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Executive Summary / Abstract

During May - September 1997, Indian Point Unit 3 was shutdown for a scheduled refueling outage.
At the conclusion of the outage, a series of preoperational and power ascension tests were performed
to verify that reactor core kinetics parameters and protection circuits were consistent with the plant
safety analysis. A chronological summary of the test and results are presented below and in the
following table:

Test ' o | | Results

I. Zero Power

Core Loading - ' Satisfactory
RTD and Core Exit Thermocouple Measurements Satisfactory
Initial Criticality Satisfactory
Control Rod Worth Measurements Satisfactory
Critical Boron Endpoint Measurements Satisfactory
Isothermal Temperature Coefficient Measurements Satisfactory
II. At Power

Reactor Thermal Power Calculations / Nuclear

Instrumentation Calibrations , Satisfactory
Core Power Distribution Measurements Satisfactory
Reactor Coolant System Flow Calculation Satisfactory
Incore Excore Calibration Satisfactory
Calibration of Overtemperature / Overpower Protection Satisfactory
Calibration of "High T avarage" Alarm Satisfactory
Calibration of New Power Range Detectors Satisfactory
Full Power Critical Boron Measurements Satisfactory

The unit subsequently achieved full power on September 27, 1997.

This report contains detailed descriptions of the cycle 10 core and each of the tests listed above.



~ Indian Point Unit 3 Cycle 10
Zero Power Physics Testing Results

L Critical Boron Concentrations (PPM)

Design Review Criteria (DRC) = + 50 PPM and + 500 PCM
Acceptance Criteria (AC) = within 1000 PCM (144 PPM)

Predicted (P) Measured (M) . M-P) Pass / Fail

DRC  AC
ARO 1588 ‘ 15750 13.0 P P
I Control Bank Worths (PCM)

Design Review Criteria= Individual Bank Worths within 15% or 100 PCM whichever is greater and sum of measured
integral Bank Worths is within 8% of sum of predicted integral Bank Worths.
Acceptance Criteria = Total Worth is at least 90% of predicted

Bank Predicted (P) Measured (M) _PCT. Diff* Pass / Fail
' DRC AC
Control A 867.1 894.9 +3.2 P -
Control B 460.7 506.5 +9.9 P -
Control C 619.9 636.0 +2.6 P -
Control D 786.7 814.8 +3.6 P -
Shutdown A 1015.0 1069.2 +5.3 P -
Shutdown B 824.0 889.6 +8.0 P -
Shutdown C 304.8 3215 +5.5 P -
Shutdown D 4185 457.8 +9.4 P -
Total 5296.7 5590.3 +5.5 P p
IIL Isothermal Temperature Coefficient ®PCM/F)
Design Review Criteria= + 2 PCM/F
Pass / Fail
Predicted (P) Measured(M) (M-P) DRC
ARO -4.16 -3.94 +0.22 P
IV. Inferred Moderator Temperature Coefficient PCM / F) *#*
Acceptance Criteria = MTC is negative or withdrawal limits imposed
Pass / Fail
Predicted (P) Measured (M) M-P AC

ARO -2.54 -2.32 ' +0.22 P
ARO:  All Rods Out
Percent Difference = 100 (M-P) /P

* Inferred MTC is obtained by subtracting Doppler Coefficient (-1.56 PCM /F) from the Isothermal Temperature
Coefficient.



Indian Point Unit 3 Cycle 10
at Power Physics Testing Results

L. Power Distribution Measurements

A) Low Power (29.33%)

Tilts
1.0014 l 0.9867

0.9940 l 1.0179

B) Intermediate Power (69.45%)

Tilts
. 1.0049 |0.993l

0.9898 I 1.0122
C) Full Power (99.7%)
Tilts
1.0064 I 0.9965

0.9901 l 1.0071

Largest Reaction Rate Integral Deviation - 6.1%

Limiting FQ - 1.8832

Highest FDHN (V+) -1.4905
Highest FDHN (V5) -1.4417

Largest Reaction Rate Integral Deviation - 5.2%

Limiting FQ 1.7188

Highest FDHN(V+) -1.4571
Highest FDHN(V5) -1.4124

FQ Limit - 4.8400

FDHN Limit (V+) -1.9816
FDHN Limit (V) -1.9271

FQ Limit 3.2429

FDHN Limit (V+) -1.7848
FDHN Limit(V5) -1.7357

Largest Reaction Rate Integral Deviation - 5.2%

Limiting FQ - 1.8050
Highest FDHN(V+) -1.4234

Highest FDHN(VS) -1.3547

IL. Reactor Coolant System Flow Measurement

Measured Flow - 394857.4 GPM

III. Full Power Critical Boron (PPM)

Design Review Criteria (DRC) = within S0 PPM

Acceptance Criteria (AC) = within 1000 PCM (117 PPM)

Burnup _

(EFPD) Predicted (P) Measured (M)
17.6 10423 -24.1*
494 1087.7 -6.5%*

Note:  Design boron letdown curve reduced by 11 ppm per TS 3.10.10 based on the average of reactivity
measurements. Cycle 10 core design assumes 19.9 atom% B-10 in RCS. Actual B-10 atom % is 204.

M-P)

FQ Limit -2.4267

FDHN Limit(V+) -1.6364
FDHN Limit(V5) -1.5913

Minimum Required Flow - 375,600

Pass / Fail
DRC AC
P P
P P

Accounting for this difference, the cycle 10 core matches core design data.

* Non-equilibrium Samarium.

** Equilibrium Samarium Conditions.

Due to difference in Samarium modeling,
Samarium reaches equilibrium.

the deviation between Predicted and measured Critical Boron is greater before
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. 1.0 Introduction

1.1

1.2

1.3

Plant Description

The Indian Point Unit 3 Nuclear Plant is a four hour loop closed cycle pressurized light water moderated
and cooled nuclear reactor operated by the New York Power Authority. The reactor core is designed to
produce 3025 megawatts thermal power resulting in a net electrical generating capacity of 965 megawatts
of electrical energy. :

The Nuclear Steam Supply System was designed by Westinghouse Electric Corporation.

The plant is located on the east side of the Hudson River, approximately 30 miles north of New York
City.

Test Objectives

This report documents the results of physics tests performed as part of the cycle 10 startup testing
program:

The objectives of the physics test were: (1) to verify that the operating characteristics of the core are
consistent with design predictions; (2) to demonstrate that measured core parameters are consistent with
values used in the Safety Analysis, (3) to demonstrate that the core can be operated at licensed thermal
power safely and within the limits of the Technical Specifications, and (4) to provide data for
instrumentation calibration.

Relevant Design Information

Table 1.1 presents selected design parameters of the Indian Point 3 Nuclear Plant. Figure 1.1 shows the
core layout with control rods, mechanical burnable absorbers, sources, and fuel assembly numbers. The
Cycle 10 core contains three regions of Westinghouse VANTAGE 5 (V5) fuel (Regions 9-2, 10-2, 11-1,
and 11-2) and one region of Vantage + (V+) fuel (Regions 12-1 and 12-2). The Cycle 10 core has the
following unique features described below:

A: During fuel examination, in mast sipping identified 8 fuel assemblies which potentially
contained failed rods. After ultrasonic testing (UT), 5 assemblies were found to have failed rods.
X60, V07 and W33 all had a single failed rod. V6 and V22 had two failed rods each. A total
of 5 failed fuel assemblies with 7 failed rods were found. X60 was returned to the core so a
natural uranium rod was inserted in place of the failed rod.

B. Control rod drag testing was performed. This procedure was done per NRC requirement due
to control rods not fully inserting during scrams at other Westinghouse plants. No excessive
drag forces were found. '

C. Eddy current testing was performed on the control rods to identif y which should be replaced.
Control rods were examined for excessive wear and the 14 with the most wear and cracking
were replaced. Results showed that none of the control rods needed to be replaced. This was
the first time control rod wear measurements had been performed at IP3.
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14

1.5

D. The 88 feed assemblies in the Cycle 10 are Vantage + type fuel assemblies which include
' Intermediate Flow Mixing Grids (IFM's). The IFM's create more turbulent flow and allow for
higher peaking factors. These higher peaking factors are exclusive to V+ fuel. This results in

two FDH values one for each V+ fuel and V5 fuel. '

E. Three different types of burnable poisons are being used in the Cycle 10 core: 1) A 20-pin pyrex
poison insert is located in the assemblies in the "corners" of the core (8 total) as a means of
reducing neutron fluence on the reactor vessel. 2) All of the eighty-eight feed assemblies
contain integral fuel burnable absorber (IFBA) rods. These assemblies contain a specific pattern
of 80 IFBA rods. 3) Wet Annular Burnable Absorber (WABA) inserts are used to provide
additional hold-down in 60 of the 88 feed assemblies. F igure 1.2 shows the location of all
burnable absorbers in the cycle 10 core.

Sequence of Startup Events
Following core loading, July 28 - August 1, 1997, a series of pre-operational test were performed both
in the cold shutdown and hot shutdown conditions. Initial cycle 10 criticality tests was achieved on

September 7, 1997 followed by a program of low power physics tests. The unit was synchronized to the
grid on September 12, 1997. Full power was achieved on September 27, 1997.

Summary of Measured and Predicted Core Parameters

Presented in Table 1.2 is a summary of selected results of physics tests and at-power distribution
measurements. '
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Table 1.1

Core Design Parameters

Number of Fuel Assemblies

Region 9-2

Region 10-2
Region 11-1
Region 11-2
Region 12-1
Region 12-2

Lattice Configuration

Number of Fuel Rods Per Assembly

Fuel Loading, MTU

Number of Assemblies Containing RCC Full Length
Number of Absorber Rods Per RCC Assembly
Number of Control Rod Assembly Guide Thimbles Per Assembly
Number of Instrumentation Thimbles Per Assembly
Number of Midspan Grids

Number of IFM Grids (Vantage + Fuel only)

Heat Output, MWth

Percent Heat Generated in Fuel

Hot Zero Power Coolant Temperature, °F
Operating Pressure, psia :
Maximum Hot Channel Factors (Design)

Heat Flux Fg(T)
Nuclear Enthalpy Rise, FAH (Vantage 5)
Nuclear Enthalpy Rise, FAH (Vantage +)

Average Linear Power, kw/ft Fuel
Specific Power, kw/kg Uranium

Initial Enrichments, w/o Uranium 235

Region 9-2

Region 10-2
Region 11-1
Region 11-2
Region 12-1
Region 12-2
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193

24
56
24
56
32

15x15
204
88.18
53

20

20

3025
97.4

" 5470

2250

242
1.59
1.635

6.24
34.30

3.80
4.20
4.00
4.40
4.40

. 4.60



Table 1.2
Indian Point Unit 3 Cycle 10
Zero Power Physics Testing Results

L Critical Boron Concentrations (PPM)

Design Review Criteria (DRC) = +50 PPM and + 500 PCM
Acceptance Criteria (AC) = within 1000 PCM (144 PPM)

Predicted (P) Measured (M) M-P) Pass / Fail
: DRC AC
ARO 1588 -1575.0 13.0 P P
II Control Bank Worths (PCM)

Design Review Criteria= Individual Bank Worths within 15% or 100 PCM whichever is greater and sum of measured
integral Bank Worths is within 8% of sum of predicted integral Bank Worths.
Acceptance Criteria = Total Worth is at least 90% of predicted

Bank Predicted (P) Measured (M) _PCT. Diff* Pass /Fail
' DRC AC
Control A 867.1 894.9 +3.2 P -
Control B 460.7 506.5 +9.9 P -
Control C 619.9 636.0 +2.6 P -
Control D 786.7 814.8 +3.6 P -
Shutdown A 1015.0 1069.2 +5.3 P -
Shutdown B 824.0 889.6 +8.0 P -
Shutdown C 304.8 321.5 +5.5 P -
Shutdown D 418.5 4578 +9.4 P -
Total 5296.7 5590.3 +5.5 P P
IIL. Isothermal Temperature Coefficient PCM/F)
Design Review Criteria= + 2 PCM/F '
: Pass / Fail
Predicted (P) Measured(M) (M-P) DRC
ARO -4.16 -3.94 +0.22 P
IV. Inferred Moderator Temperature Coefficient PCM / F) **
Acceptance Criteria = MTC is negative or withdrawal limits imposed
, Pass / Fail
Predicted (P) Measured (M) M-P AC
ARO -2.54 -2.32 +0.22 P
ARO:  All Rods Out
* Percent Difference = 100 (M-P) /P
* Inferred MTC is obtained by subtracting Doppler Coefficient (-1.56 PCM /F) from the Isothermal Temperature
Coefficient.
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Table 1.2 Continued
‘ Indian Point Unit 3 Cycle 10
' at Power Physics Testing Results

L Power Distribution Measurements

A) Low Power (29.33%)

Tilts | Largest Reaction Rate Integral Deviation - 6.1%
1.0014 l 0.9867 Limiting FQ - 1.8832 FQ Limit - 4.8400
0.9940 l 1.0179 Highest FDHN (V+) -1.4905 FDHN Limit (V+) -1.9816
Highest FDHN (V5) -1.4417 FDHN Limit (V5) -1.9271
B) Intermediate Power (69.45%)..
Tilts Largest Reaction Rate Integral Déviation -52%
1.0049 | 0.9931 Limiting FQ 1.7188 FQ Limit 3.2429
0.9898 ' 1.0122 Highest FDHN(V+) -1.4571 FDHN Limit (V+) -1.7848
Highest FDHN(VS5) -1.4124 FDHN Limit(V5) -1.7357
C) Full Power (99.7%) ' ,
Tilts Largest Reaction Rate Integral Deviation - 5.2%
1.0064 | 0.9965 ~ Limiting FQ - 1.8050 FQ Limit -2.4267
‘ 0.9901 l 1.0071 Highest FDHN(V+) -1.4234 FDHN Limit(V+) -1.6364
Highest FDHN(V5) -1:3547 FDHN Limit(V5) -1.5913

II. Reactor Coolant System Flow Measurement
Measured Flow - 394857.4 GPM Minimum Required Flow - 375,600
III. Full Power Critical Boron (PPM)

Design Review Criteria (DRC) = within 50 PPM
Acceptance Criteria (AC) = within 1000 PCM (117 PPM)

Bumup Pass / Fail.
(EFPD) Predicted (P) Measured (M) M-P) DRC ’ AC
17.6 1018.2 1042.3 -24.1* P P
P P

494 1081.2 1087.7 -6.5%*
Note:  Design boron letdown curve reduced by 11 ppm per TS 3.10.10 based on the average of reactivity

measurements. Cycle 10 core design assumes 19.9 atom% B-10 in RCS. Actual B-10 atom % is 20.4.
Accounting for this difference, the cycle 10 core matches core design data.

* Non-equilibrium Samarium.
** Equilibrium Samarium Conditions.

. Due to difference in Samarium modeling, the deviation between Predicted and measured Critical Boron is greater before
Samarium reaches equilibrium. .
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Figure 1.2

Burnable Absorbef Configuration
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‘ 2.0 Measurements

2.1 General

The methods for physics test data acquisition can be grouped into four distinct areas: (1) reactivity
measurements, (2) measurements of core power distribution, (3) collection of instrumentation data, and
(4) thermal power.and flow measurements. The purpose of this section is to describe the methods used
in each of these areas.

2.2 Reactivity Measurements

Measurements of core reactivity were performed both in subcritical and critical core conditions. In the
subcritical mode, measurements were made during initial core loading and the approach to criticality. In
the critical mode, measurements were made to determine core kinetics parameters.

2.2.1  Subcritical Measurements

During core loading, the core reactivity was monitored using the response of the two plant
source range channels. Monitoring was accomplished by determining the normalized inverse
count rate ratio (ICRR) for each channel as the core was loaded (Figure 3.1). During the
approach to criticality, ICRR plots using data from the two plant source range channels were
used to predict expected criticality. ICRR data were plotted as a function of rod position during

. rod withdrawal (Figure 3.2), and as a function of measured boron concentration during dilution
(Figure 3.3) . .

222  Small core reactivity changes were determined with the aid of a reactivity computer which
provided an on-line solution to the point kinetics equations. Reactivity records were maintained
on a continuous basis during each test via a strip chart recorder which logged the output from
the reactivity computer.

The input signal to the reactivity computer was provided by one Nuclear Instrumentation
System (NIS) power range channel. During zero power measurements, channel N44 was taken
out of plant service and used as input to the reactivity computer.

Integral worth of individual rod control cluster assemblies (RCCA) banks were obtained from
the reactivity computer's response to the inward movement of the four control banks and four
shutdown banks. The control bank overlap feature was defeated for this test. During the
measurement, the reactor was critical by 55 to 70 pcm. The individual banks were inserted and
then withdrawn by use of the reactivity computer. The total worth of the control and shutdown
banks were measured.

Isothermal temperature coefficient data was obtained by measuring the reactivity computer

response to small temperature changes, a few degrees below design no load temperature. Just

critical boron concentration data was obtained from plant chemistry boron analysis of reactor

coolant system samples (RCS) under equilibrium conditions. For boron concentration

endpoints, corrections to the measured concentration utilized reactivity computer measurements
. of the reactivity difference between actual and design core configurations.
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23

24

2.5

Power Distribution

The Moveable Detector (M/D) Flux Mapping System was used to collect power distribution data, The power
distribution measurements were performed at three different power plateaus in order to verify: 1) proper core
loading, 2) design calculations, and 3) margin in hot channel factors. The M/D system was also used at a fourth
plateau to provide data for excore detector calibration. Data from the M/D system was input to the INCORE 3D
computer code to generate detailed three dimensional core power profiles. The INCORE 3D code combines
measured flux distributions with design calculated power flux distribution to yield specific fuel rod powers, local
burnup, core power tilts, core average axial offset, etc.

Instrument Calibration Data Collection

At each stable power level (statepoint) during the power escalation program (approximately every 10% at and
above 50%) measurements were made of RCS loop temperatures (T, ag and AT), Steam Generator pressure and NIS
power range detector current meters. Temperature and pressure data were obtained from the meters on the control
board, from the plant computer, and the individual control room instrumentation racks. Core exit thermocouple and
RCS RTD data were obtained during isothermal measurements prior to criticality, and a RTD cross-calibration
check was performed. Correlations between incore axial power distribution and excore power range detector
response were made through simultaneous measurements of core power level, excore detector currents and core
power distributions (flux maps).

Thermal Power And Flow Measurements

Core thermal power was determined by performing a heat balance across each of the steam generators. This
measurement required the accurate determination of steam generator pressure, feedwater inlet temperature, and
feedwater flow. For each steam generator, steam pressure was taken from the plant computer, feedwater
temperature was taken from the resistance temperature detectors (RTD) located in the feedwater headers and
feedwater flow was determined from the Leading Edge Flow Meters. :

With the plant operating at approximately 94 percent power, a reactor coolant system flow determination was
performed. The purpose of this calculation is to verify that RCS flow is at least as great as the flow assumed in the
Final Safety Analysis Report and Technical Specification basis. This procedure is performed after power escalation
above 90 percent at the beginning of each cycle. The procedure utilizes an energy balance with a secondary thermal
power calculation and precision Ty, and T.,q measurements.
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3.0 Test Results
31  CoreLoading

Core loading was accomplished by adding fuel assemblies to the vessel following a prescribed sequence.
The ICRR data obtained from NIS source range channels is presented in Figure 3.1. There were no
unexpected changes in core reactivity during the loading of the fuel assemblies.

3.2 Initial Criticality

The approach to criticality began on September 6, 1997 at 1306 hours with the incremental withdrawal
of shutdown and control banks. Primary System boron concentration during rod withdrawal was
approximately 1717 ppm. Inverse count rate ratio data from two source range channels during rod
withdrawal are shown in Figure 3.2. Criticality was achieved with the addition of reactor makeup water. .
Inverse count rate ratios during boron dilution are shown in Figure 3.3. Throughout the critical approach,
count rates from the two source range channels were consistent for monitoring of core reactivity.

33 Low Power Physics Tests
3.3.1 Preliminary Measurements

Immediately following criticality, the upper limit of flux level for zero power testing was
established as about one decade below nuclear heating. Nuclear heating was determined to
begin at 4.0 x 107 amps power range. Next a check of the reactivity computer performance was
made by measuring four values of reactivity and comparing the value with that inferred from the
resultant reactor period from parameters given in the core design report. The results of this test,
given in Table 3.1, indicate proper operation of the reactivity computer.

Table 3.1
Reactivity Computer Checkout Results

Period Predicted Reactivity Measured Reactivity Difference
(sec) (pcm) (pcm)
2278 28.1 : - 280 -0.2 pcm

33.2 Boron Endpoints

The just critical boron concentration was measured for three rod configurations. The test results
are summarized in Table 1.2 along with design predictions
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3.33

3.34

Temperature Coefficient

.

Isothermal temperature coefficient measurements were performed at two core conditions, as
summarized in Table 1.2. The all-rods-out, moderator-only temperature coefficient MTC) was

- negative. However, since MTC increases with burnup, rod withdrawal limits were required to

insure a negative MTC as required by Technical Specifications. Since Technical Specifications
require MTC to be negative or zero when the reactor is critical, control rods and RCS boron
concentration are controlled to maintain a 0 or negative MTC. In order to do this, control rod
withdrawal limits (presented as a set of curves) at different RCS temperatures and powers must
be developed so that the operators can maintain a negative MTC. The rod withdrawal limits are
determined starting at the fully withdrawn position and ending at the insertion limit. The
calculation method determines the boron concentration at a particular Control rod confi guration
where MTC is 0. A 10 ppm conservatism factor is included. This effect will be significant for
approximately the first 5 months of operation until boron concentration starts decreaseing.

RCC Bank Worths

Bank worth measurements were performed on all control banks and shutdown banks in non-
overlap mode. The measurements were done using the dynamic rod worth measurement
(DRWM) method. Measured and predicted integral worths of these four banks are summarized
in Table 1.2. :
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34 At Power Tests

. 3.4.1 RCS Flow Determination
| On September 26, 1997 RCS flow was measured to be 394,857 gallons per minute. The flow
assumed in the FSAR at the beginning of DNBR analysis is 375,600 gallons per minute. The
actual measurement indicated that a margin of approximately 4.88 percent exists in RCS Flow.

34.2 Reactor Thermal Power Measurements

In order to provide protection against possible non-conservatism in initial nuclear
instrumentation readings, the high flux reactor trip setpoint was reduced from the normal 108%
value to approximately 85% prior to initial criticality. During startup, initial reactor thermal
power measurements were made between 2% and 5% power, based on loop delta-T power
correlation, and the nuclear instrumentation was adjusted accordingly to provide correct power
indication and sufficient margin to the P-10 setpoint and intermediate range rod stop and trip
setpoints. Various NIS bistables were closely monitored to ensure proper setpoint actuation
during power ascension. The initial heat balance was performed at approximately 30% power.
The calculation was repeated at approximately 10% increments between 50% and 100% power.
The high flux trip setpoint was raised back to 108% after reaching 70% power.

3.4.3  Full Power Critical Boron Measurement

After achieving full power, core reactivity balance measurements were performed
approximately every 7 effective full power days (EFPD). The reactivity balance calculation
provides an assessment of the difference between predicted and measured full power boron
, concentrations, taking into account xenon, samarium, Tavg, rod position, and reactor power
' effects. The initial comparison, which is made prior to reaching equilibrium samarium, showed
‘ that the measured boron concentration was 24 ppm below the predicted value. As samarium
reached equilibrium, the difference leveled off to approximately 6.5 ppm below the predicted
value. Table 3.2, shows the reactivity balance results through the first full power month of
operation. As required by T.S. 3.10.10, an 11 ppm adjustment factor was applied to the design
boron curve.

Table 3.2
Reactivity Balance Summary

EFPD ) Measured (rr™M) ‘ Predicted (PPM) Delta (PPM)

17.6 1018.2 1042.3 -24.1

23.00 1029.4 1047.8 ' -18.4

28.5 1045.3 1054.3 -9.0

335 1046.1 1062.0 ;15.9

37.4 1059.2 | 1068.3 -9.1

424 » 1068.9 1076.4 | -1.5

44 4 1070.6 1079.6 . -9.0
‘ 494 1081.2 1087.7 -6.5
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3.5

Movable Detector Fluxmaps

3.5.1

Low Ppwer

The initial fluxmap of cycle 10 was taken at approximately 29 percent power with equilibrium Xenon.
The purpose of this map was to verify proper core loading, The greatest deviation between predicted and
measured average reaction rate integrals was 6.1 percent at core location B-13. Based on a review of this
map the core was determined to be properly loaded. A summary of parameters is presented below:

Date Septémber 13,1997
Map Number 9FCFMI
Power - 29.33%
Rod Position D/165 steps:
Greatest Tilt 1.79%
Greatest FDH ( V+) 1.4905
FDH Limit ( V+) 1.9816
Greatest FDH (V5) 1.4417
FDH Limit (V5) 1.9271
Most Limiting FQ 1.8832
FQ Limit 4.8400
Highest Deviation between -6.1%
measured & predicted Integrals
Core Average Axial Offset | -1.443
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3.5.2

Intermediate Power

The second fluxmap of Cycle 10 was taken at approximately 69 percent power with equilibrium Xenon
established, The purpose of this map was to verify that core power distribution and peaking factor
predictions were consistent with measured values. The greatest deviation between predicted and
measured average reaction rate integrals was -5.2 percent at core location R-6. Based on a review of this
map it was concluded that core power distribution and peaking factor predictions were acceptable. A

summary of parameters is presented below:

Date September 22, 1997
Map Number 9FCFM2
Power 69.45%
Rod Position D/196 steps
Greatest Tilt 1.22%
Greatest FDH (V+) 1.4571
FDH Limit (V+) 1.7848
Greatest FDH (V5) 1.4124
FDH Limit (V5) 1.9271
Most Limiting FQ 1.7188
FQ Limit 3.2429
Highest Deviation between -5.2%
measured and predicted integrals
Core Average Axial Offset -2.642%
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3.5.3 Full Power

: The initial full power fluxmap of cycle 10 was taken on October 1, 1997. The purpose of this map was
‘ to verify that measured full power hot channel factors (FQ, FDH) were within Technical Specification
limits. Based on a review of this map all power distribution paremeters were within applicable limits. A

summary of parameters is presented below:

Date October 1, 1997
Map Number 9FCFM4
Power 99.72%
Rod Position D/224 steps
Greatest Tilt ‘ 0.71%
Greatest FDH (V+) | 14234
FDH Limit (V+) : 1.6364
Greatest FDH (V5) 1.3547
FDH Limit (V5) 1.5913 -
Most Limiting FQ 1.8050
FQ Limit 2.4267
‘ Highest Deviation between -5.2%
. measured and predicted integrals
Core AVerage Axial Offset ' -2.483%
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Attachment E - Inverse Count Rate Ratio Plot (ICRR)

Figure 3.1
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Attachment E - Inverse Count Rate Ratio Plot (ICRR)
Figure 3.1
(Sheet 12 of 13)
ICRR During Core Loading
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Attachment E - .:<o__ao Count Rate Ratio Plot (ICRR)
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4.0 Instrument Measurements Calibrations

4.1

4.2

43

Incore Thermocouple, Wide Range RTD and Narrow Range RTD Measurement

The primary purpose of this test was to verify that the narrow range RTD's were functioning
properly. This was accomplished by making comparative measurements of narrow range RTD's
at five different temperatures (374, 402, 452, 503, and 549° F) while the reactor coolant system
was held in an approximately isothermal condition. Only narrow range RTD's that deviated
from the mean by less than 0.5°F are used for reactor protection and control. All narrow range
RTD's met the acceptance criteria.

;‘\dditiona]ly, this test collected wide range RTD readings and core exit thermocouple readings
at the same temperature plateaus.

Incore - Excore Detector Calibration

One full-core map and 6 quarter core maps were taken at approximately 89% power to obtain
calibration data for the excore instrumentation. These maps covered a range in axial offset from
-8.57% to +0.77 generated by insertion of control bank D. INCORE 3D analysis provided a
measured value of the excore calibration.

Calibration of OPDT and OTDT Setpoints

Steam generator Tave and Delta-T was measured at approximate power levels of 30, 50, 60,
70, 80, and 90%. Prior to exceeding ninety percent power, an extrapolation of full power values
was calculated. The extrapolated full power values were used to recalibrate the overpower and
overtemperature reactor protection setpoint. .

Extrapolated Full Power Temperatures

Delta T (°F) ' Tavg (°F)
' Léop 31 53.2 567.0
Loop 32 521 566.2
Loop 33 52.4 566.8
Loop 34 52.8‘ 565.8
44 Calibration of "High T,.," Alarm

" In order to ensure that T4 does not exceed 547.9°F, as specified in the cycle. 10 safety

analysis, the "High T,y," alarm setpoint was verified to be set conservatively at 571.3°F. This
was based on calculations from the extrapolated full power core Delta-T listed in Section 4.3.

Page 32



