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~ . Method of Analysis

For small breaks less than 1.0 ft~ the WFLASH (1, 2, 3) digital com-
puter code is employed to calculate the transient depressurization of

the Reactor Coolant System as well as to describe the mass and enthalpy
of flow through the break.: |

The WFLASH program used in the analysis of the small break loss of
coolant accident is an-extension of the FLASH-4(4) code developed at

the Westinghouse Bettis Atomic Power Laboratory. The WFLASH program
permits a detailed spatial representation of the Reactor Coolant System.

The reactor coo1antvsystem is nodalized into volumes interconneéted by
“flowpaths. The broken loop is modeled explicitly with the intact Toops

Jumped into a second loop. The transient behavior of the system is
determined from the governing conservation equations of mass, energy

and momentum applied throughout the system. A detailed description of
WFLASH -is given in Reference 1. The modifications to WFLASH and LOCTA-IV
that represent the October, 1975 Small Break Model version utilized for
this analysis is given in References 2 and 3.

The use of WFLASH in the analysis involves, among other things, the.
representation of the reactor core as a heated control volume with the

associated bubble rise model to permit a transient mixture height cal-
culation., The multi-node capability of the program enables an explicit
- and detailed spatial representation of various system components., In
particular it enables a proper calculation of the behavior of the loop

seal during a loss-of-coolant transient.

For these ana]ysés, the SI delivery considers pumped injection flow
which is depicted in Figure 1 as a function of RCS pressure. This

figure represents injection flow from the SI pumps based on performance
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curves degraded 5 percent from the design head. The 25 second delay
includes time required for diesel startup and loading of the safety

C

“injection pumps onto the émergency buses. The effect of RHR pump flow

is not considered since their shutoff head is lower than RCS pressure

during the time portion of the transient considered here. Also minimum

Safeguards Emergency Core Cbo]ing System capability and operability has

been assumed in these analyses.

Peak clad temperature analyses are performed with the LOCTA-IV (5, 2, 3)

code which determines the RCS pressure, fuel rod power history, steam

flow past the uncovered part of the core and mixture height history.

Figure 2 presents the hot rod power shape utilized to perform the small
break analysis presented here. This pbwer shape was chosen because it
provides an appropriate distribution of powgk versus core height and
also local power is maximized in the upper regions of the reactor core
(10" to 12'). This power shape is skewed to the top of the core with
the peak local power. occurring at the 10" core elevation. |

This is 1imiting for small break analysis because of the core uncovery

process- for small breaks. As the core uncovers, the cladding in the
upper elevation of the core heats up and is sensitive to the local power
at that elevation. The cladding temperatures in the lower elevations
of,the‘coré, below the two phase mixture height, remains low. The'peak

clad tempefature occurs above 10 feet.

Results

This section presents results of the limiting break size in terms .of
highest peak clad temperature. The worst small break size is 6 inches.
The depressurization transient for this break is shown in Figure 3,

The extent to which the core is uncovered is shown in Figure 4.



During the earlier part of the small break transient, the effect of the
break flow'is not strong enough to overcome the flow maintained by the

reactor coolant pumps through the core as they are coasting down fol-
| lowing reactor trip. Therefore, upward flow through the core is main-
tained. The resultant heat transfer cools the fuel rod and clad to.
very near the coolant temperatures as long as the core rémains covered
by a two phase mixture. '

The maximum hot spot clad temperature calculated during the transient
s 1263°F including the effects of fuel densification as described in
Reference 6 and the reactor vessel ﬁpper héad temperatureVWas‘dssumed
to be equal to the hot leg temperature. The peak clad temperature |
transient is shown in Figure 5 fok the worst break size i.e., the break
with the highest peak clad temperature. The steam flow rate for the
worst break is shown on Figure 6. When the mixture level drops below
the top of the core, the steam flow computed in WFLASH provides cooling
to the upper portion of the core. The rod film coefficiént for this
phase of the transient is given in ‘Figure 7. The hot spot f]uid'tem-

ﬁerature for the worst break is shown in Figure 8,

The core poWer (dimensionless) transient following the accident (rela-
tive to reactor scram time) is shown in Figure 9. '

The reactor scram time is equal to the reactor trip signal time plus
3.4 sec for signal transmission and rod insertion. During this period
the reactor is conservatively assumed to operate at rated power.

Additional Break Sizes

Additional break sizes were analyzed. Figures 10a and 10b present the
RCS pressure transient for the 4 and 8 inch breaks respectively and

Figures 11a and 11b present the volume history (mixture height) plots
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for both breaks. The peak clad temperatures for both cases are less
than the peak clad temperature of the 6 inch break. The peak clad tem-
peratures for both cases are given in Figures 12a and 12b. ’

Conclusions _
'Ana1yses presented in this report show that the high head portion of
the Emergency Core Cooling System, together with accumulators, provide
sufficient core flooding to keep the calculated peak clad temperatures
below required ljm{ts of 10CFR50.46. Hence, adequate protection is
afforded by the Emergency Core Cooling System in the event of a small
break loss of coolant accident. | |
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Start o

Reactor Trip Signa1:(Sec.)

Top of Core Uhcovered (Sec.)
Accumu]afor Injection Begins (Sec.)
PCT Occurs (Sec.)

Top of Core Covered (Sec.)

TABLE 1

TIME SEQUENCE OF EVENTS

4 in.

10.25

82.
186..

147,
227,



Case Analyzed

TABLE 2

- SMALL BREAK RESULTS '

- 4 IN

Results 4
Peak Clad Temp. °F 1222. 1263 990
Peak Clad Temp. Location Ft. 12.0 11.0 _ 10.75
Local Zr/Hp0 Rxn(max)% : 0.333 0.33 : - 0.32
Local Zr/H,0 Location Ft. 11.75 11.0 ' , 10.75 .
Total Zr/Hp0 Rxn 7% <0.3 <0.3 . <0.3
Hot Rod Burst Time sec N/A N/A ' N/A
Hot Rod Burst Location Ft. N/A N/A . N/A -

Calculation
Core Power Mwt 102% of 3025.
Peak Linear Power kw/ft See Figure 2
Accumulator Mater Volume (ft3 per accumulator) 800,

Fuel region + cycle analyzed Cycle Region

Unit 3 2 4
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FIGURE 2

Core Power Distribution
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FIGURE 3

RCS Depressurization Transient
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Peak Clad Temperature
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- Core Steam Flowrate
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FIGURE 7

Rod Film Coefficient
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© FIGURE 9

Core Power After Reactor Trip
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FIGURE 10a

RCS‘Depressurization Transient
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FiGUREWb

'RCS Depressurization Transient
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| FIGQRE 12a

. .Peak Clad Temperature
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FIGURE 12b

| -_4Peak Clad Temperature
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