

ENGINEERING CALCULATION

Calculation Number: ENG-006

Revision Number: ____001 ____

Calculation Title: Calculation of DTE EF- 1 Area Factors for Soil

n	Bruce Dionne
Preparer:	Succel Conne
Reviewer:	J.W. Busson
Approval:	Phong Annoin
Approval:	Corporate Project Manager
FF	Director of Quality Assurance

Date 12-17-09

Date 12/17/07

Date 12-17-09

Date: 12/17/09

Bartlett. 60 Industrial Park Road Plymouth, MA 02360

1. PURPOSE

The purpose of this calculation is to develop Area Factors (AF) that will be used with soil-based derived concentration guideline levels (DCGLs) for Detroit Edison's (DTE) Enrico Fermi 1 (EF-1) Fast Breeder Reactor located in Newport, Michigan. This calculation is part of the scope of work defined in the DTE Contract No. 4400001090 associated with DTE Fermi 1 DCGL Development.

Revision 1 is being performed in order to correct the nuclide used in the Area Factor RESRAD input file for Nb-94. The Revision 0 input file used Nb-95 instead of Nb-94. This revision used Nb-94 and corrected the associated Peak of the Mean Doses/DCGLs for each of the eleven (11) areas.

2. APPLICABILITY

This calculation addresses only the development of AF for soils at the DTE EF 1 site using the resident farmer scenario and the RESRAD Version 6.4 software. The AF is defined as the magnitude by which the concentration within the small area of elevated activity can exceed DCGL_w while maintaining compliance with the release criteria.

3. REFERENCES

- 3.1. Bartlett Engineering Calculation ENG-004, Calculation of Enrico Fermi 1 Derived Concentration Guidelines Levels for Soil, Rev 1, December 16, 2009.
- 3.2 Bartlett Engineering Procedure ENG-AP-02, Verification of Software Operability, Rev. 0.
- 3.3. NUREG-1757, Multi-Agency Radiation Survey and Site Investigation Manaual (MARSSIM), Rev. 1, August 2000.
- 3.4. NUREG-1727. NMSS Decommissioning Standard Review Plan, September 2000.
- 3.5. Yu, C., et. al., Users Manual for RESRAD Version 6, ANL-EAD-4, July 2001.
- 3.6. NUREG/CR-6692, Probabilistic Modules for the RESRAD 6.0 and RESRAD-BUILD 3.0 Computer Codes, LePoire, D., et. al., US Department of Energy- Argonne National Laboratory, November 2000.
- 3.7. NUREG/CR-6676, Probabilistic Dose Analysis Using Parameter Distributions Developed for RESRAD and RESRAD-BUILD Codes, Kamboj S., et. al., US Department of Energy-Argonne National Laboratory, May 2000.
- 3.8. NUREG/CR-6697, Development of Probabilistic RESRAD 6.0 and RESRAD-BUILD 3.0 Computer Codes, Yu, C. et. al., US Department of Energy- Argonne National Laboratory, November 2000.
- 3.9 NUREG-1757. Consolidated NMSS Decommissioning Guidance, Volume 2: Characterization, Survey and Determination of Radiological Criteria, September 2006.

Bartlett Engineering

Calculation of DTE EF1 Area Factors for Soil

4. METHOD OF CALCULATION

- 4.1 The operability of the RESRAD Version 6.4 code was verified on each computer used for code executions in accordance with Bartlett Engineering procedure ENG-AP-02, Verification of Software Operability (Ref. 3.2). The RESRAD User's Manual (Ref. 3.5) provided guidance for code operation and execution. The RESRAD code has undergone extensive review, benchmarking, verification, and validation. Details on reviews, benchmarking, verification for the RESRAD code are summarized in Sections 5.1–5.4 of RESRAD User's Manual (Ref. 3.5).
- 4.2 The RESidual RADioactivity (RESRAD) Version 6.4 computer code developed by Scientists and Engineers at Argonne National Laboratory (ANL) was used. The RESRAD computer code is a pathway analysis model designed to evaluate the potential radiological dose associated with residual radioactive material for a defined receptor scenario: in this case resident farmer. Eight environmental pathway models are considered in this software application: 1) direct radiation exposure, 2) inhalation of airborne dust, 3) ingestion of plants, 4) ingestion of meat, 5) ingestion of milk, 6) ingestion of groundwater, and 7) ingestion of aquatic foods, and 8) inadvertent ingestion of soil contaminants. All these pathways were applied for the DTE EF-1 AF computer runs.
- 4.3 Similar to the Bartlett calculation of DTE EF-1 DCGLs (Ref. 3.1), the conceptual model underlying the development of AFs is based on the resident farmer scenario. The hydro-geological model is comprised of a contaminated zone underlain by an unsaturated zone underlain by a saturated zone. The contaminated zone is assumed to be the top 15 cm of topsoil with no cover material. The ground water is assumed to be uncontaminated initially. The area of the contaminated zone in the top 15 cm was varied from 2000 m² down to 1 m². RESRAD 6.4 enables site modeling through its many input parameters, and includes probabilistic modules (Ref. 3.6, 3.7, and 3.8) that provide peak-of-the-mean doses (PMD) as discussed in NUREG-1727 (Ref. 3.4) and NUREG-1757(Ref. 3.9).
- 4.4 The method that was used in ENG-004 (Ref. 3.1) to calculate the nuclide-specific DCGLs is similar to the method utilized here to calculate nuclide-specific AFs. The values listed in Table 1 for the area of the contaminated zone, the length of parallel to aquifer flow, plant transfer factor, meat transfer factor and milk transfer factors were substituted into the nuclide specific DCGL data set that was used to compute the DCGLs. The PMD for an area of 2,000 m² (PMD₂₀₀₀) served as base case in the area factor calculations. This area was selected because it is the maximum area for a Class 1 land survey unit. In a Class 2 or 3 land survey unit, contamination levels greater than the value would result in the classification for survey unit being revised to a Class 1 survey unit. For mixtures of radionuclides, if the sum of the fractions of the concentration over the DCGL_w is greater than 1 than the survey unit would be revised to a Class 1 survey unit
- 4.5 DCGL values can be adjusted through the use of area factors to obtain a DCGL that represents the same dose from residual radioactivity over a smaller area within a survey unit (Ref. 3.4). The adjusted value is designated as $DCGL_{EMC}$, where EMC stands for elevated measurement comparison. The $DCGL_{EMC}$ is the product of the AF and the DCGLw shown in Equation (1) (Equation 8-1 in Ref. 3.3)

(3)

(4)

 $DCGL_{EMC} = (AF) * (DCGLw)$

(1)

From this relationship it follows that, for a small area of elevated concentration within a survey area, the area factor is the ratio of the nuclide concentration in the smaller area that results in the same dose as the dose from a concentration equal to the DCGL for 2000 m². Therefore, for the DTE EF-1 Area Factor calculations DCGL_w is equal to the DCGL for 2000 m².

 $AF = (DCGL_{EMC})/(DCGL_w)$

(2)

AF values calculated here are computed directly from the Peak of the Mean Dose (PMD mrem/yr per pCi/g) results instead of the DCGL (pCi/g) values. Therefore, a variation of Equation (2) is used. The DCGL values were calculated using the relationship shown in Equation (3):

 $DCGL_w = DL_{TEDE}/PMD_{2000}$ and $DCGL_{EMC} = DL_{TEDE}/PMD_i$

Where the Dose Limit DL $_{\text{TEDE}} = 25 \text{ mrem/yr.}$

Substitution of terms allows Equation (1) to be re-written as follows:

 $(25/PMDi) = (AF) * (25/PMD_{2000})$

Further re-arrangement shown in Equation (4) demonstrates that the AF is the ratio of the base case PMD_{2000} to the PMDi for the smaller area zone shown in Equation (5).

 $AF = (PMD_{2000} / PMD_i)$

(5)

5 ASSUMPTIONS AND INPUT

5.1 Assumptions

5.1.1. The resident farmer scenario is assumed as a reasonably conservative scenario for establishing DTE EF-1 DCGL values for residual radioactivity in soil (Ref. 3.1). The same exposure scenario is assumed for the AF calculations.

In the resident farmer scenario, residual radioactivity is contained in a soil layer on the property that can be used for residential and light farming activities. A residential farming family is postulated to live onsite, raise crops and livestock for consumption and drink water from a ground water source onsite. The dose from residual radioactivity in the soil is evaluated for the average member of the critical group as required by 10CFR Part 20, Subpart E and described in NUREG-1727 (Ref. 3.4). The critical group represents the group reasonably expected to receive the greatest exposure to residual radioactivity.

Calculation of DTE EF1 Area Factors for Soil

- The potential pathways used to estimate human radiation exposure resulting from residual radioactivity in the soil for this scenario includes the following:
 - Direct exposure to external radiation from soil containing residual radioactivity;
 - Internal dose from inhalation of airborne radionuclides;
- Internal dose from ingestion of:
- Plant foods grown in the soil material containing residual radioactivity;
- Meat and milk from livestock fed with fodder grown in soil containing residual radioactivity and water containing residual radioactivity;
- Drinking water containing residual radioactivity from a well;
- Aquatic food from a pond containing residual radioactivity; and
- Soil containing residual radioactivity.
- 5.1.2. As the area of the contaminated zone decreases from the area used in the base case $(2,000 \text{ m}^2)$, it is assumed that the values for the contaminated fractions of plant food (FPLANT), meat (FMEAT) and milk (FMILK) originating from the site also decrease (Equations 6 13).

Where:

FPLANT is the contaminated fraction of plant food, FMEAT is the contaminated fraction of meat, and FMILK is the contaminated fraction of milk.

5.1.3. The contaminated fractions for drinking water (FDW), livestock water (FLW), irrigation water (FIRW), and aquatic food (FR9) are assumed not to decrease as the size of the contaminated zone decreases. Setting the values for these input parameters equal to 1.0 incorporates the assumption that all water used by the resident farmer comes from the site (i.e., residential well), regardless of the size of the contaminated area.

Where:

FDW is the contaminated fraction of drinking water, FLW is the contaminated fraction of livestock water, FIRW is the contaminated fraction of irrigation water, and FR9 is the contaminated fraction of aquatic food.

- 5.1.4. Another input parameter that is influenced by changes in the size of the contaminated zone is the length parallel to aquifer flow in the contaminated zone (LCZPAQ). A proportionate reduction in the value for this parameter is assumed as the size of the contaminated zone decreases (see Equation 14).
- 5.1.5. The year in which the maximum dose occurs may vary depending on the nuclide. The time which the peak mean dose occurs will be selected for the purpose of calculating AFs to be the time of the peak of the mean dose. It should be noted that the year of occurrence of the peak of the mean dose for the all but one nuclides (for Pu-241 the time for the peak of the mean dose ranges from 30 to 41.25 years) is at time = 0 years.
- 5.1.6 Twenty-five nuclides of concern were assumed for the DTE EF-1 site: Ag-108m, Am-241, C-14, Co-60, Cm-242, Cm-243, Cs-134, Cs-137, Eu-152, Eu-154, Eu-155,

Fe-55, H-3, Mn-54, Na-22, Nb-94, Ni-59, Ni-63, Pu-238, Pu-239, Pu-240, Pu-241, Sb-125, Sr-90, and Tc-99. This list of nuclides of concern was provided by the client for this contract i.e., DTE.

5.1.7. An initial soil concentration of 1 pC/g is assumed for each nuclide.

5.2 Inputs

- 5.2.1 In the RESRAD executions for AFs, the input parameter values used were the same values as those used to calculate DCGLs, except for the input parameters discussed below and shown in Table 1. As the area of the contaminated zone decreases, it is reasonable to assume that the fraction of a person's diet from the contaminated zone will also decrease in proportion to the size (assumptions 5.1.2 and 5.1.3 above). The RESRAD contamination fractions are:
 - Fraction of drinking water from site (FDW)
 - Fraction of livestock water from site (FLW)
 - Fraction of Irrigation water from site (FIRW)
 - Fraction of aquatic food from site (FR9)
 - Fraction of plant food from site (FPLANT)
 - Fraction of meat from site (FMEAT)
 - Fraction of milk from site (FMILK)

Input values for FDW, FLW, FIRW, and FR9 are held to the same values as those used in the DCGL calculation (see assumption 5.1.3 above).

Adjustments to FPLANT, FMEAT, and FMILK are made using equations from the RESRAD User's Manual (Ref. 3.3). Equation D.5 in Section D.2.1.2 of the RESRAD User's Manual (Ref. 3.5) varies the contamination fraction (FA₃) for plants as follows:

$FA_3 = A/2,00$	0 when	$0 \le A \le 1,000 \text{ m}^2$		(6)
$FA_3 = 0.5$	when	$A > 1,000 \text{ m}^2$		·(7)

In addition, Equation D.5 of the RESRAD User Manual (Ref. 3.5) varies the FA_{4&5} values for meat and milk as follows:

$FA_{4\&5} = A/20,000$) when	$0 \le A \le 20,000 \text{ m}^2$	(8)
$FA_{4\&5} = 1.0$	when	$A > 20,0000 \text{ m}^2$	 (9)

- Modified versions of Equation D.5 are used here to vary the input values for FPLANT, FMEAT, and FMILK in order to remain consistent with the approach used for the soil DCGLs (Ref. 3.1). The soil DCGLs were developed using a value of 1.0 for each of the contamination fractions, which incorporated the assumption that 100% of plant food, meat, and milk is obtained from an area equal to 7,855 m² (the size of the contaminated zone at DTE EF-1).
- As applied to plants, use of a FA value equal to 1.0 in the calculation of the soil DCGLs effectively multiplied Equation D.5 by a factor of 2 to yield a FA value of 1.0 for areas equal to or greater than $1,000 \text{ m}^2$

5 of 17

Input values for FPLANT used in this calculation are	e determined as follows:
$FPLANT = A/1,000 \text{ when } A \le 1,000 \text{ m}^2$	(10)
$FPLANT = 1.0$ when $A > 1,000 \text{ m}^2$	(11)

As applicable to meat and milk, Equation D.5 was adjusted for the size of the contaminated zone used in the calculation of the soil DCGLs, (i.e., FA = 1.0 when the contaminated area was 7,855 m²). Input values for FMEAT and FMILK used in this calculation are determined as follows:

FMEAT or FMILK = A/ 7,855 when $A \le 7,855 \text{ m}^2$ (12) FMEAT or FMILK = 1.0 when $A > 7,855 \text{ m}^2$ (13)

Table 1 shows the values for FPLANT, FMEAT, and FMILK as a function of the area of the contaminated zone that were calculated using Equations 10, 11, 12 and 13.

5.2.2 As the area of the contaminated zone decreases, the value for another RESRAD Input parameter, the length parallel to aquifer flow (LCZPAQ), also decreases (see assumption 5.1.4 above). The contaminated zone is assumed to be circular, so the value for LCZPAQ is equal to the diameter of the circle:

$$A = \pi r^2$$

Rearranging and substituting for $r = \frac{LCZPAQ}{2}$

LCZPAQ (m) = 2 $\sqrt{\frac{A}{\prod}}$		(14)
---	--	------

Table 1 has the values for LCZPAQ vs. of the area of the contaminated zone using Equation 14.

Table 1: Contaminated Fractions vs. Area of Contaminated Zone								
RESRAD Parameter	Input Value							
Area Contaminated Zone (m ²)	2000	1000	500	250				
LCZPAQ (m)	50	36	25	18				
FPLANT	1.0E+00	1.0E+00	5.0E-01	2.5E-01				
FMEAT	2.5E-01	1.3E-01	6.4E-02	3.2E-02				
FMILK	2.5E-01	1.3E-01	6.4E-02	3.2E-02				
Contaminated Zone Area (m ²)	100	50	25	10				
LCZPAQ (m)	11	8.0	5.6	3.6				
FPLANT	1.0E-01	5.0E-02	2.5E-02	1.0E-02				
FMEAT .	1.3E-02`	6.4E-03	3.2E-03	1.3E-03				
FMILK	1.3E-02	6.4E-03	3.2E-03	1.3E-03				
Contaminated Zone Area (m ²)	5	2	1					
LCZPAQ (m)	2.5	1.6	1.1					
FPLANT	5.0E-03	2.0E-03	1.0E-03					
FMEAT	6.4E-04	2.5E-04	1.3E-04					
FMILK	6.4E-04	2.5E-04	1.3E-04					

5.2.3 The RESRAD 6.4 analyses are executed using 2000 observations and 1 repetition. The Latin Hypercube Sampling (LHS) technique is used to sample the probability distributions for each of the stochastic input parameters. The correlated or non-correlated grouping option is used to preserve the prescribed correlation, and a random seed of 1000 is used to preserve the prescribed sampling technique.

6 CALCULATIONS AND RESULTS

6.1 Calculations

6.1.1

Running the probabilistic modules in version 6.4 of the RESRAD computer code provided the PMDs for the eleven area values, which were then used to calculate AF for residual radioactivity in soil. A total of 275 RESRAD runs were made, for each of the 25 nuclides that may present a significant dose impact for license termination at DTE EF-1. The RESRAD data sets used to calculate the AF were similar to those used to calculate nuclide-specific, soil-based DCGLs (Ref. 3.1). Attachment 1 of the Bartlett Engineering Calculation ENG-004 provides a complete listing of parameter values used for DCGL derivation (Ref. 3.1). The difference in the two data sets is that in the AF data set the values listed in Table 1 were substituted into the DCGL data set for each nuclide and for each of the areas analyzed.

In Revision 1, the input files for the Area Factor RESRAD runs for Nb-94 were corrected to replace Nb-95 with Nb-94.

- 6.2 Results
- 6.2.1 Table 2 summarizes the RESRAD results, namely, the base case PMD_{2000} and the PMDi for the desired areas (1000 m² down to 1 m²) for the twenty-five nuclides of concern at DTE EF-1. Table 2A provides a cross reference between the PMD results in Table 2 and the associated filenames for the RESRAD Uncertainty Analysis Reports.

In Revision 1, Table 2 was revised to replace the peak of the mean doses for the eleven (11) areas used for Nb-94 Area Factor calculations.

6.2.2 Tables 3, 4 and 5 provide the AFs listed by gamma, beta and alpha emitters, respectively. The AFs given in Tables 3, 4 and 5 are relative to base case, PMD₂₀₀₀.

In Revision 1, Table 3 was revised to replace the eleven (11) area factors that were calculated for Nb-94.

6.2.3 The AF results are also displayed graphically in Figures 1, 2 and 3 for gamma, beta and alpha emitters, respectively. The nuclide specific AF curves are shown by the major radiation type emitted in Figures 1, 2 and 3.

In Revision 1, Figure 1 was revised to update the graph with the revised area factors for Nb-94.

1

1.933E-04

•

Bartlett Engineering Calculation of DTE EF1 Area Factors for Soil ,

	Table 2 Peak Mean Dece (mrom/vr per nCi/g) vs Area (m^2)									
	Δσ-108m	$\Delta m_2 241$	C-14		$\frac{\text{per per per g}}{\text{Cm-242}}$	Cm-243	, Cs-134	Cs-137		
Area	2 125E .00			4 7025 00	2 141E 02	2 1555 01		1 1765.00		
2000	3.135E+00	1.013E-01	1.004E-02	4.703E+00	3.141E-03	3.135E-01	2.741E+00	1.178E+00		
500	3.101E+00		2.627E.02	4.0382+00	1 621E 02	2.5285.01	2.077E+00	1.1432+00		
250	2 970 - 00	5.920L-02	1 219E 02	4.4751E+00	9.6995-04	2.320E-01	2.347E+00	9.982E-01		
100	2.879E+00	3.344E-02	3.527E-04	3.876E+00	4.125E-04	1.868E-01	2.394E+00	9.902E-01		
50	2.040E+00	2.410E-02	1 318E-04	3.448E±00	2 558E-04	1.652E-01	1.950E+00	8.073E-01		
25	1 972E+00	1.821E-02	5.045E-05	2.838E±00	1 729E-04	1.002E-01	1.530E+00	6.689E-01		
10	1.372E+00	1.02TE-02	1 482E-05	2.000E+00	1.123E 04	1.002E 01	1.160E+00	4 798E-01		
5	9.362E-01	9.336E-03	6.074E-06	1.330E+00	9 133E-05	6 759E-02	7 650E-01	3 163E-01		
2	5.068E-01	6 180E-03	1 990E-06	7 166E-01	7 144E-05	3 763E-02	4 144F-01	1.713E-01		
1	2 904E-01	4 618E-03	9 104E-07	4 075E-01	6 175E-05	2 255E-02	2 377E-01	9.823E-02		
Area	Eu-152	Eu-154	Eu-155	Fe-55	H-3	Mn-54	Na-22	Nb-94		
2000	2.141E+00	2.306E+00	6.072E-02	1.971E-04	4.144E-04	1.132E+00	3.837E+00	3.095E+00		
1000	2.117E+00	2.279E+00	6.027E-02	1.117E-04	3.470E-04	1.119E+00	3.779E+00	3.059E+00		
500	2.055E+00	2.211E+00	5.883E-02	5.512E-05	1.794E-04	1.082E+00	3.657E+00	2.973E+00		
250	1.960E+00	2.107E+00	5.675E-02	2.757E-05	9.463E-05	1.028E+00	3.482E+00	2.830E+00		
100	1.795E+00	1.927E+00	5.310E-02	1.118E-05	4.198E-05	9.427E-01	3.183E+00	2.599E+00		
50	1.603E+00	1.717E+00	4.872E-02	5.528E-06	2.573E-05	8.395E-01	2.842E+00	2.320E+00		
25	1.325E+00	1.416E+00	4.192E-02	2.772E-06	1.808E-05	6.934E-01	2.352E+00	1.921E+00		
10	9.483E-01	1.011E+00	3.192E-02	1.133E-06	1.093E-05	4.955E-01	1.684E+00	1.376E+00		
5	6.245E-01	6.656E-01	2.136E-02	5.665E-07	7.142E-06	3.263E-01	1.109E+00	9.067E-01		
2	3.371E-01	3.592E-01	1.199E-02	2.303E-07	3.097E-06	1.762E-01	5.990E-01	4.904E-01		
1	1.923E-01	2.047E-01	7.271E-03	1.248E-07	1.452E-06	1.006E-01	3.418E-01	2.806E-01		
Area	Ni-59	Ni-63	Pu-238	Pu-239	Pu-240	Pu-241	Sb-125	Sr-90		
2000	8.130E-04	2.226E-03	1.495E-01	1.660E-01	1.659E-01	4.585E-03	7.103E-01	1.640E+00		
1000	5.755E-04	1.576E-03	1.477E-01	1.641E-01	1.640E-01	4.543E-03	7.029E-01	1.560E+00		
500	2.858E-04	7.824E-04	7.581E-02	8.420E-02	8.413E-02	2.480E-03	6.828E-01	7.825E-01		
250	1.429E-04	3.912E-04	3.973E-02	4.408E-02	4.407E-02	1.439E-03	6.517E-01	3.943E-01		
100	5.757E-05	1.576E-04	1.791E-02	1.989E-02	1.984E-02	8.033E-04	5.977E-01	1.612E-01		
50	2.860E-05	7.828E-05	1.050E-02	1.166E-02	1.162E-02	5.735E-04	5.361E-01	8.281E-02		
25	1.431E-05	3.916E-05	6.687E-03	7.416E-03	7.383E-03	4.300E-04	4.468E-01	4.311E-02		
10	5.773E-06	1.580E-05	4.246E-03	4.701E-03	4.676E-03	3.064E-04	3.221E-01	1.862E-02		
5	2.875E-06	7.864E-06	3.320E-03	3.669E-03	3.652E-03	3.390E-04	2.124E-01	9.797E-03		
2	1.147E-06	3.134E-06	2.637E-03	2.909E-03	2.898E-03	1.460E-04	1.150E-01	4.203E-03		
1	5.904E-07	1.610E-06	2.319E-03	2.556E-03	2.470E-03	1.097E-04	6.595E-02	2.186E-03		
Area	Tc-99									
2000	1.927E-01	÷ 7.								
1000	1.894E-01									
500	9.470E-02									
250	4.736E-02									
100	1.897E-02	4								
50	9.494E-03	4		•						
25	4.757E-03		•							
10	1.911E-03	-								
5	9.583E-04	4				•				
1 2	1 3.850E-04	1								

ENG-006 Rev. 01

Table 2A: Cross References for RESRAD Report Files

Area	RESRAD Uncertainty Analysis Report file name:									
(m2)	Ag-108m	Am-241	C-14	Cm-242	Cm-243	Co-60				
1	MCSUMMARAg108mAF1	MCSUMMARAm241AF1	MCSUMMARC14AF1	MCSUMMARCm242AF1	MCSUMMARCm243AF1	MCSUMMARCo60AF1				
2	MCSUMMARAg108mAF2	MCSUMMARAm241AF2	MCSUMMARC14AF2	MCSUMMARCm242AF2	MCSUMMARCm243AF2	MCSUMMARCo60AF2				
3	MCSUMMARAg108mAF3	MCSUMMARAm241AF3	MCSUMMARC14AF3	MCSUMMARCm242AF3	MCSUMMARCm243AF3	MCSUMMARCo60AF3				
4	MCSUMMARAg108mAF4	MCSUMMARAm241AF4	MCSUMMARC14AF4	MCSUMMARCm242AF4	MCSUMMARCm243AF4	MCSUMMARCo60AF4				
5	MCSUMMARAg108mAF5	MCSUMMARAm241AF5	MCSUMMARC14AF5	MCSUMMARCm242AF5	MCSUMMARCm243AF5	MCSUMMARCo60AF5				
6	MCSUMMARAg108mAF6	MCSUMMARAm241AF6	MCSUMMARC14AF6	MCSUMMARCm242AF6	MCSUMMARCm243AF6	MCSUMMARCo60AF6				
8	MCSUMMARAg108mAF8	MCSUMMARAm241AF8	MCSUMMARC14AF8	MCSUMMARCm242AF8	MCSUMMARCm243AF8	MCSUMMARCo60AF8				
10	MCSUMMARAg108mAF10	MCSUMMARAm241AF10	MCSUMMARC14AF10	MCSUMMARCm242AF10	MCSUMMARCm243AF10	MCSUMMARCo60AF10				
15	MCSUMMARAg108mAF15	MCSUMMARAm241AF15	MCSUMMARC14AF15	MCSUMMARCm242AF15	MCSUMMARCm243AF15	MCSUMMARCo60AF15				
25	MCSUMMARAg108mAF25	MCSUMMARAm241AF25	MCSUMMARC14AF25	MCSUMMARCm242AF25	MCSUMMARCm243AF25	MCSUMMARCo60AF25				
50	MCSUMMARAg108mAF50	MCSUMMARAm241AF50	MCSUMMARC14AF50	MCSUMMARCm242AF50	MCSUMMARCm243AF50	MCSUMMARCo60AF50				
100	MCSUMMARAg108mAF100	MCSUMMARAm241AF100	MCSUMMARC14AF100	MCSUMMARCm242AF100	MCSUMMARCm243AF100	MCSUMMARCo60AF100				
Area	RESRAD Uncertainty A	nalysis Report file name:				· · · · · · · · · · · · · · · · · · ·				
(m2)	Cs-134	⁻ Cs-137	Eu-152	Eu-154	Eu-155	Fe-55				
1	MCSUMMARCs134AF1	MCSUMMARCs137AF1	MCSUMMAREu152AF1	MCSUMMAREu154AF1	MCSUMMAREu155AF1	MCSUMMARFe55AF1				
2	MCSUMMARCs134AF2	MCSUMMARCs137AF2	MCSUMMAREu152AF2	MCSUMMAREu154AF2	MCSUMMAREu155AF2	MCSUMMARFe55AF2				
3	MCSUMMARCs134AF3	MCSUMMARCs137AF3	MCSUMMAREu152AF3	MCSUMMAREu154AF3	MCSUMMAREu155AF3	MCSUMMARFe55AF3				
4	MCSUMMARCs134AF4	MCSUMMARCs137AF4	MCSUMMAREu152AF4	MCSUMMAREu154AF4	MCSUMMAREu155AF4	MCSUMMARFe55AF4				
5	MCSUMMARCs134AF5	MCSUMMARCs137AF5	MCSUMMAREu152AF5	MCSUMMAREu154AF5	MCSUMMAREu155AF5	MCSUMMARFe55AF5				
6	MCSUMMARCs134AF6	MCSUMMARCs137AF6	MCSUMMAREu152AF6	MCSUMMAREu154AF6	MCSUMMAREu155AF6	MCSUMMARFe55AF6				
. 8	MCSUMMARCs134AF8	MCSUMMARCs137AF8	MCSUMMAREu152AF8	MCSUMMAREu154AF8	MCSUMMAREu155AF8	MCSUMMARFe55AF8				
10	MCSUMMARCs134AF10	MCSUMMARCs137AF10	MCSUMMAREu152AF10	MCSUMMAREu154AF10	MCSUMMAREu155AF10	MCSUMMARFe55AF10				
15	MCSUMMARCs134AF15	MCSUMMARCs137AF15	MCSUMMAREu152AF15	MCSUMMAREu154AF15	MCSUMMAREu155AF15	MCSUMMARFe55AF15				
25	MCSUMMARCs134AF25	MCSUMMARCs137AF25	MCSUMMAREu152AF25	MCSUMMAREu154AF25	MCSUMMAREu155AF25	MCSUMMARFe55AF25				
50	MCSUMMARCs134AF50	MCSUMMARCs137AF50	MCSUMMAREu152AF50	MCSUMMAREu154AF50	MCSUMMAREu155AF50	MCSUMMARFe55AF50				
100	MCSUMMARCs134AF100	MCSUMMARCs137AF100	MCSUMMAREu152AF100	MCSUMMAREu154AF100	MCSUMMAREu155AF100	MCSUMMARFe55AF100				

1.

Area	ea RESRAD Uncertainty Analysis Report file name:									
(m2)	H-3	Mn-54	Na-22	Nb-94	Ni-59	Ni-63				
1	MCSUMMARH3AF1	MCSUMMARMn54AF1	MCSUMMARNa22AF1	MCSUMMARNb94AF1	MCSUMMARNi59AF1	MCSUMMARNi63AF1				
2	MCSUMMARH3AF2	MCSUMMARMn54AF2	MCSUMMARNa22AF2	MCSUMMARNb94AF2	MCSUMMARNi59AF2	MCSUMMARNi63AF2				
3	MCSUMMARH3AF3	MCSUMMARMn54AF3	MCSUMMARNa22AF3	MCSUMMARNb94AF3	MCSUMMARNi59AF3	MCSUMMARNi63AF3				
4	MCSUMMARH3AF4	MCSUMMARMn54AF4	MCSUMMARNa22AF4	MCSUMMARNb94AF4	MCSUMMARNi59AF4	MCSUMMARNi63AF4				
5	MCSUMMARH3AF5	MCSUMMARMn54AF5	MCSUMMARNa22AF5	MCSUMMARNb94AF5	MCSUMMARNi59AF5	MCSUMMARNi63AF5				
6	MCSUMMARH3AF6	MCSUMMARMn54AF6	MCSUMMARNa22AF6	MCSUMMARNb94AF6	MCSUMMARNi59AF6	MCSUMMARNi63AF6				
8	MCSUMMARH3AF8	MCSUMMARMn54AF8	MCSUMMARNa22AF8	MCSUMMARNb94AF8	MCSUMMARNi59AF8	MCSUMMARNi63AF8				
10	MCSUMMARH3AF10	MCSUMMARMn54AF10	MCSUMMARNa22AF10	MCSUMMARNb94AF10	MCSUMMARNi59AF10	MCSUMMARNI63AF10				
15	MCSUMMARH3AF15	MCSUMMARMn54AF15	MCSUMMARNa22AF15	MCSUMMARNb94AF15	MCSUMMARNi59AF15	MCSUMMARNi63AF15				
25	MCSUMMARH3AF25	MCSUMMARMn54AF25	MCSUMMARNa22AF25	MCSUMMARNb94AF25	MCSUMMARNi59AF25	MCSUMMARNi63AF25				
50	MCSUMMARH3AF50	MCSUMMARMn54AF50	MCSUMMARNa22AF50	MCSUMMARNb94AF50	MCSUMMARNi59AF50	MCSUMMARNi63AF50				
100	MCSUMMARH3AF100	MCSUMMARMn54AF100	MCSUMMARNa22AF100	MCSUMMARNb94AF100	MCSUMMARNi59AF100	MCSUMMARNi63AF100				
Area	RESRAD Uncertainty	Analysis Report file nan	ne:							
(m2)	Pu-238	Pu-239	Pu-240	Pu-241	Sb-125	Sr-90				
1	MCSUMMARPu238AF1	MCSUMMARPu239AF1	MCSUMMARPu240AF1	MCSUMMARPu241AF1	MCSUMMARSb125AF1	MCSUMMARSr90AF1				
2	MCSUMMARPu238AF2	MCSUMMARPu239AF2	MCSUMMARPu240AF2	MCSUMMARPu241AF2	MCSUMMARSb125AF2	MCSUMMARSr90AF2				
3 -	MCSUMMARPu238AF3	MCSUMMARPu239AF3	MCSUMMARPu240AF3	MCSUMMARPu241AF3	MCSUMMARSb125AF3	MCSUMMARSr90AF3				
4	MCSUMMARPu238AF4	MCSUMMARPu239AF4	MCSUMMARPu240AF4	MCSUMMARPu241AF4	MCSUMMARSb125AF4	MCSUMMARSr90AF4				
5	MCSUMMARPu238AF5	MCSUMMARPu239AF5	MCSUMMARPu240AF5	MCSUMMARPu241AF5	MCSUMMARSb125AF5	MCSUMMARSr90AF5				
6	MCSUMMARPu238AF6	MCSUMMARPu239AF6	MCSUMMARPu240AF6	MCSUMMARPu241AF6	MCSUMMARSb125AF6	MCSUMMARSr90AF6				
8	MCSUMMARPu238AF8	MCSUMMARPu239AF8	MCSUMMARPu240AF8	MCSUMMARPu241AF8	MCSUMMARSb125AF8	MCSUMMARSr90AF8				
10	MCSUMMARPu238AF10	MCSUMMARPu239AF10	MCSUMMARPu240AF10	MCSUMMARPu241AF10	MCSUMMARSb125AF10	MCSUMMARSr90AF10				
15	MCSUMMARPu238AF15	MCSUMMARPu239AF15	MCSUMMARPu240AF15	MCSUMMARPu241AF15	MCSUMMARSb125AF15	MCSUMMARSr90AF15				
25	MCSUMMARPu238AF25	MCSUMMARPu239AF25	MCSUMMARPu240AF25	MCSUMMARPu241AF25	MCSUMMARSb125AF25	MCSUMMARSr90AF25				
50	MCSUMMARPu238AF50	MCSUMMARPu239AF50	MCSUMMARPu240AF50	MCSUMMARPu241AF50	MCSUMMARSb125AF50	MCSUMMARSr90AF50				
100	MCSUMMARPu238AF100	MCSUMMARPu239AF100	MCSUMMARPu240AF100	MCSUMMARPu241AF100	MCSUMMARSb125AF100	MCSUMMARSr90AF100				

ENG-006 Rev. 01

	RESRAD Uncertainty]
Area	Report file name:	· ·
(m2)	Tc-99	
1	MCSUMMARTc99AF1	
2	MCSUMMARTc99AF2	
3	MCSUMMARTc99AF3	
4	MCSUMMARTc99AF4	
5	MCSUMMARTc99AF5	
6	MCSUMMARTc99AF6	
8	MCSUMMARTc99AF8	
10	MCSUMMARTc99AF10	
15	MCSUMMARTc99AF15	
25	MCSUMMARTc99AF25	
50	MCSUMMARTc99AF50	
100	MCSUMMARTc99AF100	

ý

Table 2A (continued): Cross References for RESRAD Report Files

ENG-006 Rev. 01

,	· .										•
				Area	(m ²)						
Gamma	1	2	5	10	25	50	100	250	500	1000	2000
Ag-108m	10.80	6.19	3.35	2.21	1.59	1.32	1.19	1.09	1.04	1.01	1.00
Co-60	16.19	6.56	3.54	2.33	1.66	1.36	1.21	1.11	1.05	1.01	1.00
Cs-134	11.53	6.61 [.]	3.58	2:36	. 1.70	1.41	1.26	1.14	1.08	1.02	.1.00
Cs-137	11.97	6.87	3.72	2.45	1.76	1.46	1.30	1.18	1.10	1.03	1.00
Eu-152	11.13	6.35	3.43	2.26	1.62	1.34	1.19	1.09	1.04	1.01	1.00
Eu-154	11.27	6.42	3.46	2.28	1.63	1.34	1.20	1.09	1.04	1.01	1.00
Eu-155	8.35	5.06	2.84	1.90	1.45	1.25	1.14	1.07	1.03	1.01	1.00
Mn-54	11.25	6.42	3.47	2.28	1.63	1.35	1.20	1.10	1.05	1.01	1.00
Na-22	11.23	6.41	3.46	2.28	· 1.63	1.35	1.21	1.10	1.05	1.02	1.00
Nb-94	11.03	6.31	3.41	2.25	1.61	1.33	1.19	1.09	1.04	1.01	1.00
Sb-125	10.77	6.18	3.34	2.21	1.59	1.32	1.19	1.09	1.04	1.01	1.00

Table 3 - Area Factors for Gamma Emitters

ENG-006 Rev. 01

Area Factors for Beta Emitters											
				Area (1	m ²)						
Beta Emitters	1	2	5	10	25	50	100	250	500	1000	2000
H-3	285.40	133.81	58.02	37.91	22.92	16.11	9.87	4.38	2.31	1.19	1.00
C-14	17618.63	8060.30	2640.76	1082.32	317.94	121.70	45.48	12.17	4.42	1.59	1.00
Fe-55	1579.33	855.84	347.93	173.96	71.10	35.65	17.63	7.15	3.58	1.76	1.00
Ni-59	1377.03	708.81	282.78	140.83	56.81	28.43	14.12	5.69	2.84	1.41	1.00
Ni-63	1382.61	710.27	283.06	140.89	56.84	28.44	14.12	5.69	2.85	1.41	1.00
Sr-90	750.23	390.20	167.40	88.08	38.04	19.80	10.17	4.16	2.10	1.05	1.00
Тс-99	996.90	500.52	201.09	100.84	40.51	20.30	10.16	4.07	2.03	1.02	1.00

Table 4Area Factors for Beta Emitters

13 of 17

Table 5Area Factors for Alpha Emitters

				Area	(m ²)	<u>.</u>	7				
Alpha Emitters	1	2	5	10	25	50	100	250	500	1000	2000
Am-241	39.26	29.34	19.42	13.87	9.96	7.52	5.42	3.09	1.83	1.01	1.00
Cm-242	50.87	43.97	34.39	26.92	18.17	12.28	7.61	3.62	1.94	1.01	1.00
Cm-243	13.99	8.38	4.67	3.11	2.28	1.91	1.69	1.45	1.25	1.01	1.00
Pu-238	64.47	56.69	45.03	35.21	22.36	14.24	8.35	3.76	1.97	1.01	1.00
Pu-239	64.95	57.06	45.24	35.31	22.38	14.24	8.35	3.77	1.97	1.01	1.00
Pu-240	67.17	57.25	45.43	35.48	22.47	14.28	8.36	3.76	1.97	1.01	1.00
Pu-241	41.80	31.40	13.53	14.96	10.66	7.99	5.71	3.19	1.85	1.01	1.00

6 -+-- Cs-134 -Cs-137 5 ----- Eu-152 🕬 --- Eu-155 ---*--- Mn-54 4 Area Factor Values 3 2 1 0 800. 200 400 600 1000 1200 1400 1600 1800 2000 0 Contaminated Zone Area (m2)

Figure 1 - Area Factors for Gamma Emitting Radionuclides

ENG-006

Rev. 01

ENG-006 Rev. 01

ENG-006 Rev. 01

Figure 3 - Area Factors for Alpha Emitting Radionuclides

17 of 17