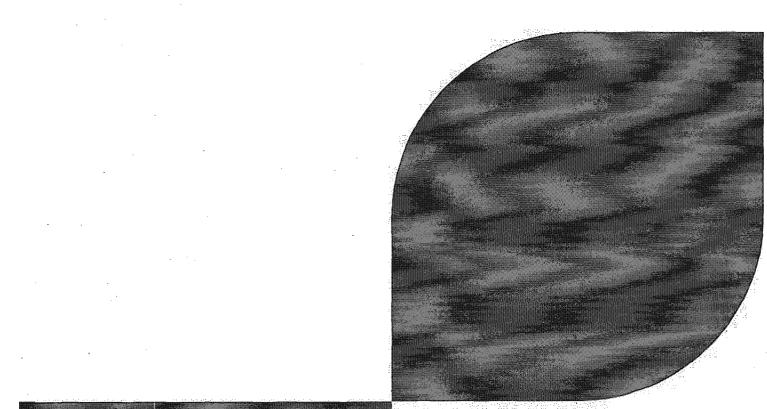
ATTACHMENT 13


Browns Ferry Nuclear Plant (BFN) Unit 1

Technical Specifications (TS) Change 473

AREVA Fuel Transition

Reload Safety Analysis Report

Attached is the non proprietary version of the Reload Safety Analysis Report.

ANP-2863(NP) Revision 1

Browns Ferry Unit 1 Cycle 9 Reload Safety Analysis for 105% OLTP

March 2010

AREVA NP Inc.

AREVA NP Inc.

ANP-2863(NP) Revision 1

Browns Ferry Unit 1 Cycle 9 Reload Safety Analysis for 105% OLTP

AREVA NP Inc.

ANP-2863(NP) Revision 1

Copyright © 2010

AREVA NP Inc. All Rights Reserved

Nature of Changes

Item	Page	Description and Justification
1.	2-2	Revised formatting of last paragraph.
2.	4-1, 5-1	Removed footnote and text referring to Reference 31. Reference 5 has been updated resulting in no need for Reference 31 or the footnote.
3.	Section 6.1	The section is revised to reflect the analysis presented in References 19 and 20.
4.	Section 9.0	References 5, 19, and 20 are updated. References 31, 40, and 42 are removed. Reference 41 in Revision 0 is now Reference 40.
5.	Appendix A	The figure number format is updated throughout the Appendix.

		ANP-2863(NP)
Browns Ferry Unit 1 Cycle 9	· · · · · · · · · · · · · · · · · · ·	Revision 1
Reload Safety Analysis for 105% OLTP	· · · ·	Page ii

Contents

1.0	ntroduction1-	1
2.0	Disposition of Events2-	1
3.0	Mechanical Design Analysis3-	1
4.0	Thermal-Hydraulic Design Analysis 4- 1.1 Thermal-Hydraulic Design and Compatibility 4- 1.2 Safety Limit MCPR Analysis 4- 1.3 Core Hydrodynamic Stability 4-	1
5.0	Anticipated Operational Occurrences 5- 5.1 System Transients 5- 5.1.1 Load Rejection No Bypass (LRNB) 5- 5.1.2 Turbine Trip No Bypass (TTNB) 5- 5.1.3 Feedwater Controller Failure (FWCF) 5- 5.1.4 Loss of Feedwater Heating 5- 5.1.5 Control Rod Withdrawal Error 5- 5.1 Control Rod Withdrawal Error 5- 5.2 Slow Flow Runup Analysis 5- 5.3 Equipment Out-of-Service Scenarios 5- 5.3.1 TBVOOS 5- 5.3.2 EOC-RPT-OOS 5- 5.3.3 FHOOS 5- 5.3.4 PLUOOS 5- 5.3.5 Combined EOC-RPT-OOS and TBVOOS 5- 5.3.6 Combined EOC-RPT-OOS and PLUOOS 5- 5.3.7 Combined TBVOOS and PLUOOS 5- 5.3.8 Combined FHOOS and PLUOOS 5- 5.3.9 Combined EOC-RPT-OOS, TBVOOS, and PLUOOS 5- 5.3.10 Combined EOC-RPT-OOS, TBVOOS, and PLUOOS 5-1 5.3.12 Combined EOC-RPT-OOS, TBVOOS, and	13345567788899999000000 11
6.0	Postulated Accidents	12233
7.0	Special Analyses	

			ANP-2863(NP)
Brow	ns Ferry	Unit 1 Cycle 9	Revision 1
Reloa	ad Safety	/ Analysis for 105% OLTP	Page iii
	7.2	ATWS Event Evaluation	
		7.2.1 ATWS Overpressurization Analysis	
		7.2.2 Long-Term Evaluation	
	7.3	Standby Liquid Control System	
	7.4	Standby Liquid Control System Fuel Criticality	7-4
8.0	Oper	ating Limits and COLR Input	8-1
	8.1	MCPR Limits	
	8.2	LHGR Limits	8-1
	8.3	MAPLHGR Limits	8-2
9.0	Refe	rences	9-1
Appe	endix A	Operating Limits and Results Comparisons	

Tables

1.1	EOD and EOOS Operating Conditions1-2
2.1 2.2 2.3	Disposition of Events Summary for Browns Ferry Unit 1
4.1 4.2 4.3 4.4	Fuel- and Plant-Related Uncertainties for Safety Limit MCPR Analyses 4-4 Results Summary for Safety Limit MCPR Analyses 4-5 OPRM Setpoints 4-6 BSP Endpoints for Browns Ferry Unit 1 Cycle 9 4-7
5.1 5.2	Exposure Basis for Browns Ferry Unit 1 Cycle 9 Transient Analysis
5.3	NEOC Base Case LRNB Transient Results5-15
5.4 5.5	EOCLB Base Case LRNB Transient Results
5.6 5.7	EOCLB Base Case FWCF Transient Results
5.8	Control Rod Withdrawal Error ∆CPR Results5-20
5.9 5 <u>.</u> 10	RBM Operability Requirements
5.11	Licensing Basis Core Average Axial Power Profile
7.1	ASME Overpressurization Analysis Results7-5
7.2	ATWS Overpressurization Analysis Results

	ns Ferry Unit 1 Cycle 9 d Safety Analysis for 105% OLTP	ANP-2863(NP) Revision 1 Page iv
7.3	[7-7
8.1	$MCPR_{\rho}$ Limits for NSS Insertion Times BOC to NEOC	8-3
8.2	MCPR _p Limits for TSSS Insertion Times BOC to NEOC	8-7
8.3	MCPR _p Limits for NSS Insertion Times BOC to EOCLB	
8.4	MCPR _p Limits for TSSS Insertion Times BOC to EOCLB	8-15
8.5	MCPR _p Limits for NSS Insertion Times BOC to FFTR/Coastdown	
8.6	MCPR _p Limits for TSSS Insertion Times BOC to FFTR/Coastdown	8-22
8.7	Flow-Dependent MCPR Limits ATRIUM-10 and GE14 Fuel	8-25
8.8	ATRIUM-10 Steady-State LHGR Limits	8-26
8.9	ATRIUM-10 LHGRFAC _p Multipliers for NSS/TSSS Insertion Times All Cycle 9 Exposures	8-27
8.10	GE14 LHGRFAC _p Multipliers for NSS/TSSS Insertion Times All Cycle Exposures	
8.11	ATRIUM-10 LHGRFAC _f Multipliers All Cycle 9 Exposures	
8.12	GE14 LHGRFACf Multipliers All Cycle 9 Exposures	8-30
8.13	ATRIUM-10 MAPLHGR Limits	

Figures

1.1	Browns Ferry Power/Flow Map – 105% OLTP	.1-3
4.1	Core-wide Radial Power Histogram for Limiting TLO Exposure	.4-8
4.2	Core-wide Radial Power Histogram for Limiting SLO Exposure	.4-9
5.1	EOCLB LRNB at 100P/105F – TSSS Key Parameters	5-24
5.2 .	EOCLB LRNB at 100P/105F – TSSS Sensed Water Level	5-25
5.3	EOCLB LRNB at 100P/105F – TSSS Vessel Pressures	5-26
5.4	EOCLB FWCF at 100P/105F – TSSS Key Parameters	5-27
5.5	EOCLB FWCF at 100P/105F – TSSS Sensed Water Level	5-28
5.6	EOCLB FWCF at 100P/105F – TSSS Vessel Pressures	5-29
7.1	MSIV Closure Overpressurization Event at 102P/105F – Key Parameters	.7-8
7.2	MSIV Closure Overpressurization Event at 102P/105F – Sensed Water Level	.7-9
7.3	MSIV Closure Overpressurization Event at 102P/105F – Vessel Pressures	7-10
7.4	MSIV Closure Overpressurization Event at 102P/105F – Safety/Relief Valve Flow Rates	7-11

Browr Reloa	ns Ferry Unit 1 Cycle 9 d Safety Analysis for 105% OLTP	ANP-2863(NP) Revision 1 Page v
7.5	PRFO ATWS Overpressurization Event at 100P/81F – Key Parameters	7-12
7.6	PRFO ATWS Overpressurization Event at 100P/81F – Sensed Water Level	7-13
7.7	PRFO ATWS Overpressurization Event at 100P/81F – Vessel Pressures.	7-14
7.8	PRFO ATWS Overpressurization Event at 100P/81F – Safety/Relief Valve Flow Rates	7-15

ć. .

Nomenclature

2PT	two pump trip
ADS	automatic depressurization system
AOT	abnormal operational transient
APLHGR	average planar linear heat generation rate
ARO	all control rods out
ASME	American Society of Mechanical Engineers
AST	alternate source term
ATWS	anticipated transient without scram
ATWS-PRFO	anticipated transient without scram pressure regulator failure open
ATWS-RPT	anticipated transient without scram recirculation pump trip
BF1	Browns Ferry Unit 1
BLEU	blended low enriched uranium
BOC	beginning-of-cycle
BPWS	banked position withdrawal sequence
BSP	backup stability protection
BWR	boiling water reactor
BWROG	Boiling Water Reactor Owners Group
CAD	containment atmosphere dilution
CFR	Code of Federal Regulations
COLR	core operating limits report
CPR	critical power ratio
CRDA	control rod drop accident
CRWE	control rod withdrawal error
DIVOM	delta-over-initial CPR versus oscillation magnitude
ECCS EFPD EFPH EGC EOCLB EOC-RPT-OOS EOD EOFP EOOS EPU	emergency core cooling system effective full-power days effective full-power hours effective full-power years end-of-cycle end-of-cycle licensing basis end-of-cycle recirculation pump trip out-of-service extended operating domain end of full power equipment out-of-service extended power uprate
FFTR	final feedwater temperature reduction
FHOOS	feedwater heaters out-of-service
FSAR	final safety analysis report
FW	feedwater
FWCF	feedwater controller failure
GE	General Electric
GNF	Global Nuclear Fuels

ANP-2863(NP) Revision 1 Page vii

Nomenclature (Continued)

HCOM	hot channel oscillation magnitude
HFR	heat flux ratio
HPCI	high pressure coolant injection
icf	increased core flow
IHPS	inadvertent HPCI pump start
IORV	inadvertent opening of a relief valve
LFWH	loss of feedwater heating
LHGR	linear heat generation rate
LHGRFAC _f	flow-dependent linear heat generation rate multipliers
LHGRFAC _p	power-dependent linear heat generation rate multipliers
LOCA	loss-of-coolant accident
LOFW	loss of feedwater flow
LPRM	local power range monitor
LRNB	generator load rejection with no bypass
MAPLHGR MCPR MCPR MCPR MELLLA MSIV MSRV MSRVOOS	maximum average planar linear heat generation rate minimum critical power ratio flow-dependent minimum critical power ratio power-dependent minimum critical power ratio maximum extended load line limit analysis main steam isolation valve main steam relief valve out-of-service
NEOC	near end-of-cycle
NSS	nominal scram speed
NRC	Nuclear Regulatory Commission, U.S.
OLMCPR	operating limit minimum critical power ratio
OLTP	original licensed thermal power
OPRM	oscillation power range monitor
P _{bypass}	power below which direct scram on TSV/TCV closure is bypassed
PCT	peak cladding temperature
PLU	power load unbalance
PLUOOS	power load unbalance out-of-service
PRFO	pressure regulator failure open
RBM	(control) rod block monitor
RHR	residual heat removal
RPT	recirculation pump trip

ANP-2863(NP) Revision 1 Page viii

Nomenclature

(Continued)

SLC	standby liquid control
SLCS	standby liquid control system
SLMCPR	safety limit minimum critical power ratio
SLO	single-loop operation
SS	steady state
TBVOOS	turbine bypass valves out-of-service
TBV	turbine bypass valves
TCV	turbine control valve
TIP	traversing incore probe
TIPOOS	traversing incore probe out-of-service
TLO	two-loop operation
TSSS	technical specifications scram speed
TSV	turbine stop valve
TTNB	turbine trip with no bypass
TVA	Tennessee Valley Authority

∆CPR

change in critical power ratio

1.0 Introduction

Reload licensing analyses results generated by AREVA NP Inc.* are presented in support of cycle operation. The analyses reported in this document were performed using methodologies previously approved for generic application to boiling water reactors. The Nuclear Regulatory Commission, U.S. (NRC) technical limitations associated with the application of the approved methodologies have been satisfied by these analyses.

The core consists of a total of 764 fuel assemblies, including 272 fresh ATRIUM[™]-10[†] assemblies and 492 irradiated GE14 assemblies. Licensing analyses support the core design presented in Reference 1.

Reload licensing analyses were performed for potentially limiting events and analyses identified in Section 2. Results of analyses are used to establish the Technical Specifications/COLR limits and ensure design and licensing criteria are met. Design and safety analyses are based on both operational assumptions and plant parameters provided by the utility. The results of the reload licensing analysis support operation for the power/flow map presented in Figure 1.1 and also support operation with the equipment out-of-service (EOOS) scenarios presented in Table 1.1.

^{*} AREVA NP Inc. is an AREVA and Siemens company.

[†] ATRIUM is a trademark of AREVA NP.

Table 1.1 EOD and EOOSOperating Conditions

Extended Operating Domain (EOD) Conditions

Increased core flow (ICF)

Maximum extended load line limit analysis (MELLLA)

Combined final feedwater temperature reduction (FFTR) / coastdown

Equipment Out-of-Service (EOOS) Conditions*

Turbine bypass valves out-of-service (TBVOOS)

EOC recirculation pump trip out-of-service (EOC-RPT-OOS)

Feedwater heaters out-of-service (FHOOS)

Power load unbalance out-of-service (PLUOOS)

Combined EOC-RPT-OOS and TBVOOS

Combined EOC-RPT-OOS and FHOOS

Combined EOC-RPT-OOS and PLUOOS

Combined TBVOOS and FHOOS

Combined TBVOOS and PLUOOS

Combined FHOOS and PLUOOS

Combined EOC-RPT-OOS, TBVOOS, and FHOOS

Combined EOC-RPT-OOS, TBVOOS, and PLUOOS

Combined EOC-RPT-OOS, FHOOS, and PLUOOS

Combined TBVOOS, FHOOS, and PLUOOS

Combined EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS

Single-loop operation (SLO)

SLO may be combined with all of the other EOOS conditions. Base case and each EOOS condition is supported in combination with 1 MSRVOOS, up to 2 traversing incore probe (TIP) machines out-ofservice (TIPOOS) or the equivalent number of TIP channels (per operating requirements defined in Section 4.2), and/or up to 50% of the LPRMs out-of-service.

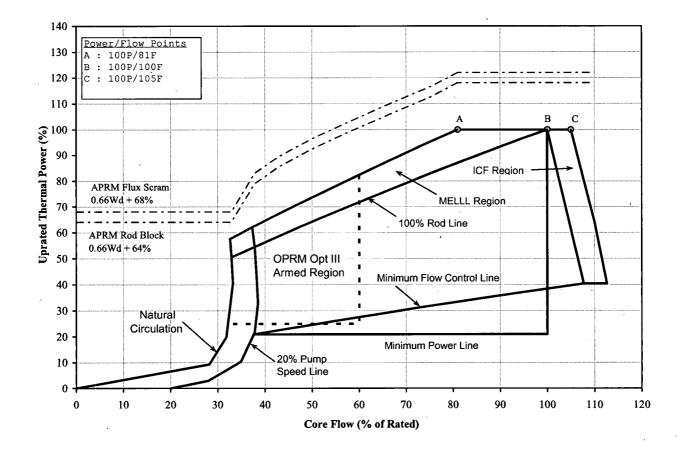


Figure 1.1 Browns Ferry Power/Flow Map - 105% OLTP

2.0 **Disposition of Events**

The objective is to identify limiting events for analysis, supporting operation with ATRIUM-10 fuel. Events and analyses identified as potentially limiting are either evaluated generically for the introduction of AREVA fuel or on a cycle-specific basis.

The first step is to identify the licensing basis of the plant. Included in the licensing basis are descriptions of the postulated events/analyses and the associated criteria. Fuel-related system design criteria must be met, ensuring regulatory compliance and safe operation. The licensing basis, related to fuel and applicable for reload analysis, is contained in the Final Safety Analysis Report (FSAR), the Technical Specifications, Core Operating Limits Reports (COLR), and other reload analysis reports.

This report supports 105% OLTP operation, which is the power level currently supported in the FSAR and Technical Specifications. EPU analyses and documents were considered in support of the disposition of events review (References 33, 34, 35, 36, and 39). The conclusions of the review were the same for both 105% OLTP and 120% OLTP operation.

The main steam turbine for Unit 1 has been modified for 120% OLTP operation. The same turbine modifications have not yet occurred for Units 2 and 3 to support EPU. For 105% OLTP operation, the only significant difference for the reload licensing analyses due to the turbine modifications is the position of the turbine control valve (TCV). The turbine modifications result in the TCV being less open for a given steam flow. This in turn results in an increase in severity for pressurization events with closure of the TCV; for example, the load rejection event. The TCV position is explicitly modeled in the reload analyses for limiting events that have TCV closure and is based on the 120% OLTP modifications. The turbine modifications do not change the conclusion of the disposition of events for BF1 105% OLTP operation.

Except for core loading and the turbine modifications previously discussed, all three Browns Ferry Units (1, 2, and 3) are essentially the same because core operational conditions, modeled geometry, safety system performance, and ECCS parameters are identical. A review of geometry between Units 1, 2, and 3 determined the only significant difference was the recirculation piping for Unit 3 (Unit 3 has undergone a recirculation header and riser replacement). Differences in recirculation piping for Unit 3 do not result in any modifications to the recirculation piping model used in the analyses (simplification of the recirculation piping model does not distinguish the differences). The review of differences between units concluded none of the analyses, or dispositions in Reference 34, needed to be revised for Unit 1. Differences in core design between units are addressed on a cycle-specific basis.

AREVA reviewed all fuel-related design criteria, events, and analyses identified in the licensing basis. In many cases, when operating limits are established to ensure acceptable consequences of an abnormal operational transient (AOT) or accident, the fuel-related aspects of the system design criteria are met. All fuel-related events were reviewed and dispositioned into one of the following categories:

1. No further analysis required. This classification may result from one of the following:

- a. The consequences of the event are bound by consequences of a different event.
- *b.* The consequences of the event are benign, i.e., the event causes no significant change in margins to the operating limits.
- *c.* The event is not affected by the introduction of a new fuel design and/or the current analysis of record remains applicable.
- 2. Address event each reload. The consequences of the event are potentially limiting and need to be addressed each reload.
- 3. Address for initial reload. This classification may result from one of the following:
 - *a.* The analysis is performed using conservative bounding assumptions and inputs such that the initial reload results will remain applicable for future reloads of the same fuel design.
 - b. Results from the first reload will be used to quantitatively demonstrate that the results remain applicable for future reloads of the same fuel design because the consequences are benign or bound by those of another event.

The impact of operation in the EOOS scenarios presented in Table 1.1 was also considered.

A disposition of events summary is presented in Table 2.1. The disposition summary presents a list of the events and analyses, the corresponding FSAR section, the disposition status, and any applicable comments. In each comment, the basis of the disposition is categorized as:

- FSAR analysis (which may include Reference 34).
- Generic analysis. A bounding analysis that is independent of plant type.
- Plant specific analysis. The analysis is based on Browns Ferry (independent of unit) and is bounding for cycle-to-cycle variations.
- Cycle specific analysis. The analysis is specific to the Unit and Cycle.

The disposition for the EOOS scenarios are summarized in Table 2.2. ICF and MELLLA operation regions of the power/flow map are included in the disposition results presented in Table 2.1. Methodology and evaluation models used for the cycle specific analyses are provided in Table 2.3. Overpressurization analyses are performed with the NRC approved code COTRANSA2 (References 12 and 40).

FSAR Section	Event /Analysis	Disposition Status	Comments
3.2	Fuel mechanical design	Address event for each reload	Cycle specific analysis (results and analyses generally do not change from cycle-to-cycle, unless a design feature is modified).
			Refer to Reference 2 for the analysis, acceptance criteria, methodology and evaluation model.
			Demonstrate design criteria are met.
3.6	Nuclear design	Address event each reload	Cycle specific analysis.
			Refer to Reference 1 for the analysis, acceptance criteria, methodology and evaluation model.
			Demonstrate design criteria are met.
3.7	Thermal and	rmal and Address event each	Plant specific and cycle specific analysis.
	hydraulic design	reload	Demonstrate design criteria are met. Fuel hydraulic design and compatibility results are provided in the Thermal-Hydraulic Design report. Refer to Reference 3 for the analysis, acceptance criteria, methodology and evaluation model. Other cycle specific criteria are presented in this report, i.e., thermal operating limits.
3.8	Standby liquid	Address event each	Cycle specific analysis.
	control system	reload	Analysis performed each reload to verify adequate SLCS shutdown capacity.

,		(Continued)	
	·	•	·
FSAR Section	Event /Analysis	Disposition Status	Comments
4.2	Reactor vessel and appurtenances mechanical design	No further analyses required	FSAR analysis and Reference 34. The vessel fluence irradiation is primarily dependent upon the effective full power years (EFPY), power distribution, power level, and fuel management scheme. The neutron spectrum of the ATRIUM-10 fuel is sufficiently similar to the spectrum applied in the licensing basis evaluation of the vessel irradiation limits. The void, power distributions, and the fission spectrum for ATRIUM-10 fuel are not significantly impacted by BLEU. An evaluation of ATRIUM-10 BLEU fuel flux concluded that the GE EPU analyses remained bounding. The introduction of ATRIUM-10 fuel with or without BLEU will have an insignificant effect on the fluence (E > 1.0 MeV) at the reactor vessel wall and internals.

Table 2.1 Disposition of Events Summary for Browns Ferry Unit 1 (Continued)

FSAR Section	Event /Analysis	Disposition Status	Comments
4.4	Nuclear system pressure relief system	Address event each reload	Cycle specific analysis (overpresurization) plant specific analysis (LOCA).
			Analysis of limiting ASME and ATWS overpressurization events required each reload.
			Evaluations of the ADS capability are addressed as part of the LOCA analyses (References 19 and 20).
5.2	Primary	No further analyses	FSAR analysis and Reference 34.
	containment system	required	Except for the CAD evaluation, the primary containment characteristics following a postulated LOCA are not fuel related. The CAD system criteria were met for ATRIUM-10. The Unit 1 containment characteristics are the same as Units 2 and 3, therefore the assessment of CAD for those units applies to Unit 1.
5.3	Secondary Containment System	No further analyses required	FSAR analysis and Reference 34. The secondary containment basis is independent of fuel design.
6.0	Emergency core cooling systems	Address event each reload	Plant specific analysis and cycle specific analysis.
			LOCA is a potentially limiting accident. Limiting break characteristics are identified for the initial ATRIUM-10 reload. Refer to References 19 and 20 for the analysis, acceptance criteria, methodology and evaluation model.
			LOCA heatup analysis for reload fuel is evaluated for follow-on reloads to address changes in neutronic design.
7.5	Neutron	Address event each	Plant specific and cycle specific analysis.
	monitoring system	reload	Cycle specific OPRM trip setpoint calculations. RBM setpoints evaluated for the CRWE event. Backup stability protection.

AREVA NP Inc.

FSAR Section	Event /Analysis	Disposition Status	Comments
7.19	Anticipated	Address event each	Cycle specific analysis.
	transient without scram	reload	Analyses are performed to demonstrate that the peak vessel pressure for the limiting ATWS event is less than 120% of design pressure. Long term ATWS analyses remain applicable for ATRIUM- 10 (Section 7.2.2).
8.10	Station blackout	No further analyses	FSAR analysis and Reference 34.
		required	The licensing basis analysis remains applicable. ATRIUM-10 fuel is designed to perform in a manner similar to and analogous with fuel of current and previous designs.
10.2	New fuel storage	Address for initial reload	Plant specific analysis.
			Refer to Reference 24 for the analysis, acceptance criteria, methodology and evaluation model.
	-		Evaluated for new fuel storage racks. Confirm applicability each reload.
10.3	1 0	Address for initial reload	Plant specific analysis.
			Refer to Reference 25 for the analysis, acceptance criteria, methodology, and evaluation model.
_			Evaluated for spent fuel storage racks. Confirm applicability each reload.
10.11	Fire protection	Address for initial	Plant specific analysis.
	systems <u>r</u> eload	∠reįoad	Appendix R criteria are met for ATRIUM- 10 fuel. This issue is addressed in Reference 37.
14.5.2.1	Generator trip	No further analyses	FSAR analysis and Reference 34.
	(TCV fast closure)	required	Bound by the generator trip with turbine bypass valve failure.

FSAR Section	Event /Analysis	Disposition Status	Comments
14.5.2.2	Generator trip	Address event each	Cycle specific analysis.
(TCV fast closure) reload with turbine bypass valve failure		reload	This event is a potentially limiting AOT.
14.5.2.2.4	LRNB with EOC- RPT-OOS	Address event each reload	Cycle specific analysis.
	RF1-003		This event is a potentially limiting AOT.
14.5.2.3	Loss of condenser vacuum	No further analyses required	FSAR analysis.
			Bound by the turbine trip with turbine bypass valve failure.
14.5.2.4	Turbine trip (TSV closure)	No further analyses required	FSAR analysis.
			Bound by the turbine trip with turbine bypass valve failure.
14.5.2.5	Turbine bypass valves failure	Address for initial reload	Cycle specific analysis, for initial reload.
	following turbine trip (TTNB), high power		Generally bound by the generator trip with turbine bypass valve failure.
14.5.2.6	Turbine bypass valves failure	Address for initial reload	Cycle specific analysis, for initial reload.
	following turbine trip (TTNB), low power		Generally bound by the generator trip with turbine bypass valve failure. If 14.5.2.5 is bound by generator trip with turbine bypass valve failure, then 14.5.2.6 is also bound.
14.5.2.7	Main steam isolation valve	No further analyses required	FSAR analysis and Reference 34.
•	closure		Relative to thermal operating limits, bound by the generator trip with turbine bypass valve failure.
14.5.2.8	Pressure regulator failure (downscale)	No further analyses required	FSAR analysis and Reference 34.
		1	Eliminated as an AOT by the installation o a digital fault-tolerant main turbine electro- hydraulic control system.

Table 2.1 Disposition of Events Summary for Browns Ferry Unit 1 (Continued)

FSAR Section	Event /Analysis	Disposition Status	Comments
14.5.3.1	Loss of feedwater	Address event each reload	Cycle specific analysis.
	heater (LFWH)	Teloau	Generally bound by the LRNB and FWCF events. Addressed each cycle to demonstrate that it remains bound by the other events.
14.5.3.2	Shutdown cooling	No further analyses	FSAR analysis.
	(RHR) malfunction – decreasing temperature	required	Benign event.
14.5.3.3	Inadvertent HPCI pump start	No further analysis required	FSAR analysis and Reference 34.
	(IHPS)		Generally bound by the LRNB and FWCF events. The IHPS event is similar to the LFWH event. The IHPS is slightly more CPR limiting, whereas the LFWH is slightly more thermal-mechanical limiting. Both IHPS and LFWH events have considerable margin to the limiting LRNB and FWCF events. The LFWH transient analyzed for each cycle to demonstrate, on a relative basis, that the LFWH and IHPS events remain non-limiting.
14.5.4.1	Continuous rod withdrawal during power range	Address event each reload	Cycle specific analysis. This event is a potentially limiting AOT.
14.5.4.2	operation Continuous rod	No further analyses	FSAR analysis.
	withdrawal during reactor startup	required	Benign event.
14.5.4.3	Control rod	No further analyses	FSAR analysis.
	removal error during refueling	required	This event is not credible.
14.5.4.4	Fuel assembly	No further analyses	FSAR analysis.
	insertion error during refueling	required	This event is not credible.
	Mislocated or misoriented fuel assembly	Address event each reload	Generic analysis.

.

FSAR Section	Event /Analysis	Disposition Status	Comments
14.5.5.1	Pressure regulator failure open (PRFO)	Address event each	FSAR analysis and cycle specific analysis
		reload	Relative to AOT thermal operating limits, benign event.
			PRFO – maximum steam demand is a potentially limiting ATWS overpressurization event. ATWS-PRFO is considered for FSAR 7.19.
14.5.5.2	Inadvertent	No further analysis	FSAR analysis.
	opening of a MSRV (IORV)	required	Benign event.
14.5.5.3	Loss of feedwater	No further analysis	FSAR analysis.
	flow (LOFW)	required	Benign event.
14.5.5.4	Loss of auxiliary power	No further analyses	FSAR analysis.
		required	Benign event.
14.5.6.1	Recirculation flow control failure – decreasing flow	No further analysis required	FSAR analysis.
			Non-limiting event.
14.5.6.2	Trip of one recirculation pump	No further analyses required	FSAR analysis.
•		lequieu	Consequences of this event are benign and bound by the turbine trip with no bypass event.
14.5.6.3	Trip of two recirculation	No further analyses required	FSAR analysis.
	pumps	· · · ·	Consequences of this event are benign and bound by the turbine trip with no bypass event.
14.5.6.4	Recirculation pump seizure	No further analysis required	FSAR analysis.
			The consequences of this accident are bounded by the effects of a LOCA.

FSAR Section	Event /Analysis	Disposition Status	Comments
Section			
14.5.7.1	Recirculation flow control failure -	Address event each reload	Cycle specific analysis.
•	increasing flow		Consequences of the slow flow run-up event determine the flow-dependent MCPR and LHGR operating limits and are evaluated each reload.
14.5.7.2	Startup of idle recirculation loop	No further analysis required	FSAR analysis.
		required	Benign event.
14.5.8.1	Feedwater controller failure	Address event each reload	Cycle specific analysis.
	(FWCF) - maximum demand		This event is a potentially limiting AOT.
14.5.8.2	Feedwater controller failure	Address event each	Cycle specific analysis.
	(FWCF) - maximum demand with EOC-RPT- OOS	reload	This event is a potentially limiting AOT.
14.5.8.3	Feedwater controller failure	Address event each reload	Cycle specific analysis.
	(FWCF) - maximum demand with TBVOOS	Teluau	This event is a potentially limiting AOT.
14.5.9	Loss of habitability of the control room	No further analyses required	FSAR analysis.
			This is postulated as a special event to
			demonstrate the ability to safely shutdown the reactor from outside the control room.
14.6.2	Control rod drop accident (CRDA)	Address event each reload	Cycle specific analysis.
	()		Consequences of the CRDA are evaluated to confirm that the acceptance criteria are satisfied.

FSAR Section	Event /Analysis	Disposition Status	Comments
14.6.3	Loss-of-coolant accident (LOCA)	Address event each reload	Plant specific analysis and cycle specific analysis.
· .			Consequences of the LOCA are evaluated to determine appropriate cycle-specific MAPLHGR limits. Refer to References 19 and 20 for the analysis, acceptance criteria, methodology and evaluation model.
			LOCA heatup analysis for reload fuel is evaluated for follow-on reloads to address changes in neutronic design.
14.6.4	Refueling accident	Address event each reload	Plant specific analysis.
			Refer to Reference 27 for the analysis, acceptance criteria, methodology and evaluation model.
			Consequences of the refueling accident are evaluated to confirm that the acceptance criteria are satisfied.
14.6.5	Main steam line break accident	No further analysis required	FSAR analysis and Reference 34. The consequences of a large steam line break are far from limiting with respect to 10 CFR 50.46 acceptance criteria. Radiological dose consequences have been performed utilizing AST in accordance with 10 CFR 50.67. The consequences of the event are not a function of fuel type since no fuel failures are calculated to occur. The dose is a function of the radionuclide inventory in the coolant itself prior to the event.

Option	Affected Limiting Events/Analyses	Comments		
One MSRV	ASME Overpressurization	This scenario is included as part of the base		
Out-of-Service	FWCF	case condition for the events/analyses identified.		
	LRNB			
	TTNB			
	ATWS			
Single-loop operation (SLO)	LOCA	The impact of SLO on LOCA is addressed in Section 8.		
	SLMCPR	The SLO SLMCPR is addressed each reload.		
Final Feedwater	FWCF	This scenario is included in each reload for		
Temperature Reduction (FFTR)/Feedwater	Option III Stability Solution	each of these events/analyses.		
Heater Out-of-Service (FHOOS)	Backup Stability Protection (BSP)	, ·		
Turbine bypass valve system out-of-service (TBVOOS)	FWCF	The FWCF event with TBVOOS is evaluated each reload.		
EOC-RPT out-of-service	FWCF	This scenario is included in each reload for		
(EOC-RPT OOS)	LRNB	each of these events/analyses.		
	TTNB			
Power load unbalance out-of-service (PLUOOS)	LRNB	The LRNB event with PLUOOS is evaluated each reload.		
Traversing in-core probe (TIP) out-of-service	SLMCPR	TIP OOS is included in the SLMCPR analysis.		

Table 2.2 Disposition of Operating Flexibility andEOOS Options on Limiting Events

Table 2.3 Methodology and Evaluation Models for	or Cycle Specific
Reload Analyses	1

FSAR Section	Event /Analysis	Analysis Methodology Reference	Evaluation Model	Acceptance Criteria and Comments
3.7	Thermal and hydraulic design	4	SAFLIM2	SLMCPR criteria: < 0.1% fuel
		12	COTRANSA2	rods experience boiling transition.
		13	XCOBRA	Transient criteria: Power and
		14	XCOBRA-T	flow dependent MCPR and
		16	RODEX2	LHGR operating limits established to meet the fuel failure criteria.
3.8	Standby liquid control system	15	CASMO-4 /MICROBURN- B2	SLCS criteria: Shutdown margin of at least 0.88% Δk/k.
4.4	Nuclear system pressure relief	12	COTRANSA2	Analyses for ASME and ATWS overpressurization.
	system			ASME overpressurization criteria: Maximum vessel pressure limit of 1375 psig and maximum dome pressure limit o 1325 psig.
				ATWS overpressurization criteria: Maximum vessel pressure limit of 1500 psig.
6.0	Emergency core	38	HUXY	LOCA criteria: 10CFR50.46.
	cooling systems			EXEM BWR-2000 Methodology Only heatup (HUXY) is analyzed for the reload specific neutronic design.
7.5	Neutron	7		Long term stability solution
	monitoring system	8	RAMONA5-FA	Option III criteria: OPRM setpoints do not result in
		9	CASMO-4 /	exceeding OLMCPR limits.
		10	MICROBURN- B2	CRWE criteria: Power
	· .	11		dependent MCPR and LHGR operating limits established to
		15		meet the fuel failure criteria.
		30		Backup stability protection criteria: Stability boundaries tha do not exceed acceptable global, regional and channel decay ratios as defined by the STAIF methodology.

Table 2.3 Methodology and Evaluation Models for Cycle Specific Reload Analyses (Continued)

FSAR Section	Event /Analysis	Analysis Methodology Reference	Evaluation Model	Acceptance Criteria and Comments
7.19	Anticipated transient without scram	12	COTRANSA2	ATWS overpressurization criteria: Maximum vessel pressure limit of 1500 psig.
				ATWS peak pressure only.
14.5.2.2	Generator trip	12	COTRANSA2	Transient criteria: Power and
	(TCV fast closure)	13	XCOBRA	flow dependent MCPR and LHGR operating limits
	with turbine bypass valve	14	XCOBRA-T	established to meet the fuel
	failure	16	RODEX2	failure criteria.
14.5.2.2.4	LRNB with EOC-	12	COTRANSA2	Transient criteria: Power
	RPT-OOS	13	XCOBRA	dependent MCPR and LHGR operating limits established to
		14	XCOBRA-T	meet the fuel failure criteria.
		16	RODEX2	
14.5.2.5	Turbine bypass valves failure following turbine trip (TTNB), high power	12	COTRANSA2	Transient criteria: Power
		13	XCOBRA	dependent MCPR and LHGR operating limits established to meet the fuel failure criteria.
		14	XCOBRA-T	
		16	RODEX2	
14.5.2.6	Turbine bypass	12	COTRANSA2	Transient criteria: Power
	valves failure following turbine	13	XCOBRA	dependent MCPR and LHGR operating limits established to
	trip (TTNB), low	14	XCOBRA-T	meet the fuel failure criteria.
	power	16	RODEX2	
14.5.3.1	Loss of feedwater	15	CASMO-4	Transient criteria: Power
	heater (LFWH)	18	/MICROBURN- B2	dependent MCPR and LHGR operating limits established to meet the fuel failure criteria
14.5.4.1	Continuous rod withdrawal during power range operation	15	CASMO-4 /MICROBURN- B2	CRWE criteria: Power dependent MCPR and LHGR operating limits established to meet the fuel failure criteria
	Mislocated or	15	CASMO-4	Mislocated/misoriented criteria
	misoriented fuel assembly	23	/MICROBURN- B2	Small fraction of 10 CFR 50.67 limits
				Generic analysis

Table 2.3 Methodology and Evaluation Models for Cycle Specific Reload Analyses (Continued)

FSAR Section	Event /Analysis	Analysis Methodology Reference	Evaluation Model	Acceptance Criteria and Comments
14.5.7.1	Recirculation flow control failure - increasing flow	14 15	CASMO-4 /MICROBURN- B2 biceoppt	
		··· · ···	XCOBRA	
14.5.8.1	Feedwater controller failure (FWCF) - maximum demand	12	COTRANSA2	Transient criteria: Power dependent MCPR and LHGR operating limits established to meet the fuel failure criteria.
		13	XCOBRA	
		14	XCOBRA-T	
		16	RODEX2	
14.5.8.2	Feedwater controller failure (FWCF) - maximum demand with EOC-RPT- OOS	12	COTRANSA2	Transient criteria: Power dependent MCPR and LHGR operating limits established to meet the fuel failure criteria.
		13	XCOBRA	
		14	XCOBRA-T	
		16	RODEX2	
14.5.8.3	Feedwater controller failure (FWCF) - maximum demand with TBVOOS	12	COTRANSA2	Transient criteria: Power dependent MCPR and LHGR operating limits established to meet the fuel failure criteria.
		13	XCOBRA	
		14	XCOBRA-T	
		16	RODEX2	
14.6.2	Control rod drop accident (CRDA)	15	CASMO-4 /MICROBURN- B2	CRDA criteria: Maximum deposited fuel rod enthalpy is less than 280 cal/g.
14.6.3	Loss-of-coolant accident (LOCA)	38	HUXY	LOCA criteria: 10CFR50.46.
				EXEM BWR-2000 Methodology Only heatup (HUXY) is analyzed for the reload specific neutronic design.

3.0 Mechanical Design Analysis

Mechanical design exposure limits for ATRIUM-10 fuel are presented in Reference 2. The maximum exposure limits for the ATRIUM-10 reload fuel are:

54.0 GWd/MTU average assembly exposure62.0 GWd/MTU rod average exposure (full-length fuel rods)

Maximum exposure limits for GE14 fuel assemblies remain unchanged from that presented in Reference 26.

The fuel cycle design analyses (Reference 1) verified all fuel assemblies remain within licensed burnup limits.

The ATRIUM-10 LHGR limits are presented in Section 8.0. The GE14 LHGR limits presented in Section 8.0 ensure that the thermal-mechanical design criteria for GE14 fuel are satisfied.

4.0 **Thermal-Hydraulic Design Analysis**

4.1 Thermal-Hydraulic Design and Compatibility

Results of thermal-hydraulic characterization and compatibility analyses are presented in Reference 3. Analysis results demonstrate the thermal-hydraulic design and compatibility criteria are satisfied for the transition core consisting of ATRIUM-10 and GE14 fuel.

4.2 Safety Limit MCPR Analysis

The safety limit MCPR (SLMCPR) is defined as the minimum value of the critical power ratio ensuring less than 0.1% of the fuel rods are expected to experience boiling transition during normal operation, or an abnormal operational transient (AOT). The SLMCPR for all fuel was determined using the methodology described in Reference 4. The analysis was performed with a power distribution conservatively representing expected reactor operation throughout the cycle.

SLMCPR analysis used the SPCB critical power correlation additive constants and additive constant uncertainty for ATRIUM-10 fuel described in Reference 5. The SPCB additive constants and additive constant uncertainty for the coresident GE14 fuel were developed using the indirect approach described in Reference 6.

Determination of the SLMCPR explicitly includes the effects of channel bow relying on the following assumptions: no fuel channels used for more than one fuel bundle lifetime, and assembly average burnup remains less than 55 GWd/MTU for central ATRIUM-10 and GE14 fuel types. The channel bow local peaking uncertainty is a function of the nominal and bowed local peaking factors and the standard deviation of the channel bow.

Fuel- and plant-related uncertainties used in the SLMCPR analysis are presented in Table 4.1. The radial power uncertainty used in the analysis includes the effects of up to 40% of the TIP channels out-of-service, up to 50% of the LPRMs out-of-service, and a 2500 EFPH LPRM calibration interval. Radial power factor distributions, corresponding to Table 4.2 results, are shown in Figures 4.1 and 4.2.

Analysis results support two-loop operation (TLO) SLMCPR of 1.09 and single-loop operation (SLO) SLMCPR of 1.11. Analysis results including the SLMCPR and the percentage of rods expected to experience boiling transition are summarized in Table 4.2.

4.3 Core Hydrodynamic Stability

Browns Ferry has implemented BWROG Long Term Stability Solution Option III (Oscillation Power Range Monitor-OPRM). Reload validation has been performed in accordance with Reference 7. The stability based Operating Limit MCPR (OLMCPR) is provided for two conditions as a function of OPRM amplitude setpoint in Table 4.3. The two conditions evaluated are for a postulated oscillation at 45% core flow steady state operation (SS) and following a two recirculation pump trip (2PT) from the limiting full power operation state point. Power- and Flowdependent limits provide adequate protection against violation of the SLMCPR for postulated reactor instability as long as the operating limit is greater than or equal to the specified value for the selected OPRM setpoint. Setpoints supporting EOOS operating conditions are provided in Table 4.3.

Evaluations by General Electric (GE) have shown that the generic DIVOM curves specified in Reference 7 may not be conservative for current plant operating conditions for plants which have implemented Stability Option III. The non-conservatism was addressed by performing calculations for the relative change in CPR as a function of the calculated hot channel oscillation magnitude (HCOM). Analyses were performed with the RAMONA5-FA code in accordance with Reference 30. The code is a coupled neutronic-thermal-hydraulic three-dimensional transient model for the purpose of determining the relationship between the relative change in Δ CPR and the HCOM on a plant specific basis. The method was developed consistent with the recommendations of the BWROG in Reference 8. Generation of plant-specific DIVOM data is consistent with the BWROG resolution of the non-conservatism as provided in Reference 9. The stability-based OLMCPRs were calculated using the most limiting calculated change in relative Δ CPR for a given oscillation magnitude.

In cases where the OPRM system is declared inoperable, Backup Stability Protection (BSP) is provided in accordance with Reference 10. BSP curves have been evaluated using STAIF (Reference 11) to determine endpoints meeting decay ratio criteria for the BSP Base Minimal Region I (scram region) and Base Minimal Region II (controlled entry region). Stability

ANP-2863(NP) Revision 1 Page 4-3

boundaries based on these endpoints can then be determined using the generic shape generating function from Reference 10. Analyses have been performed to support operation for both nominal, and reduced feedwater temperature conditions (both FFTR and FHOOS).

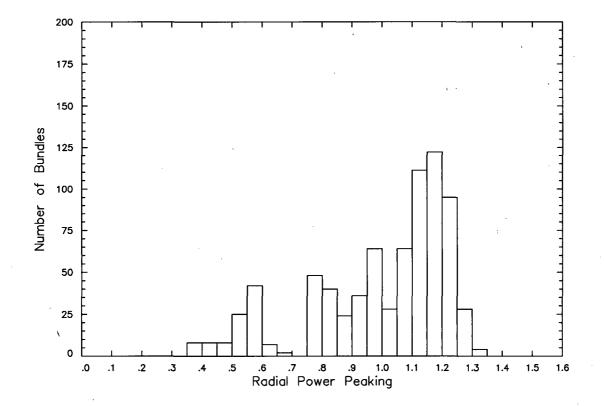
The STAIF acceptance criteria for the BSP endpoints are global decay ratios \leq 0.85, and regional and channel decay ratios \leq 0.80. Endpoints for the BSP regions provided in Table 4.4 have global decay ratios \leq 0.85, and regional and channel decay ratios \leq 0.80.

Table 4.1 Fuel- and Plant-Related Uncertainties for Safety Limit MCPR Analyses

Parameter	Uncertainty			
Fuel-Related Uncertainties				
[
-				
······]			
Plant-Related Uncerta	ainties			
Feedwater flow rate	1.8%			
Feedwater temperature	0.8%			
Core pressure	0.7%			
Total core flow rate				
TLO SLO	2.5% 6.0%			

]

Table 4.2 Results Summary forSafety Limit MCPR Analyses


SLMCPR	Percentage of Rods in Boiling Transition	
TLO – 1.09	0.086	
SLO - 1.11	0.069	

· · · · · ·	
OLMCPR (SS)	OLMCPR (2PT)
1.18	1.15
1.20	1.17
1.22	1.19
1.24	1.21
1.26	1.23
1.28	1.25
1.30	1.26
1.32	1.29
1.34	1.31
1.36	1.33
1.39	1.35
Off-Rated OLMCPR at 45% Flow	Rated Power OLMCPR as described in Section 8.0
	(SS) 1.18 1.20 1.22 1.24 1.26 1.28 1.30 1.32 1.34 1.36 1.39 Off-Rated OLMCPR

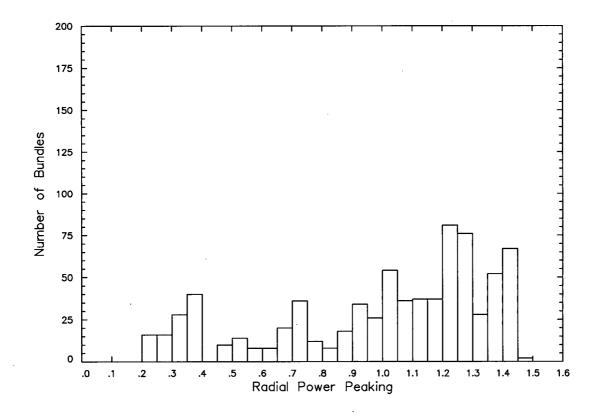

Table 4.3 OPRM Setpoints

Table 4.4 BSP Endpoints forBrowns Ferry Unit 1 Cycle 9

Feedwater Temperature Operation Mode	Region	End Point Designation	Power (% rated)	Flow (% rated)
Nominal	Scram	IA	65.22	41.50
Nominal	Scram	IB	43.88	29.00
Nominal	Controlled entry	IIA	73.46	50.00
Nominal	Controlled entry	IIB	30.72	29.00
FFTR/ FHOOS	Scram	IA	69.63	46.00
FFTR/ FHOOS	Scram	IB	40.00	29.00
FFTR/ FHOOS	Controlled entry	IIA	73.46	50.00
FFTR/ FHOOS	Controlled entry	IIB	30.72	29.00
				,

5.0 Anticipated Operational Occurrences

This section describes the analyses performed to determine the power- and flow-dependent MCPR operating limits for base case operation.

COTRANSA2 (Reference 12), XCOBRA-T (Reference 13), XCOBRA (Reference 14), and CASMO-4/MICROBURN-B2 (Reference 15) are the major codes used in the thermal limits analyses as described in the AREVA THERMEX methodology report (Reference 14) and neutronics methodology report (Reference 15). COTRANSA2 is a system transient simulation code, which includes an axial one-dimensional neutronics model that captures the effects of axial power shifts associated with the system transients. XCOBRA-T is a transient thermal-hydraulics code used in the analysis of thermal margins for the limiting fuel assembly. XCOBRA is used in steady-state analyses. The SPCB critical power correlation (Reference 5) is used to evaluate the thermal margin of the ATRIUM-10 and GE14 fuel. The application of the SPCB correlation to GE14 fuel follows the indirect process described in Reference 6. Fuel pellet-to-cladding gap conductance values are based on RODEX2 (Reference 16) calculations for the BF1 Cycle 9 core.

5.1 System Transients

The reactor plant parameters for the system transient analyses were provided by the utility. Analyses have been performed to determine power-dependent MCPR limits that protect operation throughout the power/flow domain depicted in Figure 1.1.

At BF1, direct scram on turbine stop valve (TSV) position and turbine control valve (TCV) fast closure are bypassed at power levels less than 30% of rated (P_{bypass}). Scram will occur when the high pressure or high neutron flux scram setpoint is reached. Reference 17 indicates that MCPR limits only need to be monitored at power levels greater than or equal to 25% of rated, which is the lowest power analyzed for this report.

The limiting exposure for rated power pressurization transients is typically at end of full power (EOFP) when the control rods are fully withdrawn. To provide additional margin to the operating limits earlier in the cycle, analyses were also performed to establish operating limits at a near end-of-cycle (NEOC) core average exposure of 28,285 MWd/MTU. Analyses were performed at cycle exposures prior to NEOC to ensure that the operating limits provide the necessary protection. The end-of-cycle licensing basis (EOCLB) analysis was performed at EOFP + 15

EFPD (core average exposure of 31,523 MWd/MTU). Analyses were also performed to support extended cycle operation with final feedwater temperature reduction (FFTR) and power coastdown. The licensing basis exposures used to develop the neutronics inputs to the transient analyses are presented in Table 5.1.

All pressurization transients assumed that one of the lowest setpoint main steam relief valves (MSRV) was inoperable. The basis supports operation with 1 MSRV out-of-service.

Reductions in feedwater temperature of less than 10° F from the nominal feedwater temperature and variation of ±10 psi in dome pressure are considered base case operation, not an EOOS condition. Analyses were performed to determine the limiting conditions in the allowable ranges.

FFTR is used to extend rated power operation by decreasing the feedwater temperature. The amount of feedwater temperature reduction is a function of power with the maximum decrease of 65°F (55°F + 10°F bias) at rated power. Analyses were performed to support combined FFTR/Coastdown operation to a core average exposure of 32,198 MWd/MTU. The analyses were performed with the limiting feedwater and dome pressure conditions in the allowable ranges.

System pressurization transient results are sensitive to scram speed assumptions. To take advantage of average scram speeds faster than those associated with the Technical Specifications requirements, scram speed-dependent MCPR_p limits are provided. The nominal scram speed (NSS) insertion times and the Technical Specifications scram speed (TSSS) insertion times used in the analyses are presented in Table 5.2. The NSS MCPR_p limits can only be applied if the scram speed test results meet the NSS insertion times. System transient analyses were performed to establish MCPR_p limits for both NSS and TSSS insertion times. Technical Specifications (Reference 17) allow for operation with up to 13 "slow" and 1 stuck control rod. One additional control rod is assumed to fail to scram. Conservative adjustments to the NSS and TSSS scram speeds were made to the analysis inputs to appropriately account for these effects on scram reactivity. For cases below 30% power, the results are relatively insensitive to scram speed, and only TSSS analyses are performed. At 30% power (P_{bypass}), analyses were performed, both with and without bypass of the direct scram function, resulting in an operating limits step change.

5.1.1 Load Rejection No Bypass (LRNB)

Load rejection causes a fast closure of the turbine control valves. The resulting compression wave travels through the steam lines into the vessel and creates a rapid pressurization. The increase in pressure causes a decrease in core voids, which in turn causes a rapid increase in power. Fast closure of the turbine control valves also causes a reactor scram and RPT. Turbine bypass system operation, which also mitigates the consequences of the event, is not credited. The excursion of the core power due to the void collapse is terminated primarily by the reactor scram and revoiding of the core.

LRNB analyses assume the power load unbalance (PLU) is inoperable for power levels less than 50% of rated. The LRNB sequence of events is different than the standard event when the PLU is inoperable. Instead of a fast closure, the TCVs close in servo mode and there is no direct scram on TCV closure. The power and pressure excursion continues until the high pressure scram occurs.

LRNB analyses were performed for a range of power/flow conditions to support generation of the thermal limits. Base case limiting LRNB transient analysis results used to generate the NEOC and EOCLB operating limits, for both TSSS and NSS insertion times, are shown in Tables 5.3 and 5.4. Responses of various reactor and plant parameters during the LRNB event initiated at 100% of rated power and 105% of rated core flow with TSSS insertion times are shown in Figures 5.1-5.3.

5.1.2 <u>Turbine Trip No Bypass (TTNB)</u>

A turbine trip event can be initiated as a result of several different signals. The initiating signal causes the TSV to close in order to prevent damage to the turbine. The TSV closure creates a compression wave traveling through the steam lines into the vessel causing a rapid pressurization. The increase in pressure results in a decrease in core voids, which in turn causes a rapid increase in power. Closure of the TSV also causes a reactor scram and an RPT which helps mitigate the pressurization effects. Turbine bypass system operation, which also mitigates the consequences of the event, is not credited. The excursion of the core power due to the void collapse is terminated primarily by the reactor scram and revoiding of the core.

In addition to closing the TSV, a signal is also sent to close the TCV in fast mode. The consequences of a fast closure of the TCV are very similar to those resulting from a TSV closure.

The main difference is the time required to close the valves. While the TCV full stroke closure time is greater than that of the TSV (0.150 sec compared to 0.100 sec), the initial position of the TCV is dependent on the initial steam flow. At rated power and lower, the initial position of the TCV is such that the closure time is less than that of the TSV. However, the TCV closure characteristics are nonlinear such that the resulting core pressurization and Δ CPR may not always bound those of the slower TSV closure.

Analyses were performed demonstrating that the TTNB event is equivalent to or bound by the LRNB event; therefore, the thermal limits established for the LRNB will also protect against the TTNB event.

5.1.3 Feedwater Controller Failure (FWCF)

The increase in feedwater flow due to a failure of the feedwater control system to maximum demand results in an increase in the water level and a decrease in the coolant temperature at the core inlet. The increase in core inlet subcooling causes an increase in core power. As the feedwater flow continues at maximum demand, the water level continues to rise and eventually reaches the high water level trip setpoint. The initial water level is conservatively assumed to be at the low level normal operating range to delay the high-level trip and maximize the core inlet subcooling resulting from the FWCF. The high water level trip causes the turbine stop valves to close in order to prevent damage to the turbine from excessive liquid inventory in the steam line. Valve closure creates a compression wave traveling back to the core, causing void collapse and subsequent rapid power excursion. The closure of the turbine stop valves also initiates a reactor scram and an RPT. In addition to the turbine stop valve closure, the turbine control valves also close in the fast closure mode. Because of the partially closed initial position of the control valves, they will typically close faster than the stop valves and control the pressurization portion of the event. However, TCV closure characteristics are nonlinear so that the resulting core pressurization and \triangle CPR results may not always bound those of the slower TSV closure at rated power (steam flow increases above rated before fast TCV closure). The limiting of TCV, or TSV closure, for the initial operating conditions, was used in the FWCF analyses, based on sensitivity analyses. The turbine bypass valves are assumed operable and provide some pressure relief. The core power excursion is mitigated in part by pressure relief, but the primary mechanisms for termination of the event are reactor scram and revoiding of the core.

FWCF analyses were performed for a range of power/flow conditions to support generation of the thermal limits. Tables 5.5 and 5.6 present the base case limiting FWCF transient analysis results used to generate the NEOC and EOCLB operating limits for both TSSS and NSS insertion times. Figures 5.4 - 5.6 show the responses of various reactor and plant parameters during the FWCF event initiated at 100% of rated power and 105% of rated core flow with TSSS insertion times.

5.1.4 Loss of Feedwater Heating

The loss of feedwater heating (LFWH) event analysis supports an assumed 100°F decrease in the feedwater temperature. The result is an increase in core inlet subcooling, which reduces voids, thereby increasing core power and shifting axial power distribution toward the bottom of the core. As a result of the axial power shift and increased core power, voids begin to build up in the bottom region of the core, acting as negative feedback to the increased subcooling effect. The negative feedback moderates the core power increase. Although there is a substantial increase in core thermal power during the event, the increase in steam flow is much less because a large part of the added power is used to overcome the increase in inlet subcooling. The increase in steam flow is accommodated by the pressure control system via the TCVs or the turbine bypass valves, so no pressurization occurs. A cycle-specific analysis was performed in accordance with the Reference 18 methodology to determine the change in MCPR for the event. The LFWH results are presented in Table 5.7.

5.1.5 Control Rod Withdrawal Error

The control rod withdrawal error (CRWE) transient is an inadvertent reactor operator initiated withdrawal of a control rod. This withdrawal increases local power and core thermal power, lowering the core MCPR. The CRWE transient is typically terminated by control rod blocks initiated by the rod block monitor (RBM). The CRWE event was analyzed assuming no xenon and allowing credible instrumentation out-of-service in the rod block monitor (RBM) system. The analysis further assumes that the plant could be operating in either an A or B sequence control rod pattern. The rated power CRWE results are shown in Table 5.8 for the analytical unfiltered RBM high power setpoint values of 107% to 117%. At all intermediate and lower power setpoint values, the MCPR_p values for ATRIUM-10 and GE14 fuel bound or are equal to the CRWE MCPR values. Analysis results indicate standard filtered RBM setpoint reductions are supported. Analyses demonstrate that the 1% strain and centerline melt criteria are met for both

ATRIUM-10 and GE14 fuel, for the LHGR limits and their associated multipliers presented in Sections 8.2 and 8.3. Recommended operability requirements supporting unblocked CRWE operation are shown in Table 5.9, based on the SLMCPR values presented in Section 4.2.

5.2 Slow Flow Runup Analysis

Flow-dependent MCPR and LHGR limits are established to support operation at off-rated core flow conditions. Limits are based on the CPR and heat flux changes experienced by the fuel during slow flow excursions. The slow flow excursion event assumes recirculation flow control system failure such that core flow increases slowly to the maximum flow physically attainable by the equipment (107% of rated core flow). An uncontrolled increase in flow creates the potential for a significant increase in core power and heat flux. A conservatively steep flow runup path was used in the analysis. Analyses were performed to support operation in all the EOOS scenarios.

MCPR_f limits are determined for both ATRIUM-10 and GE14 fuel. XCOBRA is used to calculate the change in critical power ratio during a two-loop flow runup to the maximum flow rate. The MCPR_f limit is set so an increase in core power, resulting from the maximum increase in core flow, assures the TLO safety limit MCPR is not violated. Calculations were performed over a range of initial flow rates to determine the corresponding MCPR values causing the limiting assembly to be at the safety limit MCPR for the high flow condition at the end of the flow excursion.

Analysis results are presented in Table 5.10. MCPR_f limits providing the required protection are presented in Table 8.7. MCPR_f limits are applicable for all exposures.

Flow runup analyses were performed with CASMO-4/MICROBURN-B2 to determine flowdependent LHGR multipliers (LHGRFAC_f) for ATRIUM-10 fuel. The analysis assumes recirculation flow increases slowly along the limiting rod line to the maximum flow physically attainable by the equipment. A series of flow excursion analyses were performed at several exposures throughout the cycle, starting from different initial power/flow conditions. Xenon is assumed to remain constant during the event. LHGRFAC_f multipliers are established to provide protection against fuel centerline melt and overstraining of the cladding during a flow runup. LHGRFAC_f multipliers are presented in Table 8.11. A process consistent with the GNF thermalmechanical methodology was used to determine flow-dependent LHGR multipliers (LHGRFAC_f) for GE14 fuel. GE14 LHGRFAC_f multipliers protecting against fuel centerline melt, and clad overstrain during operation at off-rated core flow conditions, are presented in Table 8.12.

The maximum flow during a flow excursion in single-loop operation is much less than the maximum flow during two-loop operation. Therefore, the flow-dependent MCPR limits and LHGR multipliers for two-loop operation are applicable for SLO.

5.3 **Equipment Out-of-Service Scenarios**

The equipment out-of-service (EOOS) scenarios supported for BF1 Cycle 9 operation are shown in Table 1.1. The EOOS scenarios supported are:

- Turbine bypass valves out-of-service (TBVOOS)
- EOC recirculation pump trip out-of-service (EOC-RPT-OOS)
- Feedwater heaters out-of-service (FHOOS)
- Power load unbalance out-of-service (PLUOOS)
- Combined EOC-RPT-OOS and TBVOOS
- Combined EOC-RPT-OOS and FHOOS
- Combined EOC-RPT-OOS and PLUOOS
- Combined TBVOOS and FHOOS
- Combined TBVOOS and PLUOOS
- Combined FHOOS and PLUOOS
- Combined EOC-RPT-OOS, TBVOOS, and FHOOS
- Combined EOC-RPT-OOS, TBVOOS, and PLUOOS
- Combined EOC-RPT-OOS, FHOOS, and PLUOOS
- Combined TBVOOS, FHOOS, and PLUOOS
- Combined EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS
- Single-loop operation (SLO) recirculation loop out-of-service

The base case thermal limits support operation with 1 MSRV out-of-service, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. The analyses presented in this section also include these EOOS conditions protected by the base case limits. No further discussion for these EOOS conditions is presented in this section.

5.3.1 <u>TBVOOS</u>

The effect of operation with TBVOOS is a reduction in the system pressure relief capacity, which makes the pressurization events more severe. While the base case LRNB and TTNB events are analyzed assuming the turbine bypass valves out-of-service, operation with TBVOOS has an adverse effect on the FWCF event. Analyses of the FWCF event with TBVOOS were performed to establish the TBVOOS operating limits.

5.3.2 <u>EOC-RPT-OOS</u>

When EOC-RPT is inoperable, no credit is assumed for recirculation pump trip on TSV position or TCV fast closure. The function of the EOC-RPT feature is to reduce the severity of the core power excursion caused by the pressurization transient. The RPT accomplishes this by helping revoid the core, thereby reducing the magnitude of the reactivity insertion resulting from the pressurization transient. Failure of the RPT feature can result in higher operating limits. Analyses were performed for LRNB and FWCF events assuming EOC-RPT-OOS.

5.3.3 <u>FHOOS</u>

The FHOOS scenario assumes a feedwater temperature reduction of 65°F (55°F + 10°F bias) at rated power and steam flow. The effect of reduced feedwater temperature is an increase in core inlet subcooling, changing axial power shape and core void fraction. Additionally, steam flow for a given power level decreases because more power is required to increase coolant enthalpy to saturated conditions. Generally, LRNB and TTNB events are less severe with FHOOS conditions due to the decrease in steam flow relative to nominal conditions. FWCF events with FHOOS conditions are generally worse due to a larger change in inlet subcooling and core power prior to the pressurization phase of the event.

Separate FHOOS limits are not needed for operation beyond the EOCLB exposure since a feedwater temperature reduction is included to attain the additional cycle extension to the FFTR/coastdown exposure, i.e., FFTR is equivalent to FHOOS since both are based on the same feedwater temperature reduction.

5.3.4 <u>PLUOOS</u>

The PLU device in normal operation is assumed to not function below 50% power. PLUOOS is assumed to mean the PLU device does not function for any power level, and does not initiate fast TCV closure. The following PLUOOS scenario was assumed for the load reject event.

- Initially, the TCVs remain in pressure/speed control mode. There is no direct scram or EOC-RPT on valve motion.
- Loss of load results in increasing turbine speed. Depending on initial power, a turbine overspeed condition may be reached to initiate a turbine trip resulting in scram and EOC-RPT.
- Without a turbine trip signal, scram occurs on either high flux or high dome pressure to terminate the event.

Analyses were performed for LRNB events assuming PLUOOS.

5.3.5 <u>Combined EOC-RPT-OOS and TBVOOS</u>

FWCF analyses with both EOC-RPT-OOS and TBVOOS were performed. Operating limits for this combined EOOS scenario were established using these FWCF results and results previously discussed.

5.3.6 Combined EOC-RPT-OOS and FHOOS

FWCF analyses with both EOC-RPT-OOS and FHOOS were performed. Operating limits for this combined EOOS scenario were established using these FWCF results and results previously discussed. Separate EOC-RPT-OOS and FHOOS combined limits are not needed for operation beyond the EOCLB exposure since a FW temperature reduction is included to attain the additional cycle extension to the FFTR/coastdown exposure.

5.3.7 <u>Combined EOC-RPT-OOS and PLUOOS</u>

LRNB analyses with both EOC-RPT-OOS and PLUOOS were performed. Operating limits for this combined EOOS scenario were established using these LRNB results and results previously discussed.

5.3.8 <u>Combined TBVOOS and FHOOS</u>

FWCF analyses with both TBVOOS and FHOOS were performed. Operating limits for this combined EOOS scenario were established using these FWCF results and results previously discussed. Separate TBVOOS and FHOOS combined limits are not needed for operation beyond the EOCLB exposure since a FW temperature reduction is included to attain the additional cycle extension to the FFTR/coastdown exposure.

5.3.9 <u>Combined TBVOOS and PLUOOS</u>

Limits were established to support operation with both TBVOOS and PLUOOS. No additional analyses are required to construct MCPR_p operating limits for TBVOOS and PLUOOS since TBVOOS and PLUOOS are independent EOOS conditions (TBVOOS only impacts FWCF events; PLUOOS only impacts LRNB events).

5.3.10 Combined FHOOS and PLUOOS

LRNB analyses with both FHOOS and PLUOOS were performed. Operating limits for this combined EOOS scenario were established using these LRNB results and results previously discussed. Separate FHOOS and PLUOOS combined limits are not needed for operation beyond the EOCLB exposure since a FW temperature reduction is included to attain the additional cycle extension to the FFTR/coastdown exposure.

5.3.11 Combined EOC-RPT-OOS, TBVOOS, and FHOOS

FWCF analyses with EOC-RPT-OOS, TBVOOS, and FHOOS were performed. Operating limits for this combined EOOS scenario were established using these FWCF results and results previously discussed. Separate EOC-RPT-OOS, TBVOOS, and FHOOS combined limits are not needed for operation beyond the EOCLB exposure since a FW temperature reduction is included to attain the additional cycle extension to the FFTR/coastdown exposure.

5.3.12 Combined EOC-RPT-OOS, TBVOOS, and PLUOOS

Limits were established to support operation with EOC-RPT-OOS, TBVOOS, and PLUOOS. No additional analyses are required to construct MCPR_p operating limits for EOC-RPT-OOS, TBVOOS, and PLUOOS since TBVOOS and PLUOOS are independent EOOS conditions (TBVOOS only impacts FWCF events; PLUOOS only impacts LRNB events).

5.3.13 Combined EOC-RPT-OOS, FHOOS, and PLUOOS

LRNB analyses with EOC-RPT-OOS, FHOOS, and PLUOOS were performed. Operating limits for this combined EOOS scenario were established using these LRNB results and results previously discussed. Separate EOC-RPT-OOS, FHOOS, and PLUOOS combined limits are not needed for operation beyond the EOCLB exposure since a FW temperature reduction is included to attain the additional cycle extension to the FFTR/coastdown exposure.

5.3.14 Combined TBVOOS, FHOOS, and PLUOOS

Limits were established to support operation with TBVOOS, FHOOS, and PLUOOS. No additional analyses are required to construct MCPR_p operating limits for TBVOOS, FHOOS, and PLUOOS since TBVOOS and PLUOOS are independent EOOS conditions (TBVOOS only impacts FWCF events; PLUOOS only impacts LRNB events). Separate TBVOOS, FHOOS, and PLUOOS combined limits are not needed for operation beyond the EOCLB exposure since a

FW temperature reduction is included to attain the additional cycle extension to the FFTR/coastdown exposure.

5.3.15 Combined EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS

Limits were established to support operation with EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS. No additional analyses are required to construct MCPR_p operating limits for EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS since TBVOOS and PLUOOS are independent EOOS conditions (TBVOOS only impacts FWCF events; PLUOOS only impacts LRNB events). Separate EOC-RPT-OOS, TBVOOS, TBVOOS, FHOOS, and PLUOOS combined limits are not needed for operation beyond the EOCLB exposure since a FW temperature reduction is included to attain the additional cycle extension to the FFTR/coastdown exposure.

5.3.16 Single-Loop Operation

In SLO, the two-loop operation Δ CPRs and LHGRFAC multipliers remain applicable. The only impacts on the MCPR, LHGR, and MAPLHGR limits for SLO are an increase of 0.02 in the SLMCPR as discussed in Section 4.2, and the application of an SLO MAPLHGR multiplier discussed in Section 8.3. The net result is a 0.02 increase in the base case MCPR_p limits and a decrease in the MAPLHGR limit. The same situation is true for the EOOS scenarios. Adding 0.02 to the corresponding two-loop operation EOOS MCPR_p limits results in SLO MCPR_p limits for the EOOS conditions. The TLO EOOS LHGRFAC multipliers remain applicable in SLO.

5.4 Licensing Power Shape

The licensing axial power profile used by AREVA for the plant transient analyses bounds the projected end of full power axial power profile. The conservative licensing axial power profile generated at the EOCLB core average exposure of 31,523 MWd/MTU is given in Table 5.11. Cycle 9 operation is considered to be in compliance when:

- The normalized power generated in the bottom 7 nodes from the projected EOFP solution at the state conditions provided in Table 5.11 is greater than the normalized power generated in the bottom 7 nodes in the licensing basis axial power profile.
- The projected EOFP condition occurs at a core average exposure less than or equal to EOCLB.

If the criteria cannot be fully met (i.e., not all 7 nodes are at a higher power than the licensing profile), the licensing basis may nevertheless remain valid but further assessment will be required.

The licensing basis power profile in Table 5.11 was calculated using the MICROBURN-B2 code. Compliance analyses must also be performed using MICROBURN-B2 or POWERPLEX[®]-III*. Note that the power profile comparison should be done without incorporating instrument updates to the axial profile because the updated power is not used in the core monitoring system to accumulate assembly burnups.

POWERPLEX is a trademark of AREVA NP registered in the United States and various other countries.

Table 5.1 Exposure Basis for Browns Ferry Unit 1 Cycle 9 Transient Analysis

Core Average Exposure (MWd/MTU)	Comments
14,285	Beginning of cycle
28,285	Break point for exposure- dependent MCPR _p limits (NEOC)
31,523	Design basis rod patterns to EOFP + 15 EFPD (EOCLB)
32,198	Maximum licensing core exposure - including FFTR /Coastdown
23,458 (16,178)*	Cycle 8 EOC (nominal value)
22,925 (15,645)*	Cycle 8 EOC (short window)
23,813 (16,533)*	Cycle 8 EOC (long window)

* Corresponding Cycle 8 cycle exposure.

Control Rod Position (notch)	TSSS Analytical Time (sec)	NSS Analytical Time (sec)
48 (full-out)	0.00	0.00
48	0.20	0.20
46	0.46	0.421
36	1.09	0.991
26	1.86	1.62
6	3.50	3.04
0 (full-in)	4.0	3.5

Table 5.2 Scram Speed Insertion Times

Table 5.3 NEOC Base Case LRNB Transient Results

ATRIUM-10 ∆CPR	ATRIUM-10 HFR	GE14 ∆CPR
S Insertion Times		
0.35	1.25	0.34
0.36	1.26	0.34
0.35	1.24	0.33
0.76	1.68	0.75
0.83	1.77	0.82
0.95	1.87	0.94
1.02	1.94	1.01
0.89	1.71	0.86
Insertion Times		
0.33	1.23	0.31
0.34	1.24	0.32
0.33	1.23	0.31
0.75	1.68	0.74
0.83	1.76	0.82
	△CPR S Insertion Times 0.35 0.36 0.35 0.35 0.76 0.83 0.95 1.02 0.89 Insertion Times 0.33 0.34 0.33 0.75	ΔCPR HFR S Insertion Times 0.35 1.25 0.36 1.26 0.35 1.24 0.35 1.24 0.76 1.68 0.83 1.77 0.95 1.87 1.02 1.94 0.89 1.71 Insertion Times 0.33 1.23 0.34 1.23 0.33 1.23 0.33 1.23 0.75 1.68

Table 5.4 EOCLB Base Case LRNB Transient Results

Power	ATRIUM-10	ATRIUM-10	GE14
(% rated)	∆CPR	HFR	∆CPR
TSS	S Insertion Times		
100	0.36	1.30	0.35
90	0.37	1.31	0.36
75	0.37	1.30	0.36
50	0.78	1.70	0.76
40	0.84	1.79	0.83
30	0.96	1.91	0.95
25 at > 50%F below P _{bypass}	1.02	1.97	1.01
25 at ≤ 50%F below P _{bypass}	0.89	1.73	0.86
NSS	S Insertion Times		·
100	0.34	1.28	0.33
90	0.35	1.29	0.34
75	0.35	1.29	0.34
50	0.77	1.69	0.76
40	0.83	1.79	0.82

Table 5.5	NEOC Bas	se Case FWCF
_ T	ransient Re	esults

	•		
Power (% rated)	ATRIUM-10 ∆CPR	ATRIUM-10 HFR	GE14 ∆CPR
TS	SS Insertion Times		
100	0.44	1.37	0.43
90	0.48	1.42	0.48
75	0.54	1.47	0.55
65	0.59	1.52	0.62
60	0.62	1.55	0.65
50	0.71	1.64	0.72
40	0.85	1.78	0.85
30	1.07	1.97	1.07
30 at > 50%F below P _{bypass}	1.47	2.53	1.56
30 at ≤ 50%F below P _{bypass}	1.44	2.36	1.56
25 at > 50%F below P _{bypass}	1.68	2.71	1.77
25 at ≤ 50%F below P _{bypass}	1.63	2.46	1.74
NS	SS Insertion Times		
100	0.40	1.35	0.40
90	0.45	1.40	0.45
75	0.51	1.45	0.52
65 .	0.57	1.51	0.60
60	0.60	1.54	0.63
50	0.69	1.63	0.71
40	0.83	1.78	0.83
30	1.06	1.97	1.06
		-	

1

Power (% rated)	ATRIUM-10 ∆CPR	ATRIUM-10 HFR	GE14 ∆CPR
TS	SS Insertion Times		
100	0.44	1.37	0.43
90	0.48	1.46	0.48
75	0.54	1.47	0.55
65	0.59	1.52	0.62
60	0.62	1.55	0.65
50	0.71	1.64	0.72
40	0.85	1.78	0.85
30	1.07	1.97	1.07
30 at > 50%F below P _{bypass}	1.47	2.53	1.56
30 at ≤ 50%F below P _{bypass}	1.44	2.50	1.56
25 at > 50%F below P _{bypass}	1.68	2.71	1.77
25 at ≤ 50%F below P _{bypass}	1.63	2.46	1.74
NS	SS Insertion Times		
100	0.40	1.35	0.40
90	0.45	1.42	0.45
75	0.51	1.45	0.52
65	0.57	1.51	0.60
60	0.60	1.54	0.63
50	0.69	1.63	0.71
40	0.83	1.78	0.83
30	1.06	1.97	1.06

Table 5.6 EOCLB Base Case FWCF Transient Results

Table 5.7 Loss of Feedwater Heating Transient Analysis Results

ATRIUM-10/GE14 ∆CPR
0.10
0.10
0.11
0.12
0.13
0.15
0.18
0.22
0.26

Table 5.8 Control Rod Withdrawal Error \triangle CPR Results

Analytical RBM Setpoint (without filter) (%)	ΔCPR*	CRWE MCPR [†]
107	0.28	1.37
111	0.30	1.39
114	0.32	1.41
117	0.35	1.44

* Results are for the most limiting of the ATRIUM-10 or GE14 fuel in the core.

[†] For rated power and a 1.09 SLMCPR.

Thermal Power (% rated)	Applicable ATRIUM-10/GE14 MCPR
≥ 27% and < 90%	1.86 TLO 1.90 SLO
≥ 90%	1.47 TLO

Table 5.9 RBM Operability Requirements

MCFR Results				
Core Flow (% rated)	ATRIUM-10 Limiting MCPR	GE14 Limiting MCPR		
30	1.58	1.57		
40	1.48	1.45		
50	1.43	1.40		
60	1.39	1.35		
70	1.32	1.32		
80	1.27	1.26		
90	1.23	1.22		
100	1.19	1.17		
107	1.09	1.09		

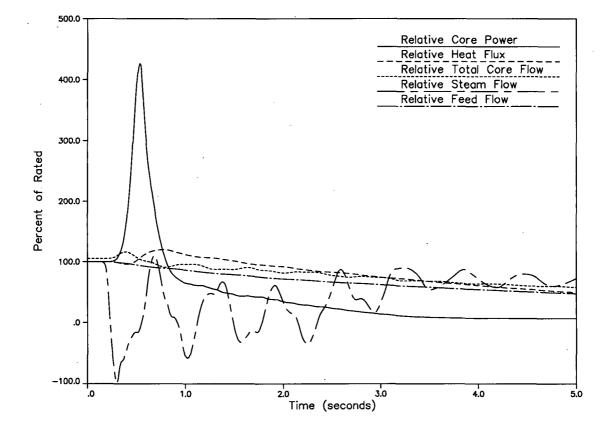
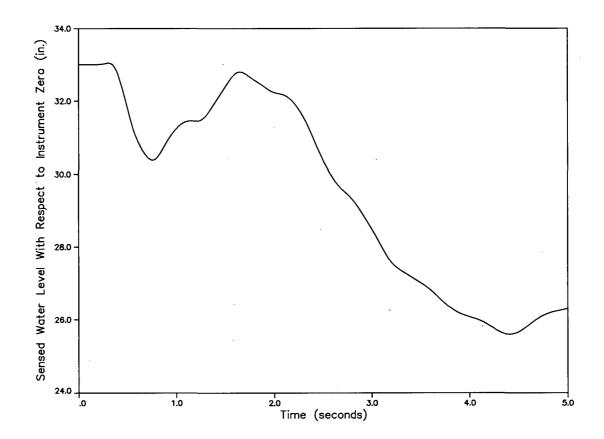
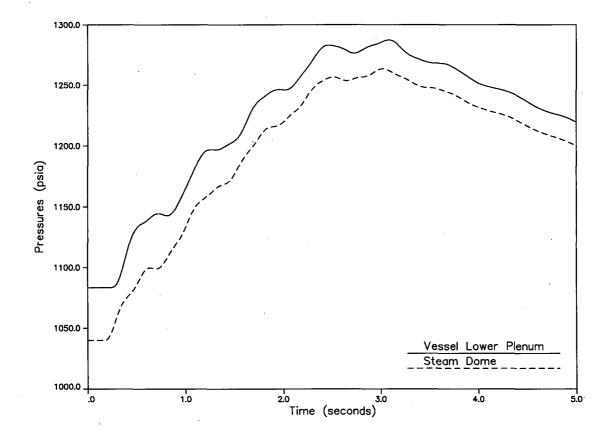
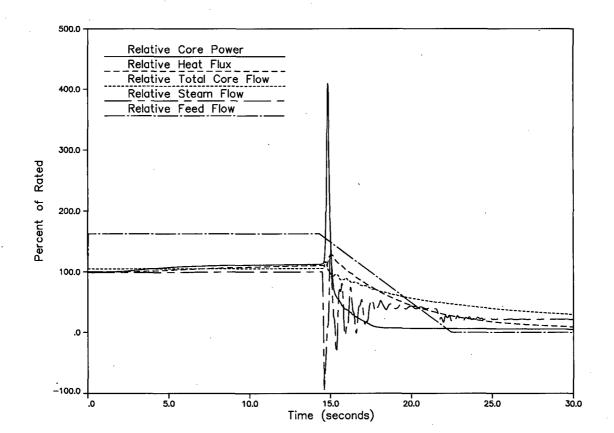

Table 5.10 Flow-Dependent MCPR Results

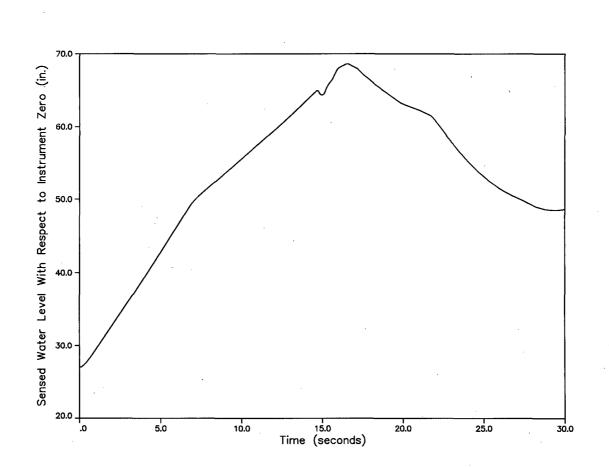
Table 5.11Licensing Basis Core AverageAxial Power Profile


State Conditions for Power Shape Evaluation			
Power, MWt	3458.0		
Core pressure, psia	1050.1		
Inlet subcooling, Btu/Ibm	24.2		
Flow, Mlb/hr	107.6		
Control state	ARO		
Core average exposure (EOCLB), MWd/MTU	31,523		

Licensing Axial Power Profile (Normalized)


Node	Power
Top 25	0.189
24	0.590
23	0.770
22	0.874
21	0.935
20	0.979
19	1.023
18	1.076
17	1.138
16	1.206
15	1.264
14	1.392
13	1.416
12	1.407
. 11	1.370
10	1.315
9	1.247
8	1.165
7	1.077
6	0.999
5	0.943
4	0.909
3	0.851
2	0.671
Bottom 1	0.194
5 4 3 2	0.943 0.909 0.851 0.671





6.0 **Postulated Accidents**

6.1 Loss-of-Coolant-Accident (LOCA)

As discussed in Section 2, the LOCA models, evaluation, and results are the same for all three units for a full core of ATRIUM-10 fuel. The limiting ATRIUM-10 LOCA results are for EPU operation and bound 105% OLTP operation. The basis for applicability of PCT results from full cores of ATRIUM-10 fuel (based on AREVA methods) and GE14 fuel (based on GNF methods) for a mixed (transition) core is provided in Reference 39 Appendix A. Thermal-hydraulic characteristics of the GE14 and ATRIUM-10 fuel designs are similar as presented in Reference 3. Therefore, the core response during a LOCA will not be significantly different for a full core of GE14 fuel or a mixed core of GE14 and ATRIUM-10 fuel. In addition, since about 95% of the reactor system volume is outside the core region, slight changes in core volume and fluid energy due to fuel design differences will produce an insignificant change in total system volume and energy. Therefore, the current GE14 LOCA analysis and resulting licensing PCT and MAPLHGR limits remain applicable.

The results of the ATRIUM-10 LOCA analysis are presented in References 19 and 20. The MAPLHGR limits presented in Reference 20 remain valid for ATRIUM-10 fuel.

Limiting Break:

0.25 ft² split Recirculation Pump Discharge Line Battery (DC) power, Board B

Based on the PCT results in Reference 20, the licensing PCT is 1990°F. The MCPR value used in the LOCA analyses is less than the rated power MCPR limits.

The peak local metal-water reaction for the limiting PCT lattice design is 1.99%. The maximum core wide metal-water reaction (for hydrogen generation) for a full ATRIUM-10 core is <1.0%.

The cycle specific ATRIUM-10 reload fuel PCT was calculated to be 1988°F; therefore, in terms of PCT, the limiting neutronic design used in Reference 20 remains bounding. The peak local metal-water reaction and total core wide metal-water reaction were calculated to be 2.00% and <1.0%, respectively. When compared to the acceptance criteria of less than 17% local cladding oxidation thickness, the local metal-water reaction result remains acceptable.

Analyses and results support the EOD and EOOS conditions listed in Table 1.1. Note: TBVOOS, EOC-RPT-OOS, PLUOOS, and TIPOOS/LPRM out-of-service have no direct influence on the LOCA events.

The GE14 LOCA analysis results are presented in References 21 and 26. No system modifications have been made at BF1 that would invalidate the reactor system response assumed in the GE14 LOCA analysis of record.

6.2 Control Rod Drop Accident (CRDA)

Plant startup utilizes a bank position withdrawal sequence (BPWS) including rod worth minimization strategies. CRDA evaluation was performed for both A and B sequence startups consistent with the withdrawal sequences specified by TVA. Approved AREVA generic CRDA methodology is described in Reference 22. Subsequent calculations have shown the methodology is applicable to fuel modeled with the CASMO4/MICROBURN-B2 code system.

Analysis results demonstrate the maximum deposited fuel rod enthalpy is less than 280 cal/g; the estimated number of fuel rods that exceed the fuel damage threshold of 170 cal/g is less than the number of failed rods assumed in FSAR (850 rods).

Maximum dropped control rod worth, mk	10.98
Core average Doppler coefficient, $\Delta k/k/^{\circ}F$	-10.58 x 10 ⁻⁶
Effective delayed neutron fraction	0.0052
Four-bundle local peaking factor	1.391
Maximum deposited fuel rod enthalpy, cal/g	189.5
Maximum number of rods exceeding 170 cal/g	276

6.3 Fuel and Equipment Handling Accident

The fuel handling accident radiological analysis implementing the alternate source term (AST) as approved in Reference 27 was performed with consideration of ATRIUM-10 core source terms. Fuel assembly and reactor core isotopic inventories used as input to design basis radiological accident analyses are applicable to all three units (Reference 27). The number of failed fuel rods for the ATRIUM-10 fuel as previously provided to TVA in Reference 28 for use in the AST analysis is unchanged. No other aspect of utilizing the ATRIUM-10 fuel affects the current analysis; therefore, the AST analysis remains bounding for Cycle 9.

6.4 Fuel Loading Error (Infrequent Event)

There are two types of fuel loading errors possible in a BWR – the mislocation of a fuel assembly in a core position prescribed to be loaded with another fuel assembly, and the misorientation of a fuel assembly with respect to the control blade. As described in Reference 23, the fuel loading error is characterized as an infrequent event. The acceptance criteria is that the offsite dose consequences due to the event shall not exceed a small fraction of the 10 CFR 50.67 limits.

6.4.1 <u>Mislocated Fuel Bundle</u>

AREVA has performed a bounding fuel mislocation error analysis and has demonstrated continued applicability of the bounding results. The analysis considered the impact of a mislocated assembly against potential fuel rod failure mechanisms due to increased LHGR and reduced CPR. Based on the analyses, the offsite dose criteria (a small fraction of 10 CFR 50.67) is conservatively satisfied. A dose consequence evaluation is not necessary since no rod approaches the fuel centerline melt or 1% strain limits, and less than 0.1% of the fuel rods are expected to experience boiling transition.

6.4.2 <u>Misoriented Fuel Bundle</u>

AREVA has performed a bounding fuel assembly misorientation analysis. The analysis was performed assuming that the limiting assembly was loaded in the worst orientation (rotated 180°), while simultaneously producing sufficient power to be on the MCPR operating limit as if it were oriented correctly. The analysis demonstrates the small fraction of 10 CFR 50.67 offsite dose criteria is conservatively satisfied. A dose consequence evaluation is not necessary since no rod approaches fuel centerline melt or 1% strain limits, and less than 0.1% of the fuel rods are expected to experience boiling transition.

7.0 Special Analyses

7.1 **ASME Overpressurization Analysis**

This section describes the maximum overpressurization analyses performed to demonstrate compliance with the ASME Boiler and Pressure Vessel Code. The analysis shows that the safety/relief valves have sufficient capacity and performance to prevent the reactor vessel pressure from reaching the safety limit of 110% of the design pressure.

MSIV closure, TSV closure, and TCV closure (without bypass) analyses were performed with the AREVA plant simulator code COTRANSA2 (Reference 12) for 102% power and both 81% and 105% flow at the highest cycle exposure. The MSIV closure event is similar to the other steam line valve closure events in that the valve closure results in a rapid pressurization of the core. The increase in pressure causes a decrease in void which in turn causes a rapid increase in power. The turbine bypass valves do not impact the system response and are not modeled in the analysis. The following assumptions were made in the analysis.

- The most critical active component (direct scram on valve position) was assumed to fail. However, scram on high neutron flux and high dome pressure is available.
- To support operation with 1 MSRVOOS, the plant configuration analyzed assumed that one of the lowest setpoint MSRVs was inoperable.
- TSSS insertion times were used.
- The initial dome pressure was set at the maximum allowed by the Technical Specifications plus an additional 5 psi bias, 1070 psia (1055 psig).
- A fast MSIV closure time of 3.0 seconds was used.
- The analytical limit ATWS-RPT setpoint and function were assumed.

Results of the MSIV closure, TCV closure, and TSV closure overpressurization analyses are presented in Table 7.1. Various reactor plant parameters during the limiting MSIV closure event are presented in Figures 7.1—7.4. The maximum pressure of 1328 psig occurs in the lower plenum. The maximum dome pressure for the same event is 1291 psig. Results demonstrate the maximum vessel pressure limit of 1375 psig and dome pressure limit of 1325 psig are not exceeded for any analyses.

Pressure results include a 7-psi increase to bound a bias in the void-quality correlations. The void-quality bias is further discussed in Reference 32.

7.2 ATWS Event Evaluation

7.2.1 ATWS Overpressurization Analysis

This section describes analyses performed to demonstrate that the peak vessel pressure for the limiting ATWS event is less than the ASME Service Level C limit of 120% of the design pressure (1500 psig). Overpressurization analyses were performed at 100% power at both 81% and 105% flow over the cycle exposure range for both the MSIV closure event and the pressure regulator failure open (PRFO) events. The PRFO event assumes a step decrease in pressure demand such that the pressure control system opens the turbine control and turbine bypass valves. Steam flow demand is assumed to increase to 125% demand (equivalent to 152.46% of rated steam flow) allowing a maximum TCV flow of 122.0% and a maximum bypass system flow of 25.2%. The system pressure decreases until the low pressure setpoint is reached resulting in the closure of the MSIVs. The subsequent pressurization wave collapses core voids, thereby increasing core power.

The following assumptions were made in the analyses.

- The analytical limit ATWS-RPT setpoint and function were assumed.
- To support operation with 1 MSRVOOS, the plant configuration analyzed assumed that one of the lowest setpoint MSRVs was inoperable.
- All scram functions were disabled.
- The initial dome pressure was set to the nominal pressure of 1050 psia.
- A nominal MSIV closure time of 4.0 seconds was used for both events.

Analyses results are presented in Table 7.2. The response of various reactor plant parameters during the limiting PRFO event are shown in Figures 7.5—7.8. The maximum lower plenum pressure is 1403 psig and the maximum dome pressure is 1384 psig. The results demonstrate that the ATWS maximum vessel pressure limit of 1500 psig is not exceeded.

Pressure results include a 10-psi increase to bound a bias in the void-quality correlations. The void-quality bias is further discussed in Reference 32.

7.2.2 Long-Term Evaluation

Fuel design differences may impact the power and pressure excursion experienced during the ATWS event. This in turn may impact the amount of steam discharged to the suppression pool and containment.

[

ANP-2863(NP) Revision 1 Page 7-3

]

The suppression pool temperature and containment pressure limits and the corresponding licensing values of record (Reference 36) are presented in the following table. The results are for EPU operation and bound 105% OLTP operation.

ATWS Criteria	Limit	Licensing Value
Suppression pool temperature (°F)	281	187.3
Drywell pressure (psig)	56	48.5
Wetwell pressure (psig)	56	30.5

Relative to the 10 CFR 50.46 acceptance criteria (i.e., PCT and cladding oxidation), the consequences of an ATWS event are bound by those of the limiting LOCA event.

7.3 Standby Liquid Control System

In the event that the control rod scram function becomes incapable of rendering the core in a shutdown state, the standby liquid control (SLC) system is required to be capable of bringing the reactor from full power to a cold shutdown condition at any time in the core life. The Browns Ferry Unit 1 SLC system is required to be able to inject 720 ppm natural boron equivalent at 70°F into the reactor coolant. AREVA has performed an analysis demonstrating the SLC system meets the required shutdown capability for the cycle. The analysis was performed at a coolant temperature of 366°F, with a boron concentration equivalent to 720 ppm at 68°F*. The temperature of 366°F corresponds to the low pressure permissive for the RHR shutdown cooling suction valves, and represents the maximum reactivity condition with soluble boron in the coolant. The analysis shows the core to be subcritical throughout the cycle by at least 2.83% $\Delta k/k$ based on the Cycle 8 EOC short window, which is the most limiting exposure bound by the short and long Cycle 8 exposure window.

7.4 Fuel Criticality

The new fuel storage vault criticality analysis for ATRIUM-10 fuel is presented in Reference 24. The spent fuel pool criticality analysis for ATRIUM-10 fuel is presented in Reference 25. The ATRIUM-10 fuel assemblies identified for the cycle meet both the new and spent fuel storage requirements.

^{*} TVA Browns Ferry SLC licensing basis documents indicate a minimum of 720 ppm boron at a temperature of 70°F. The AREVA cold analysis basis of 68°F represents a negligible difference and the results are adequate to protect the 70°F licensing basis for the plant.

Table 7.1 ASME Overpressurization Analysis Results*

Event	Peak Neutron Flux (% rated)	Peak Heat Flux (% rated)	Maximum Vessel Pressure Lower-Plenum (psig)	Maximum Dome Pressure (psig)
MSIV closure (102P/105F)	295	125	1328	1291
MSIV closure (102P/81F)	317	126	1315	1284
TSV closure without bypass (102P/105F)	553	133	1327	1289
TSV closure without bypass (102P/81F)	393	130	1310	1280
TCV closure without bypass (102P/105F)	555	133	1327	1289
TCV closure without bypass (102P/81F)	391	130	1311	1280
Pressure Limit			1375	1325

^{*} Pressure results include a 7-psi increase to bound a bias in the void-quality correlations (Reference 32).

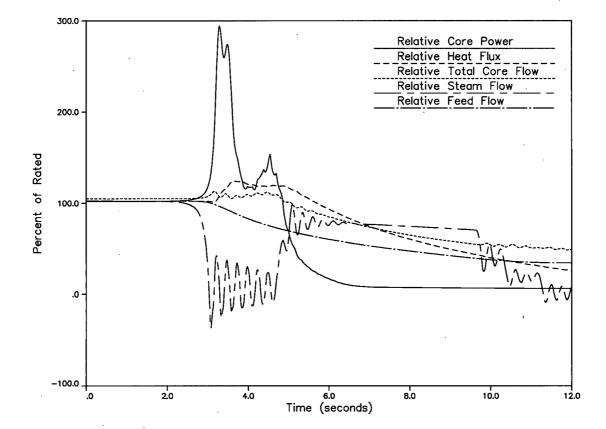
Table 7.2 ATWS Overpressurization Analysis Results*

Event	Peak Neutron Flux (% rated)	Peak Heat Flux (% rated)	Maximum Vessel Pressure Lower-Plenum (psig)	Maximum Dome Pressure (psig)
MSIV closure (100P/105F)	279	140	1382	1360
MSIV closure (100P/81F)	296	136	1394	1374
PRFO (100P/105F)	277	152	1390	1368
PRFO (100P/81F)	297	145	1403	1384
Pressure Limit			1500	1500

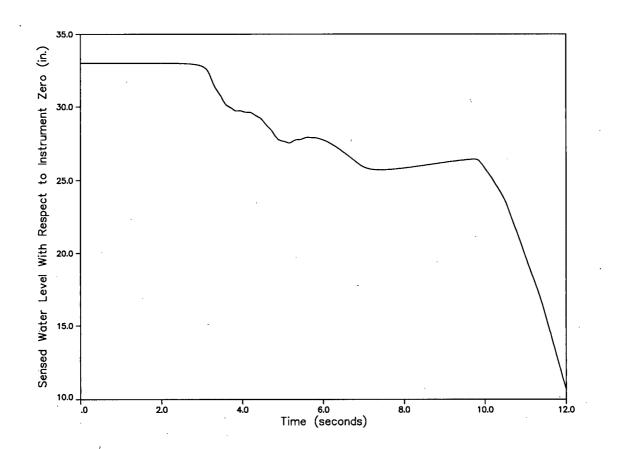
^{*} Pressure results include a 10-psi increase to bound a bias in the void-quality correlations (Reference 32).

[

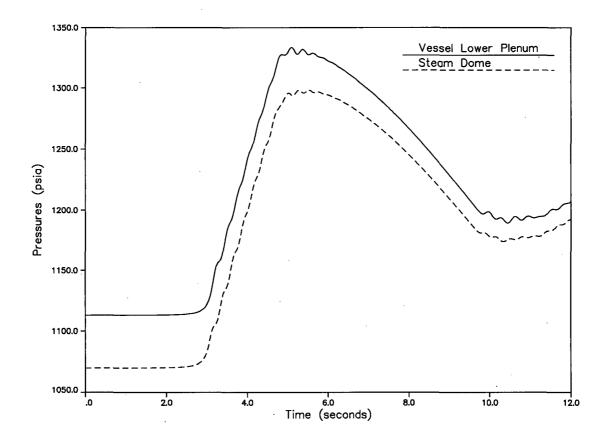
]

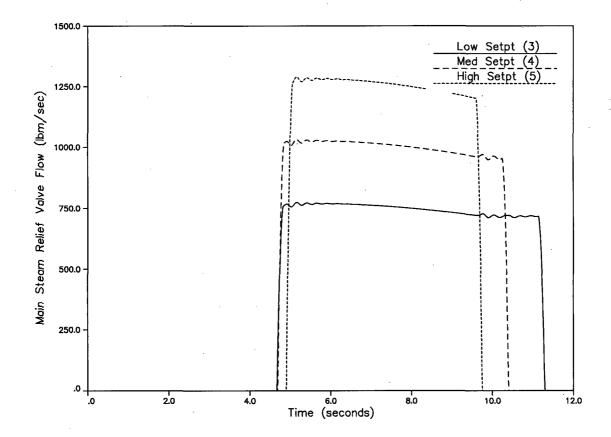

J

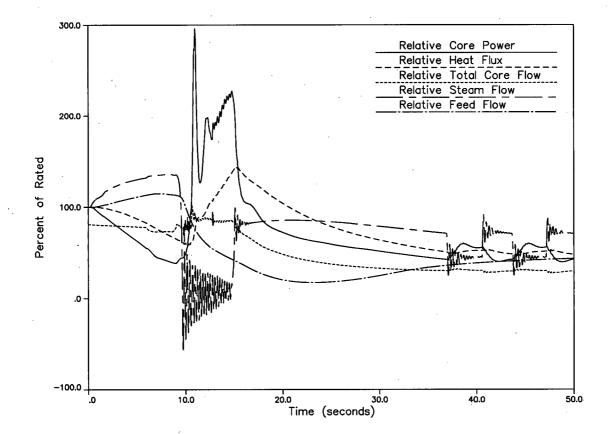
]

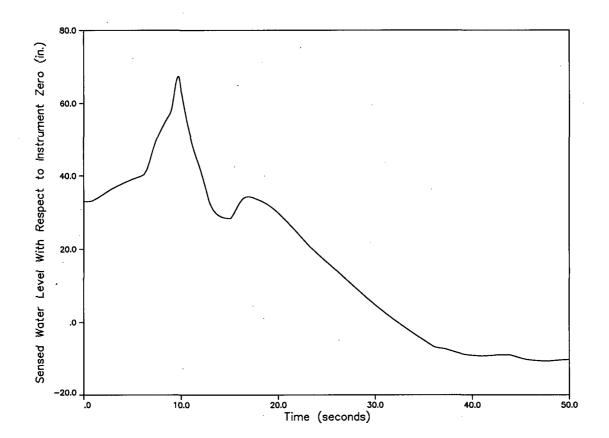

Table 7.3 [

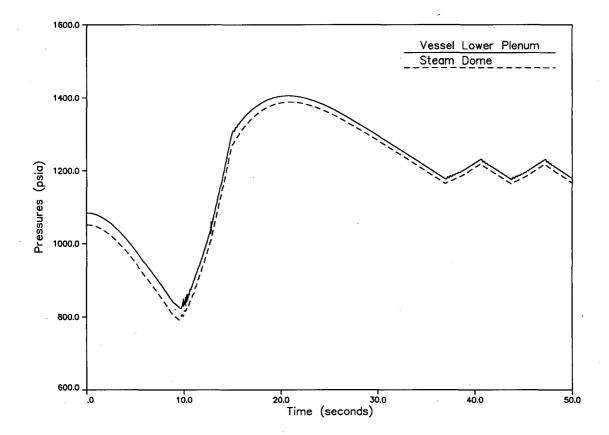
AREVA NP Inc.

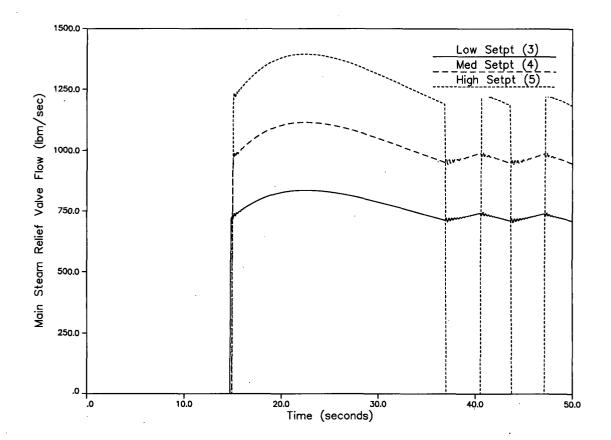

* † [











ANP-2863(NP) Revision 1 Page 7-15

8.0 **Operating Limits and COLR Input**

8.1 MCPR Limits

Determination of MCPR limits are based on analyses of the limiting abnormal operational transients (AOTs). The MCPR operating limits are established so that less than 0.1% of the fuel rods in the core are expected to experience boiling transition during an AOT initiated from rated or off-rated conditions and are based on the Technical Specifications two-loop operation SLMCPR of 1.09 and a single-loop operation SLMCPR of 1.11. Exposure-dependent MCPR limits were established to support operation from BOC to near end-of-cycle (NEOC), NEOC to end-of-cycle licensing basis (EOCLB) and combined FFTR/Coastdown. MCPR limits are established to support base case operation and the EOOS scenarios presented in Table 1.1.

Two-loop operation MCPR_p limits for ATRIUM-10 and GE14 fuel are presented in Tables 8.1— 8.6 for base case operation and the EOOS conditions. Limits are presented for nominal scram speed (NSS) and Technical Specification scram speed (TSSS) insertion times for the exposure ranges considered. Tables 8.1 and 8.2 present the MCPR_p limits for the BOC to NEOC exposure range. Tables 8.3 and 8.4 present the MCPR_p limits applicable for the BOC to EOCLB exposure range. Tables 8.5 and 8.6 present the MCPR_p limits for FFTR/Coastdown operation. MCPR_p limits for single-loop operation are 0.02 higher for all cases. Comparisons of the limiting AOT analysis results and the MCPR_p limits for ATRIUM-10 and GE14 fuel are presented in Appendix A.

MCPR_f limits protect against fuel failures during a postulated slow flow excursion. ATRIUM-10 and GE14 fuel limits are presented in Table 8.7 and are applicable for all cycle exposures and EOOS conditions identified in Table 1.1.

8.2 LHGR Limits

The LHGR limits for ATRIUM-10 are presented in Table 8.8. The LHGR limits for GE14 fuel are presented in Reference 29. Power- and flow-dependent multipliers (LHGRFAC_p and LHGRFAC_f) are applied directly to the LHGR limits to protect against fuel melting and overstraining of the cladding during an AOT.

LHGRFAC_p multipliers for ATRIUM-10 fuel are determined using the heat flux ratio results from the transient analyses. The LHGRFAC_p and LHGRFAC_f multipliers were developed in a manner consistent with the GNF thermal-mechanical methodology for GE14 fuel.

LHGRFAC_p multipliers were established to support operation at all cycle exposures for both NSS and TSSS insertion times and for the EOOS conditions identified in Table 1.1 with and without TBVOOS. LHGRFAC_p limits are presented in Tables 8.9 and 8.10 for ATRIUM-10 and GE14 fuel, respectively. Comparisons of the limiting results and the LHGRFAC_p limits are presented in Appendix A.

LHGRFAC_f multipliers are established to provide protection against fuel centerline melt and overstraining of the cladding during a postulated slow flow excursion. LHGRFAC_f limits are presented in Table 8.11 and 8.12 for ATRIUM-10 and GE14 fuel, respectively. LHGRFAC_f multipliers are applicable for all cycle exposures and EOOS conditions identified in Table 1.1.

The SLO LHGR multiplier for GE14 fuel is presented in References 21 and 26.

8.3 MAPLHGR Limits

ATRIUM-10 MAPLHGR limits are discussed in Reference 20. The TLO operation limits are presented in Table 8.13. For operation in SLO, a multiplier of 0.85 must be applied to the TLO MAPLHGR limits. Power and flow dependent MAPFAC setdowns are not required; therefore, MAPFAC=1.0.

The GE14 APLHGR limits are discussed in References 21 and 26. The TLO and SLO operation limits are presented in References 21 and 26.

ANP-2863(NP) Revision 1 Page 8-3

BOC to NEOC*			
~ <u> </u>	,	MCP	R _p
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.49	1.49
	90.0	1.55	1.55
	50.0	1.78	1.80
	50.0	1.84	1.83
Base case	40.0	1.92	1.92
operation	30.0	2.15	2.15
•	30.0 at > 50%F	2.56	2.65
	25.0 at > 50%F	2.77	2.86
	30.0 at ≤ 50%F	2.53	2.65
	25.0 at ≤ 50%F	2.72	2.83
····	100.0	1.52	1.52
	90.0	1.58	1.58
	50.0	*	
	50.0	1.84	1.83
	40.0	1.96	1.96
TBVOOS	30.0	2.19	2.19
	30.0 at > 50%F	3.01	3.03
	25.0 at > 50%F	3.35	3.35
	30.0 at ≤ 50%F	2.71	2.83
	25.0 at ≤ 50%F	3.04	3.17
	100.0	1.49	1.49
	90.0	1.55	1.55
	50.0	1.78	1.80
	50.0	1.84	1.83
EOC-RPT-OOS	40.0	1.92	1.92
	30.0	2.15	2.15
	30.0 at > 50%F	2.56	2.65
	25.0 at > 50%F	2.77	2.86
	30.0 at ≤ 50%F	2.53	2.65
<u> </u>	25.0 at ≤ 50%F	2.72	2.83
	100.0	1.52	1.51
	90.0	1.59	1.58
	50.0		
	50.0	1.84	1.87
FHOOS	40.0	2.00	2.01
	30.0	2.24	2.24
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96

Table 8.1 MCPR_p Limits for NSS Insertion Times BOC to NEOC*

Limits support operation with any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPR_p limits will be 0.02 higher.

ANP-2863(NP) Revision 1 Page 8-4

Table 8.1 MCPR_p Limits for NSS Insertion Times BOC to NEOC (Continued)

		MCP	R _p
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.49	1.49
	90.0	1.55	1.55
	50.0		
	50.0	1.89	1.87
PLUOOS	40.0	1.92	1.92
	30.0	2.15	2.15
	30.0 at > 50%F	2.56	2.65
	25.0 at > 50%F	2.77	2.86
	30.0 at ≤ 50%F	2.53	2.65
 ,	25.0 at ≤ 50%F	2.72	2.83
	100.0 90.0	1.52 1.58	1.52
	50.0	1.50	1.58
	50.0	1.84	1.83
EOC-RPT-OOS	40.0	1.96	1.96
and TBVOOS	30.0	2.19	2.19
	30.0 at > 50%F	3.01	3.03
	25.0 at > 50%F	3.35	3.35
	30.0 at ≤ 50%F	2.71	2.83
	25.0 at ≤ 50%F	3.04	3.17
	100.0	1.52	1.51
	90.0	1.59	1.58
	50.0		
	50.0	1.84	1.87
EOC-RPT-OOS	40.0	2.00	2.01
and FHOOS	30.0	2.24	2.24
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96
	100.0	1.49	1.49
	90.0	1.55	1.55
	50.0		
EOC-RPT-OOS	50.0	1.89	1.87
and PLUOOS	40.0 30.0	1.92 2.15	1.92 2.15
	30.0 at > 50%F	2.15	2.15
	25.0 at > 50%F	2.50	2.85
	30.0 at ≤ 50%F	2.53	2.65
	25.0 at ≤ 50%F	2.72	2.83

Table 8.1 MCPR_p Limits for NSS Insertion Times BOC to NEOC (Continued)

		MCF	PR _p
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
<u> </u>	100.0	1.55	1.54
	90.0	1.61	1.61
	50.0		
	50.0	1.87	1.90
TBVOOS	40.0	2.03	2.04
and FHOOS	30.0	2.27	2.27
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
<u> </u>	25.0 at ≤ 50%F	3.20	3.35
	100.0	1.52	1.52
	90.0 50.0	1.58	1.58
	50.0	1.89	1.87
TBVOOS	40.0	1.96	1.96
and PLUOOS	30.0	2.19	2.19
	30.0 at > 50%F	3.01	3.03
	25.0 at > 50%F	3.35	3.35
	30.0 at ≤ 50%F	2.71	2.83
	25.0 at ≤ 50%F	3.04	3.17
	100.0	1.52	1.51
•	90.0	1.59	1.58
	50.0		
	50.0	1.89	1.87
FHOOS	40.0	2.00	2.01
and PLUOOS	30.0	2.24	2.24
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96
	100.0	1.55	1.54
	90.0 50.0	1.61	1.61
	50.0	1.87	 1.90
EOC-RPT-OOS,	40.0	2.03	2.04
TBVOOS,	30.0	2.03	2.04
and FHOOS	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35

Table 8.1 MCPR_p Limits for NSS Insertion Times BOC to NEOC (Continued)

····		MCF	PR _p :
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.52	1.52
	90.0	1.58	1.58
	50.0		
EOC-RPT-OOS,	50.0	1.89	1.87
TBVOOS,	40.0	1.96	1.96
and PLUOOS	30.0	2.19	2.19
	30.0 at > 50%F	3.01	3.03
	25.0 at > 50%F	3.35	3.35
	30.0 at ≤ 50%F	2.71	2.83
	25.0 at ≤ 50%F 100.0	<u>3.04</u> 1.52	<u> </u>
	90.0	1.52	1.58
	50.0 50.0		
	50.0	1.89	1.87
EOC-RPT-OOS,	40.0	2.00	2.01
FHOOS,	30.0	2.24	2.24
and PLUOOS	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
_	25.0 at ≤ 50%F	2.84	2.96
	100.0	1.55	1.54
	90.0	1.61	1.61
	50.0	'	
TBVOOS,	50.0	1.89	1.90
FHOOS,	40.0	2.03	2.04
and PLUOOS	30.0	2.27	2.27
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F 100.0	<u> </u>	<u> </u>
,	90.0	1.61	1.61
	50.0	·	1.01
EOC-RPT-OOS,	50.0	1.89 ·	1.90
TBVOOS,	40.0	2.03	2.04
FHOOS,	30.0	2.03	2.27
and PLUOOS	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
_	25.0 at ≤ 50%F	3.20	3.35

ANP-2863(NP) Revision 1 Page 8-7

BOC to NEOC*				
		MCP	R _p	
Operating	Power	ATRIUM-10	GE14	
Condition	(% of rated)	Fuel	Fuel	
	100.0	1.53	1.52	
	90.0	1.58	1.58	
	50.0	1.80	1.81	
	50.0	1.85	1.84	
Base case	40.0	1.94	1.94	
operation	30.0	2.16	2.16	
	30.0 at > 50%F	2.56	2.65	
	25.0 at > 50%F	2.77	2.86	
	30.0 at ≤ 50%F	2.53	2.65	
	25.0 at ≤ 50%F	2.72	2.83	
	100.0	1.56	1.55	
	90.0	1.62	1.61	
	50.0			
	50.0	1.85	1.85	
	40.0	1.98	1.97	
TBVOOS	30.0	2.21	2.20	
	30.0 at > 50%F	3.01	3.03	
	25.0 at > 50%F	3.35	3.35	
	30.0 at ≤ 50%F	2.71	2.83	
	25.0 at ≤ 50%F	3.04	<u>3.</u> 17	
	100.0	1.53	1.52	
	90.0	1.58	1.58	
	50.0	1.80	1.81	
	50.0	1.85	1.84	
EOC-RPT-OOS	40.0	1.94	1.94	
L00-NP1-003	30.0	2.16	2.16	
	30.0 at > 50%F	2.56	2.65	
	25.0 at > 50%F	2.77	2.86	
	30.0 at ≤ 50%F	2.53	2.65	
	25.0 at ≤ 50%F	2.72	2.83	
	100.0	1.56	1.54	
	90.0	1.61	1.60	
	50.0			
	50.0	1.86	1.89	
FHOOS	40.0 ·	2.01	2.02	
	30.0	2.25	2.25	
	30.0 at > 50%F	2.67	2.76	
	25.0 at > 50%F	2.90	3.00	
	30.0 at ≤ 50%F	2.62	2.75	
	25.0 at ≤ 50%F	2.84	2.96	

Table 8.2 MCPR_p Limits for TSSS Insertion Times BOC to NEOC*

* Limits support operation with any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPR_p limits will be 0.02 higher.

Table 8.2 MCPR_p Limits for TSSS Insertion Times BOC to NEOC (Continued)

		MCPRp	
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.53	1.52
	90.0	1.58	1.58
	50.0		
	50.0	1.89	1.87
PLUOOS	40.0	1.94	1.94
PL0003	30.0	2.16	2.16
	30.0 at > 50%F	2.56	2.65
	25.0 at > 50%F	2.77	2.86
	30.0 at ≤ 50%F	2.53	2.65
	25.0 at ≤ 50%F	2.72	2.83
	100.0	1.56	1.55
	90.0	1.62	1.61
	50.0		/
	50.0	1.85	1.85
EOC-RPT-OOS	40.0	1.98	1.97
and TBVOOS	30.0	2.21	2.20
	30.0 at > 50%F	3.01	3.03
	25.0 at > 50%F	3.35	3.35
	30.0 at ≤ 50%F	2.71	2.83
	25.0 at ≤ 50%F	3.04	3.17
	100.0	1.56	1.54
	90.0	1.61	1.60
	50.0		
	50.0	1.86	1.89
EOC-RPT-OOS	40.0	2.01	2.02
and FHOOS	30.0	2.25	2.25
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96
	100.0	1.53	1.52
	90.0	1.58	1.58
	50.0	·	
	50.0	1.89	1.87
EOC-RPT-OOS	40.0	1.94	1.94
and PLUOOS	30.0	2.16	2.16
	30.0 at > 50%F	2.56	2.65
	25.0 at > 50%F	2.77	2.86
	30.0 at ≤ 50%F	2.53	2.65
	25.0 at ≤ 50%F	2.72	2.83

ANP-2863(NP) Revision 1 Page 8-9

Table 8.2 MCPR_p Limits for TSSS Insertion Times BOC to NEOC (Continued)

		MCP	'R _p
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel 🖂
	100.0	1.59	1.57
	90.0	1.64	1.63
	50.0		
	50.0	1.89	1.92
TBVOOS	40.0	2.05	2.05
and FHOOS	30.0	2.29	2.29
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20 1.56	3.35
	100.0	1.62	1.55 1.61
	50.0	1.02	1.01
	50.0	1.89	1.87
TBVOOS	40.0	1.98	1.97
and PLUOOS	30.0	2.21	2.20
	30.0 at > 50%F	3.01	3.03
	25.0 at > 50%F	3.35	3.35
	30.0 at ≤ 50%F	2.71	2.83
	25.0 at ≤ 50%F	3.04	3.17
	100.0	1.56	1.54
	90.0	1.61	1.60
	50.0		~
	50.0	1.89	1.89
FHOOS	40.0	2.01	2.02
and PLUOOS	30.0	2.25	2.25
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96
	100.0	1.59 1.64	1.57
\sim .	90.0 50.0	1.04	1.63
,	50.0	1.89	, 1.92
EOC-RPT-OOS,	40.0	2.05	2.05
TBVOOS,	30.0	2.29	2.03
and FHOOS	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35
			0.00

Table 8.2 MCPR_p Limits for TSSS Insertion Times BOC to NEOC (Continued)

· · · · ·		MCP	R _p
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.56	1.55
	90.0	1.62	1.61
	· 50.0		
EOC-RPT-OOS,	50.0	1.89	1.87
TBVOOS,	40.0	1.98	1.97
and PLUOOS	30.0	2.21	2.20
	30.0 at > 50%F	3.01	3.03
	25.0 at > 50%F	3.35	3.35
	30.0 at ≤ 50%F	2.71	2.83
	25.0 at ≤ 50%F	3.04	3.17
	100.0	1.56	1.54
	90.0 50.0	1.61	1.60
н. С	50.0	1.89	1.89
EOC-RPT-OOS,	40.0	2.01	2.02
FHOOS,	30.0	2.25	2.25
and PLUOOS	, 30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96
	100.0	1.59	1.57
	90.0	1.64	1.63
	50.0		
TBVOOS,	50.0	1.89	1.92
FHOOS,	40.0	2.05	2.05
and PLUOOS	30.0	2.29	2.29
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35
	100.0	1.59	1.57
	90.0	1.64	1.63
	50.0	1 00	
EOC-RPT-OOS,	50.0	· 1.89 2.05	1.92
TBVOOS, FHOOS,	40.0 30.0	2.05	2.05 2.29
and PLUOOS	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	$30.0 \text{ at} \le 50\%\text{F}$	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35
	20.0 at 3 00 /01	0.20	0.00

ANP-2863(NP) Revision 1 Page 8-11

Table 8.3 MCPR_p Limits for NSS Insertion Times BOC to EOCLB*

-		、 MCP	R _p
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.49	1.49
	90.0	1.55	1.55
	50.0	1.78	1.80
	50.0	1.86	1.85
Base case	40.0	1.92	1.92
operation	30.0	2.15	2.15
	30.0 at > 50%F	2.56	2.65
	25.0 at > 50%F	2.77	2.86
	30.0 at ≤ 50%F	2.53	2.65
	25.0 at ≤ 50%F	2.72	2.83
	100.0	1.52	1.52
	90.0	1.58	1.58
	50.0		
	50.0	1.86	1.85
TBVOOS	40.0	1.96	1.96
	30.0	2.19	2.19
	30.0 at > 50%F	3.01	3.03
	25.0 at > 50%F	3.35 2.71	3.35
	30.0 at ≤ 50%F 25.0 at ≤ 50%F	3.04	2.83 3.17
	100.0	1.49	1.49
	90.0	1.55	1.55
	50.0	1.78	1.80
	50.0	1.86	1.85
	40.0	1.92	1.92
EOC-RPT-OOS	30.0	2.15	2.15
н. С	30.0 at > 50%F	2.56	2.65
	25.0 at > 50%F	2.77	2.86
	30.0 at ≤ 50%F	2.53	2.65
	25.0 at ≤ 50%F	2.72	2.83
·	100.0	1.52	1.51
	90.0	1.59	1.58
	50.0		
	50.0	1.86	1.87
FHOOS	40.0	2.00	2.01
11003	30.0	2.24	2.24
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
<u> </u>	25.0 at ≤ 50%F	2.84	2.96

 Limits support operation with any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPR_p limits will be 0.02 higher.

ANP-2863(NP) Revision 1 Page 8-12

Table 8.3 MCPR_p Limits for NSS Insertion Times BOC to EOCLB (Continued)

4
1
)
5
l
2
5
5
5
5
<u>}</u>
<u>2</u> 3
)
5
, ;
, ,
3
5
3
7
3
7
i
1
6
)
5
<u>}</u>
) -
)
ı
2
5
5
5
5
3

Table 8.3 MCPR_p Limits for NSS Insertion Times BOC to EOCLB (Continued)

·			
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.55	1.54
	90.0	1.61	1.61
	50.0		
	50.0	1.87	1.90
TBVOOS	40.0	2.03	2.04
and FHOOS	30.0	2.27	2.27
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35
	100.0	1.52	1.52
	90.0	1.58	1.58
	50.0		
TBVOOS	50.0 40.0	1.91 1.96	1.91 1.96
and PLUOOS	30.0	2.19	2.19
	30.0 at > 50%F	3.01	3.03
	25.0 at > 50%F	3.35	3.35
	$30.0 \text{ at} \le 50\%\text{F}$	2.71	2.83
	25.0 at ≤ 50%F	3.04	3.17
····	100.0	1.52	1.51
	90.0	1.59	1.58
	50.0		
	50.0	1.91	1.91
FHOOS	40.0	2.00	2.01
and PLUOOS	30.0	2.24	2.24
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
·····	25.0 at ≤ 50%F	2.84	2.96
	100.0	1.55	1.54
	90.0	1.61	1.61
EOC-RPT-OOS, TBVOOS, and FHOOS	50.0		
	50.0	1.87	1.90
	40.0	2.03	2.04
	30.0	2.27	2.27
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F 30.0 at ≤ 50%F	3.47	3.47
	30.0 at ≤ 50%F 25.0 at ≤ 50%F	2.82	2.95
·······	20.0 at 20%F	3.20	3.35

Table 8.3 MCPR_p Limits for NSS Insertion Times BOC to EOCLB (Continued)

		MCPRp	
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.52	1.52
	90.0	1.58	1.58
	50.0		
EOC-RPT-OOS,	50.0	1.91	1.91
TBVOOS,	40.0	1.96 2.19	1.96
and PLUOOS	30.0 30.0 at > 50%F	3.01	2.19 3.03
	25.0 at > 50%F	3.35	3.35
	$30.0 \text{ at} \le 50\%\text{F}$	2.71	2.83
	25.0 at ≤ 50%F	3.04	3.17
	100.0	1.52	1.51
	90.0	1.59	1.58
	50.0		
EOC-RPT-OOS,	50.0	1.91	1.91
FHOOS,	40.0	2.00	2.01
and PLUOOS	30.0	2.24	2.24
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F 25.0 at ≤ 50%F	2.62 2.84	2.75
	100.0	1.55	<u> </u>
·	90.0	1.61	1.61
	50.0		
	50.0	1.91	1.91
TBVOOS, FHOOS,	40.0	2.03	2.04
and PLUOOS	30.0	2.27	2.27
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20 1.55	3.35
	100.0 90.0	1.55	1.54 1.61
	50.0	1.01	1.01
EOC-RPT-OOS,	50.0	1.91	1.91
TBVOOS,	40.0	2.03	2.04
FHOOS,	30.0	2.27	2.27
and PLUOOS	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35

1

AREVA NP Inc.

ANP-2863(NP) Revision 1 Page 8-15

Table 8.4 MCPR_p Limits for TSSS Insertion Times BOC to EOCLB*

Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.53	1.52
	90.0	1.58	1.58
	50.0	1.80	× 1.81
	50.0	1.87	1.85
Base case	40.0	1.94	1.94
operation	30.0	2.16	2.16
	30.0 at > 50%F	2.56	2.65
	25.0 at > 50%F	2.77	2.86
	30.0 at ≤ 50%F	2.53	2.65
	25.0 at ≤ 50%F	2.72	2.83
	100.0	1.56	1.55
	90.0	1.62	1.61
	50.0		
	50.0	1.87	1.85
TBVOOS	40.0	1.98	1.97
	30.0	2.21	2.20
	30.0 at > 50%F	3.01	3.03
	25.0 at > 50%F	3.35	3.35
	30.0 at ≤ 50%F	2.71	2.83
/	25.0 at ≤ 50%F	3.04	3.17
	100.0	1.53	1.52
	90.0	1.58 1.80	1.58 1.81
	50.0 50.0	1.87	1.85
÷	40.0	1.94	1.85
EOC-RPT-OOS	30.0	2.16	2.16
	30.0 at > 50%F	2.56	2.65
,	25.0 at > 50%F	2.30	2.86
	30.0 at ≤ 50%F	2.53	2.65
	25.0 at ≤ 50%F	2.72	2.83
	100.0	1.56	1.54
	90.0	1.61	1.60
FHOOS	50.0		
	50.0	1.87	1.89
	40.0	2.01	2.02
	30.0	2.25	2.25
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96

Limits support operation with any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. For single-loop operation, MCPR_p limits will be 0.02 higher.

ANP-2863(NP) Revision 1 Page 8-16

Table 8.4 MCPR_p Limits for TSSS Insertion Times BOC to EOCLB (Continued)

· · · · · · · · · · · · · · · · · · ·		MCPR _p	
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.53	1.52
	90.0	1.58	1.58
	50.0		
	50.0	1.91	1.91
PLUOOS	40.0	1.94	1.94
1 200,000	30.0	2.16	2.16
	30.0 at > 50%F	2.56	2.65
	25.0 at > 50%F	2.77	2.86
	30.0 at ≤ 50%F	2.53	2.65
	25.0 at ≤ 50%F	2.72	2.83
	100.0	1.56	1.55
	90.0	1.62	1.61
	50.0	,	
	50.0	1.87	1.85
EOC-RPT-OOS and TBVOOS	40.0	1.98 2.21	1.97
	30.0 30.0 at > 50%F	3.01	2.20
	25.0 at > 50%F	3.35	3.03 3.35
	20.0 at ≤ 50%F	2.71	2.83
	25.0 at ≤ 50%F	3.04	3.17
	100.0	1.56	1.54
	90.0	1.61	1.60
	50.0		
	50.0	1.87	1.89
EOC-RPT-OOS	40.0	2.01	2.02
and FHOOS	30.0	2.25	2.25
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96
	100.0	1.53	1.52
	90.0	1.58	1.58
EOC-RPT-OOS and PLUOOS	50.0		
	50.0	1.91	1.91
	40.0	1.94	1.94
	30.0	2.16	2.16
	30.0 at > 50%F	2.56	2.65
	25.0 at > 50%F	2.77	2.86
	30.0 at ≤ 50%F	2.53	2.65
	25.0 at ≤ 50%F	2.72	2.83

AREVA NP Inc.

Table 8.4 MCPR_p Limits for TSSS Insertion Times BOC to EOCLB (Continued)

· ·		MCPR _p	
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.59	1.57
	90.0	1.64	1.63
	50.0		
	50.0	1.89	1.92
TBVOOS	40.0	2.05	2.05
and FHOOS	30.0	2.29	2.29
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20 1.56	<u>3.35</u> 1.55
·	100.0	1.62	1.61
	50.0	1.02	1.01
	50.0	1.91	1.91
TBVOOS	40.0	1.98	1.97
and PLUOOS	30.0	2.21	2.20
	30.0 at > 50%F	3.01	3.03
	25.0 at > 50%F	3.35	3.35
	30.0 at ≤ 50%F	2.71	2.83
	25.0 at ≤ 50%F	3.04	3.17
	100.0	1.56	1.54
	90.0	1.61	1.60
	50.0		
	50.0	1.91	1.91
FHOOS	40.0	2.01	2.02
and PLUOOS	30.0	2.25	2.25
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62 2.84	2.75 2.96
· · · · · · · · · · · · · · · · · · ·	25.0 at ≤ 50%F 100.0	1.59	1.57
	90.0	1.64	1.63
	50.0		
EOC-RPT-OOS, TBVOOS, and FHOOS	50.0	1.89	1.92
	40.0	2.05	2.05
	30.0	2.29	2.29
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35

ANP-2863(NP) Revision 1 Page 8-18

Table 8.4 MCPR_p Limits for TSSS Insertion Times BOC to EOCLB (Continued)

		MCPR	
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.56	1.55
	90.0	1.62	1.61
	50.0		
EOC-RPT-OOS,	50.0	1.91	1.91
TBVOOS,	40.0	1.98	1.97
and PLUOOS	30.0	2.21	2.20
	30.0 at > 50%F	3.01	3.03
	25.0 at > 50%F	3.35	3.35
	30.0 at ≤ 50%F	2.71	2.83
	25.0 at ≤ 50%F	3.04	3.17
	100.0	1.56 1.61	1.54
	90.0 50.0	1.01 	1.60
	50.0	1.91	1.91
EOC-RPT-OOS,	40.0	2.01	2.02
FHOOS,	30.0	2.25	2.25
and PLUOOS	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96
· · · · · ·	100.0	1.59	1.57
	90.0	1.64	1.63
	50.0		
TBVOOS,	50.0	1.91	1.92
FHOOS,	40.0	2.05	2.05
and PLUOOS	30.0	2.29	2.29
	30.0 at > 50%F	3.13	3.17
	∠25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
· · · · · · · · · · · · · · · · · · ·	25.0 at ≤ 50%F	3.20	3.35
	100.0	1.59	1.57
	90.0	1.64	1.63
	50.0		
EOC-RPT-OOS,	50.0	1.91	1.92
TBVOOS,	40.0	2.05	2.05
FHOOS, and PLUOOS	30.0	2.29	2.29
	30.0 at > 50%F	3.13 3.47	3.17
	25.0 at > 50%F 30.0 at ≤ 50%F	2.82	3.47 2.95
	25.0 at ≤ 50%F	3.20	3.35
	25.0 at > 50%F	3.20	3.30

AREVA NP Inc.

ANP-2863(NP) Revision 1 Page 8-19

Table 8.5 MCPR_p Limits for NSS Insertion Times BOC to FFTR/Coastdown*

		MCPR _p	
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.52	1.51
	90.0	1.59	1.58
	50.0		
	50.0	1.86	1.87
Base case	40.0	2.00	2.01
operation	30.0	2.24	2.24
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
<u> </u>	25.0 at ≤ 50%F	2.84	2.96
	100.0	1.55	1.54
	90.0	1.61	1.61
	50.0		
	50.0	1.87	1.90
TBVOOS	40.0	2.03	2.04
100000	30.0	2.27	2.27
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35
	100.0	1.52	1.51
	90.0	1.59	1.58
	50.0		
	50.0	1.86	1.87
EOC-RPT-OOS	40.0	2.00	2.01
	30.0	2.24	2.24
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
<u> </u>	25.0 at ≤ 50%F	2.84	2.96

^{*} Limits support operation with any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. Limits also support operation with FFTR/FHOOS which bounds operation with feedwater heaters in-service. For single-loop operation, MCPR_p limits will be 0.02 higher.

Table 8.5 MCPR_p Limits for NSS Insertion Times BOC to FFTR/Coastdown (Continued)

		MCPR _p	
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
· · · ·	100.0	1.52	1.51
	90.0	1.59	1.58
	50.0		
	50.0	1.92	1.91
PLUOOS	40.0	2.00	2.01
. 20000	30.0	2.24	2.24
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96
	100.0	1.55	1.54
	90.0	1.61	1.61
	50.0		 .
	50.0	1.87	1.90
EOC-RPT-OOS	40.0	2.03	2.04
and TBVOOS	30.0	2.27	2.27
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
·	25.0 at ≤ 50%F	3.20	3.35
	100.0	1.52	1.51
	90.0	1.59	1.58
	50.0		
EOC-RPT-OOS and PLUOOS	50.0	1.92	1.91
	40.0	2.00	2.01
	30.0	2.24	2.24
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96

(

ANP-2863(NP) Revision 1 Page 8-21

Table 8.5 MCPR_p Limits for NSS Insertion Times BOC to FFTR/Coastdown (Continued)

·····	-	MCPRp	
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.55	1.54
	90.0	1.61	1.61
	50.0		
	50.0	1.92	1.91
TBVOOS	40.0	2.03	2.04
and PLUOOS	30.0	2.27	2.27
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35
	100.0	1.55	1.54
	90.0	1.61	1.61
	50.0		
EOC-RPT-OOS,	50.0	1.92	1.91
TBVOOS,	40.0	2.03	2.04
and PLUOOS	30.0	2.27	2.27
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
4 4	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F_	3.20	3.35

ANP-2863(NP) Revision 1 Page 8-22

Table 8.6 MCPR_p Limits for TSSS Insertion Times BOC to FFTR/Coastdown*

		MCPR _p	
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
·····	100.0	1.56	1.54
	90.0	1.61	1.60
	50.0		·
	50.0	1.87	1.89
Base case	40.0	2.01	2.02
operation	30.0	2.25	2.25
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96
	100.0	1.59	1.57
	90.0	1.64	1.63
	50.0		
	50.0	1.89	1.92
TBVOOS	40.0	2.05	2.05
100000	30.0	2.29	2.29
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35
	100.0	1.56	1.54
EOC-RPT-OOS	90.0	1.61	1.60
	50.0		
	50.0	1.87	1.89
	40.0	2.01	2.02
	30.0	2.25	2.25
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
, 	_25.0 at ≤ 50%F	2.84	2.96

^{*} Limits support operation with any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. Limits also support operation with FFTR/FHOOS which bounds operation with feedwater heaters in-service. For single-loop operation, MCPR_p limits will be 0.02 higher.

ANP-2863(NP) Revision 1 Page 8-23

Table 8.6 MCPR_p Limits for TSSS Insertion Times BOC to FFTR/Coastdown (Continued)

·······		MCP	R _p
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.56	1.54
	90.0	1.61	1.60
	50.0		
	50.0	1.92	1.91
PLUOOS	40.0	2.01	2.02
FLOODS	30.0	2.25	2.25
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96
	100.0	1.59	1.57
·	90.0	1.64	1.63
	50.0		
	50.0	1.89	1.92
EOC-RPT-OOS	40.0	2.05	2.05
and TBVOOS	30.0	2.29	2.29
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35
EOC-RPT-OOS and PLUOOS	100.0	1.56	1.54
	90.0	1.61	1.60
	50.0		
	50.0	1.92	1.91
	40.0	2.01	2.02
	30.0	2.25	2.25
	30.0 at > 50%F	2.67	2.76
	25.0 at > 50%F	2.90	3.00
	30.0 at ≤ 50%F	2.62	2.75
	25.0 at ≤ 50%F	2.84	2.96

ANP-2863(NP) Revision 1 Page 8-24

Table 8.6 MCPR_p Limits for TSSS Insertion Times BOC to FFTR/Coastdown

(Continued)

		MCP	'R _p
Operating	Power	ATRIUM-10	GE14
Condition	(% of rated)	Fuel	Fuel
	100.0	1.59	1.57
	90.0	1.64	1.63
	50.0		
	50.0	1.92	1.92
TBVOOS	40.0	2.05	2.05
and PLUOOS	30.0	2.29	2.29
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35
	100.0	1.59	1.57
	90.0	1.64	1.63
	50.0		
	50.0	1.92	1.92
EOC-RPT-OOS, TBVOOS, and PLUOOS	40.0	2.05	2.05
	30.0	2.29	2.29
	30.0 at > 50%F	3.13	3.17
	25.0 at > 50%F	3.47	3.47
	30.0 at ≤ 50%F	2.82	2.95
	25.0 at ≤ 50%F	3.20	3.35

Table 8.7 Flow-Dependent MCPR Limits ATRIUM-10 and GE14 Fuel

Core Flow (% of rated)	MCPRf
30.0	1.61
78.0	1.28
107.0	1.28

Table 8.8 ATRIUM-10 Steady-State LHGR Limits

Peak Pellet Exposure (GWd/MTU)	LHGR (kW/ft)
0.0	13.4
18.9	13.4
74.4	7.1

Table 8.9 ATRIUM-10 LHGRFAC_p Multipliers for NSS/TSSS Insertion Times All Cycle 9 Exposures*

EOOS Condition	Power (% rated)	ATRIUM-10 LHGRFAC _P
	100.0	1.00
Base	30.0	0.64
case	30.0 at > 50%F	0.47
operation	25.0 at > 50%F	0.47
(TBVIS) [†]	30.0 at ≤ 50%F	0.47
	25.0 at ≤ 50%F	0.47
TBVOOS [‡]	100.0	0.90
	90.0	0.83
	30.0	0.62
	30.0 at > 50%F	0.43
	25.0 at > 50%F	0.39
	30.0 at ≤ 50%F	0.47
	25.0 at ≤ 50%F	0.46

^{*} Limits support operation with any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. Base case supports singleloop operation.

[†] Limits are applicable for all the EOOS scenarios presented in Table 1.1 except those that include TBVOOS.

[‡] Limits are applicable for all the EOOS scenarios presented in Table 1.1 including those with TBVOOS.

Table 8.10 GE14 LHGRFAC_p Multipliers for NSS/TSSS Insertion Times All Cycle 9 Exposures*

EOOS Condition	Power (% rated)	GE14 LHGRFAC _p
	100.0	1.00
	75.0	0.78
Base	30.0	0.60
case operation	30.0 at > 50%F	0.44
(TBVIS) [†]	25.0 at > 50%F	0.42
	30.0 at ≤ 50%F	0.44
	25.0 at ≤ 50%F	0.44
	100.0	0.99
	75.0	0.77
TBVOOS [‡]	30.0	0.58
	30.0 at > 50%F	0.37
	25.0 at > 50%F	0.31
	30.0 at ≤ 50%F	0.44
	25.0 at ≤ 50%F	0.43

- [†] Limits are applicable for all the EOOS scenarios presented in Table 1.1 except those that include TBVOOS.
- [‡] Limits are applicable for all the EOOS scenarios presented in Table 1.1 including those with TBVOOS.

AREVA NP Inc.

^{*} Limits support operation with any combination of 1 MSRVOOS, up to 2 TIPOOS (or the equivalent number of TIP channels), and up to 50% of the LPRMs out-of-service. Base case supports singleloop operation.

Core Flow (% of rated)	LHGRFACf
0.0	0.86
30.0	0.86
56.4	1.00
107.0	1.00

Table 8.11 ATRIUM-10 LHGRFAC_f Multipliers All Cycle 9 Exposures

Table 8.12 GE14 LHGRFAC_f Multipliers All Cycle 9 Exposures

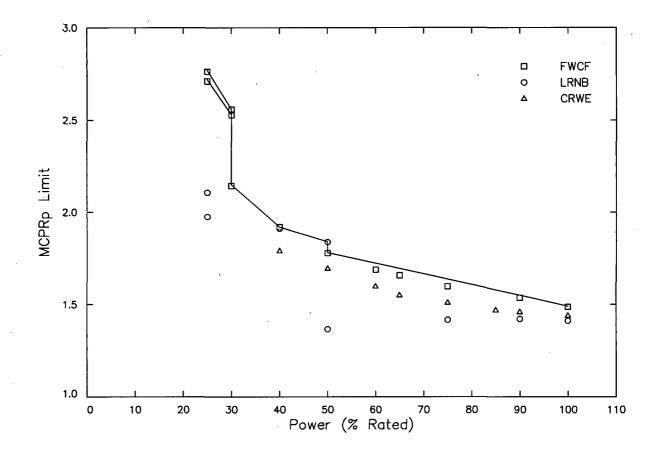
Core Flow (% rated)	GE14 LHGRFAC _f
0.0	0.54
30.0	0.54
81.8	1.00
107.0	1.00

MAPLHGR (kW/ft)
12.5
12.5
7.3

Table 8.13 ATRIUM-10 MAPLHGR Limits

9.0 **References**

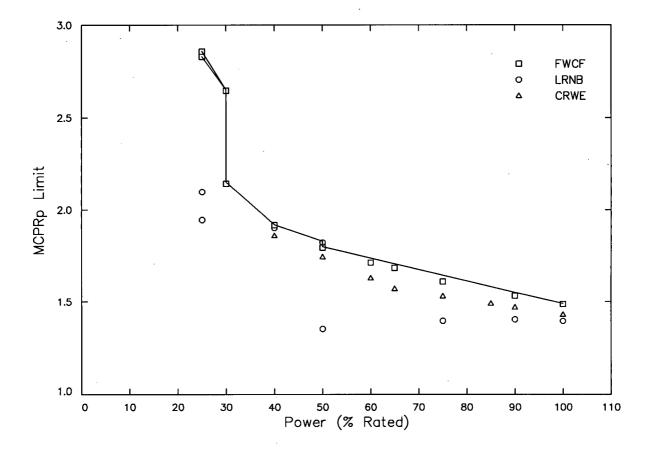
- 1. ANP-2859(P) Revision 1, *Browns Ferry Unit* 1 Cycle 9 Fuel Cycle Design (105% OLTP), AREVA NP, October 2009.
- 2. ANP-2877(P) Revision 0, *Mechanical Design Report for Browns Ferry Unit 1 Reload BFE1-9 ATRIUM-10 Fuel Assemblies (105% OLTP)*, AREVA NP, November 2009.
- 3. ANP-2821(P) Revision 0, Browns Ferry Unit 1 Thermal-Hydraulic Design Report for ATRIUM™-10 Fuel Assemblies (105% OLTP), AREVA NP, June 2009.
- 4. ANF-524(P)(A) Revision 2 and Supplements 1 and 2, *ANF Critical Power Methodology for Boiling Water Reactors,* Advanced Nuclear Fuels Corporation, November 1990.
- 5. EMF-2209(P)(A) Revision 3, SPCB Critical Power Correlation, AREVA NP, September 2009.
- 6. EMF-2245(P)(A) Revision 0, Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel, Siemens Power Corporation, August 2000.
- 7. NEDO-32465-A, Licensing Topical Report, *Reactor Stability Detect and Suppress* Solutions Licensing Basis Methodology and Reload Applications, GE Nuclear Energy, August 1996.
- 8. OG04-0153-260, Plant-Specific Regional Mode DIVOM Procedure Guideline, June 15, 2004.
- 9. BWROG-03047, Resolution of Reportable Condition for Stability Reload Licensing Calculations Using Generic Regional Mode DIVOM Curve, September 30, 2003.
- 10. OG02-0119-260, Backup Stability Protection (BSP) for Inoperable Option III Solution, GE Nuclear Energy, July 17, 2002.
- 11. EMF-CC-074(P)(A) Volume 4 Revision 0, *BWR Stability Analysis Assessment of STAIF* with Input from MICROBURN-B2, Siemens Power Corporation, August 2000.
- 12. ANF-913(P)(A) Volume 1 Revision 1 and Volume 1 Supplements 2, 3 and 4, *COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses*, Advanced Nuclear Fuels Corporation, August 1990.
- 13. XN-NF-84-105(P)(A) Volume 1 and Volume 1 Supplements 1 and 2, *XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis,* Exxon Nuclear Company, February 1987.
- 14. XN-NF-80-19(P)(A) Volume 3 Revision 2, *Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description*, Exxon Nuclear Company, January 1987.


- 15. EMF-2158(P)(A) Revision 0, Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2, Siemens Power Corporation, October 1999.
- 16. XN-NF-81-58(P)(A) Revision 2 and Supplements 1 and 2, *RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model,* Exxon Nuclear Company, March 1984.
- 17. *Technical Specification Requirements for Browns Ferry Nuclear Plant Unit 1,* Tennessee Valley Authority, as amended.
- 18. ANF-1358(P)(A) Revision 3, *The Loss of Feedwater Heating Transient in Boiling Water Reactors,* Framatome ANP, September 2005.
- 19. ANP-2908(P) Revision 0, *Browns Ferry Units 1, 2, and 3 105% OLTP LOCA Break Spectrum Analysis,* AREVA NP, March 2010.
- 20. ANP-2910(P) Revision 0, *Browns Ferry Units 1, 2, and 3 105% OLTP LOCA-ECCS Analysis MAPLHGR Limit for ATRIUM™-10 Fuel*, AREVA NP, March 2010.
- 21. 0000-0044-1520-SRLR Revision 0, *Supplemental Reload Licensing Report for Browns Ferry 1 Reload 6 Cycle 7,* Global Nuclear Fuel, January 2007.
- 22. XN-NF-80-19(P)(A) Volume 1 and Supplements 1 and 2, Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis, Exxon Nuclear Company, March 1983.
- 23. XN-NF-80-19(P)(A) Volume 4 Revision 1, *Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads*, Exxon Nuclear Company, June 1986.
- 24. EMF-2978(P) Revision 0, Browns Ferry Nuclear Plant New Fuel Storage Vault Criticality Safety Analysis for ATRIUM™-10 Fuel, Framatome ANP, July 2005.
- 25. EMF-2939(P) Revision 0, Browns Ferry Nuclear Plant Spent Fuel Storage Pool Criticality Safety Analysis for ATRIUM™-10 Fuel, Framatome ANP, August 2003.
- 26. 0000-0077-8380-SRLR Revision 0, *Supplemental Reload Licensing Report for Browns Ferry 1 Reload 7 Cycle 8,* Global Nuclear Fuel, August 2008.
- 27. Letter, EA Brown (NRC) to KW Singer (TVA), "Browns Ferry Nuclear Plant, Units 1, 2, and 3 Issuance of Amendments Regarding Full-Scope Implementation of Alternative Source Term (TAC Nos. MB5733, MB5734, MB5735, MC0156, MC0157 and MC0158) (TS-405)," September 27, 2004.
- 28. Letter, TA Galioto (FANP) to JF Lemons (TVA), "Fuel Handling Accident Assumptions for Browns Ferry," TAG:02:012, January 23, 2002.
- 29. MJ Mneimneh (GNF) to D McNelley (TVA), "Revised LHGR Limits for BF1 Transition," MJM-TVA-ER1-09-39, April 2, 2009.
- 30. BAW-10255PA Revision 2, Cycle-Specific DIVOM Methodology Using the RAMONA5-FA Code, AREVA NP, May 2008.

- 31. Not used.
- 32. ANP-2860(P) Revision 2, Browns Ferry Unit 1 Summary of Responses to Request for Additional Information, AREVA NP, October 2009.
- Letter, TE Abney (TVA) to U. S. NRC, "Browns Ferry Nuclear Plant (BFN) Unit 1 Proposed Technical Specifications (TS) Change TS – 431 – Request for License Amendment – Extended Power Uprate (EPU) Operation," TVA-BFN-TS-431, June 28, 2004.
- 34. EMF-2982(P) Revision 0, Browns Ferry Units 2 and 3 Safety Analysis Report for Extended Power Uprate ATRIUM™-10 Fuel Supplement, Framatome ANP, June 2004.
- 35. NEDC-33047P Revision 2, *Browns Ferry Units 2 and 3 Safety Analysis Report for Extended Power Uprate*, GE Nuclear Energy, June 2004.
- 36. NEDO-33101, *Browns Ferry Unit 1 Safety Analysis Report For Extended Power Uprate,* GE Nuclear Energy, June 2004.
- 37. Browns Ferry Nuclear Plant Units 1, 2, and 3 Fire Protection Report Volume 1 Section 3 Safe Shutdown Analysis, Revision 4, Tennessee Valley Authority, March 25, 2009.
- 38. EMF-2361(P)(A), Revision 0, *EXEM BWR-2000 ECCS Evaluation Model*, Framatome ANP, May 2001.
- 39. ANP-2638(P), Revision 2, *Applicability of AREVA NP BWR Methods to Extended Power Uprate Conditions,* AREVA NP Inc., October 2009.
- 40. Letter, S Richards (NRC) to JF Mallay (SPC), "Siemens Power Corporation Re: Request for Concurrence on Safety Evaluation Report Clarifications (TAC No. MA6160)," May 31, 2000.

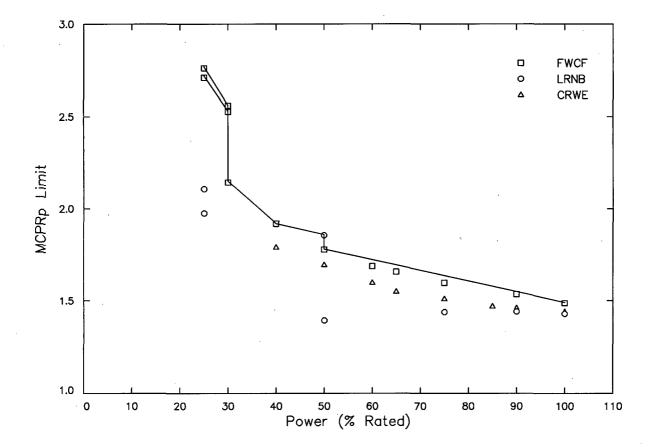
Appendix A Operating Limits and Results Comparisons

The figures and tables presented in this appendix show comparisons of the BF1 Cycle 9 operating limits and the transient analysis results. Comparisons are presented for the ATRIUM-10 and GE14 MCPR_p limits and LHGRFAC_p multipliers.

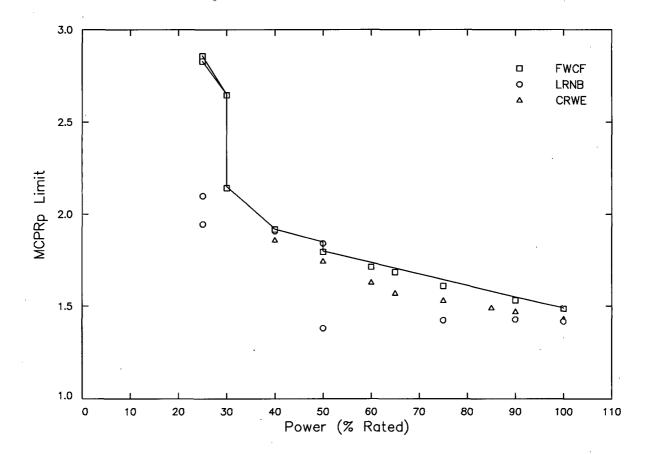

ANP-2863(NP) Revision 1 Page A-2

Power (% of rated)	MCPR _p Limit
100	1.49
90	1.55
50	1.78
50	1.84
40	1.92
30	2.15
30 at > 50%F	2.56
25 at > 50%F	2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72

Figure A.1 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times Base Case


ANP-2863(NP) Revision 1 Page A-3

Power (% of rated)	MCPR _p Limit
100	1.49
90	1.55
50	1.80
50	1.83
40	1.92
30	2.15
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83


Figure A.2 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times Base Case

ANP-2863(NP) Revision 1 Page A-4

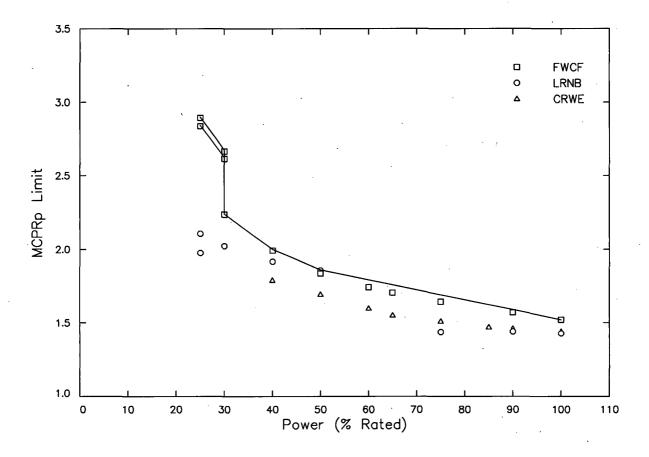

Power (% of rated)	MCPR _p Limit
100	1.49
90	1.55
50	1.78
50	1.86
40	1.92
30	2.15
30 at > 50%F	2.56
25 at > 50%F	2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72

Figure A.3 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times Base Case

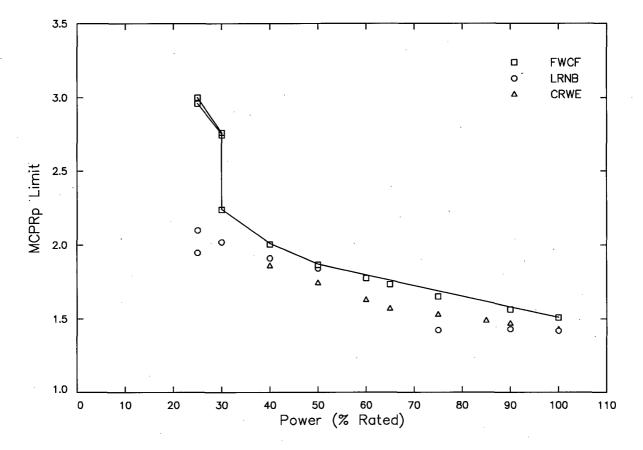
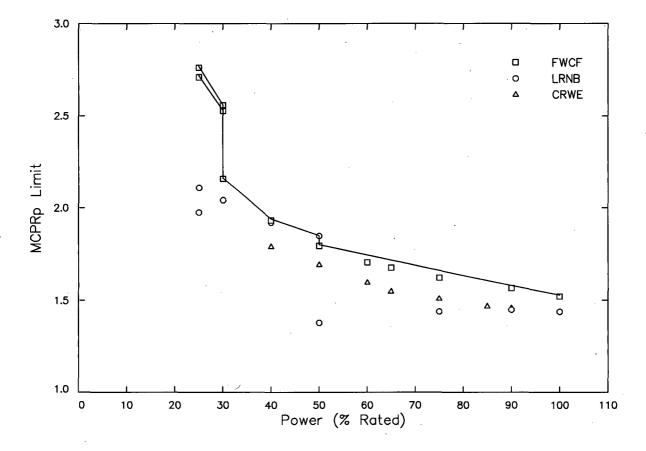
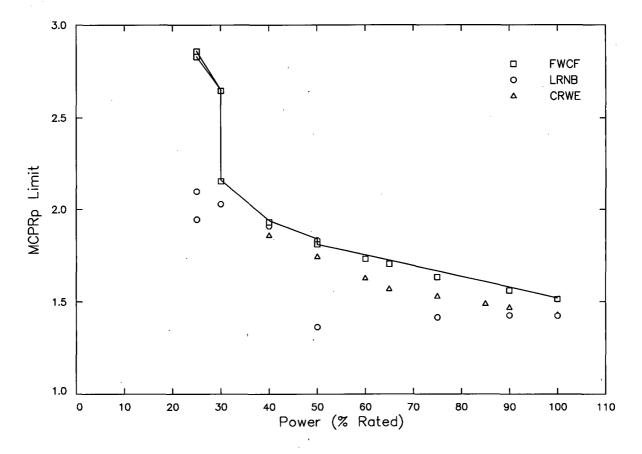

Power	MCPR _p
(% of rated)	Limit
100	1.49
90	1.55
50	1.80
50	1.85
40	1.92
30	2.15
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83

Figure A.4 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times Base Case

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.59
50 ·	
50	1.86
40	2.00
30	2.24
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

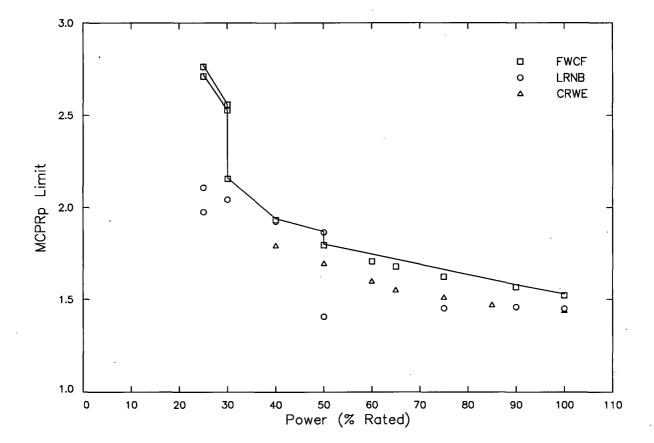

Figure A.5 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times Base Case

Power (% of rated)	MCPR _p Limit
100	1.51
90	1.58
50	
50	1.87
40	2.01
30	2.24
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96


Figure A.6 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times Base Case

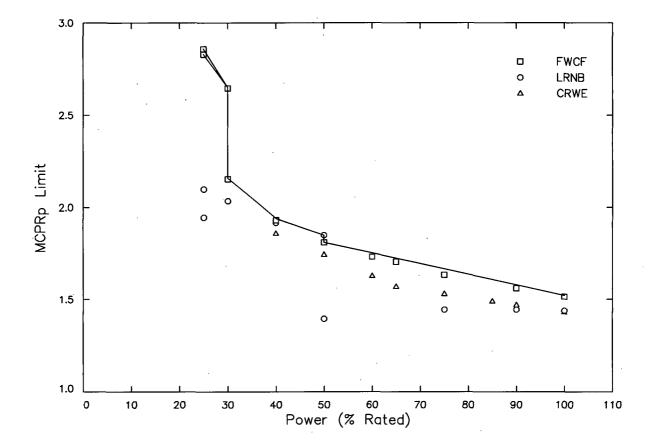
ANP-2863(NP) Revision 1 Page A-8

Power (% of rated)	MCPR _p Limit
100	1.53
90	1.58
50	1.80
50	1.85
40	1.94
30	2.16
30 at > 50%F	2.56
25 at > 50%F	2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72

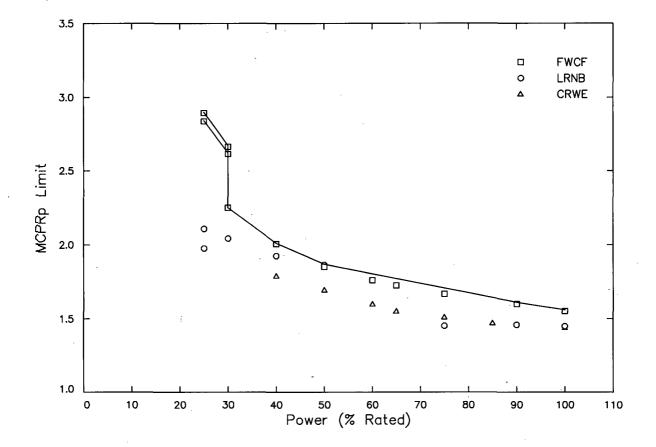

Figure A.7 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times Base Case

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.58
50	1.81
50	1.84
40	1.94
30	2.16
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83

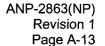
Figure A.8 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times Base Case

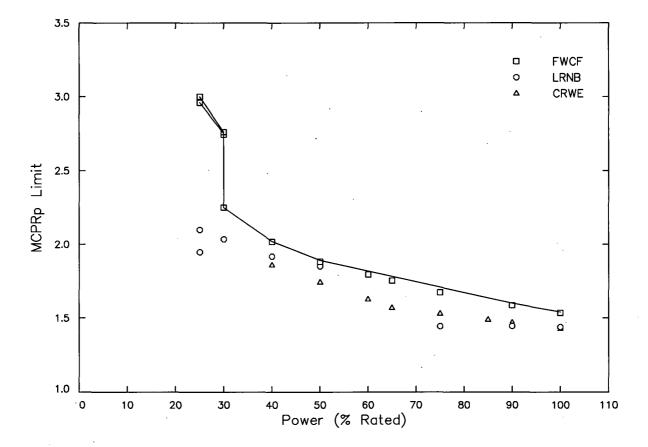

ANP-2863(NP) Revision 1 Page A-10

Power (% of rated)	MCPR _p Limit
100	1.53
90	1.58
50	1.80
50	1.87
40	1.94
30	2.16
30 at > 50%F	2.56
25 at > 50%F	2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72


Figure A.9 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times Base Case

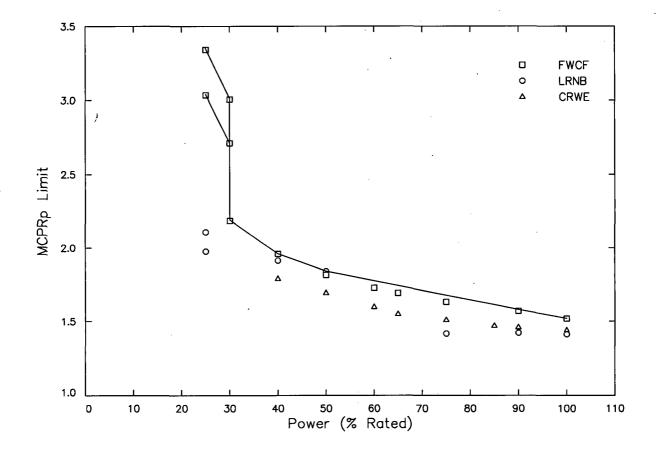
ANP-2863(NP) Revision 1 Page A-11


MCPR _p Limit
Limit
1.52
1.58
1.81
1.85
1.94
2.16
2.65
2.86 ,
2.65
2.83

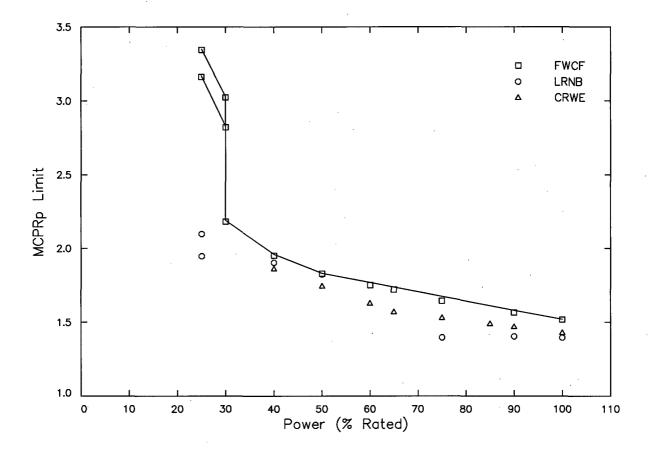

Figure A.10 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times Base Case

Power	MCPRp
(% of rated)	Limit
100	1.56
90	1.61
50	
50	1.87
40	2.01
30	2.25
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

Figure A.11 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times Base Case



100.00	
Power	MCPR _p
(% of rated)	Limit
100	1.54
90	1.60
50	
50	1.89
40	2.02
30	2.25
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96


Figure A.12 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times Base Case

ANP-2863(NP) Revision 1 Page A-14

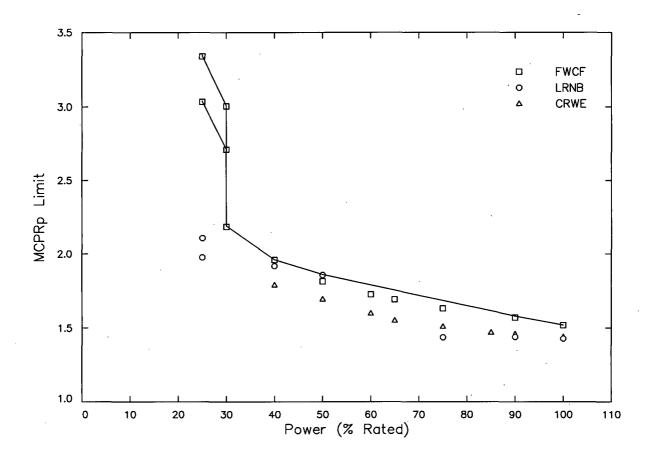

Power	MCPR _p
(% of rated)	Limit
100	1.52
90	1.58
50	
50	1.84
40	1.96
30	2.19
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04

Figure A.13 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times TBVOOS

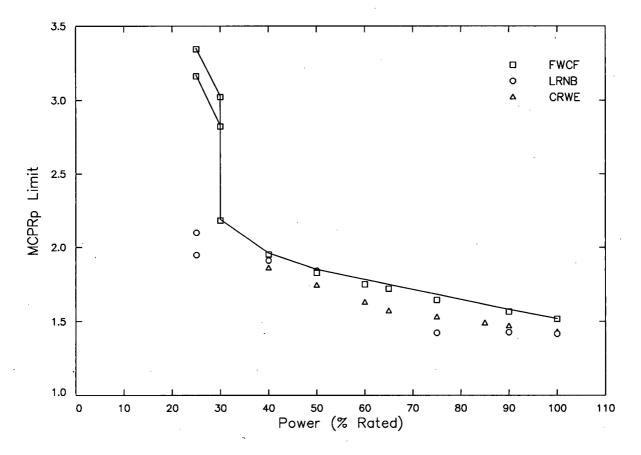
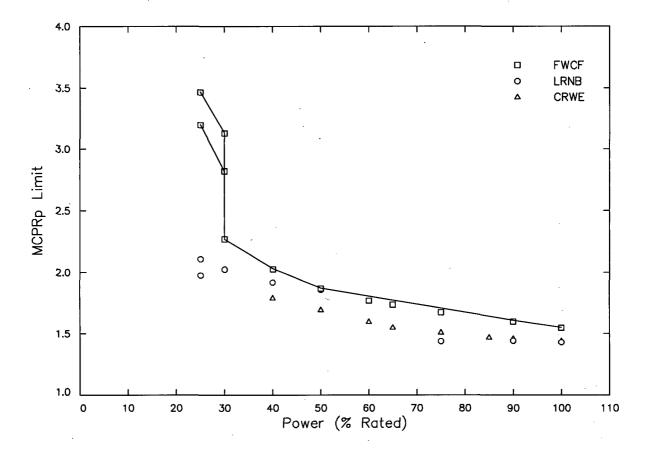

Power	
(% of rated)	Limit
[`] 100	1.52
90	1.58
50	
50	1.83
40	· 1.96
30	2.19
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17

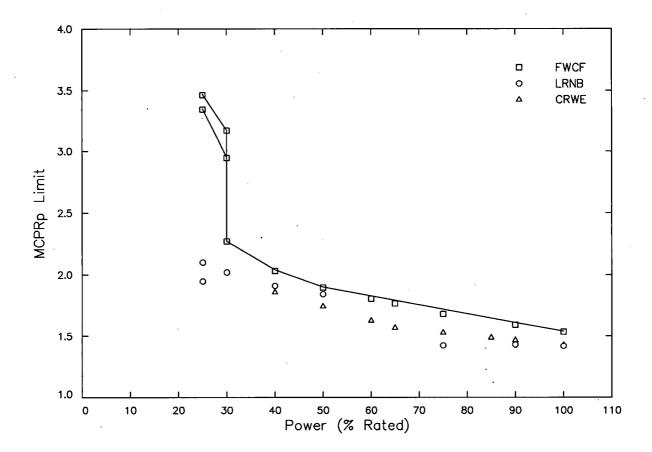
Figure A.14 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times TBVOOS

Power	MCPR _p Limit
(% of rated)	
100	1.52
90	1.58
50	
50	1.86
40	1.96
30	2.19
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04


Figure A.15 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times TBVOOS

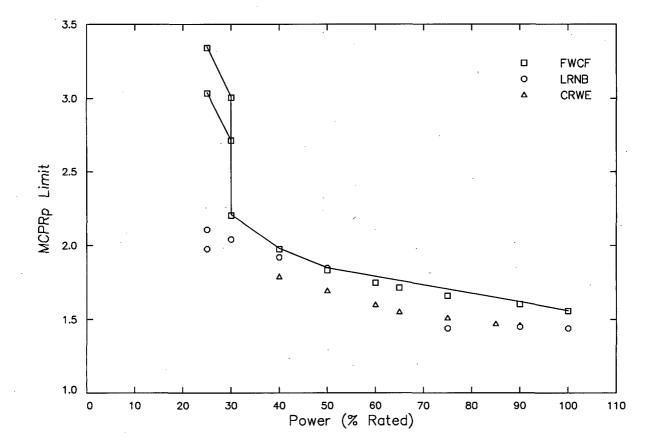
Power	MCPR _p
(% of rated)	Limit
100	1.52
90	1.58
50	
50	1.85
40	1.96
30	2.19
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17

Figure A.16 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times TBVOOS

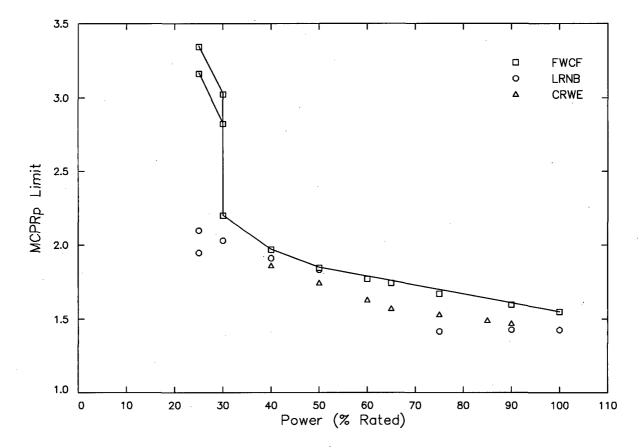

ANP-2863(NP) Revision 1 Page A-18

Power (% of rated)	MCPR _p Limit
· · · · · · · · · · · · · · · · · · ·	
100	1.55
90	1.61
50	
50	1.87
40	2.03
30	2.27
∿30 at > 50% F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F _	3.20

Figure A.17 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times TBVOOS

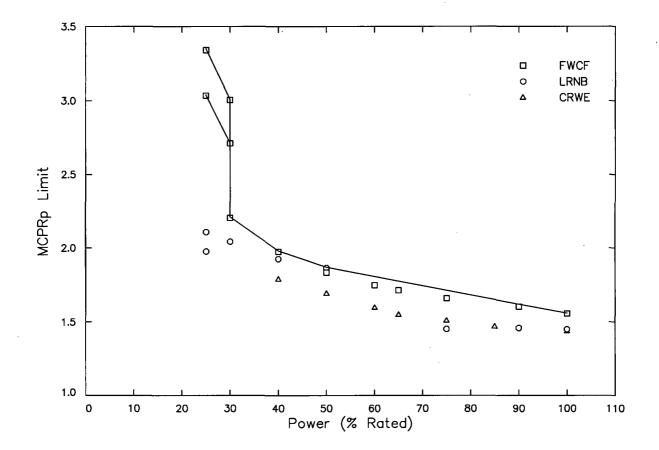

ANP-2863(NP) Revision 1 Page A-19

Power (% of rated)	MCPR _p Limit
100	1.54
90	1.61
50	
50	1.90
40	2.04
30	2.27
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35


Figure A.18 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times TBVOOS

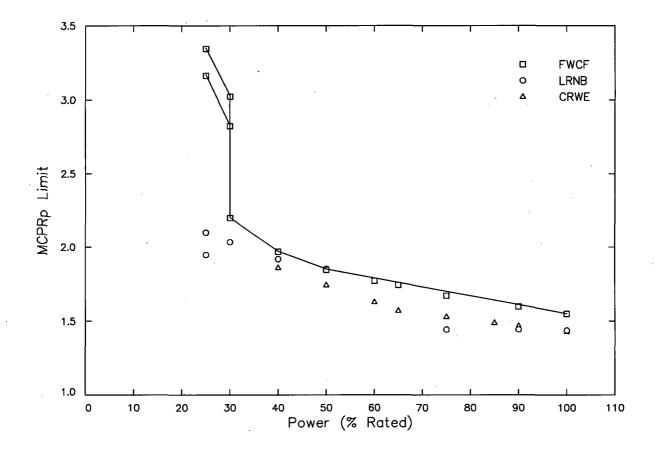
ANP-2863(NP) Revision 1 Page A-20

Power (% of rated)	MCPR _p Limit
100	1.56
90	1.62
50	
50	1.85
40	1.98
30	2.21
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04


Figure A.19 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times TBVOOS

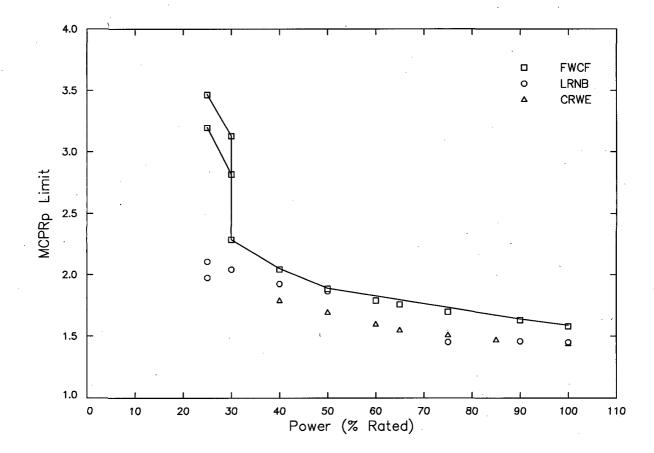
Power	MCPR _p
(% of rated)	Limit
100	1.55
90	1.61
50	
50	1.85
40	1.97
30	2.20
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17

Figure A.20 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times TBVOOS

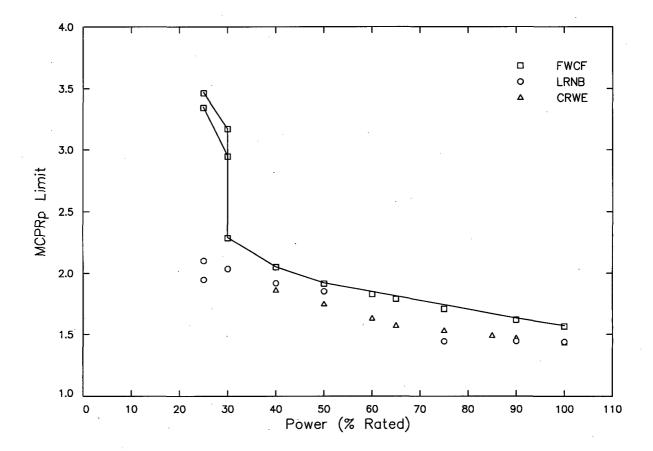

ANP-2863(NP) Revision 1 Page A-22

Power (% of rated)	MCPR _p Limit
100	1.56
90	1.62
50	
50	1.87
40	1.98
30	2.21
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04

Figure A.21 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times TBVOOS

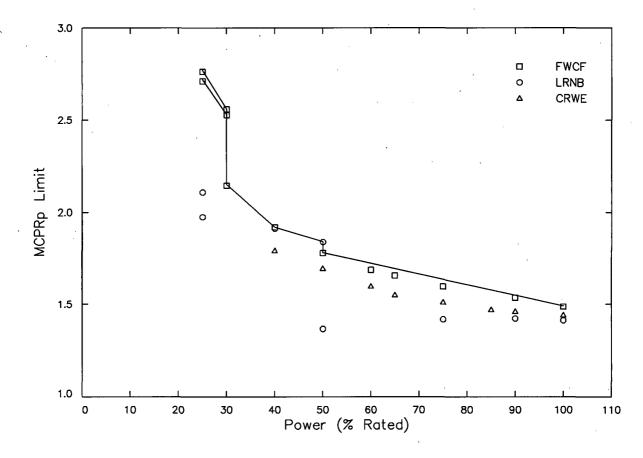

ANP-2863(NP) Revision 1 Page A-23

A CONTRACTOR OF A CONTRACTOR O	
Power (% of rated)	MCPR _p Limit
100	1.55
90	1.61
50	
50	1.85
40	1.97
30	2.20
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17


Figure A.22 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times TBVOOS

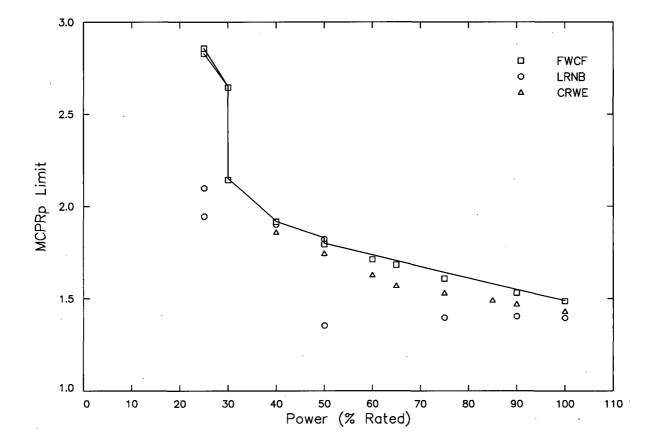
ANP-2863(NP) Revision 1 Page A-24

Power (% of rated)	MCPR _p Limit
100	1.59
90	1.64
50	
50	1.89
40	2.05
30	2.29
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

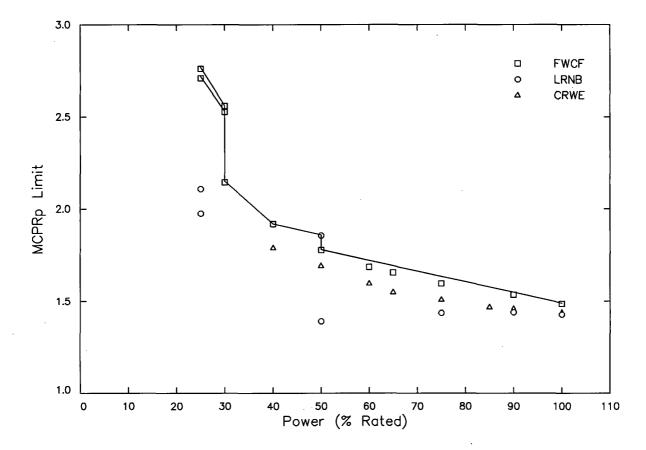

Figure A.23 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times TBVOOS

Power (% of rated)	MCPR _p Limit
100	1.57
90	1.63
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.17
25 at > 50%F	3.47 ,
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.24 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times TBVOOS

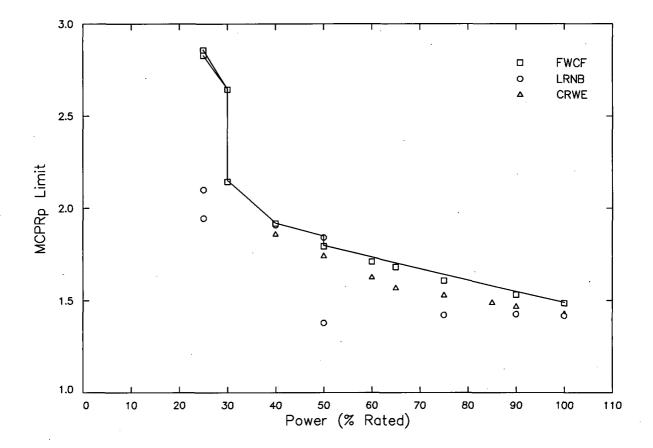

ANP-2863(NP) Revision 1 Page A-26

Power	
(% of rated)	Limit
100	1.49
90	1.55
50	1.78
50	1.84
40	1.92
30	2.15
30 at > 50%F	2.56
25 at > 50%F	2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72


Figure A.25 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS

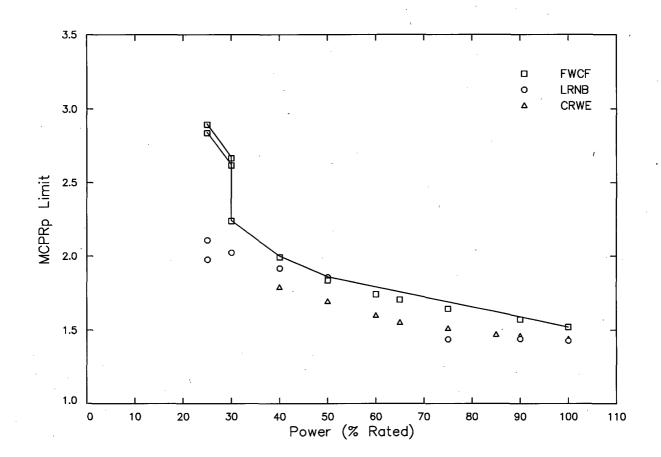
ANP-2863(NP) Revision 1 Page A-27

Power (% of rated)	MCPR _p Limit
100	1.49
90	1.55
50	1.80
50	1.83
40	1.92
30	2.15
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83


Figure A.26 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS

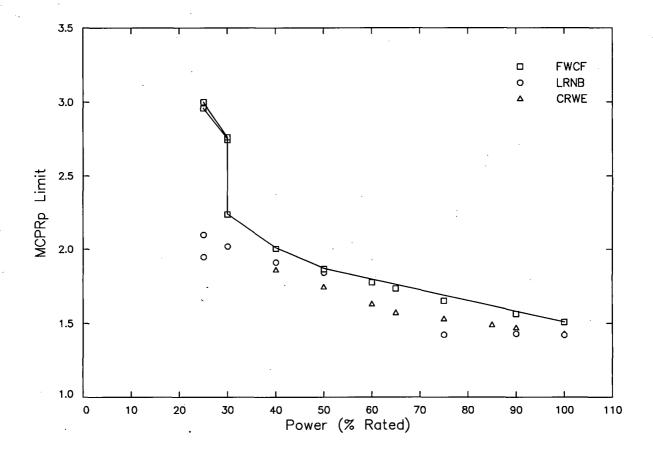
Power (% of rated)	MCPR _p Limit
100	1.49
90	1.55
50	1.78
50	1.86
40	1.92
30	2.15
30 at > 50%F	2.56
25 at > 50%F	. 2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72

Figure A.27 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS


ANP-2863(NP) Revision 1 Page A-29

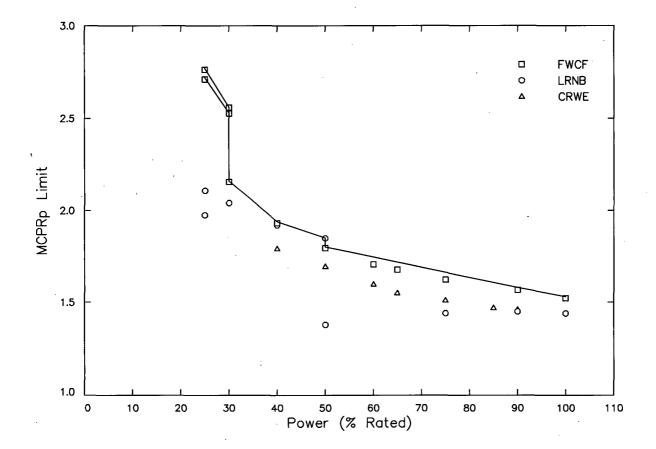
Power (% of rated)	MCPR _p Limit
100	1.49
90	1.55
50	1.80
50	1.85
40	1.92
30	2.15
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83

Figure A.28 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS


ANP-2863(NP) Revision 1 Page A-30

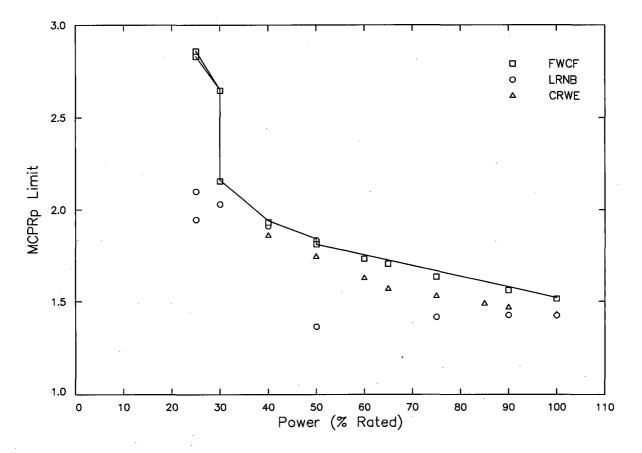
Power (% of rated)	MCPR _p Limit
100	1.52
90	1.59
50	
50	1.86
40	2.00
30	2.24
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

Figure A.29 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS

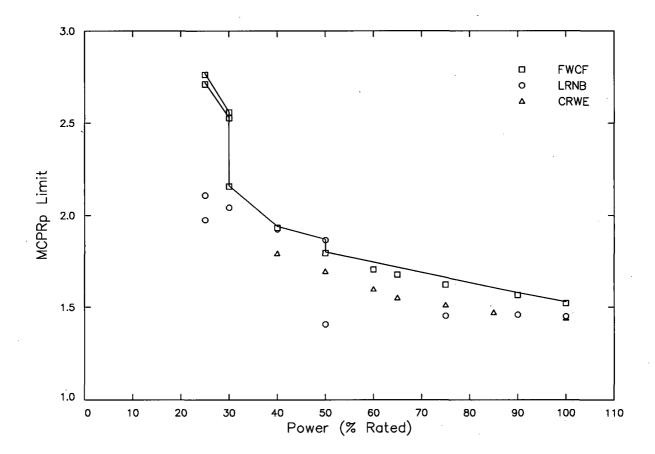

ANP-2863(NP) Revision 1 Page A-31

Power	MCPR _p
(% of rated)	Limit
100	1.51
90	1.58
50	
50	1.87
40	2.01
30	2.24
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

Figure A.30 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS

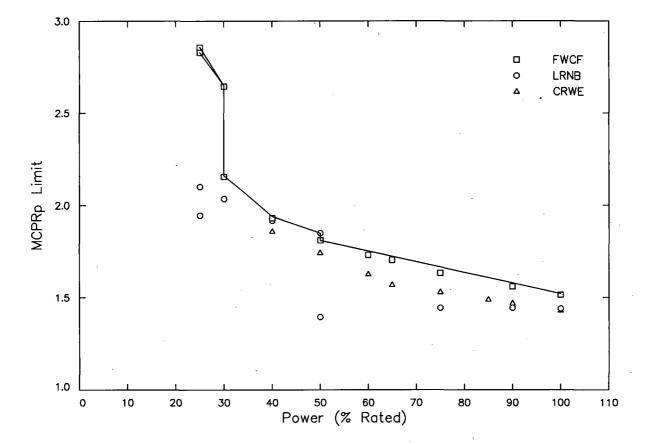

ANP-2863(NP) Revision 1 Page A-32

Power (% of rated)	MCPR _p Limit
100	1.53
90	1.58
50	1.80
50	1.85
40	1.94
30	2.16
30 at > 50%F	2.56
25 at > 50%F	2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72

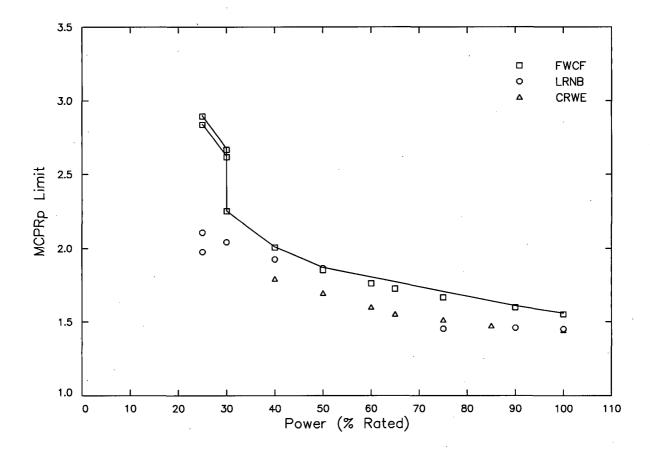

Figure A.31 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS

ANP-2863(NP) Revision 1 Page A-33

Power	MCPR _p
(% of rated)	Limit
100	1.52
90	1.58
50	1.81
50	1.84
40	1.94
30	2.16
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83

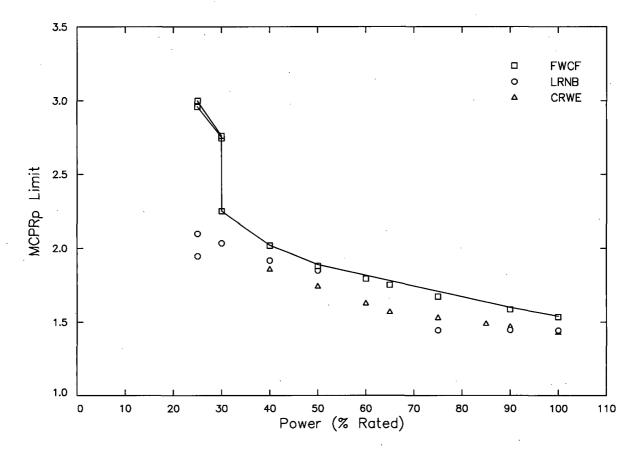

Figure A.32 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS

	and the second
Power (% of rated)	MCPR _p Limit
100	1.53
90	1.58
50	1.80
50	1.87
40	1.94
30	2.16
30 at > 50%F	2.56
25 at > 50%F	2:77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72


Figure A.33 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS

ANP-2863(NP) Revision 1 Page A-35

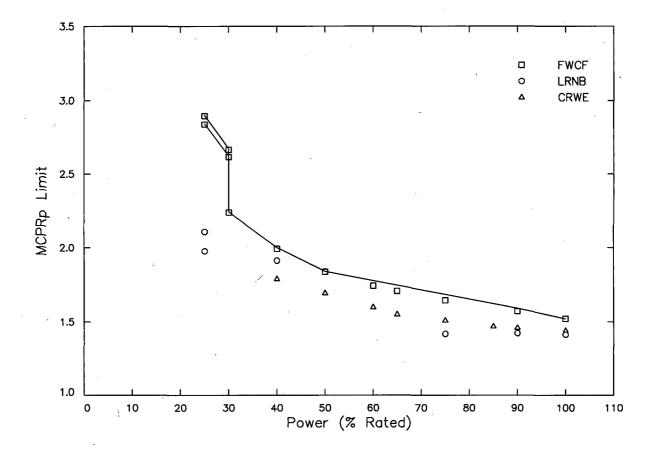
Power	
(% of rated)	Limit
100	1.52
90	1.58
50	1.81
50	1.85
40	1.94
30	2.16
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83


Figure A.34 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS

Power (% of rated)	MCPR _p Limit
100	1.56
90	1.61
50	
50	1.87
40	2.01
30	2.25
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

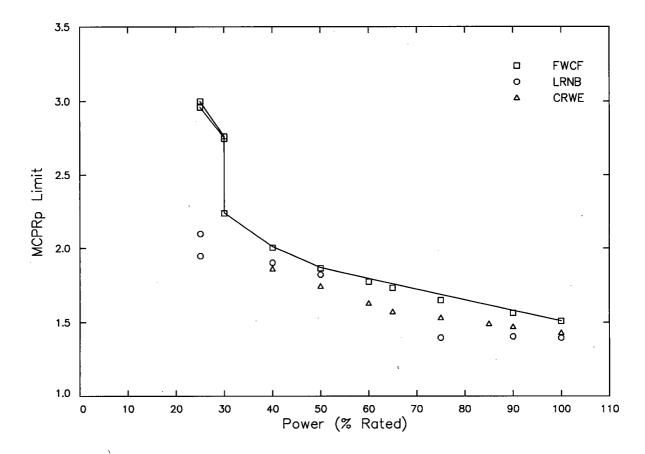
Figure A.35 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS

.



Power (% of rated)	MCPR _p Limit
100	1.54
90	1.60
50	
50	1.89
40	2.02
30	2.25
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

Figure A.36 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS


• •

AREVA NP Inc.

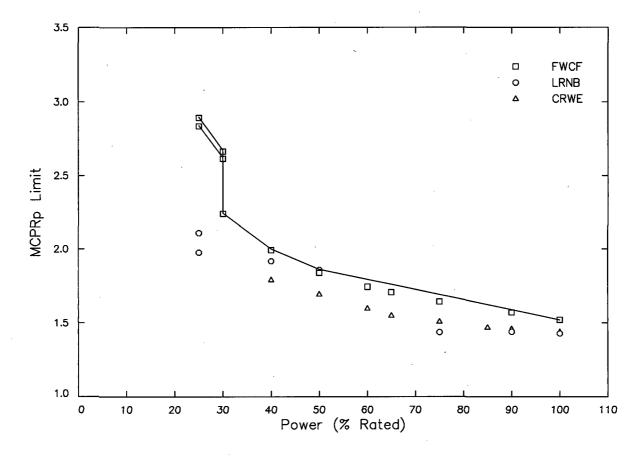
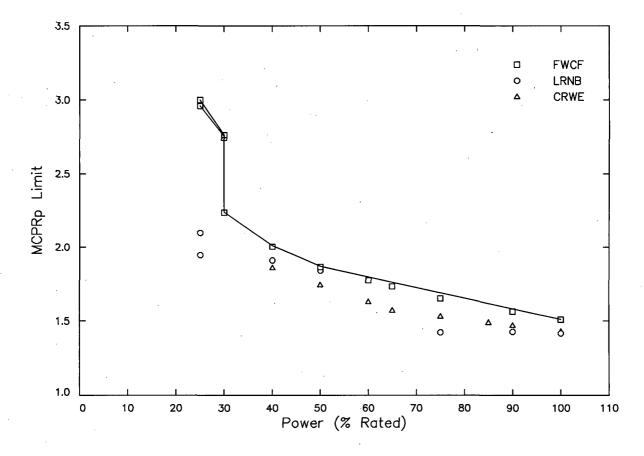

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.59
50	
50	1.84
40	2.00
30	2.24
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

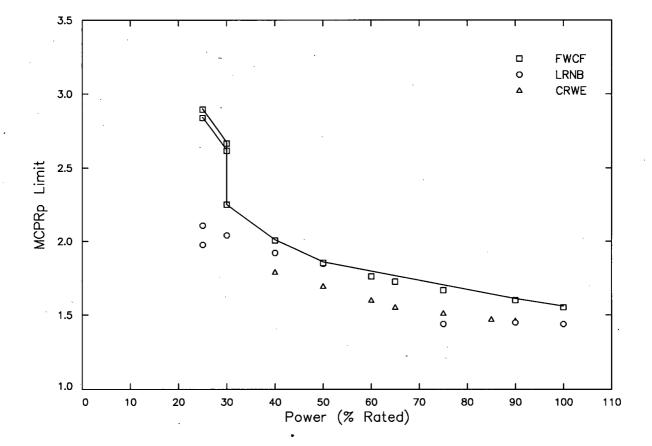
Figure A.37 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times FHOOS

Power (% of rated)	MCPR _p Limit
100	1.51
90	1.58
50	
50	1.87
40	2.01
30	2.24
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96


Figure A.38 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times FHOOS

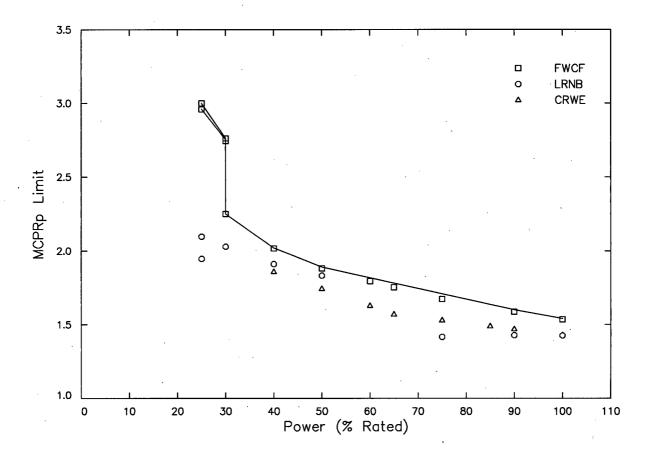
Power (% of rated)	MCPR _p Limit
100	1.52
90	1.59
50	
50	1.86
40	2.00
30	2.24
30 at > 50%F	2.67
25 at > 50%F	2.90 ,
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

Figure A.39 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times FHOOS

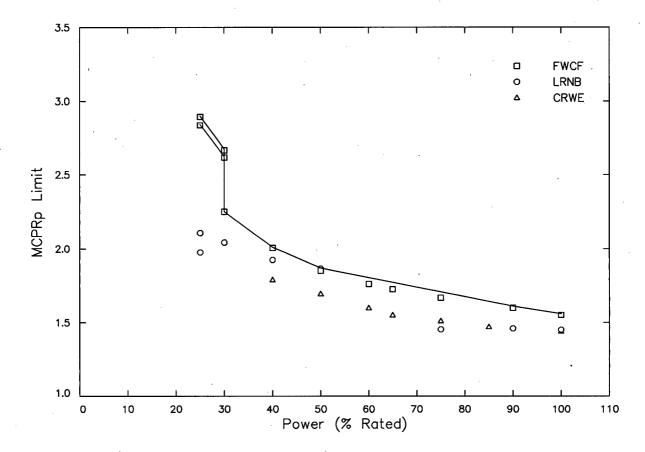

ANP-2863(NP) Revision 1 Page A-41

Power (% of rated)	MCPR _p Limit
100	1.51
90	1.58
50	
50	1.87
40	2.01
30	2.24
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

Figure A.40 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times FHOOS

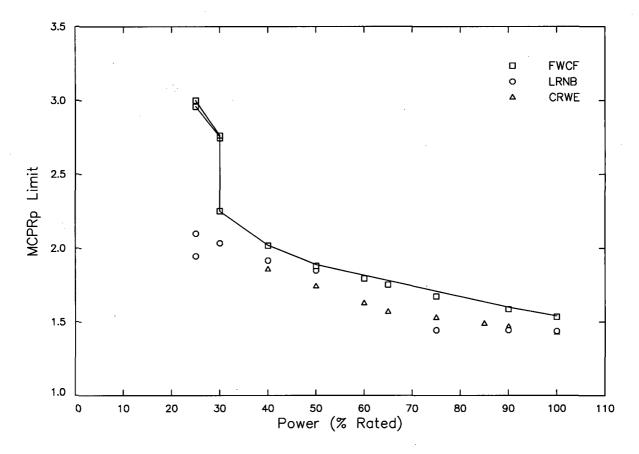

ANP-2863(NP) Revision 1 Page A-42

Power (% of rated)	MCPR _p Limit
100	1.56
90	1.61
50	 `
50	1.86
40	2.01
30	2.25
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

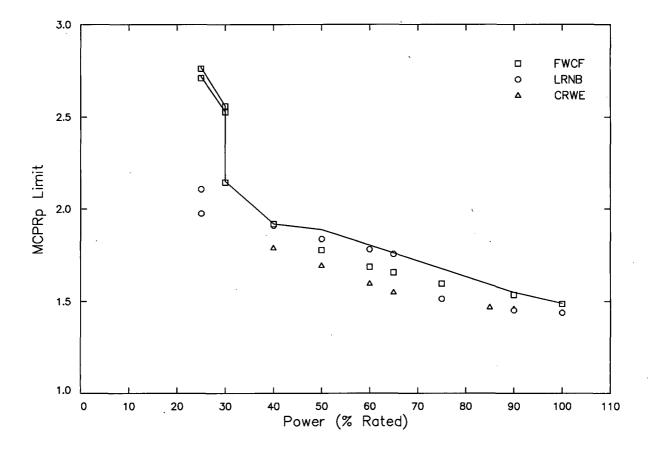

Figure A.41 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times FHOOS

ANP-2863(NP) Revision 1 Page A-43

Power	
(% of rated)	Limit
100	1.54
90	1.60
50	
50	1.89
40	2.02
30	2.25
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

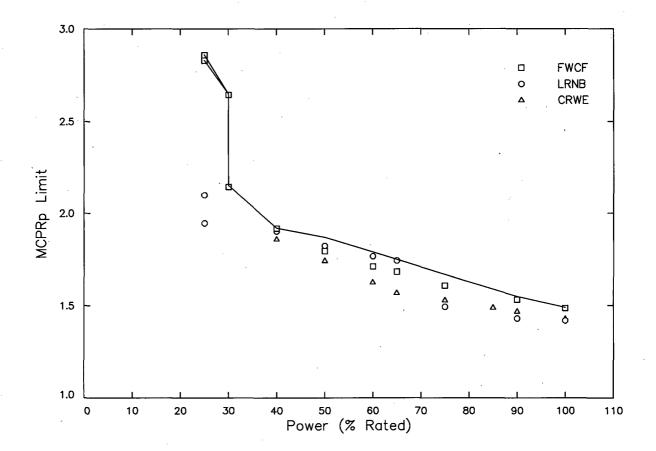

Figure A.42 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times FHOOS

Power	
(% of rated)	Limit
100	1.56
90	1.61
50	
50 ·	1.87
40	2.01
30	2.25
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84


Figure A.43 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times FHOOS

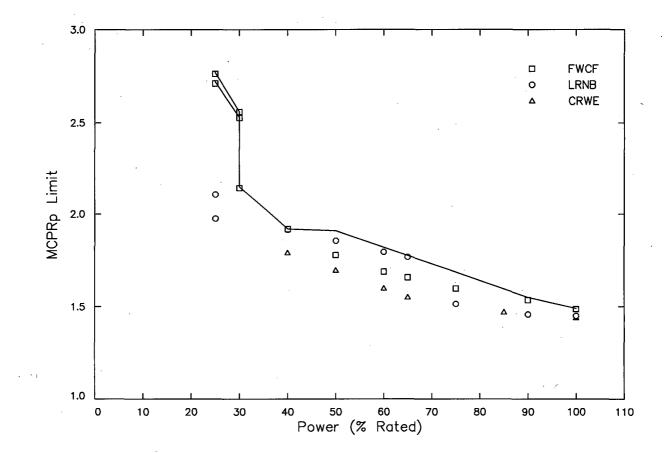
ANP-2863(NP) Revision 1 Page A-45

Power	MCPR _p Limit
(% of rated)	
100	1.54
90	1.60
50	
50	1.89
40	2.02
· 30	2.25
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

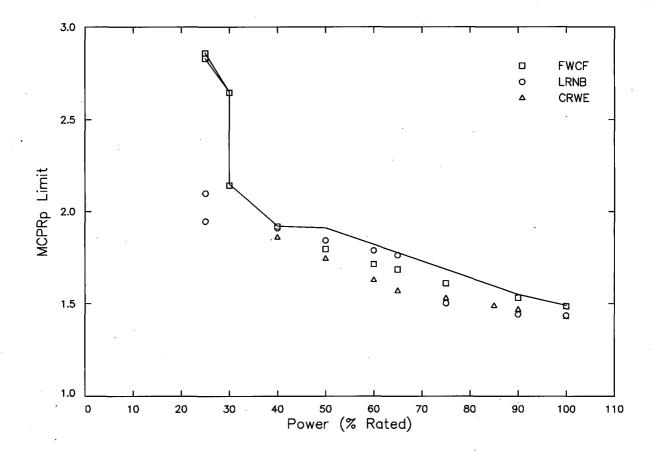

Figure A.44 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times FHOOS

Power	
(% of rated)	Limit
100	1.49
90	1.55
50	
50	1.89
40	1.92
30	2.15
30 at > 50%F	2.56
25 at > 50%F	2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72

Figure A.45 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times PLUOOS

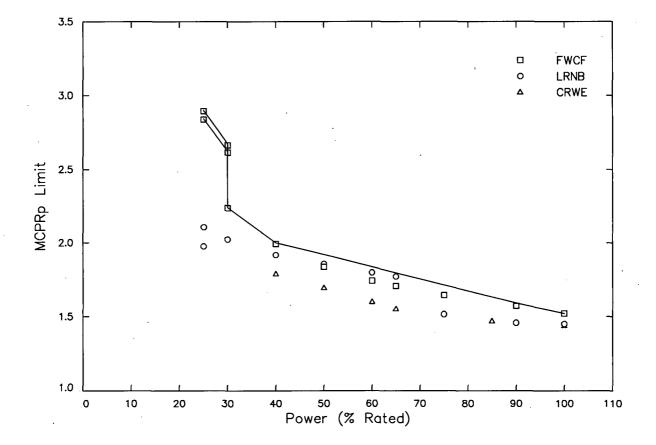

ANP-2863(NP) Revision 1 Page A-47

Power	
(% of rated)	Limit
100	1.49
90	1.55
50	
. 50	1.87
40	1.92
30	2.15
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83


Figure A.46 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times PLUOOS

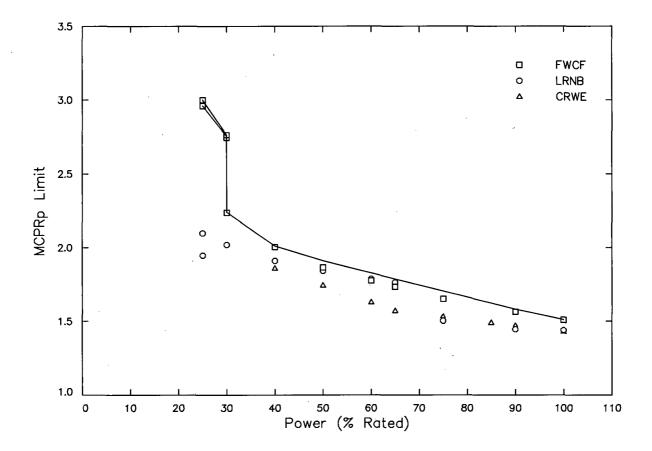
ANP-2863(NP) Revision 1 Page A-48

Power	
(% of rated)	Limit
· · · · · · · · · · · · · · · · · · ·	4.40
100	1.49
90	1.55
50	
50	1.91
40	1.92
30	2.15
30 at > 50%F	2.56
_25 at > 50%F	2.77
- 30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72

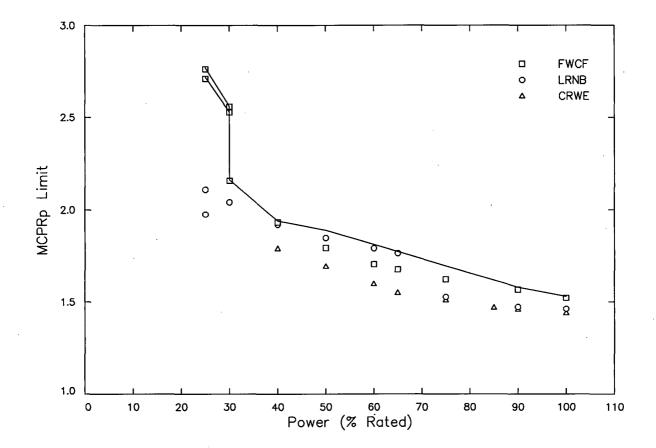

Figure A.47 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times PLUOOS

Power (% of rated)	MCPR _p Limit
100	1.49
90	1.55
50	
50	1.91
40	1.92
30	2.15
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83

Figure A.48 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times PLUOOS


ANP-2863(NP) Revision 1 Page A-50

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.59
50	
50	1.92
40	2.00
30	2.24
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84


Figure A.49 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times PLUOOS

ANP-2863(NP) Revision 1 Page A-51

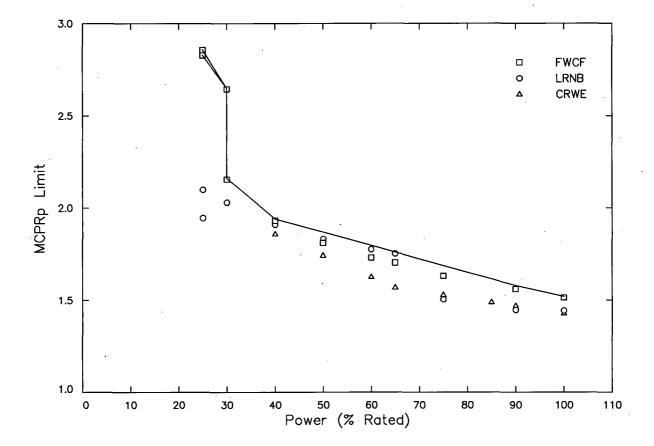
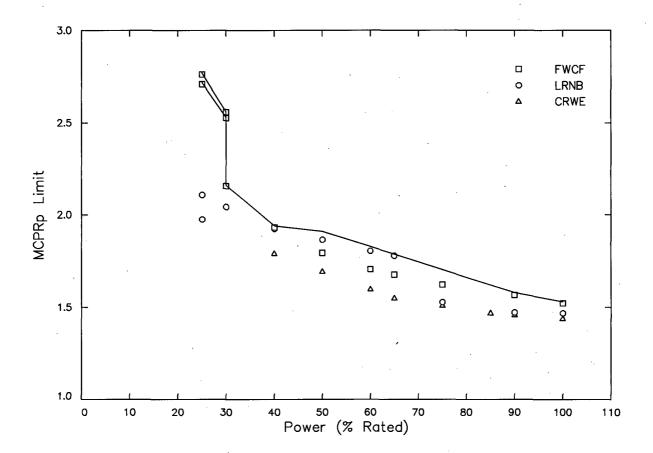

Power (% of rated)	MCPR _p Limit
100	1.51
90	1.58
50	
50	1.91
40	2.01
30	2.24
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

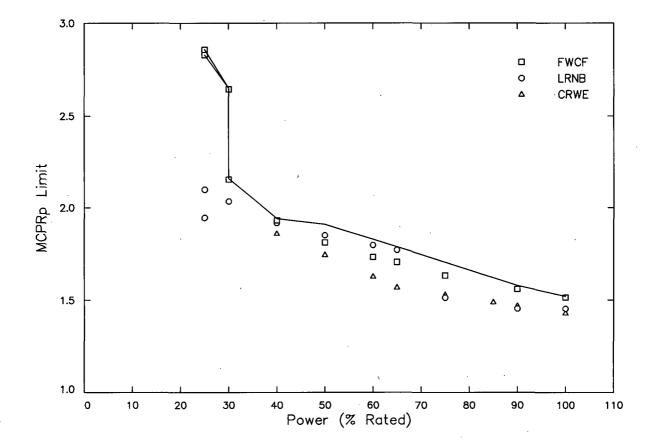
Figure A.50 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times PLUOOS

- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
Power (% of rated)	MCPR _p Limit
100	1.53
90	1.58
50	
50	1.89
40	1.94
30	2.16
30 at > 50%F	2.56
25 at > 50%F	2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72


Figure A.51 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times PLUOOS

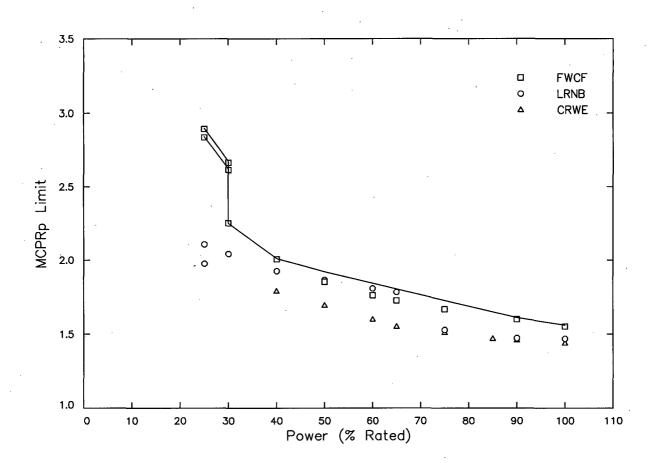
Power	MCPR _p
(% of rated)	Limit
100	1.52
90	1 <i>.</i> 58
50	
50	1.87
40	1.94
30	2.16
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83

Figure A.52 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fúel TSSS Insertion Times PLUOOS


ANP-2863(NP) Revision 1 Page A-54

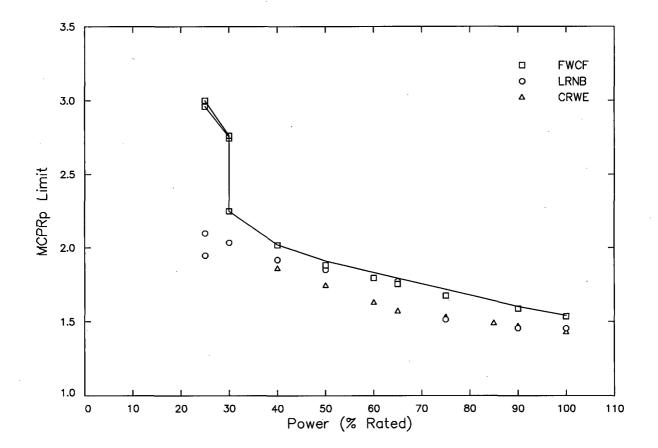
Power (% of rated)	MCPR _p Limit
100	1.53
90	1.58
50	
50	1.91
40	1.94
30	2.16
30 at > 50%F	2.56
25 at > 50%F	2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72

Figure A.53 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times PLUOOS


ANP-2863(NP) Revision 1 Page A-55.

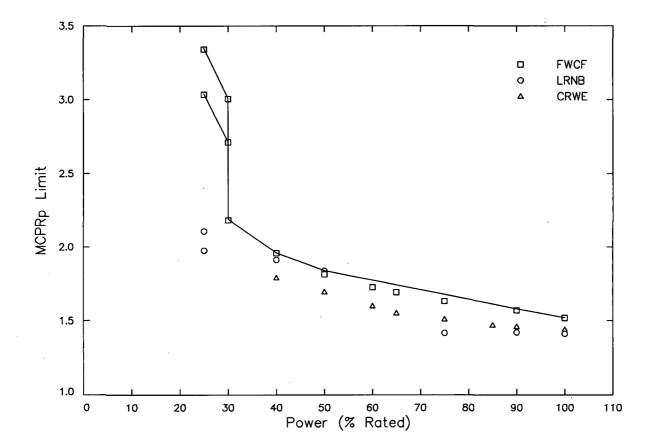
Power (% of rated)	MCPR _p Limit
100	1.52
90	1.58
50	
50	1.91
40	1.94
30	2.16
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83

Figure A.54 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times PLUOOS


ANP-2863(NP) Revision 1 Page A-56

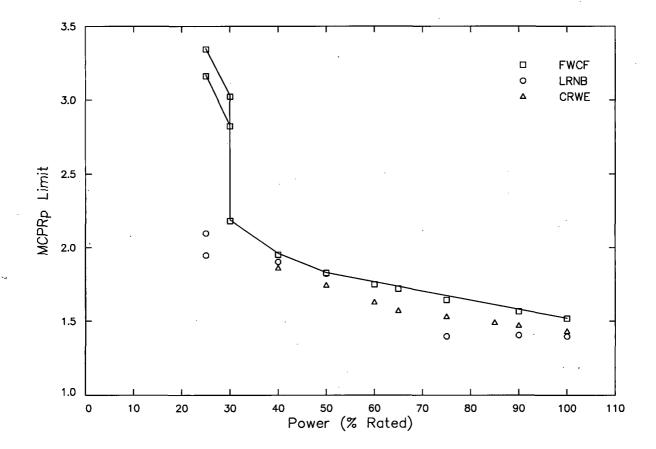
Power	
(% of rated)	Limit
100	1.56
90	1.61
50	
50	1.92
40	2.01
30	2.25
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

Figure A.55 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times PLUOOS


ANP-2863(NP) Revision 1 Page A-57

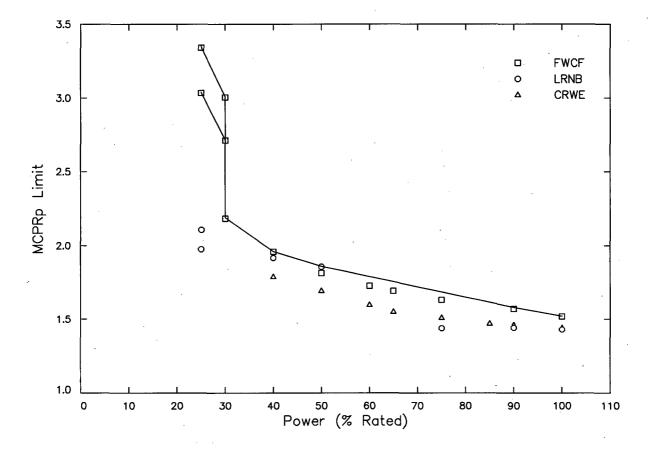
Power (% of rated)	MCPR _p Limit
100	1.54
90	1.60
50	[`]
50	1.91
40	2.02
30	2.25
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

Figure A.56 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times PLUOOS

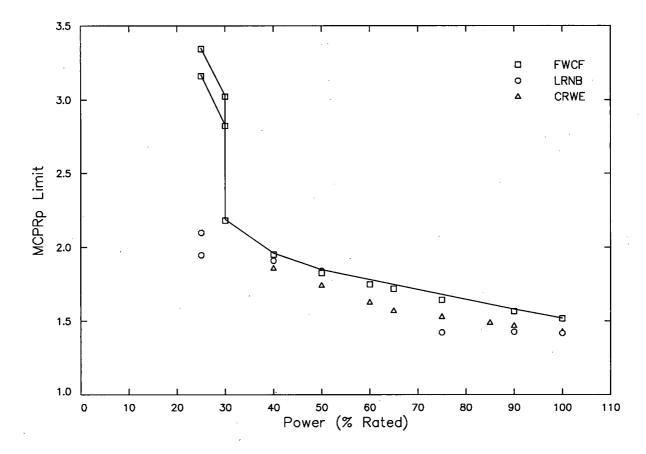

ANP-2863(NP) Revision 1 Page A-58

Power	
(% of rated)	Limit
100	1.52
. 90	1.58
50	
50	1.84
40	1.96
30	2.19
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04

Figure A.57 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS and TBVOOS Combined

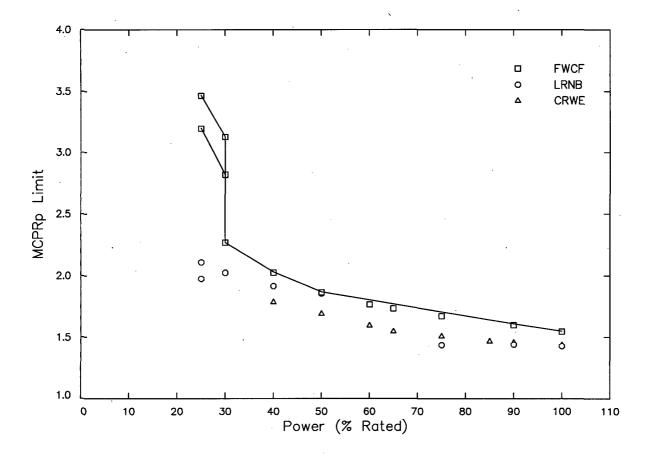

ANP-2863(NP) Revision 1 Page A-59

Power	MCPR _p
(% of rated)	Limit
100	1.52
90	1.58
50	
50	1.83
40	1.96
30	2.19
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17


Figure A.58 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS and TBVOOS Combined

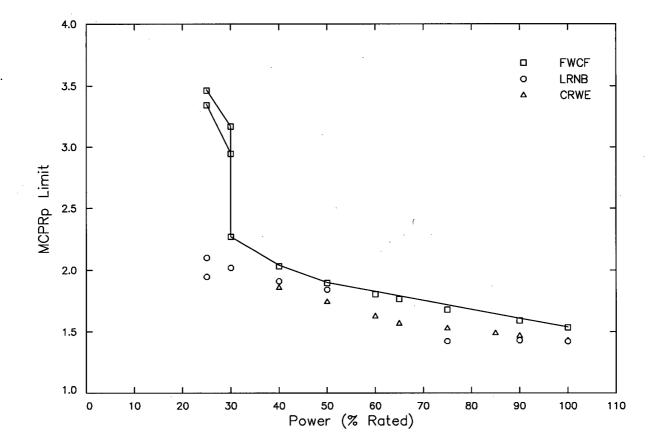
ANP-2863(NP) Revision 1 Page A-60

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.58
50	
50	1.86
40	1.96
30	2.19
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 át ≤ 50%F	3.04


Figure A.59 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS and TBVOOS Combined

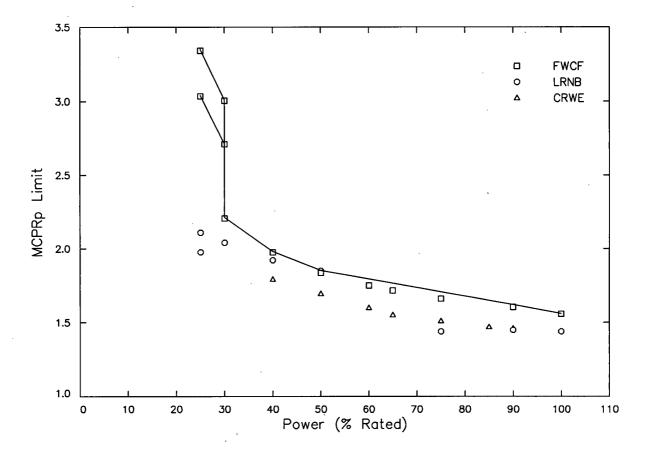
Power	MCPR _p
(% of rated)	Limit
100	1.52
90	1.58
50	
50	1.85
40	1.96
30	2.19
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17

Figure A.60 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS and TBVOOS Combined


ANP-2863(NP) Revision 1 Page A-62

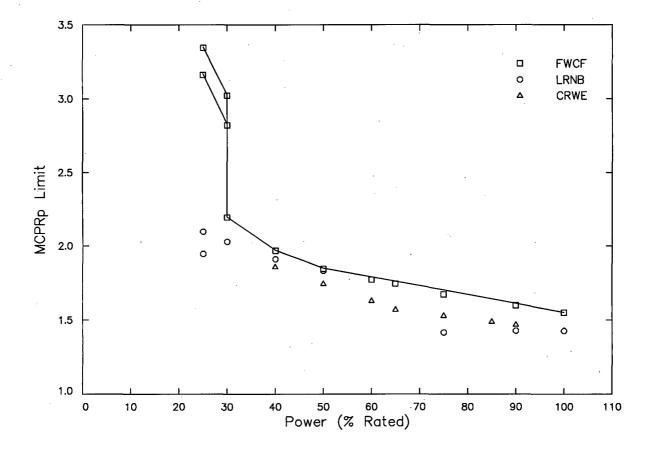
Power	MCPR _p
(% of rated)	Limit
100	1.55
90	1.61
50	
50	1.87
40	2.03
30	2.27
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.61 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS and TBVOOS Combined


ANP-2863(NP) Revision 1 Page A-63

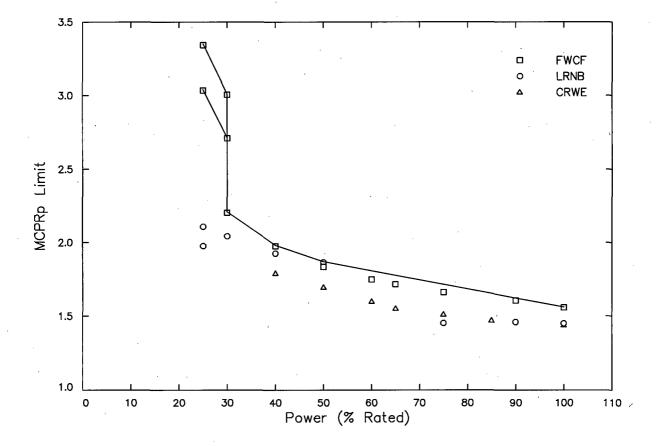
Power (% of rated)	MCPR _p Limit
100	1.54
90	1.61
50	
50	1.90
40	2.04
· 30	2.27
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.62 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS and TBVOOS Combined

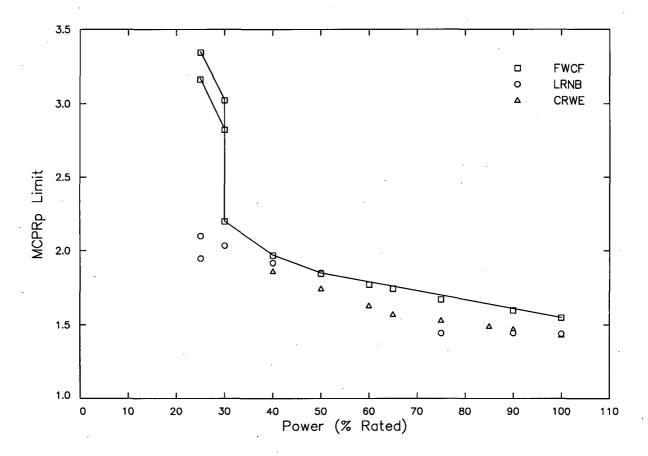

ANP-2863(NP) Revision 1 Page A-64

Power	MCPR _p
(% of rated)	Limit
100	1.56
90	1.62
50	
50	1.85
40	1.98
30	2.21
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04

Figure A.63 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS and TBVOOS Combined

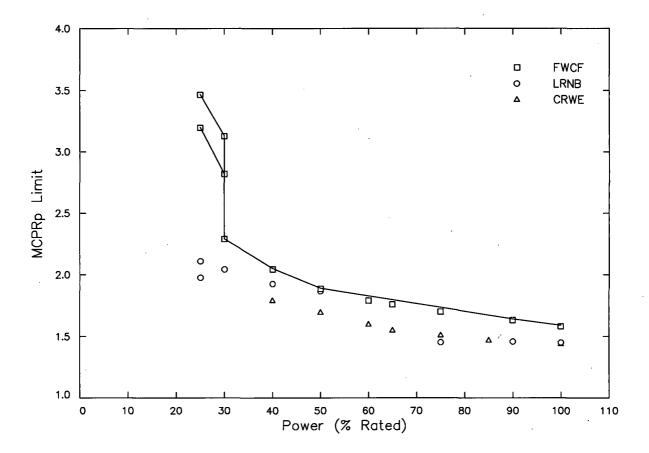

ANP-2863(NP) Revision 1 Page A-65

Power	
(% of rated)	Limit
100	1.55
90	1.61
50	·
50	1.85
40	1.97
30	2.20
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17


Figure A.64 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS and TBVOOS Combined

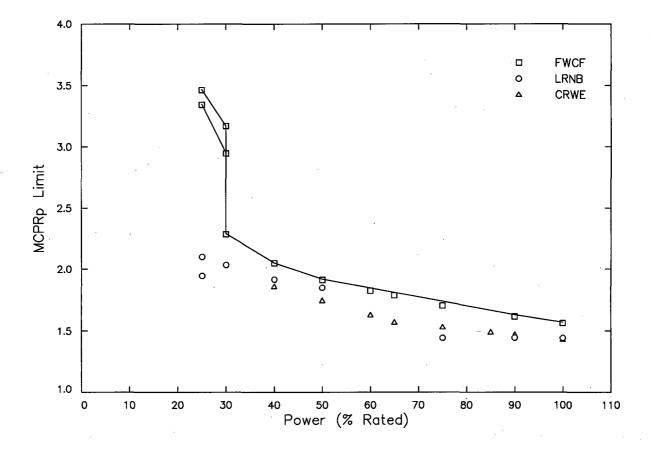
ANP-2863(NP) Revision 1 Page A-66

Power (% of rated)	MCPR _p Limit
100	1.56
90	1.62
50	
50	1.87
40	1.98
-30	2.21
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04


Figure A.65 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS and TBVOOS Combined

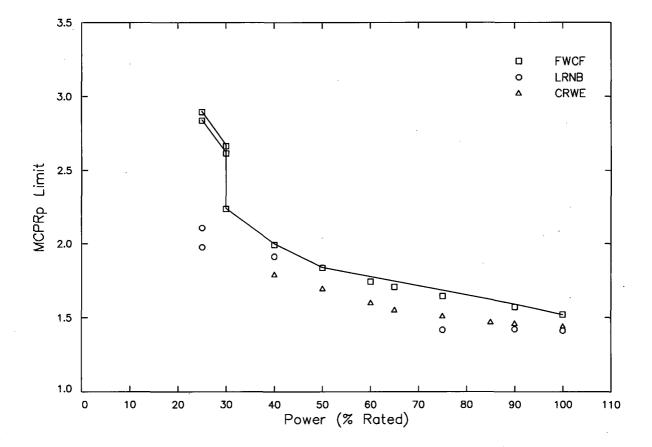
Power	MCPR _p
(% of rated)	Limit
100	1.55
90	1.61
50	
50	1.85
40	1.97
30	2.20
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17

Figure A.66 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS and TBVOOS Combined


ANP-2863(NP) Revision 1 Page A-68

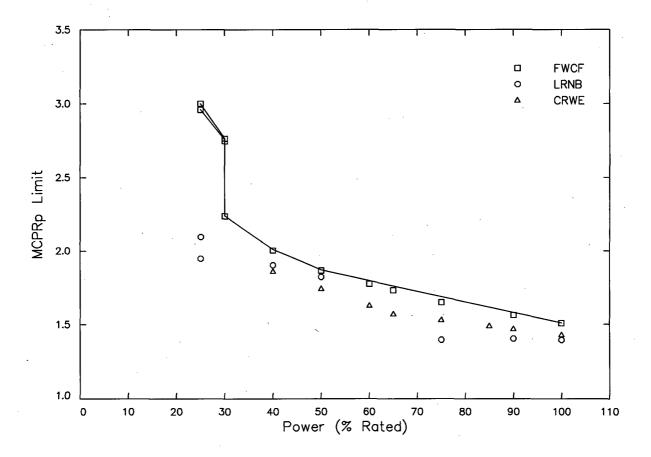
Power (% of rated)	MCPR _p Limit
<u>}</u>	
100	1.59
90	1.64
50	
50	1.89
40	2.05
. 30	2.29
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.67 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS and TBVOOS Combined

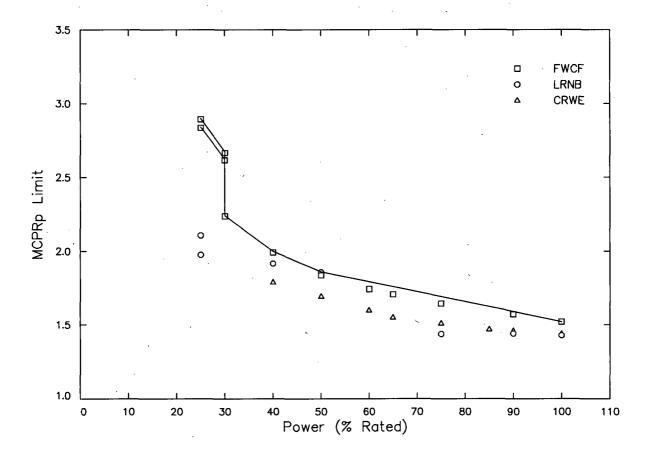

ANP-2863(NP) Revision 1 Page A-69

Power (% of rated)	MCPR _p Limit
100	1.57
90	1.63
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.68 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS and TBVOOS Combined

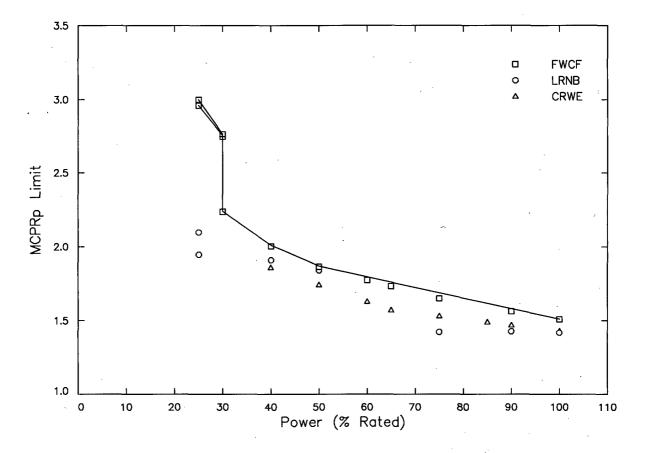

ANP-2863(NP) Revision 1 Page A-70

Power	MCPR _p
(% of rated)	Limit
100	1.52
90	1.59
50	
50	1.84
40	2.00
30	2.24
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84


Figure A.69 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS and FHOOS Combined

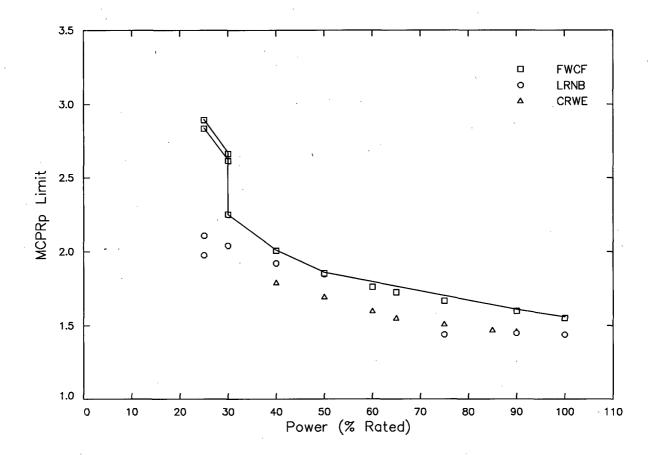
ANP-2863(NP) Revision 1 Page A-71

Power	
(% of rated)	Limit
100	1.51
90	1.58
50	
50	1.87
40	2.01
30	2.24
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

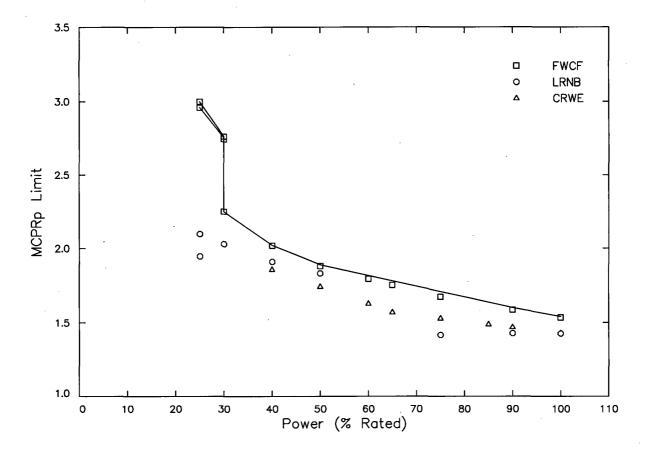

Figure A.70 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS and FHOOS Combined

Power	MCPR _p
(% of rated)	Limit
100	1.52
90	1.59
50	
50	1.86
40	2.00
30	2.24
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

Figure A.71 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS and FHOOS Combined


ANP-2863(NP) Revision 1 Page A-73

Power (% of rated)	MCPR _p Limit
100	1.51
90	1.58
50	
50	1.87
40	2.01
30	2.24
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96


Figure A.72 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS and FHOOS Combined

ANP-2863(NP) Revision 1 Page A-74

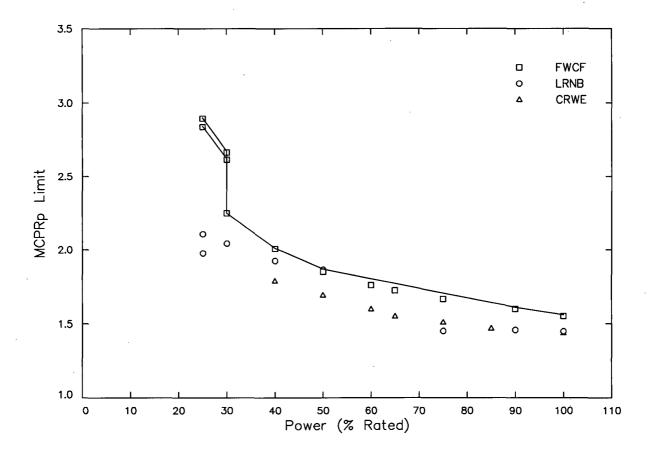
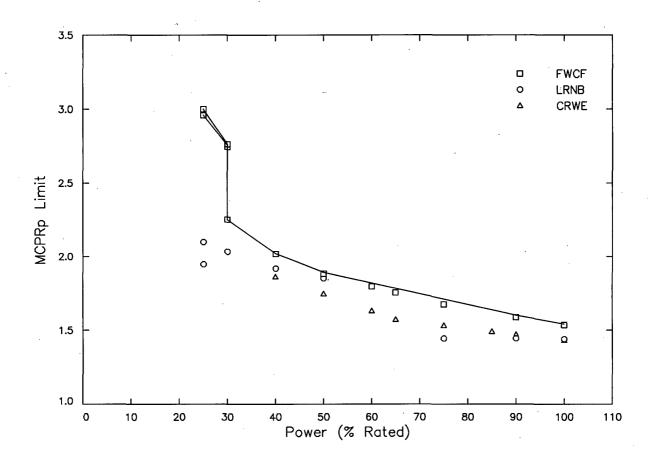

Power	
(% of rated)	Limit
100	1.56
90	1.61
50	1.86
40	2.01
30	2.25
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

Figure A.73 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS and FHOOS Combined

Power	
(% of rated)	Limit
100	1.54
90	1.60
50	
50	1.89
40	2.02
30	2.25
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96


Figure A.74 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS and FHOOS Combined

Power (% of rated)	MCPR _p Limit
100	1.56
90	1.61
50	
50	1.87
40	2.01
30	2.25
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

Figure A.75 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS and FHOOS Combined

ANP-2863(NP) Revision 1 Page A-77

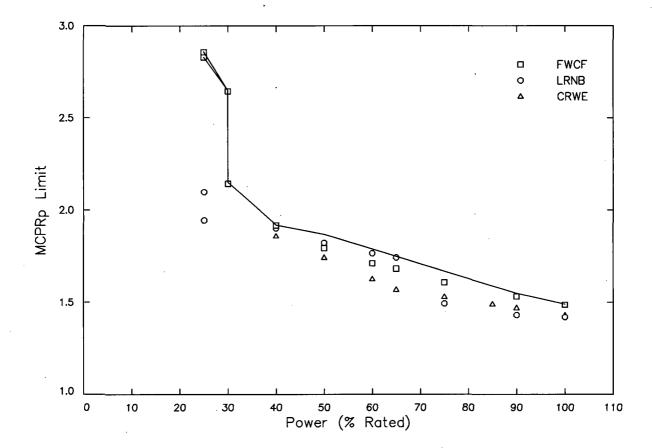

Power (% of rated)	MCPR _p Limit
100	1.54
90	1.60
50	
50	1.89
40	2.02
30	2.25
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

Figure A.76 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS and FHOOS Combined

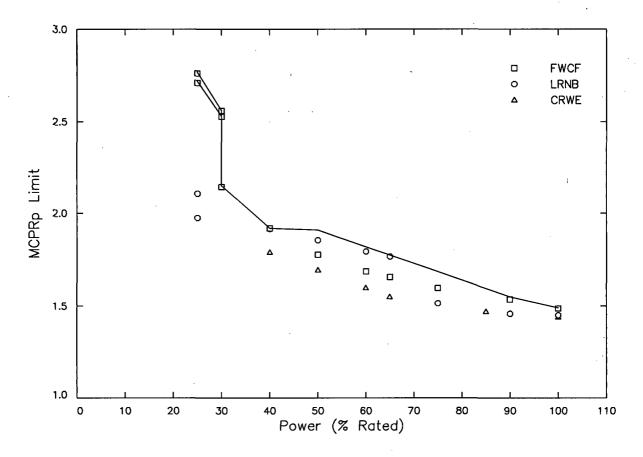

Power (% of rated)	MCPR _p Limit
100	1.49
90	1.55
50	
50	1.89
40	1.92
30	2.15
30 at > 50%F	2.56
25 at > 50%F	2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72

Figure A.77 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS and PLUOOS Combined

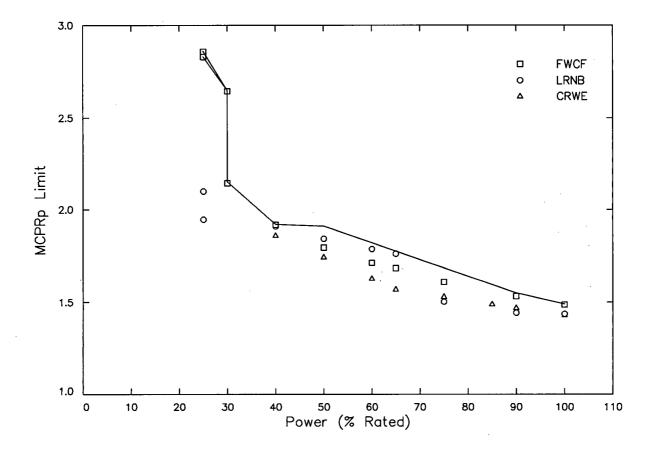
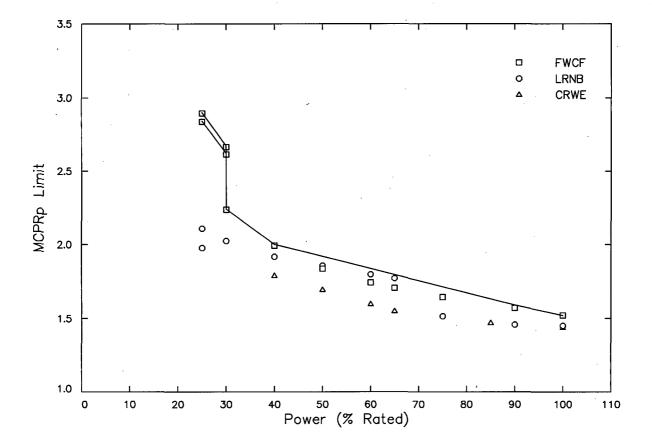
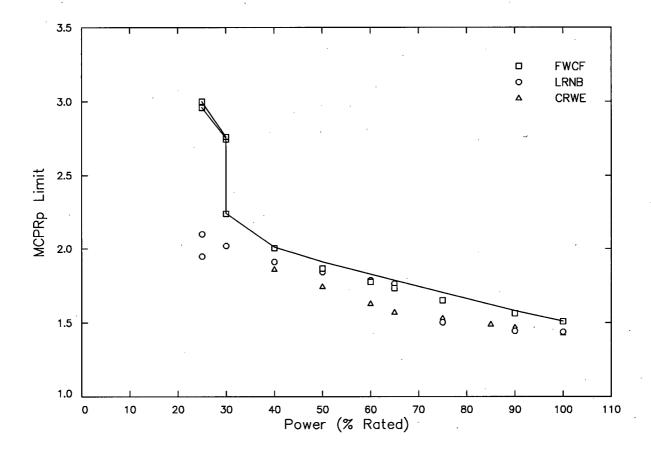

Power (% of rated)	MCPR _p Limit
100	1.49
90	1.55
50	
50	1.87
40	1.92
30	2.15
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83

Figure A.78 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS and PLUOOS Combined

Power	MCPR _p
(% of rated)	Limit
100	1.49
90	1.55
50	
50	1.91
40	1.92
30	2.15
30 at > 50%F	2.56
25 at > 50%F	-2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72

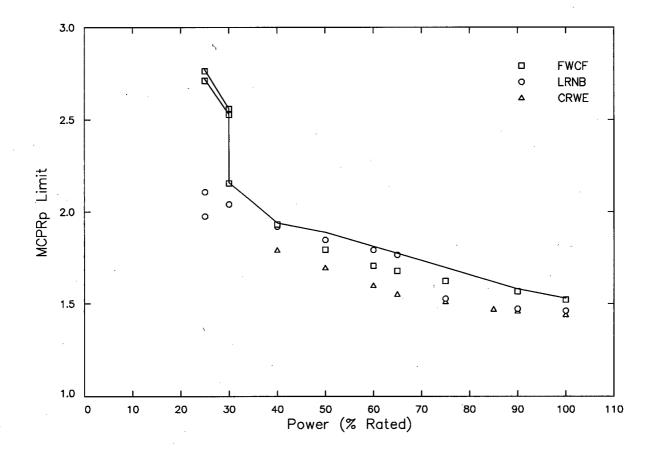

Figure A.79 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS and PLUOOS Combined

Power	MCPR _p
(% of rated)	Limit
100	1.49
-90	1.55
50	
50	1.91
40	1.92
30	2.15
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83


Figure A.80 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS and PLUOOS Combined

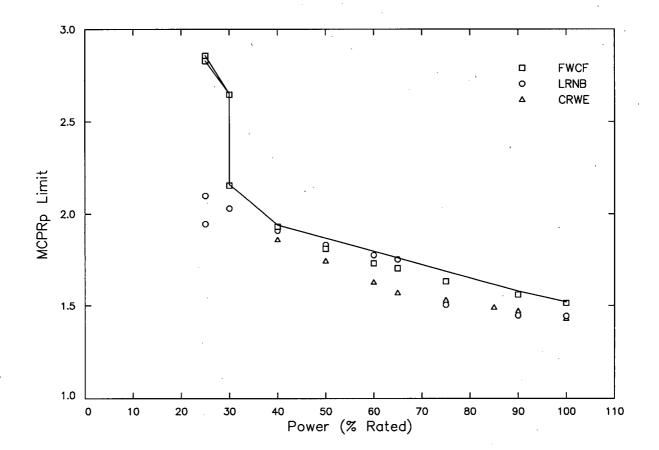
ANP-2863(NP) Revision 1 Page A-82

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.59
50	
50	1.92
40	2.00
30	2.24
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

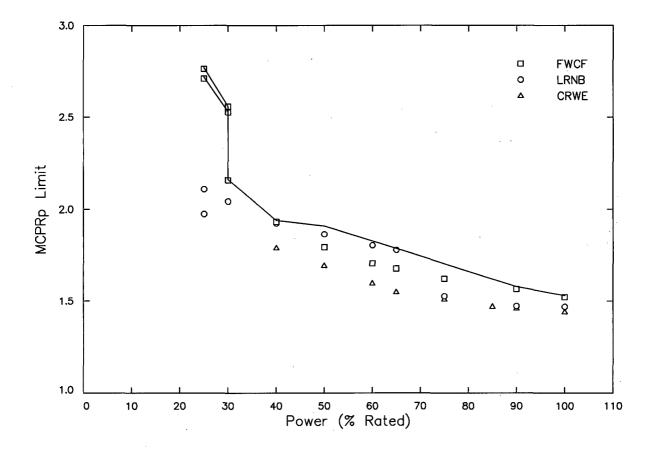

Figure A.81 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS and PLUOOS Combined

Power (% of rated)	MCPR _p Limit
100	1.51
90	1.58
50	
50	1.91
40	2.01
30	2.24
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

Figure A.82 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS and PLUOOS Combined

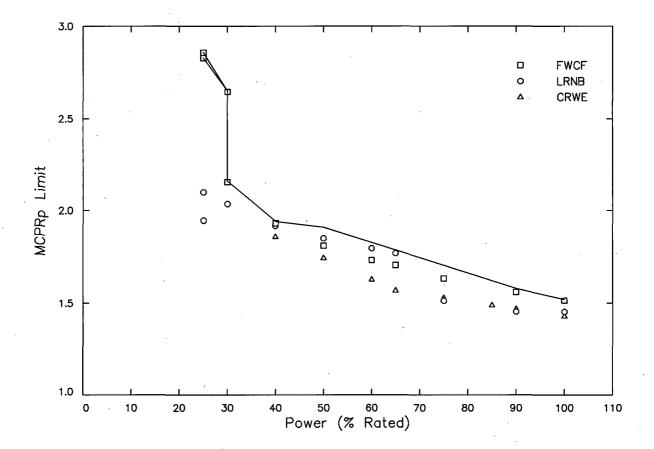

ANP-2863(NP) Revision 1 Page A-84

Power	
(% of rated)	Limit
100	1.53
90	1.58
50	
50	1.89
40	1.94
30	2.16
30 at > 50%F	2.56
25 at > 50%F	2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72


Figure A.83 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS and PLUOOS Combined

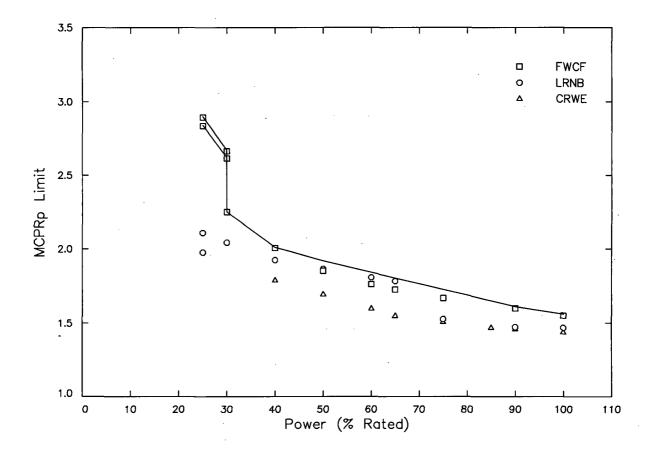
ANP-2863(NP) Revision 1 Page A-85

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.58
50	
50	1.87
40	1.94
30	2.16
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83


Figure A.84 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS and PLUOOS Combined

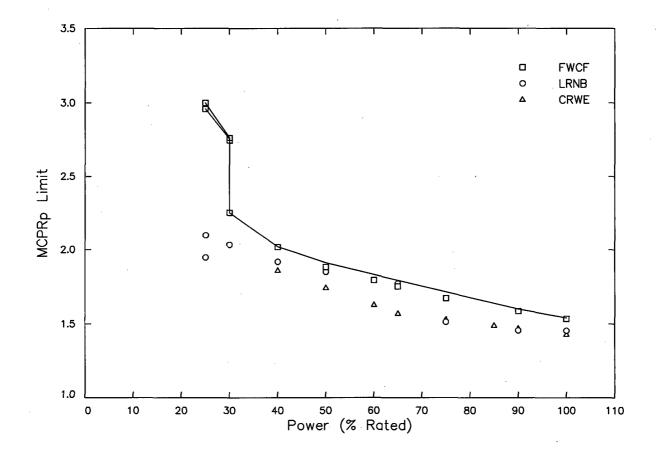
Power (% of rated)	MCPR _p Limit
100	1.53
90	1.58
50	
50	1.91
40	1.94
30	2.16
30 at > 50%F	2.56
25 at > 50%F	2.77
30 at ≤ 50%F	2.53
25 at ≤ 50%F	2.72

Figure A.85 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS and PLUOOS Combined

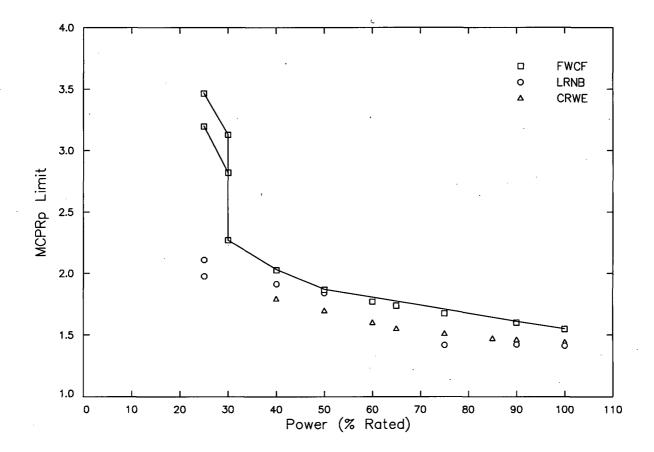

ANP-2863(NP) Revision 1 Page A-87

Power	
(% of rated)	Limit
100	1.52
90	1.58
50	
50	1.91
40	1.94
. 30	2.16
30 at > 50%F	2.65
25 at > 50%F	2.86
30 at ≤ 50%F	2.65
25 at ≤ 50%F	2.83

Figure A.86 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS and PLUOOS Combined


ANP-2863(NP) Revision 1 Page A-88

Power	
(% of rated)	Limit
100	1.56
90	1.61
50	
50	1.92
40	2.01
30	2.25
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84


Figure A.87 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS and PLUOOS Combined

ANP-2863(NP) Revision 1 Page A-89

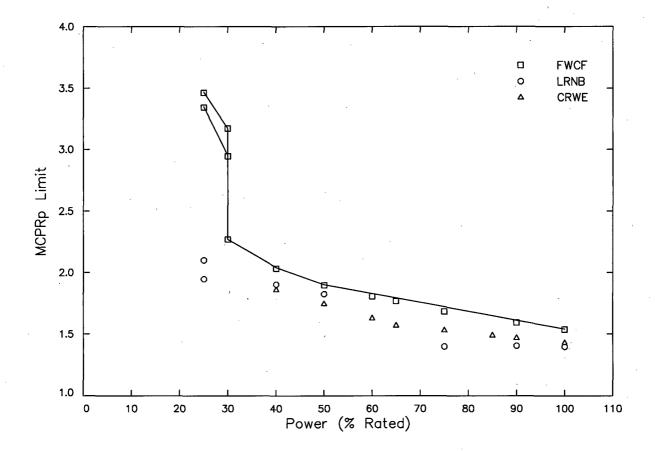

Power (% of rated)	MCPR _p Limit
100	1.54
90	1.60
50	
50	1.91
40	2.02
30	2.25
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

Figure A.88 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS and PLUOOS Combined

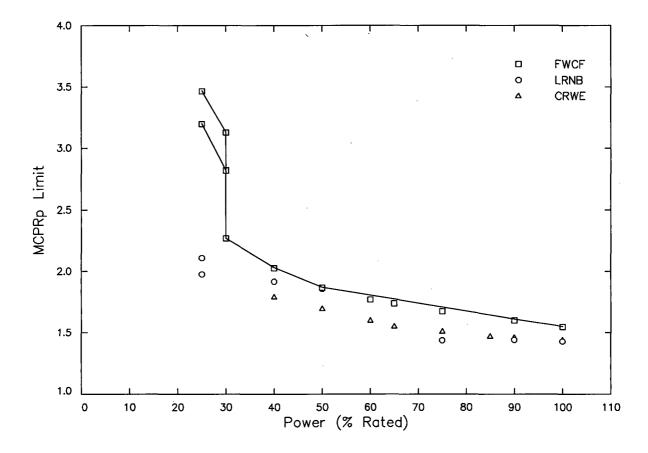
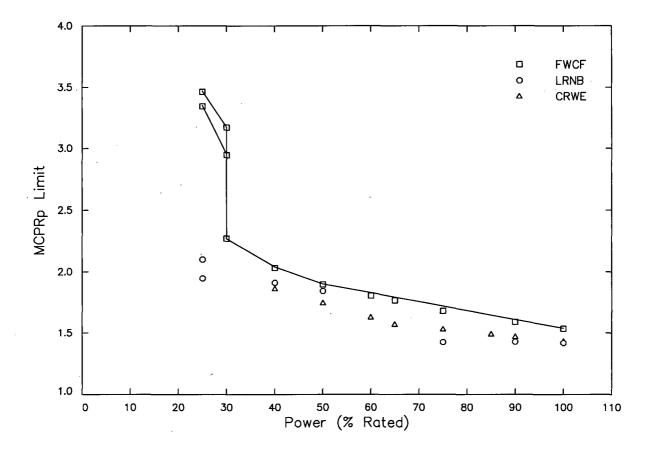

Power	MCPR _p
(% of rated)	Limit
100	1.55
90	1.61
50	
50	1.87
40	2.03
30	2.27
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

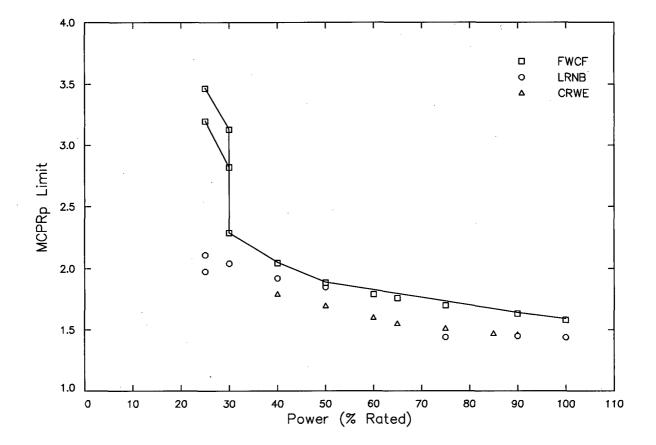
Figure A.89 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times TBVOOS and FHOOS Combined

Power (% of rated)	MCPR _p Limit
100	1.54
90	1.61
50	
50	1.90
40	2.04
30	2.27
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35


Figure A.90 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times TBVOOS and FHOOS Combined

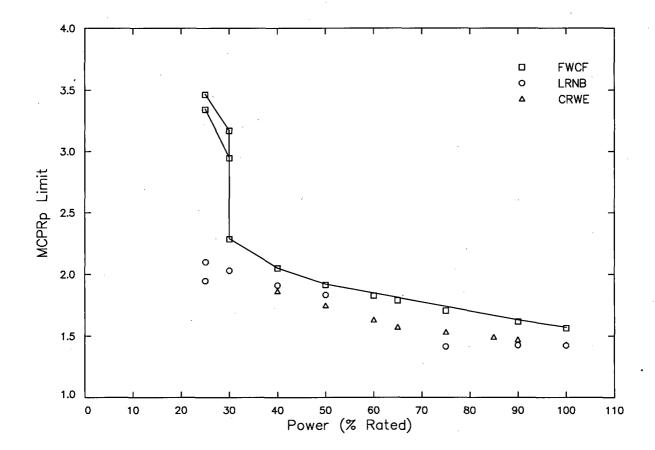
Power (% of rated)	MCPR _p Limit
100	1.55
90	1.61
50	
50	1.87
40	2.03
30	2.27
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.91 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times TBVOOS and FHOOS Combined


ANP-2863(NP) Revision 1 Page A-93

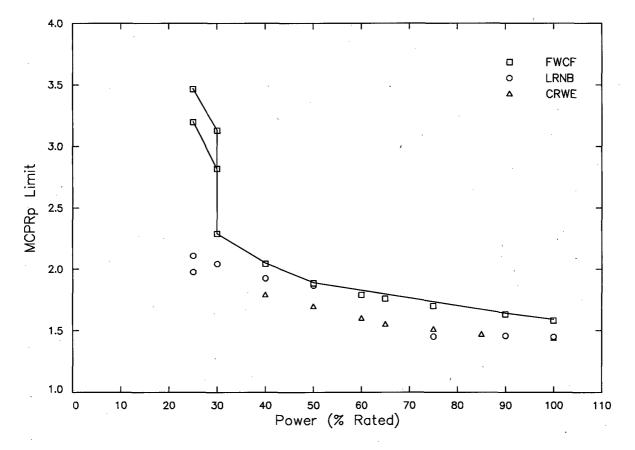
Power (% of rated)	MCPR _p Limit
100	1.54
90	1.61
50	
50	1.90
40	2.04
30	2.27
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.92 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times TBVOOS and FHOOS Combined

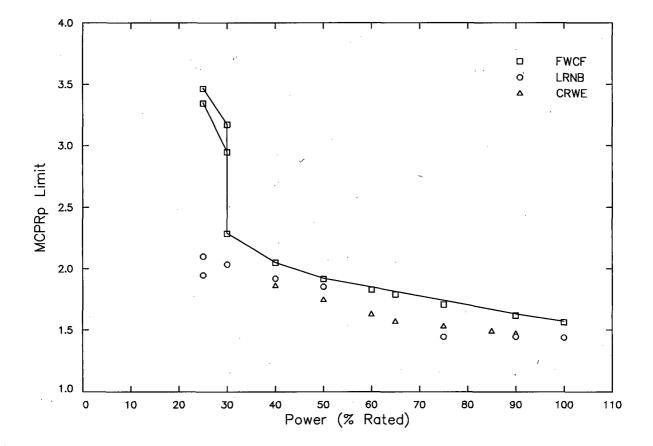

ANP-2863(NP) Revision 1 Page A-94

Power (% of rated)	MCPR _p Limit
100	1.59
90	1.64
50	
50	1.89
40	2.05
30	2.29
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.93 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times TBVOOS and FHOOS Combined

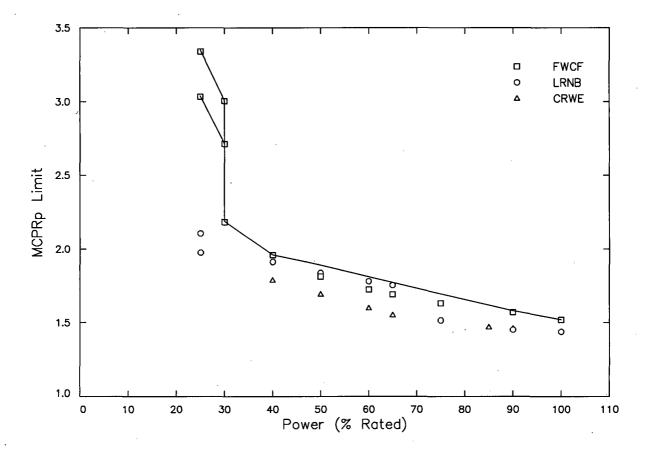

ANP-2863(NP) Revision 1 Page A-95

Power (% of rated)	MCPR _p Limit
100	1.57
90	1.63
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35


Figure A.94 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times TBVOOS and FHOOS Combined

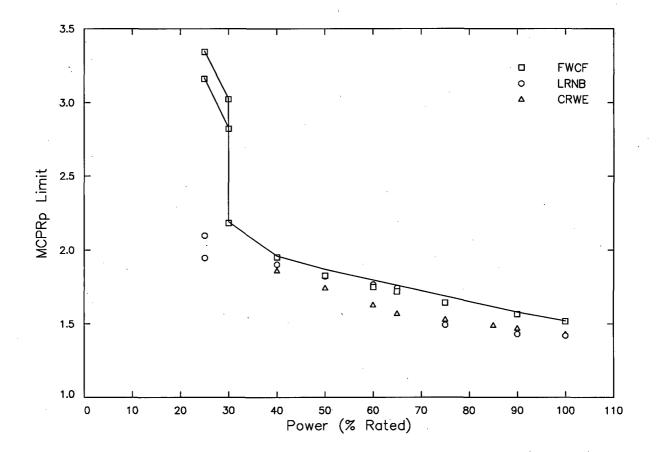
ANP-2863(NP) Revision 1 Page A-96

Power (% of rated)	MCPR _p Limit
100	1.59
90	1.64
50	
50	1.89
40	2.05
30	2.29
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20


Figure A.95 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times TBVOOS and FHOOS Combined

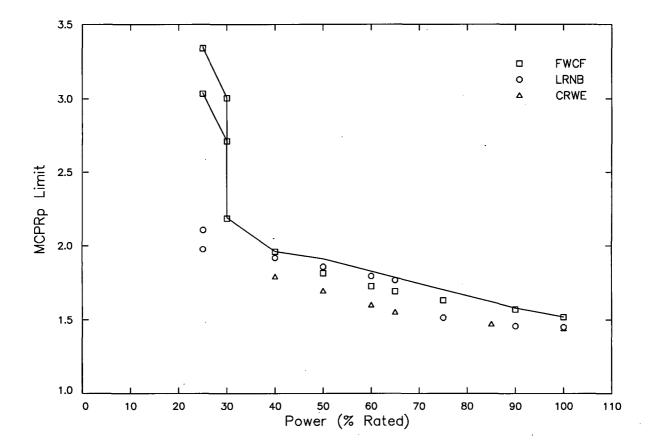
Power (% of rated)	MCPR _p Limit
100	1.57
90	1.63
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.96 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times TBVOOS and FHOOS Combined

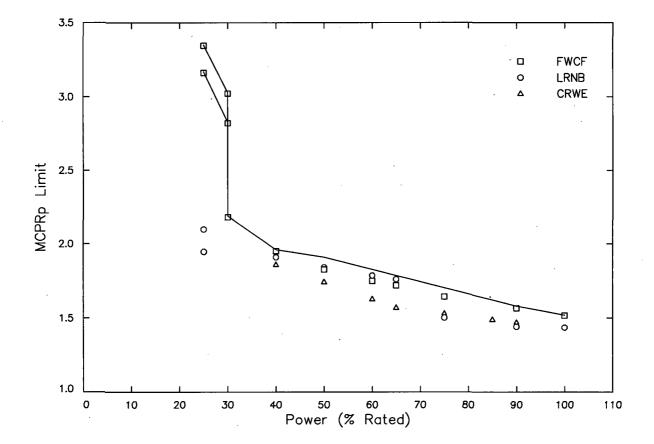

ANP-2863(NP) Revision 1 Page A-98

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.58
50	
50	1.89
40	1.96
30	2.19
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04

Figure A.97 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times TBVOOS and PLUOOS Combined


ANP-2863(NP) Revision 1 Page A-99

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.58
50	
50	1.87
40	1.96
30	2.19
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17


Figure A.98 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times TBVOOS and PLUOOS Combined

ANP-2863(NP) Revision 1 Page A-100

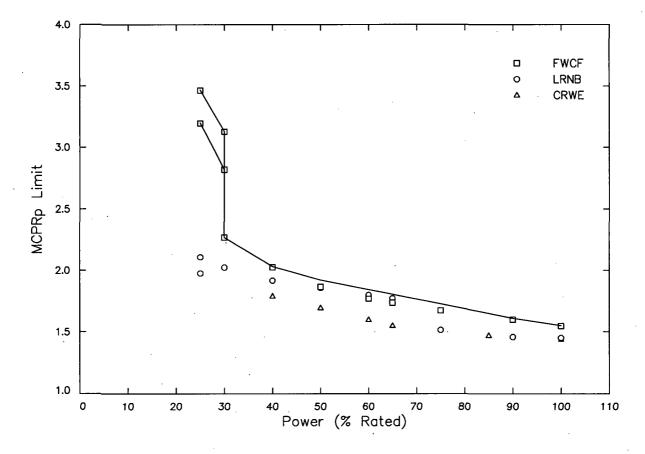
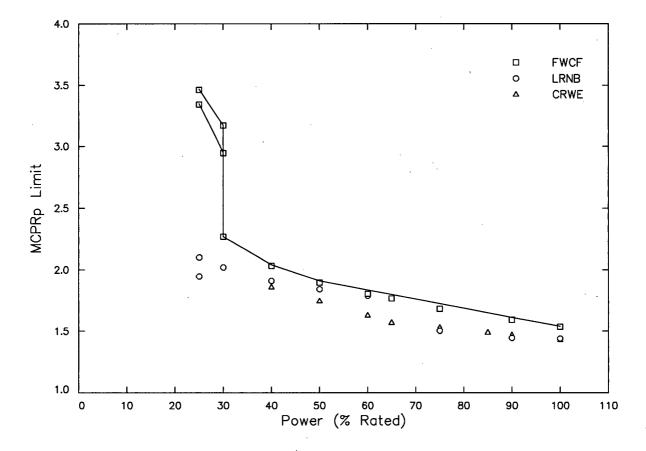

	·····
Power	
(% of rated)	Limit
100	1.52
90	1.58
50	
50	1.91
40	1.96
30	2.19
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04

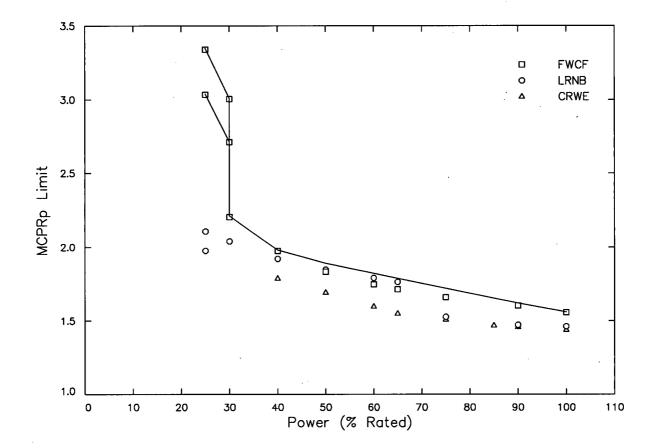
Figure A.99 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times TBVOOS and PLUOOS Combined

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.58
50	
50	1.91
40	1.96
30	2.19
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17

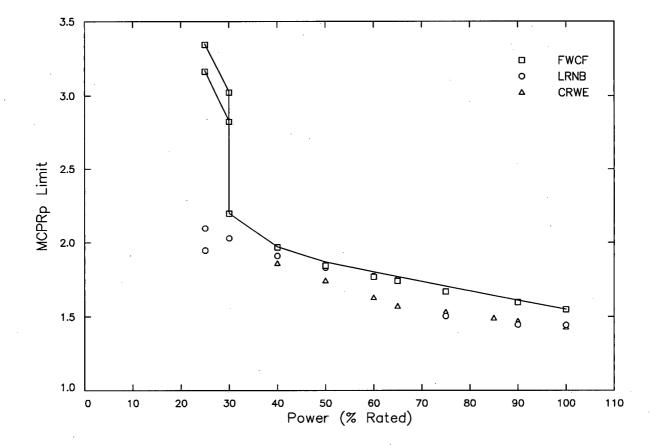

Figure A.100 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times TBVOOS and PLUOOS Combined

Power	
(% of rated)	Limit
100	1.55
90	1.61
50	
50	1.92
40	2.03
30	2.27
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.101 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times TBVOOS and PLUOOS Combined

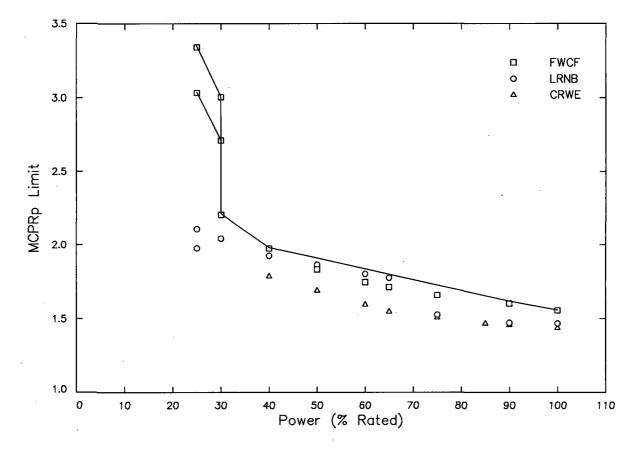

ANP-2863(NP) Revision 1 Page A-103

Power (% of rated)	MCPR _p Limit
100	1.54
90	1.61
50	
50	1.91
· 40	2.04
30	2.27
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35


Figure A.102 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times TBVOOS and PLUOOS Combined

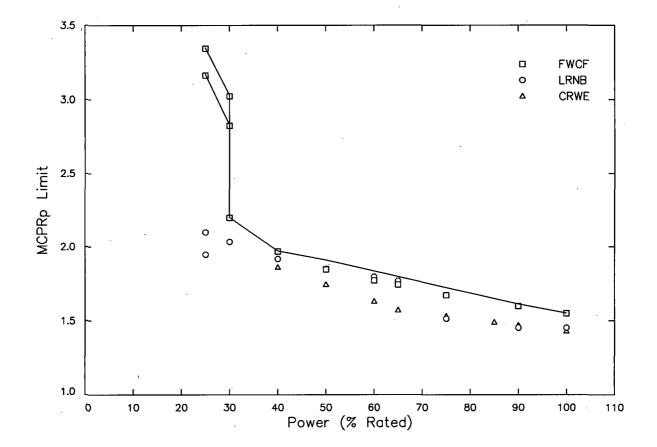
ANP-2863(NP) Revision 1 Page A-104

Power	
(% of rated)	Limit
100	1.56
90	1.62
50	
50	1.89
40	1.98
30	2.21
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04


Figure A.103 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times TBVOOS and PLUOOS Combined

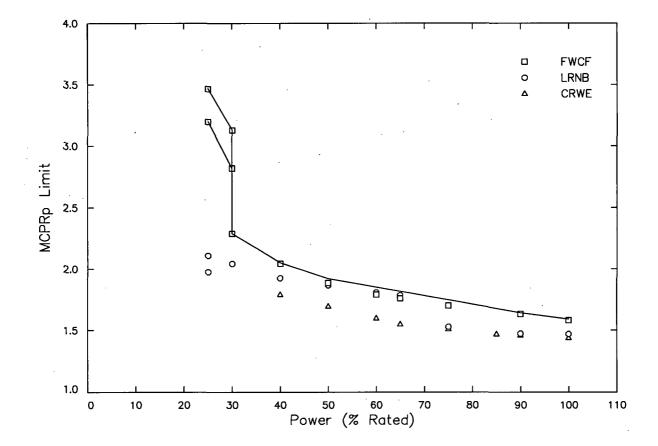
Power (% of rated)	MCPR _p Limit
100	1.55
90	1.61
50	
50	1.87
40	1.97
30	2.20
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17

Figure A.104 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times TBVOOS and PLUOOS Combined

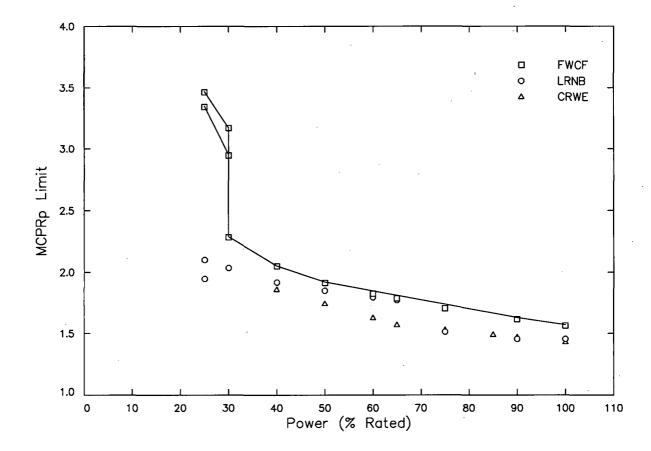

ANP-2863(NP) Revision 1 Page A-106

Power (% of rated)	MCPR _p Limit
100	1.56
90	1.62
50	
50	1.91
40	1.98
30	2.21
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04

Figure A.105 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times TBVOOS and PLUOOS Combined


ANP-2863(NP) Revision 1 Page A-107

MCPR _p Limit
1.55
1.61
1.91
1.97
2.20
3.03
3.35
2.83
3.17


Figure A.106 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times TBVOOS and PLUOOS Combined

ANP-2863(NP) Revision 1 Page A-108

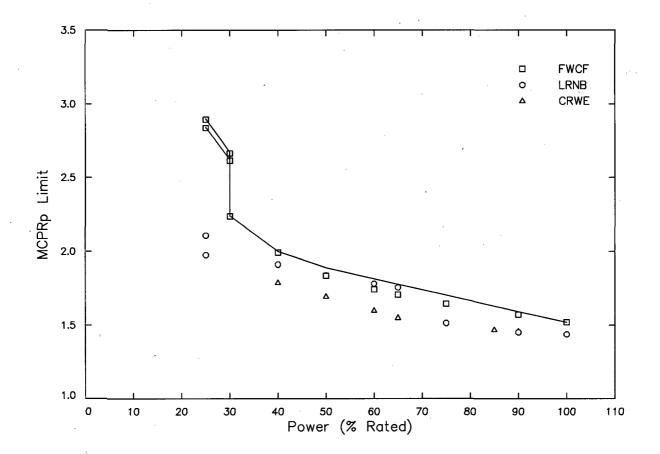
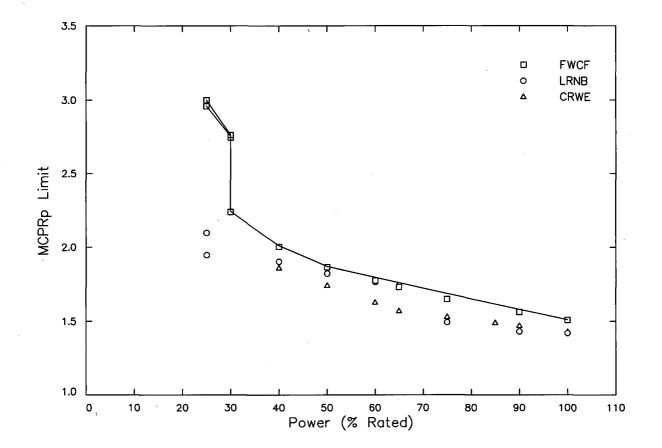
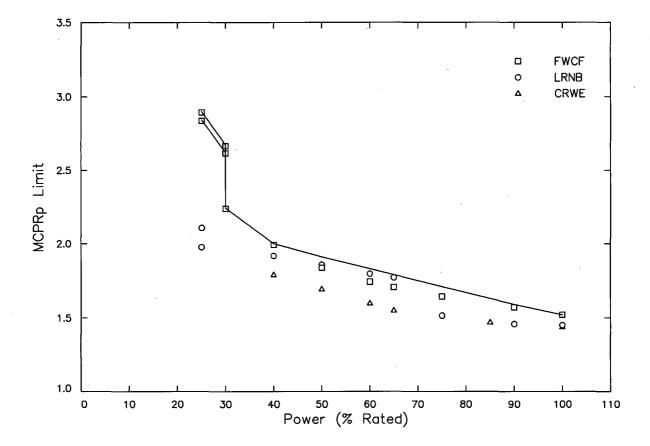

Power (% of rated)	MCPR _p Limit
100	1.59
90	1.64
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.107 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times TBVOOS and PLUOOS Combined

Power	
(% of rated)	Limit
100	1.57
90	1.63
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35


Figure A.108 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times TBVOOS and PLUOOS Combined

Power	
(% of rated)	Limit
100	1.52
90	1.59
50	
50	1.89
40	2.00
30	2.24
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84


Figure A.109 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times FHOOS and PLUOOS Combined

ANP-2863(NP) Revision 1 Page A-111

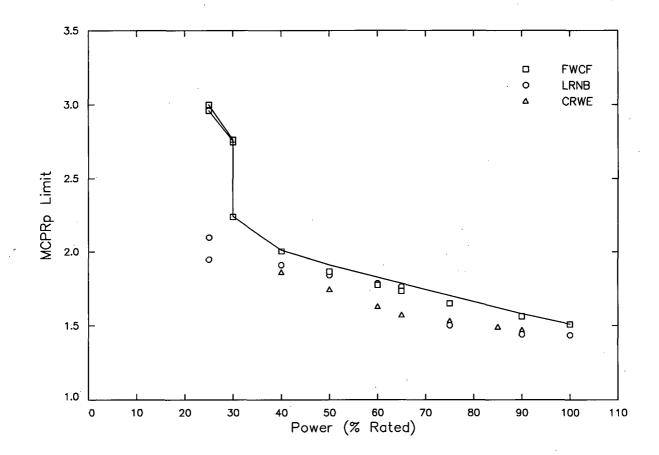
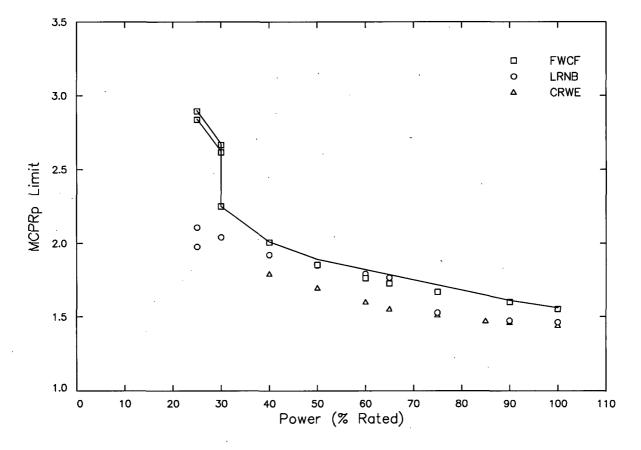

Power (% of rated)	MCPR _p Limit
100	1.51
90	1.58
50	
50	1.87
40	2.01
30	2.24
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

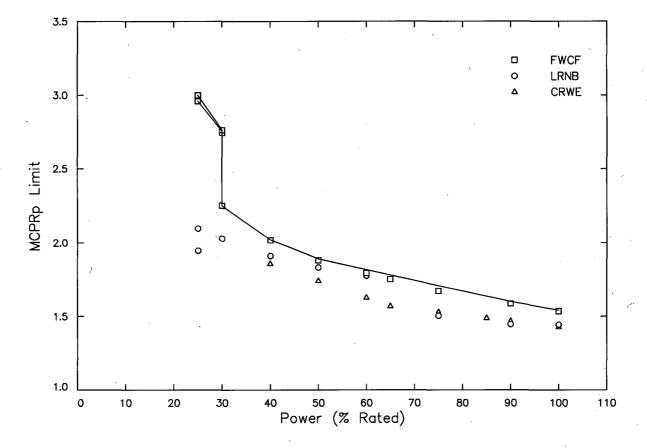
Figure A.110 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times FHOOS and PLUOOS Combined

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.59
50	
50	1.91
40	2.00
30	2.24
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

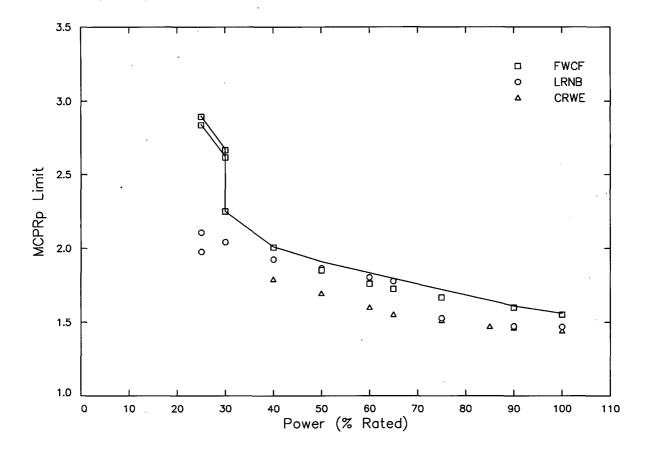

Figure A.111 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times FHOOS and PLUOOS Combined

the second se	
Power	MCPR _p
(% of rated)	Limit
100	1.51
90	1.58
50	
50	1.91
40	2.01
30	2.24
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

Figure A.112 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times FHOOS and PLUOOS Combined


ANP-2863(NP) Revision 1 Page A-114

Power	MCPR _p
(% of rated)	Limit
100	1.56
90	1.61
50	
50	1.89
40	2.01
30	2.25
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84


Figure A.113 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times FHOOS and PLUOOS Combined

ANP-2863(NP) Revision 1 Page A-115

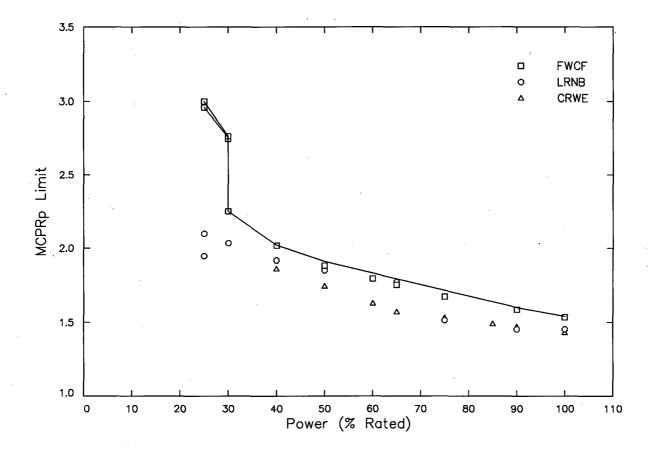
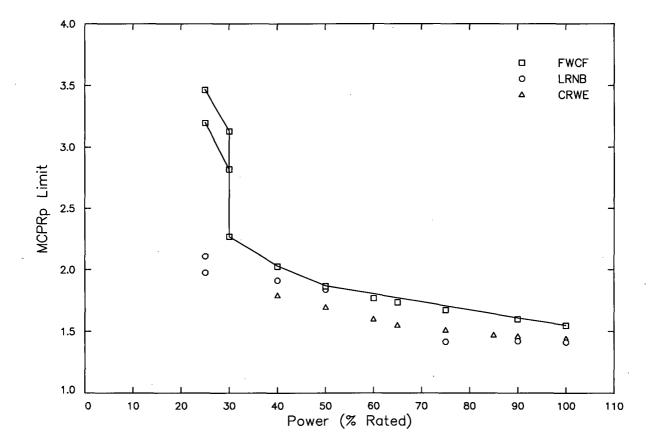
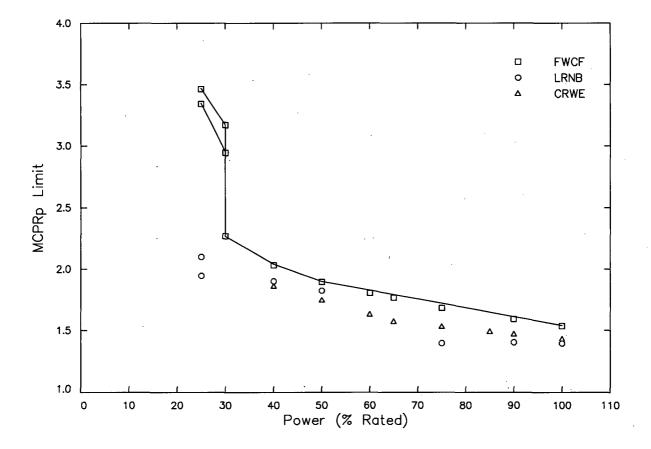

Power (% of rated)	MCPR _p Limit
100	1.54
90	1.60
50	
50	1.89
40	2.02
30	2.25
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

Figure A.114 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times FHOOS and PLUOOS Combined

Power	MCPR _p
(% of rated)	Limit
100	1.56
90	1.61
50	
50	1.91
40	2.01
30	2.25
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

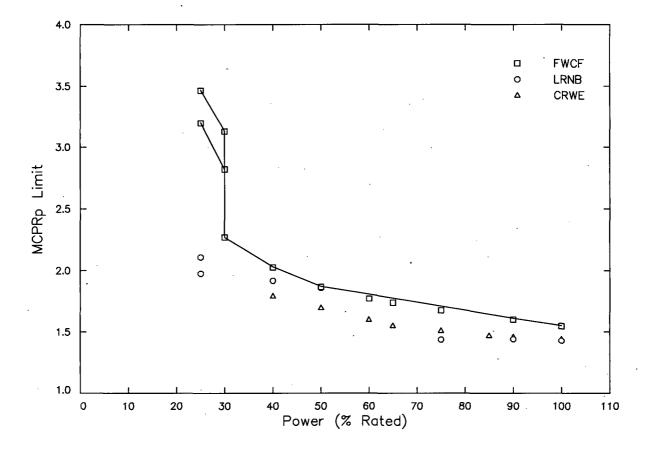

Figure A.115 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times FHOOS and PLUOOS Combined

Power (% of rated)	MCPR _p Limit
100	1.54
90	1.60
50	
50	1.91
40	2.02
30	2.25
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

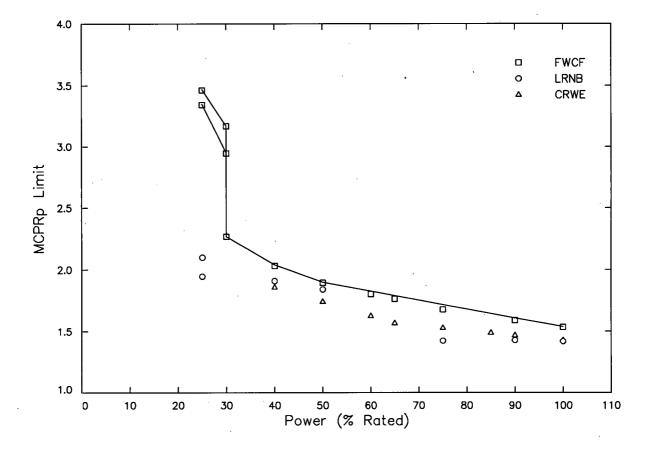

Figure A.116 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times FHOOS and PLUOOS Combined

ANP-2863(NP) Revision 1 Page A-118

Power (% of rated)	MCPR _p Limit
100	1.55
90	1.61
50	
50	1.87
40	2.03
30	2.27
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20


Figure A.117 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, and FHOOS Combined

Power (% of rated)	MCPR _p Limit
(70 01 1000)	
100	1.54
90	1.61
50	
50	1.90
40	2.04
30	2.27
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35


Figure A.118 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, and FHOOS Combined

ANP-2863(NP) Revision 1 Page A-120

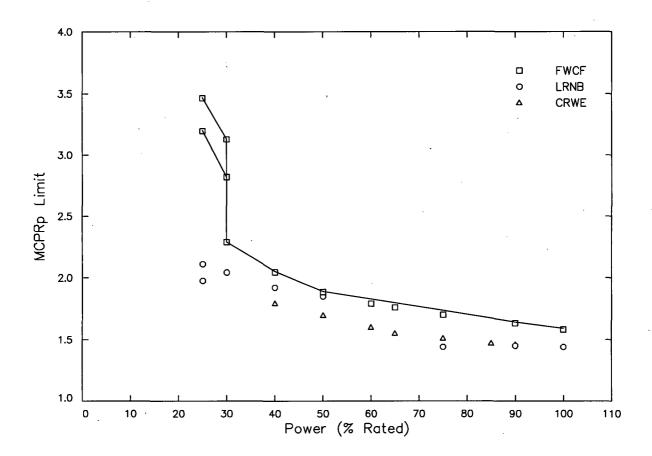

Power (% of rated)	MCPR _p Limit
100	1.55
90	1.61
50	
50	1.87
40	2.03
30	2.27
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.119 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, and FHOOS Combined

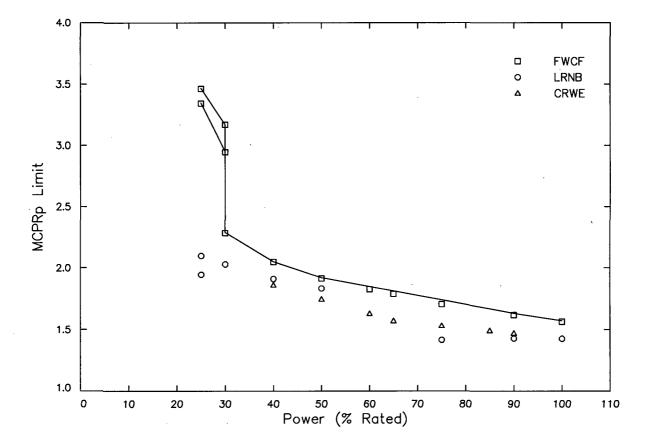

Power (% of rated)	MCPR _p Limit
100	1.54
90	1.61
50	 .
50	1.90
40	2.04
30	2.27
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.120 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, and FHOOS Combined

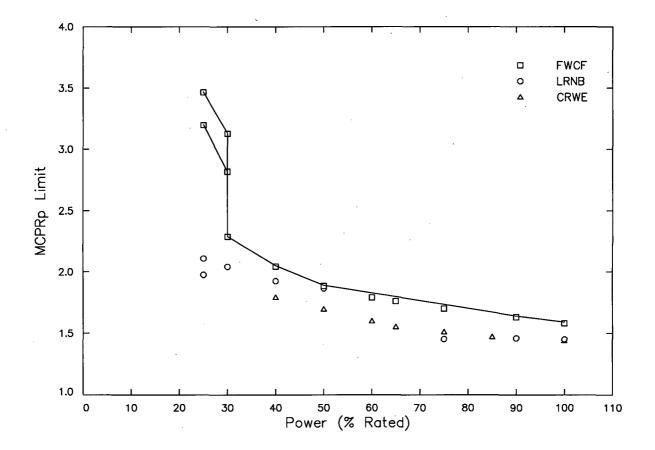

Power (% of rated)	MCPR _p Limit
100	1.59
90	1.64
50	
50	1.89
40	2.05
30	2.29
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.121 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, and FHOOS Combined

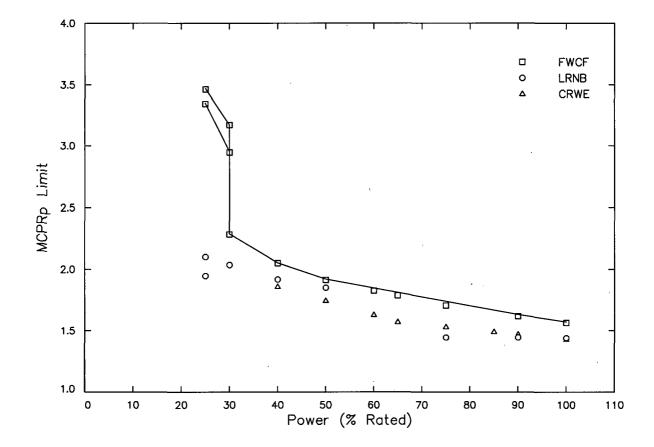
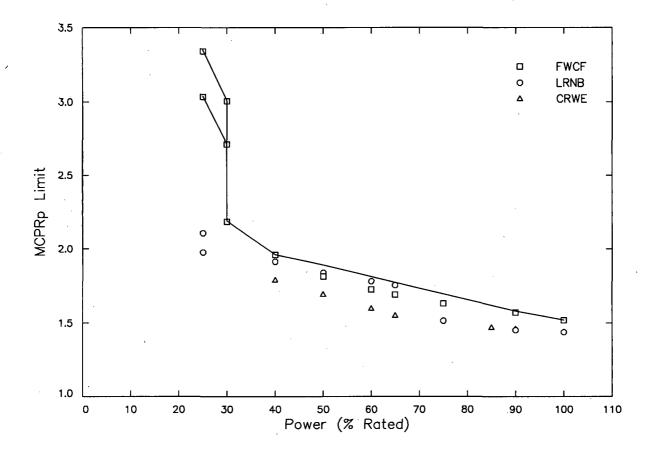

Power (% of rated)	MCPR _p Limit
100	1.57
90	1.63
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

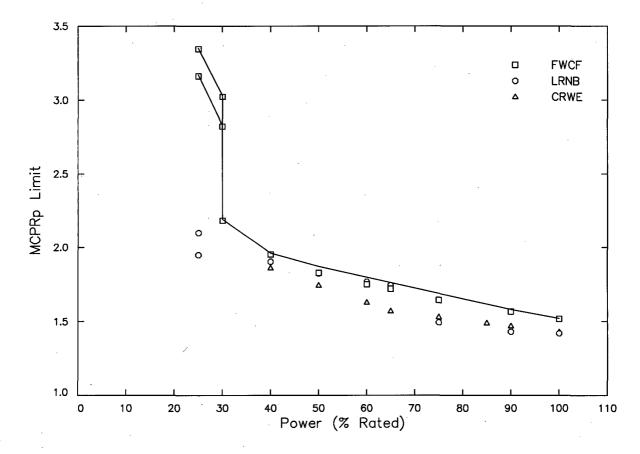
Figure A.122 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, and FHOOS Combined

· · · · · · · · · · · · · · · · · · ·	
Power	
(% of rated)	Limit
100	1.59
90	1.64
50	
50	1.89
40	2.05
30	2.29
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20


Figure A.123 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, and FHOOS Combined

	· · · · · · · · · · · · · · · · · · ·
Power	
(% of rated)	Limit
100	1.57
90	1.63
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.124 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, and FHOOS Combined


ANP-2863(NP) Revision 1 Page A-126

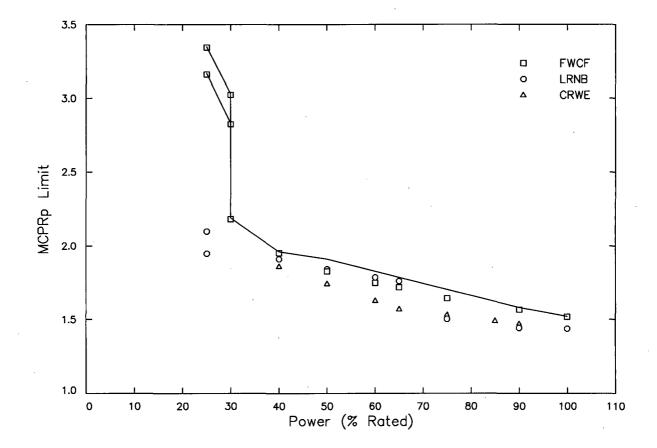
Power (% of rated)	MCPR _p Limit
(70 01 10100)	
100	1.52
90	1.58
50	
50	1.89
40	1.96
30	2.19
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04

Figure A.125 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, and PLUOOS Combined

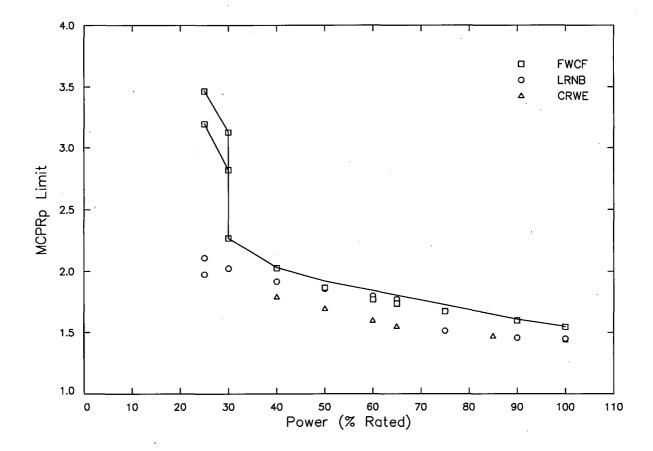
ANP-2863(NP) Revision 1 Page A-127

Power	
(% of rated)	Limit
100	1.52
90	1.58
50	
50	1.87
40	1.96
30	2.19
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17

Figure A.126 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, and PLUOOS Combined

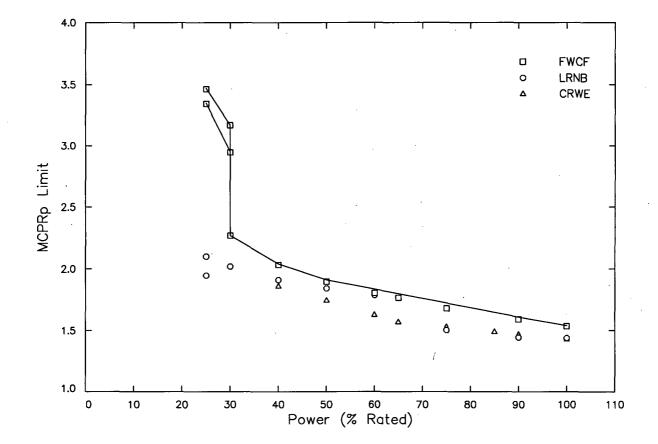

ANP-2863(NP) Revision 1 Page A-128

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.58
50	
50	1.91
40	1.96
30	2.19
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04


Figure A.127 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, and PLUOOS Combined

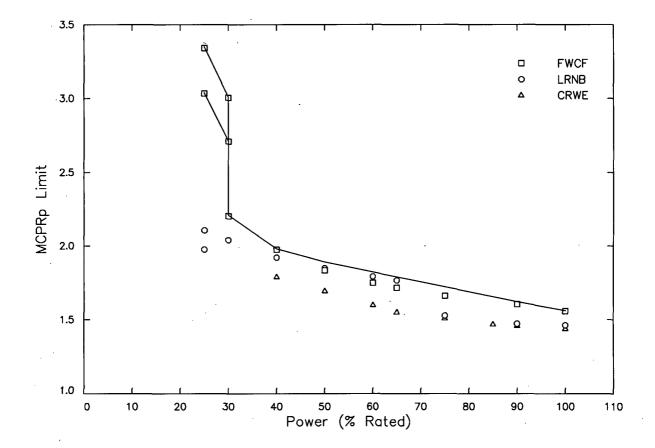
ANP-2863(NP) Revision 1 Page A-129

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.58
50	
50	1.91
40	1.96
30	2.19
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17


Figure A.128 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, and PLUOOS Combined

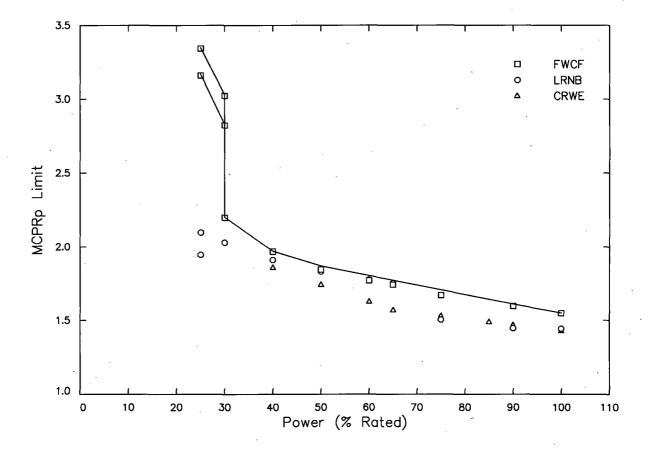
Power (% of rated)	MCPR _p Limit
100	1.55
90	1.61
50	
50	1.92
40	2.03
- 30	2.27
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.129 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, and PLUOOS Combined


ANP-2863(NP) Revision 1 Page A-131

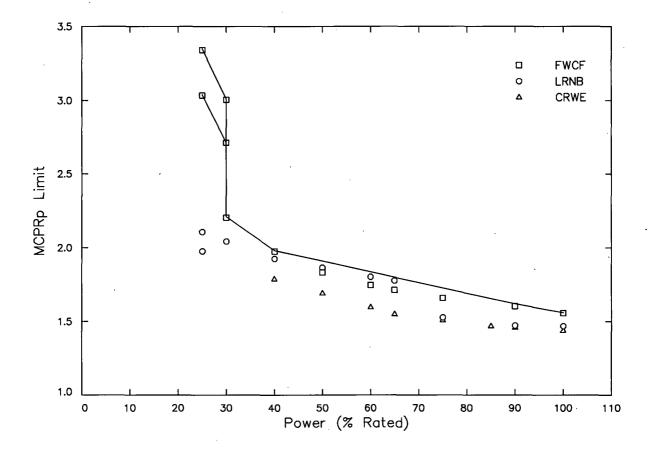
Power (% of rated)	MCPR _p Limit
100	1.54
90	1.61
50	
50	1.91
40	2.04
30	2.27
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.130 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, and PLUOOS Combined


ANP-2863(NP) Revision 1 Page A-132

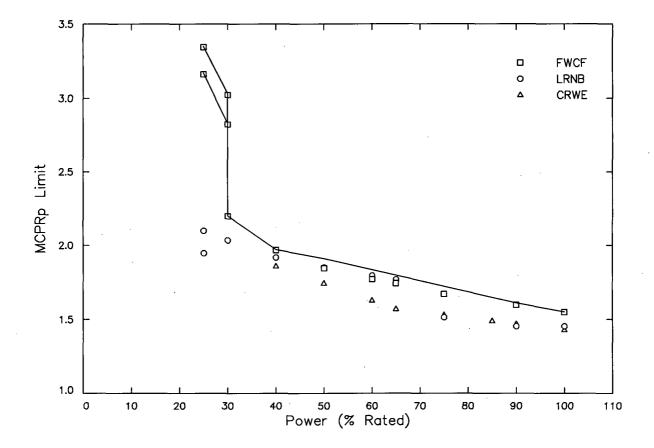
Power	MCPR _p
(% of rated)	Limit
100	1.56
90	1.62
50	
50	1.89
40	1.98
30	2.21
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04

Figure A.131 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, and PLUOOS Combined


ANP-2863(NP) Revision 1 Page A-133

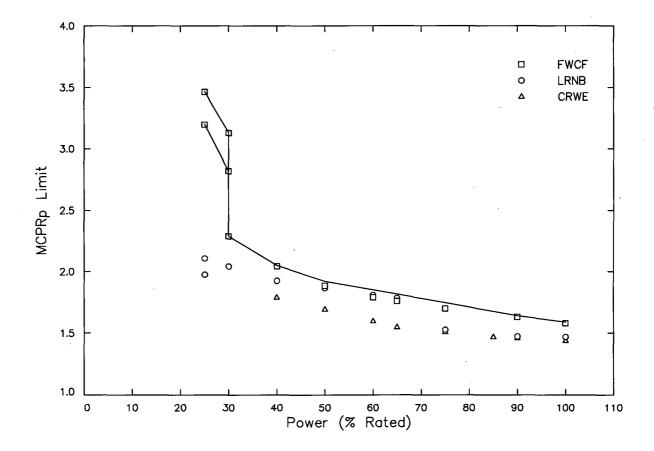
Power (% of rated)	MCPR _p Limit
(// 0110100)	
100	1.55
90	1.61
50	·
50	1.87
40	1.97
30	2.20
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17

Figure A.132 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, and PLUOOS Combined

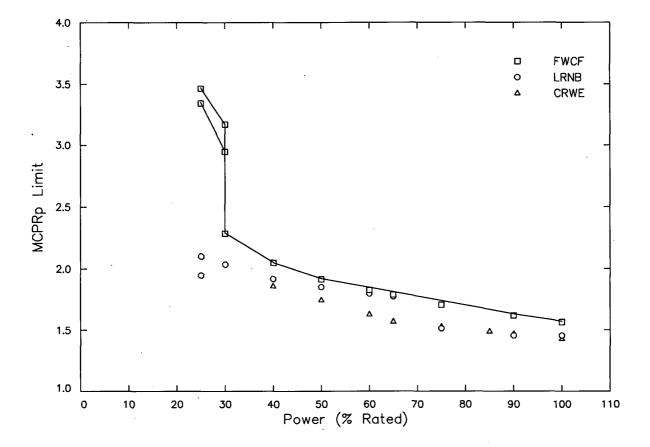

ANP-2863(NP) Revision 1 Page A-134

·····	
Power	
(% of rated)	Limit
100	1.56
90	1.62
50	
50	1.91
40	1.98
30	2.21
30 at > 50%F	3.01
25 at > 50%F	3.35
30 at ≤ 50%F	2.71
25 at ≤ 50%F	3.04

Figure A.133 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, and PLUOOS Combined

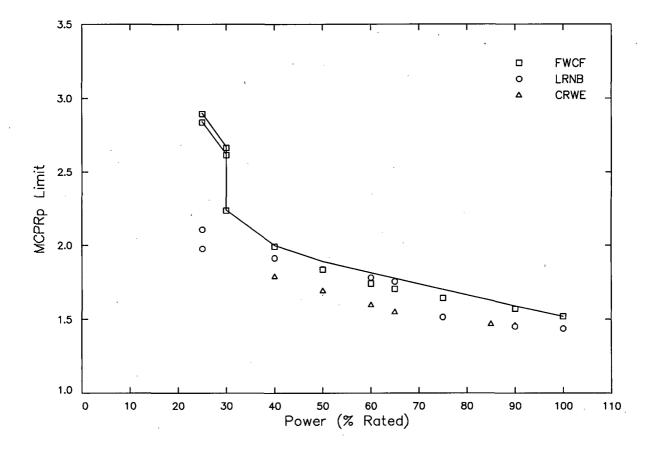

ANP-2863(NP) Revision 1 Page A-135

Power (% of rated)	MCPR _p Limit
100	1.55
90	1.61
. 50	
50	1.91
40	1.97
30	2.20
30 at > 50%F	3.03
25 at > 50%F	3.35
30 at ≤ 50%F	2.83
25 at ≤ 50%F	3.17


Figure A.134 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, and PLUOOS Combined

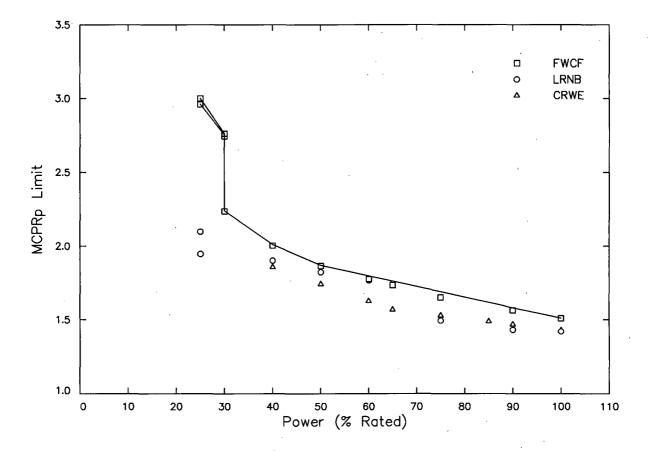
ANP-2863(NP) Revision 1 Page A-136

Power (% of rated)	MCPR _p Limit
100	1.59
90	1.64
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20


Figure A.135 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, and PLUOOS Combined

Power (% of rated)	MCPR _p Limit
100	1.57
90	1.63
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.136 BOC to FFTR/Coastdown Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, and PLUOOS Combined

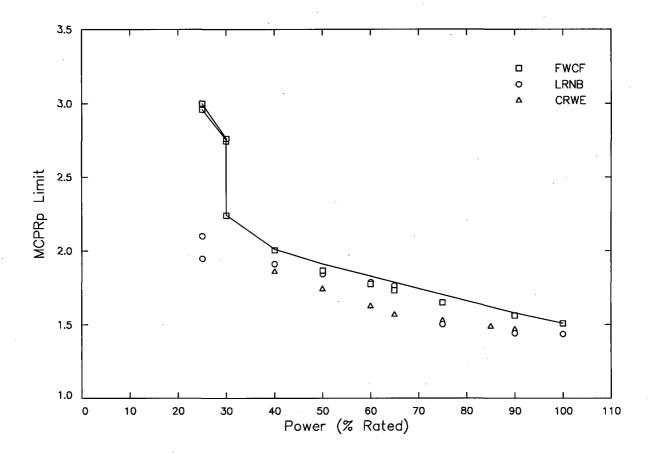

ANP-2863(NP) Revision 1 Page A-138

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.59
50	
50	1.89
40	2.00
30	2.24
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

Figure A.137 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS, FHOOS, and PLUOOS Combined

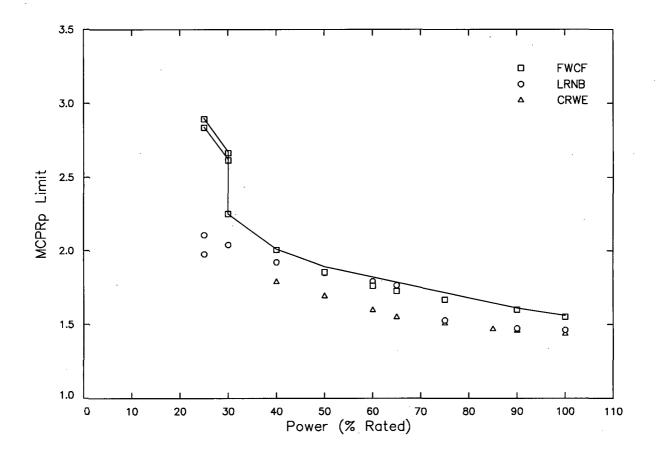

ANP-2863(NP) Revision 1 Page A-139

Power	MCPR _p
(% of rated)	Limit
100	1.51
90	1.58
50	
50	1.87
40	2.01
30	2.24
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96


Figure A.138 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS, FHOOS, and PLUOOS Combined

ANP-2863(NP) Revision 1 Page A-140

Power (% of rated)	MCPR _p Limit
100	1.52
90	1.59
50	
50	1.91
40	2.00
30	2.24
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

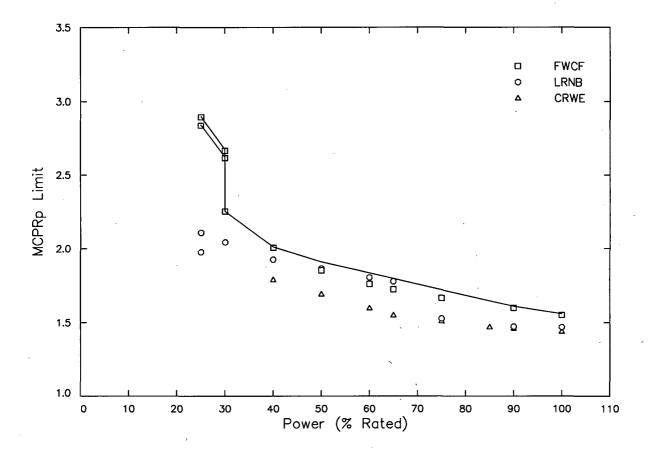

Figure A.139 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS, FHOOS, and PLUOOS Combined

· ·	
Power	
(% of rated)	Limit
100	1.51
90	1.58
50	
50	1.91
40	2.01
30	2.24
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

Figure A.140 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS, FHOOS, and PLUOOS Combined

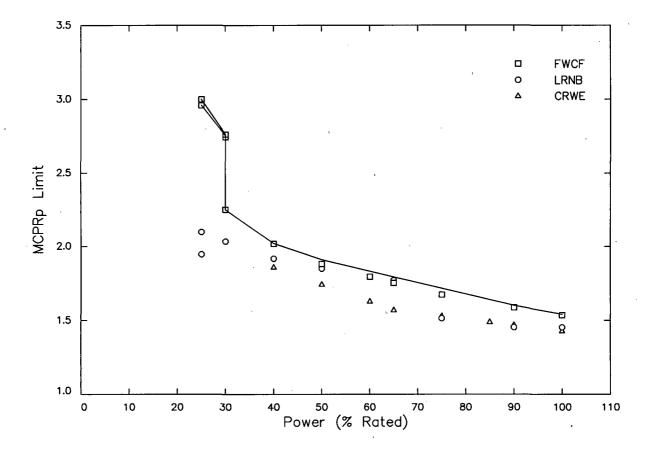
ANP-2863(NP) Revision 1 Page A-142

Power (% of rated)	MCPR _p Limit
100	1.56
90	1.61
50	
50	1.89
40	2.01
30	2.25
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84

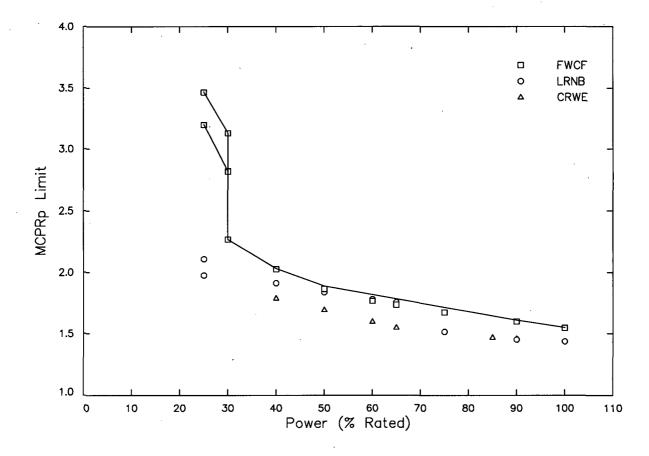

Figure A.141 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS, FHOOS, and PLUOOS Combined

· · · · · · · · · · · · · · · · · · ·	
Power	MCPR _p
(% of rated)	Limit
100	1.54
90	1.60
50	
50	1.89
40	2.02
30	2.25
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96

Figure A.142 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS, FHOOS, and PLUOOS Combined

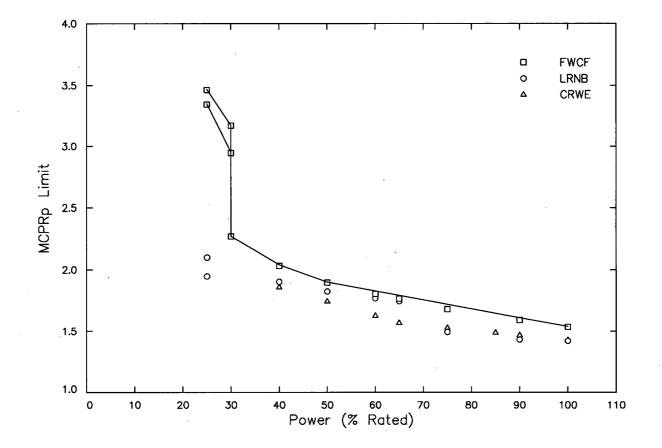

ANP-2863(NP) Revision 1 Page A-144

Power (% of rated)	MCPR _p Limit
100	1.56
90	1.61
50	
50	1.91
40	2.01
30 ·	2.25
30 at > 50%F	2.67
25 at > 50%F	2.90
30 at ≤ 50%F	2.62
25 at ≤ 50%F	2.84


Figure A.143 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS, FHOOS, and PLUOOS Combined

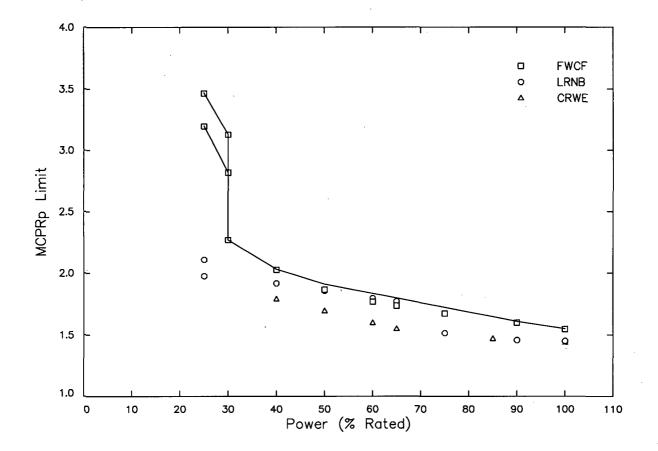
ANP-2863(NP) Revision 1 Page A-145

Power (% of rated)	MCPR _p Limit
100	1.54
90	1.60
50	
50	1.91
40	2.02
30	2.25
30 at > 50%F	2.76
25 at > 50%F	3.00
30 at ≤ 50%F	2.75
25 at ≤ 50%F	2.96


Figure A.144 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS, FHOOS, and PLUOOS Combined

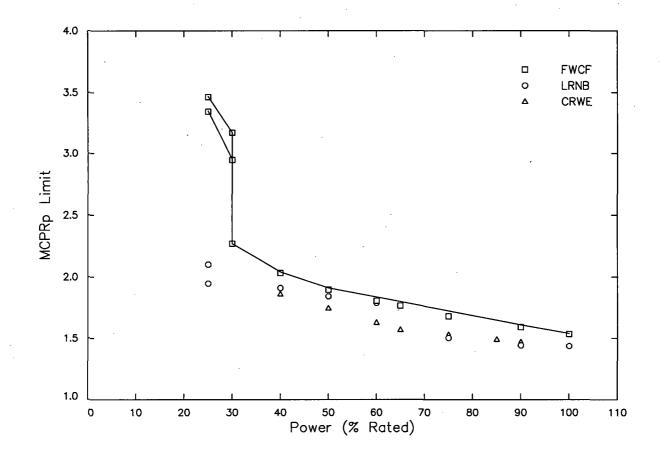
Power (% of rated)	MCPR _p Limit
100	1.55
90	1.61
50	
50	1.89
40	2.03
30	2.27
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.145 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times TBVOOS, FHOOS, and PLUOOS Combined

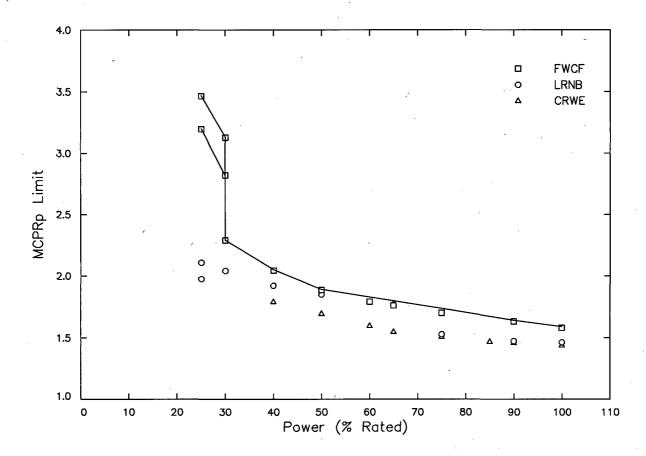

ANP-2863(NP) Revision 1 Page A-147

Power (% of rated)	MCPR _p Limit
100	1.54
.90	1.61
50	
50	1.90
40	2.04
30	2.27
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.146 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times TBVOOS, FHOOS, and PLUOOS Combined

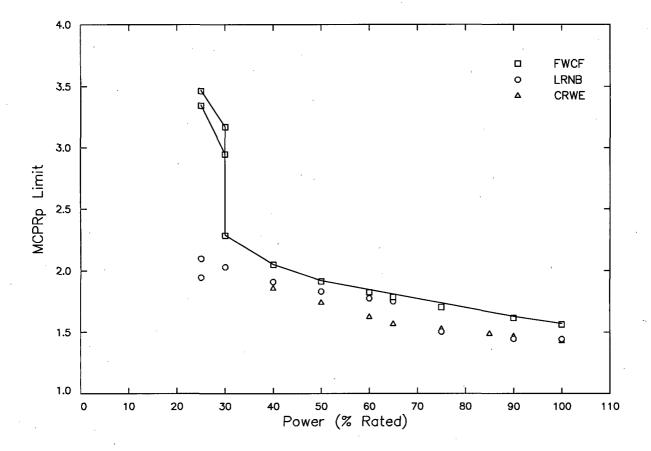

ANP-2863(NP) Revision 1 Page A-148

Power (% of rated)	MCPR _p Limit
100	1.55
90	1.61
50	
50	1.91
40	2.03
30	2.27
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20


Figure A.147 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times TBVOOS, FHOOS, and PLUOOS Combined

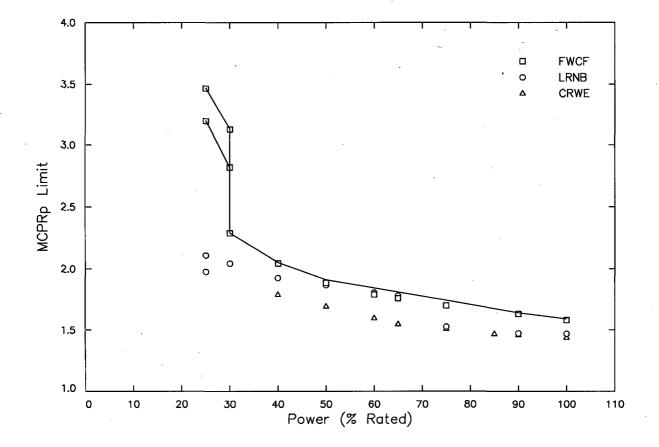
ANP-2863(NP) Revision 1 Page A-149

Power (% of rated)	MCPR _p Limit
100	1.54
90	1.61
50	
50	1.91
40	2.04
30	2.27
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

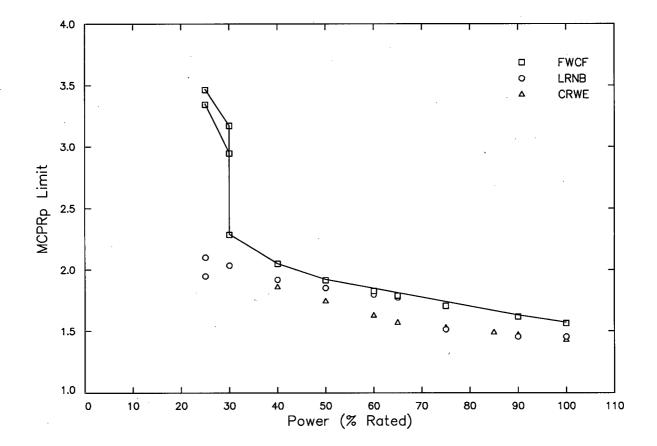

Figure A.148 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times TBVOOS, FHOOS, and PLUOOS Combined

Power (% of rated)	MCPR _p Limit
100	1.59
90	1.64
50	
50	1.89
40	2.05
30	2.29
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.149 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times TBVOOS, FHOOS, and PLUOOS Combined

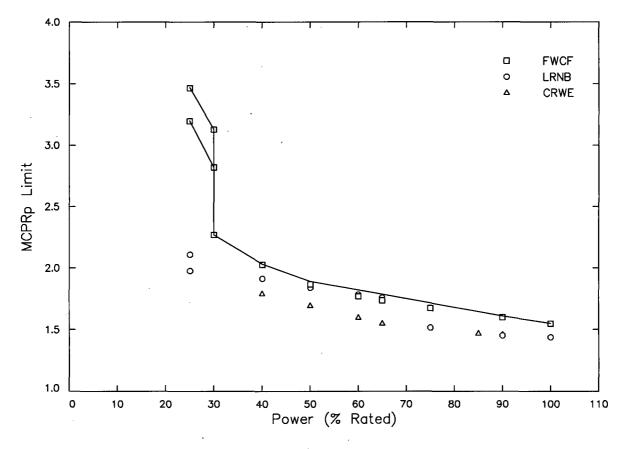

ANP-2863(NP) Revision 1 Page A-151

Power (% of rated)	MCPR _p Limit
100	1.57
90	1.63
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35


Figure A.150 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times TBVOOS, FHOOS, and PLUOOS Combined

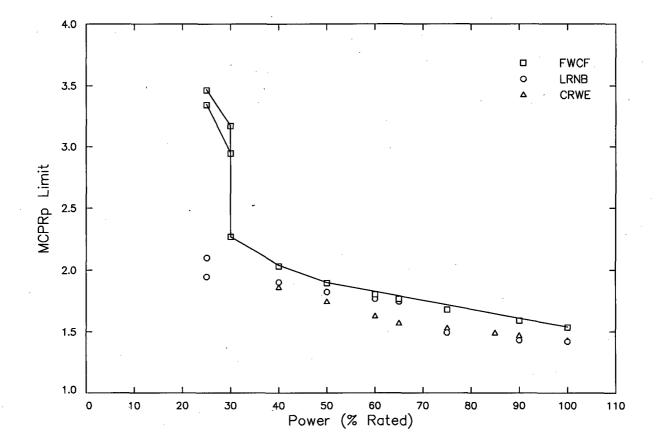
ANP-2863(NP) Revision 1 Page A-152

Power (% of rated)	MCPR _p Limit
100	1.59
90	1.64
50	
50	1.91
40	2.05
30	2.29
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20


Figure A.151 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times TBVOOS, FHOOS, and PLUOOS Combined

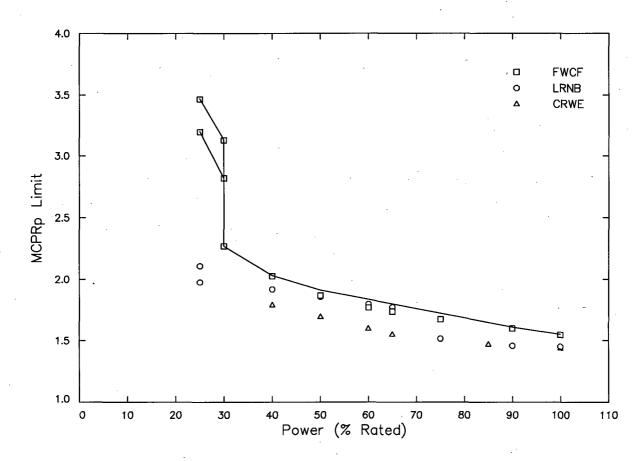
Power (% of rated)	MCPR _p Limit
100	1.57
90	1.63
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.152 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times TBVOOS, FHOOS, and PLUOOS Combined


ANP-2863(NP) Revision 1 Page A-154

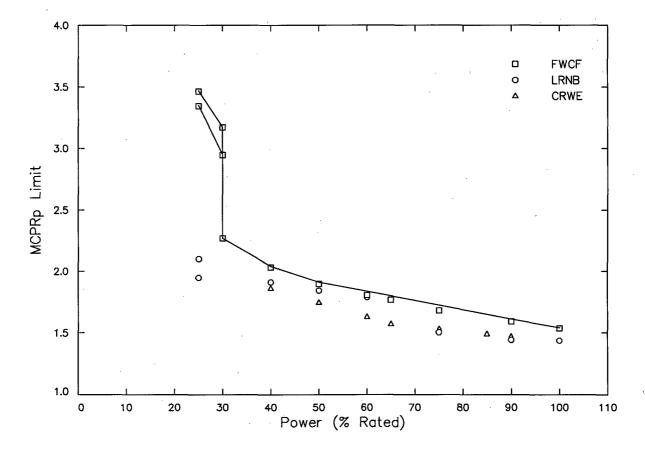
Power	
(% of rated)	Limit
100	1.55
90	1.61
50	
50	1.89
40	2.03
30	2.27
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.153 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS Combined


ANP-2863(NP) Revision 1 Page A-155

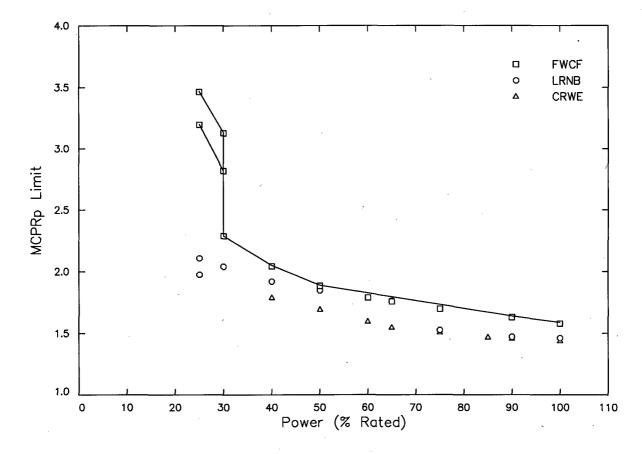
Power (% of rated)	MCPR _p Limit
100	1.54
90	1.61
50	
50	1.90
40	2.04
30	2.27
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.154 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS Combined


ANP-2863(NP) Revision 1 Page A-156

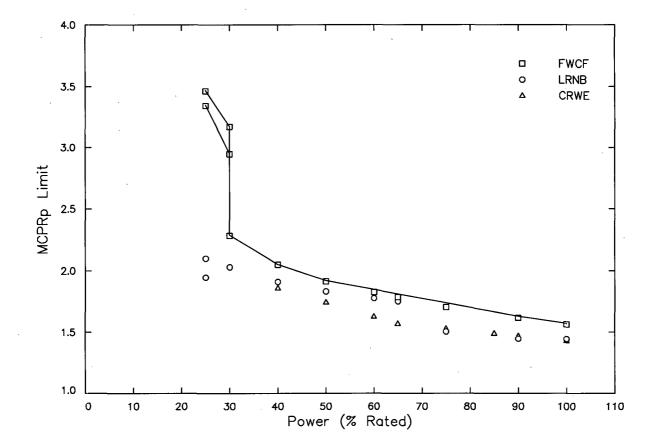
	<u>`</u>
Power	MCPRp
(% of rated)	Limit
100	1.55
90	1.61
50	
50	1.91
40	2.03
30	2.27
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.155 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS Combined

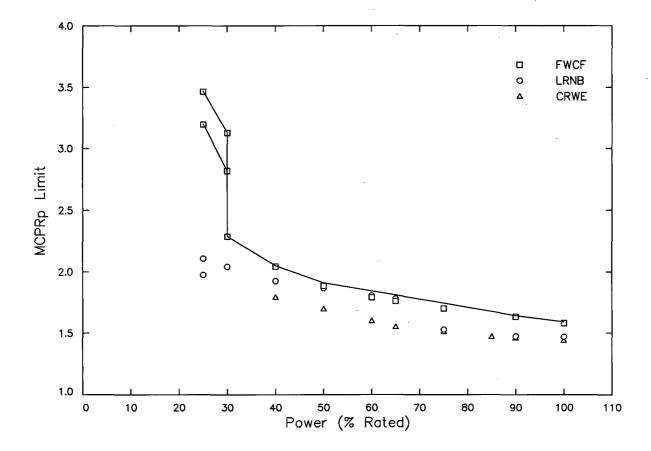

ANP-2863(NP) Revision 1 Page A-157

Power (% of rated)	MCPR _p Limit
100	1.54
90	1.61
50	
50	1.91
40	2.04
30	2.27
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

Figure A.156 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel NSS Insertion Times EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS Combined

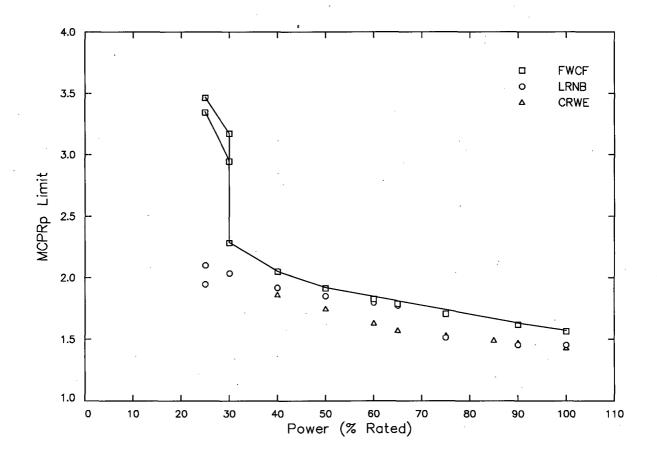

ANP-2863(NP) Revision 1 Page A-158

Power (% of rated)	MCPR _p Limit
100	1.59
90	1.64
50	
50	1.89
40	2.05
30	2.29
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20


Figure A.157 BOC to NEOC Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS Combined

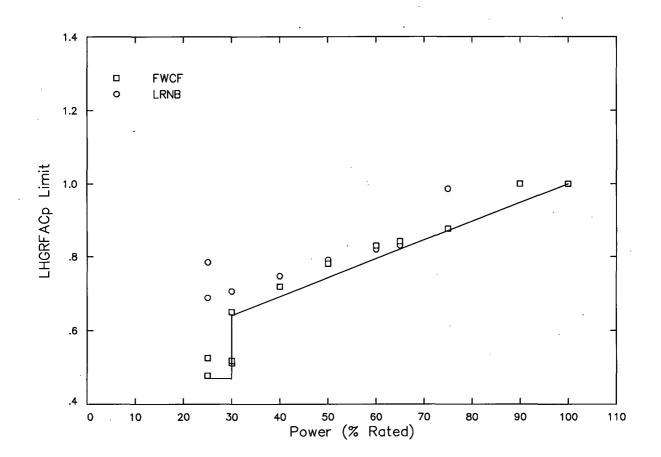
ANP-2863(NP) Revision 1 Page A-159

Power (% of rated)	MCPR _p Limit
100	1.57
90	1.63
50	
50	1.92
40	2.05
30	2.29
30 at > 50%F	3.17
✓ 25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35

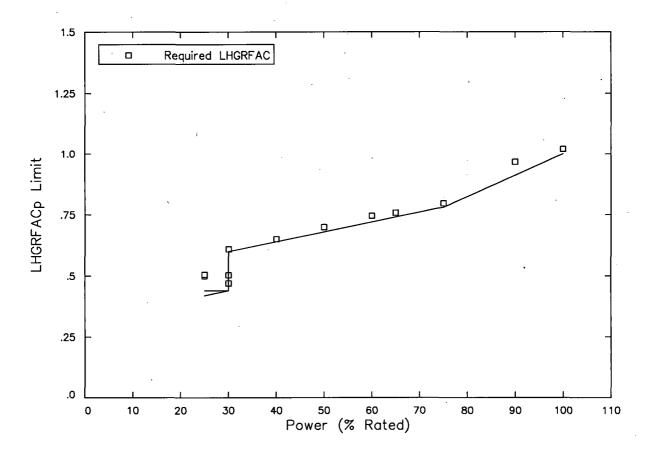

Figure A.158 BOC to NEOC Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS Combined

Power (% of rated)	MCPR _p Limit
100	1.59
90	1.64
50	
50	1.91
40	2.05
30	2.29
30 at > 50%F	3.13
25 at > 50%F	3.47
30 at ≤ 50%F	2.82
25 at ≤ 50%F	3.20

Figure A.159 BOC to EOCLB Power-Dependent MCPR Limits for ATRIUM-10 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS Combined


ANP-2863(NP) Revision 1 Page A-161

Power	MCPR ₀
(% of rated)	Limit
100	1.57
90	1.63
50	·
50	1.92
40	2.05
. 30,	2.29
30 at > 50%F	3.17
25 at > 50%F	3.47
30 at ≤ 50%F	2.95
25 at ≤ 50%F	3.35


Figure A.160 BOC to EOCLB Power-Dependent MCPR Limits for GE14 Fuel TSSS Insertion Times EOC-RPT-OOS, TBVOOS, FHOOS, and PLUOOS Combined

AREVA NP Inc.

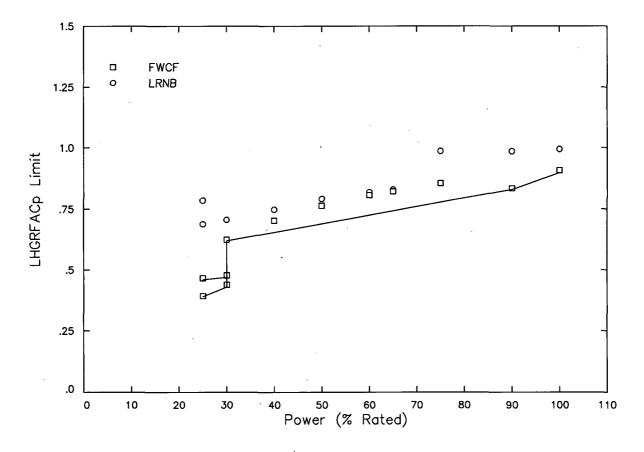
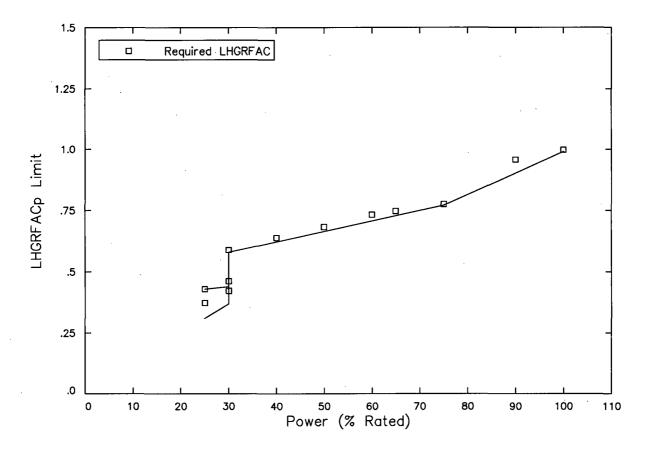

Power (% of rated)	LHGRFAC _p Multiplier
100	1.00
30	0.64
30 at > 50%F	0.47
25 at > 50%F	0.47
30 at ≤ 50%F	0.47
25 at ≤ 50%F	0.47

Figure A.161 All Exposures Power-Dependent LHGR Multipliers for ATRIUM-10 Fuel NSS/TSSS Insertion Times EOOS with TBV In-Service

	the second se
Power (% of rated)	LHGRFAC _p Multiplier
100	1.00
75	0.78
30	0.60
30 at > 50%F	0.44
25 at > 50%F	0.42
30 at ≤ 50%F	0.44
25 at ≤ 50%F	0.44


Figure A.162 All Exposures Power-Dependent LHGR Multipliers for GE14 Fuel NSS/TSSS Insertion Times EOOS with TBV In-Service

Power (% of rated)	LHGRFAC _p Multiplier
100	0.90
90	0.83
30	0.62
30 at > 50%F	0.43
25 at > 50%F	0.39
30 at ≤ 50%F	0.47
25 at ≤ 50%F	0.46

Figure A.163 All Exposures Power-Dependent LHGR Multipliers for ATRIUM-10 Fuel NSS/TSSS Insertion Times EOOS with TBVOOS

AREVA NP Inc.

Power (% of rated)	LHGRFAC _p Multiplier
100	0.99
75	0.77
30	0.58
30 at > 50%F	0.37
25 at > 50%F	0.31
30 at ≤ 50%F	0.44
25 at ≤ 50%F	0.43

Figure A.164 All Exposures Power-Dependent LHGR Multipliers for GE14 Fuel NSS/TSSS Insertion Times EOOS with TBVOOS