Reference 2-6 (ST-551) is a proprietary document. It is provided on the media marked "PROPRIETARY".

Title	3-60B (Cask Trunni	on Anal	yses under Various Load Conditions			
Calc. No	ST-503	Rev	1	Sheet	1	_of	9

1.0 OBJECTIVE

To evaluate the 3-60B Cask trunnion assembly under various loading conditions.

2.0 INTRODUCTION

The 3-60B cask is equipped with four identical trunnions to help the lifting, handling and transportation of the cask. The details of the trunnions are shown in Reference 1 drawing. Analyses of the trunnion assemblies and the cask body are provided in this document to show that the trunnion design meets the applicable requirements of 10 CFR Part 71 (Reference 2).

The following load cases have been addressed.

Lifting

The loaded cask is lifted using the two upper trunnions as shown in Figure 1.

Handling

The cask is designed to be supported on the two pairs of the trunnions during transportation. The trunnions are used when the cask is down-ended and lowered unto the supporting structure. See Figure 1 for the trunnion loading during the handling process.

Regulatory/Transportation Requirement

Trunnions are used for the tie-down of the 3-60B Cask package during transportation. The transportation of the packages in the United States is controlled under the provisions of 49 CFR 393 (Reference 3). Loadings are specified by 49 CFR 393.102 for minimum performance criteria for cargo securement devices and systems. However, 10 CFR 71.45(b) requires that:

"If there is a system of tie-down devices that is a structural part of the package, the system must be capable of withstanding, without generating stress in any material of the package in excess of its yield strength, a static force applied to the center of gravity of the package having a vertical component 2 times the weight of the package with its contents, a horizontal component along the direction in which the vehicle travels of 10 times weight of the package with contents, and a horizontal component in the transverse direction of 5 times the weight of the package with its contents."

Since the 10CFR71 loading on the tie-down system is much more severe than the 49CFR393 loading, it is used for the evaluation of the 3-60 Cask package for the transportation conditions.

Enveloping loading conditions on the trunnions are developed from the above load cases. For these load cases, analyses of the trunnion assembly and the cask body have been performed using ANSYS finite element models (Reference 4).

3.0 **REFERENCES**

1. Energy*Solutions* Drawing C-002-165024-001, Rev. 0, "3-60B Cask General Arrangement and Details."

Title	3-60B (Cask Trunni	on Analy	ses under Various Load Conditions
Calc. No.	ST-503	Rev	1	Sheet <u>2</u> of <u>9</u>

- 2. Code of Federal Regulations 10 CFR PART 71- Packaging and Transportation of Radioactive Material.
- 3. Code of Federal Regulations 49 CFR PART 393 Transportation.
- 4. ANSYS, Rev. 11.0, Computer Software, ANSYS Inc., Canonsburg, PA, 2007.

4.0 MATERIAL PROPERTIES

Cask Shell

Specification: ASTM A-240 Type 304L

Minimum Yield Strength, $S_y = 25,000 \text{ psi}$

Minimum Ultimate Strength, $S_u = 70,000 \text{ psi}$

<u>Trunnions</u>

Specification: ASTM A-240 Type 304 (or Equivalent)

Minimum Yield Strength, $S_y = 30,000 \text{ ps}$

Minimum Ultimate Strength, $S_u = 75,000$ psi

5.0 ALLOWABLE STRESSES

The load cases described in Section 2.0 of this document require that the materials of the cask package do not yield under specified factored loads. Thus the following stress criteria are set for the factored loads:

Normal stress allowable = yield strength of the material (S_y)

Shear stress allowable = $0.6 \times Normal$ stress allowable = $0.6S_y$

Material Type	Normal Stress Allowable, psi	Shear Stress Allowable, psi
ASTM A-240 Type 304L	25,000	15,000
ASTM A-240 Type 304	30,000	18,000

The allowable stresses in the weld are conservatively taken to be the same as the base metal.

6.0 DESIGN LOADING

Weight of the package with its content, W = 80,000 lb

Lifting:

According to 10 CFR 71.45(a), the design of the lifting attachment must provide a safety factor of 3 against yield when used to lift the package in the intended manner. The 3-60B Cask is designed to be lifted with the help of a lifting yoke that utilizes the two upper trunnions. Depending on the crane characteristics, a dynamic load amplification may result due to such lifting. The dynamic load factor for a typical crane is between 1.0 and 1.1. For conservatism a dynamic load factor of 1.3 is used for the evaluation of the trunnions under lifting conditions.

Title	3-60B	Cask Trunni	on Analys	ses under Various Load Conditions	
Calc. No	ST-503	Rev	1	Sheet <u>3</u> of <u>9</u>	

The stresses are calculated for the amplified load including the safety factor and are compared with the yield stress.

Amplified load = $1.3 \times 3.0 \times W = 1.3 \times 3.0 \times 80,000 = 312,000$ lb

Each trunnion will be subjected to half of the amplified load. Therefore, load on each trunnion,

 $F = \frac{1}{2} \times 312,000 = 156,000 \text{ lb}$

Under lifting conditions, the maximum loads on a trunnion along the three orthogonal directions are:

Longitudinal Load = 156,000 lb Lateral Load = 0Radial Load = 0

Handling:

The cask is downended from the vertical orientation to the horizontal orientation with the help of all the four trunnions. During this process, the maximum loads on a trunnion along the three orthogonal directions are (see Figure 1):

Longitudinal Load = $0.25 \times W = 0.25 \times 80,000 = 20,000$ lb Lateral Load = $0.25 \times W = 0.25 \times 80,000 = 20,000$ lb Radial Load = 0

Regulatory/Transportation:

The cask is transported in horizontal orientation. All the four trunnions are utilized during the transportation.

As shown in Figure 1, under the transportation loading, enveloped by the 10CFR71 loading, a typical trunnion is subjected to the following maximum loads along the three orthogonal directions:

Longitudinal Load = $2.5 \times W = 2.5 \times 80,000 = 200,000$ lb Lateral Load = $0.5 \times W = 0.5 \times 80,000 = 40,000$ lb Radial Load = $2.5 \times W = 2.5 \times 80,000 = 200,000$ lb

Analyzed Load Cases

To fully envelope the above loading conditions, the following load cases have been analyzed using the finite element models described in Section 7.0.

Load Case 1	Longitudinal Load = $2.5 \times W = 2.5 \times 80,000 = 200,000$ lb
Load Case 2	Radial Load = $2.5 \times W = 2.5 \times 80,000 = 200,000$ lb
Load Case 3	Lateral Load = $0.5 \times W = 0.5 \times 80,000 = 40,000$ lb
Load Case 4	Combined load of Load Cases 1 through 3.
Load Case 5	Longitudinal Load = 156,000 lb

Title	3-60B (Cask Trunni	on Anal	yses under Various Load Conditions	
Calc. No	ST-503	Rev	1	Sheet <u>4</u> of <u>9</u>	_

7.0 MODEL DESCRIPTION

The trunnion assembly is modeled using ANSYS finite element program (Reference 4) and evaluated for the load cases described above. This model is a half-symmetry solid model representing the trunnion assembly, including the 3 ¹/₂" thick back-up plate, a portion of the cask inner and outer shells, and the lead material in between the cask inner and outer shells. The model uses 3-D, 8-Node structural solid elements (SOLID 185) for the trunnion, backing plate and the lead. 3-D, 8-Node solid shell elements (SOLSH 190) are used for the cask inner and outer shells. Various components of the model are tied together with the contact and target surface combinations. The model is shown in Figures 2 and 3, and it is analyzed for the five load cases described in Section 6.0.

The model uses symmetry boundary conditions on the cut-plane and fixed boundary conditions on the two ends. It should be noted that these boundaries are located far away from the trunnion assembly and do not have significant effect on the stresses in the trunnion assembly.

For each load case the applied loading plot, the stress intensity contour plot, stress intensity contour plot in the shell, and stress intensity contour plot in the trunnion assembly are provided. These plots for Load Cases 1 through 5 are shown in Figures 4-7, 8-11, 12-15, 16-19 and 20-23, respectively.

Summary print-out of the finite element model, used in the analyses, is included in Appendix 1. The electronic data generated for the analyses are included in Appendix 2.

8.0 **RESULTS & CONCLUSIONS**

The stress intensity results obtained from the analyses of the FEM, described above, for various load cases are listed in Table 1. The stress intensities in the trunnion assembly and the cask outer shell, under lifting and regulatory/transportation conditions, are summarized in Table 2. These stress intensities are also compared with their corresponding allowable values in Table 2. The stresses under handling conditions are enveloped by the regulatory/transportation conditions and are not explicitly listed in this document.

It should be noted that the welds in the trunnion assemblies have been explicitly included in the finite element model. Therefore, the stresses in the welds have been implicitly analyzed. They are also subjected to stresses below their allowable values.

It has been demonstrated by the analyses presented in this document that the 3-60B Cask trunnion assemblies have a sufficient margin of safety in its design to be safely lifted, it could safely be downended to a horizontal orientation with the help of a pair of trunnions provided in the lower part of the cask and also meets the regulatory requirements of 10CFR71.45 (b).

10.0 APPENDICES

Appendix 1 Summary print-out of the ANSYS model data

Appendix 2 Electronic data on CDROM

Title	3-60B	Cask Trunnio	on Analy	yses under Various Load Conditions
Calc. No.	ST-503	Rev	1	Sheet 5 of

Table 1

Summary of Stress Intensities in Various Components of the Trunnion Assembly

Load Case	Component	S.I. (psi)	Reference
1	Cask Outer Shell	14,651	Figure 6
1	Trunnion Assembly	27,952	Figure 7
2	Cask Outer Shell	9,446	Figure 10
2	Trunnion Assembly	14,026	Figure 11
3	Cask Outer Shell	3,695	Figure 14
	Trunnion Assembly	5,430	Figure 15
Δ	Cask Outer Shell	14,887	Figure 18
4	Trunnion Assembly	29,671	Figure 19
5	Cask Outer Shell	10,920	Figure 22
	Trunnion Assembly	21,108	Figure 23

Table 2

Comparison of S.I. with the Allowable Values for Various Loading Conditions

Loading Condition	Component	Max S.I. (psi)	Allowable S.I. (psi)	F.S. ⁽³⁾
I:ft:ma ⁽¹⁾	Cask Outer Shell	10,920	25,000	2.29
Litung	Trunnion Assembly	21,108	30,000	1.42
Regulatory/	Cask Outer Shell	14,887	25,000	1.68
Transportation ⁽²⁾	Trunnion Assembly	29,671	30,000	1.01

NOTES:

- (1) Load Case 5 of Table 1.
- (2) Load Case 4 of Table 1.
- (3) Factor of Safety, F.S. = (Allowable S.I.)/(Max S.I.)

Title	3-60B Cask Trunnion Analyses under Various Load Conditions				
Calc. No	ST-503	Rev	1	Sheet of	

Figures

(23 Pages)

Finite Element Model of the 3-60B Cask Trunnion & its Vicinity

Figure 3 Finite Element Model Close-Up of the Trunnion

Calc. No. Title Trunnion Analyses of the 3-60B Cask under Various Loading Conditions ST-503 (Figures) Rev. Sheet_ 16 oť 23

Title	3-60B Cask Trunnion Analyses under Various Load Conditions				
Calc. No.	ST-503	Rev	1	Sheet <u>7</u> of <u>9</u>	

<u>Appendix 1</u> Printout of the ANSYS Model Data (5 Pages)

3-60B Cask Trunnion Analyses

By Mirza I. Baig

January 07, 2010

Report Generated by ANSYS

Title Listing

***** TTTLES *****

*** YOU ARE IN ANSYS - ENGINEERING ANALYSIS SYSTEM *** ANSYS Mechanical/Emag RELEASE 11.0SP1 UPDATE 20070830 CUSTOMER 00222442 INITIAL JOBNAME = file

CURRENT JOBNAME = file

Current Working Directory: D:\Ansys Analyses\3-60B\RAI-1 Analyses\Trunnion Analyses

TITLE= Lifting Conditions

MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans

Global Status

GLOBAL STATUS ANSYS - Engineering Analysis System Jan 07, 2010 13:26 WINDOWS x64 Version 00222442 Release 11 OSP1 Current working directory: D:\Ansys Analyses\3-60B\RAI-1 Analyses\Trunnion Analyses MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans Product(s) enabled: ANSYS Mechanical/Emag Total connect time. . . . 0 hours 12 minutes Total CP usage. 0 hours 0 minutes 11.4 seconds J O B I N F O R M A T I O N ------Lifting Conditions Available Used Scratch Memory Space. . . . 4796.000 mb Database space 1048572.000 mb 5.204 mb (0.1%) 37.701 mb (0.0%) MODEL INFORMATION -----Solid model summary: Largest Number Number Number Defined Selected Keypoints 32 24 24 36 36 56 16 2 16 2 28 Volumes 3 Finite element model summary: Largest Number Number Number Defined Selected 22230 12268 12268 32839 9870 9870

30

8

2

0

0

0

0

. . .

Material property sets. . .

14

6 2

0

0

0 0

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

n.a.

BOUNDARY CONDITION	INFORMAT	I O N	
	Number		
Constraints on nodes	Defined 928 0 0 0 0 0		
Forces on nodes	· · · 0		
Surface loads on elements Number of element flagged surfaces . Surface loads on lines Surface loads on areas	478 478 0 0 0		
Body loads on elements Body loads on nodes Body loads on keypoints	0 0 0 0		
Temperatures Uniform temperature Reference temperature Offset from absolute scale	0.000		
Linear acceleration	X 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Z 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ROUTINE INFORMATION	1		
Current routine	.General Postproc	essor (POST1)
Active coordinate system	. 11 (Cylindrica	1)	
Display coordinate system	. 0 (Cartesian)		
Analysis type	.Static (steady-s	tate)	
Active options for this analysis type Large deformation effects Plasticity Creep Equation solver to use	.Not included .Not included .Not included .Not included .Program Chosen		
Results file	.file.rst		
Load step number	. 6		
Number of substeps	. 1 .No		
Results coordinate system	. 0 (Global Car	tesian)	
Display coordinate system	. 0 (Cartesian)		
Output options: Shell layer			
Current results correspond to: Results file file.rst Load step 5 Substep 1 Cumulative iteration . 32 Time 5.0000			

Solution Status

SOLUTION OPTIONS

LOAD STEP OPTIONS

ITEM FREQUENCY COMPONENT ALL ALL

Element Type Listing

LIST ELEMENT TY	PES F	RON	4 1	то	30 BY 1	
ELEMENT TYPE	1	IS	SOLID18	5	3-D 8-NODE STRUCTURAL SO	LID INOPR
KEYOPT(1-12)=	0	0		0	0 0 0 0 0 0 0	0
ELEMENT TYPE	2	IS	SOLSH19	0	3-D 8-NODE SOLID SHELL	INOPR
KEYOPT(1-12)=	0	0	0 0		0 0 0 0 0 0 0 0	0
ELEMENT TYPE	19	IS	TARGE17	0	3-D TARGET SEGMENT	INOPR
KEYOPT(1-12)=	0	0	0 0		0 0 0 0 0 0 0	0
ELEMENT TYPE	20	IS	CONTA17	4	3D 8-NODE SURF-SURF CONT.	ACT INOPF
KEYOPT(1-12)=	0	0	0 0	3	0 0 0 0 2 0 0	0
ELEMENT TYPE	21	IS	TARGE17	0	3-D TARGET SEGMENT	INOPR
KEYOPT(1-12)=	0	0	0 0		0 0 0 0 0 0 0	0
ELEMENT TYPE	22	IS	CONTA17	4	3D 8-NODE SURF-SURF CONT.	ACT INOPR
KEYOPT(1-12)=	0	0		3	0 0 0 1 2 0 0	0
ELEMENT TYPE	23	IS	TARGE17	0	3-D TARGET SEGMENT	INOPR
KEYOPT(1-12)=	0	0	0 0		0 0 0 0 0 0 0	0
ELEMENT TYPE	24	IS	CONTA17	4	3D 8-NODE SURF-SURF CONT.	ACT INOPE
KEYOPT(1-12)=	0	0	0 0	3	0 0 0 1 2 0 0	0
ELEMENT TYPE	25	IS	TARGE17	0	3-D TARGET SEGMENT	INOPR
KEYOPT(1-12)=	0	0	0 0		0 0 0 0 0 0 0	0
ELEMENT TYPE	26	IS	CONTA17	4	3D 8-NODE SURF-SURF CONT.	ACT INOPE
KEYOPT(1-12)=	0	0		3	0 0 0 1 2 0 0	0
ELEMENT TYPE	27	IS	TARGE17	0	3-D TARGET SEGMENT	INOPR
KEYOPT(1-12)=	0	0	0 0		0 0 0 0 0 0 0	0
ELEMENT TYPE	28	IS	CONTA17	5	NODE-TO-SURFACE CONTACT	INOPR
KEYOPT(1-12)=	0	0	0 0	3	0 0 0 1 2 0 0	0
ELEMENT TYPE	29	IS	TARGE17	0	3-D TARGET SEGMENT	INOPR
KEYOPT(1-12)=	0	0	0 0		0 0 0 0 0 0 0	0
ELEMENT TYPE	30	IS	CONTA17	5	NODE-TO-SURFACE CONTACT	INOPR
KEYOPT(1-12)=	0	0		0	0 0 0 1 2 0 0	0
CURRENT NODAL D THREE-DIMENSIO	OF SE NAL M	T I	IS UX EL	U	UZ ROTX ROTY ROTZ	

Real Constant Listing

LIST	REAL SETS	3 1	то	8 BY	1		
real 0	CONSTANT .0000	SET 0.0000	3	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
real 0	CONSTANT .0000	SET 0.0000	3	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
real 0	CONSTANT .0000	SET 0.0000	3	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
real 0	CONSTANT .0000	SET 1.0000	3	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
real 0	CONSTANT .0000	SET 0.0000	4	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
real 0	CONSTANT .0000	SET 0.0000	4	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
real 0	CONSTANT .0000	SET 0.0000	4	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
real 0	CONSTANT .0000	SET 1.0000	4	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
real 0	CONSTANT .0000	SET 0.0000	5	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
real 0	CONSTANT .0000	SET 0.0000	5	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
real 0	CONSTANT .0000	SET 0.0000	5	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL 0	CONSTANT	SET 1.0000	5	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000

REAL 0	CONSTANT 0000	SET 0.0000	6	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL 0	CONSTANT 0000	SET 0.0000	6	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL 0	CONSTANT 0000	SET 0.0000	6	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL 0	CONSTANT 0000	SET 1.0000	6	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL 0	CONSTANT 0000	SET 0.0000	7	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL 0	CONSTANT 0000	SET 0.0000	7	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL 0	CONSTANT 0000	SET 0.0000	7	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL 0	CONSTANT 0000	SET 1.0000	7	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL 10	CONSTANT	SET 0.0000	7	ITEMS 25 TO 0.0000	30 0.0000	0.0000	0.0000
REAL 0	CONSTANT 0000	SET 0.0000	8	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL 0	CONSTANT 0000	SET 0.0000	8	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL 0	CONSTANT 0000	SET 0.0000	8	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL 0	CONSTANT 0000	SET 1.0000	8	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL 10	CONSTANT	SET 0.0000	8	ITEMS 25 TO 0.0000	30 0.0000	0.0000	0.0000

Material Properties Listing

LIST MATERIALS PROPERTY= ALL	1 TO	2 BY	1		
PROPERTY TABLE TEMPERATURE 0.0000	EX MAT= DATA 0.30000E+0	1 NUM. TEMPERATURE 8	POINTS= DATA	1 TEMPERATURE	DATA
PROPERTY TABLE TEMPERATURE 0.0000	NUXY MAT= DATA 0.30000	1 NUM. TEMPERATURE	POINTS= DATA	1 TEMPERATURE	DATA
PROPERTY TABLE TEMPERATURE 0.0000	DENS MAT= DATA 0.28300	1 NUM. TEMPERATURE	POINTS= DATA	1 TEMPERATURE	DATA
PROPERTY TABLE TEMPERATURE 0.0000	MU MAT= DATA 0.0000	1 NUM. TEMPERATURE	POINTS= DATA	1 TEMPERATURE	DATA
PROPERTY TABLE TEMPERATURE 0.0000	EMIS MAT= DATA 0.78886E-3	1 NUM. TEMPERATURE 0	POINTS= DATA	1 TEMPERATURE	DATA
PROPERTY TABLE TEMPERATURE 0.0000	EX MAT= DATA 0.22700E+0	2 NUM. TEMPERATURE 7	POINTS= DATA	1 TEMPERATURE	DATA
PROPERTY TABLE TEMPERATURE 0.0000	NUXY MAT= DATA 0.45000	2 NUM. TEMPERATURE	POINTS= DATA	1 TEMPERATURE	DATA

Listing of Reactions

c***

USE LOAD STEP 1 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION= 7 TIME/FREQUENCY= 1.0000 TITLE= Longitudinal Load of 200,000 lb FORCES AND MOMENTS IN THE GLOBAL COORDINATE SYSTEM ***** ***** SUMMATION OF TOTAL FX = 0.4787353E-08 = 0.2615146E-05 FY 200017.1 FΖ = MX = -0.3180321E-06 = -820270.0 MY ΜZ = 0.1073431E-04 SUMMATION POINT= 26.000 0.0000 0.0000 USE LOAD STEP 2 SUBSTEP 0 FOR LOAD CASE 0 2 SUBSTEP= 1 CUMULATIVE ITERATION= SET COMMAND GOT LOAD STEP= 13 TIME/FREQUENCY= 2.0000 TITLE= Radial Load of 200,000 lb ***** SUMMATION OF TOTAL FORCES AND MOMENTS IN THE GLOBAL COORDINATE SYSTEM ***** FX = -200488.2 = 0.1455192E - 10FY FΖ = -0.8640200E-11 МΧ = 0.4074536E-09 = -0.1600711E-09 MY ΜZ = -0.1025910E-08 SUMMATION POINT= 26.000 0.0000 0.0000 USE LOAD STEP 3 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= TIME/FREQUENCY= 3.0000 3 SUBSTEP= 1 CUMULATIVE ITERATION= 21 TITLE= Vertical Load of 40,000 lb FORCES AND MOMENTS IN THE GLOBAL COORDINATE SYSTEM ***** ***** SUMMATION OF TOTAL FX = 0.5386482E-09 FY = 40008.87 = 0.4012177E-05 = 0.2796878E-07 FΖ МΧ MY = -0.1645576E - 04ΜZ = 164076.4 SUMMATION POINT= 26.000 0.0000 0.0000 USE LOAD STEP 4 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 4 SUBSTEP= 1 CUMULATIVE ITERATION= 26 TIME/FREQUENCY= 4.0000 TITLE= Combined Loading ***** SUMMATION OF TOTAL FORCES AND MOMENTS IN THE GLOBAL COORDINATE SYSTEM ***** FX = -200488.2 FY = 40008.87 FΥ FZ= 200017.1 = -0.2891175E-06 MX = -820270.0 = 164076.4 MY ΜZ SUMMATION POINT= 26.000 0.0000 0.0000 USE LOAD STEP 5 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 5 SUBSTEP= 1 CUMULATIVE ITERATION= 32 TIME/FREQUENCY= 5.0000 TITLE= Lifting Conditions ***** SUMMATION OF TOTAL FORCES AND MOMENTS IN THE GLOBAL COORDINATE SYSTEM ***** FX = 0.3769628E-08 FY = 0.1323480E-05 FY FZ 156013.3 = MX = -0.2466695E-06 MY -639810.6 ΜZ = 0.5436420E-05 SUMMATION POINT= 26.000 0.0000 0.0000
Title	3-60B Cask Trunnion Analyses under Various Load Conditions							
Calc. No	ST-503	Rev	1	Sheet <u>8</u> of <u>9</u>				

<u>Appendix 2</u> Electronic Data on CDROM (1 Page & 1 CDROM)

Title	3-60B	Cask Trunnie	on Anal	yses under Various Load Conditions	_
Calc. No.	ST-503	Rev	1	Sheet 9 of 9	-

Directory of the CD-ROM

Volume in drive F is ST-503 Rev1 App2 Volume Serial Number is 7447-86B2

Directory of $F: \setminus$

01/07/2010 01/07/2010 01/06/2010 09/24/2007 09/24/2007 12/14/2009 01/06/2010	01:15 PM 01:46 PM 02:41 PM 07:53 AM 07:56 AM 09:59 AM 05:08 PM 02:10 PM 03:00 PM 03:03 PM 03:07 PM 03:07 PM 03:10 PM 03:11 PM 03:11 PM 03:11 PM 03:36 PM 03:37 PM 03:37 PM 03:37 PM 03:38 PM 03:39 PM 03:39 PM 03:39 PM 03:40 PM 03:40 PM 03:41 PM 03:42 PM 03:43 PM 03:43 PM 03:44 PM 03:44 PM 03:44 PM 03:45 PM 04:15 PM	2,998,783 file.cdb 39,780,352 file.db 83,623,936 file.rst 65,949 file.s01 112,121 file.s02 65,949 file.s03 140,057 file.s04 65,949 file.s05 116,164 file000.png 267,456 file001.png 234,924 file002.png 133,948 file004.png 144,710 file005.png 139,256 file006.png 153,412 file007.png 142,420 file008.png 120,145 file009.png 124,294 file010.png 142,338 file011.png 125,305 file012.png 137,816 file013.png 143,333 file014.png 127,486 file015.png 128,795 file016.png 188,556 file017.png 172,560 file018.png 184,401 file019.png 184,401 file019.png 176,939 file020.png 1004,484 file022.png
01/06/2010	04:15 PM	204,484 file022.png
01/07/2010	01:15 PM	1,895,891 model.out
01/07/2010	01:24 PM	2,721 reactions.out
	33 File(s)	132,363,907 bytes
Total	Files Listed: 33 File(s) 0 Dir(s)	132,363,907 bytes 0 bytes free

Title	Structural Anal	yses of the	3-60B	Cask Under Normal Cond	itions of '	Trans	port	
Calc. No.	ST-501		2	_	Sheet _	1		13

1.0 OBJECTIVE

Perform the structural analyses of the Energy*Solutions* 3-60B Cask under normal conditions of transport (NCT), using a 3-dimensional finite element model.

2.0 INTRODUCTION

Energy*Solutions* 3-60B Cask (Reference 1) is designed as a Type B radioactive-material shipping package. To be certified by the U.S.N.R.C., the cask needs to meet the requirements of 10 CFR 71 (Reference 2) and follow the guidelines of U.S.N.R.C. Regulatory Guide 7.8 (Ref. 3).

This document presents the structural analysis of the 3-60B Cask for the normal conditions of transport (NCT). The analyses in this document are performed using the finite element modeling techniques. A three-dimensional model of the cask that includes all its major components has been employed in the analyses. Temperature dependent material properties of the major components of the cask are used in the analyses.

The results of the analyses for various load cases are presented pictorially in stress intensity contour plots as well as digital data format.

3.0 **REFERENCES**

- 1. Energy*Solutions* Drawing No. C-002-165024-001, Rev.0, 3-60B Cask General Arrangement and Details.
- 2. Code of Federal Regulations, Title 10, Part 71, Packaging and Transportation of Radioactive Material, January 2003.
- 3. U.S. NRC Regulatory Guide 7.8, Revision 1, March 1989, Load Combinations for the Structural Analysis of Shipping Casks for Radioactive Material.
- 4. ASME Boiler & Pressure Vessel Code, Section II, Part D, Materials, The American Society of Mechanical Engineers, New York, NY, 2005.
- 5. NUREG 0481/SAND77-1872, An Assessment of Stress-Strain Data Suitable for Finite Element Elastic-Plastic Analysis of Shipping Containers, Sandia National Laboratories, 1978.
- 6. U.S. NRC Regulatory Guide 7.6, Revision 1, Design Criteria for the Structural Analysis of Shipping Cask Containment Vessels, 1978.
- 7. ANSYS, Rev. 11.0, Computer Software, ANSYS Inc., Canonsburg, PA, 2007.
- 8. EnergySolutions Document TH-022, Rev.1, Steady State Thermal Analyses of the 3-60B Cask Using a 3-D Finite Element Model.

 Title
 Structural Analyses of the 3-60B Cask Under Normal Conditions of Transport

 Calc. No.
 ST-501
 Rev.
 2
 Sheet
 2
 of
 13

4.0 MATERIAL PROPERTIES

			Strength (ksi)	N 7 2	Coefficient
	Temp.	Yield	Ultimate	Membrane	Young's	of Thermal
Material	(°F)	(S_v)	(S_u)	Allowable	(10^6 mai)	Expansion
				(S_m)	(10° psi)	(10^{-6} in/in)
		(1)	(1)	(1)	(1)	(1)
	-20	25.0	70.0	16.7	28.8	-
	70	25.0	70.0	16.7	28.3	8.5
ASTM A240	100	25.0	70.0	16.7	-	8.6
Type 304L	200	21.4	66.1	16.7	27.5	8.9
	300	19.2	61.2	16.7	27.0	9.2
	400	17.5	58.7	15.8	26.4	9.5
	500	16.4	57.5	14.7	25.9	9.7
		(1)	(1)	(1)	(1)	(1)
	-20	45.0	87.0	24.9	28.8	-
ASTM A240	70	45.0	87.0	24.9	28.3	8.5
Gr. 45 &	100	45.0	87.0	24.9	-	8.6
ASTM A182	200	37.5	86.4	24.7	27.5	8.9
Gr. F45	300	33.0	81.6	23.3	27.0	9.2
	400	29.9	78.5	22.4	26.4	9.5
	500	27.8	76.4	21.8	25.9	9.7
		(1)	(1)	(1)	(1)	(1)
	-20	130	150	30	29.7	-
ASTM A 254	70	130	150	30	29.2	6.4
Gr PD	100	130	150	30	-	6.5
(Lid Bolts)	200	119.1	150	30	28.6	6.7
(LIG DOILS)	300	115	150	30	28.1	6.9
	400	111	150	30	27.7	7.1
	500	105.9	150	30	27.1	7.3
		(2)			(2)	(2)
	-20	-	-	-	2.43	15.65
	70	5	-	-	2.27	16.06
ASTM B29	100	-	-	-	2.21	16.22
Lead	200	-	-	-	2.01	16.70
	300	-	-	-	1.85	17.33
	400	-	-	-	1.70	18.16
	500	-	-	-	1.52	19.12

- (1) From ASME B&PV Code 2004, Section II, Part D (Reference 4).
- (2) From NUREG/CR 0481 (Reference 5)

Title	Structural Ana	lyses of th	e 3-60B	Cask Under Normal	Conditions of T	ranspo	ort
Calc. No.	ST-501		2	_	Sheet _	<u> </u>	f <u>13</u>

5.0 <u>ALLOWABLE STRESSES</u>

	Material \rightarrow	ASTM A240 Type 304L	ASTM A182 Gr.F45 & A240 Gr. 45	ASTM A354 Gr. BD	
Yield Stress, S _y (psi)		25,000 ⁽¹⁾	45,000 ⁽¹⁾	130,000 ⁽¹⁾	
Ultimate Stress, S _u (psi)		70,000 ⁽¹⁾	87,000 ⁽¹⁾	150,000 ⁽¹⁾	
Design Stress Intensity, S _m (psi)		16,700 ⁽¹⁾	24,900 ⁽¹⁾	30,000 ⁽¹⁾	
Normal	Membrane Stress	16,700 ⁽²⁾	24,900 ⁽²⁾	60,000 ⁽³⁾	
Conditions	Mem. + Bending Stress	25,050 ⁽²⁾	37,350 ⁽²⁾	90,000 ⁽³⁾	
Hypothetical	Membrane Stress	40,080 ⁽⁴⁾	59,760 ⁽⁴⁾	105,000 ⁽⁵⁾	
Accident Conditions	Mem. + Bending Stress	60,120 ⁽⁴⁾	87,000 ⁽⁴⁾	150,000 ⁽⁵⁾	

Notes:

- (1) From ASME B&PV Code 2004, Section II, Part D (Reference 4).
- (2) Established from Regulatory Guide 7.6 (Reference 6), Position 2.
- (3) Regulatory Guide 7.6 (Reference 6) does not provide any criteria. ASME B&PV Code, Section III, Subsection ND has been used to establish these criteria.
- (4) Established from Regulatory Guide 7.6 (Reference 6), Position 6.
- (5) Regulatory Guide 7.6 (Reference 6) does not provide any criteria. ASME B&PV Code, Section III, Appendix F has been used to establish these criteria.

5.0 MODEL DESCRIPTION

The structural analyses of the 3-60B Cask under NCT have been performed using finite element modeling techniques. ANSYS finite element analysis code (Ref. 7) has been employed to perform the analyses. Since the lid of the cask is attached to the body using 16 bolts, the cask geometry has a cyclic symmetry every 11.25° of the circumference. Therefore, an 11.25° model of the cask is made using 3-dimensional 8-node structural solid elements (ANSYS SOLID185) to represent the major components of the cask, the cask body, the lid, and the bolts. The shell components of the cask - the inner and outer shells, and the baseplates have been represented in the finite element model by SOLSH190 elements.

The fire shield does not provide any structural strength to the cask. Therefore, it is not included in the model.

The poured lead in the body of the cask is not bonded to the steel. It is free to slide over the steel surface. Therefore, the interface between the lead and the steel is modeled by a pair of

Title	Structural Analyses of the 3-60B Cask Under Normal Conditions of Transport						
Calc. No	ST-501	Rev	2	Sheet <u>4</u> of <u>13</u>			

contact (CONTA174) and target (TARGE170) elements. These elements allow the lead to slide over the steel at the same time prevent it from penetrating the steel surface.

Figure 1 shows the outline of the model depicting the material numbering. Figure 2 shows the finite element grid of the lid, seal plate, and the bolts. Figure 3 shows the finite element grid of the cask body without the lead and Figure 4 shows that of the lead. The interface between various components of the cask is modeled by target-contact surface definition. Figure 5 shows target surfaces of various contact-target pairs. The printout of the pertinent model quantities is included in Appendix 1.

Boundary Conditions

For the analyses of the 3-60B Cask under various NCT loading cases, it is assumed that the cask is resting on the upper impact limiter in the vertical orientation, because in this orientation the payload applies deadweight loading, in addition to the internal pressure loading, on the lid closure, which is the most vulnerable part of the cask. The model is conservatively restrained in the vertical direction at the skirt instead of the entire bearing surface of the upper impact limiter. Also, since the model represents an 11.25° circumferential symmetry, the nodes on the cut-planes are restrained from displacement normal to these planes.

Loading

For various NCT loading cases, the loading on the model include the following, as applicable.

Deadweight

The deadweight of the cask is included in the analyses as the body load in the finite element model subjected to the acceleration due to gravity. The deadweight of the lower impact limiter is included as the uniform pressure on the surface where the impact limiter contacts the cask. The deadweight of the payload is included as the uniform pressure on the lid inside surface.

Mass of each Impact Limiter = 3,800 lb

Inside Radius of the Impact Limiter = 12 in

Outside Radius of the Cask = 25.5 in

Pressure on the cask due to impact limiter weight,

 $p_{I.L.} = 3,800/[\pi \times (25.5^2 - 12^2)] = 2.39 \text{ psi}$

Payload Mass = 9,500 lb

Lid Radius = 17.5 in

Pressure on the lid surface due to payload weight,

 $p_{lid} = 9,500/(\pi \times 17.5^2) = 9.874 \text{ psi}$

Because of the segmentation of arc length in the finite element models, the mass of the model is always lower than the actual mass. To account for this, as well as to include the mass of miscellaneous items not included in the model, an adjustment is made in the value of acceleration due to gravity.

Title	Structural Anal	lyses of th	ne 3-60B	Cask Under Normal Conditions of T	Trans	port		
Calc. No.	ST-501	_ Rev	2	Sheet	5		13	

Cask Body Mass = 80,000 – 9,500 -2×3,800 = 62,900 lb

Mass of the FEM = $32 \times 1,775$. 6 = 56,819 lb

Use acceleration due to gravity = 62,900/56,819 = 1.107g

Internal Pressure

The cask internal pressure under various NCT loading conditions is applied as the uniform pressure over the nodes representing the cavity of the cask. The external pressure, if applicable, is applied over the nodes representing the entire exterior surface of the cask.

Temperature

The temperature distribution under various NCT loading conditions is obtained from the thermal analyses performed in Reference 8 and is applied as the nodal temperature in the finite element model.

6.0 ANALYSES

The finite element model described in Section 5.0 is analyzed for the following loading conditions:

1. Hot Environment – This load case is based on the requirements of 10 CFR 71.71 (c) (1). The finite element model is subjected to the following loading:

Cask Deadweight	✓
Upper Impact Limiter Deadweight	\checkmark
Payload Deadweight	\checkmark
Temperature from Reference 8	Load Case 1
Internal Pressure	35 psi
External Pressure	No

See Figure 6 for the plot of the temperature profile and pressure distribution used for this load step.

2. Cold Environment – This load case is based on the requirements of 10 CFR 71.71 (c) (2). The finite element model is subjected to the following loading:

Cask Deadweight	\checkmark
Upper Impact Limiter Deadweight	\checkmark
Payload Deadweight	\checkmark
Temperature from Reference 8	Load Case 2

Title	Structural A	nalyses of th	e 3-60B	Cask Under Normal Conditions of 7	Frans	port
Calc. No.	ST-501	Rev	2	Sheet	6	of13

Internal Pressure	35 psi
External Pressure	No

See Figure 7 for the plot of the temperature profile and pressure distribution used for this load step.

3. Normal Hot - This load case is based on the requirements of 10 CFR 71.71 (b). The finite element model is subjected to the following loading:

Cask Deadweight	✓
Upper Impact Limiter Deadweight	\checkmark
Payload Deadweight	\checkmark
Temperature from Reference 8	Load Case 3
Internal Pressure	35 psi
External Pressure	No

See Figure 8 for the plot of the temperature profile and pressure distribution used for this load step.

4. Normal Cold - This load case is based on the requirements of 10 CFR 71.71 (b). The finite element model is subjected to the following loading:

Cask Deadweight	\checkmark
Upper Impact Limiter Deadweight	✓
Payload Deadweight	✓
Temperature from Reference 8	Load Case 4
Internal Pressure	35 psi
External Pressure	No

See Figure 9 for the plot of the temperature profile and pressure distribution used for this load step.

5. Maximum Normal Operating Pressure - This load case is analyzed to obtain the loadcontrolled stresses in the cask under MNOP. The finite element model is subjected to the following loading:

Title	Structural Anal	yses of the	e 3-60B	Cask Under Normal Conditions of Transpo	ort
Calc. No.	ST-501		2	Sheet	of <u>13</u>

Cask Deadweight	\checkmark
Upper Impact Limiter Deadweight	\checkmark
Payload Deadweight	\checkmark
Temperature from Reference 8	70°F
Internal Pressure	35 psi
External Pressure	No

See Figure 10 for the plot of the temperature profile and pressure distribution used for this load step.

6. Reduced External Pressure - This load case is based on the requirements of 10 CFR 71.71 (c)(3). The finite element model is subjected to the following loading:

Cask Deadweight	\checkmark
Upper Impact Limiter Deadweight	\checkmark
Payload Deadweight	\checkmark
Temperature from Reference 8	Load Case 3
Internal Pressure	50 psi
External Pressure	No

See Figure 11 for the plot of the temperature profile and pressure distribution used for this load step.

 Increased External Pressure & Immersion - This load case is based on the requirements of 10 CFR 71.71 (c)(4). This load case also envelopes the requirement of 10 CFR 71.73(c)(6). The finite element model is subjected to the following loading:

Cask Deadweight	\checkmark
Upper Impact Limiter Deadweight	\checkmark
Payload Deadweight	\checkmark
Temperature from Reference 8	-20°F
Internal Pressure	No

Title	Structural An	alyses of the	e 3-60B	Cask Under Normal Conditions of 7	Franst	port	
Calc. No	ST-501	Rev	2	Sheet _	8	_of_	13

External Pressure 25 psi

See Figure 12 for the plot of the temperature profile and pressure distribution used for this load step.

7.0 RESULTS

The results obtained from various load case analyses include displacements and stress intensities at the nodal points of the finite element model. The summary results of the stress quantities, obtained from the post-processing of each load case, are provided in Appendix 2. The total printout from all the load cases is included in Appendix 3. Stress intensity contour plots are presented in Figures 13 through 19. The stress intensities in various components of the 3-60B Cask under these loading conditions are tabulated in Tables 1 through 7. It should be noted that the maximum stress intensities obtained from the finite element models are peak stresses, as classified by the ASME code. If the magnitude of these S.I.s are smaller than the membrane stress allowable values for the material, the peak stress values from the finite element model results are reported as membrane and membrane plus bending as well. However, if these values are larger than the membrane stress allowable values, stresses are linearized over the cross-section, per ASME code, and the results obtained from this operation are listed in Tables 1 through 7. The stress intensity values are also compared with the corresponding allowable values in these tables. A factor of safety is calculated for every component for each load case. A factor of safety value of 1.0 or larger indicates that the stress intensity is acceptable for the loading considered.

The results of the analyses show that the stresses for all the normal operating load cases are well within the allowable values.

8.0 APPENDICES

Appendix 1	Print-out of the ANSYS	model data input
------------	------------------------	------------------

- Appendix 2 Stress Summary Print-out
- Appendix 3 Electronic data on CDROM

Title	Structural Anal	yses of the	e 3-60B Cask Under Normal Condit	tions of Transport
Calc. No	ST-501	_ Rev	2	Sheet <u>9</u> of <u>13</u>

<u>Tables</u>

(7 Pages)

Title	Structural Analyses	of the 3-60	B Cask U	inder Normal Conditions of Transport
Calc. No.	ST-501 Tables	Rev.	2	Sheet <u>1</u> of <u>7</u>

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Dolting Ding	P _m	24,900	17,334	1.44
Bolung King	$P_m + P_b$	37,350	17,334	2.15
Bolting Ring	\mathbf{P}_{m}	24,900	14,050 ⁽³⁾	1.77
Shell Extension	$P_m + P_b$	37,350	24,070 ⁽³⁾	1.55
Bolting Ring	\mathbf{P}_{m}	24,900	3,762	6.62
Skirt	$P_m + P_b$	37,350	3,762	9.93
Inner Shell	\mathbf{P}_{m}	24,900	7,558	3.30
	$P_m + P_b$	37,350	7,558	4.94
Outor Shall	P _m	16,700	9,727 ⁽⁴⁾	1.72
Outer Shell	$P_m + P_b$	25,050	17,720 ⁽⁴⁾	1.41
Lid	P _m	16,700	4,699	3.55
LIU	$P_m + P_b$	25,050	4,699	5.33
Daga Diatas	P _m	16,700	12,237	1.36
Base Plates	$P_m + P_b$	25,050	12,237	2.05
Seal Plates	$P_m + P_b$	25,050	12,223	2.05
Polto	P _m	60,000	20,871	2.87
Bolts	$P_m + P_b$	90,000	20,871	4.31

Stress Intensities in 3-60B Cask under Hot Environment Loading

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as P_m and $P_m + P_b$ stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) See Figure 20 for the location of the section over which the stresses are linearized.
- (4) See Figure 21 for the location of the section over which the stresses are linearized.

Title	Structural Analyses	of the 3-60	B Cask Und	ler Normal Conditions of Tr	ansport
Calc. No	ST-501 Tables	Rev	2	Sheet _	<u>2_of_7</u>

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Polting Ding	P _m	24,900	13,838	1.80
Bolting King	$P_m + P_b$	37,350	13,838	2.70
Bolting Ring	P _m	24,900	9,477 ⁽³⁾	2.63
Shell Extension	$P_m + P_b$	37,350	16,420 ⁽³⁾	2.27
Bolting Ring	P _m	24,900	4,139	6.02
Skirt	$P_m + P_b$	37,350	4,139	9.02
Inner Shell	P _m	24,900	9,713	2.56
	$P_m + P_b$	37,350	9,713	3.85
Outor Shall	P _m	16,700	1,731	9.65
Outer Shell	$P_m + P_b$	25,050	1,731	14.47
Lid	P _m	16,700	7,346	2.27
Liu	$P_m + P_b$	25,050	7,346	3.41
Base Plates	P _m	16,700	11,264	1.48
	$P_m + P_b$	25,050	11,264	2.22
Seal Plates	$P_m + P_b$	25,050	12,696	1.97
Dolta	P _m	60,000	9,941	6.04
Bolts	$P_m + P_b$	90,000	9,941	9.05

Stress Intensities in 3-60B Cask under Cold Environment Loading

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as Pm and Pm + Pb stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) See Figure 22 for the location of the section over which the stresses are linearized.

Title	Structural Analyses	of the 3-601	B Cask Unde	er Normal Conditions of Transport
Calc. No	ST-501 Tables	Rev	2	Sheet <u>3</u> of <u>7</u>

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾	
	\mathbf{P}_{m}	24,900	9,392	2.65	
Bolting King	$P_m + P_b$	37,350	9,392	3.98	
Bolting Ring	P _m	24,900	13,574	1.83	
Shell Extension	$P_m + P_b$	37,350	13,574	2.75	
Bolting Ring	P_{m}	24,900	2,581	9.65	
Skirt	$P_m + P_b$	37,350	2,581	14.47	
Inner Shell	P _m	24,900	4,078	6.11	
	$P_m + P_b$	37,350	4,078	9.16	
Outer Shell	P _m	16,700	9,789	1.71	
	$P_m + P_b$	25,050	9,789	2.56	
Lid	P _m	16,700	2,700	6.19	
Lid	$P_m + P_b$	25,050	2,700	9.28	
Base Plates	P _m	16,700	6,982	2.39	
	$P_m + P_b$	25,050	6,982	3.59	
Seal Plates	$P_m + P_b$	25,050	7,065	3.55	
Polto	P _m	60,000	10,976	5.47	
DOILS	$P_m + P_b$	90,000	10,976	8.20	

Table 3

Stress Intensities in 3-60B Cask under Normal Hot Loading

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as P_m and $P_m + P_b$ stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)

Title	Structural Analyses	of the 3-60E	B Cask Under No	ormal Conditions of Tr	ranspo	ort	
Calc. No	ST-501 Tables	Rev	2	Sheet _	4	_of	7

Stress mensiles in 5-00D Cask under Normar Cold Loading					
Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾	
Bolting Ding	P _m	24,900	10,658	2.34	
Bolding King	$P_m + P_b$	37,350	10,658	3.50	
Bolting Ring	P _m	24,900	12,421	2.00	
Shell Extension	$P_m + P_b$	37,350	12,421	3.00	
Bolting Ring	P _m	24,900	3,388	7.35	
Skirt	$P_m + P_b$	37,350	3,388	11.02	
Inner Shell	P _m	24,900	7,273	3.42	
	$P_m + P_b$	37,350	7,273	5.14	
Outor Shall	P _m	16,700	1,298	12.87	
Outer Shell	$P_m + P_b$	25,050	1,298	19.30	
Lid	P _m	16,700	5,863	2.85	
Liu	$P_m + P_b$	25,050	5,863	4.27	
Paga Diatas	P _m	16,700	8,131	2.05	
Base Plates	$P_m + P_b$	25,050	8,131	3.08	
Seal Plates	$P_m + P_b$	25,050	9,810	2.55	
Polta	P _m	60,000	7,900	7.59	
DOILS	$P_m + P_b$	90,000	7,900	11.39	

Stress Intensities in 3-60B Cask under Normal Cold Loading

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as P_m and $P_m + P_b$ stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)

Title	Structural Analyses	of the 3-601	B Cask Und	ler Normal Conditions of Transport
Calc. No.	ST-501 Tables	Rev	2	Sheet <u>5</u> of <u>7</u>

Stress Intensities in 3-60B Cask under Maximum Normal Operating Pressure					
Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾	
Bolting Ding	P _m	24,900	1,579	15.77	
Bolting King	$P_m + P_b$	37,350	1,579	23.75	
Bolting Ring	P _m	24,900	501	49.70	
Shell Extension	$P_m + P_b$	37,350	501	74.55	
Bolting Ring	\mathbf{P}_{m}	24,900	608	40.95	
Skirt	$P_m + P_b$	37,350	608	61.43	
Inner Shell	P _m	24,900	426	58.45	
	$P_m + P_b$	37,350	426	87.68	
Outer Shell	P_{m}	16,700	273	61.17	
	$P_m + P_b$	25,050	273	91.76	
Lid	P _m	16,700	1,019	16.39	
Liu	$P_m + P_b$	25,050	1,019	24.58	
Paga Diatas	P _m	16,700	901	18.53	
Base Plates	$P_m + P_b$	25,050	901	27.80	
Seal Plates	$P_m + P_b$	25,050	2,103	11.91	
Polto	P _m	60,000	648	92.59	
DOILS	$P_m + P_b$	90,000	648	138.89	

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as P_m and $P_m + P_b$ stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)

Title	Structural Analy	ses of the 3-60B	Cask Under Normal	Conditions of Transport
Calc. No	ST-501 Tables	Rev	2	Sheet <u>6</u> of <u>7</u>

Stress Intensities III 3-00D Cask under Reduced External Tressure						
Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾		
Dalting Ding	P_{m}	24,900	7,851	3.17		
Bolding King	$P_m + P_b$	37,350	7,851	4.76		
Bolting Ring	P _m	24,900	13,169	1.89		
Shell Extension	$P_m + P_b$	37,350	13,169	2.84		
Bolting Ring	P _m	24,900	2,356	10.57		
Skirt	$P_m + P_b$	37,350	2,356	15.85		
Inner Shell	P _m	24,900	6,420	3.88		
	$P_m + P_b$	37,350	6,420	5.82		
Outer Shell	P _m	16,700	9,404	1.78		
	$P_m + P_b$	25,050	9,404	2.66		
Lid	P _m	16,700	2,515	6.64		
Liu	$P_m + P_b$	25,050	2,515	9.96		
Base Plates	P _m	16,700	11,544	1.45		
	$P_m + P_b$	25,050	11,544	2.17		
Seal Plates	Il Plates $P_m + P_b$ 25,050		5,882	4.26		
	P _m	60,000	10,962	5.47		
DUIIS	$P_m + P_b$	90,000	10,962	8.21		

|--|

Stress Intensities in 3-60B Cask under Reduced External Pressure

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as P_m and $P_m + P_b$ stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)

Title	Structural Analyses of the 3-60B Cask Under Normal Conditions of Transport			
Calc. No.	ST-501 Tables	Rev	2	Sheet <u>7</u> of <u>7</u>

Stress Intensities in 3-60B Cask under Increased External Pressure and Immersion

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾	
Dolting Ding	P _m	24,900	15,915	1.56	
Bolting Ring	$P_m + P_b$	37,350	15,915	2.35	
Bolting Ring	P _m	24,900	11,610 ⁽³⁾	2.14	
Shell Extension	$P_m + P_b$	37,350	19,860 ⁽³⁾	1.88	
Bolting Ring	P_{m}	24,900	4,213	5.91	
Skirt	$P_m + P_b$	37,350	4,213	8.87	
Inner Shell	P _m	24,900	11,890	2.09	
	$P_m + P_b$	37,350	11,890	3.14	
Outor Shall	\mathbf{P}_{m}	16,700	2,406	6.94	
Outer Shell	$P_m + P_b$	25,050	2,406	10.41	
T : A	P _m	16,700	6,925	2.41	
LIQ	$P_m + P_b$	25,050	6,925	3.62	
Base Plates	\mathbf{P}_{m}	16,700	10,510 ⁽⁴⁾	1.59	
	$P_m + P_b$	25,050	15,070 ⁽⁴⁾	1.66	
Seal Plates	eal Plates $P_m + P_b$ 25,050 13		13,854	1.81	
Polto	P _m	60,000	10,044	5.97	
DOILS	$P_m + P_b$	90,000	10,044	8.96	

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as P_m and $P_m + P_b$ stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) See Figure 23 for the location of the section over which the stresses are linearized.
- (4) See Figure 24 for the location of the section over which the stresses are linearized.

Title	Structural Analyses of the 3-60B Cask Under Normal Conditions of Transport						
Calc. No	ST-501	_ Rev	2	Sheet _	10	_of_	13

Figures

(24 Pages)

<u>Figure 1</u> <u>Finite Element Model of the 3-60B Cask Identifying the Components by Material Numbers</u>

Title	Structural Anal	yses of the	e 3-60B Cask Under Normal Condit	tions of T	Fransport	
Calc. No	ST-501	_ Rev	2	Sheet _	<u>11</u> of 13	

<u>Appendix 1</u> Printout of the ANSYS Model Data (16 Pages)

ANSYS Finite Element Model Print-Out

***** TITLES ***** *** YOU ARE IN ANSYS - ENGINEERING ANALYSIS SYSTEM *** ANSYS Mechanical/Emag RELEASE 11.0SP1 UPDATE 20070830 CUSTOMER 00222442 INITIAL JOBNAME = file CURRENT JOBNAME = file Current Working Directory: Y:\Thermal\NCT\Stress TITLE= Hot Environment MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\enus\UIDL\menulist110.ans GLOBAL STATUS Dec 07, 2007 ANSYS - Engineering Analysis System 11:33 Release 11.0SP1 00222442 INTEL NT Version Current working directory: Y:\Thermal\NCT\Stress MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\qui\enus\UIDL\menulist110.ans Product(s) enabled: ANSYS Mechanical/Emag Total connect time. . . . 0 hours 0 minutes Total CP usage. 0 hours 0 minutes 2.3 seconds INFORMATION ------ЈОВ _ _ _ _ Hot Environment Current jobname file Initial jobname file Available Used 3.980 mb (1.6%) Scratch Memory Space. . . . 256.000 mb Database space 65535.750 mb 9.866 mb (0.0%) User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\enus\uidl\UIMENU.GRN

ST-501, Rev.2, Appendix 1, Page 2 of 16

MODEL INFORMATION ------

Solid model summary:

							Largest	Number	Number
							Number	Defined	Selected
Keypoints							0	0	0
Lines							0	0	0
Areas							0	0	0
Volumes .	•	•		•	•	•	0	0	0

Finite element model summary:

	Largest	Number	Number
	Number	Defined	Selected
Nodes	2895	2878	2878
Elements	3945	2368	1522
Element types	70	35	n.a.
Real constant sets	57	28	n.a.
Material property sets	3	3	n.a.
Coupling	82	30	n.a.
Constraint equations	0	0	n.a.
Master DOFs	0	0	n.a.
Dynamic gap conditions	0	0	n.a.

BOUNDARY CONDITION INFORMATION------

				Number
				Defined
Constraints on nodes				. 1205
Constraints on keypoints.				. 0
Constraints on lines				. 0
Constraints on areas			•	. 0
Forces on nodes				. 0
Forces on keypoints		•	•	. 0
Surface loads on elements		•	•	. 322
Number of element flagged	surfaces	•	•	. 0
Surface loads on lines				. 0
Surface loads on areas		•	•	. 0

Body loads on elements. 0 Body loads on nodes 2878 Body loads on keypoints 0 Temperatures Reference temperature. 70.000 Offset from absolute scale 460.000 Υ Х 7. 1.1070 Linear acceleration 0.0000 0.0000 Angular velocity (about global CS). . . 0.0000 0.0000 0.0000 Angular acceleration (about global CS). . 0.0000 0.0000 0.0000 Location of reference CS...0.0000Angular velocity (about reference CS)0.00000.0000 0.0000 0.0000 Angular acceleration (about reference CS) 0.0000 0.0000 0.0000 ROUTINE INFORMATION -----_ _ _ _ Display coordinate system. 0 (Cartesian) Current element attributes: 57 Material number 1 Element coordinate system number. . 0 Current element meshing shape 2D . . .use default element shape. Current element meshing shape 3D . . .use default element shape. SmrtSize Level OFF Global element size. 0 divisions per line Display coordinate system. 0 (Cartesian) Active options for this analysis type: Large deformation effects Not included Plasticity. Not included

SOLUTION OPTIONS

PROBLEM DIMENSIONALITY...<t

LOAD STEP OPTIONS

LOAD STEP	NUMBER				1	
TIME AT EN	ID OF THE LOAD	STEP			1.0000	
NUMBER OF	SUBSTEPS				1	
MAXIMUM NU	IMBER OF EQUIL	IBRIUM ITER	ATIONS.		15	
STEP CHANG	E BOUNDARY CO	NDITIONS .			NO	
TERMINATE	ANALYSIS IF N	OT CONVERGE	D	Y	ES (EXIT	Γ)
CONVERGENC	E CONTROLS					
LABEL	REFERENCE	TOLERANCE	NORM	MINR	EF	
F	0.000	0.1000E-02	2 2	0.00	0	
INERTIA LO	ADS		Х		Y	Z
ACEL .		0	.0000	0.0	000	1.1070
PRINT OUTF	PUT CONTROLS .			N	O PRINTC	DUT
DATABASE C	UTPUT CONTROL	S				
ITEM	FREQUENCY	COMPONENT				
BASI	ALL					

LIST ELEMENT TYPES FROM 1 TO 70 BY 1

ELEMENT TYPE KEYOPT(1-12)=	1 0	IS 0	SOLID1 0	.85 0	0	3-D 0	8-N 0	ODI 0	e stru 0	UCTI 0	JRAI 0	L SOLID 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	2 0	IS 0	SHELL4 0	1 0	0	MEME 0	BRAN 0	Е S 0	SHELL O	0	0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	3 0	IS 0	SOLSH1 0	90 0	0	3-D 0	8-N 0	odi 0	E SOLI 0	D 5 0	SHEI 0	LL O	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	14 0	IS 0	TARGE1 0	.70 0	0	3-D 0	tar 0	GET 0	r segn 0	ien: 0	Г 0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	15 0	IS 0	CONTA1 0	.74 2	1	3D 8 0	8-NC 0	DE 0	SURF- 1	-SUI 0	RF (0	CONTACT 1	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	16 0	IS 0	TARGE1 0	.70 0	0	3-D 0	tar 0	GEI 0	r segm 0	ien: 0	Г 0	0	0	INOPR

ELEMENT TYPE 17 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR KEYOPT(1-12) = 0 2 0 2 3 0 0 0 1 2 0 6Ο ELEMENT TYPE 18 IS TARGE170 3-D TARGET SEGMENT INOPR 0 0 0 0 0 0 0 0 KEYOPT(1-12) = 0 0 0 Ω ELEMENT TYPE 19 IS CONTA174 3D 8-NODE SURF-SURF CONTACT TNOPR KEYOPT(1-12) = 00 0 2 2 0 0 0 1 2 0 5 Ο ELEMENT TYPE 20 IS TARGE170 3-D TARGET SEGMENT INOPR 0 0 0 0 0 0 0 0 0 0 0 0 KEYOPT(1-12)= 21 IS CONTA174 3D 8-NODE SURF-SURF CONTACT ELEMENT TYPE TNOPR 0 0 0 2 1 0 0 0 1 2 0 30 KEYOPT(1-12) =22 IS TARGE170 ELEMENT TYPE 3-D TARGET SEGMENT TNOPR KEYOPT(1-12) = 0 0 0 0 0 0 0 0 0 0 0 0 0 0Λ ELEMENT TYPE 23 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR 2 3 0 KEYOPT(1-12)= 0 0 1 2 0 5 0 0 0 0 ELEMENT TYPE 24 IS TARGE170 3-D TARGET SEGMENT TNOPR 0 0 0 0 0 0 KEYOPT(1-12) = 0 0 00 0 0 ELEMENT TYPE 25 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR KEYOPT(1-12)= 0 0 0 2 3 0 0 0 1 2 0 0 0 26 IS TARGE170 3-D TARGET SEGMENT ELEMENT TYPE TNOPR 0 0 0 KEYOPT(1-12) = 0 0 0 0 0 0 0 0 0 0 ELEMENT TYPE 27 IS CONTA174 3D 8-NODE SURF-SURF CONTACT TNOPR 2 3 0 0 0 1 2 0 0 KEYOPT(1-12) = 0 0 00 3-D TARGET SEGMENT ELEMENT TYPE 28 IS TARGE170 TNOPR KEYOPT(1-12) = 0 0 00 0 0 0 0 0 0 0 0 ELEMENT TYPE 29 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR 0 0 0 2 3 0 0 0 1 2 0 0 0 KEYOPT(1-12) =ELEMENT TYPE 30 IS TARGE170 3-D TARGET SEGMENT TNOPR 0 0 0 0 0 0 0 0 KEYOPT(1-12)= 0 0 0 Ω ELEMENT TYPE 31 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR KEYOPT(1-12)= 2 3 0 0 0 0 0 0 1 2 0 0 Ω ELEMENT TYPE 53 IS TARGE170 3-D TARGET SEGMENT INOPR KEYOPT(1-12) = 0 0 0 0 0 0 0 0 0 00 0 0 0 NODE-TO-SURFACE CONTACT ELEMENT TYPE 54 IS CONTA175 INOPR KEYOPT(1-12) = 0 2 0 0 3 0 0 0 1 2 0 5Ο ELEMENT TYPE 57 IS TARGE170 3-D TARGET SEGMENT INOPR 0 0 0 KEYOPT(1-12) = 0 0 00 0 0 0 0 0 0

ELEMENT TYPE 58 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR KEYOPT(1-12) = 0 0 0 2 3 0 0 0 1 2 0 1 0ELEMENT TYPE 61 IS TARGE170 3-D TARGET SEGMENT INOPR KEYOPT(1-12) = 0 0 0 0 0 0 0 0 0 0 0 0 ELEMENT TYPE 62 IS CONTA174 3D 8-NODE SURF-SURF CONTACT TNOPR KEYOPT(1-12) = 0 0 0 2 3 0 0 0 1 2 0 50 ELEMENT TYPE 63 IS TARGE170 3-D TARGET SEGMENT 0 INOPR ELEMENT TYPE 64 IS CONTA174 3D 8-NODE SURF-SURF CONTACT TNOPR KEYOPT(1-12) = 0 0 0 0 3 0 0 1 2 0 0 0ELEMENT TYPE 65 IS TARGE170 3-D TARGET SEGMENT INOPR 0 ELEMENT TYPE 66 IS CONTA175 NODE-TO-SURFACE CONTACT INOPR KEYOPT(1-12) = 0 0 0 0 3 0 0 0 1 2 0 00 ELEMENT TYPE 67 IS TARGE170 3-D TARGET SEGMENT TNOPR ELEMENT TYPE 68 IS CONTA175 NODE-TO-SURFACE CONTACT KEYOPT(1-12)= 0 0 0 0 3 0 0 0 1 2 0 0 ELEMENT TYPE 68 IS CONTA175 INOPR 0 ELEMENT TYPE 69 IS TARGE170 3-D TARGET SEGMENT INOPR KEYOPT(1-12)= 0 0 0 0 0 0 0 0 0 0 0 0 0
 ELEMENT TYPE
 70 IS CONTA175
 NODE-TO-SURFACE CONTACT

 KEYOPT(1-12)=
 0
 0
 0
 0
 0
 0
 0
 0
INOPR CURRENT NODAL DOF SET IS UX UY UZ TEMP THREE-DIMENSIONAL MODEL LIST REAL SETS 1 TO 57 BY 1 REAL CONSTANT SET 23 ITEMS 1 TO 6 1.0000 0.33056E-14 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 23 ITEMS 7 TO 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 23 ITEMS 13 TO 18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 24 ITEMS 1 TO 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

REAL CONSTANT SET 24 ITEMS 7 TO 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 24 ITEMS 13 TO 18 0.33300 0.0000 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 27 ITEMS 1 TO 6 1.0000 0.33056E-14 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 27 ITEMS 7 TO 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 27 ITEMS 13 TO 18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 28 ITEMS 1 TO 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 28 ITEMS 7 TO 12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 28 ITEMS 13 TO 18 0.33300 0.0000 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 32 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 32 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 32 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 32 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 33 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 33 ITEMS 7 TO 12

0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 33 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 33 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 34 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 34 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 34 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 34 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 35 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 35 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 35 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 35 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 36 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 36 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 36 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000

REAL CONSTANT SET 36 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 37 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 37 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 37 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 37 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 38 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 38 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 38 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 38 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 39 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 39 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 39 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 39 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 40 ITEMS 1 TO 6

0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 40 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 40 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 40 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 42 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 42 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 42 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 42 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 43 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 43 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 43 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 43 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 44 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 44 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000

REAL CONSTANT SET 44 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 44 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 45 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 45 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 45 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 45 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 46 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 46 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 46 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 46 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 47 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 47 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 47 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 47 ITEMS 19 TO 24

0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 48 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 48 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 48 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 48 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 50 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 50 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 50 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 50 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 51 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 51 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 51 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 51 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 52 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000

REAL CONSTANT SET 52 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 52 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 52 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 53 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 53 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 53 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 53 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 54 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 54 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 54 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 54 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 55 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 55 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 55 ITEMS 13 TO 18

0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 55 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 55 ITEMS 25 TO 30 10.000 0.0000 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 56 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 56 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 56 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 56 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 56 ITEMS 25 TO 30 10.000 0.0000 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 57 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 57 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 57 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 57 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 57 ITEMS 25 TO 30 10.000 0.0000 0.0000 0.0000 0.0000 0.0000 LIST MATERIALS 1 TO 3 BY 1 PROPERTY= ALL

PROPERTY TABLE EX MAT= 1 NUM. POINTS= 6 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 70.000 0.28300E+08 100.00 0.28100E+08 200.00 0.27600E+08 300.00 0.27000E+08 400.00 0.26500E+08 500.00 0.25800E+08 PROPERTY TABLE NUXY MAT= 1 NUM. POINTS= 6 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 70.0000.30000100.000.30000200.000.30000300.000.30000400.000.30000500.000.30000 PROPERTY TABLE ALPX MAT= 1 NUM. POINTS= 6 REFERENCE TEMP. = 70.00 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 70.000 0.85000E-05 100.00 0.86000E-05 200.00 0.89000E-05 300.00 0.92000E-05 400.00 0.95000E-05 500.00 0.97000E-05 PROPERTY TABLE DENS MAT= 1 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.28300 PROPERTY TABLE MU MAT= 1 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.0000 PROPERTY TABLE EMIS MAT= 1 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.0000 PROPERTY TABLE EX MAT= 2 NUM. POINTS= 6 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 70.000 0.29900E+08 100.00 0.29900E+08 200.00 0.29900E+08 300.00 0.29900E+08 400.00 0.29900E+08 500.00 0.29900E+08 PROPERTY TABLE NUXY MAT= 2 NUM. POINTS= 6
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA

 70.000
 0.30000
 100.00
 0.30000
 200.00
 0.30000

 300.00
 0.30000
 400.00
 0.30000
 500.00
 0.30000
PROPERTY TABLE ALPX MAT= 2 NUM. POINTS= 6 REFERENCE TEMP. = 70.00 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 70.000 0.65000E-05 100.00 0.65000E-05 200.00 0.65000E-05 300.00 0.65000E-05 400.00 0.65000E-05 500.00 0.65000E-05 PROPERTY TABLE DENS MAT= 2 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA

0.0000 0.28300 PROPERTY TABLE EX MAT= 3 NUM. POINTS= 8 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA -40.000 0.24600E+07 -20.000 0.24300E+07 70.000 0.22700E+07 0.22100E+07 200.00 0.20100E+07 300.00 100.00 0.18500E+07 400.00 0.17000E+07 500.00 0.15200E+07 PROPERTY TABLE NUXY MAT= 3 NUM. POINTS= 6 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA
 DATA

 0.40000
 302.00
 0.40000

 513.00
 0.40000
 621 00
212.00 0.40000 81.000 0.40000 392.00 0.40000 PROPERTY TABLE ALPX MAT= 3 NUM. POINTS= 8 REFERENCE TEMP. = 70.00 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA -40.000 0.15560E-04 -20.000 0.15650E-04 70.000 0.16060E-04 100.00 0.16220E-04 200.00 0.16700E-04 300.00 0.17330E-04 400.00 0.18160E-04 500.00 0.19120E-04 PROPERTY TABLE DENS MAT= 3 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.41000

Title	Structural Analy	yses of the	e 3-60B Cask Under Normal Condit	tions of T	Гransp	ort	
Calc. No	ST-501	_ Rev	2	Sheet _	12	_of_	13

<u>Appendix 2</u> <u>Stress Summary Print-Out</u> (9 Pages)

ANSYS Analyses Result Summary

APDL file that was used to create this result summary is included in Appendix 3 and is named "summary-nct.in". The quantities marked with (*) are linearized over the cross-section for reporting purpose. The linearization results are included in this appendix.

Hot Environment			
	Max. S.I.	Max. Sigl	Max. Sig3
Bolting Ring	17334.	14562.	1015.
Shell Extension	24127.(*)	27074.	5368.
Bolting Ring Skirt	3762.	1854.	-294.
Inner Shell	7558.	4183.	748.
Outer Shell	17720.(*)	20987.	3270.
Lid	4699.	2764.	314.
Baseplates	12237	8747	1715.
Seal Plates	12223	11362	1307.
Bolts	20871.	14539.	4860.
Cold Environment			
	Max. S.I.	Max. Siq1	Max. Sig3
Bolting Ring	13838.	12719.	391.
Shell Extension	16458.(*)	4873.	-243
Bolting Ring Skirt	4139.	1727.	-249.
Inner Shell	9713	468	-8334
Outer Shell	1731	580	6
Lid	7346	5601	278
Bagenlateg	11264	1627	270.
	12696	12005	1170
Polta	12090.	0495	250
BOILS	9940.	9405.	250.
Normal Hot			
	Max. S.I.	Max. Sig1	Max. Sig3
Bolting Ring	9392.	8119.	816.
Shell Extension	13574.	15200.	3068.
Bolting Ring Skirt	2581.	1204.	-250.
Inner Shell	4077.	2993.	526.
Outer Shell	9789.	11607.	1820.
Lid	2700.	1779.	294.
Baseplates	6982.	5051.	1257.
Seal Plates	7065.	6763.	859.
Bolts	10976.	8609.	2716.
Normal Cold			
	Max. S.I.	Max. Sigl	Max. Sig3
Bolting Ring	10658.	9755.	339.
Shell Extension	12421.	3675.	-144.
Bolting Ring Skirt	3388.	1385.	-206.
Inner Shell	7273.	328.	-6221.
Outer Shell	1298.	425.	б.
Lid	5863.	4516.	98.
Baseplates	8131.	1192.	7.
Seal Plates	9810.	10042.	976.
Bolts	7900.	7545.	232.

Maximum Normal Operat:	ing		
	Max. S.I.	Max. Sigl	Max. Sig3
Bolting Ring	1579.	1479.	66.
Shell Extension	501.	338.	99.
Bolting Ring Skirt	608.	71.	-417.
Inner Shell	426.	400.	92.
Outer Shell	273.	233.	49.
Lid	1019.	623.	48.
Baseplates	901.	735.	203.
Seal Plates	2103.	1940.	113.
Bolts	648.	608.	164.
Reduced External Pres	sure		
	Max. S.I.	Max. Sigl	Max. Sig3
Bolting Ring	7851.	6749.	763.
Shell Extension	13169.	14777.	3002.
Bolting Ring Skirt	2356.	1101.	-258.
Inner Shell	6420.	7310.	1103.
Outer Shell	9404.	11153.	1750.
Lid	2515.	1684.	150.
Baseplates	11544.	11210.	1958.
Seal Plates	5882.	5443.	645.
Bolts	10962.	7687.	2617.
Increased External Pro	essure		
	Max. S.I.	Max. Sigl	Max. Sig3
Bolting Ring	15915.	14793.	285.
Shell Extension	19893.(*)	5122.	-804.
Bolting Ring Skirt	4213.	1731.	-272.
Inner Shell	11890.	668.	-10268.
Outer Shell	2406.	1547.	40.
Lid	6925.	5084.	31.
Baseplates	15814.(*)	2150.	433.
Seal Plates	13854.	14112.	1011.
Bolts	10044.	9548.	112.

Stress Linearization - Hot Environment - Bolting Ring Shell Extension - Section-1

	* * * * *	* POST1 LINEA	ARIZED STRESS	G LISTING ***	* * *	
	INSID	E NODE = 15	519 OUTSI	IDE NODE =	1612	
I	LOAD STEP	1 SUBSTEP=	= 1			
J	TIME= 1.00	000 I	LOAD CASE= ()		
ΤH	HE FOLLOWING	X,Y,Z STRESS	SES ARE IN TH	HE GLOBAL COO	ORDINATE SYST	ΓEM.
	C Y	** MEMBRANE *	<pre></pre>	OVV	OVE	OVE
	5A 6098	4764	52 9476	29 97	102 2	3809
	S1	S2	S3	SINT	SEOV	5005.
C).1196E+05	4764.	3620.	8335.	7826.	
		** DENDINC **	K T-INCIDE (-CENTER O-OI	TTOTOT	
	SX	SA SA	SZ.	SXY	SVZ	SXZ
I	-91.68	4990.	0.1686E+05	-124.9	-8.634	-112.1
С	0.000	0.000	0.000	0.000	0.000	0.000
0	91.68	-4990.	-0.1686E+05	124.9	8.634	112.1
	S1	S2	S3	SINT	SEQV	
Ι	0.1686E+05	4993.	-95.49	0.1696E+05	0.1507E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	95.49	-4993.	-0.1686E+05	0.1696E+05	0.1507E+05	
	ŕ	* * MEMBRANE I	PLUS BENDING	** I=INSIDE	E C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	6007.	9755.	0.2634E+05	-94.94	93.53	3697.
С	6098.	4764.	9476.	29.97	102.2	3809.
0	6190.	-226.1	-7388.	154.9	110.8	3921.
-	S1	S2	S3	SINT	SEQV	
T	0.2699E+05	9757.	5353.	0.21645+05	U.1981E+05	
0	0.1196E+05 7245	4/04.	3020. _9/39	0335. 01569〒+05	/820. 0 13500±05	
0	7243.	227.0	0107.	0.13000103	0.13375103	
	i.	** PEAK **]	I=INSIDE C=CH	ENTER O=OUTSI	IDE	_
-	SX	SY	SZ	SXY	SYZ	SXZ
T	-0.3981E-01	2.16/	7.323	-0.5423E-01	-0.3/49E-02	-0.486/E-01
	0.9095E-12 0.3981F-01	0.9095≞-12 _2 167	-0.1019E-11 _7 323	0.3908E-13 0 5423F-01	0.052/E-13 0.3749F-02	0.454/E = 12 0.4867 $E = 01$
0	S1	S2	.325	SINT	SEOV	0.400/2 01
Ι	7.323	2.168	-0.4146E-01	7.364	6.546	
C	0.1011E-11	0.8842E-12	-0.1895E-11	0.2906E-11	0.2845E-11	
0	0.4146E-01	-2.168	-7.323	7.364	6.546	
	ŕ	** TOTAT. **	T=INSIDE C=C	TENTER O=OUTS	STDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	6007.	9757.	0.2635E+05	-94.99	93.53	3697.
С	6098.	4764.	9476.	29.97	102.2	3809.
0	6190.	-228.2	-7395.	154.9	110.8	3921.
	S1	S2	S3	SINT	SEQV	TEMP
Ι	0.2700E+05	9759.	5353.	0.2165E+05	0.1981E+05	176.4
C	0.1196E+05	4764.	3620.	8335.	7826.	100 4
U	/ 49.	-431.9	-8440.	U.IS09E+U5	U.エンシメビ+U5	1/0.4

Stress Linearization - Hot Environment - Bolting Ring Shell Extension - Section-2

	**** INSIDE	* POST1 LINEA E NODE = 16	ARIZED STRES 523 OUTS	SS LISTING ** SIDE NODE =	**** 1644	
L T	OAD STEP IME= 1.00	1 SUBSTEP:	= 1 LOAD CASE=	0		
тн	E FOLLOWING	X,Y,Z STRESS	SES ARE IN I	THE GLOBAL CO	ORDINATE SYST	ΈΜ.
	; 	** MEMBRANE	**		0115	0117
	2205	SY	SZ 0/17	SXY 1EQ Q	SYZ 77 42	SXZ 2001
_	S1	2990. S2	S3	SINT	SEOV	2001.
0	.1003E+05	3002.	-4017.	0.1405E+05	0.1217E+05	
	ć	** BENDING **	* I=INSIDE	C=CENTER O=C	DUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	56.64	3394.	0.1059E+05	-82.01	-2.311	42.94
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-56.64	-3394.	-0.1059E+05	82.01	2.311	-42.94
	S1	S2	S3	SINT	SEQV	
Ι	0.1059E+05	3396.	54.45	0.1053E+05	5 9324.	
С	0.000	0.000	0.000	0.000	0.000	
0	-54.45	-3396.	-0.1059E+05	6 0.1053E+05	5 9324.	
	÷	** MEMBRANE H	PLUS BENDING	G ** I=INSII	DE C=CENTER O=	OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-3338.	6391.	0.2001E+05	5 -240.9	75.12	2924.
С	-3395.	2998.	9417.	-158.9	77.43	2881.
0	-3451.	-395.8	-1172.	-76.84	79.75	2838.
_	SI	S2	S3	SINT	SEQV	
T	0.2037E+05	6397.	-3705.	0.2407E+05	0.2094E+05	
С	0.1003E+05	3002.	-4017.	0.1405E+05	0.1217E+05	
0	747.2	-393.9	-5373.	6120.	5637.	
	ć	** PEAK ** 3	I=INSIDE C=C	CENTER O=OUTS	SIDE	
_	SX	SY	SZ	SXY	SYZ	SXZ
T	0.2460E-01	1.474	4.598	-0.3561E-01	L = 0.1004E = 02	0.1865E-01
C	0.163/E-10 0.2460E 01	0.22/4E-10	0.6548E-10	0 2561m 01	2 0.1421E-13	0.000
0	-0.2400E-01	-1.4/4	-4.590	U.3501E-UI	CEOV	-0.1002E-01
т	4 598	1 474	0 2364E-01	4 574	3EQV 4 049	
Ċ	0.6548E - 10	0.2274E - 10	0.1636E-10	0.4912E-10	0.4626E-10	
0	-0.2364E-01	-1.474	-4.598	4.574	4.049	
	÷	** TOTAL **	T=TNSTDE C=	CENTER O=OUT	TSTDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-3338.	6393.	0.2001E+05	-240.9	75.12	2924.
С	-3395.	2998.	9417.	-158.9	77.43	2881.
0	-3451.	-397.2	-1177.	-76.81	79.75	2838.
	S1	S2	S3	SINT	SEQV	TEMP
I	0.2037E+05	6399.	-3705.	0.2408E+05	5 0.2094E+05	176.3
С	0.1003E+05	3002.	-4017.	0.1405E+05	5 0.1217E+05	
0	744.1	-395.3	-5374.	6118.	5635.	176.3

Stress Linearization - Cold Environment - Bolting Ring Shell Extension - Section-1

	*** INSI	** POST1 LINE DE NODE = 10	ARIZED STRESS 509 OUTSI	S LISTING *** IDE NODE =	** 1504	
]	LOAD STEP FIME= 1.	1 SUBSTEP: 0000 1	= 1 LOAD CASE= ()		
TI	HE FOLLOWIN	IG X,Y,Z STRESS	SES ARE IN TH	HE GLOBAL COO	ORDINATE SYST	ΓEM.
			* *			
	QY	AA MEMBRANE	97	QYV	9V7	977
-	-1822.	-6677.	-8791.	117.8	29.27	1103.
	S1	S2	S3	SINT	SEOV	1100.
-	-1649.	-6679.	-8962.	7313.	6481.	
		** BENDING **	* I=INSIDE (C=CENTER O=OU	JTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	10.96	2640.	9286.	-64.61	-2.767	-85.85
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-10.96	-2640.	-9286.	64.61	2.767	85.85
	S1	S2	S3	SINT	SEQV	
Ι	9287.	2642.	8.578	9278.	8282.	
С	0.000	0.000	0.000	0.000	0.000	
0	-8.578	-2642.	-9287.	9278.	8282.	
		** MEMBRANE	PLUS BENDING	** I=INSIDE	C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-1811.	-4037.	494.8	53.22	26.50	1017.
С	-1822.	-6677.	-8791.	117.8	29.27	1103.
0	-1833.	-9317.	-0.1808E+05	182.4	32.03	1189.
	S1	S2	S3	SINT	SEQV	
I	879.8	-2195.	-4038.	4918.	4303.	
С	-1649.	-6679.	-8962.	7313.	6481.	
0	-1742.	-9321.	-0.1816E+05	0.1642E+05	0.1424E+05	
		** PEAK **	I=INSIDE C=CH	ENTER O=OUTSI	DE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	0.4759E-0	1.146	4.032	-0.2805E-01	-0.1202E-02	-0.3728E-01
C	-0.1137E-1	L -0.1637E-10	-0.5093E-10	0.3695E-12	0.1776E-13	0.6821E-12
0	-0.4/59E-0	02 -1.146	-4.032	0.28058-01	0.12028-02	0.3/28E-01
т	51			SINI 4 020	SEQV 2 EQC	
T C	4.033 0 1110E 1	1 0 1629E 10	0.3725E-02	4.029 0 4092E 10	3.590 0 4421E 10	
0	-0.3725E-0	-1.147	-4.033	4.029	3.596	
		** TOTAL **	I=INSIDE C=0	CENTER O=OUTS	SIDE	_
-	SX	SY	SZ	SXY	SYZ	SXZ
⊥ C	-1811. 1822	-4035.	498.9	53.19 117 0	26.50	LUL/. 1102
0	-⊥0∠∠. _1922	-00//.	-0/91.	190 F	27.21 27.01	1100.
U	-1033. C1	- JOLO.	-U.IOUOE+U5	LOZ.J CINT	32.04 CEAV	エエ 0 岁. TTEMD
т	2222 DT	-2105	ده 4037	4920	55UV 4305	_2 201
т С	-1649	-6679	-8962	7313		2.271
0	-1742.	-9322.	-0.1817E+05	0.1643E+05	0.1424E+05	-2.410

Stress Linearization - Cold Environment - Bolting Ring Shell Extension - Section-2

	**** INSID	* POST1 LINEA DE NODE = 16	ARIZED STRESS	S LISTING *** IDE NODE =	*** 1679	
1	LOAD STEP	1 SUBSTEP	= 1			
-	TIME= 1.0	000 1	LOAD CASE= (C		
Τł	HE FOLLOWING	X,Y,Z STRESS	SES ARE IN TH	HE GLOBAL CO	ORDINATE SYST	ΓEM.
			F +			
	SX	SY SY	SZ	SXY	SYZ	SXZ
	476.5	-6309	-8817.	166.6	24.12	915.9
	S1	S2	S3	SINT	SEQV	
	570.1	-6313.	-8906.	9477.	8483.	
		** BENDING **	* I=INSIDE (C=CENTER O=O	UTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	1.330	1555.	5832.	-38.16	0.6019	31.43
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-1.330	-1555.	-5832.	38.16	-0.6019	-31.43
	S1	S2	S3	SINT	SEQV	
I	5832.	1556.	0.2241	5832.	5231.	
C	0.000	0.000	0.000	0.000	0.000	
0	-0.2241	-1556.	-5832.	5832.	5231.	
		** MEMBRANE I	PLUS BENDING	** I=INSID	E C=CENTER O=	OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
I	477.9	-4754.	-2985.	128.4	24.72	947.3
C	476.5	-6309.	-8817.	166.6	24.12	915.9
0	4/5.2	-/864.	-0.1465E+05	204.7	23.51	884.5
т	SI 702 0	52	53	SINT E400	SEQV	
T	723.2	-3227.	-4/5/.	5460.	4090.	
0	5/U.L 521 0	-0313.	-8906. 0 1470m+05	94//.	0 1221 m L 0 E	
0	221.0	-7809.	-0.14/06+05	0.1523E+05	0.13216+05	
	~~~	** PEAK ** 2	L=INSIDE C=CH	ENTER O=OUTS	IDE	
-	SX 0 FRRR 02	SY	SZ 2 F22	SXY	SYZ	SXZ
T	0.5///E-03	0.0/52	2.532 0 1627m 10	-U.105/E-UI	0.2014E-03	0.1305E-UI
	-0.3979E-12 -0.5777E-03	-0.10196-11	-0.103/E-10 -2 532	0.1137E-12 0.1657F-01	-0.7103E-14 -0.2614E-03	-0.4347E-12 -0.1365F-01
0	.5777E 05	S2	53	SINT	SEOV	0.13036 01
т	2.532	0.6756	0.9731E = 04	2.532	2,271	
C	-0.3760E-12	-0.1828E-11	-0.1638E-10	0.1601E-10	0.1533E-10	
0	-0.9731E-04	-0.6756	-2.532	2.532	2.271	
		** TOTAL **	I=INSIDE C=0	CENTER O=OUT	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	477.9	-4753.	-2982.	128.4	24.72	947.4
С	476.5	-6309.	-8817.	166.6	24.12	915.9
0	475.2	-7865.	-0.1465E+05	204.8	23.51	884.5
	S1	S2	S3	SINT	SEQV	TEMP
Ι	723.4	-3225.	-4757.	5480.	4897.	-2.294
С	570.1	-6313.	-8906.	9477.	8483.	
0	531.8	-7870.	-U.1470E+05	0.1523E+05	0.1322E+05	-2.335

Stress Linearization - Increased External Pressure - Bolting Ring Shell Extension - Section-1

	**** INSID	* POST1 LINE E NODE = 1	ARIZED STRESS 609 OUTSI	S LISTING *** IDE NODE =	*** 1504	
I T	OAD STEP IME= 1.0	1 SUBSTEP 000	= 2 LOAD CASE= (	)		
ΤH	IE FOLLOWING	X,Y,Z STRES	SES ARE IN TH	HE GLOBAL COO	ORDINATE SYST	ΓEM.
		** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
_	2035.	-8386	0.1082E+05	155.6	32.49	1270.
	S1	S2	S3	SINT	SEQV	
-	1851.	-8390	0.1100E+05	9150.	8163.	
		** BENDING *	* I=INSIDE (	C=CENTER O=OU	JTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	25.03	3103.	0.1090E+05	-75.62	-2.911	-100.7
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-25.03	-3103.	-0.1090E+05	75.62	2.911	100.7
	Sl	S2	S3	SINT	SEQV	
Ι	0.1091E+05	3105.	22.24	0.1088E+05	9716.	
С	0.000	0.000	0.000	0.000	0.000	
0	-22.24	-3105.	-0.1091E+05	0.1088E+05	9716.	
		** MEMBRANE	PLUS BENDING	** I=INSIDE	C=CENTER O=	OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-2010.	-5283.	83.50	79.95	29.58	1169.
С	-2035.	-8386.	-0.1082E+05	155.6	32.49	1270.
0	-2060.	-0.1149E+05	-0.2173E+05	231.2	35.40	1371.
	S1	S2	S3	SINT	SEQV	
Ι	606.8	-2531.	-5285.	5892.	5106.	
С	-1851.	-8390.	-0.1100E+05	9150.	8163.	
0	-1959.	-0.1149E+05	-0.2182E+05	0.1986E+05	0.1720E+05	
		** PEAK **	I=INSIDE C=CH	ENTER O=OUTSI	DE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	0.1087E-01	1.347	4.735	-0.3284E-01	-0.1264E-02	-0.4374E-01
С	-0.1364E-11	-0.2001E-10	-0.6366E-10	0.4547E-12	0.2132E-13	0.000
0	-0.1087E-01	-1.347	-4.735	0.3284E-01	0.1264E-02	0.4374E-01
	S1	S2	S3	SINT	SEQV	
Ι	4.735	1.348	0.9659E-02	4.726	4.219	
C	-0.1353E-11	-0.2002E-10	-0.6366E-10	0.6231E-10	0.5539E-10	
0	-0.9659E-02	-1.348	-4.735	4.726	4.219	
		** TOTAL **	I=INSIDE C=C	CENTER O=OUTS	SIDE	
_	SX	SY	SZ	SXY	SYZ	SXZ
I	-2010.	-5281.	88.23	79.91	29.58	1169.
C	-2035.	-8386.	-U.1U82E+05	155.6	32.49	1270.
Ο	-2060.	-U.1149E+05	-U.2173E+05	231.2	35.40	1371.
-	SI C10 0	52	53	SIN'I	SEQV	TEMP
⊥ C	610.8 1051	-2531.	-5283.	5894. 0150	51U8. 0162	-20.00
0	-1051. 1050	-039U. 0 11505.05		913U. 0 10075.05	017017.05	
U	-1909.	-0.11208+02	-0.2103E+05	0.190/6+05	0.1/216+05	-20.00

Stress Linearization - Increased External Pressure - Bolting Ring Shell Extension - Section-2

		***** INSIDE	F POST1 NODE =	LINEA 16	RIZED STR 558 OU	ESS TSI	LISTING * DE NODE =	**** 1679		
-			1 0117		0					
-	LOAD ST TIME-	ЕР 1 ОС	I SUE	т т	י ע מאם מאפד–	0				
	11116-	1.00	100	L	IOAD CASE-	0				
Τł	HE FOLL	OWING	X,Y,Z S	STRESS	SES ARE IN	TH	E GLOBAL C	OORDINATE SY	STEM.	
		*	* MEMBF	ANE *	*					
	SX		SY		SZ		SXY	SYZ	SXZ	
	555.8	-		-0	0.1085E+05		209.6	27.09	1060.	
	SI		52	0	S3 10055.05	~	SINT 11C1D.OF	SEQV		
	658.6	-	-/984.	-0	1.1095E+05	0	.1101E+05	0.10448+05		
		*	* BENDI	NG **	I=INSID	ЕC	=CENTER O=	OUTSIDE		
	SX		SY		SZ		SXY	SYZ	SXZ	
I	-14.5	4	1823.		6879.		-45.15	0.6383	36.33	
С	0.00	0	0.000	)	0.000		0.000	0.000	0.000	
0	14.5	4	-1823.		-6879.		45.15	-0.6383	-36.33	
	S1		S2		S3		SINT	SEQV		
I	6879		1825.		-15.83		6895.	6184.		
С	0.00	0	0.000	)	0.000		0.000	0.000		
0	15.8	3	-1825.		-6879.		6895.	6184.		
		*	* MEMBF	RANE F	LUS BENDI	NG	** I=INSI	DE C=CENTER	O=OUTSIDE	
	SX	_	SY		SZ		SXY	SYZ	SXZ	
Ι	541.	3	-6155.		-3970.		164.5	27.72	1096.	
С	555.	8	-7979.		-0.1085E+	05	209.6	27.09	1060.	
0	570.	4	-9802.		-0.1773E+	05	254.8	26.45	1023.	
	S1	_	S2		S3		SINT	SEQV		
Ι	797.	5	-4222.		-6159.		6957.	6219.		
С	658.	6	-7984.		-0.1095E+	05	0.1161E+C	05 0.1044E+C	)5	
0	633.	7	-9808.		-0.1779E+	05	0.1842E+0	5 0.1600E+0	15	
		*	* PEAK	** I	=INSIDE C	=CE	NTER O=OUT	SIDE		
	SX		SY		SZ		SXY	SYZ	SXZ	
I	-0.631	1E-02	0.7918	3	2.987		-0.1960E-0	1 0.2771E-0	0.1577E-0	)1
С	-0.227	4E-12	-0.4547	'E-11	-0.1819E-	10	0.1421E-1	2 -0.3553E-1	4 0.000	
0	0.631	1E-02	-0.7918	3	-2.987		0.1960E-0	1 -0.2771E-0	3 -0.1577E-0	)1
	S1		S2		S3		SINT	SEQV		
I	2.98	7	0.7923	3	-0.6876E-	02	2.994	2.685		
С	-0.222	7E-12	-0.4552	2E-11	-0.1819E-	10	0.1797E-1	0 0.1624E-1	.0	
0	0.687	6E-02	-0.7923	3	-2.987		2.994	2.685		
		4	* ======	* *	TINGTOD	~ ~				
	0.77	Â	A TOTAL	- ^ ^	I=INSIDE	C=C	ENTER 0=00	TSIDE		
т	5A E / 1	2	DI G1E1		54 2067		DAI 161 F	514 27 72	5A4 1006	
T	541. EEE	<u>с</u>	-0154.		- 3907. 0 100Em.	0 E	104.5	27.72	1090.	
	555. 570	0 4	- 1919. _aqas		-0.1005년+ -0 1772㎡·	05	209.0 251 0	21.UY 96 15	1000.	
0	J/U. 01	т	-2003. CD		U.エ//3凸+ C2	00	2JI.0 CINT	20.43		
т	51 707	6	54 _4010		ده -6159		6026 DINI	5±QV 6219	-20 00	
т С	658	6	-7984		-0 1095F+	በፍ	0 1161〒±0	5 0 1044 <u><u></u><u></u> 5</u>	20.00	
0	633	- 7	-9809		-0.1779E+	05	0.1842E+0	5 0.1600E+0	15 -20.00	
-										

### **Stress Linearization - Increased External Pressure - Baseplates**

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 2140 OUTSIDE NODE = 2167								
I	LOAD STEP 1 SUBSTEP= 2 TIME= 1.0000 LOAD CASE= 0							
ΤI	HE FOLLOWING	X,Y,Z STRESS	SES ARE IN TI	HE GLOBAL CO	ORDINATE SYST	ΓEM.		
		** MEMDDANE	* *					
	SX	SY	S7.	SXY	SYZ	SXZ		
-	-8339.	-8013.	2022.	22.75	-259.3	842.0		
	S1	S2	S3	SINT	SEOV			
	2096.	-8014.	-8412.	0.1051E+05	0.1031E+05			
		** BENDING **	* I=INSIDE (	C=CENTER O=C	OUTSIDE			
	SX	SY	SZ	SXY	SYZ	SXZ		
I	-4609.	-1318.	0.8674E-10	41.44	-0.7123E-09	-0.8470E-11		
С	0.000	0.000	0.000	0.000	0.000	0.000		
0	4609.	1318.	-0.8674E-10	-41.44	0.7123E-09	0.8470E-11		
	S1	S2	S3	SINT	SEQV			
Ι	0.000	-1318.	-4610.	4610.	4112.			
С	0.000	0.000	0.000	0.000	0.000			
0	4610.	1318.	0.000	4610.	4112.			
		** MEMBRANE 1	PLUS BENDING	** I=INSII	DE C=CENTER O=	OUTSIDE		
	SX	SY	SZ	SXY	SYZ	SXZ		
Ι	-0.1295E+05	-9331.	2022.	64.18	-259.3	842.0		
С	-8339.	-8013.	2022.	22.75	-259.3	842.0		
0	-3730.	-6694.	2022.	-18.69	-259.3	842.0		
	S1	S2	S3	SINT	SEQV			
Ι	2074.	-9335.	-0.1300E+05	0.1507E+05	0.1362E+05			
С	2096.	-8014.	-8412.	0.1051E+05	0.1031E+05			
0	2150.	-3851.	-6702.	8852.	7826.			
		** PEAK ** 3	I=INSIDE C=C	ENTER O=OUTS	SIDE			
	SX	SY	SZ	SXY	SYZ	SXZ		
Ι	-2.001	-0.5724	0.2501E-11	0.1799E-01	-0.3411E-12	0.1137E-11		
С	0.000	-0.8185E-11	0.2501E-11	0.1421E-13	3 -0.1705E-12	0.1364E-11		
0	2.001	0.5724	0.000	-0.1799E-01	0.2274E-12	0.7958E-12		
_	SI	S2	S3	SINT	SEQV			
T	0.000	-0.5721	-2.002	2.002	1.786			
0	2.002	-0.5993E-12 0.5721	0.000	2.002	1.786			
	0.77	** TOTAL **	I=INSIDE C=(	CENTER O=OUI	SIDE	0.74		
т		51 _0221	54 2022	SAI 61 20	514 - 250 - 2	584 942 0		
T C	-U.IZY5E+U5	- ICCE-	2022. 2022	04.2U 22 75	-439.3	042.0		
0	-0337. -2720	-6694	2022. 2022	44./5 _10 71	-409.3 -250 2	042.U 912 0		
0	-3140. Q1	-0094. CD	2022.	-10./1 SINT	-2.54.5 GEOV	044.U TEMD		
т	2074	_9335	-0 1300r+05	0 1507 <b>±</b> 05	ىتىرى 1363ىت+72	-20 00		
т С	2096	-8014	-8412	0 1051 - + 05	$0.1031 \pm 05$	20.00		
0	2150.	-3849.	-6702.	8852.	7825.	-20.00		

Title	Structural An	nalyses of the	3-60B	Cask Under Normal	Conditions of	Fransp	ort	
Calc. No	ST-501	<b>Rev</b>	2	_	Sheet_	13	_of_	13

# Appendix 3

Electronic Data on CDROM

(1 CDROM)

Volume in drive F is ST-501 Rev2 App3 Volume Serial Number is FFC5-CA46

Directory of F: $\setminus$ 

01/14/2010	05:04 PM	824,906	file.cdb
01/11/2010	01:43 PM	11,730,944	file.db
11/16/2007	12:06 PM	211,002	file.s01
11/16/2007	12:09 PM	211,002	file.s02
11/16/2007	12:12 PM	211,002	file.s03
11/16/2007	12:14 PM	211,002	file.s04
11/16/2007	12:51 PM	113,150	file.s05
11/16/2007	04:08 PM	211,002	file.s06
11/16/2007	12:59 PM	163,396	file.s07
11/16/2007	12:06 PM	5,570,560	ls1.rst
01/11/2010	01:29 PM	3,125	ls1BringSec-1.lis
01/11/2010	01:30 PM	3,125	ls1BringSec-2.lis
11/16/2007	04:38 PM	3,125	ls10uter-shell.lis
11/16/2007	04:10 PM	243,321	ls1post.out
11/16/2007	12:10 PM	5,439,488	ls2.rst
01/11/2010	01:40 PM	3,125	ls2BringSec-1.lis
01/11/2010	01:40 PM	3,125	ls2BringSec-2.lis
11/16/2007	04:10 PM	240,152	ls2post.out
11/16/2007	12:13 PM	5,570,560	ls3.rst
11/16/2007	04:10 PM	240,152	ls3post.out
11/16/2007	12:15 PM	5,439,488	ls4.rst
11/16/2007	04:10 PM	240,152	ls4post.out
11/16/2007	12:50 PM	15,204,352	ls5.rst
11/16/2007	04:10 PM	240,152	ls5post.out
11/16/2007	04:09 PM	5,636,096	ls6.rst
11/16/2007	04:30 PM	238,440	ls6post.out
11/16/2007	12:58 PM	8,060,928	ls7.rst
11/16/2007	05:12 PM	3,125	ls7Baseplates.lis
01/11/2010	01:42 PM	3,125	ls7BringSec-1.lis
01/11/2010	01:43 PM	3,125	ls7BringSec-2.lis
11/16/2007	04:11 PM	241,009	ls7post.out
12/07/2007	11:32 AM	32,821	Model.txt
01/14/2010	01:56 PM	18,819	summary-nct.in
01/14/2010	01:56 PM	5,390	summary.out
	34 File(s)	66,574,286	5 bytes
Total	Files Listed:		
	34 File(s)	66,574,286	5 bytes
	0 Dir(s)	(	) bytes free

Reference 2-17 (ST-557) is a proprietary document. It is provided on the media marked "PROPRIETARY".
Title	Structu	ıral Analyse	s of the 3	-60B Cask Under Drop Conditions			
Calc. No.	ST-504	<b>Rev</b>	2	Sheet	1	of 25	

## 1.0 **OBJECTIVE**

Perform the structural analyses of the Energy*Solutions* 3-60B Cask under drop conditions, using a 3-dimensional finite element model.

# 2.0 INTRODUCTION

Energy*Solutions* 3-60B Cask (Reference 1) is designed as a Type B radioactive-material shipping package. To be certified by the U.S.N.R.C., the cask needs to meet the requirements of 10 CFR 71 (Reference 2) and follow the guidelines of U.S.N.R.C. Regulatory Guide 7.8 (Ref. 3).

This document presents the structural analysis of the 3-60B Cask under various drop conditions required by the code. The analyses in this document are performed using the finite element modeling techniques. A three-dimensional model of the cask that includes all its major components has been employed in the analyses. Temperature dependent material properties of the major components of the cask are used in the analyses.

Analyses of the 3-60B Cask package have been performed for hypothetical accident condition (HAC) and normal condition of transport (NCT) drop test using the methodology developed by Energy*Solutions*. The details of the analyses are documented in the proprietary document of Reference 4. The resultant impact loads during various drop tests are obtained from this document and applied to the detailed finite element model of the cask body. Every component of the cask is evaluated for its integrity during the drop tests by comparing the stress intensities with their corresponding allowable values.

The results of the analyses for various load cases are presented pictorially in stress intensity contour plots as well as in table form, with the corresponding safety factors in each component of the cask body.

## 3.0 **REFERENCES**

- 1. Energy*Solutions* Drawing No. C-002-165024-001, Rev.0, 3-60B Cask General Arrangement and Details.
- 2. Code of Federal Regulations, Title 10, Part 71, Packaging and Transportation of Radioactive Material, January 2003.
- 3. U.S. NRC Regulatory Guide 7.8, Revision 1, March 1989, Load Combinations for the Structural Analysis of Shipping Casks for Radioactive Material.
- 4. Energy*Solutions* Document No. ST-557, Rev.1, Drop Analyses of the 3-60B Cask Package Using LS-DYNA Program.
- 5. ASME Boiler & Pressure Vessel Code, Section II, Part D, Materials, The American Society of Mechanical Engineers, New York, NY, 2005.
- 6. NUREG 0481/SAND77-1872, An Assessment of Stress-Strain Data Suitable for Finite Element Elastic-Plastic Analysis of Shipping Containers, Sandia National Laboratories, 1978.
- 7. U.S. NRC Regulatory Guide 7.6, Revision 1, Design Criteria for the Structural Analysis of Shipping Cask Containment Vessels, 1978.

Title	Structu	ral Analyse	s of the 3-	60B Cask Under Drop Conditions	
Calc. No	ST-504	<b>Rev</b>	2	<b>Sheet</b> <u>2</u> of <u>25</u>	

- 8. ANSYS, Rev. 11.0, Computer Software, ANSYS Inc., Canonsburg, PA, 2007.
- 9. Energy*Solutions* Document ST-501, Rev.1, Structural Analyses of the 3-60B Cask under Normal Conditions of Transport.
- 10. Energy*Solutions* Document TH-022, Rev. 2, Steady State Thermal Analyses of the 3-60B Cask Using a 3-D Finite Element Model.
- 11. SAND88-0616·UC-71, Numerical and Analytical Methods for Approximating the Eccentric Impact Response (Slapdown) of Deformable Bodies, Sandia National Laboratories, 1988.
- 12. Energy*Solutions* Document ST-609, Rev.0, 3-60B Cask Inelastic Analyses of the Bolting Ring Skirt under HAC Drop Loadings.

Title	Structur	al Analyse	s of the 3.	-60B Cask Under Drop	o Conditions			
Calc. No.	ST-504	Rev	2		Sheet _	3	_of_	25

# 4.0 MATERIAL PROPERTIES

			Strength (ksi	)	V ?-	Coefficient
	Temp.	Yield	Ultimate	Membrane	Young s	of Thermal
Material	(°F)	$(S_v)$	$(\mathbf{S}_{\mathbf{u}})$	Allowable	Modulus	Expansion
			( 4)	$(S_m)$	(10° psi)	$(10^{-6} \text{ in/in})$
		(1)	(1)	(1)	(1)	(1)
	-20	25.0	70.0	16.7	28.8	-
	70	25.0	70.0	16.7	28.3	8.5
ASTM A240	100	25.0	70.0	16.7	-	8.6
Type 304L	200	21.4	66.1	16.7	27.5	8.9
JI	300	19.2	61.2	16.7	27.0	9.2
	400	17.5	58.7	15.8	26.4	9.5
	500	16.4	57.5	14.7	25.9	9.7
				,		2
		(1)	(1)	(1)	(1)	(1)
	-20	45.0	87.0	24.9	28.8	-
ASTM A240	70	45.0	87.0	24.9	28.3	8.5
Gr. 45 &	100	45.0	87.0	24.9	-	8.6
ASTM A182	200	37.5	86.4	24.7	27.5	8.9
Gr. F45	300	33.0	81.6	23.3	27.0	9.2
	400	29.9	78.5	22.4	26.4	9.5
	500	27.8	76.4	21.8	25.9	9.7
		(1)	(1)	(1)	(1)	(1)
	-20	130	150	30	29.7	-
	70	130	150	30	29.2	6.4
ASIM A354	100	130	150	30	-	6.5
Gr. BD	200	119.1	150	30	28.6	6.7
(Lid Bolts)	300	115	150	30	28.1	6.9
	400	111	150	30	27.7	7.1
	500	105.9	150	30	27.1	7.3
		(2)			(2)	(2)
	-20	-	-	-	2.43	15.65
	70	5	-	-	2.27	16.06
ASTM B29	100	-	-	-	2.21	16.22
Lead	200	-	-	-	2.01	16.70
	300	-	-	-	1.85	17.33
	400	-	-	-	1.70	18.16
	500	-	-	-	1.52	19.12

Notes:

(1) From ASME B&PV Code 2004, Section II, Part D (Reference 5).

(2) From NUREG/CR 0481 (Reference 6)

Title	Structu	ıral Analyse	s of the 3	-60B Cask Under Drop Co	onditions			
Calc. No.	ST-504	Rev.	2	-	Sheet _	4	_of	25

### 5.0 <u>ALLOWABLE STRESSES</u>

	Material $\rightarrow$	ASTM A240 Type 304L	ASTM A182 Gr.F45 & A240 Gr. 45	ASTM A354 Gr. BD
Yield Stress, S _y (p		25,000 ⁽¹⁾	45,000 ⁽¹⁾	130,000 ⁽¹⁾
Ultimate Stress, S _u (ps		70,000 ⁽¹⁾	87,000 ⁽¹⁾	150,000 ⁽¹⁾
Design Stress Intensity, S _m (psi)		16,700 ⁽¹⁾	24,900 ⁽¹⁾	30,000 ⁽¹⁾
Normal	Membrane Stress	16,700 ⁽²⁾	24,900 ⁽²⁾	60,000 ⁽³⁾
Conditions	Mem. + Bending Stress	25,050 ⁽²⁾	37,350 ⁽²⁾	90,000 ⁽³⁾
Hypothetical Accident Conditions	Membrane Stress	40,080 ⁽⁴⁾	59,760 ⁽⁴⁾	105,000 ⁽⁵⁾
	Mem. + Bending Stress	60,120 ⁽⁴⁾	87,000 ⁽⁴⁾	150,000 ⁽⁵⁾

Notes:

- (1) From ASME B&PV Code 2004, Section II, Part D (Reference 5).
- (2) Established from Regulatory Guide 7.6 (Reference 7), Position 2.
- (3) Regulatory Guide 7.6 (Reference 7) does not provide any criteria. ASME B&PV Code, Section III, Subsection ND has been used to establish these criteria.
- (4) Established from Regulatory Guide 7.6 (Reference 7), Position 6.
- (5) Regulatory Guide 7.6 (Reference 7) does not provide any criteria. ASME B&PV Code, Section III, Appendix F has been used to establish these criteria.

## 6.0 MODEL DESCRIPTION

The structural analyses of the 3-60B Cask under various drop test conditions have been performed using finite element modeling techniques. ANSYS finite element analysis code (Ref. 8) has been employed to perform the analyses. Since for all the drop orientations (end, side, corner, and slap-down), at least one plane of symmetry exists, a 180° model has been employed in all the analyses. This model has been developed from the 11.25° model developed in References 9 and 10 for the structural and thermal analyses of the cask during normal conditions of transport.

The model of the cask is made using 3-dimensional 8-node structural solid elements (ANSYS SOLID185) to represent the major components of the cask, the bolting ring, the lid, and the bolts. The shell components of the cask - the inner and outer shells, and the baseplates have been represented in the finite element model by SOLSH190 elements.

Title	Structu	ral Analyse	s of the 3	-60B Cask Under Dro	p Conditions			
Calc. No.	ST-504	<b>Rev</b>	2		Sheet _	5	_of	25

The fire shield does not provide any structural strength to the cask. Therefore, it is not included in the model.

The poured lead in the body is not bonded to the steel. It is free to slide over the steel surface. Therefore, the interface between the lead and the steel is modeled by pairs of 3-d 8 node contact element (CONTA174) and 3-d target segment (TARGE170) elements. These elements allow the lead to slide over the steel at the same time prevent it from penetrating the steel surface. The interface between the two plates that form the lid is also modeled by the contact-target pairs. The transition from a coarser mesh to a finer mesh, as well as bondage between various parts of the model, is also modeled using these elements.

Figure 1 shows the outline of the model depicting the material numbering. Figure 2 shows the finite element grid of the lid, seal plate, and the bolts. Figure 3 shows the finite element grid of the cask body without the lead and Figure 4 shows that of the lead. The interface between various components of the cask is modeled by target-contact surface definition. Figure 5 shows target surfaces of various contact-target pairs. The printout of the pertinent model quantities is included in Appendix 1.

## **Boundary Conditions**

Since the model of the cask includes 180° geometry, symmetry boundary conditions are used on the cut-plane of the model in all the analyses. Also, the rigid body motion is prevented in the model by restraining it at the locations where such restraints have insignificant effect on the overall behavior of the model. This is necessary since the quasi-static analyses performed for every drop condition will result in a small net force in the plane of symmetry that will give rise to a rigid body motion.

## Loading

Applied loading is described for each drop orientation under the corresponding analysis section.

## **Temperature**

The temperature distribution under various drop conditions is obtained from the thermal analyses performed in Reference 10 and is applied as the nodal temperature in the finite element model.

# **Internal Pressure**

The cask internal pressure of 35 psig is applied over the nodes representing the cavity of the cask under various drop conditions in the hot environment. No internal pressures are applied during all drop conditions in the cold environment, with or without the internal decay heat.

# Inertia Load

Cask body inertia, under various drop conditions, is applied as a body load. The magnitude of the inertia load is given in the corresponding analysis section. It should be noted that because of the segmentation of arc length in the finite element models, the mass of the model is always lower than the actual mass. To account for this, as well as to include the mass of miscellaneous items not included in the model, an adjustment is made in the value of acceleration due to gravity.

Title	Structu	ıral Analyse	s of the 3-	-60B Cask Under Drop Conditions			
Calc. No.	ST-504	Rev.	2	Sheet	6	_of25	_

Cask Body Mass =  $80,000 - 9,500 - 2 \times 3,800 = 62,900$  lb

Mass of the FEM =  $2 \times 28,409 = 56,818$  lb

Acceleration multiplication factor = 62,900/56,818 = 1.107

## 7.0 ANALYSES

The finite element model (FEM) described above is analyzed for the accelerations obtained from the EnergySolutions proprietary analyses documented in Reference 4. The distribution of various loading components is described in details in the following sections.

### 7.1 HAC Drop Tests

### 7.1.1 End Drop

The following impact limiter reactions are obtained from Reference 4.

Cold Conditions = $3.954 \times 10^6$ lb	(Table 3 and Figure 56 of Reference 4)
Hot Conditions = $3.083 \times 10^6$ lb	(Table 3 and Figure 61 of Reference 4)

Conservatively use the maximum of the two reactions for the analyses of all environmental conditions. The impact limiter reaction is converted to the rigid body acceleration by dividing the reaction by that portion of the mass of the package which causes this reaction. During the end drop test the impact limiter reaction is caused by the total mass of the package less the mass of one impact limiter, i.e. 80,000 - 3,800 = 76,200 lb (Reference 3-60B SAR Section 2.1.3). Since the FEM represents only  $\frac{1}{2}$  of the package, the total mass is divided by 2 in the calculation of the rigid body acceleration. A factor of 1.1 is used to conservatively increase this reaction in the analyses.

Rigid body acceleration =  $1.1 \times 2 \times 3.954 \times 10^{6}/76,200 = 114.2$  » Use 150g

For the quasi-static analysis of the cask under end drop test conditions the inertia loads and reactions are distributed to the cask body as shown in Figure 6.

## Impact limiter Inertia

The inertia load of the lower impact limiter is included as the uniform pressure on the surface where the impact limiter contacts the cask.

Mass of each Impact Limiter = 3,800 lb

Inside Radius of the Impact Limiter = 12 in (nearest node in the FEM is at 12.5 in)

Outside Radius of the Cask = 25.5 in

Pressure on the cask due to impact limiter inertia,

 $p_{\text{I.L.}} = 150 \times 3,800 / [\pi \times (25.5^2 - 12.5^2)] = 367.3 \text{ psi}$ 

### Payload Inertia

The payload inertia is applied as a uniform surface pressure over the lid inside surface. The lid has a radius of 17.375 in. For 9,500 lb total mass of payload, the magnitude of the pressure is:

Title	Structu	iral Analyse	es of the 3	-60B Cask Under Drop Conditions			
Calc. No.	ST-504	<b>Rev</b>	2	Sheet _	7	_of2	25

 $p_{\text{lid}} = 150 \times 9,500 / (\pi \times 17.375^2) = 1,502.5 \text{ psi}$ 

## Cask Body Inertia

Cask body inertia is applied as the body force. As explained earlier, to account for the total mass of the package a factor of 1.107 is used to increase the FEM mass.

Cask Body Acceleration =  $150 \times 1.107 = 166$  g

### Impact Limiter Reaction

The impact limiter reaction is simulated by restraining the nodes at the impact limiter-lid interface in vertical direction.

## Model Analyses

The FEM is analyzed under the above loading for hot (Load Case 1), cold with maximum decay heat (Load Case 2), and cold with no decay heat, environmental conditions. The cask body temperature for Load Cases 1 and 2 are obtained from the hot and cold environmental loading conditions of Reference 10. For Load Case 3 (no internal heat), the entire cask is assumed to be at -20°F. Figures 7 through 9 show the cask body temperature profile and the pressure distributions used in the FEM for Load Cases 1 through 3. Figure 10 shows the displacement boundary conditions used to represent the impact limiter reaction.

Figures 11 through 13 show the stress intensity plot in the cask body for the three load cases. Stress intensities are calculated in each major component of the cask and are presented in Tables 1 through 3. These tables also categorize the stresses based on the ASME code and compare them with the corresponding allowable value established in Section 5.0. Factors of safety based on the ratio of allowable stress to the calculated stress are also calculated.

## 7.1.2 Side Drop

The following impact limiter reactions are obtained from Reference 4.

Cold Conditions = $1.889 \times 10^{\circ}$ lb	(Table 3 and Figure 66 of Reference 4)
Hot Conditions = $1.636 \times 10^6$ lb	(Table 3 and Figure 71 of Reference 4)

Conservatively use the maximum of the two reactions for the analyses of all environmental conditions. The impact limiter reaction is converted to the rigid body acceleration by dividing the reaction by that portion of the mass of the package which causes this reaction. During the side drop test the impact limiter reaction is caused by the total mass of the package less the mass of the two impact limiters, i.e.  $80,000 - 2 \times 3,800 = 72,400$  lb (Reference 3-60B SAR Section 2.1.3). Since the FEM represents only  $\frac{1}{2}$  of the package and each impact limiter reaction is caused by  $\frac{1}{2}$  the participating mass, the total mass is divided by 4 in the calculation of the rigid body acceleration. A factor of 1.1 is used to conservatively increase this reaction in the analyses.

Rigid body acceleration =  $1.1 \times 4 \times 1.889 \times 10^{6}/72,400 = 114.8$  » Use 120g

For the quasi-static analysis of the cask under side drop test conditions reactions and the inertia loads are distributed to the cask body as shown in Figure 14.

Title	Structu	ral Analyse	s of the 3	-60B Cask Under Drop Conditions			
Calc. No.	ST-504	<b>Rev</b>	2	Sheet _	8	_of	25

### Impact Limiter Reactions

The impact limiter reactions are applied as surface pressure on the lower half of the impact limiter-cask interface. This pressure is assumed to be uniform along the axis of the cask but varies sinusoidally along the circumference. For such a distribution, the following mathematical derivation is used:

$$p(\theta) = p_0 \cos \theta \qquad -\pi/2 \le \theta \le \pi/2$$

$$F_v = \int_{-\pi/2}^{\pi/2} p_0 \cdot \cos \theta \cdot r \cdot d\theta \cdot \cos \theta$$

$$= p_0 \cdot r \int_{-\pi/2}^{\pi/2} \cos^2 \theta \, d\theta$$

$$= p_0 \cdot r \int_{-\pi/2}^{\pi/2} \frac{1}{2} \cdot (1 + \cos 2\theta) \cdot d\theta$$

$$= \frac{p_0 \cdot r}{2} \left[ \theta + \frac{\sin 2\theta}{2} \right]_{-\pi/2}^{\pi/2}$$

$$= \frac{\pi \cdot r \cdot p_0}{2}$$

$$F_h = \int_{-\pi/2}^{\pi/2} p_0 \cdot \cos \theta \cdot r \cdot d\theta \cdot \sin \theta$$

$$= p_0 \cdot r \int_{-\pi/2}^{\pi/2} \frac{1}{2} \cdot \sin 2\theta \cdot d\theta$$

$$= \frac{p_0 \cdot r}{2} \left[ \frac{-\cos 2\theta}{2} \right]_{-\pi/2}^{\pi/2}$$

Reaction of the cask at the two impact limiter locations,  $2R = (80,000 - 2 \times 3,800) \times 120$ Reaction at each impact limiter location,  $R = \frac{1}{2} \times (80,000 - 2 \times 3,800) \times 120 = 4.344 \times 10^6$  lb The top impact limiter reaction is applied at the surface that has a radius of 25.5 in and extends in the axial direction over a length of 20.28 in. Thus,

 $p_0 = (2 \times 4.344 \times 10^6) / (\pi \times 25.5 \times 20.28) = 5,348 \text{ psi}$ 

The bottom impact limiter reaction is applied at the surface that has a radius of 25.5 in and extends in the axial direction over a length of 21.355 in. Thus,

$$p_0 = (2 \times 4.344 \times 10^6) / (\pi \times 25.5 \times 21.355) = 5,078 \text{ psi}$$

Title	Structu	ral Analyse	s of the 3	-60B Cask Under Drop	Conditions			
Calc. No	ST-504	<b>Rev</b>	2		Sheet _	9	_of2	25

# <u>Payload Inertia</u>

The pay load inertia load is applied as surface pressure on the lower half of the inner shell of the cask. This pressure is assumed to be uniform along the axis of the cask but varies sinusoidally along the circumference. The radius of the inner shell is 17.5 in and its length is 109 inch. Thus,

 $p_0 = (2 \times 120 \times 9,500)/(\pi \times 17.5 \times 109) = 380.5 \text{ psi}$ 

# Cask Body Inertia

Cask body inertia is applied as the body force. As explained earlier, to account for the total mass of the package a factor of 1.107 is used to increase the FEM mass.

Cask Body Acceleration =  $120 \times 1.107 = 132.84$  g

# <u>Model Analyses</u>

The FEM is analyzed under the above loading for hot (Load Case 1), cold with maximum decay heat (Load Case 2), and cold with no decay heat, environmental conditions. The cask body temperature for Load Cases 1 and 2 are obtained from the hot and cold environmental loading conditions of Reference 10. For Load Case 3 (no internal heat), the entire cask is assumed to be at -20°F. Figures 15 through 17 show the cask body temperature profile and the pressure distributions used in the FEM for Load Cases 1 through 3. Figure 18 shows the displacement boundary conditions used to prevent the rigid body motion of the cask.

Figures 19 through 21 show the stress intensity plot in the cask body for the three load cases. Stress intensities are calculated in each major component of the cask and are presented in Tables 4 through 6. These tables also categorize the stresses based on the ASME code and compare them with the corresponding allowable value established in Section 5.0. Factors of safety based on the ratio of allowable stress to the calculated stress are also calculated.

# 7.1.3 Corner Drop

The following impact limiter reactions are obtained from Reference 4.

Cold Conditions = $2.080 \times 10^6$ lb	(Table 3 and Figure 76 of Reference 4)
Hot Conditions = $1.847 \times 10^6$ lb	(Table 3 and Figure 81 of Reference 4)

Conservatively use the maximum of the two reactions for the analyses of all environmental conditions. The impact limiter reaction is converted to the rigid body acceleration by dividing the reaction by that portion of the mass of the package which causes this reaction. During the corner drop test the impact limiter reaction is caused by the total mass of the package less the mass of one impact limiter, i.e. 80,000 - 3,800 = 76,200 lb (Reference 3-60B SAR Section 2.1.3). Since the FEM represents only  $\frac{1}{2}$  of the package, the total mass is divided by 2 in the calculation of the rigid body acceleration. A factor of 1.1 is used to conservatively increase this reaction in the analyses.

Rigid body acceleration =  $1.1 \times 2 \times 2.080 \times 10^{6}/76,200 = 60.1$  » Use 70g

For the quasi-static analysis of the cask under corner drop test conditions reactions and the inertia loads are distributed to the cask body as shown in Figure 22.

Title	Structu	ral Analyse	s of the 3	-60B Cask Under Drop	o Conditions			
Calc. No	ST-504	<b>Rev</b>	2		Sheet	10	_of_	25

The finite element model of the cask shows that the C.G. of the cask is 65.45 in from the bottom side of the lid. The cask has a radius of 25.5 in. Therefore, for the C.G. to be directly above the corner, the cask axis will be inclined from the vertical axis by an angle,

 $\alpha = \tan^{-1}(25.5/65.45) = 21.29^{\circ}$ 

Thus, the axial acceleration,

 $g_a = 70 \times Cos \ 21.29^\circ = 65.22 g$ 

Lateral acceleration,

 $g_l = 70 \times Sin \ 21.29^\circ = 25.42 g$ 

## Impact Limiter Reaction

The impact limiter reaction is resolved into an axial and a lateral component. The axial component is applied to the lid surface at the interface with the impact limiter. The pressure is assumed to vary sinusoidally along the tangential direction. Mathematically this pressure may be represented by:

$$p(r,\theta) = p_0 \cdot \frac{r \cdot \cos \theta}{r_2} \cdot r \cdot d\theta \cdot dr \qquad -\pi/2 \le \theta \le \pi/2$$

This distribution results in the total axial load, F that can be calculated by integration as follows:

$$F = \int_{-\pi/2}^{\pi/2} \int_{r_1}^{r_2} \frac{p_0}{r_2} \cdot r \cdot \cos\theta \cdot r \cdot dr \cdot d\theta$$
$$= \frac{p_0}{r_2} \cdot \int_{-\pi/2}^{\pi/2} \cos\theta \cdot d\theta \cdot \int_{r_1}^{r_2} r^2 \cdot dr$$
$$= \frac{2}{3} \cdot \frac{p_0}{r_2} \cdot \left(r_2^3 - r_1^3\right)$$



The axial component of the impact limiter reaction,

 $R_{\rm a} = (80,000 - 3,800) \times 65.22 = 4.97 \times 10^6 \, \text{lb}$ 

The reaction is distributed over the lid surface annulus having an inside radius of 15 in and outside radius of 25.5 in. To get the total load  $R_a$  on the lid surface,  $p_0$  must be,



$$p_0 = 4.97 \times 10^6 \cdot \frac{3}{2} \cdot \left(\frac{25.5}{25.5^3 - 15^3}\right) = 14,395 \text{ psi}$$

Since the lid has the bolt-hole cut-outs in this region, thereby reducing the area over which this load is applied, adjustment in the above pressure value must be made. This adjustment was manually made using the FEM. To obtain the total load of  $4.97 \times 10^6$  lb, the value for  $p_0$  was increased to 17,409 psi.

The lateral component of the impact limiter reaction was applied in the manner as described under side drop loading with the exception that the magnitude of the pressure is also varied linearly from the maximum value to zero at the top of the impact limiter edge.

The lateral component of the impact limiter reaction is:

 $R_1 = (80,000 - 3,800) \times 25.42 = 1.937 \times 10^6$  lb

This reaction is applied at the surface that has a radius of 25.5 in and extends in the axial direction over a length of 20.28 in. Following the derivation under side drop,

 $p_0 = 2 \times [(2 \times 1.937 \times 10^6)/(\pi \times 25.5 \times 20.28)] = 4,769 \text{ psi}$ 

Note that a multiplier of 2 is used to account for the axial variation of the pressure.

Impact Limiter Inertia

The upper impact limiter inertia is resolved into an axial component and a lateral component. The axial component is applied in the same manner as described under end drop and the lateral component is applied in the same manner as described for the side drop impact limiter reaction.

Magnitude of the uniform pressure representing the impact limiter axial inertia is:

$$p_{\text{I.L.}} = 65.22 \times 3,800 / [\pi \times (25.5^2 - 12.5^2)] = 159.7 \text{ psi}$$

Amplitude of the sinusoidally varying pressure, representing the impact limiter lateral inertia,

$$p_0 = (2 \times 25.42 \times 3,800)/(\pi \times 25.5 \times 21.355) = 112.93$$
 psi

## Payload Inertia

The payload inertia is resolved into an axial component and a lateral component. The axial component is applied to the lid in the same manner as described under the end drop. The lateral component is applied to the lower half of the inner shell as described under side drop.

Magnitude of the uniform pressure representing the payload axial inertia is:

 $p_{\text{lid}} = 65.22 \times 9,500 / (\pi \times 17.375^2) = 653.3 \text{ psi}$ 

Amplitude of the sinusoidally varying pressure, representing the payload lateral inertia,

 $p_0 = (2 \times 25.42 \times 9,500)/(\pi \times 17.5 \times 109) = 80.6 \text{ psi}$ 

Title	Structu	ral Analyse	s of the 3	-60B Cask Under Drop Conditions			
Calc. No.	ST-504	<b>Rev</b>	2	Sheet _	12	_of_	25

# Cask Body Inertia

Cask body inertia is applied as the body force. As explained earlier, to account for the total mass of the package a factor of 1.107 is used to increase the FEM mass.

Cask Body Axial Acceleration =  $65.22 \times 1.107 = 72.2$  g

Cask Body Lateral Acceleration = 25.42×1.107 = 28.14 g

## <u>Model Analyses</u>

The FEM is analyzed under the above loading for hot (Load Case 1), cold with maximum decay heat (Load Case 2), and cold with no decay heat, environmental conditions. The cask body temperature for Load Cases 1 and 2 are obtained from the hot and cold environmental loading conditions of Reference 10. For Load Case 3 (no internal heat), the entire cask is assumed to be at -20°F. Figures 23 through 25 show the cask body temperature profile and the pressure distributions used in the FEM for Load Cases 1 through 3. Figure 26 shows the displacement boundary conditions used to prevent the rigid body motion of the cask.

Figures 27 through 29 show the stress intensity plot in the cask body for the three load cases. Stress intensities are calculated in each major component of the cask and are presented in Tables 7 through 9. These tables also categorize the stresses based on the ASME code and compare them with the corresponding allowable value established in Section 5.0. Factors of safety based on the ratio of allowable stress to the calculated stress are also calculated.

# 7.1.4 Shallow Angle Drop

As described in the Reference 4, the 3-60B cask package has also been analyzed for shallow angle drop tests. For these tests, the cask axis makes angles of 7½° and 15° with the horizontal plane. These orientations are referred to as slapdown-1 and slapdown-2, respectively. Under both theses drop conditions the node-end impact limiter makes contact with the rigid target surface first. This is followed by a rotation of the cask and the tail-end impact limiter then strikes the rigid surface. With the four orientations for the drop test addressed in this document the entire spectrum of initial orientations of the cask package for the hypothetical drop test has been covered. The FEM analyses have performed for sufficiently large time durations in which both primary as well as secondary impacts, if any, take place. Thus, the slap-down effect of the shallow angle drop, as well as that during the corner-over-C.G. drop has been included in these analyses.

The results of the shallow angle drop analyses show that the tail-end impact is more severe than the nose-end impact for the 3-60B cask. This result is consistent with the conclusion of Reference 11, which shows that for a slender cask with length-to-radius of gyration ratio larger than 2, the tail-end impact is more severe than the nose-end impact. For both shallow angle orientations (slapdown-1 and slapdown-2), and for both cold and hot environmental conditions, the tail-end impact reactions are larger than nose-end impact limiter reactions (see Figures 86, 91, 96 and 101 of Reference 4).

The largest impact limiter reaction for the slapdown-1 and slapdown-2 and in both cold and hot environment case is:

 $R_{\text{shallow-angle}} = 2.009 \times 10^6 \text{ lb}$ 

(Table 3 and Figure 86 of Reference 4)

Title	Structu	ral Analyse	s of the 3-60B Cask Under Drop	o Conditions		
Calc. No.	ST-504	<b>Rev</b>	2	Sheet _	13	_of25

The nature of impact limiter reaction in this case is very similar to that of the side drop test. The maximum impact limiter reaction during the side drop test is:

 $R_{\text{side-drop}} = 1.889 \times 10^6$  lb (Table 3 and Figure 66 of Reference 4)

Thus, the shallow angle drop test will result in the impact limiter reaction that is larger than that of the side drop test by a factor of:

2.009/1.889 = 1.06

Therefore, a factor of safety of 1.06 or larger in the cask due to HAC side drop loading will ensure that cask will satisfy the design acceptance criteria for the shallow angle drop orientation also. From the examination of results presented in Tables 4 through 6, it is observed that the minimum factor of safety is 1.09, which is larger than 1.06 needed for shallow angle drop test.

# 7.1.5 Lead Slump Evaluation

Analysis of the 3-60B cask package under HAC drop test has been performed in the side drop orientation with cask top-end down. Since the top end of the cask has a bolted connection between the lid and the cask body, it is more critical than the bottom-end down orientation which includes no bolted connections. However, the cask is most vulnerable, as far as lead slump is concerned, in the bottom end down orientation. To get a conservative estimate of the lead slump, structural analysis of the cask has been performed with the bottom-end down orientation. The most conservative environmental conditions (cold with no decay heat) have been employed in the analysis. Figure 30 shows the displacement plot during this drop test. The largest relative displacement of 0.3172 in is calculated at the bolting ring-lead interface. It should be noted this is the total relative displacement. In considering this to be the lead slump, the elastic recovery of the lead and steel has been neglected.

# 7.2 NCT Drop Tests

The distribution of the NCT drop test loading on various components of the cask, under all the drop orientations, have been obtained by linearly proportioning the corresponding loading from the HAC drop tests.

# 7.2.1 End Drop

The following impact limiter reactions are obtained from Reference 4.

Cold Conditions = $1.338 \times 10^6$ lb	(Table 2 and Figure 16 of Reference 4)
Hot Conditions = $1.103 \times 10^6$ lb	(Table 2 and Figure 20 of Reference 4)

Conservatively use the maximum of the two reactions for the analyses of all environmental conditions. The NCT end drop rigid body acceleration is:

$$= 2 \times 1.338 \times 10^{6} / 76,200 = 35.12 \text{ g}$$

The acceleration used in the HAC end drop analyses is 150 g. The mechanical loading applied in the HAC end drop analyses may be proportioned with 35.12 g. The ratio of the two loadings is:

 $R_{\rm end} = 35.12/150 = 0.2341$  » For conservatism use 0.3025

Title	Structu	ral Analyse	s of the	3-60B Cask Under Drop Conditions			
Calc. No.	ST-504	Rev	2	Sheet	14	_of2	5

Impact limiter Inertia

 $p_{\text{I.L.}} = 0.3025 \times 367.3 = 111.11 \text{ psi}$ 

Payload Inertia

 $p_{\text{lid}} = 0.3025 \times 1,502.5 = 454.5 \text{ psi}$ 

Cask Body Inertia

Cask Body Acceleration =  $0.3025 \times 166 = 50.2$  g

Model Analyses

The FEM is analyzed under the above loading for hot (Load Case 1), cold with maximum decay heat (Load Case 2), and cold with no decay heat, environmental conditions. The cask body temperature for Load Cases 1 and 2 are obtained from the hot and cold environmental loading conditions of Reference 10. For Load Case 3 (no internal heat), the entire cask is assumed to be at -20°F. Figures 31 through 33 show the cask body temperature profile and the pressure distributions used in the FEM for Load Cases 1 through 3.

Figures 34 through 36 show the stress intensity plot in the cask body for the three load cases. Stress intensities are calculated in each major component of the cask and are presented in Tables 10 through 12. These tables also categorize the stresses based on the ASME code and compare them with the corresponding allowable value established in Section 5.0. Factors of safety based on the ratio of allowable stress to the calculated stress are also calculated.

## 7.2.2 Side Drop

The following impact limiter reactions are obtained from Reference 4.

Cold Conditions $= 453,400$ lb	(Table 2 and Figure 24 of Reference 4)
Hot Conditions $= 364,800$ lb	(Table 2 and Figure 28 of Reference 4)

Conservatively use the maximum of the two reactions for the analyses of all environmental conditions. The NCT side drop rigid body acceleration is:

= 4×453,400/72,400 = 25.05 g

The acceleration used in the HAC side drop analyses is 120 g. The mechanical loading applied in the HAC side drop analyses may be proportioned with 25.05 g. The ratio of the two loadings is:

 $R_{\text{side}} = 25.05/120 = 0.209$  » For conservatism use 0.2354

Impact Limiter Reactions

Top impact limiter pressure amplitude,

 $p_0 = 0.2354 \times 5,348 = 1,258.9$  psi

Bottom impact limiter pressure amplitude,

 $p_0 = 0.2354 \times 5,078 = 1,195.4$  psi

Title	Structu	iral Analyse	es of the 3	-60B Cask Under Drop Conditions			
Calc. No.	ST-504	Rev	2	Sheet _	15	_of2	25

### Payload Inertia

Payload inertia pressure amplitude,

 $p_0 = 0.2354 \times 380.5 = 89.57$  psi

### Cask Body Inertia

Cask Body Acceleration =  $0.2354 \times 132.84 = 31.27$  g

## <u>Model Analyses</u>

The FEM is analyzed under the above loading for hot (Load Case 1), cold with maximum decay heat (Load Case 2), and cold with no decay heat, environmental conditions. The cask body temperature for Load Cases 1 and 2 are obtained from the hot and cold environmental loading conditions of Reference 10. For Load Case 3 (no internal heat), the entire cask is assumed to be at -20°F. Figures 37 through 39 show the cask body temperature profile and the pressure distributions used in the FEM for Load Cases 1 through 3.

Figures 40 through 42 show the stress intensity plot in the cask body for the three load cases. Stress intensities are calculated in each major component of the cask and are presented in Tables 13 through 15. These tables also categorize the stresses based on the ASME code and compare them with the corresponding allowable value established in Section 5.0. Factors of safety based on the ratio of allowable stress to the calculated stress are also calculated.

### 7.2.3 Corner Drop

The following impact limiter reactions are obtained from Reference 4.

Cold Conditions	= 335,300 lb	(Table 2 and Figure 32 of Reference 4)
Hot Conditions	= 303,280 lb	(Table 2 and Figure 36 of Reference 4)

Conservatively use the maximum of the two reactions for the analyses of all environmental conditions. The NCT corner drop rigid body acceleration is:

= 2×335,300/76,200 = 8.8 g

The acceleration used in the HAC corner drop analyses is 70 g. The mechanical loading applied in the HAC corner drop analyses may be proportioned with 8.8 g. The ratio of the two loadings is:

 $R_{\text{corner}} = 8.8/70 = 0.126$  » For conservatism use 0.4292

Impact Limiter Reactions

Lid pressure magnitude,

 $p_{\text{lid}} = 0.4292 \times 17,409 = 7,471.9 \text{ psi}$ 

Wall pressure amplitude,

 $p_0 = 0.4292 \times 4,769 = 2,046.9$  psi

Impact Limiter Inertia

Baseplate pressure magnitude,

Title	Structu	ıral Analyse	es of the 3	-60B Cask Under Drop Conditions			
Calc. No.	ST-504	Rev.	2	Sheet _	16	_of	25

 $p_{\rm LL} = 0.4292 \times 159.7 = 68.54 \text{ psi}$ 

Wall pressure amplitude,

 $p_0 = 0.4292 \times 112.93 = 48.47$  psi

Payload Inertia

Lid pressure magnitude

 $p_{\rm lid} = 0.4292 \times 653.3 = 280.4 \text{ psi}$ 

Wall pressure amplitude,

 $p_0 = 0.4292 \times 80.6 = 34.6$  psi

Cask Body Inertia

Cask Body Axial Acceleration =  $0.4292 \times 72.2 = 30.99$  g

Cask Body Lateral Acceleration = 0.4292×28.14 = 12.1 g

### Model Analyses

The FEM is analyzed under the above loading for hot (Load Case 1), cold with maximum decay heat (Load Case 2), and cold with no decay heat, environmental conditions. The cask body temperature for Load Cases 1 and 2 are obtained from the hot and cold environmental loading conditions of Reference 10. For Load Case 3 (no internal heat), the entire cask is assumed to be at -20°F. Figures 43 through 45 show the cask body temperature profile and the pressure distributions used in the FEM for Load Cases 1 through 3.

Figures 46 through 48 show the stress intensity plot in the cask body for the three load cases. Stress intensities are calculated in each major component of the cask and are presented in Tables 16 through 18. These tables also categorize the stresses based on the ASME code and compare them with the corresponding allowable value established in Section 5.0. Factors of safety based on the ratio of allowable stress to the calculated stress are also calculated.

## 8.0 CONCLUSIONS

The results of the analyses performed in this document show that the 3-60B Cask meets the design requirements during all the drop test scenarios specified in 10 CFR 71 code. Therefore, it is concluded that the cask can withstand the drop test requirements during the normal conditions of transport and the hypothetical accident conditions. It is noted that slight deformation of the cask at certain locations is expected during the hypothetical drop tests. However, the components subjected to deformations during these tests are not on the pressure boundary. It has been shown in Reference 12 by inelastic analyses that the bolting ring skirt that is subjected to plastic deformation during the side drop and corner drop tests cannot impart enough loading to the closure bolts which could compromise the sealing of the cask. It has been shown in Reference 12 by inelastic analyses that the bolting ring skirt that is subjected to plastic deformation during the side drop and corner drop tests cannot impart enough loading to the closure bolts which could compromise the sealing of the cask. It has been shown in Reference 12 by inelastic analyses that the bolting ring skirt that is subjected to plastic deformation during the side drop and corner drop tests cannot impart enough loading to the closure bolts which could compromise the sealing of the cask. Therefore, their deformation in no way can prevent the cask from meeting other requirements of the code. A summary of the expected deformation is as follows:

Title	Structu	ıral Analyse	es of the 3	-60B Cask Under Drop Conditions			
Calc. No.	ST-504	<b>Rev</b>	2	Sheet	17	_of_	25

• The skirt of the bolting ring may be subjected to inelastic bending during the side, corner, and shallow angle drop tests (see Figures 17 and 26 for example). This bending will be confined to a small area near the point of impact. The skirt may bend inward at these locations.

### 9.0 ANSYS PRINTOUT AND DATA FILES

The printout of the important data from the program is included with this document in electronic form as Appendix 3. The printout of the important data from the program is included with this document in electronic form as Appendix 3.

### **10.0 APPENDICES**

Appendix 1 Print-out of the ANSYS model data input

Appendix 2 Summary Print-Out of the ANSYS Results and Stress Linearization

Appendix 2 Electronic data on DVD

Title	Structur	ral Analyse	s of the 3-60B Cask Under Drop	Conditions			
Calc. No	ST-504	<b>Rev</b>	2	Sheet _	18	_of25	

(18 Pages)

Title	Structural Ana	alyses of the	e 3-60B C	Cask Under Drop Conditions
Calc. No.	ST-504 Tables	Rev	2	Sheet <u>1</u> of <u>18</u>

<u> </u>			ż	
Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	32,803	2.65
Bolting Ring	P _m	59,760	32,727	1.83
Shell Extension	$P_m + P_b$	87,000	32,727	2.66
Bolting Ring	P _m	59,760	30,895	1.93
Skirt	$P_m + P_b$	87,000	30,895	2.82
Inner Shell	$\mathbf{P}_{\mathrm{m}}$	59,760	17,652	3.39
	$P_m + P_b$	87,000	17,652	4.93
Outor Shall	P _m	40,080	31,224	1.28
Outer Shell	$P_m + P_b$	60,120	31,224	1.93
Lid	P _m	40,080	30,311	1.32
LIU	$P_m + P_b$	60,120	30,311	1.98
Dece Distor	P _m	40,080	14,924	2.69
Dase Plates	$P_m + P_b$	60,120	14,924	4.03
Seal Plates	$P_m + P_b$	60,120	4,185 ⁽³⁾	14.37
Polto	P _m	105,000	9,023	11.64
Bolts	$P_m + P_b$	150,000	9,023	16.62

Stress Intensities in 3-60B Cask under 30-ft End Drop - Hot Condition

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The maximum stress intensity in the seal plates is 51,854 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	alyses of the	e 3-60B C	ask Under Drop Conditions
Calc. No.	ST-504 Tables	<b>Rev</b>	2	Sheet <u>2</u> of <u>18</u>

Stress Intensities in 3-60B Cask under 30-ft End Drop - Cold Condition (Max. Decay Heat)

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	34,141	2.55
Bolting Ring	P _m	59,760	52,643	1.14
Shell Extension	$P_m + P_b$	87,000	52,643	1.65
Bolting Ring	P _m	59,760	21,036	2.84
Skirt	$P_m + P_b$	59,760	21,036	2.84
Inner Shell	P _m	59,760	38,207	1.56
	$P_m + P_b$	87,000	38,207	2.28
	P _m	40,080	24,782	1.62
Outer Shell	$P_m + P_b$	60,120	24,782	2.43
Г:Ј	P _m	40,080	33,945	1.18
Lia	$P_m + P_b$	60,120	33,945	1.77
Dese Distas	P _m	40,080	24,661	1.63
Base Plates	$P_m + P_b$	60,120	24,661	2.44
Seal Plates	$P_m + P_b$	60,120	4,187 ⁽³⁾	14.36
Dalta	$P_{m}$	105,000	7,592	13.83
Bolts	$P_m + P_b$	150,000	7,592	19.76

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The maximum stress intensity in the seal plates is 56,497 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	alyses of the	e 3-60B C	ask Under Drop Conditions
Calc. No.	ST-504 Tables	Rev	2	<b>Sheet</b> <u>3</u> of <u>18</u>

Stress Intensities in 3-60B Cask under 30-ft End Drop - Cold Condition (No Decay Heat)

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_{\rm m} + P_{\rm b}$	87,000	35,803	2.43
Bolting Ring	P _m	59,760	43,220 ⁽³⁾	1.38
Shell Extension	$P_m + P_b$	87,000	61,390 ⁽³⁾	1.42
Bolting Ring	P _m	59,760	19,504	3.06
Skirt	$P_m + P_b$	59,760	19,504	3.06
Inner Shell	P _m	59,760	43,700	1.37
	$P_m + P_b$	87,000	43,700	1.99
0 01 11	P _m	40,080	24,687	1.62
Outer Shell	$P_m + P_b$	60,120	24,687	2.44
L: J	P _m	40,080	35,126	1.14
Lia	$P_m + P_b$	60,120	35,126	1.71
Dese Distan	P _m	40,080	27,593	1.45
Base Plates	$P_m + P_b$	60,120	27,593	2.18
Seal Plates	$P_m + P_b$	60,120	4 <b>,</b> 971 ⁽⁴⁾	12.09
Delte	P _m	105,000	7,442	14.11
Bolts	$P_m + P_b$	150,000	7,442	20.16

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (4) The maximum stress intensity in the seal plates is 57,706 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural An	alyses of the	e 3-60B	Cask Under Drop Conditions
Calc. No	ST-504 Tables	Rev	2	Sheetof8

			F	
Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	(3)	_
Bolting Ring	P _m	59,760	45,723	1.31
Shell Extension	$P_m + P_b$	87,000	45,723	1.90
Bolting Ring	P _m	59,760	(3)	-
Skirt	$P_m + P_b$	59,760	- (3)	-
	P _m	59,760	36,420 ⁽⁴⁾	1.64
inner Snen	$P_m + P_b$	87,000	44,210 ⁽⁴⁾	1.97
Outor Shall	P _m	40,080	33,800 ⁽⁴⁾	1.19
Outer Shell	$P_m + P_b$	60,120	44,150 ⁽⁴⁾	1.36
г:ј	P _m	40,080	26,280 ⁽⁴⁾	1.53
Lia	$P_m + P_b$	60,120	40,680 ⁽⁴⁾	1.48
Dese Distas	P _m	40,080	31,876	1.26
Base Plates	$P_m + P_b$	60,120	31,876	1.89
Seal Plates	$P_m + P_b$	60,120	45,515 ⁽⁵⁾	1.32
Dolta	P _m	105,000	57,103	1.84
Bolts	$P_m + P_b$	150,000	57,103	2.63

|--|

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The bolting ring skirt experiences inelastic deformation. Analyses of Reference 12 have been used to qualify these components.
- (4) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (5) The maximum stress intensity in the seal plates is 104,460 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	alyses of the	e 3-60B	Cask Under Drop	o Conditions		
Calc. No.	ST-504 Tables	<b>Rev</b>	2	_	Sheet	<u>5 of 18</u>	

Stress Intensities in 3-60B Cask under 30-ft Side Drop - Cold Condition (Max. Decay Heat)

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	_ (3)	-
Bolting Ring	P _m	59,760	48,347	1.24
Shell Extension	$P_m + P_b$	87,000	48,347	1.80
Bolting Ring	P _m	59,760	- (3)	-
Skirt	$P_m + P_b$	59,760	- (3)	-
Inner Shell	P _m	59,760	37,560 ⁽⁴⁾	1.59
	$P_m + P_b$	87,000	42,230 ⁽⁴⁾	2.06
0 61 11	P _m	40,080	35,230	1.14
Outer Shell	$P_m + P_b$	60,120	47,480	1.27
L: J	P _m	40,080	27,640 ⁽⁴⁾	1.45
Lia	$P_m + P_b$	60,120	42,430 ⁽⁴⁾	1.42
Dese Distan	P _m	40,080	26,210 ⁽⁴⁾	1.53
Base Plates	$P_m + P_b$	60,120	50,500 ⁽⁴⁾	1.19
Seal Plates	$P_m + P_b$	60,120	46,227 ⁽⁵⁾	1.30
Dalta	P _m	105,000	55,860	1.88
Bolts	$P_m + P_b$	150,000	55,860	2.69

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The bolting ring skirt experiences inelastic deformation. Analyses of Reference 12 have been used to qualify these components.
- (4) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (5) The maximum stress intensity in the seal plates is 106,333 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	alyses of the	e 3-60B C	ask Under Drop Conditions
Calc. No.	ST-504 Tables	<b>Rev</b>	2	<b>Sheet</b> <u>6</u> <b>of</b> <u>18</u>

## <u>Table 6</u>

Stress Intensities in 3-60B Cask under 30-ft Side Drop – Cold Condition (No Decay Heat)

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	- (3)	-
Bolting Ring	P _m	59,760	52,021	1.15
Shell Extension	$P_m + P_b$	87,000	52,021	1.67
Bolting Ring	P _m	59,760	- (3)	-
Skirt	$P_m + P_b$	tress tegoryAllowable S.I. (psi)Calculated (psi) $_{1}$ + P_b87,000P_m59,760 $_{1}$ + P_b87,000P_m59,760 $_{1}$ + P_b59,760 $_{1}$ + P_b59,760 $_{1}$ + P_b59,760 $_{1}$ + P_b87,00043,4 $_{1}$ + P_b87,000 $_{2}$ + P_b $_{2}$ + P_b $_{3}$ + P_b $_{4}$ + P_b $_{1}$ + P_b $_{2}$ + P_b $_{2}$ + P_b $_{2}$ + P_b $_{2}$ + P_b $_{3}$ + P_b $_{2}$ + P_b $_{3}$ + P_b $40,080$ $29,60$ $_{3}$ + P_b $60,120$ $45,11$ $P_m$ $105,000$ $54,40$ $_{3}$ + P_b $150,000$ $54,40$	- (3)	-
Lun en Chell	P _m	59,760	43,486	1.37
Inner Shell	$P_m + P_b$	87,000	43,486	2.00
0	P _m	40,080	36,710	1.09
Outer Shell	$P_m + P_b$	60,120	49,360	1.22
T : 1	P _m	40,080	27,360 ⁽⁴⁾	1.46
Lid	$P_m + P_b$	60,120	41,870 ⁽⁴⁾	1.44
Dana Diatas	P _m	40,080	29,690	1.35
Base Plates	$P_m + P_b$	60,120	53,950	1.11
Seal Plates	$P_m + P_b$	60,120	45,153 ⁽⁵⁾	1.33
Delte	P _m	105,000	54,432	1.93
Bolts	$P_m + P_b$	150,000	54,432	2.76

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The bolting ring skirt experiences inelastic deformation. Analyses of Reference 12 have been used to qualify these components.
- (4) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (5) The maximum stress intensity in the seal plates is 103,855 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	alyses of th	e 3-60B Cas	k Under Drop Conditions
Calc. No.	ST-504 Tables	Rev.	2	Sheet <u>7</u> of <u>18</u>

### <u>Table 7</u>

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	_ (3)	-
Bolting Ring	$P_L^{(4)}$	87,000	47,453	1.83
Shell Extension	$P_L + P_b$	87,000	47,453	1.83
Bolting Ring	P _m	59,760	_ (3)	-
Skirt	$P_m + P_b$	59,760	- (3)	-
Inner Shell	$\mathbf{P}_{\mathrm{m}}$	59,760	35,571	1.68
	$P_m + P_b$	87,000	35,571	2.45
	P _m	40,080	31,297	1.28
Outer Shell	$P_m + P_b$	60,120	Calculated S.I. $^{(1)}$ (psi)F.S. $^{(1)}$ (psi)- $^{(3)}$ 47,45347,4531.847,453- $^{(3)}$ - $^{(3)}$ - $^{(3)}$ 35,57131,2971.231,2971.231,2971.442,817 $^{(6)}$ 1.410,20335,57110,2035.834,765 $^{(7)}$ 27,6423.827,64227,6425.4	1.92
I id	$\mathbf{P}_{\mathrm{m}}$	40,080	27,550 ⁽⁵⁾	1.45
Lid	$P_m + P_b$	60,120	(psi)(psi) $87,000$ - $87,000$ $47,453$ $87,000$ $47,453$ $87,000$ $47,453$ $59,760$ - $59,760$ - $59,760$ 35,571 $87,000$ $35,571$ $87,000$ $31,297$ $60,120$ $31,297$ $40,080$ $27,550^{(5)}$ $60,120$ $42,817^{(6)}$ $40,080$ $10,203$ $60,120$ $10,203$ $60,120$ $34,765^{(7)}$ $105,000$ $27,642$ $150,000$ $27,642$	1.40
Daga Diatag	P _m	40,080	10,203	3.93
Dase Plates	$P_m + P_b$	60,120	10,203	5.89
Seal Plates	$P_m + P_b$	60,120	34,765 ⁽⁷⁾	1.73
Polto	P _m	105,000	27,642	3.80
DUIIS	$P_m + P_b$	150,000	27,642	5.43

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The bolting ring skirt experiences inelastic deformation. Analyses of Reference 12 have been used to qualify these components.
- (4) The stresses in the inner shell are mostly longitudinal. These stresses are the highest near the impact location and subside greatly away from the plane of impact. Therefore, they are classified as average linearized stress,  $P_L$  and not  $P_m$ .
- (5) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (6) The reported stress here is the maximum principle stress (tensile).
- (7) The maximum stress intensity in the seal plates is 185,156 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	alyses of the	e 3-60B Cas	k Under Drop Conditions
Calc. No.	ST-504 Tables	<b>Rev</b>	2	<b>Sheet</b> <u>8</u> of <u>18</u>

### <u>Table 8</u>

Stress Intensities in 3-60B Cask under 30-ft Corner Drop - Cold Condition (Max. Decay Heat)

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	- (3)	-
Bolting Ring	$P_L^{(4)}$	87000	54,420 ⁽⁵⁾	1.60
Shell Extension	$P_L + P_b$	87,000	71,870 ⁽⁵⁾	1.21
Bolting Ring	P _m	59,760	- (3)	-
Skirt	$P_m + P_b$	Allowable S.I. (psi)Calculated S.I. (psi)87,000-87,000-87,000 $54,420^{(5)}$ 87,000 $71,870^{(5)}$ 59,760-59,760-59,760-87,000 $50,708$ 87,000 $50,708$ 87,000 $50,708$ 87,000 $50,708$ 9,000 $50,708$ 9,000 $50,708$ 9,000 $25,953$ 9,000 $26,240^{(5)}$ 9,000 $42,737^{(6)}$ 9,000 $16,204$ 9,000 $16,204$ 9,000 $25,437$ 105,000 $25,437$	-	
Inner Shell	$P_L^{(4)}$	87,000	50,708	1.72
Inner Snell	$P_{L} + P_{b}$ 87,000	50,708	1.72	
Outor Shall	P _m	40,080	25,953	1.54
Outer Shell	$P_m + P_b$	60,120	25,953	2.32
T : J	P _m	40,080	26,240 ⁽⁵⁾	1.53
Llu	$P_m + P_b$	60,120	42,737 ⁽⁶⁾	1.41
Dese Distas	P _m	40,080	16,204	2.47
Base Plates	$P_m + P_b$	60,120	16,204	3.71
Seal Plates	$P_m + P_b$	60,120	37,369 ⁽⁷⁾	1.61
Dolta	$\mathbf{P}_{\mathrm{m}}$	105,000	25,437	4.13
Bolts	$P_m + P_b$	150,000	25,437	5.90

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The bolting ring skirt experiences inelastic deformation. Analyses of Reference 12 have been used to qualify these components.
- (4) The stresses in the inner shell are mostly longitudinal. These stresses are the highest near the impact location and subside greatly away from the plane of impact. Therefore, they are classified as average linearized stress, P_L and not P_m.
- (5) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (6) The reported stress here is the maximum principal stress (tensile).
- (7) The maximum stress intensity in the seal plates is 173,418 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	lyses of the	e 3-60B Casl	CUnder Drop Conditions
Calc. No.	ST-504 Tables	Rev.	2	<b>Sheet</b> <u>9</u> of <u>18</u>

### <u>Table 9</u>

Stress Intensities in 3-60B Cask under 30-ft Corner Drop - Cold Condition (No Decay Heat)

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	- (3)	-
Bolting Ring	$P_L^{(4)}$	87,000	58,930 ⁽⁵⁾	1.48
Shell Extension	$P_L + P_b$	87,000	80,750 ⁽⁵⁾	1.08
Bolting Ring	P _m	59,760	_ (3)	-
Skirt	Stress CategoryAllowable S.I. (psi) $P_m + P_b$ 87,000 $P_L^{(4)}$ 87,000 $P_L + P_b$ 87,000 $P_m + P_b$ 59,760 $P_m + P_b$ 59,760 $P_L^{(4)}$ 87,000 $P_L + P_b$ 87,000 $P_L + P_b$ 87,000 $P_m + P_b$ 60,120	_ (3)	-	
Inner Shell	$P_L^{(4)}$	87,000	55,586	1.57
Inner Shell	$P_L + P_b$	87,000	55,586	1.57
	P _m	40,080	26,917	1.49
Outer Shell	$P_m + P_b$	Allowable S.I. (psi)Calculated S.I. (psi) $87,000$ - $87,000$ $58,930^{(5)}$ $87,000$ $80,750^{(5)}$ $87,000$ $80,750^{(5)}$ $59,760$ - $59,760$ - $87,000$ $55,586$ $87,000$ $55,586$ $87,000$ $26,917$ $60,120$ $26,917$ $40,080$ $26,050^{(5)}$ $40,080$ $26,050^{(5)}$ $40,080$ $21,989$ $60,120$ $21,989$ $60,120$ $37,834^{(7)}$ $105,000$ $26,079$	2.23	
I :4	$\mathbf{P}_{\mathrm{m}}$	40,080	Allowable S.I. (psi)Calculated S.I. (psi)F.S. $87,000$ -(3) $87,000$ $58,930^{(5)}$ 1 $87,000$ $80,750^{(5)}$ 1 $87,000$ $80,750^{(5)}$ 1 $59,760$ -(3) $59,760$ -(3) $87,000$ $55,586$ 1 $87,000$ $55,586$ 1 $87,000$ $55,586$ 1 $87,000$ $55,586$ 1 $40,080$ $26,917$ 1 $60,120$ $26,917$ 1 $40,080$ $26,050^{(5)}$ 1 $40,080$ $21,989$ 1 $60,120$ $21,989$ 1 $60,120$ $37,834^{(7)}$ 1 $105,000$ $26,079$ 2 $150,000$ $26,079$ 5	1.54
Lid	$P_m + P_b$	60,120		1.41
Dasa Distas	P _m	40,080	21,989	1.82
Base Plates	$P_m + P_b$	60,120	21,989	2.73
Seal Plates	$P_m + P_b$	60,120	37,834 ⁽⁷⁾	1.59
Dolto	$\mathbf{P}_{\mathrm{m}}$	105,000	26,079	4.03
DOILS	$P_m + P_b$	150,000	26,079	5.75

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The bolting ring skirt experiences inelastic deformation. Analyses of Reference 12 have been used to qualify these components.
- (4) The stresses in the inner shell are mostly longitudinal. These stresses are the highest near the impact location and subside greatly away from the plane of impact. Therefore, they are classified as average linearized stress, P_L and not P_m.
- (5) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (6) The reported stress here is the maximum principle stress (tensile).
- (7) The maximum stress intensity in the seal plates is 169,949 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	alyses of the	e 3-60B (	Cask Under Drop	p Conditions			
Calc. No	ST-504 Tables	Rev	2	_	Sheet	10	_of18	

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	37,350	14,825	2.52
Bolting Ring	P _m	24,900	9,477 ⁽³⁾	2.63
Shell Extension	$P_m + P_b$	37,350	18,420 ⁽³⁾	2.03
Bolting Ring	P _m	24,900	7,951	3.13
Skirt	$\frac{P_{m} + P_{b}}{P_{m} + P_{b}} = \frac{37,350}{37,350}$ $\frac{P_{m} + P_{b}}{P_{m} + P_{b}} = \frac{37,350}{37,350}$	7,951	4.70	
Inner Shell	P _m	24,900	4,244	5.87
	$P_m + P_b$	37,350	4,244	8.80
	P _m	16,700	13,760 ⁽³⁾	1.21
Outer Shell	$P_m + P_b$	25,050	$350$ $14,825$ $2.52$ $900$ $9,477^{(3)}$ $2.63$ $350$ $18,420^{(3)}$ $2.03$ $900$ $7,951$ $3.13$ $350$ $7,951$ $4.70$ $900$ $4,244$ $5.87$ $350$ $4,244$ $8.80$ $700$ $13,760^{(3)}$ $1.21$ $950$ $15,030^{(3)}$ $1.67$ $700$ $10,138$ $1.65$ $950$ $10,138$ $2.47$ $700$ $10,182$ $1.64$ $950$ $16,808$ $1.49$	1.67
Lid	P _m	16,700	10,138	1.65
LIU	$P_m + P_b$	25,050	$37,350$ $14,825$ $2.51$ $24,900$ $9,477^{(3)}$ $2.61$ $37,350$ $18,420^{(3)}$ $2.01$ $24,900$ $7,951$ $3.11$ $37,350$ $7,951$ $4.74$ $24,900$ $4,244$ $5.87$ $37,350$ $4,244$ $8.89$ $16,700$ $13,760^{(3)}$ $1.2$ $25,050$ $15,030^{(3)}$ $1.66$ $16,700$ $10,138$ $1.66$ $25,050$ $10,138$ $2.47$ $16,700$ $10,182$ $1.66$ $25,050$ $10,182$ $2.47$ $25,050$ $10,182$ $2.47$ $25,050$ $16,808$ $1.47$ $60,000$ $6,725$ $8.99$ $00,000$ $6,725$ $8.99$	2.47
Paga Diatas	P _m	16,700	10,182	1.64
Dase Flates	$P_m + P_b$	25,050	10,182	2.46
Seal Plates	$P_m + P_b$	25,050	16,808	1.49
Polto	P _m	60,000	6,725	8.92
DOIIS	$P_m + P_b$	90,000	6,725	13.38

Stress Intensities in 3-60B Cask under 1-ft End Drop - Hot Condition

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.

Title	Structural Ana	alyses of the	e 3-60B C	ask Under Drop Co	onditions			
Calc. No.	ST-504 Tables	Rev	2		Sheet _	11	of 18	

## <u>Table 11</u>

Stress Intensities in 3-60B Cask under 1-ft End Drop - Cold Condition (Max. Decay Heat)

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	37,350	13,602	2.75
Bolting Ring	P _m	24,900	15,120 ⁽³⁾	1.65
Shell Extension	$P_m + P_b$	37,350	24,100 ⁽³⁾	1.55
Bolting Ring	P _m	24,900	5,097	4.89
Skirt	$P_m + P_b$	37,350	5,097	7.33
Innon Shall	$\mathbf{P}_{\mathrm{m}}$	24,900	17,043	1.46
Inner Shell	$P_m + P_b$	37,350	17,043	2.19
	P _m	16,700	7,562	2.21
Outer Shell	$P_m + P_b$	25,050	7,562	3.31
T : d	$\mathbf{P}_{\mathrm{m}}$	16,700	10,320	1.62
LIQ	$P_m + P_b$	25,050	10,320	2.43
Daga Diatas	P _m	16,700	12,590	1.33
Dase Plates	$P_m + P_b$	25,050	12,590	1.99
Seal Plates	$P_m + P_b$	25,050	17,356	1.44
Dalta	P _m	60,000	3,646	16.46
BOILS	$P_m + P_b$	90,000	3,646	24.68

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.

Title	Structural Ana	alyses of the	e 3-60B C	ask Under Drop Conditions			
Calc. No.	ST-504 Tables	Rev	2	Sheet _	12	of18	

### <u>Table 12</u>

Stress Intensities in 3-60B Cask under 1-ft End Drop - Cold Condition (No Decay Heat)

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_{m} + P_{b}$	37,350	16,002	2.33
Bolting Ring	P _m	24,900	18,410 ⁽³⁾	1.35
Shell Extension	$P_m + P_b$	37,350	30,400 ⁽³⁾	1.23
Bolting Ring	P _m	24,900	4,370	5.70
Skirt	$P_m + P_b$	37,350	4,370	8.55
Inn on Chall	P _m	24,900	21,183	1.18
Inner Shell	$P_m + P_b$	37,350	21,183	1.76
	P _m	16,700	7,467	2.24
Outer Shell	$P_m + P_b$	25,050	7,467	3.35
г:ј	P _m	16,700	11,125	1.50
Lia	$P_m + P_b$	25,050	11,125	2.25
Dese Distas	P _m	16,700	10,210 ⁽³⁾	1.64
Base Plates	$P_m + P_b$	25,050	17,040 ⁽³⁾	1.47
Seal Plates	$P_m + P_b$	25,050	19,186	1.31
Dalta	P _m	60,000	5,301	11.32
Bolts	$P_m + P_b$	90,000	5,301	16.98

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.

Title	Structural Ana	alyses of the	e 3-60B C	Cask Under Drop	p Conditions			
Calc. No	ST-504 Tables	Rev	2	_	Sheet	13	_of18	

### <u>Table 13</u>

Stress Intensities in 3-60B Cask under 1-ft Side Drop – Hot Condition
<u> </u>

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_{m} + P_{b}$	37,350	21,532	1.73
Bolting Ring	P _m	24,900	12,960 ⁽³⁾	1.92
Shell Extension	$P_m + P_b$	37,350	21,690 ⁽³⁾	1.72
Bolting Ring	$P_L^{(4)}$	37,350	28,830 ⁽³⁾	1.30
Skirt	$P_L + P_b$	37,350	33,680 ⁽³⁾	1.11
Inner Shell	P _m	24,900	16,467	1.51
Inner Shell	$P_m + P_b$	37,350	16,467	2.27
	P _m	16,700	9,915	1.68
Outer Shell	$P_m + P_b$	25,050	20,060	1.25
т:4	P _m	16,700	7,439	2.24
Lid	$P_m + P_b$	25,050	7,439	3.37
Dasa Distas	P _m	16,700	12,645	1.32
Base Plates	$P_m + P_b$	25,050	12,645	1.98
Seal Plates	$P_m + P_b$	25,050	5,415 ⁽⁵⁾	4.63
Dolto	$\mathbf{P}_{\mathrm{m}}$	60,000	24,328	2.47
Bolts	$P_m + P_b$	90,000	24,328	3.70

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (4) The stresses in the bolting skirt are mostly longitudinal. These stresses are the highest near the impact location and subside greatly away from the plane of impact. Therefore, they are classified as average linearized stress,  $P_L$  and not  $P_m$ .
- (5) The maximum stress intensity in the seal plates is 22,040 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	alyses of the	e 3-60B C	Cask Under Drop	p Conditions			
Calc. No.	ST-504 Tables	<b>Rev</b>	2	_	Sheet	14	_of18	

### <u>Table 14</u>

Stress Intensities in 3-60B Cask under 1-ft Side Drop - Cold Condition (Max. Decay Heat)

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	37,350	22,153	1.69
Bolting Ring	P _m	24,900	18,408	1.35
Shell Extension	$P_m + P_b$	37,350	18,408	2.03
Bolting Ring	$P_L^{(4)}$	37,350	29,629 ⁽³⁾	1.26
Skirt	$P_L + P_b$	37,350	34,600 ⁽³⁾	1.08
Inn on Chall	P _m	24,900	13,051	1.91
Inner Shell	$P_m + P_b$	37,350	13,051	2.86
	P _m	16,700	14,816	1.13
Outer Shell	$P_m + P_b$	25,050	14,816	1.69
т:Ј	P _m	16,700	10,147	1.65
Lia	$P_m + P_b$	25,050	10,147	2.47
Dese Distan	P _m	16,700	10,280 ⁽³⁾	1.62
Base Plates	$P_m + P_b$	25,050	16,960 ⁽³⁾	1.48
Seal Plates	$P_m + P_b$	25,050	9,851 ⁽⁵⁾	2.54
Dalta	P _m	60,000	21,543	2.79
Bolts	$P_m + P_b$	90,000	21,543	4.18

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (4) The stresses in the bolting skirt are mostly longitudinal. These stresses are the highest near the impact location and subside greatly away from the plane of impact. Therefore, they are classified as average linearized stress,  $P_L$  and not  $P_m$ .
- (5) The maximum stress intensity in the seal plates is 26,446 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	alyses of the	e 3-60B C	ask Under Drop Conditions			
Calc. No.	ST-504 Tables	Rev	2	Sheet _	15	of18	

### <u>Table 15</u>

Stress Intensities in 3-60B Cask under 1-ft Side Drop - Cold Condition (No Decay Heat)

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	37,350	22,443	1.66
Bolting Ring	P _m	24,900	12,450 ⁽³⁾	2.00
Shell Extension	$P_{m} + P_{b}$	37,350	19,130 ⁽³⁾	1.95
Bolting Ring	$P_L^{(4)}$	37,350	30,040 ⁽³⁾	1.24
Skirt	$P_L + P_b$	37,350	35,100 ⁽³⁾	1.06
Inner Shell	P _m	24,900	16,167	1.54
Inner Shell	$P_m + P_b$	37,350	16,167	2.31
	P _m	16,700	12,440 ⁽³⁾	1.34
Outer Shell	$P_m + P_b$	25,050	16,800 ⁽³⁾	1.49
т:4	P _m	16,700	11,179	1.49
Lid	$P_m + P_b$	25,050	11,179	2.24
Daga Diatag	P _m	16,700	14,290 ⁽³⁾	1.17
Base Plates	$P_m + P_b$	25,050	22,330 ⁽³⁾	1.12
Seal Plates	$P_m + P_b$	25,050	10,399 ⁽⁵⁾	2.41
Polto	P _m	60,000	19,916	3.01
Bolts	$P_m + P_b$	90,000	19,916	4.52

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (4) The stresses in the bolting skirt are mostly longitudinal. These stresses are the highest near the impact location and subside greatly away from the plane of impact. Therefore, they are classified as average linearized stress,  $P_L$  and not  $P_m$ .
- (5) The maximum stress intensity in the seal plates is 24,543 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	alyses of the	e 3-60B C	Cask Under Drop	o Conditions			
Calc. No.	ST-504 Tables	Rev	2	_	Sheet	16	_of18	

Stress Intensities in 3-60B	Cask under 1-ft Corner Drop – Hot Condition
	-

Component	Stress Category	Allowable S.I. (psi) Calculated S.I. ⁽¹⁾ (psi)		F.S. ⁽²⁾
Bolting Ring	$P_{\rm m} + P_{\rm b}$	37,350	- (3)	-
Bolting Ring	$P_L^{(4)}$	37,350	26,202	1.43
Shell Extension	$P_L + P_b$	37,350	26,202	1.43
Bolting Ring	P _m	24,900	_ (3)	-
Skirt	$P_m + P_b$	37,350	_ (3)	-
Inner Shell	$\mathbf{P}_{\mathrm{m}}$	24,900	14,534	1.71
	$P_m + P_b$	37,350	14,534	2.57
Outer Shell	P _m	16,700	8,248	2.02
	$P_m + P_b$	25,050	16,270	1.54
Lid	P _m	16,700	9,966 ⁽⁵⁾	1.68
	$P_m + P_b$	25,050	18,347 ⁽⁶⁾	1.37
Base Plates	P _m	16,700	10,896	1.53
	$P_m + P_b$	25,050	10,896	2.30
Seal Plates	$P_m + P_b$	25,050	12,606 ⁽⁷⁾	1.99
Bolts	$\mathbf{P}_{\mathrm{m}}$	60,000	18,243	3.29
	$P_m + P_b$	90,000	18,243	4.93

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The bolting ring skirt experiences inelastic deformation. Analyses of Reference 12 have been used to qualify these components.
- (4) The stresses in the inner shell are mostly longitudinal. These stresses are the highest near the impact location and subside greatly away from the plane of impact. Therefore, they are classified as average linearized stress, P_L and not P_m.
- (5) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (6) The reported stress here is the maximum principle stress (tensile).
- (7) The maximum stress intensity in the seal plates is 77,292 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	alyses of the	e 3-60B Ca	sk Under Drop	Conditions			
Calc. No.	ST-504 Tables	<b>Rev</b>	2		Sheet	17	_of18	

### <u>Table 17</u>

Stress Intensities in 3-60B Cask under 1-ft Corner Drop - Cold Condition (Max. Decay Heat)

Component	Stress Category	Allowable S.I. (psi)	wable S.I. Calculated S.I. ⁽¹⁾ (psi)	
Bolting Ring	$P_m + P_b$	37,350	_ (3)	_
	$P_L^{(4)}$	37,350	27,610 ⁽⁵⁾	1.35
Bolting Ring Shell Extension	$P_L + P_b$	37,350	30,010 ⁽⁵⁾	1.24
Shen Extension	Q	74,700	41,030 ⁽⁵⁾	1.82
Bolting Ring	P _m	24,900	- (3)	-
Skirt	$P_m + P_b$	37,350	_ (3)	-
Inner Shell	$P_L$	37,350	27,569	1.35
	$P_L + P_b$	37,350	27,569	1.35
Outer Shell	P _m	16,700	12,611	1.32
	$P_m + P_b$	25,050	12,611	1.99
Lid	P _m	16,700	9,943 ⁽⁵⁾	1.68
	$P_m + P_b$	25,050	18,344 ⁽⁶⁾	1.37
Base Plates	P _m	16,700	11,656	1.43
	$P_m + P_b$	25,050	11,656	2.15
Seal Plates	$P_m + P_b$	25,050	18,934 ⁽⁷⁾	1.32
Bolts	P _m	60,000	14,026	4.28
	$P_m + P_b$	90,000	14,026	6.42

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The bolting ring skirt experiences inelastic deformation. Analyses of Reference 12 have been used to qualify these components.
- (4) The stresses in the inner shell are mostly longitudinal. These stresses are the highest near the impact location and subside greatly away from the plane of impact. Therefore, they are classified as average linearized stress,  $P_L$  and not  $P_m$ . Stresses at the discontinuity are classified as Q and away from it are classified as  $P_L + P_b$ .
- (5) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (6) The reported stress here is the maximum principle stress (tensile).
- (7) The maximum stress intensity in the seal plates is 71,591 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.

Title	Structural Ana	alyses of the	e 3-60B C	ask Under Dro	p Conditions			
Calc. No.	ST-504 Tables	<b>Rev</b>	2		Sheet	18	0f18	

### <u>Table 18</u>

Stress Intensities in 3-60B Cask under 1-ft Corner Drop - Cold Condition (No Decay Heat)

Component	Stress Category	Allowable S.I. (psi) Calculated S.I. ⁽¹⁾ (psi)		F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	37,350	_ (3)	-
	$P_L^{(4)}$	37,350	31,460 ⁽⁵⁾	1.19
Bolting Ring Shell Extension	$P_L + P_b$	37,350	34,720 ⁽⁵⁾	1.08
Shen Extension	Q	74,700	49,500 ⁽⁵⁾	1.51
Bolting Ring	P _m	24,900	- (3)	-
Skirt	$P_m + P_b$	37,350	(3)	-
Inner Shell	$P_{\rm L}$	37,350	32,217	1.16
	$P_L + P_b$	37,350	32,217	1.16
Outer Shell	P _m	16,700	9,999 ⁽⁵⁾	1.67
	$P_m + P_b$	25,050	14,390 ⁽⁵⁾	1.74
Lid	$\mathbf{P}_{\mathrm{m}}$	16,700	9,940 ⁽⁵⁾	1.68
	$P_m + P_b$	25,050	18,199 ⁽⁶⁾	1.38
Base Plates	P _m	16,700	10,880 ⁽⁵⁾	1.53
	$P_m + P_b$	25,050	18,310 ⁽⁵⁾	1.37
Seal Plates	$P_m + P_b$	25,050	19,456 ⁽⁷⁾	1.29
Bolts	P _m	60,000	13,725	4.37
	$P_m + P_b$	90,000	13,725	6.56

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m$  and  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) The bolting ring skirt experiences inelastic deformation. Analyses of Reference 12 have been used to qualify these components.
- (4) The stresses in the inner shell are mostly longitudinal. These stresses are the highest near the impact location and subside greatly away from the plane of impact. Therefore, they are classified as average linearized stress,  $P_L$  and not  $P_m$ . Stresses at the discontinuity are classified as Q and away from it are classified as  $P_L + P_b$ .
- (5) The stress intensity has been linearized over the cross-section. Print-out of the stress linearization is included in Appendix 2.
- (6) The reported stress here is the maximum principle stress (tensile).
- (7) The maximum stress intensity in the seal plates is 69,165 psi. However, the plates are under compression and the maximum stress intensity may be categorized as bearing stress. The maximum principal stress (tensile) has been used for the seal plate's qualification.
| Title    | Structu | ral Analyse | s of the 3- | 60B Cask Under Drop Conditions |    |       |  |
|----------|---------|-------------|-------------|--------------------------------|----|-------|--|
| Calc. No | ST-504  | Rev         | 2           | Sheet _                        | 19 | _of25 |  |

## **Figures**

(48 Pages)







Finite Element Model of the cask Body without the Lead









Tit
le
Structural Analyses of the
ne 3-60B Cask Under Drc
p Conditions











Stress Intensity Plot – 30-ft End Drop – Load Combination No.1



Stress Intensity Plot – 30-ft End Drop – Load Combination No.2



Stress Intensity Plot – 30-ft End Drop – Load Combination No.3











Calc. No. Title ST-504 (Figures) Structural Analyses of the 3-60B Cask Under Drop Conditions Rev.  $\mathbf{N}$ Sheet_ 15 oť 48



Temperature Profile and Pressure Distribution Used for 30-ft Side Drop – Load Combination No.2



Temperature Profile and Pressure Distribution Used for 30-ft Side Drop – Load Combination No.3



Stress Intensity Plot – 30-ft Side Drop – Displacement Boundary Conditions Used to Prevent Rigid Body Motion



Stress Intensity Plot - 30-ft Side Drop - Load Combination No.1





Stress Intensity Plot – 30-ft Side Drop – Load Combination No.3



Figure 22 Load Distribution on the Model during Corner Drop

Calc. No.	Title
ST-504 (Figures)	Structural Analyses
Rev. 2	of the 3-60B Cask Under
Sheet_	Drop Conditions
22	
of 48	





Temperature Profile and Pressure Distribution Used for 30-ft Corner Drop – Load Combination No.1



Temperature Profile and Pressure Distribution Used for 30-ft Corner Drop - Load Combination No.2



<u>Temperature Profile and Pressure Distribution Used for 30-ft Corner Drop – Load Combination No.3</u>







Stress Intensity Plot - 30-ft Corner Drop - Load Combination No.1



Stress Intensity Plot - 30-ft Corner Drop - Load Combination No.2



Stress Intensity Plot - 30-ft Corner Drop - Load Combination No.3







Temperature Profile and Pressure Distribution Used for 1-ft End Drop – Load Combination No.1





Temperature Profile and Pressure Distribution Used for 1-ft End Drop – Load Combination No.3



Stress Intensity Plot - 1-ft End Drop - Load Combination No.1



Stress Intensity Plot – 1-ft End Drop – Load Combination No.2


Stress Intensity Plot - 1-ft End Drop - Load Combination No.3



Temperature Profile and Pressure Distribution Used for 1-ft Side Drop – Load Combination No.1



Temperature Profile and Pressure Distribution Used for 1-ft Side Drop – Load Combination No.2

48



Temperature Profile and Pressure Distribution Used for 1-ft Side Drop – Load Combination No.3



Stress Intensity Plot – 1-ft Side Drop – Load Combination No.1









Temperature Profile and Pressure Distribution Used for 1-ft Corner Drop – Load Combination No.2



Temperature Profile and Pressure Distribution Used for 1-ft Corner Drop – Load Combination No.3





Stress Intensity Plot - 1-ft Corner Drop - Load Combination No.2



Stress Intensity Plot - 1-ft Corner Drop - Load Combination No.3

Title	Structu	ral Analyse	es of the	3-60B Cask Under Drop Conditions			
Calc. No	ST-504	<b>Rev</b>	2	Sheet	20	_of	25

<u>Appendix 1</u> Printout of the ANSYS Model Data (16 Pages)

# **3-60B Cask Drop Analyses**

## Mirza I. Baig

#### **Report Generated by ANSYS**

#### **Title Listing**

***** TITLES *****
*** YOU ARE IN ANSYS - ENGINEERING ANALYSIS SYSTEM ***
ANSYS Mechanical/Emag
RELEASE 11.0SP1 UPDATE 20070830 CUSTOMER 00222442
INITIAL JOBNAME = file
CURRENT JOBNAME = file
Current Working Directory: Y:\30-ft Drop\End
TITLE= 30-ft End Drop - Cold Condition (No Decay Heat)
MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans

#### **Global Status**

GLOBAL STATUS ANSYS - Engineering Analysis System Dec 07, 2007 11:27 INTEL NT Version 00222442 Release 11.0SP1 Current working directory: Y:\30-ft Drop\End MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans Product(s) enabled: ANSYS Mechanical/Emag Total connect time. . . . 0 hours 1 minutes 0 hours 0 minutes 4.4 seconds Total CP usage. . . . . . . ЈОВ I N F O R M A T I O N -----_____ 30-ft End Drop - Cold Condition (No Decay Heat) Current jobname . . . . . . . file Initial jobname . . . . . . file

AvailableUsedScratch Memory Space.....................................................................................................................................................................................................

Solid model summary:

							Largest	Number	Number
							Number	Defined	Selected
Keypoints							0	0	0
Lines							0	0	0
Areas							0	0	0
Volumes .	•	•	•	•	•	•	0	0	0

Finite element model summary:

	Largest	Number	Number
	Number	Defined	Selected
Nodes	47887	36999	36999
Elements	37659	37659	24352
Element types	69	65	n.a.
Real constant sets	35	31	n.a.
Material property sets	3	3	n.a.
Coupling	0	0	n.a.
Constraint equations	0	0	n.a.
Master DOFs	0	0	n.a.
Dynamic gap conditions	0	0	n.a.

BOUNDARY CONDITION INFORMATION ------

									Number
								]	Defined
Constraints on nodes									2851
Constraints on keypoints.									0
Constraints on lines									0
Constraints on areas	•	•	•	•	•	•	•	•	0
_									
Forces on nodes	•	•	•	•	•	•	•	•	0
Forces on keypoints	•	•	•	•	•	•	•	•	0
Surface loads on elements	•	•	•	•	•	•	•	•	3216
Number of element flagged	su	ırf	ac	ces	5				0

Surface loads on lines. . . . . . . . . . 0 Surface loads on areas. . . . . . . . . . . 0 Body loads on elements. . . . . . . . . . 0 Body loads on nodes . . . . . . . . . . . 0 Body loads on keypoints . . . . . . . . . . 0 Temperatures -20.000 Uniform temperature. . . . . . . . . . Reference temperature. . . . . . . . . 70.000 Offset from absolute scale . . . . . 0.000 Х Y Ζ Linear acceleration . . . . . . . . . 0.0000 0.0000 166.00 Angular velocity (about global CS). . . . 0.0000 0.0000 0.0000 Angular acceleration (about global CS). . 0.0000 0.0000 0.0000 Location of reference CS. . . . . . . . 0.0000 0.0000 0.0000 Angular velocity (about reference CS) . . 0.0000 0.0000 0.0000 Angular acceleration (about reference CS) 0.0000 0.0000 0.0000 ROUTINE INFORMATION -----Display coordinate system. . . . . . 0 (Cartesian) Current element attributes: Type number . . . . . . . . . . . . . . . . . 69 (CONTA174) Real number . . . . . . . . . . . . . 35 Material number . . . . . . . . . . 1 0 Element coordinate system number. . Current mesher type. . . . . . . . . . . . . . . . based on default element shape Current element meshing shape 2D . . . use default element shape. Current element meshing shape 3D . . . use default element shape. SmrtSize Level . . . . . . . . . . . OFF Global element size. . . . . . . . . 0 divisions per line Active coordinate system . . . . . . . . 12 (Cartesian) Display coordinate system. . . . . . 0 (Cartesian) Active options for this analysis type: Large deformation effects . . . . . Not included Equation solver to use. . . . . . . . . Program Chosen 

## **Solution Status**

#### SOLUTION OPTIONS

PROBLEM DIMENSIONALITY
LOAD STEP OPTIONS
LOAD STEP NUMBER
INERTIA LOADS X Y Z
ACEL 0.0000 0.0000 166.00
PRINT OUTPUT CONTROLS
DATABASE OUTPUT CONTROLS
ITEM FREQUENCY COMPONENT
BASI ALL

# **Element Type Listing**

LIST ELEMENT TYPE	S FROM	1 TO	69 BY	1	
ELEMENT TYPE	1 IS SOLII	0185	3-D 8-NODE	STRUCTURAL	SOLID INOPR
KEYOPT(1-12)=	0 0 0	00	0 0 0	0 0 0 0	0
ELEMENT TYPE	2 IS SHELI	L41	MEMBRANE S	HELL	INOPR
KEYOPT(1-12)=	0 0 0	0 0	0 0 0	0 0 0 0	0
ELEMENT TYPE	3 IS SOLSE	H190	3-D 8-NODE	SOLID SHELL	INOPR
KEYOPT(1-12)=	0 0 0	0 0	0 0 0	0 0 0 0	0
ELEMENT TYPE	4 IS TARGE	E170	3-D TARGET	SEGMENT	INOPR
KEYOPT(1-12)=	0 0 0	0 0	0 0 0	0 0 0 0	0
ELEMENT TYPE	5 IS CONTA	A175	NODE-TO-SU	RFACE CONTAC	T INOPR
KEYOPT(1-12)=	0 2 0	0 3	0 0 0	1 2 0 5	

ELEMENT TYPE	6	IS	TARGE170		3-D TARGET SEGMENT INC	OPR
KEYOPT(1-12) =	0	0	0 0	0	0 0 0 0 0 0 0	
ELEMENT TYPE	7	IS	CONTA175		NODE-TO-SURFACE CONTACT IN	OPR
KEYOPT(1-12) =	0	0	0 0	3	0 0 0 1 2 0 0 0	
FIFMENT TYPE	8	тs	TARGE170		3-D TARGET SEGMENT IN	OPR
KEYOPT(1-12) =	0	0	0 0	0		JIR
	0	та				
KEVODT(1 12)-	9	TP	CONTAT75	2	NODE-IO-SURFACE CONTACT IN	JPR
KEIOPI(I-12)=	0	0	0 0	3		
ELEMENT TYPE	10	IS	TARGE170		3-D TARGET SEGMENT IN	OPR
KEYOPT(1-12) =	0	0	0 0	0		
· · · ·						
ELEMENT TYPE	11	IS	CONTA175		NODE-TO-SURFACE CONTACT INC	OPR
KEYOPT(1-12)=	0	0	0 0	3	0 0 0 1 2 0 0 0	
ELEMENT TYPE	12	IS	TARGE170		3-D TARGET SEGMENT INC	OPR
KEYOPT(1-12)=	0	0	0 0	0	0 0 0 0 0 0 0	
						_
ELEMENT TYPE	13	IS	CONTA175	-	NODE-TO-SURFACE CONTACT IN	OPR
KEYOPT(1-12)=	0	0	0 0	3	0 0 0 1 2 0 0 0	
	7.4	та	<b>man</b> an170			000
ELEMENT TYPE	14	T2	TARGET /U	0	3-D TARGET SEGMENT IN	JPR
KEYOPI(1-12) =	0	0	0 0	0		
FI.FMFNT TVDF	15	тq				0DD
KEYOPT(1-12) =	10	0	0 0	З		JER
	0	0	0 0	5		
ELEMENT TYPE	16	IS	TARGE170		3-D TARGET SEGMENT IN	OPR
KEYOPT(1-12)=	0	0	0 0	0	0 0 0 0 0 0 0	
ELEMENT TYPE	17	IS	CONTA175		NODE-TO-SURFACE CONTACT INC	OPR
KEYOPT(1-12)=	0	0	0 0	3	0 0 0 1 2 0 0 0	
ELEMENT TYPE	18	IS	TARGE170		3-D TARGET SEGMENT INC	OPR
KEYOPT(1-12)=	0	0	0 0	0	0 0 0 0 0 0 0 0	
	1.0	та				000
ELEMENT TYPE	19	T2	CONTAL /5	r	NODE-TO-SURFACE CONTACT IN	JPR
KEYOPI(1-12) =	0	0	0 0	3		
FI.FMFNT TVDF	20	TC	TAPCE170			0DD
KFVODT(1-12) =	20	13		0		JPK
REIOLI(I IZ)-	0	0	0 0	0		
ELEMENT TYPE	21	IS	CONTA175		NODE-TO-SURFACE CONTACT IN	OPR
KEYOPT(1-12)=	0	0	0 0	3	0 0 0 1 2 0 0 0	-
, , , , , , , , , , , , , , , , , , ,						
ELEMENT TYPE	22	IS	TARGE170		3-D TARGET SEGMENT INC	OPR
KEYOPT(1-12)=	0	0	0 0	0	0 0 0 0 0 0 0	
ELEMENT TYPE	23	IS	CONTA175		NODE-TO-SURFACE CONTACT INC	OPR
KEYOPT(1-12)=	0	0	0 0	3	0 0 0 1 2 0 0 0	
	~ 4	<i>+</i> ~	map 05150			00-
ELEMENT TYPE	24	TR	TARGET /0	0	3-D TARGET SEGMENT IN	JPR
VEIOLI(T-TS)=	U	U	U U	U		

ELEMENT TYPE KEYOPT(1-12)=	25 0	IS 0	CONTA174 0 0	3	3D 8 0	B-NODE 0 0	SURF-SUR 1 2	F CONTACT 0 5	0	INOPR
ELEMENT TYPE	26	IS	TARGE170		3-D	TARGE	C SEGMENT			INOPR
KEYOPT(1-12) =	0	0	0 0	0	0	0 0	0 0	0 0	0	
ELEMENT TYPE KEYOPT(1-12)=	27 0	IS 0	CONTA174 0 0	3	3D 8 0	B-NODE 0 0	SURF-SUR 1 2	F CONTACT 0 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	28 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE: 0 0	r segment 0 0	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	29 0	IS 0	CONTA174 0 0	3	3D 8 0	8-NODE 0 0	SURF-SUR 1 2	F CONTACT 0 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	30 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE: 0 0	r segment 0 0	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	31 0	IS 0	CONTA174 0 0	3	3D 8 0	8-NODE 0 0	SURF-SUR 1 2	F CONTACT 0 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	32 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE: 0 0	r segment 0 0	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	33 0	IS 0	CONTA174 0 0	3	3D 8 0	8-NODE 0 0	SURF-SUR 1 2	F CONTACT 0 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	38 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE: 0 0	r segment 0 0	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	39 0	IS 0	CONTA174 0 0	3	3D 8 0	B-NODE 0 0	SURF-SUR 1 2	F CONTACT 0 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	40 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE: 0 0	r segment 0 0	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	41 0	IS 0	CONTA174 0 0	3	3D 8 0	B-NODE 0 0	SURF-SUR 1 2	F CONTACT 0 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	42 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE: 0 0	r segment 0 0	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	43 0	IS 0	CONTA174 0 0	3	3D 8 0	B-NODE 0 0	SURF-SUR 1 2	F CONTACT 0 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	44 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE: 0 0	r segment 0 0	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	45 0	IS 0	CONTA174 0 0	3	3D 8 0	8-NODE 0 0	SURF-SUR 1 2	F CONTACT 0 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	46 0	IS 0	TARGE170 0 0	0	3-D 0	TARGET	r segment 0 0	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	47 0	IS 2	CONTA174 0 2	3	3D 8 0	3-NODE 0 0	SURF-SUR 1 2	F CONTACT 0 6	0	INOPR

ELEMENT TYPE	48	IS	TARGE170		3-D TARGET SEGMENT INO	PR
KEYOPT(1-12) =	0	0	0 0	0	0 0 0 0 0 0 0 0	
ELEMENT TYPE	49	IS	CONTA174		3D 8-NODE SURF-SURF CONTACT INO	PR
KEYOPT(1-12) =	0	0	0 0	3	0 0 0 1 2 0 1 0	
ELEMENT TYPE	50	тs	TARGE170		3-D TARGET SEGMENT INO	PR
KEYOPT(1-12) =	0	0	0 0	0		
- ( )						
ELEMENT TYPE	51	IS	CONTA175		NODE-TO-SURFACE CONTACT INO	PR
KEYOPT(1-12) =	0	0	0 0	3	0 0 0 1 2 0 0 0	
	- 0					
ELEMENT TYPE	52	TS 0	TARGE170	0	3-D TARGET SEGMENT INO	PR
KEYOPI(1-12) =	0	0	0 0	0		
ELEMENT TYPE	53	IS	CONTA175		NODE-TO-SURFACE CONTACT INO	PR
KEYOPT(1-12)=	0	0	0 0	3	0 0 0 1 2 0 0 0	
ELEMENT TYPE	54	IS	TARGE170		3-D TARGET SEGMENT INO	PR
KEYOPT(1-12)=	0	0	0 0	0	0 0 0 0 0 0 0 0	
	55	тс				מח
KEYOPT(1-12) =	0	15	0 0	З	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PR
REIOTI(I IZ)-	0	0	0 0	5		
ELEMENT TYPE	56	IS	TARGE170		3-D TARGET SEGMENT INO	PR
KEYOPT(1-12)=	0	0	0 0	0	0 0 0 0 0 0 0	
ELEMENT TYPE	57	IS	CONTA175	2	NODE-TO-SURFACE CONTACT INO	PR
KEYOPT(1-12) =	0	0	0 0	3		
ELEMENT TYPE	58	тs	TARGE170		3-D TARGET SEGMENT INO	PR
KEYOPT(1-12)=	0	0	0 0	0	0 0 0 0 0 0 0 0	
ELEMENT TYPE	59	IS	CONTA174		3D 8-NODE SURF-SURF CONTACT INO	PR
KEYOPT(1-12)=	0	0	0 0	3	0 0 0 1 2 0 5 0	
FI.FMFNT TVDF	60	тс	TAPCE170		3-D TARGET SEGMENT INO	סס
KEYOPT(1-12) =	0	0	0 0	0		ΓI
	Ū	Ū	0 0	U		
ELEMENT TYPE	61	IS	CONTA174		3D 8-NODE SURF-SURF CONTACT INO	PR
KEYOPT(1-12)=	0	0	0 0	3	0 0 0 1 2 0 1 0	
	6.0					
ELEMENT TYPE	62	IS	TARGE170	0	3-D TARGET SEGMENT INO	PR
KEIOPI(I-IZ) =	0	0	0 0	0		
ELEMENT TYPE	63	IS	CONTA174		3D 8-NODE SURF-SURF CONTACT INO	PR
KEYOPT(1-12)=	0	0	0 0	3	0 0 0 1 2 0 0 0	
ELEMENT TYPE	64	IS	TARGE170		3-D TARGET SEGMENT INO	PR
KEYOPT(1-12) =	0	0	0 0	0	0 0 0 0 0 0 0 0	
ELEMENT TVDF	65	TS	ር በአሞኔ 1 7 4		3D 8-NODE SURF-SURF CONTACT INO	qq
KEYOPT(1-12)=	0	0	0 0	3	0  0  1  2  0  0	- 1/
· /	-	-	-			
ELEMENT TYPE	66	IS	TARGE170		3-D TARGET SEGMENT INO	PR
KEYOPT(1-12) =	0	0	0 0	0	0 0 0 0 0 0 0	

ELEMENT TYPE	67	IS	CONTA1	L74		3D	8-N	ODE	SURF	-SU	RF	CONTACT		INOPR
KEYOPT(1-12) =	0	0	0	0	3	0	0	0	1	2	0	0	0	
ELEMENT TYPE	68	IS	TARGE1	L70		3-I	) TA	RGE	r seg	MEN	Г			INOPR
KEYOPT(1-12) =	0	0	0	0	0	0	0	0	0	0	0	0	0	
ELEMENT TYPE	69	IS	CONTA1	L74		3D	8-N	ODE	SURF	-SU	RF	CONTACT		INOPR
KEYOPT(1-12) =	0	0	0	0	3	0	0	0	1	2	0	0	0	
CURRENT NODAL DO THREE-DIMENSION	)F SE NAL N	et i 10di	IS UX El		UY	τ	JZ							

# **Real Constant Listing**

LIST REAL SETS	1 TO	35 BY	1		
REAL CONSTANT 0.0000	SET 3 0.0000	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 3 0.0000	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 3 0.0000	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 3 1.0000	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET 3	ITEMS 25 TO	25		
REAL CONSTANT 0.0000	SET 4 0.0000	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 4 0.0000	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 4 0.0000	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 4 1.0000	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET 4	ITEMS 25 TO	25		
REAL CONSTANT 0.0000	SET 5 0.0000	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 5 0.0000	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 5 0.0000	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000

REAL CONSTANT 0.0000	SET 1.0000	5	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET	5	ITEMS 25 TO	25		
REAL CONSTANT 0.0000	SET 0.0000	6	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	6	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	6	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	б	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET	б	ITEMS 25 TO	25		
REAL CONSTANT 0.0000	SET 0.0000	7	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	7	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	7	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	7	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET	7	ITEMS 25 TO	25		
REAL CONSTANT 0.0000	SET 0.0000	8	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	8	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	8	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	8	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET	8	ITEMS 25 TO	25		
REAL CONSTANT 0.0000	SET 0.0000	9	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	9	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000

REAL CONSTANT 0.0000	SET 0.0000	9	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	9	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET	9	ITEMS 25 TO	25		
REAL CONSTANT 0.0000	SET 0.0000	10	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	10	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	10	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	10	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET	10	ITEMS 25 TO	25		
REAL CONSTANT 0.0000	SET 0.0000	11	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	11	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	11	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	11	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET	11	ITEMS 25 TO	25		
REAL CONSTANT 0.0000	SET 0.0000	12	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	12	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	12	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	12	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET	12	ITEMS 25 TO	25		
REAL CONSTANT 0.0000	SET 0.0000	13	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000

REAL CONSTANT 0.0000	SET 0.0000	13	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	13	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	13	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	14	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	14	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	14	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	14	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	15	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	15	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	15	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	15	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	16	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	16	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	16	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	16	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	17	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	17	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	17	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	17	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000

REAL CONSTANT 0.0000	SET 0.0000	20	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	20	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	20	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	20	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	21	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	21	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	21	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	21	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	22	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	22	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	22	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	22	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	23	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	23	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	23	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	23	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	24	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	24	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	24	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000

REAL CONSTANT 0.0000	SET 1.0000	24	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET 0.0000	24	ITEMS 25 TO 0.0000	30 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	25	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	25	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	25	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	25	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	26	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	26	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	26	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	26	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET 0.0000	26	ITEMS 25 TO 0.0000	30 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	27	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	27	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	27	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	27	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET 0.0000	27	ITEMS 25 TO 0.0000	30 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	28	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	28	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	28	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000

REAL CONSTANT 0.0000	SET 1.0000	28	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	29	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	29	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	29	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	29	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET 0.0000	29	ITEMS 25 TO 0.0000	30 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	30	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	30	ITEMS 7 TO 17320.	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	30	ITEMS 13 TO 0.0000	18 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	30	ITEMS 19 TO 1.0000	24 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	31	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	31	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	31	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	31	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	32	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	32	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	32	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	32	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	33	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000

REAL CONSTANT 0.0000	SET 0.0000	33	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	33	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	33	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	34	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	34	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	34	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	34	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	35	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000

# **Material Properties Listing**

Τ.Τ. Υ. ΜΛΥΓΡΤΑΙ.Ο	1 Tr∩	3 BV	1		
PROPERTY= ALL	1 10	2 11	Ŧ		
PROPERTY TABLE	EX MAT=	1 NUM.	POINTS= 6		
TEMPERATURE	DATA T	EMPERATURE	DATA T	EMPERATURE	DATA
70.000	0.28300E+08	100.00	0.28100E+08	200.00	0.27600E+08
300.00	0.27000E+08	400.00	0.26500E+08	500.00	0.25800E+08
PROPERTY TABLE	NUXY MAT=	1 NUM.	POINTS= 6		
TEMPERATURE	DATA T	EMPERATURE	DATA T	EMPERATURE	DATA
70.000	0.30000	100.00	0.30000	200.00	0.30000
300.00	0.30000	400.00	0.30000	500.00	0.30000
PROPERTY TABLE	ALPX MAT=	1 NUM.	POINTS= 6	REFERENCE	TEMP. = $70.00$
TEMPERATURE	DATA T	EMPERATURE	DATA T	EMPERATURE	DATA
70.000	0.85000E-05	100.00	0.86000E-05	200.00	0.89000E-05
300.00	0.92000E-05	400.00	0.95000E-05	500.00	0.97000E-05

PROPERTY TABLE TEMPERATURE 0.0000	DENS MAT= DATA 0.28300	1 NUM. TEMPERATURE	POINTS= 1 DATA TEMPERATUR	RE DATA
PROPERTY TABLE TEMPERATURE 0.0000	MU MAT= DATA 0.30000	1 NUM. TEMPERATURE	POINTS= 1 DATA TEMPERATUR	RE DATA
PROPERTY TABLE TEMPERATURE 70.000 300.00	EX MAT= DATA 0.29900E+08 0.29900E+08	2 NUM. TEMPERATURE 3 100.00 3 400.00	POINTS= 6 DATA TEMPERATUR 0.29900E+08 200.00 0.29900E+08 500.00	RE DATA 0.29900E+08 0.29900E+08
PROPERTY TABLE TEMPERATURE 70.000 300.00	NUXY MAT= DATA 0.30000 0.30000	2 NUM. TEMPERATURE 100.00 400.00	POINTS=         6           DATA         TEMPERATUR           0.30000         200.00           0.30000         500.00	RE DATA 0.30000 0.30000
PROPERTY TABLE TEMPERATURE 70.000 300.00	ALPX MAT= DATA 0.65000E-09 0.65000E-09	2 NUM. TEMPERATURE 5 100.00 5 400.00	POINTS= 6 REFEREN DATA TEMPERATUR 0.65000E-05 200.00 0.65000E-05 500.00	NCE TEMP. = 70.00 RE DATA 0.65000E-05 0.65000E-05
PROPERTY TABLE TEMPERATURE 0.0000	DENS MAT= DATA 0.28300	2 NUM. TEMPERATURE	POINTS= 1 DATA TEMPERATUR	RE DATA
PROPERTY TABLE TEMPERATURE -40.000 100.00 400.00	EX MAT= DATA 0.24600E+0 0.22100E+0 0.17000E+0	3 NUM. TEMPERATURE 7 -20.000 7 200.00 7 500.00	POINTS= 8 DATA TEMPERATUR 0.24300E+07 70.000 0.20100E+07 300.00 0.15200E+07	RE DATA 0.22700E+07 0.18500E+07
PROPERTY TABLE TEMPERATURE 81.000 392.00	NUXY MAT= DATA 0.40000 0.40000	3 NUM. TEMPERATURE 212.00 513.00	POINTS= 6 DATA TEMPERATUR 0.40000 302.00 0.40000 621.00	RE DATA 0.40000 0.40000
PROPERTY TABLE TEMPERATURE -40.000 100.00 400.00	ALPX MAT= DATA 0.15560E-04 0.16220E-04 0.18160E-04	3 NUM. TEMPERATURE 4 -20.000 4 200.00 4 500.00	POINTS= 8 REFEREN DATA TEMPERATUR 0.15650E-04 70.000 0.16700E-04 300.00 0.19120E-04	JCE TEMP. = 70.00 RE DATA 0.16060E-04 0.17330E-04
PROPERTY TABLE TEMPERATURE 0.0000	DENS MAT= DATA 0.41000	3 NUM. TEMPERATURE	POINTS= 1 DATA TEMPERATUR	RE DATA

Title	Structu	ral Analyse	s of the 3-60B Cask Under Drop	Conditions			
Calc. No	ST-504	Rev	2	Sheet _	21	_of25	

## Appendix 2

Summary Print-Out of the ANSYS Results and Stress Linearization (52 Pages)

# ANSYS FEM Drop Analyses Result Summary

30-ft End Drop			
-	Hot Conditions	Cold (Max Heat)	Cold (No Heat)
Bolting Ring	32803.	34141.	35803.
Shell Extension	32727.	52643.	61463.(1)
Bolting Ring Skirt	30895.	21036.	19504.
Inner Shell	17652.	38207.	43700.
Outer Shell	31224 -	24782.	24687.
Lid	30311	33945	35126.
Pagenlateg	14924	24661	27593
Sool Plates	51854 (2)	56497 (2)	57706 (2)
Delta	0003	7592	7442
BOTCS	9023.	1002.	/ "Ji "Ji Kut e
20 ft Gide Drop			
SO-IC SIGE DIOP	Hot Conditions	Cold (Max Heat)	Cold (No Heat)
Dolting Ding		90474 (3)	90936 (3)
BOILING RING	89102.(3)	40247	52021
Shell Extension	45/23.	48347.	14104C (2)
Bolting Ring Skirt	138864.(3)	141086.(3)	141946.(3)
Inner Shell	44216.(1)	42230.(1)	43486.
Outer Shell	44151.(1)	47487.(1)	49364.(1)
Lid	40684.(1)	42435.(1)	41878.(1)
Baseplates	31876.	52020.(1)	57405.(1)
Seal Plates	104463.(2)	106333.(2)	103855.(2)
Bolts	57103.	55860.	54432.
30-it Corner Drop			
	Hot Conditions	Cold (Max Heat)	COLD (NO Heat)
Bolting Ring	139619.(3)	130466. (3)	126485.(3)
Shell Extension	47453.	71881.(1)	80758.(1)
Bolting Ring Skirt	99406.(3)	103380.(3)	104484.(3)
Inner Shell	35571.	50708.	55586.
Outer Shell	31297.	25953.	26917.
Lid	100032.(1)	96158.(1)	95863.(1)
Baseplates	10203.	16204.	21989.
Seal Plates	185156.(2)	173418.(2)	169949.(2)
Bolts	27642.	25437.	26079.
1 ft End Drop			
T-IC Ella Drob	Hat Conditions	Cold (Max Hoat)	Cold (No Hoat)
	HOL CONDICIONS	12602	
Bolting Ring	14825.	13602.	18002.
Shell Extension	18459.(1)	24129.(1)	30436.(L)
Bolting Ring Skirt	7951.	5097.	4370.
Inner Shell	4244.	1/043.	21183.
Outer Shell	15035.(1)	7562.	7467.
Lid	10138.	10320.	11125.
Baseplates	10182.	12590.	18208.(1)
Seal Plates	16808.	17356.	19186.
Bolts	6725.	3646.	5301.

1-ft Side Drop			
_	Hot Conditions	Cold (Max Heat)	Cold (No Heat)
Bolting Ring	21532.	22153.	22443.
Shell Extension	23587.(1)	18408.	23567.(1)
Bolting Ring Skirt	33725.(1)	34603.(1)	35103.(1)
Inner Shell	16467.	13051.	16167.
Outer Shell	20069.(1)	14816.	16807.(1)
Lid	7439.	10147.	11179.
Baseplates	12645.	18373.(1)	24154.(1)
Seal Plates	22040.(2)	26446.(2)	24543.(2)
Bolts	24328.	21543.	19916.
1-it Corner Drop	Net Genelitiene	Cold (Mar Hoot)	Cold (No Host)
	HOE CONDICIONS	COLO (MAX HEAL)	(NO Heat)
Bolting Ring	55516.(3)	52478.(3)	49660.(3)
Shell Extension	26202.	41032.(1)	49505.(1)
Bolting Ring Skirt	43340.(3)	45737.(3)	46708.(3)
Inner Shell	14534.	27569.	3421/.
Outer Shell	16269.(1)	12611.	14387.(1)
Lid	41359.(1)	39236.(1)	39298.(1)
Baseplates	10896.	11656.	18310.(1)
Seal Plates	77292.(2)	71591.(2)	69165.(2)
Bolts	18243.	14026.	13725.

#### NOTES:

- (1) Stresses linearized over the cross-section for component qualification. See the following pages for stress linearization print-out.
- (2) The maximum stress intensities in the seal plates are caused by compressive loadings. These stress intensities are classified as bearing stresses. The maximum principal stresses (tensile) are used for component qualification. See the corresponding ls1post.out file for hot conditions, ls2post.out file for Cold (Max. Heat) conditions and ls3post.out file for Cold (No Heat) conditions.
- (3) Component qualified by alternate analyses. See Reference 12.

## Stress Linearization Print-Out Index

Serial No.	Description
1	30-ft End Drop - Cold (No Heat) Conditions - Shell Extension
2	30-ft Side Drop - Hot Conditions - Inner Shell
. 3	30-ft Side Drop - Hot Conditions - Outer Shell
4	30-ft Side Drop - Hot Conditions - Lid
5	30-ft Side Drop - Cold (Max Heat) Conditions - Inner Shell
6	30-ft Side Drop - Cold (Max Heat) Conditions - Outer Shell
7	30-ft Side Drop - Cold (Max Heat) Conditions - Lid
8	30-ft Side Drop - Cold (Max Heat) Conditions - Baseplates
9	30-ft Side Drop - Cold (No Heat) Conditions - Outer Shell
10	30-ft Side Drop - Cold (No Heat) Conditions - Lid
11	30-ft Side Drop - Cold (No Heat) Conditions - Baseplates
12	30-ft Corner Drop - Hot Conditions - Lid
13	30-ft Corner Drop - Cold (Max Heat) Conditions - Shell Extension
14	30-ft Corner Drop - Cold (Max Heat) Conditions - Lid
15	30-ft Corner Drop - Cold (No Heat) Conditions - Shell Extension
16	30-ft Corner Drop - Cold (No Heat) Conditions - Lid
17	1-ft End Drop - Hot Conditions - Shell Extension
18	1-ft End Drop - Hot Conditions - Outer Shell
19	1-ft End Drop - Cold (Max Heat) Conditions - Shell Extension
20	1-ft End Drop - Cold (No Heat) Conditions - Shell Extension
21	1-ft End Drop - Cold (No Heat) Conditions - Baseplates
22	1-ft Side Drop - Hot Conditions - Shell Extension

23	1-ft Side Drop - Hot Conditions - Bolting Ring Skirt
24	1-ft Side Drop - Hot Conditions - Outer Shell
25	1-ft Side Drop - Cold (Max Heat) Conditions - Bolting Ring Skirt
26	1-ft Side Drop - Cold (Max Heat) Conditions - Baseplates
27	1-ft Side Drop - Cold (No Heat) Conditions - Shell Extension
28	1-ft Side Drop - Cold (No Heat) Conditions - Bolting Ring Skirt
29	1-ft Side Drop - Cold (No Heat) Conditions - Outer Shell
30	1-ft Side Drop - Cold (No Heat) Conditions - Baseplates
31	1-ft Corner Drop - Hot Conditions - Outer Shell
31 32	1-ft Corner Drop - Hot Conditions - Outer Shell 1-ft Corner Drop - Hot Conditions - Lid
31 32 33	<ul> <li>1-ft Corner Drop - Hot Conditions - Outer Shell</li> <li>1-ft Corner Drop - Hot Conditions - Lid</li> <li>1-ft Corner Drop - Cold (Max Heat) Conditions - Shell Extension</li> </ul>
31 32 33 34	<ul> <li>1-ft Corner Drop - Hot Conditions - Outer Shell</li> <li>1-ft Corner Drop - Hot Conditions - Lid</li> <li>1-ft Corner Drop - Cold (Max Heat) Conditions - Shell Extension</li> <li>1-ft Corner Drop - Cold (Max Heat) Conditions - Lid</li> </ul>
31 32 33 34 35	<ul> <li>1-ft Corner Drop - Hot Conditions - Outer Shell</li> <li>1-ft Corner Drop - Hot Conditions - Lid</li> <li>1-ft Corner Drop - Cold (Max Heat) Conditions - Shell Extension</li> <li>1-ft Corner Drop - Cold (Max Heat) Conditions - Lid</li> <li>1-ft Corner Drop - Cold (No Heat) Conditions - Shell Extension</li> </ul>
31 32 33 34 35 36	<ul> <li>1-ft Corner Drop - Hot Conditions - Outer Shell</li> <li>1-ft Corner Drop - Hot Conditions - Lid</li> <li>1-ft Corner Drop - Cold (Max Heat) Conditions - Shell Extension</li> <li>1-ft Corner Drop - Cold (Max Heat) Conditions - Lid</li> <li>1-ft Corner Drop - Cold (No Heat) Conditions - Shell Extension</li> <li>1-ft Corner Drop - Cold (No Heat) Conditions - Shell Extension</li> </ul>
31 32 33 34 35 36 37	<ul> <li>1-ft Corner Drop - Hot Conditions - Outer Shell</li> <li>1-ft Corner Drop - Hot Conditions - Lid</li> <li>1-ft Corner Drop - Cold (Max Heat) Conditions - Shell Extension</li> <li>1-ft Corner Drop - Cold (Max Heat) Conditions - Lid</li> <li>1-ft Corner Drop - Cold (No Heat) Conditions - Shell Extension</li> <li>1-ft Corner Drop - Cold (No Heat) Conditions - Outer Shell</li> <li>1-ft Corner Drop - Cold (No Heat) Conditions - Lid</li> </ul>

### 30-ft End Drop - Cold (No Heat) Conditions - Shell Extension

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1609 OUTSIDE NODE = 1504

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z STRESSES ARE IN COORDINATE SYSTEM 1

	** MEMBRANI	3 **			
SX	SY	SZ	SXY	SYZ	SXZ
-3246.	-0.1344E+05	-0.4212E+05	250.4	59.28	2134.
Sl	S2	S3	SINT	SEQV	
-3123.	-0.1345E+05	-0.4224E+05	0.3912E+05	0.3511E+05	

		** BENDING	* *	I=INSIDE	C=CENTER	O=OUTSIDE	
	SX	SY		SZ	SXY	SYZ	SXZ
I	41.90	6438.		0.2236E+05	-157.1	-5.327	-206.1
С	0.000	0.000		0.000	0.000	0.000	0.000
0	-41.90	-6438.		-0.2236E+05	157.1	5.327	206.1
	S1	S2		S3	SINT	SEQV	
I	0.2237E+05	6442.		36.14	0.2233E	C+05 0.1992E+05	
С	0.000	0.000		0.000	0.000	0.000	
0	-36.14	-6442.		-0.2237E+05	0.2233E	C+05 0.1992E+05	

		** MEMBRANE	PLUS BENDING	** I=INSIDE	C=CENTER	O=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-3204.	-7007.	-0.1976E+05	93.24	53.95	1928.
С	-3246.	-0.1344E+05	-0.4212E+05	250.4	59.28	2134.
0	-3288.	-0.1988E+05	-0.6449E+05	407.5	64.61	2341.
	S1	S2	S3	SINT	SEQV	
Ι	-2980.	-7009.	-0.1998E+05	0.1700E+05	0.1539E+C	)5
С	-3123.	-0.1345E+05	-0.4224E+05	0.3912E+05	0.3511E+C	)5
0	-3188.	-0.1989E+05	-0.6458E+05	0.6139E+05	0.5498E+0	)5

	** PEAK ** I=INSIDE C=CENTER O=OUTSIDE							
	SX	SY	SZ	SXY	SYZ	SXZ		
Ι	0.1819E-01	2.795	9.711	-0.6822E-01	-0.2313E-02	-0.8948E-01		
С	-0.1364E-11	-0.3820E-10	-0.1310E-09	0.9095E-12	0.4974E-13	0.1819E-11		
0	-0.1819E-01	-2.795	-9.711	0.6822E-01	0.2313E-02	0.8948E-01		
	S1	S2	S3	SINT	SEQV			
I	9.712	2.797	0.1569E-01	9.696	8.648			
С	-0.1316E-11	-0.3822E-10	-0.1310E-09	0.1297E-09	0.1157E-09			
0	-0.1569E-01	-2.797	-9.712	9.696	8.648			

		** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE				
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-3204.	-7004.	-0.1975E+05	93.18	53.95	1928.
С	-3246.	-0.1344E+05	-0.4212E+05	250.4	59.28	2134.
0	-3288.	-0.1989E+05	-0.6450E+05	407.5	64.61	2341.
	Sl	S2	S3	SINT	SEQV	TEMP
Ι	-2980.	-7006.	-0.1997E+05	0.1699E+05	0.1538E+05	-20.00
С	-3123.	-0.1345E+05	-0.4224E+05	0.3912E+05	0.3511E+05	
0	-3188.	-0.1990E+05	-0.6459E+05	0.6140E+05	0.5498E+05	-20.00
PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-2 DSYS= 0

**** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1658 OUTSIDE NODE = 1679

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

THE FOLLOWING X, Y, Z STRESSES ARE IN COORDINATE SYSTEM 1

		** MEMBRANE	] **			
	SX	SY	SZ	SXY	SYZ	SXZ
	901.7	-0.1298E+05	-0.4216E+05	340.9	49.37	1794.
	S1	S2	S3	SINT	SEQV	
	984.8	-0.1299E+05	-0.4223E+05	0.4322E+05	0.3820E+05	
		** BENDING	** I=INSIDE	C=CENTER O=	OUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-23.89	4274.	0.1555E+05	5 -105.6	1.310	61.60
С	0.000	0.000	0.000	0.000	0.000	0.000
0	23.89	-4274.	-0.1555E+05	105.6	-1.310	-61.60
	Sl	S2	S3	SINT	SEQV	
Ι	0.1555E+0	5 4277.	-26.73	0.1558E+0	5 0.1394E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	26.73	-4277.	-0.1555E+05	0.1558E+0	5 0.1394E+05	

		** MEMBRANE	PLUS BENDING	** I=INSIDE	C=CENTER	O=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	877.8	-8702.	-0.2660E+05	235.3	50.68	1856.
С	901.7	-0.1298E+05	-0.4216E+05	340.9	49.37	1794.
0	925.6	-0.1725E+05	-0.5771E+05	446.4	48.06	1732.
	S1	S2	S3	SINT	SEQV	
Ι	1008.	-8708.	-0.2673E+05	0.2774E+05	0.2438E+0	5
С	984.8	-0.1299E+05	-0.4223E+05	0.4322E+05	0.3820E+0	5
0	987.8	-0.1726E+05	-0.5776E+05	0.5875E+05	0.5208E+0	5

		** PEAK ** 3	I=INSIDE C=CH	ENTER O=OUTSI	DE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.1037E-01	1.856	6.753	-0.4585E-01	0.5689E-03	0.2675E-01
С	-0.6821E-12	-0.9095E-11	-0.5821E-10	0.3979E-12	0.000	0.000
0	0.1037E-01	-1.856	-6.753	0.4585E-01	-0.5689E-03	-0.2675E-01
	S1	S2	S3	SINT	SEQV	
Ι	6.754	1.857	-0.1161E-01	6.765	6.051	
С	-0.6633E-12	-0.9114E-11	-0.5821E-10	0.5754E-10	0.5382E-10	
0	0.1161E-01	-1.857	-6.754	6.765	6.051	

		** TOTAL **	I=INSIDE C=C	CENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	877.8	-8700.	-0.2660E+05	235.2	50.68	1856.
С	901.7	-0.1298E+05	-0.4216E+05	340.9	49.37	1794.
0	925.6	-0.1725E+05	-0.5772E+05	446.5	48.06	1732.
	Sl	S2	S3	SINT	SEQV	TEMP
I	1008.	-8706.	-0.2672E+05	0.2773E+05	0.2437E+05	-20.00
С	984.8	-0.1299E+05	-0.4223E+05	0.4322E+05	0.3820E+05	
0	987.8	-0.1726E+05	-0.5777E+05	0.5875E+05	0.5209E+05	-20.00

# 30-ft Side Drop - Hot Conditions - Inner Shell

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1781 OUTSIDE NODE = 1861

LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

	ł	* * MEMBRANE	**					
	SX	SY	SZ	SXY	SYZ	SXZ		
~	64.42 -0	).3324E+05	3156.	810.4	10.47	40.54		
	Sl	S2	S3	SINT	SEQV			
	3156	-45.16	-0.3326E+05	0.3642E+05	0.3493E+05			
	ŕ	* * BENDING :	** T=TNSTDE	C=CENTER O=	OUTSIDE			
	SX	SV	SZ	SXY	SYZ	SXZ		
т	6 656	2959	0.1176E+05	-97.17	-39.32	-33.00		
Ċ	0.000	0 000	0 000	0 000	0 000	0 000		
$\hat{\mathbf{O}}$	-6.656	-3959	-0 1176E+05	97 17	39 32	33 00		
0	S1	5252.	S3	STNT	SEOV			
т	0 11768+05	3961	4 170	0 1175E+0	5 0 1036E+05			
C	0 000	0 000	0 000	0 000	0 000			
0	-4 170	-3961	-0.1176E+05	0.1175E+0	5 0.1036E+05			
0	4.1/0		0.11/01/03	0.22/02/0	0.100001.00			
	** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE							
	SX	SY	SZ	SXY	SYZ	SXZ		
Ι	-57.77	-0.2928E+0	5 0.1491E+05	713.2	-28.85	7.539		
С	-64.42	-0.3324E+0	5 3156.	810.4	10.47	40.54		
0	-71.08	-0.3720E+0	5 -8600.	907.6	49.80	73.55		
	S1	S2	S3	SINT	SEQV			
I	0.1491E+05	-40.37	-0.2930E+05	0.4421E+0	5 0.3895E+05			
С	3156.	-45.16	-0.3326E+05	0.3642E+0	5 0.3493E+05			
0	-48.25	-8601.	-0.3722E+05	0.3717E+0	5 0.3372E+05			
	** PEAK ** I=INSIDE C=CENTER O=OUTSIDE							
	SX	SY	SZ	SXY	SYZ	SXZ		
Ι	0.2890E-02	1.719	5.105	-0.4219E-0	1 -0.1708E-01	-0.1433E-01		
С	0.1323E-10	-0.4366E-1	0 0.7276E-11	0.9095E-1	2 0.8704E-13	-0.1599E-11		
0	-0.2890E-02	-1.719	-5.105	0.4219E-0	1 0.1708E-01	0.1433E-01		
	<b>61</b>	<b>G O</b>	<b>C D</b>	O T NT	07017			

0	-0.2890E-02	-1.719	-5.105	0.4219E-01	0.1708E-01	0.1433E-
	S1	S2	S3	SINT	SEQV	
I	5.105	1.720	0.1811E-02	5.103	4.497	
С	0.1365E-10	0.6876E-11	-0.4367E-10	0.5732E-10	0.5425E-10	
0	-0.1811E-02	-1.720	-5.105	5.103	4.497	

		** TOTAL **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-57.76	-0.2928E+05	0.1492E+05	713.2	-28.87	7.525
С	-64.42	-0.3324E+05	3156.	810.4	10.47	40.54
0	-71.08	-0.3720E+05	-8605.	907.6	49.81	73.56
	Sl	S2	S3	SINT	SEQV	TEMP
I	0.1492E+05	-40.37	-0.2930E+05	0.4422E+05	0.3895E+05	177.4
С	3156.	-45.16	-0.3326E+05	0.3642E+05	0.3493E+05	
0	-48.26	-8606.	-0.3722E+05	0.3718E+05	0.3372E+05	177.3

### 30-ft Side Drop - Hot Conditions - Outer Shell

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

**** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1626 OUTSIDE NODE = 1645

LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

	*	* MEMBRANE *	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
	40740	.2318E+05 (	).1061E+05	427.9	-304.6 -	-69.47
	S1	S2	S3	SINT	SEQV	
0	.1061E+05 -	4065(	0.2319E+05	).3380E+05	0.2936E+05	
			L			
	*	* BENDING *	* I=INSIDE (	C=CENTER O=O	UTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-27.82	5619.	0.1597E+05	-139.6	8.877	0.1253E-03
С	0.000	0.000	0.000	0.000	0.000	0.000
0	27.82	-5619.	-0.1597E+05	139.6	-8.877	-0.1253E-03
	S1	S2	S3	SINT	SEQV	
Ι	0.1597E+05	5623.	-31.27	0.1600E+05	0.1405E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	31.27	-5623.	-0.1597E+05	0.1600E+05	0.1405E+05	
	נ	* * MEMBRANE	PLUS BENDING	** I=INSID	E C=CENTER O=	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-4102.	-0.1756E+05	0.2658E+05	288.3	-295.7	-69.47
С	-4074.	-0.2318E+05	0.1061E+05	427.9	-304.6	-69.47
0	-4046.	-0.2880E+05	-5362.	567.6	-313.5	-69.47
	Sl	S2	<b>S</b> 3	SINT	SEQV	
Ι	0.2658E+05	-4096.	-0.1757E+05	0.4415E+05	0.3919E+05	
С	0.1061E+05	-4065.	-0.2319E+05	0.3380E+05	0.2936E+05	
0	-4029.	-5363.	-0.2882E+05	0.2479E+05	0.2415E+05	
		** PEAK **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.1208E-01	2.440	6.934	-0.6063E-01	0.3854E-02	0.5439E-07
С	-0.9095E-12	-0.2910E-10	-0.8913E-10	0.7390E-12	-0.2842E-12	-0.1421E-13
0	0.1208E-01	-2.440	-6.934	0.6063E-01	-0.3854E-02	-0.5439E-07
	Sl	S2	S3	SINT	SEQV	
I	6.934	2.441	-0.1358E-01	6.948	6.102	
С	-0.8901E-12	-0.2912E-10	-0.8913E-10	0.8824E-10	0.7805E-10	
0	0.1358E-01	-2.441	-6.934	6.948	6.102	
		** TOTAL **	I=INSIDE C=	CENTER O=OUT	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-4102.	-0.1756E+05	0.2658E+05	288.2	-295.7	-69.47
С	-4074.	-0.2318E+05	0.1061E+05	427.9	-304.6	-69.47
0	-4046.	-0.2880E+05	-5369.	567.6	-313.5	-69.47
	S1	S2	S3	SINT	SEQV	TEMP
I	0.2658E+05	-4096.	-0.1757E+05	0.4415E+05	0.3919E+05	176.0
С	0.1061E+05	-4065.	-0.2319E+05	0.3380E+05	0.2936E+05	
0	-4029.	-5370.	-0.2882E+05	0.2479E+05	0.2415E+05	176.0

# 30-ft Side Drop - Hot Conditions - Lid

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 266 OUTSIDE NODE = 87

LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

		** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
	6020.	-2521.	8895.	199.4	1110.	-0.1293E+05
	Sl	S2	S3	SINT	SEQV	
0	.2049E+05	-2299.	-5793.	0.2628E+05	0.2472E+05	
		** BENDING	** I=INSIDE	C=CENTER O=OU	JTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	8859.	-1592.	1756.	245.7	-10.97	-7126.
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-8859.	1592.	-1756.	-245.7	10.97	7126.
	S1	S2	S3	SINT	SEQV	
Ι	0.1327E+0	5 -1582.	-2668.	0.1594E+05	0.1543E+0	5
С	0.000	0.000	0.000	0.000	0.000	1 ¹²
0	2668.	1582.	-0.1327E+05	5 0.1594E+05	0.1543E+0	5
		** MEMBRANE	PLUS BENDING	G ** I=INSIDI	E C=CENTER	O=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	0.1488E+0	5 -4113.	0.1065E+05	5 445.1	1099.	-0.2005E+05

С	6020.	-2521.	8895.	199.4	1110.	-0.1293E+05
0	-2838.	-928.8	7139.	-46.35	1121.	-5802.
	Sl	S2	53	SINT	SEQV	
Ι	0.3293E+05	-3774.	-7743.	0.4068E+05	0.3885E+05	
С	0.2049E+05	-2299.	-5793.	0.2628E+05	0.2472E+05	
0	9902.	-988.6	-5541.	0.1544E+05	0.1374E+05	

		** PEAK ** 1	I=INSIDE C=C	ENTER O=OUTSI	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	3.847	-0.6912	0.7623	0.1067	-0.4765E-02	-3.094
С	0.7003E-10	-0.2865E-10	0.1037E-09	0.3809E-11	0.4547E-11	-0.1837E-09
0	-3.847	0.6912	-0.7623	-0.1067	0.4765E-02	3.094
	Sl	S2	S3	SINT	SEQV	
Ι	5.763	-0.6868	-1.159	6.922	6.698	
С	0.2713E-09	-0.2815E-10	-0.9813E-10	0.3695E-09	0.3399E-09	
0	1.159	0.6868	-5.763	6.922	6.698	

	נ	** TOTAL **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	0.1488E+05	-4113.	0.1065E+05	445.2	1099.	-0.2006E+05
С	6020.	-2521.	8895.	199.4	1110.	-0.1293E+05
0	-2842.	-928.1	7139.	-46.46	1121.	-5799.
	Sl	S2	S3	SINT	SEQV	TEMP
I	0.3294E+05	-3775.	-7744.	0.4068E+05	0.3885E+05	177.9
С	0.2049E+05	-2299.	-5793.	0.2628E+05	0.2472E+05	
0	9899.	-988.0	-5542.	0.1544E+05	0.1374E+05	178.0

### 30-ft Side Drop - Cold (Max Heat) Conditions - Inner Shell

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1781 OUTSIDE NODE = 1861

LOAD STEP 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ł	* * MEMBRANE *	< *			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		SX	SY	SZ	SXY	SYZ	SXZ
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		819.3 -(	).3670E+05 -	-1274.	911.7	30.38	107.9
847.0       -1280.       -0.3672E+05       0.3756E+05       0.3655E+05         ** BENDING **       I=INSIDE C=CENTER 0=0UTSIDE         SX       SY       SZ       SXY       SYZ       SXZ         I       -6.578       3397.       0.1018E+05       -83.81       -35.76       51.98         0.000       0.000       0.000       0.000       0.000       0.000       0.000         0       6.578       -3397.       -0.1018E+05       83.81       35.76       -51.98         SI       S2       S3       SINT       SEQV       -51.98         0.1018E+05       3399.       -8.897       0.1019E+05       8984.         **       MEMBRANE PLUS BENDING       **       I=INSIDE C=CENTER O=OUTSIDE         SX       SY       SZ       SXX       SYZ       SXZ         S1       812.7       -0.330E+05       805.       827.9       -5.378       159.9         C       810.3       -0.3672E+05       0.3145E+05       995.5       66.13       55.94         S1       S2       S3       SINT       SEQV       1       8908.829.6       0.3632E+05       0.3655E+05         C       847.0       -1280.       -0		S1	S2	53	SINT	SEQV	
** BENDING **         I=INSIDE C=CENTER 0=0UTSIDE           SX         SY         SZ         SXY         SYZ         SZZ           I         -6.578         3397.         0.10188+05         -83.81         -35.76         51.98           C         0.000         0.000         0.000         0.000         0.000         0.000           0         6.578         -3397.         -0.10188+05         83.81         35.76         -51.98           SI         S2         S3         SINT         SEQV         I         0.10188+05         3399.         -8.897         0.1019E+05         8984.           C         0.000         0.000         0.000         0.000         0.000         0.000           0         8.897         -3399.         -0.1018E+05         0.1019E+05         8984.           **         MEMBRANE         PLUS BENDING **         I=INSIDE         C=CENTER O=OUTSIDE           SX         SY         SZ         SXY         SYZ         SXZ           I         812.7         -0.3330E+05         -0.1145E+05         95.5         66.13         55.94           SI         S2         9         -0.3672E+05         0.3652E+05         0.3652E+05		847.0	-12800	).3672E+05 [	D.3756E+05	0.3655E+05	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				T-TNETDE	- - - - - - - - - - - - - -	TTCTDE	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CV.	GA GA GA GA GA GA GA GA GA GA GA GA GA G	C7 C7	CAA CAA	SVZ	SXZ
1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1	т	5A 6 E70	2207	0 10188+05	-83 81	-35 76	51 98
C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 S1 S2 S3 SINT SEQV I 0.1018E+05 33990.1018E+05 83.81 35.76 -51.98 S1 S2 S3 SINT SEQV I 0.1018E+05 33990.1018E+05 0.1019E+05 8984. *** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I 812.7 -0.3330E+05 8905. 827.9 -5.378 159.9 C 819.3 -0.3670E+05 -1274. 911.7 30.38 107.9 O 825.9 -0.4009E+05 -0.1145E+05 995.5 66.13 55.94 S1 S2 S3 SINT SEQV I 8908. 829.6 -0.332E+05 $0.4223E+05$ 0.3882E+05 C 847.0 -12800.3672E+05 0.3756E+05 0.3655E+05 O 850.4 -0.1145E+05 -0.4012E+05 0.4097E+05 0.3654E+05 O 850.4 -0.1145E+05 -0.4012E+05 0.4097E+05 0.3641E+05 ** PEAK ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I -0.2856E-02 -1.475 4.420 -0.3639E-01 0.1553E-01 0.2257E-01 O 0.2856E-02 -1.475 -4.420 0.3639E-01 0.1553E-01 -0.2257E-01 S1 S2 S3 SINT SEQV I 4.420 1.476 -0.3863E-02 4.424 3.901 C 0.2541E-10 0.6562E-11 -0.2186E-10 0.4727E-10 0.4121E-10 O 0.3863E-02 -1.476 -4.420 4.424 3.901 ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I 612.7 -0.3330E+05 8910. 827.9 -5.393 155.9 C 819.3 -0.3670E+05 -1274. 911.7 30.38 107.9 O 0.3863E-02 -1.476 -4.420 4.424 3.901 ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I 812.7 -0.3330E+05 8910. 827.9 -5.393 155.9 C 819.3 -0.3670E+05 -1274. 911.7 30.38 107.9 O 0.3863E+05 -0.2409E+05 -0.1146E+05 995.5 66.15 55.91 S1 S2 S3 SINT SEQV TEMP I 8913. 829.6 -0.3322E+05 0.4223E+05 0.382E+05 17.34 P513. 829.6 -0.332E+05 0.4223E+05 0.382E+05 17.34	T T	-0.578	0 000	0.10100+00	0 000	0 000	0 000
So 6.376 5377. 50.10181405 51.01 SERVE SERVE S1 S2 S3 SINT SEQV I 0.1018E+05 33998.897 0.1019E+05 8984. ** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER 0=OUTSIDE SX SY SZ SXY SZ SXY I 812.7 -0.3330E+05 8905. 827.9 -5.378 159.9 C 819.3 -0.3670E+05 -1274. 911.7 30.38 107.9 0 825.9 -0.4009E+05 -0.1145E+05 995.5 66.13 55.94 S1 S2 S3 SINT SEQV I 8908. 829.6 -0.3332E+05 $0.4223E+05$ 0.3882E+05 C 847.0 -12800.3672E+05 0.3756E+05 0.3655E+05 0 850.4 -0.1145E+05 -0.4012E+05 0.4097E+05 0.3641E+05 ** PEAK ** I=INSIDE C=CENTER 0=OUTSIDE SX SY SZ SXY SYZ SXZ I -0.2856E-02 1.475 4.420 -0.3639E-01 -0.1553E-01 0.2257E-01 0 0.2856E-02 -1.475 -4.420 0.3639E-01 0.1553E-01 -0.2257E-01 S1 S2 S3 SINT SEQV I 4.420 1.476 -0.3863E-02 4.424 3.901 C 0.2541E-10 0.6552E-11 -0.2186E-10 0.42727E-10 0.4121E-10 0 0.3863E-02 -1.476 -4.420 4.424 3.901 ** TOTAL ** I=INSIDE C=CENTER 0=OUTSIDE SX SY SZ SXY SYZ SXZ I 4.420 1.476 -0.3863E-02 4.424 3.901 ** TOTAL ** I=INSIDE C=CENTER 0=OUTSIDE SX SY SZ SXY SYZ SXZ I 4.420 1.476 -0.3863E-02 4.424 3.901 ** TOTAL ** I=INSIDE C=CENTER 0=OUTSIDE SX SY SZ SXY SYZ SXZ I 812.7 -0.3330E+05 8910. 827.9 -5.393 159.9 C 819.3 -0.3670E+05 -1274. 911.7 30.38 107.9 0 825.9 -0.4009E+05 -0.1146E+05 995.5 66.15 55.91 S1 S2 S3 SINT SEQV TEMP I 8913. 829.6 -0.3332E+05 0.4223E+05 0.3862E+05 17.34 8913. 829.6 -0.3332E+05 0.325E+05 0.3862E+05 17.34	0	6 579	- 2297	-0 1018F±05	83 81	35 76	-51 98
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0.570	-3397. CO	-0.10100+00	STNT	SEOV	91.90
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T		3200	_8 897	0 10198+05	8984	
C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0 8.897 -33990.1018E+05 0.1019E+05 8984. ** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I 812.7 -0.3330E+05 8905. 827.9 -5.378 159.9 C 819.3 -0.3670E+05 -1274. 911.7 30.38 107.9 0 825.9 -0.4009E+05 -0.1145E+05 995.5 66.13 55.94 S1 S2 S3 SINT SEQV I 8908. 829.6 -0.3332E+05 $0.4223E+05$ 0.3882E+05 C 847.0 -12800.3672E+05 $0.3756E+05$ 0.3655E+05 0 850.4 -0.1145E+05 -0.4012E+05 $0.4097E+05$ 0.3641E+05 ** PEAK ** I=INSIDE C=CENTER 0=OUTSIDE SX SY SZ SXY SYZ SXZ I -0.2856E-02 1.475 4.420 -0.3639E-01 -0.1553E-01 0.2257E-01 C 0.2512E-10 -0.2183E-10 0.6821E-11 0.1137E-11 0.1030E-12 -0.2203E-11 0 0.2856E-02 -1.475 -4.420 0.3639E-01 -0.1553E-01 -0.2257E-01 S1 S2 S3 SINT SEQV I 4.420 1.476 -0.3863E-02 4.424 3.901 C 0.2541E-10 0.6562E-11 -0.2186E-10 0.4727E-10 0.4121E-10 0 0.3863E-02 -1.476 -4.420 4.424 3.901 ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I 812.7 -0.3330E+05 8910. 827.9 -5.393 159.9 C 819.3 -0.3670E+05 -1274. 911.7 30.38 107.9 0 825.9 -0.4009E+05 -0.1146E+05 995.5 66.15 55.91 S1 S2 S3 SINT SEQV TEMP I 8913. 829.6 -0.3332E+05 0.4223E+05 0.3882E+05 17.34 8913. 829.6 -0.3332E+05 0.4223E+05 0.3862E+05 17.34	T C	0.10186+05	3399.	-0.000	0 000	0 000	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.000	0.000	-0 10190+05	0.000	8984	
*** MEMBRANE PLUS BENDING **         I=INSIDE C=CENTER 0=0UTSIDE           SX         SY         SZ         SXY         SYZ         SXZ           I         812.7         -0.3330E+05         8905.         827.9         -5.378         159.9           C         819.3         -0.3670E+05         -1274.         911.7         30.38         107.9           0         825.9         -0.4009E+05         -0.1145E+05         995.5         66.13         55.94           S1         S2         S3         SINT         SEQV         1         8908.         829.6         -0.3322E+05         0.3756E+05         0.3655E+05           C         847.0         -1280.         -0.4012E+05         0.4097E+05         0.3641E+05           SX         SY         SZ         SXY         SYZ         SXZ           I -0.2856E-02         1.475         4.420         -0.3639E-01         0.2257E-01         0.2257E-01           C         0.2856E-02         1.475         -4.420         0.3639E-01         0.1553E-01         -0.2257E-01           S1         S2         S3         SINT         SEQV         I         4.420         1.476         -0.3863E-02         4.424         3.901	0	8.897	-3399.	-0.10185+05	0.10190+03	0004.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		:	** MEMBRANE	PLUS BENDING	** I=INSID	E C=CENTER O	=OUTSIDE
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		SX	SY	SZ	SXY	SYZ	SXZ
C $819.3$ $-0.3670E+05$ $-1274.$ $911.7$ $30.38$ $107.9$ 825.9 $-0.4009E+05$ $-0.1145E+05$ $995.5$ $66.13$ $55.94S1 S2 S3 SINT SEQVI 8908. 829.6 -0.3332E+05 0.4223E+05 0.3882E+05C 847.0 -1280. -0.3672E+05 0.3756E+05 0.365E+05C 847.0 -1280. -0.4012E+05 0.4097E+05 0.3641E+05** PEAK ** I=INSIDE C=CENTER O=OUTSIDESX SY SZ SXY SYZ SXZI -0.2856E-02 1.475 4.420 -0.3639E-01 -0.1553E-01 0.2257E-01C 0.2512E-10 -0.2183E-10 0.6821E-11 0.1137E-11 0.1030E-12 -0.2203E-11O 0.2856E-02 -1.475 -4.420 0.3639E-01 0.1553E-01 -0.2257E-01S1 S2 S3 SINT SEQVI 4.420 1.476 -0.3863E-02 4.424 3.901C 0.2541E-10 0.6562E-11 -0.2186E-10 0.4727E-10 0.4121E-10O 0.3863E-02 -1.476 -4.420 4.424 3.901C 0.2541E-10 0.6562E-11 -0.2186E-10 0.4727E-10 0.4121E-10O 0.3863E-02 -1.476 -4.420 4.424 3.901C 0.2541E-10 0.6562E-11 -0.2186E-10 0.4727E-10 0.4121E-10O 0.3863E-02 -1.476 -4.420 4.424 3.901C 0.2541E-10 0.6562E-11 -0.2186E-10 0.4727E-10 0.4121E-10O 0.3863E-02 -1.476 -4.420 4.424 3.901C 0.2541E-10 0.6562E-11 -0.2186E-10 0.4727E-10 0.4121E-10O 0.3863E-02 -1.476 -4.420 4.424 3.901C 812.7 -0.3330E+05 8910. 827.9 -5.393 159.9C 819.3 -0.3670E+05 -1274. 911.7 30.38 107.9O 825.9 -0.4009E+05 -0.1146E+05 995.5 66.15 55.91S1 S2 S3 SINTS2 S3 SINTS$	Ι	812.7	-0.3330E+05	8905.	827.9	-5.378	159.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	819.3	-0.3670E+05	-1274.	911.7	30.38	107.9
S1S2S3SINTSEQVI8908. $829.6$ $-0.3332E+05$ $0.4223E+05$ $0.3882E+05$ C $847.0$ $-1280.$ $-0.3672E+05$ $0.3756E+05$ $0.3655E+05$ O $850.4$ $-0.1145E+05$ $-0.4012E+05$ $0.4097E+05$ $0.3641E+05$ **PEAK **I=INSIDE C=CENTER O=OUTSIDESXSYSZSXYSYZI $-0.2856E+02$ $1.475$ $4.420$ $-0.3639E+01$ $-0.1553E+01$ 0 $2257E+01$ $0.2257E+01$ $0.1137E+11$ $0.1030E+12$ $-0.2203E+11$ 0 $0.2856E+02$ $-1.475$ $-4.420$ $0.3639E+01$ $0.1553E+01$ $-0.2257E+01$ S1S2S3SINTSEQVI $4.420$ $1.476$ $-0.3863E+02$ $4.424$ $3.901$ C $0.2541E+10$ $0.6562E+11$ $-0.2186E+10$ $0.4727E+10$ $0.4121E+10$ O $0.3863E+02$ $-1.476$ $-4.420$ $4.424$ $3.901$ **TOTAL **I=INSIDE C=CENTER O=OUTSIDESXSYSZSXYSYZI $812.7$ $-0.3330E+05$ $8910.$ $827.9$ $-5.393$ $159.9$ C $819.3$ $-0.3670E+05$ $-1274.$ $911.7$ $30.38$ $107.9$ O $825.9$ $-0.4009E+05$ $-0.1146E+05$ $995.5$ $66.15$ $55.91$ S1S2S3SINT $SEQV$ TEMPI $8913.$ $829.6$ $-0.3322E+05$ $0.3256E+05$ $0.3655E+05$ <	0	825.9	-0.4009E+05	-0.1145E+05	995.5	66.13	55.94
I 8908. 829.6 $-0.3332E+05$ $0.4223E+05$ $0.3882E+05$ C 847.0 $-1280.$ $-0.3672E+05$ $0.3756E+05$ $0.3655E+05$ O 850.4 $-0.1145E+05$ $-0.4012E+05$ $0.4097E+05$ $0.3641E+05$ ** PEAK ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I $-0.2856E-02$ $1.475$ $4.420$ $-0.3639E-01$ $-0.1553E-01$ $0.2257E-01$ C $0.2512E-10$ $-0.2183E-10$ $0.6821E-11$ $0.1137E-11$ $0.1030E-12$ $-0.2203E-11$ O $0.2856E-02$ $-1.475$ $-4.420$ $0.3639E-01$ $0.1553E-01$ $-0.2257E-01$ S1 S2 S3 SINT SEQV I $4.420$ $1.476$ $-0.3863E-02$ $4.424$ $3.901$ C $0.2541E-10$ $0.6562E-11$ $-0.2186E-10$ $0.4727E-10$ $0.4121E-10$ O $0.3863E-02$ $-1.476$ $-4.420$ $4.424$ $3.901$ ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I $812.7$ $-0.3330E+05$ $8910.$ $827.9$ $-5.393$ $159.9$ C $819.3$ $-0.3670E+05$ $-1274.$ $911.7$ $30.38$ $107.9$ O $825.9$ $-0.4009E+05$ $-0.1146E+05$ $995.5$ $66.15$ $55.91$ S1 S2 S3 SINT SEQV TEMP I $8913.$ $829.6$ $-0.3332E+05$ $0.4223E+05$ $0.3862E+05$ $17.34$		S1	S2	S3	SINT	SEQV	
C $847.0$ $-1280.$ $-0.3672\pm05$ $0.3756\pm05$ $0.3655\pm05$ $850.4$ $-0.1145\pm05$ $-0.4012\pm05$ $0.4097\pm05$ $0.3641\pm05$ ** PEAK ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I $-0.2856\pm02$ $1.475$ $4.420$ $-0.3639\pm01$ $-0.1553\pm01$ $0.2257\pm01$ C $0.2512\pm10$ $-0.2183\pm10$ $0.6821\pm11$ $0.1137\pm11$ $0.1030\pm12$ $-0.2203\pm11$ O $0.2856\pm02$ $-1.475$ $-4.420$ $0.3639\pm01$ $0.1553\pm01$ $-0.2257\pm01$ S1 S2 S3 SINT SEQV I $4.420$ $1.476$ $-0.3863\pm02$ $4.424$ $3.901$ C $0.2541\pm10$ $0.6562\pm11$ $-0.2186\pm10$ $0.4727\pm10$ $0.4121\pm10$ O $0.3863\pm02$ $-1.476$ $-4.420$ $4.424$ $3.901$ ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I $812.7$ $-0.3330\pm05$ $8910.$ $827.9$ $-5.393$ $159.9$ C $819.3$ $-0.3670\pm05$ $-1274.$ $911.7$ $30.38$ $107.9$ O $825.9$ $-0.4009\pm05$ $-0.1146\pm05$ $995.5$ $6.15$ $55.91$ S1 S2 S3 SINT SEQV TEMP I $8913.$ $829.6$ $-0.3322\pm05$ $0.4223\pm05$ $0.3882\pm05$ $17.34$	I	8908.	829.6	-0.3332E+05	0.4223E+05	0.3882E+05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	С	847.0	-1280.	-0.3672E+05	0.3756E+05	0.3655E+05	
** PEAK ** I=INSIDE C=CENTER O=OUTSIDESXSYSZSXYSYZSXZI -0.2856E-021.4754.420-0.3639E-01-0.1553E-010.2257E-01C 0.2512E-10-0.2183E-100.6821E-110.1137E-110.1030E-12-0.2203E-11O 0.2856E-02-1.475-4.4200.3639E-010.1553E-01-0.2257E-01S1S2S3SINTSEQVI 4.4201.476-0.3863E-024.4243.901C 0.2541E-100.6562E-11-0.2186E-100.4727E-100.4121E-10O 0.3863E-02-1.476-4.4204.4243.901** TOTAL **I=INSIDE C=CENTER O=OUTSIDESXSYSZSXYSXSYSZSXZI 812.7-0.3330E+058910.827.9-5.393C 819.3-0.3670E+05-1274.911.730.38107.9O 825.9-0.44009E+05-0.1146E+05995.566.1555.91S1S2S3SINTSEQVTEMPI 8913.829.6-0.3332E+050.4223E+050.3882E+0517.34C 847 0-1280-0.3672E+050.3756E+050.3655E+0517.34	0	850.4	-0.1145E+05	-0.4012E+05	0.4097E+05	0.3641E+05	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			** PEAK **	I=INSIDE C=C	ENTER O=OUTS	IDE	
I - 0.2856E - 02 1.475 4.420 - 0.3639E - 01 - 0.1553E - 01 0.2257E - 01  C 0.2512E - 10 - 0.2183E - 10 0.6821E - 11 0.1137E - 11 0.1030E - 12 - 0.2203E - 11  O 0.2856E - 02 - 1.475 - 4.420 0.3639E - 01 0.1553E - 01 - 0.2257E - 01  S1 S2 S3 SINT SEQV  I 4.420 1.476 - 0.3863E - 02 4.424 3.901  C 0.2541E - 10 0.6562E - 11 - 0.2186E - 10 0.4727E - 10 0.4121E - 10  O 0.3863E - 02 - 1.476 - 4.420 4.424 3.901  ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE  SX SY SZ SXY SYZ SXZ  I 812.7 - 0.3330E + 05 8910. 827.9 - 5.393 159.9  C 819.3 - 0.3670E + 05 - 1274. 911.7 30.38 107.9  O 825.9 - 0.4009E + 05 - 0.1146E + 05 995.5 66.15 55.91  S1 S2 S3 SINT SEQV TEMP  I 8913. 829.6 - 0.3332E + 05 0.4223E + 05 0.3882E + 05 17.34  C 847.0 - 1280 - 0.3672E + 05 0.3756E + 05 0.3655E + 05		SX	SY	SZ	SXY	SYZ	SXZ
C $0.2512E-10 - 0.2183E-10$ $0.6821E-11$ $0.1137E-11$ $0.1030E-12 - 0.2203E-11$ O $0.2856E-02 -1.475$ $-4.420$ $0.3639E-01$ $0.1553E-01 - 0.2257E-01$ S1 S2 S3 SINT SEQV I $4.420$ $1.476$ $-0.3863E-02$ $4.424$ $3.901$ C $0.2541E-10$ $0.6562E-11$ $-0.2186E-10$ $0.4727E-10$ $0.4121E-10$ O $0.3863E-02$ $-1.476$ $-4.420$ $4.424$ $3.901$ ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I $812.7$ $-0.3330E+05$ $8910.$ $827.9$ $-5.393$ $159.9$ C $819.3$ $-0.3670E+05$ $-1274.$ $911.7$ $30.38$ $107.9$ O $825.9$ $-0.4009E+05$ $-0.1146E+05$ $995.5$ $66.15$ $55.91$ S1 S2 S3 SINT SEQV TEMP I $8913.$ $829.6$ $-0.3332E+05$ $0.4223E+05$ $0.3882E+05$ $17.34$ C $847.0$ $-1280$ $-0.3672E+05$ $0.3756E+05$	т	-0.2856E-02	1.475	4.420	-0.3639E-01	-0.1553E-01	0.2257E-01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C	0.2512E-10	-0.2183E-10	0.6821E-11	0.1137E-11	0.1030E-12	-0.2203E-11
S1S2S3SINTSEQVI $4.420$ $1.476$ $-0.3863E-02$ $4.424$ $3.901$ C $0.2541E-10$ $0.6562E-11$ $-0.2186E-10$ $0.4727E-10$ $0.4121E-10$ O $0.3863E-02$ $-1.476$ $-4.420$ $4.424$ $3.901$ ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDESXSYSZSXYSYZSXZI $812.7$ $-0.3330E+05$ $8910.$ $827.9$ $-5.393$ $159.9$ C $819.3$ $-0.3670E+05$ $-1274.$ $911.7$ $30.38$ $107.9$ O $825.9$ $-0.4009E+05$ $-0.1146E+05$ $995.5$ $66.15$ $55.91$ S1S2S3SINT $SEQV$ TEMPI $8913.$ $829.6$ $-0.3332E+05$ $0.4223E+05$ $0.3882E+05$ $17.34$ C $847.0$ $-1280$ $-0.3672E+05$ $0.3756E+05$ $0.3655E+05$	õ	0.2856E-02	-1.475	-4.420	0.3639E-01	0.1553E-01	-0.2257E-01
I $4.420$ $1.476$ $-0.3863E-02$ $4.424$ $3.901$ C $0.2541E-10$ $0.6562E-11$ $-0.2186E-10$ $0.4727E-10$ $0.4121E-10$ O $0.3863E-02$ $-1.476$ $-4.420$ $4.424$ $3.901$ ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I $812.7$ $-0.3330E+05$ $8910.$ $827.9$ $-5.393$ $159.9$ C $819.3$ $-0.3670E+05$ $-1274.$ $911.7$ $30.38$ $107.9$ O $825.9$ $-0.4009E+05$ $-0.1146E+05$ $995.5$ $66.15$ $55.91$ S1 S2 S3 SINT SEQV TEMP I $8913.$ $829.6$ $-0.3332E+05$ $0.4223E+05$ $0.3882E+05$ $17.34$ C $847.0$ $-1280$ $-0.3672E+05$ $0.3756E+05$ $0.3655E+05$	-	S1	S2	S3	SINT	SEQV	
C $0.2541E-10$ $0.6562E-11$ $-0.2186E-10$ $0.4727E-10$ $0.4121E-10$ O $0.3863E-02$ $-1.476$ $-4.420$ $4.424$ $3.901$ ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I $812.7$ $-0.3330E+05$ $8910.$ $827.9$ $-5.393$ $159.9$ C $819.3$ $-0.3670E+05$ $-1274.$ $911.7$ $30.38$ $107.9$ O $825.9$ $-0.4009E+05$ $-0.1146E+05$ $995.5$ $66.15$ $55.91$ S1 S2 S3 SINT SEQV TEMP I $8913.$ $829.6$ $-0.3332E+05$ $0.4223E+05$ $0.3882E+05$ $17.34$ C $847.0$ $-1280$ $-0.3672E+05$ $0.3756E+05$ $0.3655E+05$	Ι	4.420	1.476	-0.3863E-02	4.424	3.901	
O       0.3863E-02       -1.476       -4.420       4.424       3.901         ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE         SX       SY       SZ       SXY       SYZ       SXZ         I       812.7       -0.3330E+05       8910.       827.9       -5.393       159.9         C       819.3       -0.3670E+05       -1274.       911.7       30.38       107.9         O       825.9       -0.4009E+05       -0.1146E+05       995.5       66.15       55.91         S1       S2       S3       SINT       SEQV       TEMP         I       8913.       829.6       -0.3332E+05       0.4223E+05       0.3882E+05       17.34         C       847.0       -1280       -0.3672E+05       0.3756E+05       0.3655E+05       17.34	С	0.2541E-10	0.6562E-11	-0.2186E-10	0.4727E-10	0.4121E-10	
** TOTAL **       I=INSIDE C=CENTER O=OUTSIDE         SX       SY       SZ       SXY       SYZ       SXZ         I       812.7       -0.3330E+05       8910.       827.9       -5.393       159.9         C       819.3       -0.3670E+05       -1274.       911.7       30.38       107.9         O       825.9       -0.4009E+05       -0.1146E+05       995.5       66.15       55.91         S1       S2       S3       SINT       SEQV       TEMP         I       8913.       829.6       -0.3332E+05       0.4223E+05       0.3882E+05       17.34         C       847.0       -1280       -0.3672E+05       0.3756E+05       0.3655E+05       0.3655E+05	0	0.3863E-02	-1.476	-4.420	4.424	3.901	
SX       SY       SZ       SXY       SYZ       SXZ         I       812.7       -0.3330E+05       8910.       827.9       -5.393       159.9         C       819.3       -0.3670E+05       -1274.       911.7       30.38       107.9         O       825.9       -0.4009E+05       -0.1146E+05       995.5       66.15       55.91         S1       S2       S3       SINT       SEQV       TEMP         I       8913.       829.6       -0.3332E+05       0.4223E+05       0.3882E+05       17.34         C       847.0       -1280       -0.3672E+05       0.3756E+05       0.3655E+05       17.34			** [.]	T-INSIDE C-	CENTER O=OUT	STDE	
I       812.7       -0.3330E+05       8910.       827.9       -5.393       159.9         C       819.3       -0.3670E+05       -1274.       911.7       30.38       107.9         O       825.9       -0.4009E+05       -0.1146E+05       995.5       66.15       55.91         S1       S2       S3       SINT       SEQV       TEMP         I       8913.       829.6       -0.3332E+05       0.4223E+05       0.3882E+05       17.34         C       847.0       -1280       -0.3672E+05       0.3756E+05       0.3655E+05       17.34		QY	GA CA CA	SZ.	SXV	SYZ	SX7
C       819.3       -0.3670E+05       -1274.       911.7       30.38       107.9         O       825.9       -0.4009E+05       -0.1146E+05       995.5       66.15       55.91         S1       S2       S3       SINT       SEQV       TEMP         I       8913.       829.6       -0.3672E+05       0.4223E+05       0.3882E+05       17.34         C       847.0       -1280       -0.3672E+05       0.3756E+05       0.3655E+05	т	812 7	-0 3330E+05	8910	827.9	-5.393	159.9
0       825.9       -0.4009E+05       -0.1146E+05       995.5       66.15       55.91         S1       S2       S3       SINT       SEQV       TEMP         I       8913.       829.6       -0.3332E+05       0.4223E+05       0.3882E+05       17.34         C       847.0       -1280       -0.3672E+05       0.3756E+05       0.3655E+05	с Т	819 3	-0.3670E+05	-1274	911.7	30.38	107.9
S1       S2       S3       SINT       SEQV       TEMP         I       8913.       829.6       -0.3332E+05       0.4223E+05       0.3882E+05       17.34         C       847.0       -1280       -0.3672E+05       0.3756E+05       0.3655E+05	0	825 9	-0.4009E+05	-0.1146E+05	995.5	66.15	55.91
I 8913. 829.6 -0.3332E+05 0.4223E+05 0.3882E+05 17.34 C 847.0 -1280 -0.3672E+05 0.3756E+05 0.3655E+05	0	S1	S2	S3	SINT	SEOV	TEMP
C = 847.0 = -1280 = -0.3672E + 05.0.3756E + 05.0.3655E + 05.0.365E +	т	8913.	829.6	-0.3332E+05	0.4223E+05	0.3882E+05	17.34
	Ċ	847.0	-1280.	-0.3672E+05	0.3756E+05	0.3655E+05	
O 850.4 -0.1146E+05 -0.4012E+05 0.4097E+05 0.3641E+05 17.22	0	850.4	-0.1146E+05	-0.4012E+05	0.4097E+05	0.3641E+05	17.22

#### 30-ft Side Drop - Cold (Max Heat) Conditions - Outer Shell

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1626 OUTSIDE NODE = 1645

LOAD STEP 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0

0 -3678.

THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.

	*	* MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
-	37290	).3274E+05	2445.	687.1 -	-291.0	424.6
	S1	S2	S3	SINT	SEQV	
	2476	-3741	-0.3276E+05	0.3523E+05	0.3257E+05	
	k	* BENDING *	* I=INSIDE	C=CENTER O=OU	JTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-17.46	5841.	0.1812E+05	-144.5	1.628	-0.7591E-09
С	0.000	0.000	0.000	0.000	0.000	0.000
0	17.46	-5841.	-0.1812E+05	144.5	-1.628	0.7591E-09
	S1	S2	S3	SINT	SEQV	
I	0.1812E+05	5844.	-21.02	0.1814E+05	0.1603E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	21.02	-5844.	-0.1812E+05	0.1814E+05	0.1603E+05	
	Ŀ	* * MEMBRANE	PLUS BENDING	** I=INSID	E C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
I	-3747.	-0.2690E+05	5 0.2056E+05	542.6	-289.4	424.6
С	-3729.	-0.3274E+05	5 2445.	687.1	-291.0	424.6
0	-3712.	-0.3858E+05	5 -0.1567E+05	831.6	-292.6	424.6
	S1	S2	S3	SINT	SEQV	
Ι	0.2057E+05	-3741.	-0.2691E+05	0.4748E+05	0.4112E+05	
С	2476.	-3741.	-0.3276E+05	0.3523E+05	0.3257E+05	
0	-3678.	-0.1568E+0	5 -0.3860E+05	0.3492E+05	0.3073E+05	
			T TNOTDE O O			
	ar	** PEAK **	I=INSIDE C=C	ENTER O=OUIS.		0.20
	SX 0 BEOOD 00	SI	52	DAI 0 COTAE 01		5A4 0 E11CE 10
T	-0.7580E-02	2.536		-0.62/4E-01	0.70000-03	-0.5110E-12
0	-0.9095E-12	-U.2183E-1	J -0.9413E-10	0.50046-12	-0.1/05E-12	-0.1137E-12
0	0.7580E-02	-2.536	-/.80/	0.6274E-UL CTNTT	-0.7080E-03	0.1/056-12
	51	54 0 E20		51NI 7 07C		
T	/.00/	4.000 0 010/E 1/	-0.9120E-02	0 9324 10	0.901	
	-0.8939E-12	-0.2104E-1	-0.9413E-10	0.9324E-10 7 976	6 961	
0	0.91268-02	-2.530	-/.00/	7.870	0.901	
		** TOTAL **	I=INSIDE C=	CENTER O=OUT	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-3747.	-0.2689E+0	5 0.2057E+05	542.5	-289.4	424.6
С	-3729.	-0.3274E+0	5 2445.	687.1	-291.0	424.6
0	-3712.	-0.3858E+0	5 -0.1568E+05	831.6	-292.6	424.6
	S1	S2	S3	SINT	SEQV	TEMP
Ι	0.2058E+05	-3741.	-0.2691E+05	0.4749E+05	U.4113E+05	15.94
С	2476.	-3741.	-0.3276E+05	0.3523E+05	0.3257E+05	

-0.1569E+05 -0.3860E+05 0.3493E+05 0.3073E+05 15.92

# 30-ft Side Drop - Cold (Max Heat) Conditions - Lid

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 266 OUTSIDE NODE = 87

LOAD STEP 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0

	ŕ	** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
5	5900	-2437.	0.1215E+05	27.67	1204.	-0.1332E+05
	S1	S2	S3	SINT	SEQV	
0	.2274E+05	-2227.	-4897.	0.2764E+05	0.2640E+05	
	•	** BENDING *	* I=INSIDE	C=CENTER O=C	OUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	8655.	-1605.	2932.	132.4	-87.71	-7727.
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-8655.	1605.	-2932.	-132.4	87.71	7727.
	Sl	S2	S3	SINT	SEQV	
I	0.1403E+05	-1606.	-2447.	0.1648E+05	5 0.1608E+0	5
С	0.000	0.000	0.000	0.000	0.000	
0	2447.	1606.	-0.1403E+05	0.1648E+05	5 0.1608E+0	5
		** MEMBRANE	PLUS BENDING	** I=INSI	DE C=CENTER	O=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	0.1455E+05	-4041.	0.1509E+05	160.1	1116.	-0.2104E+05
С	5900.	-2437.	0.1215E+05	27.67	1204.	-0.1332E+05
0	-2755.	-831.9	9222.	-104.7	1292.	-5591.
	S1	S2	S3	SINT	SEQV	
I	0.3588E+05	-3730.	-6550.	0.4243E+0	5 0.4109E+0	5
С	0.2274E+05	-2227.	-4897.	0.2764E+0	5 0.2640E+0	5
0	0.1155E+05	-921.4	-4994.	0.1654E+0	5 0.1493E+0	5
		** PEAK **	I=INSIDE C=C	ENTER O=OUT	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	3.758	-0.6968	1.273	0.5748E-0	1 -0.3809E-0	1 -3.355
С	0.5639E-10	-0.3774E-10	0.1510E-09	0.3443E-1	1 0.4547E-1	1 -0.1874E-09
0	-3.758	0.6968	-1.273	-0.5748E-0	1 0.3809E-0	1 3.355
	S1	S2	S3	SINT	SEQV	
Ι	6.094	-0.6975	-1.062	7.157	6.981	
С	0.2969E-09	-0.3717E-10	-0.9013E-10	0.3871E-0	9 0.3635E-0	9
0	1.062	0.6975	-6.094	7.157	6.981	
		** TOTAL **	I=INSIDE C=	CENTER O=OU	TSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	0.1456E+05	-4042.	0.1509E+05	160.1	1116.	-0.2105E+05
С	5900.	-2437.	0.1215E+05	27.67	1204.	-0.1332E+05
0	-2759.	-831.2	9221.	-104.8	1292.	-5587.
	S1	S2	S3	SINT	SEQV	TEMP
Ι	0.3588E+05	-3731.	-6551.	0.4243E+0	5 0.4110E+0	17.86
С	0.2274E+05	-2227.	-4897.	0.2764E+0	5 0.2640E+C	5
0	0.1155E+05	-920.8	-4995.	0.1654E+0	5 0.1493E+C	15 17.95

# 30-ft Side Drop - Cold (Max Heat) Conditions - Baseplates

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 2140 OUTSIDE NODE = 2167

LOAD STEP 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0

		* *	MEMBRANE	; *	*						
	SX		SY		SZ	ç	SXY		SYZ		SXZ
- (	0.2492E+05	-0.	2197E+05		1065.	62.	63	-	-37.96	1	677.
	S1		S2		S3	ç	SINT		SEQV		
	1172.	-0.	2197E+05	- 0	.2503E+05	0.20	521E+05	5] (	D.2482E+05		
		* *	BENDING	* *	I=INSIDE	C=CI	ENTER O	)=OT	JTSIDE		
	SX		SY		SZ	5	SXY		SYZ		SXZ
I	-0.2439E+0	5	-8815.		-0.4930	- 4	227.4		-0.2166E-10	)	0.3036E-09
С	0.000		0.000		0.000	(	0.000		0.000		0.000
0	0.2439E+0	5	8815.		0.4930	2	227.4		0.2166E-10	) -	0.3036E-09
	S1		S2		S3	Ş	SINT		SEQV		
I	-0.4930		-8811.		-0.2440E+05	50	.2440E+	05	0.2140E+05	5	
С	0.000		0.000		0.000	(	0.000		0.000		
0	0.2440E+0	5	8811.		0.4930	0	2440E+	-05	0.2140E+05	5	
		* *		מי	LUG DENIDING	· * *	T-TNC	זרדי	C-CENTED (	)-O	מתדסייונ
	QV		CV CV	л <u>г</u>	27		T-TIO	لا مميذ سلد ا	gv7		CX2
т	-0 49325+0	5 -	.0 3078F+0	5	1064		164 7				1677
Ċ	-0 2/928+0	5 -	0.3070E+0	5	1065	-	50 63		-37.96		1677
$\tilde{0}$	-530 0	, <u> </u>	0.21970-0 0 1315F+0	5	1065		200		~ 37 96		1677
0	- 550.0 G1		20.101010 20	, ,	±005.	-			STOV		1077.
т	1120		0 20705,0			: 0		05	0 44000.00	-	
T T	1170.				-0.4938E+0:		. 5050ET	05	0.24020.00	ر -	
0	11/4.	-	1E02	20	-U.ZOUSE+U:		15007.	05	0.24025405	,	
0	2125.		-1003.		-0.1310E+0:	5 U	.15298+	-05	U.I381E+05	>	
		* *	DEDK **	т	=TNSTDE C=(	ENT	R O=OU	ms.	FDF		

	THE PEAK THE TETRETOR CECEMIER OFOOTSTDE								
	SX	SY	SZ	SXY	SYZ	SXZ			
Ι	-10.59	-3.827	-0.2141E-03	-0.9872E-01	0.1613E-11	-0.1137E-11			
С	0.3638E-11	-0.3638E-11	-0.1364E-11	0.000	0.2629E-12	-0.4547E-12			
0	10.59	3.827	0.2141E-03	0.9872E-01	0.4121E-12	-0.9095E-12			
	S1	S2	S3	SINT	SEQV				
I	-0.2141E-03	-3.826	-10.59	10.59	9.292				
С	0.3679E-11	-0.1375E-11	-0.3668E-11	0.7347E-11	0.6511E-11				
0	10.59	3.826	0.2141E-03	10.59	9.292				

		* *	TOTAL	* *	I=INSIDE	C=CEN	FER	O=OUTSI	DE		
	SX		SY		SZ	,	SXY		SYZ	SXZ	1
Ι	-0.4933E+05	- (	0.30791	E+05	1064.		164.	8	-37.96	167	7.
С	-0.2492E+05	i - (	0.21971	S+05	1065.	e	62.6	3	-37.96	167	7.
0	-519.4	- (	0.13151	E+05	1065.	2	290.	1	-37.96	167	7.
	S1		S2		S3	5	SINT	i	SEQV	TEM	IP
Ι	1120.	- (	0.30791	E+05	-0.4939E+	⊦05 0	.505	1E+05	0.4424E+05	18.	80
С	1172.	- (	0.21971	E+05	-0.2503E+	+05 0	.262	1E+05	0.2482E+05		
0	2128.		-1575.		-0.1316E+	+05 0	.152	9E+05	0.1381E+05	17.	96

# 30-ft Side Drop - Cold (No Heat) Conditions - Outer Shell

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1626 OUTSIDE NODE = 1645

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

			* *			
	CV	OV MEMORANE	C7	GXV	SV7	SX7
	2770		34 2266	725 2	_285 3	199 7
	3/580	J.3429E+05	2300. C2	723.3 CTNT	202.2	400.1
	SI	52	0 24207-05			
	2408	-3780	0.34306+05	0.36716+03	0.34046405	
	ł	** BENDING *	* I=INSIDE	C=CENTER O=O	UTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
т	-19.70	5894.	0.1857E+0	5 -145.9	0.5191	-0.6071E-09
C	0.000	0.000	0.000	0.000	0.000	0.000
ō	19.70	-5894.	-0.1857E+0	5 145.9	-0.5191	0.6071E-09
	S1	S2	S3	SINT	SEQV	
I	0.1857E+05	5897.	-23.30	0.1860E+05	0.1646E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	23.30	-5897.	-0.1857E+0	5 0.1860E+05	0.1646E+05	
	•	** MEMBRANE	PLUS BENDIN	G ** I=INSID	E C=CENTER O:	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-3778.	-0.2839E+05	5 0.2094E+0	5 579.4	-284.8	499.7
С	-3758.	-0.3429E+05	2366.	725.3	-285.3	499.7
0	-3738.	-0.4018E+05	5 -0.1621E+0	5 871.2	-285.8	499.7
	S1	S2	S3	SINT	SEQV	
Ι	0.2095E+05	-3774.	-0.2841E+0	5 0.4936E+05	0.4275E+05	
С	2408.	-3780.	-0.3430E+0	5 0.3671E+05	0.3404E+05	
0	-3698.	-0.1622E+05	5 -0.4020E+0	5 0.3651E+05	0.3213E+05	
		** DDAV **	T-INGIDE C-	CENTER O-OUTS	TDF	
	QV	GAU	SZ	SXV	SVZ	SX7
т	-0 9556F-02	2 559	8 065	-0 6335E-01	0 2254E-03	-0 1705E-12
Ċ	0.000	-0 3638E-10	) -0 9550E-1	0 0.9095E-12	0.5684E-13	0.1137E-12
$\overline{0}$	0.8556E-02	-2 559	-8 065	0 6335E-01	-0.2254E-03	0.2842E-12
Ŭ	S1	s2	53	SINT	SEOV	
т	8 065	2.561	-0.1012E-0	1 8.075	7.145	
Ċ	0 2286E-13	-0.3640E-10	) -0.9550E-1	0 0.9552E-10	0.8350E-10	
0	0.1012E-01	-2.561	-8.065	8.075	7.145	
÷						
		** TOTAL **	I=INSIDE C	=CENTER O=OUT	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-3778.	-0.2839E+05	5 0.2095E+0	5 579.3	-284.8	499.7
С	-3758.	-0.3429E+05	5 2366.	725.3	-285.3	499.7
0	-3738.	-0.4018E+05	5 -0.1622E+0	5 871.2	-285.8	499.7
	S1	S2	S3	SINT	SEQV	TEMP
Ι	0.2096E+05	-3774.	-0.2840E+0	5 0.4936E+05	0.4275E+05	-20.00
С	2408.	-3780.	-0.3430E+0	5 0.3671E+05	0.3404E+05	
0	-3698.	-0.1623E+05	5 -0.4021E+0	5 0.3651E+05	0.3213E+05	-20.00

#### 30-ft Side Drop - Cold (No Heat) Conditions - Lid

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT DSYS= 0

**** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 266 OUTSIDE NODE = 87

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.

	;	** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
	5590.	-2605.	0.1282E+05	-18.11	1297.	-0.1302E+05
	S1	S2	S3	SINT	SEQV	
С	.2276E+05	-2345.	-4605.	0.2736E+05	0.2630E+05	
		** BENDING *	** I=INSIDE	C=CENTER O=C	UTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	8293.	-1595.	3221.	54.68	-73.26	-7689.
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-8293.	1595.	-3221.	-54.68	73.26	7689.
	S1	S2	S3	SINT	SEQV	
I	0.1385E+05	-1595.	-2340.	0.1619E+05	0.1583E+0	5
С	0.000	0.000	0.000	0.000	0.000	
0	2340.	1595.	-0.1385E+05	0.1619E+05	5 0.1583E+0	5
		** MEMBRANE	PLUS BENDING	** I=INSII	DE C=CENTER	O=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
I	0.1388E+05	-4200.	0.1604E+05	36.57	1223.	-0.2070E+05
С	5590.	-2605.	0.1282E+05	-18.11	1297.	-0.1302E+05
0	-2703.	-1010.	9599.	-72.80	1370.	-5326.
	Sl	S2	S3	SINT	SEQV	
I	0.3571E+05	-3830.	-6159.	0.4187E+05	5 0.4076E+0	)5
С	0.2276E+05	-2345.	-4605.	0.2736E+05	5 0.2630E+0	)5
0	0.1172E+05	-1098.	-4735.	0.1645E+05	5 0.1497E+0	5
		** PEAK **	I=INSIDE C=C	ENTER O=OUTS	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	3.601	-0.6927	1.399	0.2374E-01	L -0.3181E-C	)1 -3.339
С	0.5275E-10	-0.4138E-1	0 0.1601E-09	0.2629E-13	L 0.4547E-1	1 -0.1874E-09
0	-3.601	0.6927	-1.399	-0.2374E-01	L 0.3181E-C	3.339
	Sl	S2	S3	SINT	SEQV	
I	6.015	-0.6924	-1.016	7.032	6.875	

	*	* TOTAL **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	0.1389E+05	-4201.	0.1604E+05	36.60	1223.	-0.2071E+05
С	5590.	-2605.	0.1282E+05	-18.11	1297.	-0.1302E+05
0	-2706.	-1009.	9598.	-72.82	1370.	-5323.
	S1	S2	S3	SINT	SEQV	TEMP
Ι	0.3572E+05	-3831.	-6160.	0.4188E+05	0.4076E+05	-20.00
С	0.2276E+05	-2345.	-4605.	0.2736E+05	0.2630E+05	
0	0.1172E+05	-1098.	-4736.	0.1645E+05	0.1497E+05	-20.00

6.875

C 0.3013E-09 -0.4090E-10 -0.8897E-10 0.3903E-09 0.3686E-09

0 1.016 0.6924 -6.015 7.032

#### 30-ft Side Drop - Cold (No Heat) Conditions - Baseplates

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0 ***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 2140 OUTSIDE NODE = 2167 3 SUBSTEP= LOAD STEP 1 LOAD CASE= 0 TIME= 3.0000 THE FOLLOWING X, Y, Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM. ** MEMBRANE ** SXY SYZ SXZ SX SY SZ2567. 754.0 78.18 69.35 -0.2849E+05 -0.2543E+05 S2 S3 SINT SEOV S1 0.2819E+05 977.8 -0.2543E+05 -0.2872E+05 0.2969E+05 ** BENDING ** I=INSIDE C=CENTER O=OUTSIDE SZ SXY SYZ SXZ SY SX I -0.2446E+05 -8377. -0.1272E-09 -160.0 -0.7091E-11 -0.7782E-10 0.000 0.000 0.000 0.000 0.000 С 0.000 160.0 0.7091E-11 0.7782E-10 8377. 0.1272E-09 O 0.2446E+05 SINT S3 SEOV S2 S1 -8376. -0.2447E+05 0.2447E+05 0.2154E+05 I 0.000 0.000 0.000 0.000 0.000 С 0.000 0.2447E+05 0.2154E+05 O 0.2447E+05 8376. 0.000 ** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE SY SZ SXY SYZ SXZ SX I -0.5295E+05 -0.3380E+05 754.0 69.35 2567. -81.84 78.18 69.35 2567. C -0.2849E+05 -0.2543E+05 754.0 O -4027. -0.1705E+05 754.0 238.2 69.35 2567. S3 SINT S2 SEOV S1 876.5-0.3380E+05-0.5308E+050.5395E+050.4736E+05977.8-0.2543E+05-0.2872E+050.2969E+050.2819E+05 Ι С -5140. -0.1705E+05 0.1893E+05 0.1657E+05 1872. 0 ** PEAK ** I=INSIDE C=CENTER O=OUTSIDE SXZ SZ SXY SYZ SX SY -3.638 -0.7390E-11 -0.6948E-01 0.5116E-12 -0.5457E-11 Τ -10.62 -0.1251E-11 0.2842E-13 0.7105E-13 -0.9095E-12 C 0.1819E-10 0.000 -0.1705E-11 0.6948E-01 0.1279E-12 -0.9095E-12 3.638 0 10.62 SEQV S1 S2 S3 SINT 10.62 9.351 Ι 0.000 -3.637 -10.62 C 0.1823E-10 0.3996E-14 -0.1297E-11 0.1953E-10 0.1891E-10 10.62 9 351 3.637 0.000 0 10.62 ** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE SXY SYZ SXZ SZ SY SX I -0.5297E+05 -0.3381E+05 754.0 -81.91 69.35 2567. 69.35 2567. C -0.2849E+05 -0.2543E+05 754.0 78.18 69.35 238.3 O -4016. -0.1705E+05 754.0 2567. TEMP SEQV S3 SINT S1 S2 -0.3381E+05 -0.5309E+05 0.5396E+05 0.4736E+05 -20.00 876.5 Ι 977.8 -0.2543E+05 -0.2872E+05 0.2969E+05 0.2819E+05 С -5132. -0.1705E+05 0.1892E+05 0.1657E+05 -20.00 0 1874.

### 30-ft Corner Drop - Hot Conditions - Lid

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 150 OUTSIDE NODE = 191

LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

	** MEMBRANE **								
	SX	SY	SZ	SXY	SYZ	SXZ			
- C	).1184E+05 -C	.2275E+05	2354.	-872.1	5379.	1612.			
	S1	S2	S3	SINT	SEQV				
	35870	.1185E+05 -(	).2397E+05	0.2755E+05	0.2392E+05				
	*	* BENDING **	* I=INSIDE	C=CENTER O=C	UTSIDE				
	SX	SY	SZ	SXY	SYZ	SXZ			
Ι	0.2726E+05	0.3556E+05	-0.1622E+05	4020.	4095.	-1989.			
С	0.000	0.000	0.000	0.000	0.000	0.000			
0	-0.2726E+05	-0.3556E+05	0.1622E+05	-4020.	-4095.	1989.			
	S1	S2	S3	SINT	SEQV				
Ι	0.3737E+05	0.2590E+05	-0.1667E+05	0.5404E+05	0.4931E+05				
С	0.000	0.000	0.000	0.000	0.000				
0	0.1667E+05	-0.2590E+05	-0.3737E+05	0.5404E+05	0.4931E+05				
	*	* MEMBRANE I	PLUS BENDING	** I=INSIC	DE C=CENTER O	=OUTSIDE			
	SX	SY	SZ	SXY	SYZ	SXZ			
Ι	0.1542E+05	0.1282E+05	-0.1387E+05	3148.	9474.	-377.1			
С	-0.1184E+05	-0.2275E+05	2354.	-872.1	5379.	1612.			
0	-0.3910E+05	-0.5831E+05	0.1858E+05	-4892.	1283.	3601.			
	Sl	S2	S3	SINT	SEQV				
Ι	0.1855E+05	0.1277E+05	-0.1694E+05	0.3549E+05	0.3298E+05				
С	3587.	-0.1185E+05	-0.2397E+05	0.2755E+05	0.2392E+05				
0	0.1881E+05	-0.3811E+05	-0.5954E+05	0.7836E+05	0.7014E+05				
	4	** PEAK ** ]	I=INSIDE C=C	ENTER O=OUTS	SIDE				
	SX	SY	SZ	SXY	SYZ	SXZ			
Ι	-7688.	-3181.	4103.	910.9	-2239.	312.8			
С	4868.	2152.	-2554.	-516.6	1366.	-78.90			
0	-0.2220E+05	-590.3	0.1479E+05	6453.	-9814.	8771.			
	S1	S2	S3	SINT	SEQV				
Ι	4736.	-3589.	-7914.	0.1265E+05	0.1114E+05				
С	4978.	2410.	-2922.	7900.	6980.				
0	0.2023E+05	-1190.	-0.2704E+05	0.4727E+05	0.4100E+05				

		** TOTAL **	I=INSIDE C=	CENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	7735.	9637.	-9766.	4059.	7234.	-64.23
С	-6971.	-0.2059E+05	-199.5	-1389.	6745.	1533.
0	-0.6131E+05	-0.5890E+05	0.3337E+05	1561.	-8531.	0.1237E+05
	S1	S2	S3	SINT	SEQV	TEMP
Ι	0.1430E+05	5566.	-0.1226E+05	0.2656E+05	0.2344E+05	177.9
С	1959.	-6902.	-0.2282E+05	0.2478E+05	0.2175E+05	
0	0.3568E+05	-0.5817E+05	-0.6435E+05	0.1000E+06	0.9709E+05	178.0

# 30-ft Corner Drop - Cold (Max Heat) Conditions - Shell Extension

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

**** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1609 OUTSIDE NODE = 1504

LOAD STEP 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0

	×	* MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
-	25180	).1443E+05 -	0.5391E+05	386.2 -	-290.3	2155.
	S1	S2	S3	SINT	SEQV	
	-2416(	).1443E+05 -	0.5400E+05 (	).5158E+05 (	).4675E+05	
	k	** BENDING *	* I=INSIDE (	C=CENTER O=OU	JTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-52.10	5791.	0.2026E+05	-141.6	41.77	-191.5
C	0.000	0.000	0.000	0.000	0.000	0.000
0	52.10	-5791.	-0.2026E+05	141.6	-41.77	191.5
	S1	S2	S3	SINT	SEQV	
I	0.2026E+05	5794.	-57.31	0.2032E+05	0.1812E+05	
C	0.000	0.000	0.000	0.000	0.000	
0	57.31	-5794.	-0.2026E+05	0.2032E+05	0.1812E+05	
		** MEMBRANE	PLUS BENDING	** I=INSIDE	E C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
I	-2570.	-8634.	-0.3364E+05	244.6	-248.5	1963.
С	-2518.	-0.1443E+05	-0.5391E+05	386.2	-290.3	2155.
0	-2466.	-0.2022E+05	-0.7417E+05	527.7	-332.1	2346.
	S1	S2	S3	SINT	SEQV	
Ι	-2438.	-8640.	-0.3377E+05	0.3133E+05	0.2874E+05	
С	-2416.	-0.1443E+05	-0.5400E+05	0.5158E+05	0.4675E+05	
0	-2374.	-0.2023E+05	-0.7425E+05	0.7187E+05	0.6482E+05	
	,	** PEAK **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-0.2262E-01	2.515	8.798	-0.6147E-01	0.1814E-01	-0.8315E-01
С	-0.1364E-11	0.3638E-11	-0.7276E-11	0.5684E-13	0.000	0.9095E-12
0	0.2262E-01	-2.515	-8.798	0.6147E-01	-0.1814E-01	0.8315E-01
	Sl	S2	S3	SINT	SEQV	
Ι	8.799	2.516	-0.2489E-01	8.824	7.867	
С	0.3639E-11	-0.1228E-11	-0.7413E-11	0.1105E-10	0.9593E-11	
0	0.2489E-01	-2.516	-8.799	8.824	7.867	
		** TOTAL **	I=INSIDE C=	CENTER O=OUT:	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-2570.	-8632.	-0.3364E+05	244.5	-248.5	1963.
С	-2518.	-0.1443E+05	-0.5391E+05	386.2	-290.3	2155.
0	-2466.	-0.2022E+05	-0.7418E+05	527.8	-332.1	2346.
	Sl	S2	S3	SINT	SEQV	TEMP
Ι	-2438.	-8638.	-0.3376E+05	0.3132E+05	0.2873E+05	16.61
С	-2416.	-0.1443E+05	-0.5400E+05	0.5158E+05	0.4675E+05	
0	-2374.	-0.2023E+05	-0.7426E+05	0.7188E+05	0.6482E+05	16.49

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-2 DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1658 OUTSIDE NODE = 1679

LOAD STEP 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0

THE FOLLOWING X, Y, Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.

	,	** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
	729.7 -	0.1331E+05 -	0.5357E+05	336.0	-301.9	1754.
	S1	S2	S3	SINT	SEQV	
	793.8 -	0.1331E+05 -	0.5363E+05	0.5442E+05	0.4892E+05	
		** BENDING *	* I=INSIDE (	C=CENTER O=O	UTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	37.54	4073.	0.1375E+05	-99.31	20.43	58.63
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-37.54	-4073.	-0.1375E+05	99.31	-20.43	-58.63
	S1	S2	53	SINT	SEQV	
I	0.1375E+05	4076.	34.84	0.1371E+05	0.1220E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	-34.84	-4076.	-0.1375E+05	0.1371E+05	0.1220E+05	
		* * MEMBRANE	PLUS BENDING	** I=INSID	E C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
I	767.2	-9236.	-0.3982E+05	236.6	-281.5	1812.
С	729.7	-0.1331E+05	-0.5357E+05	336.0	-301.9	1754.
0	692.2	-0.1738E+05	-0.6731E+05	435.3	-322.4	1695.
	S1	S2	S3	SINT	SEQV	
I	853.0	-9238.	-0.3991E+05	0.4076E+05	0.3677E+05	
С	793.8	-0.1331E+05	5 -0.5363E+05	0.5442E+05	0.4892E+05	
0	744.4	-0.1739E+05	5 -0.6736E+05	0.6810E+05	0.6109E+05	
		** PEAK **	I=INSIDE C=C	ENTER O=OUTS	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	0.1630E-01	1.769	5.969	-0.4312E-01	0.8873E-02	0.2546E-01
С	-0.3411E-12	0.000	0.2183E-10	-0.1705E-12	2 -0.1137E-12	0.4547E-12
0	-0.1630E-01	-1.769	-5.969	0.4312E-01	-0.8873E-02	-0.2546E-01
	S1	S2	S3	SINT	SEQV	
Ι	5.969	1.770	0.1513E-01	5.954	5.299	
С	0.2184E-10	0.6711E-13	8 -0.4181E-12	0.2226E-10	0.2202E-10	
0	-0.1513E-01	-1.770	-5.969	5.954	5.299	
		** TOTAL **	I=INSIDE C=	CENTER O=OUI	TSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	767.3	-9234.	-0.3982E+05	236.6	-281.5	1812.
С	729.7	-0.1331E+05	5 -0.5357E+05	336.0	-301.9	1754.
0	692.1	-0.1738E+05	5 -0.6732E+05	435.3	-322.4	1695.
	S1	S2	S3	SINT	SEQV	TEMP
Т	853 0	-9236.	-0.3990E+05	0.4075E+05	5 0.3676E+05	16.61

C793.8-0.1331E+05-0.5363E+050.5442E+050.4892E+05O744.4-0.1739E+05-0.6736E+050.6811E+050.6109E+0516.57

# 30-ft Corner Drop - Cold (Max Heat) Conditions - Lid

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 150 OUTSIDE NODE = 191

LOAD STEP 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0

	*	* MEMBRANE *	*			
	SX	SY	SZ	SXY	SYZ	SXZ
- 0	.1146E+05 -0	).2140E+05	2199.	-904.7	5397.	1704.
	S1	S2	S3	SINT	SEQV	
	35200	).1147E+05 -0	.2272E+05	0.2624E+05	0.2280E+05	
	*	** BENDING **	I=INSIDE	C=CENTER O=OU	JTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	0.2659E+05	0.3531E+05	-0.1561E+05	3997.	3839.	-1793.
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-0.2659E+05	-0.3531E+05	0.1561E+05	5 -3997.	-3839.	1793.
	S1	S2	S3	SINT	SEQV	
Ι	0.3703E+05	0.2526E+05	-0.1600E+05	5 0.5303E+05	0.4824E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	0.1600E+05	-0.2526E+05	-0.3703E+05	5 0.5303E+05	0.4824E+05	
	Ŀ	** MEMBRANE I	PLUS BENDING	G ** I=INSID	E C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	0.1513E+05	0.1391E+05	-0.1341E+05	5 3092.	9237.	-89.37
С	-0.1146E+05	-0.2140E+05	2199.	-904.7	5397.	1704.
0	-0.3805E+05	-0.5671E+05	0.1781E+05	5 -4901.	1558.	3497.
	Sl	S2	S3	SINT	SEQV	
I	0.1898E+05	0.1291E+05	-0.1628E+0	5 0.3525E+05	0.3265E+05	
С	3520.	-0.1147E+05	-0.2272E+0	5 0.2624E+05	0.2280E+05	
0	0.1805E+05	-0.3701E+05	-0.5799E+0	5 0.7604E+05	0.6802E+05	
	;	** PEAK ** ]	I=INSIDE C=0	CENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-7428.	-3123.	3815.	864.2	-2123.	185.0
С	4705.	2110.	-2368.	-490.3	1295.	-1.462
0	-0.2136E+05	-811.5	0.1419E+0	5 6108.	-9337.	8176.
	Sl	S2	S3	SINT	SEQV	
Ι	4413.	-3522.	-7627.	0.1204E+05	0.1060E+05	
С	4803.	2361.	-2718.	7520.	6645.	
0	0.1926E+05	-1408.	-0.2584E+0	5 0.4510E+05	0.3911E+05	
		** TOTAL **	I=INSIDE C	=CENTER O=OUT	SIDE	

		AN TOTAD ""	T-TNOTDD C-	CHUIRK 0-0010		
	SX	SY	SZ	SXY	SYZ	SXZ
I	7699.	0.1078E+05	-9599.	3956.	7114.	95.64
С	-6758.	-0.1929E+05	-169.5	-1395.	6692.	1702.
0	-0.5941E+05	-0.5752E+05	0.3200E+05	1206.	-7779.	0.1167E+05
	Sl	S2	S3	SINT	SEQV	TEMP
I	0.1501E+05	5772.	-0.1190E+05	0.2691E+05	0.2368E+05	17.88
С	2106.	-6695.	-0.2163E+05	0.2374E+05	0.2078E+05	
0	0.3409E+05	-0.5696E+05	-0.6207E+05	0.9616E+05	0.9371E+05	17.97

### 30-ft Corner Drop - Cold (No Heat) Conditions - Shell Extension

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1609 OUTSIDE NODE = 1504

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

		** [	MEMBRANE	* *					
	SX		SY	5	SZ	SX	Y	SYZ	SXZ
-	3559.	-0.1	782E+05 -	-0.580	)7E+05	446.	7 -:	289.9	2727.
	Sl		S2	S	33	SI	NT	SEQV	
. –	3410.	-0.1	783E+05 -	-0.582	21E+05 (	).548	0E+05 0	.4920E+05	
		** I	BENDING *	** I=	INSIDE (	C=CEN	TER O=OU	TSIDE	
	SX		SY	S	SZ	SX	Y	SYZ	SXZ
I	-31.72		7442.	0.2	2596E+05	-18	1.6	41.60	-243.6
С	0.000	(	0.000	Ο.	000	Ο.	000	0.000	0.000
0	31.72	- '	7442.	-0.2	2596E+05	18	1.6	-41.60	243.6
	S1		S2	2	33	SI	NT	SEQV	
Ι	0.2597E+(	05 '	7447.	-38	3.39	0.2	600E+05	0.2319E+(	05
С	0.000	(	0.000	Ο.	000	Ο.	000	0.000	
0	38.39	- '	7447.	-0.2	2597E+05	0.2	600E+05	0.2319E+(	05
		** ]	MEMBRANE	PLUS	BENDING	* *	I=INSIDE	C=CENTER	O=OUTSIDE

	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-3591.	-0.1037E+05	-0.3211E+05	265.2	-248.3	2483.
С	-3559.	-0.1782E+05	-0.5807E+05	446.7	-289.9	2727.
0	-3527.	-0.2526E+05	-0.8404E+05	628.3	-331.5	2970.
	S1	S2	S3	SINT	SEQV	
I	-3368.	-0.1038E+05	-0.3233E+05	0.2896E+05	0.2617E+05	
С	-3410.	-0.1783E+05	-0.5821E+05	0.5480E+05	0.4920E+05	
0	-3401.	-0.2527E+05	-0.8415E+05	0.8075E+05	0.7233E+05	

		** PEAK **	I=INSIDE C=C	ENTER O=OUTSI	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.1377E-01	3.232	11.27	-0.7884E-01	0.1807E-01	-0.1058
С	-0.9095E-12	-0.3638E-11	0.2910E-10	-0.5684E-13	0.000	0.000
0	0.1377E-01	-3.232	-11.27	0.7884E-01	-0.1807E-01	0.1058
	Sl	S2	S3	SINT	SEQV	
Ι	11.27	3.233	-0.1667E-01	11.29	10.07	
С	0.2910E-10	-0.9083E-12	-0.3639E-11	0.3274E-10	0.3147E-10	
0	0.1667E-01	-3.233	-11.27	11.29	10.07	

		** TOTAL **	I=INSIDE C=C	CENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-3591.	-0.1037E+05	-0.3210E+05	265.1	-248.2	2483.
С	-3559.	-0.1782E+05	-0.5807E+05	446.7	-289.9	2727.
0	-3527.	-0.2526E+05	-0.8405E+05	628.4	-331.5	2970.
	Sl	S2	S3	SINT	SEQV	TEMP
Ι	-3368.	-0.1038E+05	-0.3232E+05	0.2895E+05	0.2616E+05	-20.00
С	-3410.	-0.1783E+05	-0.5821E+05	0.5480E+05	0.4920E+05	
0	-3401.	-0.2528E+05	-0.8416E+05	0.8076E+05	0.7234E+05	-20.00

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-2 DSYS= 0

**** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1658 OUTSIDE NODE = 1679

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

		** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
	1019.	-0.1627E+05 -	0.5773E+05	415.2	-303.7	2247.
	S1	S2	S3	SINT	SEQV	
	1114.	-0.1628E+05 -	0.5782E+05	).5893E+05	0.5245E+05	
			· · · · · · · · · · · · · · · · · · ·			
		** BENDING *	* I=INSIDE (	C=CENTER O=	OUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	16.51	5117.	0.1755E+05	-125.5	21.37	75.68
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-16.51	-5117.	-0.1755E+05	125.5	-21.37	-75.68
	Sl	S2	S3	SINT	SEQV	
I	0.1755E+0	5 5120.	13.09	0.1754E+0	5 0.1562E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	-13.09	-5120.	-0.1755E+05	0.1754E+0	5 0.1562E+05	
		** MEMBRANE	PLUS BENDING	** I=INSI	DE C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
I	1035.	-0.1115E+05	5 -0.4018E+05	289.8	-282.3	2323.
С	1019.	-0.1627E+05	5 -0.5773E+05	415.2	-303.7	2247.
0	1002.	-0.2139E+05	5 -0.7528E+05	540.7	-325.1	2172.
	S1	S2	S3	SINT	SEQV	
Ι	1172.	-0.1116E+05	5 -0.4032E+05	0.4149E+0	5 0.3690E+05	
С	1114.	-0.1628E+05	5 -0.5782E+05	0.5893E+0	5 0.5245E+05	
0	1077.	-0.2140E+05	5 -0.7534E+05	0.7642E+0	5 0.6803E+05	
		** PEAK **	I=INSIDE C=C	ENTER O=OUI	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	0.7168E-0	2 2.222	7.620	-0.5448E-0	1 0.9280E-02	0.3286E-01
С	-0.7958E-1	2 -0.1819E-1	1 0.1455E-10	-0.1705E-1	.2 0.1137E-12	0.1364E-11
0	-0.7168E-0	2 -2.222	-7.620	0.5448E-0	1 -0.9280E-02	-0.3286E-01
	S1	S2	S3	SINT	SEQV	
I	7.620	2.223	0.5685E-02	7.614	6.783	
С	0.1467E-1	0 -0.8816E-1	2 -0.1854E-11	0.1653E-1	0 0.1606E-10	
0	-0.5685E-C	2 -2.223	-7.620	7.614	6.783	

		** TOTAL **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	1035.	-0.1115E+05	-0.4018E+05	289.7	-282.3	2323.
С	1019.	-0.1627E+05	-0.5773E+05	415.2	-303.7	2247.
0	1002.	-0.2139E+05	-0.7529E+05	540.8	-325.1	2172.
	Sl	S2	S3	SINT	SEQV	TEMP
I	1172.	-0.1115E+05	-0.4031E+05	0.4148E+05	0.3690E+05	-20.00
С	1114.	-0.1628E+05	-0.5782E+05	0.5893E+05	0.5245E+05	
0	1077.	-0.2140E+05	-0.7535E+05	0.7643E+05	0.6803E+05	-20.00

# 30-ft Corner Drop - Cold (No Heat) Conditions - Lid

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 150 OUTSIDE NODE = 191

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

THE FOLLOWING X, Y, Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.

	ŕ	* * MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
- (	).1141E+05 -(	).2129E+05	2087.	-904.6	5424.	1702.
	S1	S2	S3	SINT	SEQV	
	3430(	).1142E+05 -	0.2262E+05	0.2605E+05	0.2264E+05	
				han an a		
		** BENDING *	* I=INSIDE	C=CENTER O=	OUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	0.2654E+05	0.3538E+05	-0.1554E+05	5 4013.	3780.	-1734.
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-0.2654E+05	-0.3538E+05	0.1554E+05	5 -4013.	-3780.	1734.
	S1	S2	S3	SINT	SEQV	
Ι	0.3709E+05	0.2520E+05	-0.1592E+05	5 0.5301E+0	5 0.4818E+05	5
С	0.000	0.000	0.000	0.000	0.000	
0	0.1592E+05	-0.2520E+05	-0.3709E+05	5 0.5301E+0	5 0.4818E+05	5
	;	* * MEMBRANE	PLUS BENDING	G ** I=INSI	DE C=CENTER (	)=OUTSIDE
	SX	** MEMBRANE SY	PLUS BENDING SZ	G ** I=INSI SXY	DE C=CENTER ( SYZ	)=OUTSIDE SXZ
I	SX 0.1512E+05	** MEMBRANE SY 0.1409E+05	PLUS BENDING SZ -0.1346E+05	G ** I=INSI SXY 5 3108.	DE C=CENTER ( SYZ 9205.	O=OUTSIDE SXZ -31.76
I C	SX 0.1512E+05 -0.1141E+05	** MEMBRANE SY 0.1409E+05 -0.2129E+05	PLUS BENDING SZ -0.1346E+05 2087.	G ** I=INSI SXY 5 3108. -904.6	DE C=CENTER ( SYZ 9205. 5424.	D=OUTSIDE SXZ -31.76 1702.
I C O	SX 0.1512E+05 -0.1141E+05 -0.3795E+05	** MEMBRANE SY 0.1409E+05 -0.2129E+05 -0.5666E+05	PLUS BENDING SZ -0.1346E+05 2087. 0.1763E+05	G ** I=INSI SXY 5 3108. -904.6 5 -4918.	DE C=CENTER ( SYZ 9205. 5424. 1644.	D=OUTSIDE SXZ -31.76 1702. 3436.
I C O	SX 0.1512E+05 -0.1141E+05 -0.3795E+05 S1	** MEMBRANE SY 0.1409E+05 -0.2129E+05 -0.5666E+05 S2	PLUS BENDING SZ -0.1346E+05 2087. 0.1763E+05 S3	G ** I=INSI SXY 5 3108. -904.6 5 -4918. SINT	DE C=CENTER ( SYZ 9205. 5424. 1644. SEQV	D=OUTSIDE SXZ -31.76 1702. 3436.
I C O I	SX 0.1512E+05 -0.1141E+05 -0.3795E+05 S1 0.1910E+05	** MEMBRANE SY 0.1409E+05 -0.2129E+05 -0.5666E+05 S2 0.1293E+05	PLUS BENDING SZ -0.1346E+05 2087. 0.1763E+05 S3 -0.1628E+05	G ** I=INSI SXY 5 3108. -904.6 5 -4918. SINT 5 0.3538E+0	DE C=CENTER ( SYZ 9205. 5424. 1644. SEQV 5 0.3273E+05	D=OUTSIDE SXZ -31.76 1702. 3436.
I C O H C	SX 0.1512E+05 -0.1141E+05 -0.3795E+05 S1 0.1910E+05 3430.	<pre>** MEMBRANE     SY     0.1409E+05     -0.2129E+05     -0.5666E+05     S2     0.1293E+05     -0.1142E+05</pre>	PLUS BENDING SZ -0.1346E+05 2087. 0.1763E+05 S3 -0.1628E+05 -0.2262E+05	G ** I=INSI SXY 5 3108. -904.6 5 -4918. SINT 5 0.3538E+0 5 0.2605E+0	DE C=CENTER ( SYZ 9205. 5424. 1644. SEQV 5 0.3273E+05 5 0.2264E+05	D=OUTSIDE SXZ -31.76 1702. 3436.
H C O H C O	SX 0.1512E+05 -0.1141E+05 -0.3795E+05 S1 0.1910E+05 3430. 0.1787E+05	<pre>** MEMBRANE     SY     0.1409E+05     -0.2129E+05     -0.5666E+05     S2     0.1293E+05     -0.1142E+05     -0.3689E+05</pre>	PLUS BENDING SZ -0.1346E+05 2087. 0.1763E+05 S3 -0.1628E+05 -0.2262E+05 -0.5796E+05	G ** I=INSI SXY 5 3108. -904.6 5 -4918. SINT 5 0.3538E+0 5 0.2605E+0 5 0.7582E+0	DE C=CENTER ( SYZ 9205. 5424. 1644. SEQV 5 0.3273E+05 5 0.2264E+05 5 0.6779E+05	D=OUTSIDE SXZ -31.76 1702. 3436.
I C O I C O	SX 0.1512E+05 -0.1141E+05 -0.3795E+05 S1 0.1910E+05 3430. 0.1787E+05	<pre>** MEMBRANE     SY     0.1409E+05     -0.2129E+05     -0.5666E+05     S2     0.1293E+05     -0.1142E+05     -0.3689E+05</pre>	PLUS BENDING SZ -0.1346E+05 2087. 0.1763E+05 S3 -0.1628E+05 -0.2262E+05 -0.5796E+05	G ** I=INSI SXY 5 3108. -904.6 5 -4918. SINT 5 0.3538E+0 5 0.2605E+0 5 0.7582E+0	DE C=CENTER ( SYZ 9205. 5424. 1644. SEQV 5 0.3273E+05 5 0.2264E+05 5 0.6779E+05	D=OUTSIDE SXZ -31.76 1702. 3436.
I C O I C O	SX 0.1512E+05 -0.1141E+05 -0.3795E+05 S1 0.1910E+05 3430. 0.1787E+05	<pre>** MEMBRANE     SY     0.1409E+05 -0.2129E+05 -0.5666E+05     S2     0.1293E+05 -0.1142E+05 -0.3689E+05 ** PEAK **</pre>	PLUS BENDING SZ -0.1346E+05 2087. 0.1763E+05 S3 -0.1628E+05 -0.2262E+05 -0.5796E+05 I=INSIDE C=0	<pre>S ** I=INSI SXY 5 3108. -904.6 5 -4918. SINT 5 0.3538E+0 5 0.2605E+0 5 0.7582E+0 CENTER O=OUT</pre>	DE C=CENTER ( SYZ 9205. 5424. 1644. SEQV 5 0.3273E+05 5 0.2264E+05 5 0.6779E+05 SIDE	D=OUTSIDE SXZ -31.76 1702. 3436.
I C O I C O	SX 0.1512E+05 -0.1141E+05 -0.3795E+05 S1 0.1910E+05 3430. 0.1787E+05	<pre>** MEMBRANE     SY     0.1409E+05     -0.2129E+05     -0.5666E+05     S2     0.1293E+05     -0.1142E+05     -0.3689E+05 ** PEAK **     SY     SY     SY </pre>	PLUS BENDING SZ -0.1346E+05 2087. 0.1763E+05 S3 -0.1628E+05 -0.2262E+05 -0.5796E+05 I=INSIDE C=0 SZ	G ** I=INSI SXY 5 3108. -904.6 5 -4918. SINT 5 0.3538E+0 5 0.2605E+0 5 0.7582E+0 CENTER O=OUT SXY	DE C=CENTER ( SYZ 9205. 5424. 1644. SEQV 5 0.3273E+05 5 0.2264E+05 5 0.6779E+05 SIDE SIDE	D=OUTSIDE SXZ -31.76 1702. 3436.
ICO ICO I	SX 0.1512E+05 -0.1141E+05 -0.3795E+05 S1 0.1910E+05 3430. 0.1787E+05 SX -7507.	<pre>** MEMBRANE     SY     0.1409E+05     -0.2129E+05     -0.5666E+05     S2     0.1293E+05     -0.1142E+05     -0.3689E+05 ** PEAK **     SY     -3131.</pre>	PLUS BENDING SZ -0.1346E+05 2087. 0.1763E+05 S3 -0.1628E+05 -0.2262E+05 -0.5796E+05 I=INSIDE C=0 SZ 3778.	G ** I=INSI SXY 5 3108. -904.6 5 -4918. SINT 5 0.3538E+0 5 0.2605E+0 5 0.7582E+0 CENTER O=OUT SXY 853.9	DE C=CENTER ( SYZ 9205. 5424. 1644. SEQV 5 0.3273E+05 5 0.2264E+05 5 0.6779E+05 SIDE SIDE SYZ -2101.	D=OUTSIDE SXZ -31.76 1702. 3436. 55 55 55 55 55 55
ICO ICO ICO	SX 0.1512E+05 -0.1141E+05 -0.3795E+05 S1 0.1910E+05 3430. 0.1787E+05 SX -7507. 4756.	<pre>** MEMBRANE     SY     0.1409E+05     -0.2129E+05     -0.5666E+05     S2     0.1293E+05     -0.1142E+05     -0.3689E+05 ** PEAK **     SY     -3131.     2115.</pre>	PLUS BENDING SZ -0.1346E+05 2087. 0.1763E+05 S3 -0.1628E+05 -0.2262E+05 -0.5796E+05 I=INSIDE C=0 SZ 3778. -2342.	<pre>S ** I=INSI SXY 5 3108. -904.6 5 -4918. SINT 5 0.3538E+0 5 0.2605E+0 5 0.7582E+0 CENTER O=OUT SXY 853.9 -483.7</pre>	DE C=CENTER ( SYZ 9205. 5424. 1644. SEQV 5 0.3273E+05 5 0.2264E+05 5 0.6779E+05 SIDE SYZ -2101. 1281.	D=OUTSIDE SXZ -31.76 1702. 3436. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
ICO ICO ICO	SX 0.1512E+05 -0.1141E+05 -0.3795E+05 S1 0.1910E+05 3430. 0.1787E+05 SX -7507. 4756. -0.2151E+05	<pre>** MEMBRANE     SY     0.1409E+05     -0.2129E+05     -0.5666E+05     S2     0.1293E+05     -0.1142E+05     -0.3689E+05 ** PEAK **     SY     -3131.     2115.     -812.9</pre>	PLUS BENDING SZ -0.1346E+05 2087. 0.1763E+05 S3 -0.1628E+05 -0.2262E+05 -0.5796E+05 I=INSIDE C=0 SZ 3778. -2342. 0.1422E+05	<pre>S ** I=INSI SXY 3 108. -904.6 5 -4918. SINT 5 0.3538E+0 5 0.2605E+0 5 0.7582E+0 CENTER O=OUT SXY 853.9 -483.7 5 6080.</pre>	DE C=CENTER ( SYZ 9205. 5424. 1644. SEQV 5 0.3273E+05 5 0.2264E+05 5 0.6779E+05 SIDE SYZ -2101. 1281. -9266.	D=OUTSIDE SXZ -31.76 1702. 3436. 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

 S1
 S2
 S3
 SINT
 SEQV

 I
 4367.
 -3533.
 -7694.
 0.1206E+05
 0.1061E+05

 C
 4848.
 2368.
 -2687.
 7535.
 6651.

 O
 0.1921E+05
 -1444.
 -0.2587E+05
 0.4508E+05
 0.3908E+05

 ** TOTAL **

	SX	SY	SZ	SXY	SYZ	SXZ
Ι	7617.	0.1096E+05	-9680.	3962.	7103.	107.4
С	-6657.	-0.1917E+05	-255.6	-1388.	6705.	1729.
0	-0.5946E+05	-0.5748E+05	0.3185E+05	1163.	-7622.	0.1146E+05
	Sl	S2	S3	SINT	SEQV	TEMP
Ι	0.1512E+05	5726.	-0.1195E+05	0.2707E+05	0.2380E+05	-20.00
С	2056.	-6602.	-0.2154E+05	0.2359E+05	0.2067E+05	
0	0.3388E+05	-0.5697E+05	-0.6199E+05	0.9586E+05	0.9346E+05	-20.00

# 1-ft End Drop - Hot Conditions - Shell Extension

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

***** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1609 OUTSIDE NODE = 1504

LOAD STEP 1 SUBSTEP= 3 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X, Y, Z STRESSES ARE IN COORDINATE SYSTEM 1

		** MEMBRANE	] **			
	SX	SY	SZ	SXY	SYZ	SXZ
	4433.	2397.	-2133.	46.47	-79.87	-3415.
	S1	S2	S3	SINT	SEQV	
	5889.	2396.	-3588.	9477.	8301.	
		** BENDING	** I=INSIDE	C=CENTER	O=OUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-55.44	-2716.	-8764.	65.29	1.688	79.83
С	0.000	0.000	0.000	0.000	0.000	0.000
0	55.44	2716.	8764.	-65.29	-1.688	-79.83
	Sl	S2	S3	SINT	SEQV	
I	-53.11	-2718.	-8765.	8711.	7731.	
С	0.000	0.000	0.000	0.000	0.000	
0	8765.	2718.	53.11	8711.	7731.	

		** №	1EMBRANE	PLUS	BENDING	* *	I=INSIDE	C=CEN	ITER	O=OUTSIDE
	SX		SY	5	SZ	S	XY	SYZ		SXZ
I	4377.	-3	319.7	-0.1	1090E+05	1:	11.8	-78.1	.8	-3336.
С	4433.	2	2397.	-23	133.	4	5.47	-79.8	37	-3415.
0	4488.		5113.	66	531.	-1	8.82	-81.5	56	-3495.
	S1		S2	c F	53	S	INT	SEQV	7	
I	5077.	-3	322.3	-0.1	1159E+05	0.1	1667E+05	0.147	73E+0	)5
С	5889.	2	2396.	-35	588.	94	477.	8301	L.	
0	9216.	5	5114.	19	903.	7	313.	6349	).	

		** PEAK **	-	I=INSIDE C=CH	ENTER O=OUTSI	DE	
	SX	SY		SZ	SXY	SYZ	SXZ
I	-0.2407E-01	-1.180		-3.805	0.2835E-01	0.7332E-03	0.3466E-01
С	0.3638E-11	0.1774E-	10	0.5093E-10	-0.3553E-12	-0.2842E-13	-0.1364E-11
0	0.2407E-01	1.180		3.805	-0.2835E-01	-0.7332E-03	-0.3466E-01
	S1	S2		S3	SINT	SEQV	
Ι	-0.2306E-01	-1.180		-3.806	3.783	3.357	
С	0.5097E-10	) 0.1774E-	10	0.3590E-11	0.4738E-10	0.4213E-10	
0	3.806	1.180		0.2306E-01	3.783	3.357	

	** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE						
	SX	SY	SZ	SXY	SYZ	SXZ	
Ι	4377.	-320.8	-0.1090E+05	111.8	-78.18	-3336.	
С	4433.	2397.	-2133.	46.47	-79.87	-3415.	
0	4488.	5114.	6635.	-18.85	-81.56	-3495.	
	S1	S2	S3	SINT	SEQV	TEMP	
I	5077.	-323.5	-0.1160E+05	0.1667E+05	0.1474E+05	176.7	
С	5889.	2396.	-3588.	9477.	8301.		
0	9219.	5115.	1904.	7315.	6350.	176.6	

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-2

DSYS= 0

**** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1519 OUTSIDE NODE = 1612

LOAD STEP 1 SUBSTEP= 3 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z STRESSES ARE IN COORDINATE SYSTEM 1

	** MEMBRA	NE **			
SX	SY	SZ	SXY	SYZ	SXZ
5623.	5109.	1242.	9.964	86.25	3641.
Sl	S2	S3	SINT	SEQV	
7682.	5109.	-817.1	8499.	7549.	

		** BENDING	G ** I=INSIDE	C=CENTER O=	OUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-89.64	3697.	0.1238E+05	-93.08	-12.38	-81.66
С	0.000	0.000	0.000	0.000	0.000	0.000
0	89.64	-3697.	-0.1238E+05	93.08	12.38	81.66
	Sl	S2	S3	SINT	SEQV	
Ι	0.1238E+05	3699.	-92.46	0.1247E+0	5 0.1107E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	92.46	-3699.	-0.1238E+05	0.1247E+C	5 0.1107E+05	

		* *	MEMBRANE	PLUS	BENDING	* *	I=INSIDE	C=CENTER	O=OUTSIDE
	SX		SY	c L	SZ	SΣ	ΥY	SYZ	SXZ
I.	5533.		8806.	0.3	1362E+05	-83	3.11	73.87	3559.
С	5623.		5109.	1:	242.	9.	.964	86.25	3641.
0	5712.		1412.	-0.1	1113E+05	1(	03.0	98.63	3722.
	Sl		S2	ŝ	53	S	ENT	SEQV	
I	0.1496E+05	,	8808.	41	187.	0.1	1077E+05	9363.	
С	7682.		5109.	- 81	17.1	84	199.	7549.	
0	6501.		1410.	-0.1	1192E+05	0.1	1842E+05	0.1648E+	-05

		** PEAK **	I=INSIDE C=CE	INTER O=OUTS	[DE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.3892E-01	1.605	5.374	-0.4042E-01	-0.5375E-02	-0.3546E-01
С	0.9095E-12	0.3638E-11	0.1592E-11	0.4086E-13	0.000	-0.4547E-12
0	0.3892E-01	-1.605	-5.374	0.4042E-01	0.5375E-02	0.3546E-01
	Sl	S2	S3	SINT	SEQV	
Ι	5.374	1.606	-0.4015E-01	5.414	4.807	
С	0.3639E-11	0.1819E-11	0.6817E-12	0.2957E-11	0.2583E-11	
0	0.4015E-01	-1.606	-5.374	5.414	4.807	

		** TOTAL **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	5533.	8808.	0.1362E+05	-83.16	73.87	3559.
С	5623.	5109.	1242.	9.964	86.25	3641.
0	5712.	1411.	-0.1114E+05	103.1	98.63	3722.
	S1	S2	S3	SINT	SEQV	TEMP
I	0.1497E+05	8810.	4188.	0.1078E+05	9366.	176.4
С	7682.	5109.	-817.1	8499.	7549.	
0	6501.	1408.	-0.1192E+05	0.1843E+05	0.1648E+05	176.4

# 1-ft End Drop - Hot Conditions - Outer Shell

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 25886 OUTSIDE NODE = 25910

LOAD STEP 1 SUBSTEP= 3 TIME= 1.0000 LOAD CASE= 0

		** MEMBRANE *	*							
	SX	SY	SZ	SXY	SYZ	SXZ				
	246.9	0.1397E+05	7385.	330.8	13.33	-444.8				
	S1	S2	S3	SINT	SEQV					
C	.1397E+05	7413.	211.3	0.1376E+05	0.1192E+05					
			L							
		** BENDING **	I=INSIDE (	C=CENTER O=C	DUTSIDE					
	SX	SY	SZ	SXY	SYZ	SXZ				
I	-3.417	1278.	5777.	35.14	-0.5406	-0.4010E-03				
С	0.000	0.000	0.000	0.000	0.000	0.000				
0	3.417	-1278.	-5777.	-35.14	0.5406	0.4010E-03				
	S1	S2	S3	SINT	SEQV					
I	5777.	1279.	-4.380	5781.	5258.					
С	0.000	0.000	0.000	0.000	0.000					
0	4.380	-1279.	-5777.	5781.	5258.					
	** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE									
	SX	SY	SZ	SXY	SYZ	SXZ				
Ι	243.5	0.1524E+05	0.1316E+05	365.9	12.79	-444.8				
С	246.9	0.1397E+05	7385.	330.8	13.33	-444.8				
0	250.3	0.1269E+05	1608.	295.6	13.87	-444.8				
	S1	S2	S3	SINT	SEQV					
Ι	0.1525E+05	0.1318E+05	219.2	0.1503E+05	5 0.1411E+0	5				
С	0.1397E+05	5 7413.	211.3	0.1376E+05	5 0.1192E+05	ō				
0	0.1270E+05	5 1740.	111.0	0.1258E+05	5 0.1185E+05	5				
		** PEAK ** 1	E=INSIDE C=C	ENTER O=OUTS	SIDE					
	SX	SY	SZ	SXY	SYZ	SXZ				
I	-0.1484E-02	0.5549	2.508	0.1526E-01	1 -0.2347E-03	3 -0.1741E-06				
С	-0.5684E-13	0.5457E-11	0.3274E-10	0.2842E-12	2 -0.5329E-14	1 0.5684E-13				
0	0.1484E-02	2 -0.5549	-2.508	-0.1526E-01	1 0.2347E-03	3 0.1741E-06				
	S1	S2	S3	SINT	SEQV					
I	2.508	0.5553	-0.1902E-02	2.510	2.283					
С	0.3274E-10	0.5472E-11	-0.7155E-13	0.3281E-10	0.3042E-10	)				
0	0.1902E-02	2 -0.5553	-2.508	2.510	2.283					
		** TOTAL **	I=INSIDE C=	CENTER O=OUT	<b>TSIDE</b>					
	SX	SY	SZ	SXY	SYZ	SXZ				
I	243.5	0.1525E+05	0.1316E+05	365.9	12.79	-444.8				

С	246.9	0.1397E+05	7385.	330.8	13.33	-444.8
0	250.3	0.1269E+05	1606.	295.6	13.87	-444.8
	Sl	S2	S3	SINT	SEQV	TEMP
I	0.1525E+05	0.1318E+05	219.2	0.1503E+05	0.1411E+05	177.3
С	0.1397E+05	7413.	211.3	0.1376E+05	0.1192E+05	
0	0.1270E+05	1738.	110.8	0.1258E+05	0.1185E+05	177.3

# 1-ft End Drop - Cold (Max Heat) Conditions - Shell Extension

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

**** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1609 OUTSIDE NODE = 1504

LOAD STEP 2 SUBSTEP= 3 TIME= 2.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z STRESSES ARE IN COORDINATE SYSTEM 1

	** MEMBRANE	5 **			
SX	SY	SZ	SXY	SYZ	SXZ
1380.	-5726.	-0.1638E+05	107.6	24.60	914.8
Sl	S2	S3	SINT	SEQV	
1322.	-5728.	-0.1644E+05	0.1512E+0	5 0.1346E+05	
	** BENDING	** I=INSIDE	C=CENTER	O=OUTSIDE	
SX	SY	SZ	SXY	SYZ	SXZ
6.369	2572.	9017.	-63.00	-1.787	-83.59
0.000	0.000	0.000	0.000	0.000	0.000
-6.369	-2572.	-9017.	63.00	1.787	83.59
S1	S2	S3	SINT	SEQV	
9018.	2574.	4.047	9014.	8043.	
0.000	0.000	0.000	0.000	0.000	
-4.047	-2574.	-9018.	9014.	8043.	
	SX 1380. S1 1322. SX 6.369 0.000 -6.369 S1 9018. 0.000 -4.047	** MEMBRANE SX SY 13805726. S1 S2 13225728. ** BENDING SX SY 6.369 2572. 0.000 0.000 -6.369 -2572. S1 S2 9018. 2574. 0.000 0.000 -4.047 -2574.	** MEMBRANE ** SX SY SZ 138057260.1638E+05 S1 S2 S3 132257280.1644E+05 ** BENDING ** I=INSIDE SX SY SZ 6.369 2572. 9017. 0.000 0.000 0.000 -6.369 -25729017. S1 S2 S3 9018. 2574. 4.047 0.000 0.000 0.000 -4.047 -25749018.	** MEMBRANE **         SX       SY       SZ       SXY         1380.       -5726.       -0.1638E+05       107.6         S1       S2       S3       SINT         1322.       -5728.       -0.1644E+05       0.1512E+0         ** BENDING **       I=INSIDE       C=CENTER         SX       SY       SZ       SXY         6.369       2572.       9017.       -63.00         0.000       0.000       0.000       0.000         -6.369       -2572.       -9017.       63.00         S1       S2       S3       SINT         9018.       2574.       4.047       9014.         0.000       0.000       0.000       0.000         -4.047       -2574.       -9018.       9014.	** MEMBRANE       **         SX       SY       SZ       SXY       SYZ         1380.       -5726.       -0.1638E+05       107.6       24.60         S1       S2       S3       SINT       SEQV         1322.       -5728.       -0.1644E+05       0.1512E+05       0.1346E+05         **       BENDING       **       I=INSIDE       C=CENTER       O=OUTSIDE         SX       SY       SZ       SXY       SYZ         6.369       2572.       9017.       -63.00       -1.787         0.000       0.000       0.000       0.000       0.000         -6.369       -2572.       -9017.       63.00       1.787         S1       S2       S3       SINT       SEQV         9018.       2574.       4.047       9014.       8043.         0.000       0.000       0.000       0.000       0.000         -4.047       -2574.       -9018.       9014.       8043.

		** MEMBRANE	PLUS BENDING	** I=INSIDE	C=CENTER	O=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-1374.	-3154.	-7365.	44.62	22.81	831.2
С	-1380.	-5726.	-0.1638E+05	107.6	24.60	914.8
0	-1387.	-8298.	-0.2540E+05	170.6	26.38	998.4
	Sl	S2	53	SINT	SEQV	
Ι	-1260.	-3155.	-7478.	6218.	5520.	
С	-1322.	-5728.	-0.1644E+05	0.1512E+05	0.1346E+C	)5
0	-1341.	-8302.	-0.2544E+05	0.2410E+05	0.2148E+0	)5

	1	** PEAK ** :	I=INSIDE C=CH	ENTER O=OUTSI	LDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	0.2765E-02	1.117	3.915	-0.2736E-01	-0.7760E-03	-0.3630E-01
С	-0.1137E-11	-0.1455E-10	-0.5457E-10	0.3553E-12	0.1776E-13	0.000
0	-0.2765E-02	-1.117	-3.915	0.2736E-01	0.7760E-03	0.3630E-01
	Sl	S2	S3	SINT	SEQV	
I	3.916	1.117	0.1757E-02	3.914	3.492	
С	-0.1127E-11	-0.1456E-10	-0.5457E-10	0.5344E-10	0.4815E-10	
0	-0.1757E-02	-1.117	-3.916	3.914	3.492	

		** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE				
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-1374.	-3153.	-7361.	44.59	22.81	831.1
С	-1380.	-5726.	-0.1638E+05	107.6	24.60	914.8
0	-1387.	-8299.	-0.2540E+05	170.7	26.38	998.4
	Sl	S2	S3	SINT	SEQV	TEMP
I	-1259.	-3154.	-7474.	6215.	5517.	16.61
С	-1322.	-5728.	-0.1644E+05	0.1512E+05	0.1346E+05	
0	-1341.	-8303.	-0.2544E+05	0.2410E+05	0.2149E+05	16.49

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-2 DSYS= 0

**** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1658 OUTSIDE NODE = 1667

LOAD STEP 2 SUBSTEP= 3 TIME= 2.0000 LOAD CASE= 0

THE FOLLOWING X, Y, Z STRESSES ARE IN COORDINATE SYSTEM 1

	** MEMBRANE	* *			
SX	SY	SZ	SXY	SYZ	SXZ
-492.4	-3537.	-8814.	43.12	12.63	811.9
S1	S2	S3	SINT	SEQV	
-413.3	-3538.	-8892.	8479.	7427.	

		** BENDING	* *	I=INSIDE	C=CENTER	O=OUTSIDE	
	SX	SY		SZ	SXY	SYZ	SXZ
I	878.0	-385.9		-1448.	52.43	8.629	-18.48
С	0.000	0.000		0.000	0.000	0.000	0.000
0	-878.0	385.9		1448.	-52.43	-8.629	18.48
	S1	S2		<b>S</b> 3	SINT	SEQV	
I	880.3	-388.0		-1449.	2329.	2019.	
С	0.000	0.000		0.000	0.000	0.000	
0	1449.	388.0		-880.3	2329.	2019.	

		** MEMBRANE	PLUS BENDING	** I=INSIDE	C=CENTER	O=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	385.6	-3923.	-0.1026E+05	95.54	21.26	793.5
С	-492.4	-3537.	-8814.	43.12	12.63	811.9
0	-1370.	-3152.	-7365.	-9.306	4.002	830.4
	Sl	S2	S3	SINT	SEQV	
I	446.6	-3925.	-0.1032E+05	0.1077E+05	9379.	
С	-413.3	-3538.	-8892.	8479.	7427.	
0	-1257.	-3152.	-7478.	6221.	5523.	

		** PEAK **	I=INSIDE C=C	ENTER O=OUT	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	1.310	0.1338	-0.7474	10.41	-0.9449E-01	-0.1809
С	-0.4649	-0.1509	0.5934E-01	-5.198	0.4918E-01	0.8657E-01
0	0.5474	0.4689	0.5104	10.36	-0.1020	-0.1649
	S1	S2	S3	SINT	SEQV	
Ι	11.15	-0.7503	-9.701	20.85	18.11	
С	4.893	0.6088E-01	-5.510	10.40	9.017	
0	10.87	0.5071	-9.852	20.72	17.95	

		** 'I'O'I'AL **	I=INSIDE C=C	ENTER $O=OUTS$ .	LDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	386.9	-3923.	-0.1026E+05	105.9	21.17	793.3
С	-492.8	-3538.	-8814.	37.92	12.68	812.0
0	-1370.	-3151.	-7365.	1.054	3.900	830.3
	S1	S2	S3	SINT	SEQV	TEMP
I	448.3	-3926.	-0.1032E+05	0.1077E+05	9381.	16.61
С	-413.8	-3538.	-8892.	8478.	7426.	
0	-1257.	-3151.	-7478.	6221.	5523.	16.61

### 1-ft End Drop - Cold (No Heat) Conditions - Shell Extension

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1609 OUTSIDE NODE = 1504

LOAD STEP 3 SUBSTEP= 3 TIME= 3.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z STRESSES ARE IN COORDINATE SYSTEM 1

		** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
_	2048.	-83191	0.2027E+05	155.8	33.78	1291.
	S1	S2	S3	SINT	SEOV	
	-1953	-8323 -1	0 2036E+05	0.1841E+05	0.1619E+05	
		0520.	[			
		** BENDING *	* I=INSIDE	C=CENTER O=O	UTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	25.20	3455.	0.1207E+05	-84.21	-2.303	-111.7
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-25.20	-3455.	-0.1207E+05	84.21	2.303	111.7
	Sl	S2	S3	SINT	SEQV	
Ι	0.1207E+05	3457.	22.10	0.1205E+05	0.1075E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	-22.10	-3457.	-0.1207E+05	0.1205E+05	0.1075E+05	
		** MEMBRANE	PLUS BENDING	** I=INSID	DE C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-2023.	-4864.	-8198.	71.56	31.48	1179.
С	-2048.	-8319.	-0.2027E+05	155.8	33.78	1291.
õ	-2073.	-0.1177E+05	-0.3234E+05	240.0	36.09	1403.
-	S1	S2	S3	SINT	SEOV	
I	-1803.	-4866.	-8416.	6613.	5732.	
C	-1953.	-8323.	-0.2036E+05	0.1841E+05	0.1619E+05	
0	-2002.	-0.1178E+05	-0.3240E+05	0.3040E+05	0.2688E+05	
-				L		
		** PEAK **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	0.1094E-01	1.500	5.241	-0.3656E-01	-0.9999E-03	-0.4850E-01
С	-0.1137E-11	-0.2001E-10	-0.6912E-10	0.4547E-12	0.1421E-13	0.2274E-12
0	-0.1094E-01	-1.500	-5.241	0.3656E-01	0.9999E-03	0.4850E-01
	S1	S2	S3	SINT	SEQV	
I	5.241	1.501	0.9595E-02	5.232	4.668	
С	-0.1125E-11	-0.2002E-10	-0.6912E-10	0.6800E-10	0.6079E-10	
0	-0.9595E-02	-1.501	-5.241	5.232	4.668	
		** TOTAL **	I=INSIDE C=	CENTER O=OUI	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-2023.	-4862.	-8193.	71.52	31.48	1179.
С	-2048.	-8319.	-0.2027E+05	155.8	33.78	1291.
0	-2073.	-0.1178E+05	-0.3234E+05	240.0	36.09	1403.
	S1	S2	S3	SINT	SEQV	TEMP
I	-1803.	-4864.	-8411.	6608.	5727.	-20.00
С	-1953.	-8323.	-0.2036E+05	0.1841E+05	5 0.1619E+05	

O -2002. -0.1178E+05 -0.3241E+05 0.3041E+05 0.2688E+05 -20.00

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-2 DSYS= 0

**** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1658 OUTSIDE NODE = 1667

LOAD STEP 3 SUBSTEP= 3 TIME= 3.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z STRESSES ARE IN COORDINATE SYSTEM 1

	** MEMBRANI	· * *			
SX	SY	SZ	SXY	SYZ	SXZ
-734.8	-5342.	-0.1026E+05	64.97	16.74	1147.
S1	S2	S3	SINT	SEQV	
-597.6	-5343.	-0.1039E+05	9796.	8485.	
	** BENDING	** I=INSIDE	C=CENTER	O=OUTSIDE	

	SX	SY	SZ	SXY	SYZ	SXZ
I	1282.	-480.3	-2058.	77.14	12.54	-30.86
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-1282.	480.3	2058.	-77.14	-12.54	30.86
	S1	S2	S3	SINT	SEQV	
I	1286.	-483.5	-2059.	3344.	2898.	
С	0.000	0.000	0.000	0.000	0.000	
0	2059.	483.5	-1286.	3344.	2898.	

		** MEMBRANE	PLUS BENDING	** I=INSIDE	C=CENTER	O=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	547.4	-5823.	-0.1232E+05	142.1	29.28	1116.
С	-734.8	-5342.	-0.1026E+05	64.97	16.74	1147.
0	-2017.	-4862.	-8199.	-12.17	4.201	1178.
	S1	S2	S3	SINT	SEQV	
Ι	646.8	-5826.	-0.1241E+05	0.1306E+05	0.1131E+0	5
С	-597.6	-5343.	-0.1039E+05	9796.	8485.	
0	-1800.	-4862.	-8416.	6616.	5735.	

		** PEAK **	I=INSIDE C=CH	ENTER O=OU	TSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	2.040	0.1571	-1.008	14.57	-0.1965	-0.2654
С	-0.7426	-0.1830	0.5736E-01	-7.279	0.1011	0.1262
0	0.9265	0.5741	0.7791	14.51	-0.2074	-0.2386
	Sl	S2	S3	SINT	SEQV	
Ι	15.71	-1.015	-13.50	29.21	25.39	
С	6.822	0.6065E-01	-7.751	14.57	12.63	
0	15.26	0.7723	-13.76	29.02	25.13	

		** TOTAL **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	549.4	-5823.	-0.1232E+05	156.7	29.08	1116.
С	-735.6	-5343.	-0.1026E+05	57.69	16.84	1147.
0	-2016.	-4862.	-8198.	2.338	3.994	1178.
	S1	S2	S3	SINT	SEQV	TEMP
Ι	649.4	-5826.	-0.1241E+05	0.1306E+05	0.1131E+05	-20.00
С	-598.5	-5343.	-0.1039E+05	9795.	8484.	
0	-1799.	-4862.	-8415.	6616.	5735.	-20.00

### 1-ft End Drop - Cold (No Heat) Conditions - Baseplates

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 2140 OUTSIDE NODE = 2167

LOAD STEP 3 SUBSTEP= 3 TIME= 3.0000 LOAD CASE= 0

	** MEMBRAN	JE **			
SX	SY	SZ	SXY	SYZ	SXZ
-7883.	-7441.	2131.	16.58	-178.0	978.5
Sl	S2	S3	SINT	SEQV	
2229.	-7442.	-7979.	0.1021E+05	9951.	

		** BENDING	* *	I=INSIDE	C=	CENTER=	O=OUTSIDE	
	SX	SY		SZ		SXY	SYZ	SXZ
I	-6914.	-1359.	- (	).3297E-10	) '	50.60	-0.1845E-09	0.1931E-09
С	0.000	0.000		0.000		0.000	0.000	0.000
0	6914.	1359.	(	).3297E-1(	)	-50.60	0.1845E-09	-0.1931E-09
	S1	S2		S3		SINT	SEQV	
I	0.000	-1359.	-	-6915.		6915.	6346.	
С	0.000	0.000		0.000		0.000	0.000	
0	6915.	1359.		0.000		6915.	6346.	

		* *	MEMBRANE	PLUS	BENDING	* *	I=INSIDE	C=CENTER	O=OUTSIDE
	SX		SY	c L	SZ	S	XY	SYZ	SXZ
Ι	-0.1480E+05		-8800.	23	131.	6	7.18	-178.0	978.5
С	-7883.		-7441.	23	131.	1	6.58	-178.0	978.5
0	-968.2		-6082.	2	131.	- 3	4.02	-178.0	978.5
	Sl		S2	2	53	S	INT	SEQV	
I	2190.		-8802.	-0.2	1485E+05	0.	1704E+05	0.1497E+	05
С	2229.		-7442.	-79	979.	0.	1021E+05	9951.	
0	2418.		-1251.	-60	085.	8	504.	7387.	

		** PEAK ** ]	I=INSIDE C=CH	ENTER O=OUTSI	DE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-3.002	-0.5902	-0.1091E-10	0.2197E-01	0.6253E-12	-0.2615E-11
С	-0.9095E-12	0.1819E-11	-0.1819E-11	-0.6750E-13	0.1421E-12	-0.3411E-12
0	3.002	0.5902	-0.3183E-11	-0.2197E-01	0.2842E-12	-0.4547E-12
	Sl	S2	S3	SINT	SEQV	
I	0.000	-0.5900	-3.003	3.003	2.755	
С	0.1827E-11	-0.8003E-12	-0.1936E-11	0.3763E-11	0.3343E-11	
0	3.003	0.5900	0.000	3.003	2.755	

		** TOTAL *	* I=INSIDE C=C	CENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.1480E+05	-8801.	2131.	67.21	-178.0	978.5
С	-7883.	-7441.	2131.	16.58	-178.0	978.5
0	-965.2	-6081.	2131.	-34.04	-178.0	978.5
	Sl	S2	S3	SINT	SEQV	TEMP
I	2190.	-8802.	-0.1486E+05	0.1705E+05	0.1497E+05	-20.00
С	2229.	-7442.	-7979.	0.1021E+05	9951.	
0	2418.	-1248.	-6085.	8503.	7387.	-20.00

# 1-ft Side Drop - Hot Conditions - Shell Extension

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1519 OUTSIDE NODE = 1612

LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

		* *	MEMBRANE	* *					
	SX		SY		SZ	SZ	ΧY	SYZ	SXZ
	3400.	-1(	)17.	8583	2.	97.2	16 3	33.38	2680.
	S1		S2	:	53	S	INT	SEQV	
	9719.	22	264.	-101	9. (	0.10	74E+05	9531.	
		* *	BENDING	** I:	=INSIDE (	C=CEI	NTER O=OU	<b>ISIDE</b>	
	SX		SY	:	SZ	SZ	XY	SYZ	SXZ
I	-75.81		4206.	0.1	1329E+05	-1(	05.5	1.766	-89.30
С	0.000		0.000	0	.000	0	.000	0.000	0.000
0	75.81		-4206.	-0.1	1329E+05	1(	05.5	-1.766	89.30
	Sl		S2	i	53	S	INT	SEQV	
Ι	0.1329E+05		4208.	-7	9.00	0.2	1337E+05	0.1183E+0	)5
С	0.000		0.000	0	.000	0	.000	0.000	
0	79.00		-4208.	-0.	1329E+05	0.3	1337E+05	0.1183E+0	)5
		* *	MEMBRANE	PLUS	BENDING	* *	I=INSIDE	C=CENTER	O=OUTSIDE

	SX	SY	SZ	SXY	SYZ	SXZ
Ι	3324.	3189.	0.2188E+05	-8.294	35.14	2591.
С	3400.	-1017.	8582.	97.16	33.38	2680.
0	3475.	-5223.	-4712.	202.6	31.61	2770.
	S1	S2	S3	SINT	SEQV	
Ι	0.2223E+05	3190.	2968.	0.1926E+05	0.1915E+05	
С	9719.	2264.	-1019.	0.1074E+05	9531.	
0	4329.	-5225.	-5564.	9892.	9727.	

		** PEAK **	I=INSIDE C=CH	ENTER O=OUTSI	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.3292E-01	1.826	5.772	-0.4579E-01	0.7670E-03	-0.3877E-01
С	-0.4547E-12	0.1080E-10	0.4002E-10	-0.2984E-12	0.2132E-13	-0.4547E-12
0	0.3292E-01	-1.826	-5.772	0.4579E-01	-0.7670E-03	0.3877E-01
	Sl	S2	S3	SINT	SEQV	
Ι	5.773	1.827	-0.3430E-01	5.807	5.136	
С	0.4002E-10	0.1081E-10	-0.4677E-12	0.4049E-10	0.3619E-10	
0	0.3430E-01	-1.827	-5.773	5.807	5.136	

		** TOTAL **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	3324.	3191.	0.2188E+05	-8.340	35.14	2591.
С	3400.	-1017.	8582.	97.16	33.38	2680.
0	3476.	-5225.	-4718.	202.7	31.61	2770.
	S1	S2	S3	SINT	SEQV	TEMP
I	0.2224E+05	3191.	2968.	0.1927E+05	0.1916E+05	176.4
С	9719.	2264.	-1019.	0.1074E+05	9531.	
0	4328.	-5226.	-5569.	9897.	9730.	176.4

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-2 DSYS= 0

***** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1623 OUTSIDE NODE = 1644

LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

	** MEMBRAN	E **			
SX	SY	SZ	SXY	SYZ	SXZ
-3737.	-2645.	8591.	-30.68	14.36	1992.
S1	S2	53	SINT	SEQV	
8905.	-2645.	-4052.	0.1296E+05	0.1231E+05	

		** BENDING **	I=INSIDE	C=CENTER	O=OUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	41.27	3148.	9020.	-76.41	9.030	29.10
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-41.27	-3148.	-9020.	76.41	-9.030	-29.10
	Sl	S2	S3	SINT	SEQV	
I	9021.	3150.	39.29	8981.	7899.	
С	0.000	0.000	0.000	0.000	0.000	
0	-39.29	-3150.	-9021.	8981.	7899.	

		* *	MEMBRANE	PLUS	BENDING	* *	I=INSIDE	C=CENTER	O=OUTSIDE
	SX		SY	5	SZ	S.	XY	SYZ	SXZ
Ι	-3696.		502.7	0.1	L761E+05	-1	07.1	23.39	2021.
С	-3737.		-2645.	85	591.	- 3	0.68	14.36	1992.
0	-3778.		-5794.	-42	29.2	4	5.74	5.328	1962.
	S1		S2	ç	53	S	INT	SEQV	
I	0.1780E+05	5	505.4	-38	388.	0.	2169E+05	0.1986E+	-05
С	8905.		-2645.	-4(	052.	0.	1296E+05	0.1231E+	05
0	476.1		-4682.	-5'	795.	6	271.	5795.	

		** PEAK **	I=INSIDE C=CH	ENTER O=OUTSI	LDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	0.1792E-01	1.367	3.917	-0.3318E-01	0.3921E-02	0.1263E-01
С	0.2728E-11	0.9550E-11	0.2728E-10	-0.2309E-12	0.3375E-13	-0.4547E-12
0	-0.1792E-01	-1.367	-3.917	0.3318E-01	-0.3921E-02	-0.1263E-01
	Sl	S2	S3	SINT	SEQV	
Ι	3.917	1.368	0.1706E-01	3.900	3.430	
С	0.2729E-10	0.9557E-11	0.2712E-11	0.2458E-10	0.2197E-10	
0	-0.1706E-01	-1.368	-3.917	3.900	3.430	

	** TOTAL ** I=INSIDE C=CENTER O=OUTSIDE						
	SX	SY	SZ	SXY	SYZ	SXZ	
I	-3696.	504.0	0.1762E+05	-107.1	23.39	2021.	
С	-3737.	-2645.	8591.	-30.68	14.36	1992.	
0	-3778.	-5795.	-433.1	45.77	5.324	1962.	
	S1	S2	S3	SINT	SEQV	TEMP	
I	0.1781E+05	506.7	-3888.	0.2169E+05	0.1986E+05	176.3	
С	8905.	-2645.	-4052.	0.1296E+05	0.1231E+05		
0	472.9	-4683.	-5796.	6269.	5793.	176.3	

# 1-ft Side Drop - Hot Conditions - Bolting Ring Skirt

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1194 OUTSIDE NODE = 1188

LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

		** MEMBRA	NE **			
	SX	SY	SZ	SXY	SYZ	SXZ
	5435.	-3962.	746.2	134.7	-419.7	D.1407E+05
	S1	S2	S3	SINT	SEQV	
С	.1207E+05	-3955.	-0.1676E+05	0.2883E+05	0.2502E+05	
		** BENDIN	G ** I=INSIDE	C=CENTER O=C	DUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	5101.	5319.	-0.1043E+05	5 9.792	-14.13	1207.
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-5101.	-5319.	0.1043E+05	5 -9.792	14.13	-1207.
	Sl	S2	S3	SINT	SEQV	
I	5319.	5194.	-0.1052E+05	5 0.1584E+05	5 0.1578E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	0.1052E+05	-5194.	-5319.	0.1584E+05	5 0.1578E+05	
		** MEMBRA	NE PLUS BENDING	G ** I=INSII	DE C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
I	-334.1	1357.	-9683.	144.5	-433.9	0.1528E+05
С	-5435.	-3962.	746.2	134.7	-419.7	0.1407E+05
0	-0.1054E+05	5 -9281.	0.1118E+0!	5 124.9	-405.6	0.1287E+05
	S1	S2	S3	SINT	SEQV	
Ι	0.1097E+05	5 1363.	-0.2100E+0	5 0.3197E+0	5 0.2841E+05	
С	0.1207E+05	5 -3955.	-0.1676E+0	5 0.2883E+0	5 0.2502E+05	
0	0.1716E+05	-9273.	-0.1653E+0	5 0.3368E+0	5 0.3071E+05	
		** PEAK *	* I=INSIDE C=	CENTER O=OUT:	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	2.215	2.309	-4.529	0.4252E-0	2 -0.6136E-02	0.5243
С	-0.1637E-10	) -0.1546H	E-10 0.3013E-1	0 0.000	0.000	-0.3638E-11
0	-2.215	-2.309	4.529	-0.4252E-0	2 0.6136E-02	-0.5243
	Sl	S2	S3	SINT	SEQV	
Ι	2.310	2.255	-4.569	6.879	6.852	
С	0.3041E-10	) -0.1546H	S-10 -0.1665E-1	0 0.4706E-1	0 0.4648E-10	
0	4.569	-2.255	-2.310	6.879	6.852	
		** TOTAL	** I=INSIDE C	=CENTER O=OU	TSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-331.9	1359.	-9688.	144.5	-433.9	0.1528E+05
С	-5435.	-3962.	746.2	134.7	-419.7	0.1407E+05
0	-0.1054E+05	5 -9283.	0.1118E+0	5 124.9	-405.6	0.1287E+05
	Sl	S2	S3	SINT	SEQV	TEMP
Ι	0.1097E+05	5 1365.	-0.2100E+0	5 0.3197E+0	5 0.2842E+05	176.9
C	0.1207E+0	5 -3955.	-0.1676E+0	5 0.2883E+0	5 0.2502E+05	
0	0.1716E+09	5 -9276.	-0.1653E+0	5 0.3369E+0	5 0.3071E+05	176.9

### 1-ft Side Drop - Hot Conditions - Outer Shell

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 38028 OUTSIDE NODE = 37932

LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

		** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
	5114.	4058.	9580.	583.2 -	3998.	-990.2
	S1	S2	S3	SINT	SEQV	
С	.1187E+05	4920.	1959.	9915.	8815.	
		** DENIDING *	* * TTNGTDF (	-CENTER O-OU	TGIDF	
	av	CV CV	C7 C7	CTCENTER 0-00	gvz	GY7
	SA DECA			752 0	20 10 DIT	100 C
T	3764.	153.7	0.12626+05	752.9	-39.49	-190.0
C	0.000	0.000	0.000	0.000	0.000	100 0
0	-3764.	-153./	-0.12626+05	-/52.9	39.49	198.6
	SI	S2	53	SINT	SEQV	
Ι	0.1263E+05	3910.	2.979	0.1262E+05	0.1119E+0	C
С	0.000	0.000	0.000	0.000	0.000	
0	-2.979	-3910.	-0.1263E+05	0.1262E+05	0.1119E+0	5
		** MEMBRANE	PLUS BENDING	** I=INSIDE	C=CENTER (	O=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	8879.	4211.	0.2220E+05	1336.	-4038.	-1189.
С	5114.	4058.	9580.	583.2	-3998.	-990.2
0	1350.	3904.	-3041.	-169.6	-3959.	-791.6
	Sl	S2	S3	SINT	SEQV	
Ι	0.2321E+05	8932.	3148.	0.2006E+05	0.1789E+0	5
С	0.1187E+05	4920.	1959.	9915.	8815.	
0	5704.	1442.	-4934.	0.1064E+05	9274.	
		** PEAK **	T=TNSTDE C=C	ENTER O=OUTST	DE	
	SX	SV	SZ.	SXY	SYZ	SX7
	1 () [		1 5 400	0 2000	0 17150 0	

	5A		02	D21 1	012	N2141
I	1.635	0.6673E-01	5.480	0.3269	-0.1715E-01	-0.8621E-01
С	0.2547E-10	0.000	0.8185E-10	0.5230E-11	-0.9095E-12	-0.1478E-11
0	-1.635	-0.6673E-01	-5.480	-0.3269	0.1715E-01	0.8621E-01
	Sl	S2	S3	SINT	SEQV	
I	5.482	1.698	0.1293E-02	5.481	4.860	
С	0.8191E-10	0.2645E-10	-0.1037E-11	0.8294E-10	0.7318E-10	
0	-0.1293E-02	-1.698	-5.482	5.481	4.860	

		* *	TOTAL	* *	I=INSIDE	C=CE	NTER O=OUT	SIDE	
	SX		SY		SZ		SXY	SYZ	SXZ
Ι	8880.		4211.		0.2221E+	05	1336.	-4038.	-1189.
С	5114.		4058.		9580.		583.2	-3998.	-990.2
0	1348.		3904.		-3046.		-170.0	-3959.	-791.5
	S1		S2		53		SINT	SEQV	TEMP
I	0.2322E+05		8933.		3148.		0.2007E+05	0.1789E+05	177.6
С	0.1187E+05		4920.		1959.		9915.	8815.	
0	5703.		1441.		-4938.		0.1064E+05	9277.	177.6

#### 1-ft Side Drop - Cold (Max Heat) Conditions - Bolting Ring Skirt

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

**** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1194 OUTSIDE NODE = 1188

LOAD STEP 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.

		** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
	5569.	-3815.	801.9	13.77	-381.6 (	).1446E+05
	S1	S2	S3	SINT	SEQV	
0	.1242E+05	-3816	0.1719E+05	0.2962E+05	0.2569E+05	
			L			
		** BENDING *	* I=INSIDE	C=CENTER O=O	UTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	5265.	5405.	-0.1068E+05	-5.551	-24.76	1242.
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-5265.	-5405.	0.1068E+05	5.551	24.76	-1242.
	S1	S2	S3	SINT	SEQV	
I	5406.	5360.	-0.1078E+05	0.1619E+05	0.1616E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	0.1078E+05	-5360.	-5406.	0.1619E+05	0.1616E+05	
		** MEMBRANE	PLUS BENDING	** I=INSID	E C=CENTER O:	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-303.7	1590.	-9883.	8.222	-406.4	0.1570E+05
С	-5569.	-3815.	801.9	13.77	-381.6	0.1446E+05
0	-0.1083E+05	-9220.	0.1149E+05	19.32	-356.9	0.1321E+05
	Sl	S2	S3	SINT	SEQV	
Ι	0.1132E+05	1589.	-0.2151E+05	0.3284E+05	0.2921E+05	
С	0.1242E+05	5 -3816.	-0.1719E+05	0.2962E+05	0.2569E+05	
0	0.1763E+05	-9220.	-0.1697E+05	0.3460E+05	0.3145E+05	
		** PEAK **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	2.286	2.347	-4.639	-0.2410E-02	-0.1075E-01	0.5393
С	-0.1637E-10	) -0.1728E-10	0.3183E-10	0.1599E-13	0.1137E-12	0.000
0	-2.286	-2.347	4.639	0.2410E-02	0.1075E-01	-0.5393
	S1	S2	S3	SINT	SEQV	
I	2.347	2.327	-4.681	7.029	7.019	
С	0.3183E-10	) -0.1637E-10	0 -0.1728E-10	0.4911E-10	0.4866E-10	
0	4.681	-2.327	-2.347	7.029	7.019	
		** TOTAL **	I=INSIDE C=	CENTER O=OUT	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-301.4	1592.	-9888.	8.220	-406.4	0.1570E+05
С	-5569.	-3815.	801.9	13.77	-381.6	0.1446E+05
0	-0.1084E+05	5 -9222.	0.1149E+05	19.33	-356.9	0.1321E+05
	Sl	S2	S3	SINT	SEQV	TEMP
I	0.1133E+05	5 1591.	-0.2151E+05	0.3284E+05	0.2921E+05	16.83
С	0.1242E+05	5 -3816.	-0.1719E+05	0.2962E+05	0.2569E+05	
0	0.1763E+05	5 -9222.	-0.1697E+05	0.3460E+05	0.3145E+05	16.81

1666.

### 1-ft Side Drop - Cold (Max Heat) Conditions - Baseplates

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 2140 OUTSIDE NODE = 2167

LOAD STEP 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0

		** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
	-9893.	-8657.	156.1	18.36	18.02	1071.
	S1	S2	S3	SINT	SEQV	
	269.1	-8657.	-0.1001E+05	0.1028E+05	9672.	
			·			
		** BENDING	** I=INSIDE	C=CENTER O=C	DUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-6777.	-2096.	-0.4930	-20.56	0.2862E-10	0.2076E-10
С	0.000	0.000	0.000	0.000	0.000	0.000
0	6777.	2096.	0.4930	20.56	-0.2862E-10	-0.2076E-10
	Sl	S2	S3	SINT	SEQV	
Ι	-0.4930	-2096.	-6777.	6777.	6009.	
С	0.000	0.000	0.000	0.000	0.000	
0	6777.	2096.	0.4930	6777.	6009.	
		** MEMBRANE	PLUS BENDING	** I=INSII	DE C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.1667E+05	5 -0.1075E+0	5 155.6	-2.193	18.02	1071.
С	-9893.	-8657.	156.1	18.36	18.02	1071.
0	-3116.	-6561.	156.6	38.92	18.02	1071.
	S1	S2	S3	SINT	SEQV	
Ι	223.6	-0.1075E+0	5 -0.1674E+05	0.1696E+0	5 0.1490E+05	
С	269.1	-8657.	-0.1001E+05	0.1028E+05	5 9672.	
0	476.3	-3435.	-6561.	7037.	6107.	
		** PEAK **	I=INSIDE C=C	ENTER O=OUTS	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-2.943	-0.9102	-0.2141E-03	-0.8926E-02	2 0.3553E-14	-0.2728E-11
С	0.7276E-11	0.1819E-1	1 -0.2842E-12	0.1066E-13	3 0.3553E-14	-0.4547E-12
0	2.943	0.9102	0.2141E-03	0.8926E-02	2 -0.1421E-13	-0.9095E-12
	Sl	S2	S3	SINT	SEQV	
I	-0.2141E-03	8 -0.9102	-2.943	2.943	2.609	
С	0.7303E-11	0.1819E-1	1 -0.3115E-12	0.7615E-1	1 0.6804E-11	
0	2.943	0.9102	0.2141E-03	2.943	2.609	
		**	T-INGIDE C-		rethe	

		** TOTAL **	I=INSIDE C=	CENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.1667E+05	-0.1075E+05	155.6	-2.202	18.02	1071.
С	-9893.	-8657.	156.1	18.36	18.02	1071.
0	-3113.	-6560.	156.6	38.93	18.02	1071.
	S1	S2	S3	SINT	SEQV	TEMP
Ι	223.6	-0.1075E+05	-0.1674E+05	0.1696E+05	0.1490E+05	18.08
С	269.1	-8657.	-0.1001E+05	0.1028E+05	9672.	
0	476.5	-3433.	-6560.	7037.	6106.	17.96

# 1-ft Side Drop - Cold (No Heat) Conditions - Shell Extension

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1626 OUTSIDE NODE = 1645

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

	k	* * MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
-	-777.1 -(	).1112E+05	1319.	255.8	-45.94	11.16
	S1	S2	S3	SINT	SEQV	
	1319. ·	-770.8 -	0.1113E+05	0.1245E+05	0.1155E+05	
		** BENDING *	* I=INSIDE	C=CENTER O=	OUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	3.365	2990.	9674.	-73.31	1.755	63.59
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-3.365	-2990.	-9674.	73.31	-1.755	-63.59
	S1	S2	S3	SINT	SEQV	
I	9674.	2992.	1.148	9673.	8578.	
С	0.000	0.000	0.000	0.000	0.000	
0	-1.148	-2992.	-9674.	9673.	8578.	
		* * MEMBRANE	PLUS BENDING	** I=INS]	IDE C=CENTER C	)=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-773.7	-8132.	0.1099E+05	182.5	-44.18	74.75
С	-777.1	-0.1112E+05	1319.	255.8	-45.94	11.16
0	-780.4	-0.1411E+05	-8355.	329.1	-47.69	-52.43
	S1	S2	S3	SINT	SEQV	
Ι	0.1099E+05	-769.6	-8136.	0.1913E+0	0.1671E+05	ō
С	1319.	-770.8	-0.1113E+05	0.1245E+(	0.1155E+05	5
0	-771.9	-8355.	-0.1412E+05	0.1335E+0	05 0.1160E+05	5
		** PEAK **	I=INSIDE C=C	ENTER O=OU	<b>TSIDE</b>	
	SX	SY	SZ	SXY	SYZ	SXZ
I	0.1461E-02	1.298	4.201	-0.3183E-0	0.7619E-03	0.2761E-01
С	0.1137E-12	0.3638E-11	0.3365E-10	-0.2558E-1	12 0.000	0.1048E-12
0	-0.1461E-02	-1.298	-4.201	0.3183E-(	01 -0.7619E-03	3 -0.2761E-01
	Sl	S2	S3	SINT	SEQV	
I	4.201	1.299	0.4984E-03	4.200	3.725	
С	0.3365E-10	0.3656E-11	0.9489E-13	0.3356E-1	10 0.3193E-10	)
0	-0.4984E-03	-1.299	-4.201	4.200	3.725	
		** TOTAL **	I=INSIDE C=	CENTER O=0	UTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-773.7	-8130.	0.1100E+05	182.4	-44.18	74.77
C	-777.1	-0.1112E+05	1319.	255.8	-45.94	11.16
0	-780.4	-0.1411E+05	-8359.	329.1	-47.69	-52.46
	S1	S2	<b>S</b> 3	SINT	SEQV	TEMP
I	0.1100E+05	-769.6	-8135.	0.1913E+	05 0.1671E+05	5 -20.00
С	1319.	-770.8	-0.1113E+05	0.1245E+	05 0.1155E+05	5
0	-771.9	-8359.	-0.1412E+05	0.1335E+	05 0.1160E+05	5 -20.00

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-2 DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1625 OUTSIDE NODE = 1642

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

		** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
-	-555.3	-0.1065E+05	1284.	249.5	-48.06	-259.5
	S1	S2	S3	SINT	SEQV	
	1320.	-585.5	-0.1066E+05	0.1198E+05	0.1115E+05	
		** BENDING *	** I=INSIDE (	C=CENTER O=(	DUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	1.487	2821.	9093.	-69.21	3.443	-3.837
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-1.487	-2821.	-9093.	69.21	-3.443	3.837
	S1	S2	S3	SINT	SEQV	
I	9093.	2822.	-0.2130	9093.	8061.	
С	0.000	0.000	0.000	0.000	0.000	
0	0.2130	-2822.	-9093.	9093.	8061.	
		** MEMBRANE	PLUS BENDING	** I=INSI	DE C=CENTER C	)=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-553.9	-7833.	0.1038E+05	180.3	-44.62	-263.3
С	-555.3	-0.1065E+05	5 1284.	249.5	-48.06	-259.5
0	-556.8	-0.1347E+0	5 -7809.	318.8	-51.51	-255.6
	Sl	S2	S3	SINT	SEQV	
Ι	0.1038E+0	5 -555.8	-7838.	0.1822E+0	5 0.1589E+05	5
С	1320.	-585.5	-0.1066E+05	0.1198E+0	5 0.1115E+05	5
0	-539.9	-7818.	-0.1348E+05	0.1294E+0	5 0.1124E+05	5
		** PEAK **	I=INSIDE C=C	ENTER O=OUT	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	0.6456E-0	3 1.225	3.948	-0.3005E-0	1 0.1495E-02	2 -0.1666E-02
С	0.000	0.7276E-1	1 0.2819E-10	-0.1705E-1	2 0.2132E-13	3 -0.5684E-13
0	-0.6456E-0	3 -1.225	-3.948	0.3005E-0	1 -0.1495E-02	2 0.1666E-02

	S1	S2	S3	SINT	SEQV
Ι	3.948	1.226	-0.9249E-04	3.948	3.500
С	0.2819E-10	0.7280E-11	-0.4107E-14	0.2820E-10	0.2535E-10
0	0.9249E-04	-1.226	-3.948	3.948	3.500

		** TOTAL **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-553.9	-7832.	0.1038E+05	180.3	-44.62	-263.3
С	-555.3	-0.1065E+05	1284.	249.5	-48.06	-259.5
0	-556.8	-0.1348E+05	-7813.	318.8	-51.51	-255.6
	S1	S2	S3	SINT	SEQV	TEMP
Ι	0.1039E+05	-555.8	-7837.	0.1822E+05	0.1589E+05	-20.00
С	1320.	-585.5	-0.1066E+05	0.1198E+05	0.1115E+05	
0	-539.9	-7822.	-0.1348E+05	0.1294E+05	0.1124E+05	-20.00

# 1-ft Side Drop - Cold (No Heat) Conditions - Bolting Ring Skirt

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

**** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1194 OUTSIDE NODE = 1188

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

	** MEMBRANE **						
	SX	SY	SZ	SXY	SYZ	SXZ	
	5623.	-3561.	829.9	-3.754	-372.9	D.1467E+05	
	S1	S2	S3	SINT	SEQV		
0	.1263E+05	-3563	0.1742E+05	0.3004E+05	0.2604E+05		
		** BENDING *	* I=INSIDE (	C=CENTER O=C	DUTSIDE		
	SX	SY	SZ	SXY	SYZ	SXZ	
I	5350.	5486.	-0.1084E+05	-7.561	-26.02	1259.	
С	0.000	0.000	0.000	0.000	0.000	0.000	
0	-5350.	-5486.	0.1084E+05	7.561	26.02	-1259.	
	S1	S2	S3	SINT	SEQV		
I	5488.	5445.	-0.1093E+05	0.1642E+05	5 0.1640E+05		
С	0.000	0.000	0.000	0.000	0.000		
0	0.1093E+05	-5445.	-5488.	0.1642E+05	5 0.1640E+05		
		** MEMBRANE	PLUS BENDING	** I=INSII	DE C=CENTER O	=OUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ	
I	-273.9	1925.	-0.1001E+05	-11.32	-399.0	0.1592E+05	
С	-5623.	-3561.	829.9	-3.754	-372.9	0.1467E+05	
0	-0.1097E+05	-9047.	0.1167E+05	3.807	-346.9	0.1341E+05	
	S1	S2	S3	SINT	SEQV		
Ι	0.1152E+05	1922.	-0.2180E+05	0.3331E+05	5 0.2970E+05		
С	0.1263E+05	-3563.	-0.1742E+05	0.3004E+05	5 0.2604E+05		
0	0.1790E+05	-9048.	-0.1720E+05	0.3510E+05	5 0.3182E+05		
		** PEAK **	I=INSIDE C=C	ENTER O=OUTS	SIDE		
	SX	SY	SZ	SXY	SYZ	SXZ	
I	2.323	2.382	-4.705	-0.3283E-02	2 -0.1130E-01	0.5466	
С	-0.1910E-10	-0.1683E-10	0.3058E-10	0.2043E-13	3 0.5684E-13	-0.1819E-11	
0	-2.323	-2.382	4.705	0.3283E-02	2 0.1130E-01	-0.5466	
	Sl	S2	S3	SINT	SEQV		
I	2.383	2.364	-4.747	7.130	7.121		
С	0.3065E-10	-0.1683E-10	-0.1917E-10	0.4981E-1(	0.4869E-10		
0	4.747	-2.364	-2.383	7.130	7.121		
		** TOTAL **	I=INSIDE C=	CENTER O=OUT	<b>TSIDE</b>		
	SX	SY	SZ	SXY	SYZ	SXZ	
Ι	-271.5	1927.	-0.1001E+05	-11.32	-399.0	0.1593E+05	
С	-5623.	-3561.	829.9	-3.754	-372.9	0.1467E+05	
0	-0.1098E+05	5 -9050.	0.1167E+05	3.810	-346.9	0.1341E+05	
	S1	S2	S3	SINT	SEQV	TEMP	
Ι	0.1152E+05	1925.	-0.2180E+05	0.3332E+05	0.2970E+05	-20.00	
С	0.1263E+05	-3563.	-0.1742E+05	0.3004E+05	0.2604E+05		
0	0.1790E+05	-9051.	-0.1720E+05	0.3510E+05	o 0.3182E+05	-20.00	

### 1-ft Side Drop - Cold (No Heat) Conditions - Outer Shell

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

**** POSTI LINEARIZED STRESS LISTING **** INSIDE NODE = 1626 OUTSIDE NODE = 1645

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

	** MEMBRANE **							
	SX	SY	SZ	SXY	SYZ	SXZ		
	804.8	-0.1116E+05	1228.	256.4	-56.59	316.5		
	S1	S2	S3	SINT	SEQV			
	1277.	-846.3 -	0.1117E+05	0.1244E+05	0.1153E+05			
			,					
		** BENDING *	* I=INSIDE	C=CENTER O=	OUTSIDE			
	SX	SY	SZ	SXY	SYZ	SXZ		
Ι	3.442	2015.	6415.	-49.36	-9.142	-0.1382E-08		
С	0.000	0.000	0.000	0.000	0.000	0.000		
0	-3.442	-2015.	-6415.	49.36	9.142	0.1382E-08		
	S1	S2	S3	SINT	SEQV			
Ι	6415.	2016.	2.231	6413.	5681.			
С	0.000	0.000	0.000	0.000	0.000			
0	-2.231	-2016.	-6415.	6413.	5681.			
	** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE							
	SX	SY	SZ	SXY	SYZ	SXZ		
Ι	-801.3	-9143.	7644.	207.0	-65.74	316.5		
С	-804.8	-0.1116E+05	5 1228.	256.4	-56.59	316.5		
0	-808.2	-0.1317E+05	5 -5187.	305.7	-47.45	316.5		
	Sl	S2	S3	SINT	SEQV			
Ι	7656.	-807.9	-9149.	0.1680E+0	0.1455E+05	5		
С	1277.	-846.3	-0.1117E+05	0.1244E+0	)5 0.1153E+05			
0	-778.1	-5209.	-0.1318E+05	0.1240E+0	0.1089E+05			
		** PEAK **	I=INSIDE C=C	ENTER O=OUI	SIDE			
	SX	SY	SZ	SXY	SYZ	SXZ		
Ι	0.1495E-0	2 0.8750	2.786	-0.2143E-0	)1 -0.3970E-02	-0.8527E-12		
С	0.000	-0.9095E-11	L -0.3229E-10	0.2274E-1	L2 0.4974E-13	-0.5684E-13		
0	-0.1495E-0	2 -0.8750	-2.786	0.2143E-0	)1 0.3970E-02	0.5116E-12		
_	S1	S2	S3	SINT	SEQV			
I	2.786	0.8755	0.9689E-03	2.785	2.467			
C	0.5776E-1	4 -0.9101E-11	L -0.3229E-10	0.3229E-1	LO 0.2884E-10	1		
0	-0.9689E-0	3 -0.8755	-2.786	2.785	2.467			
** TOTAL ** THINGIDE CHCENTED OHOITETDE								
	SX	SV	SZ	SXV	SVZ	SX7		
т	-801 3	-9143	7647	207 0	-65 74	316 5		
ĉ	-804 8	-0.1116E+0	5 1228	256 4	-56 59	316 5		
0	-808.2	-0.1317E+0	5 -5190.	305.8	-47.45	316.5		
~	S1	S2	53	SINT	SEOV	TEMP		
Т	7659	-807.9	-9148.	0.1681E+0	)5 0.1456E+05	-20.00		
Ĉ	1277.	-846.3	-0.1117E+05	0.1244E+0	)5 0.1153E+05			
0	-778.1	-5212.	-0.1318E+05	0.1240E+0	)5 0.1089E+05	-20.00		
0

# 1-ft Side Drop - Cold (No Heat) Conditions - Baseplates

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS=									
* * * * *	***** DOCT1 I INFADIZED CTDECC LICTING ****								
TNICTIN	FUSII LINEA	ALCED SIRES:	DE NODE -	2167					
TINDIDI	5 NODE - 21	40 00101	DE NODE -	2107					
LOAD STEP	3 SUBSTEP=	1							
TTME = 3.00	000 L	OAD CASE= (	)						
THE FOLLOWING	X,Y,Z STRESS	ES ARE IN TH	HE GLOBAL COO	RDINATE SYST	CEM.				
	<i>,</i> .								
,	* * MEMBRANE *	*							
SX	SY	SZ	SXY	SYZ	SXZ				
-0.1342E+05 -(	D.1207E+05	599.1	30.88 -	7.324	1378.				
Sl	S2	S3	SINT	SEQV					
733.2 -0	0.1207E+05 -0	.1356E+05 (	D.1429E+05 C	.1361E+05					
	** BENDING **	I=INSIDE (	C=CENTER O=OU	TSIDE					
SX	SY	SZ	SXY	SYZ	SXZ				
I -8139.	-2333.	-0.5765E-10	-9.037	0.1292E-09	-0.2302E-09				
C 0.000	0.000	0.000	0.000	0.000	0.000				
0 8139.	2333. CO	0.5765E-10	9.03/ CINT	-0.1292E-09	0.2302E-09				
T O OOO	52 1122	-0120	STN1 STN1	7259					
T 0.000	-2333.	-0100	0 000	0 000					
0 8139	0.000	0.000	8139	7259					
0 0100.	2000.	0.000	0100.						
** MEMBRANE PLUS BENDING ** I=INSIDE C=CENTER O=OUTSIDE									
SX	SY	SZ	SXY	SYZ	SXZ				
I -0.2156E+05	-0.1441E+05	599.1	21.85	-7.324	1378.				
C -0.1342E+05	-0.1207E+05	599.1	30.88	-7.324	1378.				
0 -5282.	-9741.	599.1	39.92	-7.324	1378.				
Sl	S2	S3	SINT	SEQV					
I 684.4	-0.1441E+05	-0.2165E+05	0.2233E+05	0.1973E+05					
C 733.2	-0.1207E+05	-0.1356E+05	0.1429E+05	0.1361E+05					
0 905.8	-5588.	-9741.	0.1065E+05	9294.					
				- 1900, 1909					
<b>a</b> **	** PEAK ** J	_=INSIDE C=C.	ENTER O=OUTSI	.DE	CVD				
SX T D FD4	SY 1 010			514 	-0 1002E-11				
1 - 3.534	-1.013	-0.4320E-11	-0.3553E-14	-0.1243E-13	-0.4547F - 12				
0 3 534	1 013	-0.1251E-11	0.3924E-02	-0.8527E-13	-0.4547E - 12				
S1	S2	S3	SINT	SEOV					
т 0,000	-1.013	-3.534	3.534	3.152					
C 0.5490E-11	0.1920E-15	-0.8289E-12	0.6319E-11	0.5948E-11					
0 3.534	1.013	0.000	3.534	3.152					
	** TOTAL **	I=INSIDE C=	CENTER O=OUTS	SIDE					
SX	SY	SZ	SXY	SYZ	SXZ				
I -0.2156E+05	-0.1441E+05	599.1	21.84	-7.324	1378.				
C -0.1342E+05	-0.1207E+05	599.1	30.88	-7.324	1378.				
0 -5278.	-9740.	599.1	39.92	-7.324	1378.				
S1	S2	S3	SINT	SEQV	TEMP				
I 684.4	-0.1441E+05	-0.2165E+05	0.2233E+05	U.1974E+05	-20.00				
0 733.2	-0.1207E+05	-U.1356E+05	0.10658.05	0.1301E+05	-20 00				
0 905.9	-2202.	- 2/40.	0.10026+02	2623.	-20.00				

## 1-ft Corner Drop - Hot Conditions - Outer Shell

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 14028 OUTSIDE NODE = 13932

LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

		** MEMBRANE	] **			
	SX	SY	SZ	SXY	SYZ	SXZ
	5591.	3448.	8195.	-558.0	-3322.	-108.7
	S1	S2	S3	SINT	SEQV	
	9910.	5661.	1663.	8248.	7144.	
		** BENDING	** I=INSIDE	C=CENTER	O=OUTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	3050.	93.04	9941.	-615.2	-1.792	9.023
С	0.000	0.000	0.000	0.000	0.000	0.000
0	-3050.	-93.04	-9941.	615.2	1.792	-9.023
	S1	S2	53	SINT	SEQV	
Ι	9941.	3173.	-29.84	9971.	8817.	
С	0.000	0.000	0.000	0.000	0.000	
0	29.84	-3173.	-9941.	9971.	8817.	

		* *	MEMBRANE	PLUS	BENDING	* *	I=INSIDE	C=CENTER	O=OUTSIDE
	SX		SY	, L	SZ	SZ	ζΥ	SYZ	SXZ
Ι	8641.		3541.	0.2	1814E+05	-17	173.	-3324.	-99.69
С	5591.		3448.	81	195.	-55	58.0	-3322.	-108.7
0	2541.		3355.	-1	746.	5'	7.26	-3320.	-117.7
	S1		S2		53	S	INT	SEQV	
I	0.1886E+05	5	8865.	2	594.	0.	1627E+05	0.1421E+0	05
С	9910.		5661.	10	663.	82	248.	7144.	
0	4996.		2537.	-3	384.	83	379.	7461.	

		** PEAK ** ]	C=INSIDE C=CH	ENTER O=OUTSI	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	1.325	0.4040E-01	4.317	-0.2671	-0.7780E-03	0.3918E-02
С	0.1455E-10	0.1364E-11	0.4366E-10	-0.3411E-11	-0.9095E-12	-0.5684E-13
0	-1.325	-0.4040E-01	-4.317	0.2671	0.7780E-03	-0.3918E-02
	S1	S2	S3	SINT	SEQV	N
Ι	4.317	1.378	-0.1296E-01	4.330	3.829	
С	0.4368E-10	0.1538E-10	0.5157E-12	0.4316E-10	0.3798E-10	
0	0.1296E-01	-1.378	-4.317	4.330	3.829	

		** TOTAL *	* I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	8643.	3541.	0.1814E+05	-1173.	-3324.	-99.68
С	5591.	3448.	8195.	-558.0	-3322.	-108.7
0	2539.	3355.	-1751.	57.53	-3320.	-117.7
	Sl	S2	<b>S</b> 3	SINT	SEQV	TEMP
Ι	0.1886E+05	8866.	2594.	0.1627E+05	0.1421E+05	177.6
С	9910.	5661.	1663.	8248.	7144.	
0	4995.	2536.	-3387.	8382.	7463.	177.6

#### 1-ft Corner Drop - Hot Conditions - Lid

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 191 OUTSIDE NODE = 12

LOAD STEP 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z STRESSES ARE IN THE GLOBAL COORDINATE SYSTEM.

** MEMBRANE **	
SX SY SZ SXY SYZ	SXZ
197438904651. 386.1 2018.	2809.
SI S2 S3 SINT SEQV	;
317129446794. 9966. 8705.	
** BENDING ** I=INSIDE C=CENTER O=OUTSIDE	
SX SY SZ SXY SYZ	SXZ
I -0.1385E+05 -9545. 55973455159.	0 568.9
C 0.000 0.000 0.000 0.000 0.00	0 0.000
O 0.1385E+05 95455597. 3455. 159.	0 -568.9
S1 S2 S3 SINT SEQU	r
I 561876400.1578E+05 0.2140E+05 0.187	1E+05
C 0.000 0.000 0.000 0.000 0.00	0
O 0.1578E+05 76405618. 0.2140E+05 0.187	1E+05
** MEMBRANE PLUS BENDING ** I=INSIDE C=CEN	TER O=OUTSIDE
SX SY SZ SXY SYZ	SXZ
I -0.1188E+05 -0.1343E+05 945.3 -3069. 1859	. 3378.
C 197438904651. 386.1 2018	. 2809.
O 0.1583E+05 56550.1025E+05 3841. 2177	. 2240.
SI S2 S3 SINT SEQV	,
I 185996740.1655E+05 0.1841E+05 0.161	.1E+05
<u>C 3171.</u> -29446794. 9966. 8705	۶.
0 0.1740E+05 44870.1066E+05 0.2806E+05 0.243	32E+05
AN PEAR AN TEINSIDE CECENTER OFOUISIDE	CV7
$\Delta A$ $\Delta I$	5A4 2062
1 - 0.132/E + 05 - 0.1081E + 05 0.129/E + 05 5569; -5565	. 2002. : 177.2
-2300. $-244.5$ $100$	, 1/,.3 2 _013 7
0 -2221, $-5155$ , $5196$ , $-076.9$ $-1575$	7
T 0 1410ELOE 06740 1662ELOE 0 3082ELOE 0 27	12F+05
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	211700
$C_{3233}$ , $Z101$ , $-2667$ , $S900$ , $S423$	, . )
0 358921215647. 9236. 8073	) <b>4</b>
** TOTAL ** T=INSIDE C=CENTER O=OUTSIDE	
SX SY SZ SXY SYZ	SXZ
I -0.2515E+05 -0.2425E+05 0.1392E+05 500.7 -3524	1. 5440.
C 516320247040. 141.6 3123	3. 2986.
O 0.1360E+05 500.3 -7051. 3162. 604	.4 1327.
S1 S2 S3 SINT SEO	/ TEMP
~	n an stant in dae

 C
 5952.
 -818.9
 -9033.
 0.1499E+05
 0.1300E+05

 O
 0.1442E+05
 -210.3
 -7158.
 0.2158E+05
 0.1908E+05
 178.2

## 1-ft Corner Drop - Cold (Max Heat) Conditions - Shell Extension

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

***** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1609 OUTSIDE NODE = 1504

LOAD STEP 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z STRESSES ARE IN COORDINATE SYSTEM 1

		** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
~~	2195.	-9661	0.2823E+05	229.0	-129.5	1519.
	S1	S2	S3	SINT	SEQV	
-	2101.	-9666	0.2832E+05	0.2622E+05	0.2337E+05	
		** BENDING *	* I=INSIDE	C=CENTER O=C	UTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-21.31	4236.	0.1483E+05	-103.6	19.68	-138.8
С	0.000	0.000	0.000	0.000	0.000	0.000
0	21.31	-4236.	-0.1483E+05	103.6	-19.68	138.8
	S1	S2	S3	SINT	SEQV	
Ι	0.1483E+0	5 4239.	-25.12	0.1485E+05	0.1324E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	25.12	-4239.	-0.1483E+05	0.1485E+05	0.1324E+05	
		** MEMBRANE	PLUS BENDING	** I=INSII	DE C=CENTER O:	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-2217.	-5425.	-0.1341E+05	125.4	-109.8	1380.
С	-2195.	-9661.	-0.2823E+05	229.0	-129.5	1519.
0	-2174.	-0.1390E+05	-0.4306E+05	332.6	-149.1	1657.
	Sl	S2	<b>S</b> 3	SINT	SEQV	
I	-2045.	-5426.	-0.1357E+05	0.1153E+05	0.1027E+05	
С	-2101.	-9666.	-0.2832E+05	0.2622E+05	0.2337E+05	
0	-2098.	-0.1390E+05	-0.4312E+05	0.4103E+05	0.3658E+05	

** PEAK ** I=INSIDE C=CENTER O=OUTSIDE SX SY SZ SXY SYZ SXZ I -0.9254E-02 1.839 6.437 -0.4499E-01 0.8544E-02 -0.6026E-01 C -0.1819E-11 0.3638E-11 0.7276E-11 0.000 -0.2842E-13 -0.4547E-12 0 0.9254E-02 -1.839 -6.437 0.4499E-01 -0.8544E-02 0.6026E-01 SINT SEQV S2 S3 S1 1.840 -0.1091E-01 6.449 5.751 Ι 6.438 C 0.7299E-11 0.3638E-11 -0.1842E-11 0.9141E-11 0.7968E-11 O 0.1091E-01 -1.840 -6.438 6.449 5.751

		** TOTAL **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-2217.	-5423.	-0.1340E+05	125.4	-109.8	1380.
С	-2195.	-9661.	-0.2823E+05	229.0	-129.5	1519.
0	-2174.	-0.1390E+05	-0.4306E+05	332.7	-149.1	1657.
	Sl	S2	S3	SINT	SEQV	TEMP
I	-2045.	-5425.	-0.1357E+05	0.1152E+05	0.1026E+05	16.61
С	-2101.	-9666.	-0.2832E+05	0.2622E+05	0.2337E+05	
0	-2098.	-0.1391E+05	-0.4313E+05	0.4103E+05	0.3659E+05	16.49

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-2 DSYS= 0

**** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1659 OUTSIDE NODE = 1678

LOAD STEP 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z STRESSES ARE IN COORDINATE SYSTEM 1

		** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
	198.9	-7930	-0.2776E+05	191.0	-151.8	787.6
	S1	S2	S3	SINT	SEQV	
-	171.9	-7934.	-0.2779E+05	0.2761E+05	0.2467E+05	
					NTTO C T INF	
	av	· BENDING ·	CT CT	CVV	OISTDE	CV7
<b></b>			22 2201	3AI 15 57	0 1722	27 22
T	-10.46	024.5	2391.	-15.57	0.1/33	27.22
	10.000	-624 5	-2291	15 57	-0 1733	-27 22
0	10.46	-024.5	-2391. CO	LO.D/		···· La 1 · La La
-	S1 0201	52	23	31N1 3403	35QV	
1	2391.	624.8	-11.15	2403.	2130.	
C	0.000	0.000	0.000	0.000	0.000	
0	11.15	-624.8	-2391.	2403.	2156.	
		** MEMBRANE	PLUS BENDING	** I=INSII	DE C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-209.3	-7306.	-0.2537E+05	175.4	-151.7	814.8
С	-198.9	-7930.	-0.2776E+05	191.0	-151.8	787.6
0	-188.4	-8555.	-0.3015E+05	206.6	-152.0	760.4
	Sl	S2	S3	SINT	SEQV	
Ι	-178.9	-7309.	-0.2540E+05	0.2522E+05	5 0.2252E+05	
С	-171.9	-7934.	-0.2779E+05	0.2761E+05	5 0.2467E+05	
0	-164.2	-8559.	-0.3017E+05	0.3001E+05	5 0.2682E+05	
		** PEAK **	T=TNSIDE C=C	ENTER O=OUTS	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
т	-0 4543E-0'	2 0 2712	1 038	-0.6762E-02	2 0.7523E-04	0.1182E-01
C	0.8527E-1	3 0 0 0 0	-0 3638E-11	-0 5684E-13	3 0.000	0.000
0	0.4543E-0	2 = 0 2712	-1.038	0.6762E-02	2 -0.7523E-04	-0.1182E-01
0	S1	S2	53	SINT	SEOV	
т	1 038	0 2713	-0.4843E-02	1.043	0.9362	
ĉ	0 1137E-1	2 -0 2842E-1	3 -0.3638E-11	0.3752E-1	1 0.3683E-11	
0	0.4843E-0	2 - 0.2713	-1.038	1.043	0.9362	
0	0.40451 0.		1.000	2.010	0.0000	
		** TOTAL **	I=INSIDE C=	CENTER O=OUT	TSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-209.3	-7306.	-0.2537E+05	175.4	-151.7	814.8
С	-198.9	-7930.	-0.2776E+05	191.0	-151.8	787.6
0	-188.4	-8555.	-0.3015E+05	206.6	-152.0	760.4
	Sl	S2	S3	SINT	SEQV	TEMP
Ι	-178.9	-7308.	-0.2540E+05	0.2522E+0	5 0.2252E+05	16.51
С	-171.9	-7934.	-0.2779E+05	0.2761E+0	5 0.2467E+05	
0	-164.2	-8559.	-0.3017E+05	0.3001E+0	5 0.2682E+05	16.35

#### 1-ft Corner Drop - Cold (Max Heat) Conditions - Lid

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 191 OUTSIDE NODE = 12

LOAD STEP 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0

		* *	MEMBRANE	* *							
	SX		SY		SZ	S	XY	( L	SYZ		SXZ
	2028.	-36	504.	-453	4.	405	.2	202	23.	28	366.
	Sl		S2		S3	S	INT	5	SEQV		
	3285.	-2'	739.	-665	7.	994	3.	86	75.		
		* *	BENDING *	** I	=INSIDE	C=CEI	NTER O=O	UTS	IDE		
	SX		SY		SZ	S	XY		SYZ		SXZ
I	-0.1368E+05	, ,	-9453.	5	559.	- 3	472.	- :	135.2		477.7
С	0.000		0.000	0	.000	0	.000		0.000		0.000
0	0.1368E+05	5	9453.	- 5	559.	3	472.	:	135.2		-477.7
	S1		S2		S3	S	INT	:	SEQV		
Ι	5574.		-7510.	-0.	1563E+05	0.	2121E+05	0	.1853E+0	5	
С	0.000		0.000	0	.000	0	.000	1	0.000		
0	0.1563E+05	5	7510.	-5	574.	0.	2121E+05	0	.1853E+0	5	
		* *	MEMBRANE	PLUS	BENDING	* *	I=INSID	E C:	-CENTER	0=01	JTSIDE
	SX		SY		SZ	S	XY	1	SYZ		SXZ
Ι	-0.1165E+05	5 -	0.1306E+0	5 1	024.	- 3	067.		1888.		3344.
С	2028.		-3604.	-4	534.	4	05.2	:	2023.		2866.
0	0.1570E+05	5	5848.	-0.	1009E+05	3	877.		2159.		2388.
	Sl		S2		S3	S	INT		SEQV		
I	1937.		-9372.	-0.	1625E+05	0.	1818E+05	0	.1590E+0	5	
С	3285.		-2739.	-6	657.	9	943.		8675.		
0	0.1737E+05	5	4609.	-0.	1052E+05	0.	2789E+05	5 0	.2418E+C	5	
		* *	PEAK **	I=IN	SIDE C=C	ENTE	R O=OUTS	IDE			
	SX		SY		SZ	S	XY		SYZ		SXZ
-		-				2	100		4005		1 685

	SX	SY	52	SAI	SIL	SAL
Ι	-0.1237E+05	-0.1070E+05	0.1214E+05	3408.	-4997.	1675.
С	3081.	1852.	-2226.	-282.1	1075.	253.0
0	-2103.	-5080.	3050.	-671.9	-1551.	-1018.
	S1	S2	S3	SINT	SEQV	
I	0.1322E+05	-8386.	-0.1577E+05	0.2899E+05	0.2609E+05	
С	3143.	2074.	-2510.	5653.	5201.	
0	3476.	-2033.	-5577.	9053.	7902.	

		** TOTAL **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.2402E+05	-0.2376E+05	0.1316E+05	341.0	-3109.	5018.
С	5109.	-1752.	-6761.	123.1	3098.	3119.
0	0.1360E+05	768.2	-7043.	3205.	607.9	1370.
	S1	S2	S3	SINT	SEQV	TEMP
I	0.1407E+05	-0.2353E+05	-0.2516E+05	0.3924E+05	0.3844E+05	17.97
С	5984.	-589.0	-8799.	0.1478E+05	0.1283E+05	
0	0.1446E+05	22.77	-7155.	0.2161E+05	0.1907E+05	18.19

#### 1-ft Corner Drop - Cold (No Heat) Conditions - Shell Extension

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-1 DSYS= 0

**** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1609 OUTSIDE NODE = 1504

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

THE FOLLOWING X, Y, Z STRESSES ARE IN COORDINATE SYSTEM 1

		** MEMBRANE *	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
-	-3335(	).1296E+05 -(	).3218E+05	285.8 -	141.4	2058.
	S1	S2	S3	SINT	SEQV	
	-3181(	0.1297E+05 -(	).3233E+05	0.2914E+05 C	.2569E+05	
		** BENDING **	* I=INSIDE	C=CENTER O=OU	JTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.8878	5834.	0.2044E+05	-142.3	19.55	-190.3
С	0.000	0.000	0.000	0.000	0.000	0.000
0	0.8878	-5834.	-0.2044E+05	142.3	-19.55	190.3
	S1	S2	S3	SINT	SEQV	
I	0.2044E+05	5837.	-6.117	0.2044E+05	0.1824E+05	
С	0.000	0.000	0.000	0.000	0.000	
0	6.117	-5837.	-0.2044E+05	0.2044E+05	0.1824E+05	
		** MEMBRANE 1	PLUS BENDING	** I=INSIDE	E C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-3336.	-7127.	-0.1174E+05	143.5	-121.8	1868.
С	-3335.	-0.1296E+05	-0.3218E+05	285.8	-141.4	2058.
0	-3334.	-0.1879E+05	-0.5261E+05	428.1	-160.9	2248.
	S1	S2	S3	SINT	SEQV	
I	-2936.	-7126.	-0.1214E+05	9207.	7984.	
С	-3181.	-0.1297E+05	-0.3233E+05	0.2914E+05	0.2569E+05	
0	-3220.	-0.1881E+05	-0.5272E+05	0.4950E+05	0.4383E+05	
		** PFAK ** ·	I=TNSTDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ SZ	SXY	SYZ	SXZ
т	-0.3855E-03	2.533	8.873	-0.6178E-01	0.8490E-02	-0.8263E-01
C	-0.1819E-11	0.3638E-11	-0.1091E-10	0.000	-0.2842E-13	0.9095E-12
õ	0.3855E-03	-2.533	-8.873	0.6178E-01	-0.8490E-02	0.8263E-01
Ũ	S1	S2	S3	SINT	SEQV	
Τ	8.874	2.535	-0.2656E-02	8.877	7.919	
C	0.3638E-11	-0.1729E-11	-0.1100E-10	0.1464E-10	0.1283E-10	
0	0.2656E-02	-2.535	-8.874	8.877	7.919	
		** TOTAL **	I=INSIDE C=	CENTER O=OUTS	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-3336.	-7124.	-0.1173E+05	143.4	-121.8	1868.
C	-3335.	-0.1296E+05	-0.3218E+05	285.8	-141.4	2058.
0	-3334.	-0.1880E+05	-0.5262E+05	428.1	-160.9	2249.
	S1	S2	S3	SINT	SEQV	TEMP
I	-2936.	-7123.	-0.1213E+05	9199.	7977.	-20.00
С	-3181.	-0.1297E+05	-0.3233E+05	0.2914E+05	0.2569E+05	
0	-3220.	-0.1881E+05	-0.5273E+05	0.4951E+05	0.4384E+05	-20.00

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECT-2 DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 1659 OUTSIDE NODE = 1678

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

THE FOLLOWING X,Y,Z STRESSES ARE IN COORDINATE SYSTEM 1

		** MEMBRANE	* *			
	SX	SY	SZ	SXY	SYZ	SXZ
	-282.2 -	0.1041E+05 -	0.3165E+05	249.8	-174.2	1115.
	Sl	S2	S3	SINT	SEQV	
	-236.8 -	0.1041E+05 -	0.3169E+05	0.3146E+05	0.2780E+05	
		** BENDING *	* T-INSIDE	C-CENTER O-	OUTSTDE	
	SX	SY	SZ	SXY	SYZ	SXZ
т	1 988	813 0	3272	-19.90	1 679	38 56
Ĉ	0.000	0 000	0 000	0.000	0 000	0 000
õ	-1.988	-813.0	-3272-	19,90	-1.679	-38.56
Ŭ	S1	52	53	SINT	SEOV	00.00
т	3272	813 5	1 044	3271	2950	
Ĉ	0.000	0.000	0.000	0.000	0.000	
0	-1.044	-813.5	-3272.	3271.	2950.	
		** MEMBRANE	PLUS BENDING	; ** I=INSI	DE C=CENTER	O=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-280.2	-9597.	-0.2838E+05	229.9	-172.5	1154.
С	-282.2	-0.1041E+05	-0.3165E+05	249.8	-174.2	1115.
0	-284.2	-0.1122E+05	-0.3492E+05	269.7	-175.9	1076.
	Sl	S2	S3	SINT	SEQV	
Ι	-227.6	-9601.	-0.2843E+05	0.2820E+0	5 0.2488E+C	)5
С	-236.8	-0.1041E+05	5 -0.3169E+05	0.3146E+0	5 0.2780E+0	)5
0	-244.4	-0.1123E+05	5 -0.3496E+05	0.3472E+0	5 0.3073E+0	)5
		** PEAK **	I=INSIDE C=C	CENTER O=OUT	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	0.8630E-03	0.3530	1.421	-0.8642E-0	2 0.7290E-C	0.1674E-01
С	0.000	-0.5457E-11	0.3638E-13	0.2842E-1	3 0.2842E-1	.3 0.2274E-12
0	-0.8630E-03	-0.3530	-1.421	0.8642E-0	2 -0.7290E-0	03 -0.1674E-01
	Sl	S2	S3	SINT	SEQV	
I	1.421	0.3532	0.4534E-03	1.420	1.281	
С	0.3652E-11	-0.1403E-13	-0.5457E-11	0.9109E-1	1 0.7939E-1	.1
0	-0.4534E-03	-0.3532	-1.421	1.420	1.281	
		** TOTAL **	I=INSIDE C=	-CENTER O=OU	TSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-280.2	-9597.	-0.2838E+05	5 229.9	-172.5	1154.
С	-282.2	-0.1041E+05	5 -0.3165E+05	5 249.8	-174.2	1115.

С	-282.2	-0.1041E+05	-0.3165E+05	249.8	-174.2	1115.
0	-284.2	-0.1122E+05	-0.3493E+05	269.7	-175.9	1076.
	Sl	S2	53	SINT	SEQV	TEMP
Ι	-227.6	-9601.	-0.2843E+05	0.2820E+05	0.2488E+05	-20.00
С	-236.8	-0.1041E+05	-0.3169E+05	0.3146E+05	0.2780E+05	
0	-244.4	-0.1123E+05	-0.3496E+05	0.3472E+05	0.3073E+05	-20.00

## 1-ft Corner Drop - Cold (No Heat) Conditions - Outer Shell

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

**** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 1626 OUTSIDE NODE = 1645

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

		** MEMBRANE *	< *			
	SX	SY	SZ	SXY	SYZ	SXZ
	228.3	-5882(	).1022E+05	139.0	-91.02	93.02
	Sl	S2	S3	SINT	SEQV	
	224.1	-5884(	).1022E+05	9999.	8685.	
				Loomenan		
		** BENDING **	* I=INSIDE (	C=CENTER O=O	UTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	1.099	1253.	4388.	-30.83	-3.299	-0.7403E-09
C	0.000	0.000	0.000	0.000	0.000	0.000
0	-1.099	-1253.	-4388.	30.83	3.299	0.7403E-09
	S1	S2	S3	SINT	SEQV	
Т	4388.	1253.	0.3406	4387.	3914.	
c	0.000	0.000	0.000	0.000	0.000	
0	-0.3406	-1253.	-4388.	4387.	3914.	
Ū						
		** MEMBRANE	PLUS BENDING	** I=INSID	E C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-227.2	-4630.	-5833.	108.2	-94.32	93.02
С	-228.3	-5882.	-0.1022E+05	139.0	-91.02	93.02
0	-229.4	-7135.	-0.1461E+05	169.8	-87.72	93.02
	Sl	S2	S3	SINT	SEQV	
I	-223.1	-4625.	-5842.	5619.	5120.	
С	-224.1	-5884.	-0.1022E+05	9999.	8685.	
0	-224.7	-7138.	-0.1461E+05	0.1439E+05	0.1246E+05	
				<b></b>	J	
		** PEAK **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	0.4774E-03	3 0.5439	1.905	-0.1339E-01	-0.1432E-02	-0.3553E-12
С	0.2842E-13	3 -0.5457E-11	-0.2365E-10	0.2274E-12	0.1421E-13	-0.1421E-13
0	-0.4774E-03	3 -0.5439	-1.905	0.1339E-01	0.1432E-02	0.2984E-12
	S1	S2	S3	SINT	SEQV	
Ι	1.905	0.5443	0.1479E-03	1.905	1.700	
С	0.3784E-13	3 -0.5466E-11	-0.2365E-10	0.2368E-10	0.2147E-10	
0	-0.1479E-03	3 -0.5443	-1.905	1.905	1.700	
		** TOTAL **	I=INSIDE C=	CENTER O=OUI	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-227.2	-4629.	-5831.	108.2	-94.32	93.02
С	-228.3	-5882.	-0.1022E+05	139.0	-91.02	93.02
0	-229.4	-7136.	-0.1461E+05	169.8	-87.72	93.02
	Sl	S2	S3	SINT	SEQV	TEMP
Ι	-223.1	-4624.	-5840.	5617.	5118.	-20.00
С	-224.1	-5884.	-0.1022E+05	9999.	8685.	
0	-224.7	-7139.	-0.1461E+05	0.1439E+05	0.1246E+05	-20.00

## 1-ft Corner Drop - Cold (No Heat) Conditions - Lid

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING ***** INSIDE NODE = 191 OUTSIDE NODE = 12

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

		** MEMDD7	NTC **			
	SX	SY	SZ	SXY	SYZ	SXZ
	2026	-3576	-4554	412 3	2028	2858
	2020: G1	5278:	d3	STNT	SEOV	2000.
	2070	0701	CCCD	DOVO	0660	
	3218.	-2/21.	-6662.	9940.	8669.	
		** סדרואים דא	IC ** T-TNETDE	C-CENTER O-O	TTTCTT	
		A DENDI	IG I=INSIDE	C-CENTER 0-0		
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.1364E+05	-9594.	5524.	-3497.	-102.5	494.1
С	0.000	0.000	0.000	0.000	0.000	0.000
0	0.1364E+05	9594.	-5524.	3497.	102.5	-494.1
	Sl	S2	S3	SINT	SEQV	
Ι	5539.	-7585.	-0.1566E+0	5 0.2120E+05	0.1853E+	05
С	0.000	0.000	0.000	0.000	0.000	
0	0.1566E+05	7585.	-5539.	0.2120E+05	0.1853E+	05
				C ** T-TNOTP	F C-CENTER	O-OUTCIDE
		A MEMBRA	ANE PLUS BENDIN	G I=INSID	E C=CENIER	0=001SIDE
	SX	SY	SZ	SXY	SYZ	SXZ
I	-0.1161E+05	-0.1317H	E+05 970.1	-3084.	1925.	3352.
C	2026	-3576	-4554	412 3	2028	2858

С	2026.	-3576.	-4554.	412.3	2028.	2858.
0	0.1566E+05	6018.	-0.1008E+05	3909.	2130.	2364.
	S1	S2	S3	SINT	SEQV	
I	1895.	-9382.	-0.1633E+05	0.1822E+05	0.1593E+05	
С	3278.	-2721.	-6662.	9940.	8669.	
0	0.1737E+05	4728.	-0.1049E+05	0.2785E+05	0.2416E+05	

		** PEAK **	I=INSIDE C=CE	NTER O=OUTSI	DE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.1261E+05	-0.1077E+05	0.1218E+05	3414.	-4939.	1514.
С	3103.	1881.	-2227.	-262.4	1068.	247.2
0	-2168.	-5104.	3042.	-693.9	-1527.	-1011.
	Sl	S2	S3	SINT	SEQV	
I	0.1322E+05	-8541.	-0.1589E+05	0.2911E+05	0.2622E+05	
С	3157.	2104.	-2505.	5661.	5215.	
0	3456.	-2082.	-5603.	9059.	7910.	

		** TOTAL **	I=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-0.2423E+05	-0.2394E+05	0.1315E+05	329.4	-3014.	4866.
С	5128.	-1696.	-6781.	149.9	3095.	3105.
0	0.1350E+05	913.3	-7036.	3215.	603.3	1353.
	Sl	S2	S3	SINT	SEQV	TEMP
Ι	0.1400E+05	-0.2372E+05	-0.2529E+05	0.3930E+05	0.3854E+05	-20.00
С	6000.	-553.6	-8795.	0.1479E+05	0.1284E+05	
0	0.1437E+05	149.2	-7145.	0.2151E+05	0.1895E+05	-20.00

#### 1-ft Corner Drop - Cold (No Heat) Conditions - Baseplates

PRINT LINEARIZED STRESS THROUGH A SECTION DEFINED BY PATH= SECTION DSYS= 0

***** POST1 LINEARIZED STRESS LISTING **** INSIDE NODE = 2148 OUTSIDE NODE = 2179

LOAD STEP 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

		** MEMBRANE *	*			
	SX	SY	SZ	SXY	SYZ	SXZ
	8965.	-8173.	1649	-71.82	249.0	1156.
	S1	S2	S3	SINT	SEQV	
	1779.	-8168	9100.	D.1088E+05	0.1044E+05	
			L			
		** BENDING **	I=INSIDE (	C=CENTER O=OU	JTSIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-7399.	-1531.	0.4727E-10	-905.9	0.6085E-10	-0.2462E-09
С	0.000	0.000	0.000	0.000	0.000	0.000
0	7399.	1531.	-0.4727E-10	905.9	-0.6085E-10	0.2462E-09
	Sl	S2	S3	SINT	SEQV	
I	0.000	-1394.	-7536.	7536.	6944.	
С	0.000	0.000	0.000	0.000	0.000	
0	7536.	1394.	0.000	7536.	6944.	
		** MEMBRANE P	LUS BENDING	** I=INSID	E C=CENTER O	=OUTSIDE
	SX	SY	SZ	SXY	SYZ	SXZ
I	-0.1636E+05	-9704.	1649.	-977.7	249.0	1156.
С	-8965.	-8173.	1649.	-71.82	249.0	1156.
0	-1566.	-6642.	1649.	834.1	249.0	1156.
	Sl	S2	S3	SINT	SEQV	
Ι	1726.	-9564.	-0.1658E+05	0.1831E+05	0.1600E+05	
С	1779.	-8168.	-9100.	0.1088E+05	0.1044E+05	
0	2050.	-1833.	-6776.	8826.	7662.	
		** PEAK ** 1	E=INSIDE C=C	ENTER O=OUTS	IDE	
	SX	SY	SZ	SXY	SYZ	SXZ
Ι	-3.213	-0.6647	-0.1023E-10	-0.3933	-0.2842E-12	-0.3411E-11
С	-0.1819E-11	-0.1819E-11	-0.6594E-11	0.3268E-12	-0.2274E-12	-0.2046E-11
0	3.213	0.6647	0.4775E-11	0.3933	0.1137E-12	0.1137E-11
	Sl	S2	S3	SINT	SEQV	
I	0.000	-0.6053	-3.272	3.272	3.015	
С	-0.9001E-12	2 -0.1979E-11	-0.7353E-11	0.6453E-11	0.5986E-11	
0	3.272	0.6053	0.000	3.272	3.015	
		** TOTAL **	I=INSIDE C=	CENTER O=OUT	SIDE	
	SX	SY	SZ	SXY	SYZ	SXZ
I	-0.1637E+05	5 -9704.	1649.	-978.1	249.0	1156.
С	-8965.	-8173.	1649.	-71.82	249.0	1156.
0	-1563.	-6641.	1649.	834.4	249.0	1156.
	Sl	S2	S3	SINT	SEQV	TEMP
Ι	1726.	-9564.	-0.1658E+05	0.1831E+05	0.1600E+05	-20.00
С	1779.	-8168.	-9100.	0.1088E+05	0.1044E+05	
0	2050.	-1830.	-6775.	8826.	7662.	-20.00

Title	Structu	ral Analyse	s of the 3	-60B Cask Under Drop Conditions			
Calc. No	ST-504	<b>Rev</b>	2	Sheet _	22	_of_	25

# Appendix 3

Electronic Data on DVD

(1 DVD)

Volume in drive F is ST-504Rev2App3 Volume Serial Number is 3FA6-4C50

Directory of  $F: \setminus$ 

02/05/2010	03:42 PM	<dir></dir>	1-ft Drop, Corner
02/05/2010	03:44 PM	<dir></dir>	1-ft Drop, End
02/05/2010	03:44 PM	<dir></dir>	1-ft Drop, Side
02/05/2010	03:45 PM	<dir></dir>	30-ft Drop, Corner
02/05/2010	03:45 PM	<dir></dir>	30-ft Drop, End
02/05/2010	03:45 PM	<dir></dir>	30-ft Drop, Side
	0 File(	s)	0 bytes

Directory of F:1-ft Drop, Corner

02/05/2010	03:42 PM	<dir></dir>	
02/05/2010	05:26 PM	<dir></dir>	
10/23/2007	02:10 PM	10,924,071	file.cdb
02/02/2010	10:36 AM	132,251,648	file.db
10/24/2007	05:09 PM	232,390,656	file.rst
10/24/2007	10:18 AM	2,166,410	file.s01
10/24/2007	10:12 AM	2,166,410	file.s02
10/24/2007	10:14 AM	908,444	file.s03
11/20/2007	10:28 AM	97,323	file000.png
11/20/2007	10:30 AM	91,008	file001.png
11/20/2007	10:31 AM	67,746	file002.png
11/20/2007	10:38 AM	153,219	file003.png
11/20/2007	10:39 AM	153,673	file004.png
11/20/2007	10:39 AM	156,392	file005.png
10/31/2007	10:34 AM	3,125	ls1Inner-Shell.lis
11/01/2007	09:22 AM	3,125	ls1Lid.lis
10/31/2007	10:44 AM	3,125	ls10uter-Shell.lis
10/29/2007	02:02 PM	3,002,819	ls1post.out
10/31/2007	10:37 AM	3,125	ls2Inner-Shell.lis
11/01/2007	09:24 AM	3,125	ls2Lid.lis
10/29/2007	02:11 PM	3,002,838	ls2post.out
02/01/2010	03:50 PM	3,117	ls2ShellExtSect-1.lis
02/01/2010	03:50 PM	3,117	ls2ShellExtSect-2.lis
10/31/2007	12:12 PM	3,125	ls3Baseplates.lis
10/31/2007	10:38 AM	3,125	ls3Inner-Shell.lis
11/01/2007	09:26 AM	3,125	ls3Lid.lis
10/31/2007	10:41 AM	3,125	ls3Outer-Shell.lis
10/29/2007	02:15 PM	3,002,836	ls3post.out
02/01/2010	03:48 PM	3,117	ls3ShellExtSect-1.lis
02/01/2010	03:49 PM	3,117	ls3ShellExtSect-2.lis
12/07/2007	11:14 AM	39,419	Model.txt
02/02/2010	10:07 AM	762	summary.out
	30 File(s	) 390,616,26	7 bytes

Directory of F:\1-ft Drop, End

03:44	PM	<dir></dir>	
05:26	РM	<dir></dir>	• •
02:09	РM	10,782,335	file.cdb
10:09	AM	135,069,696	file.db
	03:44 05:26 02:09 10:09	03:44 PM 05:26 PM 02:09 PM 10:09 AM	03:44 PM <dir> 05:26 PM <dir> 02:09 PM 10,782,335 10:09 AM 135,069,696</dir></dir>

Calc. No.       ST-504       Rev.       2       Sheet       23       of       25         10/26/2007       03:35 PM       470,548,480 file.rst       2,025,280 file.s01       2,025,280 file.s01       2,025,322 file.s02         10/26/2007       02:52 PM       2,025,322 file.s02       767,356 file.s03       11/20/2007       09:08 AM       47,665 file000.png         11/20/2007       09:07 AM       70,202 file001.png       11/20/2007       09:09 AM       41,321 file002.png	_
10/26/200703:35 PM470,548,480 file.rst10/24/200710:21 AM2,025,280 file.s0110/26/200702:52 PM2,025,322 file.s0210/26/200702:50 PM767,356 file.s0311/20/200709:08 AM47,665 file000.png11/20/200709:07 AM70,202 file001.png11/20/200709:09 AM41,321 file002.png	
10/24/200710:21 AM2,025,280 file.s0110/26/200702:52 PM2,025,322 file.s0210/26/200702:50 PM767,356 file.s0311/20/200709:08 AM47,665 file000.png11/20/200709:07 AM70,202 file001.png11/20/200709:09 AM41,321 file002.png	
10/26/200702:52 PM2,025,322 file.s0210/26/200702:50 PM767,356 file.s0311/20/200709:08 AM47,665 file000.png11/20/200709:07 AM70,202 file001.png11/20/200709:09 AM41,321 file002.png	
10/26/200702:50 PM767,356 file.s0311/20/200709:08 AM47,665 file000.png11/20/200709:07 AM70,202 file001.png11/20/200709:09 AM41,321 file002.png	
11/20/200709:08 AM47,665 file000.png11/20/200709:07 AM70,202 file001.png11/20/200709:09 AM41,321 file002.png	
11/20/2007         09:07         AM         70,202         file001.png           11/20/2007         09:09         AM         41,321         file002.png	
11/20/2007 09:09 AM 41,321 110002.phg	
11/20/2007 09:23 AM 75.876 file003 ppg	
11/20/2007 09:26 AM 65.404 file004.png	
11/20/2007 09:28 AM 63,501 file005.png	
01/29/2010 03:33 PM 3,117 ls1BringExtSect-1.lis	
01/29/2010 03:35 PM 3,117 ls1BringExtSect-2.lis	
10/31/2007 07:37 AM 3,125 IslOuter-shell.lis	
01/29/2007 01:30 PM 5,002,810 Isipost.out 01/29/2010 03:45 PM 3 117 ls2BringExtSect-1 lis	
01/29/2010 03:45 PM 3,117 ls2BringExtSect-2.lis	
10/31/2007 08:18 AM 3,125 ls2Inner-shell.lis	
10/29/2007 01:34 PM 3,002,834 ls2post.out	
10/31/2007 09:23 AM 3,125 ls3Baseplates.lis	
01/29/2010 03:39 PM 3,117 Is3BringExtSect-1.11s	
10/31/2007 09:19 AM 3.125 ls3Inner-shell.lis	
10/29/2007 01:39 PM 3,002,833 ls3post.out	
12/07/2007 11:22 AM 39,413 Model.txt	
02/02/2010 10:08 AM 762 summary.out	
27 File(s) 630,662,298 bytes	
Directory of F:\l-ft Drop, Side	
02/05/2010 03:44 PM <dir> .</dir>	
02/05/2010 05:26 PM <dir></dir>	
10/23/2007 $02:08$ PM $10,8/3,221$ file.CdD $02/02/2010$ $10:06$ AM $133$ 627 904 file.db	
10/26/2007 12:38 PM 234,946,560 file.rst	
10/24/2007 10:30 AM 2,042,171 file.s01	
10/26/2007 11:51 AM 2,042,171 file.s02	
10/26/2007 11:52 AM 784,205 file.s03	
11/20/2007 09:53 AM 13/,351 file000.png	
11/20/2007 09:56 AM 93.363 file002.png	
11/20/2007 10:09 AM 154,442 file003.png	
11/20/2007 10:11 AM 138,865 file004.png	
11/20/2007 10:11 AM 141,508 file005.png	
10/31/2007 09:29 AM 3,125 lslInner-Shell.lis	
10/31/2007 01:45 PM 3 002 817 ls1post out	
02/01/2010 10:00 AM 3,125 ls1ShellExtSect-1.lis	
02/01/2010 09:59 AM 3,125 ls1ShellExtSect-2.lis	
02/01/2010 10:26 AM 3,125 ls1skirtSect-1.lis	
10/31/2007 10:07 AM 3,125 ls2Baseplates.lis	
10/31/2007 10:01 AM 3,125 1s2Outer-Shell.lis	
02/01/2010 11:06 AM 3.125 ls2skirtSect-1.lis	
10/31/2007 10:08 AM 3,125 ls3Baseplates.lis	
10/31/2007 10:05 AM 3,125 ls3Outer-Shell.lis	
10/29/2007 01:58 PM 3,002,834 ls3post.out	
02/01/2010 10:03 AM 3,125 ls3ShellExtSect-1.lis	
U2/U1/2U1U 1U:U2 AM 3,125 1s3ShellExtSect-2.lis	
12/07/2007 11:24 AM 40.131 Model txt	
02/02/2010 10:00 AM 762 summary.out	

Title	Structural	Analyses	of the 3-60B Cask Under Drop Co	nditions			
Calc. No	ST-504	<b>Rev</b>	2	Sheet _	24	_of25	-

30 File(s) 394,192,997 bytes

Directory of F:\30-ft Drop, Corner

02/05/2010	03:45 PM	<dir></dir>	
02/05/2010	05:26 PM	<dir></dir>	
10/23/2007	02:10 PM	10,924,071	file.cdb
02/02/2010	10:10 AM	132,448,256	file.db
10/24/2007	06:17 PM	232,980,480	file.rst
10/24/2007	12:31 PM	2,166,410	file.s01
10/24/2007	10:45 AM	2,166,410	file.s02
10/24/2007	10:46 AM	908,444	file.s03
10/23/2007	10:52 AM	1,899,466	file.s04
10/23/2007	01:00 PM	1,499,050	file.s05
11/19/2007	05:37 PM	92,321	file000.png
11/19/2007	05:38 PM	108,580	file001.png
11/19/2007	05:39 PM	101,566	file002.png
11/19/2007	05:40 PM	81,406	file003.png
11/19/2007	05:46 PM	140,328	file004.png
11/19/2007	05:47 PM	143,861	file005.png
11/19/2007	05:47 PM	146,377	file006.png
10/23/2007	07:07 AM	82,903,040	ls1.rst
11/01/2007	11:58 AM	3,125	ls1Lid.lis
10/29/2007	12:47 PM	3,002,820	ls1post.out
11/01/2007	12:00 PM	3,125	ls2Lid.lis
10/29/2007	12:53 PM	3,002,839	ls2post.out
02/01/2010	09:43 AM	3,125	ls2SellExtSect-1.lis
02/01/2010	09:42 AM	3,125	ls2SellExtSect-2.lis
11/01/2007	12:00 PM	3,125	ls3Lid.lis
10/29/2007	12:58 PM	3,002,837	ls3post.out
02/01/2010	09:44 AM	3,125	ls3SellExtSect-1.lis
02/01/2010	09:44 AM	3,125	ls3SellExtSect-2.lis
12/07/2007	11:25 AM	39,421	Model.txt
02/02/2010	10:10 AM	762	summary.out
	28 File(s)	477,780,620	) bytes

Directory of F:30-ft Drop, End

02/05/2010	03:45	PM	<dir></dir>	
02/05/2010	05:26	PM	<dir></dir>	
10/23/2007	02:09	PM	10,782,335	file.cdb
02/02/2010	10:11	AM	134,807,552	file.db
11/12/2007	12:13	PM	234,881,024	file.rst
10/24/2007	10:50	AM	2,025,304	file.s01
11/12/2007	11:10	AM	2,025,304	file.s02
10/24/2007	10:55	AM	767,338	file.s03
10/17/2007	07:28	AM	81,233	file000.png
11/02/2007	11:27	AM	152,254	file001.png
10/17/2007	09:12	AM	103,068	file002.png
11/19/2007	02:29	РM	59,387	file003.png
11/19/2007	02:31	РM	69,831	file004.png
11/19/2007	02:48	РM	220,493	file005.png
11/19/2007	02:49	РM	95,780	file006.png
11/19/2007	03:15	РM	135,573	file007.png
11/19/2007	03:40	РM	139,867	file008.png
11/19/2007	03:42	РM	119,828	file009.png
11/19/2007	03:44	РM	89,859	file010.png
11/19/2007	03:53	РM	206,691	file011.png
11/19/2007	03:54	РM	176,300	file012.png
11/19/2007	03:54	РM	173,720	file013.png
11/20/2007	01:18	РM	3,002,775	ls1post.out

Title	Structur	al Analyses of the	e 3-60B Cask Under Drop	Conditions	
Calc. No.	ST-504	<b>Rev</b> . 2		Sheet 25	of 25
<u></u>	~~~~				
10/31/2007	02:27 DM	2 117 1	la?Inner_Shell lia		
11/01/2007	02:27 PM 03:16 DM	3,117 1	le2Lid lie		
11/20/2007	01:18 PM	3 002 775 1	ls?post out		
10/31/2007	02:35 PM	3,117 1	ls3Inner-Shell,lis		
11/01/2007	03:18 PM	3,117 1	ls3Lid.lis		
11/20/2007	01:20 PM	3,002,775 1	ls3post.out		
01/29/2010	03:52 PM	3,117 1	ls3ShellExtSect-1.lis		
01/29/2010	03:53 PM	3,117 1	ls3ShellExtSect-2.lis		
12/07/2007	11:26 AM	39,714 M	Model.txt		
02/02/2010	10:11 AM	762 s	summary.out		
	31 File(s)	396,180,244	bytes		
Directory	of F:\30-ft Dr	cop, Side			
02/05/2010	03:45 PM <	DIR> .			
02/05/2010	05:26 PM <	DIR> .			
10/23/2007	02:08 PM	10,873,221 f	file.cdb		
02/02/2010	10:55 AM	133,758,976 f	file.db		
10/24/2007	07:00 PM	235,470,848 f	file.rst		
10/24/2007	10:57 AM	2,042,171 f	tile.s01		
11/12/2007	11:03 AM	2,042,171 f	tile.sU2		
10/24/2007	12:07 PM	784,205 f	tile.sU3		
10/21/2007	04:25 PM	128,1/U I	file001 mmm		
11/10/2007	04.34 PM	114,190 I 04 290 f	file002 ppg		
11/19/2007	04.20 PM	94,309 L 120 120 f	filo002.png		
11/19/2007	04.21 PM	163 220 f	File005.png		
11/19/2007	04:30 PM	162 563 f	file006 png		
11/19/2007	04:39 PM	163 381 f	file007 png		
10/31/2007	03:03 PM	3.125 1	IslInner-Shell.lis		
11/01/2007	03:23 PM	3,125 1	ls1Lid.lis		
10/31/2007	03:07 PM	3,125 1	ls10uter-Shell.lis		
10/29/2007	12:25 PM	3,002,818 1	ls1post.out		
10/31/2007	03:20 PM	3,125 1	ls2Baseplates.lis		
10/31/2007	03:04 PM	3,125 1	ls2Inner-Shell.lis		
11/01/2007	03:24 PM	3,125 1	ls2Lid.lis		
10/31/2007	03:08 PM	3,125 1	ls20uter-Shell.lis		
10/29/2007	12:29 PM	3,002,837 1	ls2post.out		
10/31/2007	03:22 PM	3,125 1	ls3Baseplates.lis		
10/31/2007	03:05 PM	3,125 1	ls3Inner-Shell.lis		
11/01/2007	03:25 PM	3,125 1	ls3Lid.lis		
10/31/2007	03:09 PM	3,125 1	Ls3Outer-Shell.lis		
10/29/2007	12:35 PM	3,002,835 1	Ls3post.out		
12/07/2007	11:28 AM	40,559 M	Model.txt		
02/02/2010	IU:IZ AM 29 File(g)	/62 s 395.020 821	summary.out bytes		
		575,020,021	21000		
Total	Files Listed:				
	175 File(s)	2,684,453,247	bytes		
	18 Dir(s)	0	bytes free		

Title	3-60B Cask ANS	YS Finite Eler	ment Model	Grid Converge	nce	Study	
Calc. No.	ST-608	Rev	0	Sheet	1	_of	13

# 1.0 <u>OBJECTIVE</u>

To demonstrate that the techniques employed in constructing the ANSYS finite element model of the 3-60B Cask represents the structure accurately and the element sizes used in the models converge to within a small tolerance of the theoretical values.

# 2.0 INTRODUCTION

The evaluations performed in the SAR of the 3-60B Cask (Reference 1 through 3) employ 3-dimensional finite element models for ANSYS software code (Reference 4). These models use 8-node solid elements (SOLID-185) for representing the cask components that do not undergo significant amount of bending deformation. The cask components that undergo significant amount of bending deformation have been represented by solid shell (SOLSH-190) elements in the models. Figure 1 shows a typical model of the 3-60B cask, identifying the element types employed in its modeling.

The modeling techniques employed in the 3-60B Cask model also utilize ANSYS contact elements to combine parts of the model with different grid densities. In order to model the bolting ring, which includes bolts holes, with octahedral elements, the bolting ring is modeled in two parts. These parts are combined together with the help of contact elements. Verification that this simplification does not compromise the stresses in the bolting ring is also included in this study.

The study is performed in two parts. In the first part, two finite element models of the bolting ring region- one identical to the SAR model and another model employing fine elements - are subjected to an internal pressure of 1,000 psi on the inner shell. The stresses in the two models are computed and compared with each other. It is shown that the stresses predicted by the SAR model are within 94% of the fine model.

In the second part of the study the effect of element size on stress prediction is studied. A simplified model of the inner shell is used for this study. The model represents a fixedend inner shell that is subjected to 1,000 psi internal pressure. The number of elements through the thickness and along the longitudinal direction is varied and its effect on the end-moment and longitudinal stresses are plotted parametrically. The parameters corresponding to the inner shell are superimposed on these plots. It is shown that the element size corresponding to the SAR model can predict the end moment within 95% of the theoretical value. Models with these parameters will also predict the longitudinal stresses in the shell within 90% of a model with fine elements.

Additional comparison with the theoretical stress values has been performed with models representing the unit width of the inner shell element as a beam. The number of elements through the thickness and along the length is varied. The maximum longitudinal stresses are plotted parametrically. The parameters corresponding to the inner and outer shell model of the SAR have been superimposed. It is shown that these models are capable of predicting the stresses within 95% of the theoretical values.

Title	3-60B Cask A	<b>NSYS</b> Finite Elen	nent M	odel Grid Converg	gence	Study	/
Calc. No.	ST-608	Rev	0	_ Sheet _	2	_of_	13

# 3.0 <u>REFERENCES</u>

- (1) Energy*Soutions* Document ST-501, Structural Analyses of the 3-60B Cask under Normal Conditions of Transport.
- (2) Energy*Solutions* Document ST-502, Structural Analyses of the 3-60B Cask under Hypothetical Fire Accident Conditions.
- (3) Energy*Solutions* Document ST-504, Structural Analyses of the 3-60B Cask under Drop Conditions.
- (4) ANSYS, Rev. 11.0, Computer Software, ANSYS Inc., Canonsburg, PA, 2007.
- (5) Formulas for Stress and Strain, Roark and Young, Fifth Edition, McGraw Hill Publications.

# 4.0 <u>ANLYSIS DESCRIPTION</u>

The studies performed in this document are divided into two parts. The first part includes a study to show that the simplifications employed in modeling techniques for representing the bolting ring-inner shell region in the 3-60B Cask ANSYS finite element model is appropriate. The second includes a study to show that finite element grid size employed in the inner-shell model of the 3-60B Cask accurately predicts the stresses.

The pertinent data of the finite element models used in this study is provided in Appendix 1 in printed form. The electronic data for all the analyses are provided in Appendix 2 on a DVD.

# 4.1 <u>Modeling Technique Study</u>

The 3-60B Cask finite element model representing the bolting ring-inner shell region has the following major characteristics.

- Uses ANSYS SOLIDSH-190 elements to represent the shells.
- Uses SOLID-185 elements to represent parts of the structure that do not undergo large bending deformation.
- Uses 1-element through the thickness to represent the shells.
- The shell elements at the interface are connected with single elements in the plate.
- The bolting ring is modeled in two parts that are tied together using bonded contact interface.

The objective of this study is to show that the model of the bolting ring-inner shell region constructed with the above characteristics appropriately represents the true nature of the region. To accomplish this two simplified finite element models of this region are constructed and analyzed for an internal pressure loading of 1,000 psi. The first model is similar to the model used in the 3-60B Cask SAR. This model is subsequently referred to as the "SAR Model" in the rest of the document. The second model is made with very fine elements and without the use of contact elements. This model is subsequently referred to as the "fine model" in the rest of the document. The simplified models have the following characteristics.

- They use an 11.25° (1/32nd symmetry) model.
- They use the bolting ring and a sufficient length (>  $4\sqrt{Rt}$ ) of the inner shell in the model.
- They disregard the bolt-holes.
- They disregard the outer shell and the skirt part of the bolting ring.
- They are analyzed for 1,000 psi internal pressure loading on the inner shell.
- The maximum stress intensity, maximum axial stress, and linearized axial stress are computed for both the models.

The geometry of the bolting ring-inner shell region of the 3-60B Cask is shown in Figure 2. The region shown in solid colors in this figure is represented in the simplified finite element models.

# 4.1.1 The SAR Model

The SAR model finite element grid and the boundary conditions are shown in Figure 3. This model has the following additional characteristics (in addition to those described under the simplified model characteristics).

- It uses SOLSH-190 elements to represent the inner shell and keep the element size identical to the SAR model.
- It uses SOLID-185 elements to represent the plate part of the bolting ring, keeping the element size identical to the SAR model everywhere except in the bolt-hole area.
- It models the bolting ring in two parts and joins the two parts by bonded contact interface, identical to the SAR model.

The stress intensity contour plot of the SAR model is shown in Figure 4. The stress intensity contour plot in the inner shell is shown in Figure 5 and the contour of the longitudinal stresses in the inner shell is shown in Figure 6. The linearized membrane and membrane plus bending plots over the inner shell cross-section are shown in Figure 7.

# 4.1.2 <u>The Fine Model</u>

The fine model finite element grid geometry is shown in Figure 8. This model has the following additional characteristics (in addition to those described under the simplified model characteristics).

- It uses SOLID-185 elements to represent the entire model.
- It uses 5-elements through the thickness of the shell.
- It uses very fine elements to represent the plate near the interface region.
- It models the plate in one piece. No bonded contact is used.

The stress intensity contour plot of the fine model is shown in Figure 9. The stress intensity contour plot in the inner shell is shown in Figure 10 and the contour of the longitudinal stresses in the inner shell is shown in Figure 11. The linearized membrane

and membrane plus bending plots over the inner shell cross-section are shown in Figure 12.

# 4.1.2 <u>Results and Comparison</u>

The results of the SAR model and the fine model analyses are presented in Table 1. The comparison of the results and percentage difference of the results between the two models are also shown in this table. The following conclusions are made from the comparison of the results of the two models.

- The SAR Model computes the maximum stress intensity within 94% of the Fine Model.
- The SAR Model computes higher axial stresses than the Fine Model. It is +9% for the maximum value and +5% for the linearized membrane + bending value.
- Inclusion of bonded contact interface at the location chosen by EnergySolutions in the SAR model does not have any significant effect. The stress values and pattern are very similar to each other (see Figures 4 & 9). Also the interface is located at a relatively lightly loaded location of the bolting ring.

# 4.2 <u>Grid Sensitivity Study</u>

In order to demonstrate that the finite element grid used in the ANSYS model of the 3-60B Cask adequately represents the bending behavior of the shell, a grid sensitivity study is performed. For this purpose a sufficiently large length ( $>4\sqrt{Rt}$ ) of the inner shell, fixed at one of its edges and free on the other, is analyzed for an internal pressure loading of 1,000 psi. The models are constructed from solid shell (SOLSH-190) elements - the same elements used in the 3-60B Cask ANSYS model to represent the inner shell. Each model has a length of 25" and extends 10° in the circumferential direction. Figure 13 shows the geometry of the model.

Various grid densities are obtained by varying the number of elements through the thickness and through the length. Permutations of 1, 2, 3, and 4 elements through the thickness and 10, 15, 20, 25, 30, and 40 elements through the length is used to encompass grid densities that range between "coarse" and "fine". All the 24 ( $4 \times 6$ ) models resulting from the aforementioned permutations are analyzed for end moments and maximum longitudinal stresses. The longitudinal stress data is linearized over the shell thickness at the fixed-edge for each model. An input file written in ANSYS programming language (APL) is used to automate the computation process. This file is included in Appendix 2 of this document.

The contour plot of the longitudinal stress for a typical model (4 elements through the thickness; 40 elements through the length) is shown in Figure 14. The end-moments from each model analysis are plotted in Figure 15 in a parametric form. This plot also shows the length-to-thickness ratio of the finite element size used in the 3-60B Cask ANSYS model. It is observed that the end-moment is not sensitive to the number of elements through the thickness or the length direction. The plot also shows a "theoretical value"

calculated from the formulas obtained from Reference 5. It should be noted that this "theoretical value" is not precise and is given here for reference purpose only.

Using the formulas from Reference 5 the theoretical end moment is obtained as follows:

t =Shell thickness = 0.75 in E = Young's modulus of the material =  $30 \times 10^6$  psi v = Poisson's ratio of the material = 0.3  $D = \frac{Et^3}{12(1-v^2)} = \frac{30 \times 10^6 \times 0.75^3}{12 \times (1-0.3^2)} = 1.159 \times 10^6 \text{ in-lb}$  $\lambda = \left[\frac{3 \times (1 - \nu^2)}{R^2 t^2}\right]^{0.25} = \left[\frac{3 \times (1 - 0.3^2)}{17.875^2 \times 0.75^2}\right]^{0.25} = 0.3511 \text{ /in}$ 

Radial displacement due to p, V₀, and M₀ are:

R = Mean radius of the shell = 17.875 in

$$\Delta R_p = \frac{pR^2}{Et}$$
$$\Delta R_{V_0} = \frac{-V_0}{2D\lambda^3}$$
$$\Delta R_{M_0} = \frac{M_0}{2D\lambda^2}$$

Rotation due to  $V_0$  and  $M_0$  are:

$$\psi_{V_0} = \frac{V_0}{2D\lambda^2}$$
$$\psi_{M_0} = \frac{-M_0}{D\lambda}$$

For the fixed boundary conditions:

.....(2)  $\psi_{V_0} + \psi_{M_0} = 0$ 

Solving equations (1) and (2) simultaneously, one gets:

$$M_0 = \frac{p}{2\lambda^2} = \frac{1,000}{2 \times 0.3511^2} = 4,056 \text{ in-lb/in}$$

The longitudinal membrane + bending stresses, linearized over the thickness, obtained from various models are plotted in Figure 16 in a parametric form. Taking the value corresponding to the fine model (4 elements through the thickness; 40 elements through the length) as the datum, 90 and 95 percentile lines are shown in this figure. It is observed that the membrane + bending stress corresponding to the size of elements used in the 3-

Title	3-60B Cask ANS	<u> /S Finite Elei</u>	ment Mode	Grid Converge	nce	Study	/
Calc. No.	ST-608	Rev.	0	Sheet	6	_of	13

60B Cask ANSYS model yields a result that is within approximately 90% of the fine model result.

#### 4.2.1 Comparison with the Theoretical Stresses

In order to compare the stresses calculated by the finite element models of various grid densities that use solid shell (SOLSH-190) elements with the theoretical value, cantilever beam model, as shown in Figure 17, was analyzed for various grid densities. The choice of this model was influenced by the fact that the theoretical stress for this case is precise and is not strongly dependent on the thickness of the cross-section. A  $1"\times1"$  cross-section and 10" length of the beam was used for modeling. The top surface of the beam was subjected to a uniform pressure of 100 psi. Under this loading the bending moment at the support is:

 $M = 1 \times 10 \times 100 \times 10/2 = 5,000$  in-lb

The maximum bending stress is:

 $\sigma = 6 \times 5,000/1 = 30,000 \text{ psi}$ 

The finite element model is constructed using SOLSH-190 elements and the following material properties.

 $E = 30 \times 10^6$  psi, and v = 0.3

Various grid densities are obtained by varying the number of elements through the thickness and through the length. Permutations of 1, 2, 3, 4, 6 and 8 elements through the thickness and 5, 10, 15, 20, 30, and 40 elements through the length is used to encompass grid densities that range between "coarse" and "fine". All the 36 ( $6\times6$ ) models resulting from the aforementioned permutations are analyzed. An input file written in ANSYS programming language (APL) is used to automate the computation process. This file is included in Appendix 2 of this document.

Contour plot of longitudinal stresses in a typical model is shown in Figure 18. The maximum longitudinal stresses obtained from each model analysis are plotted in Figure 19 in a parametric form. To prevent over-crowding this plot, results from 6 and 8 elements through the thickness are not included in this plot since they are very close to the corresponding results from the 4 element through the thickness solution.

Figure 20 shows a plot of 1-element through the thickness plot for various element sizes. The theoretical result is also superimposed in this plot along with the 95 and 90 percentile of the theoretical result band. The element size of the shell elements at the bolting ring-shell interface region is 0.9375" (from Reference 1 through 3). The inner shell is 0.75" thick and the outer shell is 1.25" thick. Thus the length-to-thickness ratios of the two shells are:

Inner shell element length = 0.9375/0.75 = 1.25tOuter shell element length = 0.9375/1.25 = 0.75t

Title	3-60B Cask ANSY	S Finite Ele	ment Model G	<u> Grid Converge</u>	nce (	<u>Study</u>	1
Calc. No.	ST-608	Rev.	0	Sheet	7	_of	13

Figure 20 also indicates these element length-to-thickness ratios. It is seen that for the pure bending problem the element size chosen for the inner and outer shells near the bolting ring interface region is expected to produce results within 95% of the theoretical value.

As an additional check a finite element model of a unit width of the inner shell, having the same element sizes as used in the 3-60B Cask ANSYS model is analyzed as a cantilever beam. The beam has the following geometric properties.

Width = 1", Thickness = 0.75", Length = 10"

It is subjected to a uniform pressure of 56.25 psi over the top surface. Under this loading,

 $M = 1 \times 10 \times 56.25 \times 10/2 = 2,812.5$  in-lb

The maximum bending stress is:

 $\sigma = 6 \times 2,812.5 / 0.75^2 = 30,000 \text{ psi}$ 

The finite element model is constructed using SOLSH-190 elements and the following material properties.

 $E = 30 \times 10^6$  psi, and v = 0.3

The longitudinal stress contour plot of this model is shown in Figure 21. The maximum stress obtained from this model is 29,971 psi, which is within 99.9% of the theoretical value.

#### 5.0 <u>CONCLUSIONS</u>

From the analyses provided in this document it has been demonstrated that the modeling techniques employed in constructing the ANSYS finite element models, used for the analyses of the 3-60B Cask, adequately represent the cask structure in the most vulnerable area (the bolting ring- inner/outer shell region). It has been further demonstrated that the selection of the element sizes in this region will predict the results that are within small tolerances of the corresponding theoretical values.

# Title 3-60B Cask ANSYS Finite Element Model Grid Convergence Study Calc. No. ST-608 Rev. 0 Sheet 8 of 13

Comparison of Results								
Quantity	SAR Model	Fine Model	% Difference ⁽¹⁾					
Maximum Deflection (in)	0.0149 ⁽²⁾	0.014682 ⁽³⁾	+1.48%					
Maximum S.I. in the joint (psi)	28,093 ⁽²⁾	29,741 ⁽³⁾	-5.54%					
Maximum S.I. in the shell (psi)	28,093 ⁽⁴⁾	29,741 ⁽⁵⁾	-5.54%					
Maximum Sigz in the shell (psi)	21,118 ⁽⁶⁾	19,356 ⁽⁷⁾	+9.10%					
Linearized Mem+Bend Sigz (psi)	21,118 ⁽⁸⁾	20,124 ⁽⁹⁾	+4.94%					

	Table 1 - Comp	parison of Res	sults of the SAR	& the Fine M	Iodels
--	----------------	----------------	------------------	--------------	--------

NOTES:

- (1) Percentage difference is calculated with respect to the fine model value.
- (2) See Figure 4.
- (2) See Figure 9.
- (3) See Figure 5.
- (4) See Figure 10.
- (5) See Figure 6.
- (6) See Figure 11.
- (7) See Figure 7.
- (8) See Figure 12.

Title	Gitle         3-60B Cask ANSYS Finite Element Model Grid Convergence Study							
Calc. No.	ST-608	Rev.	0	Sheet	9	_of_	13	

# **Figures**

(21 Pages)

Title Calc. No. 3-60B Cask ANSYS Finite Element Model Grid Convergence Study ST-608 Rev. 0 Sheet_ of, 21

<u>Figure-1</u> <u>3-60B Cask FEM - Element Types Used to Model Structural Components</u>






























3-60B Cask ANSYS Finite Element Model Grid Convergence Study ST-608 Rev. 0 Sheet 16 q 21

Title



Beam Model Grid Sensitivity Study - FEM Dimensions







Beam Model Grid Sensitivity Study - Bending Stress Plot for Models with 1-Element through the Thickness



Title	3-60B Cask ANS	/S Finite Ele	ment Mode	el Grid Converge	nce S	study	
Calc. No.	ST-608	Rev.	0	Sheet	10	_of	13

Appendix 1 FEM Data Print-Out (8 Pages)

#### 1. <u>Partial Print-out of the SAR Model Database</u> (Reference Section 4.1.1)

11:37:49 /COM,ANSYS RELEASE 11.0SP1 UP20070830 12/30/2009 /PREP7 /NOPR /TITLE, 3-60B Cask Bolting Ring Region - SAR Model ANTYPE, 0 *IF,_CDRDOFF,EQ,1,THEN !if solid model was read in _CDRDOFF= !reset flag, numoffs already performed !offset database for the following FE model *ELSE NUMOFF, NODE, 490 395 NUMOFF,ELEM, 1 NUMOFF,MAT , 4 NUMOFF, REAL, NUMOFF, TYPE, 7 *ENDIF , 1.00000000000 *SET,I *SET,MAXLAYER, 0.0000000000 *SET,_BUTTON , 1.0000000000 *SET,_CMAP , 1.0000000000 *SET,_RETURN , 0.00000000000 *SET,_RL1 , 1.0000000000 *SET,_STATUS , 1.0000000000 *SET,_UIQR , 1.0000000000 DOF, DELETE ET, 2,185 ΕT, 3,190 4,170 ΕT, ΕT, 5,175 5, 9, KEYOP, 1 KEYOP, 5,10, 2 5,12, 5 KEYOP, ΕT, 6,170 ΕT, 7,174 7, 2, KEYOP, 2 7, 4, 2 7, 9, 7,10, KEYOP, KEYOP, 1 2 KEYOP, KEYOP, 7,12, 5

The complete database is included in Appendix 2.

#### 2. <u>Partial Print-out of the Fine Model Database</u> (Reference Section 4.1.2)

11:37:09 12/30/2009 /COM,ANSYS RELEASE 11.0SP1 UP20070830 /PREP7 /NOPR /TITLE, 3-60B Cask Bolting Ring Region - Fine Model with SOLID-185 ANTYPE, 0 *IF,_CDRDOFF,EQ,1,THEN !if solid model was read in _CDRDOFF= !reset flag, numoffs already performed !offset database for the following FE model *ELSE NUMOFF, NODE, 5562 4288 NUMOFF, ELEM, NUMOFF,MAT , 1 1 NUMOFF, TYPE, NUMOFF,CSYS, 9 *ENDIF , 1.00000000000 *SET,I *SET, MAXLAYER, 0.0000000000 *SET,R1 , 17.5000000000 *SET,R2 , 18.2500000000 *SET,R3 , 18.62500000000 *SET,R4 , 25.5000000000 *SET,Z1 , 30.1470000000 *SET,Z2 , 9.87500000000 *SET,Z3 (52100000000 *SET,Z3 , 6.53120000000 *SET,Z4 , 4.68750000000 *SET,_BUTTON , 1.00000000000 *SET,_CHKMSH , 0.0000000000 *SET,_CMAP , 1.0000000000 *SET,_RETURN , 0.00000000000 *SET,_RL1 1.00000000000 , *SET,_STATUS , 0.00000000000 , 1.00000000000 *SET,_UIQR DOF, DELETE ET, 1,185 0 CSYS, REAL, 2

The complete database is included in Appendix 2.

### 3. <u>Input Data File for the Analyses of Section 4.2</u>

### 3.1 Shell Model

C*** 3-60B Cask Outer Shell - Inner Shell Grid Sensitivity Study

ļ *dim,m,array,4,1 *dim,n,array,6,1 *dim,smbi,array,6,4 *dim,smbo,array,6,4 *dim,sii,array,6,4 *dim,sio,array,6,4 *dim,mom,array,6,4 m(1,1)=1 m(2,1)=2 m(3,1)=3 m(4,1)=4 n(1,1)=10 n(2,1)=15 n(3,1)=20 n(4,1)=25 n(5,1)=30 n(6,1)=40 *do,j,1,4,1 *do,i,1,6,1 /prep7 et,1,190 *get,stiff,etype,1,attr,enam *use,steel,1 vclear,all vdel,all,,,1 numcmp,all csys,1 r1=17.5 ! Inside radius of the shell r2=18.25 ! Outside radius of the shell l=25 ! Shell length - arbitrary ! 10-degee segment t=10 n1=m(j,1) ! segements along radial direction ! segments along axial direction n2=n(i,1) n3=4 ! segments along tangential direction /title,Inner Shell Grid Sensitivity Study - n1=%n1% and n2=%n2% - Element Type %stiff% ! element size ratio r=1 ir=1/r t1=-t/2 k,1,r1,t1 k,2,r2,t1 k,3,r1,t1,l k,4,r2,t1,l l,1,2 1,2,4 l,4,3 l,3,1 al,1,2,3,4

lesize,1,,,n1 lesize,3,,,n1 lesize,2,,,n2,r lesize,4,,,n2,ir lgen,2,all,,,0,t l,1,5 l,2,6 l,3,8 l,4,7 v,1,5,6,2,3,8,7,4 lesize,9,,,n3 lesize,10,,,n3 lesize,11,,,n3 lesize,12,,,n3 vsweep,1 /view,,1,1,1 /vup,,z eplot nsel,x,r1 sf,all,press,1000 nsel,z,0 d,all,uz d,all,ux nsel,y,t1 nasel, y, t1+t nrot,all d,all,uy /solu nall eall solve /post1 set,last /EDGE,1,1,45 /GLINE,1,0 /cont,1,64,auto plnstr,sz /show,term PATH,sect,2,30,20, n1=node(r1,0,0) n2=node(r2,0,0) PPATH,1,n1 PPATH,2,n2 prsect,,0 *get,smbi(i,j),section,sum,inside,s,z *get,smbo(i,j),section,sum,outside,s,z *get,sii(i,j),section,sum,inside,s,int *get,sio(i,j),section,sum,outside,s,int spoint,,17.875,0,0 nsel,z,0 fsum *get,a,fsum,0,item,my mom(i,j)=a/3.1198

*enddo ! end of do loop i *enddo ! end of do loop j *cfopen,et%stiff%.out *vwrite,stiff ('Element Type', f10.0,' Results'/) *vwrite (//'Longitudinal Stress on the Inside Face'/) *vwrite,m(1,1),m(2,1),m(3,1),m(4,1) (5x,6f10.0) *vwrite,n(1,1),smbi(1,1),smbi(1,2),smbi(1,3),smbi(1,4) (f5.0,4f10.0) *vwrite (//'Longitudinal Stress on the Onside Face'/) *vwrite,m(1,1),m(2,1),m(3,1),m(4,1) (5x,4f10.0) *vwrite,n(1,1),smbo(1,1),smbo(1,2),smbo(1,3),smbo(1,4) (f5.0,4f10.0) *vwrite (//'Stress Intensity on the Inside Face'/) *vwrite,m(1,1),m(2,1),m(3,1),m(4,1) (5x,4f10.0) *vwrite,n(1,1),sii(1,1),sii(1,2),sii(1,3),sii(1,4) (f5.0,4f10.0) *vwrite (//'Stress Intensity on the Outside Face'/) *vwrite,m(1,1),m(2,1),m(3,1),m(4,1) (5x,4f10.0) *vwrite,n(1,1),sio(1,1),sio(1,2),sio(1,3),sio(1,4) (f5.0,4f10.0) *vwrite (//'End Moment per Inch'/) *vwrite,m(1,1),m(2,1),m(3,1),m(4,1) (5x,4f10.0) *vwrite,n(1,1),mom(1,1),mom(1,2),mom(1,3),mom(1,4) (f5.0,4f10.0) *cfclose,et%stiff%.out

The electronic file of this data is included in Appendix 2.

# 3.2 <u>Beam Model</u>

C*** Beam Stre	ss - Sensitivity Analysis
!	
*dim,m,array,6,1	
*dim,n,array,6,1	_
*dim,sigx,array,6	,6
m(1,1)=1	
m(2,1)=2	
m(3,1)=3	
m(4,1)=4	
m(5,1)=6	
m(6,1)=8	
n(1,1)=5	
n(2,1)=10	
n(3,1)=15	
n(4,1)=20	
n(5,1)=30	
n(6,1)=40	
*do,j,2,2,1	
*do,i,4,4,1	
/prep7	
et,1,185	
*use,steel,1	
vclear,all	
vdel,all,,,1	
numcmp,all	
n1=m(j,1)	! segements along depth direction
n2=n(i,1)	! segments along length direction
n3=1	! segments along width direction
/title,Beam Bend	ing Sensitivity Analysis - n1=%n1% and n2=%n2%
r=1	! element size ratio
ir=1/r	
k,1,0,-0.5,-0.5	
k,2,0,-0.5,0.5	
k,3,0,0.5,-0.5	
k.4.0.0.5.0.5	
1.1.2	
1.2.4	
1.4.3	
1.3.1	
al.1.2.3.4	
lesize.1n3	
lesize.3n3	
lesize.2n1.r	
lesize.4n1.ir	
lgen.2 all 1000	
1.1.5	
1.2.6	
1.3.8	
.,0,0	
147	
l,4,7 v.1.5.6.2.3.8.7.4	

lesize,10,,,n2 lesize,11,,,n2 lesize,12,,,n2 vsweep,1 /view,,1,1,1 eplot nsel,y,0.5 sf,all,press,100 nsel,x,0 d,all,ux,,,,,uy,uz /solu nall eall solve /post1 set,last /cont,1,64,auto plnstr,sx *get,a,plnsol,0,max sigx(i,j)=a /show,term *enddo ! end of do loop i *enddo ! end of do loop j *get,stiff,etype,1,attr,enam *cfopen,et%stiff%.out *vwrite,stiff ('Element Type',f10.0,' Results'/) *vwrite (//'Maximum Bending Stress'/) *vwrite,m(1,1),m(2,1),m(3,1),m(4,1),m(5,1),m(6,1) (5x,6f10.0) *vwrite,n(1,1),sigx(1,1),sigx(1,2),sigx(1,3),sigx(1,4),sigx(1,5),sigx(1,6) (f5.0,6f10.0) *cfclose,et%stiff%.out

The electronic file of this data is included in Appendix 2.

3.1 Partial Print-out of the Unit Width of the Inner Shell Model Database (Ref. Section 4.2.1)

```
/COM, ANSYS RELEASE 11.0SP1 UP20070830
                                            13:22:24
                                                        12/30/2009
/PREP7
/NOPR
/TITLE,3-60B Cask Inner Shell - Beam Model
ANTYPE, 0
*IF,_CDRDOFF,EQ,1,THEN
                          !if solid model was read in
_CDRDOFF=
                     !reset flag, numoffs already performed
                  !offset database for the following FE model
*ELSE
                39
NUMOFF, NODE,
NUMOFF, ELEM,
                  8
NUMOFF,MAT ,
                  1
NUMOFF, TYPE,
                  1
*ENDIF
*SET,_BUTTON , 1.0000000000
*SET,_CMAP , 1.0000000000
*SET,_GUI_CLR_BG, ' systemButtonFace
                                                  ı.
*SET, GUI CLR FG, ' systemButtonText
*SET,_GUI_CLR_INFOBG,' systemInfoBackground
*SET,_GUI_CLR_SEL, ' systemHighlight
*SET,_GUI_CLR_SELBG,' systemHighlight
                                                     .
                                                     .
*SET,_GUI_CLR_SELFG,' systemHighlightText
*SET,_GUI_CLR_WIN, ' systemWindow
*SET,_GUI_FNT_FMLY,'Arial
*SET,_GUI_FNT_PXLS, 16.000000000
*SET, GUI FNT SLNT, 'r
                                                    1
*SET,_GUI_FNT_WEGT,'medium
*SET,_RETURN , 0.0000000000
          , 1.00000000000
*SET,_RL1
*SET,_STATUS , 1.00000000000
*SET,_UIQR , 0.0000000000
DOF, DELETE
ΕT,
         1,190
```

The complete database is included in Appendix 2.

Title	3-60B Cask ANS	<u>YS Finite Ele</u>	ment Mod	el Grid Converge	nce S	Study	
Calc. No.	ST-608	Rev.	0	Sheet	11	_of_	13

<u>Appendix 2</u> <u>FEM Electronic Data</u>

(2 Pages + 1 CD)

Title	3-60B Cask	ANSYS Finite E	lement	Model Grid Conver	gence S	Study		
Calc. No.	ST-608	Rev.	0	Sheet	12	_of_	13	

# **Directory of Files on the CD**

Volume in Volume Se:	drive F is S rial Number i	ST-608 Rev Is EA86-CE	.0 App 64	
Directory	of F: $\setminus$			
12/18/2009	11:53 AM	<dir></dir>		Joint Evaluation
12/30/2009	03:11 PM	<dir></dir>		Shell Evaluation
	0 File(s	3)	(	) bytes
Directory	of F:\Joint	Evaluatio	n	
12/18/2009	11:53 AM	<dir></dir>		
12/30/2009	03:35 PM	<dir></dir>		••
12/30/2009	03:10 PM	<dir></dir>		Fine Model
12/30/2009	03:11 PM	<dir></dir>		SAR Model
	0 File(s	5)	(	) bytes
Directory	of F:\Joint	Evaluatio	n∖Fine	Model
12/30/2009	03:10 PM	<dir></dir>		
12/18/2009	11:53 AM	<dir></dir>		
12/30/2009	11:37 AM	1,3	05,837	file.cdb
12/23/2009	03:45 PM	17,1	70,432	file.db
12/01/2009	01:52 PM	8,2	57,536	file.rst
11/30/2009	04:17 PM	1	33,291	file000.png
11/30/2009	04:27 PM	1	07,324	file001.png
11/30/2009	04:28 PM		71,515	file002.png
11/30/2009	04:29 PM		28,878	file003.png
11/30/2009	04:29 PM		30,203	file004.png
12/02/2009	03:40 PM		59,765	file006.png
12/30/2009	11:25 AM	9	58,598	model.out
	10 File(s	s) 28,	123,379	9 bytes
Directory	of F:\Joint	Evaluatio	n\SAR N	Model
12/30/2009	03:11 PM	<dir></dir>		
12/18/2009	11:53 AM	<dir></dir>		••
12/30/2009	11:37 AM	1	16,229	file.cdb
12/03/2009	11:05 AM	2,6	21,440	file.db
12/01/2009	04:49 PM	9	17,504	file.rst
11/30/2009	05:35 PM		26,677	file000.png
11/30/2009	05:35 PM		27,049	file001.png
12/01/2009	04:52 PM		62,182	file002.png
12/02/2009	03:39 PM		85,865	file004.png
11/30/2009	05:12 PM		58,391	file005.png
11/30/2009	05:14 PM	1	09,167	file007.png
11/30/2009	05:14 PM		71,049	file008.png
12/01/2009	04:03 PM		51,985	model.png
	11 File(s	s) 4,	147,538	3 bytes

**Title** 3-60B Cask ANSYS Finite Element Model Grid Convergence Study Calc. No. ST-608 **Rev**. 0 Sheet 13 of 13 Directory of F:\Shell Evaluation 12/30/2009 03:11 PM <DIR> 12/30/2009 03:35 PM <DIR> ... CORD 03:30 PM <DIR> ... CORD DR CORD CORD CONTRACT CONT 

 12/30/2009
 03:30 PM
 <DIR>
 Beam

 12/30/2009
 03:30 PM
 <DIR>
 Beam

 12/23/2009
 08:33 AM
 1,885 et190.out

 12/23/2009
 09:17 AM
 3,932,160 file.db

 12/23/2009
 08:33 AM
 1,835,008 file.rst

 12/23/2009
 10:02 AM
 32 391 file000 pm

 12/21/2009
 10:03 AM
 32,391 file000.png

 12/21/2009
 10:05 AM
 57,237 file001.png

 12/21/2009
 10:05 AM
 57,223 file002.png

 12/23/2009
 08:32 AM
 2,740 Input.txt

 12/21/2009
 01:22 PM
 14,732 LongStress.xlsx

 12/30/2009
 11:04 AM
 14,897 Moment.xlsx

 9 File(s) 5,948,273 bytes Directory of F:\Shell Evaluation\Beam 

 12/30/2009
 03:30 PM
 <DIR>
 .

 12/30/2009
 03:11 PM
 <DIR>
 .

 12/21/2009
 03:21 PM
 21,614 Beam Sensitivity.xlsx

 12/30/2009
 03:29 PM
 533 et190.out

 12/30/2009
 03:29 PM
 2,686,976 file.db

 12/30/2009
 03:29 PM
 1,114,112 file.rst

 11/06/2009
 09:25 AM
 42,713 file000.png

 11/06/2009
 09:26 AM
 67,732 file001.png

 12/20/2009
 03:30 PM
 CDIR>

 12/30/2009 03:30 PM <DIR> 12/30/200903:30 PM<DIR>Inner Shell12/30/200903:28 PM1,457 Input.txt 7 File(s) 3,935,137 bytes Directory of F:\Shell Evaluation\Beam\Inner Shell 

 12/30/2009
 03:30 PM
 <Dlk>

 12/30/2009
 03:30 PM
 <Dlk>

 12/30/2009
 01:22 PM
 8,013 file.cdb

 11/11/2009
 03:13 PM
 1,376,256 file.db

 11/11/2009
 02:51 PM
 327,680 file.rst

 11/11/2009
 02:53 PM
 84,126 file001.png

 11/11/2009
 02:53 PM
 17,733 model.out

 12/30/2009
 02:53 PM
 17,733 model.out

 Total Files Listed: 42 File(s) 43,968,135 bytes 18 Dir(s) 0 bytes free

Title Structural Evaluation of Misc. components of 3-60B Cask								
Calc.	No	<u>ST- 549</u>	Rev.	1	Sheet	1	_of10	)

### **OBJECTIVE**

To evaluate the following components of 3-60B cask:

- 1. Cask tie-down lugs/brackets for installation of the impact limiters.
- 2. Impact limiter tie-down attachment.
- 3. Cask drain port assembly.

# **INTRODUCTION**

3-60 Cask is detailed per Reference 1. To evaluate the cask tie-down lug/bracket and the impact limiter tie-down attachment, the maximum applied loading per Table 4 of Reference 2 is utilized. The maximum attachment force is 56,890 lbs and it occurs under regulatory hypothetical accident drop condition in corner drop orientation for cold thermal environment. To evaluate the cask drain port assembly, the maximum applicable loading per Table 3 of Reference 2 is used. The loading that the drain port assembly is examined for is the tributary load caused by the maximum impact limiter reaction under regulatory hypothetical accident drop condition in slap-down (7.5°) orientation for cold thermal environment.

## REFERENCES

- (1) Energy*Solutions* Drawing No. C-002-165024-001, Revision 0, "3-60 Cask General Arrangement and Details."
- (2) Energy*Solutions* Document No. ST-557, Rev. 1, Drop Analyses of the 3-60B Cask Package Using LS-DYNA Program.
- (3) Roark's Formulas for Stress & Strain, 6th Edition.

# MATERIAL PROPERTIES

## Cask Shell and Attachments

Specification: ASTM A-240 Type 304L

Minimum Yield Strength,	$\mathbf{S}_{\mathbf{y}}$	= 25,000 psi

Minimum Ultimate Strength,  $S_u = 70,000 \text{ psi}$ 

## <u>Bolts</u>

Specification: ASTM A-193, Grade B5

Minimum Yield Strength,  $S_y = 80,000 \text{ psi}$ 

Minimum Ultimate Strength,  $S_u = 100,000 \text{ psi}$ 

Title_	Struct	tural Evaluation of Misc. co	omponents of 3	8-60B Cask				
Calc.	No	<u>ST- 549</u>	Rev.	1	Sheet	2	_of	10

# ALLOWABLE STRESSES

The following allowable values are utilized for the evaluations performed in this document:

Material Type	Normal Stress Allowable, psi	Shear Stress Allowable, psi
ASTM A-240 Type 304L	70,000	42,000
ASTM A-193, Grade B5	100,000	60,000

The allowable stresses in the weld are conservatively taken to be the same as the base metal.

# STRUCTURAL EVALUATION

# A. <u>Cask Tie-Down Lugs/Brackets for the Installation of the Impact Limiters</u>

Each impact limiter is attached to the cask at eight locations, as detailed per Reference 1, using 7/8" diameter bolts. Figure – 1 of this document shows the location and detail of a typical cask tie-down lug/bracket. Each bracket consists of a  $1" \times 5" \times 4"$  top plate and two  $\frac{1}{2}" \times 5" \times 6"$  gusset plates. To install the 7/8" diameter bolt, the top plate is equipped with a 1 1/8" diameter hole centered in one direction and 1  $\frac{1}{2}"$  from the edge of the plate.

As stated earlier the maximum attachment force is 56,890 lbs. Conservatively an attachment force of 60,000 lbs is used for the evaluation herein. Evaluating the top plate using an expression from Roark (Reference 3) for a rectangular plate simply supported along three sides and free on the other side with the uniform pressure (q) applied over entire plate, Table 26, case 2a,

a/b = 4/5 = 0.8

# $\beta = 0.538$

 $q = 0,000/(4 \times 5) = 3,000 \text{ psi}$ 

The maximum bending stress is:

$$\sigma_{\max} = \frac{\beta q b^2}{t^2} = \frac{0.538 \times 3,000 \times 5^2}{1^2} = 40,350 \text{ psi} < 70,000 \text{ psi}$$
 O.K.

Calculating the bearing stress on the top plate using the washer projection on the plate. The bearing stress is:

$$f_{\text{bearing}} = 60,000/[(\pi/4) \times (1.75^2 - 1.25^2)] = 50,930 \text{ psi} < 70,000 \text{ psi}$$
 O.K.

Assuming each gusset plate to react to ½ of the 60,000 psi load, the gusset plate bending stress is:

Title_Structural Evaluation of M	tle Structural Evaluation of Misc. components of 3-60B Cask								
Calc. No. <u>ST- 549</u>	<b>Rev</b> . 1	Sheet <u>3</u> of	10						
$\sigma_{\rm max} = \frac{(60,000 \times 0.5) \times 2.5 \times 6}{0.5 \times 6^2} =$	= 25,000 psi < 70,000 psi	(	O.K.						

Examining the weld connecting the 1" top plate to the cask outer shell, assuming simply supported edge and using the tributary shear load (F),

$$F = 3,000 \times (0.5 \times 2.5 \times 5) = 18,750$$
 lbs

Using 5/16" continuous fillet weld all around connecting the 1" top plate to the 1 ¹/₄" cask outer shell, assuming credit only for 4" of weld on top and bottom of the plate and conservatively ignoring the end welds, the weld shear stress is:

$$\tau = \frac{18,750}{0.707 \times 0.3125 \times 2 \times 4} = 10,608 \text{ psi} < 42,000 \text{ psi}$$
 O.K.

Using 5/16" continuous fillet weld all around connecting the  $\frac{1}{2}$ " gusset plates to the 1  $\frac{1}{4}$ " cask outer shell, considering a 45° bevel at corner of the gusset plate to allow for the 5/16" weld connecting the 1" top plate to 1  $\frac{1}{4}$ " cask outer shell and assuming credit for a 5  $\frac{1}{2}$ " long line weld on each side of the gusset plate and conservatively ignoring the end welds, the weld shear stress is calculated using the following tributary loads:

The tributary shear load reacted by the gusset plate (V) is:

$$V = 3,000 \times [(4 \times 5 - 0.5 \times 2.5 \times 5) \times 0.5] = 20,625$$
 lbs.

Consider the load V centered on the 4" wide gusset plate, the bending moment is:

 $M = 20,625 \times 2 = 41,250$  in-lbs.

$$\tau = \left[\left(\frac{20,625}{2 \times 5.5 \times 0.707 \times 0.3125}\right)^2 + \left(\frac{41,250}{\frac{5.5^2}{3} \times 0.707 \times 0.3125}\right)^2\right]^{0.5} = 20,368 \text{ psi} < 42,000 \text{ psi} \quad \text{O.K.}$$

Examining the weld connecting the 1" top plate to the  $\frac{1}{2}$ " gusset plates, assuming simply supported edges and using the tributary shear load (V), same as above,

 $V = 3,000 \times [(4 \times 5 - 0.5 \times 2.5 \times 5) \times 0.5] = 20,625$  lbs.

Using full penetration groove weld connecting the 1" top plate to the  $\frac{1}{2}$ " gusset plates, allow for corner bevel and assuming 3" weld length, the weld shear stress is:

$$\tau = \frac{20,625}{0.5 \times 3} = 13,750 \text{ psi} < 42,000 \text{ psi}$$
 O.K.

Using the area of the 7/8" diameter tie-down bolt, the maximum bolt tensile stress is:

Title Structural Evaluation of Misc. components of 3-60B CaskCalc. No.ST- 549Rev.1Sheet4of10
$$f_t = \frac{60,000}{\frac{\pi}{4} \times 0.875^2} = 99,780 \text{ psi} < 100,000 \text{ psi}$$
O.K.

### B. Impact Limiter Tie-Down Attachment

As stated earlier, each impact limiter is bolted to the cask at eight locations as per Reference 1. Figure – 2 of this document shows the arrangement and detail of the impact limiter tie-down attachment. The tie-down attachment consists of a 1  $\frac{3}{4}$ " ×53" I.D. ×59" O.D ring plate and sixteen  $\frac{1}{2}$ " × 3" × 10" gusset plates. A pair of gusset plates connects the 1  $\frac{3}{4}$ " ring to the  $\frac{1}{2}$ " thick impact limiter inner plate at each bolt location as per Reference 1.

Examining the 1³/₄" ring using an expression from Roark (Reference 3) for a rectangular plate with three edges simply supported and one edge free with uniform load applied over entire plate, Table 26, case 2a,

 $a = 3, b = 2 \frac{1}{2}, a/b = 1.2$ 

By interpolation  $\beta = 0.71$ 

 $q = 60,000/(3 \times 2.5) = 8,000 \text{ psi}$ 

$$\sigma_{\max} = \frac{0.71 \times 8,000 \times 2.5^2}{1.75^2} = 11,592 < 70,000 \text{ psi}$$
 O.K.

Assuming each gusset plate reacts to one-half of the 60,000 lb load, the gusset plate bending stress is:

$$\sigma_{\text{max}} = \frac{(60,000 \times 0.5) \times 1.5 \times 6}{0.5 \times 10^2} = 5,400 \text{ psi} < 70,000 \text{ psi}$$
 O.K.

Using 5/16" continuous fillet weld all around connecting the 1" gusset plate to the  $\frac{1}{2}$ " thick impact limiter inner plate, considering a 45° bevel at corner of the gusset plates to allow for the 5/16" weld connecting the 1  $\frac{3}{4}$ " ring plate to  $\frac{1}{2}$ " impact limiter inner ring and assuming credit for a 9  $\frac{1}{2}$ " long line weld on each side of the gusset plate and conservatively ignoring the end welds, the weld shear stress is:

The shear load reacted by the gusset plate (V) is:

 $V = 60,000 \times 0.5 = 30,000$  lbs

The bending moment is:

 $M = 30,000 \times 1.5 = 45,000$  in-lbs.

Title_Structural Evaluation of Misc. components of 3-60B Cask

 Calc. No. ST-549
 Rev. 1
 Sheet 5 of 10

$$\tau = [(\frac{30,000}{2 \times 9.5 \times 0.707 \times 0.3125})^2 + (\frac{45,000}{9.5^2} \times 0.707 \times 0.3125})^2]^{0.5} = 9,844$$
 psi < 42,000 psi
 O.K.

Considering 5/16" continuous fillet weld all around and on both sides to connect the 1 ³/₄" thick ring plate to ¹/₂" thick impact limiter inner plate, conservatively ignoring the gusset plate contribution and assuming only 6" of this weld to react to the shear load of 60,000 lbs, the weld shear stress is:

$$\tau = \frac{60,000}{0.707 \times 0.3125 \times 2 \times 6} = 22,631 \text{ psi} < 42,000 \text{ psi}$$
 O.K.

Examining the weld connecting the 1³/₄" ring plate to each ¹/₂" gusset plate,

 $V = 60,000 \times 0.5 = 30,000$  lbs

Using full penetration groove weld connecting the  $1\frac{3}{4}$ " ring plate to each  $\frac{1}{2}$ " gusset plate, allow for corner bevel and assuming 2" weld length, the weld shear stress is:

$$\tau = \frac{30,000}{0.5 \times 2} = 30,000 \text{ psi} < 42,000 \text{ psi}$$
 O.K.

### C. Cask Drain Port Assembly

The 3-60B cask is equipped with a drain line that is detailed per Reference 1. Figure – 3 of this document shows the drain line connecting to the  $\frac{3}{4}$ " thick cask inner bottom cover. The drain line has a 2  $\frac{1}{2}$ " outside diameter and 1" inside diameter.

Examining this line for the maximum load that the drain port assembly is subjected to under regulatory hypothetical accident drop condition in slap-down (7.5°) orientation for cold thermal environment. Per Table 3 of Reference 2, the maximum impact limiter reaction for this loading condition is  $2.009 \times 10^6$  lbs.

Using 22" impact limiter coverage of the cask bottom end, for a maximum impact limiter crush of 7.44" in for the above slap-down drop (per Table 3, of Reference 2) a nominal 70° impact zone could be assumed as shown in the following sketch, conservatively calculating the estimated pressure on the cask body using a smaller 30° impact zone:

$$q = \frac{2.009 \times 10^6}{22 \times (\frac{51 \times \pi}{360}) \times 30} = 6,840 \text{ psi}$$



Using a 4 ¹/₂" diameter nozzle diameter on the side wall, the tributary shear load on the drain port assembly is:

$$F = 6,840 \times \frac{\pi}{4} \times 4.5^2 = 108,786$$
 lbs.

The weld connecting the drain port to the cask outer shell is as shown in Figure 3. Using an allowable base material and weld shear stress equal to  $0.6 \times S_u = 0.6 \times 70,000 = 42,000$  psi and conservatively assuming credit only for the ¹/₄" partial penetration groove weld, the maximum shear load that this weld can withstand is,

$$V = 42,000 \times [\pi \times 4.5 \times (0.25 - 0.125)] = 74,220 \ lbs.$$

Therefore the ratio of the maximum shear load that this weld can withstand to the tributary shear load applied to the drain port  $(\frac{V}{E})$  is:

$$\frac{V}{F} = \frac{74,220}{108,786} = 0.68 > 0.50$$

Since the above ratio of V/F is larger than 0.5 and also the above weld strength calculation is based on conservative weld effective throat, it is conservative to assume that the shear load of 108,786 lbs. is reacted equally by the welds connecting the drain port to the cask outer shell and inner bottom cover. The drain line shear stress is:

Title Structural Evaluation of Misc. components of 3-60B Cask									
Calc. No. <u>ST- 549</u>	<b>Rev</b> . <u>1</u>	Sheet _	7_of_10						
$\tau = \frac{108,786 \times 0.5}{(\pi/4) \times (2.5^2 - 1^2)} = 1$	3,192 psi < 42,000 psi		O.K.						





Figure – 1: 3-60B Cask Tie-Down/Bracket Details for the Installation of the Impact Limiter



Figure – 2: 3-60B Cask - Impact Limiter Tie-Down Attachment Details



Figure – 3: 3-60B Cask – Drain Port Assembly Details

## **1.0 OBJECTIVE**

Evaluation of the 3-60B Cask (Reference 1) under:

- Regulatory puncture drop-test
- Hypothetical drop test when the trunnions are orientated in the vertical plane.

## 2.0 INTRODUCTION

In order to get the 3-60B Cask certified as a Type-B package, it must demonstrate the requirements of the 10 CFR Part 71 (Reference 2) code. One of the requirements listed in the code is for the cask to meet a puncture drop test of 71.73(c)(3), which states:

"A free drop test of the specimen through a distance of 1 m (40 in) in a position for which maximum damage is expected, onto the upper end of a solid, vertical, cylindrical, mild steel bar mounted on an essentially unyielding, horizontal surface. The bar must be 15 cm (6 in) in diameter, with the top horizontal and its edge rounded to a radius of not more than 6 mm (0.25 in) and of a length as to cause maximum damage to the package, but not less than 20 cm (8 in) long. The long axis of the bar must be vertical."



This test is required to be conducted after the hypothetical drop tests.

In order to assess the package performance an analytical evaluation is accepted means. This document presents the analyses performed for the 3-60B Cask to meet the requirement of the puncture test.

Two scenarios are identified that could cause the maximum damage to a particular component of the cask. In one, the cask is assumed to be dropped on the puncture bar in a horizontal orientation such that the puncture bar impacts the sidewall of the cask. In this case the outer shell is evaluated against the puncture bar piercing through it. In the other, the cask is assumed to be dropped in a vertical orientation such that its lid impacts the puncture bar. In this case the cask lid is evaluated. The closure bolts are separately evaluated for this condition using NUREG-6007 methodology in the SAR.

For the puncture drop on the sidewall a nonlinear inelastic analysis of the cask wall has been performed using ANSYS (Reference 3) finite element model to show that the entire amount of the potential energy may be converted into mechanical work done, without exceeding the allowable stresses in the cask outer shell.

For the evaluation of the puncture drop on the cask lid, analysis is performed using the linear elastic finite element model that has been used in other evaluations, e.g. NCT conditions (Reference 4). The effect of cold and hot conditions is included in the analyses.

The results of the analyses show that the 3-60B Cask can withstand the drop on the puncture bar, without rupture. Therefore, the requirements of § 71.73(c)(3) are satisfied.

The analyses performed here are also utilized to evaluate the 3-60B Cask under the hypothetical drop tests scenario in which the trunnions are located in the vertical plane. Under such drop scenarios the impact limiters may deform enough so that the trunnions could impact the rigid plane before the cask comes to rest. It has been shown that under all the drop orientations, except the slapdown, the impact limiters provide enough protection that the trunnions will not impact the rigid target plane. Under the slapdown conditions the impact limiters absorb enough energy such that the remaining energy can be safely absorbed by the cask, without damage to the outer shell. Hence the package will meet the requirements of § 71.73(c)(3) for the hypothetical drop test in this orientation.

# 3.0 **REFERENCES**

- 1. Energy*Solutions* Drawing No. C-002-165024-001, Rev.0, 3-60B Cask General Arrangement and Details.
- 2. Code of Federal Regulations, Title 10, Part 71, Packaging and Transportation of Radioactive Material, January 2003.
- 3. ANSYS, Rev. 11.0, Computer Software, ANSYS Inc., Canonsburg, PA, 2007.
- 4. Energy*Solutions* Document No. ST-501, Rev.1, Structural Analyses of the 3-60B Cask under Normal Conditions of Transport.
- 5. ASME Boiler & Pressure Vessel Code, Section II, Part D, Materials, The American Society of Mechanical Engineers, New York, NY, 2005.
- 6. NUREG 0481/SAND77-1872, An Assessment of Stress-Strain Data Suitable for Finite Element Elastic-Plastic Analysis of Shipping Containers, Sandia National Laboratories, 1978.
- 7. U.S. NRC Regulatory Guide 7.6, Revision 1, Design Criteria for the Structural Analysis of Shipping Cask Containment Vessels, 1978.
- 8. Energy*Solutions* Proprietary Document ST-557, Drop Analyses of the 3-60B Cask Package Using LS-DYNA Program.

# 4.0 MATERIAL PROPERTIES

			Strength (ksi	)	<b>X</b> 7 3	Coefficient
	Temp.	Yield	Ultimate	Membrane	Young's	of Thermal
Material	(°F)	$(S_v)$	$(S_u)$	Allowable	Modulus	Expansion
	~ /		( 4)	$(S_m)$	(10° psi)	$(10^{-6} \text{ in/in})$
		(1)	(1)	(1)	(1)	(1)
	-20	25.0	70.0	16.7	28.8	-
	70	25.0	70.0	16.7	28.3	8.5
ASTM A240	100	25.0	70.0	16.7	-	8.6
Type 304L	200	21.4	66.1	16.7	27.5	8.9
	300	19.2	61.2	16.7	27.0	9.2
	400	17.5	58.7	15.8	26.4	9.5
	500	16.4	57.5	14.7	25.9	9.7
		(1)	(1)	(1)	(1)	(1)
	-20	45.0	87.0	24.9	28.8	-
ASTM A240	70	45.0	87.0	24.9	28.3	8.5
Gr. 45 &	100	45.0	87.0	24.9	-	8.6
ASTM A182	200	37.5	86.4	24.7	27.5	8.9
Gr. F45	300	33.0	81.6	23.3	27.0	9.2
	400	29.9	78.5	22.4	26.4	9.5
	500	27.8	76.4	21.8	25.9	9.7
		(1)	(1)	(1)	(1)	(1)
	-20	130	150	30	29.7	-
ASTM A354	70	130	150	30	29.2	6.4
Gr BD	100	130	150	30	-	6.5
(Lid Bolts)	200	119.1	150	30	28.6	6.7
(LIG DOILS)	300	115	150	30	28.1	6.9
	400	111	150	30	27.7	7.1
	500	105.9	150	30	27.1	7.3
		(2)			(2)	(2)
	-20	-	-	-	2.43	15.65
	70	5	-	-	2.27	16.06
ASTM B29	100	-	-	-	2.21	16.22
Lead	200	-	-	-	2.01	16.70
	300	-	-	-	1.85	17.33
	400	-	-	-	1.70	18.16
	500	-	-	-	1.52	19.12

Notes:

(1) From ASME B&PV Code 2004, Section II, Part D (Reference 5).

(2) From NUREG/CR 0481 (Reference 6)

Title_	<u>3-60B</u>	Cask A	Analyses	under	Puncture	Drop a	& Impact	on	Trunnions	During	HAC	C Te	sting
Cale.	No	<u>ST-50</u>	5	Rev.	1	_				Sheet _	4	_of_	11

### 5.0 ALLOWABLE STRESSES

	Material →	ASTM A240 Type 304L	ASTM A182 Gr.F45 & A240 Gr. 45	ASTM A354 Gr. BD	
Yield Stress, S	y (psi)	25,000 ⁽¹⁾	45,000 ⁽¹⁾	130,000 ⁽¹⁾	
Ultimate Stres	s, S _u (psi)	70,000 ⁽¹⁾	87,000 ⁽¹⁾	150,000 ⁽¹⁾	
Design Stress	Intensity, S _m (psi)	$16,700^{(1)}$	24 <b>,</b> 900 ⁽¹⁾	30,000 ⁽¹⁾	
	Membrane Stress	$16,700^{(2)}$	24,900 ⁽²⁾	60,000 ⁽²⁾	
Normal Conditions	Mem. + Bending Stress	25,050 ⁽²⁾	37,350 ⁽²⁾	90,000 ⁽²⁾	
	Peak Stress	50,100 ⁽³⁾	74,700 ⁽³⁾	150,000 ⁽³⁾	
Uzmothatian	Membrane Stress	40,080 ⁽⁴⁾	59,760 ⁽⁴⁾	105,000 ⁽⁴⁾	
Accident	Mem. + Bending Stress	60,120 ⁽⁴⁾	87,000 ⁽⁴⁾	150,000 ⁽⁴⁾	
Conditions	Peak Stress	140,000 ⁽⁵⁾	174,000 ⁽⁵⁾	300,000 ⁽⁵⁾	

Notes:

- (1) From ASME B&PV Code 2004, Section II, Part D (Reference 5).
- (2) Established from Regulatory Guide 7.6 (Reference 7).
- (3) Established from Regulatory Guide 7.6, Regulatory Position 4, and ASME, Section III, Division 3, WB-3200 criteria. The limit on this stress component is 3S_m.
- (4) Regulatory Guide 7.6 (Reference 7) does not provide any criteria. ASME B&PV Code, Section III, Appendix F has been used to establish these criteria.
- (5) Regulatory Guide 7.6, Regulatory Position 7 and ASME Section III, Division 3, WB-3221.9 criteria of limiting these stresses to 2S_a @ 10 cycles results in higher than 2S_u allowable values. The limits for peak stresses are conservatively set to be 2S_u.

### 6.0 MODEL DESCRIPTION

The structural analyses of the 3-60B Cask under puncture drop conditions have been performed using finite element modeling techniques. ANSYS finite element analysis code

(Reference 3) has been employed to perform the analyses. Two different models have been employed to address two puncture drop scenarios.

# 6.1 <u>Scenario 1: Puncture Drop on the Sidewall</u>

The puncture drop on the sidewall causes high local stresses at the point of contact. The magnitude of these stresses attenuates quickly with distance. Thus for the evaluation of the stresses in the cask under this loading a finite element model representing the sidewall in the vicinity of the impact has been employed. Since the cylindrical cask-to-the cylindrical pin impact provides two planes of symmetry, the model uses two vertical symmetry planes. In the horizontal plane there is no plane of symmetry. However, since the stresses resulting from the impact are highly local, based on St. Venant's principle, approximate boundary conditions on the horizontal plane will have little effects on the stresses at the point of impact. Symmetry boundary conditions on this plane, in fact will result in a conservative stress prediction. Thus the FEM used in the analysis has three planes of symmetry. This model is shown in Figure 1.

# 6.2 <u>Scenario 2: Puncture Drop on the Lid</u>

For the puncture drop on the lid, the cyclic symmetry of the cask has been utilized. Since the lid of the cask is attached to the body using 16 bolts, the cask geometry has a cyclic symmetry every 11.25° of the circumference. Therefore, an 11.25° model of the cask is made using 3-dimensional 8-node structural solid elements (ANSYS SOLID185) to represent the major components of the cask, the cask body, the lid, and the bolts. The fire shield does not provide any structural strength to the cask. Therefore, it is not included in the model.

The poured lead in the body of the cask is not bonded to the steel. It is free to slide over the steel surface. Therefore, the interface between the lead and the steel is modeled by a pair of contact (CONTA174) and target (TARGE170) elements. These elements allow the lead to slide over the steel at the same time prevent it from penetrating the steel surface.

Figure 2 shows the finite element model of the cask used for the puncture drop analysis of 3-60B on its lid.

## 7.0 **RESULTS & CONCLUSIONS**

## 7.1 Scenario 1: Puncture Drop on the Sidewall

Analyses using the FEM described in Section 6.1 are performed for obtaining the forcedeflection plot. A known amount of load is applied in form of surface pressure at the end of the puncture bar. The deflection of the bar is obtained from the analysis of the FEM. Figure 3 shows the force-deflection plot at the end of the rod. The area under this plot gives the work done versus deflection relation. Using Microsoft Excel spreadsheet program the forcedeflection curve is integrated to obtain the work done versus deflection plot shown in Figure 4. Energy versus deflection diagram also created as follows:

Mass of the package = 80,000 lb

Height of the package = 40 in
Assuming that the package travels an additional distance  $\delta$  before it comes to stop, the total potential energy is:

 $PE(\delta) = 80,000 \times (40 + \delta)$ 

This curve is also plotted in Figure 4. The intersection of the potential energy curve and the work done curve represent the energy balance point. Any loading larger than that at the intersection point, applied to the FEM can be used to conservatively calculate the stresses in the structure. A loading much larger than the balance point loading is used to compute the stresses. This loading point is shown in Figure 4. Its selection is based on the fact that it envelopes the puncture drop loading and the cask drop on the trunnion loading covered in Section 7.3 of this document.

Figure 5 shows the maximum stress intensity in the inner and outer shells of the cask under this loading. Figure 6 shows the maximum stress intensity in the lead and Figure 7 shows the stress intensity in the outer shell of the cask under this loading.

From Figures 5 to 7, the maximum stress intensity in the lead is small (6,507 psi) and the maximum stress intensity in the outer shell is 63,084 psi. This stress intensity is compared to the ultimate tensile strength of the shell material, i.e. 70,000 psi. It is, therefore, concluded that the 3-60B Cask can safely withstand the regulatory puncture drop on its sidewall.

## 7.2 <u>Scenario 2: Puncture Drop on the Lid</u>

The puncture bar has 6" diameter and it is made of mild steel. Conservatively assuming a flow stress of 45,000 psi for the mild steel, the corresponding load is:

$$F = \pi/4 \times 6^2 \times 45,000 = 1.272 \times 10^6 \text{ lb}$$

This load is applied over a circle of 3.333 in. The equivalent pressure is therefore,

$$p = 1.272 \times 10^6 / (\pi \times 3.333^2) = 36,447 \text{ psi}$$

This load is applied as a surface pressure on the model described in Section 6.2. Both cold and hot environments have been analyzed for this loading.

The stresses in the cask under this loading are shown in Figures 8 through 10. From these figures it is observed that the maximum stress intensity occurs in the lid at the point of impact and its value is 41,568 psi. This stress intensity is compared to the ultimate tensile strength of the lid material, i.e. 70,000 psi. It is, therefore, concluded that the 3-60B Cask can safely withstand the regulatory puncture drop on its sidewall.

## 7.3 Impact on Trunnion during HAC Testing

Analyses of the 3-60B Cask have been performed in Reference 8 for the HAC drop test loading conditions. These analyses were performed using finite element models of the package with its major components. Since the objective of these analyses was to obtain the impact limiter reactions, detailed modeling of the cask was not necessary. However, from these analyses the complete deformation of the package can be obtained. These deformations could be used to establish whether the trunnions of the cask will contact the rigid target surface if the cask were to be dropped in an orientation such that the trunnions were located in the vertical plane as shown in Figure 11.

From the geometry of the package shown in Figure 11, the vertical distance between the lowest point of the impact limiter to the lowest point of the trunnions is 8 in. From the results of the Reference 8 analyses the maximum crush of the impact limiters during various drop scenarios is as follows:

Drop Orientation	Environment	Max. Crush
Sida	Cold	6.50
Side	Hot	8.02
Clandovym 1	Cold	7.44
Stapdown-1	Hot	9.04
Slandown 2	Cold	7.23
Stapuown-2	Hot	8.86

It can be seen that for most drop orientations the impact limiter crush is less than the minimum foam thickness available, i.e. 8 in. The largest crush of the impact limiter occurs during the slapdown-1 orientation  $(7\frac{1}{2}^{\circ})$  form the horizontal) in the hot environment. Figure 12 shows a pictorial depiction of the deformation of the package at the instant of maximum tail impact limiter crush. Figure 13 shows the time-history of this crush. The internal energy time-history of the package is shown in Figure 14.

Figures 13 and 14 are used to establish the amount of energy that has been absorbed by the impact limiters before the tail-end trunnion could impact the rigid surface. The foam of the tail-end impact limiter crushes by 8" at time instant 0.057 second (see Figure 13). Figure 14 shows that at this time instant  $12.2 \times 10^6$  in-lb energy has been absorbed by the impact limiters. Since the result is for  $\frac{1}{2}$  model. The energy absorbed is  $2 \times 12.2 \times 10^6 = 24.4 \times 10^6$  in-lb.

The maximum potential energy of the package is obtained from its initial to final (resting) positions. Figure 15 shows these orientations. The distances of the C.G. for the two positions are also marked in this figure. The potential energy of the system is:

 $PE = 80,000 \times (360 + 51.418 - 35.025) = 30.1 \times 10^{6}$  in-lb

Since  $24.4 \times 10^6$  in-lb energy has already been absorbed in the impact limiters, the rest of the energy, i.e.  $(30.1 - 24.4) \times 10^6 = 5.7 \times 10^6$  in-lb must be accounted for between the crush of the trunnion and that of the tail-end impact limiter. Let us conservatively assume that this energy is totally absorbed by the cask body by the trunnion crush. The minimum diameter of the trunnion body is 8". Therefore, during the trunnion crush the load on the cask sidewall will be distributed over 8" circular area. Let us further conservatively assume that the bearing area on the cask is a circle of 6" diameter which is equal to the diameter of the puncture bar. Therefore, the evaluation performed for the puncture bar drop can be conservatively used to envelope the stresses in the package sidewall for direct impact on the trunnion during the HAC drop tests. Figure 4 annotates  $5.7 \times 10^6$  in-lb location on the energy-deflection plot curve.

In Section 7.2 stresses are evaluated in the cask sidewall for a loading level that envelopes both the puncture drop loading and the cask drop on the trunnion loading. It is shown that the maximum stress intensity of 63,084 psi will result in the cask sidewall under these loading conditions (see Figure 7). This stress intensity is compared to the ultimate tensile strength of the shell material, i.e. 70,000 psi. It is, therefore, concluded that the 3-60B Cask can safely withstand the regulatory HAC drop tests, with its trunnions oriented in the vertical plane, without exceeding the allowable stress value.

### 8.0 ANSYS PRINTOUT AND DATA FILES

The printout of the pertinent model quantities is included in Appendix 1. The printout of the important data from the program is included in electronic form as Appendix 2.

### **APPENDICES**

Appendix 1 Print-out of the ANSYS model data input

Appendix 2 Electronic data on CDROM

# **Figures**

(15 Pages)







q 15

Force (lb)

3-60B Cask Puncture Drop



Title_ 3-60B Cask Analyses under Puncture Drop & Impact on Trunnions during HAC Testing



Maximum Stress Intensity in the Inner & Outer Shells of the Cask under Puncture Drop









Maximum Stress Intensity in the Lid under Puncture Drop (Hot Conditions)





Title

3-60B Cask Analyses under Puncture Drop & Impact on Trunnions during HAC Testing

11

of 15

Calc. No.

Figure 11 Package Geometry with Trunnions in the Vertical Plane

#### 30-FT SLAP DOWN-1 - HOT CONDITION Time = 0.063

¥ ⊾x







(ST-557 Reference 8, Figure 95)

Title Calc. No. 3-60B Cask Analyses under Puncture Drop & Impact on Trunnions during HAC Testing ST-505 (Figures) Rev. Sheet_ 13오 15



Impact Limiter Internal Energy Time-History for Slapdown-1 in Hot Environment (ST-557 Reference 8, Figure 92)





Figure 15 C.G. Location of the Package Before and After the Slapdown-1 Drop Test

# <u>Appendix 1</u>

Printout of the ANSYS Model Data

(18 Pages)

#### **ANSYS Model Sample Print-Out**

Keypoints . . . . . . . . .

33

#### Scenario 1: Puncture Drop on the Sidewall

```
***** TITLES *****
 *** YOU ARE IN ANSYS - ENGINEERING ANALYSIS SYSTEM ***
ANSYS Mechanical/Emag
RELEASE 11.0SP1 UPDATE 20070830 CUSTOMER 00222442
 INITIAL JOBNAME = file
CURRENT JOBNAME = file
Current Working Directory: D:\Ansys Analyses\3-60B\Puncture Drop on Wall
TITLE= Puncture Drop on Cask Sidewall
MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\qui\en-us\UIDL\menulist110.ans
                        GLOBAL STATUS
 ANSYS - Engineering Analysis System
                                           Jun 17, 2009
                                                                 08:48
Release 11.0SP1
                          00222442
                                                  WINDOWS x64 Version
Current working directory: D:\Ansys Analyses\3-60B\Puncture Drop on Wall
MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans
Product(s) enabled: ANSYS Mechanical/Emag
Total connect time. . . . 0 hours 1 minutes
Total CP usage. . . . . 0 hours 0 minutes 2.4 seconds
JOB INFORMATION------
Puncture Drop on Cask Sidewall
Current jobname . . . . . . . file
Initial jobname . . . . . . . file
AvailableUsedScratch Memory Space...4796.000 mb6.538 mb ( 0.1%)Database space1049572 000 ml5.538 mb ( 0.1%)
                             Available
                                                  Used
Database space . . . . . . . 1048572.000 mb
                                               29.115 mb ( 0.0%)
 User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\UIMENU.GRN
User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\UIFUNC1.GRN
User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\UIFUNC2.GRN
User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\MECHTOOL.AUI
Beta features . . . . . . . are not shown in the user interface
MODEL INFORMATION------
Solid model summary:
                                         Number
                            Largest
                                                      Number
                            Number
                                         Defined
                                                     Selected
```

33

15

Lines .						47	47	22
Areas .						23	23	11
Volumes						4	4	2

Finite element model summary:

Nodes	Largest	Number	Number
	Number	Defined	Selected
	25932	18541	4725
	5250	5019	800
Element types	9	9	n.a.
	14	10	n.a.
	3	3	n.a.
Coupling	0	0	n.a.
	0	0	n.a.
	0	0	n.a.
	0	0	n.a.

BOUNDARY CONDITION INFORMATION -----

	Number		
Constraints on nodes	2123 0 0 0		
Forces on nodes	0 0		
Surface loads on elements	27 0 0 0		
Body loads on elements	0 0 0		
Temperatures Uniform temperature	0.000 0.000 0.000		
Linear acceleration	X 0.0000 0.0000 0.0000 0.0000 0.0000	¥ 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Z 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ROUTINE INFORMATION			
Current routine	e (BEGIN leve	el)	
Active coordinate system	1 (Cylindrica	al)	
Display coordinate system	0 (Cartesian)	)	
Analysis type	tic (steady-s	state)	

Active options for this analysis type: Large deformation effects . . . . . Not included Load step number . . . . . . . . . . . . 13 Number of substeps: Starting number of substeps . . . . 10 Maximum number of substeps. . . . . 100 Minimum number of substeps. . . . 1 Step change boundary conditions . . No SOLUTION OPTIONS DEGREES OF FREEDOM. . . . . UX UY UZ LOAD STEP OPTIONS 13 TIME AT END OF THE LOAD STEP. . . . . . . . . . 16.000 ON INITIAL NUMBER OF SUBSTEPS . . . . . . . . . . 10 MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . . 100 MINIMUM NUMBER OF SUBSTEPS . . . . . . . . . 1 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . . 15 STEP CHANGE BOUNDARY CONDITIONS . . . . . . . . NO TERMINATE ANALYSIS IF NOT CONVERGED . . . . . . YES (EXIT) COPY INTEGRATION POINT VALUES TO NODE . . . . .YES, FOR ELEMENTS WITH ACTIVE MAT. NONLINEARITIES DATABASE OUTPUT CONTROLS ITEM FREQUENCY COMPONENT ALL ALL LIST ELEMENT TYPES FROM 1 TO 9 BY 1 ***** ANSYS - ENGINEERING ANALYSIS SYSTEM RELEASE 11.0SP1 ***** ANSYS Mechanical/Emag 00222442 VERSION=WINDOWS x64 08:48:42 JUN 17, 2009 CP= 2.406 Puncture Drop on Cask Sidewall ELEMENT TYPE 1 IS SOLID186 3-D 20-NODE STRUCTURAL SOLID INOPR KEYOPT(1-12) = 0 0 00 0 0 0 0 0 0 0 0 0 ELEMENT TYPE 2 IS TARGE170 3-D TARGET SEGMENT INOPR KEYOPT(1-12) = 0 0 00 0 0 0 0 0 0 0 0 0 ELEMENT TYPE 3 IS CONTA174 3D 8-NODE SURF-SURF CONTACT TNOPR

KEYOPT(1-12) = 0 0 0 0 1 0 0 0 01 0 0 0 ELEMENT TYPE 4 IS TARGE170 KEYOPT(1-12)= 0 0 0 0 0 3-D TARGET SEGMENT INOPR 0 0 0 0 0 0 0 0 0 Ο ELEMENT TYPE 5 IS CONTA174 3D 8-NODE SURF-SURF CONTACT TNOPR KEYOPT(1-12) = 0 0 00 1 0 0 0 0 1 0 0 0 3-d target segment 6 IS TARGE170 ELEMENT TYPE INOPR KEYOPT(1-12) = 0 0 0 0 0 0 0 0 0 0 0 0 7 IS CONTA174 3D 8-NODE SURF-SURF CONTACT ELEMENT TYPE INOPR KEYOPT(1-12) = 0 0 0 0 1 0 0 0 1 0 0 0 8 IS TARGE170 ELEMENT TYPE 3-D TARGET SEGMENT INOPR KEYOPT(1-12) = 0 0 00 0 0 0 0 0 0 0 0 ELEMENT TYPE 9 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR CURRENT NODAL DOF SET IS UX UY UZ THREE-DIMENSIONAL MODEL LIST REAL SETS 1 TO 14 BY 1 REAL CONSTANT SET 3 ITEMS 1 TO 6 1.0000 0.10000 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 3 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 3 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.50000 1.0000 0.0000 REAL CONSTANT SET 3 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 4 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 4 ITEMS 7 TO 12 0.0000 0.0000 0.10000E+21 0.0000 1.0000 0.0000 REAL CONSTANT SET 4 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 4 ITEMS 19 TO 24 0.0000 0.0000 1.0000 0.0000 1.0000 1.0000 REAL CONSTANT SET 5 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 5 ITEMS 7 TO 12 0.0000 0.0000 0.0000 0.10000E+21 1.0000 0.0000 REAL CONSTANT SET 5 ITEMS 13 TO 18 0.0000 1.0000 0.50000 0.0000 0.0000 1.0000 REAL CONSTANT SET 5 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 6 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000

REAL CONSTANT 0.0000	SET 0.0000	6	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	6	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	6	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	7	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	7	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	7	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	7	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	8	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	8	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	8	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	8	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	11	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	11	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	11	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	11	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	12	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	12	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	12	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	12	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	13	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	13	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000

REAL CONSTANT SET 13 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 13 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 REAL CONSTANT SET 14 ITEMS 1 TO 6 0.0000 0.0000 1.0000 0.10000 0.0000 0.0000 REAL CONSTANT SET 14 ITEMS 7 TO 12 0.10000E+21 0.0000 0.0000 0.0000 1.0000 0.0000 REAL CONSTANT SET 14 ITEMS 13 TO 18 0.0000 0.0000 1.0000 0.0000 1.0000 0.50000 REAL CONSTANT SET 14 ITEMS 19 TO 24 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 LIST MATERIALS 1 TO 3 BY 1 PROPERTY= ALL PROPERTY TABLE EX MAT= 1 NUM. POINTS= 6 
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA

 70.000
 0.28300E+08
 100.00
 0.28100E+08
 200.00
 0.27600E+08

 300.00
 0.27000E+08
 400.00
 0.26500E+08
 500.00
 0.25800E+08
 PROPERTY TABLE NUXY MAT= 1 NUM. POINTS= 6 
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA

 70.000
 0.30000
 100.00
 0.30000
 200.00
 0.30000

 300.00
 0.30000
 400.00
 0.30000
 500.00
 0.30000
 PROPERTY TABLE ALPX MAT= 1 NUM. POINTS= 6 REFERENCE TEMP. = 0.00 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 
 70.000
 0.85000E-05
 100.00
 0.86000E-05
 200.00
 0.89000E-05

 300.00
 0.92000E-05
 400.00
 0.95000E-05
 500.00
 0.97000E-05
 1 NUM. POINTS= 1 PROPERTY TABLE DENS MAT= TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.28300 PROPERTY TABLE MU MAT= 1 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.0000 PROPERTY TABLE EMIS MAT= 1 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.78886E-30 PROPERTY TABLE EX MAT= 2 NUM. POINTS= 6 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 
 70.000
 0.29900E+08
 100.00
 0.29900E+08
 200.00
 0.29900E+08

 300.00
 0.29900E+08
 400.00
 0.29900E+08
 500.00
 0.29900E+08
 PROPERTY TABLE NUXY MAT= 2 NUM. POINTS= 6 
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA

 70.000
 0.30000
 100.00
 0.30000
 200.00
 0.30000

 300.00
 0.30000
 400.00
 0.30000
 500.00
 0.30000
 PROPERTY TABLE ALPX MAT= 2 NUM. POINTS= 6 REFERENCE TEMP. = 0.00 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 
 70.000
 0.65000E-05
 100.00
 0.65000E-05
 200.00
 0.65000E-05

 300.00
 0.65000E-05
 400.00
 0.65000E-05
 500.00
 0.65000E-05

PROPERTY TABLE DENS MAT= 2 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.28300 PROPERTY TABLE EX MAT= 3 NUM. POINTS= 8 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 
 -40.000
 0.24600E+07
 -20.000
 0.24300E+07
 70.000
 0.22700E+07

 100.00
 0.22100E+07
 200.00
 0.20100E+07
 300.00
 0.18500E+07

 400.00
 0.17000E+07
 500.00
 0.15200E+07
 0.18500E+07
 PROPERTY TABLE NUXY MAT= 3 NUM. POINTS= 6 
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA

 81.000
 0.40000
 212.00
 0.40000
 302.00
 0.40000

 392.00
 0.40000
 513.00
 0.40000
 621.00
 0.40000
 212.000.40000302.000.40000513.000.40000621.000.40000 PROPERTY TABLE ALPX MAT= 3 NUM. POINTS= 8 REFERENCE TEMP. = 0.00 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA -40.000 0.15560E-04 -20.000 0.15650E-04 70.000 0.16060E-04 
 100.00
 0.16220E-04
 200.00
 0.16700E-04
 300.00
 0.17330E-04

 400.00
 0.18160E-04
 500.00
 0.19120E-04
 0.17330E-04
 PROPERTY TABLE DENS MAT= 3 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.41000 LIST DATA TABLE ALL FOR ALL MATERIALS BiKin Pl (BKIN) Table For Material 1 1 Temps 0.0000 Yld Strs 25000. Tang Mod 0.13406E+06 BiKin Pl (BKIN) Table For Material 3 1 Temps 0.0000 Yld Strs 4300.0 Tang Mod 4200.0 LIST NODAL SURFACE LOAD PRES FOR ALL SELECTED NODES

#### Scenario 2: Puncture Drop on the Lid

Areas . . . . . . . . . . . .

Volumes . . . . . . . . . . .

***** TITLES ***** *** YOU ARE IN ANSYS - ENGINEERING ANALYSIS SYSTEM *** ANSYS Mechanical/Emag RELEASE 11.0SP1 UPDATE 20070830 CUSTOMER 00222442 INITIAL JOBNAME = file CURRENT JOBNAME = file Current Working Directory: G:\3-60B Rev 2\Puncture TITLE= Puncture Drop on the Lid (Hot) MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans GLOBAL STATUS Dec 07, 2007 10:10 ANSYS - Engineering Analysis System INTEL NT Version Release 11.0SP1 00222442 Current working directory: G:\3-60B Rev 2\Puncture MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans Product(s) enabled: ANSYS Mechanical/Emag Total connect time. . . . 0 hours 1 minutes Total CP usage. . . . . 0 hours 0 minutes 2.3 seconds JOB INFORMATION------Puncture Drop on the Lid (Hot) Current jobname . . . . . . file Initial jobname . . . . . . . file Available Used 4.598 mb ( 1.8%) 256.000 mb Scratch Memory Space. . . . Database space . . . . . . . . . . . 65535.750 mb 8.777 mb ( 0.0%) User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\UIMENU.GRN User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\UIFUNC1.GRN User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\UIFUNC2.GRN User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\MECHTOOL.AUI Beta features . . . . . . . . are not shown in the user interface MODEL INFORMATION------Solid model summary: Largest Number Number Defined Number Selected 0 Keypoints . . . . . . . . . 0 0 0 0 0 Lines . . . . . . . . . . . .

0

0

0

0

0

Ο

Finite element model summary:

Nodes	Largest Number 3001 3946	Number Defined 2879 2369	Number Selected 2878 1522	1
Element types	71 71 3	36 29 3	n.a. n.a. n.a.	
Coupling	82 0 0 0	30 0 0 0	n.a. n.a. n.a. n.a.	
BOUNDARY CONDI	TION IN	NFORMAT	I O N	
Constraints on nodes Constraints on keypoints Constraints on lines	· · · · · · · ·	Number Defined . 1196 . 0 . 0		
Forces on keypoints	· · · · · · ·	. 0 . 0		
Surface loads on elements . Number of element flagged su: Surface loads on lines Surface loads on areas		. 1 . 0 . 0 . 0		
Body loads on elements Body loads on nodes Body loads on keypoints	· · · · · · · ·	. 0 . 2878 . 0		
Temperatures Uniform temperature Reference temperature Offset from absolute scale	 	-20.000 70.000 460.000		_
Linear acceleration Angular velocity (about globa Angular acceleration (about g Location of reference CS Angular velocity (about reference Angular acceleration (about s	al CS) global CS).  rence CS) . reference CS	X 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	2 22.390 0.0000 0.0000 0.0000 0.0000 0.0000
ROUTINE INFORM	ATION			
Current routine	Pre	eprocessing (P	REP7)	
Active coordinate system		1 (Cylindrica	.1)	
Display coordinate system		0 (Cartesian)		
Current element attributes: Type number Real number Material number	· · · · · ·	71 (COMBIN1 71 1	4)	

Element coordinate system number. . 0 Current mesher type. . . . . . . . . . . . . . . . based on default element shape Current element meshing shape 2D . . .use default element shape. Current element meshing shape 3D . . .use default element shape. SmrtSize Level . . . . . . . . . . . OFF Global element size. . . . . . . . . 0 divisions per line Active coordinate system . . . . . . 1 (Cylindrical) Display coordinate system. . . . . . 0 (Cartesian) Active options for this analysis type: Large deformation effects . . . . . Not included Plasticity. . . . . . . . . . . . . . . . . . Not included Load step number . . . . . . . . . . . 2 Number of substeps . . . . . . . . . 1 Step change boundary conditions . . No SOLUTION OPTIONS DEGREES OF FREEDOM. . . . . UX UY UZ TEMP OFFSET TEMPERATURE FROM ABSOLUTE ZERO . . . . 460.00 LOAD STEP OPTIONS 2 1 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . . 15 NO STEP CHANGE BOUNDARY CONDITIONS . . . . . . . . . TERMINATE ANALYSIS IF NOT CONVERGED . . . . . . YES (EXIT) CONVERGENCE CONTROLS LABEL REFERENCE TOLERANCE NORM MINREF F 0.1000 0.1000E-02 2 -1.000 ۰ 0.0000 INERTIA LOADS Х Ζ ACEL . . . . . . . . . . . 0.0000 22.390 PRINT OUTPUT CONTROLS . . . . . . . . . . . . . . . . NO PRINTOUT DATABASE OUTPUT CONTROLS ITEM FREQUENCY COMPONENT BASI ALL

LIST ELEMENT TYPES FROM 1 TO 71 BY 1

 ELEMENT TYPE
 1 IS SOLID185
 3-D 8-NODE STRUCTURAL SOLID
 INOPR

 KEYOPT(1-12)=
 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0
 0
 0

2 IS SHELL41 MEMBRANE SHELL ELEMENT TYPE TNOPR 0 3 IS SOLSH190 3-D 8-NODE SOLID SHELL ELEMENT TYPE INOPR KEYOPT(1-12) =Ο ELEMENT TYPE 14 IS TARGE170 3-D TARGET SEGMENT INOPR 0 0 0 0 0 KEYOPT(1-12) =0 0 0 0 0 0 0 3D 8-NODE SURF-SURF CONTACT ELEMENT TYPE 15 IS CONTA174 TNOPR 0 0 0 2 1 0 0 0 1 0 0 1 Ο KEYOPT(1-12) =16 IS TARGE170 ELEMENT TYPE 3-D TARGET SEGMENT TNOPR 0 0 0 0 0 0 0 0 0 0 0 0 KEYOPT(1-12) =ELEMENT TYPE 17 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR 0 2 0 2 3 0 0 0 1 2 0 6 0 KEYOPT(1-12) =18 IS TARGE170 ELEMENT TYPE 3-D TARGET SEGMENT INOPR KEYOPT(1-12) =0 0 0 0 0 0 0 0 0 0 0 Ο ELEMENT TYPE 19 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR KEYOPT(1-12) =0 0 0 2 2 0 0 0 1 2 0 5 0 ELEMENT TYPE 20 IS TARGE170 3-D TARGET SEGMENT INOPR KEYOPT(1-12) = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0Ο 3D 8-NODE SURF-SURF CONTACT ELEMENT TYPE 21 IS CONTA174 TNOPR KEYOPT(1-12) =0 0 0 2 1 0 0 0 1 2 0 3 0 ELEMENT TYPE 22 IS TARGE170 3-D TARGET SEGMENT INOPR 0 0 0 0 0 0 0 0 0 Ω KEYOPT(1-12) =0 0 0 23 IS CONTA174 3D 8-NODE SURF-SURF CONTACT ELEMENT TYPE INOPR 0 0 0 2 3 0 0 0 1 Ο KEYOPT(1-12) =2 0 0 24 IS TARGE170 3-D TARGET SEGMENT ELEMENT TYPE TNOPR 0 0 0 0 0 0 KEYOPT(1-12) =0 0 0 0 0 0 0 3D 8-NODE SURF-SURF CONTACT ELEMENT TYPE 25 IS CONTA174 INOPR 2 3 0 0 0 1 2 0 0 KEYOPT(1-12) =0 0 0 Ο ELEMENT TYPE 26 IS TARGE170 3-D TARGET SEGMENT INOPR 0 0 0 0 0 0 KEYOPT(1-12) =0 0 0 0 0 0 ELEMENT TYPE 27 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR 2 3 0 0 0 1 2 0 0 Ω KEYOPT(1-12) =0 0 0 ELEMENT TYPE 28 IS TARGE170 INOPR 3-D TARGET SEGMENT KEYOPT(1-12) =0 0 0 0 0 0 0 0 0 0 0 0 Ω ELEMENT TYPE 29 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR 2 3 0 0 0 1 KEYOPT(1-12) =0 0 0 2 0 0 0 3-D TARGET SEGMENT ELEMENT TYPE 30 IS TARGE170 INOPR KEYOPT(1-12) =0 0 0 0 0 0 0 0 0 0 0 0 0 3D 8-NODE SURF-SURF CONTACT ELEMENT TYPE 31 IS CONTA174 INOPR 0 0 0 2 3 0 0 0 1 2 0 0 0 KEYOPT(1-12) =ELEMENT TYPE 53 IS TARGE170 3-D TARGET SEGMENT TNOPR 0 0 0 0 0 Ο 0 0 0 0 0 0 KEYOPT(1-12) =

54 IS CONTA175 NODE-TO-SURFACE CONTACT ELEMENT TYPE TNOPR KEYOPT(1-12) = 0 2 0 0 3 0 0 0 1 2 0 50 57 IS TARGE170 3-D TARGET SEGMENT ELEMENT TYPE INOPR KEYOPT(1-12) = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 58 IS CONTA174 3D 8-NODE SURF-SURF CONTACT ELEMENT TYPE INOPR 2 3 0 0 0 1 0 0 0 KEYOPT(1-12) =2 0 1 0 61 IS TARGE170 3-D TARGET SEGMENT ELEMENT TYPE INOPR 0 0 0 0 0 0 0 0 0 0 0 0 KEYOPT(1-12)= 0 62 IS CONTA174 3D 8-NODE SURF-SURF CONTACT ELEMENT TYPE TNOPR 2 3 0 0 0 1 2 0 0 KEYOPT(1-12) = 0 0 00 63 IS TARGE170 ELEMENT TYPE 3-D TARGET SEGMENT INOPR KEYOPT(1-12) = 0 0 00 0 0 0 0 0 0 0 0 ELEMENT TYPE 64 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR 0 0 0 0 3 0 0 0 1 2 0 0 KEYOPT(1-12) =Ω ELEMENT TYPE 65 IS TARGE170 3-D TARGET SEGMENT INOPR 0 0 0 0 0 0 KEYOPT(1-12) =0 0 0 0 0 0 0 ELEMENT TYPE 66 IS CONTA175 NODE-TO-SURFACE CONTACT INOPR KEYOPT(1-12) = 0 0 0 0 3 0 0 0 1 2 0 0 0 ELEMENT TYPE 67 IS TARGE170 3-D TARGET SEGMENT TNOPR KEYOPT(1-12) = 0 0 00 0 0 0 0 0 0 0 0 0 ELEMENT TYPE 68 IS CONTA175 NODE-TO-SURFACE CONTACT INOPR KEYOPT(1-12) = 0 0 0 0 3 0 0 0 1 2 0 0Ω 69 IS TARGE170 3-D TARGET SEGMENT ELEMENT TYPE INOPR 0 0 0 0 0 0 0 0 0 0 0 Ο KEYOPT(1-12) =70 IS CONTA175 NODE-TO-SURFACE CONTACT ELEMENT TYPE TNOPR KEYOPT(1-12) = 0 0 0 0 3 0 0 0 1 2 0 0 0 71 IS COMBIN14 SPRING-DAMPER ELEMENT TYPE INOPR KEYOPT(1-12) = 0 3 0 0 0 0 0 0 0 0 0 0 CURRENT NODAL DOF SET IS UX UY UZ TEMP THREE-DIMENSIONAL MODEL LIST REAL SETS 1 TO 71 BY 1 REAL CONSTANT SET 23 ITEMS 1 TO 6 1.0000 0.33056E-14 0.0000 0.0000 0.0000 0.0000 REAL CONSTANT SET 24 ITEMS 1 TO 6 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 24 ITEMS 7 TO 12 REAL CONSTANT SET 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 REAL CONSTANT SET 24 ITEMS 13 TO 13 0.33300 REAL CONSTANT SET 27 ITEMS 1 TO 6 1.0000 0.33056E-14 0.0000 0.0000 0.0000 0.0000

REAL CONSTANT 0.0000	SET 0.0000	28	ITEMS 1 TO 0.0000	6 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	28	ITEMS 7 TO 0.0000	12 0.0000	0.0000	0.0000
REAL CONSTANT 0.33300	SET	28	ITEMS 13 TO	13		
REAL CONSTANT 0.0000	SET 0.0000	32	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	32	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	32	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	32	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	33	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	33	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	33	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	33	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	34	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	34	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	34	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	34	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	35	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	36	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	36	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000

REAL CONSTANT 0.0000	SET 0.0000	36	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	36	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	37	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	37	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	37	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	37	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	38	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	38	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	38	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	38	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	39	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	39	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	39	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	39	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	40	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000

REAL CONSTANT 0.0000	SET 1.0000	42	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	43	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	44	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	45	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	46	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	46	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	46	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	46	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	47	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	47	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	47	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	47	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000

REAL CONSTANT 0.0000	SET 0.0000	48	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	48	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	48	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	48	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	50	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	50	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	50	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	50	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	51	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	51	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	51	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	51	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	52	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	52	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	52	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	52	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	53	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	54	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	54	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
-----------------------------------------	-----------------------------	-------------	-----------------------------------	-------------------------------------	------------	---------------------
REAL CONSTANT 0.0000	SET 0.0000	54	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	54	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	55	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	55	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	55	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	55	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET	55	ITEMS 25 TO	25		
REAL CONSTANT 0.0000	SET 0.0000	56	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	56	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	56	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	56	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET	56	ITEMS 25 TO	25		
REAL CONSTANT 0.0000	SET 0.0000	57	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	57	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	57	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	57	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET	57	ITEMS 25 TO	25		
REAL CONSTANT 1000.0	SET 0.0000	71	ITEMS 1 TO 0.0000	6 0.0000	0.0000	0.0000
LIST MATERIALS PROPERTY= ALI	5 1 L	ТО	3 BY	1		
PROPERTY TABLE TEMPERATURE 70.000	E EX MA DATA 0.283001	AT= 2+08	1 NUM. TEMPERATURE 100.00 0	POINTS= 6 DATA TI ).28100E+08	EMPERATURE	DATA 0.27600E+08

300.00 0.27000E+08 400.00 0.26500E+08 500.00 0.25800E+08 PROPERTY TABLE NUXY MAT= 1 NUM. POINTS= 6 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 70.0000.30000100.000.30000200.000.30000300.000.30000400.000.30000500.000.30000 1 NUM. POINTS= 6 REFERENCE TEMP. = 70.00 PROPERTY TABLE ALPX MAT= 
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA

 70.000
 0.85000E-05
 100.00
 0.86000E-05
 200.00
 0.89000E-05

 300.00
 0.92000E-05
 400.00
 0.95000E-05
 500.00
 0.97000E-05
 PROPERTY TABLE DENS MAT= 1 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.28300 PROPERTY TABLE MU MAT= 1 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.0000 PROPERTY TABLE EMIS MAT= 1 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.0000 PROPERTY TABLE EX MAT= 2 NUM. POINTS= 6 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 70.0000.29900E+08100.000.29900E+08200.000.29900E+08300.000.29900E+08400.000.29900E+08500.000.29900E+08 PROPERTY TABLE NUXY MAT= 2 NUM. POINTS= 6 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 70.0000.30000100.000.30000200.000.30000300.000.30000400.000.30000500.000.30000 PROPERTY TABLE ALPX MAT= 2 NUM. POINTS= 6 REFERENCE TEMP. = 70.00 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 
 70.000
 0.65000E-05
 100.00
 0.65000E-05
 200.00
 0.65000E-05

 300.00
 0.65000E-05
 400.00
 0.65000E-05
 500.00
 0.65000E-05
 PROPERTY TABLE DENS MAT= 2 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.28300 PROPERTY TABLE EX MAT= 3 NUM. POINTS= 8 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA -40.000 0.24600E+07 -20.000 0.24300E+07 70.000 0.22700E+07 100.000.22100E+07200.000.20100E+07300.000.18500E+07400.000.17000E+07500.000.15200E+07 PROPERTY TABLE NUXY MAT= 3 NUM. POINTS= 6 
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA
 TEMPERATURE
 DATA

 81.000
 0.40000
 212.00
 0.40000
 302.00
 0.40000

 392.00
 0.40000
 513.00
 0.40000
 621.00
 0.40000
 PROPERTY TABLE ALPX MAT= 3 NUM. POINTS= 8 REFERENCE TEMP. = 70.00 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA -40.0000.15560E-04-20.0000.15650E-0470.0000.16060E-04100.000.16220E-04200.000.16700E-04300.000.17330E-04400.000.18160E-04500.000.19120E-040.19120E-04 PROPERTY TABLE DENS MAT= 3 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.41000

# Appendix 2

Electronic Data on CDROM

(1 Page & 1 CDROM)

Title Structural Analyses of the 3-60B Cask Under Hypothetical Fire Accident Conditions

Calc. No. <u>ST-502</u> Rev. <u>2</u>

### **1.0 OBJECTIVE**

Perform the structural analyses of the Energy*Solutions* 3-60B Cask under fire accident test conditions, using a 3-dimensional finite element model.

## 2.0 INTRODUCTION

Energy*Solutions* 3-60B Cask (Reference 1) is designed as a Type B radioactive-material shipping package. To be certified by the U.S.N.R.C., the cask needs to meet the requirements of 10 CFR 71 (Reference 2) and follow the guidelines of U.S.N.R.C. Regulatory Guide 7.8 (Ref. 3).

This document presents the structural analysis of the 3-60B Cask for the hypothetical accident condition (HAC) fire test. The analyses in this document are performed using the finite element modeling techniques. A three-dimensional model of the cask that includes all its major components has been employed in the analyses. Temperature dependent material properties of the major components of the cask are used in the analyses.

The results of the analyses for various time instants during the fire test are presented pictorially in stress intensity contour plots as well as digital data format.

## 3.0 **REFERENCES**

- 1. Energy*Solutions* Drawing No. C-002-165024-001, Rev.0, 3-60B Cask General Arrangement and Details.
- 2. Code of Federal Regulations, Title 10, Part 71, Packaging and Transportation of Radioactive Material, January 2003.
- 3. U.S. NRC Regulatory Guide 7.8, Revision 1, March 1989, Load Combinations for the Structural Analysis of Shipping Casks for Radioactive Material.
- 4. ASME Boiler & Pressure Vessel Code, Section II, Part D, Materials, The American Society of Mechanical Engineers, New York, NY, 2005.
- 5. NUREG 0481/SAND77-1872, An Assessment of Stress-Strain Data Suitable for Finite Element Elastic-Plastic Analysis of Shipping Containers, Sandia National Laboratories, 1978.
- 6. U.S. NRC Regulatory Guide 7.6, Revision 1, Design Criteria for the Structural Analysis of Shipping Cask Containment Vessels, 1978.
- 7. ANSYS, Rev. 11.0, Computer Software, ANSYS Inc., Canonsburg, PA, 2007.
- 8. EnergySolutions Document TH-023, Rev.1, Hypothetical Fire Accident Thermal Analyses of the 3-60B Cask Using a 3-D Finite Element Model.

 Title
 Structural Analyses of the 3-60B Cask Under Hypothetical Fire Accident Conditions

 Calc. No.
 ST-502
 Rev.
 2
 Sheet
 2
 of
 9

## 4.0 MATERIAL PROPERTIES

			Strength (ksi	×7 )	Coefficient	
	Temp.	Yield	Ultimate	Membrane	Young's	of Thermal
Material	(°F)	$(S_v)$	$(S_n)$	Allowable	Modulus	Expansion
			( u)	$(S_m)$	(10° psi)	$(10^{-6} \text{ in/in})$
		(1)	(1)	(1)	(1)	(1)
	-20	25.0	70.0	16.7	28.8	-
	70	25.0	70.0	16.7	28.3	8.5
ASTM A240	100	25.0	70.0	16.7	-	8.6
Type 304L	200	21.4	66.1	16.7	27.5	8.9
	300	19.2	61.2	16.7	27.0	9.2
	400	17.5	58.7	15.8	26.4	9.5
	500	16.4	57.5	14.7	25.9	9.7
		(1)	(1)	(1)	(1)	(1)
	-20	45.0	87.0	24.9	28.8	-
ASTM A240	70	45.0	87.0	24.9	28.3	8.5
Gr. 45 &	100	45.0	87.0	24.9	-	8.6
ASTM A182	200	37.5	86.4	24.7	27.5	8.9
Gr. F45	300	33.0	81.6	23.3	27.0	9.2
	400	29.9	78.5	22.4	26.4	9.5
	500	27.8	76.4	21.8	25.9	9.7
		(1)	(1)	(1)	(1)	(1)
	-20	130	150	30	29.7	-
ASTM A354	70	130	150	30	29.2	6.4
Gr BD	100	130	150	30	-	6.5
(Lid Bolts)	200	119.1	150	30	28.6	6.7
(Eld Bolts)	300	115	150	30	28.1	6.9
	400	111	150	30	27.7	7.1
	500	105.9	150	30	27.1	7.3
		(2)			(2)	(2)
	-20	-	-	-	2.43	15.65
	70	5	-	-	2.27	16.06
ASTM B29	100	-	-	-	2.21	16.22
Lead	200	-	-	-	2.01	16.70
	300	-	-	-	1.85	17.33
	400	-	-	-	1.70	18.16
	500	-	-	-	1.52	19.12

Notes:

(1) From ASME B&PV Code 2004, Section II, Part D (Reference 4).

(2) From NUREG/CR 0481 (Reference 5)

Title	Structural Analy	yses of the 3-	60B Cask	Under Hypothetical Fire Accident Cong	ditions	
Calc. N	o. <u>ST-502</u>	Rev	2	Sheet	_of_9	

#### 5.0 <u>ALLOWABLE STRESSES</u>

	Material $\rightarrow$	ASTM A240 Type 304L	ASTM A182 Gr.F45 & A240 Gr. 45	ASTM A354 Gr. BD
Yield Stress, S	y (psi)	25,000 ⁽¹⁾	45,000 ⁽¹⁾	130,000 ⁽¹⁾
Ultimate Stress, S _u (p		70,000 ⁽¹⁾	87,000 ⁽¹⁾	150,000 ⁽¹⁾
Design Stress l	intensity, S _m (psi)	16,700 ⁽¹⁾	24,900 ⁽¹⁾	30,000 ⁽¹⁾
Hypothetical	Membrane Stress	40,080 ⁽²⁾	59,760 ⁽²⁾	105,000 ⁽³⁾
Accident Conditions	Mem. + Bending Stress	60,120 ⁽²⁾	87,000 ⁽²⁾	150,000 ⁽³⁾

Notes:

- (1) From ASME B&PV Code 2004, Section II, Part D (Reference 4).
- (2) Established from Regulatory Guide 7.6 (Reference 6), Position 6.
- (3) Regulatory Guide 7.6 (Reference 6) does not provide any criteria. ASME B&PV Code, Section III, Appendix F has been used to establish these criteria.

#### 6.0 MODEL DESCRIPTION

The structural analyses of the 3-60B Cask under HAC fire test have been performed using finite element modeling techniques. ANSYS finite element analysis code (Ref. 7) has been employed to perform the analyses. Since the lid of the cask is attached to the body using 16 bolts, the cask geometry has a cyclic symmetry every 11.25° of the circumference. Therefore, an 11.25° model of the cask is made using 3-dimensional 8-node structural solid elements (ANSYS SOLID185) to represent the major components of the cask, the cask body, the lid, and the bolts. The shell components of the cask - the inner and outer shells, and the baseplates have been represented in the finite element model by SOLSH190 elements.

The fire shield does not provide any structural strength to the cask. Therefore, it is not included in the model.

The poured lead in the body is not bonded to the steel. It is free to slide over the steel surface. Therefore, the interface between the lead and the steel is modeled by pairs of 3-d 8 node contact element (CONTA174) and 3-d target segment (TARGE170) elements. These elements allow the lead to slide over the steel at the same time prevent it from penetrating the steel surface. The interface between the two plates that form the lid is also modeled by the contact-target pairs. The transition from a coarser mesh to a finer mesh, as well as bondage between various parts of the model, is also modeled using these elements.

Figure 1 shows the outline of the model depicting the material numbering. Figure 2 shows the finite element grid of the lid, seal plate, and the bolts. Figure 3 shows the finite element grid

Title	Structural Analy	yses of the 3-	60B Cask U	<b>Under Hypothetical Fire Accident Con</b>	ditions
Calc. N	lo. <u>ST-502</u>	Rev.	2	Sheet <u>4</u>	0f9

of the cask body without the lead and Figure 4 shows that of the lead. The interface between various components of the cask is modeled by target-contact surface definition. Figure 5 shows target surfaces of various contact-target pairs. The printout of the pertinent model quantities is included in Appendix 1.

#### **Boundary Conditions**

For the analyses of the 3-60B Cask under various NCT loading cases, it is assumed that the cask is resting on the upper impact limiter in the vertical orientation, because in this orientation the payload applies deadweight loading, in addition to the internal pressure loading on the lid closure, which is the most vulnerable part of the cask. The model is conservatively restrained in the vertical direction at the skirt instead of the entire bearing surface of the upper impact limiter. Also, since the model represents an 11.25° circumferential symmetry, the nodes on the cut-planes are restrained from displacement normal to these planes.

#### **Loading**

The loading on the model include the following, as applicable.

#### Deadweight

The deadweight of the cask is included in the analyses as the body load in the finite element model subjected to the acceleration due to gravity. The deadweight of the lower impact limiter is included as the uniform pressure on the surface where the impact limiter contacts the cask. The deadweight of the payload is included as the uniform pressure on the lid inside surface.

Mass of each Impact Limiter = 3,800 lb

Inside Radius of the Impact Limiter = 12 in

Outside Radius of the Cask = 25.5 in

Pressure on the cask due to impact limiter weight,

 $p_{I.L.} = 3,800/[\pi \times (25.5^2 - 12^2)] = 2.39 \text{ psi}$ 

Payload Mass = 9,500 lb

Lid Radius = 17.5 in

Pressure on the lid surface due to payload weight,

 $p_{lid} = 9,500/(\pi \times 17.5^2) = 9.874 \text{ psi}$ 

Because of the segmentation of arc length in the finite element models, the mass of the model is always lower than the actual mass. To account for this, as well as to include the mass of miscellaneous items not included in the model, an adjustment is made in the value of acceleration due to gravity.

Cask Body Mass =  $80,000 - 9,500 - 2 \times 3,800 = 62,900$  lb Mass of the FEM =  $32 \times 1,775$ . 6 = 56,819 lb Use acceleration due to gravity = 62,900/56,819 = 1.107g

Title	Structural Ana	alyses of the 3-	-60B Cask	Under Hypothetical Fire Accident	Cond	litions	
Calc. N	lo. <u>ST-502</u>	<b>Rev</b>	2	Sheet	5	_of9	)

### Internal Pressure

The cask internal pressure under various HAC fire test (100 psig) is applied as the uniform pressure over the nodes representing the cavity of the cask (Figure 6).

## Temperature

The temperature distribution at various time instants during the fire test is obtained from the thermal analyses performed in Reference 8 and is applied as the nodal temperature in the finite element model. Figures 7 through 13 show the temperature profile and the pressure distribution in the cask body at various time instants during the fire test.

# 7.0 RESULTS

The results obtained from various load case analyses include displacements and stress intensities at the nodal points of the finite element model. The total printout from all the load cases is included in Appendix 2. Stress intensity contour plots are presented in Figures 14 through 28. The stress intensities in various components of the 3-60B Cask under these loading conditions are tabulated in Tables 1 through 7. It should be noted that the maximum stress intensities obtained from the finite element models are peak stresses, as classified by the ASME code. However, these stress intensities are reported as membrane + bending stress intensities and compared with the corresponding allowable values.

It should be noted that under the fire test the cask body undergoes large thermal stresses at the locations where the fire-shield is welded to the cask body. However, these stresses are highly local and a slight local yielding of the material will easily accommodate them. Although these stresses are reported in Tables 2 through 4, they have been excluded in the evaluation of the cask body integrity during the fire test.

The results of the analyses show that the stresses everywhere in the cask body during the fire test are well within the allowable values.

# 8.0 ANSYS PRINTOUT AND DATA FILES

The printout of the important data from the program is included with this document in electronic form as Appendix 1. The electronic data of the input, output and other files is included in Appendix 2.

# 9.0 APPENDICES

Appendix 1 Print-out of the ANSYS model data input

Appendix 2 Electronic data on CDROM

Title	le Structural Analyses of the 3-60B Cask Under Hypothetical Fire Accident Condition					
Calc. N	o. <u>ST-502</u>	<b>Rev</b>	2	<b>Sheet</b> <u>6</u> of <u>9</u>		

<u>Tables</u>

(7 Pages)

Title	Structural Ana	lyses of the	3-60B	Cask Under HAC Fire Conditions			
Calc. No.	ST-502 Tables	Rev	2	Sheet	(	of	7

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	4,892	17.78
Bolting Ring Shell Extension	$P_m + P_b$	87,000	11,070	7.86
Bolting Ring Skirt	$P_m + P_b$	87,000	3,422	25.42
Inner Shell	$P_m + P_b$	87,000	4,637	18.76
Outer Shell	$P_m + P_b$	60,120	6,860	8.76
Lid	$P_m + P_b$	60,120	5,437	11.06
Base Plates	$P_m + P_b$	87,000	5,190	16.76
Seal Plates	$P_m + P_b$	60,120	3,560	16.89
Bolts	$P_m + P_b$	150,000	10,593	14.16

Table 1Stress Intensities in 3-60B Cask HAC Fire (t = 0.1 sec)

See Figure 7 for temperature distribution in the cask body and Figure 14 for stress intensity contour plot.

- (1) Unless otherwise indicated in this column, the maximum stress intensity values, obtained from the finite element model, have been conservatively reported as  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)

Title	Structural Ana	lyses of the	3-60B Ca	sk Under HAC Fire Co	ndition	IS		
Calc. No.	ST-502 Tables	Rev	2	S	Sheet _	2	_of_	7

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	53,681	1.62
Bolting Ring Shell Extension	$P_m + P_b$	87,000	46,277	1.88
Bolting Ring Skirt	$P_m + P_b$	87,000	_ (3)	_ (3)
Inner Shell	$P_m + P_b$	87,000	14,035	6.20
Outer Shell	$P_m + P_b$	60,120	39,916	1.51
Lid	$P_m + P_b$	60,120	49,043	1.23
Base Plates	$P_m + P_b$	87,000	80,106	1.09
Seal Plates	$P_m + P_b$	60,120	49,134	1.22
Bolts	$P_m + P_b$	150,000	85,618	1.75

Table 2Stress Intensities in 3-60B Cask HAC Fire (t = 1,001 sec)

See Figure 8 for temperature distribution in the cask body and Figures 15 & 16 for stress intensity contour plot.

- (1) Unless otherwise indicated in this column, the maximum stress intensity values, obtained from the finite element model, have been conservatively reported as  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) Stress intensity in the skirt of the bolting ring exceeds the  $P_m + P_b$  allowable value. However, the stresses are concentrated at the fire-shield weld (see Figure 15). Local yielding at this location will easily accommodate these high stresses. If the skirt is disregarded, the stresses are much lower (see Figure 16).

Title	Structural Ana	lyses of the	3-60B Ca	sk Under HAC Fire Condition	S		
Calc. No	ST-502 Tables	<b>Rev</b>	2	Sheet _	3	_of_	7

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	65,848	1.32
Bolting Ring Shell Extension	$P_m + P_b$	87,000	65,241	1.33
Bolting Ring Skirt	$P_m + P_b$	87,000	_ (3)	_ (3)
Inner Shell	$P_m + P_b$	87,000	19,313	4.50
Outer Shell	$P_m + P_b$	60,120	46,666	1.29
Lid	$P_m + P_b$	60,120	59,543 ⁽⁴⁾	1.01
Base Plates	$P_m + P_b$	87,000	80,086	1.09
Seal Plates	$P_m + P_b$	60,120	58,328 ⁽⁵⁾	1.03
Bolts	$P_m + P_b$	150,000	131,900	1.14

Table 3 Stress Intensities in 3-60B Cask HAC Fire (t = 1,806 sec)

See Figure 9 for temperature distribution in the cask body and Figures 17 & 18 for stress intensity contour plot.

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) Stress intensity in the skirt of the bolting ring exceeds the  $P_m + P_b$  allowable value. However, the stresses are concentrated at the fire-shield weld (see Figure 17). Local yielding at this location will easily accommodate these high stresses. If the skirt is disregarded, the stresses are much lower (see Figure 18).
- (4) Average stress intensity is reported. See Figure 19.
- (5) Average stress intensity is reported. See Figure 20.

Title	Structural Ana	lyses of the	3-60B	Cask Under HAC Fire Conditions	5		
Calc. No	ST-502 Tables	<b>Rev</b>	2	Sheet	4	_of_	7

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	63,726	1.37
Bolting Ring Shell Extension	$P_m + P_b$	87,000	63,705	1.37
Bolting Ring Skirt	$P_m + P_b$	87,000	_ (3)	_ (3)
Inner Shell	$P_m + P_b$	87,000	19,511	4.46
Outer Shell	$P_m + P_b$	60,120	46,084	1.30
Lid	$P_m + P_b$	60,120	59,242 ⁽⁴⁾	1.01
Base Plates	$P_m + P_b$	87,000	69,170	1.26
Seal Plates	$P_m + P_b$	60,120	57,300 ⁽⁵⁾	1.05
Bolts	$P_m + P_b$	150,000	132,370	1.13

Table 4Stress Intensities in 3-60B Cask HAC Fire (t = 1,864 sec)

See Figure 10 for temperature distribution in the cask body and Figures 21 & 22 for stress intensity contour plot.

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) Stress intensity in the skirt of the bolting ring exceeds the  $P_m + P_b$  allowable value. However, the stresses are concentrated at the fire-shield weld (see Figure 21). Local yielding at this location will easily accommodate these high stresses. If the skirt is disregarded, the stresses are much lower (see Figure 22).
- (4) Average stress intensity is reported. See Figure 23.
- (5) Average stress intensity is reported. See Figure 24.

Title	Structural Ana	lyses of the	3-60B Ca	sk Under HAC Fire Condition	S		
Calc. No	ST-502 Tables	<b>Rev</b>	2	Sheet _	5	_of_	7

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	21,957	3.96
Bolting Ring Shell Extension	$P_m + P_b$	87,000	48,562	1.79
Bolting Ring Skirt	$P_m + P_b$	87,000	14,632	5.95
Inner Shell	$P_m + P_b$	87,000	20,863	4.17
Outer Shell	$P_m + P_b$	60,120	36,829	1.63
Lid	$P_m + P_b$	60,120	52,277 ⁽³⁾	1.15
Base Plates	$P_m + P_b$	87,000	27,088	3.21
Seal Plates	$P_m + P_b$	60,120	16,635	3.61
Bolts	$P_m + P_b$	150,000	76,154	1.97

 $\frac{\text{Table 5}}{\text{Stress Intensities in 3-60B Cask HAC Fire (t = 4,838 sec)}}$ 

See Figure 11 for temperature distribution in the cask body and Figure 25 for stress intensity contour plot.

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)
- (3) Average stress intensity is reported. See Figure 26.

Title	Structural Ana	lyses of the	3-60B (	Cask Under HAC Fire Condition	IS		
Calc. No	ST-502 Tables	<b>Rev</b>	2	Sheet	6	_of_	7

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring	$P_m + P_b$	87,000	22,032	3.95
Bolting Ring Shell Extension	$P_m + P_b$	87,000	47,484	1.83
Bolting Ring Skirt	$P_m + P_b$	87,000	6,057	14.36
Inner Shell	$P_m + P_b$	87,000	21,080	4.13
Outer Shell	$P_m + P_b$	60,120	37,135	1.62
Lid	$P_m + P_b$	60,120	57,409	1.05
Base Plates	$P_m + P_b$	87,000	26,526	3.28
Seal Plates	$P_m + P_b$	60,120	15,413	3.90
Bolts	$P_m + P_b$	150,000	68,448	2.19

<u>Table 6</u> Stress Intensities in 3-60B Cask HAC Fire (t = 5,936 sec)

See Figure 12 for temperature distribution in the cask body and Figure 27 for stress intensity contour plot.

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)

Title	Structural Ana	lyses of the	3-60B	Cask Under HAC Fire Conditions			
Calc. No.	ST-502 Tables	<b>Rev</b>	2	Sheet7	0	)f_′	7

Component	Stress Category	Allowable S.I. (psi)	Calculated S.I. ⁽¹⁾ (psi)	F.S. ⁽²⁾
Bolting Ring (w/o Skirt)	$P_m + P_b$	87,000	19,860	4.38
Bolting Ring Shell Extension	$P_m + P_b$	87,000	43,574	2.00
Bolting Ring Skirt	$P_m + P_b$	87,000	14,279	6.09
Inner Shell	$P_m + P_b$	87,000	19,547	4.45
Outer Shell	$P_m + P_b$	60,120	34,102	1.76
Lid	$P_m + P_b$	60,120	25,297	2.38
Base Plates	$P_m + P_b$	87,000	23,033	3.78
Seal Plates	$P_m + P_b$	60,120	9,585	6.27
Bolts	$P_m + P_b$	150,000	44,073	3.40

<u>Table 7</u> <u>Stress Intensities in 3-60B Cask HAC Fire (t = 14,000 sec)</u>

See Figure 13 for temperature distribution in the cask body and Figure 28 for stress intensity contour plot.

- (1) Unless otherwise indicated in this column, the maximum stress intensity values have been conservatively reported as  $P_m + P_b$  stress intensities.
- (2) Factor of Safety, F.S. = (Allowable S.I.) / (Calculated S.I.)

Title	Struc	tural Analy	ses of the 3-6	0B Cas	k Under Hypothetical Fire Accident Conditions	
Calc. N	No	ST-502	<b>Rev</b>	2	Sheet of	_

# **Figures**

(28 Pages)



<u>Figure 1</u> <u>Finite Element Model of the 3-60B Cask Identifying the Components by Material Numbers</u>

Title Calc. No. Structural Analyses of the 3-60B Cask Under Hypothetical Fire ST-502 (Figures) Rev. 2 Sheet Accident 1 of 28









Finite Element Model of the Contact-Target Elements (Only Target Shown)

Accident














































Title	Structural Analyses of the 3-60B Cask Under Hypothetical Fire Accident Conditions							
Calc. N	No	ST-502	_ <b>Rev</b>	2	Sheet <u>8</u> of	9		

<u>Appendix 1</u> Printout of the ANSYS Model Data (10 Pages)

#### **ANSYS Model Print-Out**

***** TITLES ***** *** YOU ARE IN ANSYS - ENGINEERING ANALYSIS SYSTEM *** ANSYS Mechanical/Emag RELEASE 11.0SP1 UPDATE 20070830 CUSTOMER 00222442 INITIAL JOBNAME = file CURRENT JOBNAME = file Current Working Directory: D:\Ansys Analyses\3-60B\Thermal\Fire with High Emissivity\Stress TITLE= HAC Fire Stress Analysis at Time = 1,864 sec. MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans GLOBAL STATUS ANSYS - Engineering Analysis System Jun 17, 2009 11:47 Release 11.0SP1 00222442 WINDOWS x64 Version Current working directory: D:\Ansys Analyses\3-60B\Thermal\Fire with High Emissivity\Stress MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans Product(s) enabled: ANSYS Mechanical/Emag Total connect time. . . . 0 hours 1 minutes Total CP usage. . . . . 0 hours 0 minutes 2.4 seconds J O B I N F O R M A T I O N ------HAC Fire Stress Analysis at Time = 1,864 sec. Current jobname . . . . . . file Initial jobname . . . . . . . file Available Used Scratch Memory Space. . . . 4796.000 mb 4.280 mb ( 0.1%) Database space . . . . . . 1048572.000 mb 10.401 mb ( 0.0%) User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\UIMENU.GRN User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\UIFUNC1.GRN User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\UIFUNC2.GRN User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\uidl\MECHTOOL.AUI Beta features . . . . . . . . . are not shown in the user interface MODEL INFORMATION------Solid model summary: Number Largest Number Number Defined Selected Keypoints . . . . . . . . 0 0 0 Lines . . . . . . . . . . . 0 0 0 Areas . . . . . . . . . . . . 0 0 0 0 0 0 Volumes . . . . . . . . . . . Finite element model summary: Largest Number Number Number Defined Selected Nodes . . . . . . . . . . . . 2895 2868 2868 Elements. . . . . . . . . . 3949 2368 2368

Element types	35	n.a.
Real constant sets 57	28	n.a.
Material property sets 3	3	n.a.
Coupling	0	na
Constraint equations	150	n.a.
Master DOFs 0	0	n.a.
Dynamic gap conditions 0	0	n.a.
BOUNDARY CONDITION I	NFORMATIO	N
	Number	
	Defined	
Constraints on nodes	1201	
Constraints on keypoints	. 1201	
Constraints on lines	. 0	
Constraints on areas.	. 0	
Forces on nodes	. 0	
Forces on keypoints	. 0	
Surface loads on elements	. 197	
Number of element flagged surfaces	. 0	
Surface loads on lines	. 0	
Surface loads on areas	. 0	
	0	
Body loads on elements	. 0	
Body loads on houses	. 2868	
Body loads on keypoints	. 0	
Temperatures		
Uniform temperature	70 000	
Reference temperature	70,000	
Offset from absolute scale	460 000	
	. 100.000	
	Х	Y Z
Linear acceleration	. 0.0000 0.0	000 1.1070
Angular velocity (about global CS)	. 0.0000 0.0	0.000 0.0000
Angular acceleration (about global CS).	. 0.0000 0.0	0.000 0.0000
Location of reference CS	. 0.0000 0.0	000 0.0000
Angular velocity (about reference CS) .	. 0.0000 0.0	000 0.0000
Angular acceleration (about reference CS	) 0.0000 0.0	000 0.0000
ROUTINE INFORMATION		
Current routine	eprocessing (PREP7	)
	1 3 .	, ,
Active coordinate system	1 (Cylindrical)	
Dignlaw georginate gystem	0 (Contogion)	
Display coordinate system	U (Cartesian)	
Current element attributes:		
Type number	69 (TARGE170)	
Real number	57	
Material number	1	
Element coordinate system number	0	
Current mesher type	sed on default ele	ment shape
Current alongst maching shape 2D	a dafault alamant	ahana
current erement mesning snape 2Dus	e deraurt erement	snape.
Current element meshing shape 3Dus	e default element	shape.
SmrtSize Level	OFF	
Global element size	0 divisions per	line
	- ··· <u>-</u> · · -	
Active coordinate system	1 (Cylindrical)	
Display coordinate system	0 (Cartesian)	

Active options for this analysis type: Large deformation effects . . . . . Not included Load step number . . . . . . . . . . . 2 Number of substeps . . . . . . . . . . 50 Step change boundary conditions . . No SOLUTION OPTIONS DEGREES OF FREEDOM. . . . . UX UY UZ TEMP LOAD STEP OPTIONS 2 TIME AT END OF THE LOAD STEP. . . . . . . . . 1.0000 50 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . . 15 STEP CHANGE BOUNDARY CONDITIONS . . . . . . . . NO TERMINATE ANALYSIS IF NOT CONVERGED . . . . . . YES (EXIT) CONVERGENCE CONTROLS MINREF 0.000 LABEL REFERENCE TOLERANCE NORM 0.000 0.2000E-01 1 F INERTIA LOADS х Y Z 1.1070 ACEL . . . . . . . . . . . 0.0000 0.0000 DATABASE OUTPUT CONTROLS FREQUENCY COMPONENT ITEM BASI ALL LIST ELEMENT TYPES FROM 1 TO 70 BY 1 ELEMENT TYPE 1 IS SOLID185 3-D 8-NODE STRUCTURAL SOLID INOPR KEYOPT(1-12) = 0 0 0 0 0 0 0 0 0 0 0 0 ELEMENT TYPE 2 IS SHELL41 MEMBRANE SHELL INOPR 0 0 0 0 0 0 0 0 0 0 0 KEYOPT(1-12) =Ο 3 IS SOLSH190 3-D 8-NODE SOLID SHELL ELEMENT TYPE INOPR 0 0 0 0 0 0 0 0 0 0 KEYOPT(1-12) =0 0 0 ELEMENT TYPE 14 IS TARGE170 3-D TARGET SEGMENT INOPR 0 0 0 0 0 0 0 0 0 0 0 KEYOPT(1-12) =0 15 IS CONTA174 3D 8-NODE SURF-SURF CONTACT ELEMENT TYPE INOPR 0 0 0 2 1 0 0 0 1 0 0 0 KEYOPT(1-12) = 0 16 IS TARGE170 3-D TARGET SEGMENT ELEMENT TYPE INOPR 0 0 0 0 0 0 KEYOPT(1-12) = 0 0 0 0 0 0 0 ELEMENT TYPE 17 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR 2 3 0 0 0 1 2 0 6 KEYOPT(1-12) = 0 2 0 0 ELEMENT TYPE 18 IS TARGE170 3-D TARGET SEGMENT INOPR 0 0 0 0 0 0 0 0 0 0 0 KEYOPT(1-12) =Ω ELEMENT TYPE 19 IS CONTA174 3D 8-NODE SURF-SURF CONTACT INOPR

KEYOPT(1-12)=	0	0	0	2	2	0	0	0	1	2 (	) 5	0	
ELEMENT TYPE KEYOPT(1-12)=	20 0	IS 0	TARGE1 0	70 0	0	3-D 0	) ТА 0	RGE: 0	r segi 0	MENT 0 (	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	21 0	IS 0	CONTA1 0	74 2	1	3D 0	8-N 0	ODE 0	SURF 1	-SURI 2 (	F CONTACT ) 3	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	22 0	IS 0	TARGE1 0	70 0	0	3-D 0	о ТА 0	RGE: 0	r segi 0	MENT 0 (	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	23 0	IS 0	CONTA1 0	74 2	3	3D 0	8-N 0	ODE 0	SURF 1	-SURI 2 (	F CONTACI ) 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	24 0	IS 0	TARGE1 0	70 0	0	3-D 0	о ТА 0	RGE: 0	r segi 0	MENT 0 (	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	25 0	IS 0	CONTA1 0	74 2	3	3D 0	8-N 0	ODE 0	SURF 1	-SURI 2 (	F CONTACT ) 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	26 0	IS 0	TARGE1 0	70 0	0	3-D 0	о ТА 0	RGE: 0	r segi 0	MENT 0 (	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	27 0	IS 0	CONTA1 0	74 2	3	3D 0	8-N 0	ODE 0	SURF 1	-SURI 2 (	F CONTACI ) 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	28 0	IS 0	TARGE1 0	70 0	0	3-D 0	) ТА 0	RGE: 0	r segi 0	MENT 0 (	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	29 0	IS 0	CONTA1 0	74 2	3	3D 0	8-N 0	ODE 0	SURF 1	-SURI 2 (	F CONTACI ) 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	30 0	IS 0	TARGE1 0	70 0	0	3-D 0	о ТА 0	RGE: 0	r segi 0	MENT 0 (	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	31 0	IS 0	CONTA1 0	74 2	3	3D 0	8-N 0	ODE 0	SURF 1	-SURI 2 (	F CONTACT ) 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	53 0	IS 0	TARGE1 0	70 0	0	3-D 0	о ТА 0	RGE: 0	r segi 0	MENT 0 (	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	54 0	IS 2	CONTA1 0	75 0	3	NOE 0	)Е-Т 0	0-ST 0	JRFACI 1	E CO1 2 (	NTACT ) 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	57 0	IS 0	TARGE1 0	70 0	0	3-D 0	о ТА 0	RGE: 0	r segi 0	MENT 0 (	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	58 0	IS 0	CONTA1 0	74 2	3	3D 0	8-N 0	ODE 0	SURF 1	-SURI 2 (	F CONTACT ) 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	61 0	IS 0	TARGE1 0	70 0	0	3-D 0	) ТА 0	RGE: 0	r segi 0	MENT 0 (	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	62 0	IS 0	CONTA1 0	74 2	3	3D 0	8-N 0	ODE 0	SURF 1	-SURI 2 (	F CONTACT ) 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	63 0	IS 0	TARGE1 0	70 0	0	3-D 0	о ТА 0	RGE: 0	r segi 0	MENT 0 (	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	64 0	IS 0	CONTA1 0	74 0	3	3D 0	8-N 0	ODE 0	SURF 1	-SURI 2 (	F CONTACI ) 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	65 0	IS 0	TARGE1 0	70 0	0	3-D 0	о та 0	RGE: 0	r segi 0	MENT 0 (	0 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	66 0	IS 0	CONTA1 0	75 0	3	NOE 0	)Е-Т 0	0-ST 0	JRFACI 1	E CO1 2 (	NTACT ) 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	67 0	IS 0	TARGE1 0	70 0	0	3-E 0	) ТА 0	RGE'	r segi 0	MENT 0 (	0 0	0	INOPR

ELEMENT TYPE KEYOPT(1-12):	68 I = 0	S CON	TA175 0 3	NC 0	-DDE-	TO-S	URFACE 1	CON 2 0	TACT 0	0	INOPR
. , די די האדי די איסי די א	60 T	ס העם	CE170	2	ת ת	אסמדי	T CECM				TNODR
KEYOPT(1-12):	= 0	0 0	0 0	0	0	O O	0	0 0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12):	70 I = 0	S CON 0 0	TA175 0 3	NC 0	DE- 0	TO-S 0	URFACE 1	CON 2 0	TACT 0	0	INOPR
CURRENT NODAL THREE-DIMENS	DOF SET IONAL MC	IS DEL	UX UY	ſ	UZ	T	EMP				
LIST REAL SET:	S	1 TO	57	BY		1					
REAL CONSTANT 1.0000	SET 0.3305	23 6E-14	ITEMS 0.000	ד 1 00	0	6 0.0	000		0.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	23 00	ITEMS 0.000	ד 7 0	0	12 0.0	000		0.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	23 00	ITEMS 0.000	13 T )0	.0	18 0.0	000		0.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	24 00	ITEMS 0.000	ר 1 00	0.	6 0.0	000		0.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	24 00	ITEMS 0.000	ד 7 0	0.	12 0.0	000		0.0000		0.0000
REAL CONSTANT 0.33300	SET 0.000	24 00	ITEMS 0.000	13 T )0	0.	18 0.0	000		0.0000		0.0000
REAL CONSTANT 1.0000	SET 0.3305	27 6E-14	ITEMS 0.000	ד 1 0	0	6 0.0	000		0.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	27 00	ITEMS 0.000	ד 7 0	0.	12 0.0	000		0.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	27 00	ITEMS 0.000	13 T )0	.0	18 0.0	000		0.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	28 00	ITEMS 0.000	ד 1 00	0	6 0.0	000		0.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	28 00	ITEMS 0.000	ד 7 0	0	12 0.0	000		0.0000		0.0000
REAL CONSTANT 0.33300	SET 0.000	28 00	ITEMS 0.000	13 T )0	.0	18 0.0	000		0.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	32 00	ITEMS 1.000	ר 1 00	0.	6 0.10	000		0.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	32 00	ITEMS 0.1000	7 1 0E+2	70 21	12 0.0	000		1.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	32 00	ITEMS 1.000	13 T )0	0.	18 0.0	000		1.0000		0.50000
REAL CONSTANT 0.0000	SET 1.000	32 00	ITEMS 1.000	ד 19 0	.0	24 0.0	000		0.0000		1.0000
REAL CONSTANT 0.0000	SET 0.000	33 10	ITEMS 1.000	ד 1 0	.0	6 0.10	000		0.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	33 10	ITEMS 0.1000	7 1 0E+2	20 21	12 0.0	000		1.0000		0.0000
REAL CONSTANT 0.0000	SET 0.000	33 00	ITEMS 1.000	13 т 00	0.	18 0.0	000		1.0000		0.50000

REAL CONSTANT 0.0000	SET 1.0000	33	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	34	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	34	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	34	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	34	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	35	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	36	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	36	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	36	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	36	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	37	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	37	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	37	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	37	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	38	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	38	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	38	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	38	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	39	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	39	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	39	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000

REAL CONSTANT 0.0000	SET 1.0000	39	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	40	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	42	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	43	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	44	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 7 TO 0.10000E+21	12	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	45	ITEMS 19 TO 1.0000	24	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	46	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT	SET 0.0000	46	ITEMS 7 TO 0.10000E+21	12	1.0000	0.0000
REAL CONSTANT	SET	46	ITEMS 13 TO	18		

0.0000	0.0000		1.0000	0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	46	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	47	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	47	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	47	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	47	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	48	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	48	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	48	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	48	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	50	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	50	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	50	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	50	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	51	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	51	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	51	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	51	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	52	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	52	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	52	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	52	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000

I

REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	53	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	54	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	54	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	54	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	54	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	55	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	55	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	55	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	55	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET 0.0000	55	ITEMS 25 TO 0.0000	30 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	56	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	56	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	56	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	56	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET 0.0000	56	ITEMS 25 TO 0.0000	30 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	57	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	57	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	57	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	57	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 10.000	SET 0.0000	57	ITEMS 25 TO 0.0000	30 0.0000	0.0000	0.0000
LIST MATERIALS PROPERTY= ALI	5 1	TO	3 BY	1		
PROPERTY TABLE TEMPERATURE 70.000 300.00	E EX MA DATA 0.28300E 0.27000E	AT= 5+08 5+08	1 NUM. 1 FEMPERATURE 100.00 0 400.00 0	POINTS= 6 DATA TEM .28100E+08 2 .26500E+08 5	IPERATURE 200.00 00.00	DATA 0.27600E+08 0.25800E+08

PROPERTY TABLE	NUXY MAT=	1 NUM.	POINTS= 6		
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.30000	100.00	0.30000	200.00	0.30000
300.00	0.30000	400.00	0.30000	500.00	0.30000
PROPERTY TABLE TEMPERATURE 70 000	ALPX MAT= DATA 0 85000E-05	1 NUM. TEMPERATURE	POINTS= 6 DATA 0 86000E-05	REFERENCE TEMPERATURE	TEMP. = 70.00 DATA 0 89000E-05
300.00	0.92000E-05	400.00	0.95000E-05	500.00	0.97000E-05
PROPERTY TABLE TEMPERATURE 0.0000	DENS MAT= DATA 0.28300	1 NUM. TEMPERATURE	POINTS= 1 DATA	TEMPERATURE	DATA
PROPERTY TABLE	MU MAT=	1 NUM.	POINTS= 1		
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
0.0000	0.30000	-		-	
PROPERTY TABLE	EMIS MAT=	1 NUM.	POINTS= 1		
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
0.0000	0.0000				
PROPERTY TABLE	EX MAT=	2 NUM.	POINTS= 6		
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.29900E+08	100.00	0.29900E+08	200.00	0.29900E+08
300.00	0.29900E+08	400.00	0.29900E+08	500.00	0.29900E+08
PROPERTY TABLE	NUXY MAT=	2 NUM.	POINTS= 6		
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.30000	100.00	0.30000	200.00	0.30000
300.00	0.30000	400.00	0.30000	500.00	0.30000
ם זמגים עייימים לא	AT DY MATT-			DEFEDENCE	TTTT - 70 00
TEMDEDATIDE	ALPA MAI=	Ζ ΝΟΜ. ΤΕΜΟΓΟΛΤΙΟΓ	POINIS= 0		IEMP. = 70.00
70 000	DAIA 0 65000E-05	100 00	0 65000E-05	200 00	
70.000	0.65000E-05	100.00	0.65000E-05	500.00	0.65000E-05
500.00	0.03000E-03	100.00	0.03000E-03	500.00	0.03000E-03
PROPERTY TABLE	DENS MAT=	2 NUM.	POINTS= 1		
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
0.0000	0.28300				
PROPERTY TABLE	EX MAT=	3 NUM.	POINTS= 8		
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
-40.000	0.24600E+07	-20.000	0.24300E+07	70.000	0.22700E+07
100.00	0.22100E+07	200.00	0.20100E+07	300.00	0.18500E+07
400.00	0.17000E+07	500.00	0.15200E+07		
PROPERTY TABLE	NUXY MAT=	3 NUM.	POINTS= 6		
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
81.000	0.40000	212.00	0.40000	302.00	0.40000
392.00	0.40000	513.00	0.40000	621.00	0.40000
ספ∩סדפידע ייזפידם	ΔΙ.ΟΥ ΜΑΤ-	2 NTTM			ΨΈMD = 70 00
TROFERIT INDLE		יאטאי כ ייסוזייעקיקמאיזיי	עייעע סדעדס- ס		ישייבי. – 10.00 המידם
-40 000	0 15560 -04	-20 000	0 15650 -04	. 70 000	0 16060 -04
100 00	0 162201-04	20.000	0 16700-04	300 00	0 173305-04
400 00	0.181608-04	500.00	0.19120 = 04		0.1/2200-01
100.00	5.10100D 01	500.00	J.IJIZOD 01		
PROPERTY TABLE	DENS MAT=	3 NUM.	POINTS= 1		
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
0.0000	0.41000				

Title	Structural A	Analyses of the	3-60B Ca	sk Under Hypothetical Fire Accident (	Condi	tions	
Calc. N	lo. <u>ST-5</u>	02 <b>Rev</b> .	2	Sheet	9	_of	)

Appendix 2

Electronic Data on CDROM (1 Page & 1 CDROM) Volume in drive F is ST-502 Rev.2 App2 Volume Serial Number is A745-A81C

Directory of F:  $\$ 

06/18/2009	09:25 AM	855,975	file.cdb
01/15/2010	04:52 PM	12,386,304	file.db
06/02/2009	01:43 PM	239,097	file.s01
06/02/2009	01:43 PM	239,097	file.s02
06/02/2009	01:43 PM	239,097	file.s03
06/02/2009	01:43 PM	239.097	file.s04
06/02/2009	01:43 PM	239,097	file s05
06/02/2009	01:43 PM	239,097	file s06
06/02/2009	01·43 DM	239,097	file c07
06/02/2009	02:22 PM	239,097 E2 074	$f_{10000}$
06/02/2009	02·22 PM	52,074	file000.png
00/02/2009	02:25 PM	57,572	file001.png
06/02/2009	$02 \cdot 24$ PM	60,662	file002.png
06/02/2009	02:24 PM	64,150	file003.png
06/02/2009	02:25 PM	65,786	file004.png
06/02/2009	02:25 PM	58,240	file005.png
06/02/2009	02:26 PM	59,590	file006.png
06/02/2009	02:26 PM	62,057	file007.png
06/03/2009	09:35 AM	157,354	file008.png
06/03/2009	09:35 AM	125,648	file009.png
06/03/2009	09:36 AM	135,501	file010.png
06/03/2009	09:38 AM	137,430	file011.png
06/03/2009	09:39 AM	159,949	file012.png
06/03/2009	09:39 AM	161,291	file013.png
06/03/2009	09:40 AM	172,836	file014.png
06/03/2009	10:05 AM	184,387	file015.png
06/03/2009	10:06 AM	180,663	file016.png
06/03/2009	10:06 AM	181,159	file017.png
06/03/2009	10:11 AM	150,091	file018.png
06/03/2009	10:18 AM	150,870	file019.png
06/03/2009	10:43 AM	140,190	file020.png
06/03/2009	10:44 AM	144,929	file021.png
06/03/2009	10:44 AM	143,369	file022.png
06/02/2009	01:47 PM	134,152,192	ls1.rst
06/02/2009	02:04 PM	283,759	ls1post.out
06/02/2009	01:49 PM	130,088,960	ls2.rst
06/02/2009	02:04 PM	283,531	ls2post.out
06/02/2009	01:52 PM	130,547,712	ls3.rst
06/02/2009	02:04 PM	283,531	ls3post.out
06/02/2009	01:55 PM	130.547.712	ls4.rst
06/02/2009	02:04 PM	283,531	ls4post.out
06/02/2009	01:58 PM	133.365.760	ls5.rst
06/02/2009	02:04 PM	283,531	ls5post out
06/02/2009	02:00 PM	133 431 296	ls6 rst
06/02/2009	02:04 PM	283,531	ls6post out
06/02/2009	02:01 IM	133 627 904	le7 ret
06/02/2009	02:03 FM	200 A16	la7nost out
06/17/2009	10:50 AM	111 570	model out
00/1/2009	10.50  AM 04.51  DM	10 600	aummary_fire in
01/15/2010	04·51 PM	19,000 E EFO	gummary out
01/15/2010	10 Etla(~)	0/5 6/6 030	but og
	H) FILE(S)	940,040,930	Dyles
Total	Files Listed:		

0 Dir(s)

49 File(s) 945,646,930 bytes 0 bytes free

Title	3-60B Cask Buckling Evaluation under NCT & HAC Loading								
Calc. No	ST-600	Rev	0	Sheet _	1	_of_	16	_	

## 1.0 <u>OBJECTIVE</u>

Perform the buckling evaluation of the 3-60B Cask under normal conditions of transport (NCT) and hypothetical accident conditions (HAC) loading using the ASME Boiler and Pressure Vessel Code Case N-284.

## 2.0 <u>INTRODUCTION</u>

The buckling evaluation of the 3-60B Cask is performed on the ASME Boiler & Pressure Vessel Code Case N-284 (Reference 1) criteria. The buckling requirement of Paragraph C.5 of Regulatory Guide 7.6 (Reference 2) ("buckling should not occur as the result of any normal or accident condition loading") are satisfied by demonstrating that the 3-60B Cask meets the requirements of this Code Case. Consistent with Regulatory Guide 7.6 philosophy, the NCT is considered to be the ASME Service Level A condition; and HAC is considered to be Service Level D condition.

The most vulnerable component of the 3-60B Cask for buckling is its inner shell since it is the thinnest component and is subjected to both axial and hoop compressions. The axial compressive stress in this shell arises from the end and corner drops and the hoop compression occurs due to shrinkage of the lead over the inner shell in the cold environment. In order to obtain the maximum components of these stresses, all the loading combinations are examined. The NCT and HAC drop analyses performed under various environmental conditions in Reference 3 have been used to obtain the stress components needed for the evaluation of the shell buckling. The maximum components of axial compression, hoop compression, and the in-plane shear stress for various loading obtained from Reference 3 analyses are summarized in Table 1. Conservatively, the largest value of each component is assumed to occur concurrently and they have been used for the NCT and HAC condition's evaluation.

## 3.0 <u>REFERENCES</u>

- American Society of Mechanical Engineers (ASME) Boiler & Pressure Vessel Code, Section III, Division 1, Class MC, Code Case N-284, Metal Containment Shell Buckling Design Method, August 25, 1980.
- (2) U.S.N.R.C. Regulatory Guide 7.6, Design Criteria for the Structural Analysis of Shipping Package Containment Vessel, Revision 1, March 1978.
- (3) Energy*Solutions* Document No. ST-504, Rev.1, Structural Analyses of the 3-60B Cask under Drop Conditions.

## 4.0 <u>CODE CASE EVALUATION PROCESS</u>

ASME Code Case N-284 addresses both elastic and inelastic buckling and employs a factor of safety of 2.0 for service Level A (NCT) and 1.34 for service Level D (HAC). Interaction equations are employed which account for the effect of combined axial compressive, hoop compressive, and in-plane shear loadings. The basic analytical approach is summarized as follows:

1. Theoretical elastic buckling stresses are determined using classical theory.

Title	3-60B Cask E	Buckling Eval	uation un	der NCT & HAC L	_oad	ing	
Calc. No.	ST-600	Rev.	0	Sheet	2	_of_	16

- 2. Capacity reduction factors are applied which account for the difference between classical theory and predicted instability stresses for fabricated shells.
- 3. Plasticity reduction factors are applied for those cases where elastically determined buckling stresses are above the proportional limit.
- 4. Elastic and inelastic buckling checks which employ appropriate factors of safety and appropriate interaction equations are made using worst case applied compressive and inplane shear stresses.

All terminology used herein is consistent with that in ASME Code Case N-284.

#### 4.1 <u>Theoretical Elastic Buckling Stresses</u>

a) Axial compression

The theoretical axial buckling stress (  $\sigma_{\rm qeL}$  ) is:

$$\sigma_{\phi eL} = C_{\phi} \frac{Et}{R}$$

where,

$$C_{\phi} = \frac{0.904}{M_{\phi}^{2}} + (0.1013)M_{\phi}^{2} \text{ if } 1.5 \le M_{\phi} \le 1.73$$
$$C_{\phi} = 0.605 \text{ if } M_{\phi} \ge 1.73$$

#### b) Hoop Compression

i) No End Pressure

The theoretical hoop buckling stress (  $\sigma_{\rm \tiny REL}$  ) is:

$$\sigma_{\theta eL} = \sigma_{reL} = C_{\theta r} \frac{Et}{R}$$

where,

$$\begin{split} C_{\theta r} &= \frac{2.41}{M_{\phi}^{1.49} - 0.338} & \text{if } 1.5 \le M_{\phi} < 3.0 \\ C_{\theta r} &= \frac{0.92}{M_{\phi} - 1.17} & \text{if } 3.0 \le M_{\phi} < (1.65)(R/t) \\ C_{\theta r} &= (0.275) \bigg(\frac{t}{R}\bigg) + \bigg(\frac{2.1}{M_{\phi}^4}\bigg) \bigg(\frac{R}{t}\bigg)^3 & \text{if } M_{\phi} \ge (1.65)(R/t) \end{split}$$

ii) End Pressure Included

The theoretical hoop buckling stress ( $\sigma_{\theta eL}$ ) is:

Title	3-60B Cask E	<u>Buckling Eval</u>	uation und	<u>ler NCT &amp; HAC L</u>	oad	ing		
Calc. No	ST-600	Rev.	0	Sheet	3	_of_	16	_

$$\sigma_{\theta eL} = \sigma_{heL} = C_{\theta h} \frac{Et}{R}$$

where,

$$\begin{split} C_{\theta h} &= \frac{1.08}{M_{\phi}^{1.07} - 0.45} & \text{if } 1.5 \le M_{\phi} < 3.0 \\ C_{\theta h} &= \frac{0.92}{M_{\phi} - 0.636} & \text{if } 3.0 \le M_{\phi} < (1.65)(R/t) \\ C_{\theta h} &= (0.275) \left(\frac{t}{R}\right) + \left(\frac{2.1}{M_{\phi}^4}\right) \left(\frac{R}{t}\right)^3 & \text{if } M_{\phi} \ge (1.65)(R/t) \end{split}$$

c) In-Plane Shear

The theoretical in-plane shear buckling stress,  $\sigma_{\rm {\it ofeel}}$  , is:

$$\sigma_{\phi \theta e L} = C_{\phi \theta} \frac{Et}{R}$$

where,

$$\begin{split} C_{\phi\theta} &= \left(\frac{4.82}{M_{\phi}^{2}}\right) \sqrt{1 + (0.0239)M_{\phi}^{3}} & \text{if } 1.5 \leq M_{\phi} < 26\\ C_{\phi\theta} &= \frac{0.746}{\sqrt{M_{\phi}}} & \text{if } 26 \leq M_{\phi} < (8.69)(R/t)\\ C_{\phi\theta} &= 0.253 \sqrt{\frac{t}{R}} & \text{if } M_{\phi} \geq (8.69)(R/t) \end{split}$$

### 4.2 Capacity Reduction Factors

a) For Axial Compression, the larger of (i) or (ii) is used:

i) Effect of R/t:  $\alpha_{\phi L} = 0.207 \quad \text{if } R/t \ge 600$   $\alpha_{\phi L} = 1.52 - (0.473) \log_{10}(R/t)$   $\alpha_{\phi L} = (10^{-5})\sigma_y - 0.033 \quad \text{if } R/t < 600 \text{ (use smaller value)}$ 

ii) Effect of Length  $\alpha_{\phi L} = 0.837 - (0.14)M$  if  $1.5 \le M < 1.73$ 

Title	3-60B Cask E	Buckling Eval	uation unde	<u>r NCT &amp; HAC L</u>	oad	ing	
Calc. No.	ST-600	Rev.	0	Sheet	4	_of_	16

$$\alpha_{\phi L} = \frac{0.837}{M^{0.6}} \quad \text{if } 1.73 \le M < 10$$
  
 $\alpha_{\phi L} = 0.207 \quad \text{if } M \ge 10$ 

b) For Hoop Compression

 $\alpha_{\theta L} = 0.8$ 

c) <u>For Shear</u>:

$$\alpha_{\phi \theta L} = 0.8$$
 if  $R/t \le 250$   
 $\alpha_{\phi \theta L} = 1.323 - (0.218) \log_{10}(R/t)$  if  $250 < R/t < 1000$ 

### 4.3 <u>Plasticity Reduction Factors</u>

a) For Axial Compression

$$\begin{split} \eta_{\theta} &= 1.0 \quad \text{if } \sigma_{\phi}(FS) / \sigma_{y} \leq 0.55 \\ \eta_{\phi} &= \frac{0.18}{1 - \frac{(0.45)\sigma_{y}}{(FS)\sigma_{\phi}}} \quad \text{if } 0.55 < \sigma_{\phi}(FS) / \sigma_{y} \leq 0.738 \\ \eta_{\phi} &= 1.31 - \frac{(1.15)\sigma_{\phi}(FS)}{\sigma_{y}} \quad \text{if } 0.738 < \sigma_{\phi}(FS) / \sigma_{y} \leq 1.0 \end{split}$$

b) For Hoop Compression

$$\begin{split} \eta_{\theta} &= 1.0 \quad \text{if} \ \sigma_{\theta}(FS) / \sigma_{y} \leq 0.67 \\ \eta_{\theta} &= 2.53 - \frac{(2.29)\sigma_{\theta}(FS)}{\sigma_{y}} \quad \text{if} \ 0.67 < \sigma_{\theta}(FS) / \sigma_{y} \leq 1.0 \end{split}$$

c) For Shear

$$\begin{split} \eta_{\phi\theta} &= 1.0 \quad \text{ if } \ \sigma_{\phi\theta}(FS) / \sigma_y \leq 0.48 \\ \eta_{\phi\theta} &= \frac{0.1}{1 - \frac{(0.43)\sigma_y}{(FS)\sigma_{\phi\theta}}} \quad \text{ if } \ 0.48 < \sigma_{\phi\theta}(FS) / \sigma_y \leq 0.6 \end{split}$$

#### 4.4 Interaction Equations

Elastic and inelastic equations must be satisfied for all states of compressive and in-plane shear stresses. The interaction equations for cylindrical shells obtained from Code Case N-284 are as follows:

Elastic Buckling (Paragraph--1713.1.1 of the Code Case)

a) Axial compression-plus-hoop compression  $(\sigma_{\phi} < \frac{1}{2}\sigma_{\phi})$ 

Not Applicable (n/a)

b) Axial compression-plus-hoop compression  $(\sigma_{\phi} \ge \frac{1}{2}\sigma_{\theta})$ :

$$\frac{\sigma_{\rm ps} - \frac{1}{2}\sigma_{\rm heL}}{\sigma_{\rm peL} - \frac{1}{2}\sigma_{\rm heL}} + \left(\frac{\sigma_{\rm ps}}{\sigma_{\rm heL}}\right)^2 \le 1.0$$

c) Axial compression-plus-shear:

$$\frac{\sigma_{\rm ps}}{\sigma_{\rm peL}} + \left(\frac{\sigma_{\rm pole}}{\sigma_{\rm poleL}}\right)^2 \le 1.0$$

d) Hoop compression-plus-shear

$$\frac{\sigma_{\rm lb}}{\sigma_{\rm reL}} + \left(\frac{\sigma_{\rm pla}}{\sigma_{\rm pleL}}\right)^2 \le 1.0$$

Inelastic Buckling (Paragraph—1713.2.1 of the Code Case)

a) Axial compression:

$$\frac{\sigma_{\phi p}}{\sigma_{\phi eL}} \leq 1.0$$

b) Hoop compression:

$$\frac{\sigma_{\theta p}}{\sigma_{\theta eL}} \leq 1.0$$

c) Axial compression-plus-shear:

$$\left(\frac{\sigma_{\phi p}}{\sigma_{\phi eL}}\right)^2 + \left(\frac{\sigma_{\phi \theta p}}{\sigma_{\phi \theta eL}}\right)^2 \le 1.0$$

d) Hoop compression-plus-shear

$$\left(\frac{\sigma_{\theta p}}{\sigma_{reL}}\right)^2 + \left(\frac{\sigma_{\phi \theta p}}{\sigma_{\phi \theta eL}}\right)^2 \le 1.0$$

Title	3-60B Cask E	<u>Buckling Eval</u>	uation un	der NCT & HAC	Load	ing	
Calc. No	ST-600	Rev.	0	Sheet _	6	_of_	16

#### 5.0 EVALUATION OF THE 3-60B CASK INNER SHELL

The inner shell of the 3-60B cask is made of A-240 Gr. 45 (UNS S30815) material for which the mechanical properties versus temperature are listed in Reference xx, Table xx). Since the largest compressive loading on the shell occurs in the cold environment, its mechanical properties at the lowest shell temperature (i.e. -20°F) are used for the buckling evaluation. Also, since the largest stress occur under the dynamic loading conditions; the yield stress of the material has been increased by a factor of 1.33.

R = Mean radius of the shell = 17.875 in

t = Thickness of the shell = 0.75 in

 $l_{\varphi}$  = Length of the shell = 110 in

E = Modulus of elasticity =  $28 \times 10^6$  psi (see Material Properties Table of Reference 3)

$$\sigma_y$$
 = Yield stress = 1.333×45,000 = 60,000 psi

$$M_{\phi} = \frac{l_{\phi}}{\sqrt{Rt}} = \frac{110}{\sqrt{17.875 \times 0.75}} = 30 > 1.73$$

#### 5.1 <u>Theoretical Elastic Buckling Stresses</u> (Independent of Loading)

Axial Compression

Since  $M_{\varphi} > 1.73$ 

$$C_{\phi} = 0.605$$

$$\sigma_{\phi eL} = C_{\phi} \frac{Et}{R} = 0.605 \times \frac{28 \times 10^6 \times 0.75}{17.875} = 710,769 \text{ psi}$$

Hoop Compression

$$1.65 \times R/t = 1.65 \times 17.875/0.75 = 39.3$$

Since,

$$3 < M_{\varphi} < 1.65 \times R/t$$

$$C_{\theta h} = \frac{0.92}{M_{\phi} - 0.636} = \frac{0.92}{30 - 0.636} = 0.0313$$

$$\sigma_{\theta eL} = \sigma_{heL} = C_{\theta h} \frac{Et}{R} = 0.0313 \times \frac{28 \times 10^6 \times 0.75}{17.875} = 36,772 \text{ psi}$$

In-Plane Shear

$$8.69 \times R/t = 8.69 \times 17.875/0.75 = 207$$

Since,  $26 \le M_{\phi} < (8.69)(R/t)$ 

$$C_{\phi\theta} = \frac{0.746}{\sqrt{M_{\phi}}} = \frac{0.746}{\sqrt{30}} = 0.1362$$

Title	3-60B Cask E	Buckling Eval	uation unde	r NCT & HAC	Load	ing	
Calc. No.	ST-600	Rev.	0	Sheet	7	_of_	16

$$\sigma_{\phi \theta eL} = C_{\phi \theta} \frac{Et}{R} = 0.1362 \times \frac{28 \times 10^6 \times 0.75}{17.875} = 160,011 \text{ psi}$$

5.2 <u>Capacity Reduction Factors</u> (Independent of Loading)

R/t = 17.875/0.75 = 23.83

Effect of R/t

R/t is < 600  $\alpha_{\varphi L}$  = smaller of [{1.52 - 0.473 \times \log_{10} (R/t)} and {10⁻⁵ \times \sigma_y - 0.033}] 1.52 - 0.473 \times \log_{10} (R/t) = 1.52 - 0.473 \times \log_{10} (23.83) = 0.869

The material is specified as A-240 Gr. 45 which has a static yield stress of 45,000 psi. Since the loadings considered here are dynamic, the dynamic yield stress is used for  $\sigma_{y}$ .

$$\sigma_y = 1.333 \times 45,000 = 60,000 \text{ psi}$$
  
 $10^{-5} \times \sigma_y - 0.033 = 10^{-5} \times 60,000 - 0.033 = 0.567$   
 $\alpha_{\varphi L} = \text{smaller of } (0.8213 \& 0.567) = 0.567$ 

Effect of Length

 $M = M_{\varphi} = 30 > 10$ 

$$\alpha_{\varphi L} = 0.207$$

For the combination the larger of the two  $\alpha_{\varphi L}$  are used. Thus,

$$\alpha_{\omega L} = 0.567$$

For Hoop Compression

 $\alpha_{\theta L} = 0.8$ 

For Shear

Since, R/t = 23.83 < 250

 $\alpha_{\varphi\theta L} = 0.8$ 

#### 5.3 Plasticity Reduction Factors for NCT

Plasticity reduction factors are function of applied stresses. For NCT conditions the maximum values of each loading components are used for the calculation of plasticity reduction factors. From Table 1 these values are:

 $\sigma_{\varphi}$  = maximum longitudinal stress = 18,494 psi

 $\sigma_{\theta}$  = maximum hoop stress = 10,718 psi

 $_{\sigma\varphi\theta}$  = maximum in-plane shear stress = 1,590 psi

The factor of safety for the NCT loading is 2.0. Therefore,

Title	3-60B Cask Bu	ckling Eva	luation under	NCT & HAC	Load	ing		
Calc. No.	ST-600	Rev.	0	Sheet	8	_of_	16	-

$$\sigma_{\phi}(FS) = 18,494 \times 2.0 = 36,988$$
 psi  
 $\sigma_{\theta}(FS) = 10,718 \times 2.0 = 21,436$  psi  
 $\sigma_{\theta\phi}(FS) = 1,590 \times 2.0 = 3,180$  psi

Plasticity reduction factors are calculated using the equations presented in Section 4.3,

$$\sigma_{\phi}(FS) / \sigma_{y} = 18,494 \times 2.0/60,000 = 0.616$$
  
$$\sigma_{\theta}(FS) / \sigma_{y} = 10,718 \times 2.0/60,000 = 0.357$$
  
$$\sigma_{\phi\theta}(FS) / \sigma_{y} = 1,590 \times 2.0/60,000 = 0.053$$

Since,  $0.55 < \sigma_{\phi}(FS) / \sigma_y \le 0.738$ 

$$\eta_{\phi} = \frac{0.18}{1 - \frac{(0.45)\sigma_{y}}{(FS)\sigma_{\phi}}} = \frac{0.18}{1 - \frac{(0.45) \times 60,000}{36,988}} = 0.667$$

Since,  $\sigma_{\theta}(FS) / \sigma_y \le 0.67$ 

$$\eta_{\theta} = 1.0$$

Since,  $\sigma_{\phi\theta}(FS)/\sigma_y \le 0.48$ 

$$\eta_{\phi\theta}=1.0$$

Compute the elastic stress components:

$$\sigma_{\phi s} = \frac{(FS)\sigma_{\phi}}{\alpha_{\phi L}} = \frac{36,988}{0.567} = 65,235 \text{ psi}$$
$$\sigma_{\theta s} = \frac{(FS)\sigma_{\theta}}{\alpha_{\theta L}} = \frac{21,436}{0.8} = 26,795 \text{ psi}$$
$$\sigma_{\phi \theta s} = \frac{(FS)\sigma_{\phi \theta}}{\alpha_{\phi \theta L}} = \frac{3,180}{0.8} = 3,975 \text{ psi}$$

Compute the inelastic stress components:

$$\sigma_{qp} = \frac{\sigma_{qs}}{\eta_{\phi}} = \frac{65,235}{0.667} = 97,804 \text{ psi}$$
$$\sigma_{qp} = \frac{\sigma_{qs}}{\eta_{\theta}} = \frac{26,795}{1.0} = 26,795 \text{ psi}$$

Title	3-60B Cask B	uckling Eval	luation under	<u>r NCT &amp; HAC L</u>	oadi	ing		
Calc. No.	ST-600	Rev.	0	Sheet	9	_of_	16	

$$\sigma_{\scriptscriptstyle \phi \not o p} = \frac{\sigma_{\scriptscriptstyle \phi \not o s}}{\eta_{\scriptscriptstyle \phi \theta}} = \frac{3,975}{1.0} = 3,975 \text{ psi}$$

### 5.4 Interaction Equations for NCT

### Elastic Buckling

a) Axial compression-plus-hoop compression ( $\sigma_{\phi} < \frac{1}{2} \sigma_{\theta}$ )

Not Applicable (n/a)

b) Axial compression-plus-hoop compression  $(\sigma_{\phi} \ge \frac{1}{2}\sigma_{\theta})$ :

$$\frac{\sigma_{\phi s} - \frac{1}{2}\sigma_{heL}}{\sigma_{\phi eL} - \frac{1}{2}\sigma_{heL}} + \left(\frac{\sigma_{\theta s}}{\sigma_{heL}}\right)^2 \le 1.0$$

$$\frac{65,235 - \frac{1}{2} \times 36,772}{710,769 - \frac{1}{2} \times 36,772} + \left(\frac{26,795}{36,772}\right)^2 = 0.599 < 1.0$$
O.K.

c) Axial compression-plus-shear:

$$\begin{aligned} &\frac{\sigma_{\phi s}}{\sigma_{\phi eL}} + \left(\frac{\sigma_{\phi \ell s}}{\sigma_{\phi \ell eL}}\right)^2 \le 1.0\\ &\frac{65,235}{710,769} + \left(\frac{3,975}{160,011}\right)^2 = 0.0924 < 1.0 \end{aligned}$$
 O.K.

d) Hoop compression-plus-shear

$$\frac{\sigma_{\ell k}}{\sigma_{reL}} + \left(\frac{\sigma_{\phi \ell k}}{\sigma_{\phi \ell kL}}\right)^2 \le 1.0$$

$$\frac{26,795}{36,772} + \left(\frac{3,975}{160,011}\right)^2 = 0.729 < 1.0$$
O.K.

Inelastic Buckling

e) Axial compression:

$$\frac{\sigma_{\phi p}}{\sigma_{\phi eL}} \le 1.0$$

$$\frac{97,804}{710,769} = 0.138 \le 1.0$$
O.K.

Title	3-60B Cask E	Buckling Eval	uation under NC	CT & HAC I	Loadir	g		
Calc. No	ST-600	Rev.	0	Sheet	10	_of_	16	

f) Hoop compression:

$$\frac{\sigma_{\theta p}}{\sigma_{\theta eL}} \le 1.0$$

$$\frac{26,795}{36,772} = 0.729 < 1.0$$
O.K.

g) Axial compression-plus-shear:

$$\left(\frac{\sigma_{\phi p}}{\sigma_{\phi eL}}\right)^2 + \left(\frac{\sigma_{\phi \phi p}}{\sigma_{\phi \theta eL}}\right)^2 \le 1.0$$

$$\left(\frac{97,804}{710,769}\right)^2 + \left(\frac{3,975}{160,011}\right)^2 = 0.0196 < 1.0$$
O.K.

h) Hoop compression-plus-shear

$$\left(\frac{\sigma_{\theta p}}{\sigma_{reL}}\right)^2 + \left(\frac{\sigma_{\phi \theta p}}{\sigma_{\phi \theta eL}}\right)^2 \le 1.0$$

$$\left(\frac{26,795}{36,772}\right)^2 + \left(\frac{3,975}{160,011}\right)^2 = 0.532 < 1.0$$
O.K.

#### 5.5 <u>Plasticity Reduction Factors for HAC</u>

Plasticity reduction factors are function of applied stresses. For HAC conditions the maximum values of each loading components are used for the calculation of plasticity reduction factors. From Table 1 these values are:

 $\sigma_{\varphi} =$  maximum longitudinal stress = 35,285 psi

 $\sigma_{\theta}$  = maximum hoop stress = 16,363 psi

 $_{\sigma\varphi\theta}$  = maximum in-plane shear stress = 3,731 psi

The factor of safety for the HAC loading is 1.34. Therefore,

$$\sigma_{\phi}(FS) = 35,285 \times 1.34 = 47,282$$
 psi  
 $\sigma_{\theta}(FS) = 16,363 \times 1.34 = 21,926$  psi

$$\sigma_{\theta\phi}(FS) = 3,731 \times 1.34 = 5,000$$
 psi

Plasticity reduction factors are calculated using the equations presented in Section 4.3,

$$\sigma_{\phi}(FS) / \sigma_{y} = 35,285 \times 1.34 / 60,000 = 0.788$$
  
 $\sigma_{\theta}(FS) / \sigma_{y} = 16,363 \times 1.34 / 60,000 = 0.365$ 

Title	3-60B Cask E	Buckling Eval	luation une	<u>der NCT &amp; HAC L</u>	_oadir	ng		
Calc. No.	ST-600	Rev.	0	Sheet	11	_of_	16	

$$\sigma_{\phi\theta}(FS) / \sigma_y = 3,731 \times 1.34 / 60,000 = 0.083$$

Since,  $0.738 < \sigma_{\phi}(FS) / \sigma_y \le 1.0$ 

$$\eta_{\phi} = 1.31 - \frac{(1.15)\sigma_{\phi}(FS)}{\sigma_{y}} = 1.31 - \frac{1.15 \times 47,282}{60,000} = 0.404$$

Since,  $\sigma_{\theta}(FS) / \sigma_{y} \le 0.67$ 

 $\eta_{\theta} = 1.0$ 

Since,  $\sigma_{\phi\theta}(FS)/\sigma_y \le 0.48$ 

 $\eta_{\phi\theta} = 1.0$ 

Compute the elastic stress components:

$$\sigma_{\phi s} = \frac{(FS)\sigma_{\phi}}{\alpha_{\phi L}} = \frac{47,282}{0.567} = 83,390 \text{ psi}$$
$$\sigma_{\theta s} = \frac{(FS)\sigma_{\theta}}{\alpha_{\theta L}} = \frac{21,926}{0.8} = 27,408 \text{ psi}$$
$$\sigma_{\phi \theta s} = \frac{(FS)\sigma_{\phi \theta}}{\alpha_{\phi \theta L}} = \frac{5,000}{0.8} = 6,250 \text{ psi}$$

Compute the inelastic stress components:

$$\sigma_{\phi p} = \frac{\sigma_{\phi s}}{\eta_{\phi}} = \frac{83,390}{0.404} = 206,410 \text{ psi}$$
$$\sigma_{\phi p} = \frac{\sigma_{\theta s}}{\eta_{\theta}} = \frac{27,408}{1} = 27,408 \text{ psi}$$
$$\sigma_{\phi \phi p} = \frac{\sigma_{\phi \theta s}}{\eta_{\phi \theta}} = \frac{6,250}{1.0} = 6,250 \text{ psi}$$

### 5.6 Interaction Equations for HAC

Elastic Buckling

a) Axial compression-plus-hoop compression ( $\sigma_{\phi} < \frac{1}{2}\sigma_{\theta}$ )

Not Applicable (n/a)

b) Axial compression-plus-hoop compression  $(\sigma_{\phi} \ge \frac{1}{2}\sigma_{\theta})$ :

Title	3-60B Cask E	Buckling Eval	uation und	<u>ler NCT &amp; HAC L</u>	oadir	ng		
Calc. No	ST-600	Rev.	0	Sheet	12	_of_	16	

$$\frac{\sigma_{\phi s} - \frac{1}{2}\sigma_{heL}}{\sigma_{\phi eL} - \frac{1}{2}\sigma_{heL}} + \left(\frac{\sigma_{\theta s}}{\sigma_{heL}}\right)^2 \le 1.0$$

$$\frac{83,390 - \frac{1}{2} \times 36,772}{710,769 - \frac{1}{2} \times 36,772} + \left(\frac{27,408}{36,772}\right)^2 = 0.649 < 1.0 \quad O.K.$$

c) Axial compression-plus-shear:

$$\begin{aligned} \frac{\sigma_{\phi s}}{\sigma_{\phi eL}} + \left(\frac{\sigma_{\phi \theta s}}{\sigma_{\phi \theta eL}}\right)^2 &\leq 1.0\\ \frac{83,390}{710,769} + \left(\frac{6,250}{160,011}\right)^2 &= 0.119 < 1.0 \end{aligned}$$
 O.K.

d) Hoop compression-plus-shear

$$\frac{\sigma_{\ell k}}{\sigma_{reL}} + \left(\frac{\sigma_{\phi \ell k}}{\sigma_{\phi \ell eL}}\right)^2 \le 1.0$$
$$\frac{27,408}{36,772} + \left(\frac{6,250}{160,011}\right)^2 = 0.747 < 1.0$$
O.K.

Inelastic Buckling

i) Axial compression:

$$\frac{\sigma_{\phi p}}{\sigma_{\phi eL}} \le 1.0$$

$$\frac{206,410}{710,769} = 0.290 \le 1.0$$
O.K.

j) Hoop compression:

$$\frac{\sigma_{\theta p}}{\sigma_{\theta eL}} \le 1.0$$

$$\frac{27,408}{36,772} = 0.745 < 1.0$$
O.K.

k) Axial compression-plus-shear:

Title	3-60B Cask E	Buckling Eval	luation un	<u>der NCT &amp; HAC L</u>	oadir	ng		
Calc. No.	ST-600	Rev.	0	Sheet	13	_of_	16	_

$$\left(\frac{\sigma_{\phi p}}{\sigma_{\phi eL}}\right)^2 + \left(\frac{\sigma_{\phi \theta p}}{\sigma_{\phi \theta eL}}\right)^2 \le 1.0$$

$$\left(\frac{206,410}{710,769}\right)^2 + \left(\frac{6,250}{160,011}\right)^2 = 0.086 < 1.0$$
O.K.

l) Hoop compression-plus-shear

$$\left(\frac{\sigma_{\theta p}}{\sigma_{reL}}\right)^2 + \left(\frac{\sigma_{\phi \theta p}}{\sigma_{\phi \theta eL}}\right)^2 \le 1.0$$

$$\left(\frac{27,408}{36,772}\right)^2 + \left(\frac{6,250}{160,011}\right)^2 = 0.557 < 1.0$$
O.K.

#### 6.0 <u>SUMMARY & CONCLUSIONS</u>

The results of the buckling evaluation of the 3-60B Cask are summarized in Table 2. It is observed from the table that all the stress combination requirements of the ASME Code Case N-284 are satisfied by the cask inner shell for the NCT and HAC loading conditions for the combination of maximum stress components arising under all the operating environments. Therefore, it is concluded that buckling will not occur as the result of any normal or accident condition loading and the buckling requirement of Paragraph C.5 of Regulatory Guide 7.6 is satisfied.

Title	3-60B Cask E	Buckling Eval	luation ur	der NCT & HAC I	_oadir	ng	
Calc. No.	ST-600	Rev.	0	Sheet	14	_of_	16

# <u>Table 1</u>

Maximum Compressive Stress Components in the Inner Shell Under Various NCT & HAC Drop Orientation & Environments

Condition	Orientation	Environment	S _y (psi)	S _z (psi)	S _{yz} (psi)
NCT	End	Hot	112.5	-1,035	-0.1098
		Cold-1	-5,800	-14,437	-0.3013
		Cold-2	-9,195	-18,494	-0.2798
	Side	Hot	-847.39	-2,724	-60.848
		Cold-1	-7,733	-12,520	-3.864
		Cold-2	-10,718	-15,416	-9.063
	Corner	Hot	-460.1	-1,527	-1,590
		Cold-1	-6,780	-12,845	-1,519
		Cold-2	-10,094	-16,487	-1,441
HAC	End	Hot	-183.6	-12,577	-1.587
		Cold-1	-5,039	-31,241	-0.7761
		Cold-2	-8,435	-35,285	-0.8368
	Side	Hot	-3,555	-17,725	2.068
		Cold-1	-13,327	-29,549	1.245
		Cold-2	-16,363	-33,136	0.3436
	Corner	Hot	-1,308	-7,292	-3,731
		Cold-1	-7,901	-20,975	-3,691
		Cold-2	-11,113	-24,709	-3,557

Reference: Analyses of ST-504 (Reference 3).
Title	3-60B Cask B	uckling Eva	luation under N	CT & HAC	Loadir	ng		
Calc. No.	ST-600	Rev.	0	Sheet	15	_of_	16	

# Table 2

3-60B Cask Inner Shell Summary of the Interaction Ratios

	Interaction	NCT	HAC
	Axial Compression + Hoop Compression [Code Case N-284, 1713.1.1 (b)]	0.599	0.649
Elastic	Axial Compression + Shear [Code Case N-284, 1713.1.1 (c)]	0.0924	0.119
ш 	Hoop Compression + Shear [Code Case N-284, 1713.1.1 (d)]	0.729	0.747
	Axial Compression [Code Case N-284, 1600]	0.138	0.290
astic	Hoop Compression [Code Case N-284, 1600]	0.729	0.745
Inelas	Axial Compression + Shear [Code Case N-284, 1713.2.1 (a)]	0.0196	0.086
	Hoop Compression + Shear [Code Case N-284, 1713.2.1 (b)]	0.532	0.557

Acceptable Values are  $\leq 1.0$ 

Title	3-60B Cask I	Buckling Eval	luation unc	ler NCT & HAC	Loadir	ng		
Calc. No.	ST-600	Rev.	0	Sheet	16	_of_	16	

<u>Appendix 1</u> <u>Print-Out of the Stress Data for Various Loading Conditions</u> <u>(Reference 3)</u> (11 Pages)

***** ANSYS - ENGINEERING ANALYSIS SYSTEM RELEASE 11.0SP1 ***** ANSYS Mechanical/Emag 00222442 VERSION=WINDOWS x64 16:26:56 JUN 18, 2009 CP= 3.266 1-ft End Drop - Cold Condition (No Decay Heat) ***** ANSYS RESULTS INTERPRETATION (POST1) ***** ENTER /SHOW, DEVICE-NAME TO ENABLE GRAPHIC DISPLAY TO LEAVE POST1 ENTER FINISH *** NOTE *** CP = 3.266 TIME= 16:26:56 Reading results into the database (SET command) will update the current displacement and force boundary conditions in the database with the values from the results file for that load set. Note that any subsequent solutions will use these values unless action is taken to either SAVE the current values or not overwrite them (/EXIT,NOSAVE). *** NOTE *** 3.266 TIME= 16:26:56 CP = An active coordinate system is not zero. RSYS= 0 CSYS= 12 DSYS= 0. ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) Z- CYL. AXIS RSYS KEY SET TO 1 USE COORDINATE SYSTEM 1 FOR SOLUTION RESULTS USE LOAD STEP 1 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 3 CUMULATIVE ITERATION= 11 TIME/FREQUENCY= 1.0000 TITLE= 1-ft End Drop - Hot Condition PRINT S NODAL SOLUTION PER NODE ***** POST1 NODAL STRESS LISTING ***** LOAD STEP= 1 SUBSTEP= 3 TIME= 1.0000 LOAD CASE= 0 MINIMUM VALUES 1870 NODE 43831 31790 46753 1870 25832 VALUE -31.790 112.47 -1034.9 -4.3964 -0.10977 -4.4316 MAXIMUM VALUES 7870 NODE 43713 1870 25870 25870 19713 0.10775 VALUE -31.679 147.28 -991.08 4.3968 -4.1974 USE LOAD STEP 2 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 2 SUBSTEP= 3 CUMULATIVE ITERATION= 36 TIME/FREQUENCY= 2.0000

TITLE= 1-ft End Drop - Cold Condition (Max. Decay Heat)

PRINT S NODAL SOLUTION PER NODE

***** POST1 NODAL STRESS LISTING *****

LOAD STEP= 2 SUBSTEP= 3 TIME= 2.0000 LOAD CASE= 0

MINIMUM VALUES 227521075225790179022832-5799.8-14437.-139.44-0.30127-12.389 10752 NODE 19751 VALUE -123.63

MAXIMUM VALUES NODE 43832 46832 34831 1790 25790 25790 VALUE -123.10 -5428.9 -14301. 139.44 0.30086 -11.939

USE LOAD STEP 3 SUBSTEP 0 FOR LOAD CASE 0

22751

SET COMMAND GOT LOAD STEP= 3 SUBSTEP= 3 CUMULATIVE ITERATION= 41 TIME/FREOUENCY= 3.0000 TITLE= 1-ft End Drop - Cold Condition (No Decay Heat)

PRINT S NODAL SOLUTION PER NODE

***** POST1 NODAL STRESS LISTING *****

LOAD STEP= 3 SUBSTEP= 3 TIME= 3.0000 LOAD CASE= 0

MINIMUM VALUES NODE 7751 VALUE -196.57

NODE	1151	22/21	22732	25790	1/90	22032
VALUE	-196.57	-9195.3	-18494.	-221.06	-0.27977	-11.693
MAXIMUM	VALUES					
NODE	31832	46832	34831	1790	25790	13790
VALUE	-196.33	-8667.9	-18326.	221.06	0.27974	-10.963

22752

25790

1790

22832

***** ANSYS - ENGINEERING ANALYSIS SYSTEM RELEASE 11.0SP1 ***** ANSYS Mechanical/Emag 00222442 VERSION=WINDOWS x64 16:28:12 JUN 18, 2009 CP= 3.219

1-ft Side Drop - Cold Condition (No Decay Heat)

***** ANSYS RESULTS INTERPRETATION (POST1) *****

ENTER /SHOW, DEVICE-NAME TO ENABLE GRAPHIC DISPLAY ENTER FINISH TO LEAVE POST1

*** NOTE *** CP = 3.234 TIME= 16:28:12 Reading results into the database (SET command) will update the current displacement and force boundary conditions in the database with the values from the results file for that load set. Note that any

subsequent solutions will use these values unless action is taken to either SAVE the current values or not overwrite them (/EXIT,NOSAVE). CP = 3.234 TIME= 16:28:12 *** NOTE *** An active coordinate system is not zero. RSYS= 0 CSYS= 12 DSYS= 0. ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) Z- CYL. AXIS RSYS KEY SET TO 1 USE COORDINATE SYSTEM 1 FOR SOLUTION RESULTS USE LOAD STEP 1 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION= 12 TIME/FREQUENCY= 1.0000 TITLE= 1-ft Side Drop - Hot Condition PRINT S NODAL SOLUTION PER NODE ***** POST1 NODAL STRESS LISTING ***** LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 MINIMUM VALUES 258322587017903179013833-847.39-2723.6-36.230-60.8484.1833 NODE 1790 VALUE -115.22 MAXIMUM VALUES 1790 7752 4751 3.0805 1.7409 1870 NODE 37751 1870 VALUE -27.129 1367.1 8777.0 10.968 USE LOAD STEP 2 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 2 SUBSTEP= 1 CUMULATIVE ITERATION= 22 TIME/FREOUENCY= 2.0000 TITLE= 1-ft Side Drop - Cold Condition (Max. Decay Heat) PRINT S NODAL SOLUTION PER NODE ***** POST1 NODAL STRESS LISTING ***** LOAD STEP= 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0 MINIMUM VALUES 43751 25870 25870 28752 13833 NODE 1790 25870 28752 -182.91 -3.8640 -12520. -7733.3 VALUE -224.71 11.430 MAXIMUM VALUES NODE25870187018701790197511693VALUE-118.81-5237.32059.1134.81117.1118.357 1870 1870 1693

USE LOAD STEP 3 SUBSTEP 0 FOR LOAD CASE 0

SET COMMAND GOT LOAD STEP= 3 SUBSTEP= 1 CUMULATIVE ITERATION= 26 TIME/FREQUENCY= 3.0000

TITLE= 1-ft Side Drop - Cold Condition (No Decay Heat)

PRINT S NODAL SOLUTION PER NODE

***** POST1 NODAL STRESS LISTING *****

LOAD STEP= 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

MINIMUN NODE VALUE	1 VALUES 1790 -282.32	46751 -10718.	25870 -15416.	25870 -252.19	28753 -9.0627	25752 37.473
MAXIMUM NODE VALUE	VALUES 25832 -174.75	1870 -8093.0	1870 256.72	1790 204.73	19753 68.238	19832 47.432

***** ANSYS - ENGINEERING ANALYSIS SYSTEM RELEASE 11.0SP1 ***** ANSYS Mechanical/Emag 00222442 VERSION=WINDOWS x64 16:25:55 JUN 18, 2009 CP= 2.656

1-ft Corner Drop - Hot Condition

***** ANSYS RESULTS INTERPRETATION (POST1) *****

ENTER /SHOW,DEVICE-NAME TO ENABLE GRAPHIC DISPLAY ENTER FINISH TO LEAVE POST1

*** NOTE *** CP = 2.656 TIME= 16:25:55 Reading results into the database (SET command) will update the current displacement and force boundary conditions in the database with the values from the results file for that load set. Note that any subsequent solutions will use these values unless action is taken to either SAVE the current values or not overwrite them (/EXIT,NOSAVE).

ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) Z- CYL. AXIS

RSYS KEY SET TO 1

USE COORDINATE SYSTEM 1 FOR SOLUTION RESULTS

USE LOAD STEP 1 SUBSTEP 0 FOR LOAD CASE 0

SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION= 11 TIME/FREQUENCY= 1.0000 TITLE= 1-ft Corner Drop - Hot Condition

PRINT S NODAL SOLUTION PER NODE

***** POST1 NODAL STRESS LISTING ***** LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 MINIMUM VALUES 25870187017901375325833-460.14-1527.4-23.755-1590.0-9.1219 NODE 1790 -460.14 VALUE -67.553 MAXIMUM VALUES NODE468331790258707752257901870VALUE-33.019907.872192.04.4971-35.23410.558 USE LOAD STEP 2 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 2 SUBSTEP= 1 CUMULATIVE ITERATION= 23 TIME/FREQUENCY= 2.0000 TITLE= 1-ft Corner Drop - Cold Condition (Max. Decay Heat) PRINT S NODAL SOLUTION PER NODE ***** POST1 NODAL STRESS LISTING ***** LOAD STEP= 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0 MINIMUM VALUES NODE187040753187025870377531752VALUE-160.60-6780.3-12845.-161.12-1518.9-26.782 MAXIMUM VALUES 1790257901870187013752-5299.0-10238.130.14-33.689-14.732 NODE 25832 VALUE -128.93 -5299.0 USE LOAD STEP 3 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 3 SUBSTEP= 1 CUMULATIVE ITERATION= 28 TIME/FREQUENCY= 3.0000 TITLE= 1-ft Corner Drop - Cold Condition (No Decay Heat) PRINT S NODAL SOLUTION PER NODE ***** POST1 NODAL STRESS LISTING ***** LOAD STEP= 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0 MINIMUM VALUES NODE187040753187025870377521752VALUE-232.19-10094.-16487.-238.18-1440.8-25.036 MAXIMUM VALUES NODE2583210832257901790187025870VALUE-197.84-8616.2-14410.206.65-30.338-9.0511

***** ANSYS - ENGINEERING ANALYSIS SYSTEM RELEASE 11.0SP1 ***** ANSYS Mechanical/Emag 00222442 VERSION=WINDOWS x64 16:23:51 JUN 18, 2009 CP= 3.172 30-ft End Drop - Cold Condition (No Decay Heat) ***** ANSYS RESULTS INTERPRETATION (POST1) ***** ENTER /SHOW, DEVICE-NAME TO ENABLE GRAPHIC DISPLAY ENTER FINISH TO LEAVE POST1 *** NOTE *** CP = 3.172 TIME= 16:23:51 Reading results into the database (SET command) will update the current displacement and force boundary conditions in the database with the values from the results file for that load set. Note that any subsequent solutions will use these values unless action is taken to either SAVE the current values or not overwrite them (/EXIT,NOSAVE). *** NOTE *** CP = 3.172 TIME= 16:23:51 An active coordinate system is not zero. RSYS= 1 CSYS= 12 DSYS= 0. ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) Z- CYL. AXIS RSYS KEY SET TO 1 USE COORDINATE SYSTEM 1 FOR SOLUTION RESULTS USE LOAD STEP 1 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION= 6 TIME/FREQUENCY= 1.0000 TITLE= 30-ft End Drop - Hot Condition PRINT S NODAL SOLUTION PER NODE ***** POST1 NODAL STRESS LISTING ***** LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 MINIMUM VALUES 40751 25790 NODE 7790 31753 16753 1833 -1.5866 -8.3154 -12577. -3.6271 VALUE -40.194 -183.58 MAXIMUM VALUES NODE 1790 7870 7870 1790 46753 4751 2.7845 -3.3607 -123.52 -12517. 3.6580 VALUE -34.414 USE LOAD STEP 2 SUBSTEP 0 FOR LOAD CASE 0

SET COMMAND GOT LOAD STEP= 2 SUBSTEP= 1 CUMULATIVE ITERATION= 19
TIME/FREQUENCY= 2.0000
TITLE= 30-ft End Drop - Cold Condition (Max. Decay Heat)

PRINT S NODAL SOLUTION PER NODE

***** POST1 NODAL STRESS LISTING *****

LOAD	STEP=	2	SUBSTEP=	1	
TIME	=	2.0000	LOAD	CASE=	0

MINIMU	M VALUES					
NODE	1870	19752	1752	25790	1790	25752
VALUE	-104.64	-5039.0	-31241.	-121.25	-0.77611	-31.252
MAXIMUM	VALUES					
	1 - 0 0	00000	21020	1	05500	00000

NODE	1/90	28832	31832	1/90	25/90	28870
VALUE	-103.73	-4693.5	-31056.	121.25	0.77515	-30.321

USE LOAD STEP 3 SUBSTEP 0 FOR LOAD CASE 0

SET COMMAND GOT LOAD STEP= 3 SUBSTEP= 1 CUMULATIVE ITERATION= 22 TIME/FREQUENCY= 3.0000 TITLE= 30-ft End Drop - Cold Condition (No Decay Heat)

PRINT S NODAL SOLUTION PER NODE

***** POST1 NODAL STRESS LISTING *****

LOAD STEP= 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

 MINIMUM VALUES

 NODE
 25870
 31752
 25752
 25790
 1790
 28752

 VALUE
 -182.43
 -8434.6
 -35285.
 -202.73
 -0.83680
 -33.666

 MAXIMUM VALUES
 13832
 1790
 25790
 4870

 VALUE
 -182.27
 -7950.6
 -35129.
 202.73
 0.84711
 -32.545

***** ANSYS - ENGINEERING ANALYSIS SYSTEM RELEASE 11.0SP1 ***** ANSYS Mechanical/Emag 00222442 VERSION=WINDOWS x64 16:24:48 JUN 18, 2009 CP= 3.109

30-ft Side Drop - Cold Condition (No Decay Heat)

***** ANSYS RESULTS INTERPRETATION (POST1) *****

ENTER /SHOW, DEVICE-NAME TO ENABLE GRAPHIC DISPLAY ENTER FINISH TO LEAVE POST1

*** NOTE *** CP = 3.109 TIME= 16:24:48 Reading results into the database (SET command) will update the current

displacement and force boundary conditions in the database with the values from the results file for that load set. Note that any subsequent solutions will use these values unless action is taken to either SAVE the current values or not overwrite them (/EXIT,NOSAVE). *** NOTE *** CP = 3.109 TIME= 16:24:48 An active coordinate system is not zero. RSYS= 0 CSYS= 12 DSYS= 0. ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) Z- CYL. AXIS RSYS KEY SET TO 1 USE COORDINATE SYSTEM 1 FOR SOLUTION RESULTS USE LOAD STEP 1 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION= 11 TIME/FREQUENCY= 1.0000 TITLE= 30-ft Side Drop - Hot Condition PRINT S NODAL SOLUTION PER NODE ***** POST1 NODAL STRESS LISTING ***** LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 MINIMUM VALUES 17902579013870-178.512.06800.63220 1790 25831 25870 -3555.4 -17725. 25831 25870 NODE VALUE -358.91 MAXIMUM VALUES 1790 NODE 37753 1870 7713 22753 25713 VALUE 8.4213 6941.6 13.240 27427. 807.50 27.800 USE LOAD STEP 2 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 2 SUBSTEP= 1 CUMULATIVE ITERATION= 18 TIME/FREQUENCY= 2.0000 TITLE= 30-ft Side Drop - Cold Condition (Max. Decay Heat) PRINT S NODAL SOLUTION PER NODE ***** POST1 NODAL STRESS LISTING ***** LOAD STEP= 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0 MINIMUM VALUES 25870 25790 1.2447 25790 NODE 1790 25870 25870 13833 VALUE -550.64 -13327. -29549. -325.25 -5.6047 MAXIMUM VALUES 
 37753
 1870
 1870
 1790
 22752
 1870
 NODE

VALUE -158.06 -3300.6 21007. 77.588 851.09 20.412 USE LOAD STEP 3 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 3 SUBSTEP= 1 CUMULATIVE ITERATION= 21 TIME/FREOUENCY= 3.0000 TITLE= 30-ft Side Drop - Cold Condition (No Decay Heat) PRINT S NODAL SOLUTION PER NODE ***** POST1 NODAL STRESS LISTING ***** LOAD STEP= 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0 MINIMUM VALUES NODE 1790 25870 25870 25870 25790 13833 VALUE -622.39 -398.34 0.34364 -16363. -33136. 3.7155 MAXIMUM VALUES NODE 37753 1870 1870 1790 22752 1870 VALUE -223.08 -6468.0 19042. 161.15 821.27 27.999 ***** ANSYS - ENGINEERING ANALYSIS SYSTEM RELEASE 11.0SP1 ***** ANSYS Mechanical/Emag 00222442 VERSION=WINDOWS x64 16:22:13 JUN 18, 2009 CP= 3.000 30-ft Corner Drop - Cold Condition (No Decay Heat) ***** ANSYS RESULTS INTERPRETATION (POST1) ***** ENTER /SHOW, DEVICE-NAME TO ENABLE GRAPHIC DISPLAY TO LEAVE POST1 ENTER FINISH *** NOTE *** CP = 3.000 TIME= 16:22:13 Reading results into the database (SET command) will update the current displacement and force boundary conditions in the database with the values from the results file for that load set. Note that any subsequent solutions will use these values unless action is taken to either SAVE the current values or not overwrite them (/EXIT,NOSAVE). *** NOTE *** 3.000 TIME= 16:22:13 CP = An active coordinate system is not zero. RSYS= 0 CSYS= 12 DSYS= 0. ACTIVE COORDINATE SYSTEM SET TO 1 (CYLINDRICAL) Z- CYL. AXIS RSYS KEY SET TO 1 USE COORDINATE SYSTEM 1 FOR SOLUTION RESULTS USE LOAD STEP 1 SUBSTEP 0 FOR LOAD CASE 0

SET COMMAND GOT LOAD STEP= 1 SUBSTEP= 1 CUMULATIVE ITERATION= 6 TIME/FREQUENCY= 1.0000 TITLE= 30-ft Corner Drop - Hot Condition PRINT S NODAL SOLUTION PER NODE ***** POST1 NODAL STRESS LISTING ***** LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0 MINIMUM VALUES NODE47522587018701790137517751VALUE-160.15-1307.6-7292.4-55.077-3731.4-24.102 MAXIMUM VALUES 17902579047522579048322246.0631.8115.764-80.85031.292 NODE 37752 VALUE -26.915 2246.0 USE LOAD STEP 2 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 2 SUBSTEP= 1 CUMULATIVE ITERATION= 19 TIME/FREQUENCY= 2.0000 TITLE= 30-ft Corner Drop - Cold Condition (Max. Decay Heat) PRINT S NODAL SOLUTION PER NODE ***** POST1 NODAL STRESS LISTING ***** LOAD STEP= 2 SUBSTEP= 1 TIME= 2.0000 LOAD CASE= 0 13753 //12 -47.008 MINIMUM VALUES 2587018702587013753-7901.4-20975.-191.34-3690.5 NODE 1870 VALUE -201.26 -7901.4 -20975. MAXIMUM VALUES 17902579018702579025870-4204.4-13185.116.85-88.245-20.825 NODE 37833 VALUE -128.08 USE LOAD STEP 3 SUBSTEP 0 FOR LOAD CASE 0 SET COMMAND GOT LOAD STEP= 3 SUBSTEP= 1 CUMULATIVE ITERATION= 24 TIME/FREQUENCY= 3.0000 TITLE= 30-ft Corner Drop - Cold Condition (No Decay Heat) PRINT S NODAL SOLUTION PER NODE

***** POST1 NODAL STRESS LISTING *****

LOAD STEP= 3 SUBSTEP= 1 TIME= 3.0000 LOAD CASE= 0

MINIMUM VALUES

NODE	1870	25870	1870	25870	13753	7713
VALUE	-271.34	-11113.	-24709.	-268.53	-3557.1	-45.552
MAXIMUM NODE VALUE	VALUES 13870 -200.65	1790 -7466.4	25790 -17489.	1870 192.38	25790 -86.722	25870 -17.783

Title	3-60B	Cask Inelastic	Analyses o	f the	Bolting	Ring	Skirt under HA	AC Dro	p Loa	dings
Calc.	No	ST-609	_ Rev	·	0	_	Sheet	1	_of_	9

#### 1.0 <u>OBJECTIVE</u>

To demonstrate that the inelastic deformation of the 3-60B Cask bolting ring skirt under HAC drop tests will not compromise the lid effectiveness due to bolt failure.

### 2.0 INTRODUCTION

The finite element analyses of the 3-60B Cask performed in Reference 1 for the HAC drop test conditions show that the bolting ring skirt will be subjected to high stresses during the side and corner drop scenarios. Figures 1 and 2 show the plot of the stress intensities in the cask body under side and corner drop conditions, respectively. It is observed from these plots that the high stresses are confined to a small region near the skirt-bolting ring junction. The stresses are mostly compressive in nature and occur on the non-containment part of the cask. Due to the ductility of the material a redistribution of the stresses will occur after they reach the elastic limit. This will result in a permanent deformation of the region. The large deformation will bring the skirt into contact with the lid, and a part of the impact limiter reaction will be transferred to the lid bolts.

The analyses provided in this document conservatively determine the extent of skirt deformation and calculate the amount of impact limiter reaction that will be transferred to the lid bolts. The analyses have been performed for the HAC side and corner drop scenarios.

A simplified ANSYS (Reference 2) inelastic finite element model has been employed to perform the evaluations. It has been demonstrated that the skirt will undergo less than 2% plastic strains and the load transferred to the lid due to this deformation can be reacted by the bolts without failure.

# 3.0 <u>REFERENCES</u>

- (1) Energy*Solutions* Document ST-504, Structural Analyses of the 3-60B Cask under Drop Conditions.
- (2) ANSYS, Rev. 11.0, Computer Software, ANSYS Inc., Canonsburg, PA, 2007.

# 4.0 FINITE ELEMENT MODEL DESCRIPTION

The inelastic analyses of the bolting ring skirt region are performed using a simplified 3dimensional model of a portion of the region. Figure 3 shows the region in consideration. The skirt and a portion of the bolting ring shown in solid color in the figure have been explicitly modeled. The lid has been represented in the finite element model by a rigid cylindrical target that has an annular clearance of 1/8" (same as the nominal clearance provided in the design). The portion of the bolting ring not included in the finite element model has been represented by fixed boundary conditions. It should be noted that the fixed boundary conditions on the cut face prevent bolting ring rotation, thereby concentrating larger loads near the impact area. This will result in larger stresses at the point of contact and a larger load transfer to the lid. This assertion has been confirmed with the analysis of the FEM with linear material properties and compared with the resulting stresses of Reference 1 for both side drop and corner drop load cases.

Title_	3-60B	Cask Inelastic	Analyses of	the E	Bolting Ring	Skirt und	ler HAC	Drop	Load	lings
Calc.	No	ST-609	_ Rev.		0	S	heet	2	_of	9

#### 4.1 <u>Modeling Details</u>

The FEM used in the analyses of this document is made from 3-dimensional solid finite elements (ANSYS SOLID-45). The choice of this element was based on the fact these 8-node isoparametric elements are very robust for representing an inelastic solid that undergoes a significant amount of bending. The lid is modeled with a rigid cylindrical target surface (ANSYS TARGE-170) and the interface between the skirt surface and the lid is modeled with 3-dimensional 8-node surface-to-surface contact elements (ANSYS CONTA-174). The combination of contact and target elements prevents penetration of one surface into another.

The finite element model geometry is shown in Figures 4 and 5. The portion of the structure near the impact zone is modeled by finer elements than that which is away from the impact zone. Further, the portion of the skirt near the junction with the bolting ring is modeled with finer element than that which is away from the juncture. Thus the stresses and strains in the highly stressed area of the structure are captured by the fine finite elements.

It should be noted that the bolt-holes in the bolting ring have not been modeled as their presence does not have an appreciable effect on the stresses in the skirt.

4.2 <u>Material Properties</u>

The mechanical properties of the material of the finite element model have been represented by the bi-linear kinematic hardening rule. The material is assumed to be isotropic. The tangent modulus of the material has been obtained by using the specified minimum mechanical properties of the material of construction. The bolting ring and the skirt have been specified to have the following mechanical properties.

Yield Stress,  $S_v = 45,000$  psi

Ultimate Strength,  $S_u = 87,000 \text{ psi}$ 

Elongation at the break, e = 40%

Modulus of Elasticity,  $E = 28 \times 10^6$  psi

True strain at break,

 $\varepsilon = \ln \left( 1 + e \right) = 0.3365$ 

To get a lower bound on the tangent modulus, use engineering strain rather than the true strain. Thus,

$$E_t = \frac{87,000 - 45,000}{0.4 - \frac{45,000}{28 \times 10^6}} = 105,424 \text{ psi}$$

Conservatively use 100,000 psi for the tangent modulus of the material.

Title_	3-60B	Cask Inelastic	Analyses of th	ne Bolting	Ring Skirt under HA	C Dro	p Loa	dings	
Calc.	No	ST-609	Rev	0	Sheet_	3	of	9	

#### 4.3 Boundary Conditions

The cut-face of the bolting ring is specified to have fixed boundary conditions. The rigid target surface automatically is fixed in space by the program. The applied loadings are the same as those used in Reference 1.

#### 5.0 ANALYSES DETAILS AND RESULTS

#### 5.1 <u>Side Drop</u>

The impact limiter reaction for the side drop loading described in Reference 1 is applied as a sinusoidally varying pressure along the circumferential direction and uniform along the longitudinal direction. The magnitude of this pressure is obtained from Reference 1. The applied pressure is shown in Figure 6.

The model is analyzed with the boundary conditions mentioned above. The deformation of the structure is shown in Figure 7 and the stress intensity contour plot is shown in Figure 8. Figure 9 shows the contour plot of the equivalent plastic strain in the structure. A maximum value of 1.32% equivalent plastic strain is obtained from the analysis.

The radial deflection of the tip of the skirt is listed in Appendix 1 and is plotted in Figure 10. Superimposing the radial gap of 1/8" over this graph shows that approximately  $2 \times 20 = 40^{\circ}$  of the skirt-tip around the 6 O'clock location will make contact with the lid.

The reaction of the skirt on the lid is obtained from the contact surface load summation. The print-out of this load summation is given in Appendix 1. It shows that  $2 \times 45,417 = 90,834$  lb load will be transferred to the lid. Assuming that this load is transferred to the bolts in shear and further assuming that only 2 bolts near 6 O'clock location carry the entire load, the shear stress in the bolts is calculated. Please note that the lid has 16 bolts, uniformly located around the circumference. Therefore, the angle between the 2 bolts is  $360/16 = 22.5^{\circ} < 40^{\circ}$ , the angle over which the skirt-tip contacts the lid.

Bolts are specified to be 1¹/₂-6UNC A354 Gr. BD. The mechanical properties of these bolts are:

Yield stress,  $S_v = 130,000$  psi

Ultimate strength,  $S_u = 150,000$  psi

The stress area of these bolts is 1.4041 in². Therefore, the shear stress,

 $\tau = 45,417/1.4041 = 32,346$  psi

Under accident conditions, the allowable bolt shear stress is the smaller of  $0.42S_u$  and  $0.6S_y.$ 

Therefore, the allowable shear stress is:

```
\tau_{allow} = Smaller of (0.42×150,000 and 0.6×130,000) = 63,000 psi
```

Thus, the bolts will be subjected to shear stresses that are much below the allowable value.

As a confirmation that the applied loading in this simplified model conservatively depicts the behavior of the side drop loading analyzed in Reference 1, the inelastic properties of the model were suppressed and the model was run for the same loading. The elastic stress intensity contour plot under this loading is shown in Figure 11. Comparing the plot of Figure 1 and Figure 11, it can be seen that this model predicts the stress intensity in the structure more conservatively than the analysis of Reference 1.

#### 5.2 <u>Corner Drop</u>

The impact limiter reaction for the corner drop is applied as pressure loading as shown in Figure 12. The distribution of the pressure loading is obtained from Reference 2.

The model is analyzed with the boundary conditions mentioned above. The deformation of the structure is shown in Figure 13 and the stress intensity contour plot is shown in Figure 14. Figure 15 shows the contour plot of the equivalent plastic strain in the structure. A maximum value of 1.61% equivalent plastic strain is obtained from the analysis.

The radial deflection of the tip of the skirt is listed in Appendix 1 and is plotted in Figure 16. Superimposing the radial gap of 1/8" over this graph shows that approximately  $2 \times 20 = 40^{\circ}$  of the skirt-tip around the 6 O'clock location will make contact with the lid.

The reaction of the skirt on the lid is obtained from the contact surface load summation. The print-out of this load summation is given in Appendix 1. It shows that  $2 \times 13,315 = 26,630$  lb load will be transferred to the lid. Assuming that this load is transferred to the bolts in shear and further assuming that only 2 bolts near 6 O'clock location carry the entire load, the shear stress in the bolts is calculated. Please note that the lid has 16 bolts, uniformly located around the circumference. Therefore, the angle between the 2 bolts is  $360/16 = 22.5^{\circ} < 40^{\circ}$ , the angle over which the skirt-tip contacts the lid.

The bolt shear stress,

 $\tau = 13,315/1.4041 = 9,483 \text{ psi} \ll \tau_{allow} = 63,000 \text{ psi}$ 

Thus, the bolts will be subjected to shear stresses that are much below the allowable value.

As a confirmation that the applied loading in this simplified model conservatively depicts the behavior of the corner drop loading analyzed in Reference 1, the inelastic properties of the model were suppressed and the model was run for the same loading. The elastic stress intensity contour plot under this loading is shown in Figure 17. Comparing the plots of Figure 2 and Figure 17, it can be seen that this model predicts the stress intensity in the structure more conservatively than the analysis of Reference 1.

# 5.0 <u>CONCLUSIONS</u>

The analyses performed in this document demonstrate that under HAC side and corner drop conditions the bolting ring skirt will undergo less than 2% plastic deformation, and the load transferred to the lid due to this deformation will subject the lid bolts to shear stresses that are well below the allowable value for the HAC loading. Therefore, it is concluded that the bolts will not fail under these test conditions.

Title_	3-60B	Cask Inelastic	Analys	es of	the 1	Bolting R	Ring Sl	kirt under HA	C Dro	p Loa	dings
Calc.	No	ST-609	_ I	Rev.		0	-	Sheet _	5	of	9

# **Figures**

(17 Pages)







<u>Figure-3</u> <u>3-60B Cask - Bolting Ring Skirt Components Included in the Inelastic Model</u>

Calc.	Title_
<u>No.</u>	3-60B
ST-609	Cask Inelastic
Rev. 0	Analyses of the Bolting Ring
Sheet <u>3</u> of 17	Skirt under HAC Drop Loading















Displacement of the Skirt Tip under HAC Side Drop Loading

Calc. No. Title 3-60B Cask Inelastic Analyses of the Bolting Ring Skirt under HAC Drop Loading ST-609 Rev. 0 Sheet_ 10 ç 17





HAC Corner Drop Model Applied Impact Limiter Reaction Loading









Displacement of the Skirt Tip under HAC Corner Drop Loading

Title 3-60B Cask Inelastic Analyses of the Bolting Ring Skirt under HAC Drop Loading 17



Title_	3-60B	Cask Inelastic	Analy	ses of	the	Bolting	Ring	Skirt under	HAC	Drop	o Loac	lings
Calc.	No	ST-609	_	Rev.	·	0	_	She	et	6	_of	9

# Appendix 1 FEM Data Print-Out (6 Pages)
#### 1.0 SIDE DROP EVALUATION

```
1.1
      Inelastic FEM Database Print-Out
      /COM,ANSYS RELEASE 11.0SP1 UP20070830 11:11:38 12/31/2009
      /PREP7
      /NOPR
      /TITLE, Nonlinear Skirt Model
      ANTYPE, 0
      NLGEOM, 1
      *IF,_CDRDOFF,EQ,1,THEN
                                !if solid model was read in
      CDRDOFF=
                           !reset flag, numoffs already performed
      *ELSE
                         !offset database for the following FE model
      NUMOFF, NODE,
                    10002
     NUMOFF, ELEM,
                    3029
     NUMOFF, MAT ,
                        1
                        4
     NUMOFF, REAL,
                         5
     NUMOFF, TYPE,
                         9
     NUMOFF,CSYS,
      *ENDIF
      *SET,R1
                  , 18.6250000000
                 , 24.5000000000
, 25.5000000000
      *SET,R2
      *SET,R3
                 , 24.3750000000
      *SET,R4
                 , 180.000000000
      *SET,TH1
                  , -4.00000000000
      *SET,Z1
      *SET,Z2 , 0.0000000000
*SET,Z3 , 4.37500000000
      *SET,_BUTTON , 1.0000000000
      *SET,_CHKMSH , 0.0000000000
      *SET,_CMAP
                     1.000000000000
                 ,
      *SET,_CONTYP , 174.000000000
      *SET,_ET_TYPE, 2.0000000000
      *SET,_GUI_CLR_BG, ' systemButtonFace
                                                        .
      *SET,_GUI_CLR_FG, ' systemButtonText
      *SET,_GUI_CLR_INFOBG, ' systemInfoBackground
      *SET,_GUI_CLR_SEL, ' systemHighlight
      *SET,_GUI_CLR_SELBG, ' systemHighlight
      *SET,_GUI_CLR_SELFG, ' systemHighlightText
      *SET, GUI CLR WIN, ' systemWindow
      *SET, GUI FNT FMLY, 'Arial
      *SET, GUI FNT PXLS, 16.000000000
      *SET,_GUI_FNT_SLNT,'r
      *SET,_GUI_FNT_WEGT,'medium
      *DIM,_L3
                   , ARRAY,
                                44,
                                         1,
                                                  1,
                                            1), 1.00000000000
                          27,
      *SET,_L3
                   (
                                   1,
      *SET,_L3
                  (
                          40,
                                    1,
                                            1), 1.00000000000
                                   1,
                                            1), 1.00000000000
      *SET,_L3
                   (
                          41,
      *SET,_L3
                          42,
                                    1,
                                            1), 1.00000000000
                  (
      *SET,_L3
                  (
                          43,
                                   1,
                                            1),
                                                 1.00000000000
      *SET,_L3
                 (
                          44,
                                   1,
                                            1), 1.00000000000
                               44,
                 , ARRAY,
                                         1,
      *DIM,_L4
                                                  1,
      *DIM,_L5
                 , ARRAY ,
                               44,
                                         1,
                                                  1,
                          1,
      *SET, L5
                                   1,
                                            1), -1.00000000000
                  (
                          2,
                                   1,
      *SET,_L5
                                            (
      *SET,_L5
                                            1), -1.00000000000
                          3,
                                   1,
                  (
                                            1), -1.00000000000
      *SET, L5
                  (
                          4.
                                   1,
```

*SET,_L5	(	5,	1,		1),	-1.000000000000
*SET, L5	(	б,	1,		1),	-1.000000000000
*SET, L5	(	7,	1,		1),	-1.000000000000
*SET, L5	(	8,	1,		1),	-1.000000000000
*SET, L5	(	9,	1,		1),	-1.000000000000
*SET, L5	(	10.	1.		1).	-1.0000000000000
*SET. 15	ì	11.	1.		1).	-1.0000000000000
*SET. 15	í	12	1,		1).	-1 000000000000000
*SET. 15	í	13.	1,		1).	-1 000000000000000
*SET 15	í	14	1		1)	-1 000000000000000000000000000000000000
*SET 15	í	15	1		1)	-1 000000000000000000000000000000000000
*SET,_DJ *SET I.5	(	16	1		1)	-1 000000000000000000000000000000000000
*SET 15	í	17	1		1)	-1 000000000000000000000000000000000000
овг, <u> </u>	(	18	1,		1)	
ע <u>ד הקר</u> אכבית דב	(	10,	⊥, 1		1)	_1 000000000000000000000000000000000000
"СЕТ, <u></u> ЦС КСЕТ ТЕ	(	19, 20	⊥, 1		⊥/, 1\	1 0000000000000000000000000000000000000
"БЕІ, <u> </u> ЦЭ *Срт те	(	20, 21	⊥, 1		⊥/, 1\	-1.000000000000000000000000000000000000
"SEI,_LS *опш IГ	(	∠⊥, 22	⊥, 1		⊥), 1\	-1.000000000000000000000000000000000000
^SET,_L5	(	22,	1,		1),	-1.00000000000
*SET,_L5	(	23,	1,		1),	-1.000000000000
*SET,_L5	(	24,	⊥,		1),	-1.000000000000
*SET,_L5	(	25,	⊥,		1),	-1.000000000000
*SET,_L5	(	26,	1,		1),	-1.0000000000000
*SET,_L5	(	27,	1,		1),	1.000000000000
*SET,_L5	(	28,	1,		1),	-1.000000000000
*SET,_L5	(	29,	1,		1),	-1.0000000000000
*SET,_L5	(	30,	1,		1),	-1.0000000000000
*SET,_L5	(	31,	1,		1),	-1.000000000000
*SET,_L5	(	32,	1,		1),	-1.000000000000
*SET,_L5	(	33,	1,		1),	-1.000000000000
*SET,_L5	(	34,	1,		1),	-1.000000000000
*SET,_L5	(	35,	1,		1),	-1.000000000000
*SET,_L5	(	36,	1,		1),	-1.000000000000
*SET,_L5	(	37,	1,		1),	-1.00000000000
*SET,_L5	(	38,	1,		1),	-1.00000000000
*SET,_L5	(	39,	1,		1),	-1.00000000000
*SET,_L5	(	40,	1,		1),	1.000000000000
*SET,_L5	(	43,	1,		1),	1.000000000000
*SET,_L5	(	44,	1,		1),	1.000000000000
*DIM,_L6	, Al	RRAY,	44,	1,		1,
*SET,_RC_SET	,	4.0000000	00000			
*SET, RETURN	,	0.000000	00000			
*SET, RL1	,	1.0000000	00000			
*SET, STATUS	,	1.0000000	00000			
*SET, UIOR	,	1.0000000	00000			
DOF, DELETE	•		-			
ET, 1.	63					
ET, 2.	45					
KEYOP,	2	1.	1			
ЕΤ. 3	45	,	-			
ET. 4	170					
ET. 5	174					
KEYOP,	5.	9.	1			
/	- ,		-			

The complete database is included in Appendix 2.

### 1.2 Skirt Tip Deflection Print-Out

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM 1

NODE	UX	UY	UZ	ROTX	ROTY	ROTZ
10	-0.13129	0.16078E-16-	-0.90087E-02	0.0000	0.0000	0.0000
264	-0.99094E-01	0.53473E-02-	-0.57774E-02	0.0000	0.0000	0.0000
265	-0.13119	0.23049E-03-	-0.89793E-02	0.0000	0.0000	0.0000
266	-0.13092	0.47528E-03-	-0.89083E-02	0.0000	0.0000	0.0000
267	-0.13054	0.72912E-03-	-0.88223E-02	0.0000	0.0000	0.0000
268	-0.13005	0.98318E-03-	-0.87390E-02	0.0000	0.0000	0.0000
269	-0.12947	0.12365E-02-	-0.86672E-02	0.0000	0.0000	0.0000
270	-0.12883	0.15059E-02-	-0.86355E-02	0.0000	0.0000	0.0000
271	-0.12795	0.18344E-02-	-0.86178E-02	0.0000	0.0000	0.0000
272	-0.12678	0.23372E-02-	-0.87028E-02	0.0000	0.0000	0.0000
273	-0.12501	0.32472E-02-	-0.89012E-02	0.0000	0.0000	0.0000
274	-0.12090	0.46511E-02-	-0.88141E-02	0.0000	0.0000	0.0000
275	-0.11206	0.57669E-02-	-0.78369E-02	0.0000	0.0000	0.0000
1427	0.21057E-02	0.0000	0.36147E-03			
1501	-0.88666E-01	0.57232E-02-	-0.57390E-02	0.0000	0.0000	0.0000
1502	-0.78421E-01	0.69272E-02-	-0.54697E-02	0.0000	0.0000	0.0000
1503	-0.64409E-01	0.82935E-02-	-0.44544E-02	0.0000	0.0000	0.0000
1504	-0.48575E-01	0.93263E-02-	-0.32258E-02	0.0000	0.0000	0.0000
1505	-0.32981E-01	0.96823E-02-	-0.21217E-02	0.0000	0.0000	0.0000
1506	-0.18564E-01	0.92227E-02-	-0.11426E-02	0.0000	0.0000	0.0000
1507	-0.66853E-02	0.80467E-02-	-0.36986E-03	0.0000	0.0000	0.0000
1508	0.88128E-03	0.64254E-02	0.13534E-03	0.0000	0.0000	0.0000
1509	0.39639E-02	0.49321E-02	0.38420E-03	0.0000	0.0000	0.0000
1510	0.42408E-02	0.38956E-02	0.45388E-03	0.0000	0.0000	0.0000
1511	0.34889E-02	0.32591E-02	0.43948E-03	0.0000	0.0000	0.0000
1512	0.27154E-02	0.28454E-02	0.40500E-03	0.0000	0.0000	0.0000
1513	0.22435E-02	0.25123E-02	0.37821E-03	0.0000	0.0000	0.0000
1514	0.20499E-02	0.21861E-02	0.36414E-03	0.0000	0.0000	0.0000
1515	0.20155E-02	0.18432E-02	0.35921E-03	0.0000	0.0000	0.0000
1516	0.20409E-02	0.14838E-02	0.35879E-03	0.0000	0.0000	0.0000
1517	0.20728E-02	0.11152E-02	0.35977E-03	0.0000	0.0000	0.0000
1518	0.20937E-02	0.74347E-03	0.36074E-03	0.0000	0.0000	0.0000
1519	0.21032E-02	0.37150E-03	0.36130E-03	0.0000	0.0000	0.0000
MAXIMUM	ABSOLUTE VALU	JES		-	-	-
NODE	10	1505	10	0	0	0
VALUE -	-0.13129 (	).96823E-02-0	D.90087E-02	0.0000	0.0000	0.0000

#### 1.3 Contact Surface Reaction Print-Out

**** SUMMATION OF TOTAL FORCES AND MOMENTS IN THE GLOBAL COORDINATE SYSTEM **** FX = -45416.58 FY = -15488.74 FZ = 1318.375 MX = 55567.04 MY = -158553.7

MZ = 18741.39

SUMMATION POINT= 0.0000 0.0000 0.0000

#### 2.0 CORNER DROP EVALUATION

#### 2.1 Inelastic FEM Database Print-Out

```
/COM,ANSYS RELEASE 11.0SP1 UP20070830 11:10:36
                                                      12/31/2009
/PREP7
/NOPR
/TITLE, Corner Drop - Nonlinear Skirt Model
ANTYPE, 0
NLGEOM, 1
                          !if solid model was read in
*IF, CDRDOFF, EQ, 1, THEN
_CDRDOFF=
                     !reset flag, numoffs already performed
*ELSE
                  !offset database for the following FE model
NUMOFF, NODE,
             10002
NUMOFF, ELEM,
              3029
NUMOFF, MAT ,
                 1
NUMOFF, REAL,
                  4
                  5
NUMOFF, TYPE,
                  9
NUMOFF, CSYS,
*ENDIF
            , 18.6250000000
*SET,R1
            , 24.5000000000
*SET,R2
           , 25.5000000000
*SET,R3
           , 24.3750000000
*SET,R4
           , 180.000000000
*SET,TH1
           , -4.00000000000
*SET,Z1
           , 0.00000000000
*SET,Z2
            , 4.37500000000
*SET,Z3
*SET,_BUTTON ,
               1.00000000000
*SET,_CHKMSH ,
               0.00000000000
*SET, CMAP
          ,
               1.00000000000
*SET,_CONTYP ,
               174.000000000
*SET,_ET_TYPE,
               2.00000000000
*SET,_GUI_CLR_BG, ' systemButtonFace
*SET,_GUI_CLR_FG,' systemButtonText
*SET,_GUI_CLR_INFOBG, ' systemInfoBackground
*SET,_GUI_CLR_SEL,' systemHighlight
*SET,_GUI_CLR_SELBG,' systemHighlight
*SET,_GUI_CLR_SELFG,' systemHighlightText
*SET,_GUI_CLR_WIN,' systemWindow
*SET, GUI FNT FMLY, 'Arial
*SET, GUI FNT PXLS, 16.000000000
*SET,_GUI_FNT_SLNT,'r
*SET,_GUI_FNT_WEGT,'medium
                        44,
                                  1,
*DIM,_L3
            , ARRAY,
                                           1,
                   27,
*SET,_L3
            (
                                     1), 1.00000000000
                             1,
                             1,
*SET,_L3
                   40,
                                     1), 1.00000000000
            (
*SET,_L3
                   41,
                             1,
                                     1), 1.00000000000
            (
                            1,
*SET,_L3
                   42,
                                     1),
                                          1.00000000000
            (
*SET,_L3
                                     1),
                                          1.00000000000
            (
                   43,
                             1,
*SET, L3
                                     1),
                                          1.00000000000
            (
                   44,
                            1,
                         44,
*DIM,_L4
            , ARRAY,
                                  1,
                                           1,
            , ARRAY,
                         44,
                                  1,
*DIM,_L5
                                           1,
*SET,_L5
                                     1), -1.00000000000
            (
                   1,
                            1,
                            1,
*SET, L5
                    2,
                                     (
                    3,
                            1,
*SET,_L5
                                     (
                                     1), -1.00000000000
*SET, L5
            (
                    4,
                            1,
```

*SET,_L5	(	5,	1,		1),	-1.000000000000
*SET, L5	(	б,	1,		1),	-1.000000000000
*SET, L5	(	7,	1,		1),	-1.000000000000
*SET, L5	(	8,	1,		1),	-1.000000000000
*SET, L5	(	9,	1,		1),	-1.000000000000
*SET, L5	(	10.	1.		1).	-1.0000000000000
*SET. 15	ì	11.	1.		1).	-1.0000000000000
*SET. 15	í	12	1,		1).	-1 000000000000000
*SET. 15	í	13.	1,		1).	-1 000000000000000
*SET 15	í	14	1		1)	-1 000000000000000000000000000000000000
*SET 15	í	15	1		1)	-1 000000000000000000000000000000000000
*SET,_DJ *SET I.5	(	16	1		1)	-1 000000000000000000000000000000000000
*SET 15	í	17	1		1)	-1 000000000000000000000000000000000000
овг, <u> </u>	(	18	1,		1)	
ע <u>ד הקר</u> אכבית דב	(	10,	⊥, 1		1)	_1 000000000000000000000000000000000000
"СЕТ, <u></u> ЦС КСЕТ ТЕ	(	19, 20	⊥, 1		⊥/, 1\	1 0000000000000000000000000000000000000
"БЕІ, <u> </u> ЦЭ *Срт те	(	20, 21	⊥, 1		⊥/, 1\	-1.000000000000000000000000000000000000
"SEI,_LS *опш IГ	(	∠⊥, 22	⊥, 1		⊥), 1\	-1.000000000000000000000000000000000000
^SET,_L5	(	22,	1,		1),	-1.00000000000
*SET,_L5	(	23,	1,		1),	-1.000000000000
*SET,_L5	(	24,	⊥,		1),	-1.000000000000
*SET,_L5	(	25,	⊥,		1),	-1.000000000000
*SET,_L5	(	26,	1,		1),	-1.0000000000000
*SET,_L5	(	27,	1,		1),	1.000000000000
*SET,_L5	(	28,	1,		1),	-1.000000000000
*SET,_L5	(	29,	1,		1),	-1.0000000000000
*SET,_L5	(	30,	1,		1),	-1.0000000000000
*SET,_L5	(	31,	1,		1),	-1.000000000000
*SET,_L5	(	32,	1,		1),	-1.000000000000
*SET,_L5	(	33,	1,		1),	-1.000000000000
*SET,_L5	(	34,	1,		1),	-1.000000000000
*SET,_L5	(	35,	1,		1),	-1.000000000000
*SET,_L5	(	36,	1,		1),	-1.000000000000
*SET,_L5	(	37,	1,		1),	-1.00000000000
*SET,_L5	(	38,	1,		1),	-1.00000000000
*SET,_L5	(	39,	1,		1),	-1.00000000000
*SET,_L5	(	40,	1,		1),	1.000000000000
*SET,_L5	(	43,	1,		1),	1.000000000000
*SET,_L5	(	44,	1,		1),	1.000000000000
*DIM,_L6	, Al	RRAY,	44,	1,		1,
*SET,_RC_SET	,	4.0000000	00000			
*SET, RETURN	,	0.000000	00000			
*SET, RL1	,	1.0000000	00000			
*SET, STATUS	,	1.0000000	00000			
*SET, UIOR	,	1.0000000	00000			
DOF, DELETE	•		-			
ET, 1.	63					
ET, 2.	45					
KEYOP,	2	1.	1			
ЕΤ. 3	45	,	-			
ET. 4	170					
ET. 5	174					
KEYOP,	5.	9.	1			
/	- ,		-			

The complete database is included in Appendix 2.

#### 2.2 Skirt Tip Deflection Print-Out

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN COORDINATE SYSTEM 1

NODE	UX	UY	UZ	ROTX	ROTY	ROTZ
10	-0.13116	0.16063E-16	-0.18728E-01	0.0000	0.0000	0.0000
264	-0.99116E-01	0.58145E-02-	-0.13217E-01	0.0000	0.0000	0.0000
265	-0.13107	0.19258E-03	-0.18697E-01	0.0000	0.0000	0.0000
266	-0.13082	0.40429E-03	-0.18623E-01	0.0000	0.0000	0.0000
267	-0.13046	0.63170E-03	-0.18534E-01	0.0000	0.0000	0.0000
268	-0.12999	0.87884E-03	-0.18430E-01	0.0000	0.0000	0.0000
269	-0.12939	0.11602E-02-	-0.18303E-01	0.0000	0.0000	0.0000
270	-0.12863	0.14940E-02	-0.18144E-01	0.0000	0.0000	0.0000
271	-0.12766	0.19109E-02	-0.17952E-01	0.0000	0.0000	0.0000
272	-0.12642	0.24980E-02	-0.17764E-01	0.0000	0.0000	0.0000
273	-0.12464	0.34003E-02	-0.17683E-01	0.0000	0.0000	0.0000
274	-0.12000	0.45346E-02-	-0.17017E-01	0.0000	0.0000	0.0000
275	-0.11135	0.53960E-02-	-0.15533E-01	0.0000	0.0000	0.0000
1427	0.22331E-02	0.0000	0.38371E-03			
1501	-0.81332E-01	0.70582E-02-	-0.10463E-01	0.0000	0.0000	0.0000
1502	-0.64853E-01	0.78651E-02-	-0.81243E-02	0.0000	0.0000	0.0000
1503	-0.50122E-01	0.84995E-02-	-0.61531E-02	0.0000	0.0000	0.0000
1504	-0.37133E-01	0.88507E-02	-0.45505E-02	0.0000	0.0000	0.0000
1505	-0.25299E-01	0.87792E-02-	-0.31283E-02	0.0000	0.0000	0.0000
1506	-0.14425E-01	0.83364E-02	-0.18358E-02	0.0000	0.0000	0.0000
1507	-0.52001E-02	0.74396E-02-	-0.61064E-03	0.0000	0.0000	0.0000
1508	0.87911E-03	0.62078E-02	0.13964E-03	0.0000	0.0000	0.0000
1509	0.34741E-02	0.50077E-02	0.39399E-03	0.0000	0.0000	0.0000
1510	0.38196E-02	0.41038E-02	0.45971E-03	0.0000	0.0000	0.0000
1511	0.33007E-02	0.34963E-02	0.44811E-03	0.0000	0.0000	0.0000
1512	0.27232E-02	0.30610E-02	0.41989E-03	0.0000	0.0000	0.0000
1513	0.23583E-02	0.26913E-02	0.39806E-03	0.0000	0.0000	0.0000
1514	0.22019E-02	0.23301E-02	0.38650E-03	0.0000	0.0000	0.0000
1515	0.21690E-02	0.19578E-02	0.38229E-03	0.0000	0.0000	0.0000
1516	0.21847E-02	0.15735E-02	0.38175E-03	0.0000	0.0000	0.0000
1517	0.22078E-02	0.11821E-02	0.38243E-03	0.0000	0.0000	0.0000
1518	0.22236E-02	0.78818E-03	0.38315E-03	0.0000	0.0000	0.0000
1519	0.22311E-02	0.39394E-03	0.38358E-03	0.0000	0.0000	0.0000
MAXIMUM	ABSOLUTE VALU	JES				
NODE	10	1504	10	0	0	0
VALUE -	-0.13116 (	).88507E-02-0	D.18728E-01	0.0000	0.0000	0.0000

#### 2.3 Contact Surface Reaction Print-Out

**** SUMMATION OF TOTAL FORCES AND MOMENTS IN THE GLOBAL COORDINATE SYSTEM ***** FX = -13314.88 FY = -3473.623 FZ = 414.9515 MX = 12230.61

- MY = -45516.20
- MZ = 4697.977

SUMMATION POINT= 0.0000 0.0000 0.0000

Title_	3-60B	Cask Inelastic	Analy	ses of	the	Bolting	Ring	Skirt under H	AC I	Drop	Load	lings
Calc.	No	ST-609	_	Rev.		0	_	Sheet		7	_of	9

<u>Appendix 2</u> <u>FEM Electronic Data</u>

(2 Pages + 1 CD)

 Title
 3-60B Cask Inelastic Analyses of the Bolting Ring Skirt under HAC Drop Loadings

 Calc. No.
 ST-609
 Rev.
 0
 Sheet
 8
 of
 9

#### **Directory of Files on the CD**

Volume in drive F is ST-609 Rev0 App2

Volume Serial Number is 2F60-7758 Directory of F:\ Corner Drop Side Drop O bytes 12/31/2009 11:12 AM <DIR> 12/31/2009 11:12 AM <DIR> 0 File(s) Directory of F:\Corner Drop 12/31/2009 11:12 AM <DIR> 12/31/2009 11:17 AM <DIR> . . 12/31/200910:11 AM15,594 Disp.xlsx12/31/200911:10 AM888,677 file.cdb12/31/200909:53 AM17,629,184 file.db12/04/200904:21 PM88,014,848 file.rst12/31/200908:54 AM74,184 file000.pr 74,184 file000.png 111,020 file001.png 94,217 file002.png 73,815 file003.png 519 FSUM.lis 12/04/2009 04:32 PM 12/04/2009 04:32 PM 12/31/2009 08:57 AM 

 12/31/2009
 09:42 AM
 519 FSUM.lis

 12/31/2009
 10:42 AM
 <DIR>
 Linear

 12/31/200911:10 AM673,864 model.out12/31/200909:53 AM3,349 PRDISP.lis 11 File(s) 107,579,271 bytes Directory of F:\Corner Drop\Linear 12/31/2009 10:42 AM <DIR> • 12/31/2009 11:12 AM <DIR> . . 12/31/200908:26 AM15,532,032 file.db12/04/200903:20 PM82,313,216 file.rst12/31/200908:26 AM109,685 file001.png3 File(s)97,954,933 bytes Directory of F:\Side Drop 12/31/2009 11:12 AM <DIR> • 12/31/2009 11:17 AM <DIR> 15,658 Disp.xlsx 873,933 file.cdb 11/10/2009 10:09 AM 12/31/2009 11:11 AM 17,563,648 file.db 12/31/2009 09:39 AM 11/10/2009 09:18 AM 88,211,456 file.rst 11/10/200904:14 PM87,359 file000.png11/09/200904:17 PM123,524 file001.png11/10/200909:23 AM71,168 file002.png11/10/200909:23 AM116,313 file003.png11/10/200909:26 AM137,338 file004.png11/10/200901:34 PM103,710 file005.png

Title_	3-60I	B Cask 1	Inelastic	Analyse	es of the	Bolting R	ing Skirt under HA	C Drop	o Load	lings
Calc.	No	ST-609	)	_ F	Rev	0	Sheet _	9	_of	9
	12/31	L/2009	09:37	AM		106,517	file008.png			
	11/10	)/2009	09:19	AM		519	FSUM.lis			
	12/31	L/2009	10:44	AM	<dir></dir>		Linear			
	10/28	3/2009	09:34	AM		472	Model.in			
	12/31	L/2009	11:11	AM		655,015	model.out			
	11/10	)/2009	09:21	AM		2,567	NLIST.lis			
	11/10	)/2009	09:21	AM		3,349	PRDISP.lis			
			16 H	File(s)	10	8,072,540	5 bytes			
	Dire	ectory	of F:\S	Side Dr	op\Line	ear				
	12/31	L/2009	10:44	AM	<dir></dir>					
	12/31	L/2009	11:12	AM	<dir></dir>					
	12/31	L/2009	08:29	AM	15	,466,496	file.db			
	12/04	1/2009	11:08	AM	82	,182,144	file.rst			
	12/31	L/2009	08:29	AM		126,101	file001.png			
			3 I	File(s)	9'	7,774,741	l bytes			
							-			
		Total	Files I	Listed:						
			33 E	File(s)	41	1,381,493	l bytes			
			12 I	Dir(s)		,	) bytes free			

 Title
 Steady State Thermal Analyses of the 3-60B Cask Using a 3-D Finite Element Model

 Calc. No.
 TH-022
 Rev.
 2
 Sheet
 1
 of
 12

## **1.0 OBJECTIVE**

Perform the thermal analyses of the Energy*Solutions* 3-60B Cask under normal loading conditions, using a 3-dimensional finite element model.

## 2.0 **REFERENCES**

- 1. Energy*Solutions* Drawing No. C-002-165024-001, Rev.0, 3-60B Cask General Arrangement and Details.
- 2. Code of Federal Regulations, Title 10, Part 71, Packaging and Transportation of Radioactive Material, January 2003.
- 3. U.S. NRC Regulatory Guide 7.8, Revision 1, March 1989, Load Combinations for the Structural Analysis of Shipping Casks for Radioactive Material.
- 4. Heat Transfer, J.P. Holman, McGraw Hill Book Company, New York, Fifth Edition, 1981.
- 5. Cask Designers Guide, L.B. Shappert, et. al, Oak Ridge National Laboratory, February 1970, ORNL-NSIC-68.
- 6. CRC Handbook of Chemistry and Physics, Robert C. Weast and Melvin J. Astel, eds., CRC Press, Inc., Boca Raton, Florida, 62nd ed., 1981.
- 7. ASME Boiler & Pressure Vessel Code, 2005, Section II, Part D, Materials, American Society of Mechanical Engineers, New York, NY, 2005.
- 8. Rohsenow and Hartnett, Handbook of Heat Transfer, McGraw Hill Publication, 1973.
- 9. ANSYS, Version 11.0, Computer Software, ANSYS Inc., Canonsburg, PA, 2007.

## 3.0 INTRODUCTION

Energy*Solutions* 3-60B Cask (Reference 1) is designed as a Type B radioactive material shipping package. To be certified by the U.S.N.R.C., the cask needs to meet the requirements of 10 CFR 71 (Reference 2) and follow the guidelines of U.S.N.R.C. Regulatory Guide 7.8 (Ref. 3).

This document presents the thermal load analysis of the 3-60B Cask for the normal conditions of transportation (NCT). These conditions include the hot and cold environments - the initial loading for the free and hypothetical drop conditions. The hypothetical fire accident test condition analysis has been performed in a separate document. The analyses in this document are performed using the finite element modeling techniques. A three-dimensional model of the cask that includes all its major components has been employed in the analyses. Temperature dependent material properties of the major components of the cask are used in the analyses.

The results of the analyses for various load cases are presented pictorially in temperature contour plots as well as digital data format, suitable for use with a structural finite element model to obtain the thermal stresses.

 Title
 Steady State Thermal Analyses of the 3-60B Cask Using a 3-D Finite Element Model

Calc. No. <u>TH-022</u> Rev. <u>2</u>

Sheet <u>2</u> of <u>12</u>

# 4.0 MATERIAL PROPERTIES

# **Temperature-Independent Metal Thermal Properties**

Material	Property	<b>Reference:</b> Page	Value
Steel	Density	4: 536	0.2824 lb/in ³
	ε (Outside)	2:648	0.8
	ε (Inside)	5:133	0.15
Lead	Density Spec. Heat	4: 535 4: 535	0.4109 lb/in ³ 0.0311 Btu/lb-°F
	Melting Point	6: B-29	621.5 °F

## **Temperature-Dependent Metal Thermal Properties**

Temp.	Stainless Steel (Ref. 7)		Carbon	Steel (Ref.7)	Lead (Ref.8)		
(°F)	Sp. Heat	Conductivity	Sp. Heat	Conductivity	Conductivity		
		×10 ⁻³		×10 ⁻³	×10 ⁻³		
	Btu/lb-°F	Btu/sec-in-°F	Btu/lb-°F	Btu/sec-in-°F	Btu/sec-in-°F		
70	0.117	0.199	0.104	0.813	0.465		
100	0.117	0.201	0.106	0.803	0.461		
150	0.120	0.208	0.109	0.789	0.455		
200	0.122	0.215	0.113	0.778	0.448		
250	0.125	0.222	0.115	0.762	0.441		
300	0.126	0.227	0.118	0.748	0.435		
350	0.128	0.234	0.122	0.731	0.428		
400	0.129	0.241	0.124	0.715	0.422		
450	0.130	0.245	0.126	0.701	0.415		
500	0.131	0.252	0.128	0.683	0.409		
550	0.132	0.257	0.131	0.667	0.402		
600	0.133	0.262	0.133	0.648	0.395		
650	0.134	0.269	0.135	0.632	0.389		
700	0.135	0.273	0.139	0.616	0.389		
750	0.136	0.278	0.142	0.600	0.389		
800	0.136	0.282	0.146	0.583	0.389		
900	0.138	0.294	0.154	0.551	0.389		
1,000	0.139	0.306	0.163	0.519	0.389		
1,100	0.141	0.315	0.172	0.484	0.389		
1,200	0.141	0.324	0.184	0.451	0.389		
1,300	0.143	0.336	0.205	0.417	0.389		
1,400	0.144	0.345	0.411	0.380	0.389		
1,500	0.145	0.354	0.199	0.363	0.389		

Title	Steady Sta	ate Thermal	Analyse	es of the	3-60B Cask	Using a 3-D	Finite Elen	nent l	Mod	el
Calc. N	0. <u> </u>	022	Rev.	2	_	-	Sheet _	3	of	12

Temp.		Air (Ref.4)	
(°F)	Density	Sp. Heat	Conductivity
	×10 ⁻⁵		×10 ⁻⁷
	lb/in ³	Btu/lb-°F	Btu/sec-in-°F
70	4.3507	0.2402	3.4491
100	4.1117	0.2404	3.5787
150	3.7517	0.2408	3.9028
200	3.4676	0.2414	4.1759
250	3.2361	0.2421	4.4468
300	3.0307	0.2429	4.7037
350	2.8310	0.2438	4.9560
400	2.6730	0.2450	5.2037
450	2.5220	0.2461	5.4491
500	2.3964	0.2474	5.6875
550	2.2778	0.2490	5.9213
600	2.1684	0.2511	6.1435
650	2.0706	0.2527	6.3634
700	1.9803	0.2538	6.5810
750	1.8981	0.2552	6.7894
800	1.8177	0.2568	6.9954
900	1.6898	0.2596	7.4097
1,000	1.5712	0.2628	7.8032
1,100	1.4722	0.2659	8.1759
1,200	1.3848	0.2689	8.5440
1,300	1.3044	0.2717	8.8981
1,400	1.2350	0.2742	9.2847
1,500	1.1707	0.2766	9.7060

## **Temperature-Dependent Air Thermal Properties**

### 5.0 MODEL DESCRIPTION

The thermal analyses of the 3-60B Cask under various loading conditions have been performed using finite element modeling techniques. ANSYS finite element analysis code (Ref. 9) has been employed to perform the analyses. Since the lid of the cask is attached to the body using 16 bolts, the cask geometry has a cyclic symmetry every 11.25° of the circumference. Therefore, an 11.25° model of the cask is employed. Figure 1 shows the finite element model used in various thermal load analyses. Figures 2 and 3 show the exploded views of various regions of the finite element model. Figure 4 shows the material property model numbers of various components of the cask.

The finite element model is made of 3-dimensional thermal solid elements (ANSYS SOLID70)that represent the major components of the cask, the cask body, the lid, the bolts, and the fire shield. The 3-60B Cask package is designed to maintain an air gap between the cask ends and the impact limiters. These impact limiters remain attached to the cask body during the normal as well as hypothetical drop test conditions. Heat transfer between the cask

Title	Stead	y State 7	Thermal Analy	yses of the	3-60B Cask Usin	g a 3-D Finite Eler	nent	Model	
Calc. N	0	ТН-022	Rev.	2	_	Sheet _	4	_ <b>of</b> _1	2

ends and the impact limiter plate takes place by means of radiation and conduction through the air gap. Therefore, the impact limiter end plates are also included in the finite element model (see Figure 3). These plates are modeled by 3-dimensional thermal solid elements. The interstitial air gaps between the impact limiter plates and the cask end as well as that between the fire-shield and the cask body are modeled by these elements also.

The poured lead in the body is not bonded to the steel. It is free to slide over the steel surface. Therefore, the interface between the lead and the steel is modeled by pairs of 3-d 8 node thermal contact element (CONTA174) and 3-d target segment (TARGE170) elements. These elements allow the lead to slide over the steel and at the same time prevent it from penetrating the steel surface. The interface between the two plates of the lid at the weld location is also modeled by the contact-target pairs. The transition from a coarser mesh to a finer mesh, as well as bondage between various parts of the model, is also achieved by using these elements. Figure 5 shows target surfaces of various contact-target pairs.

The heat transfer by radiation between the fire-shield and the ambient air is modeled by 3-d thermal surface (ANSYS SURF152). The radiation between the outer shell and the fire-shield, and between the impact limiter plates and the cask body, is modeled by superelements (ANSYS MATRIX50). These elements are formed by modeling the radiating surfaces with thermal shells (ANSYS SHELL57) and specifying the appropriate emissivity of the surfaces and the Stefan-Boltzmann constant. The heat transfer by natural convection between the fire-shield and the ambient air is simulated by 3-d thermal surface (ANSYS SURF152). The outer surfaces of the impact limiter plates, which are covered by foam, are considered to be totally insulated. The real constants used in the ANSYS finite element model, to define the characteristic of various finite elements to simulate the heat transfer by convection and radiation, are based on the derivation in the following section. The heat flux representing the internal heat load and the solar insolation is also presented in the following section. A print-out of the model data input is included in Appendix 1.

### 5.1 <u>Convection Modeling</u>

The convective heat transfer per unit area between the cask and the atmosphere, q, is governed by the equation:

$$q = hA(T_s - T_a)$$

where:

h = Heat transfer coefficient ( $Btu/hr-ft^2-F$ )

A = Area (sq ft)

 $T_s = cask surface temperature (°F)$ 

 $T_a =$  ambient temperature (°F)

The heat transfer coefficient for the natural convection is given by the following relationship (see for example Ref. 5, page 135).

$$h = C \left( T_s - T_a \right)^{1/3}$$

Title	Steady	State '	Thermal A	Analys	ses of the	e 3-60B	Cask	Using	a 3-D I	Finite Ele	ement	Mo	del
Calc. No	о. <u> </u>	Ъ-022	]	Rev.	2			•		Sheet	5	_of	12

where, for horizontal casks,

C = 0.18 (Btu/hr-ft²-F^{4/3})= 3.4722×10⁻⁷ (Btu/sec-in²-F)

## 5.2 <u>Radiation Modeling</u>

The heat transfer by radiation between two nodes of a finite element model is governed by the following equation (see for example Ref. 4).

$$q = \sigma \ \epsilon \ F \ A \left( T_I^4 - T_J^4 \right)$$

where:

q = heat flow rate (Btu/hr)

 $\sigma$  = Stefan-Boltzmann Constant

 $= 1.7136 \times 10^{-9} (Btu/hr-ft^2-R^4)$ 

$$= 3.3056 \times 10^{-15} (Btu/sec-in^2-R^4)$$

 $\varepsilon = \text{emissivity}$ 

F = geometric form factor

$$A = area (sq ft)$$

T = temperature (°R)

I = first node number

J = second node number

Two radiation heat transfer systems are modeled: (1) radiation heat transfer between the fire shield outside surface and the environment, and (2) radiation between the fire shield inside surface and the cask shell outside surface and radiation between the cask ends and the impact limiter plates. Emissivity, area, and geometric form factors are defined in both systems.

The overall emissivity for radiation heat transfer between the fire shield and the environment is set equal to the overall emissivity,  $\varepsilon$ , for heat transfer between two infinite parallel planes as given by the following equation (Ref. 4, page 336).

$$\boldsymbol{\epsilon} = \frac{\boldsymbol{\epsilon}_1 \boldsymbol{\epsilon}_2}{\boldsymbol{\epsilon}_2 + \boldsymbol{\epsilon}_1 - \boldsymbol{\epsilon}_1 \boldsymbol{\epsilon}_2}$$

where:

 $\varepsilon$  = overall emissivity  $\varepsilon_1$  = surface 1 emissivity

 $\varepsilon_2$  = surface 2 emissivity

An environment emissivity coefficient of 0.9 was assumed for the normal conditions of transport. The emissivity of the outside of the fire-shield and the environment are 0.8 and 0.9, respectively. Thus, the overall emissivity is calculated by the above equation to be 0.7347.

Title	Steady	y State '	Thermal A	Analy	ses of the	3-60B (	Cask Us	sing a 3-D	Finite Eler	nent	Mod	lel	
Calc. No	0	<u>ГН-022</u>	I	Rev.	2	_		-	Sheet _	6	_of_	12	

Form factor value of 1.0 is used and the area of the surface is automatically calculated by the computer program.

It should be noted that the use of 0.7347 for emissivity instead of the code specified value of 0.9 is conservative for the NCT environment as a lesser amount of heat is rejected from the cask, which results in higher cask temperatures.

The radiation between the outer shell and the fire-shield, and between the impact limiter plates and the cask body, is modeled by superelements (ANSYS MATRIX50). These elements are formed by modeling the radiating surfaces with thermal shells (ANSYS SHELL57). The emissivity value is set equal to minimum emissivity of stainless steel, i.e. 0.15. Stefan-Boltzmann constant as defined above is used. The form-factor of unity is used and the appropriate radiating surface area is automatically calculated by the computer program.

# 5.3 <u>Solar Insolation Modeling</u>

The total insolation is required to be 400 gcal/cm² for a 12-hour period for curved surfaces according to the Code of Federal Regulations 10CFR71.71 (Ref 2). The total insolation of 400 gcal/cm² is divided by 12 hours of assumed sunlight to yield an average insolation rate. The average insolation rate is then multiplied by the surface emissivity specified earlier in this document (0.7347) yielding an insolation rate of  $1.742 \times 10^{-4}$  Btu/sec-in². This insolation heat load is applied to the outside surface of the fire shield.

## 5.4 Internal Heat Load Modeling

The internal heat load content of the 3-60B Cask has been represented in the finite element models by two different ways. In the first, the heat load is implicitly represented by a uniform heat flux over the cask cavity. In the second, it is explicitly represented by the finite element model of the waste container and the cavity air. The heat load in this case is applied as a constant heat flux over the waste container wall.

# 5.4.1 Implicit Internal Heat Load Modeling

The 500-Watt decay heat load is modeled as a constant heat flux over the exposed sidewall inner surface of the cask. The heat flow rate across the inner surface of the cask inner shell is set equal to the decay heat load. This is a conservative approximation during the fire transient, since, in reality, some of the heat from the fire would be transferred to the waste. Thus, the waste would act as a heat sink lowering the wall temperature.

Internal heat load,  $q = 500 \text{ W} = 500 \times 9.4804 \times 10^{-4} = 0.4740 \text{ Btu/sec}$ 

The cask inside diameter is 35" and the cavity height is 109.375". Thus, the heat flux on the inside surface of the cask is:

$$q_{s} = 0.4740/(\pi \times 35 \times 109.375 + 2 \times \pi/4 \times 35^{2})$$
  
= 3.398×10⁻⁵ Btu/sec-in²

# 5.4.2 Explicit Internal Heat Load Modeling

In order to obtain the temperature of the waste container and the cavity air during the NCT, they are explicitly represented in the finite element model by 3-dimensional solid elements with appropriate material properties. The waste container is conservatively assumed to be a

Title	Stead	y State	Thermal A	Analys	ses of the	3-60B	Cask U	sing a 3-D	Finite Eler	ment	Mod	lel
Calc. N	0	- TH-022	F	Rev.	2	_		-	Sheet _	7	_of_	12

cylindrical shell having the diameter and length to be approximately  $\frac{1}{2}$  of the corresponding cavity dimensions.

Waste Container Outside Diameter = 17", Length = 50", Wall Thickness = 1.0"

Container Inside Surface Area =  $\pi \times (17-2) \times (50-2) + 2 \times [\pi \times (17-2)^2/4] = 2,615 \text{ in}^2$ 

The heat flux is applied on the inside surface of the waste container. Its magnitude is:

 $q_w = 0.474/2,615 = 1.813 \times 10^{-4} \text{ Btu/sec-in}^2$ 

The cavity air is conservatively assumed to be stagnant - no convective heat transfer is assumed to take place between the waste container and the cask cavity. Thus, the heat transfer between these components takes place by means of conduction through the air and radiation between the two bodies. The air conduction is accounted for by the appropriate material properties of the finite elements representing it. The heat transfer by radiation is achieved by the ANSYS radiosity process. The coefficient of emissivity for both the surfaces is assumed to be 0.8 and the form-factor is automatically calculated by the computer program from the geometry of the two bodies. The finite element model of the cask with explicit internal heat load modeling is shown in Figure 6.

# 6.0 ANALYSES

The finite element model, with the implicit internal heat load modeling, described in Section 5.0 is analyzed for the following loading conditions:

- 1. Hot Environment This load case is based on the requirements of 10 CFR 71.71 (c) (1). The loading includes a 100° F ambient temperature, solar insolation, and maximum internal heat load. This loading is used as one of the extreme initial conditions for the normal conditions of transport (NCT) and hypothetical accident condition (HAC) test evaluation.
- Cold Environment This load case is based on the requirements of 10 CFR 71.71 (c) (2). The loading includes a -40° F ambient temperature, no solar insolation, and maximum internal heat load. This loading is used as one of the extreme initial conditions for the normal conditions of transport (NCT) and hypothetical accident condition (HAC) test evaluation.
- 3. Normal Hot This load case is based on the requirements of 10 CFR 71.71 (b). The loading includes a 100° F ambient temperature, no solar insolation, and maximum internal heat load.
- 4. Normal Cold This load case is based on the requirements of 10 CFR 71.71 (b). The loading includes a -20° F ambient temperature, no solar insolation, and maximum internal heat load.

The finite element model, with explicit heat load modeling, has been used to analyze the NCT hot environment loading case.

# 7.0 **RESULTS**

The results of the analyses of the finite element model, with the implicit heat load modeling, are presented in Figures 7 through 10 in form of temperatures contour plots. Table 1 summarizes the maximum calculated temperature of various components of the cask.

The finite element model of the cask, with the explicit internal heat load modeling, results are shown in Figures 11 through 14. Figure 11 shows the temperature profile in the entire cask-

Title	Stead	ly State	Thermal	Analy	yses o	of the	3-60B	Cask	Using	g a 3-D	Finit	e Elen	nent	Mod	lel	
Calc. N	0	- TH-022	,	Rev.	2	2	_				S	heet _	8	_of_	12	

waste container system. Figure 12 shows the temperature profile of the cask cavity air. Figure 13 shows the temperature profile in the waste container. The cask body temperature profile is shown in Figure 14.

The calculated temperatures are summarized below:

Maximum cavity temperature	= 227.3 °F
Average cavity temperature	= $186 ^{\circ}\text{F}$ (see Figure 13)
Maximum waste container temperature	= 227.5 °F

From the results of the analyses it is clear that the model with the implicit heat load representation gives higher temperatures in the cask body whereas the one with the explicit heat load representation gives higher cavity temperature. For comparison purposes, the temperature profile of the cask body obtained from the two models for the NCT hot environment loading conditions is shown in Figure 15.

Since the model with implicit heat load representation predicts a more conservative cask body temperature results, they are used in the thermal stress evaluation of the cask.

Component	Maximum Calo	Maximum Allowable Temperature (°F)	
	Location (Node Nos.)	Value (°F)	
Fire Shield	2268	177.7	185 ⁽¹⁾
Outer Shell	2028	177.6	(2)
Inner Shell	1800	177.8	(2)
Lead	2718	178.9	622
Seals	249	178.6	450

Table 1Summary of Maximum NCT Temperatures

NOTES:

(1) Based on the requirements of 10CFR71.45(g)

(2) Set by stress conditions.

Title	Stead	y State	Thermal A	Analyses	of the	3-60B (	Cask Us	sing a 3-D	Finite Ele	ement	Mod	lel
Calc. N	0	- ТН-022	R	Rev	2	_		-	Sheet	9	_of_	12

## 8.0 ANSYS PRINTOUT AND DATA FILES

The printout of the important data from the program is included with this document in electronic form as Appendix 1. The complete electronic data of the input and output of the analyses are included on a CDROM in Appendix 2.

## 9.0 APPENDICES

Appendix 1 Print-out of the ANSYS model data input

Appendix 2 Electronic data on CDROM

Title	Steady State	Thermal Analy	yses of the	3-60B Cask Usir	ig a 3-D Finite Elen	nent M	lode	1
Calc. No	D. <u>TH-022</u>	Rev.	2	_	Sheet _	10	_of	12

# **Figures**

(15 Pages)

























Figure 12 - Temperature Profile of the Cask Cavity Air

3-60B Cask Using a 3-D Finite Element Model of 15





Figure 14 - Cask Temperature Profile with Explicit Content Modeling

15



Title	Steady	y State T	Thermal Analy	yses of th	ne 3-60B C	ask Using	a 3-D Fi	nite Elen	nent N	lode	1
Calc. No	0. <u> </u>	ГН-022	Rev.	2		•		Sheet _	11	_of_	12

<u>Appendix 1</u> Printout of the ANSYS model data input (13 Pages)

#### 3-60B Cask NCT Analyses - ANSYS Model Data

***** TITLES ***** *** YOU ARE IN ANSYS - ENGINEERING ANALYSIS SYSTEM *** ANSYS Mechanical/Emag RELEASE 11.0SP1 UPDATE 20070830 CUSTOMER 00222442 INITIAL JOBNAME = file CURRENT JOBNAME = file Current Working Directory: D:\Ansys Analyses\3-60B\Thermal\NCT with Conc Heat Load -1 TITLE= Hot Environment MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans GLOBAL STATUS ANSYS - Engineering Analysis System Jun 09, 2009 11:49 WINDOWS x64 Version Release 11.0SP1 00222442 Current working directory: D:\Ansys Analyses\3-60B\Thermal\NCT with Conc Heat Load -1 MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans Product(s) enabled: ANSYS Mechanical/Emag Total connect time. . . . 0 hours 1 minutes Total CP usage. . . . . . 0 hours 0 minutes 2.5 seconds JOB INFORMATION------Hot Environment Current jobname . . . . . . . file Initial jobname . . . . . . . file Available Used 4796.000 mb Scratch Memory Space. . . . 10.632 mb ( 0.2%) Database space . . . . . . 1048572.000 mb 15.685 mb ( 0.0%) User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\enus\uidl\UIMENU.GRN User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\enus\uidl\UIFUNC1.GRN User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\enus\uidl\UIFUNC2.GRN User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\enus\uidl\MECHTOOL.AUI Beta features . . . . . . . are not shown in the user interface MODEL INFORMATION ------Solid model summary:

Largest	Number	Number							
Number	Defined	Selected							
Keypoints							0	0	0
-----------	--	---	---	---	--	---	---	---	---
Lines							0	0	0
Areas							0	0	0
Volumes .		•	•	•		•	0	0	0

Finite element model summary:

	Largest	Number	Number	
	Number	Derined	Selected	
Nodes	33290	10933	10933	
Elements	13560	8232	8232	
Element types	69	41	n.a.	
Real constant sets	53	25	n.a.	
Material property sets	27	7	n.a.	
Coupling	52	20	n.a.	
Constraint equations	0	0	n.a.	
Master DOFs	0	0	n.a.	
Dynamic gap conditions	0	0	n.a.	

BOUNDARY CONDITION INFORMATION ------

Constraints on nodes	Number Defined 0 0 0		
Forces on nodes	0 0		
Surface loads on elements	156 0 0 0		
Body loads on elements	0 0 0		
Temperatures Uniform temperature	100.000 460.000		
Linear acceleration	X 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Z 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ROUTINE INFORMATION			
Current routine	processing (I	REP7)	
Active coordinate system 0	(Cartesian)	)	
Display coordinate system 0	(Cartesian)	1	

Current element attributes:

(CONTA174)

68

Type number . . . . . . . . . . . . . 53 Material number . . . . . . . . . 1 Element coordinate system number. . 0 Current mesher type. . . . . . . . . . . . . based on default element shape Current element meshing shape 2D . . .use default element shape. Current element meshing shape 3D . . .use default element shape. SmrtSize Level . . . . . . . . . . . OFF Global element size. . . . . . . . . . 0 divisions per line Active coordinate system . . . . . . 0 (Cartesian) Display coordinate system. . . . . . 0 (Cartesian) Active options for this analysis type: Step change boundary conditions . . No SOLUTION OPTIONS DEGREES OF FREEDOM. . . . . TEMP OFFSET TEMPERATURE FROM ABSOLUTE ZERO . . . . . 460.00 LOAD STEP OPTIONS 2 TIME AT END OF THE LOAD STEP. . . . . . . . . . . 2.0000 100 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . . 15 STEP CHANGE BOUNDARY CONDITIONS . . . . . . . . . NO TERMINATE ANALYSIS IF NOT CONVERGED . . . . . . YES (EXIT) DATABASE OUTPUT CONTROLS FREQUENCY COMPONENT ITEM BASI ALL LIST ELEMENT TYPES FROM 1 TO 69 BY 1 ELEMENT TYPE 1 IS SOLID70 3-D THERMAL SOLID INOPR 0 0 0 0 0 0 KEYOPT(1-12) = 0 0 00 0 0 0 ELEMENT TYPE 2 IS SHELL57 THERMAL SHELL INOPR KEYOPT(1-12)= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ELEMENT TYPE KEYOPT(1-12)=	3 0	IS 0	SOLID70 0 0	0	3-D THERMAL SOLID         I           0         0         0         0         0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	4 0	IS 0	SURF152 0 1	1	3-D THERMAL SURFACE         I           0         0         1         0         0         0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	5 0	IS 0	SURF152 0 1	1	3-D THERMAL SURFACE I 0 1 4 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	6 0	IS 0	SURF152 0 1	1	3-D THERMAL SURFACE I 0 0 4 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	7 0	IS 0	SURF152 0 1	0	3-D THERMAL SURFACE I 0 0 1 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	14 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT I 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	15 2	IS 2	CONTA174 0 2	0	3D         8-NODE         THERMAL         CONTACT         I           0         0         0         0         0         5         0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	16 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT I 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	17 2	IS 2	CONTA174 0 2	0	3D         8-NODE         THERMAL         CONTACT         I           0         0         0         2         0         5         0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	18 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT I 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	19 2	IS 2	CONTA174 0 2	0	3D         8-NODE         THERMAL         CONTACT         I           0         0         0         2         0         0         0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	20 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT I 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	21 2	IS 2	CONTA174 0 2	0	3D         8-NODE         THERMAL         CONTACT         I           0         0         0         2         0         0         0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	22 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT I 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	23 2	IS 2	CONTA174 0 2	0	3D 8-NODE THERMAL CONTACT I 0 0 0 0 2 0 5 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	24 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT I 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	25 2	IS 2	CONTA174 0 2	0	3D 8-NODE THERMAL CONTACT I 0 0 0 0 2 0 5 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	26 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT I 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	27 2	IS 2	CONTA174 0 2	0	3D 8-NODE THERMAL CONTACT I 0 0 0 0 2 0 5 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	28 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT I 0 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	29 2	IS 2	CONTA174 0 2	0	3D 8-NODE THERMAL CONTACT I 0 0 0 0 2 0 5 0	NOPR

ELEMENT TYPE KEYOPT(1-12)=	30 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT         INOPR           0         0         0         0         0
ELEMENT TYPE KEYOPT(1-12)=	31 2	IS 2	CONTA174 0 2	0	3D 8-NODE THERMAL CONTACTINOPR0002050
ELEMENT TYPE KEYOPT(1-12)=	50 1	IS 0	MATRIX50 0 0	0	SUPERELEMENT (SUBSTRUCTURE) INOPR 0 0 0 0 0 0 0 0 0
ELEMENT TYPE KEYOPT(1-12)=	53 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT         INOPR           0         0         0         0         0
ELEMENT TYPE KEYOPT(1-12)=	54 2	IS 2	CONTA175 0 0	0	NODE-SURF PURE THERM CONTACT INOPR 0 0 0 0 2 0 5 0
ELEMENT TYPE KEYOPT(1-12)=	57 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT         INOPR           0         0         0         0         0         0
ELEMENT TYPE KEYOPT(1-12)=	58 2	IS 2	CONTA174 0 2	0	3D8-NODETHERMALCONTACTINOPR0002050
ELEMENT TYPE KEYOPT(1-12)=	59 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT         INOPR           0         0         0         0         0
ELEMENT TYPE KEYOPT(1-12)=	60 2	IS 2	CONTA174 0 2	0	3D8-NODETHERMALCONTACTINOPR0002050
ELEMENT TYPE KEYOPT(1-12)=	61 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT         INOPR           0         0         0         0         0
ELEMENT TYPE KEYOPT(1-12)=	62 2	IS 2	CONTA174 0 2	0	3D8-NODETHERMALCONTACTINOPR0002050
ELEMENT TYPE KEYOPT(1-12)=	63 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT         INOPR           0         0         0         0         0
ELEMENT TYPE KEYOPT(1-12)=	64 2	IS 2	CONTA174 0 2	0	3D8-NODETHERMALCONTACTINOPR0002050
ELEMENT TYPE KEYOPT(1-12)=	65 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT         INOPR           0         0         0         0         0
ELEMENT TYPE KEYOPT(1-12)=	66 2	IS 2	CONTA174 0 2	0	3D 8-NODE THERMAL CONTACTINOPR0002050
ELEMENT TYPE KEYOPT(1-12)=	67 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT         INOPR           0         0         0         0         0
ELEMENT TYPE KEYOPT(1-12)=	68 2	IS 2	CONTA174 0 2	0	3D8-NODETHERMALCONTACTINOPR0002050
ELEMENT TYPE KEYOPT(1-12)=	69 0	IS 0	SURF252 0 1	0	3-D THERMAL SURFACE         INOPR           0         0         0         0         0
CURRENT NODAL E THREE-DIMENSIC	OF SE NAL N	et i 10di	IS TEMP EL		
LIST REAL SETS		1	TO	53	BY 1
REAL CONSTANT S 1.0000	ET 0.330	)561	23 ITEMS E-14 0.0	5 000	1 TO 6 0 0.0000 0.0000 0.000
REAL CONSTANT S	ET		23 ITEMS	5	7 TO 12

0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 23 0.0000	ITEMS 13 TO 0.0000	18 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 24 0.0000	ITEMS 1 TO 0.0000	6 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 24 0.0000	ITEMS 7 TO 0.0000	12 0.0000	0.0000	0.0000
REAL CONSTANT 0.33300	SET 24 0.0000	ITEMS 13 TO 0.0000	18 0.0000	0.0000	0.0000
REAL CONSTANT 1.0000	SET 27 0.33056E-1	ITEMS 1 TO 4 0.0000	6 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 27 0.0000	ITEMS 7 TO 0.0000	12 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 27 0.0000	ITEMS 13 TO 0.0000	18 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 28 0.0000	ITEMS 1 TO 0.0000	6 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 28 0.0000	ITEMS 7 TO 0.0000	12 0.0000	0.0000	0.0000
REAL CONSTANT 0.33300	SET 28 0.0000	ITEMS 13 TO 0.0000	18 0.0000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 32 0.0000	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 32 0.0000	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 32 0.0000	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 32 1.0000	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 33 0.0000	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 33 0.0000	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 33 0.0000	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 33 1.0000	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 34 0.0000	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 34 0.0000	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT	SET 34	ITEMS 13 TO	18		

0.0000	0.0000		1.0000	0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	34	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	35	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	36	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	36	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	36	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	36	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	37	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	37	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	37	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	37	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	38	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	38	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	38	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	38	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	39	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	39	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	39	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT	SET	39	ITEMS 19 TO	24		

0.0000	1.0000		1.0000	0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	40	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	42	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	43	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	44	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	45	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT	SET	46	ITEMS 1 TO	6		

0.0000	0.0000		1.0000	0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	46	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	46	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	46	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	47	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	47	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	47	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	47	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	48	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	48	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	48	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	48	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	49	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	49	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	49	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	49	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	50	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	50	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	50	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	50	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	51	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT	SET	51	ITEMS 7 TO	12		

0.0000	0.0000		0.1000	0E+23	L 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	51	ITEMS 1.000	13 Т( 0	0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	51	ITEMS 1.000	19 Т( 0	0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	52	ITEMS 1.000	1 Т( 0	0 6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	52	ITEMS 0.1000	7 T 0E+2	D 12 L 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	52	ITEMS 1.000	13 Т( 0	0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	52	ITEMS 1.000	19 Т( 0	0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 1.000	1 Т( 0	0 6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 0.1000	7 T 0E+2	D 12 L 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 1.000	13 Т( 0	0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	53	ITEMS 1.000	19 Т( 0	24 0.0000	0.0000	1.0000
LIST MATERIALS PROPERTY= ALL	1	ТО	27	ВҮ	1		
LIST MATERIALS PROPERTY= ALL PROPERTY TABLE	I DENS MA	TO AT=	27	by NUM	1 . POINTS=	23	
LIST MATERIALS PROPERTY= ALL PROPERTY TABLE TEMPERATURE	3 1 2 DENS M# DATA	TO AT=	27 1 TEMPERAT	BY NUM URE	1 . POINTS= DATA	23 TEMPERATURE	DATA
LIST MATERIALS PROPERTY= ALL PROPERTY TABLE TEMPERATURE 70.000	5 1 5 DENS M2 DATA 0.28240	TO AT=	27 1 TEMPERAT 100.00	BY NUM URE	1 . POINTS= DATA 0.28240	23 TEMPERATURE 150.00	DATA 0.28240
LIST MATERIALS PROPERTY= ALL PROPERTY TABLE TEMPERATURE 70.000 200.00	DENS MA DATA 0.28240 0.28240	TO AT=	27 1 TEMPERAT 100.00 250.00	BY NUM URE	1 . POINTS= DATA 0.28240 0.28240	23 TEMPERATURE 150.00 300.00	DATA 0.28240 0.28240
LIST MATERIALS PROPERTY= ALL PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00	DENS MA DATA 0.28240 0.28240 0.28240	TO AT=	27 1 TEMPERAT 100.00 250.00 400.00	BY NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240	23 TEMPERATURE 150.00 300.00 450.00	DATA 0.28240 0.28240 0.28240
LIST MATERIALS PROPERTY= ALL PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00	DENS MA DATA 0.28240 0.28240 0.28240 0.28240 0.28240	TO AT=	27 1 TEMPERAT 100.00 250.00 400.00 550.00	BY NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240	23 TEMPERATURE 150.00 300.00 450.00 600.00	DATA 0.28240 0.28240 0.28240 0.28240 0.28240
LIST MATERIALS PROPERTY= ALL PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00	DENS MA DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	TO AT=	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00	BY NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240
LIST MATERIALS PROPERTY = ALL PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00	DENS MA DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	TO AT=	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00	BY NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240
LIST MATERIALS PROPERTY ALL PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0	E DENS MA DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	TO AT=	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0	BY NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240
LIST MATERIALS PROPERTY ABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0	E DENS MA DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	TO AT=	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0	BY NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240
LIST MATERIALS PROPERTY ABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0	E DENS MA DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	TO AT=	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0	BY NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240
LIST MATERIALS PROPERTY ABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>28240</li> </ul>	TO AT=	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0	BY NUM URE NUM	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240
LIST MATERIALS PROPERTY ABLE TEMPERATURE 70.000 200.00 350.00 650.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 0.0000	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>28240</li> <li>28240</li></ul>	TO AT= AT=	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0 1 TEMPERAT	NUM URE NUM URE	1 • POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240
LIST MATERIALS PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 0.0000	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>28240</li> <li>28240</li></ul>	TO \T= \T=	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0 1 TEMPERAT	BY NUM URE NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 D.28240
LIST MATERIALS PROPERTY ABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 0.0000	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>28240</li> <li>28240</li></ul>	TO AT= AT=	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0 1 TEMPERAT	BY NUM URE NUM URE NUM	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0 1 TEMPERATURE	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 DATA
LIST MATERIALS PROPERTY ABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 0.0000 PROPERTY TABLE TEMPERATURE 70.000	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>28240</li> <li>28240</li></ul>	TO AT= AT= AT= AT=	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0 1 TEMPERAT 2 100.00	BY NUM URE NUM URE NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.282400 0.282400 0.282400 0.282400 0.282400 0.2820	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0 1 TEMPERATURE 23 TEMPERATURE 03 150.00	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 DATA DATA
LIST MATERIALS PROPERTY ABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 0.0000 PROPERTY TABLE TEMPERATURE 70.000 200.00	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>28240</li> <li>28240</li></ul>	TO AT= AT= AT= C=03 C=03	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0 1 TEMPERAT 1 TEMPERAT 100.00 250.00	BY NUM URE NUM URE NUM URE	1 POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.20100E- 0.20100E-	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0 1 TEMPERATURE 23 TEMPERATURE 03 150.00	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 DATA DATA 0.20800E-03 0.22700E-03
LIST MATERIALS PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 0.0000 PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>28240</li> <li>28240</li></ul>	TO AT= AT= AT= C-03 C-03 C-03 C-03	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0 1 TEMPERAT 100.00 250.00 250.00	BY NUM URE NUM URE NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.2010 0.2010 0.2010 0.2010 0.2010 0.2010 0.2200 0.0010 0.2200 0.2010 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.2200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.2000	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0 1 TEMPERATURE 23 TEMPERATURE 03 150.00 03 300.00 03 450.00	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 DATA DATA 0.20800E-03 0.22700E-03 0.24500E-03
LIST MATERIALS PROPERTY ABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 0.0000 PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>28240</li> <li>28240</li></ul>	TO AT= AT= AT= C-03 C-03 C-03	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0 1 TEMPERAT 100.00 250.00 400.00 250.00	BY NUM URE NUM URE	1 POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.20100E- 0.2200E- 0.24100E- 0.24100E- 0.24100E-	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0 1 TEMPERATURE 23 TEMPERATURE 03 150.00 03 300.00 03 450.00	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 DATA DATA 0.20800E-03 0.22700E-03 0.24500E-03
LIST MATERIALS PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 0.0000 PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>0.28240</li> <li>0.252006</li> <li>0.252006</li> </ul>	TO AT= AT= AT= C-03 C-03 C-03 C-03 C-03	27 1 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0 1 TEMPERAT 1 TEMPERAT 100.00 250.00 250.00 3 250.00 3 250.00	BY NUM URE NUM URE	1 POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.20100E- 0.2200E- 0.24100E- 0.25700E- 0.27200E	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0 1 TEMPERATURE 23 TEMPERATURE 03 150.00 03 300.00 03 450.00 03 600.00	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 DATA DATA 0.20800E-03 0.22700E-03 0.24500E-03 0.26200E-03
LIST MATERIALS PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>Casta</li> <li>MU MA</li> <li>DATA</li> <li>0.0000</li> <li>KXX MA</li> <li>DATA</li> <li>0.19900F</li> <li>0.21500F</li> <li>0.23400F</li> <li>0.25200F</li> <li>0.26900F</li> <li>0.26900F</li> </ul>	TO AT= AT= AT= C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03	27 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0 1 TEMPERAT 100.00 250.00 400.00 550.00 250.00 400.00 250.00	BY NUM URE NUM URE	1 POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.20100E- 0.22100E- 0.24100E- 0.27300E- 0.27300E- 0.29400E	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0 1 TEMPERATURE 23 TEMPERATURE 03 150.00 03 300.00 03 450.00 03 750.00 03 1000 0	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 DATA DATA 0.20800E-03 0.22700E-03 0.24500E-03 0.27800E-03 0.30600E-03
LIST MATERIALS PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>Casta</li> <li>MU MA</li> <li>DATA</li> <li>0.0000</li> <li>KXX MA</li> <li>DATA</li> <li>0.19900F</li> <li>0.21500F</li> <li>0.23400F</li> <li>0.25200F</li> <li>0.26900F</li> <li>0.28200F</li> <li>0.28200F</li> <li>0.28200F</li> <li>0.28200F</li> </ul>	TO AT= AT= AT= C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03	27 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0 1 TEMPERAT 100.00 250.00 400.00 550.00 300.00 300.00 900.00 300.00	BY NUM URE NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 . POINTS= DATA . POINTS= DATA 0.20100E- 0.22100E- 0.22100E- 0.25700E- 0.27300E- 0.29400E- 0.29400E-	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0 1 TEMPERATURE 23 TEMPERATURE 03 150.00 03 300.00 03 450.00 03 600.00 03 1000.0 03 1000.0	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 DATA DATA 0.20800E-03 0.22700E-03 0.24500E-03 0.26200E-03 0.27800E-03 0.30600E-03
LIST MATERIALS PROPERTY ABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 0.0000 PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>0.28240</li> <li>CALA</li> <li>0.0000</li> <li>KXX MA</li> <li>DATA</li> <li>0.0000</li> <li>KXX MA</li> <li>DATA</li> <li>0.19900E</li> <li>0.21500E</li> <li>0.2400E</li> <li>0.2400E</li> <li>0.25200E</li> <li>0.26900E</li> <li>0.31500E</li> <li>0.34500E</li> </ul>	TO AT= AT= AT= C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03 C=03	27 TEMPERAT 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0 1 TEMPERAT 100.00 250.00 3400.00 3550.00 3400.00 3550.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00 300.00	BY NUM URE NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.20100E- 0.22100E- 0.27300E- 0.29400E- 0.29400E- 0.29400E- 0.29400E- 0.29400E- 0.29400E- 0.29400E- 0.29400E- 0.32400E- 0.32400E- 0.35400E-	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0 1 TEMPERATURE 23 TEMPERATURE 03 150.00 03 300.00 03 450.00 03 600.00 03 1300.0 03 1300.0 03	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 DATA DATA 0.20800E-03 0.22700E-03 0.24500E-03 0.26200E-03 0.30600E-03 0.33600E-03
LIST MATERIALS PROPERTY = ALL PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 0.0000 PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>0.28240</li> <li>0.0000</li> <li>KXX MA</li> <li>DATA</li> <li>0.0000</li> <li>KXX MA</li> <li>DATA</li> <li>0.19900F</li> <li>0.21500F</li> <li>0.21500F</li> <li>0.22400F</li> <li>0.25200F</li> <li>0.26900F</li> <li>0.26900F</li> <li>0.24500F</li> <li>0.34500F</li> </ul>	TO AT = AT = AT = AT = C = 0.3 C = 0.	27 TEMPERAT 100.00 250.00 400.00 50.00 900.00 1200.0 1500.0 1 TEMPERAT 1 TEMPERAT 100.00 250.00 3 250.00 3 700.00 3 900.00 3 1200.0	BY NUM URE NUM URE	1 . POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.2010E= 0.2730E= 0.2730E= 0.29400E= 0.32400E= 0.32400E= 0.35400E=	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0 1 TEMPERATURE 03 150.00 03 300.00 03 450.00 03 450.00 03 1300.0 03	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 DATA DATA 0.20800E-03 0.22700E-03 0.24500E-03 0.24500E-03 0.27800E-03 0.30600E-03 0.33600E-03
LIST MATERIALS PROPERTY = ALL PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE TEMPERATURE 0.0000 PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0 PROPERTY TABLE PROPERTY TABLE	<ul> <li>DENS MA DATA</li> <li>DENS MA</li> <li>DATA</li> <li>0.28240</li> <li>0.28200</li> <li>0.24500</li> <li>0.34500</li> <li>2.500</li> </ul>	TO AT= AT= AT= C-03 C-03 C-03 C-03 C-03 C-03 C-03 C-03	27 1 TEMPERAT 100.00 250.00 400.00 50.00 700.00 900.00 1200.0 1500.0 1 TEMPERAT 1 TEMPERAT 3 100.00 3 250.00 3 400.00 3 550.00 3 700.00 3 700.00 3 1500.0 1	BY NUM URE NUM URE NUM	1 POINTS= DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.2900E 0.27300E 0.29400E 0.32400E 0.32400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E 0.35400E	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0 1 TEMPERATURE 23 TEMPERATURE 03 150.00 03 300.00 03 450.00 03 1000.0 03 1300.0 03	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240 DATA 0.20800E-03 0.22700E-03 0.24500E-03 0.24500E-03 0.27800E-03 0.30600E-03 0.33600E-03

70.000	0.11700	100.00	0.11700	150.00	0.12000
200.00	0.12200	250.00	0.12500	300.00	0.12600
350.00	0.12800	400.00	0.12900	450.00	0.13000
500.00	0.13100	550.00	0.13200	600.00	0.13300
650.00	0.13400	700.00	0.13500	750.00	0.13600
800.00	0.13600	900.00	0.13800	1000.0	0.13900
1100 0	0 14100	1200 0	0 14100	1300 0	0 14300
1400.0	0.14400	1500.0	0.14500	1300.0	0.14300
1400.0	0.14400	1300.0	0.14300		
DRODERTV TARLE	FMIS MAT-	1 NITIN			
	- געעע אייגע				ኮለሞለ
1 EMPERATORE	0 0000	IEMPERAIORE	DAIA	IEMPERAIORE	DAIA
0.0000	0.0000				
PROPERTY TABLE	DENS MAI=		1. POINIS= 1		
IEMPERATORE	DAIA	IEMPERAIORE	DAIA	IEMPERAIURE	DATA
0.0000	0.28300				
		0		-	
PROPERTY TABLE	KXX MAT	2 NUM	1.  POINTS = 16	)	
TEMPERATURE	DA'I'A	TEMPERATURE	DA'I'A	TEMPERATURE	DA'I'A
70.000	0.81300E-03	100.00	0.80300E-03	3 200.00	0.77800E-03
300.00	0.74800E-03	400.00	0.71500E-03	3 500.00	0.67700E-03
600.00	0.64800E-03	700.00	0.61600E-03	3 800.00	0.58300E-03
900.00	0.55100E-03	1000.0	0.51900E-03	3 1100.0	0.48400E-03
1200.0	0.45100E-03	1300.0	0.41700E-03	3 1400.0	0.38000E-03
1500.0	0.36300E-03				
PROPERTY TABLE	C MAT=	2 NUN	1. POINTS= 16	5	
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.10330	100.00	0.10530	200.00	0.11210
300.00	0.11770	400.00	0.12340	500.00	0.12780
600.00	0.13220	700.00	0.13810	800.00	0.14520
900.00	0.15350	1000.0	0.16240	1100.0	0.17100
1200.0	0.18290	1300.0	0.20450	1400.0	0.40900
1500.0	0.19820				
PROPERTY TABLE	DENS MAT=	3 NUN	1. POINTS= 23	3	
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.41090	100.00	0.41090	150.00	0.41090
200.00	0.41090	250.00	0.41090	300.00	0.41090
350 00	0 41090	400 00	0 41090	450 00	0 41090
500.00	0.41090	550 00	0.41090	600 00	0.41090
650.00	0.41090	700 00	0.41090	750 00	0.41090
800.00	0.41090	900.00	0.41090	1000 0	0.41090
1100 0	0.41090	1200.00	0.41090	1200.0	0.41090
1400.0	0.41090	1500.0	0.41090	1300.0	0.41090
1400.0	0.41090	1500.0	0.41090		
	1/3/3/ MAT	2 1777			
PROPERTY TABLE	KXX MAT=	3 NUN	1. POINTS= $23$		
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.46500E-03	100.00	0.46100E-03	3 150.00	0.45500E-03
200.00	0.44800E-03	250.00	0.44100E-03	3 300.00	0.43500E-03
350.00	0.42800E-03	400.00	0.42200E-03	3 450.00	0.41500E-03
500.00	0.40900E-03	550.00	0.40200E-03	3 600.00	0.39500E-03
650.00	0.38900E-03	700.00	0.38900E-03	3 750.00	0.38900E-03
800.00	0.38900E-03	900.00	0.38900E-03	3 1000.0	0.38900E-03
1100.0	0.38900E-03	1200.0	0.38900E-03	3 1300.0	0.38900E-03
1400.0	0.38900E-03	1500.0	0.38900E-03	3	
PROPERTY TABLE	C MAT=	3 NUN	1. POINTS= 23	3	
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.31050E-01	100.00	0.31050E-01	150.00	0.31050E-01
200.00	0.31050E-01	250.00	0.31050E-01	L 300.00	0.31050E-01
350.00	0.31050E-01	400.00	0.31050E-01	450.00	0.31050E-01
500.00	0.31050E-01	550.00	0.31050E-01	L 600.00	0.31050E-01

650.00	0.31050E-01	700.00	0.31050E-01	750.00	0.31050E-01
800 00	0 310505-01	900 00	0 31050E-01	1000 0	0 310505-01
1100 0	0.31050E-01	1200.00	0.31050E-01	1200.0	0.310508-01
1100.0	0.31050E-01	1200.0	0.31050E-01	1300.0	0.31050E-01
1400.0	0.31050E-01	1500.0	0.31050E-01		
		4	DOTIMO 00		
PROPERTY TABLE	DENS MATE	4 NUM	POINTS = 23		
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.43510E-04	l 100.00	0.41120E-04	150.00	0.37520E-04
200.00	0.34680E-04	1 250.00	0.32360E-04	300.00	0.30310E-04
350.00	0.28310E-04	400.00	0.26730E-04	450.00	0.25220E-04
500.00	0.23960E-04	1 550.00	0.22780E-04	600.00	0.21680E-04
650.00	0.20710E-04	1 700.00	0.19800E-04	750.00	0.18980E-04
800 00	0 18180 - 0/		0 169005-04	1000 0	0 15710 - 04
1100 0	0.147200 04		0.129505 04	1200.0	0.130400 04
1100.0	0.14/208-04	1200.0	0.13650E-04	1300.0	0.13040E-04
1400.0	0.123508-04	£ 1500.0	0.11/108-04		
DRODERTV TARLE	κχχ Μλτ-	4 NITIM	DOINTS- 23		
			. FOINIS- 25		
IEMPERATURE	DATA	IEMPERATURE	DATA	1EMPERATURE	DAIA
70.000	0.34490E-06	5 100.00	0.36210E-06	150.00	0.39030E-06
200.00	0.41770E-06	5 250.00	0.44460E-06	300.00	0.47040E-06
350.00	0.49570E-06	5 400.00	0.52040E-06	450.00	0.54480E-06
500.00	0.56880E-06	5 550.00	0.59210E-06	600.00	0.61430E-06
650.00	0.63630E-06	5 700.00	0.65810E-06	750.00	0.67900E-06
800.00	0.69960E-06	5 900.00	0.74090E-06	1000.0	0.78040E-06
1100 0	0 817505-06	5 1200 0	0 854505-06	1300 0	0 88970F-06
1400.0	0.01/508 00	5 1500.0	0.03430E 00	1300.0	0.000/01 00
1400.0	0.920501 00	1500.0	0.970701 00		
PROPERTY TABLE	C MAT=	4 NUM	. POINTS= 23		
	בייבט		י גייבס		מידמ
	0 24020	100 00	0 24040	150 00	0 24080
70.000	0.24020	100.00	0.24040	100.00	0.24000
200.00	0.24140	250.00	0.24210	300.00	0.24290
350.00	0.24380	400.00	0.24500	450.00	0.24610
500.00	0.24740	550.00	0.24900	600.00	0.25110
650.00	0.25270	700.00	0.25380	750.00	0.25520
800.00	0.25680	900.00	0.25960	1000.0	0.26280
1100.0	0.26590	1200.0	0.26890	1300.0	0.27170
1400.0	0.27420	1500.0	0.27660		
PROPERTY TABLE	DENS MAT=	5 NUM	. POINTS= 1		
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
0.0000	0.28300				
PROPERTY TABLE	KXX MAT=	5 NUM	. POINTS= 16		
TEMPERATURE	DATA	TEMPERATURE	DATA	FEMPERATURE	DATA
70.000	0.81300E-03	3 100.00	0.80300E-03	200.00	0.77800E-03
300.00	0.74800E-03	3 400.00	0.71500E-03	500.00	0.67700E-03
600.00	0.64800E-03	3 700.00	0.61600E-03	800.00	0.58300E-03
900 00	0 551008-03	3 1000 0	0 51900E-03	1100 0	0 48400E-03
1200.00	0.451000-03	2 1300 0	0.31700E-03	1400.0	0.38000E-03
1500.0	0.45100E-03	5 I300.0	0.41/00E-03	1400.0	0.38000E-03
1300.0	0.30300E-03				
PROPERTY TABLE	С МАТ=	5 NIIM	POINTS= 16		
	גייעם				גייענו
TEMPERATORE	0 10220		0 10520	200 00	0 11210
70.000	0.10330	100.00	0.10530	200.00	0.11210
300.00	0.11//0	400.00	0.12340	500.00	0.12780
600.00	0.13220	700.00	0.13810	800.00	0.14520
900.00	0.15350	1000.0	0.16240	1100.0	0.17100
1200.0	0.18290	1300.0	0.20450	1400.0	0.40900
1500.0	0.19820				
PROPERTY TABLE	EMIS MAT=	23 NUM	. POINTS= 1		
TEMPERATURE	DATA	'I'EMPERATURE	DATA	I'EMPERATURE	DATA
0.0000	0.73470				

PROPERTY TABLE EMIS MAT= 27 NUM. POINTS= 1 TEMPERATURE DATA TEMPERATURE DATA TEMPERATURE DATA 0.0000 0.73470

Title	Stead	y State 7	Thermal Anal	yses of th	ne 3-60B	Cask Using	g a 3-D Fir	nite Elen	nent N	/lode	1
Calc. N	0	TH-022	Rev.	2				Sheet _	12	_of_	12

# Appendix 2

Electronic Data on CDROM (2 Pages & 1 CDROM)

Volume in drive E is TH-022a2 Volume Serial Number is B361-1123 Directory of  $E: \setminus$ 06/12/2009 10:51 AM 482 d 06/12/2009 11:06 AM <DIR> Explicit Heat Load Modeling 06/12/2009 11:04 AM <DIR> Implicit Heat Load Modeling 1 File(s) 482 bytes 2 Dir(s) 0 bytes free Directory of E:\Explicit Heat Load Modeling 06/12/2009 11:06 AM <DIR> <DIR> 06/12/2009 12:40 PM . . 10/05/2007 12:02 PM 65,536 bot.sub 06/05/2009 09:12 PM 87,573 fiq11.png 06/05/2009 09:13 PM 71,867 fig12.png 46,251 fig13.png 06/05/2009 09:14 PM 06/08/2009 09:46 AM 74,260 fig14.png 06/08/2009 09:38 AM 74,993 fig15.png 06/05/2009 09:02 PM 2,234 file.BCS 16,318,464 file.db 16,318,464 file.dbb 06/08/2009 10:45 AM 06/08/2009 09:49 AM 06/05/2009 09:06 PM 458,752 file.dsub 06/09/2009 12:24 PM 15,900 file.err 5,767,168 file.esav 06/05/2009 09:06 PM 06/05/2009 09:06 PM 2,162,688 file.full 06/05/2009 08:50 PM 50,570 file.ldhi 06/09/2009 12:24 PM 6,548 file.log 06/05/2009 09:03 PM 3,860 file.mntr 06/05/2009 09:02 PM 5,767,168 file.osav 06/05/2009 09:03 PM 6,094,848 file.r001 06/05/2009 08:50 PM 16,515,072 file.rdb 06/08/2009 10:45 AM 524,288 file.rsm 06/05/2009 09:06 PM 118,685,696 file.rth 06/05/2009 09:02 PM 151 file.stat 148,887,064 file.vf 06/05/2009 08:46 PM 06/05/2009 09:11 PM 44,587 file000.png 89,804 file004.png 06/08/2009 09:36 AM 06/09/2009 11:49 AM 155,796 report.out 10/05/2007 11:41 AM 1,441,792 side.sub 10/05/2007 11:57 AM 327,680 top.sub 28 File(s) 340,059,074 bytes 2 Dir(s) 0 bytes free

Directory of E:\Implicit Heat Load Modeling

06/12/2009 11:04 AM <d< th=""><th>IR&gt;</th><th>•</th></d<>	IR>	•
06/12/2009 12:40 PM <d< td=""><td>IR&gt;</td><td>••</td></d<>	IR>	••
10/05/2007 12:02 PM	65,536	bot.sub
10/16/2007 03:54 PM	86,967	Cold.lis
10/24/2007 10:27 AM	4,411,904	ExtrHot.xls
11/06/2007 10:25 AM	53,839	fig1.png
11/06/2007 10:27 AM	124,402	fig2.png
11/06/2007 10:29 AM	77,761	fig3.png

11/06/2007	10:44 AM	67,008	fig4.png
11/27/2007	12:52 PM	25,698	fig5.png
11/06/2007	10:53 AM	43,266	fig6.png
11/06/2007	10:53 AM	42,414	fig7.png
11/06/2007	10:54 AM	43,092	fig8.png
11/06/2007	10:54 AM	42,206	fig9.png
10/10/2007	10:59 AM	2,234	file.BCS
10/24/2007	10:02 AM	8,650,752	file.db
10/10/2007	11:28 AM	8,650,752	file.dbb
10/10/2007	10:59 AM	131.072	file dsub
06/05/2009	12:22 PM	95 398	file err
10/10/2007	10:59 AM	4 390 912	file esay
10/10/2007	10:59 AM	1 310 720	file full
10/10/2007	10.59 AM	33 401	file ldbi
05/11/2000	10.30 AM	160 050	file law
05/11/2009	12:25 AM	100,052 27 0E2	file lea
10/10/2009	12·25 PM	37,000	file mate
10/10/2007	10.59 AM	1 200 012	
10/10/2007	10.59 AM	4,390,912	file
10/10/2007	10:59 AM	4,521,984	file.ruui
10/10/2007	10:59 AM	8,/81,824	file.rdb
10/10/2007	10:41 AM	34,028	file.sUl
10/10/2007	10:55 AM	34,028	tile.s02
10/10/2007	10:58 AM	34,028	file.s03
10/10/2007	11:00 AM	34,028	file.s04
10/10/2007	10:59 AM	151	file.stat
01/07/2008	03:21 PM	23,446	file001.png
01/07/2008	03:28 PM	32,429	file006.png
01/07/2008	03:34 PM	35,648	file011.png
01/07/2008	03:35 PM	93,421	file012.png
01/07/2008	03:37 PM	41,210	file013.png
06/05/2009	12:25 PM	60,671	file014.png
06/04/2009	03:30 PM	64,930	file015.png
01/07/2008	03:53 PM	12,552	FireShieldTemp.lis
10/16/2007	03:55 PM	86,967	Hot.lis
10/24/2007	10:18 AM	86,967	Hot1.lis
10/24/2007	10:24 AM	4,411,904	Hot1.xls
01/07/2008	03:56 PM	7,776	InnerShellTemp.lis
01/07/2008	03:57 PM	16,707	LeadTemp.lis
10/10/2007	10:40 AM	21,954,560	ls1.rth
10/10/2007	10:50 AM	21,889,024	ls2.rth
10/10/2007	10:57 AM	21,889,024	ls3.rth
10/10/2007	10:59 AM	21,889,024	ls4.rth
01/07/2008	03:52 PM	8,970	OuterShellTemp.lis
01/07/2008	03:58 PM	5,687	SealTemp.lis
10/05/2007	11:41 AM	1,441.792	side.sub
10/05/2007	11:57 AM	327.680	top.sub
,, 2007	52 File(s)	140.769.06	3 bytes
	$2 \operatorname{Dir}(\mathbf{g})$	10,,00,000	) bytes free
		(	

Title	Hypoth	etical Fire A	ccident	Thermal Analysis of the 3-60B Cask
Calc. No.	TH-023	Rev.	3	Sheetof6

#### **1.0 OBJECTIVE**

Perform the thermal analyses of the Energy*Solutions* 3-60B Cask under hypothetical fire accident conditions, using a 3-dimensional finite element model.

## 2.0 **REFERENCES**

- 1. Energy*Solutions* Drawing No. C-002-165024-001, Rev.0, 3-60B Cask General Arrangement and Details.
- 2. Code of Federal Regulations, Title 10, Part 71, Packaging and Transportation of Radioactive Material, January 2003.
- 3. U.S. NRC Regulatory Guide 7.8, Revision 1, March 1989, Load Combinations for the Structural Analysis of Shipping Casks for Radioactive Material.
- 4. Heat Transfer, J.P. Holman, McGraw Hill Book Company, New York, Fifth Edition, 1981.
- 5. Cask Designers Guide, L.B. Shappert, et. al, Oak Ridge National Laboratory, February 1970, ORNL-NSIC-68.
- 6. CRC Handbook of Chemistry and Physics, Robert C. Weast and Melvin J. Astel, eds., CRC Press, Inc., Boca Raton, Florida, 62nd ed., 1981.
- 7. ASME Boiler & Pressure Vessel Code, 2001, Section II, Part D, Materials, The American Society of Mechanical Engineers, New York, NY, 2005.
- 8. Rohsenow and Hartnett, Handbook of Heat Transfer, McGraw Hill Publication, 1973.
- 9. ANSYS, Rev. 11.0, Computer Software, ANSYS Inc., Canonsburg, PA, 2007.
- IAEA Safety Series No.37, Advisory Material for the IAEA Regulations for the Safe Transport of Radioactive Material - 1985 Edition, International Atomic Energy Agency, Vienna, 1990.
- 11. Kreith, Frank, Principles of Heat Transfer, 3rd Edition, Harper & Row, 1973.

## 3.0 INTRODUCTION

Energy*Solutions* 3-60B Cask (Reference 1) is designed as a Type B radioactive-material shipping package. To be certified by the U.S.N.R.C., the cask needs to meet the requirements of 10 CFR 71 (Reference 2) and follow the guidelines of U.S.N.R.C. Regulatory Guide 7.8 (Ref. 3).

This document presents the thermal load analysis of the 3-60B Cask for the hypothetical accident conditions (HAC) fire test. The normal conditions of transport (NCT) analyses have been performed in a separate document. The analyses in this document are performed using the finite element modeling techniques. A three-dimensional model of the cask that includes all its major components has been employed in the analyses. Temperature dependent material properties of the major components of the cask are used in the analyses.

The results of the analyses for various load cases are presented pictorially in temperature contour plots as well as digital data format, suitable for use with a structural finite element model to obtain the thermal stresses.

Title	Hypoth	etical Fire A	ccident T	hermal Analysis of the 3-60B Cask
Calc. No.	TH-023	Rev.	3	<b>Sheet</b> <u>2</u> of <u>16</u>

# 4.0 MATERIAL PROPERTIES

# **Temperature-Independent Metal Thermal Properties**

Material	Property	Reference: Page	Value
Steel	Density	4: 536	0.2824 lb/in ³
	ε (Outside)	2:648	0.8
	ε (Inside)	5:133	0.15
Lead	Density	4: 535	0.4109 lb/in ³
	Spec. Heat	4: 535	0.0311 Btu/lb-°F
	Melting Point	6: B-29	621.5 °F

# **Temperature-Dependent Metal Thermal Properties**

Temp.	Temp.Stainless Steel (Ref. 7)		Carbon	Steel (Ref.7)	Lead (Ref.8)
(°F)	Sp. Heat	Conductivity	Sp. Heat	Conductivity	Conductivity
	_	×10 ⁻³	_	×10 ⁻³	×10 ⁻³
	Btu/lb-°F	Btu/sec-in-°F	Btu/lb-°F	Btu/sec-in-°F	Btu/sec-in-°F
70	0.117	0.199	0.104	0.813	0.465
100	0.117	0.201	0.106	0.803	0.461
150	0.120	0.208	0.109	0.789	0.455
200	0.122	0.215	0.113	0.778	0.448
250	0.125	0.222	0.115	0.762	0.441
300	0.126	0.227	0.118	0.748	0.435
350	0.128	0.234	0.122	0.731	0.428
400	0.129	0.241	0.124	0.715	0.422
450	0.130	0.245	0.126	0.701	0.415
500	0.131	0.252	0.128	0.683	0.409
550	0.132	0.257	0.131	0.667	0.402
600	0.133	0.262	0.133	0.648	0.395
650	0.134	0.269	0.135	0.632	0.389
700	0.135	0.273	0.139	0.616	0.389
750	0.136	0.278	0.142	0.600	0.389
800	0.136	0.282	0.146	0.583	0.389
900	0.138	0.294	0.154	0.551	0.389
1,000	0.139	0.306	0.163	0.519	0.389
1,100	0.141	0.315	0.172	0.484	0.389
1,200	0.141	0.324	0.184	0.451	0.389
1,300	0.143	0.336	0.205	0.417	0.389
1,400	0.144	0.345	0.411	0.380	0.389
1,500	0.145	0.354	0.199	0.363	0.389

Title	Hypoth	etical Fire A	ccident T	hermal Analysis of the 3-60B Cask
Calc. No.	TH-023	<b>Rev</b>	3	<b>Sheet</b> <u>3</u> of <u>16</u>

Temp.		Air (Ref.4)	
(°F)	Density	Sp. Heat	Conductivity
	×10 ⁻⁵		×10 ⁻⁷
	lb/in ³	Btu/lb-°F	Btu/sec-in-°F
70	4.3507	0.2402	3.4491
100	4.1117	0.2404	3.5787
150	3.7517	0.2408	3.9028
200	3.4676	0.2414	4.1759
250	3.2361	0.2421	4.4468
300	3.0307	0.2429	4.7037
350	2.8310	0.2438	4.9560
400	2.6730	0.2450	5.2037
450	2.5220	0.2461	5.4491
500	2.3964	0.2474	5.6875
550	2.2778	0.2490	5.9213
600	2.1684	0.2511	6.1435
650	2.0706	0.2527	6.3634
700	1.9803	0.2538	6.5810
750	1.8981	0.2552	6.7894
800	1.8177	0.2568	6.9954
900	1.6898	0.2596	7.4097
1,000	1.5712	0.2628	7.8032
1,100	1.4722	0.2659	8.1759
1,200	1.3848	0.2689	8.5440
1,300	1.3044	0.2717	8.8981
1,400	1.2350	0.2742	9.2847
1,500	1.1707	0.2766	9.7060

#### **Temperature-Dependent Air Thermal Properties**

#### 5.0 MODEL DESCRIPTION

The thermal analyses of the 3-60B Cask under hypothetical fire accident test conditions have been performed using finite element modeling techniques. ANSYS finite element analysis code (Ref. 9) has been employed to perform the analyses. Since the lid of the cask is attached to the body using 16 bolts, the cask geometry has a cyclic symmetry every 11.25° of the circumference. Therefore, an 11.25° model of the cask is employed. Figure 1 shows the finite element model used in various thermal load analyses. Figures 2 and 3 show the exploded views of various regions of the finite element model. Figure 4 shows the material property model numbers of various components of the cask.

The finite element model is made of 3-dimensional thermal solid elements (ANSYS SOLID70) that represent the major components of the cask, the cask body, the lid, the bolts, and the fire shield. The 3-60B Cask package is designed to maintain an air gap between the cask ends and the impact limiters. These impact limiters remain attached to the cask body during the normal as well as hypothetical drop test conditions. Heat transfer between the cask

Title	Hypothetical Fire Accident Thermal Analysis of the 3-60B Cask				
Calc. No	TH-023	Rev	3	<b>Sheet</b> <u>4</u> of <u>16</u>	

ends and the impact limiter plate takes place by means of radiation and conduction through the air gap. Therefore, the impact limiter end plates are also included in the finite element model (see Figure 3). These plates are modeled by 3-dimensional thermal solid elements. The interstitial air gaps between the impact limiter plates and the cask end as well as that between the fire-shield and the cask body are modeled by these elements also.

The poured lead in the body is not bonded to the steel. It is free to slide over the steel surface. Therefore, the interface between the lead and the steel is modeled by pairs of 3-d 8 node thermal contact element (CONTA174) and 3-d target segment (TARGE170) elements. These elements allow the lead to slide over the steel at the same time prevent it from penetrating the steel surface. The interface between the two plates of the lid at the weld location is also modeled by the contact-target pairs. The transition from a coarser mesh to a finer mesh, as well as bondage between various parts of the model, is also achieved by using these elements.

The heat transfer by radiation between the fire-shield and the ambient air is modeled by 3-d thermal surface (ANSYS SURF152). The radiation between the outer shell and the fire-shield, and between the impact limiter plates and the cask body, is modeled by superelements (ANSYS MATRIX50). These elements are formed by modeling the radiating surfaces with thermal shells (ANSYS SHELL57) and specifying the appropriate emissivity of the surfaces and the Stefan-Boltzmann constant. The heat transfer by natural convection between the fire-shield and the ambient air is simulated by 3-d thermal surface (ANSYS SURF152). The outer surfaces of the impact limiter plates, which are covered by foam, are considered to be totally insulated.

For the HAC fire the foam of the impact limiters is conservatively assumed not to provide any thermal insulation. In the structural analyses of the HAC drop and puncture drop conditions, it has been shown that after these tests, the casing of the impact limiter will be intact and remain attached to the cask body. Therefore, it is assumed that the fire directly hits the two ends of the cask through the 1/2" plate that form the casing of the impact limiters, in addition to the entire length of the fire-shield.

The real constants used in the ANSYS finite element model, to define the characteristic of various finite elements to simulate the heat transfer by convection and radiation, are based on the derivation in the following section. The heat flux representing the internal heat load and the solar insolation is also presented in the following section. A print-out of the model data input is included in Appendix 1.

## 5.1 <u>Natural Convection Modeling</u>

The convective heat transfer per unit area between the cask and the atmosphere, q, is governed by the equation:

$$q = hA\left(T_s - T_a\right)$$

where:

h = Heat transfer coefficient (Btu/hr-ft²-F)

A = Area (sq ft)

 $T_s = cask surface temperature (°F)$ 

Title	Hypoth	etical Fire A	ccident T	hermal Analysis of the 3-60B Cask
Calc. No	TH-023	Rev	3	<b>Sheet</b> <u>5</u> of <u>16</u>

 $T_a$  = ambient temperature (°F)

The heat transfer coefficient for the natural convection is given by the following relationship (see for example Ref. 5, page 135).

$$h = C \left( T_s - T_a \right)^{1/3}$$

where, for horizontal cask,

$$C = 0.18 (Btu/hr-ft2-F4/3)$$
  
= 3.4722×10⁻⁷ (Btu/sec-in²-F)

## 5.2 Forced Convection Modeling

The heat transfer coefficient for the forced convection during the fire is based on the explanatory material for the IAEA regulations in Safety Series No.37 (Ref. 10), the pool fire gas velocity is taken to be 10 m/sec (32.8 ft/sec). The forced convection heat transfer coefficient for large casks, according to Ref. 10, is:

$$h = 10 \frac{W}{m^2 \circ C}$$

For conversion, using,

$$1 W = 9.4804 \times 10^{-4} Btu/sec$$
  
 $1 m = 39.37 inch$   
 $1^{\circ}C = 1.8^{\circ}F$ 

Therefore,

h = 
$$\frac{10 \times 9.4804 \times 10^{-4}}{39.37^2 \times 1.8}$$
 =  $3.398 \times 10^{-6}$   $\frac{Btu}{sec - in^2 - {}^{\circ}F}$ 

The heat transfer coefficients for forced convection are also obtained from additional sources and compared with the IAEA recommended value. It is shown that the value calculated above is larger than the values calculated from other sources. Therefore, the IAEA recommended value will result in a conservative prediction of the cask temperatures during the HAC fire test.

A comprehensive heat transfer coefficient formula for a horizontal cylinder, which is applicable over a large range of Reynolds number values, is listed in Reference 4. This formula is referred to as Churchill-Bernstein formula, which relates Reynolds and Prandtl number with Nusselt number as follows:

$$Nu_{d} = 0.3 + \frac{0.62 \operatorname{Re}^{\frac{1}{2}} \operatorname{Pr}^{\frac{1}{3}}}{\left[1 + \left(\frac{0.4}{\operatorname{Pr}}\right)^{\frac{2}{3}}\right]^{\frac{3}{4}}} \left[1 + \left(\frac{\operatorname{Re}}{282,000}\right)^{\frac{5}{8}}\right]^{\frac{4}{5}}$$

......Equation (1)

Title	Hypothe	etical Fire A	ccident 7	hermal Analysis of the 3-60B Cask
Calc. No.	TH-023	<b>Rev</b>	3	<b>Sheet</b> <u>6</u> of <u>16</u>

.

Where, Re = Reynolds Number 
$$= \frac{\rho_f u_{\infty} d}{\mu_f}$$
  
 $\rho_f$  = Air density at film temperature (1475°F use 1500°F)  
 $= 1.1707 \times 10^{-5}$  lb/in³ (see Table in Section 4.0)  
 $u_{\infty}$  = Air velocity = 32.8 ft/sec = 394 in/sec  
d = diameter of the cylinder = 51 in  
 $\mu_f$  = Air viscosity at film temperature  
 $= 91.75 \times 10^{-8}$  lb_f-sec/ft² (Reference Mark's Handbook)  
 $= 246.2 \times 10^{-8}$  lb/(in-sec)

Therefore,

$$\operatorname{Re} = \frac{\left(1.1707 \times 10^{-5} \frac{lb}{in^{3}}\right) \times \left(394 \frac{in}{\sec}\right) \times (51in)}{246.2 \times 10^{-8} \frac{lb}{in \cdot \sec}} = 95,549$$

Also, 
$$\Pr = \Pr$$
 and the Number  $= \frac{\mu_f C_{pf}}{k_f}$ 

 $C_{pf}$  = Specific heat of the air at constant pressure at film temperature = 0.2766 Btu/lb-°F (see Table in Section 4.0)

 $k_f$  = Conductivity of air at film temperature

=  $9.706 \times 10^{-7}$  Btu/sec-in-°F

Therefore,

$$\Pr = \frac{\left(246.2 * 10^{-8} \frac{lb}{in \cdot \sec}\right) \times \left(0.2766 \frac{Btu}{lb \cdot \deg F}\right)}{9.706 \times 10^{-7} \frac{Btu}{\sec \cdot in \cdot \deg F}} = 0.7$$

Substitution of these values in Equation 1 results in:

$$Nu_{d} = 0.3 + \frac{0.62 \times (95,549)^{\frac{1}{2}} \times (0.7)^{\frac{1}{3}}}{\left[1 + \left(\frac{0.4}{0.7}\right)^{\frac{2}{3}}\right]^{\frac{3}{4}}} \left[1 + \left(\frac{95,549}{282,000}\right)^{\frac{5}{8}}\right]^{\frac{4}{5}} = 0.3 + \left(\frac{170.18}{1.481} \times \left[1 + 0.5084\right]^{\frac{4}{5}}\right)$$

Title	Hypothe	etical Fire A	ccident 7	Thermal Analysis of the 3-60B Cask
Calc. No.	TH-023	Rev.	3	Sheet <u>7</u> of <u>16</u>

 $= 0.3 + [(114.91) \times (1.389)] = 159.9 \approx 160$ 

Where, 
$$Nu_d$$
 = Nusselt Number =  $\frac{hd}{k_f}$ 

The forced convection heat transfer coefficient is, therefore;

 $h = \frac{(160) \times (9.706 \times 10^{-7})}{51} = 3.045 \times 10^{-6} \frac{\text{Btu}}{\text{sec} \cdot \text{in}^2 \cdot \text{degF}}$ .....Equation 2

For vertical cylinders Reference 11 gives the following equation relating the Reynolds number, Prandtl number and Nusselt number as follows.

$$Nu = (0.664) \times (\operatorname{Re}_{L})^{0.5} \times (\operatorname{Pr})^{\frac{1}{3}}$$
.....Equation 3

The limits of applicability of this equation is:

 ${\rm Re}_L < 5 \times 10^5$  and  ${\rm Pr} > 0.1$ 

Where the Reynolds number  $Re_L$  is based on the cylinder length,

$$L = 128.625 \text{ in}$$

$$\operatorname{Re}_{L} = \frac{\left(1.1707 \times 10^{-5}\right) \times \left(394\right) \times \left(128.625\right)}{246.2 \times 10^{-8}} = 240,979 \approx 2.41 \times 10^{5}$$

Substitution of values in Equation 3 gives,

$$Nu = (0.664) \times (\text{Re}_L)^{0.5} \times (\text{Pr})^{\frac{1}{3}} = (0.664) \times (240,979)^{0.5} \times (0.7)^{\frac{1}{3}} = 289.45$$

The forced convection heat transfer coefficient is, therefore;

$$h = \frac{(289.45) \times (9.706 \times 10^{-7})}{128.625} = 2.184 \times 10^{-6} \frac{\text{Btu}}{\text{sec} \cdot \text{in}^2 \cdot \text{degF}}$$

The forced convection heat transfer coefficient for both horizontal and vertical cylinders calculated above are both smaller than IAEA recommended value for the 3-60B cask geometry. Therefore, in order to predict the cask temperature conservatively during the HAC fire test, the IAEA recommended value has been used in all the analyses.

#### 5.3 Radiation Modeling

The heat transfer by radiation between two nodes of a finite element model is governed by the following equation (see for example Ref. 4).

$$q = \sigma \ \epsilon \ F \ A \left( T_I^4 - T_J^4 \right)$$

where:

Title	Hypothetical Fire Accident Thermal A	nalysis of the 3-60B Cask						
Calc. No	<u>TH-023</u> <b>Rev</b> . <u>3</u>	<b>Sheet</b> <u>8</u> of <u>16</u>						
	q = heat flow rate (Btu/hr)							
$\sigma =$ Stefan-Boltzmann Constant								
$= 1.7136 \times 10^{-9} (Btu/hr-ft^2-R^4)$								
	$= 3.3056 \times 10^{-15} (Btu/sec-in^2-R^4)$							
	$\varepsilon = \text{emissivity}$							
	F = geometric form factor							
	A = area (sq ft)							

T = temperature (°R)

I = first node number

J = second node number

Two radiation heat transfer systems are modeled: (1) radiation heat transfer between the fire shield outside surface and the environment, and (2) radiation between the fire shield inside surface and the cask shell outside surface and radiation between the cask ends and the impact limiter plates. Emissivity, area, and geometric form factors are defined in both systems.

The overall emissivity for radiation heat transfer between the fire shield and the environment is set equal to the overall emissivity,  $\varepsilon$ , for heat transfer between two infinite parallel planes as given by the following equation (Ref. 4, page 336).

$$\boldsymbol{\epsilon} = \frac{\boldsymbol{\epsilon}_1 \boldsymbol{\epsilon}_2}{\boldsymbol{\epsilon}_2 + \boldsymbol{\epsilon}_1 - \boldsymbol{\epsilon}_1 \boldsymbol{\epsilon}_2}$$

where:

 $\varepsilon$  = overall emissivity  $\varepsilon_1$  = surface 1 emissivity  $\varepsilon_2$  = surface 2 emissivity

The regulations (Article 71.73 of Reference 2) require that an average environment emissivity coefficient of 0.9 must be used for HAC fire test. It also requires that for purpose of calculation, the surface absorptivity coefficient must be either that which the package may be expected to possess if exposed to fire specified or 0.8, whichever is greater. It is conservatively assumed in the analyses that the package has an absorptivity of 1.0. Therefore, an emissivity coefficient of 0.9 has been conservatively specified for all the elements that radiate heat to the environment. Form factor value of 1.0 is used and the area of the surface is automatically calculated by the computer program.

The radiation between the outer shell and the fire-shield, and between the impact limiter plates and the cask body, is modeled by superelements (ANSYS MATRIX50). These elements are formed by modeling the radiating surfaces with thermal shells (ANSYS SHELL57). The thermal shield forms an air annulus between itself and the cask body. This annulus is formed by separating the two components with the help of helically wound stainless steel wires. The

Title	Hypothe	etical Fire A	ccident 7	Thermal Analysis of the 3-60B Cask
Calc. No.	TH-023	<b>Rev</b>	3	<b>Sheet</b> <u>9</u> of <u>16</u>

ends of the fire-shield are seal welded to the cask body. Thus, the two surfaces forming the annulus will remain in polished condition throughout the operating life of the cask. The emissivity coefficient of as-received stainless steel is 0.15. However, since a higher value of emissivity coefficient will result in a higher cask body temperature, the value of 0.15 is conservatively increased by a factor of 3 and a value of 0.45 is used for the emissivity coefficient for the heat transfer due to radiation between the fire-shield and the cask body.

It has been shown in structural analyses section that the foam impact limiters may suffer some damage during the HAC drop tests. However, the stainless steel shells forming the cup remain attached to the cask body after these tests. Conservatively, it is assumed in the HAC fire analyses that the foam in the impact limiters are totally ineffective during the fire test. And the stainless steel cup that remains attached to the cask is directly exposed to the fire. Since the surface of the cask and that of that of the impact limiter cup are made of stainless steel that has been aged, the emissivity coefficient of 0.8 is used for the heat transfer due to radiation between the cask and impact limiter cups.

## 5.4 <u>Solar Insolation Modeling</u>

The total insolation is required to be 400 gcal/cm² for a 12-hour period for curved surfaces according to the Code of Federal Regulations 10CFR71.71 (Ref 2). The total insolation of 400 gcal/cm² is divided by 12 hours of assumed sunlight to yield an average insolation rate. The average insolation rate is then multiplied by the surface emissivity specified earlier in this document (0.7347) yielding an insolation rate of  $1.742 \times 10^{-4}$  Btu/sec-in². This insolation heat load is applied to the outside surface of the fire shield.

## 5.5 Internal Heat Loading

The internal heat load content of the 3-60B Cask has been represented in the finite element models by two different ways. In the first, the heat load is implicitly represented by a uniform heat flux over the cask cavity. In the second, it is explicitly represented by the finite element model of the waste container and the cavity air. The heat load in this case is applied as a constant heat flux over the waste container wall.

## 5.5.1 Implicit Internal Heat Load Modeling

The 500-Watt decay heat load is modeled as a uniform heat flux over the inside surface of the lid and the lower 30" of the inside surface of the cask inner shell (see Figure 5). This loading conservatively represents the compaction of the payload during the hypothetical drop tests and positioning of it near the most vulnerable part of the cask, i.e. the seal surface. The representation of the decay heat load as surface flux is a conservative approximation during the fire transient, since, in reality, some of the heat from the fire would be transferred to the waste. Thus, the waste would act as a heat sink lowering the wall temperature.

Internal heat load,  $q = 500 \text{ W} = 500 \times 9.4804 \times 10^{-4} = 0.4740 \text{ Btu/sec}$ 

The cask inside diameter is 35" and the cavity height is 30". Thus, the heat flux on the inside surface of the cask is:

$$q_{s} = 0.4740/(\pi \times 35 \times 30 + \pi/4 \times 35^{2})$$
$$= 1.112 \times 10^{-4} \text{ Btu/(sec-in^{2})}$$

Title	Hypothe	etical Fire A	ccident 7	hermal Analysis of the 3-60B Cask			
Calc. No	TH-023	<b>Rev</b>	3	Sheet	10	_of_	16

# 5.5.2 Explicit Internal Heat Load Modeling

In order to obtain the temperature of the waste container and the cavity air during the NCT, they are explicitly represented in the finite element model by 3-dimensional solid elements with appropriate material properties. The waste container is conservatively assumed to be a cylindrical shell having the diameter and length to be approximately  $\frac{1}{2}$  of the corresponding cavity dimensions.

Waste Container Outside Diameter = 17", Length = 50", Wall Thickness = 1.0"

Container Inside Surface Area =  $\pi \times (17-2) \times (50-2) + 2 \times [\pi \times (17-2)^2/4] = 2,615 \text{ in}^2$ 

The heat flux is applied on the inside surface of the waste container. Its magnitude is:

 $q_w = 0.474/2,615 = 1.813 \times 10^{-4} \text{ Btu/sec-in}^2$ 

The cavity air is conservatively assumed to be stagnant - no convective heat transfer is assumed to take place between the waste container and the cask cavity. Thus, the heat transfer between these components takes place by means of conduction through the air and radiation between the two bodies. The air conduction is accounted for by the appropriate material properties of the finite elements representing it. The heat transfer by radiation is achieved by the ANSYS radiosity process. The coefficient of emissivity for both the surfaces is assumed to be 0.8 and the form-factor is automatically calculated by the computer program from the geometry of the two bodies. The finite element model of the cask with explicit internal heat load modeling is shown in Figure 6.

## 5.6 <u>Puncture Drop Damage Modeling</u>

During the regulatory puncture drop test specified in Article 71.73(c)(3) of Reference 2, the structural analyses have shown that no damage to the cask body will occur. However, the fire-shield which is separated from the cask body with the help of helically-wound stainless steel wires, may jam into the cask body at the puncture bar contact location. An analysis of the 3-60B cask has been performed assuming that such a contact occurred at the exposed location closest to the lid seals. The 1/32nd symmetric model is used for this analysis, which conservatively makes the contact area in shape of a circular ring having a width equal to the contact diameter instead of a circle. Full thermal contact is assumed between the fire-shield and the outer shell of the cask at the assumed location of the puncture drop. In other words, the outer shell is assumed to be directly exposed to the fire at this location.

## 6.0 ANALYSES

The finite element model described in Section 5.0 is analyzed in the following manner:

- 1. The initial temperature condition is obtained by running the finite element model with the following boundary conditions:
  - □ Internal heat load 500 W
  - □ Solar insolation no
  - □ Heat Transfer to the ambient by radiation yes
  - □ Heat transfer to the ambient by natural convection yes

Title	Hypothe	etical Fire A	ccident T	hermal Analysis of the 3-60B Cask
Calc. No.	TH-023	<b>Rev</b>	3	<b>Sheet</b> <u>11</u> of <u>16</u>

- □ Ambient air temperature 100°F
- 2. The fire transient is run with the body temperature resulting from the above initial conditions. The fire transient is run for 30 minutes (1,800 sec) with the following boundary conditions:
  - $\Box \qquad \text{Internal heat load} 500 \text{ W}$
  - □ Solar insolation no
  - □ Heat Transfer to the ambient by radiation yes
  - □ Heat transfer to the ambient by forced convection yes
  - □ Ambient air temperature 1475°F
- 3. The end of fire analysis of the model is performed with the body temperature resulting from the above fire transient to 1801 sec with the following boundary conditions:
  - $\Box \qquad \text{Internal heat load} 500 \text{ W}$
  - □ Solar insolation no
  - □ Heat Transfer to the ambient by radiation yes
  - □ Heat transfer to the ambient by natural convection yes
  - □ Ambient air temperature 100°F
- 4. The cool-down analysis of the model is performed with the body temperature resulting from the above fire transient to 14,000 sec with the following boundary conditions:
  - $\Box \qquad \text{Internal heat load} 500 \text{ W}$
  - □ Solar insolation yes
  - □ Heat Transfer to the ambient by radiation yes
  - □ Heat transfer to the ambient by natural convection yes
  - □ Ambient air temperature 100°F

Figure 7 shows the boundary conditions used during the fire transient analysis.

The finite element models are analyzed for three configuration to obtain the limiting thermal loading on the 3-60B cask. The first model that represents the internal heat load implicitly has been used for the cask body temperature evaluation. It has been demonstrated in the NCT thermal analysis that this model predicts the cask temperature conservatively. The second model that explicitly represents the internal heat load is used for predicting the internal cavity temperature. The third model assumes that the fire-shield has been damaged at the puncture drop contact location and the portion of the outer shell of the cask is directly exposed to the fire. For this analysis, the internal heat load is implicitly represented since it results in a more conservative temperature prediction than the explicit representation.

## 7.0 **RESULTS**

7.1 Cask Temperature Results

Title	Hypoth	etical Fire A	Accident 7	Thermal Analysis of the 3-60B Cask
Calc. No	ТН-023	<b>Rev</b>	3	<b>Sheet</b> <u>12</u> of <u>16</u>

As described earlier the model representing the internal heat load implicitly is used for obtaining the cask body temperature. From the transient analyses of the finite element model, using the loading described in Section 6.0, a time-history data of the temperature in various components of the cask is obtained. The fire shield, outer shell, inner shell, lead, and seal were considered as the critical components of the cask. The temperatures at representative locations in these locations are monitored during the entire fire and cool down transient analysis. The nodes that are monitored at these critical components are shown in Figure 8.

Figure 9 gives the plot of the time-history data at the representative nodes of the cask components. Figure 10 gives the same data in cask components that are not directly exposed to the fire. The ANSYS printout of the data is included in Appendix 1.

Table 7.1 summarizes the maximum temperature of various components of the cask during the entire analysis period.

#### Table 7.1

Component	Maxi	Maximum Allowable		
	Location (Node Nos.)	Time (Sec.)	Value (°F)	Temperature (°F)
Fire Shield	3600	1,800	1331	N.A
Outer Shell	1897	1,806	353.5	800
Inner Shell	1790	3,984	284.1	800
Lead	2366	2,051	301.6	622
Seals	288	4,838	295.7	450

## **Summary of Maximum Hypothetical Fire Temperatures**

To capture the maximum stresses in the cask components during the fire accident test conditions, the structural finite element model, with identical node numbers, needs to be run at some critical time instances. From the time-history plot several critical time instants were identified. The criterion used for determining these time instants was that one of the components achieved the highest temperature during the fire transient. Figure 10 identifies these time instants. The temperature distribution in the cask at these time instances is shown in Figures 11 through 17.

## 7.2 <u>Cavity Air Temperature Results</u>

Transient thermal analysis of the model with explicit internal heat load representation (Figure 6) is performed for the loading described in Section 6.0 to obtain the time-history of the cavity and waste container temperature.

The time-history plots of the temperature of the air at various locations in the cask cavity, and the waste container, are shown in Figure 18. The average temperature in the cavity is also

Title	Hypoth	etical Fire A	ccident T	hermal Analysis of the 3-60B Cask	
Calc. No	TH-023	<b>Rev</b>	3	<b>Sheet</b> <u>13</u> of <u>16</u>	_

plotted in this figure. Figure 19 shows the temperature profile in the cask cavity at the time instant when the cavity air reaches the maximum value. Figure 20 shows the temperature profile in the cask cavity at the time instant when the average temperature reaches the maximum value. Figure 21 shows the maximum waste container temperature profile.

The calculated temperatures are summarized below:

Maximum cavity temperature	= 329.3°F	(see Figure 19)
Maximum average cavity temperature	= 273.2°F	(see Figure 19)
Maximum waste container temperature	= 294°F	(see Figure 21)

## 7.3 <u>Puncture Drop Damage Results</u>

The temperature profile of the cask obtained from the finite element model with damaged fire shield at the location of puncture drop is shown in Figure 22. From this figure it is observed that due to the assumed damage to the fire shield the temperature increase in the cask body under HAC fire is highly localized. The temperature plot in the cask wall near the assumed damage location is shown in Figure 23. The cask wall temperature is shown in Figure 24 and that in the lead shielding is shown in Figure 25.

The calculated temperatures are summarized below:

Maximum outer shell temperature	= 827.4°F	(see Figure 23)
Maximum lead temperature	= 695.3°F	(see Figure 25)
Average outer shell temperature	= 726.5°F	(see Figure 24)
Average lead temperature	= 561.5°F	(see Figure 25)

It should be noted that the maximum temperatures listed above occur over a very small region and they have also been obtained from very conservative assumptions. Therefore, the average values are more representative of the component behavior than the absolute maximum values. Thus both the outer shell and the lead shielding meet their allowable maximum values of 800°F and 622°F, respectively.

## 8.0 ANSYS PRINTOUT AND DATA FILES

The printout of the important data from the program is included with this document in electronic form as Appendix 1.

The complete electronic data of the input and output of all the analyses are included on a CDROM in Appendix 2.

## 9.0 APPENDICES

Appendix 1 Print-out of the ANSYS model data input

Appendix 2 Electronic data on CDROM

Title	Hypothe	etical Fire A	ccident 7	hermal Analysis of the 3-60B Cask	
Calc. No	TH-023	<b>Rev</b>	3	<b>Sheet</b> <u>14</u> of <u>16</u>	_

# **Figures**

(25 Pages)



Figure 1 - Finite Element Model of the 3-60B Cask Used for the Thermal Analyses



Figure 2 – Exploded View of Region 1 of Figure 1













Time (sec.) [Not to Scale]

#### Figure 7 – HAC Fire Analysis Load Steps and Boundary Conditions

Fire Transient Analyses of the 3-60B Cask Using a 3-D Finite Element Model Sheet 7 of 25

Title








Figure 11 – Temperature Distribution – 0.1 Sec. After the Start of the Fire

25







Figure 14 – Temperature Distribution – 1,864 Sec. After the Start of the Fire

25









(See Figure 19 for the Monitored Locations)















Title	Hypothe	etical Fire A	ccident 7	hermal Analysis of the 3-60B Cask	
Calc. No	TH-023	<b>Rev</b>	3	<b>Sheet</b> <u>15</u> of <u>16</u>	_

<u>Appendix 1</u> Print-out of the ANSYS model data input (13 Pages)

## 3-60B Cask HAC Fire Analysis - ANSYS Model Data

***** TITLES ***** *** YOU ARE IN ANSYS - ENGINEERING ANALYSIS SYSTEM *** ANSYS Mechanical/Emag RELEASE 11.0SP1 UPDATE 20070830 CUSTOMER 00222442 INITIAL JOBNAME = file CURRENT JOBNAME = file Current Working Directory: D:\Ansys Analyses\3-60B\Thermal\Fire with Conc Heat Load-1 TITLE= 3-60B Cask HAC Fire - Load Model Included MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans GLOBAL STATUS ANSYS - Engineering Analysis System Jun 09, 2009 11:27 00222442 Release 11.0SP1 WINDOWS x64 Version Current working directory: D:\Ansys Analyses\3-60B\Thermal\Fire with Conc Heat Load-1 MENULIST File: C:\Program Files\ANSYS Inc\v110\ANSYS\gui\en-us\UIDL\menulist110.ans Product(s) enabled: ANSYS Mechanical/Emag Total connect time. . . . 0 hours 1 minutes Total CP usage. . . . . . 0 hours 0 minutes 2.4 seconds JOB INFORMATION -----3-60B Cask HAC Fire - Load Model Included Current jobname . . . . . . . file Initial jobname . . . . . . file Available Used Available Scratch Memory Space. . . 4796.000 mb 7.164 mb ( 0.1%) Database space . . . . . . 1048572.000 mb 16.778 mb ( 0.0%) User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\enus\uidl\UIMENU.GRN User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\enus\uidl\UIFUNC1.GRN User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\enus\uidl\UIFUNC2.GRN User menu file in use . . .C:\Program Files\ANSYS Inc\v110\ANSYS\gui\enus\uidl\MECHTOOL.AUI Beta features . . . . . . . . are not shown in the user interface MODEL INFORMATION ------Solid model summary:

					Largest	N	Jumber	Number
					Number	De	fined	Selected
Keypoints					0		0	0

Lines .						0	0	0
Areas .						0	0	0
Volumes						0	0	0

Finite element model summary:

Nodes	Largest	Number	Number
	Number	Defined	Selected
	30003	10934	10934
	10557	9048	9048
Element types	69	43	n.a.
	53	25	n.a.
	27	7	n.a.
Coupling	52	20	n.a.
	0	0	n.a.
	0	0	n.a.
	0	0	n.a.

BOUNDARY CONDITION INFORMATION -----

	Number		
Constraints on nodes	Defined 3 0 0 0		
Forces on nodes	. 0 . 0		
Surface loads on elements	. 785 . 0 . 0 . 0		
Body loads on elements Body loads on nodes	0 0 0		
Temperatures Uniform temperature Offset from absolute scale	. 100.000 . 460.000		
Linear acceleration	X 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Y 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	Z 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
$\label{eq:relation} \begin{array}{cccccccccccccccccccccccccccccccccccc$			
Current routine	eprocessing (H	PREP7)	
Active coordinate system	0 (Cartesian)	)	
Display coordinate system	0 (Cartesian)	)	
Current element attributes: Type number	7 (SURF152	2)	

26 Material number . . . . . . . . . . 26 Element coordinate system number. . 0 Current mesher type. . . . . . . . . . . . based on default element shape Current element meshing shape 2D . . .use default element shape. Current element meshing shape 3D . . . use default element shape. SmrtSize Level . . . . . . . . . . . OFF Global element size. . . . . . . . . 0 divisions per line Active coordinate system . . . . . . 0 (Cartesian) Display coordinate system. . . . . . 0 (Cartesian) Active options for this analysis type: Load step number . . . . . . . . . . . . 1 Number of substeps: Starting number of substeps . . . . 5000 Maximum number of substeps. . . . 5000 Minimum number of substeps. . . . 100 Step change boundary conditions . . Yes SOLUTION OPTIONS DEGREES OF FREEDOM. . . . . TEMP OFFSET TEMPERATURE FROM ABSOLUTE ZERO . . . . 460.00 LOAD STEP OPTIONS 1 TIME AT END OF THE LOAD STEP. . . . . . . . . . 14001. AUTOMATIC TIME STEPPING . . . . . . . . . . . . . ON INITIAL NUMBER OF SUBSTEPS . . . . . . . . . . 5000 MAXIMUM NUMBER OF SUBSTEPS . . . . . . . . . 5000 MINIMUM NUMBER OF SUBSTEPS . . . . . . . . . 100 MAXIMUM NUMBER OF EQUILIBRIUM ITERATIONS. . . . 15 STEP CHANGE BOUNDARY CONDITIONS . . . . . . . . YES TRANSIENT (INERTIA) EFFECTS ON TRANSIENT INTEGRATION PARAMETERS OSCILLATION LIMIT CRITERION. . . . . . . . 0.50000 TOLERANCE. . . . . . . . . . . . . . . . . . 0.0000 TERMINATE ANALYSIS IF NOT CONVERGED . . . . . . YES (EXIT)

LIST ELEMENT TYPES FROM 1 TO 69 BY 1

ELEMENT TYPE KEYOPT(1-12)=	1 0	IS 0	SOLID70 0 0	0	3-D THERMAL SOLID II 0 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	2 0	IS 0	SHELL57 0 0	0	THERMAL SHELL II   0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	3 0	IS 0	SOLID70 0 0	0	3-D THERMAL SOLID II   0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	4 0	IS 0	SURF152 0 1	1	3-D THERMAL SURFACE II   0 0 1 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	5 0	IS 0	SURF152 0 1	1	3-D THERMAL SURFACE II   0 1 4 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	6 0	IS 0	SURF152 0 1	1	3-D THERMAL SURFACE II   0 0 4 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	7 0	IS 0	SURF152 0 1	0	3-D THERMAL SURFACE II   0 0 1 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	14 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT II 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	15 2	IS 2	CONTA174 0 2	0	3D 8-NODE THERMAL CONTACT II   0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	16 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT II 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	17 2	IS 2	CONTA174 0 2	0	3D 8-NODE THERMAL CONTACT II   0 0 0 2 0 5 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	18 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT II 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	19 2	IS 2	CONTA174 0 2	0	3D 8-NODE THERMAL CONTACT II   0 0 0 2 0 5 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	20 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT II 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	21 2	IS 2	CONTA174 0 2	0	3D 8-NODE THERMAL CONTACT II   0 0 0 2 0 5 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	22 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT II 0 0 0 0 0 0 0 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	23 2	IS 2	CONTA174 0 2	0	3D 8-NODE THERMAL CONTACT II   0 0 0 2 0 5 0	NOPR
ELEMENT TYPE KEYOPT(1-12)=	24 0	IS 0	TARGE170 0 0	0	3-D TARGET SEGMENT II 0 0 0 0 0 0 0 0	NOPR

ELEMENT TYPE KEYOPT(1-12)=	25 2	IS 2	CONTA174 0 2	0	3D 8 0	8-NODE 0 0	THERN 0	MAL 2	C01 0	NTACT 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	26 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE' 0 0	T SEGN 0	1ENT 0	Г 0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	27 2	IS 2	CONTA174 0 2	0	3D 8 0	8-NODE 0 0	THERN 0	1AL 2	C01 0	NTACT 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	28 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE' 0 0	T SEGN 0	4ENT 0	Г 0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	29 2	IS 2	CONTA174 0 2	0	3D 8 0	8-node 0 0	THERN 0	1AL 2	C01 0	NTACT 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	30 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE' 0 0	T SEGN 0	1ENT 0	Г О	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	31 2	IS 2	CONTA174 0 2	0	3D 8 0	8-node 0 0	THERN 0	1AL 2	COI 0	NTACT 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	50 1	IS 0	MATRIX50 0 0	0	SUPI 0	ERELEM 0 0	ENT (S O	SUBS 0	STRI 0	UCTURE) 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	51 1	IS 0	MATRIX50 0 0	0	SUPI 0	ERELEM 0 0	ENT (S O	SUBS 0	STRI 0	UCTURE) 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	52 1	IS 0	MATRIX50 0 0	0	SUPI 0	ERELEM 0 0	ENT (S O	SUBS 0	STRI 0	UCTURE) 0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	53 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE' 0 0	T SEGN 0	1ENT 0	с 0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	54 2	IS 2	CONTA175 0 0	0	NODI 0	E-SURF 0 0	pure 0	THE 2	erm 0	CONTACT 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	57 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE' 0 0	T SEGN 0	1ENT 0	с 0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	58 2	IS 2	CONTA174 0 2	0	3D 8 0	8-node 0 0	THERN 0	1AL 2	COI 0	NTACT 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	59 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE' 0 0	T SEGN 0	1ENT 0	с 0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	60 2	IS 2	CONTA174 0 2	0	3D 8 0	8-NODE 0 0	THERN 0	MAL 2	COI 0	NTACT 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	61 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE' 0 0	T SEGN 0	1ENT 0	Г 0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	62 2	IS 2	CONTA174 0 2	0	3D 8 0	B-NODE 0 0	THERN 0	MAL 2	COI 0	NTACT 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	63 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE' 0 0	T SEGN 0	MENT 0	Г 0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	64 2	IS 2	CONTA174 0 2	0	3D 8 0	8-NODE 0 0	THERN 0	MAL 2	COI 0	NTACT 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	65 0	IS 0	TARGE170 0 0	0	3-D 0	TARGE' 0 0	T SEGN 0	4ENT 0	Г 0	0	0	INOPR

ELEMENT TYPE KEYOPT(1-12)=	66 IS = 2 2	CON 0	TA174 2	0 0	3D	8-NODE 0 0	THERM. 0	AL CO 2 0	NTACT 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	67 IS = 0 0	TAR 0	GE170 0	0 0	3-D	TARGE 0 0	r segm: 0	ENT 0 0	0	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	68 IS = 2 2	CON 0	TA174 2	0 0	3D	8-NODE 0 0	THERM	AL CO 2 0	NTACT 5	0	INOPR
ELEMENT TYPE KEYOPT(1-12)=	69 IS = 0 0	SUR 0	F252 1	0 0	3-D	THERMA 0 0	AL SUR 0	FACE 0 0	0	0	INOPR
CURRENT NODAL THREE-DIMENSI	DOF SET I IONAL MODI	IS EL	TEMP								
LIST REAL SETS	5 1	ТО	5	53 BY		1					
REAL CONSTANT 1.0000	SET 0.330561	23 E-14	ITEMS 0.0	3 1 )000	то	6 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	23	ITEMS 0.0	5 7 )000	то	12 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	23	ITEMS 0.0	3 13 0000	то	18 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	24	ITEMS 0.0	3 1 )000	то	6 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	24	ITEMS 0.0	5 7 )000	то	12 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.33300	SET 0.0000	24	ITEMS 0.0	3 13 0000	то	18 0.00	000	0	.0000		0.0000
REAL CONSTANT 1.0000	SET 0.330561	27 E-14	ITEMS 0.0	3 1 0000	то	6 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	27	ITEMS 0.0	5 7 )000	то	12 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	27	ITEMS 0.0	3 13 0000	то	18 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	28	ITEMS 0.0	3 1 )000	то	6 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	28	ITEMS 0.0	5 7 )000	то	12 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.33300	SET 0.0000	28	ITEMS 0.0	5 13 0000	то	18 0.00	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	32	ITEMS 1.0	3 1 0000	то	6 0.100	000	0	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	32	ITEMS 0.10	5 7 )000E	то +21	12 0.00	000	1	.0000		0.0000
REAL CONSTANT 0.0000	SET 0.0000	32	ITEMS 1.0	3 13 0000	то	18 0.00	000	1	.0000		0.50000
REAL CONSTANT	SET	32	ITEMS	5 19	то	24					

0.0000	1.0000		1.0000	0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	33	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	33	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	33	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	33	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	34	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	34	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	34	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	34	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	35	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	35	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	36	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	36	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	36	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	36	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	37	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	37	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	37	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	37	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT	SET	38	ITEMS 1 TO	б		

0.0000	0.0000		1.0000	0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	38	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	38	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	38	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	39	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	39	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	39	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	39	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	40	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	40	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	42	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	42	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	43	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	43	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT	SET	44	ITEMS 7 TO	12		

0.0000	0.0000		0.10000E+21	0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	44	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	44	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	45	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	45	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	46	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	46	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	46	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	46	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	47	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	47	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	47	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	47	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	48	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	48	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	48	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	48	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	49	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	49	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT	SET	49	ITEMS 13 TO	18		

0.0000	0.0000		1.0000	0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	49	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	50	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	50	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	50	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	50	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	51	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	51	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	51	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	51	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	52	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	52	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	52	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	52	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 1 TO 1.0000	6 0.10000	0.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 7 TO 0.10000E+21	12 0.0000	1.0000	0.0000
REAL CONSTANT 0.0000	SET 0.0000	53	ITEMS 13 TO 1.0000	18 0.0000	1.0000	0.50000
REAL CONSTANT 0.0000	SET 1.0000	53	ITEMS 19 TO 1.0000	24 0.0000	0.0000	1.0000
LIST MATERIALS PROPERTY= ALI	5 1	TO	27 BY	1		
PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00	E DENS MA DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240	4T=	1 NUM. TEMPERATURE 100.00 ( 250.00 ( 400.00 ( 550.00 ( 700.00 (	POINTS= 23 DATA ).28240 ).28240 ).28240 ).28240 ).28240 ).28240	TEMPERATURE 150.00 300.00 450.00 600.00 750.00	DATA 0.28240 0.28240 0.28240 0.28240 0.28240 0.28240

800.00 1100.0 1400.0	0.28240 0.28240 0.28240	900.00 1200.0 1500.0	0.28240 0.28240 0.28240	1000.0 1300.0	0.28240 0.28240
PROPERTY TABLE TEMPERATURE 0.0000	MU MAT= DATA 0.0000	1 NUM TEMPERATURE	. POINTS= DATA	1 TEMPERATURE	DATA
PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0	<pre>KXX MAT= DATA 0.19900E-03 0.21500E-03 0.23400E-03 0.25200E-03 0.26900E-03 0.28200E-03 0.31500E-03 0.34500E-03</pre>	1 NUM TEMPERATURE 3 100.00 3 250.00 3 400.00 3 550.00 3 700.00 3 900.00 3 1200.0 3 1500.0	. POINTS= DATA 0.20100E- 0.22200E- 0.24100E- 0.25700E- 0.27300E- 0.29400E- 0.32400E- 0.35400E-	23 TEMPERATURE 03 150.00 03 300.00 03 450.00 03 600.00 03 750.00 03 1000.0 03 1300.0 03	DATA 0.20800E-03 0.22700E-03 0.24500E-03 0.26200E-03 0.27800E-03 0.30600E-03 0.33600E-03
PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00 800.00 1100.0 1400.0	C MAT= DATA 0.11700 0.12200 0.12800 0.13100 0.13400 0.13600 0.14100 0.14400	1 NUM TEMPERATURE 100.00 250.00 400.00 550.00 700.00 900.00 1200.0 1500.0	. POINTS= DATA 0.11700 0.12500 0.12900 0.13200 0.13500 0.13800 0.14100 0.14500	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00 1000.0 1300.0	DATA 0.12000 0.12600 0.13000 0.13300 0.13600 0.13900 0.14300
PROPERTY TABLE TEMPERATURE 0.0000	EMIS MAT= DATA 0.0000	1 NUM TEMPERATURE	. POINTS= DATA	1 TEMPERATURE	DATA
PROPERTY TABLE TEMPERATURE 0.0000	DENS MAT= DATA 0.28300	2 NUM TEMPERATURE	. POINTS= DATA	1 TEMPERATURE	DATA
PROPERTY TABLE TEMPERATURE 70.000 300.00 600.00 900.00 1200.0 1500.0	KXX MAT= DATA 0.81300E-03 0.74800E-03 0.64800E-03 0.55100E-03 0.45100E-03 0.36300E-03	2 NUM TEMPERATURE 3 100.00 3 400.00 3 700.00 3 1000.0 3 1300.0	. POINTS= DATA 0.80300E- 0.71500E- 0.61600E- 0.51900E- 0.41700E-	16 TEMPERATURE 03 200.00 03 500.00 03 800.00 03 1100.0 03 1400.0	DATA 0.77800E-03 0.67700E-03 0.58300E-03 0.48400E-03 0.38000E-03
PROPERTY TABLE TEMPERATURE 70.000 300.00 600.00 900.00 1200.0 1500.0	C MAT= DATA 0.10330 0.11770 0.13220 0.15350 0.18290 0.19820	2 NUM TEMPERATURE 100.00 400.00 700.00 1000.0 1300.0	. POINTS= DATA 0.10530 0.12340 0.13810 0.16240 0.20450	16 TEMPERATURE 200.00 500.00 800.00 1100.0 1400.0	DATA 0.11210 0.12780 0.14520 0.17100 0.40900
PROPERTY TABLE TEMPERATURE 70.000 200.00 350.00 500.00 650.00	DENS MAT= DATA 0.41090 0.41090 0.41090 0.41090 0.41090	3 NUM TEMPERATURE 100.00 250.00 400.00 550.00 700.00	. POINTS= DATA 0.41090 0.41090 0.41090 0.41090 0.41090	23 TEMPERATURE 150.00 300.00 450.00 600.00 750.00	DATA 0.41090 0.41090 0.41090 0.41090 0.41090

800.00	0.41090	900.00	0.41090	1000.0	0.41090
1100.0	0.41090	1200.0	0.41090	1300.0	0.41090
1400.0	0.41090	1500.0	0.41090		
PROPERTY TABLE	КХХ МАТ=	3 1	NUM POINTS= 23	3	
		ייבעשמאסיי			ኮለሞለ
IEMPERATORE	DAIA	100 00		1EMPERATORE	DAIA 0 4FE00R 02
70.000	0.46500E-0	3 100.00	0.46100E-03	3 150.00	0.45500E-03
200.00	0.44800E-0	3 250.00	0.44100E-0.5	3 300.00	0.43500E-03
350.00	0.42800E-0	3 400.00	0.42200E-03	3 450.00	0.41500E-03
500.00	0.40900E-0	3 550.00	0.40200E-03	3 600.00	0.39500E-03
650.00	0.38900E-0	3 700.00	0.38900E-03	3 750.00	0.38900E-03
800.00	0.38900E-0	3 900.00	0.38900E-03	3 1000.0	0.38900E-03
1100 0	0 38900E-0	3 1200 0	0 38900E-03	3 1300 0	0 38900E-03
1400.0	0 38900F-0	3 1500.0	0 38900F-03	2 200.0	0.505001 05
1400.0	0.30700E 0.	5 1500.0	0.309001 0.	)	
		2 7			
PROPERTY TABLE	C MAI=		NOM. POINTS= $23$		
TEMPERATURE	DATA	TEMPERATU	RE DATA	TEMPERATURE	DATA
70.000	0.31050E-0	1 100.00	0.31050E-01	L 150.00	0.31050E-01
200.00	0.31050E-0	1 250.00	0.31050E-01	L 300.00	0.31050E-01
350.00	0.31050E-0	1 400.00	0.31050E-01	450.00	0.31050E-01
500.00	0.31050E-0	1 550.00	0.31050E-01	600.00	0.31050E-01
650.00	0.31050E-0	1 700.00	0.31050E-01	750.00	0.31050E-01
800 00	0 31050E-0	1 900 00	0 31050F-01	1000 0	0 31050E-01
1100 0	0.31050E 0.	1 1200.00		1200.0	0.310500 01
1100.0	0.31050E-0	1 1200.0	0.31050E-01	1 1300.0	0.31050E-01
1400.0	0.31050E-0.	1 1500.0	0.31050E-0.	L	
PROPERTY TABLE	DENS MAT=	4 1	NUM. POINTS= 23	3	
TEMPERATURE	DATA	TEMPERATU	RE DATA	TEMPERATURE	DATA
70.000	0.43510E-0	4 100.00	0.41120E-04	150.00	0.37520E-04
200.00	0.34680E-04	4 250.00	0.32360E-04	1 300.00	0.30310E-04
350.00	0.28310E-04	4 400.00	0.26730E-04	450.00	0.25220E-04
500.00	0.23960E-0	4 550.00	0.22780E-04	1 600.00	0.21680E-04
650.00	0.20710E - 0	4 700.00	0.19800E-04	1 750.00	0.18980E-04
800.00	0 18180F-0	4 900 00	0 16900F-04	1 1000 0	0 15710F-04
1100 0	0.10100E 0	4 1200.00	0.129505 04	1 1200.0	0.13040E 04
1400.0	0.14720E-04	4 1200.0	0.13050E-04	± 1300.0	0.130408-04
1400.0	0.12350E-04	4 1500.0	0.11/108-04	ŧ	
		4			
PROPERTY TABLE	KAX MAI=	4 1	NUM. PUINIS= 23		<b>D 1 m 1</b>
TEMPERATURE	DATA	TEMPERATU	RE DATA	TEMPERATURE	DATA
70.000	0.34490E-0	6 100.00	0.36210E-00	5 150.00	0.39030E-06
200.00	0.41770E-0	6 250.00	0.44460E-06	5 300.00	0.47040E-06
350.00	0.49570E-0	6 400.00	0.52040E-06	5 450.00	0.54480E-06
500.00	0.56880E-0	6 550.00	0.59210E-06	5 600.00	0.61430E-06
650.00	0.63630E-0	6 700.00	0.65810E-06	5 750.00	0.67900E-06
800.00	0.69960E-0	6 900.00	0.74090E - 06	5 1000.0	0.78040E-06
1100 0	0 81750E-0	6 1200 0	0 854508-04	5 1300 0	0.88970E-06
1400.0	0.01/30E-0	6 1E00.0	0.03430E-00	1300.0	0.009/0E-00
1400.0	0.92030E-0	0 100.0	0.97070E-00	)	
	а мат-	4		)	
PROPERTY TABLE	C MAI=		NUM. PUINIS= 23		
TEMPERATURE	DATA	TEMPERATU	RE DATA	TEMPERATURE	DATA
70.000	0.24020	100.00	0.24040	150.00	0.24080
200.00	0.24140	250.00	0.24210	300.00	0.24290
350.00	0.24380	400.00	0.24500	450.00	0.24610
500.00	0.24740	550.00	0.24900	600.00	0.25110
650.00	0.25270	700.00	0.25380	750.00	0.25520
800.00	0.25680	900.00	0,25960	1000.0	0.26280
1100 0	0 26500	1200 0	0 26800	1300 0	0 27170
1400.0	0.20390	1500.0	0.20090	1300.0	0.2/1/0
1400.0	0.2/420	T200.0	0.2/000		
ה זהים משתקתסם		- ·		1	
FRUPERII IABLE	LIAM CMTT		NOMI POINIS= 1		
IEMPERATURE	DATA	TEMPERALU	KE DATA	TEWPERATURE	DATA
0.0000	0.28300				

PROPERTY TABLE	KXX MAT=	5 NUI	M. POINTS=	16	
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.81300E-03	3 100.00	0.80300E-	03 200.00	0.77800E-03
300.00	0.74800E-03	3 400.00	0.71500E-	03 500.00	0.67700E-03
600.00	0.64800E-03	3 700.00	0.61600E-	03 800.00	0.58300E-03
900.00	0.55100E-03	3 1000.0	0.51900E-	03 1100.0	0.48400E-03
1200.0	0.45100E-03	3 1300.0	0.41700E-	03 1400.0	0.38000E-03
1500.0	0.36300E-03	3			
PROPERTY TABLE	C MAT=	5 NUI	M. POINTS=	16	
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
70.000	0.10330	100.00	0.10530	200.00	0.11210
300.00	0.11770	400.00	0.12340	500.00	0.12780
600.00	0.13220	700.00	0.13810	800.00	0.14520
900.00	0.15350	1000.0	0.16240	1100.0	0.17100
1200.0	0.18290	1300.0	0.20450	1400.0	0.40900
1500.0	0.19820				
PROPERTY TABLE	EMIS MAT=	23 NUI	M. POINTS=	1	
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
0.0000	0.90000				
PROPERTY TABLE	EMIS MAT=	27 NU	M. POINTS=	1	
TEMPERATURE	DATA	TEMPERATURE	DATA	TEMPERATURE	DATA
0.0000	0.90000	-		-	

Title	Hypothe	etical Fire A	ccident 7	hermal Analysis of the 3-60B Cask	_
Calc. No.	TH-023	<b>Rev</b>	3	<b>Sheet</b> <u>16</u> of <u>16</u>	

Appendix 2

Electronic Data on CDROM (3 Pages & 1 DVD)

Volume in Volume Ser	drive F is TH ial Number is	-023r3a2 E21F-6848	
Directory	of F:\		
02/23/2010	10:03 AM	<dir></dir>	Explicit Heat Load Modeling
02/23/2010	10:01 AM	<dir></dir>	Implicit Heat Load Modeling
02/23/2010	10:02 AM	<dir></dir>	Puncture Drop Damage Modeling
	0 File(s)	(	) bytes
Directory	of F:\Explici	t Heat Load Moo	deling
02/23/2010	10:03 AM	<dir></dir>	
02/23/2010	10:07 AM	<dir></dir>	
05/12/2009	09:33 AM	65,536	bot.sub
06/08/2009	07:52 AM	63,845	fig19.png
06/08/2009	07:54 AM	48,817	fig20.png
06/08/2009	07:55 AM	37,978	fig21.png
06/08/2009	07:47 AM	114,877	fig6.png
06/02/2009	08:32 AM	11,553,792	file.avi
06/05/2009	07:06 PM	2,234	file.BCS
06/08/2009	07:57 AM	17,432,576	file.db
06/05/2009	07:40 PM	2,621,440	file.dsub
06/09/2009	10:27 AM	301,174	file.err
06/05/2009	07:40 PM	5,898,240	file.esav
06/05/2009	07:40 PM	1,114,112	file.full
06/05/2009	06:46 PM	1,064,980	file.ldhi
06/09/2009	10:47 AM	22,004	file.log
06/05/2009	07:06 PM	21,708	file.mntr
06/05/2009	07:06 PM	5,898,240	file.osav
06/05/2009	06:23 PM	6,160,384	file.r001
06/05/2009	07:06 PM	6,160,384	file.r002
06/05/2009	06:22 PM	9,961,472	file.rdb
06/08/2009	07:57 AM	393,216	file.rsm
06/05/2009	07:40 PM	845,152,256	file.rth
06/05/2009	04:34 PM	0	file.sda
06/05/2009	06:22 PM	151	file.stat
06/05/2009	06:21 PM	148,887,064	file.vf
05/12/2009	07:18 AM	1,645	generate superelements.txt
05/12/2009	10:26 AM	965	loading.txt
06/08/2009	07:32 AM	23,680	PRVAR.lis
06/08/2009	08:34 AM	43,453	PRVAR.xlsx
06/09/2009	10:27 AM	486,892	report.out
05/12/2009	09:33 AM	1,441,792	side.sub
06/03/2009	01:13 PM	153	TimeHisInput.txt
05/12/2009	09:33 AM	327,680	top.sub
	32 File(s)	1,065,302,740	) bytes

Directory of F:\Implicit Heat Load Modeling

10:01 AM	<dir></dir>		•
10:07 AM	<dir></dir>		
07:25 AM		65,536	bot.sub
07:57 AM		91,611	fig11.png
	10:01 AM 10:07 AM 07:25 AM 07:57 AM	10:01 AM <dir> 10:07 AM <dir> 07:25 AM 07:57 AM</dir></dir>	10:01 AM <dir> 10:07 AM <dir> 07:25 AM 65,536 07:57 AM 91,611</dir></dir>

06/04/2009	07:58	AM	126,308	fig12.png
06/04/2009	07:59	AM	130,779	fig13.png
06/04/2009	08:00	AM	132,237	fig14.png
06/04/2009	08:01	AM	111,963	fig15.png
06/04/2009	08:02	AM	114,196	fig16.png
06/04/2009	08:02	AM	110,070	fig17.png
05/31/2009	10:28	AM	11,293,696	file.avi
05/31/2009	10:23	AM	2,234	file.BCS
06/04/2009	08:04	AM	10,354,688	file.db
05/31/2009	10:23	AM	2,621,440	file.dsub
06/04/2009	07:25	AM	5,943	file.err
05/31/2009	10:23	AM	4,390,912	file.esav
05/31/2009	10:23	AM	917,504	file.full
05/31/2009	10:21	AM	1,875,176	file.ldhi
06/04/2009	08:04	AM	14,140	file.log
05/31/2009	10:23	AM	21,708	file.mntr
05/31/2009	10:23	AM	4,390,912	file.osav
05/31/2009	10:20	AM	4,521,984	file.r001
05/31/2009	10:23	AM	4,521,984	file.r002
05/31/2009	10:20	AM	8,716,288	file.rdb
05/31/2009	10:23	AM	501,743,616	file.rth
05/31/2009	10:20	AM	151	file.stat
05/12/2009	07:18	AM	1,645	generate superelements.txt
05/11/2009	02:24	PM	909	loading.txt
06/01/2009	07:35	AM	19,130	PRVAR.lis
06/03/2009	09:19	AM	35,361	PRVAR.xlsx
06/03/2009	07:43	AM	26,214	PRVAR1.lis
06/09/2009	09:23	AM	78,613	PRVAR1.xlsx
06/03/2009	07:44	AM	19,970	PRVAR2.lis
05/12/2009	07:25	AM	1,441,792	side.sub
05/20/2009	08:40	AM	266	TimeHisInput-1.txt
10/10/2007	02:01	PM	266	TimeHisInput.txt
05/12/2009	07:25	AM	327,680	top.sub
	35 E	File(s)	558,226,922	2 bytes

Directory of F:\Puncture Drop Damage Modeling

10:02	AM	<dir></dir>	•
10:07	AM	<dir></dir>	••
07:25	AM	65,536	bot.sub
03:02	PM	402	coupling.txt
04:10	PM	69,853	fig22.png
10:34	AM	107,785	fig23.png
10:36	AM	80,958	fig24.png
10:35	AM	98,433	fig25.png
10:29	AM	16,999,424	file.avi
10:24	AM	2,234	file.BCS
04:11	PM	10,289,152	file.db
10:25	AM	2,621,440	file.dsub
08:43	AM	11,091	file.err
10:25	AM	4,390,912	file.esav
10:25	AM	917,504	file.full
10:22	AM	1,877,996	file.ldhi
08:43	AM	18,750	file.log
	10:02 10:07 07:25 03:02 04:10 10:34 10:36 10:29 10:24 04:11 10:25 08:43 10:25 10:22 08:43	10:02 AM 10:07 AM 07:25 AM 03:02 PM 04:10 PM 10:34 AM 10:36 AM 10:35 AM 10:29 AM 10:29 AM 10:24 AM 04:11 PM 10:25 AM 08:43 AM 10:25 AM 10:25 AM	10:02 AM <dir> 10:07 AM <dir> 07:25 AM 65,536 03:02 PM 402 04:10 PM 69,853 10:34 AM 107,785 10:36 AM 80,958 10:35 AM 98,433 10:29 AM 16,999,424 10:24 AM 2,234 04:11 PM 10,289,152 10:25 AM 2,621,440 08:43 AM 11,091 10:25 AM 917,504 10:22 AM 1,877,996 08:43 AM 18,750</dir></dir>

06/02/2009	10:24 AM	21,616 file.mntr
06/02/2009	10:24 AM	4,390,912 file.osav
06/02/2009	10:20 AM	4,521,984 file.r001
06/02/2009	10:24 AM	4,521,984 file.r002
06/02/2009	10:20 AM	8,716,288 file.rdb
06/02/2009	10:25 AM	499,777,536 file.rth
06/02/2009	10:20 AM	151 file.stat
05/12/2009	07:18 AM	1,645 generate superelements.txt
05/11/2009	02:24 PM	909 loading.txt
05/12/2009	07:25 AM	1,441,792 side.sub
10/10/2007	02:01 PM	266 TimeHisInput.txt
05/12/2009	07:25 AM	327,680 top.sub
	27 File(s)	561,274,233 bytes
Total	Files Listed:	
	94 File(s)	2,184,803,895 bytes
	9 Dir(s)	0 bytes free