Attachment 02.04.03-08Q TVA letter dated February 2, 2010 RAI Response

ASSOCIATED ATTACHMENTS/ENCLOSURES:

Attachment 02.04.03-8Q:

. 4 . 64

.0 ≈s ÷

Dam Rating Curves, Nottely

(106 Pages including Cover Sheet)

NPG CALCULATION COVERSHEET/CCRIS UPDATE

Page 1

REV 0 EDMS/			:	EDMS T	YPE: (nuclear)	EDMS ACCE	ESSION NO (1 0 9 1	VA for REV. 230	o) 0 2 8	
Calc Title: I	Dam Rat	ing Curv	e, Nottely				N les			
CALC ID	TYPE	ORG	PLANT	BRANCH	<u>I NUMBER</u>			CUR REV	NEW REV	REVISION APPLICABILITY
CURRENT	CN	NUC	GEN	CEB	CDQ000020080016		1	2	Entire calc 🛛 Selected pages 🔲	
NEW				•						
ACTION NEW DELETE DELETE DUPLICATE DUPLICATE CCRIS UPDATE ONLY DELETE CCRIS Changes (For calc revision, CC been reviewed and no CCRIS changes required)								CCRIS Changes		
UNITS SYSTEMS UNIDS										
N/A N/A DCN.EDC.N/A APPLICABLE DESIGN DOCUMENT(S) CLASSIFICATION CLASSIFICATION									CLASSIFICATION E	
QUALITY RELATED? Yes 🛛 No [SAFETY ATED? (If QR = yes) es ⊠ No	yes; <u>A</u> Ye	NVERIFIED SSUMPTIO Is D No D	D <u>SPE</u> N <u>AND/O</u>	CIAL REQ R LIMITING Yes 🗌	UIREMENTS CONDITION No	S? DESIG ATTAC Yes [N OUTPUT CHMENT?] No ⊠	SAR/TS and/or ISFSI SAR/CoC AFFECTED Yes No 🛛
PREPARER ID J. B. Mauter) F 2	REPAREF	R PHONE; N 74	D PREP	ARING ORG (CEB	BRANCH)	VERIFICAT Design Rev	ION METHO lew	D <u>NEW M</u> □ Yes	ETHOD OF ANALYSIS X No
PREPARER S Janie B. Maute	IGNATURI	a BU	uds	12	date 14/09	CHECKER Andrew C.		CM		12/14/09
VERIFIER SIG Andrew C. Mur		- 09.	M	12/	DATE 11/09	APPROVAL	L SIGNATURE	L R: J	ete	DATE 12/25/09
STATEMENT (Headwater r flood-routing total dam di Nottely Dam	OF PROBL rating cul g calculat scharge h.	EM/ABST rves for 2 tions for as a fund	RACT 20:dams-a the Tenne stion of he	re require ssee Rive adwater e	ed as inputs er and tribut elevation. T	to TVA's taries. Th his calcul	SOCH and he headwat lation prese	TRBROU er rating cu	TE models rves for ea adwater rat	, which perform ch dam provide ing curve for
This calcula ability to retr	tion cont ieve the	ains elec electroni	tronic atta c attachm	ichments ents.	and must b	e stored	in EDMS as	s an ADOBI	E .pdf file t	o maintain the
*EDCN 22404A (SQN), EDCN 54018A (WBN), EDCN Latër (BFN)										
MICROF	iche/efic ito edms ito edms ito edms	CHE AND DES AND RET AND RET	Yes No	ILATION T	HE NUMBER(O CALCULAT O:	S) ION LIBRAI	RY. ADD	RESS: LP4D)-C	·····

Page 1 of 2

L58 081211 801

TVAN CALCULATION COVERSHEET/CCRIS UPDATE

Page 1a

REV 0 EDMS/RIMS NO.					EDMS TYPE: EDMS ACCE			ESSION NO (N/A for REV. 0)						
L5°	30	81	21	8	301		Calculat	lons (nu	iclear)	N/A				*
Calc Title). Da	m Rat	ing Cu	rve	s, Nottel	Y.				· · ·				•
CALC ID		TYPE	ORC	È.	<u>PLANT</u>	BRANCH		N	UMBEF	l	CUR REV NEW REV		EV	REVISION APPLICABILITY
CURREN	т	CN	NUC									Entire calc		
NEW		CN	NUC	:	GEN	CEB	CDQ000020080016 N/A 0							
ACTION	NEW	ISION	Ø	DE RE	LETE NAME		ERSEDE ICATE	8	CCRIS (Verific Regula	i UPDATE ON ar Approval Sig ed)	LY 🗋 Inatures Not		No (For bee CC	CCRIS Changes [] r calc revision, CCRIS n reviewed and no RIS changes required)
UNITS		SYSTI N/	EMS						<u>S</u>	•				
DCN.EDC.	N/A			AP N/	PUCABLE	DESIGN DO	CUMEN	T(S)						CLASSIFICATION E
		SAFE (If) Ye	ETY RE res, QR	LAT ≕ye No[ED7 <u>1</u> #3) A		N AN	SPECI D/OR L	AL REQ		57 <u>DESIG</u> S7 <u>ATTA</u> Yes [T.	SAR/TS and/or ISFSI SAR/CoC AFFECTED Yes No X
PREPARE	RID	P	REPAR	ER	PHONE N	D. PREPA		RG (BR	ANCH)		ION METHOD		/ ME	THOD OF ANALYSIS
PREPARE	ry Rysigi	VATURE	00-220				DATE	Сн	ECKER	SIGNATURE			T	DATE
ha	(7_	And	ce	6 T.T.	sley 12/	19/08	a	nwh	Mudr	JANIE 8.	MAUTE	R	12/9/00
ANORO	91974 N.C.	MURE				p./	9/68				eala	*		12/10/08
STATEMEN	VT OF	PROBL	EM/AB	STR	ACT		•							
Headwat flood-rou total dam Nottely D	er rai ting c disc am.	ing cu elculat harge	rves fo tions fo as a ft	or 2 or ti Inci	0 dams a he Tenne ion of he	re require Issee Rive adwaler e	d as inp ar and tr levation	ibuts to ibutari 1. This	TVA's ies. Ti s calcu	SOCH and ne headwat lation prese	TRBROU er rating cu ints the hea	TE mode rves for idwater	els, eac rati	which perform th dam provide ng curve for
This calc ability to	ulatio retrie	n cont ve the	ains e electr	lect onic	ronic atta c attachn	achments nents.	and mu	stbe	stored	in EDMS as	an ADOBI	E .pdf fil	e lo	maintain the
	~													
										·				
		· ·				•								
		HE/EFIC	AND D	Ye	S No ROY	FICH	IÉ NUMB	ER(S)					÷	
	DINTO	EDMS	AND R AND R	ETU	RN CALCL	ILATION TO	CALCUL	ATION	LIBRAF	IY. ADD	RESS: LP4D	-C		

TVA 40532 [07-2005]

NEDP-2-1 [07-08-2005]

TVAN CALCULATION COVERSHEET/CCRIS UPDATE

									,			Page 1	1b
REV 0 EDN	AS/R	IMS NO.				EDMS T	YPE:	EDMS	ACCE	SSION NO (İ	VA for REV. (<u>))</u>	Π
L58 08121	118	01				Calculations	(nuclear)	L	58	09	0210	5 0 0 2	
Calc Title	9: C	am Rat	ing Cu	rves, Nottel	ý								
CALC ID		TYPE	ORG	<u>PLANT</u>	BRANCH		NUMBER	<u>.</u>	1	CUR REV	NEW REV	REVISION APPLICABILITY	
CURREN	т	CN	NUC	GEN	CEB	B CDQ0000200			1	0	1	Entire calc 🔀 Selected pages]
NEW						NO CCRI					CODIO Chasana 17	_	
ACTION	NE RE	W. VISION	W DELETE SUPERSEDE CCRIS UPDATE ONLY Koralic revision, CCRIS VISION RENAME DUPLICATE (Verifier Approval Signatures Not Required) been reviewed and no CCRIS changes required)								l S d)		
UNITS		SYST	EMS			<u>U</u>	NIDS /A						
DCN,EDC,	N/A	N/		APPLICABLE	DESIGN D	OCUMENT(S				<u>, i constanta di</u>	<u></u>	CLASSIFICATION	<u>v</u>
N/A QUALI RELATE		I SAF	ETY RE yes, QR	N/A LATED? <u>I</u> = yes) <u>A</u> No.□ Y	JNVERIFIE SSUMPTIC	D SP DN AND/C			ENTS DITION	S? DESIC	NOUTPUT CHMENT?	SAR/TS and/or ISFS SAR/CoC AFFECTE Yes I No IX	SI. ED
PREPARE	RID		PREPAR	RER PHONE N	0 PREF	ARINGORG	(BRANCH)	VEF	RIFICAT	ION METHO	D NEW M	ETHOD OF ANALYSI	IS
A. T. Tinsle	эу	1	365-220	4418		CEB		Des	ign Rev	iew	C Yes	🖾 No	
PREPARE		GNATUR	EAnd	rey Tinel	P. 11	DATE	CHECKEF	SIGN/		- SARA	MARTWER	DATE 1-23-09	
VERIFIER	sig	NUTURE	n Jo	eV. Rey	ton 11.	DATE 23/09	APPROVA 0171109	L SIGN	IATURI	K.R. S	pates	DATE 2/13/09	,
STATEME	NT (OF PROB	LEM/AB	STRACT			Jal 1				- 'N	• •	•
Headwa flood-rou total dan	ter Iting n di	rating cu g calcula scharge	irves f ations i as a f	or 20 dams for the Tenn unction of h	are requi essee Riv eadwater	red as inpu ver and trib elevation.	ts to TVA utaries. 1 This calc	s SO(he he ulatio	CH an eadwa n pres	d TRBROU ter rating c ents the he	JTE model urves for e adwater ra	s, which perform ach dam provide ating curve for	
Nottely [Dan	1.					a						
This calc ability to	cula ret	tion cor	ntains e e elect	electronic at	tachment ments.	s and must	be stored	l in El	DMS a	is an ADOI	BE .pdf file	to maintain the	
*													
MIC	RO	ICHE/EF	ICHE	Yes 🗌 No	FIC	CHE NUMBER	R(S)						¢
	AD II AD II	NTO EDM	S AND	DESTROY RETURN CAL		TO CALCULA	TION LIBR	ARY.	AD	DRESS: LP4	D-C	·····	
	AD II	VIO EDM	5 AND	RETURN CAL	JULATION	10.	N 84.4 N. 1. 1.1.			<u> </u>			

NEDP-2-1 [07-08-2005]

NPG CALCULATION COVERSHEET/CCRIS UPDATE

ł

										Page	2
CALC ID	TYPE	<u>ORG</u>	PLANT	BRANCH	NUN	<u>/BER</u>		<u>REV</u>			
	CN	NUC	GEN	CEB	CDQ0000200	8001	.6	2			
ALTERNATE CALCULATION IDENTIFICATION											
				· · ·						,	
<u>BLDG</u>	<u>RO</u>	<u>om</u>	ELEV	COORD/AZIM	<u>FIRM</u> BWSC		Print Report	Yes 🗌			

CATEGORIES NA

KEY NOUNS (A-add, D-delete)

		KEY NOUN	<u>A/D</u>	KEY NOUN
	<u>(A/D)</u>			
Ì				

CROSS-REFERENCES (A-add, C-change, D-delete)

ACTION (A/C/D)	XREF CODE	XREF <u>TYPE</u>	XREF <u>PLANT</u>	XREF <u>BRANCH</u>	XREF <u>NUMBER</u>	XREF REV
A	Р	EN	WBN	CEB	54018	· · · · · ·
А	Р	EN	SQN	CEB	22404	
А	S	CN	GEN	СЕВ	CDQ000020080053	
			-			
					·	
						· · · · · · · · · · · · · · · · · · ·
					:	
CCRIS ONLY U Following are re	IPDATES: equired only wh	en making key	word/cross re	eference CCRIS up	dates and page 1 of form NEDP-2-1 is not i	included:
F	PREPARER SI	GNATURE		DATE	CHECKER SIGNATURE	DATE
PREPARER PH	IONE NO.			EDMS ACCESSIC	DN NO.	

·····	NPG CALCULATION RECORD OF REVISION
CALCULA	TION IDENTIFIER CDQ000020080016
Title	Dam Rating Curve, Nottely
Revision No.	DESCRIPTION OF REVISION
0	Initial issue
1	Revised Calculation to include Turbine Flow. Revised pages 1-11, 15, and 17-22. Revised Attachment 1. Added Attachments 7, 13, 16, and 22 (renumbered accordingly as necessary). 38 total pages after revision including R0 cover sheet as page 1a.
2	 This calculation was revised to address the following: PER 203951. The verification of the original calculation was completed by personnel who had not completed the required NEDP-7 Job Performance Record (JPR). A verification JPR is now in place for all personnel engaged in verification tasks. Checking includes only changes made in this revision as the checking of the calculation was not impacted by PER 203951. The verification is inclusive of work completed prior to this revision. PER 203872. Replace NEDP-2 forms on pages 1 through 6 with the forms from the NEDP-2 revision in effect at the time of calculation issuance. UVA 3.2.1. Removed and replaced with Assumption 3.1.4 based on Reference 2.8. UVA 3.2.2. Removed and replaced with Assumption 3.1.5 based on Reference 2.9. Add Assumption 3.1.6 based on Technical Justification. Updated Figure 8 and Table 5. Add Case 2 for gate failure without turbine flow. Add Figure 5 and Table 4. Significant changes to text in Revision 2 are marked with a right-hand margin revision bar. Administrative changes and typos are excluded. Pages Deleted: None Pages Deleted: None Pages Revised: 1 – 7, 9-19, 22-25 New Pages added: 1b, 5 Total hardcopy pages Revision 2: 42 Additional Comments: Rev. 1 coversheet is page 1b Added Verification Form as page 5 Updated page numbers Updated page numbers Updated page numbers

		Page 4
	NPG CALCULATION TABLE OF CONTENTS	· ·
Calculation Ic	lentifier: CDQ000020080016 Revision: 2	
	TABLE OF CONTENTS	
SECTION	TITLE	PAGE
	Coversheet	1
	Revision 0 Coversheet	· la
	Revision 1 Coversheet	1b
	CCRIS Update Sheet	2
	Revision Log	3
	Table of Contents	4
	Calculation Verification Form	5
	Computer Input Sheet	. 6
1	Purpose	7
2	References	9
3	Assumptions & Methodology	10
4	Design Input	18
5	Special Requirements/Limiting Conditions	19
6	Calculations	20
7	Results/Conclusions	24
Figures		
1	Nottely Dam, General Plan and Elevation (Ref. 2.1.1)	, 8
2	Case 1 Illustration	11
3	Nottely Spillway Discharge Curve	12
4	Transition Region – Not Touching Gate	13
5	Transition Region – Touching Gate	13
6	Case 3 Illustration	14
7	Linear Regression fit for Data in Table 1	15
8	Headwater Rating Curves	25
Tables		
1	Interpolation of C ₀ from Figure 257 of Reference 2.6	15
2	Case 1 Calculations	20
3	Case 1a Calculations	21
4	Case 2 Calculations	22
5	Headwater Rating Results	24
Attachments		
1	Nottely Tailwater Rating Curve (Ref. 2.7)	2 pages
2	Nottely Project Spillway Discharge Study, November 1942 (Ref. 2.4)	1 page
3	Nottely Spillway Discharge Study, April 2004 (Ref. 2.2)	2 pages
4	Figure 257 from Design of Small Dams (Ref. 2.6)	1 page
5	Hydraulic Design Chart 711 from USACE (Ref. 2.5)	1 page
6	Excerpt from Nottely Blue Book (Ref. 2.8)	1 page
7	Turbine Discharge (Ref. 2.8)	1 page
8	TVA Drawing # 10W200 (Ref. 2.1.1)	l page
9	TVA Drawing # 54W320 (Ref. 2.1.2)	1 page
10	TVA Drawing # 21E205-1 (Ref. 2.1.3)	1 page
11	TVA Drawing # 54N310 (Ref. 2.1.4)	1 page
12	TVA Drawing # 58N202 (Ref. 2.1.5)	1 page
13	TVA Drawing # 41W600 (Ref. 2.1.6)	1 page
14	Nottely DRC Calcs_Rev2.xls Spreadsheet for headwater rating curve calculations	N/A
15	Electronic Copy of Reference 2.2	11 pages
16	Electronic Copy of Reference 2.8	46 pages
17-22	High Resolution Electronic Copies of References 2.1.1 through 2.1.6	1 page each

TVA 40710 [10-2008]

NEDP-2-3 [10-20-2008]

		TION VERIF	ICATION FOR	RM		
alculation Identifier CD	Q000020080016		, 1	Revisi	on 2	
ethod of verification used: Design Review Alternate Calculation Qualification Test		Verifier And	drew C. Murr	Date	12/14/2009	
is calculation entitled, "Da volved a critical review of the ethodologies, and achieve puts for this calculation. The prisistent with the inputs prival valysis details found in the etailed comments and edi	am Rating Curve, Nottel the calculation to ensure as its intended purpose. The results of the calcula rovided. Backup files ar calculation. torial suggestions for the	y" was verifie ⇒ that it is cor The inputs v tion were rev id documents e changes m	ed by independ rect and comp were reviewed viewed and wo s were consul ade in this rev	dent design blete, uses a and determ ere found to ted as neces rision were to	review. The pro- ippropriate ined to be appro- be reasonable a ssary to verify da ransmitted to the	cess priate nd ta and author
Id reviewer by email along lote: The design verificatic e revision. This complete evision Log on Page 3.)	y with a marked up copy on of this calculation rev re-verification is perforr	or the calcul ision is for th ned to dispo	ation. e total calcula sition PER 20	tion, not just 3951 as des	the changes ma cribed in the Cal	ade in culatior
				· ·	·.	
			· .			
			• .			
			· ·	• • • • • •		

NEDP-2-4 [10-20-2008]

<u></u>							
	SI	NPG COM TORAGE II	PUTER INP	UT FILE ON SHEET	•		•
ocument CDQ0000:	20080016	-	Rev. 2	Plant: GEN			
ubject:	·						
am Rating Curve, Nott	ely						
	•						
Electronic storage	of the input files fo	or this calcu	lation is not	required. Comr	nents:		
nere are no electronic	input/output files a	associated	with this calo	ulation.			
			-				··· ,
Input files for this c below for each input	alculation have be	en stored e ved file reau	electronically	and sufficient in	dentifying info	rmation is ise)	provided
ese files are electroni	cally attached to t	he narent A	DOBE PDE	calculation file	All files are t	herefore st	tored in a
alterable medium and	l are retrievable th	rough the F		er for this calcul	ation		
		ilough the t			ation.	•	
				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -			
tachment 14: Nottely [DRC Calcs_Rev2.	xls Spread	sheet for he	adwater rating c	urve calculatio	ons	
tachment 14: Nottely [tachment 15: Electron	DRC Calcs_Rev2. ic Copy of Refere	xls Spread	sheet for he	adwater rating c	urve calculatio	JIIS	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere	xls Spread nce 2.2 nce 2.8	sheet for he	adwater rating c	urve calculatio	JIIS	
tachment 14: Nottely [tachment 15: Electron tachment 16: Electron tachments 17-22: Higt	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	JIIS	
tachment 14: Nottely [tachment 15: Electron tachment 16: Electron tachments 17-22: Higl	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he es of Refere	adwater rating connections and the second	urve calculatio gh 2.1.6	JIIS	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: Higl	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio gh 2.1.6	uns	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio gh 2.1.6		
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio gh 2.1.6	JNS	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio gh 2.1.6		
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	ກຣ	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	טווג שייי	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	טווג שייי	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	ມາຮ	
achment 14: Nottely I achment 15: Electron achment 16: Electron achments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	ມາຮ	· · · · · · · · · · · · · · · · · · ·
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	ມາຮ	· · · · · · · · · · · · · · · · · · ·
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xls Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	ກາຮ	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xIs Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	ມາເຮ	
achment 14: Nottely I achment 15: Electron achment 16: Electron achments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xIs Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	ມາຮ	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xIs Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	טונג שייים איז	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High Microfiche/eFiche	DRC Calcs_Rev2. ic Copy of Refere ic Copy of Refere h Resolution Elect	xIs Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	טווג 	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Reference ic Copy of Reference h Resolution Elect	xIs Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	JIIS	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Reference ic Copy of Reference h Resolution Elect	xIs Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	JIIS	
tachment 14: Nottely I tachment 15: Electron tachment 16: Electron tachments 17-22: High	DRC Calcs_Rev2. ic Copy of Reference ic Copy of Reference h Resolution Elect	xIs Spread nce 2.2 nce 2.8 tronic Copie	sheet for he	adwater rating c	urve calculatio	JIIS	

TVA			
Calculation No. CDQ000020080016	Rev: 2	Plant: GEN	Page: 7
Subject: Dam Rating Curve, Nottely	Prepd: JBM		
	Checked: A	CM	

1. Purpose

Headwater rating curves for twenty dams geographically located on the Tennessee River and its tributaries above the existing Bellefonte Nuclear facility are required as inputs to TVA's SOCH and TRBROUTE models, which perform flood-routing calculations. The headwater rating curves for each dam provide total dam discharge as a function of headwater elevation. This calculation presents the headwater rating curve for Nottely Dam.

TVA developed methods of analysis, procedures, and computer programs for determining design basis flood levels for nuclear plant sites in the 1970's. Determination of maximum flood levels included consideration of the most severe flood conditions that may be reasonably predicted to occur at a site as a result of both severe hydrometerological conditions and seismic activity. This process was followed to meet Nuclear Regulatory Guide 1.59. At that time, there were no computer programs available that would handle unsteady flow and dam failure analysis. As a result of this early work and method development TVA developed a runoff and stream course modeling process for the TVA reservoir system. This process provided a basis for currently licensed plants (Sequoyah Nuclear Plant, Watts Bar Nuclear Plant, and Browns Ferry Nuclear Plant). The Bellefonte Nuclear Plant (BLN) Units 1 & 2 Final Safety Analysis Report (FSAR) was also based on this process.

BLN Unit 3 & 4 Combined Operating License Application (COLA) was submitted using data and analysis that was determined for the original BLN FSAR (Unit 1 and Unit 2) and was documented in a 1998 reassessment. In 1998, the analysis process and documentation was brought under the nuclear quality assurance process for the first time. A quality assurance audit conducted by NRC staff in early 2007 raised several questions related to the documentation of past work regarding design basis flood level determinations. This calculation supports a portion of the effort to improve the design basis documentation.

Preparation of all calculations supporting nuclear development and licensing are subject to TVA Standard Department Procedure NEDP-2. This standard dictates the process in which calculations are prepared, checked, verified, stored, and cross referenced in a goal to provide the highest quality nuclear design input and output possible.

Figure 1 is a plan and elevation view of Nottely dam (Reference 2.1.1). For headwaters in the normal operating range, discharge is passed through the Unit 1 turbine or over the spillway. The spillway consists of fifty (50) vertical lift spillway gates, each with a rectangular gate to control discharge. During a PMF event, headwater rises above the normal operating range and discharge passes over the spillway crest assuming all fifty gates are in the up and stored configuration. As the headwater level increases, flow is un-restricted until the free flowing nappe first contacts the bottoms of the raised gates. The discharge under the gates is predicted by orifice flow equations. As the headwater elevation continues to rise, it will eventually flow over the raised gates. At this point discharge is occurring both above and below the raised gates. The dam embankment elevation was raised in 1988 to accommodate the PMF to ensure no overflow of the dam.

This headwater rating curve is based on the configuration of the Nottely Dam as defined on the current design drawings. The purpose of this calculation does not evaluate the design loading conditions for the dam.

Headwater rating curves are computed for three separate scenarios as follows:

Case 1 – Headwater Rating Curve with Turbine Flow

Case 1a – Headwater Rating Curve without Turbine Flow

Case 2 – Headwater Rating Curve with Gate Failure and without Turbine Flow

Previous revisions included curves with and without turbine flow in which the gates remained in the stored position. In Revision 2, a third scenario is added in which the gates fail in the open stored position, without turbine flow, due to a PMF event.

I VA Calculation No. CDQ000020080016	Rev: 1	Plant: GEN	Page: 8
Subject: Dam Rating Curve, Nottely	Prepd: A.T.	Tinsley	
	Checked: S	EM	

Figure 1 – Nottely Dam, General Plan and Elevation (Reference $2.\dot{1}.1$)

TVA

Calculation No. CDQ000020080016	Rev: 2	Plant: GEN	Page: 9
Subject: Dam Rating Curve, Nottely	Prepd: JBM		
	Checked: A	CM	

2. References

- 2.1. TVA Drawings
 - 2.1.1. 10W200, R18 (Attachments 8 and 17)
 - 2.1.2. 54W320, R3 (Attachments 9 and 18)
 - 2.1.3. 21E205-1, R4 (Attachments 10 and 19)
 - 2.1.4. 54N310, R1 (Attachments 11 and 20)
 - 2.1.5. 58N202, R1 (Attachments 12 and 21)
 - 2.1.6. 41W600, R7 (Attachments 13 and 22)
- 2.2. "Nottely Dam Spillway Discharge Tables", River Operations, Tennessee Valley Authority, 2004 (Attachments 3 and 15)
- **2.3.** "Hydraulic Design Criteria", USACE (U.S. Army Corp of Engineers), U. S. Army Engineer Waterways Experiment Station, Eighteenth Issue, Vicksburg, MS, 1998.
- 2.4. Tennessee Valley Authority. "Spillway Discharge Studies: Nottely Project Rating Curve." Engineering Lab Project Files. Box 53760 (K04K070). ASF 590. (Attachment 2)
- **2.5.** Hydraulic Design Chart 711 (HDC 711) from Reference 2.3 (Attachment 5).
- 2.6. U.S. Department of the Interior. "Design of Small Dams." U.S. Government Printing Office. 1977.
- **2.7.** TVA Files, Binder "River Scheduling: Tailwater Rating Curves by Project." (Attachment 1)
- 2.8. TVA Water Control Project Blue Book. Nottely Dam. July 2001. Page 41. (Attachments 6, 7 and 16)
- **2.9.** "Basis for Dam Spillway Gate/Outlet Open Configuration for Flood Analyses," Tennessee Valley Authority, May 29, 2009 (EDMS No. L58 090529 800).

			-
Calculation No. CDQ000020080016	Rev: 2	Plant: GEN	Page: 10
Subject: Dam Rating Curve, Nottely	Prepd: JBM		
	Checked: A	CM	

3. Assumptions & Methodology

The headwater rating curves developed in these calculations will be used in simulations of probable maximum flood events. Consequently, the rating curves have been calculated well above the normal operating range.

3.1. Assumptions

TTX 7 A

3.1.1. <u>Assumption</u>: The Unit 1 turbine will be operating during the PMF event for tailwater elevations of less than 1643 feet.

<u>Technical Justification</u>: The unit 1 turbine will be in operation until there is a technical reason to shut off the turbine. The elevation of the powerhouse and switchyard (Reference 2.1.1 and Reference 2.1.6) is lower than the anticipated tailwater levels shown in Attachment 1 (Reference 2.7). Therefore, the switchyard and powerhouse will be submerged whenever the tailwater levels exceed approximately 1643 feet. If the tailwater elevation is less than 1643 feet, the turbine will be assumed to be operating at a maximum sustainable discharge of 1800 cfs as indicated in Attachment 7.

- 3.1.2 <u>Assumption</u>: Tailwater does not affect spill discharge at Nottely. <u>Technical Justification</u>: See Attachment 1 for tailwater curve plot of discharge versus elevation which indicates that the maximum tailwater elevation would be much less than the spillways crest elevation of 1775.0 thereby not affecting the discharge.
- 3.1.3 <u>Assumption:</u> The tailwater rating curve provided as Attachment 1 is used in the evaluation of headwater rating curve calculations.

<u>Technical Justification</u>: This curve was produced by TVA's River Operations Flood Risk Group. The maximum estimated overflow presented in this calculation is 166,000 cfs which places the tailwater elevation at approximately 1666 feet. Since the crest elevation is located at approximately 1775 feet, there is a possibility for over 100 feet of error in the tailwater rating curve before it affects the overflow of the dam. Since a flood of this magnitude would be highly unlikely as well as incredibly destructive, it is assumed that the tailwater will have no effect on the overflow of the dam. Reference 2.1.1 also shows that the dam was designed for a maximum tailwater elevation of 1638.7 at a flow of 57,000 cfs, a minimum tailwater elevation of 1605.6 at no flow and a normal tailwater elevation of 1613.5 at a flow of 1730 cfs. These values correlate well with the curve and show that the model used to predict the tailwater curve is accurate enough to make this assumption.

3.1.4 <u>Assumption</u>: The embankments will not be overtopped during a PMF event.

<u>Technical Justification</u>: The dam safety modifications completed in the late 1980s were designed to ensure that the embankments will not be overtopped during a PMF event (Reference 2.8, relevant pages included in Attachment 6).

- 3.1.5 <u>Assumption</u>: All spillway gates will remain operable and will be set to the maximum openings specified in the spillway discharge tables. <u>Technical Justification</u>: For technical justification, see Reference 2.9, "Basis for Dam Spillway Gate/Outlet Open Configuration for Flood Analyses."
- 3.1.6 <u>Assumption</u>: The position of the Nottely spillway gates will not be significantly changed at headwater levels up to 1789.8 feet (transition point from free flow to orifice flow). The spillway gates will remain in place when the headwater level is at or below 1789.8 feet. The spillway gates' stability is indeterminate for water levels above elevation 1789.8 feet and the gates will be considered to fail (total washout).

<u>Technical Justification</u>: There are no structural evaluations that confirm the structural integrity of the spillway gates in their stored position. Headwater levels above this value results in water forces directly impacting the lower portion of the raised gate. In the fully raised stored position, only the lower rollers are in contact with the gate guides. At headwater levels at or above 1789.8 feet, the gate is in the flow path. The gate has been judged to be wedged at the lower roller within the guide, and any structural failure of the gate was judged to be bending; not a total washout of the gate. However, even if a total washout of the gate occurred, the remaining orifices that would allow flow through would represent only a minor increase in flow capacity from the calculated values, and would have discernable impact on downstream PMF levels. Once the water reaches the midpoint of the gate, the

TVA

Calculation No. CDQ000020080016	Rev: 2	Plant: GEN	Page: 11
Subject: Dam Rating Curve, Nottely	Prepd: JBM		
	Checked: A	CM	•

gate stresses increase significantly and it is uncertain the gates will remain in place. For conservatism, the gates will be considered to fail (total washout) when water elevations rise above 1789.08 feet on the gate (midpoint of fully raised stored gate), which corresponds to a headwater elevation of 1789.8 feet.

3.2 Unverified Assumptions (UVA)

None.

3.3 Methodology -- Discharge Equations

3.3.1 Case 1 – Free Flow through Spillways (1775'<H_W<H_T)

As water level rises and gates are opened, water will crest the spillway and flow as a weir flow as shown in Figure 2 above $H_w=1775$ '. This type of flow will continue until the water level reaches H_T . H_T is the height at which the nappe touches the bottoms of the raised gates and will be discussed further in Section 3.3.2.

Standard flow computations are not utilized for this scenario as a rating curve giving Q_f vs. Headwater Elevation is available from the TVA Spillway Discharge Study dated November 4, 1942 for the Nottely Project (Reference 2.4, Attachment 2). This free discharge curve can be modeled using the following polynomial:

$$Q_f = 0.4163H_c^4 - 16.551H_c^3 + 413.75H_c^2 + 602.98H_c$$
(1)
Where H_c is the head over crest (ff)

Figure 3 shows the scaled points and the fit derived from the data. Also note that the rating curve in Attachment 2 is still in use in the most updated spillway discharge tables by TVA (Reference 2.2, Attachment 3) and correlates very well with the current data.

TVA		
Calculation No. CDQ000020080016	Rev: 2 Plant: GE	N Page: 12
Subject: Dam Rating Curve, Nottely	Prepd: JBM	
	Checked: ACM	

Note that this curve was derived from model data. The preliminary measured flows were less than 2000 cfs (see note on attachment) and the rest of the curve was fit by scale model simulations.

Submergence factors and related calculations are unnecessary as there are no tailwater effects (Assumption 3.1.2).

3.3.2 Case 2 - Transition Region (H_{bottom}<H_W<H_T)

The flow does not transform into orifice flow as soon as the water height reaches the elevation of the bottoms of the gates (See Figure 4). There is a transition zone in which unknown behavior of the flow is anticipated. Attachment 11 (Dwg. 54N310, View-Typical Section Thru Centerline of Gate) shows a water elevation of 1788.5 (H_c =13.5') and a height of nappe at the crest equal to 1785.4' (H_n =10.4'). The ratio of these values is taken to develop a relationship between the water elevation and nappe height for a given crest geometry.

$$\frac{H_c}{H_n} = \frac{13.5'}{10.4'} = 1.30\tag{2}$$

Where H_n is the height of the nappe directly beneath the spillway gates.

This ratio can be assumed as constant for the same crest. Therefore, $H_T = 1.3(d) = 1.3*11.4' = 14.8'$ over the crest or a headwater elevation of 1789.8'. Note that d=11.4' comes from Attachment 9, Elevation A-A/B-B.

The headwater elevation will remain relatively constant as the nappe gradually rises to equal the previously determined H_T value. At this point, the flow is no longer in the transition region and the headwater will continue to rise (see Figure 5).

TVA	· ·	•
Calculation No. CDQ000020080016	Rev: 2 Plant: GEN	Page: 13
Subject: Dam Rating Curve, Nottely	Prepd: JBM	
	Checked: ACM	

	·
Calculation No. CDQ000020080016	Rev: 2 Plant: GEN Page: 14
Subject: Dam Rating Curve, Nottely	Prepd: JBM
	Checked: ACM

3.3.3 Case 3 – Orifice flow through gates (H_T<H_W<H_{MAX})

As headwater rises, it eventually reaches a level beyond the transition zone (See Figure 6). For headwaters above that level, discharge is predicted using an orifice type equation. Model data for the gated flow at Nottely are not available, but Reference 2.6 provides a relationship between C_0 (the orifice discharge coefficient) and d/H that may be used as an approximation in the following equation for orifice discharge, Q_0 :

$$Q_o = \frac{2}{3} \sqrt{2g} C_o L \Big[H_c^{1.5} - (H_c - d)^{1.5} \Big]$$
(3)

with C_0 taken from Fig 257 (Attachment 4) out of Reference 2.6, L= Overflow Length (ft), d = height of orifice, and g=the acceleration due to gravity. See Figure 4 for graphical representation of equation terms. All other terms are defined in Figure 5.

Interpolation of C_0 values from the chart in Attachment 4, yields values shown in Table 1. A linear regression fit shown in Figure 7 indicates a satisfactory estimate of C_0 can be yielded for a range of H_c values from 16.29' to 32.57' for Cases 1 and 1a (in the actual figure, H_1 is equivalent to H_c in this calculation), and 15.4' to 34.29' for Case 2. The equation developed from the linear regression is shown in Equation 4 and will be used to estimate the values of C_0 for a range of 16.29' H_c <32.57' for Cases 1 and 1a, and a range of 15.4' H_c <34.29' for Case 2.

TVA

Calculation No. CDQ000020080016	Rev: 2	Plant: GEN	Page: 15
Subject: Dam Rating Curve, Nottely	Prepd: JBM		
	Checked: A	CM	

			Cases 1&1a		se 2
d/H _c	С	H _c	H _w	H _c	H _w
0.78	0.638	14.63	1789.63	15.40	1790.40
0.75	0.641	15.20	1790.20	16.00	1791.00
0.70	0.646	16.29	1791.29	17.14	1792.14
0.65	0.651	17.54	1792.54	18.46	1793.46
0.60	0.656	19.00	1794.00	20.00	1795.00
0.55	0.662	20.73	1795.73	21.82	1796.82
0.50	0.667	22.80	1797.80	24.00	1799.00
0.45	0.672	25.33	1800.33	26.67	1801.67
0.40	0.6775	28.50	1803.50	30.00	1805.00
0.35	0.6825	32.57	1807.57	34.29	1809.29

Table 1: Interpolation of Co from Figure 257 of Reference 2.6

Note that the maximum d/H_c on Attachment 4 is 0.70 which translates into a minimum H_c of 16.29' (i.e. d=11.4', therefore at d/Hc=0.7, Hc=11.4'/0.7=16.29') for Cases 1 and 1a. However, a value of 0.78 was needed for Case 2, giving a minimum Hc of 15.4'. Therefore, the value was extrapolated. The minimum d/H_c of 0.35 was all that was necessary to provide the data for the range of headwater elevations required by this calculation.

Figure 7 – Linear Regression fit for Data in Table 1

$$C_o = -.105 \frac{d}{H_c} + .7194$$

(4)

TVA		
Calculation No. CDQ000020080016	Rev: 2 Plant:	GEN Page: 16
Subject: Dam Rating Curve, Nottely	Prepd: JBM	
	Checked: ACM	

3.3.4 Case 4 – Combined Orifice Flow through Gates and Weir Flow Over Gates ($H_W > H_{Top}$)

As the headwater continues to rise, it will eventually overtop the raised gates at elevation 1791.4. This flow can be computed as a weir flow over the top of the gates. The C_W coefficient can be computed using USACE Hydraulic Design Criteria, specifically Hydraulic Design Chart 711 (Attachment 5, Reference 2.5). The governing weir equation is a slightly modified form of the basic weir equation and is taken as (Reference 2.5):

$$Q_w = C_w L_w (H_w - 1791.4)^{1.5}$$

where L_w is the length of the weir, H_w is the elevation of the headwater, and C_w is the discharge coefficient of the weir.

The upper plot of HDC 711 (Attachment 5, Reference 2.5) shows that C_W is about 2.65 for very broad crests ($H_1/B < 0.4$ where $H_1 = H_c$ and B = streamwise length of the crest) and gradually increases to 3.3, the maximum value for a "sharp crested" weir. The flood gates are approximately 4.25"** wide (Attachment 11, Reference 2.1.4). The water level can range from 0-16.1' over the top of these gates given the analysis elevations of this calculation. This yields an H_1/B ranging from 0 to 45.5, indicating that the weir will likely behave as a sharp crested weir. Since the estimation of discharge over the top of various sections of the dam is an approximation, small variations of C_W with H_c are not modeled. Consequently, for all overflows C_W will be assigned a single value taken as the maximum of 3.3 since this is the value indicated for a sharp crested weir. Neglecting minor variations in C_W values has negligible impact on the dam rating curve.

**Gate is made of a 4" wide C-Channel and covered with a 1/4" skin plate for a total width of approximately 4.25".

In Case 2, the gates fail as water reaches the midpoint of the gate at 1789.08 feet, when the headwater is at an elevation of 1789.8 feet. When the gates fail, the water overtops the gate machinery at elevation 1790.4 feet. This flow can be computed as a weir flow. The C_W coefficient can be computed using USACE Hydraulic Design Chart 711. The governing weir equation is a slightly modified form of Equation 5:

$$Q_w = C_w L_w (H_w - 1790.4)^{1.5}$$

(6)

(5)

where L_w is the length of the weir, H_w is the elevation of the headwater, and C_w is the discharge coefficient of the weir.

The gate machinery is approximately 11" wide (Attachment 9, Reference 2.1.2). The weir will likely behave as a sharp crested weir. Consequently, for all overflows C_w will be assigned a single value taken as the maximum of 3.3. Neglecting minor variations in C_w values has negligible impact on the dam rating curve.

TVA

Calculation No. CDQ000020080016	Rev: 2	Plant: GEN	Page: 17
Subject: Dam Rating Curve, Nottely	Prepd: JBM		
· · · · · · · · · · · · · · · · · · ·	Checked: A	СМ	

4. Design Input

Jesign in	ραι			
Sect.	Input Parameter	Source	Symbol	Value
4.1	Acceleration of gravity	Common knowledge	g	32.2 ft/sec^2
4.2	Spillway crest parameters			
4.2.1	Crest length	50, 6' wide gates, Reference 2.1.4, Key Plan View	L	300 feet
4.2.2	Crest elevation	Reference 2.1.1, Downstream Elevation View	Zc	1775 feet
4.2.3	Free discharge curve	Polynomial fit to model data demonstrated in Figure 3 (Reference 2.7)	Qf	Equation 1
4.3	Spillway gate parameters – Gates remain in place			
4.3.1	Vertical opening	Reference 2.1.2, Elevation A-A and B-B, also Fig. 4	d	11.4 feet
4.3.4	Headwater elevation at which nappe touches gates	Justification in Section 3.3.2	H _T	1789.8 feet
4.3.5	Orifice discharge coefficient	Estimated by Equation 4 in Section 3.3.3	C _O (H _c)	Equation 4
4.3.6	Bottom Elevation of Raised Gates	Reference 2.1.2, Elevation A-A and B-B	· H _{bottom}	1786.4 feet
4.3.7	Height of Gates	Reference 2.1.4, Section B-B	V	5.0 feet
4.3.8	Top Elevation of Raised Gates	Bottom Elevation of Raised Gates plus the gate height	H _{top}	1791.4 feet
4.3A	Spillway gate parameters – Gates fail			
4.3A.1	Vertical opening	Reference 2.1.2, Elevation A-A and B-B, also Fig. 4	d	12 feet
4.3A.4	Headwater elevation at which gates fail	Justification in Section 3.3.2	H _T	1789.8 feet
4.3A.5	Orifice discharge coefficient	Estimated by Equation 4 in Section 3.3.3	C ₀ (H _c)	Equation 4
4.4	Spillway gate overflow			
4.4.1	Overflow discharge coeff.	Justification in Section 3.3.4	Cw	3.3
4.4.2	Overflow elevation – Gates Remain	Bottom Elevation of Raised Gates plus the gate height	Z _w	1791.4 feet
	Overflow elevation – Gates fail	Reference 2.1.2, Elevation D-D	Zw	1790.4 feet
4.4.3	Overflow length	Reference 2.1.5, Plan View	Lw	325 feet
4.4A	Overflow weir Discharge – Gates remain	Justification in Section 3.3.4	Qw	Equation 5
4.4B	Overflow weir Discharge – Gates fail	Justification in Section 3.3.4	Qw	Equation 6
4.5	Tailwater Rating Curve			
4.5.1	TW vs. total discharge, Q	Reference 2.7	TW(Q)	Equation 7
4.6	Upper Limit on Headwater Elevation for Rating	Top of Dam Elevation	H _{max}	1807.5
4.7	Turbine Flow			
4.7.1	Turbine Flow when TW≤1643 feet	Assumption 3.1.1 and Attachment 7	QT	1800 cfs
4.7.2	Turbine Flow when TW>1643 feet	Assumption 3.1.1		0 cfs

	-		
Calculation No. CDQ000020080016	Rev: 2	Plant: GEN	Page: 18
Subject: Dam Rating Curve, Nottely	Prepd: JBM		
	Checked: A	CM	

4.8 Tailwater rating curve

The tailwater rating curve used in this calculation is shown in Attachment 1-1. Attachment 1-2 lists points scaled from this plot and shows a polynomial fit to the result. The polynomial indicated in Attachment 1-2 and repeated below is used for the dam rating curve calculations.

 $TW = 1611.1148 + 0.8083Q - 6.807x10^{-3}Q^{2} + 3.305x10^{-5}Q^{3} - 5.759x10^{-8}Q^{4}$ (7) in which Q = total discharge past the dam in cfs divided by 1000 ("1000 cfs").

5. Special Requirements/Limiting Conditions

N/A

Calculation No. CDQ000020080016	Rev: 2	Plant: GEN	Page: 19
Subject: Dam Rating Curve, Nottely	Prepd: JB	И	
	Checked: /	ACM	

6. Calculations

The calculations consist of computing spillway and overflow discharges (from Equations 1 through 4) for a list of headwater elevations ranging from the minimum for which discharge exceeds zero up to 1807.5. The headwater rating curve is a plot of headwater elevation versus total dam discharge.

Table 2 shows the spreadsheet calculations for the headwater rating curve (spreadsheet included as Attachment 14). The final result, the rating curve, is defined by the first two columns, HW vs. Total Discharge and is shown in Figure 7.

The calculations presented in Table 2 are a reflection of the methodologies outlined in Section 3. The Free Flow column is computed using the spillway discharge curve shown in Figure 3 and represented by Equation 1. C_f is obtained by utilizing Equation 2 and the flow is calculated using Equation 1.

There are no particular calculations shown for the transition region. The geometry of this dam's crest and height of the spillway gates gives a transition area of less than 6". Therefore, it was judged that calculations would not be required in this region.

The orifice flow columns calculate the flow once the water level exceeds H_T and the flow transforms into orifice flow versus a free discharge as before. C_0 is calculated utilizing Equation 4 and the flow is calculated by Equation 3.

The Overtopping Flow in Cases 1 and 1a is the flow over the tops of the raised gates. It is combined with the orifice flow in the final discharge rating curve as both flows will be occurring simultaneously. Flow is calculated using Equation 5. C_W for this case was selected as a constant value of 3.3 and is justified in Section 3.3.4.

The Overtopping Flow in Case 2 is the flow over the top of the gate machinery at a headwater elevation of 1790.4 feet when the gates fail. It is combined with the orifice flow in the final discharge rating curve as both flows will be occurring simultaneously. Flow is calculated using Equation 6. C_W for this case was selected as a constant value of 3.3 and is justified in Section 3.3.4.

The turbine flow is calculated as outlined in Assumption 3.1.1 and section 4.7

The Total Discharge column provides the final discharge curve values in 1000 cfs and is simply a summation of flows in the appropriate flow regimes as outlined above.

Table 3 shows the calculations for case 1 a which are performed identical to case 1 with the omission of the turbine flow.

Table 4 shows the calculations for Case 2 which are performed similar to Case 1a but with gate failure.

TVA			
Calculation No. CDQ000020080016	Rev: 1	Plant: GEN	Page: 20
Subject: Dam Rating Curve, Nottely	Prepd: A.T.		
	Checked: SEM		

Nottely Dam Headwater Rating Curve - With Turbine Flow

 Spill Way Parameters

 L= 300
 feet

 Z_c= 1775
 feet

 d= 11.4
 feet
 L_w= 325 feet

					Free Flow	Orific	e Flow	Overtopp	ing Flow	Turbine Flow
	Total	· .								
HW Elev	Discharge	TW Elev	Hc		Q _₽		Qo		Qw	QT
(feet)	(1000 cfs)	(feet)	(feet)	d/Hc	(cfs)	Co	(cfs)	C,	(cfs)	(cfs)
1775	1.80	1612.5	0	0.00	0	-	0	-	0	1800
1777	4.54	1614.6	2	5.70	2735	-	0		0	1800
1779	9.88	1618.5	4 ·	2.85	8079	-	0	-	0	1800
1781	17.28	1623.2	6	1.90	15477 [·]		0	-	0	1800 -
1783	26.33	1628.3	8 ·	1.43	24535	-	0	-	0	1800
1785	36.82	1633.2	10 ·	1.14	35017	-	0	-	0	1800
1786.4	44.96	1636.5	11.4	1.00	43155	-	0		0	1800
1787	48.65	1637.8	12	0.95	46848	-	0	-	0	1800
1789	61.91	1642.1	14	0.81	60113	-	0	-	0	1800
1789.8	65.87	1643.2	14.8	0.77	65870	-	0	-	0	0 .
1791.29	56.95	1640.6	16.29	0.70	0	0.6459	56950	-	0	· 0
1791.4	57.31	1640.7	16.4	0.70	0	0.6464	57305	-	0	0
1793	64.43	1642.8	18	0.63	0	0.6529	62258	3.3	2171	0
1795	75.31	1645.6	20	0.57	0	0.6596	67984	3.3	7326	0
1797	87.51	1648.5	22	0.52	0	0.6650	73300	3.3	14213	0 ·
1799	100.75	1651.3	24	0.48	0	0.6695	78283	3.3	22471	0
1801	114.89	1654.2	26	0.44	0	0.6734	82988	3.3	31901	0
1803	129.83	1657.3	28	0.41	0	0.6767	87455	3.3	42373	0
1805	145.51	1660.6	30	0.38	0	0.6795	91718	3.3	53791	0 -
1807	161.88	1664.2	32	0.36	0	0.6820	95801	3.3	66082	0
1807.5	166.08	1665.2	32.5	0.3508	· 0	0.6826	· 96796	3.3	69285	0

Table 2 – Case 1 Calculation

Calculation No. CDQ000020080016	Rev: 1	Plant: GEN	Page: 21
Subject: Dam Rating Curve, Nottely	Prepd: A.T	. Tinsley	
	Checked:		

Nottely Dam Headwater Rating Curve - No Turbine Flow

Spill Way Parameters									
L= 300	feet								
Z _c = 1775	feet								
d= 11.4	feet								
L _w = 325	feet								

					Free Flow	Orific	Flow	Overtopp	ing Flow
	Total								-
HW Elev	Discharge	TW Elev	Hc		Q _F		Qo		Qw
(feet)	(1000 cfs)	(feet)	(feet)	d/Hc	(cfs)	Co	(cfs)	[.] C _w	(cfs)
1775	0.00	1611.1	0	0.00	0	· -	0	-	0
1777	2.74	1613.3	2	5.70	2735	-	· 0	-	0
1779	8.08	1617.2	4	2.85	8079	-	0	-,	0
1781	15.48	1622.1	6	1.90	15477	-	0	-	0
1783	24.53	1627.3	8	1.43	24535	- .	0	-	0 ·
1785	35.02	1632.4	10	1.14	35017	-	0	-	. 0
1786.4	43.16	1635.8	11.4	1.00	43155	-	0	- '	0
1787	46.85	1637.2	12	0.95	46848	-	0	-	0
1789	60.11	1641.5	14	0.81	60113	-	0	-	. 0
1789.8	65.87	1643.2	14.8	0.77	65870	-	0.	-	0
1791.29	56.95	1640.6	16.29	0.70	0	0.6459	56950	-	0
1791.4	57.31	1640.7	16.4	0.70	0	0.6464	57305	-	0
1793	64.43	1642.8	18	0.63	0	0.6529	62258	3.3	2171
1795	75.31	1645.6	20	0.57	0	0.6596	67984	3.3	7326
1797	87.51	1648.5	22	0.52	0	0.6650	73300	3.3	14213
1799	100.75	1651.3	24	0.48	0	0.6695	78283	3.3	22471
1801	114.89	1654.2	26	0.44	0	0.6734	82988	3.3	31901
1803	129.83	1657.3	28	0.41	0	0.6767	87455	3.3	42373
1805	145.51	1660.6	30	0.38	0	0.6795	91718	3.3	53791
1807	161.88	1664.2	32	0.36	0	0.6820	95801	3.3	66082
1807.5	166.08	1665.2	32.5	0.3508	0	0.6826	96796	3.3	69285

Table 3 – Case 1a Calculation

TVA		
Calculation No. CDQ000020080016	Rev: 2 Plant: GEN	Page: 22
Subject: Dam Rating Curve, Nottely	Prepd: JBM	
	Checked: ACM	

Nottely Dam Headwater Rating Curve - Gate Failure Without Turbine Flow

Spill Way Parameters L= 300 feet

L= 300 Z_c= 1775

d= 11.4

d= 12

L_w= 325

feet

feet

feet (bottom of walkway at 1781.0') after gates fail at HW = 1789.8' feet

					Free Flow	Orifice	e Flow	Overtopp	ing Flow
HW Elev (feet)	Total Discharge (1000 cfs)	TW Elev (feet)	Hc (feet)	d/Hc	Q _F (cfs)	Ċo	Q _o (cfs)	C,	Q _w (cfs)
1775	0.00	1611.1	0	0.00	0	-	0	_	0
1777	2.74	1613.3	2	5.70	2735	- '	0	. –	0
1779	8.08	1617.2	4	2.85	8079	-	0	-	0
1781	15.48	1622.1	6	1.90	15477	-	0	-	0
1783	24.53	1627.3	8	1.43	24535	-	0	-	0
1785	35.02	1632.4	10	1.14	35017	-	0	· -	0
1786.4	43.16	1635.8	11.4	1.00	43155	-	0	-	0
1787	46.85	1637.2	12	0.95	46848	-	0	-	0
1789	60.11	1641.5	14	0.81	60113	-	0	-	0
1789.8	65.87	1643.2	14.8	0.77	65870	-	0	-	0
1790	52.28	1639.1	15	0.80	0	0.6354	52280	-	0
1790.4	53.66	1639.5	15.4	0.78	0	0.6376	53656	-	0
1791	56.16	1640.3	16	0.75	0	0.6407	55663	3.3	498
1792	61.04	1641.8	17	0.71	0	0.6453	58868	3.3	2171
1793	66.42	1643.3	18	0.67	0	0.6494	61924	3.3	4496
1795	78.24	1646.4	20	0.60	0	0.6564	67660	3.3	10581
1797	91.17	1649.3	22	0.55	0	0.6621	72985	3.3	18185
1799	105.02	1652.2	24	0.50	0	0.6669	77976	3.3	27049
1801	119.70	1655.2	26	0.46	0	0.6709	82689	3.3	37013
1803	135.13	1658.4	28	0.43	0	0.6744	87165	3.3	47968
1805	151.27	1661.9	30	0.40	0	0.6774	91434	3.3	59831
1807	168.06	1665.6	32	0.38	0	0.6800	95524	3.3	72537
1807.5	172.36	1666.6	32.5	0.37	0	0.6806	96521	3.3	75839

Table 4 – Case 2 Calculation

IVA Calculation No. CDQ000020080016	Rev: 2 Plant: GEN	Page: 23
Subject: Dam Rating Curve, Nottely	Prepd: JBM	
	Checked: ACM	

7. Results/Conclusions

For convenience, the headwater rating results, separate from the calculation details provided above, are tabulated as total discharge in cfs vs. headwater elevation in feet in Table 5. The headwater rating curve is plotted in Figure 8.

Note the discontinuity that appears in Figure 8 at a headwater elevation of just under 1790.4'. This is the result of the flow transitioning from free flow over the dam crest to orifice flow through the flood gates. The discontinuity was anticipated and is typical for this type of flow transition.

The headwater rating curves developed in this calculation provide Nottely total dam discharge vs. headwater elevation for use in TVA's SOCH and TRBROUTE models for simulation conditions satisfying the assumptions in [3.1]. In particular, the spillway gates must all be fully raised.

Calculation No. CDQ000020080016	Rev: 2	Plant: GEN	Page: 24
Subject: Dam Rating Curve, Nottely	Prepd: JBM		
	Checked: A	CM	

Cas	se 1	Cas	e 1a	Case 2		
HW	Discharge	HW	Discharge	HW	Discharge	
(ft)	(1000 cfs)		(1000 cfs)		(1000 cfs)	
1775	1.80	1775	0.00	1775	0.00	
1777	4.54	1777	2.74	1777	2.74	
1779	9.88	1779	8.08	1779	8.08	
1781	17.28	1781	15.48	1781	15.48	
1783	26.33	1783	24.53	1783	24.53	
. 1785	36.82	1785	35.02	1785	35.02	
1786.4	44.96	1786.4	43.16	1786.4	43.16	
1787	48.65	1787	46.85	1787	46.85	
1789	61.91	1789	60.11	1789	60.11	
1789.8	65.87	1789.8	65.87	1789.8	65.87	
1791.29	, 56.95	1791.29	56.95	1790	52.28	
1791.4	57.31	1791.4	57.31	1790.4	53.66	
1793	64.43	1793	64.43	1791	56.16	
1795	75.31	1795	75.31	1792	61.04	
1797	87.51	1797	87.51	1793	66.42	
1799	100.75	1799	100.75	1795	78.24	
1801	114.89	1801	114.89	1797	91.17	
1803	129.83	1803	129.83	1799	105.02	
1805	145.51	1805	145.51	1801	119.70	
1807	161.88	1807	161.88	1803	135.13	
1807.5	166.08	1807.5	166.08	1805	151.27	
				1807	168.06	
4				1807.5	172.36	

Table 5 – Headwater Rating Results

TVA			
Calculation No. CDQ000020080016	Rev: 2	Plant: GEN	Page: 25
Subject: Dam Rating Curve, Nottely	Prepd: JB		
	Checked:	ACM	

Figure 8 – Headwater Rating Curves

Page 23 of 37

Calculation CDQ000020080016

This page revised in R1

Nottely Tailwater Rating

Discharge (cfs)

Attachment 1-2

Source: Reference 2.7

225

250

225,000

250,000

Page 24 of 37

Calculation CDQ000020080016

Prepared: ATT

Checked: SEM

This Page Added in R1

 $TW = -5.759 \times 10^{-8} Q^4 + 3.305 \times 10^{-5} Q^3 - 6.807 \times 10^{-3} Q^2 + 0.8083 Q + 1611.1148$ Where TW = Tailwater Elevation in Feet Q = Discharge through Dam in 1000 cfs

1676 1677.216

1680 1679.159

Attachment 2

Page 25 of 37

Calculation CDQ000020080016

Source: Reference 2.4

Page 26 of 37

NOTTELY DAM

LOCATION OF SPILLWAY GATES

Attachment 3-2

Source: Reference 2.2

Page 27 of 37

NOTTELY DAM

SPILLWAY GATE ARRANGEMENTS

Arrange-																							G	Sate	e N	lur	nb	er																	6					
ment Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
1 2 3 4 5	R R R R R R R	-	R R R R R R		R R R R		R R R R		- • R R R		- R R R		- - R R	-	- - R R		- - - R	-	- - R							•	-								-				-	* * *			19 19 19 19						•	
6 7 8 9 10	R R R R R	-	R R R R R		R R R R R	-	R R R R R	•	R R R R R R		R R R R R		R R R R R		R R R R R R		R R R R R	-	R R R R R		R R R R R	•	R R R R R R		- R R R R R	R R R R		- R R R		- R R R		- - R R		- - R R		- - - R		- - R	•				-							
11 12 13 14 15	R R R R R R R		R R R R R	-	R R R R R		R R R R R R	-	R R R R R R		R R R R R R		R R R R R R	-	R R R R R R		R R R R R		R R R R R		R R R R R R		R R R R R R		R R R R R R	R R R R R		R R R R R R		R R R R R R		R R R R R	-	R R R R R		R R R R R R		R R R R R	• • •	R R R R R		R R R R R R R	- - R	R R R R R	- - R	R R R R R	- - R R	- R R R	- - R R	R R R
16 17 18 19 20	R R R R R		R R R R	-	R R R R R		R R R R R	-	R R R R R		R R R R R	-	R R R R R		R R R R R R		R R R R R		R R R R R		R R R R R	- - R	R R R R R R	- - - R	R R R R R R	R R R R R	- - R R	R R R R R	- - R R	R R R R R	R R R	R R R R R	- - R R R	RRRRR	R R R R R	R R R R R	R R R R	R R R R R	R R R R R	R R R R R	RRRRR	RRRR	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R R	R R R R R R	RRRR
21 22 23 24 25	R R R R R R	- - R	R R R R R	- - R	R R R R R	- - R R	R R R R R	- - R R	R R R R R	- R R R	R R R R R	- R R R	R R R R R	- R R R R	R R R R R	- R R R R	R R R R R	R R R R R	R R R R R	R R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R R	R R R R R	R R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R R	RRRR	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	RRRR	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R R	R R R R R	R R R R R	RRRR

GATE OPENINGS

Figures in columns under each gate number refer to gate opening indicator reading dash (-) indicates closed gate
"R" indicates gate raised above water surface and dogged
"R" indicates first use of each gate

Page 28 of 37

Calculation CDQ000020080016

Source: Reference 2.6

Figure 257. Coefficient of discharge for flow under gates. 288-D-2417.

is the inflow per foot of length of weir crest. The momenta³ at the two sections therefore will be:

Upstream,
$$M_u = \frac{Qv}{g}$$
 (8)

Downstream,
$$M_d = \frac{[Q+q(\Delta x)]}{g}[v+\Delta v]$$
 (9)

Subtracting equation (8) from equation (9):

$$\Delta M = \frac{Q\left(\Delta v\right)}{g} + \frac{q\left(\Delta x\right)}{g} [v + \Delta v] \tag{10}$$

Dividing by Δx :

$$\frac{\Delta M}{\Delta x} = \frac{Q(\Delta v)}{g(\Delta x)} + \frac{q}{g}[v + \Delta v]$$
(11)

The rate of change of momentum with respect to time being v times the rate of change with respect to x, and considering the average velocity to be $\left[v + \frac{1}{2}(\Delta v)\right]$, equation (11) can be

locity to be $\left[v + \frac{1}{2}(\Delta v)\right]$, equation (11) can be written:

$$\frac{\Delta M}{\Delta t} = \frac{Q\left(\Delta v\right)}{g\left(\Delta x\right)} \left[v + \frac{1}{2} (\Delta v) \right] + \frac{q}{g} \left[v + \Delta v \right] \left[v + \frac{1}{2} (\Delta v) \right]$$
(12)

As $\frac{\Delta M}{\Delta t}$ is the accelerating force, which is equal to the slope of the water surface $\frac{\Delta y}{\Delta x}$ times the average discharge, equation (12) becomes:

$$\frac{\Delta y}{\Delta x} \left[Q + \frac{1}{2} (\Delta Q) \right] = \frac{Q(\Delta v)}{g(\Delta x)} \left[v + \frac{1}{2} (\Delta v) \right] + \frac{q}{g} \left[v + \Delta v \right] \left[v + \frac{1}{2} (\Delta v) \right] \quad (13)$$

³ The weight of 1 cubic foot of water is taken as a unit force to eliminate the necessity of multiplying all forces and momenta by 62.5 to convert them into pounds.

Attachment 5

Page 29 of 37

Source: Reference 2.5

Attachment 6

Page 30 of 37

Source: Reference 2.8

RESERVOIR RELEASES IMPROVEMENTS

The aeration and minimum flow equipment at Nottely Dam is part of the implementation of TVA's Lake Improvement Plan (LIP) approved by the Board of Directors in 1991. One of the goals of the Lake Improvement Plan is to improve the dissolved oxygen (DO) levels and minimum flows of the releases of 16 dams. Minimum flow releases of 55 cfs at Nottely were obtained by the installation of a small hydroturbine unit which is operated whenever the main unit is off. At Nottely testing showed the target minimum DO content of the release (4 mg/L) to be best achieved by the installation of air injection equipment. Blower and compressor systems inject air at the large and small hydroturbines respectively. The blower system consists of two blowers (250 hp each), controls, piping, and valves designed to inject air into the water flow through the large unit. The air compressor system consists of two air compressors, controls, piping, and valves designed to inject air into the flow through the small unit. The air compressors are rated at 25 hp each.

SAFETY MODIFICATIONS FOR PROBABLE MAXIMUM FLOOD

Chronology

Safety analysis studies for Chatuge Dam for the probable maximum flood (PMF) were started on July 29, 1976, and completed in May 1984. Final design was completed in January 1988. Onsite construction began in July 1986, and was completed on June 20, 1988.

Cost of Modifications

Design costs for the capital safety modifications to Chatuge Dam were \$1,520,000. Construction costs were \$13,680,000. The total project cost was \$15,200,000. This total does not include costs for dam safety evaluation studies which resulted in the modifications.

Controlling Features

The embankments at Nottely were modified in order to safety pass the probable maximum flood. The embankments were raised to elevation 1807 by the addition of rockfill. A new bridge was built with a 30 ft. width of asphalt roadway. These PMF modifications will prevent overtopping and erosion of the embankments and thus prevent breach and failure of the dam.
JuSource: Reference 2.8

Page 31 of 37

Calculation CDQ000020080016

This page added in R1

30

RESERVOIR AND POWER DATA

Nottely

				Best	Efficiency		Maxim	um Sustaina	ble	
Elevation	Area	Volume	Gross Head	Plant Output	Turbine Discharge	kW/CFS	Plant Output	Turbine Discharge	kW/CFS	-
(feet)	(acre*1000)	(ac-ft*1000)	(feet)	(mW)	(cfs)		(mW)	(cfs)		
1780	4.32	174.3	167.4	17.2	1,390	12.44	20.0	1,630	12.25	
1779	4.18	170.1	166.4	17.1	1,390	12.35	20.0	1,650	12.16	
1778	4.05	165.9	165.4	17.0	1,390	12.26	20.0	1,660	12.06	
1777	3.93	162.0	164.3	16.9	1,390	12.17	20.0	1,670	11.96	
1776	3.83	158.1	163.3	16.8	1,390	12.08	20.0	1,690	11.86	
1775	3.73	154.3	162.3	16.7	1,400	11.99	20.0	1,700	11.76	
1774	3.65	150.6	161.2	16.6	1,400	11.90	20.0	1,710	11.66	
1773	3.56	147.0	160.2	16.5	1,400	11.81	20.0	1,730	11.56	
1772	3.48	143.5	159.2	16.4	1,400	11.72	19.9	1,740	11.46	
1771	3.39	140.0	158.2	16.3	1,400	11.62	19.8	1,740	11.36	
1770	3.31	136.7	157.1	16.2	1,410	11.53	19.7	1,750	11.26	
1769	3.23	133.4	156.1	16.1	1,410	11.44	19.6	1,760	11.15	
1768	3.15	130.2	155.1	16.0	1,410	11.34	19.5	1,760	11.05	
1767	3.07	127.1	154.1	15.9	1,410	11.25	19.4	1,770	10.95	
1766	2.99	124.1	153.1	15.8	1,420	11.16	19.3	1,780	10.85	
1765	2.92	121.1	152.1	15.7	1,420	11.06	19.2	1,790	10.75	
1764	2.85	118.3	151.0	15.6	1,420	10.97	19.1	1,790	10.65	
1763	2.78	115.4	150.0	15.5	1,420	10.88	19.0	1,800	10.54	
1762	2.71	112.7	149.0	15.4	1,430	10.81	18.9	1,800	10.49	
1761	2.65	110.0	148.0	15.3	1,430	10.73	18.8	1,800	10.43	
1760	2.59	107.4	147.0	15.2	1,430	10.66	18.7	1,800	10.38	
1759	2.53	104.8	146.0	15.1	1,430	10.59	18.6	1,800	10.33	
1758	2.47	102.3	145.0	15.0	1,430	10.52	18.5	1,800	10.27	
1757	2.42	99.9	144.0	14.9	1,430	10.45	18.4	1,800	10.22	
1756	2.36	97.5	143.0	14.8	1,430	10.38	18.3	1,800	10.16	
1755	2.31	95.2	142.0	14.7	1,430	10.31	18.2	1,800	10.11	
1754	2.26	92.9	141.0	14.6	1,430	10.24	18.1	1,800	10.06	
1753	2.21	90.6	140.0	14.5	1,430	10.17	18.0	1,800	10.00	
1752	2.17	88.4	139.0	14.4	1,420	10.11	17.8	1,790	9.94	

NOTE: Energy in storage data not included

Page 32 of 37

Calculation CDQ000020080016

Source: Reference 2.1.2

Calculation CDQ000020080016

128 int int in

~ . U

Page 35 of 37

Calculation CDQ000020080016

Page 36 of 37

Calculation CDQ000020080016

Attachment 13 Source: Reference 2.1.6

Page 37 of 37

Calculation CDQ000020080016

This page added in R1

TENNESSEE VALLEY AUTHORITY RIVER SYSTEM OPERATIONS & ENVIRONMENT RIVER OPERATIONS

NOTTELY DAM

SPILLWAY DISCHARGE TABLES

APRIL 2004

CONTENTS

	Page
Instructions for Use of Tables	2
Location of Spillway Gates	4
Spillway Gate Arrangement Tables	5
Spillway Discharge Tables	6-10

Headwater Range

1775 - 1777	
1777 - 1779	7
1779 - 1781	
1781 - 1783	
1783 - 1789	10

INSTRUCTIONS FOR USE OF TABLES

1. Tables Update

These tables supersede the tables issued in January 1961. The revised discharges, which are only slightly different from those in the 1961 tables, were generated using the computer code SPILLQ. SPILLQ is a computer code used in TVA software for monitoring spill discharges and determining gate arrangements.

2. Purpose of Tables

These tables provide a means for setting required spillway discharges and for determining the discharge when a specific arrangement of gates is in use. The tabulated discharges are based on test results from a 1:45 scale model of Nottely spillway supplemented by prototype measurements, which were used to establish the lower end of the rating.

The specific gate arrangements in the tables were determined from model tests in which consideration was given to obtaining satisfactory flow conditions throughout the length of the spillway chute. Any deviation from the specified arrangements may cause overtopping of the chute walls.

3. Range of Tables

The tables cover a discharge range from 0 to 60,040 cubic feet per second. Headwater elevations range from 1775 feet to 1789 feet. The tailwater does not affect the discharges from this spillway.

4. Arrangement of Tables

The tables show spillway discharges in cubic feet per second. Headwater elevations in 0.1-foot increments are shown at the top of each column. The headwater range is shown at the bottom of each page.

The discharge is tabulated under the headwater elevations for specific arrangements of gate openings, which are indicated by number in the left and right columns of each page. The numbered arrangements are defined in the table of Spillway Gate Arrangements on page 5. Reference to this table and to the drawing showing the location of the gates on page 4 will determine the gates to be raised for any particular discharge given in the tables.

5. Discharge Intervals

The tables have been prepared so that the incremental discharge between the tabulated values for consecutive gate arrangements is adequate for all situations. Therefore <u>it will not be necessary to interpolate between values given in these tables</u>.

When the exact headwater elevation does not appear in the tables, the discharge for the headwater elevation closest to it is used. For example, the column headed 1776.2 is used for actual headwater elevations between 1776.15 feet and 1776.24 feet inclusive. When the actual headwater elevation is exactly halfway between tabular values, the larger value is used.

6. Spillway Gate Operation

The spillway gates are used to control discharges up to headwater elevation 1780 feet, which is the top elevation of the closed gates. To prevent gate overflow, all spillway gates should be raised before the headwater elevation exceeds 1780 feet. However, to provide for accidental operation in which some gates have not been raised, the tabulated discharges include the total discharge, under the raised gates and over the closed gates, for headwater elevations from 1780 feet to 1783 feet.

Either one or two cranes may be used to open and close the spillway gates. It has been estimated that all gates can be raised in approximately 3 hours using one crane and in $1\frac{1}{2}$ hours using two cranes.

7. Use of Tables

The tables can be used in two ways: (1) to determine the arrangement of gates needed to pass a required discharge at a given headwater elevation, and (2) to determine the discharge for a given arrangement of gates and headwater elevation.

<u>Example 1</u> -- What gate arrangement is necessary to pass a discharge of 1,000 cubic feet per second with the headwater at elevation 1777.84 feet?

The first step is to find the table in which the headwater elevation appears. Referring to the contents page, we find that headwater elevations between 1777 feet and 1779 feet are found on page 7. The headwater elevation closest to 1777.84 feet is 1777.8 feet. In the column headed 1777.8 the discharge nearest to the required 1,000 cubic feet per second is 920 cubic feet per second. By tracing the horizontal line in which 920 cubic feet per second appears, to either side of the page, we find that gate arrangement 5 is the one for producing the discharge closest to 1,000 cubic feet per second at headwater elevation 1777.8 feet. Referring to page 5 it is found that for gate arrangement 5, gates 1, 3, 5, 7, 9, 11, 13, 15, 17, and 19 are raised.

After the gates are raised, suppose it is necessary to increase the discharge from 1,000 cubic feet per second to 2,000 cubic feet per second. Assume the headwater elevation remains at 1777.8 feet. In the column headed 1777.8 feet on page 7, the discharge closest to the required 2,000 cubic feet per second is 2,030 cubic feet per second

for gate arrangement 11. To change from gate arrangement 5 to gate arrangement 11, gates 21, 23, 25, 26, 28, 30, 32, 34, 36, 38, 40, and 42 are raised in addition to those gates already opened.

<u>Example 2</u> -- Suppose the operating records show that the headwater is at elevation 1779.5 feet, and gate arrangement 21 is in use. The headwater is found on page 8 which is marked "Headwater 1779 to 1781." In the column headed 1779.5 opposite gate arrangement 21, the discharge is found to be 8,240 cubic feet per second.

NOTTELY DAM

LOCATION OF SPILLWAY GATES

4

NOTTELY DAM

SPILLWAY GATE ARRANGEMENTS

.

Arrange-			-									_											G	Gate	e١	lur	nb	er																						
ment Number	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	50
1 2 3 4 5	RRRR	- - -	RRRR	-	- R R R R R		- RR RR R		- - R R R		- - R R R		- - R R		- - R R	-	- - - R		- - - R				-			-						-		- - -				- - -	- - - -										- - -	
6 7 8 9 10	R R R R R		R R R R R		R R R R R	- - -	R R R R R R	- - -	R R R R R		R R R R R R		R R R R R		R R R R R		R R R R R R		R R R R R	-	R R R R R	- - - -	R R R R R		- R R R R	- R R R R		- R R R	-	- R R R		- - R R		- - R R		- - R	- - - -	- - - R	- - - -			-	-	-	-					-
11 12 13 14 15	R R R R R		R R R R R		R R R R R		R R R R R R		R R R R R	- - - -	R R R R R		R R R R R		R R R R R	- - -	R R R R R R		R R R R R		R R R R R		R R R R R	-	R R R R	R R R R		R R R R		R R R R		R R R R R		R R R R R		R R R R R R R	- - - -	R R R R R		R R R R R	- - - -	R R R R R	- - - R	- R R R R	- - - R	- R R R R	- - R R	- R R R	- - R R	- - R R R
16 17 18 19 20	R R R R R		R R R R R	-	R R R R R	- - -	R R R R R R	- - - -	R R R R	-	R R R R R		R R R R R	-	R R R R R	- - - -	R R R R R	-	R R R R R		R R R R R	- - - R	R R R R	- - - R	R R R R R	R R R R R	- - R R	R R R R R	- - R R	R R R R R	- - R R R	R R R R R	- R R R	R R R R R	- R R R R R	R R R R R R	- R R R R	R R R R R	R R R R R	R R R R R	R R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R R	R R R R R	R R R R R R
21 22 23 24 25	R R R R R	- - R	R R R R R R	- - R	R R R R R	- - R R	R R R R R R	- - R R	R R R R R	- R R R	R R R R R	- - R R R	R R R R R	RRRR	R R R R R	- R R R R	R R R R R	R R R R R	RRRR	R R R R R R	R R R R R	R R R R R	R R R R	R R R R R	R R R R R	R R R R R	R R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R	R R R R R R	R R R R	R R R R R	R R R R R R	R R R R R	R R R R R	R R R R R	R R R R	R R R R R	R R R R R R	R R R R R	R R R R R R	R R R R R	R R R R R	R R R R R	R R R R R R	R R R R R R	R R R R R

GATE OPENINGS

Figures in columns under each gate number refer to gate opening indicator reading dash (-) indicates closed gate
"R" indicates gate raised above water surface and dogged
"R" indicates first use of each gate

5

ATE CANGE									HEA	DWA	rer e	ELEVA	TION									ATE WNGE- ENT
ARG	1775.0	1775.1	1775.2	1775.3	1775.4	1775.5	1775.6	1775.7	1775.8	1775.9	1776.0	1776.1	1776.2	1776.3	1776.4	1776.5	1776.6	1776.7	1776.8	1776.9	1777.0	982 8
1 2 3 4 5	0 0 0 0	0 0 5 5 5 5	5 5 10 10 15	5 10 15 25 30	10 20 25 35 45	10 25 35 50 60	15 35 50 65 80	20 40 60 85 100	25 50 75 100 130	30 60 90 120 150	35 75 110 150 180	40 85 130 170 210	50 95 140 190 240	55 110 160 220 270	60 120 180 250 310	70 140 210 270 340	75 150 230 300 380	85 170 250 330 420	90 180 270 370 460	100 200 300 400 500	110 220 320 430 540	1 2 3 4 5
6 7 8 9 10	0 0 0 0 0	5 10 10 10 10	20 20 25 30 30	35 40 45 50 55	55 60 70 80 90	75 85 100 110 120	100 110 130 150 160	120 150 170 190 210	150 180 200 230 260	180 220 250 280 310	220 250 290 330 360	250 290 340 380 420	290 340 390 430 480	330 380 440 490 550	370 430 490 550 610	410 480 550 620 690	460 530 610 680 760	500 580 670 750 840	550 640 730 820 910	600 700 800 900 1,000	650 760 860 970 1,080	6 7 8 9 10
11 12 13 14 15	000000000000000000000000000000000000000	10 15 15 15	35 35 40 45 45	60 70 75 80 85	95 110 110 120 130	140 150 160 170 190	180 200 210 230 250	230 250 270 290 310	280 310 330 360 380	340 370 400 430 460	400 440 470 510 540	460 510 550 590 630	530 580 630 680 720	600 660 710 770 820	680 740 800 860 920	750 820 890 960 1, 030	830 910 990 1, 060 1, 140	920 1,000 1,090 1,170 1,250	1, 010 1, 100 1, 190 1, 280 1, 370	1, 100 1, 190 1, 290 1, 390 1, 490	1, 190 1, 300 1, 400 1, 510 1, 620	11 12 13 14 15
16 17 18 19 20	0 0 0 0	15 20 20 20 20	50 50 55 60 60	90 95 100 110 110	140 150 160 170 180	200 210 220 240 250	260 280 300 310 330	330 350 370 400 420	410 440 460 490 510	490 520 550 580 620	580 620 650 690 730	670 720 760 800 840	770 820 870 920 960	880 930 980 1, 040 1, 090	980 1, 040 1, 110 1, 170 1, 230	1, 100 1, 160 1, 230 1, 300 1, 370	1, 210 1, 290 1, 370 1, 440 1, 520	1, 340 1, 420 1, 500 1, 590 1, 670	1, 460 1, 550 1, 650 1, 740 1, 830	1, 590 1, 690 1, 790 1, 890 1, 990	1, 730 1, 840 1, 940 2, 050 2, 160	16 17 18 19 20
21 22 23 24 25	000000	25 25 25 25 25 25	65 65 70 75 75	120 120 130 140 140	180 190 200 210 220	260 270 280 300 310	340 360 380 390 410	440 460 480 500 520	540 560 590 610 640	650 680 710 740 770	760 800 830 870 910	880 930 970 1, 010 1, 050	1,010 1,060 1,110 1,160 1,210	1, 150 1, 200 1, 260 1, 310 1, 370	1, 290 1, 350 1, 410 1, 480 1, 540	1, 440 1, 510 1, 580 1, 640 1, 710	1, 590 1, 670 1, 750 1, 820 1, 900	1, 750 1, 840 1, 920 2, 000 2, 090	1, 920 2, 010 2, 100 2, 190 2, 290	2, 090 2, 190 2, 290 2, 390 2, 490	2, 270 2, 380 2, 480 2, 590 2, 700	21 22 23 24 25

HEADWATER 1775 to 1777

APRIL 2004

ATE ANGE-		•							HEA	DWA	ter e	ELEV	ATION									ATE VANGE-
ARG	1777.0	1777.1	1777.2	1777.3	1777.4	1777.5	1777.6	1777.7	1777.8	1777.9	1778.0	1778.1	1778.2	1778.3	1778.4	1778.5	1778.6	1778.7	1778.8	1778.9	1779.0	
1 2 3 4 5	110 220 320 430 540	120 230 350 470 580	130 250 380 500 630	130 270 400 540 670	140 290 430 580 720	150 310 460 620 770	160 330 490 660 820	170 350 520 700 870	180 370 550 740 920	190 390 580 780 970	210 410 620 820 1, 030	220 430 650 870 1, 080	230 460 680 910 1, 140	240 480 720 960 1, 200	250 500 750 1, 000 1, 260	260 530 790 1, 050 1, 310	280 550 830 1, 100 1, 380	290 570 860 1, 150 1, 440	300 600 900 1, 200 1, 500	310 620 940 1, 250 1, 560	330 650 980 1, 300 1, 630	1 2 3 4 5
6 7 8 9 10	650 760 860 970 1, 080	700 820 930 1, 050 1, 170	750 880 1, 010 1, 130 1, 260	810 940 1, 080 1, 210 1, 350	870 1, 010 1, 150 1, 300 1, 440	920 1, 080 1, 230 1, 390 1, 540	980 1, 150 1, 310 1, 470 1, 640	1, 040 1, 220 1, 390 1, 570 1, 740	1, 110 1, 290 1, 470 1, 660 1, 840	1, 170 1, 360 1, 560 1, 750 1, 950	1, 230 1, 440 1, 650 1, 850 2, 060	1, 300 1, 520 1, 730 1, 950 2, 170	1, 370 1, 600 1, 820 2, 050 2, 280	1, 440 1, 680 1, 920 2, 160 2, 390	1, 510 1, 760 2, 010 2, 260 2, 510	1, 580 1, 840 2, 100 2, 370 2, 630	1, 650 1, 930 2, 200 2, 480 2, 750	1, 720 2, 010 2, 300 2, 590 2, 870	1, 800 2, 100 2, 400 2, 700 3, 000	1, 870 2, 190 2, 500 2, 810 3, 120	1, 950 2, 280 2, 600 2, 930 3, 250	6 7 8 9 10
11 12 13 14 15	1, 190 1, 300 1, 400 1, 510 1, 620	1, 280 1, 400 1, 520 1, 630 1, 750	1, 380 1, 510 1, 630 1, 760 1, 880	1, 480 1, 620 1, 750 1, 890 2, 020	1, 590 1, 730 1, 880 2, 020 2, 160	1, 690 1, 850 2, 000 2, 160 2, 310	1, 800 1, 970 2, 130 2, 290 2, 460	1, 910 2, 090 2, 260 2, 440 2, 610	2, 030 2, 210 2, 400 2, 580 2, 770	2, 140 2, 340 2, 530 2, 730 2, 920	2, 260 2, 470 2, 680 2, 880 3, 090	2, 380 2, 600 2, 820 3, 040 3, 250	2, 510 2, 740 2, 960 3, 190 3, 420	2, 630 2, 870 3, 110 3, 350 3, 590	2, 760 3, 010 3, 260 3, 520 3, 770	2, 890 3, 160 3, 420 3, 680 3, 940	3, 030 3, 300 3, 580 3, 850 4, 130	3, 160 3, 450 3, 730 4, 020 4, 310	3, 300 3, 600 3, 900 4, 200 4, 500	3, 440 3, 750 4, 060 4, 370 4, 690	3, 580 3, 900 4, 230 4, 550 4, 880	11 12 13 14 15
16 17 18 19 20	1, 730 1, 840 1, 940 2, 050 2, 160	1, 870 1, 980 2, 100 2, 220 2, 330	2, 010 2, 140 2, 260 2, 390 2, 510	2, 160 2, 290 2, 430 2, 560 2, 700	2, 310 2, 450 2, 600 2, 740 2, 890	2, 460 2, 620 2, 770 2, 930 3, 080	2, 620 2, 790 2, 950 3, 110 3, 280	2, 780 2, 960 3, 130 3, 310 3, 480	2, 950 3, 130 3, 320 3, 500 3, 690	3, 120 3, 310 3, 510 3, 700 3, 900	3, 290 3, 500 3, 700 3, 910 4, 120	3, 470 3, 690 3, 900 4, 120 4, 340	3, 650 3, 880 4, 100 4, 330 4, 560	3, 830 4, 070 4, 310 4, 550 4, 790	4, 020 4, 270 4, 520 4, 770 5, 020	4, 210 4, 470 4, 730 5, 000 5, 260	4, 400 4, 680 4, 950 5, 230 5, 500	4, 600 4, 880 5, 170 5, 460 5, 750	4, 800 5, 100 5, 400 5, 700 6, 000	5, 000 5, 310 5, 620 5, 940 6, 250	5, 200 5, 530 5, 850 6, 180 6, 500	16 17 18 19 20
21 22 23 24 25	2, 270 2, 380 2, 480 2, 590 2, 700	2, 450 2, 570 2, 680 2, 800 2, 920	2, 640 2, 760 2, 890 3, 020 3, 140	2, 830 2, 970 3, 100 3, 240 3, 370	3, 030 3, 170 3, 320 3, 460 3, 610	3, 230 3, 390 3, 540 3, 700 3, 850	3, 440 3, 610 3, 770 3, 930 4, 100	3, 650 3, 830 4, 000 4, 180 4, 350	3, 870 4, 060 4, 240 4, 420 4, 610	4, 090 4, 290 4, 480 4, 680 4, 870	4, 320 4, 530 4, 730 4, 940 5, 140	4, 550 4, 770 4, 990 5, 200 5, 420	4, 790 5, 020 5, 240 5, 470 5, 700	5, 030 5, 270 5, 510 5, 750 5, 990	5, 270 5, 520 5, 780 6, 030 6, 280	5, 520 5, 790 6, 050 6, 310 6, 570	5, 780 6, 050 6, 330 6, 600 6, 880	6, 030 6, 320 6, 610 6, 900 7, 180	6, 290 6, 590 6, 890 7, 190 7, 490	6, 560 6, 870 7, 190 7, 500 7, 810	6, 830 7, 160 7, 480 7, 810 8, 130	21 22 23 24 25
																		*				
														-								

APRIL 2004

HEADWATER 1777 to 1779

7

NIGE									HEA	DWA	FER E	ELEVA	ATION									
ARRA	1779.0	1779.1	1779.2	1779.3	1779.4	1779.5	1779.6	1779.7	1779.8	1779.9	1780.0	1780.1	1780.2	1780.3	1780.4	1780.5	1780.6	1780.7	1780.8	1780.9	1781.0	ARRA
0* 1 2 3 4	0 330 650 980 1, 300	0 340 680 1, 010 1, 350	0 350 700 1, 050 1, 410	0 360 730 1, 090 1, 460	0 380 760 1, 140 1, 510	0 390 780 1, 180 1, 570	0 410 810 1, 220 1, 620	0 420 840 1, 260 1, 680	0 430 870 1, 300 1, 740	0 450 900 1, 350 1, 800	0 930 1, 390 1, 860	15 490 970 1, 450 1, 930	55 550 1, 040 1, 530 2, 020	110 620 1, 120 1, 630 2, 130	190 710 1, 220 1, 740 2, 260	280 810 1, 340 1, 870 2, 390	380 920 1, 460 2, 000 2, 540	500 1, 050 1, 600 2, 150 2, 700	620 1, 180 1, 750 2, 310 2, 870	750 1, 330 1, 900 2, 470 3, 050	890 1, 480 2, 060 2, 640 3, 230	0* 1 2 3 4
567 89	1, 630 1, 950 2, 280 2, 600 2, 930	1, 690 2, 030 2, 370 2, 710 3, 040	1, 760 2, 110 2, 460 2, 810 3, 160	1, 820 2, 190 2, 550 2, 920 3, 280	1, 890 2, 270 2, 650 3, 030 3, 410	1, 960 2, 350 2, 750 3, 140 3, 530	2, 030 2, 440 2, 840 3, 250 3, 660	2, 100 2, 520 2, 940 3, 360 3, 780	2, 170 2, 610 3, 040 3, 480 3, 910	2, 250 2, 690 3, 140 3, 590 4, 040	2, 320 2, 780 3, 250 3, 710 4, 170	2, 410 2, 880 3, 360 3, 840 4, 320	2, 510 3, 000 3, 490 3, 990 4, 480	2, 630 3, 140 3, 640 4, 150 4, 650	2, 770 3, 290 3, 810 4, 320 4, 840	2, 920 3, 450 3, 980 4, 510 5, 040	3, 080 3, 620 4, 160 4, 700 5, 240	3, 250 3, 810 4, 360 4, 910 5, 460	3, 430 4, 000 4, 560 5, 120 5, 680	3, 620 4, 190 4, 770 5, 340 5, 910	3, 810 4, 400 4, 980 5, 560 6, 150	5 6 7 8 9
10 11 12 13 14	3, 250 3, 580 3, 900 4, 230 4, 550	3, 380 3, 720 4, 060 4, 400 4, 740	3, 510 3, 870 4, 220 4, 570 4, 920	3, 650 4, 010 4, 380 4, 740 5, 110	3, 780 4, 160 4, 540 4, 920 5, 300	3, 920 4, 310 4, 710 5, 100 5, 490	4, 060 4, 470 4, 870 5, 280 5, 690	4, 200 4, 620 5, 040 5, 460 5, 880	4, 350 4, 780 5, 220 5, 650 6, 080	4, 490 4, 940 5, 390 5, 840 6, 290	4, 640 5, 100 5, 570 6, 030 6, 490	4,800 5,270 5,750 6,230 6,710	4, 970 5, 460 5, 950 6, 440 6, 930	5, 160 5, 660 6, 160 6, 670 7, 170	5, 350 5, 870 6, 390 6, 900 7, 420	5, 560 6, 090 6, 620 7, 150 7, 680	5, 780 6, 320 6, 860 7, 400 7, 940	6, 010 6, 560 7, 110 7, 660 8, 210	6, 240 6, 810 7, 370 7, 930 8, 490	6, 480 7, 060 7, 630 8, 200 8, 780	6, 730 7, 320 7, 900 8, 480 9, 070	10 11 12 13 14
15 16 17 18 19	4, 880 5, 200 5, 530 5, 850 6, 180	5, 070 5, 410 5, 750 6, 090 6, 430	5, 270 5, 620 5, 980 6, 330 6, 680	5, 470 5, 840 6, 200 6, 570 6, 930	5, 680 6, 060 6, 430 6, 810 7, 190	5, 880 6, 280 6, 670 7, 060 7, 450	6, 090 6, 500 6, 910 7, 310 7, 720	6, 300 6, 730 7, 150 7, 570 7, 990	6, 520 6, 950 7, 390 7, 820 8, 260	6, 740 7, 190 7, 630 8, 080 8, 530	6, 960 7, 420 7, 880 8, 350 8, 810	7, 190 7, 660 8, 140 8, 620 9, 100	7, 430 7, 920 8, 410 8, 900 9, 390	7, 680 8, 180 8, 690 9, 190 9, 690	7, 940 8, 450 8, 970 9, 490 10, 000	8, 210 8, 730 9, 260 9, 790 10, 320	8, 480 9, 020 9, 560 10, 100 10, 640	8, 770 9, 320 9, 870 10, 420 10, 970	9, 060 9, 620 10, 180 10, 740 11, 300	9, 350 9, 920 10, 500 11, 070 11, 640	9, 650 10, 240 10, 820 11, 400 11, 990	15 16 17 18 19
20 21 22 23 24	6, 500 6, 830 7, 160 7, 480 7, 810	6, 770 7, 100 7, 440 7, 780 8, 120	7, 030 7, 380 7, 730 8, 080 8, 440	7, 300 7, 660 8, 030 8, 390 8, 760	7, 570 7, 950 8, 330 8, 710 9, 080	7, 840 8, 240 8, 630 9, 020 9, 410	8, 120 8, 530 8, 940 9, 340 9, 750	8, 410 8, 830 9, 250 9, 670 10, 090	8, 690 9, 130 9, 560 10, 000 10, 430	8, 980 9, 430 9, 880 10, 330 10, 780	9, 280 9, 740 10, 200 10, 670 11, 130	9, 570 10, 050 10, 530 11, 010 11, 490	9, 880 10, 370 10, 870 11, 360 11, 850	10, 200 10, 700 11, 210 11, 710 12, 210	10, 520 11, 040 11, 550 12, 070 12, 590	10, 850 11, 380 11, 900 12, 430 12, 960	11, 180 11, 720 12, 260 12, 800 13, 340	11, 520 12, 070 12, 620 13, 180 13, 730	11, 870 12, 430 12, 990 13, 550 14, 120	12, 220 12, 790 13, 360 13, 940 14, 510	12, 570 13, 150 13, 740 14, 320 14, 910	20 21 22 23 24
25	8, 130	8, 460	8, 790	9, 120	9, 460	9, 810	10, 150		10, 870		11, 590	11, 960	12, 340	12, 720	13, 100	13, 490	13, 880		14, 680	15, 080	15, 490	25
HE	ADWA	TER 1	779 to	1781		* A	rrangeme	ənt "0" iı is spillv	ndicates vay gate	that all	spillway v.	gates a	re closec							APR	IL 2004	4

ANGE-		· · · ·	<u>.</u>						HEA	DWA	TER E	ELEVA	ATION	1	•							ANGE-
ARR	1781.0	1781.1	1781.2	1781.3	1781.4	1781.5	1781.6	1781.7	1781.8	1781.9	1782.0	1782.1	1782.2	1782.3	1782.4	1782.5	1782.6	1782.7	1782.8	1782.9	1783.0	ARG
0* 1 2 3 4	890 1, 480 2, 060 2, 640 3, 230	1, 040 1, 630 2, 230 2, 820 3, 420	1, 190 1, 800 2, 400 3, 010 3, 610	1, 360 1, 970 2, 590 3, 200 3, 820	1, 530 2, 150 2, 780 3, 410 4, 030	1, 710 2, 340 2, 980 3, 620 4, 250	1, 900 2, 540 3, 190 3, 830 4, 480	2, 090 2, 750 3, 400 4, 060 4, 710	2, 290 2, 960 3, 620 4, 290 4, 950	2, 500 3, 170 3, 840 4, 520 5, 190	2, 700 3, 380 4, 060 4, 750 5, 430	2, 890 3, 580 4, 280 4, 970 5, 670	3, 070 3, 770 4, 480 5, 180 5, 890	3, 220 3, 940 4, 660 5, 370 6, 090	3, 340 4, 070 4, 800 5, 540 6, 270	3, 420 4, 160 4, 910 5, 660 6, 400	3, 430 4, 190 4, 960 5, 730 6, 490	3, 360 4, 150 4, 940 5, 730 6, 510	3, 200 4, 010 4, 830 5, 640 6, 450	2, 920 3, 760 4, 610 5, 450 6, 290	2, 500 3, 380 4, 260 5, 140 6, 020	0* 1 2 3 4
567 89	3, 810 4, 400 4, 980 5, 560 6, 150	4, 010 4, 610 5, 200 5, 800 6, 390	4, 220 4, 820 5, 430 6, 030 6, 640	4, 430 5, 050 5, 660 6, 280 6, 900	4, 660 5, 280 5, 910 6, 530 7, 160	4, 890 5, 520 6, 160 6, 790 7, 430	5, 120 5, 770 6, 410 7, 060 7, 700	5, 370 6, 020 6, 680 7, 330 7, 990	5, 620 6, 280 6, 940 7, 610 8, 270	5, 870 6, 540 7, 210 7, 890 8, 560	6, 120 6, 800 7, 480 8, 170 8, 850	6, 360 7, 050 7, 750 8, 440 9, 140	6, 590 7, 300 8, 010 8, 710 9, 420	6, 810 7, 530 8, 250 8, 960 9, 680	7, 000 7, 730 8, 460 9, 190 9, 920	7, 150 7, 900 8, 650 9, 390 10, 140	7, 260 8, 020 8, 790 9, 550 10, 320	7, 300 8, 090 8, 870 9, 660 10, 450	7, 270 8, 080 8, 890 9, 700 10, 520	7, 140 7, 980 8, 820 9, 670 10, 510	6, 900 7, 780 8, 660 9, 540 10, 420	5 6 7 8 9
10 11 12 13 14	6, 730 7, 320 7, 900 8, 480 9, 070	6, 980 7, 580 8, 170 8, 770 9, 360	7, 240 7, 850 8, 450 9, 060 9, 660	7, 510 8, 130 8, 740 9, 360 9, 970	7, 780 8, 410 9, 030 9, 660 10, 280	8, 060 8, 700 9, 330 9, 970 10, 600	8, 350 8, 990 9, 640 10, 280 10, 930	8, 640 9, 300 9, 950 10, 600 11, 260	8, 940 9, 600 10, 270 10, 930 11, 590	9, 240 9, 910 10, 580 11, 260 11, 930	9, 540 10, 220 10, 900 11, 590 12, 270	9, 830 10, 530 11, 220 11, 920 12, 610	10, 120 10, 830 11, 530 12, 240 12, 940	10, 400 11, 120 11, 830 12, 550 13, 270	10, 660 11, 390 12, 120 12, 850 13, 580	10, 890 11, 640 12, 380 13, 130 13, 880	11, 080 11, 850 12, 620 13, 380 14, 150	11, 240 12, 020 12, 810 13, 600 14, 380	11, 330 12, 140 12, 960 13, 770 14, 580	11, 350 12, 200 13, 040 13, 880 14, 730	11, 300 12, 180 13, 060 13, 930 14, 810	10 11 12 13 14
15 16 17 18 19	9, 650 10, 240 10, 820 11, 400 11, 990	9, 960 10, 550 11, 150 11, 740 12, 340	10, 270 10, 870 11, 480 12, 080 12, 690	10, 590 11, 200 11, 820 12, 430 13, 050	10, 910 11, 540 12, 160 12, 790 13, 410	11, 240 11, 870 12, 510 13, 150 13, 780	11, 570 12, 220 12, 860 13, 510 14, 150	11, 910 12, 570 13, 220 13, 880 14, 530	12, 260 12, 920 13, 590 14, 250 14, 920	12, 610 13, 280 13, 950 14, 630 15, 300	12, 960 13, 640 14, 320 15, 010 15, 690	13, 300 14, 000 14, 690 15, 390 16, 080	13, 650 14, 350 15, 060 15, 770 16, 470	13, 990 14, 700 15, 420 16, 140 16, 860	14, 310 15, 040 15, 780 16, 510 17, 240	14, 620 15, 370 16, 120 16, 870 17, 610	14, 910 15, 680 16, 440 17, 210 17, 970	15, 170 15, 960 16, 750 17, 530 18, 320	15, 390 16, 210 17, 020 17, 830 18, 650	15, 570 16, 410 17, 260 18, 100 18, 950	15, 690 16, 570 17, 450 18, 330 19, 210	15 16 17 18 19
20 21 22 23 24	12, 570 13, 150 13, 740 14, 320 14, 910	12, 930 13, 520 14, 120 14, 710 15, 310	13, 290 13, 900 14, 500 15, 110 15, 710	13, 660 14, 280 14, 890 15, 510 16, 120	14, 040 14, 660 15, 290 15, 910 16, 540	14, 420 15, 050 15, 690 16, 320 16, 960	14, 800 15, 440 16, 090 16, 740 17, 380	15, 190 15, 840 16, 500 17, 150 17, 810	15, 580 16, 240 16, 910 17, 570 18, 240	15, 980 16, 650 17, 320 18, 000 18, 670	16, 380 17, 060 17, 740 18, 430 19, 110	16, 780 17, 470 18, 160 18, 860 19, 550	17, 180 17, 880 18, 590 19, 290 20, 000	17, 580 18, 290 19, 010 19, 730 20, 450	17, 970 18, 700 19, 430 20, 160 20, 900	18, 360 19, 110 19, 850 20, 600 21, 350	18, 740 19, 510 20, 270 21, 040 21, 800	19, 110 19, 890 20, 680 21, 470 22, 260	19, 460 20, 270 21, 080 21, 900 22, 710	19, 790 20, 630 21, 480 22, 320 23, 160	20, 090 20, 970 21, 850 22, 730 23, 610	20 21 22 23 24
25	15, 490	15, 900	16, 320	16, 740	17, 160	17, 590	18, 030	18, 460	18, 900	19, 350	19, 800	20, 250	20, 700	21, 160	21, 630	22, 100	22, 570	23, 040	23, 520	24, 010	24, 490	25
							-										•	·				
ΔΡ		04				* A	rrangeme	ant "0" ir	ndicates	that all	spillwav	gates a	re closer	1.			F			1781	to 1783	
רי		~				Ĩ	Discharge	is spillu	ay gate	overflov	V.	34.00 ai					I			1101		•

9

E L	NT									HEA	DWA	TER E	ELEVA	TION									ANGE.
8 ⁰	₹ 1	783.0	1783.1	1783.2	1783.3	1783.4	1783.5	1783.6	1783.7	1783.8	1783.9	1784.0	1784.1	1784.2	1784.3	1784.4	1784.5	1784.6	1784.7	1784.8	1784.9	1785.0	9Å2
1	25 2	24, 490	24, 980	25, 480	25, 980	26, 480	26, 980	27, 490	28, 010	28, 520	29, 040	29, 570	30, 100	30, 630	31, 160	31, 700	32, 240	32, 790	33, 340	33, 890	34, 450	35, 010	25
1						1				HEA	DWA	TER E	ELEVA	ATION	L		-				I		UNGE NTGE
GA	[≨] ₩ 1	785.0	1785.1	1785.2	1785.3	1785.4	1785.5	1785.6	1785.7	1785.8	1785.9	1786.0	1786.1	1786.2	1786.3	1786.4	1786.5	1786.6	1786.7	1786.8	1786.9	1787.0	ARRA
	25 3	35, 010	35, 570	36, 140	36, 710	37, 280	37, 850	38, 430	39, 020	39, 600	40, 190	40, 790	41, 380	41, 980	42, 590	43, 190	43, 800	44, 410	45, 030	45, 650	46, 270	46, 890	25
												-											
ŀ																							
TE.	INT CE									HEA	DWA	TER E	ELEVA	ATION									ATE CANGE-
ð	₹ [₹] 1	787.0	1787.1	1787.2	1787.3	1787.4	1787.5	1787.6	1787.7	1787.8	1787.9	1788.0	1788.1	1788.2	1788.3	1788.4	1788.5	1788.6	1788.7	1788.8	1788.9	1789.0	ARG
1	25 4	16, 890	47, 520	48, 150	48, 780	49, 420	50, 060	50, 700	51, 350	52, 000	52, 650	53, 310	53, 960	54, 630	55, 290	55, 960	56, 630	57, 310	57, 980	58, 670	59, 350	60, 040	25
										:													

HEADWATER 1783 to 1789

APRIL 2004

10

NOTTELY DAM

Nottely ii

July 2001

RESERVOIR OPERATION OVERVIEW

Nottely is a multipurpose tributary project located on the Nottely River, a tributary to the Hiwassee River. The project was originally constructed without any hydropower facility, primarily to be used for storage augmentation for TVA's downstream Hiwassee and Apalachia projects on the Hiwassee River, as well as for TVA mainstream dams on the Tennessee River. The project was built during World War II, with dam closure in 1942. The single unit powerhouse was completed in 1956. Nottely is operated for many purposes, including flood control, augmentation of flows for navigation, hydropower production, water quality, recreation, and aquatic ecology. Nottely Reservoir has an annual pool variation of about 35 feet during normal years, but could be several feet more during drought or flood periods.

Table of Contents

Nottely Reservoir Vicinity Map
Figure 1: Construction of Dam, 1942 (Photo)6
Figure 2: Single Unit Powerhouse, 1956 (Photo)6
General Plans, Elevation, and Sections (TVA drawing 10N200):
Figure 3: Site Plan7
Figure 4: Section A1-A1 8
Figure 5: Section B1-B1 9
Figure 6: Section C1-C1 10
Figure 7: Section D1-D1 11
Figure 8: Section E1-E1 12
Figure 9: Plan
Figure 10: Section - Powerhouse
Location
Chronology
Project Cost
Streamflow
Reservoir
Tailwater
Head (Gross)
Reservoir Adjustments
Dams:
Main Dam
Saddle Dam
Outlet facilities $\dots \dots
Figure 11: Upper End of Concrete Spillway (Photo) 20
Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20
Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities:
Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: Intake Facilities
Outlet Facilities 18-19 Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: 11 Intake Facilities 21 Figure 13: Intake Tower and Footbridge (Photo) 22
Outlet Facilities 18-19 Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: Intake Facilities 21 Figure 13: Intake Tower and Footbridge (Photo) 22 Powerhouse 23
Outlet Facilities 18-19 Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: 11 Intake Facilities 21 Figure 13: Intake Tower and Footbridge (Photo) 22 Powerhouse 23 Figure 14: Powerhouse (Photo) 24
Outlet Facilities 18-19 Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: 21 Figure 13: Intake Tower and Footbridge (Photo) 22 Powerhouse 23 Figure 14: Powerhouse (Photo) 24 Excavated Tailrace Channel 25
Outlet Facilities 18-19 Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: 21 Figure 13: Intake Tower and Footbridge (Photo) 22 Powerhouse 23 Figure 14: Powerhouse (Photo) 24 Excavated Tailrace Channel 25
Outlet Facilities 18-19 Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: 11 Intake Facilities 21 Figure 13: Intake Tower and Footbridge (Photo) 22 Powerhouse 23 Figure 14: Powerhouse (Photo) 24 Excavated Tailrace Channel 25 Hydraulic Turbine 25 Generator 25
Outlet Facilities 18-19 Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: 11 Intake Facilities 21 Figure 13: Intake Tower and Footbridge (Photo) 22 Powerhouse 23 Figure 14: Powerhouse (Photo) 24 Excavated Tailrace Channel 25 Hydraulic Turbine 25 Generator 25-26 Generator 26
Outlet Facilities 18-19 Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: 21 Figure 13: Intake Tower and Footbridge (Photo) 22 Powerhouse 23 Figure 14: Powerhouse (Photo) 24 Excavated Tailrace Channel 25 Hydraulic Turbine 25 Generator 25-26 Generator and Turbine Modernization 26
Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: 21 Figure 13: Intake Tower and Footbridge (Photo) 22 Powerhouse 23 Figure 14: Powerhouse (Photo) 24 Excavated Tailrace Channel 25 Hydraulic Turbine 25 Generator 25-26 Generator and Turbine Modernization 26 Electric Controls 26
Outlet Facilities 18-19 Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: 21 Intake Facilities 21 Figure 13: Intake Tower and Footbridge (Photo) 22 Powerhouse 23 Figure 14: Powerhouse (Photo) 24 Excavated Tailrace Channel 25 Hydraulic Turbine 25 Generator 25-26 Generator and Turbine Modernization 26 Electric Controls 26 Transmission Plant 26 Figure 15: Single Line Diagram of Main Connections 27
Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: 21 Figure 13: Intake Tower and Footbridge (Photo) 22 Powerhouse 23 Figure 14: Powerhouse (Photo) 24 Excavated Tailrace Channel 25 Hydraulic Turbine 25 Generator 25 Generator and Turbine Modernization 26 Figure 15: Single Line Diagram of Main Connections 27
Outlet Facilities 18-19 Figure 11: Upper End of Concrete Spillway (Photo) 20 Figure 12: Lower End of Concrete Spillway (Photo) 20 Power Facilities: 21 Figure 13: Intake Tower and Footbridge (Photo) 22 Powerhouse 23 Figure 14: Powerhouse (Photo) 24 Excavated Tailrace Channel 25 Hydraulic Turbine 25 Generator 25-26 Generator and Turbine Modernization 26 Figure 15: Single Line Diagram of Main Connections 27 Figure 16: Switchyard (Photo) 28
Soutlet Facilities18-19Figure 11: Upper End of Concrete Spillway (Photo)20Figure 12: Lower End of Concrete Spillway (Photo)20Power Facilities:21Intake Facilities21Figure 13: Intake Tower and Footbridge (Photo)22Powerhouse23Figure 14: Powerhouse (Photo)24Excavated Tailrace Channel25Hydraulic Turbine25Generator25-26Generator and Turbine Modernization26Electric Controls26Figure 15: Single Line Diagram of Main Connections27Figure 16: Switchyard (Photo)28Transmission Plant29
Outlet Facilities18-19Figure 11: Upper End of Concrete Spillway (Photo)20Figure 12: Lower End of Concrete Spillway (Photo)20Power Facilities:11Intake Facilities21Figure 13: Intake Tower and Footbridge (Photo)22Powerhouse23Figure 14: Powerhouse (Photo)24Excavated Tailrace Channel25Hydraulic Turbine25Generator25-26Generator and Turbine Modernization26Electric Controls26Figure 15: Single Line Diagram of Main Connections27Figure 16: Switchyard (Photo)28Transmission Plant29Reservoir and Power Data30-31
Outlet Facilities18-19Figure 11: Upper End of Concrete Spillway (Photo)20Figure 12: Lower End of Concrete Spillway (Photo)20Power Facilities:11Intake Facilities21Figure 13: Intake Tower and Footbridge (Photo)22Powerhouse23Figure 14: Powerhouse (Photo)24Excavated Tailrace Channel25Hydraulic Turbine25Generator25-26Generator and Turbine Modernization26Electric Controls26Figure 15: Single Line Diagram of Main Connections27Figure 16: Switchyard (Photo)28Transmission Plant29Reservoir and Power Data30-31Unit Operating Characteristics32
Figure 11: Upper End of Concrete Spillway (Photo)20Figure 12: Lower End of Concrete Spillway (Photo)20Power Facilities:11Intake Facilities21Figure 13: Intake Tower and Footbridge (Photo)22Powerhouse23Figure 14: Powerhouse (Photo)24Excavated Tailrace Channel25Hydraulic Turbine25Generator25-26Generator and Turbine Modernization26Figure 15: Single Line Diagram of Main Connections27Figure 16: Switchyard (Photo)28Transmission Plant29Reservoir and Power Data30-31Unit Operating Characteristics32-35
Figure 11: Upper End of Concrete Spillway (Photo)20Figure 12: Lower End of Concrete Spillway (Photo)20Power Facilities:11Intake Facilities21Figure 13: Intake Tower and Footbridge (Photo)22Powerhouse23Figure 14: Powerhouse (Photo)24Excavated Tailrace Channel25Hydraulic Turbine25Generator25-26Generator and Turbine Modernization26Figure 15: Single Line Diagram of Main Connections27Figure 16: Switchyard (Photo)28Transmission Plant29Reservoir and Power Data30-31Unit Operating Characteristics32Spill Compilations36-37
Figure 11: Upper End of Concrete Spillway (Photo)20Figure 12: Lower End of Concrete Spillway (Photo)20Power Facilities:11Intake Facilities21Figure 13: Intake Tower and Footbridge (Photo)22Powerhouse23Figure 14: Powerhouse (Photo)24Excavated Tailrace Channel25Hydraulic Turbine25Generator25-26Generator and Turbine Modernization26Electric Controls26Figure 15: Single Line Diagram of Main Connections27Figure 16: Switchyard (Photo)28Transmission Plant29Reservoir and Power Data30-31Unit Operating Characteristics32Spill Compilations36-37Average Weekly CFS38
Figure 11: Upper End of Concrete Spillway (Photo) 20Figure 12: Lower End of Concrete Spillway (Photo) 20Power Facilities:Intake FacilitiesFigure 13: Intake Tower and Footbridge (Photo) 23Figure 14: Powerhouse (Photo) 23Figure 14: Powerhouse (Photo) 24Excavated Tailrace Channel
Figure 11: Upper End of Concrete Spillway (Photo)20Figure 12: Lower End of Concrete Spillway (Photo)20Power Facilities:11Intake Facilities21Figure 13: Intake Tower and Footbridge (Photo)22Powerhouse23Figure 14: Powerhouse (Photo)24Excavated Tailrace Channel25Hydraulic Turbine25Generator25-26Generator and Turbine Modernization26Electric Controls26Figure 15: Single Line Diagram of Main Connections27Figure 16: Switchyard (Photo)28Transmission Plant30-31Unit Operating Characteristics32Spill Compilations33-35Maximum and Minimum Elevations36-37Average Weekly CFS38Annual Operating Cycle39Reservoir Areas and Volumes40

.,

Table of Contents (Continued)

Safety	Modificat	ions for	Probable	Maximum	Flood			. 41
Constru	uction Dat	a:						
Pe	ersonnel,	Housing	Facilities	s, and Qu	antitie	es		. 42
Co	onstructio	n Plant	Lavout and	d Schedu	le		43	-44

FIGURE 1 - Construction of Dam, 1942

FIGURE 2 - Single Unit Powerhouse, 1956

FIGURE 3

. . <u>.</u> .

FIGURE 4

SECTION A1-A1

SECTION B1-B1

SECTION C1-C1

July 2001

• -

SECTION D1-D1

ргуи

1

EIGURE 9

1002 YIUU

FIGURE 10

NOTTELY PROJECT

SUMMARY OF PRINCIPAL FEATURES

NOTE :

Elevations are based on the U.S.C. & G.S. 1936 Supplementary Adjustment.

LOCATION

On Nottely River at river mile 21.0; in Union County, Georgia; 11 air miles southwest of Murphy, North Carolina; 2.3 river miles upstream from Georgia-North Carolina State line.

CHRONOLOGY

Initial appropriation by Congress July 16,	1941
Authorized by TVA Board of Directors	1941
Construction started July 17,	1941
Dam closure January 24,	1942
First storage release October 1,	1942
Power unit authorized by TVA Board of Directors September 25,	1951
Installation of unit started December 3,	1952
Unit in commercial operation January 10,	1956
Safety modifications for probable maximum flood	
construction completed	1988
Reservoir releases improvements - completed September 30,	1993
Generator and turbine modernization - completed June 21,	1997

PROJECT COST

Initial project, no units	\$5,384,627
Addition of unit 1	2,654,778
Safety modifications for probable maximum flood	15,200,000
Reservoir releases improvements	. 1,900,000
Generator and turbine modernization	2,195,310
Total, including switchyard\$	27,334,715

July 2001

STREAMFLOW

Drainage area at dam 214 sq. miles
Gaging station discharge records:
Near Ivylog, Georgia, October 1936 to
September 1942; drainage area
At Nottely Dam, September 1941 to date;
drainage area miles
Near Ranger, North Carolina, February 1901 to
December 1905, January 1914 to April 1917,
October 1918 to September 1945; drainage area 272 sq. miles
Maximum known unregulated flood at dam site (Sept 1898) 27,000 cfs
Maximum regulated flood at dam site (May 1973)
Average unregulated flow at dam site (1903-2000)
Minimum daily natural flow at dam site
(1925), approx

RESERVOIR

Counties affected:
State of Georgia Union
Reservoir land at May 31, 1996:
Fee simple
Easements
Total
Transferred
Operating levels at dam:
Probable maximum flood elevation (PMF)el. 1805.9
500-year flood elevation
100-year flood elevation
Winter flood guide level Winter flood guide level
Summer flood guide level Summer flood guide level
Maximum probable floodel. 1796.7
Maximum used for design (57,000 cfs)el. 1788.3
Top of gates (area 4310 ac.)
Backwater, length at top of gates level
Shoreline, length at normal maximum pool level:
Main shore
Islands
Total \ldots 106 miles
Original river area (to el. 1780 crossing)
Storage (flat pool assumption):
Total volume:
At top of gates (el. 1780)
At normal maximum pool (el. 1779)
At normal minimum pool (el. 1735)

Nottely 17

July 2001

RESERVOIR (continued)

Reservation for flood control on:

January 1 to January 12(el. 1780-1745)	acft
March 15 (el. 1780-1755)	acft
Useful controlled storage (el. 1780-1735) 117,100	acft

TAILWATER

Maximum used for design	el.	1636.0
Maximum known flood (1898)	el.	1624.0
Full plant operation (1 unit)	el.	1613.0
Unit operating at best efficiency	el.	1613.0
Minimum level	el.	1605.6

HEAD (Gross)

Maximum static (el. 1780-1605.6)	174.4	ft
Normal maximum operating (el. 1780-1613)	167.0	ft
Average operating	145.0	ft
Minimum operating (el. 1690-1613)	. 77.0	ft

RESERVOIR ADJUSTMENTS

Clearing	2,485.3 ac.
Access	. 4.2 miles
State	2.8 miles
County and tertiary	15.5 miles
Total	. 22.5 miles
Bridges (highway)	5
Concrete box culverts	19
Families relocated	91
Graves removed	2
Utilities adjusted	. 8.2 miles

١

·

DAMS

MAIN DAM

Material and type	Rockfill and impervious rolled
	earthfill embankment
Length (including spillway)	2,300 ft
Maximum height	
Maximum width at base	
Top of embankment	el. 1794.0
Top width	
Highway	22 ft wide on dam
Foundation	Carolina gneiss

SADDLE DAM

Location	500 ft beyond right end of main dam Impervious rolled earthfill embankment with rockfill shoulder on upstream side
Length	
Maximum height	
Top of embankment	el. 1794.0
Top width	
Foundation	Earth

OUTLET FACILITIES

SPILLWAY (See Figures 11 and 12)

Location	At left (north) end of main dam
Material and type	Concrete chute with curved
	weir and ski-jump endsill
Weir:	
Crest length, clear	
Crest level	el. 1775.0
Top of gates	el. 1780.0
Gates (50)	
Gate operation	Two traveling electric cranes
_	on overhead footbridge
Chute:	
Length	
Width Converges fr	om 325 ft at weir to 80 ft at outlet
Height	
Level of endsill	el. 1670.5
Nottely 19

OUTLET FACILITIES

SPILLWAY (See Figures 11 and 12)

Discharge capacity: HW el. 1787.4 49,500 cfs HW el. 1780.0 11,500 cfs HW el. 1779.0 8,100 cfs Highway 20 ft wide, on bridge upstream from weir Foundation Earth, except chute outlet on rock

FIGURE 11 - Upper end of concrete spillway chute, October 1999

Figure 12 - Lower end of concrete spillway chute, October 1999

1

POWER FACILITIES

INTAKE (See Figure 13)

Type Size:	Circular reinforced concrete dry tower
Inside diameter	
Height	206 ft
Trashrack	32 sections, 8 ft 0-1/4 in. wide by 10 ft 6 in. high
Gross area at racks	
Gates	Two 5-ft-8-inwide by 10-ft high hydraulically operated slide gates
Service crane	15-ton overhead crane

CONDUIT

(Intake to Powerhouse)

Type .	Concrete-	and	steel-1	Lined	tunnel
Size:					
	Concrete section, inside diameter		•••••		.15 ft
	Steel section, inside diameter				.12 ft
Lengt	hs:				
(Concrete section		•••••		409 ft
	Steel section				330 ft

FIGURE 13 - Intake tower and footbridge, October 1999

POWER FACILITIES (CONT.)

POWERHOUSE (See Figure 14)

POWER FACILITIES (CONT.)

EXCAVATED TAILRACE CHANNEL

Length	n, approx .	 	 	 	•••	 •	 •	 		 	•			•	 •			1(000	ft
Width		 	 	 		 • •		 	•	 			•••	•	 •	 •		•••	30	ft
Depth	(maximum)	 	 	 		 •	 •	 	•	 		 •		•	 •	 •	••		. 9	ft

HYDRAULIC TURBINE

Number
Manufacturer Voith Hydro, Inc.
Type Vertical Francis
Rated output 20,600 hp at 128-ft net head
Rated speed
Maximum runaway speed
Specific speed at rating 60.0
Value of sigma at rating 0.27
Diameter of runner at intake
Diameter of runner at discharge 102.28 in.
Centerline to bottom of runner 42.96 in.
Centerline to top of runner 20.88 in.
Diameter of guide vane circle 128.375 in.
Diameter of lower pit 14.0 ft
Draft tube (see Powerhouse) Elbow type
Governors Woodward, cabinet actuator type

GENERATOR

Number	1
Manufacturer Westingho	ouse Electric Corp.
Type Enclosed, water-cool	ed, vertical-shaft
Rating 16,667 kVA,	15,000 kW, 698 A,
60 degrees	C rise, 0.9pf,
13.8kV, 3	ph,60Hz
Capacity 19,167 kVA,	17,250 kW, 803 A,
80 degrees	C rise
Efficiency (guaranteed):	
At rated kVA, 1.0 pf	97.15 percent
At 75% kVA, 0.9 pf	96.5 percent
Flywheel effect	8,290,000 lb-ft ²
Thrust bearing Kingsbury	type, dia. 48 in.,
max. load	180 tons
Neutral equipment 50-kVA tran	sformer, 0.45 ohm,
300 A resi	stor

POWER FACILITIES (CONT.)

GENERATOR (CONT.)

Exciters:	
Main	kW, 125 V
Pilot	kW, 125 V
Weight of heaviest crane lift, rotor	70 tons
Diameter of air housing, less trim	360 in.
Top of pilot exciter:	
Above stator soleplates	146 in.
Above generator floor	140.5 in.

GENERATOR AND TURBINE MODERNIZATION

This project for Nottely was completed on June 21, 1997. The unit was disassembled. The principal components replaced were the wicket gate seals, the stainless steel wear rings, the runner, and wicket gate bushings (greaseless). Also, the turbine shaft was modified for a new water-lubricated guide bearing. The unit was then reassembled. Unit efficiency and capacity have been improved; refer to the latest "Operating Characteristics Curves" for details.

ELECTRIC CONTROLS

From Hiwassee hydro plant, by frequency-shift powerline carrier. Local controls for initial operation and maintenance.

TRANSMISSION PLANT

(See Figure 15 for single line diagram of main connections and Figure 16 for view of switchyard)

Step-up and intersystem transformer:

1 3-phase, 3-winding transformer, bank 1; rated 12.47 13.2-69 kV, 14,500 kVA self-cooled, 19,333 kVA forced-air-cooled on 13.2- and 69-kV windings; 5000 kVA self-cooled, 6667 kVA forced-air-cooled on 12.47-kV windings; Moloney

69-kV circuit breakers:

1 600-A, 1,000,000-kVA, 8/20-Hz, Westinghouse

1 600-A, 685,000-kVA, 8/20-Hz, Westinghouse Structures:

2 69-kV switchyard bay, 26 ft wide

FIGURE 15 - Single line diagram of main connections

POWER FACILITIES (CONT.)

EXCAVATED TAILRACE CHANNEL

Length	, approx .	 	 	 	 	1000	ft
Width		 	 	 	 	30	ft
Depth	(maximum)	 • • • •	 	 	 	9	ft

HYDRAULIC TURBINE

Number
Manufacturer Voith Hydro, Inc.
Type Vertical Francis
Rated output 20,600 hp at 128-ft net head
Rated speed
Maximum runaway speed
Specific speed at rating 60.0
Value of sigma at rating 0.27
Diameter of runner at intake
Diameter of runner at discharge 102.28 in.
Centerline to bottom of runner 42.96 in.
Centerline to top of runner 20.88 in.
Diameter of guide vane circle 128.375 in.
Diameter of lower pit 14.0 ft
Draft tube (see Powerhouse) Elbow type
Governors Woodward, cabinet actuator type

GENERATOR

Number
Manufacturer Corp
Type
Rating
60 degrees C rise, 0.9pf,
13.8kV, 3 ph,60Hz
Capacity
80 degrees C rise
Efficiency (guaranteed):
At rated kVA, 1.0 pf
At 75% kVA, 0.9 pf 96.5 percent
Flywheel effect
Thrust bearing Kingsbury type, dia. 48 in.
max. load 180 tons
Neutral equipment 0.45 ohm
300 A resistor

POWER FACILITIES (CONT.)

GENERATOR (CONT.)

Exciters:	
Main	kW, 125 V
Pilot	kW, 125 V
Weight of heaviest crane lift, rotor	70 tons
Diameter of air housing, less trim	360 in.
Top of pilot exciter:	
Above stator soleplates	146 in.
Above generator floor	140.5 in.
	110.0 11.

GENERATOR AND TURBINE MODERNIZATION

This project for Nottely was completed on June 21, 1997. The unit was disassembled. The principal components replaced were the wicket gate seals, the stainless steel wear rings, the runner, and wicket gate bushings (greaseless). Also, the turbine shaft was modified for a new water-lubricated guide bearing. The unit was then reassembled. Unit efficiency and capacity have been improved; refer to the latest "Operating Characteristics Curves" for details.

ELECTRIC CONTROLS

From Hiwassee hydro plant, by frequency-shift powerline carrier. Local controls for initial operation and maintenance.

TRANSMISSION PLANT

(See Figure 13 for single line diagram of main connections and Figure 14 for view of switchyard)

Step-up and intersystem transformer:

1 3-phase, 3-winding transformer, bank 1; rated 12.47 13.2-69 kV, 14,500 kVA self-cooled, 19,333 kVA forced-air-cooled on 13.2- and 69-kV windings; 5000 kVA self-cooled, 6667 kVA forced-air-cooled on 12.47-kV windings; Moloney

69-kV circuit breakers:

1 600-A, 1,000,000-kVA, 8/20-Hz, Westinghouse

1 600-A, 685,000-kVA, 8/20-Hz, Westinghouse Structures:

2 69-kV switchyard bay, 26 ft wide

FIGURE 16 - Switchyard, October 1999

TRANSMISSION PLANT DATA

Plant	Location	Phase	Serial	MVA Ra	ating	Voltage	Cooling	Тар	Oil Preservation	Oil	Configuration	Impe	Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		Impedance %		npedance %		pedance %		pedance %		mpedance %		Impedance %		Contract	Manuf	Yr of																																																								
			Number	55 deg	65 deg	kV		Changer	System	Volume		H-X	H-Y	X-Y	Number		Manuf																																																																																																						
										Gal.																																																																																																													
Nottely	Bank 1	3	910896	14.5/19.33	N/A	69/13.2	OA/FA	DETC	Gas-Blanketed	4130	Wye/Delta	7.90	N/A	N/A	C53-22444	Moloney	1953																																																																																																						

Note: H=High voltage winding Y=Tertiary winding X=Low voltage winding

RESERVOIR AND POWER DATA

Nottely

,				Best	Efficiency		Maximum Sustainable								
Elevation A (feet) (acre 1780 4 1779 4 1778 4 1777 3 1776 3 1776 3 1775 3 1774 3 1773 3 1772 3 1771 3 1770 3 1769 3 1768 3 1768 3 1767 3 1766 2 1765 2 1765 2 1764 2 1763 2 1762 2 1761 2 1760 2			Gross	Plant	Turbine		Plant	Turbine							
Elevation	Area	Volume	Head	Output	Discharge	kW/CFS	Output	Discharge	kW/CFS						
(feet)	(acre*1000)	(ac-ft*1000)	(feet)	(mW)	(cfs)		(mW)	(cfs)							
1780	4.32	174.3	167.4	17.2	1,390	12.44	20.0	1,630	12.25						
1779	4.18	170.1	166.4	17.1	1,390	12.35	20.0	1,650	12.16						
1778	4.05	165.9	165.4	17.0	1,390	12.26	20.0	1,660	12.06						
1777	3.93	162.0	164.3	16.9	1,390	12.17	20.0	1,670	11.96						
1776	3.83	158.1	163.3	16.8	1,390	12.08	20.0	1,690	11.86						
1775	3.73	154.3	162.3	16.7	1,400	11.99	20.0	1,700	11.76						
1774	3.65	150.6	161.2	16.6	1,400	11.90	20.0	1,710	11.66						
1773	3.56	147.0	160.2	16.5	1,400	11.81	20.0	1,730	11.56						
1772	3.48	143.5	159.2	16.4	1,400	11.72	19.9	1,740	11.46						
1771	3.39	140.0	158.2	16.3	1,400	11.62	19.8	1,740	11.36						
1770	3.31	136.7	157.1	16.2	1,410	11.53	19.7	1,750	11.26						
1769	3.23	133.4	156.1	16.1	1,410	11.44	19.6	1,760	11.15						
1768	3.15	130.2	155.1	16.0	1,410	11.34	19.5	1,760	11.05						
1767	3.07	127.1	154.1	15.9	1,410	11.25	19.4	1,770	10.95						
1766	2.99	124.1	153.1	15.8	1,420	11.16	19.3	1,780	10.85						
1765	2.92	121.1	152.1	. 15.7	1,420	11.06	19.2	1,790	10.75						
1764	2.85	118.3	151.0	15.6	1,420	10.97	19.1	1,790	10.65						
1763	2.78	115.4	150.0	15.5	1,420	10.88	19.0	1,800	10.54						
1762	2.71	112.7	149.0	15.4	1,430	10.81	18.9	1,800	10.49						
1761	2.65	110.0	148.0	15.3	1,430	10.73	18.8	1,800	10.43						
1760	2.59	107.4	147.0	15.2	1,430	10.66	18.7	1,800	10.38						
1759	2.53	104.8	146.0	15.1	1,430	10.59	18.6	1,800	10.33						
1758	2.47	102.3	145.0	15.0	1,430	10.52	18.5	1,800	10.27						
1757	2.42	99.9	144.0	14.9	1,430	10.45	18.4	1,800	10.22						
1756	2.36	97.5	143.0	14.8	1,430	10.38	18.3	1,800	10.16						
1755	2.31	95.2	142.0	14.7	1.430	10.31	18.2	1,800	10.11						
1754	2.26	92.9	141.0	14.6	1,430	10.24	18.1	1,800	10.06						
1753	2.21	90.6	140.0	14.5	1,430	10.17	18.0	1,800	10.00						
1752	2.17	88.4	139.0	14.4	1,420	10.11	17.8	1,790	9.94						

NOTE: Energy in storage data not included

RESERVOIR AND POWER DATA

Nottely

				Best Efficiency			Maxim	um Sustaina	ble
Elevation (feet)	Area (acre*1000)	Volume (ac-ft*1000)	Gross Head (feet)	Plant Output (mW)	Turbine Discharge (cfs)	kW/CFS	Plant Output (mW)	Turbine Discharge (cfs)	kW/CFS
1751	2.12	86.3	138.1	14.2	1,410	10.05	17.6	1,780	9.89
1750	2.08	84.2	137.1	14.1	1,410	9.98	17.4	1,770	9.83
1749	2.04	82.1	136.1	13.9	1,400	9.92	17.2	1,760	9.77
1748	2.00	80.1	135.1	13.8	1,390	9.86	17.0	1,750	9.72
1747	1.96	78.1	134.2	13.6	1,390	9.80	16.8	1,740	9.66
1746	1.92	76.2	133.2	13.5	1,380	9.74	16.6	1,730	9.60
1745	1.89	74.3	132.2	13.3	1,370	9.68	16.4	1,720	9.55
1744	1.85	72.4	131.2	13.2	1,370	9.62	16.2	1,710	9.49
1743	1.81	70.6	130.3	13.0	1,360	9.56	16.1	1,700	9.43
1742	1.78	68.8	129.3	12.9	1,360	9.50	15.9	1,690	9.38
1741	1.74	67.0	128.3	12.8	1,350	9.44	15.7	1,680	9.32
1740	1.71	65.3	127.3	12.7	1,350	9.38	15.6	1,670	9.26
1739	1.68	63.6	126.4	12.6	1,350	9.31	15.4	1,660	9.20
1738	1.64	61.9	125.4	12.5	1,350	9.25	15.2	1,650	9.15
1737	1.61	60.3	124.4	12.4	1,340	9.19	15.1	1,640	9.09
1736	1.58	58.7	123.4	12.3	1,340	9.13	14.9	1,630	9.03
1735	1.55	57.2	122.5	12.2	1,340	9.07	14.8	1,620	8.98
1734	1.52	55.6	121.5	12.1	1,330	9.01	14.6	1,610	8.92
1733	1.49	54.1	120.5	12.0	1,330	8.95	14.4	1,610	8.86
1732	1.46	52.7	119.5	11.9	1,330	8.89	14.3	1,600	8.81
1731	1.43	51.2	118.6	11.8	1,320	8.83	14.1	1,590	8.75
1730	1.40	49.8	117.6	11.7	1,320	8.77	14.0	1,580	8.69

NOTE: Energy in storage data not included

					Volumes are average daily in day-second-feet. except as shown.
					Maximum spill, date of maximum, and number of days of spill in each spill period, in this order. "Total Days" is for calendar year and
					does not always equal the sum of the days in periods because of extension of periods into adjacent years.
					Water was spilled through the spillway and/or the Howell-Bunger Valve. All unmarked spill was through valve.
	MAXIMUM AVERAGE				Howell-Bunger valve was removed and installed at Chatuge in August 1954.
	DAILY DISCHARGE		NUMBER OF	TOTAL	Maximum hourly average discharge to date was 8,120 cfs at 2 p.m. on 5/28/73.
YEAR	(TURBINE + SPILL)	DATE	PERIODS	DAYS	*Spillway #Spillway and valve
1942	1780	10/2	2	50	*839/103; #178010/247
1943	1950	5/23 & 24	9	164	#17601/3120; 16702/234; *8603/2413; *3984/75; #19505/2349; 17006/1514; 16707/2015; 16708/819; 15009/2510; 117012/2115
1944	1500	7/11	7	193	*7424/25; *7424/1214; #15007/11100; 8608/816; 12009/1515; 51910/1517; 94212/623
1945	2104	9/30	5	56	17405/3121; 15206/278; 5857/282; 11809/610; 21049/3015
1946	2550	1/13	10	218	25501/1314; 9542/16; 25502/1315; 10903/1016; 15203/195; 12804/1637; 10007/339; 13207/2373; 53812/172; 99812/249
1947	1690	4/19	5	252	16904/19123; 10006/2118; 6567/65; 5277/246; 13607/31100
1948	2330	6/9	7	146	14901/2915; 23306/957; 5706/293; 10007/105; 11407/274; 14908/2426; 11509/2119
1949	1640	10/25	8	269	15101/8137; 7105/33; 10005/207; 9506/416; 10508/1330; 164010/2553; 100011/1122; 125012/2138
1950	1500	4/11	9	218	7102/16-1941; 5003/11&124; 15004/1154; 12406/21&2227; 10008/25-2725; 5009/9-117; 11009/2225; 100012/912; 5005/303
1951	2210	1/9	7	163	22101/923; 1003/52; 11903/2210; 9906/532; 11806/213; 10006/278; 11507/1885
1952	1500	4/16&17, 5/13	5	242	10002/542; 6502/2612; 15004/1689; 10006/2696; 115012/3012
1953	1780	8/20	5	197	5001/204; 8002/35; 15003/1729; 12506/1843; 17808/2099
1954	2210	5/6	5	156	14701/124; 14903/938; 19804/79; 22105/640; 7406/1553
1955	2950	5/23	2	201	*29505/23101; *9209/27110
1956	1750	8/11	0	10	Turbine began operating January 10.
1957	1563	6/14	0	0	
1958	1395	7/5	0	0	

Nottely 34 Tennessee Valley Authority River System Operations

					Volumes are average daily in day-second-feet. except as shown.
					Maximum spill, date of maximum, and number of days of spill in each spill period, in this order. "Total Days" is for calendar year and
					does not always equal the sum of the days in periods because of extension of periods into adjacent years.
					Water was spilled through the spillway and/or the Howell-Bunger Valve. All unmarked spill was through valve.
	MAXIMUM AVERAGE				Howell-Bunger valve was removed and installed at Chatuge in August 1954.
	DAILY DISCHARGE		NUMBER OF	TOTAL	Maximum hourly average discharge to date was 8,120 cfs at 2 p.m. on 5/28/73.
YEAR	(TURBINE + SPILL)	DATE	PERIODS	DAYS	Spillway #Spillway and valve
1959	1600	8/4	0	0	
1960	1729	9/14	0	0	
1961	1514	12/27	0	0	
1962	1816	2/26	0	0	
1963	1442	4/25	0	0	
1964	2183	5/3	2	7	*10254/294; *18645/33
1965	1552	6/3	0	0	
1966	1210	12/30	9	21	58/24; 58/103; 128/192; 98/263; 58/132; 49/141; 69/161; 259/223; 129/272 (through temporary Howell-Bunger valve for tests)
1967	1877	12/20	5	13	107/252; 258/44; 138/92; 238/293; 1710/262 (through temporary Howell-Bunger valve for tests)
1968	1845	1/10	0	0	
1969	1212	11/15	0	0	
1970	1679	1/7	0	0	
1971	1382	11/4	0	0	
1972	1810	1/13	0	0	
1973	5363	5/28	1	3	*37405/283
1974	1599	5/21	0	0	
1975	1507	2/24	0	0	
1976	1868	5/29	0	0	
1977	1794	1/17	0	0	
1978	1664	1/14	0	0	
1979	1292	1/9	0	0	

.

Nottely 35 Tennessee Valley Authority River System Operations

					Volumes are average daily in day-second-feet. except as shown.
					Maximum spill, date of maximum, and number of days of spill in each spill period, in this order. "Total Days" is for calendar year and
		-			does not always equal the sum of the days in periods because of extension of periods into adjacent years.
					vvater was spliled through the splilway and/or the Howell-Bunger Valve. All unmarked splil was through valve.
	DAILY DISCHARGE		NUMBER OF	TOTAL	Maximum hourly average discharge to date was 8,120 cfs at 2 p.m. on 5/28/73.
YEAR	(TURBINE + SPILL)	DATE	PERIODS	DAYS	*Spillway #Spillway and valve
1980	1599	3/2	0	0	
1981	978	12/18	0	0	
1982	1872	2/4	0	0	
1983	1830	5/22	0	0	
1984	1830	5/9	0	0	
1985	1408	1/21	0	0	
1986	1066	1/27	0	0	
1987	934	10/14	0	0	
1988	974	12/1	0	.0	
1989	2338	6/21	1	2	*7416/212
1990	1799	3/4	0	0	
1991	1707	5/8	1	12	1535/3012
1992	1970	12/24-25	0	0	
1993	1400	1/1	2	9	106/83; 336/156
1994	1470	1/20	1	1	132/211
1995	1553	10/11	1	3	5010/18-203
1996	1450	12/20	0	0	
1997	1402	5/22	1	84	*14025/2284
1998	1300	2/5	0	0	
1999	1356	12/8	0	0	
2000	1332	10/23	1	3	*346/143

RIVER SCHEDULING

July 2001

TVA OPERATED RESERVOIR SYSTEM ANNUAL MAXIMUM AND MINIMUM ELEVATIONS, IN ORDER OF MAGNITUDE FROM DATE OF RESERVOIR CLOSURE THROUGH 2000

NOTTELY

	MAX	XIMUM				MINIMU	M		
ORDER	ELEVATION	YEAR	MONTH	DAY	ORDER	ELEVATION	YEAR	MONTH	DAY
1	1781.47	1973	MAY	28	1	1622.70 *	1942	JAN.	24
2	1780.50	1943	APR.	20	2	1638.60	1947	OCT.	6
3	1779.79	1976	JULY	5	3	1641.60	1954	JULY	30
4	1779.72	1989	JUNE	21	4	1642.40	1953	SEP.	19
5	1779.59	1944	APR.	28	5	1645.75	1952	SEP.	12
6	1779.28	1984	MAY	29	6	1675.50	1951	JAN.	25
7	1779.04	1964	MAY	2	7	1685.42	1948	OCT.	1
8	1778.44	1991	JULY	1	8	1698.20	1944	DEC.	27
9	1778.24	1979	JUNE	.11	9	1701.96	1959	SEP.	25
10	1778.21	1980	MAY	25	10	1702.75	1945	JAN.	1
11	1778.09	1992	JULY	4	11	1706.18	1956	DEC.	12
12	1778.09	1998	JUNE	8	12	1709.51	1946	OCT.	3
13	1778.05	1997	JUNE	12	13	1709.75	1958	SEP.	19
14	1777.82	1996	JUNE	11	14	1715.78	1960	SEP.	26
15	1777.76	1990	MAY	8	15	1718.42	1962	DEC.	28
16	1777.22	1955	MAY	23	16	1720.04	1963	JAN.	1
17	1777.13	1946	JUNE	10	17	1721.79	1957	AUG.	17
18	1777.10 %	1994	JUNE	27	18	1724.80	1950	OCT.	13
19	1777.05	1993	JUNE	21	19	1725.25	1966	FEB.	7
20	1777.04	1977	MAY	4	20	1725.36	1965	OCT.	8
21	1776.86	1983	MAY	· 21	21	1728.38	1955	JAN.	1
22	1776.78	1942	SEP.	27	22	1729.24	1961	FEB.	7
23	1776.18	1967	SEP.	4	23	1729.48	1970	FEB.	4
24	1775.42	1956	JAN.	1	24	1730.05	1943 ·	OCT.	3
25	1774.73	1949	AUG.	8	25	1732.20	1964	JAN.	1
26	1774.14	1975	MAY	5	26	1732.93	1969	NOV.	21
27	1773.86	1974	JUNE	11	27	1734.34	1971	JAN.	1
28	1773.19	1995	JULY	4	28	1734.92	1968	DEC.	17
29	1772.71	1971	AUG.	23	29	1738.07	1974	NOV.	27
30	1772.47	1999	JULY	1 9	30	1739.79	1977	FEB.	17
31	1772.01	1972	MAY	30	31	1740.46	1999	JAN.	7
32	1771.80	1962	APR.	29	32	1740.84	1998	DEC.	23
33	1770.20	1982	JUNE	7	33	1740.91	2000	JAN.	7
34	1770.02	1966	JULY	8	34	1740.95	1949	OCT.	30
35	1769.43	2000	JULY	5	35	1741.75	1985	JAN.	25
36	1768.97	1963	MAY	6	36	1741.77	1997	DEC.	19
37	1768.46	1987	JULY	8	37	1741.78	1995	JAN.	6
38	1767.69	1957	APR.	12	38	1741.83	1967	FEB.	17
39	1766.80	1945	MAY	30	39	1742.17	1981	FEB.	7
40	1766.61	1965	APR.	27	40	1742.58	1996	JAN.	5
41	1766.51	1960	APR.	28	41	1742.84	1975	DEC.	25
42	1766.28	1968	MAY	20	42	1743.44	1979	JAN.	10
43	1765.75	1958	MAY	25	43	1743.82	1976	DEC.	14
44	1765.60	1988	JUNE	6	44	1744.16	1980	JAN.	10
45	1765.55	1981	JUNE	8	45	1744.26	1978	NOV.	10
46	1765.44	1952	MAR.	28	46	1744.69	1994	DEC.	21
47	1765.03	1978	JUNE	26	47	1746.25	1972	JAN.	1

RIVER SCHEDULING

July 2001

TVA OPERATED RESERVOIR SYSTEM ANNUAL MAXIMUM AND MINIMUM ELEVATIONS, IN ORDER OF MAGNITUDE FROM DATE OF RESERVOIR CLOSURE THROUGH 2000

NOTTELY

	MA	AXIMUM							
ORDER	ELEVATION	YEAR	MONTH	DAY	ORDER	ELEVATION	YEAR	MONTH	DAY
48	1764.42	1950	APR.	7	48	1746.32	1987	JAN.	15
49	1763.50	1961	JULY	5	49	1746.44	1986	FEB.	14
50	1763.16	1970	JUNE	23	50	1746.61	1973	JAN.	17
51	1762.91	1948	MAY	7	51	1746.66	1989	DEC.	25
52	1761.70	1969	APR.	21	52	1746.76	1983	JAN.	20
53	1761.33	1985	JULY	11	53	1746.83	1988	JAN.	15
54	1760.36	1986	JUNE	- 1	54	1746.97	1982	JAN.	18
55	1760.11	1953	MAR.	13	55	1747.40	1984	FEB.	10
56	1759.15	1951	MAY	18	56	1748.73	1993	DEC.	31
57	1758.32	1947	APR.	18	57	1749.47	1990	DEC.	21
58	1747.88	1959	JUNE	29	58	1750.37	1992	JAN.	23
59	1740.20	1954	FEB.	22	59	1750.65	1991	JAN.	24

.

AVERAGE WEEKLY CFS

MAXIMUM, MINIMIUM, MEDIAN, AND MEAN Adjusted Flow by Weeks Nottely Years = 1903-2000

AVERAGE WEEKLY CFS

WEEK	WEEK					
ENDING	NO.	MAXIMUM YR	MINIMUM	YR	MEDIAN	MEAN
JAN 7	1	1,490 1937	136	1940	425	490
JAN 14	2	1,640 1946	147	1981	420	483
JAN 21	3	1,980 1954	160	1914	421	519
JAN 28	4	1,990 1996	155	1940	508	548
FEB 4	5	1,940 1957	169	1986	474	564
FEB 11	6	2,190 1946	150	1934	484	570
FEB 18	7	2,760 1990	150	1934	495	610
FEB 25	8	2,150 1961	154	1988	520	584
MAR 4	9	1,970 1917	145	1988	527	606
MAR 11	10	1,590 1952	166	1986	546	635
MAR 18	11	2,590 1990	214	1981	506	669
MAR 25	12	1,890 1952	177	1988	564	634
APR 1	13	1,940 1977	168	1988	540	701
APR 8	14	2,920 1936	197	1986	570	679
APR 15	15	1,990 1979	157	1999	552	594
APR 22	16	1,280 1998	151	1986	519	546
APR 29	17	980 1929	130	1986	513	524
MAY	18	1,430 1929	124	1986	468	528
MAY 13	19	1,320 1929	116	1986	463	491
MAY 20	20	2,050 1976	121	1988	404	445
MAY 27	21	1,530 1909	92	1988	390	452
JUN 3	22	1,980 1973	69	1988	360	427
JUN 10	23	1,390 1909	42	1988	342	393
JUN 17	24	780 1909	38	1988	331	367
JUN 24	25	1,370 1989	76	1986	295	330
JUL	26	952 1963	52	1988	290	327
JUL 8	27	1,250 1941	42	2000	281	351
JUL 15	28	2,690 1916	38	2000	292	352
JUL 22	29	1,860 1938	17	2000	271	336
JUL 29	30	1,810 1938	65	1925	277	314
AUG 5	31	1,210 1971	42	1986	264	299
AUG 12	32	1,060 1978	50	1925	259	288
AUG 19	33	1,630 1920	0	1999	241	292
AUG 26	34	3,710 1967	40	1925	211	290
SEP 2	35	1,040 1906	30	1925	210	252
SEP 9	36	1,230 1928	25	1925	200	237
SEP 16	37	570 1906	30	1925	190	212
SEP 23	38	800 1907	25	1925	195	224
SEP 30	39	1.360 1929	47	1986	202	254
OCT 7	40	2,890 1964	43	1986	197	283
OCT 14	41	840 1906	70	1904	192	222
OCT 21	42	943 1975	66	1986	190	236
OCT 28	43	707 1997	70	1904	215	233
NOV 4	44	1.450 1918	46	2000	212	258
NOV 11	45	1,060 1977	75	1931	220	255
NOV 18	46	1,370,1929	100	1904	230	277
NOV 25	47	2,680 1906	80	1904	230	319
DEC 2	48	1,450 1948	95	1933	233	324
DEC 9	49	1,230 1914	109	1987	320	378
DEC 16	50	1,720 1961	105	1958	316	390
DEC 23	51	1,640 1918	116	1987	307	401
DEC 31	52	2,260 1932	120	1935	398	469
AVERAGE	FLOW:	1903 - 2000 = 413 CFS	•		RIVER SYSTEM	OPERATIONS

ANNUAL OPERATING CYCLE

RESERVOIR RELEASES IMPROVEMENTS

The aeration and minimum flow equipment at Nottely Dam is part of the implementation of TVA's Lake Improvement Plan (LIP) approved by the Board of Directors in 1991. One of the goals of the Lake Improvement Plan is to improve the dissolved oxygen (DO) levels and minimum flows of the releases of 16 dams. Minimum flow releases of 55 cfs at Nottely were obtained by the installation of a small hydroturbine unit which is operated whenever the main unit is off. At Nottely testing showed the target minimum DO content of the release (4 mg/L) to be best achieved by the installation of air injection equipment. Blower and compressor systems inject air at the large and small hydroturbines respectively. The blower system consists of two blowers (250 hp each), controls, piping, and valves designed to inject air into the water flow through the large unit. The air compressor system consists of two air compressors, controls, piping, and valves designed to inject air into the flow through the small unit. The air compressors are rated at 25 hp each.

SAFETY MODIFICATIONS FOR PROBABLE MAXIMUM FLOOD

Chronology

Safety analysis studies for Chatuge Dam for the probable maximum flood (PMF) were started on July 29, 1976, and completed in May 1984. Final design was completed in January 1988. Onsite construction began in July 1986, and was completed on June 20, 1988.

Cost of Modifications

Design costs for the capital safety modifications to Chatuge Dam were \$1,520,000. Construction costs were \$13,680,000. The total project cost was \$15,200,000. This total does not include costs for dam safety evaluation studies which resulted in the modifications.

Controlling Features

The embankments at Nottely were modified in order to safety pass the probable maximum flood. The embankments were raised to elevation 1807 by the addition of rockfill. A new bridge was built with a 30 ft. width of asphalt roadway. These PMF modifications will prevent overtopping and erosion of the embankments and thus prevent breach and failure of the dam.

CONSTRUCTION DATA

PERSONNEL

		Single-Unit
	Dam and Tunnel	Addition
Peak employed	2,100	121
Total man-hours	1,831,960	305,555
Number of injuries	26	2
Days lost	3,939	539
Fatalities	0	0
Accident frequency	14.2	6.55
Accident severity	2,150	1,764

HOUSING FACILITIES (Initial Project)

Permanent houses built	None
Demountable houses	58
Trailers	50
Tents (160 total capacity)	40
Washhouses	4

Public buildings constructed included a cafeteria and hospital.

QUANTITIES

	Initial Project	Single-Unit Addition
Dam and power facilities:		
Unclassified excavation	207,360 cu. yd	15,000 cu. yd
Rock excavation	8,353 cu. yd	-
Rolled earthfill	854,300 cu. yd	-
Dumped rockfill	698,000 cu. yd	-
Concrete	17,700 cu. yd	4,050 cu. yd
Highways:	_	_
Excavation	650,000 cu. yd	_

CONSTRUCTION PLANT LAYOUT

STAGES N									•		1942							1	1943		
STAUES	NU.	TIEM OR EQUIPMENT	J	A	S	0	N	D	JI	-	N	AN		IJ	A	S	0	NIC	J	F	M
CONICT	A	Access road			Η	•		·		Ť	Ť		T	Ĺ				T	1	Π	
CUNSI	C	Construction utilities-water-air-power		-	\mathbf{F}	·			Τ			Τ			\square				T	Π	
SERVICES	0	Construction-roads & bridges		-	П		-	•	Τ	T	Τ	Τ	T		Π				T	Γ	
	E	Shop & job buildings		F	F				T		T				Π			T	T		Π
	F	Construction plant			-				Т				Τ	ŀ	•			Т	Τ	Γ	
PLANT	G	Cofferdam & temporary channel excavation		F					T	T			T			·		T	T	Γ	
		Excavation-unclassified		•	Η	_	-		Т	Τ	-	+	Τ	Γ			ŀ		Т	Γ	Π
DIVERSION		Excavation-rock		Γ		_			Τ	Τ	T							T		Γ	
THANKE		Concrete lining		Γ	П		•		1.	+	-		Τ	•					T	f	Π
TUNNEL		Grouting			Π				T	T		-	-		-		1		T	T	П
		Steel liner		ſ	Ħ		·		1	Ť	1	-	╈		┢╌┥			+	\uparrow	┢	
	,	Concrete tower			Π		_		-1	Ť	1	Ť	╇		Π		1	-	t	ŀ	
		Access bridge		Γ	Π				+	+	_		┢	┢			Ť	╈	╋	┢	Η
STOUCTURE		Gates & operating equipment		T	H				+	t	T	╞		t			1	+	1	F	Π
SIRUCIURE		Intake crane	F	Γ	Π				T	Ť	T			T	Π		+	╋	╞	t	Η
ł		Trashracks	Γ		П				1	╈	1		┢	t	Π	-	═╪	╡	┢	T	Π
OUTLET	6	Concrete	ſ		П					Ť	1	+		ł	-		1	ŀ	T	ĪN	Ď
STRUCTURE	12	Gates & operating equipment	Ē	Ē	T				╡	1		╈	╈	t	Π			+	t	ţ.	Ē
	26	Foundation excavation	T	-			•		╺╺╅	1	1	╈	╈	t		H	1	-	·	╋	Π
DAM	29	Earth embankment		t					4	+		-			F	·		-	1.	┢	Η
STRUCTURES	30	Rock fill		Ť					-	4	+	_	+-	t			-	╡	$^{+}$	┢	Η
	32	Operators building		T	ŀ					T	1			Ļ			_			\uparrow	Π
	3	Excavation-unclassified	F	t	Π					1	╡	_	╞	t				╈	\dagger	┢	\square
	6	Concrete	T	T	Ħ				+	╡	┫	╼┝	T	t	Π	Η		+	1	┢	H
SPILLWAY	12	Crest control equipment	T	t	T					1	┫		1	t		Η			╡	┢	
		Highway bridge	F	┢	Ħ				-†	1	1	‡		t				+	$^{+}$	┢	┢┥
		Steel sheet piling	Ē	t	Ħ			•	1	1	1	╈	1	t		\square		\uparrow		T	h
	91	Land acquisition		Ļ	Ħ				+	ϯ	1	╈		t		Η		╈	1	┢	H
	92	Reservoir clearance	Ι.	L					+	Ť	┫	+	+	Ť					t	┢	Π
	94	Highway & railroad relocation								+					┢	$\left \cdot \right $		╉	╈	+	Η
	95	Family removal & cemetery relocation	T	T	Ħ		÷			1	1	╈	╈	t				╈	╈	+	÷
GENERAL	96	Utilities	t	\mathbf{f}	Ħ					+	1	╈	-	╀	\vdash			+	╋	+	┢┥
u v	97	Filling reservoir	T	t		Н		H	╡		1			t	╞	H	┝┨	-+-	╋	+	\vdash
· ·	98	Tunnel diversion	忄	t	Ħ					┥	╡	╈	+	╋	┢	H		-+-	╋	╋	┢╸
	99	Clean-up & removal	t	┢	T	-				┫	┫	-	\dagger	t	Ē	Ħ		+	\dagger	┢	t

CONSTRUCTION SCHEDULE

---الم المستر منهم واللي المراقع المراقع المراقع في المراقع والمراقع المحتم المستوية والمراقع المراقع المراقع الم المراقع

