Pacific Gas and Electric Company Humboldt Bay Power Plant Paul J. Roller Director and Plant Manager Humboldt Bay Nuclear 1000 King Salmon Avenue Eureka, CA 95503 707/444-0700

ESME

April 30, 2010

PG&E Letter HBL-10-012

U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001

Docket No. 50-133 License No. DPR-7 Humboldt Bay Power Plant Unit 3 Annual Radiological Environmental Monitoring Report for 2009

Dear Commissioners and Staff:

Enclosed is the Humboldt Bay Power Plant Unit 3, "Annual Radiological Environmental Monitoring Report" for 2009. This report provides the information required by Section 4.1 of the SAFSTOR/Decommissioning Offsite Dose Calculation Manual (ODCM).

The report has three sections. Section A provides a summary description of the SAFSTOR Radiological Environmental Monitoring Program (REMP), including maps of sampling locations. Section A also provides the results of licensee laboratory participation in the Interlaboratory Comparison Program.

Section B provides summaries, interpretations, and analyses of trends of the results of the REMP for the reporting period. The material provided is consistent with the objectives outlined in the ODCM, and in 10 CFR 50, Appendix I, Sections IV.B.2, IV.B.3, and IV.C. Section B also includes a comparison with the baseline environmental conditions at the beginning of SAFSTOR.

Section C provides monitoring results for the reporting period, with summaries and tabulations. Radiological environmental samples and environmental radiation measurements were taken at the locations identified in ODCM Table 2-7 as quality-related locations. The summarized results are formatted for applicable reporting requirements of the NRC Radiological Assessment Branch's Branch Technical Position.

There are no regulatory commitments made in this letter.

Document Control Desk April 30, 2010 Page 2

If you wish to discuss the information in the enclosed report, please contact Michael Stein at (707) 444-6564, or David Sokolsky at (707) 444-0801.

Sincerely,

.

Paul J. Roller Director and Plant Manager Humboldt Bay Nuclear

cc/enc: Elmo E. Collins, Jr., NRC Region IV John B. Hickman, NRC Project Manager PG Fossil Gen HBPP Humboldt Distribution

Enclosure

Enclosure PG&E Letter HBL-10-012

HUMBOLDT BAY POWER PLANT UNIT 3 ANNUAL RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT

JANUARY 1 THROUGH DECEMBER 31, 2009

TABLE OF CONTENTS

A. RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM1
1. Program Description1
2. Monitoring Requirements2
a. Offsite Environmental Monitoring – Direct Radiation2
b. Onsite Environmental Monitoring2
c. Other Monitoring3
3. Interlaboratory Comparison Program3
4. NEI Groundwater Protection Initiative4
B. TRENDS, BASELINE COMPARISONS AND INTERPRETATIONS4
1. General Comments4
2. Direct Radiation Pathway5
3. Airborne Pathway6
4. Waterborne Pathway6
a. Surface Water
b. Groundwater6
5. Ingestion Pathway7
6. Terrestrial Pathway7
C. MONITORING RESULTS
1. Annual Summary7
2. Direct Radiation Pathway8
3. Airborne Pathway8
4. Waterborne Pathway8
a. Surface Water8

- i

÷

TABLE OF CONTENTS (Continued)

•

111

	b. Groundwater	9
5.	Ingestion Pathway	10
	Terrestrial Pathway	
7.	NEI Groundwater Protection Initiative Voluntary Reporting Results	10
8.	Errata For Previous Report	11

LIST OF TABLES

<u>Table</u>	e	Page
A-1	HBPP Radiological Environmental Monitoring Program	12
A-2	Distances And Directions to Offsite Environmental Monitoring Stations	
A-3	GEL Participation - Interlaboratory Cross-Check Program Data	14
C-1	Radiological Environmental Monitoring Program Annual Report Summary	16
C-2	Onsite Environmental TLD Stations	18
C-3	Offsite Environmental TLD Stations	19
C-4	Discharge Canal Sample Results	20
C-5	Groundwater Monitoring Well Results	22
·C-6	Caisson Sump Monitoring Results	24
C-7	French Drain Monitoring Results	25
C-8	Additional Monitoring Results	26

LIST OF FIGURES

Figure		Page
A-1 ł	HBPP Onsite TLD Locations	28
A-2 H	HBPP Onsite Monitoring Well Locations	29
A-3 H	HBPP Offsite TLD Locations	30
B-1_0	Offsite Environmental Radiation Level Trends	32
B-2 (Onsite Environmental Radiation Level Trends	33

PACIFIC GAS AND ELECTRIC COMPANY ANNUAL RADIOLOGICAL ENVIRONMENTAL MONITORING REPORT FOR HUMBOLDT BAY POWER PLANT UNIT 3, COVERING THE PERIOD JANUARY 1 THROUGH DECEMBER 31, 2009

This annual report is required by Section 4.1 of the SAFSTOR Offsite Dose Calculation Manual (ODCM). This report provides information about the Radiological Environmental Monitoring Program (REMP) for the period of January 1 through December 31, 2009, in a manner consistent with the objectives outlined in the ODCM, and in 10CFR 50, Appendix I, Sections IV.B.2, IV.B.3, and IV.C.

The report has three sections. Section A provides a summary description of the REMP, including maps of sampling locations. Section A also provides the results of licensee laboratory participation in the Interlaboratory Comparison Program.

Section B provides summaries, interpretations, and analyses of trends of the results of the REMP for the reporting period. The material provided is consistent with the objectives outlined in the ODCM, and in 10CFR 50, Appendix I, Sections IV.B.2, IV.B.3, and IV.C. Section B also includes a comparison with the baseline environmental conditions at the beginning of SAFSTOR.

Section C provides the results of analyses of radiological environmental samples and of environmental radiation measurements taken during the period pursuant to the quality related locations specified in the table and figures in the ODCM, presented as both summarized and tabulated results of these analyses and measurements. The summarized results are formatted for applicable reporting requirements of the NRC Radiological Assessment Branch's Branch Technical Position.

A. RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

1. Program Description

The NRC Radiological Assessment Branch issued a Branch Technical Position (BTP) on environmental monitoring in March 1978. Revision 1 of the BTP was issued as Generic Letter 79-65, "Radiological Environmental Monitoring Program Requirements – Enclosing Branch Technical Position," Revision 1, dated November 27, 1979, and sets forth an example of an acceptable minimum radiological monitoring program. The specified environmental monitoring program provides measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposures of individuals resulting from plant effluents.

As discussed below, many of the exposure pathway sample requirements specified in the BTP are not required for the HBPP REMP because of the baseline conditions established in the SAFSTOR Decommissioning Plan (now identified as the Defueled Safety Analysis Report (DSAR)) and the Environmental Report. In addition, the nuclides specified for analysis by the BTP have been revised to reflect the available source term at a nuclear power plant that has been shut down since July 2, 1976.

The REMP consists of the collection and analysis of both onsite and offsite environmental samples. HBPP personnel perform sample collection and General Engineering Laboratories (GEL) personnel perform sample analysis. The Diablo Canyon Power Plant (DCPP) dosimetry group performs analysis of thermoluminescent dosimeters (TLDs) used for monitoring direct radiation. A summary of the REMP is provided as Table A-1, "HBPP Radiological Environmental Monitoring Program."

Prior to 2006, HBPP utilized an "in-house" environmental lab for sample analysis. That environmental lab was Technical and Ecological Services (TES) located in San Ramon, California. At the beginning of 2006, HBPP REMP changed its environmental lab to GEL located in Charleston, South Carolina.

Sample collection for the REMP is performed at the sampling stations defined by Table A-2, Distances and Directions to HBPP Offsite TLD Locations; Figure A-1, HBPP Onsite TLD Locations; Figure A-2, HBPP Onsite Monitoring Well Locations; and the discharge canal shown in Figure A-2, HBPP Onsite Monitoring Well Locations.

2. Monitoring Requirements

a. Offsite Environmental Monitoring - Direct Radiation

The SAFSTOR ODCM requires four offsite environmental monitoring stations equipped with TLDs to monitor gamma exposure. The TLDs are to be exchanged quarterly. The stations selected to satisfy this requirement are Stations 1, 2, 14 and 25 as described in Table A-2. These stations are considered to be the four control locations for the direct radiation dose pathway.

b. Onsite Environmental Monitoring

(1) Direct Radiation

The SAFSTOR ODCM requires sixteen onsite environmental monitoring stations, equipped with TLDs to monitor gamma exposure. The TLDs are to be exchanged quarterly. The stations selected to satisfy this requirement are Stations T1 through T16, shown on Figure A-1.

Each quarter the exposures from 16 stations are determined, which results in the 64 analyses for the year. Each TLD station has three TLDs, each containing a number of phosphors (normally three).

The phosphor exposures for each TLD are averaged and then the three TLDs per station are averaged to provide the quarterly exposure for the station.

(2) Surface Water

The SAFSTOR ODCM requires that the discharge canal effluent be monitored by gamma isotopic analysis and by tritium analysis. Composite samples are normally collected weekly from a continuous sampler, with dip (grab) samples collected if the sampler is inoperable.

(3) Groundwater

The SAFSTOR ODCM requires that five groundwater wells be monitored by gamma isotopic analysis and by tritium analysis. Samples are to be collected quarterly. The monitoring wells selected to satisfy this requirement are identified as MW-1, MW-2, MW-4, MW-6, and MW-11, shown on Figure A-2.

c. Other Monitoring

Airborne, ingestion and terrestrial pathway monitoring is not required by the ODCM. The Environmental Report, submitted to the NRC as Attachment 6 to the SAFSTOR license amendment request, established baseline conditions for these pathways. In accordance with the NRC-approved SAFSTOR Decommissioning Plan, (now identified as the DSAR), these baseline conditions will only need to be reestablished prior to final decommissioning if a significant release occurs during SAFSTOR. The Environmental Report also contains a description of the demography and human activities within the environs surrounding the site.

As a matter of plant policy, groundwater leakage into the reactor caisson is routinely sampled, approximately monthly, and analyzed for tritium and gamma emitters, in order to develop a historical record of this parameter for the remainder of SAFSTOR. The results are included in this report, but are not considered part of the SAFSTOR REMP.

3. Interlaboratory Comparison Program

PG&E's contract laboratory, GEL, has analyzed evaluation samples provided by a commercial supplier to satisfy the requirement to participate in an Interlaboratory Cross-Check Program. This participation includes sufficient determinations (sample medium and radionuclide combination) to ensure independent checks on the precision and accuracy of the measurements of radioactive materials in the REMP samples. Table A-3 presents the participation in this Interlaboratory Cross-Check Program for samples analyzed in the report period that represent analyses performed for HBPP. The agreement criteria are consistent with the guidance for "Confirmatory Measurements" in NRC Inspection Procedure 83502.3, "Radiological Environment Monitoring Program and Radioactive Material Control Program." GEL analyzed 10 samples for 62 parameters that are representative of analyses performed for HBPP during 2009. All results met the acceptance criteria. No adverse trends in quality were noted in the crosscheck program results.

4. NEI Groundwater Protection Initiative

Groundwater monitoring data is collected in accordance with the Nuclear Energy Institute (NEI) Groundwater Protection Initiative. The results show that there are detectable concentrations of radionuclides in the groundwater within the HBPP restricted area. These are believed to be the results of historical spills at the site.

The impact of these detectable concentrations is negligible, as the groundwater is saline and is not used now or likely to be used in the future for either direct consumption or for agricultural purposes.

To further characterize any groundwater issues, twelve additional wells are monitored as well as the five that are required to be monitored by the SAFSTOR REMP. The results of the analyses for the additional wells are included in Table C-8, Additional Monitoring Results.

B. TRENDS, BASELINE COMPARISONS AND INTERPRETATIONS

Section B provides interpretations of results, and analyses of trends of the results. The material provided is consistent with the objectives outlined in the ODCM, and in 10CFR 50, Appendix I, Sections IV.B.2, IV.B.3, and IV.C. Section B also includes a comparison with the baseline environmental conditions at the beginning of SAFSTOR.

1. General Comments

The Environmental Report, submitted to the NRC as Attachment 6 to the SAFSTOR license amendment request, established baseline conditions for soil, biota and sediments. In accordance with the NRC approved SAFSTOR Decommissioning Plan (now identified as the DSAR)), these baseline conditions will only need to be reestablished prior to final decommissioning if a significant release occurs during SAFSTOR. The results to date indicate no significant change (other than normal radioactive decay) from the baseline environmental conditions established in the Environmental Report.

The results, interpretations, and analysis of trends of the results, indicate that SAFSTOR activities have had no measurable radiological effect on the environment. Facility surveys for radiation and radioactive surface contamination are performed on both a scheduled basis and on an as-required basis. These surveys indicate that the radioactivity control barriers established for SAFSTOR continue to be effective. As discussed below, the ODCM calculation model conservatively assumes that exposure pathways begin at the unrestricted area boundary. Since there have not been any changes in the location of the boundary, no survey for changes to the use of unrestricted areas was necessary.

With the exception of the direct radiation pathway (discussed below), there were no measurement results that could be directly compared to calculated doses to individuals.

2. Direct Radiation Pathway

A plot of the radiation level trends for the four control locations is shown in Figure B-1, Offsite Environmental Radiation Level Trends. A plot of the radiation level trends for onsite stations is shown in Figure B-2, Onsite Environmental Radiation Level Trends. This plot includes the average dose for two groups of onsite stations, selected by their potential to be affected by radioactive waste handling activities.

The plots show that the offsite annual doses continue to be within the ranges that have been observed over the last ten years.

Figure B-2 also shows that dose measurement variations can be attributed to in-plant sources and low-level waste packaging and shipping activities. However, allowing for the background change in the general environs, all measurements were comparable to the ranges observed at these locations since entering SAFSTOR, with the onsite station dose levels approximately within the range of dose levels shown by the offsite stations.

The ODCM calculation model for the direct radiation exposure pathway assumes an occupancy factor for the portion of the unrestricted area boundary that is closest to the radioactive waste handling area of the plant, which is the location of the highest potential exposure. The occupancy factor is 67 hours per year, based on regulatory guidance for shoreline recreation, even though the actual shoreline is farther from the boundary. Since there have been no significant changes of the locations of the radioactive waste handling activities, boundary, or shoreline, no further survey for changes to the use of unrestricted areas is necessary.

The Independent Spent Fuel Storage Facility (ISFSI) was constructed in 2008 and spent fuel transfer from the spent fuel was completed in December 2008. As a result of this the dose rates at the fence line increased slightly. The ISFSI Final Safety Analysis Report (FSAR) assumes an occupancy factor of 2,080 hours per year at the fence line.

Based on the 2080 hour occupancy factor the dose at the fence line would have been 0.23 mrem per year.

3. Airborne Pathway

Airborne pathway monitoring is not required by the ODCM. The Environmental Report, submitted to the NRC as Attachment 6 to the SAFSTOR license amendment request, established baseline conditions for the airborne pathway. In accordance with the NRC-approved SAFSTOR Decommissioning Plan, (now identified as the DSAR), these baseline conditions will only need to be reestablished prior to final decommissioning if a significant release occurs during SAFSTOR. The ODCM calculation model for the airborne pathway assumes that the airborne exposure pathway (inhalation exposure) is at the unrestricted area boundary, which is the location of the highest potential exposure.

4. Waterborne Pathway

a. Surface Water

None of the REMP samples indicated detectable levels of Tritium or gamma radioactivity. These sample results were typical of those observed since entering SAFSTOR.

The ODCM calculation model for the surface water waterborne pathway assumes that the waterborne exposure pathway (vertebrate and invertebrate food consumption) begins at the unrestricted area boundary, which is the location of the highest potential exposure.

The ODCM calculation model is based on the average concentration of the radioactivity released and diluted by the flow of water circulating through the outfall canal. For the purposes of comparing the sampling results with effluents, consider a conservatively estimated liquid waste batch of 7,000 gallons containing Tritium at 30,000 pico-Curies/liter, Cs-137 at 1,000 pico-Curies/liter, and Co-60 at 100 pico-Curies/liter. For a single batch release during a week-long canal composite sample, the circulating water volume is rarely lower than 1.6E8 gallons, so the diluted activity for Tritium, Cs-137 and Co-60 would be 1.3, 0.044, and 0.0044 pico-Curies/liter, respectively. These concentrations are unlikely to be detected.

b. Groundwater

One sample (4th quarter) for one of the 5 SAFSTOR REMP required monitoring wells indicated detectable levels of tritium. For gamma radioactivity, these sample results were typical of those observed since entering SAFSTOR. Results for other parameters and samples were comparable to the ranges observed since entering SAFSTOR.

This report also contains information on gamma emitting radionuclides and tritium concentrations in the caisson sump and gamma emitting radionuclide concentrations for the Spent Fuel Pool (SFP) French drain. There is detectable radioactivity, due to plant operations, at these sample points. Both of these locations are believed to be contaminated as a result of groundwater intrusion into historically contaminated areas of concrete and fill material.

The ODCM does not provide a model for the groundwater waterborne pathway, as the groundwater is saline and is not used for either direct consumption or for agricultural purposes.

5. Ingestion Pathway

Ingestion pathway monitoring is not required by the ODCM. The Environmental Report, submitted to the NRC as Attachment 6 to the SAFSTOR license amendment request, established baseline conditions for the ingestion pathway. In accordance with the NRC-approved SAFSTOR Decommissioning Plan, (now identified as the DSAR), these baseline conditions will only need to be reestablished prior to final decommissioning if a significant release occurs during SAFSTOR.

The ODCM calculation model for the airborne pathway assumes that the airborne exposure ingestion pathways (milk, meat and vegetable consumption) begin at the unrestricted area boundary, which is the location of the highest potential exposure, whether any dairy, farm, etc. is actually present.

6. Terrestrial Pathway

Terrestrial pathway monitoring is not required by the ODCM. The Environmental Report, submitted to the NRC as Attachment 6 to the SAFSTOR license amendment request, established baseline conditions for the terrestrial pathway. In accordance with the NRC-approved SAFSTOR Decommissioning Plan, (now identified as the DSAR), these baseline conditions will only need to be reestablished prior to final decommissioning if a significant release occurs during SAFSTOR.

The ODCM calculation model for the terrestrial pathway conservatively assumes that the terrestrial exposure (direct radiation from airborne radioactivity deposition) is at the unrestricted area boundary, which is the location of the highest potential exposure.

C. MONITORING RESULTS

1. Annual Summary

Results of the REMP sampling and analysis are summarized in Table C-1 in the format of the BTP Table 3. None of the REMP samples results exceeded the reporting levels for radioactivity concentration in environmental samples specified in HBPP ODCM Table 2-8.

- 7 -

All of the minimum detectable activities (MDAs) for analyses required by the SAFSTOR REMP less than or equal to the lower limit of detection (LLD) criteria for radioactivity in environmental samples specified in Table C-1 of this report. Because alpha and beta radioactivity analyses of the saline ground water are less effective than Tritium and Gamma radioactivity analyses for monitoring potential spent fuel pool leakage, the ODCM does not currently require alpha and beta radioactivity analyses to be part of the SAFSTOR REMP.

2. Direct Radiation Pathway

Monitoring of the direct radiation pathway is performed at 16 onsite locations near the facility fence line, and at 4 offsite (control) locations in the vicinity of the facility. Monitoring is performed with TLDs with multiple crystal elements. Three TLDs are installed at each station, and the set is exchanged quarterly. The reported result and its standard error are calculated from the measurements of multiple elements in the TLD triplet. Results of the onsite and offsite monitoring are provided in Tables C-2 and C-3, respectively. The exposure measurement recorded at onsite TLD Location T11 was approximately 3 times higher than expected. The higher than normal exposure was due to the radiography of welds associated with the new generation facility currently being constructed adjacent to HBPP Unit 3. The TLD was in the direct path photons emitted from the area during radiography. No occupational workers or members of the public were exposed during this event.

3. Airborne Pathway

Airborne pathway monitoring is not required by the ODCM.

4. Waterborne Pathway

a. Surface Water

Surface water sampling of the waterborne pathway is performed by sampling the discharge canal effluent. Sampling is normally performed by collecting a weekly sample from a discharge canal continuous composite sampler. If the composite sampler is found to be inoperable, dip samples from the discharge canal are taken. All samples during the reporting period were obtained from the continuous composite sampler.

Detailed results of the discharge canal monitoring are provided in Table C-4. None of the REMP samples indicated detectable levels of Tritium or gamma radioactivity at or above the MDA. The MDA for these analyses was at or below the LLD stated in Table C-1 of this report. These sample results were typical of those observed since entering

SAFSTOR. Since no activity was detected, a comparison with the baseline levels was not performed.

b. Groundwater

Groundwater sampling of the waterborne pathway is performed by sampling five monitoring wells located to monitor for leakage from the spent fuel pool. Sampling of these monitoring wells is performed quarterly. Detailed results of groundwater monitoring are provided in Table C-5.

The tritium concentration during the fourth quarter of 2009 in Monitoring Well Number 6 (MW-6) was 952 ± 196 pCi/liter. The tritium concentration for all of the other wells listed in Tables C-5 and C-8 during 2009 was less than the MDA of approximately 300 pCi/liter. The tritium concentration in all the wells listed in Tables C-5 and C-8 during the first quarter of 2010 were also less than the MDA of approximately 300 pCi/liter. Therefore, the measurement from MW-6 in the fourth quarter of 2009 may be an anomaly. The addition of the several more groundwater monitoring wells in the last couple of years will help to further characterize groundwater issues. All of the monitoring wells are inside the owner controlled area boundary and the groundwater is saline and is not used for direct consumption or for agricultural purposes. Therefore, there is no groundwater waterborne pathway for a member of the public. None of the other ODCM required REMP samples indicated detectable levels of tritium or gamma radioactivity.

Because alpha and beta radioactivity analyses of the saline ground water are less effective than tritium and gamma radioactivity analyses for monitoring potential spent fuel pool leakage, the ODCM does not currently require alpha and beta radioactivity analyses to be part of the SAFSTOR REMP. Nevertheless, alpha and beta radioactivity analyses are performed as a matter of plant policy, in order to maintain a historical record of this parameter for the remainder of SAFSTOR. These results are included in Table C-5, but are not considered part of the SAFSTOR REMP.

All required sampling and analysis for the five monitoring wells of the waterborne pathway required during this reporting period was performed successfully.

Groundwater leakage into the reactor caisson is also routinely sampled, approximately monthly, and analyzed for gamma emitters and Tritium as a matter of plant policy, in order to develop a historical record of this parameter for the remainder of SAFSTOR. These results are included in Table C-6, but are not considered part of the SAFSTOR REMP.

The French Drain beneath the Spent Fuel Pool is also routinely sampled, approximately monthly, and analyzed for gamma emitters as a matter of plant policy, in order to develop a historical record of this parameter for the remainder of SAFSTOR. These results are included in Table C-7, but are not considered part of the SAFSTOR REMP.

As a response to the NEI groundwater initiative, additional analyses were performed on some groundwater samples. The results of these analyses are provided in Table C-8.

5. Ingestion Pathway

Ingestion pathway monitoring is not required by the ODCM.

6. Terrestrial Pathway

Terrestrial pathway monitoring is not required by the ODCM.

7. NEI Groundwater Protection Initiative Voluntary Reporting Results

The NEI Groundwater Protection Initiative contains the following requirements:

OBJECTIVE 2.2 VOLUNTARY COMMUNICATION

Make informal notification as soon as practicable to appropriate State/Local officials, with follow up notification to the NRC, as appropriate, regarding significant onsite leaks/spills into groundwater and onsite or offsite water sample results exceeding the criteria in the REMP as described in the ODCM/ODAM.

HBPP Response to 2.2:

There were no reports or notifications required to be generated in 2009 for groundwater results exceeding reporting/notification levels or significant onsite leaks/spills.

OBJECTIVE 2.3 THIRTY-DAY REPORTS

Submit a 30-day report to the NRC for any water sample result for onsite groundwater that is or may be used as a source of drinking water that exceeds the criteria in the licensee's existing REMP for 30-day reporting of offsite water sample results. Copies of 30-day reports for both onsite and offsite water samples will also be provided to the appropriate State agency, and:

HBPP Response to 2.3:

There were no reports or notifications required to be generated in 2009 for groundwater results exceeding reporting/notification levels or significant onsite leaks/spills.

OBJECTIVE 2.4 ANNUAL REPORTING

Document all on-site ground water sample results and a description of any significant on-site leaks/spills into groundwater for each calendar year in the AREOR for REMP or the ARERR for the RETS as contained in the appropriate reporting procedure, beginning with Calendar year 2006.

HBPP Response to 2.4:

13

Onsite groundwater monitoring points are described and reported in this report as follows:

MW-01 (Monitoring Well 01), MW-02 (Monitoring Well 02), MW-04 (Monitoring Well 04), MW-06 (Monitoring Well 06), MW-11 (Monitoring Well 11), the Caisson Sump and the French Drain. A summary of the sample results are provided in Section C.

There were no significant onsite leaks/spills into groundwater in 2009. Note: the term "significant" is defined by the NEI Initiative as greater than 100 gallons.

8. Errata for Previous Report

There are no errata for previous reports.

Exposure Pathway And/Or Sample	Number of Samples And Locations	Sampling and Collection Frequency	Type of Analysis
DIRECT RADIATION	16 onsite stations with TLDs	TLDs exchanged quarterly	Gamma exposure
	4 offsite stations with TLDs	TLDs exchanged quarterly	Gamma exposure
WATERBORNE Surface Water	Discharge canal effluent	Continuous sampler operation with sample collection weekly. Dip samples if sampler inoperable	Gamma isotopic ^(a) and Tritium analysis of weekly sample
Groundwater	5 groundwater monitoring wells	Quarterly	Tritium and gamma isotopic ^(a) analysis

TABLE A-1 HBPP RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

^(a) Gamma isotopic analysis means the identification and quantification of gamma emitting radionuclides that may be attributable to the effluents from the facility.

		Radial Di	rection	Radial Distance
Station Number	Station Name	Sector	By Degrees	From Plant (Miles)
1	King Salmon Picnic Area	W	270	0.3
2	City of Fortuna Water Pollution Control Plant, 180 Dinsmore Drive, Fortuna	SSE	158	9.4
14	South Bay School Parking Lot	S	180	0.4
25	Irving Drive, Humboldt Hill	SSE	175	1.3

 TABLE A-2

 DISTANCES AND DIRECTIONS TO HBPP OFFSITE TLD LOCATIONS

ι.

TABLE A-3 GEL PARTICIPATION – INTERLABORATORY CROSS-CHECK PROGRAM DATA

Table Notation: (a) All of the values shown are relative. Therefore, the units for total activity or concentration levels are not shown.

Sample/Analysis	Radionuclide	Quarter 2009	GEL	Ref Value	Evaluation
Water/Gamma	Ce-141	1st	1.22E+02	1.20E+02	Agreement
	Co-58	1st	1.59E+02	1.51E+02	Agreement
· · ·	Co-60	1st	1.92E+02	1.80E+02	Agreement
	Cr-51	1st	3.92E+02	3.87E+02	Agreement
-	Cs-134	1st	1.19E+02	1.19E+02	Agreement
	Cs-137	1st	1.44E+02	1.41E+02	Agreement
	Fe-59	1st	1.28E+02	1.27E+02	Agreement
	I-131	1st	7.55E+01	6.90E+01	Agreement
,	I-131	1st	2.51E+01	2.22E+01	Agreement
	Mn-54	1st	1.80E+02	1.62E+02	Agreement
	Zn-65	1st	2.24E+02	1.97E+02	Agreement
Water/Gross Alpha	Gross Alpha	1st	5.13E+01	5.23E+01	Agreement
Water/Gross Beta	Gross Beta	1st	4.19E+01	4.61E+01	Agreement
Water/Tritium	Tritium	1 <u>st</u>	3.76E+03	4.23E+03	Agreement
Water/Strontium	Sr-89	1st	7.28E+01	6.50E+01	Agreement
	Sr-90	1st	3.65E+01	4.19E+01	Agreement
,					
Water/Gamma	Ce-141	2nd	2.29E+02	2.16E+02	Agreement
	Co-57	2nd	18.8	18.9	Agreement
	Co-58	2nd	7.21E+01	6.98E+01	Agreement
	Co-60	2nd	2.42E+02	2.37E+02	Agreement
	Co-60	2nd	16.8	17.21	Agreement
	Cr-51	2nd	3.11E+02	3.04E+02	Agreement
	Cs-134	2nd	1.37E+02	1.26E+02	Agreement
	Cs-134	2nd	21.9	22.5	Agreement
	Cs-137	2nd	1.51E+02	1.46E+02	Agreement
	Cs-137	2nd	0	0	Agreement
	Fe-59	2nd	9.04E+01	9.29E+01	Agreement
	I-131	2nd	8.52E+01	8.83E+01	Agreement
	Mn-54	2nd	1.07E+02	1.04E+02	Agreement
	Mn-54	2nd	15.1	14.66	Agreement
	Zn-65	2nd	1.38E+02	1.33E+02	Agreement
·	Zn-65	2nd	14.6	13.6	Agreement

TABLE A-3 (Continued) GEL PARTICIPATION – INTERLABORATORY CROSS-CHECK PROGRAM DATA

Sample/Analysis	Radionuclide	Quarter 2009	GEL	Ref Value	Evaluation
Water/Gross Alpha	Gross Alpha	2nd	0.506	0.64	Agreement
Water/Gross Beta	Gross Beta	2nd	1.337	1.27	Agreement
Water/Ni-63	Ni-63	2nd	52.7	53.5	Agreement
Water/Strontium	Sr-90	2nd	7.43	7.21	Agreement
Water/Gamma	Ce-141	3rd	2.72E+02	2.64E+02	Agreement
·	Co-58	3rd	9.65E+01	9.54E+01	Agreement
	Co-60	3rd	1.56E+02	1.54E+02	Agreement
	Cr-51	3rd	2.21E+02	2.12E+02	Agreement
	Cs-134	3rd	1.18E+02	1.18E+02	Agreement
, •	Cs-137	3rd	1.86E+02	1.77E+02	Agreement
	Fe-59	3rd	1.48E+02	1.41E+02	Agreement
	I-131	3rd	1.02E+02	9.84E+01	Agreement
	I-131	3rd	28.4	26.3	Agreement
	Mn-54	3rd	2.11E+02	1.98E+02	Agreement
	Zn-65	3rd	2.19E+02	1.95E+02	Agreement
Water/Gross Alpha	Gross Alpha	3rd	43.8	55.3	Agreement
Water/Gross Beta	Gross Beta	3rd	53.6	64.7	Agreement
Water/Tritium	Tritium	3rd	9440	10000	Agreement
Water/Strontium	Sr-89	3rd	59.6	59.1	Agreement
	Sr-90	3rd	33.7	37.4	Agreement
·					
Water/Gamma	Co-57	4th	35.7	36.6	Agreement
	Cs-134	4th	31.6	32.2	Agreement
	Cs-137	4th	40.4	41.2	Agreement
	Mn-54	4th	0.07	0	Agreement
	Zn-65	4th	28.9	26.9	Agreement
	Co-60	4th	15.3	15.4	Agreement
Water/Gross Alpha	Gross Alpha	4th	0.982	1.05	Agreement
Water/Gross Beta	Gross Beta	4th	7.277	7.53	Agreement
Water/Strontium	Sr-90	4th	16.4	12.99	Agreement
Water/Ni-63	Ni-63	4th	45.8	44.2	Agreement

TABLE C-1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL REPORT SUMMARY

Name of Facility	Humboldt Bay Power Plant Unit 3	Docket No.	50-133; License No. DPR-7
Location of Facility	Humboldt County, California (County, State)	Reporting Period	January 1 – December 31, 2009

	Type andAll IndicatorLocation with Highest Annual MeTotalLowerLocations		ghest Annual Mean	Control Locations	Number of		
Medium or Pathway Sampled [Unit of Measurement]	Number of Analyses Performed	Limit of Detection ^a (LLD)	Mean, (Fraction) & [Range] ^b	Name, Distance and Direction	Mean, (Fraction) & [Range] ^b	Mean, (Fraction) & [Range] ^b	Nonroutine Reported Measurements
AIRBORNE Radioiodine and Particulates	Not Required	N/A	N/A	N/A	N/A	Not Required	N/A
DIRECT RADIATION [mR/quarter]	Direct radiation (64)	3	13.2 ± 0.1 (64/64) [9.5 – 43.1]	Station T11, Figure B-1	19.9 ± 0.5 (4/4) [10.5– 43.1]	12.3 ± 0.3 (16/16) [9.6 – 15.2]	0
WATERBORNE Surface Water (Discharge canal effluent) [pCi/l]	Gamma isotopic (53)	Co-60: 15 Cs-137: 18	<mda (0/53) [N/A]</mda 	N/A	N/A	Not Required	Õ
	Tritium (53)	ODCM: 3000 Plant Policy: 400	<mda (0/53) [N/A]</mda 	N/A	N/A	Not Required	0

TABLE C-1 (Continued)

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM ANNUAL REPORT SUMMARY

Medium or	Type and Total	All Indicat Lower Locations		I Indicator Location with Highest Annual Docations Mean			Control Locations		Number of		
Pathway Sampled [Unit of Measurement]	Number ofLimit ofAnalysesDetectionaPerformed(LLD)		Mean, (Fraction) & [Range] ^b		Name, Distance and Direction		Mean, (Fraction) & [Range] ^b		Mean, (Fraction) & [Range] ^b		Nonroutine Reported Measurements
WATERBORNE (continued) Groundwater (Monitoring wells) [pCi/l]	Gamma isotopic (20)	Co-60: 15 Cs-137: 18	<u>Co-60</u> <mda (0/20) [N/A]</mda 	<u>Cs-137</u> <mda (0/20) [N/A]</mda 	<u>Co-60</u> N/A	<u>Cs-137</u> N/A	<u>Co-60</u> <mda (0/4) [N/A]</mda 	<u>Cs-137</u> <mda (0/4) [N/A]</mda 	<u>Co-60</u> N/A	<u>Cs-137</u> N/A	0
	Tritium (20)	ODCM:2000 Plant Policy: 400	952 (1/20) [N/A]		MW-6		952 (1/4) [N/A]		N/A		0
Drinking Water	Not Required	N/A	N/A		N/A		N/A		Not Req	uired	N/A
Sediment	Not Required	N/A	N/A		N/A		N/A		Not Req	uired	N/A
Algae	Not Required	N/A	N/A		N/A		N/A		Not Req	uired	N/A
INGESTION Milk	Not Required	N/A	N/A		N/A		N/A		Not Req	uired	N/A
Fish and invertebrates	Not Required	N/A	N/A		N/A	•	N/A		Not Req	uired	N/A
TERRESTRIAL Soil	Not Required	N/A	N/A		N/A		N/A		Not Reg	uired	N/A

^a The LLD is defined as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95 percent probability with only 5 percent probability of falsely concluding that a blank observation represents a "real" signal.

LLD is defined as the <u>a priori</u> lower limit of detection (as pCi per unit mass or volume) representing the capability of a measurement system and not as the <u>a posteriori</u> (after the fact) limit for a particular measurement. (Current literature defines the LLD as the detection capability for the instrumentation only, and the MDA, minimum detectable concentration, as the detection capability for a given instrument, procedure and type of sample.) The actual MDA for these analyses was at or below the LLD.

^b The mean and the range are based on detectable measurements only. The fraction of detectable measurements at specified locations is indicated in parentheses; e.g., (10/12) means that 10 out of 12 samples contained detectable activity. The range of detected results is indicated in brackets; e.g., [23-34].

Not Required: Not required by the HBPP Unit 3 Technical Specifications or the SAFSTOR Offsite Dose Calculation Manual. Baseline environmental conditions for this parameter were established in the Environmental Report as referenced by the SAFSTOR Decommissioning Plan (now identified as the Defueled Safety Analysis Report).

N/A – Not applicable

Station	TLD Exposure Measurements (mR)							
Number	First Quarter	Second Quarter	Third Quarter	Fourth Quarter				
T1	12.1 ± 0.2	15.8 ± 0.9	13.7 ± 0.3	14.3 ± 0.6				
Т2	10.8 ± 0.4	14.3 ± 0.5	13.0 ± 0.4	13.6 ± 0.5				
Т3	10.7 ± 0.5	13.3 ± 0.5	12.4 ± 0.6	13.2 ± 0.5				
T4	10.6 ± 0.5	13.7 ± 0.3	13.3 ± 0.6	13.8 ± 0.3				
Т5	10.4 ± 0.5	14.5 ± 0.5	12.5 ± 0.5	12.9 ± 0.3				
Т6	9.5 ± 0.5	13.5 ± 0.5	11.6 ± 0.2	11.8 ± 0.5				
Т7	10.7 ± 0.6	13.6 ± 0.6	12.2 ± 0.6	13.7 ± 0.4				
Т8	10.2 ± 0.5	12.1 ± 0.3	11.2 ± 0.5	12.1 ± 0.4				
Т9	10.8 ± 0.5	14.2 ± 0.6	12.7 ± 0.4	12.9 ± 0.5				
T10	9.8 ± 0.5	13.9 ± 0.4	12.1 ± 0.4	12.2 ± 0.6				
T11	10.5 ± 0.5	43.1 ± 2.0	12.6 ± 0.3	13.3 ± 0.5				
T12	9.9 ± 0.4	13.7 ± 0.5	14.9 ± 0.4	13.8 ± 0.5				
T13	11.4 ± 0.4	14.1 ± 0.5	12.7 ± 0.5	15.4 ± 0.6				
T14	12.3 ± 0.5	15.5 ± 0.7	13.1 ± 0.3	14.2 ± 0.2				
T15	11.0 ± 0.4	15.1 ± 0.4	13.1 ± 0.3	14.3 ± 0.6				
T16	11.5 ± 0.6	15.0 ± 0.6	12.8 ± 0.3	13.6 ± 0.6				

TABLE C-2 ONSITE ENVIRONMENTAL TLD STATIONS

		Calculated Parameters (mR)						
Parameter	First Quarter	Fourth Quarter						
Average	10.8 ± 0.1	16.0 ± 0.2	12.7 ± 0.1	13.4 ± 0.1				
Maximum	12.3 ± 0.5	43.1 ± 2.0	14.9 ± 0.4	15.4 ± 0.6				

Notes:

1. These exposures are reported for a standardized period of 90 days.

- 18 -

Station	R) .					
Number	First Quarter	First Quarter Second Quarter Third Quarter F				
1	10.5 ± 0.5	13.6 ± 0.6	12.0 ± 0.7	13.4 ± 0.3		
2	12.0 ± 0.5	15.2 ± 0.8	13.8 ± 0.6	14.3 ± 0.7		
14	9.6 ± 0.3	12.8 ± 0.5	11.4 ± 0.5	12.1 ± 0.3		
25	10.1 ± 0.4	12.6 ± 0.5	11.3 ± 0.4	12.1 ± 0.5		

TABLE C-3 OFFSITE ENVIRONMENTAL TLD STATIONS

		Calculated Parameters (mR)						
Parameter	First Quarter	First Quarter Second Quarter Third Quarter Fourth Qua						
Average	10.6 ± 0.2	13.6 ± 0.3	12.1 ± 0.3	13.0 ± 0.2				
Maximum	12.0 ± 0.5	15.2 ± 0.8	13.8 ± 0.6	14.3 ± 0.7				

)

Note:

1. These exposures are reported for a standardized period of 90 days.

- 19 -

	Gam	ma Activity (pCi/l)	Tritium Activity	
Sample Date	Cs-137	Co-60	(pCi/l)	
1/7/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
1/14/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
1/21/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
1/28/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
2/4/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
2/11/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
2/18/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
2/25/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
3/4/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
3/11/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
3/18/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
3/25/2009	<mda< td=""><td><mda .<="" td=""><td><mda< td=""></mda<></td></mda></td></mda<>	<mda .<="" td=""><td><mda< td=""></mda<></td></mda>	<mda< td=""></mda<>	
4/1/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
4/8/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
4/15/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
4/22/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
4/29/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
5/6/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
5/13/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
5/20/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
5/27/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
6/3/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
6/10/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
6/17/2009	<mda< td=""><td><mda td="" ·<=""><td><mda< td=""></mda<></td></mda></td></mda<>	<mda td="" ·<=""><td><mda< td=""></mda<></td></mda>	<mda< td=""></mda<>	
6/24/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
7/1/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
7/8/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
7/15/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
7/22/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
7/29/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
8/5/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
8/12/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
8/19/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
8/26/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
9/2/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
9/9/2009	<mda< td=""><td><mda td="" ·<=""><td><mda< td=""></mda<></td></mda></td></mda<>	<mda td="" ·<=""><td><mda< td=""></mda<></td></mda>	<mda< td=""></mda<>	
9/16/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
9/23/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	
9/30/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>	

TABLE C-4DISCHARGE CANAL SAMPLE RESULTS

- 20 -

,

TABLE C-4 (CONTINUED) DISCHARGE CANAL SAMPLE RESULTS

	Gam	nma Activity (pCi/l)	Tritium Activity
Sample Date	Cs-137	Co-60	(pCi/l)
10/7/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
10/14/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
10/21/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
10/28/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
11/4/2009	<mda.< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda.<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
11/11/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
11/18/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
11/25/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
11/25/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
12/2/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
12/9/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
12/16/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
12/23/2009	<mda< td=""><td><mda< td=""><td><mda< td=""></mda<></td></mda<></td></mda<>	<mda< td=""><td><mda< td=""></mda<></td></mda<>	<mda< td=""></mda<>
12/30/2009	<md>A</md>		<mda< td=""></mda<>

Calculated	Gam	ma Activity (pCi/l)	Tritium Activity
Parameters	Cs-137	Co-60	(pCi/l)
Average	Note 4	Note 4	Note 4
Maximum	Note 4	Note 4	Note 4

Notes:

- Gamma measurements are performed on the original sample, with results corrected to the time of sampling. Naturally occurring isotopes are not reported. The maximum lower limits of detection (LLDs) for Co-60 and Cs-137 are 15 and 18 pCi/l, respectively. The MDA for these analyses was at or below the LLD and are reported as "<MDA".
- 2. For purposes of this report, LLD is defined as the <u>a priori</u> (before the fact) lower limit of detection, which represents the capability of the measurement system. MDA is defined as the <u>a posteriori</u> (after the fact) limit of detection capability considering a given instrument, procedure and type of sample.
- 3. Tritium analysis is performed on a measured aliquot of distilled sample. The reported values are net measurements above instrument background. The normal MDA for the analyses for tritium was less than 400 pCi/l. Results that are at or below the normal MDA are reported as "<MDA".
- 4. Results identified as "<MDA" are not included in the calculation of average and maximum values.

Monitor		Alpha	Beta	Gan	nma	Tritium
Well	Sample	Activity	Activity	Activity		Activity
Number	Date	(pCi/l)	(pCi/l)	(pC	Ci/I)	(pCi/l)
				Cs-137	Co-60	
MW-11	2/11/09	<7.80 (MDA)	<6.65 (MDA)	<4.73 (MDA)	<4.31 (MDA)	<308 (MDA)
MW-1	2/11/09	<5.08 (MDA)	<5.53 (MDA)	<4.38 (MDA)	<4.87 (MDA)	<310 (MDA)
MW-4	2/10/09	<2.92 (MDA)	7.90 ± 3.00	<4.48 (MDA)	<6.22 (MDA)	<310 (MDA)
MW-6	2/10/09	<1.36 (MDA)	<3.52 (MDA)	<4.61 (MDA)	<5.25 (MDA)	<314 (MDA)
MW-2	2/10/09	<2.83 (MDA)	<3.55 (MDA)	<4.28 (MDA)	<3.92 (MDA)	<312 (MDA)
				•		
MW-11	5/14/09	<3.16 (MDA)	6.00 ± 2.84	<3.67 (MDA)	<3.52 (MDA)	<168 (MDA)
MW-1	5/13/09	<2.44 (MDA)	5.19 ± 3.04	<3.28 (MDA)	<2.93 (MDA)	<166 (MDA)
MW-4	5/14/09	<3.04 (MDA)	6.93 ± 2.44	<3.45 (MDA)	<3.97 (MDA)	<164 (MDA)
MW-6	5/14/09	<2.54 (MDA)	<2.36 (MDA)	<2.62 (MDA)	<2.84 (MDA)	<167 (MDA)
MW-2	5/14/09	<2.10 (MDA)	3.60 ± 2.25	<3.30 (MDA)	<3.81 (MDA)	<169 (MDA)
					· · · · · · · · · · · · · · · · · · ·	
MW-11	8/11/09	<11.20 (MDA)	<11.20 (MDA)	<4.39 (MDA)	<2.83 (MDA)	<235 (MDA)
MW-1	8/13/09	<4.87 (MDA)	12.6 ± 3.22	<5.83 (MDA)	<6.25 (MDA)	<233 (MDA)
MW-4	8/13/09	<2.08 (MDA)	9.19 ± 2.11	<5.88 (MDA)	<6.05 (MDA)	<237 (MDA)
MW-6	8/13/09	<1.73 (MDA)	<3.38 (MDA)	<5.09 (MDA)	<4.52 (MDA)	<239 (MDA)
MW-2	8/12/09	<1.51 (MDA)	6.83 ± 1.32	<4.80 (MDA)	<7.11 (MDA)	<331 (MDA)
				-	· · · · · · · · · · · · · · · · · · ·	
MW-11	11/18/09	<4.62 (MDA)	6.99 ± 2.48	<1.67 (MDA)	<1.62 (MDA)	<254 (MDA)
MW-1	11/19/09	6.77 ± 3.86	8.30 ± 5.01	<1.45 (MDA)	<1.53 (MDA)	<254 (MDA)
MW-4	11/19/09	<2.17 (MDA)	7.25 ± 1.28	<1.97 (MDA)	<1.85 (MDA)	<252 (MDA)
MW-6	11/19/09	<1.45 (MDA)	3.19 ± 1.74	<5.87 (MDA)	<4.03 (MDA)	952 ± 196
MW-2	11/19/09	<1.29 (MDA)	4.08 ± 1.23	<6.27 (MDA)	<5.06 (MDA)	<254 (MDA)

TABLE C-5 GROUNDWATER MONITORING WELL RESULTS

- 22 -

TABLE C-5 (CONTINUED)GROUNDWATER MONITORING WELL RESULTS

Calculated Parameters (By Monitor Well	Alpha Activity (pCi/l)	Beta Activity (pCi/l)	Activity		Tritium Activity (pCi/l)
Number)			Cs-137	Co-60	
Average: MW-1	6.77 ± 3.86	9.70 ± 2.94	Note 4	Note 4	Note 4
Average: MW-2	Note 4	4.84 ± 1.60	Note 4	Note 4	Note 4
Average: MW-4	Note 4	7.82 ± 2.21	Note 4	Note 4	Note 4
Average: MW-6	Note 4	3.19 ± 1.74	Note 4	Note 4	952 ± 196
Average: MW-11	Note 4	8.06 ± 3.59	Note 4	Note 4	Note 4
Maximum: MW-1	6.77 ± 3.86	12.6 ± 3.22	Note 4	Note 4	Note 4
Maximum: MW-2	Note 4	6.83 ± 1.32	Note 4	Note 4	Note 4
Maximum: MW-4	Note 4	9.19 ± 2.11	Note 4	Note 4	Note 4
Maximum: MW-6	Note 4	3.19 ± 1.74	Note 4	Note 4	952 ± 196
Maximum: MW-11	Note 4	11.20 ± 5.46	Note 4	Note 4	Note 4

Notes:

- 1. Reported values are net measurements (above instrument background). The normal minimum detectable activities (MDAs) for the analyses for gross alpha, gross beta and tritium are approximately 4, 4 and 400 pCi/l, respectively. Results that are at or below the normal MDA are reported as "<MDA".
- 2. Gamma activity measurements are performed on the original sample, with results corrected to the time of sampling. Naturally occurring isotopes are not reported. The maximum lower limits of detection (LLDs) for Co-60 and Cs-137 are 15 and 18 pCi/l, respectively. The actual MDAs for these analyses were at or below the LLD.
- 3. For purposes of this report, LLD is defined as the <u>a priori</u> (before the fact) lower limit of detection, which represents the capability of the measurement system. MDA is defined as the <u>a posteriori</u> (after the fact) limit of detection capability considering a given instrument, procedure and type of sample.
- 4. Results identified as "<" are not included in the calculation of average and maximum values.

- 23 -

Sample Date	Cs-137 Activity (pCi/L)	Co-60 Activity (pCi/L)	Tritium Activity (pCi/l)
02/11/09	263	<mda< td=""><td>753 ± 241</td></mda<>	753 ± 241
02/25/09	<mda< td=""><td><mda< td=""><td>560 ± 229</td></mda<></td></mda<>	<mda< td=""><td>560 ± 229</td></mda<>	560 ± 229
03/25/09	172	<mda< td=""><td>736 ± 180</td></mda<>	736 ± 180
04/22/09	151	<mda< td=""><td>624 ± 227</td></mda<>	624 ± 227
05/21/09	104	<mda< td=""><td>440 ± 107</td></mda<>	440 ± 107
06/23/09	200	<mda< td=""><td>2490 ± 487</td></mda<>	2490 ± 487
07/22/09	274	<mda< td=""><td>2840 ± 397</td></mda<>	2840 ± 397
[.] 08/26/09	123	<mda< td=""><td>3030 ± 306</td></mda<>	3030 ± 306
09/21/09	79	<mda< td=""><td>3020 ± 275</td></mda<>	3020 ± 275
10/22/09	279 .	<mda< td=""><td>1400 ± 210</td></mda<>	1400 ± 210
11/19/2009	319	<mda< td=""><td>886 ± 198</td></mda<>	886 ± 198
12/17/2009	167	<mda< td=""><td>513 ± 295</td></mda<>	513 ± 295

TABLE C-6CAISSON SUMP MONITORING RESULTS

Notes:

- 1. Gamma measurements are performed on the original sample, with results corrected to the time of sampling. Naturally occurring isotopes are not reported. The maximum lower limits of detection (LLDs) for Co-60 and Cs-137 are 15 and 18 pCi/l, respectively. The MDA for these analyses was at or below the LLD and are reported as "<MDA".
- 2. For purposes of this report, LLD is defined as the <u>a priori</u> (before the fact) lower limit of detection, which represents the capability of the measurement system. MDA is defined as the <u>a posteriori</u> (after the fact) limit of detection capability considering a given instrument, procedure and type of sample.
- 3. Tritium analysis is performed on a measured aliquot of distilled sample. The reported values are net measurements above instrument background. The normal MDA for the analyses for tritium was less than 400 pCi/l. Results that are at or below the normal MDA are reported as "<MDA".

- 24 -

Sample Date	Cs-137 Activity (pCi/L)	Co-60 Activity (pCi/L)
2/25/2009	358	<mda< td=""></mda<>
3/25/2009	271	<mda< td=""></mda<>
4/22/2009	280	<mda< td=""></mda<>
5/21/2009	334	<mda< td=""></mda<>
6/23/2009	377	<mda< td=""></mda<>
7/22/2009	389	<mda< td=""></mda<>
8/26/2009	340	<mda< td=""></mda<>
9/21/2009	378	<mda< td=""></mda<>
10/22/2009	369	<mda< td=""></mda<>
11/19/2009	332	<mda< td=""></mda<>
12/17/2009	326	<mda< td=""></mda<>

TABLE C-7FRENCH DRAIN MONITORING RESULTS

Notes:

- Gamma measurements are performed on the original sample, with results corrected to the time of sampling. Naturally occurring isotopes are not reported. The maximum lower limits of detection (LLDs) for Co-60 and Cs-137 are 15 and 18 pCi/l, respectively. The MDA for these analyses was at or below the LLD and reported as "<MDA".
- 2. For purposes of this report, LLD is defined as the <u>a priori</u> (before the fact) lower limit of detection, which represents the capability of the measurement system. MDA is defined as the <u>a posteriori</u> (after the fact) limit of detection capability considering a given instrument, procedure and type of sample.

- 25 -

TABLE C-8 ADDITIONAL MONITORING RESULTS

ĥ

Monitor Well Number	Sample Date	Alpha Activity (pCi/l)	Beta Activity (pCi/l)	Gamma Activity (pCi/l)		Tritium Activity (pCi/l)
	1		((1)	Cs-137	Co-60	
5G-MW-03	2/12/09	<1.63 (MDA)	3.07 ± 2.09	<6.15 (MDA)	<6.31 (MDA)	<309.00 (MDA)
1C-MW-07	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4
1C-MW-08	2/11/09	<2.43 (MDA)	<3.71 (MDA)	<5.36 (MDA)	<4.95 (MDA)	<313.00 (MDA)
1E-MW-12	2/12/09	<4.01 (MDA)	<4.13 (MDA)	<3.87 (MDA)	<4.11 (MDA)	<312.00 (MDA)
1E-MW-13	2/11/09	<10.10 (MDÁ)	20.70 ± 6.72	<4.59 (MDA)	<3.47 (MDA)	<310.00 (MDA)
RCW-SFP-1	2/10/09	<1.52 (MDA)	<3.01 (MDA)	<4.63 (MDA)	<5.34 (MDA)	<310.00 (MDA)
RCW-SFP-2	2/11/09	<1.23 (MDA)	3.75 ± 1.58	<3.58 (MDA)	<4.31 (MDA)	<307.00 (MDA)
RCW-CS-1	2/9/09	<25.00 (MDA)	35.40 ± 15.20	<5.35 (MDA)	<5.63 (MDA)	<309.00 (MDA)
RCW-CS-2	2/10/09	<11.30 (MDA)	29.20 ± 11.80	<4.53 (MDA)	<3.46 (MDA)	<310.00 (MDA)
RCW-CS-3	2/10/09	<1.79 (MDA)	<2.79 (MDA)	<5.53 (MDA)	<5.55 (MDA)	<310.00 (MDA)
RCW-CS-4	2/9/09	<15.10 (MDA)	<37.90 (MDA)	<5.79 (MDA)	<3.95 (MDA)	<330.00 (MDA)
RCW-CS-5	2/12/09	<2.07 (MDA)	3.50 ± 1.87	<5.02 (MDA)	<5.66 (MDA)	<312.00 (MDA)
5G-MW-03	5/13/09	<3.24 (MDA)	3.59 ± 2.45	<2.76 (MDA)	<2.62 (MDA)	<168.00 (MDA)
1C-MW-07	5/13/09	10.50 ± 4.92	13.40 ± 3.70	<3.20 (MDA)	<3.09 (MDA)	<165.00 (MDA)
1C-MW-08	5/13/09	<2.58 (MDA)	5.32 ± 2.61	<3.57 (MDA)	<4.14 (MDA)	<168.00 (MDA)
1E-MW-12	5/13/09	4.82 ± 3.34	5.59 ± 3.14	<3.24 (MDA)	<3.61 (MDA)	<167.00 (MDA)
1E-MW-13	5/14/09	<4.18 (MDA)	2.67 ± 1.98	<3.65 (MDA)	<3.02 (MDA)	<167.00 (MDA)
RCW-SFP-1	5/14/09	<3.18 (MDA)	4.30 ± 1.94	<2.82 (MDA)	<3.16 (MDA)	<170.00 (MDA)
RCW-SFP-2	5/15/09	<3.61 (MDA)	4.83 ± 2.67	<3.47 (MDA)	<3.36 (MDA)	<166.00 (MDA)
RCW-CS-1	5/13/09	<43.30 (MDA)	<39.70 (MDA)	<3.16 (MDA)	<3.40 (MDA)	<168.00 (MDA)
RCW-CS-2	5/14/09	<12.10 (MDA)	<10.50 (MDA)	<4.16 (MDA)	<4.08 (MDA)	<169.00 (MDA)
RCW-CS-3	5/14/09	<2.60 (MDA)	<2.55 (MDA)	<3.54 (MDA)	<3.47 (MDA)	<165.00 (MDA)
RCW-CS-4	5/13/09	<2.17 (MDA)	5.92 ± 2.80	<3.70 (MDA)	<3.85 (MDA)	<171.00 (MDA)
RCW-CS-5	5/13/09	<2.36 (MDA)	<2.53 (MDA)	<3.80 (MDA)	<3.73 (MDA)	<170.00 (MDA)
				1	· · · · · · · · · · · · · · · · · · ·	•
5G-MW-03	8/11/09	2.87 ± 1.34	4.19 ± 1.22	<5.71 (MDA)	<5.73 (MDA)	<237.00 (MDA)
1C-MW-07	8/11/09	7.09 ± 2.10	13.70 ± 2.21	<4.39 (MDA)	<3.98 (MDA)	<238.00 (MDA)
1C-MW-08	8/13/09	<4.72 (MDA)	5.57 ± 2.42	<4.38 (MDA)	<3.30 (MDA)	<237.00 (MDA)
1E-MW-12	8/12/09	<13.70 (MDA)	15.50 ± 6.47	<5.90 (MDA)	<4.12 (MDA)	<241.00 (MDA)
1E-MW-13	8/11/09	<2.93 (MDA)	<2.08 (MDA)	<4.63 (MDA)	<4.66 (MDA)	<240.00 (MDA)
RCW-SFP-1	8/12/09	<3.02 (MDA)	5.78 ± 1.95	<4.46 (MDA)	<4.63 (MDA)	<234.00 (MDA)
RCW-SFP-2	8/11/09	<2.58 (MDA) ·	4.86 ± 1.98	<5.11 (MDA)	<3.94 (MDA)	<239.00 (MDA)
RCW-CS-1	8/11/09	<90.20 (MDA)	<117.00 (MDA)	<5.39 (MDA)	<3.21 (MDA)	<237.00 (MDA)
RCW-CS-2	8/13/09	<24.40 (MDA)	<22.60 (MDA)	<5.62 (MDA)	<3.74 (MDA)	<291.00 (MDA)
RCW-CS-3	8/12/09	<1.73 (MDA)	3.63 ± 1.55	<4.01 (MDA)	<3.46 (MDA)	<239.00 (MDA)
RCW-CS-4	8/11/09	<2.79 (MDA)	<2.00 (MDA)	<4.83 (MDA)	<5.36 (MDA)	<242.00 (MDA)
RCW-CS-5	8/11/09	2.62 ± 1.13	3.55 ± 1.24	<4.32 (MDA)	<4.53 (MDA)	<236.00 (MDA)
5G-MW-03	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4
1C-MW-07	Note 4	Note 4	Note 4	Note 4	Note 4	Note 4
1C-MW-07	11/19/09	2.22 ± 1.18	3.50 ± 1.09	<1.46 (MDA)	<1.49 (MDA)	<254.00 (MDA)
1E-MW-12	11/19/09	<7.85 (MDA)	14.30 ± 4.45	<4.66 (MDA)	<5.18 (MDA)	<pre><254.00 (MDA)</pre> <252.00 (MDA)
bas ¥]¥¥− ∠_	11/13/09		L 17.00 1 4.40	- 26 -		

- 26 -

TABLE C-8 (CONTINUED)ADDITIONAL MONITORING RESULTS

Monitor Well Number	Sample Date	Alpha Activity (pCi/I)	Beta Activity (pCi/l)	Gamma Activity (pCi/l)		Tritium Activity (pCi/l)
				Cs-137	Co-60	
1E-MW-13	11/18/09	<2.31 (MDA)	<3.01 (MDA)	<1.52 (MDA)	<1.48 (MDA)	<255.00 (MDA)
RCW-SFP-1	11/19/09	<1.45 (MDA)	<1.76 (MDA)	<1.55 (MDA)	<1.67 (MDA)	<254.00 (MDA)
RCW-SFP-2	11/19/09	<4.98 (MDA)	41.40 ± 8.01	<1.58 (MDA)	<1.73 (MDA)	<254.00 (MDA)
RCW-CS-1	11/19/09	<2.54 (MDA)	<2.16 (MDA)	<2.80 (MDA)	<2.00 (MDA)	<255.00 (MDA)
RCW-CS-2	11/19/09	<14.20 (MDA)	<19.30 (MDA)	<1.62 (MDA)	<1.59 (MDA)	<255.00 (MDA)
RCW-CS-3	11/19/09	<1.39 (MDA)	<2.02 (MDA)	<4.19 (MDA)	<4.19 (MDA)	<256.00 (MDA)
RCW-CS-4	11/19/09	<2.16 (MDA)	5.24 ± 1.55	<5.21 (MDA)	<5.81 (MDA)	<255.00 (MDA)
RCW-CS-5	11/19/09	<2.06 (MDA)	6.73 ± 1.70	<3.87 (MDA)	<5.47 (MDA)	<255.00 (MDA)

Notes:

- 1. Reported values are net measurements (above instrument background). The normal minimum detectable activities (MDAs) for the analyses for gross alpha, gross beta and tritium are approximately 4, 4 and 400 pCi/l, respectively. Results that are at or below the normal MDA are reported as "<MDA".
- 2. Gamma activity measurements are performed on the original sample, with results corrected to the time of sampling. Naturally occurring isotopes are not reported. The maximum lower limits of detection (LLDs) for Co-60 and Cs-137 are 15 and 18 pCi/l, respectively. The actual MDAs for these analyses were at or below the LLD.
- 3. For purposes of this report, LLD is defined as the <u>a priori</u> (before the fact) lower limit of detection, which represents the capability of the measurement system. MDA is defined as the <u>a posteriori</u> (after the fact) limit of detection capability considering a given instrument, procedure and type of sample.
- 4. The technicians were unable to obtain a water sample from the well suitable for radiological analyses. At the time of sampling, the well did not provide a sample size large enough for analyses or the degree of sample turbidity was unacceptable.

- 27 -

FIGURE A-1 HBPP ONSITE TLD LOCATIONS

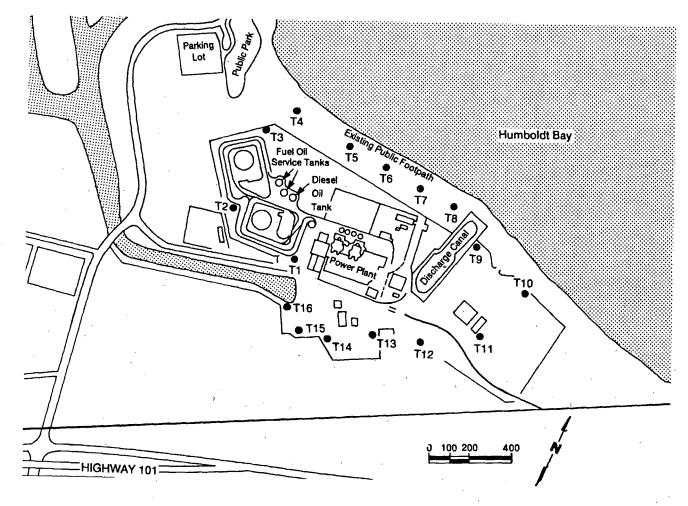
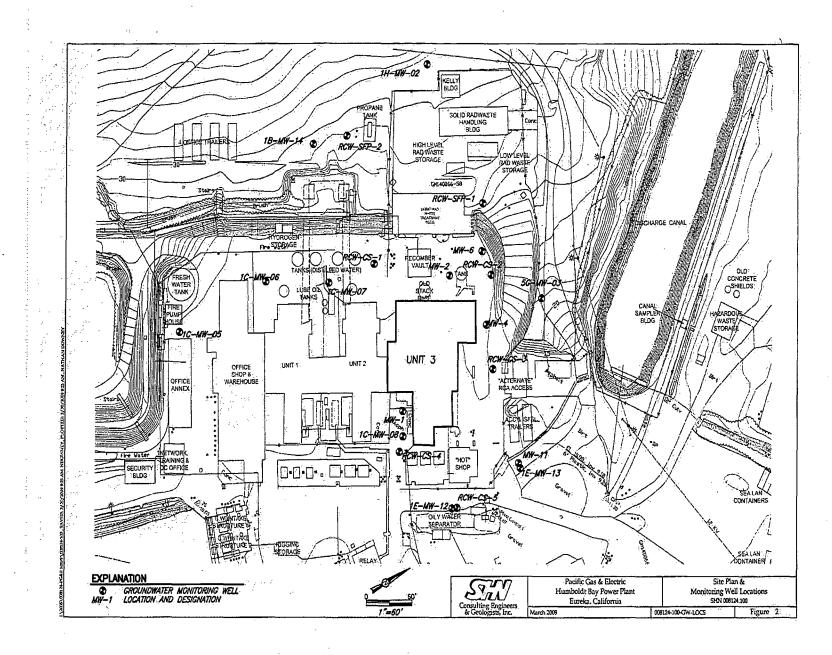
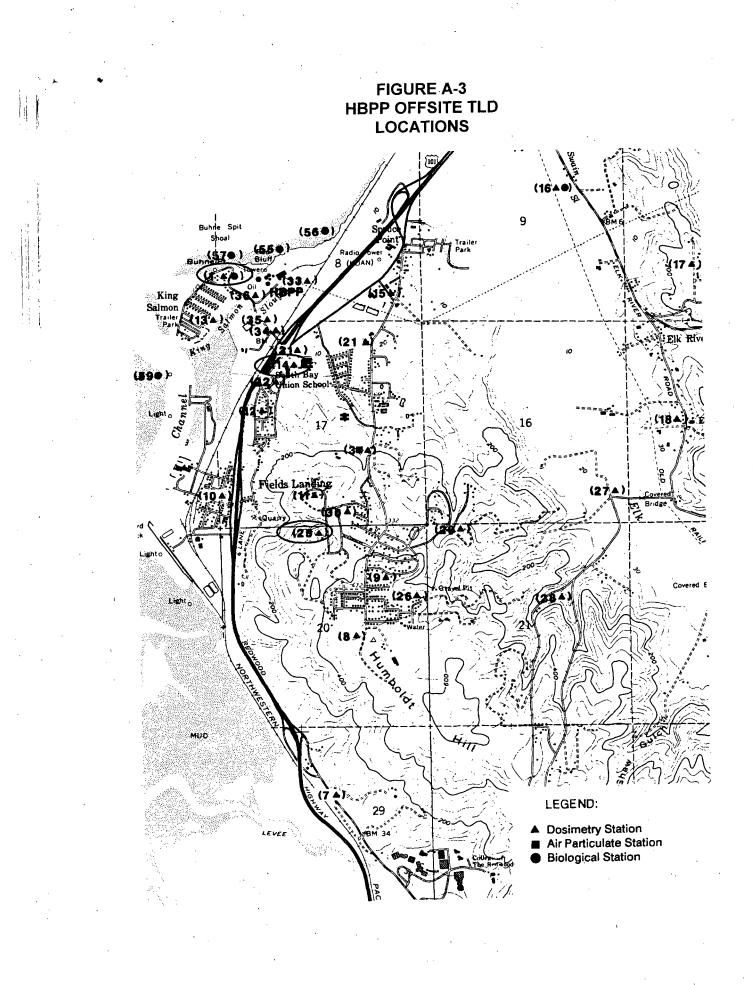
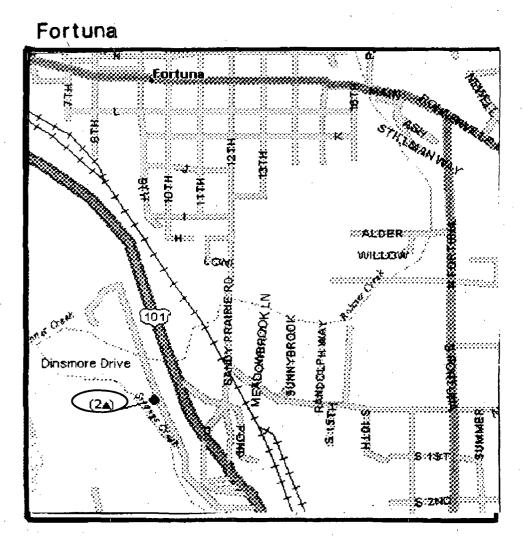




FIGURE A-2 HBPP ONSITE MONITORING WELL LOCATIONS

-


29 -

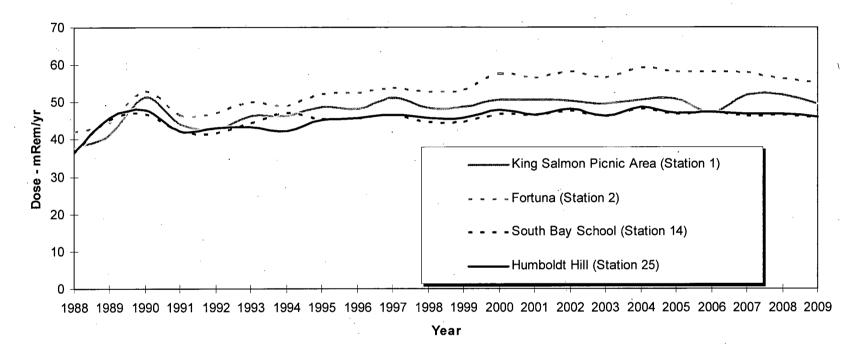
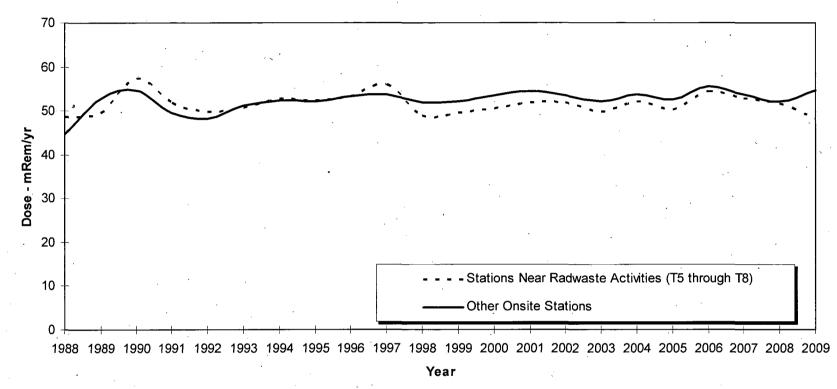

- 30 -

FIGURE A-3 (CONTINUED) HBPP OFFSITE TLD LOCATIONS

11


- 31 -

The baseline values for each location were obtained by averaging the readings at each location from 1977 through 1983. These values, however, were obtained using ion chambers instead of TLDs. The average values from 1977 through 1983 are Station 1 - 83.0 mrem, Station 2 - 79.8 mrem, Station 14 - 80.2 mrem, and Station 25 - 73.7 mrem

- 32 -

The baseline values for the two areas were obtained by averaging the readings for each area from 1977 through 1983. These values, however, were obtained using ion chambers instead of TLDs. The average values from 1977 through 1983 for the stations near the Radwaste Activities was 78.6 mrem and the average for Other Onsite stations was 79.4 mrem.

- 33 -

Pacific Gas and Electric Company Humboldt Bay Power Plant Paul J. Roller Director and Plant Manager Humboldt Bay Nuclear

1000 King Salmon Avenue Eureka, CA 95503 707-444-0700

April 30, 2010

PG&E Letter HBL-10-014 PG&E Letter HIL-10-003

ATTN: Document Control Desk Director, Spent Fuel Project Office Office of Nuclear Material Safety and Safeguards U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Docket No. 50-133, OL-DPR-7 Humboldt Bay Power Plant, Unit 3 Docket No. 72-27, Materials License No. SNM-2514 Humboldt Bay Independent Spent Fuel Storage Installation Report of Changes to the Humboldt Bay Site Emergency Plan (Revision 3)

Dear Commissioners and Staff:

Pursuant to 10 CFR 50.4, 10 CFR 50.54(q), 10 CFR 72.4 and 10 CFR 72.44(f), enclosed is a report of changes to the Humboldt Bay Site Emergency Plan (Revision 3), effective April 12, 2010. These changes did not decrease the effectiveness of the Plan, and the Plan continues to meet the requirements of 10 CFR 50.47(b), 10 CFR 50, Appendix E, and 10 CFR 72.44(a). The updated Humboldt Bay Site Emergency Plan has been distributed to NRC Region IV and is not included as part of this submittal.

Sincerely,

PAUL J. ROLLER

cc: Elmo E. Collins, Jr., NRC Region IV Robert J. Evans, NRC Shana R. Helton, NRC John B. Hickman, NRC Christopher M. Staab, NRC PG FossilGen HBPP Humboldt Distribution

Enclosure

Enclosure PG&E Letter HBL-10-014 PG&E Letter HIL-10-003 Page 1 of 2

REPORT OF CHANGES TO THE HUMBOLDT BAY SITE EMERGENCY PLAN (REVISION 3) PURSUANT TO 10 CFR 50.54(q) and 10 CFR 72.44(f) April 12, 2010

Pursuant to the requirements of 10 CFR 50.54(q) and 10 CFR 72.44(f), the following changes to the Humboldt Bay Site Emergency Plan are submitted:

SECTION DESCRIPTION

Updated Table of contents and List of Tables

2.1

Added a statement to identify that there is an interface procedure that addresses emergency situations on either site.

Table 3.2-1, Table 3.2-2, and ISFSI EAL Tables Emergency Action Level (EAL); Revised the EAL for a fire event for both facilities to be consistent with each other, specifically that a fire not extinguished within 15 minutes of detection is a Notice of Unusual Event (NUE). This change brings the EALs into alignment with NEI 99-01, Revision 4, "Methodology For Development of Emergency Action Levels."

4.1.2.3

4.2.4

Eleventh bullet; deleted an outdated reference to the Emergency Liaison Coordinator.

Updated the title of the former state Office of Emergency Services to become the state Emergency Management Agency.

4.3

Changed "...appropriate response organizations" to "...appropriate county and state emergency response organizations".

5.1.2

Updated the title of the former state Office of Emergency Services to become the state Emergency Management Agency.

5.1.4

Corrected the title of the company organization responsible for emergency response to read Corporate Security Department.

5.3.3.1

First line; changed "For an unplanned liquid or "particulate" radioactivity release" to "airborne" radioactivity release.

Enclosure PG&E Letter HBL-10-014 PG&E Letter HIL-10-003 Page 2 of 2

5.3.3.3	Second bullet; changed from "Requesting an ambulance" to read "Reporting a medical emergency to 911 and notifying St Joseph or Redwood Memorial Hospital when the patient is ready for transport."
5.3.3.4	Clarified when the Security Coordinator needs to be notified. Added phone numbers for PAS.
6.1	Added; next to the annex conference room that this is the "default facility."
6.3.1	Added reference to Table 6.3-2
Table 6.3-1	Deleted reference to where the RELMs alarms.
6.3.3	Regarding the discussion of Radiological Equipment, changed from "a radiological counting room" to "radiological counting facilities."
8.1.1.e	Changed; "A designated individual of the shift operating organization" to "A designated individual of the organization."
8.1.1	Divided section 8.1.1 into two sections, 8.1.1 and 8.1.2. Renumbered paragraphs in section 8.1.1 and 8.1.2 as appropriate.
8 <u>.</u> 1.1.b	Revised to state that revisions to the emergency plan and emergency plan implementing procedures are reviewed by the Plant Safety Review Committee.
8.1.1.c	Added; Biennial reviews are conducted of the emergency plan and procedures. Any revisions that result from the biennial review will be processed as described in 8.1.1.b.
8.1.2.b	Added NRC Regulatory Information Summary 2005-02, Revision 1 (August, 2009) clarification that emergency plan revisions requiring prior NRC review in accordance with 10 CFR 50.54(q) are to be submitted in accordance with 10 CFR 50.90, "Application for Amendment of License, Construction permit or Early Site Permit."
9.0	Changed Responsible Organization to Site Services.