WAAP-6997, Revision 1

Westinghouse Non-Proprietary Class 3.

PWROG Project ISI Interval Extension for Non-Alloy 82/182 RV Nozzle Welds

Nathan Palm Bruce Bishop Stephen Parker

Paul Stevenson

Westinghouse

©2010 Westinghouse Electric Company LLC All Rights Reserved

Meeting Agenda

Introduction	1:00
 Review of Project Objectives 	1:05
 Recap of June 22nd Meeting 	1:15
 Objectives for this Meeting 	1:30
 Results of Change-in-Failure Frequency Calculations 	1:40
 Results of Pilot Plant Evaluations 	2:15
 Proposed Resolution of NRC Concerns Raised at Last Meeting 	2:50
 Plant Specific Implementation 	3:15
 Summary and Conclusions 	3:35
 Future PWROG Actions 	3:45
 Additional Questions 	3:50
Adjourn	4:00

Introduction and Review of Project Objectives

- PWROG has a current effort to develop a technical basis to extend the ISI interval for Non-Alloy 82/182 RV nozzles
 - Includes primary inlet, outlet, and SI nozzles
 - Does not include BMI, HV, and CRDM/CEDM nozzles
- Objectives of the PWROG effort include:
 - Develop a technical basis for ISI interval extension for similar metal (Category B-J) and dissimilar metal (Category B-F) welds that do not contain Alloy 82/182
 - Develop a framework for implementing the extended ISI interval
 - Submit topical report for NRC review and approval

Recap of June 22 Meeting - Background

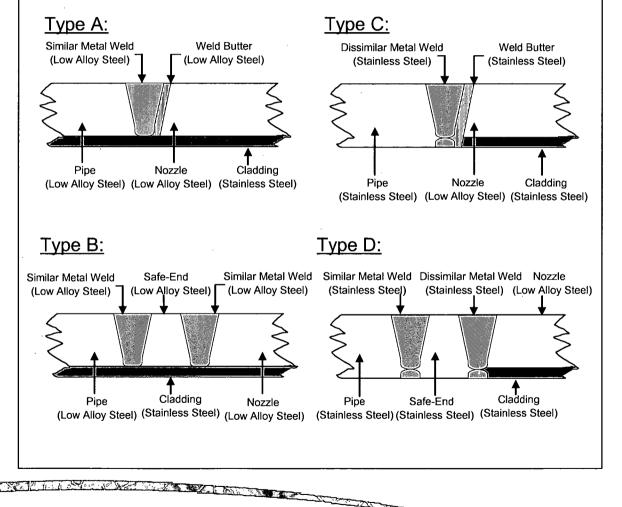
- Meeting held to inform Staff of PWROG efforts
- Discussed motivation and benefits associated with extending the ISI interval
 - Consistent with extended interval for RV
 - Savings in cost, outage time, and dose
 - May eliminate need to pull core barrel
- Reviewed service experience for these welds
 - Survey conducted of participating PWR plants

WAAP-6997, Revision 1

- Very few instances of recordable indications
- No known reportable indications

stinghouse

Recap of June 22 Meeting – Technical Approach



- Nozzle welds can be categorized into 4 types
 - Similar Metal, with and without a safe-end
 - Dissimilar Metal, with and without a safe-end
- Use Westinghouse SRRA Code to evaluate change in failure frequency associated with extension in ISI interval for each weld type
 - Proposed SRRA inputs and basis discussed
- Compare change-in-risk to R.G. 1.174 criteria
- Evaluate effect on risk-informed ISI program (if applicable)

Recap of Nozzle / Weld Types

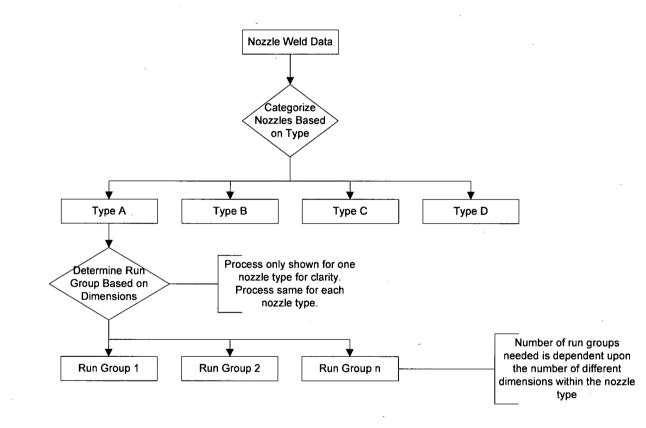

WAAP-6997, Revision 1

6

Objectives for this Meeting

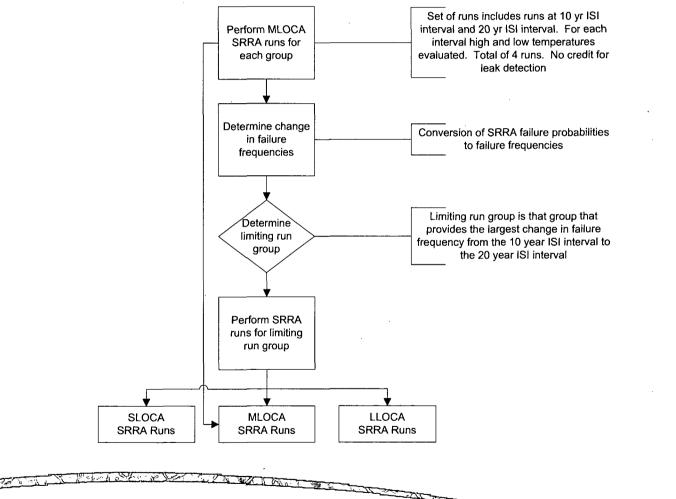
- Provide an update on the status of the PWROG effort
- Present the results of the detailed change-in-failure frequency calculations
- Present the results of the pilot plant calculations demonstrating the evaluation of effects on RI-ISI programs
- Present proposed resolution of NRC comments from last meeting
- Discuss plant specific implementation plan and future PWROG actions
- Obtain NRC feedback

Change-in-Failure Frequency Calculations

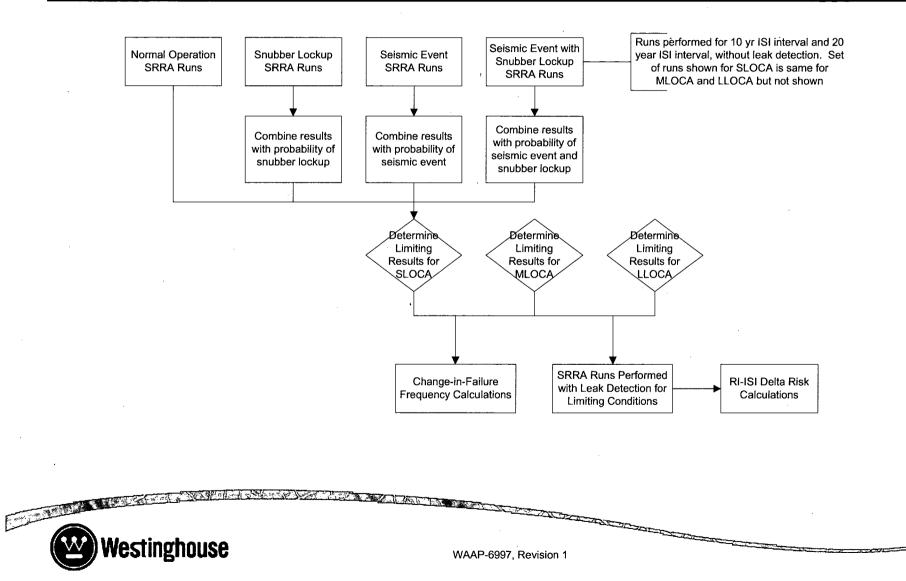


- Geometries and operating conditions reviewed for all plants participating in PWROG effort
- Sensitivity runs performed to determine limiting configurations / conditions for each weld/nozzle type
- Full set of runs performed for limiting configuration
 - Seismic Loading
 - Elevated fatigue stress due to snubber lock-up
 - Seismic loading with failure of snubbers to restrain motion
- Bounding change-in-failure frequency values determined for 40 and 60 years of operation and three LOCA leak rates (break sizes)

Change-in-Failure Frequency Calculations – Process



Change-in-Failure Frequency Calculations – Process (cont.)



WAAP-6997, Revision 1

10

Change-in-Failure Frequency Calculations – Process (cont.)

Change-in-Failure Frequency Calculations – Results

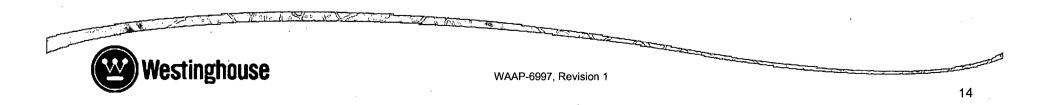
Type A – B&W Similar Metal Bounding Change in Failure Frequencies / year					
LOCA Size Without With LOCA Size Detection Detection					
Outlet	SLOCA	1.36E-09	5.65E-11		
Nozzle – 40 Year	MLOCA	3.77E-11	1.75E-11		
Results	LLOCA	1.74E-11	4.60E-12		
Inlet	SLOCA	7.88E-10	3.06E-11		
Nozzle – 40 Year	MLOCA	1.66E-11	3.36E-12		
Results	LLOCA	1.76E-11	3.10E-12		

Type B – CE Similar Metal Bounding Change in Failure Frequencies / year					
LOCA Size Without Leak Detection Detection					
Outlet	SLOCA	1.23E-09	5.66E-11		
Nozzle – 40 Year	MLOĆA	4.13E-11	2.19E-11		
Results	LLOCA	4.13E-11	2.19E-11		
Inlet SLOCA 1.29E-09 9.72					
Nozzle – 40 Year	MLOCA	4.02E-11	1.49E-11		
Results	LLOCA	1.99E-11	3.28E-12		

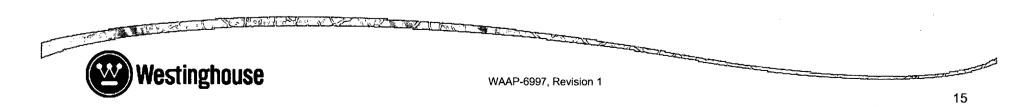
Change-in-Failure Frequency Calculations – Results (cont.)

Type C – Westinghouse Dissimilar Metal – No Safe-End Bounding Change in Failure Frequencies / year						
LOCA Size Without With LOCA Size Detection Detection						
Outlet	SLOCA	6.79E-08	4.58E-09			
Nozzle – 40 Year	MLOCA	6.78E-08	3.20E-09			
Results	LLOCA	1.94E-07	3.20E-09			
Inlet	SLOCA	7.54E-08	3.56E-09			
Nozzle – 40 Year	MLOCA	7.27E-08	1.53E-09			
Results	LLOCA	8.15E-08	1.40E-09			

estinghouse

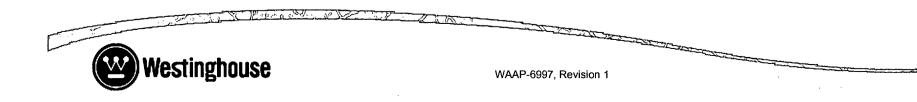

Type D – Westinghouse Dissimilar Metal – Safe-End Bounding Change in Failure Frequencies / year					
LOCA Size Detection Detection					
Outlet	SLOCA	6.09E-08	9.45E-09		
Nozzle – 40 Year	MLOCA	7.09E-08	8.06E-09		
Results	LLOCA	7.03E-08	8.03E-09		
Inlet	SLOCA	9.80E-08	3.98E-08		
Nozzle – 40 Year	MLOCA	8.09E-08	3.20E-08		
Results	LLOCA	8.05E-08	3.20E-08		

WAAP-6997, Revision 1


Pilot Plant Evaluations

- Two pilot plants evaluated for acceptability of extension in ISI interval and effects on piping risk-informed inservice inspection program:
 - Three Mile Island Unit 1 EPRI Piping RI-ISI Program Type A
 - Beaver Valley Unit 1 PWROG Piping RI-ISI Program Type C
- Both plants have been evaluated for implementation of the RV ISI interval extension
 - Three Mile Island Unit 1 Individual plant submittal
 - Beaver Valley Unit 1 WCAP-16168 pilot plant
- Effect on RI-ISI program is in the ∆Risk Evaluation

Three Mile Island Unit 1 – Change-in-Risk Regulatory Evaluation


- Bounding Change-in-Failure Frequencies combined with TMI-1 CCDP and CLERP values for all LOCA sizes
 - 40 year values used
 - No credit for leak detection
- \triangle CDF and \triangle LERF values summed for each LOCA size and multiplied by total number of nozzles (details on next slide)
 - $\Delta CDF = 1.94E-11 / year$
 - Δ LERF = 2.15E-12 / year
- △CDF and △LERF values meet guidelines of R.G. 1.174 for an acceptably small change-in-risk

TMI Unit 1 – Change-in-Risk Regulatory Evaluation – Results

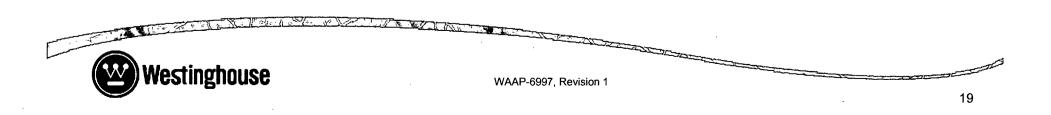
Change-in-Risk Calculations – Three Mile Island Unit 1					
Break Size	Bounding Change in Failure Frequency (No Leak Detection)	CCDP	∆CDF	CLERP	۵LERF
· ·		Outlet Nozzle	<u> </u>		
SLOCA	1.36E-09	1.83E-03	2.49E-12	2.53E-04	3.44E-13
MLOCA	3.77E-11	2.23E-03	8.41E-14	2.55E-04	9.61E-15
LLOCA	1.74E-11	3.93E-02	6.84E-13	8.06E-04	1.40E-14
# of Outlet Nozzles	2	Total ∆CDF	6.51E-12	Total ∆LERF	7.35E-13
		Inlet Nozzle	<u> </u>	•	
SLOCA	7.88E-10	1.83E-03	2.36E-12	2.53E-04	3.26E-13
MLOCA	1.66E-11	2.23E-03	8.96E-14	2.55E-04	1.03E-14
LLOCA	1.76E-11	3.93E-02	7.82E-13	8.06E-04	1.60E-14
# of Inlet Nozzles	4	Total ∆CDF	1.29E-11	Total ∆LERF	1.41E-12
All Nozzles					
Total Chan	Total Change-in-Risk ResultsTotal △CDF1.94E-11Total △LERF2.15E-12				

16

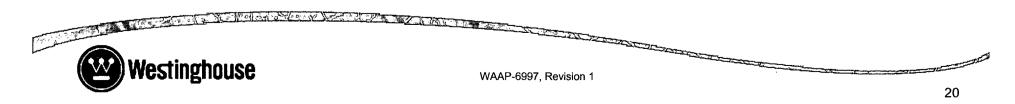
TMI Unit 1 – Δ Risk Evaluation Process for RI-ISI Program

- EPRI RI-ISI Method allows 4 different change-in-risk methods
 - Qualitative
 - Bounding without credit for increase in POD
 - Bounding with credit for increase in POD
 - Markov Method
- TMI-1 RI-ISI program used the Markov Method
- Two methods evaluated for effect of interval extension
 - Markov Method
 - Additive with Bounding change-in-failure frequencies

TMI Unit 1 – RI-ISI Program ∆Risk Evaluation – Markov Model


- 10-yr and 20-yr ISI effectiveness factors calculated for RV nozzle welds
- Change-in-risk for ISI interval extension calculated using difference in effectiveness factors
- Change-in-risk for ISI interval extension added to RC system change-in-risk for RI-ISI (details on next slide)
 - $\Delta CDF = 7.58E-09 / year$
 - ∆LERF = 1.24E-09 / year
- RC system change-in-risk values satisfy requirements of EPRI RI-ISI TR (∆CDF≤1E-7/yr, ∆LERF≤1E-8/yr)

TMI Unit 1 – RI-ISI Program ∆Risk Evaluation – Markov Model – Results

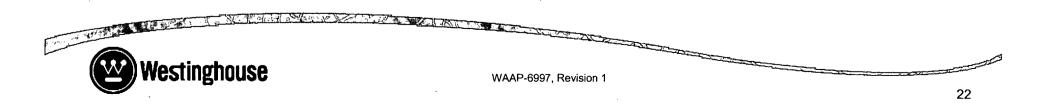

	· · · · ·
$\Delta CDF = \lambda_f P_I \langle R F \rangle (\Delta I) CCDP \text{(per nozzle)}$	1.40E-10 / yr
$\Delta LERF = \lambda_f P_I \langle R F \rangle (\Delta I) CLERP \text{ (per nozzle)}$	1.94E-11 / yr
Number of RV Nozzles	6
Total Nozzle ∆CDF	8.41E-10 / yr
Total Nozzle ∆LERF	1.16E-10 / yr
RC System ∆CDF from RI-ISI	6.74E-09 / yr
RC System ∆LERF from RI-ISI	1.12E-09 / yr
New RC System ∆CDF	7.58E-09 / yr
New RC System ∆LERF	1.24E-09 / yr

TMI Unit 1 – RI-ISI Program ∆Risk Evaluation – Additive Method

- \triangle CDF and \triangle LERF determined for all nozzles
 - Similar to regulatory change-in-risk evaluation
 - Credit for leak detection
- Total ∆Risk for nozzle ISI interval extension added to RC system and total plant ∆Risk from RI-ISI program element selection (details on next slide)
 - $\Delta CDF = 6.74E-09 / year$
 - ∆LERF = 1.12E-09 / year
- RC system ∆Risk values satisfy requirements of EPRI Piping RI-ISI program topical report

TMI Unit 1 – RI-ISI Program ∆Risk Evaluation – Additive Method – Results

- -	∆CDF / yr	∆LERF / yr
Nozzle Change-in-Risk Results	4.31E-13	5.96E-14
RC System Change-in-Risk	6.74E-09	1.12E-09
New RC System Change-in-Risk	6.74E-09	1.12E-09
Plant Change-in-Risk	4.08E-08	5.36E-09
New RC Plant Change-in-Risk	4.08E-08	5.36E-09


WAAP-6997, Revision 1

21

Beaver Valley Unit 1 – Change-in-Risk Regulatory Evaluation

- Bounding Change-in-Failure Frequencies combined with BV1 CCDP and CLERP values for all LOCA sizes
 - 40 year values used
 - No credit for leak detection
- △CDF and △LERF values summed for each LOCA size and multiplied by total number of nozzles (details on next slide)
 - $\Delta CDF = 2.53E-09 / year$
 - Δ LERF = 6.37E-14 / year
- △CDF and △LERF values meet guidelines of R.G. 1.174 for an acceptably small change-in-risk

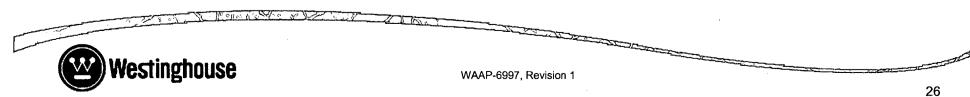
Beaver Valley Unit 1 – Change-in-Risk Regulatory Evaluation – Results

	Change-in-Risk Calculations – Beaver Valley Unit 1					
Break Size	Bounding Change in Failure Frequency (No Leak Detection) / year	CCDP	∆CDF / year	CLERP	∆LERF / year	
		Outlet Nozz	les			
SLOCA	6.79E-08	1.38E-05	9.37E-13	7.61E-12	5.16E-19	
MLOCA	6.78E-08	1.68E-03	1.14E-10	4.70E-08	3.18E-15	
LLOCA	1.94E-07	2.15E-03	4.18E-10	5.30E-08	1.03E-14	
# of Outlet Nozzles	3	Total ∆CDF	1.60E-09	Total ∆LERF	4.05E-14	
		Inlet Nozzl	es			
SLOCA	7.54E-08	1.93E-04	1.46E-11	2.90E-10	2.19E-17	
MLOCA	7.27E-08	1.68E-03	1.22E-10	4.70E-08	3.42E-15	
LLOCA	8.15E-08	2.15E-03	1.75E-10	5.30E-08	4.32E-15	
# of Inlet Nozzles	3	Total ∆CDF	9.36E-10	Total ∆LERF	2.33E-14	
	All Nozzles					
Total Change-in-Risk ResultsTotal \(\Delta\)CDF2.53E-09Total \(\Delta\)LERF6.37E-14						

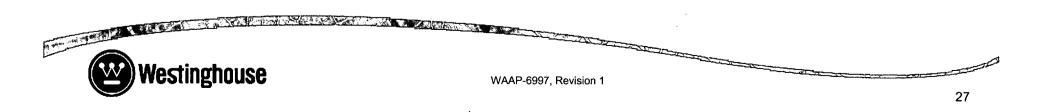
Beaver Valley Unit $1 - \Delta Risk$ Evaluation Process for RI-ISI Program

- \triangle CDF and \triangle LERF determined for all nozzles
 - Similar to regulatory change-in-risk evaluation
 - Credit for leak detection
- Total change-in-risk for nozzle ISI interval extension added to RC system and total plant ∆Risk from RI-ISI program element selection.
- Total change-in-risk compared to plant and system criteria for acceptable ∆Risk

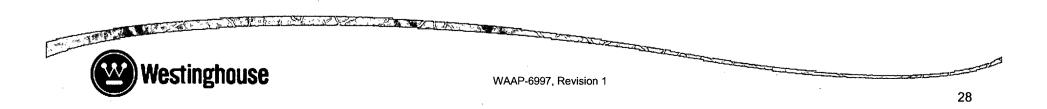
Beaver Valley Unit 1 – RI-ISI Program ∆Risk Evaluation – Results


Effect on Beaver Valley RI-ISI Program					
		Beaver Valley Unit 1 with Operator Action		Beaver Valley Unit 1 without Operator Action	
	$\triangle CDF / yr$ $\triangle LERF / yr$ $\triangle CDF / yr$			∆LERF / yr	
RC System (Existing RI-ISI Program)	-2.58E-13	4.52E-19	-2.58E-13	4.52E-19	
Additional Risk from ISI Int. Extension	5.58E-11	1.40E-15	5.58E-11	1.40E-15	
Total RC System Change-in-Risk	5.55E-11	1.40E-15	5.55E-11	1.40E-15	
Acceptable System Change-in-Risk	0.0E+00	1.0E-09	0.0E+00	1.0E-09	
Total Plant (Existing RI-ISI Program)	-3.94E-11	-7.88E-13	-2.02E-10	-9.36E-13	
Additional Risk from ISI Int. Extension	5.58E-11	1.40E-15	5.58E-11	1.40E-15	
Total Plant Change-in-Risk	1.64E-11	-7.87E-13	-1.46E-10	-9.35E-13	
Acceptable Total Change-in-Risk	0.0E+00	0.0E+00	0.0E+00	0.0E+00	

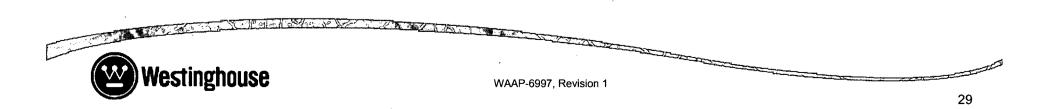
Beaver Valley Unit 1 – RI-ISI Program **∆Risk Evaluation**


- For its first risk-informed application, NRC requested the PWROG method for piping ISI to be risk neutral.
 - For the pilot plant application in WCAP-14572, Revision 1-NP-A, risk neutral was conservatively set as $\Delta Risk \leq 0.0$.
 - However, this was not required in the subsequent versions of Regulatory Guides 1.174 and 1.178 for RI applications.
- Later NRC approved RI-ISI applications/methodologies defined risk neutral to be consistent with current calculation capabilities as $\triangle CDF \le 1E$ -7/yr and $\triangle LERF \le 1E$ -8/yr per system.
- Beaver Valley Unit 1 satisfies these ΔRisk requirements with no additional examinations that would increase man-REM exposure levels.

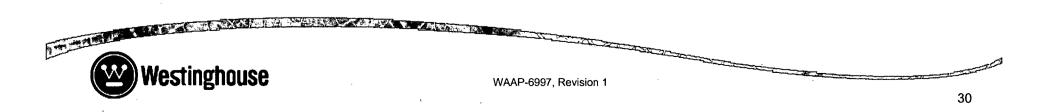
Proposed Resolution of NRC Concerns Raised at Last Meeting


- Embedded Flaws / Flaw Distributions
- Inspection Scheduling / Distribution
- Probability of Detection
- Cast Austenitic Stainless Steel

Embedded Flaws \ Flaw Distribution


- SRRA Code considers surface flaws only
- Based on flaw density and weld sizes, one surface flaw considered per each weld
- Deterministic analyses, performed in accordance with ASME Section XI, Nonmandatory Appendices A and C, have shown that growth of embedded flaws is insignificant
- ISI results should be reviewed to confirm that no more than 1 surface flaw is present in each weld

Inspection Scheduling / Distribution


- RV ISI interval extension plans were provided to NRC by PWROG (OG-06-356 & OG-09-454)
- RV nozzle exams will be performed at same time as RV ISI
- 31 Plants with Alloy 82/182 welds can not use ISI interval extension for nozzles
- Separate implementation plan is not needed to ensure a uniform distribution of RV nozzle inspections requested by NRC

Probability of Detection (POD)

- POD used in SRRA calculations for RV nozzle welds is consistent with that used for PWROG RI-ISI applications for ultrasonic (UT)
- Lower POD = Lower ∆Risk, Higher POD = Higher ∆Risk for regulatory evaluations (R.G. 1.174)
- For piping RI-ISI program ∆Risk evaluations, POD should be consistent
- WCAP will include results of sensitivity studies

Cast Austenitic Stainless Steel (CASS)

- Only applicable to Type C and D nozzles
- No specific considerations made for CASS materials in SRRA runs for failure probabilities without ISI
- Low POD issues exist for CASS regardless of inspection interval (ASME XI 10 years or PWROG 20 years)
- Assuming a higher POD results in a larger calculated change-in-failure frequency and ∆Risk
- Deterministic analyses show that even large flaws are unlikely to grow to critical dimensions in 20+ years

Plant Specific Implementation Plan

- No plant specific SRRA calculations Bounding change-infailure frequency values would be used instead
- Plant specific CCDP and CLERP values would be used
- ISI results should be reviewed to confirm that no more than 1 surface flaw is present in each weld
- Plants would provide results of risk calculations similar to those shown for pilot plants
- Submit relief request, revise existing relief request, or implement through update to RI-ISI program

Summary and Conclusions

- Bounding change-in-failure frequencies have been calculated for each nozzle / weld type and LOCA sizes for both 40 and 60 years of operation
- Pilot plant calculations show that R.G. 1.174 change-in-risk guidelines are satisfied
- Piping RI-ISI program requirements may require additional piping inspections to meet respective ∆Risk requirements
- NRC comments from last meeting have been considered and accounted for in pilot plant applications
- Proposed plant-specific implementation plan is simple and straight-forward for PWROG utilities to use and NRC to review

