Attachment 02.04.03-08AJ TVA letter dated February 2, 2010 RAI Response

ASSOCIATED ATTACHMENTS/ENCLOSURES:

1

Attachment 02.04.03-8AJ:

Fort Loudon-Telico Dam Local Watershed (Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation

(83 Pages including Cover Sheet)

.

i se di

REV 0 EDMS/RIMS NO. EDMS TYPE: EDMS ACCESSION NO (N/A for REV. 0) 45 091230 L 58 calculations(nuclear) L58090511001 Calc Title: Fort Loudoun-Tellico Dam Local Watershed (Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation REVISION CALC ID TYPE ORG **PLANT** BRANCH NUMBER CUR REV NEW REV APPLICABILITY Entire calc 🛛 CURRENT CN NUC GEN CEB CDQ000020080069 2 1 Selected pages NEW No CCRIS Changes SUPERSEDE (For calc revision, CCRIS ACTION NEW DELETE CCRIS UPDATE ONLY been reviewed and no REVISION. RENAME DUPLICATE (Verifier Approval Signatures Not CCRIS changes required) Required) UNITS SYSTEMS UNIDS N/A N/A N/A DCN,EDC,N/A See ** Below QUALITY APPLICABLE DESIGN DOCUMENT(S) **CLASSIFICATION** N/A SAFETY RELATED? **DESIGN OUTPUT** UNVERIFIED SPECIAL REQUIREMENTS SAR/TS and/or ISFS RELATED? Yes X No (If yes, QR = yes) Yes 🖾 No 🗌 ASSUMPTION AND/OR LIMITING CONDITIONS? ATTACHMENT? SAR/Coc AFFECTED Yes 🗖 No 🖂 Yes 🗍 No 🖾 Yes 🔲 No 🖾 Yes 🗖 No 🛛 PREPARER ID PREPARER PHONE NO PREPARING ORG (BRANCH) VERIFICATION METHOD NEW METHOD OF ANALYSIS HSSawyer 615-252-4362 🛛 No **Design Review** Yes CEB PREPARER SIGNATURE DATE CHECKER SIGNATURE DATE 12 12/17/09 Heather Smith Sawyer Bill Hamilton VERIFIER SIGNATURE DATE APPROVAL SIGNATUR 12/17/0 12/23/09 **Bill Hamilton** 1 STATEMENT OF PROBLEM/ABSTRACT Validate the existing unit hydrographs for the subbasins of the Fort Loudoun-Tellico Watershed (Subbasins 8, 16, 17, 18, and 24) using the 1973 and 2003 floods of record.

NPG CALCULATION COVERSHEET/CCRIS UPDATE

Page 1

**EDCN- 22404A (SQN), EDCN- 54018A (WBN), EDCN-Later (BFN)

This calculation contains electronic attachments and must be stored in EDMS as an Adobe .pdf file to maintain the ability to retrieve the electronic attachments.

MICROFICHE/EFICHE	Yes 🗌 No 🛛	FICHE NUMBER(S)				
LOAD INTO EDMS AND I	DESTROY					
LOAD INTO EDMS AND F	RETURN CALCULA	TION TO CALCULATION LIBRARY.	ADDRESS: LP4D-C			
LOAD INTO EDMS AND F	RETURN CALCULA	TION TO:				
TVA 40532 [10-2008]		Page 1 of 2	· · · · · · · · · · · · · · · · · · ·	NED	0.2 1 140 20	20061

NPG CALCULATION COVERSHEET/CCRIS UPDATE

REV O EDA) 5	1	1	0	01		VIS TYPE: Ilons(nucle:	ar)	EDMS ACCE	SSION NO (I	VA for REV	/.0)
											Loudoun			ned (Subbasins 8, alidation
CALC ID		IYPE	ORC	à	PLANT	BB	ANCH		NUM	IBER		CUR REV	NEW RE	APPLICABILITY
CURREN	r	CN	NUC	:										Entire calc Selected pages
NEW		CN	NUC	:	GEN		CEB	CDQ0	00020080	069		N/A	Ø	
ACTION	NEV REV	V /ISION	Ø		LETE	B	SUPE	RSEDE			: UPDATE ON er Approval Sig ed)		Į	No CCRIS Changes [] (For calc revision, CCRIS been reviewed and no CCRIS changes required)
<u>UNITS</u> N/A		SYST N/A							UNIDS N/A					-
DCN.EDC.	N/A			APP N/	PLICABL	EDES	GN DC	CUMEN			•			CLASSIFICATION
	07	(II)	ETY RE yes, QR es 🕅	= ye	s) /		RIFIED MPTION No X	AN		TING	UIREMENTS CONDITION		N OUTPUT CHMENT?	
PREPARE MCCARNE	RID	- L.	PREPAF 415) 76		PHONE N 588	10	PREPA	RING Of Bechtel	RG (BRANG (CEB)	CHI	VERIFICAT Design Rev	ION METHON		METHOD OF ANALYSIS
PREPARE Matthew C			e Ma	62	Û	<u>}</u>	-4/	DATE / 2 3 /0			SIGNATURE Martin 14	iti M	int	5 y/23/2009
VERIFIER Robert E. S		1.	But	2	Sur	in	4/z	DATE 3/2009	M.	14/0	L SIGNATURE	ETT .	the	DATE 4/27/09
STATEME	NT O	PROB	EMAB	STR/	ACT			·	Ritza	69	K.R.	spate	2	
Prepare 18, and calibrat	24) for tv	vo.flo	ods	s that c	occu	rred i	n Mar	ort Louc ch 1973	dou 3 ar	n-Tellico nd May 20	Watershe 103 to be	ed (Sub used in	basins 8, 16, 17, the SOCH model
This ca	lành	ation	conta	ins	electr	onic	attac	hmeni	ts and r	กมร	t be:store	d in EDN	1S as a	n Adobe .pdf file
to main					1. 1. 2. 4. 1. 1.	COMPANY.								
LOA	DINT	O EDMS	S AND C	DEST					ER(S)	BRA	RY. ADI	RESS: LP4	<u></u>	
					IRN CAL									

Page 1a

NPG CALCULATION COVERSHEET/CCRIS UPDATE

		MENO						EDMS		-: 1					······································
REV 0 EDI	<u>NS/R</u>	MS NO.	-						S TYPE			SSION NO (N			
L5809051	1001	j.						calculatio	ns(nuc	ciear)	<u> </u>	8 0 9	072	22	001
Calc Title: Fort Loudoun-Tellico Dam Lo Hydrograph Validation						l Lo	cal Wa	terst	ned (Subbasin	s 8, 16, 17	7, 18, ar	nd 24)	Unit	
CALC ID	2	TYPE	ORC	3	PLANT	BRAN	<u>ICH</u>		'NL	JMBER	1	CUR REV	NEW REV		SION ICABILITY
CURREN	т	CN	NUC	;	GEN	CE	B	CDQ000	00200	80069)	0) 1.		calc 🛛 ted pages 🗌
NEW		CŅ	NUC	5											· ·
ACTION	NEV REV	N ⁷ /ÍSION	Ø		LETE		UPEF UPLIC				UPDATE ON or Approval Sig ed)		(F be	or calc n en revie	Changes [] evision, CCRIS wed and no anges required)
UNITS N/A		SYST N/A							JNIDS VA	;					
DCN.EDC. See ** Be				AP N/		E DESIG	N DO	CUMENT(_					CLA	SSIFICATION "E"
QUALI RELATE Yes 🖾 🐧			SAFE ATED? QR = y Is 🖾	(If y es)	es, A		TION		ORLIN				OUTPUT HMENT? No 🖾	SAR/C	S and/or ISFSI oC AFFECTED No 🛛
PREPAREI AWard	RID	- 1	REPAF		PHÔNE N 29							NEW M		OF ANALYSIS	
PREPARE	RSIG	NATUR	E	1			D	ATE	CHE	CKER	SIGNATURE		1		DATE
Cifu Adrian War		W	and				7/2	1/09	Bill	M	Han	it or		71	21/09
VERIFIER Bill Hamilto	sign 74 r	ATURE AM	lf	Ðı	\sim		,	ate 21 (01	APP CPC PE	ROVAL 3 Sel	Man for	152/09 K.R.Spa	fos	7/-	DATE 22/09
STATEMEN	NT OF	PROBL	EM/AB	STR	ACT				P.B.	Seln	nan	1			
											of the Fort 03 floods	Loudoun of record.	Tellico	Wate	rshed
. '															
-															
**EDCN	- 22	2404 (SQN), E	DCN-	54018	3 (W	'BN), E	DCN	N-Lat	er (BFN)				
												stored in	EDMS	as an	Adobe
		main HE/EFIC		-						tron	ic attachi	nents.	·····		
		O EDMS		-				NUMBER	49						
	INTO	DEDMS	AND R	ETU				CALCULA		LIBRAF	RY. ADD	RESS: LP4D-0	<u> </u>		

Page 1b

NPG CALCULATION COVERSHEET/CCRIS UPDATE

Page 2

CALC ID	TYPE	ORG	PLANT	BRANCH	NUMBER	REV	
,	CN	NUC	GEN	CEB	CDQ000020080069	2	
-			<u>A</u>	LTERNATE C	ALCULATION IDENTIFICAT	ION	
				· · · · · · · · · · · · · · · · · · ·			<u></u>
							2. 2.1
<u>BLDG</u>	RO	OM_	<u>ELEV</u>	COORD/AZIM	FIRM BWSC	eport Yes 🗌	:
CATEGORIE	S NA						

KEY NOUNS (A-add, D-delete)

ACTION	KEY NOUN	<u>A/D</u>	KEY NOUN
<u>(A/D)</u>			

CROSS-REFERENCES (A-add, C-change, D-delete)

ACTION (A/C/D)	XREF <u>CODE</u>	XREF <u>TYPE</u>	XREF <u>PLANT</u>	XREF BRANCH	XREF <u>NUMBER</u>	XREF REV
A	Р	со	GEN	CEB	FLDHYDRO Version 1.0	
A	Р	со	GEN	CEB	UNITGRPH Version 1.0	
					÷	
4						
- ··· · · · · · · · · · · · · · · · · ·						
3 						
					L	
CCRIS ONLY U Following are re	equired only wh	ien making key	word/cross refere	ence CCRIS up	dates and page 1 of form NEDP-2-1 is not in	icluded:
			ĩ			
	PREPARER SI	GNATURE		DATE	CHECKER SIGNATURE	DATE
PREPARER PI	IONE NO.		ED	MS ACCESSIC	DN NO.	
TVA 40532 [10-2	0081			Page 2 of 2	NE	EDP-2-1 [10-20-2008]

	NPG CALCULATION RECORD OF REVISION
CALCULA	TION IDENTIFIER CDQ000020080069
Title	Fort Loudoun-Tellico Dam Local Watershed (Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation, Revision 2
Revision No.	DESCRIPTION OF REVISION
0	Initial issue 60 pages
1	This calculation was revised to validate unit hydrographs for Subbasins 8, 16, 17, 18, and 24 of the Fort Loudoun-Tellico Dam Local Watershed using the 1973 and 2003 floods of record. As a result of this revision, the calculation title has been changed to reflect final validation of the local unit hydrographs. Significant changes to text are marked with a right-hand margin revision bar.
	Changes and Additions: Content on pages $1 - 11$, 13-15 Revision 0 (R0) was modified as indicated on pages $1 - 11$, 13-16 of Revision 1 (R1) with pages 1a and 10a added.
	Content on pages 19-20, 52-56, 58, 59 R0 was modified as indicated on pages 20-21, 54-58, 60-61 of R1.
	New pages 62-74 were added. Attachment 1-1 was revised
	Added new electronic Attachments 4-1, 4-2 and 4-3
	Total hardcopy pages R1: 76
2	This calculation was revised to address the following:
	• PER 203951-The verification of the original calculation was completed by personnel who had not completed the required NEDP-7 Job Performance Record (JPR). A verification JPR is now in place for all personnel engaged in verification tasks. Checking included only changes made in this revision as the checking of the calculation was not impacted by PER 203951. The verification is inclusive of work completed prior to this revision.
	• PER 203872- replace NEDP-2 forms on Pages 1 through 7 & 10 with the forms from the NEDP-2 Revision in effect at the time of calculations issuance.
TVA 40700 [10]	 PER 175596- was initiated to address inflow data errors discovered in Attachment 1-1. The errors apparently occurred as inflow data for the local hydrographs were transferred (via copy/paste) into an Excel spreadsheet in order to combine them with baseflow and runoff from the actual water surface. The dates (and times) that a particular flow occurs in the direct runoff hydrographs are shifted. These errors have been corrected in the spreadsheet for use in Revision 1 of this calculation. Cells in the Attachment 1-1 spreadsheet showing the corrected data have been highlighted in yellow.

TVA 40709 [10-2008]

>

NEDP-2-2 [10-20-2008]

Page 3a

	NI	PG CALCULATIO	N RECORD OF RE	VISION	Faye 3
CALCULA	TION IDENTIFIER	CDQ000020080	0069		
Title	Fort Loudoun-Te Hydrograph Valie		Watershed (Subb 2	asins 8, 16, 17,	18, and 24) Unit
Revision No.		DESCRIPTION	OF REVISION		
2	Significant change Administrative cha		e noted with a right e excluded.	margin revision b	par.
	Content was modi 7, 12-15, 20-22, 20 Pages Added:1b, 4	8-29 & 62-70 R2.	12-14, 20-22, 28-29	9 & 62-70 R1 as s	hown on pages 1-
	Total pages of cal	culation hard copy	for Revision 2= 82		
			·····	· · ·	
		•			
×					
		· ·		•	
		· · ·		• •	
VA 40709 [10-	20081		Page 1 of 1		NEDP-2-2 [10-20-2008

	NPG CAL	CULATION TABLE OF CO		
alculatio	on Identifier: CDQ000020080069	Revision: 2		
		TABLE OF CONTENTS		
SECTIO	ON	TITLE	· · ·	PAGE
	Coversheet	·····		1
	CCRIS Update Sheet			2 3
	Record of Revision Table of Contents			4
	Computer Input File Storage Information Shee	ł		7
	Calculation Verification Form			10
1	Purpose			
2	References	••••••	·	
3	Assumptions			
3.1 3.2	General Assumptions Unverified Assumptions			
3.∠ ∕I	Background			
4.1	Unit Hydrograph Theory			
5	Methodology			
6	Design Input Data			16
6.1	Subbasin Locations and Areas			
6.2	Unit Hydrograph Ordinates Subbasin 8 – French Broad Local			
6.2.1 6.2.2	Subbasin 8 – French Broad Local Subbasin 16 – Holston River Local, Cheroke			
6.2.3	Subbasin 17 – Little River			
6.2.4	Subbasin 18 – Fort Loudoun Local			
6.2.5	Subbasin 24 - Little Tennessee River Local,			
6.2.5.1	Unit Hydrograph for Subbasin 24 Prior to Tel			
6.2.5.2	Unit Hydrograph for Subbasin 24 with Tellico			
6.2.6	UNITGRPH Regeneration			
6.3 6.4	Observed Discharge and Storage			
6.4 7	Observed Rainfall Computations and Analyses			
7.1	Floods for Unit Hydrograph Validation			
7.2	Observed Rainfall			
7.3	Water Budget Analyses			
7.3.1	Flood Volumes			
7.3.1.1	Subbasin 8, March 1973 Flood			
7.3.1.2	Subbasin 16, March 1973 Flood Subbasin 18, March 1973 Flood			
7.3.1.4	Subbasin 18, March 1973 Flood			
7.3.1.5	Subbasins 8, 16, 18, and 24, May 2003 Floo			
7.3.2	Estimated "Observed" Discharges of Subbas			
7.3.2.1	Methodology		······	
7.3.2.2	March 1973 Flood Flows in Subbasin 17			
7.3.2.3	May 2003 Flood Flows in Subbasin 17 Baseflows			
7.3.3 7.3.3.1	Subbasin 8, March 1973 Flood			
7.3.3.1	Subbasin 8, March 1973 Flood			
7.3.3.3	Subbasin 17, March 1973 Flood			
7.3.3.4	Subbasin 18, March 1973 Flood			
7.3.3.5	Subbasin 24, March 1973 Flood			
7.3.3.6	Subbasin 17, May 2003 Flood			
7.3.3.7	Subbasins 8, 16, 18, and 24, May 2003 Floo			
7.3.4	Additional Reservoir Runoff			
7.4 7.4.1	Excess Rainfall Hyetographs			
7.4.1	FLDHYDRO Results			
7.5	Direct Runoff and Baseflow Hydrographs			
7.6	Additional Reservoir Runoff Hydrographs			
7.7	SOCH Model Input			60
7.8	SOCH Model Output and Unit Hydrograph V			
8	Conclusions			

1

TVA 40710 [10-2008]

NEDP-2-3 [10-20-2008

.

					Page 4
		ON TABLE OF CO	NTENTS		
Calculation Ider	tifier: CDQ000020080069	Revision: 2			
	TABLE	OF CONTENTS			
SECTION		TITLE			PAGE
Attachments	Fort Loudoup Tollico (9, 16, 17, 19, 8, 24)	avdrographe vie			NT/A
	_Fort Loudoun-Tellico (8, 16, 17, 18, & 24)				N/A
	_Cherokee_rev0 (daily).xls (TVA database f				N/A
	_Douglas_rev0 (daily).xls (TVA database file				N/A
	Little Tennessee River below Chilhowee D	am.txt			N/A
Attachment 1-5					N/A
	_Tellico_rev0 (daily).xls (TVA database file)				N/A
	_03470000 Little Pigeon River at Sevierville				N/A
	_03495500 Holston River near Knoxville.txt				N/A
	0_03470500 French Broad River near Knox	ville.txt			N/A
	1_03498500 Little River near Maryville.txt				N/A
	2_03498850 Little River near Alcoa.txt				N/A
	3_LittlePigeonAtSevierville_rev0.xls				N/A
	4_Gridded rainfall for May 2003 storm.xls				N/A
	5_Water budgets for Fort Loudoun-Tellico b	asins.xls			N/A
	6_Reservoir elevation-area data.xls				N/A
-	_Basins7_8_Composite.dat	•			N/A
	_Basins7_8_Composite.prn				N/A
Attachment 2-3	_Basin16_Composite.dat				N/A
	_Basin16_Composite.prn				N/A
Attachment 2-5	_Basin17_Composite.dat				N/A
Attachment 2-6	_Basin17_Composite.prn				N/A
Attachment 2-7	Basin18_Composite.dat				N/A
Attachment 2-8	Basin18_Composite prn				N/A
Attachment 2-9					N/A
					N/A
Attachment 3-1	Basin8_March1973.dat				N/A
	Basin8_March1973.out				N/A N/A
	Basin16 March1973.dat				N/A N/A
-	Basin16_March1973.out				
	Basin17_March1973.dat				N/A
	 Basin17_March1973.out				N/A
	 Basin18_March1973_1.dat				N/A
	Basin18_March1973_1.out				N/A
	 FortLoudounReservoir_March1973_1.dat				N/A
	5 FortLoudounReservoir March1973 1.out	ł			N/A
	1_Basin18_March1973_2.dat				N/A
	2_Basin18_March1973_2.out				N/A
	3_FortLoudounReservoir_March1973_2.dat	ł			N/A
	4_FortLoudounReservoir_March1973_2.out				N/A
	5_Basin24_March1973.dat	•			N/A
	6_Basin24_March1973.out		•		N/A
	7_Basin17_May2003.dat				N/A
	Basin17_May2003.out				N/A
	9_FortLoudounTellico_May2003_1.dat			· .	N/A
	D_FortLoudounTellico_May2003_1.out	·.			N/A
	1_FortLoudounTellico_May2003_1.out	•			N/A
			· · .		N/A
	2_FortLoudounTellico_May2003_2.out	ha vla		· · · · · ·	N/A
	_Observed vs SOCH Mar 1973 Hydrograp			· ,	N/A
_	Cobserved vs SOCH May 2003 Hydrograp	JIIS.XIS		· *	N/A
	Validated_6HR_UH.xls				11/4 L
NOTE: IN/A INDICA	ates electronically attached file(s). 008] Pag	e 1 of 1		NEDP-2-	

TVA 40710 [10-2008]

Page 1 of 1

NEDP-2-3 [10-20-2008]

TVA 40710 [10-2008]

Page 1 of 1

NEDP-2-3 [10-20-2008]

TVA 40710 [10-2008]

NEDP-2-3 [10-20-2008]

STORAGE INFORMATION SHEET					
Document CDQ000020080069	Rev. 2 Plant: 0				
Subject: Fort Loudoun-Tellico Dam Local W Hydrograph Validation	atershed (Subbasin	s 8, 16, 17, 18,	, and 24) Unit		
Electronic storage of the input files for this calc	lation is not required.	Comments:			
· · · · ·					
Input files for this calculation have been stored below for each input file. (Any retrieved file required)					
See listing of electronically attached files	on the following tw	o pages.			
			· .		
Microfiche/eFiche					
	· · · · · · · · · · · · · · · · · · ·				
TVA 40535 [10-2008] Pa	e 1 of 1		NEDP-2-6 [10-20-2008]		

ocument CDQ00	00020080069	Rev. 1	Plant:	GEN	
ubject: Fort Loudou ydrograph Validatio	un-Tellico Dam Local Wa on	tershed (S	Subbasir	ıs 8, 16,	17, 18, and 24) U
If calculation file. All f	hich contain both input and ou iles are therefore stored in an on. Click on the "Attachments eded.	unalterable	medium	and are re	trievable through the
Electronic Attachment	Name of File or Folder				File Location
	Supporting S	preadsheets	and Data		
Attachment 1-1	Att 1-1_Fort Loudoun-Tellico (8			graphs.xls	Attached to PDF
Attachment 1-2	Att 1-2_Cherokee_rev0 (daily).>				Attached to PDF
Attachment 1-3	Att 1-3_Douglas_rev0 (daily).xls				Attached to PDF
Attachment 1-4	Att 1-4_Little Tennessee River	pelow Chilhov	vee Dam.t	<t< td=""><td>Attached to PDF</td></t<>	Attached to PDF
Attachment 1-5	Att 1-5_Chilhowee.xls				
Attachment 1-6	Att 1-6_FortLoudoun_rev0 (dail	y).xls (TVA da	atabase file	e)	Attached to PDF
Attachment 1-7	Att 1-7 Tellico rev0 (daily).xls (•	Attached to PDF
Attachment 1-8	Att 1-8 03470000 Little Pigeon	River at Sevi	erville dail	y.txt	Attached to PDF
Attachment 1-9	Att 1-9 03495500 Holston Rive	r near Knoxvi	lle.txt	<u> </u>	Attached to PDF
Attachment 1-10	Att 1-10 03470500 French Broa	ad River near	Knoxville.	txt	Attached to PDF
Attachment 1-11	Att 1-11_03498500 Little River	near Maryville	e.txt		Attached to PDF
Attachment 1-12	Att 1-12 03498850 Little River				Attached to PDF
Attachment 1-13	Att 1-13 LittlePigeonAtSeviervi				Attached to PDF
Attachment 1-14	Att 1-14_Gridded rainfall for Ma	y 2003 storm	.xls		Attached to PDF
Attachment 1-15	Att 1-15 Water budgets for For	Loudoun-Te	llico basins	s.xls	Attached to PDF
Attachment 1-16	Att 1-16 Reservoir elevation-ar	ea data.xls			Attached to PDF
	UNI'	GRPH Files			
Attachment 2-1	Att 2-1_Basins7_8_Composite.				Attached to PDF
Attachment 2-2	Att 2-2_Basins7_8_Composite.				Attached to PDF
Attachment 2-3	Att 2-3_Basin16_Composite.da				Attached to PDF
Attachment 2-4	Att 2-4_Basin16_Composite.prr				Attached to PDF
Attachment 2-5	Att 2-5_Basin17_Composite.da				Attached to PDF
Attachment 2-6	Att 2-6_Basin17_Composite.prr				Attached to PDF
Attachment 2-7	Att 2-7_Basin18_Composite.da				Attached to PDF
Attachment 2-8	Att 2-8 Basin18 Composite.pr				Attached to PDF
Attachment 2-9	Att 2-9 LittleTennesseeR Com			· · · · ·	Attached to PDF
Attachment 2-10	Att 2-10 LittleTennesseeR Con	•			Attached to PDF

ELECTRONIC FILE ATTACHMENTS					
Document C	CDQ000020080069	Rev. 1	Plant:	GEN	
Subject: Fort I	oudoun-Tellico Dam Local Wa	tershed (S	Subbasi	ns 8, 16,	17, 18, and 24) Unit
Hydrograph Va					
	andation				
The files listed be	elow, which contain both input and ou	utput data, a	re electro	onically atta	ched to the parent Adobe
	le. All files are therefore stored in an				
number for this c	alculation. Click on the "Attachments	s" Tab within	Adobe t	o view the	attachment listing, to access
and view the files	as needed.				
Electronic	Name of File or Folder				File Location
Attachment					File Location
	FLD	HYDRO Files			
Attachment 3-1	Att 3-1_Basin8_March1973.dat				Attached to PDF
Attachment 3-2	Att 3-2_Basin8_March1973.out				Attached to PDF
Attachment 3-3	Att 3-3_Basin16_March1973.dat				Attached to PDF
Attachment 3-4	Att 3-4_Basin16_March1973.out				Attached to PDF
Attachment 3-5	Att 3-5_Basin17_March1973.dat				Attached to PDF
Attachment 3-6	Att 3-6_Basin17_March1973.out				Attached to PDF
Attachment 3-7			Attached to PDF		
Attachment 3-8	Att 3-8_Basin18_March1973_1.out				Attached to PDF
Attachment 3-9			Attached to PDF		
Attachment 3-10 Att 3-10_FortLoudounReservoir_March1973_1.out		Attached to PDF			
Attachment 3-11					Attached to PDF
Attachment 3-12	Att 3-12_Basin18_March1973_2.out				Attached to PDF
Attachment 3-13	Att 3-13_FortLoudounReservoir_Mar	ch1973_2.dat			Attached to PDF
Attachment 3-14	-	ch1973_2.out			Attached to PDF
Attachment 3-15					Attached to PDF
Attachment 3-16					Attached to PDF
Attachment 3-17					Attached to PDF
Attachment 3-18	/				Attached to PDF
Attachment 3-19					Attached to PDF
Attachment 3-20					Attached to PDF
Attachment 3-21	/				Attached to PDF
Attachment 3-22	Att 3-22_FortLoudounTellico_May200	03_2.out			Attached to PDF
Attachment 4-1:	Attachment_4-1_Observed vs SOCH	l Mar 1973 H	/drograph	s.xls	Attached to PDF
Attachment 4-2:	Attachment_4-2_Observed vs SOCH	l May 2003 H	ydrograph	is.xls	Attached to PDF
Attachment 4-3:		.xls			Attached to PDF
					· · · · · · · · · · · · · · · · · · ·

NPG CALCULATION VERIFICATION FORM						
Calculation Identifier CDQ000020080069	Revision 2					
3. Qualification Test	Verifier Bill Hamilton Date: 12/17/09					
 Guainication rest Comments: This calculation entitled, Fort Loudoun-Tellico Dam Local Watershed (Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation was verified by independent design review. The process involved a critical review of the calculation to ensure that it is correct and complete, uses appropriate methodologies, and achieves its intended purpose. The inputs were reviewed and determined to be appropriate inputs for this calculation. The results of the calculation were reviewed and were found to be reasonable and consistent with the inputs provided. Backup files and documents were consulted as necessary to verify data and analysis details found in the calculation. Detailed comments and editorial suggestions for the changes made in this revision were transmitted to the author and reviewer by email along with a marked up copy of the calculation. (Note: The design verification of this calculation revision is for the total calculation, not just the changes made in the revision. This complete re-verification is performed to disposition PER. 203951 as described in the Calculation Revision Log on Page 3). 						
	· · ·					
tan Nagana ang ang ang ang ang ang ang ang an						

TVA 40533 [10-2008]

Page 1 of 1

NEDP-2-4 [10-20-2008]

Page 10a

NPG CALCULATION VERIFICATION FORM					
Calculation Identifier CDQ000020080	069	Revision 0			
Method of verification used: 1. Design Review Image: Compare the compared of th	Verifier <u>Bob</u>	Swain Date <u>4/23/2009</u>			
3. Qualification Test					
The calculation entitled, "Calculation of In (Subbasins 8, 16, 17, 18, and 24) for Use was verified by an independent design re ensure that it is correct and complete, use purpose. Backup files and documents we found in the calculation. Detailed comme reviewer by email along with a marked up Several issues were discussed and resol	e in the SOCH Model Calview. The process involues appropriate methodol ere consulted as necessents and editorial sugges o copy of the calculation.	libration and Unit Hydrograph Validation" lved a critical review of the calculation to logies, and achieves its intended ary to verify data and analysis details stions were transmitted to the author and on process. Almost all of the editorial			
suggestions were adopted in the final doo important issues and the resolution proce		iscussion briefly describes the most			
6.2.1. The Subbasin 8 unit hydro	ograph was developed by nit hydrograph for Subba	asins 7 and 8. The floods used to			
which occurred before Tellico Da Reservoir" was used to simulate	m was built, and the Sub the 2003 flood. The unit probable maximum flood	oir" was used to simulate the 1973 flood, bbasin 24 unit hydrograph "after Tellico t hydrograph "after Tellico Reservoir" will I study. The unit hydrograph "prior to action of the reservoir.			
 More discussion was added about changed to use linear interpolation 		flow. The analysis for Subbasin 16 was and ending flood discharges.			
additional reservoir runoff is base	were used to determine and on reservoir surface a	additional reservoir runoff. Because			
The calculation presents the development for floods that occurred in March 1973 and calibration of the SOCH model and to val	d May 2003. The initial	simulated flows are for use in the			
TVA 40533 [10-2008]	Page 1 of 1	NEDP-2-4 [10-20-2008]			

Page 10b

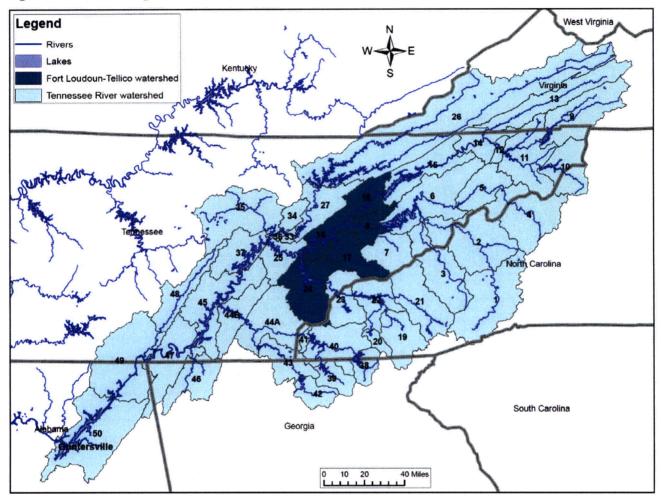
NPG CALCULATION VERIFICATION FORM				
Calculation Identifier CDQ0000200800	069 Revision 1			
Method of verification used: 1. Design Review 🛛				
2. Alternate Calculation	Verifier Bill Hamilton Date 7/16/09			
3. Qualification Test				
The calculation entitled, "Fort Loudoun-Te Hydrograph Validation " was verified by a review of the calculation to ensure that it achieves its intended purpose. Backup f and analysis details found in the calculati transmitted to the author and reviewer by The calculation presents the development for floods that occurred in March 1973 an calibration of the SOCH model and to val The comparison between the observed a locations supports the conclusion that the	ellico Local Watershed (Subbasins 8, 16, 17, 18, and 24) Unit in independent design review. The process involved a critical is correct and complete, uses appropriate methodologies, and files and documents were consulted as necessary to verify data on. Detailed comments and editorial suggestions were email along with a marked up copy of the calculation. It of initial simulated flows from Subbasins 8, 16, 17, 18, and 24 d May 2003. The initial simulated flows are for use in the idate the unit hydrographs for Subbasins 8, 16, 17, 18, and 24. Ind simulated flows and water surface elevations at several e unit hydrographs developed for Subbasins 8, 16, 17, 18, and floods that occurred in March 1973 and May 2003.			
	· · · · · · · · · · · · · · · · · · ·			

TVA 40533 [10-2008]

Page 1 of 1

TVA	······		
Calculation No. CDQ000020080069	Rev: 1	Plant:	Page: 11
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	JAW
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Va	lidation	Checked	BH

1 Purpose


The TVA's Water Management Group has adapted computer codes and data sets developed from flood studies carried out over the past 40 years to develop a dynamic hydrologic model (Reference 1) of the Tennessee River upstream of the Guntersville Dam for use in the Probable Maximum Flood (PMF) and dam break analysis for the Sequoyah, Watts Bar, and planned Bellefonte Nuclear Plant sites (Note that this calculation will also be used in similar future PMF and dam break analyses for the Browns Ferry Nuclear Plant).

Inputs to the dynamic model include hydrographs for 47 subbasins developed from design rainfall inputs convoluted with unit hydrographs (UH) developed specifically for each subbasin. These unit hydrographs were developed by the TVA in previous studies, mostly in the 1970s and early 1980s, using observed rainfall and streamflow and reservoir headwater and discharge data, and are validated by checking their performance in reproducing recent floods.

As part of the dynamic hydrologic model of the Tennessee River system, the subbasin hydrographs are used as inputs to the Simulated Open Channel Hydraulic (SOCH) model. The SOCH model is used to determine elevation and discharge hydrographs. This calculation presents the development of initial simulated flows from the Fort Loudoun-Tellico Watershed (Subbasins 8, 16, 17, 18, and 24) as well as the unit hydrograph validation for floods that occurred in March 1973 and May 2003. The March 1973 and May 2003 floods were selected by the TVA to be analyzed using the SOCH model. The simulated flows will be used in the calibration of the SOCH model and to validate the TVA unit hydrographs for these subbasins (References 2 to 7). Subbasins 8, 16, 17, 18, and 24 are located in the Tennessee River Basin as shown in Figure 1.

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 12
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

Figure 1: Location Map of the Fort Loudoun-Tellico Watershed (Subbasins 8, 16, 17, 18, and 24).

2 References

- 1. Tennessee Valley Authority, Bellefonte Nuclear Plant White Paper, Hydrologic Analysis, Revision 1, July 25, 2008, (EDMS No. L58 081219 800). FOR INFORMATION ONLY
- 2. Tennessee Valley Authority, response to Bechtel Request for Information (RFI) 25447-000-GRI-GEX-00052, No. 24, Little Tennessee River Local, Chilhowee Dam to Tellico Dam, Rev. 0, (EDMS No. L58 081119 800).
- 3. Tennessee Valley Authority, File Book Reference for Unit Area 8, French Broad Local (EDMS No. L58 081223 807).
- Tennessee Valley Authority, File Book Reference for Unit Area 16, Holston River Local, Cherokee Dam to Knoxville Gage (EDMS No. L58 081223 815).
- 5. Tennessee Valley Authority, File Book Reference for Unit Area 17, Little River (EDMS No. L58 081223 816).
- 6. Tennessee Valley Authority, File Book Reference for Unit Area 18, Fort Loudoun Local (EDMS No. L58 081223 817).
- 7. Tennessee Valley Authority, File Book Reference for Unit Area 24, Little Tennessee River Local, Chilhowee to Tellico Dam (EDMS No. L58 081223 820).

Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 13
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Valid	dation	Checked	BH

- 8. Viessman, W., J.W. Knapp, G.L. Lewis, and T.E. Harbaugh, *Introduction to Hydrology, Second Edition*, Harper & Row, Publishers, 1977.
- 9. Chow, V.T., D.R. Maidment, and L.W. Mays, Applied Hydrology, McGraw-Hill Book Company, 1988.
- Tennessee Valley Authority, UNITGRPH-FLDHYDRO-TRBROUTE-CHANROUT User's Manual, Version 1.0, March 2009 (EDMS No. L58 090325 001).
- 11. Tennessee Valley Authority, Rainfall data for the March 1973 storm Loudoun-Tellico subbasins, Response to Bechtel Request for Information RFI 25447-000-GRI-GEX-00037, Rev. 0, 10/31/2008. (EDMS No. L58 081030 005).
- 12. Tennessee Valley Authority, Unit Area 7, Little Pigeon River at Sevierville, File Book Reference. (EDMS No. L58 081223 806)
- Tennessee Valley Authority, Data request for developing inflows to the SOCH model for the 1973 flood, for stagestorage tables, and for all reservoir and stream flow data for years 1997 to 2007, Response to Bechtel Request for Information RFI 25447-000-GRI-GEX-00053, Rev. 0, 11/12/2008. (EDMS No. L58 081126 800)
- U.S. Geological Survey (USGS), National Water Information System (NWIS), online at: <u>http://waterdata.usgs.gov/nwis</u>, accessed 01/06/2009.
- Tennessee Valley Authority, Calculation No. CDQ000020080055, Processing and Validation of National Weather Service's NEXRAD Stage III Hourly Precipitation Data for Hydrologic and Hydraulic Analysis of Watersheds, Revision 3
- 16. U.S. Geological Survey, *Water Resources Data Tennessee Water Year 2003*, by D.F. Flohr, J.W. Garrett, J.T. Hamilton, and T.D. Phillips, Water-Data Report TN-03-01, Nashville, TN, 2004.
- 17: Weaver, J.D. and Gamble, C.R., *Flood Frequency of Streams in Rural Basins of Tennessee*, U.S. Geological Survey Water-Resources Investigations Report 92-4165, 1993.
- 18. Linsley, R.K., Kohler, M.A., and J.L.H.Paulhus, Hydrology for Engineers, McGraw-Hill Book Company, 1982.
- 19. Tennessee Valley Authority, TVA Water Control Projects and Other Major Hydro Developments in the Tennessee and Cumberland Valleys, Technical Monograph No. 55, Volume 1, Knoxville, TN, March 1980.
- Kohler, M.A., and R.K. Linsley, Predicting the Runoff from Storm Rainfall, *Research Paper No. 34*, U.S. Department of Commerce, September 1951. (EDMS No. L58 080910 001)
- 21. Tennessee Valley Authority, Calculation CDQ00020080036, SOCH Model Calibration, Ft. Loudoun-Tellico, Rev 0 (not approved).
- 22. American Nuclear Society, American National Standard for Determining Design Basis Flooding at Power Reactor Sites, ANSI/ANS-2.8-1992, 1992.
- 23. US Nuclear Regulatory Commission, Standard Review Plan 2.4.3, Probably Maximum Flood (PMF) on Streams and Rivers, NUREG-0800, Revision 4, March 2007.

24. Problem Evaluation Report (PER) 175596, Inflow Data Error found in Calculation CDQ000020080069 Rev 0, July 2009.

3 Assumptions

3.1 General Assumptions

None.

TX7 A

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 14
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Va	lidation	Checked	BH

3.2 Unverified Assumptions

None

4 Background

4.1 Unit Hydrograph Theory

The unit hydrograph is used to predict the runoff response at the outlet of a watershed, or subbasin, to the input of one inch of excess rainfall applied over a given duration of time. Runoff from other depths of excess rainfall can be obtained by scaling (References 8 and 9).

The unit hydrograph is used to obtain the direct runoff hydrograph resulting from a series of excess rainfall inputs of any depth using the process of "convolution." The discrete convolution equation, states that the direct runoff, Q, is obtained by summing the products of the excess rainfall depths (direct runoff depths), P, and the unit hydrograph ordinates, U (References 8 and 9). The reverse process, called deconvolution, is used to derive the ordinates of the unit hydrograph by reconstituting floods from rainfall and streamflow data. The unit hydrograph is derived from the unit duration of uniform excess rainfall applied evenly across the watershed.

Unit hydrograph theory is applicable under the following conditions (Reference 9):

- 1. Excess rainfall has a constant intensity within the effective duration.
- 2. Excess rainfall is uniformly distributed over the entire subbasin.
- 3. The duration of direct runoff resulting from a unit of excess rainfall is constant.
- 4. The ordinates of the unit hydrograph are directly proportional to the total amount of direct runoff (linear response).
- 5. The surface runoff hydrograph reflects all the unique physical characteristics and runoff processes in the drainage basin in a given "epoch."

ТVА			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 15
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

5 Methodology

Direct runoff originating within several subbasins of the Tennessee Valley basin which empty directly into the Tennessee River cannot be accurately calculated because the observed flood hydrograph at the subbasin outlet is not available. For these subbasins, the TVA will employ SOCH model results to validate the unit hydrographs. The SOCH model requires estimated flood hydrographs for these subbasins as inputs during the model calibration process.

Input flood hydrographs for individual subbasins requiring SOCH model validation are estimated by using a water budget to calculate total flow volume during a flood. The water budget area is chosen so that the observed flood hydrograph at the outlet of the water budget area can be reliably estimated. Total inflow to the water budget area is then partitioned among the component subbasins to obtain input flood hydrographs for individual subbasins using the methods described below and in Section 7.3.

The methodology used for unit hydrograph validation follows that described in ANSI/ANS-2.8-1992 (Reference 22). This document is included as a reference in the NRC's Standard Review Plan 2.4.3, Probable Maximum Flood on Streams and Rivers (Reference 23). ANSI/ANS-2.8-1992 states that "deterministic simulation models including unit hydrographs should be verified or calibrated by comparing results of the simulation with the highest two or more floods for which suitable precipitation data are available."

TVA

Calculation No. CDQ000020080069	Rev: 1	Plant:	Page: 16
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	JAW
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Valida	tion	Checked	BH

In general, the methodology used for this calculation includes the following steps:

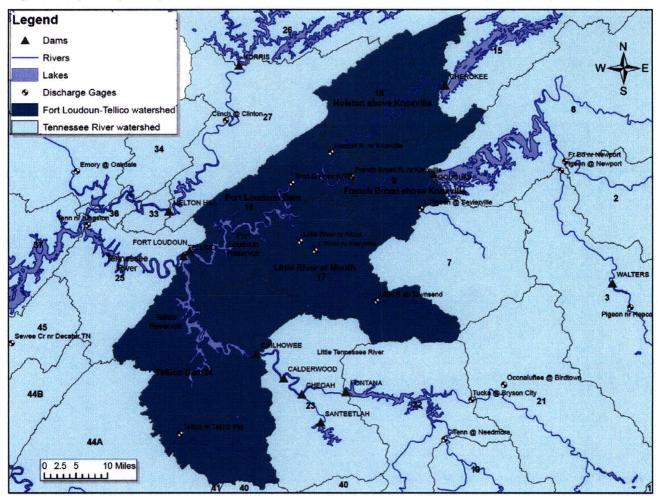
- 1. Delineate the area for water budgeting. Perform water budget calculations for the March 1973 and May 2003 floods to estimate the volume of each flood that originates within this area.
- 2. Separate baseflow from the total local flow to obtain the direct runoff for the budget area.
- 3. Obtain observed rainfall data for the March 1973 and May 2003 floods and calculate the basinaverage rainfall for each subbasin within the water budget area and also for the reservoir areas.
- 4. Convert the observed rainfall series to excess rainfall series using the TVA's API-RI method as implemented in FLDHYDRO (Reference 10). The observed direct runoff volumes are used by FLDHYDRO to ensure that the calculated excess rainfall volumes agree with the observed. FLDHYDRO allocates excess rainfall among the subbasins according to their calculated API values.
- 5. If there is a reservoir within the water budget area, compute the additional direct runoff generated by rainfall on the surface of the reservoir. All rain falling on the reservoir surface becomes runoff. Therefore, additional direct runoff is equal to the observed rainfall (Step 3) less the direct runoff calculated in Step 4. Check that the volume of direct runoff from Step 2 equals the sum of the direct runoff from Steps 4 and 5. If necessary, adjust the CHKVOL value in FLDHYDRO and redo Steps 4 and 5.
- 6. Convolute the TVA unit hydrograph and the excess rainfall series to generate the initial simulated local direct runoff hydrograph for each subbasin.
- 7. Compare the SOCH model simulated and the observed discharge and stage hydrographs for appropriate stations along the Tennessee River to indirectly validate the performance of the TVA unit hydrographs in simulating local runoff along the study reach of the Tennessee River.

6 Design Input Data

The input data necessary for developing initial SOCH inflow hydrographs for the Fort Loudoun-Tellico watershed are summarized below.

- Subbasin drainage areas
- Surface areas of Fort Loudoun and Tellico Reservoirs
- Unit hydrograph ordinates and durations
- Daily flows observed at gages on the Little Pigeon River at Sevierville, the Holston River near Knoxville, the French Broad River near Knoxville, and at three locations within Subbasin 17 on the Little River.
- Observed daily discharges at Cherokee, Douglas, and Chilhowee Dams
- Observed daily storage and discharges at Fort Loudoun and Tellico Dams
- Observed rainfall data associated with the March 1973 and May 2003 floods

TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 17
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M


Each of these inputs is described in more detail in the following sub-sections.

6.1 Subbasin Locations and Areas

A hydrologic map of the Fort Loudoun-Tellico watershed is shown in Figure 2. A schematic diagram of the river and reservoir system contained in the watershed is shown in Figure 3.

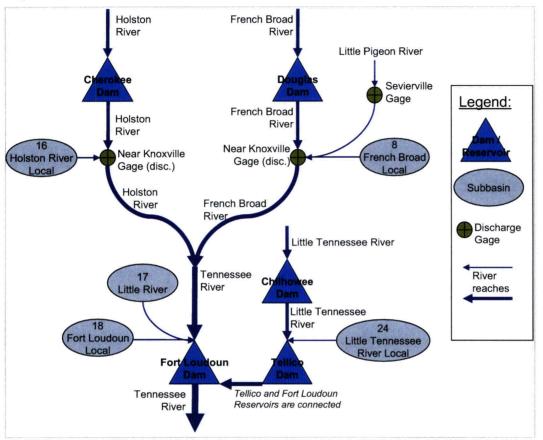

Tellico Dam, which is shown in Figure 3, was not completed until 1979 and did not impound any water during the March 1973 flood. Therefore, Tellico Dam affects only the May 2003 flood analysis.

Figure 2: Hydrologic Map of the Fort Loudoun-Tellico Watershed (Subbasins 8, 16, 17, 18, and 24).

TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 18
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

Figure 3: Schematic of the Fort Loudoun-Tellico Watershed (Subbasins 8, 16, 17, 18, and 24).

The flows of the French Broad, Holston, Tennessee, and Little Tennessee Rivers in Subbasins 8, 16, 18, and 24 are affected by multiple upstream dams. The drainage areas of these subbasins are shown in Table 1 (References 2 to 7), along with nominal reservoir surface areas (Reference 11).

Sub- basin number	Subbasin Name	Original TVA Area (mi ²)	GIS Area (mi ²)	Difference (%)	Reservoir Area (mi ²)
8	French Broad Local	207	206.5	-0.26%	
16	Holston River Local, Cherokee Dam to Knoxville Gage	289 ¹	289.6	0.21%	
17	Little River	379	378.6	-0.09%	-
18	Fort Loudoun Local	323	323.4	0.11%	23.49
24	Little Tennessee River Local, Chilhowee to Tellico Dam	650	650.2	0.02%	24.50
Sum	Fort Loudoun-Tellico	1,848	1,848.2	0.01%	47.99

Table 1: Subbasin Drainage Areas and Reservoir Areas.

¹ Reference 4 indicates that of the total subbasin drainage area of 319 square miles, 30 square miles are non-contributing.

TVA		-	
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 19
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

Table 1 shows that the GIS calculated areas agree closely with the TVA's original estimates. In this calculation, the GIS drainage areas were used.

6.2 Unit Hydrograph Ordinates

The unit hydrographs for Subbasins 8, 16, 17, 18, and 24 are plotted in Figure 4 to

Figure 8. The time base and ordinates for the unit hydrographs are provided in Table 2 to Table 6, along with volume checks demonstrating that the total volumes of runoff are equivalent to one inch of excess rainfall over subbasins. The unit hydrograph discharges are specified in units of cubic feet per second (cfs). The unit hydrographs for these subbasins are also provided on the "UHs" worksheet in Attachment 1-1.

6.2.1 Subbasin 8 – French Broad Local

The six-hour unit hydrograph for Subbasin 8 was developed in 1977 by the TVA (Reference 3) based on the following two existing unit hydrographs:

(1) A six-hour unit hydrograph for the combined area of Subbasins 7 and 8, which corresponds to the French Broad River from Douglas Dam to Knoxville (558.6 mi²), and

(2) A six-hour unit hydrograph for Subbasin 7, the Little Pigeon River at Sevierville (352.1 mi²). The Subbasin 8 unit hydrograph was obtained by subtracting the Subbasin 7 UH from the combined Subbasins 7 and 8 UH.

The unit hydrograph for Subbasin 7, the Little Pigeon River at Sevierville, was developed by the TVA in 1957 from the following historical floods (Reference 12):

- July 26, 1943
- May 13, 1945
- March 9, 1946
- April 9, 1946
- April 16, 1946

A four-hour unit hydrograph was obtained from the runoff hydrograph for each flood using the process of deconvolution, and a composite four-hour unit hydrograph was developed from the runoff hydrographs. The computation of the six-hour UH for Subbasin 7 from the four-hour UH has not been found. Application of the S-graph method (Reference 9) to the four-hour UH yielded a six-hour UH that is very similar, but not identical, to the six-hour UH for Subbasin 7 that was used by the TVA to obtain the UH for Subbasin 8.

The combined Subbasins 7 and 8 UH was developed by the TVA in 1977 from the following historical floods, using the UNITGRPH program (References 3 and 10):

- February 3, 1956
- April 16, 1956
- April 8, 1957
- March 12, 1963

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 20
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

The Subbasin 7 UH was subtracted from the combined Subbasins 7 and 8 UH to obtain the initial sixhour Subbasin 8 UH, which was smoothed to obtain the discharge ordinates shown in Figure 4 and Table 2. The unit hydrograph for Subbasin 8 was subsequently modified during SOCH model calibration to be applied as a distributed local unit hydrograph as opposed to the point local unit hydrograph presented in Figure 4 and Table 2. To be applied as a distributed local inflow, the peak of the unit hydrograph needed to be higher and sooner than the peak of the original point local unit hydrograph. Detailed methodology for this modification can be found in Appendix B of Reference 21. The distributed local unit hydrograph to be used in SOCH modeling is shown in Figure 4a and Table 2a.

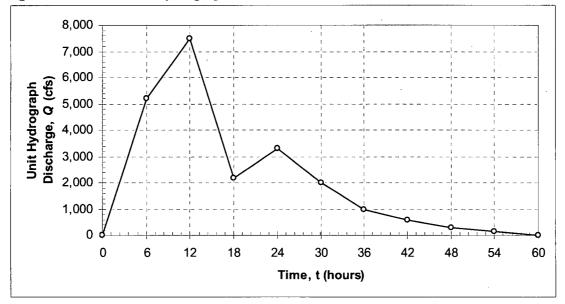
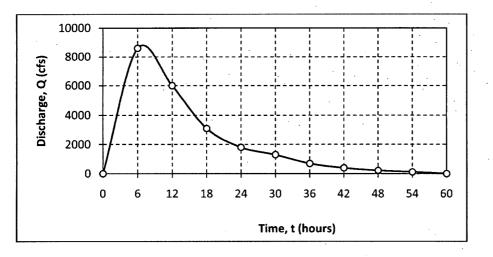



Figure 4: Six-Hour Unit Hydrograph for Subbasin 8, French Broad Local.

0
0
0
0
0
0
0
0
0
0
0
3
5
8

	-	•	
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 20a
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

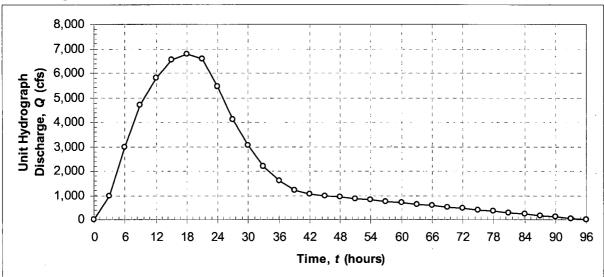
Figure 4a: Six-hour Distributed Unit Hydrograph for Subbasin 8, French Broad Local

Table 2a: Six-hour Distributed Unit Hydrograph for Subbasin 8, French Broad Local

Ordinate		
No.	t, hours	Q (cfs)
1	0	0
2	6	8,600
3	12	6,000
4	18	3,100
5	24	1,800
6	30	1,300
7	36	700
8	42	400
9	48	220
10	54	120
11	11 60	
Volume, ac-	11027	
Drainage Ar	206.5	
Runoff Dept	h, inches (2)	1.0013

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 21
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	ВН

Notes:

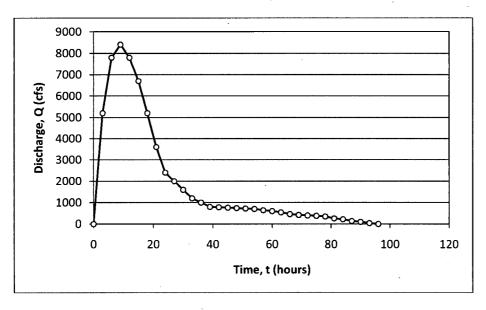

1)
$$Volume = \sum_{i=1}^{no \text{ ordinates}} Q_i \frac{ft^3}{\sec} \times 3600 \frac{\sec}{hr} \times \Delta t(hours) \times \frac{1acft}{43560 ft^3}$$

2) $Depth = \frac{volume.acji}{Area.mi^2} \frac{mi}{640.acre} \frac{12.ih}{ft}$

6.2.2 Subbasin 16 – Holston River Local, Cherokee Dam to Knoxville Gage

The Subbasin 16 unit hydrograph was developed in 1977 by the TVA (Reference 4) based on historical floods that occurred in March 1963 and March 1973, using the UNITGRPH program (Reference 10). Single unit hydrographs were computed for each of these floods and a composite unit hydrograph was developed using both floods. Separately, a four-flood composite was also developed using these two floods, as well as floods that occurred in February 1956 and February 1961. The TVA determined that the four-flood composite UH was inadequate. The two-flood composite unit hydrograph based on the March 1963 and March 1973 floods was adopted (Reference 4). The TVA smoothed the six-hour unit hydrograph from UNITGRPH and interpolated to obtain the tri-hourly discharge ordinates shown in Figure 5 and Table 3. The unit hydrograph for subbasin 16 was subsequently modified during SOCH model calibration to be applied as a distributed local unit hydrograph as opposed to the point local unit hydrograph presented in Figure 5 and Table 3. To be applied as a distributed local inflow, the peak of the unit hydrograph needed to be higher and sooner than the peak of the original point local unit hydrograph. Detailed methodology for this modification can be found in Appendix B of Reference 21. The distributed local unit hydrograph to be used in SOCH modeling is shown in Figure 5a and Table 3a.

Figure 5: Six-Hour Unit Hydrograph for Subbasin 16, Holston River Local, Cherokee Dam to Knoxville Gage.


TVA

Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 22
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

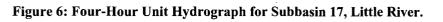
Table 3: Six-Hour Unit Hydrograph for Subbasin 16, Holston River Local, Cherokee Dam to Knoxville Gage.

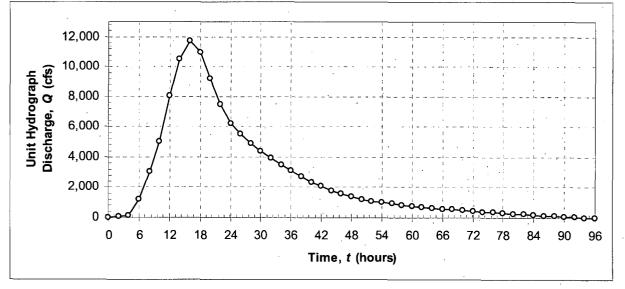
0"5"						
Ordinate no.	t, hours	Q, cfs	1.	Ordinate no.	t, hours	Q, cfs
1	0	· 0		19	54	820
2	3	1000	· ·	20	57 ·	750
3	6	3000		21	60	720
4	9	4700		22	63	630
5	12 • •	5800		23	66	600
6	15	6550		24	69	500
7	18	6800		25	72	470
8	21	6600		26	75	380
9	24	5450		27	78	350
10	27	4100	·.	. 28	81	260
11	30	3050		29	84	220
12	33	2200		30	87	· 140
13	36	1625		31	90	100
14	· 39	1225		32	93	· 40
15	42	1050		33	96	• 0
16	45	990		Volume, acre-	feet (1)	15,357
17	48	950		Drainage Area	(sq. miles)	289.6
18	51	870		Runoff depth,	inches (2)	0.9943

See notes 1 and 2 at the bottom of Table 2.

Figure 5a: Six-hour Distributed Unit Hydrograph for Subbasin 16, Holston River Local

TVACalculation No.CDQ000020080069Rev: 2Plant:Page: 22aSubject:Fort Loudoun-Tellico Dam Local WatershedPreparedHLSS(Subbasins 8, 16, 17, 18, and 24)Unit Hydrograph ValidationCheckedBH


Table 3a: Six-hour Distributed Unit Hydrograph for Subbasin 16, Holston River Local

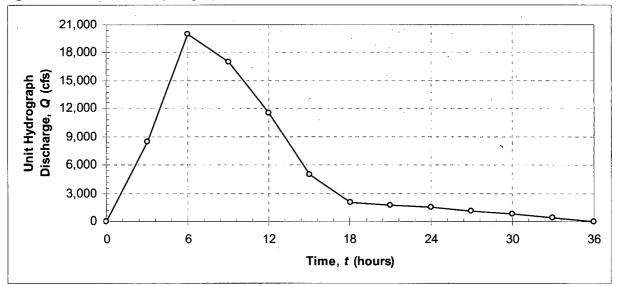

Ordinate No.	t, hours	Q, cfs		Ordinate No.	t, hours	Q, cfs
1	0	0		19	54	700
2	3	5,200		20	57	640
3	6	7,800		21	60	600
4	· 9	8,400		. 22	63	540
5	12	7,800		· 23	66	460
6	15	6,700	· ·	24	69	420
7	18	5,200		25	72	400
8	21	3,600		26	· 75	380
9	24	2,400		27	78	350
10	27	2,000	· .	28	81	260
11	30	1,600		29	84	220
12	33	1,200		30	87	140
13	36	1,000		31	90	100
14	39	800		32	93	40
15	42	780	•	33	96	0
16	45	760		Volume, ac-ft (1)	15360
17	48	740		Drainage Area,	sq miles	289.6
18	51	720		Runoff Depth, i		.9945

6.2.3 Subbasin 17 – Little River

The Subbasin 17 unit hydrograph was developed in 1977 by the TVA (Reference 5) as a two-flood composite from historical floods that occurred in March 1963 and March 1973, using the UNITGRPH program. The flood hydrographs for the local area used in the unit hydrograph development were determined using the SOCH model. The TVA smoothed the four-hour unit hydrograph from UNITGRPH and interpolated to obtain the bi-hourly discharge ordinates shown in Figure 6 and Table 4, which are used in this calculation.

<u> </u>			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 23
Subject: Fort Loudoun-Tellico Dam Local Watershed	Prepared	M.C.C	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

Table 4: Four-Hour Unit Hydrograph for Subbasin 17, Little River.


			Jubbasili 17, Little Kivel.		
Ordinate no.	t, hours	Q, cfs	Ordinate no.	t, hours	Q, cfs
1	0	0	27	52	1100
2 3	2 4	50	28	54	1000
3	4	102	29	56	950
4	6 8	1200	30	58	850
5	8	3021	31	60	775
6 7	10	5000	32	62	700
	12	8025	33	64	650
8	14	10500	34	66	600
9	16	11726	35	68	550
10	18	11000	36	70	500
11	20	9213	37	72	450
12	22	7500	38	74	400
13	24	6245	39	76	350
14	26	5500	40	78	300
15	28	4876	41	80	250
16	30	4350	42	82	225
17	32	3950	43	84	200
18	34	3500	44	86	150
19	36	3100	45	88	100
20	38	2700	46	90	75
21	40	2350	47	92	50
22	42	2100	48	94	25
23	44	1800	49	96	0
24	46	1600	Volume, acre-fe	et (1)	20,212
25	48	1400	Drainage Area		378.6
26	50	1225	Runoff depth, ir	nches (2)	1.0010

See notes 1 and 2 at the bottom of Table 2.

TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 24
Subject: Fort Loudoun-Tellico Dam Local Watershed	Prepared	M.C.C	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

6.2.4 Subbasin 18 – Fort Loudoun Local

The Subbasin 18 unit hydrograph was developed in 1977 by the TVA (Reference 6) as a two-flood composite from historical floods that occurred in March 1963 and March 1973. The flood hydrographs for the local area used in the unit hydrograph development were determined using the SOCH model. Single unit hydrographs were computed for each of the two floods, and a composite unit hydrograph was developed from both floods, using the UNITGRPH program. The composite unit hydrograph reproduced both floods well (Reference 6). The TVA smoothed the six-hour unit hydrograph from UNITGRPH and interpolated to obtain the tri-hourly discharge ordinates shown in Figure 7 and Table 5, which are used in this calculation.

TVA

Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 25 ·
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

Table 5: Six-Hour Unit Hydrograph for Subbasin 18, Fort Loudoun Local.

Ordinate no.	t, hours	Q, cfs
1	0 ·	0
2	3	8500
3	6	20000
4	9	17000
5	12	11500
6	15	5000
7	18	2000
8	21	1700
9	24	1487
10	27	1100
11	30	861
12	33	400
13	36	0
Volume, acre-feet (1)		17,243
Drainage Area (sq. miles)		323.4
Runoff depth, i	nches (2)	0.9997

See notes 1 and 2 at the bottom of Table 2.

6.2.5 Subbasin 24 – Little Tennessee River Local, Chilhowee to Tellico Dam

Two unit hydrographs are considered for Subbasin 24: One for the March 1973 flood, prior to the existence of Tellico Reservoir, and the other for the May 2003 flood, with Tellico Reservoir in place. The development of these unit hydrographs is discussed in the following subsections, and the unit hydrographs are shown below in Figure 8 and Table 6. The post-Tellico unit hydrograph for this subbasin is applicable only to the May 2003 flood; therefore this calculation provides only one initial flood inflow hydrograph that may be used to validate the Subbasin 24 unit hydrograph.

6.2.5.1 Unit Hydrograph for Subbasin 24 Prior to Tellico Reservoir

The unit hydrograph for Subbasin 24 prior to the completion of Tellico Dam and Reservoir was developed in 1977 by the TVA using information from another unit hydrograph that had been developed earlier for the 872 square mile Little Tennessee River watershed from Fontana Dam to the stream flow gage at McGhee, located at River Mile 19.2 (Reference 7). The drainage area between Chilhowee Dam and the McGhee gage is 466 square miles (Reference 7). Therefore, approximately 72 percent of Subbasin 24 (i.e., 466/650) is contained within this 872 square mile watershed. The TVA calculated the Subbasin 24 unit hydrograph ordinates as follows:

• The peak discharge for Subbasin 24 (Q_{peak}) was obtained by multiplying by the ratio of the square

roots of the drainage area, i.e., $Q_{peak} = 17,000 cfs \cong \frac{\sqrt{650}}{\sqrt{872}} \times 19,750 cfs$.

• The remaining Subbasin 24 unit hydrograph ordinates were obtained by multiplying by the ratios of the drainage areas (i.e., 650/872) and then smoothed to obtain one inch of volume over the subbasin.

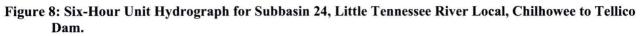
		÷	
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 26
Subject: Fort Loudoun-Tellico Dam Local Watershed	Prepared	M.C.C	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

The six-hour unit hydrograph for the Little Tennessee River from Fontana Dam to the McGhee gage was developed by the TVA in 1965 as a composite from floods that occurred in April 1964, February 1957, and January 1947, using the UNITGRPH program. The UNITGRPH program inputs for this composite were obtained from Reference 7 and rerun using the revised 2008 version of the UNITGRPH program to regenerate the existing TVA unit hydrograph. Attachments 2-9 and 2-10 provide the input and output files for this regeneration. The TVA's original unit hydrograph for Subbasin 24, shown in Figure 8 and Table 6, is used in this calculation to simulate the March 1973 flood.

6.2.5.2 Unit Hydrograph for Subbasin 24 with Tellico Reservoir

The original TVA unit hydrograph for Subbasin 24 was developed before completion of Tellico Dam and Reservoir in 1979. To address the effects of the reservoir on the unit hydrograph, the TVA developed a revised unit hydrograph for Subbasin 24 that reflects the presence of Tellico Reservoir (Reference 2).

The new, revised post-reservoir unit hydrograph was developed by adjusting the existing, pre-reservoir unit hydrograph as follows:


- Peak discharge timing was advanced by six-hours
- Peak discharge magnitude was increased by approximately 35% to 22,600 cfs
- The base time of the unit hydrograph was reduced by 39%, from 72 hours to 52 hours, which was rounded to 54-hours, the nearest six-hour time increment.

These adjustments were developed by the TVA based on other subbasin unit hydrographs that were affected by the construction of reservoirs (Reference 2). The revised, post-reservoir unit hydrograph for Subbasin 24, shown in

Figure 8 and Table 6, is used to simulate the May 2003 flood.

TVA

Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 27
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

Table 6: Six-Hour	Unit Hydrograph for	Subbasin 24, Little	e Tennessee River Loca	l, Chilhowee to Tellico
Dam.				

and and a second se	Pre-	Post-
	Tellico	Tellico
	Dam	Dam
t, hours	Q, cfs	Q, cfs
0	0	0
6	6900	9000
12	13400	22600
18	16750	15500
24	11000	9500
30	8000	6500
36	5100	4000
42	3600	2000
48	2100	900
54	1550	0
60	1100	
66	400	3
72	0	
Volume, acre-feet (1)		34,711
Drainage Area (sq. miles)		650.2
Runoff depth, inches (2)		1.0010
	0 6 12 18 24 30 36 42 48 54 60 66 72 eet (1) (sq. miles)	Tellico Dam t, hours Q, cfs 0 0 6 6900 12 13400 18 16750 24 11000 30 8000 36 5100 42 3600 48 2100 54 1550 60 1100 66 400 72 0 eet (1) 34,661 (sq. miles) 650.2

See notes 1 and 2 at the bottom of Table 2.

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 28
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

6.2.6 UNITGRPH Regeneration

The TVA's UNITGRPH program was used in the development of the unit hydrographs for Subbasins 8, 16, 17, 18, and 24 (Reference 10). This program was revised to correct a code error in 2008. Therefore, to regenerate these unit hydrographs, the original program inputs were obtained and rerun using the revised 2008 version of UNITGRPH. In these regeneration runs, the original TVA drainage areas shown in Table 1 were used². The UNITGRPH regeneration runs are summarized in

Table 7, which lists the sources of original UNITGRPH program inputs and also lists the attached UNITGRPH regeneration input and output files. These runs successfully reproduced the unit hydrographs that had been computed using the original UNITGRPH program.

<u>iijuiogiu</u>			
Sub- basin number	Subbasin Name	Source(s) of UNITGRPH Inputs	UNITGRPH Input & Output File Attachments
8	French Broad Local	Reference 3	2-1 & 2-2
16	Holston River Local, Cherokee Dam to Knoxville Gage	Reference 4	2-3 & 2-4
17	Little River	Reference 5	2-5 & 2-6
18	Fort Loudoun Local	Reference 6	2-7 & 2-8
24	Little Tennessee River Local, Chilhowee to Tellico Dam	Reference 7	2-9 & 2-10

 Table 7: Summary of UNITGRPH Runs Performed to Regenerate Existing TVA Unit

 Hydrographs.

The UNITGRPH computed unit hydrographs were manually smoothed by the TVA (References 3 to 7). The smoothed unit hydrographs, which are presented above in Figure 4 to Figure 8 and in Table 2 to Table 6, were used in this calculation to simulate the floods of March 1973 and May 2003.

6.2.7 SOCH Model Input

The following unit hydrographs are to be used as input to SOCH:

- Subbasin 8, French Broad Local: Distributed six-hour unit hydrograph found in table 2a.
- Subbasin 16, Holston River Local: Distributed six-hour unit hydrograph found in table 3a.
- Subbasin 17, Little River: Four-hour unit hydrograph found in table 4.
- Subbasin 18, Fort Loudoun Local: Six-hour unit hydrograph found in table 5.
- Subbasin 24, Little Tennessee River Local: Six-hour unit hydrograph found in table 6.

 $^{^{2}}$ Exception: The UNITGRPH regeneration for Subbasin 24 was performed using the TVA's original 872 square mile area for the Little Tennessee River watershed between Fontana Dam and the McGhee stream flow gage (Section 6.2.5.1). This unit hydrograph was used by the TVA in the development of the pre-reservoir unit hydrograph for Subbasin 24 (Reference 7).

Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 29
Subject: Fort Loudoun-Tellico Dam Local Watershed	Prepared	HLSS	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

6.3 Observed Discharge and Storage

MON 7

The observed daily outflows from Cherokee and Douglas Dams were obtained from the TVA databases (Attachments 1-2 and 1-3; Reference 13). Daily outflows from Chilhowee Dam were obtained from the U.S. Geological Survey (USGS) gage 03518300 Little Tennessee River below Chilhowee Dam (Attachment 1-4; Reference 14) for the March 1973 flood, and from the TVA's hourly reservoir database for the May 2003 flood (Attachment 1-5; Reference 14). The observed daily storage and discharge records at Fort Loudoun and Tellico Dams were obtained from the TVA databases (Attachments 1-6 and 1-7; Reference 13).

The daily stream flow records for the Little Pigeon River at Sevierville, the Holston River near Knoxville, the French Broad River near Knoxville, the Little River near Maryville, and the Little River near Alcoa were obtained from the USGS (Attachments 1-8 to 1-12; Reference 14). For the May 2003 flood, the flows of the Little Pigeon River were obtained from the TVA bihourly flows database (Attachment 1-13; Reference 14).

These observed flows were used in the water budget analysis, which is presented in Section 7.3.

6.4 Observed Rainfall

Two sources of observed rainfall data were used in this calculation: TVA rain gage data with Thiessen weights were used to simulate the March 1973 flood, and gridded precipitation data from the U.S. National Weather Service (NWS) were used to simulate the May 2003 flood. The TVA rainfall data are presented in Reference 11. The NWS gridded precipitation data are discussed in this section.

Radar-based, geospatially referenced precipitation data is extremely useful for hydrologic analysis because of its comprehensive spatial and temporal detail. Gridded daily precipitation data are available

Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 30
Subject: Fort Loudoun-Tellico Dam Local Watershed	Prepared	M.C.C	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

Radar-based, geospatially referenced precipitation data is extremely useful for hydrologic analysis because of its comprehensive spatial and temporal detail. Gridded daily precipitation data are available at <u>http://water.weather.gov/</u> from 2005 to present. Hourly precipitation data are not generally available without special arrangements with the National Weather Service (NWS).

NWS NEXRAD Stage III hourly precipitation data were obtained from the Lower Mississippi River Forecast Center (LMRFC) from January 1997 to April 2008. A Microsoft.Net utility was developed to generate radar-based Mean Areal Precipitation (MAPX) time series for each of the subbasins (Reference 15). The utility reads the raw hourly precipitation depth data for each 4-km square grid cell, performs necessary coordinate system and projection calculations, and then calculates the average precipitation depth within each subbasin, grouping output into a matrix of MAPX elements arrayed by subbasin and time (Greenwich Mean Time, GMT). Each column of this matrix is equivalent to an annual hyetograph for each subbasin in the TVA model. The results are stored in an Excel spreadsheet for each year of record. Reference 15 describes the methodology used to process the precipitation data and includes resulting subbasin-averaged hourly values for the January 1997 to April 2008 period of record. The precipitation data needed to simulate the May 2003 flood were obtained from this database.

7 Computations and Analyses

7.1 Floods for Unit Hydrograph Validation

As mentioned above, the TVA selected the March 1973 and May 2003 floods as being the largest to occur in the Tennessee River upstream of Guntersville Dam in recent decades. In the Fort Loudoun-Tellico watershed, the storms generating these floods spanned the following times:

- March 15, 1973, 06:00 hrs to March 17, 1973, 07:00 hrs, the "March 1973" storm
- May 5, 2003, 03:00 hrs to May 7, 2003, 17:00 hrs, the "May 2003" storm

7.2 Observed Rainfall

Observed rainfall for the March 1973 and May 2003 storms were obtained from References 11 and 15. The hourly precipitation series developed from NWS gridded data for the May 2003 storm is provided in Attachment 1-14, along with adjustments for Central time and unit conversion. The March 1973 rainfall data are shown in the "1973 Rainfall" and "1973 Reservoir" worksheets in Attachment 1-1.

7.3 Water Budget Analyses

Daily water budget analyses were performed to determine the daily runoff in Subbasins 8, 16, 18, and 24 for the March 1973 and May 2003 floods; Subbasin 17 was analyzed using a different approach, as discussed in Section 7.3.2. Baseflows were subtracted from the flows to obtain direct runoff hydrographs for these floods. Finally, reservoir runoff series were also developed to account for the additional runoff from Fort Loudoun and Tellico Reservoirs due to rain falling on their reservoirs' water surfaces. These operations are discussed in the following subsections; the water budget computations are included in Attachment 1-15.

T	V	Ά		

Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 31
Subject: Fort Loudoun-Tellico Dam Local Watershed	Prepared	M.C.C	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

7.3.1 Flood Volumes

The water budget analysis consists of solving the mass balance for a particular water budget area (e.g., one or more subbasins), which can be stated as (Reference 9):

$$L = O + \frac{\Delta S}{\Delta t} - I \,,$$

(1)

where L is the local flow originating in the water budget area, O is the outflow from the area, and I is the inflow from upstream subbasins, all averaged over the time interval Δt , which in the case of this calculation is one day. $\Delta S/\Delta t$ is the change in reservoir storage over Δt .

This daily water budget method occasionally results in computed local flows that are negative. These negative values may occur because the daily water budget calculations do not take into account routing times, channel storage, bank storage, or possible inaccuracies in the storage and discharge measurements, any of which may result in errors (positive or negative) in the computed daily local flows. It is assumed that any errors are unbiased and, over the long term, self-canceling. Correcting only the negative errors, by setting them to zero, but not the positives, would bias the mean upwards and result in overestimated flow volumes. Therefore, since the local flows are used to estimate flood flow volumes, any computed negative values are not set to zero in this calculation.

The resulting daily water budgets for the March 1973 and May 2003 floods are presented in the following subsections. The water budget analyses are also included in Attachment 1-15.

7.3.1.1 Subbasin 8, March 1973 Flood

The daily local flow from Subbasin 8 for the March 1973 flood was determined by the water budget method using observed inflows and outflows at subbasin boundaries. Because this subbasin does not include a reservoir, the local flow was computed as the outflow minus the sum of the inflows. The water budget analysis and resulting daily local flows are shown in Table 8.

TVA

Calculation No. CDQ000020080069 Rev: 0		Plant:	Page: 32
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

Table 8: Daily Water Budget for the	- N.C	$\mathbf{C}_{\mathbf{C}}$	1
I ahla XI Haily Water Buddet for the	e March 1973 Flood In	i Siinnasin X. French Kroad L.	ncai
Table 0. Daily Match Duuget for the	c match $1 > 7 > 1000$ m		ocan.

	French Broad River at Douglas Dam	Little Pigeon River at Sevierville	French Broad River near Knoxville	Local Flow
Date	1	1.	0	L
Date	cfs	cfs	cfs	cfs
13-Mar-1973	5,866	544	6,090	-320
14-Mar-1973	6,099	466	7,020	455
15-Mar-1973	6,343	960	8,160	857
16-Mar-1973	4,858	24,300	34,600	5,442
17-Mar-1973	3,157	15,100	33,000	14,743
18-Mar-1973	9,514	3,610	10,500	-2,624
19-Mar-1973	17,804	2,020	20,100	276
20-Mar-1973	17,876	1,570	19,700	254

7.3.1.2 <u>Subbasin 16, March 1973 Flood</u>

The daily local flow from Subbasin 16 for the March 1973 flood was determined by the water budget method using observed inflows and outflows at subbasin boundaries in a similar manner to Subbasin 8. The water budget analysis and resulting daily local flows are shown in Table 9.

 Table 9: Daily Water Budget for the March 1973 Flood in Subbasin 16, Holston River Local, Cherokee Dam to Knoxville Gage.

	Holston River at Cherokee Dam <i>I</i>	Holston River near Knoxville <i>0</i>	Local Flow <i>L</i>
Date	cfs	cfs	cfs
14-Mar-1973	0	580	580
15-Mar-1973	0	2,000	2,000
16-Mar-1973	0	15,800	15,800
17-Mar-1973	0	12,500	12,500
18-Mar-1973	0	3,980	3,980
19-Mar-1973	4,328	4,600	272
20-Mar-1973	3,484	5,360	1,876

7.3.1.3 Subbasin 18, March 1973 Flood

The daily local flow from Subbasin 18 for the March 1973 flood was determined by the water budget method using observed inflows and outflows at subbasin boundaries and the daily storage in Fort Loudoun Reservoir. The water budget analysis and resulting daily local flows are shown in Table 10.

TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 33
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Vali	dation	Checked	N.D.M

		French		For	Fort Loudoun Dam		
	Holston River near Knoxville	Broad R. near Knoxville	Little River at Mouth	End-of-day Storage	Change in Storage	Discharge	Local Flow
	Ι	Ι	Į	S	ДS	0	L
Date	cfs	Cfs	cfs	1,000 dsf ³	cfs	cfs	cfs
3/14/1973	580	7,020	698	146.28	-1.48	10,400	622
3/15/1973	2,000	8,160	1,217	152.37	6.09	10,900	5,613
3/16/1973	15,800	34,600	21,710	191.01	38.64	50,300	16,830
3/17/1973	12,500	33,000	15,990	184.95	-6.06	75,300	7,750
3/18/1973	3,980	10,500	4,212	174.02	-10.93	32,500	2,878
3/19/1973	4,600	20,100	2,418	172.17	-1.85	31,200	2,232
3/20/1973	5,360	19,700	1,950	170.45	-1.72	31,400	2,670
3/21/1973	4,780	20,400	2,600	165.30	-5.15	35,800	2,870

Table 10: Daily Water Budget for the March 1973 Flood in Subbasin 18, Fort Loudoun Local.

7.3.1.4 Subbasin 24, March 1973 Flood

The daily local flow from Subbasin 24 for the March 1973 flood was determined by the water budget method using observed inflows and outflows at subbasin boundaries. At the time of this flood, Tellico Dam construction had begun, but the reservoir was not yet completed. The flows of the Little Tennessee River were diverted past the construction site and discharged into Watts Bar Reservoir. These discharges are reported as Tellico Dam outflows in the TVA's daily reservoir database (Reference 13). Therefore, the local flow for this subbasin was computed as the outflow minus the inflow from Chilhowee Dam. The water budget and resulting daily local flows are shown in Table 11.

Table 11: Daily Water Budget for the March 1973 Flood in Subbasin 24, Little	Tennessee River Local,
Chilhowee to Tellico Dam.	

	Little Tennessee River below Chilhowee Dam <i>I</i>	Tellico Dam outflow <i>O</i>	Local Flow <i>L</i>
Date	cfs	cfs	cfs
3/14/1973	5,010	6,199	1,189
3/15/1973	4,490	8,964	4,474
3/16/1973	21,600	57,783	36,183
3/17/1973	13,600	33,254	19,654
3/18/1973	6,200	11,294	5,094
3/19/1973	7,390	10,510	3,120
3/20/1973	7,850	10,665	2,815
3/21/1973	11,400	15,562	4,162

 $^{^{3}}$ A dsf is defined as the volume of water resulting from a flow of 1 cfs for one day (86,400 seconds). This is equal to 86,400 cubic feet of water, or about 1.9835 acre-feet.

		• •	•
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 34
Subject: Fort Loudoun-Tellico Dam Local Watershed	Prepared	M.C.C	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Valic	Checked	N.D.M	

7.3.1.5 Subbasins 8, 16, 18, and 24, May 2003 Flood

TIT X 7

The daily local flow from Subbasins 8, 16, 18, and 24 for the May 2003 flood was determined by the water budget method using observed inflows and outflows at water budget area boundaries and the daily storage in Fort Loudoun and Tellico Reservoirs. Because the streamflow gages on the Holston and French Broad Rivers near Knoxville were no longer in operation during the May 2003 flood, it was necessary to include Subbasins 8 and 16 in the water budget area for Fort Loudoun Reservoir. Also, because Tellico Reservoir is connected to Fort Loudoun Reservoir with a canal, it is necessary to also include Subbasin 24 in this water budget area. Therefore, the inflows to the water budget area consist of the discharges from Cherokee, Douglas, and Chilhowee Dams and the discharges of the Little Pigeon River at Sevierville and of the Little River at the Mouth. Outflows from the water budget area are the discharges from Fort Loudoun and Tellico Dams. The water budget analysis and resulting daily local flows are shown in Table 12.

TVA			<u>.</u>
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 35
Subject: Fort Loudoun-Tellico Dam Local Watershed	Prepared	M.C.C	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph V	/alidation	Checked	N.D.M

Table 12: Daily Water Budget for the May 2003 Flood in Subbasins 8, 16, 18, and 24.

Date	Cherokee Dam outflow <i>I</i> , cfs	Douglas Dam outflow <i>I</i> , cfs	Little Pigeon River at Sevierville <i>I</i> , cfs	Little River at Mouth <i>I</i> , cfs	Chilhowee Dam outflow <i>I</i> , cfs	Fort Loudoun Dam storage S , dsf ⁴	Tellico Dam storage S , dsf	Fort Loudoun & Tellico combined change in storage ΔS , dsf	Fort Loudoun Dam outflow O , cfs	Tellico Dam outflow O , cfs	Local Flow <i>L</i> , cfs
5/2/2003	349	5,542	488	499	2,035	182,114	198,102		13,687	0	
5/3/2003	353	1,488	480	526	1,341	179,447	196,455	2.67	12,157	0	3,655
5/4/2003	346	1,487	396	452	1,277	177,948	194,113	-4.31	9,735	0	1,936
5/5/2003	3,535	7,477	1,796	829	4,079	183,798	201,573	-3.84	14,175	0	9,769
5/6/2003	2,193	652	22,767	11,520	25,305	205,787	221,457	13.31	59,296	19,265	57,997
5/7/2003	378	16,304	10,372	11,640	23,001	204,342	220,935	41.87	59,991	39,030	35,359
5/8/2003	348	26,703	4,993	5,304	30,725	202,894	219,032	-1.97	62,736	19,177	10,488
5/9/2003	3,247	31,128	2,676	2,760	25,256	195,037	209,950	-3.35	66,578	19,005	3,577
5/10/2003	357	31,103	1,885	1,776	14,785	189,819	204,922	-16.94	60,084	8,584	8,516
5/11/2003	352	31,074	1,670	1,500	12,966	189,308	204,361	-10.25	54,668	0	6,034
5/12/2003	6,874	31,259	1,308	1,248	12,795	184,184	199,203	-1.07	60,655	0	-3,112
5/13/2003	6,593	26,566	1,043	1,042	13,292	180,014	195,438	-10.28	60,933	0	4,463
5/14/2003	6,896	21,315	893	926	11,392	178,444	192,713	-7.94	48,215	0	2,498
5/15/2003	6,299	21,527	932	871	8,316	177,629	192,325	-4.30	44,659	0	5,511

⁴ A dsf is defined as the volume of water resulting from a flow of 1 cfs for one day (86,400 seconds). This is equal to 86,400 cubic feet of water, or about 1.9835 acre-feet.

Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 36
Subject: Fort Loudoun-Tellico Dam Local Watershed	Prepared	M.C.C	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

7.3.2 Estimated "Observed" Discharges of Subbasin 17

7.3.2.1 Methodology

Streamflow gages have recorded the observed flows of the Little River at locations within Subbasin 17, but not at the basin outlet. Table 13 lists three gages for which observed discharge data are available for one or both of the March 1973 and May 2003 floods; the locations of these gages are shown in Figure 2.

Table 13: Streamflow Gages in Subbasin 17 Containing Data for the March 1973 and/or May 2003 Floods.

Station ID	Station Name	Period of Record	Drainage Area (sq. miles)		
03497300	Little River above Townsend	1963-2008	106		
03498500	Little River near Maryville	1951-present	269		
03498850	Little River near Alcoa	1986-present	300 ·		
	Subbasin 17 – Little River at Mouth				

Observed streamflow at the basin outlet location is needed for comparison with that estimated with the unit hydrograph for Subbasin 17. Discharge at the subbasin outlet was estimated using a method for calculating peak discharges for 2-, 5-, 10-, 25-, 50-, 100-, and 500-year recurrence intervals at ungaged sites in rural Tennessee (Reference 17). The Little River gages above Townsend and near Maryville were among those used in developing the methods provided by this reference.

Reference 17 provides a methodology for estimating peak discharges of various recurrence intervals at an ungaged site from a relatively near gage site (on the same stream) when the ungaged site drainage area is within 50 percent of the drainage area of the gaged site. This methodology includes a means to estimate the discharge magnitude, transferred downstream to the ungaged site, from the known discharge at the gaged site as shown in Equation (2):

$$Q'_{w} = \left(\frac{A_{u}}{A_{g}}\right)^{b} Q_{w}$$
⁽²⁾

where Q'_w is the discharge for the ungaged site; A_u is the watershed area of the ungaged site; A_g is the watershed area of the gaged site; b is the regression coefficient; and, Q_w is the discharge for the gaged site. In Reference 17, the Q'_w value for the selected recurrence interval is then further adjusted based on the regression analysis underlying the method.

For this calculation, the gage measurements need to be transferred downstream to the subbasin outlet, for which A_u is 378.6 sq. miles. A scaling factor was used to estimate discharges at the Subbasin 17 outlet from measured discharge values at the upstream gages. The selected scaling factor comes from the area ratio raised to the regression coefficient, as shown in Equation (2). Table 14 provides the calculated scaling factor for each recurrence interval and for each gage. When the calculated scaling factors are rounded to two significant digits, scaling factors of 1.3 and 1.2 are obtained for the Little

TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 37
Subject: Fort Loudoun-Tellico Dam Local Watershed	Prepared	M.C.C	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

River gages near Maryville and near Alcoa. This method was not applied to the gage above Townsend because the differences in drainage areas exceed the 50 percent criterion for this method.

Little River G	age	near Maryville	near Alcoa
Drainage Area (se	q. miles)	269	300
Area Ratio (A	_u /A _g)	1.408	1.262
Recurrence Interval (years)	Regression Coefficient b	Scaling (A _u /	Factor A _g) ^b
2	0.753	1.294	1.192
5	0.736	1.286	1.187
10	0.727	1.282	1.184
25	0.717	1.278	1.182
50	0.711	1.275	1.180
100	0.703	1.272	1.178
500	0.694	1.268	1.175
Rounded to 2 significant figures		1.3	1.2

To estimate Little River discharge at the subbasin outlet, the measured discharge values at the gages near Maryville and near Alcoa were multiplied by the scaling factors of 1.3 and 1.2, respectively. These adjustments simply increase discharge by weighted ratios of the watershed area of the ungaged outlet to the watershed areas of the gage locations. This method does not account for possible changes in channel storage from the additional reach of the Little River or changes in unit hydrograph timing and shape as a result of the increased drainage area.

7.3.2.2 March 1973 Flood Flows in Subbasin 17

Using this method, the daily flows of the Little River at the Mouth were estimated for the March 1973 flood; the results are shown in Table 15. The gage near Maryville was used because the gage near Alcoa did not exist at the time of this flood.

Table 15: Estimated Dail	v Flows of the Little	River at Mouth for the	e March 1973 Flood.
Tuble Ict Estimated Ban	, I IO OI THE LITTE	Iditor at the dot the	

	Little River	O a a l'a a	Little River
	near Maryville	Scaling	at Mouth
Date	cfs	Factor	cfs
14-Mar-1973	537	1.3	698
15-Mar-1973	936	1.3	1,217
16-Mar-1973	16,700	1.3	21,710
17-Mar-1973	12,300	1.3	15,990
18-Mar-1973	3,240	1.3	4,212
19-Mar-1973	1,860	1.3	2,418
20-Mar-1973	1,500	1.3	1,950

TVA

Calculation No. CDQ000020080069 Rev: 0		Plant:	Page: 38
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

7.3.2.3 May 2003 Flood Flows in Subbasin 17

The gage flows available for the May 2003 flood are shown in Table 16.

Table 16: Daily Flows of the Little River for the May 2003 Flood.

	Above Townsend	Near Maryville	Near Alcoa
Date	cfs	cfs	cfs
5/4/2003	188	324	377
5/5/2003	342	691	691
5/6/2003	6,920	19,000	9,600
5/7/2003	3,190	12,000	9,700
5/8/2003	1,670	4,050	4,420
5/9/2003	996	2,190	2,300
5/10/2003	711	1,420	1,480
5/11/2003	638	1,190	1,250
5/12/2003	495	929	1,040
5/13/2003	416	787	868
5/14/2003	365	705	772

Italicized discharges are estimated values (Reference 16).

It may be seen from Table 16 that the flows on May 6-7 are estimated for the gages near Maryville and Alcoa, and that the estimated flows at these gages are very different. The observed flow volumes for May 5 to 11, 2003, the period during which most of the flow occurred, are summarized in Table 17.

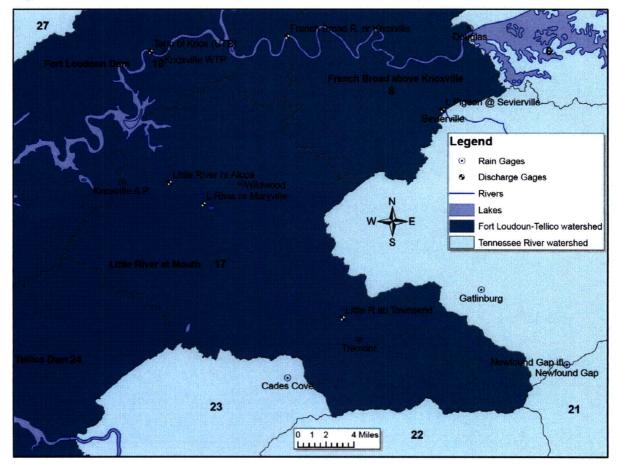
	Total / Cumulative Values			Incremental Values		
Little River Gage	Drainage Area (sq. mi.)	Discharg e (ac-ft)	Total Runoff Depth (inches)	Drainage Area (sq. mi.)	Discharg e (ac-ft)	Total Runoff Depth (inches)
Above Townsend	106	28,695	5.076	106	28,695	5.076
Near Maryville	269	80,412	5.605	163*	51,717	5.949
Near Alcoa	300	58,395	3.650	194*	29,700	2.871

Table 17: Observed Little River Discharge Volumes and Runoff Depths for May 5-11, 2003.

* Drainage area downstream of the gage above Townsend.

Table 17 shows that the observed incremental runoff depths for the drainage areas between the gage near Townsend and the gages near Maryville and Alcoa are very different (5.949 versus 2.871 inches), even though these areas are similar and largely overlapping.

The rainfall data for the storm causing the May 2003 flood in Subbasin 17 was examined to see if it might help in deciding how the disparate streamflow records for this flood should be used. The NWS gridded rainfall for May 5 to 11, 2003 totals 6.60 inches in Subbasin 17. The depths recorded in the TVA's six-hour rainfall database at rain gages in or near Subbasin 17 are shown in Table 18; the locations of these rain gages are shown in Figure 9. The Thiessen-weighted average storm depth for May 5 to 11 is 6.07 inches.


TVA

Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 39
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

Table 18: Rainfall Depths at TVA Rain Gages for May 5-11, 2003.

TVA Station	Station Theissen		Rainfall
ID	Name	weight	(inches)
0177	Cades Cove	13.6%	6.84
0207	Knoxville WTP	2.8%	4.61
0209	Gatlinburg	6.2%	6.81
0409	Knoxville A.P.	19.0%	5.74
0642	Sevierville	0.0%	4.89
0715	Tremont	21.8%	6.50
0716	Wildwood	32.4%	5.34
0819	Newfound Gap	0.6%	8.06
1543	Newfound Gap iflows	3.6%	8.49
Subbasin 1	7, Little River at Mouth	100.0%	6.07

Figure 9: Locations of TVA Rain Gages in and around Subbasin 17, Little River at Mouth.

TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 40
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

According to Figure 9, the rain gages in or nearest to the lower portion of the Little River basin, downstream of the near Townsend gage, include Wildwood, Knoxville A.P., Knoxville WTP, and to a lesser degree Cades Cove. The average depth recorded at the first three of these gages is 5.23 inches. On the basis of this observed rainfall depth, which is smaller than the 5.949 inch runoff depth mentioned above for the gage near Maryville, it seems likely that the Maryville gage overestimates the runoff for the May 2003 flood. Conversely, the 2.871 inches of runoff mentioned above for the gage near Alcoa may possibly underestimate the flood, given the observed rainfall data. Therefore, given that there is uncertainty in the accuracy of both gage records, the discharge of the Little River for the May 2003 flood was estimated by averaging the two gage records.

Using the scaling factors of 1.3 and 1.2 that were developed for the gages near Maryville and Alcoa (respectively), the daily flows of the Little River at Mouth were estimated for the May 2003 flood, the results of which are shown in Table 19.

	Little River near Maryville	Scaling Factor for	Little River Near Alcoa	Scaling Factor for	Little River at Mouth
Date	cfs	Maryville	cfs	Alcoa	cfs
5/5/2003	691	1.3	691	1.2	864
5/6/2003	19,000	1.3	9,600	1.2	18,110
5/7/2003	12,000	1.3	9,700	1.2	13,620
5/8/2003	4,050	1.3	4,420	1.2	5,285
5/9/2003	2,190	1.3	2,300	1.2	2,804
5/10/2003	1,420	1.3	1,480	1.2	1,811
5/11/2003	691	1.3	1,250	1.2	864

7.3.3 Baseflows

Baseflows were subtracted from the local flows to obtain direct runoff hydrographs for the March 1973 and May 2003 floods. For this calculation, the inclined straight line method is employed, with the base line drawn from the starting point of runoff to a point on the receding limb of the hydrograph where base flow resumes (Reference 9).

In general, the starting and ending baseflows for each flood were estimated from the calculated local flows preceding and following the flood. Baseflows for days between the beginning and end of each flood were generally estimated by linear interpolation. Direct runoff was estimated by subtracting the baseflows from the calculated local flows, subject to the constraint that it may not be negative.

The duration, N in days, of direct flood runoff following peak discharge in each subbasin was preliminarily estimated using Linsley et al.'s (Reference 18) expression: $N = A^{0.2}$, where A is the subbasin drainage area in square miles. The resulting durations were adjusted as needed based on the daily hydrographs. The baseflow separation analyses and resulting daily local direct runoff values are shown in the following subsections.

Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 41
Subject: Fort Loudoun-Tellico Dam Local Watershed	Prepared	M.C.C	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

7.3.3.1 Subbasin 8, March 1973 Flood

The baseflow separation analysis for the March 1973 flood in Subbasin 8 is shown in Table 20. The computed local flows for the days leading into this flood are highly variable, with five negative values in the preceding nine days; the sample standard deviation for these nine days is more than four times larger than the mean. The computed computed local flows on March 13 and 14 were -320 cfs and 455 cfs, respectively, as shown in Table 20. Therefore, given the extreme noisiness of the data and the negative flow immediately preceding it, the 455 cfs discharge on March 14 is not considered to be a good estimate of the baseflow at the start of the flood, and it is also not considered to be direct runoff because the storm does not begin until March 15. Therefore, the starting baseflow of 125 cfs from Reference 11, which lies between the average for the preceding two days (68 cfs) and the average for the preceding nine days (285 cfs) was adopted for March 15. Based on the estimated duration of direct runoff given by Linsley et al.'s criterion (Reference 18), the ending baseflow was set equal to the computed local flow on March 20th. Baseflows for days between the start and end were estimated by linear interpolation.

Date	Local Flow <i>L</i> cfs	Baseflow cfs	Local Direct Runoff cfs	
3/13/1973	-320		0	
3/14/1973	455		0	
3/15/1973	857	125	732	
3/16/1973	5,442	[·] 151	5,291	
3/17/1973	14,743	177	14,566	
3/18/1973	-2,624	202	-2,826	
3/19/1973	276	228	48	
3/20/1973	254	254	0	
	Volume, ac-ft			
	Depth, inches			

Table 20: Baseflow Separation for the March 1973 Flood in Subbasin 8, French Broad Local.

7.3.3.2 Subbasin 16, March 1973 Flood

The baseflow separation analysis for the March 1973 flood in Subbasin 16 is shown in Table 21. The starting baseflow was set equal to the computed local flow of 580 cfs on March 14; this value is close to the average local flows for the preceding 7 and 10 day periods (582 and 584 cfs, respectively). Based on a visual inspection of the daily hydrograph, and taking into consideration the duration of direct runoff estimated by Linsley et al.'s criterion (Reference 18), the ending baseflow was set equal to the computed local flow on March 19. Baseflows for days between the start and end were estimated by linear interpolation.

TVA		-	
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 42
Subject: Fort Loudoun-Tellico Dam Local Watershed	Prepared	M.C.C	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

Table 21: Baseflow Separation for the March 1973 Flood in Subbasin 16, Holston River Local, Cherokee Dam to Knoxville Gage.

Date	Local Flow <i>L</i> cfs	Baseflow cfs	Local Direct Runoff cfs
3/14/1973	580	580	0
3/15/1973	2,000	518	1,482
3/16/1973	15,800	457	15,343
3/17/1973	12,500	395	12,105
3/18/1973	3,980	334	3,646
3/19/1973	272	272	0
		Volume, ac-ft	64,614
		Depth, inches	4.183

7.3.3.3 Subbasin 17, March 1973 Flood

The baseflow separation analysis for the March 1973 flood in Subbasin 17 is shown in Table 22. The starting baseflow was set equal to the computed local flow of 698 cfs on March 14; this value is close to the average local flows for the preceding 7 and 10 day periods (685 and 720 cfs, respectively). Based on the estimated duration of direct runoff given by Linsley et al.'s criterion (Reference 18), the ending baseflow was set equal to the computed local flow on March 20. Baseflows for days between the start and end were estimated by linear interpolation.

	Local Flow <i>L</i>	Baseflow	Local Direct Runoff
Date	cfs	cfs	cfs
3/14/1973	698	698	0
3/15/1973	1,217	907	310
3/16/1973	21,710	1,115	20,595
3/17/1973	15,990	1,324	14,666
3/18/1973	4,212	1,533	2,679
3/19/1973	2,418	1,741	677
3/20/1973	1,950	1,950	0
	Volume, ac-ft		
Depth, inches			3.823

Table 22: Baseflow Separation for the March 1973 Flood in Subbasin 17, Little River at Mouth
--

7.3.3.4 Subbasin 18, March 1973 Flood

The baseflow separation analysis for the March 1973 flood in Subbasin 18 is shown in Table 23. The starting baseflow was set equal to the computed local flow of 622 cfs on March 14th, which is close to

TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 43
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

the average discharge for the days preceding the flood. Based on the estimated duration of direct runoff given by Linsley et al.'s criterion (Reference 18), the ending baseflow was set equal to the computed local flow on March 20. Baseflows in between the starting and ending values were estimated by linear interpolation, subject to the constraint that they may not exceed the local flows.

Date	Local Flow <i>L</i> cfs	Baseflow cfs	Local Direct Runoff cfs	
3/14/1973	622	622	0	
3/15/1973	5,613	963	4,650	
3/16/1973	16,830	1,305	15,525	
3/17/1973	7,750	1,646	6,104	
3/18/1973	2,878	1,987	891	
3/19/1973	2,232	2,232	0	
3/20/1973	2,670	2,670	0	
		Volume, ac-ft	53,891	
	Depth, inches			

Table 23: Baseflow Separation for the March 1973 Flood in Subbasin 18, Fort Loudoun Local.

7.3.3.5 Subbasin 24, March 1973 Flood

The baseflow separation analysis for the March 1973 flood in Subbasin 24 is shown in Table 24. The starting baseflow was estimated by considering the local flows in the days before the flood: The averages for the preceding 3, 7, and 14 days were 1,589 cfs, 1659 cfs, and 1,459 cfs, respectively. From these three estimates, and considering the variability in the daily values, 1,600 cfs was determined to be a reasonable estimate of the starting baseflow for March 15. Based on a visual inspection of the daily hydrograph, and taking into consideration the duration of direct runoff estimated by Linsley et al.'s criterion (Reference 18), the ending baseflow was set equal to the calculated local flow on March 20th. Baseflows in between the starting and ending values were estimated by linear interpolation.

TVA			<u>.</u>
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 44
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

Table 24: Baseflow Separation for the March 1973 Flood in Subbasin 24, Little Tennessee River Local, Chilhowee to Tellico Dam.

Date	Local Flow <i>L</i> cfs	Baseflow cfs	Local Direct Runoff cfs	
3/14/1973	1,189	1,189	0	
3/15/1973	4,474	1,600	2,874	
3/16/1973	36,183	1,843	34,340	
3/17/1973	19,654	2,086	17,568	
3/18/1973	5,094	2,329	2,765	
3/19/1973	3,120	2,572	548	
3/20/1973	2,815	2,815	0	
	Volume, ac-ft			
	Depth, inches			

7.3.3.6 Subbasin 17, May 2003 Flood

For the May 2003 flood in Subbasin 17, the initial baseflow was estimated by considering that the discharge for May 2, 3, and 4 averaged 475 cfs and was relatively consistent. Based on the duration of direct runoff estimated by Linsley et al.'s criterion (Reference 18), the ending baseflow was set equal to the computed local flow on May 10th. Baseflows in between the starting and ending values were estimated by linear interpolation. The baseflow separation analysis and results are shown in Table 25.

Date	Local Flow <i>L</i> cfs	Baseflow cfs	Local Direct Runoff cfs	
5/4/2003	437	437	0	
5/5/2003	864	475	389	
5/6/2003	18,110	742	17,368	
5/7/2003	13,620	1,010	12,610	
5/8/2003	5,285	1,277	4,008	
5/9/2003	2,804	1,544	1,260	
5/10/2003	1,811	1,811	0	
-	Volume, ac-ft			
		Depth, inches	3.500	

7.3.3.7 Subbasins 8, 16, 18, and 24, May 2003 Flood

The baseflow separation analysis for the May 2003 flood in Subbasins 8, 16, 18, and 24 is shown in Table 26. The beginning baseflow was estimated as equal to the calculated local flow of 1,952 cfs on

	-		•
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 45
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

May 4th, the day preceding the start of the flood. This value lies between the local flow averages flows for the 7 and 10 day periods preceding the flow (1,802 cfs and 2,366 cfs, respectively). Based on a visual inspection of the daily hydrograph, and taking into consideration the duration of direct runoff estimated by Linsley et al.'s criterion (Reference 18), the ending baseflow was set equal to the calculated local flow of 4,472 cfs on May 13th.

	Local Flow <i>L</i>	Baseflow	Local Direct Runoff
Date	cfs	cfs	cfs
5/4/2003	1,952	1,952	0
5/5/2003	9,734	2,232	7,503
5/6/2003	51,407	2,512	48,895
5/7/2003	33,379	2,792	30,587
5/8/2003	10,508	3,072	7,436
5/9/2003	3,534	3,352	182
5/10/2003	8,481	3,632	4,849
5/11/2003	6,010	3,912	2,098
5/12/2003	-3,092	4,192	0
5/13/2003	4,472	4,472	0
	Volume, ac-ft		
		Depth, inches	2.570

Table 26: Baseflow Separation for the May 2003 Flood in Subbasins 8, 16, 18, and 24.

The direct runoff depths shown in the bottom rows of Table 20 to Table 26 were calculated using the subbasin drainage areas from Table 1. The local direct runoff depths represent the subbasin-wide average excess rainfall depths, P_{eff} , that resulted from the March 1973 and May 2003 storms. The baseflow separation calculations are shown in Attachment 1-15. The baseflows for all subbasins and both floods are shown on the "Baseflows" tab in this attachment. Due to the uncertain nature of the daily baseflow estimates, no attempt was made to disaggregate them into sub-daily values.

7.3.4 Additional Reservoir Runoff

The calculated water budgets for the March 1973 and May 2003 floods provide total volumes of direct runoff originating from the water budget areas considered. Because the water budgets were calculated using a mass balance approach that considers all inflows, outflows, and changes in storage, they implicitly include direct runoff from rain falling on the Fort Loudoun and Tellico Reservoir water surfaces. The reservoir runoff would result in nearly instant responses at the basin outlets, due to the absence of overland flow or stream channel travel time and would be equal to the rain falling on the reservoir. The reservoir runoff volume considered in the unit hydrograph convolution is the excess rainfall determined for the total basin. Therefore, the remaining rainfall on the reservoir, over and above that computed in the unit hydrograph convolution, must be considered. This "additional" reservoir runoff was computed separately for the March 1973 and May 2003 floods.

		· · · · ·	
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 46
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

The depths of additional reservoir runoff, P_{RRO} , considered in this computation are equal to the differences between the rainfall depths on the reservoirs and the basin-wide excess rainfall depths, shown in Table 20 to Table 26. For the March 1973 storm, the rainfall depth on Fort Loudoun Reservoir was obtained from Reference 11. For the May 2003 storm, the rainfall depths on Fort Loudoun and Tellico Reservoirs were obtained from the NWS gridded precipitation data. The volumes of additional reservoir runoff are equal to the products of P_{RRO} and the surface areas of reservoirs shown in Table 1.

The Fort Loudoun Reservoir surface areas during these floods were estimated using daily stage data from Attachment 1-6 and the area-elevation table (Reference 19). The average areas estimated for March 15-17, 1973 and May 5-8, 2003 are 22.03 mi² and 24.19 mi², respectively. Considering the closeness of the 23.49 mi² area shown in Table 1 to these two estimates, it is reasonable to use this area to determine the additional reservoir runoff. The area-elevation table for Tellico Reservoir is not available. However, using the daily stage-storage data in Attachment 1-7, the surface area during the May 2003 flood was estimated to be approximately 25.9 mi², within 6% of the area of 24.5 mi² shown in Table 1. Therefore, Table 1 provides reasonable values for the areas used in determining the additional reservoir runoff volumes. The elevation-area comparisons are included in Attachment 1-16.

The additional reservoir runoff volume calculations are shown in Section 7.4.1 and in Attachment 1-15. The resulting hourly reservoir runoff series are shown in the "2003 Reservoir" and "1973 Reservoir" worksheets in Attachment 1-1.

7.4 Excess Rainfall Hyetographs

The excess rainfall hyetograph is the input to the basin model that is converted into direct runoff at the basin outlet via convolution with the unit hydrograph. This is developed from the observed rainfall hyetograph by the application of a loss rate function which accounts for the hydrologic abstractions of evaporation and transpiration, interception, depression storage, and infiltration (Reference 8). Excess rainfall is also known as "runoff" or "effective rainfall;" all three terms refer to the same quantity.

The TVA uses the FLDHYDRO computer program (Reference 10) to estimate excess precipitation from a given rain storm for use with the UH for runoff prediction. Reference 10 provides detailed information concerning the operation of the FLDHYDRO program. The TVA created this program to implement the Antecedent Precipitation Index (API)/Runoff Index (RI) methodology developed by the United States Weather Bureau (USWB) and described in References 18 and 20. In this method, antecedent precipitation data are used to define the basin state at the beginning of the storm through the API. Seasonal, empirical relationships (the RI component) are employed to account for expected seasonal variation in runoff resulting from observed seasonal variations in evapotranspiration.

7.4.1 FLDHYDRO Operation

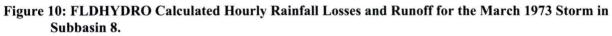
The excess rainfall hyetographs for the Fort Loudoun-Tellico subbasins were computed for the March 1973 and May 2003 storms using the FLDHYDRO program and the available rainfall data. Several

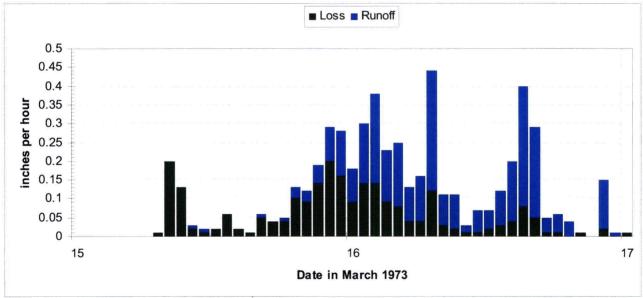
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 47
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

steps were performed to determine the depths of additional reservoir runoff, P_{RRO} , and to adjust the excess rainfall depths to account for the inclusion of P_{RRO} in the water balance. These additional steps affect only Subbasin 18 for the March 1973 flood and only Subbasins 8, 16, 18, and 24 for the May 2003 flood because these are the only water budgets that include reservoirs (Sections 7.3.1.3 and 7.3.1.5). These steps are described below and the corresponding results are shown in Table 27.

- The excess rainfall depths, P_{eff}, were obtained from Table 23 and Table 26. These are 3.125 inches for the March 1973 storm in Subbasin 18 and 2.570 inches for the May 2003 storm in Subbasins 8, 16, 18, and 24.
- 2. The P_{eff} values were input as CHKVOL values to FLDHYDRO, which was run for each storm (March 1973 and May 2003) to obtain preliminary excess rainfall predictions. The resulting predicted area weighted average excess rainfall depths for these storms are 3.14 and 2.55 inches for the March 1973 and May 2003 storms, respectively. The FLDHYDRO input and output files for these preliminary runs are included as Attachments 3-7 to 3-10 and 3-19 to 3-20.
- 3. The additional reservoir runoff, P_{RRO} , was estimated for each flood as the difference between the rainfall on the reservoirs (shown in Table 27) and the predicted excess rainfall depths. For March 1973, this yields $P_{RRO} = 6.68 3.15 = 3.53$ inches; for May 2003, P_{RRO} is 2.87 inches for Fort Loudoun Reservoir and is 3.72 inches for Tellico Reservoir. The italicized depths of 0.256 inches for March 1973 and 0.115 inches for May 2003 shown on the Step 3 row are equal to the additional reservoir runoff volumes divided by the water budget areas (323.4 mi² for 1973 and 1,469.6 mi² for 2003).
- 4. The italicized P_{RRO} values, which are distributed across the water budget areas, were subtracted from the water budget depths (Step 1) to obtain adjusted CHKVOL values of 2.868 and 2.455 inches for the March 1973 and May 2003 storms, respectively.
- 5. The FLDHYDRO program was re-run for all subbasins and, in the case of the March 1973 flood, for Fort Loudoun Reservoir, using the adjusted CHKVOL values from Step 4. The revised FLDHYDRO results and P_{RRO} values were area-weighted across the water budget area and compared with the initial water budget values from Steps 1 to 3. The FLDHYDRO input and output files for these runs are included as Attachments 3-11 to 3-14 and 3-21 to 3-22.

	Storm / Flood	Mar	ch 1973	May 2003						
Step	Subbasin	18	Fort Loudoun Reservoir	8	16	18	24	Water Budget Area	Fort Loudoun Reservoir	Tellico Reservoir
	Area, mi ²	323.4	23.5	206.5	289.6	323.4	650.2	1,469.6	23.5	24.5
	Rainfall, in.	6.81	6.68	3.94	2.65	5.33	7.84	5.72	5.33	7.84
1	CHKVOL from water budget, in.	3.125	3.125					2.570		
2	Initial FLDHYDRO runoff, in.	3.14	3.15	1.28	0.91	2.46	3.72	2.55	2.46	3.72
3	P _{RRO} , or additional reservoir runoff, in.	0.256	3.53					0.115	2.87	4.12
4	Adjusted CHKVOL, in.	2.868	2.868					2.455		
5	Revised FLDHYDRO runoff, in.	2.88	2.89	1.21	0.83	2.34	3.54	2.41	2.34	3.54


Table 27: Steps Used to Determine CHKVOL Values and Additional Reservoir Runoff Depths.


TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 48
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Val	idation	Checked	N.D.M

Following the above analysis, the additional reservoir runoff series were computed. For the March 1973 storm, the additional reservoir runoff was computed using FLDHYDRO with an input CHKVOL value of 2.868 inches (from Step 4). For the May 2003 storm, the additional runoff series for Fort Loudoun and Tellico Reservoirs were obtained from the Step 5 FLDHYDRO rainfall and excess rainfall results for Subbasins 18 and 24, respectively. The methods used for the two floods were not the same because reservoir-specific rainfall data is available for the March 1973 storm, but not for the May 2003 storm. In both cases, the hourly reservoir runoff was set equal to the hourly difference between the rainfall and the excess rainfall. The FLDHYDRO input and output files for the final March 1973 additional reservoir runoff computation are included as Attachments 3-13 and 3-14.

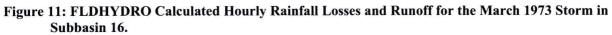

7.4.2 FLDHYDRO Results

Figure 10 to Figure 17 provide plots of the FLDHYDRO results for the March 1973 and May 2003 storms in Subbasins 8, 16, 17, 18, and 24. The sum of the hourly losses and hourly runoff values shown in these figures (i.e. the total column height for each hour in the figures) is equal to the hourly rainfall depths that were input to FLDHYDRO. It may be seen from these figures that the percentage of rainfall that becomes runoff tends to increase over the course of each storm. The FLDHYDRO results are also shown on the 1973 Rainfall" and "2003 Rainfall" tabs in Attachment 1-1. The FLDHYDRO input and output files are included as Attachments 3-1 to 3-22.

TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 49
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Valid	dation	Checked	N.D.M

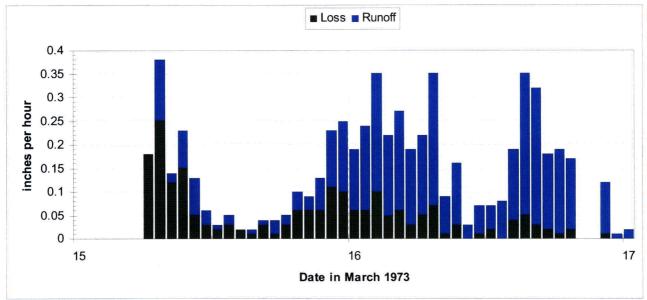
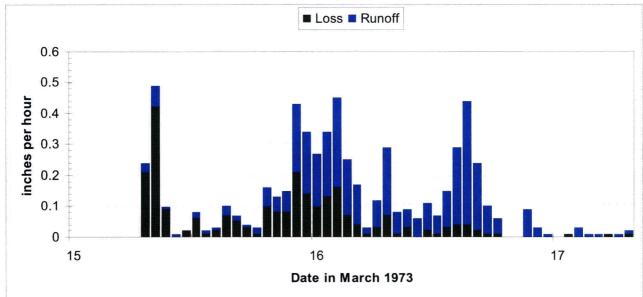
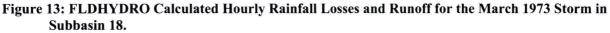




Figure 12: FLDHYDRO Calculated Hourly Rainfall Losses and Runoff for the March 1973 Storm in Subbasin 17.

TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 50
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph V	alidation	Checked	N.D.M

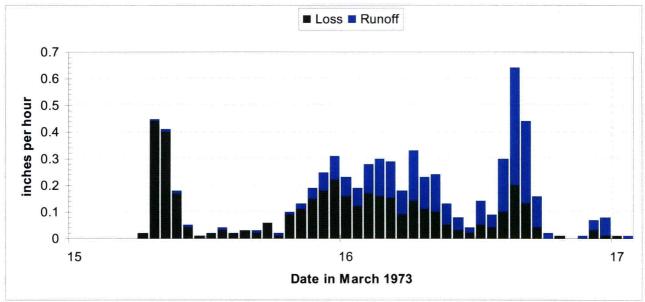
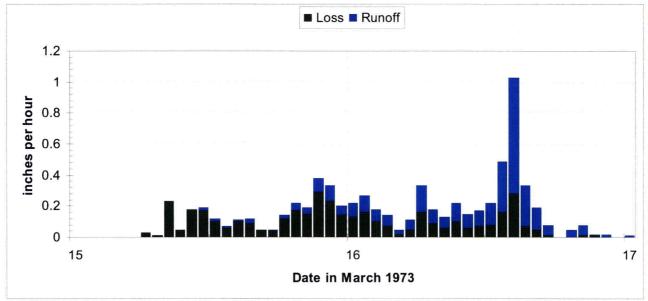
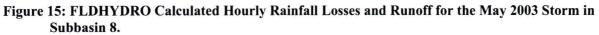




Figure 14: FLDHYDRO Calculated Hourly Rainfall Losses and Runoff for the March 1973 Storm in Subbasin 24.

TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 51
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Valid	dation	Checked	N.D.M

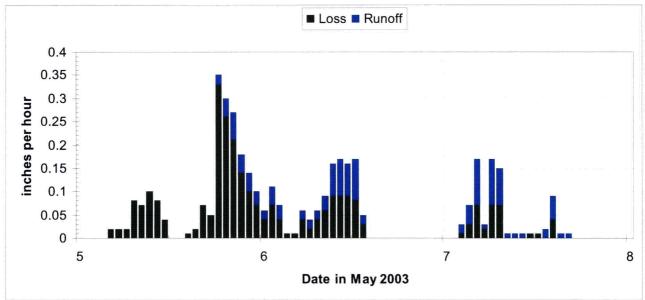
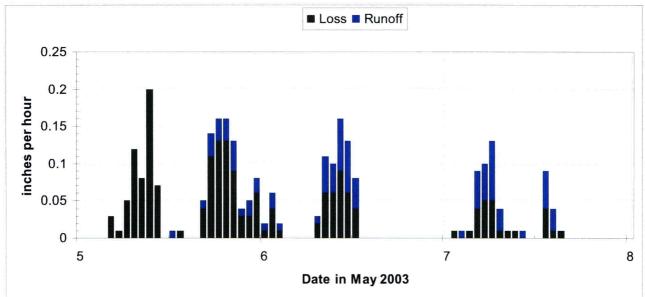
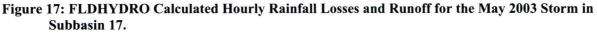
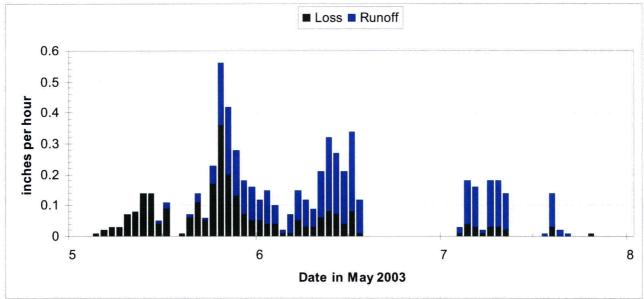
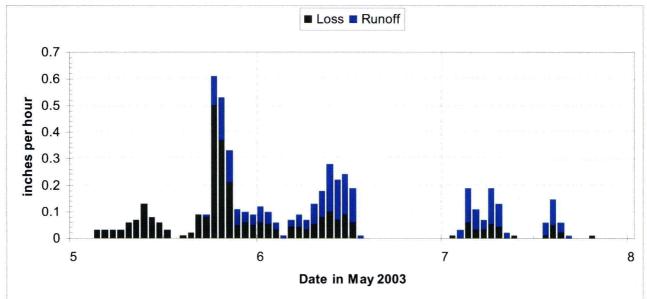
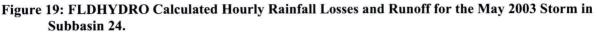
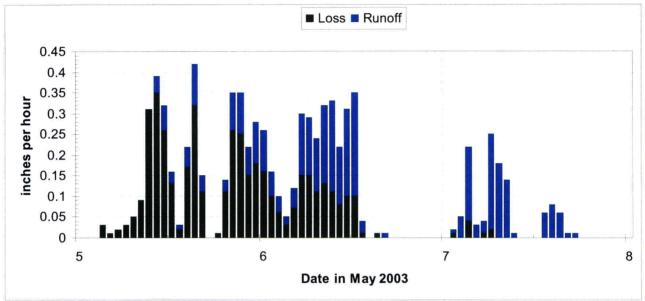




Figure 16: FLDHYDRO Calculated Hourly Rainfall Losses and Runoff for the May 2003 Storm in Subbasin 16.

TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 52
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Va	alidation	Checked	N.D.M


Figure 18: FLDHYDRO Calculated Hourly Rainfall Losses and Runoff for the May 2003 Storm in Subbasin 18.

-	
1	VΔ
. .	

Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 53
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M

The hourly excess rainfall series shown in Figure 10 to Figure 19 were aggregated to the effective durations of the unit hydrographs for use in the unit hydrograph convolutions. Therefore, excess rainfall for Subbasin 17 was aggregated to four-hour values, and excess rainfall series for the other subbasins were aggregated to six-hour values.

7.5 Direct Runoff and Baseflow Hydrographs

The unit hydrographs for Subbasins 8, 16, 17, 18, and 24 were convoluted with the excess rainfall series to simulate the direct runoff hydrographs for the March 1973 and May 2003 floods. The resulting initial direct runoff hydrographs, and the baseflows from Section 7.3.3, are plotted in Figure 20 to Figure 29.

TVA			
Calculation No. CDQ000020080069	Rev: 1	Plant:	Page: 54
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	JAW
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Val	idation	Checked	BH

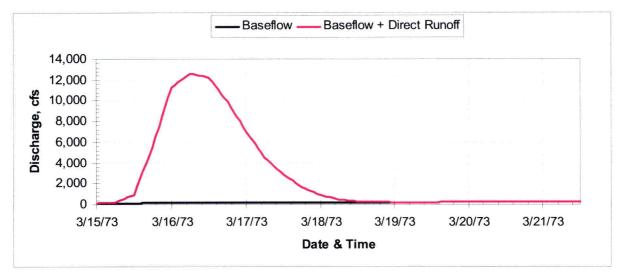


Figure 20: Direct Runoff and Baseflow Hydrographs from Subbasin 8, French Broad Local, for the March 1973 Flood.

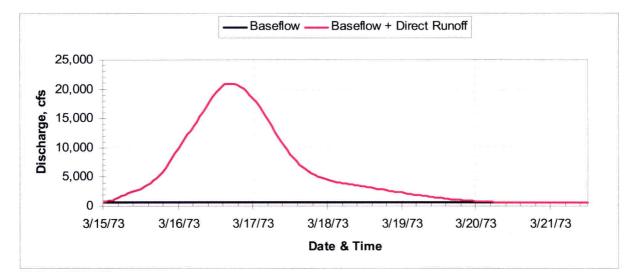


Figure 21: Direct Runoff and Baseflow Hydrographs from Subbasin 16, Holston River Local, Cherokee Dam to Knoxville Gage, for the March 1973 Flood.

TVA			ta da la casa da casa d
Calculation No. CDQ000020080069	Rev: 1	Plant:	Page: 55
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	JAW
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Va	alidation	Checked	BH

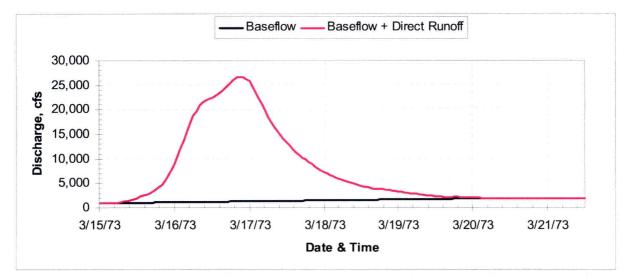


Figure 22: Direct Runoff and Baseflow Hydrographs from Subbasin 17, Little River at Mouth, for the March 1973 Flood.

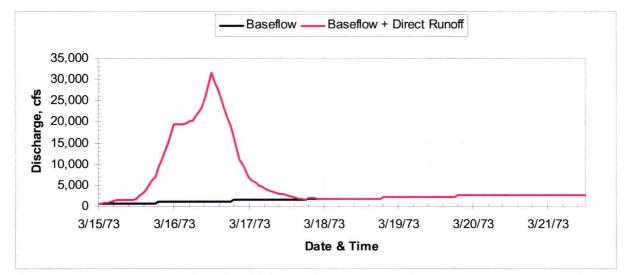


Figure 23: Direct Runoff and Baseflow Hydrographs from Subbasin 18, Fort Loudoun Local, for the March 1973 Flood.

TVA	ى چې د د د د د د د د د د د د د د د د د د			
Calculation No.	CDQ000020080069	Rev: 1	Plant:	Page: 56
Subject: Fort Lo	oudoun-Tellico Dam Local Watershed		Prepared	JAW
(Subbasins 8,	16, 17, 18, and 24) Unit Hydrograph Va	alidation	Checked	BH

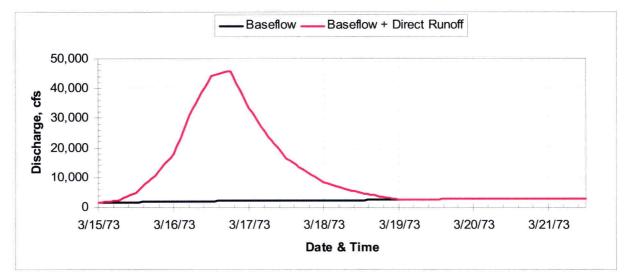


Figure 24: Direct Runoff and Baseflow Hydrographs from Subbasin 24, Little Tennessee River Local, Chilhowee to Tellico Dam, for the March 1973 Flood.

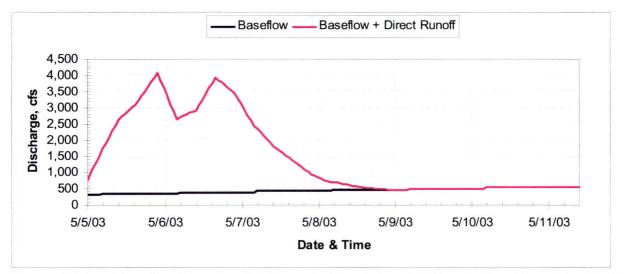


Figure 25: Direct Runoff and Baseflow Hydrographs from Subbasin 8, French Broad Local, for the May 2003 Flood.

TVA			المتعادلة والمتراجعة والمعادلة والمتعاد والمتعاد
Calculation No. CDQ000020080069	Rev: 1	Plant:	Page: 57
Subject: Fort Loudoun-Tellico Dam Local Watershed	·····	Prepared	JAW
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Val	idation	Checked	BH

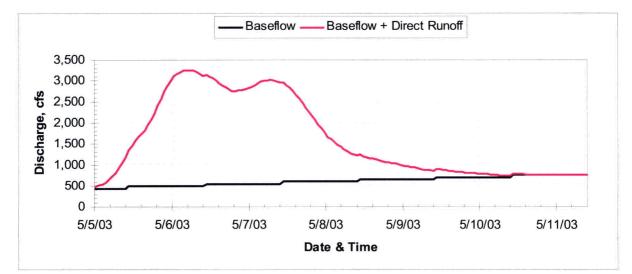


Figure 26: Direct Runoff and Baseflow Hydrographs from Subbasin 16, Holston River Local, Cherokee Dam to Knoxville Gage, for the May 2003 Flood.

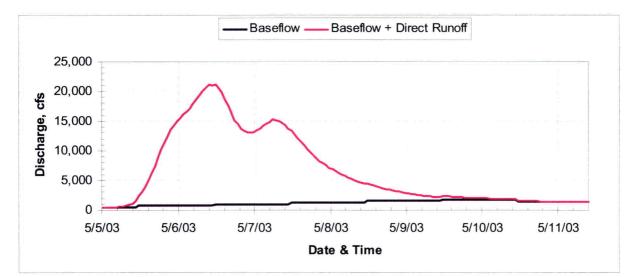


Figure 27: Direct Runoff and Baseflow Hydrographs from Subbasin 17, Little River at Mouth, for the May 2003 Flood.

TVA			.
Calculation No. CDQ000020080069	Rev: 1	Plant:	Page: 58
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	JAW
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

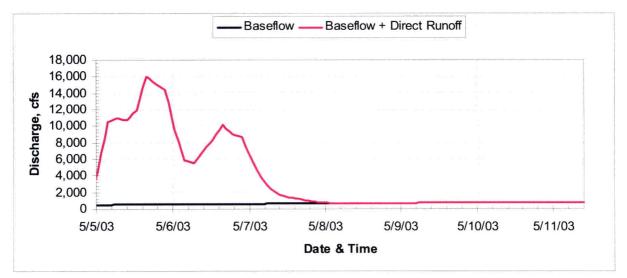


Figure 28: Direct Runoff and Baseflow Hydrographs from Subbasin 18, Fort Loudoun Local, for the May 2003 Flood.



Figure 29: Direct Runoff and Baseflow Hydrographs from Subbasin 24, Little Tennessee River Local, Chilhowee to Tellico Dam, for the May 2003 Flood.

The unit hydrograph convolutions were performed in an Excel spreadsheet; calculations and resulting hydrographs are in the "1973 Convolutions" and "2003 Convolutions" tabs in Attachment 1-1.

7.6 Additional Reservoir Runoff Hydrographs

The computed additional runoff hydrographs from Fort Loudoun and Tellico Reservoirs are shown in Figure 30 to Figure 32. These hourly additional reservoir runoff series were determined using the methods described in Section 7.3.4 and at the end of Section 7.4.1.

TVA			
Calculation No. CDQ000020080069	Rev: 0	Plant:	Page: 59
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	M.C.C.
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	N.D.M.

Figure 30: Additional Fort Loudoun Reservoir Runoff from the March 1973 Flood.

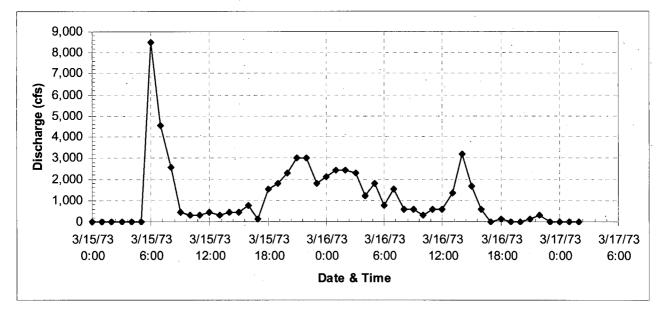
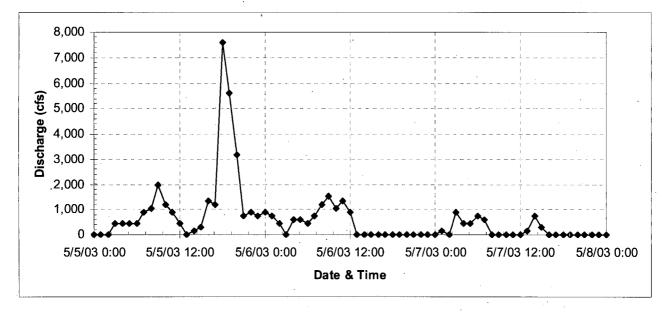
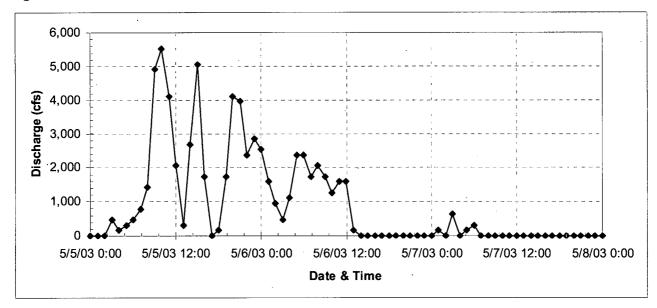




Figure 31: Additional Fort Loudoun Reservoir Runoff from the May 2003 Flood.

TVA			
Calculation No. CDQ000020080069	Rev: 1	Plant:	Page: 60
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	JAW
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

Figure 32: Additional Tellico Reservoir Runoff from the May 2003 Flood.

The hourly additional reservoir runoff calculations are presented in the "1973 Reservoir" and "2003 Reservoirs" worksheets in Attachment 1-1.

7.7 SOCH Model Input

Four time series were provided for use in the SOCH models for the March 1973 and the May 2003 validation runs. These inputs are as follows:

- Total direct runoff for Subbasin 8,
- Total direct runoff for Subbasin 16,
- Total direct runoff for Subbasin 17,
- Total direct runoff for Subbasin 18,
- Total direct runoff for Subbasin 24,
- Losses and runoff for Subbasin 8,
- Losses and runoff for Subbasin 16,
- Losses and runoff for Subbasin 17,
- Losses and runoff for Subbasin 18,
- Losses and runoff for Subbasin 24,

The time series were developed in spreadsheets in Attachment 1-1. Plots of the component time series are provided as Figures 20 through 29 in Section 7.5.

TVA			
Calculation No. CDQ000020080069	Rev: 1	Plant:	Page: 6
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	JAW
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph \	/alidation	Checked	BH

7.8 SOCH Model Output and Unit Hydrograph Validation

The component time series presented in Section 7.5 of this calculation were used as inputs to a SOCH model of the Fort Loudoun-Tellico Dam Local Watershed.

For the March 1973 event, simulated and observed water surface elevations were compared at six gage locations: TRM 645.1 & 651.40; FBRM 7.4 & 32.3; HRM 52.3 & 5.5. For the May 2003 event, simulated and observed water surface elevations were compared at five gage locations: TRM 645.1; FBRM 32.3; HRM 52.3; LTRM 33.6 & 0.3. Simulated and observed discharges were compared at TRM 602.3 for both historic events.

As described in Reference 21, the local inflows to Fort Loudoun- Tellico Dam Local Watershed from Subbasins 8, 16, 17, 18, and 24 were combined with the observed data for the March 1973 and May 2003 events to reproduce the observed elevations at gage locations along the reservoir for the historic floods. These comparisons are shown in Figures 33 through 41. As a result, the unit hydrographs developed for basins 8, 16, 17, 18, and 24 were validated and deemed adequate for use in developing flood inflows for other events, including PMF. Data and simulation results for the aforementioned figures are provided in Attachments 4-1 and 4-2.

8 Conclusions

Unit hydrographs for Subbasins 8, 16, 17, 18, and 24 for the simulation of local inflow to the Tennessee River between in the Fort Loudoun - Tellico Dam Local Watershed were developed by TVA previously. The unit hydrographs for Subbasins 8 and 16 were modified as described in Reference 21. In compliance with NRC requirements, the unit hydrographs were indirectly validated in this calculation for two events: the floods of March 1973 and May 2003.

8.1 Unit Hydrograph Validation

The modified unit hydrographs for Subbasins 8 and 16 and the original unit hydrographs for Subbasins 17, 18, and 24 were indirectly validated for the March 1973 and May 2003 floods in this calculation and are provided in Tables 28-32 (Attachment 4-3). Since the stage and discharge hydrographs simulated in the SOCH model runs utilizing local inputs developed with the unit hydrographs adequately predict observed data, it is concluded that the modified unit hydrographs for Subbasins 8 and 16 and the original unit hydrographs adequately describe the response of the local catchment areas between the reservoirs and are valid for use in hydrologic studies to determine PMF. The computed evaluation at HRM 5.5 (shown in Figure 35) reproduces the peak and timing of the observed elevation at HRM 5.5; however the elevations differ for the rising and falling limbs of the hydrographs. A potential cause for this difference may be related to gaging information and will be discussed in Reference 21. Also refer to Reference 21 for the proper application of the modified unit hydrograph versus the original unit hydrograph in modeling design storms.

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 62
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

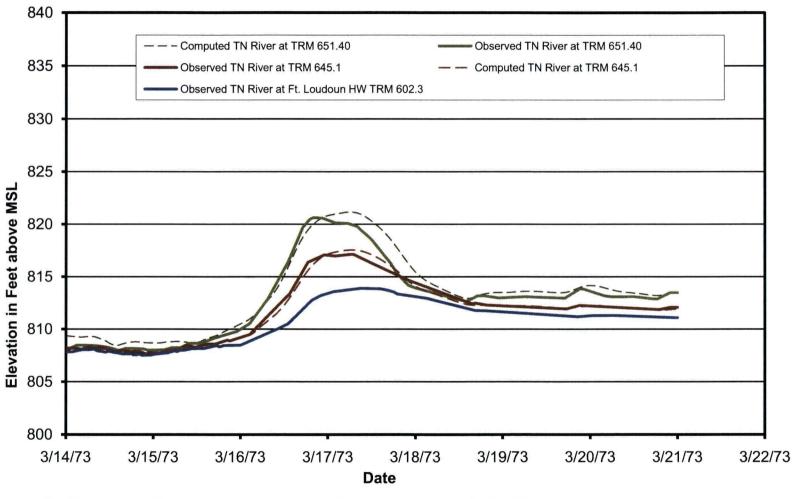


Figure 33: Observed and Simulated Stage Hydrographs for the Fort Loudoun-Tellico Watershed, March 1973

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 63
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

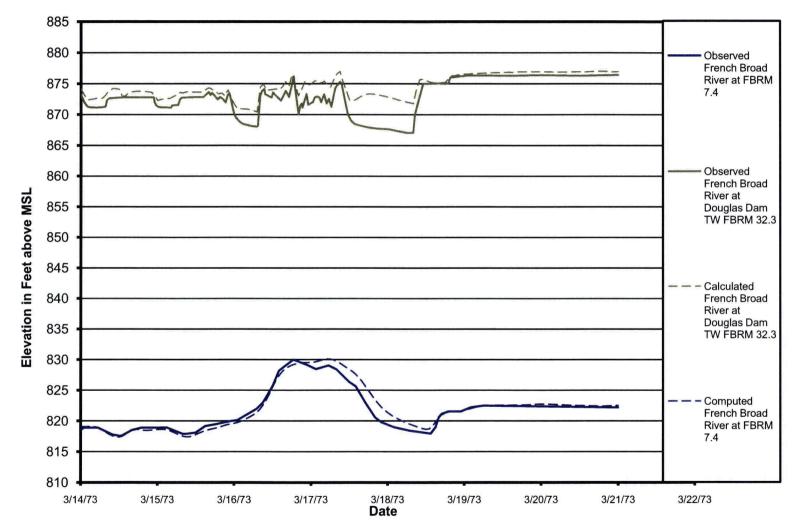


Figure 34: Observed and Simulated Stage Hydrographs for the Fort Loudoun-Tellico Watershed, March 1973

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 64
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

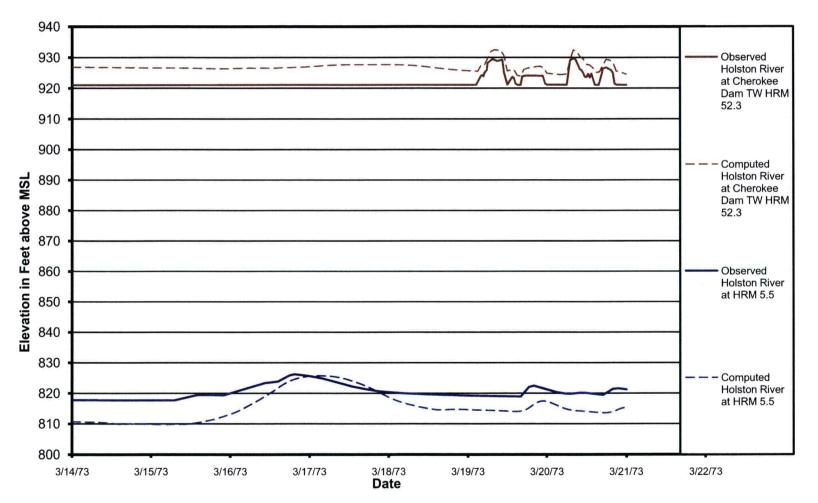


Figure 35: Observed and Simulated Stage Hydrographs for the Fort Loudoun-Tellico Watershed, March 1973

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 65
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

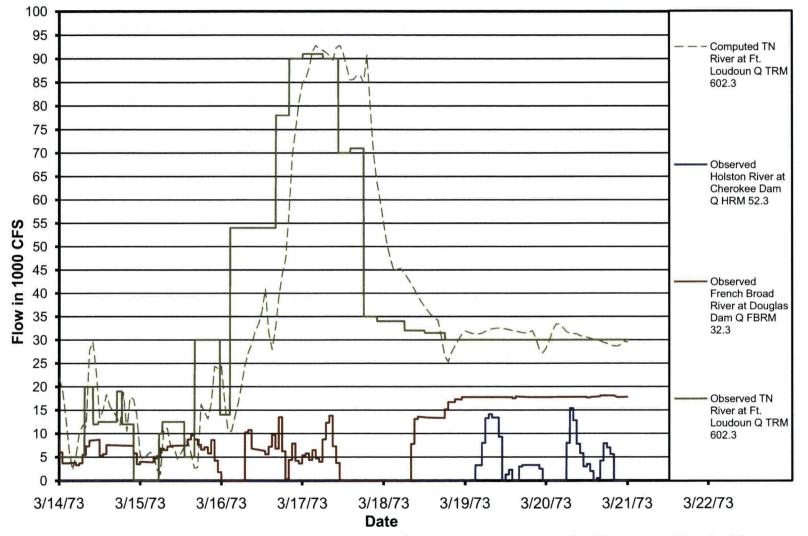


Figure 36: Observed and Simulated Discharge Hydrographs for the Fort Loudoun-Tellico Watershed, March 1973

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 66
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

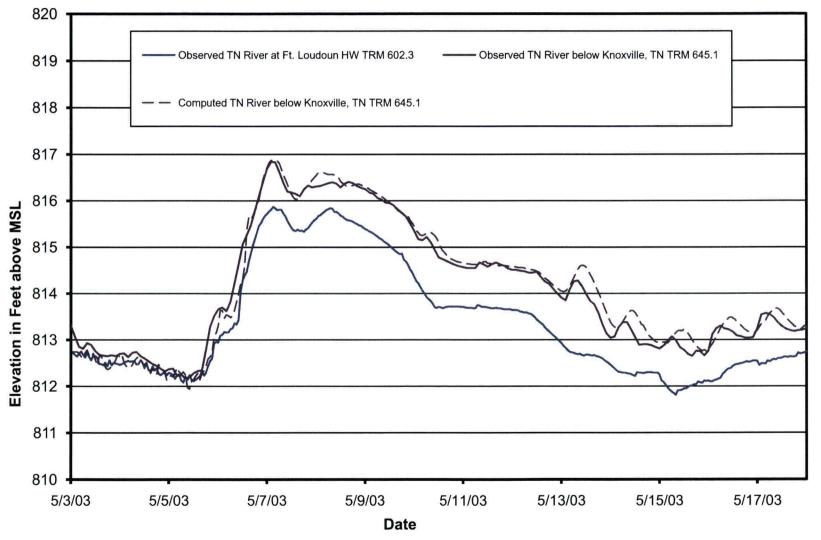


Figure 37: Observed and Simulated Stage Hydrographs for the Fort Loudoun-Tellico Watershed, May 2003

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 67
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

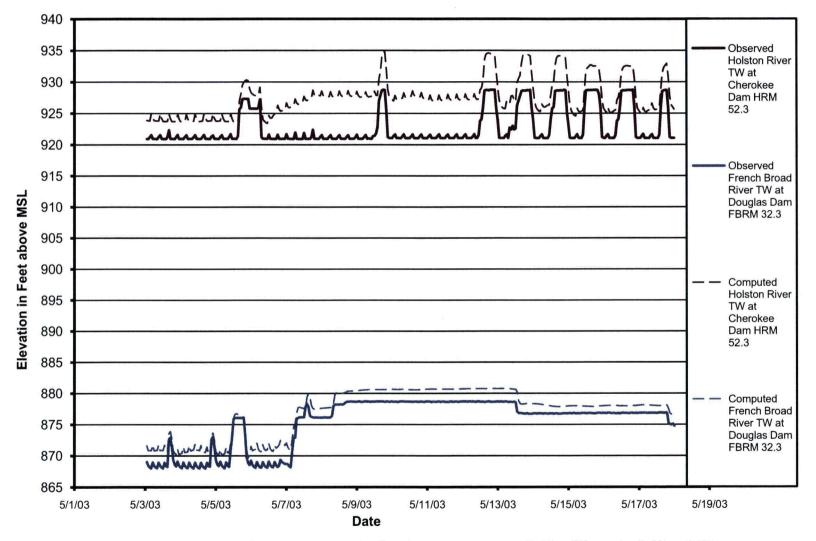


Figure 38: Observed and Simulated Stage Hydrographs for the Fort Loudoun-Tellico Watershed, May 2003

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 68
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

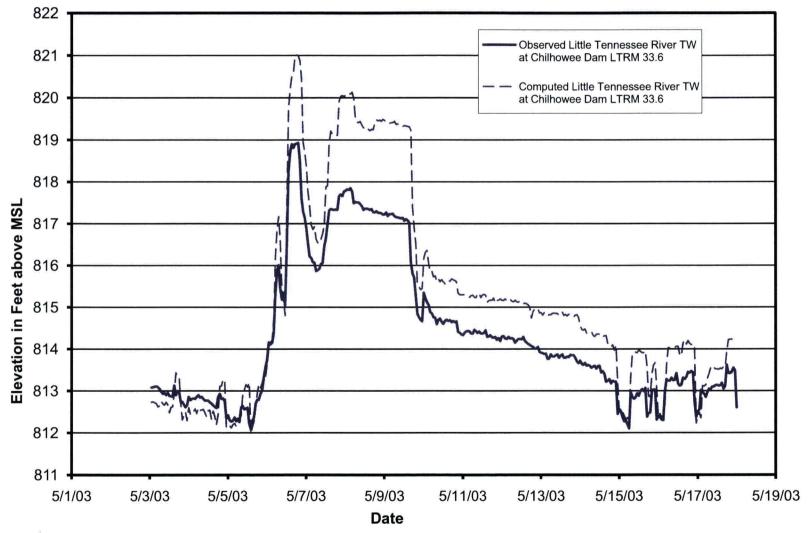


Figure 39: Observed and Simulated Stage Hydrographs for the Fort Loudoun-Tellico Watershed, May 2003

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 69
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	HLSS
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

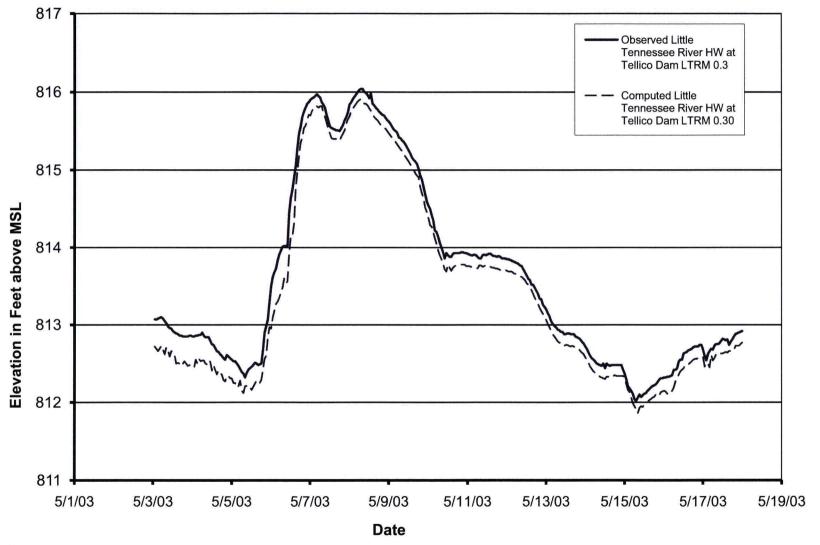


Figure 40: Observed and Simulated Stage Hydrographs for the Fort Loudoun-Tellico Watershed, May 2003

TVA			
Calculation No. CDQ000020080069	Rev: 2	Plant:	Page: 70
Subject: Fort Loudoun-Tellico Da	Prepared	HLSS	
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

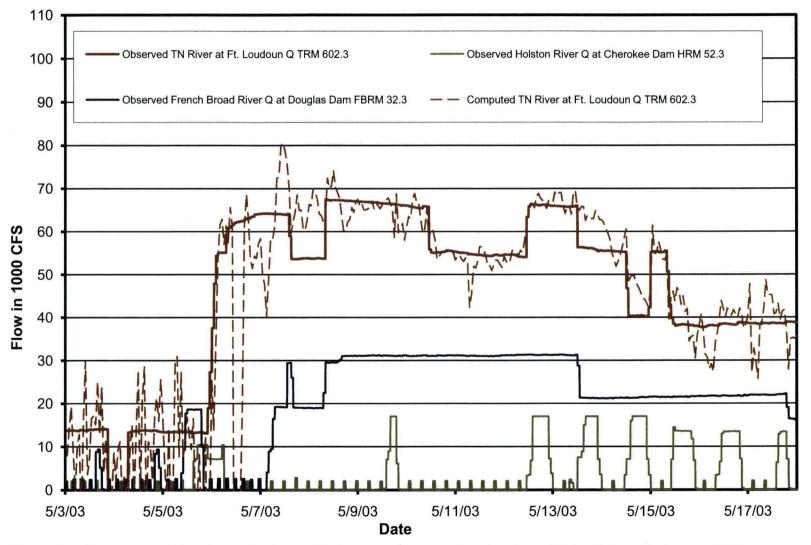


Figure 41: Observed and Simulated Discharge Hydrographs for the Fort Loudoun-Tellico Watershed, May 2003

TVA			
Calculation No. CDQ000020080069	Rev: 1	Plant:	Page: 71
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	JAW
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

Table 28: Validated Six-hour Unit Hydrograph for Subbasin 8, French Broad Local.

Ordinate		
No.	t, hours	Q (cfs)
1	0	0
2	6	8,600
3	12	6,000
4	18	3,100
5	24	1,800
6	30	1,300
. 7	36	700
8	42	400
9	48	220
10	54	120
11	60	0

TVA			
Calculation No. CDQ000020080069	Rev: 1	Plant:	Page: 72
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	JAW
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

Table 29: Validated Six-hour Unit Hydrograph for Subbasin 16, Holston River Local, Cherokee Dam to Knoxville Gage

Ordinate		
No.	t, hours	Q, cfs
1	0	0
2	3	5,200
3	6	7,800
4 ·	9	8,400
5	12	7,800
6	15	6,700
7	18	5,200
8	21	3,600
9	24	2,400
10	27	2,000
11	30	1,600
12	33	1,200
13	36	1,000
14	39	800
15	42	780
16	45	760
17	48	.740
18	51	720
19	54	700
20	57	640
21	60	600
22	63	540
23	66	460
24	69	420
25	72	400
26	75	380
27	78	350
28	81	260
29	84	220
30	87	140
31	90	100
32	93	40
33	96	0

TVA

Calculation No. CDQ000020080069		Plant:	Page: 73
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	JAW
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	BH

 Table 30: Validated Four-hour Unit Hydrograph for Subbasin 17, Little River.

Ordinate No.	t, hours	Q, cfs		Ordinate No.	t, hours	Q, cfs
1	0	0		25	48	1400
2	2	50		26	50	1225
3	4	102		27	52	1100
4	6	1200		28	- 54	1000
5	8	3021		29	56	950
6	10	5000		30	58	850
7	12	8025		31	60	775
8	14	10500		32	62	700
9	16	11726		33	64	650
10 .	18	11000		234	66	600
11	20	9213		35	68	550
12	22	7500		36	70	500
13	24	6245	,	37	72	450
14	26	5500		38	74	400
15	28	4876		39	76	350
16	30	4350		40	78	300
17	32	3950		41	80	250
18	34	3500		42	82	225
19	36	3100		43	84	200
20	38	2700		44	86	150
21	40	2350		45	88	100
22	42	2100		46	90	75
23	44	1800		47	92	50
24	46	1600	· ·	48	94	25
			' '	49	96	0

TVA

Calculation No. CDQ000020080069 Re		Plant:	Page: 74
Subject: Fort Loudoun-Tellico Dam Local Watershed		Prepared	JAW
(Subbasins 8, 16, 17, 18, and 24) Unit Hydrograph Validation		Checked	вн

 Table 31: Validated Six-hour Unit Hydrograph for Subbasin 18, Fort Loudoun Local.

Ordinate		
No.	<i>t</i> , hours	Q, cfs
1	0	0
2	3	8500
3.	6	20000
4	. 9	17000
5	12	11500
6	15	5000
7	18	2000
8	21	1700
9	24	1487
10	27	1100
11	30	[~] 861
12	33 -	400
13	36	0

Table 32: Validated Six-hour Unit Hydrograph for Subbasin 24, Little Tennessee River Local, Chilhowee to Tellico Dam.

	· · · · · · · · · · · · · · · · · · ·	Post-
i		Tellico
		Dam
Ordinate		
no.	t, hours	Q, cfs
1	0	0
2	6	9,000
3	12	22,600
4	18	15,500
5	24	9,500
6	30	6,500
7	36	4,000
8	42	2,000
9	48	900
10	54	0