

Westinghouse Electric Company LLC Hematite Decommissioning Project 3300 State Road P Festus, MO 63028 USA

ATTN: Document Control Desk Director, Office of Federal and State Materials and Environmental Management Programs U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

Direct tel:314-810-3368Direct fax:636-937-6380E-mail:hackmaek@westinghouse.comOur ref:HEM-10-26Date:March 22, 2010

Subject:	Additional Information Concerning License Amendment 52
	(License No. SNM-00033, Docket No. 070-00036)

Reference: 1) Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-09-141, dated December 16, 2009, "Review of the Technical Basis for NRC Approval of Hematite License Amendment 52 for Building Demolition"

In Reference 1 Westinghouse Electric Company LLC submitted an evaluation of the current validity of NRC License Amendment 52 in light of the recent characterization surveys of the process buildings. That evaluation focused on the impact of a larger amount of Special Nuclear Material (SNM) than the NRC had previously evaluated for approval of the license amendment. In response to a request by NRC staff for evaluation of other potential impacts in light of the passage of time since June 2006 when Amendment 52 was approved, Westinghouse submits the attached additional information.

Attachment 1, "Clarification of Amendment 52 Source Documents for Current Building Demolition," provides clarification of the changes which have evolved from the original assumptions in source documents the NRC used as a basis to justify Amendment 52 in June 2006 to present day planning for building demolition. Attachment 2, Technical Basis Document, HDP-TBD-HP-504, Rev. 0, "Assessment of Conditions During Process Building Demolition," provides an update to the estimate of potential internal exposure from air emissions, and the current potential for external exposure. Attachment 2 also provides an explanation of engineering and administrative control measures to be used to mitigate potential adverse effects, and summarizes the monitoring plans for the building demolition effort.

Attachment 3, Technical Basis Document, HDP-TBD-WM-902, Rev. 0, "Building Demolition Debris Volume and Weight Estimate," and Attachment 4, Technical Basis Document, HDP-TBD-WM-901, Rev. 0, "Scaling Factors for Radioactive Waste Associated with the Process Buildings," are also attached. These documents provide the technical basis for certain

©2010 Westinghouse Electric Company LLC All Rights Reserved HEM-10-26 Date: March 22, 2010 Page 2 of 2

Attachment 2 input assumptions, including the physical and radiological characteristics of the buildings that were used as input to the exposure estimate.

If you have questions or comments regarding this submission, please contact Gerard Couture at (803) 647-2045.

Sincerely,

E. Kurt Hackmann Director, Hematite Decommissioning Project

- Attachments: 1) "Clarification of Amendment 52 Source Documents for Current Building Demolition"
 - Hematite Decommissioning Project, Technical Basis Document, HDP-TBD-HP-504, Revision 0, "Assessment of Conditions during Process Building Demolition"
 - 3) HDP-TBD-WM-902, Revision 0, "Building Demolition Debris Volume and Weight Estimate"
 - 4) HDP-TBD-WM-901, Revision 0, "Scaling Factors for Radioactive Waste Associated with the Process Buildings"
- cc: J. J. Hayes, NRC/FSME/DWMEP/DURLD
 C. A. Lipa, NRC Region III/DNMS/MCID
 P. A. Silva, NRC/NMSS/FCSS/SPTSD
 W. G. Snell, NRC Region III/DNMS/DB
 R. Tadesse, NRC/FSME/DWMEP/DURLD
 G. F. Couture, Westinghouse

ATTACHMENT 1

Clarification of Amendment 52 Source Documents for Current Building Demolition

References:

- 1 Westinghouse (K. A. Craig) letter to NRC (A. Kouhestani), dated October 5, 2004, "Request for Amendment to Chapter 1 of SNM-33," ADAMS No. ML042860234
- 2 Westinghouse (E. K. Hackmann) letter to NRC (Document Control Desk), HEM-09-121, dated October 23, 2009, "Hematite Decommissioning Project Summary Report of the 2009 Process Building Characterization," ADAMS No. (not available)
- 3 Westinghouse (E. K. Hackmann) letter to NRC (Document Control Desk), HEM-09-141, dated December 16, 2009, "Review of the Technical Basis for NRC Approval of Hematite License Amendment 52 for Building Demolition," ADAMS No. (not available)
- 4 Westinghouse (K. A. Craig) letter to NRC (A. Kouhestani), HEM-04-342, dated December 22, 2004, "Submittal of Building Demolition Evaluation," ADAMS No. ML050250347
- 5 Westinghouse (T. D. Chance) to NRC (Document Control Desk), HEM-06-13, dated January 31, 2006, Response to NRC Request for Additional Information (TAC No. L52641)," ADAMS No. ML060330438
- 6 Westinghouse (T. D. Chance) letter to Document Control Desk (NRC), HEM-06-24, dated March 17, 2006, "Response to NRC Request for Additional Information for Review of the Hematite Former Fuel Cycle Facility – Building Demolition Amendment Request (TAC No. L52641)," ADAMS No. ML060800265
- 7 Westinghouse (E. K. Hackmann) letter to NRC (Document Control Desk), HEM-10-8, dated January 27, 2010, "Hematite Decommissioning Project, Process Buildings Activities Safety Reports," ADAMS No. (not available)
- 8 Westinghouse (E. K. Hackmann) letter to Document Control Desk (NRC), HEM-09-140, dated December 3, 2009, "Hematite Decommissioning Project Criticality Alarm Exemption Request," ADAMS No. (not available)
- 9 NRC (L. W. Camper) letter to Westinghouse (E. K. Hackmann), dated March 17, 2010, "Exemption Request from the Requirements of 10 CFR 70.17(a) for a Criticality Monitoring System in Accordance With 10 CFR 70.24(a) at the Hematite Site," ADAMS No. (not available)

Introduction

In October 2004, Westinghouse submitted a license amendment request to the NRC for building demolition (Reference 1). Westinghouse also submitted several supporting documents over the ensuing months which were used as references in the NRC's Safety Evaluation Report (SER) and approval of the requested license amendment; i.e., Amendment 52, dated June 30, 2006.

In light of the 2009 radiological characterization of the Hematite process buildings (Reference 2), which more accurately estimated the residual Special Nuclear Material (SNM) in the buildings, and the long passage of time since the NRC's Amendment 52 approval to demolish the buildings, Westinghouse submitted a review of the basis for Amendment 52 (Reference 3) to evaluate the statements of the SER and its conclusions of almost four years ago. During review of the basis for Amendment 52, NRC staff has requested a more in-depth evaluation to clarify

Attachment 1 to HEM-10-26 Date: March 22, 2010 Page 3 of 12

the current validity of the amendment's source documents, which is the purpose of this document.

The information supporting the original request for authorization of building demolition included an Environmental Report (Reference 1), a technical evaluation of building demolition activities (Reference 4), and answer to several questions the NRC had concerning environmental monitoring (Reference 5) and criticality safety (Reference 6). The current differences in the information provided in each of these references, including those resulting from the residual SNM from the 2009 radiological characterization of the process buildings, are clarified below. Inconsequential differences are not explicitly identified (e.g., while HDP policies and procedures which were referenced in the 2004 – 2006 source documents have been revised over the years, the revisions were approved in accordance with HDP's safety programs as required by the license, and the differences in the revisions from those referenced in the source documents are inconsequential for the present purpose).

Evaluation of Supporting Documents

A. Environmental Report

The letter that submitted the initial license amendment request for building demolition (Reference 1) also provided a corresponding Environmental Report. The following clarifies the current differences from the information provided in the Environmental Report, including those resulting from the residual SNM reported in the 2009 radiological characterization of the process buildings. Table 1 provides the results of our evaluation of the Environmental Report, by section.

- There has been significant progress in Hematite's dealings with the State of Missouri over the ensuing years. The need for NRC's authorization for the demolition of buildings is still valid.
- While HDP still requests authorization to demolish all the buildings, some of the buildings may not initially be demolished prior to Decommissioning and some may remain following license termination.
- The currently remaining equipment items to be removed from the process buildings prior to demolition are identified in Reference 7.
- Waste characterization will be performed as appropriate for waste disposal purposes in accordance with approved procedures.
- The Environmental Report adequately described the affected environment associated with building demolition.
- There still are no definite future land use plans developed for the site.
- The transportation description for the facility area remains valid, with the exception of the railroad improvement at the Hematite site identified below.
- As noted in the Westinghouse review of the basis for Amendment 52 (Reference 3), installation of a railroad spur at the Hematite facility was completed in 2009 to provide an alternative means for transport of waste to an approved disposal facility. HDP is also

pursuing use of the U.S. Ecology's Idaho facility for an alternate waste disposal destination.

- The only transportation impact difference is the reduced impact in light of the railroad improvement which would reduce truck traffic.
- The current license restrictions continue to preclude subsurface excavation and slab removal, which are not a part of building demolition.
- Attachment 2 of the accompanying letter (Hematite Decommissioning Project, Technical Basis Document, HDP-TBD-HP-504, Revision 0, "Assessment of Conditions during Process Building Demolition,") provides a calculation of potential dose from air emissions in consideration of the recent characterization of current radionuclide inventory. The calculated dose does not alter the previous conclusions regarding air quality impacts from building demolition.
- Specific internal and external dose estimates have been calculated for the building demolition effort in light of the current radionuclide inventory. Attachment 2 of the accompanying letter provides the detailed calculations, which do not alter the previous conclusions regarding radiological impacts from building demolition.

B. Evaluation for Building Demolition

Reference 4 submitted an evaluation performed for building demolition in 2004. The following clarifies the current differences from the information provided in the 2004 evaluation for building demolition, including those resulting from the residual SNM reported in the 2009 radiological characterization of the process buildings. Table 2 provides the results of our evaluation of the 2004 Building Demolition Evaluation.

- While Westinghouse still requests authorization to demolish all the buildings, some of the buildings may not initially be demolished and some may remain following license termination.
- The currently remaining equipment items to be removed from the process buildings prior to demolition are identified in Reference 7.
- Waste characterization will be performed as appropriate for waste disposal purposes in accordance with approved procedures.
- Subsequent to the 2004 evaluation for building demolition, Westinghouse submitted further information regarding environmental monitoring, as discussed herein.
- Specific internal and external dose estimates have been calculated for the building demolition, effort in light of the current radionuclide inventory. Attachment 2 of the accompanying letter (Hematite Decommissioning Project, Technical Basis Document, HDP-TBD-HP-504, Revision 0, "Assessment of Conditions during Process Building Demolition,") provides the detailed calculations, which do not alter the previous conclusions regarding radiological impacts from building demolition.
- Attachment 2 of the accompanying letter provides a calculation of potential dose from air emissions in consideration of the recent characterization of current radionuclide

inventory. The calculated dose does not alter the previous conclusions regarding air quality impacts from building demolition.

• Reference 8 thoroughly evaluated the criticality safety considerations for building demolition, including the difference in SNM inventory from that originally assumed in the SER. Reference 8 concluded that a criticality accident associated with the building demolition is not credible.

C. Environmental Monitoring and Control

In January 2006 Westinghouse submitted responses to NRC questions and a revised plan for environmental monitoring during building demolition (Reference 5). With the following exception, that document describes the environmental monitoring and control planned during building demolition:

• The amount of SNM in the process buildings is more accurately estimated in the 2009 radiological characterization of the process buildings. The additional amount of SNM over that assumed in the SER does not change the environmental monitoring and control conclusions of the SER.

D. Response to SNM Inventory Questions

In Reference 6, Westinghouse responded to an NRC request for additional information of March 2, 2006, concerning the amount of SNM in the process buildings. The NRC relied upon this information in Section 7 of the June 30, 2006, SER. Westinghouse's December 2009 review of the basis for Amendment 52 (Reference 3) thoroughly evaluated this section of the SER, and that evaluation is not reiterated here. In Reference 9 the NRC recently approved in part Westinghouse's December 2009 criticality monitoring system exemption request (Reference 8). The approval was limited to the current quiescent condition and D&D operations in the process buildings, but did not include building demolition and other site areas and activities. Therefore, Westinghouse reiterates its Reference 8 request for a criticality monitoring system exemption for building demolition and other site areas and activities.

Conclusion

Westinghouse concludes that the NRC License Amendment 52 authorization for building demolition continues to remain valid for the Hematite facility, even with the passage of time and the SNM as reported the Reference 2 radiological characterization of the process buildings. Westinghouse reiterates its Reference 8 request for a criticality monitoring system exemption for building demolition and other site areas and activities.

Table 1Environmental Report (Reference 1) Evaluation

<u>Sect.</u> No.	<u>Title</u>	<u>Clarification of Current Differences</u>
1.0	Introduction	There has been significant progress in Hematite's dealings with the State of Missouri over the ensuing years. The need for NRC's authorization for the demolition of buildings is still valid.
1.1	Purpose and Need for the Proposed Action	None*
1.2	The Proposed Action	While HDP still requests authorization to demolish all the buildings, some of the buildings may not initially be demolished prior to Decommissioning and some may remain following license termination.
		The currently remaining equipment items to be removed from the process buildings prior to demolition are identified in Reference 7.
		Waste characterization will be performed as appropriate for waste disposal purposes in accordance with approved procedures.
1.3	Applicable Regulatory Requirements, Permits, and Required Consultations	None
2.0	Alternative to the Proposed Action	None
3.0	Description of the Affected Environment	The Environmental Report adequately described the affected environment associated with building demolition.
3.1	Land Use	None
3.1.1	Regional Setting	None
3.2.1	Hematite Former Fuel Cycle Facility	None
3.1.3	Land Use Plans	There still are no definite future land use plans developed for the site.

^{* &}quot;None" indicates there are either no differences in current building demolition plans from those described in the source document, or the differences are inconsequential for the present purpose.

Sect. No.	Title	<u>Clarification of Current Differences</u>
3.2	Transportation	None
3.2.1	Hematite Facility Area	The transportation description for the facility area remains valid, with the exception of the railroad improvement at the Hematite site identified below.
3.2.2	Waste Transportation Routes	As noted in the Westinghouse review of the basis for Amendment 52 (Reference 3), installation of a railroad spur at the Hematite facility was completed in 2009 to provide an alternative means for transport of waste to an approved disposal facility. HDP is also pursuing use of the U.S. Ecology's Idaho facility for an alternate waste disposal destination.
3.3	Geology, Soils and Seismology	None
3.4	Water Resources	None
3.4.1	Surface Water Discharge	None
3.4.2	Groundwater	None
3.5	Ecological Resources	None
3.6	Metrology, Climatology, and Air Quality	None
3.6.1	Metrology and Climatology	None
3.6.2	Air Quality	None
3.7	Noise	None
3.8	Historic and Cultural Resources	None
3.8.1	regional History	None
3.8.2	Site History	None
3.9	Visual/Scenic Resources	None
3.10	Socioeconomics	None
3.11	Public and Occupational Health	None
3.12	Waste Management	None
3.12.1	Liquid Waste	None
3.12.1	Solid Waste	None
4.0	Environmental Impacts	None

Sect. No.	Title	<u>Clarification of Current Differences</u>
4.1	Land Use Impacts	None
4.2	Transportation Impacts	The only transportation impact difference is the reduced impact in light of the railroad improvement which would reduce truck traffic.
4.3	Geology and Soils Impacts	The current license restrictions continue to preclude subsurface excavation and slab removal, which are not a part of building demolition.
4.4	Water Resources Impacts	None
4.5	Ecological Resources Impacts	None
4.6	Air Quality Impacts	Attachment 2 of the accompanying letter (Hematite Decommissioning Project, Technical Basis Document, HDP-TBD-HP-504, Revision 0, "Assessment of Conditions during Process Building Demolition,") provides a calculation of potential dose from air emissions in consideration of the recent characterization of current radionuclide inventory. The calculated dose does not alter the previous conclusions regarding air quality impacts from building demolition.
4.6.1	Mitigation Measures	None
4.6.2	Monitoring	None
4.7	Noise Impacts	None
4.8	Historic and Cultural Resources Impacts	None
4.9	Visual/Scenic Resources Impacts	None
4.10	Socioeconomic Impacts	None
4.10.1	Environmental Justice	None
4.11	Public and Occupational Health Impacts	None
4.11.1	Radiological Impacts	Waste characterization will be performed as appropriate for waste disposal purposes in accordance with approved procedures.
		Specific internal and external dose estimates have been calculated for the building demolition effort in light of the current radionuclide inventory. Attachment 2 of the

<u>Sect.</u> No.	<u>Title</u>	Clarification of Current Differences
<u>1NO.</u>		accompanying letter provides the detailed calculations, which
		do not alter the previous conclusions regarding radiological impacts from building demolition.
4.11.2	Non-radiological Impacts	None
4.11.3	Mitigation Measures	None
4.11.4	Summary of Proposed Action Impacts	None
4.12	Waste Management Impacts	None
4.12.1	Sanitary Waste	None
4.12.2	Clean Debris	None
4.12.3	Low Level Radioactive Waste ACM	None
4.12.4	Low Level Radioactive Waste Solids	None
4.12.5	LLRW Liquids	None
4.12.6	PCB Waste	None
4.12.7	Hazardous Waste	None
4.12.8	Mixed Waste	None
4.12.9	Investigative derived Waste (IDW)	None
4.12.10	Management of Hazardous Waste Containers	None
4.12.11	Management of Tanks	None
4.12.12	Waste Minimization	None
4.12.13	Waste Segregation	None
4.12.14	Requirements for Hazardous/Radioac tive Waste Storage	None
5.0	Mitigation Measures	None

<u>Sect.</u> No.	Title	<u>Clarification of Current Differences</u>
6.0	Environmental Measurements and Monitoring Programs	None
7.0	Cost Benefit Analysis	None
8.0	Summary of Environmental Consequences	None
8.1	Land Use Impacts	None
8.2	Transportation Impacts	None
8.3	Geology and Soils Impacts	None
8.4	Water Resources Impacts	None
8.5	Ecological Resources Impacts	None
8.6	Air Quality Impacts	None
8.7	Noise Impacts	None
8.8	Historic and Cultural Resources Impacts	None
8.9	Visual/Scenic Resources Impacts	None
8.10	Socioeconomic Impacts	None
8.11	Public and Occupational Health Impacts	None
8.12	Waste Management Impacts	None
9.0	List of References	None
10.0	List of Preparers	None

Table 2
Building Demolition (Reference 4) Evaluation

Sect.	Title	Clarification of Current Differences
No.		
1.0	Introduction	None
2.0	Description of	While Westinghouse still requests authorization to demolish all the
	Work to be	buildings, some of the buildings may not initially be demolished
	Completed	and some may remain following license termination.
		The currently remaining equipment items to be removed from the process buildings prior to demolition are identified in Reference 7.
		Waste characterization will be performed as appropriate for waste
		disposal purposes in accordance with approved procedures.
	Permitting	None
	Environmental	Subsequent to the 2004 evaluation for building demolition,
	Monitoring	Westinghouse submitted further information regarding
		environmental monitoring, as discussed herein.
3.0	Current Status	None
4.0	Is this Work	None
	Scope within	
	previous work	
	performed under	
	the License?	
5.0	Will the work	Specific internal and external dose estimates have been calculated
	involve radiation	for the building demolition, effort in light of the current
	exposures to	radionuclide inventory. Attachment 2 of the accompanying letter
	workers that are	(Hematite Decommissioning Project, Technical Basis Document,
	higher than	HDP-TBD-HP-504, Revision 0, "Assessment of Conditions during
	encountered	Process Building Demolition,") provides the detailed calculations,
	during	which do not alter the previous conclusions regarding radiological
	operations?	impacts from building demolition.
		The currently remaining equipment items to be removed from the
		process buildings prior to demolition are identified in Reference 7.
		Waste characterization will be performed as appropriate for waste disposal purposes in accordance with approved procedures.
6.0	Will the work	Attachment 2 of the accompanying letter provides a calculation of
0.0	involve effluent	potential dose from air emissions in consideration of the recent
	releases higher	characterization of current radionuclide inventory. The calculated
	than routine	dose does not alter the previous conclusions regarding air quality
	effluents during	impacts from building demolition.
	operations?	impuets nom ounding demontion.
7.0	Does this work	Reference 8 thoroughly evaluated the criticality safety
7.0	involve nuclear	considerations for building demolition, including the difference in
l	mono mucical	considerations for building demontion, including the difference in

<u>Sect.</u> No.	<u>Title</u>	Clarification of Current Differences
	criticality safety considerations?	SNM inventory from that originally assumed in the SER. Reference 8 concluded that a criticality accident associated with the building demolition is not credible.
8.0	Conclusions	None

ATTACHMENT 2

Assessment of Conditions During Process Building Demolition

HDP-TBD-HP-504, Revision 0

	Westinghouse Non-Proprietary Class 3
	Westinghouse
	Hematite Decommissioning Project Technical Basis Document
NUMBER:	HDP-TBD-HP-504
TITLE:	ASSESSMENT OF CONDITIONS DURING PROCESS BUILDING DEMOLITION
REVISION:	0
	τ (,)
Prepared By / Date	: Joseph Guiro / 1 3-11-10
Reviewed By / Date	: Allison Wilding and Mm 1 3-11-10
Approved By / Dat	e: Geroid Rood Seuld frind, 3/11/10
©2010 Westinghous All Rights Reserved	e Electric Company LLC

Hematite Decommissioning	Technical Basis Document: HDP-TBD-HP-504, Assessment Of Conditions During Process Building Demolition			
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page i	

REVISION LO)G
Revision #	Change(s)
0	Initial Issue

Hematite	Technical Basis Document: HDP-TBD-HP-504, Assessment Of Conditions During				
Decommissioning	Process Building Demolition				
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 1 of 16		

1.0 INTRODUCTION

This document provides a description of the current conditions that differ from those described in SNM-00033 License Amendment 52 that initially authorized demolition of the Process Buildings at the Hematite Fuel Fabrication Facility. In consideration of the differing conditions, an evaluation of the potential for airborne emissions during building demolition and handling of demolition debris, and the measures to be implemented that will mitigate adverse impact on decommissioning workers and members of the public are included in this document.

2.0 DIFFERING CONDITIONS

The most significant difference is the most recent estimate of the amount of uranium oxide (UO_2) that remains as residual contamination within the Process Buildings. The current estimate indicates that the amount of $_{235}U$ present on surfaces and within some of the remaining equipment is approximately 8.7 kg rather than approximately 0.25 kg as previously understood. Following the removal of additional equipment as described in the NSA-TR-09-25, Nuclear Criticality Safety Assessment of Decontamination and Decommissioning Operations within the Former Process Buildings at the Hematite Site (Reference 8.1), approximately 7.6 kg $_{235}U$ will remain distributed on surfaces and within equipment at the time of demolition.

A second condition is the current plan to remove certain components containing residual UO_2 prior to conducting demolition. The estimate of the amount of $_{235}U$ associated with these components is approximately 1.1 kg. In consideration of the conclusions of Reference 8.1 that showed no credible scenario for a nuclear criticality, the purposes for removing these components are to reduce the potential for the spread of radioactive contamination during demolition, and to segregate these components from the balance of the debris from the perspective of waste management.

A third condition is the presence of potentially more equipment within the Process Buildings at the time of demolition than had been previously understood. In consideration of the information obtained during the extensive radiological characterization that was conducted in 2009 (Reference 8.1), the presence of this additional equipment (less the equipment referenced above for removal) poses no significant adverse consequence from the perspectives of nuclear criticality safety, radiation protection, occupational safety or environmental protection.

Hematite Decommissioning Project	Technical Basis Document: HDP-TBD-HP-504, Assessment Of Conditions During Process Building Demolition				
	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 2 of 16		

3.0 EVALUATION OF POTENTIAL FOR AIR EMISSIONS

A prospective estimate of the amount of airborne radioactive particulate matter that may be released to air during building demolition has been prepared. This estimate is based on the most recent information regarding the amount of UO_2 that will remain within the buildings at the time of demolition and conservative assumptions regarding the amount of UO_2 that could be released to air. The following sections provide a summary of the methods used to prepare this estimate.

3.1 Inputs and Assumptions

3.1.1 The uranium inventory from Reference 8.1 was adjusted to account for material which will be removed prior to building demolition, as shown in Table 1.

	Area				
Location	1	2	3	4	5
(Equipment)	16	8	357	21	2
(Piping)	0	0	68	410	152
(Misc. Components / Items)	63	8	308	64	290
Subtotal:	79	16	733	495	444
(Walls and Ceilings Combined)	104	57	196	135	126
(Roof)	631	360	680	941	167
Subtotal:	735	417	876	1,076	293
Concrete Slabs Subtotal:	896	254	977	629	758
Current Total Inventory:	1,710	687	2,586	2,200	1,495
To be Removed Prior to Demolition:	44	0	269	473	329
Inventory At Demolition:	1,666	687	2,317	1,727	1,166

Table 1, Process Building 235U Mass Inventory (grams)

Hematite Decommissioning Project	Technical Basis Document: HDP-TBD-HP-504, Assessment Of Conditions During Process Building Demolition				
	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 3 of 16		

3.1.2 The mass of the process building structure and internal components (including roof) was calculated in HDP-WM-TBD-902, Building Demolition Debris Volume and Weight Estimate. (Reference 8.2) and is shown below in Table 2.

Table 2, Process Building Structure and Component Mass (grams)

Area	Total Weight
Area 1	7.52E+08
Area 2	5.49E+08
Area 3	1.21E+09
Area 4	6.32E+08
Area 5	3.37E+08
Total	3.48E+09

3.1.3 The derived air concentration (DAC) for occupational exposure and the acceptable air concentration for members of the public are those listed in 10 CFR 20, Appendix B, Tables 1 and 2, respectively.

Table 3, DAC and Air Effluent Limit Values Used in Exposure Assessment

Nuclide	DAC (µCi/ml)	Air Effluent Limit (µCi/ml)
Total U	2E-11	5E-14

- 3.1.4 The radionuclide concentration of the above-grade features that are planned for demolition were adjusted to also include the contribution from the radionuclide inventory associated with the building slabs (3.514 kg) as calculated in Reference 8.1. Although the building slabs will remain in place, some amount of surface abrasion may occur during building demolition, and therefore it was conservatively assumed that 100 percent of radionuclide inventory of the building slab will be released during demolition.
- 3.1.5 The interior surfaces of the Process Buildings and equipment have been coated with an encapsulant. Although the actual amount of removable surface contamination is very low as demonstrated by recent radiological surveys, the total amount of contained radioactivity has been assumed to be in a form that is readily dispersible.
- 3.1.6 The contributions to the total amount of radioactivity within the buildings from trace amounts of Tc-99, Sr-90, Np-237, Th-230, and Th-232 are based on HDP-WM-TBD-901, Scaling Factors for Radioactive Waste Associated with the Process Buildings. (Reference 8.3) These radionuclides were considered for inclusion, however it was determined that the combined contribution to dose would be less than 1 percent and therefore they were not included in calculations.

Hematite	Technical Basis Document: HDP-TBD-HP-504, Assessment Of Conditions During				
Decommissioning	Process Building Demolition				
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 4 of 16		

- 3.1.7 The use of water mist during demolition is assumed to reduce airborne particulate by a factor of ten (10). This factor was applied to the estimate of offsite airborne concentrations, but was not applied to estimated concentration for project workers. Note that building demolition activities are estimated to occur over a 2 month time frame.
- 3.1.8 Based on the method of demolition, it is assumed that gaseous emissions and elevated concentrations of radon gas will not be generated.
- 3.1.9 The airborne concentration in pCi/m³ was calculated by multiplying the material concentration (pCi/g) by an airborne mass concentration (dust loading) of 5 mg/m³, which is assumed to be a worst case condition for decommissioning workers within the demolition exclusion area.

3.2 Detailed Calculations

3.2.1 The mass values for 235U shown in Table 1 were converted to isotopic activities (234U, 235U, and 238U) based on enrichment to 5 weight-percent 235U. The results of this calculation are shown in table 4, below.

Area	U-235	U-235	U-238	U-234	Total U
	grams	pCi	pCi	pCi	рСi
Area 1	7.70E+02	1.69E+09	5.00E+09	3.07E+10	3.74E+10
Area 2	4.33E+02	9.53E+08	2.81E+09	1.73E+10	2.10E+10
Area 3	1.34E+03	2.95E+09	8.69E+09	5.34E+10	6.50E+10
Area 4	1.10E+03	2.42E+09	7.13E+09	4.38E+10	5.33E+10
Area 5	4.08E+02	8.97E+08	2.65E+09	1.63E+10	1.98E+10

Table 4, Process Building Structure/Components, Uranium Activity Inventory

3.2.2 The weighted average radionuclide concentration in building materials and equipment above the concrete slab and foundations was calculated using the isotopic uranium activity calculated in step 3.2.1, above, and the building mass values from Table 2. The results of this calculation are shown in Table 5, below.

Table 5, Process Building Structure/Components, Average Uranium Concentration

Area	Total U	Total Weight	Average Specific Activity Total Uranium
	pCi	grams	pCi/g of waste
Area 1	3.74E+10	7.52E+08	50
Area 2	2.10E+10	5.49E+08	38
Area 3	6.50E+10	1.21E+09	54
Area 4	5.33E+10	6.32E+08	84
Area 5	1.98E+10	3.37E+08	59
	We	ighted Average	57

Hematite	Technical Basis Document: HDP-TBD-HP-504, Assessment Of Conditions During				
Decommissioning	Process Building Demolition				
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 5 of 16		

3.2.3 The 235U mass value for the process building slab (3.514 kg) was converted to isotopic activities (234U, 235U, and 238U) based on enrichment to 5 weight-percent 235U. The results of this calculation are shown in table 6, below.

I able 0, F	Table 6, Process Building Stabs, Oranium Activity Inventory						
U-235	U-235	U-234	U-238	Total U			
grams	pCi	pCi	pCi	pCi			
3.5E+03	7.7E+09	1.4E+11	2.3E+10	1.7E+11			

Table 6 Process Building Slabs Uranium Activity Inventory

3.2.4 The contribution to the process building radionuclide concentration from the radionuclide inventory in the slab was calculated by dividing the radionuclide inventory in Table 6 by the total mass of the process building mass $(3.5 \times 10^9 \text{ g})$. The results of this calculation are shown in Table 7, below.

Table 7, Process Building Slabs, Average Uranium Concentration						
U-235	U-234	U-238	Total U			
pCi/g	pCi/g	pCi/g	pCi/g			
2.2E+00	4.0E+01	6.6E+00	4.9E+01			

- 3.2.5 The total activity concentration assumed to be available for release was calculated as the sum of the quantities in Table 5 and 7 (57 pCi/g + 49 pCi/g) for a total of 106 pCi/g total Uranium.
- 3.2.6 Calculations of Air Concentration Within Demolition Work Area

The air concentration within the demolition work zone near the point of generation was calculated based on the assumption that the airborne dust level will be controlled in a manner wherein the levels will not exceed 5 mg/m^3 on average. This level is based on the OSHA limit for nuisance dust, the HDP commitment to MDNR, and expected capability to control fugitive dust. Applying a dust concentration of 5 mg/m^3 , the effective air concentrations associated with the radionuclide concentration calculated in section 3.2.5 (106 pCi/g) is calculated as:

Air Concentration =
$$5\left(\frac{mg}{m^3}\right) \bullet 106\left(\frac{pCi}{g}\right) \bullet .001\left(\frac{g}{mg}\right) \bullet 1x10^{-12}\left(\frac{\mu Ci/ml}{pCi/m^3}\right) = 5E - 13\mu Ci/ml$$

The DAC fraction associated with this air concentration is 0.026 (i.e., 5E-13/2E-11). This value is calculated based on the DAC values listed in section 3.1.3

3.2.7 Calculations of Air Concentration at Demolition Work Area Boundary

Calculations outlined in section 3.2.6 were repeated using a dust loading of 0.5 mg/m³ in order to assess potential airborne radioactivity levels at the site perimeter. This dust level was selected since it represents the action level for particulate emissions discussed in

Hematite Decommissioning	Technical Basis Document: HDP-TBD- Process Building Demolition	-HP-504, Assessment Of	Conditions During
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 6 of 16

section 6.1.2. Real time monitoring of particulate emissions (described in section 6.1.2) will allow WEC to measure and adjust engineering and administrative controls to maintain emissions below this level.

Air Concentration =
$$0.5(\frac{mg}{m^3}) \bullet 106(\frac{pCi}{g}) \bullet .001(\frac{g}{mg}) \bullet 1x10^{-12}(\frac{\mu Ci/ml}{pCi/m^3}) = 5E - 14\mu Ci/ml$$

The DAC fraction associated with this air concentration is 0.0026 (i.e., 5E-14/2E-11). This value is calculated based on the DAC values listed in section 3.1.3

3.2.8 Calculations of Peak Air Concentration Values

Air concentrations presented in sections 3.2.6, and 3.2.7 represent bounding emissions estimates under average conditions (i.e., assuming homogeneous mixing of handled materials). In order to establish an understanding of potential peak emissions, these calculations were repeated assuming that the source of dust emissions would be the building location with the highest source concentration (Process Building Room 255, Roof).

3.2.8.1 The mass value for 235U for Process Building Room 255, Roof (794 g) was converted to isotopic activities (234U, 235U, and 238U) based on enrichment to 5 weight-percent 235U. The results of this calculation are shown in table 9, below.

U-235 ¹	U-235	U-234	U-238	Total U
grams	pCi	рСі	pCi	pCi
7.9E+02	1.7E+09	3.2E+10	5.2E+09	3.9E+10

Table 9, Process Building Room 255 Roof, Uranium Activity Inventory

¹ 794 grams U-235 is associated with the building 255 roof (Reference 8.2)

3.2.8.2 The radionuclide concentration associated with the Building 255 roof was calculated by dividing the radionuclide inventory in Table 9 by the total mass of the Building 255 roof (1.8 x 10⁸g). The results of this calculation are shown in Table 10, below.

Table 10, Process Building 255 Roof, Average Uranium Concentration

U-235	U-234	U-238	Total U
pCi/g	pCi/g	pCi/g	pCi/g
9.5.E+00	1.7.E+02	2.8.E+01	2.1.E+02

Hematite Decommissioning	Technical Basis Document: HDP-TBD Process Building Demolition	-HP-504, Assessment Of	Conditions During
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 7 of 16

3.2.8.3 The Uranium 235 mass contribution from process building slab during demolition of the Process Building Room 255, Roof was assumed to be 23 percent of the total slab inventory (817 g). This quantity was converted to isotopic activities (234U, 235U, and 238U) based on enrichment to 5 weight-percent 235U. The results of this calculation are shown in table 11, below.

Table 11, Process Building Slab Within Room 255, Uranium Activity Inventory

U-235	U-235	U-234	U-238	Total U
grams	pCi	pCi	pCi	рСi
8.2E+02	1.8E+09	3.3E+10	5.3E+09	4.0E+10

3.2.8.4 The contribution to the process building radionuclide concentration from the radionuclide inventory in the slab was calculated by dividing the radionuclide inventory in Table 11 by the total mass of the Building 255 roof $(1.8 \times 10^8 \text{ g})$. The results of this calculation are shown in Table 12, below.

Table 12, Process Building Slab Within Room 255, Average Uranium Concentration

U-235	U-234	U-238	Total U
pCi/g	pCi/g	pCi/g	pCi/g
9.8.E+00	1.8.E+02	2.9.E+01	2.2.E+02

- 3.2.8.5 The total activity assumed to be available for release was calculated as the sum of the quantities in Table 10 and 12 (i.e, 210 pCi/g + 216 pCi/g) for a total of 426 pCi/g total Uranium.
- 3.2.8.6 Table 13, below presents the calculated peak air concentration results based on potential emissions during demolition of the Process Building Room 255, Roof.

Table 13, Peak Radionuclide Air Concentrations Projected During Demolition

Location	Dust Concentration (mg/m3)	Total U (µCi/ml)	
Within Demolition Area	5	2.1E-12	
Within Perimeter Fence	0.5	2.1E-13	

All above described scenarios are within the 10 CFR 20, Appendix B criteria of Table 1.

3.2.9 Calculation of Offsite Air Concentrations

Offsite impact from demolition of the process building was calculated using the source inventory presented in reference 8.1 and assuming a release fraction of 1E-04 which was based on recommendations contained in reference 8.5.

Hematite Decommissioning	Technical Basis Document: HDP-TBD Process Building Demolition	-HP-504, Assessment Of	Conditions During
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 8 of 16

Component activities $(_{234}U \text{ and } _{238}U)$ associated with the process building $_{235}U$ source term at the time of demolition (7,562 g) was first calculated based on an enrichment to 5 weight-percent $_{235}U$. This results in activity components as follows:

Table 14, Total Process Building Source Term					
U-235	U-235	U-234	U-238	Total U	
grams	pCi	pCi	pCi	pCi	
7.6E+03	1.7E+10	3.0E+11	4.9E+10	3.7E+11	

Table 14, Total Process Building Source Term

Based the stated release fraction (1E-04), demolition duration of 2 months (1.2E6 seconds), and a source term reduction factor assumed to be a factor of 10 for the application of high pressure water misting during demolition, the effective source release rate is 3.2 pCi/s. Using γ/O values calculated with CAP88-PC using metrology data for St. Louis, MO, the air concentration was calculated at the site perimeter boundary closest the demolition site (State Road P); the nearest offsite resident (250 meters west of the site); and the nearest onsite resident (500 meters northeast of the site). The estimated air concentrations at these three locations are 1.4E-15 µCi/ml; 1.1E-16 µCi/ml; and 2.0E-17 μ Ci/ml, respectively. These values are equivalent to 0.03, 0.002, and 0.0004 times the 10 CFR 20, Appendix B, Table 2 criteria. Without consideration of the water mist, the air concentration could be a factor of 10 higher. Nonetheless, these values are well within the 10 CFR 20, Appendix B criteria of Table 2 (even without consideration of the water Perimeter air sampling for particulate matter, and particulate sampling for mist). subsequent radioactivity analysis will be performed to confirm the effectiveness in controlling air concentrations to levels that do not exceed the values in 10 CFR 20, Appendix B.

The CAP88-PC calculation for offsite air concentration described above was also benchmarked using Hotspot (version 2.07) operating in a general resuspension mode. The process building demolition area was modeled as a single diffuse source with an effective emission rate of 3.2 pCi/s. Based on a wind speed of 4 m/s (Reference 8.6) calculated centerline air concentration at a distance of 250 m is 6.4E-17 μ Ci/ml and 1.1E-16 μ Ci/ml for stability class B and C, respectively. These values compare favorably calculated for that output with the CAP88-PC program.

As a final assessment of potential short term emissions concentrations at the site boundary, the method of calculation used in section 3.2.6 and 3.2.7 was repeated using a dust loading of 0.15 mg/m³. This dust level was selected since it represents the NAAQS for PM_{10} as discussed in section 6.1.2 and, as such represents the dust level at which HDP must make measures to control emissions such as to reduce them below this level.

Air Concentration =
$$0.15(\frac{mg}{m^3}) \bullet 106(\frac{pCi}{g}) \bullet .001(\frac{g}{mg}) \bullet 1x10^{-12}(\frac{\mu Ci/ml}{pCi/m^3}) = 1.6E - 14 \ \mu Ci/ml$$

This value represents 0.32 times the 10 CFR 20, Appendix B, Table 2 criteria.

Hematite Decommissioning	Technical Basis Document: HDP-TBD- Process Building Demolition	-HP-504, Assessment Of	Conditions During
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 9 of 16

4.0 EVALUATION OF POTENTIAL FOR EXTERNAL EXPOSURE

An evaluation of the potential external dose to individuals handling demolition debris was conducted using the MicroShield model. Exposure rates at 1 foot from a gondola car containing material with source term as calculated in section 3.2.1 is 0.3μ R/hr. Based on two month duration for the demolition activity, the maximum external exposure that an individual could receive would be 0.1 millirem assuming exposure for 320 hrs at 1 foot from a loaded railcar.

5.0 MEASURES TO MITIGATE POTENTIAL ADVERSE AFFECTS

Controls include engineered and administrative measures to reduce the potential for air emissions. Engineered controls will be implemented by meeting prerequisites and by instructions to workers in the work package. Administrative controls such as the methods to measure concentrations in the workplace and at the site boundary will be implemented through instructions in the radiation work permit. The method to evaluate the results of sampling, and the appropriate actions in the event of concentrations that exceed the action level are implemented through procedures.

5.1 Engineered Controls

5.1.1 Lockdown Agent

The surfaces within the buildings, including the interior and exterior surface of the contained equipment were coated with a non-toxic chemical at the conclusion of the previous equipment removal work in 2006. The chemical agent served to bind radioactive contamination to the surface, and based on the results of recent radiological surveys, continues to be an effective method to control contamination in the current configuration. During demolition and material handling it is expected that dust will be generated, particularly during demolition work involving concrete block or reinforced concrete. Based on the method of demolition, it is reasonably assumed that the particulates generated in these activities will include a high fraction, by weight, of large particles (i.e., aerodynamic diameter greater than 10 microns). Except on during periods of high wind, the majority of the particulate matter would be expected to settle from the air within a short distance of the point of generation.

5.1.2 Water Application

Water sprays will be used to wet down concrete block and reinforced concrete walls immediately prior to demolition, during the actual demolition and when handling debris as needed during sizing, sorting, and loading operations.

Water will be applied by hoses using high-pressure nozzles or by entrainment at high pressure into the discharge flowpath of a large fan. Either method is capable for creating a fog or fine mist that coats the surfaces of particulates and removes them from air. These methods of application serve to minimize the volume of water that is required and thus

Hematite Decommissioning	Technical Basis Document: HD Process Building Demolition	P-TBD-	HP-504, Assessment Of	Conditions During
Project	Westinghouse Non-Proprietary Cla	ass 3	Revision: 0	Page 10 of 16

minimize the amount of water that requires collection and processing. Water spraying will also be the primary method to control dust from unpaved on-site access and work roads, using either a water truck or hoses with high-pressure nozzles to wet down such roads, as required.

The objective is to apply sufficient water to control dust generation by achieving saturation or near-saturation conditions at the surface of porous materials but not in such excess quantities as to create appreciable surface water runoff or free liquids associated with the waste being loaded. Weather conditions (e.g., precipitation, wind speed, solar radiation, and temperature) as well the characteristics of the surfaces being wetted (e.g., painted versus unpainted materials, concrete block versus reinforced concrete) significantly affect water application rates. Water application procedures and effectiveness will heavily rely on the expertise and experience of the trained work force.

5.1.3 Other Engineered Controls

In addition to water application, other dust control measures will be employed. These measures include, but are not limited to the following:

- Covering stockpiled materials or laydown area with plastic sheeting or tarps during any extended periods of inactivity;
- Covering or closing transportation containers once they are loaded; Transporting materials off-site in enclosed or covered containers; and
- Restricting the on-site movement of over-the-road transportation vehicles to paved roadway and staging areas.

5.2 Administrate Controls to Mitigate Potential Adverse Affects

5.2.1 Work Practices

Demolition of the site buildings in a manner that minimizes and controls fugitive dust emissions will, in large part, rely on the development and implementation of effective, common sense work practices and then training the work force to understand and implement these practices.

Supervisory personnel will evaluate work activities on an ongoing basis and limit or modify work activities, as needed, based on weather conditions and other factors. For example, on dry days with strong winds or with winds blowing from the south across the site toward State Road P, operations with high dust potential (e.g., knocking down concrete block walls) may need to be modified or curtailed. In contrast, operations with higher dust-generation potential can be effectively carried out on days with light rain and/or light winds.

5.2.2 Action Levels Based on Air Concentration

Hematite Decommissioning	Technical Basis Document: HDP-TBD- Process Building Demolition	-HP-504, Assessment Of	Conditions During
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 11 of 16

Action levels are established to define the point at which work activities must be adjusted and measures taken to assure that air emissions are not exceeding regulatory requirements. For building demolition, action levels will be both qualitative and quantitative. If either the qualitative or quantitative action level is exceeded, efforts for dust control (e.g., watering) will be intensified, and additional dust control measures enacted (e.g., covering stockpiles). For fugitive dust, the qualitative action level is designed for compliance with the MDNR regulation regarding fugitive dust from demolition operation (10 CSR 10-6.170). If at any time visible emissions are observed leaving the work area and traveling downwind toward the property boundaries, supervisory personnel will modify or curtail work activities as needed until measures can be taken to ensure that fugitive dust emissions are not migrating beyond the premises of origin in quantities that: 1) the particulate matter may be found on surfaces beyond the property line of origin; or 2) the particulate matter emissions are visible in the ambient air beyond the property line.

The quantitative action level standard for airborne particulates is based on protecting ambient air quality and will be set at 500 micrograms per cubic meter ($\mu g/m^3$) over a 15-minute averaging time, as measured by real-time aerosol monitors located downwind of work areas between these work areas and the fence surrounding the Central Tract Area (Section 6.1.2). These real-time monitors will be used to determine the concentration of airborne particulate matter with an aerodynamic diameter of 10 microns (PM₁₀). A concentration of 500 $\mu g/m^3$ over a 15-minute averaging time is a conservative action level for compliance with the NAAQS for PM₁₀, which is set at 150 $\mu g/m^3$ averaged over 24 hours.

In addition to the stationary environmental monitoring locations, air monitoring data collected through breathing zone, general area, and additional downwind portable perimeter air monitoring stations will be used to provide a timely assessment of airborne radioactivity levels and to assess the adequacy of the engineering and process controls. This data will be used as the basis for adjustments to controls and work practices, as necessary, to ensure that radiation exposures are maintained ALARA.

6.0 MONITORING

6.1.1 Radiological Monitoring

Workplace air sampling shall be performed to comply with 10 CFR 20.1501 and to enable appropriate work controls so radiation exposure and radiological effluents are as low as reasonably achievable (ALARA). Sampling shall be performed as necessary to measure concentrations of airborne radioactivity in the work place, to estimate the corresponding internal exposure, to gauge the effectiveness of engineered controls to minimize airborne radioactivity, and to serve as a comparator to the regulatory limits and administrative action levels for concentrations in air effluents.

The extent of occupational exposure to airborne radioactivity shall be assessed using the Derived Air Concentration (DAC) values specified in 10 CFR 20 Appendix B, "Annual

Hematite Decommissioning	Technical Basis Document: HDP-TBD-HP-504, Assessment Of Conditions During Process Building Demolition		
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 12 of 16

Limits on Intake and Derived Air Concentrations of Radionuclides for Occupational Exposure; Effluent Concentrations; Concentrations for Release to Sewerage." The DAC may be based on the most conservative radionuclide present or on a calculation weighting the radionuclides. As Uranium (Class Y) is conservatively assumed to be the predominant radionuclide contributing to dose, the occupational DAC values most relevant to HDP are $2.0 \text{ E-}11 \,\mu\text{Ci/ml}$.

Work place sampling shall be performed when airborne radioactivity concentrations are likely to exceed 2 percent of the occupational DAC values in general areas. Sampling that is representative of the concentrations within the breathing zone shall be performed when airborne radioactivity concentrations are likely to exceed 10 percent of the occupational DAC values in the breathing zone, or when airborne radioactivity concentrations are likely to exceed 2 percent of the occupational DAC values in the breathing zone of a declared pregnant female. Sampling shall also be performed when respirators are worn for the purpose of protecting individuals from exposure to airborne radioactivity.

6.1.1.1 External Dosimetry

Although monitoring for external exposure is not required by regulation, the HDP has conservatively elected to implement a program that includes provisions for monitoring occupational exposure to beta, gamma and neutron radiation for those personnel who routinely handle radioactive materials. Based on future decommissioning experience and additional information regarding the nature of the radioactive source term, the HDP may discontinue the external dosimetry program provided the actual conditions support that determination.

6.1.1.2 Personal Air Sampling

When monitoring is required for the purpose of determining occupational exposure, sampling is accomplished through the use of a personal air sampler (lapel pump), or a portable low volume air sampler. The personal air sampler is the preferred method because the filter cartridge can be easily located within approximately 12 inches of the worker's head during sample collection, increasing the probability of being representative of the concentration in the worker's breathing zone.

6.1.1.3 General Area Air Sampling

General area sampling is performed when work activities are likely to cause airborne concentrations in excess of 2 percent of an occupational DAC value. The samples are collected using a portable low volume air sampler, and the results of sampling are used to establish the requirements for posting and controls, for assessing the effectiveness of engineered controls, or for assessing the effectiveness of contamination controls. The sample data from GA air samples may be used for DAC-hour tracking if determined to be representative of the airborne concentrations breathed by the worker.

Hematite	Technical Basis Document: HDP-TBD-HP-504, Assessment Of Conditions During			
Decommissioning	Process Building Demolition			
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 13 of 16	

6.1.1.4 Perimeter Air Sampling

Perimeter air sampling is an element of the environmental monitoring program and is performed when work activities are likely to cause airborne concentrations at the work area boundary in excess of 10 percent of the air concentration values listed in 10 CFR 20, Appendix B, Table 2. The samples are collected using a portable low volume air sampler. The number and location(s) of the perimeter air sampler(s) shall be selected with consideration for the location and nature of the work activities, and environmental conditions such as wind direction.

6.1.1.5 Environmental Air Sampling

Westinghouse continues to conduct air sampling at four environmental area sampling stations located around the perimeter of the Central Tract as follows:

- AS-1: North of the site, north of State Road P at the electrical substation;
- AS-2: Southeast corner of the site near the Site Pond;
- AS-3: North-northeast of site near former Burial Pit area; and
- AS-4: North side of site adjacent to entrance at State Road P.

This sampling network provides radial symmetry around the facility taking into account the natural terrain features and building locations and maintains the continuity of the historical data. Station AS-4 is situated between the facility and nearest residence and is in one of the predominant downwind directions.

The environmental area sampling is conducted using moderate-volume pumps (i.e., 30 to 40 liters per minute) to draw samples through particulate filters. The filters are changed weekly and analyzed for gross alpha and gross beta activity. The Environmental Monitoring Plan (Reference 8.7) includes provisions for isotopic analysis if the results of the gross alpha and gross beta activity show elevated levels.

6.1.2 Particulate Monitoring

During demolition, particulate monitoring will be conducted using a combination of fixed and moveable real-time aerosol monitors. The use of a combination of sampling tools will provide data that allows comparisons to achieve the following:

- Demonstrate compliance with the MDNR regulation regarding fugitive dust from demolition operation (10 CSR 10-6.170);
- Confirm that site-related particulate emissions are not contributing to exceedences of NAAQS; and
- Support worker health and safety protection monitoring.

Hematite Decommissioning Project	Technical Basis Document: HDP-TBD Process Building Demolition	-HP-504, Assessment Of	Conditions During
	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 14 of 16

Four movable continuous aerosol monitors will be used to provide real-time data near the work area. These real-time aerosol monitors will be battery-powered and mounted on moveable tripods with the air intake at a height approximating the breathing zone. On a daily basis, prior to commencing site activities, these monitors will be positioned proximal to work areas, including buildings being actively dismantled, areas where demolition scrap and debris are being sorted and sized, and the area where transportation containers are being loaded. The locations of the monitors will be established each morning depending on the predominant wind direction at the start of the day's activities and that predicted for the day. If the wind direction shifts radically during the workday, the particulate meters will be relocated.

These meters use light scattering photometry sensing techniques to continuously determine the particulate concentration. The monitors will be outfitted with size-selective inlets for the determination PM_{10} concentrations and with audible and visual alarms that will activate if the PM_{10} concentration over a 15-minute averaging time exceeds 500 µg/m³. Actions to be taken in the event of an alarm are described in Section 5.2.

In addition to the four movable aerosol monitors, two aerosol monitors will be installed at fixed locations at the site boundary. The selection of these fixed locations will be based on predominate wind direction and location of potential off-site receptors. These real-time monitors will be used to determine the concentration of airborne particulate matter with an aerodynamic diameter of 10 microns (PM₁₀) and ensure compliance with the NAAQS for PM₁₀, which is set at 150 μ g/m³ averaged over 24 hours at the site boundary.

7.0 SUMMARY

A summary of the conditions that differ from those described in License Amendment 52 has been presented. Based on the most significant difference, (i.e., a greater inventory of UO^2), a conservative prospective estimate of airborne emissions from demolition of the Process Building has been presented. The estimate was based on the assumption that primary route of exposure would be from the resuspension and transport of contaminated dust. Onsite air concentrations were calculated based on the assumption that airborne dust would be present at 5 mg/m³, and 0.5 mg/m³ inside the demolition work area and at the demolition work area boundary, respectively. Additionally, offsite concentrations were calculated using the CAP-88PC program at the site boundary, and the locations of the nearest on and offsite resident (100m, 250m and 500m).

Results of these calculations are summarized in Tables 15 and 16. As indicated in these tables, the estimate of offsite air concentrations are well below the 10 CFR 20, Appendix B, Air Effluent Limit (AEL) values. Based on an exposure duration of 320 hrs (8 hr/day, 5 day/wk for 8 weeks), the dose to the maximally exposed individual (located 250 m NW) would be 0.006 mrem. The exposure duration is limited to 40 hrs a week to coincide with the anticipated duration of site activities. The estimate based on continuous exposure (24 hr/day, 7 days/wk for 8 weeks) would be 0.024 mrem. The exposure to an

Hematite Decommissioning	Technical Basis Document: HDP-TBD-HP-504, Assessment Of Conditions Durin Process Building Demolition		
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 15 of 10
are below	al at the site boundary (road) would be 0.00 w the 10 mrem/yr constraint on air emissi kely to receive the highest dose set at 10 CF	ons to the individua	
nature of cases, it	nates of onsite air concentrations are within f the work being performed and radiologica should be noted that the calculations nation of potential emissions, and do not neo	l controls being imp performed represent	blemented. In all t a conservative

suppression during demolition. The dose to the maximally exposed individual (250 meters east of the site) would not exceed 2.4% of the 10 CFR 20.1101(d) constraint on air emissions (10 mrem) even if this factor was not included.

Hematite	Technical Basis Document: HDP-TBD-HP-504, Assessment Of Conditions During		
Decommissioning	Process Building Demolition		
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 16 of 16

Table 15, Projected Onsite Total Uranium Air Concentration During Demolition

Location	Scenario	Air Concentration (µCi/ml)	DAC Fraction ³
Within Demolition Work Area ¹	Average	5.3E-13	0.026
	Peak	2.1E-12	0.11
At Demolition Work Area Boundary ²	Average	5.3E-14	0.0026
	Peak	2.1E-13	0.011

¹ Based on Dust Loading of 5 mg/m³

² Based on Dust Loading of 0.5 mg/m³

³ 10CFR20, Appendix B, Derived Air Concentration (DAC) values

Table 16, Projected Offsite Total Uranium Air Concentration During Demolition

Location	Air Concentration (µCi/ml) ¹	AEL Fraction ^{1,2}
Site Boundary (State Road P) ³	1.4 E -15	0.03
Offsite Resident (250 m NW)	1.1 E -16	0.002
Onsite Resident (500 m NE)	2.1 E -17	0.0004

¹Projected concentrations would be a factor of 10 higher without credit for the use of water mist for dust suppression during demolition.

² 10CFR20, Appendix B, Air Effluent Limit (AEL) value.

³ The calculated short term concentration based on a Dust Loading of 0.15 mg/m³ is 1.6 E -14 μCi/ml (0.32 times the 10CFR20, Appendix B, Air Effluent Limit (AEL) value). (See section 3.2.9)

8.0 **REFERENCES**

- 8.1 NSA-TR-09-25, Nuclear Criticality Safety Assessment of Decontamination and Decommissioning Operations within the Former Process Buildings at the Hematite Site
- 8.2 HDP-WM-TBD-902, Building Demolition Debris Volume and Weight Estimate
- 8.3 HDP-WM-TBD-901, Scaling Factors for Radioactive Waste Associated with the Process Buildings
- 8.4 Federal Guidance Report 11, Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion
- 8.5 DOE HDBK-3010-94, Airborne Release Fractions / Rates and Respirable Fractions for Non Reactor Nuclear Facilities, Volume 1, Analysis of Experimental Data.
- **8.6** National Climatic Data Center, Climatic Wind Data for the United States, November 1998 (St Louis, MO).
- 8.7 PO-EM-001, Environmental Monitoring Plan, Rev. 1

ATTACHMENT 3

Building Demolition Debris Volume and Weight Estimate

HDP-TBD-WM-902, Revision 0

Hematite Decommissioning Project

Technical Basis Document

NUMBER: HDP-TBD-WM-902

TITLE: BUILDING DEMOLITION DEBRIS VOLUME AND WEIGHT ESTIMATE

REVISION: 0

Prepared by/Date_	DCC	3-11-10	
Reviewed by/Date_	A	3/11/10	Joseph Guizo
Approved by/Date_	Gerald & Rord	3/ _{11/10}	

©2010 Westinghouse Electric Company LLC All Rights Reserved

Hematite Decommissioning Project	Technical Basis Document: HDP-TBD-WM-902, Building Demolition Debris Volume and Weight Estimate		
	Westinghouse Non-Proprietary Class 3	Revision: 0	Page i

REVISION LOG		
Revision #	Change(s)	
0 This is a new technical basis document.		

į

Hematite Decommissioning Project	Technical Basis Document: HDP-TBD-WM-902, Building Demolition Debris Volume and Weight Estimate				
	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 1 of 2		

1.0 PURPOSE

The purpose of this Technical Basis Document (TBD) is to document the basis for the volume and weight of the buildings to be demolished during the Hematite Decommissioning Project.

2.0 APPLICABILITY

This document is applicable to the buildings to be demolished during the Hematite Decommissioning Project. The specific buildings include:

- 115, Fire/Diesel Pump House
- 235, West Vault
- 245, Pump house
- 252, South Vault
- 101, Tile Barn
- 120, Wood Barn
- Sewage Treatment Shed
- 240, Process Building
- 253, Process Building
- 254, Process Building
- 255, Process Building
- 256, Process Building
- 260, Process Building, and
- Limestone Building

3.0 REFERENCES

None

4.0 VOLUME ESTIMATES

The volume of materials as installed associated with the process the process buildings at the Hematite Decommissioning project have been evaluated at least twice. One evaluation was conducted by Westinghouse and a second evaluation was conducted by Energy Solutions. The specific buildings evaluated included buildings 240, 253, 254, 255, 256, 260 and the Limestone Building. The overall installed volume of material estimated by both groups had a good correlation and was within approximately 1000 cubic feet of each other. A spread sheet summarizing the material volume was developed and is shown as Appendix A. The estimates appeared to have been made by visual inspection and physical measurement of walls, equipment and areas in the various buildings. Energy Solutions take off notes are provided in Appendix B.

Waste volume estimates associated with Buildings 101, 115, 120, 235, 245, 252 and the Sewage Treatment Shed were made and are based on visual inspection and physical

Hematite Decommissioning Project	Technical Basis Document: HDP-TBD-WM and Weight Estimate	M-902, Building Demoli	tion Debris Volume
	Westinghouse Non-Proprietary Class 3	Revision: 0	Page 2 of 2

measurement of the buildings. The estimated installed volume of material associated with these buildings is shown in Appendix C.

6.0 WEIGHT ESTIMATES

Weight estimates for the Process Buildings were made based on the following assumptions.

Concrete block has an installed density of 65 pounds per cubic foot. Poured concrete has an installed density of 150 pounds per cubic foot. The roof of Building 252 which is a light weight concrete and built up material has an installed density of 100 pounds per cubic foot. The Sewage Treatment Shed has an installed density of 20 pounds per cubic foot.

All other materials have an installed density of 50 pounds per cubic foot.

The basic formula for calculating weight is

Weight = Installed Volume X Installed Density

Based on these assumptions, the weight and volume of material associated with the buildings to be demolished is summarized in Appendix C for the non-process buildings and Appendix D for the process buildings. The volume of the material associated with the process buildings is higher than identified in Appendix A since it includes equipment and components that were not removed.

7.0 APPENDICES

Appendix A, Volume Estimates for Various Buildings Appendix B, Hematite Building Take Off Information Appendix C, Volume and Weight Estimate Summary for Non-Process Buildings Appendix D, Weight and Volume Estimate Summary for Process Buildings Hematite
Decommissioning
ProjectTechnical Basis Document: HDP-TBD-WM-902, Building Demolition Debris Volume
and Weight EstimateWestinghouse Non-Proprietary Class 3Revision: 0Page A 1 of 3

Volume Estimates for Process Buildings						
240 HP, Lab, Cafeteria, Laundry	Height	Width	Length	Volume		
Exterior	13	0.66	286.00	2454		
Offices	11	0.66	90.00	653		
Interior Partitions	13	0.66	220.00	1888		
Red Room						
Exterior	13	0.66	203.00	1742		
Green Room						
Exterior	13	0.66	163.00	1399		
Maintenance						
Exterior	13	0.66	163.00	1399		
Lab Annex	Height	Width	Length	Volume		
Ali walis	13	0.66	80.00	686		
Vestibule	8	0.66	18.00	95		
Parapet Walls	2	0.66	166.00	219		
Roof Deck	0.5	83	215.00	8923		
Structural Steel E-W	0.833	0.33	1079.00	297		
Structural Steel N-W	0.833	0.33	1200.00	330		
Columns	0.833	0.33	845.00	232		
Lab Annex Roof	13	0.5	40.00	260		
3" Cap on Entire Floor (concrete)	0.25	83	215.00	4461		
Exterior Lights (All Buildings)	0.25	00	210.00			
A/C Units (All Buildings)				5060		
Equipment Room (Ventilation)				0		
Exterior	13	0.66	98.00	841		
Roof	24	0.5	50.00	600		
		0.0	00.00	0		
Building 253	Usiaht	Width	Longth	' Volume		
Exterior High	Height 28	0.66	Length 154.00	2846		
Interior High	11	0.66	77.00	559		
Exterior Low	17	0.66	154.00	1728		
Offices 1st floor	11	0.66	68.00	494		
Offices 2nd floor	9	0.66	227.00	919		
Interior Partitions	9 17	0.45	80.00	898		
Pump Room Wall	13	0.66	25.00	215		
Pump Room Wall	10	0.66	52.00	378		
Pump Room Wall	11	0.66	20.00	145		
Roof	130	0.5	77.00	5005		
Pump Room Roof	25	0.5	25.00	313		
Structural Steel E-W (Lower)	304	0.0	0.88	266		
Structural Steel N-W (Lower)	90	1.33	0.50	60		
Columns (Lower)	136	1.00	0.88	119		
Roof	77	0.66	130.00	6607		
Structural Steel E-W (Upper)	304	0.5	1.88	285		
Structural Steel N-W (Upper)	152	0.5	1.88	143		
Columns (Upper)	120	<u> </u>	1.00	120		

Hematite ommissioning	and Weight Estimate			Building De	
Project	Westinghouse Non-Prop	rietary Class 3	Revisio	on: 0	Page A 2 c
	Volume Estim	Appendix A ates for Proce	ess Buildin	gs	
Building	254	Height	Width	Length	Volume
Exterior		19	0.66	488.00	6120
Upper Level	s of Mezzanine	16	0.66	206.00	2175
Interior wall	South Side	19	0.66	83.00	1041
Grating Mez	z North	20	0.0833	166.00	277
Grating Mez	z Middle	15	0.0833	83.00	104
Concrete flo	or North	10	0.5	83.00	415
Long Runs (Grating	4	0.0833	302.00	101
Sound Proo	f Walls 2 N & 2 S	11	0.33	80.00	290
Women's Lo	cker Room	14	0.66	70.00	647
Women's Ut	ility Room	14	0.66	30.00	277
Roof		161	0.66	83.00	8820
Locker Roof	Women's	15	0.5	83.00	623
Structural St	eel E-W	644	0.5	1.33	13704
Structural St	eel N-W	0	0	0.00	0
Columns		19	1	1.00	608
······································					
Building 2	255	Height	Width	Length	Volume
Exterior		16	0.66	327.00	3453
Offices and	Interior Partitions	7	0.66	305.00	1409
Interior Parti		16	0.4	70.00	448
Grating		83	0.25	25.00	519
South Floor		15	0.166	70.00	174
Men's Locke	er Room	14	0.66	95.00	878
Roof		83	0.5	161.00	6682
Men's Locke	r Room Roof	83	0.5	15.00	623
Structural St	eel E-W	483	1.66	0.50	401
Structural St	eel N-W	2241	1	0.50	1121
Columns		16	1	1.00	512
13/40 0-	· · · · · ·				
HVAC Ro	9 m5	Height	Width	Length	Volume
All Walls Roof		16	0.66	180.00	1901
		15	0.5	105.00	788
Structural St Structural St			0.5	255.00	128
	BEI IN-VV		0.5	105.00	53
Columns		1	0.5	16.00	48
Building 2	256	Height	Width	Length	Volume
Exterior		17.5	0.66	242.00	2795
Interior Parti	tions	17.5	0.66	46.00	531
Roof		46	0.66	146.00	4433
Structural St	eel E-W	0	0	0.00	0
Structural St		438	1.5	0.50	329
Columns		17.5	0.66	0.50	173

nissioning oject	Westinghouse Non-	Proprietary Class 3	Revisio	on: 0	Page A 3 o
		Appendix A			
	Volume I	Estimates for Proce	ess Buildin	gs	
Building	260	Height	Width	Length	Volume
Exterior Ox		50	0.25	134.00	1675
Exterior Ox		24	0.25	141.00	846
Structural S		1.33	0.5	279.00	186
Structural S		1.33	0.5	432.00	287
Crane Rail		72	0.5	1.66	60
	s Oxide Dock	72	0.5	1.66	60
Perlings O	xide Dock	1210	0.25	0.50	151
Roof		91	0.5	31.00	1411
Columns		1.33	0.5	50.00	399
Roof Beam	ns N-S	2	0.5	144.00	1728
Roof Beam	ns E-W	0.66	0.25	217.00	430
Floor 2nd		25	0.4	36.00	360
Floor 3rds		25	0.4	36.00	360
Floor 4th		25	0.4	36.00	360
LimeSto	ne Storage	Height	Width	Length	Volume
All Walls C		4	0.66	116.00	306
All Walls S	teel Siding	20	0.25	116.00	580
Roof		40	0.5	24.00	480
Small Roor		12	0.5	15.00	90
Structural S	Steel E-W	24	0.5	0.33	36
Structural S	Steel N-W	24	0.5	1.66	60
Columns		1	0.5	24.00	72
Perlings		256	0.166	0.33	84

Decommissioning	and Weight Estimate		
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page B 1 of 8
	Appendix B		
	Hematite Building Take Off	Information	1
•			
_			
•			
	Hematite Building Take Off In	iformation	
	General Notes:		
	1. Dimensions are in inches unless noted other wise.		
	2. Roof steel girders are in varying sizes. Due to lighti	ing conditions and height,	nlaga
	unable to determine a lot of roof girder sizes. Sizes the dimensions are noted on takeoff.	will have to be assumed un	110222
	 Majority of the rooms contain process and water pip inch to 6 inch diameter. 	ping. Piping ranges from .5	;
	4. Ventilation ducting primarily constructed of thin ga		
	 Ducting on HEPA units and roof stacks constructed Diamond decking approximately 1/16" thick. 	l of steel. Assume 1/16".	
	7. Unknown as to type and size of reinforcement used	for poured concrete walls	and
	ceiling.8. Wood roof joists 2"X8". Roof under lament for area	as with wood roof joists is	
	either plywood or OSB. Thickness unknown, proba	ibly 5/8'' .	
	 All rooms/areas contain electrical conduit and ceilir fluorescent lighting. Mercury vapor lighting being r 		
	10. HEPA filter banks 8' X 8' X 4'		
	 Steel roof trusses run with the width of the room, un Steel box columns are hollow. 	nless noted otherwise.	
	 HEPA exhaust ducting approximately 24" dia. Handrails on catwalks and stairs constructed of 2" s 	staal nine	
		seen pipe.	•
	Building 240:		
1	Lunch Room:		
	1. (24) 2" X 8"X 155" wood roof trusses		
	 (3) 2" X 8" X 208" wood roof trusses (2) 2" X 12" X 122" metal door supports 		
	4. (7) 12" X 6" steel I-Beam roof girders		
	 Approximately 20 feet of 4" dia. cast iron drain pip Ceiling: Mixed between steel corrugated and plywork 		
	Laundry Room:		
	-		
	 (6) 6" X 6" X 144" steel I-Beam columns (.25" thic (6) 6" X 12" steel I-Beam roof girders 	ck)	
	3. Ceiling: corrugated metal		
	Offices:		
	1. 2" X 8" ceiling joists with plywood/OSB under lam	nent	
	2. Sheet metal ventilation ducting		
	1		

	Tashial Paris Desument UDD TDD	NALOOD Puilding D	amplition Dahris Volume
Hematite	Technical Basis Document: HDP-TBD- and Weight Estimate	W 191-902, Dunung L	
Decommissioning Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page B 2 of 8
	Appendix B		
	Hematite Building Take Off	Information	
•			
•			
Lab	oratory:		
	 (4) 6" X 6" X 168" steel I-Beam columns (12) steel I-Beam roof girders 		
	3. (32) fluorescent ceiling light fixtures		
	4. Ceiling: corrugated metal		
Stor	age Room within Laboratory:		
	1. Sheet metal ventilation ducting.		
	 Ceiling mounted HVAC unit. (10) fluorescent lights 		
	4. Ceiling: corrugated metal		
Ingr	ress/Egress Area:		
	1. (1) 6" X 6" steel I-Beam column		
	 (2) steel I-Beam roof girders Cast iron drain pipe with lead joint sealant. 		
HEI	PA Room:		
	1. (4) steel I-Beam columns (dimensions unk.)		
	2. (10) steel I-Beam roof girders 3. (2) HERA filter banks (8' X 8' X 4')		
	 (2) HEPA filter banks (8' X 8' X 4') (1) complete HEPA filter unit (consists of filter) 	bank, fan, motor and exhau	st
	ducting). 5. Ceiling: corrugated metal		
	Recovery (Red Room):		
	1. (8) steel columns		
	2. (12) steel roof trusses		
	 Small overhead mounted HVAC unit (more than 4. Ceiling: corrugated metal 	n likely a chiller)	
	t Recovery (Green Room):		
	1. (8) steel columns		
	2. (11) steel roof trusses	1:11	
	 Small overhead mounted HVAC unit (more than Ceiling: corrugated metal 	i likely a chiller)	
	2		

Hematite	Hematite Decommissioning Technical Basis Document: HDP-TBD-WM-902, Building Demolition Debris Volument: HDP-TBD-WM-902, Building Demolitio				
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page B 3 of 8		
·	Appendix B Hematite Building Take Off	Information			
Mainte	nance Shop (includes offices):				
2.	(6) steel columns(19) steel roof trussesCeiling: corrugated metal				
Health ?	Physics Office:				
2. 3. 4. 5.	 (4) steel I-Beam roof girders (1) 6" X 6" X 156" steel I-Beam column (9) 2" X 8" X 144" wood roof trusses Small ceiling mounted HVAC unit Ceiling: corrugated metal Ceiling in small office: plywood/OSB 				
Buildi	<u>ing 253;</u>				
Tank Re	.oom:				
2.	3" to 4" dia. process piping with valving Ceiling: Pre-cast reinforced concrete with cast c reinforcement unknown	concrete roof girders (typ	pe of		
Main A	area (U02 Powder Storage):				
2. 3. 4. 5. 6. 7. 8. 9.	 (8) 10" X 10" steel box columns (8) 12" X 12" steel box columns (4) 21.5" X 12" steel roof girders (.5" thick) (7) 6" X 24" steel roof girders (23) steel roof trusses (2) complete HEPA units (consists of filter bank (1) ceiling mounted HVAC unit Ceiling: corrugated metal Floor of upstairs offices constructed of corrugate concrete. Type of concrete reinforcement unknow 	ed metal with app. 4" of			
Decon I	Room:				
2. ((6) 10" X 10" steel box columns (3) steel I-Beam roof girders (6) steel roof trusses Ceiling: corrugated metal 				

Hematite Decommissioning	Technical Basis Document: HDP-TBD- and Weight Estimate	-WM-902, Building L	Demolition Debris Volume
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page B 4 of 8
· ·	Appendix B Hematite Building Take Off	'Information	
· HP I	Ingress/Egress Area (Floor Level):		
	 (4) 10" X 10" X 124" steel box columns (2) 24" X 12.5" X 192" steel I-Beam girders (1) 12" X 7" X 192" steel I-Beam girder (1) 13.5" X 6" X 279" steel I-Beam girder (1) 13.5" X 6" X 276" steel I-Beam girder (1) 13.5" X 6" X 168" steel I-Beam girder (3) 47' steel roof trusses Ceiling: corrugated metal 		
	 (14) 12" X 12' X 144" steel box beams (4) 24" X 8" X 540" steel I-Beam roof girders (2) 14" X 6" 720" steel I-Beam roof girders (2) 14" X 6" X 132" steel I-Beam roof girders (1) 14" X 5" X 264" steel I-Beam roof girders (9) 77' long steel roof trusses Floor: poured concrete over corrugated metal (conc Ceiling: corrugated metal 	crete ~ 4" thick)	
Bui	llding 254:		
2 nd F	 Floor Mezzanine: (11) steel I-Beam roof girders (15) steel roof trusses (2) complete HEPA units (consists of filter bank, fa 60" X 24" X 384" sheet metal ventilation ducting Floor: diamond decking Ceiling corrugated metal Floor Mezzanine: (10) I-Beam roof girders (6) large electrical cabinets Floor: diamond decking ter Mezzanine and Catwalk: (2) complete HEPA units (consists of filter bank, fa Floor: diamond decking Handrails constructed of 2"pipe 		
	4		

Hematite Decommissioning	Technical Basis Document: HDP-TBD- and Weight Estimate	-WM-902, Building L	Demolition Debris Vo
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page B 5 of 8
	Appendix B Hematite Building Take Off	Information	
HVAC Ro	oom:		
) complete HEPA units (consists of filter ban eiling: corrugated metal	k, fan, motor and exha	ust ducting)
Ventilatio	on Ducting Room:		
•) steel I-Beam roof girders		
	8) steel roof trusses	for motor and orthog	et ducting)
) complete HEPA unit (consists of filter bank rea contains a lot of sheet metal ventilation du		ist ducting)
	oor: diamond decking	JOI WOIR	
	ciling: corrugated metal		
Main Floo	or Area:		
1. (1	3) 10" X 10" X 252" steel box columns		
) 12" X 12" X 252" steel box columns		
•	4) steel roof trusses		
4. (6	0) steel I-Beam and channel roof girders and	floor supports (include	es girders for
	ezzanine)		
	53) mezzanine steel floor trusses (approximate)	tely 12' to 24' in lengt	h)
) 12" X 12" X 408" steel box columns 6) 8" X 5" X 144" steel support columns		
-	rea contains a lot of sheet metal ventilation du	ict work	
	eiling: corrugated metal		
Buildin	<u>g 256-1:</u>		
•) steel roof trusses		
•) 8" X 8" X 240" steel box columns		
) 6" X 6" X 144" steel I-Beam support colum	n	
) steel I-Beam roof girders) steel roof trusses (99" long each)		
•) complete HEPA unit (consists of filter bank	fan, motor and exhau	ist ducting)
	rea contains a lot of sheet metal ventilation du		
8. Ce	eiling: corrugated metal		
Buildin	<u>g 256-2:</u>		
•) 8' X 8" X 216" steel box columns		
) 6" X 6" X 144" steel I-Beam support colum	ins	
) steel I-Beam girder (app. 50" long)		
•	7) steel roof trusses pp. 138' of 4" water piping		

- App. 138' of 4" water piping
 App. 300' of 3-3" water piping

Hematite Decommissioning	Technical Basis Document: HDP-TBD- and Weight Estimate	-WM-902, Building	Demolition Debris Volume
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page B 6 of 8
	Appendix B Hematite Building Take Off	Information	
	rea contains a lot of water and process piping eiling: corrugated metal		
Buildin	<u>g 255:</u>		
Area A-1	(see map):		
2. (1 3. (6 4. (~ 5. ~ 6. (1	 c) steel I-Beam roof girders running length of r c) steel I-Beam roof girder running width of roof c) 8" X 8" X 144" steel box columns c) 8" X 8" X 144" steel box columns c) steel roof trusses c) of sheet metal ventilation duct work c) 6" X 6" X 144" steel I-Beam support column eiling: corrugated metal 	om	
Area A-2	(see map):		
2. (1 3. (2 4. (6 5. (5 6. (6	 4" X 4" X 84" steel box columns 3" X 3" X 84" steel box columns 3" X 6" X 120" steel roof girders 3" X 6" X 144" steel roof girders 4" X 6" X 189" steel roof girders 3" X 6' X 144" steel roof girders 	l metal	
Area A-3	(see map):		
2. (1 3. (3 4. (6 5. (7 6. (1 7. M	 complete HEPA units (consists of filter bank steel roof I-Beam girders running length of steel roof I-Beam girders running width of r s" X 8" X 180" steel I-Beam columns 4" X 4" X 89" steel columns supporting mez 1) 6" X 4" steel girders supporting mezzanine lezzanine Floor: diamond deck eiling corrugated metal 	room room zzanine	1st ducting)
Area A-4	(see map):		
2. (3) steel I-Beam roof girders) small HVAC units in overhead eiling: corrugated metal		
Area A-5	(see map):		
	i) steel I-Beam roof girders eiling: corrugated metal		
	6		

Hematite Decommissioning	Technical Basis Document: HDP-TBD-WM-902, Building De and Weight Estimate	
Project	Westinghouse Non-Proprietary Class 3 Revision: 0	Page B 7 of 8
	Appendix B Hematite Building Take Off Information	
	Remaine Bunding Take Off Information	
Area A-6	(see map):	
	8" X 8" X 180" steel I-Beam columns	
	2) steel roof I-Beam girders running length of room.	
	ezzanine Floor: diamond decking ea contains a lot of process piping	
	ea contains a for or process piping	
Area A-7	(see map):	
) steel I-Beam roof girders running length of room	
) steel I-Beam roof girder running width of room) bank of electrical cabinets (15.5" X 82" X 188")	
	ea contains a lot of process piping	
	ciling: corrugated metal	
Area A-8	(see map)	
) steel roof trusses	
) steel I-Beam roof girder running width of room eiling: corrugated metal	
	1 (see map):	
) steel I-Beam roof girder running length of room siling: corrugated metal	
Area A-8-	2 HVAC Area (see map):	
1. (2)	0) 2" X 10" X 156" light gauge metal roof joists	
) 4" X 8" X 144" steel I-Beam columns	
) 12" X 8" X 294" steel I-Beam roof girder) 12" X 12" X 144" steel I-Beam roof girder	
) complete HVAC unit	
	eiling: corrugated metal	
Building	<u>g 260 (Oxide):</u>	
1 st Floor:		
1. (4) 2. (1) 14" X 7" X 456" steel I-Beam roof girders 1) 8" X 13" X 600" steel I-Beam columns (columns run from 1 st floor	r to roof)
2 nd Floor:		
1. (2)) 10" X 6" X 456" steel I-Beam girders	

Hematite Decommi ss ioning	Technical Basis Document: HDP-TBD- and Weight Estimate	WM-902, Building I	Demolition Debris Volu
Project	Westinghouse Non-Proprietary Class 3	Revision: 0	Page B 8 of 8
	Appendix B Hematite Building Take Off	Information	
2. (2) 14'	' X 7" X 456" steel I-Beam girders		
	' X 7" X 396" steel I-Beam girders		
4. (1) ele	ectrical cabinet (175" X 13" X 91.5")		
5. Floor:	diamond plate		
3 rd Floor:			
	X 8" X 456" steel I-Beam girders		
2. Floor:	diamond plate		
4 th Floor			
1. (2) 36'	' X 10" X 456" steel I-Beam girders		
	EPA filter bank		
	a. steel duct running from 4 th floor to 1 st fl	oor	
	diamond plate		
5. Ceiling	g: corrugated metal		
Building 26	0 (Limestone):		
1. (4) 9.7	5" X 8" X 264" steel I-Beam columns		
	5" X 8" X 240" steel I-Beam columns		
• •	0" X 4" X 444" steel J-girders		
	'X 6" 152" steel I-Beam roof girders		
5. Ceiling	g: corrugated metal		
Roofs:			
	ng roofs contain several carbon and SS ver	ntilation stacks. Heig	ght ranges
	- 14' to 16'	an 1/ " fits an to a mul an	d Sturafaam
	s made up of reinforced rubber matting over tion. Thickness for rubber matting to sub re		a Styroioan
South Vaul	<u>t:</u>		
1. (1) ste	el I-Beam girder		
2. (12) st	eel roof trusses		
	d reinforced concrete walls and partisans		** * *
	ng contains $4 - 10$ " thick concrete partisan	s and $1 - 10^{"}$ thick	room divider
wall fi	rom floor to ceiling		

- 5. 20" brick cap around 3 sides of building roof.
 6. Ceiling: corrugated metal

Hematite commissioning	Technical Basi HDP-TBD-WM-902			ion Debris	volume	and Weig	ht Estim	ate	
Project	Westinghouse N	on-Propri	etary Cla	ss 3 Re	evision:	0		Page C-	1 of
	Voluma	and Weight		VDIX C mmary for No	n Drocoss L	mildinge	<u> </u>		
		······		• •			1		
Building	Concrete/ Block Volume ft3	Concrete Weight Ibs	Other Material Volume ft3	Other Material Weight lbs	Totai Volume ft ³	Total Weight Ibs.			
Sewage Treatment She	d 0	0	896	17,920	896	17,920			
Building 101-Tile Barn	2,908	254,917	1,856	92,188	4,764	347,105			
Building 115-Diesel/Fire		1			1				
Pump	1,077	70,013	400	20,000	1,477	90,013			
Building 120-Wood Bar	n 0	0	1,110	55,520	1,110	55,520			
Building 235-West Vaul	t 1,227	79,751	370	18,500	1,597	98,251			
Building 245-Weil Wate									
Pump	116	7,516	32	1,600	148	9,116			
Building 252-South Vau	lit 2,227	334,080	1,025	102,500	3,252	436,580			
Total	7,555	746,277	5,689	308,229	13,244	1,054,505			
Sewage Treatment She	d Qty	Length	Width	Thickness	Concrete/ Block Volume	Concrete/ Block Weight	Other Material Volume	Other Material Weight	
ltem		ft	ft	ft	ft ³	lbs.	ft ³	lbs.	
Walls	2	16	12	0.5	0	0	192	3,840	
Walls	2	22	12	0.5	0	0	264	5,280	
Roof	1	22	40	0.5	0	0	440	8,800	
				Total	0	0	896	17,920	

Hematite commissioning	Technical Basis Document: HDP-TBD-WM-902, Building Demolition Debris Volume and Weight Estimate							
Project	Westinghouse N	Ion-Propri	etary Cla	ISS 3 Re	vision:	0		Page C-2
	Volume	and Weight		NDIX C mmary for No	n Process B	uildi ngs		<u></u>
Building 101-Tile Barn Item	Qty	Length	Width	Thickness inches	Tile Block Volume ft ³	Tile Block Weight Ibs.	Other Material Volume ft ³	Other Material Weight Ibs.
2x6x6	65	72	6	2	0	0	33	1.625
2x6x12	390	144	6	2	0	0	390	19,500
2x6x16	130	192	6	2	0	0	173	8,667
2x10x12	217	144	10	2	0	0	362	18.083
2x4x16	240	192	4	2	0	0	213	10,667
Beams	2	1536	8	8	0	0	114	5,689
Columns	26	96	8	8	0	0	92	4,622
Gable End Framir	ng 22	288	4	2	0	0	29	1,467
Gable End Framir	ng 16	84	6	2	0	0	9	467
Gable End Framin	ng 34	156	6	2	0	0	37	1,842
Siding Gable End	s 2	120	84	1	0	0	12	583
Siding Gable End	ls 2	156	288	1	0	0	52	2,600
Block Wall	1	120	3840	8	2,133	138,667	0	0
Roof	2	192	1536	0.5	0	0	171	8,192
Roof	2	144	1536	0.5	0	0	128	6,144
Silos- Walls	2	186	450	8	775	116,250	0	0
Silos-Roof Framir	ng 48	120	2	6	0	0	40	2,000
Silos-Roof Tin	2	186	4	1	0	0	1	41
				Total	2,908	254,917	1,856	92,188

Hematite commissioning	Technical Basis Document: HDP-TBD-WM-902, Building Demolition Debris Volume and Weight Estimate							
Project	Westinghouse	Non-Propri	etary Cla	ss 3 F	levision:	0		Page C-3
	anana <u>any kaominina dia kaom</u>		APPE	NDIX C			<u> </u>	
	Volum	and Weight	Estimate Su	mmary for N	on Process H	uildings		
Building 115 Diesel And Fire Pump					Block	Block	Other Material	Other Material
Building .	Qty	Length	Width	Thickness	Volume	Weight	Volume	Weight
Item		ft	ft	ft	ft ³	ibs.	ft ³	ibs.
Walls	2	20	12 12	0.66	317	20,592	0	0
Wall Walls	<u> </u>	40	12	0.66	<u> </u>	8,237	0	0
Roof	<u>_</u>	20	40	0.5	034	<u>41,184</u> 0	400	20,000
ROOI		20	40	Total	1,077	70,013	400	20,000
Building 120-Wood B Item	arn Qty	Length	Width	Thickness	Block Volume	Block Weight	Other Material Volume	Other Material Weight
		inches	inches	inches	ft ³	llos.	ft ³	ibs.
1x4x16 walls	98	192	4	1	0	0	44	2,178
2x6x18 walls	70	216	6	2	0	0	105	5,250
2x6x18 roof	82	216	6	2	0	0	123	6,150
2x4x12 roof	82	144	4	2	0	0	55	2,733
Beams	1	960	8	8	0	0	36	1,778
Columns	10	96	11	5	0	0	31	1,528
Gable End Fram		120	6	2	0	0	12	583
	ing 8	156	4	11	0	0	3	144
Gable End Fram		156	120	1	0	0	22	1,083
Gable End Fram Siding Gable En	ds 2		······································		1 0	0	200	10,000
Gable End Fram Siding Gable En Floor	ds 2 1	960	360	1	0		+	
Gable End Fram Siding Gable En Floor Roof	ds 2 1 2	960 960	216	0.5	0	0	120	6,000
Gable End Fram Siding Gable En Floor Roof Siding	ds 2 1 2 1	960 960 2640	216 216	0.5	00	0	120 330	6,000 16,500
Gable End Fram Siding Gable En Floor Roof	ds 2 1 2 1	960 960	216	0.5	0	0	120	6,000

Hematite commissioning	Technical Bas HDP-TBD-WM-90			ion Debri	s Volume	and Weig	ht Estin	ate
Project	Westinghouse	Non-Propri	ietary Clas	853 R	evision:	0		Page C-4
en senara ya na darakati sika shkipada ku anga kana kana kana sa		narrad yang yang yang yang yang katalan katalan katalan katalan katalan katalan katalan katalan katalan katala	APPEN	DIX C				
	Volum	e and Weight	Estimate Sun	amary for No	on Process B	uildings		•
Building 235-West Vaul	t Qty	Length	Width	Thickness	Block Volume	Block Weight	Other Material Volume	Other Material Weight
item		ft	ft	ft	ft ³	ibs.	ft ³	ibs.
Walls	2	20	13	0.66	343	22,308	0	0
Wall	1	37	13	0. 6 6	317	20,635	0	0
Walls	2	33	13	0.66	566	36,808	0	0
Roof	1	20	37	0.5	0	0	370	18,500
				Total	1,227	79,751	370	18,500
Building 245-Well Pum House	Qty	Length	Width	Thickness	Block Volum e	Block Weight	Other Material Volume	Other Material Weight
ltem		ft	ft	ft	ft ³	lbs.	ft³	lbs.
Walls	3	8	7.3	0.66	116	7,516	0	0
Roof	1	8	8	0.5	0	0	32	1,600
			L	Total	116	7,516	32	1,600
							Other	Other
					Concrete	Concrete	Material	Material
	ılt Qty	Height	Thickness	Width	Volume	Weight	Volume	Weight
Building 252-South Va		ft	ft	ft	ft ³	lbs.	ft ³	lbs.
Building 252-South Val		R						
-		12	0.8	232.00	2,227	334,080	0	0
ltem			0.8 0.5	232.00 50.00	2,227	<u>334,080</u> 0	1,025	0 102,500

Hematite	Technical Basis Document: HDP-TBD-WM-902, Building Demolition Debris Volume and Weight Estimate						
Project	Westinghouse No	n-Proprieta	ry Class	3 Revi	sion 0	Page D-1 c	of 1
Building	Volume and W	eight Estimate	NDIX D Summary fo Concrete	or Process B Other Material	uildings Other Materiai	Totai	Total
		Volume ft ³	Weight Ibs.	Volume ft ³	Weight ibs.	Volume ft ³	Weight Ibs.
Process Bidg. 240	1	11,375	739,382	18,359	1,193,311	29,734	1,932,693
Process Bidg. 253	2	6,524	424,067	15,720	1,021,792	22,244	1,445,859
Process Bidg. 254	1/2 of 256 3	13,630	921,237	34,771	2,260,134	48,401	3,181,371
Process Bidg. 255 J	4 1/2 of 256 4	10,642	691,756	14,005	910,299	24,647	1,602,055
Process Bidg. 260 (Bidg	k Limestone 5	306	19,906	14,430	937,965	14,736	957,870

2,796,346

97,285

6,323,501

9,119,847

139,763

42,478

Total

ATTACHMENT 4

Scaling Factors for Radioactive Waste Associated with the Process Buildings

HDP-TBD-WM-901, Revision 0

Hematite Decommissioning Project

Technical Basis Document

NUMBER: HDP-TBD-WM-901

TITLE:SCALING FACTORS FOR RADIOACTIVE WASTEASSOCIATED WITH THE PROCESS BUILDINGS

REVISION: 0

DATE: Enter date approved in EDMS-DC 4-15-09

DC	<u> </u>	3-5-09
	D. C. Cummin	

Checked by:

Dom		3509
_	D. N. Brown	
Gened	- And 3/13	09 4/13/09
	Gerald J. Rood	Strate 112109

Owner:

Author:

©2009 Westinghouse Electric Company LLC All Rights Reserved

Hematite Decommissioning	Technical Basis Document: HDP-TBD-WM-901, Scaling Factors For Radioactive W Buildings	Vaste Associated With The Process
Project	Revision: 0	Page i

	REVISION LOG
Revision #	Change(s)
0	This is a new technical basis document.

Hematite Decommissioning	Technical Basis Document: HDP-TBD-WM-901, Scaling Factors For Radioactive W Buildings	Vaste Associated With The Process
Project	Revision: 0	Page 1 of 4

1.0 PURPOSE

The purpose of this Technical Basis Document is to evaluate results obtained from samples taken in the process buildings and to establish scaling factors for hard to detect isotopes based on those results. Samples had been previously obtained from the various process building areas on 10/22/04 and were analyzed by Severn Trent Laboratories (since the time of analysis, this company has a new name, TestAmerica). Sample results need not be decay corrected as part of the scaling factor calculation due to the relatively long half lives of the parent isotopes of concern compared to the elapsed time since sampling. Short half life daughter products will have established equilibrium with the parent isotopes.

2.0 APPLICABILITY

The scaling factors will be used to calculate activities of hard to detect isotopes in waste that originates from the process buildings including the process buildings.

3.0 DEFINITIONS/ACRONYMS

- 3.1. Definitions
 - 3.1.1 Scaling factor is a unitless number that is the ratio of a hard to detect isotope to an easily detected isotope.

4.0 **REFERENCES**

- 4.1. USNRC Low-Level Licensing Branch, Technical Position on Radioactive Waste Classification
- 4.2. DO-08-005, Historical Site Assessment

5.0 DATA AND DATA EVALUATION

- 5.1. RAW Data
 - 5.1.1. Sample results for samples W-102204-1 (Building 240 Red Room), W-102204-2 (Building 240 Green Room), W-102204-3 (Building Maintenance and Decon Room), W-102204-4 (Building 253), W-102204-5 (Building 254), W-102204-6 (Building 256), W-102204-7 (Building 255) and, W-102204-8 (Building 260) are provided in attachments 1 through 8. Laboratory QC test results are provided in attachment 9. A subsequent assessment of the laboratory analysis by Test America is provided in attachment 10.

Hematite Decommissioning	Technical Basis Document: HDP-TBD-WM-901, Scaling Factors For Radioactive Waste Associated With The Process Buildings				
Project	Revision: 0	Page 2 of 4			
5.2. Isoto	pes Eliminated from Inclusion in W	Vaste Stream			
5.2.1	The following isotopes were no considered to be present for was	t detected in any sample and are not ste management purposes.			
	 Cesium 137 (Cs-137) Iron 55 (Fe-55) Nickel 59 (Ni-59) Nickel 63 (Ni-63) Plutonium 238 (Pu-238) Americium 241 (Am-24) Curium 243/244 (Cm-24) 	1)			
5.2.2	2. The following isotopes were de eliminated due to inconsistency	tected in at least 1 sample, but were in results as noted.			
		239/240) was detected in 1 sample but the uncertainty of the measurement and			
	activity, but no correspo daughter of Pu-241 show	was detected in 1 sample at elevated nding Am-241 was detected. Am-241 as a ald be present. Additionally the detected certainty of the measurement and MDC. ation of the result.			
	the statistics had zero re as an MDC value. Base	vas reported as detected in one sample, but ported for the MDC which is inconsistent d on attachment 10, the reported value and witched. The sample was actually less than			
5.2.3	• •	ected in the samples, but are the short arent isotopes which will be reported as (2).			
	 Thorium 228 daughter o Thorium 231 daughter o Thorium 234 daughter o Protactinium 234m daug 	f Uranium 235 f Uranium 238			
5.2.4		nated as an isotope of concern due its short means of production of additional Sr-89 is			

5.3. Isotopes of Concern

5.3.1. The following isotopes and their associated half lives were detected in a sufficient number of samples and with an activity to justify their use as nuclides of concern.

Isotope	Half Life
Strontium 90 (Sr-90)	27.7 years
Technetium 99 (Tc-99)	2.12E+05 years
Uranium 234 (U-234)	2.47E+05 years
Uranium 235 (U-235)	7.1E+08 years
Uranium 238 (U-238)	4.51E+09 years
Thorium 230 (Th-230)	8.0E+04 years
Thorium 232 (Th-232)	1.41 E+10 years
Neptunium 237 (Np-237)	2.14E+06 years

6.0 ASSUMPTIONS

- 6.1. If an isotope sample result was reported at less than MDC, then the MDC value was reported as a positive result in the calculation.
- 6.2. All isotopes of concern were scaled to Uranium 235. This leads to consistent results for relatively insoluble isotopes of concern. For soluble isotopes of concern such as Sr-90 and Tc-99, the selection of U-235 for scaling will result in underestimation or overestimation of activity for any particular sample. On average the reported activity is expected to be within a factor of 10 of the true activity as required by reference 2.1. Based on very low concentrations, Sr-90 and Tc-99 will not be disposal limiting isotopes of concern for Hematite waste streams.
- 6.3. To achieve an average scaling factor for the process buildings, an average activity for each isotope of concern will be calculated and an average scaling factor calculated. This averaging process will result in an accurate assessment of activity.

7.0 CALCULATIONS

7.1. Attachment 11 is a spread sheet that has imbedded formulas for the calculation of scaling factors relative to U-235, mass enrichment and evaluation of soluble isotope scaling factors. The general formulas for each are as follows:

Scaling factor

Scaling Factor (SF) = Activity of Isotope/ Activity of U-235

Hematite Decommissioning	Technical Basis Document: HDP-TBD-WM-901, Scaling Factor Buildings	ors For Radioactive Waste Associated With The Process
Project	Revision: 0	Page 4 of 4
Enr	ichment	
Act	ivity of U-234/Specific Activity U	J-234= grams U-234

Activity of U-234/Specific Activity U-234= grams U-234 Activity of U-235/Specific Activity U-235= grams U-235 Activity of U-238/Specific Activity U-238= grams U-238

Enrichment % = <u>Grams U-235 X 100%</u> (Grams U-234+Grams U-235+Grams U-238)

Soluble Isotope Scaling Factor Adequacy

Sample SF/Average SF is within a factor of 10 of the Average SF

ps lof3

Attachment 1 LVI Environmental Services, Inc.

Client Sample ID: W-102204-01

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245~001	Date	Collected:	10/22/04	1200	
Work Order:	GVT3P	Date	Received:	10/29/04	0900	
Matrix:	SOLID					

1 ...

			Total Uncert.		Frep	Analysis		
Parameter	Result	Qual	(2 c+/-)	MDC	Date	Date	Batch #	¥14 4
ISO URANIUM (SHOR	T CT) DOE A-0	1-R MOD		pCi/sample	A-01-R	MOD		
Uranium 234 -	19400		1500	50	11/02/04	11/10/04	4308437	99
Uranium 235 -	860		160	30	11/02/04	11/10/04	4308437	99
Uranium 238-	2810		310	30	11/02/04	11/10/04	4308437	99
ISO THORIUM (SHOR	T CT) DOE A-0	1-R NOD		pCi/sample	A-01-R	NOD		
Thorium 228 -	3.4		1.7	1.7	11/02/04	11/06/04	4308435	75
Thorium 230-	5.6		1.9	1.3	11/02/04	11/06/04	4308435	75
Thorium 232/	0.33	υ	0.48	0.66	11/02/04	11/06/04	4308435	75
TC-99 by LSC by D	DE TC-02-RC M	od.	······································	pCi/sample	TC-02-1	C HOD		
Technetium 99	392		43	14		11/09/04	4309246	100
Gamma Cs-137 & Hi	ts by DOE GA-	01-R MOD.		pCi/sample	GA-01-1	NOD		
Cesium 137 -	-0.9	υ	2.8	5.3	11/04/04	11/04/04	4309327	
Protactinium 234M	630	υ	360	780		11/04/04		
Thorium 234	300		45	25		11/04/04		
Other Detected Rad					, _ , * -			
Thorium 231 🕤	108		25	21	11/04/04	11/04/04	4309327	
Uranium 235	98		37	39	11/04/04	11/04/04	4309327	
Uranium 238-	300		38	25	11/04/04	11/04/04	4309327	
Iron-55 by Liquid	Scint. Spect	rometry		pCi/sample	STL-RC-	.0055		<u></u>
Iron 55 🗸	-29	ບຶ	44	35	11/04/04	11/08/04	4309372	90
GROSS A/B BY GPPC	SW846 9310 M	OD		pCi/sample	9310 MG	00		
Gross Alpha	23400		2400	10	11/03/04	11/05/04	4310287	
Gross Beta	6090		620	10	11/03/04	11/05/04	4310287	
Ni-59 & Ni-63 by 1	Liquid Scint.	Spec.		pCi/sample	STL-RC-	0055		
Nickel 59~	0.0	_ ט	0.0	23	11/04/04	11/08/04	4309373	90
Nickel 63 -	17	U	13	21	11/04/04	11/08/04	4309373	90
SR-89 BY GPPC DOR	SR-01-RC MOD		••••••••••••••••••••••••••••••••••••••	pCi/sample	SR-01-F	C NOD		
Strontium 89 -	3.9	υ	4.4	7.1	11/05/04	11/15/04	4310368	69
SR-90 BY GFPC DOE	SR-03-RC MOD		······································	pCi/sample	SR-03-5	C NOD		
Strontium 90/	2.8	U	4.1	6.8		11/15/04	4310367	65
Plutonium-241 by I	Jiquid Scinti:	llation		pCi/sample	STL-RC-	0245		
Plutonium 241 V	500	บ	460	940		11/15/04	4208428	67

Client Sample ID: W-102204-01

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-001	Date Collected:	10/22/04 1200
Work Order:	gvt3p	Date Received:	10/29/04 0900
Matrix:	SOLID		

Peremeter	Result	Qual	Total Uncert. (2 s+/-)	MDC	Prep Date	Analysis Date	Jatch #	¥ld \$
ISO PLUTONIUN (SHORT	CT) DOE A	-01-R MOD		pCi/sample	A-01-R			
Plutonium 238	0.0	U	0.0	0.8	11/11/04	11/12/04 4	4316228	87
Plutonium 239/40 -	0.33	J	0.44	0.30	11/11/04	11/12/04	1316228	87
Am241, Cm243/244 (SH Americium 241 Curium 243/244	IORT CT) DOE 0.0 0.0	א-01-R MOD U U	0.0	pCi/sample 2.8 5.6		NOD 11/12/04 4 11/12/04 4		17 17
Curium 242	2.4 0	U	0.0	0.0.2.4		11/12/04		17
					A-01-R			
ISO NEPTUNIUM (SHOR)	CT) DOR A-	01-R MOD		pCi/sample	M-AT-X	RUD		

NOTE (S)

Data are incomplete without the case marrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

J Result is greater than sample detection limit but less than stated reporting limit.

Client Sample ID: W-102204-01 DUP

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-001X	Date Collected:	10/22/04	1200
Work Order:	GVT3P	Date Received:	10/29/04	0900
Matrix:	SOLID			

Parameter	Result	Quel	Total Uncert. (2 c+/~)	MDC	Prep Date	Analysis Date	Batch #	Yld %
Gamma Cs-137 & Hit	s by DOE GA-0	1-R MOD.		pCi/sample	GA-01	-R MOD		
Cesium 137	0.2	U	1.9	3.7	11/04/0	4 11/05/04	4309327	
Protactinium 234M	360	σ	330	700	11/04/0	4 11/05/04	4309327	
Thorium 234	324		47	29	11/04/0	4 11/05/04	4309327	
Other Detected Radi	ionuclides							
Thorium 231	97		26	23	11/04/0	4 11/05/04	4309327	
Uranium 235	80		34	38	11/04/0	4 11/05/04	4309327	
Uranium 238	324		39	29	11/04/0	4 11/05/04	4309327	

NOTE (S)

Data are incomplete without the case parrative.

NDC is determined by instrument performance only. Bold results are greater than the NDC

Attachment 2

....

......

.

.....

LVI Environmental Services, Inc.

Client Sample ID: W-102204-02

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-002	Date Collected:	10/22/04	1200
Work Order:	GVT31	Date Received:	10/29/04	0900
Matrix:	SOLID			

			Total Uncert.		Prep	Analysis		
Parameter	Result	Qual	(2 a+/-)	NDC	Date	Date	Batch #	Yld '
ISO URANIUM (SHORT	CT) DOE A-0	1-R MOD		pCi/sample	A-01-R	MOD		
Uranium 234	43500		3400	70	11/02/04	11/10/04	4308437	97
Uranium 235	1910		350	80	11/02/04	11/10/04	4308437	97
Uranium 238	5890		660	70	11/02/04	11/10/04	4308437	97
Iso THORIUM (SHORT	CT) DOB A-0	1-R MOD		pCi/sample	A-01-R	MOD		
Thorium 228	2.3		1.1	0.7	11/02/04	11/06/04	4308435	92
Thorium 230	6.8		1.9	0.7	11/02/04	11/06/04	4308435	92
Thoriwa 232	0.66	J	0.57	0.51	11/02/04	11/06/04	4308435	92
ISO NEPTUNIUM (SHO	RT CT) DOE A	-01-R MOD	•	pCi/sample	A-01-R	MOD		
Neptunium 237	0.66	J	0.53	0.25	11/02/04	11/05/04	4308430	108
TC-99 by LSC by DO	B TC-02-RC M	od.		pCi/sample	TC-02-1	RC MOD		
Technetium 99	44		11	14		11/09/04	4309246	100
Gamma Cs-137 & Hit	by DOE GA-	01-R MOD.		pCi/sample	GA-01-1	RMOD		
Cesium 137	1.6	U	2.2	4.7	11/04/04	11/04/04	4309327	
Protactinium 234M	660	u U	450	950		11/04/04		
Thorium 234	651	•	83	37		11/04/04		
Other Detected Radi				•••	/ • -/ • -	,,		
Thorium 231	172		38	33	11/04/04	11/04/04	4309327	
Uranium 235	201		63	44		11/04/04		
Uranium 238	651		56	37	•	11/04/04		
Iron-55 by Liquid				-01 (STL-RC	0055		·
Iron 55	-40	U	180	pCi/sample 50		11/08/04	4309372	57
GROSS A/B BY GFPC	BW946 9310 W	0D		pCi/sample	9310 NK			
Gross Alpha	53900		5500	30		11/05/04	4310287	
Gross Beta	12600		1300	20	•	11/05/04		
Ni-59 & Ni-63 by L	ionid Scint	Spec.	<u></u>	pCi/sample	STL-RC	-0055		
Nickel 59	0.0	U U	0.0	21		11/08/04	4309373	88
Nickel 63	2	U	11	20	• •	11/08/04		88
SR-89 BY GFPC DOE				pCi/sample	SR-01-1			
Strontium 89	9.8		5.0	7.6		11/15/04	4310368	67
SR-90 BY GPPC DOR	88-03-PC MOD			pCi/sample	SR-03-1	RC MOD		
Strontium 90	-5.9	U	5.5	9.7		11/15/04	4310363	59

Client Sample ID: W-102204-02

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-002	Date Collected:	10/22/04 1200
Work Order:	GVT31	Date Received:	10/29/04 0900
Matrix:	SOLID		

Parameter	Result	Quel	Total Uncert. (2 s+/-)	NDC	Prep Date	Analysis Date	Batch #	Yld \$
Plutonium-241 by	Liquid Scinti	llation		pCi/sample	STL-RC-	-0245	-	
Plutonium 241	2900		1800	2400	11/02/04	11/15/04	4308438	85
Iso PLUTONIUM (SH	ORT CT DOR	A-01-R MOD		pCi/sample	A-01-R			
Plutonium 238	0.13	Ŭ	0.48	0.84	11/11/04	11/12/04	4316228	85
Plutonium 239/40	0.11	U	0.31	0.30	11/11/04	11/12/04	4316228	85
Am241, Cm243/244	(SHORT CT) DO	E A-01-R MOD		pCi/sample	A-01-R	MOD		•
Americium 241	0.0	U	0.0	1.7	11/11/04	11/12/04	4316226	39
Curium 243/244	0.0	U	0.0	2.4	11/11/04	11/12/04	4316226	39
Curium 242	0.0	U	0.0	1.2	11/11/04	11/12/04	4316226	39

NOTE (S)

• •

Data are incomplete without the case marrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

J Result is greater than sample detection limit but less than stated reporting limit.

pglof2

Attachment 3

LVI Environmental Services, Inc.

Client Sample ID: W-102204-03

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-003	Date Collected:	10/22/04	1200
Work Order:	GVT33	Date Received:	10/29/04	0900
Matrix:	SOLID			

.

			Total Uncert.		Prep	Analysis		
Parameter	Result	Qual	(2 c +/-)	NDC	Date	Date	Batch #	YId 4
ISO URANIUM (SHORT	CT) DOE A-0	1-R NOD		pCi/sample	A-01-R	MOD		
Uranium 234	36700		2900	100	11/02/04	11/10/04	4308437	107
Uranium 235	1590		310	70	11/02/04	11/10/04	4308437	107
Uranium 238	4830		570	80	11/02/04	11/10/04	4308437	107
ISO THORIUM (SHORT	CT) DOE A-0	L-R MOD		pCi/sample	A-01-R	NÓD		
Thorium 228	5.1		2.2	1.9	11/02/04	11/06/04	4308435	66
Thorium 230	7.5		2.3	1.1	11/02/04	11/06/04	4308435	66
Thorium 232	0.39	U	0.69	1.0	11/02/04	11/06/04	4308435	66
ISO NEPTUNIUM (SHO	RT CT) DOE A	-01-R MOD		pCi/sample	A-01-R	MOD		
Neptunium 237	0.69	J	0.56	0.27		11/05/04	4308430	99
TC-99 by LSC by DO	E TC-02-RC M	od.		pCi/sample	TC-02-1	RC MOD		
Technetium 99	29.7		9.9	14		11/09/04	4309246	96
Gamma Cs-137 & Hit	S by DOE GA-	D1-R MOD.		pCi/sample	GA-01-1	R MOD		
Cesium 137	-2.7	υ	2.2	3.3	11/04/04	11/04/04	4309327	
Protactinium 234M	470	U	380	790	11/04/04	11/04/04	4309327	
Thorium 234	537		69	32		11/04/04		
Other Detected Radi						, ,		
Thorium 231	136		30	24	11/04/04	11/04/04	4309327	
Uranium 235	135		47	44		11/04/04		
Uranium 238	537		55	32		11/04/04		
Iron-55 by Liquid	Raint Sneat			pCi/sample	STL-RC-			
Iron 55	-30 -30	U	180	40		11/08/04	4309372	67
GROSS A/B BY GPPC	ONGA6 0210 W			pCi/sample	9310 M			
Gross Alpha	38400		4000	20		11/05/04	4310287	
Gross Beta	10700		1100	20	-	11/05/04		
Ni-59 & Ni-63 by L	iquid Scipt.	Spec.		pCi/sample	STL-RC-	0055		
Nickel 59	0.0	U	0.0	18		11/08/04	4309373	91
Nickel 63	-4	ŭ	14	20		11/08/04		91
SR-85 BY GFPC DOE	R-01-20 MOD	<u></u>		pCi/sample	SR-01-J	C MOD		
Strontium 89	5.2	U	1.5	8.4		11/15/04	4310368	63
SR-90 BY GPPC DOE	SR-03-RC MOD	<u> </u>		pCi/sample	SR-03-1	C MOD		
Strontium 90	10.5		5.2	7.9		11/15/04	4310367	58

LVI Environmental Services, Inc.

Client Sample ID: W-102204-03

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-003	Date Collected:	10/22/04 12	00
Work Order:	GVT33	Date Received:	10/29/04 09	00
Matrix:	SOLID			

Parameter	Result	Qual	Total Uncert. (2 g+/-)	NDC	Prep Date	Analysis Date	Batch #	YIG W
Plutonium-241 by L	iquid Scinti	llation		pCi/sample	STL-RC	-0245		-
Plutonium 241	1300	U	1100	2000	11/02/04	11/15/04	4308438	82
Iso PLUTONIUN (SHO	RT CT) DOE	A-01-R NOD		pCi/sample	A-01-R			
Plutonium 238	0.1	υ	0.40	0.74	11/11/04	11/12/04	4316228	82
Plutonium 239/40	0.29	U	0.42	0.58	11/11/04	11/12/04	4316228	82
Am241, Cm243/244 (SHORT CT) DO	B A-01-R MC	מו	pCi/sample	A-01- R	MOD		
Americium 241	0.3	υ	1.3	2.8	11/11/04	11/12/04	4316226	17
Curium 243/244	1.3	U	2.5	3.9	11/11/04	11/12/04	4316226	17
Curium 242	0.0	U	0.0	1.4	11/11/04	11/12/04	4316226	17

NOTE (S)

Data are incomplete without the case marrative.

NDC is determined by instrument performance only. Bold results are greater than the NDC

J Result is greater than sample detection limit but less than stated reporting limit.

pg lof2

Attachment 4

LVI Environmental Services, Inc.

Client Sample ID: W-102204-04

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-004	Date Collected:	10/22/04	1200
Work Order:	GV T 34	Date Received:	10/29/04	0900
Matrix:	SOLID			

			Total Uncert.		Prep	Analysis		
Parameter	Result	Qual	(2 a+/-)	NDC	Date	Date	Batch #	Yld 4
ISO URANIUN (SHORT	CT) DOE A-0	1-R NOD		pCi/sample	A-01-R	MOD		
Vranium 234	10700		910	40	11/02/04	11/10/04	4308437	96
Uranium 235	420		110	40	11/02/04	11/10/04	4308437	96
Uranium 238	1420		200	30	11/02/04	11/10/04	4308437	96
ISO THORIUM (SHORT	CT) DOE A-0	1-R NOD		pCi/sample	A-01-R	MOD		
Thorium 228	0.0	υ	0.0	2.1	11/02/04	11/06/04	4308435	54
Thorium 230	16.4		3.9	1.5	11/02/04	11/06/04	4308435	54
Thorium 232	0.0	υ	0.0	0.9	11/02/04	11/06/04	4308435	54
ISO NEPTUNIUM (SHO	RT CT) DOE A	-01-R MOD		pCi/sample	A-01-R	MOD		
Neptunium 237	0.0	υ	0.0	0.3		11/05/04	4308430	103
TC-99 by LSC by DO	E TC-02-RC N	iod.		pCi/sample	TC-02-1	RC MOD		
Technetium 99	43		11	14		11/09/04	4309246	99
Gamma Cs-137 & Hit	s by DOE GA-	01-R KOD.	······	pCi/sample	GA-01-1	RMOD		
Cesium 137	1.2	υ	2.3	4.4	11/04/04	11/04/04	4309327	
Protactinium 234M	190	υ	310	620	11/04/04	11/04/04	4309327	
Thorium 234	178		39	25	11/04/04	11/04/04	4309327	
··· Other Detected Radi	onuclides							
Thorium 231	42		18	21	11/04/04	11/04/04	4309327	
Uranium 235	54		29	33		11/04/04		
Uranium 238	178		37	25	11/04/04	11/04/04	4309327	
GROSS A/B BY GPPC	SW846 9310 M	<u>α</u> ο		pCi/sample	9310 M			
Gross Alpha	11700		1200	10	11/03/04	11/05/04	4310287	
Gross Beta	3400		350	10	11/03/04	11/05/04	4310287	
N1-59 & N1-63 by L	iquid Scint.	Spec.		pCi/sample	STL-RC-	0055		
Nickel 59	0.0	- ບ	0.0	23	11/04/04	11/08/04	4309373	67
Nickel 63	0.2	υ	9.2	21	11/04/04	11/08/04	4309373	87
SR-89 BY GFPC DOE	SR-01-RC MOD			pCi/sample	SR-01-1	C MOD		
Strontium 89	16.8		3.4	7.2	11/05/04	11/15/04	4310368	69
SR-90 BY GFPC DOE	SR-03-RC MOD			pCi/sample	\$R-03-1	C MOD		
Strontium 90	9.3		4.9	7.5	11/05/04	11/15/04	4310367	60
Plutonium-241 by L	iquid Scinti	llation		pCi/sample	STL-RC-	0245		
Plutonium 241	700	U	1300	1300		11/15/04	4308438	85

Client Sample ID: W-102204-04

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-004	Date Collected:	10/22/04 1200	0
Work Order:	GVT34	Date Received:	10/29/04 0900	D
Matrix:	SOLID			

_ . .

Perameter	Result	Qual	Total Uncert. (2 c+/~)) C	Prep Date	Analysis Date	Batch #	YId Y
ISO PLUTONIUM (SHOR	T CT) DO	B A-01-R MOD		pCi/sample	A-01-R			
Plutonium 238	0.0	U	0.0	0.8	11/11/04	11/12/04	4316228	85
Plutonium 239/40	0.0	υ	0.0	0.3	11/11/04	11/12/04	4316228	85
Am241, Cm243/244 (S Americium 241	HORT CT)	DOE A-01-R MOD U	0.59	pCi/sample 1.3	A-01-R 11/11/04	MOD 11/12/04	4316226	39
Curium 243/244	0.0	U	0.0	2.1	11/11/04	11/12/04	4316226	39
Curium 242	0.0	U	0. 0	1	11/11/04	11/12/04	4316226	39
Iron-55 by Liquid S	cint. Spe	ctrometry		pCi/sample	STL-RC-	.0055		
Iron 55	30 -	u -	29	80	11/09/04	11/10/04	4314427	82

NOTE (S)

Data are incomplete without the case narrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

pg / of 2

Attachment 5

LVI Environmental Services, Inc.

Client Sample ID: W-102204-05

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-005	Date	Collected:	10/22/04	1200
Work Order:	GVT37	Date	Received:	10/29/04	0900
Matrix:	SOLID				

			Total Uncert.		Prep	Analysis		
Parameter	Result	Qual	(2 _{0+/-})	MDC	Date	Date	Jatch #	¥ld N
ISO URANIUM (SHORT	CT) DOE A-0	1-R NOD		pCi/sample	A-01-R	MOD		
Uranium 234	32300		2600	100	11/02/04	11/10/04	4308437	91
Uranium 235	1360		290	80	11/02/04	11/10/04	4308437	91
Uranium 238	4330		530	70	11/02/04	11/10/04	4308437	91
Iso THORIUN (SHORT	CT) DOE A-0	1-R MOD		pCi/sample	A-01-R	HOD		
Thorium 228	2.9		1.5	1.5	11/02/04	11/06/04	4308435	98
Thorium 230	3.6		1.4	0.8	11/02/04	11/06/04	4308435	98
Thorium 232	0.0	U	0.0	0.7	11/02/04	11/06/04	4308435	98
TC-99 by LSC by DO	E TC-02-RC M	iod.		pCi/sample	TC-02-1	RC MOD		
Technetium 99	12.1	ឋ	8.6	14	11/04/04	11/09/04	4309246	100
Gamma Cs-137 & Hit	s by DOE GA-	01-R MOD.		pCi/sample	GA-01-1	r mod		
Cesium 137	-1.7	U	2.7	5.0		11/05/04	4309327	
Protactinium 234M	440	U U	330	530		11/05/04		
Thorium 234	484	-	64	27		11/05/04		
Other Detected Rad:			••	•	,,	,,		
Thorium 231	135		27	23	11/04/04	11/05/04	4309327	
Uranium 235	143		47	38	11/04/04	11/05/04	4309327	
Uranium 238	484		52	27	11/04/04	11/05/04	4309327	
GROSS A/B BY GFPC	SN846 9310 X	IOD		pCi/sample	9310 M	סכ		
Gross Alpha	37700		3800	20	11/03/04	11/05/04	4310287	
Gross Beta	9470		980	20	11/03/04	11/05/04	4310287	
Ni-59 & Ni-63 by L	iquid Scint.	Spec.		pCi/sample	STL-RC	-0055		
Nickel 59	0.0	- ט	0.0	29	11/04/04	11/08/04	4309373	91
Nickel 63	0.09	υ	0.86	21	11/04/04	11/08/04	4309373	91
SR-89 BY GFPC DOE	SR-01-RC NOD)		pCi/sample	SR-01-1	RC MOD		•
Strontium 89	40.9		5.3	7.5	11/05/04	11/15/04	4310368	64
SR-90 BY GFPC DOE	SR-03-RC NOD)		pCi/sample	SR-03-1	RC MOD		
Strontium 90	33.6		7.7	9.8	11/05/04	11/15/04	4310367	60
Plutonium-241 by L	iquid Scinti	llation		pCi/sample	STL-RC-	-0245		
Plutonium 241	20	υ	70	1800	11/02/04	11/15/04	4308438	90
Iso PLUTONIUM (SHO	RT CT) DOE	A-01-R MOD		pCi/sample	A-01-R			
Plutonium 238	0.17	U	0.44	0.72	11/11/04	11/12/04	4316228	90
Plutonium 239/40	0.0	U	0,0	0.5	11/11/04	11/12/04	4316228	90

Client Sample ID: W-102204-05

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-005	Date Collected:	10/22/04 1200
Work Order:	GVT37	Date Received:	10/29/04 0900
Matrix:	SOLID		

Parameter	Result	Qual	Total Uncert. (2 g+/-)	NDC	Prep Date	Analysis Date	Batch #	¥1d N
Am241, Cm243/244	(SHORT CT) DO	E A-01-R MOD		pCi/sample	A-01-R	MOD		
Americium 241	0.0	υ	0.0	1.4	11/11/04	11/12/04	4316226	76
Curium 243/244	0.0	U	0.0	1.9	11/11/04	11/12/04	4316226	76
Curium 242	0.0	U	0.0	1.3	11/11/04	11/12/04	4316226	76
ISO NEPTUNIUM (SH	ORT CT) DOE A	-01-R MOD		pCi/sample	A-01-R	NOD		
Neptunium 237	1.69		0.83	0.50	11/08/04	11/10/04	4313294	114
Iron-55 by Liquid	i Scint. Spect	rometry		pCi/sample	STL-RC-	0055		
Iron 55	-3.6	υ	2.0	78	11/09/04	11/10/04	4314427	83

Note (S)

Data are incomplete without the case narrative.

NDC is determined by instrument performance only. Bold results are greater than the NDC

pg lot 2

Attachment 6

LVI Environmental Services, Inc.

Client Sample ID: W-102204-06

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-006	Date Collected:	10/22/04 1200
Work Order:	GVT38	Date Received:	10/29/04 0900
Matrix:	SOLID		

Parameter	B ===16	.	Total Uncert. (2 g+/-)	NDC	Prep Date	Analysis Date Batch #	YId (
	Result	Qual					
Iso URANIUM (SHORT Uranium 234	•	-R MOD		pCi/sample	A-01-R		
Uranium 235	13900 620		1200	40 20		11/10/04 4308437	87 87
Uranium 238	2160		150 280	30		11/10/04 4308437 11/10/04 4308437	67 87
					/ •2/ •1		• /
Iso THORIUM (SHORT	CT) DOE A-01	-R MOD		pCi/sample	A-01-R	NOD	
Thorium 228	0.9	υ	1.1	1.5	11/02/04	11/06/04 4308435	83
Thorium 230	2.5		1.1	0.7	11/02/04	11/06/04 4308435	83
Thorium 232	0.09	Ŭ	0.25	0.49	11/02/04	11/06/04 4308435	83
ISO NEPTUNIUM (SHO	PT (T) DOR 1.	01-P MOD		pCi/sample	A-01-R	MOD	
Neptunium 237	0.46	U U	0.51	0.62		11/05/04 4308430	106
		-					
TC-99 by LSC by DC	E TC-02-RC Mo	đ.		p Ci/sample	TC-02-1	RC MOD	
Technetium 99	4.0	υ	8.2	14	11/04/04	11/09/04 4309246	100
Gamma Cs-137 & Hit	s by DOR Ga.O	1-9 100		pCi/sample	GA-01-1	MOD	
Cesium 137	-1.4	U U	2.3	3.9		11/05/04 4309327	
Protactinium 234M	230	U	370	740		11/05/04 4309327	
Thorium 234	200		43	33		11/05/04 4309327	
Other Detected Rad	ionuclides						
Thorium 231	56		29	26	11/04/04	11/05/04 4309327	
Uranium 235	55		28	39		11/05/04 4309327	
Vranium 238	200		41	33	11/04/04	11/05/04 4309327	
GROSS A/B BY GPPC	SW846 9310 MO	D		pCi/sample	9310 MK		
Gross Alpha	12500		1300	10		11/05/04 4310287	
Gross Beta	3730		380	10	• •	11/05/04 4310287	
N1-59 & N1-63 by I	ionia saint	Spec -		pCi/sample	STL-RC-	-0055	
Nickel 59	0.0	υ υ	0.0	23		11/08/04 4309373	85
Nickel 63	-0.9	บ	14	22		11/08/04 4309373	85
SR-89 BY GFPC DOE	SP-01-PO MOD	•		pCi/sample	SR-01-J		
Strontium 89	14.6		5.1	pci/sampie 7.1		11/15/04 4310368	64
				÷ • ±			7 7
SR-90 BY GFPC DOE	SR-03-RC MOD			pCi/sample	SR-03-J	C MOD	
Strontium 90	3.6	U	4.7	7.7	11/05/04	11/15/04 4310367	61
Plutonium-241 by L	iquid Scintil	lation		pCi/sample	STL-RC-	0245	
Plutonium 241	-300	U	1300	1000		11/15/04 4308438	80

LVI Environmental Services, Inc.

Client Sample ID: W-102204-06

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-006	Date Collect	ed: 10/22/04	1200
Work Order:	GVT38	Date Receive	d: 10/29/04	0900
Matrix:	SOLID			

Parameter	Result	Qual	Total Uncert. (2 d+/-)	KOC	Prep Date	Analysis Date	Batch #	¥14 4
ISO PLUTONIUM (SHOP	T CT) 1	DOE A-01-R MOD		pCi/sample	A-01-R			
Plutonium 238	0.04	υ	0.30	0.67	11/11/04	11/12/04	4316228	81
Plutonium 239/40	0.0	υ	0.0	0.3	11/11/04	11/12/04	4316228	81
Am241, Cm243/244 (§ Americium 241 Curium 243/244 Curium 242	0.0 0.0 0.0 0.0	ບ ບ	0.0	pCi/sample 1.7 2.9	11/11/04	11/12/04 11/12/04 11/12/04	4316226	45 45 45
curium 242	0.0	U	0.0	1.4	11/11/04	11/12/04	4316226	40
Iron-55 by Liquid S	Scint. Sp	pectrometry		pCi/sample	STL-RC-			
Iron 55	11.5	U	8.6	68	11/00/01	11/10/04		91

NOTE (S)

Data are incomplete without the case marrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

Attachment 7

LVI Environmental Services, Inc.

Client Sample ID: W-102204-07

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-007	Date Collected:	10/22/04	1200
Work Order:	GVT39	Date Received:	10/29/04	0900
Matrix:	SOLID			

			Total Vacert.		Prep	Analysis		
Parameter	Result	Qual	(2 c+/-)	MDC	Date	Date	Watch #	Yld 4
ISO URANIUM (SHORT	CT) DOE A-0	1-R NOD		pCi/sample	A-01-R	MOD		
Uranium 234	21800		1700	50	11/02/04	11/10/04	4308437	96
Uranium 235	1020		180	30	11/02/04	11/10/04	4308437	96
Uranium 238	3040		330	40	11/02/04	11/10/04	4308437	96
Iso THORIUM (SHORT	CT) DOE A-0	1-R MOD		pCi/sample	A-01-R	NOD		
Thorium 228	2.5		1.4	1.4	11/02/04	11/06/04	4308435	85
Thorium 230	3.8		1.4	0.7	11/02/04	11/06/04	4308435	85
Thorium 232	0.24	υ	0.45	0.70	11/02/04	11/06/04	4308435	85
TC-99 by LSC by DO	E TC-02-RC N	ođ.		pCi/sample	TC-02-1	RC MOD	<u></u>	
Technetium 99	1.6	U	8.4	14	11/04/04	11/09/04	4309246	98
Gamma Cs-137 & Hit	s by DOE GA-	01-R MOD.		pCi/sample	GA-01-1	RMOD		
Cesium 137	0,5	U	2.3	4,3	11/04/04	11/05/04	4309327	
Protactinium 234M	770		370	440	11/04/04	11/05/04	4309327	
Thorium 234	341		48	27		11/05/04		
Other Detected Rad	ionuclides							
Thorium 231	77		20	22	11/04/04	11/05/04	4309327	
Uranium 235	106		43	35		11/05/04		
Uranium 238	341		40	27		11/05/04		
GROSS A/B BY GFPC	SW846 9310 N	OD		pCi/sample	9310 M	 DD		
Gross Alpha	23700		2400	20	11/03/04	11/05/04	4310287	
Gross Beta	6810		700	20	11/03/04	11/05/04	4310287	
N1-59 & N1-63 by L	iquid Scint.	Spec.		pCi/sample	STL-RC	-0055		
Nickel 59	0.0	σ	0.0	18	11/04/04	11/08/04	4309373	62
Nickel 63	9	U	11	21	11/04/04	11/08/04	4309373	82
SR-89 BY GFPC DOB	SR-01-RC MOD	····		pCi/sample	SR-01-1	RC MOD		
Strontium 89	-5.89	U	0.90	7.3	11/05/04	11/15/04	4310368	66
SR-90 BY GPPC DOE	SR-03-RC MOD			pCi/sample	SR-03-1	RC NOD		
Strontium 90	40.9		7.2	7.4	11/05/04	11/15/04	4310367	60
Plutonium-241 by L	iquid Scinti	llation		pCi/sample	STL-RC-	-0245		
Plutonium 241	-510	υ	660	910	11/02/04	11/15/04	4308438	90
Iso PLUTONIUM (SHO	RT CT) DOE	A-01-R MOD		pCi/sample	A-01- R			
Plutonium 238	0.02	U	0.42	0.81	11/11/04	11/12/04	4316228	90
Plutonium 239/40	0.0	υ	0.0	0.3		11/12/04		90

LVI Environmental Services, Inc.

Client Sample ID: W-102204-07

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-007	Date Collected:	10/22/04 1200
Work Order:	GVT39	Date Received:	10/29/04 0900
Matrix:	SOLID		

Parameter	Result	Qual	Total Uncert. (2 c+/-)	NDC	Prep Analysis Date Date Bate	ah # Vld 1
Am241, Cm243/244	(SHORT CT) DO	E A-01-R NO	D	pCi/sample	A-01-R MOD	
Americium 241	0.5	U	1.2	1.8	11/11/04 11/12/04 4316	226 68
Curium 243/244	0.0	U	0.0	2.8	11/11/04 11/12/04 4316	226 68
Curium 242	0.63	υ	0.81	1.1	11/11/04 11/12/04 4316	68 68
ISO NEPTUNIUM (S	HORT CT) DOE A	-01-R MCD		pCi/sample	A-01-R NOD	
Neptunium 237	0.85	J	0.60	0.26	11/08/04 11/10/04 4313	294 118
Iron-55 by Liqui	d Scint. Spect	rometry		pCi/sample	STL-RC-0055	
Iron 55	8.9	ບ	6.2	73	11/09/04 11/10/04 4314	427 85

NOTE (S)

, ···

Data are incomplete without the case marrative.

.....

MDC is determined by instrument performance only. Bold results are greater than the NDC

J Result is greater than sample detection limit but less than stated reporting limit.

P9 10f2

Attachment 8

1.19 × 1

LVI Environmental Services, Inc.

Client Sample ID: W-102204-08

Severn Trent Laboratories - Radiochemistry

Lab Sample ID:	F4J290245-008	Date	Collected:	10/22/04	1200
Work Order:	GVT4A	Date	Received:	10/29/04	0900
Matrix:	SOLID				

Maha 1

			Total Uncert.		Prep	Analysis	
Parameter	Result	Qual	(2 g+/-)	NDC	Date	Date Batch #	¥ld 9
ISO URANIUM (SHORT	CT) DOR A-0	1-R NOD		pCi/sample	A-OL-R	COM	
Uranium 234	31400		2700	100	11/02/04	11/10/04 4308437	62
Uranium 235	1750		350	80	11/02/04	11/10/04 4308437	82
Uranium 238	4420		570	50	11/02/04	11/10/04 4308437	82
Iso THORIUM (SHORT	CT) DOE A-0	1-R MOD		pCi/sample	A-01-R	MOD	
Thorium 228	2.2		1.1	0.9	11/02/04	11/06/04 4308435	99
Thorium 230	2.01		0.95	0.47	11/02/04	11/06/04 4308435	99
Thorium 232	0.0	U	0.0	0.5	11/02/04	11/06/04 4308435	99
ISO NEPTUNIUM (SHO	RT CT) DOE A	-01-R MOD		pCi/sample	A-01-R	MOD	
Neptunium 237	0.82	J	0.61	0.56	11/02/04	11/06/04 4308430	108
TC-99 by LSC by DO	E TC-02-RC M	od.		pC1/sample	TC-02-1	IC MOD	
Technetium 99	214		26	14	11/04/04	11/09/04 4309246	99
Gamma Cs-137 & Hit	s by DOE GA-	01-R MOD.		pCi/sample	GA-01-1	R MOD	
Cesium 137	-0.003	U	2.3	4.2	11/04/04	11/05/04 4309327	
Protactinium 234M	520	υ	340	760	11/04/04	11/05/04 4309327	
Thorium 234	436		58	33	11/04/04	11/05/04 4309327	
Other Detected Radi	onuclides						
Thorium 231	102		33	28	11/04/04	11/05/04 4309327	
Uranium 235	90		40	34	11/04/04	11/05/04 4309327	
Uranium 238	436		48	33	11/04/04	11/05/04 4309327	
Iron-55 by Liquid	Scint. Spect	rometry	· · · · · · · · · · · · · · · · · · ·	pCi/sample	STL-RC-	0055	
Iron 55	-47	ບ	76	47	11/04/04	11/08/04 4309372	61
GROSS A/B BY GFPC	SW846 9310 M	0D		pCi/sample	9310 M		
Gross Alpha	34300		3500	20	11/03/04	11/05/04 4310287	
Gross Beta	6580		880	20	11/03/04	11/05/04 4310287	
N1-59 & N1-63 by L	iquid Scint.	Spec.		pCi/sample	STL-RC-	0055	
Nickel 59	0.0	ັບ	0.0	14	11/04/04	11/08/04 4309373	91
Nickel 63	-2	υ	12	19	11/04/04	11/08/04 4309373	91
SR-89 BY GFPC DOE	SR-01-RC MOD			pCi/sample	SR-01-F	C MOD	
Strontium 89	2.35	υ	0.44	7.9	11/05/04	11/15/04 4310368	65
SR-90 BY GFPC DOE	SR-03-RC MOD	<u></u>		pCi/sample	SR-03-1	C NOD	
Strontium 90	24.9		5.9	7.5		11/15/04 4310367	64

LVI Environmental Services, Inc.

Client Sample ID: W-102204-08

Severn Trent Laboratories - Radiochemistry

Lab Sample ID: Work Order: Matrix:	F4J290245-00 GVT4A SOLID	8		Date Collected: Date Received:		2/04 1200 9/04 0900		
Parameter	Result	Qual	Total Uncert. (2 g+/-)	KDC	Prep Date	Analysis Date Be	ntch #	YId 4
Plutonium-241 by	Liquid Scintil	lation		pCi/sample	STL-RC	-0245		
Plutonium 241	110	υ	320	1900	11/02/04	11/15/04 43	08438	86
ISO PLUTONIUM (SH	IORT CT) DOB A	-01-R MOD		pCi/sample	A-01-R			
Plutonium 238	0.09	υ	0.38	0.71	11/11/04	11/12/04 43	16228	86
Plutonium 239/40	0.0	U	0.0	0.6	11/11/04	11/12/04 43	16228	86
Am241, Cm243/244	(SHORT CT) DOE	A-01-R MO	Ð	pCi/sample	A-01-R	MOD		
Americium 241	0.0	U	0.0	2.6	11/11/04	11/12/04 43	16226	45
Curium 243/244	0.0	υ	0.0	3.2	11/11/04	11/12/04 43	16226	45
Curium 242	0.0	σ	0.0	1.4	11/11/04	11/12/04 43	16226	45

NOTE (S)

Data are incomplete without the case marrative.

MDC is determined by instrument performance only. Bold results are greater than the MDC

J Result is greater than sample detection limit but less than stated reporting limit.

ps 1 of 4

Atlachment 9

METHOD BLANK REPORT

Severn Trent Laboratories - Radiochemistry

Client Lot ID:

F4J290245

Matrix:	SOLID							
			Total				ample ID	
Parameter	Result	Qual	Undert. (2 a+/-)	NDC	Prep Date	Analysis Date	Batch #	YIC &
ISO NEPTUNIUM (S)	HORT CT) DOE	A-01-R NOD	pCi/sam ple	A-01-R MOD		P4K0	30000-43()B
Neptunium 237	0.025	U	0.037	0.051	11/02/04	11/06/04	4308430	97
iso Thorium (Sho)	RT CT) DOE A	-01-R MOD	pCi/sam ple	A-01-R MOD		P4K 0:	30000-43!	5B
Thorium 228	0.0	υ	0.0	0.2	11/02/04	11/06/04	4308435	85
Thorium 230	0.0	U	0.0	0.1	• •	11/06/04		85
Thorium 232	0.004	U	0.030	0.067		11/06/04		85
Iso URANIUM (SHO)	RT CT) DOE A	-01-R MOD	pCi/sam ple	A-01-R MOD		P4 K0:	30000-43	/B
Uranium 234	0.0	U	0.0	0.07	11/02/04	11/10/04	4308437	107
Uranium 235	0.0	υ	0.0	0.06	11/02/04	11/10/04	4308437	107
Uranium 238	0.007	U	0.037	0.070	11/02/04	11/10/04	4308437	107
Plutonium-241 by	Liquid Scin	tillation	pCi/g	STL-RC-0245		F4 X0:	30000-431	18
Plutonium 241	0.60	U	0.68	1.7	11/02/04	11/15/04	4308438	92
TC-99 by LSC by 1	DOB TC-02-RC	Nod.	pCi/sam ple	TC-02-RC MO	D	P4X 0	10000-24	5 B
Technetium 99	-15.9	U .	7.9	14	11/04/04	11/09/04	4309246	96
Gamma Cs-137 & H	its by DOE G	A-01-R MOD.	pCi/g	GA-01-R NOD		74K 04	10000-327) B.
Cesium 137	-0.3	U	2.8	5.4	11/04/04	11/05/04	4309327	
Protactinium 234M	100	U	250	510		11/05/04		
Thorium 234	-8	ប	14	26	11/04/04	11/05/04	4309327	
Iron-55 by Liquid	d Scint. Spec	ctrometry	pCi/sam ple	STL-RC-0055		74K0	10000-372	В
Iron 55	-7	U	21	\$	11/04/04	11/08/04	4309372	42
N1-59 & N1-63 by	Liquid Scin	t. Spec.	pCi/sam ple	STL-RC-0055		P4 K04	10000-371	B
Nickel 59	0.0	υ	0.0	26	11/04/04	11/08/04	4309373	89
Nickel 63	-2.5	ប	9.5	21	11/04/04	11/08/04	4309373	89
GROSS A/B BY GFP	C 8W846 9310	MOD	pCi/sam ple	9310 MOD		F4K0 5	50000-287	'B
Gross Alpha	4.9	J	1.6	1.5	11/03/04	11/05/04	4310287	
Gross Beta	1.3	U	2.0	3.3	11/03/04	11/05/04	4310287	
SR-90 BY GPPC DO	E SR-03-RC M	מכ	pCi/sam	SR-03-RC MO	D	F4K 05	50000-367	'B
Strontium 90	-0.27	U	ple 0.51	0.89	11/05/04	11/15/04	4310367	54

METHOD BLANK REPORT

Severn Trent Laboratories - Radiochemistry

Matrix:	SOLID							
			Total Uncert.	Lab Sample ID				
Parameter	Result	Qual	(2 g+/-)	MDC	Prep Date	Analysis Date	Batch #	Yld %
SR-89 BY GFPC	DOE SR-01-RC MC	סכ	pCi/sam ple	SR-01-RC MO	D	F4K 0	50000-361	B
Strontium 89	0.28	U	0.45	0.75	11/05/04	11/15/04	4310368	62
ISO NEPTUNIUM	(SHORT CT) DOE	A-01-R MOD	pCi/sam ple	A-01-R NOD		P4K0	80000-294	B
		U	0.0	0.05	11/08/04	11/10/04	4313294	98
Neptunium 237	0.0	Ŭ	v.v	0.05	22,00,01	,,		
Neptunium 237 Iron-55 by Lic	uid Scint. Spec		pCi/sam	STL-RC-0055			90000-427	
Iron-55 by Lie							90000-427	
Iron-55 by Lic	uid Scint. Spec	u U	pCi/sam ple 28 pCi/sam	STL-RC-0055		F4K0 11/09/04	90000-427	7 B 87
Iron-55 by Lic Iron 55 Am241, Cm243/2 MOD	ruid Scint. Spec 33	u U	pCi/sam ple 28	STL-RC-0055	11/09/04	F4K0 11/09/04	90000-427 4314427 10000-226	7 B 87
Iron-55 by Lic Iron 55 Am241, Cm243/2 MOD Americium 241	ruid Scint. Spec 33 244 (SHORT CT) [U U DOE A-01-R	pCi/sam ple 28 pCi/sam ple	STL-RC-0055 84 A-01-R MOD	11/09/04	F4K0 11/09/04 F4K1	90000-427 4314427 10000-226 4316226	87 87
Iron-55 by Lic Iron 55 Am241, Cm243/2 MOD Americium 241 Curium 243/244	ruid Scint. Spec 33 244 (SHORT CT) I 0.083	U U DOE A-01-R U	pCi/sam ple 28 pCi/sam ple 0.082	STL-RC-0055 84 A-01-R MOD 0.10	11/09/04 11/11/04 11/11/04	F4K0 11/09/04 F4K1 11/12/04	90000-427 4314427 10000-226 4316226 4316226	87 5 B 81
Iron-55 by Lic Iron 55 Am241, Cm243/2	puid Scint. Spec 33 244 (SHORT CT) I 0.083 0.015 0.0	U U DOE A-01-R U U	pCi/sam ple 28 pCi/sam ple 0.082 0.092	STL-RC-0055 84 A-01-R MOD 0.10 0.15	11/09/04 11/11/04 11/11/04	F4K0 11/09/04 F4K1 11/12/04 11/12/04 11/12/04	90000-427 4314427 10000-226 4316226 4316226	87 87 81 81 81 81 81
Iron-55 by Lic Iron 55 Am241, Cm243/2 MOD Americium 241 Curium 243/244 Curium 242	puid Scint. Spec 33 244 (SHORT CT) I 0.083 0.015 0.0	U U DOE A-01-R U U U U	pCi/sam ple 28 pCi/sam ple 0.082 0.092 0.0 pCi/sam	STL-RC-0055 B4 A-01-R MOD 0.10 0.15 0.07	11/09/04 11/11/04 11/11/04 11/11/04	F4K0 11/09/04 F4K1 11/12/04 11/12/04 11/12/04	90000-427 4314427 10000-226 4316226 4316226 4316226 10000-228	87 87 81 81 81 81 81

Note (S)

Client Lot ID:

F4J290245

Data are incomplete without the case narrative.

NDC is determined using instrument performance only Bold results are greater than the MDC

J Result is greater than sample detection limit but less than stated reporting limit.

pg3of6

Laboratory Control Sample Report

Severn Trent Laboratories - Radiochemistry

Client Lot ID: F4J290245 Matrix:

SOLID

			Total		Lab	Lab Sample ID			
Parameter	Spike Amount	Result	Undert. (2 g+/-)	MDC	4 Yld 4 Rec	QC Control Limits			
Gamma Cs-137 & H MOD.	its by DOE GA-01	-R	pCi/g	GA-01-R MOD	P4K0	40000-327C			
Americium 241	2640	2650	190	20	100	(90 - 115)			
Cesium 137	1110	1140	88	12	103	(90 ~ 115)			
Cobalt 60	1600	1520	110	10	95	(90 - 112)			
	Batch #1	4309327		Analysis Date:	11/05/04				

NOTE (S)

MDC is determined by instrument performance only Calculations are performed before rounding to avoid round-off error in calculated results

Spiked analyte outside of stated QC limits. .

Pg 4 of 6

Laboratory Control Sample/LCS Duplicate Report

Severn Trent Laboratories - Radiochemistry

Client Lot ID: F4J290245 Matrix: SOLID

						Total				Tup (Sample .	ID
Parameter		Spike	Amount	Result		Uncert. $(2 \alpha + / -)$	% Yld	% Rec	QC Cont Limi		Preci	ision
ISO NEPTUNIU	(SHOR	T CT)	DOR A-02	1-R	pCi/samp	A-01-	R MOD			7450	30000-	430C
MOD												
Neptunium 237	0	13.3		13.1		0.72	108	99	(70 -	,		•
	Spk 2	13.3		12.5		0.71	119	94	(70 -	130)	4	1RPD
	(Batch #:	4308430				Darei	11/06/04			
ISO THORIUN	(SHORT (CT) DO	X A-U1-1	K MOD	pCi/samp	A-01-	R MOD			P4K0 3	30000-	435C
Thorium 228		5.06		5.86	a	0.71	87	116	a (0.0 -	0.0		
	Spk 2	5.06		5.77	a	0.71	88	114	a (0.0-	- 0.0	2	ARPD
Thorium 230		4.10		3.87		0.53	87	94	(75 -			
	Spk 2	4.10		3.04	a	0.45	88	74	a (75 -	130)	24	\$RPD
Thorium 232	0-1-0	5.07		5.19	a	0.65	87	102	# (0.0 -			4 · · ·
	Spk 2	5.07		5.42	a	0.67	88	107	a (0.0 -	- 0.0	4	\$RPD
	1		Batch #:	4308435				DECOI	11/06/04			<u></u>
ISO URANIUM	(SHORT (CT) DO	ж A-01-)	K MOD	pCi/samp	A-01-	R MOD			F4K0 :	30000-	437C
Uranium 234		5.37		5.10		0.61	83	95	(70 -	130)		
	Spk 2	5.37		5.37		0.77	58	100	(70 -	130)	5	*RPD
Uranium 238		5.37		4.89		0.59	83	91	(70 -	130)		
	Spk 2	5.37		5.50		0.78	58	102	(70 -	130}	12	*RPD
			Batch #:	4308437			Analysis	Date:	11/10/04			
Plutonium-241	l by Lie	quid \$	cintille	stion	pCi/g	STL-R	C-0245			P4K0 2	30000-	438C
Plutonium 241		20.2		18.7		2.9	92	93	(70 -	130)		
	Spk 2	20.2		21.1		3.6	89	104	(70 -	-	12	*RPD
		r	Batch #1	4308438			Analysis	Date:	11/15/04			
TC-99 by LSC	by DOE	TC-02	-RC Mod	•	pCi/samp	TC-02	-RC MOD	,		F4K04	10000-	-246C
Technetium 99		2150			• • •		98	98	(70 -	1 2 0 1		
10012/002400 22	Spk 2	2150		2110 2060		210 210	99	96	(70 -		2	*RPD
	-		Satch #:	4309246			Analysis	Dates	11/09/04	,	-	
										PAYO		
Iron-55 by Li	louid Sa	cint.	SDACETON		nord / a mm	6MT D	A AAEE					
-	iguid S	cint.	Spectrol	ascry	pCi/samp	stl-r	C-0055				10000-	3720
Iron 55	-	148	Spectros	175	pCi/samp	20	42	119	(70 -	130)		
-	Spk 2	148 148	-	175 179	pCi/samp		42 44	121	(70 -	130)	2	*RPD
Iron 55	Spk 2	148 148	Natch #:	175 179 4309372		20 20	42 44 Analysis	121	•	130) 130)	2	\$RPD
Iron 55 Iron 55 Ni-59 & Ni-63	Spk 2	148 148	Natch #:	175 179 4309372	pCi/samp pCi/samp	20 20	42 44	121	(70 -	130) 130)		\$RPD
Iron 55 Ni-59 & Ni-63	Spk 2	148 148	Natch #:	175 179 4309372		20 20	42 44 Analysis	121 Date:	(70 -	130) 130) F4K0	2	\$RPD
Iron 55 Ni-59 & Ni-63	Spk 2	148 148 guid S	Natch #:	175 179 4309372 PEC.		20 20 STL-R	42 44 Analysis C-0055	121 Date:	(70 - 11/08/04	130) 130) F4K0(130)	2	\$RPD
Iron 55	Spk 2 3 by Lid Spk 2	148 148 guid S 2050 2050 1930	Natch #:	175 179 4309372 pec. 2110		20 20 STL-R 220	42 44 Analysis 86 85 86	121 • Date: 103 91 100	(70 - 11/08/04 (70 -	130) 130) F4K0(130) 130)	2 10000-	*RPD -373C *RPD
Iron 55 Ni- 59 & Ni-6 3 Nickel 59	Spk 2	148 148 guid S 2050 2050	Natch #:	175 179 4309372 PeC. 2110 1860		20 20 STL-R 220 190	42 44 Analysis 86 85 86 85 86 85	121 Date: 103 91 100 107	(70 - 11/08/04 (70 - (70 - (70 - (70 -	130) 130) F4K04 130) 130) 130)	2 10000-	*RPD •373C
Iron 55 Ni- 59 & Ni-63 Nickel 59 Nickel 63	Spk 2 3 by Lid Spk 2 Spk 2	148 148 guid S 2050 2050 1930 1930	Batch #: Cint. Sy Batch #:	175 179 4309372 08C. 2110 1860 1930 2060 4309373		20 20 STL-R 220 190 200	42 44 Analysis 86 85 86 85 86 85	121 Date: 103 91 100 107	(70 - 11/08/04 (70 - (70 - (70 -	130) 130) F4K04 130) 130) 130)	2 10000-	*RPD -373C *RPD
Iron 55 Ni- 59 & Ni-63 Nickel 59 Nickel 63	Spk 2 3 by Lid Spk 2 Spk 2	148 148 guid S 2050 2050 1930 1930	Batch #: Cint. Sy Batch #:	175 179 4309372 08C. 2110 1860 1930 2060 4309373		20 20 STL-R 220 190 200 220	42 44 Analysis C-0055 86 85 86 85 Analysis	121 Date: 103 91 100 107	(70 - 11/08/04 (70 - (70 - (70 - (70 -	130) 130) F4K0(130) 130) 130) 130)	2 10000-	*RPD •373C •RPD •RPD
Iron 55 Ni- 59 & Ni-63 Nickel 59 Nickel 63	Spk 2 3 by Lid Spk 2 Spk 2	148 148 guid S 2050 2050 1930 1930	Batch #: Cint. Sy Batch #:	175 179 4309372 pec. 2110 1860 1930 2060 4309373	pCi/samp	20 20 STL-R 220 190 200 220 9310	42 44 Analysis C-0055 86 85 86 85 Analysis	121 Date: 103 91 100 107	(70 - 11/08/04 (70 - (70 - (70 - (70 -	130) 130) P4R04 130) 130) 130) 130) P4R05	2 13 7	*RPD •373C •RPD •RPD
Iron 55 Ni-59 & Ni-63 Nickel 59 Nickel 63 GROSS A/B BY	Spk 2 3 by Lid Spk 2 Spk 2	148 148 guid S 2050 2050 1930 1930 1930 1930 209	Batch #: Cint. Sy Batch #:	175 179 4309372 08C. 2110 1860 1930 2060 4309373	pCi/samp	20 20 STL-R 220 190 200 220	42 44 Analysis C-0055 86 85 86 85 Analysis	121 Date: 103 91 100 107 Date:	(70 - 11/08/04 (70 - (70 - (70 - (70 - 11/08/04	130) 130) F4K04 130) 130) 130) 130) F4K05 127)	2 13 7	*RPD •373C •RPD •RPD
Iron 55 Ni-59 & Ni-63 Nickel 59 Nickel 63 GROSS A/B BY	Spk 2 3 by L10 Spk 2 Spk 2 GPPC 5	148 148 guid S 2050 2050 1930 1930 W846 9 209 209	Batch #: Cint. Sy Batch #:	175 179 4309372 pec. 2110 1860 1930 2060 4309373 187	pCi/samp	20 20 STL-R 220 190 200 220 9310 20	42 44 Analysis C-0055 86 85 86 85 Analysis MOD	121 Date: 103 91 100 107 Date: 90 93	(70 - 11/08/04 (70 - (70 - (70 - (70 - 11/08/04 (70 -	130) 130) F4K04 130) 130) 130) 130) F4K05 127)	2 13 7 50000-	%RPD 373C %RPD %RPD %RPD %RPD %RPD
Iron 55 Ni-59 & Ni-63 Nickel 59 Nickel 63 GROSS A/B BY Groes Beta	Spk 2 3 by L14 Spk 2 Spk 2 GFPC St Spk 2	148 148 2050 2050 1930 1930 W846 9 209 209	Satch #: Cint. Sy Satch #: 310 MOD Batch #:	175 179 4309372 pec. 2110 1860 1930 2060 4309373 187 194 4310287	pCi/samp pCi/samp	20 20 STL-R 220 190 200 220 9310 20 20	42 44 Analysis C-0055 86 85 86 85 Nop Analysis	121 Date: 103 91 100 107 Date: 90 93	(70 - 11/08/04 (70 - (70 - (70 - (70 - 11/08/04 (70 - (70 - (70 - (70 -	130) 130) P4R04 130) 130) 130) 130) P4R05 127) 127)	2 13 7 50000- 3	%RPD •373C %RPD %RPD *RPD %RPD •287C %RPD
Iron 55 Ni-59 & Ni-63 Nickel 59 Nickel 63 GROSS A/B BY Gross Beta	Spk 2 3 by L14 Spk 2 Spk 2 GFPC St Spk 2	148 148 2050 2050 1930 1930 1930 1930 209 209 209 209 209 209	Satch #: Cint. Sy Satch #: 310 MOD Batch #:	175 179 4309372 pec. 2110 1860 1930 2060 4309373 187 194 4310287	pCi/samp	20 20 STL-R 220 190 200 220 9310 20 20 20 20	42 44 Analysis C-0055 86 85 86 85 Nop Analysis	121 9 Date: 103 91 100 107 Date: 90 93 Date:	(70 - 11/08/04 (70 - (70 - (70 - 11/08/04 (70 - (70 - (70 - 11/05/04	130) 130) F4K04 130) 130) 130) 130) F4K05 127) 127) F4K05	2 13 7 50000-	%RPD •373C %RPD %RPD *RPD %RPD •287C %RPD
Iron 55 Ni-59 & Ni-63 Nickel 59 Nickel 63 GROSS A/B BY	Spk 2 3 by L14 Spk 2 Spk 2 GFPC St Spk 2	148 148 2050 2050 1930 1930 1930 W846 9 209 209 3 W846 9 103	Satch #: Cint. Sy Satch #: 310 MOD Batch #:	175 179 4309372 pec. 2110 1860 1930 2060 4309373 187 194 4310287	pCi/samp pCi/samp	20 20 STL-R 220 190 200 220 9310 20 20	42 44 Analysis C-0055 86 85 86 85 Nop Analysis	121 Date: 103 91 100 107 Date: 90 93	(70 - 11/08/04 (70 - (70 - (70 - (70 - 11/08/04 (70 - (70 - (70 - (70 -	130) 130) F4K04 130) 130) 130) 130) F4K05 127) 127) F4K05 130)	2 13 7 50000- 3 50000-	%RPD •373C %RPD %RPD *RPD %RPD •287C %RPD

Pg Sof 6

Laboratory Control Sample/LCS Duplicate Report

Severn Trent Laboratories - Radiochemistry

Client Lot ID:	F4J290245
Matrix:	SOLID

					Total						Sample 1	ED	
Parameter		Spike	Amount	Result	Uncert. (2 g +/-) % Yld % !			% Rec	QC Con Limi		Preci	sion	
SR-90 BY GFPC	DOE	SR-03-1	RC MOD	OD	pCi/samp	SR-03-RC		C MOD .		34 K(050000-367C	
Strontium 90		9.65		10.5		1.3		68	108	(53 -	138)		
	Spk 2	9.65		12.9		1.5		59	134		138)	21	*RPD
	-		Batch #:	4310367				Analysis	Date:	11/15/04			
SR-89 BY GFPC	DOR	SR-01-1	RC MOD		pCi/samp		SR-01-RC	: MOD			74K0	50000-	368C
Strontium 89		53.5		47.3		4.9		81	88	160	150)		
	Spk 2			47.3	a	4.9		€1 65		a (60 -		3	*RPD
	-Pr -				a	3.1						2	TRED
		_	Batch #:	4310368			,	VURTANT		11/15/04			
ISO NEPTUNIUN Mod	(SHO	rt Ct)	DOE A-0)1-R	pCi/samp		A-01-R M	IOD			74 K0	80000-	294C
Neptunium 237		13.3		12.5		0.71		123	94	(70 -	130}		
	Spk 2			12.6		0.71		113	95		130)	1	TRPD
	-		Natch #:	4313294				Analysis	Date:	11/10/04			
Iron-55 by Li	quid	Scint.	Spectro	metry	pCi/samp		STL-RC-C	055			F4K0	90000-	427C
Iron 55		2950		3080		340		86	104	(70 -	130)		
	Spk 2	2950		3100		340		88	105	•	130)	0.7	TRPD
			Batch #1	4314427				Analysis	Dates	11/09/04		•••	
Am241, Cm243/ MOD	244 (SHORT (CT) DOE	A-01-R	pCi/samp		A-01-R B	IOD			74K1	10000-	226C
Americium 241		7.71		5.96		0.77		88	77	(70 -	124)		
	Spk 2	7.71		6.59		0.78		95	86	• • •	124)	10	4RPD
	-		Batch #:	4316226				Analysis	Dates	11/12/04			
ISO PLUTONIUN	(SHO	RT CT)	DOE A-	01-R	pCi/samp		A-01-R				P4X1	10000-	228C
Plutonium 238		2.98		2.81		0.40		86	94	(70 -	111)		
	Spk 2	2.98		3.00		0.41		96	101		111)	7	4RPD
Plutonium 239/	•									-	-	•	
woonzum BJJ/	Spk 2	2.88		3.25 2.96		0.44		86 96	113 103	-	125) 125)	9	*RPD
	ahur a					U.40				11/12/04	143)	7	48 <i>PU</i>
			Batch #:	4316228				VIETAR18	DECRI	4/94			

NOTE (S)

Calculations are performed before rounding to avoid round-off error in calculated results

a Spiked analyte outside of stated QC limits.

pg 6 of 6

DUPLICATE EVALUATION REPORT

Severn Trent Laboratories - Radiochemistry

Client Lot ID:	F4J290245	Date Sampled:	10/22/04
Matrix:	SOLID	Date Received:	10/29/04

			Total				Total		QC Sample ID	
Parameter	SAMPLE Result		Uncert. (2 <i>g</i> +/-)	¥ ¥ld	DUPLIC Result		Uncert. (2 σ+/-)	% Yld	Precisi	ά¢.
Gamma Cs-137 & Hits	by DOE	GA-01-R	MOD.	pCi/samp	GA-	01-R	COD	F 4	LJ290245-00	1
Cesium 137	-0.9	U	2.8		0.2	U	1.9		-285	*RPD
Protactinium 234M	630	υ	360		360	U	330		55	*RPD
Thorium 234	300		45		324		47		8	*RPD
Other Dedected Radion	uclides									
Thorium 231	108		25		97		26		11	\$ RPD
Uranium 235	98		37		80		34		20	\$RPD
Uranium 238	300		38		324		39		8	\$RPD
	34	tch #:	4309327	(Sample)	430	9327 (Duplicate)			

Note (S)

-

Data are incomplete without the case marrative. Calculations are performed before rounding to avoid round-off error in calculated results

.

·····

Cummin, Chris C.

Attachment 10

pg1 of2

From: Sent: To: Subject:

Rood, Gerald J. Tuesday, April 07, 2009 7:53 AM Cummin, Chris C. RE: Energy Solutions Questions

Thanks. We can accept their explanation that the data are likely anomalous. We should retain a copy of their explanation with the project record for the data.

Gerald J. Rood CHP Project Radiation Safety Officer Westinghouse Electric Company Hematite Decommissioning Project Office: (314) 810-3382 Cellular: (636) 544-9299 Email: <u>roodgi@westinghouse.com</u> Home Page: www.westinghousenuclear.com

From: Cummin, Chris C. Sent: Friday, April 03, 2009 3:34 PM To: Rood, Gerald J. Subject: FW: Energy Solutions Questions

Gerry

This is what I got from the lab. I intend to attach to the TBD for waste characterization for the MM&A material. Chris

From: Everett, Jerry [mailto:Jerry.Everett@testamericainc.com] Sent: Friday, April 03, 2009 1:30 PM To: Cummin, Chris C. Subject: FW: Energy Solutions Questions

Chris,

Please see comment below from Terry Romanko.

JERRY A EVERETT Project Manager

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

13715 Rider Trail North Earth City, MO 63045-1205 Tel 314.298.8566 | Fax 314.298.8757 www.testamericainc.com -----Original Message-----From: Romanko, Terry Sent: Friday, April 03, 2009 1:19 PM To: Everett, Jerry Subject: Energy Solutions Questions

Jerry,

Attachment 10 pg 200

Following are some comments regarding the questions regarding Lot F4J290245. As this lot was analyzed quite some time ago (more than four years ago), it is hard to be definitive, especially as we have no way to go back to recount, reanalyze, or otherwise look at the samples.

- It appears on sample -001 that the Result and MDC fields were switched for Cm-242.
- For sample -002, the client made a comment regarding the "positive" Pu-241 results without the presence of Am-241. Note that the aliquot volume used for the Iso-Pu analysis (including Pu-241) was very small. This in turn drove the MDC and Total Uncertainty for Pu-241 up quite high. It is possible the elevated result for Pu-241 is an anomaly (statistical or otherwise). Again, we have no way to confirm this result or investigate the issue further. I considered the idea that, given the high activity of Uranium in the samples we may have some interference/false positive due to incomplete separation. I checked out the Iso-Pu spectra in the raw data, and this does not appear to be the case.
- According to the client inquiry, for samples -005, -007, and -008 the Sr-90 and/or Sr-89 result seems to be elevated. For -005, the Sr-89 result is well above the MDC although Sr-89 would not be expected to be seen in the sample (should probably be decayed out). I do not have an explanation for the elevated Sr-89 anomaly. It is possible, given the elevated activity of Uranium in the samples that we may have some Uranium tagging along with the Sr precipitate. However, I don't expect this to be the case, as there are several cleanup and reprecipitation steps along the way. Again, we have no way to recount or reprepared the samples to verify this.

If you need other information, please let me know.

Thanks,

TERRY ROMANKO Technical Director

TestAmerica THE LEADER IN ENVIRONMENTAL TESTING

13715 Rider Trail North Earth City, MO 63045 Tel 314.298.8566|Fax 314.298.8757 www.testamericainc.com

CONFIDENTIALITY NOTICE: This e-mail communication, including any attachments, may contain privileged or confidential information for specific individuals and is protected by law. If you are not the intended recipient(s), you are hereby notified that any dissemination, distribution or copying of this communication is strictly prohibited and you should delete this message and its attachments from your computer without retaining any copies. If you have received this communication in error, please reply to the sender immediately. We appreciate your cooperation.

Please consider the environment before printing this e-mail.

					pCi/sample	1			
Location	Sample #	U-234	U-235	U-238	Th-230	Th-232	Tc-99	Np-237	Sr-90
Bidg 240 Red R	W-102204-01	19400	860	2810	5.6	0.66	392	1.8	6.8
Bidg 240 Green R	W-102204-02	43500	1910	5890	6.8	0.66	44	0.66	9.7
Maint/Decon	W-102204-03	36700	1590	4830	7.5	1	29.7	0.69	10.5
Bldg 253	W-102204-04	10700	420	1420	16.4	0.9	43	0.3	9.3
Bldg 254	W-102204-05	32300	1360	4330	3.6	0.7	14	1.69	33.6
Bidg 256	W-102204-06	13900	620	2160	2.5	0.49	14	0.62	7.7
Bldg 255	W-102204-07	21800	1020	3040	3.8	0.7	14	0.85	40.9
Bidg 260	W-102204-08	31400	1750	4420	2.01	0.5	214	0.82	24.9
	Total	209700	9530	28900	48.21	5.61	764.7	7.43	143.4
	Average	2.62E+04	1.19E+03	3.61E+03	6.03E+00	7.01E-01	9.56E+01	9.29E-01	1.79E+01
Scaling Factor	Isotope/U-235	2.20E+01	1	3.03E+00	5.06E-03	5.89E-04	8.02E-02	7.80E-04	1.50E-02
Percentages	total pCi/sample	%	SA	Grams	% Enrich			· ·	
U-234	209700	84.18%	6.20E+09	3.38E-05					
U-235	9530	3.83%	2.20E+06	4.33E-03	4.85%				
U-238	28900	11.60%	3.40E+05	8.50E-02					·····
Th-230	48.21	0.02%							
Th-232	5.61	0.00%							
Tc-99	764.7	0.31%							
Np-237	7.43	0.00%		······································					
Sr-90	143.4	0.06%							
Total	249099.35	100.00%							
		······		·····					

Attachment 11 Process Building Scaling Factors

Attachment 11 Process Building Scaling Factors

Tc-99to	J 235	Sr-90 to	U-235
· ····			
0.023037	0.287092	0.005079	0.337506
0.018679	0.232788	0.006604	0.43887
0.102381	1.275913	0.022143	1.471558
0.010294	0.128289	0.024706	1.64189
0.022581	0.281409	0.012419	0.825359
0.013725	0.171053	0.040098	2.664814
0.122286	1.523974	0.014229	0.945595
0.080241	1	0.015047	1
0.080241	1	0.015047	1
<u> </u>			
	0.455814 0.023037 0.018679 0.102381 0.010294 0.022581 0.013725 0.122286 0.080241	0.0230370.2870920.0186790.2327880.1023811.2759130.0102940.1282890.0225810.2814090.0137250.1710530.1222861.5239740.0802411	0.4558145.6805370.0079070.0230370.2870920.0050790.0186790.2327880.0066040.1023811.2759130.0221430.0102940.1282890.0247060.0225810.2814090.0124190.0137250.1710530.0400980.1222861.5239740.0142290.08024110.015047