William J. Cahill, Jr. Vice President

8004800 411

Consolidated Edison Company of New York, Inc. 4 Irving Place, New York, N Y 10003 Telephone (212) 460-3819

April 28, 1980

Re: Indian Point Unit No. 2 Docket No. 50-247

Director of Nuclear Reactor Regulation ATTN: Mr. A. Schwencer, Chief Operating Reactors Branch No. 1 Division of Operating Reactors U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Dear Mr. Schwencer:

This letter is an update of my letter of October 16, 1979 to Mr. William Gammill (NRC) on the subjects of Degraded Grid Votlage and Adequacy of Station Electric Distribution Systems Voltages. We informally received additional modifications to the questions on February 21, 1980 and discussed them with your staff on February 28, 1980. Attachment 1 includes the results of our computer studies as modified by the discussions with your staff.

We have committed to add new undervoltage relay protection to the 480 volt buses as discussed on page 13 of the Attachment. These relays will be installed during the next maintenance/ refueling outage currently planned to commence in December 1980. We will propose changes to our technical specifications as necessary to accommodate these changes after the new relays have been installed.

Should you or your staff have any questions, please contact us.

Very truly yours,

William J. Cahill, Jr. Vice President

attach.

cc: William Gammill, Acting Assistant Director for Operating Reactors Projects Division of Operating Reactors

U. S. Nuclear Regulatory Commission Washington, D. C. 20555

ATTACHMENT 1

RESPONSE TO NRC REQUEST FOR ADDITIONAL INFORMATION

- Degraded Grid Voltage
- Adequacy of Station Electric Distribution Systems Voltages

Consolidated Edison Company of New York, Inc. Indian Point Unit No. 2 Docket No. 50-247 Facility Operating License No. DPR-26 April, 1980 Question 1: "Review the electric power systems to determine analytically if, assuming all onsite sources of AC power are not available, the offsite power system and the onsite distribution system is of sufficient capacity and capability to automatically start as well as operate all required safety loads."

-1-

Response 1: In our previous response dated August 29, 1977, we demonstrated the capacity and capability of our offsite power system to auto start and operate our safety loads. Sections 1b, 1c & 1f of that response are now modified to meet the NRC guidelines for voltage drop calculations and changes in system conditions and are included in this submittal as 1a, 1b & 1c.

> Since the 13.8kV power supply is considered an alternate back-up offsite supply to 480V buses 2A, 3A, 5A & 6A, the voltage drop calculations required for the normal offsite power supply (138kV) were performed for the 13.8kV system. This case is included in 1a of the modified responses.

Question la: "The voltage used to describe the grid distribution system is usually "nominal" value. Define the normal operating range of your grid system voltage and the corresponding voltage values at the safety related buses and equipment."

Response la: The normal operating range of the voltages at the Buchanan Substation buses are 347 to 358kV for the 345kV system and 136 to 142kV for the 138kV system. Table 1 lists the corresponding voltages at safety buses and at the terminals of our safety loads. These results are very conservatively based on a maximum plant auxiliary load of 37MW with the unit at power and all station loads assumed to be fed from the station auxiliary transformer.

> The motor voltage drops are based for running on full load current and for starting on locked rotor current as specified by the equipment manufacturer.

Select safety related motor operated valves were chosen for this study. The following criteria was used as a basis for selection of those valves with the greatest voltage drop from the MCC to the MOV terminals:

- Valves with the largest motor sizes
- Valves with high locked rotor current
- Valves with high cable impedance.

-2-

<u>Table 1</u>

-3-

Full Plant Load Including All Safeguards Are

Supplied from the 138kV Offsite Power Supply

138kV Bus Voltage		136kV to	• 141kV
6.9kV Bus 1, 2, 3, 4, 5 & 6 Volt	ages	6.9kV	(Held by Automatic LTC)
Bus 2A	. 956 PU	459 Volts	
	Running	Starting	Required Voltage
Component Cooling Pumps 22	451	419	368*
Safety Injection Pump 22	453	426	352*
Containment Recir. Fan 23	446	388	352*
Service Water Pump 22	451	411	352*
Bus 3A	.967 PU	464 Volts	
	Running	Starting	Required Voltage
Component Cooling Pump 23	456	423	368*
Residual Heat Removal Pump 21	457	423	368*
Containment Recirc. Fan 24	450	389	352*
Service Water Pump 25	455	413	352*
Charging Pump 22	458	429	393**
Auxiliary Feedwater 21	455	410	352*
<u>Bus 5A</u>	.951 PU	456 Volts	
	Running	Starting	Required Voltage
Component Cooling Pump 21	449	423	368*
Safety Injection Pump 21	450	425	352*
Recirc. Pump 21	443	383	352*
Containment Spray Pump 21	449	419	368*
Containment Recirc. Fan 21	449	415	352*
Containment Recirc. Fan 22	444	391	352*

	Table 1	(Cont'd.)	
Bus 5A	.951 PU	456 Volts	
	Running	Starting	Required Voltage
Service Water Pump 21	448	406	352*
Service Water Pump 24	447	403	352*
Charging Pump 21	450	422	393**
Bus 6A	.955 PU	458 Volts	
	Running	Starting	Required Voltage
Residual Heat Removal Pump 22	452	421	368*
Safety Injection Pump 23	453	428	352*
Recirc. Pump 22	446	386	352*
Containment Spray Pump 22	451	418	368*
Containment Recirc. Fan 25	442	370	352*
Service Water Pump 23	450	409	352*
Service Water Pump 26	449	405	352*
Charging Pump 23	452	422	393**
Auxiliary Feedwater 23	448	400	352*
MCC 26A (Fed from Bus 5A)	.937 PU	450 Volts	
MOV 730	Running	Starting	Required Voltage
Motor Operated Valve 730	433	392	352**
Motor Operated Valve 746	425	380	352**
Motor Operated Valve 894A	426	380	352**
MCC 26B (Fed from Bus 6A)	.941 PU	452 Volts	
	Running	Staring	Required Voltage
Motor Operated Valve 894B	429	386	352**
Motor Operated Valve 731	432	382	352**
Motor Operated Valve 747	428	382	352**

* Voltage values refer to .8PU of the motor voltage rating. Calculations were performed to determine starting torque at this voltage. Since the actual starting voltage is higher for the motors listed, it was not necessary to determine the absolute minimum starting voltage.

** Minimum starting voltage to develop required starting torque.

-4-

ļ

í.

Ś

Response 1a: The 13.8kV backup preferred power supply from Buchanan can be used (Cont'd.)

-5-

to supply buses 2A, 3A, 5A & 6A. The voltage at Buchanan is maintained by automatic load tap changers and ranges from 14.1kV to 13.7kV depending on load. The running and startup voltages are listed in Table 2. The calculations were made considering the lowest voltage at the Buchanan 13.8kV Substation.

Table 2

All Safeguards Are Supplied from the 13.8kV Offsite Power Supply

13.8kV Bus Voltage	.933 PU	13.7kV	
6.9kV Bus 2, 3, 5 & 6	.968 PU	6.68kV	
Bus 5A	.917 PU	440 Volts	
	Running	<u>Start Up</u>	Required Voltage
Component Cooling Pump 21	433	407	368*
Safety Injection Pump 21	434	409	352*
Recirc. Pump 21	427	367	352*
Containment Spray Pump 21	433	403	368*
Containment Recirc. Fan 21	433	399	352*
Containment Recirc. Fan 22	428	375	352*
Service Water Pump 21	432	390	352*
Service Water Pump 24	431	387	352*
Charging Pump 21	434	406	393**
Bus 6A	.921 PU	442 Volts	
	Running	Start Up	Required Voltage
Residual Heat Removal Pump 22	436	405	368*
Safety Injection Pump 23	437	412	352*
Recirc. Pump 22	430	370	352*
Containment Spray Pump 22	435	402	368*

		-6-		
• •		<u>Table 2</u> (C	ont'd.)	
	Bus 6A	.921 PU	442 Volts	
		Running	<u>Start Up</u>	Required Voltage
	Containment Recirc. Fan 25	426	354	352*
	Service Water Pump 23	434	393	352*
	Service Water Pump 26	433	389	352*
	Charging Pump 23	436	406	393**
	Auxiliary Feedwater 23	432	385	352*
	MCC 26A (Fed from Bus 5A)	.902 PU	433 Volts	
		Running	Starting	Required Voltage
	Motor Operated Valve 730 (MOV)	416	375	352**
	Motor Operated Valve 746	408	364	352**
	Motor Operated Valve 894A	409	366	352**
	MCC 26B (Fed from Bus 6A)	.907 PU	435 Volts	
		Running	Starting	Required Voltage
	Motor Operated Valve 894B (MOV)	412	372	352**
	Motor Operated Valve 731	415	369	352**
	Motor Operated Valve 747	411	369	352**
	Bus 2A	.923 PU	443 Volts	
		Running	Starting	Required Voltage
	Component Cooling Pump 22	435	403	368*
	Safety Injection Pump 22	437	410	352*
	Containment Recir. Fan 23	430	372	352*
	Service Water Pump 22	435	395	352*
	Bus 3A	.934 PU	448 Volts	
		Running	Starting	Required Voltage
	Component Cooling Pump 23	440	407	368*
t	Residual Heat Removal Pump 21	441	407	368*
	Containment Recirc. Fan 24	434	373	352*

	Table 2 (Cont'd.)		
<u>Bus 3A</u>	.934 PU	448 Volts	
Service Water Pump 25	Running	Starting	Required Voltage
Service Water Pump 25	439	397	352*
Charging Pump 22	442	413	393**
Auxiliary Feedwater 21	439	394	352*

* Voltage values refer to .8PU of the motor voltage rating. Calculations were performed to determine starting torque at this voltage. Since the actual starting voltage is higher for the motors listed, it was not necessary to determine the absolute minimum starting voltage.

** Minimum starting voltage to develop required starting torque.

-7-

		-6-		
		<u>Table 2</u> (C	ont'd.)	
t	Bus 6A	.921 PU	442 Volts	
		Running	Start Up	Required Voltage
	Containment Recirc. Fan 25	426	354	352*
	Service Water Pump 23	434	393	352*
	Service Water Pump 26	433	389	352*
	Charging Pump 23	436	406	393**
	Auxiliary Feedwater 23	432	385	352*
	MCC 26A (Fed from Bus 5A)	.902 PU	433 Volts	
		Running	Starting	Required Voltage
	Motor Operated Valve 730 (MOV)	416	375	352**
	Motor Operated Valve 746	408	364	352**
	Motor Operated Valve 894A	409	366	352**
	MCC 26B (Fed from Bus 6A)	.907 PU	435 Volts	
(Running	Starting	Required Voltage
	Motor Operated Valve 894B (MOV)	412	372	352**
	Motor Operated Valve 731	415	369	352**
	Motor Operated Valve 747	411	369	352**
	<u>Bus 2A</u>	.923 PU	443 Volts	
		Running	Starting	Required Voltage
	Component Cooling Pump 22	435	403	368*
	Safety Injection Pump 22	437	410	352*
	Containment Recir. Fan 23	430	. 372	352*
	Service Water Pump 22	435	395	352*
	Bus 3A	.934 PU	448 Volts	
		Running	Starting	Required Voltage
	Component Cooling Pump 23	440	407	368*
х ,	Residual Heat Removal Pump 21	441	407	368*
	Containment Recirc. Fan 24	434	373	352*

.

Question 1b:

"The transformers utilized in power systems for providing the required voltage at the various system distribution levels are normally provided with taps to allow voltage adjustment. Provide the results of an analysis of your design to determine if the voltage profiles at the safety related buses are satisfactory for the <u>full load</u> and no load conditions on the system and the range of grid voltages."

-8-

Response 1b: <u>138kV Offsite Power Supply</u> - For the full load condition on the station buses and the lowest nominal 138kV grid voltage (136kV) the station auxiliary transformer with their load tap changers will maintain 1.0 per unit voltage on the 6.9kV station buses. Corresponding voltage values at the safety related buses and equipment are identified in the response to item 1a. For the highest nominal grid voltage (142kV) with no load on the station buses the station auxiliary transformer with their load tap changers will maintain 1.0 per unit voltage on the 6.9kV station buses the station auxiliary transformer with their load tap changers will maintain 1.0 per unit voltage on the 6.9kV station buses. The 480 volt switchgear and motor control center voltages will also be maintained at 480 volts (one (1) per unit). The nominal upper range for 440 volt equipment is 484 volts.

<u>13.8kV Offsite Power Supply</u> - The 13.8kV backup preferred power supply system maintains the voltage at Buchanan at or below 14.1kV by means of load tap changers. The analysis for all safeguards supplied from the 13.8kV is shown in Table 2. At no load the maximum 480 volt system voltage will be 1.02 per unit or 490 volts. Prior to any loads being connected this voltage is 1.4% above the nominal upper range. However, when load is applied, the voltage will drop. The overvoltage would have negligible effect on equipment life and will not cause equipment damage. Question 1c: "Assuming operation on offsite power and degradation of the grid system voltage, provide the voltage values at the safety related buses corresponding to the maximum value of grid voltage and to the degraded grid voltage corresponding to the undervoltage trip setpoint."

-9-

Response 1c:

service transformer feeds to 480 volt safeguard buses 2A, 3A and 6A) is tripped by a CV-7 inverse time undervoltage relay set at 81% (5580 volts); minimum trip time is 31 seconds (relay plus auxiliary timer). Theoretically, if we assume this voltage on the 6.9kV buses, the voltages on the safety related buses will be 361 volts (.752 per unit) at 480 volt switchgear 2A, 368 volts (.767 per unit) at 480 volt switchgear 3A, 347 volts (.723 per unit) at 480 volt switchgear 5A, 360 volts (.751 per unit) at 480 volts switchgear 6A, 337 volts (.703 per unit) at 480 volt motor control center 26A and 352 volts (.733 per unit) at 480 volt motor control center 26B.

The load on each of the six (6) 6.9kV buses (including station

However, it must be recognized that this is not a credible condition and no conceivable contingency on the offsite grid system could result in sustained voltage conditions as low as these.

Degraded Grid Voltage Condition

The worst 138kV degradation would result if Buchanan 345/138kV transformer TA5 is lost coincident with loss of 138kV feeder 96952 and associated Millwood 345/138kV transformer TA1. The Buchanan North 345kV voltage would be 1.04 per unit immediately after these losses. Generator voltage regulator response would immediately restore the generator terminal voltage to normal and buses 2A and 3A will return to .956 and .967 as shown in Table 1. The Buchanan 138kV voltage will be .945 per unit. The station

auxiliary transformer tap changer will adjust the voltage on buses 5 and 6 to one (1) per unit and the voltage on the 480 volt system will be the same as in Table 1.

Maximum Grid Voltage Condition

The maximum 138kV grid voltage on a contingency is 145.7kV. At no load the 6.9kV bus voltage would rise to 1.029 per unit. The resulting motor control center voltages would also rise 2.9% from nominal to 494 volts. This is 2.2% above the nominal upper range for the 440 volt equipment. It must be recognized that as load is applied the voltage will drop within the acceptable upper voltage tolerance level. The overvoltage would have a negligible effect on equipment life and will not cause equipment damage. Question 2: "Assuming the loss of all onsite power, demonstrate that the distribution system is designed to automatically initiate all safety loads without the need for manual shedding of any electric loads in the event of (1) an anticipated transient (such as a unit trip) or (2) an accident (such as LOCA)."

Response 2: The electric power system has adequate capacity to automatically initiate all required safety loads for a LOCA and a safe unit shutdown without the need for manual shedding of any electric loads since the transformer from the 138kV preferred power supply is rated at 20 MVA while the minimum required LOCA loads are approximately 4 MVA.

> The electric power system has adequate voltage at the equipment terminals to automatically initiate all required safety loads for a LOCA and a safe unit shutdown without the need for manual shedding of any electric loads since we examined the double contingency which produces the lowest 138kV grid voltage, .945 per unit, which resulted in satisfactory voltages on the 480 volt system as shown in Response lc. A unit trip at Indian Point No. 2 would only reduce the 138kV grid voltage to 1.005 per unit. The loads in our analysis are the worst case (LOCA) loads on the 480 volt system.

Question 3: "Protection of safety loads from undervoltage conditions must be designed to provide the required protection without causing voltages in excess of maximum voltage ratings of safety loads and without causing spurious separations of safety buses from offsite power."

Response 3:

Our response to Question 1 shows the maximum and minimum voltages which will be applied to our safety equipment and demonstrate that the required protection is provided without causing voltages in excess of maximum voltage ratings of safety loads. The following is a description of the voltage relays and the stand-

ard operations performed.

Each of the four (4) 6.9kV buses (1,2,3 & 4) normally fed from the generator output has an SV type instantaneous undervoltage relay set at 75% (517V). Operation of any two (2) of the four (4) relays (when above 10% reactor power level) initiates a reactor scram after a 46 cycle delay. This will transfer buses 1 & 2 via bus 5 to the 138kV grid and buses 3 & 4 via bus 6 to the 138kV grid. In addition, each of the six (6) 6.9kV buses has a CV-7 inverse-time undervoltage relay set at 81% (5580V), with a minimum trip time (voltage declines to zero) of 31 seconds.

The CV-7 relay will automatically strip all associated loads on the 6.9kV bus including the station service transformer supplying the 480V safeguard bus (failure of any one relay would affect only its associated bus).

Each of the four (4) 480V safeguard buses is equipped with CV-7 inverse-time undervoltage relays set at 46% (220V) which automatically strip their associated loads (except safeguard MCC 26A & 26B)

-12-

Response 3: (Cont'd.)

after a minimum delay of 120 cycles (voltage declines to zero).

All 480V safeguard buses are equipped with additional relays (same as above) which are used for starting the emergency diesel generators and sequencing required loads. Transient disturbances on the grid or the 6.9kV system (faults, etc.) which could produce 480V bus voltages approaching zero will be cleared in less than 39 cycles. For this condition the undervoltages relays on the 6.9kV buses are set a 31 seconds which is 48 times longer than the 39 cycle protection. This large margin will prevent spurious separations of safety buses from offsite power.

In addition, we will install on each of the 480V safeguard buses two (2) redundant qualified relays to trip the service transformer feeder and isolate the 480V buses under degraded voltage conditions. The proposed undervoltage protection will be Class 1E, meet IEEE 279-1971 and have coincident logic. The proposed settings is .8PU for 60 seconds. The .8PU setpoint is equivalent to a .86 setpoint on the 6.9kV bus when the 480V buses are loaded.

Industry standards and operating experience have shown this setting would protect equipment while minimizing spurious trips from transient grid disturbances and the starting of large motors on the 6.9kV buses.

In accordance with our previous conversation with the NRC staff, this combination of relays provides complete independence between the functions of isolating safeguard buses from offsite power disturbances and tripping/sequencing of all 480V safeguard loads.

-13-

Question 4: "NRC should be informed of any required sequential loading of any portion of the offsite power system or the onsite distribution system which is needed to assure that power provided to all safety loads is within required voltage limits for these safety loads."

Response 4: Our analysis shown in Tables 1 & 2 was performed assuming maximum load being applied to the offsite power system and in accordance with your guidelines for voltage drop calculations. Question 5: "The adequacy of the onsite distribution of power from the offsite circuits shall be verified by test to assure that analysis results are valid. Please provide (1) a description of the method for performing this verification and (2) the test results."

Response 5: We shall verify the accuracy of our calculations by making voltage and current measurements at the buses and safety related MCC's while the plant is in operation. We shall then use these currents values to calculate voltages by the same technique used in our other analysis. These voltages will be compared to the actual voltage measurements at the 480 volt buses and MCC 26A & 26B. Our calculations will be considered satisfactory if the computed voltages are equal or below the measured voltage. This will verify the accuracy of our procedure and demonstrate our calculations for the other cases are correct. The test results will be forwarded upon completion.

-15-

Question 6: "Review the electric power systems to determine if there are any events or conditions which could result in the simultaneous or consequential loss of both required circuits to the offsite network to determine if any potential exists for violation of GDC-17 in this regard."

Response 6:

Both offsite sources are available immediately and are independently routed. The 138kV source is an overhead line and the 13.8kV source is an underground cable. Therefore, the simultaneous loss of both required circuits to the offsite network is improbable and no potential exists for violation of GDC-17 in this regard.