIONAL LAND SURVEYOR'S SIGNATURE	<u>2/23/04</u> DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

Name of Owner	PS	E&G Salem Gen	erating Facility		·		· · ·	<u>.</u>
Name of Facility	PS	E&G Salem Gen	erating Facility	.*	• •	· · · ·		
Location	L	wer Alloways Cr	eek, Salem Coun	ty		· .		
UST Number:			SRP Case	No.:	•		· · ·	•
LAND SURVEYOR	S CER	TIFICATION						
Well Permit Number:			$(1, \dots, n_{k}) \in \mathbb{C}^{n_{k}}$		· .	· · · · ·		
This number must be	permar	ently affixed to th	e well casing.		2.00		· · ·	
Owners Well Numbe	r (As sh	own on applicatio	on or plans)			MW AB	·	•
Geographic Coordina	tes <u>NA</u>	D 83 (to the neare	st 1/10 of second	l)				
Longitude: We	st	75° 32' 09.08"	• •	<u>.</u>	Latitud	e: North	<u>39° 27' 43.05"</u>	•
New Jersey State Pla	ne Coo	dinates NAD 83	to nearest 10 feet	:				,
No	rth	230,623	· . . · ·		۰.	East	199,677	
Elevation of Top of I	nner Ca	asing (Cap off) at				•		
Reference mark (to r	earest (0.01' in relation to	permanent		•		•	
on-site datum)		•					PVC 98.93	
Source of elevation of assume datum of 100								

ere, submitted electronically, the EDSA manual specifies the well elevation to be reported according to NAVD 1988 to an accuracy of 0.2'.)

Site Monument N 5+0, E 2+0 Elevation 102.78 scaled actual elevation 10

Significant observations and notes:

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER

2/23/04 DATE

	PSE&G Salem Generating Fa	cility	<u> </u>			
Name of Facility	PSE&G Salem Generating Fa	icility				•
Location	Lower Alloways Creek, Sale	m County		:		
UST Number:	S	RP Case No.:	· · · · · · · · · · · · · · · · · · ·	· .		
LAND SURVEYOR	'S CERTIFICATION			· · · · ·	-	•
Well Permit Number				· ·		
This number must be	e permanently affixed to the well ca	sing.		· · · · ·	•	
Owners Well Numbe	er (As shown on application or plan	us)	MW AC	· · ·	<u>,</u>	·
Geographic Coordin	nates NAD 83 (to the nearest 1/10 o	f second)			- . /	•••
Longitude: W	est 75° 32' 08.49"	Lat	itude: North	<u>39° 27' 44.05'</u>	,	
	ane Coordinates NAD 83 to nearest		· .			
						•
	orth 230,724		East	199,725		
	Inner Casing (Cap off) at					
	nearest 0.01' in relation to permane	ent		•	· .	
on-site datum)			· · · · · · · · · · · · · · · · · · ·	PVC 98.77	·	
assume datum of 10 submitted electroni	datum (benchmark, number/descrip 00', and give approximate actual ele cally, the EDSA manual specifies th	evation. Please note t	hat, if informa	tion from the wel	l is to be	-
accuracy of 0.2'.)						
accuracy of 0.2'.)	Site Monument N 5+0, E 2-	+0 Elevation 102.78	scaled actual e	elevation 10		
		+0 Elevation 102.78	scaled actual e	elevation 10		
	Site Monument N 5+0, E 2-	+0 Elevation 102.78	scaled actual e	elevation 10		
		+0 Elevation 102.78	scaled actual e	elevation 10		
		+0 Elevation 102.78	scaled actual e	elevation 10		
Significant observa	itions and notes:	+0 Elevation 102.78	scaled actual e	elevation 10		•
	itions and notes:	+0 Elevation 102.78	scaled actual e	elevation 10		· ·

SEAL Д

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER

2/23/04

DATE

Name of Owner	PSE&G Salem Generating Facility			·
Name of Facility	PSE&G Salem Generating Facility		·	
ocation	Lower Alloways Creek, Salem Count	y		
JST Number:	SRP Case	No.:	·	•
AND SURVEYOR	'S CERTIFICATION			
	permanently affixed to the well casing.		•	•
Owners Well Numbe	r (As shown on application or plans)	MW AD)	
Geographic Coordin	ates NAD 83 (to the nearest 1/10 of second)) 	· .	
	est		<u>39° 27' 43.64"</u>	
			•	
	orth230,684 Inner Casing (Cap off) at	East	199,607	
	nearest 0.01' in relation to permanent	· ·	PVC 98.99	·
assume datum of 10	datum (benchmark, number/description and 0', and give approximate actual elevation. F ally, the EDSA manual specifies the well el Site Monument N 5+0, E 2+0 Elevat	lease note that, if informate evation to be reported acc	ition from the well i cording to <u>NAVD 1</u>	s to be
Significant observat	ions and notes:			
		· · · · · ·	· · · · · · · · · · · · · · · · · · ·	
AUTHENTICATIC	<u>N</u>			
I certify under pen document and all at	<u>2N</u> alty of law that I have personally examin ttachments and that, based on my inquiry of eve the submitted information is true, acc	those individuals immed	liately responsible f	or obtaini

information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

SEAL

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

<u>2/23/04</u> DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER

this the

Name of Facility	PSE&G Salem Ge					
ocation		enerating Facility	·	······		
	Lower Alloways	Creek, Salem County		· · · · · · · · · · · · · · · · · · ·	<u> </u>	
JST Number:		SRP Case No			•	
AND SURVEYOR'S	CERTIFICATION					
Well Permit Number:	· · · · · · · · · · · · · · · · · · ·					
This number must be pe	rmanently affixed to	the well casing.	•			
Owners Well Number (A	As shown on applica	tion or plans)	MW-AE			•
Geographic Coordinates	s NAD 83 (to the ne	arest 1/10 of second)			-	•
Longitude: West	75° 32 <u>'</u> 06.97	755	Latitude: North	39° 27' 45.11"	, -	
New Jersey State Plane					• •	
					•	
North			East	199,845		•
Elevation of Top of Inr						
Reference mark (to nea on-site datum)	rest 0.01' in relation	n to permanent		<u>VC 101.54 Grou</u>		
Source of elevation dat	tum (benchmark, nu	mber/description and el	evation/datum. If an on-	site datum is use	d. identify	here
assume datum of 100', submitted electronicall accuracy of 0.2'.)	, and give approximally, the EDSA manual	mber/description and el ate actual elevation. Ple l specifies the well elev	ase note that, if information to be reported acc	tion from the well ording to <u>NAVD</u>	l is to be	
assume datum of 100', submitted electronicall accuracy of 0.2'.)	, and give approximally, the EDSA manual	ate actual elevation. Ples	ase note that, if information to be reported acc	tion from the well ording to <u>NAVD</u>	l is to be	
assume datum of 100', submitted electronicall accuracy of 0.2'.)	, and give approxima ly, the EDSA manua Monument N 5 + 0,	ate actual elevation. Plea I specifies the well elev	ase note that, if information to be reported acc	tion from the well ording to <u>NAVD</u>	l is to be	
assume datum of 100', submitted electronicall accuracy of 0.2'.) Site	, and give approxima ly, the EDSA manua Monument N 5 + 0,	ate actual elevation. Plea I specifies the well elev	ase note that, if information to be reported acc	tion from the well ording to <u>NAVD</u>	l is to be	

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

10/22/03 DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

Name of Owner	PSE&G Salem Generating Facility		·	
Name of Facility	PSE&G Salem Generating Facility		· · · · · · · · · · · · · · · · · · ·	
ocation	Lower Alloways Creek, Salem County			·····
UST Number:	SRP Case No	h :	•	
	S CERTIFICATION	····		·····
Well Permit Number:			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
This number must be	permanently affixed to the well casing.			
Ourse 337-11 N 1		MW-AF	· · · ·	· · ·
	(As shown on application or plans)	<u>Ww-AF</u>	· <u>······</u> ·····························	· · ·
Longitude: We	st	Latitude: North	<u>39° 27' 41.74"</u>	
New Jersey State Plan	ne Coordinates NAD 83 to nearest 10 feet:			1
No	rth 230,491	East	199,702	
	nner Casing (Cap off) at			
	earest 0.01' in relation to permanent	* <u>.</u>		•
on-site datum)	·	Casing 102.00 PV	C 101.61 Ground	<u>199.2</u>
assume datum of 100 submitted electronic accuracy of 0.2'.)	datum (benchmark, number/description and el D', and give approximate actual elevation. Ple ally, the EDSA manual specifies the well elev te Monument N 5 + 0, E 2 + 0 Elevation 102.	ase note that, if information ration to be reported accor	on from the well is ding to <u>NAVD 19</u>	s to be
· · · · ·				
		· · · · · · · · · · · · · · · · · · ·	<u></u>	
AUTHENTICATIO	N			
document and all at information, I belie	alty of law that I have personally examined tachments and that, based on my inquiry of t eve the submitted information is true, accu tting false, inaccurate, and incomplete inform	hose individuals immedia rate and complete. I am	tely responsible f aware that there	or obtaining to are signification of the second s

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

violation of any statute, I am personally liable for the penalties.

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER

10/22/03

DATE

Name of Owner	PSE&G Salem Generating Facility	
Name of Facility	PSE&G Salem Generating Facility	
ocation	Lower Alloways Creek, Salem County	
JST Number:	SRP Case No.:	· · · ·
AND SURVEYOR'S	SCERTIFICATION	
Vell Permit Number:		
his number must be	permanently affixed to the well casing.	
Owners Well Number	(As shown on application or plans)	MW AG-S
Geographic Coordina	tes NAD 83 (to the nearest 1/10 of second)	
.ongitude: We		Latitude: North 39° 27' 41.77"
New Jersey State Plan	ne Coordinates NAD 83 to nearest 10 feet:	
No	rth 230,496	East199,508
	nner Casing (Cap off) at	2
Reference mark (to ne	earest 0.01' in relation to permanent	
on-site datum)		
		PVC 99.29 ation/datum. If an on-site datum is used, identify h
assume datum of 100 submitted electronica)', and give approximate actual elevation. Please ally, the EDSA manual specifies the well elevati	ation/datum. If an on-site datum is used, identify h note that, if information from the well is to be on to be reported according to <u>NAVD 1988</u> to an
assume datum of 100 submitted electronica)', and give approximate actual elevation. Please	ation/datum. If an on-site datum is used, identify h note that, if information from the well is to be on to be reported according to <u>NAVD 1988</u> to an
assume datum of 100 submitted electronica accuracy of 0.2'.))', and give approximate actual elevation. Please ally, the EDSA manual specifies the well elevati Site Monument N 5+0, E 2+0 Elevation 1	ation/datum. If an on-site datum is used, identify h note that, if information from the well is to be on to be reported according to <u>NAVD 1988</u> to an
assume datum of 100 submitted electronica accuracy of 0.2'.))', and give approximate actual elevation. Please ally, the EDSA manual specifies the well elevati Site Monument N 5+0, E 2+0 Elevation 1	ation/datum. If an on-site datum is used, identify h note that, if information from the well is to be on to be reported according to <u>NAVD 1988</u> to an <u>02.78 scaled actual elevation 10</u>
assume datum of 100 submitted electronica accuracy of 0.2'.) Significant observati)', and give approximate actual elevation. Please ally, the EDSA manual specifies the well elevati <u>Site Monument N 5+0, E 2+0 Elevation 1</u> ons and notes:	ation/datum. If an on-site datum is used, identify h note that, if information from the well is to be on to be reported according to <u>NAVD 1988</u> to an <u>02.78 scaled actual elevation 10</u>
assume datum of 100 submitted electronica accuracy of 0.2'.) Significant observati)', and give approximate actual elevation. Please ally, the EDSA manual specifies the well elevati <u>Site Monument N 5+0, E 2+0 Elevation 1</u> ons and notes:	ation/datum. If an on-site datum is used, identify h note that, if information from the well is to be on to be reported according to <u>NAVD 1988</u> to an <u>02.78 scaled actual elevation 10</u>
assume datum of 100 submitted electronica accuracy of 0.2'.) Significant observati <u>AUTHENTICATION</u> I certify under pena document and all att information, I belie penalties for submitt if I make a false s ta	 N, and give approximate actual elevation. Please ally, the EDSA manual specifies the well elevation. Site Monument N 5+0, E 2+0 Elevation I sons and notes: N Alty of law that I have personally examined a tachments and that, based on my inquiry of those we the submitted information is true, accurate ting false, inaccurate, and incomplete informaticatement that I do not believe to be true. I am 	ation/datum. If an on-site datum is used, identify h note that, if information from the well is to be on to be reported according to <u>NAVD 1988</u> to an <u>02.78 scaled actual elevation 10</u>
assume datum of 100 submitted electronica accuracy of 0.2'.) Significant observati <u>AUTHENTICATION</u> I certify under pena document and all att information, I belie penalties for submitt if I make a false s ta	 N, and give approximate actual elevation. Please ally, the EDSA manual specifies the well elevation. Site Monument N 5+0, E 2+0 Elevation I sons and notes: N Alty of law that I have personally examined a tachments and that, based on my inquiry of those the submitted information is true, accurate ting false, inaccurate, and incomplete information 	ation/datum. If an on-site datum is used, identify h e note that, if information from the well is to be on to be reported according to <u>NAVD 1988</u> to an <u>02.78 scaled actual elevation 10</u> nd am familiar with the information submitted is is individuals immediately responsible for obtaining and complete. I am aware that there are sign on and that I am committing a crime in the fourth of
assume datum of 100 submitted electronica accuracy of 0.2'.) Significant observati <u>AUTHENTICATION</u> I certify under pena document and all att information, I belie penalties for submitt if I make a false s ta	 N, and give approximate actual elevation. Please ally, the EDSA manual specifies the well elevation. Site Monument N 5+0, E 2+0 Elevation I sons and notes: N Alty of law that I have personally examined a tachments and that, based on my inquiry of those we the submitted information is true, accurate ting false, inaccurate, and incomplete informaticatement that I do not believe to be true. I am 	ation/datum. If an on-site datum is used, identify h e note that, if information from the well is to be on to be reported according to <u>NAVD 1988</u> to an <u>02.78 scaled actual elevation 10</u> nd am familiar with the information submitted is is individuals immediately responsible for obtaining and complete. I am aware that there are sign on and that I am committing a crime in the fourth of
assume datum of 100 submitted electronica accuracy of 0.2'.) Significant observati AUTHENTICATION I certify under pena document and all att information, I belie penalties for submitt if I make a false sta	 N, and give approximate actual elevation. Please ally, the EDSA manual specifies the well elevation. Site Monument N 5+0, E 2+0 Elevation I sons and notes: N Alty of law that I have personally examined a tachments and that, based on my inquiry of those we the submitted information is true, accurate ting false, inaccurate, and incomplete informaticatement that I do not believe to be true. I am 	ation/datum. If an on-site datum is used, identify h e note that, if information from the well is to be on to be reported according to <u>NAVD 1988</u> to an <u>02.78 scaled actual elevation 10</u> nd am familiar with the information submitted is is individuals immediately responsible for obtaining and complete. I am aware that there are sign on and that I am committing a crime in the fourth of

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

Name of Owner PSE&G Salem Generating Facility	·····	•		
Name of Facility PSE&G Salem Generating Facility		·····		
ocation Lower Alloways Creek, Salem County				•
		• .		
AND SURVEYOR'S CERTIFICATION Vell Permit Number:				
his number must be permanently affixed to the well casing.				• •
Owners Well Number (As shown on application or plans)	MW AG-	D		
Geographic Coordinates NAD 83 (to the nearest 1/10 of second)			· .	
Longitude: West <u>75° 32' 11.23"</u>	Latitude: North	39° 27' 41.77"		
New Jersey State Plane Coordinates <u>NAD 83</u> to nearest 10 feet:				
North 230,496	East	199,508	•	
Elevation of Top of Inner Casing (Cap off) at Reference mark (to nearest 0.01' in relation to permanent				
on-site datum)	<u>.</u>	PVC 99.20	<u> </u>	•
Source of elevation datum (benchmark, number/description and elevassume datum of 100', and give approximate actual elevation. Pleas				here,
submitted electronically, the EDSA manual specifies the well elevat accuracy of 0.2'.) Site Monument N 5+0, E 2+0 Elevation	ion to be reported acco	ording to <u>NAVD 1</u>		n. -
submitted electronically, the EDSA manual specifies the well elevat accuracy of 0.2'.)	ion to be reported acco	ording to <u>NAVD 1</u>		n -

information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER

2/23/04 DATE

Name of Owner PSE&G Salem Generating Facility	
Name of Facility PSE&G Salem Generating Facility	
Location Lower Alloways Creek, Salem County	
UST Number: SRP Case No.:	
LAND SURVEYOR'S CERTIFICATION Well Permit Number:	
This number must be permanently affixed to the well casing.	
Owners Well Number (As shown on application or plans) Geographic Coordinates <u>NAD 83</u> (to the nearest 1/10 of second)	MW AH-S
Longitude: West 75° 32' 10.10" New Jersey State Plane Coordinates NAD 83 to nearest 10 feet:	Latitude: North <u>39° 27' 41.33"</u>
The sense state I take Cooldinates INAD 55 to hearest 10 teet.	
North 230,450 Elevation of Top of Inner Casing (Cap off) at Reference mark (to nearest 0.01' in relation to permanent	East199 <u>,596</u>
on-site datum)	PVC 102.58
Source of elevation datum (benchmark, number/description and elevassume datum of 100', and give approximate actual elevation. Please submitted electronically, the EDSA manual specifies the well elevati accuracy of 0.2'.)	note that, if information from the well is to be
Site Monument N 5+0, E 2+0 Elevation 1	02.78 scaled actual elevation 10

Significant observations and notes:

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

2/23/04 DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

ame of Owner	PSE&G Salem Ge	enerating Facility			
ame of Facility	PSE&G Salem Ge	enerating Facility			<u> </u>
ocation	Lower Alloways (Creek, Salem County			· • · · · ·
JST Number:		SRP Case No.:_			
AND SURVEYOR'S Vell Permit Number:	CERTIFICATION				
This number must be p	ermanently affixed to	the well casing.		· · · ·	· · · ·
	•	·			n. Na second
Winers Well Number (As shown on applica	ition or plans)	MW AH-	<u>D</u>	<u> </u>
coopraphile Coordinate	is <u>NAD 65 (</u> to the field	arest 1/10 of second)			
ongitude: West			Latitude: North	<u>39° 27' 41.33"</u>	
New Jersey State Plane	e Coordinates NAD 8	3_to nearest 10 feet:		 	
Nort	h 230.450		East	199.596	ю Р _а
Elevation of Top of In	ner Casing (Cap off)	at			· · ·
Reference mark (to ne on-site datum)	arest 0.01' in relation	to permanent	•	DVO 100 70	· .
m-site datum)		· · ·		PVC 102.70	
assume datum of 100'	, and give approximat ly, the EDSA manual	nber/description and eleva te actual elevation. Please specifies the well elevation <u>N 5+0, E 2+0 Elevation 1</u>	note that, if informat on to be reported acco	ion from the well is to to ording to <u>NAVD 1988</u> t	be in the second s
Significant observatio	ns and notes.				
					······································
				· · · · · · · · · · · · · · · · · · ·	

document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

SEAL

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

_____RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

<u>43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY</u> 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER

•

2/23/04

DATE

· · · · · · · · · · · · · · · · · · ·		· · ·
	· · · · · · · · · · · · · · · · · · ·	
· · · ·		·
·	•	
NAW AT		•
<u> </u>		
	·	
Latitude: North _	<u>39° 27' 44.76"</u>	·
—	100 504	
East	199,521	· · ·
	PVC 98.79	
se note that, if informat	tion from the well i ording to <u>NAVD 1</u>	is to be
102.78 scaled actual e	levation 10	· · ·
102.78 scaled actual e	levation 10	· · ·
102.78 scaled actual e	levation 10	
102.78 scaled actual e	levation 10	
	East vation/datum. If an on- se note that, if informat tion to be reported acc	<u>MW A1</u> Latitude: North <u>39° 27' 44.76"</u>

SF

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

2/23/04 DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

Name of Owner PSE&G Salem Generating Facility		
Name of Facility PSE&G Salem Generating Facility		
LocationLower Alloways Creek, Salem County		
UST Number: SRP Case N	No.:	
LAND SURVEYOR'S CERTIFICATION		
Well Permit Number:		
This number must be permanently affixed to the well casing.		
Owners Well Number (As shown on application or plans)	MW AJ	
Geographic Coordinates <u>NAD 83</u> (to the nearest 1/10 of second)		
Longitude: West 75° 32' 09.24"	Latitude: North 39° 27' 43.51"	
New Jersey State Plane Coordinates NAD 83 to nearest 10 feet:		
	Dec. 100 ((5	. *
North 230,670	East 199,665	
Elevation of Top of Inner Casing (Cap off) at Reference mark (to nearest 0.01' in relation to permanent		
on-site datum)	PVC 98.85	
Source of elevation datum (benchmark, number/description and assume datum of 100', and give approximate actual elevation. Pl submitted electronically, the EDSA manual specifies the well ele accuracy of 0.2'.) Site Monument N 5+0, E 2+0 Elevation	lease note that, if information from the well is to be	e,
	· · · · · · · · · · · · · · · · · · ·	
Significant observations and notes:		· ·
AUTHENTICATION		
I certify under penalty of law that I have personally examine document and all attachments and that, based on my inquiry of information, I believe the submitted information is true, acc penalties for submitting false, inaccurate, and incomplete inform if I make a false statement that I do not believe to be true. I	those individuals immediately responsible for obtaining urate and complete. I am aware that there are signific nation and that I am committing a crime in the fourth deg	, the cant gree

Palal (Macher

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

violation of any statute, I am personally liable for the penalties.

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER <u>2/23/04</u> DATE

MONITORING WELL CERTIFICATION FORM B LOCATION CERTIFICATION

ame of Owner PSE&G Salem Generating Facility	
ame of Facility PSE&G Salem Generating Facility	
Deation Lower Alloways Creek, Salem County	
Lower Anoways Cicek, Salem County	
ST Number: SRP Case No	
AND SURVEYOR'S CERTIFICATION Vell Permit Number:	
his number must be permanently affixed to the well casing.	
wners Well Number (As shown on application or plans)	MW AL
eographic Coordinates <u>NAD 83</u> (to the nearest 1/10 of second)	
ongitude: West <u>75° 32' 07.44"</u>	Latitude: North 39° 27' 42.78"
ew Jersey State Plane Coordinates NAD 83 to nearest 10 feet:	
North 230,594	East199,806
levation of Top of Inner Casing (Cap off) at	
eference mark (to nearest 0.01' in relation to permanent	· · · · · · · · · · · · · · · · · · ·
n-site datum)	RIM 99.42 PVC 99.13
ource of elevation datum (benchmark, number/description and eleva ssume datum of 100', and give approximate actual elevation. Please ubmitted electronically, the EDSA manual specifies the well elevation	e note that, if information from the well is to be

AUTHENTICATION

I certify under penalty of law that I have personally examined and am familiar with the information submitted in this document and all attachments and that, based on my inquiry of those individuals immediately responsible for obtaining the information, I believe the submitted information is true, accurate and complete. I am aware that there are significant penalties for submitting false, inaccurate, and incomplete information and that I am committing a crime in the fourth degree if I make a false statement that I do not believe to be true. I am also a ware that if I knowingly direct or authorize the violation of any statute, I am personally liable for the penalties.

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

2/23/04 DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER

MONITORING WELL CERTIFICATION FORM B LOCATION CERTIFICATION

Name of Owner	PSE&G Salem Generating Facility	
Name of Facility	PSE&G Salem Generating Facility	
_ocation	Lower Alloways Creek, Salem County	
JST Number:	SRP Case No	
AND SURVEYOR	SCERTIFICATION	
Vell Permit Number:		
his number must be	permanently affixed to the well casing.	
Winers Well Numbe	r (As shown on application or plans)	MW AM
Geographic Coordina	ites <u>NAD 83</u> (to the nearest 1/10 of second)	
ongitude: We	est <u>75° 32' 09.07"</u>	Latitude: North 39° 27' 44.42"
-	ne Coordinates NAD 83 to nearest 10 feet:	
21		E
	rth	East199,680
Reference mark (to r	learest 0.01' in relation to permanent	
on-site datum)	ourost otor mitolation to pormanoni	PVC 98.55
assume datum of 10()', and give approximate actual elevation. Plea	evation/datum. If an on-site datum is used, identify h se note that, if information from the well is to be ation to be reported according to <u>NAVD 1988</u> to an a 102.78 scaled actual elevation 10
	· · · · · · · · · · · · · · · · · · ·	
Significant observati	ons and notes:	
AUTHENTICATIO	N	
document and all at information, I belie penalties for submit	tachments and that, based on my inquiry of th ve the submitted information is true, accura- ting false, inaccurate, and incomplete informat	and am familiar with the information submitted i ose individuals immediately responsible for obtaining the and complete. I am aware that there are signi- ion and that I am committing a crime in the fourth d m also a ware that if I knowingly direct or authorized

Plat Marke

PROFESSIONAL LAND SURVEYOR'S SIGNATURE

violation of any statute, I am personally liable for the penalties.

<u>2/23/04</u> DATE

RICHARD C. MATHEWS GS29353 PROFESSIONAL LAND SURVEYOR'S NAME AND LICENSE NUMBER

43 WEST HIGH STREET, SOMERVILLE, NEW JERSEY 908 725 0230 PROFESSIONAL LAND SURVEYOR'S ADDRESS AND PHONE NUMBER

Burneau of Weber Allocation MONITORING WELL RECORD Weil Permit No34	4/07/2003 13:32 FAX 856 845 133	5			•	. 4	1005/009
Burnesu of Weter Allocation MONITORING WELL RECORD Weil Permit No				\square			
MONITORING WELL RECORD Wei Permit No. 34 - 24-211 Alse Sheet Coordinates 1 01 -32 Alse Sheet Coordinates 01 021 021 Alse Sheet Coordinates 01 021 021 Alse Sheet Coordinates 01 021 021 021 Alse Sheet Coordinates 01 021	7-138 M New 🖯	bey Department of En	vironme	ntal Pro	ion	• • •	• • • • •
Weil Permit No		BURBELL OF WEBER	Allocato	CORD			
NNER IDENTIFICATION - OwnerSPEAC_SUCJEAR_11C	<u>N</u>			Weil Permit	No	<u>34 - 0+931</u>	
NNER IDENTIFICATION - OwnerSPEAC_SUCJEAR_11C	· .		•				1 . 05F
Inters PD.DOT. 336 Y RADDOTS: BRIDDER Y RADDOTS: BRIDDER LLLOCATION - 8 not the same as owner please give address: Owner's Well No. MULL (WELL K) LLLOCATION - 8 not the same as owner please give address: Owner's Well No. MULL (WELL K) LLOCATION - 8 not the same as owner please give address: Owner's Well No. 4.01 Block No. 26 State FED OF Well (as per Well Permit Categories) MUNITORING Owner's Well State Jonet Well carwering J. Jonet Well State Jonet Well State Jonet Well State PE OF Well (as per Well Permit Categories) MONITORING Owner's Well MINITORING Owner's Well State Jonet Well State Well Categories Well Categories Well State Well Categories Well Categories Well Categories Well State Well State Well State Well State Well State Well State Well Well Well Well Well Well Well Well		• • •	· .	Alles Sheet	Coordinates		
MANDORTS_BELLOR! State 21 Carbon ELLLOCATION - B not the same as owner pissas give address. Owner's Well No. MULLY MULLY SALEM. Mulcipality_LOBER. ALLOBAYS Lot No. 4.01 Block No. 26 Unity		FAC METERS, IIC					
LLCATION - B not the same as owner piesse give address. Owner's Well No		State	21		Z	p Code	· · · · · · · · · · · · · · · · · · ·
Intry SALEA Molectery Logar Integes FRD. CP. ALLERAT CREEK NRTCR RD DATE WELL COMPLETED J2.J0.3 Dept of Well (as per Well Permit Categories) MONITORING DATE WELL COMPLETED J2.J0.3 Systems Program Requiring Well				, 	MANU	(LANN	
Intry SALEA Molectery Logar Integes FRD. CP. ALLERAT CREEK NRTCR RD DATE WELL COMPLETED J2.J0.3 Dept of Well (as per Well Permit Categories) MONITORING DATE WELL COMPLETED J2.J0.3 Systems Program Requiring Well	ELL LOCATION - If not the same as own	er please give address.	OWNERS	WellNo 15 Int	No 4.0	11 Blenk	In. 26
PE OF WELL (as per Well Permit Categories) NONITORING DATE WELL COMPLETED Image: Categories Sigulatory Program Requiring Well	UTILY SATEM		GLIAMOI				
PE OF WELL (as per Well Permit Categories)	dress FRD OF AT LONAY CREED						
squatory Program Requiring Weil	PE OF WELL (as per Well Pennit Categ	ories) MONITORING	<u>i</u>			MPLETED	<u></u>
MELL CONSTRUCTION Note: Measure al cloptin Depth to Depth to <t< td=""><td>guistory Program Requiring Well</td><td></td><td></td><td>Case I.I</td><td>J.#</td><td></td><td></td></t<>	guistory Program Requiring Well			Case I.I	J.#		
MELL CONSTRUCTION Note: Measure al cloptin Depth to Depth to <t< td=""><td></td><td>Aldeniana Mel</td><td></td><td></td><td></td><td>Tele. #</td><td></td></t<>		Aldeniana Mel				Tele. #	
tai depth offlied TO 1 tai depth offlied TO 1 tai finished taimeter Top (th) Bottom (th) (finished taimeter) train land surface Top (th) Bottom (th) (finished taimeter) Strate finished taimeter In the taim land surface Top (th) Bottom (th) (finished taimeter) Strate finished taimeter Intrast surface Top (th) Bottom (th) (finished taimeter) Strate for the taim top (th) Outer Casing Intrast surface Top (th) Strate for the taimeter Strate for the taimeter Intrast surface Top (th) Strate for the taimeter Strate for the taimeter Strate for the taimeter Intrast surface Top (th) Strate for the taimeter Strate for the taimeter Strate for the taimeter Intrast surface Intrast surface Strate for the taimeter Strate for the taimeter Strate for the taimeter Intrast surface Strate for the taimeter Strate for the taimeter Strate for the taimeter Strate for the taimeter Intrast surface Strate for the taimeter Strate for the taimeter Strate for the taimeter Strate for the taimete		r (n approartie)					
Be trained using Difference Be trained to						Material	
correction rest Country Correction rest Country Correction rest Country correction rest Country Correction rest Country Correction rest Country correction rest Country Correction rest Country Correction rest Country correction rest Country Correction rest Country Correction rest Country correction rest Country Correction rest Country Correction rest Country correction rest Country Correction rest Country Correction rest Country correction rest Country Correction rest Country Correction rest Country phale vest for rest Country Correction rest Country Correction rest Country phale vest for rest country Correction rest Country Correction rest Country phale vest for rest country Correction rest Country Correction rest Country phale vest for rest country Correction rest Country Correction rest Country phale vest for rest country Correction rest Country Correction rest Country phale vest for rest country Correction rest Country Correction rest Country Correction rest Country phale vest for rest country Correction rest Country Correction rest Country Correction rest Country Correction rest Country<	el finished to "770i					54 fa	
Director Top	· · · · · · · · · · · · · · · · · · ·		+ 4	10		<u>VVC</u>	40
Bottom in Output Casing Fell was frictived: Databarow grade, casing height letert Thush mountaid Open Hole or Screen Sinished above grade, casing height letert Dian Mountaid Sinis water level and surface T Sinis water level and surface T Sinis water level and surface T Yeil was developed for Inours Sing Fluid Toure Grouting Method Toure Method of development Inours Grouting Method Toure Muss permanent pumping equipment installed? INE Pump type:							
Interference Interference <td< td=""><td></td><td></td><td></td><td></td><td>Aut Cont</td><td></td><td></td></td<>					Aut Cont		
initiated above grada, cacing height jefekt (No. Used) 70 80 2 VVC 070 p) above land autrace 2 R. (No. Used) 10	ell was finished: Subove grade	(largest diameter)	·				•
finished above gradin, cacing height (effect Binnk Casinga mp) above land aurinee R. mp) above land aurinee R. Bas stee florobive casing installed? Tai Piece Static water level after drillingb_f. R. grout R. Veil was developed for iours Rout a	Thush mounted		0	80	2	PVC	070
p) above and alloce	finished above grade, casing height letick				1		
Ros I No Tai Piece Static water level after drilling f. Growel Pauk (8)							-
gails water level after drilling f. Grewel Paack <		Tail Piece					
Valuer level was measured using M.5.C.pla. Grout 0 68 Valuer Connert Ison Bar. Valuer level operations		Gravel Pack	12	8	2	Mria	tt 1
Veil was developed for	Vator level was measured using M.Sc.Q.		1				
Method of development Pump Was permanent pumping equipment instelled? Ives Shio Pump capacity							
Method of development							
Pump capacity gpm Pump type: Pump type: Drilling Fluid Type of Flig CME 75 Health and Satety Plan submitted? D'ves D'No Level of Protection used on site (choice one) Non D'C B A I certify that I have constructed the above referenced well in accordance with all well permit requirements and applicable State rules and regulations. Drilling Company CIRL THS INC' Well Driller (Print) CHRLTHS INC' Driller's Signature Driller's Signature Charter of the second se	Method of development		Duning wi		- Bager	· · · · · · · · · · · · · · · · · · ·	
Pump type:	Was permanent pumping equipment installed	17 DYes Scho			GEOLO	GICLOG	
Pump type:	Pump capacity gpm				here water	was encountered	in consolidated
Drilling Fluid	Pump type:				Mad-	Fine SILT	Rin. R.J
Health and Satety Plan submitted? Yes DNo Level of Protection used on site (chrcle one) Non D'C H A I certify that I have constructed the above referenced well in accordance with all well permit requirements and applicable State rules and regulations. State rules and regulations. Dnilling Company		ID CME 75	· .	1			110-1
Level of Protection used on site (clicle one) Non DiC B A I certify that I have constructed the above referenced well in accordance with all well permit requirements and applicable State rules and regulations. Drilling Company			15	- 36	Fire S	and gray	sand
Level of Protection used on site (chrole one) None D/C H A I certify that I have constructed the above referenced well in accordance with all well permit requirements and applicable State rules and regulations. Drilling Company			-36	- 67	Fire	Mid of	Jille and
Interview constructed the above relatived well in a socordance with all well permit requirements and applicable state rules and regulations. Drilling Company	Level of Protection used on site (circle one)	Noni D'C H A					
accordance with all well permit requirements and applicable State rules and regulations. Dhilling Company	I certify that have constructed the	above referenced well in	تط	2-80	mes		
Drilling Company	accordance with all well permit requ	lirements and applicable			*1		- hy Streaky
AS-BUILT WELL LOCATION (NAD E3 HORIZONTAL DATUM) NJ STATE FLANE COORDINATE IN US SURVEY FEET NORTHING:EASTING:	State rules and reg	ujations.				• • • • • • • •	
Well Driller (Print) (NAD B3 HORIZONTAL DATUM) NJ STATE FLANE COORDINATE IN US SURVEY FEET Driller's Signeture Cb-s L->ccs NORTHING:	Drilling Company SCHR THS	-INK'	-				
Driller's Signeture EASTING:	Well Driller (Print) CURSS	DRREN					
NORTHING: EASITING:			-				
	Driller's Signature	clamper	-	MTTIN.		17 A 24940 440	n de la composition
	Procession No NN (SUL	Dolo LI I I					
LATTTUDE:	LiaRenamon Mor						

04/07/2003 13:32 FAI 8	56 845 133	5				Į.	006/009	
•			· ·		*			
DWA-138 M	New	bey Department of En	vironme	ntal Pro	ion	•		
800		Bureau of Water	Allocatio				· .	
	<u>n</u>	NUNITONING THE		Well Permit	No	14 - 06932		
			. •		Casatingto	s. 14 :		•
OWNER IDENTIFICATION - C				ADD DIREC	Coordinates			
Address	AFF VIN							
CityiL	TT TECON	state				p Code		
WELL LOCATION - If not the i	LATTIC BS OWT	er please give addrasa.	Owner's	Well No	MW5	(Well 2)		
			ALLOWA	vsLot	No4 .(01 Block N	00	· .·
AddressEND_OF_AL	CHAY CREE	K NEXK RD	<u>.</u>		ATEWELL		12,03	
TYPE OF WELL (as per Well	Permit Cate	ones) MONITORIN				MPLETED	128/02	
Regulatory Program Requirin				Case L[)#			•
CONSULTING FIRM/FIELD	SUPERVISO	R (if applicable)			1	iele. #	· · ·	• • •
WELL CONSTRUCTION	•		Depth to	Depth to	Diameter	<u> </u>	Wgt_Rating	•.
Total depth drilled 80		. from land sufface	Top (ft.)	Bottom (fL)		Material	(lbe/ach no.)	· · ·
Well finished to	R	Single/Inner Casing	+2	70	2	PVC	40	
Borehole diameter:	÷	Middle Casing (for triple cased wells only)	·					
Top	_ in.	Outer Casing	<u> </u>					
Wall was finished Rabove gr	, pide	(largest diameter)		ļ		· · · · · ·		
[] flush mo		Open Hole of Screen (No. Used)	00	50	2	PVC	. 070	ļ
It finished above grade, casing up) above land surface	height (stick	Blank Casings		1				• •
Was steel protective casing in		(No. Used)				····		
		Tel Piece	<u> </u>	ļ	1			
 Static water level after chilling. Water level was measured usi 		Gravel Pack	68	80	6	Morre		
Well was developed for	N	Grout	0	68	6	Neat Coment Bentonite		1
et gpm			routing h		Tremmi			-
Method of development	pmp-		Drilling M	ethod	Din	L		• •
Was permanent pumping eq.	ipment installe	nd? DYes XNO			GEOLO	GICLOG]
Pump capacity	gpm			esch depin w allons.	here water w	ne encountered i	n consolidated]
Pump type:			0-		المعربة	Sund	any sond	
Drilling Fluid	Тур	of Rig CME 75	19	- 36	Fine Si	ilde sta		
Health and Safety Plan sub	mitted? 🛛 Yea	No.				232		1 · · · ·
Level of Protection used on	elte (circle one)	None D C B A	<u></u>	- 62	Tig M	ud grey Ti	ly sod	
I certify that I have or	instructed the	above referenced well in	62	- 80	Med of	a silly 50	J w chan	
accordence with all w	vell peimit req	ulrements and applicable		· · · · · · · · · · · · · · · · · · ·			5410-	45
	rules and re	guistions.						1
Drilling Company	SCIENTES	- T.W	- <u> </u>		BUTT	ELL LOCATION		1
Well Driller (Print)	HRIS 1.	JARREN	_	(NA)	D 83 BORI	ZONTAL DATU	M)	
Driller's Signeture	Y	and the and the second	. N	U STATE PL	INE COOR	DINATE IN US SU	KVEY FEET	1
				ORTHING;	· ····· · ·····	EASTING:	anne anne Gant Gant Pares	
Registration No. <u>MD</u>	1546		2 2 ATT	UDE:		OR LONGITUDER	<u>, , ,</u>	<u>n</u>
COPIES	: White - D	EP Canary - Driller	Pink	- Owner		od - Health Dept		
CUFIES	, viule - L		· • • • •	- milei		Lienis (Pohl	•	
	• •	· .		·			•	
-								

04/07/2003 13:32 FA	<u>X 858 846 13:</u>	15				. V	002/009	
				\sim				
R-138 M	New) sey Department of Er	wironme	ntal Pro	ion		: . ·	
)	•	Bureau of Water	Allocatio	n '	+ .*	· ·		
	1	MONITORING WE	LLKE	Well Permit	No	4 06922		·
			•					·
7		•	•	Atlas Sheet	Coordinates		<u>, 012</u>	
WNER IDENTIFICATION					· · · · · · · · · · · · · · · · · · ·	•	·····	
ky	HANKY TIG	State	N]		Zi	p Code		
					N)	(Wall M)	I	•
ELL LOCATION - If not 1	he same as own	er please give address. Municipality 10972	Owners ALLOWAT	VVEIINO SLot	No. 4.0		76	
ddress	AT LOWAY CREET	K NEXT RD						
			-		E WELL CO	STARTED 2	14/05	
YPE OF WELL (as per V	Veli Permit Cate	gorles)MONTTORIN	<u> </u>	Cese 1.[اليور الدين اليون المناه المناه . المحمد اليون		
egulatory Program Requ	NUTTO AARII			anne voor in h	:			
ONSULTING FIRMFIEL	D SUPERVISO	R (if applicable)			٦	iele, #		
WELL CONSTRUCTIO	N ·	Note: Measure all depthis	Depth to	Depth to	Diameter	14-1-1-1 P	WgL/Rating	- ¹¹ P
onel depth drilled		from land surface	Top (TL)	Bottom (RL)		Meterial	(lost cit no)	
Vell finished to	21	Single/Inner Casing	1.12	10		PIC .	1.40	
iorehole diameter.		Middle Casing		· ·	-61 - L			l l
Top <u>6</u> Bottom <u>6</u>	In.	(for triple cased wells only	Ŋ		a Tang pang ang		+	
Vel was finished: Kabov	e crade	Outer Casing (largest diameter)				·		
🗍 flush	mounted	Open Hole or Boreen						
finished above grade, ca	ng height (stick '	(No. Used) Blank Casings	13	20		55	010	.
up) above land surface		(No. Used)		1				F :
Nas steel protective casing Vers 🔲 No	g installed?	Tal Piece					1	1.
Static water level efter drill	ing_6_tt	Gravel Pack	8	20	6	Morrie	-#1	i .
Water level was moissured		Grout				Noet Cement	104	1
Well was developed for	12 hours	Grout	RO	1 400°	6	Bemonita	SD ba	
nt gpm			Grouting N		Jeenn	C	· · · ·	•
Method of development _	-bubb		Drilling Me		Durger			
Was permanent pumping	equipment installe	Nd? LIYes KNO				GICLOG		1.
Pump capacity	gpm		Note	aich depth w Dò ne .	here water w	ras encountered in	1 consolicated	
Pump type:		I (, , , , , , , , , , , , , , , , , ,						
OniTing Fluid	Тур	od Rig CME 75	1_0	-20-	Fine .	ton / Diange -	<u></u>	1
Health and Sefety Plan	automittad? 🗍 Yes	ST No				<u>v</u>	·	1
Level of Protection used				······				-
		•		· · · ·				1.
- I certify that I have	constructed the	above referenced well in					······	j i
scordance with E	ui wei pernit reg tale ruies and rej	uirements and applicable gulations.						1. I.
Drilling Company	C SONT YPS	-						1 · ·
		•		AS	BUILT WI	ELL LOCATION		'
Well Driller (Print)	CHRIS UP	PREN		(NA)	D 83 HORI	CONTAL DATU	MAD .	<u>.</u>
Driller's Signature	Charles	nria	N	i Statk PL/	nne coori	INATE IN US SU	RVEY FEET	1
· · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	P25		RTHING.		_ EASTING		
Registration No. N	D 1546	Date 4////D				OR .		

; •··· *•

Water Supply Ele	ement - Bureau of Water Allocation
WELL ABA	NDONMENT REPORT
AIL TO: Bureau of Water Allocation	WELL PERMIT #
PO Box 426	of well sealed
Trenton, NJ 08625-0426	DATE WELL SEALED 5/6/03
PROPERTY OWNER _PSE&G Services Corp	
ADDRESS 80 Park Place Newark, NJ 07102	
WELL LOCATION _Artificial Island Lower Allowa	ay Twp., NJ Salem
Street & No., Township,	
Well M	4.01 26
Well No.	Lot No. Block No.
USE OF WELL PRIOR TO ABANDONMENT:	Monitoring
•	ion
WAS A NEW WELL DRILLED?	NO PERMIT # OF NEW WELL_3400006990 Cross-section Draw a sketch showing distance and relations of well site to
be removed. Pressure grouting is the only ac WAS CASING LEFT IN PLACE?	
WERE OTHER OBSTRUCTIONS LEFT IN W	VELL? TYES MNO WHAT WERE THE OBSTRUCTIONS:
IF "YES", AUTHORIZATION GRANTED BY_	(NJDEP Official) (Date)
Was an alternative decommissioning method	
IF "YES", authorization granted by	ONON
I certify that this well was sealed in acco	(NJDEP Official) (Date) rdance with N.J.A.C. 7:9-9.1 et seq.
Nicholas A. Fallucca	PO Box 423 West Creek, NJ 6/26/03
Performing Work (Print or Type)	Address Mailing Date
Name of NJ Certified Well Sealer	Signature of NJ Certified Well Sealer Registration #
	Performing Work

	Bureau of water MONITORING WI		• *		3400006990 Atlas Sheet Coo		
WNER IDENTIFICATION PSE&G Ser	vices Corp				3401635	iciniaies	
ess_80 Park Place			······································	· · · · ·	· · ·		
Newark	State New Jerse	Ý	· · ·	_ Zip C	ode 07102		
ELL LOCATION - If not the same as ow	ner please give address	Ow	ner's Well N	No. Well	м		
County Salem Municipal			Lot No. 4.01		No. 26	· ·	
Address Artificial Island	···)						
WELL USE Monitoring		DAT	E WELL ST	ARTED	5/6/03		
			WELL CON				
WELL CONSTRUCTION	Note: Measure all depths	Depth to	Depth to	Diameter		Wgt./Ratin	
Total Depth Drilled—20 ft.	from land surface	Top (ft.)	Bottom (ft.)	(inches)	Material	(lbs/sch no	
Finished Well Depth 20 ft.	Single/Inner Casing	+3	10	1	PVC	sch 40	
Borehole Diameter:	Middle Casing (for triple cased wells only)						
Top <u>6</u> m. Bottom <u>6</u> M.	Outer Casing (largest diameter)					L	
Well was finished: Xabove grade	Open Hole or Screen (No. Used .010)	10	20	1	* PVC/s.s.	sch 40	
If finished above grade, Casing height (stick up) above land surface 3 ft.	Blank Casings (No. Used)						
Steel protective casing installed?	Tail Piece]			
Yes No	Gravel Pack	** 7.5'	20	6	# 1 well gravel	**200 lbs	
tatic Water Level after drilling 6 ft.	Grout	0	7.5	6	cement/bentonite	126 lb 7 lb	
Water Level was Measured Using Tape	· L		Grouting Meth				
Well was developed for 1 hours			Drilling Metho		•	· · · · · · · · · · · · · · · · · · ·	
at <u>3/4</u> gpm				GEOLO	GIC LOG		
Method of development Peristoltic Pun	np	No	te each depth wh	•	encountered in consolidation	ited formation	
	gpm						
Pump Type		- <u>-</u> -	20 mie to me	u orange sar	nd, trace gravel		
Drilling Fluid Typ	e of Rig Geoprobe 66DT				· · · · · · · · · · · · · · · · · · ·		
Health and Safety Plan Submitted?			1" PVC w/stai	nless steel n	nesh wrap (2.5" OD	sand pack)	
Level of Protection used On site (circle o	one) None 🛈 C B	· !					
		**	install sand pa	ck around p	re-packed screen		
		·			· · · · · · · · · · · · · · · · · · ·		
I certify that I have constructed the abov accordance with all wellpermit requiren rules and regulations.	e referenced well in nents and applicable State		ζ	· · · · · · · · · · · · · · · · · · ·			
Drilling Company <u>C T & E ENVIRON</u>	AENTAL SERVICES					· · · · · · · · · · · · · · · · · · ·	
Well Driller (Print) Nicholas A. Fallucc							
Driller's Signature	2000	- _					
Registration No. J1526	Date 617610						
J 1520	<u> </u>	- · ·		······			
3550		·	· · ·				

04/07/2003 13:32 FAX 858 845 13	36	• •		•	- (). - [00 3/009
DWR-138 M	1				•	
WR-138 M New	Sey Department of E Bureau of Water				· ,	
	MONITORING WI	ELL RE	CORD	•		
	· ·	•	Well Penni	it No	34- 0602	
			Atlas Shee	t Coordinate	8 <u> </u>	1
OWNER IDENTIFICATION - Owner	EFAC MICLEAR ILC					
Address IV: 1002 236 City IIIAN**********************************	State	<u>NI</u>	·····	Z	o Code	
				MINT	Galar-	1)
WELL LOCATION - If not the same as own County	nar please give address. Municipality	Uwners 310FA	Well NO YS Lot	No	al Blook N	
Address FND OF ALLAWAY COE			· · · · · · · · · · · · · · · · · · ·			
TYPE OF WELL (as per Well Permit Cate		r.	DAT	E WELL CO	STARTED	130/03
Regulatory Program Requiring Well).#		
					iele, #	
CONSULTING FIRM/FIELD SUPERVISO			·	·····	CHO, W	
Total depth driked 7.0 h	Nota: Measure all depths from land surface	Depth to Top (fL)	· Depth to Bottom (fL)	Diameter (inchas)	Material	WgL/Hating (lbs/sch no.)
Well finished to fi:	Sigle/nner Casing	42	10	Z	219	40.
Bornhole diamster:	Middle Gesing				440	
Topin. Bottomin:	(for triple cased wells only)	2				
Well was finished: Sabove grade	Outer Casing (largest diameter)			l		
That mounted	Open Hole or Screen	10	70	Z	PUC	
If finished above grade, casing height (stick up) above land surface fi	(No. Used) Biank Casings	12-			FUC	.010
Was steel protective casing installed?	(No. Used)	<u> </u>				
Serves [] No	Tal Plece	<u> </u>		· ·	N	
Static water level after drilling <u>6</u> ft. Water level was measured using <u>M.S.c.ma</u>	Gravel Pack	8	20	6	Morie	the state
Well was developed for hours	Grout	9	8	6	Neat Cement Bentonite	50 km
at gom	6	Srouting N		Temov		
Method of development		Drilling Ma		Auge		
Wee permanent pumping equipment Installe	d? Dives Deno			GEOLOG		······································
Pump capacity goin					as encountered in	consolidated .
Pump type:			tions.		· ·	
Drilling Fluid Type	OF RIG CME 75		-70	- Fise	Ton lorage	Sand
Health and Splety Plan submitted? 🗌 Yes	SKNO .					
Level of Protection used on atta (circle one)	None DC. B A		······································			
I certify that I have constructed the	above referenced well in				······································	
accordance with all well permit requ	irements and applicable			5		
State rules and reg			•		······	
Drilling Company	1NC	-	AC.	BITTW	LL LOCATION	
Well Driller (Print) <u>CHR35</u>	JARREN	-	(NAI) 1 3 HOR12	ONTAL DATUR	0
Driller's Signature	But Dawn & f &	Ň	STATE PLA	NE COORD	INATE IN US SUP	IVEY FEET
		(·	rthing:		_ EASTINGI	
Registration No. <u>MO 1546</u>	_Date_4/_1/07	LATTU	DE:	_'',	LONCITUDE:	0 4
COPIES: White - DI	EP Canary - Driller	Pink -	Owner	Goldenm	d - Health Dept.	
		- ef 416 "		U		

	. t		· · · · · · · · · · · · · · · · · · ·		- 1 - 2 - 4 		an a	inter a la comp	004/000
	04/07/2003 1	3:32 FAX 8	858 845 1935	• • •			.•	. .	8001100
	·	(rat	· · ·		•	\square			
	WR-138 M		New	zey Department of En Bureau of Water	Vironmei	nal Proc			· .
	/00	4. S.	N	IONITORING WE	LLRE	CORD			. <i>.</i>
		2				Well Permit	No	74	}
		•		· · · ·	:	Atlas Sheet	Coordinates		à ininase
(OWNER IDENTI	FICATION -	Ownerp	SERC MATER HIC		<u> </u>			
1	Address	· · · · · · · · · · · · · · · · · · ·	PO POX 276	Cinto	N 1		Zir	Code	
	City		HANCYCKS PR	IDCatState		· · · ·			· · · · · · · · · · · · · · · · · · ·
,	WELL LOCATIO	N - If not the	Bame as own	er please give address.	Owner's	Well No.	<u>MIN 3</u>	- Well O	<u>)</u>
	County	SALEN_		_ workshavy		· · · · · · · · · · · · · · · · · · ·			
				EK NECK RD	······································	D	ATE WELL		129/03
	TYPE OF WELL	(as per We	Il Permit Categ	onies) <u>MONITORI</u>		Case LD	· · · · ·		·
	Regulatory Prop	nem Hequin	ing Well			Case Lu			
	CONSULTING	FIRMFIELD	SUPERVISOF	a (il applicable)			T	ele, #	·
	WELL CON	TRUCTION	•	Note: Measure all depths	Depth to	· Depth to	Diameter	Material	WgL/Rating
. /	Total depth drille	77	RR_	from land surface	Top (fL)	Bottom (fL)	(inches)		(los/sch no.)
	Well finished to	7.0	<i>T</i> L	Single/Inner Cealing	+2	10	2	Puc	40
	" Borehole diarnet Top	(* int	Middle Casing (for triple cased wells only			Server -	•	
,	Botton		h.	Outer Caeling	1		• •		-
	Well was finishe	d: Øabove g	pride	(largest diameter)	<u> </u>	· · · · · · · · · · · · · · · · · · ·			
				Open Hole of Screen	10	20	2	PVC	1.0
	ll finished above up) above land	surface	t.	Blank Casings (Na. Used)					
	Was steel prote	ctive casing is	nstalled?	Tal Piece	1	1	1		
	Static water lev	ei efter drilling	6 1	Graval Pack	8	20	6	Morie	- #1
			sing M Sucqu	Grout	1	1	.6	Neut Cement	
	Well was devel		Te hours			1 S		Bentonite	<u>50</u> b
	Method of dev	gom	00		Grouting I Drilling M		Trense	<u>c</u>	
			quipment installe	12 TVas Silio					
	Pump capacity		gophield installe gpm		Note	each depth w		GIC LOG	hetchildenon fi
	· · · ·	·		•		MIONE.		•	*
÷.,	· Pump type:	·		IN CALE 75	D	-70	Tw	Tonto	cons to
•	Drilling Fluid			of Rig SME 75					0
			bmilled? D Yes		.		• <u>••</u> •••••••••••••••••••••••••••••••••		
	Level of Prote	coon used or	n site (circle one)	Norte C B A		······	· · · · · · · · · · · · · · · · · · ·		
	l centify	that I have c	constructed the	above referenced well in					
	accorda	nce with all	well permit required to rules and reg	uirements and applicable				· · · · · · · · · · · · · · · · · · ·	
	Delline Or-				·				
	Drilling Con		.C. SSRITES		· [. A.	S-BUILT W	ELL LOCATIO	N N
•	Well Driller	(Print)	HRIS	NATEREN	- '	(NA	D 83 HOR	LIONTAL DAT	UM)
	Driller's Sig	nature	Chos h	burnes-					SALES EDI
						COMPANY AND A DOCUMENT		EASTING:	
			101546		3	ORTHING		OR	مرجود درمین میرت وجمع 1929 مک ماه

04/07/2003 13:32 FAX 858 845 13	35				J	007/009
~	~		\sim	1		
	Bey Department of Er	TVIRONME	ental Pro	6on		
B/00	Bureau of Water					
	WONTO MICE IT	<u>- 1- 1- 1 - 1</u>	Well Permi	t No	<u> 14- 0693</u>	1
	•		Ada Shoo	t Coordinate	674	
OWNER IDENTIFICATION - Owner			MIRG DING		·	01
Address no por 236						······
City BADCOCKS IN	State	_NJ		[_]	p Coda	
WELL LOCATION - If not the same as own	her please give address.	Owners	Well No	MW	a (Wellif	the second s
County SALEN	Municipality1 ORES	ALL CHE	Lot	No	01Block]	No
Address END OF 411/MAY CHE	PS NELL RD	•				, 24, 03
TYPE OF WELL (as per Well Permit Cate	INDTINCH (Betrop	IG	· · · · ·		MPLETED 3	175103
Regulatory Program Requiring Well		· · ·	Case 1.	D##.C		
CONSULTING FIRMFIELD SUPERVISO	R (if applicable)			-	īela. #	1.077 · .
WELL CONSTRUCTION		Douth to	Depth 10	Diameter		WgL/Ratin
Total depth drilled To	Note: Measure all depths from land surface	Depth to Top (fL)	Bottom (fL)		Material	(lbs/sch no
Weil finished to700fL	Single/Inner Casing	+2	70	2	qvc.	40
Borehole diameter:	Middle Ceeing	1		Sec. 1		-
Top <u> </u>	(for triple cased wells only	<u> </u>	ļ. <u></u>	1.41.191×1		
Wel was finished: Debove grade	Outer Casing (harpest diameter)	<u> </u>			• • • • • • • • •	· • • • •
Tiush mounted	Open Hole or Solven	70	80	~	PVC	.070
If finished above grade, casing height (slick	Blank Cesings	+				
up) above land suffacefi. Was steel protective casing installed?	(No. Used)	<u> </u>	· · ·			
See No	Tall Piece	<u> </u>				
Static water level after drillingR	Gravel Pack	68	.80	6	Morie	-21-1
Water level was measured using MScop-	Grout	0	68	6	Neat Cement Bentonite	100
Well was developed for hours	L(Srouting I		Tremm		
Method of development		M gnilfnG		Auger	· · · · · · · · · · · · · · · · · · ·	
Was permanent pumping equipment installs			·	GEOLO	GICLOG	
Pump capacity gpm	1. 日本地理			where water 1	vas encountered	in consolidate
Pump type:	一、竹竹植物		ations.	Med F:	S. SILMA	
Drilling Fluid Type	OF RIG CME 75					33
Health and Safety Plan submitted? 1 Yes		<u>\</u>	<u>t - 30</u>	hre S	ut go	tod
Level of Protection used on site (circle one)	and the second	3	6-67	Fine	Med gra	silli a
			7 80	Med	5an Silli	
I certify that I have constructed the accordance with all well permit req	above referenced well in uirements and applicable					CULL SHI
State rules and reg		, 			[
Drilling Company	_INC					
Well Driller (Print) CHRIS	JARREN		Al Al	S-BUILT W	ELL LOCATIC ZONTAL DAT)N
			U STATE PL	ANE COOR	DINATE IN US S	UKVEY FEET
Driller's Signature	heren		ORTHING: _	`	EASTING:	
Registration No. MO 1541	Date 41_10	3	0		OR	o .
		LATIT		*-	"LONGITUDE	
	· ht	Pink	- Owner	Goldeni	od - Health De	pt.
COPIES: White D	EP Canary - Onlier	•				
COPIES: White D	EP Canary - Driller	,				
COPIES: White D	EP Canary - Driller		• •		• • •	

04/07/2003 13:32 PAX 858 845 133	ē		·		A	008/009
			-			
R-138 M New	bey Department of En	vironme	Ital Protect	ion		
00	Bureau of Water.	Allocetia	n . '		•	
N	ONITORING WE	LL RE	CORD		Na 6.1851	
•			Well Permit	No	14 - 15:011	
•			Atlas Sheet	Coordinates		
OWNER IDENTIFICATION - Owner	TAG MUCIEAR LLC		1 			
Address IN DOK 735	Charles			71	Coda	
City HAP DOT'S UPI	UCH State	N2		A 3	· · · · · ·	1
WELL LOCATION - If not the same as own	ar please give address.	Owner's	Well Na.		(Well C	3)
COUNTYSALEN	- mini ny ponny	AT LOWA	15Lot	No,	Block No	26
Address ALLOWAY CREEK NECK	20				STARTED 2	410
TYPE OF WELL (as per Well Permit Categ	odes) NONITORIN	0	DATI	e well coi	MPLETED	7510
Regulatory Program Requiring Well			Case I.I).#		
		•		•	ele. #	_
CONSULTING FIRM/FIELD SUPERVISOF				······	cie, #	
WELL CONSTRUCTION	Note: Measure all depths	Depth to	Depth to	Diameter	Material	Wot JAnd
Total depth difiled <u>80</u> fr. Well finished to <u>900</u> fr.	from land surface	Top (fL)	Bottom (ft.)			
	Single/Inner Casing	+2	70	2	Puc	1-40
Barshole dismeter.	Middle Casing (for triple cased wells only)				•	
Bottom in.	Outer Casing	1				1
Wall was finished: Débove grade	(largest diameter)	_				<u> </u>
T flush mounted	Open Hole or Screen	70	80	2	PUL	.07
If linished above grade, casing height (stick.	Blenk Casings	1.15			<u> </u>	+
up) above land sulface 11. Was steel protective cosing installed?	(No. Used)	1	1	ļ		
Was steel protective casting installed?	Tail Place		1	1		
Static water level after drilling _//fL	Grevel Pack	68	50	6	# Morie	
Water level was measured using M.Scape.		1	1	1	Next Coment	
Well was developed for hours	Grout	10	68	6	Bentonita	101
at gpm		Grouting I	Aethod	rem		·
Method of development		Drilling M	einoù	Auge	<u>د</u>	
Was permanent pumping equipment installe	d? Dive RNo			GEOLO	GICLOG	
Pump cepacky ypm				the second s	was encountered in	n consolid
- Pump type:	a george de la companya de	form	ations.	d - Fi	AT SILTU	-10
Drilling Fluid Type	OF RID CMETS			·····		<u>~~~</u>
	,	-8-	36 6	SILT	4. gran and	
Health and Safely Plan submitted? 1765		24	-62 E	Ma	1 01	
Level of Protection used on site (circle one)	None DC B A				- 35 - 30	3-20-
I certify that I have constructed the	above referenced well in	67-	80 M	at gray	SIUN SAN	
accordance with all well permit requ	uinements and applicable			<u> </u>	w/cid_at	canks.
State rules and reg	ula uone.					
Drilling Company					1	
Well Dniller (Print) _ CHRIS L	JARREN	_			ELL LOCATION	
		·	NI STATE PL	ANE COOR	DINATE IN US SU	RVEY FE
A						
Driller's Signature	det many		ORTHING:		EASTING:	• .

•

	04/07/2003 13:33 FAX 858 845 13:	35				Ę	009/009
77			wimme	antal Prot	ánn		•
Ξ.	/00	Bureau of Water	Allocatio	ា			
ł		MONITORING WE	LL NC		t No	_340604	2
		•				934	At 1 535
	WNER IDENTIFICATION - Owner	PELSG MATTEAR 11.					
	Address pp por 236 Dity RANDOCKS P		NJ		Z	p Code	
	WELL LOCATION - If not the same as own	····		Mail No.	MUS	Well F	
.0	County SATER	er please give address. MunicipalityLOPE	R NILON	MIS_Lot			
	AddressALLOWAY CREEK NECT					STARTED 2	7
]	TYPE OF WELL (as per Well Permit Ceter	gories)NONI TOKL	NC	DAT	E WELL CO	MPLETED	1103
ş	Regulatory Program Requiring Well).#		
	Consulting Firmfield Supervisor	R (If applicable)			٦۱	iele. #	
•	WELL CONSTRUCTION Total depth drilled 20 ft	Note: Measure all depths from land surface	Depth to	Depth to Bottom (ft.)	Diameter (inches)	Material	WgURating
	Well finished to t.	Single/Inner Cesing	Top (批) キン	10		PUL	(Ibs/cat tra)
ĺ	Borehole diameter:	Middle Casing (for triple cased wells only)		_/0_		TVC	
ļ	Bottomin. ' Well was finished: Qabove grade	Outer Casing (targest diameter)					· · · · · · · · · · · · · · · · · · ·
	behnuom deuß	Open Hole or Screen	10	20	1	55	,010
	If finished above grade, casing height (stick Up) above land surfacef	Blank Casinge (No, Used)	1.				
	Was steel protective casing installed?	Tal Piece		<u> </u>			1
	Static water level after drilling <u>f</u> i Water level was measured using <u>M Scorte</u>	Gravel Pack	. 8	20	6	Morie	-#1
	Well was developed for <u>17</u> hours	Grout	0	ठ	6	Neat Gement Bentonite	<u> </u>
8	x		Brouting N		Tiema		
	Method of development	1	Drilling Me		Ainger		
	Was permanent pumping equipment inclailed Pump capacity gpm		Nette	part donth wi	GEOLO	GIC LOG	
	Pump type:	· · · ·		each depin wi tíona.	wac walter f	MAD WICOUT ROAD !	consolidated
		of Fig CME 75	0	-20'	FINE	tea lora	SA SOUD
	Health and Safety Plan submitted? - Yes					<u> </u>	
	Level of Protection used on site (circle one)						· · · · · · · · · · · · · · · · · · ·
	I certify that I have constructed the s	above referenced well in					-
	accordance with all well permit requ	irements and applicable				•	
	State rules and regu Drilling Company						
			-	AS	BUILT W	ELL LOCATIO	l
	•	DR.REN	- N	INAI) 83 HORI	INATE IN US SU	MD ·
	Driller's Signature Chaster	440	-1.	BETHING:		EASTING:	
			1.	· · · · · · · · · · · · · · · · · · ·		OR "LONGITUDE:	
	Registration No. MD 1546	_Date _4/_/_03	LATTU	0	٦	1	0 1

WR-020 /97	New Jersey Depa Water Supply Ele	ement - Burea	u of Water Alloca	tion	ne na sene regenerar e. T
	WELL ABA	<u>NDONM</u>	<u>ENT REPO</u>	RT .	
AIL TO: Bureau of Wate	r Allocation		· · · ·	WELL PERMIT	
PO Box 426			· · · ·		of well sealed
Trenton, NJ 08	525-0426		DATE WELL SEALE	D <u>6/3/03</u>	
	3&G Services Corp				
ADDRESS 80 Park Place 1	Jewark, NJ 07102				
WELL LOCATION <u>Artific</u> S	ial Island Lower Allowa treet & No., Township,		:m		
·····	Well R	4.01		20	
	Well No.	Lot	······································	the second s	ock No.
USE OF WELL PRIOR TO	DABANDONMENT:	Monitoring			
REASON FOR ABANDO	NMENT: Decominiss	ion			
WAS A NEW WELL DRI	LED? AYES	NO	PERMIT #	OF NEW WEL	3400006991
TOTAL DEPTH OF WEL	20'	Cross-section of sealed well	Draw a sketch show nearest roads, build	ving distance and	I relations of well site to
DIAMETER	1"		Well		
CASING LENGTH	<u> </u>		wei	a 801	
NUMBER OF CASINGS		101	101		Unit \
· ·			Fuel	Handling	
MATERIAL USED TO DEC	OMMISSION WELL:			lling]	
* NA Gallons	of Mator	HD.		/	
NA Lbs. of (Sement	15io			\sim
	Bentonite		YER .	1. A.A.	
LOS. 01	Sand/Gravel well is contaminated)		Trobe rods	f milislot sc	ren overdrilled
	Weir IS Conterninated)		WITH 34 HSA	to depth. We	lipoint was removed
FORMATION:	Consolidated		and a new p	report wells	lipoint was removed
	Unconsolidated	· · · · · · · · · · · · · · · · · · ·			T N
To permit adequate gro			but ungrouted line	pipes or any o	ther obstructions must
be removed. Pressure	grouting is the only acc	epted method.			
WAS CASING LEFT IN	PLACE?	NO CASIN	IG MATERIAL:		
WERE OTHER OBST	RUCTIONS LEFT IN W		O WHAT WERE I	HE OBSTRUC	TIONS:
IF "YES", AUTHORIZA	TION GRANTED BY_		· · · · · · · · · · · · · · · · · · ·	ON	
Was an alternative dec	ammicalaning mathed	•	EP Official)	· ·	(Date)
	· ·			,	· · · ·
IF "YES", authorization	I granted by	(NJDEP Offici		ON	(Doto)
I certify that this well	was sealed in accord].	(Date)
Nicholas A. Fallucca		Λ	PO Box 423 We	No. 1997 August and Aug	6/26/03
Performing Work (Prir	it or Type)	$\overline{\nabla I.O.}$	Address)	Mailing Date
Name of NJ Certified	Nell Sealer	- Jula	K <u>G</u> ·-fall NJ Certified Well Se	un	J1526
		Signature of r	A CENTIER MAIL 26	aiti	Registration #

es Corp State <u>New Jerse</u> r please give address Lower Alloway Twp. Jote: Measure all depths from land surface Single/Inner Casing Middle Casing or triple cased wells only) Outer Casing (largest diameter) Open Hole or Screen (No. Used <u>010</u>) Blank Casings	01 	vner's Well P Lot No. <u>4.01</u> E WELL ST E WELL CON Depth to Bottom (ft.) 10	No. Well R Block	No. <u>26</u>	Wgt./Rating (lbs/sch no.) sch 40
r please give address Lower Alloway Twp. Jote: Measure all depths from land surface Single/Inner Casing Middle Casing or triple cased wells only) Outer Casing (largest diameter) Open Hole or Screen (No. Used 010)	DAT DAT DATI Depth to Top (ft.) + 3	Lot No. 4.01 E WELL ST WELL COM Depth to Bottom (ft.)	No. Well R Block ARTED 6 MPLETED Diameter (inches)	No. <u>26</u> /3/03 6/3/03 Material	(lbs/sch no.)
r please give address Lower Alloway Twp. Jote: Measure all depths from land surface Single/Inner Casing Middle Casing or triple cased wells only) Outer Casing (largest diameter) Open Hole or Screen (No. Used 010)	DAT DAT DATI Depth to Top (ft.) + 3	Lot No. 4.01 E WELL ST WELL COM Depth to Bottom (ft.)	No. Well R Block ARTED 6 MPLETED Diameter (inches)	No. <u>26</u> /3/03 6/3/03 Material	(lbs/sch no.)
Lower Alloway Twp. lote: Measure all depths from land surface Single/Inner Casing Middle Casing or triple cased wells only) Outer Casing (largest diameter) Open Hole or Screen (No. Used _010)	DAT DATI Depth to Top (ft.) + 3	Lot No. 4.01 E WELL ST WELL COM Depth to Bottom (ft.)	Block ARTED 6 MPLETED Diameter (inches)	No. <u>26</u> /3/03 6/3/03 Material	(lbs/sch no.)
Note: Measure all depths from land surface Single/Inner Casing Middle Casing or triple cased wells only) Outer Casing (largest diameter) Open Hole or Screen (No. Used _010)	DAT DATI Depth to Top (ft.) + 3	E WELL ST WELL COM Depth to Bottom (ft.)	ARTED MPLETED Diameter (inches)	/3/03 6/3/03 Material	(lbs/sch no.)
from land surface Single/Inner Casing Middle Casing or triple cased wells only) Outer Casing (largest diameter) Open Hole or Screen (No. Used 010)	DATI Depth to Top (ft.) + 3	Depth to Bottom (ft.)	Diameter (inches)	6/3/03 Material	(lbs/sch no.)
from land surface Single/Inner Casing Middle Casing or triple cased wells only) Outer Casing (largest diameter) Open Hole or Screen (No. Used 010)	DATI Depth to Top (ft.) + 3	Depth to Bottom (ft.)	Diameter (inches)	6/3/03 Material	(lbs/sch no.)
from land surface Single/Inner Casing Middle Casing or triple cased wells only) Outer Casing (largest diameter) Open Hole or Screen (No. Used 010)	Depth to Top (ft.) + 3	Depth to Bottom (ft.)	Diameter (inches)	Material	(lbs/sch no.)
from land surface Single/Inner Casing Middle Casing or triple cased wells only) Outer Casing (largest diameter) Open Hole or Screen (No. Used 010)	Top (ft.) + 3	Bottom (ft.)	(inches)	ا … ب ا سر	(lbs/sch no.)
from land surface Single/Inner Casing Middle Casing or triple cased wells only) Outer Casing (largest diameter) Open Hole or Screen (No. Used 010)	Top (ft.) + 3	Bottom (ft.)	(inches)	ا … ب ا سر	(lbs/sch no.)
Middle Casing for triple cased wells only) Outer Casing (largest diameter) Open Hole or Screen (No. Used _010)				PVC	sch 40
Outer Casing (largest diameter) Open Hole or Screen (No. Used 010)	10				
Outer Casing (largest diameter) Open Hole or Screen (No. Used 010)	10				<u></u>
(largest diameter) Open Hole or Screen (No. Used _010 _)	10		1 1	· ·	11
(No. Used .010)	10				·
Blank Casinos		20	1	* PVC/s.s.	sch 40
(No. Used)					
			╢─────		
	* * 7.5'	20	b	# I well gravel	+*200 lbs
Grout	0	7.5	6	cement/bentonite	7 lbs
				ie	<u></u>
· ·		Drilling Meth	od <u>HSA</u>		
		1 1 1 1 - 1			1 1
}	.]	· - ·			dated formations
· ·	_	-20' fine to me	d orange san	id, trace gravel	
Rig Geoprobe 66DT	·	· .	· · · · · · · · · · · · · · · · · · ·		
No		1" PVC w/sta	inless steel n	nesh wrap (2.5" OI	D sand pack)
None 🛈 C E					
	**	install sand pa	ick around p	re-packed screen	
х х		<u></u>		<u></u>	
ferenced well in is and applicable State				······································	
NTAL SERVICES				• •	
	. -	· · · · · · · · · · · · · · · · · · ·			
allevia	_ : -	· · · .		·····	
Date 612610	3		· · · · · · · · · · · · · · · · · · ·		
•	_	······································			
	Rig Geoprobe 66DT No None C B Gerenced well in s and applicable State VTAL SERVICES Date 6 12610	Gravel Pack ** 7.5' Grout 0 Rig Geoprobe 66DT No None O C B A ** ferenced well in s and applicable State VTAL SERVICES Alluna Date 6 176103	Gravel Pack ** 7.5' 20 Grout 0 7.5 Grouting Meth Drilling Meth Drilling Meth 0-20' fine to me Note each depth wh 0-20' fine to me None C B None C B ferenced well in s and applicable State ** install sand pa MAL SERVICES	Gravel Pack ** 7.5' 20 6 Grout 0 7.5 6 Grouting MethodTremi Drilling MethodHSA Drilling MethodHSA GEOLOO Note each depth where water was e 0-20' fine to med orange sam No No No No No C Band ** install sand pack around p	Gravel Pack ** 7.5' 20 6 # 1 well gravel Grout 0 7.5 6 cement/bentonits Grouting Method Tremie Drilling Method HSA GEOLOGIC LOG Note each depth where water was encountered in consoli 0-20' fine to med orange sand, trace gravel No Note each depth where water was encountered in consoli 0-20' fine to med orange sand, trace gravel * 1" PVC w/stainless steel mesh wrap (2.5" OI * 1" PVC w/stainless steel mesh wrap (2.5" OI ** install sand pack around pre-packed screen

Bureau	of	Water	Allocation	
Daican	U 1			

	Bureau of Water	Allocation	1 / 	•	3400006995	
	MONITORING W	ELL RE	CORD		Atlas Sheet Coor	dinates
) R IDENTIFICATION PSE&G Set	rvices Com				3401635	· · ·
s 80 Park Place		· ·		1 N.		· · · · · · · · · · · · · · · · · · ·
Newark	State New Jerse	y	· · · · · · · · · · · · · · · · · · ·	_ Zip C	ode_07102	
WELL LOCATION - If not the same as on	wher please give address	Ow	ner's Well N	NoGM-1	(Well S)	
	lity Lower Alloway Twp.	· · · · · · · · · · · · · · · · · · ·	Lot No. 4	.01 Block	No. 26	
Address Artificial Island			· · · · · · · · · · · · · · · · · · ·			
WELL USE Monitoring		DAT	E WELL ST	ARTED	5/29/03	
		DATE	WELL CON	MPLETED	5/30/03	
WELL CONSTRUCTION	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.
Total Depth Drilled 35 ft.	Single/Inner Casing		\ <u></u>			[
Finished Well Depth ft.		+ 2.5	25	2	PVC	sch 40
Borehole Diameter:	Middle Casing (for triple cased wells only)					
Тор <u>8 in</u> m. Bottom <u>8 in</u> м.	Outer Casing (largest diameter)					
Well was finished: Mabove grade	Open Hole or Screen (No. Used .010)	25	35	2	PVC	sch 40
If finished above grade, Casing height (stick up) above land surface. 2.5 ft.	Blank Casings (No. Used)					
	Tail Piece					
res No	Gravel Pack	23	35	8	#1 sand	400 lbs
Static Water Level after drilling 9 ft.	Grout	0	23	8	Cement/bentonite	$\frac{400}{10}$ lb
Water Level was Measured Using Tape	·		Grouting Met			
Well was developed for 1/2 hours			Drilling Meth		······	
at 2 gpm				GEOLO	GIC LOG	
Method of development Pump		No	te each depth wh		encountered in consolid	ated formation
Pump Capacity 5	gpm		10' fill		n an	
Pump Type Submersible		·]	-34' black sil	t & sand		
	e of Rig Mobile B-61		-35' grey med		······································	· · · · · · · · · · · · · · · · · · ·
Health and Safety Plan Submitted? XY	es 🔲No			· · · ·	······································	
Level of Protection used On site (circle c	one) None 🛈 C B	A	· · · · · · · · · · · · · · · · · · ·			
			1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -		· · · · ·	
			· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
I certify that I have constructed the aboy accordance with all wellpermit requiren rules and regulations.	e referenced well in vents and applicable State					
Drilling Company <u>C T & E ENVIRON</u>	MENTAL SERVICES					
Well Driller (Print) Marc Hauge			•		· · · · · · · · · · · · · · · · · · ·	
D. 11	с л	·				
gistration No. J23173	Date 6126103					
	<u> </u>					

ORIGINAL: DEP

3550

DRILLER COPIES:

OWNER

HEALTH DEPARTMENT

	MONITORING W	ELL RE	CORD		Arlas Sheet Coo	minates
WNER IDENTIFICATION PSE&G Servi	ices Corp	ــــــــــــــــــــــــــــــــــــ			3401635	
ddress 80 Park Place						
ity Newark	State New Jerse				ode 07102	1
LLOCATION - If not the same as own	ty Lower Alloway Twp.	Ov	voer's Well M Lot No. <u>4</u> .			vised
ddress Antificial Island	•	Cia	<u> </u>	ande	216/04	· · · · ·
VELLUSE Monitoring			E WELL ST	ADTED		······································
VUL_HARDANIE			WELL COM	· · · · · ·	5/29/03	
					3/30/03	
VELL CONSTRUCTION	Note: Measure all depths from land surface	Depth to Top (fl.)	Depth to Bottom (fL)	Diameter (inches)	Material	WgL/Rating (ibs/sch no.
Fotal Depth Drilled 35 ft	Single/luner Casing					
Finished Well Depth 35 ft.		+25	25	2	PVC	<u>sch 40</u>
Borehole Diameter. Top 8 in m.	Middle Casing (for triple cased wells only)	-3"				
Top <u>8 in</u> m. Bottom 8 in M.	Outer Casing					1
Well was finished: Mabove grade	(largest diameter) Open Hole or Screen	l		¦		╬━━━━
X flush mounted	(No. Used _010)	25	35	2	PVC	sch 40
If finished above grade, Casing height (stick up) above land surface	Blank Casings (No. Used)					
Steel protective casing installed?	Tail Piece			<u></u>		
Yes No	Gravel Pack	23	35	8	#1 sand	400 lbs
Static Water Level after drilling 9 fL	Grout	0	23	8	Cement/bennonite	
Water Level was Measured Using Tape	_		Grouting Meth	od Tremi	3	
was developed for 1/2 hours		. ·]	Dritting Metho	d <u>HSA</u>		
2 gpm. Method of development Pump	. · · · ·		· ·	GLOLOG	IC LOG	
Bron Osnatika		No	to each depth wh	ete wales was ca	countered in consolid	and formation
Pump Type Submersible	33		10° fill	· · · · · · · ·		· ·
	Rig Mobile B-61		-34' black silt			
Health and Safety Plan Submitted? XYes	No	<u> </u>	35 grey med	band		· · · · · · · · · · · · · · · · · · ·
Level of Protection used On site (circle one		A -				
•	-					
				•		
I certify that I have constructed the above re accordance with all wellpermit requirement rules and regulations.	zferenced well in ts and applicable State		· · · · · · · · · · · · · · · · · · ·			
accordince with all wellpermit requiremen rules and regulations.	ts and applicable State					•
accordance with all wellpermit requirement rules and regulations. Drilling Company <u>C T & E ENVIRONME</u>	ts and applicable State					
accordance with all wellpermit requirement rules and regulations. Drilling Company <u>C T & E ENVIRONME</u> Well Driller (Print) <u>Marc Hauge</u>	ts and applicable State					
Drilling Company <u>CT & E ENVIRONME</u> Well Driller (Print) <u>Marc Hauge</u> Driller's Signature <u>Marc Hourg</u>	ts and applicable State					
Corradict with all wellpermit requirement rules and regulations. Drilling Company <u>C T & E ENVIRONME</u> Well Driller (Print) <u>Marc Hauge</u> Driller's Signature <u>Marc Hauge</u>	ts and applicable State					

	Bureau of Water MONITORING W	·. ,		· ·	3400006992 Atlas Sheet Co	ordinates
ER IDENTIFICATION PSE&G Service	ices Corp				3401635	
ess 80 Park Place					······	
Newark	State New Jerse	Y		_ Zip Co	de 07102	
ELL LOCATION - If not the same as ow	ner please give address	· Ow	ner's Well N	lo. <u>GM-3</u>	(Well T)	· · · ·
	ity Lower Alloway Twp.		Lot No4.	01 Block	No. 26	
ddress Artificial Island					· · · ·	,
· · · · · · · · · · · · · · · · · · ·		 Ď 4 TI	WELL CT	ADTED		
ELL USE Monitoring			E WELL ST WELL CON		5/5/03	
		DAIL	WELL CON		6/5/03	
VELL CONSTRUCTION	Note: Measure all depths	Depth to	Depth to	Diameter	Material	Wgt./Rating
otal Depth Drilled 35 ft.	from land surface	Top (ft.)	Bottom (ft.)	(inches)		(lbs/sch no.)
inished Well Depth 35 ft.	Single/Inner Casing	+ 2.5	25	2	PVC	sch 40
Borehole Diameter:	Middle Casing					
Top <u>8 in</u> m.	(for triple cased wells only) Outer Casing][][[
Bottom <u>8 in</u> M.	(largest diameter)	<u> </u>	<u> </u>			
Vell was finished. Xabove grade	Open Hole or Screen (No. Used .010)	25	35	2	PVC	sch 40
flush mounted f finished above grade, Casing height	Blank Casings					
stick up) above land surface 2.5 ft.	(No. Used)]			
teel protective casing installed?	Tail Piece		<u> </u>	<u> </u>	<u> </u>	
Yes No	Gravel Pack	23	35	8	#1 sand	Ak50nlbs
static Water Level after drilling 9 ft.	Grout	0	23	8	Cement/bentor	
Water Level was Measured Using Tape		(Grouting Met	nod Trem	ie	
Well was developed for 1/2 hours]	Drilling Meth	od <u>HSA</u>	<u></u>	
at gpm			•	GEOLO	GIC LOG	
Method of development Pump	· · · · · · · · · · · · · · · · · · ·	No	te each depth wh	ere water was e	encountered in cons	olidated formations
) m	0-	10' fill		· · · ·	
Pump Type Submersible		······ [-33' black sil	& sand		
	of Rig Mobile B-61	33	-35' grey mea	l sand	······································	
Health and Safety Plan Submitted? Xes						
Level of Protection used ON site (circle on	e) None (D) C E	3 A				
				· · · · · · · · · · · · · · · · · · ·		
	· · · ·				<u> </u>	i
l certify that I have constructed the above accordance with all wellpermit requireme rules and regulations.	referenced well in nts and applicable State	·				
Drilling Company <u>C T & E ENVIRONM</u>	ENTAL SERVICES				<u> </u>	<u> </u>
Well Driller (Print) Marc Hauge		_		· · · · ·		
Driller's Signature Magas Han	c)			······································		
rgistration No. J23173	Date 6-12610.	3				
		-				
3550		· .]				

•	Bureau of Water Allocation 3400006994					· · · ¹¹ · · · · ·
	MONITORING WI	Atlas Sheet Co	ordinates			
WNER IDENTIFICATION PSE&G Service	rices Corp				3401635	
sess 80 Park Place				· · · · · ·	07100	
Newark	State New Jersey				de 07102	
VELL LOCATION - If not the same as ow			ner's Well I			
County Salem Municipal	ity Lower Alloway Twp.		Lot No4.	01 Block	No	·
Address Artificial Island						·
WELL USE Monitoring		_ DAT	E WELL ST	ARTED	5/28/03	
		DATE	WELL CON	MPLETED	5/29/03	· · · · · · · · · · · · · · · · · · ·
WELL CONSTRUCTION	Note: Measure all denths	Depth to	Depth to	Diameter		Wgt./Rating
Total Depth Drilled 32 ft.	Note: Measure all depths from land surface	Top (ft.)	Bottom (ft.)	(inches)	Material	(lbs/sch no.)
Finished Well Depth 32 ft.	Single/Inner Casing	+ 2.5	27	2	PVC	sch 40
Borehole Diameter:	Middle Casing					
Top <u>8 in</u> m.	(for triple cased wells only)	L) 		<u></u>	
Bottom 8 in M.	Outer Casing (largest diameter)	L		<u> </u>		
Well-was finished. Above grade	Open Hole or Screen (No. Used 010)	27	32	2	PVC -	sch-40
flush mounted If finished above grade, Casing height	Blank Casings)	<u> </u>	1		
(stick up) above land surface 2.5 ft.	(No. Used)	<u> </u>	<u></u>		J	
Steel protective casing installed?	Tail Piece Gravel Pack	25	32	8	#1 sand	200 lbs
Yes No	Gravel Pack		╣┝╧┅╤╤╤╼╼╍		<u> </u>	400 lb
Static Water Level after drilling 8 ft.		0	25	hod Trem	Cement/benton	nite <u>10</u> lb
Water Level was Measured Using Tape	<u> </u>		Grouting Met Drilling Meth			
Well was developed for <u>1/2</u> hours at 2 gpm	and the second second	<u> </u>			GIC LOG	
Method of development Pump			te each depth w		encountered in cons	solidated formation
	pm		10' fill			
Pump Type Submersible	<u> </u>		-28' black sil	t & sand		
	of Rig Mobile B-61	· [-32' grey me		· · · · · · · · · · · · · · · · · · ·	
Health and Safety Plan Submitted? Yes					·. · ·	
Level of Protection used On site (circle or	e) None (D) C B	A				
	•					<u></u>
•						
I certify that I have constructed the above accordance with all wellpermit requirement	referenced well in ents and applicable State		<u> </u>			· · · · · · · · · · · · · · · · · · ·
rules and regulations.					·	
Drilling Company <u>C T & E ENVIRONM</u>	ENTAL SERVICES				<u> </u>	
Well Driller (Print) Marc Hauge					·····	
Driller's Signature Mare Hang						·····
gistration No. J23173	Date 6 17610	۶ [<u></u>			
2550	·					
	COPIES: DRILL	FR	OWN	VER	HEALTH	DEPARTMEN
ORIGINAL: DEP	COPIES: DRILL	، <i>در در</i>	0,11		<u>.</u>	(اخلالا المالية المرية س

	MONITORING W	ele Ke	LOKU		Atlas Sheet Co 3401635	ordinates	
WNER IDENTIFICATION PSE&G Ser	vices Corp				3401035	······································	
Idress 80 Park Place				71- 04	de 07102	· <u>·····</u>	
Newark	State New Jerse					levised	
ULL LOCATION - If not the same as ow ounty Salem Municipal	vner please give address lity Lower Alloway Twp.		ner's Well I Lot No4	No. <u>GM-2</u> .01 Block		LEUIS ER	
ddress Antificial Island		Ch	nges n	nade	aluloy		
VELL USE Monitoring		DATI	e well st	ARTED	5/28/03	•	
		DATE	WELL CO	MPLETED	5/29/03		
VELL CONSTRUCTION	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (fL)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)	
inished Well Depth 32 ft.	Single/Inner Casing	795	27	2	PVC	sch 40	
Borehole Diameter.	Middle Casing (for triple cased wells only)	-3"					
Top <u>8 in</u> m. Bottom <u>8 in</u> M.	Outer Casing (largest diameter)						
Well was finished: Mabove grade X flush mounted	Open Hole or Screen (No. Used _010)	27	32	2	PVC	sch 40	
If finished above grade, Casing height (stick up) above land surface	Blank Casings (No. Used)						
Steel protective casing installed?	Tail Piece			8	#1 sand	200 Ibs	
Yes No	Gravel Pack	25	32			400 165	
Static Water Level after drilling 8 ft.	Grout	0	25	8	Cement/bento	mite 10 lbs	
Water Level was Measured Using Tape			Groating Met		ie		
I was developed for <u>1/2</u> hours		·	Drilling Meth	nod HSA			
2 gpm		- *			CIC LOG		
Method of development Pump		No	te each depth w	there wants was	encountered in cons	colicated formations	
	3 pm	0	10' fil	· .			
		,	10-28' black silt & sand				
Health and Safety Plan Submitted? XY	e of Rig <u>Mobile B-61</u>		-32' grey me	d sand			
Level of Protection used OI1 site (circle of		з A	· · · · · · · · · · · · · · · · · · ·	· · · ·			
					•	······································	
I certify that I have constructed the abov accordance with all wellpermit requiren rules and regulations.	e referenced well in nents and applicable State						
Drilling Company CT& EENVIRON	MENTAL SERVICES			••••••	· •		
Well Driller (Print) Marc Hauge		_					
Driller's Signature Marc Han	<i>I</i> .	····			<u> </u>		
Registration No. J23173	Date 6 REI	23			· · · · · · · · · · · · · · · · · · ·		
3550							
		LER	OWN			DEPARTMENT	

Duicau OI Walci Anocation	
A CONTRACTOR NUTLE DEC	

A 11

3400006993

OWNER IDENTIFICATION PSE&G Ser	MONITORING WI	<u>ELL RE</u>	CORD		Atlas Sheet Coor 3401635	dinates
ress 80 Park Plaza			<u> </u>	· · ·		,
Newark	State New Jersey	γ <u>.</u>		_ Zip Co	ode 07102	\
WELL LOCATION - If not the same as ow County <u>Salem</u> Municipal	ner please give address ityLower Alloway Twp		ner's Well N Lot No4.01		D (Well V) No. 26	
Address Artificial Island						· · ·
WELL USE Monitoring		DAT	E WELL ST	ARTED	5/5/03	
		DATE	WELL CON	APLETED	6/12/03	
WELL CONSTRUCTION Total Depth Drilled 80 ft.	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)
Finished Well Depth 80 ft.	Single/Inner Casing	+ 2.5	70	2	PVC	Sch 40
Borehole Diameter:	Middle Casing (for triple cased wells only)					[
Bottom <u>6 in</u> M.	Outer Casing (largest diameter)	0	53	6	PVC	sch 40
Well was finished: Xabove grade flush mounted	Open Hole or Screen (No. Used .010.)	70	80	2	PVC	sch 40
If finished above grade, Casing height (stick up) above land surface 2.5 ft.	Blank Casings (No. Used)					
Steel protective casing installed?	Tail Piece]		<u> </u>]
Yes No	Gravel Pack	67	80	6	#1 sand	350 lbs
atic Water Level after drilling 16 ft.	Grout	0/0	53/67	10/6	Cement/bentonite	$\frac{1400}{49}$ lbs
Water Level was Measured Using Msco	De		Grouting Met	hod Trem	ie	
Well was developed for 1/2 hours	· · ·		Drilling Meth	od <u>Mud F</u>	lotary	
at 3 gpm	· · ·	·	· · · · · · · · · · · · · · · · · · ·	GEOLO	GIC LOG	
Method of development Pump	·	No	te each depth wh		encountered in consolid	lated formations
Pump Capacity 5 g	pm		•			
Pump Type Submersible Pump		· · · · · · · · · · · · · · · · · · ·	10' Fill -33' Black sill	& sand		
Drilling Fluid Quick Gel Type	of Rig Mobile B-61		-36' Grey med			
Health and Safety Plan Submitted? XYe	s No		-54' Grev cla			

В

DRILLER

C

(D)

COPIES:

I certify that I have constructed the above referenced well in accordance with all wellpermit requirements and applicable State rules and regulations.

None

Level of Protection used On site (circle one)

ares and regulations	•	
Drilling Company <u>C</u>	T & E ENVIRONMENT	ALSERVICES
Well Driller (Print)_	Marc Hauge	
Driller's Signature	Marchange	

gistration No. J23173 Date 6126103

Dimig	
GEOLOG	IC LOG
Note each depth where water was en	countered in consolidated formations
0-10' Fill	
10-33' Black silt & sand	
33-36' Grey med sand	
36-54' Grey clay	· · · · ·
54-80' Green & black sand	· · · · · · · · · · · · · · · · · · ·
······································	
	• .
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
OWNER	HEALTH DEPARTMENT

ORIGINAL: DEP

VNER IDENTIFICA		MONITORING W	ELL RE	CORD		Atlas Sheet Co 3401635	ordinates
VNER IDENTIFICA tress 80 Park Plaza	NON PSECO Serv	ices Corp					<u> </u>
Newark	·····	State New Jerse			Zip Co	ode 07102	
LICATION	not the same as an	mer please give address		ner's Well N			Levised
unty Salem		ty Lower Alloway Twp		Lot No. 4.0		No. 26	
ddress Antificial Is		· · · · · · · · · · · · · · · · · · ·		indes N		aluloy	
ELL USE Monitoria		······································		0			
ELL USE MORION	<u>R</u>			E WELL ST.	· · · ·		
			DAIL	WELL CON		6/12/03	
ELL CONSTRUCT	ON	Note: Measure all depths from land surface	Depth to Top (fL)	Depth to Botion (fL)	Diameter (Jaches)	Material	WgL/Rating
tal Depth Drilled	<u>80</u> fL	Single/Inner Casing					(Ibs/sch no.)
nished Well Depth	<u>80</u> ft.		+25	70	2	PVC	Sch 40
Top		Middle Casing (for triple cased wells only)	-3"				
Bottom	<u>10 in</u> m. 6 in M.	Onter Casing (largest diameter)	0				
Vell was finished:		Open Hole or Screen	ļ	53	6	PVC	
X	lush mounted	(No. Used _010)	70	80	2	PVC	sch 40
f finished above grade, stick up) above land s	casing height	Blank Casings (No. Used)					·
Steel protective casing		Tail Piece					
Yes No	matalled?	Gravel Pack	67	80	6	#1 sand	350 Ibs
Static Water Level after	drilling 16 ft.	Grout	0/0	53/67	10/6	Coment/benton	1400 lbs 49 lbs
Water Level was Meas	ared Using Mscope	L	J [Grouting Meth		a haran managera anna anna anna anna anna anna anna a	
was developed fo		-		brilling Metho	The second se		
3 gpm						SIC LOC	
Method of developmen	nt Pump		Not	e each depth whe		ncountered in come	lidend formations
Pump Capacity 5	SP	m		o Fill			
	rsible Pump	_)	33' Black silt	& sand		
Drilling Fluid Quic Health and Safety Plan	k Gel Type o	of Rig Mobile B-61	- 33-	36' Grey med	sand		
Level of Protection us				54' Grey clay			
	at one she (officie one) None () C B	A <u>54</u>	80' Green & b	lack sand		
						•	
I continue that I have a							
I certify that I have co accordance with all w	ellpermit requirement	ejerenced well in its and applicable State	·			• •	
rues and regulations.			. }				
Drilling Company C		NTAL SERVICES		· · · ·			
	A: 11			······································		:	
Well Driller (Print)							
Driller's Signature	Marchang						And the second se
Driller's Signature	123173	Date 6 126 103				· · · · · · · · · · · · · · · · · · ·	
Driller's Signature					•		
Driller's Signature Registration No.		Date 6 126 103					
Driller's Signature Registration No.				OWNE	R	HEALTH L	DEPARTMENT
Driller's Signature		Date 6 126 103		OWNE	R	1	DEPARTMENT
Driller's Signature Registration No.		Date 6 126 103		OWNE	R	HEALTH L	DEPARTMENT
Driller's Signature Registration No.		Date 6 126 103		OWNE	R	1	DEPARTMENT
Driller's Signature Registration No.		Date 6 126 103		OWNE	R	1	DEPARTMENT
Driller's Signature Registration No.		Date 6 126 103		OWNE	R	1	DEPARTMENT

•	Bureau of Water	Allocation			3400006999	
•	MONITORING WI	ELL RE	CORD		Atlas Sheet Coord	dinates
WNER IDENTIFICATION PSE&G Ser	vices Corp		• •		3401635	
80 Park Place				·		
Newark	State New Jerse	v		_ Zip Co	ode 07102	
ELL LOCATION - If not the same as ow	per please give address	Ow	ner's Well I	Jo GM-4	(Well W)	
	ity Lower Alloway Twp.		Lot No. 4.0		No26	
Address Antificial Island		:				· ·
VELL USE Monitoring		DATI	E WELL ST	ARTED (5/2/03	
		DATE	WELL CO	MPLETED	6/3/03	
WELL CONSTRUCTION Fotal Depth Drilled 35 ft.	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.
inished Well Depth 35 ft.	Single/Inner Casing	+2.5	25	2	PVC	sch 40
Borehole Diameter: Top Sin m.	Middle Casing (for triple cased wells only)					
Bottom <u>Sin</u> M.	Outer Casing (largest diameter)					-
Well was finished: Xabove grade	Open Hole or Screen (No. Used 010)	25	35	2	PVC	sch 40
f finished above grade, Casing height stick up) above land surface 2.5 ft.	Blank Casings (No. Used)					
Steel protective casing installed?	Tail Piece]]]]]]
	Gravel Pack	23	35	8	# 1 well gravel	450 lbs
otatic Water Level after drilling 8 ft.	Grout	0	23	8	Cement/bentonite	$\frac{400}{10}$
Water Level was Measured Using		· (Grouting Met	hod Tremi	e <u> </u>	· · · · · · · · · · · · · · · · · · ·
Well was developed for <u>1/2</u> hours		I	Drilling Meth	od HSA	 	
at 2 gpm		[······	GEOLO	GIC LOG	
Method of development <u>Pump</u>		No	te each depth wh	iere water was	encountered in consolid	lated formatio
	pm	0-	lo' Fill			
Pump Type Submersible Pump		· 1	-33' Black sill	and sand		
	of Rig Mobile B-61	33	-35' Grey san	d		
Health and Safety Plan Submitted? Xe					······································	
Level of Protection used On site (circle or	ne) None (D) C B	A			· .	
		.		· · ·		
					·····	
I certify that I have constructed the above	natononand wall in		<u></u>		· · · · · · · · · · · · · · · · · · ·	

accordance with all wellpermit requirements and applicable State rules and regulations.

Drilling Company	CT&EENVI	RONMENT	AL SERV	/ICES
Well Driller (Print)	Marc Hauge			
Driller's Signature	Mare	Harin		
gistration No.	J23173	0.	Date	6126103

COPIES:

3550

ORIGINAL: DEP

DRILLER OWNER

HEALTH DEPARTMENT

. 1913 11 11 11 11 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14	ATION NOT O	MONITOKING W	LLL KE	CORD		Atlas Sheet Coo 3401635	rdinates
dress 80 Park Place	ATION PSE&G Serv	ices corp					· · · ·
ty Newark		State New Jerse	·		Zin Co	de_07102	
		her please give address by Lower Alloway Twp.	Ów	ner's Well N Lot No. 4.01	io. <u>GM-4</u>		evised
ddress Artificial				anges n		215704	
CLL USE Monito	ning	·····		e well st	-	and the second se	•
· .			DATE	WELL CON	APLETED	6/3/03	
VELL CONSTRUC	TION 35 ft.	Note: Measure all depths from land surface	Depth to Top (fL)	Depth to Bottom (fL)	Dismeter (inches)	Material	Wgt./Rating (Ibs/sth no.)
inished Well Depth	The second se	Single/Inner Casing	735	25	2	PVC	sch 40
Borehole Diameter:		Middle Casing (for triple cased welk only)	-3"				
Top Bottom	<u> </u>	Outer Casing (largest diameter)					
Well was finished:	above grade.	Open Hole or Screen (No. Used .010)	25	35	2	PVC	sch 40
If finished above grad (stick up) above land	Casing height	Blank Casings (No. Used)					
Steel protective casi		Tail Piece]			
Yes No		Gravel Pack Grout	23	35	8	#1 well gravel	400 lbs
	fter drilling 8 ft. easured Using Tape		0	23	8	Cement/bentoni	e 10 ibe
	for 1/2 hours	-		Grouting Meth Drilling Meth		5	
2 gpm			, , , , , , , , , , , , , , , , , , ,	Critical Vocco			
Method of develope	acut Pumo					GIC LOG	the second fragments because
Pomp Capacity		m		ie encli ochm wu		encountered in consol	
Pump Type Sub	and the second se						1
routh tibe 200	mersible Pump			10° FH			
Drilling Fluid		of Rig Mobile B-61	10	-33' Black silt			
Drilling Fluid	Туре	of Rig Mobile B-61	10				
Drilling Fluid Health and Safety P	Type	No	- 33	-33' Black silt			
Drilling Fluid Health and Safety P	Туре	No	- 33	-33' Black silt			
Drilling Fluid Health and Safety P	Type	No	- 33	-33' Black silt			
Drilling Fluid Health and Safety P Level of Protection	Type Into Submitted? Yes used OII site (circle on	DNo e) None () C E	- 33	-33' Black silt			
Drilling Fluid Health and Safety P Level of Protection I certify that I have accordance with al	Type Tan Submitted? Yes med OII site (circle on constructed the above l wellpermit requirement	No e) None () C E	- 33	-33' Black silt			
Drilling Fluid Health and Safety P Level of Protection	Type Tan Submitted? Yes med OII site (circle on constructed the above l wellpermit requirement	DNo e) None () C E	- 33	-33' Black silt			
Drilling Fluid Health and Safety P Level of Protection I certify that I have accordance with al rules and regulation	Type Tan Submitted? Yes med OII site (circle on constructed the above l wellpermit requirement	No c) None (D) C E referenced well in nts and applicable State	- 33	-33' Black silt			
Drilling Fluid Health and Safety P Level of Protection I certify that I have accordance with al rules and regulation	Type Tan Submitted? Yes mod OII site (circle on constructed the above ll wellpermit requirements CT & E ENVIRONM	No c) None (D) C E referenced well in nts and applicable State	- 33	-33' Black silt			
Drilling Fluid Health and Safety P Level of Protection I certify that I have accordance with al rules and regulation Drilling Company	Type Tan Submitted? Yes med OII site (circle on constructed the above ll wellpermit requirements C T & E HNVIRONM Marc Hauge	No e) None (D) C E referenced well in nts and applicable State ENTAL SERVICES	- 33	-33' Black silt			
Drilling Fluid Health and Safety P Level of Protection I certify that I have accordance with al rules and regulation Drilling Company Well Driller (Print)	Type Tan Submitted? Yes mod OII site (circle on constructed the above ll wellpermit requirements CT & E ENVIRONM	No e) None (D) C E referenced well in nts and applicable State ENTAL SERVICES		-33' Black silt			
Drilling Fluid Health and Safety P Level of Protection I certify that I have accordance with al rules and regulation Drilling Company Well Driller (Print) Driller's Signature	Type Tax Submitted? Yes used OII site (circle on constructed the above ll wellpermit requirements CT & E ENVIRONM Marc Hauge Marc Hauge	No c) None () C E referenced well in nts and applicable State ENTAL SERVICES		-33' Black silt			
Drilling Fluid Health and Safety P Level of Protection I certify that I have accordance with al rules and regulation Drilling Company (Well Driller (Print) Driller's Signature Registration No.	Type Iso Submitted? Yes used OII site (circle on constructed the above ll wellpermit requirements CT & E HNVIRONM Marc Hauge <u>Marc Hauge</u> <u>J23173</u>	No c) None () C E referenced well in nts and applicable State ENTAL SERVICES		-33' Black silt	1	HEALTH D	
Drilling Fluid Health and Safety P Level of Protection I certify that I have accordance with al rules and regulation Drilling Company Well Driller (Print) Driller's Signature Registration No. 3550	Type Iso Submitted? Yes used OII site (circle on constructed the above ll wellpermit requirements CT & E HNVIRONM Marc Hauge <u>Marc Hauge</u> <u>J23173</u>	No e) None () C E referenced well in nts and applicable State ENTAL SERVICES Date <u>LILLO</u>		-33' Black silt -35' Grey sand	1	HEALTH D	
Drilling Fluid Health and Safety P Level of Protection I certify that I have accordance with al rules and regulation Drilling Company Well Driller (Print) Driller's Signature Registration No. 3550	Type Iso Submitted? Yes used OII site (circle on constructed the above ll wellpermit requirements CT & E HNVIRONM Marc Hauge <u>Marc Hauge</u> <u>J23173</u>	No e) None () C E referenced well in nts and applicable State ENTAL SERVICES Date <u>LILLO</u>		-33' Black silt -35' Grey sand	1	HEALTH D	EPARTMENT
Drilling Fluid Health and Safety P Level of Protection I certify that I have accordance with al rules and regulation Drilling Company Well Driller (Print) Driller's Signature Registration No. 3550	Type Iso Submitted? Yes used OII site (circle on constructed the above ll wellpermit requirements CT & E HNVIRONM Marc Hauge <u>Marc Hauge</u> <u>J23173</u>	No e) None () C E referenced well in nts and applicable State ENTAL SERVICES Date <u>LILLO</u>		-33' Black silt -35' Grey sand	1	HEALTH D	
Drilling Fluid Health and Safety P Level of Protection I certify that I have accordance with al rules and regulation Drilling Company Well Driller (Print) Driller's Signature Registration No. 3550	Type Iso Submitted? Yes used OII site (circle on constructed the above ll wellpermit requirements CT & E HNVIRONM Marc Hauge <u>Marc Hauge</u> <u>J23173</u>	No e) None () C E referenced well in nts and applicable State ENTAL SERVICES Date <u>LILLO</u>		-33' Black silt -35' Grey sand	1	HEALTH D	EPARTMENT
Drilling Fluid Health and Safety P Level of Protection I certify that I have accordance with al rules and regulation Drilling Company Well Driller (Print) Driller's Signature Registration No. 3550	Type Iso Submitted? Yes used OII site (circle on constructed the above ll wellpermit requirements CT & E HNVIRONM Marc Hauge <u>Marc Hauge</u> <u>J23173</u>	No e) None () C E referenced well in nts and applicable State ENTAL SERVICES Date <u>LILLO</u>		-33' Black silt -35' Grey sand	1	HEALTH D	EPARTMENT

× • • • • • • • • • • • • • • • • • • •	New Jersey Department of Environmental Protection Bureau of Water Allocation					umber 78
	MONITORING W	<u>ELL RE</u>	CORD		Atlas Sheet Coo	rdinates
WNER IDENTIFICATION PSE&G S	ERVICES CORP	<u> </u>			3401635	
ess 80 PARK PLACE					· · ·	. *
City <u>Newark</u>	State <u>New Jerse</u>	<u>y</u>		Zip Coo	de <u>07102</u>	
WELL LOCATION - If not the same as ov	vner please give address	Ow	ner's Well No	o	· · · ·	, · ·
	ity Lower Alloways Creek	۲	Lot No. 4	.01 Block	No. 26	
Address ARTIFICIAL ISLAND SALEM	SENERATING STATION					•
WELL USE Monitoring		DATI	E WELL STA	RTFD	9/20/0	Э
Ministring			E WELL CO	·	1012/07	/
					<u> </u>	· · · .
WELL CONSTRUCTION	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)
Total Depth Drilled 5/ ft.	Single/Inner Casing		77	÷,	OUT:	\ <u></u>
Finished Well Depth <u>57</u> ft.	Middle Casing	+21/2			PIE	40
Borehole Diameter:	(for triple cased wells only)	· · ·	IL			
Top <u>C</u> in. Bottom C ₂ in.	Outer Casing (largest diameter)					
Bottom <u>(</u> , in. Well was finished: Above grade	Open Hole or Screen	[<u>}</u>]		<u></u>
	(No. Used ()	27	37		PVL	CIC SL
If finished above grade, casing height	Blank Casings (No. Used)					
(stick up) above land surface 2.5 ft.	Tail Piece	<u>الـــــ</u>	<u>الــــــــــــــــــــــــــــــــــــ</u>	_ال ۱][]	_(
cel protective casing installed?	Gravel Pack	125	1 3.2	16	Merie	#/
🛃 Yes 🔲 No	Grout				Neat Cement	lbs
Static Water Level after drilling <u>(()</u> ft.	· [<u> </u>	35	E	Bentonite	<u> </u>
Water Level was Measured Using <u>M-SC</u>	<u>ca</u> z		Grouting Meth		Zimmer	
Well was developed for hours	·	l 	Drilling Meth	od /-	ISA	
at gpm Method of development $\int \frac{\partial^2 c}{\partial t} \frac{\partial t}{\partial t} dt$			·.	GEOLO	GIC LOG	
			te each depth wh mations	ere water was e	ncountered in consoli	dated
Pump Type (-AUNFOS SUB	pm		-			
	of Rig CME-75		-ÿ' F	· 179 (RRY SA.	NO
Health and Safety Plan Submitted? XYe	· · · · · · · · · · · · · · · · · · ·		-14'			5.4.4.0
Level of Protection used on site (circle on	- ~			M-L-P-Z	Y SILTY	SANN
			1-74	F-M (-REY SILT	Y SAND
		1 2	4.37	m- 1- R	LEY SAND	,
I certify that I have constructed the above	referenced well in		-{			LAYERS
accordance with all well permit requirem rules and regulations.				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
Drilling Company A C SCHULTES INC	·	·		· · ·		
Well Driller (Print) CHRIS WA	IRRA N					
riller's Signature Chin Hon	un (in)		······································	·		
Registration No. 1910-1540	Date 1213.100					
Nalaug-No		· · ·		······	<u></u>	

ty Salem Municipality Lower Alloways Creek Ess ARTIFICIAL ISLAND SALEM GENERATING STATION LUSE Monitoring DA LUCONSTRUCTION Note: Measure all depths from land surface Independent Stream Middle Casing (for triple cased wells only) Top \pounds in. Bottom \bigcirc in. Busine finished: Mabove grade Inshed above grade, casing height No. Used kup) above land surface $2 / 2$ ft. Blank Casings If protective casing installed? Gravel Pack Yes No Grout Ut was	Iwner's We Lot No. TE WELL TE WELL O Depth Bottom 2 27. 3 7. 3 37. 3 37. 3 37. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{bmatrix} 2ii \\ iell No. \\ 4.01 \end{bmatrix} E$ $\begin{bmatrix} STARTED \\ COMPLE \\ (inch) \\ 5 \end{bmatrix} \begin{bmatrix} -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$	p Code 0710 Z Block No. 2 i p/i TED $i p/i$ eter Materials $j^{2} v$ p $\mathcal{P} v^{2}$ $\mathcal{P} v^{2}$ $\mathcal{P} v^{2}$ Neat Ben	26 / c 3 / c 3 erial (1 c / · · · ·	nates Vgt./Rating lbs/sch no.) 4C 4C 5LCT lbs 1CC lbs
NewarkStateNew JerseyL LOCATION - If not the same as owner please give addressMunicipalityLower Alloways Creekty SalemMunicipalityLower Alloways CreekessARTIFICIAL ISLAND SALEM GENERATING STATIONL USE MonitoringDAL CONSTRUCTIONNote: Measure all depths from land surfaceDepthI Depth Drilled 37.5 ft. the dwell DepthNote: Measure all depths from land surfaceDepth from land surfaceTop ω in. Bottomin.Note: Casing (largest diameter)Depth from land surfaceI was finished:Mabove grade flush mounted nished above grade; casing height k up) above land surface $2/2$ ft. I protective casing installed? YesNoDiffusion ScienceI was developed for gravel Pack 37.5 ft. ft. ft.Blank Casings (No. Used)Diffusion (No. Used)I was developed for gravel pack 37.5 ft. (NoBlank Casings (No. Used))Diffusion (Circum)I was developed for gravel pack 37.5 ft. (Mours gravel pack)Top (Circum)Diffusion (Circum)I was developed for gravel pack 37.5 ft. (Circum)Mours (Circum)Diffusion (Circum)I make developed for gravel pack 37.5 ft. (Circum)Mours (Circum)Diffusion (Circum)I make developed for gravel pack 37.5 ft. (Circum)Mours (Circum)D protective casing installed? (Circum) 37.5 ft. (Circum)Mours (Circum)D protective casing installed?<	Lot No. TE WELL TE WELL o Depth Bottom 2 27. 3 37. 3 37. 3 37. 3 37. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.01 E 4.01 E 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 <t< th=""><th>Z Block No. 2 D $I U/I$ TED $I U/I$ eter Materials $I^{2}V$ Eter Materials $I^{2}V$ $I^{2}V$ P U'U Neat Ben $T^{2}R \in J$</th><th>$\frac{c}{c}$</th><th>Hos/sch no.) 40 40 40 40 40 40 40 40 40 40</th></t<>	Z Block No. 2 D $I U/I$ TED $I U/I$ eter Materials $I^{2}V$ Eter Materials $I^{2}V$ $I^{2}V$ P U'U Neat Ben $T^{2}R \in J$	$\frac{c}{c}$	Hos/sch no.) 40 40 40 40 40 40 40 40 40 40
L LOCATION - If not the same as owner please give address by Salem Municipality Lower Alloways Creek ARTIFICIAL ISLAND SALEM GENERATING STATION L USE Monitoring DA L CONSTRUCTION Note: Measure all depths I Depth Drilled 37.5 ft. the Well Depth $3.7.5$ ft. Top 0.5 in. Blank Casings (No. Used) 127. Blank Casings (No. Used)	Lot No. TE WELL TE WELL o Depth Bottom 2 27. 3 37. 3 37. 3 37. 3 37. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.01 E 4.01 E 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 <t< th=""><th>Z Block No. 2 D $I U/I$ TED $I U/I$ eter Materials $I^{2}V$ Eter Materials $I^{2}V$ $I^{2}V$ P U'U Neat Ben $T^{2}R \in J$</th><th>$\frac{c}{c}$</th><th>Hos/sch no.) 40 40 40 40 40 40 40 40 40 40</th></t<>	Z Block No. 2 D $I U/I$ TED $I U/I$ eter Materials $I^{2}V$ Eter Materials $I^{2}V$ $I^{2}V$ P U'U Neat Ben $T^{2}R \in J$	$\frac{c}{c}$	Hos/sch no.) 40 40 40 40 40 40 40 40 40 40
ty Salem Municipality Lower Alloways Creek ess ARTIFICIAL ISLAND SALEM GENERATING STATION DA LUSE Monitoring DA LUCONSTRUCTION Note: Measure all depths from land surface Depth Top (f) IDepth Drilled 3.7.5 ft. Single/Immer Casing T2 Mole Diameter: Middle Casing (for triple cased wells only) T2 Top \pounds in. Outer Casing (largest diameter) T2 It was finished: Mabove grade above grade; casing height k up) above land surface $2 / 2$ ft. Open Hole or Screen (No. Used) T2 It protective casing installed? Gravel Pack T2 Yes No Grout C It was developed for hours Tail Piece T It was developed for hours T T Top \pounds hours T T T It and Safety Plan Submitted? Myes No No	Lot No. TE WELL TE WELL o Depth Bottom 2 27. 3 37. 3 37. 3 37. 3 37. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4.01 E $5 TARTED$ $1 to Diame (inch)$ $5 7$	Block No. 2 i c/i TED $i c/2$ eter Materials i c/i i c/	<u><i>C</i></u> 3 <u><i>C</i> 3</u> crial (1) (1) <i>C</i> 3 (1) <i>C</i> 4 (1) <i>C</i> 4 (Hos/sch no.) 40 40 40 40 40 40 40 40 40 40
ty Salem Municipality Lower Alloways Creek ess ARTIFICIAL ISLAND SALEM GENERATING STATION DA LUSE Monitoring DA LUCONSTRUCTION Note: Measure all depths from land surface Depth Top (f) IDepth Drilled 3.7.5 ft. Single/Immer Casing T2 Mole Diameter: Middle Casing (for triple cased wells only) T2 Top \pounds in. Outer Casing (largest diameter) T2 It was finished: Mabove grade above grade; casing height k up) above land surface $2 / 2$ ft. Open Hole or Screen (No. Used) T2 It protective casing installed? Gravel Pack T2 Yes No Grout C It was developed for hours Tail Piece T It was developed for hours Tail Piece T It and Safety Plan Submitted? SUA Mid Mid	TE WELL TE WELL o Depth Bottom 2 27. 3	STARTED COMPLE (inch) ($\frac{i \rho / i}{TED i \rho / 2}$ eter Matorials $\frac{i \nu}{2}$	<u><i>C</i></u> 3 <u><i>C</i> 3</u> crial (1) (1) <i>C</i> 3 (1) <i>C</i> 4 (1) <i>C</i> 4 (Hos/sch no.) 40 40 40 40 40 40 40 40 40 40
ARTIFICIAL ISLAND SALEM GENERATING STATION L USE Monitoring DA LUSE Monitoring DA LL CONSTRUCTION Note: Measure all depths from land surface Depth from from land surface Depth from from l	TE WELL	L COMPLE	$\frac{\mathbf{TED} \ 1 \ C \ 7}{\mathbf{Pt}}$ eter Materials $\frac{1}{2} \ V$ $\frac{1}{2} \ $	/ <u>C</u> 3	Hos/sch no.) 40 40 40 40 40 40 40 40 40 40
LUSE Monitoring DA LUSE Monitoring DA LUSE Monitoring DA LUCONSTRUCTION Note: Measure all depths from land surface Depth Top (f) I Depth Drilled 37.5 ft. Note: Measure all depths from land surface Depth Top (f) I bed Well Depth 3.7.5 ft. Single/Immer Casing Top (f) Bottom (c) in. Middle Casing (for triple cased wells only) Outer Casing (largest diameter) I was finished: [A above grade [Infush mounted] Open Hole or Screen (No. Used) 27. I was finished above grade; casing height k up) above land surface $2^{-1/2}$ ft. Blank Casings (No. Used) 27. I protective casing installed? Gravel Pack (J) 27. Yes [] No Grout (C) Grout (C) ic Water Level after drilling /() ft. Grout (C) er Level was Measured Using (D-Stuped) Grout (C) If was developed for	TE WELL	L COMPLE	$\frac{\mathbf{TED} \ 1 \ C \ 7}{\mathbf{Pt}}$ eter Materials $\frac{1}{2} \ V$ $\frac{1}{2} \ $	/ <u>C</u> 3	Hos/sch no.) 40 40 40 40 40 40 40 40 40 40
DA LL CONSTRUCTION I Depth Drilled 37.5 ft. In Depth Drilled 37.5 ft. Single/Inner Casing 72 I Depth Drilled 37.5 ft. Single/Inner Casing 72 I Depth Drilled 37.5 ft. Single/Inner Casing 72 I Depth Drilled 37.5 ft. I was finished: \square above grade I flush mounted Inished above grade; casing height I was finished above grade; casing height Open Hole or Screen I protective casing installed? Image: casing height I protective casing installed? Image: casing height I protective casing installed? Image: casing height I was developed for Image: casing height I mage: casing installed? Image: casing height I mage: casing height Image: casing height I was developed for Image: casing height I mage: casing height Image: casing height <t< td=""><td>TE WELL Depth Bottom Depth Dottom Dottom Dottom Drilling Note each dep</td><td>L COMPLE</td><td>$\frac{\mathbf{TED} \ 1 \ C \ 7}{\mathbf{Pt}}$ eter Materials $\frac{1}{2} \ V$ $\frac{1}{2} \$</td><td>/ <u>C</u> 3</td><td>Hos/sch no.) 40 40 40 40 40 40 40 40 40 40</td></t<>	TE WELL Depth Bottom Depth Dottom Dottom Dottom Drilling Note each dep	L COMPLE	$\frac{\mathbf{TED} \ 1 \ C \ 7}{\mathbf{Pt}}$ eter Materials $\frac{1}{2} \ V$ $\frac{1}{2} \ $	/ <u>C</u> 3	Hos/sch no.) 40 40 40 40 40 40 40 40 40 40
L CONSTRUCTION Note: Measure all depths Depth I Depth Drilled 37.5 ft. Single/Inner Casing 7.5 ft. shed Well Depth 37.5 ft. Single/Inner Casing 7.5 shole Diameter: Top 0 in. Single/Inner Casing 7.5 Top 0 in. Bottom 0 in. Outer Casing 7.5 I was finished: $above grade$ 0 pen Hole or Screen 9.7 I was finished above grade, casing height k up) above land surface 37.5 ft. 0 pen Hole or Screen 9.7 I protective casing installed? 0 gravel Pack 9.7 Yes 0 No 0 Grout 0 It was developed for hours 9.5 9.7 It was developed for hours 9.5 9.7 It was developed for hours 9.5 9.7 Ing Fluid 0.7 0 0 0 Ing Fluid 0.7 0 0 0 It and Safety Plan Submitted? 0 0 0	o Depth Bottom 2 27. 37. 37. 37. 37. 37. 37. 57. 57. 57. 57. 57. 57. 57. 57. 57. 5	$\begin{array}{c c} 1 \text{ to } & \text{Diame} \\ \hline (\mathbf{ft.}) & (\text{inch} \\ \hline \\ $	eter Materies) $P = \frac{1^{3} V}{P V U}$ $P = \frac{1^{3} V}{P V U}$	(1	Hos/sch no.) 40 40 40 40 40 40 40 40 40 40
I Depth Drilled $3.7.5$ ft.from land surfaceTop (fthed Well Depth $3.7.5$ ft.Single/Immer Casing 7.2 the Well Depth $3.7.5$ ft.Middle Casing 7.2 the Diameter: G in.Middle Casing 7.2 Top G in.Outer Casing $(1argest diameter)$ I was finished:A above grade $Open Hole or Screen$ $9.7.7$ I was finished:A above grade $Open Hole or Screen$ $9.7.7$ I was finished:B above grade $Open Hole or Screen$ $9.7.7$ I was dave grade; casing height No No No ic Water Level after drilling $/(7)$ ft. $Tail Piece$ $9.5.7$ I was developed for $forst = 2.7.2$ $Gravel Pack$ $9.5.7$ I was developed for $forst = 2.7.2$ $Gravel Pack$ $9.5.7$ I was developed for $forst = 2.7.2$ $Gravel Pack$ $9.5.7$ I was developed for $forst = 2.7.2$ $Gravel Pack$ $9.5.7$ I was developed for $forst = 2.7.2$ $Gravel Pack$ $9.5.7$ I was developed for $forst = 2.7.2$ $Gravel Pack$ $9.5.7$ I mod of development $f' i f M P I N G$ $forst = 2.7.5$ I mag Fluid $N / .1$ Type of Rig $C IN F = 7.5$ Ith and Safety Plan Submitted? $SYes$ No) Bottom 2 27. 3 37. 3 37. 3 37. Grouting Note each dep	iff.) (inch 5 5 5 5 5 5 5 5 5 5 5 5 6 Method Method	$\frac{f^{2}V}{F^{2}V}$	(1	Hos/sch no.) 40 40 40 40 40 40 40 40 40 40
Indepting the second secon	2 27. 3 37. 3 37. 3 37. Grouting Drilling Note each dep	5 5 7 7 7 7 7 7 7 7 7 7 7 7 7	$- \frac{1^{2} V}{P V (1)}$ $- \frac{P V (1)}{P V (1)}$		40
inded Well Depth 37.5 ft. inded Well Depth 67.5 in. Bottom 67.5 in. Inded Well Depth 67.5 in. Bottom 67.5 in. It was finished: Dabove grade Inshed above grade, casing height $(No. Used)$ is up) above land surface $7/2$ ft. It protective casing installed? Gravel Pack Yes No If was developed for 10.5 ft. If p Capacity gpm inp Type -7.0×50.5 SUB Ith and Safety Plan Submitted? Yes	37 37	5	$\frac{PU'}{PU'}$	/://→ Cement atonite	<i>i</i> ∪ <i>i</i> 0 ⁻¹ (5 <i>i</i> 277 <i>i i</i> 1 <i>i i i j</i> <i>i i j</i>
Top \pounds in.(for triple cased wells only)Top \pounds in.Outer Casing (largest diameter)I was finished:above gradeOpen Hole or Screen (No. Used) 2.7 I was finished above grade; casing height ik up) above land surface 2.72 ft.Open Hole or Screen (No. Used) 2.7 I protective casing installed?NoBlank Casings (No. Used) 2.7 YesNoGravel Pack 3.5 I protective casing installed?Gravel Pack 3.5 YesNoGrout $(, ft)$ ic Water Level after drilling $1(, ft)$ Grout $(, ft)$ I was developed forhours gpm p Capacitygpmgpming Capacitygpming Fluid $N/.4$ Type of Rig $CIN E - 7.5$ Ith and Safety Plan Submitted?YesNo	 3 2 5 3 3 5 3 3 5 4 5	. <u>5</u>	- /h., Neat Ben 7-R e,	Cement Monite	5657 77 77 105
Bottom \bigcirc in. Outer Casing (largest diameter) I was finished: \bigtriangleup above grade \bigcirc open Hole or Screen (No. Used) 277. I was finished: \bigtriangleup above grade \bigcirc open Hole or Screen (No. Used) 277. I protective casing height (No. Used) 277. I protective casing installed? Yes \square No ic Water Level after drilling $\cancel{1.5}$ ft. there Level was Measured Using $\cancel{1.5}$ $\cancel{100}$ $\cancel{100}$ I was developed for $\cancel{100}$ hours $\cancel{100}$ gpm hod of development $\cancel{100}$ $\cancel{100}$ $\cancel{100}$ $\cancel{100}$ in Capacity \bigcirc gpm in Type $(-\beta U \wedge \beta = 0; 5 U / \beta)$ Iling Fluid $\cancel{100}$	 3 2 5 3 3 5 3 3 5 4 5	. <u>5</u>	- /h., Neat Ben 7-R e,	Cement Monite	5657 77 77 105
I was finished: \square above grade Open Hole or Screen I hush mounted I flush mounted nished above grade; casing height No. Used) kup) above land surface $2/2$ ft. Blank Casings I protective casing installed? I rail Piece Yes No Gravel Pack ic Water Level after drilling $1()$ ft. Grout () ier Level was Measured Using m -sucred Grout () II was developed for hours gpm hod of development $\frac{12}{11}$ ($\frac{110}{110}$ MPINC Inp Type inp Capacity gpm gpm hod Safety Plan Submitted? Yes No	 3 2 5 3 3 5 3 3 5 4 5	. <u>5</u>	- /h., Neat Ben 7-R e,	Cement Monite	5657 77 77 105
	 3 2 5 3 3 5 3 3 5 4 5	. <u>5</u>	- /h., Neat Ben 7-R e,	Cement Monite	5657 77 77 105
hished above grade; casing height hished above grade; casing height h up) above land surface $2/2$ ft. I protective casing installed? Yes \square No ic Water Level after drilling $1()$ ft. there Level was Measured Using m_{-5} upped I was developed for	 3 2 5 3 3 5 3 3 5 4 5	. <u>5</u>	- /h., Neat Ben 7-R e,	Cement atonite	₩ ₩ lbs
k up) above land surface $2/2$ ft. I protective casing installed? Yes \square No ic Water Level after drilling <u>16.7</u> ft. there Level was Measured Using <u>mail upper</u> Il was developed for <u>hours</u> 2 gpm hod of development <u>FUMPINC</u> up Capacity <u>gpm</u> up Type <u>(-RUNDEO; SUB</u> Illing Fluid <u>M/1</u> Type of Rig <u>CIME-75</u> Illing Fluid <u>M/1</u> Type of Rig <u>CIME-75</u>	Grouting Drilling Note cach dep	S Method Method	Neat Ben 7 R e ,	Cement atonite	lbs
Il protective casing installed? Yes \square No ic Water Level after drilling <u>i(.)</u> ft. ther Level was Measured Using <u>maximum construction</u> Il was developed for <u>hours</u> \square gpm hod of development <u>if if MPINC</u> up Capacity <u>c</u> gpm up Type <u>(-RUNDEO; SUB</u> Illing Fluid <u>M/1</u> Type of Rig <u>CIME-75</u> Illing Fluid <u>M/1</u> Syres \square No	Grouting Drilling Note cach dep	S Method Method	Neat Ben 7 R e ,	Cement atonite	lbs
Yes No Gravel Pack $3/2$ ic Water Level after drilling 16.5 ft. Grout $(2/2)$ ic Water Level after drilling 16.5 ft. $(2/2)$ il was developed for	Grouting Drilling Note cach dep	S Method Method	Neat Ben 7 R e ,	Cement atonite	lbs
ic Water Level after drilling <u>if.</u> ft. ter Level was Measured Using <u>main stand</u> Il was developed for <u>hours</u> <u>a</u> gpm hod of development <u>if if MPINC</u> np Capacity <u>G</u> gpm np Type <u>(-RUNDEO: SUB</u> Iling Fluid <u>N/A</u> Type of Rig <u>CME-7.5</u> Ilth and Safety Plan Submitted? Yes No	Grouting Drilling M	Method	Ben 7 R e ,	itonite	
Il was developed forhours $\rightarrow gpm$ hod of development $\rightarrow 20 MP MO$ Ip Capacity gpm Ip Type $(-RUNDEO; SUB)$ Iling Fluid N/A Type of Rig $CME = 7.5$ Ilth and Safety Plan Submitted? Yes \square No	Drilling N Note cach dep	Method		mmic	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} \\ \end{array}{} \\ \begin{array}{c} \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \\ \end{array}{} \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \end{array}{} \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \end{array}{} \\ \end{array}{} \end{array}{} \\ \end{array}{} $ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Note each dep		HSA		
hod of development $\frac{p}{2}i/MPINCe$ up Capacity \underline{C} gpm up Type $(-RUNDEOS SUB)$ lling Fluid N/A Type of Rig $\underline{CME-7.5}$ lth and Safety Plan Submitted? Yes \Box No			ومستعدية المعتها المبعد المعتران التربي المتناك		
$\begin{array}{cccc} \text{p Capacity} & \underline{G} & \text{gpm} \\ \text{p Type} & \underline{G} & \underline{G} & \underline{G} & \underline{G} \\ \text{ling Fluid} & \underline{M} & \underline{M} & \underline{M} & \underline{G} & \underline{G} & \underline{G} & \underline{G} \\ \text{lith and Safety Plan Submitted?} & \underline{M} & \underline{G} & \underline{G} & \underline{G} & \underline{G} \\ \end{array}$		GEO	OLOGIC LO	G	
Inp Type $(-RUNPEO; SUB)$ Iling Fluid N/A Type of Rig $CINE - 7.5$ Ith and Safety Plan Submitted? Yes No		pth where water	r was encountered	in consolidated	d d
Iling Fluid M/A Type of Rig $CME = 7.5$ Ith and Safety Plan Submitted? Yes No	formations				
Ith and Safety Plan Submitted? Yes	C - II'	F-1	m GRE	Y SAN	0
				· . ·	
el of Protection used on site (circle one) None (D, C B A	<u> - 6'</u>	m-i-	-Rey SI	WTY 5	AND
el of Protection used on site (circle one) None D C B A	16-2	5 F.	-m 6-R	ey sil	TY
				the second s	NO
	72-3	7.51	F-m	CREY	[
rtify that I have constructed the above referenced well in ordance with all well permit requirements and applicable State es and regulations.		and a second second		ULT LA	Yens
lling Company A C SCHULTES INC					
Il Driller (Print) <u>CHRiswARREN</u>				2	
ller's Signature		·			I.
gistration No. $m_{1-15} \neq \omega$ Date 13103	•	·····			[
		· · · · · · · · · · · · · · · · · · ·	· .		
24249-04				· · · · · · · · · · · · · · · · · · ·	

. N	ew Jersey Department of En Bureau of Water	Allocation		· · ·	Well Permit No 340000708	
	MONITORING WI	ELL RE	CORD		Atlas Sheet Coo	rdinates
WNER IDENTIFICATION PSE&G S	SERVICES CORP	5		<u> </u>	3401635	i
sess 80 PARK PLACE						
ity Newark	State New Jerse	Y .		Zip Cod	e 07102	
					Λ	en an
ELL LOCATION - If not the same as o			ner's Well No		<u>A</u>	•
ounty Salem Municipa	lity Lower Alloways Creek	<u> </u>	Lot No	UI Block	No. 26	· · · · · · · · · · · · · · · · · · ·
ddress ARTIFICIAL ISLAND SALEM	GENERATING STATION	<u></u>		•		
VELL USE Monitoring		DATI	E WELL STA	RTED	16-2-03	
			E WELL CO	· · · · · ·	10-8-03	
		· · ·		<u></u>		
WELL CONSTRUCTION	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)
Fotal Depth Drilled <u>36</u> ft.		L		إسميهما	n	
Finished Well Depth 3ζ ft.	Single/Inner Casing	+21/2	76	7	<u>Puć</u>	40
Borehole Diameter:	Middle Casing (for triple cased wells only)		. · · ·			
Top & in.	Outer Casing	الــــــــــــــــــــــــــــــــــــ)()(
Bottom C in.	(largest diameter)					
Well was finished: Mabove grade	Open Hole or Screen				DUC	.010"
flush mounted	(No. Used /)	20	36	<u>}</u>	PVC	SLET
If finished above grade, casing height	Blank Casings (No. Used)					
(stick up) above land surface $2/2$ ft.	Tail Piece					
el protective casing installed?	Gravel Pack	124	36	16	MORIE	
Yes 🖸 No	Grout			1	Neat Cement	lbs
Static Water Level after drilling <u>fr.</u> ft.		6	74	6	Bentonite	<u>ice</u> lbs
Water Level was Measured Using 12-5	<u>ci</u> ^e		Grouting Met		TREMM	<u>.i č</u>
Well was developed for hours			Drilling Meth	od	HSA	
at gpm				GEOLO	GIC LOG	
Method of development $flnf$	INC-			ere water was e	ncountered in consol	idated
	gpm	TO	$r_{1} - 7$	F-m	ORANG	e sam
Pump Type GRUNF05 SU						
	be of Rig <u>CME-75</u>	$-1\bar{2}$	- 15'	meo	TANY	ORANGE
Health and Safety Plan Submitted? 🛛 Y				5167	Y SANT	2
Level of Protection used on site (circle o	ne) None (D) C B		5-26'	F- n		C II TY
		14	1-06	<u> </u>	<u>n C-Rey</u>	SAND
			· ·			
I certify that I have constructed the above	e referenced well in	2	16,-36'	m-	GREY SI	LTY SANC
accordance with all well permit required rules and regulations.		-		u/s	ILT LAT	ep:
Drilling Company A C SCHULTES IN	C .	_ -				
Well Driller (Print) CHR/S	WARREN	_ -	· · · · ·	· · · ·		
riller's Signature	2401-1-1	-	·			
Registration No. $M_{12} = 15 $	6 Date 121310	3 -	,			
Dalaug-CL		· -			······	

ىرى يەرىخە ئىلارىيەر ھەلبەر ئىلىد بەر يەرىپەر يەرىپەر ئىلار يەرىخە ئىلارىيەر ھەلبەر ئىلىدى بىلىرى يەرىپەر	Bureau of Wale		34000070	BO				
	MONITORING W	ELL RE	CORD		Atlas Sheet Coo	rdinates		
WNER IDENTIFICATION PSE&	G SERVICES CORP				340163	<u> </u>		
dress 80 PARK PLACE								
Newark	State New Jers	ey		Zip Cod	le 07102			
ELL LOCATION - If not the same a	s owner please give address	Own	er's Well N	•_ <u>A</u>	AK	evised		
County Salem Munic	ipality Lower Alloways Cree	<u>*</u>]	.ot No4	01 Block	No. 26			
Address ARTIFICIAL ISLAND SALE	M GENERATING STATION		nges	made	215104			
WELL USE Monitoring			WELLST		10-2-03	•		
		DATE	WELL CO	MPLETED	10-8-03			
WELL CONSTRUCTION	Notes Marchine all douths	Depth to	Depth to	Disancter	Material	Wgt/Ratiog		
Total Depth Drilled 36 ft.	Note: Measure all depths from land surface	Top (fL)	Bortom (ft.)	(mches)		(lbs/sch no.)		
Finished Well Depth 3C ft.	Single Anner Casing	+2%	26	み	PUC	40		
Borehole Diameter:	Middle Caring	-3"						
Top 6 in.	(for triple cased wells only Outer Casing	<u></u>		╟────┤	<u> </u>			
Bottom <u>G</u> in	(largest diameter)							
Well was finished: Anove grade	Open Hole or Screen (No. Used /)	26	36	2	PVC	,0107 SLET		
Aflush mounted	Blank Casings							
If finished above grade, casing height (stick up) above land surface	(No. Used)		l					
Steel protective casing installed?	Tail Piece	34	36	5	MORIE			
Yes No	Gravel Pack Grout				Next Cement	lbs		
Static Water Level after drilling 10		0	174	6	Bentonitz	<u>100</u> lbs		
ter Level was Measured Using A	n-scipe		Grouning Met		TREMM	12		
Well was developed for hours	i	· · · · · · · · · · · · · · · · · · ·	Drilling Meth		HSA			
at $\underline{+}$ gpm Method of development fin	rf:No-				GICLOG			
Pump Capacity	gpm	. 1 .	es cach depth W mations	pere water was e	accument in consol			
	<u>sub</u>)-7	E-m	ORANG	e sand		
Drilling Fluid N/A	Type of Rig CME-75		-15'	meo	TANY	ORANGE		
Health and Safety Plan Submitted?				5107				
Level of Protection used on site (circ	le one) None (D) C	B A 7	6-20	F-n	n GREY	SILTY		
		4	5-26		<u>, pacy</u>	SAND		
			2 001		(A 2 X C			
I certify that I have constructed the	bove referenced well in		6-36'	- uls	GREY SI	LTY SAND		
accordance with all well permit required and regulations.	urements and applicable state							
Drilling Company A C SCHULTE	SINC	_ -						
Well Driller (Print) CHR	15 WARREN	_ -						
Driller's Signature URica	Weasenferd	_]						
Registration No. M_{1-15}	46 Date 121310	2] -		and the state of the		·		
Da6249-06	· 	· · · · · · ·						
					•			
GINAL: DEP	COPIES: DRL	LLER .	OWN	ER	HEALTH I	DEPARTMENT		
		. * 1			•			
		•	•			·		

•		New Jersey Department of En Bureau of Water	Allocation		•	Well Permit N 34000070	
		MONITORING WI	ELL RE	CORD		Atlas Sheet Co	ordinates
NER II	DENTIFICATION PSE&	G SERVICES CORP	<u></u>			340163	35
s	80 PARK PLACE						
City	Newark	State New Jerse	y	<u> </u>	Zip Cod	le <u>07102</u>	
VELLLO	CATION - If not the same a	as owner please give address	Owi	ner's Well No	5. A	B	
County Sa		cipality Lower Alloways Creek		Lot No. 4.		No. 26	
•		EM GENERATING STATION	<u></u>		<u></u>	· · · ·	
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · · ·		10 3 -	_
WELL US	E Monitoring			WELL STA		10-3-0)
			DATE	WELL CO	MPLETED	10-8-0	3
WELL CO	ONSTRUCTION	Note: Measure all depths	Depth to	Depth to	Diameter	Material	Wgt./Rating
Total Dep	th Drilled 7 7 ft.	from land surface	Top (ft.)	Bottom (ft.)	(inches)		(lbs/sch no.)
Finished V	Well Depth 77 ft.	SingleAnner Casing	+7 X3	37	2	PUE	40
Borehole		Middle Casing (for triple cased wells only)					
	Top <u>C</u> in.)[]		
. ·	Bottom in.	(largest diameter)]		·
Well was	finished: 🛛 above grade	Open Hole or Screen (No. Used i)	37	47	2	PVC	. 010 × 5-07
	flush mounted	Plank Casings					
	d above grade, casing height) above land surface $\frac{2}{2}$ / γ fi	(No lised)					
. .		Tail Piece]][]		
V Yes	tective casing installed?	Gravel Pack	30	4.2	$\frac{\left[\frac{6}{2}\right]}{\left[\frac{6}{2}\right]}$	monie	
	ater Level after drilling / (*	Grout	C	30	L.	Neat Cement Bentonite	$\frac{1}{1 c_{\rm T}} lbs$
	evel was Measured Using			Grouting Met		TREMY	
	s developed for / 5 hours			Drilling Meth		HSA	
at /·	gpm					GIC LOG	· · · · · · · · · · · · · · · · · · ·
Method	of development	nr, 20	No	te each depth wh		encountered in conso	lidated
Pump Ca	apacity(gpm	for	mations			
Pump T	ype <u><i>ERUNDEDS</i></u> S	SUB		-17	F-m	TAN tÛ	SANC
Drilling	Fluid N/A	Type of Rig CINE-75		<u>`</u>			31100
Health a	nd Safety Plan Submitted?			+-17'	m-c	TAN S	AND
Level of	Protection used on site (circ	cle one) None (D) C B	1	1 11	m - 40	001110	
	· . ·		14	1-77	F-M	CRANIE	SAND
				······································			
I certify	that I have constructed the	above referenced well in	_ [<u>3</u>	2-37	M-C	TANS	SAND
accorda		uirements and applicable State	3	7.47'	F-m	GREY	SAND
Drilling	Company A C SCHULTE	S INC	. -				
Well D	riller (Print) <u>CHR(S</u>	5 WARREN		· · · · · · · · · · · · · · · · · · ·	· · · · ·		
	s Signature Chis P	1-man (ma)	- -	· · · · · · · · · · · · · · · · · · ·			
iller's	ation No. $17.0-15$	-46 Date 131310	3 -				
			1				
	262400		· [-	OWN			

MONITORING WELL RECORD

3400007081 Atlas Sheet Coordinates

WNER IDENTIFICATION PSE&G SE	RVICES CORP				3401635	· · · · · · · · · · · · · · · · · · ·
tress 80 PARK PLACE				7:- 0-	le 07102	· · · .
Newark	State New Jersey			Zīp Cod		ised
ELL LOCATION - If not the same as ow	ner please give address	Owe	er's Well No			isca
ounty Salem Municipalit	ty Lower Alloways Creek	I	ot No. 4.0	01_Block	No. 26	
dress ARTIFICIAL ISLAND SALEM G	ENERATING STATION		anges	made	216104	
ELL USE Monitoring	•	DATE	WELL STA	RTED	10-3-03	
		DATE	WELL CON	PLETED	10-8-07)
VELL CONSTRUCTION	Note: Messure all depths	Depth to	Depth to	Diameter	Material	Wgt/Rating
otal Depth Drilled 47 ft.	· from land surface	Top (ft.)	Bottom (fL)	(inches)		(lbs/sch no.
inished Well Depth 72 ft.	Single-Anner Casing	+2-40	32	2	PUC	40
lorebole Diameter:	Middle Casing	-3"				
Top 6 in	(for triple cased wells only)					<u> </u>
Bottom G in	Outer Casing (largest dismeter)					J
Well was finished: Above grade	Open Hole or Screen		10	2	PVC	. 010*
I flush mounted	(No. Used))	32	42	<u> </u>		sig-
I finished above grade, casing height	(No. Used)	·** ···				
(stick up) above land surface II fi	Tail Piece]]
Steel protective casing installed?	Gravel Pack	30	42	6	MORIE	#1
XYes No Static Water Level after drilling / () ft.	Grout	0	30	L C	Neat Cement Bentonite	Lee
Well was developed for <u>1.5</u> hours at <u>1</u> gpm Method of development <u>FUMF1</u>		N	Drilling Meth	GEOLO	H 5 A GIC LOG encountered in consoli	dagead
Pump Type CRUNCFUS SUL		C	>-17'	F-m	TAN YOR	SAND
Drilling Fluid Typ Health and Safety Plan Submitted? []Y	xe of Rig <u>CinE-ZS</u> es ∐No		1-17	m-c	TAN SA	NO
Level of Protection used on site (circle or	······································		}-17'			
			7-22.	F-M	CRANCE S	
		` -				SAND
7			12-37	m-c	TAN S	AND
I certify that I have constructed the above accordance with all well permit required	ments and applicable State		7 101		C A P	5000
rules and regulations.		2	7-42'	F-m	GREY	SAIV
Drilling Company A C SCHULTES IN	IC	- -				
Well Driller (Print) CHR(5	WARREN	- 13				
Driller's Signature	asim (man)	- -			<u></u>	·
Registration No. $MO-154$	G Date 121310	23 -				
126249-06		-				
GINAL: DEP	COPIES: DRIL	LER	OWN	ER	HEALTH D	EPARTME

	New Jersey Department of H Bureau of Wate	er Allocation)		Well Permit N 340000708	
	MONITORING V	VELL RE	CORD	• .	Atlas Sheet Coo	rdinates
WNER IDENTIFICATION F	PSE&G SERVICES CORP	·		·	.3401635	· · · · · · · · · · · · · · · · · · ·
ss 80 PARK PLACE		· '.			· · ·	
City Newark	State New Jers	sey .		Zip Co	de 07102	÷
WELLIOCATION If not the se	ame as owner please give address	0	ner's Well No			
					No. 26	
	Municipality Lower Alloways Cre					
Address AKTIFICIAL ISLAND S	SALEM GENERATING STATION	l 	-			
WELL USE Monitoring		DAT	E WELL STA	RTED	16-7-03	. ,
• • • •		DAT	E WELL CO	MPLETED	10-3-03	
WELL CONSTRUCTION	Note: Measure all depths	Depth to	-Depth to	Diameter	Material	Wgt./Rating
Total Depth Drilled	ft. from land surface	Top (ft.)	Bottom (ft.)	(inches)		(lbs/sch no.)
Finished Well Depth 24	ft. Single/Inner Casing	121/2	17	<u>}</u>	DVC	40
Borehole Diameter:	Middle Casing (for triple cased wells only					
Тор 🧲	_ in. Outer Casing	<u> </u>)[][)[\[)[
Bottom 6	in. (largest diameter)		<u> </u>	<u> </u>		
Well was finished: Above grad	(No lised ()	14	24	2	PVC	1010" SLOT
If finished above grade, casing he	Blank Casings					
(stick up) above land surface 2	12 ft.			 	\ <u></u>	
el protective casing installed?	Tail Piece Gravel Pack		1 2-2-2		morie	
Yes 🗌 No	Graver Pack				Neat Cement	Ibs
Static Water Level after drilling_	<u>/3_</u> ft.	C ·		<u></u>	Bentonite	icic lbs
Water Level was Measured Using	B <u>m-scone</u>		Grouting Meth	nod	Jennie -	<u> </u>
Well was developed for1	hours		Drilling Meth	od bo	HSA	
at gpm	•			GEOLO	GIC LOG	
	PLANPIN L-		· · · · ·	ere water was	encountered in consoli	dated
Pump Capacity	gpm	for	mations (-1)	E-m	ORANG-	0
Pump Type G-RUNDEDS				<u>/ / / /</u>		NO
Drilling Fluid γ/γ	Type of Rig $CmE-7$	[
Health and Safety Plan Submitte			7-19'	F+M		
Level of Protection used on site	(circle one) None (D) C	B A -		51	LTY SAN.	2
		17	9-24'	F-m	ORANOE	SAND
			······			
I certify that I have constructed accordance with all well permit rules and regulations.	l the above referenced well in t requirements and applicable State		······································			
Drilling Company A C SCHUI	LTES INC			· · ·		
	15 WARREN	- -	······································			
iller's Signature	New CI	- -	<u>.</u>		<u></u>	
Registration No. $\underline{n} \underline{n} - \underline{n}$	15.7 (c. Date / <u>1</u>]	2 -				
D01,0110 010	<u>^</u>					

		· · · · · · · · · · · · · · · · · · ·	0000		34000070	82
4	MONITORING W	ELL RE	CORD		Atlas Sheef Co	
	SERVICES CORP			• •	340163	5
80 PARK PLACE						
Newark	State New Jerse	<u>y</u>		Zip Co	de <u>07102</u>	Nicol
LL LOCATION - If not the same as o	wher please give address	Own	per's Well No	·	AC RE	vised
ounty Salem Municipal	lity Lower Alloways Creek	<u> </u>	Lot No	01_Block	No. 26	
ARTIFICIAL ISLAND SALEM	GENERATING STATION		anges	made	2/6/0	4
VELL USE Monitoring			WELL STA	-	11-7-07	•
		DATE	WELL CO	MPLETED		
VELL CONSTRUCTION			Depth to	Disuctor	Material	1
Could Dive Diverse in the second	Note: Measure all depths from land surface	Depth to Top (fL)	Bounn (fL)	(inches)	Mancall	Wgt/Rath (lbs/sch ne
Finished Well Depth 24 ft.	Single/Imma Casing	73-16	14	2	PVI	40
Borehole Diameter:	Middle Casing	34				
	(for triple cased wells only)	-2				
Top <u>L</u> in. Bottom C in.	Outer Casing (largest diameter)		•			
Well was finished: E above grade	Open Hole or Screen	5.1				.016
Ilush mounted	(No. Used 1)	14	24	12	PVC	1010
If finished above grade, casing height	(No. Used)				1	
(stick up) above land surface	Tail Piece	1		1		
Steel protective casing installed?	Gravel Pack	72	24	<i>A</i>	morie	#2
Yes No Static Water Level after drilling / 3 ft.	Grout	0	12	6	Nest Coment Bentonite	100
or Level was Measured Using <u>h-s</u>	(
I was developed for i hours	<u> </u>		irouting Meth Drilling Metho		<u>Renmi-</u> HSA	<u> </u>
at(gpm					GICLOG	
Method of development	1-2 6-	Nice	r each denth whi		Documental in consol	
	epm	for	nations		•	
Pump Type G-RUNDEDS SUB	<u> </u>	0	-17.	F-m	ORANG	AND
	e of Rig <u>Cm E-7</u>		•			1701
Health and Safety Plan Submitted?	~ ·		7-19'	F+N	ORANGE	+TA
Level of Protection used on site (circle of	ne) None (D) C B	A		51	LTY SAN	0
			9-24'	F-M	ORANG	L SAND
	·· · ·					
I certify that I have constructed the abov	e referenced well in					
accordance with all well permit requiren rules and regulations.	nenis ana appucable state			· · · · ·	· ·	
Drilling Company A C SCHULTES IN	C		· · · · · · · · · · · · · · · · · · ·			
	IAPREN	-				
	ever freed			,		
Driller's Signature Chine Win Registration No. MD-1546	Date 1213107					
Driller's Signature A_{ii} M_{in} Registration No. $M N - 1546$	Date /2 13103					
Driller's Signature Ris Win	Date 1213107			·····	······	
Driller's Signature Q_{11} M_{12} Registration No. $M N - 1546$	Date <u> } 3 0</u>] COPIES: DRILL		OWNE	R	HEALTH L) EPARTME

۰.

. Nev	v Jersey Department of Bureau of Wat	er Allocatio	n		Well Permit N 340000701		t tal s
	MONITORING V	VELL RE	CORD		Atlas Sheet Coo	rdinates	
WINER IDENTIFICATION PSE&G SE	RVICES CORP				3401635	j	
SS 80 PARK PLACE	· · · · · · · · · · · · · · · · · · ·		· · · ·	· · · · · · · · · · · · · · · · · · ·	·		·
City Newark	State New Jer	sey		Zip Coo	ie <u>07102</u>		
WELL LOCATION - If not the same as own	er please give address	Ów	ner's Well N	. AD			
	Lower Alloways Cre			.01 Block	No. 26	1	
Address ARTIFICIAL ISLAND SALEM GE			· · · ·				
WELL USE Monitoring				DEFE	to set	·	
		. .	E WELL STA E WELL CO		10/0/03		
	· · · ·	JAI.	E WELL CO	MILEIED	10/ 103		
WELL CONSTRUCTION	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)	
Total Depth Drilled $\frac{73}{73}$ ft. Finished Well Depth $\frac{73}{73}$ ft.	Single/Innet Casing	+2 1/2	33	G	PUC	40]]
Borshole Dismeter	Middle Casing]
Top / 3 in.	(for triple cased wells only	0			· .]	
Bottom $/3$ in.	Outer Casing (largest diameter)						
Well was finished: Above grade	Open Hole or Screen (No. Used	33	43	(-	PUC	, Cic."	
If finished above grade, casing height	Blank Casings (No. Used)					
(stick up) above land surface $\frac{2}{2} \frac{1}{1}$ ft.	Tail Piece						
I protective casing installed?	Gravel Pack	30		1.13	monie	<i>*1</i>	j
Static Water Level after drilling & ft.	Grout	Ū.	30	12	Neat Cement Bentonite	$\frac{1}{1+2}$ lbs	
Water Level was Measured Using $\underline{m-scie}$		I)[1 7.72 105] _
Well was developed for hours			Grouting Meth Drilling Meth		REAM MIE	······	
at 2 gpm	•		B	······································	GIC LOG		1
Method of development	NE	Nr	ic each depth wh		ncountered in consolid	lored	
Pump Capacity gpr		for	mations	-	÷		
Pump Type <u>GRUNDEDS SUB</u>			<u>-11 F</u>	-m 7	AN + OR		l
Drilling Fluid Type of	of Rig CME-75				·	SAND	
Health and Safety Plan Submitted? Yes			1-26'	F·M	CRANGE S	AND	
Level of Protection used on site (circle one)	None (D C		< (7) (5. m			
		Z	6-334	F-m	TANY	SAND	
	· · · ·			· · · · · · · · · · · · · · · · · · ·		<u></u>	1
I certify that I have constructed the above re accordance with all well permit requiremen rules and regulations.		3	3-43	E-M SANI	//	ilty six mat'l	
Drilling Company A C SCHULTES INC					·		
Well Driller (Print) <u>CHRIS</u> WA	FRPAL			ی در ۲۰۰۰ مرکز این میکرد. مرکز این میکرد.	· · · · · · · · · · · · · · · · · · ·		·
iller's Signature Win Illam	<u>kind</u>	- -				······	
Registration No. $MD - 154(3)$	Date 12/3/6	3					
D26249-06		-					

	MONITORING W		'		34000070	
NER IDENTIFICATION PSE&G S	ERVICES CORP				Atlas Sheet Co 340163	
ss 80 PARK PLACE		<u> </u>	····· ,			
Newark	State New Jerse	Y	· · · · · · · · · · · · · · · · · · ·	Zip Co	de 07102	·
LL LOCATION - If not the same as or		· · ·	ner's Well No			ised
and the second	ity Lower Alloways Creel		Lot No. 4.			
tess ARTIFICIAL ISLAND SALEM (<i>(</i>)	· •	· ·		
LLUSE Monitoring			inges		le 2/6/01	4
Montoring		i	E WELL STA E WELL COI		10/6/03	•
						•
ELL CONSTRUCTION	Note: Measure all depths from land surface	Depth to Top (fL)	Depth to Bottom (fl.)	Diameter (inches)	Material	Wgt/Rating (lbs/sch no.)
tal Depth Drilled $\frac{473}{12}$ ft.	Single-Annet Casing	726	33	G	PUC	40
nished Well Depth <u>43</u> ft.	Middle Casing	-3"		\vdash		70
Trebole Diameter:	(for triple cased wells only)	5		·		
Top <u>()</u> in. Bottom <u>/</u>] in.	Outer Casing (largest diameter)					
ell was finished: Zabove grade	Open Hole or Screen		1		0:4-	1010#
I flush mounted	(No. Used j)	33	43	6	PUC	3407
finished above grade, casing height tick up) above land surface H.A.	Blank Cesings (No. Used)			···· ·		1
and and a second se	Tail Piece	j	j			
eel protective casing installed? Yes No	Gravel Pack	130	<u>₹3</u>		morie	#/
tic Water Level after drilling & ft.	Grout	0	30	12	Next Cement Bentonite	135 lbs
T Level was Measured Using M-S	(- AR		Fronting Meth		Renner	
ell was developed for 5 hours			brilling Metho		ISA	······
2- gom					GICLOG	· · · · · · · · · · · · · · · · · · ·
abod of development <u>P(im)</u>	ING				accountered in consoli	detect
	po		nations · -// F	-m -	AN + OR	
Type <u>GRUNDEDS SUP</u>					MAY T VR	SAND
alth and Safety Plan Submitted?	of Rig <u>CME-75</u>	- -				
vel of Protection used on site (circle on			-26'	F-M	CRANER.	SAND
				FM	TAN+	ORALEP
						SAND
ertify that I have normalized 2 1		3	-43'	E-m	GREY S	ILTY
ertify that I have constructed the above cordance with all well permit requirem	ents and applicable State			SANC		sit may
es and regulations.		·	· · ·			دی نیم میں واقع البان الک
Illing Company A C SCHULTES INC			· · · ·			
ell Driller (Print) <u>CHRIS</u>	ARREN		····		•	· · · · · · · · · · · · · · · · · · ·
iller's Signature Chris Iller	(m (m m) 12, 2, 07	,				
gistration No. $M/J - 154($	Date 1213103	·		<u></u>		
B6249-06	•				······································	
GINAL: DEP		E 10				
	COPIES: DRILL	er.	OWNE	A	HEALTH D	EPARTMENT
		•				
			•		· .	
	•					

New Jersey Department of Environmental Protection Bureau of Water Allocation

Well Permit Number

3400007084

MONITORING WELL RECORD

	MONITORING W	ELL RE	CORD		Atlas Sheet Coo	rdinates
TR IDENTIFICATION PSE&	G CORP.				3403535	5
80 PARK PLACE					· ·	·
City Newark	State New Jerse	;y		Zip Co	de 07102	
WELL LOCATION - If not the same a	s owner please give address	Ow	ner's Well No	A	E mill-7	
	ipality Lower Alloways Creel		Lot No. 4.		No. 26	/
Address ARTIFICAL ISLAND SALEN	· · · · · · · · · · · · · · · · · · ·					
	denterating official		-	· · ·	ral -1	·
WELL USE Monitoring			E WELL STA		10/5/0	3
	•	DATI	E WELL COM	APLETED	10/8/03	
WELL CONSTRUCTION	Note: Measure all depths	Depth to	Depth to	Diameter	Material	Wgt./Rating
Total Depth Drilled 77.5 ft.	from land surface	Top (ft.)	Bottom (ft.)	(inches)		(lbs/sch no.)
Finished Well Depth 27.5 ft.	Single/Inner Casing	+21/2	17.5	4	FUC	40
Borehole Diameter:	Middle Casing (for triple cased wells only)					
Top É in.	Outer Casing][<u></u>
Bottom C in.	(largest diameter)					
Well was finished: X above grade	Open Hole or Screen					
flush mounted	(No. Used ; C 10)	17.5	27.5		PVC	40
If finished above grade, casing height	Blank Casings (No. Used)					
(stick up) above land surface $\frac{21}{2}$ ft.	Tail Piece][
el protective casing installed?	Gravel Pack	1747	1275	<u> </u>	VRI-	
Yes No	Grout		14	G	Neat Cement Bentonite	lbs
Static Water Level after drilling $\frac{\delta}{\delta}$		C		JL	Demonite	I the lbs
Water Level was Measured Using m-	<u>Scurr</u>		Grouting Meth	·	FREMM	<u>۲</u>
Well was developed for / hours at / gpm		ا 	Drilling Metho	od	UCCR	
	MPILLO			GEOLO	GIC LOG	
Pump Capacity		No for	te each depth who mations	ere water was	encountered in consol	idated
	gpm		0-9F	T	-m 74	IN +
	Type of Rig CINE-75			· · ·	ORANGE	SAND
Health and Safety Plan Submitted?		- -	1 1 - 1			
Level of Protection used on site (circle	· ~ ~		1-1/	///-	ORANGE	SAND
		7	7-27.5	1 1=	-m tan	V V
	· · ·	· · · ·		ORA.	NOR SILT.	Y SANA
		.				
I certify that I have constructed the ab accordance with all well permit requi						
rules and regulations.				······································		
Drilling Company A C SCHULTES	INC					
Well Driller (Print) CHRIS	WARREN	`		<u> </u>	. ·	
riller's Signature		·				
Registration No. $/2 / 1 - / 3$	4: Date 12/3/6	3				
			· · · · · · · · · · · · · · · · · · ·			
DAUAUG-CL	н 			····	· .	
ORIGINAL: DEP	COPIES: DRILL	L	OWNE	R.	HEALTH D	EPARTMENT

•	· · · ·	ew Jersey Department of En Bureau of Water MONITORING W	Allocation	1 ·		Weil Pennit IN 34000070	85
			<u>EDD RE</u>			Atlas Sheet Coo	
ER IDENTIFIC		ORP.	· 		÷	340353	5
	K PLACE				7:- 0		
ty Newark	· · · · · · · · · · · · · · · · · · ·	State New Jerse	y .			le <u>07102</u>	
	If not the same as ov	vner please give address		ber's Well No		Elmin	-5)
ounty Salem		ity Lower Alloways Creel	k	Lot No. 4.	01 Block	No. 26	
ddress ARTIFICAL	. ISLAND SALEM G	ENERATING STATION		-	· · ·		•
ELL USE Monitori	ng		DATI	WELL STA	RTED	10/6/0	3
· · · · · · · · · · · · · · · · · · ·			DATI	WELL CO	MPLETED	10/8/02	
WELL CONSTRUC	TION	Note: Measure all depths	Depth to	Depth to	Diameter]	Material	Wgt./Rating
Total Depth Drilled		from land surface	Top (ft.)	Bottom (fl.)	(inches)	14100 101	(lbs/sch no.)
Finished Well Depth		Single/Inner Casing	71/2	25	*2	PVC	40
Borehole Diameter:	<u> </u>	Middle Casing					
Тор	(in.	(for triple cased wells only)	Į <u> </u>				
Bottom	<u> </u>	Outer Casing (largest diameter)				,	
Well was finished: 🛛	above grade	Open Hole or Screen		1-			
	flush mounted	(No. Used , OLO **) Blank Casings	25	45	X7	PVC	40
f finished above grad stick up) above land	le, casing height surface	(No. Used)					
	·	Tail Piece					
el protective casin Yes No	g installed?	Gravel Pack][??	<u> 45</u>	<u> </u>	サマ	Mich (C
Static Water Level af	ter drilling <i>[6]</i> ft.	Grout	2	42	G	Neat Cement Bentonite	lbs
Water Level was Mea		L Le^c		Brouting Meth	od	· 2 02 .0	
Well was developed i				Drilling Metho		<u>PMMIZ</u>	
at / gpm	!		· [GEOLOG		
Method of developm	ent <u>Fump</u>	2120	No	e each depth whe		ncountered in consol	idated
Pump Capacity	B	pm	fon	nations	~	• •	
	3MERSIBLE		<u> </u>	-10;	F- m		+ ORANG
Drilling Fluid		of Rig CME-75	- 70	-21":	mep	CRANGE	
	an Submitted? 🔲 Yes						
Level of Protection u	sed on site (circle one	e) None (D) C B	A 3	1-34"	m-c	URANUE +	
• • • • • • • • • • • • • • • • • • •	•		3	4-39':	Frm	URANUR SIL	SAND ZY SAND
			-	0 10			
l certify that I have c accordance with all	onstructed the above well permit requireme	referenced well in ents and applicable State	5	9-45'	F-m	Yellow	
rules and regulation	s.						SAND_
Drilling Company A	C SCHULTES INC	· · · · · · · · · · · · · · · · · · ·					
Well Driller (Print)	CHRIS	WARRÉN					
riller's Signature	Chris 1	(amingues)				· · · · · · · · · · · · · · · · · · ·	
Registration No.	inp-15+0	Date 1213107) []		-		
DALIALIO	<u>}. کر</u>						
いろいろい	r c c					······································	
				OWNE			

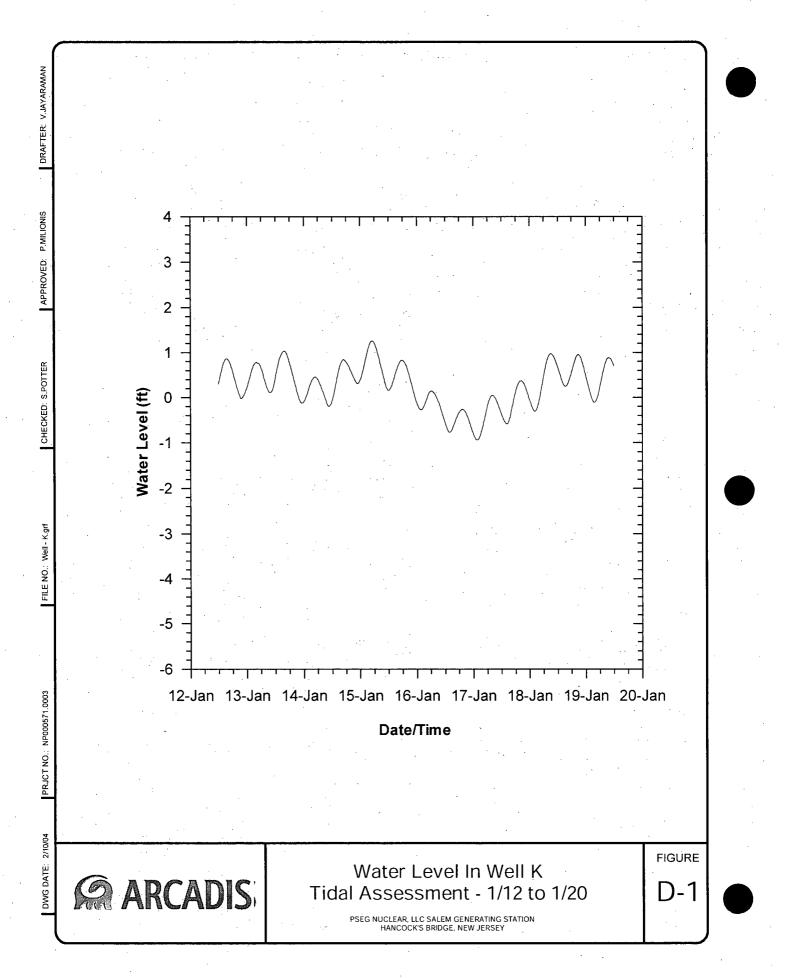
	Bureau of Water Allocation MONITORING WELL RECORD			3400007135				
1	Atlas Sheet Coordinates							
	RVICES CORP				340163	34		
Newark		<u> </u>	······································	7:- 0-4	e 07102 -	• • •		
	State New Jerse							
VELL LOCATION - If not the same as ow ounty Salem Municipalit			ner's Well No Lot No. 4.		hallow			
Address ALLOWAY CREEK NECK RD S.	y Lower Alloways Creek			<u>Diock</u>	NO. <u>20</u>	•		
VELL USE Monitoring	<u> </u>		E WELL STA	DTED	abalau			
			E WELL STA	· · ·	2/10/04			
VELL CONCEPTION	• •					·		
WELL CONSTRUCTION Fotal Depth Drilled 싫식, 도 ft.	Note: Measure all depths from land surface	Depth to Top (ft.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)		
Finished Well Depth 245 ft.	Single/Inner Casing	-3"	14.5		PVC	Schui		
Borehole Diameter:	Middle Casing							
Top in.	(for triple cased wells only) Outer Casing		[1				
Bottom in.	(largest diameter)							
Well was finished: above grade	Open Hole or Screen (No. Used DD)	14.5	24.5		PUC	Schul		
If finished above grade, casing height	Blank Casings			du ran da ayaan d i Af	! <u></u>			
(stick up) above land surface ft.	(No. Used) Tail Piece	<u></u>						
Steel protective casing installed?	Gravel Pack	1 13		7	morie.s	and 200		
Water Level after drilling (7) ft.	Grout				Neat Cement Bentonite	282 lbs		
Water Level was Measured Using - Ta DA	, <u> </u>					15 lbs		
Well was developed for hours			Grouting Meth Drilling Metho		enic CUSte	mauce		
u <u>,5</u> gpm	· ·	[·	GEOLOG		<u>n ceccep</u>		
Method of development	.p			······	countered in conso	lidated		
<pre>>ump Capacitygl >ump Type</pre>	m	ION	nations		· ·	N -		
	of Rig ALICLET		$\frac{1}{2}$	<u>i nd ç</u>	iracei -	tas		
lealth and Safety Plan Submitted?			·	Jack Si	it sance			
evel of Protection used on site (circle one) None D C B					·····		
	Ŭ		When i	2 4				
			· · · · · · · · · · · · · · · · · · ·					
certify that I have constructed the above	referenced well in	.		· · · · · · · · · · · · · · · · · · ·				
secordance with all well permit requirement wiles and regulations.	nis ana applicable State		· · · · · · · · · · · · · · · · · · ·					
Drilling Company TALON DRILLING CO			AS-BUILT WELL LOCATION (NAD 83 HORIZONTAL DATUM)					
Vell Driller (Print)	Abell	.			INATE IN US SUI			
Driller's Signature					EASTING:			
ation No. <u>OC</u> A C 3	Date 3/1/0				DR	۰.,		
03329			ritude: °	- 1 1	LONGITUDE:	• •••		
)RIGINAL: DEP				``				
ANNUMAL, DEF	COPIES: DRILL	.C.K	. OWNE	n	HLALTHI	DEPARTMENT		

N	ew Jersey Department of Er Bureau of Water	Allocatior		Well Permit Number 3400007153				
	MONITORING W	ELL RE		Atlas Sheet Coordinates				
IDENTIFICATION PSE&G S	ERVICES CORP.				3401634	1		
80 PARK PLACE			·			· · ·		
Newark	State New Jerse	y	· · · · · · · · · · · · · · · · · · ·	Zip Coo	ie <u>07102</u>			
LL LOCATION - If not the same as ov	vner please give address	Ow	ner's Well No	AL-DE	en Former	ty know		
	ity Lower Alloways Creek			01 Block	- P	AGC		
iress ALLOWAY CREEK NECK RD S								
					مامام	к К		
CLL USE Monitoring	- <u></u>		E WELL STA		219/04	· · · ·		
	•	DATI	E WELL COM	MPLETE <u>D</u>	2/9/04			
ELL CONSTRUCTION	Note: Measure all depths	Depth to	Depth to	Diameter	Material	Wgt./Rating		
tal Depth Drilled 40 ft.	from land surface	Top (ft.)	Bottom (ft.)	(inches)		(lbs/sch no.)		
ished Well Depth <u>40</u> ft.	Single/Inner Casing	+2_	30		PVC	Sch40		
rehole Diameter:	Middle Casing (for triple cased wells only)			, 				
Top in.	Outer Casing	<u></u>	l		<u> </u>			
Bottom in.	(largest diameter)	l						
ell was finished: Mabove grade	Open Hole or Screen (No. Used () ()	30	40		Arc	Schud		
flush mounted	Blank Casings			L		<u></u>		
finished above grade, casing height ick up) above land surface _2_ ft.	(No. Used)	<u> </u>	<u> </u>	<u> </u>				
el protective casing installed?	Tail Piece]						
	Gravel Pack	28	40	7	Morrie	aso ibs		
atic Water Level after drilling 9 ft.	Grout	0	28	7	Neat Cement Bentonite	Jbs		
ater Level was Measured Using tog-	je	JI	Grouting Meth		remie			
ell was developed for hours			Drilling Metho		DW Stem a	LLGOF		
.5 gpm					GIC LOG			
	pump	No	te each depth who		incountered in consol	idated		
Imp Capacity{	pm	for	mations					
итр Туре	^	-	0-10' -8	nd a	ravel, sitt	<u>CIL</u>		
rilling Fluid Typ	e of Rig <u>HUGE</u>	_ -		wa gi	aver sm	<u>, +///</u>		
ealth and Safety Plan Submitted?	— <u> </u>)-30' sa	nd, are	avel, silt	black		
evel of Protection used on site (circle on	e) None (D) C B	A		<u> </u>		· · · · · · · · · · · · · · · · · · ·		
			0-40' CC	Darse 1	gravel,	sand, sitt		
· · · ·	· .					<u> ((d , G, f)</u>		
certify that I have constructed the above	e referenced well in	·]_	Water	@ 10'				
ccordance with all well permit requiren iles and regulations.	ents and applicable State							
rilling Company TALON DRILLING	<u>co</u>	<u> </u>	AS-	BUILT WI	ELL LOCATIO	N		
/ell Driller (Print) JOSEDIN	0.1		(NAD	83 HORIZ	CONTAL DATU	M)		
	Hoell			ANE COORI	DINATE IN US SUR	VEY FEET		
ation No. MSCUL	Date 2 2010	y NO	RTHING:		EASTING:	ومحدب جروراط التكفاء حواواتك المتحال		
LUZCIASI	Date <u>2 2070</u>	·	TITUPE.		OR			
03329		LA	TITUDE: o	1 H	LONGITUDE:	т ^с и		
				··				
RIGINAL: DEP	COPIES: DRILL	ER	OWNE	R	HEALTH D	EPARTMENT		

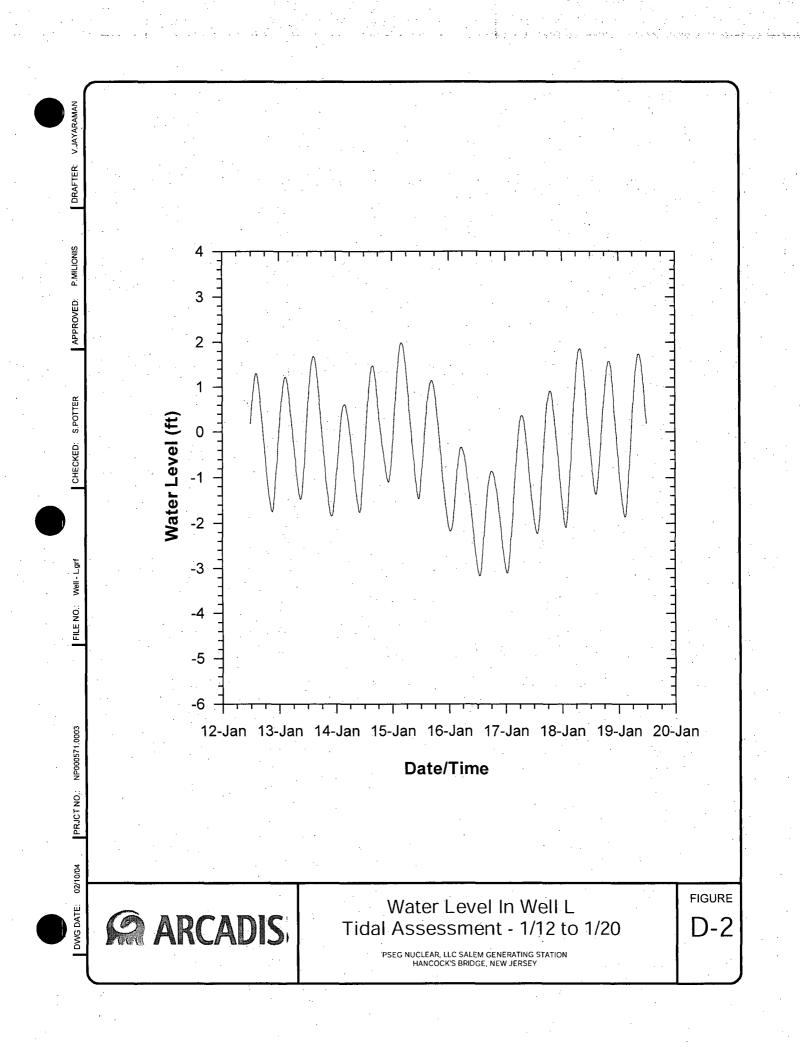
	4	New Jersey Department of Environmental Protection Bureau of Water Allocation <u>MONITORING WELL RECORD</u>						Well Permit Number 3400007136 Atlas Sheet Coordinates			
WNER IDEN	FIFICATION PSE8	&G SERVICES CORP				•	340163	•			
deess 8	0 PARK PLACE		·		·····	······					
	Newark	State	New Jersey		··· ·	Zip Coo	de 07102	-			
ELL LOCAT	ION - If not the same	as owner please give a	address	O w	ner's Well No	ΛĹ	hallow				
unty Salem		cipality Lower Allow			Lot No. 4.	•					
		RD SALEM GENERA									
				*	•		21-1-1	· ·			
ELL USE M	onitoring		·		WELL STA		215/04				
		•		DATE	WELL CO	MPLETED	215704	•			
VELL CONST	RUCTION	Note: Measure al		epth to	Depth to	Diameter	Material	Wgt./Rating			
otal Depth Dri	lled 25 ft.	from land su	;	op (ft.)	Bottom (fl.)	(inches)		(lbs/sch no.)			
inished Well I	Depth <u>25</u> ft.	Single/Inner C		-2	15		PVC	Schyi			
orehole Diam		Middle Cas (for triple cased w					· .				
T		Outer Casi	ng		[]						
	ottom in.	(largest diam	ال								
en was finish	ed: Pabove grade	Open Hole or (No. Used)		15	25	1 1 1	prc	Schyd			
finished abov	e grade, casing height	Blank Casi				┢═┹══╢					
tick up) abov	e land surface 2 f	t. (No. Used									
eel protective	casing installed?	Tail Piec									
	No	Gravel Pa Grout		<u>M</u>	25	1	Sand Neat Cement	20016			
	evel after drilling 9	ft.		0	M	2	Bentonite				
	as Measured Using t	ape		G	routing Meth	od Tre	emic				
ell was deve		S		D	rilling Metho		w stem	auger			
gpr lethod of dev		1				GEOLOG	SIC LOG				
ump Capacity		ppump_	•		each depth whe	re water was en	countered in consol	idated			
ump Capacity ump Type		gpm		1011	1811UU3						
Drilling Fluid		Type of Rig ALCO	in a	0	-10' 5	and	gravel	tan			
-	ety Plan Submitted?		, pur			~~	0				
	tion used on site (circl		СВ		-251 (silt sa	na pia	<u>ici</u>			
		•			vater	C. 10'		······································			
certify that I	have constructed of	bove referenced well in	· . · ·	.							
ccordance wi	th all well permit requ	iverset in the second sec	e State		· · · · · · · · · · · · · · · · · · ·			:			
ues and regu	lations.	· · · · ·					1.1.0				
	any TALON DRILLI	A A A I	· · · · · · · · · · · · · · · · · · ·				LL LOCATIO				
/ell Driller (P			· · ·				NATE IN US SUR				
riller's Signat		ver conce	· · · · ·	1 .	THING:		EASTING:	· · · · · · · · · · · · · · · · · · ·			
ation N	· <u>coayyz</u>	<u>Date 3</u>	1 04			O	R	а — 44			
03329	· .	•		LAT	TUDE:	1	ONGITUDE				
. "				· L		· · ·········		••••••••••••••••••••••••••••••••••••••			
RIGINAL: I)EP	COPIES:	DRILLER		OWNER	, .	HEALT H D	ED ADTMEN			

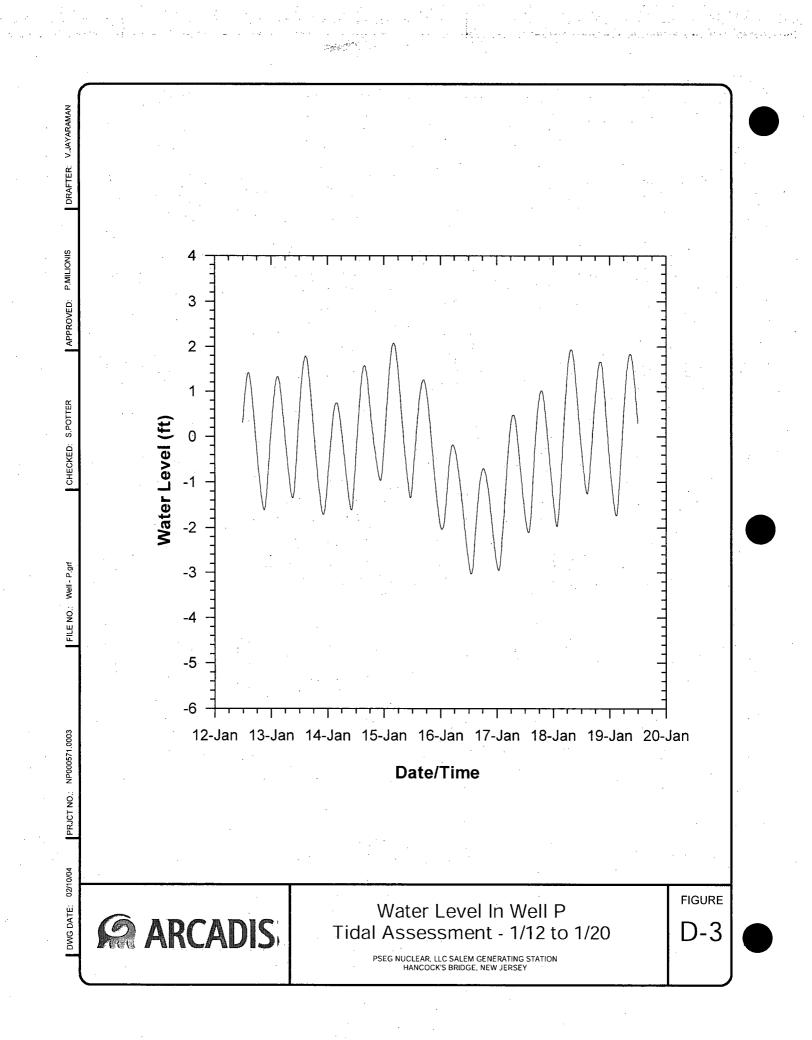
Ne	w Jersey Department of En Bureau of Water	Well Permit Number 3400007154						
	MONITORING W	Atlas Sheet Coordinates						
IDENTIFICATION PSE&G SE	IDENTIFICATION PSE&G SERVICES CORP.							
80 PARK PLACE	· · · · · · · · · · · · · · · · · · ·							
Newark	State <u>New Jerse</u>	у	• .	Zip Coo	le <u>07102</u>			
LL LOCATION - If not the same as ow	ner please give address	Ow	ner's Well No	. All De	ep Formerl	y known		
nty Salem Municipalit	y Lower Alloways Creek		Lot No4.			AHD		
Iress ALLOWAY CREEK NECK RD S.	ALEM GENERATING ST	ATION	-		f	1		
CLL USE Monitoring		DATE	E WELL STA	RTED	2/4/04			
			E WELL CON					
ELL CONSTRUCTION	Note: Measure all depths from land surface	Depth to Top (fl.)	Depth to Bottom (ft.)	Diameter (inches)	Material	Wgt./Rating (lbs/sch no.)		
tal Depth Drilled <u>40</u> ft.	Single/Inner Casing	-3"			PVC			
nished Well Depth <u>40</u> ft.	Middle Casing		30			<u>sch40</u>		
rehole Diameter:	(for triple cased wells only)							
Top in. Bottom in	Outer Casing (largest diameter)							
Bottom in. ell was finished: Dabove grade	Open Hole or Screen	۱۱ ۱	<u> </u>			- <u> </u>		
flush mounted	(No. Used () ())	30	40		<u>Pvc</u>	Schuu		
finished above grade, casing height ick up) above land surface ft.	Blank Casings (No. Used)							
protective casing installed?	Tail Piece][][
	Gravel Pack	28	40	<u></u>	morrie	250 1bs		
atic Water Level after drilling9. 5 ft.	Grout	0	28	2	Neat Cement Bentonite			
ater Level was Measured Using	<u>se</u>		Grouting Meth	od Tr	emic			
ell was developed for hours			Drilling Metho		wstem	uger		
<u>5</u> gpm				GEOLO	GIC LOG	0		
ethod of development SUD	Jump			re water was e	ncountered in consol	idated		
ump Capacityg	pm	tor	mations			· ·		
	m. Anna	17)-10' SI	nd ar	avel fill			
ealth and Safety Plan Submitted?	of Rig <u>HIAPT</u>							
evel of Protection used on site (circle one			10-20' sind sitt fill					
			7-30' 51	t sand	aravel a	2 ran		
				fill				
cartifi that I have seen to the			1-40' Si	it sand	ailles an	In black		
certify that I have constructed the above referenced well in accordance with all well permit requirements and applicable State ules and regulations.								
			hiter @ 10'					
rilling Company TALON DRILLING		AS-BUILT WELL LOCATION (NAD 83 HORIZONTAL DATUM)						
	Abell	.			INATE IN US SUR			
iller's Signature ACJEPL	abellas	NO	RTHING:		EASTING:			
ation No. <u>OCAUH</u>	Date 2 2010	Ч .			OR			
2220			TITUDE:		LONGITUDE:			
JU-CC ⊌			0	· … "	0	• • • • • • • • • • • • • • • • • • •		
RIGINAL: DEP	COPIES: DRILL	.ER	OWNE	R	HEALTH D	EPARTMENT		
	COTIDO DIGDE							

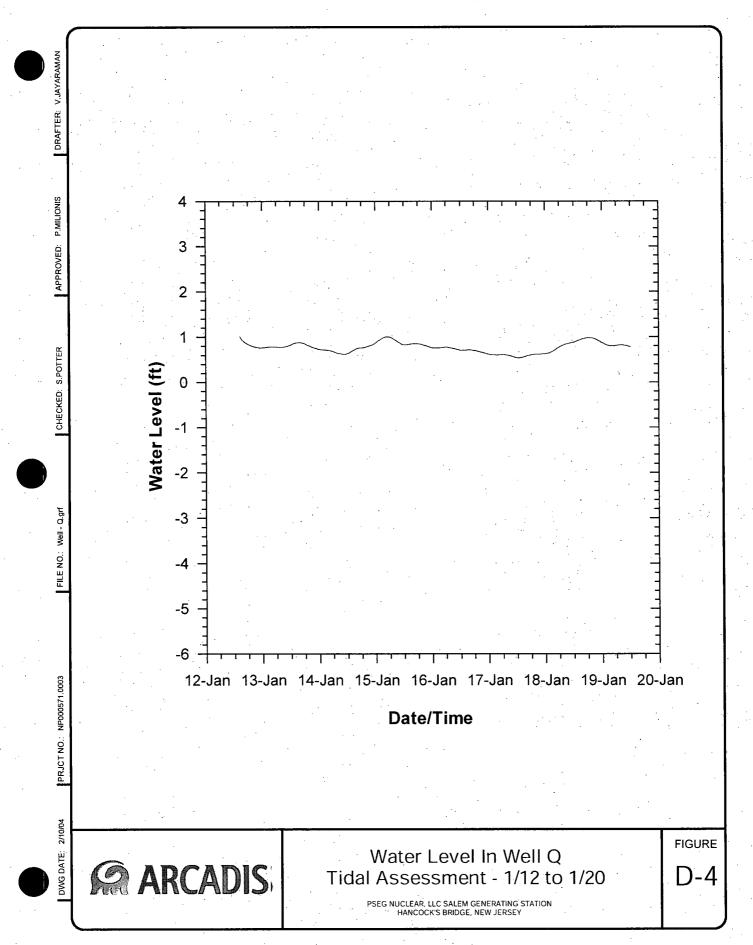
	MONITORING W	ELL RE	CORD		3400007 Atlas Sheet Co	
WNER IDENTIFICATION PSE&G S	ERVICES CORP				34016	
s 80 PARK PLACE			;		•	
Newark	State New Jerse	у		Zip Co	de <u>07102</u>	•
ELL LOCATION - If not the same as ow	ner please give address	Ow	ner's Well No	5. AT	- ·	•
	ty Lower Alloways Creek		Lot No. 4.			
ddress ALLOWAY CREEK NECK RD S	ALEM GENERATING ST	ATION A	<u>F</u>			· .
ELL USE Monitoring		DATI	E WELL STA	RTED	1120104	
			E WELL CO			•
ELL CONSTRUCTION	•					-
otal Depth Drilled 22 ft	Note: Measure all depths from land surface	Depth to Top (fl.)	Depth to Bottom (fl.)	Diameter (inches)	Material	WgL/Rating (lbs/sch no.)
	Single/Inner Casing	-3"	12	4	PVC	
inished Well Depthft. Iorehole Diameter:	Middle Casing	<u></u>		<u>T</u>		Schul
Top /O in.	(for triple cased wells only)		l			
Bottom 10 in.	Outer Casing (largest diameter)					
Vell was finished: above grade	Open Hole or Screen			.1	0.10	
I flush mounted	(No. Used 010) Blank Casings	12	22	<u> </u>	puc	Schru
f finished above grade, casing height stick up) above land surface ft.	(No. Used)				۰ · ·	
teel protective casing installed?	Tail Piece					
	Gravel Pack	9	22	0	morie San	
whic Water Level after drilling 9 ft.	Grout	0	9	10	Neat Cement Bentonite	$\frac{284}{15}$ lbs
Water Level was Measured Using tap	<u>e</u>	J	Grouting Meth	· • • • • • • • • • • • • • • • • • • •	remie	
Well was developed for <u>3</u> hours			Drilling Metho		Dw stem	auger
t <u>S</u> gpm					GIC LOG	<u> </u>
Method of development <u>SUb</u> Pump Capacity gr	- <u>F</u>	Not	e each depth whe	re water was e	ncountered in consol	lidated
Pump Type	m	ION	nations			
	of Rig Auger	1)-9' Si	it san	nd, grau	rel, tan
Iealth and Safety Plan Submitted? Yes		- a	-94'			
evel of Protection used on site (circle one			<u>-0</u> #	······································	· · · · · · · · · · · · · · · · · · ·	
	U					
					·	
certify that I have constructed the above	referenced well in		····			
ccordance with all well permit requireme ules and regulations.	nts and applicable State		·			
Filling Company TALON DRILLING C	0		AS-1	BUILT WE	LL LOCATIO	N
Vell Driller (Print)OSCO	Abell		(NAD	83 HORIZ	ONTAL DATU	M)
Iriller's Signature	Urell or			ANE COORD	INATE IN US SUR	VEY FEET
ation No. <u>CE24431</u>	Date 2 DOI 04		THING:		_ EASTING: DR	
A2200		ł	ITUDE:	·	LONGITUDE:	
US 339		н. — М. —		s	0	n
·		سببا مح	OWNEI		UFAITUD	EPARTMENT
RIGINAL: DEP	COPIES: DRILLE	. K	UMINE	\ .	nealin d	CFARIMENI

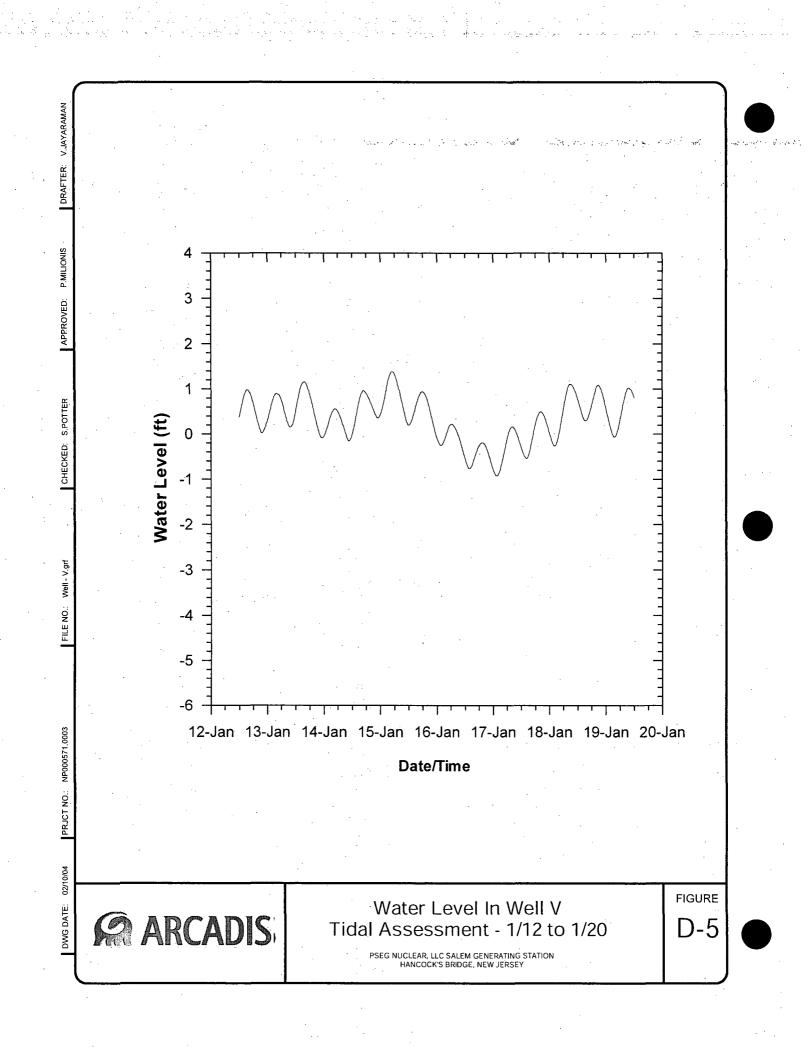

4	Bureau of Water			3400007140				
	MONITORING W				Atlas Sheet Co			
·	ERVICES CORP		<u> </u>		34016:	34		
80 PARK PLACE				7-0-				
Newark	State New Jerse	<u> </u>			le <u>07102</u>			
LL LOCATION - If not the same as ov			ner's Well No			• •		
	ity Lower Alloways Creek		Lot No. <u>4</u> .	01 Block	No. 26			
ress ALLOWAY CREEK NECK RD	SALEM GENERATING ST	ATION A						
LL USE Monitoring	· · · · · · · · · · · · · · · · · · ·	DATE	WELL STA	RTED	1/21/04	<u>-</u>		
		DATE	WELL CO	MPLETED	1/21/04	_		
LL CONSTRUCTION	Note: Measure all depths	Depth to	Depth to	Diameter	Material	Wgt./Rating		
al Depth Drilled 25 ft.	from land surface	Top (fl.)	Bottom (ft.)	(inches)		(lbs/sch no.)		
ished Well Depth 25 ft.	Single/Inner Casing	-3!	15	2	prc	SCHUU		
ehole Diameter:	Middle Casing (for triple cased wells only)	·			· ,			
Top <u>7</u> in.	Outer Casing	1						
Bottom in.	(largest diameter)							
Il was finished: above grade	Open Hole or Screen (No. Used) ()	15	25	2	PVC:	Schyd		
Inished above grade, casing height	Blank Casings							
ck up) above land surface ft.	(No. Used)	<u> </u>	\`][<u> </u>			
protective casing installed?	Tail Piece	1.3	25	<u>الــــــــــــــــــــــــــــــــــــ</u>	Morie	400165		
	Gravel Pack Grout		$\left -\frac{\sigma}{\sigma} \right $	- <i> </i>	Neat Cemen	t 284 lbs		
the Water Level after drilling \underline{q} ft.			13	17	Bentonite	<u>IS</u> lbs		
ater Level was Measured Using $\pm \alpha$	pe		Grouting Meth		emic			
ell was developed for <u>3</u> hours		·]	Drilling Meth		wstern	auger		
ethod of development		· .			GIC LOG			
	spm		te cach depth wh mations	cre water was e	ncountered in cons	olidated		
тр Туре	5 r ···	_				· · · · · · · · · · · · · · · · · · ·		
	e of Rig AUORT		0-10'	sand	grave	<u> </u>		
ealth and Safety Plan Submitted?)-25' .	sand	SIH ar	avel		
evel of Protection used on site (circle or	ie) None D C B		······································		0			
	Ŭ	. –	Wate	n Q	<u>q.</u>			
ertify that I have constructed the abov		-				· · ·		
cordance with all well permit requiren les and regulations.	ents and applicable State				· · · · ·			
rilling Company TALON DRILLING	CO				ELL LOCATI			
ell Driller (Print) TOSPON	A 1 1 1	•			ZONTAL DAT			
riller's Signature	alyel	-	NJ STATE P	LANE COOR	DINATE IN US SU EASTING:	JRVEY FEET		
ation No. 002443	Date $2 \pm 0/0^{1}$	·			OR			
		LA	TITUDE:		LONGITUDE:			
15329			0	-'''	• • • • • •	· · · · · · · · · · · · · · · · · · ·		
RIGINAL: DEP	COPIES: DRILL	LER	OWN	ER	HEALTH	DEPARTMENT		
· · ·						•		

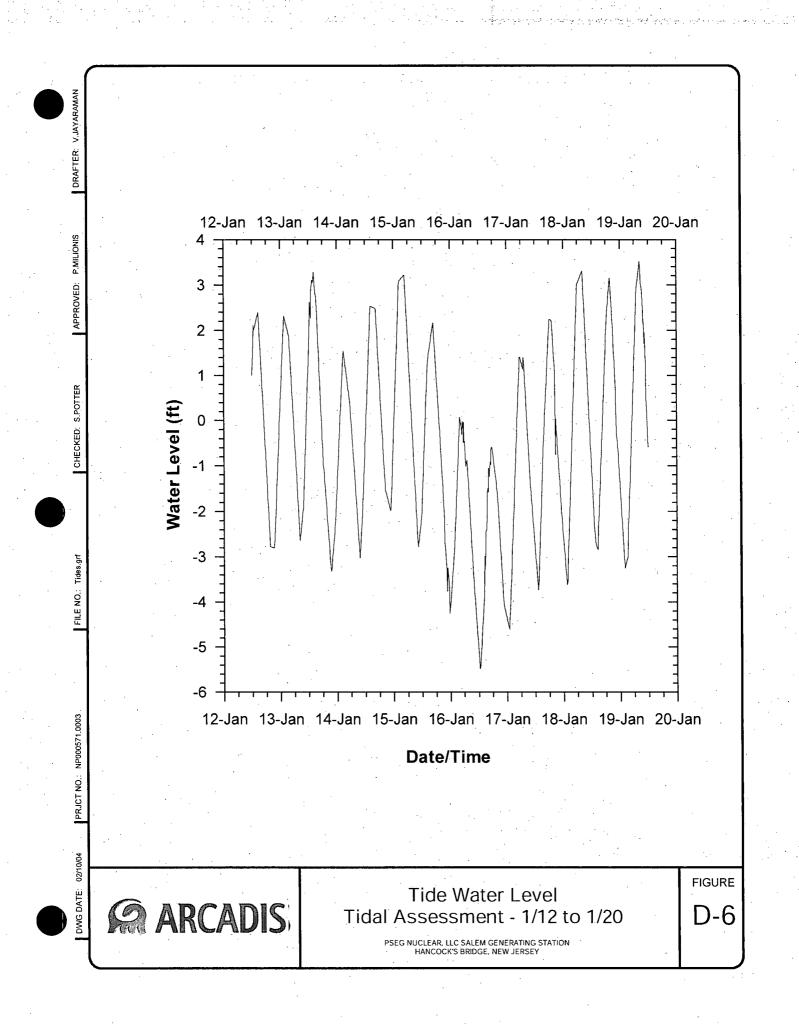
	New Jersey Department of E Bureau of Water	Well Permit Number 3400007141 Atlas Sheet Coordinates				
· · · · · · · · · · · · · · · · · · ·	MONITORING W	MONITORING WELL RECORD				
	E&G SERVICES CORP				34016	34
80 PARK PLACE	······					
Newark	State New Jerse	<u>y</u>	· · ·	Zip Co	ie <u>07102</u>	
LL LOCATION - If not the same	e as owner please give address	Ow	ner's Well No	. An)	
	nicipality Lower Alloways Cree	ĸ	Lot No. 4.	01 Block	No. 26	
ress ALLOWAY CREEK NECK	K RD SALEM GENERATING ST	TATION A	F			
LL USE Monitoring				DODD	il al air	
			E WELL STA		Ilislou	• • •
	•	DATI	E WELL CO	WPLEIED	115104	-
ELL CONSTRUCTION	Note: Measure all depths	Depth to	Depth to	Diameter	Material	Wgt/Rating
al Depth Drilled 21 ft.		Top (ft.)	Bottom (fL)	(inches)		(lbs/sch no.)
ished Well Depth 21 ft.		- 3."	11	4	PVC	Sch 40
rehole Diameter:	Middle Casing (for triple cased wells only)		· · ·			
Top <u>10</u> in	Outer Casing					
Bottom <u>10</u> in	. (largest diameter)	<u> </u>	L			
ell was finished: above grade	Open Hole or Screen (No. Used O(O))	11	21	u	PVC	Sch 40
Inished above grade, casing heigh						
	ft. (No. Used)]	l	<u> </u>		
protective casing installed?	Tail Piece					
s No	Gravel Pack	18.5	2	10	Morie sa	
atic Water Level after drilling 9	Grout ft.		8.5	10	Neat Cement Bentonite	$\frac{284}{15}$ lbs
ater Level was Measured Using	tape	J <u></u>	Grouting Meth		emie	
ell was developed for 3 hou	1		Drilling Metho		s stem a	waer
<u>,5</u> gpm	• • •			GEOLO	GIC LOG	
	6 pump				countered in consol	lidated
mp Capacity.	gpm	for	nations			
тр Туре		1-7	1-9' Jan	d, gra	vel, silt,	6 //
illing Fluid	Type of Rig Auger	_ _				
alth and Safety Plan Submitted?			-21' Sar	rd, gra	vel, sitt,	fill
vel of Protection used on site (cir	cle one) None (D) C B	^				
			· · ·			
						·
ertify that I have constructed the	above referenced well in		·	· · · · · · · · · · · · · · · · · · ·		
cordance with all well permit req les and regulations.	uirements and applicable state			· · · · · · · · · · · · · · · · · · ·		
illing Company TALON DRILI	LING CO				LL LOCATIO	,
ell Driller (Print) TOSE	ph Abell				ONTAL DATU	
iller's Signature	1 Alvell ~			ANE COORD	INATE IN US SUR	VEY FEET
ation No. 002443	Date 2 120101	1	THING:		_ EASTING: DR	
			TTUDE:	L. L	LONGITUDE:	
03339			0	•	0	• н
RIGINAL: DEP				``		
	COPIES: DRILL	L.N.	OWNE	n.	ACALIH D	EPARTMENT

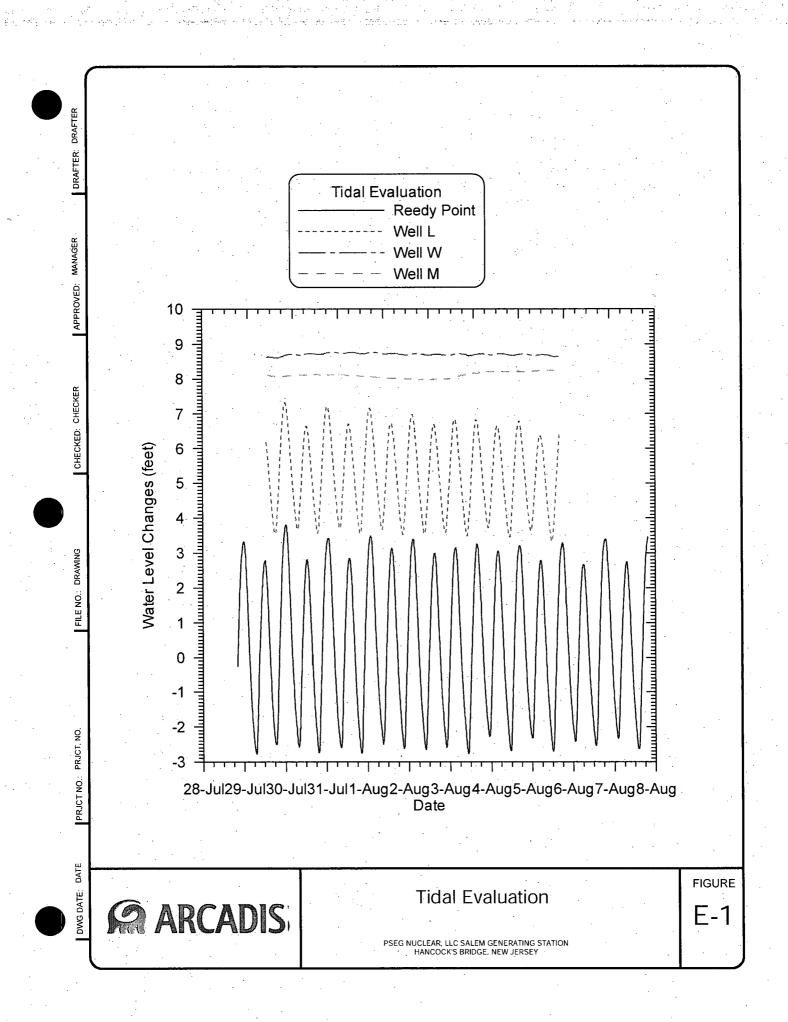

Appendix D


. :


Tidal Evaluation Results

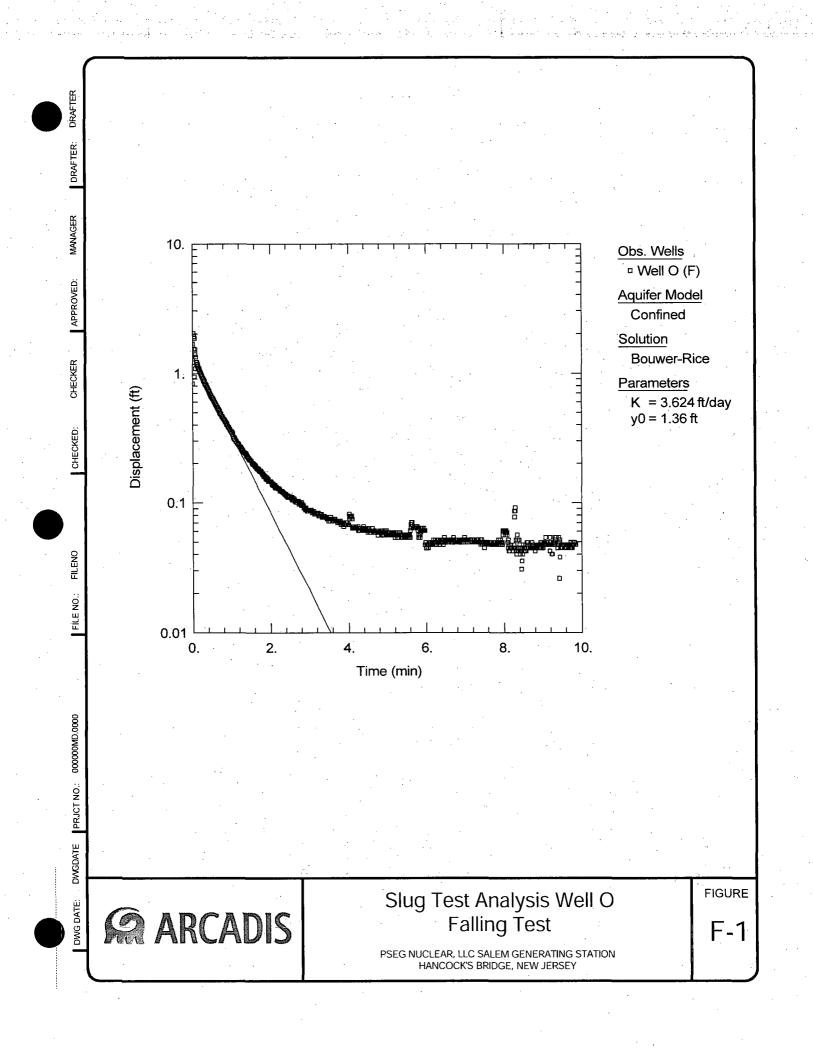


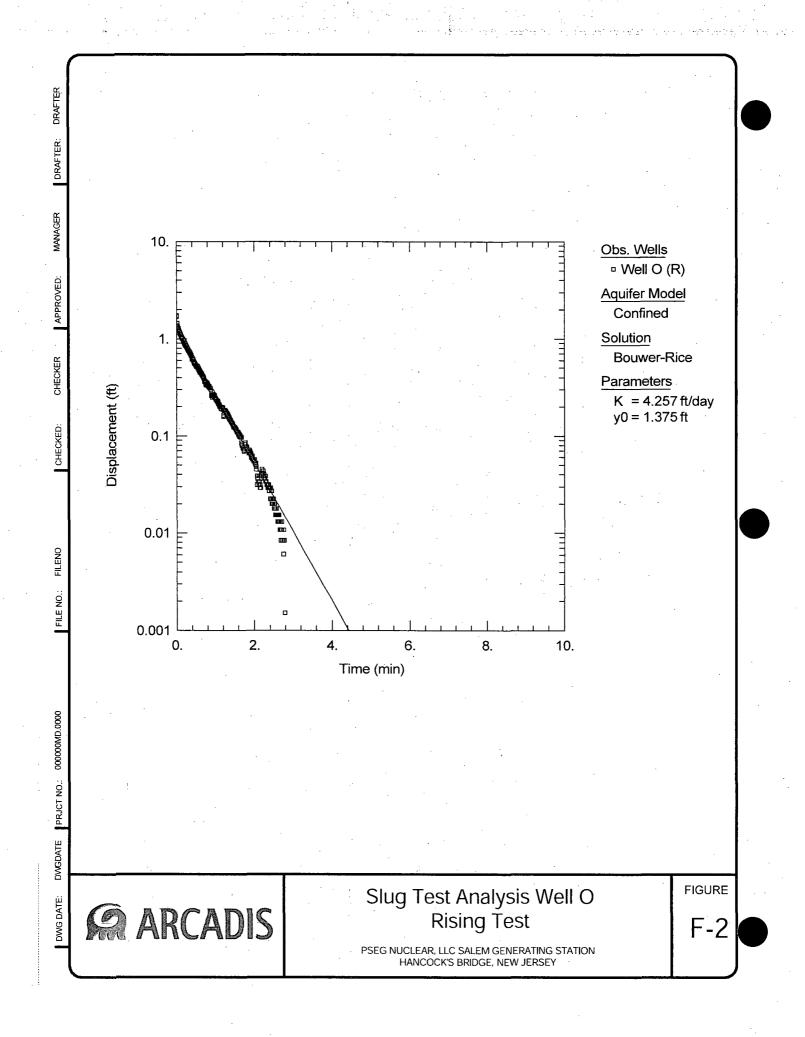

د بار الدينة التركيمي . مرجع وسيد والحن بار الدي مرجع الرديوج

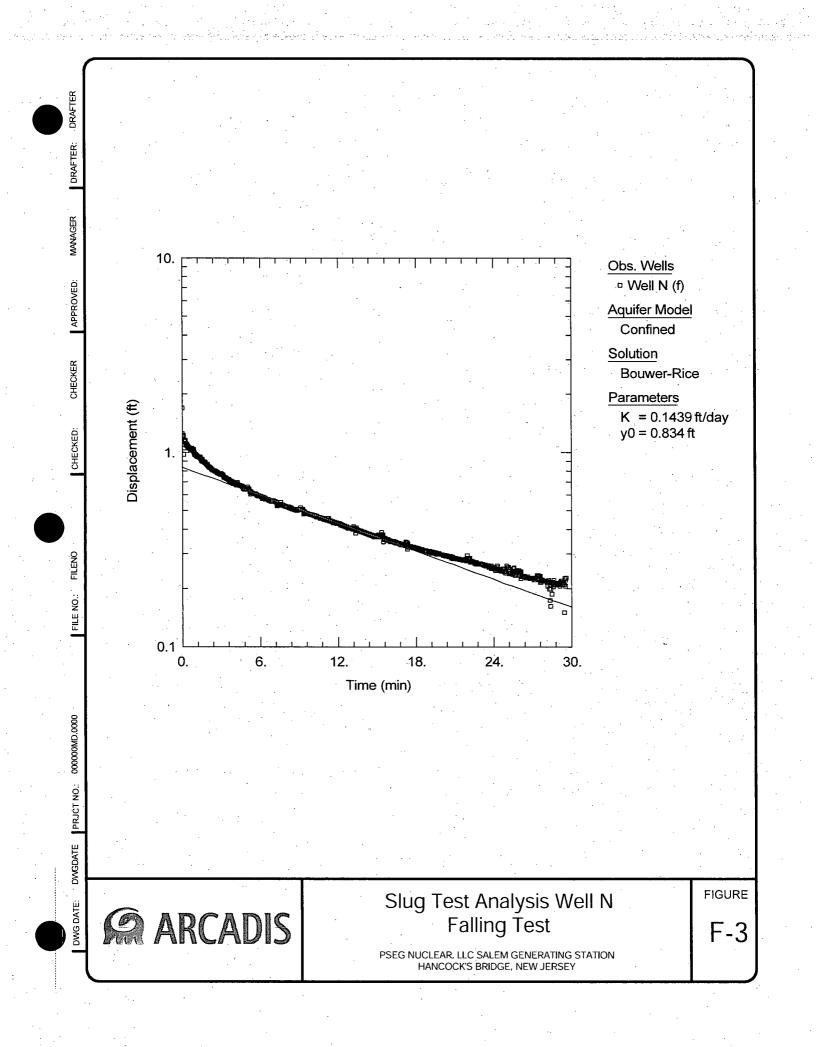


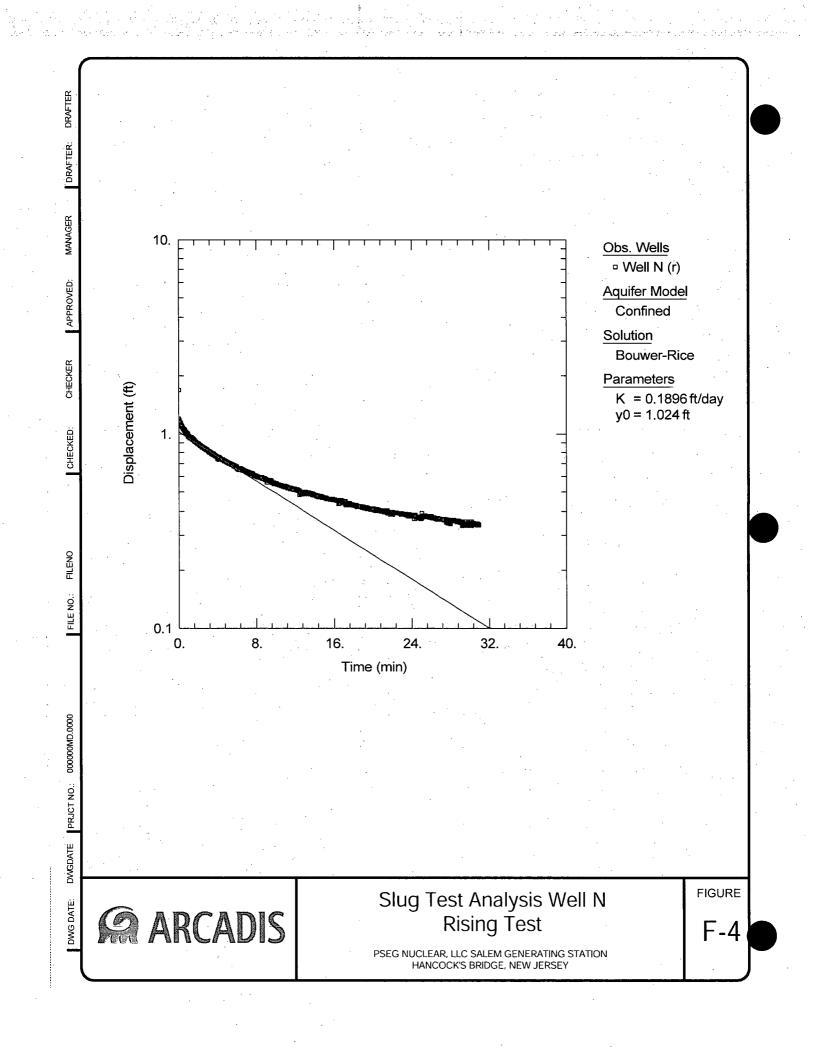
Appendix E

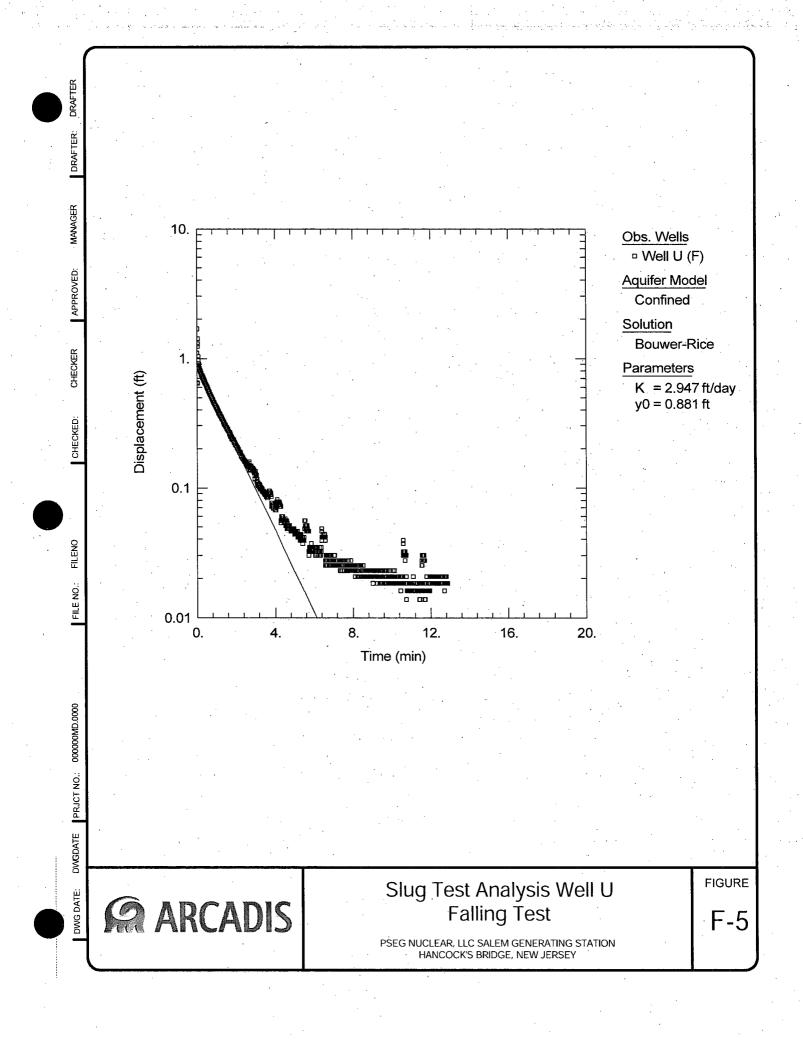
Evaluation of Water Levels in the Vincentown Formation

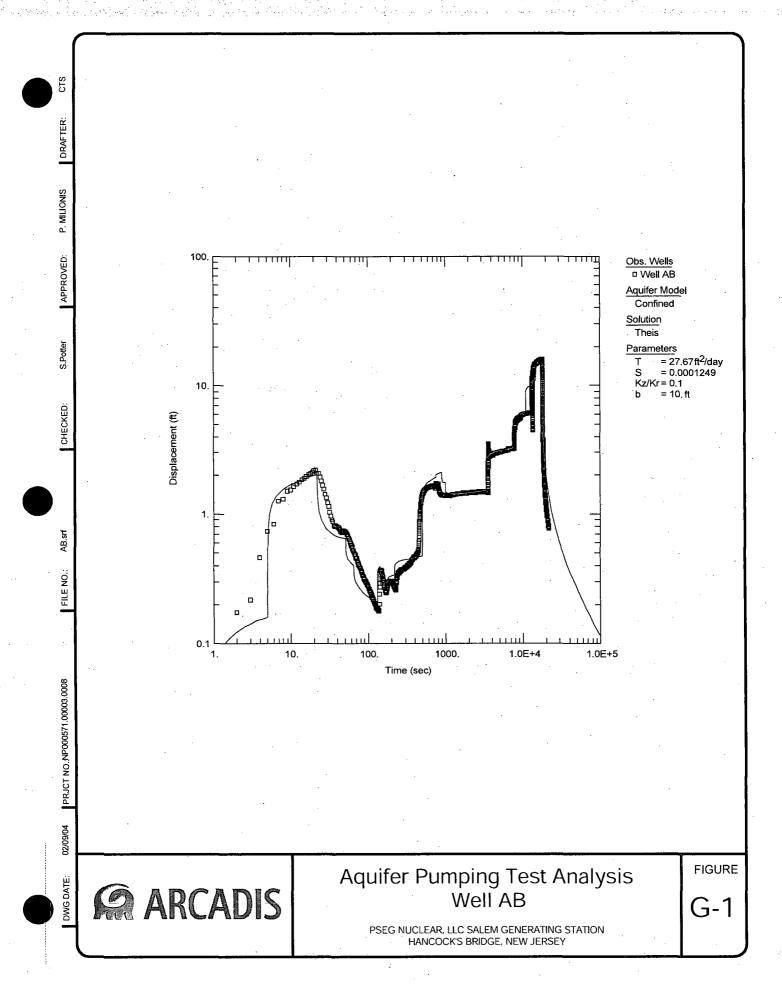


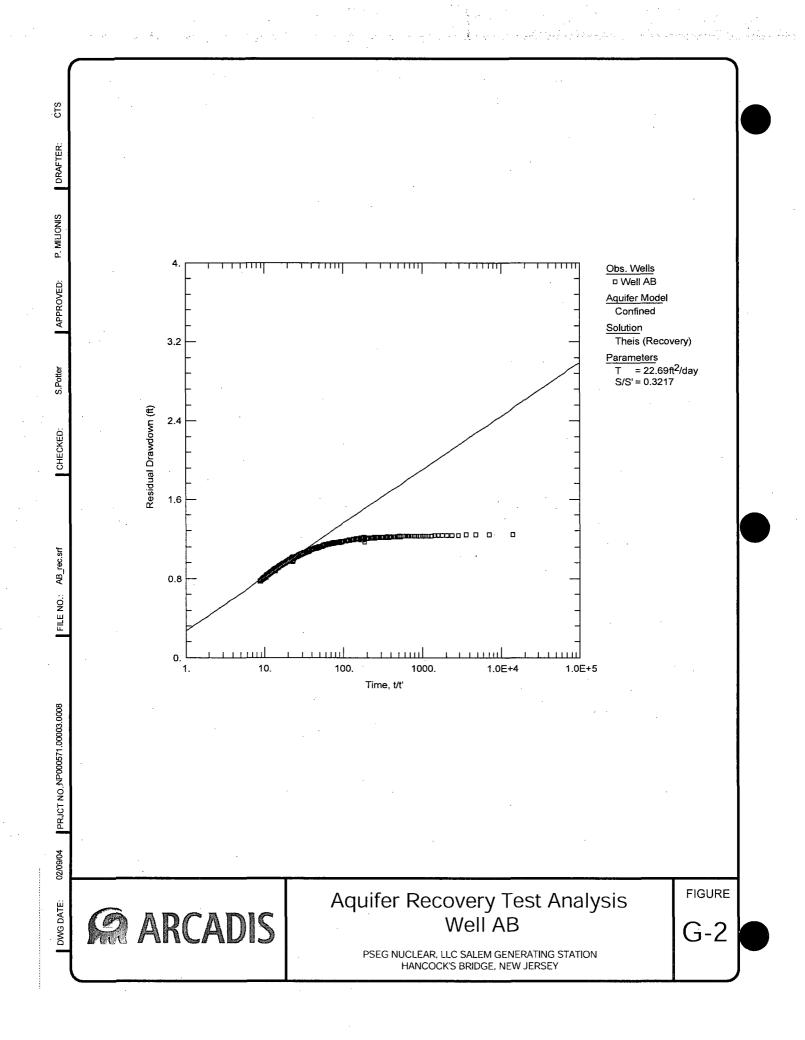

· · ·

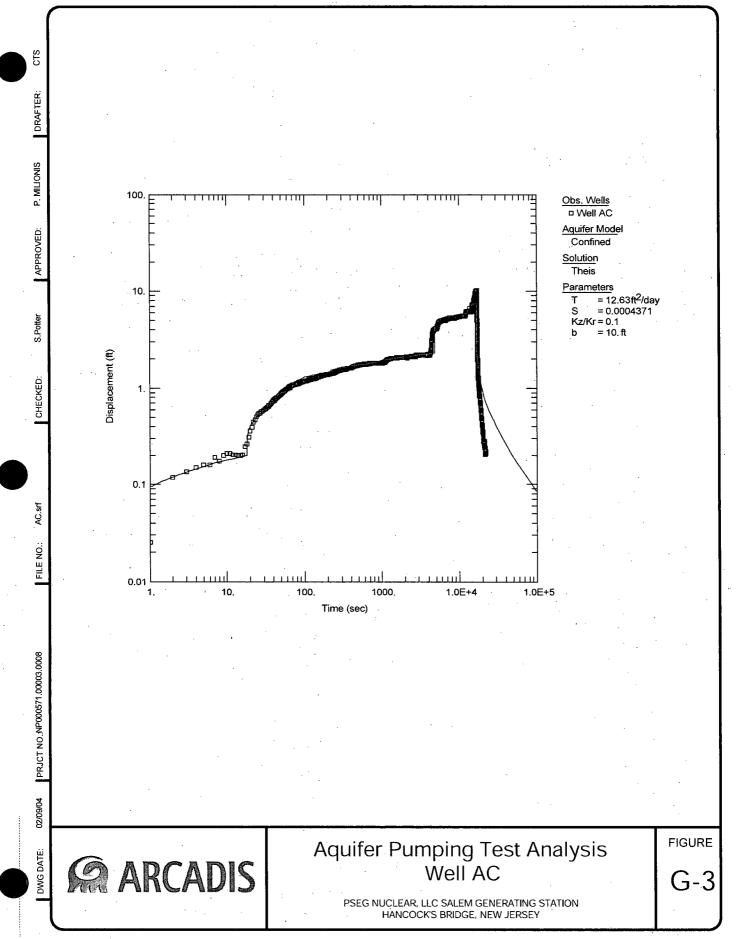


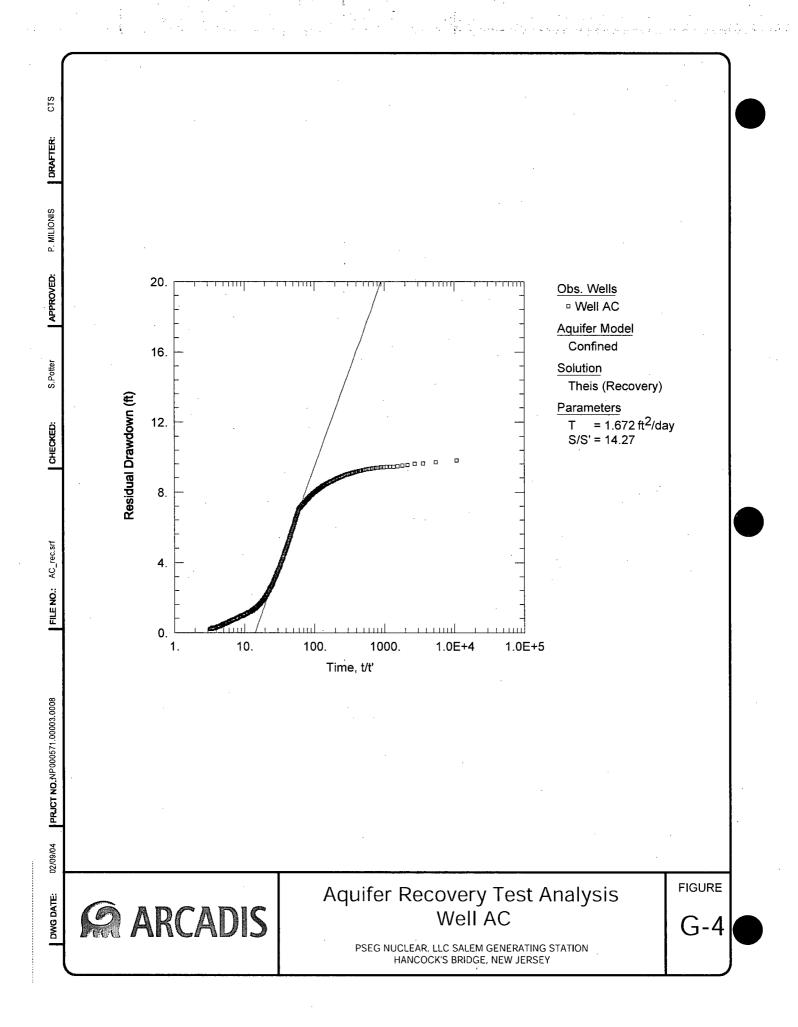

Appendix F

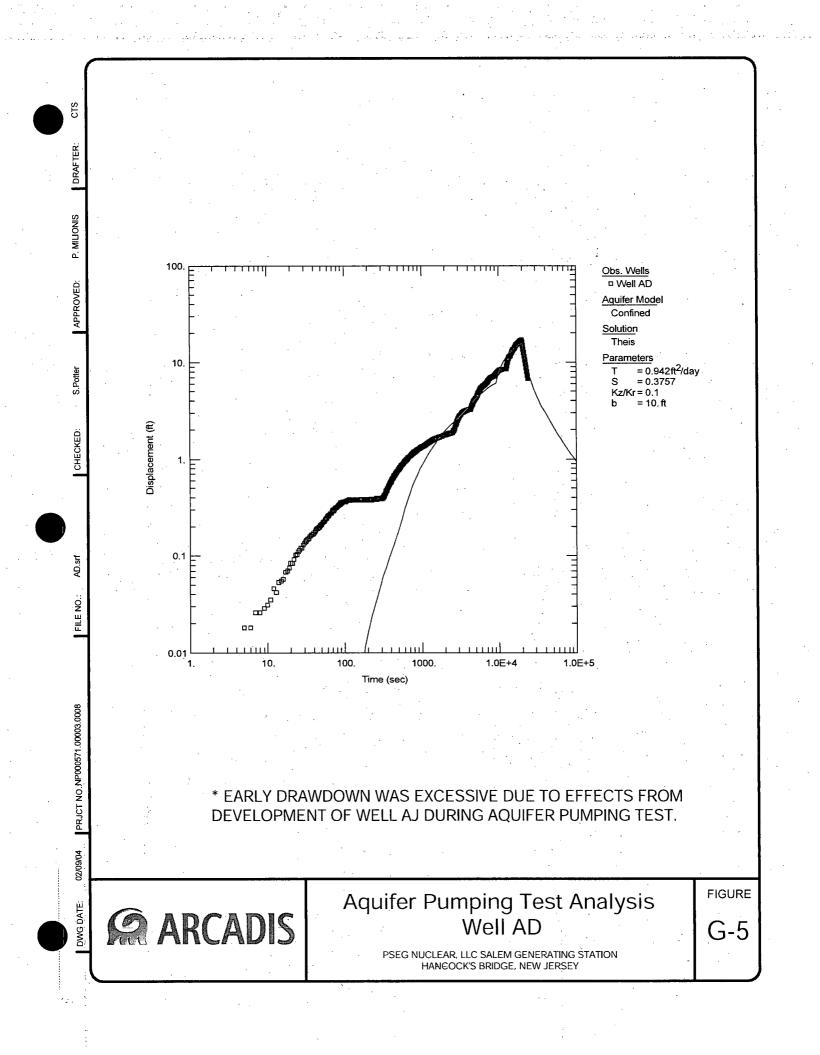

Slug Test Results

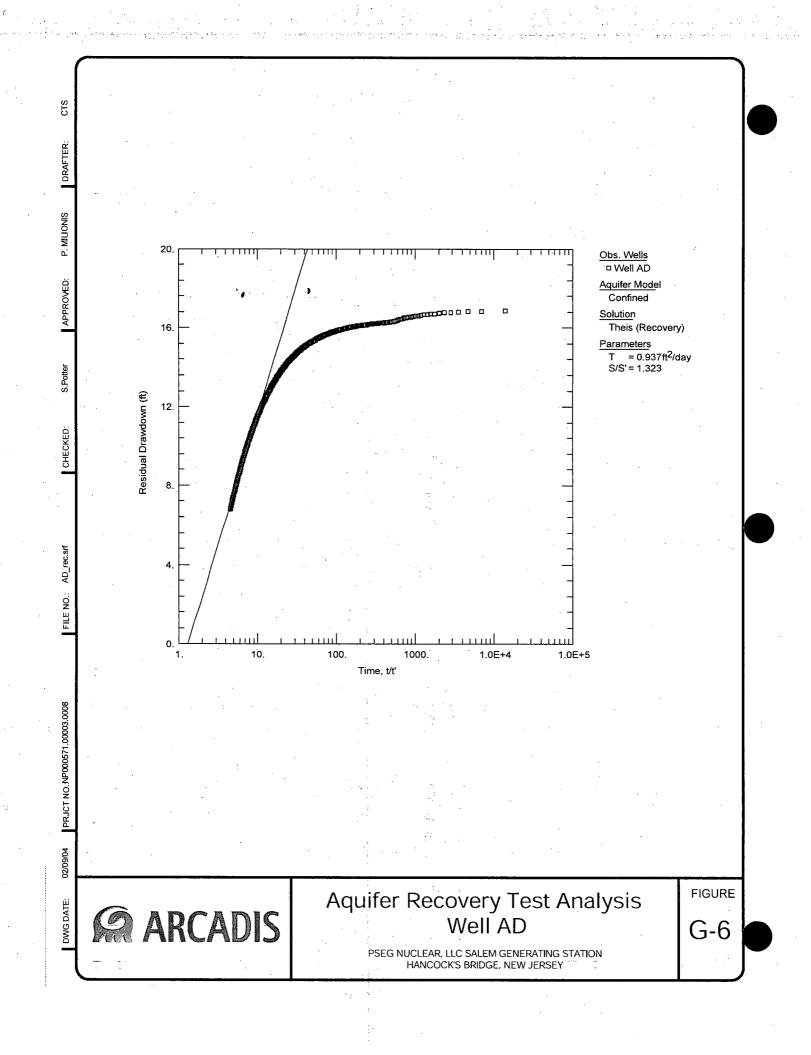


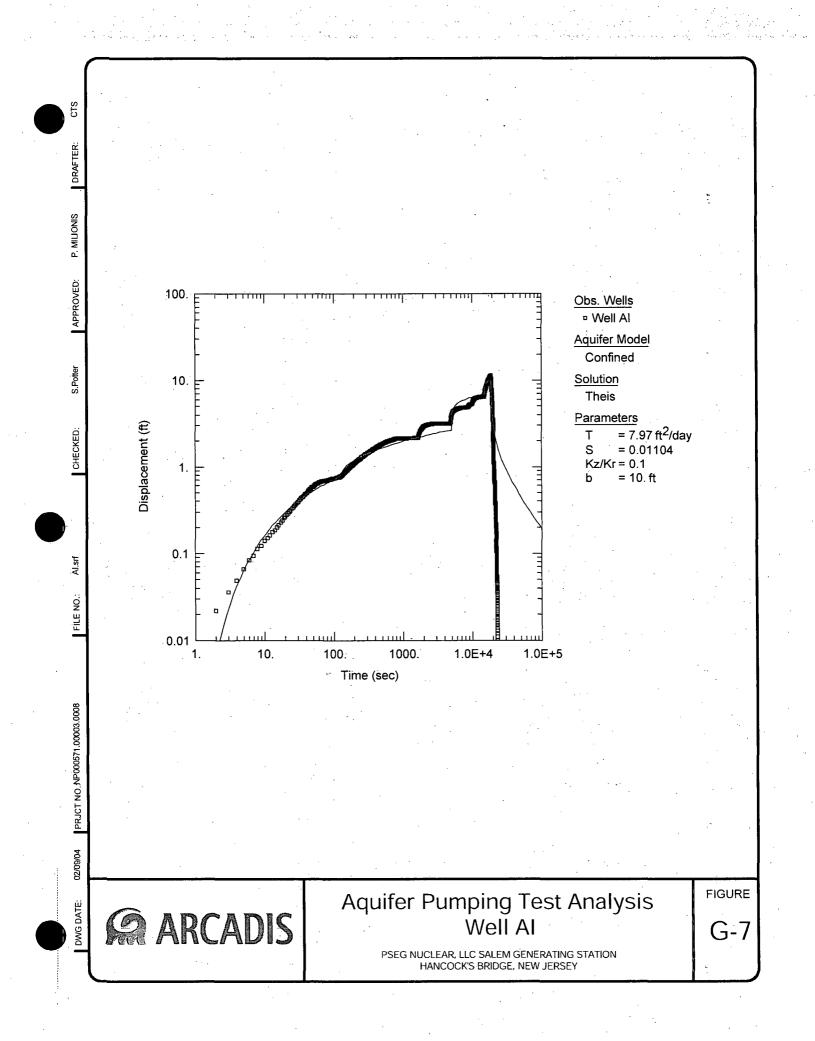


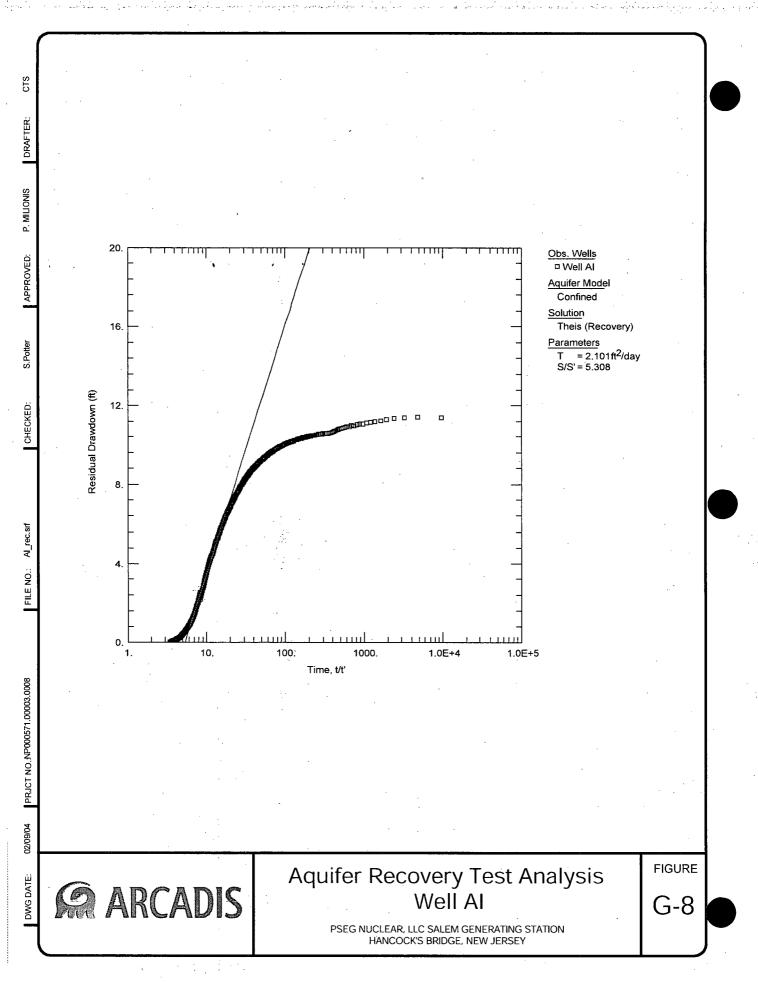


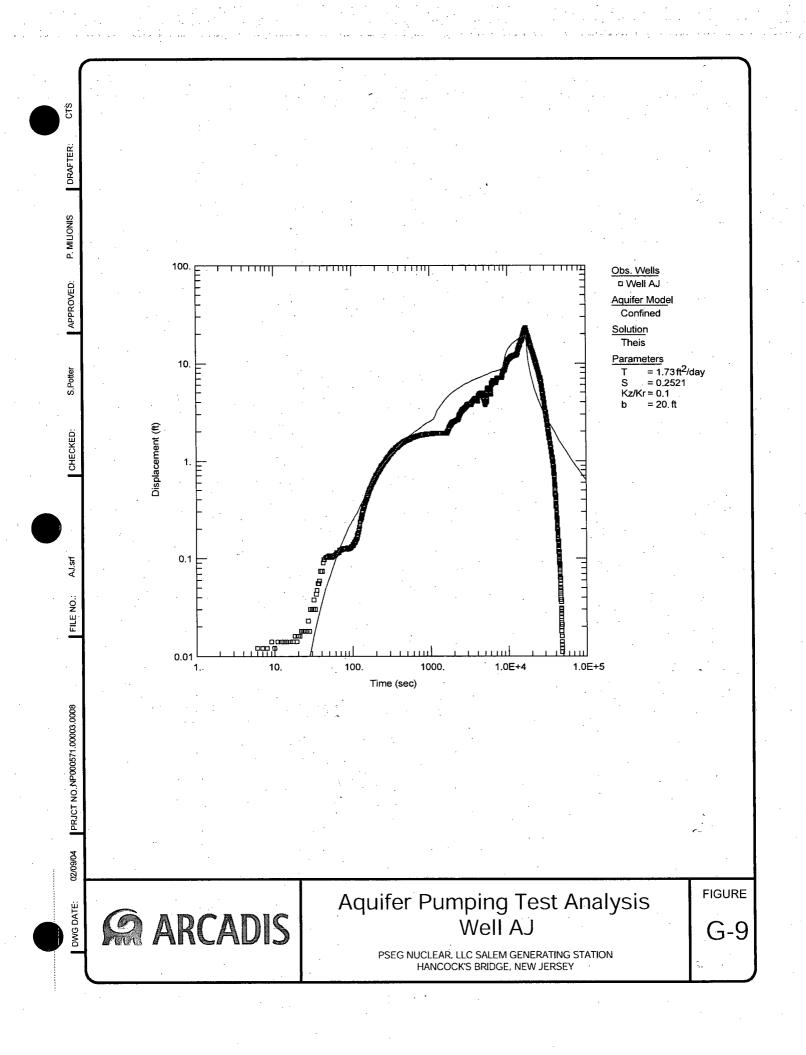

Appendix G

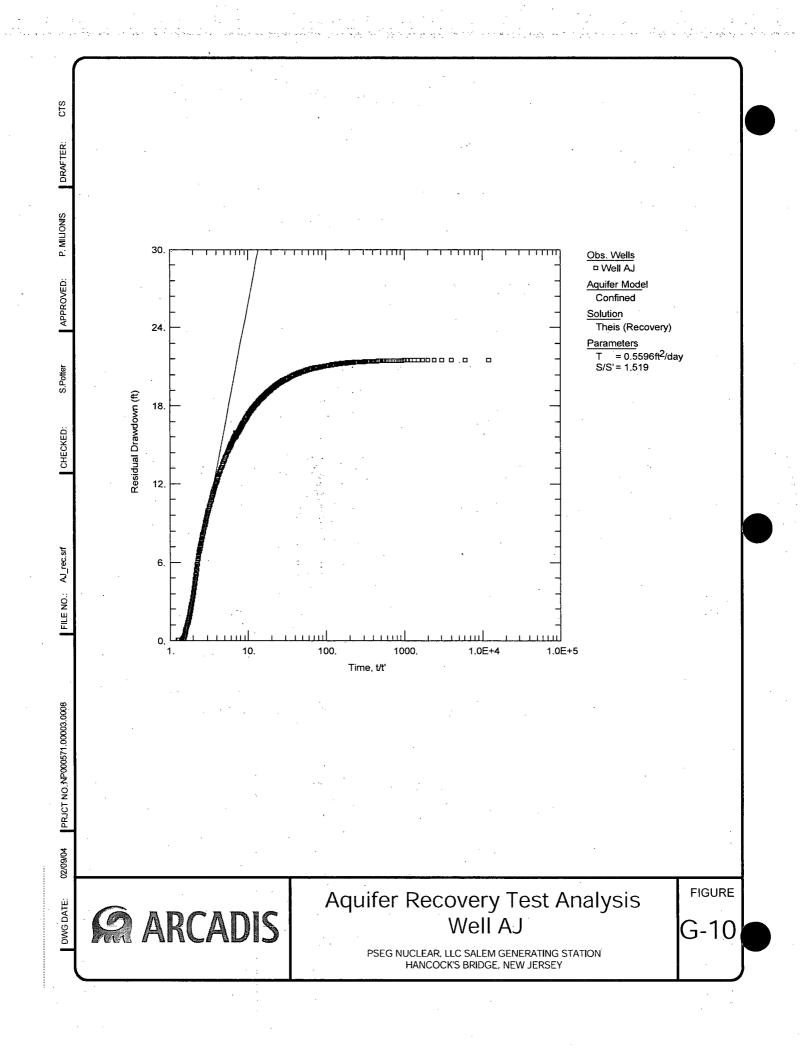

Pumping Test Results

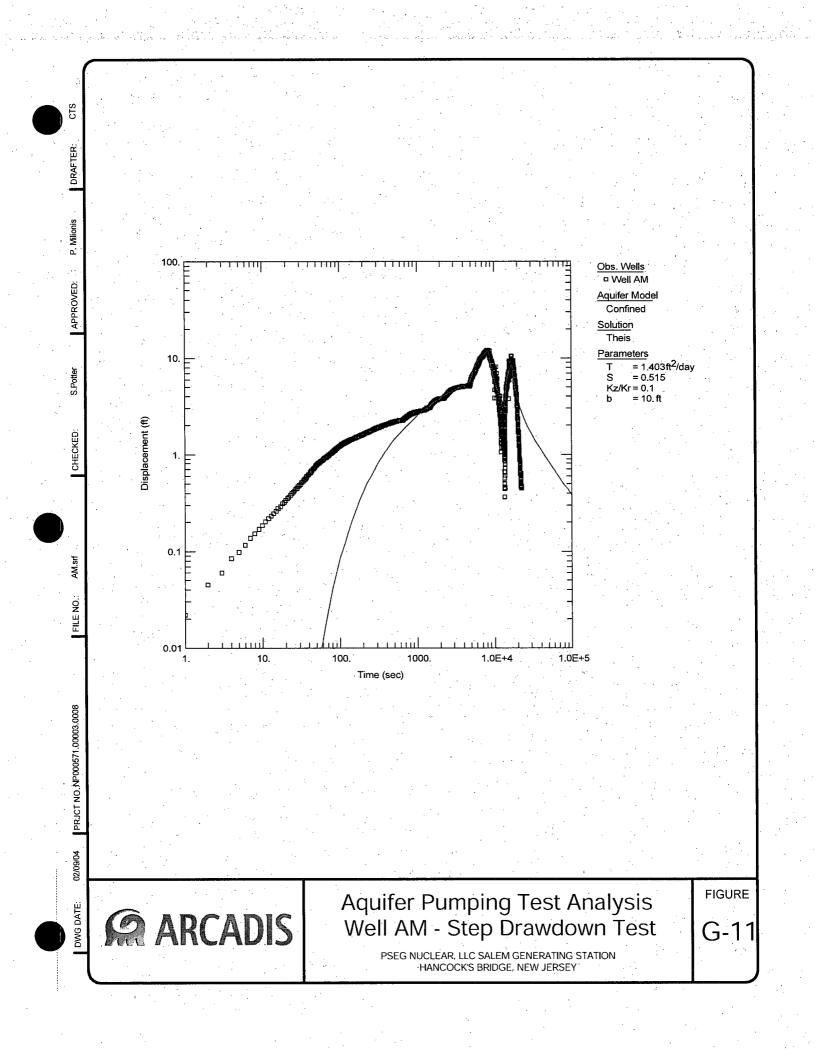


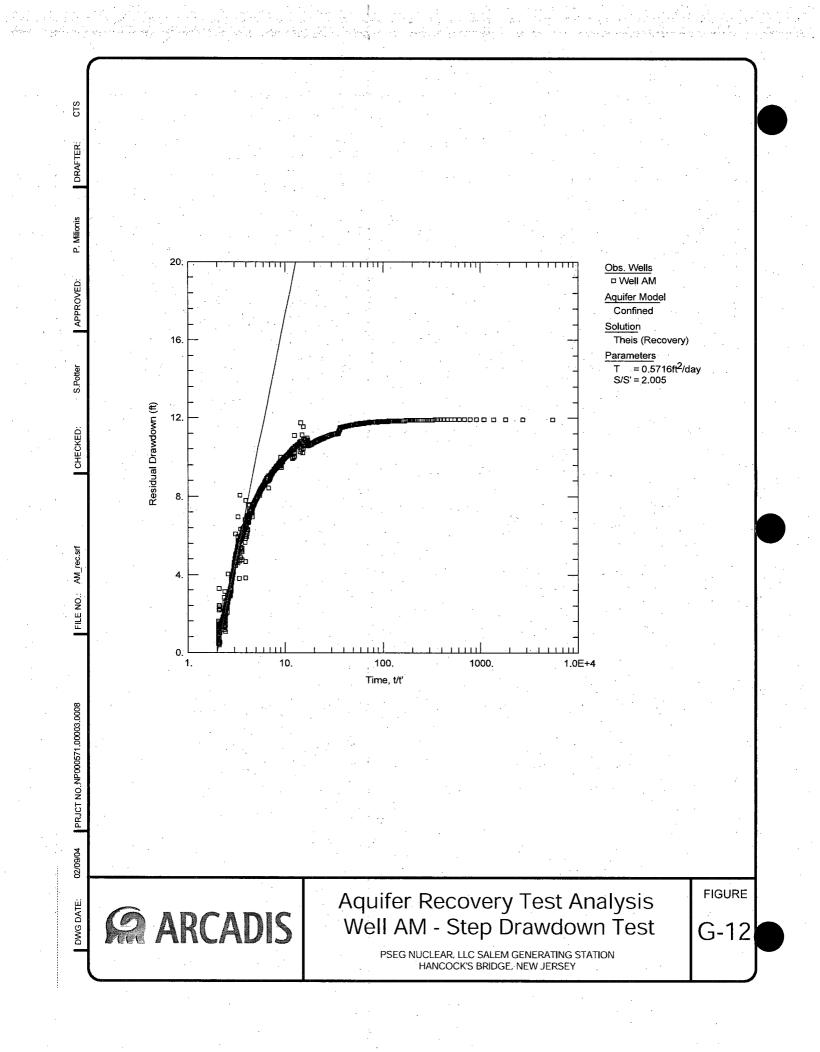


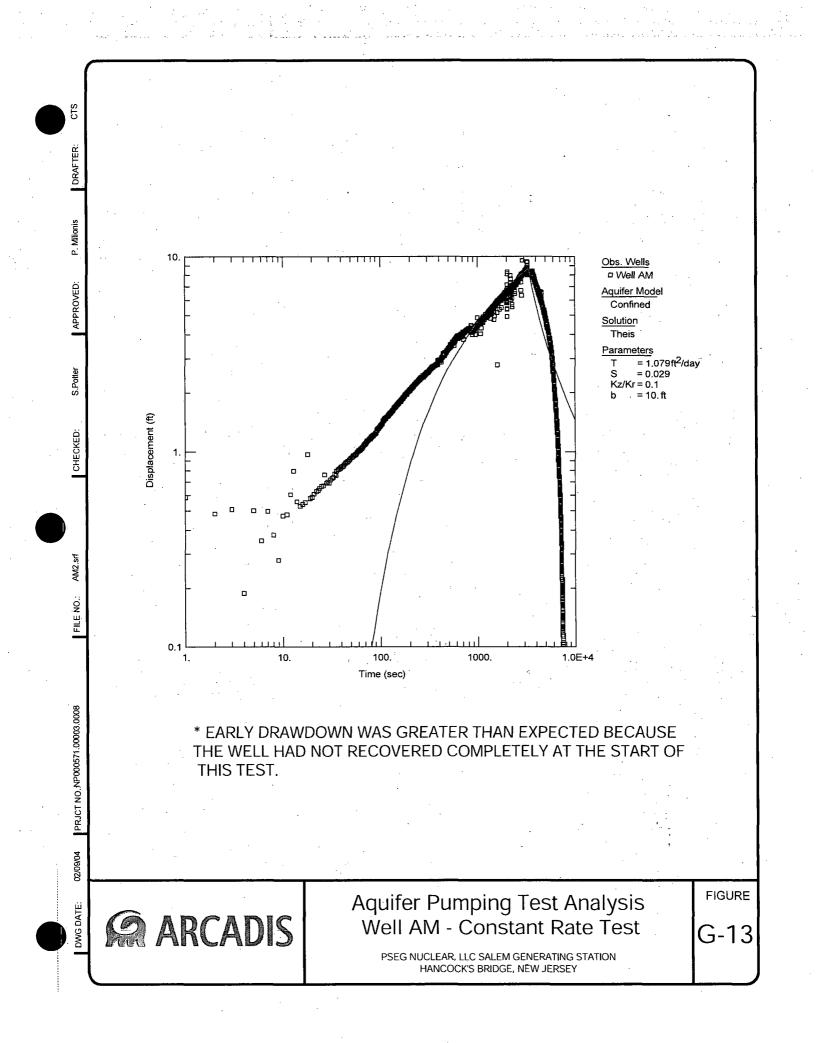


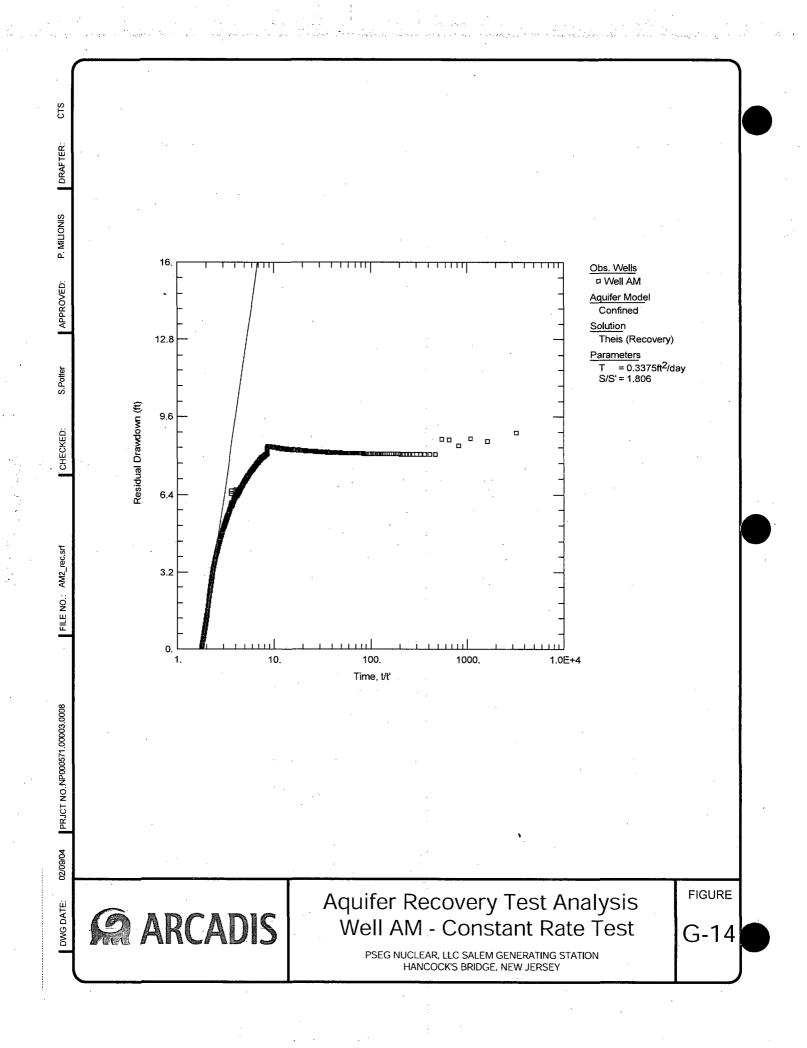


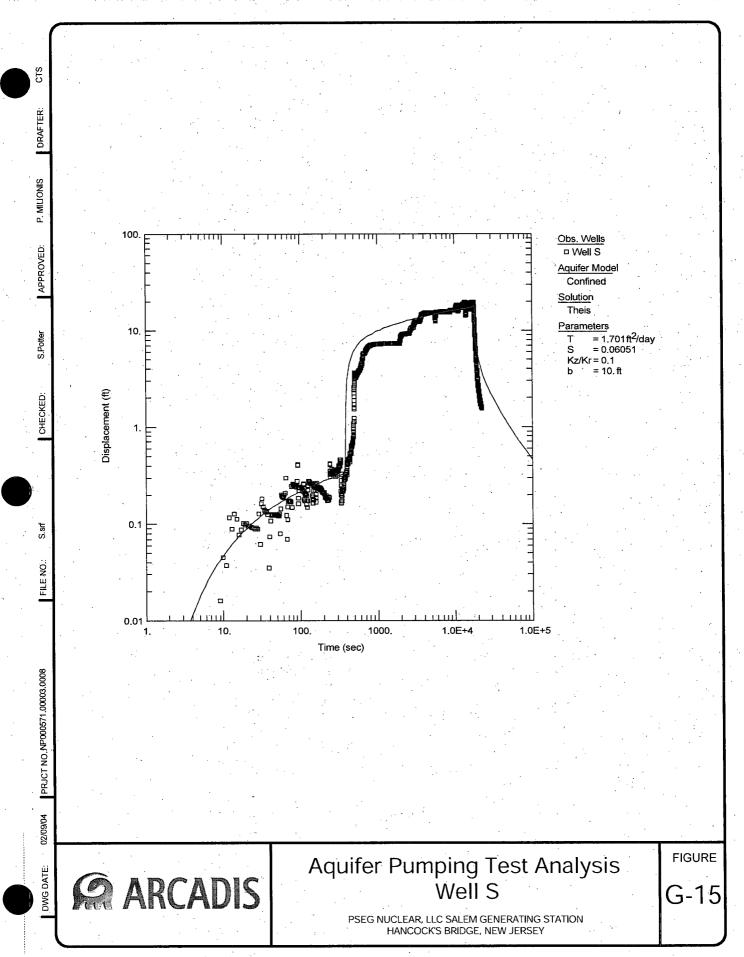


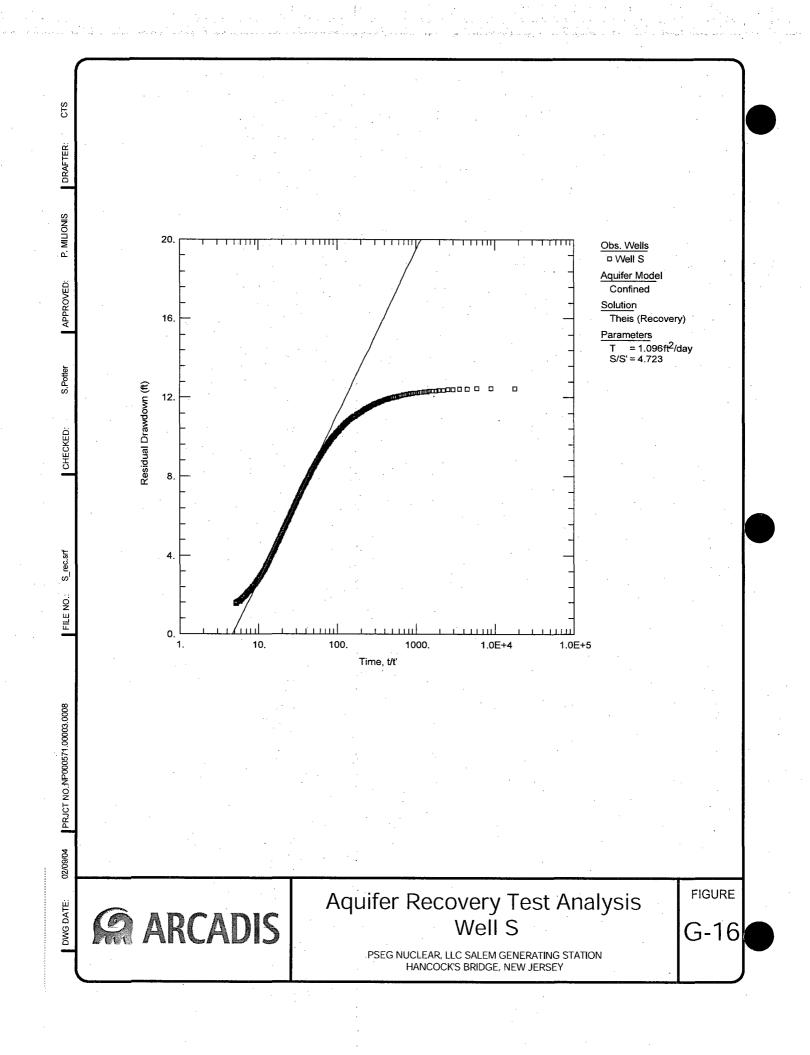





.2







Appendix H

Dissolved Gas, Technetium-99 and Groundwater Age Determination Results for the PSEG Nuclear, LLC Salem Generating Station

Dissolved Gas, Technetium-99 and Groundwater Age Determination Results for the PSEG Nuclear, LLC Salem Generating Station Prepared by Dr. Robert Poreda, University of Rochester

This report details the results of the dissolved gas, technetium-99 (Tc-99), and groundwater age determination performed on groundwater samples collected through November 2003 from the monitoring well network at the PSEG Nuclear, LLC Salem Generating Station (the "Station"). The analyses were performed in accordance with the attached procedures (Attachment 1 – Groundwater Age Determination and Attachment 2 – Tc-99). Analytical results for the groundwater samples, which are summarized in the attached table, are evaluated based on the water-bearing zone where the monitoring wells are screened. The three primary water-bearing zones investigated beneath the Station are: 1) the Vincentown Formation; 2) the shallow, water-bearing unit within the limits of the cofferdam; and, 3) the shallow, water-bearing unit outside the limits of the cofferdam. Hydrogeologic and geochemical data indicate that the zones of the shallow, water-bearing unit within and outside the limits of the cofferdam are hydraulically connected, but the zones are evaluated as separate units because of their relative proximity to the facility structures.

1. Summary of the Vincentown Formation

- Well K –The groundwater age analysis of samples from Well K indicates that tritiated water containing between 3,000 picocuries per liter (pCi/L) to 5,000 pCi/L of tritium recharged approximately 19 years ago and has traveled to the upper part of the Vincentown Formation (70 to 80 feet below ground surface). The upper limit of 5,000 pCi/L is estimated by assuming dispersion of a slug of tritiated water over 20 years and is based on measured dispersion for non-nuclear waters from the 1963 bomb pulse at other sites (Solomon et al 1993). The most likely location for the recharge is east of Well K based on groundwater flow. Tc-99 was detected in the groundwater sample collected from this well at a concentration of 0.8 pCi/L, which is consistent with post-nuclear precipitation (i.e., background) for the eastern United States 25 years ago.
- Well L –The groundwater age analysis of Well L indicates that groundwater adjacent to this well recharged approximately 21 years ago with tritium concentrations (measured at 45 pCi/L) equivalent to local precipitation 20 to 25 years ago (based on the Szabo et al measurements at Gloucester). The background tritium concentrations indicated by Well L demonstrate that the release of tritium 20 years ago as indicated by Well K was relatively minor and did not extend over a wide area in the Vincentown Formation. Well L is located to the west and downgradient of the Station near the brackish/fresh water interface. The background concentrations of tritium detected in groundwater samples collected from Well L indicate that the clay confining-unit of the Kirkwood Formation has

effectively segregated the Vincentown Formation from the overlying shallow, water-bearing unit.

Well P – The groundwater age analysis of Well P indicates that precipitation with background concentrations of tritium (60 pCi/L - equivalent to local precipitation 20 to 25 years ago, based on the Szabo et al measurements at Gloucester) recharged approximately 13 years ago. The methane concentration indicated by groundwater samples collected from Well P (1 cubic centimeter per kilogram [cc/kg]) suggests that the recharge area for Well P is likely in or near the marshes to the east of the Station or that a small amount of methane has been generated within the Vincentown Formation. As with Well L, the background concentrations of tritium detected in groundwater samples collected from Well P indicate that the clay confining-unit of the Kirkwood Formation has effectively segregated the Vincentown Formation from the overlying shallow, water-bearing unit.

Well Q –The low-level analysis for tritium in the groundwater sample from Well Q indicates a tritium concentration close to the method detection limit (1.5 pCi/L). This low concentration of tritium suggests that groundwater in the vicinity of this well recharged close to the onset of the nuclear era (circa 1950). Dissolved methane concentrations in groundwater samples collected from Well Q (38 cc/kg or 1.7 millimoles/kg [mmol/kg]) and levels of argon and nitrogen below solubility limits indicate that the likely point of recharge is the marshes that border the Station to the east.

Well V –The results of the groundwater age analysis of Well V are consistent with the results of Well K. Groundwater samples collected from Well V indicate a slightly elevated tritium concentration (549 pCi/L) relative to background (local precipitation). The initial tritium level in the recharge water is estimated to be approximately 3,000 pCi/L. The results of the groundwater age analysis for Well V indicate a slightly younger age relative to Well L and Well K, but the age is within the range observed for these wells (13 to 22 years). The relatively high concentration of dissolved methane detected in the groundwater sample collected from Well V indicates that the groundwater either recharged in the marshes to the east of the Station, or is from in situ biological production.

Analytical results of groundwater samples collected from monitoring wells screened in the Vincentown Formation (Wells K, L, P, Q, and V) do not indicate that tritium from the Station has migrated beyond the shallow, water-bearing unit above the Kirkwood Formation and into the deeper Vincentown Formation. Tc-99 concentrations indicated by groundwater samples collected from Well K and Well V (0.5 pCi/L and 0.8 pCi/L, respectively) are consistent with the suspected ambient concentration in precipitation recharged during the 1970s. The Tc-99 concentrations indicated by Well K and Well V are approximately 10 parts per million (100,000 times below) of Spent Fuel Pool water (based on data from Ginna station). At this concentration, Tc-99 is not an effective

indicator of Spent Fuel Pool water due to the combined effects of ambient Tc-99 and a concentration of Tc-99 near the method detection limit.

2.0 Summary for the Shallow, Water-Bearing Formation Within the Limits of the Cofferdam.

Well M – The groundwater age analysis of Well M indicates a relatively young \geq age for this groundwater since it became isolated from the atmosphere (less than 0.1 years). The young age suggests that preferential pathways for fluid flow may exist in the subsurface near the plant and/or that elevated dissolved atmospheric helium concentrations have resulted in skewed age determination results. Elevated dissolved atmospheric helium concentrations could be the result of increased gas exchange between the atmosphere and the structural fill within the cofferdam or from the introduction of atmospheric gases during the monitoring well installation activities. The Tc-99 concentration indicated by the groundwater sample collected from this well is at or near the regional background concentration of 0.5 pCi/L. The ratio of tritium/Tc-99 at Well M (280,000) is more than 100 times the estimated ratio of 2000 for the Salem Spent Fuel Pool (based on data from Ginna station). The absence of Tc-99 in groundwater from Well M indicates that the tritium detected in this well may have a source other than the Spent Fuel Pool, or that tritium migrated to Well M by aqueous diffusion. The diffusion coefficient of tritium is approximately 0.04 square meters per year (m^2/vr) (mean diffusion length is about 0.1 m/yr), relative to an approximate Tc-99 diffusion coefficient that may be as much as an order of magnitude lower than tritium (accurate Tc-99 diffusion data does not exist). Diffusion of tritium would be several times more rapid than Tc-99 because of the smaller size of the molecule and the lack of interaction with soil (i.e., sorption).

Well N –The groundwater age determination of the sample from Well N suggests a recharge age of approximately one year. The young age suggests that preferential pathways for fluid flow may exist in the subsurface near the plant and/or that elevated dissolved atmospheric helium concentrations have resulted in skewed age determination results. Elevated dissolved atmospheric helium concentrations could be the result of increased gas exchange between the atmosphere and the structural fill within the cofferdam or from the introduction of atmospheric gases during the monitoring well installation activities. The Tc-99 concentration for this well is at or near the regional background concentration of 0.5 pCi/L or less than 10 ppm of Spent Fuel Pool levels. The absence of Tc-99 in groundwater from Well N indicates that the tritium detected in this well may have a source other than the Spent Fuel Pool, or that tritium migrated to Well N by aqueous diffusion similar to Well M.

Well O –The groundwater age determination of the sample from Well O indicates a relatively young age of approximately 0.22 years. The young age suggests that preferential pathways for fluid flow may exist in the subsurface near the plant and/or that elevated dissolved atmospheric helium concentrations have resulted in skewed age determination results. The Tc-99 concentration for this well is at or near the regional background concentration of 0.5 pCi/L.

- Well R Groundwater age results from Well R suggest an age of approximately 1.2 years. This age is consistent with the location of Well R at the maximum in hydraulic head where the flow path is almost vertical; the age is a lower limit because of loss of He-3 by diffusion and possible exchange with the atmosphere. The Tc-99 concentration for this well is at or near the regional background concentration of 0.5 pCi/L (see discussion for Wells M and N).
- Well AC Groundwater samples from Well AC were not submitted for analysis for dissolved gases, Tc-99, or groundwater age determination at the University of Rochester because of the elevated concentration of tritium detected in this sample by Salem Chemistry. Station protocols prohibited the transport of this sample off site.
- Well AE –The analytical result of the groundwater sample collected from Monitoring Well AE indicate a tritium concentration of 8,500 pCi/L. The groundwater age determination of the sample from Well R indicates a relatively young age of approximately 0.33 years. The recent groundwater age again suggests that preferential pathways for fluid flow may exist in the subsurface near the plant and/or that elevated dissolved atmospheric helium concentrations have resulted in skewed age determination results. The Tc-99 concentration for the sample from Well AE is at or near the regional background concentration of 0.5 pCi/L.

Analytical results of groundwater samples collected from monitoring wells screened in the shallow, water-bearing unit within the limits of the cofferdam (Wells M, N, O, R, AC, and AE) indicate groundwater ages of less than 0.1 years to approximately 1.2 years. The recent groundwater age again suggests that preferential pathways for fluid flow may exist in the subsurface near the plant and/or that elevated dissolved atmospheric helium concentrations have resulted in skewed age determination results. Tc-99 concentrations indicated by groundwater samples collected from wells screened in this unit are consistent with the regional background concentration for this constituent. The absence of Tc-99 indicates that the tritium detected in these wells may have a source other than the Spent Fuel Pool, or that tritium migrated to the wells by aqueous diffusion

3.0 Summary for the Shallow, Water-Bearing Formation Outside of the Limits of the Cofferdam.

- Well S The groundwater age determination of the sample from Well S indicates a relatively young age (less than one year). The recent age of this water is consistent with other shallow wells close to the plant and inside of the cofferdam. The Tc-99 concentration for this well is at or near the regional background concentration of 0.5 pCi/L.
- Well T Analytical results of the low-level tritium analysis of the sample from Well T indicate a tritium concentration of 257 pCi/L. The groundwater age analysis for this sample indicates an age of approximately 1.6 years, which is consistent with the ages of other samples collected from this zone. The analytical results of the groundwater sample collected from Well T indicate a methane concentration and low concentrations of dissolved atmospheric gases (15% of solubility) consistent with recharge in the marshes to the east of the Station (similar to Wells Q and U). The Tc-99 concentration for the sample from Well T is at regional background concentration.
- Well U Analytical results of the low-level tritium analysis of the sample from Well U indicate a tritium concentration of 78 pCi/L. The groundwater age analysis for this sample indicates an age of approximately 4.1 years, which is consistent with the ages of other groundwater samples collected from monitoring wells screened in this zone. The analytical results of the groundwater sample collected from Well U indicate a methane concentration and low concentrations of dissolved atmospheric gases (15% of solubility) consistent with recharge in the marshes to the east of the Station (similar to Well T). The Tc-99 concentration for the sample from Well T is at regional background concentration.
- Well W –Analytical results of the groundwater sample collected from Monitoring Well W indicate a tritium concentration of 11,300 pCi/L, and the groundwater age determination for this well indicates an age of four years. The analytical results for the groundwater sample from Well W also indicate an elevated concentration of dissolved methane, which suggests that groundwater at Well W is a mixture of groundwater with characteristics similar to groundwater from Well T (or Well Z) with tritiated water from plant activity. Well W is located at or near the boundary between methane-rich water flowing from east to the south and west, and tritiated, methane free water that recharges to the south of Salem Unit #1. The Tc-99 concentration for the sample from Well W is approximately 4 pCi/L, which is above the regional background concentration (0.5 pCi/L). The ratio of tritium to Tc-99 (2700) is very close to the ratio in the Spent Fuel Pool (Tc-99 data from Ginna which has similar tritium and Spent Fuel Pool characteristics to Salem). Although Well W is located X feet from the center of the plume, it is only a few meters outside of the cofferdam.

- WELL Z Analytical results of the groundwater sample collected from Well Z indicate a tritium concentration of 730 pCi/L. Although the tritium concentration indicated by the groundwater sample collected from Well Z is slightly elevated relative to regional precipitation (i.e., background), there is no indication that the release of water from the Spent Fuel Pool has migrated to Well Z. The relatively high concentration of dissolved methane (24 cc/kg or 1.1 mmoles/kg) detected in the groundwater sample from Well Z indicates that the groundwater recharged in the marshes to the east of the Station. Results of the groundwater age determination indicate an age of 3.2 years, which is consistent with the other wells screened in this zone (e.g., Wells U, T, and W). The relatively low concentrations of dissolved methane indicated by monitoring wells installed near the facility and the elevated tritium concentrations indicated by groundwater samples collected from Wells S and AB contrast with the methane-rich, low tritium water indicated by Well Z.
- WELL AA Analytical results of the groundwater sample collected from Well AA indicate a tritium concentration of 734 pCi/L, which is similar to Well Z. A dissolved methane concentration of 0.22 cc/kg indicates that the site of recharge for groundwater at Well AA is likely in the vicinity of the cofferdam on the southwest side of the facility rather than the marshes to the east. Although Well AA is directly downgradient from Well S, it is apparent that groundwater with the characteristics of Spent Fuel Pool water has not migrated this far south (Well AA is located about 50 meters southwest of the cofferdam). The groundwater age analysis of the sample collected from Well AA indicates an age of 2.1 years.
- WELL AB Analytical results of the groundwater sample collected from Well AB indicate a tritium concentration of 321,000 pCi/L. The groundwater age result for this well is 1.4 years.
- WELL AF Analytical results of the groundwater sample collected from Well AF indicate a tritium concentration of 256 pCi/L. Groundwater age estimates for this well are about 10 years, indicating a relatively long/slow flow path (perhaps stagnant conditions) and little or no connection to contaminated waters seen close to the plant (e.g., S or AB). The groundwater at AF is methane-rich, suggesting a recharge location in the marshes to the east of the plant and similar to Wells U, T, and Z.

		i					Corrected For Excess Air						
Sample #	Tc-99 pCi/liter	⁴ He μcc/kg	Ne µcc/kg	N ₂ cc/kg	Ar cc/kg	<u>R</u> R _a	Methane cc/kg	⁴ He μcc/kg	⁴ He _{rad} μcc/kg	He-3* pCi/L	H-3 pCi/L	Age (yr)	
Salem L-80		43.11	190.4	13.8	0.351	2.253	0.19	43.11	-1.39	99	. 45	21.03	
Salem K-80b	0.8	51.90	204.3	15.2	0.333	22.475	0.46	46.08	2.18	1792	955	19.23	•
	0.0	29.69	90.7	6.6	0.169	0.745	37.91	47.55	6.53		1.6	10.20	
Salem Q-80	•									•		10 16	
Salem P-80		48.10	197.4	13.6	0.316	1.718	1.03	43.30	-0.26		58	12.46	
Salem O-20		59.83	228.6	14.4	0.361	1.321		49.29	3.84	30	6000	0.09	
Salem K-80		42.55	146.0	14.9	0.329	: 22.19	0.33	43.3		1662	955	18.35	
Salem Well 3		337.42	281.3	12.4	0.359	0.175	5.01	309.5	264.9		<0.5	>100	
PSEG Well 6		1920.21	294.6	16.5	0.501	0.062	0.05	1898.0	1849.9		<0.5	>100	
						• • •	•						
						• •	* 4		,		۰.	· . · · ·	
					,		· · · ·			'			
Salem Well T	0.7	4.18	14.9	1.7	0.041	1.273	31.92		. *	23	257	1.59	
Salem Well U	0.5	7.57	26.7	1.5	0.041	1.226	8.16			20	78	4.10	
Salem Well N	0.4	55.48	239.8	13.2	0.329		0.02	37.778	-5.525	24.2	5194	0.08	
Salem Well W	*****4.1	307.50	1354.7	26.6	0.390	4.225	17.26			263.9	13062	0.36	
Salem Well M	0.5	53.69	215.3	15.0	0.368	2.344	0.39	46.788	2.197		142696	0.02	
Salem Well O	. 0.2	59.06	216.5	14.4	0.310	2.010	0.01	48.627	4.320		12963	0.15	
Salem Well S	0.5	45.00	210.0	14.0	0.340	1564	0.01			126900	3480000	0.65	
Salem Well R	0.4	59.37	253.92	14.5	0.320	3.103		37.38	-6.67	227.6	3447	1.16	
Salem Well V	0.8									, ,	549		
						· ·		•		. •			
Salem Well Z	0.4	19.18	95.65	6.18	0.133	5.08	24.06		· .	142	729	3.24	
Salem Well AA	0.5	86.60	393.81	21.23	0.424	1.55	0.22		· •	88	734	2.06	
Salem Well AB	0.4	58.20	236.08	19.61	0.377	240.79	2.65			25261	321000	1.38	•
Salem Well AE	0.7	62.13	253.56	15.64	0.310	2.36	0.02	,		155	8558	0.33	
Salem Well AF	0.2	25.60	97.14	7.17	0.169	4.83	20.98			178	256	9.61	
Salem Well V	0.5	24.75	90.60	7.57	0.166	17.25	15.36			729	549	15.37	
Salem Well W	2.5	20.12	80.97	7.98	0.166	80.36	28.02			2891	11305	4.14	
Salem Well Y	LOST										2 	• • •	

Appendix H

Attachment 1

Research Laboratory Procedures Remedial Investigation Report PSEG Nuclear, LLC, Salem Generating Station, Salem, New Jersey

ltem	Title
1	Hydrology of the Salem Generating Station, Proposal, 26 February 2003
2	Standard Operating Procedure, Tritium-Helium Dating of Groundwater

In the event of a conflict between the Standard Operating Procedure and the Hydrology of the Salem Generating Station proposal, the Hydrology of the Salem Generating Station proposal will be followed.

r lanciectose&n/salem - tritiumtinal reports april 2004 - ridappendices appendix h - rochester results attachment 1 - age dation attachment 1 - cover doc

Hydrology of the Salem Generating Station

Proposal prepared for PSEG by Robert J. Poreda Professor of Environmental Sciences University of Rochester February 26, 2003 The proposed investigation will examine the potential for radionuclide migration in groundwater at the PSEG Salem Power Station. Specifically, the investigation addressed the source of the contamination, the magnitude of the release to the environment and the best methods to address long term monitoring at Salem. Standard monitoring by PSEG scientists had detected tritium at levels above environmental concentrations at several sites surrounding Salem #1. Of particular concern is the possibility that water from the spent fuel pool has leaked or is leaking into the groundwater that surrounds the containment building.

1.

2.

Sites that contained elevated tritium levels would also be analyzed for ¹²⁹I (a long-lived radionuclide produced by uranium fission). The Accelerator Mass Spectrometry method has a detection limit of 10⁶ atoms of ¹²⁹I/liter of water. ¹²⁹I measurements have several distinct characteristics that make it a suitable tracer for identifying sources of radionuclide release: a) ¹²⁹I displays "conservative" behavior in groundwater (as Γ) so that it migrates with the flowing water rather than adsorbing on particles (as is the case for ¹³⁷Cs). b) Because ¹²⁹I is a long-lived radio-isotope, it can be used to detect any past as well as present leakage of ¹²⁹I-bearing waters into the environment (the other iodine radio-isotopes decay to background levels in less than one month and hence are only useful in assessing very recent leaks): c) Elevated levels of ¹²⁹I should be characteristic of water leaking from the spent fuel pool because of the proximity to the large amount of. fissionable uranium, Water that leaks from other sources (e.g. the turbine drains or steam releases) should have low ¹²⁹I because the water that is used to generate the steam has extremely low concentration of dissolved ions.

Determine the residence time of groundwater in the vicinity of the containment building and the rate of possible shallow groundwater flow to the southwest (i.e. toward the river). Evaluate flow in the upper Vincetown Formation (50 to 80') to determine: 1. flow direction and recharge estimates; 2. Evidence for or against tritium migration from the surface fill into the Vincetown Formation; 3. the "age" of any tritium release. To accomplish this task, we used the ³He/³H groundwater age dating method. The validity of this method has been established in a series of papers by Poreda, Solomon, and Schlosser (with co-authors) (see references and appended papers). The technique makes use of the fact that groundwater, once it has been isolated from the atmosphere begins to accumulate ³He from the decay of tritium. Because tritium levels in this region are elevated relative to environmental levels, the technique is extremely sensitive in establishing rates of groundwater flow. We applied this method to the "down gradient" environmental monitoring wells and to the wells that (based on hydraulic heads) flow back to a basement sumps for processing. The goal will be to establish if the rates of groundwater flow away from and toward the facility from the age dating and simple mass balance calculation (residence time = volume of water/flux).

From this preliminary investigation and a review of the initial site survey, we will propose to PSEG an environmental well monitoring program that will provide for rapid and effective detection of the migration of any radionuclides off-site.

Tritium - Helium-3 Age Dating

We can estimate the transit time of the tritium in the subsurface by measuring the amount (%) of the tritium that has decayed to ³He [see the analytical methods section and the attached reference articles for complete procedures]. The tritium levels near the plant are typically 10 to 100 times average rainfall (1.0 vs. 0.1 pCi/g) and the likely source of the tritium is from activities at Salem (a major component is thought to have come from "events" (such as steam release into the system). To calculate a transit time for the tritium, we assume that once the water is isolated from the atmosphere (vadose zone) it begins to accumulate ³He. Thus the ratio of ³He*/³H can be used to assess the subsurface transit time by the following equation:

time =
$$(1/\lambda) \ln [(^{3}\text{He}^{*}/^{3}\text{H}) + 1]$$

where $\lambda = 0.0555 \text{yr}^{-1}$

Because a certain percentage of the ³He is from atmospheric solubility, we use the ratio of ³He/Ne in "air-saturated" water to subtract the atmospheric ³He from the total. The tritium values from the University of Rochester Lab will be compared with the estimates made by PSEG's direct counting techniques.

3.

Iodine-129 and the Iodine - Tritium Correlation

To investigate the potential sources of contamination at Salem, we extend the use of radioactive tracers to include the long-lived radioactive isotope of iodine, ¹²⁹I (15.7 million year half life), a product of U fission. The ratios of ¹²⁹I / ³H will help us to identify the release paths for the radionuclides. Iodine and tritium behave as "conservative" (non-reactive) tracers in groundwater. Different sources (secondary water, air-fall, spent fuel pool, natural groundwater) will have distinct ratios of ¹²⁹I / ³H. The ¹²⁹I measurement by Accelerator Mass Spectrometry can detect ¹²⁹I at levels of 10⁶ atoms and a ¹²⁹I/I ratio of 10⁻¹⁴. Thus, this represents an extremely sensitive and long-lived tracer for radionuclide release.

Steam is thought to have extremely low ¹²⁹I concentrations (1000 atoms/g), presumably because of the procedures used to remove ions from solution to ensure the integrity of the steam generation process. Any leakage of water between the primary and secondary systems leaks mainly tritium (1000 pCi/g) and is not a major release mechanism for other radionuclides. The Turbine Drain sample will serve as an analogue for the water that could leak during any steam release. Only the Spent Fuel Pool contains significant levels of ¹²⁹I (approximately equivalent to the natural creeks that drain the West Valley, NY facility) although there is no evidence that significant amounts of water have leaked from the pool into the environment. There is a factor of 10000 difference between the ambient ¹²⁹I concentration in precipitation (1000 atoms/g) and Spent Fuel Pool water (10,000,000 atoms/g). A similar factor of about a million exists for tritium in precipitation (0.05pCi/g) and spent fuel water(50,000 pCi/g). From this simple comparison, one can estimate the percentage of Spent Fuel Pool water finds its way into any of the groundwater monitoring wells. Other sources of significant ¹²⁹I, may come from the combined effects of "wash down" from the containment building and seepage into the Moat This washdown should be collected by the drainage system that surrounds the plant but must be evaluated as a potential source. A simple model would propose three potential "end-member" compositions for water at Salem : the Spent Fuel Pool water (high in tritium and high in ¹²⁹I), Turbine Drain Water (relatively high in tritium but very low in ¹²⁹I) and local precipitation (very low in tritium and ¹²⁹I.

ANALYTICAL PROCEDURES for IODINE

Water samples were prepared for ¹²⁹I /I ratio measurement by an adaptation of the method described in Fehn et al., 1992. Approximately 100 mL of water was used as starting material for sample preparation except for the two samples with the highest expected ratios where 1 mL and 0.1 mL were used. Since samples were expected to have high ¹²⁹I /I ratios and low iodine concentrations, carrier iodine with low ¹²⁹I content was added to each sample prior to extraction. Addition of carrier serves the dual purpose of increasing sample bulk to facilitate measurement, as well as preventing cross-contamination in the source from "hot" samples, i.e., samples high in ¹²⁹I, during Accelerator Mass Spectrometry (AMS) measurements. To achieve isotopic equilibrium between the sample and carrier KI which is added, samples and carrier were converted to IO₄⁻. Iodine in the samples was then extracted into CCl₄, and back-extracted into the aqueous phase, followed by precipitation as AgI powder, following standard procedures. The silver iodide was pressed into stainless steel sample holders and loaded on a sample wheel for AMS measurement.

¹²⁹I -to-stable iodine ratios (¹²⁹I /I) were determined by AMS at the PRIME lab facility at Purdue University. AMS uses a tandem accelerator in conjunction with an ion source, several magnets and suitable detectors to sensitively measure atoms of choice with detection limits of one atom in 10¹⁵ stable atoms, with associated removal of interfering atoms (see Elmore et al. (1984a and 1984b), Kubik et al. (1987) for a detailed description of AMS techniques). *(This facility is the only one currently in operation in the U.S that can perform the analysis at the required levels of precision)*. The ¹²⁹I /I ratios were normalized to a known standard during AMS measurement. AMS has a theoretical detection limit of ¹²⁹I/I ratio = 1 x 10⁻¹⁵ although practical detection limits are about 50 x 10⁻¹⁵, due to the lack of natural materials with lower ¹²⁹I /I ratios. Chemical blanks and carrier iodine had ¹²⁹I /I ratios of 80 x 10-15 during that AMS run. Icontent in the carrier solution was measured by ion chromatography with errors of +/- 5%.

Analytical Methods for Tritium and Helium

Shallow wells will be sampled using a dedicated "micro-purge" bladder pump to lift the water. Care will be taken to place the purge tube near the top of the standing water column to ensure that the well was flushed completely and that the well screen is not exposed to air. . Dissolved gas samples were collected in 3/8" o.d. Cu tubing sealed with refrigeration clamps in accordance with standard procedures. Water is collected in 500ml glass bottles fitted with ploy-seal caps.

Gases are extracted from ~25 g of water on a high vacuum line constructed of stainless steel and Corning-1724 glass to minimize helium diffusion. The non-condensable gases (He, Ne, Ar, N₂, CH₄) plus water vapor are transferred into a 1724 glass ampoule for subsequent analysis. The amount of non-condensable gas was measured using a calibrated gas volume fitted with a capacitance manometer. Gas ratios (N₂, Ar, CH₄) were analyzed on a Dycor Quadropole mass spectrometer fitted with a variable leak valve. The results are combined with the capacitance manometer measurement to obtain gas concentrations (cc STP/Kg of water (+ 2%). Prior to helium isotope analyses, N₂ and O₂ are removed by reaction with Zr-Al alloy (SAES-ST707), Ar and Ne are adsorbed on activated charcoal at 77° K and at 40° K, respectively. SAES-ST-101 Getters (one in the inlet line and 2 in the mass spectrometer) reduce the HD⁺ background to ~100 ions/sec.

Helium isotope ratios and concentrations were analyzed on a VG 5400 Rare Gas Mass Spectrometer fitted with a Faraday cup (resolution of 200) and a Johnston electron multiplier (resolution of 600) for sequential analyses of the ⁴He (F-cup) and 3He (multiplier) beams. On the axial collector (resolution of 600) 3He⁺ is completely separated from HD+ with a baseline separation of < 2% of the HD⁺ peak. The contribution of HD⁺ to the ³He peak if < 0.1 ion/sec at 1,000 ions/sec of HD⁺. For 2.0 ucc of He with an air ratio (sensitivity of 2 x 10⁻⁴ Amps/torr), the 3He signal averaged 2,000 ions/sec with a background signal of ~15 cps, due to either scattered ⁴He ions or the formation of ⁴He ions at lower voltage potentials within the source of the mass spectrometer. All ³He/⁴He ratios are reported relative to the atmospheric ratio (R_A), using air helium as the absolute standard. Errors in the ³He/⁴He ratios result from the precision of the sample measurement (0.2%) and variation in the ratio measurement in air (0.2%) and give a total error of 0.3% at 2σ for the reported helium isotope value. Helium concentrations (cc STP/Kg of water) are derived from comparison of a known split of the total sample to a standard of known size. The value, as measured by peak height comparison, is accurate to 2% (2σ).

Tritium values are analyzed using the 3He "in-growth" technique. 150 g of water are degassed of all He on a high vacuum line and sealed in a 3" O.D. 1724 glass ampoule for a period of 30 to 50 days (because of the high tritium levels, with respect to typical precipitation). Glass ampoules had been baked at 250° C in a helium-free nitrogen gas to minimize the solubility of helium in the glass. After sealing, the ampoules are stored at -20° C to limit diffusion of helium into the bulb during sample storage. During this interval, ³He produced from the decay of tritium accumulates in the flask. Typical sample blanks are ~10⁻⁹cc of ⁴He and 10⁻¹⁵cc of ³He. Blank corrections to ³He are made using the ⁴He content and assuming that the blank has the air ³He/⁴He ratio. The ³He content of the storage ampoule is measured on the VG 5400 using the above procedures and compared to the ³He content of air standard. Typical ³He signals for a sample containing 10 T.U. and stored for 90 days are ~8x10⁵ atoms (± 2%) and a blank of $3 \pm 1x10^4$ atoms of ³He. Errors in the reported tritium value are dependent on the amount of tritium and are 2% (2 σ) at 10 T.U. Higher precision can be achieved with larger samples and longer storage times.

Sampling Strategy

- Determine the age and rate of groundwater flow in the 4 *existing* shallow (20 foot) near-field wells O,M,N,R. and 2 to 4 *proposed* shallow wells. It is hypothesized that this water should drain toward the containment building (based on hydraulic head distribution). Tritium (by PSEG) / Helium-3 (by U of Rochester) can determine this flow to +/- 20%. The flow will be compared to the tritium inventory estimates for the building sumps (pump rate x tritium level) to evaluate the flow of tritiated water back toward the containment building (cost \$1500 2000 @\$300 per sample)) (analysis time 1 month)
- 2. Measure tritium and ³He in 4 *existing* far field wells that penetrate into the Vincetown Formation Aquifer: K (80), L (80), P (,80), Q(80) (both measurements to be made at Rochester). The goals are to estimate the travel times for natural groundwater in the Vincetown Fromation, determine if any significant tritium release has migrated away from containment and to determine the groundwater age of any discovered tritium release. Possible enhanced pathways for migration may exist along piping or "footings" pounded to depth. The method does not require knowledge of the tritium input function because the ratio of tritium to helium-3 establishes the age. (cost (\$2400 @ 4 x\$300 for tritium and 4 x \$300 for ³He) (*analysis time 3 months*)
- 3. Measure trium and dissolved gases in three to five *existing* deep wells (300 to 800 feet) that tap two drinking water aquifers (Mt Laurel-Wenonah at ~ 300 feet and the Upper Raritan at 800 feet). The water at depth is most likely pre-nuclear with tritium at background levels (0.3 pCi/liter). Any potential leakage of surface water can be evaluated at the 1ppm level based on the significant tritium levels found in Turbine steam (1,000,000 pCi/liter) and Spent fuel pool water (100,000,000 pCi/liter) (cost \$2000 3000 at \$600/sample) *(analysis time 3 months)*
- 4. Measure I-129 in two background samples (precipitation and far field groundwater) and six to eight wells that contain elevated tritium (4-5 shallow (20') and 2-3 wells from 80 feet). The ratio of ¹²⁹I to ³He will be used to evaluate whether the source is steam (low ¹²⁹I) or spent fuel pool water (high ¹²⁹I). (cost \$7000 @ \$700 per sample) *(analysis time 6 months)*

References

- Andrews, J. N., I. S. Giles, R. L. F. Kay, and D. J. Lee, Radioelements, radiogenic helium, and age relationships for groundwaters from the granites at Stripa, Sweden, *Geochim. Cosmochim. Acta*, 46, 1533-1543, 1982.
- Elmore, D, PW Kubik, N Conard and J. Fabrika -Martin, Computer controlled isotope ratio measurements and data analysis. *Nuclear Instruments and Methods*. 83, 233-237, 1984.
- Fehn, U, and GR Holdren, Determination of natural and anthropogenic ¹²⁹I in marine sediments, *Geophysical Research Letters* **13**, 137-139, 1986.
- Kubik, PW, D. Elmore, T.K. Hemick, H.E. Gove, U. Fehn, R.T.D. Teng, S. Jiang and S. Tullai Accelerator Mass spectrometry at the University of Rochester, *Nuclear Instruments and Methods* B29, 138-142, 1987.
- Marine, I. W., The use of naturally occurring helium to estimate groundwater velocities for studies of geologic storage of radioactive waste, *Water Resources Res.*, 15, 1130-1136, 1979.
- Mazor, E., and A. Bosch, Helium as a semi-quantitative tool for groundwater dating in the range of 10⁴-10⁸ years, Consultants meeting on isotopes of noble gases as tracers in environmental studies, Vienna, May 29-June 2, Panel Proceedings Series International Atomic Energy Agency, p. 163-178, 1989.
- Mazor, E. and A. Bosch, Dynamics of groundwater in deep basins ⁴He dating, hydraulic discontinuities, and rates of drainage, Proceedings of the International conference on groundwater in large sedimentary basins, Australian Water Resources Council Conference Series, 20, 380-389, 1990.
- Poreda, R. J., T. E. Cerling, and D. K. Solomon, Use of tritium and helium isotopes as hydrologic tracers in a shallow unconfined aquifer. *J. Hydrology*, 103: 1-9, 1988.
- Poreda, R.J., and K. A. Farley, Rare gases in Samoan Xenoliths, *Earth Planet. Sci. Lett.*, 113, 129-144, 1992.
- Saunders, M, R. J., Cross, H. A. Jimenez-Vasquez, and R. J. Poreda, Stable compounds of helium and neon: He:@C60 and Ne@C60, *Science*, 259, 1428-1429, 1993.
- Schlosser, P., M. Stute, H. Dörr, I. Levin, and K. O. Münnich, Tritium/³He dating of shallow groundwater. *EPSL*, 89: 353-362, 1988.
- Solomon, D. K., R. J. Poreda, S. L. Schiff, and J. A. Cherry, Tritium and helium-3 as groundwater age tracers in the Borden aquifer. *Water Res. Res.* 28: 741-755, 1992.
- Solomon, D. K., S. L. Schiff, R. J. Poreda, and W. B. Clarke, A validation of the ³H/³He method for determining groundwater recharge, *Water Resour. Res.*, 29 (9), 2951-2962, 1993.
- Solomon, D. K., R. J. Poreda, P. G. Cook, and A. Hunt, Site characterization using ³H/³He ground water ages, Cape Cod MA, *Ground Water*, 33, 988-996, 1995.
- Stute, M, C. Sonntag, J. Deàk, and P. Schlosser, Helium in deep circulating groundwater in the Great Hungarian Plain: Flow dynamics and crustal and mantle helium fluxes, *Geochimica et Cosmochimica Acta*, 56, 2051-2067, 1992.

Standard Operating Procedure Tritium-Helium Dating of Groundwater

Samples of groundwater from the Site will be provided to the noble gas laboratory at the University of Rochester. The helium samples (about 30 grams of water) will be collected in copper tubing according to standard methods (see attached instructions). Tritium samples will be collected in 0.5 liter glass bottles that are sealed with polyethylene caps. The helium and tritium samples will be analyzed at the University of Rochester according to standard methods (see Solomon et al., 1992 and references therein). All contracted work will be performed at University of Rochester facilities. Analytical precision for the measurements are as follows:

- 1) Tritium: detection limit of 0.1 TU with a maximum uncertainty of +/-0.1 TU.
- 2) Helium-4 concentration: Detection limit of 1 cc/kg with a maximum uncertainty of +/- 1 cc/kg.
- 3) ³He/⁴He ratios (relative to an air helium standard) with a precision of 0.3% for samples containing 40 grams of water. (Smaller volume samples will have lower precision).
- 4) Dissolved nitrogen concentrations (detection limit of 1cc/kg) with a maximum uncertainty of +/- 1 cc/kg.

Air standards are used to calibrate the mass spectrometer with the standard procedure of one standard repeated every two samples. High vacuum blanks will be analyzed at a rate of one blank per five samples.

The results of the analyses will be synthesized and provided in tabular format. In addition, groundwater ages based on the tritium and ³He contents of the samples will be calculated and a written report will provide the details of such calculations.

Analytical Methods for Tritium and Helium

Wells are sampled using a Waterra "lift" pump or a "downhole sampler" (a length of Cu tubing fitted with a check valve) to minimize formation of bubbles in the water stream. Each well had been recently purged by extracting more than three well volumes from the standing water in the well prior to sampling. Care was taken to place the purge tube near the top of the standing water column to ensure that the well was flushed completely. During sampling, the Waterra pump was lowered to within 30cm of the bottom of the well. Samples were collected in 3/8" o.d. Cu tubing sealed with refrigeration clamps in accordance with standard oceanographic procedures.

Gases are extracted from ~25 g of water on a high vacuum line constructed of stainless steel and Corning-1724 glass to minimize helium diffusion. The non-condensable gases (He, Ne, Ar, N₂, CH₄) are transferred to a 1724-glass ampoule, filled with activated charcoal, by the use

of a "water vapor pump". Water vapor streams off the sample from the actions of ultrasonic agitation and condenses in the ampoule which is held at -195° C. A 2mm constriction in the sample ampoule limits the "back-streaming" of gases. After removal of H₂O vapor and CO₂ at -90° C and -195° C respectively, the non-condensable gas was measured using a calibrated gas splitter fitted with a capacitance manometer. Gas ratios (N₂, Ar, CH₄) were analyzed on a Dycor Quadropole mass spectrometer fitted with a variable leak valve. The results are combined with the capacitance manometer measurement to obtain gas concentrations (cc STP/Kg of water (+ 2%). Prior to helium isotope analyses, N₂ and O₂ are removed by reaction with Zr-Al alloy (SAES-ST707), Ar and Ne are adsorbed on activated charcoal at 77° K and at 40° K, respectively. SAES-ST-101 Getters (one in the inlet line and 2 in the mass spectrometer) reduce the HD⁺ background to ~1,000 jons/sec.

Helium isotope ratios and concentrations were analyzed on a VG 5400 Rare Gas Mass Spectrometer fitted with a Faraday cup (resolution of 200) and a Johnston electron multiplier (resolution of 600) for sequential analyses of the ⁴He (F-cup) and 3He (multiplier) beams. On the axial collector (resolution of 600) $3He^+$ is completely separated from HD+ with a baseline separation of < 2% of the HD⁺ peak. The contribution of HD⁺ to the ³He peak if < 0.1 ion/sec at 1,000 ions/sec of HD⁺. For 2.0 ucc of He with an air ratio (sensitivity of 2 x 10⁻⁴ Amps/torr), the 3He signal averaged 2,500 ions/sec with a background signal of ~15 cps, due to either scattered ⁴He ions or the formation of ⁴He ions at lower voltage potentials within the source of the mass spectrometer. All ³He/⁴He ratios are reported relative to the atmospheric ratio (R_A), using air helium as the absolute standard. Errors in the ³He/⁴He ratios result from the precision of the sample measurement (0.2%) and variation in the ratio measurement in air (0.2%) and give a total error of 0.3% at 2 σ for the reported helium isotope value. Helium concentrations (cc STP/Kg of water) are derived from comparison of a known split of the total sample to a standard of known size. The value, as measured by peak height comparison, is accurate to 2% (2 σ).

Tritium values are analyzed using the 3He "in-growth" technique. 150 g of water are degassed of all He on a high vacuum line and sealed in a 3" O.D. 1724 glass ampoule for a period of 60 to 90 days. Glass ampoules had been baked at 250° C in a helium-free nitrogen gas to minimize the solubility of helium in the glass. After sealing, the ampoules are stored at -20° C to limit diffusion of helium into the bulb during sample storage. During this interval, ³He produced from the decay of tritium accumulates in the flask. Typical sample blanks are $\sim 10^{-9}$ cc of ⁴He and 10^{-15} cc of ³He. Blank corrections to ³He are made using the ⁴He content and assuming that the blank has the air ³He/⁴He ratio. The ³He content of the storage ampoule is measured on the VG 5400 using the above procedures and compared to the ³He content of air standard. Typical ³He signals for a sample containing 10 T.U. and stored for 90 days are $\sim 8x10^5$ atoms (± 2%) and a blank of $3 \pm 1x10^4$ atoms of ³He. Errors in the reported tritium value are dependent on the amount of tritium and are 2% (2 σ) at 10 T.U. Higher precision can be achieved with larger samples and longer storage times.

Sampling Procedure for Dissolved Gas (Helium) and ³H (Tritium)

Pre-Sampling Procedures

Purge the well completely prior to sampling. Purging procedures should insure complete purging of the well and allow for minimal agitation of the water column in the well annulus. Do not expose the well screen to air (i.e. do not evacuate low yielding wells to dryness). Pumps utilized for purging and sampling should not introduce gas into the well annulus, preferred are submersible pumps, peristaltic pumps and foot valve (waterra type) pumps.

A slow steady water flow during sampling produces the best results by minimizing cavitation. Cavitation occurs when flow separation forms a partial vacuum on a swiftly moving solid object such as a propeller. The partial vacuum generated strips dissolved gas from the surrounding fluid, generating small bubbles. These bubbles will corrupt the sample by concentrating helium within the bubbles and depleting the water of dissolved helium. Cavitation may occur in both submersible pumps and footvalve pumps, care should be taken for the rate at which the pumps run.

Pumps should <u>not</u> utilize Teflon hosing, helium diffuses very rapidly through Teflon hosing, Teflon in general should be avoided as much as possible, PVC, poly-propylene and tygon are preferred materials.

Care should be taken in purging a deep, low yielding well, purging too quickly causes a rapid pressure change on the deeper water in the well. This may cause the dissolved gas within the deep water to come out of solution and cause bubbles to form within the annulus. These bubbles will strip the water of helium generating a bad sample.

Samples from a residential/ household systems should be taken prior to any treatment system and prior to the pressure tank. If possible it is better to take the sample directly from the well annulus using an external pump. If a sample point is post pressure tank please make note in sample chain of custody.

Procedure for Dissolved Gas Sample (Helium)

Attach two segments of tygon tubing to the ends of the copper sample tube and place the open pinch clamps on the tygon tubes. Select two refrigeration clamps, making sure that they have a suitable "gap" in the fully closed position (1 - 2 mm). Do not use clamps that have no gap (<1mm) or a spacing greater than 2 mm. Lightly tighten the refrigerator clamps to the outside of the copper sampling tube, <u>leaving 1.5 inches of tubing on both ends</u>.

Attach the intake of the sample apparatus to the pumping source (for waterra or submersible pumps) and carefully elevate the sample tube above the pump outlet. (If a peristaltic pump is used, it should be downstream of the Cu tube) Angle the tube at 45 degrees so that the flow of water moves upward through the sampler, carefully chase any air bubbles through the

sampler so that no air bubbles are noted within the pump/sampler assembly. Continue pumping, keeping a close eye on the downstream tygon tubing for bubbles, gently tap the copper sample tube, held in the "angled" position, with a metal wrench in order to release any bubbles that may be stuck to the side of the sampler. Continue pumping until several tube volumes have flushed through the copper tube and <u>NO</u> bubbles of gas are noted in the tygon lines and sample tube. A slow steady stream of water works best (about 100 - 400 cc/min)

Note: This step can sometimes be very difficult, be patient, if it doesn't work after numerous attempts just do the best you can and make note of the problem

Continue pumping and slowly close off the upstream pinch clamp on the tygon tubing, then quickly close off the downstream pinch clamp after the upstream is closed. Start to tighten the refrigerator clamps on the copper sample tube by holding the clamp with one hand and tightening the clamp nuts with the other. Tighten the clamp evenly to avoid "scissoring " of the copper tube. The clamp should be tightened to the point where the maximum force is applied to the head of the wrench while holding the clamp tight. Over tightening will breach the sample tube while under tightening will allow the sample to leak. Sometimes there will be a small gap (1-2 mm) in the clamp when it is closed, clamp gaps will vary.

Carefully remove both tygon hoses and check to see if the crimped ends are either wiggly (over tightened) or leak (under tightened), re-sample if necessary. Check that the clamps are secure by giving them a final tightening (torque of about 30 ft.lbs - force applied with a 4 to 6 inch lever arm- e.g. a box end wrench). If the ends are sealed properly, fill the ends of the copper sample tube with water and cap, keep as little headspace in the ends as possible. If possible it is a good idea to take a duplicate sample, just in case. Label the sample tube with the date, time of sampling, and sample number on a sample tag as well as directly on the copper tube with a marking pen.

Procedures For ³H Sample

After taking the dissolved gas sample, simply fill a 500 ml glass sample bottle from the pump discharge and cap with a poly-propylene cap, leaving no headspace within the bottle. Label the bottle with date, time, and sample number. Make sure the sample cap is tight, you can tape the cap to the bottle to prevent loosening with simple electrical tape.

Shipping the Samples Back to the Lab

Store the copper sampling tubes in a horizontal position packed in either foam rubber on their own or encased within piece of aluminum channel stock, packed in foam rubber, pay careful attention to the sample ends, they must be protected from bumps and jars. Either package for shipping very securely or hand carry, bent tubes, mangled ends, and breached tubes are often unextractable back in the lab. As for the tritium sample bottles, pack very tight so that the glass of one bottle cannot contact the glass of another bottle. They should not be able to move or shift within the packing container, usually double boxed sample bottles fair better than single boxed samples. Again some samples have ended up on the floor of UPS due to poor packing, <u>Over Packing Works</u>

Ship samples back with sample identification and sampling dates and times on a separate sheet of paper. Ship to:

Dr. R. J. Poreda Dept. of Earth and Environmental Sciences Hutchinson Hall Rm. 227 University of Rochester Rochester, NY 14627 Phone 716-275-8691 (lab)

Appendix H

Attachment 2

Research Laboratory Procedures Remedial Investigation Report PSEG Nuclear, LLC, Salem Generating Station, Salem, New Jersey

	· · · · ·		· · ·	1
	· ·		<u>.</u> .	· · ·
· · ·	· .		· ·	· ·
				·
			1. St. 1.	· ·
· ·				
$(1,1,2,\dots,n) \in \mathbb{R}^{n}$			•	
		· · · · ·	•	i
· · ·				· · · · ·
				.1
·				
		· · · ·	· .	
	. ·	· · ·		
		. · · · ·	÷.	
				•
			1	
	· · · ·	•		
		· · · · ·		
				· · · ·
			r	
			•	
	ium/final reports/april 2004 - rir/appendices/ap	pendix h - rochester results/attachment 2 - tc-99/attachment 2 - cover.	doc	
	üumtlinal reports\april 2004 - rirtappendices\aj		doc	

Title

Technetium-99 Analysis

Item 1

Appendix H

Technetium-99 Analysis

Prepared for

PSEG

by Robert J. Poreda

Professor of Environmental Sciences

University of Rochester

September 15, 2003

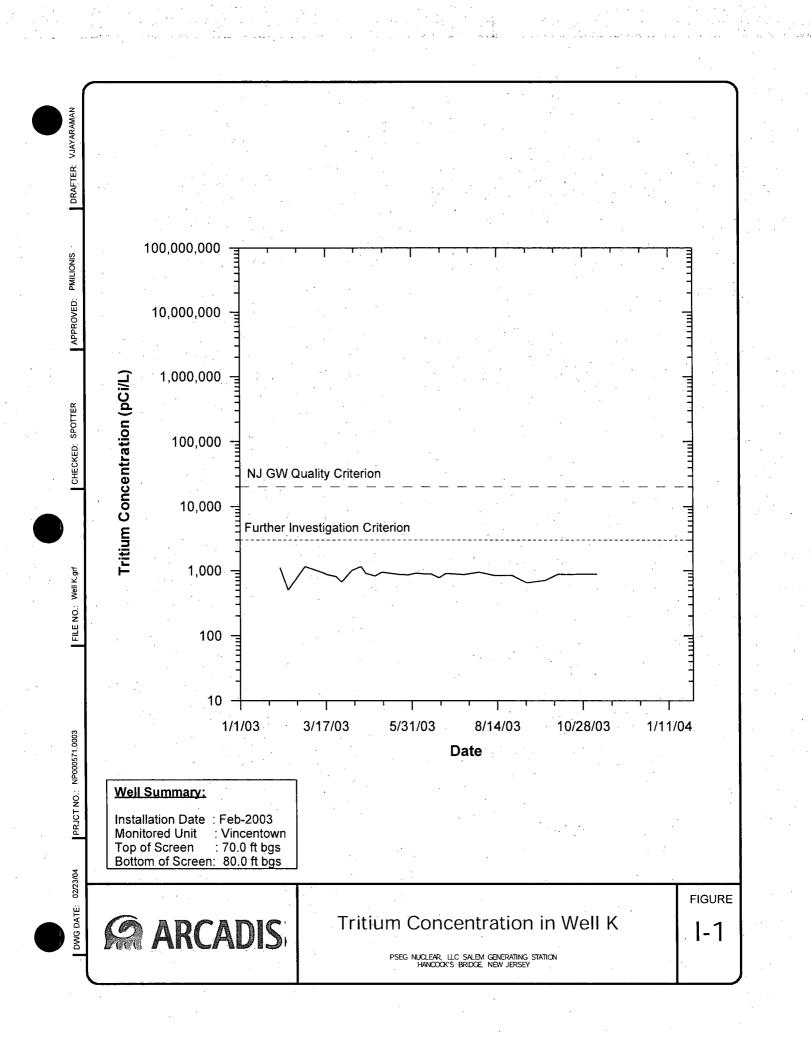
This project will use state-of-the-art methods to determine the abundance and distribution of Technetium-99 in the Salem 1 plant environment. Technetium-99 (⁹⁹Tc) is a radioactive by-product of nuclear power generation (in addition to other mostly "nuclear" sources). Recent analytical advances in inductively-coupled plasma mass spectrometry (ICP-MS) make it possible to detect sub-picogram (less than 10¹⁰ atoms) quantities of ⁹⁹Tc. We will apply these methods to understanding the migration of ⁹⁹Tc in the environment. ⁹⁹Tc levels have not been accurately monitored in low-level radioactive settings because of difficulties in detection nor have the pathways of migration in the environment been determined.

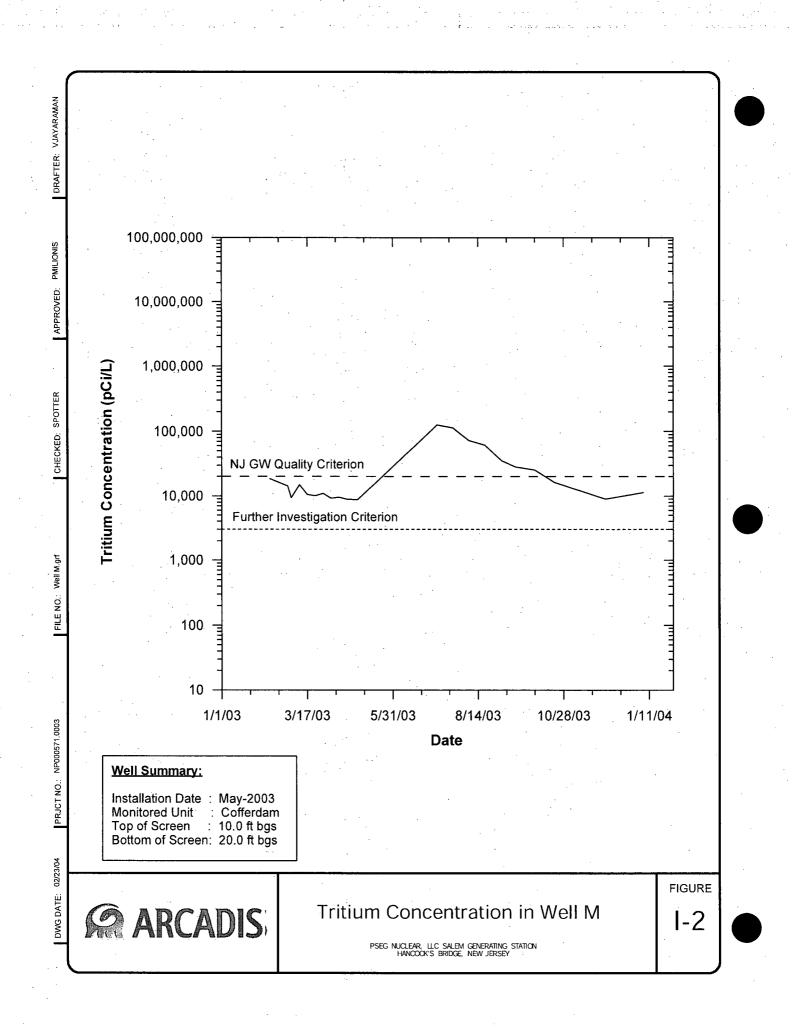
One major focus of the research plan is to understand the migration of radionuclides (especially ⁹⁹Tc and ¹²⁹I) through the groundwater/soil environment. At Rochester, Professor Udo Fehn and his students have developed and tested the state of the art methods for the determination of ¹²⁹I. These analyses were successfully used at Ginna to establish the integrity of the containment system that minimized the radionuclide migration from the site. The behavior of Tc in groundwater and its interaction with soils suggests that the mobility of Tc-99 is nearly equivalent to 1-129 and tritium. The geochemistry of Tc is such that it exists as an oxyanion, TcO₄, and has limited adsorption onto soils. Thus Tc-99 could be readily adopted as a fingerprint for spent fuel pool water with the added benefit of lower analytical costs and more rapid sample throughput than 1-129 (only the Purdue accelerator can achieve the LLDs necessary for this investigation).

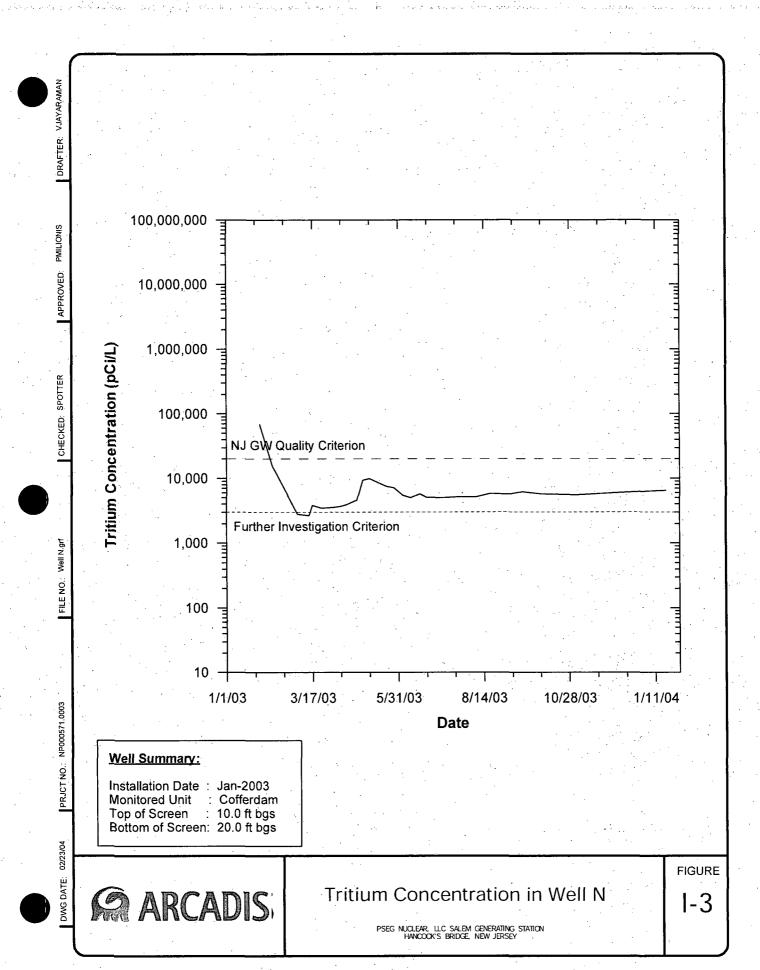
Technetium (Tc) was detected in 1937 by C. Perrier and E. Segre in a deuteron-irradiated molybdenum sample in the cyclotron of E.O. Lawrence in California. Minute quantities of ⁹⁹Tc (half life = 2.14 x 10⁵yr.) are found to occur naturally as a result of spontaneous fission of uranium in uranium ore bodies. However, the largest source of the weakly radioactive isotope, ⁹⁹Tc, is from the fission of uranium in nuclear reactors. Technetium from nuclear power generating stations makes up about 6 percent of uranium fission products (Peacock, 1973), and together with ¹²⁹I, represents the major long-lived radio-isotopes generated in the nuclear industry. Federal regulations (10CFR61...) specify the ⁹⁹Tc and ¹²⁹I activity levels for disposal in low-level radioactive burial sites, although most waste shipments over-estimate the activity (by as much as 100x) and simply report the ⁹⁹Tc and ¹²⁹I levels as "upper limit values".

Technetium differs from most of the radionuclides associated with the nuclear industry (⁹⁰Sr, ¹³⁷Cs, ⁶⁰Co, ⁶³Ni) that have half lives of 30 years or less and decay to less than 0.01 percent of their original activity in 300 years (the monitoring/evaluation interval). Because of the long half life, ⁹⁹Tc in environmental samples is not easily measured by conventional low level counting techniques. Typical detection limit for ⁹⁹Tc, obtained by

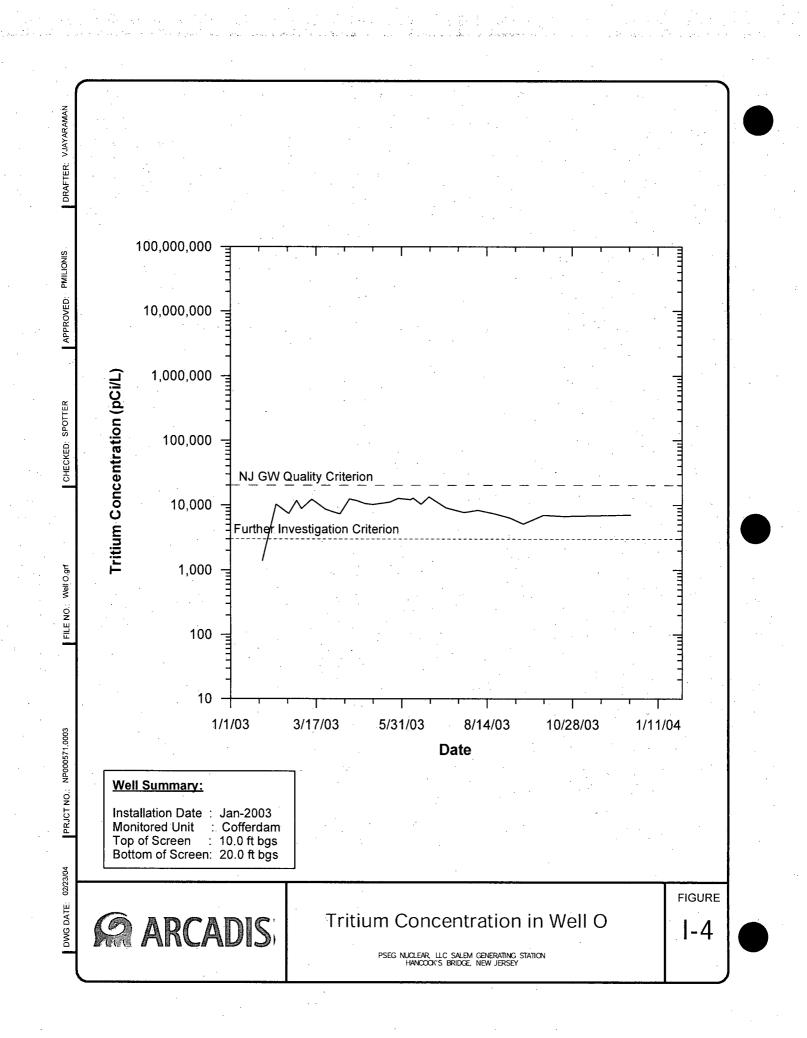
2

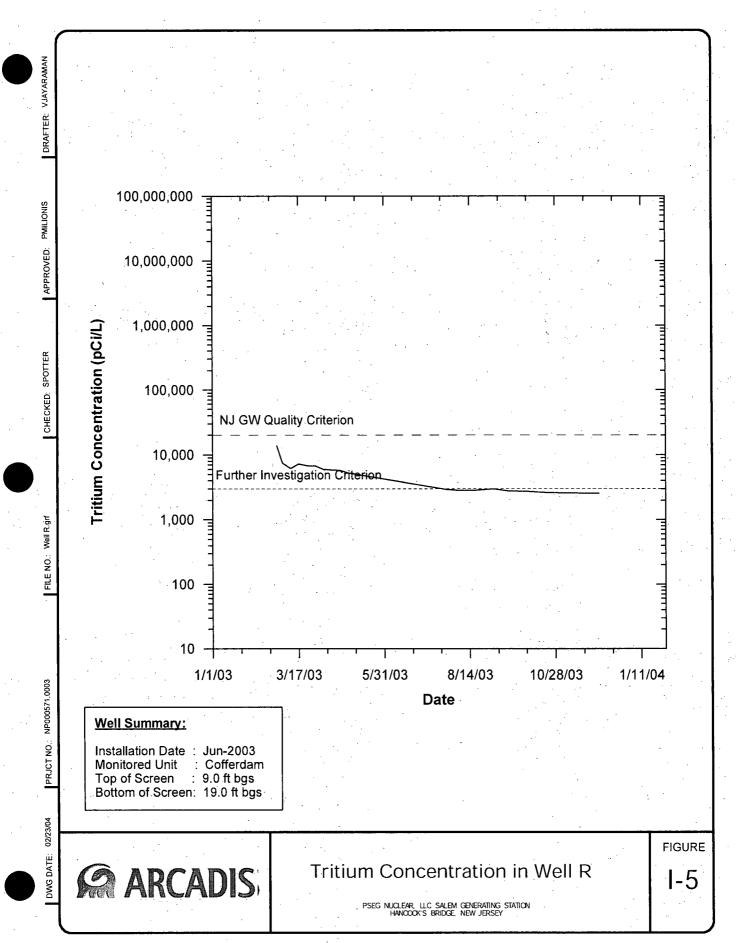

counting, is about 20 pCi/L of water (or 10^{13} atoms of ⁹⁹Tc). ICP-MS techniques should push this limit down by more than 1000x. The technetium from 1000 ml of water is collected on a TEVA disc specifically designed to adsorb Tc. The Tc is eluted from the disc with ultra-pure 2N HCl and 18 M Ω •water to a total volume of 10 ml. At a conservative sensitivity of 100,000 cps/ppb, a signal of 100 cps is equivalent to a concentration in the water of 0.01ppt or about 0.2 pCi/L.

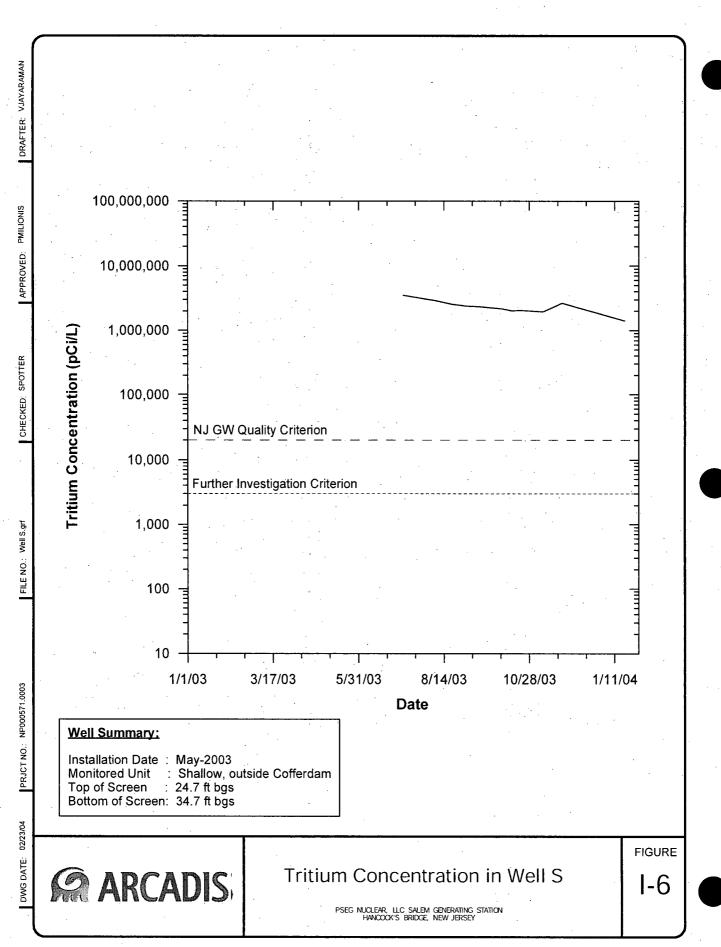

The University of Rochester has established a world-class facility for the detection of extremely low levels of environmental metals, including ⁹⁹Tc, using plasma source mass spectrometry. In the 1990s, the commercialization of mass spectrometers with ICP sources and quadrupole analyzers has revolutionized the study of trace element geochemistry and environmental chemistry. These instruments have extremely low detection limits (ppt or better) due to the efficiency of the ICP source in ionizing transition metals. In addition, sample preparation is simplified compared to other analytical methods because samples are introduced to the instrument as aqueous solutions. The plasma source mass spectrometry laboratory at the University of Rochester includes a new generation Thermo X-7 instrument, and a VG Plasma 54. The X-7 is a workhorse quadrupole mass spectrometer with exceptional sensitivity and stability for trace metal detection at the ppt level.

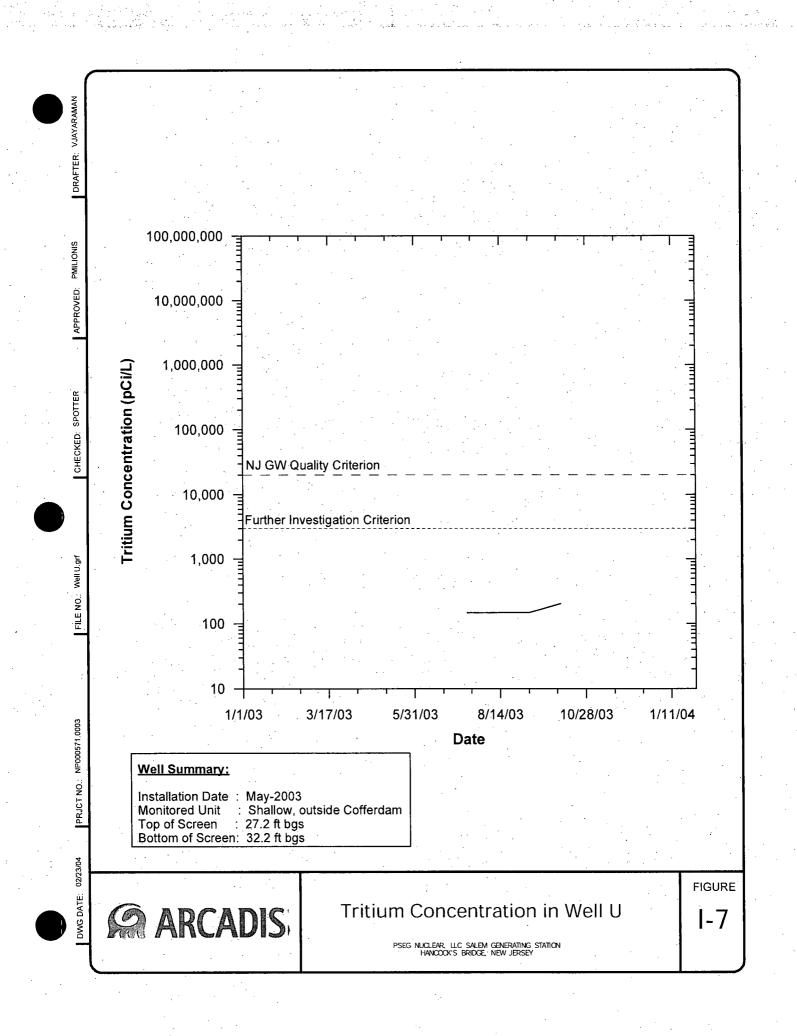

Appendix I

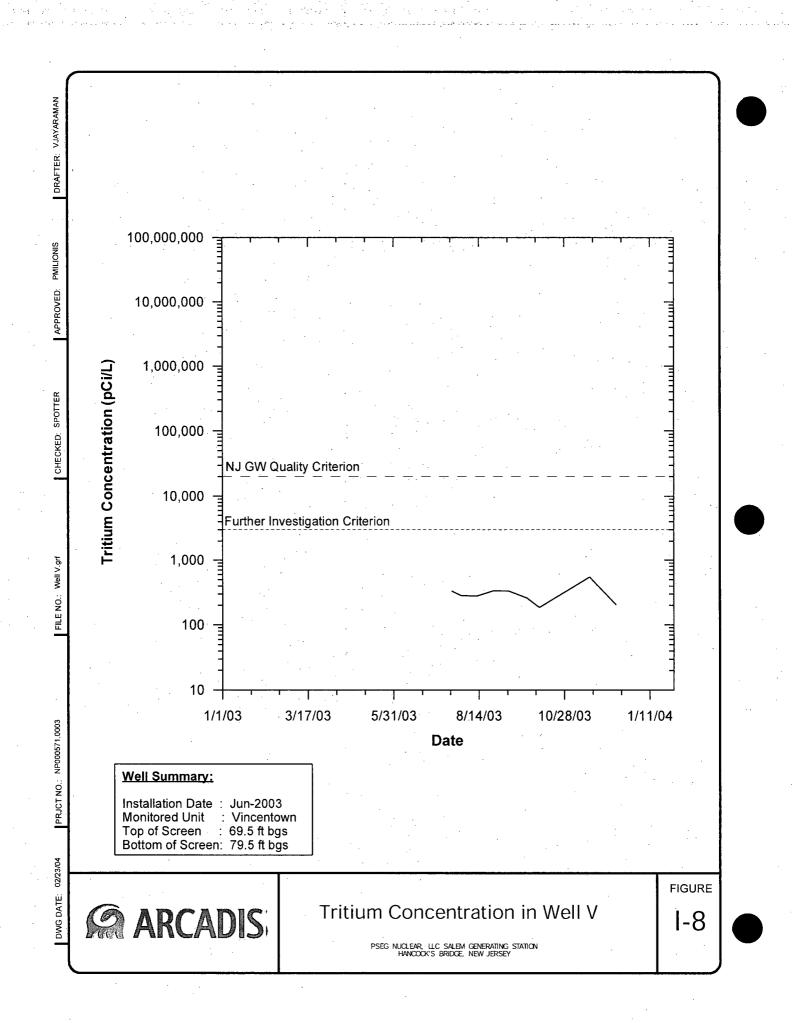
Tritium Trend Plots for the Station Monitoring Wells

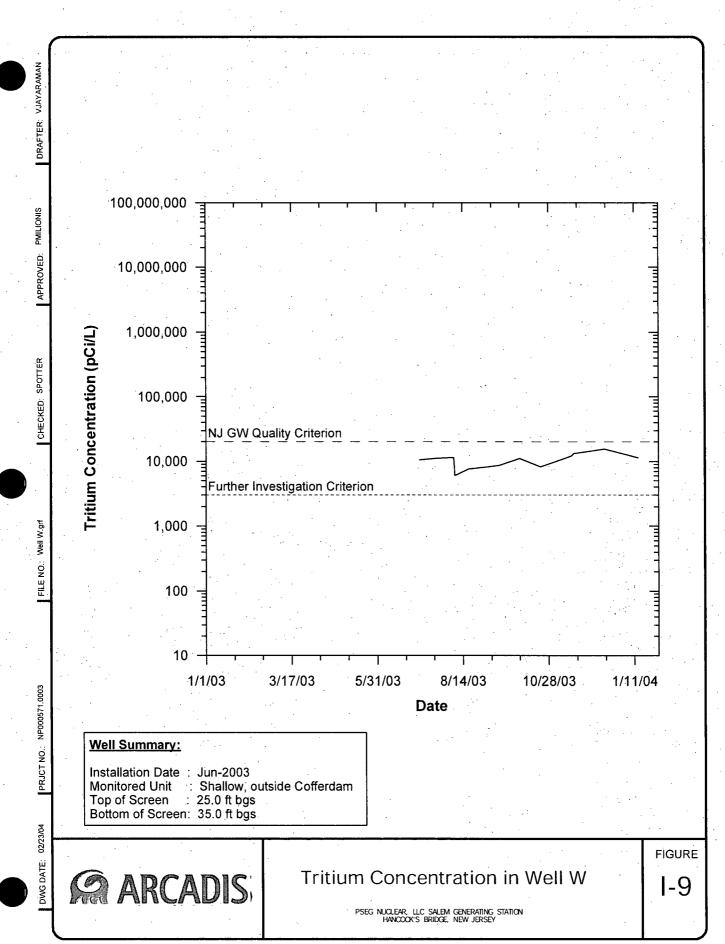


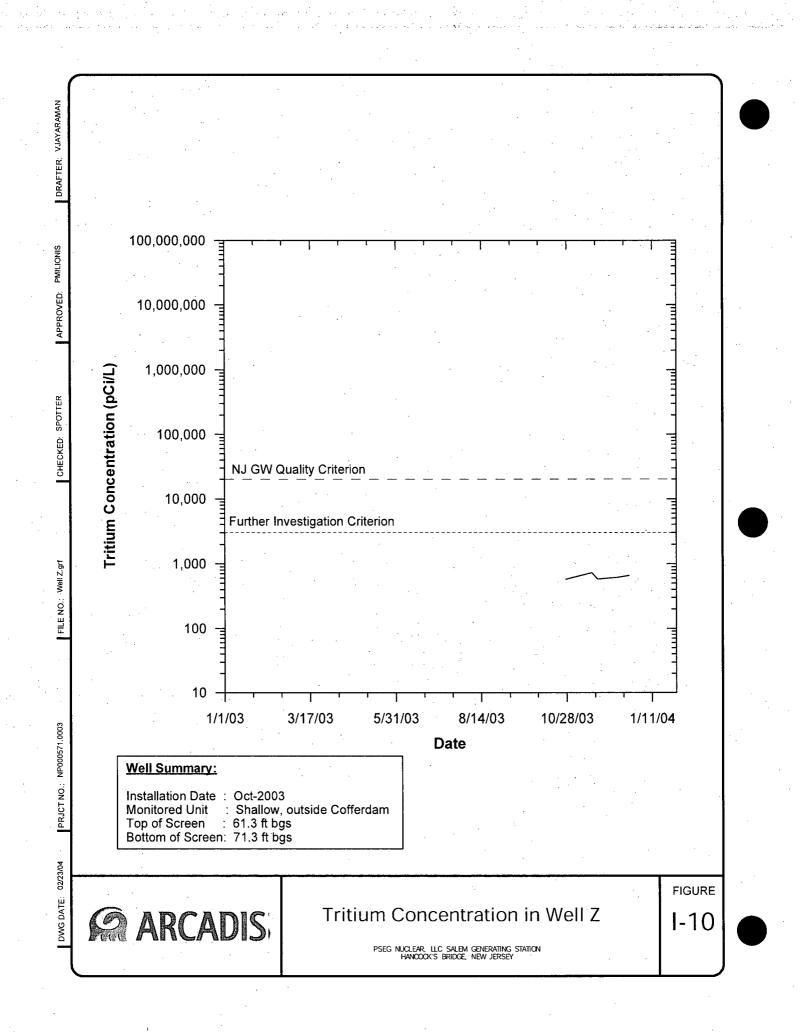


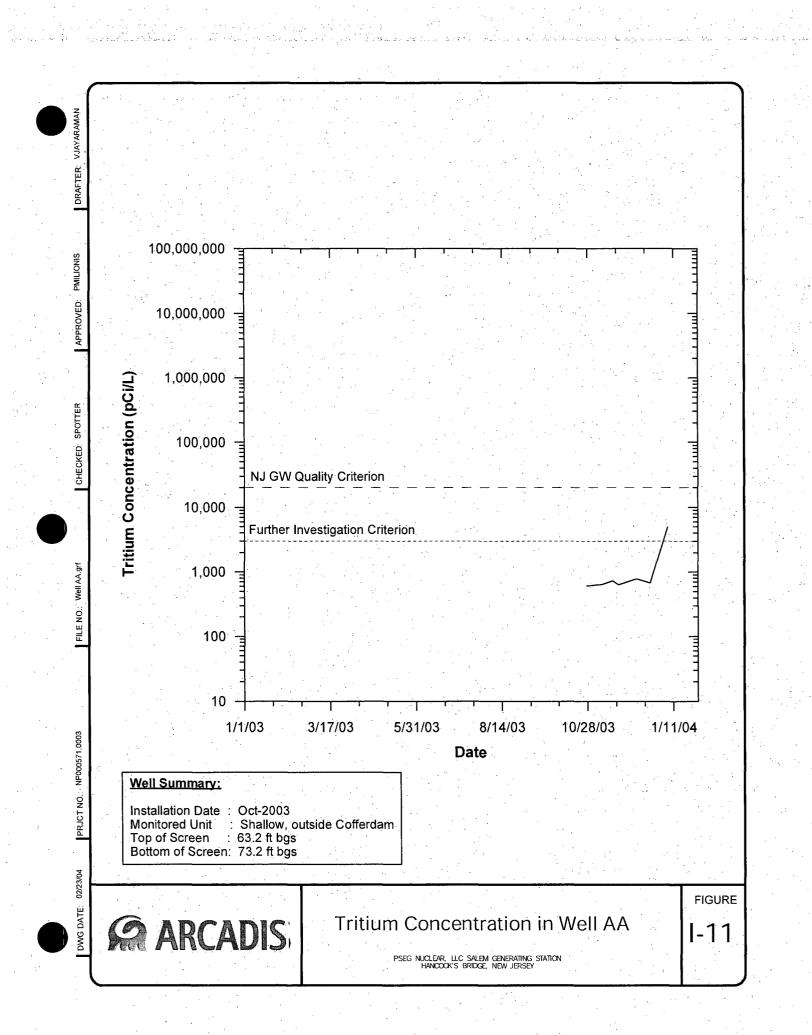


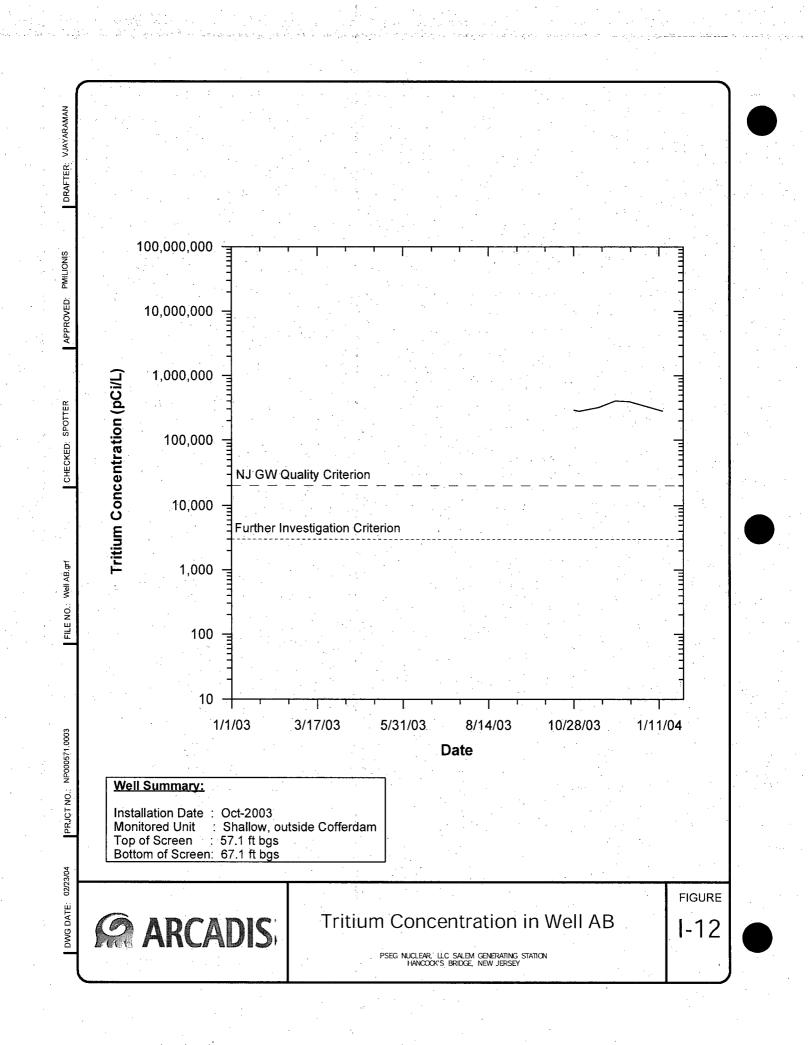


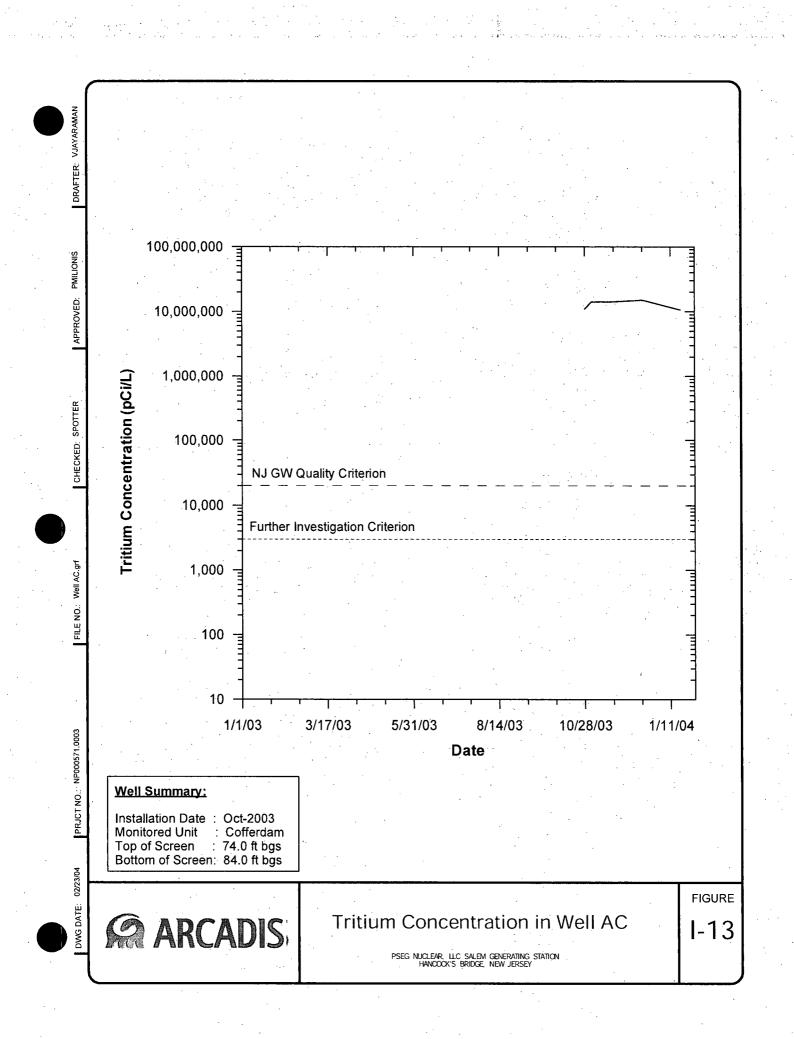

10.11

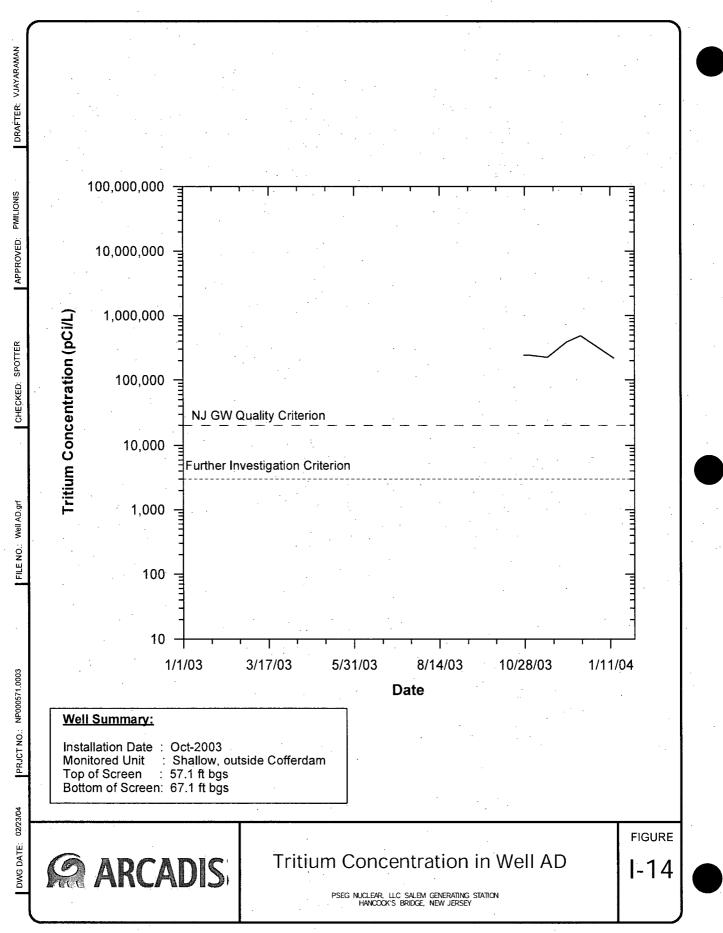


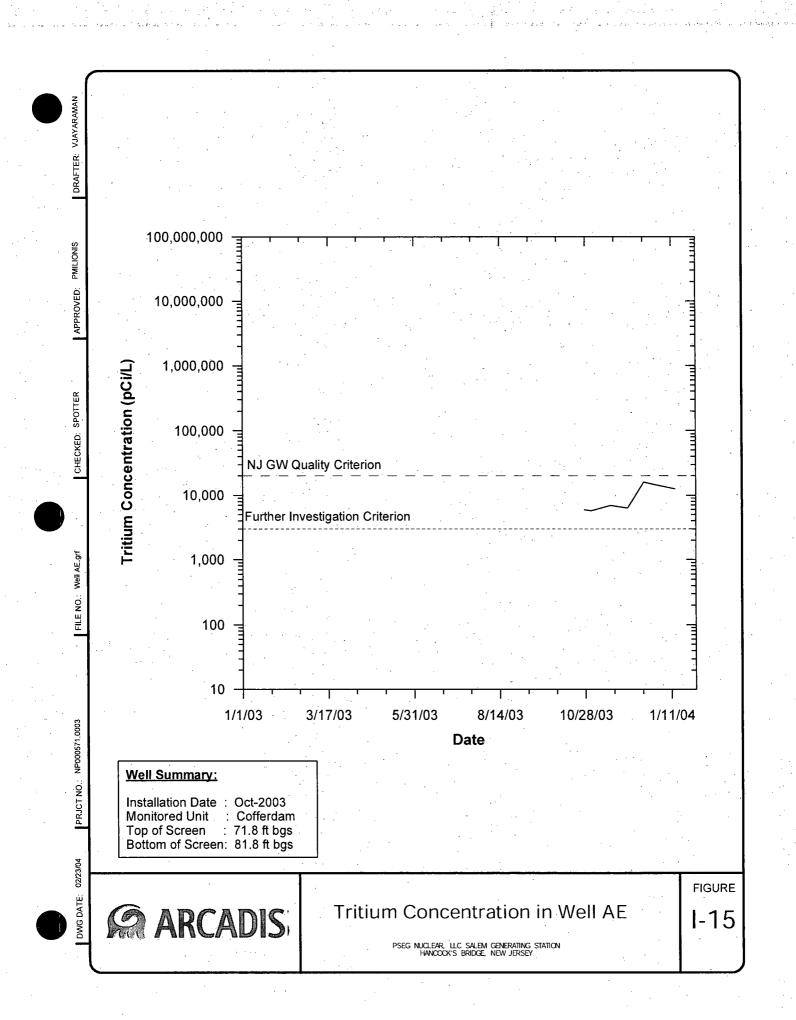


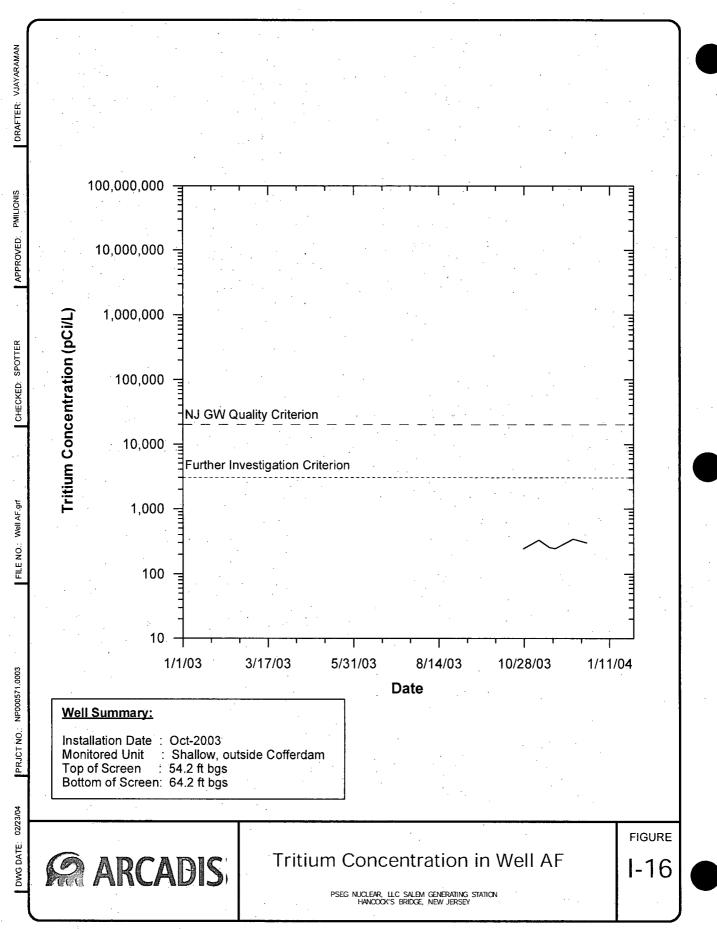


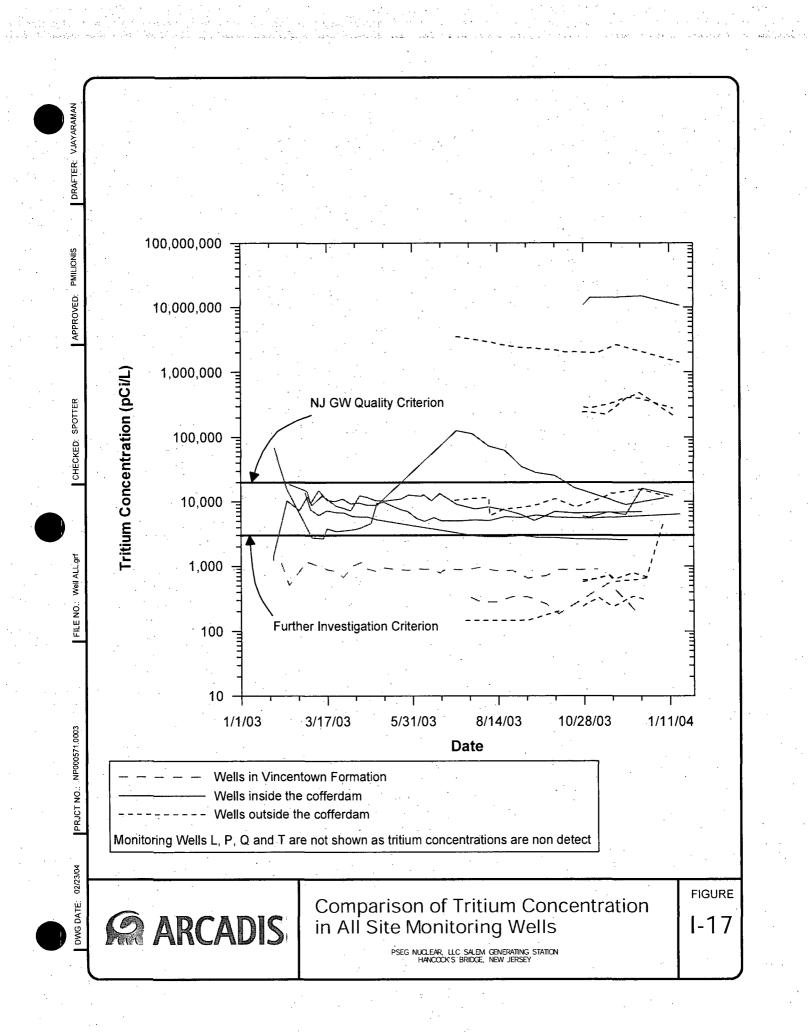












.

.

Appendix J

A Perspective on Radiation Doses and Health Risks from Ingestion of Tritium in Drinking Water and Potential Impacts on Aquatic and Terrestrial Biota

J

• • •

A PERSPECTIVE ON RADIATION DOSES AND HEALTH RISKS FROM INGESTION OF TRITIUM IN DRINKING WATER AND POTENTIAL IMPACTS ON AQUATIC AND TERRESTRIAL BIOTA

David C. Kocher SENES Oak Ridge, Inc. 102 Donner Drive, Oak Ridge, TN 37830

The main purpose of this discussion is to consider radiation doses and health risks to the public resulting from ingestion of tritium in drinking water. We begin by comparing the dose resulting from ingestion of a unit activity of tritium with the dose per unit activity of other radionuclides ingested to provide an indication of the radiotoxicity of tritium. We then present a simple method of estimating doses and cancer risks from ingestion of drinking water containing a known concentration of tritium. This method is illustrated by estimating the dose and risk associated with the current drinking water standard for tritium. This discussion also considers current guidance on radiation dose limits for aquatic and terrestrial biota and levels of tritium in water that would be required to potentially impact populations of species.

Dose Per Unit Activity Intake of Tritium and Other Radionuclides

Of all the radionuclides of potential concern in radiation dose and risk assessments for workers and the public, tritium is among the least radiotoxic, meaning that the dose per unit activity intake by ingestion (or inhalation) is among the lowest of all man-made or naturally occurring radionuclides. This conclusion is illustrated by current estimates of doses to adults per unit activity intake of radionuclides by ingestion given in Table 1.¹ Doses are given in millirem (mrem), or one-thousandth of a rem, and the assumed unit activity is 1 picocurie (pCi), which corresponds to 0.037 disintegrations per second, or approximately 130 per hour.²

Doses to adults per unit activity intake of radionuclides by ingestion given in Table 1 are values currently recommended for use in radiation protection of the public by the International Commission on Radiological Protection (ICRP).³ In addition to tritium, radionuclides listed in Table 1 include several fission and activation products of importance at nuclear reactors, isotopes

¹A few radionuclides not listed in Table 1 have estimated doses per unit activity intake by ingestion slightly lower than the value for tritium. However, these radionuclides are rarely, if ever, encountered in significant quantities in the workplace or the environment.

²Doses per unit activity intake by an adult in Table 1 represent an effective dose to the whole body over a period of 50 years following an intake. They are based on considerations of doses to different organs and the period of time after an intake over which radionuclides are retained in the body and continue to deliver a dose even with no further intakes; this time is many decades in some cases.

³The ICRP has been the leading international authority on radiation protection since the late 1920's, and ICRP recommendations have formed the basis for radiation protection standards and programs throughout the world. However, many current ICRP recommendations, including doses per unit activity intake of radionuclides by ingestion or inhalation, have not yet been formally adopted by regulatory authorities in the U.S., although these authorities may accept their use in many cases.

of uranium found in nuclear fuel, the most important isotopes of plutonium and americium produced in reactors, and naturally occurring isotopes of potassium, radium, and thorium.

The dose per unit activity of a radionuclide ingested depends on several factors including the half-life of the radionuclide, the types and energies of radiations emitted by the radionuclide, the extent of absorption from the GI tract, the organs of the body in which the radionuclide is deposited and the extent of deposition in those organs, and the rate of elimination from the body by biological processes. The low dose per unit activity intake of tritium, compared with values for other radionuclides, is due to two factors. First, most tritium taken into the body with a biological half-time of about 10 days in adults, and this biological half-time is much less than values for the other radionuclides listed in Table 1. Second, the beta radiations (electrons) emitted in tritium decay have very low energies and, thus, the energy deposited in tissue, which determines the dose from decay of tritium in the body, is much lower than the energy deposited by radiations emitted by other radionuclides.

Conversely, doses per unit activity intake of isotopes of radium, thorium, uranium, plutonium, and americium listed in Table 1 are relatively high because, first, these radionuclides have relatively long retention half-times in the body, taking into account radioactive decay and biological elimination, and, second, they (or their radioactive decay products) decay by emission of alpha particles, which deposit relatively large amounts of energy per unit mass of tissue. In addition, alpha particles are biologically more effective than gamma rays and beta particles in producing health effects (cancers). That is, for the same amount of energy deposited per unit mass of tissue (absorbed dose), the probability of a health effect is much higher for alpha particles is taken into account in radiation protection by multiplying absorbed dose in rads by a factor of 20 to calculate dose equivalent in rem.

There is an additional consideration for tritium that is not taken into account in the dose per unit activity intake of 6.7×10^8 mrem per pCi currently recommended by the ICRP and given in Table 1. This value assumes that the biological effectiveness of low-energy beta particles in tritium decay is the same as that of gamma rays and higher-energy beta particles, such as those emitted in decay of Sr-90 and its decay product Y-90. However, many studies in a variety of organisms have indicated that tritium beta particles are biologically more effective than gamma rays and higher-energy beta particles. A representative factor to describe this effect that we have developed for use in human health risk assessments is about 2.4;⁵ this modification

⁴The biological effectiveness of ionizing radiations is believed to depend on the density of ionization in tissue (i.e., the amount of energy deposited per unit path length in passing through matter), and alpha particles have a much higher density of ionization than gamma rays and beta particles, due to their high energies and very short ranges in matter.

⁵The increased biological effectiveness of tritium beta particles has been incorporated, for example, in the methodology developed by SENES Oak Ridge for the National Institute of Occupational Safety and Health (NIOSH) for use in estimating probability of causation of cancers for the purpose of evaluating claims for compensation by workers at U.S. Department of Energy facilities who develop radiogenic cancers.

of absorbed dose from exposure to tritium is analogous to the factor of 20 for alpha particles used in radiation protection, as described above.⁶ Taking into account the increased biological effectiveness of tritium beta particles, the dose to an adult per unit activity intake by ingestion would be 1.6×10^{-7} mrem per pCi; this is the second value listed in Table 1.

Doses per unit activity intake given in Table 1 apply to adults. However, the general population consists of younger age groups as well as adults. Doses per unit activity intake of radionuclides by younger age groups generally are higher than values for adults, due primarily to the smaller masses of body organs and, in many cases (but not for tritium), the higher absorption of ingested radionuclides in the GI tract at younger ages. For ingestion of tritium in the form of water, doses per unit activity intake at different ages currently recommended by the ICRP are given in Table 2.⁷ At age 1 year or less, for example, we see that doses per unit activity intake of tritium are about a factor of 3 to 4 higher than the value for adults. However, in assessing doses to the public resulting from ingestion of tritium in water, the increased dose per unit activity intake at younger ages is compensated to some extent by the generally lower intake rates of water at those ages. Therefore, the dose per unit intake is not, by itself, indicative of doses to younger age groups from intakes of water containing a known concentration of tritium compared with the dose to adults.

Even though the dose per unit activity intake of tritium (and other radionuclides) is higher at younger ages than in adults, it is nonetheless reasonable to focus on assessing exposures of adults if the objective of the assessment is to gain a general understanding of doses and risks to the public from exposure to known concentrations of radionuclides in the environment. This approach can be justified based on the consideration that if intakes over a normal lifetime of about 70 years are assumed, as is often the case in dose assessments for routine exposures of the public, the total dose and associated lifetime cancer risk usually will be dominated by the dose and risk resulting from intakes during adult years. More refined calculations that take into account the age-dependence of intakes and dose per unit activity intake do not change estimates of lifetime dose and risk by a large amount, as is illustrated by calculations of the risk from ingestion of tritium in drinking water over a lifetime in a later section. Many dose assessments for the public performed by the U.S. Nuclear Regulatory Commission (NRC) and Environmental Protection Agency (EPA) assume exposure of adults only.

Estimation of Dose from Ingestion of Tritium in Drinking Water

Estimation of dose from ingestion of drinking water containing a known activity concentration of tritium (or any other radionuclide) is a straightforward procedure. The dose frequently calculated in an assessment of radiological impacts on workers or the public is the

⁶In early ICRP recommendations issued in 1960, a modifying factor of 1.7 was used to calculate dose equivalent from exposure to tritium, to account for the increased biological effectiveness of tritium beta particles, but this factor has not been retained in recommendations since 1977.

⁷Doses per unit activity intake in Table 2 represent an effective dose to the whole body over a period from the age at intake to age 70; intakes by adults are assumed to occur at age 20.

dose resulting from one year's intakes of a radionuclide.⁸ The annual dose from a known concentration of a radionuclide in drinking water is given by

Dose (mrem per year) = Concentration (pCi per liter) × Intake rate (liters per day) × Exposure frequency (days per year) × Dose per unit intake (mrem per pCi).

As an example, consider the annual dose to an adult corresponding to the EPA's current drinking water standard for tritium; this standard is a concentration limit of 20,000 pCi per liter.⁹ For purposes of estimating dose and risk corresponding to drinking water standards, an intake rate of 2 liters (L) per day often is assumed; this intake rate is a reasonable value for an adult who consumes above-average amounts of drinking water. The annual dose to an adult corresponding to 20,000 pCi/L of tritium in water then is given by

Dose = $(20,000 \text{ pCi/L})(2 \text{ L/day})(365 \text{ days/year})(1.6 \times 10^{-7} \text{ mrem/pCi}) = 2.3 \text{ mrem/year}$.

This calculation assumes the higher dose per unit activity intake of tritium in Table 1, which incorporates an assumption of a higher biological effectiveness of tritium beta particles. If this assumption were not included, as is presently the case in dose assessments performed by the EPA and NRC, the annual dose would be a factor of 2.4 lower, or about 1 mrem per year.

To put the annual dose associated with the drinking water standard for tritium into perspective, we note that the average dose to a member of the public from exposure to natural background radiation, excluding the dose from indoor radon, is about 100 mrem per year, and that the average dose from indoor radon is about 200 mrem per year. Thus, the drinking water standard for tritium corresponds to a dose that is about 1% of the total dose from natural background. This comparison is not intended to trivialize potential exposures to tritium in groundwater, or to convince the public that they should not be concerned about such exposures. Rather, the purpose is to illustrate that limits on acceptable exposures of the public to man-made sources of radiation often are set at a small fraction of unavoidable exposures to natural background radiation.

The procedure given above also can be used to estimate annual doses to other age groups using doses per unit activity intake given in Table 2, increased by a factor of 2.4 to account for the greater biological effectiveness of tritium beta particles. However, especially at the youngest ages, a substantially lower intake rate of water should be assumed. For example, during the first

⁹The EPA's drinking water standards strictly apply at the tap (i.e., after treatment by a municipal water supply), rather than the source. However, the EPA often applies these standards to protection of groundwater resources, regardless of whether groundwater is being used to supply drinking water; see, for example, the report on *Protecting the Nation's Ground Water: EPA's Strategy for the 1990s* (1991), Office of Solid Waste and Emergency Response (OSWER) Directive 9200.4-18 (1997), which applied to cleanup of radioactively contaminated sites under CERCLA (Superfund), standards for hazardous waste disposal facilities regulated under Subtitle C of RCRA (40 CFR Part 264), and standards for disposal of spent fuel, high-level radioactive waste, and transuranic waste (40 CFR Parts 191 and 197).

⁸Calculation of an annual dose is particularly appropriate when the purpose of the assessment is to demonstrate compliance with a limit on dose in any year. Many radiation standards for workers and the public in the U.S. are expressed in terms of limits on annual dose.

year of life, a reasonable maximum intake rate of water is about 1 L/day. Based on doses per unit activity intake by a 3-month-old and 1-year-old in Table 2, the dose during the first year of life would be between 11 and 15 mrem.

Estimation of Lifetime Cancer Risk from Ingestion of Tritium in Drinking Water

Once the annual dose from ingestion of tritium in drinking water is estimated, it is a straightforward procedure to obtain an estimate of the risk of cancer incidence that would result from exposure over a lifetime. The lifetime cancer risk is given by

Risk = Annual dose (mrem per year) × Exposure duration (years) × Risk per unit dose .

As an example, radiation risk assessments for hypothetical and prospective exposures of the public often assume that exposure occurs over a 70-year lifetime. Then, using a standard assumption developed by the EPA that the risk of cancer incidence per unit dose in the general population is 7.6×10^{-7} per mrem,¹⁰ the lifetime risk of cancer incidence corresponding to the drinking water standard of 20,000 pCi/L for tritium is

Risk = $(2.3 \text{ mrem/y})(70 \text{ years})(7.6 \times 10^{-7} \text{ per mrem}) = 1.2 \times 10^{-4}$.

That is, there would be slightly more than one chance in 10,000 of a radiation-induced cancer from a lifetime's exposure to tritium in water at the drinking water standard.

The calculated lifetime risk given above is highly simplistic in that it assumes that the concentration of tritium in drinking water remains constant over 70 years. More realistically, if there were no further releases of tritium to the source of drinking water, the concentration would decrease substantially over time as a result of radioactive decay and dilution by inflow from uncontaminated sources, such as rainwater. For example, taking only radioactive decay into account, the average concentration of tritium over 70 years would be about 25% of the initial concentration, and the same reduction in lifetime risk resulting from exposure over 70 years would occur. On the other hand, the concentration could remain fairly constant or even increase over time if there were continuing releases of tritium.

The calculated lifetime risk of slightly above 1 in 10,000 corresponding to the drinking water standard for tritium is at the upper end of the range of acceptable risks of 1 in 10,000 (10^{-4}) to 1 in 1,000,000 (10^{-6}) used by the EPA to establish preliminary remediation goals (PRGs) at contaminated sites subject to cleanup under CERCLA (Superfund).¹¹ A limit on acceptable risk of about 1 in 10,000 also is incorporated in other EPA regulations that apply to releases of

¹¹Risks corresponding to drinking water standards for radionuclides generally fall in the acceptable risk range under CERCLA when an exposure time of 70 years is assumed and risks of cancer incidence to the public per unit activity of radionuclides in drinking water are estimated in accordance with current federal guidance.

¹⁰The risk of cancer incidence per unit dose estimated by the EPA is an average value in a population of all ages, and it takes into account that the risk per unit dose depends on age at time of exposure and is generally highest at the youngest ages.

radionuclides to the environment or radioactive waste disposal.¹² We also note that risk assessments at Superfund sites often assume a shorter exposure duration of 30 years. This assumption would reduce estimates of lifetime cancer risk from ingestion of radionuclides in drinking water, assuming also that the concentration remains constant, by a factor of 0.43. To put risks corresponding to the drinking water standard for tritium in perspective, we note that the lifetime risk of cancer incidence from exposure to natural background radiation at an average dose of about 300 mrem per year, including the dose from indoor radon, is nearly 2 in 100.

The calculation of lifetime cancer risk described above ignores the age-dependence of intake rates of drinking water and doses per unit activity intake of tritium. More refined calculations that incorporate the age-dependence of intakes and dose are given in the EPA's Federal Guidance Report No. 13, *Cancer Risk Coefficients for Environmental Exposure to Radionuclides*. For ingestion of tritium in drinking water, the EPA has estimated a lifetime risk of cancer incidence per unit activity intake in the whole population of 5.1×10^{-14} per pCi. This calculation does not incorporate an enhanced biological effectiveness of tritium beta particles by a factor of about 2.4; if this factor were included as in the dose calculations given above, the risk per unit activity intake would increase to 1.2×10^{-13} per pCi. For example, if the tritium concentration in water is at the drinking water standard of 20,000 pCi/L, the activity intake over a 70-year lifetime, assuming a water intake of 2 L/day, would be 1.0×10^9 pCi, and the resulting lifetime risk of cancer incidence would be 1.2×10^{-4} , or slightly above 1 in 10,000. Thus, for tritium, the refined calculation of risk that accounts for age-dependent effects gives essentially the same answer as our calculation based on an assumption of intakes by adults only.¹³

Finally, we note that the calculations of dose and risk described above involve substantial uncertainty. The uncertainty in the dose per unit activity intake of tritium recommended by the ICRP is believed to be about a factor of 2, meaning that the true value could be as much as a factor of 2 above or below the recommended values in Table 1 and 2, the uncertainty in the biological effectiveness of tritium beta particles (the factor of 2.4) used in our dose calculations is also about a factor of 2, and the uncertainty in the risk per unit dose is believed to be about a factor of 3. In addition, the uncertainty in the intake rate of drinking water by an individual is about a factor of 2 to 3, depending on age. These uncertainties generally are not taken into account in radiation protection or in dose assessments for hypothetical and prospective exposure situations. However, they are important when the purpose of an assessment is to estimate doses, cancer risks, or probability of causation of cancers in identifiable individuals.

Effects of Tritium on Aquatic and Terrestrial Biota

In addition to potential effects on human health arising from the presence of tritium (and other radionuclides) in groundwater, potential impacts on aquatic and terrestrial biota are of

¹²See, for example, standards for airborne emissions of radionuclides developed under the Clean Air Act (40 CFR Part 61) and the standards for radioactive waste disposal identified in footnote 9.

¹³For many radionuclides, there are differences in the two approaches to calculating risk from ingestion, although the differences usually are not large and do not exceed a factor of about 5 in the worst case. When there are differences, the refined calculations that account for the age-dependence of intakes and doses per unit activity intake generally give lower risks.

concern. Approaches to radiation protection of biota differ from approaches to radiation protection of humans in two important ways.

First, a basic premise of radiation protection of humans is that all individuals should be afforded adequate protection. This objective is reflected in requirements that are intended to limit doses and health risks to individuals who could receive the highest doses. In contrast, standards for protection of biota normally focus on protection of populations of species, including species that are the most sensitive to radiation.¹⁴ The basic premise is that the ability of all species to reproduce and maintain viable populations, which allows them to serve their functions in an ecosystem, should not be impaired, although it is recognized that individual members of a species may be harmed.

Second, the fundamental concern in radiation protection of humans is to limit the risk of cancer in exposed individuals and populations, and the approach to limiting cancer risks is based on an assumption that there is some probability of a radiation-induced cancer at any dose.¹⁵ In contrast, based on studies of radiation effects in many organisms, the critical biological effects on populations of species that involve impairment of reproductive capability (i.e., the effects that occur at the lowest doses) are found to occur only at doses and dose rates above a threshold.¹⁶ Therefore, biota are considered to be protected as long as the dose and dose rate is maintained below the threshold for impairment of reproductive capability in the most sensitive species. Other effects on populations of species, such as a significant increase in mortality, occur only at substantially higher doses.

Although there is no formal system of radiation protection of biota similar to the system of radiation protection for humans, the International Atomic Energy Agency (IAEA) and National Council on Radiation Protection and Measurements (NCRP) have developed recommendations on dose limits for aquatic and terrestrial biota, and the U.S. Department of Energy is applying these limits at its facilities. Specifically, it is generally considered that populations of the most sensitive species of terrestrial animals will be protected if the absorbed dose is limited to less than 0.1 rad/day, and that the absorbed dose to aquatic animals and terrestrial plants should be limited to less than 1 rad/day.¹⁷ The recommended dose limits for

¹⁴Exceptions can occur when potential exposures of individual members of threatened or endangered species are of concern.

¹⁵Radiation protection of humans also is concerned with limiting the risk of severe hereditary (genetic) effects in an exposed individual's offspring, and these effects also are assumed to occur with some probability at any dose. However, the risk of radiation-induced hereditary effects in humans is believed to be much less than the risk of cancer.

¹⁶The threshold doses and dose rates for impairment of reproductive capability can vary greatly (e.g., by a factor of 100 to 1,000) depending on the particular species of concern. Although there are exceptions, threshold doses and dose rates tend to be lowest in mammals and birds, intermediate in higher plants, fishes, amphibians, reptiles, and crustaceans, and highest in insects, primitive plants, mollusks, and simple life forms (bacteria, protozoans, and viruses).

¹⁷Implicit in these daily dose limits is an assumption that exposures are occurring over a long time period (on the order of months or more), rather than over short periods of time. If exposures occur only over short time periods, species generally can tolerate higher dose rates without significant impairment of reproductive capability.

biota are much higher than the current dose limit for members of the public from all controlled sources combined, which is 0.1 rem per year.¹⁸

It should be noted that dose limits for biota are expressed in terms of absorbed dose, rather than dose equivalent as in standards for humans. The question of the biological effectiveness of such radiations as alpha particles and low-energy tritium beta particles in inducing threshold effects that impair reproductive capabilities of biota is controversial and unresolved at the present time. One view to which we subscribe is that if there is an increased biological effectiveness of tritium beta particles in inducing threshold effects in biota, it should be less than the value that applies to induction of cancers in humans.¹⁹ Thus, the biological effectiveness of tritium beta particles in biota should be less than a factor of two and probably can be ignored.

Levels of tritium in water that could result in impacts on aquatic or terrestrial biota can be estimated in the following way. Since more than half of the mass of many organisms is water, it is reasonable to assume that the concentration of tritium in an organism is the same as the concentration in water to which the organism is exposed; the average concentration in all tissues of an organism generally would be lower. Then, based on the known average energy of tritium beta particles, the absorbed dose rate per unit activity concentration of tritium can be calculated; the result is 2.9×10^{-7} rad/day per pCi/gram. Since the density of water is 1,000 grams (g) per liter, the concentration of tritium in water corresponding to the dose limit for terrestrial animals of 0.1 rad/day is

Concentration = $[(0.1 \text{ rad/day})/(2.9 \times 10^{-7} \text{ rad/day per pCi/g})] \times (10^3 \text{ g/L}) = 3.4 \times 10^8 \text{ pCi/L}$.

The concentration of tritium in water corresponding to the dose limit for aquatic animals and terrestrial plants of 1 rad/day is a factor of 10 higher, or 3.4×10^9 pCi/L. Based on this simple analysis, it is evident that concentrations of tritium in water would need to be more than a factor of 10,000 higher than the drinking water standard of 20,000 pCi/L for there to be any potential for deleterious effects on populations of terrestrial biota, and that the difference would need to be more than a factor of 100,000 to potentially affect populations of aquatic biota.

¹⁸The public dose limit of 0.1 rem per year is included in the NRC's radiation protection standards in 10 CFR Part 20. Although the public dose limit is intended to be applied to the total dose from all controlled sources combined, the NRC applies this dose limit to individual licensees, without regard for doses due to other controlled sources. However, other EPA regulations that apply to the Salem facility, including standards for operations of nuclear fuel-cycle facilities (40 CFR Part 190) and standards for airborne releases of radionuclides (40 CFR Part 61), limit doses to the public due to releases from the facility to a small fraction of the dose limit of 0.1 rem per year. The NRC also requires that releases of radionuclides to the environment be maintained as low as reasonably achievable (ALARA), and application of the ALARA requirement generally reduces doses to the public from operations at nuclear power plants to a very small fraction of the dose limit.

¹⁹This view is based on the notion that radiation effects on biota occur only at high doses where the density of ionization is high for any radiation type (including gamma rays) and, therefore, that there should be less difference in the biological effectiveness of different radiations at high doses than at the much lower doses of concern in assessing cancer risks in humans.

These discussions have sought to establish the following points.

Tritium has a substantially lower dose per unit activity intake than other radionuclides, either man-made or naturally occurring, to which workers and members of the public normally could be exposed.

Based on many studies of the effects of tritium in various organisms, we believe that calculations of radiation doses to humans from ingestion (or inhalation) of tritium should take into account an increased biological effectiveness of beta particles emitted in tritium decay of a factor of about 2.4, even though this effect is not yet incorporated in estimates of dose per unit activity intake recommended by the ICRP or used by the EPA and NRC.

The dose per unit activity intake of tritium is higher in younger age groups than in adults, with the increase being the highest in infants. However, when the lower intake rates of water by younger age groups are taken into account, the dose per unit activity concentration of tritium in water is less than a factor of 2 higher for infants than adults, and the total dose and cancer risk resulting from intakes of water over a lifetime are dominated by the dose from intakes during adult years.

Doses and health risks to the public that would result from consumption of drinking water that contains tritium at concentrations equal to the EPA's drinking water standard of 20,000 pCi/L are low and are only a small fraction of the unavoidable doses and risks from exposure to natural background radiation.

The lowest concentrations of tritium in water that could be of concern in regard to ensuring protection of populations of the most sensitive species of aquatic and terrestrial biota are more than a factor of 10,000 higher than the drinking water standard of 20,000 pCi/L.

Radionuclide	Radioactive half-life	Dose per activity intake (mrem per pCi)	
H-3 (tritium)	12.33 years	$6.7 \times 10^{-8} (1.6 \times 10^{-7})^{b}$	
K-40	1.277×10^9 years	2.3×10^{-5}	
Mn-54	312.11 days	2.6×10^{-6}	
Co-58	70.86 days	2.7×10^{-6}	
Co-60	5.27 years	1.3×10^{-5}	
Sr-90	28.79 years	1.0×10^{-4}	
Sb-125	2.75856 years	4.1×10^{-6}	
I-129	1.57×10^7 years	4.1×10^{-4}	
I-131	8.0207 days	8.1×10^{-5}	
Cs-134	2.07 years	7.0×10^{-5}	
Cs-137	30.07 years	4.8×10^{-5}	
Ra-226	1600 years	1.0×10^{-3}	
Ra-228	5.75 years	2.6×10^{-3}	
Th-228	1.9116 years	2.7×10^{-4}	
Th-232	1.405×10^{10} years	8.5×10^{-4}	
U-234	2.455×10^5 years	1.8×10^{-4}	
U-235	7.038×10^8 years	1.7×10^{-4}	
U-238	4.468×10^9 years	1.7×10^{-4}	
Pu-239	24,110 years	9.3×10^{-4}	
Am-241	432.2 years	7.4×10^{-4}	

Table 1. Doses to adults per unit activity intake of radionuclides by ingestion^a

^aExcept as noted, values are current recommendations of the International Commission on Radiological Protection (ICRP) for exposure of adults in the general population (see footnote 2 in text). ^bValue in parentheses takes into account an assumption of an increased biological effectiveness of low-energy beta particles emitted in tritium decay by a factor of 2.4 (see text).

Age at time of intake	Dose per activity intake (mrem per pCi)
3 months	2.4×10^{-7}
1 year	1.8×10^{-7}
5 years	1.1×10^{-7}
10 years	8.5×10^{-8}
15 years	6.7×10^{-8}
Adult	6.7×10^{-8}

Table 2.	Doses	to individuals	of various	ages per	unit activity
		intake of triti	um by inge	stion ^a	

^{*a*}Values are current recommendations of the International Commission on Radiological Protection (ICRP) for exposures of members of the general population (see footnotes 2 and 7 in text). If an increased biological effectiveness of tritium beta particles is assumed, values should be increased by a factor of about 2.4 (see text).