MITSUBISHI HEAVY INDUSTRIES, LTD.

16-5, KONAN 2-CHOME, MINATO-KU

TOKYO, JAPAN

April 28, 2010

Document Control Desk U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Attention: Mr. Jeffrey A. Ciocco

Docket No. 52-021 MHI Ref: UAP-HF-10124

Subject: MHI's Response to US-APWR DCD RAI No. 568-4588 Revision 1

References:

- "Request for Additional Information 568-4588 Revision 1 SRP Section 7.05 – Information Systems Important to Safety, Application Section 7.5", dated April 13, 2010
- MHI letter UAP-HF-09501, "MHI's Response to US-APWR DCD RAI No. 463-3746 Revision 0 and Open Item OI-SRP16-CTSB-1769/284", dated October 28, 2009

Mitsubishi Heavy Industries, Ltd. ("MHI") transmits to the U.S. Nuclear Regulatory Commission ("NRC") the document entitled "MHI's Response to US-APWR DCD RAI No. 568-4588 Revision 1". Enclosure 1 provides MHI's response to Reference 1, which is considered supplemental information in support MHI's previous response (Reference 2) regarding US-APWR Post-Accident Monitoring Instrumentation.

Please contact Dr. C. Keith Paulson, Senior Technical Manager, Mitsubishi Nuclear Energy Systems, Inc., if the NRC has questions concerning any aspect of this submittal. His contact information is provided below.

Sincerely,

4. aguta

Yoshiki Ogata General Manager- APWR Promoting Department Mitsubishi Heavy Industries, Ltd.

Enclosures:

1. MHI's Response to US-APWR DCD RAI No. 568-4588 Revision 1 (non-proprietary)

CC: J. A. Ciocco C. K. Paulson

Contact Information

C. Keith Paulson, Senior Technical Manager Mitsubishi Nuclear Energy Systems, Inc. 300 Oxford Drive, Suite 301 Monroeville, PA 15146 E-mail: ck_paulson@mnes-us.com Telephone: (412) 373-6466

ENCLOSURE 1

UAP-HF-10124 Docket No. 52-021

MHI's Response to US-APWR DCD RAI No. 568-4588 Revision 1

April 2010

(Non-Proprietary)

RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION

4/28/2010

US-APWR Design Certification Mitsubishi Heavy Industries Docket No. 52-021

RAI NO.:	NO. 568-4588 REVISION 1
SRP SECTION:	07.05 – INFORMATION SYSTEMS IMPORTANT TO SAFETY
APPLICATION SECTION:	07.05
DATE OF RAI ISSUE:	4/13/2010

QUESTION NO.: 07.05-18

Provide a complete explanation of the differences between Table 7.5-3, Post Accident Monitoring System (PAMS) Variables, and all information in 1) Type A variables and those found in Table 3.3.3-1, of NUREG-1431 and 2) Types B through E variables and those found in Regulatory Guide 1.97 Rev. 3, Table 3. (This request was discussed in the public meeting with MHI and the NRC staff on March 16, 2010)

10 CFR Part 50, Appendix A, General Design Criteria (GDC) 13, requires, in part, that instrumentation be provided to monitor variables and systems over their anticipated ranges for accident conditions as appropriate to ensure adequate safety. GDC 64 requires, in part, means for monitoring the reactor containment atmosphere, spaces containing components to recirculate loss-of-coolant accident fluids, effluent discharge paths, and the plant environs for radioactivity that may be released as a result of postulated accidents. One bounding list of PAMS instruments are those identified in the standard technical specifications for operating reactors and the list of PAMS instruments in Regulatory Guide 1.97. Revision 3. As stated in RAI No. 463-3746, Question No. 16-299, Table 7.5-3 provides a list of PAMS variables that has been developed based on a combination of previous revisions of RG 1.97. Japanese domestic and US operation plant experience and EOPs, and known differences between the US-APWR and current operating PWRs. The staff noted that some instrumentation in the US-APWR bounding list were absent when compared to the PAMS instrument lists in the standard technical specifications and Regulatory Guide 1.97, Revision 3. Additionally, there was no basis mentioned for the absent instrumentation. Substantiate to the staff that the list of PAMS variables in Table 7.5-3 is indeed a bounding list and complete. Specifically, identify and explain the reason for the missing instrumentation as compared to Table 3.3.3-1 of NUREG-1431 and Table 3 of Regulatory Guide 1.97, Revision 3.

ANSWER:

As stated in the response to RAI No. 463-3746, Question 16-299, the US-APWR PAM list provided in DCD Table 7.5-3 was developed to be in compliance with the guidance of RG 1.97 Rev. 4 and IEEE 497-2002. MHI utilized a combination of previous versions of RG 1.97, Japanese domestic and US operational experience and emergency procedures, and known differences between current operating plants and the US-APWR design to develop a bounding and complete PAM list for the US-APWR. The following sections describe the selection basis for the Type A, B, C, D, and E variables for the US-APWR.

• Type A

NUREG-1431 Table 3.3.3-1 provides a generic list of PAM instrumentation for a Westinghouse NSSS plant based on the guidance in RG 1.97 Rev. 3; however, a reviewer's note in NUREG-1431 requires that

this table be amended by individual licensees to add all RG 1.97 Type A and Category 1 non-Type A variables to this generic list in accordance with the plant's RG 1.97 Safety Evaluation Report. Therefore the PAM list provided in NUREG-1431 is a minimal list of Category 1 variables (any Type) for a typical Westinghouse NSSS plant.

MHI utilized the performance-based criteria of RG 1.97 Rev. 4 and IEEE 497-2002 to select the Type A accident monitoring variables for the US-APWR. IEEE 497-2002 defines Type A variables as follows.

Type A variables are those variables that provide the primary information required to permit the control room operating staff to:

- a) Take specific planned manually-controlled actions for which no automatic control is provided and that are required for safety systems to perform their safety-related functions as assumed in the plant Accident Analysis Licensing Basis.
- b) Take specific planned manually-controlled actions for which no automatic control is provided and that are required to mitigate the consequences of an AOO.

As described in the response to RAI No. 07.05-9 in MHI letter UAP-HF-09196 dated April 28, 2009, the SGTR is the only event that assumes planned operator actions using the Type A variables listed in DCD Table 7.5-3. Planned operator actions required for other events are initiated by an alarm or they are based on a time limit.

In the event of an SGTR, the DBA analysis assumes the following specific operator actions:

- Identify and Isolate Ruptured SG
- Cool Down Primary Coolant System
- Depressurize Primary Coolant System to Equalize Pressure between Primary and Secondary
- Terminate Safety Injection Flow

Some Type A variables are monitored before the operator takes the above manual actions. These Type A variables are shown in Table A.

Regarding the LOCA event, RWSP level is an important indication in some currently operating plants because operator action is needed to realign the injection of ECCS from the RWSP to the containment sump before the RWSP becomes empty. In the US-APWR, the RWSP is located at the bottom of the containment and the suction of both the SIP and CS/RHRP is the RWSP from the beginning. Therefore, it is not necessary to confirm the RWSP level during the LOCA event and this variable is not included as a Type A variable for the US-APWR.

The analyses of the Steam Line Break (SLB) and Feedwater Line Break (FLB) assume EFW isolation from a faulted SG. However, this action is performed automatically by the low steam line pressure signal EFW isolation function. Therefore, there are no PAM instruments related to operator actions assumed in the SLB and FLB analyses.

In all DBA analysis, except for the SGTR previously discussed, explicit operator actions are not assumed based on primary information from PAM instruments. However, SI termination and long-term core cooling from secondary heat sink are necessary to bring the plant to cold shut down conditions. Operator actions for SI termination and core cooling are already included in the operator actions assumed in the SGTR analysis. Therefore, the instruments associated with these functions have already been included in the bounding PAM list provided in DCD Table 7.5-3.

Table A compares all of the Category 1 variables (any Type) functions in NUREG-1431 Table 3.3.3-1 to the US-APWR Type A variables listed in DCD Table 7.5-3 and summarizes the bases for differences between the Type A variables in the MHI PAM list and the Category 1 PAM for a typical Westinghouse 4-loop PWR plant.

• Type B

Table 3 of RG 1.97 Rev. 3 prescribes a minimum list of Type B variables to monitor. However, MHI

utilized the performance-based criteria of RG 1.97 Rev. 4 and IEEE 497-2002 to select the Type B accident monitoring variables for the US-APWR. Therefore, there are some differences between the RG 1.97 Rev. 3 and MHI Type B variable lists. IEEE 497-2002 defines Type B variables as follows.

Type B variables are those variables that provide primary information to the control room operators to assess the plant critical safety functions. Any plant critical safety functions addressed in the EPGs or the plant specific EOPs that are in addition to those identified above shall also be in included.

The ultimate goal of the plant safety systems is to prevent an uncontrolled release of radioactive material. This is accomplished by ensuring that certain parameters related to plant critical safety functions are not exceeded. The US-APWR Functional Restoration Guidelines (FRGs) provide protection of these plant critical safety functions. The FRGs establish predefined function-related restoration strategies for responding to emergency transients where the initiating event is unknown and the transient is not predefined. The restoration strategies utilize available plant equipment to restore the parameters used for entry conditions to values sufficient to ensure protection of the plant critical safety function.

The most essential and important methods of protecting the plant critical safety functions are the concepts of (1) Shutdown, (2) Cooldown, and (3) Contain, where each of these concepts is defined as follows.

- "Shutdown" means that the plant should be subcritical in order to reduce the thermal energy in the core to as low as the decay heat level during the emergency conditions.
- "Cooldown" means that the heat should be removed from the core (fuel rods) to protect the integrity of the cladding. Decay heat should be removed from the Reactor Coolant System (RCS).
- "Contain" refers to the integrity of the RCS and containment vessel. Heat should be removed from the containment to the ultimate heat sink.

The US-APWR Type-B PAM variables are selected from the concept of the FRGs described above. The Type B functional category of "Reactivity Control" is related to the FRG concept of "Shutdown". The functional categories of "Core Cooling" and "Reactor Coolant System Integrity" are related to the FRG concept of "Cooldown". And the Type B functional category "Containment Integrity" is related to the FRG concept "Contain".

Table B describes the bases for the differences between the Type B variables included in the MHI PAM list compared to those included in RG 1.97 Rev. 3 Table 3.

• Type C

Table 3 of RG 1.97 Rev. 3 prescribes a minimum list of Type C variables to monitor. However, MHI utilized the performance-based criteria of RG 1.97 Rev. 4 and IEEE 497-2002 to select the Type C accident monitoring variables for the US-APWR. Therefore, there are some differences between the RG 1.97 Rev. 3 and MHI Type C variable lists. IEEE 497-2002 defines Type C variables as follows.

Type C variables are those variables that provide primary information to the control room operators to indicate the potential for breach or the actual breach of the three fission product barriers (extended range): fuel cladding, reactor coolant system pressure boundary, and containment pressure boundary.

Table C shows the bases for the differences between Type C variables in the MHI PAM list and the variables included in RG 1.97 Rev. 3 Table 3.

• Type D

Table 3 of RG 1.97 Rev. 3 prescribes a minimum list of Type D variables to monitor. However, MHI utilized the performance-based criteria of RG 1.97 Rev. 4 and IEEE 497-2002 to select the Type D accident monitoring variables for the US-APWR. Therefore, there are some differences between the RG 1.97 Rev. 3 and MHI Type D variable lists. IEEE 497-2002 defines Type D variables as follows.

Type D variables are those variables that provide primary information to the control room

operators and are required in procedures and LBD to:

- a) Indicate the performance of those safety systems and auxiliary supporting features necessary for the mitigation of design basis events.
- b) Indicate the performance of other systems necessary to achieve and maintain a safe shutdown condition.
- c) Verify safety system status.

The US-APWR Type D variable list is almost identical to the Type D variables included in Table 3 of RG 1.97 Rev.3. One notable departure is the variable to monitor flow in the low pressure injection system. The accumulators and high head safety injection system in US-APWR are designed to replace the entire low head safety injection function; therefore, this system is not part of the US-APWR design and this monitoring variable is not applicable to the US-APWR.

Another notable departure from the RG 1.97 Rev.3 Type D variable list involves the chemical volume and control system (CVCS). The high head injection system and emergency letdown system of the US-APWR has a required safety function to ensure a means for feed and bleed for boration and make up water for compensation of shrinkage if the normal CVCS is unavailable. Since the US-APWR SI system performs the necessary RCS inventory and boration functions, the CVCS-related monitoring variables are not necessary for the US-APWR design and thus not included in the MHI Type D variable list.

Table D shows the bases for differences between Type D variables in the MHI PAM list and Type D PAM included in RG 1.97 Rev. 3 Table 3.

• Type E

Table 3 of RG 1.97 Rev. 3 prescribes a minimum list of Type E variables to monitor. However, MHI utilized the performance-based criteria of RG 1.97 Rev. 4 and IEEE 497-2002 to select the Type E accident monitoring variables for the US-APWR. Therefore, these are some differences between the RG 1.97 Rev. 3 and MHI Type E variable lists. IEEE 497-2002 defines Type E variables as follows.

Type E variables are those variables that provide primary information to the control room operators and are required for use in determining the magnitude of the release of radioactive materials and continually assessing such releases.

The selection of these variables shall include, but not be limited to, the following:

- a) Monitor the magnitude of releases of radioactive materials through identified pathways (e.g., secondary safety valves, and condenser air ejector).
- b) Monitor the environmental conditions used to determine the impact of releases of radioactive materials through identified pathways (e.g., wind speed, wind direction, and air temperature).
- c) Monitor radiation levels and radioactivity in the plant environs.
- d) Monitor radiation levels and radioactivity in the control room and selected plant areas where access may be required for plant recovery.

Table E shows the bases for differences between Type E variables in the MHI PAM list and Type E PAM included in RG 1.97 Rev. 3 Table 3.

Impact on DCD

There are typographical mistakes in the Tier 2, DCD Chapter 7, Table 7.5-3. DCD Table 7.5-3 will be revised as shown below to add an additional category to Reactor Coolant Pressure, Containment Pressure, and Containment High Range Area Radiation.

Variable	Range	Monitored Function or System	Quantity	Туре
Reactor Coolant Pressure	0 to 3000 psig	Core Cooling Maintaining RCS Integrity	2	A,B, <u>C,</u> D
Containment Pressure* ²	-7 to 80 psig	Maintaining RCS Integrity Maintaining Containment Integrity	4	B, <u>C,</u> D

Table 7.5-3 PAM Variables (Sheet 1 of 3)

Table 7.5-3 PAM Variables (Sheet 2 of 3)

em		
ment Radiation 4		C <u>,E</u>
	ment Radiation 4	ment Radiation 4

Impact on COLA

There is no impact on the COLA.

Impact on PRA

There is no impact on the PRA.

RG 1.97 Function	Purpose	NUREG-1431 Table 3.3.3-1 Variable	Corresponding MHI Type A PAM Variable	Basis for Difference
Reactivity Control	Indication of subcritical conditions	Power Range Neutron Flux	-	This parameter is not applied in the safety analysis. Wide Range Neutron Flux is a Type B and D variable for the US-APWR.
Reactivity Control	Indication of subcritical conditions	Source Range Neutron Flux	-	This parameter is not applied in the safety analysis.
Core Cooling	Indication of core cooling; Manual action; Long-term core cooling	RCS Hot Leg Temperature	Reactor Coolant Hot Leg Temperature (Wide Range)	Intact loop hot leg temperature is applied for determining the termination of RCS cooldown and initiation of RCS depressurization in the SGTR analysis. Therefore, this is a Type A variable for the US-APWR.
Core Cooling	Indication of core cooling; Long-term core cooling	RCS Cold Leg Temperature	Reactor Coolant Cold Leg Temperature (Wide Range)	This parameter is not explicitly assumed in safety analysis; however, monitoring of this parameter is necessary for cooling down after mitigating a PA or AOO. Therefore, this is a Type A parameter for the US-APWR.
Core Cooling; Maintaining RCS Integrity; RCS Pressure Boundary; Primary Coolant System	-SGTR Safety Analysis Manual Action -RCS Depressurization based on EOPs for SGTR event	RCS Pressure (Wide Range)	Reactor Coolant Pressure	No difference.
Core Cooling	To ensure RCS inventory	Reactor Vessel Water Level	-	This parameter is not applied in the safety analysis. RV Water Level is a Type B and D variable for the US-APWR.
Core cooling; Maintaining RCS Integrity; RCS Pressure Boundary	Indication of core cooling function for RWSP switchover and status of ECCS recirculation delivery	Containment Sump Water Level (Wide Range)	-	This parameter is not applied in safety analysis since the US-APWR RWSP is located inside containment and does not require switchover to the recirculation sump. RWSP level is a Type B and D variable for the US-APWR.
Maintaining Containment and RCS Integrity; RCS Pressure Boundary	Indication of containment integrity function	Containment Pressure	-	This parameter is not applied in the safety analysis. Containment Pressure is a Type B and D variable for the US-APWR.

Table A: Basis for Differences between NUREG-1431 Table 3.3.3-1 and the MHI Type A PAM List

RG 1.97 Function	Purpose	NUREG-1431 Table 3.3.3-1 Variable	Corresponding MHI Type A PAM Variable	Basis for Difference
Containment Isolation/Integrity	Indication of containment integrity function	Penetration Flow Path Containment Isolation Valve Position	-	This parameter is not applied in the safety analysis. C/V Isolation Valve Position is a Type B and D variable for the US-APWR.
Containment Radiation; RCS Pressure Boundary	Identify challenge to fission product barrier	Containment Area Radiation (High Range)	-	This parameter is not applied in the safety analysis. Containment Area Radiation is a Type C and E variable for the US-APWR.
Primary Coolant System; RCS Pressure Boundary	To ensure proper operation of the pressurizer	Pressurizer Level	Pressurizer Water Level	No difference. This is a Type A variable for the US-APWR.
Secondary System; RCS Pressure Boundary	Verification of heat sink availability	Steam Generator Water Level (Wide Range)	-	This parameter is not applied in the safety analysis. SG narrow range level is applied in safety analysis and US-APWR ERG instead of this parameter. SG Wide Range Level is a Type B and D variable for the US-APWR.
Auxiliary Feedwater System	Indication of ability to maintain SG heat sink and indication of long- term AFW operation	Condensate Storage Tank Level	-	The EFW pit has enough water to maintain long- term core cooling; therefore, this variable is not applied in the safety analysis. This is a Type B and D variable for the US-APWR.
Core Cooling; Fuel Cladding Integrity; Maintain RCS Integrity; RCS Pressure Boundary; Primary Coolant System	Indication of core cooling	Core Exit Temperature – Quadrant [1]-[4]	-	This parameter is not applied in the safety analysis. Core Exit Temperature is a Type B and C variable for the US-APWR.
Auxiliary Feedwater System	Verification of automatic actuation and ability to satisfy heat sink requirements	Auxiliary Feedwater Flow	EFW Flow	No difference. This parameter is used to determine if the ECCS termination criteria are met in the SGTR analysis. EFW Flow is a Type A parameter for the US-APWR.
Secondary System	Verification of manual action for SGTR termination (along w/ RCS Pressure)	-	Main Steam Line Pressure	This parameter is applied for determining the termination of RCS cooldown and initiation of RCS depressurization in the SGTR analysis. Therefore, this is a Type A variable for the US-APWR.

.

Table A: Basis for Differences between NUREG-1431 Table 3.3.3-1 and the MHI Type A PAM List

	Table A:	Basis for Differences	between NUREG- ²	1431 Table 3.3.3-1	and the MHI Typ	pe A PAM List
--	----------	------------------------------	-----------------------------	--------------------	-----------------	---------------

RG 1.97 Function	Purpose	NUREG-1431 Table 3.3.3-1 Variable	Corresponding MHI Type A PAM Variable	Basis for Difference
Secondary System; RCS Pressure Boundary	Verification of heat sink availability	-	SG Water Level (Narrow Range)	This parameter is monitored for the operator to determine if the ECCS termination criteria are met in the SGTR analysis. This parameter is also used in the ERGs to identify ruptured SG(s). Therefore, this is a Type A variable for the US-APWR.
Core Cooling	Indication of core cooling	-	Degrees of Subcooling	This parameter is monitored for the operator to determine if the terminating RCS depressurization criteria or ECCS termination criteria are met in the SGTR analysis. Therefore, this is a Type A variable for the US-APWR.

RG 1.97 Rev. 3 Variable	Purpose	MHI PAM Variable	Basis for Difference
Reactivity Control	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	
Neutron Flux	Function detection; accomplishment of mitigation	Wide Range Neutron Flux	No difference
Control Rod Position	Verification	-	Reactivity control is directly monitored by Neutron Flux. Control rod position provides back-up indication of reactor shutdown. Since the primary indication is neutron flux, which is a PAM variable, control rod indication is not included in the US-APWR PAM list.
RCS Soluble Boron Concentration	Verification	Reactor Coolant Soluble Boron Concentration	No difference
RCS Cold Leg Water Temperature	Verification	Reactor Coolant Cold Leg Temperature (Wide Range)	No difference
Core Cooling		•	
RCS Hot Leg Water Temperature	Function detection; accomplishment of mitigation; verification; long-term surveillance	Reactor Coolant Hot Leg Temperature (Wide Range)	No difference
RCS Cold Leg Water Temperature	Function detection; accomplishment of mitigation; verification; long-term surveillance	Reactor Coolant Cold Leg Temperature (Wide Range)	No difference
RCS Pressure	Function detection; accomplishment of mitigation; verification; long-term surveillance	Reactor Coolant Pressure	No difference
Core Exit Temperature	Verification	Core Exit Temperature	No difference
Coolant Inventory	Verification; accomplishment of mitigation	RV Water Level	Reactor vessel water level is a key indication of adequate inventory for core cooling. There is no difference in the intent of these two variables.

RG 1.97 Rev. 3 Variable	Purpose	MHI PAM Variable	Basis for Difference		
Degrees of Subcooling	Verification and analysis of plant conditions	Degrees of Subcooling	No difference		
Maintaining Reactor Coolant System Integrity					
RCS Pressure	Function detection; accomplishment of mitigation	Reactor Coolant Pressure	No difference		
Containment Sump Water Level	Function detection; accomplishment of mitigation; verification	Refueling Water Storage Pit Water Level (Wide Range) Refueling Water Storage Pit Water Level (Narrow Range)	The US-APWR RWSP is located inside containment, essentially combining the function of the sump and RWSP. Therefore, RWSP water level meets the intent of this monitoring variable and there is no difference between RG 1.97 Rev 3 and the US-APWR PAM list.		
Containment Pressure	Function detection; accomplishment of mitigation; verification	Containment Pressure	No difference		
Maintaining Containm	ent Integrity				
Containment Isolation Valve Position (excluding check valves)	Accomplishment of isolation	Containment Isolation Valve Position (Excluding Check Valves)	No difference		
Containment Pressure	Function detection; accomplishment of mitigation; verification	Containment Pressure	No difference		
Other		·			
-	-	Pressurizer Water Level	This parameter is important to monitor because it is related to the SI termination criteria, which is related to maintaining adequate RCS inventory to assure core cooling.		
-	-	Main Steam Line Pressure	This parameter is important to monitor the efficiency of removing the decay heat of core, which is related to core cooling.		
-	-	SG Water Level (Wide Range)	This parameter provides indication of heat sink availability and is selected to monitor core cooling.		
-	-	SG Water Level (Narrow Range)	This parameter provides indication of heat sink availability and is selected to monitor core cooling.		

,

RG 1.97 Rev. 3 Variable	Purpose	MHI PAM Variable	Basis for Difference
-	-	EFW Flow	This parameter provides verification of the automatic actuation of EFW and is selected to monitor core cooling.
-		EFW Pit Water Level	This parameter provides indication of heat sink availability and is selected to monitor core cooling.

RG 1.97 Rev. 3 Variable	Purpose	MHI PAM Variable	Basis for Difference
Fuel Cladding	I		
Radioactivity Concentration or Radiation Level in Circulating Primary Coolant	Detection of breach	Radioactivity Concentration or Radiation Level in Circulating Primary Coolant	No difference
Core Exit Temperature	Detection of breach	Core Exit Temperature	No difference
Analysis of Primary Coolant (Gamma Spectrum)	Detail analysis; accomplishment of mitigation; verification; long-term surveillance	-	Concentration of each radioactive nuclide can be derived from RCS sampling.
Reactor Coolant Press	sure Boundary		
RCS Pressure	Detection of potential for or actual breach; accomplishment of mitigation; long-term surveillance	Reactor Coolant Pressure	No difference
Containment Pressure	Detection of breach; accomplishment of mitigation; long-term surveillance	Containment Pressure	No difference
Containment Sump Water Level	Detection of breach; accomplishment of mitigation; long-term surveillance	-	Containment Pressure is a more direct indication of a potential containment breach. Therefore, RWSP level is not included as a Type C variable for the US-APWR.
Containment Area Radiation	Detection of breach; verification	Containment High Range Area Radiation	No difference.
Effluent Radioactivity - Noble Gas Effluent from Condenser Air Removal System Exhaust	Detection of breach; verification		Coolant leakage outside containment to secondary system due to an actual breach of the reactor coolant pressure boundary can be detected by RCS pressure, SG water level, and pressurizer water level. These variables are PAM variables. Therefore, it is not necessary to include effluent radioactivity as a Type C variable.

RG 1.97 Rev. 3 Variable	Purpose	MHI PAM Variable	Basis for Difference
Containment			
RCS Pressure	Detection of potential for breach; accomplishment of mitigation	Reactor Coolant Pressure	No difference
Containment Hydrogen Concentration	Detection of potential for breach; accomplishment of mitigation; long-term surveillance	-	This instrumentation is used for monitoring severe accidents. Therefore, it does not need to be a Type C variable.
Containment Pressure	Detection of potential for or actual breach; accomplishment of mitigation	Containment Pressure	No difference
Containment Effluent Radioactivity - Noble Gas Effluent from Identified Release Points	Detection of breach; accomplishment of mitigation; verification	-	The plant vent receives the discharge from the containment purge, auxiliary building, control building, fuel building, and the condenser air removal filtration system. This variable can be measured by plant vent radiation monitor (including high range) and therefore is not included as a separate Type C variable for the US-APWR.
Effluent Radioactivity - Noble Gases (from buildings or areas where penetrations and hatches are located, e.g., secondary containment and auxiliary buildings and fuel handling buildings that are in direct contact with primary containment)	Indication of breach	-	The plant vent receives the discharge from the containment purge, auxiliary building, control building, fuel building, and the condenser air removal filtration system. This variable can be measured by plant vent radiation monitor (including high range) and therefore is not included as a separate Type C variable for the US-APWR.

Table D: Basis for Typ	be D Differences	between RG 1.97	' Rev.3 and the	MHI PAM List
------------------------	------------------	-----------------	-----------------	--------------

RG 1.97 Rev. 3 Variable	Purpose	MHI PAM Variable	Basis for Difference
Residual Heat Remo	val (RHR) or Decay He	at Removal System	
RHR System Flow	To monitor operation	CS/RHR Pump Discharge Flow CS/RHR Pump Minimum Flow	No difference
RHR Heat Exchanger Outlet Temperature	To monitor operation and for analysis	-	Proper operation of the RHR system is verified by CS/RHR flow rate. Additionally, T _{hot} and T _{cold} are available to monitor RHR system performance with respect to decay heat removal. Therefore, it is not necessary to include the RHR heat exchanger outlet temperature as a Type D variable in the US-APWR PAM list.
Safety Injection Syst	em		
Accumulator Tank Level and Pressure	To monitor operation	Accumulator Water Level, Accumulator Pressure	No difference
Accumulator Isolation Valve Position	Operation status	-	Accumulator water level and accumulator pressure are available to monitor operation status. Therefore, it is not necessary to include isolation valve position as a separate Type D variable in the US-APWR PAM list.
Boric Acid Charging Flow	To monitor operation	-	The safety injection system delivers boric acid water to the RCS in the US-APWR. Safety Injection Pump Discharge Flow and Safety Injection Pump Minimum Flow are available to monitor the flow. Therefore it is not necessary to include this as a Type D variable in the US-APWR PAM list.
Flow in HPI System	To monitor operation	Safety Injection Pump Discharge Flow Safety Injection Pump Minimum Flow	No difference
Flow in LPI System	To monitor operation	-	The US-APWR design allows the accumulators and high head safety injection system to fully replace the safety function associated with the low head safety injection system. Therefore, the MHI PAM list does not need any variables to indicate LPI system performance.

RG 1.97 Rev. 3 Variable	Purpose	MHI PAM Variable	Basis for Difference
Refueling Water Storage Tank Level	To monitor operation	Refueling Water Storage Pit Water Level (Wide Range) Refueling Water Storage Pit Water Level (Narrow Range)	No difference
Primary Coolant Sys	tem		
Reactor Coolant Pump Status	To monitor operation	-	The safety analysis does not rely on the RCP to mitigate design basis events. The RCPs are also not necessary to achieve and maintain a safe shutdown condition. CCW header pressure is available to monitor CCW performance related to its function to deliver seal flow to the RCP in order to maintain its RCS pressure boundary function. Therefore, RCP status is not included as a PAM variable for the US-APWR.
Primary System Safety Relief Valve Positions (including PORV and code valves) or Flow Through or Pressure in Relief Valve Lines	Operation status; to monitor for loss of coolant	-	RCS pressure, Reactor Coolant Hot Leg Temperature, and Reactor Coolant Cold Leg Temperature are available to monitor operation status of the primary coolant system. Consistent trends in changes to the values of these variables are indicative of a loss of coolant. Therefore, it is not necessary to include position indication or flow indication for the primary relief valves in the PAM list.
Pressurizer Level	To ensure proper operation of pressure	Pressurizer Water Level	No difference
Pressurizer Heater Status	To determine operating status	-	Pressurizer water level and RCS pressure are indicative of the performance of the pressurizer heater. Therefore it is not necessary to separately include heater status in the PAM list.
Quench Tank Level	To monitor operation	-	This component is not necessary to mitigate design basis events, and not necessary to achieve and maintain a safe shutdown condition. Therefore, it is not included in the US-APWR PAM list.
Quench Tank Temperature	To monitor operation		Same as above
Quench Tank Pressure	To monitor operation	-	Same as above

RG 1.97 Rev. 3	Purpose	MHI PAM Variable	Basis for Difference
Variable Recorders Suptom ()	Phane Canada d		
Secondary System (Steam Generator)		
Steam Generator	To monitor operation	SG Water Level	No difference
		SG Water Level	
		(Narrow Range)	
Steam Generator	To monitor operation	Main Steam Line	No difference
Pressure	· · · · · · · · · · · · · · · · · · ·	Pressure	
Safety/Relief Valve	To monitor operation	-	Main steam line pressure is indicative of main steam flow and is available
Positions or Main			to monitor its SG operation. Therefore it is not necessary to separately
Steam Flow			include this variable in the PAM list.
Main Feedwater	To monitor operation	-	SG water level and main steam line pressure are indicative of adequate
Flow			feedwater flow. Since these variables are available to monitor SG
			operation, it is not necessary to separately include MFW flow in the PAM
	L		
Auxiliary Feedwater	or Emergency Feedwa	ter System	
Auxiliary or	To monitor operation	EFW Flow	No difference
Emergency			
Feedwater Flow			
Condensate Storage	Io ensure water	EFW Pit Water Level	No difference
Tank water Level	supply for auxiliary		
Containment Cooling			
Containment Cooling			
Containment Spray	To monitor operation	Discharge Flow	
FIOW			No difference
		Minimum Flow	
Heat Removal by	To indicate		
the Containment	accomplishment of		The containment fan heat removal system is not credited in design basis
Fan Heat Removal	cooling	-	events since containment spray is credited to maintain containment
System			integrity. Therefore this variable is not included in the PAM list.
Containment	To monitor operation	Containment	
Atmosphere		Temperature	No difference
Temperature		lemperature	

RG 1.97 Rev. 3 Variable	Purpose	MHI PAM Variable	Basis for Difference		
Containment Sump Water Temperature	To monitor operation	-	Containment pressure, containment temperature, and containment spray flow are utilized to monitor containment cooling system performance. Therefore it is not necessary to include this variable in the US-APWR PAM list.		
Chemical and Volum	e Control System (CVC	CS)			
Makeup Flow - In	To monitor operation	-	Since RCS inventory and boration are achieved by the safety injection system in the US-APWR, the monitoring variables related to CVCS are not necessary PAM variables for the US-APWR design.		
Letdown Flow - Out	To monitor operation	-	Same as above		
Volume Control Tank Level	To monitor operation	-	Same as above		
Cooling Water Syste	m (CCW)				
Component Cooling Water Temperature to ESF System	To monitor operation	-	CCW header pressure provides indication of the performance of the cooling water system. Therefore it is not necessary to separately include this variable in the PAM list.		
Component Cooling Water Flow to ESF System	To monitor operation	-	Same as above		
Radwaste Systems					
High-Level Radioactive Liquid Tank Level	To indicate storage volume	-	The US-APWR design precludes the need for this variable. This component is not necessary to mitigate design basis events and not necessary to achieve and maintain a safe shutdown condition. Addition of additional radioactive waste to the liquid or gaseous radwaste system following an accident is precluded by design and is not postulated. Therefore, this variable is not included in the US-APWR PAM list.		
Radioactive Gas Holdup Tank Pressure	To indicate storage capacity	-	Same as above		
Ventilation Systems					
Emergency Ventilation Damper Position	To indicate damper status	-	Containment Isolation Valve Position provides indication of containment integrity. The combination of isolation valve position status and a lack of radioactive release as indicated by the plant vent monitor provides verification of proper automatic ventilation path isolation. Therefore, damper position indication is not included in the US-APWR PAM list.		

RG 1.97 Rev. 3 Variable	Purpose	MHI PAM Variable	Basis for Difference
Power Supplies			
Status of Standby	To indicate system	Status of Standby	No difference
Power and Other	status	Power and Other	
Energy Sources		Energy Sources	
Important to Safety		Important to Safety	
(electric, hydraulic,		Class 1E ac Bus	· · · ·
pneumatic)		Voltage	
(voltages, currents,		Class 1E dc Bus	
pressures)		Voltage	
Other			
		Reactor Coolant Hot	This variable indicates the performance of the primary coolant system for
-	-	Leg Temperature	maintaining core cooling.
	-	(Wide Range)	
		Reactor Coolant	Same as above
_		Cold Leg	
		Temperature (Wide	
		Range)	· · · · · · · · · · · · · · · · · · ·
_	_	Reactor Coolant	This variable indicates the performance of the primary coolant system for
		Pressure	maintaining core cooling and RCS integrity.
	-	Degrees of	This variable is used to indicate the performance of the primary coolant
		Subcooling	system for core cooling.
-	-	RV Water Level	This variable provides direct indication of inventory available for maintaining
			core cooling.
-	-	Wide Range	This variable directly indicates reactivity control and allows for the
		Neutron Flux	monitoring of the performance of the control rod assemblies.
	-	Containment	This variable is used to indicate the containment integrity status
		Pressure	
		Containment	
-	-	Isolation Valve	This variable is used to indicate the containment integrity status
		Position (Excluding	
		Check Valves)	
-	-	CCW Header	This variable is used to indicate the performance of the CCW system
		Pressure	
-	-	ESW Header	This variable is used to indicate the performance of the ESW system.
		Pressure	

RG 1.97 Rev. 3	Purpose	MHI PAM Variable	Basis for Difference		
Variable					
Containment Radiatio	n	· · · · · · · · · · · · · · · · · · ·			
Containment Area	Detection of				
Radiation - High	significant releases;				
Range	release assessment;	Containment High			
	long-term	Range Area Radiation	No difference		
	surveillance;	Trange Area Tradiation			
	emergency plan				
	actuation				
Area Radiation					
Radiation Exposure	Detection of		This parameter can be measured by area monitors leasted where		
Rate (inside buildings	significant releases;		norsennel enter cross offer the assident. Additional persennel		
or areas where	release assessment;		personnel enter areas aller the accident. Auditional personnel		
access is required to	long-term surveillance	-	air sampling. Therefore, it is not necessary to include this verificle in		
service equipment					
important to safety)					
Airborne Radioactive	Airborne Radioactive Materials Released from Plant				
Noble Gases and Vent	Flow Rate				
Containment or Purge	Detection of				
Effluent	significant releases;	-			
	release assessment				
Reactor Shield	Detection of				
Building (if in design)	significant releases;	-	The plant year receives the discharge from the containment purge		
	release assessment		auxiliant building, control building, fuel building, and the condenses of		
Auxiliary Building	Detection of		removed filtration system. Those variables can be measured by plant		
(including any building	significant releases;		vent radiation monitor (including high range) and therefore are not		
containing primary	release assessment;	-	included as separate Type E variables for the LIS ADWP		
system gases, e.g.,	long-term surveillance		included as separate type L variables for the US-Arver.		
waste gas decay tank)					
Condenser Air	Detection of				
Removal System	significant releases;	-			
Exhaust	release assessment				

RG 1.97 Rev. 3 Variable	Purpose	MHI PAM Variable	Basis for Difference
Common Plant Vent or Multipurpose Vent Discharging Any of Above Releases (if containment purge is included)	Detection of significant releases; release assessment; long-term surveillance	-	This variable can be measured by plant vent radiation monitor (including high range) and therefore is not included as a separate Type E variable for the US-APWR.
Vent From Steam Generator Safety Relief Valves or Atmospheric Dump Valves	Detection of significant releases; release assessment	-	This variable is measured by main steam line monitor. Therefore it is not included as a separate Type E variable for the US-APWR.
All Other Identified Release Points	Detection of significant releases; release assessment; long-term surveillance	-	This variable can be measured by plant vent radiation monitor (including high range) and therefore is not included as a separate Type E variable for the US-APWR.
Particulates and Haloge	ens	······	
All Identified Plant Release Points (except steam generator safety relief valves or atmospheric steam dump valves and condenser air removal system exhaust). Sampling with Onsite Analysis Capability	Detection of significant releases; release assessment; long-term surveillance	-	This can be measured by plant vent sampler (accident sampler). Therefore it is not included as a separate Type E variable for the US-APWR.
Airborno	Release essention	Airborno Podio	
Radiohalogens and Particulates (portable sampling with onsite analysis capability)	analysis	Halogens and Particulates (Portable Sampling with Onsite Analysis Capability)	No difference
Plant and Environs Radiation (portable instrumentation)	Release assessment; analysis	Plant and Environs Radiation (Portable Instrumentation)	No difference

.

RG 1.97 Rev. 3 Variable	Purpose	MHI PAM Variable	Basis for Difference
Plant and Environs Radioactivity (portable instrumentation)	Release assessment; analysis	Plant and Environs Radioactivity (Portable Instrumentation)	No difference
Meteorology			
Wind Direction	Release assessment	Meteorological Parameters (Wind Direction, Wind Speed, Estimation of Atmospheric Stability)	No difference
Wind Speed	Release assessment	Meteorological Parameters (Wind Direction, Wind Speed, Estimation of Atmospheric Stability)	No difference
Estimation of Atmospheric Stability	Release assessment	Meteorological Parameters (Wind Direction, Wind Speed, Estimation of Atmospheric Stability)	No difference
Accident Sampling Ca	pability (Analysis Capa	bility On Site)	
Primary Coolant and Sump • Gross Activity • Gamma Spectrum • Boron Content • Chloride Content • Dissolved Hydrogen or Total Gas • Dissolved Oxygen • pH	Release assessment; verification analysis	-	These parameters can be measured by sampling. Many operating plants have received NRC approval for eliminating the PASS requirements specified in RG 1.97 Rev. 3. Therefore, these parameters are also not included in the US-APWR Type E PAM list.

•

•

RG 1.97 Rev. 3 Variable	Purpose	MHI PAM Variable	Basis for Difference
Containment Air	Release assessment;		These parameters can be measured by sampling. Many operating
Hydrogen Content	verification analysis		plants have received NRC approval for eliminating the PASS
Oxygen Content			requirements specified in RG 1.97 Rev. 3. Therefore, these
Gamma Spectrum			parameters are also not included in the US-APWR Type E PAM list.
Other			
-	-	MCR Area Radiation	To monitor radiation and radioactivity levels in the control room.
		MCR Outside Air	To monitor radiation and radioactivity levels in the control room
-	-	Intake Radiation	
		TSC Outside Air	To monitor radiation and radioactivity levels in the technical support
	-	Intake Radiation	center.
		Plant Vent Radiation	
	_	Gas Radiation	To monitor the magnitude of releases of radioactive materials through
		(Including High	identified pathways.
		Range)	
_	-	Main Steam Line	To monitor the magnitude of releases of radioactive materials through
		Radiation	identified pathways.
		GSS Exhaust Fan	
-	-	Discharge Line	To monitor the magnitude of releases of radioactive materials through
		Radiation (Including	identified pathways.
		High Kange)	
		Dump Exhaust Line	To monitor the magnitude of releases of redispetive motorials through
-		Pump Exhaust Line	identified nethology
		High Range)	uentineu patriways.
		Plant Air Vent High	
	_		To monitor the magnitude of releases of radioactive materials through
-		Sampling System	identified pathways.
- - - -	- - -	Intake Radiation Plant Vent Radiation Gas Radiation (Including High Range) Main Steam Line Radiation GSS Exhaust Fan Discharge Line Radiation (Including High Range) Condenser Vacuum Pump Exhaust Line Radiation (Including High Range) Plant Air Vent High Concentration Sampling System	To monitor the magnitude of releases of radioactive materials throug identified pathways. To monitor the magnitude of releases of radioactive materials throug identified pathways. To monitor the magnitude of releases of radioactive materials throug identified pathways. To monitor the magnitude of releases of radioactive materials throug identified pathways. To monitor the magnitude of releases of radioactive materials throug identified pathways.