

March 3, 2010

U.S. Nuclear Regulatory Commission 11555 Rockville Pike Rockville, MD 20852-2738

Attention: Document Control Desk

Subject: Second Supplement to Request for Amendment to Revise the Model No. NAC-LWT Package U.S. Nuclear Regulatory Commission (NRC) Certificate of Compliance (CoC) No. 9225 to Include the General Atomic TRIGA Fuel as Authorized Content

Docket 71-9225

References: 1. USNRC CoC No. 9225, Revision 53, Model No. NAC-LWT Package, Dated February 4, 2010

- 2. NAC-LWT Safety Analysis Report (SAR), Revision 40, NAC International, January 2010
- Request for Amendment to Revise the Model No. NAC-LWT Package U.S. Nuclear Regulatory Commission (NRC) Certificate of Compliance (CoC) No. 9225 to Include the General Atomic TRIGA Fuel as Authorized Content, NAC International, February 9, 2010
- Supplement to Request for Amendment to Revise the Model No. NAC-LWT Package U.S. Nuclear Regulatory Commission (NRC) Certificate of Compliance (CoC) No. 9225 to Include the General Atomic TRIGA Fuel as Authorized Content, NAC International, February 23, 2010

NAC International (NAC) hereby submits a second supplement to Reference 3 consisting of clarification changes to Chapter 6 information as requested in a telephone conference on March 1, 2010. The changes consist of

- Evaluation of the array of damaged packages and calculation of Criticality Safety Index
- Input file for the criticality evaluation for the array of packages
- Addition of a figure illustrating the configuration for the top and bottom baskets for the TRIGA fuel rods having enrichment $\geq 93\%$
- Addition of a figure illustrating the configuration for the entire package with TRIGA fuel rods having enrichment $\geq 93\%$

NMSSDI

U.S. Nuclear Regulatory Commission March 3, 2010 Page 2

This submittal includes one copy of this transmittal letter and Revision LWT-10C changed pages to the Reference 2 SAR. The changed pages incorporate the requested supplemental information to the amendment to the CoC. Consistent with NAC administrative practice, this proposed SAR revision is numbered to uniquely identify the applicable changed pages. Revision bars mark the SAR text changes on the Revision LWT-10C pages. Due to text flow, a large number of Revision LWT-10C pages are included with no changes indicated. Also, some Revision LWT-10A pages are included as unchanged backing pages. The included List of Effective Pages identifies the current revision level of all pages in the Reference 2 SAR.

In accordance with NAC's administrative practices, upon final acceptance of this application, the Revision LWT-10C changed pages will be reformatted and incorporated into the next revision of the NAC-LWT SAR.

In this supplement to the amendment request, the proposed changes are limited to Chapter 6.

Approval of the amendment to Reference 1 is requested by March 15, 2010, to support shipping schedules planned for summer of 2010.

If you have any comments or questions, please contact me on my direct line at 678-328-1274.

Sincerely,

Anthy L Patho

Anthony L. Patko Director, Licensing Engineering

Enclosure

March 2010

Revision LWT-10C

Docket No. 71-9225

Atlanta Corporate Headquarters: 3930 East Jones Bridge Road, Norcross, Georgia 30092 USA Phone 770-447-1144, Fax 770-447-1797, www.nacintl.com

List of Effective Pages

March 2010

NAC-LWT Cask SAR Revision LWT-10C

LIST OF EFFECTIVE PAGES

Chapter 1

1-i thru 1-iv	Revision LWT-10A
1-1 thru 1-6	Revision LWT-10A
1.1-1 thru 1.1-3	Revision 40
1.2-1 thru 1.2-51	Revision LWT-10A
1.3-1	Revision 40
1.4-1	Revision 40
1.5-1	

74 drawings in the Chapter 1 List of Drawings

Chapter 1 Appendices 1-A through 1-G

<u>Chapter 2</u>

2-i thru 2-xxiv	Revision 40
2-1	Revision 40
2.1.1-1 thru 2.1.1-2	Revision 40
2.1.2-1 thru 2.1.2-3	Revision 40
2.1.3-1 thru 2.1.3-8	Revision 40
2.2.1-1 thru 2.2.1-3	Revision 40
2.3-1	Revision 40
2.3.1-1 thru 2.3.1-13	Revision 40
2.4-1	Revision 40
2.4.1-1	Revision 40
2.4.2-1	Revision 40
2.4.3-1	Revision 40
2.4.4-1	Revision 40
2.4.5-1	Revision 40
2.4.6-1	Revision 40
2.5.1-1 thru 2.5.1-11	Revision 40
2.5.2-1 thru 2.5.2-17	Revision 40
2.6.1-1 thru 2.6.1-7	Revision 40

2.6.2-1 thru 2.6.2-7	Revision 40
2.6.3-1	Revision 40
2.6.4-1	Revision 40
2.6.5-1 thru 2.6.5-2	Revision 40
2.6.6-1	Revision 40
2.6.7-1 thru 2.6.7-136	Revision 40
2.6.8-1	Revision 40
2.6.9-1	Revision 40
2.6.10-1 thru 2.6.10-15	Revision 40
2.6.11-1 thru 2.6.11-12	Revision 40
2.6.12-1 thru 2.6.12-91	Revision 40
2.7-1	Revision 40
2.7.1-1 thru 2.7.1-117	Revision 40
2.7.2-1 thru 2.7.2-23	Revision 40
2.7.3-1 thru 2.7.3-5	Revision 40
2.7.4-1	Revision 40
2 7 5-1 thru 2 7 5-5	Revision 40
2.7.6-1 thru 2.7.6-4	Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70	Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1	Revision 40 Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13	Revision 40 Revision 40 Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13 2.10.1-1 thru 2.10.1-3	Revision 40 Revision 40 Revision 40 Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13 2.10.1-1 thru 2.10.1-3 2.10.2-1 thru 2.10.2-49	Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13 2.10.1-1 thru 2.10.1-3 2.10.2-1 thru 2.10.2-49 2.10.3-1 thru 2.10.3-18	Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13 2.10.1-1 thru 2.10.1-3 2.10.2-1 thru 2.10.2-49 2.10.3-1 thru 2.10.3-18 2.10.4-1 thru 2.10.4-11	Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13 2.10.1-1 thru 2.10.1-3 2.10.2-1 thru 2.10.2-49 2.10.3-1 thru 2.10.3-18 2.10.4-1 thru 2.10.4-11	Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13 2.10.1-1 thru 2.10.1-3 2.10.2-1 thru 2.10.2-49 2.10.3-1 thru 2.10.3-18 2.10.4-1 thru 2.10.4-11 2.10.5-1 2.10.6-1 thru 2.10.6-19	Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13 2.10.1-1 thru 2.10.1-3 2.10.2-1 thru 2.10.2-49 2.10.3-1 thru 2.10.3-18 2.10.4-1 thru 2.10.4-11 2.10.5-1 2.10.6-1 thru 2.10.6-19 2.10.7-1 thru 2.10.7-66	Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13 2.10.1-1 thru 2.10.1-3 2.10.2-1 thru 2.10.2-49 2.10.3-1 thru 2.10.3-18 2.10.4-1 thru 2.10.4-11 2.10.5-1 2.10.6-1 thru 2.10.6-19 2.10.7-1 thru 2.10.7-66 2.10.8-1 thru 2.10.8-67	Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13 2.10.1-1 thru 2.10.1-3 2.10.2-1 thru 2.10.2-49 2.10.3-1 thru 2.10.3-18 2.10.4-1 thru 2.10.4-11 2.10.5-1 2.10.6-1 thru 2.10.6-19 2.10.7-1 thru 2.10.7-66 2.10.8-1 thru 2.10.8-67 2.10.9-1 thru 2.10.9-9	Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13 2.10.1-1 thru 2.10.1-3 2.10.2-1 thru 2.10.2-49 2.10.3-1 thru 2.10.2-49 2.10.3-1 thru 2.10.3-18 2.10.4-1 thru 2.10.4-11 2.10.5-1 2.10.6-1 thru 2.10.6-19 2.10.7-1 thru 2.10.7-66 2.10.8-1 thru 2.10.8-67 2.10.9-1 thru 2.10.9-9	Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13 2.10.1-1 thru 2.10.1-3 2.10.2-1 thru 2.10.2-49 2.10.3-1 thru 2.10.3-18 2.10.4-1 thru 2.10.4-11 2.10.5-1 2.10.6-1 thru 2.10.6-19 2.10.7-1 thru 2.10.7-66 2.10.8-1 thru 2.10.7-66 2.10.9-1 thru 2.10.9-9 2.10.10-1 thru 2.10.10-97	Revision 40 Revision 40
2.7.6-1 thru 2.7.6-4 2.7.7-1 thru 2.7.7-70 2.8-1 2.9-1 thru 2.9-13 2.10.1-1 thru 2.10.1-3 2.10.2-1 thru 2.10.2-49 2.10.3-1 thru 2.10.3-18 2.10.4-1 thru 2.10.4-11 2.10.5-1 2.10.6-1 thru 2.10.6-19 2.10.7-1 thru 2.10.7-66 2.10.8-1 thru 2.10.9-9 2.10.9-1 thru 2.10.10-97 2.10.11-1 thru 2.10.11-10	Revision 40 Revision 40

March 2010

LIST OF EFFECTIVE PAGES (Continued)

2.10.14-1	thru 2.10.14-38	Revision 40
2.10.15-1	thru 2.10.15-10	Revision 40

Chapter 3

3-i thru 3-v	Revision 40
3.1-1 thru 3.1-2	Revision 40
3.2-1 thru 3.2-11	Revision 40
3.3-1	Revision 40
3.4-1 thru 3.4-85	Revision 40
3.5-1 thru 3.5-35	Revision 40
3.6-1 thru 3.6-12	Revision 40

Chapter 4

4-i thru 4-iv	Revision 40
4.1-1 thru 4.1-3	Revision 40
4.2-1 thru 4.2-13	Revision 40
4.3-1 thru 4.3-7	Revision 40
4.4-1	Revision 40
4.5-1 thru 4.5-90	Revision 40

Chapter 5

Revision LWT-10A
Revision 40
Revision LWT-10A
Revision 40
Revision LWT-10A
Revision 40
Revision 40
Revision 40
Revision 40

5.3.11-1 thru 5.3.11-48	.Revision 40
5.3.12-1 thru 5.3.12-26	.Revision 40
5.3.13-1 thru 5.3.13-17	.Revision 40
5.3.14-1 thru 5.3.14-21	.Revision 40
5.3.15-1 thru 5.3.15-9	Revision 40
5.3.16-1 thru 5.3.16-5	.Revision 40
5.3.17-1 thru 5.3.17-9	Revision 40
5.3.18-1 thru 5.3.18-40	Revision 40
5.4.1-1 thru 5.4.1-6	Revision 40

6-i thru 6-iii	Revision LWT-10A
6-iv thru 6-vi	Revision LWT-10C
6-vii thru 6-ix	Revision LWT-10A
6-x thru 6-xi	Revision LWT-10C
6-xii thru 6-xiv	Revision LWT-10A
6-1	Revision 40
6.1-1 thru 6.1-5	Revision 40
6.2-1	
6.2.1-1 thru 6.2.1-3	Revision 40
6.2.2-1 thru 6.2.2-3	Revision 40
6.2.3-1 thru 6.2.3-7	Revision 40
6.2.4-1	Revision 40
6.2.5-1 thru 6.2.5-5	Revision LWT-10A
6.2.6-1 thru 6.2.6-3	Revision 40
6.2.7-1 thru 6.2.7-2	Revision 40
6.2.8-1 thru 6.2.8-3	Revision 40
6.2.9-1 thru 6.2.9-4	Revision 40
6.2.10-1 thru 6.2.10-3	Revision 40
6.2.11-1 thru 6.2.11-3	Revision 40
6.2.12-1 thru 6.2.12-4	Revision 40
6.3.1-1 thru 6.3.1-6	Revision 40
6.3.2-1 thru 6.3.2-4	Revision 40
6.3.3-1 thru 6.3.3-9	Revision 40
6.3.4-1 thru 6.3.4-9	

March 2010

LIST OF EFFECTIVE PAGES (Continued)

6.3.5-1 thru 6.3.5-12 Revision	40
6.3.6-1 thru 6.3.6-9 Revision	40
6.3.7-1 thru 6.3.7-4 Revision	40
6.3.8-1 thru 6.3.8-7 Revision	40
6.3.9-1 thru 6.3.9-7 Revision	40
6.4.1-1 thru 6.4.1-10 Revision	40
6.4.2-1 thru 6.4.2-10 Revision	40
6.4.3-1 thru 6.4.3-34 Revision 4	40
6.4.4-1 thru 6.4.4-24 Revision	40
6.4.5-1 thru 6.4.5-6 Revision LWT-10)A
6.4.5-7 thru 6.4.5-8Revision LWT-10)C
6.4.5-9 thru 6.4.5-13 Revision LWT-10)A
6.4.5-14 thru 6.4.5-17Revision LWT-10)C
6.4.5-18 thru 6.4.5-21 Revision LWT-10)A
6.4.5-22 thru 6.4.5-51Revision LWT-10)C
6.4.6-1 thru 6.4.6-23 Revision 4	40
6.4.7-1 thru 6.4.7-14 Revision	40
6.4.8-1 thru 6.4.8-14 Revision	40
6.4.9-1 thru 6.4.9-10 Revision	40
6.4.10-1 thru 6.4.10-18 Revision	40
6.5.1-1 thru 6.5.1-13 Revision	40
6.5.2-1 thru 6.5.2-4 Revision	40
6.5.3-1 thru 6.5.3-2 Revision	40
6.7.1-1 thru 6.7.1-18 Revision	40
6.7.2-1 thru 6.7.2-47 Revision 4	40

Appendix 6.6

6.6-i thru 6.6-iii	Revision 40
6.6-1	Revision 40
6.6.1-1 thru 6.6.1-111	Revision 40
6.6.2-1 thru 6.6.2-56	Revision 40
6.6.3-1 thru 6.6.3-73	Revision 40
6.6.41 thru 6.6.4-77	Revision 40
6.6.5-1 thru 6.6.5-101	Revision 40
6.6.6-1 thru 6.6.6-158	Revision 40

6.6.7-1 thru 6.6.7-84Revision 40
6.6.8-1 thru 6.6.8-183 Revision 40
6.6.9-1 thru 6.6.9-52Revision 40
6.6.10-1 thru 6.6.10-33 Revision 40
6.6.11-1 thru 6.6.11-47Revision 40
6.6.12-1 thru 6.6.12-20Revision 40
6.6.13-1 thru 6.6.13-22Revision 40
6.6.14-1 thru 6.6.14-7Revision 40
6.6.15-1 thru 6.6.15-45 Revision 40
Chapter 7
7-i thru 7-iiRevision 40
7.1-1 thru 7.1-33 Revision LWT-10A
7.1-34 thru 7.1-35 Revision LWT-10B
7.1-36Revision LWT-10A
7.1-37 Revision LWT-10B
7.1-38 thru 7.1-39 Revision LWT-10A
7.1-40 Revision LWT-10B
7.1-41 thru 7.1-57 Revision LWT-10A
7.2-1 thru 7.2-13 Revision 40
7.3-1 thru 7.3-2Revision 40

Chapter 8

8-i	Revision 40
8.1-1 thru 8.1-11	Revision 40
8.2-1 thru 8.2-4	Revision 40
8.3-1 thru 8.3-4	Revision 40

9-i	Revision 40
9-1 thru 9-10	Revision 40

March 2010

Revision LWT-10C

Docket No. 71-9225

Atlanta Corporate Headquarters: 3930 East Jones Bridge Road, Norcross, Georgia 30092 USA Phone 770-447-1144, Fax 770-447-1797, www.nacintl.com

List of Effective Pages

LIST OF EFFECTIVE PAGES

. 1

Chapter 1

1-i thru 1-iv	Revision LWT-10A
1-1 thru 1-6	Revision LWT-10A
1.1-1 thru 1.1-3	Revision 40
1.2-1 thru 1.2-51	Revision LWT-10A
1.3-1	Revision 40
1.4-1	Revision 40
1.5-1	Revision 40

74 drawings in the Chapter 1 List of Drawings

Chapter 1 Appendices 1-A through 1-G

2-i thru 2-xxiv Revision 40
2-1 Revision 40
2.1.1-1 thru 2.1.1-2 Revision 40
2.1.2-1 thru 2.1.2-3 Revision 40
2.1.3-1 thru 2.1.3-8 Revision 40
2.2.1-1 thru 2.2.1-3 Revision 40
2.3-1 Revision 40
2.3.1-1 thru 2.3.1-13 Revision 40
2.4-1 Revision 40
2.4.1-1 Revision 40
2.4.2-1 Revision 40
2.4.3-1 Revision 40
2.4.4-1 Revision 40
2.4.5-1 Revision 40
2.4.6-1 Revision 40
2.5.1-1 thru 2.5.1-11 Revision 40
2.5.2-1 thru 2.5.2-17 Revision 40
2.6.1-1 thru 2.6.1-7 Revision 40

2.6.2-1 thru 2.6.2-7	Revision 40
2.6.3-1	Revision 40
2.6.4-1	Revision 40
2.6.5-1 thru 2.6.5-2	Revision 40
2.6.6-1	Revision 40
2.6.7-1 thru 2.6.7-136	Revision 40
2.6.8-1	Revision 40
2.6.9-1	Revision 40
2.6.10-1 thru 2.6.10-15	Revision 40
2.6.11-1 thru 2.6.11-12	Revision 40
2.6.12-1 thru 2.6.12-91	Revision 40
2.7-1	Revision 40
2.7.1-1 thru 2.7.1-117	Revision 40
2.7.2-1 thru 2.7.2-23	Revision 40
2.7.3-1 thru 2.7.3-5	Revision 40
2.7.4-1	Revision 40
2.7.5-1 thru 2.7.5-5	Revision 40
2.7.6-1 thru 2.7.6-4	Revision 40
2.7.7-1 thru 2.7.7-70	Revision 40
2.8-1	Revision 40
2.9-1 thru 2.9-13	Revision 40
2.10.1-1 thru 2.10.1-3	Revision 40
2.10.2-1 thru 2.10.2-49	Revision 40
2.10.3-1 thru 2.10.3-18	Revision 40
2.10.4-1 thru 2.10.4-11	Revision 40
2.10.5-1	Revision 40
2.10.6-1 thru 2.10.6-19	Revision 40
2.10.7-1 thru 2.10.7-66	Revision 40
2.10.8-1 thru 2.10.8-67	Revision 40
2.10.9-1 thru 2.10.9-9	Revision 40
2.10.10-1 thru 2.10.10-97	Revision 40
2.10.11-1 thru 2.10.11-10	Revision 40
2.10.12-1 thru 2.10.12-31	Revision 40
2.10.13-1 thru 2.10.13-17	Revision 40

March 2010

NAC-LWT Cask SAR Revision LWT-10C

LIST OF EFFECTIVE PAGES (Continued)

2.10.14-1	thru 2.10.14-38	Revision 40	
2.10.15-1	thru 2.10.15-10	Revision 40	

Chapter 3

3-i thru 3-v	Revision 40
3.1-1 thru 3.1-2	Revision 40
3.2-1 thru 3.2-11	Revision 40
3.3-1	Revision 40
3.4-1 thru 3.4-85	Revision 40
3.5-1 thru 3.5-35	Revision 40
3.6-1 thru 3.6-12	Revision 40

Chapter 4

Revision 40
Revision 40

Chapter 5

5-1 thru 5-3 Revision 40 5.1.1-1 thru 5.1.1-17 Revision LWT-10A 5.2.1-1 thru 5.2.1-7 Revision 40 5.3.1-1 thru 5.3.1-2 Revision 40 5.3.2-1 Revision 40 5.3.3-1 thru 5.3.3-8 Revision 40 5.3.4-1 thru 5.3.4-19 Revision 40 5.3.5-1 thru 5.3.5-4 Revision 40 5.3.6-1 thru 5.3.6-22 Revision LWT-10A 5.3.7-1 thru 5.3.7-19 Revision 40 5.3.8-1 thru 5.3.8-25 Revision 40 5.3.9-1 thru 5.3.10-14 Revision 40	5-i thru 5-xii	Revision LWT-10A
5.1.1-1 thru 5.1.1-17 Revision LWT-10A 5.2.1-1 thru 5.2.1-7 Revision 40 5.3.1-1 thru 5.3.1-2 Revision 40 5.3.2-1 Revision 40 5.3.3-1 thru 5.3.3-8 Revision 40 5.3.4-1 thru 5.3.4-19 Revision 40 5.3.5-1 thru 5.3.5-4 Revision 40 5.3.6-1 thru 5.3.6-22 Revision LWT-10A 5.3.7-1 thru 5.3.7-19 Revision 40 5.3.8-1 thru 5.3.8-25 Revision 40 5.3.9-1 thru 5.3.9-26 Revision 40 5.3.10-1 thru 5.3.10-14 Revision 40	5-1 thru 5-3	Revision 40
5.2.1-1 thru 5.2.1-7 Revision 40 5.3.1-1 thru 5.3.1-2 Revision 40 5.3.2-1 Revision 40 5.3.3-1 thru 5.3.3-8 Revision 40 5.3.4-1 thru 5.3.4-19 Revision 40 5.3.5-1 thru 5.3.5-4 Revision 40 5.3.6-1 thru 5.3.6-22 Revision LWT-10A 5.3.7-1 thru 5.3.7-19 Revision 40 5.3.8-1 thru 5.3.8-25 Revision 40 5.3.9-1 thru 5.3.9-26 Revision 40 5.3.10-1 thru 5.3.10-14 Revision 40	5.1.1-1 thru 5.1.1-17	Revision LWT-10A
5.3.1-1 thru 5.3.1-2 Revision 40 5.3.2-1 Revision 40 5.3.3-1 thru 5.3.3-8 Revision 40 5.3.4-1 thru 5.3.4-19 Revision 40 5.3.5-1 thru 5.3.5-4 Revision 40 5.3.6-1 thru 5.3.6-22 Revision LWT-10A 5.3.7-1 thru 5.3.7-19 Revision 40 5.3.8-1 thru 5.3.8-25 Revision 40 5.3.9-1 thru 5.3.9-26 Revision 40 5.3.10-1 thru 5.3.10-14 Revision 40	5.2.1-1 thru 5.2.1-7	Revision 40
5.3.2-1 Revision 40 5.3.3-1 thru 5.3.3-8 Revision 40 5.3.4-1 thru 5.3.4-19 Revision 40 5.3.5-1 thru 5.3.5-4 Revision 40 5.3.6-1 thru 5.3.6-22 Revision LWT-10A 5.3.7-1 thru 5.3.7-19 Revision 40 5.3.8-1 thru 5.3.8-25 Revision 40 5.3.9-1 thru 5.3.9-26 Revision 40 5.3.10-1 thru 5.3.10-14 Revision 40	5.3.1-1 thru 5.3.1-2	Revision 40
5.3.3-1 thru 5.3.3-8	5.3.2-1	Revision 40
5.3.4-1 thru 5.3.4-19 Revision 40 5.3.5-1 thru 5.3.5-4 Revision 40 5.3.6-1 thru 5.3.6-22 Revision LWT-10A 5.3.7-1 thru 5.3.7-19 Revision 40 5.3.8-1 thru 5.3.8-25 Revision 40 5.3.9-1 thru 5.3.9-26 Revision 40 5.3.10-1 thru 5.3.10-14 Revision 40	5.3.3-1 thru 5.3.3-8	Revision 40
5.3.5-1 thru 5.3.5-4 Revision 40 5.3.6-1 thru 5.3.6-22 Revision LWT-10A 5.3.7-1 thru 5.3.7-19 Revision 40 5.3.8-1 thru 5.3.8-25 Revision 40 5.3.9-1 thru 5.3.9-26 Revision 40 5.3.10-1 thru 5.3.10-14 Revision 40	5.3.4-1 thru 5.3.4-19	Revision 40
5.3.6-1 thru 5.3.6-22 Revision LWT-10A 5.3.7-1 thru 5.3.7-19 Revision 40 5.3.8-1 thru 5.3.8-25 Revision 40 5.3.9-1 thru 5.3.9-26 Revision 40 5.3.10-1 thru 5.3.10-14 Revision 40	5.3.5-1 thru 5.3.5-4	Revision 40
5.3.7-1 thru 5.3.7-19 Revision 40 5.3.8-1 thru 5.3.8-25 Revision 40 5.3.9-1 thru 5.3.9-26 Revision 40 5.3.10-1 thru 5.3.10-14 Revision 40	5.3.6-1 thru 5.3.6-22	Revision LWT-10A
5.3.8-1 thru 5.3.8-25 Revision 40 5.3.9-1 thru 5.3.9-26 Revision 40 5.3.10-1 thru 5.3.10-14 Revision 40	5.3.7-1 thru 5.3.7-19	Revision 40
5.3.9-1 thru 5.3.9-26 Revision 40 5.3.10-1 thru 5.3.10-14 Revision 40	5.3.8-1 thru 5.3.8-25	Revision 40
5.3.10-1 thru 5.3.10-14 Revision 40	5.3.9-1 thru 5.3.9-26	Revision 40
	5.3.10-1 thru 5.3.10-14	Revision 40

5.3.11-1 thru 5.3.11-48	Revision 40
5.3.12-1 thru 5.3.12-26	Revision 40
5.3.13-1 thru 5.3.13-17	Revision 40
5.3.14-1 thru 5.3.14-21	Revision 40
5.3.15-1 thru 5.3.15-9	Revision 40
5.3.16-1 thru 5.3.16-5	Revision 40
5.3.17-1 thru 5.3.17-9	Revision 40
5.3.18-1 thru 5.3.18-40	Revision 40
5.4.1-1 thru 5.4.1-6	Revision 40

6-i thru 6-iii	.Revision LWT-10A
6-iv thru 6-vi	. Revision LWT-10C
6-vii thru 6-ix	.Revision LWT-10A
6-x thru 6-xi	. Revision LWT-10C
6-xii thru 6-xiv	.Revision LWT-10A
6-1	Revision 40
6.1-1 thru 6.1-5	Revision 40
6.2-1	Revision 40
6.2.1-1 thru 6.2.1-3	Revision 40
6.2.2-1 thru 6.2.2-3	Revision 40
6.2.3-1 thru 6.2.3-7	Revision 40
6.2.4-1	Revision 40
6.2.5-1 thru 6.2.5-5	.Revision LWT-10A
6.2.6-1 thru 6.2.6-3	Revision 40
6.2.7-1 thru 6.2.7-2	Revision 40
6.2.8-1 thru 6.2.8-3	Revision 40
6.2.9-1 thru 6.2.9-4	Revision 40
6.2.10-1 thru 6.2.10-3	Revision 40
6.2.11-1 thru 6.2.11-3	Revision 40
6.2.12-1 thru 6.2.12-4	Revision 40
6.3.1-1 thru 6.3.1-6	Revision 40
6.3.2-1 thru 6.3.2-4	Revision 40
6.3.3-1 thru 6.3.3-9	Revision 40
6.3.4-1 thru 6.3.4-9	

LIST OF EFFECTIVE PAGES (Continued)

6.3.5-1 thru 6.3.5-12 Revision 40
6.3.6-1 thru 6.3.6-9 Revision 40
6.3.7-1 thru 6.3.7-4 Revision 40
6.3.8-1 thru 6.3.8-7 Revision 40
6.3.9-1 thru 6.3.9-7 Revision 40
6.4.1-1 thru 6.4.1-10 Revision 40
6.4.2-1 thru 6.4.2-10 Revision 40
6.4.3-1 thru 6.4.3-34 Revision 40
6.4.4-1 thru 6.4.4-24 Revision 40
6.4.5-1 thru 6.4.5-6 Revision LWT-10A
6.4.5-7 thru 6.4.5-8Revision LWT-10C
6.4.5-9 thru 6.4.5-13 Revision LWT-10A
6.4.5-14 thru 6.4.5-17Revision LWT-10C
6.4.5-18 thru 6.4.5-21 Revision LWT-10A
6.4.5-22 thru 6.4.5-51Revision LWT-10C
6.4.6-1 thru 6.4.6-23 Revision 40
6.4.7-1 thru 6.4.7-14 Revision 40
6.4.8-1 thru 6.4.8-14 Revision 40
6.4.9-1 thru 6.4.9-10 Revision 40
6.4.10-1 thru 6.4.10-18 Revision 40
6.5.1-1 thru 6.5.1-13 Revision 40
6.5.2-1 thru 6.5.2-4 Revision 40
6.5.3-1 thru 6.5.3-2 Revision 40
6.7.1-1 thru 6.7.1-18 Revision 40
6.7.2-1 thru 6.7.2-47 Revision 40

Appendix 6.6

6.6-i thru 6.6-iii	Revision 40
6.6-1	Revision 40
6.6.1-1 thru 6.6.1-111	Revision 40
6.6.2-1 thru 6.6.2-56	Revision 40
6.6.3-1 thru 6.6.3-73	Revision 40
6.6.41 thru 6.6.4-77	Revision 40
6.6.5-1 thru 6.6.5-101	Revision 40
6.6.6-1 thru 6.6.6-158	Revision 40

6.6.7-1 thru 6.6.7-84Revision 40
6.6.8-1 thru 6.6.8-183 Revision 40
6.6.9-1 thru 6.6.9-52Revision 40
6.6.10-1 thru 6.6.10-33 Revision 40
6.6.11-1 thru 6.6.11-47Revision 40
6.6.12-1 thru 6.6.12-20Revision 40
6.6.13-1 thru 6.6.13-22Revision 40
6.6.14-1 thru 6.6.14-7Revision 40
6.6.15-1 thru 6.6.15-45 Revision 40
Chapter 7
7-i thru 7-iiRevision 40
7.1-1 thru 7.1-33 Revision LWT-10A
7.1-34 thru 7.1-35 Revision LWT-10B
7.1-36Revision LWT-10A
7.1-37 Revision LWT-10B
7.1-38 thru 7.1-39 Revision LWT-10A
7.1-40 Revision LWT-10B
7.1-41 thru 7.1-57 Revision LWT-10A
7.2-1 thru 7.2-13Revision 40
7.3-1 thru 7.3-2Revision 40

Chapter 8

8-i	Revision 40
8.1-1 thru 8.1-11	Revision 40
8.2-1 thru 8.2-4	Revision 40
8.3-1 thru 8.3-4	Revision 40

9-i	•••••	.Revision 4	i0
9-1 thru 9-10		.Revision 4	10

Chapter 6

•

۱

List of Figures

Figure 6.2.3-1	Design Basis HFBR MTR Fuel Element
Figure 6.2.5-1	Aluminum Clad TRIGA Fuel Element
Figure 6.2.5-2	Stainless Steel Clad TRIGA Fuel Element
Figure 6.2.6-1	TRIGA Fuel Cluster Rod Details
Figure 6.2.8-1	DIDO Fuel Assembly
Figure 6.2.10-1	PULSTAR Fuel Assembly
Figure 6.2.11-1	Spiral Fuel Assembly Cross-Section Sketch
Figure 6.2.12-1	MOATA Plate Bundle Sketch
Figure 6.3.1-1	KENO-Va Model of the NAC-LWT Cask Model with PWR Basket
_	and 15×15 PWR Assembly
Figure 6.3.1-2	KENO-Va Model of the NAC-LWT Cask with PWR Basket and
-	Westinghouse 17×17 OFA Assembly
Figure 6.3.2-1	KENO-Va Model of the NAC-LWT Cask Model with BWR Basket
;	and 2 Exxon 9×9-2/80 Assemblies
Figure 6.3.3-1	KENO-Va Fuel/Basket Unit Cell Model for MTR Fuel
Figure 6.3.3-2	KENO-Va Model of NAC-LWT Cask with MTR Fuel 6.3.3-5
Figure 6.3.3-3	Intermediate MTR 42 Basket Module
Figure 6.3.3-4	Full Length NAC-LWT Cask Model with 42 MTR Fuel Elements 6.3.3-7
Figure 6.3.3-5	MTR Fuel Basket Module Loading Pattern
Figure 6.3.4-1	Triangular Pitch Lattice Formation of 25 PWR Rods
Figure 6.3.4-2	KENO-Va Model of the NAC-LWT Cask with 25 PWR Rods 6.3.4-6
Figure 6.3.4-3	Maximum Reactivity Triangular Pitch Lattice Formation of Damaged
	Fuel Rods
Figure 6.3.4-4	KENO-Va Model of the NAC-LWT Cask with Damaged Fuel Rods –
	Radial Detail
Figure 6.3.4-5	KENO-Va Model of the NAC-LWT Cask with Damaged Fuel Rods –
	Axial Detail
Figure 6.3.5-1	Fuel Rod Handling Insert for TRIGA Fuel Cluster Rods
Figure 6.3.5-2	Fuel/Basket Unit Cell Model for TRIGA Fuel Elements
Figure 6.3.5-3	NAC-LWT Cask with TRIGA Fuel, Nonpoisoned Basket - Radial View 6.3.5-7
Figure 6.3.5-4	KENO-Va Model of NAC-LWT with Poisoned Basket - Radial View 6.3.5-8
Figure 6.3.5-5	NAC-LWT Cask Model with TRIGA Fuel Elements, Nonpoisoned
	Basket – Axial View 6.3.5-9
Figure 6.3.5-6	Full-Length NAC-LWT Cask Model with TRIGA Fuel Elements,
	Nonpoisoned Basket – Axial View
Figure 6.3.6-1	Intermediate DIDO 42 Basket Module
Figure 6.3.6-2	KENO-Va DIDO Fuel in Fuel Tube and Basket Cross-Section
Figure 6.3.6-3	KENO-Va Model of NAC-LWT Cask Cross-Section with DIDO Fuel 6.3.6-5
Figure 6.3.6-4	Full Length NAC-LWT Cask Model with 42 DIDO Fuel Assemblies 6.3.6-6
Figure 6.3.7-1	PICTURE Representation of NAC-LWT Cavity with 'Rectangular'
	Array of GA IFM TRIGA Elements
Figure 6.3.7-2	PICTURE Representation of NAC-LWT Cavity with 'Square' Array
	of GA IFM TRIGA Elements

NAC International

List of Figures (continued)

Figure 6.3.7-3 Figure 6.3.8-1	KENO-Va Model of NAC-LWT Cask Cross-Section with GA IFM6.3.7-3 PICTURE Representation of NAC-LWT Cavity with PULSTAR Assemblies
Figure 6.3.8-2	PICTURE Representation of NAC-LWT Cavity with PULSTAR Elements in 4×4 Rod Insert
Figure 6.3.8-3	PICTURE Representation of NAC-LWT Cavity with Canned Discrete PULSTAR Elements
Figure 6.3.8-4	PICTURE Representation of NAC-LWT Cavity with Canned Homogenized PULSTAR Elements
Figure 6.3.8-5	KENO-Va Model of NAC-LWT Cask Cross-Section with 28 MTR 7-Element Basket
Figure 6.3.8-6	Finite Length KENO-Va Model of NAC-LWT Cask with 700 PULSTAR Fuel Elements
Figure 6.3.9-1	Intermediate ANSTO Basket Module
Figure 6.3.9-2	KENO-Va ANSTO Pavloads and Basket Cross-Section
Figure 6.3.9-3	KENO-Va Model of NAC-LWT Cask Cross-Section with ANSTO
8	Basket
Figure 6.4.3-1	Cask Interior Moderator Density and Blocked Cell Study Results
Figure 6.4.4-1	Maximum Reactivity Pitch Determination for Damaged BWR Rod Arrays – Water Exterior
Figure 6.4.4-2	Maximum Reactivity Pitch Determination for Damaged PWR Rod Arrays – Water Exterior
Figure 6.4.4-3	Maximum Reactivity Determination for Homogenized UO ₂ /Water Mixture
Figure 6.4.5-1.	Finite Cask Array Reactivity versus Fuel Zirconium Mass (Dry Cask Cavity)
Figure 6.4.5-2	Finite Cask Array Reactivity versus H/Zr Ratio (Dry Cask Cavity)
Figure 6.4.5-3	Finite Cask Array Reactivity versus Fuel Mass (Study of ZrH Displacement of Fissile Material for a Fixed Fuel Geometry) 645-19
Figure 6.4.5-4	Intact Fuel Optimum Moderator Study – 70 wt % ²³⁵ U Various Zirconium Masses 64 5-19
Figure 6.4.5-5	Detailed Intact Fuel Optimum Moderator Study – H/Zr Ratio, Fuel Element Characteristics and Location Varied
Figure 6.4.5-6	Screened and Sealed Can Optimum Moderator Study – Maximum Reactivity Fuel Configuration – 70 wt% ²³⁵ U Steel Clad
Figure 6.4.5-7	Screened and Sealed Can Debris Height Study – Maximum Reactivity Fuel Configuration – 70 wt% 235 U Steel Clad
Figure 6.4.5-8	Screened Can – 4 Elements per Can – Maximum Reactivity Fuel Configuration – 70 wt% ²³⁵ U Steel Clad
Figure 6.4.5-9	PICTURE Representation of NAC-LWT Eight Cask Array for Accident Condition TRIGA Unpoisoned Basket Analysis
Figure 6.4.5-10	PICTURE Representation of NAC-LWT TRIGA Payload – Fully Loaded Basket Analysis and Mixed TRIGA Loading

List of Figures (continued) Figure 6.4.5-11 PICTURE Representation of NAC-LWT TRIGA Payload - Reduced Number of Elements in High Fissile Material Element Basket -Figure 6.4.5-12 Sample Input File for High Mass HEU TRIGA Analysis – 3 Intact Elements of 175 g²³⁵U at 95 wt %²³⁵U per Basket Opening in Top and Bottom Basket - Accident Array Calculation with 8 Casks 6.4.5-24 Sample Input File for High Mass HEU TRIGA Analysis – 2 Damaged Figure 6.4.5-13 Elements of 175 g²³⁵U at 95 wt %²³⁵U per Basket Opening in Top and Bottom Basket - Accident Array Calculation with 8 Casks 6.4.5-29 HEU Cluster Rod Reactivity versus H/Zr Ratio - Accident Condition Figure 6.4.6-1 LEU Cluster Rod Reactivity versus H/Zr Ratio - Accident Condition Figure 6.4.6-2 HEU TRIGA Cluster Rod System Reactivity versus Cask Cavity Figure 6.4.6-3 Figure 6.4.6-4 MEU TRIGA Cluster Rod System Reactivity versus Cask Cavity TRIGA Cluster Rod Reactivity versus Damaged Fuel Can Moderator Figure 6.4.6-5 PICTURE Schematic of Modified PULSTAR Fuel Assembly Alignment Figure 6.4.9-1 PULSTAR Intact Assembly Model Moderator Density Study Graphical Figure 6.4.9-2 Spiral Fuel - Moderator Density Plot 6.4.10-7 Figure 6.4.10-1 Figure 6.4.10-2 KENO-Va Validation-27 Group Library Results: Frequency Figure 6.5.1-1 KENO-Va Validation-27-Group Library Results: k_{eff} versus Figure 6.5.1-2 Figure 6.5.1-3 KENO-Va Validation-27-Group Library Results: keff versus KENO-Va Validation-27-Group Library Results: keff versus Figure 6.5.1-4 KENO-Va Validation-27-Group Library Results: keff versus Average Figure 6.5.1-5 MCNP Model Sketch of the NAC-LWT Cask with PWR MOX/UO₂ Figure 6.7.1-1 VISED Sketch of LWT Radial View - Hex Rod Array- Normal Figure 6.7.1-2 VISED Sketch of LWT Radial View - Square Rod Pitch - Accident Figure 6.7.1-3 VISED Sketch of LWT Axial View – Accident Conditions 6.7.1-6 Figure 6.7.1-4 Figure 6.7.1-5

NAC International

List of Figures (continued)

Figure 6.7.1-6	Moderator Density Study – UO ₂ Fuel Material – 3.0 cm Rod Pitch6.7.1-12
Figure 6.7.1-7	Moderator Density Study – MS Fuel Material – 3.6 cm Rod Pitch6.7.1-13
Figure 6.7.1-8	Moderator Density Study – PWR MOX ²⁴¹ Pu Fuel Material –
	3.6 cm Rod Pitch
Figure 6.7.2-1	LEU USLSTATS Output for EALCF
Figure 6.7.2-2	k _{eff} versus Fuel Enrichment (LEU)
Figure 6.7.2-3	k _{eff} versus Rod Pitch (LEU)
Figure 6.7.2-4	k _{eff} versus Fuel Pellet Diameter (LEU)6.7.2-2
Figure 6.7.2-5	k _{eff} versus Fuel Rod Outside Diameter (LEU)
Figure 6.7.2-6	k_{eff} versus Hydrogen/ ²³⁵ U Atom Ratio (LEU)
Figure 6.7.2-7	k _{eff} versus Soluble Boron Concentration (LEU)
Figure 6.7.2-8	k _{eff} versus Cluster Gap Thickness (LEU)
Figure 6.7.2-9	k _{eff} versus ¹⁰ B Plate Loading (LEU)
Figure 6.7.2-10	keff versus Energy of Average Neutron Lethargy Causing Fission
	(LEU)
Figure 6.7.2-11	PWR MOX USLSTATS Output for Water to Fuel Volume Ratio6.7.2-37
Figure 6.7.2-12	Adjusted keff vs. Energy of Average Neutron Lethargy Causing
	Fission
Figure 6.7.2-13	Adjusted k_{eff} vs. ${}^{235}U/{}^{238}U$ Ratio
Figure 6.7.2-14	Adjusted k_{eff} vs. ²³⁸ Pu/ ²³⁸ U Ratio
Figure 6.7.2-15	Adjusted k_{eff} vs. ²³⁹ Pu/ ²³⁸ U Ratio
Figure 6.7.2-16	Adjusted k_{eff} vs. ²⁴⁰ Pu/ ²³⁸ U Ratio
Figure 6.7.2-17	Adjusted k_{eff} vs. ²⁴¹ Pu/ ²³⁸ U Ratio
Figure 6.7.2-18	Adjusted k_{eff} vs. ²⁴² Pu/ ²³⁸ U Ratio
Figure 6.7.2-19	Adjusted k _{eff} vs. Water-to-Fuel Volume Ratio

Note: See separate Section 6.6 for Appendices to this chapter, along with the List of Figures for the Appendices.

Table 6.4.3-12	MTR Fuel Uranium Weight Percentage Perturbations 643-22
Table 6.4.3-12	MFU MTR Unit Cell k
Table 6.4.3-14	MEU MTR Basket k comparison (Plate Location) 64 3-23
Table 6.4.3-15	Physical Characteristics of McMaster MTR Fuels 64 3-23
Table 6.4.3-16	Reactivity of Various Parameter Variations for 10-Plate McMaster
14010 0.4.5-10	Flement 6.4.3-24
Table 6 1 3 17	Peactivity of Various Parameter Variations for 18-Plate McMaster
1 aute 0.4.5-17	Flement 64.3-24
$T_{a} = 6.4.2.18$	MTP Limiting Evel Configurations 643.25
Table $6.4.3 - 10$	Initial Eval Configurations for MTP Bounding Evaluations 643.25
Table $0.4.3-19$	Prostivity Impact of Parameter Variations in the Finite Cosk Model 64.3.26
Table 0.4.3-20 Table $(4.3, 2.0)$	Reactivity impact of Farameter variations in the Finite Cask Model 0.4.5-20
Table 0.4.3-21 $T_{1} = (4.2, 2)$	Baseline MTR Bounding Configurations
Table 6.4.3-22	High Fissile Mass MTR Fuel – Bounding Parameter Analysis
Table 6.4.3-23	MTR High Fissile Content Loading Evaluation (460 g $^{-1}$ U) 6.4.3-29
Table 6.4.3-24	LEU MTR Active Fuel Width Increase Evaluation
Table 6.4.3-25	Summary of LEU MTR Bounding Configurations
Table 6.4.3-26	Summary of Previous Bounding Configurations for Use in High Mass
	LEU Calculations
Table 6.4.3-27	High Fissile Mass LEU (32 g ²⁵⁵ U per Plate) Analysis Results
Table 6.4.3-28	LEU High Fissile Mass Bounding Configuration
Table 6.4.3-29	Cask Interior Moderator Density and Blocked Cell Study Results 6.4.3-34
Table 6.4.4-1	NAC-LWT Cask with 25 PWR Rods, k_{eff} versus Fuel Rod Pitch,
	$5.0 \text{ wt } \%^{233}\text{U}$ Initial Enrichment
Table 6.4.4-2	Reactivity with 25 PWR Rods vs. Basket Moderator Density,
	Normal Conditions, Infinite Array of Casks
Table 6.4.4-3	Reactivity with 25 PWR Rods vs. Basket Moderator Density,
	Accident Conditions, Infinite Array of Casks
Table 6.4.4-4	PWR Rods, Single Package 10 CFR 71.55(b)(3) Evaluation k _{eff}
	Summary
Table 6.4.4-5	NAC-LWT Cask with 25 BWR rods, keff versus Fuel Rod Pitch,
	5.0 wt % ²³⁵ U Initial Enrichment
Table 6.4.4-6	Reactivity with 25 BWR Rods vs. Basket Moderator Density, Normal
	Conditions, Infinite Array of Casks
Table 6.4.4-7	Reactivity with 25 BWR Rods vs. Basket Moderator Density, Accident
	Conditions. Infinite Array of Casks
Table 6.4.4-8	BWR Rods. Single Package 10 CFR 71.55(b)(3) Evaluation k _{eff}
14010 0.1.1 0	Summary 64 4-16
Table 6 4 4-9	Maximum Reactivity Pitch Determination for 25 BWR Rods –
14010 0	Water Exterior 644-16
Table 6 4 4-10	Maximum Reactivity Pitch Determination for 25 PWR Rods -
1000 0.4.4-10	Water Exterior 64.4.17
Table 6 4 4-11	Maximum Reactivity Pitch Determination for 37 RWR Rods –
	Water Exterior 64.4-17

Table 6.4.4-12	Maximum Reactivity Pitch Determination for 37 PWR Rods – Water Exterior	61118
Table 6 4 4-13	Maximum Reactivity Pitch Determination for 61 BWR Rods –	0.4.4-10
14010 0.4.4-15	Water Exterior	6.4.4-18
Table 6.4.4-14	Maximum Reactivity Pitch Determination for 61 PWR Rods –	
	Water Exterior	6.4.4-19
Table 6.4.4-15	Maximum Reactivity Pitch Determination for 61 BWR Rods –	
	Void Exterior	6.4.4-19
Table 6.4.4-16	Maximum Reactivity Pitch Determination for 61 PWR Rods –	
	Void Exterior	6.4.4-20
Table 6.4.4-17	Maximum Reactivity Pitch Determination for 61 BWR Rods –	
	Void Exterior and Preferential Flooding of Cask Cavity	6.4.4-20
Table 6.4.4-18	Maximum Reactivity Pitch Determination for 61 PWR Rods –	
	Void Exterior and Preferential Flooding of Cask Cavity	6.4.4-21
Table 6.4.4-19	Damaged Rod Array Area Calculation – Flooded Cask Cavity	6.4.4-21
Table 6.4.4-20	Damaged Rod Array Area Calculation – Preferential Flooding	6.4.4-22
Table 6.4.4-21	Maximum Reactivity Determination for Homogenized UO ₂ /	
	Water Mixture	6.4.4-22
Table 6.4.4-22	Homogenized UO ₂ /Water Cask Cavity Moderator Density Study	
	Results - Void Exterior	6.4.4-22
Table 6.4.4-23	Homogenized UO ₂ /Water Cask Cavity Moderator Density Study	
	Results - Water Exterior	6.4.4-23
Table 6.4.4-24	Homogenized UO ₂ /Water Exterior Moderator Density Study Results -	-
	Void Cask Cavity	6.4.4-23
Table 6.4.4-25	Homogenized UO ₂ /Water Exterior Moderator Density Study Results -	-
m 11 <i>c</i> 4 4 6 <i>c</i>	Water Cask Cavity	6.4.4-24
Table 6.4.4-26	Single Cask Containment Reflected Results Comparison for	<
m 11 < 4 5 1	Homogenized UO ₂ /Water Model	6.4.4-24
Table 6.4.5-1	Parametric Study – Fuel / Basket k-infinity versus TRIGA Fuel	6 4 5 3 4
T 11 (4 5 0	Element Type, Nonpoisoned Basket	6.4.5-34
Table 6.4.5-2	Parametric Study – Cask κ_{eff} versus TRIGA Fuel Element Type,	(1 5 25
TT 11 (45)	Poisoned Basket	0.4.3-33
1 able 0.4.5-3	Axially infinite Cask k _{eff} with TRIGA Fuel Elements- Fuel Element	61526
Table 6 1 5 1	A violity infinite Coale le with TDICA Evel Elemente Evel Element	0.4.3-30
1 able 0.4.5-4	Axially infinite Cask k _{eff} with TKIGA Fuel Elements - Fuel Element	61526
Table 6 1 5 5	Avially Infinite Cosk k with TPICA Evel Elements – Packet	0.4.5-50
1 aute 0.4.3-3	Manufacturing Tolerance Perturbations Nonnoisoned Basket	64537
Table 6 1 5 6	Avially Infinite Cask k with TRIGA Fuel Elements - Basket	0.4.5-57
1 010 0.4.3-0	Manufacturing Tolerance Perturbations Poisoned Rasket	645-37
Table 6 4 5-7	Screened Can Preferential Flooding and Partial Loading Reactivity	<i></i>
1 4015 0.4.3-7	Evaluations for TRIGA Fuel Flements Nonnoisoned and Poisoned	
	Rackets	645-38
	Duoroto	

Table 6.4.5-8	Sealed Can Preferential Flooding and Partial Loading Reactivity
	Evaluations for TRIGA Fuel Elements, Nonpoisoned and Poisoned
	Baskets
Table 6.4.5-9	Summary of Most Reactive Configurations, TRIGA Fuel Elements,
$T_{-1} = (45.10)$	Nonpoisoned Basket
1 able 6.4.5-10	Summary of Most Reactive Configurations, TRIGA Fuel Elements, Poisoned Basket 64 5-40
Table 6.4.5-11	Reactivity Results for TRIGA Fuel Elements, Sealed Cans, Normal
	Conditions, Nonpoisoned Basket
Table 6.4.5-12	Reactivity Results for TRIGA Fuel Elements, Sealed Cans, Accident
	Conditions, Nonpoisoned Basket
Table 6.4.5-13	Reactivity Results for TRIGA Fuel Elements, Screened Cans, Normal
	Conditions, Poisoned Basket
Table 6.4.5-14	Reactivity Results for TRIGA Fuel Elements, Screened Cans, Accident
	Conditions, Poisoned Basket
Table 6.4.5-15	Single Package 10 CFR 71.55(b)(3) Evaluation keff Summary, TRIGA
	Fuel Element, Nonpoisoned Basket
Table 6.4.5-16	Single Package 10 CFR 71.55(b)(3) Evaluation keff Summary, TRIGA
	Fuel Element, Poisoned Basket
Table 6.4.5-17	Fuel Element Physical Characteristics Evaluation
Table 6.4.5-18	Element Variation to Reduce k _s Below 0.95 6.4.5-47
Table 6.4.5-19	General Model Configuration – Dry to Wet System Reactivity Changes,
	70 wt% ²³⁵ U Stainless Steel Clad Fuel - Nominal Fuel Parameters 6.4.5-47
Table 6.4.5-20	Primary Fuel Type Reactivity Comparison – Accident Conditions
	Eight-Cask Array (No Cans)
Table 6.4.5-21	Normal Condition Maximum System Reativities (No Cans) 6.4.5-48
Table 6.4.5-22	Increased Enrichment for 20 wt % and 70 wt % TRIGA Fuel
	Elements
Table 6.4.5-23	Increased ²³⁵ U Mass TRIGA Fuel Elements
Table 6.4.5-24	Limited Quantity Study for LEU Fissile Mass Increase
Table 6.4.5-25	95 wt % TRIGA Fuel Elements
Table 6.4.5-26	TRIGA Damaged Fuel Canister – Sealed Canister in Top and Bottom
•	Basket Module
Table 6.4.5-27	TRIGA Fuel Element Pitch/Screened Canister Evaluation
Table 6.4.5-28	TRIGA Structural Intact Fuel Canister – Screened Canister in Top
	and Bottom Basket Module
Table 6.4.5-29	TRIGA Cluster Rod Study in TRIGA Fuel Element Shipment 6.4.5-51
Table 6.4.6-1	Cask k _{eff} with 1 RIGA Fuel Cluster Rods – Fuel Rod Placement
m 11 ((()	Perturbations, Nonpoisoned Basket
Table 6.4.6-2	Cask k _{eff} with TRIGA Fuel Cluster Rods – Fuel Rod Placement
	Perturbations, Poisoned Basket

Table 6.4.6-3	Axially Infinite Cask keff with TRIGA Fuel Cluster Rods – Basket
	and Insert Manufacturing Tolerance Perturbations, Nonpoisoned
	Basket
Table 6.4.6-4	Axially Infinite Cask keff with TRIGA Fuel Cluster Rods – Basket
	and Insert Manufacturing Tolerance Perturbations, Poisoned Basket6.4.6-14
Table 6.4.6-5	Sealed Can Preferential Flooding and Partial Loading Reactivity
	Evaluations for TRIGA Fuel Rod Clusters, Nonpoisoned Basket
Table 6.4.6-6	Sealed Can Preferential Flooding and Partial Loading Reactivity
	Evaluations for TRIGA Fuel Rod Clusters, Poisoned Basket
Table 6.4.6-7	Summary of Most Reactive Configurations, TRIGA Fuel Cluster
	Rods, Nonpoisoned Basket
Table 6.4.6-8	Summary of Most Reactive Configurations, TRIGA Fuel Cluster
	Rods, Poisoned Basket
Table 6.4.6-9	Reactivity Results for TRIGA Fuel Cluster Rods, Sealed Cans,
	Normal Conditions, Nonpoisoned Basket
Table 6.4.6-10	Reactivity Results for TRIGA Fuel Cluster Rods, Sealed Can,
	Accident Conditions, Nonpoisoned Basket
Table 6.4.6-11	Reactivity Results for TRIGA Fuel Cluster Rods, Sealed Cans, Normal
	Conditions, Poisoned Basket
Table 6.4.6-12	Reactivity Results for TRIGA Fuel Cluster Rods, Sealed Cans,
	Accident Conditions, Poisoned Basket
Table 6.4.6-13	Single Package 10 CFR 71.55(b)(3) Evaluation keff Summary, TRIGA
	Fuel Cluster Rod, Nonpoisoned Basket
Table 6.4.6-14	Single Package 10 CFR 71.55(b)(3) Evaluation keff Summary, TRIGA
	Fuel Cluster Rod, Poison Basket
Table 6.4.6-15	Increased Fuel Dimensional Parameter keff Summary, TRIGA Fuel
	Cluster Rod, Nonpoisoned Basket
Table 6.4.6-16	TRIGA Cluster Rod Reactivities – Accident Conditions
Table 6.4.6-17	TRIGA Cluster Rod Reactivities - Normal Conditions
Table 6.4.6-18	TRIGA Cluster Rod Reactivities – Single Cask with Containment
	Fully Water Reflected
Table 6.4.6-19	Summary of TRIGA Cluster Rod Maximum Reactivity Configuration6.4.6-23
Table 6.4.6-20	Licensing Parameters for TRIGA Cluster Rods
Table 6.4.7-1	Normal Condition HEU, LEU, MEU DIDO Evaluation
Table 6.4.7-2	HEU DIDO Accident Evaluation – Radial Shift and Exterior
	Moderator Density Variation
Table 6.4.7-3	DIDO Heat Shunt and Aluminum Shell Evaluation Results
Table 6.4.7-4	DIDO Basket Geometric Tolerance Study Results
Table 6.4.7-5	DIDO Fuel Assembly Tolerance Study Results
Table 6.4.7-6	DIDO Fuel Maximum Reactivity Combinations
Table 6.4.7-7	Moderator Density Study for the Infinite Array of Casks (Nominal
	Fuel and Basket Configuration)

second section evaluates severely damaged TRIGA fuel, including debris, in sealed and screened cans. The third section contains the evaluations for a screened can containing TRIGA elements with potential clad damage, but meeting structural requirements for transport. The fourth section evaluates increases in the range of enrichment and fissile material mass of TRIGA fuel elements in intact, screened, and sealed canister configurations. The fifth section contains the evaluation of a mixed shipment of TRIGA fuel elements and TRIGA cluster rods. Unless otherwise indicated, all models represent the accident condition cask (i.e., no neutron shield) in a finite cask array of eight casks. The array of eight casks is placed in a close-pack triangular pitch configuration as shown in Figure 6.4.5-9. As demonstrated in the analysis results sections, neutronic coupling between casks in an array, with void between casks, maximizes reactivity. Placing the casks in a tight pitch array is 12.5 (N=4, CSI=50/N). Under normal conditions, with the neutron shield in place, the system is evaluated for an infinite array of casks (reflective boundary condition on a cuboid surrounding the cask) producing a CSI of 0.

While the analyses evaluate both screened and sealed cans, shipment is only permitted in the sealed canister configuration.

6.4.5.6.1 Intact Fuel Elements (No Can)

Basic TRIGA fuel element characteristics affecting system reactivity are itemized in the following paragraphs, with a qualitative description as to their effect on system reactivity.

Following the qualitative description are the result discussions of the KENO-Va calculations for the individual parameters.

Enrichment

TRIGA fuel elements are constructed at two basic enrichment levels (20 wt % and 70 wt % 235 U).

Fissile Material Mass

Maximum fissile material mass for each enrichment/fuel clad material combination is assigned to the models. Maximum fissile material mass will result in maximum system reactivity.

Zirconium Mass and Hydrogen-to-Zirconium (H/Zr) Ratio

The combination of zirconium mass and the H/Zr ratio determines the quantity of moderator (hydrogen) within the fuel matrix. Previous evaluations indicate that increasing the moderator quantity has the potential to increase system reactivity (i.e., the fuel element itself is undermoderated). Therefore, maximum system reactivity is obtained from a H/Zr ratio of 2.0 (maximum for zirconium hydride) and a maximum fuel zirconium content (limited by the fuel region volume).

Rod Diameter

Modifying rod diameter at a fixed fuel geometry and mass has a small negative effect for stainless steel clad elements, as it increases clad volume (stainless steel is a parasitic absorber). There is no significant effect on aluminum clad fuel. A secondary effect of a rod diameter increase is the separation of the fuel in the dry cavity cask case and reduction in water between elements in the wet cavity cask case. Both result in minor negative reactivity trends.

When allowing the fuel to expand to the clad inner surface, a maximum rod OD allows for additional moderator (in the form of ZrH), which more than offsets the minor reactivity effects discussed previously and, therefore, represents a bounding configuration.

Clad Thickness

Reducing clad thickness removes parasitic absorber for the stainless steel clad fuel element. At a fixed outer diameter, reduced clad thickness provides additional rod interior volume. For a fixed fuel mass, the reactivity effect of a reduced clad thickness is, therefore, limited to the parasitic absorber removal while, at a maximum fuel mass, the reduced thickness clad provides volume for additional ZrH.

Fuel Outer and Inner Diameter

Inner and outer fuel diameters have no effect on system reactivity at a fixed fuel mass. Maximum outer diameter (i.e., contact with the clad) and minimum inner diameter (i.e., contact with the center zirconium rod where applicable) provide for additional ZrH volume and, therefore, represent a bounding configuration.

Central Zirconium Rod Diameter

A change in the diameter of the central zirconium rod at a fixed fuel geometry has no significant system reactivity effect, as it involves neutronically transparent material. A minimum zirconium rod is bounding for the modified fuel dimensions (maximum ZrH).

Active Fuel Length

The reactivity variations associated with the active fuel length have distinctly different trends when considering a system at a fixed (nominal) ZrH quantity and for a system maximizing the ZrH quantity. At a fixed ZrH quantity, the minimum active fuel height compacts the fissile material region (potentially above theoretical density) and, therefore, increases system reactivity. At the maximum ZrH quantity, the effect of a compacted (reduced leakage) fuel region is offset by the reduced moderator ratio in the fuel region, resulting in a slight decrease in reactivity for a dry cask cavity and no statistically resolvable effect for a wet cask cavity (bounding for the finite array of casks modeled). Therefore, active fuel length variations have no significant effects on the highest system reactivity cases containing maximum ZrH.

NAC International

 g/cm^3) cask and wet can at 0.4 g/cm^3 moderator density (note that there is no statistically significant change in system reactivity as a function of can cavity moderator density).

Maximum normal condition reactivity for an infinite array of casks containing the screened cans with four TRIGA elements is 0.92484 ± 0.00068 (wet cask/wet can).

The overall system CSI for casks containing cans with up to four fuel elements per can, including fuel debris, is 25.

6.4.5.6.4 Higher Fissile Material Mass and Enrichment Study

The NAC-LWT cask is evaluated to contain increased fissile material mass and enrichment elements. Revised parameters are designed to bound TRIGA fuel elements up to 25 wt % enriched with $275g^{235}U$ fissile mass, up to 71 wt % enriched with up to $138g^{235}U$, and up to 95 wt % enriched with up to $175g^{235}U$. The evaluation justifying the slight increase in fissile content for 20 wt % and 70 wt % elements and the significantly higher 95 wt % elements is divided into intact and damaged fuel sections.

Intact Fuel Elements (No Canister)

Analysis in this section evaluates increases in fissile material mass and enrichment and provides loading restrictions where necessary for the increased payload definition.

Increased Fuel Enrichment (20 wt % ²³⁵U and 70 wt % ²³⁵U Base Cases)

The first analysis phase was an increase in the ²³⁵U enrichment. The LEU was increased from 20 to 25 wt % ²³⁵U, while the HEU had a smaller increase from 70 to 71 wt %. The cases model an NAC-LWT cask with a full payload of maximum reactivity fuel (maximum clad diameter, minimum clad thickness, and maximum H/Zr ratio). This fuel type has been documented in the previous TRIGA analysis section to be bounding. Table 6.4.5-22 displays the results of the increased enrichment analysis for the 20 wt % and 70 wt % fuels. The 20 wt % enriched fuel showed a small increase in reactivity, but is still significantly below the 70 wt % fuel in reactivity. The small increase in enrichment in the 70 wt % fuel yielded a similarly small change in reactivity is a fraction of the uncertainty associated with the reactivity and is statistically insignificant. The increased enrichment fuel payload remained well under the reactivity limit of 0.95.

Increase Mass of ²³⁵U (25 wt % ²³⁵U and 71 wt % ²³⁵U Base Cases)

The next phase of the analysis increased the mass of 235 U in addition to the increased enrichment. The 71 wt % maximum 235 U mass was increased from 137 to 138 grams, while the LEU (25 wt %) maximum was increased from 169 to 275 grams. Results for this analysis, with four elements per basket opening, are documented in Table 6.4.5-23. The increase in fissile material in the HEU fuel was small and, again, produced an insignificant change in reactivity when compared to the previous HEU run. All HEU reactivities remained under the 0.95 limit. Because the full payload of 25%, 275g ²³⁵U enriched LEU exceeds the reactivity limit, the fuel must have loading restrictions implemented to meet the limits. The 275g ²³⁵U LEU is restricted to the bottom and top baskets of the previously most reactive payload, the 71%, 138 g loading. To implement the restrictions, the material cards of the 25%, 275g LEU were copied and added to the input file of the 138g HEU and a MORE DATA card was added to allow for the Dancoff correction of the second fuel. The result of the LEU restriction to the bottom and top baskets of the HEU payload also exceeded the reactivity limit, so the LEU basket was further restricted, allowing only three rods per basket opening instead of four. Table 6.4.5-24 displays the results of the TRIGA payloads containing the 25%, 275g LEU fuel, as well as comparing them to the full payload of 71%, 138g fuel. A tube basket spacer will be used to limit the loading within the basket opening, while retaining the ability to flood and drain the basket freely.

95% HEU Fuel Loading

A full payload of 95% weight enriched and 175g ²³⁵U HEU fuel was evaluated. As with the 25%, 275g LEU fuel, the full payload of 95% HEU fuel resulted in a reactivity over 0.95. The same loading restrictions were tested with the 95% HEU fuel, including restricting the fuel to the bottom and top baskets and only allowing three rods per basket opening. The loading evaluation, documented in Table 6.4.5-25, found that to remain under the 0.95 reactivity limit, the 95% HEU fuel must be restricted to the top and bottom baskets with only three rods per opening. The 71%, 138g HEU fuel was loaded in the middle three baskets of the payloads, while the 95% HEU fuel was restricted to the top and bottom baskets. Figure 6.4.5-12 lists the input for the 95% HEU three-element restricted configuration.

PICTURE, a module within the SCALE package, is used to generate representations of the system geometry. Figure 6.4.5-10 contains the image of a fully loaded basket containing four TRIGA elements or mixed loading of TRIGA elements and TRIGA cluster rods. This evaluation represents the center baskets of the transport configuration containing the 95 wt % enriched fuel in the top and bottom baskets. Figure 6.4.5-11 displays the cross-section of the top and bottom baskets with payload limited to three elements. A dummy TRIGA tube will be inserted into the basket to prohibit loading of a fourth element into the basket cell. The dummy tube is not included in the model.

7

Damaged Fuel

The NAC-LWT cask is licensed to transport both intact and damaged TRIGA fuel elements. Damaged fuel is restricted to the top and bottom basket modules. The most reactive 25%, 275g ²³⁵U LEU, 71%, 138g ²³⁵U HEU fuel and 95%, 175g ²³⁵U HEU TRIGA fuel were modeled as damaged fuel and restricted to the top and bottom baskets of a payload. The remaining baskets were loaded with the previously most reactive full payload, which was the 71%, 138g HEU fuel.

The damaged fuel model was used as the base model, and the 71%, 138g HEU material cards were inserted into the input file. The damaged fuel was modeled as both intact and rubble fuel. The rubble fuel is sealed in a damaged fuel canister and limited to two rods worth of fuel, while the intact fuel was placed into basket openings in a screened canister and can contain full four rods per canister.

Results of the damaged, rubble fuel analyses shown in Table 6.4.5-26 demonstrate that the restriction to two fuel rods in the sealed canister reduces basket reactivity in the damaged fuel locations to that below the intact fuel center baskets (i.e., system reactivity is controlled by the center intact fuel baskets, and no significant system reactivity change results from the placement of the sealed damaged fuel canisters). Figure 6.4.5-13 lists the input for the 95% HEU damaged fuel configuration.

Screened canisters are expected to reduce reactivity for the full, four element per basket opening payload as a result of the additional stainless steel material in the canister body, axial fuel offset produced by the canister bottom and lid structure, and reduced element pitch available in the canister. The most reactive configuration study in previous evaluations documented the reduced reactivity for smaller fuel element pitch. This effect is verified for the higher load fuel elements in Table 6.4.5-27. Results in Table 6.4.5-27 also include the additional effect of adding the canister materials and the axial offset produced by the canister. The combination of these effects results in a lower screened canister basket reactivity than that of the central baskets with a resulting statistically insignificant change in system reactivity. Screened canister evaluations are performed for all increased payload definitions with the results documented in Table 6.4.5-28. None of the cases showed a statistically significant change in reactivity and no case exceeds the 0.95 allowable k_s .

6.4.5.6.5 Mixed TRIGA Fuel Element and Cluster Rod Study

The NAC-LWT cask may contain a mix payload of TRIGA fuel including cluster rods. The most reactive payload (71%, 138g HEU) was modeled with one of the basket openings loaded with TRIGA cluster fuel. The cluster rods were modeled both as intact in a 4×4 holder, and as damaged fuel rods as rubble in a sealed canister. The intact rods had a full loading of 16 rods per basket opening, while the damaged fuel was restricted to the equivalent of six rods in the sealed canister. The resulting reactivity is displayed in Table 6.4.5-29. Replacing the 71 wt % HEU rods with cluster rods in one basket opening shows no stastical change in reactivity, as the system reactivity is driven by the fully loaded fuel element baskets.

6.4.5.6.6 Revised Fuel Parameter Reactivity Summary

The reactivity evaluation of the NAC-LWT cask containing up to 120 TRIGA elements demonstrates that subcritical margin ($k_s \le 0.95$) can be maintained under the following condition:

		Any Mix Loading				Top/Bottom Basket Only	
Fuel Type		LEU	LEU	HEU	Cluster	LEU	HEU
Clad Type		Clad Type SS AI SS		SS	Incoloy	SS	SS
²³⁵ U Enrichme	chment (wt %) 25% 25% 71% 95% 25%		25%	95%			
²³⁵ U Content	t (grams)) $\leq 169 \leq 41 \leq 138 \leq 46.5 \leq 275$		≤175			
Max.# of	Intact	4			16	3	3
Elements/Rods per Opening	Sealed	2			6	2	2
Rod Diameter		\leq 1.5 inch			≤ 0.53	≤1.5	5 inch
H/ZR Ratio 2.0 1.7		2	.0				
Fuel Material		U-ZrH _x					
Clad Thickness ≥0.01 inch							
Maximum Reactivity (ks) 0.949							

Due to limitations on the array size for accident conditions, the criticality safety index (CSI) for the package is 12.5 for loading of intact fuel and sealed cans containing up to two fuel elements (in any condition, including severely damaged fuel and debris). The basket top module may contain TRIGA cluster rods in either intact or canned form.

6.4.5.7 <u>Conclusion</u>

Thus, including all calculational and mechanical uncertainties, an infinite array of NAC-LWT casks remains subcritical, and is below the 0.95 limit, corrected for bias and uncertainty, under normal and accident conditions with:

Nonpoisoned Baskets:

- 1. 120 TRIGA fuel elements,
- 2. Sealed cans (top and bottom baskets only) with two damaged TRIGA fuel elements or fuel debris equivalent to two elements.
- 3. TRIGA cluster rods in the rod holder described in Section 6.4.6 inserted into the top basket module of a TRIGA fuel element shipment.

Poisoned Baskets:

- 1. 140 TRIGA fuel elements,
- 2. Sealed cans (top and bottom baskets only) with two damaged TRIGA fuel elements or fuel debris equivalent to two elements.

Figure 6.4.5-1 Finite Cask Array Reactivity versus Fuel Zirconium Mass (Dry Cask Cavity)

Figure 6.4.5-2 Finite Cask Array Reactivity versus H/Zr Ratio (Dry Cask Cavity)

NAC International

Figure 6.4.5-7Screened and Sealed Can Debris Height Study – Maximum Reactivity
Fuel Configuration – 70 wt% ²³⁵U Steel Clad

Figure 6.4.5-8Screened Can – 4 Elements per Can – Maximum Reactivity Fuel
Configuration – 70 wt% ²³⁵U Steel Clad

NAC International

Figure 6.4.5-9 PICTURE Representation of NAC-LWT Eight Cask Array for Accident Condition TRIGA Unpoisoned Basket Analysis

Figure 6.4.5-10 PICTURE Representation of NAC-LWT TRIGA Payload – Fully Loaded Basket Analysis and Mixed TRIGA Loading¹

Figure 6.4.5-11 PICTURE Representation of NAC-LWT TRIGA Payload – Reduced Number of Elements in High Fissile Material Element Basket – Top and Bottom Baskets

¹ Fully loaded baskets represent the center baskets for the high fissile material load analysis (>138g 235 U for HEU and >169g 235 U for LEU) and any basket for lower fissile mass and/or mixed TRIGA element/TRIGA cluster rod contents.

Figure 6.4.5-12 Sample Input File for High Mass HEU TRIGA Analysis – 3 Intact Elements of 175 g ²³⁵U at 95 wt % ²³⁵U per Basket Opening in Top and Bottom Basket – Accident Array Calculation with 8 Casks

=CSAS25TRIGA - WET INTERIOR, DRY EXTERIOR - FINITE CASK ARRAY '2 Fuel run with 2nd fuel in bottom and top baskets 'Fuel 1: 71_2342Zr_U5_138g - middle 3 baskets 'Fuel 2: 95_2345Zr_U5_175g - top and bottom baskets 27GROUPNDF4 LATTICECELL 'FUEL 1 U-235 1 0.0 8.09244E-04 293.0 END U-238 1 0.0 3.24241E-04 293.0 END 1 0.0 3.53871E-02 293.0 END ZR1 0.0 7.07742E-02 293.0 END Н 'CLAD 2 1.0 293.0 END SS304 'CASK INTERNAL MODERATOR Н2О 3 1.0 293.0 END 'ZIRCONIUM ROD 4 1.0 293.0 END ZR 'GRAPHITE REFLECTOR С 5 1.0 293.0 END 'BASKET AND CASK STEEL SS304 6 1.0 293.0 END 'LEAD SHIELD ΡB 7 1.0 293.0 END 'NEUTRON SHIELD 8 1.0 293.0 END н2О 'CASK EXTERNAL MATERIAL 9 1E-20 293.0 END н2О 'END FITTING FOR FUEL ELEMENT SS304 10 0.337137 293.0 END 10 0.662863 293.0 END н20 'FUEL 2 U-235 11 0.0 1.02622E-03 293.0 END 11 0.0 5.21101E-05 293.0 END U-238 11 0.0 3.54310E-02 293.0 END ZR 11 0.0 7.08620E-02 293.0 END Η END COMP SQUAREPITCH 3.8101 3.7592 1 3 3.81 2 3.7592 0 END MORE DATA RES=11 CYLINDER 1.87960 DAN(11)=8.52196E-01 END TRIGA - WET INTERIOR, DRY EXTERIOR - MOST REACTIVE CONFIGURATION READ PARAM TME=170.0 GEN=803 NPG=2000 RUN=YES PLT=NO TBA=2.0 END PARAM READ GEOM UNIT 41 COM='TRIGA FUEL ELEMENT' CYLINDER 4 1 0.00010 2P19.6850 CYLINDER 1 1 1.87960 2P19.6850 CYLINDER 5 1 1.87960 2P28.3718 CYLINDER 2 1 1.90500 2P28.3718 CYLINDER 10 1 1.90500 2P36.7030 UNIT 45 COM='3.38 in Width / 0.28 in Thickness DIVIDER CENTER STACK' CUBOID 6 1 2P4.29260 0.71120 0.00000 2P36.7030 UNIT 46

NAC International

Revision LWT-10C

COM='3.38 in Width / 0.24 in Thickness DIVIDER OUTSIDE STACK' 6 1 2P4.29260 0.60960 0.00000 2P36.7030 CUBOID UNIT 50 COM='TRIGA ELEMENTS - Top of 3.38 in x 3.38 in OPENING' 3 1 2P4.29260 2P4.29260 2P36.7030 CUBOID 41 +2.3875 +2.3875 0.0000 HOLE 41 -2.3875 +2.3875 0.0000 HOLE 41 -2.3875 -2.3875 0.0000 HOLE 41 +2.3875 -2.3875 0.0000 HOLE UNIT 51 COM='TRIGA ELEMENTS - Bottom of 3.38 in x 3.38 in OPENING' CUBOID 3 1 2P4.29260 2P4.29260 2P36.7030 41 +2.3875 +2.3875 0.0000 HOLE 41 -2.3875 +2.3875 0.0000 HOLE HOLE 41 -2.3875 -2.3875 0.0000 HOLE 41 +2.3875 -2.3875 0.0000 UNIT 52 COM='TRIGA ELEMENTS - Bottom Right of 3.38 in x 3.38 in OPENING' CUBOID 3 1 2P4.29260 2P4.29260 2P36.7030 41 +2.3875 +2.3875 0.0000 HOLE HOLE 41 -2.3875 +2.3875 0.0000 HOLE 41 -2.3875 -2.3875 0.0000 41 +2.3875 -2.3875 0.0000 HOLE UNIT 53 COM='TRIGA ELEMENTS - Top Right of 3.38 in x 3.38 in OPENING' CUBOID 3 1 2P4.29260 2P4.29260 2P36.7030 HOLE 41 +2.3875 +2.3875 0.0000 HOLE 41 -2.3875 +2.3875 0.0000 HOLE 41 -2.3875 -2.3875 0.0000 HOLE 41 +2.3875 -2.3875 0.0000 UNIT 54 COM='TRIGA ELEMENTS - Bottom Left of 3.38 in x 3.38 in OPENING' CUBOID 3 1 2P4.29260 2P4.29260 2P36.7030 41 +2.3875 +2.3875 0.0000 HOLE HOLĒ 41 -2.3875 +2.3875 0.0000 HOLE 41 -2.3875 -2.3875 0.0000 HOLE 41 +2.3875 -2.3875 0.0000 UNIT 55 COM='TRIGA ELEMENTS - Top Left of 3.38 in x 3.38 in OPENING' CUBOID 3 1 2P4.29260 2P4.29260 2P36.7030 HOLE 41 +2.3875 +2.3875 0.0000 HOLE 41 -2.3875 +2.3875 0.0000 HOLE 41 -2.3875 -2.3875 0.0000 HOLE 41 +2.3875 -2.3875 0.0000 UNIT 56 COM='TRIGA BASKET 3.38 in x 3.38 in CENTER OPENING' CUBOID 3 1 2P4.29260 2P4.29260 2P36.7030 UNIT 60 COM='CENTER COLUMN OF THREE OPENINGS w/ 0.28 in plate' ARRAY 11 -4.2926 -13.5890 -36.7030 REPLICATE 6 1 4R0.7112 2R0.0 1 UNIT 61 COM='LEFT OUTSIDE COLUMN OF TWO OPENINGS w/ 0.12 in plate' ARRAY 12 -4.2926 -8.8900 -36.7030 REPLICATE 6 1 0.0 0.3048 2R0.3048 2R0.0 1 UNIT 62 COM='RIGHT OUTSIDE COLUMN OF TWO OPENINGS w/ 0.12 in plate' ARRAY 13 -4.2926 -8.8900 -36.7030 REPLICATE 6 1 0.3048 0.0 2R0.3048 2R0.0 1 UNIT 70 COM='NAC-LWT TRIGA BASKET WITH RADIAL CASK SHIELD'

NAC International

6.4.5-25

Revision LWT-10C

CYLINDER HOLE	3 1 17.15000 2P36.7030 60 0.0000 0.0000 0.0000
HOLE	61 - 9.2965 0.0000 0.0000
HULE	62 + 9.2965 0.0000 0.0000
CYLINDER CVI INDER	0 1 10.91030 2F37.3379 7 1 22 46450 2F37.3379
CYLINDER CVLINDER	$7 \pm 55.40450 \ 2F57.5579$
CULINDER	$0 \pm 30.51000 \ 2F57.3579$ $0 \pm 1.40 \ 20070 \ 2F57 \ 3370$
CYLINDER	$6 \ 1 \ 49 \ 82210 \ 2F37 \ 3379$
'	2nd Fuel Units
UNIT 141	
COM='TRIC	GA FUEL ELEMENT'
CYLINDER	4 I 0.000I0 2PI9.6850
CVLINDER	11 1 1 87960 2019 6850
CYLINDER	$5 \ 1 \ 1 \ 87960 \ 2P28 \ 3718$
	5 1 1.07900 2120.3710
CYLINDER	2 1 1.90500 2P28.3718
CYLINDER	10 1 1.90500 2P36.7030
UNIT 150	
COM='TRIC	GA ELEMENTS - Top of 3.38 in x 3.38 in OPENING (Fuel 2)'
CUBOID	3 1 2P4.29260 2P4.29260 2P36.7030
'HOLE	141 +2.3875 +2.3875 0.0000
HOLE	141 -2.3875 +2.3875 0.0000
HOLE	141 - 2.3875 - 2.3875 0.0000
HOLE	141 +2.38/5 -2.38/5 0.0000
COM-INDIC	Therefore $f = 2.20$ in $r = 2.20$ in ODENING (Eye) 2.1
CUBOTD	3 1 2DA 20260 2DA 20260 2D36 7030
HOLE	$3 \pm 2F4.29200$ $2F4.29200$ $2F50.7050$
HOLE	141 -2 3875 +2 3875 0 0000
HOLE	141 - 2.3875 - 2.3875 0.0000
'HOLE	141 +2.3875 -2.3875 0.0000
UNIT 152	
COM='TRIC	GA ELEMENTS - Bottom Right of 3.38 in x 3.38 in OPENING (Fuel 2)'
CUBOID	3 1 2P4.29260 2P4.29260 2P36.7030
HOLE	141 +2.3875 +2.3875 0.0000
HOLE	141 -2.3875 +2.3875 0.0000
HOLE	141 -2.3875 -2.3875 0.0000
'HOLE	141 +2.3875 -2.3875 0.0000
UNIT 153	
COM= 'TRIC	A ELEMENTS - Top Right of 3.38 in x 3.38 in OPENING (Fuel 2)'
COBOID	$3 \perp 2P4.29260 \ 2P4.29260 \ 2P36.7030 \ 141 \ 23875 \ 23875 \ 0.0000$
HOLE	$141 - 2$ 3875 ± 2 3875 0 0000
HOLE	141 -2 3875 -2 3875 0 0000 -1
HOLE	141 + 2.3875 - 2.3875 0.0000
UNIT 154	141 (2.56/5 2.56/5 0.0000
COM='TRIC	GA ELEMENTS - Bottom Left of 3.38 in x 3.38 in OPENING (Fuel 2)'
CUBOID	3 1 2P4.29260 2P4.29260 2P36.7030
HOLE	141 +2.3875 +2.3875 0.0000
HOLE	141 -2.3875 +2.3875 0.0000
'HOLE	141 -2.3875 -2.3875 0.0000
HOLE	141 +2.3875 -2.3875 0.0000
UNIT 155	
COM='TRIG	GA ELEMENTS - Top Left of 3.38 in x 3.38 in OPENING (Fuel 2)'
CUBOID	3 1 2P4.29260 2P4.29260 2P36.7030
HOLE	141 +2.38/5 +2.38/5 0.0000
· HOLE	141 2 2075 2 2075 0 0000
NULL	141 -2.30/3 -2.30/3 U.UUUU

i,

NAC International

6.4.5-26

Revision LWT-10C

HOLE 141 +2.3875 -2.3875 0.0000 UNIT 160 COM='CENTER COLUMN OF THREE OPENINGS w/ 0.28 in plate' ARRAY 111 -4.2926 -13.5890 -36.7030 REPLICATE 6 1 4R0.7112 2R0.0 1 UNTT 161 COM='LEFT OUTSIDE COLUMN OF TWO OPENINGS w/ 0.12 in plate' ARRAY 112 -4.2926 -8.8900 -36.7030 REPLICATE 6 1 0.0 0.3048 2R0.3048 2R0.0 1 UNIT 162 COM='RIGHT OUTSIDE COLUMN OF TWO OPENINGS w/ 0.12 in plate' ARRAY 113 -4.2926 -8.8900 -36.7030 REPLICATE 6 1 0.3048 0.0 2R0.3048 2R0.0 1 UNIT 170 COM='NAC-LWT TRIGA BASKET WITH RADIAL CASK SHIELD' CYLINDER 3 1 17.15000 2P36.7030 HOLE 160 0.0000 0.0000 0.0000 HOLE161-9.29650.00000.0000HOLE162+9.29650.00000.0000 CYLINDER 6 1 18.91030 2P37.3379 CYLINDER 7 1 33.46450 2P37.3379 CYLINDER 6 1 36.51880 2P37.3379 CYLINDER 9 1 49.22270 2P37.3379 CYLINDER 6 1 49.82210 2P37.3379 '-----End 2nd Fuel Units------End 2nd Fuel Units-----UNIT 80 COM='NAC-LWT WITH 5 TRIGA BASKETS - NO LID OR BOTTOM WELDMENT' CYLINDER 3 1 49.82210 373.3800 0.0000 HOLE 170 0.0000 0.0000 +37.3380 HOLE 70 0.0000 0.0000 +112.0140 HOLE 70 0.0000 0.0000 +186.6900 70 0.0000 0.0000 +261.3660 HOLE HOLE HOLE 170 0.0000 0.0000 +336.0420 UNIT 90 COM='SIMPLIFIED LID STRUCTURE NAC-LWT' CYLINDER 6 1 36.5188 2P14.1351 CYLINDER 9 1 49.8221 2P14.1351 UNIT 91 COM='SIMPLIFIED CASK BOTTOM STRUCTURE NAC-LWT' CYLINDER 7 1 26.3525 2P3.81 CYLINDER 6 1 36.6188 +13.97 -12.7 CYLINDER 9 1 49.8221 +13.97 -12.7 UNIT 92 COM='SINGLE CASK' CYLINDER 9 1 49.82210 428.3204 0.0000 HOLE 91 0.0000 0.0000 +12.7000 80 0.0000 0.0000 +26.6700 HOLE 90 0.0000 0.0000 +414.1852 HOLE GLOBAL UNIT 93 COM='FINITE CASK ARRAY - 8 CASKS' CUBOID 9 1 199.28960 -149.46660 2P136.11700 428.3204 0.0000 92 0.0000 0.0000 0.0000 HOLE 92 +99.6444 0.0000 0.0000 HOLE HOLE 92 +49.8222 +86.2946 0.0000 HOLE 92 -49.8222 +86.2946 0.0000 HOLE 92 -99.6444 0.0000 0.0000 HOLE 92 -49.8222 -86.2946 0.0000 HOLE 92 +49.8222 -86.2946 0.0000 92 +149.4666 -86.2946 0.0000 HOLE END GEOM READ ARRAY

NAC International

Revision LWT-10C

ARA=11 NUX=1 NUY=5 NUZ=1 FILL 50 45 56 45 51 END FILL ARA=12 NUX=1 NUY=3 NUZ=1 FILL 53 46 52 END FILL ARA=13 NUX=1 NUY=3 NUZ=1 FILL 55 46 54 END FILL ARA=111 NUX=1 NUY=5 NUZ=1 FILL 151 45 56 45 150 END FILL ARA=112 NUX=1 NUY=3 NUZ=1 FILL 154 46 155 END FILL ARA=113 NUX=1 NUY=3 NUZ=1 FILL 152 46 153 END FILL END ARRAY READ BOUNDS ALL=H20 END BOUNDS READ PLOT TTL='X-Y PLOT OF BASKET' SCR=YES PIC=MAT LPI=10 UAX=1.0 VDN=-1.0 NAX=1600 XUL=-17.2 YUL=17.2 ZUL=215 XLR=17.2 YLR=-17.2 ZLR=215 END TTL='X-Y PLOT OF PERIPHERAL OPENING' SCR=YES PIC=MAT LPI=10 UAX=1.0 VDN=-1.0 NAX=1600 XUL=-7.0 YUL=16.0 ZUL=215 XLR=7.0 YLR=4.0 ZLR=215 END TTL='Y-Z PLOT OF BASKET (CENTER OF FUEL ELEMENTS, CANISTER ELEVATION)' SCR=YES PIC=MAT LPI=10 VAX=1.0 WDN=-1.0 NAX=1600 XUL=2.12 YUL=-14.0 ZUL=330 XLR=2.12 YLR=-4.5 ZLR=235 END TTL='Y-Z PLOT OF BASKET (CASK)' SCR=YES PIC=MAT LPI=10 VAX=1.0 WDN=-1.0 NAX=1600 XUL=2.12 YUL=-51 ZUL=465 XLR=2.12 YLR=+51 ZLR=0 END TTL='X-Y PLOT OF ARRAY' SCR=YES PIC=MAT LPI=10 UAX=1.0 VDN=-1.0 NAX=1600 XUL=-200 YUL=200 ZUL=215 XLR=200 YLR=-200 ZLR=215 END PLOT END DATA END

Figure 6.4.5-13 Sample Input File for High Mass HEU TRIGA Analysis – 2 Damaged Elements of 175 g²³⁵U at 95 wt %²³⁵U per Basket Opening in Top and Bottom Basket – Accident Array Calculation with 8 Casks

```
=CSAS25
TRIGA - PREF. FLOOD DEBRIS CANISTER - SEALED CAN - 2 RODS
27GROUPNDF4 INFHOMMEDIUM
'Sealed Fuel: 95_2345Zr_U5_175g
'Middle Baskets Fuel: 71_2342Zr_U5_138g'FUEL
         1 0.0 1.80754E-04 293.0 END
U - 235
         1 0.0 9.17849E-06 293.0 END
U-238
         1 0.0 6.24069E-03 293.0 END
ZR
        1 0.0 1.24814E-02 293.0 END
H ·
H2O
         1 0.823864 293.0 END
'CANISTER INTERNAL MODERATOR
    3 1.0 293.0 END
н2О
ZIRCONIUM ROD
ZR 4 1.0 293.0 END
'GRAPHITE REFLECTOR
         5 1.0 293.0 END
C
'BASKET AND CASK STEEL
SS304
         6 1.0 293.0 END
'LEAD SHIELD
PB
         7 1.0 293.0 END
'NEUTRON SHIELD
         8 1.0 293.0 END
н20
'CASK EXTERNAL MATERIAL
H20
     9 1E-20 293.0 END
'INTACT FUEL MATERIAL COMPOSITION
U-235
         11 0.0 8.09244E-04 293.0 END
U-238
          11 0.0 3.24241E-04 293.0 END
ZR
          11 0.0 3.53871E-02 293.0 END
         11 0.0 7.07742E-02 293.0 END
Н
'INTACT FUEL CLAD
        12 1.0 293.0 END
SS304
'CASK INTERIOR MODERATOR MATERIAL
H2O 13 1.0 293.0 END
'INTACT FUEL END-FITTING
SS304 14 0.337137 293.0 END
         14 0.662863 293.0 END
Н2О
END COMP
MORE DATA
RES=11 CYLINDER 1.8796 DAN(11)=8.52196E-01
END MORE
TRIGA - PREF. FLOOD CANISTER - 2 ROD FILLING CANISTER + TOLERANCE
READ PARAM TME=170.0 GEN=803 NPG=2000 RUN=YES PLT=NO
TBA=2.0 END PARAM
READ GEOM
UNIT 1
COM='TRIGA FUEL (SEALED)'
CYLINDER 1 1 3.98770 99.3130 0.0010
UNIT 5
COM='3.38 in Width / 0.28 in Thickness DIVIDER CENTER STACK (SEALED)
CUBOID
        6 1 2P4.29260 0.71120 0.00000 112.6490 -8.2550
UNIT 6
```

NAC International

Revision LWT-10C

COM='3.38 in Width / 0.24 in Thickness DIVIDER OUTSIDE STACK (SEALED)' 6 1 2P4.29260 0.60960 0.00000 112.6490 -8.2550 CUBOTD UNIT 7 COM=' SEALED CANISTER' CYLINDER 3 1 3.98780 99.3140 0.0000 HOLE 1 0.0000 0.0000 0.0000 CYLINDER 6 1 4.15290 101.8540 -1.2700 CYLINDER 13 1 4.15290 112.6490 -8.2550 UNIT 10 COM='TRIGA ELEMENTS - TOP of 3.38 in x 3.38 in OPENING (SEALED)' CUBOID 13 1 2P4.29260 2P4.29260 112.6490 -8.2550 7 0.0000 +0.1396 0.0000 HOLE UNIT 11 COM='TRIGA ELEMENTS - Bottom of 3.38 in x 3.38 in OPENING (SEALED)' CUBOID 13 1 2P4.29260 2P4.29260 112.6490 -8.2550 7 0.0000 -0.1396 0.0000 HOLE UNIT 12 COM='TRIGA ELEMENTS - Bottom Right of 3.38 in x 3.38 in OPENING (SEALED)' CUBOID 13 1 2P4.29260 2P4.29260 112.6490 -8.2550 7 +0.1396 -0.1396 0.0000 HOLE UNIT 13 COM='TRIGA ELEMENTS - Top Right of 3.38 in x 3.38 in OPENING (SEALED)' 13 1 2P4.29260 2P4.29260 112.6490 -8.2550 CUBOTD 7 +0.1396 +0.1396 0.0000 HOLE UNIT 14 COM='TRIGA ELEMENTS - Bottom Left of 3.38 in x 3.38 in OPENING (SEALED) 13 1 2P4.29260 2P4.29260 112.6490 -8.2550 CUBOID HOLE 7 -0.1396 -0.1396 0.0000 UNIT 15 COM='TRIGA ELEMENTS - Top Left of 3.38 in x 3.38 in OPENING (SEALED)' 13 1 2P4.29260 2P4.29260 112.6490 -8.2550 CUBOID HOLE 7 -0.1396 +0.1396 0.0000 UNIT 16 COM='TRIGA BASKET 3.38 in x 3.38 in CENTER OPENING (SEALED)' CUBOID 13 1 2P4.29260 2P4.29260 112.6490 -8.2550 UNIT 20 COM='CENTER COLUMN OF THREE OPENINGS w/ 0.28 in plate (SEALED)' ARRAY 1 -4.2926 -13.5890 -8.2550 REPLICATE 6 1 4R0.7112 2R0.0 1 UNIT 21 COM='LEFT OUTSIDE COLUMN OF TWO OPENINGS w/ 0.12 in plate (SEALED)' ARRAY 2 -4.2926 -8.8900 -8.2550 REPLICATE 6 1 0.0 0.3048 2R0.3048 2R0.0 1 UNIT 22 COM='RIGHT OUTSIDE COLUMN OF TWO OPENINGS w/ 0.12 in plate (SEALED)' ARRAY 3 -4.2926 -8.8900 -8.2550 REPLICATE 6 1 0.3048 0.0 2R0.3048 2R0.0 1 UNIT 30 COM='NAC-LWT TRIGA BASKET (SEALED)' CYLINDER 13 1 17.15000 112.6491 -8.2551 20 0.0000 0.0000 0.0000 HOLE HOLE 21 -9.2965 0.0000 0.0000 HOLE 22 +9.2965 0.0000 0.0000 CYLINDER 6 1 18.91030 113.2838 -8.8898 CYLINDER 7 1 33.46450 113.2838 -8.8898 CYLINDER 6 1 36.51880 113.2838 -8.8898 CYLINDER 9 1 49.22270 113.2838 -8.8898 CYLINDER 6 1 49.82210 113.2838 -8.8898 UNIT 41 COM='TRIGA FUEL ELEMENT' CYLINDER 4 1 0.00010 2P19.6850

March 2010

NAC International

CYLINDER 11 1 1.87960 2P19.6850

CYLINDER 5 1 1.87960 2P28.3718 CYLINDER 12 1 1.90500 2P28.3718 CYLINDER 14 1 1.90500 2P36.7030 UNIT 45 COM='3.38 in Width / 0.28 in Thickness DIVIDER CENTER STACK' CUBOID 6 1 2P4.29260 0.71120 0.00000 2P36.7030 UNIT 46 COM='3.38 in Width / 0.24 in Thickness DIVIDER OUTSIDE STACK' CUBOID 6 1 2P4.29260 0.60960 0.00000 2P36.7030 UNIT 50 .. ~ . COM='TRIGA ELEMENTS - Top of 3.38 in x 3.38 in OPENING' CUBOID 13 1 2P4.29260 2P4.29260 2P36.7030 41 +2.3875 +2.3875 0.0000 HOLE 41 -2.3875 +2.3875 0.0000 HOLE HOLE 41 -2.3875 -2.3875 0.0000 HOLE 41 +2.3875 -2.3875 0.0000 UNIT 51 COM='TRIGA ELEMENTS - Bottom of 3.38 in x 3.38 in OPENING' CUBOID 13 1 2P4.29260 2P4.29260 2P36.7030 HOLE 41 +2.3875 +2.3875 0.0000 41 -2.3875 +2.3875 0.0000 HOLE HOLE 41 -2.3875 -2.3875 0.0000 41 +2.3875 -2.3875 0.0000 HOLE UNIT 52 COM='TRIGA ELEMENTS - Bottom Right of 3.38 in x 3.38 in OPENING' CUBOID 13 1 2P4.29260 2P4.29260 2P36.7030 HOLE 41 +2.3875 +2.3875 0.0000 HOLE 41 -2.3875 +2.3875 0.0000 41 -2.3875 -2.3875 0.0000 HOLE 41 +2.3875 -2.3875 0.0000 HOLE UNIT 53 COM='TRIGA ELEMENTS - Top Right of 3.38 in x 3.38 in OPENING' CUBOID 13 1 2P4.29260 2P4.29260 2P36.7030 HOLE 41 +2.3875 +2.3875 0.0000 41 -2.3875 +2.3875 0.0000 HOLE 41 -2.3875 -2.3875 0.0000 HOLE 41 +2.3875 -2.3875 0.0000 HOLE UNIT 54 COM='TRIGA ELEMENTS - Bottom Left of 3.38 in x 3.38 in OPENING' CUBOID 13 1 2P4.29260 2P4.29260 2P36.7030 41 +2.3875 +2.3875 0.0000 HOLE HOLE 41 -2.3875 +2.3875 0.0000 41 -2.3875 -2.3875 0.0000 HOLE 41 +2.3875 -2.3875 0.0000 HOLE UNIT 55 COM='TRIGA ELEMENTS - Top Left of 3.38 in x 3.38 in OPENING' CUBOID 13 1 2P4.29260 2P4.29260 2P36.7030 HOLE 41 +2.3875 +2.3875 0.0000 41 -2.3875 +2.3875 0.0000 HOLE HOLE 41 -2.3875 -2.3875 0.0000 41 +2.3875 -2.3875 0.0000 HOLE UNIT 56 COM='TRIGA BASKET 3.38 in x 3.38 in CENTER OPENING' CUBOID 13 1 2P4.29260 2P4.29260 2P36.7030 UNIT 60 COM='CENTER COLUMN OF THREE OPENINGS w/ 0.28 in plate' ARRAY 11 -4.2926 -13.5890 -36.7030 REPLICATE 6 1 4R0.7112 2R0.0 1

NAC International

Revision LWT-10C

UNIT 61 COM='LEFT OUTSIDE COLUMN OF TWO OPENINGS w/ 0.12 in plate' ARRAY 12 -4.2926 -8.8900 -36.7030 REPLICATE 6 1 0.0 0.3048 2R0.3048 2R0.0 1 UNIT 62 COM='RIGHT OUTSIDE COLUMN OF TWO OPENINGS w/ 0.12 in plate' ARRAY 13 -4.2926 -8.8900 -36.7030 REPLICATE 6 1 0.3048 0.0 2R0.3048 2R0.0 1 UNIT 70 COM='NAC-LWT TRIGA BASKET WITH RADIAL CASK SHIELD' CYLINDER 13 1 17.15000 2P36.7030 HOLE 60 0.0000 0.0000 0.0000 HOLE 61 -9.2965 0.0000 0.0000 HOLE 62 +9.2965 0.0000 0.0000 CYLINDER 6 1 18.91030 2P37.3379 CYLINDER 7 1 33.46450 2P37.3379 CYLINDER 6 1 36.51880 2P37.3379 CYLINDER 9 1 49.22270 2P37.3379 CYLINDER 6 1 49.82210 2P37.3379 UNTT 81 COM='NAC-LWT WITH 5 TRIGA BASKETS - NO LID OR BOTTOM WELDMENT' CYLINDER 13 1 49.82210 468.3760 0.0000 HOLE 30 0.0000 0.0000 +8.8900 HOLE 70 0.0000 0.0000 +159.5120 HOLE 70 0.0000 0.0000 +234.1880 HOLE700.00000.0000+308.8640HOLE300.00000.0000+355.0920 UNIT 90 COM='SIMPLIFIED LID STRUCTURE NAC-LWT' CYLINDER 6 1 36.5188 2P14.1351 CYLINDER 9 1 49.8221 2P14.1351 UNIT 91 COM='SIMPLIFIED CASK BOTTOM STRUCTURE NAC-LWT' CYLINDER 7 1 26.3525 2P3.81 CYLINDER 6 1 36.6188 +13.97 -12.7 CYLINDER 9 1 49.8221 +13.97 -12.7 UNIT 92 COM='SINGLE CASK' CYLINDER 9 1 49.82210 523.3164 0.0000 HOLE 91 0.0000 0.0000 +12.7000 HOLE 81 0.0000 0.0000 +26.6700 HOLE 90 0.0000 0.0000 +509.1812 GLOBAL UNIT 93 COM='FINITE CASK ARRAY - 8 CASKS' CUBOID 9 1 199.28960 -149.46660 2P136.11700 523.3164 0.0000 HOLE 92 0.0000 0.0000 0.0000 92 +99.6444 0.0000 0.0000 HOLE 92 +49.8222 +86.2946 0.0000 92 -49.8222 +86.2946 0.0000 92 -99.6444 0.0000 0.0000 HOLE HOLE HOLE 92 -49.8222 -86.2946 0.0000 HOLE HOLE92 +49.8222 -86.2946 0.0000HOLE92 +149.4666 -86.2946 0.0000 END GEOM READ ARRAY ARA=1 NUX=1 NUY=5 NUZ=1 FILL 10 5 16 5 11 END FILL ARA=2 NUX=1 NUY=3 NUZ=1 FILL 13 6 12 END FILL ARA=3 NUX=1 NUY=3 NUZ=1 FILL 15 6 14 END FILL ARA=11 NUX=1 NUY=5 NUZ=1 FILL 50 45 56 45 51 END FILL ARA=12 NUX=1 NUY=3 NUZ=1 FILL 53 46 52 END FILL ARA=13 NUX=1 NUY=3 NUZ=1 FILL 55 46 54 END FILL

NAC International 6.4.5-32

Revision LWT-10C

END ARRAY READ BOUNDS ALL=H20 END BOUNDS READ PLOT TTL='X-Y PLOT OF CASK (CANISTER ELEVATION)' SCR=YES PIC=MAT LPI=10 UAX=1.0 VDN=-1.0 NAX=1600 XUL=-50.0 YUL=50.0 ZUL=50 XLR=50.0 YLR=-50.0 ZLR=50 END TTL='X-Y PLOT OF BASKET (CANISTER ELEVATION)' SCR=YES PIC=MAT LPI=10 UAX=1.0 VDN=-1.0 NAX=1600 XUL=-17.2 YUL=17.2 ZUL=50 XLR=17.2 YLR=-17.2 ZLR=50 END TTL='X-Y PLOT OF BASKET (CAVITY MID PLANE)' SCR=YES PIC=MAT LPI=10 UAX=1.0 VDN=-1.0 NAX=1600 XUL=-17.2 YUL=17.2 ZUL=210.0 XLR=17.2 YLR=-17.2 ZLR=210.0 END TTL='X-Y PLOT OF CENTER OPENING (CANISTER ELEVATION)' SCR=YES PIC=MAT LPI=10 UAX=1.0 VDN=-1.0 NAX=1600 XUL=-7.0 YUL=7.0 ZUL=50 XLR=7.0 YLR=-7.0 ZLR=50 END TTL='X-Y PLOT OF PERIPHERAL OPENING (CANISTER ELEVATION)' SCR=YES PIC=MAT LPI=10 UAX=1.0 VDN=-1.0 NAX=1600 XUL=-7.0 YUL=16.0 ZUL=50 XLR=7.0 YLR=4.0 ZLR=50 END TTL='Y-Z PLOT OF BASKET (CENTER OF FUEL ELEMENTS, CANISTER ELEVATION) SCR=YES PIC=MAT LPI=10 VAX=1.0 WDN=-1.0 NAX=1600 XUL=2.12 YUL=-14.0 ZUL=100.69 XLR=2.12 YLR=-4.5 ZLR=20 END TTL='Y-Z PLOT OF BASKET (CASK)' SCR=YES PIC=MAT LPI=10 VAX=1.0 WDN=-1.0 NAX=1600 XUL=2.12 YUL=-51 ZUL=500 XLR=2.12 YLR=+51 ZLR=0 END TTL='X-Y PLOT OF ARRAY' SCR=YES PIC=MAT LPI=10 UAX=1.0 VDN=-1.0 NAX=1600 XUL=-200 YUL=200 ZUL=215 XLR=200 YLR=-200 ZLR=215 END PLOT END DATA

NAC International

Table 6.4.5-1Parametric Study – Fuel / Basket k-infinity versus TRIGA Fuel Element
Type, Nonpoisoned Basket

(Infinite Array of Nonpoisoned TRIGA Basket Cells with Four (4) Elements)

· .	Initial U	Total			
Fuel Element Type	Content wt%	U grams	235U wt%	Wet Case Results K(infinity) $\pm \sigma$	Dry Case Results k(infinity) $\pm \sigma$
Original Al Clad 14 inch Active Fuel	8-8.5	205	20.0	1.01740 ± 0.00081	1.04129 ± 0.00066
Original Al Clad 15 inch Active Fuel	8-8.5	205	20.0	1.00636 ± 0.00081	1.02634 ± 0.00065
Stand. Streamlined Steel Clad 15 inch Active Fuel (FLIP)	8.5	196	70.0	1.33900 ± 0.00094	1.43012 ± 0.00078
Stand. Plain Steel Clad 15 Active Fuel (FLIP)	8.5	196	70.0	1.33969 ± 0.00097	1.43009 ± 0.00077
Stand. Streamlined Steel Clad FLIP-LEU-II	30.6	845	20.0	1.28517 ± 0.00087	1.31180 ± 0.00073
Stand. Plain Steel Clad	30.6	845	20.0	1.28512 ± 0.00088	1.31198 ± 0.00072
FLIP-LEU-II					
FFCR Element FLIP-LEU-I	20.0	484	20.0	1.16407 ± 0.00086	1.23186 ± 0.00071
1-70 wt% ²³⁵ U + 3-20 wt% ²³⁵ U				1.30429 ± 0.00091	1.34060 ± 0.00071
3-70 wt% 235U + 1-20 wt% 235U				1.32896 ± 0.00092	1.40083 ± 0.00077
2-70 wt% ²³⁵ U + 2-20 wt% ²³⁵ U				1.31601 ± 0.00094	1.37156 ± 0.00076

LEU Low Enriched Uranium

FLIP Fuel Life Improvement Program

FFCR Fuel Follower Control Rod

* Resonance treatment for two different fuel types is included.

Table 6.4.5-2Parametric Study – Cask keff versus TRIGA Fuel Element Type,
Poisoned Basket

	Initial U Content	Total U	235၂	Wet Case Results	Drv Case Results
Fuel Element Type	wt%	grams	wt%	k _{eff} ±σ	$K_{eff} \pm \sigma$
Original Al Clad 15 inch Active Fuel	8-8.5	205	20.0	0.58906 ± 0.00097	0.47118±0.00076
Stand. Streamlined Steel Clad 15 inch Active Fuel (FLIP)	8.5	196	70.0	0.86504 ± 0.00134	0.85705 ± 0.00112
Stand. Plain Steel Clad 15 Active Fuel (FLIP)	8.5	196	70.0	0.86647 ± 0.00137	0.86610 ± 0.00115
Stand. Streamlined Steel Clad FLIP-LEU-II	30.6	845	20.0	0.83413 ± 0.00130	0.80073 ± 0.00103
Stand. Plain Steel Clad FLIP-LEU-II	30.6	845	20.0	0.83604 ± 0.00127	0.80492 ± 0.00099
1-70 wt% ²³⁵ U + 3-20 wt% ²³⁵ U				0.84391 ± 0.00133	0.81589 ± 0.00101
3-70 wt% ²³⁵ U + 1-20 wt% ²³⁵ U				0.85826 ± 0.00131	0.84917 ± 0.00108
2-70 wt% ²³⁵ U + 2-20 wt% ²³⁵ U				0.85162 ± 0.00129	0.83177 ± 0.00103

NAC international

Table 6.4.5-3Axially Infinite Cask keff with TRIGA Fuel Elements- Fuel ElementPlacement Perturbations, Nonpoisoned Basket

	Wet Case Results	Dry Case Results
Basket Configuration	$k_{eff} \pm \sigma$	$k_{eff} \pm \sigma$
Elements Touching, Moved In	-	0.93434 ± 0.00115
Elements Touching, Centered	0.77382 ± 0.00109	0.92672 ± 0.00185
Elements Out	0.83468 ± 0.00101	0.90817 ± 0.00105
Elements Centered, Quadrants	0.81340 ± 0.00107	-
Three - 70 wt% ²³⁵ U Elements (Equilateral)	0.83646 ± 0.00112	n
Three - 70 wt% ²³⁵ U Elements (in corner)	0.83579 ± 0.00101	0.80629 ± 0.00110
Three - 70 wt% 235U Elements (Isosceles)	0.83468 ± 0.00101	-
Two - 70 wt% 235U Elements (Center)	0.67480 ± 0.00097	0.63503 ± 0.00108
One - 70 wt% 235U Elements (Center)	0.44428 ± 0.00091	-

Table 6.4.5-4Axially Infinite Cask keff with TRIGA Fuel Elements - Fuel ElementPlacement Perturbations, Poisoned Basket

	Wet Case Results	Dry Case Results
Basket Configuration	$k_{eff} \pm \sigma$	k _{eff} ±σ
Elements Touching, Moved In	-	0.88969 ± 0.00122
Elements Touching, Centered	0.82705 ± 0.00136	0.87833 ± 0.00122
Elements Touching, Moved Out	-	0.87871 ± 0.00112
Elements Centered, Quadrants	0.86647 ± 0.00134	0.86610 ± 0.00115
Elements Out	0.87874 ± 0.00123	0.85348 ± 0.00114
27 Elements, Touching	0.85014 ± 0.00131	0.66829 ± 0.00114
27 Elements, Corners	0.84686 ± 0.00124	-
26 Elements, Touching	0.82959 ± 0.00124	0.64354 ± 0.00117
26 Elements, Corners	0.81959 ± 0.00126	-
21 Elements, Touching	0.70693 ± 0.00127	0.55021 ± 0.00110
21 Elements, Corners	0.73134 ± 0.00133	-
14 Elements, Touching	0.58154 ± 0.00136	0:39354 ± 0.00097
14 Elements, Corners	0.55112 ± 0.00117	-

Table 6.4.5-5Axially Infinite Cask keff with TRIGA Fuel Elements – BasketManufacturing Tolerance Perturbations, Nonpoisoned Basket

	Wet Case Results w/ Dry Neutron Shield	Dry Case Results
Basket Configuration	$k_{eff} \pm \sigma$	$k_{eff} \pm \sigma$
Base Case ¹	0.86190 ± 0.00089^{3}	0.90053 ± 0.00115⁴
Thin SS Plates	0.86861 ± 0.00094	0.90501 ± 0.00109
Maximum Basket Opening ²	0.86864 ± 0.00097	0.90023 ± 0.00107
Minimum Basket Opening ²	0.86489 ± 0.00091	0.90817 ± 0.00105

Notes:

- 1. Both wet and dry base case configurations include elements out to corners of basket openings.
- 2. Incorporates minimum thickness stainless steel, basket divider plates.
- 3. Comparable to the "elements out," $k_{eff} = 0.83468 \pm 0.00101$, configuration of Table 6.4.5-3 except the neutron shield is dry.
- 4. Incorporates the "elements out" configuration.

Table 6.4.5-6Axially Infinite Cask keff with TRIGA Fuel Elements – BasketManufacturing Tolerance Perturbations, Poisoned Basket

	Wet Case Results	Dry Case Results
Basket Configuration	$k_{eff} \pm \sigma$	k _{eff} ±σ
Base Case ¹	0.87874 ± 0.00123	0.88969 ± 0.00122
Minimum Opening ²	0.87832 ± 0.00127	0.89054 ± 0.00107
Increased Central Opening ²	0.87981 ± 0.00133	0.88722 ± 0.00118
Increased Exterior Openings ²	0.87875 ± 0.00134	0.88998 ± 0.00120
Increased Central Opening, Decreased Exterior Openings ²	0.87475 ± 0.00134	0.88724 ± 0.00116

Notes:

1. Most reactive configurations from Table 6.4.5-4.

2. Incorporates minimum thickness stainless steel, basket divider plates.

NAC International

Table 6.4.5-7Screened Can Preferential Flooding and Partial Loading ReactivityEvaluations for TRIGA Fuel Elements, Nonpoisoned and Poisoned Baskets

Description	$\frac{k_{\text{eff}}\pm\sigma}{\text{Nonpoisoned Basket}}$	$k_{eff} \pm \sigma$ Poisoned Basket	
Wet Cask / Wet Can	0.84040 ± 0.00132	0.88010 ± 0.00139	
Dry Cask / Dry Can	0.89383 ± 0.00120	0.86228 ± 0.00128	
Dry Cask / Wet Can – Elements To Center of Cask	0.89778 ± 0.00124	0.88272 ± 0.00124	
Dry Cask / Wet Can – Elements To Center of Can	0.89435 ± 0.00124	0.87727 ± 0.00124	
Dry Cask / Wet Can – Elements Quadrant Centered	0.89821 ± 0.00129	0.88737 ± 0.00123	
Dry Cask / Wet Can – Elements in Corners	0.90926 ± 0.00126	0.89957 ± 0.00118	
Dry Cask / Wet Can – Elements in Corners, Max. Can	0.90673 ± 0.00123	0.90224 ± 0.00128	
18 Elements per Basket Module	0.84896 ± 0.00121	0.82527 ± 0.00114	
12 Elements per Basket Module	0.82532 ± 0.00125	0.80281 ± 0.00119	

	$k_{eff} \pm \sigma$	$k_{eff}\pm\sigma$
Description	Nonpoisoned Basket	Poisoned Basket
Wet Cask / Wet Can, Elements Out	· –	0.88574 ± 0.00130
Wet Cask / Wet Can	0.84331 ± 0.00129	0.88036 ± 0.00125
Dry Cask / Dry Can	0.85693 ± 0.00121	0.83021 ± 0.00118
Dry Cask / Wet Can	0.84376 ± 0.00129	0.78084 ± 0.00114
2 Rods per Can - 3 Five Inch Fuel Pellets	0.84346 ± 0.00128	0.88212 ± 0.00133
Mixture Solid (No Moderator)- 2 Rods Per Can	0.87512 ± 0.00122	0.88371 ± 0.00125
Mixture Half Can Height - 2 Rods Per Can	0.90691 ± 0.00212	0.88564 ± 0.00146
Mixture Full Can Height - 2 Rods Per Can	0.91088 ± 0.00106	0.88411 ± 0.00129
Mixture - Solid (No Moderator) - 1 Rod Per Can	0.85868 ± 0.00132	0.88472 ± 0.00131
Mixture - Half Can Height - 1 Rod Per Can	0.87411 ± 0.00117	0.88204 ± 0.00130
Mixture - Full Can Height - 1 Rod Per Can	0.85913 ± 0.00117	0.88477 ± 0.00142
2 Rods Per Can + Graphite – Solid	0.87208 ± 0.00117	0.88616 ± 0.00138
2 Rods Per Can + Graphite – Full Can Height	0.89867 ± 0.00118	0.88431 ± 0.00129
Increased Can Diameter (+0.02 inch) ¹	0.91355 ± 0.00119	0.88436 ± 0.00138

Table 6.4.5-8Sealed Can Preferential Flooding and Partial Loading ReactivityEvaluations for TRIGA Fuel Elements, Nonpoisoned and Poisoned Baskets

Note:

1. The increased can diameter cases were analyzed using the most reactive cases for each basket configuration (nonpoisoned/poisoned). The "Wet Cask / Wet Can, Elements Out" case was selected for the poisoned basket configuration due to the lack of statistically significant differences in the above reported results.

Table 6.4.5-9Summary of Most Reactive Configurations, TRIGA Fuel Elements,
Nonpoisoned Basket

	Wet	Dry	Preferential
Intact Fuel	0.86861 ± 0.00094	0.93434 ± 0.00115 ¹	
Screened Fuel Cans	0.84040 ± 0.00132	0.89383 ± 0.00120	0.90926 ± 0.00126
Sealed Fuel Cans	0.84331 ± 0.00129	0.85693 ± 0.00121	0.91355 ± 0.00199
Note:			

1. As reported in Section 6.4.5.4, this case is reevaluated with a finite axial length model, making the preferentially flooded, sealed can case the most reactive.

Table 6.4.5-10Summary of Most Reactive Configurations, TRIGA Fuel Elements,
Poisoned Basket

	Wet	Dry	Preferential
Intact Fuel	0.87874 ± 0.00123	0.88969 ± 0.00122	-
Screened Fuel Cans	0.88010 ± 0.00139	0.86228 ± 0.00128	0.90224 ± 0.00128
Sealed Fuel Cans	0.88574 ± 0.00130	0.83021 ± 0.00118	0.88564 ± 0.00146

Table 6.4.5-11Reactivity Results for TRIGA Fuel Elements, Sealed Cans, NormalConditions, Nonpoisoned Basket

Moderator	Casks Touching	8 Foot Center-To-Center
	<u> </u>	$\frac{(\text{Neff} \pm 0)}{2 \text{ Logs in}}$
0.0000	0.7239 ± 0.0012	0.7203 ± 0.0012
0.00000		
0.00100	0.7205 ± 0.0012	-0.7212 ± 0.0012
0.00170	0.7231 ± 0.0013	0.7201 ± 0.0012
0.00562	0.7210 ± 0.0012	0.7202 ± 0.0012
0.00002	0.7227 ± 0.0012	0.7101 ± 0.0012
0.01000	0.7234 ± 0.0012	0.7224 ± 0.0012
0.03160	0.7205 ± 0.0012	0.7223 ± 0.0013
0.05620	0.7243 ± 0.0012	0.7295 ± 0.0012
0.00020	0.7205 ± 0.0012	0.7203 ± 0.0012
0.17800	0.7295 ± 0.0012	0.7305 ± 0.0012
0.17600	0.7440 ± 0.0012	0.7415 ± 0.0012
0.51000	0.7074 ± 0.0012	0.7047 ± 0.0013
0.30200	0.7007 ± 0.0013	0.7064 ± 0.0013
0.70000	0.7977 ± 0.0014	0.7901 ± 0.0014
0.00000		
1,0000		0.8000 ± 0.0012
Optimally	/ Moderated Cask Interior (SG =	1.0) Vary External Density
0.00000	0.8020 ± 0.0013	0.8022 ± 0.0013
0.00100	0.8013 ± 0.0014	0.8010 ± 0.0013
0.00178	0.7993 ± 0.0014	0.8003 ± 0.0013
0.00316	0.8017 ± 0.0014	0.8024 ± 0.0013
0.00562	0.8041 + 0.0014	0 8002 + 0 0013
0.01000	0.8018 + 0.0013	0.8032 + 0.0013
0.01780	0.8025.+0.0013	0.8018 + 0.0013
0.03160	0.8001 + 0.0013	0.8023 + 0.0013
0.05620	0.8004 + 0.0014	0 7993 + 0.0013
0.17000	0.8008 ± 0.0012	-0.8000 ± 0.0013
0.21600	0.8018 ± 0.0014	0.8019 ± 0.0013
0.51000	0.0034 ± 0.0014	0.8025 ± 0.0013
0.70000	0.8018 + 0.0014	0.8026 ± 0.0014
0.80000	0.8013 + 0.0013	0.8009 ± 0.0013
0.90000	0.7998 ± 0.0013	0.8009 ± 0.0012
1.00000	0.8019 + 0.0015	0.8003 + 0.0013
<u> </u>	Vary Internal and External Densit	ty Simultaneously
	0.7239 ± 0.0012	0.7203 ± 0.0013
0.00100	0.7212 ± 0.0012	0.7192 ± 0.0012
0.00178	0.7210 + 0.0011	0.7236 + 0.0012
0.00316	0.7202 + 0.0012	0.7217 + 0.0012
0.00562	0.7225 + 0.0012	0.7218 ± 0.0012
0.01000	0 7229 + 0 0012	0.7236 + 0.0012
0.02160	0.7230 ± 0.0012	0.7239 ± 0.0012
0.05620	0.723 ± 0.0013	0.7261 ± 0.0012
0.00020	$\frac{0.7311 + 0.0012}{0.7311 + 0.0012}$	0.7296 ± 0.0013
0 17800	0.7439 ± 0.0013	0 7429 + 0 0012
0.31600	0.7634 ± 0.0013	0.7650 + 0.0013
0.56200	0.7882 + 0.0014	0.7898 + 0.0013
0.70000	0.7950 + 0.0014	0.7941 + 0.0012
0.80000	0 7950 + 0 0013	0.7973 + 0.0013
0.90000	0.7984 + 0.0012	0 8002 + 0.0012
1.00000	0.8000 ± 0.0013	0.8029 ± 0.0014

NAC International

Table 6.4.5-12 Reactivity Results for TRIGA Fuel Elements, Sealed Cans, Accident

	Conditions, Nonpoisor	ned Basket
Moderator	Casks Touching	8 Foot Center-To-Center
SG	$(\mathbf{k}_{\text{eff}} \pm \boldsymbol{\sigma})$	(keff ± σ)
Drv	Exterior and Neutron Shield Var	v Internal Moderator
0.0000		
0.00000	0.9130 ± 0.0012	0.9057 ± 0.0011
0.00100	0.9119 + 0.0012	0.9054 + 0.0011
0.00178	0 9101 + 0 0012	0.9041 + 0.0011
0.00316	0.9110 ± 0.0011	0.9040 ± 0.0011
0.00000	0.9095 + 0.0012	0.9046 ± 0.0011
0.01790	0.9039 ± 0.0012	0.8999 ± 0.0012
0.02160	0.9021 ± 0.0012	0.0979 ± 0.0012
0.05620	0.0903 ± 0.0012	0.0900 ± 0.0012
0.00020	0.8660 ± 0.0012	0.8622 ± 0.0012
0.17800	0.8432 ± 0.0012	0.8419 ± 0.0012
0.31600	0.8275 ± 0.0012	0.8222 ± 0.0012
0.56200	0.8185 ± 0.0013	0.8153 ± 0.0014
0 70000	0.8144 ± 0.0013	0.8124 ± 0.0013
0.80000	0.8140 ± 0.0013	0.8091 ± 0.0013
0.90000	0 8154 + 0 0012	0 8082 + 0 0013
1.00000	0.8117 + 0.0013	0.8081 ± 0.0013
Optimally M	oderated Internal (SG = 0.0), Vary	Neutron Shield and Exterior
0.00000	0.9136 + 0.0012	0.9057 ± 0.0011
0.00100	0.0000 ± 0.0012	0.8209 ± 0.0012
0.00178	0.0990 ± 0.0011	0.7021 ± 0.0012
0.00176	0.0007 ± 0.0012	0.7951 ± 0.0012
0.00562	0.8505 ± 0.0012	0.7454 ± 0.0012
0.00002	0.8210 ± 0.0012	0.7311 ± 0.0012
0.01780	0.7957 ± 0.0012	0.7233 ± 0.0012
0.03160	0.7655 + 0.0012	0.7192 + 0.0011
0.05620	0.7432 ± 0.0012	0.7195 ± 0.0013
0.10000	0.7325 + 0.0013	0.7177 ± 0.0012
0.17800	0.7252 + 0.0011	0 7206 + 0 0012
0.31600	0.7216 + 0.0012	0.7213 + 0.0012
0.56200	0.7211 + 0.0012	0.7211 + 0.0012
0.70000	0.7199 + 0.0012	0.7190 + 0.0012
<u> </u>	0.7213 + 0.0012	0.7184 + 0.0012
0.90000	0.7183 + 0.0013	0.7196 + 0.0012
1.00000	0.7189 + 0.0011	0.7194 + 0.0013
vary	/ Interior, Exterior and Neutron Si	nield Simultaneously
0.00000	0.9136 ± 0.0012	0.9057 ± 0.0011
0.00100	0.8964 ± 0.0012	0.8189 + 0.0012
0.00178	0.8879 + 0.0011	0.7913 + 0.0013
0.00316	0.8726 + 0.0012	0.7673 + 0.0013
0.00562	0.8496 + 0.0011	0.7459 + 0.0012
0.01000	0.8223 + 0.0012	0 7345 + 0 0012
0.01780	0.7903 + 0.0012	0.7237 + 0.0012
0.03160	0 7685 + 0.0012	0.7223 + 0.0011
0.05620	0.7504 + 0.0012	0 7242 + 0 0012
0.10000	0/415 + 0.0013	0.7296 ± 0.0012
0.1/800	0.7445 ± 0.0013	0./404 + 0.0013
0.31600	$0.76/4 \pm 0.0013$	0.7000 ± 0.0013
0.20000	0.7904 ± 0.0013	0.7026 ± 0.0013
0.70000	0.7977 ± 0.0012	$0.7056^{+} \pm 0.0014$
0.00000	0.000 ± 0.0012	$\frac{11.1300 + 0.0014}{0.0012}$
1 00000	0.8000 + 0.0013	0 8013 + 0 0013
1.00000	1 0.0000 ± 0.0010	0.0010 7 0.0010

NAC International

Table 6.4.5-13Reactivity Results for TRIGA Fuel Elements, Screened Cans, Normal
Conditions, Poisoned Basket

	Conditions, roisone	u Dasket
Moderator	Casks Touching	8 Foot Center-To-Center
SG	$(k_{eff} \pm \sigma)$	$(k_{eff} \pm \sigma)$
· · · · · · · · · · · · · · · · · · ·	Dry Exterior, Vary Interna	al Density
0.00000	0.8376 ± 0.0018	0.8381 ± 0.0017
0.00100	0.8408 ± 0.0017	0.8418 ± 0.0016
0.00178	0.8408 ± 0.0018	0.0412 ± 0.0010
0.00316	0.8390 ± 0.0017	0.8432 ± 0.0016
0.00562	0.8371 ± 0.0017	0.8399 ± 0.0017
0.01000	0.8420 + 0.0017	0.8397 + 0.0018
0.01780	0.8383 + 0.0017	0.8419 + 0.0017
0.03160	0.8413 + 0.0017	0.8427 + 0.0017
0.05620	0.8466 + 0.0017	0.8448 + 0.0017
0.10000	0.8433 + 0.0016	0.8479 + 0.0017
0.17800	0 8510 + 0.0017	0.8502 + 0.0017
0.31600	0.8497 + 0.0016	0.8505 + 0.0016
0.56200	0.8453 ± 0.0017	0.8484 ± 0.0017
0.20000	0.8444 ± 0.0016	0.8464 ± 0.0017
0.00000	0.8321 ± 0.0017	0.8432 ± 0.0017
1 00000	0.0430 ± 0.0017	0.0437 ± 0.0017
Optimally	/ Moderated Cask Interior (SG = '	1.0). Vary External Density
0.00000	0.8527 ± 0.0017	0.8540 ± 0.0017
0.00000		0.0540 ± 0.0017
0.00179	0.8482 ± 0.0018	
0.00176	0.0337 ± 0.0017	0.0013 ± 0.0017
0.00510	0.8546 + 0.0017	0.0331 ± 0.0017
0.00002	0.8521 ± 0.0017	0.8517 ± 0.0019
0.01780	0.8528 ± 0.0018	0.8515 ± 0.0018
0.03160	0.8543 ± 0.0017	0.8526 ± 0.0017
0.05620	0.8506 ± 0.0018	0.8503 ± 0.0017
0.10000	0.8523 + 0.0018	0 8542 + 0 0016
0.17800	0.8507 + 0.0018	0.8478 + 0.0016
0.31600	0 8539 + 0 0017	0 8518 + 0 0016
0.56200	0.8545 + 0.0017	0.8525 + 0.0017
0.70000	0.8512 + 0.0017	0.8534 + 0.0017
0.80000	0.8548 + 0.0017	0.8529 + 0.0017
0.90000	0.8523 ± 0.0016	0.8522 ± 0.0017
1.00000	/any Internal and External Densit	V_{00}
0.00000		
0.00000	0.8376 ± 0.0018	0.8381 ± 0.0017
0.00100	0.8396 + 0.0017	0.8382 + 0.0017
0.00178	0.8404 ± 0.0016	0.8404 + 0.0017
0.00316	0.8430 ± 0.0016	
	0.8448 ± 0.0017	
0.01000	0.8400 ± 0.0017	0.8398 ± 0.0017
0.03160	0.0419 ± 0.0017	$0.04/4 \pm 0.0010$
0.05620	0.8394 + 0.0017	0.8385 ± 0.0017
0.10000	0.8477 ± 0.0017	0.8477 ± 0.0017
0.17800	0.8502 + 0.0017	0.8469 + 0.0017
0.31600	0.8463 + 0.0017	0.8494 + 0.0018
0.56200	0.8484 + 0.0017	0.8513 + 0.0017
0.70000	0.8471 ± 0.0017	0 8459 + 0 0018
0.80000	0.8440 + 0.0017	0.8462 + 0.0016
0.90000	0.8429 + 0.0017	0.8451 + 0.0017
1.00000	0.8540 ± 0.0018	0.8523 ± 0.0017

NAC International

Table 6.4.5-14 Reactivity Results for TRIGA Fuel Elements, Screened Cans, Accident Conditions Poisoned Basket

	Conditions, Poisone	a Basket
Moderator	Casks Touching	8 Foot Center-To-Center
SG	$(\mathbf{k}_{off} + \boldsymbol{\sigma})$	$(\mathbf{k}_{\rm off} + \sigma)$
Dn	Exterior and Neutron Shield Var	v Internal Moderator
0:00000	0.9022 ± 0.0015	0.9015 ± 0.0016
0.00100	0 9019 + 0 0016	0.9022 + 0.0016
0.00178	0.8998 + 0.0016	0 9003 + 0 0016
0.00316	0.8992 + 0.0016	0.9009 ± 0.0016
0.00562	0.8995 ± 0.0017	0.9056 ± 0.0017
0.01790	0.8998 ± 0.0017	0.0002 ± 0.0017
0.02160	$0.09/9 \pm 0.001/$	0.9005 ± 0.0017
0.05620	0.0900 ± 0.0010	0.0940 ± 0.0018
0.00020	0.8893 ± 0.0013	0.8844 ± 0.0013
0.10000	0.8843 ± 0.0018	0.8822 ± 0.0017
0.31600	0.8772 ± 0.0017	0.8765 ± 0.0016
0.56200	0.8635 ± 0.0018	0.8640 ± 0.0017
0.00200	0.8586 ± 0.0017	0.8657 ± 0.0017
0.80000	0.8620 ± 0.0016	0.8594 ± 0.0016
0.90000	0.8622 + 0.0016	0.8600 ± 0.0017
1.00000	0.8662 ± 0.0017	0.8629 + 0.0018
Optimally M	oderated Internal (SG = 0.0), Vary	Neutron Shield and Exterior
0.00000	0.9022 ± 0.0015	0.9015 ± 0.0016
0.00100	0.8070 ± 0.0016	0.8644 ± 0.0017
0.00178	0.8970 ± 0.0016	0.8596 ± 0.0019
0.00176	0.8862 ± 0.0015	0.8542 ± 0.0016
0.00562	0.8789 ± 0.0016	0.8457 ± 0.0016
0.01000	0.8687 ± 0.0015	0.8438 ± 0.0017
0.01780	0.8618 ± 0.0017	0.8409 ± 0.0018
0.03160	0.8539 ± 0.0016	0.8386 ± 0.0017
0.05620	0 8482 + 0.0017	0.8403 ± 0.0018
0.10000	0.8427 + 0.0015	0 8381 + 0.0017
0.17800	0.8433 + 0.0017	0.8418 + 0.0016
0.31600	0 8424 + 0.0018	0.8405 + 0.0018
0.56200	0.8422 + 0.0017	0.8391 + 0.0017
0.70000	0.8438 + 0.0017	0.8399 + 0.0016
0.80000	0.8429 + 0.0018	0.8407 + 0.0017
0.90000	0.8423 + 0.0017	0.8445 + 0.0016
1.00000	0.8398 ± 0.0016	0.8383 ± 0.0017
var	Interior, Exterior and Neutron Si	nield Simultaneously
0.00000	0.9022 ± 0.0015	0.9015 ± 0.0016
0.00100	0.8948 + 0.0016	0.8662 + 0.0016
0.00178	0.8932 + 0.0017	0.8577 + 0.0016
0.00316	0.8881 + 0.0016	0.8524 + 0.0017
0.00562	0.8762 + 0.0016	0.8429 + 0.0017
0.01000	0.8722 + 0.0017	0 8431 + 0.0017
0.01780	0.8628 + 0.0016	0.8412 + 0.0017
0.03160	0.8586 + 0.0016	0.8450 + 0.0017
0.05620	0.8533 + 0.0017	0.8448 + 0.0018
0.10000	0.8496 + 0.0017	0.8458 + 0.0017
0.17800	0.8494 + 0.0017	0.8489 ± 0.0017
0.31600	0.8500 ± 0.0017	0.8459 ± 0.0017
0.20200	0.8489 ± 0.0018	
0.70000	0.8443 ± 0.0017	
	0.0409 ± 0.0017	$\frac{1.0407 \pm 0.0017}{0.8483 \pm 0.0017}$
1 00000	0.8540 ± 0.0018	0.0403 ± 0.0012 0.8504 ± 0.0010
1.00000	0.0070 2 0.0010	

NAC International

Table 6.4.5-15Single Package 10 CFR 71.55(b)(3) Evaluation keff Summary, TRIGAFuel Element, Nonpoisoned Basket

Description	$k_{eff} \pm \sigma$	ks
Single Cask / Inner Shell Reflected with H ₂ O	0.80664 ± 0.00136	0.82616
Single Cask / Inner Shell and Lead Reflected with H ₂ O	0.84194 ± 0.00130	0.86134
Single Cask / Inner Shell, Lead & Outer Shell Reflected with H ₂ O	0.84398 ± 0.00128	0.86334
Single Intact Cask Reflected with H ₂ O	0.84446 ± 0.00126	0.86392

Table 6.4.5-16Single Package 10 CFR 71.55(b)(3) Evaluation keff Summary, TRIGAFuel Element, Poisoned Basket

Description	$k_{\text{eff}}\pm\sigma$	ks
Single Cask / Inner Shell Reflected with H ₂ O	0.85480 ± 0.00135	0.87430
Single Cask / Inner Shell and Lead Reflected with H ₂ O	0.87788 ± 0.00136	0.89740
Single Cask / Inner Shell, Lead & Outer Shell Reflected with H ₂ O	0.88369 ± 0.00133	0.90315
Single Intact Cask Reflected with H ₂ O	0.88117 ± 0.00131	0.90059

Parameter					Cas	sk Cavity N	loderator (Condition/	Fuel Loca	tion				
-							Dry - li	n Shift	0.5 g/cc	- In Shift	1 g/cc -	In Shift	– 1 g/cc 0	Shifted ut
Fuel Rod	Clad			Active Fuel	Zirc Interior	Zirc Mass								
OD Nominal	Thickness Nominal	Fuel OD Nominal	Fuel ID Nominal	Length Nominal	Rod OD Nominal	(gram) 2059	k _{eff} 0.85521	Δk/σ	K _{eff} 0.87591	Δk/σ -	k _{eff} 0.87217	<u>Δk/σ</u>	k _{eff} 0.89939	Δk/σ
Max Nominal	<u>Nominal</u> Min	Nominal Nominal	Nominal Nominal	Nominal Nominal	Nominal Nominal	2059	0.85102	-2.8 6.2	0.87063	-5.6 14.0	0.86795	<u>-4.4</u> 19.4	0.89480	<u>-4.8</u> 23.3
Nominal	Nominal	Min	Nominal	Nominal	Nominal	1765	0.78425	-72.2	0.82168	-58.1	0.82388	-51.7	0.85987	-42.6
Nominal	Nominal	Nominal	Min	Nominal	Nominal	2068	0.85611	0.4	0.87530	-0.6	0.87327	1.2	0.90107	2.7
Nominal Nominal	Nominal	Nominal	Nominal	Min Max	Nominal	1988	0.84974	-4.2	0.87304	-3.0	0.87192	-0.3	0.89885	-0.6
Nominal	Nominal	Nominal	Nominal	Nominal	Min	2059	0.85370	0.0	0.87322	-2.8	0.87095	-1.3	0.89785	-1.6
Nominal Nominal	Nominal Min	Nominal Max	Nominal Nominal	Nominal Nominal	Max Nominal	2059 2191	0.85360 0.88846	-0.1 36.9	0.87502	-0.9 37.9	0.87125 0.91057	<u>-1.0</u> 39.6	0.89966	<u> </u>
Max	Min	Max	Nominal	Nominal	Nominal	2261	0.89797	46.7	0.92086	47.8	0.91631	44.9	0.94365	46.4
Max Max	Min Min	Max Max	Nominal Min	Nominal	Min Min	2261	0.89729	45.3 60.7	0.92035	46.6 55.7	0.91583	<u>46.1</u> 56.0	0.94260	<u>44.9</u> 51.3
Max	Min	Max	Min	Max	Min	2406	0.91646	66.2	0.93183	57.7	0.92716	56.3	0.95048	52.7
Max	Min	Max	Min	Min	Min	2248	0.90919	58.1	0.92962	57.1	0.92491	54.8	0.95030	52.2

Variation	Keff	σ	ks	Δk
Base	0.95048	0.00069	0.9687	: *
Single Cask	0.94221	0.00068	0.9604	-0.00827
Min Clad 0.01 inch	0.93007	0.00068	0.9482	-0.02041
Center rod 0.1 inch	0.94559	0.00066	0.9637	-0.00489
Center Rod 0.1 inch and Clad 0.01 inch	0.92465	0.00069	0.9428	-0.02583

Table 6.4.5-19General Model Configuration – Dry to Wet System Reactivity Changes,
70 wt% ²³⁵U Stainless Steel Clad Fuel - Nominal Fuel Parameters

Model Type	Fuel Material	Dry Interior		Wet I	nterior	Dry to Wet	Dry to Wet
	· · ·	k _{eff}	σ	k _{eff}	σ	Δk	Δk/σ
	2060 g Zirc 1.6						
Unit Cell	H/Zr	1.43854	0.00074	1.34434	0.00088	[·] -0.0942	-82
	2060 g Zirc 2.0						
Unit Cell	H/Zr	1.47297	0.00072	1.37063	0.00095	-0.1023	-86
Infinite Cask	2060 g Zirc 1.6						
Array	H/Zr	0.91389	0.00058	0.82201	0.00069	-0.0919	-102
Infinite Cask	2060 g Zirc 2.0						
Array	H/Zr	0.99893	0.00060	0.87887	0.00069	-0.1201	-131
Finite Cask	2060 g Zirc 2.0						
Array	H/Zr	0.85371	0.00068	0.87160	0.00067	0.0179	19
	2060 g Zirc 1.6						1
Single Cask	H/Zr	0.69491	0.00059	0.80561	0.00066	0.1107	125

Table 6.4.5-20Primary Fuel Type Reactivity Comparison¹ – Accident Conditions Eight-
Cask Array (No Cans)

	Cask	Fuel			. ·		•
· .	Cavity	Characteristic	Rod		•		
Fuel Type	Moderator	S	Location	k _{eff}	σ	ks	Δk/σ
Al Clad	Dry	Nominal	Shifted In	0.61831	0.00053	0.63617	•
14 inch	Wet	Nominal	Shifted In	0.67516	0.00056	0.69308	73.7
	Wet	Most Reactive	Shifted In	0.68914	0.00056	0.70706	91.9
	Wet	Most Reactive	Shifted Out	0.68690	0.00054	0.70478	90.7
Al Clad -	Dry	Nominal	Shifted In	0.60606	0.00051	0.62388	-
15 inch	Wet	Nominal	Shifted In	0.66104	0.00058	0.67900	71.2
	Wet	Most Reactive	Shifted In	0.68272	0.00055	0.70062	102.2
	Wet Most Reactive		Shifted Out	0.67985	0.00052	0.69769	101.3
SS Clad -	Dry	Nominal	Shifted In	0.77575	0.00058	0.79371	
20% Enriched	Wet	Nominal	Shifted In	0.82684	0.00064	0.84492	59.2
	Wet	Most Reactive	Shifted In	0.86114	0.00061	0.87916	101.4
	Wet	Most Reactive	Shifted Out	0.89909	0.00064	0.91717	142.8
SS Clad	Dry	Nominal	Shifted In	0.85521	0.00068	0.87337	-
70% Enriched	Wet	Nominal	Shifted In	0.87217	0.00067	0.89031	17.8
· · ·	Wet	Most Reactive	Shifted In	0.90587	0.00069	0.92405	52.3
	Wet	Most Reactive	Shifted Out	0.93024	0.00069	0.94842	77.4

 Table 6.4.5-21
 Normal Condition Maximum System Reativities (No Cans)²

Array Size	Neutron Shield	Cask Cavity	Fuel Config	k _{eff}	σ	ks
Infinite	Yes	Dry	MRE	0.84554	0.00066	0.86366
Infinite	Yes	Wet	MRE	0.92398	0.00068	0.94214

¹ Fueled follower rods are not evaluated separately as their physical characteristics and fuel compositions are bounded by a stainless steel clad 20% enriched element.

² Most reactive element configuration as documented under accident conditions.

Table 6.4.5-22	Increased Enrichment for 20 wt % and 70 wt % TRIGA Fuel Elements
----------------	--

wt %	g ²³⁵ U	K eff	σ	Ks	Δk _s /σ
20	169	0.89973	0.00064	0.91781	
25	169	0.91236	0.00065	0.93046	13.9
70	137	0.93063	0.00067	0.94877	
71	137	0.93066	0.00068	0.94882	0.1

Table 6.4.5-23 Increased ²³⁵U Mass TRIGA Fuel Elements

wt %	g ²³⁵ U	k _{eff}	σ	ks	Δk₅/σ
25	169	0.91236	0.00065	0.93046	
25	275	0.95139	0.00068	0.96955	41.6
71	137	0.93066	0.00068	0.94882	
71	138	0.93159	0.00066	0.94971	0.9

Table 6.4.5-24 Limited Quantity Study for LEU Fissile Mass Increase

		Bas	kets				· · · ·		
Bottom/Top Three Middle									
# Rods	wt %	g ²³⁵ U	# Rods	wt %	g ²³⁵ U	k _{eff}	σ	ks	Δk _s /σ
4	71	138	4	. 71	138	0.93159	0.00066	0.94971	
4	25	275	4	25	275	0.95139	0.00068	0.96955	20.9
4	25	275	4	71	138	0.94928	0.00067	0.96742	18.8
3	25	275	4	71	138	0.92997	0.00067	0.94811	-1.7

Table 6.4.5-2595 wt% TRIGA Fuel Elements

		Bas	skets						
Bottom/Top Three M					lle				
# Rods	wt %	g ²³⁵ U	# Rods	wt %	g ²³⁵ U	k _{eff}	σ	ks	Δks/σ
4	71	138	4	71	138	0.93159	0.00066	0.94971	
4	95	175	4	95	175	0.97990	0.00069	0.99808	50.7
4	95	175	4	71	138	0.97662	0.00066	0.99474	48.2
3	95	175	4	71	138	0.93030	0.00064	0.94838	-1.4

Table 6.4.5-26TRIGA Damaged Fuel Canister – Sealed Canister in Top and Bottom
Basket Module

		Bas	kets		يى .	•			
Bottom / Top Three Middle					ile				
# Rods	wt %	g ²³⁵ U	# Rods	wt %	g ²³⁵ U	k _{eff}	σ	ks	Δk₅/σ
4	71	138	4 ·	71	138	0.93159	0.00066	0.94971	
2	71	138	4	71	138	0.93032	0.00068	0.94848	-1.3
2	25	275	4	71	138	0.93109	0.00070	0.94929	-0.4
2	95	175	4	.71	138	0.93071	0.00068	0.94887	-0.9

			Bask			,				
,	Во	ttom / To	ор	Th	ree Mid	dle				
DFC	Pitch	wt %	g ²³⁵ U	Pitch	wt %	g ²³⁵ U	k _{eff}	σ	ks	Δks/σ
No	4.7750	95	175	4.775	71	138	0.97662	0.00066	0.99474	_
No	4.1924	95	175	4.775	71	138	0.95679	0.00068	0.97495	-20.9
Yes	4.1924	95	175	4.775	71	138	0.92977	0.00068	0.94793	-49.4

Table 6.4.5-28	TRIGA Structural Intact Fuel Canister Screened Canister in Top and
	Bottom Basket Module

		Bas	kets						
Bottom / Top			TI	nree Mid	dle				
# Rods	wt %	a 235U	# Rods	wt %	a ²³⁵ U	k eff	σ	ks	Δks/σ
4	71	138	4	71	138	0.93159	0.00066	0.94971	
4	71	138	4	71	138	0.92971	0.00069	0.94789	-1.9
4	25	275	4	71	138	0.93055	0.00065	0.94865	-1.1
4	95	175	4	71	138	0.92977	0.00068	0.94793	-1.9

Table 6.4.5-29	TRIGA Cluster	Rod Study in TRI	GA Fuel Element Shi	pment
		•		

·		Bas	kets						
1 Opening			Rema	aining Pa	yload				•
# Rods	wt %	g ²³⁵ U	# Rods	wt %	g ²³⁵ U	k _{eff}	σ	ks	Δks/σ
4	71	138	4	71	138	0.93159	0.00066	0.94971	
. 6	95	46.5	4	71	138	0.93085	0.00064	0.94893	-0.8
16	95	46.5	4	71	138	0.93141	0.00065	0.94951	-0.2