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Introduction

This study was. initiated from a conception such that it
would be beneficlal to ebnstruct a visionary mode! and
computationaltools which could {nform us of the weld
propertics, such as, the strength, hardness and toughness
etc. immediately after input of the welding conditions.
The wefd propertles are affected in 2 complex mannor
by an extremely large number of factors, such as the
various material properties and welding conditios, so it
is very difficult to constrnct.at analytical model to
facilitate the above. The weld properties depend fiot only
upon variables which can be determined as test condi-
tions, such as welding speed and specimen material
composition but afso uponr many potential variables
which are difficnlt to be quantified or of which we are not
aware, . :
Neural nctworks have the characteristics. such that
various nonlinear relations are eombined and extremely
complex functions can bé constructed, so this is an ideal

technique to deal with coinplex phenomena.! In principle, -

any set of complex functions can be approximated within
a certaln range of errors. Thus, to date a number of
attempts have been made to usc this technique to control,
for cxample, domestic appliances and automatic
welding 1™

The authors percelved this flexibility of functions and
conceived the construction of a system which could
evaluate the weld properties using the neural networks;
subsequently, in June 1998, the Ad hoc Research Coramit-
“tec for the "Estimation of Weld Propertics by Bayesian
Neural Networks’ was inaugurated.’

Information on neural networks to date indicates:that
data digpersion afid errors due to curve fitting had been
dealt with ambiguously, and 50 it has not been possible to
apply this technique to problems where data dispersion is
crucial, such as.the prediction of weld properties. Accord-
ingly, in order. to solve this problem for this study, 2
system which can be applied to predict weld properties
has been constructed by the use of new type neural
networks with the coneept of Bayesian estitation® which
was added to conventional neural networks. It became
feasible by the vise of this technique to predict error bars to
the predicted results, This research committes was in-
itially expected to last for 1 year but an oxtension of a
further year was later agreed; In this way, sufficient results
were thought to be achieved so that numerous papers and

verbal presentations were put forward,” 4

An outline of neural networks was given in the previons
report;® Consequently, in this report, Bayesian techniques
which could not be introduced previously due to the
limited space is introduced as a contral feature.

Neural network structure

As Introduced in the previous report®, the structure of the
neural network employed in this study is shown in Fig. 1.
With the input of experimental cohditlons, sieh ag the
heat input and the chemical composition of specimen
materfal, the output, that is the weld properties, can be
estimated. Hidden units can be employed between the
input and the output and complex funpctions can be
oxpressed by controlling the values of these. The relation-
ship between the respectivainput x, and the hidden unith,
of the arder | can be generally expressed by a nonlinear
function ag in tlie following:

fy = tanh(}:w{j’;(j + 6{") ’
J

The relationshii: botween the hidden unit &, and thé
output y is lingdr as in the following;

RN

y = XwiPhy + 64 [2]
i

The weight coefficient w and the threshold value # for
these functions are optimised using database, as described
Jater. As can be seen, with the neural network it is possible
to construet various complex fumctions including, in
general, nonlinear relationships, with the combination of

nonlinear functions.
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1 Structura of the neural natwark.
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A
The weight eoeflicient w and the threshold value ¢ are
determined so that the following entrgy function becomes
a minimum,15:16

M(w) = fE, + aEy (31

Where the parameter vectot w is made up of the weight
coefficient w and the threshold value 0. Tn addition, « and
B, as described later, are parameters which controf the
complexity of the model. The energy function consists of
the error function By, and the regularizer Ey,.

The error function is the total of the squarc of the
difference betweon the estimated value and the experi-
meftal value as Indlcated in the following.

o) = 2y (xiw) - 62 [41

Where {x™, ™)} is the data set and x™ indicates the input

variable and t™ shows the experimental data, in other .

words, tho target. m is the label of the combination of the
data and the target. When the model is well consistent
with the dats, in other words, y(x™; w} is close to t™, the
errot function By, becomes minimum,

2, 18 the total of the square of the weight coeffioient.?

B, (W)= 71w} )
25

These regularizers serve to make y(x™;w) become a
smooth function of x, This term facilitates to leszen w and
also lessens the tendency for the model to become
overfitting to the data dispetaion. Overfitting means that,
ag a result of an attempt of fitting to all the dispersed data,
the result Is the construction of an over-complex function;
teference should be made to this aspect which was
presented in the previous report.

Method to determine the Bayesian
copfficients «, § and the number of hidden
units

When f is excessively large, the degree of freedom of a
{function increases and overfitting is likely to oceur.
Conversely, when o Inoreases, a function becomes too
smooth and doesnot fit to thodata. As can be seen, w and §
are very important parateters; howover, from results of
testing the nevral network to date, these values had been
cstablished in a nearly appropriate mannet.

With the use of the Bayesian estimation, the statistical
implications ean be glven for the determination of o and
as in the following. First, under the conditions where a
cerfain data D would oceur, the conditional probabitity
piwiD) wherea cextain conbination wis likely to occut for
the weight coeflicient w and the tbreshold value @ can be
expressed, according to the Bayesian equation as in the
following.S

pDIw)ply)
(D)

Here, in order to determine the most probable weight
cocfficient w and the threshold value 6, piw|D) should be

pwID) = 6

Tous droits:de propxlchsimclleuucﬂc tegttvés, Reptodutsion; représmtauon ot d:fﬁ:sian intmmcs Lo du u

made to become maxjmum. According to equation (6),
there 13 the following relationship

B(wiD) ccp(D|w)p(w) M
50, the probability is obtained on the assumption’ that -
there is a dispersion in accordance with the normal
distribution for each of the dght side. The normal

disteibution can be expressed by equation (8), supposing
the average is m and the standard deviation s 0.

—(x —m)?
202

f(x) = (8]

exp
o
Thus, the dispersion of the data in the caso when the
weight cocfiicient w and the threshold value 0 are
expressed by a certain value w, can be expressed by the
following equation.

H P 5y)

m=}

p(Dlw) =

i 1 X -
=5 exp(" 503 z_;l(ay(x‘"",w) — ’)z) 0]
At this time x™ is the input variable and 1 is the
experimental data, in other words, a target; 7y, indicates
the normalised constant and o, is.the data dispersion.
Here, after substitutiog equation (4) for equation (9),
equation (10) is obtained.
1 1

pDlw) = 7 exp(— P En) (10]
On the other hand, there is a dispersion even with p(w)
and its probability can be expressed by the following

equation.
L exp{ —= w12
p(w) zw: p 2o.€v

1 1
H~Z—‘; exp( ol )

Here, equation [5] was substitutcd. Zw is the normalised

constant and ¢, is the dispersion from the real value of w.
When equations (10) and (1) were substituted for

equation (7), the following equation was obtained.

[t]

PWIDIeEp(DIvp(Y) = 5
W

ol

Consequently, in order to make p{wD) a maximum,

[12]

1 1 .
(;__zED + ?Ew should be made mininum. In equation

[3, by comparison with the
M(w) = fE; + oE,, which is to be made minimum, it Is
evident that o and B bear the [‘ollowmg stanstlcal Jmplica-

tion.
i 1

o e o —
# oy 0%

[13]

Thus, fram this, accurate training becomes possible.

energy  function ¢
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2 Varlationsin errors due to the number of hidden units: (a) Fora
common neural natwork, (b) For a neural network where the
Bayesian astimetion is employed.

As can be seen, control parameters ¢ and § control the
comploxity of the model but the complexity of the madel
can he controlled by varying the number of hidden units,
The latter method I3 employed in the genmeral noural
network. The more coraplex is the input and output
relationship, the mote hidden units are required; however,
as described In the previous report®, when the number of
hidden units ave increased excessively in ordet to raise the
accuracy of estimation, overfitting will occur and the
aceuracy will conversoly deteriorate,

The following method was considered: in order to
ptevent overfitting to a miniroum, hslf of the data is
randomly selected and training is applied to the neural
network using the selected data only, the remaining balfis
employed as tesi'data in order to examine the optimisa-
tion of the model. The magnitude of crrox in the training
data set and test data set varies, ag indicated in Fig. 2, with
increasing numbers of hidden units. The difference be-
tween the estimated value and the experlmental valye of
the training data simply desreases with increasing number
of hidden nnits, but the difference in the test data at first
falls and then increasss. A large error when there are less
hidden units indicates the impossibility of fitting due to

the functions being too simiple and an increased test error

when thete are many hidden units indicates that functions
are overfitting. Accordingly, the best model is selected for
the case where the test exror takes the minimum value and
this mode] is employed for prediction of weld propertics.
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3 Helationship between the number of models end errers in
committee model.

The increase due to overfitting is very small with the use
of the Bayesian estimation, In principle, overfitting will
not occur even though the fnumber of hidden units is
infinite, if the data in use complies with the Gaussjan
distribution and the Bayesian model is fully opumxsmj 18
In other words, the variation is given as seen in Fig 2 (b).

Commijttee model

In order to improve further the estimation accuracy, a
committee model, which consists of & combination of
muitiple models, was employed in this study.

Tn nenral networks, although little different from the
optimised model in respeot of errots, models which have
eutirely different structures, for example, many models
with varied numbcrs of hidden vnits can be formed. Thus,
by a combination of these, defects of each single model can
be mutually compensated for and the estimation accuracy
can be improved.

First of all, using ceror funetions, these models are to be
ragked as the optimised model, the second optimised
modcl, the third optimised mode! and so on, Then, using
equation [ 147, the models are successively complemented
from the optimised mode! and the number of models to be
complemented is to be increased until the error becomes
minimal; the model in which the error reaches mininumis
to be selected as the committee model which is then to be
used for the estimation.

{t4]

The error bar of the committce model is calculated using
equation [15].

o =—-—zm

l=(

1y
q l;(}’x ¥ | [15]
‘where N: the number of models, yi,oi : the estimated values
and the error bars of individual models,

Figure 3 shows the results, as an example, of the
copstruction of the committee model of tensile strength, It
is evident from the figure that the models up to the fourth
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have decreasing errors by combibation with the committe
model but after complementing the models of the fifth and
thereafter, the errors conversely start to jucrease. Subse-
quently, under the circumstances, & combination of the
optimised model to the fourth optitnised model is selected
as the committee model. The predicted error on this
occasion proves to bo as much as 254 % less compared
with the case of the optimised model on its own.
Accordmgly, the estimation accuracy markedly improves
by the use of the committee model,

Weld properﬂes

When an appropriate ncural network is constructed, the
properties can be esthmated under optional conditions.
The systems were developed in this stucy for the stecl weld
metal qlrongth fracture appearance ftansition tempera-
ture (FATT) and hardness, The weld properties can be
varied by vadations to the welding conditions in addition
to the materlal proportics, so they are affected by an
extremely ldege numbér of parameters. However, the
more complicated the heural networks, the more they
were able to demonstrate their eficacy; the weld proper-
ties were:a very appropriate subject of neural network
application. Using this system each individval property
can bo prediéted, together with the error bar, following
input of numerial values as the input parameters, a8
ibdicated in Tables 1-3 of the previous report®.
Furthertodye, in the neural network, every input data
should Be expressed numerically. Subsequently, for
cxamp]c, the welding process alse influences the extent of
the weld metal reheat and greatly influences the mechan-
ical properties, so it is necessary to define this numerically
as mput variables so that it can be readily procossed for
engineering 1pphcanons. This was hardly taken into
considerationfor the conventional regression analysis;
however, in tlus study, 4 welding processes, as shown in
Fig. 4, werei.classified by 2 parameters which are the
number of welding passes and the riwmber of welding
sides. As can be seen, for cxamples where there i3 no

significance in the numerical value itsclf, it is necessary to
etaploy values which were represented Ly 2 values, in
other words, either O or 1 in order to prevent prediction
accuracy from degrading. In addition, on this occassion, |t‘
is desirable to kesp the number of parameters to the'
minimum,.

In a neural network trairiing itsell requires time, but
once appropriately structured, prediction can be com-
pleted in a short time under optional conditions. In
addition, using this noural network, the significance of
individual factors can be estimated by the use of sW as
indicated in equations [11] and [13],'7*% When the value
of oW is large, the input factor xelat{ng to this canses a
relatively sigoificant change to the output. Such evalu-
ation is regarded to be very usefyl in optimiqatmn of
welding conditions and compqsztxon

“The publication.of data is as desceribed in the prekus

report® but typical prediction results are shown in
references 1014, Here, in this paper, prediction was
carried out with the range of prediction 1 o, in other
words, with a confidence limit of 67 %. The magnitude of
the crror bar varies greatly according to the input
conditions. In this manncr, for examples where the
computet has no confidence in its prediction, the error bar
is enlarged and it bas the effect to stimulate the user and
draw the user’s dttention to the result. Under the-cireum-
stanecs, the-cause is either the data dispersion under the
conditions of use or insufficent data,
Conclusions !
As described so fax, neural networks have a capacity to
reconstruct the data bass and it is believed that it will be
possible to hand information down to the next gedoration
of this feature by making full use of the accumulated data
base and know-how.

By incorporating the Bayesian cstimation into conven-
tional neursl networks, the predlcnon of weld properties
was attempted and adequate results in welding enginear-
ing were obtained. In addition, as one of the characteristics
of this prediction, it was was identified that unteliableness
of estimation can be displayed by the magnitude of the
srrot bar, According to this system, the magnitude of the
error bar depends upon the input conditions (test condi-
tions)at the time; for example, where thé data dispersion is
farge and reliability is low, the crror bar is displayed as
large and the computer itsel{is equipped with a functjon
which can display the reliability of its prediction.

- The prediction of this error bar substantially extended
the application scope of neural networks and allowed the
possibility of application to the reconstruction.of data
bases of varions properties. Neural networks are very
iowerful taols and can reconstruct various data bases, not
necessarily just those of weld properties. Anyone who has
an interest is invited to contact us,

I
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