# Washington Hospital Center

MedStar Health

Br 1

April 16, 2010

Janice E. Nguyen Health Physicist US NRC, Region 1 475 Allendale Road King of Prussia, PA 19406-1415

2010 APR 20 AM 10: Ψ.

Sub: Removal of Old Nuclear Medicine Facility at the Washington Hospital Center from the NRC License

Ref: NRC License Number: 08-03604-03, Docket Number: 03001325

Dear Ms. Nguyen:

Please accept this letter as a request for amendment to our Broadscope License that is referenced above.

Our Nuclear Medicine Department has moved recently to a new facility. The old facility has been decommissioned by the RSO, Inc., a professional company that is experienced in decommissioning commercial and medical facilities. A copy of the decommissioning report is attached for your reference. The results of surveys demonstrate that the levels of residual activity in the facility are below the limits set by the NRC and are acceptable. Please note that this process has been reviewed and approved by our Radiation Safety Committee.

I would truly appreciate your help with expediting the approval process. If you need additional information please feel free to contact Dr. Shashadhar Mohapatra at 202-877-2906 (email: <u>shashadhar.m.mohapatra@medstar.net</u>).

Thank you in advance for your consideration.

Sincerely,

Cathurie Minge

Catherine L. Monge Senior Vice President, Operations

/ 446 2.5 NMSS/RGN1 MATERIALS-002 Washington Hospital Center Irving Street, Washington, DC

FORMER NUCLEAR MEDICINE DEPARTMENT

RADIOLOGICAL FINAL SURVEY REPORT

Prepared For: Radiation Safety Office Washington Hospital Center

February 2010

Energy Somit

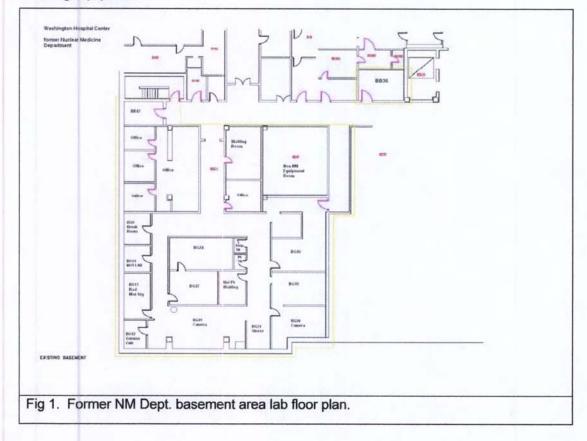
**Report Prepared By:** 

Gregory D. Smith, CHP

RSO, Inc. Laurel, MD THIIS PAGE BLANK

## **1.0 INTRODUCTION AND BACKGROUND**

#### 1.1 Introduction


Washington Hospital Center (WHC), relocated the Nuclear Medicine (NM) Department to another part of the hospital building at 110 Irving Street, NW, Washington, DC. The former NM Dept. included multiple camera rooms, a patient waiting room, areas/rooms used for injections and a "Hot Lab" for storage and preparation of the "unit" doses for patients in a suite located on the basement floor of the hospital. A 2<sup>nd</sup> "Hot Lab" and camera were on the 1<sup>st</sup> floor.

WHC is licensed by the Nuclear Regulatory Commission (NRC) (08-03604-03) as a broad scope medical use licensee.

The former Nuclear Medicine Department has moved to another location in the hospital and this laboratory space requires a final radiological survey to allow the release for unrestricted use. This survey was performed to show the area is in a suitable condition for unrestricted use.

#### 1.2 Background and Historical Use

The radioactive material used in the former NM department was as unsealed radioactive material in medical use or sealed sources for calibration of gamma cameras or radiation counting equipment.



| Radionuclide | Half Life | Decay Mode | Useful Radiation (MeV) |  |
|--------------|-----------|------------|------------------------|--|
| I-131        | 8.05d     | β-         | β- 0.606 (82%) γ 0.364 |  |

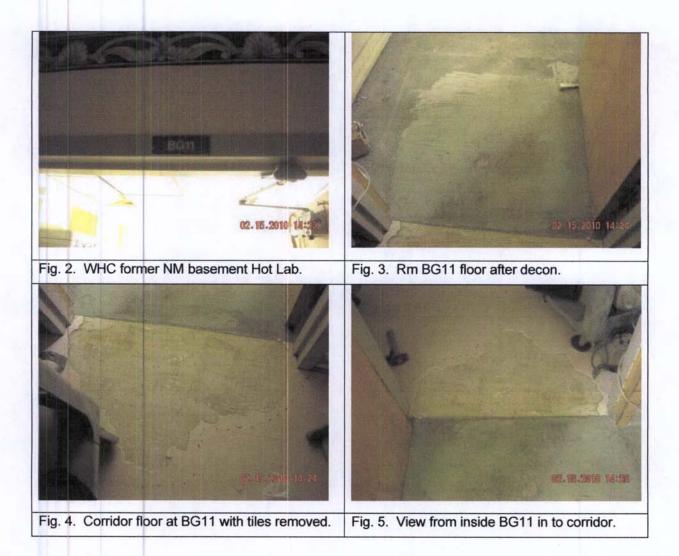
The primary potential contaminate was identified to be I-131.

Only unsealed radioactive material used with half-lives of less than 120 days were used. The last use of any unsealed radioactive material with a half-life greater than that of I-131 (8 days) was over 10 years ago.

Use of radioactive material in the last few years was in standard nuclear medicine procedures. Most uses were unit does prepared by an off-site radio-pharmacy and few procedures with the potential for airborne radioactivity. There was known I-131 contamination of the Hot Lab floor from a spill that occurred a few weeks prior to the recent move to the new NM Department.

#### 1.3 Lab Close Out and Decontamination Actions

All remaining radioactive material (such as sealed sources, unused unit doses, and radioactive waste) was moved to the new Nuclear Medicine Department suite.


During the first phase of the Final Survey the contamination of the floor of the Hot Lab (Rm BG11) was confirmed, in addition 3 small areas of contamination were found. These were: continuation of the contamination of the Hot Lab floor in the corridor just outside the door, a  $2^{nd}$  small area in the corridor near the Hot Lab (< 100 sq cm), a small area in the Pt. Toilet (< 100 sq cm), and a small area (< 100 sq cm) in Rm BB36 (former camera room).

The results for direct measurement in areas where contamination was found is shown in the following table taken from the results shown in Appendix 3.

|                  | Area Survey Results  |                             |                 | fest | Results                                      | β Direct Measurements |                |                                        |  |
|------------------|----------------------|-----------------------------|-----------------|------|----------------------------------------------|-----------------------|----------------|----------------------------------------|--|
| Sample<br>Number | Description          | Surface                     | Instru-<br>ment |      | Actvity<br>dpm/100<br>cm <sup>2</sup> (beta) | Survey<br>Meter #     | Gross<br>(cpm) | Activity<br>dpm/100<br>cm <sup>2</sup> |  |
| 23               | Patient Tlt<br>Floor | vinyl tile over concrete    | LSC             |      | <200                                         | #4                    | 1050           | 2129                                   |  |
| 24               | Pt TIt Toilet        | ceramic                     | LSC             |      | <200                                         | #4                    | 424            | 473                                    |  |
| 25               | Patient Tlt<br>Sink  | ceramic                     | LSC             |      | <200                                         | #4                    | 526            | 743                                    |  |
| 39               | Corridor Floor       | vinyl tile over concrete    | LSC             |      | <200                                         | #4                    | 3314           | 8119                                   |  |
| 56               | BB36 Floor           | vinyl tile over<br>concrete | LSC             |      | <200                                         | #4                    | 8628           | 22177                                  |  |
| 89               | Hot Lab Floor        | Contamin-<br>ated area      | LSC             |      | <200                                         | #4                    | 406            | 425                                    |  |
| 90               | Hot Lab Floor        | Contamin-<br>ated area      | LSC             |      | <200                                         | #4                    | 432            | 494                                    |  |
| 91               | Hot Lab Floor        | Contamin-<br>ated area      | LSC             |      | 2129                                         | #4                    | 82768          | 218314                                 |  |
| 92               | Hot Lab Floor        | Contamin-<br>ated area      | LSC             |      | 161                                          | #4                    | 57368          | 151119                                 |  |
| 93               | Hot Lab Floor        | Contamin-<br>ated area      | LSC             |      | <200                                         | #4                    | 40990          | 107790                                 |  |

#### RSO, Inc. • WHC - Former Nuclear Medicine Department • Radiological Final Survey

The top surface of the painted concrete floor in the Hot Lab was removed to decontaminate the floor in the Hot Lab (see Fig. 3 and 4) the floor tiles were removed to eliminate the contamination in the corridor and toilet, and the small area in Rm BB36 was cleaned.



| Area Survey Results |                  |                             | Wipe            | Test F | Results                                      | β Direct Measurements |                |                                        |  |
|---------------------|------------------|-----------------------------|-----------------|--------|----------------------------------------------|-----------------------|----------------|----------------------------------------|--|
| Sample<br>Number    | Descrip-<br>tion | Surface                     | Instru-<br>ment |        | Actvity<br>dpm/100<br>cm <sup>2</sup> (beta) | Survey<br>Meter #     | Gross<br>(cpm) | Activity<br>dpm/100<br>cm <sup>2</sup> |  |
| 1                   | BB36<br>Floor    | vinyl tile over<br>concrete | LSC             |        | <200                                         | #7                    | 36             | 162                                    |  |
| 2                   | BB36<br>Floor    | vinyl tile over<br>concrete | LSC             |        | <200                                         | #7                    | 50             | 1495                                   |  |
| 3                   | BB36<br>Floor    | vinyl tile over<br>concrete | LSC             |        | <200                                         | #7                    | 43             | 829                                    |  |
| 4                   | BB36<br>Floor    | vinyl tile over<br>concrete | LSC             |        | <200                                         | #7                    | 43             | 829                                    |  |
| 5                   | BB36<br>Floor    | vinyl tile over<br>concrete | LSC             |        | <200                                         | #7                    | 43             | 829                                    |  |
| 6                   | Emp Tit          | vinyl tile over<br>concrete | LSC             |        | <200                                         | #7                    | 49             | 1400                                   |  |
| 7                   | Emp Tlt          | vinyl tile over<br>concrete | LSC             |        | <200                                         | #7                    | 53             | 1781                                   |  |
| 8                   | Pt Tit           | tile removed concrete       | LSC             |        | <200                                         | #7                    | 36             | 162                                    |  |
| 9                   | Pt Tit_          | tile removed concrete       | LSC             |        | <200                                         | #7                    | 50             | 1495                                   |  |
| 10                  | Pt Tit           | tile removed concrete       | LSC             |        | <200                                         | #7                    | 45             | 1019                                   |  |
| 1                   | Hot Lab<br>Floor | painted concrete            | LSC             |        | <200                                         | #1                    | 288            | -383                                   |  |
| 2                   | Hot Lab<br>Floor | painted concrete            | LSC             |        | <200                                         | #1                    | 287            | -389                                   |  |
| 3                   | Hot Lab<br>Floor | painted concrete            | LSC             |        | <200                                         | #1                    | 327            | -170                                   |  |
| 4                   | Hot Lab<br>Floor | painted concrete            | LSC             |        | <200                                         | #1                    | 314            | -241                                   |  |
| 5                   | Hot Lab<br>Floor | deconed<br>concrete         | LSC             |        | <200                                         | #1                    | 321            | -203                                   |  |
| 6                   | Hot Lab<br>Floor | deconed<br>concrete         | LSC             |        | <200                                         | #1                    | 341            | -93                                    |  |
| 7                   | Hot Lab<br>Floor | deconed<br>concrete         | LSC             |        | <200                                         | #1                    | 374            | 88                                     |  |
| 8                   | Hot Lab<br>Floor | deconed<br>concrete         | LSC             |        | <200                                         | #1                    | 554            | 1073                                   |  |

An excerpt of the Final Survey results of the decontaminated areas is shown in the following table:

|    |                      |                             |     | <br> |    |     |              |
|----|----------------------|-----------------------------|-----|------|----|-----|--------------|
| 9  | Hot Lab<br>Floor     | deconed concrete            | LSC | <200 | #1 | 421 | 345          |
| 10 | Hot Lab<br>Floor     | deconed concrete            | LSC | <200 | #1 | 406 | 263          |
| 11 | Hot Lab<br>Floor     | deconed<br>concrete         | LSC | <200 | #1 | 491 | 728          |
| 12 | Hot Lab<br>Floor     | deconed concrete            | LSC | <200 | #1 | 317 | -224         |
| 13 | Hot Lab<br>Floor     | deconed concrete            | LSC | <200 | #1 | 314 | -241         |
| 14 | Corridor<br>floor    | tile removed                | LSC | <200 | #1 | 294 | -350         |
| 15 | Corridor<br>floor    | vinyl tile over<br>concrete | LSC | <200 | #1 | 276 | -449         |
| 16 | Corridor<br>floor    | vinyl tile over<br>concrete | LSC | <200 | #1 | 247 | -608         |
| 17 | Corridor<br>floor    | vinyl tile over<br>concrete | LSC | <200 | #1 | 250 | -591         |
| 18 | hot lab<br>bench top | synthetic                   | LSC | <200 | #1 | 242 | -635         |
| 19 | hot lab<br>bench top | synthetic                   | LSC | <200 | #1 | 235 | <u>-6</u> 73 |
| 20 | sink                 | stainless steel             | LSC | <200 | #1 | 241 | -640         |

## 2.0 FINAL SURVEY APPROACH

#### 2.1 Free Release Criteria

APPENDIX R

The values from Table R9 from NUREG 1556 Vol 9 Program Specific Guidance About Medical Use Licenses were used as the radiological criteria for unrestricted use.

| Table R.3         Surface Contamination Levels in Unrestricted Areas (dpm/100 cm²)                                                                   |                            |                            |                              |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|------------------------------|--|--|--|--|--|--|
| Nuclide                                                                                                                                              | Average <sup>2, 3, 6</sup> | Maximum <sup>2, 4, 6</sup> | Removable <sup>2, 5, 6</sup> |  |  |  |  |  |  |
| I-125, I-126, I-131, I-<br>133, Sr-90                                                                                                                | 1000                       | 3000                       | 200                          |  |  |  |  |  |  |
| Beta-gamma emitters<br>(nuclides with decay<br>modes other than alpha<br>emission or spontaneous<br>fission) except Sr-90<br>and others noted above. | 5000                       | 15000                      | 1000                         |  |  |  |  |  |  |

<sup>1</sup> Where surface contamination by multiple nuclides exists, the limits established for each nuclide should apply independently.

As used in this table, dpm means the rate of emission by radioactive material, as determined by correcting the counts per minute observed by an appropriate detector for background. efficiency, and geometric factors associated with the instrumentation.

<sup>3</sup> Measurements of average contaminant should not be averaged over more than 1 square meter. For objects of less surface area, the average should be derived for each such object.

<sup>4</sup> The maximum contamination level applies to an area of not more than 100 cm<sup>2</sup>.

<sup>5</sup> The amount of removable radioactive material per 100 cm<sup>2</sup> of surface area should be determined by wiping that area with filter or soft absorbent paper, applying moderate pressure, and assessing the amount of radioactive material on the wipe with an appropriate instrument of known efficiency. When removable contanination on objects of less surface area is determined, the pertinent levels should be reduced proportionally and the entire surface should be wiped.

<sup>5</sup> The average and maximum radiation levels associated with surface contamination resulting from beta-gamma emitters should not exceed 0.2 millirad/hour at 1 centimeter and 1.0 millirad/hour at 1 centimeter, respectively, measured through not more than 7 milligrams per square centimeter of total absorber.

## 2.2 Conducting Radiological Surveys

The radiological surveys were conducted using guidance provided by the NRC in NUREG-1575, EPA 402-R-97-016, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM): Revision 1, August 2000.

## 2.3 Area Classification

Areas were classified for the purposes of this survey using the guidance in MARSSIM.

Impacted Areas

- Impacted areas are areas that may have residual radioactivity from the licensed activities.
- Non-impacted areas are areas without residual radioactivity from licensed activities.
- NRC guidance provides that Final Status Survey (FSS) radiation surveys do not need to be conducted in non-impacted areas.

The impacted area was determined to be limited to the Nuclear Medicine Department ("Hot Lab", camera, injection, waiting rooms, etc.) including the Ambulatory Care "Hot Lab" and camera room. There were no other impacted areas.

#### <u>Classes</u>

Impacted areas were classified into one of the three classes, listed below, based on the expected levels of residual radioactivity.

- Class 1 Areas are impacted areas that, prior to remediation, are expected to have concentrations of residual radioactivity that exceed the release criteria (used in place of the DCGL<sub>w</sub> as defined in Section 2.2 of MARSSIM);
- Class 2 Areas are impacted areas that, prior to remediation, are not likely to have concentrations of residual radioactivity that exceed the release criteria;
- Class 3 Areas are impacted areas that have a low probability of containing residual radioactivity.

The Hot Lab was treated as a Class 1 area with the expectation that there would be no surfaces with residual contamination except on the floor. All other areas were considered Class 3 areas. It was recognized that there was some possibility of residual contamination in these areas but expected to be much less than the levels in the release criteria.

## 2.4 Survey Number of Samples

MARSSIM's guidance for determination of the number of samples needed for a survey unit when the DCGL is large, the relative shift is large (>2.5), using equal values of 0.05 for Type I and Type II errors, results in a number of data points needed of about 20.

The former Nuclear Medicine Department was estimated to be about 5000 sq ft. (< 500 m<sup>2</sup>). MARSSIM suggests a range for the size of survey units of 100 to 1000 m<sup>2</sup>. For the purposes of determining the number of survey locations, the NM Dept (area of about 5,000 sq ft with out the Hot Lab), was divided into 1250 sq. ft. survey units plus the Hot Lab resulting in 5 survey units or approximately 100 survey points. Including the initial final

survey, and post decontamination survey over 100 sample locations were used.

The survey locations included floors, bench tops, and sink basins. A scan (floor monitor or hand-held survey meter), direct (static) measurement, and wipe test was performed at each survey location except where noted.

#### 2.5 Survey Area

The area surveyed included the basement level former Nuclear Medicine Department and the first floor Ambulatory Care Hot Lab/Camera room.

| NM Depa | artment                               |                 |     |              |                            |                |                                     |               |             |
|---------|---------------------------------------|-----------------|-----|--------------|----------------------------|----------------|-------------------------------------|---------------|-------------|
| Rm#     | Description                           | Area<br>(sq ft) |     | Wipe<br>Test | Direct (0.5<br>minute cnt) | Floor<br>Scan  | Wall/Benches<br>Scan (up to 2<br>m) | Gamma<br>Scan | Exp<br>Rate |
|         |                                       |                 |     |              |                            |                |                                     | Walk          |             |
| BG11    | Hot Lab                               | 83.71           |     | 20           | 20                         | 100%           | 100%                                | Thru          | 1           |
| BG13    | Charge Day                            | 386.8           |     | 5            | 5                          | 25%            | 0%                                  | Walk<br>Thru  | 0           |
| DG13    | Storage Rm                            | 300.0           | -   | 5            | 5                          | 25%            | 0%                                  | Walk          | 0           |
| BG12    | Gamma Ctr                             | 84.17           |     | 3            | 3                          | 50%            | 5%                                  | Thru          | 1           |
|         |                                       |                 |     |              |                            |                |                                     | Walk          |             |
| BG19    | Camera                                | 495             |     | 3            | 3                          | 50%            | 5%                                  | Thru          | 1           |
|         |                                       |                 |     |              |                            | and the second | 1/2018                              | Walk          |             |
| BG17    | Camera                                | 155.4           |     | 3            | 3                          | 50%            | 5%                                  | Thru          | 1           |
| DOOL    | 6                                     | 007.0           |     |              |                            | 500/           | 50/                                 | Walk          |             |
| BG24    | Camera                                | 227.2           | -   | 3            | 3                          | 50%            | 5%                                  | Thru<br>Walk  | 1           |
|         | Pt Restroom                           | 20              | est | 5            | 5                          | 100%           | 100%                                | Thru          | 1           |
|         | i i i i i i i i i i i i i i i i i i i | 20              | COL |              |                            | 10070          | 10070                               | Walk          |             |
|         | Emp Restroom                          | 20              | est | 1            | 1                          | 25%            | 0%                                  | Thru          | 1           |
|         |                                       |                 |     |              |                            |                |                                     | Walk          |             |
| _       | Hot Pt Waiting                        | 20              | est | 5            | 5                          | 100%           | 100%                                | Thru          | 0           |
|         |                                       |                 |     |              |                            |                |                                     | Walk          | 100         |
| BG20    | Camera                                | 256             |     | 3            | 3                          | 50%            | 5%                                  | Thru          | 1           |
| DOIL    | 0                                     | 040.5           | -   |              |                            | 500/           | 504                                 | Walk          |             |
| BG15    | Camera                                | 210.5           | -   | 3            | 3                          | 50%            | 5%                                  | Thru<br>Walk  | 1           |
| BG16    | Camera                                | 300             | oet | 3            | 3                          | 50%            | 5%                                  | Thru          | 1           |
| 0010    | Camera                                | 500             | COL |              | 5                          | 5078           | 576                                 | Walk          |             |
| BB47    | Camera                                | 350             |     | 3            | 3                          | 50%            | 5%                                  | Thru          | 1           |
|         |                                       |                 | -   |              |                            |                |                                     | Walk          |             |
|         | Dept Corridor                         | 1200            | est | 10           | 10                         | 25%            | 0%                                  | Thru          | 0           |
|         |                                       |                 | 1   |              |                            | 100.00         |                                     | Walk          |             |
| _       | Entry Corridor                        | 300             | est | 2            | 2                          | 25%            | 0%                                  | Thru          | 0           |
|         | Corridor -                            | -               |     |              |                            | 0501           | 0.01                                | Walk          |             |
|         | BB47                                  | 300             | est | 2            | 2                          | 25%            | 0%                                  | Thru          | 0           |
| BB36    | Camera                                | 350             | 100 | 3            | 3                          | 50%            | 5%                                  | Walk<br>Thru  | 1           |
| 6630    | Calliera                              | 350             | -   | 3            | 5                          | 50%            | 576                                 | Thru          |             |
| Ambulat | ory Care                              |                 |     |              |                            |                |                                     |               |             |
|         |                                       |                 |     |              |                            |                |                                     | Walk          |             |
| C1122A  | Hot Lab                               | 100             | est | 10           | 10                         | 50%            | 5%                                  | Thru          | 1           |
|         |                                       |                 |     |              |                            | -              |                                     | Walk          |             |
| C1222   | Camera                                | 400             | est | 3            | 3                          | 50%            | 5%                                  | Thru          | 0           |
|         | Corridor                              |                 |     |              |                            |                |                                     | Walk          |             |
|         | Adjacent                              | 300             |     | 2            | 2                          | 25%            | 0%                                  | Thru          | 0           |
|         | Totals                                | 5209            |     | 93           | 93                         |                |                                     |               | 12          |

There were over 100 survey locations that included floors, bench tops, sink basins, floor drains and large equipment. A scan (hand-held survey meter), direct (static) measurement, and wipe test was performed at each survey location except where noted.

## 2.6 Survey Methods

## Exposure Rate Measurements and Gamma Scans

Gamma exposure rates were measured, at waist level, using a Bicron, "MicroRem" survey meter (internal plastic gamma scintillation detector). The gamma scan was conducted using a Ludlum Model 2221 survey meter coupled to a Ludlum Model 44-10 NaI gamma scintillation detector.

## Beta Scan Survey

A cart mounted survey meter with a large area proportional detector was used to scan the floor and hand-held large area proportional detector was used to scan bench tops, cabinets and vertical surfaces. Scanning speeds were 2 detector widths per second. To optimize detection of elevated radiation levels (1.5 to 2 times background) during scanning, audible speakers were used in addition to noting the fluctuations in the analog meter and "digital rate" displays.

## Static (Direct) Measurements of Surfaces

Static radiation measurements for beta/gamma surface contamination were performed at random and biased locations. Measurements were conducted by integrating over a 0.5-minute count time with the detector in direct contact with the surface.

#### **Removable Contamination**

A wipe test for removable contamination was performed at each survey location. The wipe test consisted of wiping 100 cm<sup>2</sup> of the surface with a dry paper, using moderate pressure and assessing the amount of radioactive material on the test material using both NaI scintillation detector and liquid scintillation counting techniques.

#### **Quality Assurance**

Survey meters used to perform the Final Survey had been calibrated within 12 months of their use using radioactive standards traceable to NIST. Also, performance checks were completed on each survey meter at the beginning of each survey day.

The laboratory instruments used by RSO, Inc. to analyze the wipe tests were maintained under RSO's laboratory quality assurance program which includes a service agreement with the manufacturer, daily quality control performance charts and background and standard samples counted with every sample batch.

## 2.7 Personnel and Resources

## Personnel Qualifications

All personnel had levels of training and experience commensurate with their assigned tasks. For those individuals involved in taking radiological measurements and samples, special instruction was provided when necessary on equipment, special techniques, and practices relating to survey activities.

## Laboratory Services

Wipes or swabs were analyzed for gross gamma/beta activity. All wipes for the final survey were analyzed at RSO's laboratory.

## 3.0 SURVEY INSTRUMENTATION

## 3.1 Description of Field Instrumentation

Field Instrument Used -

Ludlum Floor Monitor – Ludlum Model 2221 with a Ludlum 43-37 probe (gas proportional detector, thin window of 0.8 mg/cm<sup>2</sup> with an area of 584 cm<sup>2</sup>).

Ludlum Model 2221 with a Ludlum 43-68 probe (gas proportional detector, thin window of  $0.8 \text{ mg/cm}^2$  with an area of 126 cm<sup>2</sup>).

Ludlum Model 2221 with a Ludlum 44-9 probe (GM detector, thin window of 1.4 mg/cm<sup>2</sup> with an area of 15 cm<sup>2</sup>).

Ludlum Model 2221 with a Ludlum 44-10 probe (Nal scintillation detector, 2" x 2").

Bicron Model "microRem" with an internal probe (plastic scintillation detector, 1" x 1").

## 3.2 Field Instrumentation Sensitivity for Beta Surface Contamination

The detection sensitivity or Minimum Detectable Concentration (dpm per unit area) for the instruments used for beta surface activity scanning and direct measurements was estimated using the formulas suggested by MARSSIM. For example the MDC for a direct (static) measurement was estimated to be less than 500 dpm per 100 cm<sup>2</sup> for a 0.5-minute count time, 1-minute background count, an efficiency of 0.3 cpm/dpm and a 250 count per minute background.

| Make/Mdl/Detector                                         | Active<br>Area<br>(cm <sup>2</sup> ) | Back-<br>ground<br>(cpm) | %<br>Efficiency<br>(cpm/dpm) | Count<br>time<br>(min) | MDC<br>Direct (Static)<br>(dpm/100<br>cm <sup>2</sup> ) | MDC<br>Scanning<br>(dpm/100<br>cm <sup>2</sup> ) |
|-----------------------------------------------------------|--------------------------------------|--------------------------|------------------------------|------------------------|---------------------------------------------------------|--------------------------------------------------|
| Floor Monitor<br>Ludlum Model 2221<br>with a Ludlum 43-37 | 584                                  | 750                      | I-131 *<br>30%               | Scan                   | N/A                                                     | <500                                             |
| Ludlum Model 2221<br>with a Ludlum 43-68                  | 126                                  | 250                      | I-131 *<br>30%               | 0.5                    | <500                                                    | <2,500                                           |
| Ludlum Model 2221<br>with a Ludlum 44-9                   | 15                                   | 35                       | I-131 **<br>14%%             | 1                      | <1,100                                                  | <5,000                                           |

\* determined using Cs-137 beta source, \*\* determined using Tc99m beta source

#### 3.2 Description of Laboratory Instrumentation

Laboratory Instrument Used -

Packard Tricarb 3100 liquid scintillation counter. The minimum detectable activity for I-131 on a wipe test was estimated to be less than 25 dpm for a 1-minute count time, 1-minute background count time, efficiency of 0.9 cpm/dpm and a 25 counts per minute (cpm) background.

Packard Cobra automatic gamma scintillation (NaI) counter. The minimum detectable activity for I-131 on a wipe test was estimated to be less than 100 dpm for a 1-minute count time, 1-minute background count time, efficiency of 0.8 cpm/dpm and a 220 counts per minute (cpm) background.

## 4.0 FINAL SURVEY RESULTS

During the first phase of the Final Survey the entire former WHC Nuclear Medicine Department was surveyed. Contamination in the Hot Lab floor was confirmed and characterized. Additional small areas of contamination were found. These areas and the Hot Lab floor were subsequently decontaminated and re-surveyed as part of the Final Survey.

#### 4.1 Results

Attachment A contains the plan view drawing of the laboratory.

Attachment B contains the survey results by survey points, scan results, exposure rate measurements, and raw and reduced data for the direct measurements.

Attachment C contains the wipe test analysis data print-out(s).

Attachment D contains the survey meter calibration reports.

## 4.2 Exposure Rates

The exposure rates measured indoors in various locations of the survey area were consistent with normal background except where noted.

The typical background exposure rates in and near the facility ranged from 3 to 8  $\mu$ R/h as measured in the corridors, lobby and the parking lot. Exposure rates inside of the building ranged from 2 to 8  $\mu$ R/h which is typical of background exposure rates. All exposure rates (after remediation) were within typical guideline levels of 5  $\mu$ R/h above background.

#### 4.3 Beta Scans

No areas of residual activity above the detection limits for the Final Survey.

#### 4.4 Direct Measurements

No areas of residual activity above the detection limits for the survey the beta direct measurements, except for a small area of residual contamination (0.5 sq meter) approximately 200 to 500 dpm/100 cm<sup>2</sup>) in the decontaminated floor area of the former Hot Lab.

## 4.5 Removable Contamination

Attachment B includes results of the removable surface activity as determined by the wipe

surveys. No removable contamination was detected during the final survey.

## 4.6 Summary

- Gamma exposure rates in all areas were consistent with normal natural background level.
- Scans using gamma/beta sensitive survey meters showed no residual contamination on floor surfaces in excess of the guideline values or above the detection limits for the survey technique.
- Direct measurements showed no areas in excess of the guideline values or above the detection limit for the survey technique.
- Wipe tests for removable contamination inside the laboratories were all less than 200 dpm/100 cm<sup>2</sup>.

## 5.0 CONCLUSIONS

Decommissioning activities for this facility included disposition of all radioactive material and a Final Survey of the room performed to show that floor, bench and sink basin surfaces were free of residual contamination.

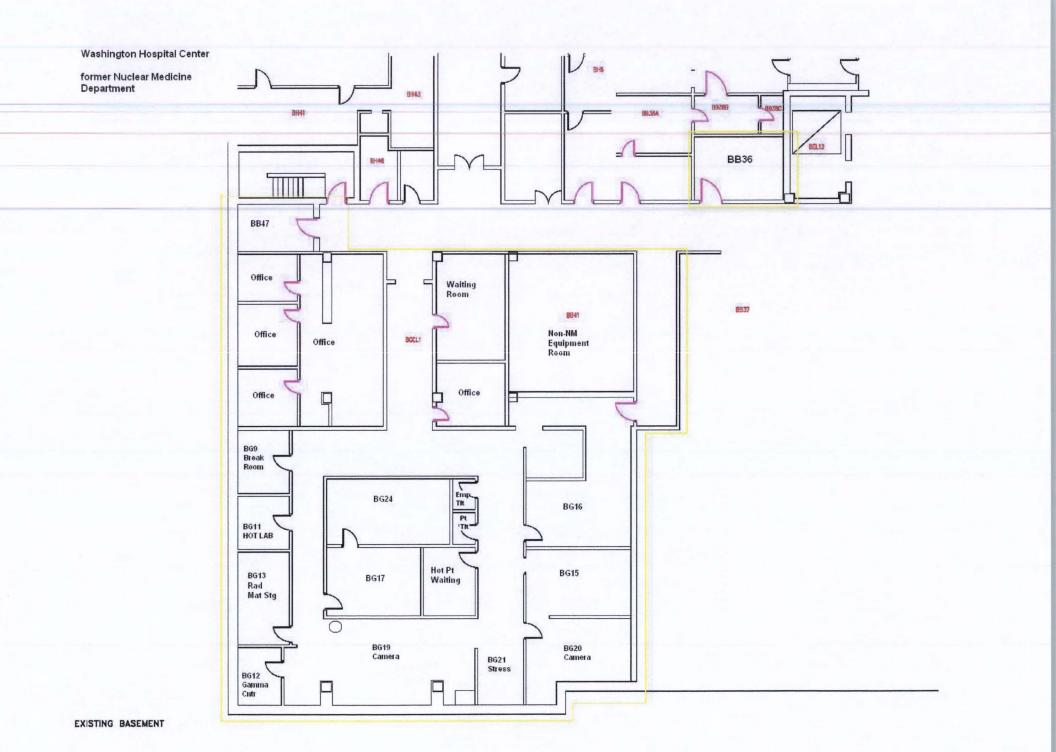
The release criteria chosen were the values from NUREG 1556 Vol 9 for I-131 and ALARA considerations.

The Final Survey results showed that no residual radioactivity above the release limits in the areas surveyed and the area was in a condition suitable for unrestricted release.

## 6.0 REFERENCES

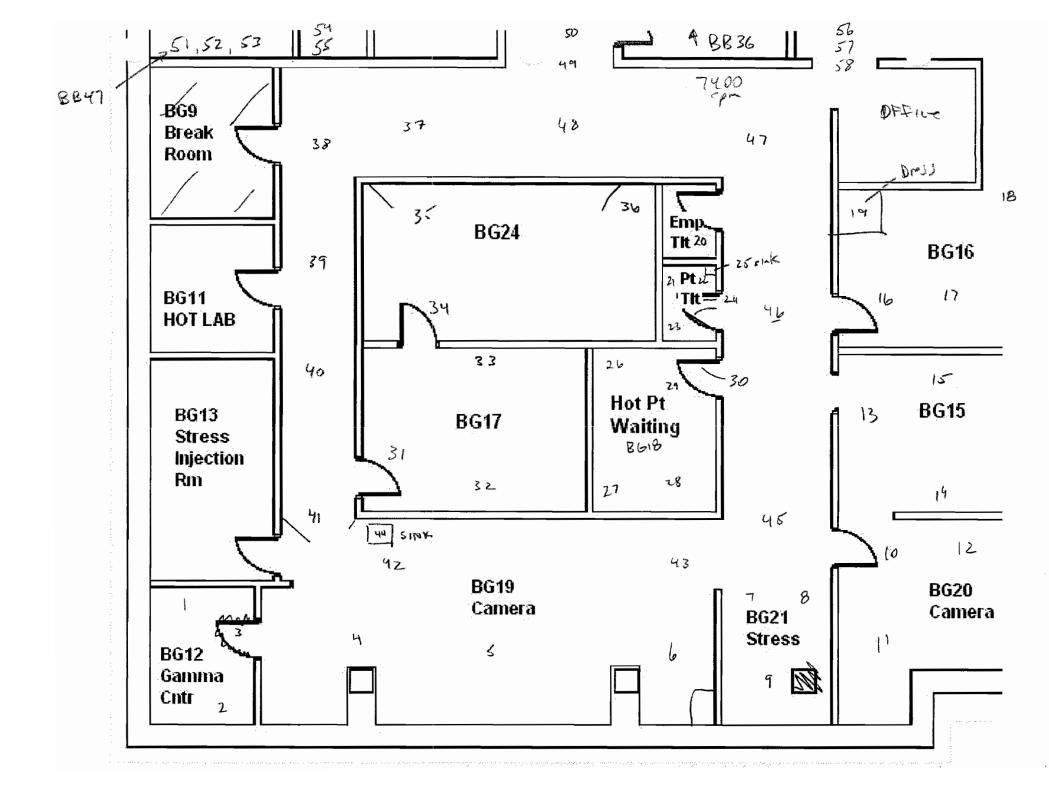
6.1 USNRC, NUREG 1556 Vol 9., Program Specific Guidance About Medical Use Licenses.

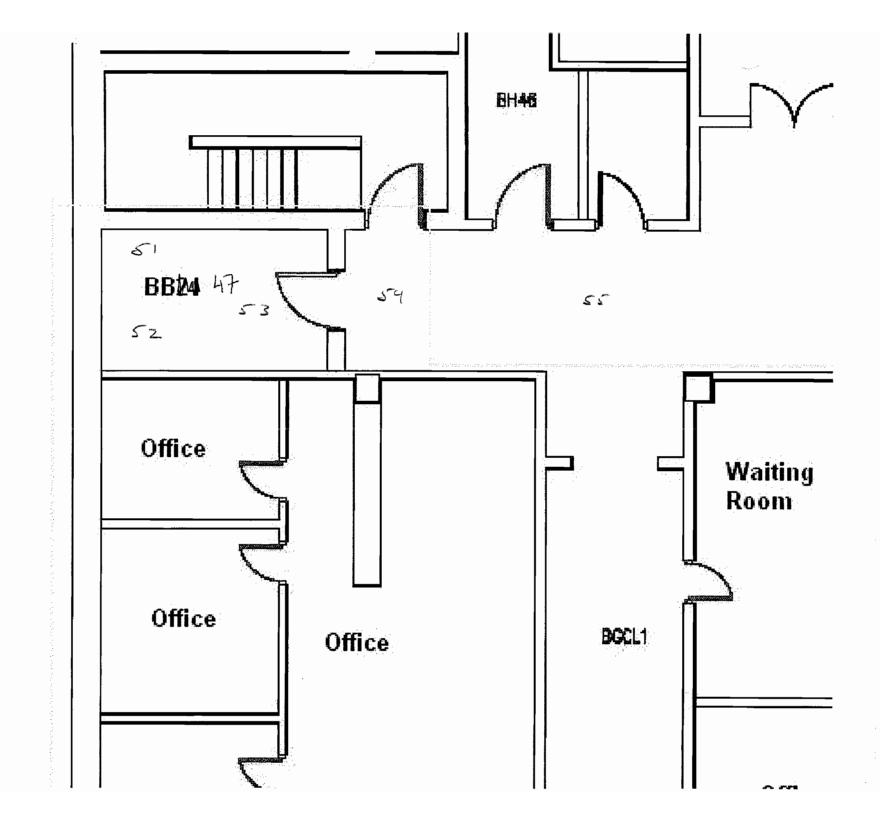
6.2 NUREG-1575, EPA 402-R-97-016, Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM): Final, August 2000.

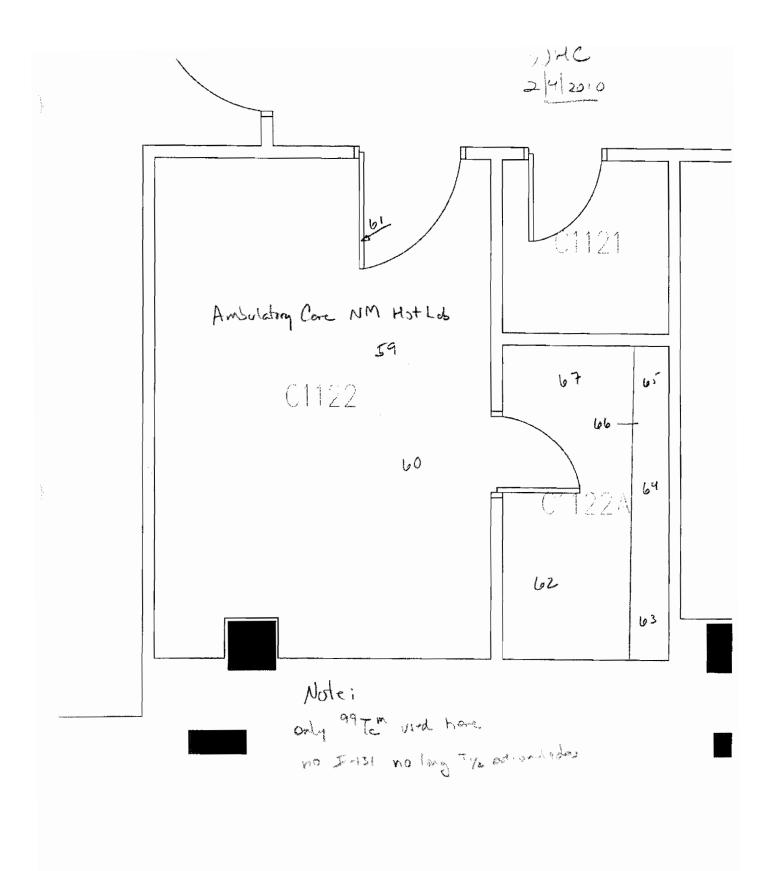

## 7.0 ATTACHMENTS

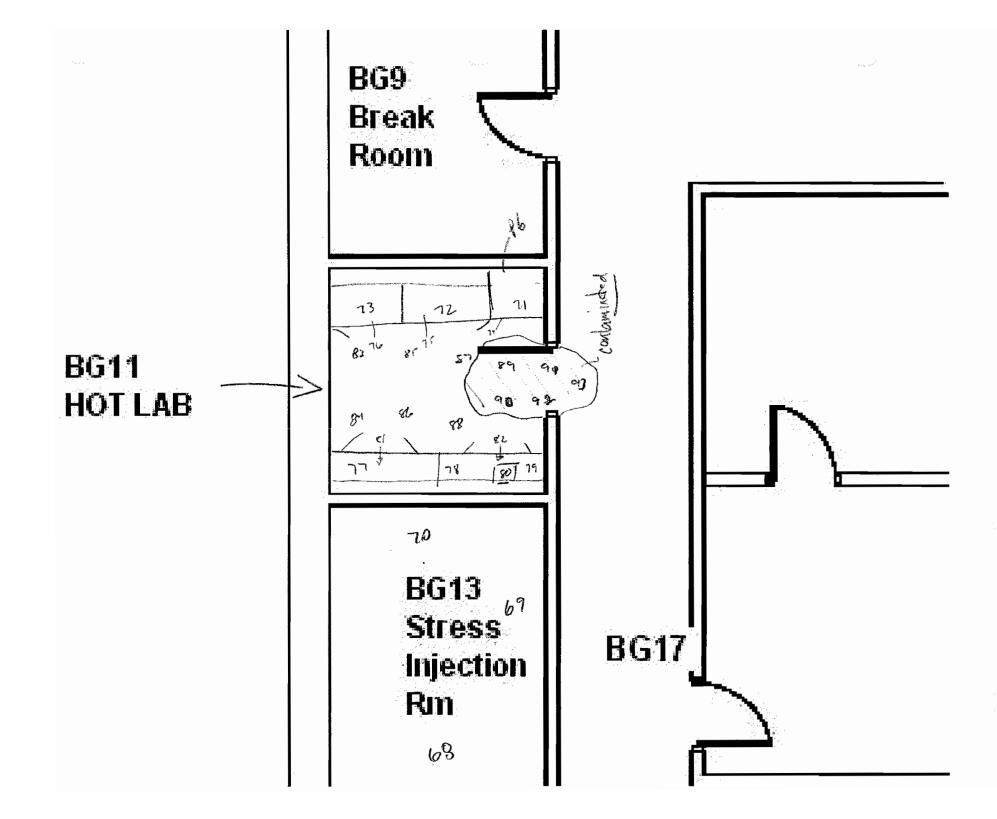
| Attachment A | Plan View Detail Drawing          |
|--------------|-----------------------------------|
| Attachment B | Radiological Survey Results       |
| Attachment C | Wipe Test Analysis Data Print-Out |
| Attachment D | Survey Meter Calibration Reports  |

. ..


Attachment A


Plan View Drawings





Attachment B

**Radiological Survey Results** 









| Site: | Washington | Hospital | Center |
|-------|------------|----------|--------|
|-------|------------|----------|--------|

Building: Former Nuclear Medicine Dept

Lab/Room: Former Nuclear Medicine [

|                                                   | Meter 1        | Meter 2        | Meter 3        | Meter 4        | Meter 5     |
|---------------------------------------------------|----------------|----------------|----------------|----------------|-------------|
| Date:                                             | 2/4/2010       | 2/4/2010       | 2/4/2010       | 2/4/2010       | 2/4/2010    |
| Make:                                             | Ludlum         | Ludlum         | Ludlum         | Ludlum         | Bicron      |
| Model:                                            | 2221           | 2221           | 2221           | 2221           | microrem    |
| SN:                                               | 174947         | 174947         | 161591         | 161951         | C139F       |
| Probe Make:                                       | Ludlum         | Ludlum         | Ludlum         | Ludlum         | Bicron      |
| Probe Model:                                      | 43-37          | 43-68          | 43-37          | 43-68          | Plastic Nal |
| Probe SN:                                         | 074069         | 079572         | 124945         | 178512         | N/A         |
| Probe Area (cm <sup>2</sup> ):                    | 584            | 126            | 584            | 126            | 1           |
| Next Cal. Date:                                   |                | 2/3/2011       | 2/3/2011       | 40577          | 1/22/2011   |
| Background Surface Materia                        | Floor          | Floor          | Floor          | Floor          | Air         |
| Background(c) - Time(Min)):                       | 7087 10        | 2480 10        | 7632 10        | 2452 10        | 2 μRem/h    |
| Sample Count Time (min)                           |                | 0.5            | 0.5            | 0.5            | N/A         |
| CS Isotope - Activity(µCi):                       | C-14 0.149     | C-14 0.149     | C-14 0.149     | C-14 0.149     | Cs-137      |
| CS Source(cpm)                                    | 39964          | 41022          | 44845          | 42739          | 600 μRem/h  |
| L <sub>c,</sub> L <sub>d</sub> (Counts)           | 62 127         | 37 76          | 64 131         | 36 76          | NA NA       |
| Direct MDC, Scan MDC<br>(dpm/100cm <sup>2</sup> ) |                | 307 2052       | 118 3729       | 295 1973       | NA NA       |
| MDCR , MDC Count Rate                             | 993 740        | 168 337        | 295 796        | 167 334        | NA NA       |
| Instrumen $4\pi$ Eff, Isotope:                    | 0.30 Cs-137    | 0.29 Cs-137    | 0.28 Cs-137    | 0.30 Cs-137    |             |
| E <sub>s</sub> Surface Effciency:                 | 50.0% Concrete | 50.0% Concrete | 50.0% Concrete | 50.0% Concrete |             |
| E, Total Effciency:                               | 30.0% Cs-137   | 29.0% Cs-137   | 28.0% Cs-137   | 30.0% Cs-137   | N/A N/A     |

| Please See MARSSIM Chapter 6 for a mo | ore detailed explanation | n of equations.                                 | B = Background Counts<br>T <sub>B</sub> = BKG Counting Time I | n Minutes                                   |
|---------------------------------------|--------------------------|-------------------------------------------------|---------------------------------------------------------------|---------------------------------------------|
| Lc= Critical Detection Leve           | Direct MDC= 3+3.2        | 9*SQRT(B/T(1+T <sub>S+B</sub> /T <sub>B</sub> ) | T <sub>S+B</sub> = Sample-Bkg Counti                          | ng Time In Minute:                          |
| Ld= a priori Detection limi           |                          | K * T <sub>S+B</sub>                            | E = Total Detector Efficien                                   | cy in Counts/Disintegratio                  |
| MDC= Minimum Detectable Concentration | Beta                     |                                                 | A = Physical Probe Area ir                                    | n cm²                                       |
| MDCR= Minimum Detectable Count Rate   | Scan MDC=                | MDCR<br>SQRT(p)*E*E <sub>s</sub> *K             | K = Other Constants and F<br>p = Surveyor Efficiency          | Factors When Needed                         |
|                                       | MDCR=                    | s <sub>i</sub> * (60/i)                         | E <sub>s</sub> = Surface Efficiency<br>i = Counting Interva   | s <sub>i</sub> = 1.38*SQRT(B <sub>r</sub> ) |

Site: Washington Hospital Center

Building: Former Nuclear Medicine Dept Lab/Room: Former Nuclear Medicine I

|                                             | Meter 6    | Meter 7                               | Meter 8        | Meter 9        | Meter 10       |
|---------------------------------------------|------------|---------------------------------------|----------------|----------------|----------------|
| Date: 2/4                                   | 4/2010     | Not In Service                        | Not In Service | Not In Service | Not In Service |
| Make: Lu                                    | Idlum      |                                       |                |                |                |
| Model: 22                                   | 21         |                                       |                |                |                |
| SN: 15                                      | 57013      |                                       |                |                |                |
| Probe Make: Lu                              | Idlum      | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                |                |                |
| Probe Model: 44                             | -10        |                                       |                |                |                |
| Probe SN: 17                                | 8512       |                                       |                |                |                |
| Probe Area (cm <sup>2</sup> ): 10           | 0          |                                       |                |                |                |
| Next Cal. Date: 2/3                         | 3/2011     |                                       |                |                |                |
| Background Surface Materia Flo              | oor        |                                       |                |                |                |
| Background(c) - Time(Min)): 25              | 880 10     |                                       |                |                |                |
| Sample Count Time (min) 1.0                 | D          |                                       |                |                |                |
| CS Isotope - Activity(µCi): Cs              | -137 1.000 |                                       |                |                |                |
| CS Source(cpm) 20                           | 0297       |                                       |                |                |                |
| L <sub>c</sub> , L <sub>d</sub> (Counts) 11 | 9 240      |                                       |                |                |                |
| Direct MDC, Scan MDC                        |            |                                       |                |                |                |
| (dpm/100cm <sup>2</sup> ) 184               | 43 5916    |                                       |                |                |                |
| MDCR , MDC Count Rate 31                    | 32 2828    |                                       |                |                |                |
| Efficiency, Isotope: 13.                    |            |                                       |                |                |                |

Building: Former Nuclear Medicine Dept

Start Date: 02/04/10 Surveyor: Gregory D. Smith Lab/Room: Former Nuclear Medicine Dept Surveyor: James Dean

|                  | Area Survey Result   | S                         | Wipe            | Test Results                                 | β Direct          | Measu          | rements                                | G                 | amma                   | Scan and                  | Dose R            | ate                            |                   | β                      | Scan                      |                                          |
|------------------|----------------------|---------------------------|-----------------|----------------------------------------------|-------------------|----------------|----------------------------------------|-------------------|------------------------|---------------------------|-------------------|--------------------------------|-------------------|------------------------|---------------------------|------------------------------------------|
| Sample<br>Number | Description          | Surface                   | Instru-<br>ment | Actvity<br>dpm/100<br>cm <sup>2</sup> (beta) | Survey<br>Meter # | Gross<br>(cpm) | Activity<br>dpm/100<br>cm <sup>2</sup> | Survey<br>Meter # | Gross<br>High<br>(cpm) | Gross<br>Average<br>(cpm) | Survey<br>Meter # | Gamma<br>Dose Rate<br>(uRem/h) | Survey<br>Meter # | Gross<br>High<br>(cpm) | Gross<br>Average<br>(cpm) | Activity β<br>dpm/100<br>cm <sup>2</sup> |
| 1                | BG12 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 210            | -93                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 2                | BG12 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 246            | 2                                      | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 3                | BG12 Door            | wood                      | LSC             | <200                                         | #4                | 344            | 261                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #2                | 300                    | 200                       | -131                                     |
| 4                | BG19 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 274            | 76                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 5                | BG19 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 236            | -24                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 6                | BG19 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 222            | -61                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 7                | BG21 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 214            | -83                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 8                | BG21 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 196            | -130                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 9                | BG21 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 208            | · <b>-98</b>                           | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 10               | BG20 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 222            | -61                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 11               | BG20 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 214            | -83                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 12               | BG20 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 214            | -83                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 13               | BG15 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 244            | -3                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 14               | BG15 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 210            | -93                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 15               | BG15 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 196            | -130                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 16               | BG16 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 202            | -114                                   | #6                | 5000                   | 3800                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 17               | BG16 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 182            | -167                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 18               | BG16 Floor           | vinyl tile over concrete  | LSC             | <200                                         | #4                | 182            | -167                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 19               | BG16 Dress. Rm Floor | vinyl tile over concrete  | LSC             | <200                                         | #4                | 196            | -130                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 20               | Emp Tit Floor        | vinyl tile over concrete  | LSC             | <200                                         | #4                | 286            | 108                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 21               | Emp TIt Floor        | vinyl tile over concrete  | LSC             | <200                                         | #4                | 220            | -67                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 22               | Patient Tlt Floor    | vinyl tile over concrete  | LSC             | <200                                         | #4                | 162            | -220                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 23               | Patient Tlt Floor    | vinyl tile over concrete  | LSC             | <200                                         | #4                | 1050           | 2129                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 24               | Pt TIt Toilet        | ceramic                   | LSC             | <200                                         | #4                | 424            | 473                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #2                | 300                    | 200                       | -131                                     |
| 25               | Patient Tlt Sink     | ceramic                   | LSC             | <200                                         | #4                | 526            | 743                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 600                    | 500                       | -238                                     |
| 26               | Hot Pt Wait Rm       | vinyl floor over concrete | LSC             | <200                                         | #4                | 128            | -310                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 27               | Hot Pt Wait Rm       | vinyl floor over concrete | LSC             | <200                                         | #4                | 126            | -315                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 28               | Hot Pt Wait Rm       | vinyl floor over concrete | LSC             | <200                                         | #4                | 308            | 166                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 29               | Hot Pt Wait Rm       | vinyl floor over concrete | LSC             | <200                                         | #4                | 132            | -299                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 30               | Hot Pt Wait Door     | wood                      | LSC             | <200                                         | #4                | 278            | 87                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #4                | 300                    | 200                       | -120                                     |

Building: Former Nuclear Medicine Dept

Start Date: 02/04/10 Surveyor: Gregory D. Smith Lab/Room: Former Nuclear Medicine Dept Surveyor: James Dean

|                  | Area Survey Result      | s                        | Wipe T          | est Results                                  | β Direct          | Measu          | rements                                | G                 | amma                   | Scan and                  | Dose R            | ate                            | β Scan            |                        |                           |                                          |
|------------------|-------------------------|--------------------------|-----------------|----------------------------------------------|-------------------|----------------|----------------------------------------|-------------------|------------------------|---------------------------|-------------------|--------------------------------|-------------------|------------------------|---------------------------|------------------------------------------|
| Sample<br>Number | Description             | Surface                  | Instru-<br>ment | Actvity<br>dpm/100<br>cm <sup>2</sup> (beta) | Survey<br>Meter # | Gross<br>(cpm) | Activity<br>dpm/100<br>cm <sup>2</sup> | Survey<br>Meter # | Gross<br>High<br>(cpm) | Gross<br>Average<br>(cpm) | Survey<br>Meter # | Gamma<br>Dose Rate<br>(uRem/h) | Survey<br>Meter # | Gross<br>High<br>(cpm) | Gross<br>Average<br>(cpm) | Activity β<br>dpm/100<br>cm <sup>2</sup> |
| 31               | BG17 Floor              | vinyl tile over concrete | LSC             | <200                                         | #4                | 310            | 171                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 32               | BG17 Floor              | vinyl tile over concrete | LSC             | <200                                         | #4                | 300            | 145                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 33               | BG17 Floor              | vinyl tile over concrete | LSC             | <200                                         | #4                | 304            | 156                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 34               | BG24 Floor              | vinyl tile over concrete | LSC             | <200                                         | #4                | 300            | 145                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 35               | BG24 Floor              | vinyl tile over concrete | LSC             | <200                                         | #4                | 244            | -3                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 36               | BG24 Floor              | vinyl tile over concrete | LSC             | <200                                         | #4                | 272            | 71                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 37               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 310            | 171                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 38               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 278            | 87                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 39               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 3314           | 8119                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 40               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 222            | -61                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 41               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 294            | 129                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 42               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 260            | 39                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 43               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 272            | 71                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 44               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 728            | 1277                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 45               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 216            | -77                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 46               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 222            | -61                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 47               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 210            | -93                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 48               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 274            | 76                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 49               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 238            | -19                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 50               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 270            | 66                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 51               | BB74                    | vinyl tile over concrete | LSC             | <200                                         | #4                | 214            | -83                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 52               | BB74                    | vinyl tile over concrete | LSC             | <200                                         | #4                | 232            | -35                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 53               | BB74                    | vinyl tile over concrete | LSC             | <200                                         | #4                | 207            | -101                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 54               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 204            | -109                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 55               | Corridor Floor          | vinyl tile over concrete | LSC             | <200                                         | #4                | 221            | -64                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 56               | BB36 Floor              | vinyl tile over concrete | LSC             | <200                                         | #4                | 8628           | 22177                                  | #6                | 7436                   | 3000                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 57               | BB36 Floor              | vinyl tile over concrete | LSC             | <200                                         | #4                | 205            | -106                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 58               | BB36 Floor              | vinyl tile over concrete | LSC             | <200                                         | #4                | 216            | -77                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 59               | C1122 Amb Hot Lab Floor | vinyl tile over concrete | LSC             | <200                                         | #4                | 218            | -72                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 60               | C1122 Amb Hot Lab Floor | vinyl tile over concrete | LSC             | <200                                         | #4                | 210            | -93                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |

#### Building: Former Nuclear Medicine Dept

Start Date: 02/04/10

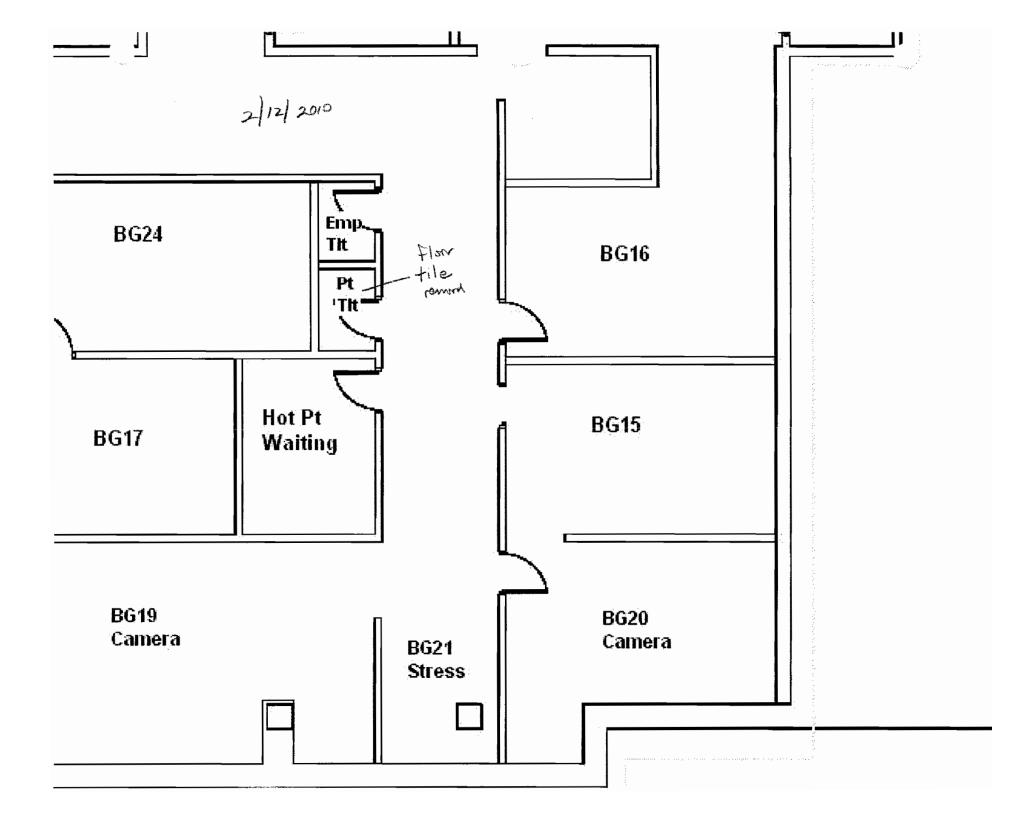
Lab/Room: Former Nuclear Medicine Dept

Surveyor: Gregory D. Smith

#### Surveyor: James Dean

|                  | Area Survey Result         | S                        | Wipe            | β Direct                                     | Measu             | rements        | 6                                      | Samma             | Scan and               | Dose R                    | ate               | β Scan                         |                   |                        |                           |                                          |
|------------------|----------------------------|--------------------------|-----------------|----------------------------------------------|-------------------|----------------|----------------------------------------|-------------------|------------------------|---------------------------|-------------------|--------------------------------|-------------------|------------------------|---------------------------|------------------------------------------|
| Sample<br>Number | Description                | Surface                  | Instru-<br>ment | Actvity<br>dpm/100<br>cm <sup>2</sup> (beta) | Survey<br>Meter # | Gross<br>(cpm) | Activity<br>dpm/100<br>cm <sup>2</sup> | Survey<br>Meter # | Gross<br>High<br>(cpm) | Gross<br>Average<br>(cpm) | Survey<br>Meter # | Gamma<br>Dose Rate<br>(uRem/h) | Survey<br>Meter # | Gross<br>High<br>(cpm) | Gross<br>Average<br>(cpm) | Activity β<br>dpm/100<br>cm <sup>2</sup> |
| 61               | C1122AAmb Hot Lab Door     | vinyl over concrete      | LSC             | <200                                         | #4                | 223            | -59                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 62               | C1122A Amb Hot Lab Floor   | vinyl over concrete      | LSC             | <200                                         | #4                | 203            | -112                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 63               | C1122A Amb Hot Lab Bench   | synthetic bench top      | LSC             | <200                                         | #4                | 232            | -35                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 64               | C1122A Amb Hot Lab Bench   | synthetic bench top      | LSC             | <200                                         | #4                | 201            | -117                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #2                | 400                    | 250                       | 5                                        |
| 65               | C1122A Amb Hot Lab Bench   | synthetic bench top      | LSC             | <200                                         | #4                | 234            | -30                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #2                | 400                    | 250                       | 5                                        |
| 66               | C1122A Amb Hot Lab Cabinet | painted metal            | LSC             | <200                                         | #4                | 238            | -19                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #2                | 400                    | 250                       | 5                                        |
| 67               | C1122A Amb Hot Lab Floor   | vinyl tile over concrete | LSC             | <200                                         | #4                | 213            | -85                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #2                | 400                    | 250                       | 5                                        |
| 68               | BG13 Floor                 | vinyl tile over concrete | LSC             | <200                                         | #4                | 254            | 23                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 69               | BG13 Floor                 | vinyl tile over concrete | LSC             | <200                                         | #4                | 222            | -61                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 70               | BG13 Floor                 | vinyl tile over concrete | LSC             | <200                                         | #4                | 231            | -38                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 71               | Hot Lab Bench              | synthetic bench top      | LSC             | <200                                         | #4                | 266            | 55                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 72               | Hot Lab Bench              | synthetic bench top      | LSC             | <200                                         | #4                | 232            | -35                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 73               | Hot Lab Bench              | synthetic bench top      | LSC             | <200                                         | #4                | 226            | -51                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 74               | Hot Lab Bench Cabinet      | painted metal            | LSC             | <200                                         | #4                | 222            | -61                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 75               | Hot Lab Bench Cabinet      | painted metal            | LSC             | <200                                         | #4                | 234            | -30                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 76               | Hot Lab Bench Cabinet      | painted metal            | LSC             | <200                                         | #4                | 224            | -56                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 77               | Hot Lab Bench              | synthetic bench top      | LSC             | <200                                         | #4                | 212            | -88                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 78               | Hot Lab Bench              | synthetic bench top      | LSC             | <200                                         | #4                | 208            | -98                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 79               | Hot Lab Bench              | synthetic bench top      | LSC             | <200                                         | #4                | 256            | 29                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 80               | Sink                       | stainless steel          | LSC             | <200                                         | #4                | 258            | 34                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 81               | Hot Lab Bench Cabinet      | painted metal            | LSC             | <200                                         | #4                | 314            | 182                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 82               | Hot Lab Bench Cabinet      | painted metal            | LSC             | <200                                         | #4                | 202            | -114                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 83               | Hot Lab Floor              | painted concrete         | LSC             | <200                                         | #4                | 266            | 55                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 84               | Hot Lab Floor              | painted concrete         | LSC             | <200                                         | #4                | 214            | -83                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 85               | Hot Lab Floor              | painted concrete         | LSC             | <200                                         | #4                | 318            | 193                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 86               | Hot Lab Floor              | painted concrete         | LSC             | <200                                         | #4                | 312            | 177                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 87               | Hot Lab Floor              | painted concrete         | LSC             | <200                                         | #4                | 250            | 13                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 88               | Hot Lab Floor              | painted concrete         | LSC             | <200                                         | #4                | 276            | 81                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 850                    | 700                       | -10                                      |
| 89               | Hot Lab Floor              | contaminated area        | LSC             | <200                                         | #4                | 406            | 425                                    | #6                | 5000                   | 4000                      | #5                | 10                             | #1                | 850                    | 700                       | -10                                      |
| 90               | Hot Lab Floor              | contaminated area        | LSC             | <200                                         | #4                | 432            | 494                                    | #6                | 5000                   | 4000                      | #5                | 10                             | #1                | 850                    | 700                       | -10                                      |

Site: Washington Hospital Center Start Date: 02/04/10


Surveyor: Gregory D. Smith

Building: Former Nuclear Medicine Dept Lab/Room: Former Nuclear Medicine Dept

Tormer Nuclear Medicine Dep

Surveyor: James Dean

|                  | Area Survey Result | s                 | Wipe Test Results |  | β Direct Measurements                        |                   |                | Gamma Scan and Dose Rate               |                   |                        |        |                   | β Scan                         |                   |                        |                           |                                          |
|------------------|--------------------|-------------------|-------------------|--|----------------------------------------------|-------------------|----------------|----------------------------------------|-------------------|------------------------|--------|-------------------|--------------------------------|-------------------|------------------------|---------------------------|------------------------------------------|
| Sample<br>Number | Description        | Surface           | Instru-<br>ment   |  | Actvity<br>dpm/100<br>cm <sup>2</sup> (beta) | Survey<br>Meter # | Gross<br>(cpm) | Activity<br>dpm/100<br>cm <sup>2</sup> | Survey<br>Meter # | Gross<br>High<br>(cpm) |        | Survey<br>Meter # | Gamma<br>Dose Rate<br>(uRem/h) | Survey<br>Meter # | Gross<br>High<br>(cpm) | Gross<br>Average<br>(cpm) | Activity β<br>dpm/100<br>cm <sup>2</sup> |
| 91               | Hot Lab Floor      | contaminated area | LSC               |  | 2129                                         | #4                | 82768          | 218314                                 | #6                | 500000                 | 400000 | #5                | 150                            | #1                | 500000                 | 400000                    | 455812                                   |
| 92               | Hot Lab Floor      | contaminated area | LSC               |  | 161                                          | #4                | 57368          | 151119                                 | #6                | 200000                 | 300000 | #5                | 150                            | #1                | 100000                 | 200000                    | 227501                                   |
| 93               | Hot Lab Floor      | contaminated area | LSC               |  | <200                                         | #4                | 40990          | 107790                                 | #6                | 50000                  | 50000  | #5                | 150                            | #1                | 100000                 | 200000                    | 227501                                   |



Site: Washington Hospital Center

Building: Former Nuclear Medicine Dept Lab/Room: Former Nuclear Medicine I

B = Background Counts

|                                         | Meter 1    |      | M     | eter 2            | N     | Aeter 3        |       | Vieter 4                               | Mete        | er 5                                                                                                            |
|-----------------------------------------|------------|------|-------|-------------------|-------|----------------|-------|----------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------|
| Date:                                   | 2/12/2010  |      |       | Not In Service    |       | Not In Service |       | Not In Service                         | 2/12/2010   |                                                                                                                 |
| Make:                                   | Ludlum     |      |       |                   |       |                |       |                                        | Bicron      |                                                                                                                 |
| Model:                                  | 2221       |      |       |                   |       |                |       |                                        | microrem    | a san a s |
| SN:                                     | 49138      |      |       |                   |       |                |       |                                        | C139F       |                                                                                                                 |
| Probe Make:                             | RSO        |      |       |                   |       |                |       |                                        | Bicron      |                                                                                                                 |
| Probe Model:                            | ASM-7      |      |       |                   |       |                |       |                                        | Plastic Nal |                                                                                                                 |
| Probe SN:                               | 074069     |      |       |                   |       |                |       |                                        | N/A         |                                                                                                                 |
| Probe Area (cm <sup>2</sup> ):          | 15         |      |       | Sec. North Martin |       |                |       |                                        | 1           | A CONTRACTOR                                                                                                    |
| Next Cal. Date:                         | 10/13/2010 | 3024 |       |                   |       |                |       |                                        | 1/22/2011   |                                                                                                                 |
| Background Surface Materia              | Floor      |      |       |                   |       |                |       |                                        | Air         |                                                                                                                 |
| Background(c) - Time(Min)):             | 343        | 10   |       |                   |       |                |       |                                        | 2           | μRem/h                                                                                                          |
| Sample Count Time (min)                 | 1.0        |      | 0.5   |                   | 0.5   |                | 0.5   | States and share                       | N/A         |                                                                                                                 |
| CS Isotope - Activity(µCi):             | C-14       | .149 |       |                   |       |                |       | Sale of the                            | Cs-137      |                                                                                                                 |
| CS Source(cpm)                          |            |      |       |                   |       |                |       |                                        | 600         | μRem/h                                                                                                          |
| L <sub>c,</sub> L <sub>d</sub> (Counts) |            | 30   |       |                   |       |                |       |                                        | NA          | NA                                                                                                              |
| Direct MDC, Scan MDC<br>(dpm/100cm²)    |            | 4216 | -     |                   |       |                |       |                                        | NA          | NA                                                                                                              |
| MDCR , MDC Count Rate                   | 97         | 189  |       |                   |       |                |       |                                        | NA          | NA                                                                                                              |
| Instrumen 4π Eff, Isotope:              | 0.14 To    | 99   |       |                   |       |                | 1000  |                                        | 1           |                                                                                                                 |
| Es Surface Effciency:                   |            | rete | 50.0% | Concrete          | 50.0% | Concrete       | 50.0% | Concrete                               |             |                                                                                                                 |
| E, Total Effciency:                     | 14.0% Tc   | 99   |       | 111428            |       |                |       | an applied to the second second second | N/A         | N/A                                                                                                             |

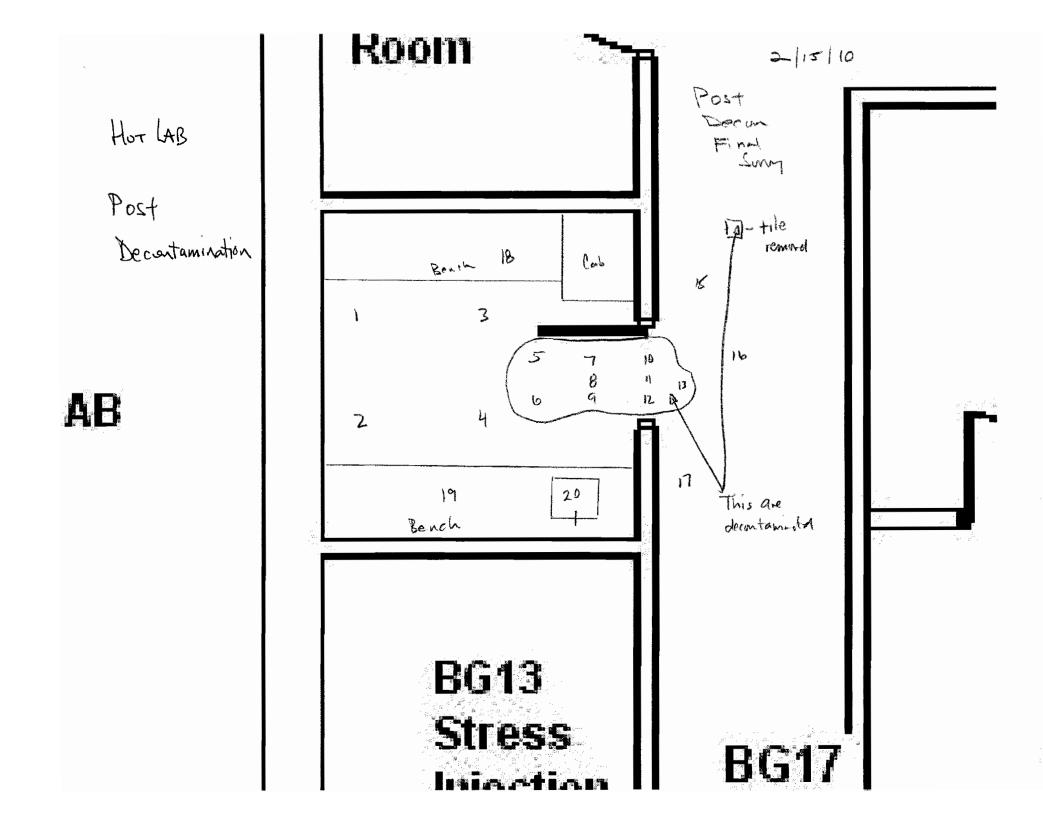
Please See MARSSIM Chapter 6 for a more detailed explanation of equations.

T<sub>B</sub> = BKG Counting Time In Minutes Direct MDC= 3+3.29\*SQRT(B/T(1+T<sub>S+B</sub>/T<sub>B</sub>) T<sub>S+B</sub> = Sample-Bkg Counting Time In Minute: Lc= Critical Detection Leve K \* T<sub>S+B</sub> E = Total Detector Efficiency in Counts/Disintegratio Ld= a priori Detection limi MDC= Minimum Detectable Concentration A = Physical Probe Area in cmf Beta MDCR= Minimum Detectable Count Rate Scan MDC= MDCR K = Other Constants and Factors When Needed SQRT(p)\*E\*Es\*K p = Surveyor Efficiency E<sub>s</sub> = Surface Efficiency  $s_i = 1.38*SQRT(B_r)$ MDCR= s<sub>i</sub> \* (60/i) i = Counting Interva

Site: Washington Hospital Center

Building: Former Nuclear Medicine Dept Lab/Room: Former Nuclear Medicine [

|                                         | Meter 6      | Meter 7     | Meter 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Meter 9        | Meter 10               |
|-----------------------------------------|--------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------|
| Date:                                   | 2/4/2010     | 2/12/2010   | Not In Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not In Service | Not In Servic          |
| Make:                                   | Ludlum       | Ludlum      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| Model:                                  | 2221         | 2221        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| SN:                                     | 157013       | 49138       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| Probe Make:                             | Ludlum       | RSO         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| Probe Model:                            | 44-10        | ASM-7       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| Probe SN:                               | 178512       | 074069      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| Probe Area (cm <sup>2</sup> ):          | 100          | 15          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| Next Cal. Date:                         | 2/3/2011     | 10/13/2010  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| Background Surface Material             | Floor        | Floor       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| Background(c) - Time(Min)):             | 25880 10     | 343 10      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Contraction (Section ) |
| Sample Count Time (min)                 | 1.0          |             | and a state of the |                |                        |
| CS Isotope - Activity(µCi):             | Cs-137 1.000 | C-14 0      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| CS Source(cpm)                          | 200297       | 25698       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| L <sub>c,</sub> L <sub>d</sub> (Counts) | 119 240      | 14 30       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| Direct MDC, Scan MDC                    |              |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| (dpm/100cm <sup>2</sup> )               | 1843 5916    | 1440 4216   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| MDCR , MDC Count Rate                   | 3132 2828    | 97 236      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |
| Efficiency, Isotope:                    |              | 14.0% Tc-99 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |                        |


#### Building: Former Nuclear Medicine Dept

Start Date: 02/04/10 Surveyor: Gregory D. Smith

## Lab/Room: Former Nuclear Medicine Dept

Surveyor: James Dean

|                  | Area Survey Result | ts                       | Wipe Test Results |                                              | β Direct          | Measu          | rements                                | G                 | amma 🕯                 | Scan and                  | Dose R            | ate                            | β Scan            |                        |                           |                                          |
|------------------|--------------------|--------------------------|-------------------|----------------------------------------------|-------------------|----------------|----------------------------------------|-------------------|------------------------|---------------------------|-------------------|--------------------------------|-------------------|------------------------|---------------------------|------------------------------------------|
| Sample<br>Number | Description        | Surface                  | Instru-<br>ment   | Actvity<br>dpm/100<br>cm <sup>2</sup> (beta) | Survey<br>Meter # | Gross<br>(cpm) | Activity<br>dpm/100<br>cm <sup>2</sup> | Survey<br>Meter # | Gross<br>High<br>(cpm) | Gross<br>Average<br>(cpm) | Survey<br>Meter # | Gamma<br>Dose Rate<br>(uRem/h) | Survey<br>Meter # | Gross<br>High<br>(cpm) | Gross<br>Average<br>(cpm) | Activity β<br>dpm/100<br>cm <sup>2</sup> |
| 1                | BB36 Floor         | vinyl tile over concrete | LSC               | <200                                         | #7                | 36             | 81                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #7                | 10                     | 50                        | 748                                      |
| 2                |                    | vinyl tile over concrete |                   | <200                                         | #7                | 50             | 748                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #7                | 10                     | 50                        | 748                                      |
| 3                | BB36 Floor         | vinyl tile over concrete |                   | <200                                         | #7                | 43             | 414                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #7                | 10                     | 50                        | 748                                      |
| 4                | BB36 Floor         | vinyl tile over concrete | LSC               | <200                                         | #7                | 43             | 414                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #7                | 10                     | 50                        | 748                                      |
| 5                | BB36 Floor         | vinyl tile over concrete | LSC               | <200                                         | #7                | 43             | 414                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #7                | 10                     | 50                        | 748                                      |
| 6                | Emp Tlt            | vinyl tile over concrete | LSC               | <200                                         | #7                | 49             | 700                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #7                | 10                     | 50                        | 748                                      |
| 7                |                    | vinyl tile over concrete |                   | <200                                         | #7                | 53             | 890                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #7                | 10                     | 50                        | 748                                      |
| 8                | Pt Tit             | tile removed concrete    |                   | <200                                         | #7                | 36             | 81                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #7                | 10                     | 50                        | 748                                      |
| 9                | Pt TIt             | tile removed concrete    | LSC               | <200                                         | #7                | 50             | 748                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #7                | 10                     | 50                        | 748                                      |
| 10               | Pt Tlt             | tile removed concrete    |                   | <200                                         | #7                | 45             | 510                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #7                | 10                     | 50                        | 748                                      |



Site: Washington Hospital Center

Building: Former Nuclear Medicine Dept Lab/Room: Former Nuclear Medicine [

|                                                   | Mete      | r 1            | Me      | ter 2              | Me      | ter 3          | M       | eter 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mete        | er 5   |
|---------------------------------------------------|-----------|----------------|---------|--------------------|---------|----------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|
| Date:                                             | 2/15/2010 |                |         | Not In Service     |         | Not In Service |         | Not In Service                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2/15/2010   |        |
| Make:                                             | Ludlum    | 3-2-2-2        |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bicron      | 12010  |
| Model:                                            | 2221      |                |         | THE REAL PROPERTY. |         |                |         | State of the state | microrem    |        |
| SN:                                               | 174947    |                |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C139F       |        |
| Probe Make:                                       | Ludlum    | We approximate |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bicron      |        |
| Probe Model:                                      | 43-68     |                |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Plastic Nal |        |
| Probe SN:                                         | 079572    |                |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A         |        |
| Probe Area (cm <sup>2</sup> ):                    | 126       |                |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1           |        |
| Next Cal. Date:                                   | 2/3/2011  | 189 18         |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1/22/2011   |        |
| Background Surface Materia                        | Floor     |                |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Air         |        |
| Background(c) - Time(Min)):                       | 3580      | 10             | -       |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2           | μRem/h |
| Sample Count Time (min)                           | 1.0       |                |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A         |        |
| CS Isotope - Activity(µCi):                       | C-14      | 0.149          |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cs-137      |        |
| CS Source(cpm)                                    |           |                |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 600         | μRem/h |
| L <sub>c</sub> , L <sub>d</sub> (Counts)          | 44        | 91             |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA          | NA     |
| Direct MDC, Scan MDC<br>(dpm/100cm <sup>2</sup> ) |           | 783            |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA          | NA     |
| MDCR , MDC Count Rate                             | 560       | 412            | #VALUE! |                    | #VALUE! |                | #VALUE! |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NA          | NA     |
| Instrumen 4π Eff, Isotope:                        | 0.29      | Cs-137         |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |        |
| E <sub>s</sub> Surface Effciency:                 |           | Concrete       | 50.0%   | Concrete           | 50.0%   | Concrete       | 50.0%   | Concrete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             |        |
| E, Total Effciency:                               |           | Cs-137         |         |                    |         |                |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A         | N/A    |

| Please See MARSSIM Chapter 6 for a mo | re detailed explanation o | f equations.                                 | B = Background Counts<br>$T_B = BKG$ Counting Time In       | n Minutes                                   |
|---------------------------------------|---------------------------|----------------------------------------------|-------------------------------------------------------------|---------------------------------------------|
| Lc= Critical Detection Leve           | Direct MDC= 3+3.29*5      | QRT(B/T(1+T <sub>S+B</sub> /T <sub>B</sub> ) | T <sub>S+B</sub> = Sample-Bkg Countin                       | ng Time In Minute:                          |
| Ld= a priori Detection limi           |                           | K * T <sub>S+B</sub>                         | E = Total Detector Efficience                               | cy in Counts/Disintegratio                  |
| MDC= Minimum Detectable Concentration | Beta                      |                                              | A = Physical Probe Area in                                  | n cm²                                       |
| MDCR= Minimum Detectable Count Rate   | Scan MDC=SQ               | MDCR<br>RT(p)*E*E <sub>s</sub> *K            | K = Other Constants and F<br>p = Surveyor Efficiency        | Factors When Needed                         |
|                                       | MDCR=                     | s <sub>i</sub> * (60/i)                      | E <sub>s</sub> = Surface Efficiency<br>i = Counting Interva | s <sub>i</sub> = 1.38*SQRT(B <sub>r</sub> ) |

Site: Washington Hospital Center

Building: Former Nuclear Medicine Dept Lab/Room: Former Nuclear Medicine [

|                                            | Meter 6     | Meter 7        | Meter 8        | Meter 9        | Meter 10                                |
|--------------------------------------------|-------------|----------------|----------------|----------------|-----------------------------------------|
| Date: 2                                    | /4/2010     | Not In Service | Not In Service | Not In Service | Not In Service                          |
| Make: L                                    | udlum       |                |                |                |                                         |
| Model: 22                                  | 221         |                |                |                |                                         |
| SN: 1                                      | 57013       |                |                |                |                                         |
| Probe Make: L                              | udlum       |                |                |                |                                         |
| Probe Model: 4                             | 4-10        |                |                |                |                                         |
| Probe SN: 1                                | 78512       |                |                |                |                                         |
| Probe Area (cm <sup>2</sup> ): 10          | 00          |                |                |                |                                         |
| Next Cal. Date: 2/                         | /3/2011     |                |                |                |                                         |
| Background Surface Materia                 | loor        |                |                |                |                                         |
| Background(c) - Time(Min)): 2              | 5880 10     |                |                |                |                                         |
| Sample Count Time (min) 1.                 | .0          |                |                |                | A SPLAND AN STREET                      |
| CS Isotope - Activity(µCi): C              | s-137 1.000 |                |                |                |                                         |
| CS Source(cpm) 20                          | 00297       |                |                |                |                                         |
| L <sub>c</sub> , L <sub>d</sub> (Counts) 1 | 19 240      |                |                |                |                                         |
| Direct MDC, Scan MDC                       |             |                |                |                |                                         |
| (dpm/100cm <sup>2</sup> ) 18               | 843 5916    |                |                |                |                                         |
| MDCR , MDC Count Rate 3                    | 132 2828    |                |                |                |                                         |
| Efficiency, Isotope: 13                    |             |                |                |                | Wedner & Comment Substantian Survey and |

Site: Washington Hospital Center Start Date: 02/04/10

## Building: Former Nuclear Medicine Dept

Lab/Room: Former Nuclear Medicine Dept

Surveyor: Gregory D. Smith

#### Surveyor: James Dean

|                  | Area Survey Resul | ts                   | Wipe            | Test Results                                 | β Direct          | Measu          | rements                                | 6                 | amma                   | Scan and                  | Dose R            | ate                            |                   | β                      | Scan                      |                                          |
|------------------|-------------------|----------------------|-----------------|----------------------------------------------|-------------------|----------------|----------------------------------------|-------------------|------------------------|---------------------------|-------------------|--------------------------------|-------------------|------------------------|---------------------------|------------------------------------------|
| Sample<br>Number | Description       | Surface              | Instru-<br>ment | Actvity<br>dpm/100<br>cm <sup>2</sup> (beta) | Survey<br>Meter # | Gross<br>(cpm) | Activity<br>dpm/100<br>cm <sup>2</sup> | Survey<br>Meter # | Gross<br>High<br>(cpm) | Gross<br>Average<br>(cpm) | Survey<br>Meter # | Gamma<br>Dose Rate<br>(uRem/h) | Survey<br>Meter # | Gross<br>High<br>(cpm) | Gross<br>Average<br>(cpm) | Activity β<br>dpm/100<br>cm <sup>2</sup> |
| 1                | Floor             | painted concrete     | LSC             | <200                                         | #1                | 288            | -383                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 500                    | 350                       | -44                                      |
| 2                | Floor             | painted concrete     | LSC             | <200                                         | #1                | 287            | -389                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 500                    | 350                       | -44                                      |
| 3                | Floor             | painted concrete     | LSC             | <200                                         | #1                | 327            | -170                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 500                    | 350                       | -44                                      |
| 4                | Floor             | painted concrete     | LSC             | <200                                         | #1                | 314            | -241                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 500                    | 350                       | -44                                      |
| 5                | Floor             | deconed ptd concrete | LSC             | <200                                         | #1                | 321            | -203                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 500                    | 350                       | -44                                      |
| 6                | Floor             | deconed ptd concrete |                 | <200                                         | #1                | 341            | -93                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 500                    | 350                       | -44                                      |
| 7                | Floor             | deconed ptd concrete | LSC             | <200                                         | #1                | 374            | 88                                     | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 500                    | 350                       | -44                                      |
| 8                | Floor             | deconed ptd concrete | LSC             | <200                                         | #1                | 554            | 1073                                   | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 500                    | 350                       | -44                                      |
| 9                | Floor             | deconed ptd concrete | LSC             | <200                                         | #1                | 421            | 345                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 500                    | 350                       | -44                                      |
| 10               | Floor             | deconed ptd concrete |                 | <200                                         | #1                | 406            | 263                                    | #6                | 3000                   | 2200                      | #5                | 3                              | #1                | 500                    | 350                       | -44                                      |

Attachment C

Wipe Test Analysis Data Print-Out

| otocol #: 5                                                                                                                                                                     |                                                                                                                                     |                                                                                                                  | <u>0, Inc.</u><br>cmed Leak Te                                                                                                                                      |                                                                                              |                                                 | er : La                                                                                      |                                           |                   | an                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------|-------------------------------------------|-------------------|---------------------------------------------------|
| INGTON HOSPITAL CEN<br>It Time(minutes):<br>y Type:<br>ground Subtract :<br>Outlier:<br>\$Spillup:<br>\$Spilldown:<br>Screening:                                                | 1.00<br>CPM                                                                                                                         |                                                                                                                  |                                                                                                                                                                     |                                                                                              |                                                 |                                                                                              |                                           |                   |                                                   |
|                                                                                                                                                                                 | Window A                                                                                                                            | an a cuir an                                                                 | Window B                                                                                                                                                            |                                                                                              | Window C                                        |                                                                                              |                                           |                   |                                                   |
| Nuclide:<br>Bkg:                                                                                                                                                                | MAN<br>2.22                                                                                                                         | 650 - 6                                                                                                          | 70 keV Co-57<br>27.3                                                                                                                                                | 75 - 165 keV                                                                                 | MAN<br>217                                      | 15 - 2000                                                                                    | keV                                       |                   |                                                   |
| sigma∶                                                                                                                                                                          | 0.00                                                                                                                                |                                                                                                                  | 0.00                                                                                                                                                                |                                                                                              | 2.00                                            |                                                                                              |                                           |                   |                                                   |
| LCR:                                                                                                                                                                            | 0                                                                                                                                   |                                                                                                                  | 0                                                                                                                                                                   |                                                                                              | 0                                               |                                                                                              |                                           |                   |                                                   |
| Half Life(hours):                                                                                                                                                               | 0.00                                                                                                                                |                                                                                                                  | 0.00                                                                                                                                                                |                                                                                              |                                                 |                                                                                              |                                           |                   |                                                   |
| Multiplier:<br>%CV Flag Linit:                                                                                                                                                  | 1.0000<br>0.00                                                                                                                      |                                                                                                                  | 0.00                                                                                                                                                                |                                                                                              |                                                 |                                                                                              |                                           |                   |                                                   |
|                                                                                                                                                                                 | COM                                                                                                                                 | A-80TO                                                                                                           |                                                                                                                                                                     | B:%SIG                                                                                       | ~ · ~ ~                                         | M C:                                                                                         | 26.TC                                     |                   |                                                   |
|                                                                                                                                                                                 | CPM<br>5.8                                                                                                                          | A:%SIG<br>25.2                                                                                                   | 8:CPM<br>157.7                                                                                                                                                      | 7.96                                                                                         | 1673.                                           |                                                                                              | 2.44                                      |                   |                                                   |
|                                                                                                                                                                                 | 2.8                                                                                                                                 | 35.9                                                                                                             | 12,7                                                                                                                                                                | 28.0                                                                                         | 171.                                            |                                                                                              | 7.64                                      |                   |                                                   |
| З                                                                                                                                                                               | 0.8                                                                                                                                 | 113                                                                                                              | 0.0                                                                                                                                                                 |                                                                                              | 12.                                             |                                                                                              | 28.3                                      |                   |                                                   |
|                                                                                                                                                                                 | 0.0                                                                                                                                 |                                                                                                                  | 0.0                                                                                                                                                                 | 110                                                                                          | 0.                                              |                                                                                              |                                           |                   |                                                   |
|                                                                                                                                                                                 | 0.0<br>2.8                                                                                                                          | 60.0                                                                                                             | 0.7                                                                                                                                                                 | 118                                                                                          | 0.<br>0.                                        |                                                                                              |                                           |                   |                                                   |
|                                                                                                                                                                                 | 0.0                                                                                                                                 | 00.0                                                                                                             | 5.7                                                                                                                                                                 | 41.8                                                                                         | 4.                                              |                                                                                              | 47.0                                      |                   |                                                   |
| 8                                                                                                                                                                               | 1.8                                                                                                                                 | 75.0                                                                                                             | 0.7                                                                                                                                                                 | 118                                                                                          | 25,                                             |                                                                                              | 19.8                                      |                   |                                                   |
| 9                                                                                                                                                                               | 0.0                                                                                                                                 |                                                                                                                  | 0.0                                                                                                                                                                 |                                                                                              | 27.                                             | 5                                                                                            | 19.1                                      |                   |                                                   |
| 10<br>[TDATA.D05 A                                                                                                                                                              | 0.0<br>Archive                                                                                                                      |                                                                                                                  | 0.7<br>ARCHNARCH05D<br>DATANARCH05A                                                                                                                                 |                                                                                              | 5.                                              |                                                                                              | 42.6                                      |                   |                                                   |
| 10<br>(TDATA.D05 A<br>DATA\P5DATA                                                                                                                                               | 0.0<br>Archive<br>A Copie                                                                                                           | d to C:N                                                                                                         | 0.7<br>ARCH\ARCH05D<br>DATA\ARCH05A                                                                                                                                 | .911<br>.911                                                                                 | 5.                                              | 5                                                                                            |                                           |                   |                                                   |
| 10<br>(TDATA.DOS A<br>DATA\P5DATA<br>05 Feb 10<br>PROTOCOL #                                                                                                                    | 0.0<br>Archive<br>Copie<br>06                                                                                                       | d to C:NI<br>:25:19                                                                                              | 0.7<br>ARCH\ARCH05D<br>DATA\ARCH05A                                                                                                                                 | .911<br>.911<br>10del 5003                                                                   | 5.<br>COBRA SN:                                 | 424559                                                                                       |                                           |                   |                                                   |
| 10<br>(TDATA.DO5 A<br>DATA\P5DATA<br>05 Feb 10<br>PROTOCOL #<br>Nucmed Lea<br>WASHINGTON<br>COUNT TIME                                                                          | 0.0<br>Archive<br>Copie<br>06<br>5<br>k Test<br>HOSPI                                                                               | d to C:NI<br>:25:19<br>TAL CENTE<br>1.00                                                                         | 0.7<br>ARCH\ARCH05D<br>DATA\ARCH05A<br>Packard 1<br>Packard 1<br>ER<br>1inutes                                                                                      | .911<br>.911<br>10del 5003                                                                   | 5.<br>COBRA SN:                                 | 424559                                                                                       |                                           |                   | -                                                 |
| 10<br>CTDATA.DOS A<br>DATA\P5DATA<br>05 Feb 10<br>PROTOCOL #<br>Nucmed Lea<br>WASHINGTON                                                                                        | 0.0<br>Archive<br>Copie<br>06<br>5<br>k Test<br>HOSPI                                                                               | d to C:NI<br>:25:19<br>TAL CENTE<br>1.00                                                                         | 0.7<br>ARCH\ARCH05D<br>DATA\ARCH05A<br>Packard 1<br>Packard 1<br>ER<br>1inutes                                                                                      | .911<br>.911<br>10del 5003                                                                   | 5.<br>COBRA SN:                                 | 424559                                                                                       |                                           |                   |                                                   |
| 10<br>ITDATA.D05 A<br>DATA\P5DATA<br>05 Feb 10<br>PROTOCOL #<br>Nucmed Lea<br>WASHINGTON<br>COUNT TIME<br>Window<br>LLD:<br>ULD:<br>EFF:                                        | 0.0<br>Archive<br>Copie<br>06<br>5<br>k Test<br>HOSPI                                                                               | d to C: N<br>:25:19<br>TAL CENTE<br>1.00 M                                                                       | 0.7<br>ARCH\ARCHO5D<br>DATA\ARCHO5A<br>Packard M<br>ER<br>Minutes<br>Window B                                                                                       | .911<br>.911<br>10del 5003<br>keV<br>keV                                                     | S.<br>COBRA SN:<br>Windor                       | 424559                                                                                       |                                           |                   | ·                                                 |
| 10<br>(TDATA.DOS A<br>DATA\P5DATA<br>05 Feb 10<br>PROTOCOL #<br>Nucmed Lea<br>WASHINGTON<br>COUNT TIME<br>ULD:<br>ULD:<br>EFF:<br>Sample                                        | 0.0<br>Archive<br>Copie<br>06<br>5<br>k Test<br>HOSPI<br>W A<br>650 ke<br>670 ke                                                    | d to C: N<br>:25:19<br>TAL CENTE<br>1.00 M                                                                       | 0.7<br>ARCH\ARCHO5D<br>DATA\ARCHO5A<br>Packard M<br>Packard M<br>Packard M<br>LD: 75<br>JLD: 75<br>JLD: 165                                                         | .911<br>.911<br>10del 5003<br>keV<br>keV                                                     | 5.<br>Windo<br>LLD:<br>ULD: 2<br>EFF:           | 5<br>424559<br>ω C<br>15 keV<br>000 keV                                                      |                                           |                   |                                                   |
| 10<br>(TDATA.DO5 A<br>DATA\P5DATA<br>05 Feb 10<br>PROTOCOL #<br>Nucmed Lea<br>WASHINGTON<br>COUNT TIME<br>Windou<br>LLD:<br>ULD:<br>ULD:<br>EFF:<br>Sample<br># A:<br>1         | 0.0<br>Trchive<br>Copie<br>06<br>5<br>k Test<br>HOSPI<br>W A<br>550 ke<br>670 ke<br>57 %<br>CPM<br>16                               | d to C:NI<br>:25:19<br>TAL CENTE<br>1.00 M<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L | 0.7<br>ARCH\ARCHO5D<br>DATA\ARCHO5A<br>Packard M<br>Packard M<br>Minutes<br>Window B<br>LLD: 75<br>JLD: 165<br>EFF: 85<br>B:CPM<br>158                              | .911<br>.911<br>10del 5003<br>keV<br>keV<br>%<br>B:DPM<br>186                                | 5.<br>Windou<br>LLD:<br>ULD:<br>EFF:<br>C:<br>1 | 5<br>424559<br>424559<br>15 keV<br>000 keV<br>80 %<br>CPM<br>674                             | 42.6<br>C:DPM<br>2092                     |                   |                                                   |
| 10<br>ITDATA.DO5 A<br>DATA\P5DATA<br>05 Feb 10<br>PROTOCOL #<br>Nucmed Lea<br>WASHINGTON<br>COUNT TIME<br>Windon<br>LLD:<br>ULD:<br>EFF:<br>Sample<br># A::1<br>1<br>2          | 0.0<br>Frchive<br>Copie<br>06<br>5<br>k Test<br>HOSPI<br>W A<br>650 ke<br>670 ke<br>57 %<br>CPM<br>16<br>8                          | d to C:NI<br>:25:19<br>TAL CENTE<br>1.00 M<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L | 0.7<br>ARCH\ARCHO5D<br>DATA\ARCHO5A<br>Packard M<br>Packard M<br>Minutes<br>Window B<br>LLD: 75<br>JLD: 165<br>SFF: 85<br>B:CPM<br>158<br>13                        | .911<br>.911<br>10del 5003<br>keV<br>keV<br>%<br>B:DPM<br>186<br>15                          | 5.<br>Windou<br>LLD:<br>ULD:<br>EFF:<br>C:<br>1 | 5<br>424559<br>15 keV<br>000 keV<br>80 %<br>CPM<br>674<br>172                                | 42.6<br>C:DPM<br>2092<br>214              | )                 |                                                   |
| 10<br>(TDATA.DO5 A<br>DATA\P5DATA<br>05 Feb 10<br>PROTOCOL #<br>Nucmed Lea<br>WASHINGTON<br>COUNT TIME<br>Windon<br>LLD:<br>ULD:<br>EFF:<br>Sample<br># A::<br>1<br>2<br>3      | 0.0<br>Frchive<br>Copie<br>06<br>5<br>k Test<br>HOSPI<br>W A<br>550 ke<br>670 ke<br>57 %<br>CPM<br>16<br>8<br>1                     | d to C:NI<br>:25:19<br>TAL CENTE<br>1.00 M<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L | 0.7<br>ARCH\ARCHO5D<br>DATA\ARCHO5A<br>Packard M<br>Packard M<br>Minutes<br>Window B<br>LLD: 75<br>JLD: 165<br>EFF: 85<br>B:CPM<br>158                              | .911<br>.911<br>10del 5003<br>keV<br>keV<br>%<br>B:DPM<br>186<br>15<br>0                     | 5.<br>Windou<br>LLD:<br>ULD:<br>EFF:<br>C:<br>1 | 5<br>424559<br>15 keV<br>000 keV<br>80 %<br>CPM<br>674<br>172<br>13                          | 42.6<br>C:DPM<br>2092                     |                   |                                                   |
| 10<br>(TDATA.DOS A<br>DATA\P5DATA<br>05 Feb 10<br>PROTOCOL #<br>Nucmed Lea<br>WASHINGTON<br>COUNT TIME<br>ULD:<br>ULD:<br>EFF:<br>Sample<br># A:1<br>1<br>2<br>3<br>4<br>5      | 0.0<br>Frchive<br>Copie<br>06<br>5<br>k Test<br>HOSPI<br>W A<br>650 ke<br>670 ke<br>57 %<br>CPM<br>16<br>8                          | d to C:NI<br>:25:19<br>TAL CENTE<br>1.00 M<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L | 0.7<br>ARCH\ARCHO5D<br>DATA\ARCHO5A<br>Packard 1<br>Packard 1<br>ER<br>Minutes<br>Window B<br>LD: 75<br>JLD: 165<br>EFF: 85<br>B:CPM<br>158<br>13<br>0              | .911<br>.911<br>10del 5003<br>keV<br>keV<br>%<br>B:DPM<br>186<br>15                          | 5.<br>Windou<br>LLD:<br>ULD:<br>EFF:<br>C:<br>1 | 5<br>424559<br>15 keV<br>000 keV<br>80 %<br>CPM<br>674<br>172                                | 42.6<br>C:DPM<br>2092<br>214<br>16        | $\langle \rangle$ | count of                                          |
| 10<br>(TDATA.DOS A<br>DATA\P5DATA<br>05 Feb 10<br>PROTOCOL #<br>Nucmed Lea<br>WASHINGTON<br>COUNT TIME<br>ULD:<br>ULD:<br>EFF:<br>Sample<br># A:1<br>1<br>2<br>3<br>4<br>5<br>6 | 0.0<br>mrchive<br>Copie<br>06<br>5<br>k Test<br>HOSPI<br>W A<br>650 ke<br>670 ke<br>57 %<br>CPM<br>16<br>8<br>1<br>0<br>0<br>3      | d to C:NI<br>:25:19<br>TAL CENTE<br>1.00 M<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L | 0.7<br>ARCH\ARCHO5D<br>DATA\ARCHO5A<br>Packard M<br>Packard M<br>LD: 75<br>JLD: 165<br>EFF: 85<br>B:CPM<br>158<br>13<br>0<br>0<br>1<br>0                            | .911<br>.911<br>Model 5003<br>keV<br>keV<br>%<br>B:DPM<br>186<br>15<br>0<br>0<br>1<br>0      | 5.<br>Windou<br>LLD:<br>ULD:<br>EFF:<br>C:<br>1 | 5<br>424559<br>424559<br>15 keV<br>000 keV<br>80 %<br>CPM<br>674<br>172<br>13<br>0<br>0<br>0 | C:DPM<br>2092<br>214<br>16<br>0<br>0      | $\langle$         | count of<br>individual                            |
| 10<br>(TDATA.DOS A<br>DATA\P5DATA<br>OS Feb 10<br>PROTOCOL #<br>Nucmed Lea<br>WASHINGTON<br>COUNT TIME<br>ULD:<br>ULD:<br>EFF:<br>Sample<br># A:1<br>                           | 0.0<br>mrchive<br>Copie<br>06<br>5<br>k Test<br>HOSPI<br>W A<br>670 ke<br>670 ke<br>57 %<br>CPM<br>16<br>8<br>1<br>0<br>0<br>3<br>0 | d to C:NI<br>:25:19<br>TAL CENTE<br>1.00 M<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L | 0.7<br>ARCH\ARCHO5D<br>DATA\ARCHO5A<br>Packard M<br>Packard M<br>Minutes<br>Undow B<br>LD: 75<br>JLD: 165<br>EFF: 85<br>B:CPM<br>158<br>13<br>0<br>0<br>1<br>0<br>5 | .911<br>.911<br>Model 5003<br>keV<br>keV<br>%<br>B:DPM<br>186<br>15<br>0<br>0<br>1<br>0<br>7 | 5.<br>Windou<br>LLD:<br>ULD:<br>EFF:<br>C:<br>1 | 5<br>424559<br>15 keV<br>000 keV<br>80 %<br>CPM<br>674<br>172<br>13<br>0<br>0<br>5           | C:DPM<br>2092<br>214<br>16<br>0<br>0<br>6 | $\langle$         | count of<br>individual                            |
| 10<br>(TDATA.DOS A<br>DATA\P5DATA<br>05 Feb 10<br>PROTOCOL #<br>Nucmed Lea<br>WASHINGTON<br>COUNT TIME<br>ULD:<br>ULD:<br>EFF:<br>Sample<br># A:1<br>1<br>2<br>3<br>4<br>5<br>6 | 0.0<br>mrchive<br>Copie<br>06<br>5<br>k Test<br>HOSPI<br>W A<br>650 ke<br>670 ke<br>57 %<br>CPM<br>16<br>8<br>1<br>0<br>0<br>3      | d to C:NI<br>:25:19<br>TAL CENTE<br>1.00 M<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L<br>V L | 0.7<br>ARCH\ARCHO5D<br>DATA\ARCHO5A<br>Packard M<br>Packard M<br>LD: 75<br>JLD: 165<br>EFF: 85<br>B:CPM<br>158<br>13<br>0<br>0<br>1<br>0                            | .911<br>.911<br>Model 5003<br>keV<br>keV<br>%<br>B:DPM<br>186<br>15<br>0<br>0<br>1<br>0      | 5.<br>Windou<br>LLD:<br>ULD:<br>EFF:<br>C:<br>1 | 5<br>424559<br>424559<br>15 keV<br>000 keV<br>80 %<br>CPM<br>674<br>172<br>13<br>0<br>0<br>0 | C:DPM<br>2092<br>214<br>16<br>0<br>0      | $\langle$         | count of<br>individual<br>sample<br>(from "10 per |

|        |                         | 14:49    |               | RSO, Inc. |              |          |            |         |  |
|--------|-------------------------|----------|---------------|-----------|--------------|----------|------------|---------|--|
|        | Protocol #: 5           |          | Nucmed        | Leak Tes  | st           | User     | : Lab Tech | nnician |  |
|        | WASHINGTON HOSPITAL CEN | NTER     |               |           |              |          |            |         |  |
| $\sim$ | Count Time(minutes):    | 1.00     |               |           |              |          |            |         |  |
|        | Assay Type:             | CPH      |               |           |              |          |            |         |  |
|        | Background Subtract :   | IPA Bkg  |               |           |              |          |            |         |  |
|        | Outlier:                | 5.0 FLAG |               |           |              |          |            |         |  |
|        | \$Spillup:              | 0.00     |               |           |              |          |            |         |  |
|        | \$Spilldown:            | 0.00     |               |           |              |          |            |         |  |
|        | Screening:              | OFF      |               |           |              |          |            |         |  |
|        |                         | Window A |               | Window B  |              | Window C |            |         |  |
|        | Nuclide:                | MAN      | 650 - 670 keV | Co-57     | 75 - 165 keV | NAN 15   | - 2000 keV |         |  |
|        | Bkg:                    | 2.20     |               | 26.0      |              | 222      |            |         |  |
|        | Sigma:                  | 0.00     |               | 0.00      |              | 2.00     |            |         |  |
|        | LCR:                    | 0        |               | 0         |              | 0        |            |         |  |
|        | Half Life(hours):       | 0.00     |               | 0.00      |              |          |            |         |  |
|        | Hultiplier:             | 1.0000   |               |           |              |          |            |         |  |
|        | 2CV Flag Limit:         | 0.00     |               | 0.00      |              |          |            |         |  |
|        | S# A                    | CPM      | A:%SIG        | B:CPM     | B:%SIG       | C:CPM    | C:%SIG     |         |  |
|        | 1                       | 1.8      | 74.5          | 0.0       |              | 29.2     | 18.5       |         |  |
|        | 2<br>3                  | 1.8      | 74.5          | 0.0       |              | 0.0      |            |         |  |
|        | 3                       | 0.0      |               | 5.0       | 44.9         | 7.2      | 37.4       |         |  |
|        | 4                       | 0.0      |               | 0.0       |              | 0.0      |            |         |  |
|        | 5                       | 0.0      |               | 5.0       | 44.9         | 2.2      | 68.0       |         |  |
|        | 6<br>7                  | 0.0      |               | 0.0       |              | 2.2      | 68.0       |         |  |
| ~      | 7                       | 2.8      | 59.8          | 0.0       |              | 3.2      | 56.3       |         |  |
|        | 8                       | 0.8      | 112           | 6.0       | 41.0         | 0.0      |            |         |  |
|        | 9                       | 0,8      | 112           | 2.0       | 71.4         | 16.2     | 24.9       |         |  |
|        | 10 1                    | 15.8     | 25.2          | 184.0     | 7.37         | 1959.2   | 2.26       |         |  |

EDITDATA.D05 Archived to C:\ARCH\ARCH05D.910 C:\DATA\P5DATA Copied to C:\DATA\ARCH05A.910

04 Feb 10 14:48:32 Packard Model 5003 COBRA SN: 424559 \_\_\_\_\_\_ PROTOCOL # 5 Nucmed Leak Test WASHINGTON HOSPITAL CENTER COUNT TIME 1.00 Minutes Window A Window B Window C 650 keV 670 keV 57 % LLD: LLD: 75 keV LLD: 15 keV ULD: 165 keV 85 % 2000 keV ULD: ULD: EFF: EFF: EFF: 80 % Sample A:CPM A:DPM B:CPM B:DPM # C:CPM C:DPM з з groups of 10 mpe tests З ΰ ΰ ---- 3---¢. •

| otocol #: 3                                                                                                                                                   |                                                                                                   | 13                                                                            | IH 10-                                                         | -Pk Brea                                                                             | Kaown                                                         |                      | User                                                | • Lau                         | lechnic  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------|-----------------------------------------------------|-------------------------------|----------|
| HINGTON HOSPITAL CEN                                                                                                                                          | ITER                                                                                              |                                                                               |                                                                |                                                                                      |                                                               |                      |                                                     |                               |          |
|                                                                                                                                                               | 1.00                                                                                              |                                                                               |                                                                |                                                                                      |                                                               |                      |                                                     |                               |          |
| say Type:                                                                                                                                                     |                                                                                                   |                                                                               |                                                                |                                                                                      |                                                               |                      |                                                     |                               |          |
| kground Subtract :                                                                                                                                            | IPA Bkg                                                                                           |                                                                               |                                                                |                                                                                      |                                                               |                      |                                                     |                               |          |
| Outlier:                                                                                                                                                      | 5.0 FLAG                                                                                          |                                                                               |                                                                |                                                                                      |                                                               |                      |                                                     |                               |          |
| %Spillup:                                                                                                                                                     | 0.00                                                                                              |                                                                               |                                                                |                                                                                      |                                                               |                      |                                                     |                               |          |
| %Spilldown:                                                                                                                                                   | 0.00                                                                                              |                                                                               |                                                                |                                                                                      |                                                               |                      |                                                     |                               |          |
| Screening                                                                                                                                                     | OFF                                                                                               |                                                                               |                                                                |                                                                                      |                                                               |                      |                                                     |                               |          |
|                                                                                                                                                               | Window A                                                                                          |                                                                               |                                                                | Window 8                                                                             |                                                               | Window C             |                                                     |                               |          |
| Nuclide:                                                                                                                                                      | 100000000000000000000000000000000000000                                                           | 260 -                                                                         | 470 keV                                                        | Fe-59                                                                                | 940 - 1400 ke                                                 |                      | 15                                                  | - 2000 keV                    |          |
| Bkg:                                                                                                                                                          | 43.3                                                                                              | 200                                                                           | 110 (0)                                                        | 27.5                                                                                 | 719 2799 BV                                                   | 217                  | 14                                                  |                               |          |
| Sigma:                                                                                                                                                        |                                                                                                   |                                                                               |                                                                | 0.00                                                                                 |                                                               | 2.00                 |                                                     |                               |          |
| LCR:                                                                                                                                                          | 0                                                                                                 |                                                                               |                                                                | 0                                                                                    |                                                               | 0                    |                                                     |                               |          |
| Half Life(hours):                                                                                                                                             | -                                                                                                 |                                                                               |                                                                | 0.00                                                                                 |                                                               | 5                    |                                                     |                               |          |
| Multiplier:                                                                                                                                                   |                                                                                                   |                                                                               |                                                                | ~                                                                                    |                                                               |                      |                                                     |                               |          |
| %CV Flag Limit:                                                                                                                                               |                                                                                                   |                                                                               |                                                                | 0.00                                                                                 |                                                               |                      |                                                     |                               |          |
|                                                                                                                                                               |                                                                                                   |                                                                               |                                                                |                                                                                      |                                                               |                      |                                                     |                               |          |
|                                                                                                                                                               |                                                                                                   |                                                                               |                                                                |                                                                                      |                                                               |                      |                                                     |                               | -        |
| S# A:                                                                                                                                                         | CPM                                                                                               | A:%SIG                                                                        |                                                                | 8:CPM                                                                                | B:%SIG                                                        | C:                   | CPM                                                 | C:%S                          | IG       |
|                                                                                                                                                               | 10.7<br>Archive                                                                                   | 2.87<br>d to C:                                                               | \ARCH\                                                         | 0.5<br>ARCHO3D                                                                       |                                                               | C:<br>169            | CPM<br>9.5                                          | C:%S<br>2,                    | IG<br>43 |
| 1 121<br>ITDATA.D03 A                                                                                                                                         | 10.7<br>Archive                                                                                   | 2.87<br>d to C:                                                               | \ARCH\                                                         | 0.5<br>ARCHO3D                                                                       | 144<br>.167                                                   | C:<br>169            | CPM<br>9.5                                          | C:%S<br>2.                    | 1G<br>43 |
| 1 121<br>ITDATA.D03 A                                                                                                                                         | LO.7<br>Archive<br>A Copie<br>07                                                                  | 2.87<br>d to C:<br>d to C:                                                    | \ARCH\<br>\DATA\<br>P                                          | 0.5<br>ARCHO3D<br>ARCHO3A                                                            | 144<br>.167<br>.167                                           | 169                  | 9,5                                                 | 2.                            | 1G<br>43 |
| 1 121<br>ITDATA.DO3 A<br>NDATANP3DATA                                                                                                                         | lO.7<br>Archive<br>A Copie<br>O7<br>↓ 3<br>Breakd<br>↓ HOSPI                                      | 2.87<br>d to C:<br>d to C:<br>:01:02<br>own<br>TAL CEN                        | VARCHV<br>VDATAV<br>P                                          | 0.5<br>ARCHO3D<br>ARCHO3A                                                            | 144<br>.167<br>.167                                           | 169                  | 9,5                                                 | 2.                            | 1G<br>43 |
| 1 121<br>ITDATA.DO3 A<br>\DATA\P3DATA<br>05 Feb 10<br>PROTOCOL #<br>NIH 10-Pk<br>WASHINGTON<br>COUNT TIME<br>Windo                                            | lO.7<br>Archive<br>A Copie<br>07<br>Breakd<br>HOSPI                                               | 2.87<br>d to C:<br>d to C:<br>:01:02<br>own<br>TAL CEN<br>1.00                | \ARCH\<br>\DATA\<br>P<br>TER<br>Minut                          | 0.5<br>ARCHO3D<br>ARCHO3A<br>ackard M<br>es<br>indow B                               | 144<br>.167<br>.167<br>Model 5003                             | 169<br>COBRA S       | 9.5<br>N: 42<br>dow C                               | 4559                          | 1G<br>43 |
| 1 121<br>PITDATA.DO3 A<br>NDATANP3DATA<br>05 Feb 10<br>PROTOCOL #<br>NIH 10-Pk<br>WASHINGTON<br>COUNT TIME<br>Windo                                           | lO.7<br>Archive<br>A Copie<br>07<br>Breakd<br>HOSPI                                               | 2.87<br>d to C:<br>d to C:<br>:01:02<br>own<br>TAL CEN<br>1.00                | \ARCH\<br>\DATA\<br>P<br>TER<br>Minut                          | 0.5<br>ARCHO3D<br>ARCHO3A<br>ackard M<br>es<br>indow B                               | 144<br>.167<br>.167<br>Model 5003                             | 169<br>COBRA S       | 9.5<br>N: 42<br>dow C                               | 4559                          | 1G<br>43 |
| 1 121<br>DITDATA.DO3 A<br>NDATANP3DATA<br>O5 Feb 10<br>PROTOCOL #<br>NIH 10-Pk<br>WASHINGTON<br>COUNT TIME<br>Windo                                           | 10.7<br>Archive<br>A Copie<br>O7<br>Breakd<br>HOSPI<br>M A<br>260 ke                              | 2.87<br>d to C:<br>d to C:<br>:01:02<br>own<br>TAL CEN<br>1.00                | \ARCH\<br>\DATA\<br>P<br>TER<br>Minut<br>W<br>LLD:             | 0.5<br>ARCHO3D<br>ARCHO3A<br>ackard M<br>es<br>indow B<br>940                        | 144<br>.167<br>.167<br>Model 5003                             | LLD:                 | 9.5<br>N: 42<br>dow C<br>15                         | 2.<br>4559<br>keV             | 1G<br>43 |
| 1 121<br>DITDATA.DO3 A<br>NDATANP3DATA<br>O5 Feb 10<br>PROTOCOL #<br>NIH 10-Pk<br>WASHINGTON<br>COUNT TIME<br>Windo<br>LLD:<br>ULD:                           | 10.7<br>Archive<br>A Copie<br>O7<br>Breakd<br>HOSPI<br>M A<br>260 ke<br>470 ke                    | 2.87<br>d to C:<br>d to C:<br>vn<br>1.00<br>vv                                | ARCH<br>DATA<br>P<br>TER<br>Minut<br>ULD:<br>ULD:              | 0.5<br>ARCHO3D<br>ARCHO3A<br>ackard 1<br>es<br>indow B<br>940<br>1400                | 144<br>.167<br>.167<br>Model 5003<br>kev<br>kev               | ULD:<br>ULD:         | 9.5<br>N: 42<br>dow C<br>15<br>2000                 | 2.<br>4559<br>kev<br>kev      | 1G<br>43 |
| 1 121<br>DITDATA.DO3 A<br>NDATANP3DATA<br>05 Feb 10<br>PROTOCOL #<br>NIH 10-Pk<br>WASHINGTON<br>COUNT TIME<br>Windo<br>LLD:<br>ULD:<br>EFF:<br>Sample         | LO.7<br>Archive<br>A Copie<br>O7<br>Breakd<br>HOSPI<br>M A<br>260 ke<br>470 ke<br>50 %            | 2.87<br>d to C:<br>d to C:<br>:01:02<br>own<br>TAL CEN<br>1.00                | ARCH<br>DATA<br>P<br>TER<br>Minut<br>W<br>LLD:<br>ULD:<br>EFF: | 0.5<br>ARCH03D<br>ARCH03A<br>ackard 1<br>es<br>indow B<br>940<br>1400<br>70          | 144<br>.167<br>.167<br>10del 5003<br>keV<br>keV<br>%          | LLD:<br>ULD:<br>EFF: | 9.5<br>N: 42<br>dow C<br>15<br>2000<br>79           | 4559<br>                      | 43       |
| 1 121<br>DITDATA.DO3 A<br>\DATA\P3DATA<br>O5 Feb 10<br>PROTOCOL #<br>NIH 10-Pk<br>WASHINGTON<br>COUNT TIME<br>Windo<br>LLD:<br>ULD:<br>ULD:<br>EFF:<br>Sample | LO.7<br>Archive<br>A Copie<br>O7<br>Breakd<br>HOSPI<br>HOSPI<br>HOSPI<br>260 ke<br>470 ke<br>50 % | 2.87<br>d to C:<br>d to C:<br>:01:02<br>own<br>TAL CEN<br>1.00<br>V<br>V<br>V | VARCHV<br>VDATAV<br>P<br>TER<br>Minut<br>W<br>LLD:<br>EFF:     | 0.5<br>ARCH03D<br>ARCH03A<br>ackard 1<br>es<br>indow B<br>940<br>1400<br>70<br>B:CPM | 144<br>.167<br>.167<br>10del 5003<br>keV<br>keV<br>%<br>8:DPM | LLD:<br>ULD:<br>EFF: | 9.5<br>N: 42<br>dow C<br>15<br>2000<br>79<br>C: CPM | 2.<br>4559<br>keV<br>keV<br>% | 43       |

Assay Definition-Assay Description: WASHINGTON HOSPITAL CENTER Assay Type: DPM (Triple) Report Name: Report1 Output Data Path: C:\Packard\Tricarb\Results\Default\Triple Lable DPM Raw Results Path: C:\Packard\Tricarb\Results\Default\Triple Lable DPM\20100205\_0814.results Assay File Name: C:\Packard\TriCarb\Assays\Triple Lable DPM.lsa Count Conditions-Nuclide: Triple Label Quench Indicator: tSIE/AEC External Std Terminator (sec): 0.5 2s% Pre-Count Delay (min): 0.00 Ouench Sets: Low Energy: 3H TOL 2392009 Mid Energy: 14C-TOL-07-17-06 High Energy: 32P-UG-02-28-05 Count Time (min): 1.00 Count Mode: Normal Assay Count Cycles: 1 Repeat Sample Count: 1 #Vials/Sample: 1 Calculate % Reference: Off Background Subtract: On - 1st Vial Low CPM Threshold: Off 2 Sigma % Terminator: On - Any Region UL Bkg Subtract 2Sigma % Terminator Regions LL1st Vial 0.0 12.0 0.00 А в 12.0 156.0 lst Vial 0.00 lst Vial 156.0 2000.0 0.00 C Count Corrections-Static Controller: On Luminescence Correction: On Heterogeneity Monitor: n/a Colored Samples: On Coincidence Time (nsec): 18 Delay Before Burst (nsec): 75 Half Life-Half Life Correction: Off Half Life Units Reference Date Reference Time Regions А B С Cycle 1 Results S# Time CPMA CPMB CPMC DPM1 DPM2 DPM3 tSIE Eff Nucl In A LUM 0 0 8 0 1 10.00 8 12 580 0.0 1.00 -1 574 - 3 0 -4 41.7 2 - 1 1.00 - 0 - 9 -3 575 41.8 3 1.00 1 2 -1 -1 12 18 545 4 40.4 1.00 1.00 1.00 6 -6 -1 555 40.9 5 - 4 -3 6 -2 548 40.5 6 -3 -7 - 5 539

-6

-6

-1

507

-6 -1

7

8

1.00

-3

0

0

0

0

0

0

0

0

40.1

38.7

| User: | Default |
|-------|---------|
|-------|---------|

|    |    |      | _   | _   |     |     |     |     |     | <b>•</b> • • | • |
|----|----|------|-----|-----|-----|-----|-----|-----|-----|--------------|---|
| ·  | 9  | 1.00 | - 5 | -3  | -1  | -13 | -2  | -1  | 520 | 39.3         | 0 |
|    | 10 | 1.00 | - 5 | -7  | -1  | -11 | -7  | -1  | 558 | 41.0         | 0 |
|    | 11 | 1.00 | 2   | -1  | -2  | 5   | -1  | - 3 | 488 | 37.8         | 0 |
|    | 12 | 1.00 | - 0 | 3   | 3   | -1  | 3   | 3   | 530 | 39.7         | 0 |
|    |    | 1.00 | -5  | -3  | -1  | -13 | -2  | -1  | 500 | 38.3         | ō |
|    | 13 |      |     |     |     |     |     |     |     |              |   |
|    | 14 | 1.00 | 1   | -4  | -4  | 3   | - 4 | - 5 | 509 | 38.8         | 0 |
|    | 15 | 1.00 | - 5 | -1  | - 4 | -13 | 1   | - 5 | 537 | 40.0         | 0 |
|    | 16 | 1.00 | 2   | 1   | - 6 | 4   | 2   | -7  | 519 | 39.2         | 0 |
|    | 17 | 1.00 | -6  | 0   | - 1 | -16 | 1   | - 1 | 518 | 39.2         | 0 |
|    | 18 | 1.00 | -4  | -5  | 1   | - 8 | -6  | 1   | 552 | 40.7         | 0 |
|    |    |      |     |     | -2  | -7  | -4  | -3  | 522 | 39.3         | õ |
|    | 19 | 1.00 | - 3 | - 4 |     |     |     |     |     |              |   |
|    | 20 | 1.00 | -1  | -1  | 6   | - 2 | -2  | 7   | 560 | 41.1         | 0 |
|    | 21 | 1.00 | - 6 | - 4 | - 0 | -15 | - 4 | - 0 | 535 | 39.9         | 0 |
|    | 22 | 1.00 | - 5 | 1   | -1  | -14 | 2   | -1  | 527 | 39.6         | 0 |
|    | 23 | 1.00 | - 3 | -2  | -2  | - 7 | -1  | - 3 | 548 | 40.6         | 0 |
|    |    |      | -7  | ĩ   | -1  | -18 | 3   | -1  | 561 | 41.1         | Ö |
|    | 24 | 1.00 |     |     |     |     |     |     |     |              |   |
|    | 25 | 1.00 | - 5 | -4  | - 3 | -11 | - 3 | -4  | 593 | 42.6         | 0 |
|    | 26 | 1.00 | - 6 | l   | 3   | -16 | 2   | 3   | 543 | 40.3         | 0 |
|    | 27 | 1.00 | -4  | - 5 | -6  | - 9 | - 4 | -7  | 570 | 41.5         | 0 |
|    | 28 | 1.00 | 0   | -2  | 0   | 1   | -2  | 0   | 507 | 38.7         | 0 |
|    | 29 | 1.00 | 1   | -4  | 2   | 5   | - 5 | 2   | 525 | 39.5         | 0 |
|    |    | 1.00 | -3  | 3   | 1   | - 9 | 4   | ī   | 533 | 39.8         | õ |
|    | 30 |      |     |     |     |     |     |     |     |              |   |
|    | 31 | 1.00 | -4  | - 5 | - 3 | - 9 | - 5 | - 4 | 578 | 41.9         | 0 |
|    | 32 | 1.00 | -2  | -6  | -4  | - 3 | -б  | - 5 | 639 | 44.6         | 0 |
|    | 33 | 1.00 | 1   | -6  | 1   | 4   | - 8 | 1   | 591 | 42.5         | 0 |
|    | 34 | 1.00 | -2  | -6  | - 0 | - 3 | -7  | - 0 | 555 | 40.9         | 0 |
|    | 35 | 1.00 | -2  | -7  | -1  | - 3 | - 8 | -1  | 633 | 44.4         | Ō |
|    |    |      |     |     |     |     | -2  | -1  | 543 | 40.3         | õ |
|    | 36 | 1.00 | - 5 | - 3 | -1  | -12 |     |     |     |              |   |
| ÷. | 37 | 1.00 | 1   | 2   | -2  | 1   | 3   | - 3 | 500 | 38.3         | 0 |
|    | 38 | 1.00 | -3  | - 8 | 2   | - 5 | -10 | 2   | 633 | 44.4         | 0 |
|    | 39 | 1.00 | -1  | 1   | 1   | -2  | 2   | 1   | 525 | 39.5         | 0 |
|    | 40 | 1.00 | - 5 | 0   | - 0 | -13 | 1   | - 0 | 532 | 39.8         | 0 |
|    | 41 | 1.00 | -6  | 1   | - 3 | -17 | 3   | -4  | 491 | 37.9         | 0 |
|    |    |      |     |     |     |     |     | -5  |     |              |   |
|    | 42 | 1.00 | - 7 | 0   | - 4 | -19 | 2   |     | 508 | 38.7         | Ó |
|    | 43 | 1.00 | - l | 2   | - 4 | -4  | 4   | -5  | 506 | 38.6         | 0 |
|    | 44 | 1.00 | -4  | -2  | -1  | -11 | - 2 | -1  | 456 | 35.8         | 0 |
|    | 45 | 1.00 | - 3 | -6  | -2  | -6  | - 6 | -3  | 565 | 41.3         | 0 |
|    | 46 | 1.00 | - 5 | 2   | 1   | -15 | 3   | 1   | 450 | 35.5         | 0 |
|    |    | 1.00 | - 6 | -2  | -1  | -16 | -1  | -1  | 506 | 38.6         | 0 |
|    | 47 |      |     |     |     |     | - 5 | -5  | 516 | 39.1         | õ |
|    | 48 | 1.00 | - 3 | - 5 | -4  | -7  |     |     |     |              |   |
|    | 49 | 1.00 | -1  | - 6 | - 3 | 0   | - 6 | -4  | 569 | 41.5         | 0 |
|    | 50 | 1.00 | - 3 | - 2 | -1  | - 7 | - 2 | -1  | 553 | 40.8         | 0 |
|    | 51 | 1.00 | - 2 | ~ 5 | -7  | -4  | - 4 | -9  | 517 | 39.1         | 0 |
|    | 52 | 1.00 | - 6 | -2  | -6  | -14 | - 0 | -7  | 595 | 42.7         | 0 |
|    | 53 | 1.00 | -2  | -1  | - 4 | - 5 | 0   | - 5 | 552 | 40.7         | 0 |
|    |    |      |     | ō   | 5   | -10 | -0  | 6   | 589 | 42.4         | õ |
|    | 54 | 1.00 | -4  |     |     |     |     |     |     |              |   |
|    | 55 | 1.00 | -4  | - 7 | - 0 | - 8 | - 8 | - 0 | 572 | 41.6         | 0 |
|    | 56 | 1.00 | -2  | -1  | - 6 | - 5 | 1   | -7  | 575 | 41.8         | 0 |
|    | 57 | 1.00 | -4  | -2  | - 5 | -10 | - 0 | -6  | 530 | 39.7         | 0 |
|    | 58 | 1.00 | - 6 | -2  | -3  | -16 | - 0 | -4  | 532 | 39.8         | 0 |
|    |    |      | - 5 | õ   | -4  | -13 | 2   | - 5 | 565 | 41.3         | Ō |
|    | 59 | 1.00 |     |     |     |     |     |     |     |              |   |
|    | 60 | 1.00 | - 3 | -7  | - 3 | - 5 | - 8 | -4  | 551 | 40.7         | 0 |
|    | 61 | 1.00 | -1  | -2  | -2  | -2  | -2  | -3  | 579 | 42.0         | 0 |
|    | 62 | 1.00 | -4  | - 6 | -2  | - 9 | -6  | -3  | 583 | 42.1         | 0 |
|    | 63 | 1.00 | - 3 | -4  | - 0 | -б  | - 5 | - 0 | 552 | 40.7         | 0 |
|    | 64 | 1.00 | -2  | 3   | -2  | - 7 | 5   | -3  | 547 | 40.5         | 0 |
|    |    |      | - 4 | -7  | - 0 | - 8 | -8  | - 0 | 599 | 42.9         | õ |
|    | 65 | 1.00 |     |     |     |     |     | 1   |     | 43.6         |   |
| 1  | 66 | 1.00 | - 3 | 3   | 1   | - 8 | 4   |     | 615 |              | 0 |
|    | 67 | 1.00 | 1   | -2  | -5  | 2   | -1  | -6  | 599 | 42.8         | 0 |
|    | 68 | 1.00 | - 3 | 0   | - 0 | - 8 | l   | - 0 | 595 | 42.7         | 0 |
|    | 69 | 1.00 | - 1 | - 3 | 1   | -2  | -4  | 1   | 564 | 41.3         | 0 |
|    | 70 | 1.00 | - 3 | -2  | 2   | -7  | -2  | 2   | 558 | 41.0         | 0 |
|    | 10 | 1.00 | 2   | -   |     |     | -   |     |     |              | - |

| 2/5/ | ν <u>τ</u> ο . | L: 33:52 1 | РМ         | Quar      | ntaSmart          | (TM) -     | 1.31 - Se  | erial# 4   | 424558     | F     | age # 3 |
|------|----------------|------------|------------|-----------|-------------------|------------|------------|------------|------------|-------|---------|
|      |                |            |            | le DPM.1: |                   |            |            |            |            | User: | Default |
|      | :              |            |            |           |                   |            |            |            |            |       |         |
| -    |                |            |            |           |                   |            |            |            |            |       |         |
|      | 71             | 1.00       | -3         | -2        | - 3               | -7         | -1         | -4         | 546        | 40.4  | 0       |
|      | 72             | 1.00       | -3<br>-4   | -2        | -1                | -9         | -7         | -1         | 575        | 41.8  | õ       |
|      | 73             | 1.00       | -5         | -7        | -2                | -10        | -7         | - 3        | 603        | 43.0  | 0       |
|      | 74             | 1.00       | -3         | -4        | -3                | -6         | -4         | -4         | 615        | 43.6  | õ       |
|      | 74             | 1.00       | - 3<br>- 4 | -2        | -4                | ~ 8        | - 0        | -5         | 568        | 41.5  | 0       |
|      |                |            | -4<br>-4   | -2        | 2                 | -9         | -2         | 2          | 615        | 43.6  | Ö       |
|      | 76             | 1.00       | -4<br>-4   | -2        | -1                | -9         | - 5        | -1         | 592        | 42.5  | õ       |
|      | 77             | 1.00       |            | -5        | -2                | - 8        | 2          | -3         | 588        | 42.3  | Õ       |
|      | 78             | 1.00       | -3         | -4        | - <u>2</u><br>- 4 | -17        | -3         | -5         | 528        | 39.6  | õ       |
|      | 79             | 1.00       | -7         | -4        | -4                | -17        | -3         | - 4        | 523        | 39.4  | 0       |
|      | 80             | 1.00       | -6         | -4<br>-9  | - 3               | -15        | -11        | -4<br>6    | 523        | 42.6  | 0       |
|      | 81             | 1.00       | -4         | -9        | -3                | - 5        | -11        | -4         | 632        | 44.4  | 0       |
|      | 82             | 1.00       | -3<br>-2   | -2        | -3                | -5         | -2         | -4         | 526        | 39.5  | õ       |
|      | 83             | 1.00       | - Z<br>- 4 | - 2       | -5                | -9         | - 4        | -6         | 557        | 40.9  | õ       |
|      | 84             | 1.00       | -4<br>-5   | -5        | - 5               | -11        | -4<br>-6   | 2          | 541        | 40.2  | õ       |
|      | 85             | 1.00       |            | -5        | -1                | -11        | -0         | -1         | 570        | 41.6  | 0       |
|      | 86             | 1.00       | -3         | -1        | -1<br>3           | -11        | -3         | -1         | 653        | 45.2  | 0       |
|      | 87             | 1.00       | -5         | -3        | -1                | -11        | - 8        | -1         | 612        | 43.5  | 0       |
|      | 88             | 1.00       | -1         |           | -1                | -15        | -2         | -1         | 536        | 40.0  | õ       |
|      | 89             | 1.00       | -6         | - 3       |                   | -15        | -2         | -3         | 602        | 43.0  | 0       |
|      | 90             | 1.00       | -0         | -1        | -2<br>-3          | -14        | -1         | - 3<br>- 4 | 602        | 43.0  | 0       |
|      | 91             | 1.00       | -6         | -3        |                   |            |            | -4<br>767  | 574        | 41.7  | 0       |
|      | 92             | 1.00       | 158        | 1244      | 648               | 14<br>-7   | 1348<br>99 | 62         | 562        | 41.7  | 0       |
|      | 93             | 1.00       | 8          | 92        | 53                | - 4        | 99         | o∠<br>-5   | 524        | 39.4  | 0       |
|      | 94             | 1.00       | -1         | 6         | -4                |            | -4         | 0          | 524<br>614 | 43.5  | 0       |
|      | 95             | 1.00       | 1          | -3        | - 0               | 3          |            | -          |            | 43.2  |         |
|      | 96             | 1.00       | - 5        | 1         | 1                 | -13<br>-11 | 2<br>-4    | 1<br>-6    | 607<br>604 | 43.1  | 0<br>0  |
|      | 97             | 1.00       | - 5        | -5        | -5                |            |            | -6         | 647        | 43.1  | 0       |
|      | 98             | 1.00       | - 3        | -7        | 1                 | -5<br>-9   | -8<br>-1   | 3          | 611        | 44.9  | 0       |
|      | 99             | 1.00       | -4         | -1        | 3                 | -          |            | -1         |            | 43.3  | 0       |
|      | 100            | 1.00       | -6         | -5        | -1                | -13        | -5         | _          | 608        |       | 0       |
|      | 101            | 1.00       | - 5        | -1        | 2                 | -12        | -1         | 2          | 601        | 42.9  | U       |

Assay Definition-Assay Description: WASHINGTON HOSPITAL CENTER Assay Type: DPM (Triple) Report Name: Report1 Output Data Path: C:\Packard\Tricarb\Results\LEAK TESTS\1 LEAK TEST Triple Label DPM Raw Results Path: C:\Packard\Tricarb\Results\LEAK TESTS\1 LEAK TEST Triple Label DPM\20100215 1731.results Assay File Name: C:\Packard\TriCarb\Assays\1 LEAK TEST Triple Label DPM.lsa Count Conditions-Nuclide: Triple Label Quench Indicator: tSIE/AEC External Std Terminator (sec): 0.5 2s% Pre-Count Delay (min): 0.00 Quench Sets: Low Energy: 3H TOL 2392009 Mid Energy: 14C-TOL-07-17-06 High Energy: 32P-UG-02-28-05 Count Time (min): 1.00 Count Mode: Normal Assay Count Cycles: 1 Repeat Sample Count: 1 Calculate % Reference: Off #Vials/Sample: 1 Background Subtract: On - 1st Vial Low CPM Threshold: Off 2 Sigma % Terminator: On - Any Region UL Bkg Subtract 2Sigma % Terminator Regions LL12.0 1st Vial 0.0 0.00 А 12.0 156.0 lst Vial 0.00 в 156.0 2000.0 1st Vial С 0.00 Count Corrections-Static Controller: OnLuminescence Correction: OnColored Samples: OnHeterogeneity Monitor: n/a Coincidence Time (nsec): 18 Delay Before Burst (nsec): 75 Half Life-Half Life Correction: Off Regions Half Life Units Reference Date Reference Time A В С Cycle 1 Results S# Time CPMA CPMB CPMC DPM1 DPM2 DPM3 CPMC 5 9 7 -2 1 SIS tSIE LUM 0 0 64.46 585.49 -1 0.00 604.07 1 10.00 5 0 0 2 1.00 3 1.00 4 1.00 5 1.00 6 1.00 7 1.00 

8 1.00 1 -2 5 4 -4 6 0.00 635.96 0

| 2/15/10 7:15:53 PM    | QuantaSmart (TM) - 1.31   | - Serial# 424558 |
|-----------------------|---------------------------|------------------|
| Protocol# 31 - 1 LEAK | TEST Triple Label DPM.lsa | Use              |

| <u>}</u> | 9  | 1.00 | 3   | -1  | -2  | 8   | -1  | -2  | 27.51  | 625.78 | 0  |
|----------|----|------|-----|-----|-----|-----|-----|-----|--------|--------|----|
|          | 10 | 1.00 | 6   | - 3 | -4  | 15  | -4  | -4  | 97.38  | 653.03 | 0  |
|          | 11 | 1.00 | 2   | 1   | - 5 | 5   | 2   | -6  | 0.00   | 618.83 | 0  |
|          | 12 | 1.00 | 1   | -5  | -4  | 5   | - 5 | -4  | 0.00   | 558.63 | 0  |
|          | 13 | 1.00 | -2  | -1  | 2   | -4  | -1  | 3   | 0.00   | 583.40 | 0  |
|          | 14 | 1.00 | 2   | 4   | -1  | 5   | 5   | -1  | 72.56  | 583.45 | 0  |
|          | 15 | 1.00 | -1  | -1  | -2  | -1  | -1  | -2  | 0.00   | 604.93 | õ  |
|          | 16 | 1.00 | -2  | - 1 | 2   | -4  | 1   | 3   | 0.00   | 621.62 | õ  |
|          |    |      |     | -   |     | -   | -   |     |        |        | -  |
|          | 17 | 1.00 | 8   | 7   | -1  | 16  | 7   | -1  | 73.37  | 641.83 | 0  |
|          | 18 | 1.00 | 0   | -2  | 1   | 2   | - 3 | 2   | 0.00   | 622.86 | 0  |
|          | 19 | 1.00 | -1  | -6  | -2  | 0   | -7  | -2  | 0.00   | 609.32 | 0  |
|          | 20 | 1.00 | l   | l   | - 5 | 3   | 2   | - 6 | 31.36  | 606.77 | 0  |
|          | 21 | 1.00 | 1   | - 5 | 3   | 5   | ~ 6 | 4   | 0.00   | 626.76 | 0  |
|          | 22 | 1.00 | 1   | 0   | -2  | 2   | 1   | - 2 | 185.48 | 618.75 | 0  |
|          | 23 | 1.00 | 2   | 0   | - 3 | 6   | 0   | - 3 | 67.31  | 596.39 | 0  |
|          | 24 | 1.00 | -3  | 1   | 0   | -7  | 2   | 0   | 0.00   | 582.60 | 0  |
|          | 25 | 1.00 | 1   | 3   | 4   | 3   | 3   | 5   | 89.47  | 590.57 | 0  |
|          | 26 | 1.00 | -1  | -6  | - 5 | 0   | - 6 | -6  | 0.00   | 560.13 | 0  |
|          | 27 | 1.00 | - 3 | -1  | -2  | - 6 | ~ 0 | -2  | 0.00   | 596.27 | 0  |
|          |    |      |     | -   |     | -   | -0  |     |        |        | •  |
|          | 28 | 1.00 | -1  | 0   | -2  | -1  | Т   | -2  | 0.00   | 601.10 | 0  |
|          | 29 | 1.00 | 3   | 1   | - 2 | 8   | 1   | -2  | 8.51   | 535.39 | 0  |
|          | 30 | 1.00 | 2   | 0   | -1  | 5   | 0   | -1  | 150.77 | 579.22 | 0  |
|          | 31 | 1.00 | 1   | -2  | 2   | 3   | - 3 | 3   | 0.00   | 576.16 | 0  |
|          | 71 | 1.00 | -   | 2   | -   |     | -   | 0   | 0.00   | 2,0.20 | ů. |

| 5 Feb 2010                                                                                                                                            |                                                                     |                                                | 50, Ir                            |                                                        |            |                      |                                            | and a second and a second s |                            | age #1                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------|-----------------------------------|--------------------------------------------------------|------------|----------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|
| rotocol #: 5                                                                                                                                          | 5                                                                   | N                                              | lcmed                             | Leak Te                                                | st         |                      |                                            | User                                                                                                            | : Lab T                    | echnicia                        |
| ASHINGTON HOSPITAL CE<br>ount Time(minutes):<br>ssay Type:<br>ackground Subtract :<br>Outlier:<br>%Spillup:<br>%Spillup:<br>%Spilldown:<br>Screening: | NTER<br>1.00<br>CPM<br>IPA 8kg<br>5.0 FLA<br>0.00<br>0.00<br>0FF    |                                                |                                   |                                                        |            |                      |                                            |                                                                                                                 |                            |                                 |
| Nuclide:<br>Bkg:<br>Sigma:<br>LCR:<br>Half Life(hours):<br>Multiplier:<br>%CV Flag Limit:                                                             | <u>Window</u><br>MAN<br>1.98<br>0.00<br>0<br>0.00<br>1.0000<br>0.00 |                                                | 670 keV                           | Window B<br>Co-57<br>25.5<br>0.00<br>0<br>0.00<br>0.00 | 75 -       | 165 keV              | <u>Window (</u><br>MAN<br>212<br>2.00<br>0 |                                                                                                                 | - 2000 keV                 |                                 |
| 5# A<br>1<br>2<br>3                                                                                                                                   | CPM<br>0.0<br>1.0<br>0.0                                            | A:%SIG<br>707<br>99.0                          |                                   | B:CPM<br>1.5<br>5.5<br>0.0                             |            | %SIG<br>81.6<br>42.6 |                                            | :CPM<br>8,8<br>32.8<br>6,8                                                                                      | C:%SI<br>33.<br>17.<br>38. | 7<br>5                          |
| 15 Feb 10<br>PROTOCOL<br>Nucmed Le<br>WASHINGTO<br>COUNT TIM                                                                                          | # 5<br>ak Test<br>N HQSP]                                           | TAL CENT                                       | E.R.                              | ackard M                                               | 1odel      | 5003                 | COBRA                                      | SN: 424                                                                                                         | 1559                       | an and and and the same and gen |
|                                                                                                                                                       | OW Á                                                                | na narao kana kanar kanar ni ni ni ni ni ni ni |                                   | indow B                                                |            |                      | Wĺ                                         | ndow C                                                                                                          |                            |                                 |
| LLD:<br>ULD:<br>EFF:<br>Sample                                                                                                                        | 670 ke                                                              | θV                                             | LLD:<br>ULD:                      | 75                                                     | keV<br>keV |                      | LLD:<br>ULD:                               | 15<br>2000                                                                                                      | keV<br>keV                 |                                 |
|                                                                                                                                                       | :CPM                                                                | A:DPM                                          | w wordt aftar samt, milite spraat |                                                        |            |                      | ووينه بنبع ووبور ومنور ويتور والقر         |                                                                                                                 | C : (                      | )PM                             |
| 1<br>. 2<br>3                                                                                                                                         |                                                                     | 0                                              |                                   | 2                                                      |            | 2                    |                                            | 9                                                                                                               |                            | 1.1<br>41<br>9                  |
|                                                                                                                                                       |                                                                     |                                                |                                   |                                                        |            |                      |                                            |                                                                                                                 |                            |                                 |

3 groups of 30 samples

Attachment D

Survey Meter Calibration Reports



MODEL

Certificate of Calibration

ISSUED TO: RSO, Inc. 5206 Minnick Road Laurel, MD 20707 KIT-1 CONTACT: Greg Smith PHONE: (888) 723-5463

PO NO:

INSTRUMENT: LUDLUM MODEL: 2221 TYPE: SCALER/RATE MET SN: 174947

RSO, Inc. certifies that on 02/03/2010 the above described instrument was calibrated using a radioactive source to determine the efficiency for a specific radionuclide(s) and using electronically generated pulse for the linearity. Pulsed using Ludlum 500-2, S/N 159110.

The results are tabulated below. Calibration is traceable to NIST.

|           | Calibration Data |            |                  |          |                  |                         |                   |           |         |  |  |
|-----------|------------------|------------|------------------|----------|------------------|-------------------------|-------------------|-----------|---------|--|--|
|           | R                | ANGE       | EXPECTE          | D        | OBS              | SERVED                  | <u>C.F.</u>       |           |         |  |  |
|           | х                | 1          | 100<br>400       |          | 100<br>400       | cpm                     | 1.00<br>1.00      |           |         |  |  |
|           | х                | 10         | 1000             |          | 1000             | cpm<br>cpm<br>cpm       | 1.00              |           |         |  |  |
|           | x                | 100        | 10000            |          | 10000<br>40000   | cpm<br>cpm              | 1.00              |           |         |  |  |
|           | x                | 1000       | 100000<br>400000 |          | 100000<br>400000 | cpm<br>cpm<br>C.F. AVER | 1.00              |           |         |  |  |
| Probe typ | e(s) Prob        | el: PROPOR |                  |          |                  |                         | Probe3:           |           |         |  |  |
| SER#      | WINDOW           | GEOMETRY   | VOLT ISOTOPE     | 1 EFF.(% | 3) ISOTOPE 2     | EFF.(%)                 | ISOTOPE 3 EFF.(%) | ISOTOPE 4 | EFF.(%) |  |  |
| PR079572  | FIXED            | CONTACT    | 1829 C14         | 20       | Sr90             | 25                      | Tc99 21           | Cs137     | 29      |  |  |

| 43-68 | PR079572 | FIXED | CONTACT | 1829 | C14 | 20 | Sr90 | 25 | Tc99 | 21 | Cs137 | 29 |
|-------|----------|-------|---------|------|-----|----|------|----|------|----|-------|----|
| 43-37 | PR074069 | FIXED | CONTACT | 1829 | C14 | 20 | Sr90 | 29 | Tc99 | 21 | Cs137 | 30 |

Note: "As found" condition +/- 20% of expected values unless indicated.

**INSTRUMENT CHECKS** 

BATTERY CHECK: NORMAL CHECK SOURCE 1: N/A CHECK SOURCE 2: N/A

READING: READING:

Dorsey Austin

**ENVIRONMENTAL** 

TEMP: 23"C PRESS: 758 mmHg HUMID: 25 %

Cal Date: 02/03/2010

## 

Calibrated By:

Maryland License MD-33-021-01



### Certificate of Calibration

ISSUED TO: RSO, Inc. 5206 Minnick Road Laurel, MD 20707 KIT-1 CONTACT: Greg Smith PHONE: (888) 723-5463

PO NO:

INSTRUMENT: LUDLUM MODEL: 2221 TYPE: SCALER/RATE MET SN: 161591

RSO, Inc. certifies that on 02/03/2010 the above described instrument was calibrated using a radioactive source to determine the efficiency for a specific radionuclide(s) and using electronically generated pulse for the linearity. Pulsed using Ludlum 500-2, S/N 159110.

The results are tabulated below. Calibration is traceable to NIST.

| Calibration Data |      |          |        |              |             |  |  |  |  |  |
|------------------|------|----------|--------|--------------|-------------|--|--|--|--|--|
| R                | ANGE | EXPECTED | OBSE   | RVED         | <u>C.F.</u> |  |  |  |  |  |
| x                | 1    | 100      | 100    | cpm          | 1.00        |  |  |  |  |  |
|                  |      | 400      | 400    | epm          | 1.00        |  |  |  |  |  |
| х                | 10   | 1000     | 1000   | cpm          | 1.00        |  |  |  |  |  |
|                  |      | 4000     | 4000   | cpm          | 1.00        |  |  |  |  |  |
| x                | 100  | 10000    | 10000  | cpm          | 1.00        |  |  |  |  |  |
|                  |      | 40000    | 40000  | cpm          | 1.00        |  |  |  |  |  |
| х                | 1000 | 100000   | 100000 | cpm          | 1.00        |  |  |  |  |  |
|                  |      | 400000   | 400000 | cpm          | 1.00        |  |  |  |  |  |
|                  |      |          | C.1    | F. AVERAGE 🖱 | 1.00        |  |  |  |  |  |

|       | Probe typ | c(s) Prob | el: PROPOR | TIONA | Ĺ       | Probe2:   | PROPORTION | NAL     | Probe3:   |         |                  |         |
|-------|-----------|-----------|------------|-------|---------|-----------|------------|---------|-----------|---------|------------------|---------|
| MODEL | SER#      | WINDOW    | GEOMETRY   | VOLT  | ISOTOPE | 1 EFF.(%) | ISOTOPE 2  | EFF.(%) | ISOTOPE 3 | EFF.(%) | <b>ISOTOPE 4</b> | EFF.(%) |
| 43-68 | PR178512  | FIXED     | CONTACT    | 1800  | C14     | 22        | Sr90       | 30      | Tc99      | 22      | Cs137            | 30      |
| 43-37 | PR124945  | FIXED     | CONTACT    | 1800  | C14     | 22        | Sr90       | 29      | Tc99      | 21      | Cs137            | 28      |

Note: "As found" condition +/- 20% of expected values unless indicated.

**INSTRUMENT CHECKS** 

**ENVIRONMENTAL** 

BATTERY CHECK: NORMAL CHECK SOURCE 1: N/A CHECK SOURCE 2: N/A

READING: READING:

TEMP: 23°C PRESS: 758 mmHg HUMID: 25 %

Cal Date: 02/03/2010

THE SUGGESTED RECALIBRATION DATE FOR THIS INSTRUMENT IS 02/03/2011 Dorsey Austin

Calibrated By:

Rae Reviewed By: Maryland License MD-33-021-01

### **RSO, Inc.** P.O. Box 1450 Laurel, MD 20725 (301) 953-2482

# Certificate of Calibration

ISSUED TO: RSO, Inc. 5206 Minnick Road Laurel, MD 20707 INSTRUMENT: LUDLUM MODEL: 2221 TYPE: SCALER/RATE MET SN: 99138

CONTACT: Jim Dean, Sr. PHONE:

#### PO NO:RSO 370

RSO, Inc. certifies that on 10/13/2009 the above described instrument was calibrated using a radioactive source to determine the efficiency for a specific radionuclide(s) and using electronically generated pulse for the linearity. Pulsed using Ludlum 500-2, S/N 159110.

The results are tabulated below. Calibration is traceable to NIST.

| Calibration Data |            |            |              |                  |            |                  |                        |                   |                   |
|------------------|------------|------------|--------------|------------------|------------|------------------|------------------------|-------------------|-------------------|
|                  |            | R          | ANGE         | EXPECT           | ED         | 0                | BSERVE                 | D C.F.            |                   |
|                  |            | х          | 1            | 100<br>400       |            | 100<br>399       | cpm<br>cpm             | 1.00<br>1.00      |                   |
|                  |            | x          | 10           | 1000             |            | 1003<br>3994     | cpm<br>cpm             | 1.00              |                   |
|                  |            | х          | 100          | 10000            |            | 10020<br>39920   | cpm<br>cpm             | 1.00              |                   |
|                  |            | х          | 1000         | 100000<br>400000 |            | 100380<br>398880 | cpm<br>cpm<br>C.F. AVE | 1.00              |                   |
| н                | Ii Voltage | dial = 892 | D; Threshold | d Dial = 340     | D; Window  | w = "OUT".       |                        |                   |                   |
|                  | Probe typ  | oc(s) Prob | e1: EXTEND   | DER PANGM        | Probe2:    |                  |                        | Probe3:           |                   |
| MODEL            | SER#       | WINDOW     | GEOMETRY     | VOLT ISOTOP      | E1 EFF.(%) | ISOTOPE 2        | EFF.(%)                | ISOTOPE 3 EFF.(%) | ISOTOPE 4 EFF.(%) |
| ASM-7            | R\$0427    | FIXED      | CONTACT      | 900 Th230        | 14         | Tc99             | 14                     |                   |                   |

Note: "As found" condition +/- 20% of expected values unless indicated.

INSTRUMENT CHECKS

### ENVIRONMENTAL

BATTERY CHECK: NORMAL CHECK SOURCE 1: N/A READING: CHECK SOURCE 2: N/A READING: TEMP: 23°C PRESS: 758 mmHg HUMID: 39 %

| THE SUGO       | JESTED RECALIBRATION    | DATE FOR    | THIS INSTRUMENT | IS 10/13  | 3/2010     |
|----------------|-------------------------|-------------|-----------------|-----------|------------|
| Calibrated By: |                         | Reviewed By | Raz             | Cal Date: | 10/13/2009 |
|                | Dorsey Austin<br>Maryla | License MD  | -33-021-01      |           |            |



Certificate of Calibration

ISSUED TO: RSO, Inc. 5206 Minnick Road Laurel, MD 20707

INSTRUMENT: LUDLUM MODEL: 2221 TYPE: SCALER/RATE MET SN: 157013

CONTACT: Greg Smith PHONE:

PO NO:

RSO, Inc. certifies that on 07/06/2009 the above described instrument was calibrated using a radioactive source to determine the efficiency for a specific radionuclide(s) and using electronically generated pulse for the linearity. Pulsed using Ludium 500-2, S/N 159110.

The results are tabulated below. Calibration is traceable to NIST.

| Calibration Data |       |                  |                         |                       |                      |  |
|------------------|-------|------------------|-------------------------|-----------------------|----------------------|--|
|                  | RANGE | EXPECTED         | OBS                     | ERVED                 | <u>C.F.</u>          |  |
| x                | 1     | 100<br>400       | 10<br>400               | cpm<br>cpm            | 1.00                 |  |
| x                | 10    | 1000             | 1000 4000               | cpm<br>cpm            | 1.00                 |  |
| х                | 100   | 10000<br>40000   | 10000<br>40000          | cpm<br>cpm            | 1.00                 |  |
| x                | 1000  | 100000<br>400000 | 100000<br>400000<br>C.F | cpm<br>cpm<br>AVERAGE | 1.00<br>1.00<br>1.00 |  |

 Probe type(s)
 Probe1:
 SCINTILLATOR
 Probe2:
 Probe3:

 MODEL
 SER#
 WINDOW
 GEOMETRY
 VOLT
 ISOTOPE 1
 EFF.(%)
 ISOTOPE 2
 EFF.(%)
 ISOTOPE 3
 EFF.(%)
 ISOTOPE 4
 EFF.(%)

 44-10
 029107
 NONE
 CONTACT
 1065
 Cs137
 13

| INSTRUMENT CHECKS            |                                      | ENVIRONMENTAL                                |  |
|------------------------------|--------------------------------------|----------------------------------------------|--|
|                              | EADING:<br>EADING:                   | TEMP: 24°C<br>PRESS: 751 mmHg<br>HUMID: 49 % |  |
| $\cap n$                     | CALIBRATION DATE FOR THIS INSTRUMENT | IS 07/06/2010                                |  |
| Calibrated By: Dorsey Austin | Maryland License MD-33-021-01        | Cal Date: 07/06/2009                         |  |

## Certificate of Calibration

ISSUED TO: RSO, Inc. 5206 Minnick Road Laurel, MD 20707

CONTACT: Greg Smith PHONE:

INSTRUMENT: BICRON MODEL: MICRO REM LOW ENERGY TYPE: SURVEY METER SN: C139F

PO NO:

RSO, Inc. certifies that on 01/22/2010 the above described instrument was calibrated in a known radiation field using Cs-137 (662 keV) beam calibrator (J.L. Shepherd Model 28-6A, S/N 10056), RSO # 363 & RSO # Cs-7A Certified Cs137 check sources.

The results are tabulated below. Calibration is traceable to NIST.

|   |      | Calibratio      | n Data          |                           |                      |
|---|------|-----------------|-----------------|---------------------------|----------------------|
| R | ANGE | EXPECTED        | OBSE            | RVED                      | <u>C.F.</u>          |
| х | 0.1  | 4<br>16         | 4<br>16         | uR/hr<br>uR/hr            | 1.00<br>1.00         |
| Х | 1    | 40<br>160       | 40<br>170       | uR/hr<br>uR/hr            | 1.00<br>1.00<br>0.94 |
| х | 10   | 600<br>1500     | 550<br>1550     | uR/hr<br>uR/hr            | 1.09                 |
| х | 100  | 5000<br>15000   | 4800            | uR/hr<br>uR/hr            | 1.04<br>0.97         |
| х | 1000 | 50000<br>150000 | 48000<br>156000 | uR/hr<br>uR/hr<br>AVERAGE | 1.04<br>0.96<br>1.00 |

Probe type(s) Probel: SCINTILLATOR Probe2: Probe3: GEOMETRY VOLT ISOTOPE 1 EFF.(%) ISOTOPE 2 EFF.(%) ISOTOPE 3 EFF.(%) ISOTOPE 4 EFF.(%) MODEL SER# WINDOW INTERNAL FIXED FRONT

Note: "As found" condition +/- 20% of expected values unless indicated.

INSTRUMENT CHECKS

BATTERY CHECK: NORMAL CHECK SOURCE 1: N/A READING CHECK SOURCE 2: N/A READING:

Richard En

**ENVIRONMENTAL** 

TEMP: 22°C PRESS: 754 mmHg HUMID: 34 %

THE SUGGESTED RECALIBRATION DATE FOR THIS INSTRUMENT IS 01/22/2011 Relandemyon cav4

Calibrated By: í

-Reviewed By: Maryland License MD-33-021-01

Cal Date: 01/22/2010