May 23, 1989

Docket No. 50-247

LICENSEE: Consolidated Edison Company of New York, Inc.

FACILITY: Indian Point Nuclear Generating Unit No. 2

SUBJECT: MEETING MINUTES REGARDING MAY 16, 1989 MEETING TO DISCUSS PROPOSED LICENSE AMENDMENT FOR AUTHORIZING AN INCREASE IN LICENSED POWER FOR INDIAN POINT UNIT 2 (TAC NO. 69542)

A meeting was held in the NRC One White Flint offices in Rockville, Maryland, with Consolidated Edison and NRC staff representatives to discuss the licensee's proposal for increasing the licensed thermal power of Indian Point Unit 2 from 2758 MWt to 3071.4 MWT. The meeting was requested by the licensee. Enclosure 1 is a list of the meeting attendees.

The licensee submitted a request for the proposed license amendment on September 30, 1988. Supplemental information supporting this amendment request was submitted on January 10, 1989, March 30, 1989, and April 14, 1989. Enclosure 2 is a copy of the licensee's handout that was discussed at the meeting. Staff representatives asked several questions regarding the submittals. The licensee provided clarification for the staff concerns. The staff will continue its review of the proposed license amendment.

Original signed by

Donald S. Brinkman, Senior Project Manager Project Directorate I-1 Division of Reactor Projects I/II

Enclosures: As stated

cc: See next page

[5/16/89 IP-2 MTG SUMMARY]

3905310180

	:PDI-1	:PDI-1	•	•		•
الرج: NAME :CVogan	:DBrinkman:vr	: RCapra	:	:	:	•
DATE : 5 / 13/89						

OFFICIAL RECORD COPY

meno-

DISTRIBUTION FOR MEETING SUMMARY DATED:

May 23, 1989

Docket file NRC PDR Local PDR JSniezek PDI-1 Rdg RCapra DBrinkman OGC EJordan BGrimes ACRS (10) H. B. Clayton PSwetland, RI CVogan AToalston CLiang MHum **CSellers** JMinns SRhow JGuo ALee **MChatterton**

1

Mr. Stephen B. Bram Consolidated Edison Company of New York, Inc.

cc:

Mayor, Village of Buchanan 236 Tate Avenue Buchanan, New York 10511

Ms. Donna Ross New York State Energy Office 2 Empire State Plaza 16th Floor Albany, New York 12223

Mr. Jude Del Percio Manager of Regulatory Affairs Consolidated Edison Company of New York, Inc. Broadway and Bleakley Avenue Buchanan, New York 10511

Senior Resident Inspector U.S. Nuclear Regulatory Commission Post Office Box 38 Buchanan, New York 10511

Mr. Brent L. Brandenburg
Assistant General Counsel
Consolidated Edison Company of New York, Inc.
4 Irving Place - 1822
New York, New York 10003 Indian Point Nuclear Generating Station 1/2

Director, Technical Development Programs State of New York Energy Office Agency Building 2 Empire State Plaza Albany, New York 12223

Mr. Peter Kokolakis, Director Nuclear Licensing Power Authority of the State of New York 123 Main Street White Plains, New York 10601

Mr. Walter Stein
Secretary - NFSC
Consolidated Edison Company of New York, Inc.
4 Irving Place - 1822
New York, New York 10003

Regional Administrator, Region I U.S. Nuclear Regulatory Commission 475 Allendale Road King of Prussia, PA 19406

Charlie Donaldson, Esquire Assistant Attorney General New York Department of Law 120 Broadway New York, New York 10271

ENCLOSURE 1

MEETING ATTENDEES

May 16, 1989 meeting to discuss Licensee's Proposal to Increase Licensed Power for Indian Point 2.

NAME	TITLE	ORGANIZATION
D. S. Brinkman A. Toalston Chu-yu Liang Martin Hum C. D. Sellers Steve Kline Alex Ball Jr.	Senior Project Manager Electrical Engineer Sr. Nuclear Engineer Materials Engineer Sr. Materials Engineer Sr. License Engineer Sr. License Engineer	NRC/NRR NRC/NRR NRC/NRR/SRXB NRC/NRR/EMTB NRC/NRR/EMTB Bechtel Serch Westinghouse
B. Samardzich	Senior Engineer	Nuclear Safety Westinghouse
Louis Liberatori Roy F. Kim, Jr.	Mgr. Safety Assessment Senior Engineer	Nuclear Fuels Con Edison Westinghouse
M. P. Osborne	Mgr. Transient Analysis	Sys. Engr. Westinghouse Nuclear Safety
Gary G. Ament	Engineer	Westinghouse Nuclear Safety
J. J. Akers	Engineer	Westinghouse Nuclear Safety
J L. Minns R. H. McFetridge	Health Physicist Mgr. Systems Integration	NRC/DRPEP/NRR Westinghouse Sys. Engr.
Getachew Tesfaye Paul Malik Sang Rhow J. S. Guo Arnold Lee Jude Del Percio	Engineer Manager Reactor Systems Engineer Mechanical Engineer Mgr. Regulatory Affairs & Safety Assess.	Con Edison Con Edison NRC/ICSB/NRR NRC/SPLB/NRR NRC/EMEB/NRR Con Edison
M. Chatterton	Nuclear Engineer	NRC/SRXB/NRR

INDIAN POINT UNIT 2 STRETCH RATING PRESENTATION TO NRC

MAY 16, 1989

AGENDA

INTRODUCTION & OVERVIEW STRETCH PROGRAM RESULTS STRETCH PROGRAM SUBMITTALS CLOSING

- J. DELPERCIO
- P. MALIK
- G. TESFAYE
- J. DELPERCIO

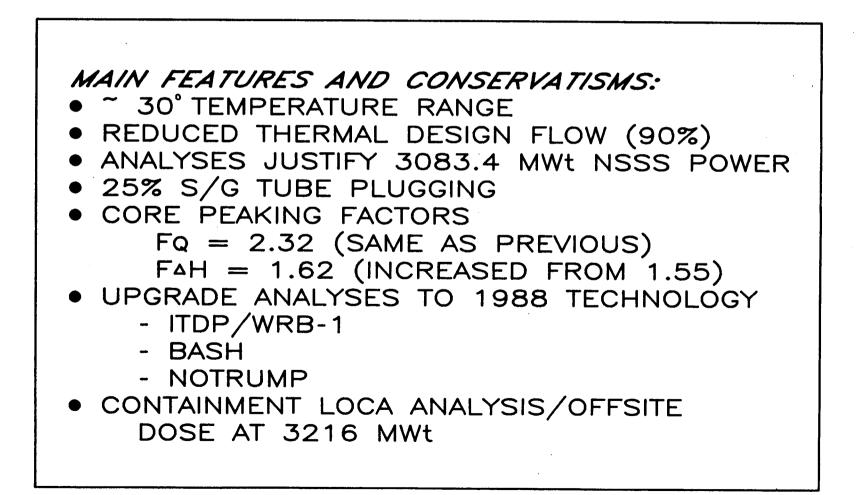
PROVIDES NUMEROUS BENEFITS

- 3083.4 MWt
- IMPROVE OPERATING FLEXIBILITY
- INTEGRATED WITH OPTIMIZED FUEL PROGRAM
- INCORPORATES 25% TUBE PLUGGING MARGIN

THE PROGRAM EVALUATED ESSENTIALLY ALL FACETS OF THE NSSS & BOP **SYSTEMS**

COMPONENTS

ACCIDENTS


OPERATIONS

REVIEW PROCESS IN PROGRESS

- LIMITING ANALYSES SUBMITTED SEPT. 30, 1988
- FINAL ANALYSIS AND DOCUMENTATION SUBMITTED MARCH 30, 1989
- OPERATE AT 3083.4 (12/25/89)

NRC - CON EDISON COOPERATION IS ESSENTIAL

INDIAN POINT UNIT 2 STRETCH RATING PROGRAM

INDIAN POINT UNIT 2 PARAMETERS

STRETCH	RATING	RANGE		
STRETCH	RATING	RANGE		
CURRENT OPER	RATION			
DESIGN BASIS				
NSSS POWER (MWt)	2770	2770	3083.4	3083.4
REACTOR FLOW (GPM/LOOP)	89,700	89,700	80,700	80,700
TCOLD (*F)	543.0	521.8	515.8	547.7
Tavg (°F)	569.5	549.0	549.0	579.7
Тнот (°F)	596.0	578.8	582.2	611.7
T No Load (°F)	547.0	547.0	547.0	547.0
_ △ T (° F)	53.0	57.0	66.4	64.0
PRIMARY SIDE PRESSURE (PSIA)	2250	2250	2250	2250
STEAM PRESSURE (PSIA)	776	700	650	768
STEAM FLOW (LB.M/HR. \times 10 ⁶)	11.66	11.66	13.25	13.31
ASSUMED S/G TUBE PLUGGING (%)	0	7	25	25

INDIAN POINT UNIT 2 STRETCH RATING PROGRAM NSSS SAFETY AND OPERATIONS CONSIDERATIONS

- PRIMARY AND SECONDARY PLANT PARAMETERS
- LOSS OF COOLANT ANALYSIS
- NON-LOCA ANALYSES
- STEAM GENERATOR TUBE RUPTURE
- FUEL DESIGN
- MASS AND ENERGY RELEASES
- LOCA HYDRAULIC FORCING FUNCTIONS
- TECHNICAL SPECIFICATIONS
- CONTROL AND PROTECTION SYSTEM SETPOINTS
 AND ALARMS
- CONTROL SYSTEMS OPERATING MARGINS
- PLANT PROCEDURES
- OPERATOR TRAINING

INDIAN POINT UNIT 2

STRETCH RATING ANALYSES - FUEL

• FUEL FEATURES

- 15X15 OPTIMIZED FUEL (ZIRC MIXING VANE GRIDS)
- EXTENDED BURNUP FEATURES
- THIMBLE PLUG DELETION

SUBMITTED SEPTEMBER 30, 1988, "APPLICATION FOR AMENDMENT TO LICENSE TO INCORPORATE WESTINGHOUSE OPTIMIZED FUEL ASSEMBLIES (OFA)", AS SUPPLEMENTED BY LETTER DATED DECEMBER 30, 1989 AND CLARIFIED BY LETTERS DATED JANUARY 20, FEBRUARY 7, MARCH 3, AND APRIL 14, 1989.

- WORK TO SUPPORT FUEL DESIGN CHANGE PERFORMED @ STRETCH RATED CONDITIONS
 - COVERS BOTH EXISTING AND NEW FUEL
 - USE IMPROVED THERMAL DESIGN PROCEDURE FOR DNB EVALUATIONS
 - PAD 3.4 FOR FUEL ROD DESIGN (WCAP-11873-A)
 - 3071.4 MWt

FSAR Licensing Basis Non-LOCA Accident Analyses for Stretch Rating

	Accident	Analysis	Acceptance Criteria
Α.	Uncontrolled Control Rod Withdrawal from a Subcritical Condition	OFA	DNB limit (non-ITDP)
Β.	Uncontrolled Rod Cluster Control Assembly Withdrawal at Power	OFA/Stretch	DNB limit (ITDP)
C.	Rod Cluster Control Assembly Drop	OFA	DNB limit (ITDP)
D.	Chemical and Volume Control System Malfunction	OFA	Operator action time - Refueling: 30 min. - Startup: 15 min. - At Power: 15 min.
Ε.	Loss of Reactor Coolant Flow / Locked Rotor	OFA/Stretch	DNB limit (ITDP) RCS pressure % Fuel rods in DNB Clad temperature
F.	Startup of an Inactive Reactor Coolant Loop	N/A	
G.	Loss of External Electrical Load	Stretch	DNB limit (ITDP) RCS pressure
Н.	Loss of Normal Feedwater	Stretch	No water relief from pressurizer
Ι.	Reduction in Feedwater Enthalpy	Stretch	DNB limit (ITDP)
J.	Excessive Load Increase Incident	Stretch	DNB limit (ITDP)
Κ,	Loss of All AC Power to the Station Auxiliaries	Stretch	No water relief from pressurizer
L.	Rupture of a Steam Pipe (Core Response) (M&E release to Containment)	Stretch	DNB limit (non-ITDP) Containment press.
М.	Rupture of a Control Rod Drive Mechanism Housing	OFA	Clad temp., % fuel péllet melt, fuel pellet enthalpy

LARGE BREAK LOCA ANALYSIS WITH BASH

Ł

CORE POWER: 3071.4 MWT

. . .

STEAM GENERATOR TUBE PLUGGING: 25%

RANGE OF OPERATING TEMPERATURES: $579.7^{\circ}F \le T_{AVG} \le 549^{\circ}F$

MODEL 44 OR 44F SG

15X15 OFA FUEL

90% THERMAL DESIGN FLOW

 $F_0 = 2.32$

F-DELTA-H = 1.62

RESULTANT PEAK CLAD TEMPERATURE: 2039°F

SMALL BREAK LOCA ANALYSIS WITH NOTRUMP

CORE POWER: 3071.4 MWT

STEAM GENERATOR TUBE PLUGGING: 25%

RANGE OF OPERATING TEMPERATURES: $579.7^{\circ}F \le T_{AVG} \le 549^{\circ}F$

MODEL 44 OR 44F SG

15X15 OFA FUEL

90% THERMAL DESIGN FLOW

 $F_0 = 2.32$

F-DELTA-H = 1.65

RESULTANT PEAK CLAD TEMPERATURE: 1218.5°F

INDIAN POINT UNIT 2 STRETCH RATING PROGRAM NSSS SYSTEMS CONSIDERATIONS

- PRESSURIZER & S/G SAFETY VALVE SYSTEM
- CHEMICAL & VOLUME CONTROL SYSTEM
- RESIDUAL HEAT REMOVAL SYSTEM
- EMERGENCY CORE COOLING SYSTEM
- CONTAINMENT COOLING SYSTEM
- SERVICE WATER AND COMPONENT COOLING SYSTEM

INDIAN POINT UNIT 2 STRETCH RATING PROGRAM NSSS EQUIPMENT DESIGN CONSIDERATIONS

- COMPONENT DESIGN TRANSIENTS
- REACTOR VESSEL
- REACTOR VESSEL INTERNALS
- CONTROL ROD DRIVE MECHANISMS
- STEAM GENERATORS
- PRESSURIZER
- REACTOR COOLANT PUMP
- REACTOR COOLANT SYSTEM PIPING
- AUXILIARY EQUIPMENT

INDIAN POINT UNIT 2 STRETCH RATING PROGRAM BOP CONSIDERATIONS

- PLANT DESIGN FOR 3216
- BOP SYSTEM OPTIMIZED AND GUARANTEED AT 3083.4 MWt
- FI ROTOR
- NEW ELECTRICAL GENERATOR
- ALL BOP SYSTEMS WERE REVIEWED
 - FEEDWATER SYSTEM
 - STEAM SYSTEM (INCLUDES SAFETY SYSTEM)
 - CONDENSATE SYSTEM

RERATINGS ARE NOT NEW TO THE NRC

2

PLANT	OPERATING FLEXIBILITY		THOT REDUCTION	TUBE PLUGGING	FUEL CHANGE
NORTH ANNA		*		*	
SALEM 1		*			
CALLAWAY	*	*		*	*
BYRON/BRAIDWOOD			*	*	
DONALD C. COOK	*	*	*	*	
VIRGIL C. SUMMER	*		*	*	*
INDIAN POINT 2	*	*	*	*	*

CONSOLIDATED EDISON INDIAN POINT UNIT 2 NSSS STRETCH RATING - 3083.4 MWT LICENSING REPORT

- SECTION TITLE
- 1.0 INTRODUCTION
- 2.0 COMPARISON OF PARAMETERS
- 3.0 ACCIDENT ANALYSES
 - 3.1 NON-LOCA EVENTS
 - 3.2 LOCA EVENTS
 - 3.3 HOT LEG SWITCHOVER
 - 3.4 HYDRAULIC FORCES
 - 3.5 LONG TERM LOCA CONTAINMENT INTEGRITY ANALYSIS
 - 3.6 SHORT TERM SUBCOMPARTMENT ANALYSIS
 - 3.7 MAIN STEAMLINE BREAK CONTAINMENT INTEGRITY ANALYSIS
 - 3.8 STEAM GENERATOR TUBE RUPTURE
 - 3.9 RADIATION SOURCE TERMS
 - 3.10 FUEL HANDLING ACCIDENT
- 4.0 NSSS COMPONENTS IMPACT
 - 4.1 BASIS FOR EVALUATION
 - 4.2 EQUIPMENT REVIEWS
 - 4.2.1 Reactor Vessel
 - 4.2.2 Reactor Internals
 - 4.2.3 Reactor Coolant Pumps
 - 4.2.4 Control Rod Drive Mechanisms
 - 4.2.5 Reactor Coolant Piping & Supports
 - 4.2.6 Pressurizer
 - 4.2.7 Steam Generators
 - 4.2.8 Nuclear Fuel
 - 4.2.9 Auxiliary Systems Components
 - 4.3 CONCLUSIONS

CONSOLIDATED EDISON INDIAN POINT UNIT 2 NSSS STRETCH RATING - 3083.4 MWT LICENSING REPORT

ł

SECTION TITLE

5.0

NSSS SYSTEMS REVIEW

5.1 FLUID SYSTEMS

- 5.1.1 Reactor Coolant System
- 5.1.2 Chemical and Volume Control System
- 5.1.3 Safety Injection System
- 5.1.4 Containment Spray System
- 5.1.5 Auxiliary Coolant System
- 5.1.6 Waste Disposal System
- 5.1.7 Sampling System
- 5.1.8 Isolation Valve Seal Water System

5.1.9 Electrical Power Requirements

- 5.2 REACTOR CONTROL SYSTEMS
 - 5.2.1 Turbine Trip Without Reactor Trip
- 5.3 REACTOR PROTECTION SYSTEMS
- 5.4 OTHER SYSTEMS
- 5.5 CONCLUSIONS

6.0 NSSS/BOP INTERFACES

- 6.1 INTRODUCTION
- 6.2 AUXILIARY FEEDWATER SYSTEM
- 6.3 COMPONENT COOLING WATER INTERFACE REQUIREMENTS
- 6.4 MAIN STEAM SYSTEM
- 6.5 MAIN FEEDWATER SYSTEM

CONSOLIDATED EDISON INDIAN POINT UNIT 2 NSSS STRETCH RATING - 3083.4 MWT LICENSING REPORT

- SECTION TITLE
- 7.0 REFERENCES

APPENDIX 1 NON-LOCA ANALYSIS RESULTS

A1.1	LOSS OF NORMAL FEEDWATER
A1.2	LOSS OF ALL AC POWER TO THE STATION AUXILIARIES
A1.3	LOSS OF EXTERNAL ELECTRICAL LOAD
A1.4	EXCESSIVE LOAD INCREASE
A1.5	RUPTURE OF A STEAM PIPE
A1.6	EXCESSIVE HEAT REMOVAL DUE TO FEEDWATER SYSTEM
	MALFUNCTIONS
A1.7	UNCONTROLLED ROD CLUSTER CONTROL ASSEMBLY BANK
	WITHDRAWAL AT POWER
A1.8	LOSS OF REACTOR COOLANT FLOW
A1.9	LOCKED ROTOR
A1.10	REFERENCES
APPENDIX 2	MAIN STEAM LINE BREAK CONTAINMENT INTEGRITY
	ANALYSIS RESULTS

APPENDIX 3 LONG TERM LOCA CONTAINMENT INTEGRITY ANALYSIS RESULTS NRC SUPPORT FOR REVIEW/APPROVAL

OF INDIAN POINT UNIT 2 STRETCH

RATING IS ESSENTIAL

LIMITING CONDITIONS SUBMITTAL9/30/88FINAL LICENSE AMENDMENT SUBMITTAL3/30/89CYCLE 10 START-UP6/2/89NRC APPROVAL OF STRETCH RATING10/31/89PLANT OPERATION AT STRETCH12/25/89