ENCLOSURE 4

Westinghouse Non-Proprietary Class 3

AP1000 Calorimetric Power Uncertainty April 26, 2010 Presentation - (Non-Proprietary)

AP1000 Calorimetric Power Uncertainty

Rockville, MD

April 26, 2010

Matthew C. Evans, Westinghouse

Westinghouse Non-Proprietary Class 3

Agenda

- Purpose
- Issue Background
- AP1000 Methodology
- AP1000 Conclusion
- AP1000 Plan

Purpose

The purpose of this meeting is to facilitate conversation between Westinghouse (WEC) and the NRC concerning the AP1000 1% calorimetric power uncertainty issue.

- Present the AP1000 calorimetric methodology
- Propose a path for issue closure
- Obtain NRC feedback

Issue Background

- Certified AP1000 Design claimed 1% calorimetric power uncertainty
 - Section 6.2, "Containment Systems"
 - DCD, Rev. 15 & NUREG-1793
- AP1000 extended 1% uncertainty to other analyses (DCD Ch. 15) in the amended design certification request
- RAI-SRP15.0-SRSB-02 issued in November 2008 requested a basis for the 1% uncertainty claim

Issue Background (cont.)

- WEC RAI response submitted in May 2009
 - Created an "Action Required by COL Holder" for submittal and review of plant calorimetric uncertainty in accordance with 10 CFR 50 Appendix K
- Staff requested closure of COL item in January 2010
 - Action Required by COL Applicant
- WEC proposed relocation of plant calorimetric uncertainty documentation into an ITAAC
 - Staff has expressed concern over "level of detail" of the proposed

Westinghouse Non-Prophletary class 3

AP1000 Methodology

- AP1000 utilizes two forms of feedwater flow measurement
 - Venturi (consistent with ASME PTC 19.5 requirements)
 - Ultrasonic Flow Meter
- WEC desires to preserve a standard plant concept
 - Future development of suppliers
 - Flexibility in plant-specific procurement activities
- WEC commits to using NRC licensed technologies for main feedwater flow measurement

AP1000 Methodology (cont.)

- AP1000 Design Certification claims a 1% power uncertainty
- WEC will apply a standard heat balance to the calculation of the AP1000 power uncertainty
 - WEC will submit a bounding power uncertainty topical report for the AP1000 [Action Item – WEC – May 2010]
 - Approach has been approved by NRC at multiple sites

Documents compliance with 10/CER-50 Appendix K

- Every AP1000 will be required to provide plant-specific uncertainty documentation
 - Shall reflect as-built instrumentation parameters

AP1000 Methodology (cont.)

- Instrumentation inputs to power measurement
 - Steamline pressure
 - Feedwater pressure
 - Feedwater temperature
 - Steam generator blowdown flow
 - Feedwater flow
- Uncertainties assumed in the topical report are bounding and credible for all instrument applications
 - Based on history of NRC approved submittals

AP1000 Conclusion

- AP1000 makes a licensing claim of 1% power uncertainty
 - Claim does not affect the safety of the AP1000 design
 - Claim requires applicants to ensure compliance per the licensing basis to support operation
 - Plant-specific as-built uncertainty
- WEC shall document the bounding AP1000 uncertainty methodology
 - Shall be referenced by subsequent applicant submittals

AP1000 Plan

- WEC to provide generic AP1000 uncertainty topical report
 - To be submitted by May 31, 2010
- Request NRC acceptance review
 - To be completed by June 30, 2010
 - Timeframe consistent with DCD Rev. 18
- DCD revised to reference WEC report
 - ITAAC to reference bounding uncertainty topical report

