B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.1 AC Sources - Operating

BASES

BACKGROUND

The plant AC Electrical Power Distribution System AC sources consist of the offsite power sources (preferred power sources, normal and alternate(s)), and the onsite standby power sources (Train A and Train B diesel generators (DGs)). As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the design of the AC electrical power system provides independence and redundancy to ensure an available source of power to the Engineered Safety Feature (ESF) systems.

The onsite Class 1E AC Distribution System supplies electrical power to four power trains, shared between the two units, with each train powered by an independent Class 1E 6.9 kV shutdown board. Power trains 1A and 2A comprise load group A, and power trains 1B and 2B comprise load group B. Two DGs associated with one load group can provide all safety related functions to mitigate a loss-of-coolant accident (LOCA) in one unit and safely shutdown the opposite unit. Each 6.9 kV shutdown board has two separate and independent offsite sources of power as well as a dedicated onsite DG source. The A and B train ESF systems each provide for the minimum safety functions necessary to shut down the plant and maintain it in a safe shutdown condition.

Offsite power is supplied to the Watts Bar 161 kV transformer yard by two dedicated lines from the Watts Bar Hydro Plant switchyard. This is described in more detail in FSAR, Section 8 (Ref. 2). From the 161 kV transformer yard, two electrically and physically separated circuits provide AC power, through step-down common station service transformers, to the 6.9 kV shutdown boards. The two offsite AC electrical power sources are designed and located so as to minimize to the extent practical the likelihood of their simultaneous failure under operating and postulated accident and environmental conditions. A detailed description of the offsite power network and the circuits to the Class 1E shutdown boards is found in Reference 2.

An offsite circuit consists of all breakers, transformers, switches, interrupting devices, cabling, and controls required to transmit power from the offsite transmission network (i.e., Watts Bar Hydro Plant switchyard) to the onsite Class 1E ESF buses (i.e., 6.9 kV shutdown boards).

BACKGROUND (continued)

A single offsite circuit is capable of providing the ESF loads. Both of these circuits are required to meet the Limiting Condition for Operation.

The onsite standby power source for each 6.9 kV shutdown board is a dedicated DG. WBN uses 4 DG sets for Unit 2 operation. These same DGs are shared for Unit 1 operation. A DG starts automatically on a safety injection (SI) signal (i.e., low pressurizer pressure or high containment pressure signals) or on a 6.9 kV shutdown board degraded voltage or loss-of-voltage signal (Refer to LCO 3.3.5, "Loss of Power (LOP) Diesel Generator (DG) Start Instrumentation."). After the DG has started, it will automatically tie to its respective 6.9 kV shutdown board after offsite power is tripped as a consequence of 6.9 kV shutdown board loss-of-voltage or degraded voltage, independent of or coincident with an SI signal. The DGs will also start and operate in the standby mode without tying to the 6.9 kV shutdown board on an SI signal alone. Following the trip of offsite power, a loss-of-voltage signal strips all nonpermanent loads from the 6.9 kV shutdown board. When the DG is tied to the 6.9 kV shutdown board, loads are then sequentially connected to its respective 6.9 kV shutdown board by the automatic sequencer. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading the DG by automatic load application.

In the event of a loss of preferred power, the 6.9 kV shutdown boards are automatically connected to the DGs in sufficient time to provide for safe reactor shutdown and to mitigate the consequences of a Design Basis Accident (DBA) such as a LOCA.

Certain required plant loads are returned to service in a predetermined sequence in order to prevent overloading the DG in the process. Within the required interval (FSAR Table 8.3-3) after the initiating signal is received, all automatic and permanently connected loads needed to recover the plant or maintain it in a safe condition are returned to service.

Ratings for Train 1A, 1B, 2A and 2B DGs satisfy the requirements of Regulatory Guide 1.9 (Ref. 3). The continuous service rating of each DG is 4400 kW with 10% overload permissible for up to 2 hours in any 24 hour period. The ESF loads that are powered from the 6.9 kV shutdown boards are listed in Reference 2.

APPLICABLE SAFETY ANALYSES

The initial conditions of DBA and transient analyses in the FSAR, Section 6 (Ref. 4) and Section 15 (Ref. 5), assume ESF systems are OPERABLE. The AC electrical power sources are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System (RCS), and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, "Power Distribution Limits;" Section 3.4, "Reactor Coolant System (RCS);" and Section 3.6, "Containment Systems."

The OPERABILITY of the AC electrical power sources is consistent with the initial assumptions of the Accident analyses and is based upon meeting the design basis of the plant. This results in maintaining at least two DGs associated with one load group or one offsite circuit OPERABLE during Accident conditions in the event of:

- a. An assumed loss of all offsite power or all onsite AC power; and
- b. A worst case single failure.

The AC sources satisfy Criterion 3 of NRC Policy Statement.

LCO

Two qualified circuits between the Watts Bar Hydro 161 kV switchyard and the onsite Class 1E Electrical Power System and separate and independent DGs for each train ensure availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an anticipated operational occurrence (AOO) or a postulated DBA.

Qualified offsite circuits are those that are described in the FSAR and are part of the licensing basis for the plant.

Each offsite circuit must be capable of maintaining acceptable frequency and voltage, and accepting required loads during an accident, while connected to the 6.9 kV shutdown boards.

Offsite power from the Watts Bar Hydro 161 kV switchyard to the onsite Class 1E distribution system is from two independent immediate access circuits. Each of the two circuits is routed from the switchyard through a 161 kV transmission line and 161 kV to 6.9 kV transformer (common station service transformers) to the onsite Class 1E distribution system. The medium voltage power system starts at the low-side of the common station service transformers.

(continued)

Each DG must be capable of starting, accelerating to rated speed and voltage, and connecting to its respective 6.9 kV shutdown board on detection of loss-of-voltage. This will be accomplished within 10 seconds. Each DG must also be capable of accepting required loads within the assumed loading sequence intervals, and continue to operate until offsite power can be restored to the 6.9 kV shutdown boards. These capabilities are required to be met from a variety of initial conditions such as DG in standby with the engine hot and DG in standby with the engine at ambient conditions. Additional DG capabilities must be demonstrated to meet required Surveillances, e.g., capability of the DG to revert to standby status on an accident signal while operating in parallel test mode.

Proper sequencing of loads, including tripping of non-essential loads, is a required function for DG OPERABILITY.

The AC sources in one train must be separate and independent (to the extent possible) of the AC sources in the other train. For the DGs, separation and independence are complete.

For the offsite AC sources, separation and independence are to the extent practical. A circuit may be connected to more than one ESF bus, with fast transfer capability to the other circuit OPERABLE, and not violate separation criteria. A circuit that is not connected to an ESF bus is required to have OPERABLE fast transfer interlock mechanisms to at least two ESF buses to support OPERABILITY of that circuit.

APPLICABILITY

The AC sources are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that:

- Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and
- Adequate core cooling is provided and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.

BASES (continued)

APPLICABILITY (continued)

The AC power requirements for MODES 5 and 6 are covered in LCO 3.8.2, "AC Sources - Shutdown."

ACTIONS

A Note prohibits the application of LCO 3.0.4.b to an inoperable DG. There is an increased risk associated with entering a MODE or other specified condition in the Applicability with an inoperable DG and the provisions of LCO 3.0.4.b, which allow entry into a MODE or other specified condition in the Applicability with the LCO not met after performance of a risk assessment addressing inoperable systems and components, should not be applied in this circumstance.

A.1

To ensure a highly reliable power source remains with one offsite circuit inoperable, it is necessary to verify the OPERABILITY of the remaining required offsite circuit on a more frequent basis. Since the Required Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action not met. However, if a second required circuit fails SR 3.8.1.1, the second offsite circuit is inoperable, and Condition C, for two offsite circuits inoperable, is entered.

A.2

Required Action A.2, which only applies if the train cannot be powered from an offsite source, is intended to provide assurance that an event coincident with a single failure of the associated DG will not result in a complete loss of safety function of critical redundant required features. These features are powered from the redundant AC electrical power trains. This includes motor driven auxiliary feedwater pump. Single train systems, such as the turbine driven auxiliary feedwater pump, may not be included.

The Completion Time for Required Action A.2 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action, the Completion Time only begins on discovery that both:

- a. The train has no offsite power supplying its loads; and
- b. A required feature on the other train is inoperable.

A.2 (continued)

If at any time during the existence of Condition A (one offsite circuit inoperable) a redundant required feature subsequently becomes inoperable, this Completion Time begins to be tracked.

Discovering no offsite power to one train of the onsite Class 1E Electrical Power Distribution System coincident with one or more inoperable required support or supported features, or both, that are associated with the other train that has offsite power, results in starting the Completion Times for the Required Action. Twenty four hours is acceptable because it minimizes risk while allowing time for restoration before subjecting the plant to transients associated with shutdown.

The remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to Train A and Train B of the onsite Class 1E Distribution System. The 24 hour Completion Time takes into account the component OPERABILITY of the redundant counterpart to the inoperable required feature.

Additionally, the 24 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

A.3

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition A for a period that should not exceed 72 hours. With one offsite circuit inoperable, the reliability of the offsite system is degraded, and the potential for a loss of offsite power is increased, with attendant potential for a challenge to the plant safety systems. In this Condition, however, the remaining OPERABLE offsite circuit and DGs are adequate to supply electrical power to the onsite Class 1E Distribution System.

The 72 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

The second Completion Time for Required Action A.3 establishes a limit on the maximum time allowed for any combination of required AC power sources to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition A is entered while, for instance, a DG is inoperable and that DG is subsequently returned OPERABLE, the LCO may already have been not met for up to 72 hours. This could lead

A.3 (continued)

to a total of 144 hours, since initial failure to meet the LCO, to restore the offsite circuit. At this time, a DG could again become inoperable, the circuit restored OPERABLE, and an additional 72 hours (for a total of 9 days) allowed prior to complete restoration of the LCO. The 6 day Completion Time provides a limit on the time allowed in a specified condition after discovery of failure to meet the LCO. This limit is considered reasonable for situations in which Conditions A and B are entered concurrently. The "AND" connector between the 72 hour and 6 day Completion Times means that both Completion Times apply simultaneously, and the more restrictive Completion Time must be met.

As in Required Action A.2, the Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time that the LCO was initially not met, instead of at the time Condition A was entered.

B.1

To ensure a highly reliable power source remains with one or more DGs inoperable in Train A <u>OR</u> with one or more DGs inoperable in Train B, it is necessary to verify the availability of the offsite circuits on a more frequent basis. Since the Required Action only specifies "perform," a failure of SR 3.8.1.1 acceptance criteria does not result in a Required Action being not met. However, if a circuit fails to pass SR 3.8.1.1, it is inoperable. Upon offsite circuit inoperability, additional Conditions and Required Actions must then be entered.

B.2

Required Action B.2 is intended to provide assurance that a loss of offsite power, during the period that a DG is inoperable, does not result in a complete loss of safety function of critical systems. These features are designed with redundant safety related trains. This includes motor driven auxiliary feedwater pumps. Single train systems, such as the turbine driven auxiliary feedwater pump, are not included. Redundant required feature failures consist of inoperable features associated with a train, redundant to the train that has inoperable DG(s).

B.2 (continued)

The Completion Time for Required Action B.2 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action, the Completion Time only begins on discovery that both:

- a. An inoperable DG exists; and
- b. A required feature on the other train (Train A or Train B) is inoperable.

If at any time during the existence of this Condition (one or more DGs inoperable) a required feature subsequently becomes inoperable, this Completion Time would begin to be tracked.

Discovering one or more required DGs in Train A or one or more DGs in Train B inoperable coincident with one or more inoperable required support or supported features, or both, that are associated with the OPERABLE DGs, results in starting the Completion Time for the Required Action. Four hours from the discovery of these events existing concurrently is Acceptable because it minimizes risk while allowing time for restoration before subjecting the plant to transients associated with shutdown.

In this Condition, the remaining OPERABLE DGs and offsite circuits are adequate to supply electrical power to the onsite Class 1E Distribution System. Thus, on a component basis, single failure protection for the required feature's function may have been lost; however, function has not been lost. The 4 hour Completion Time takes into account the OPERABILITY of the redundant counterpart to the inoperable required feature. Additionally, the 4 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

B.3.1 and B.3.2

Required Action B.3.1 provides an allowance to avoid unnecessary testing of OPERABLE DG(s). If it can be determined that the cause of the inoperable DG does not exist on the OPERABLE DG, SR 3.8.1.2 does not have to be performed. If the cause of inoperability exists on other DG(s), the other DG(s) would be declared inoperable upon discovery and Condition E of LCO 3.8.1 would be entered if the other

<u>B.3.1 and B.3.2</u> (continued)

inoperable DGs are not on the same train, otherwise, if the other inoperable DGs are on the same train, the unit remains in Condition B. Once the failure is repaired, the common cause failure no longer exists, and Required Action B.3.1 is satisfied. If the cause of the initial inoperable DG cannot be confirmed not to exist on the remaining DG(s), performance of SR 3.8.1.2 suffices to provide assurance of continued OPERABILITY of that DG.

In the event the inoperable DG is restored to OPERABLE status prior to completing either B.3.1 or B.3.2, the corrective action program will continue to evaluate the common cause possibility. This continued evaluation, however, is no longer under the 24 hour constraint imposed while in Condition B.

According to Generic Letter 84-15 (Ref. 7), 24 hours is reasonable to confirm that the OPERABLE DGs are not affected by the same problem as the inoperable DG.

<u>B.4</u>

According to Regulatory Guide 1.93, (Ref. 6), operation may continue in Condition B for a period that should not exceed 72 hours.

In Condition B, the remaining OPERABLE DGs and offsite circuits are adequate to supply electrical power to the onsite Class 1E Distribution System. The 72 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

The second Completion Time for Required Action B.4 establishes a limit on the maximum time allowed for any combination of required AC power sources to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition B is entered while, for instance, an offsite circuit is inoperable and that circuit is subsequently restored OPERABLE, the LCO may already have been not met for up to 72 hours. This could lead to a total of 144 hours, since initial failure to meet the LCO, to restore the DGs. At this time, an offsite circuit could again become inoperable, the DGs restored OPERABLE, and an additional 72 hours (for a total of 9 days) allowed prior to complete restoration of the LCO. The 6 day Completion Time provides a limit on time allowed in a specified condition after discovery of failure to meet the LCO. This limit is

B.4 (continued)

considered reasonable for situations in which Conditions A and B are entered concurrently. The "AND" connector between the 72 hour and 6 day Completion Times means that both Completion Times apply simultaneously, and the more restrictive Completion Time must be met.

As in Required Action B.2, the Completion Time allows for an exception to the normal "time zero" for beginning the allowed time "clock." This will result in establishing the "time zero" at the time that the LCO was initially not met, instead of at the time Condition B was entered.

C.1 and C.2

Required Action C.1, which applies when two offsite circuits are inoperable, is intended to provide assurance that an event with a coincident single failure will not result in a complete loss of redundant required safety functions. The Completion Time for this failure of redundant required features is reduced to 12 hours from that allowed for one train without offsite power (Required Action A.2). The rationale for the reduction to 12 hours is that Regulatory Guide 1.93 (Ref. 6) allows a Completion Time of 24 hours for two required offsite circuits inoperable, based upon the assumption that two complete safety trains are OPERABLE. When a concurrent redundant required feature failure exists, this assumption is not the case, and a shorter Completion Time of 12 hours is appropriate. These features are powered from redundant AC safety trains. This includes motor driven auxiliary feedwater pumps. Single train features, such as the turbine driven auxiliary pump, are not included in the list.

The Completion Time for Required Action C.1 is intended to allow the operator time to evaluate and repair any discovered inoperabilities. This Completion Time also allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." In this Required Action the Completion Time only begins on discovery that both:

- a. All required offsite circuits are inoperable; and
- b. A required feature is inoperable.

If at any time during the existence of Condition C (two offsite circuits inoperable) a required feature becomes inoperable, this Completion Time begins to be tracked.

C.1 and C.2 (continued)

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition C for a period that should not exceed 24 hours. This level of degradation means that the offsite electrical power system does not have the capability to effect a safe shutdown and to mitigate the effects of an accident; however, the onsite AC sources have not been degraded. This level of degradation generally corresponds to a total loss of the immediately accessible offsite power sources.

Because of the normally high availability of the offsite sources, this level of degradation may appear to be more severe than other combinations of two AC sources inoperable (e.g., combinations that involve an offsite circuit and one DG inoperable, or one or more DGs in each train inoperable). However, two factors tend to decrease the severity of this level of degradation:

- The configuration of the redundant AC electrical power system that remains available is not susceptible to a single bus or switching failure; and
- b. The time required to detect and restore an unavailable offsite power source is generally much less than that required to detect and restore an unavailable onsite AC source.

With both of the required offsite circuits inoperable, sufficient onsite AC sources are available to maintain the plant in a safe shutdown condition in the event of a DBA or transient. In fact, a simultaneous loss of offsite AC sources, a LOCA, and a worst case single failure were postulated as a part of the design basis in the safety analysis. Thus, the 24 hour Completion Time provides a period of time to effect restoration of one of the offsite circuits commensurate with the importance of maintaining an AC electrical power system capable of meeting its design criteria.

According to Reference 6, with the available offsite AC sources, two less than required by the LCO, operation may continue for 24 hours. If two offsite sources are restored within 24 hours, unrestricted operation may continue. If only one offsite source is restored within 24 hours, power operation continues in accordance with Condition A.

D.1 and D.2

Pursuant to LCO 3.0.6, the Distribution System ACTIONS would not be entered even if all AC sources to it were inoperable, resulting in de-energization. Therefore, the Required Actions of Condition D are modified by a Note to indicate that when Condition D is entered with no AC source to any train, the Conditions and Required Actions for LCO 3.8.9, "Distribution Systems - Operating," must be immediately entered. This allows Condition D to provide requirements for the loss of one offsite circuit and one or more DGs in a train, without regard to whether a train is de-energized. LCO 3.8.9 provides the appropriate restrictions for a de-energized train.

According to Regulatory Guide 1.93 (Ref. 6), operation may continue in Condition D for a period that should not exceed 12 hours.

In Condition D, individual redundancy is lost in both the offsite electrical power system and the onsite AC electrical power system. Since power system redundancy is provided by two diverse sources of power, however, the reliability of the power systems in this Condition may appear higher than that in Condition C (loss of both required offsite circuits). This difference in reliability is offset by the susceptibility of this power system configuration to a single bus or switching failure. The 12 hour Completion Time takes into account the capacity and capability of the remaining AC sources, a reasonable time for repairs, and the low probability of a DBA occurring during this period.

E.1 and E.2

With one or more required DGs in Train A inoperable simultaneous with one or more required DGs in Train B inoperable, there are no remaining standby AC sources. Thus, with an assumed loss of offsite electrical power, insufficient standby AC sources are available to power the minimum required ESF functions. Since the offsite electrical power system is the only source of AC power for this level of degradation, the risk associated with continued operation for a very short time could be less than that associated with an immediate controlled shutdown (the immediate shutdown could cause grid instability, which could result in a total loss of AC power). Since any inadvertent generator trip could also result in a total loss of offsite AC power, however, the time allowed for continued operation is severely restricted. The intent here is to avoid the risk associated with an immediate controlled shutdown and to minimize the risk associated with this level of degradation.

E.1 and E.2 (continued)

According to Reference 6, with one or more required DGs in Train A inoperable simultaneous with one or more required DGs in Train B inoperable, operation may continue for a period that should not exceed 2 hours.

F.1 and F.2

If the inoperable AC electric power sources cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

G.1 and H.1

Condition G and Condition H correspond to a level of degradation in which all redundancy in the AC electrical power supplies cannot be guaranteed. At this severely degraded level, any further losses in the AC electrical power system will cause a loss of function. Therefore, no additional time is justified for continued operation. The plant is required by LCO 3.0.3 to commence a controlled shutdown.

SURVEILLANCE REQUIREMENTS

The AC sources are designed to permit inspection and testing of all important areas and features, especially those that have a standby function, in accordance with 10 CFR 50, Appendix A, GDC 18 (Ref. 8). Periodic component tests are supplemented by extensive functional tests during refueling outages (under simulated accident conditions). The SRs for demonstrating the OPERABILITY of the DGs are in accordance with the recommendations of Regulatory Guide 1.9 (Ref. 3) and Regulatory Guide 1.137 (Ref. 9), as addressed in the FSAR.

Where the SRs discussed herein specify voltage and frequency tolerances, the following is applicable. 6800 volts is the minimum steady state output voltage and the 10 seconds transient value. 6800 volts is 98.6% of the nominal bus voltage of 6900 V corrected for instrument error and is the upper limit of the minimum voltage required for the DG supply breaker to close on the 6.9 kV shutdown board. The specified maximum steady state output voltage of 7260 V is 110% of the nameplate rating of the 6600 V motors. The specified 3 second transient value of 6555 V is 95% of the nominal bus voltage of 6900 V. The specified maximum transient value of 8880 V is the maximum equipment withstand value provided by the DG manufacturer. The specified minimum and maximum frequencies of the DG are 58.8 Hz and 61.2 Hz, respectively. These values are equal to \pm 2% of the 60 Hz nominal frequency and are derived from the recommendations given in Regulatory Guide 1.9 (Ref. 3).

SR 3.8.1.1

This SR ensures proper circuit continuity for the offsite AC electrical power supply to the onsite distribution network and availability of offsite AC electrical power. The breaker alignment verifies that each breaker is in its correct position to ensure that distribution buses and loads are connected to their preferred power source, and that appropriate independence of offsite circuits is maintained. The 7 day Frequency is adequate since breaker position is not likely to change without the operator being aware of it and because its status is displayed in the control room.

SR 3.8.1.2 and SR 3.8.1.7

These SRs help to ensure the availability of the standby electrical power supply to mitigate DBAs and transients and to maintain the plant in a safe shutdown condition.

For the purposes of SR 3.8.1.2 and SR 3.8.1.7 testing, the DGs are started from standby conditions. The DG engines for WBN have an oil circulation and soakback system that operates continuously to preclude the need for a prelube and warmup when a DG is started from standby. Standby conditions for a DG mean that the diesel engine coolant and oil are being continuously circulated, and temperature is being maintained consistent with manufacturer recommendations.

SR 3.8.1.2 and SR 3.8.1.7 (continued)

In order to reduce stress and wear on diesel engines, the manufacturer recommends a modified start in which the starting speed of DGs is limited, warmup is limited to this lower speed, and the DGs are gradually accelerated to synchronous speed prior to loading. These start procedures are the intent of Note 2, which is only applicable when such modified start procedures are recommended by the manufacturer.

SR 3.8.1.7 requires that, at a 184 day Frequency, the DG starts from an actual or simulated loss of offsite power signal and achieves required voltage and frequency within 10 seconds. The 10 second start requirement supports the assumptions of the design basis LOCA analysis in the FSAR, Section 15 (Ref. 5). Starting the DG from an emergency start signal ensures the automatic start relays are cycled (de-energized) on a 184 day Frequency.

The 10 second start requirement is not applicable to SR 3.8.1.2 (See Note 2.) when a modified start procedure as described above is used. If a modified start is not used, the 10 second start requirement of SR 3.8.1.7 applies. Stable operation at the nominal voltage and frequency values is also essential to establishing DG OPERABILITY, but a time constraint is not imposed. This is because a typical DG will experience a period of voltage and frequency oscillations prior to reaching steady state operation if these oscillations are not dampened out by load application. This period may extend beyond the 10 second acceptance criteria and could be a cause for failing the SR. In lieu of a time constraint in the SR, WBN will monitor and trend the actual time to reach steady state operation as a means of ensuring there is no voltage regulator or governor degradation which could cause a DG to become inoperable.

Since SR 3.8.1.7 requires a 10 second start, it is more restrictive than SR 3.8.1.2, and it may be performed in lieu of SR 3.8.1.2. This is the intent of Note 1 of SR 3.8.1.2.

The normal 31 day Frequency for SR 3.8.1.2 (See Table 3.8.1-1, "Diesel Generator Test Schedule," in the accompanying LCO.) is consistent with Regulatory Guide 1.9 (Ref. 3). The 184 day Frequency for SR 3.8.1.7 is a reduction in cold testing consistent with Generic Letter 84-15 (Ref. 7). These Frequencies provide adequate assurance of DG OPERABILITY, while minimizing degradation resulting from testing.

SR 3.8.1.3

This Surveillance verifies that the DGs are capable of synchronizing with the offsite electrical system and accepting loads greater than or equal to the equivalent of the maximum expected accident loads. A minimum run time of 60 minutes is required to stabilize engine temperatures, while minimizing the time that the DG is connected to the offsite source.

Although no power factor requirements are established by this SR, the DG is normally operated at a power factor between 0.8 lagging and 1.0. The 0.8 value is the design rating of the machine, while the 1.0 is an operational limitation to ensure circulating currents are minimized. The load band is provided to avoid routine overloading of the DG. Routine overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY.

The 31 day Frequency for this Surveillance (Table 3.8.1-1) is consistent with Regulatory Guide 1.9 (Ref. 3).

This SR is modified by four Notes. Note 1 indicates that diesel engine runs for this Surveillance may include gradual loading, as recommended by the manufacturer, so that mechanical stress and wear on the diesel engine are minimized. Note 2 states that momentary transients, because of changing bus loads, do not invalidate this test. Similarly, momentary power factor transients above the limit do not invalidate the test. Note 3 indicates that this Surveillance should be conducted on only one DG at a time in order to avoid common cause failures that might result from offsite circuit or grid perturbations. Note 4 stipulates a prerequisite requirement for performance of this SR. A successful DG start must precede this test to credit satisfactory performance.

SR 3.8.1.4

This SR provides verification that the level of fuel oil in each DG skid-mounted day tank is at or above the level (≥ 218.5 gallons, value does not account for instrument error) at which fuel oil is automatically added. The level is expressed as an equivalent volume in gallons, and is selected to ensure adequate fuel oil for a minimum of 1 hour of DG operation at full load plus 10%.

The 31 day Frequency is adequate to assure that a sufficient supply of fuel oil is available, since low level alarms are provided and facility operators would be aware of any large uses of fuel oil during this period.

SR 3.8.1.5

Microbiological fouling is a major cause of fuel oil degradation. There are numerous bacteria that can grow in fuel oil and cause fouling, but all must have a water environment in order to survive. Removal of water from the fuel oil skid-mounted day tanks once every 31 days eliminates the necessary environment for bacterial survival.

This is the most effective means of controlling microbiological fouling. In addition, it eliminates the potential for water entrainment in the fuel oil during DG operation. Water may come from any of several sources, including condensation, ground water, rain water, contaminated fuel oil, and breakdown of the fuel oil by bacteria. Frequent checking for and removal of accumulated water minimizes fouling and provides data regarding the watertight integrity of the fuel oil system. The Surveillance Frequencies are established by Regulatory Guide 1.137 (Ref. 9). This SR is for preventative maintenance. The presence of water does not necessarily represent failure of this SR, provided the accumulated water is removed during the performance of this Surveillance.

SR 3.8.1.6

This Surveillance demonstrates that each required fuel oil transfer pump operates and transfers fuel oil from its associated storage tank to its associated skid-mounted day tank. This is required to support continuous operation of standby power sources. This Surveillance provides assurance that the fuel oil transfer pump is OPERABLE, the fuel oil piping system is intact, the fuel delivery piping is not obstructed, and the controls and control systems for automatic fuel transfer systems are OPERABLE.

The 31 day Frequency corresponds to the DG testing frequency since the design of fuel transfer systems is such that the pumps operate automatically or must be started manually in order to maintain an adequate volume of fuel oil in the skid-mounted day tanks during or following DG testing.

SR 3.8.1.7

See SR 3.8.1.2.

SR 3.8.1.8

Transfer of each 6.9 kV shutdown board power supply from the normal offsite circuit to the alternate offsite circuit demonstrates the OPERABILITY of the alternate circuit distribution network to power the shutdown loads. The 18 month Frequency of the Surveillance is based on engineering judgment, taking into consideration the plant conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

This SR is modified by a Note. The reason for the Note is that, during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, plant safety systems. Credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SR 3.8.1.9

Each DG is provided with an engine overspeed trip to prevent damage to the engine. Recovery from the transient caused by the loss of a large load could cause diesel engine overspeed, which, if excessive, might result in a trip of the engine. This Surveillance demonstrates the DG load response characteristics and capability to reject the largest single load without exceeding predetermined voltage and frequency and while maintaining a specified margin to the overspeed trip. The largest single load for each DG is the essential raw cooling water pump at 800 HP. This Surveillance may be accomplished by: 1) tripping the DG output breaker with the DG carrying greater than or equal to its associated single largest post-accident load while paralleled to offsite power or while solely supplying the bus, or 2) tripping its associated single largest post-accident load with the DG solely supplying the bus. As required by

SR 3.8.1.9 (continued)

Regulatory Guide 1.9, C1.4 (Ref. 3), the load rejection test is acceptable if the increase in diesel speed does not exceed 75% of the difference between synchronous speed and the overspeed trip setpoint, or 15% above synchronous speed, whichever is lower.

The time, voltage, and frequency tolerances specified in this SR are derived from Regulatory Guide 1.9 (Ref. 3) recommendations for response during load sequence intervals. The 3 seconds specified is equal to 60% of a typical 5 second load sequence interval associated with sequencing of the largest load. The voltage and frequency specified are consistent with the design range of the equipment powered by the DG. SR 3.8.1.9.a corresponds to the maximum frequency excursion, while SR 3.8.1.9.b and SR 3.8.1.9.c are steady state voltage and frequency values to which the system must recover following load rejection. The 18 month Frequency is consistent with the recommendation of Regulatory Guide 1.9 (Ref. 3).

This SR is modified by two Notes. The reason for Note 1 is that during operation with the reactor critical, performance of this SR could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, plant safety systems. Credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available;
- Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

In order to ensure that the DG is tested under load conditions that are as close to design basis conditions as possible, Note 2 requires that, if synchronized to offsite power testing must be performed using a power factor ≥ 0.8 and ≤ 0.9 . This power factor is chosen to be representative of the actual design basis inductive loading that the DG would experience.

SR 3.8.1.10

This Surveillance demonstrates the DG capability to reject a full load without overspeed tripping or exceeding the predetermined voltage limits. The DG full load rejection may occur because of a system fault or inadvertent breaker tripping. This Surveillance ensures proper engine generator load response under the simulated test conditions. This test simulates the loss of the total connected load that the DG experiences following a full load rejection and verifies that the DG does not trip upon loss of the load. These acceptance criteria provide for DG damage protection. While the DG is not expected to experience this transient during an event and continues to be available, this response ensures that the DG is not degraded for future application, including reconnection to the bus if the trip initiator can be corrected or isolated.

In order to ensure that the DG is tested under load conditions that are as close to design basis conditions as possible, testing must be performed using a power factor ≥ 0.8 and ≤ 0.9 . This power factor is chosen to be representative of the actual design basis inductive loading that the DG would experience.

The 18 month Frequency is consistent with the recommendation of Regulatory Guide 1.9 (Ref. 3) and is intended to be consistent with expected fuel cycle lengths.

This SR is modified by a Note. The reason for the Note is that during operation with the reactor critical, performance of this SR could cause perturbation to the electrical distribution systems that could challenge continued steady state operation and, as a result, plant safety systems. Credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- 2) Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SR 3.8.1.11

As required by Regulatory Guide 1.9 (Ref. 3), paragraph C2.2.4, this Surveillance demonstrates the as-designed operation of the standby power sources during loss of the offsite source. This test verifies all actions encountered from the loss of offsite power, including shedding of the non-essential loads and energization of the emergency buses and respective loads from the DG. It further demonstrates the capability of the DG to automatically achieve the required voltage and frequency within the specified time.

The DG auto-start time of 10 seconds is derived from requirements of the accident analysis to respond to a design basis large break LOCA. The Surveillance should be continued for a minimum of 5 minutes in order to demonstrate that all starting transients have decayed and stability is achieved.

The requirement to verify the connection and power supply of permanent and auto-connected loads is intended to satisfactorily show the relationship of these loads to the DG loading logic. In certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. For instance, Emergency Core Cooling Systems (ECCS) injection valves are not desired to be stroked open, or high pressure injection systems are not capable of being operated at full flow, or residual heat removal (RHR) systems performing a decay heat removal function are not desired to be realigned to the ECCS mode of operation. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG systems to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

The Frequency of 18 months is consistent with the recommendations of Regulatory Guide 1.9 (Ref. 3), Table 1, takes into consideration plant conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths.

For the purpose of this testing, the DGs shall be started from standby conditions, that is, with the engine coolant and oil being continuously circulated and temperature maintained consistent with manufacturer recommendations. The DG engines for WBN have an oil circulation and soakback system that operates continuously to preclude the need for a prelube and warmup when a DG is started from standby.

SR 3.8.1.11 (continued)

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SR 3.8.1.12

This Surveillance demonstrates that the DG automatically starts and achieves the required voltage and frequency within the specified time (10 seconds) from the design basis actuation signal (LOCA signal) and operates for ≥ 5 minutes. The minimum voltage and frequency stated in the SR are those necessary to ensure the DG can accept DBA loading while maintaining acceptable voltage and frequency levels. Stable operation at the nominal voltage and frequency values is also essential to establishing DG OPERABILITY, but a time constraint is not imposed. This is because a typical DG will experience a period of voltage and frequency oscillations prior to reaching steady state operation if these oscillations are not dampened out by load application. This period may extend beyond the 10 seconds acceptance criteria and could be a cause for failing the SR. In lieu of a time constraint in the SR, WBN will monitor and trend the actual time to reach steady state operation as a means of ensuring there is no voltage regulator or governor degradation which could cause a DG to become inoperable. The 5 minute period provides sufficient time to demonstrate stability. SR 3.8.1.12.d and SR 3.8.1.12.e ensure that permanently connected loads and emergency loads are energized from the offsite electrical power system on an ESF signal without loss of offsite power.

SR 3.8.1.12 (continued)

The requirement to verify the connection of permanent and auto-connected loads is intended to satisfactorily show the relationship of these loads to the DG loading logic. In certain circumstances, many of these loads cannot actually be connected or loaded without undue hardship or potential for undesired operation. For instance, ECCS injection valves are not desired to be stroked open, or high pressure injection systems are not capable of being operated at full flow, or RHR systems performing a decay heat removal function are not desired to be realigned to the ECCS mode of operation. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

The Frequency of 18 months takes into consideration plant conditions required to perform the Surveillance and is intended to be consistent with the expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

For the purpose of this testing, the DGs shall be started from standby conditions, that is, with the engine coolant and oil being continuously circulated and temperature maintained consistent with manufacturer recommendations. The DG engines for WBN have an oil circulation and soakback system that operates continuously to preclude the need for a prelube and warmup when a DG is started from standby.

This SR is modified by a Note. The reason for the Note is that during operation with the reactor critical, performance of this Surveillance could cause perturbations to the electrical distribution systems that could challenge continued steady state operation and, as a result, plant safety systems. Credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

 Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and

SR 3.8.1.12 (continued)

2) Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SR 3.8.1.13

This Surveillance demonstrates that DG non-critical protective functions (e.g., high jacket water temperature) are bypassed on an automatic or emergency start signal and that critical protective functions (engine overspeed and generator differential current) remain functional to affect a DG trip to avert substantial damage to the DG unit or to the safety related equipment powered by the DG. It is not necessary to actually trip the DG using critical protective functions in order to satisfy this SR. The non-critical trips are bypassed during DBAs and provide an alarm on an abnormal engine condition. This alarm provides the operator with sufficient time to react appropriately. The DG availability to mitigate the DBA is more critical than protecting the engine against minor problems that are not immediately detrimental to emergency operation of the DG.

The 18 month Frequency is based on engineering judgment, taking into consideration plant conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths. Operating experience has shown that these components usually pass the SR when performed at the 18 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

The SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required DG from service. Credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- 2) Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SR 3.8.1.14

Regulatory Guide 1.9 (Ref. 3), paragraph C2.2.9, requires demonstration once per 18 months that the DGs can start and run continuously for an interval of not less than 24 hours, \geq 2 hours of which is at a load between 105% and 110% of the continuous duty rating and the remainder of the time at a load equivalent to 90% to 100% of the continuous duty rating of the DG. The DG starts for this Surveillance can be performed either from standby or hot conditions. The provisions for prelubricating and warmup, discussed in SR 3.8.1.2, and for gradual loading, discussed in SR 3.8.1.3, are applicable to this SR.

In order to ensure that the DG is tested under load conditions that are as close to design conditions as possible, testing must be performed using a power factor of ≥ 0.8 and ≤ 0.9 . This power factor is chosen to be representative of the actual design basis inductive loading that the DG would experience. The load band is provided to avoid routine overloading of the DG. Routine overloading may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY.

This Surveillance is modified by three Notes. Note 1 states that momentary transients due to changing bus loads do not invalidate this test. Similarly, momentary power factor transients above the power factor limit will not invalidate the test. Note 2 establishes that this SR may be performed on only one DG at a time while in MODE 1, 2, 3, or 4. This is necessary to ensure the proper response to an operational transient (i.e., loss of offsite power, ESF actuation). Therefore, three DGs must be maintained operable and in a standby condition during performance of this test. In this configuration, the plant will remain within its design basis, since at all times safe shutdown can be achieved with two DGs in the same train.

Note 3 establishes that credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- 2) Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SR 3.8.1.14 (continued)

Prior to performance of this SR in Modes 1 or 2, actions are taken to establish that adequate conditions exist for performance of the SR. The required actions are defined in Bases Table 3.8.1-2.

SR 3.8.1.15

This Surveillance demonstrates that the diesel engine can restart from a hot condition, such as subsequent to shutdown from normal Surveillances, and achieve the required voltage and frequency within 10 seconds. The minimum voltage and frequency stated in the SR are those necessary to ensure the DG can accept DBA loading while maintaining acceptable voltage and frequency levels. Stable operation at the nominal voltage and frequency values is also essential to establishing DG OPERABILITY, but a time constraint is not imposed. This is because a typical DG will experience a period of voltage and frequency oscillations prior to reaching steady state operation if these oscillations are not dampened out by load application. This period may extend beyond the 10 seconds acceptance criteria and could be a cause for failing the SR. In lieu of a time constraint in the SR, WBN will monitor and trend the actual time to reach steady state operation as a means of ensuring there is no voltage regulator or governor degradation which could cause a DG to become inoperable. The 10 seconds time is derived from the requirements of the accident analysis to respond to a design basis large break LOCA. The 18 month Frequency is consistent with the recommendations of Regulatory Guide 1.9 (Ref. 3), Table 1.

The DG engines for WBN have an oil circulation and soakback system that operates continuously to preclude the need for a prelube and warmup when a DG is started from standby.

This SR is modified by a Note to ensure that the test is performed with the diesel sufficiently hot. The load band is provided to avoid routine overloading of the DG. Routine overloads may result in more frequent teardown inspections in accordance with vendor recommendations in order to maintain DG OPERABILITY. The requirement that the diesel has operated for at least 2 hours at full load conditions prior to performance of this Surveillance is based on manufacturer recommendations for achieving hot conditions. Momentary transients due to changing bus loads do not invalidate this test.

SR 3.8.1.16

As required by Regulatory Guide 1.9 (Ref. 3), paragraph C2.2.11, this Surveillance ensures that the manual synchronization and automatic load transfer from the DG to the offsite source can be made and the DG can be returned to ready to load status when offsite power is restored. It also ensures that the auto-start logic is reset to allow the DG to reload if a subsequent loss of offsite power occurs. The DG is considered to be in ready to load status when the DG is at rated speed and voltage, the output breaker is open and can receive an autoclose signal on bus undervoltage, and the load sequence timers are reset.

The Frequency of 18 months is consistent with the recommendations of Regulatory Guide 1.9 (Ref. 3), Table 1, and takes into consideration plant conditions required to perform the Surveillance.

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- 2) Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SR 3.8.1.17

Demonstration of the test mode override ensures that the DG availability under accident conditions will not be compromised as the result of testing and the DG will automatically reset to ready-to-load operation if a LOCA actuation signal is received during operation in the test mode. Ready-to-load operation is defined as the DG running at rated speed and voltage with the DG output breaker open. These provisions for automatic switchover are required by IEEE-308 (Ref. 10), paragraph 6.2.6(2).

SR 3.8.1.17 (continued)

The requirement to automatically energize the emergency loads with offsite power is essentially identical to that of SR 3.8.1.12. The intent in the requirement associated with SR 3.8.1.17.b. is to show that the emergency loading was not affected by the DG operation in test mode. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the emergency loads to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

The 18 month Frequency is consistent with the recommendations of Regulatory Guide 1.9 (Ref. 3), Table 1, takes into consideration plant conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths.

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SR 3.8.1.18

Under accident and loss of offsite power conditions loads are sequentially connected to the 6.9 kV shutdown board by the automatic load sequencer. The sequencing logic controls the permissive and starting signals to motor breakers to prevent overloading of the DGs due to high motor starting currents. The load sequence time specified in FSAR Table 8.3-3 ensures that sufficient time exists for the DG to restore frequency and voltage prior to applying the next load block and that safety analysis assumptions regarding ESF equipment time delays are not violated. The allowable values for the time delay relays are contained in system specific setpoint scaling documents. Reference 2 provides a summary of the automatic loading of ESF buses.

SR 3.8.1.18 (continued)

The Frequency of 18 months is consistent with the recommendations of Regulatory Guide 1.9 (Ref. 3), Table 1, takes into consideration plant conditions required to perform the Surveillance, and is intended to be consistent with expected fuel cycle lengths.

This SR is modified by a Note. The reason for the Note is that performing the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SR 3.8.1.19

In the event of a DBA coincident with a loss of offsite power, the DGs are required to supply the necessary power to ESF systems so that the fuel, RCS, and containment design limits are not exceeded.

This Surveillance demonstrates the DG operation, as discussed in the Bases for SR 3.8.1.11, during a loss of offsite power actuation test signal in conjunction with an ESF actuation signal. In lieu of actual demonstration of connection and loading of loads, testing that adequately shows the capability of the DG system to perform these functions is acceptable. This testing may include any series of sequential, overlapping, or total steps so that the entire connection and loading sequence is verified.

The Frequency of 18 months takes into consideration plant conditions required to perform the Surveillance and is intended to be consistent with an expected fuel cycle length of 18 months.

SR 3.8.1.19 (continued)

For the purpose of this testing, the DGs shall be started from standby conditions, that is, with the engine coolant and oil being continuously circulated and temperature maintained consistent with manufacturer recommendations. The DG engines for WBN have an oil circulation and soakback system that operates continuously to preclude the need for a prelube and warmup when a DG is started from standby. This SR is modified by a Note. The reason for the Note is that the performance of the Surveillance would remove a required offsite circuit from service, perturb the electrical distribution system, and challenge safety systems. Credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SR 3.8.1.20

This SR verifies that DG availability is not compromised by the idle start circuitry, when in the idle mode of operation, and that an automatic or emergency start signal will disable the idle start circuitry and command the engine to go to full speed. The 18 month frequency is consistent with the expected fuel cycle lengths and is considered sufficient to detect any degradation of the idle start circuitry.

SR 3.8.1.21

This Surveillance demonstrates that the DG starting independence has not been compromised. Also, this Surveillance demonstrates that each engine can achieve proper speed within the specified time when the DGs are started simultaneously. The minimum voltage and frequency stated in the SR are those necessary to ensure the DG can accept DBA loading while maintaining acceptable voltage and frequency levels. Stable operation at the nominal voltage and frequency values is also essential to establishing DG OPERABILITY, but a time constraint is not imposed. This is because a typical DG will experience a period of voltage and frequency oscillations prior to reaching steady state operation if these oscillations are not dampened out by load application. This period may extend beyond the 10 seconds acceptance criteria and could be a cause for failing the SR. In lieu of a time constraint in the SR, WBN will monitor and trend the actual time to reach steady state operation as a means of ensuring there is no voltage regulator or governor degradation which could cause a DG to become inoperable.

The 10 year Frequency is consistent with the recommendations of Regulatory Guide 1.9 (Ref. 3), Table 1.

For the purpose of this testing, the DGs shall be started from standby conditions, that is, with the engine coolant and oil being continuously circulated and temperature maintained consistent with manufacturer recommendations. The DG engines for WBN have an oil circulation and soakback system that operates continuously to preclude the need for a prelube and warmup when a DG is started from standby.

<u>Diesel Generator Test Schedule</u>

The DG test schedule (Table 3.8.1-1) implements the recommendations of Revision 3 to Regulatory Guide 1.9 (Ref. 3). The purpose of this test schedule is to provide timely test data to establish a confidence level associated with the goal to maintain DG reliability > 0.975 per demand.

According to Regulatory Guide 1.9, Revision 3 (Ref. 3), each DG should be tested at least once every 31 days. Whenever a DG has experienced 4 or more valid failures in the last 25 valid tests, the maximum time between tests is reduced to 7 days. Four failures in 25 valid tests is a failure rate of 0.16, or the threshold of acceptable DG performance, and hence may be an early indication of the degradation of DG reliability. When considered in the light of a long history of tests; however, 4 failures in the last 25 valid tests may only be a statistically probable distribution of random events. Increasing the test Frequency will allow for a more timely accumulation of additional test data upon which to base judgment of the reliability of the DG. The increased test Frequency must be maintained until seven consecutive, failure free tests have been performed.

The Frequency for accelerated testing is 7 days, but no less than 24 hours. Tests conducted at intervals of less than 24 hours may be credited for compliance with Required Actions. However, for the purpose of re-establishing the normal 31 day Frequency, a successful test at an interval of less than 24 hours should be considered an invalid test and not count towards the 7 consecutive failure free starts, and the consecutive test count is not reset.

A test interval in excess of 7 days (or 31 days as appropriate) constitutes a failure to meet the SRs and results in the associated DG being declared inoperable. It does not, however, constitute a valid test or failure of the DG, and any consecutive test count is not reset.

REFERENCES

1. Title 10, Code of Federal Regulations, Part 50, Appendix A, General Design Criterion (GDC) 17, "Electrical Power Systems."

REFERENCES (continued)

- Watts Bar FSAR, Section 8.2, "Offsite Power System," and Tables 8.3-1 to 8.3-3, "Safety-Related Standby (Onsite) Power Sources and Distribution Boards," "Shutdown Board Loads Automatically Tripped Following a Loss of Nuclear Unit and Preferred (Offsite) Power," and "Diesel Generator Load Sequentially Applied Following a Loss of Nuclear Unit and Preferred (Offsite) Power."
- Regulatory Guide 1.9, Rev. 3, "Selection, Design, Qualification and Testing of Emergency Diesel Generator Units Used as Class 1E Onsite Electric Power Systems at Nuclear Power Plants," July 1993.
- 4. Watts Bar FSAR Section 6, "Engineered Safety Features."
- 5. Watts Bar FSAR, Section 15.4, "Condition IV-Limiting Faults."
- 6. Regulatory Guide 1.93, Rev. 0, "Availability of Electric Power Sources," December 1974.
- 7. Generic Letter 84-15, "Proposed Staff Actions to Improve and Maintain Diesel Generator Reliability," July 2, 1984.
- 8. Title 10, Code of Federal Regulations, Part 50, Appendix A, GDC 18, "Inspection and Testing of Electric Power Systems."
- 9. Regulatory Guide 1.137, Rev. 1, "Fuel Oil Systems for Standby Diesel Generators," October 1979.
- 10. IEEE-308-1971, "IEEE Standard Criteria for Class 1E Power Systems for Nuclear Power Generating Stations," Institute of Electrical and Electronic Engineers.

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.2 AC Sources - Shutdown

BASES

BACKGROUND

A description of the AC sources is provided in the Bases for LCO 3.8.1, "AC Sources - Operating."

APPLICABLE SAFETY ANALYSES

The OPERABILITY of the minimum AC sources during MODES 5 and 6 and during movement of irradiated fuel assemblies ensures that:

- a. The plant can be maintained in the shutdown or refueling condition for extended periods;
- b. Sufficient instrumentation and control capability is available for monitoring and maintaining the plant status; and
- c. Adequate AC electrical power is provided to mitigate events postulated during shutdown, such as a fuel handling accident.

In general, when the plant is shut down, the Technical Specifications requirements ensure that the plant has the capability to mitigate the consequences of postulated accidents. However, assuming a single failure and concurrent loss of all offsite or all onsite power is not required. The rationale for this is based on the fact that many Design Basis Accidents (DBAs) that are analyzed in MODES 1, 2, 3, and 4 have no specific analyses in MODES 5 and 6. Worst case bounding events are deemed not credible in MODES 5 and 6 because the energy contained within the reactor pressure boundary, reactor coolant temperature and pressure, and the corresponding stresses result in the probabilities of occurrence being significantly reduced or eliminated, and of minimal consequences. These deviations from DBA analysis assumptions and design requirements during shutdown conditions are allowed by the LCO for required systems.

APPLICABLE SAFETY ANALYSES (continued) During MODES 1, 2, 3, and 4, various deviations from the analysis assumptions and design requirements are allowed within the Required Actions. This allowance is in recognition that certain testing and maintenance activities must be conducted provided an acceptable level of risk is not exceeded. During MODES 5 and 6, performance of a significant number of required testing and maintenance activities is also required. In MODES 5 and 6, the activities are generally planned and administratively controlled. Relaxations from MODE 1, 2, 3, and 4 LCO requirements are acceptable during shutdown modes based on:

- a. The fact that time in an outage is limited. This is a risk prudent goal as well as a utility economic consideration.
- Requiring appropriate compensatory measures for certain conditions.
 These may include administrative controls, reliance on systems that do not necessarily meet typical design requirements applied to systems credited in operating MODE analyses, or both.
- c. Prudent utility consideration of the risk associated with multiple activities that could affect multiple systems.
- d. Maintaining, to the extent practical, the ability to perform required functions (even if not meeting MODE 1, 2, 3, and 4 OPERABILITY requirements) with systems assumed to function during an event.

In the event of an accident during shutdown, this LCO ensures the capability to support systems necessary to avoid immediate difficulty, assuming either a loss of all offsite power or a loss of all onsite diesel generator (DG) power.

The AC sources satisfy Criterion 3 of the NRC Policy Statement.

LCO

One offsite circuit capable of supplying the onsite Class 1E power distribution subsystem(s) of LCO 3.8.10, "Distribution Systems - Shutdown," ensures that all required loads are powered from offsite power. Two OPERABLE DGs (1A-A and 2A-A, or 1B-B and 2B-B), associated with a distribution system train required to be OPERABLE by LCO 3.8.10, ensures a diverse power source is available to provide electrical power support, assuming a loss of the offsite circuit. Together, OPERABILITY of the required offsite circuit and the two DGs ensures the availability of sufficient AC sources to operate the plant in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents).

(continued)

The qualified offsite circuit must be capable of maintaining acceptable frequency and voltage, and accepting required loads during an accident, while connected to the Engineered Safety Feature (ESF) bus(es). Qualified offsite circuits are those that are described in the FSAR and are part of the licensing basis for the plant.

Offsite power from the Watts Bar Hydro 161 kV switchyard to the onsite Class 1E distribution system is from two independent immediate access circuits. Each of the two circuits is routed from the switchyard through a 161 kV transmission line and 161 kV to 6.9 kV transformer (common station service transformers) to the onsite Class 1E distribution system. The medium voltage power system starts at the low-side of the common station service transformers.

The DG must be capable of starting, accelerating to rated speed and voltage, and connecting to its respective 6.9 kV shutdown board on detection of bus loss-of-voltage. This sequence must be accomplished within 10 seconds. The DG must be capable of accepting required loads within the assumed loading sequence intervals, and continue to operate until offsite power can be restored to the 6.9 kV shutdown board. These capabilities are required to be met from a variety of initial conditions such as DG in standby with the engine hot and DG in standby at ambient conditions. Additional DG capabilities must be demonstrated to meet required Surveillances (e.g., capability of the DG to revert to standby status on an accident signal while operating in parallel test mode).

Proper sequencing of loads, including tripping of non-essential loads, is a required function for DG OPERABILITY.

It is acceptable for trains to be cross tied during shutdown conditions, allowing a single offsite power circuit to supply all required trains.

APPLICABILITY

The AC sources required to be OPERABLE in MODES 5 and 6 and during movement of irradiated fuel assemblies provide assurance that:

- a. Systems needed to mitigate a fuel handling accident are available;
- b. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and
- Instrumentation and control capability is available for monitoring and maintaining the plant in a cold shutdown condition or refueling condition.

The AC power requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.1.

ACTIONS

A.1

An offsite circuit would be considered inoperable if it were not available to one required ESF train. Although two trains are required by LCO 3.8.10, the one train with offsite power available may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS and fuel movement. By the allowance of the option to declare required features inoperable, with no offsite power available, appropriate restrictions will be implemented in accordance with the affected required features LCO's ACTIONS.

A.2.1, A.2.2, A.2.3, A.2.4, B.1, B.2, B.3, and B.4

With the offsite circuit not available to all required trains, the option would still exist to declare all required features inoperable. Since this option may involve undesired administrative efforts, the allowance for sufficiently conservative actions is made. With either required DG inoperable, the minimum required diversity of AC power sources is not available. It is, therefore, required to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, and operations involving positive reactivity additions. The Required Action to suspend positive reactivity additions does not preclude actions to maintain or increase reactor vessel inventory provided the required SDM is maintained.

ACTIONS

<u>A.2.1, A.2.2, A.2.3, A.2.4, B.1, B.2, B.3, and B.4</u> (continued)

Suspension of these activities does not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC sources and to continue this action until restoration is accomplished in order to provide the necessary AC power to the plant safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required AC electrical power sources should be completed as quickly as possible in order to minimize the time during which the plant safety systems may be without sufficient power.

Pursuant to LCO 3.0.6, the Distribution System's ACTIONS would not be entered even if all AC sources to it are inoperable, resulting in de-energization. Therefore, the Required Actions of Condition A are modified by a Note to indicate that when Condition A is entered with no AC power to any 6.9 kV shutdown board, the ACTIONS for LCO 3.8.10 must be immediately entered. This Note allows Condition A to provide requirements for the loss of the offsite circuit, whether or not a train is de-energized. LCO 3.8.10 would provide the appropriate restrictions for the situation involving a de-energized train.

SURVEILLANCE REQUIREMENTS

SR 3.8.2.1

SR 3.8.2.1 requires the SRs from LCO 3.8.1 that are necessary for ensuring the OPERABILITY of the AC sources in other than MODES 1, 2, 3, and 4. SR 3.8.1.8 is not required to be met since only one offsite circuit is required to be OPERABLE. SR 3.8.1.17 is not required to be met because the required OPERABLE DG(s) is not required to undergo periods of being synchronized to the offsite circuit. SR 3.8.1.21 is excepted because starting independence is not required with the DG(s) that is not required to be operable.

BASES

SURVEILLANCE REQUIREMENTS

SR 3.8.2.1 (continued)

This SR is modified by a Note. The reason for the Note is to preclude requiring the OPERABLE DG(s) from being paralleled with the offsite power network or otherwise rendered inoperable during performance of SRs, and to preclude de-energizing a required 6.9 kV bus or disconnecting a required offsite circuit during performance of SRs. With limited AC sources available, a single event could compromise both the required circuit and the DG. It is the intent that these SRs must still be capable of being met, but actual performance is not required during periods when the DG and offsite circuit is required to be OPERABLE. Refer to the corresponding Bases for LCO 3.8.1 for a discussion of each SR.

REFERENCES

- 1. Watts Bar FSAR, Section 8.0, "Electric Power."
- 2. Title 10, Code of Federal Regulations, Part 50, General Design Criterion 17, "Electric Power Systems."

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.3 Diesel Fuel Oil, Lube Oil, and Starting Air

BASES

BACKGROUND

Each diesel generator (DG) is provided with four interconnected storage tanks embedded in the building foundation having a fuel oil capacity sufficient to operate that diesel for a period of 7 days while the DG is supplying maximum post loss of coolant accident load demand discussed in the FSAR, Section 8.3 (Ref. 1). The maximum load demand is calculated using the assumption that a minimum of any two DGs is available. This onsite fuel oil capacity is sufficient to operate the DGs for longer than the time to replenish the onsite supply from outside sources.

An approximately 550-gal skid-mounted day tank is provided for each diesel engine. Each DG incorporates two diesel engines operating in tandem and directly coupled to the generator. Each skid-mounted day tank has fuel capacity for approximately 2 hours of full-load operations (Ref. 1). Fuel oil is transferred from 7 day storage tanks to the skid-mounted day tank by a pump located on each skid-mounted day tank. Redundancy of pumps and piping precludes the failure of one pump, or the rupture of any pipe, valve or tank to result in the loss of more than one diesel engine. In the event that the piping between the last isolation valve and the skid-mounted day tank breaks, the use of one DG can be lost. This occurs only after the two hour supply of fuel in the skid-mounted day tank has been used.

During operation of the DGs, fuel oil pumps driven by the diesel engines transfer fuel from the skid-mounted day tanks to the skid-mounted diesel engine fuel manifolds. Level controls mounted on the skid-mounted day tanks automatically start and stop the 7 day storage tank transfer pumps.

In addition, alarms both locally and in the control room annunciate low level and high level in any skid-mounted day tank.

In the unlikely event of a failure in one of the supply trains, the associated skid-mounted day tank low-level alarm annunciates when the fuel oil remaining in the tank provides approximately 1 hour of full-load operation, thus allowing the operator to take corrective action to prevent the loss of the diesel.

BACKGROUND (continued)

For proper operation of the standby DGs, it is necessary to ensure the proper quality of the fuel oil. Regulatory Guide 1.137 (Ref. 2) addresses the recommended fuel oil practices as supplemented by ANSI N195 (Ref. 3). The fuel oil properties governed by these SRs are the appearance, the kinematic viscosity, specific gravity (or API gravity), impurity level and flash point.

Each of the engines in the tandem generator sets is provided with its own lube oil system, which is an integral part of each of the DG units. The piping and components for the skid-mounted lubrication system are vendor supplied, safety-related, ANSI B31.1, Seismic Category I. The diesel engine lubrication system for each diesel engine is a combination of four subsystems (Ref. 4): the main lubricating subsystem, the piston cooling subsystem, and the scavenging oil subsystem and the motor-driven circulating pump, and soak back pump system. The main lubricating subsystem supplies oil under pressure to the various moving parts of the diesel engine. The piston cooling subsystem supplies oil for piston cooling and lubrication of the piston pin bearing surfaces. The scavenging oil subsystem supplies the other systems with cooled and filtered oil. Oil is drawn from the engine sump by the scavenging pump through a strainer in the strainer housing located on the front side of the engine. From the strainer the oil is pumped through oil filters and a cooler. The filters are located on the accessory racks of the engines. The oil is cooled in the lube oil cooler by the closed circuit cooling water system in order to maintain proper oil temperature during engine operation.

Each engine lube oil system contains approximately 331 gal of lube oil, ample for at least 7 days of DG unit full load operation without requiring replenishment. The established oil consumption rate is 0.83 gal per hour. An additional standby oil reserve is stored onsite to replenish the engines for longer periods of operation and after their periodic test operations. The inventory of lube oil in each engine is determined by reading the lube oil sump dipstick while the engine is at "Hot Idle." The quantity of oil (gallons) at each mark on the dipstick is as follows:

BACKGROUND (continued)

			1
MARK	IN SYSTEM	IN SUMP	USABLE
"FULL"	331	251	184
"7" DAY	287	207	140
"6" DAY	267	187	120
"LOW"	147	67	ZERO

Each DG has an air start system with adequate capacity for five successive start attempts on the DG without recharging the air start receiver(s).

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Section 6 (Ref. 5), and in the FSAR, Section 15 (Ref. 5), assume Engineered Safety Feature (ESF) systems are OPERABLE. The DGs are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that fuel, Reactor Coolant System and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, "Power Distribution Limits"; Section 3.4, "Reactor Coolant System (RCS)"; and Section 3.6, "Containment Systems."

Since diesel fuel oil, lube oil, and the air start subsystem support the operation of the standby AC power sources, they satisfy Criterion 3 of the NRC Policy Statement.

LCO

Stored diesel fuel oil is required to have sufficient supply for 7 days of full load operation. It is also required to meet specific standards for quality. Additionally, sufficient lubricating oil supply must be available to ensure the capability to operate at full load for 7 days. This requirement, in conjunction with an ability to obtain replacement supplies within 7 days, supports the availability of DGs required to shut down the reactor and to maintain it in a safe condition for an anticipated operational occurrence (AOO) or a postulated DBA with loss of offsite power. DG skid-mounted day tank fuel requirements, as well as transfer capability from the 7 day storage tank to the skid-mounted day tank, are addressed in LCO 3.8.1, "AC Sources - Operating," and LCO 3.8.2, "AC Sources - Shutdown."

BASES (continued)

(continued)

The starting air system is required to have a minimum capacity for five successive DG start attempts without recharging the air start receivers.

APPLICABILITY

The AC sources (LCO 3.8.1 and LCO 3.8.2) are required to ensure the availability of the required power to shut down the reactor and maintain it in a safe shutdown condition after an AOO or a postulated DBA. Since stored diesel fuel oil, lube oil, and the starting air subsystem support LCO 3.8.1 and LCO 3.8.2, stored diesel fuel oil, lube oil, and starting air are required to be within limits when the associated DG is required to be OPERABLE.

ACTIONS

The ACTIONS Table is modified by a Note indicating that separate Condition entry is allowed for each DG. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable DG subsystem. Complying with the Required Actions for one inoperable DG subsystem may allow for continued operation, and subsequent inoperable DG subsystem(s) are governed by separate Condition entry and application of associated Required Actions.

<u>A.1</u>

In this Condition, the 7 day fuel oil supply for a DG is not available. However, the Condition is restricted to fuel oil level reductions that maintain at least a 6 day supply. These circumstances may be caused by events, such as full load operation required after an inadvertent start while at minimum required level, or feed and bleed operations, which may be necessitated by increasing particulate levels or any number of other oil quality degradations. This restriction allows sufficient time for obtaining the requisite replacement volume and performing the analyses required prior to addition of fuel oil to the tank. A period of 48 hours is considered sufficient to complete restoration of the required level prior to declaring the DG inoperable. This period is acceptable based on the remaining capacity (> 6 days), the fact that procedures will be initiated to obtain replenishment, and the low probability of an event during this brief period.

ACTIONS (continued)

<u>B.1</u>

With lube oil inventory < 287 gal per diesel engine, sufficient lubricating oil to support 7 days of continuous DG operation at full load conditions may not be available. However, the Condition is restricted to lube oil volume reductions that maintain at least a 6 day supply. This restriction allows sufficient time to obtain the requisite replacement volume. A period of 48 hours is considered sufficient to complete restoration of the required volume prior to declaring the DG inoperable. This period is acceptable based on the remaining capacity (> 6 days), the low rate of usage, the fact that procedures will be initiated to obtain replenishment, and the low probability of an event during this brief period.

<u>C.1</u>

This Condition is entered as a result of a failure to meet the acceptance criterion of SR 3.8.3.3. Normally, trending of particulate levels allows sufficient time to correct high particulate levels prior to reaching the limit of acceptability. Poor sample procedures (bottom sampling), contaminated sampling equipment, and errors in laboratory analysis can produce failures that do not follow a trend. Since the presence of particulates does not mean failure of the fuel oil to burn properly in the diesel engine, and particulate concentration is unlikely to change significantly between Surveillance Frequency intervals, and proper engine performance has been recently demonstrated (within 31 days), it is prudent to allow a brief period prior to declaring the associated DG inoperable. The 7 day Completion Time allows for further evaluation, re-sampling and re-analysis of the DG fuel oil.

<u>D.1</u>

With the new fuel oil properties defined in the Bases for SR 3.8.3.3 not within the required limits, a period of 30 days is allowed for restoring the stored fuel oil properties. This period provides sufficient time to test the stored fuel oil to determine that the new fuel oil, when mixed with previously stored fuel oil, remains acceptable, or to restore the stored fuel oil properties. This restoration may involve feed and bleed procedures, filtering, or combinations of these procedures. Even if a DG start and load was required during this time interval and the fuel oil properties were outside limits, there is a high likelihood that the DG would still be capable of performing its intended function.

ACTIONS (continued)

<u>E.1</u>

With starting air receiver pressure < 190 psig, sufficient capacity for five successive DG start attempts does not exist. However, as long as the receiver pressure is \geq 170 psig (value does not account for instrument error), there is adequate capacity for at least one start attempt, and the DG can be considered OPERABLE while the air receiver pressure is restored to the required limit of \geq 190 psig (value does not account for instrument error). A period of 48 hours is considered sufficient to complete restoration to the required pressure prior to declaring the DG inoperable. This period is acceptable based on the remaining air start capacity, the fact that most DG starts are accomplished on the first attempt, and the low probability of an event during this brief period.

<u>F.1</u>

With a Required Action and associated Completion Time not met, or one or more DG's fuel oil, lube oil or starting air subsystem not within limits for reasons other than addressed by Conditions A through E, the associated DG may be incapable of performing its intended function and must be immediately declared inoperable.

SURVEILLANCE REQUIREMENTS

SR 3.8.3.1

This SR provides verification that there is an adequate inventory (≥ 56,754 gallons, value does not account for instrument error) of fuel oil in the storage tanks to support each DG's operation for 7 days at full load. The 7 day period is sufficient time to place the plant in a safe shutdown condition and to bring in replenishment fuel from an offsite location.

The 31 day Frequency is adequate to ensure that a sufficient supply of fuel oil is available, since low level alarms are provided and unit operators would be aware of any large uses of fuel oil during this period.

SR 3.8.3.2

This Surveillance ensures that sufficient lube oil inventory is available to support at least 7 days of full load operation for each DG. The 287 gal requirement is based on the DG manufacturer consumption values for

SURVEILLANCE REQUIREMENTS

SR 3.8.3.2 (continued)

the run time of the DG. The DG lube oil sump is designed to hold adequate oil for 7 days of full-load operation without the level reaching the manufacturer's recommended minimum level.

A 31 day Frequency is adequate to ensure a sufficient lube oil supply, since DG starts and run time are closely monitored by the plant staff.

SR 3.8.3.3

The tests listed below are a means of determining whether new fuel oil is of the appropriate grade and has not been contaminated with substances that would have an immediate, detrimental impact on diesel engine combustion. For the purpose of this SR, only fuel oil that is transferred from the yard fuel oil storage tanks to the 7 day fuel oil storage tank for each DG or fuel oil added to the 7 day fuel oil storage tank through the storage tank fill lines is considered new fuel consistent with the Diesel Fuel Oil Testing Program, Specification 5.7.2.16. If results from these tests are within acceptable limits, the fuel oil may be added to the storage tanks without concern for contaminating the entire volume of fuel oil in the storage tanks. These tests are to be conducted prior to adding the new fuel to the storage tank(s), but in no case is the time between receipt of new fuel and conducting the tests to exceed 31 days. The tests, limits, and applicable ASTM Standards are as follows:

- a. Sample the new fuel oil in accordance with ASTM D4057-1988 (Ref. 6);
- b. Verify in accordance with the tests specified in ASTM D1298-1985 and ASTM D975-1990 (Ref. 6) that the sample has an absolute specific gravity at 60/60°F of ≥ 0.83 and ≤ 0.89 or an API gravity at 60°F of ≥ 27° and ≤ 39°, a kinematic viscosity at 40°C of ≥ 1.9 centistokes and ≤ 4.1 centistokes, and a flash point of ≥ 125°F; and
- c. Verify that the new fuel oil has a clear and bright appearance with proper color when tested in accordance with ASTM D4176-1986 (Ref. 6).

Failure to meet any of the above limits is cause for rejecting the new fuel oil, but does not represent a failure to meet the LCO concern since the fuel oil is not added to the storage tanks.

SURVEILLANCE REQUIREMENTS

SR 3.8.3.3 (continued)

Within 31 days following the initial new fuel oil sample, the fuel oil is analyzed to establish that the other properties specified in Table 1 of ASTM D975-1990 (Ref. 6) are met for new fuel oil when tested in accordance with ASTM D975-1990 (Ref. 6), except that the analysis for sulfur may be performed in accordance with ASTM D1552-1990 (Ref. 6) or ASTM D2622-1987 (Ref. 6). The 31 day period is acceptable because the fuel oil properties of interest, even if they were not within stated limits, would not have an immediate effect on DG operation. This Surveillance ensures the availability of high quality fuel oil for the DGs.

Fuel oil degradation during long term storage shows up as an increase in particulate, due mostly to oxidation. The presence of particulate does not mean the fuel oil will not burn properly in a diesel engine. The particulate can cause fouling of filters and fuel oil injection equipment, however, which can cause engine failure.

Particulate concentrations should be determined in accordance with ASTM D2276-1989, Method A (Ref. 6). This method involves a gravimetric determination of total particulate concentration in the fuel oil and has a limit of 10 mg/l. It is acceptable to obtain a field sample for subsequent laboratory testing in lieu of field testing. Each of the four interconnected tanks which comprise a 7 day tank must be considered and tested separately.

The Frequency of this test takes into consideration fuel oil degradation trends that indicate that particulate concentration is unlikely to change significantly between Frequency intervals.

SR 3.8.3.4

This Surveillance ensures that, without the aid of the refill compressor, sufficient air start capacity (≥ 190 psig, value does not account for instrument error) for each DG is available. The system design requirements provide for a minimum of five engine start cycles without recharging. A start cycle is defined by the DG vendor, but usually is measured in terms of time (seconds of cranking) or engine cranking speed. The pressure specified in this SR is intended to reflect the lowest value at which the five starts can be accomplished.

The 31 day Frequency takes into account the capacity, capability, redundancy, and diversity of the AC sources and other indications available in the control room, including alarms, to alert the operator to below normal air start pressure.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.8.3.5

Microbiological fouling is a major cause of fuel oil degradation. There are numerous bacteria that can grow in fuel oil and cause fouling, but all must have a water environment in order to survive. Removal of water from the fuel storage tanks once every 31 days eliminates the necessary environment for bacterial survival. This is the most effective means of controlling microbiological fouling. In addition, it eliminates the potential for water entrainment in the fuel oil during DG operation. Water may come from any of several sources, including condensation, ground water, rain water, and contaminated fuel oil, and from breakdown of the fuel oil by bacteria. Frequent checking for and removal of accumulated water minimizes fouling and provides data regarding the watertight integrity of the fuel oil system.

The Surveillance Frequencies are established by Regulatory Guide 1.137 (Ref. 2). This SR is for preventive maintenance. The presence of water does not necessarily represent failure of this SR, provided the accumulated water is removed during performance of the Surveillance.

SR 3.8.3.6

This SR verifies, by visual inspection, that the exposed fuel oil system piping is free of leaks. This test is performed while the DG is running to provide adequate assurance of piping leak tightness and weld integrity. The 18 month Frequency is based on engineering judgment and is consistent with the refueling cycle testing performed on the DGs.

SR 3.8.3.7

Draining of the fuel oil stored in the supply tanks, removal of accumulated sediment, and tank cleaning are required at 10 year intervals by Regulatory Guide 1.137 (Ref. 2), paragraph 2.f. To preclude the introduction of surfactants in the fuel oil system, the cleaning should be accomplished using sodium hypochlorite solutions, or their equivalent, rather than soap or detergents. This SR is for preventive maintenance. The presence of sediment does not necessarily represent a failure of this SR, provided that accumulated sediment is removed during performance of the Surveillance.

REFERENCES

- 1. Watts Bar FSAR, Section 8.3, "Onsite (Standby) Power System".
- 2. Regulatory Guide 1.137, "Fuel Oil Systems for Standby Diesel Generators," Revision 1, October, 1979.
- 3. ANSI N195-1976, "Fuel Oil Systems for Standby Diesel Generators," Appendix B.
- 4. Watts Bar FSAR, Section 9.5.7, "Diesel Engine Lubrication System."
- 5. Watts Bar FSAR, Section 15, "Accident Analysis" and Section 6 "Engineered Safety Features."
- ASTM Standards:

D4057-1988, "Practice for Manual Sampling of Petroleum and Petroleum Products."

D975-1990, "Standard Specification for Diesel Fuel Oils."

D4176-1986, "Free Water and Particulate Contamination in Distillate Fuels."

D1552-1990, "Standard Test Method for Sulfur in Petroleum Products (High Temperature Method)."

D2622-1987, "Standard Test Method for Sulfur in Petroleum Products (X-Ray Spectrographic Method)."

D2276-1989, "Standard Test Method for Particulate Contamination in Aviation Fuel."

D1298-1985, "Standard Test Method for Density, Specific Gravity, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method."

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.4 DC Sources - Operating

BASES

BACKGROUND

The station DC electrical power system provides the AC emergency power system with control power. It also provides both motive and control power to selected safety related equipment and preferred AC vital bus power (via inverters). As required by 10 CFR 50, Appendix A, GDC 17 (Ref. 1), the DC electrical power system is designed to have sufficient independence, redundancy, and testability to perform its safety functions, assuming a single failure. The DC electrical power system also conforms to the recommendations of Regulatory Guide 1.6 (Ref. 2) and IEEE-308 (Ref. 3).

125 V Vital DC Electrical Power Subsystem

The vital 125 VDC electrical power system is a Class 1E system whose safety function is to provide control power for engineered safety features equipment, emergency lighting, vital inverters, and other safety related DC powered equipment for the entire unit. The system capacity is sufficient to supply these loads and any connected non-safety loads during normal operation and to permit safe shutdown and isolation of the reactor for the "loss of all AC power" condition. The system is designed to perform its safety function subject to a single failure.

The 125V DC vital power system is composed of the four redundant channels (Channels I and III are associated with Train A and Channels II and IV are associated with Train B) and consists of four lead-acid-calcium batteries, six battery chargers (including two spare chargers), four distribution boards, battery racks, and the required cabling, instrumentation and protective features. Each channel is electrically and physically independent from the equipment of all other channels so that a single failure in one channel will not cause a failure in another channel. Each channel consists of a battery charger which supplies normal DC power, a battery for emergency DC power, and a battery board which facilitates load grouping and provides circuit protection. These four channels are used to provide emergency power to the 120V AC vital power system which furnishes control power to the reactor protection system. No automatic connections are used between the four redundant channels.

BACKGROUND

<u>125 V Vital DC Electrical Power Subsystem</u> (continued)

Battery boards I, II, III, and IV have a charger normally connected to them and also have manual access to a spare (backup) charger for use upon loss of the normal charger.

Additionally, battery boards I, II, III, and IV have manual access to the fifth vital battery system. The fifth 125V DC Vital Battery System is intended to serve as a replacement for any one of the four 125V DC vital batteries during their testing, maintenance, and outages with no loss of system reliability under any mode of operation.

Each of the vital DC electrical power subsystems provides the control power for its associated Class 1E AC power load group, 6.9 kV switchgear, and 480 V load centers. The vital DC electrical power subsystems also provide DC electrical power to the inverters, which in turn power the AC vital buses. Additionally, they power the emergency DC lighting system.

The vital DC power distribution system is described in more detail in Bases for LCO 3.8.9, "Distribution System - Operating," and LCO 3.8.10, "Distribution Systems - Shutdown."

Each vital battery has adequate storage capacity to carry the required load continuously for at least 4 hours in the event of a loss of all AC power (station blackout) without an accident or for 30 minutes with an accident considering a single failure. Load shedding of non-required loads will be performed to achieve the required coping duration for station blackout conditions.

Each 125 VDC vital battery is separately housed in a ventilated room apart from its charger and distribution centers, except for Vital Battery V. Each subsystem is located in an area separated physically and electrically from the other subsystem to ensure that a single failure in one subsystem does not cause a failure in a redundant subsystem. There is no sharing between redundant Class 1E subsystems, such as batteries, battery chargers, or distribution panels.

The batteries for the vital DC electrical power subsystems are sized to produce required capacity at 80% of nameplate rating, corresponding to warranted capacity at end of life cycles, de-rated for minimum ambient temperature and the 100% design demand. The voltage limit is 2.13 V per cell, which corresponds to a total minimum voltage output of 128 V per battery (132 V for Vital Battery V). The criteria for sizing large lead storage batteries are defined in IEEE-485 (Ref. 5).

BACKGROUND

125 V Vital DC Electrical Power Subsystem (continued)

Each Vital DC electrical power subsystem has ample power output capacity for the steady state operation of connected loads required during normal operation, while at the same time maintaining its battery bank fully charged. Each battery charger also has sufficient capacity to restore the battery bank from the design minimum charge to its fully charged state within 12 hours (with accident loads being supplied) following a 30 minute AC power outage and in approximately 36 hours (while supplying normal steady state loads following a 2 hour AC power outage), (Ref. 6).

125 V Diesel Generator (DG) DC Electrical Power Subsystem

Control power for the DGs is provided by four DG battery systems, one per DG. Each system is comprised of a battery, a battery charger, distribution center, cabling, and cable ways. The DG 125V DC control power and field-flash circuits have power supplied from their respective 125V distribution panel. The normal supply of DC current is from the associated charger. The battery provides control and field-flash power when the charger is unavailable. The charger supplies the normal DC loads, maintains the battery in a fully charged condition, and recharges (480V AC available) the battery while supplying the required loads regardless of the status of the unit. The batteries are physically and electrically independent. The battery has sufficient capacity when fully charged to supply required loads for a minimum of 30 minutes following a loss of normal power. Each battery is normally required to supply loads during the time interval between loss of normal feed to its charger and the receipt of emergency power to the charger from its respective DG.

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Section 6 (Ref. 7), and in the FSAR, Section 15 (Ref. 7), assume that Engineered Safety Feature (ESF) systems are OPERABLE. The vital DC electrical power system provides normal and emergency DC electrical power for the emergency auxiliaries, and control and switching during all power for the emergency auxiliaries, and control and switching during all MODES of operation. The DG battery systems provide DC power for the DGs.

APPLICABLE SAFETY ANALYSES (continued)

The OPERABILITY of the DC sources is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the plant. This includes maintaining the DC sources OPERABLE during accident conditions in the event of:

- a. An assumed loss of all offsite AC power or all onsite AC power; and
- b. A worst case single failure.

The DC sources satisfy Criterion 3 of the NRC Policy Statement.

LCO

Four 125V vital DC electrical power subsystems, each vital subsystem channel consisting of a battery bank, associated battery charger and the corresponding control equipment and interconnecting cabling supplying power to the associated DC bus within the channel; and four DG DC electrical power subsystems each consisting of a battery, a battery charger, and the corresponding control equipment and interconnecting cabling are required to be OPERABLE to ensure the availability of the required power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (A00) or a postulated DBA. Loss of any DC electrical power subsystem does not prevent the minimum safety function from being performed (Ref. 4).

An OPERABLE vital DC electrical power subsystem requires all required batteries and respective chargers to be operating and connected to the associated DC buses.

The LCO is modified by a Note. The Note indicates that Vital Battery V may be substituted for any of the required vital batteries. However, the fifth battery cannot be declared OPERABLE until it is connected electrically in place of another battery and it has satisfied applicable Surveillance Requirements.

APPLICABILITY

The four vital DC electrical power sources and four DG DC electrical power sources are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure safe plant operation and to ensure that:

- Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOs or abnormal transients; and
- b. Adequate core cooling is provided, and containment integrity and other vital functions are maintained in the event of a postulated DBA.

The DC electrical power requirements for MODES 5 and 6 are addressed in the Bases for LCO 3.8.5, "DC Sources - Shutdown."

ACTIONS

A.1

Condition A represents one vital channel with a loss of ability to completely respond to an event, and a potential loss of ability to remain energized during normal operation. It is, therefore, imperative that the operator's attention focus on stabilizing the plant, minimizing the potential for complete loss of DC power to the affected train. The 2 hour limit is consistent with the allowed time for an inoperable DC distribution system train.

If one of the required vital DC electrical power subsystems is inoperable (e.g., inoperable battery, inoperable battery charger and associated inoperable battery), the remaining vital DC electrical power subsystem has the capacity to support a safe shutdown and to mitigate an accident condition. Since a subsequent worst case single failure of the OPERABLE subsystem would, however, result in a situation where the ability of the 125V DC electrical power subsystem to support its required ESF function is not assured, continued power operation should not exceed 2 hours. The 2 hour Completion Time is based on Regulatory Guide 1.93 (Ref. 8) and reflects a reasonable time to assess plant status as a function of the inoperable vital DC electrical power subsystem and, if the vital DC electrical power subsystem is not restored to OPERABLE status, to prepare to effect an orderly and safe plant shutdown.

ACTIONS (continued)

B.1 and B.2

If the inoperable vital DC electrical power subsystem cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems. The Completion Time to bring the plant to MODE 5 is consistent with the time required in Regulatory Guide 1.93 (Ref. 8).

<u>C.1</u>

Condition C represents one DG with a loss of ability to completely respond to an event. Since a subsequent single failure on the opposite train could result in a situation where the required ESF function is not assured, continued power operation should not exceed 2 hours. The 2 hour time limit is consistent with the allowed time for an inoperable vital DC electrical power subsystem.

D.1

If the DG DC electrical power subsystem cannot be restored to OPERABLE status in the associated Completion Time, the associated DG may be incapable of performing its intended function and must be immediately declared inoperable. This declaration also requires entry into applicable Conditions and Required Actions for an inoperable DG, LCO 3.8.1, "AC Sources - Operating."

SURVEILLANCE REQUIREMENTS

SR 3.8.4.1 and SR 3.8.4.2

Verifying battery terminal voltage while on float charge for the batteries helps to ensure the effectiveness of the charging system and the ability of the batteries to perform their intended function. Float charge is the condition in which the charger is supplying the continuous charge required to overcome the internal losses of a battery (or battery cell) and maintain the battery (or a battery cell) in a fully charged state. The voltage requirements are based on the critical design voltage of the battery and are consistent with the initial voltages assumed in the battery sizing calculations. The 7 day Frequency is consistent with manufacturer recommendations and IEEE-450 (Ref. 9).

SURVEILLANCE REQUIREMENTS (continued)

SR 3.8.4.3

Verifying that for the vital batteries that the alternate feeder breakers to each required battery charger is open ensures that independence between the power trains is maintained. The 7 day Frequency is based on engineering judgment, is consistent with procedural controls governing breaker operation, and ensures correct breaker position.

SR 3.8.4.4

This SR demonstrates that the DG 125V DC distribution panel and associated charger are functioning properly, with all required circuit breakers closed and buses energized from normal power. The 7 day Frequency takes into account the redundant DG capability and other indications available in the control room that will alert the operator to system malfunctions.

SR 3.8.4.5 and SR 3.8.4.6

Visual inspection to detect corrosion of the battery cells and connections, or measurement of the resistance of each inter-cell, inter-rack, inter-tier, and terminal connection, provides an indication of physical damage or abnormal deterioration that could potentially degrade battery performance.

The limits established for this SR must be no more than 20% above the resistance as measured during installation, or not above the ceiling value established by the manufacturer.

The Surveillance Frequency for these inspections, which can detect conditions that can cause power losses due to resistance heating, is 92 days. This Frequency is considered acceptable based on operating experience related to detecting corrosion trends.

SR 3.8.4.7

Visual inspection of the battery cells, cell plates, and battery racks provides an indication of physical damage or abnormal deterioration that could potentially degrade battery performance.

The 12 month Frequency for this SR is consistent with IEEE-450 (Ref. 9), which recommends detailed visual inspection of cell condition and rack integrity on a yearly basis.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.8.4.8, SR 3.8.4.9 and SR 3.8.4.10

Visual inspection and resistance measurements of inter-cell, inter-rack, inter-tier, and terminal connections provide an indication of physical damage or abnormal deterioration that could indicate degraded battery condition. The anti-corrosion material is used to help ensure good electrical connections and to reduce terminal deterioration. The visual inspection for corrosion is not intended to require removal of and inspection under each terminal connection. The removal of visible corrosion is a preventive maintenance SR. The presence of visible corrosion does not necessarily represent a failure of this SR provided visible corrosion is removed during performance of SR 3.8.4.8. For the purposes of trending, inter-cell (vital and DG batteries) and inter-tier (vital and DG batteries) connections are measured from battery post to battery post. Inter-rack (vital batteries), inter-tier (DG Batteries), and terminal connections (vital and DG batteries) are measured from terminal lug to battery post.

The connection resistance limits for SR 3.8.4.9 and SR 3.8.4.10 shall be no more than 20% above the resistance as measured during installation, or not above the ceiling value established by the manufacturer.

The Surveillance Frequencies of 12 months is consistent with IEEE-450 (Ref. 9), which recommends cell to cell and terminal connection resistance measurement on a yearly basis.

SR 3.8.4.11

This SR requires that each vital battery charger be capable of recharging its associated battery from a capacity or service discharge test while supplying normal loads, or alternatively, operating at current limit for a minimum of 4 hours at a nominal 125 VDC. These requirements are based on the design capacity of the chargers (Ref. 4) and their performance characteristic of current limit operation for a substantial portion of the recharge period. Battery charger output current is limited to 110% to 125% of the 200 amp-rated output. Recharging the battery or testing for a minimum of 4 hours is sufficient to verify the output capability of the charger can be sustained, that current limit adjustments are properly set and that protective devices will not inhibit performance at current limit settings. According to Regulatory Guide 1.32 (Ref. 6), the battery charger supply is required to be based on the largest combined demands of the various steady state loads and the charging capacity to restore the battery from the design minimum charge state to the fully

SURVEILLANCE REQUIREMENTS

SR 3.8.4.11 (continued)

charged state, irrespective of the status of the plant during these demand occurrences. Verifying the capability of the charger to operate in a sustained current limit condition ensures that these requirements can be satisfied.

The Surveillance Frequency is acceptable, given the plant conditions required to perform the test and the other administrative controls existing to ensure adequate charger performance during these 18 month intervals. In addition, this Frequency is intended to be consistent with expected fuel cycle lengths.

This SR is modified by a Note. The reason for the Note is that performing the Surveillance may perturb the electrical distribution system and challenge safety systems. This Surveillance is normally performed during MODES 5 and 6 since it would require the DC electrical power subsystem to be inoperable during performance of the test. However, this Surveillance may be performed in MODES 1, 2, 3, or 4 provided the Vital Battery V is substituted in accordance with LCO Note 1. Credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.8.4.12

This SR requires that each diesel generator battery charger be capable of recharging its associated battery from a capacity or service discharge test while supplying normal loads. This requirement is based on the design capacity of the chargers (Ref. 13) and their performance characteristic of current limit operation for a substantial portion of the recharge period. Battery charger output current is limited to a maximum of 140% of the 20 amp-rated output. Recharging the battery verifies the output capability of the charger can be sustained, that current limit adjustments are properly set and that protective devices will not inhibit performance at current limit settings. According to Regulatory Guide 1.32 (Ref. 6), the battery charger supply is required to be based on the largest combined demands of the various steady state loads and the charging capacity to restore the battery from the design minimum charge state to the fully charged state, irrespective of the status of the plant during these demand occurrences. Verifying the capability of the charger to operate in a sustained current limit condition ensures that these requirements can be satisfied.

The Surveillance Frequency is acceptable, given the plant conditions required to perform the test and the other administrative controls existing to ensure adequate charger performance during these 18 month intervals. In addition, this Frequency is intended to be consistent with expected fuel cycle lengths.

For the DG DC electrical subsystem, this Surveillance may be performed in MODES 1, 2, 3, or 4 in conjunction with LCO 3.8.1.B since the DG DC electrical power subsystem supplies loads only for the inoperable diesel generator and would not otherwise challenge safety systems supplied from vital electrical distribution systems. Additionally, credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- 2) Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SURVEILLANCE REQUIREMENTS (continued)

SR 3.8.4.13

A battery service test is a special test of battery capability, as-found, to satisfy the design requirements (battery duty cycle) of the DC electrical power system. The discharge rate and test length should correspond to worst case design duty cycle requirements based on References 10 and 12.

The Surveillance Frequency of 18 months is consistent with the recommendations of Regulatory Guide 1.32 (Ref. 6) and Regulatory Guide 1.129 (Ref. 11), which state that the battery service test should be performed during refueling operations or at some other outage, with intervals between tests, not to exceed 18 months.

This SR is modified by two Notes. Note 1 allows the performance of a modified performance discharge test in lieu of a service test once per 60 months. The modified performance discharge test is a simulated duty cycle consisting of just two rates: the one minute rate published for the battery or the largest current load of the duty cycle, followed by the test rate employed for the performance test, both of which envelope the duty cycle of the service test. Since the ampere-hours removed by a rated one-minute discharge represents a very small portion of the battery capacity, the test rate can be changed to that for the performance test without compromising the results of the performance discharge test. The battery terminal voltage for the modified performance discharge test should remain above the minimum battery terminal voltage specified in the battery service test for the duration of time equal to that of the service test.

A modified discharge test is a test of the battery capacity and its ability to provide a high rate, short duration load (usually the highest rate of the duty cycle.) This will often confirm the battery's ability to meet the critical period of the load duty cycle, in addition to determining its percentage of rated capacity. Initial conditions for the modified performance discharge test should be identical to those specified for a service test.

The reason for Note 2 is that performing the Surveillance may perturb the vital electrical distribution system and challenge safety systems. However, this Surveillance may be performed in MODES I, 2, 3, or 4 provided that Vital Battery V is substituted in accordance with LCO Note 1. For the DG DC electrical subsystem, this surveillance may be performed in MODES I, 2, 3, or 4 in conjunction with LCO 3.8.1.B since the supplied loads are only for the inoperable diesel generator and would not otherwise challenge safety system loads which are supplied

SURVEILLANCE REQUIREMENTS

SR 3.8.4.13 (continued)

from vital electrical distribution systems. Additionally, credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- 2) Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

SR 3.8.4.14

A battery performance discharge test is a test of constant current capacity of a battery, normally done in the as-found condition, after having been in service, to detect any change in the capacity determined by the acceptance test. The test is intended to determine overall battery degradation due to age and usage.

A battery modified performance discharge test is described in the Bases for SR 3.8.4.13. Either the battery performance discharge test or the modified performance discharge test is acceptable for satisfying SR 3.8.4.14; however, only the modified performance discharge test may be used to satisfy SR 3.8.4.14 while satisfying the requirements of SR 3.8.4.13 at the same time.

The acceptance criteria for this Surveillance are consistent with IEEE-450 (Ref. 9) and IEEE-485 (Ref. 5). These references recommend that the battery be replaced if its capacity is below 80% of the manufacturer rating. A capacity of 80% shows that the battery rate of deterioration is increasing, even if there is ample capacity to meet the load requirements.

SURVEILLANCE REQUIREMENTS

SR 3.8.4.14 (continued)

The Surveillance Frequency for this test is normally 60 months. If the battery shows degradation, or if the battery has reached 85% of its expected life and capacity is < 100% of the manufacturer's rating, the Surveillance Frequency is reduced to 12 months. However, if the battery shows no degradation but has reached 85% of its expected life, the Surveillance Frequency is only reduced to 24 months for batteries that retain capacity \geq 100% of the manufacturer's rating. Degradation is indicated, according to IEEE-450 (Ref. 9), when the battery capacity drops by more than 10% relative to its capacity on the previous performance test or when it is \geq 10% below the manufacturer rating. These Frequencies are consistent with the recommendations in IEEE-450 (Ref. 9).

This SR is modified by a Note. The reason for the Note is that performing the Surveillance may perturb the vital electrical distribution system and challenge safety systems. However, this Surveillance may be performed in MODES I, 2, 3, or 4 provided that Vital Battery V is substituted in accordance with the LCO Note. For the DG DC electrical subsystem, this surveillance may be performed in MODES I, 2, 3, or 4 in conjunction with LCO 3.8.1.B since the supplied loads are only for the inoperable diesel generator and would not otherwise challenge safety system loads which are supplied from vital electrical distribution systems. Additionally, credit may be taken for unplanned events that satisfy this SR. Examples of unplanned events may include:

- Unexpected operational events which cause the equipment to perform the function specified by this Surveillance, for which adequate documentation of the required performance is available; and
- 2) Post-corrective maintenance testing that requires performance of this Surveillance in order to restore the component to OPERABLE, provided the maintenance was required, or performed in conjunction with maintenance required to maintain OPERABILITY or reliability.

REFERENCES

- Title 10, Code of Federal Regulations, Part 50, Appendix A, General Design Criterion 17, "Electric Power System."
- Regulatory Guide 1.6, "Independence Between Redundant Standby (Onsite) Power Sources and Between Their Distribution Systems," U.S. Nuclear Regulatory Commission, March 10, 1971.
- 3. IEEE-308-1971, "IEEE Standard Criteria for Class 1E Power Systems for Nuclear Power Generating Stations," Institute of Electrical and Electronic Engineers.
- 4. Watts Bar FSAR, Section 8.3.2, "DC Power System."
- 5. IEEE-485-1983, "Recommended Practices for Sizing Large Lead Storage Batteries for Generating Stations and Substations," Institute of Electrical and Electronic Engineers.
- Regulatory Guide 1.32, "Criteria for Safety-Related Electric Power Systems for Nuclear Power Plants," February 1977, U.S. Nuclear Regulatory Commission.
- 7. Watts Bar FSAR, Section 15, "Accident Analysis" and Section 6 "Engineered Safety Features."
- 8. Regulatory Guide 1.93, "Availability of Electric Power Sources," U.S. Nuclear Regulatory Commission, December 1974.
- 9. IEEE-450-1980/1995, "IEEE Recommended Practice for Maintenance Testing and Replacement of Large Lead Storage Batteries for Generating Stations and Subsystems," Institute of Electrical and Electronic Engineers.
- 10. TVA Calculation WBN EEB-MS-TI11-0003, "125 VDC Vital Battery and Charger Evaluation."
- Regulatory Guide 1.129, "Maintenance Testing and Replacement of Large Lead Storage Batteries for Generating Stations and Subsystems," U.S. Nuclear Regulatory Commission, February 1978.
- 12. TVA Calculation WBN EEB-EDQ00023620070003, "125V DC Vital Battery System Analysis."
- 13. Watts Bar FSAR, Section 8.3.1, "AC Power System."

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.5 DC Sources - Shutdown

BASES

BACKGROUND

A description of the DC sources is provided in the Bases for LCO 3.8.4, "DC Sources - Operating."

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident and transient analyses in the FSAR, Section 6 (Ref. 1) and Section 15 (Ref. 1), assume that Engineered Safety Feature systems are OPERABLE. The vital DC electrical power system provides normal and emergency DC electrical power for the emergency auxiliaries, and control and switching during all MODES of operation. The DG battery systems provide DC power for the DGs.

The OPERABILITY of the DC sources is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.

The OPERABILITY of the minimum DC electrical power sources during MODES 5 and 6, and during movement of irradiated fuel assemblies ensures that:

- a. The plant can be maintained in the shutdown or refueling condition for extended periods;
- Sufficient instrumentation and control capability is available for monitoring and maintaining the plant status; and
- c. Adequate DC electrical power is provided to mitigate events postulated during shutdown, such as a fuel handling accident.

The DC sources satisfy Criterion 3 of the NRC Policy Statement.

LCO

The 125V Vital DC electrical power subsystems, each vital subsystem channel consisting of a battery bank, associated battery charger, and the corresponding control equipment and interconnecting cabling within the channel; and the DG DC electrical power subsystems, each consisting of a battery, a battery charger, and the corresponding control equipment and interconnecting cabling, are required to be OPERABLE to support required trains of the distribution systems required OPERABLE by LCO 3.8.10, "Distribution Systems - Shutdown" and the required DGs required OPERABLE by LCO 3.8.2, "AC Sources - Shutdown." As a minimum, one vital DC electrical power train (i.e., Channels I and III, or II and IV) and two DG DC electrical power subsystems (i.e., 1A-A and 2A-A or 1B-B and 2B-B) shall be OPERABLE. This ensures the availability of sufficient DC electrical power sources to operate the plant in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents).

The LCO is modified by a Note. The Note indicates that Vital Battery V may be substituted for any of the required vital batteries. However, the fifth battery cannot be declared OPERABLE until it is connected electrically in place of another battery and it has satisfied applicable Surveillance Requirements.

APPLICABILITY

The DC electrical power sources required to be OPERABLE in MODES 5 and 6, and during movement of irradiated fuel assemblies, provide assurance that:

- a. Required features needed to mitigate a fuel handling accident are available:
- b. Required features necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and
- c. Instrumentation and control capability is available for monitoring and maintaining the plant in a cold shutdown condition or refueling condition.

The DC electrical power requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.4.

ACTIONS

A.1, A.2.1, A.2.2, A.2.3, and A.2.4

If two trains are required by LCO 3.8.10, the remaining train with DC power available may be capable of supporting sufficient systems to allow continuation of CORE ALTERATIONS and fuel movement. By allowing the option to declare required features inoperable with the associated vital DC power source(s) inoperable, appropriate restrictions will be implemented in accordance with the affected required features LCO ACTIONS. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, and operations involving positive reactivity additions). The Required Action to suspend positive reactivity additions does not preclude actions to maintain or increase reactor vessel inventory, provided the required SDM is maintained.

Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required vital DC electrical power subsystems and to continue this action until restoration is accomplished in order to provide the necessary DC electrical power to the plant safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required vital DC electrical power subsystems should be completed as quickly as possible in order to minimize the time during which the plant safety systems may be without sufficient power.

<u>B.1</u>

If the DG DC electrical power subsystem cannot be restored to OPERABLE status in the associated Completion Time, the associated DG may be incapable of performing its intended function and must be immediately declared inoperable. This declaration also requires entry into applicable Conditions and Required Actions for an inoperable DG, LCO 3.8.2. "AC Sources - Shutdown."

BASES (continued)

SURVEILLANCE REQUIREMENTS

SR 3.8.5.1

SR 3.8.5.1 requires performance of all Surveillances required by SR 3.8.4.1 through SR 3.8.4.14. Therefore, see the corresponding Bases for LCO 3.8.4 for a discussion of each SR.

This SR is modified by a Note. The reason for the Note is to preclude requiring the OPERABLE DC sources from being discharged below their capability to provide the required power supply or otherwise rendered inoperable during the performance of SRs. It is the intent that these SRs must still be capable of being met, but actual performance is not required.

REFERENCES

- 1. Watts Bar FSAR, Section 15, "Accident Analysis" and Section 6, "Engineered Safety Features."
- 2. Watts Bar FSAR, Section 8.0, "Electric Power."

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.6 Battery Cell Parameters

BASES

BACKGROUND

This LCO delineates the limits on electrolyte temperature, level, float voltage, and specific gravity for the 125V vital DC electrical power subsystem and diesel generator (DG) batteries. A discussion of these batteries and their OPERABILITY requirements is provided in the Bases for LCO 3.8.4, "DC Sources - Operating," and LCO 3.8.5, "DC Sources - Shutdown."

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Section 6 (Ref. 1) and Section 15 (Ref. 1), assume Engineered Safety Feature systems are OPERABLE. The vital DC electrical power system provides normal and emergency DC electrical power for the emergency auxiliaries, and control and switching during all MODES of operation. The DG battery systems provide DC power for the DGs.

The OPERABILITY of the DC subsystems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the plant. This includes maintaining at least one train of DC sources OPERABLE during accident conditions, in the event of:

- a. An assumed loss of all offsite AC power or all onsite AC power; and
- b. A worst case single failure.

Battery cell parameters satisfy the Criterion 3 of the NRC Policy Statement.

LCO

Battery cell parameters must remain within acceptable limits to ensure availability of the required DC power to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence or a postulated DBA. Electrolyte limits are conservatively established, allowing continued DC electrical system function even with Category A and B limits not met.

APPLICABILITY

The battery cell parameters are required solely for the support of the associated vital DC and DG DC electrical power subsystems. Therefore, battery electrolyte is only required when the DC power source is required to be OPERABLE. Refer to the Applicability discussion in Bases for LCO 3.8.4 and LCO 3.8.5.

ACTIONS

A.1, A.2, and A.3

With one or more cells in one or more batteries not within limits (i.e., Category A limits not met, Category B limits not met, or Category A and B limits not met) but within the Category C limits specified in Table 3.8.6-1 in the accompanying LCO, the battery is degraded but there is still sufficient capacity to perform the intended function. Therefore, the affected battery is not required to be considered inoperable solely as a result of Category A or B limits not met, and operation is permitted for a limited period.

The pilot cell electrolyte level and float voltage are required to be verified to meet the Category C limits within 1 hour (Required Action A.1). This check will provide a quick indication of the status of the remainder of the battery cells. One hour provides time to inspect the electrolyte level and to confirm the float voltage of the pilot cells. One hour is considered a reasonable amount of time to perform the required verification.

Verification that the Category C limits are met (Required Action A.2) provides assurance that during the time needed to restore the parameters to the Category A and B limits, the battery is still capable of performing its intended function. A period of 24 hours is allowed to complete the initial verification because specific gravity measurements must be obtained for each connected cell. Taking into consideration both the time required to perform the required verification and the assurance that the battery cell parameters are not severely degraded, this time is considered reasonable. The verification is repeated at 7 day intervals until the parameters are restored to Category A and B limits. This periodic verification is consistent with the normal Frequency of pilot cell surveillances.

Continued operation is only permitted for 31 days before battery cell parameters must be restored to within Category A and B limits. With the consideration that, while battery capacity is degraded, sufficient capacity exists to perform the intended function and to allow time to fully restore the battery cell parameters to normal limits, this time is acceptable prior to declaring the battery inoperable.

ACTIONS (continued)

<u>B.1</u>

With one or more batteries with one or more battery cell parameters outside the Category C limits for any connected cell, sufficient capacity to supply the maximum expected load requirement is not assured and the corresponding vital DC or DG DC electrical power subsystem must be declared inoperable. Additionally, other potentially extreme conditions, such as not completing the Required Actions of Condition A within the required Completion Time or average electrolyte temperature of representative cells falling below 60°F for the vital batteries or 50°F for DG batteries, are also cause for immediately declaring the associated vital DC or DG DC electrical power subsystem inoperable.

SURVEILLANCE REQUIREMENTS

SR 3.8.6.1

This SR verifies that Category A battery cell parameters are consistent with IEEE-450 (Ref. 2), which recommends regular battery inspections (at least one per month) including voltage, specific gravity, and electrolyte temperature of pilot cells.

SR 3.8.6.2

The quarterly inspection of specific gravity and voltage is consistent with IEEE-450 (Ref. 2). In addition, within 24 hours of a battery discharge < 110 V (113.5V for Vital Battery V or 106.5 V for DG batteries) or a battery overcharge > 150 V (155 V for Vital Battery V or 145 V for DG batteries), the battery must be demonstrated to meet Category B limits. Transients, such as motor starting transients, which may momentarily cause battery voltage to drop to \leq 110 V (113.5 V for Vital Battery V or 106.5 V for DG batteries), do not constitute a battery discharge provided the battery terminal voltage and float current return to pre-transient values. This inspection is also consistent with IEEE-450 (Ref. 2), which recommends special inspections following a severe discharge or overcharge, to ensure that no significant degradation of the battery occurs as a consequence of such discharge or overcharge.

SR 3.8.6.3

This Surveillance verification that the average temperature of representative cells is $\geq 60^{\circ}F$ for the vital batteries and $\geq 50^{\circ}F$ for the DG batteries, is consistent with a recommendation of IEEE-450 (Ref. 2), that states that the temperature of electrolytes in representative cells should be determined on a quarterly basis.

SURVEILLANCE REQUIREMENTS

SR 3.8.6.3 (continued)

Lower than normal temperatures act to inhibit or reduce battery capacity. This SR ensures that the operating temperatures remain within an acceptable operating range. This limit is based on manufacturer recommendations.

Table 3.8.6-1

This table delineates the limits on electrolyte level, float voltage, and specific gravity for three different categories. The meaning of each category is discussed below.

Category A defines the normal parameter limit for each designated pilot cell in each battery. The cells selected as pilot cells are those whose temperature, voltage, and electrolyte specific gravity approximate the state of charge of the entire battery.

The Category A limits specified for electrolyte level are based on manufacturer recommendations and are consistent with the guidance in IEEE-450 (Ref. 2), with the extra ½ inch allowance above the high water level indication for operating margin to account for temperatures and charge effects. In addition to this allowance, footnote (a) to Table 3.8.6-1 permits the electrolyte level to be above the specified maximum level during equalizing charge, provided it is not overflowing. These limits ensure that the plates suffer no physical damage, and that adequate electron transfer capability is maintained in the event of transient conditions. IEEE-450 (Ref. 2) recommends that electrolyte level readings should be made only after the battery has been at float charge for at least 72 hours.

The Category A limit specified for float voltage is \geq 2.13 V per cell. This value is based on the recommendations of IEEE-450 (Ref. 2), which states that prolonged operation of cells < 2.13 V can reduce the life expectancy of cells.

The Category A limit specified for specific gravity for each pilot cell is \geq 1.200 (0.015 below the manufacturer fully charged nominal specific gravity or a battery charging current that had stabilized at a low value). This value is characteristic of a charged cell with adequate capacity. According to IEEE-450 (Ref. 2), the specific gravity readings are based on a temperature of 77°F (25°C).

SURVEILLANCE REQUIREMENTS

SR 3.8.6.3 (continued)

The specific gravity readings are corrected for actual electrolyte temperature and level. For each 3°F (1.67°C) above 77°F (25°C), 1 point (0.001) is added to the reading; 1 point is subtracted for each 3°F below 77°F. The specific gravity of the electrolyte in a cell increases with a loss of water due to electrolysis or evaporation.

Category B defines the normal parameter limits for each connected cell. The term "connected cell" excludes any battery cell that may be jumpered out.

The Category B limits specified for electrolyte level and float voltage are the same as those specified for Category A and have been discussed above. The Category B limit specified for specific gravity for each connected cell is ≥ 1.195 (0.020 below the manufacturer fully charged, nominal specific gravity) with the average of all connected cells > 1.205 (0.010 below the manufacturer fully charged, nominal specific gravity). These values are based on manufacturer's recommendations. The minimum specific gravity value required for each cell ensures that the effects of a highly charged or newly installed cell will not mask overall degradation of the battery.

Category C defines the limits for each connected cell. These values, although reduced, provide assurance that sufficient capacity exists to perform the intended function and maintain a margin of safety. When any battery parameter is outside the Category C limits, the assurance of sufficient capacity described above no longer exists, and the battery must be declared inoperable.

The Category C limits specified for electrolyte level (above the top of the plates and not overflowing) ensure that the plates suffer no physical damage and maintain adequate electron transfer capability. The Category C limits for float voltage is based on IEEE-450 (Ref. 2), which states that a cell voltage of 2.07 V or below, under float conditions and not caused by elevated temperature of the cell, indicates internal cell problems and may require cell replacement.

The Category C limits of average specific gravity \geq 1.195 is based on manufacturer recommendations (0.020 below the manufacturer recommended fully charged, nominal specific gravity). In addition to that limit, it is required that the specific gravity for each connected cell must be no less than 0.020 below the average of all connected cells. This limit ensures that the effect of a highly charged or new cell does not mask overall degradation of the battery.

SURVEILLANCE REQUIREMENTS

SR 3.8.6.3 (continued)

The footnotes to Table 3.8.6-1 are applicable to Category A, B, and C specific gravity. Footnote (b) to Table 3.8.6-1 requires the above mentioned correction for electrolyte level and temperature, with the exception that level correction is not required when battery charging current is < 2 amps on float charge for vital batteries and < 1.0 amps for DG batteries. This current provides, in general, an indication of overall battery condition.

Because of specific gravity gradients that are produced during the recharging process, delays of several days may occur while waiting for the specific gravity to stabilize. A stabilized charger current is an acceptable alternative to specific gravity measurement for determining the state of charge. This phenomenon is discussed in IEEE-450 (Ref. 2). Footnote (c) to Table 3.8.6-1 allows the float charge current to be used as an alternate to specific gravity for up to 31 days following a battery recharge. Within 31 days, each connected cell's specific gravity must be measured to confirm the state of charge. Following a minor battery recharge (such as equalizing charge that does not follow a deep discharge), specific gravity gradients are not significant, and confirming measurements may be made in less than 31 days.

REFERENCES

- 1. Watts Bar FSAR, Section 15, "Accident Analysis," and Section 6, "Engineered Safety Features."
- 2. IEEE-450-1980/1995, "IEEE Recommended Practice for Maintenance, Testing, and Replacement of Large Lead Storage Batteries for Generating Stations and Substations."

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.7 Inverters - Operating

BASES

BACKGROUND

The inverters are the preferred source of power for the AC vital buses because of the stability and reliability they achieve. There are two unit inverters (Unit 1 and Unit 2) and one spare inverter per channel, each of which is capable of supplying its associated AC vital buses, making a total of twelve inverters. The function of the inverter is to provide AC electrical power to the AC vital buses. The inverters can be powered from an internal AC source/rectifier or from the vital battery. The vital battery provides an uninterruptible power source for the instrumentation and controls for the Reactor Protective System (RPS) and the Engineered Safety Feature Actuation System (ESFAS). The spare inverters will be used as spare uninterruptible power sources; however they will not have a regulated transformer bypass source. Specific details on inverters and their operating characteristics are found in the Watts Bar FSAR, Section 8 (Ref. 1).

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Section 6 (Ref. 2) and Section 15 (Ref. 2), assume Engineered Safety Feature systems are OPERABLE. The inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the RPS and ESFAS instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, "Power Distribution Limits;" Section 3.4, "Reactor Coolant System (RCS);" and Section 3.6, "Containment Systems."

The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and is based on meeting the design basis of the plant. This includes maintaining required AC vital buses OPERABLE during accident conditions in the event of:

- An assumed loss of all offsite AC electrical power or all onsite AC electrical power; and
- b. A worst case single failure.

BASES

APPLICABLE SAFETY ANALYSES (continued)

Inverters are a part of the distribution systems and, as such, satisfy Criterion 3 of the NRC Policy Statement.

LCO

The inverters ensure the availability of AC electrical power for the systems instrumentation required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (A00) or a postulated DBA.

Maintaining the required inverters OPERABLE ensures that the redundancy incorporated into the design of the RPS and ESFAS instrumentation and controls is maintained. The twelve inverters (one Unit 1, one Unit 2 and one spare per channel) ensure an uninterruptible supply of AC electrical power to the AC vital buses even if the 6.9 kV shutdown boards are de-energized.

OPERABLE inverters require the associated AC vital bus to be powered by the inverter with output voltage and frequency within tolerances and power input to the inverter from a 125 VDC vital battery. Alternatively, power supply may be from an internal AC source via rectifier as long as the vital battery is available as the uninterruptible power supply. The inverters have an associated bypass supply provided by a regulated transformer that is automatically connected to the associated AC vital bus in the event of inverter failure or overload. The bypass supply is not battery-backed and thus does not meet requirements for inverter operability. The spare inverters do not have an associated bypass supply. Additionally, the inverter channel must not be connected to the cross train 480 V power supply.

APPLICABILITY

The inverters are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that:

- Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and
- Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.

Inverter requirements for MODES 5 and 6 are covered in the Bases for LCO 3.8.8, "Inverters - Shutdown."

A.1

With one inverter in a channel inoperable, its associated AC vital bus becomes inoperable until it is re-energized from their associated regulated transformer bypass source, inverter internal AC source, or spare inverters.

For this reason, a Note has been included in Condition A requiring the entry into the Conditions and Required Actions for LCO 3.8.9, "Distribution Systems - Operating." This ensures that the vital bus is re-energized within 2 hours.

Required Action A.1 allows 24 hours to fix the inoperable inverter and return it to service. The 24 hour limit is based upon engineering judgment, taking into consideration the time required to repair an inverter and the additional risk to which the plant is exposed because of the inverter inoperability. This has to be balanced against the risk of an immediate shutdown, along with the potential challenges to safety systems such a shutdown might entail. When the AC vital bus is powered from its associated regulated transformer bypass source it is relying upon interruptible AC electrical power sources (offsite and onsite). The uninterruptible inverter source to the AC vital buses is the preferred source for powering instrumentation trip setpoint devices. Alternatively, an inverter may be restored to OPERABLE status by substituting its spare inverters and performing the required surveillance.

B.1 and B.2

If the inoperable devices or components cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

BASES (continued)

SURVEILLANCE REQUIREMENTS

SR 3.8.7.1

This Surveillance verifies that the inverters are functioning properly with all required circuit breakers closed including those from the associated vital battery boards and 480 V shutdown boards, and AC vital buses energized from the inverter. The verification of proper voltage and frequency output ensures that the required power is readily available for the instrumentation of the RPS and ESFAS connected to the AC vital buses. Upon placing a spare inverter in service, the spare inverter is considered inoperable until this surveillance is completed. The 7 day Frequency takes into account the redundant capability of the inverters and other indications available in the control room that alert the operator to inverter malfunctions.

REFERENCES

- 1. Watts Bar FSAR, Section 8.3.1, "AC Power System."
- 2. Watts Bar FSAR, Section 15, "Accident Analysis," and Section 6 "Engineered Safety Features."

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.8 Inverters - Shutdown

BASES

BACKGROUND

A description of the inverters is provided in the Bases for LCO 3.8.7, "Inverters - Operating."

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Section 6 (Ref. 1) and Section 15 (Ref. 1), assume Engineered Safety Feature systems are OPERABLE. The DC to AC inverters are designed to provide the required capacity, capability, redundancy, and reliability to ensure the availability of necessary power to the Reactor Protective System and Engineered Safety Features Actuation System instrumentation and controls so that the fuel, Reactor Coolant System, and containment design limits are not exceeded.

The OPERABILITY of the inverters is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.

The OPERABILITY of the minimum inverters to each AC vital bus during MODES 5 and 6 ensures that:

- a. The plant can be maintained in the shutdown or refueling condition for extended periods;
- b. Sufficient instrumentation and control capability is available for monitoring and maintaining the plant status; and
- c. Adequate power is available to mitigate events postulated during shutdown, such as a fuel handling accident.

The inverters were previously identified as part of the distribution system and, as such, satisfy Criterion 3 of the NRC Policy Statement.

LCO

The inverters ensure the availability of electrical power for the instrumentation for systems required to shutdown the reactor and maintain it in a safe condition after an anticipated operational occurrence or a postulated DBA. The battery powered inverters provide uninterruptible supply of AC electrical power to the AC vital buses even if the 6.9 kV shutdown boards are de-energized. OPERABILITY of the inverters requires that the AC vital buses required by LCO 3.8.10, "Distribution Systems - Shutdown" be powered by the inverter. As a minimum, either the Channel I and III or II and IV inverters for each unit (or spare inverters) shall be OPERABLE to support the distribution systems required by LCO 3.8.10. The unit inverters have an associated bypass supply provided by a regulated transformer that is automatically connected to the associated AC vital bus in the event of inverter failure or overload. The bypass supply is not battery-backed and thus does not meet requirements for inverter operability. The spare inverters do not have an associated bypass supply. Additionally, the inverter channel must not be connected to the cross-train 480 V power supply. This ensures the availability of sufficient inverter power sources to operate the plant in a safe manner and to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents).

APPLICABILITY

The inverters required to be OPERABLE in MODES 5 and 6, and during movement of irradiated fuel assemblies provide assurance that:

- a. Systems needed to mitigate a fuel handling accident are available;
- b. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and
- Instrumentation and control capability is available for monitoring and maintaining the plant in a cold shutdown condition or refueling condition.

Inverter requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.7.

A.1, A.2.1, A.2.2, A.2.3, and A.2.4

If two trains are required by LCO 3.8.10, the remaining OPERABLE Inverters may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS, fuel movement, and operations with a potential for positive reactivity additions. By the allowance of the option to declare required features inoperable with the associated inverter(s) inoperable, appropriate restrictions will be implemented in accordance with the affected required features LCOs' Required Actions. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, and operations involving positive reactivity additions). The Required Action to suspend positive reactivity additions does not preclude actions to maintain or increase reactor vessel inventory, provided the required SDM is maintained.

Suspension of these activities shall not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required inverters and to continue this action until restoration is accomplished in order to provide the necessary inverter power to the plant safety systems.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required inverters should be completed as quickly as possible in order to minimize the time the plant safety systems may be without power or powered from its associated regulated transformer bypass source.

SURVEILLANCE REQUIREMENTS

SR 3.8.8.1

This Surveillance verifies that the required inverters are functioning properly with all required circuit breakers closed including those from the associated vital battery boards and 480 V shutdown boards and AC vital buses energized from the inverter. The verification of proper voltage and frequency output ensures that the required power is readily available for the instrumentation connected to the AC vital buses. The 7 day Frequency takes into account the redundant capability of the inverters and other indications available in the control room that alert the operator to inverter malfunctions. Upon placing a spare inverter in service, the spare inverter is considered inoperable until this surveillance is completed.

BASES (continued)

REFERENCES

1. Watts Bar FSAR, Section 15, "Accident Analysis," and Section 6, "Engineered Safety Features."

B 3.8 ELECTRICAL POWER SYSTEMS

B 3.8.9 Distribution Systems - Operating

BASES

BACKGROUND

The onsite Class 1E AC electrical power distribution system is divided by train into two redundant and independent AC electrical power distribution subsystems.

The AC electrical power subsystem includes four 6.9 kV shutdown boards. Each 6.9 kV shutdown board has access to the two separate and independent preferred offsite sources of power as well as a dedicated onsite diesel generator (DG) source. One of the two offsite sources will be the normal power source for a 6.9 kV shutdown board, and the other offsite source will be the alternate power source. Transfers from the normal source to the alternate source may be manual or automatic. Automatic transfers only occur when the relay logic is tripping a transmission line and the associated common station service transformers. Only manual transfers are permitted from alternate to normal. For a loss of offsite power to the 6.9 kV shutdown boards, the onsite emergency power system supplies power to the 6.9 kV shutdown boards. Control power for the 6.9 kV breakers is supplied from the Class 1E batteries. Additional description of this system may be found in the Bases for LCO 3.8.1, "AC Sources - Operating," and the Bases for LCO 3.8.4, "DC Sources - Operating."

The AC Distribution System includes the 480 V shutdown boards and associated supply transformers, load centers, and protective devices shown in Table B 3.8.9-1.

The 120 VAC vital buses are arranged in four load groups and are normally powered from the unit inverters or spare inverters and DC Boards I, II, III, and IV. An alternate power supply for the vital buses is a regulated transformer bypass source powered from the same train as the associated unit inverter, and its use is governed by LCO 3.8.7, "Inverters - Operating."

There are four independent 125 VDC electrical power distribution buses. Each bus receives normal power from an independent 480 VAC shutdown board via its associated battery charger. Upon loss of 480 VAC shutdown board power, the DC buses are energized by their connected battery banks.

The list of all required distribution buses is presented in Table B 3.8.9-1.

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident (DBA) and transient analyses in the FSAR, Section 6 (Ref. 1), and in the FSAR, Section 15 (Ref. 1), assume ESF systems are OPERABLE. The AC, vital DC, and AC vital bus electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded. These limits are discussed in more detail in the Bases for Section 3.2, "Power Distribution Limits;" Section 3.4, "Reactor Coolant System (RCS);" and Section 3.6, "Containment Systems."

The OPERABILITY of the AC, vital DC, and AC vital bus electrical power distribution systems is consistent with the initial assumptions of the accident analyses and is based upon meeting the design basis of the plant. This includes maintaining power distribution systems OPERABLE during accident conditions in the event of:

- An assumed loss of all offsite power or all onsite AC electrical power;
 and
- b. A worst case single failure.

The distribution systems satisfy Criterion 3 of the NRC Policy Statement.

LCO

The required power distribution subsystems listed in Table B 3.8.9-1 ensure the availability of AC, vital DC, and AC vital bus electrical power for the systems required to shut down the reactor and maintain it in a safe condition after an anticipated operational occurrence (AOO) or a postulated DBA. The AC, vital DC, and AC vital bus electrical power distribution subsystems are required to be OPERABLE.

Maintaining the Train A and Train B AC, four channels of vital DC, and four channels of AC vital bus electrical power distribution subsystems OPERABLE ensures that the redundancy incorporated into the design of ESF is not defeated. Therefore, a single failure within any system or within the electrical power distribution subsystems will not prevent safe shutdown of the reactor.

OPERABLE AC electrical power distribution subsystems require the associated buses, load centers, motor control centers, and distribution panels to be energized to their proper voltages. OPERABLE DC electrical power distribution subsystems require the associated buses to be energized to their proper voltage from either the associated battery or

(continued)

charger. OPERABLE vital bus electrical power distribution subsystems require the associated buses to be energized to their proper voltage from the associated unit or spare inverter via inverted DC voltage, unit or spare inverter using internal AC source, or the regulated transformer bypass source.

In addition, tie breakers between redundant safety related AC, vital DC, and AC vital bus power distribution subsystems, if they exist, must be open. This prevents any electrical malfunction in any power distribution subsystem from propagating to the redundant subsystem that could cause the failure of a redundant subsystem and a loss of essential safety function(s). If any tie breakers are closed, the affected redundant electrical power distribution subsystems are considered inoperable. This applies to the onsite, safety related redundant electrical power distribution subsystems. It does not, however, preclude redundant 6.9 kV shutdown boards from being powered from the same offsite circuit.

APPLICABILITY

The electrical power distribution subsystems are required to be OPERABLE in MODES 1, 2, 3, and 4 to ensure that:

- Acceptable fuel design limits and reactor coolant pressure boundary limits are not exceeded as a result of AOOs or abnormal transients; and
- Adequate core cooling is provided, and containment OPERABILITY and other vital functions are maintained in the event of a postulated DBA.

Electrical power distribution subsystem requirements for MODES 5 and 6 are covered in the Bases for LCO 3.8.10, "Distribution Systems - Shutdown."

ACTIONS

<u>A.1</u>

With one or more required AC shutdown boards, load centers, motor control centers, or distribution panels, except AC vital buses, in one train inoperable, the remaining AC electrical power distribution subsystem in the other train is capable of supporting the minimum safety functions necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced,

A.1 (continued)

however, because a single failure in the remaining power distribution subsystems could result in the minimum required ESF functions not being supported. Therefore, the required AC shutdown boards, load centers, motor control centers, and distribution panels must be restored to OPERABLE status within 8 hours.

Condition A worst scenario is one train without AC power (i.e., no offsite power to the train and the associated DG inoperable). In this Condition, the plant is more vulnerable to a complete loss of AC power. It is, therefore, imperative that the plant operator's attention be focused on minimizing the potential for loss of power to the remaining train by stabilizing the plant, and on restoring power to the affected train. The 8 hour time limit before requiring a plant shutdown in this Condition is acceptable because of:

- a. The potential for decreased safety if the plant operator's attention is diverted from the evaluations and actions necessary to restore power to the affected train, to the actions associated with taking the plant to shutdown within this time limit; and
- b. The potential for an event in conjunction with a single failure of a redundant component in the train with AC power.

The second Completion Time for Required Action A.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition A is entered while, for instance, a DC bus is inoperable and subsequently restored OPERABLE, the LCO may already have been not met for up to 2 hours. This could lead to a total of 10 hours, since initial failure of the LCO, to restore the AC distribution system. At this time, a DC circuit could again become inoperable, and AC distribution restored OPERABLE. This could continue indefinitely.

The Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition A was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely.

ACTIONS (continued)

B.1

With one or more AC vital buses in one channel inoperable, the remaining OPERABLE AC vital buses are capable of supporting the minimum safety functions necessary to shut down the plant and maintain it in the safe shutdown condition. Overall reliability is reduced, however, since an additional single failure could result in the minimum required ESF functions not being supported. Therefore, the required AC vital bus must be restored to OPERABLE status within 2 hours by powering the bus from the associated unit or spare inverter via inverted DC, unit or spare inverter using internal AC source, or regulated transformer bypass source.

Condition B represents one or more AC vital buses in one channel without power; potentially both the DC source and the associated AC source are nonfunctioning. In this situation, the plant is significantly more vulnerable to a complete loss of all non-interruptible power. It is, therefore, imperative that the operator's attention focus on stabilizing the plant, minimizing the potential for loss of power to the remaining vital buses and restoring power to the affected vital bus.

This 2 hour limit is more conservative than Completion Times allowed for the vast majority of components that are without adequate vital AC power. Taking exception to LCO 3.0.2 for components without adequate vital AC power, that would have the Required Action Completion Times shorter than 2 hours if declared inoperable, is acceptable because of:

- The potential for decreased safety by requiring a change in plant conditions (i.e., requiring a shutdown) and not allowing stable operations to continue;
- b. The potential for decreased safety by requiring entry into numerous Applicable Conditions and Required Actions for components without adequate vital AC power and not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected train; and
- c. The potential for an event in conjunction with a single failure of a redundant component.

B.1 (continued)

The 2 hour Completion Time takes into account the importance to safety of restoring the AC vital bus to OPERABLE status, the redundant capability afforded by the other OPERABLE vital buses, and the low probability of a DBA occurring during this period.

The second Completion Time for Required Action B.1 establishes a limit on the maximum allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition B is entered while, for instance, an AC bus is inoperable and subsequently returned OPERABLE, the LCO may already have been not met for up to 8 hours. This could lead to a total of 10 hours, since initial failure of the LCO, to restore the vital bus distribution system. At this time, an AC train could again become inoperable, and vital bus distribution restored OPERABLE. This could continue indefinitely.

This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition B was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely.

C.1

With one or more vital DC buses inoperable, the remaining DC electrical power distribution subsystems are capable of supporting the minimum safety functions necessary to shut down the reactor and maintain it in a safe shutdown condition, assuming no single failure. The overall reliability is reduced, however, because a single failure in the remaining DC electrical power distribution subsystem could result in the minimum required ESF functions not being supported. Therefore, the required DC buses must be restored to OPERABLE status within 2 hours by powering the bus from the associated battery or charger.

Condition C represents one or more trains without adequate DC power; potentially both with the battery significantly degraded and the associated charger nonfunctioning. In this situation, the plant is significantly more vulnerable to a complete loss of all DC power. It is, therefore, imperative that the operator's attention focus on stabilizing the plant, minimizing the potential for loss of power to the remaining train(s) and restoring power to the affected train(s).

C.1 (continued)

This 2 hour limit is more conservative than Completion Times allowed for the vast majority of components that would be without power. Taking exception to LCO 3.0.2 for components without adequate DC power, which would have Required Action Completion Times shorter than 2 hours, is acceptable because of:

- The potential for decreased safety by requiring a change in plant conditions (i.e., requiring a shutdown) while allowing stable operations to continue;
- b. The potential for decreased safety by requiring entry into numerous applicable Conditions and Required Actions for components without DC power and not providing sufficient time for the operators to perform the necessary evaluations and actions for restoring power to the affected train; and
- c. The potential for an event in conjunction with a single failure of a redundant component.

The 2 hour Completion Time for DC buses is consistent with Regulatory Guide 1.93 (Ref. 2).

The second Completion Time for Required Action C.1 establishes a limit on the maximum time allowed for any combination of required distribution subsystems to be inoperable during any single contiguous occurrence of failing to meet the LCO. If Condition C is entered while, for instance, an AC bus is inoperable and subsequently returned OPERABLE, the LCO may already have been not met for up to 8 hours. This could lead to a total of 10 hours, since initial failure of the LCO, to restore the DC distribution system. At this time, an AC train could again become inoperable, and DC distribution restored OPERABLE. This could continue indefinitely.

This Completion Time allows for an exception to the normal "time zero" for beginning the allowed outage time "clock." This will result in establishing the "time zero" at the time the LCO was initially not met, instead of the time Condition C was entered. The 16 hour Completion Time is an acceptable limitation on this potential to fail to meet the LCO indefinitely.

ACTIONS (continued)

D.1 and D.2

If the inoperable distribution subsystem cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours and to MODE 5 within 36 hours. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

E.1

With two trains with one or more inoperable distribution subsystems that result in a loss of safety function, adequate core cooling, containment OPERABILITY, and other vital functions for DBA mitigation would be compromised, and immediate plant shutdown in accordance with LCO 3.0.3 is required.

SURVEILLANCE REQUIREMENTS

SR 3.8.9.1

This Surveillance verifies that the required AC, vital DC, and AC vital bus electrical power distribution systems are functioning properly, with the correct circuit breaker alignment. The correct breaker alignment ensures the appropriate separation and independence of the electrical trains is maintained, and the appropriate voltage is available to each required bus. The verification of proper voltage availability on the buses ensures that the required voltage is readily available for motive as well as control functions for critical system loads connected to these buses. The 7 day Frequency takes into account the redundant capability of the AC, vital DC, and AC vital bus electrical power distribution subsystems, and other indications available in the control room that alert the operator to subsystem malfunctions.

REFERENCES

- 1. Watts Bar FSAR, Section 6 "Engineering Safety Features," Section 8 "Electric Power," and Section 15 "Accident Analysis."
- 2. Regulatory Guide 1.93, "Availability of Electric Power Sources," U.S. Nuclear Regulatory Commission, December 1974.

Table B 3.8.9-1 (page 1 of 1)
AC and DC Electrical Power Distribution Systems

AC and DC Electrical Fower Distribution Systems			
TYPE	VOLTAGE	TRAIN A*	TRAIN B*
AC safety buses	6900 V	Shutdown Board 1A-A, 2A-A	Shutdown Board 1B-B, 2B-B
	480 V	Shutdown Board 1A1-A, 1A2-A 2A1-A, 2A2-A	Shutdown Board 1B1-B, 1B2-B 2B1-B, 2B2-B
		Rx MOV Board 1A1-A**, 1A2-A 2A1-A, 2A2-A	Rx MOV Board 1B1-B**, 1B2-B 2B1-B, 2B2-B
		C & A Vent Board 1A1-A, 1A2-A 2A1-A, 2A2-A	C & A Vent Board 1B1-B, 1B2-B 2B1-B, 2B2-B
		Diesel Aux Board 1A1-A, 1A2-A 2A1-A, 2A2-A	Diesel Aux Board 1B1-B, 1B2-B 2B1-B, 2B2-B
		Rx Vent Board 1A-A**, 2A-A	Rx Vent Board 1B-B**, 2B-B
AC vital buses	120 V	Vital channel 1-I	Vital channel 1-II
		Vital channel 2-I	Vital channel 2-II
		Vital channel 1-III	Vital channel 1-IV
		Vital channel 2-III	Vital channel 2-IV
DC buses	125 V	Board I	Board II
		Board III	Board IV

- * Each train of the AC and DC electrical power distribution systems is a subsystem.
- For Unit 2, 480V Reactor MOV Boards 1A1-A and 1B1-B and 480V Reactor Vent Boards 1A-A and 1B-B are available for economic and operational convenience. The boards are considered part of the Unit 1 Electrical Power Distribution System and meet Unit 2 T/S Requirements and testing only while connected. WBN Unit 2 is designed to be operated, shutdown, and maintained in a safe shutdown status without any of these boards or their loads. As such, the boards may be disconnected from service without entering an LCO provided their loads are not substituting for a T/S required load.

3.8 ELECTRICAL POWER SYSTEMS

B 3.8.10 Distribution Systems - Shutdown

BASES

BACKGROUND

A description of the AC, vital DC, and AC vital bus electrical power distribution systems is provided in the Bases for LCO 3.8.9, "Distribution Systems - Operating."

APPLICABLE SAFETY ANALYSES

The initial conditions of Design Basis Accident and transient analyses in the FSAR, Section 6 (Ref. 1) and Section 15 (Ref. 1), assume Engineered Safety Feature (ESF) systems are OPERABLE. The AC, vital DC, and AC vital bus electrical power distribution systems are designed to provide sufficient capacity, capability, redundancy, and reliability to ensure the availability of necessary power to ESF systems so that the fuel, Reactor Coolant System, and containment design limits are not exceeded.

The OPERABILITY of the AC, vital DC, and AC vital bus electrical power distribution system is consistent with the initial assumptions of the accident analyses and the requirements for the supported systems' OPERABILITY.

The OPERABILITY of the minimum AC, vital DC, and AC vital bus electrical power distribution subsystems during MODES 5 and 6, and during movement of irradiated fuel assemblies ensures that:

- a. The plant can be maintained in the shutdown or refueling condition for extended periods;
- Sufficient instrumentation and control capability is available for monitoring and maintaining the plant status; and
- c. Adequate power is provided to mitigate events postulated during shutdown, such as a fuel handling accident.

The AC and DC electrical power distribution systems satisfy Criterion 3 of the NRC Policy Statement.

BASES (continued)

LCO

Various combinations of subsystems, equipment, and components are required OPERABLE by other LCOs, depending on the specific plant condition. Implicit in those requirements is the required OPERABILITY of necessary support required features. This LCO explicitly requires energization of the portions of the electrical distribution system necessary to support OPERABILITY of required systems, equipment, and components - all specifically addressed in each LCO and implicitly required via the definition of OPERABILITY.

Maintaining these portions of the distribution system energized ensures the availability of sufficient power to operate the plant in a safe manner to mitigate the consequences of postulated events during shutdown (e.g., fuel handling accidents).

APPLICABILITY

The AC and DC electrical power distribution subsystems required to be OPERABLE in MODES 5 and 6, and during movement of irradiated fuel assemblies, provide assurance that:

- a. Systems needed to mitigate a fuel handling accident are available;
- b. Systems necessary to mitigate the effects of events that can lead to core damage during shutdown are available; and
- Instrumentation and control capability is available for monitoring and maintaining the plant in a cold shutdown condition and refueling condition.

The AC, vital DC, and AC vital bus electrical power distribution subsystems requirements for MODES 1, 2, 3, and 4 are covered in LCO 3.8.9.

A.1, A.2.1, A.2.2, A.2.3, A.2.4, and A.2.5

Although redundant required features may require redundant trains of electrical power distribution subsystems to be OPERABLE, one OPERABLE distribution subsystem train may be capable of supporting sufficient required features to allow continuation of CORE ALTERATIONS, and fuel movement. By allowing the option to declare required features associated with an inoperable distribution subsystem inoperable, appropriate restrictions are implemented in accordance with the affected distribution subsystem LCO's Required Actions. In many instances, this option may involve undesired administrative efforts. Therefore, the allowance for sufficiently conservative actions is made (i.e., to suspend CORE ALTERATIONS, movement of irradiated fuel assemblies, and operations involving positive reactivity additions).

Suspension of these activities does not preclude completion of actions to establish a safe conservative condition. These actions minimize the probability of the occurrence of postulated events. It is further required to immediately initiate action to restore the required AC and DC electrical power distribution subsystems and to continue this action until restoration is accomplished in order to provide the necessary power to the plant safety systems.

Notwithstanding performance of the above conservative Required Actions, a required residual heat removal (RHR) subsystem may be inoperable. In this case, Required Actions A.2.1 through A.2.4 do not adequately address the concerns relating to coolant circulation and heat removal. Pursuant to LCO 3.0.6, the RHR ACTIONS would not be entered. Therefore, Required Action A.2.5 is provided to direct declaring RHR inoperable, which results in taking the appropriate RHR actions.

The Completion Time of immediately is consistent with the required times for actions requiring prompt attention. The restoration of the required distribution subsystems should be completed as quickly as possible in order to minimize the time the plant safety systems may be without power.

BASES (continued)

SURVEILLANCE REQUIREMENTS

SR 3.8.10.1

This Surveillance verifies that the AC, vital DC, and AC vital bus electrical power distribution subsystems are functioning properly, with all the required buses energized. The verification of proper voltage availability on the buses ensures that the required power is readily available for motive as well as control functions for critical system loads connected to these buses. The 7 day Frequency takes into account the capability of the electrical power distribution subsystems, and other indications available in the control room that alert the operator to subsystem malfunctions.

REFERENCES

1. Watts Bar FSAR, Section 8.0, "Electric Power," Section 15, "Accident Analysis," and Section 6, "Engineered Safety Features."