ATTACHMENT (1)

NUH32P+.0203, REVISION 0, 32P+ TRANSFER CASK IMPACT ONTO

THE CONCRETE PAD LS-DYNA ANALYSIS (80 INCH END DROP)

le u	Form 3.2-4	Calculation No.:	NUF132IP-10203
AREVA	Calculation Cover Sheet	Revision No.:	0
TRANSNUCLEAR INC.		Page	: 1 of 24
DCR NO (if applicable) :	project name: NUH32P+ D	ry Fuel Storage Proj	ect for CCNPP
PROJECT NO: NUH32P+	CLIENT: Calvert Cliff Nuclear	Power Plant (CCNP	P)
CALCULATION TITLE:	ek hänget onto the Concrete Pad I S-DÝ	NA Ánalizeis (80 incl:	
	at impage onto the opticipite rate co-p in		
SUMMARY DESCRIPTION:			
1) Calculation Summary			
This calculation determines on a concrete pad with subg of 80°.	the rigid body acceleration time history og grade soil. The cask will be analyzed for	of the 32P+ Cask du the end drop with a	ring impact drop height
2) Storage Media Description Secure network initially, the	n rédundant tape backup		
lf original issue, is licensing re	eview per TIP 3.5 required?		
Yes 🗍 No 🖾 (c	explain below) Licensing Review No.:	· .	
This calculation is prepared to and approved by the NRC. T	o support a Site Specific License Applica herefore, a 10CFR72.48 licensing review	ntion by CCNPP that v per TIP 3.5 is not a	will be reviewed pplicable.
Software Utilized (subject to tr	est requirements of TIP 3.3):	······································	Version:
LS-DYNA			Is971s R4,2 Rev. 50638
Calculation is complete:			
Abhijit Honrao	Mourao		Date: 3 2 10
Abhijit Honrao	Morrao	<u></u>	Dale: 3 2 10
Abhijit Honrao <u>Originator Name and Signature:</u> Calculation has been checked	Thexination of the second correction of the se	ctness:	Date: 3 2 10
Abhijit Honrao <u>Originator Name and Signature:.</u> Calculation has been checked Devon Wilson	Absive of	ctness:	Date: 3 2 10
Abhijit Honrao <u>Originator Name and Signature:</u> Calculation has been checked Devon Wilson <u>Checker Name and Signature:</u>	Aboving of the second correct of the second	ectness:	Date: $\frac{3}{2}i0$
Abhijit Honrao Originator Name and Signature: Calculation has been checked Devon Wilson <u>Checker Name and Signature:</u> Calculation is approved for fig	Above the second	etness:	Date: $3/2/10$

.

•

· ! .

1

' **.**

TRANSNUCLEAR INC.

Page: 2 of 24

Revision No.: 0

REVISION SUMMARY

REV.	DESCRIPTION OF CHANGES	AFFECTED PAGES	AFFECTED Computational I/O
0	Initial Issue	All	All

	Calculation	Calculation No.:	NUH32P+.0203
ANSNUCLEAR INC.	Jaistiativii	Page:	3 of 24
	· · · ·	i aye.	
	TABLE OF CO	ONTENTS	- · · · ·
1 PURPOSE			· 5
2 REFERENCES			5
3 ASSUMPTIONS			<u>6</u> 6
5 COMPUTATIONS			7
5.1 MATERIAL PROPER	RTIES	·····	7
5.1.2 DSC STRUC	TURE MATERIAL		8
5.1.3 SOIL MATER			9
5.2 BOUNDARY CONDI	TIONS		
5.3 INITIAL CONDITION	S AND LOADING		
6.1 CASK NODAL ACCE	LERATION SECTION	IS EVALUATED	
6.2 RAW DATA FILTER	NG		
8 LISTING OF ANSYS COM	PUTER FILES	•••••••	
9 APPENDIX A – BUTTERW	ORTH FILTER VERIF	ICATION	
			· ·
			· .

A		Calculation No.:	NUH32P+.0203	
AREVA	Calculation	Revision No.:	0	
TRANSNUCLEAR INC.		Page:	4 of 24	
			١	
	LIST OF TA	BLES		
			204	7
TABLE 5-1 MATERIAL PRO	PERTIES OF STAINLESS S	TEEL SA 240 TYPE	F304N	
TABLE 5-3 MATERIAL PRO	PERTIES OF CARBON STE	EL SA 516 TYPE 70		7
TABLE 5-4: CASK MATERIA	AL PROPERTIES			8 10
TABLE 5-6: TABULATED PF	RESSURES VS. VOLUMETE	RIC STRAIN FOR CO	NCRETE	10
MATERIAL				11
TABLE 7-1: FILTERED RES	SULTS SUMMARY			18
		BURES		
FIGURE 5-1: OVERVIEW O	F 32P+ CASK FINITE ELEM	ENT MODEL		13
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI	F 32P+ CASK FINITE ELEM	ENT MODEL	······	13 14
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET	ENT MODEL	OP CONDITION	13 14 15
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR	OP CONDITION	13 14 15 17 19
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C FIGURE 8-2: END DROP C	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA	OP CONDITION RY 180HZ FILTER ATION (G) TIME	13 14 15 17 19
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C FIGURE 8-2: END DROP C HISTORY 180HZ	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATIC ASK BOTTOM PLATES AND FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA	OP CONDITION RY 180HZ FILTER ATION (G) TIME	13 14 15 17 19 20
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C FIGURE 8-2: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATIC ASK BOTTOM PLATES AND FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS E	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND	13 14 15 17 19 20 21
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C FIGURE 8-2: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER . FIGURE 8-4: END DROP C	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND ASK SHELL FOURIER SPEC ASK BOTTOM PLATES + R	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND CTRAL ANALYSIS	13 14 15 17 19 20 21
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C FIGURE 8-2: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND A	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND ASK SHELL FOURIER SPEN ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND CTRAL ANALYSIS	13 14 15 17 19 20 21 21
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C FIGURE 8-2: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND A	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND ASK SHELL FOURIER SPEN ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION ATION (G) TIME EFORE AND CTRAL ANALYSIS	13 14 15 17 19 20 21 22
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C FIGURE 8-2: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND AI	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND ASK SHELL FOURIER SPEC ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND ECTRAL ANALYSIS	13 14 15 17 19 20 21 22
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C FIGURE 8-2: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND AI	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND ASK SHELL FOURIER SPEN ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND CTRAL ANALYSIS	13 14 15 17 19 20 21
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND AI	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND ASK SHELL FOURIER SPE ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS E ESIN FOURIER SPE	OP CONDITION ATION (G) TIME EFORE AND CTRAL ANALYSIS	13 14 15 17 19 20 21 22
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C HISTORY 180HZ FIGURE 8-2: END DROP C AFTER FILTER FIGURE 8-3: END DROP C BEFORE AND AI	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND ASK SHELL FOURIER SPEN ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND ECTRAL ANALYSIS	13 14 15 17 19 20 21
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND AI	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND ASK SHELL FOURIER SPEN ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION ATION (G) TIME EFORE AND CTRAL ANALYSIS	13 14 15 17 19 20 21
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C FIGURE 8-2: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND A	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND ASK SHELL FOURIER SPEC ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND CTRAL ANALYSIS	13 14 15 17 19 20 21
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND AI	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND ASK SHELL FOURIER SPEN ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY ON (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND CTRAL ANALYSIS	13 14 15 17 20 21 22
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND AN	F 32P+ CASK FINITE ELEM INITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND FILTER ASK SHELL FOURIER SPEC ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS E ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND CTRAL ANALYSIS	13 14 15 17 19 20 21 22
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND AI	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND ASK SHELL FOURIER SPEN ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY ON (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND ECTRAL ANALYSIS	13 14 15 17 19 20 21 21
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND AI	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND FILTER ASK SHELL FOURIER SPEC ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY DN (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND CTRAL ANALYSIS	13 14 15 17 19 20 21 22
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND AN	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND ASK SHELL FOURIER SPEN ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND ECTRAL ANALYSIS	13 14 15 17 19 20 21 22
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND AI	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND FILTER ASK SHELL FOURIER SPEN ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY DN (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND CTRAL ANALYSIS	13 14 15 17 20 21 22
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER . FIGURE 8-4: END DROP C BEFORE AND AI	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND FILTER ASK SHELL FOURIER SPEN ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY ON (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND CTRAL ANALYSIS	13 14 15 17 19 20 21 22
FIGURE 5-1: OVERVIEW O FIGURE 5-2: 32P+ CASK FI FIGURE 5-3: 32P+ FINITE E FIGURE 6-1: PARTS ANAL FIGURE 8-1: END DROP C HISTORY 180HZ FIGURE 8-3: END DROP C AFTER FILTER FIGURE 8-4: END DROP C BEFORE AND AI	F 32P+ CASK FINITE ELEM NITE ELEMENT MODEL ELEMENT MODEL SYMMET YZED FOR ACCELERATION ASK SHELL ACCELERATION ASK BOTTOM PLATES AND FILTER ASK SHELL FOURIER SPEN ASK BOTTOM PLATES + R FTER FILTER	ENT MODEL RY PLANE END DR N TIME HISTORY N (G) TIME HISTOR D RESIN ACCELERA CTRAL ANALYSIS B ESIN FOURIER SPE	OP CONDITION RY 180HZ FILTER ATION (G) TIME BEFORE AND CTRAL ANALYSIS	13 14 15 17 20 21 22

AREVA TRANSNUCLEAR INC.	Calculation	—Calculation No.: Revision No.: Page:	NUH32P+.0203 0 5 of 24
1 PURPOSE			

This calculation analyzes the rigid body acceleration time histories for the 32P+ cask in the end drop with a drop height of 80". A dynamic finite element analysis program is used to determine the time histories. Rigid body time histories of the cask body and cask bottom plates/resin are extracted from the results.

2 **REFERENCES**

- 2.1. LS-DYNA Keyword User's Manual, Volumes 1 & 2, Version Is971s R4.2, Livermore Software Technology Corporation.
- 2.2. U.S. Nuclear Regulatory Commision NUREG/CR-6608, "Summary and Evaluation of Low-Velocity Impact Tests of Solid Steel Billet Onto Concrete Pads", February 1998.
- 2.3. ASME Boiler and Pressure Vessel Code, Section II, "Materials Specifications," Parts A, B, C and D, 1998 edition with all addenda up to and including 1999 Addenda.
- 2.4. TN Calculation No. 1095-1, Rev. 1, "NUHOMS 32P Weight Calculation of DSC/TC System".
- 2.5. TN Calculation 10494-66, Rev. 0, "NUHOMS-32PTH, OS187H Transfer Cask Dynamic Impact Analysis".
- 2.6. Structural Design of Concrete Storage Pads for Spent Fuel Casks, Electric Power Research Institute, EPRI NP-7551, RP 2813-28, April 1993.
- 2.7. BNL-NUREG-71196-2003-CP, "Impact Analysis of Spent Fuel Dry Casks Under Accidental Drop Scenarios," Brookhaven National Laboratory, 2003.

3 ASSUMPTIONS

3.1 NUH32P+ DSC design is identical to NUH32P DSC design. NUH32P weight properties are used for NUH32P+ weight.

-3.2-Static-and-dynamic-coefficient-of-friction-of-0.25-is-assumed-between-all-sliding-surfaces-

3.3 Strain rate effects on all material properties are neglected.

3.4 Mass of DSC is evenly distributed as a homogenous solid.

3.5 A uniform temperature of 350°F is used for the end drop analysis.

4 METHODOLOGY

LS-DYNA, a dynamic finite element analysis program, is used to determine the rigid body acceleration time history of the NUH32P+ cask caused by a hypothetical accident end drop condition. Because of the complexity of the analysis, a simplified model of the cask and DSC is necessary. The cask model does not include trunnions and other details; however, the mass of these unmodeled items is accounted for. The DSC structure is modeled as an isotropic elastic material with properties approximately equivalent to that of the structure as a whole. This is the same method used in Reference [2.2].

The model consists of the cask, the simplified DSC structure, a concrete impact pad, and the subgrade soil. Only ½ of the cask, DSC structure, concrete and soil are modeled as the entire arrangement is symmetric about the X-Y plane. The section of concrete modeled is 16'-8" long, 6'-8" wide, and 3' thick. The soil section is 66'-8" long, 18'-9" wide, and 39'-2" deep. The concrete and soil dimensions are based on the dimensions used in Reference [2.2]. All lower faces of the soil are fixed except for the symmetry plane. All elements are modeled with fully integrated S/R solid elements.

The finite element model is developed with ANSYS Rev. 11.0 and transferred to LS-DYNA. Modifications were made to the LS-DYNA input files to add the material definitions, non-reflecting boundaries and initial conditions into LS-DYNA, since these input variables are not available through ANSYS. The end drop is analyzed at 350°F. The 32P+ Cask finite element model is shown in Figures 5-1.

	A		Calculation No.:	NUH32P+.0203	
4	AREVA	Calculation	Revision No.:	0	
ד	RANSNUCLEAR INC.		Page:	7 of 24	

5 COMPUTATIONS

5.1 MATERIAL PROPERTIES

The following tables, Table 5-1 through Table 5-3, list stainless steel or carbon steel material properties available in the model material database. The material properties are based on ASME BPV Code, Section II, 1992 [2.3].

	Stainless Steel SA 240 Type 304 (18cr-8ni) -ASME 1992								
Temperature	[°F]	0	70	200	300	400	500	600	700
Sy	[psi]	30000	30000	25000	22500	20700	19400	18200	17700
Su	[psi]	75000	75000	71000	66000	64400	63500	63500	63500
Sm	[psi]	20000	20000	20000	20000	18700	17500	16400	16000
E	[psi]	2.87E+07	2.83E+07	2.76E+07	2.70E+07	2.65E+07	2.58E+07	2.53E+07	2.48E+07

Table 5-1 Material Properties of Stainless Steel SA 240 Type 304

Table 5-2 Material Properties of Stainless Steel SA 182 Type F304N

	Stainless Steel SA 182 Type F304N (18cr-8ni-n)-ASME 1992								
Temperature	[°F]	0	70	200	300	400	500	600	700
Sy	[psi]	35000	35000	28700	25000	22500	20900	19800	19100
Su	[psi]	80000	80000	80000	75900	73200	71200	69700	68600
Sm	[psi]	23300	23300	23300	22500	20300	18800	17800	17200
E	[psi]	2.87E+07	2.83E+07	2.76E+07	2.70E+07	2.65E+07	2.58E+07	2.53E+07	2.48E+07

Table 5-3 Material Properties of Carbon Steel SA 516 Type 70

	Carbon Steel SA516 Type 70 - ASME 1992								
Temperature	[°F]	0	70	200	300	400	500	600	700
Sy	[psi]	38000	38000	34600	33700	32600	30700	28100	27400
Su	[psi]	70000	70000	70000	70000	70000	70000	70000	70000
Sm	[psi]	23300	23300	23100	22500	21700	20500	18700	18300
E	[psi]	2.98E+07	2.95E+07	2.88E+07	2.83E+07	2.77E+07	2.73E+07	2.67E+07	2.55E+07

5.1.1 CASK MATERIAL

The cask material properties are the same at those used in Section 5.1 except the outer shell density is adjusted to account for unmodeled cask parts. The cask weight is calibrated to the weight computed in Reference [2.4]. All cask materials are modeled as elastic.

-	AREVA	Calculation	Calculation No.: Revision No.:	NUH32P+.0203 0
	TRANSNUCLEAR INC.		Page:	8 of 24

Table 5-4: Cask Material Properties

Cask Component	Elastic Modulus (psi)	Density (lb-sec ² /in ⁴)	Poisson's Ratio
Top Lid	26.75X10 ⁶	9.7878x10 ⁻⁴	0.3
Shell Flanges and Ram Access Ring	26.75X10 ⁶	7.4017x10 ⁻⁴	0.3
Outer Shell	28.0X10 ⁶	15.133x10 ⁻⁴	
Lead	1.91X10 ⁶	10.637x10 ⁻⁴	0.45
Inner Shell	26.75X10 ⁶	11.102x10 ⁻⁴	0.3
Bottom Plates	26.75X10 ⁶	7.4017X10 ⁻⁴	0.3
Resin	1.6X10 ⁵	1.646X10 ⁻⁴	0.2

The modeled weight of the empty cask is 61,099 lbs since it is a half model, therefore the total modeled weight is 122,198 lbs. The total calculated empty cask weight (121,458 lbs) in Reference [2.4]. The percentage difference in calculated weight and the modeled weight is 0.58%

5.1.2 DSC STRUCTURE MATERIAL

The DSC structure material properties are the same as those used in Reference [2.2] except for the density. The density of the DSC structure is adjusted to calibrate the overall weight of the canister, basket, and fuel assembly [2.4]. The DSC structure is modeled as elastic.

 $E = 2.8 \times 10^{6} \text{ psi}$ v = 0.3 $\rho = 4.0062 \times 10^{-4} \text{ lb sec}^{2}/\text{in}^{4}$

Total modeled weight of the DSC structure is 47,390 lbs since it is a half model. Therefore the total modeled weight is 94,780 lbs. Total actual weight of the DSC per Reference [2.4] is 90,976 lbs.

AREVA	Calculation	-Calculation No.: Revision No	NUH32P+.0203 0
TRANSNUCLEAR INC	Guicdiation	Page:	9 of 24
5.1.3 SOIL MATERIAL			
The Lawrence Livermore Nation indicates that the stiffness of the Thus, the same soil model as the	nal Labs report [2.2] and B e soil has little impact on t	rookhaven National he peak acceleratio	Laboratory report [2.7] ns predicted in the cask.
elastic.			ied. The soli is modeled as
<i>E</i> = 6,000 psi			
v = 0.45 $\rho = 2.0368 \times 10^{-4} \text{ lb sec}^{2}/\text{in}^{4}$			
514 CONCRETE MATERIAL			
for granular type materials. All p noted. A summary of the input of	Material Law 16 in LS-DY properties are the same as used in the analysis is as f	NA [Ref. 2.1], which those used in Refe ollows.	rence [2.2] except when
Yield stress versus pressure:			
$\sigma = a + \frac{P}{P}$			
$b_{\max} = a_0 + a_1 + a_2 P$			
$\sigma_{failed} = a_{0f} + \frac{P}{a_{1f} + a_2 P}$			
$a = 2.09675 \times 10^{-4}$ lb sec ² / in ⁴			
$\rho = 2.09675 \times 10^{-4}$ lb. sec: ² / in. ⁴ v = 0.22			
$\rho = 2.09675 \times 10^{-4}$ lb. sec: ² / in. ⁴ v = 0.22 $a_0 = 1606$ psi [2.5] $a_1 = 0.418$			
$\rho = 2.09675 \times 10^{-4}$ lb. sec: ² / in. ⁴ v = 0.22 $a_0 = 1606$ psi [2.5] $a_1 = 0.418$ $a_2 = 8.35 \times 10^{-5}$ psi ⁻¹ $b_1 = 0$			
$\rho = 2.09675 \times 10^{-4}$ lb. sec. ² / in. ⁴ v = 0.22 $a_0 = 1606$ psi [2.5] $a_1 = 0.418$ $a_2 = 8.35 \times 10^{-5}$ psi ⁻¹ $b_1 = 0$ $a_{0f} = 0.0$ psi.	·		

 $\sigma_{\textit{yield}} = \sigma_{\textit{failed}} + \eta \left(\sigma_{\max} - \sigma_{\textit{failed}} \right)$

The scale factor η is shown in Table 5-2. The values listed in Table 5-2 are taken directly from Reference [2.2] and not scaled.

...

AREVACalculationCalculation No.:NUH32P+.0203TRANSNUCLEAR INC.CalculationRevision No.:0Page:10 of 24

Table 5-5: Effective Plastic Strain vs. Scale Factor for Concrete Material

Effective Plastic Strain	Scale Factor, η
0	0
0.00094	0.289
0.00296	0.465
0.00837	0.629
0.01317	0.774
0.0234	0.893
0.04034	1.0
1.0	1.0

The maximum principal stress tensile failure cutoff is set at 870 psi [2.2]. Strain rate effects are neglected in the analysis.

The pressure-volume behavior of the concrete is modeled with the following tabulated pressure versus volumetric strain relationship shown in Table 5-3 using the equation of state feature in LS-DYNA [Ref. 2.2].

Volumetric Strain, ε	Pressure (psi) [2.2]
0	0
-0.006	4,600
-0.0075	5,400
-0.01	6,200
-0.012	6,600
-0.02	7,800
-0.038	10,000
-0.06	12,600
-0.0755	15,000
-0.097	18,700

Table 5-6: Tabulated pressures vs. volumetric strain for concrete material

An unloading bulk modulus of 700,000 psi is assumed to be constant at any volumetric strain, as was assumed in Reference [2.2].

One percent deformation is assumed in the concrete pad to account for the pad reinforcement. The one percent reinforcement is also used in the analyses presented in EPRI [2.6].

The material properties used for the reinforcing bar are as follows.

 $E = 30 \times 10^{6}$ psi v = 0.3 $S_{y} = 30,000$ psi Tangent Modulus, $E_{T} = 30 \times 10^{4}$ psi

5.2 BOUNDARY CONDITIONS

Only ½ of the cask is modeled with symmetry boundary conditions used to simulate the full structure. Nonreflecting boundaries are applied to the bottom and sides of the modeled soil not aligned with the plane of symmetry (bottom, left side, right side, and back) to prevent artificial stress waves from reflecting back into the model. Both dilatation and shear waves are damped as described in the LS-DYNA *BOUNDARY command [Ref. 2.1].

An automatic surface to surface (contact_automatic_single_surface) contact definition is applied between all parts except the soil. The contact definition has a 0.5 penalty stiffness scale factor to prevent excessive contact stiffness leading to unrealistic part accelerations. A surface to surface (contact_surface_to_surface) contact definition is applied between the concrete and the soil. Both contact definitions have soft contact option 2 as this is necessary for contact between materials that have very different material stiffness. A conservatively low coefficient of friction (static and kinetic) of 0.25 is applied between all contact surfaces. It is conservative to use a low value for the coefficient of friction because less energy is absorbed due to friction resulting in greater impact acceleration forces.

TRANSNUCLEAR INC.		Revision No.: Page:	ບ 12 of 24
		L	
5.5 INTTAL CONDITIONS			
The analysis begins with a 1.5 acceleration other than gravity to all parts of the cask model.	" gap between the cask an (this allows for appropriate The initial velocity is comp	d concrete to allow filtering of the data uted by equating po	for at least 5 ms of zero a). An initial velocity is appl tential and kinetic energies
Due to the initial 1.5" gap and the total 80" drop height.	gravitational acceleration, i	initial velocities are	computed 1.5" shorter thar
V = potential energy = mgh T = kinetic energy = $\frac{1}{2}mv^2$			
For a 80" Drop:			
$mgh = \frac{1}{2}mv^2$			
$\Rightarrow v = \sqrt{2gh} = \sqrt{2(386.4)(80-1)}$	-1.5) = 246.3 in./sec.		
A gravitational acceleration of	386.4 in/sec ² is applied to	the cask and DSC r	nodel.
•			
	·		
•			
	·	. · · · ·	•

A		Calculation No.:	NUH32P+.0203
AREVA	Calculation	Revision No.:	0
TRANSNUCLEAR INC.		Page:	16 of 24

TRANSNUCLEAR INC.

6 DATA REDUCTION

The analyses are run for a duration of 0.08 seconds. The time step was set at 1.17x10⁻⁶ which resulted in a negligible weight increase of about 9 lbs.

6.1 CASK NODAL ACCELERATION SECTIONS EVALUATED

The resulting rigid body acceleration time histories are computed by LS-DYNA. The rigid body accelerations are computed for the bottom plates + resin and the circumferential shell. The parts can be seen in Figure 6-1.

RAW DATA FILTERING 6.2

LS-DYNA reports the nodal accelerations at 100 µsec intervals. Therefore, by the Nyquist theorem, the frequency content of the nodal acceleration data, refined by LS-DYNA, ranges from zero Hz, up to the following maximum frequency, f_{max} .

$$f_{\rm max} = \frac{1}{2} \frac{1}{100 \times 10^{-6} \, \rm{sec}} = 5 \, \rm{kHz}$$

The natural frequencies of the 32P+ cask model, which can be excited by an impact event, are much lower than this. These natural modes of the cask involve small displacements (and therefore low stresses) at frequencies higher than that of the rigid body motion of the cask. These high frequency accelerations mask the true rigid body motion of the cask, because both the low frequency rigid body acceleration and the high frequency natural vibration accelerations superimpose. The net acceleration is contained in the raw data computed by LS-DYNA. Therefore, filtering is necessary to remove these high frequency accelerations.

The rigid body acceleration for each part is filtered using an 8th order low pass Butterworth filter forwards and backwards with a cutoff frequency of 180Hz. This frequency is based on Fourier spectral analyses shown in Figures 7-1 through 7-4. The figures show that the 180Hz cutoff will still conservatively include some of the cask's natural modes. The impact durations are all over 0.03 seconds, so the minimum

frequency to capture rigid body motion would be $2 \times \frac{1}{0.03} = 66.67$ Hz.

_	AREVA	Calculation	Calculation No.: Revision No.:	NUH32P+.0203 0
	TRANSNUCLEAR INC.		Page:	18 of 24

7 RESULTS

Table 7-1 lists the peak filtered accelerations and corresponding time history plot for different parts of the 32P+ cask. All results are filtered with an 8th order low pass butterworth filter with a 180Hz cutoff frequency. Figure 8-1 through 8-2 shows the filtered acceleration time histories. Figure 8-3 through 8-4 shows the Fourier spectral analyses of the acceleration time histories before and after filtering.

Table 7-1: Filtered Results Summary

Drop Scenario	Part	Peak Acceleration (g)	Time History Figure Number
End Drop	Circumferential Shell	43.5	7-1
	Bottom Plates + Resin	48.8	7-2

8 LISTING OF ANSYS COMPUTER FILES

Below is a listing of all files used in LS-DYNA, all Analysis performed on Computer HEA0105A, Dual Intel Xeon 3.2GHz, Windows XP SP2, LS-DYNA ver. Is971s R4.2 Revision 50638.

Run Description	File Names	Date Stamp
Ansys Model	32PHB.db	7/9/09 9:15 AM
8 th Order Butterworth Filter	low_pass_butter.m	10/6/09 5:08PM
	32PHB_End_Drop.k	7/10/09 1:37 PM
	Constraints.k	7/9/09 9:22 PM
80" End Drop	Elements.k	9/16/09 1:13 PM
Input Files	Nodes.k	9/16/09 1:20 PM
	NodeSets.k	7/9/09 2:27 PM
	SegSets.k	7/9/09 10:19 AM
	d3plot	9/19/09 9:58 PM
80" End Drop	d3plot01-d3plot162	9/19/09 10:01 PM – 9/20/09 6:41 AM
Output Files	messag	9/20/09 6:41 AM
	End_Shell.csv	10/7/09 10:26 AM
	End_Bottom.csv	10/7/09 10:24 AM

<u>Note:</u> Date & time (EST) for main runs are from the listing at the end of the output file. For other files (e.g., .db files), dates & times are reported by the OS on the report issue date, these values may be changed by Windows depending on time of the year (e.g., daylight savings time) and time zones.

....

 AREVA
 Calculation No.:
 NUH32P+.0203

 Calculation No.:
 0

 TRANSNUCLEAR INC.
 Page:
 23 of 24

9 APPENDIX A – BUTTERWORTH FILTER VERIFICATION

The butterworth filter used in this analysis is based on the program Octave, an open source code program used for solving linear and nonlinear problems. An 8th order low pass butterworth filter is run forward and backward as described in NUREG/CR-6608. To verify the filter functions properly, the filtered and unfiltered fourier spectrum plot of the NUREG/CR-6608 is compared to the fourier spectrum plots of this analysis. Figure A1 shows a NUREG/CR-6608 data set which was filtered at 450Hz. The plots of this analysis show good correlation to Figure A1. In addition, Figure A2 shows the frequency response of the 8th order butterworth filter at 450Hz run forward and backward in this analysis. It can be seen that the frequency response coincides with the attenuation pattern seen in the NUREG/CR-6608 data set.

Figure A1 - Impulse Response of 8th Order Butterworth Filter Forward and Backward

Figure A2 – Frequency Response of 8th Order Butterworth Filter Forward and Backward

ENCLOSURE (1)

	0		0		/
	These DV	Ds have been p	rovided to J. M.	Goshen (NRC, N	MSS)
	Disk 1]	Disk 2		Disk 3
d3plot	d3plot31	d3plot61	d3plot91	d3plot121	d3plot151
d3plot1	d3plot32	d3plot62	d3plot92	d3plot122	d3plot152
d3plot2	d3plot33	d3plot63	d3plot93	d3plot123	d3plot153
d3plot3	d3plot34	d3plot64	d3plot94	d3plot124	d3plot154
d3plot4	d3plot35	d3plot65	d3plot95	d3plot125	d3plot155
d3plot5	d3plot36	d3plot66	d3plot96	d3plot126	d3plot156
d3plot6	d3plot37	d3plot67	d3plot97	d3plot127	d3plot157
d3plot7	d3plot38	d3plot68	d3plot98	d3plot128	d3plot158
d3plot8	d3plot39	d3plot69	d3plot99	d3plot129	d3plot159
d3plot9	d3plot40	d3plot70	d3plot100	d3plot130	d3plot160
d3plot10	d3plot41	d3plot71	d3plot101	d3plot131	d3plot161
d3plot11	d3plot42	d3plot72	d3plot102	d3plot132	d3plot162
d3plot12	d3plot43	d3plot73	d3plot103	d3plot133	32PHB End Drop.k
d3plot13	d3plot44	d3plot74	d3plot104	d3plot134	Constraints.k
d3plot14	d3plot45	d3plot75	d3plot105	d3plot135	Elements.k
d3plot15	d3plot46	d3plot76	d3plot106	d3plot136	Messag
d3plot16	d3plot47	d3plot77	d3plot107	d3plot137	Nodes.k
d3plot17	d3plot48	d3plot78	d3plot108	d3plot138	NodeSets.k
d3plot18	d3plot49	d3plot79	d3plot109	d3plot139	SegSets.k
d3plot19	d3plot50	d3plot80	d3plot110	d3plot140	8
d3plot20	d3plot51	d3plot81	d3plot111	d3plot141	
d3plot21	d3plot52	d3plot82	d3plot112	d3plot142	
d3plot22	d3plot53	d3plot83	d3plot113	d3plot143	
d3plot23	d3plot54	d3plot84	d3plot114	d3plot144	
d3plot24	d3plot55	d3plot85	d3plot115	d3plot145	
d3plot25	d3plot56	d3plot86	d3plot116	d3plot146	
d3plot26	d3plot57	d3plot87	d3plot117	d3plot147	
d3plot27	d3plot58	d3plot88	d3plot118	d3plot148	
d3plot28	d3plot59	d3plot89	d3plot119	d3plot149	
d3plot29	d3plot60	d3plot90	d3plot120	d3plot150	
d3plot30	-		-		

The File Listing for Three DVDs Containing LS-DYNA Files for NUH32P+.0203

ATTACHMENT (2)

NUH32P+.0204, REVISION 0, FUEL END DROP ANALYSIS FOR

NUH32P+ USING LS-DYNA, NON-PROPRIETARY VERSION

Non-PROPRIETARY Version

A	Form 3	2.1	Calculation No.:	NUH32P+,0204
AREVA	Calculation Co	over Sheet	Revision No.:	0
TRANSNUCLEAR INC.	TIP 3.2 (Rev	rision 4)	Pag	e: 1 of 24
DCR NO (if applicable): N/A	PROJECT NAME:	NUH32P+ Dry	/ Fuel Storage Pro	oject for CCNPP
PROJECT NO: NUH32P+	CLIENT:CENG - C	alvert Cliff Nuc	lear Power Plant	(CCNPP)
CALCULATION TITLE: Fuel En	d Drop Analysis for	NUH32P+ Usi	ng LS-DÝNA	
SUMMARY DESCRIPTION:				*****
1) Calculation Summary				
The purpose of this calculation is assembly Zircaloy-4 clad expose	s to evaluate the struc d to 80 inch end drop	tural adequacy event conditio	of NUH32P+ 14) ns.	cl4 fuel
2) Storage Media Description				
Secure network server initially, t	hen redundant tape b	ackup.		
If original issue, is licensing review	w per TIP 3.5 required	1?		
Yes 🗋 No 🖾 (o	xplain below)	Licensing Review	/ No.:	
This calculation is prepared to su	apport a Site Specific	License Applic	ation by CCNPP	that will be reviewed
and approved by the NKC. There	elore, a IUCFIC/2.48	ncensing review	v per 1123.5 is n	ot applicable.
Software Utilized (subject to test	requirements of TIP 3	.3):	Version:	· · ·
LS-DYNA	•		ls971s R2	7600.1224
Calculation is complete:				
Huan Li	SP P			
Originator Name and Standure	H		Date: 3/5	- 12010
Calculation has been checked for	consistency, complete	ness and	Duron	
correctness:	n .	٢		
Rahaal Haraan	12m		ale	10 10
	17	^	Date: 3/5/	12010
Checker Namo and Signature: Calculation is approved for use:				
	ы. — С	3		
Kaman lavasish	K) col)	Date: 3/5	110
Project Engincer Name and Signature:	متنقشة بالمراجع		1	

Δ		4				;	Calc. No	.: NUH32	P+.0204
AREV	1A		Calcul	ation		Ì	Rev. No	o.: 0	
RANS	NUCLEAR INC.						Page	e: 2 of 24	
	, · ·		REV	ISION	S				
REV.	DESCR	IPTION OF CHA	NGES			AFFECT	ED 3	AFFEC Computat	TED Ional I/O
0	Initial Issue	<u> </u>				All		A	11
	L				L.,,			L	
						-			
		·							
	ı								
			`						
				,					
	,								
	•								
									•
	i						. •		
								;	
,									

. .

ß	k	/	Catc. No.:	NUH32P+.0204
ARE	.VA	Calculation	Rev. No.:	0
TRAN	SNUCLEAR INC.		Page:	3 of 24
	· · · · · · · · · · · · · · · · · · ·	Table of Contents		
1.0	Purrasa	· · · · · ·		5
1.0	Defense and		******************************	ل
2.0	Keterences			
3.0	Methodology		• • • • • • • • • • • • • • • • • • • •	6
4.0	Assumptions			6
5.0	Material Properties of	of Fuel Cladding		7
6.0	Analysis		•••••••••••••••••	8
6.1	Model Geometry an	d Details		ε
6.2	Fuel cladding	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		8
6.3	Cask			٤
6,4	Fuel Pellet Spring			
6.5	Spacer Grid			
6,6	Fuel Compartment			
6,7	Pin to Cask Spring			
6.8	Cask to Ground Inte	eraction		
6.9	Boundary and Initia	Conditions		
70	Populte			10
0.0	Canalasiana		·····	10
8.0	Conclusions	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	••••••••••••	
9.0	Listing of Input/Out	put Files	••••••••••••••••	
		· ·		

ŗ

ſ	A			Calc. No.:	NUH32P+.020)4
	AREVA	Calculation	\sim	Rev. No.:	0	
	TRANSNUCLEAR INC.			Page:	4 of 24	
		List of Tables				
	•					
				·	I	Page
	Table 1. Geometry Data for	PWR 14x14 Fuel Rod	••••••••••	************	*****	.12
ĺ	,					
	,					
		List of Figures				
	Rigura 1. Schematic of DW/I	R Fuel Cladding Geometry			F	Page
	Figure 2. Schematic of the S	ingle Fuel Rod Model		******************	*************************	.14
	Figure 3. The Details of Sing	gle Fuel Rod Model Deflection Curve for Fuel Pellets.			*********	.15
	- врунсе А. т не загну вогсен		e			.17
	Figure 5. The Spring Force-I	Deflection Curve for Spacer Grid				·
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7	Deflection Curve for Spacer Grid Time-History of the Cask Bottom	Plate		*****	. 18
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete	Plate Drop Analysis	; ;,,,,,,		18 19 20
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Ti	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response	1 Plate Drop Analysis	3		18 19 20 21
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Ti Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot	I Plate Drop Analysis	3		18 19 20 21 22 23
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Th Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom e-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot k Axial Velocity Time History sk Axial Deceleration Time History	Plate Drop Analysis	5		18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Th Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time History	Plate Drop Analysis	5		18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Ti Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time Histor	Plate Drop Analysis	3		18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Th Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom e-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot contour Plot sk Axial Velocity Time History sk Axial Deceleration Time Histo	Plate Drop Analysis	5		18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Ti Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time Histor	Plate Drop Analysis	5		18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Th Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom e-History of the Cask in the End J Deflection Curve for Concrete me-History Response Contour Plot Contour Plot sk Axial Velocity Time History sk Axial Deceleration Time Histor	Plate Drop Analysis	3		18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Th Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time Histor	Plate Drop Analysis	5		18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Ti Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End J Deflection Curve for Concrete me-History Response Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time History	Plate Drop Analysis	5	, ,	18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Th Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time Histor	Plate Drop Analysis	5	· · · · · · · · · · · · · · · · · · ·	18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Ti Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time Histor	Plate Drop Analysis	5	· · · · · · · · · · · · · · · · · · ·	18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Th Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time History	Plate Drop Analysis	5		18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Ti Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time Histor	Plate Drop Analysis	5		18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Ti Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End 1 Deflection Curve for Concrete me-History Response Contour Plot Contour Plot sk Axial Velocity Time History sk Axial Deceleration Time Histor	Plate Drop Analysis			18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Th Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time History	Plate Drop Analysis			18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Ti Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End 1 Deflection Curve for Concrete me-History Response Contour Plot Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time Histor	Plate Drop Analysis			18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Ti Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time History sk Axial Deceleration Time Histor	Plate Drop Analysis			18 19 20 21 22 23 24
	Figure 4. The Spring Force-I Figure 5. The Spring Force-I Figure 6. The Displacement 7 Figure 7. Displacement Time Figure 8. The Spring Force-I Figure 9. Principal Strain Ti Figure 10. Principal Strain C Figure 11. Fuel Rod and Cas Figure 12. Fuel Rod and Cas	Deflection Curve for Spacer Grid Time-History of the Cask Bottom 2-History of the Cask in the End H Deflection Curve for Concrete me-History Response Contour Plot Sk Axial Velocity Time History sk Axial Deceleration Time Histor	Plate Drop Analysis			. 18 19 20 21 22 23 24

AREVA Calculation Rev. No.: 0 TRANSNUCLEAR INC. Page: 5 of 24 1.0 Purpose The purpose of this calculation is to evaluate the structural adequacy of 32P+ 14x14 fuel assembly Zircaloy-4 clad fuel rod exposed to 80 inch end drop event conditions with an initial gap of 0.04" between the pin bottom and the cask using LS-DYNA model [2.4] developed according to References [2.1, 2.5]. 2.0 References 2.1. Harold E. Adkins, Jr., Brain J. Koeppel and David T. Tang, "Spent Nuclear Fuel Structural Response when Subject to An End Impact Accident". PVP-Vol. 483, Transportation Storage and Disposal of Radioactive Materials, July 25-29, 2004, San Diego, CA, USA. 2.3. TN Calculation, NUH32P-1095-1, Rev. 0, "TN40HT Fuel End Drop Analysis Using LS-DYNA". 2.4. TN Calculation, NUH32P-1095-1, Rev. 0, "TN40HT Fuel End Drop Analysis Using LS-DYNA". 2.5. NUREG-1864, "A Pilot Probabilistic Risk Assessment Of a Dry Cask Storage System At a Nuclear Power Plant". Date published in March 2007. 2.6. TN Calculation, NUH32P+0203, Rev. 0, "32P+ Transfer Cask Impact onto the Concrete Pad LS-DYNA Analysis (80 inch End Drop)". 2.7. DOE/RW-0184, Vol 3 of 6, "Characteristics of Spent Fuel, High Level Waste and other Radioactive Waste which require Long Term Isolation – Physical Descriptions of LWR Fuel Assemblies," Appendix 2A, U.S. DOE, December, 1987. 2.8. Not used. 2.9. TN Calculation No. 972-179	Alexander	ł		Calc. No.:	NUH32P+.0204
TRANSNUCLEAR INC. Page: 5 of 24 1.0 Purpose The purpose of this calculation is to evaluate the structural adequacy of 32P+ 14x14 fuel assembly Zircaloy-4 clad fuel rod exposed to 80 inch end drop event conditions with an initial gap of 0.04" between the pin bottom and the cask using LS-DYNA model [2.4] developed according to References [2.1, 2.5]. 2.0 References 2.1. Harold E. Adkins, Jr., Brain J, Koeppel and David T. Tang, "Spent Nuclear Fuel Structural Response when Subject to An End Impact Accident". PVP-Vol. 483, Transportation Storage and Disposal of Radioactive Materials, July 25-29, 2004, San Diego, CA, USA. 2.2. Not used. 2.3. TN Calculation, NUH32P-1095-1, Rev. 0, "NUHOMS [®] 32P Weight Calculation of DSC/TC System". 2.4. TN Calculation, NUH32P-1095-1, Rev. 0, "TM40HT Fuel End Drop Analysis Using LS-DYNA". 2.5. NUREG-1864, "A Pilot Probabilistic Risk Assessment Of a Dry Cask Storage System At a Nuclear Power Plant". Date published in March 2007. 2.6. TN Calculation, NUH32P+-0203, Rev. 0, "32P+ Transfer Cask Impact onto the Concrete Pad LS-DYNA Analysis (80 inch End Drop)". 2.7. DOE/RW-0184, Vol 3 of 6, "Characteristics of Spent Fuel, High Level Waste and other Radioactive Waste which require Long Term IsolationPhysical Descriptions of LWR Fuel Assemblies," Appendix 2A, U.S. DOE, December, 1987. 2.8. Not used. 2.9. TN Calculation No. 972-179, Rev. 0, "TN-68 High Burnup Cladding	ARE	EVA	Calculation	Rev. No.:	0
 Purpose The purpose of this calculation is to evaluate the structural adequacy of 32P+ 14x14 fuel assembly Zircaloy-4 clad fuel rod exposed to 80 inch end drop event conditions with an initial gap of 0.04" between the pin bottom and the cask using LS-DYNA model [2.4] developed according to References [2.1, 2.5]. References Harold E. Adkins, Jr., Brain J. Koeppel and David T. Tang, "Spent Nuclear Fuel Structural Response when Subject to An End Impact Accident", PVP-Vol. 483, Transportation Storage and Disposal of Radioactive Materials, July 25-29, 2004, San Diego, CA, USA. Not used. TN Calculation, NUH32P-1095-1, Rev. 0, "NUHOMS® 32P Weight Calculation of DSC/TC System". MUREG-1864, "A Pilot Probabilistic Risk Assessment Of a Drop Analysis Using LS-DYNA". NUREG-1864, "A Pilot Probabilistic Risk Assessment Of a Dry Cask Storage System At a Nuclear Power Plant". Date published in March 2007. TN Calculation, NUH32P+003, Rev. 0, "32P+ Transfer Cask Impact onto the Concrete Pad LS-DYNA Analysis (80 inch End Drop)". DOE/RW-0184, Vol 3 of 6, "Characteristics of Spent Fuel, High Level Waste and other Radioactive Waste which require Long Term Isolation - Physical Descriptions of LWR Fuel Assemblies," Appendix 2A, U.S. DOE, December, 1987. Not used. TN Calculation No. 972-179, Rev. 0, "TN-68 High Burnup Cladding Mechanical Properties". CCNPP Calculation, DCALC No. CA06758, "Fuel Performance Data for Calvert Cliffs Dry Storage (ISFSI) Analysis for Batches CIN Through C1T and C2M Through C2S", October 19th, 2006. Eric R. Siegmann, J. Kevin McCoy, Robert Howard, "Cladding Evaluation in the Yucca Mountain Repository Performance Assessment," Material Research Society Symp. Proc. Vol. 608, 2000. 	TRAN	SNUCLEAR INC.	·	Page:	5 of 24
 The purpose of this calculation is to evaluate the structural adequacy of 32P+ 14x14 fuel assembly Zircaloy-4 clad fuel rod exposed to 80 inch end drop event conditions with an initial gap of 0.04" between the pin bottom and the cask using LS-DYNA model [2.4] developed according to References [2.1, 2.5]. References 2.1. Harold E. Adkins, Jr., Brain J. Koeppel and David T. Tang, "Spent Nuclear Fuel Structural Response when Subject to An End Impact Accident". PVP-Vol. 483, Transportation Storage and Disposal of Radioactive Materials, July 25-29, 2004, San Diego, CA, USA. 2.2. Not used. 2.3. TN Calculation, NUH32P-1095-1, Rev. 0, "NUHOMS[®] 32P Weight Calculation of DSC/TC System". 2.4. TN Calculation, TN40HT-0217, Rev. 0, "TN40HT Fuel End Drop Analysis Using LS-DYNA". 2.5. NUREG-1864, "A Pilot Probabilistic Risk Assessment Of a Dry Cask Storage System At a Nuclear Power Plant". Date published in March 2007. 2.6. TN Calculation, NUH32P+-0203, Rev. 0, "32P+ Transfer Cask Impact onto the Concrete Pad LS-DYNA Analysis (80 inch End Drop)". 2.7. DOE/RW-0184, Vol 3 of 6, "Characteristics of Spent Fuel, High Level Waste and other Radioactive Waste which require Long Term Isolation – Physical Descriptions of LWR Fuel Assemblies," Appendix 2A, U.S. DOE, December, 1987. 2.8. Not used. 2.9. TN Calculation No. 972-179, Rev. 0, "TN-68 High Burnup Cladding Mechanical Properties". 2.10. CCNPP Calculation, DCALC No. CA06758, "Fuel Performance Data for Calvert Cliffs Dry Storage (ISFSI) Analysis for Batches CIN Through C1T and C2M Through C2S", October 19th, 2006. 2.11. Eric R. Siegmann, J. Kevin McCoy, Robert Howard, "Cladding Evaluation in the Yucca Mountain Repository Performance Assessment," Material Research Society Symp. Proc. Vol. 608, 2000. 	1.0	Purpose			
 References Harold E. Adkins, Jr., Brain J. Koeppel and David T. Tang, "Spent Nuclear Fuel Structural Response when Subject to An End Impact Accident". PVP-Vol. 483, Transportation Storage and Disposal of Radioactive Materials, July 25-29, 2004, San Diego, CA, USA. Not used. TN Calculation, NUH32P-1095-1, Rev. 0, "NUHOMS[®] 32P Weight Calculation of DSC/TC System". TN Calculation, TN40HT-0217, Rev. 0, "TN40HT Fuel End Drop Analysis Using LS-DYNA". NUREG-1864, "A Pilot Probabilistic Risk Assessment Of a Dry Cask Storage System At a Nuclear Power Plant". Date published in March 2007. TN Calculation, NUH32P+-0203, Rev. 0, "32P+ Transfer Cask Impact onto the Concrete Pad LS-DYNA Analysis (80 inch End Drop)". DOE/RW-0184, Vol 3 of 6, "Characteristics of Spent Fuel, High Level Waste and other Radioactive Waste which require Long Term Isolation – Physical Descriptions of LWR Fuel Assemblies," Appendix 2A, U.S. DOE, December, 1987. Not used. TN Calculation No. 972-179, Rev. 0, "TN-68 High Burnup Cladding Mechanical Properties". CCNPP Calculation, DCALC No. CA06758, "Puel Performance Data for Calvert Cliffs Dry Storage (ISFSI) Analysis for Batches C1N Through C12M Through C2S", October 19th, 2006. Eric R. Siegmann, J. Kevin McCoy, Robert Howard, "Cladding Evaluation in the Yucca Mountain Repository Performance Assessment," Material Research Society Symp. Proc. Vol. 608, 2000. 	The j clad and t	purpose of this calculat fuel rod exposed to 80 he cask using LS-DYN	ion is to evaluate the structural adequacy of 3 inch end drop event conditions with an initial IA model [2.4] developed according to Refere	32P+ 14x14 fuel asse l gap of 0.04" betwee ences [2.1, 2.5].	mbly Zircaloy-4 on the pin bottom
 Harold E. Adkins, Jr., Brain J. Koeppel and David T. Tang, "Spent Nuclear Fuel Structural Response when Subject to An End Impact Accident". PVP-Vol. 483, Transportation Storage and Disposal of Radioactive Materials, July 25-29, 2004, San Diego, CA, USA. Not used. TN Calculation, NUH32P-1095-1, Rev. 0, "NUHOMS[®] 32P Weight Calculation of DSC/TC System". TN Calculation, TN40HT-0217, Rev. 0, "TN40HT Fuel End Drop Analysis Using LS-DYNA". NUREG-1864, "A Pilot Probabilistic Risk Assessment Of a Dry Cask Storage System At a Nuclear Power Plant". Date published in March 2007. TN Calculation, NUH32P+-0203, Rev. 0, "32P+ Transfer Cask Impact onto the Concrete Pad LS-DYNA Analysis (80 inch End Drop)". DOE/RW-0184, Vol 3 of 6, "Characteristics of Spent Fuel, High Level Waste and other Radioactive Waste which require Long Term Isolation – Physical Descriptions of LWR Fuel Assemblies," Appendix 2A, U.S. DOE, December, 1987. Not used. TN Calculation No. 972-179, Rev. 0, "TN-68 High Burnup Cladding Mechanical Properties". CCNPP Calculation, DCALC No. CA06758, "Fuel Performance Data for Calvert Cliffs Dry Storage (ISFSI) Analysis for Batches C1N Through C1T and C2M Through C2S", October 19th, 2006. Eric R. Siegmann, J. Kevin McCoy, Robert Howard, "Cladding Evaluation in the Yucca Mountain Repository Performance Assessment," Material Research Society Symp. Proc. Vol. 608, 2000. 	2.0	References			
	 2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7. 2.8. 	Harold E. Adkins, Jr. Subject to An End Im Materials, July 25-29 Not used. TN Calculation, NUF TN Calculation, TN4 NUREG-1864, "A Pi Plant". Date publishe TN Calculation, NUF Analysis (80 inch End DOE/RW-0184, Vol which require Long T DOE, December, 198 Not used. TN Calculation No. S	, Brain J. Koeppel and David T. Tang, "Spent pact Accident". PVP-Vol. 483, Transportatio , 2004, San Diego, CA, USA. I32P-1095-1, Rev. 0, "NUHOMS [®] 32P Weig 0HT-0217, Rev. 0, "TN40HT Fuel End Drop lot Probabilistic Risk Assessment Of a Dry C d in March 2007. I32P+-0203, Rev. 0, "32P+ Transfer Cask Im d Drop)". 3 of 6, "Characteristics of Spent Fuel, High L Ferm Isolation – Physical Descriptions of LW 7.	t Nuclear Fuel Struct on Storage and Dispo ght Calculation of DS Analysis Using LS-D Cask Storage System apact onto the Concre Level Waste and othe /R Fuel Assemblies,"	ural Response when sal of Radioactive C/TC System". PYNA". At a Nuclear Power ote Pad LS-DYNA r Radioactive Waste Appendix 2A, U.S.
	2.9. 2.10. 2.11.	CCNPP Calculation, (ISFSI) Analysis for Eric R. Siegmann, J. Repository Performa	DCALC No. CA06758, "Fuel Performance L Batches C1N Through C1T and C2M Throug Kevin McCoy, Robert Howard, "Cladding En nce Assessment," Material Research Society	Jata for Calvert Chiff gh C2S", October 19 ^d valuation in the Yucc Symp. Proc. Vol. 60	s Dry Storage ¹ , 2006. 2a Mountain 8, 2000.
	2.9. 2.10. 2.11.	CCNPP Calculation, (ISFSI) Analysis for Eric R. Siegmann, J. Repository Performa	DCALC No. CA06758, "Fuel Performance L Batches C1N Through C1T and C2M Throug Kevin McCoy, Robert Howard, "Cladding Ev nce Assessment," Material Research Society	Jata for Calvert Chiff gh C2S", October 19 ^d valuation in the Yucc Symp. Proc. Vol. 60	s Dry Storage ¹ , 2006. 2a Mountain 8, 2000.
	2.9. 2.10. 2.11.	CCNPP Calculation, (ISFSI) Analysis for Eric R. Siegmann, J. Repository Performa	DCALC No. CA06758, "Fuel Performance L Batches C1N Through C1T and C2M Throug Kevin McCoy, Robert Howard, "Cladding Ev nce Assessment," Material Research Society	Jata for Calvert Chiff gh C2S", October 19 ^d valuation in the Yucc Symp, Proc. Vol. 60	s Dry Storage ¹ , 2006. 2a Mountain 8, 2000.
	2.9. 2.10. 2.11.	CCNPP Calculation, (ISFSI) Analysis for Eric R. Siegmann, J. Repository Performa	DCALC No. CA06758, "Fuel Performance L Batches C1N Through C1T and C2M Throug Kevin McCoy, Robert Howard, "Cladding Ev nce Assessment," Material Research Society	Jata for Calvert Chiff gh C2S", October 19 ^d valuation in the Yucc Symp. Proc. Vol. 60	s Dry Storage ¹ , 2006. 2a Mountain 8, 2000.
	2.9. 2.10. 2.11.	CCNPP Calculation, (ISFSI) Analysis for Eric R. Siegmann, J. Repository Performan	DCALC No. CA06758, "Fuel Performance L Batches C1N Through C1T and C2M Throug Kevin McCoy, Robert Howard, "Cladding Ev nce Assessment," Material Research Society	Jata for Calvert Cliffi gh C2S", October 19 ^d valuation in the Yucc Symp. Proc. Vol. 60	s Dry Storage ¹ , 2006. 2a Mountain 8, 2000.
	2.9. 2.10. 2.11.	CCNPP Calculation, (ISFSI) Analysis for Eric R. Siegmann, J. Repository Performan	DCALC No. CA06758, "Fuel Performance L Batches C1N Through C1T and C2M Throug Kevin McCoy, Robert Howard, "Cladding Ev nce Assessment," Material Research Society	Jata for Calvert Cliffi gh C2S", October 19 ⁴ valuation in the Yucc Symp. Proc. Vol. 60	s Dry Storage ¹ , 2006. 2a Mountain 8, 2000.
	2.9. 2.10. 2.11.	CCNPP Calculation, (ISFSI) Analysis for Eric R. Siegmann, J. Repository Performan	DCALC No. CA06758, "Fuel Performance L Batches C1N Through C1T and C2M Throug Kevin McCoy, Robert Howard, "Cladding Ev nce Assessment," Material Research Society	Jata for Calvert Cliffi gh C2S", October 19 ⁴ valuation in the Yucc Symp. Proc. Vol. 60	s Dry Storage ¹ , 2006. 2a Mountain 8, 2000.
	2.9. 2.10. 2.11.	CCNPP Calculation, (ISFSI) Analysis for Eric R. Siegmann, J. Repository Performan	DCALC No. CA06758, "Fuel Performance L Batches C1N Through C1T and C2M Throug Kevin McCoy, Robert Howard, "Cladding Ev nce Assessment," Material Research Society	Jata for Calvert Cliffi gh C2S", October 19 ⁴ valuation in the Yucc Symp. Proc. Vol. 60	s Dry Storage ¹ , 2006. 2a Mountain 8, 2000.
	2.9. 2.10. 2.11.	CCNPP Calculation, (ISFSI) Analysis for Eric R. Siegmann, J. Repository Performan	DCALC No. CA06758, "Fuel Performance L Batches C1N Through C1T and C2M Throug Kevin McCoy, Robert Howard, "Cladding Ev nce Assessment," Material Research Society	Jata for Calvert Cliffi gh C2S", October 19 ⁴ valuation in the Yucc Symp. Proc. Vol. 60	s Dry Storage ¹ , 2006. 2a Mountain 8, 2000.

A		Calc. No.;	NUH32P+.0204
AREVA	Calculation	Rev. No.:	0
		Page:	6 of 24
Proprieto	very Information Withheld Pursuant	to to CEP	2 200
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390
Proprieta	ary Information Withheld Pursuant	to 10 CFR	2.390

r

a and a second and a

,

A	· · · · · · · · · · · · · · · · · · ·	Calc. No.:	NUH32P+.0204
AREVA	Calculation	Rev. No.:	0
TRANSNUCLEAR INC,	· · · · · · · · · · · · · · · · · · ·	Page:	7 of 24
•			
ň			
			•
		· ·	
		•	
Proprietai	ry Information Withheld Pursua	nt to 10 CFR	2.390
		Y	
		<i>,</i> , ,	
,			
	· · · · · · · · · · · · · · · · · · ·		
······································			}

A	· · · ·	Calc. No.:	NUH32P+.0204
AREVA	Calculation	Rev. No.:	0
TRANSNUCLEAR INC.		Page:	8 of 24

6.0 Analysis

6.1 Model Geometry and Details

Figure 2 illustrates the finite element model, which is composed of a single fuel rod, a lumped cask mass, springs representing the spacer grids, contact surfaces representing the basket compartment wall, and a spring representing the target stiffness.

Several views of the actual finite element mesh are shown in Figure 3. In this figure, the views shown are: (a) the entire model, (b) top of rod with basket compartment walls and spacer grid spring, (c) top of rod with fuel pellet springs, and (d) bottom of rod with nodes representing the cask and target (concrete).

6.2 Fuel cladding

The fuel cladding geometry and other physical properties are presented in Table 1 and Figure 1.

Proprietary Information Withheld Pursuant to 10 CFR 2.390

			Calc. No.:	NUH32P+.0204
AREVA		Calculation	Rev. No.:	0
RANSNUCLEAR INC.		······································	Page:	9 of 24
			· · · · · · · · · · · · · · · · · · ·	
· .				
, .				
		· · · · · · · · · · · · · · · · · · ·		
				·
			· .	
	T			×
Duranta		Comparison Mitchele Id Domeson to		
Uroprio	rarv in	itormation withheid Pursuant	TO 10 CFR 2	2.300
Fiopher				
Fioplie				
riopile				
riopne				
riopne			· · ·	
гторпе				
гторпе				
гторпе	in the second			
гторпе				
гторпе				<u>.</u> .
riopilei				
riopile				
riopile				
riopile				
riopiie				
riopile				

A		Calc. No.:	NUH32P+.0204	
AREVA	Calculation	Rev. No.:	0	
TRANSNUCLEAR INC.		Page:	10 of 24	'
·			······	

Proprietary Information Withheld Pursuant to 10 CFR 2.390

7.0 Results

The analysis results show that the maximum principal strain of fuel rod is 0.89 %, which is less than the yield strain of 0.92%. The maximum principal strain time-history is shown in Figure 9; and correspondingly the maximum principal strain profile is shown in Figure 10.

In addition, the fuel rod and cask velocity and deceleration time histories are shown in Figure 11 and Figure 12, respectively.

8.0 Conclusions

From the above results, the maximum principal strain for the fuel cladding is 0.89%, which is less than the elastic strain of 0.92%. Hence, based on all of the conservatisms in the current analysis

and the fuel cladding maintains its structural integrity during the 80 inch end drop event.

A		Calc. No.;	NUH32P+.0204
AREVA	Calculation	Rev. No.:	0
TRANSNUCLEAR INC.		Page:	11 of 24
	÷		
Pronrietar	Information Withheld Pursuant	to 10 CFR 2 '	
riophetar	, monnation withheid rorboants		v⊂(
		•	
			۰.
			·
	· · · ·		

. . .

'

ì

A		Calc. No.:	NUH32P+.0204
AREVA	Calculation	Rev. No.:	0 .
TRANSNUCLEAR INC.		Page:	12 of 24
		* .	
Proprietar	y Information Withheld Pursuan	t to 10 CFR 2.	390
		,	
			1
	·		
	NI		

1 22	ĸ			Calc, No.:	NUH32P+.020
ARE	VA	Calculation		Rev. No.:	0
TRAN	SNUCLEAR INC.			Page:	13 of 24
		· · · ·			
				•	
	,				
	· •				
		·	,		
		•			
	Propriet	ary Information Withhe	ld Pursuant	to 10 CFR	2.390
		, ,			
		•		·	
		•			
	·			· ·	
	·				

A			Calc. No.:	NUH32P+.0	204
AREVA	Calculation		Rev. No.:	0	
TRANSNUCLEAR INC.			Page:	14 óf 24	
	· · · · · · · · · · · · · · · · · · ·				
			×		
			:		
Prop	rietary Information Withhe	eld Pursuant	to 10 CFR	2.390	
Prop	rietary Information Withhe	eld Pursuant	to 10 CFR	2.390	Ŷ
Prop	rietary Information Withhe	eld Pursuant	to 10 CFR	2.390	
Prop	rietary Information Withhe	eld Pursuant	to 10 CFR	2.390	

· .

•

. / .

· · · · ·

A		Calc. No.:	NUH32P+.0204
AREVA	Calculation	Rev. No.:	0
TRANSNUCLEAR INC.		Page:	15 of 24
	1		
Proprieta	ary Information Withheld Pursua	ant to 10 CFF	R 2.390
	1		
		•	
		i,	
· · · · · · · · · · · · · · · · · · ·			
	j		

-

	· · · · · · · · · · · · · · · · · · ·	Calc. No.:	NUH32P+.0204
AREVA	Calculation	Rev. No.:	0
TRANSNUCLEAR INC.		Page:	16 of 24
		1	
) ,		
×			
Dropriotory			
Proprietary	Information withheid Pul	Suant to 10 CFR :	2.390
<i>.</i>		~	
			1
	· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		

A		Calc. No.:	NUH32P+.0204
AREVA	Calculation	Rev. No.:	0
TRANSNUCLEAR INC.		Page:	17 of 24
1			
			}
			1
Proprietar	ry Information Withheld Pursua	ant to 10 CFR :	2.390
	· · · ·		ł
			ł
		· .	
			}
, } F	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

A		Calc. No.:	NUH32P+.0204
AREVA	Calculation	Rev. No.:	0
TRANSNUCLEAR INC.		Page:	18 of 24
Proprietar	y Information Withheld Pursuant	to 10 CFR :	2.390

۰ .

· · · ·

	A					Calc. No.:	NUH32P	+.0204	
	AREVA	X		Calculation		Rev. No.:	0		
	TRANSNU	ICLEAR INC.				Page:	20 of 24		
	ſ	, 							
	. •							1	
	i i					· ·			, ,
•									
		Dunmula			Descarate		,		
		Proprie	etary informa	ation withheir	i Pursuant to	010 CFR 2	.390		
								1	
					. ,				
						,			
			•	•					
							ł		
			/						
r					I				
			. ·						

.

A				Calc. No.:	NUH32P+.0204	4
AREVA		Calculation		Rev. No.:	0	
TRANSNUCLEAR I	NC.			Page:	21 of 24	
				3		
			· ·			
		x				
Due		امططنا ۸۸ مید است.	d Duwayaat			
	prietary mon	nation withiner	uruisuant	TO TO CLK	2.390	·
	• •					
	•					
	•					
	•					
	•					
				· · · · · · · · · · · · · · · · · · ·		
			- X			

• • •

Δ		Calc. No.:	NUH32P+.0204
AREVA	Calculation	Rev. No.:	0
TRANSNUCLEAR INC.		Page:	22 of 24
			L.,,,
			·····, ····
			•
			Ņ
		• (
Propriet	ary Information Withheld Pursuan	t to 10 CFR	2.300
l i i oprice			
			,
			,
			,
			,
			,
			,
			,
			,
		· · · · · · · · · · · · · · · · · · ·	,
			,

e e construir de la construir d La construir de la construir de

.

•

AREVA Calculation Rev. No.: 0 TRANSNUCLEAR INC. Page: 23 of 24 Proprietary Information Withheld Pursuant to 10 CFR 2.390	AREVA Calculation Rev. No.: 0 Page: 23 of 24	A		Calc. No.:	NUH32P+.0204]
Proprietary Information Withheld Pursuant to 10 CFR 2.390	TRANSMUCIĘAR INC. Pegei 23 of 24	AREVA	Calculation	Rev. No.:	0]
Proprietary Information Withheld Pursuant to 10 CFR 2.390	Proprietary Information Withheld Pursuant to 10 CFR 2.390	TRANSNUCLEAR INC.		Page:	23 of 24	
Proprietary Information Withheld Pursuant to 10 CFR 2.390	Proprietary Information Withheld Pursuant to 10 CFR 2.390					
Proprietary Information Withheld Pursuant to 10 CFR 2.390	Proprietary Information Withheld Pursuant to 10 CFR 2.390					
Proprietary Information Withheld Pursuant to 10 CFR 2.390	Proprietary Information Withheld Pursuant to 10 CFR 2.390					
Proprietary Information Withheld Pursuant to 10 CFR 2.390	Proprietary Information Withheld Pursuant to 10 CFR 2.390					
Proprietary Information Withheld Pursuant to 10 CFR 2.390	Proprietary Information Withheld Pursuant to 10 CFR 2.390					
Proprietary Information Withheld Pursuant to 10 CFR 2.390	Proprietary Information Withheld Pursuant to 10 CFR 2.390					
Proprietary Information Withheld Pursuant to 10 CFR 2.390	Proprietary Information Withheld Pursuant to 10 CFR 2.390				•	
Proprietary Information Withheld Pursuant to 10 CFR 2.390	Proprietary Information Withheld Pursuant to 10 CFR 2.390					
Proprietary Information Withheld Pursuant to 10 CFR 2.390	Proprietary Information Withheld Pursuant to 10 CFR 2.390		· ·			
Proprietary Information Withheld Pursuant to 10 CFR 2.390	Proprietary Information Withheld Pursuant to 10 CFR 2.390			4		
Proprietary Information Withheld Pursuant to 10 CFR 2.390	Proprietary Information Withheld Pursuant to 10 CFR 2.390					
Proprietary information withheid Porsuant to 10 CFR 2.390	Proprietary information withheid Pursuant to 10 CFR 2.390	Duena				
		Proprie	tary information withheid Poisuan		K 2.390	
					1	
		/				
		}		••		

A		Calc. No.:	NUH32P+.0204	
AREVA	Calculation	Rev. No.:	0	-
TRANSNUCLEAR INC.		Page:	24 of 24] .
		e		
	· · ·			
	•			
Propri	etary Information Withheld Pursu	ant to 10 CFR	2.200	
			2.390	
,				
	7			

· - · · · ·