

EPEI ELECTRIC POWER RESEARCH INSTITUTE

Industry Test Milestones

Public Workshop 10 CFR 50.46(b) ECCS Performance Requirements

April 28, 2010

Ken Yueh (EPRI) Project Manager Regulatory Technical Advisory Committee EPRI Fuel Reliability Program

Presentation Outline

- High Temperature Oxidation Test
- PQD and Breakaway Oxidation Round Robin
- Impact of Limited Inner Diameter Oxygen Source on PQD
- Breakaway Oxidation

High Temperature Oxidation

Motivation

- ANL test data indicates ECR accumulated at lower temperatures are not as detrimental to ductility for Zircaloy-4
- Effects of cooling and quenching effects not well understood

Objectives

- Generate sufficient test data to propose alternative lower temperature acceptance criteria
- Develop mechanistic understanding of embrittlement mechanisms

Test Plan

 PQD at multiple temperature-hydrogen combinations, different cooling and quench conditions

Completion Date

– December 2010

LOCA Round Robin

Objectives

- Collect sufficient information to establish ASTM test procedures
 - Expand on test parameters
- Evaluate potential sources of PQD and breakaway oxidation test variability
 - Experimental and Laboratory-to-laboratory

Test Plan

- PQD at 1200°C and breakaway at 800°C and 1000°C
- Other optional tests to expand test parameter range
- Potential participants
 - ORNL, AEKI, KAERI, Studsvik, AREVA, GNF and Westinghouse

Completion Date

- Target test completion by middle of 2011

Impact of Limited ID Oxygen Source on PQD

Motivation

 ANL Limerick integral test indicates clad/fuel bonding layer is not an unlimited oxygen source

No presence of an oxygen stabilized alpha layer on the ID surface

Impact of Limited ID Oxygen Source on PQD

Objective

- Evaluate impact of limited ID oxygen pickup on PQD

Test Plan

- Compare PQD of open and sealed samples
 - Open unrestricted two-sided oxidation
 - Sealed samples with pre-oxidation

Preliminary results indicate limited ID oxygen source does not result in equivalent 2-sided oxidation embrittlement

Completion Date

- October 2010, but additional scope may be added later

Breakaway Oxidation

Motivation

 Interest in breakaway oxidation is precipitated by extremely short breakaway oxidation time observed in E110

Objectives

- Investigate the cause of short breakaway oxidation in electrolytic sourced zirconium based alloys
- Determine if the phenomenon could be detected in early processing

Test data shows phenomenon can be detected in the as-melted condition

Completion Date – Fall 2010

Summary

- Industry is generating additional PQD data
 - Lower test temperature ductile-to-brittle transition curves (2010)
 - Mechanistic models to predict brittle transition ECR (2011 goal)
- Coordinating international LOCA round robin testing
 - Establish ASTM test procedures (2011/2012)
 - Identify potential sources of variation (2011)
- Evaluating Impact of limited ID oxygen source on PQD
 - Preliminary data indicates limited ID oxygen source does not result in equivalent two-sided embrittlement at the same time exposure (October 2010)
 - Follow-up tests to quantify impact planned (2011)
- Evaluating Breakaway oxidation (2010)
 - Preliminary data indicate phenomenon can be detected during ingot processing
 - Cause of short breakaway oxidation still being evaluated

Together...Shaping the Future of Electricity

© 2009 Electric Power Research Institute, Inc. All rights reserved.

9

High Temperature Oxidation Test

ANL Test Data

 Limited ANL test data indicates ECR accumulated at lower temperatures are not as detrimental to ductility for Zircaloy-4

Oxidation Temperature (°C)	Target ECR (%)/ WG (mg/cm²)	RT Offset Strain
1000	15/9.8	7.5
1100	15/9.8	5.4
1200	15/10.2	0.8

High Temperature Oxidation Test

Test Matrix for Lower Temperature Testing

- Test condition confirms to ANL specification
- Designed to generate complete ductile-to-brittle transition curves at 1050 and 1125°C
- Allow for comparison to ANL test results

	Hydrogen		ECR	
Temperature	Range (ppm)	# of Levels	Range (%)	# of Levels
800	15-800	4	2-10	. 3
900	15-800	4	2-10	3
1050	15-800	4	2-20	6
1125	15-1000	6	2-20	6
1200	15-1000	6	2-20	6

High Temperature Oxidation Test

Test matrix for Developing Mechanistic Understanding

Oxidation at 1100 and 1200°C

	Cooling	Hydrogen		ECR	
Quench	Rate	Range (ppm)	# of Levels	Range (%)	# of Levels
No	Slow/Quick	15, 400	2	TBD	2
	Intermediate	15-600	4	10-15	2
From 800°C	Slow/Quick	400	1	TBD	2
	Intermediate	15-800	5	10-15	2
From temperature	N/A	15-800	5	4-15	3

Detailed sample examination planned

LOCA Round Robin

Basic Round Robin Plans

- Conduct a set of PQD and breakaway oxidation tests
 - Multiple laboratories
 - Slightly different test procedures, but conform to ANL recommended key parameter specifications
 - Common lot of Zircaloy-4 cladding material
- Generate critical ductile-to-brittle transition at 1200°C for multiple hydrogen concentrations
- Determine breakaway oxidation time at 800 and 1000°C to within 500 seconds

LOCA Round Robin

Optional Round Robin Plans

- Expand on test parameters

Test	Variation/Sensitivity/Effect	Test Condition	Material Hydrogen (ppm)
	Lab-to-lab	Sample material prepared by	
PQD/RCT	equipment/procedure	one laboratory	As-Built and 400
	Test temperature	130 and 140°C +/-2°C	As-Built and 400
	Loading rate	0.01 and 0.1 mm/s	As-Built and 400
		1200°C oxidation	
	Quench temperature	600°C and no quench	400
Breakaway	Surface finish	With surface scratch(es)	As-Built

© 2009 Electric Power Research Institute, Inc. All rights reserved.

ESEARCH INSTITUTE

Impact of Limited ID Oxygen Source on PQD

Preliminary results

© 2009 Electric Power Research Institute, Inc. All rights reserved.

15

ELECTRIC POWER RESEARCH INSTITUTE

Breakaway Oxidation

- Phenomenon detection
 - Samples exposed to steam at 1000°C for 3000 seconds

RESEARCH INSTITUTE