




IP3 CALCULATION - IP3-CALC-RCS-00873 PREDICTED EOL USE FOR BELTLINE PLATE B2803-1

> New York Power Authority Indian Point 3 Nuclear Power Plant Docket No. 50-286

9312080084 931124 PDR ADOCK 05000286 P

| ( )<br>Constant ( )                                      | NLÓ                                       | ATION CONTROL SHEET                                                   | 86 11/193  |
|----------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|------------|
| CALC. NO. <u>1P3-0</u>                                   | ALC-RCS-00873                             | REV IP3 🔀 J                                                           |            |
| MOD/TASK NO. PI                                          | redicted EOL USE for Be                   | eltline Plate                                                         |            |
|                                                          | CALCULATION: 1                            |                                                                       |            |
| CALCULATION TYPE<br>CALCULATION TYPE<br>CALCULATION TYPE | PE: PRELIMINARY:<br>Reactor Vessel Survei | _ FINAL: <u>X</u>                                                     |            |
|                                                          | Reactor Coolant Syste                     | em<br>r Beltline Plate B2803-1                                        |            |
| AITLE:                                                   |                                           |                                                                       |            |
| 02                                                       | NAME                                      |                                                                       | DATE       |
| DESIGN ENG:                                              | J. Lafferty                               | - Hoer Mail                                                           | 10/29/93   |
| PREPARER:                                                | J. Lafferty                               |                                                                       | - 10/25/43 |
| CHECKER:                                                 | <u> </u>                                  | - They winde                                                          | (93'       |
| O APPROVED:                                              | R. Lauman                                 |                                                                       |            |
|                                                          |                                           | V                                                                     |            |
| PROBLEM/OBJECT                                           | IVE/MEIHOD                                |                                                                       |            |
| Perform a calc<br>B2803-1.                               | ulation which predicts                    | s the Upper Shelf Energy (USE) fo                                     | r Plate    |
| DESIGN BASIS/A                                           | SSUMPTIONS                                |                                                                       |            |
|                                                          |                                           |                                                                       |            |
| ♦ IP3 Surveil                                            | lance Program                             |                                                                       |            |
| ♦ Reg. Guide                                             | 1.99, R/2, Methodology                    | <b>7</b>                                                              |            |
| ♦ Fluence mea                                            | surements based on rep                    | oorted values from the PTS report                                     | [4].       |
| SUMMARY/CONCLU                                           | SIONS                                     |                                                                       |            |
|                                                          |                                           | an end of life upper shelf energ<br>Ld value required by 10 CFR, Part |            |
|                                                          | ,                                         |                                                                       | -          |
| REFERENCES                                               |                                           |                                                                       |            |
| See enclosed r                                           | eference section.                         |                                                                       |            |
| AFFECTED SYSTE                                           | MS/COMPONENTS/DOCUMENT                    |                                                                       |            |
| <ul> <li>Reactor Ves</li> </ul>                          | sel Beltline Material                     |                                                                       |            |
| ♦ Core Design                                            |                                           |                                                                       |            |
|                                                          |                                           |                                                                       |            |
|                                                          | D OR                                      |                                                                       |            |
|                                                          | SEDED BY:                                 |                                                                       |            |
|                                                          |                                           | (CALC. NO.)                                                           | -          |
|                                                          |                                           |                                                                       |            |

- 1

| York Pow<br>hority |                                                                   | NO. <u>IP3-CA</u> | LC-RCS-00873         | REVISION _ | 0            |                            |
|--------------------|-------------------------------------------------------------------|-------------------|----------------------|------------|--------------|----------------------------|
| ר<br>H             | roject <u>Rx Ve</u><br>itle <u>Predicto</u><br>reliminary<br>inal | ed EOL USE        | <u>Plate B2803-1</u> | Prenaren D | ~~ <u>07</u> | 1993<br>Date<br>Date////45 |
|                    |                                                                   |                   | TABLE OF C           | ONTENTS    |              |                            |
|                    |                                                                   |                   |                      |            |              | PAGE                       |
|                    |                                                                   |                   |                      |            |              | 2                          |
| 1.                 | O PURPOSE .                                                       | • • • • •         |                      |            | •••••        | 3                          |
| 2.                 | 0 ASSUMPTIO                                                       | NS                |                      |            | • • • • • •  | 3                          |
| 3.                 | 0 REFERENCE                                                       | S                 |                      |            |              | 3                          |
| 4.                 | 0 CALCULATI                                                       | ON                |                      |            |              | 4                          |
| <u>5</u> .         | 0 SUMMARY/D                                                       | ISCUSSION         | • • • • • • •        |            |              | 6                          |
| 6                  | 0 ATTACHMEN                                                       | TS                |                      |            | •••••        | 7                          |
|                    | Figure I                                                          |                   |                      |            | 4            |                            |
|                    |                                                                   |                   |                      |            |              |                            |
|                    |                                                                   |                   |                      |            |              |                            |
|                    |                                                                   |                   |                      |            |              |                            |
|                    |                                                                   |                   |                      |            |              |                            |
|                    |                                                                   |                   |                      |            |              |                            |
|                    |                                                                   |                   |                      |            |              |                            |
|                    |                                                                   |                   |                      |            |              |                            |
|                    |                                                                   |                   |                      |            |              |                            |
|                    |                                                                   |                   |                      |            |              |                            |

| ، ر<br>بر ۱<br>ر                       | CALCULATION SHEET                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New York                               |                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Authority                              |                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                        | CALCULATION NO. <u>IP3-CALC-RCS-00873</u> REVISION <u>0</u>                                                                                                                                                                                                                                                                                                                                                       |
|                                        | Project Rx Vessel SurveillancePage 3 of 7Title Predicted EOL USE Plate B2803-1Date October 27, 1993PreliminaryPrepared by J. Lafferty Date 10/25/53FinalXXChecked by F. Gumble Date 11/1/93                                                                                                                                                                                                                       |
| 1.0 <u>PUR</u>                         | POSE                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                        | purpose of this calculation is to determine the predicted end of life (EOL)<br>er shelf energy (USE) for Beltline Plate B2803-1.                                                                                                                                                                                                                                                                                  |
| Thi<br>(RA                             | s request was made by the NRC in GL-92-01 Request for Additional Information<br>I) 1.                                                                                                                                                                                                                                                                                                                             |
| 2.0 <u>ASS</u>                         | UMPTIONS                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1)<br>2)<br>3)<br>4)<br>5)<br>6)<br>7) | License expiration December 2015 [10]<br>End of Life ½ T fluence is calculated from a surface fluence of<br>$1.04 \text{ E19 N/Cm}^2$ (E > 1.0 Mev.) [4]<br>EOL Fluence at the ½ T location is calculated using Reg. 1.99 R/2 methods<br>EOL Fluence $\approx 26 \text{ EFPY} = 6.20 \text{ E18 N/Cm}^2$ , (E > 1.0 Mev.)<br>Initial USE 72 ft-lbs [5]<br>Copper Content 0.19% [5]<br>Vessel wall is 8 5/8" thick |
| 3.0 <u>REF</u>                         | ERENCES                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.                                     | WCAP-11815 "Analysis of Capsule Z from the NYPA IP3 Reactor Vessel<br>Radiation Program", Westinghouse Electric Corp., March 1988.                                                                                                                                                                                                                                                                                |
| 2.                                     | Report SIR-88-016 R/O, "Evaluation of Capsule Z from the IP3 Reactor Pressure<br>Vessel Surveillance Program", Structural Integrity Associates, San Jose, CA,<br>January 1989.                                                                                                                                                                                                                                    |
| 3.                                     | WCAP 11045, R/1 - "Indian Point Unit 3 Reactor Vessel Fluence and RT <sub>PTS</sub><br>Evaluations", Westinghouse Electric Corporation, 6/1989.                                                                                                                                                                                                                                                                   |
| 4.                                     | WCAP 11057, R/1 - "Indian Point Unit 3 Reactor Vessel Fluence & RT <sub>PTS</sub><br>Evaluations for considerations for Life Extension", Westinghouse Electric<br>Corporation, June 1989.                                                                                                                                                                                                                         |
| 5.                                     | WCAP 13587, R/1, "Reactor Vessel Upper Shelf Energy Bounding Evaluation for<br>Westinghouse Pressurized Water Reactors", Westinghouse Electric Corporation,<br>September 1993.                                                                                                                                                                                                                                    |
| 6.                                     | NYPA Letter IPN-92-031/JPN-92-037, Response to Generic Letter 92-01, Rev. 1, July 9, 1992.                                                                                                                                                                                                                                                                                                                        |
|                                        |                                                                                                                                                                                                                                                                                                                                                                                                                   |

.

| ۰<br>۲<br>۱       | •                                                                                  | CALCULATION                              | SHEET                                                                                                                                                                                                 |
|-------------------|------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New York          | Power                                                                              | ······································   |                                                                                                                                                                                                       |
| Authority         |                                                                                    |                                          |                                                                                                                                                                                                       |
| ·                 | CALCULATION NO. IP                                                                 | 3-CALC-RCS-00873                         | REVISION 0                                                                                                                                                                                            |
|                   | Project <u>Rx Vessel Su</u><br>Title <u>Predicted EOL</u><br>Preliminary<br>FinalX |                                          | Page <u>4</u> of <u>7</u><br>Date <u>October 27</u> , <u>1993</u><br>Prepared by <u>J. Lafferty</u> Date <u><math>10/29/53</math></u><br>Checked by <u>F. Gumble</u> Date <u><math>11/1/93</math></u> |
| 3.0 REF           | ERENCES (continued)                                                                |                                          |                                                                                                                                                                                                       |
|                   |                                                                                    |                                          |                                                                                                                                                                                                       |
| 7.                | Letter report FDRT-S<br>Westinghouse Electri                                       |                                          | an Point Unit 3 Upper Shelf Energy Data",<br>93.                                                                                                                                                      |
| 8.                | ASTM-E185, "Standard<br>Cooled Nuclear Power                                       |                                          | acting Surveillance Test for Light Water<br>982.                                                                                                                                                      |
| 9.                | USNRC Regulatory Gui<br>Materials", April 19                                       |                                          | ation Embrittlement of Reactor Vessel                                                                                                                                                                 |
| 10.               |                                                                                    |                                          | Conicella, "Issuance of Amendment for<br>mendment No. 124, License No. DPR-64,                                                                                                                        |
| 4.0 <u>CAL</u>    | CULATION                                                                           |                                          |                                                                                                                                                                                                       |
| Ini               | tial USE for Plate B28                                                             | 803-1 = 72 ft-1bs [                      | 7].                                                                                                                                                                                                   |
|                   |                                                                                    |                                          | h explains what was used to conclude<br>elf energy for Plate # B2803-1.                                                                                                                               |
| for<br>Cha<br>the | three Charpy specimer<br>rpy V-notch curve trar                                    | ns whose temperatur<br>nsition region. F | If energy as the average energy value<br>e is above the upper end of the<br>for specimens tested in sets of three,<br>regarded as defining the material's                                             |
|                   |                                                                                    |                                          | he Charpy V-notch test results which<br>er shelf energy of Plate B2803-1.                                                                                                                             |
|                   | Temperature (°F)                                                                   | Energy (ft-lbs)                          | <u>} % Shear</u>                                                                                                                                                                                      |
|                   | 210                                                                                | 64.5                                     | 100%                                                                                                                                                                                                  |
|                   | 210                                                                                | 74                                       | 100%                                                                                                                                                                                                  |
|                   | 210                                                                                | 77                                       | 100%                                                                                                                                                                                                  |
|                   | Avg. = 72                                                                          | ft-lbs                                   |                                                                                                                                                                                                       |
|                   |                                                                                    |                                          |                                                                                                                                                                                                       |
|                   |                                                                                    |                                          |                                                                                                                                                                                                       |
|                   |                                                                                    |                                          |                                                                                                                                                                                                       |
|                   |                                                                                    |                                          |                                                                                                                                                                                                       |
|                   |                                                                                    |                                          |                                                                                                                                                                                                       |

.

.

| New York Power<br>Authority                                                                                   |                                                                                                                                                                             |
|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CALCULATION NO. <u>IP3-CALC-RCS-00873</u>                                                                     | REVISION 0                                                                                                                                                                  |
| Project <u>Rx Vessel Surveillance</u><br>Title <u>Predicted EOL USE Plate B2803-1</u><br>Preliminary<br>Final | Page <u>5</u> of <u>7</u><br>Date <u>October 27</u> , <u>1993</u><br>Prepared by <u>J. Lafferty</u> Date <u>10/21/63</u><br>Checked by <u>F. Gumble</u> Date <u>11/1/95</u> |

4.0 <u>CALCULATION</u> (continued)

The following section documents the calculation of fluence at the  $\frac{1}{4}$  T location:

The equation for attenuation, which calculates reactor through-wall fluence values, is:

 $f = f_{morf}$  (e-0.24x) [9]

 $f_{surf}$  = is the peak measured fluence at the vessel inside surface to clad interface [4]

 $f_{surf} = 1.04 E19$ 

f = 1.04 E19 (e - .24 x 2.156)

f = 6.20 E18

EOL USE = Initial USE - % decrease (Initial USE)

EOL USE = 72 - .255 (72)

EOL USE = 54 ft-lbs

For an EOL fluence of 6.20 E18  $N/Cm^2$ , material copper content = .19%

The predicted % decrease in USE = 25%; EOL USE = 54 ft-lbs

Figure I graphs the % decrease in USE for the reported EOL fluence value of 54 ft-lbs.

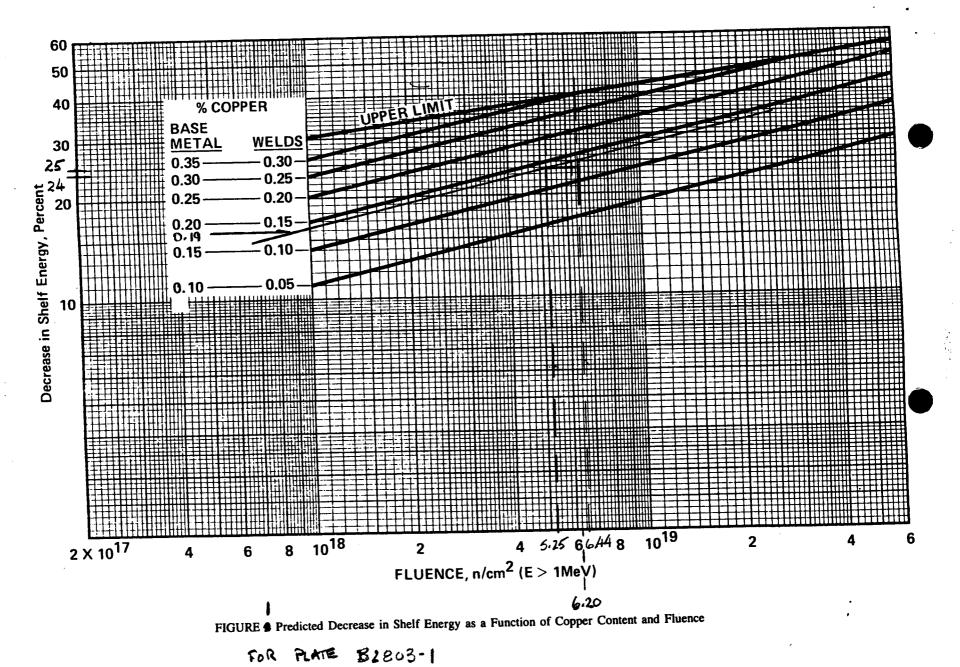
The end of life fluence at  $\frac{1}{4}$  T is 6.20 El8 N/Cm<sup>2</sup> as compared to the 6.44 x 10<sup>18</sup> N/Cm<sup>2</sup> reported in NYPA's response to GL-92-01 [6], Table VIII.

| <u>CALCULATION</u>                                                                                                     | <u>SHEET</u>                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| New York Power<br>Authority                                                                                            | ·                                                                                                                                                                          |
| CALCULATION NO. <u>IP3-CALC-RCS-00873</u>                                                                              | REVISIONO                                                                                                                                                                  |
| Project <u>Rx Vessel Surveillance</u><br>Title <u>Predicted EOL USE Plate B2803-1</u><br>Preliminary<br>Final <u>X</u> | Page <u>6</u> of <u>7</u><br>Date <u>October 27</u> , <u>1993</u><br>Prepared by <u>J. Lafferty</u> Date <u>/0/21/1)</u><br>Checked by <u>F. Gumble</u> Date <u>////</u> 5 |

#### 5.0 SUMMARY/DISCUSSION

A summary of fluence values for  $\frac{1}{4}$  T location are presented below for comparison. The differences in  $\frac{1}{4}$  T fluence values reported come from the change in the methods used in the calculation of ID vessel fluence and the implementation of low leakage core patterns. This comparison provides the EOL USE as a function of fluence values.

### TABLE I


|                                              | EOL ID Fluence (N/Cm <sup>2</sup> ) | <u>EFPY</u> | EOL ¼ T Fluence (N/Cm <sup>2</sup> ) |
|----------------------------------------------|-------------------------------------|-------------|--------------------------------------|
| Capsule Z [1]                                | 1.08 E19                            | 22.5        | 5.69 E18                             |
| RT <sub>PTS</sub> Report [4]                 | 8.81 E18                            | 21.88       | 5.25 E18                             |
| GL-92-01 Response [3                         | 3] 1.08 E19                         | 21.88       | 6.44 E18                             |
| PT <sub>PTS</sub> Report<br>for 40 years [2] | 1.04 E19                            | 26.61       | 6.20 E18                             |

For the purpose of this calculation, end of life fluence is calculated for a plant license expiration date of 2015. As of December 1993, we expect to have approximately 9 EFPY of plant operation. Through December of 2015, twenty two more calendar years of operation are available, assuming an 80% capacity factor provides 17.6 EFPY through end of license. A total of 26.6 EFPY's is an appropriate assumption for the expected end of license fluence. The PTS report [4] used actual measured dosimetry results though Cycle 7. The report also considers implementation of low core leakage patterns. This report provides a 26.6 EFPY fluence at the vessel wall to clad interface surface of 1.04 E19 N/Cm<sup>2</sup>. This 26.6 EFPY fluence meets the GL-92-01, 80% capacity factor rule and is acceptable.

For the purpose of comparison, the upper shelf energies are shown below using the fluence values presented in Table I.

|                         | <u>TABLE II</u>              |                       |                            |
|-------------------------|------------------------------|-----------------------|----------------------------|
| Initial USE<br>(ft-lbs) | Fluence (N/Cm <sup>2</sup> ) | <pre>% Decrease</pre> | EOL USE<br><u>(ft-lbs)</u> |
| 72                      | 6.44 E18 [2]                 | 25.5                  | 54                         |
| 72                      | 5.25 E18 [7]                 | 24                    | 55                         |
| 72                      | 6.20 E18                     | 25                    | 54                         |

| , · ·                                                                       |                                                                                                                                        | <u>I SHEET</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -          |
|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| New York Power<br>Authority                                                 |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| -                                                                           | ATION NO. IP3-CALC-RCS-00873                                                                                                           | REVISION0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            |
| Title <u>P</u>                                                              | <u>Rx Vessel Surveillance</u><br><u>edicted EOL USE Plate B2803-1</u><br>hary<br>X                                                     | Page <u>7</u> of <u>7</u><br>Date <u>October 27</u> , <u>1993</u><br>Prepared by <u>J. Lafferty</u> Date <u>, 0/25</u><br>Checked by <u>F. Gumble</u> Date <u>///</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /9)<br>/93 |
| 5.0 <u>SUMMARY/DISC</u>                                                     | USSION (continued)                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| life fluence                                                                |                                                                                                                                        | a fairly significant change in end of nge in the predicted end of life upper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | :          |
| accurate flu<br>factor of 1.<br>is that the<br>and a bias f<br>between cycl | ence value since it considers l<br>D86. The reason for the differ<br>more recent fluence calculation<br>actor of 1.086. This bias fact | and RT <sub>PTS</sub> Evaluation" [4] reports an<br>low core leakage patterns and a bias<br>rence in fluence at the <sup>1</sup> / <sub>4</sub> T location<br>hs consider low leakage core patterns<br>tor accounts for differences observed<br>e results of neutron dosimetry for the<br>reactor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2          |
|                                                                             | ration date changed from 2009 t                                                                                                        | license expiration date of 2015. The constant of the test of t |            |
| fluence. It<br>evaluations<br>that IP3 rea<br>that require                  | should be further noted that t<br>as per the proposed ASME Sectio<br>ctor vessel beltline material h                                   | was used to calculate end of life<br>the WOG has performed generic bounding<br>on XI, Appendix X, which demonstrate<br>has a margin of safety equivalent to<br>de. The lowest upper shelf energy<br>is 43 ft-lbs for IP3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5          |
| 6.0 ATTACHMENTS                                                             |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
| Figure 1                                                                    |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                             |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                             |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                             | ·                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                             |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                             |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|                                                                             |                                                                                                                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |            |



Ð

1.99-9

Road,

Ne Z REAP 11815

TABLE 6-12 SUMMARY OF FAST NEUTRON EXPOSURE PROJECTIONS FOR THE INDIAN POINT UNIT 3 REACTOR VESSEL

| e.          | 5.55 E                | FPY                     | 22.5 EFPY                             |                       |  |
|-------------|-----------------------|-------------------------|---------------------------------------|-----------------------|--|
|             | <pre></pre>           | (dpa)                   | ∯ (E > 1.0 Me<br>(n/cm <sup>2</sup> ) | eV)<br>(dpa)          |  |
| Vessel IR   | $3.13 \times 10^{18}$ | 5.10 x $10^{-3}$        | $1.08 \times 10^{19}$                 | $1.75 \times 10^{-2}$ |  |
| Vesse] 1/4T | $1.65 \times 10^{18}$ | $3.26 \times 10^{-3}$   | $5.69 \times 10^{18}$                 | $1.11 \times 10^{-2}$ |  |
| Vessel 1/2T | $7.51 \times 10^{17}$ | $1.97 \times 10^{-3}$   | 2.60 x $10^{18}$                      | $6.75 \times 10^{-3}$ |  |
| Vessel 3/4T | $3.29 \times 10^{17}$ | $1.13 \times 10^{-3}$   | $1.14 \times 10^{18}$                 | $3.87 \times 10^{-3}$ |  |
| Vessel OR   | $1.32 \times 10^{17}$ | 5.41 x 10 <sup>-4</sup> | 4.95 x $10^{17}$                      | $1.85 \times 10^{-3}$ |  |

Note: Date are based on the extrapolation of Capsule Z dosimetry results to vessel locations.

6-28



RELTITNE DECTON

### TABLE II.2-4

### INDIAN POINT UNIT 3

FAST NEUTRON (E > 1.0 Mev) EXPOSURE AT THE REACTOR VESSEL INNER RADIUS - 45 DEGREE AZIMUTHAL ANGLE (a)

|               |             |               | BELILINE      | REGIUN        |         |
|---------------|-------------|---------------|---------------|---------------|---------|
|               | ELAPSED     |               | CUMULATIVE FL | UENCE (n/cm2) |         |
| IRRADIATION   | IRRADIATION | AVG. FLUX (b) | PLANT         |               |         |
| INTERVAL      | TIME (EFPY) | (n/cm2-sec)   | SPECIFIC (b)  | REFERENCE (c) |         |
| CY-1          | 1.37        | 1.94E+10      | 8.40E+17      | 1.00E+18      |         |
| CY-2          | 2.23        | 2.53E+10      | 1.52E+18      | 1.63E+18      |         |
| CY-3          | 3.29        | 2.09E+10      | 2.22E+18      | 2.41E+18      |         |
| CY-4          | 4.41        | 1.67E+10      | 2.81E+18      | 3.23E+18      |         |
| CY-5          | 5.55        | 1.38E+10      | 3.31E+18      | 4.06E+18      |         |
| CY-6 (d)      | 6.73        | 1.30E+10      | 3.79E+18      | 4.93E+18      |         |
| CY7-EOL (e)   | 21.88       | 1.05E+10      | 8.81E+18      | 1.60E+19      | 7009    |
| CY7-40yrs (e) | 26.61       | 1.05E+10      | 1.04E+19      | 1.95E+19      |         |
| CY7-60yrs (e) | 41.61       | 1.05E+10      | 1.53E+19      | 3.05E+19      | <u></u> |

- (a) Applicable to longitudinal weld 3-042C in the lower shell, the intermediate to lower shell circumferential weld 9-042, and all shell plates
- (b) Includes an analytical bias factor of 1.086
- (c) Reference fast neutron flux = 2.32E+10 n/cm2-sec at 3025 MWt
- (d) Current neutron fluences are defined as of the end of cycle 6
- (e) Fuel cycle projections are based on the average neutron flux for cycle 7 and an assumed capacity factor of 0.75

- The adjusted reference temperature for weld metal would be close to the 200°F limit,
- Upper shelf energy for the limiting plate would always be precariously close to the 50 ft-lb limit, and
- Projections of USE for weld metal also indicated an end of life value very near the 50 ft-lb limit.

Several actions were taken as a result. The Power Authority decided to test the WOL specimens removed with capsules T and Y to provide a quantitative determination of the fracture toughness of the Indian Point-3 reactor vessel materials. These results are reported in WCAP-10300-3, Volume 3 [13] and reviewed in [14]. The conclusion from these measurements is that the vessel material continues to retain sufficient fracture toughness even after irradiation to the 8.05 X  $10^{1.8}$  n/cm<sup>2</sup> level. This corresponds to 1/4T at longer than the design life. The Power Authority also embarked upon a program to reduce the neutron exposure of the reactor vessel by a modified core loading pattern resulting in a low leakage core. This activity was initiated following Cycle 5 and continues to be used. A design end of life fluence of 6.44 X  $10^{18}$  n/cm<sup>2</sup> at 1/4T is expected based on this current fuel loading practice.

### Capsule Z Results

)

Capsule Z, a Type I capsule, was removed from the Indian Point-3 vessel during May, 1987, following cycle 5 (5.55 effective full power years). Like the previous capsules, mechanical properties test specimens and dosimetry materials were evaluated by Westinghouse [15]. This high lead factor capsule had accumulated 1.07 Х  $10^{19}$  $n/cm^2$ (E>1MeV), the equivalent of 0.0177 displacements per atom. This exposure is essentially identical to the projected end of life (22.5 EFPY) fluence at the vessel



19

Designation: E 185 – 82<sup>2</sup>

E185

AMERICAN SOCIETY FOR TESTING AND MATERIALS 1916 Race St., Philadelphia, Pa. 19103 Reprinted from the Annual Book of ASTM Standards, Copyright ASTM If not listed in the current combined index, will appear in the next edition.

0759510 0043275

# **Standard Practice for** CONDUCTING SURVEILLANCE TESTS FOR LIGHT-WATER COOLED NUCLEAR POWER REACTOR VESSELS, E 706 (IF)<sup>1</sup>

This standard is issued under the fixed designation E 185; the number immediately following the designation indicates the year of original adoption or, in the case of revision, the year of last revision. A number in parentheses indicates the year of last reapproval. A superscript epsilon (c) indicates an editorial change since the last revision or reapproval.

"NOTE-Section 9.2.3 was corrected editorially and the designation date was changed July 1, 1982. \*2 NOTE-The title was changed editorially in July 1985.

#### 1. Scope

1.1 This practice covers procedures for monitoring the radiation-induced changes in the mechanical properties of ferritic materials in the beltline of light-water cooled nuclear power reactor vessels. This practice includes guidelines for designing a minimum surveillance program, selecting materials, and evaluating test results.

1.2 This practice was developed for all lightwater cooled nuclear power reactor vessels for which the predicted maximum neutron fluence (E > 1 MeV) at the end of the design lifetime exceeds  $1 \times 10^{21} \text{ n/m}^2 (1 \times 10^{17} \text{ n/cm}^2)$  at the inside surface of the reactor vessel.

### 2. Applicable Documents

#### 2.1 ASTM Standards:

- A 370 Methods and Definitions for Mechanical Testing of Steel Products<sup>2</sup>
- E.8 Methods of Tension Testing of Metallic Materials<sup>3</sup>
- E21 Recommended Practice for Elevated Temperature Tension Tests of Metallic Materials<sup>3</sup>
- E 23 Methods for Notched Bar Impact Testing of Metallic Materials<sup>3</sup>
- E 208 Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels<sup>3</sup>
- E482 Guide for Application of Neutron Transport Methods for Reactor Vessel Surveillance<sup>4</sup>
- E 560 Recommended Practice for Extrapolating Reactor Vessel Surveillance Dosimetry Results<sup>4</sup>

2.2 American Society of Mechanical Engineers Standard: Boiler and Pressure Vessel Code, Sections III and XI<sup>s</sup>

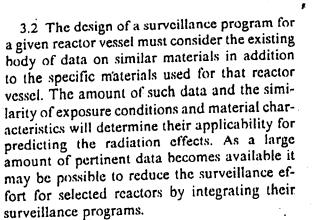
- 34-16

#### 3. Significance and Use

3.1 Predictions of neutron radiation effects on pressure vessel steels are considered in the design of light-water cooled nuclear power reactors. Changes in system operating parameters are made throughout the service life of the reactor vessel to account for radiation effects. Because of the variability in the behavior of reactor vessel steels, a surveillance program is warranted to monitor changes in the properties of actual vessel materials caused by long-term exposure to the neutron radiation and temperature environment of the given reactor vessel. This practice describes the criteria that should be considered in planning and implementing surveillance test programs and points out precautions that should be taken to ensure that: (1) capsule exposures can be related to beltline exposures, (2) materials selected for the surveillance program are samples of those materials most likely to limit the operation of the reactor vessel, and (3) the tests yield results useful for the evaluation of radiation effects on the reactor vessel.

- Annual Book of ASTM Standards, Vol 01.04.
- Annual Book of ASTM Standards, Vol 03.01.
- <sup>4</sup> Annual Book of ASTM Standards, Vol 12.02.

<sup>5</sup> Available from the American Society of Automotive Engincers, 345 F. 47th St., New York, N. Y. 10017.


<sup>&</sup>lt;sup>1</sup> This practice is under the jurisdiction of ASTM Committee

E-10 on Nuclear Technology and Applications. Current edition approved July 1, 1982. Published September 1982. Originally published as E-15-61 T. Last previous edition E 185 - 79.

ASTM E185 82 🎟 0759510 0043276 3

船炉

E 185



#### 4. Definitions

4.1 adjusted reference temperature—the reference temperature adjusted for irradiation effects by adding to  $RT_{NDT}$  the transition temperature shift (see 4.15).

4.2 base metal (parent material) --as-fabricated plate material or forging material other than a weldment or its corresponding heataffected-zone (HAZ).

4.3 *beltline*—the irradiated region of the reactor vessel (shell material including weld regions and plates or forgings) that directly surrounds the effective height of the active core, and adjacent regions that are predicted to experience sufficient neutron damage to warrant consideration in the selection of surveillance material.

4.4 EOL-end-of-life; the design lifetime in terms of years; effective full power years; or neutron fluence.

4.5 index temperature—that temperature corresponding to a predetermined level of absorbed energy, lateral expansion, or fracture appearance obtained from the average (best fit) Charpy transition curve.

4.6 fraction strength—in a tensile test, the load at fracture divided by the initial cross-sectional area of the test specimen.

4.7 fracture stress- in a tensile test, the load at fracture divided by the cross-sectional area of the test specimen at time of fracture.

4.8 heat-affected-zone (HAZ)—plate material or forging material extending outward from, but not including, the weld fusion zone in which the microstructure of the base metal has been altered by the heat of the welding process.

4.9 lead factor—the ratio of the neutron flux density at the location of the specimens in a surveillance capsule to the neutron flux density

\_\_\_\_2 \_\_\_

at the reactor pressure vessel inside surface at the peak fluence location.

4.10 neutron fluence--the time integrated neutron flux density, expressed in neutrons per square metre or neutrons per square centimetre.

4.11 neutron flux density—a measure of the intensity of neutron radiation within a given range of neutron energies; the product of the neutron density and velocity, measured in neutrons per square metre-second or neutrons per square centimetre-second.

4.12 neutron spectrum— the distribution of neutrons by energy levels impinging on a surface, which can be calculated based on analysis of multiple neutron dosimeter measurements, on the assumption of a fission spectrum, or from a calculation of the neutron energy distribution.

4.13 nil-ductility transition temperature  $(T_{NDT})$  the maximum temperature at which a standard drop weight specimen breaks when tested in accordance with Method E 208.

4.14 reference temperature (RT<sub>NDT</sub>)—Sec subarticle NB-2300 of the ASME Boiler and Pressure Vessel Code, Section III, "Nuclear Power Plant Components."

4.15 transition temperature shift ( $\Delta RT_{NDT}$ ) or adjustment of reference temperature—the difference in the 41-J (30-ft·lbf) index temperatures from the average Charpy curves measured before and after irradiation.

4.16 transition region the region on the transition temperature curve in which toughness increases rapidly with rising temperature. In terms of fracture appearance, it is characterized by a rapid change from a primarily cleavage (crystalline) fracture mode to primarily shear (fibrous) fracture mode.

4.17 Charpy transition curve—a graphic presentation of Charpy data, including absorbed energy, lateral expansion, and fracture appearance, extending over a range including the lower shelf energy (< 5% shear), transition region, and the upper shelf energy (> 95\% shear).

4.18 upper shelf energy level—the average energy value for all Charpy specimens (normally three) whose jest temperature is above the upper end of the transition region. For specimens tested in sets of three at each test temperature, the set having the highest average may be regarded as defining the upper shelf energy.

3

### INDEPENDENT DESIGN VERIFICATION CONTROL SHEET

| VERIFICATION OF:      | IP3-CAL   | <u>C-RCS-008</u> |             |             |                 |                                                |  |
|-----------------------|-----------|------------------|-------------|-------------|-----------------|------------------------------------------------|--|
| Document Title/Number |           |                  |             |             |                 |                                                |  |
| SUBJECT: <u>Predi</u> | cted EOL  | USE for          |             | Plate B280  | 03-1            |                                                |  |
| MOD/TASK NUMBER (     | If Appli  | cable): _        | N           | A           |                 |                                                |  |
| QA CATEGORY:          |           |                  | 1           |             |                 |                                                |  |
| DISCIPLINE:           | ELEC      | MECH             | C/S         | I&C         | FIRE<br>PROTECT | OTHERS<br>(SPECIFY)                            |  |
| Check as<br>required  |           |                  |             |             |                 | Hoyd Gumble<br>AC<br>Hoyd Gumble<br>W/K 14/193 |  |
| METHOD USED (1)       |           |                  |             |             | a <u></u>       | AC                                             |  |
| VERIFIER'S NAME:      |           |                  |             | <del></del> |                 | Floyd Oumble                                   |  |
| VERIFIER'S            |           |                  |             |             |                 | N.S. W.L.                                      |  |
| INITIALS/DATE:        | -A        | · A              | <del></del> |             |                 | 046 19193                                      |  |
| APPROVED BY:          | - Jet     | <u>A</u>         | <u></u>     |             |                 | _ Date:93                                      |  |
| REMARKS/SCOPE OF      | VERIFICAT | TION:            |             |             | •               |                                                |  |
| Varifie               | 2 cal     | adati            | m by        | perf        | m m m           | ndependent                                     |  |
| diterio               | nation    |                  | 802 0       | conditi     | ms a            | nd applying                                    |  |
| NFC a                 | üdelir    | cs b             | The re      | sult.       |                 |                                                |  |
|                       |           |                  |             |             |                 |                                                |  |
|                       |           |                  |             | ,           |                 |                                                |  |
| . <u></u>             |           |                  |             |             |                 | ·····                                          |  |
|                       |           |                  |             |             |                 |                                                |  |
|                       |           |                  |             |             |                 |                                                |  |

(1) Methods of Verification: Design Review (DR), Alternate Calculations (AC), Qualification Test (QT)

NYPA FORM DCM-4, ATTACHMENT 4.1 (NOVEMBER 1992)

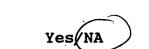
IP3

JAF

FG

DESIGN VERIFICATION CHECKLIST

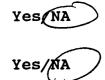
Ċ


# DESIGN REVIEW METHOD

| IP3 |   |
|-----|---|
| JAF | X |

| VERIFICATION OF: <u>IP3-CALC-RCS-00873</u>                                                                                                                                                                                         |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Document/Title/Number                                                                                                                                                                                                              |  |  |  |  |
| SUBJECT: Predicted EOL USE for Beltline Plate B2803-1                                                                                                                                                                              |  |  |  |  |
| MOD/TASK NO: (If Applicable)                                                                                                                                                                                                       |  |  |  |  |
| DESIGN VERIFIER: Woyd W Jumble - Senior Reactor Eng - 1/193<br>Signature/Title/Date                                                                                                                                                |  |  |  |  |
| FIRE OTHER<br>ELEC MECH C/S I&C PROTECT (SPECIFY)                                                                                                                                                                                  |  |  |  |  |
| Check as<br>Required Rective Evg                                                                                                                                                                                                   |  |  |  |  |
| Yes/Not Applicable                                                                                                                                                                                                                 |  |  |  |  |
| 1. Were the inputs correctly selected and incorporated into the design?                                                                                                                                                            |  |  |  |  |
| 2. Are the physical and functional<br>characteristics of the proposed design<br>within the approved design basis of the<br>system(s) structure(s)<br>or component(s)?                                                              |  |  |  |  |
| 3. Does the proposed design incorporate Yes/NA<br>license commitments?                                                                                                                                                             |  |  |  |  |
| 4. Are assumptions necessary to perform the design activity adequately described and reasonable: Where necessary, are the assumptions identified for subsequent reverifications when the detailed design activities are completed? |  |  |  |  |
| 5. Are the appropriate quality and quality<br>assurance requirements specified? e.g.,<br>safety classification.                                                                                                                    |  |  |  |  |
| 6. Are the applicable codes, standards and<br>regulatory requirements including issue<br>and addenda properly identified and are<br>their requirements for design met?                                                             |  |  |  |  |
| 7. Have applicable construction and yes/NA operating experience been considered?                                                                                                                                                   |  |  |  |  |
| NYPA FORM DCM-4, 4.2 ATTACHMENT 4.2 (NOVEMBER 1992) (Page 1 of 3)                                                                                                                                                                  |  |  |  |  |

DESIGN VERIFICATION CHECKLIST DESIGN REVIEW METHOD


- 8. Have the design interface requirements been satisfied?
- 9. Was an appropriate design method used?
- 10. Is the output reasonable compared to inputs?
- 11. Are the specified parts, equipment and processes suitable for the required application?
- 12. Are the specified materials compatible with each other and the design environmental conditions to which the materials will be exposed?
- 13. Have adequate maintenance features and requirements been satisfied?
- 14. Are accessibility and other design provisions adequate for performance of needed maintenance and repair?
- 15. Has adequate accessibility been provided to perform the in-service inspection expected to be required during the plant life?
- 16. Has the design properly considered radiation exposure to the public and plant personnel? (ALARA/cobalt reduction)
- 17. Are the acceptance criteria incorporated in the design documents sufficient to allow verification that design requirements have been satisfactorily accomplished?
- 18. Have adequate pre-operational and subsequent periodic test requirements been appropriately specified?
- 19. Are adequate handling, storage, cleaning and shipping requirements specified?



Yes/Not Applicable







Yes

Yes//NA



Yes//NA

DESIGN VERIFICATION CHECKLIST DESIGN REVIEW METHOD

### Yes/Not Applicable

Yes/NA

- 20. Are adequate identification requirements specified?
- 21. Are the conclusions drawn in the Safety Evaluation fully supported by adequate discussion in the test or Safety Evaluation itself?
- 22. Are necessary procedural changes specified, and are responsibilities for such changes clearly delineated?
- 23. Are requirements for record preparation, review, approval, retention, etc., adequately specified?
- 24. Have supplemental reviews by other engineering disciplines (seismic, electrical, etc.) been performed on the integrated design package?
- 25. Have the drawings, sketches, calculations, etc., included in the integrated design package been reviewed?
- 26. Have reviews been performed to identify any effect on the Check Valve Maintenance Program?
- 27. Does the design for check valves meet the intents of INPO SOER 86-03?
- 28. Is the plant reference simulator physical and functional fidelity affected and its design change been factored into the cost?
- 29. References used as part of the design review which are not listed as part of the design calculation/analysis.

Yes Yes





Yes

Yes

Yes/NA



ADDITIONAL INFORMATION PROVIDED BY NSSS VENDOR TABLES I THROUGH VII

> New York Power Authority Indian Point 3 Nuclear Power Plant Docket No. 50-286

# TABLE I

### Intermediate Shell, B2802-1 (Ht, A5394-2)

| Temperature<br>(°E) | Energy<br><u>(ft-lbs)</u> | <u>% Shear</u> | Upper Shelf<br><u>(ft-lbs)</u> |
|---------------------|---------------------------|----------------|--------------------------------|
| -100                | 2                         | 5              |                                |
| -100                | 3                         | 9              |                                |
| -100                | 4                         | 5              |                                |
| - 50                | 5.5                       | 9              |                                |
| - 50                | 6                         | 9              |                                |
| - 50                | 8                         | 14             |                                |
| 10                  | 33.5                      | 34             |                                |
| 10                  | 34                        | 29             |                                |
| 10                  | 37                        | 29             |                                |
| 60                  | 48                        | . 50           |                                |
| 60                  | 60                        | 47             |                                |
| 60                  | 63                        | 50             |                                |
| 110                 | 71                        | 75             |                                |
| 110                 | 85                        | 75             |                                |
| 110                 | 94                        | 80             |                                |
| 210                 | 97                        | 100            | 102                            |
| 210                 | 98                        | 100            |                                |
| 210                 | 110                       | 100            |                                |
| 550                 | 104                       | . 100          | ,                              |
| 550                 | 104                       | 100            |                                |

# TABLE II

12 -2

)

# Intermediate Shell. B2802-2 (Ht. AO516-2)

| Temperature<br>(°F) | Energy<br><u>(ft-lbs)</u> | <u>% Shear</u> | Upper Shelf<br><u>(ft-lbs)</u> |
|---------------------|---------------------------|----------------|--------------------------------|
| -100                | 4.5                       | 5              |                                |
| -100                | 4.5                       | 5              |                                |
| -100                | 5.5                       | 5              |                                |
| - 50                | 11                        | 18             |                                |
| - 50                | 12.5                      | 18             |                                |
| - 50                | 14                        | 18             |                                |
| 10                  | 30                        | 33             |                                |
| 10                  | 35                        | 38             |                                |
| 10                  | 47                        | 40             |                                |
| 60                  | 52                        | 57             |                                |
| 60                  | 64                        | 58             |                                |
| 60                  | 66                        | 55             |                                |
| 110                 | 70                        | 100            |                                |
| 110                 | 86                        | 84             |                                |
| 110                 | 100                       | 100            |                                |
| 210                 | 86                        | 100            |                                |
| 210                 | 102                       | 100            | 97                             |
| 210                 | 104                       | 100            |                                |
| 550                 | 92                        | 100            |                                |
| 550                 | 110                       | 100            |                                |

### TABLE III

### Intermediate Shell, B2802-3 (Ht. B5391-2)

| Temperature<br>(°F) | Energy<br><u>(ft-lbs)</u> | <u>% Shear</u> | Upper Shelf<br><u>(ft-lbs)</u> |
|---------------------|---------------------------|----------------|--------------------------------|
| -100                | 2.5                       | 5              |                                |
| -100                | 4                         | 9              |                                |
| -100                | 4                         | 5              |                                |
| - 50                | 9                         | 13             |                                |
| - 50                | 9                         | 14             |                                |
| - 50                | 8                         | 16             |                                |
| 10                  | 30.5                      | 29             |                                |
| 10                  | 31                        | 34             |                                |
| 10                  | 32                        | 38             | •                              |
| 60                  | 40                        | 42             |                                |
| 60                  | 47                        | 47             |                                |
| 60                  | 60                        | 55             |                                |
| 110                 | 72                        | 74             |                                |
| 110                 | 77                        | 81             |                                |
| 110                 | 92                        | 87             |                                |
| 210                 | 85                        | 100            |                                |
| 210                 | 97                        | 100            | 95                             |
| 210                 | 102                       | 100            |                                |
| 550                 | 95.5                      | 100            |                                |
| 550                 | 100                       | 100            |                                |

# TABLE IV

# Lower Shell, B2803-1 (Ht. AO495-2)

| Temperature<br>(°F) | Energy<br>(ft-lbs) | % Shear | Upper Shelf<br><u>(ft-lbs)</u> |
|---------------------|--------------------|---------|--------------------------------|
| 40                  | .30                | 37      |                                |
| 40                  | 22                 | 37      |                                |
| 75                  | 34                 | 54      |                                |
| 75                  | 37.5               | 46      | · ·                            |
| 160                 | 68.5               | 100     |                                |
| 160                 | 71.5               | 100     |                                |
| 160                 | 66                 | 100     | 72                             |
| 210                 | 64.5               | 100     |                                |
| 210                 | 74                 | 100     |                                |
| 210                 | 77                 | 100     |                                |

# TABLE V

# Lower Shell, B2803-2 (Ht. C1397-3)

| Temperature<br>(°F) | Energy<br><u>(ft-lbs)</u> | <u>% Shear</u> | Upper Shelf<br><u>(ft-lbs)</u> |
|---------------------|---------------------------|----------------|--------------------------------|
| -100                | 3                         | 5              | •                              |
| -100                | 4                         | 5              |                                |
| -100                | 3                         | 5              |                                |
| - 20                | 43.5                      | 35             |                                |
| - 20                | 51.5                      | 40             |                                |
| - 20                | 34                        | 40             | •                              |
| 40                  | 40                        | 45             |                                |
| 40                  | 48                        | 60             |                                |
| 40                  | 35                        | 45             |                                |
| 75                  | 77                        | 30             |                                |
| 75                  | 71                        | 30             |                                |
| 75                  | 69                        | 30             |                                |
| 100                 | 82                        | 80             |                                |
| 100                 | 84                        | 80             |                                |
| 100                 | 78                        | 80             |                                |
| 210                 | 96                        | 100            | 94                             |
| 210                 | 89                        | 100            |                                |
| 210                 | 97                        | 100            |                                |

# TABLE VI

ç

# Lower Shell, B2803-3 (Ht. A0512-2)

| Temperature<br>(°E) | Energy<br><u>(ft-lbs)</u> | <u>% Shear</u> | Upper Shelf<br><u>(ft-lbs)</u> |
|---------------------|---------------------------|----------------|--------------------------------|
| -20                 | 9                         | 5              |                                |
| -20                 | 7                         | 5              |                                |
| -20                 | 11                        | 9              |                                |
| 40                  | 29.5                      | 32             |                                |
| 40                  | 24                        | 33             |                                |
| 40                  | 17.5                      | 21             |                                |
| 75                  | 34                        | 41             |                                |
| 75                  | 41                        | 47             |                                |
| 75                  | 33.5                      | 42             |                                |
| 125                 | 54                        | 47             |                                |
| 125                 | 59                        | 51             |                                |
| 125                 | 46                        | 41             |                                |
| 160                 | 65                        | 100            |                                |
| 160                 | 66                        | 100            |                                |
| 160                 | 59.5                      | 100            |                                |
| 210                 | 62                        | 100            | 68                             |
| 210                 | 70                        | 100            |                                |
| 210                 | 65                        | 100            |                                |
| 210                 | 70.5                      | 100            | · · ·                          |
| 210                 | 68                        | 100            | ι.                             |
| 210                 | 70                        | 100            |                                |

## TABLE VII

# Surveillance Weld Metal

| Temperature<br>(°F) | Energy<br><u>(ft-lbs)</u> | <u>% Shear</u> | Upper Shelf<br><u>(ft-lbs)</u> |
|---------------------|---------------------------|----------------|--------------------------------|
| -150                | 5                         | 5              | ,                              |
| -150                | 2                         | 5              |                                |
| -150                | 4.5                       | 9              |                                |
| -100                | 29                        | 20             |                                |
| -100                | 18                        | 18             |                                |
| -100                | 25.5                      | 23             |                                |
| - 50                | 35                        | 40             |                                |
| - 50                | 33                        | 47             |                                |
| - 50                | 32.5                      | 40             |                                |
| - 35                | 78                        | 64             |                                |
| - 35                | 69.5                      | 67             |                                |
| - 35                | 54.5                      | 40             |                                |
| - 20                | 87                        | 77             |                                |
| - 20                | 82                        | 77             |                                |
| - 20                | 89                        | 81             |                                |
| 10                  | 100                       | 81             |                                |
| 10                  | 105                       | 82             |                                |
| 10                  | 113.5                     | 100            |                                |
| 60                  | 115                       | 100            |                                |
| 60                  | 119                       | 100            |                                |
| 60                  | 121.5                     | 100            |                                |
| 160                 | 124                       | 100            | 120                            |
| 160                 | 125                       | 100            |                                |
| 160                 | 112                       | 100            |                                |
|                     |                           |                |                                |

Ç



Docket No. 50-286

Mr. Ralph E. Beedle Executive Vice President - Nuclear Generation Power Authority of the State of New York 123 Main Street White Plains, New York 10601

Dear Mr. Beedle:

SUBJECT: ISSUANCE OF AMENDMENT FOR INDIAN POINT NUCLEAR GENERATING UNIT NO. 3 (TAC NO. M76970)

The Commission has issued the enclosed Amendment No. 124 to Facility Operating License No. DPR-64 for the Indian Point Nuclear Generating Unit No. 3 in response to your application transmitted by letter dated June 11, 1990, as supplemented June 18, 1991, February 11, 1992, and May 13, 1992.

The amendment extends the expiration date of the facility operating license from August 13, 2009, to December 12, 2015.

A copy of the related Safety Evaluation is enclosed. A Notice of Issuance will be included in the Commission's next regular biweekly <u>Federal Register</u> notice.

Sincerely,

4. 2. Co.

Nicola F. Conicella, Project Manager Project Directorate I-1 Division of Reactor Projects - I/II Office of Nuclear Reactor Regulation

Enclosures: 1. Amendment No.124 to DPR-64 2. Safety Evaluation

cc w/enclosures: See next page

207220-2-26