10.0 STEAM AND POWER CONVERSION SYSTEM

10.01 <u>Introduction</u>

This section of the South Texas Project (STP) Units 3 and 4 combined license (COL) Final Safety Analysis Report (FSAR) provides a list of the Tier 1 and Tier 2 departures that have administrative impacts on Chapter 10. The U.S. Nuclear Regulatory Commission (NRC) staff's evaluation of these proposed departures in Chapter 10 is in the following sections.

10.02 **Summary of Application**

Section 10.0 of the STP COL FSAR incorporates by reference Section 10.0 of the certified U.S. Advanced Boiling-Water Reactor (ABWR) design control document (DCD), Revision 4, referenced in Title10 of the *Code of Federal Regulations* (10 CFR) Part 52, Appendix A.

In addition, in STP COL FSAR Section 10.0, the applicant provides the following:

Tier 1 Departure

• STD DEP T1 3.4-1

Safety-Related I&C Architecture

This standard departure modifies the design of certain devices, functions, and standards related to the essential multiplexing system (EMS) and safety system logic and controls (SSLC). The departure also updates the ABWR DCD design descriptions that reflected outdated technology.

Tier 2 Departures Not Requiring Prior NRC Approval

• STP DEP 9.2-3

Turbine Building Cooling Water System

This departure increases the heat removal capacity of each of the three turbine building cooling water (TCW) system heat exchangers and the flow rate of each of the three pumps due to increased heat loads in Turbine Island equipment.

STP DEP 10.1-1

Turbine Pressure Description

This departure corrects the description of the inlet pressure at the turbine main steam valves for the ABWR. Corrections in Section 10.1 of the FSAR reflect this departure.

• STP DEP 10.1-2

Steam Cycle Diagram

This departure corrects Figure 10.1-1 of the FSAR to reflect the system configuration of the STP Units 3 and 4 steam and power conversion system, which consists of the addition of four condensate booster pumps, three low pressure heater drain tanks, and a separate No. 1 feedwater heater drain cooler.

STP DEP 10.1-3

Rated Heat Balance

This departure replaces Figure 10.1-2 due to changes in Figure 10.1-1 and the new Toshiba turbine design described in FSAR Chapter 10.2.

• STP DEP 10.1-4

Valve Wide Open Heat Balance

This departure replaces Figure 10.1-3 due to changes in Figure 10.1-1 and the new Toshiba turbine design described in FSAR Chapter 10.2.

• STP DEP 10.2-1

Turbine Design

See Section 10.2.2 of the SER for a detailed description of this departure.

• STP DEP 10.4-2

Main Condenser

See Subsection 10.4.1.2 of the SER for a detailed description of this departure.

• STD DEP 10.4-5

Condensate and Feedwater System

See Subsection 10.4.7.2 of the SER for a detailed description of this departure.

10.03 Regulatory Basis

The regulatory basis of the information incorporated by reference is documented in NUREG-1503, "Final Safety Evaluation Report Related to the Certification of the Advanced Boiling-Water Reactor Design," (July 1994) (FSER related to the ABWR DCD).

In accordance with Section VIII, "Processes for Changes and Departures," of, "Appendix A to Part 52--Design Certification Rule for the ABWR Design," the applicant identifies Tier 1 and Tier 2 departures. Tier 1 departures require prior NRC approval and are subject to the requirements of 10 CFR Part 52, Appendix A, Section VIII.A.4. Tier 2 departures not requiring prior NRC approval are subject to the requirements of 10 CFR Part 52, Appendix A, Section VIII.B.5, which are similar to the requirements of 10 CFR 50.59.

10.04 <u>Technical Evaluation</u>

NRC staff reviewed Section 10.0 of the STP Units 3 and 4 COL FSAR and checked the referenced DCD to ensure that the combination of the DCD and the information in the COL represents the complete scope of information relating to this review topic. The staff's review confirmed that the information in the application and the information incorporated by reference address the required information relating to the principal design features of the steam and power conversion system.

The staff reviewed the information in COL FSAR Section 10.0:

Tier 1 Departure Requiring Prior NRC Approval

• STD DEP T1 3.4-1

Safety-Related I&C Architecture

This standard departure modifies the design of certain devices, functions, and standards related to the EMS and SSLC. The departure also updates the ABWR DCD design descriptions that reflected outdated technology. The technical evaluation of this departure is in Chapter 7 of this

See "Finality of Referenced NRC Approvals" in SER Section 1.1.3, for a discussion on the staff's review related to verification of the scope of information to be included in a COL application that references a design certification.

SER. Changes to Chapter 10 resulting from the implementation of this departure are incorporated in FSAR Subsection 10.4.5.5, "Instrumentation Applications."

Tier 2 Departures Not Requiring Prior NRC Approval

• STP DEP 9.2-3

Turbine Building Cooling Water System

This departure increases the heat removal capacity of each of the TCW system three heat exchangers and the flow rate of each of the three pumps. This departure is evaluated in Section 9.2.14 of this Safety Evaluation Report (SER).

The applicant's evaluation determined that this departure does not require prior NRC approval in accordance with 10 CFR Part 52, Appendix A, Section VIII.B.5. Within the review scope of this section, the staff found it reasonable that the departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

• STP DEP 10.1-1

Turbine Pressure Description

This departure corrects the description of the inlet pressure at the turbine main steam valves for the ABWR.

The applicant's evaluation determined that this departure does not require prior NRC approval in accordance with 10 CFR Part 52, Appendix A, Section VIII.B.5. Within the review scope of this section, the staff found it reasonable that the departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

• STP DEP 10.1-2

Steam Cycle Diagram

This departure corrects Figure 10.1-1 of the FSAR to reflect the system configuration of the STP Units 3 and 4 steam and power conversion system, which consists of the addition of four condensate booster pumps, three low pressure heater drain tanks, and a separate No. 1 feedwater heater drain cooler.

The applicant's evaluation determined that this departure does not require prior NRC approval in accordance with 10 CFR Part 52, Appendix A, Section VIII.B.5. Within the review scope of this section, the staff found it reasonable that the departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

• STP DEP 10.1-3

Rated Heat Balance

This departure replaces Figure 10.1-2 due to changes in Figure 10.1-1 and the new Toshiba turbine design described in Section 10.2 of the FSAR.

The applicant's evaluation determined that this departure does not require prior NRC approval in accordance with 10 CFR Part 52, Appendix A, Section VIII.B.5. Within the review scope of this section, the staff found it reasonable that the departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

• STP DEP 10.1-4

Valve Wide Open Heat Balance

This departure replaces Figure 10.1-3 due to changes in Figure 10.1-1 and the new Toshiba turbine design described in FSAR Chapter 10.2.

The applicant's evaluation determined that this departure does not require prior NRC approval in accordance with 10 CFR Part 52, Appendix A, Section VIII.B.5. Within the review scope of this section, the staff found it reasonable that the departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

• STP DEP 10.2-1

Turbine Design

See Sections 10.2.2 and 10.2.4 of the SER for a detailed description and evaluation of this departure.

• STP DEP 10.4-2

Main Condenser

See Subsections 10.4.1.2 and 10.4.1.4 of the SER for a detailed description and evaluation of this departure.

• STD DEP 10.4-5

Condensate and Feedwater System

See Subsections 10.4.7.2 and 10.4.7.4 of the SER for a detailed description and evaluation of this departure.

10.05 <u>Post Combined License Activities</u>

There are no post COL activities related to this section.

10.06 <u>Conclusion</u>

The NRC staff's finding related to information incorporated by reference is in NUREG–1503. NRC staff reviewed the application and checked the referenced DCD. The staff's review confirmed that the applicant has addressed the required information, and no outstanding information is expected to be addressed in the COL FSAR related to this section. Pursuant to 10 CFR 52.63(a)(5) and Part 52, Appendix A, Section VI.B.1, all nuclear safety issues relating to the steam and power conversion system that were incorporated by reference have been resolved.

10.1 Summary Description

This section of the FSAR describes the standard design features for the Steam and Power Conversion System. The COL applicant proposes DCD departures to update the steam and power conversion technology associated with the ABWR design. The NRC staff's evaluation of these proposed departures is in the following sections of Chapter 10 in this SER.

10.2 <u>Turbine Generator</u>

10.2.1 Introduction

This section of the FSAR provides information on the turbine generator (TG) system that is used to convert the energy in the steam from the nuclear steam supply system (NSSS) into electrical energy. The discussion includes information related to the TG system equipment and design bases, operation, turbine overspeed protection, material selection, inspection and testing, and programs that ensure the integrity of the turbine rotor.

10.2.2 **Summary of Application**

Section 10.2 of the STP COL FSAR incorporates by reference Section 10.2 of the certified ABWR DCD, Revision 4, referenced in 10 CFR Part 52, Appendix A.

In addition, in STP COL FSAR Section 10.2, the applicant provides the following:

Tier 1 Departure

• STD DEP T1 2.4-2

Feedwater Line Break Mitigation

The applicant has added this departure to FSAR Tier 2 Subsection 10.2.2.2.1, "General Description," to indicate that the turbine building contains the safety-related electrical switchgear and trip breakers for the mitigation of a postulated feedwater line break. The design and location of these breakers are described in Tier 2 Subsection 8.3.1.1.1, "Medium Voltage Class 1E Power Distribution System," and are therefore not evaluated in this section of the SER.

Tier 2 Departures Not Requiring Prior NRC Approval

• STP DEP 1.1-2

Dual Units at STP 3 & 4

The referenced ABWR DCD is based on a single-unit site. This departure identifies STP Units 3 and 4 as a dual-unit site. This departure is included in Chapter 10 because the change to a dual-unit site affects the bulk hydrogen and CO_2 system described in FSAR Subsection 10.2.2.2 and illustrated Figure 10.2-4.

STP DEP 10.2-1

Turbine Design

This departure revises the turbine design by adding two reheat stages in place of a single stage reheat described in the ABWR DCD. The applicant is proposing this change to improve turbine steam cycle efficiency. The ABWR DCD reheater shells are replaced with symmetrically combined reheater shells of two stages of four U-tube bundles, which reduce the moisture separator reheaters (MSRs) from four in the DCD to two for STP Units 3 and 4. The STP Units 3 and 4 design uses separate intermediate stop and intercept valves, instead of the combined intermediate valves used in the DCD to provide enhanced performance, reliability, and maintainability. As a result of these significant technical modifications, the applicant has revised several subsections in FSAR Tier 2 Section 10.2 of the DCD to provide clarifications and changes based on the design, procedures, and vendor/manufacturer recommendations.

• STP DEP 10.2-2

Turbine Rotor Design

This departure describes the design change to select a monoblock turbine rotor. The departure also clarifies the descriptions of turbine overspeed and design speed and their relationship to turbine rotor integrity.

• STP DEP 10.2-3

Turbine Digital Control

This departure implements the following modifications to the turbine control and overspeed protection systems: (a) electronic monitoring for turbine control and overspeed protection; and (b) the use of two electrical trip systems, one for primary and the other for emergency overspeed trip functions based on hardware configurations. Both systems use two-out-of-three logic employed in each trip circuitry for additional reliability. Additionally, Subsection 10.2.2.7 revises the testing frequency for main turbine valves, including verification of the fast-closure function.

• STP DEP 10.2-4

Bulk Hydrogen Storage

This departure is related to STP DEP 1.1-2, which makes STP Units 3 and 4 a dual-unit site. As stated above, the change to a dual-unit site affects the bulk hydrogen and CO_2 system described in FSAR Subsection 10.2.2.2 and illustrated in Figure 10.2-4. FSAR Subsection 10.2.2.2 states that a single bulk hydrogen storage facility will be used to store compressed hydrogen gas cylinders for both units, and that this storage facility will be located at least 100 meters (m) from any safety-related building.

STD DEP Admin

This departure revises the final paragraph of Subsection 10.2.2.1, "General Description," of the DCD and makes minor editorial changes in Figure 10.2-1 of the FSAR. These changes do not affect the TG system design and method of performing or controlling a design function of the TG components and instrumentation located in the TG building.

COL License Information Items

• COL License Information Item 10.1 Low Pressure Turbine Disk Fracture Toughness

This COL license information item addresses the requirement to update the FSAR to identify the turbine material property data that support the material properties used in the specified turbine rotor design.

COL License Information Item 10.2 Turbine Design Overspeed

The applicant provides site-specific supplemental information in Subsection 10.2.5.2 to address COL License Information Item 10.2 of the referenced ABWR DCD. The applicant states that the highest anticipated speed resulting from the loss of load is normally in the range of 106 to 109 percent of the turbine-rated speed. Turbine components are designed so that calculated stresses do not exceed the minimum material strength at 120 percent of the rated speed. Factory balance verification tests the rotors at 120 percent of the rated speed, which is 10 percent greater than the highest anticipated speed resulting from the loss of load.

• COL License Information Item 10.3 Turbine Inservice Test and Inspection

To address COL License Information Item 10.3, the applicant provides site-specific supplemental information in Subsection 10.2.3.6, "Inservice Inspection," for turbine inservice test and inspection requirements.

10.2.3 **Regulatory Basis**

The regulatory basis of the information incorporated by reference is documented in NUREG 1503. In addition, the relevant requirements of Commission regulations and associated acceptance criteria for reviewing the COL license information items are in Sections 10.2, "Turbine Generator," and 10.2.3, "Turbine Rotor Integrity," of NUREG–0800, "Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants," the Standard Review Plan (SRP).

In accordance with Section VIII, "Processes for Changes and Departures," of, "Appendix A to Part 52--Design Certification Rule for the ABWR Design," the applicant identifies Tier 1 and Tier 2 departures. Tier 1 departures are subject to the requirements of 10 CFR Part 52, Appendix A, Section VIII.A.4. Tier 2 departures are subject to the requirements of 10 CFR Part 52, Appendix A, Section VIII.B.5, which are similar to the requirements of 10 CFR 50.59.

10.2.4 **Technical Evaluation**

NRC staff reviewed Sections 10.2 and 10.2.3 of the STP Units 3 and 4 COL FSAR and checked the referenced DCD to ensure that the combination of the DCD and the information in the COL represents the complete scope of information relating to this review topic. The staff's review confirmed that the information in the application and the information incorporated by reference address the required information relating to the principal design features of the TG system.

The staff reviewed the information in COL FSAR Sections 10.2 and 10.2.3:

Tier 1 Departure

• STD DEP T1 2.4-2

Feedwater Line Break Mitigation

This departure is evaluated in Chapter 8 and Chapter 14 of this SER and is therefore not evaluated in this SER section. A paragraph is added to Subsection 10.2.2.1 of the FSAR to reflect the addition of safety-related equipment in the turbine building as a result of this departure. The technical evaluation and the exemption approval of this Tier 1 departure are documented in Section 8.3.1 of this SER.

-

See "Finality of Referenced NRC Approvals" in SER Section 1.1.3, for a discussion on the staff's review related to verification of the scope of information to be included in a COL application that references a design certification.

Tier 2 Departures Not Requiring Prior NRC Approval

STP DEP 1.1-2

Dual Units at STP 3 & 4

This departure from the ABWR DCD references a two-unit site as opposed to a one-unit site, under the provisions of Section VIII.B.5 of Appendix A to 10 CFR Part 52. The applicant's evaluation determined that this departure does not require prior NRC approval in accordance with 10 CFR Part 52, Appendix A, Section VIII.B.5. Within the review scope of this section, the staff found it reasonable that this departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

• STP DEP 10.2-1

Turbine Design

In this departure, the applicant states that significant technical differences exist between the latest TG system design of STP Units 3 and 4 and the referenced ABWR DCD. Therefore, the applicant has revised several subsections in Section 10.2 of the ABWR DCD, including Subsection 10.2.2.1, "General Description"; Subsection 10.2.2.2, "Component Description"; Subsection 10.2.2.3, "Normal Operation"; Subsection 10.2.3.5, "Preservice Inspection"; and Subsection 10.2.3.6, "Inservice Inspection."

The applicant selected a Toshiba TG system for STP Units 3 and 4 consisting of a 188.5 radians per second (rads/s) (1,800 RPM) turbine, a generator, an exciter, MSRs, controls, and associated subsystems. The turbine consists of one double-flow, high-pressure (HP) turbine and three double-flow, low-pressure (LP) turbines. Two combined MSRs perform moisture separation and reheating. The generator is a direct-driven, three-phase, 60-Hz, 188.5 rads/s (1,800 RPM) synchronous generator with a water-cooled armature winding and a hydrogen-cooled rotor.

NRC staff reviewed STP DEP 10.2-1 and the STP FSAR sections cited above, which reflect the modifications described in the departure. Revisions to the FSAR sections include adding two MSR reheat stages in place of a single-stage reheat in the ABWR DCD. This revision replaces the DCD reheaters with symmetrically combined reheater shells of two stages of four U-tube bundles and reduces the MSRs from four in the ABWR DCD to two. This revision also replaces the DCD combined intermediate valves with separate intermediate stop-and-intercept valves. The applicant also states in the departure that two stages of reheat in the steam cycle will improve turbine steam cycle efficiency and separate intermediate and stop valves will enhance performance, reliability, and maintainability. The applicant further states in the evaluation summary of the departure that these changes do not result in any functional departure from the DCD. These changes also do not adversely affect the capability of the safety-related SSCs to perform their safety functions in case of any accident. Furthermore, the changes do not impact any transient analysis assumptions.

The staff found these changes acceptable because the modifications identified in Subsections 10.2.2.1, 10.2.2.2, and 10.2.2.3 do not adversely affect safety-related SSCs and their functional capability in case of an operational transient. These are nonsafety-related components that do not perform any safety-related functions. More importantly, the modifications identified in the departure do not impact the regulatory basis of this STP TG system. Thus, the staff found STP DEP 10.2-1 acceptable, as it relates to modifications in Subsections 10.2.2.1 through 10.2.2.3.

STP DEP 10.2-1 includes revisions to Subsections 10.2.3.5 ("Preservice Inspection") and 10.2.3.6 ("Inservice Inspection"). For example, Subsection 10.2.3.5 indicates that the rotor forgings may or may not be bored to remove defects, obtain material for testing, and conduct ultrasonic inspection. The staff conducted an audit to confirm that the applicant has evaluated these aspects of STP DEP 10.2-1 according to the criteria in 10 CFR Part 52, Appendix A, Section VIII.B.5. During the audit, the applicant described the evaluation process and technical input to the evaluation. Based on the audit, the staff concluded that the applicant meets the regulatory requirements for evaluating these departures, and no additional NRC review is required. The audit process and results are documented in **ML093360537**.

• STP DEP 10.2-2

Turbine Rotor Design

STP DEP 10.2-2 includes revisions to Subsections 10.2.3.1, "Materials Selection," 10.2.3.2 "Fracture Toughness," 10.2.3.3 "High Temperature Properties,", and 10.2.3.4 "Turbine Design." For large monoblock forgings, the proposed values of 40 °F and 45 ft-lbs for a fracture appearance transition temperature (50 percent FATT) and Charpy V-notch (C_V) energy at the minimum operating temperature, respectively, are different from the SRP criteria of 0 °F and 60 ft-lbs.

The staff conducted an audit to confirm that the applicant evaluated the Tier 2 departures for Subsections 10.2.3.1 ("Materials Selection"), 10.2.3.2 ("Fracture Toughness"), 10.2.3.3 ("High Temperature Properties"), and 10.2.3.4 ("Turbine Design") according to the criteria in 10 CFR Part 52, Appendix A, Section VIII.B.5. During the audit, the applicant described the evaluation process and technical input to the evaluation. Based on the audit, the staff concluded that the applicant met the regulatory requirements for evaluating these departures, and no additional NRC review is required. The audit process and results are documented in **ML093360537**.

• STP DEP 10.2-3

Turbine Digital Control

NRC staff reviewed STP DEP 10.2-3, which replaces ABWR DCD Subsection 10.2.2.4, "Turbine Overspeed Protection System," in its entirety and modifies Subsection 10.2.2.5, "Turbine Protection Systems," and Subsection 10.2.2.7, "Testing."

In FSAR Subsection 10.2.2.4, the applicant states that the normal speed control is the first line of defense against the turbine overspeed. Also, the applicant notes that the system includes the turbine main control valves; intermediate steam intercept valves; extraction system non-return valves; and fast-acting, valve-closing functions within the electro hydraulic control (EHC) system. The normal speed control unit utilizes three speed signals, and the loss of any one signal initiates a turbine trip via the emergency trip system (ETS). Furthermore, the applicant states that an increase in speed above the setpoint closes the control and intercept valves in proportion to the increase.

The applicant's evaluation of this departure (described above), in accordance with Item B.5 of Section VIII of Appendix A, determined that this departure does not require prior NRC approval. The staff reviewed the Part 7 "Departures Report" regarding this departure and was unable to determine whether the departure meets Criteria (2), (4), and (6) in Appendix A, VIII.B.5b or adequately addresses General Design Criterion (GDC) 4. Therefore, the staff issued RAI 10.02-1 (eRAI 3008) on July 29, 2009, which requested the applicant to provide a clarification and/or additional information with respect to the details on the normal overspeed protection of the STP TG system.

In response to **RAI 10.02-1 (eRAI 3008)**, the applicant's letter dated August 28, 2009, (ML092450155) includes Attachment 15 describing the normal speed control. The turbine EHC system closes the control and intercept valves in proportion to the increase in speed above the speed setpoint. The applicant's response also states that the EHC fully shuts off steam to the HP turbine at approximately 105 percent of its rated speed by closing the turbine control valves, and the EHC fully shuts off steam to the LP turbines at about 107 percent of the rated speed by closing the intercept valves. The normal speed control is supplemented by the power-load unbalance (PLU) function. The PLU uses the difference between turbine mechanical power and load indications to control overspeed in the event of a full load rejection. Redundant measurements of HP turbine exhaust steam pressure and generator current are used as inputs to the PLU function. Upon a prescribed PLU condition approximately greater than 40 percent, the fast-acting solenoid valves of the control valves and the intercept valves are energized to trip these valves to prevent rapid turbine acceleration. The applicant will revise FSAR Tier 2 Subsection 10.2.2.4 to reflect this response.

The staff evaluated the applicant's response to RAI 10.02-1 (eRAI 3008) in conjunction with Revision 3 of STP FSAR Tier 2 Subsection 10.2.2.4. The staff found that for the normal speed control mode, the steam supply to the HP and LP turbines completely shuts-off at 105 percent and 107 percent of the turbine-rated speed, respectively. However, the applicant did not address the reason for eliminating the 103 percent value, as recommended in the SRP. The staff also noted that the ABWR DCD recommends closing the control and intercept valves when the main turbine reaches approximately 104 percent of its rated speed. Furthermore, for normal speed control, the system is supposed to re-open and modulate the control and intercept valves to achieve and maintain 100 percent of the rated speed at certain points of the normal overspeed.

Based on the above response, RAI 10.02-1 is closed and unresolved. The staff issued supplemental RAI 10.02-3 (eRAI 4103) requesting the applicant to provide additional clarifications of this issue. The resolution of this RAI is being tracked as **Open Item 10.02-3**.

Additionally, in STP FSAR Subsection 10.2.2.4, the applicant states that if the normal speed control fails, the overspeed trip systems will close the main steam and intermediate stop valves. The subsection also states that this overspeed trip system is the second line of defense against the turbine overspeed. In addition, the subsection also notes that with the failure of the normal speed control system, the resulting turbine speed will not exceed 120 percent of the turbine-rated speed. Staff guidance describes the second line of defense for the turbine overspeed. The description includes the following:

- (1) A mechanical overspeed trip device will actuate the control, stop, and intercept valves to close at approximately 111 percent of the rated-turbine speed.
- (2) At approximately 112 percent, an independent and redundant backup electrical overspeed trip device will sense the turbine speed and will close all of the turbine valves to protect the turbine from the overspeed.

The applicant's evaluation of this departure (described above), in accordance with Item B.5 of Section VIII of Appendix A, determined that this departure does not require prior NRC approval. The staff reviewed the Part 7 "Departures Report" regarding this departure and was unable to determine whether the departure meets Criteria (2), (4), and (6) in Appendix A, VIII.B.5b or adequately addresses GDC 4. Therefore, the staff issued **RAI 10.02-2 (eRAI 3008)** requesting

the applicant to provide the following additional information and/or clarifications with complete justifications:

- (1) Describe the setpoints for the normal overspeed and the primary and emergency overspeed systems, with full descriptions of how they function.
- (2) Provide how the two electrical overspeed (primary and emergency) systems are diverse. Describe and provide schematics and logic diagrams depicting how the overspeed systems are diverse and independent.
- (3) Clarify whether all of these (normal and two) overspeed systems share any common components or processors/inputs. If so, evaluate the impact of failures of any such features/components.
- (4) Is there any software used for processors or performing trip logic actuations? If so, is it common to any of the above?
- (5) Explain the diversity and defense-in-depth used to defend against a common cause failure (CCF) of the processors.

The applicant responded to RAI 10.02-2 (eRAI 3008) in a letter dated August 28, 2009 (ML092450155), which discusses the turbine overspeed protection system. The applicant states that the system consists of a primary overspeed trip system and an emergency and backup overspeed trip system. The primary overspeed trip system contains redundant features and utilizes three speed sensors that are separate from those used for normal speed control. Each speed signal is compared to a speed setpoint of approximately 110 percent of the turbinerated speed and produces signals to trip the turbine. These trip signals are arranged in two-outof-three logics to de-energize the pilot solenoids of one of the two trip solenoid valves of the electro-hydraulic emergency trip device (ETD). The ETD has two redundant trip solenoid valves. Tripping either redundant trip solenoid valve will drain the emergency trip fluid and result in a turbine trip. The emergency backup overspeed trip system is also redundant and uses three speed sensors that are separate from those used by the primary overspeed trip function. The speed setpoint for this trip function is approximately 111 percent of the rated speed. The trip signals are arranged in two-out-of-three logics to de-energize the pilot solenoids of the other trip solenoid valve in the ETD to cause a turbine trip. The overspeed trip functions are redundant and diverse. Each overspeed trip function (primary and emergency) uses twoout-of-three trip logics. Diversity is achieved between the primary and emergency trip systems by using different logic devices for each function. The emergency overspeed trip system and the normal speed control use the same sensors. However, the failure of any two speed sensors will result in a turbine trip. A turbine trip will result in an orderly reactor shutdown. The scenarios and sequence of events following a turbine trip are discussed in FSAR Section 15.2.3. Periodic testing of the overspeed trip function components important to safety during operation at the rated load is discussed in FSAR Subsection 10.2.2.7, "Testing," and Subsection 10.2.3.6, "Inservice Inspection." The applicant also notes that the trip logic actuations are performed using logic devices, which perform specific functions and do not run any software. As such, no microprocessors are used and therefore do not contribute to any CCFs of these processors. The applicant further states that in Part 2 Tier 2 of the COL application, Subsection 10.2.2.4 will be revised to reflect this RAI response and to provide a markup of this subsection.

The staff reviewed the applicant's response to **RAI 10.02-2 (eRAI 3008).** The evaluation of this response is summarized below.

According to the applicant's response, the staff noted that the turbine trip setpoints for the primary and emergency backup electrical overspeed systems are 110 and 111 percent of the rated speed, respectively. Based on the applicant's response to RAI 10.02-2 (eRAI 3008), the two electrical overspeed control systems have different logic devices for each of their functions. These logic devices perform specific functions and do not run any software. In addition, no microprocessors are used, thus eliminating the CCFs in the system. Even though the emergency trip system and normal speed control use the same sensors, the failure of any two of the speed sensors will result in a turbine trip. The staff determined that no software is used that can cause a CCF. Furthermore, in Tier 2 Subsection 10.2.2.4, the applicant states that a single component failure does not compromise trip protection and does not result in a turbine trip, which conforms to the guidance in SRP Section 10.2.III Item 2.A, as it relates to singlefailure criteria. However, the staff found that the applicant had not provided the schematics and logic diagrams for the two electric overspeed systems as requested in RAI 10.02-2 (eRAI 3008). Without these schematics and an associated site-specific inspection, testing, analysis, and acceptance criteria (ITAAC), the staff was unable to conclude that the applicant has provided sufficient information for the turbine overspeed control systems. Therefore, the staff issued follow-up RAI 10.02-4 (eRAI 4103), which requested the applicant to provide the following:

- (1) Provide the schematics and logic diagrams for the two electric overspeed systems.
- (2) Provide a site-specific ITAAC in Part 9 of COL application Section 3 of "Site Specific ITAAC" for the two electric overspeed systems to confirm the design and hardware/firmware diversity and to provide a report in this regard.
- (3) Explain whether each of these two emergency overspeed systems has its own power source and is installed in separate areas.

This issue is being tracked as Open Item 10.02-4

STP DEP 10.2-4

Bulk Hydrogen Storage

This departure from the ABWR DCD references sharing a bulk hydrogen gas storage facility between two co-located STP Units 3 and 4, as opposed to having a single-bulk hydrogen storage facility under the provisions of Section VIII.B.5 of Appendix A to 10 CFR Part 52. Based on this departure, the applicant has modified the description of the hydrogen storage facility in FSAR Subsection 10.2.2.2, "Component Description" and Figure 10.2-4, "Generator Hydrogen and CO₂ System." NRC staff evaluated the applicant's process for departures and agreed that these changes can be made without prior NRC approval. This departure is therefore acceptable.

With respect to the effect of these changes on the safe storage of hydrogen, the staff noted that this departure does not change the provision in the ABWR DCD to use the guidelines in Electric Power Research Institute (EPRI) Report NP-5283-SR-A for the safe design, installation, and operation of compressed hydrogen gas systems. These guidelines are endorsed in Regulatory Guide (RG) 1.189, "Fire Protection for Operating Nuclear Power Plants." The staff evaluated the effect of this departure on the hydrogen water chemistry system in Section 9.3.9 of this SER.

The applicant's evaluation determined that this departure does not require prior NRC approval in accordance with 10 CFR Part 52, Appendix A, Section VIII.B.5. Within the review scope of this section, the staff found it reasonable that the departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

COL License Information Items

• COL License Information Item 10.1 Low Pressure Turbine Disk Fracture Toughness

Subsection 10.2.5.1, "Low Pressure Turbine Disk Fracture Toughness," provides the following in order to address COL Information Item 10.1:

In accordance with 10 CFR 50.71(e), STPNOC will update the FSAR to identify the turbine material property data that supports the material properties used in the turbine rotor design specified in Subsection 10.2.3.2, after procurement and prior to initial fuel load (COM 10.2-1). Operating procedures to assure sufficient turbine warm-up time, as required by Subsection 10.2.3.2, are prepared in accordance with the guidelines in FSAR Section 13.5.

Because the information required by COL Item 10.1 cannot be provided before the procurement of the turbine, the staff found it acceptable to establish a commitment for providing this information. However, NRC staff issued **RAI 10.02.03-1** (eRAI 3085) requesting the applicant to modify the COL license information and Commitment 10.2-1 to state that the as-built material property data will be identified in the updated FSAR.

In a letter dated September 22, 2009 (ML092660653), the applicant's response to **RAI 10.02.03-1** proposes to add the term "as-built" to Revision 3 of the COL application in FSAR Subsection 10.2.5.1 and Commitment 10.2-1. The staff found this response acceptable because the proposed modifications clarify that the applicant is committing to provide the asbuilt material properties. This RAI is being tracked as **Confirmatory Item 10.02.03-1**.

COL License Information Item 10.2
 Turbine Design Overspeed

Subsection 10.2.5.2, "Turbine Design Overspeed," provides the basis for turbine overspeed in order to address COL License Information Item 10.2 as follows:

The highest anticipated speed resulting from loss of load is normally in the range of 106-109% of the rated speed. Turbine components are designed such that calculated stresses do not exceed the minimum material strength at 120% of the rated speed. Turbine rotors are spun to a speed of 120% rated as part of factory balance verification. This is approximately 10% above the highest anticipated speed resulting from loss of load.

NRC staff found this information acceptable because the design overspeed is consistent with the SRP 10.2.3 overspeed design criteria (5 percent above the highest anticipated speed resulting from the loss of load), and the rotor is tested at its design overspeed.

• COL License Information Item 10.3 Turbine Inservice Test and Inspection

Subsection 10.2.5.3, "Turbine Inservice Test and Inspection," refers to Subsection 10.2.3.6 to address COL License Information Item 10.3 as follows:

Turbine inservice test and inspection requirements are discussed in Subsection 10.2.3.6.

NRC staff found this COL license item acceptable because it correctly refers to Subsection 10.2.3.6 for the inservice test and inspection requirements, which are included in the staff's review.

As discussed in Subsection 3.5.1.3 of this SER, "Turbine Missiles," within 3 years of obtaining an operating license the licensee will submit to the NRC a turbine system maintenance program for STP Units 3 and 4. Because this program depends on as-built information, it cannot be provided before the procurement of the turbine. The program will include probability calculations of turbine missile generation based on NRC-approved methodology. At that time, the staff will confirm that the applicant's program for turbine rotor integrity meets the regulatory requirements for turbine missile generation discussed in Section 3.5.1.3 and includes the information incorporated by reference into the certified design, the information provided through departures, and the maintenance program for the as-built turbine. In addition, in accordance with COM 10.2-1, the applicant will update the FSAR to identify as-built turbine material property data.

10.2.5 Post Combined License Activities

The applicant identifies the following commitment:

• Commitment (COM 10.2-1) – Update the FSAR to identify the turbine material property data that support the material properties used in the turbine rotor design specified in Subsection 10.2.3.2, after procurement and prior to initial fuel load.

10.2.6 Conclusion

The NRC staff's finding related to information incorporated by reference is in NUREG–1503. NRC staff reviewed the application and checked the referenced DCD. The staff's review confirmed that the applicant has addressed the required information relating to the TG system. With the exceptions of **Open Items 10.02-3** and **10.02-4** and **Confirmatory Item 10.02.03-1**, no outstanding information is expected to be addressed in the COL FSAR related to this section. Pursuant to 10 CFR 52.63(a)(5) and Part 52, Appendix A, Section VI.B.1, all nuclear safety issues relating to the TG system that were incorporated by reference have been resolved.

In addition, the staff compared the additional COL license information items in the application to the existing licensing basis and relevant NRC regulations and acceptance criteria in NUREG-0800, Section 10.2.

Based on the results of this evaluation, the staff determined that the additional information referred to above in the "Technical Evaluation" section is required in order to adequately address the TG system. Therefore, as a result of **Open Items 10.02-3** and **10.02-4** and **Confirmatory Item 10.02.3-1** the staff was unable to finalize the conclusions relating to the TG system in accordance with the NRC requirements.

10.3 <u>Main Steam Supply System</u>

10.3.1 Introduction

The main steam supply system (MSSS) transports the steam generated in the reactor to the main turbine and various auxiliaries of the steam and power conversion (S&PC) system. Portions of the MSSS may be used as part of the heat sink that removes heat from the reactor facility during certain operations and may also be used to supply steam to drive engineered safety feature pumps. The MSSS for direct-cycle, boiling-water reactors extends from the outermost containment isolation valves up to and including the turbine stop valves.

10.3.2 **Summary of Application**

Section 10.3 of the STP COL FSAR incorporates by reference Section 10.3 of the certified ABWR DCD, Revision 4, referenced in 10 CFR Part 52, Appendix A. In addition, in the COL FSAR the applicant provides the following:

Tier 2 Departures Not Requiring Prior NRC Approval

• STP DEP 10.2-1

Turbine Design

This site-specific departure modifies the turbine design. This departure is incorporated in FSAR Table 10.3-1 and Figures 10.3-1 and 10.3-2.

STD DEP 10.3-1

Main Steam Line Drains

This standard departure expands the discussion to state that the MSSS also serves as the "alternative leakage path" to contain the radioactive steam, which passes through the main steam isolation valves (MSIVs) before they close to isolate the reactor under emergency conditions. This departure is incorporated in FSAR Subsection 10.3.2.1, "General Description."

• STD DEP 10.4-1

Turbine Gland Seal System

This standard departure adds a nonsafety-related gland seal evaporator to supply steam to the main turbine shaft seal glands and various turbine valve stems, including the turbine bypass and main turbine stop-control valve stems. The source of heat steam for the evaporator is main steam or turbine extraction steam. This departure is incorporated in FSAR Subsection 10.3.2.3, "System Operation."

STP DEP 10.4-3

Main Condenser Evacuation System

This site-specific departure changes the source of the motive steam supplying the steam jet air ejectors during power operation. This departure is incorporated in FSAR Figure 10.3-2.

In addition, in STP COL FSAR Section 10.3.7, the applicant provides the following:

STP DEP Admin

This administrative departure changes the general description of the MSSS by changing the following sentence to state:

The four main steamlines are connected to a header upstream of the turbine stop valves to permit testing of <u>these valves</u> during plant operation with a minimum load reduction.

COL License Information Items

 COL License Information Item 10.4 Procedures to Avoid Steam Hammer and Discharge Loads

This COL license information item states that the COL applicant will provide operating and maintenance procedures that include adequate precautions to avoid steam hammer and relief valve discharge loads.

COL License Information Item 10.5
 MSIV Leakage

This COL license information item states that the "MSIVs are designed to limit the leakage to less than 66.1 liters/min for all four lines, at a pressure corresponding to the calculated peak containment pressure for design-basis accidents identified in Table 6.2-1."

10.3.3 **Regulatory Basis**

The regulatory basis of the information incorporated by reference is in NUREG–1503. In addition, the relevant requirements of the Commission regulations for the MSSS and associated acceptance criteria are in Section 10.3 of NUREG–0800.

In accordance with Section VIII, "Processes for Changes and Departures," of, "Appendix A to Part 52--Design Certification Rule for the U.S. Advanced Boiling Water Reactor," the applicant identifies Tier 2 departures. Tier 2 departures not requiring prior NRC approval are subject to the requirements in Section VIII.B.5, which are similar to the requirements in 10 CFR 50.59.

In particular, the regulatory basis and review criteria that the staff used for STP DEP 10.2-1, STD DEP 10.3-1, STD DEP 10.4-1, STP DEP 10.4-3, and COL License Information Items 10.4 and 10.5, as they relate to the protection of SSCs important to safety and water (steam) hammer considerations, are specified in SRP 10.3, "Main Steam Supply System."

The regulatory basis for COL License Information Items 10.4 and 10.5 is in SRP Section 10.3.

10.3.4 **Technical Evaluation**

NRC staff reviewed Section 10.3 of the STP Units 3 and 4 COL FSAR and checked the referenced DCD to ensure that the combination of the DCD and the information in the COL represents the complete scope of information relating to this review topic. The staff's review confirmed that the information in the application and the information incorporated by reference address the required information relating to this system.

The staff reviewed the information in the COL FSAR:

See "Finality of Referenced NRC Approvals" in SER Section 1.1.3, for a discussion on the staff's review related to verification of the scope of information to be included in a COL application that references a design certification.

Tier 2 Departures Not Requiring Prior NRC Approval

STP DEP 10.2-1

Turbine Design

NRC staff reviewed STP DEP 10.2-1, which is a site-specific departure that describes modifications to the main turbine-generator design. [**Note**: This statement is only valid for the reheaters and is evaluated in SER Section 10.2, "Turbine Generator."]

The applicant's evaluation of this departure, in accordance with Item B.5 of Section VIII of Appendix A, determined that the departure does not require prior NRC approval. Within the review scope of this section, the staff found it reasonable that the departures do not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

STD DEP 10.4-1

Turbine Gland Seal System

NRC staff reviewed STD DEP 10.4-1, which involves a change to the turbine gland seal steam system. This standard departure adds a nonsafety-related gland seal evaporator to supply steam to the main turbine shaft seal glands and various turbine valve stems, including the turbine bypass and main turbine stop-control valve stems. The source of heat steam for the evaporator is main steam or turbine extraction steam.

The applicant's evaluation of this departure, in accordance with Item B.5 of Section VIII of Appendix A, determined that the departure does not require prior NRC approval. Within the review scope of this section, the staff found it reasonable that the departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

• STP DEP 10.4-3

Main Condenser Evacuation System

NRC staff reviewed STP DEP 10.4-3, which changes the design of the main condenser evacuation system. This site-specific departure changes the source of the motive steam supply to the steam jet air ejectors during power operation.

The applicant's evaluation of this departure, in accordance with Item B.5 of Section VIII of Appendix A, determined that the departure does not require prior NRC approval. Within the review scope of this section, the staff found it reasonable that this departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

• STD DEP 10.3-1

Main Steam Line Drains

NRC staff reviewed STD DEP 10.3-1, which expands the discussion to state that the MSSS also serves as the "alternative leakage path" to contain the radioactive steam, which passes through the MSIVs before they close to isolate the reactor under emergency conditions. STD DEP 10.3-1 provides information concerning the "alternate leakage path" that does not appear to be consistent with the information in ABWR DCD Tier 2 Subsection 3.2.5.3, "Main Steam Line Leakage Path." Also, some of the information that is characterized as a departure is already reflected in DCD Subsection 3.2.5.3. It is not clear why this information is included in the proposed departure, which refers to the "alternate leakage path," and it is not clear why the term "alternate" is used.

The applicant's evaluation of this departure, in accordance with Item B.5 of Section VIII of Appendix A, determined that the departure does not require prior NRC approval. The staff reviewed the Part 7 "Departures Report" regarding this departure and was unable to determine whether the departure meets Criteria (2), (4), and (6) in Appendix A, VIII.B.5b or adequately addresses GDC 4. Therefore, the staff issued **RAI 10.03-2 (eRAI 180)** requesting the applicant to provide the above information and clarifications.

The applicant responded to RAI 10.03-2 (eRAI 180) in a letter (ABR-AE-08000037) dated May1 20, 2008 (ML081440107). The applicant states that no performance change to the DCD wording for this function was intended, and the addition of the term "alternate" to the phrase "main steam line leakage path" was an error. The applicant further notes that STD DEP 10.3-1 is intended to address the MSIV closure (to isolate the reactor) under emergency conditions. The MSSS contains the radioactive steam that passes through the MSIVs before they close. Any leakage past the closed MSIVs, which will flow in the main steam lines and the main steam drain lines downstream of the corresponding containment isolation valves, will be contained. The function of containment is performed by the main steam lines from the containment isolation valves to the turbine stop valves, the bypass lines from the containment isolation valves to the condenser, the main steam drain lines to the condenser, and other main steam lines larger than 2-1/2 inches (e.g., steam lines to the steam jet-air ejector) up to their automatic isolation valves and the condenser. Regarding the plate-out, the applicant clarifies that DCD Tier 2 Subsection 15.6.5.5.1.2, "Main Steamline Modeling," includes the plate-out of the steam line drains and condenser as part of a fission product release and pathway to the environmental modeling. Additionally, the applicant states that FSAR Subsection 10.3.2.1 will be revised to reflect the response in this regard. The applicant also includes a markup of this FSAR section, which provides new information with respect to the MSSS piping design details and ASME code compliance. Accordingly, the piping and branch lines 2-1/2 inches and larger from (but not including) the outboard MSIVs to the turbine stop valves and to the turbine bypass valves are designed to Quality Group B and NC-Class 2 in Division 1 of ASME Section III. Furthermore. the main steam lines and also the branch lines 2-1/2 inches and larger from the seismic restraint on the outboard side of the MSIVs are designed based on the appropriate dynamic and seismic system analysis to withstand the safe shutdown earthquake (SSE) design loads of the ABWR standard design and other appropriate loads and within the limits specified for Class 2 piping. The lines smaller than 2-1/2 inches are designed to withstand the loads expected for the ABWR standard plant. Furthermore, the mathematical model for the dynamic and seismic analyses includes the turbine stop valves and piping up to the turbine casing.

The staff reviewed the applicant's response to RAI 10.03-2 (eRAI 180) and the FSAR markup and determined that the STP main steam piping and components, including the supports, are designed adequately in accordance with the industry codes and standards and are consistent with the ABWR design standard. The staff concluded that the applicant has provided adequate clarifications that resolve the staff's concerns in RAI 10.03-2 (eRAI 180). The staff verified that FSAR Revision 3 incorporates the applicant's response. Therefore, RAI 10.03-2 (eRAI 180) is resolved. The staff found it reasonable that the departures do not require prior NRC approval. The applicant's process for evaluating departures and other changes to the DCD is subject to NRC inspections.

STD DEP Admin

The applicant defines administrative departures as minor corrections, such as editorial or administrative errors in the referenced ABWR DCD (i.e., misspelled words, incorrect references, table headings, etc.). Administrative departures do not affect the presentation of any design

discussion or the qualification of any design margin. Within the review scope of this section, NRC staff found it reasonable that this departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

COL License Information Items

• COL License Information Item 10.4 Procedures to Avoid Steam Hammer and Discharge Loads

NRC staff reviewed STP COL FSAR Subsection 10.3.7.1, "Procedures to Avoid Steam Hammer and Discharge Loads," as it relates to COL Information Item 10.4. ABWR DCD Subsection 10.3.7.1, "Procedures to Avoid Steam Hammer and Discharge Loads," states that the COL applicant will provide operating and maintenance procedures that include adequate precautions to avoid steam hammer and discharge loads. In FSAR Subsection 10.3.7.1, the applicant states that the procedures described above were prepared in accordance with the plant operating procedure development plan described in FSAR Subsection 13.5.3.k. However, the procedures were not submitted for NRC review. The information in FSAR Subsection 10.3.7.1 does not address the COL license information item in ABWR DCD Subsection 10.3.7.1. Also, the staff reviewed DCD Section 10.3.3, "Evaluation," which states that all components and piping for the MSSS were designed in accordance with the codes and standards listed in Section 3.2 of the DCD, thus ensuring that the MSSS will accommodate operational stresses resulting from static and dynamic loads that include steam hammer and normal and abnormal environmental conditions. Additionally, SRP Section 10.3 Item I.5, "COL Action Items and Certification Requirements and Restrictions," states that for a COL application referencing a DC, a COL applicant must address COL action items included in the referenced DC. Furthermore, in SRP Section 10.3, Item II notes that the MSSS should adequately consider water (steam) hammer and relief valve discharge loads. This consideration should assure that system safety functions can be performed and operating and maintenance procedures will include adequate precautions to prevent water (steam) hammer and relief valve discharge loads. However, the information in FSAR Subsection 10.3.7.1 does not specify these elements in COL License information Item 10.4. In order to ensure the adequacy of the MSSS and its agreement with the criteria in the SRP and the DCD, the staff issued RAI 10.03-1 (eRAI 111), which requested the applicant to submit these procedures for the staff to review and evaluate. Also, the staff requested an explanation of the elements in these procedures and how they comply with SRP guidance and the codes and standards identified in Section 3.2 of the DCD.

The applicant responded to **RAI 10.03-1 (eRAI 111)** in a letter dated May 20, 2008 (ML081440107). With respect to submitting the procedures, the applicant cites RG 1.206, Section C.I.13.5 and states that the FSAR should provide a brief description of the nature and content of the detailed written procedures. The applicant further states that this general provision applies to the operating and maintenance procedures related to steam hammer and relief valve discharge loads. As a result, the applicant proposes to provide STP site-specific supplemental information regarding these precautions and to revise FSAR Subsection 10.3.7.1 to reflect the RAI response. In the supplemental information, the applicant lists several precautionary items, such as providing a sufficiently long main steam line warm-up period and a turbine soaking period, during which the low-point drain valves are opened to ensure that no condensed steam remains in the main steam lines. Additionally, maintenance procedures provide for the routine inspection of the low-point drain collection pots to ensure that they are operating properly. The applicant further states that at the COL application stage of the project, it is not necessary or appropriate to develop and issue operating and maintenance procedures.

The staff reviewed and determined that the applicant's response to RAI 10.03-1 (eRAI 111) is acceptable. Although the applicant did not include specific procedures for the staff to review, the applicant provided a list of procedural precautions (identified above) and included as a proposed revision to COL application Part 2, FSAR Chapter 10 Subsection 10.3.7.1. Also, the staff reviewed FSAR Subsection 10.3.7.1 and DCD Section 10.3.3 and found that they address design considerations for the steam and water hammer. The staff compared these design considerations and the above identified precautions to industry experience and staff guidance and determined that they adequately address the provisions to avoid steam and water hammer conditions. Furthermore, the staff reviewed the applicant's response in conjunction with Section 13.5, "Plant Procedures," of the FSAR and the DCD. The staff concluded that the plant operations and maintenance procedures will be developed when appropriate, and they will include these precautions. Therefore, the staff's concern in RAI 10.03-1 (eRAI 111) is resolved and COL License Information Item 10.4 is thus acceptable.

COL License Information Item 10.5 MSIV Leakage

COL License Information Item 10.5 states that the applicant needs to provide the amount of allowable MSIV leakage for review by the NRC. The applicant addresses this COL license information item in STP COL FSAR Subsection 10.3.7.2.

NRC staff reviewed the applicant's response to this COL license information item and found the response acceptable because the amount of allowable MSIV leakage in the response is consistent with (1) the leakage limit value specified in STP Technical Specification Surveillance Requirement 3.6.1.3.12, and (2) the information incorporated by reference to the ABWR DCD regarding the design-basis accident radiological consequence analyses in STP Chapter 15, "Accidents and Analyses."

10.3.5 **Post Combined License Activities**

There are no post COL activities related to this section.

10.3.6 Conclusion

The NRC staff's finding related to information incorporated by reference is documented in NUREG–1503. NRC staff reviewed the application and checked the referenced DCD. The staff's review confirmed that the applicant has addressed the required information, and no outstanding information is expected to be addressed in the COL FSAR related to this section. Pursuant to 10 CFR 52.63(a)(5) and Part 52, Appendix A, Section VI.B.1, all nuclear safety issues relating to the MSSS that were incorporated by reference have been resolved.

In addition, the staff compared the additional information referred to in the application to the relevant NRC regulations and acceptance criteria in NUREG–0800, Section 10.3. The staff found it reasonable that the identified Tier 2 departures are characterized as not requiring prior NRC approval per 10 CFR Part 52, Appendix A, Section VIII.B.5.

NRC staff evaluated the plant-specific information relative to the MSSS for the STP COL application. Based on the results of this evaluation, the staff found that implementation of the site-specific departures described in the "Technical Evaluation" section have no adverse impact on the MSSS.

10.4 Other Features of Steam and Power Conversion

10.4.1 Main Condensers

10.4.1.1 *Introduction*

This FSAR section addresses the steam cycle heat sink. During normal operation, the main condenser (MC) receives, condenses, deaerates, and holds up (for N-16 decay) the main turbine exhaust steam and the turbine bypass steam, whenever the turbine bypass system (TBS) is operated. The MC is also a collection point for other steam cycle miscellaneous drains and vents.

10.4.1.2 **Summary of Application**

Section 10.4.1 of the STP COL FSAR incorporates by reference Section 10.4.1 of the certified ABWR DCD, Revision 4, referenced in 10 CFR Part 52, Appendix A, with the following departure:

Tier 2 Departure Not Requiring Prior NRC Approval

• STP DEP 10.4-2

Main Condenser

This site-specific departure involves replacing the multi-pressure, three-shell reheating condenser design of the DCD with a single-pass, single-pressure, three-shell deaerating unit. The three condenser shells are cross-connected to equalize pressure. Each shell has at least two bundles. Circulating water will flow in a parallel direction through the three single-pass shells, instead of in a series as the design states in the DCD.

10.4.1.3 **Regulatory Basis**

The regulatory basis of the information incorporated by reference is in NUREG–1503. In addition, the relevant requirements of the Commission regulations for the main condenser and the associated acceptance criteria are in Section 10.4.1 of NUREG–0800.

In particular, the acceptability of the specific review considerations that pertain to the STP COL application is based on conformance with the specified review criteria (or the equivalent) and the approved ABWR licensing basis, when appropriate. In general, the approved ABWR licensing basis applies to plant-specific information submitted to confirm that certain provisions of the approved ABWR licensing-basis have been satisfied.

In addition, in accordance with Section VIII, "Processes for Changes and Departures," of, "Appendix A to Part 52--Design Certification Rule for the U.S. Advanced Boiling Water Reactor," the applicant identifies a Tier 2 departure. This departure is subject to the requirements in Section VIII, which are similar to the requirements in 10 CFR 50.59.

10.4.1.4 **Technical Evaluation**

As documented in NUREG–1503, NRC staff reviewed and approved Section 10.4.1 of the certified ABWR DCD. The staff reviewed Section 10.4.1 of the STP Units 3 and 4 COL FSAR and checked the referenced DCD to ensure that the combination of the DCD and the

information in the COL represent the complete scope of information relating to this review topic.
The staff's review confirmed that the information in the application and the information incorporated by reference address the required information relating to the main condensers.

The staff reviewed the information in the COL FSAR:

Tier 2 Departure Not Requiring Prior NRC Approval

• STP DEP 10.4-2

Main Condenser

NRC staff reviewed STP DEP 10.4-2, which involves the use of an MC design that is different from the one approved in the ABWR DCD. Subsection 10.4.1.2.1, "General Description," of the ABWR DCD describes the MC as a multi-pressure, three-shell, reheating/deaerating unit. The DCD MC design is modified by STP DEP 10.4-2 in the COL application to be a single-pass, single-pressure, three-shell deaerating unit. The departure also indicates that the three condenser shells are cross-connected to equalize pressure

The applicant's evaluation of this departure described above, in accordance with Item B.5 of Section VIII of Appendix A, determined that this departure does not require prior NRC approval. The staff reviewed the Part 7 "Departures Report" regarding this departure and was unable to determine whether the departure meets Criteria (2), (4), and (6) in Appendix A, VIII.B.5b or adequately addresses GDC 4. Therefore, the staff issued **RAI 10.04.01-1 (eRAI 22)** requesting the applicant to provide the following clarifications.

The staff requested the applicant to explain the impact from the temperature and pressure surges in the MC on the low-pressure turbine and condenser internals during the most limiting turbine steam bypass event. Also, the staff requested additional information regarding the maximum temperature and pressure reached during this event compared to the maximum design values, the impact of a blowdown and transient effects on condenser internals, and the limiting assumptions that apply. The staff also requested the applicant to explain how the MC design capability for the most limiting case will be confirmed during preoperational testing.

In addition, the staff identified inconsistencies in the FSAR because of the changes in STP DEP 10.4-2. FSAR Table 10.4-1, "Condenser Design Data," indicates that the full power MC shell pressure for the STP design is 9.38 kPaA when the circulating water temperature is 32.2°C. However, FSAR Figure 10.1-3, "Reference Heat Balance for Valves Wide Open," shows the pressure of the main condenser as 6.37 kPa and the rated turbine exhaust pressure as 6.77 kPa. Therefore, the staff requested the applicant to provide an explanation for this apparent inconsistency, as well as a confirmation that the MC shell design pressure range of 0 to 207 kPaA that is specified in Table 10.4-1 (cited above) continues to apply to the STP main condensers. Also, the staff asked the applicant to clarify which pressures are absolute and which are gauge.

The applicant responded to **RAI 10.04.01-1 (eRAI 22)** in a letter dated May 20, 2008 (ML081440107). The applicant states that with respect to the impact of the steam bypass discharge on the LP turbine and MC internals, the bypass system consists of three headers with

_

See "Finality of Referenced NRC Approvals" in SER Section 1.1.3, for a discussion on the staff's review related to verification of the scope of information to be included in a COL application that references a design certification.

each routed to one of the three condenser shells. The bypass steam is discharged into each of the three condensers through a perforated header between the MC tube bundle and the low pressure feedwater heaters, which are installed in the condenser neck. The steam exit velocity from the perforated header is expected to be sonic. Therefore, the condenser internal support members are designed and routed with consideration to the bypass steam jet impingement impact and temperature effect. Additionally, tubes located at the top of the condenser tube bundle are designed to withstand the resulting velocities and temperatures. Furthermore, the MC design includes a spray system that is initiated based on a turbine bypass valve open signal. This MC spray system provides a protective water curtain between the turbine components and the bypass line to shield the turbine from the bypass steam. The MC spray is initiated based on the turbine bypass valve open signal. The staff determined that the applicant's response provides a reasonable assurance that the MC design includes features that protect the LP turbine and the condenser internals from the adverse effects of the steam bypass. The staff found the applicant's response acceptable.

Regarding the preoperational testing to verify condenser capacity during the bypass steam dump, the STP Initial Test Program procedures require that one of the three bypass steam headers be allowed to discharge into the condenser at 75 percent of the rated load. At this load, the main steam inlet pressure to the turbine and the bypass flow rate are expected to be at their maximum design values. The procedures also require that the selected header remain open for 5 minutes to verify that no adverse transient conditions can result. Furthermore, following the test, the condenser internal components are visually inspected for any significant damage or erosion. The staff found the applicant's preoperational test procedures adequate because they ensure that the system will function at its maximum design values.

Additionally, regarding the condenser pressure at low circulating water temperatures and the condenser shell design pressure, the applicant states that Table 10.4-1 indicates a condenser capability design pressure of 9.38 kPaA. This pressure corresponds to the condenser design pressure calculated by the turbine heat balance at the rated thermal power. The pressure values of 6.37 kPaA and 6.77 kPaA indicated in Figure 10.1-3 represent the condenser pressure and turbine exhaust pressure each at the guaranteed condition. The applicant's response thus confirms that both pressures are absolute. The condenser shell is designed for a pressure range of 0 to 207 kPaA. The upper value is based on the hydrostatic pressure test performed in accordance with the Heat Exchange Institute Standard for steam surface condensers, 9th Edition addenda (equivalent to 15 psig). The staff found the above explanation adequate because it clarifies that there is no inconsistency and the values identified in the FSAR are absolute.

Further, the applicant's response notes that no COL application revision is required as a result of this RAI response. The staff concluded that the applicant has provided adequate clarifications that resolve the staff's concerns in **RAI 10.04.01-1 (eRAI 22)**. The staff verified that FSAR Revision 3 incorporates the applicant's response. Therefore, **RAI 10.04.01-1 (eRAI 22)** is resolved.

10.4.1.5 **Post Combined License Activities**

There are no post COL activities related to this section.

10.4.1.6 **Conclusion**

The NRC staff's finding related to information incorporated by reference is documented in NUREG–1503. The staff reviewed the application and checked the referenced DCD. The staff's review confirmed that the applicant has addressed the required information, and no outstanding information is expected to be addressed in the COL FSAR related to this section. Pursuant to 10 CFR 52.63(a)(5) and Part 52, Appendix A, Section VI.B.1, all nuclear safety issues relating to the main condenser that were incorporated by reference have been resolved.

In addition, the staff compared the information in the application to the existing licensing basis and relevant NRC regulations and acceptance criteria in NUREG–0800, Section 10.4.1.

NRC staff evaluated the plant-specific information relating to the MC design for the STP COL application. Based on the results of this evaluation, the staff concluded that implementation of the site-specific departure and the RAI responses described in the "Technical Evaluation" section will in fact enhance system reliability and will have no adverse impact on the MC system. The staff also determined that there are no Technical Specification and ITAAC considerations related to this area of review. Therefore, the STP COL is acceptable with respect to the MC system.

10.4.2 Main Condenser Evacuation System

10.4.2.1 *Introduction*

This FSAR section addresses the process that removes noncondensable gases from the power cycle steam. Noncondensables include mostly the hydrogen and oxygen produced by the radiolysis of water in the reactor, but also other power cycle noncondensable gases that might mix with the steam. The MC evacuation system (MCES) removes the hydrogen and oxygen produced by the radiolysis of water in the reactor and the S&PC system and other noncondensable gases produced by the power cycle. The MCES exhausts these noncondensable gases to the offgas system during plant power operation and to the turbine building compartment exhaust system at the beginning of each plant startup.

10.4.2.2 **Summary of Application**

Section 10.4.2 of the STP COL FSAR incorporates by reference Section 10.4.2 of the certified ABWR DCD, with the following departure:

Tier 2 Departure Not Requiring Prior NRC Approval

• STP DEP 10.4-3

Main Condenser Evacuation System:

This site-specific departure adds an additional mechanical vacuum pump to the MCES. The design now consists of two (100 percent capacity) vacuum pumps, which is an increase from the single vacuum pump specified in the DCD. The departure also changes the source of the motive steam supply to the steam jet air ejectors from cross-around steam to main steam, during power operation.

10.4.2.3 **Regulatory Basis**

The regulatory basis of the information incorporated by reference is in NUREG-1503.

In addition, the relevant requirements of the Commission regulations for the MCES and the associated acceptance criteria are in Section 10.4.2 of NUREG-0800.

In accordance with Section VIII, "Processes for Changes and Departures," of, "Appendix A to Part 52--Design Certification Rule for the U.S. Advanced Boiling Water Reactor," the applicant identifies one Tier 2 departure. Tier 2 departures not requiring prior NRC approval are subject to the requirements of 10 CFR Part 52, Appendix A, Section VIII.B.5, which are similar to the requirements in 10 CFR 50.59.

In particular, the regulatory basis and review criteria that the staff used for STP DEP 10.4-3 are specified in SRP Section 10.4.2 and GDC 60, "Control of releases of radioactive materials to the environment," as they relate to the ability to control the release of radioactive materials in gaseous and liquid effluents.

10.4.2.4 **Technical Evaluation**

As documented in NUREG–1503, NRC staff reviewed and approved Section 10.4.2 of the certified DCD for the ABWR design. The staff reviewed Section 10.4.2 of the STP Units 3 and 4 COL FSAR and checked the referenced ABWR DCD to ensure that the combination of the information in the COL FSAR and the information in the ABWR DCD appropriately represents the complete scope of information relating to this review topic. The staff's review confirmed that the information in the application and the information incorporated by reference address the required information relating to the MCES.

The staff reviewed the information in the COL FSAR:

Tier 2 Departure Not Requiring Prior NRC Approval

• STP DEP 10.4-3

Main Condenser Evacuation System

NRC staff reviewed STP DEP 10.4-3, which increases the number of vacuum pumps with 100 percent capacity from one to two.

The applicant's evaluation of the above departure, in accordance with Item B.5 of Section VIII of Appendix A, determined that this departure does not require prior NRC approval. The staff found it reasonable that the departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

10.4.2.5 **Post Combined License Activities**

There are no post COL activities related to this section.

10.4.2.6 Conclusion

_

The NRC staff's finding related to information incorporated by reference is in NUREG-1503. The staff reviewed the application and checked the referenced DCD. The staff's review confirmed that the applicant has addressed the required information, and no outstanding

See "Finality of Referenced NRC Approvals" in SER Section 1.1.3, for a discussion on the staff's review related to verification of the scope of information to be included in a COL application that references a design certification.

information is expected to be addressed in the COL FSAR related to this section. Pursuant to 10 CFR 52.63(a)(5) and Part 52, Appendix A, Section VI.B.1, all nuclear safety issues relating to the MCES that were incorporated by reference have been resolved.

In addition, the staff compared the additional information in the application to the relevant NRC regulations and acceptance criteria in NUREG–0800, SRP Section 10.4-2. The staff found it reasonable that the identified Tier 2 departure is characterized as not requiring prior NRC approval per 10 CFR Part 52, Appendix A, Section VIII.B.5.

The staff evaluated the plant-specific information that was provided relative to the MCES for the STP COL application. Based on the results of this evaluation, the staff found that implementation of the site-specific departure described in the "Technical Evaluation" section will in fact enhance system reliability and will have no adverse impact on the MCES, as it relates to the regulatory criteria cited for this system. The staff also determined that there are no Technical Specification, ITAAC, or Initial Test Program considerations related to this area of review.

10.4.3 Turbine Gland Sealing System

10.4.3.1 *Introduction*

This section of the FSAR addresses how the turbine gland sealing system (TGSS) prevents the escape of radioactive steam from the turbine shaft, turbine casing penetrations, and valve stems. The TGSS also prevents air in-leakage through sub-atmospheric turbine glands. The TGSS consists of a gland steam evaporator (GSE); sealing steam pressure regulator; sealing steam header; gland steam condenser with two full-capacity exhauster blowers; and the associated piping, valves, and instrumentation. The TGSS provides a source of sealing steam to the annulus space where the turbine and large steam valve shafts penetrate the turbine casings.

10.4.3.2 **Summary of Application**

Section 10.4.3 of the STP COL FSAR incorporates by reference Section 10.4.3 of the certified ABWR DCD, Revision 4, referenced in 10 CFR Part 52, Appendix A, with the following departure:

Tier 2 Departure Not Requiring Prior NRC Approval

• STD DEP 10.4-1

Turbine Gland Seal Steam

This departure describes a design change that adds a nonsafety-related GSE to the referenced ABWR DCD TGSS that will supply sealing steam to the main turbine shaft seal glands and various turbine valve stems, including the turbine bypass and main turbine stop-control valve stems. The applicant states that the addition of the GSE will allow operational flexibility and will minimize the use of the auxiliary boiler during plant startup and shutdown. Also, the use of the clean steam for gland sealing will minimize the release of radioactivity into the environment and the as low as reasonably achievable (ALARA) concerns. The applicant states that this departure was evaluated and determined to comply with the requirements in 10 CFR Part 52, Appendix A, Section VIII.B.5.

In addition, in FSAR Section 10.4.3, the applicant provides the following:

COL License Information Item

• COL License Information Item 10.6 Radiological Analysis of the TGSS Effluents

This COL license information item states that the "performance of a radiological analysis of the TGSS effluents is included in the offsite dose calculation manual (ODCM) that contains the methodology and parameters used for calculation of offsite doses resulting from gaseous and liquid effluents, including the turbine gland seal steam condenser exhaust."

10.4.3.3 **Regulatory Basis**

The regulatory basis of the information incorporated by reference is in NUREG–1503. In addition, the relevant requirements of the Commission regulations for the TGSS and the associated acceptance criteria are in Section 10.4.3 of NUREG–0800.

In accordance with Section VIII, "Processes for Changes and Departures," of, "Appendix A to Part 52--Design Certification Rule for the U.S. Advanced Boiling Water Reactor," the applicant identifies one Tier 2 departure. This Tier 2 departure does not require prior NRC approval and is subject to the requirements of 10 CFR Part 52, Appendix A, Section VIII.B.5, which are similar to the requirements in 10 CFR 50.59.

In particular, the regulatory basis and review criteria that the staff used for COL License Information Item 10.6 and Tier 2 Departure STD DEP 10.4-1 are specified in GDC 60, "Control of releases of radioactive materials to the environment," as it relates to the TGSS features incorporated to monitor and control releases of radioactive materials in effluents.

10 4 3 4 **Technical Evaluation**

As documented in NUREG–1503, NRC staff reviewed and approved Section 10.4.3 of the generic DCD for the ABWR design. The staff reviewed Section 10.4.3 of the STP Units 3 and 4 COL FSAR and checked the referenced ABWR DCD to ensure that the combination of the information in the COL FSAR and the information in the ABWR DCD appropriately represents the complete scope of information relating to this review topic. The staff's review confirmed that the information in the application and the information incorporated by reference address the required information relating to the TGSS.

The staff reviewed the information in the COL FSAR:

Tier 2 Departure Not Requiring Prior NRC Approval

• STD DEP 10.4-1

Turbine Gland Seal Steam

NRC staff reviewed STD DEP 10.4-1, which refers to the addition of a GSE to supply sealing steam to the main turbine shaft seal glands and various turbine valve stems, including the turbine bypass and main turbine stop-control valve stems, as shown in FSAR Tier 2 Figure 10.4-2, "Turbine Gland Seal System." The GSE will provide isolation from the potentially contaminated heating steam and the clean steam supplied to the gland seal system. Also, the use of the clean steam for gland sealing will minimize the release of radioactivity into the

See "Finality of Referenced NRC Approvals" in SER Section 1.1.3, for a discussion on the staff's review related to verification of the scope of information to be included in a COL application that references a design certification.

environment and ALARA concerns. Due to the addition of the GSE, FSAR Figure 10.4-2 in FSAR Revision 0 of the COL application was subsequently modified from ABWR DCD Figure 10.4-2. The modification to Figure 10.4-2 as part of STD DEP 10.4-1 did not show how the GSE ties in with the turbine auxiliary steam header, main steam lines ahead of the turbine main stop valves, turbine extraction, and condensate described in STD DEP 10.4-1. Also, FSAR Figure 10.4-2 did not show the GSE relief valves that protect the tubeside and shellside from overpressure, the relief valve flow paths, and the modulating control valves. Additionally, the removal and addition of flow lines in Figure 10.4-2 created confusion as to the source and disposition of the sealing steam.

The applicant's evaluation of this departure described above, in accordance with Item B.5 of Section VIII of Appendix A, determined that this departure does not require prior NRC approval. The staff reviewed the Part 7 "Departures Report" regarding this departure and was unable to determine whether the departure meets Criteria (2), (4), and (6) in Appendix A, VIII.B.5b or adequately addresses GDC 4. Therefore, the staff issued **RAI 10.04.03-3 (eRAI 117)** requesting the applicant for the above information and clarifications.

In the response to **RAI 10.04.03-3 (eRAI 117)**, dated May 20, 2008 (ML081440107), the applicant provides a markup of Figure 10.4-2. The applicant states that some of the changes in the COL application were due to the revised Toshiba design of the TGSS. A summary of the applicant's response and the staff's evaluation follows:

- (1) The applicant states that the loop seal between the turbine building ventilation exhaust and the condensate drain tank was deleted in the Toshiba design. Instead, the blower drain line is connected to the U-seal at the bottom of the gland steam condenser. The applicant provided a markup of Figure 10.4-2. The staff's review found that the applicant did not explain how this modification to the certified design would not impact the TGSS. The staff issued supplemental RAI 10.04.03-4 (eRAI 4102) requesting the applicant to provide additional information in this regard. Item 1 in RAI 10.04.03-3 is being tracked as Open Item 10.04.03-4.
- (2) The applicant states that the pressure switch between the exhaust blowers and the condensate storage and transfer line is not needed in the Toshiba design. In the certified design, the standby blower starts on a pressure signal. In the Toshiba design, the standby blower is started manually. Because the unit relies on an operational blower to maintain a vacuum, the staff issued supplemental RAI 10.04.03-5 (eRAI 4102) requesting the applicant to explain why this modification in the TGSS design does not adversely affect the GSC and prevent it from performing its intended function. Item 2 in RAI 10.04.03-3 is being tracked as Open Item 10.04.03-5.
- (3) The applicant adds that the vent on the condensate drain tank line to the gland steam condenser is necessary. However, in the revised design, the vent is incorporated into the U-seal line. The applicant indicates that the FSAR will be revised to relocate the vent, as shown in revised Figure 10.4-2. The staff found this relocation of the vent acceptable, because it is in the Toshiba design and does not impact the TGSS operation. The staff determined that the applicant has provided adequate clarifications that resolved the staff's concerns regarding this issue as part of RAI 10.04.03-3 (eRAI 117). The staff verified that FSAR Revision 3 incorporates the applicant's response. Therefore, Item 3 in RAI 10.04.03-3 (eRAI 117) is resolved.

- (4) The applicant notes that the flow arrow of the condensate admittance into the gland steam condenser was removed in error and FSAR Figure 10.4-2 will be revised to correct the error, as shown in revised Figure 10.4-2. The staff determined that the applicant has provided adequate clarifications that resolved the staff's concerns regarding this issue as part of RAI 10.04.03-3 (eRAI 117). The staff verified that FSAR Revision 3 incorporates the applicant's response. Therefore, Item 4 in RAI 10.04.03-3 (eRAI 117) is resolved.
- (5) The applicant notes that the "4A, B, and C" labeling for the feedwater heater line was removed in error. The applicant provided a markup of revised FSAR Figure 10.4-2 to reincorporate the labeling.-The staff determined that the applicant has provided adequate clarifications that resolved the staff's concerns regarding this issue as part of RAI 10.04.03-3 (eRAI 117). The staff verified that FSAR Revision 3 incorporates the applicant's response. Therefore, Item 5 in RAI 10.04.03-3 (eRAI 117) is resolved.
- (6) The applicant states that the valve depiction in COL application Revision 1 is incorrect, and it will be revised as shown in the markup of Figure 10.4-2. The auxiliary steam valve sequence was altered in STP COL FSAR Revision 1 compared to ABWR DCD Revision 0. The valve configuration in the revised Figure 10.4-2 deleted a check valve between the motor-driven and regulating valve. The check valves, in general, prevent backflow in the system. Therefore, the staff issued supplemental RAI 10.04.03-6 (eRAI 4102) requesting the applicant to justify the deletion of this check valve. This issue is being tracked as part of Open Item 10.04.03-6.
- (7) The applicant notes that the depiction of the gland seal steam connection in COL application Revision 1 is incorrect and provided a markup of FSAR Figure 10.4-2. In the ABWR DCD, a gland seal steam line that apparently goes nowhere was added between the relief valve to the condenser and the feedwater heater flow line. The applicant indicates that this additional line is incorrect and will be removed in the revised Figure 10.4-2. The applicant commits to revise the FSAR as shown in the markup of FSAR Figure 10.4-2. -The staff determined that the applicant has provided adequate clarifications that resolve the staff's concerns regarding this issue as part of RAI 10.04.03-3 (eRAI 117). The staff verified that FSAR Revision 3 incorporates the applicant's response. Therefore, this issue is resolved.
- (8) FSAR Figure 10.4-2 will be revised as shown in the markup of Figure 10.4-2 to show the GSE ties with the turbine auxiliary steam header, the main steam lines ahead of the turbine main stop valves, turbine extraction, and the condensate as described in STD DEP 10.4-1. -The staff determined that the applicant has provided adequate clarifications that resolved the staff's concerns regarding this issue in RAI 10.04.03-3 (eRAI 117). The staff verified that FSAR Revision 3 incorporates the applicant's response. Therefore, this issue is resolved.
- (9) The applicant states that FSAR Figure 10.4-2 will be revised in the markup of Figure 10.4-2 to show the GSE relief valves that protect the tube side and shell side from overpressure, the relief valve flow paths, and the modulating control valves. The applicant has provided a revised Figure 10.4-2 in Revision 3 of the FSAR that includes relief valves (on both shell and tube sides of the GSE), the relief valve discharge flow paths to the main condenser, and the modulating valves as described in STD DEP 10.4-1. The staff determined that the applicant has provided adequate clarifications that resolve the staff's concerns regarding this issue as part of

RAI 10.04.03-3 (eRAI 117). The staff verified that FSAR Revision 3 incorporates the applicant's response. Therefore, this issue is resolved.

Based on the above discussion, the staff considers **RAI 10.04.03-3** (eRAI 117) closed and unresolved. The remaining issues in this RAI are covered by the resolution of **Open Items 10.04.03-4**, **10.04.03-5**, and **10.04.03-6**. Therefore, the staff is unable to complete a review of this departure until the applicant has adequately addressed **Open Items 10.04.03-4**, **10.04.03-5**, and **10.04.03-6**.

The staff's review of additional information in the COL FSAR Section 10.4.3 is summarized below.

FSAR Subsection 10.4.3.2.2, "System Operation," states that the seal steam header pressure is regulated automatically by the sealing steam pressure regulator. The discussion also states that the pressure is controlled at approximately 27.6 kPaG, and relief valves protect the sealing steam header from overpressure. The FSAR does not discuss the basis for the specific controller operating pressure and does not describe how it controls the release of radioactive material. In order to comply with SRP Section 10.4.3 criteria and the GDC 60 requirement, the staff issued **RAI 10.04.03-1 (eRAI 115)** requesting the applicant to provide additional information in this regard.

The applicant's response to RAI 10.04.03-1 (eRAI 115) dated May 20, 2008 (ML081440107), states that the basis for a controller operating pressure for each turbine gland requires sufficient steam to seal the gland. The larger the gland clearance, the greater the steam flow required to seal the gland. Approximately 11 kPaG of steam header pressure is required to supply sufficient steam flow to the maximum clearance gland. The 27.6 kPaG controller operating pressure provides a sufficient margin to the required 11 kPaG. The applicant further states that the minimum of 11 kPaG prevents turbine internal steam from releasing to the gland steam condenser and leaking to the plant stack. Also, the applicant indicates that no FSAR revision is required as a result of this RAI response. The staff concluded that the applicant has provided adequate clarifications that resolve the staff's concerns regarding RAI 10.04.03-1 (eRAI 115). Therefore, RAI 10.04.03-1 (eRAI 115) is resolved.

In addition, the staff reviewed FSAR Subsection 10.4.3.3, "Evaluation," which states that the TGSS is designed to prevent the leakage of radioactive steam from the main turbine shaft glands and valve stems. This discussion also notes that the high-pressure turbine shaft seals must accommodate a range of turbine shell pressure from a full vacuum to approximately 17.3 MPaA. Referring to the ABWR DCD, the staff noticed that in the COL application, the maximum operating pressure limit for the high-pressure turbine shaft seals had been increased from 1.52 to 17.3 MPaA. Although the staff recognized that increasing the maximum operating pressure may indicate that the seals are capable of functioning under a greater range of pressures, the staff expressed three concerns: (1) how the TGSS will accommodate this increased pressure demand for the supply of sealing steam at 17.3 MPaA pressure, (2) whether the TGSS will have the ability to prevent radioactive releases into the environment, and (3) whether the TGSS will satisfy the requirements of GDC 60 criteria with respect to radioactive releases. The staff issued RAI 10.04.03-2 (eRAI 116) requesting the applicant to provide additional information in this regard.

The applicant's response dated May 20, 2008 (ML081440107), states that the 17.3 MPaA TGSS operating pressure was an error and would be revised to 1.77 MPaA. The new 1.77 MPaA pressure is still a change from the ABWR DCD. However, the applicant states that

the TGSS can accommodate the slight pressure increase. According to the applicant, FSAR Subsection 10.4.3.3 will be revised to state that the high-pressure turbine shaft seals must accommodate a range of turbine shell pressure from full vacuum to approximately 1.77 MPaA. The staff concluded that the applicant has provided adequate clarifications that resolve the staff's concerns in RAI 10.04.03-2 (eRAI 116). The staff verified that FSAR Revision 3 incorporates the applicant's response. Therefore, RAI 10.04.03-2 (eRAI 116) is resolved.

COL License Information Item

COL License Information Item 10.6
 Radiological Analysis of the TGSS Effluents

NRC staff reviewed STP COL FSAR Subsection 10.4.10.1 and Section 10.4.3, as they relate to COL License Information Item 10.6. ABWR DCD Subsection 10.4.10.1, "Radiological Analysis of the TGSS Effluents," states that the COL applicant will provide an analysis of the TGSS effluents and will include planned discharge flow rates, including the level at which the TGSS steam supply will be switched over to the auxiliary steam. FSAR Subsections 10.4.10.1 and 10.4.3.3 provide information and an evaluation that (1) the ODCM will provide the means and methodology to capture any gaseous effluent from the TGSS in the plant vent system, and (2) the ODCM will include any radioactive content of the sealing steam. Although the applicant did not provide specific information to be included in the ODCM, the applicant is required to sample, analyze, and monitor all radioactive inputs to the plant vent that exhausts into the atmosphere (FSAR Section 11.3). The staff reviewed the applicant's information and determined that the applicant's response to COL License Information Item 10.6 is acceptable.

ITAAC Considerations

ITAAC listed in Table 2.10.9 of Part 2 Tier 1, Section 2.10.9 of the ABWR DCD are incorporated by reference with no departures or supplements for the STP COL.

10.4.3.5 **Post Combined License Activities**

There are no post COL activities related to this section.

10.4.3.6 **Conclusion**

The NRC staff's finding related to information incorporated by reference is documented in NUREG–1503. NRC staff reviewed the application and checked the referenced DCD. The staff's review confirmed that the applicant has addressed the required information relating to the TGSS. With the exceptions of **Open Items 10.04.03-4**, **10.04.03-5**, and **10.04.03-6**, no outstanding information is expected to be addressed in the COL FSAR related to this section. Pursuant to 10 CFR 52.63(a)(5) and Part 52, Appendix A, Section VI.B.1, all nuclear safety issues relating to the TGSS that were incorporated by reference have been resolved.

In addition, the staff compared the additional COL information in the application to the existing licensing basis and relevant NRC regulations and acceptance criteria in NUREG–0800, Section 10.4.3.

The staff reviewed the TGSS documented in STP FSAR Section 10.4.3, STD DEP 10.4-1, and the applicant's RAI responses as they relate to the new Toshiba design of the TGSS. On the basis of this review, the staff found that the STP TGSS continues to meet all acceptance criteria documented in NUREG-1503 and is therefore considered acceptable. However, as a result of

the open items, the staff was unable to finalize the conclusion relating to the TGSS in accordance with NRC requirements.

10.4.4 Turbine Bypass System

10.4.4.1 Introduction

This FSAR section addresses the capability to discharge main steam from the reactor directly to the MC to minimize step load reduction transient effects on the reactor coolant system. The TBS is designed to discharge a certain percentage of rated main steam flow directly to the MC, thus bypassing the turbine. The bypassed quantity is sufficient to allow a 33 percent electrical step load reduction without a reactor trip. The TBS is also used to discharge main steam during reactor hot standby and cooldown operations.

10.4.4.2 **Summary of Application**

Section 10.4.4 of the STP COL FSAR incorporates by reference Section 10.4.4 of the certified ABWR DCD, Revision 4, referenced in 10 CFR Part 52, Appendix A with the following departures:

Tier 2 Departures Not Requiring Prior NRC Approval

• STD DEP 10.4-6

Load Rejection Capability

This standard departure modifies the capability of the TBS from 40 percent of the turbinegenerator rated load to 33 percent of the load. The departure also identifies the reactor water recirculation. The applicant determined that this departure complies with the requirements of 10 CFR Part 52, Appendix A, Section VIII.B.5 and does not require prior NRC approval.

In addition, in STP COL FSAR Section 10.4.4, the applicant incorporates the following administrative departure:

STD DEP Admin

This departure clarifies the description of TBS components. The applicant determined that this departure complies with the requirements of 10 CFR Part 52, Appendix A, Section VIII.B.5 and does not require prior NRC approval.

10.4.4.3 **Regulatory Basis**

The regulatory basis of the information incorporated by reference is in NUREG–1503. In addition, the relevant requirements of the Commission regulations for the TBS and associated acceptance criteria are in Section 10.4-4 of NUREG–0800.

In accordance with Section VIII, "Processes for Changes and Departures," of, "Appendix A to Part 52--Design Certification Rule for the U.S. Advanced Boiling Water Reactor," the applicant identifies Tier 2 departures. Tier 2 departures not requiring prior NRC approval are subject to the requirements of 10 CFR Part 52, Appendix A, Section VIII.B.5, which are similar to the requirements in 10 CFR 50.59.

In particular, the regulatory basis and review criteria that the staff used for STD DEP 10.4-6 are specified in SRP Section 10.4.4 and GDC 34, "Residual heat removal," as they relate to the ability to use the system for shutting down the plant during normal operations. The operation of the TBS eliminates the need to rely solely on safety systems, which are required to meet the redundancy and power source requirements of this criterion.

10.4.4.4 **Technical Evaluation**

As documented in NUREG–1503, NRC staff reviewed and approved Section 10.4.4 of the generic DCD for the ABWR design. The staff reviewed Section 10.4.4 of the STP Units 3 and 4 COL FSAR and checked the referenced ABWR DCD to ensure that the combination of the information in the COL FSAR and the information in the ABWR DCD appropriately represents the complete scope of information relating to this review topic. The staff's review confirmed that the information in the application and the information incorporated by reference address the required information relating to the TBS.

The staff reviewed the information in the COL FSAR:

Tier 2 Departures Not Requiring Prior NRC Approval

• STD DEP 10.4-6

Load Rejection Capability

NRC staff reviewed STD DEP 10.4-6, which involves a reduced design capacity for the TBS.

The applicant determined that this departure does not require prior NRC approval, in accordance with Item B.5 of Section VIII of Appendix A. Within the review scope of this section, the staff found it reasonable that the departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

STD DEP Admin

NRC staff reviewed the administrative departure listed by the applicant in FSAR Section 10.4.4. This departure clarifies the description of TBS components. The applicant determined that this departure does not require prior NRC approval, in accordance with Item B.5 of Section VIII of Appendix A. Within the review scope of this section, the staff found it reasonable that the departure does not require prior NRC approval with regard to its applicability to turbine bypass capacity. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

10.4.4.5 **Post Combined License Activities**

There are no Post COL activities related to this section.

10.4.4.6 **Conclusion**

The NRC staff's finding related to information incorporated by reference is in NUREG–1503. NRC staff reviewed the application and checked the referenced DCD. The staff's review

See "Finality of Referenced NRC Approvals" in SER Section 1.1.3, for a discussion on the staff's review related to verification of the scope of information to be included in a COL application that references a design certification.

confirmed the applicant has addressed the required information, and no outstanding information is expected to be addressed in the COL FSAR related to this section. Pursuant to 10 CFR 52.63(a)(5) and Part 52, Appendix A, Section VI.B.1, all nuclear safety issues relating to the TBS that were incorporated by reference have been resolved.

In addition, the staff compared the additional information in the application to the relevant NRC regulations and acceptance criteria in NUREG–0800, Section 10.4.4. The staff found it reasonable that the identified Tier 2 departures are characterized as not requiring prior NRC approval per 10 CFR Part 52, Appendix A, Section VIII.B.5.

The staff evaluated the plant-specific information that was provided relative to the TBS for the STP COL application. Based on the results of this evaluation, the staff found that the heat removal capability of the TBS for shutting down during normal operations remains adequately protected. The staff determined that there are no Technical Specification, ITAAC, or Initial Test Program considerations related to this area of review.

10.4.5 **Circulating Water System**

10.4.5.1 *Introduction*

This section of the FSAR describes how the circulating water system (CWS) provides cooling water for the removal of the power cycle waste heat from the main condensers and transfers this heat to the power cycle heat sink. For STP Units 3 and 4, the power cycle heat sink utilizes a main cooling reservoir to reject power cycle waste heat.

10.4.5.2 **Summary of Application**

Section 10.4.5 of the STP COL FSAR incorporates by reference Section 10.4.5 of the certified ABWR DCD, Revision 4, referenced in 10 CFR Part 52, Appendix A, with the following departures:

Tier 1 Departure

• STD DEP T1 3.4-1

Safety-Related I&C Architecture

This standard departure modifies the design of certain devices, functions, and standards related to the EMS and SSLC. The departure also updates the ABWR DCD design descriptions that reflected outdated technology. This departure is incorporated in FSAR Subsection 10.4.5.5, "Instrumentation Applications."

Tier 2 Departure Not Requiring Prior NRC Approval

• STP DEP 10.4-2

Main Condenser

This site-specific departure changes the main condenser, provides four circulating water pumps with a 25 percent capacity, adds the water box vacuum priming system, and eliminates the warm water recirculation operating mode and associated recirculation components. This departure is incorporated in FSAR Subsection 10.4.5.5, "Instrumentation Applications," and Subsection 10.4.5.7, "Portions of the CWS Outside of Scope of ABWR Standard Plant."

• STP DEP 1.2-2

Turbine Building

This departure addresses changes to the turbine building because of design change to the STP Units 3 and 4 turbine generator, use of the main cooling reservoir (instead of the natural draft cooling tower), and the use of a dual voltage design versus a medium voltage electrical system design in the ABWR DCD. .

In addition, in STP COL FSAR Section 10.4.5, the applicant provides the following interface requirements and conceptual design:

Interface Requirements

Flooding Considerations for CWS:

In ABWR DCD Tier 1 Section 2.10.23, the interface requirements for the CWS state that "the design features shall be provided to limit flooding in the Turbine Building."

Conceptual Design Information

Power Cycle Heat Sink (FSAR Subsection 10.4.5.8):

In the ABWR DCD, the conceptual design of the power cycle heat sink utilizes a natural draft cooling tower. In the STP COL FSAR, the applicant replaces this conceptual design information with a site-specific supplement. The STP Units 3 and 4 power cycle heat sink uses a main cooling reservoir to reject power cycle waste heat. The main cooling reservoir contains approximately 202,700 acre-feet of water and is discussed in FSAR Section 2.4S.

In the STP COL FSAR, the applicant provides detailed, site-specific design-basis information in accordance with Subsection 10.4.5.8.2, "Power Generation Design Basis (Interface Requirements)," of the referenced ABWR DCD, for the interface requirements between the main condenser and the main cooling reservoir as divided at the turbine building wall (see ABWR DCD Tier 1 Figure 2.10.23, "Circulating Water System").

Portions of the CWS Outside of Scope of ABWR Standard Plant (FSAR Subsection 10.4.5.7):

In STP COL FSAR Subsection 10.4.5.7, the applicant replaces the phrase "screen house" with "intake structure" to accommodate the change from the natural draft cooling tower (conceptual design) to an main cooling reservoir. The applicant also provides a site-specific supplement. The supplement describes the intake structure, circulating water flow-path, and vacuum priming pump function.

In STP COL FSAR Subsection 10.4.5.7.2, the applicant provides detailed site-specific, design-basis information in accordance with Subsection 10.4.5.7.2, "Power Generation Design Basis (Interface Requirements)," of the referenced ABWR DCD, for the interface

requirements between the site-specific portions of the CWS and the ABWR standard plant.

10.4.5.3 **Regulatory Basis**

The regulatory basis of the information incorporated by reference is in NUREG–1503. In addition, the relevant requirements of the Commission regulations for the CWS and associated acceptance criteria are in Section 10.4-5 of NUREG–0800.

In accordance with Section VIII, "Processes for Changes and Departures," of, "Appendix A to Part 52--Design Certification Rule for the U.S. Advanced Boiling Water Reactor," the applicant identifies Tier 1 and Tier 2 departures. Tier 1 departures require prior NRC approval and are subject to the requirements of 10 CFR Part 52, Appendix A, Section VIII.A.4. Tier 2 departures not requiring prior NRC approval are subject to the requirements in Section VIII.B.5, which are similar to the requirements in 10 CFR 50.59.

In particular, the regulatory basis and review criteria that the staff used for the conceptual design, interface requirements, and departures described above—as they relate to the protection of SSCs important to safety from the effects of CWS considerations—are specified in SRP 10.4.5.

10.4.5.4 **Technical Evaluation**

As documented in NUREG–1503, NRC staff reviewed and approved Section 10.4.5 of the generic DCD for the ABWR design. The staff reviewed Section 10.4.5 of the STP Units 3 and 4 COL FSAR and checked the referenced ABWR DCD to ensure that the combination of the information in the COL FSAR and the information in the ABWR DCD appropriately represents the complete scope of information relating to this review topic. The staff's review confirmed that the information in the application and the information incorporated by reference address the required information relating to the CWS.

The staff reviewed the information in the COL FSAR:

Tier 1 Departures

• STD DEP T1 3.4-1

Safety-Related I&C Architecture

The staff reviewed STD DEP T1 3.4-1, which modifies the design of certain devices, functions, and standards related to the EMS and SSLC to update the referenced ABWR DCD design descriptions that reflected outdated technology. This departure also enables specific architectural changes in the engineered safety functions portion of the I&C architecture and deletes or supplements references to specific outdated communication protocol standards. This departure is incorporated in FSAR Subsection 10.4.5.5, "Instrumentation Applications." The staff's evaluation of this departure is discussed in Chapter 7 of this SER.

See "Finality of Referenced NRC Approvals" in SER Section 1.1.3, for a discussion on the staff's review related to verification of the scope of information to be included in a COL application that references a design certification.

Tier 2 Departure Not Requiring Prior NRC Approval

• STP DEP 10.4-2

Main Condenser

NRC staff reviewed STP DEP 10.4-2, a site-specific departure that changes the MC, utilizes a main cooling reservoir as the power cycle heat sink to reject power cycle waste heat, provides four circulating water pumps with a 25 percent capacity, and adds a water box vacuum priming system and intake structure. The staff reviewed the modifications described in STP DEP 10.4-2 and determined that this departure does not adversely affect the design and operational aspects of the CWS considerations that were approved for the ABWR DCD. Additionally, this departure has been identified by the applicant in FSAR Subsection 10.4.5.5, "Instrumentation Applications," and Subsection 10.4.5.7, "Portions of the CWS Outside of Scope of ABWR Standard Plant."

The applicant's evaluation determined that this departure does not require prior NRC approval in accordance with 10 CFR Part 52, Appendix A, Section VIII.B.5. Within the review scope of this section, the staff found it reasonable that this departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

• STP DEP 1.2-2

Turbine Building

In Subsection 10.4.5.3 of the STP Units 3 and 4 FSAR, the applicant provides editorial changes indicating that all credible potential circulating water spills inside the "Turbine Building remain confined inside the Turbine Building."

The applicant's evaluation determined that this departure does not require prior NRC approval in accordance with 10 CFR Part 52, Appendix A, Section VIII.B.5. Within the review scope of this section, the staff found it reasonable that the departure does not require prior NRC approval. The applicant's process for evaluating departures and other changes to the certified ABWR DCD is subject to NRC inspections.

Interface Requirements

The interface requirement for the CWS in ABWR DCD Tier 1 Section 2.10.23 states:

The parts of the CWS (including the power cycle heat sink) which are not within the Certified Design shall meet the following requirements:

(1) Design features shall be provided to limit flooding in the Turbine Building.

NRC staff reviewed STP COL FSAR Section 10.4.5 for the CWS, which does not specifically address this interface requirement specified in the DCD. Furthermore, the staff noticed that in FSAR Subsections 10.4.5.7.2 and 10.4.5.8.2, "Power Generation Design Basis (Interface Requirements)," the applicant characterizes these items as COL license information items. It is not clear as to which is the interface item and which is the COL license information item. Furthermore, with respect to flooding, the "Acceptance Criteria" in STP ITAAC Table 3.0-9, "Circulating Water System (CWS)," states that the circulating water condenser valves close and the CWS pumps are tripped following the receipt of a system isolation signal from the condenser area level switches. However, the criteria do not include closure of the CWS pump valves upon receipt of the above signal.

The staff issued **RAI 10.04.05-1 (eRAI 181)**, which requested the applicant to provide the above information and clarifications as they relate to flooding.

The applicant responded to **RAI 10.04.05-1 (eRAI 181)** in a letter dated July 2, 2008 (ML081890239), which is summarized below:

- (1) ABWR DCD Subsections 10.4.5.7.2 and 10.4.5.8.2 require the COL applicants to provide interface requirements information for the CWS. However, in the STP COL FSAR Section 10.4.5, Revision 1, the applicant inadvertently identifies these sections as COL license information items. The applicant further states that there are no COL license information items required for Section 10.4.5. The staff found the applicant's response acceptable, because there are no COL license information items identified in the DCD for the CWS.
- (2) Regarding closure of the CWS pump valves, DCD Subsection 10.4.5.2.3 states that the circulation water pumps are tripped and the pump and condenser isolation valves are closed in the event of a system isolation signal from the condenser pit high-high level switches. Because the STP Units 3 and 4 COL application incorporates Subsection 10.4.5.2.3 of the DCD by reference, in the case of the STP, when a circulating water pump is stopped, the associated pump discharge valve will also close. The staff found the applicant's clarification acceptable.
- (3) With respect to flooding considerations, the applicant states that Tier 1 Section 2.10 is incorporated by reference in the STP Units 3 and 4 COL application, with no changes from the certified design, and that section contains ITAAC Table 2.10.23 for the parts of the CWS in the certified design. According to ITAAC Table 2.10.23, Item 2 ("Design Commitment") states that the circulating water condenser valves are closed in the event of a system isolation signal from the condenser area level switches, thereby covering this aspect of the flood prevention provisions. However, the applicant further states that "Interface Requirements," as specified in DCD Tier 1 Section 2.10.23, pertain to the parts of the CWS that are not in the certified design. The intent of STP Units 3 and 4 COL application Part 9, Table 3.0-9, was to fulfill this interface requirement by providing additional verification of features designed to limit flooding in the turbine building. Therefore, COL application Part 9 Table 3.0-9 will be revised to indicate additional design requirements and acceptance criteria for the CWS pumps and pump discharge valves, as described above. The staff found this site-specific interface requirement acceptable, because it adds provisions to prevent flooding.

The applicant commits to revise the STP FSAR sections and COL application Part 9 to reflect the above changes. The staff verified that FSAR Revision 3 incorporates the applicant's response. Therefore, **RAI 10.04.05-1 (eRAI 181)** is resolved.

Conceptual Design Information

In accordance with Subsection 10.4.5.8.2, "Power Generation Design Basis (Interface Requirements)," of the referenced ABWR DCD, the applicant provides site-dependent system design features and additional information for the interface requirements between the CWS and the power cycle heat sink (i.e., main cooling reservoir) in the FSAR. NRC staff reviewed the applicant's supplements with respect to the interface requirements in ABWR DCD Subsections 10.4.5.7.2 and 10.4.5.8.2, "Power Generation Design Basis (Interface Requirements)." A brief description of these supplements follows:

(1) Design Features (FSAR Subsection 10.4.5.2):

The power cycle heat sink design is compatible with the requirements described in Subsection 10.4.5.2 of the ABWR DCD. Heated circulating water from the main condenser is discharged to the main cooling reservoir, and the cooled water is returned to the main condenser to complete the closed cycle circulating water loop. The reservoir makeup pumping facility supplies makeup water from the Colorado River to the main cooling reservoir.

(2) Evaluation of the Power Cycle Heat Sink (FSAR Section 10.4.5.3):

The main cooling reservoir is not a safety-related system as described in FSAR Subsection 10.4.5.3. Flooding resulting from the main cooling reservoir breach is documented in FSAR Sections 2.4S.4 and 2.4S.10. The staff's evaluation of this is in Sections 2.4S.4 and 2.4S.10 of this SER.

(3) Tests and Inspections (FSAR Subsection 10.4.5.4):

The CWS and related systems and facilities that are tested and checked for leakage integrity before the initial plant startup are described as part of the CWS preoperational test, which is part of FSAR Subsection 14.2.12.1.60. The staff reviewed the CWS Preoperational Test that referred back to this part of Section 10.4.5 and found it acceptable. The staff's full evaluation of this information is in Section 14.2 of this SER.

(4) Instrument Applications (FSAR Subsection 10.4.5.5):

The staff's evaluation of instrumentation applications involved reviewing manual controls for the vent valves in the condenser water boxes, monitoring the performance of the CWS by differential pressure transducers across the condenser and temperature signals from both the supply and discharge sides of the condenser. The staff's full evaluation of this information is in Chapter 7 of this SER.

(5) Flood Protection (FSAR Subsection 10.4.5.6):

Flood protection is described in FSAR Section 3.4, and the flooding that results from the main cooling reservoir breach is discussed in FSAR Sections 2.4S.4 and 2.4S.10. Additional information relating to the staff's evaluation of flood protection is in Sections 3.4, 2.4S.4, and 2.4S.10 of this SER.

(6) Turbine Service Water System Cooling (FSAR Section 9.2.16):

The main cooling reservoir continues to serve as the heat sink for the turbine service water system in the event of a loss of offsite power. The turbine service water system (FSAR Section 9.2.16) is designed to operate with electrical power from the combustion turbine generator in the absence of offsite power. This information was reviewed as part of Section 9.5.11 of this SER.

Based on a review of the applicant's proposed system design features and additional information, the staff concluded that the design of the power cycle heat sink, with respect to the interface with the CWS, is acceptable and meets the interface requirements of Subsections 10.4.5.7.2 and 10.4.5.8.2 of the referenced ABWR DCD.

10.4.5.5 **Post Combined License Activities**

There are no post COL activities related to this section.

10.4.5.6 Conclusion

The NRC staff's finding related to information incorporated by reference is documented in NUREG–1503. NRC staff reviewed the application and checked the referenced DCD. The staff's review confirmed that the applicant has addressed the required information, and no outstanding information is expected to be addressed in the COL FSAR related to this section. Pursuant to 10 CFR 52.63(a)(5) and Part 52, Appendix A, Section VI.B.1, all nuclear safety issues relating to the CWS that were incorporated by reference have been resolved.

In addition, the staff compared the additional information in the application to the existing licensing basis and relevant NRC regulations and acceptance criteria in NUREG–0800, Section 10.4.5. The staff found it reasonable that the identified Tier 2 departures are characterized as not requiring prior NRC approval per 10 CFR Part 52, Appendix A, Section VIII.B.5.

Based on the results of this evaluation, the staff determined that the additional information referred to above in the "Interface Requirements" of the "Technical Evaluation" section is acceptable. Also, the staff found that the applicant has adequately addressed the STP CWS design. In addition, the staff determined that there are no Technical specification or ITAAC Program considerations related to this area of review.

10.4.6 Condensate Purification System

This section of the FSAR addresses the Condensate Purification System (CPS). The applicant removes feedwater turbidity monitoring by STD DEP 7.7-3. This departure does not change the functional or the safety requirement of the feedwater or condensate system. Therefore, the editorial changes in Subsection 10.4.6.5 dose not affect the incorporation by reference of CPS.

Section 10.4.6 of the STP COL FSAR incorporates by reference, with no departures or supplements, Section 10.4.6, "Condensate Purification System," of the certified ABWR DCD, Revision 4, which is referenced in 10 CFR Part 52, Appendix A. NRC staff reviewed the application and checked the referenced DCD to ensure that no issue relating to this section remains for review. The staff's review confirmed that there is no outstanding issue related to this subsection. Pursuant to 10 CFR 52.63(a)(5) and Part 52, Appendix A, Section VI.B.1, all nuclear safety issues relating to the condensate purification system have been resolved.

10.4.7 Condensate and Feedwater System

10.4.7.1 *Introduction*

_

This FSAR section describes the condensate and feedwater system (CFS), which receives condensate from the condenser hotwells; supplies condensate to the cleanup system; and delivers feedwater at the required temperature, pressure, and flow rate to the reactor. The CFS consist of four condensate pumps (three normally operating and one on automatic standby);

See "Finality of Referenced NRC Approvals" in SER Section 1.1.3, for a discussion on the staff's review related to verification of the scope of information to be included in a COL application that references a design certification.

four reactor feed pumps (three normally operating and one on automatic standby); four condensate booster pumps (three normally operating and one on automatic standby); four stages of LP feedwater heaters; and two stages of HP feedwater heaters and associated piping, valves, and instrumentation. The CFS does not serve or support any safety function and has no safety-design basis. The only part of the CFS classified as safety related is the feedwater piping from the NSSS to the outermost containment isolation valve.

10.4.7.2 **Summary of Application**

Section 10.4.7 of the STP COL FSAR incorporates by reference Section 10.4.7 of the certified ABWR DCD, Revision 4, with the following departure:

Tier 2 Departure Requiring NRC Approval

• STD DEP 10.4-5

Condensate and Feedwater System

This standard departure modifies the CFS. The modifications include the addition of four condensate booster pumps to allow for the design of condensate pumps to have a low discharge suction head, the addition of one reactor feed pump and two heater drain pumps to improve plant availability, the addition of one bypass valve for bypassing HP heaters, and one low-flow control valve in the feed pump discharge header for startup. The Technical Specification 3.3.4.2 Bases (Background) is also changed to show that there are four feedwater pumps that require four feedwater pump adjustable speed drives (ASDs), as opposed to the two feedwater pump ASDs specified in the Technical Specification Bases section for the ABWR certified design.

Tier 2 Departure Not Requiring NRC Approval

• STP DEP 9.2-3

Turbine Building Cooling Water System

This departure increases the heat removal capacity of the three TCW system heat exchangers and the flow rate of each of the three pumps. The technical evaluation of this departure is in Section 9.2.14 of this SER.

10.4.7.3 **Regulatory Basis**

The regulatory basis of the information incorporated by reference is in NUREG–1503. In addition, the relevant requirements of the Commission regulations for the CFS, and the associated acceptance criteria, are in Section 10.4-7 of NUREG–0800.

In accordance with Section VIII, "Processes for Changes and Departures," of, "Appendix A to Part 52--Design Certification Rule for the U.S. Advanced Boiling Water Reactor," the applicant identifies one Tier 2 departure. Tier 2 departures affecting Technical Specifications require prior NRC approval and are subject to the requirements of 10 CFR Part 52, Appendix A, Section VIII.C.4. Tier 2 departures not requiring prior NRC approval are subject to the requirements of 10 CFR Part 52, Appendix A, Section VIII.B.5, which are similar to the requirements in 10 CFR 50.59.

In particular, the regulatory basis and review criteria that the staff used to review Departure STD DEP 10.4-5 include conformance with the guidelines of NUREG–0800, SRP Section 10.4.7 and the requirements of 10 CFR Part 50, Appendix A, GDC 2, 4, 5, 44, 45, and 46.

10.4.7.4 **Technical Evaluation**

As documented in NUREG–1503, NRC staff reviewed the conformance of Section 10.4.7 of the certified ABWR DCD. The staff reviewed Section 10.4.7 of the STP Units 3 and 4 COL FSAR and checked the referenced ABWR DCD to ensure that the combination of the information in the COL FSAR and the information in the ABWR DCD appropriately represents the complete scope of information relating to this review topic. The staff's review confirmed that the information in the application and the information incorporated by reference address the required information relating to the CFS.

The staff reviewed the information in the COL FSAR:

Tier 2 Departure Requiring Prior NRC Approval

STD DEP 10.4.5

Condensate and Feedwater System

NRC staff reviewed STD DEP 10.4.5, which modifies the basic configuration of the CFS. Specific modifications proposed by the departure include:

- The addition of four 33 percent capacity condensate booster pumps in a system designed to have three of the pumps normally operating and the fourth on automatic standby.
- The addition of one reactor feed pump, which increases the total number of feed pumps from three to four.
- The addition of two reactor heater drain pumps, which increases the number of heater drain pumps from two to four.
- The addition of a flow control bypass valve in the discharge header for startup.
- The addition of one bypass valve for bypassing the HP heaters.

The above modifications resulted in the following revisions: FSAR Subsections 10.4.7.2.1, 10.4.7.2.2, 10.4.7.2.3, and 10.4.7.2.5; FSAR Tables 10.4-5 and 10.4-6; and FSAR Figures 10.4--5 through 10.4.8. The staff noted that the applicant's revision of FSAR Subsection 10.4.7.2.2, "Component Description," did not include a description of the condensate booster pumps that were added to the system by STD DEP 10.4.5. Because the condensate booster pumps are major components of the STP CFS, and the FSAR describes the major components of the CFS, the staff issued **RAI 10.04.07-2 (eRAI 152)** requesting the applicant to explain why the condensate booster pumps are not included in the descriptions in Subsection 10.4.7.2.2 of the FSAR.

In a letter dated May 29, 2008 (ML081560702), the applicant's response to RAI **10.04.07-2** (**eRAI 152**) proposed to revise FSAR Subsection 10.4.7.2.2 to include a description of the condensate booster pumps that was added to the design as a result of STD DEP 10.4.5. The applicant has since updated the FSAR to Revision 3. The staff reviewed Subsection 10.4.7.2.2 of Revision 2 of the FSAR and confirmed that the applicant has revised it as committed in the RAI response. The applicant has also added descriptions of the "Low-Pressure Feedwater Heaters" and the "Low-Pressure Heater Drain Tanks" to FSAR Subsection 10.4.7.2.2. The staff

⁻

See "Finality of Referenced NRC Approvals" in SER Section 1.1.3, for a discussion on the staff's review related to verification of the scope of information to be included in a COL application that references a design certification.

found the applicant's response and FSAR Revision 3 acceptable because the information in the FSAR is now consistent with the requirement of RG 1.206, Section C.I.10.4.7. Therefore, **RAI 10.04.07-2 (eRAI 152)** is resolved.

The staff reviewed the above departure against the applicable acceptance criteria of SRP 10.4.7. The following evaluation discusses the results of the staff's review.

The CFS is designed to (1) receive condensate from the main condenser hotwell; (2) supply cooling water to the condensate purification system, the gland steam exhauster, the steam jetair ejector, and the offgas recombiner coolers; and (3) deliver high-purity feedwater to the reactor at the required flow rate, pressure, and temperature. The CFS includes all components and equipment from the condenser outlet to the reactor vessel to the heater drain system. The CFS is not used to support any safety function and is therefore classified as nonsafety related. However, the system does penetrate the primary containment and therefore must meet the primary containment isolation requirements. Therefore, the portion of the system between the reactor vessel and the turbine wall is safety related.

Departure STD DEP 10.4-5 provides a CFS that uses condensate booster pumps. The CFS that is approved in the ABWR DCD does not use condensate booster pumps. The use of the booster pumps allows the condensate pumps to operate at a lower discharge head and eliminates the requirement to design the equipment downstream of the condensate pumps for HP application.

The STP CFS incorporates in its design four 33 percent capacity condensate booster pumps, three normally operating and one on automatic standby. They operate in parallel taking suction downstream of the condensate demineralizers and discharging through the four stages of the LP feedwater heaters. The condensate booster pumps provide the necessary suction head at the reactor feed pumps. The use of condensate booster pumps does not adversely impact the ability of the CFS to perform its designed function. Additionally, the booster pumps will be located outside the containment and are therefore not part of the safety-related portion of the system. The use of condensate booster pumps in the CFS does change the compliance of the systems to the SRP guidance, as documented in NUREG–1503.

Departure STD DEP 10.4-5 also adds to the CFS an additional reactor feed pump and two additional reactor heater drain pumps. The CFS now incorporates in its design four 33 percent capacity reactor feedwater pumps compared to the three reactor feedwater pumps with a 33 to 65 percent capacity used in the certified design. The pumps operate in parallel and take suction from the last stage LP feedwater heaters and discharge through the HP feedwater heaters. Each pump is driven by an adjustable speed drive. The addition of the reactor feed pump does not change the normal operation of the system and should result in an improvement in plant availability, because a standby pump will be available in the event of a trip of an operating pump. The CFS now incorporates in its design four 33 percent capacity heater drain pumps compared to the two heater drain pumps used in the certified design. In the event of a heater drain pump trip during normal operation, the standby pump is designed to start automatically to maintain the rated power operation. The reactor feed pumps and the reactor heater drain pumps are located outside the containment and are therefore not part of the safety-related portion of the system. The addition of the new reactor feed pump and the reactor heater drain pumps in the CFS does not change the compliance of the systems to the SRP guidance, as documented in NUREG-1503.

Finally, Departure STD DEP 10.4-5 changes the CFS flow control by using a low-flow control valve in the feed pump discharge header to regulate the flow of feedwater during startup. The CFS design in the ABWR DCD uses a feedwater pump bypass valve equipped with a feedwater flow control to regulate the flow of feedwater during startup. The revised design continues to allow feedwater flow to be regulated by a low-flow control valve during startup and to bypass the feedwater pumps. These modifications to the CFS flow control do not change the compliance of the systems to the SRP, as documented in NUREG–1503.

ITAAC Considerations

NRC staff reviewed the ITAAC the applicant has proposed for the CFS in the STP COL application, in accordance with SRP Section 14.3. The staff found that the applicant's CFS design is not consistent with the design used for the ITAAC. The applicant's departure redesigns the system by adding condensate booster pumps and by increasing the number of reactor feed and heater drain pumps in the CFS, thus modifying the functional arrangement of the system. Tier 1 Section 2.10 of the STP COL application incorporates by reference Tier 1 Section 2.10 of the ABWR DCD, which contains a design description of the CFS and the applicable system design certification ITAAC in Table 2.10.2a and Figure 2.10.2a. Because the departure in FSAR Section 10.4.7 changes the functional arrangement of the system and the proposed system is no longer consistent with the one in the ABWR DCD, the staff issued RAI 10.04.07-1 (eRAI 139) requesting the applicant to explain why the ITAAC continue to be applicable to the STP design, in light of the CFS modifications introduced by departure STD DEP 10.4-5.

In a letter dated June 12, 2008 (<u>ML081710126</u>), the applicant's response to **RAI 10.04.07-1** (**eRAI 139**) states that adding condensate booster pumps and increasing the number of feed and heater drains pumps in the CFS alters the specific design, but the changes do not modify the functional arrangement of the system. The applicant adds that the ITAAC in DCD Tier 1 Table 2.10.2a are intended to perform an inspection of the as-built system. The acceptance criteria are to ensure that the as-built CFS conforms to the basic configuration shown in DCD Tier 1 Figure 2.10.2a. Lastly, the applicant's response states that (1) the condensate booster pumps are shown in COL FSAR Tier 2 Figures 10.1-1 and 10.4-5, (2) detailed design drawings will expand the basic configuration to include the condensate booster pumps and other refinements, and (3) the drawings will be used to perform these inspections. Therefore, the appropriate ITAAC will be performed and the acceptance criteria will be met.

The staff disagreed with the applicant's determination that the modifications to the CFS in Departure STD DEP 10.4-5 do not modify the functional arrangement or basic system configuration. The basic configuration shown in DCD Tier 1 Figure 2.10.2a and referenced by the CFS ITAAC (Table 2.10.2a) does not reflect a CFS designed to use condensate booster pumps. Also, the ITAAC acceptance criteria state that the as-built CFS conforms to the design shown in ABWR DCD Tier 1, Figure 2.10.2a. In addition, the applicant's response indicates that the detailed design drawings will expand the basic configuration to include the condensate booster pumps along with other refinements. The applicant also indicates that the drawings and Tier 2 Figures 10.1-1 and 10.4-5 will be used to perform the inspections. However, the CFS design information in Tier 2 of the STP FSAR is no longer consistent with the information regarding the CFS design description and ITAAC in Tier 1 Section 2.10.2. The staff therefore found that there needs to be an ITAAC specific to Tier 2 STD DEP 10.4-7, and the applicant's response does not resolve the concerns raised in RAI 10.04.07-1 (eRAI 139). These concerns are being tracked as Open Item 10.04.07-3.

Hence, the staff is unable to complete a review of the ITAAC considerations until the applicant adequately resolves **Open Item 10.04.07-3(eRAI 4440)**.

10.4.7.5 **Post Combined License Activities**

There are no post COL activities related to this section.

10.4.7.6 **Conclusion**

The NRC staff's finding related to information incorporated by reference is documented in NUREG–1503. NRC staff reviewed the application and checked the referenced DCD. The staff's review confirmed that that the applicant has addressed the required information relating to CFS. With the exception of **Open Item 10.04.7-3**, no outstanding information is expected to be addressed in the COL FSAR related to this section. Pursuant to 10 CFR 52.63(a)(5) and Part 52, Appendix A, Section VI.B.1, all nuclear safety issues relating to the CFS that were incorporated by reference have been resolved.

In addition, the staff compared the additional information in the application to the relevant NRC regulations and acceptance criteria in NUREG–0800, Section 10.4.7. The staff found it reasonable that the identified Tier 2 departures are characterized as not requiring prior NRC approval per 10 CFR Part 52, Appendix A, Section VIII.B.5.

The staff evaluated the plant-specific information related to the CFS in application, determined that there are no Initial Test Program considerations related to this system. Based on the results of this evaluation, the staff determined that the additional information referred to in the "Technical Evaluation" section is required in order to adequately address condensate and feedwater considerations. Therefore, as a result of **Open Item 10.04.07.7-3**, the staff was unable to finalize the conclusions relating to the CFS in accordance with the NRC requirements.