ATTACHMENT 5

CALCULATION OF BREAK FLOW DURING POSTULATED ALTERNATE HIGH-HEAD RECIRCULATION

CONSOLIDATED EDISON COMPANY OF NEW YORK, INDIAN POINT UNIT NO. 2 DOCKET NO. 50-247 JANUARY, 1997

9701070063 970103 PDR ADDCK 05000247 P PDR

CON EDISON CALCULATION / ANALYSIS COVER SHEET

Calculation Number: FPX-00139-00 Entry Date: 12/24/96

Type: CA34 PIPE FLOW

> **Modification:** NONE Scanned: N Revision:

Title MAXIMUM FLOW THROUGH LINE #183 (HIGH HEAD RECIRC)

Drawings 9321-2580

Component Description PIPE

Project Number: NONE

Document Page : 8

Old Calculation:

Component Style Style Description PIPE PIPE OR PIPING

System Description SIS SAFETY INJECTION

Structure Description PRIMARY AUXILIARY BUILDING PAB

Preparer: KIMB Update Date Reviewer: SHALABI Signature: 12/27/96 Signature/Date: Approval/Date Confirm. Required?-

Concurrence (If Required)

12/27/96

Туре PIPE

Page 2 of 8

CON EDISON CALCULATION/ANALYSIS

1

. . .

Description of Change Sheet

culation No: FP	Description of Change	Reason for Change
60	ORIGINAL ISSUE	
• •		
		· · · · · · · · · · · · · · · · · · ·

CON EDISON CALCULATION/	CALCULATION NO	REV	PAGE	OF
ANALYSIS SUMMARY SHEET	FPX-00139-00	00	3	8
PREPARERODATE 1. Kimball /2/30/90	REVIEWER/DATS K. Shalabi	130/96	CLASS	
SUBJECTITLE Maximum Flow Rate Through Line #183.			PROJECT NO	
			MOD NO N/A	REV

OBJECTIVE OF CALCULATION

The objective of this calculation is to determine the maximum flow rate through line #183 for the following scenario:

A total loss of all the weld around the first elbow on line #183 off line #155 for the high head recirc mode.

CALCULATION METHOD/ASSUMPTIONS

An analytical flow vs. head loss calculation is made using <u>Cameron Hydraulic Data</u> methods.

- Because of the low flow calculated for the small leak area, only the losses associated with the flow within the elbow/pipe joint will be considered.
- 2. The calculation assumes a conservative value for pressure at the elbow by not including any system friction losses .
- 3. The differences in density and viscosity of pure water and 2000 ppm borated water are assumed to have no effect on the flow.

DESIGN BASIS AND REFERENCES

The design basis is not applicable for this calculation.

- L. Cameron Hydraulic Data, 1977.
- 2. Piping Handbook, Crocker & King, 5th Edition.

CONCLUSIONS

The calculated flow for loss of all weld is 0.75 gpm.

•	CON EDISON CALCULATION/	CALCULATION NO FPX:00139-00	REV 00	PAGE	OF
	ANALYSIS SHEET PREPARER/DATE I Kumball Manual 15/20/21	REVIEWER/DATEL	12/20/96	CLASS	<u> </u>
	SUBJEC PHILE Maximum Flow Rate Through Line #183.		1-12-14	PROJECT NO	
				MOD NO N/A	REV

Calculate maximum flow rate through 2" line #183 for loss of all weld around elbow.

(See Figure #1. page 8)

Use $h_1 = K V^2/2g$ for the areas along the flow path (i.e. at the Ref. 1, p. 3–102 entrance, the "reducing elbow," and exit) and $h_1 = 0.002083L (100/C)^{1.85}q^{1.85}/d^{4.8655}$ for the friction loss along Ref. 1, p. 3-7 the area inside of the elbow,

where,

 $h_1 = head loss, in feet,$

K = friction coefficient for losses at piping anomolies,

V = velocity of flow, in ft/sec,

 $g = acceleration of gravity, in ft/sec^2$

L = length of pipe, in feet

C = roughness constant for type of pipe

q = flow, in gpm

d = diameter of pipe.

So, for our case, in the direction of the flow, $h_{t} = K_{cat} V_{cat}^{2}/2g + K_{eib} V_{eat}^{2}/2g + K_{red} V_{eat}^{2}/2g + 0.002083L (100/C)^{1.85} q^{1.85}/d^{4.8655} + K_{eat} V_{eat}^{2}/2g.$

Combining,

 $h_1 = (K_{ent} + K_{elb} + K_{red}) V_{ent}^2/2g + 0.002083L (100/C)^{1.85} q^{1.85}/d^{4.8655} + K_{exit} V_{exit}^2/2g. (Eq. 1)$

Use, $K_{ent} = 0.5$, $K_{elb} = 0.81$, $K_{red} = 0.5(1 - d_{H1}^2/d_{H2}^2)$,)(Eq. 2) and, $K_{red} = 1$. Ref. 1, p. 3-104 Ref. 1, p. 3-109 Ref. 1, p. 3-108

CON EDISON CALCULATION/	CALCULATION NO	REV	PAGE	OF
ANALYSIS SHEET	FPX-00139-00	00	5	8
PREPARER/DATE I Kimball A finital 1/30/96	REVIEWER/DATE K. Shalabi	12/30/96	CLASS	
SUBJECT/TITLE Maximum Flow Rate Through Line #183.	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		PROJECT NO	
			MOD NO N/A	REV

Since we are actually dealing with an annular space essentially between to different diameter pipes, we want to use the hydraulic diameter, D_h , to calculate the equivalent pipe diameter for the loss of weld area (i.e., d, from Eq. 1). And since we know that,

 $D_{t_1} = 4 R_{t_1},$ and $R_{t_1} = Area/Wetted Perimeter$ $= \pi/4 (d_2^2 - d_1^2)/\pi (d_2 + d_1)$ $= (d_2 + d_1)(d_2 - d_1)/4 (d_2 + d_1)$ $= (d_2 - d_1)/4,$

where, $d_1 = 2.416$ " for the inside diameter of the 2" elbow, and $d_1 = 2.375$ " for the outside diameter of the 2" pipe.

 $D_{11} = 4 R_{11}$ = 4 (d₂ - d₁)/4 = d₂ - d₁ = 2.416 - 2.375" = 0.041", or 0.00342 ft

 $- d = d_{H1}$

So, the hydraulic diameter,

Ref. 2, p. 7-48,49

This value will be used for d in Eq. 1 for the friction loss of the flow between the pipe and elbow.

For Eq. 2, since this is effectively a sudden contraction from the annulus area between the end of the 2" pipe and the butt of the elbow insert (defined by welding procedures as 1/16") to the annulus between the pipe OD and elbow ID, we can use the two hydraulic diameters for this calculation. Although the 1/16" gap is not oriented properly to be able to use a large and small radius/diameter, it can be closely approximated by using the value similar to that just calculated. That is, (see Fig. #1) since the space between the pipe OD and elbow ID and the gap are similar,

then we can say, $(d_2 - d_1)/2 = 1/16^{"}$, or $d_2 - d_1 = 1/8^{"}$ $= 0.125^{"}$, or 0.01042 ft $- d_{1/2}$

€ 4.5	CON EDISON CALCULATION/	CALCULATION NO	REV	PAGE	OF
	ANALYSIS SHEET	FPX-00139-00	00	6	8
	PREPARER/DATE	REVIEWER/DATE		CLASS	
		K. Shalabi	12/30/96	A	
	SUBJECTITITLE	V		PROJECT NO	
	Maximum Flow Rate Through Line #183.				
				MOD NO	REV
ĺ				N/A	

So, for Eq. 2, $K_{ted} = 0.5(1 - d_{H1}^2/d_{H2}^2)$ $= 0.5(1 - 0.041^2/.125^2)$ = 0.5(1 - 0.1076) = 0.5(0.8924)= 0.4462.

Which gives us for Eq. 1,

 $h_{t} = (K_{ent} + K_{elb} + K_{red}) V_{ent}^{2}/2g + 0.002083L (100/C)^{1.85}q^{1.85}/d_{H1}^{4.8655} + K_{exit} V_{exit}^{2}/2g$ $h_{t} = (0.5 + 0.81 + 0.4462) V_{ent}^{2}/2g + 0.002083L (100/C)^{1.85}q^{1.85}/d_{H1}^{4.8655} + (1) V_{exit}^{2}/2g,$ $1.7562 V_{ent}^{2}/2g + 0.002083L (100/C)^{1.85}q^{1.85}/d_{H1}^{4.8655} + V_{exit}^{2}/2g. (Eq. 3)$

Now, for the velocity of the flow at the entrance and exit, we can use $V = 0.4085 q/d_{H}^2$ (Eq. 4)

where.

 $d_{\rm H}$ = the hydraulic diameter for that portion of the "pipe."

So, by substituting Eq. 4 into Eq. 3 for each V, we get,

$$\begin{split} h_1 &= 1.7562 \ (0.4085q/d_{H2}^2)^2/2g + 0.002083L \ (100/C)^{1.85}q^{1.85}/d_{H1}^{4.8655} + (0.4085q/d_{H1}^2)^2/2g \\ &= 1.7562 \ [(0.4085)^2q^2/d_{H2}^4]/2g + 0.002083L \ (100/C)^{1.85}q^{1.85}/d_{H1}^{4.8655} + [(0.4085)^2q^2/d_{H1}^4]/2g \\ &= 1.7562 \ (0.1669)q^2/[(0.125^4)2(32.174)] + 0.002083L \ (100/C)^{1.85}q^{1.85}/d_{H1}^{4.8655} + \\ &\quad (0.1669)q^2/[(0.041^4)2(32.174)] \\ &= 1.8576 \ q^2 + 0.002083L \ (100/C)^{1.85}q^{1.85}/d_{H1}^{4.8655} + 923 \ q^2. \end{split}$$

From Fig. #1,

1. = (5/8" - 1/16")/12= (0.625 - .0625)/12= (0.5625)/12 = 0.04688'.

Since this is not new piping, use C = 100.

Ref. 1, p. 3-8

So,

$$\begin{array}{l} h_1 &= 18.76 \; q^2 + 0.002083 L \; (100/C)^{1.85} q^{1.85} / \; d_{H1} \overset{4.8655}{=} + 923 \; q^2, \\ &= 18.76 \; q^2 + 0.002083 (0.04688) q^{1.85} / \; (0.041)^{4.8655} + 923 \; q^2 \\ &= 18.76 \; q^2 + 548.5 \; q^{1.85} + 923 \; q^2 \\ &= 941.8 \; q^2 + 548.5 \; q^{1.85}. \end{array}$$

CON EDISON CALCULATION/	CALCULATION NO	REV	PAGE	OF.
ANALYSIS SHEET	FPX-00139-00	00	7	8
PREPARER/BATE. I. Kimball 12/30/96	REVIEWER/DATE K. Shalabi	12/30/46	CLASS A	
SUBJECTIVITLE Maximum Flow Rate Through Line #183.			PROJECT NO	
			MOD NO N/A	REV

Since the shut-off head for the RHR Pumps is 150 lbs,

assume pressure inside the VC is 50 lbs, and

because the pipe is located higher than the full sump (77' - 51'),

we can conservatively say $h_L = RHR$ Pump discharge pressure + Maximum VC Pressure + Elevation differences,

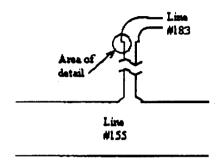
or $h_L = 150 \text{ lbs} + 52 \text{ lbs} + (51' - 77')$ = 202 lbs - 26' = 202 (2.46) -26

=497 - 26 = 471

Which gives us the following:

$$471 = 941.8 q^2 + 548.5 q^{1.85}$$

However, the Hazen and Williams formula for friction loss assumes water at 60°F. As noted in the reference, the friction for water can decrease as much as 40% between 32 and 212°F. Thus, to account for the increased temperature of the water in our case (260°F), Ref. 1, p. 3-7


 $(260\ 60)/(212-32) \times 40\% =$ 200/180 x 0.4 = 0.444, say 44.4%.

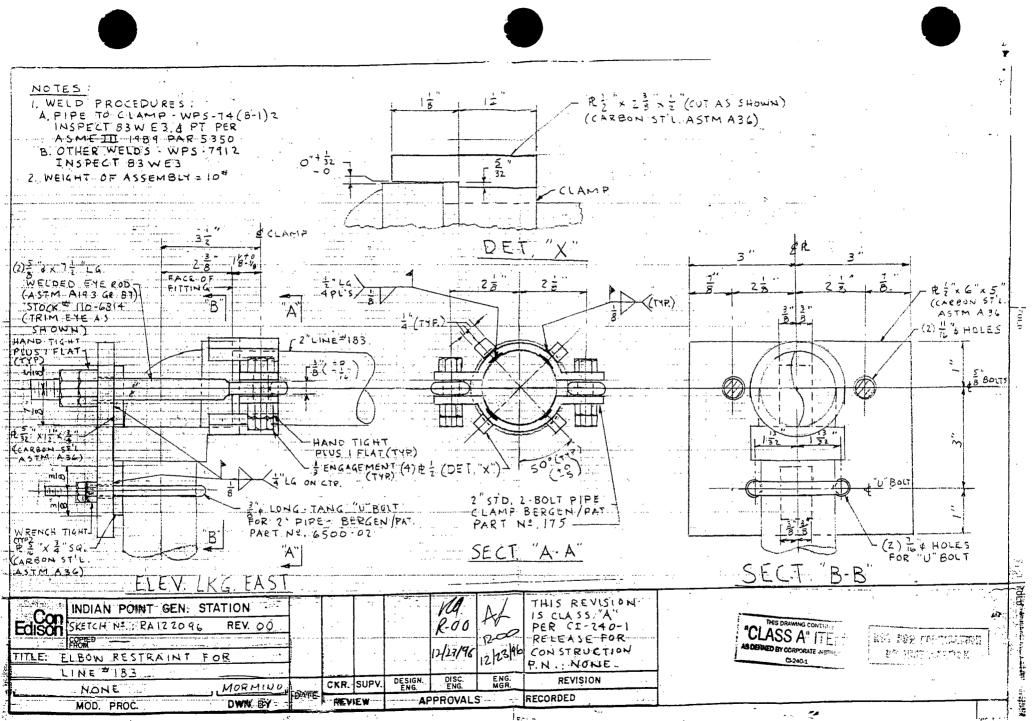
So. $466 = (1.00-0.444) (941.8 q^2 + 548.5 q^{1.85})$ $466 = 523.64 q^2 + 304.97 q^{1.85}$

Substituting for q by trial and error, we get

q = 0.7388 gpm, say 0.75 gpm.

1, ¹⁴ i	CON EDISON CALCULATION/	CALCULATION NO	REV	PAGE	OF
	ANALYSIS SHEET	FPX-90139-00	00	8	8
	PREPARER/DATE / /	REVIEWER/DATE	()	CLASS	
	I. Kmball Muschell 12/30/96	K. Shalabi	12 3096	Α	
	SUBJECT/TITLE	- • • • •	· - y · 1 ·	PROJECT NO	1
	Maximum Flow Rate Through Line #183.				
				MOD NO	REV
				N/A	




Figure #1

ATTACHMENT 6

.

ELBOW RESTRAINT

CONSOLIDATED EDISON COMPANY OF NEW YORK, INDIAN POINT UNIT NO. 2 DOCKET NO. 50-247 JANUARY, 1997

and a second second

4 • • • •