PROFILOMETRY OF STEAM GENERATOR TUBES

Consolidated Edison Company of New York, Inc. Indian Point Unit No. 2 Docket No. 50-247 August, 1980

REGULATORY DOCKET FILE COPY

8009030618

PROFILOMETRY OF STEAM GENERATOR TUBES

CONTENTS

OBJECTIVE 1.0

CURRENT STEAM GENERATOR TUBE EXAMINATION PRACTICE 2.0

2.1 Dent Identification and Measurement

2.2 Finite Element Analysis

2.3 Tube Gaging

2.4 Preventive Plugging Programs

FIELD DATA 3.0

- 3.1 Indian Point 2 Support Plate Sample
- 3.2 Mechanical Tests
- 3.3 Tube Examination Data
- 3.4 Flow Slot Observations

4.0 PROFILOMETRY

- 4.1 Gaging Evaluation
- 4.2 Profilometry Probe4.3 Tube Strain Computation
- 4.4 Accuracy of Profilometry

INDIAN POINT 2 PROFILOMETRY EXAMINATION 5.0

- Typical Results 5.1
- 5.2 Analysis of Results
- 6.0 CONCLUSION AND RECOMMENDATIONS

APPENDICES

- Α. PROFILOMETER WEAR
- в. TUBE I.D. SCRATCHES
- с. CONVERGENCE STUDY
- ELASTIC TEST CASE D.
- COMPUTER SUBROUTINE FOR STRAIN CALCULATIONS E.
- **F** . COMPUTER SUBROUTINE FOR CALCULATING MAXIMUM BENDING STRAIN

PROFILOMETRY OF STEAM GENERATOR TUBES

1.0 OBJECTIVE

Con Edison programs developed to resolve the steam generator denting problem can be characterized broadly in two groups. One group of programs is aimed at alleviating the cause of denting by minimizing corrosion or by chemically removing the corrosion products in the tube/support plate annuli in the steam generator. The other group of programs is aimed at dealing with the effects of denting by developing a technique for continuing safe operation with the corroded steam generator.

The work described in this report falls into the latter category. A principal objective of this group of programs is to determine the strain in the steam generator tube wall because, as the strain increases, the susceptibility to stress corrosion cracking increases. It is believed that by tracking changes in tube strain, tubes becoming susceptible to cracking can be identified and preventively plugged. Further, by careful selection of tubes for plugging, it is believed that the service life of the steam generator can be extended, perhaps to the life of the plant.

2.0 / CURRENT STEAM GENERATOR TUBE EXAMINATION PRACTICE

2.1 Dent Identification and Measurement

When the denting phenomenon was identified, an eddy current technique for non-destructive examination of steam generator tubes was developed to measure the degree of denting. This was coupled to the pre-existing eddy current technique for detection of defects in tubing. Interpretation of eddy current signals was based on comparison with signals from standards. Tubes of the same alloy and dimensions as those in the steam generator were deformed locally by rolling to develop a known reduced outer diameter for an axial length equal to the thickness of the support plate. (Figure 2-1). Although denting could be quantified, in-service tube leaks could not be anticipated.

2.2 Finite Element Analysis

As a result of the high frequency of in-service tube leaks at Virginia Electric Power Co.'s Surry Units 1 and 2, and at Florida Power & Light Co.'s Turkey Point Units 3 and 4, Westinghouse developed a preventive plugging program. This was based on a finite element analysis which assumed that the support plate tube holes were growing larger as a result of the expansive force of the voluminous corrosion product in the tube/support plate annuli. Quasi-material properties were developed to represent the matrix of support plate material with tube holes and flow holes. The points of support of the plates against the steam

Figure 2-1

Calibration Standard for Eddy-current Dent and Defect Examination

generator wrapper were taken as the in-plane restraints, and a relationship was developed between support plate strain and tube strain. This led to a series of plate strain and tube strain contour maps which were used to identify those tubes believed to be susceptible to failure during the following service period.

The preventive plugging program was instituted at Surry and at Turkey Point, and resulted in plugging tubes in the first several rows in each steam generator. The program was successful in that the plants were able to resume operation for reasonable lengths of time without experiencing in-service tube leaks.

Some refinements in the assumptions used in the finite element analysis were made, and the analysis was repeated by Failure Analysis Associates as a contractor for Con Edison. Plate strain intensity and tube hoop-strain contour maps were developed (Figures 2-2, 2-3) but these were similar to the earlier Westinghouse maps.

2.3 Tube Gaging

As corrosion and denting progressed, it was found at many plants that in many instances the standard eddy current probe could not pass through the dented regions. Series of smaller diameter probes were selected so that examination of the more restricted tubes could be completed. At several plants, tubes which could not pass a 610 mil diameter probe were considered to be distorted severely enough to warrant preventive plugging. Further, the preventive plugging program described above was modified so that the analysis was used to identify tubes to be examined, and a

Figure 2-2

Steam Generator Plate Strain Intensity Contour Map at the Point where flow slots are closed 0.850".

Figure 2-3

Steam Generator Tube Hoop Strain Contour Map at the Point where flow slots are closed 0.850".

decision on plugging was based on the diameter of the largest probe that could pass through the tube. Percentages of tubes plugged at Surry and Turkey Point reached close to 20%, and decisions were made to replace the steam generators at those plants. (Steam generators at Surry Unit 2 were replaced during the period from February 1979 to December 1979.)

2.4 Preventive Plugging Programs

The current preventive plugging program at Surry and Turkey Point utilizes the Westinghouse finite element analysis plus tube gaging. The analysis is used to identify tubes to be examined. These are eddy current examined for defects, and gaged for size. Tubes containing defects, tubes restricted to a 610 mil diameter probe and surrounding tubes are plugged preventively.

At other plants, the finite element analysis is not used, and only those tubes containing defects and tubes restricted to some given diameter probe are plugged preventively. The limiting diameter ranges from 540 mils to 650 mils.

3.0 FIELD DATA

Indian Point 2 Support Plate Sample 3.1 In April 1978, as part of the chemical cleaning program, a sample of support plate consisting of 2 rows of 11 tubes each was removed from the lowest support plate in Steam Generator 23. (Figure 3-1). A location adjacent to a flow slot was decided upon because the finite element analysis predicted that this was a region of higher than average strain. Prior eddy current examination of the tubes in the sample had indicated that the tubes were free of defects, but were dented from two to five mils (radial). Only one of the tubes did not pass a standard 700 mil diameter probe, but did pass a 675 mil diameter probe. Mechnical measurements of the tubes after the sample was removed revealed that the tubes within the support plate holes were out-of-round by more than 0.050", and dents were not apparent. (Exact measurements are given in Table 3-1.) The flow holes were elongated, and several tube hole to flow hole ligaments were cracked.

3.2 Mechanical Tests

To improve understanding the behavior of the support plate, a number of mechanical tests were devised.

In one test, a 3/4" thick steel plate was machined to support plate dimensions containing a portion of a flow slot plus a 3 x 3 array of tube holes, as shown in Figure 3-2. The tube holes were mechanically expanded 0.050 to 0.090", causing the support plate segment to distort as shown. The flow slot edge distortion and the flow hole distortions are similar to conditions observed in the steam generators.

Figure 3-1

Support Plate Sample and Pieces as Removed from Steam Generator 23, April 1978.

Row 2 Tubes contained in Steam Generator Support Plate Sample

Tube No.	Eddy Current Dent, mils	Major I.D., mils	Minor I.D., mils
Row 2 Col. 3	5	807	708
Row 2 Col. 4	* .	812	697
Row 2 Col. 5	2	806	710
Row 2 Col. 6	2	809	719
Row 2 Col. 7	2	797	728
Row 2 Col. 8	3	753	745
Row 2 Col. 9	2	765	740
Row 2 Col. 10	2	788	735
Row 2 Col. 11	2	768	764
Row 2 Col. 12	2	775	757
Ro2 2 Col. 13	2	772	765

Note: Nominal I.D. of tubes as supplied as 775 mils.

*Restricted to standard 700 mil probe

ι,

---- ORIGINAL DIMENSION ---- DIMENSION AFTER DEFORMATION

DIMENSION AFIER DEFORMATION

Tube Hole Dimensions After Deformation

 Tube No.
 RIC1
 RIC2
 RIC3
 R2C1
 R2C2
 R2C3
 R3C1
 R3C2
 R3C3

 Major
 0.972
 0.958
 0.993
 0.990
 0.990
 0.992
 0.990
 0.991
 0.982

 Diameter

Figure 3-2 Simulated Support Plate Segment, as Deformed Mechanically.

In another test, tensile test bars were machined as shown in Figure 3-3. Under tensile load, the bars elongated a small amount before breaking but the breaking load and the percentage elongation of the short ligament region which was stressed beyond yield was within the range normally expected of mild steel. In bending, the ligament is very "soft", and the tensile test bar can easily be bent by hand, with the deformation being limited to the narrow "waist" of the ligament.

These tests illustrate the shortcomings of an idealized "matrix" as used in the finite element analyses to describe the behavior of the support plate.

3.3 Tube Examination Data

In reviewing the history of tubes that were found to be restricted to the standard 700 mil diameter probe, it was found that there does not appear to be an orderly progression in tube deformation, as determined either by eddy current examination or by probe gaging.

At Indian Point, average and maximum dent sizes have not changed significantly since 1976. (Table 3-2). However, the numbers of tubes found obstructed by eddy current probes have steadily increased. (Table 3-3).

Of twelve tubes plugged preventively after the 1979 examination because the 610 mil diameter probe could not pass, only one was obstructed to a 640 mil diameter probe a year before. Others previously passed either the standard 700 mil diameter probe or a

Figure 3-3

Test Bars Representing Steam Generator Support Plate Ligaments.

INDIAN POINT UNIT 2

			Dent Me (m	<u>asureme</u> ils)	nts			
<u>s. g</u> .	July	1979	March	1978	April	1977	197	76
	Avg	Max	Avg	Max	Avg	Max	Avg	Max
21	3.1	13		-	3.0	20	4.2	15
22	2.4	9		-	2.7	• 10	2.7	9
23	2.7	15	2.6	9			4.3	12
24	2.3	9	2.2	9			3.4	10

TABLE 3-3

INDIAN POINT UNIT 2

Tube Obstructed to 700 mil Dia. Probe

<u>S. G.</u>	<u>1979</u>	<u>1978</u>	<u>1977</u>	1976
21	27.7% (405)	-	0.02% (360)	0.01% (372)
22	19.0% (396)	-	0.01% (360)	0% (269)
23	26.0% (261)	10% (463)	_	0.02% (194)
24	26.4% (405)	14.8% (473)	-	O% (474)

Note: Percentages refer to sample examined, not to entire bundle. Numbers in parentheses are numbers of tubes examined. 675 mil diameter probe, giving no indication of possible future need for plugging. Similarly dents previously measured in these tubes were shallow, and the deepest ones (10 to 12 mils) appeared to be stable over a two year period. (Table 3-4)

Further, of 81 tubes continued in service after being found obstructed to the standard 700 mil diameter probe in the 1978 eddy current examination, 48 were unchanged in the 1979 examination, 10 were less severely restricted, and 23 were more severely restricted. (Tables 3-5 and 3-6)

3.4 Flow Slot Observations

For the past several years, the flow slots in the steam generator support plates have been observed to be deforming or "hourglassing". This hourglassing was taken to be, in some way, an integration or measure of all the in-plane distortion of the support plate due to the forces of the corrosion products.

However, in reviewing the history of flow slot hourglassing, it was found that there does not appear to be an orderly progression in deformation. Comparison of data taken at examination periods indicates that rates of change of individual flow slots are changing (Table 3-7). Furthermore, in any single support plate, there is a considerable variation in the degree of flow slot deformation. In Steam Generator 22, support plate 1, flow slots deformation ranges from 1/8" (3%) to 1 3/8" (50%) (Figure 3-4).

Finite element analyses of the effects of corrosion on support plate strain indicate that hourglassing of the flow slots is to be expected, but that the range of closures at any time is less than 10%.

INDIAN POINT UNIT 2

HISTORY OF TUBES PLUGGED IN 1979

	TUBE		PRIOR	DENT	MEASUREMENT	PRIOR	PROBE	PASSED
SG 2	l R15C90	13	mil -	4/77		700	mil -	4/77
SG 2	2 R2C17	4	mil -	4/77		675	mil -	4/75
	R2C20	4	mil -	4/77		700	mil -	4/77
	R2C32	4	mil -	4/77		700	mil -	4/77
	R2C33	4	mil -	4/77		700	mil -	4/77
	R34C17	9	mil -	4/77		700	mil -	4/77
SG 2	3 R41C32	9	mil -	3/78		640	mil -	3/78
	R41C36	12	mil -	3/78,	12 mil - 11/76	675	mil -	3/78
	R42C37	10	mil -	3/78,	12 mil - 11/76	675	mil -	3/78
	R43C38	4	mil -	3/78,	6 mil - 11/76	700	mil -	3/78
SG 2	4 R8C3	2	mil -	3/78		640	mil -	3/78
	R35C18	9	mil -	3/78		610	mil -	3/78

INDIAN POINT UNIT 2

Record of Restricted Tubes, S.G. 23

47 tubes were restricted to 700 mil probe in 1978

	1	<u>1978</u>				<u>1979</u>
28	passed	675	mil	probe	15	unchanged
					2	restricted to 675 mil probe
					1	removed
•					10	no data
16	passed	640	mil	probe	5 6 5	passed 675 mil probe unchanged no data
1	passed	610				no data

Two (2) did not pass 610 and were plugged in 1978

INDIAN POINT UNIT 2

Record of Restricted Tubes S.G. 24

70 tubes were restricted to 700 mil probe in 1978

		197	<u>78</u>				<u>1979</u>)				
55	passed	675	mil	probe	4	passed	700	mil	. pro	obe		
					21	unchang	jed					
			,		14	restric	ted	to	675	mil	probe	
					5	restric	ted	to	640	mil	probe	
					lí	no data	a					
7	passed	640	mil	probe	1	passed	675	mil	. pro	obe		
					4	unchang	jeu					
					2	restric	cted	to	610	mil	probe	
2	passed	610	mil	probe		unchang	ged					

Six (6) did not pass 610 and were plugged in 1978

INDIAN POINT UNIT 2

FLOW SLOT CLOSURE, STEAM GENERATOR 23*

Support Plate No. 1

			Closure,	inches (<u>+</u> 0.04)	
Date	Slot Ml	Slot M2	Slot M3	<u>Slot N3</u>	Slot N2	Slot Nl
June '76	0	0.13	0.25	0.13	0.13	0
April '78	0.30	0.33	0.69	0.69	0.43	0.43
September '78	0.37	0.13	0.76	-	0.45	0.21
June '79	0.31	0.34	0.93	0.89	0.58	0.56
					-	
Support Plate N	0.2					
April '78	0.55	0.54	0.95	0.95	0.71	0.61
September '78	0.80	0.62	0.90	-	-	0.33
June '79	0.91	0.86	1.03	1.11	0.75	0.65
Support Plate N	0.3				t.	
April '78	0.76	0.81	1.05**	0.95	0.99**	0.83
September '78	0.62	0.86	1.10**	0.94	0.90**	0.71
June '79	0.81	1.06	1.18**	0.92	1.23**	0.84
					•	

*

Range of data as given for this steam generator is typical of other steam generators.

** Crack in ligament adjacent to flow slot.

NOZZLE SIDE

MANWAY SIDE

Figure 3-4

Composite of Photographs of Flow Slots, Steam Generator 22, Support Plate No. 1, July, 1979

4.0 PROFILOMETRY

4.1 Gaging Evaluation

Analysis of the shapes of the tube stubs removed with the sample of support plate from the steam generator indicated that the maximum strain was of the order of 3% even though the tubes were significantly out-of-round, and a 700 mil diameter probe could not pass through one of the tubes.

Review of distorted tube shapes based on samples taken from many steam generators by several utilites clearly indicated that a decision to plug or not to plug a tube based on the minor diameter is not necessarily valid. For example, a tube may be ovalized to the point where its minor diameter is 610 mils, so that a 610 mil diameter probe would not pass and the strain would be only 3%; on the other hand, a tube may be distorted to a cardiod shape to the point where its minor diameter is 640 mils, so that a 610 mil diameter probe would pass easily, yet the strain would be as high as 20%. (Figure 4-1)

Therefore it was concluded that tube plugging criteria based on the diameter of a probe that could not pass through the tube would not provide assurance that in-service tube leaks would be prevented.

4.2 Profilometry Probe

In order to be able to determine the current condition of the steam generator tubes and to track changes in condition, the profilometry probe was developed with R&D funding.

OVAL 3% STRAIN 0.610 MINOR DIA.

IRREGULAR 20% STRAIN 0.648 MINOR DIA.

-- - -

Figure 4-1 Comparison of Possible Tube Deformations

The probe consists of eight cantilevered fingers designed to ride against the inside wall of the tube. The fingers are centered at 45 intervals around the probe. Each finger is strain gaged to monitor the deflection and thereby measure the radial distance from the center of the probe to the tube wall. The probe is also equipped with an eddy current coil to detect the presence of a tube support plate. The construction of the probe is shown in Figures 4-2, 4-3 and 4-4.

Appendices A and B describe tests conducted by B & W to evaluate the extent of wear on the profilometer fingers during use, and the possibility of scratching the inside wall of the steam generator tubes. With polished chrome plated fingers, it was found that wear was acceptable, and that the effect on the tube wall was only a burnishing of the oxide.

During a steam generator examination, the profilometry probe is fed into a selected tube via the Zetec manipulator and probe driver used for eddy current examination. The data developed is recorded on magnetic tape and on strip charts. The magnetic tape is subsequently used as input to the computerized data analysis program.

Figure 4-2

Profilometer Detail, Showing Strain Gages on Probe Fingers

Figure 4-3

Profilometer Sub-assembly Showing Probe Fingers and Mounting Assembly

Profilometer Assembly

4.3 Tube Strain Computation

The B & W tube strain computer program is an interactive program written in Fortran and incorporated in conjunction with a Calcomp Plotter.

The tube strain due to denting is considered to be composed of a circumferential membrane component and a bending component. The effect of axial strain is neglected.

The membrane component is defined as the change in the circumference divided by the original circumference.

The bending component is the local change of length compared to the initial length and this can be related to the curvature of the curve at the specific location. The curvature of a curve at a point is defined as the instantaneous rate of change of the slope angle with respect to arc length.

We have defined the bending strain by

$$\frac{L_1 - L_0}{L_1}$$

 $L = R_0 \Theta_0, L_1 = R_1 \Theta_1$ and Θ_0 = angle of the arc of the original curve where: a. 11 68 deformed curve θ1 R_0^{\perp} = radius of the arc of the original curve R1 = deformed curve L_0 = original arc length $L_1 = deformed arc length$

we also assumed that the L_M measured along the center of the tube wall does not change during bending deformation. Thus,

$$L_{M} = \begin{pmatrix} R_{O} + \frac{T}{2} \end{pmatrix} \Theta_{O} = \begin{pmatrix} R_{L} + \frac{T}{2} \end{pmatrix} \Theta_{1}$$

where: T = tube wall thickness

For the equation of a curve given in parametric form

$$x = f(t), y = g(t)$$

the curvature K is given by

$$K = \frac{\frac{dx}{dt}}{\left[\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2\right]^{\frac{3}{2}}}$$

For the profilometry concept, the curve is best described in polar coordinates:

$$c = \left\{ r \quad (\Theta) \cos \Theta, r \quad (\Theta) \sin \Theta \right\}$$

where $r(\Theta)$ is a piecewise cubic polynomial. Since $x = r(\Theta) \cos(\Theta)$, $y = r(\Theta) \sin \Theta$, $t = \Theta$, one obtains that the curvature is given by

$$K = \frac{2\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{\Theta}}\right)^2 - r\left(\frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}\mathbf{\Theta}^2} - r\right)}{\left[\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{\Theta}}\right)^2 + r^2\right]\frac{3}{2}}$$

Making use of the relations for L_M and the fact that $K_O = \frac{1}{R_O}$ and $K_1 = \frac{1}{R_1}$, the bending strain is related to the curvature by

$$\frac{L_{1} - L_{0}}{L_{0}} = \frac{\frac{T}{2} \left(R_{1} - R_{0} \right)}{R_{0} \left(\frac{R_{1} + \frac{T}{2}}{2} \right)} = \frac{\frac{T}{2} \left(K_{0} - K_{1} \right)}{1 + \frac{T}{2} K_{1}}$$

The interior profile of the deformed tube is analytically defined using a periodic cubic spline on the basis of eight equally spaced radial measurements. The circumferential strains are then defined on the basis of this deformed interior profile. The membrane strain is estimated by comparing the arc length of the spline with

the original inside circumference of the undeformed tube. The arc length of the spline is calculated using Gaussian quadrature. The bending strain is estimated by examining the radius of curvature of the spline curve at a set of equally spaced points to determine the location and magnitude of the largest bending strain.

Appendices C and D are B & W reports relative to the accuracy of the data analysis.

Copies of computer subroutines are shown in Appendices E and F. Typical computer calculations and Calcomp printout of the final deformed tube shape are shown in Figures 4-5 and 4-6. The plotter output consists of the following:

- Station and tube identification
- The graph of the estimated spline curve of the deformed tube with polar coordinate drawn for reference
- The eight input radii
- The values of the membrane strain and the maximum bending strain
- The maximum combined strain and its location

The current strain program is basically a one dimensional approach, neglecting the effect of the axial strain. Although the axial strain may not be as significant as the hoop strain in our case, for improved accuracy of the overall strain evaluation, a two dimensional approach to the tube strain calculation should be incorporated in any future program.

MESSAGE(S) COMPLETE. *RDY-FOR* -TUBES TUBE MEASUREMENTS FOR PLOT ENTER THE ROW LOCATION: ? 45 ENTER THE COLUMN LOCATION: ? 40 ENTER THE STEAM GENERATOR ? 24 ENTER THE NOMINAL INSIDE RADIUS .3.875 ENTER THE THICKNESS ? .050 ENTER THE EIGHT RADII IN COUNTER CLOCKWISE ORDER ? .375 ? .407 ? .387 ? .359 ? .310 ? .443 ? .369 ? .331 ANOTHER PLOT? (Y OR N) ? N STOP. STEAM GENERATOR: 24 ROW 45 COL. 40 RADII: .375 .407 .387 .359 .310 .443 .369 .331 BENDING STRAIN = ·1551 -.0110 MEMBRANE STRAIN = MAXIMUM COMBINED STRAIN = -.1661 OCCURS AT 178.0 DEGREES STOP. DO YOU WANT ALL TUBES ON FILE TO BE PLOTTED? (Y OR N) ? N

ENTER TUBES TO BE PLOTTED BY STEAM GENERATOR, ROW, AND COLUMN IN A 312 FORMAT. FOR EXAMPLE, 240317 IS GENERATOR 24, ROW 3, COL.17 AFTER YOU ENTER THE LAST TUBE, PUSH 'RETURN' TWICE ? 244540

COMMAND SYNTAX ERROR ? 1 TUBES ENTERED GEN. 24 ROW 45 COL 40 FOUND STOP.

Figure 4-5 Typical Computer Run

R 45 C 40

STEAM GEN. NO. 24 INDIAN POINT STATION

STEAM GENERATOR TUBE CROSS-SECTION

0.375 0.407 0.387 0.359 0.310 0.443 0.369

BENDING STRAIN: ±0.1551 IN./IN. MAX. COMBINED STRAIN: -0.1661 IN./IN. OCCURS AT 178. DEGREES

Figure 4-6

Typical Calcomp Printout

4.4 Accuracy of Profilometer

The accuracy of the tube strain determination by profilometry as described above is dependent on the adequacy of the definition of the profile of the deformed tube and the computed strain-displacement relationship.

Inaccuracies in definition of the tube profile result from the use of the eight-fingered probe. Irregularities that lie between adjacent points of measurement will not be detected, as the computer program is such that it plots a "best-fit" profile based on the eight measurements by the probe.

In order to evaluate this source of error, five tube profiles were selected with maximum strains ranging from 3.5% to 32.9%. In each of these, the probe was rotated at 4.5 intervals, and radial measurements and strain computations were made at each interval. It was found that as the actual strain increases, the accuracy of the measured/computed strain decreases. The results are plotted in Figure 4-7. Based on this plot, measured/computed strain may be interpreted as listed in Table 4-1.

TABLE 4-1

Profilometry Accuracy

Measured/Computed Strain	Probable Range of Actual Strain
18	18 - 38
28	28 - 48
38	38 - 68
5%	5% - 8%
10%	98 - 168
15%	14% - 30%

7 Comparison of Profilometry-Determined Strain and Real Values

5.0 INDIAN POINT PROFILOMETRY EXAMINATION

5.1 Scope of Examination

Approximately 150 tubes in one steam generator were selected for profilometry examination during the 1979 refueling. A preliminary selection was made on the basis of the analytical projections relative to plate strain. Further selection was made on the basis of strains reported in the course of the examination. The tubes examined are indicated in Figure 5-1.

5.2 Results of Examination

The results of the profilometry examination are listed in Table 5-1, and are printed out in the relative bundle locations in Figures 5-2 through 5-7.

At 674 intersections of the total of 705 tube/support plate intersections examined, the tube strain (as measured and calculated by profilometry) was 5% or less. Based on the curve in Figure 4-7 this indicates actual strain is probably less than 8%. Of the remaining 31 tube/support plate intersections only four exceeded 10% computed.

MANNAY

NOZZLE

TABLE 5-1

INDIAN POINT STEAM GENERATOR #24 COMPUTED STRAIN, %

Tube No.				Support	<u>Plate No</u>	•	
Row	<u>Col</u> .	<u>1</u>	2	3	4	5	<u>6</u>
2	1	1.5	1.4	1.3	1.4		
	2	2.1	2.6	5.9	6.3	6.2	2.1
	3	2.1	2.9	2.6	3.9		
	4	1.0	1.8	3.0	3.1		
	5	1.1	1.6	2.8	3.3		
	6	1.7	1.5	2.6	2.6	3.7	
	. 7	1.6	1.6	2.9	2.7	3.3	2.4
	8	2.0	3.0	4.2	2.3	3.6	
	,9	1.4	2.5	3.2	2.6	2.7	
	10	1.8	1.9	3.5	3.0	3.2	
	11 .	1.4	2.7	2.8	2.5		
	12	1.2	1.4	1.8	1.7		
	13	1.5	1.7	1.7	1.5		
	14	1.6	1.6	1.9	1.8		
	15	1.7	2.0	3.0	2.3		
	17	2.1	3.0	3.8	7.3	5.2	
	18	2.2	4.8	5.2	6.2	4.7	1.8
•	19	2.0	2.6	2.8	3.0		
	20	2.5	3.4	2.7	2.5	3.4	
	53	1.7	2.5	5.3	4.3	4.3	

Tube	e No.		S	upport	Plate No	•	
Row	<u>Col</u> .	<u>1</u>	. <u>2</u>	<u>3</u> .	4	5	<u>6</u>
2	54	2.1	2.7	2.7	5.0	4.8	
	55	2.2	2.6	2.9	4.5	4.6	
	56	2.0	4.4	3.0	2.9	3.7	
	79	1.6	2.8	2.8	5.9		
	82	1.9	3.6	3.4	4.1		
	83	1.8	4.0	3.7	6.6		
3	31	1.8	2.3	2.0	1.7		
	56	2.3	4.0	3.1	3.6		
	90	1.3	1.2	1.3	1.2		
8	3	17.6	1.8	1.3	1.7	1.4	
.0	4	1.4	1.5	• 8	2.7	2.0	
	5	1.8	1.4	1.5	1.2	1.8	
	87			2.8	1.9		
,	88			1.8			
	89			2.5			
	90			6.0			
	91			2.2			
·9 ´	3	2.4	3.2	2.4	3.3	2.5	
	. 4	10.6	1.7	1.7	3.6	2.2	
	5	6.1	4.4	2.3	3.7		
10	3	1.6	3.9	2.5	3.1		,
	4	2.7	2.4	1.5	2.1	4.1	

TABLE 5-1 (cont'd)

Tub	e No.			Support	Plate No	•	·····
Row	<u>Col</u> .	1	2	3	4	5	<u>6</u>
10	5	6.7	3.7	2.6	3.5	3.7	
13	88	1.8	6.9				
14	5	3.3	2.1	2.1	2.0	2.0	2.7
	89	1.4	9.4	5.2	4.4		
25*	43			2.2	2.2	2.1	
26	43	.9	1.4	1.3	1.9	1.5	
	49		1.3	1.4	1.2	1.2	
27	10	1.5	2.9	3.1	4.0	3.3	
	. 11	1.4	2.3	1.9	2.1	1.7	
	12	1.0	1.5	1.3	1.9	1.5	
	13	1.2	2.2	3.1	4.8	2.9	
	14	1.2	2.1	2.4	2.2	3.2	
	15	1.8	2.2	2.2	1.9	2.9	
	16	1.0	2.0	1.8	2.1	2.4	
	17	1.6	2.4	1.7	1.2	2.0	
28	13	1.0	2.1	2.3	2.1	4.0	
	14	1.2	2.3	2.1	2.0	2.3	
	15	1.1	2.3	2.0	2.3	2.6	1.9
	16	1.5	2.1	1.3	1.6	2.1	
	17	1.1	1.9	1.8	1.6	2.0	
29	11	1.4	3.3	5.2	5.8	6.8	
	12	1.3	2.7	3.2	2.0	4.9	
	13	1.5	2.3	2.0	1.7	2.7	
			:				

TABLE 5-1 (cont'd)

		Plate No.	Support I			e No.	Tub
6	5	4	<u>3</u>	2	<u>1</u>	<u>Col</u> .	Row
	2.9	2.3	1.3	2.5	1.2	14	29
	2.8	2.5	1.7	2.9	1.4	15	
	4.8	5.3	3.0	3.4	1.2	16	
u*	2.5	2.0	1.9	1.8	1.4	17	
	2.9	2.5	1.8	1.8	1.3	12	30
	3.7	2.7	2.2	2.2	1.0	13	
5.9	3.6	1.1	1.7	3.1	1.5	16	
	2.9	2.0	2.2	2.1	1.4	17	
		2.5	2.0	2.3	1.6	15	31
	2.9	2.7	2.1	2.6	1.3	16	
		1.9	2.2			17	
		1.6	2.0			15	32
	1.7	1.4	1.8			16	
	2.7	2.0	2.1			17	, '
	7.5	4.7	4.1	3.7	1.2	16	34
	4.0	2.8	3.7	2.4	1.5	19	
	5.1	4.3	2.4	3.8	1.7	18	
	7.4	6.8	4.7	4.5	1.8	18	35
	2.9	2.9	1.9	2.4	1.5	19	
		3.0	2.3	4.4	2.5	59	41
	N	2.7	3.7	9.8	1.1	60	
		3.6	2.6	4.0	• 8	61	

TABLE 5-1 (cont'd)

.

Tub	e No.			Support 1	Plate No	•	
Row	<u>Col</u> .	<u>1</u>	2	3	4	<u>5</u>	<u>6</u>
41	62	1.4	7.7	2.7	3.8	3.1	
	63	2.0	3.8	2.4	3.6	3.2	
	64	. 8	3.2	2.4	3.5	2.5	
	65	1.6	2.3	2.1	3.3	3.5	
	66	1.5	1.9	2.2	3.4	2.5	
42	60	1.1	1.2	3.5	3.8	2.8	
	61	1.0	6.8	2.3	3.3		
	62	. 1.4	7.6	2.5	4.0		
	63	1.1	3.7	1.7	3.7	2.7	
	64	2.0	2.6	2.0	3.5	2.9	
43	35	2.2	2.0	1.5	2.2	1.8	
	36	2.4	1.9	1.9	1.7	2.3	
	37	3.0	2.2	2.1	1.6	1.6	
	38	1.9	6.9	2.7	2.0	2.2	
	39	3.2	3.6	1.5	2.6	2.4	
	40	1.4	3.9	3.2	1.6	2.8	
44	39	1.6	1.6	2.7	2.4	4.2	
	40	2.5	2.6	2.3	2.2	3.1	
	41	2.6	3.8	4.7	2.9	2.9	2.4
	42	2.3	2.1	2.3	3.1	3.1	2.4
	53	3.4	14.8	3.7			
45	40	1.9	2.2	4.4	4.8	7.3	
	41	1.7	4.9	4.1	2.5	2.6	

TABLE 5-1 (cont'd)

Tub	e No.		Support Plate No.						
Row	<u>Col</u> .	1	2	3	4	5	<u>6</u>		
45	42	1.6	4.8	2.6	6.7	3.4			
	43	3.5	3.9	4.1	6.7	5.2			
	44	2.2	4.1	4.5	6.1	4.6			
	45	1.6	3.4	1.9	3.9	3.7			
	46	2.7	2.5	1.8	2.8	2.6			
	47	1.2	2.0	2.6	4.1	3.4			
	48	1.9	1.5	2.1	2.3	3.2			
	49	1.4	1.6	1.7	3.0	3.1			
	50	1.6	1.4	2.4	1.5	4.4			
	51	1.5	2.4	2.9	3.9	3.7			
	52	1.6	3.0	2.7	2.7	5.1			
	53	2.0	3.6	4.0	6.3	.3.7			
	54	4.0	3.0	7.8	1.9	4.2	i.		

*Note: In addition to the tubes listed, tubes in rows 24 through 27, columns 43 to 49, support plates No. 1 through 5, were examined. Strains were not computed because visual reviews of strip-chart print-out indicated strains were less than 2%.

Computer Printout of Results of Profilometry Measurements Steam Generator 24, Support Plate 2 July, 1979

Computer Printout of Results of Profilometry Measurements, Steam Generator 24, Support Plate 3 July, 1979

Computer Printout of Results of Profilometry Measurements, Steam Generator 24, Support Plate 4 July, 1979

Computer Printout of Results of Profilometry Measurements, Steam Generator 24, Support Plate 5 July, 1979

5.3 Discussion of Results

Typical profiles of tubes with low strains are shown in Figure 5-8 and profiles of tubes with high strains are shown in Figure 5-9. For each of these, the dent size, as measured by eddy current is indicated. There appears to be no correlation between dent size and computed strain.

From the grouping of tubes which were restricted to the 700 mil diameter probe but passed the 640 mil diameter probe, typical profiles of tubes with low and with high strains are shown in Figures 5-10 and 5-11. Here again there appears to be no close correlation between probe size classification and computed strain.

The tube in row 8 column 3 was plugged preventively because the 610 mil diameter probe did not pass through the first support plate intersection. Tube strain at that intersection was computed to be 17.6%, and minor diameter was measured to be 610 mils. Profile of that tube is shown in Figure 5-12. Tube strains in this tube at the support plates above the first were all less than 2%.

Subsequent to the examination at Indian Point, Babcock & Wilcox personnel were able to modify the plotting routine so that the tube profile was rotated about its horizontal axis, and added similarly rotated profiles of the same tube at regular increments above and below the maximum strain profile. This produced a three-dimensional plot of the tube, (Figure 5-13) which shows

5-16

.

2

.

-1

Figure 5-12

Calcomp Printout, Tube 8-3, Support Plate 1, Stéam Generator 24, July 1979

Three Dimensional Plot of Tube 8-3, Support Plate 1, Steam Generator 24, July 1979 the tube distortion very graphically. The relative size and location of the support plates is indicated by the rectangles on either side of the tube plot.

The tube in row 45 column 40 was found restricted to the 700 mil probe at the fifth support plate level, and to the 675 mil probe at the sixth support plate level. Minor diameters as measured by profilometry were 719 mils and 685 mils respectively. From this data it would appear that more than 19 mil clearance is necessary in order for a given probe to pass through a tube. The actual minor diameter of a tube is at least 20 mils larger than the smallest probe that passes therefore strain calculations based on probe dimensions should be adjusted accordingly. Tube strains at those intersections were computed (based on profilometry) to be 6.4% and 16.8% respectively, while tube strains in this tube at the lower support plates were found to be low. Profiles of this tube at each of the support plates are shown in Figure 5-14.

Close review of groups of tubes reveals some information about the support plate as well as the tubes. The design or as-fabricated condition of the support plate in the region of the tubes in rows 8, 9, 10 columns 1 through 5 is shown in Figure 5-15. Based on profilometry measurements, the major outer diameters of tubes row 8 column 3, row 9 column 4 and row 10 column 5 are 913 mils, 913 mils and 908 mils respectively. This diameter is larger than the drilled tube hole diameter of 903 mils. Furthermore, allowance has to be made for early deposits and corrosion products "grown" in the annuli, leading to the conclusion that the ligaments essentially parallel to these major

Support Plate Strain Dent Passed	6 16.8% 6 mil 640 Probe	AN VR BN ME S1 S2	178.000 -0.250 0.156 -0.012 0.144 -0.168
Support Plate Strain Dent Passed	5 6.4% 2 mil 675 Probe	VR BN ME S1 S2	-0.500 0.057 -0.007 0.050 -0.064 225.000
Support Plate Strain Dent Passed	4 4.8% 2 mil 700 Probe	VR BN ME S1 S2	-0.250 -0.039 -0.009 -0.048 0.030 90.000
Support Plate Strain Dent Passed	e 3 1.8% 1 mil 700 Probe	VR BN ME S1 S2	-0.250 0.014 -0.005 0.007 -0.018
Support Plate Strain Dent Passed	e 2 2.1% 1 mil 700 Probe	VR BN ME S1 S2	-0.500 0.014 -0.007 0.007 -0.021 270.000
Support Plate Strain Dent Passed	e 1 1.9% 1 mil 700 Probe	VR BN ME S1 S2	-0.500 0.014 -0.006 0.003 -0.019

Composite of Calcomp Printouts of Profiles of Tube 45-40, Steam Generator 24, with Corresponding Eddy-current Dent, July 1979

As Fabricated condition of support plate segment, Rows 7-11, Columns 1-5

axes must be elongated (as per the mechanical test sample described in Section 3-2). As corrosion proceeds, it is anticipated that the ligaments along this line of tubes will crack, as shown in Figure 5-16. It should be noted that strain or distortion in adjoining tubes is minimal, as listed in Table 5-2.

TABLE 5-2

Profilometer - Based Determinations of Strain and Diameter

Tube			<u>Strain</u>	Major Diameter	
Row	8	Column	3	17.6%	0.825 inches
Row	8	Column	4	1.48	0.787 inches
Row	8	Column	5	1.8%	0.792 inches
Row	9	Column	3	2.48	0.772 inches
Row	9	Column	4	10.6%	0.823 inches
Row	9	Column	5	6.1%	0.817 inches
Row	10	Column	3	1.6%	0.782 inches
Row	10	Column	4	2.7%	0.797 inches
Row	10	Column	5	6.78	0.818 inches

It may be that at least part of the mechanism for in-plane growth of support plates is that a slip line develops, and major displacement takes place along that line. Tubes along this slip line become severely distorted, while adjacent tubes merely are displaced along with the support plate, and suffer little or no distortion at all.

In the limited number of tubes sampled in the 1979 examination, this behavior pattern is evident only in this grouping of tubes. However, if this analysis is correct, it would appear that the tubes along these slip-lines are the ones that should be plugged preventively to prevent in-service leaks.

Suspected Condition of support plate segment, Rows 7-11, Columns 1-5, Support Plate 1 6.0 CONCLUSIONS AND RECOMMENDATIONS

Within the limits of accuracy described, profiles of more than 150 steam generator tubes have been determined, and hoop strains have been computed for almost 700 tube/support plate intersections.

It appears that there is no correlation between tube shape and strain as determined in this program and the previous finite element analyses based predictions of support plate strain and tube strain, nor with eddy current dent measurements, nor with eddy current probe sizes. This lack of correlation explains why there did not appear to be an orderly progression in tube degradation. Eddy current examination for dents appears to be measuring changes in some sort of average tube inside diameter, and the probing simply measures the minimum tube diameter.

The objective of inservice examination of steam generator tubes is to identify tubes that may leak during the ensuing service period. These may be tubes that already contain defects which may propagate, or tubes that may become susceptible to stress corrosion cracking as a result of increase in strain.

It is recognized that eddy current techniques are effective in locating significant defects, and therefore, should be continued. However, it appears that dent measurements based on eddy current techniques are not a true measure of strain, and therefore, should be discontinued in favor of measurements by profilometry. Furthermore, preventive plugging of tubes should be based on profilometry

measurement rather than probe size when appropriate criteria for plugging are established.

Therefore, it is tentatively planned that during the next scheduled refueling outage, examination of the steam generator tubing in one steam generator include the following:

- 1) Eddy current examination for defects.
- Eddy current examination for dents. (Results to be used for comparison with results from profilometry.)
- 3) Profilometry examination for dents.

It appears that careful analysis of data derived from profilometry can provide significant information relative to the condition of the support plates. The scope of future examinations should be based on evaluation of results.

A total of ten probes were required to complete the examination described herein, and a significant amount of time was required during the examination to replace probes when they became defective. Consequently, for future examinations, modifications to improve probe life and reliability are necessary.

In order to significantly improve the accuracy of the profilometer it appears desirable to use a rotating device, which can define the complete profile of a tube rather than only measure eight (or any other finite number) pseudo - radii. Under contract to Con Edison, NUS Clearwater is working on the hardware development of a Con Edison concept of a rotating mechanical profilometer. This is scheduled to be ready in time for the 1980-81 refueling outage.

As a related activity, the EPRI Steam Generator Owners Group has retained Sigma Research Inc. to develop a rotating optical profilometer device. This is scheduled to be ready for field testing in 1982.

<u>APPENDIX A</u> PROFILOMETER WEAR BABCOCK & WILCOX

. .

Babco	CK & WILCOX Research and Development Division Alliance Research Center Alliance,Ohio 44601		
	S. J. STUDER - ISI, COPLEY		
e r om	S. E. REED - APPLIED MECHANICS, ARC	RG-1 (tes	•
Cust.	CON ED INDIAN POINT-2	File No. or Ref.	
Subj.	PROBE WEAR	Date JUNE 13, 1979	
	This letter to cover one customer and one subject only	<u> </u>	-

Reference: 1. S. E. Reed to S. J. Studer, "Profilometer Wear", June 11, 1979.

In the referenced letter I described the wear on the profilometer feet of the probe used at the Indian Point-2 steam generator mockup, and recommended implementing hard chrome plating on the probe contact surfaces. This memo is to provide additional information about the hard chrome and an update on the status of the plating of the mockup probe.

According to "Modern Electroplating", hard chromium plating combines very great hardness, extremely good corrosion resistance, very low coefficient of friction, and non-galling characteristics. To attain these benefits, it is desirable for the base material to be quite hard, which ours is, and also quite smooth (also true in our application). Typically, hardnesses of Vickers 700 can be attained ($R_c \approx 60$) and coefficients of friction of less than 0.1.

The feet on the mockup probe were reground and the probe was coated with an acid-resistant compound to prevent damage to the parts of the probe which were not to be plated. A test sample with strain gages installed was immersed in an acid bath (comparable to the chroming solution) for about 3 hours to verify that the resist was adequate and that it could be removed without damaging the gages. The probe was then taken to the chroming vendor. Because the probe was assembled and instrumented, it was extremely difficult to clean off the surface oxidation. It was necessary to try to clean it with a Q-Tip and 280 grit silicon carbide paper. After this cleaning and a degreasing operation, the probe was plated. The feet were then finish ground and polished.

The diameters across the probe feet were then measured and are shown below:

		· .		W X Y	0.909 inch 0.914 inch 0.912 inch	
		•	1	∗÷Ż	0.898 inch	
cc:	R. W. C. T.	Curtis Jones	· .		 	
• •	P. E. L. P.	Sensmeie Williams	er PES - ISI	, Copl	ey A-1	

The diameter of the probe after the mockup testing was 0.907 inch. It is estimated that at least 5 to 7 mils per foot (10 to 14 mils diametral) were removed by grinding to reshape the feet (more or less, depending on the initial condition). While the feet were not measured after grinding prior to plating, it is estimated that there is an average of 6 to 7 mils of chrome on the contact points.

The plating on the probe feet is shown in Figure 1. Good uniform coverage with a slightly greater buildup on the contact points was obtained on seven of the feet. On one foot, however, several patches were observed where the chrome did not plate to the copper surface. This is shown in Figure 2. After examining this surface, the vendor stated that he felt the lack of plating was due to surface contamination that was not removed by the mechanical cleaning. To avoid this on the 10 production probes, each probe head will have the surface oxide removed by abrasive blasting — either alumina or glass beads. The heads will then be bagged and taken to the vendor where they will be degreased and plated.

I do not believe that the defects in the plating on the mockup probe will adversely affect its performance in the testing planned at ARC. The planned cleaning sequence should prevent these defects from occurring on the production probes.

The mockup probe, however, is substantially undersize. It is estimated that the contact force will be reduced by 20 to 25 percent by this. This will affect both the life testing of the probe and the test to measure scratch depths produced by the probes in the tubes. For the scratch test, this problem has been circumvented. In addition to pushing the probe through a nominal (round) tube, it was also pushed through a tube which was ovalized by 100 mils (diametral). This will increase the contact force to 20 to 25 percent more than a full size probe in the nominal tube and will indicate whether contact force directly affects scratch depth.

It is unknown at this time how the contact force will affect the wear of the probe in the life test. It is also unknown how the difference in tube ID condition (as received versus oxidized) will affect the life test. In spite of these uncertainties, the life test should provide a good qualitative assessment of the probe life and identify any potential problems (other than wear) which could reduce probe life. It is thus planned to begin the life test using the Indian Point-2 mockup probe.

If you have any questions or need more information concerning this, please call me.

S. E. Reed

SER/skm

Attachments

A-2

APPENDIX B

TUBE I.D. SCRATCHES BABCOCK & WILCOX

Sabc	ock & Wilcox	Research and Development Division Alliance Research Cente – Alliance Ohio	44601		-
	S. J. STUDER -	ISI, COPLEY			in and La sector in tan <u>in</u> Maria senari
E rom.	S. E. REED - AF	PPLIED MECHANICS, ARC	· · · ·	· •	15 RC-1 (rev. 3013)
Cust.	CON ED - INDIAN	POINT-2	Filor	e No. Ref.5470	<u> </u>
Subj.	TUBE ID SCRATCH	IES	Dat	JUNE 14,	1979
	This letter to cover one custom	er and one subject only	L		· · · · · · · · · · · · · · · · · · ·

A test was performed to determine the depth of scratches in Westinghouse steam generator tubing resulting from passing the radial profilometer through the tubing.

The tube that was tested was a spare short section of tube supplied to us by Consolidated Edison for the plastic strain test. The tube ID was in an as-received condition, not heavily oxidized. I believe that this should provide a worst case estimate of scratch depth, as the oxide in the generator tubes should afford some protection due to its hardness. An oval dent of approximately 100 mils (diametral) depth was produced in the center of the tube using the Consolidated Ediscn indenting tool. The diameters of the tube in both the round and oval sections were measured and are listed below.

	Round Sect	ion	Oval Section			
OD	Wa11	ID (calc)	OD	Wa11	ID (calc)	
0.872	0.0495	0.773	0.775	0.0495	0.676	
0.871	0.0495	0.722	0.923	0.0495	0.824	

The ID was calculated using the average wall thickness from all of the short tube sections supplied by Consolidated Edison.

The probe used for this test was the mockup probe with chrome plated feet. As discussed in my letter to you (S. E. Reed to S. J. Studer, "Probe Wear", June 13, 1979), this probe is substantially undersize because of the wear on the feet — about 42 mils (diametral) on the average. Because the dent size is about 100 mils, the net effect was about the same as passing a probe of nominal size through a dent of 58 mils (diametral).

The probe was passed through the tube and back once, then was rotated 10 to 15 mils and passed through the tube and back again. This was to insure that the minimum point of the oval section was actually hit by the probe feet. The probe was aligned such that the W-axis feet were passed

cc: R. W. Curtis

C. T. Jones

P. E. Sensmeier PES

L. P. Williams - ISI, Copley

Babcock & Wilcox S. J. Studer

2-

through the minimum section. Visual inspection of the tube revealed the 16 marks on the tube wall from the probe passage.

Cross sections were then cut from the round and oval sections of the tube. The specimens were nickel plated for good edge definition and then were mounted in bakelite and polished.

The specimens were examined optically at 400 power. On the specimen from the round section no indications could be found other than normal surface roughness. This is shown in Figure 1. In the oval section a single scratch (depth about 0.0001 inch) was found, about halfway between the major and minor diameters of the tube. It is believed that this is one of several scratches which were observed in the tube, unrelated to the probe insertion.

A longitudinal section of the tube was then made of the tube. The area around the surface marks was inspected at 100x in a scanning electron microscope, and a stereo pair was made (see Figure 2). When viewed singly, the two parallel marks of the two insertions were visible. It could also be seen that the surface marks on adjacent areas were not obliterated by the marks, indicating that what was seen is a burnishing of the high points of the tube, leaving base material untouched. This was borne out when the pictures were viewed as a stereo pair. The surface roughness of the adjacent areas was clearly visible. No depth was observable at the marks, but the surface was somewhat smoother.

It is concluded from these tests that while the hard chrome plating is sufficiently hard to burnish the surface of tubes, no scratches of measurable depth will be produced by a nominal diameter probe in either a round tube or a dented tube with up to a 50 mil (diametral) dent. Because no significant difference was observed between the round tube and the dented tube tested, it is judged unlikely that significant scratching would occur, even in the minimum (0.580 diameter) tube.

S. E. Reed

SER/skm

Attachments

FIGURE 2 - TUBE ID SURFACE SHOWING BURNISH MARKS SEM 100 x STEREO PAIR
APPENDIX C

CONVERGENCE STUDY

BABCOCK & WILCOX

Babc	ock & Wilcox	Research and Develop Research Center A	ent Division Ince, Ohio 44601	DRAFT July 6. 979
●°	S. J. STUDER - IS	I, NPGD, LYNCHBURG	· · · · · · · · · · · · · · · · · · ·	
From	S. E. REED - APPL	IED MECHANICS, ARC		
Cust.	CONSOLIDATED EDIS	ON	······································	File No. LR:79:5470-04:03 or Ref.
Subj	CONVERGENCE STUDY		· · · · · · · · · · · · · · · · · · ·	Date. JULY 6, 1979
	This letter to cover one custome	r and one subject only		

Reference: 1. S. E. Reed to S. J. Studer, "Plastic Strain Test:, June 13, 1979.

As described in reference 1, the strain calculation program whitten for Consolidated Edison was used to predict strains in the tubes which were dented in the laboratory. The strains predicted based on 100 points sampled on the outside of the tubes did not compare well with either the strains measured or with the strains predicted based on 8 points. The deformed tube shapes compared very well with the experimental data. Examination of the results indicated the possibility that the 100-point data overdefined the cubic spline, resulting in rapid changes of the derivatives and erratic behavior of the strain prediction.

To evaluate this, a study was performed to determine if there was a smaller number of points which could be used, which would maintain the excellent correlation of the deformed tube shapes while eliminating the erratic nature of the strain prediction. To accomplish this, the deformed tube data from reference 1 was used, as it was for the 100-point strain prediction. However, rather than using every point, the data was first sampled at every other point and later at every fourth point. This provided DISTRIBUTION (COMPANY LIMITED): This information is freely available to all Company personnel. Written approval by sponsoring unit's R&D coordinator is required only if release outside the Company is requested.

ISI, NPGD, Lynchburg		ARC
L. P. Williams	R. W. Curtis J. Heminger G. Musat K. H. Schulze	P. E. Sensmeier Library (3) APM Files (5)

2-1

first 50 points, then 25 points to the curve fit routine to determine if the strain prediction could be stabilized without losing the shape definition and determine the values to which the strain prediction would converge.

Table 1 presents a comparison of the results of these computer runs to the results of the 100-point and 8-point runs previously performed. Plots of the predicted initial and deformed shapes for each of the tubes for 100-point, 50-point, 25-point, and 8-point runs are shown in Appendix A. The displacement and strain distribution plots for 100, 50, 25, and 8 points are shown in Appendix B.

				8 Po	int
	<u>100 Point</u>	<u>50 Point</u>	25 Point	Largest	Smallest
Tube 1	-6.73	-4.32	-3.42	-1.15	-0.26
	356°	201.6°	201.6°	205°	225°
Tube 2	-22.48	-8.12	-6.12	-5.90	-2.08
	21.6°	353°	176°	180°	200°
Tube 3	-29.53	-15.34	-12.9	-4.09	-1.03
	187°	187.2°	187.2°	185°	205°
Tube 4	-35.28	-13.45	-8.39	-3.96	-0.84
	184°	7.2°	187.2°	5°	345°
Tube 5	-12.08	-3.59	-2.89	-1.81	-0.69
	187°	180°	201.6°	200°	45°
Tube 6	-16.83	-10.51	-8.80	-5.35	-2.53
	184°	187.2°	187.2°	195°	220°

TABLE 1. PREDICTED STRAIN COMPARISON Predicted Maximum Strain (%) and Location (Degrees)

The data in Table 1 shows that for each tube, the maximum strain prediction decreases as the number of points decreases. Based on the strain distributions in Appendix B, much of this is due to a decrease in "noise" level in the strain calculation as the number of points is decreased. However, in order for the strain prediction to converge on a correct value, the number of data points must be minimized, while still maintaining a good definition of the deformed shape. Table 2 presents a

C-2-

DRAFT July <u>6</u>, 1979

summary of how well each of the predictions does predicting the deformed shape. The 100-point shape was use as a reference.

Tube No.	50 Point	25 Point	<u>8 Point</u>	Comments
1	G	F	Р	8 pts missed maxima
2	E	£	G	
3	Е	F	Р	Local dent
4	G	G	Р	Local dent
5	E	G	Р	8 pts missed maxima
6	Е	E	F	

TABLE 2. COMPARISON OF SHAPE PREDICTION

E = excellent comparison, very small visible differences

F = fair comparison; some differences on peaks, fair agreement on overall shape (some major differences)

P = poor comparison, major differences in magnitudes or shapes.

In general, the 50-point fit had good or excellent agreement with the 100-point fit; the differences being in extremely local areas (1 point). The 25-point fit had excellent agreement on two tubes, good agreement on two tubes, and only fair agreement on the remaining two. The two that were fair were one with a very small dent (tube 1) and one with a small local dent (tube 3). The 8-point fit had good comparison for only one tube, and fair comparison on one. On two tubes, the 8-points missed the maxima and underpredicted the deformation. On the remaining two, the dents were localized and the 8-point fit broadened them considerably. For the two where the maxima were missed, the comparison would probably improve if the probe were rotated to hit them. For local dents improvement is unlikely by any method short of increasing the number of data points. If the dents are extremely localized, even 25 data points can provide only fair prediction of the dent shape.

It is concluded from this study that for simple deformation of the tubes that 8-point samples can adequately define the deformed shapes (and

C -3-

thereby, strain), provided the samp points hit on or near the dent maxima. These shapes would be primerily ovalized. For more complex or localized dents, 8 points will tend to predict more gradually changing shapes and thus underpredict the strain levels by significant amounts. The optimum number of points for defining a deformed shape adequately appears to be a function of dent shape and size. Thus, either some assumptions or some prior knowledge of the basic deformed shape are necessary to determine how well any given number of samples will predict the tube shape and tube strain.

S. E. Reed

6-4-

SER/skm Attachments

APPENDIX A

INITIAL AND DEFORMED SHAPES, TUBES 1 - 6 100 POINT, 50 POINT, 25 POINT, AND 8 POINT PREDICTIONS

INITIAL SHAPE

c-6

· · ·

DIFFERENCE SHAPE

·

50 POINTS

DIFFERENCE SHAPE

STATISTICS IN

03

G Tala Tala

25 POINTS

DIFFERENCE SHAPE

PLASTIC STRAIN TEST TUBE #1 O DECREES ROTATION

RADII 0.385 0.385 0.385 0.385 0.385 0.385 0.385 0.385

MEMBRANE STRAIN -0.001 BENDING STRAIN 0.001

INITIAL SHAPE

DIFFERENCE SHAPE

C • / Z

· .__

50 POINTS

DIFFERENCE SHAPE

DIFFERENCE SHAPE

 V_{i}

. .

PLASTIC STRAIN TEST TUBE #2 O DECREES ROTATION

RADII 0.350 0.390 0.405 0.389 0.343 0.391 0.405

0.337

MEMBRANE STRAIN -0.005 BENDING STRAIN 0.054

INITIAL ŚHAPE

10.10

S COMMENTS

DIFFERENCE SHAPE

25 POINTS

DIFFERENCE SHAPE

 $i^{\xi \dagger}$

O DECREES ROTATION

RADII 0-375 0-399 0-390 0-390 0-391 0-391 0-391 0-393

MEMBRANE STRAID -0.576 BENDING SIPHIN -0.632

 $\langle \cdot \rangle$

PLASTIC GERAIN TEST - TUBE #4

INITIAL SHAFE

AND AND A MARKING

1. Zitadi dan mari ta

DIFFERENCE SHAPE

PLASTIC STRAIN TEST - TUBE #4 50 POINTS

DIFFERENCE SHAPE

· -----

25 POINTS

DIFFERENCE SHAPE

O DECREES ROTATION

RADII 0.363 0.389 0.393 0.390 0.372 0.389 0.392 0.391

MEMBRANE STRAIN -0.004 BENDING STRAIN 0.030

INITIAL SHAPE

DIFFERENCE SHAPE

. . .

DIFFERENCE SHAPE

PLASTIC STRAIN TEST - TUBE #5 25 POINTS

DIFFERENCE SHAPE

PLASTIC STRAIN TEST - TUBE #5 0 DECREES ROTATION

RADII 0.384 0.382 0.381 0.380 0.381 0.382 0.380 0.390 0.390

MEMBRANE STRAIN -0-002 BENDING STRAIN 0-004

INITIAL SHAPE

· · ·

DIFFERENCE SHAPE

6-32

DIFFERENCE SHAPE

DIFFERENCE SHAPE

RADII 0-353 0-356 0-403 0-406 0-354 0-353 0-494 0-405

MEMBRANE STRAIN -0 006 Bending strain 0 603
APPENDIX B

DISPLACEMENT DISTRIBUTIONS STRAIN DISTRIBUTIONS

PLASTIC STRAIN TEST Tube #1

55

25

ŝ

DISPLACIMENT 22-22

-56 LL

C-37

· · · ·

-50

,

т.,

·

11

PLASTIC STRAIN TEST TUBE #2

TEST

PLASTIC STRAIN TUPE #3 TEST

50

25

50

MILSI

DIFFERENCE ONAL

ı.

50

25

-ULSFLACINEN MILLSI

9

50 L

1

PLASTIC STRAIN TEST - TUBE #4

25 POINTS

50

25

-50]

ŧΪ

PLASTIC STRAIN TEST - TUBE #4

8 POINTS

PLASTIC STRAIN TEAT - NUBE #0

ŚG

29

UD)

Σ

W INJWJUHJUJ с. 53 -25

-- 5,0

PLASTIC STRAIN - TUBE #5 TEST

(MILS)

DISPLACEMENT

-50

50

25

-50

(MILS)

6-56

PLASTIC STRAIN TEST

50

25 [MILS]

30 130 G.

36 1

DIFFERENCE SHAPE

270 360

- 1 k

4

25 POINTS

ii

PLASTIC STRAIN TEST TUBE #6

PLASTIC STRAIN TEST TUSL #1

-15

30

0-61

30 1

CALCULATED STRAIN

1.1

PLASTIC STRAIN TEST TUBE #1

50 POINTS

180

7

270 360

360

CALCULATED STRAIN

.

90

STRAIN

-15

-30 🔟

0

~

30

15

-15

-30

CALCULATED STRAIN

 \sim

- -15

- 30

.

CALCULATED STRAIN

ii

_

30

15

--15

.30 _

CALCULATED STRAIN

· ·

. 30

15

-15

- 30

C-66

ii

CALCULATED STRAIN

-25 POINTS

CALCULATED STRAIN

-30 L

TEST

CALCULATED STRAIN

, i,

30

t (°0 ⊥

~ 30

19

. .

69-2 8 TRA 10

-15

0

CALCULATED STRAIN

360

50 POINTS

-15

-30

.

CALCULATED STRAIN

CALCULATED STRAIN

-30

.

8 POINTS

30

[]

-15

-30

CALCULATED STRAIN

30

STRAIN STRAIN

+ -15

за <u>Ц</u>

C

CALCULATED STRAIN

CALCULATED STRAIN

. .

11

PLASTIC STRAIN TEST - TUBE #4

25 POINTS

CALCULATED STRAIN

-30 İ

PLASTIC STRAIN TEST - TUBE #4

8 POINTS

-30

CALCULATED STRAIN

PLASTIC STRGIN TEST

90

ς.

STRA_IN °

-15

- 30 L

с Г

C-77

1

30

• •

• • •

.

. .

CALCULATED STRAIN,

50 POINTS

CALCULATED STRAIN

30

15

-15

-30

•

25 POINTS

30

15

-15

-30

.-

[]]

C-79

CALCULATED STRAIN

PLASTIC STRAIN TEST - TUBE #5

8 POINTS

-15

-30

CALCULATED STRAIN

CALCULATED STRAIN

30 L

ċ

--15

ý

2-8-2

-15

-30

50 POINTS

30 15

CALCULATED STRAIN

PLASTIC STRAIN TEST TUBE #6

25 POINTS

8 POINTS

45

APPENDIX D

ELASTIC TEST CASE BABCOCK & WILCOX

Babc	ock & Wilcox	Research and Development Division Research Center All ance, Ohio 44601	DRAFT July 5, 979
••••	S. J. STUDER - ISI	I, NPGD, LYNCHBURG	
From	S. E. REED - APPLI	IED MECHANICS, ARC	 8C-1A
Cust.	CON ED INDIAN POIN	IT 2	File No. LR:79:5470-04:02 or Ref.
Subj	ELASTIC TEST CASE		Date JULY 5, 1979

A strain calculation algorithm is incorporated in the program which will be used to predict plastic strain in the tubes of Indian Point 2 steam generators based on profilometer data. A test case was performed to verify the ability to correctly predict strain from deflection data.

The test case chosen was that of a ring in diametral compression. This case was selected because of simplicity of analysis and because it is somewhat representative of the actual type of data anticipated. Finite element analysis was chosen for the baseline analysis.

Because of the symmetry of this case, only a quarter of the ring was modelled. Twenty-five shell elements were used, as shown in Figure 1, and 52 nodes. The ring was given an initial (centerline) radius of 0.4125 inch and a wall thickness of 0.050 inch; i.e., the nominal tube dimensions for the Indian Point steam generator tubing. At zero degrees (x-axis) the nodes were free in the x direction. The y and z translations and x and z rotations were constrained. At 90 degrees (y-axis) the nodes were free in the y direction, while x and z translation and y and z rotations were constrained. Two equal loads (P) were applied in the minus x direction, one at each node at zero degrees. These loads were selected to produce

DISTRIBUTION (COMPANY LIMITED): This information is freely available to all Company personnel. Written approval by sponsoring unit's R&D coordinator is required only if release outside the Company is requested.

ISI NPGD LynchburgARCL. P. WilliamsR. W. CurtisK. H. SchulzeJ. HemingerLibrary (3)G. MusatAPM Files (5)P. E. Sensmeier

D-1

deflections large enough to be measurable, but small enough that the structure would remain linear.

The finite element program output the nodal displacements and element strains. The original nodal coordinates were calculated, and added to the nodal displacements to produce the final nodal coordinates. These coordinates were converted to polar coordinates (an angle and a radius) and then fitted with the periodic cubic spline curve. The data points for input to the strain prediction program (100 points, 50 points, and 8 points) were then picked

FIGURE 1.

from this curve at equal angular increments (3.6 degrees, 7.2 degrees, and 45 degrees, respectively). The strain prediction program was then used to predict the strain from these deformed coordinates.

The maximum displacement found by the finite element model was -14.1 mils at the load point. Ninety degrees from the load point, the displacement was +12.8 mils. The largest strain predicted by the finite element model was -8393 microstrain, on the outside of the ring at 1.8 degrees. This was the closest element to the load application point. The printouts of nodal displacements and element strains are included in Appendix A.

The strain prediction program was used to predict the strain in the ring based on 100, 50, and 8 points. In addition to the printout of strain distribution and maximum strain location (found in Appendix A), plots were made of the deformed shape, the displacement distribution, and the strain distribution. These can be found in Appendix B. For the 8-point

D -2-

prediction, the eight sampled point were incremented at 5-degree intervals to determine the sensitivity of the strain prediction to the orientation of the sampled points.

Table 1 presents a comparison of results of the finite element model, the 100-point prediction, 50-point prediction, and 8-point prediction. The correlation of the 50-point and 8-point strain predictions with the finite element model were generally quite good at the locations of high strain.

				Devia	ation
Method	θ	^c Inside	^ɛ Outside	Inside	Outside
Finite	1.8	-5281	4769	Ref.	Ref.
Element	88.2	8377	-8393	Ref.	Ref.
8 Points	2.25	-5868	6681	11.1	40.0
	87.75	9671	-8871	15.4	5.7
50 Points	1.44	-5376	6407	1.8	34.3
	87.84	9037	-8006	7.9	4.6
100 Points	3.6	-7287	8293	38.0	73.9
	86.4	14584	-13578	74.1	61.8

TABLE 1. COMPARISON OF ELASTIC TEST CASE 1 RESULTS

Maximum Strain Prediction

Method	^e Max	Location
Finite Element	-8393	88.2°
8 Points	10346	90.0°
50 Points	9043	266.4°
100 Points	22613	68.4°

As has been observed before, the 50-point and especially the 100-point predictions showed significant levels of noise in the strain distribution. Because of this, the 8-point prediction did the best job of predicting the strain distribution as a whole. A comparison of the 8-point predicted strain distribution to the finite element predictions is shown in Figures 2 and 3.

D -3-

1 130/12

.

Rotation of the eight sample points at 5-degree intervals produced a comparatively small variation in the predicted strain, from 0.8 percent to 1.0 percent. This indicates that for this deformed shape, the 8-point prediction predicts just about the same shape regardless of the orientation of the points.

A review of the finite element results revealed that in addition to the displacements at the nodes, significant rotations also existed. Thus for this test case, the model was acting as a cylinder rather than a ring. Because of this, the displacements at the center of the elements where the strains are calculated are not the same as the nodal displacements used as input to the strain prediction program. To determine the significance of this on the correlation between the two methods, a second test case was run. The model was identical to that of the first case, but the boundary conditions were changed. In this case, only z-axis rotations were allowed at all nodes; x and y rotations were fixed. At the ends of the model, z rotations were also fixed.

As expected, this made the model somewhat more rigid. The maximum displacement at the load point was reduced to -12.8 mils and at 90 degrees to the load point, 11.7 mils. The maximum strain predicted was -7639 microstrain.

The input data for the strain prediction program was prepared as for case 1. For this case, only the 50-point and 8-point predictions were performed. The finite element results and strain prediction program results are in Appendix C. Table 2 summarizes the results of the two methods. Again, both the 50-point and 8-point strain predictions do an adequate job of predicting the maximum strain. As in case 1, the 8-point curve fit tends to overpredict the maximum strain, but (because of the noise on the 50-point strain distribution) does a better overall job of predicting the strain distribution.

D -6-

DRAFT July 5, 1979

TABLE 2. COMPARISON OF E ASTIC TEST CASE 2 RESULTS

				Devia	tion, %
Method	θ	^ε Inside	^c Outside	Inside	<u>Outside</u>
Finite	1.8°	-4829	4317	Ref.	Ref.
Element	88.2°	7622	-7639	Ref.	Ref.
8 Points	2.25°	-5461	6115	13.1	41.6
	87.75°	8650	-7996	13.5	4.7
50 Points	1.44°	-5919	6763	22.6	56.8
	87.84°	8081	-7237	6.0	5.3

Maximum Strain Prediction

<u>Method</u>	^е Мах	Location
Finite Element	-7639	88.2°
8 Points	9235	270°
50 Points	8087	266°

A third test case was performed on the finite element model. This case used the same boundary conditions as case 2, but contained four times the number of elements to verify that the model of case 2 had converged. The results of this analysis indicated that the model of case 2 had, in fact, completely converged.

It is concluded from the analyses described that the strain calculation algorithm used in the strain prediction program provides reasonable accuracy for predicting strain from displacement data. It appears that the best overall prediction of strain results from the use of the least possible number of points which can still adequately define the deformed shape. For a shape such as used for the test cases, eight points provide adequate definition of the deformed shape.

E. Reed

SER/skm Attachments

D -7-

APPENDIX A

COMPUTER PRINTOUTS - ELASTIC TEST CASE 1 FINITE ELEMENT RESULTS STRAIN PREDICTION PROGRAM RESULTS

D-8

FINITE ELEMENT

	I O D E	L CAD	y'	v	-	хy	ΥY	; <u>7</u>	
9	1	. 1	-1.41 ^x E-02	С.	ć .	([.] .	5.03E-02	0.	:
67 -	ĉ	- 1	-1.4918-02	3.4425-06	-1.6518-04	7.965-02	5.28Em02	-8.59E-03	
() :	B	1	₩1.368E+01	3 . 383c⊷05	-3.2898-96	7.548-02	5.25E-02	-1.655-02	
(F)	4	1	-1.3176-02	1.140E-C4	-4.8995-05	7.28E-02	5.19E-02	-2.33E-02	
A	Ę	1	-1.2596-02	2.624E-04	-0.4675-04	6.998-02	5.13E-02	-2.94E-02	
	ŕ]	-1.1708-00	4.925E-04	-7.9502-35	6.62 <u>5-02</u>	o.02≣•02	- 3.45E-02	
	7	1	-1.05 5-02	3 . 1342-04	-9.4238-06	6.375-32	4. 9 3 2-0 2	-3.25E-02	- ,•
A	ş	1	-9.3348-03	1.2295-03	-1.0785-05	6.046-02	4.78E-12	-4.22E-02	
	Ŷ	į	····	1.7402-03	-1.0045-05	E.72E-02	4.52E=52.	-4 .49±-02	
	10	įi	-7.7976-03	0.343g-03	-1.3198-95	5.492-02	4.48E-02	-4. ⁵⁷ E-02	
	1]	į	-6.7012-03	R.)298+0R	•1.4267-97	5.175-02	4.26E-02	-4.39E-02	
e e e e e e e e e e e e e e e e e e e	12	1	~ 5.7032-03	3.7391-07	-1,807E-05	4.725-02	4.07E-02	~4.01E=02	•
	13	. 1	-4.80-E-03	4.5996-07	-1.577E-08	4.688 - 02	3.85E+02	-4.78E-02	
<u>,</u>	1.4	1	-3.9278-03	5.4725-07	-1.6305-05	4.445-0.2	3.615-02	-4.5*=-02	;
A	15	1		A.3551⊷03		4.02F+02	3,36E - 02	-4,815-00	•
	16	1	-2.4691-03	7.244E+03	-1.4758-35	4.015-02	3.09E -0 2	-4.29E-02,	·
~	17	1	-1.870±-07	o.1538-03	-1.6502-05	3.858 0 02	2. ⁹ 52 * 32	-4,021-52	•

D-9

* •			•			· 1		
<u></u>	1 5	1	+1 3.75+03	- 01007	•	3 667-02	53 5 **	······································
	-	ĩ			ti u uu	- 0. • 0.0 ft - 92 	2.002022	
	19	1	-9.430±-04	9.3238 - 03	ి™1482°°00 -	3.52E-02	2.24 Eme 2	-3.30E-02
5	20	1	-6.150E-04	1.057E-02	•1.4435 7 05	3.39E-02	1.955-02	-2.931-92
	21	1	-3.7051-04	1.1235-02	-1.3135-05	3.275-02	1.628-02	-2.49E-02
()	2.2	1	-2.007E+04	1.1792-02	-1.140E+05	3.18E-02	1.32E-02	-2.13E-02 .
*.** *:	23	1	-9.304E-08	1.2245-02	-9.2655-03	3.112-32	9.85E-03	-1.54E-02
	24	÷	-3.4012-05	1.2578-02	-6.6881-34	3.358-02	5.63E+03	-1.048-a2
	23	1	—8.704 E—04	1.2771-00	-3.6099-06	3.035-02	3.325-03	-5.g12-03
4. 1	26	•	с.	1.233E-02	ς.	3.028-12	C .	3.
	27	1	- -1.61/1-02	0.	ο.	Q.	-5.03E-03	
	28	Ī	•1.6712+02	3 . 4422 − 06	1.6515-05	-7.965-02	₩5.28E₩02	ლვ_∠ევოეკ
-	29	1		č.3831 − 05	₹.234F - 95	-7.545-02	••8.25E-00	−1.45±−02
	30	1	-1. 1178-62	1.1405-04	4.*\$\$\$ - 73	-7.28E-02	-5.195-00	−2. 748 − 90
	31	1	-1.2555-62	2.5241-04	4.4678-08	- 6.99E-0 2	±5.13E-02	⊷2°04∃≈05
, em	32	1	: -1.1/02-02	4.9201-00	.0⊀0€ ~0 ⊎	-5.628-02	-5.02E-02	-3,45E-02
^	33	•	-1.0705-00	5.139E-0a	○ . 4232+04	-6.37H-02	₩4 . 935 . .02	-3.868-02
~	34	i	。 一·劳,新了4日十0日	1.2291-03	1.0708-05	⇔5.04E =92	-4.78E-02	-4.?2E-0_
~	38 .	. 1	-0.8042-03	1.7402-03	1.2045 ~ 05	-5.7 20-02	-4.521-02	-4.;02-02
			:.					

•

D-10

1

"``**`**

0			,			• •		
	3 5	1	-7.7992-03	2.3436-93	19 2-0 5	-5.493-02	-4.482-02	-4.57E-02
	37	1	-6.7815-03	3.0278-03	1.4095-05	-5.175-02	-4.252-02	-4.78E-02
\$.	38	1	•5.7955-03	3.789z-93	1.5072-05	-4.925-02	-4.07E-02	-4.31E-02
	39	1	-4.358E-03	4.5092-03	1.5775-95	-4.68E+02	-3.855-02	-4.752-02
	4 C	1	-3.7572-03	5.473E-03	1.6305-03	-4.442-32	-3.61E-02	-4.535-02
<u>.</u>	41	1	-3,1942-03	6.3651-07	1.6625-05	-4.225-32	-3.36E-02	-4.515-02
	42	1	-2.459E+03	7.264E-03	1.6725-05	-4.018-02	-3.092-02	-4.2?5-02
()	43	1	-1.575=-03	8.1532-93	1.458E-05	- 3.855-02	-2.852-02	-4.02E-02
.	44	1	-1.3 55±-03	1.0122-03	1.6121-05	-3.665-32	-2.53E-52	-3.70E-00
	45	.1	⊷0 <u>,,,;;</u> ;_−0∠	0.3200-03	1.5485-05	-3.522-02	<u>2.24</u> E02	+3.73E-02 *
	4 E	1	₩£.101±#0+	1.0571-02	1.4482-05	-3.391-02	-1.95E-02	-2.538-02
27	47	1	H3.7082-04	1.1235-02	1.313E-95	-3.275-02	-1.628-02	-2.475-02
	4 8	1	-2.037E-04	1.1792-02	1.1402-05	-3.18E-02	-1.328-02	-2.335-02
	4 9 -	1	-9.3042-05	1.2248-02	9.265E-06	-3.11E-02	-9.85E-03	-1.5-3-32
0	50	1	-3.441±-05	1-2672-02	6.6838-06	-3.046-02	-4.63E-03	-1.045-02
\$	51	1	-8.756E-06	1.2771-02	3.6095-06 1	-3.035-32	-3.325-33	-5.212-03
	52	1	ð.	1.2371-01	•	-3.025-02	0.	0.
-								

D -11

	SHELL CLEY	NECT STRESS	. Sr		• • •	·····	• . • •
		ELIMENT		STG-Y.	SIG-Y	SI:C+XY	τ.
	MEMBRANE BENDING +T/2 SIDE -T/2 SIDE	INSIDE DUTS (PE	1	1.05 -2515.62 -2513.77 2517.27	-1.53 8385.41 2376.87 +8393.94	00 00 00 00	
	MEMBRANE BENDING +T/2 SIDE -T/2 SIDE		1	6.94 -2235.06 -2250.12 2860.01	-23.48 7514.88 7491.41 -7542.34	30 80 90 00	
	MEMBRANE BENDING +T/2 SIDE -T/2 SIDE			2.19 -1996.06 -1987.67 2004.25	-47.29 3653.52 5611.23 -8595.82	00 00 00 00	
	MEMBRANE PENDING +T/2 BIDE -T/2 BIDE	2 	1	1 .57 -1739.63 -1728.26 1751.60	-52.00 8793.77 5739.76 -8867.77		····
i 	MEMERÀNE BENDING +T/2 SIDE -T/2 SIDE		<u>1</u> ``.	14.+5 *1456.77 *1472.32 1501.22	-75.40 4955.90 4820.51 -5031.30	···· ··· ··· ··· ···	
·	MEMBRANE RENDING +T/2 SIDE, +T/2 SIDE			17.40 -1033.47 -1221.16 1255.57	-21.57 4128.22 4136.65 -4219.79	30 00 00 00	
	MEMERANE BENDING +T/2 SIDE -T/2 SIDE			20.21 -795.73 -775.49 1015.91	+107.24 3312.99 3211.76 -3426.23	• .73 33 60 60	
•	MEMERANE BENDING +T/2 SJDE -T/2 SIDE		.)	20:02 -750:48 -735:33 -732:28	-121.59 2931.92 2489.60 -2654.04		
	MEMERNNE	ų.	 	25.23	-1-7, - 7 1	•.00	

DHL

		•						1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
			·	· . · · ·			·	
	\sim	· · ·		· .				
	E ENDING							
	+T/2 3IDE				- 7530.38 	1742.92	÷.co	
	-T/2 SIDE					1551.51 -1007 07	· · · · · · · · · · · · · · · · · · ·	
				· · ·	• • • • •	े म "िि• 20	- .00	
						· .		
· · · ·	MEMBRARE	·	1)	1	27.39	-1-1.41	~ . 2 01	. •
	HT/O SINC			•	-310.20	1934.02	00	
÷	-7/2 SIDE	•				382.51	•• • 0 0	
1					221.04	*i135,42	⊷. 00	
				. •			· .	
	MEMBRANE		11	1	29.97	-144.95	- 20	· ·
	PENDING				·- ? S.ye	300 .04	• • • • . 1 0	
•	$- \frac{\pm 1/2}{2} \frac{\text{SIDE}}{2}$	-			-69.71	164.09		
	-1/2/0105			· ·	128.25	₩494,52	- .35	
	•							
	MEMBRANE		1.9	1	71 34		·	
	BENDING			÷	100.00		- .00	
	_ 4 7/2 SIDE				132.99		.	
	-1/2 DIDE				-71.51	160.75		· ·
			•				• • • •	
	MENDENSE				· .			
	사회가들 이번가 크 		• `	1	32.27	-120.70	••• * ** • • • •	
	+T/2 STDF				272+49 757 - 575	-6-4-06	~. 00	
	-T/2 S10E		•••		- 0ビキョンドー 		-	
:		••			230.7:		- U	۰.
							,	
	A MEMBRANE A MEMBRANE		1 +	4	33.41	. ~ 201 . ∩0	- .00	
1	65N0196 +T/0 070				471.23	-1571.77		
	-T/2 (Tr			· · ·	504.14	-171.77	 .30	•
					™438.32	1367.77	00	
					· .	•	· .	
	Methor SMT		15	1	37.34	. 111 77		
	BENDENG				537.53	-2127.43	• 10	
	+1/2 SIDE			•	578,97	-2335.74	00	
	-1/2 SIDE			· .	-504.∠9	1714.18	- - .32	
								-
	MEMBRANS	. •	15	•	ನನ ಸಂ.	····		
	EENDING		-	÷	741.7		· · J]	
	+1/2. SIDE			•	324 37		- Cu - An	
	-T/2-SIDE	•			-757.77	2415.16	- 200	
				· · ·				
	MEMEEANC		1 7		_	•		
			14	1	52.12	-222.12 ·	 00	
	+T/2 SIDE			. · · ·	751.0C 965.76	-7103.80	03	
-	-T/2 SIDE				2 7 7 7 4 7 4 7 7 7 7 4	Tooc24.44	- 0 C	
			•		272114	<u> 4 1 7 년</u> • 왕문	7. 20	
		•						
	MEMBRANE		13.	1	31.66	m234153		• • •
				•	-	- - \	•••	
		•						
				•	~ `			

D-13

.

	DENCINC.					
	BERUING AT/O STOC			105•77 ·	173023.54 . _777≣ 7 .17	- 00
•	-T/2 SIDE			47		- 00
	-1/2 3101			71027410	3205.11	
	• • •	· ·	· · ·		•	
. `·	MEMRRANE	1 -	· •1	12 24	-242 -44	- an
	BENDING		. 1	1167 94	-3993 14	10
· ·	+T/2 SIDE	. •		1197.95	-4135.98	÷,00
	-T/2 SIDE			-1137.90	3650.30	~. 00
.*	۰.					•
	MENBRANE	. 2.9	1	27.30	-243.00	00
	BENDING	•		1264.37	-4213.58	- .90
	`+T/2 SIDE			1291.68	-4451.58	- .00
	-T/2 SIDE			-1236.47	3965.57	.00
	·		· .			
	MEMORANE	31	1 -	24:53	m292.05	•••••0
	511200100 AT/0 0707			1344.75	-6432,.34	
	- TIV2 SIDE		• . ,	100%+24.	- 74734 • 30 0 33 1 - 40	
	-112 3102			1320.23	바로 아니는 바가니	• 3 9
•		• •	• •			•
	MENBRANE	3.5	· 1 ·	2-0-64	-254 .84	···. 20
	SENUINS			1405.35	-4699 92	•· 39
	+T/2 SIDE		. •	1430.34	-4953.78	38
	-T/2 SIDE			-1339.01	4444 013	.00
					:	
				•		
• 3	MEMBRANE	. 2.5	1	15.95	+255.45	•.00
4	PENDING			1458.59	-4861.91	• .00
-	- +1/2 3196 			1474.53	-511-41	••••
	-1/2 310E			**1492*84	4600.01	• 4 9
						
	MEMPRANE	24	1	10.00	-254.74	+ <u>a a</u>
	PENDING		· •	1491.35	-4071 91	- 00
	+T/2 SIDE			1501.59	+5227.77	00
	-T/2 SIDE			-1481.01	4714.24	•00
		,				
						_
	MEMBRANE	2.5	1	3.61	-255.76	••••
	BENDING (T/D OIDT			1507.70		• ↓ 0 0 ↑ 0
	- オイノビーショウニ エノウードエッド		· ·	1011.00 	170201+42 カガムの つち	
	-115 9475			1.20 + 11	94 (3 7 • 17 0	

Aug Memb = 168.75

D-14

LASTIC	T-ST	C 1 5 5 4	1		•	8	POINTS		
EGREES	BEND	ING	L	MEMPRANE		STRN1	1 31 41 3	STRN2	-
		-					· · ·		• • • • • • • •
0.00	-5.6343	01E-03		4.000190c -04	· 🛥	6.234282E-	03	7.034320E.	-03
25	-6.2680	865-03	· · ·	4.0001905-04	1 –	5.868067E-	03	6.668105E	-03
50	-5.9183	45E-03		4.000190E-04	-	5.518327E-	.03	5.318365E.	-03
6.75	-5.5838	79E-03		4.000190E-04	ан -	5.133850E-	03	5.933898E+	- 03 ⁻
9.00	-5.2635	49E-03		4.000190E-04	-	4.8635305-	03	5.653558E	-03
11.25	-4.9561	86E-03		4.000190E-04	-	4.5561675-	03	5.356205E	-03
13.50	-4.6607	195-03		4.000190E-04	-	4.2607005-	03	5.060738E	-03
15.75	-4.3760	57 Ξ- 03°		4.000190E-04	• • •	3.976038E-	03	4.776075E.	-03 .
13.00	-4.1011	335-03		4.000190E-04	-	3.701114E-	03	4.5011525	-03
20.25	-3.8349	26 E-03		4.000190E-04	. 🚥	3.434907E-	03	4.234945E	-03
22.50	-3.5764	09E-03		4.0001905-04	-	3.176390E-	03	3.975428E	-03
24.75	-3.3245	84E-03.		4.000190E-04	-	2.924565E-	03	3.724603E	-03
27.00	-3.0784	63E-03		4.000190E-04	-	2.673444E-	03	3.478481E.	-03
29.25	-2.8371	815-03		4.000190E-04	· 🕳	2.437062E-	03	3.237099E	-03
31.50	-2.5794	705-03	· · .	4.000190E-04	-	2.1994515-	03	2.9994385	-03
33.75	-2.3647	108-03		4.0001905-04	·	1.964692E-	•03	2.7547295	-03
36.00	-2.1318	59E-03		4.000190E-04	-	1.731840E-	•03	2.531878E	-03
38.25	-1.9000	09E-03		4.000190E-04	-	1.499990E-	03	2.300028E	-03
-+ 0.50	-1.6682	465-03		4.000190E-04	-	1.263227E-	0.3	2.068265E	-03
42.75	-1.4337	348-03		4.000190E-04	-	1.035715E-	.03	1.835753E	-03
-5.00	-1.2015	49E-03		4.000190E-04	-	8.015301E-	04	1.501568E	-0 3
47.25	-7.5294	97E-04		4.000190E-04	-	3.529307E-	-04	1.1529595	-0.3
9.50	-2.9761	326-04		4.000190E-04	· ·	1.024008E-	•04	6.976372E	-0'4
51.75	1.6573	69E-04		4.000190E-04		5.657259E-	•0 4	2.343120E	-04
	6.3819	09E-04		4.0001902-04		1.038210E-	03	-2.381719E	-04
56.25	1.1209	82E-03		4.000190E-04		1.521001E-	03	-7.209627E	- 04
\$8.50	1.6150	35E-03		4.000190E-04		2.015054E-	03	-1.215016E	-03
75	2.1212	50E-03		4.000190E-04		2.5212695-	03.	-1.721231E	-03
00	2.6404	56E-03		4.0001905-04		3.940475E-	•03	-2.240437E	-93
5.25	3.1733	395-03		4.0001902-04		3.573258E-	03	-2.773220E	-03
67.50	3.7201	50E-03	•	4.000190E-04	•	4.120159E-	03	-3:320131E	-03
· ? . 75	4.2815	168-03		4.000190E-04		4.631535E-	03	-3.831497E	-03
72.00	4.8575	215-03		4.000190E-04	•	5.257540E-	03	-4.4575028	-03
74.25	5.4481	40E-03		4.000190E-04		5.848159E-	-03	-5.048121E	-03
76.50	5.0531	46E-03		4.000190E-04	· .	6.453164E-	- 0-3.	-5.653127E	-03
78.75	6.6721	575-03		4.000190E-04	•	7.072176E-	03	-6.272139E	-03
81.00	7.3045	504E-03		4.000190E-04		7.704522E-	•03	-5.904435E	-03
83.25	7.9493	47E-03		4.000190E-04		8.349366E-	-03	-7.549328E	-03
25.50	3,6055	78E-03		4.000190E-04		9.005597E-	-03	-3.205559E	-03
87.75	9.2713	802-03		4.000190E-04		9.671897E-	-03	-8.871851E	-03
90 . 00	7.9467	39 E - 03		4.0001905-04		1.034676E-	-02	-9.545720E	-03
92.25	9.2718	80E-03		4.000190E-04		9.671899E-	-03	-3.8/1361E	-03
94.50	3.6053	78E-03		4.000195E-04		9.0055975	-0,3	-5.2055595	-03
96.75	7.9493	547E-03		4.000190E-04		8.3493565	-03	-7.5493285	-03
99.00	7.3044	1982-03		4.000190E-04		7.7045175	-03	-5.9044496	-03
11.25	5.6721	575-03		4.0001902-04		7.072175E	03	-5.272134E	-03
03.50	5.0531	468-03		4.000190E-04		5.453164E	-03	-5.603127t°	-03
05.75	5.4481	345-03		4.000190E-04		5.8481535	-03	-4 4575005	-07
00.80	4.8575	21=03		4.0001902-04		5.25754UE	-03	-4.45/592E	-03
10.25	4.2815	16E-03		4.0001908-04	•	4.631535E	-03	-3-881497E	-93
12.50	3.7201	50E-03		4.000190E-04		4.120167E	-03	-3.320131E	-03
14.75	3.1732	239E-03		4.000190E-04		3.3/3253E	-03	-2.1/3229E	-03
17.00	2.6404	50.E-03		4.0001902-04		3.040469E	-03	-2.240431E	-US
25	2.1212	2505-03		4.000190E~04		2.5212695	-03	-1.7212315	-03
. 27.50	1.6150	1245-03		4.000190E-04		2.015048E	-US	-7.0000102	-03
23.75	1.120	75E-03		4.000190E-04	•	1.520995E	-93	-/.2095/IL	-04
26.00	5.3819	/UYE=04		4.JU0190E-04		I.U30210E	-93	-2.001/1/2	-94
28.25	1.657	13=04		4.0001902-04		5.65/2935	-04	2.343177E	-04
		• • • • • • • • • • • • • • • • • • •		L PPP1VEC - PA		1. 444 A.A.P.D.E.	-:: 4	E - MARIO A F	

			· · · ·	1
1.22	4357598-03	4.6801926 041	+1.035720E+03	>. K5798E − 93
0 E.N.			-1 0680335-03	2 - 3 - 9 - 7 - 7 = -0.3
27.00		9.0001701 09	-1.2882336-03	2. 302/15-03
41.75	-1.90 <u>00145</u> -03	4.000190E-C4	-1.499995E-03	2.300033E-03
44.00	-2,1313648-03	4.000190E-04	-1.731845E-03	2.531333E-03
- 15			-1 0646075-07	57147755-07-
10.20	-2.384/15E-U3	4.0001902.04	-1.9546972-03	2.134133E-43.
48.50	-2.599475E-03	4.0C0190E-04	-2.179456E-03	2.979494E-03
75	-2-8370815-03	4-0001908-04	-2.4370628-03	3.237099E-03
				7 4794915-07
	T3.0/8453ET03	4.0001905-04	-2.6784442-03	3.4/0401E-03
55.25	-3.3245845-03	- 4.000190E+04	-2.º24565E-03	3.724603E-03 *
. = 7 50	-3 5764095-03	4 1001905-04	-3 1763905-03	3 9764985-03
-7.50			5.1765762 00	
59.75	-3.8349375-03	4.0001992-04	-3.434918E-03	4.234956E=03
52.00	-4.1011335-03	4.000190E-04	-3.701114E-03	4.5011522-03
/ h 05	-4 7769625-07	4 000190E=04	-7 0760405-07	4 7760975-03
54.20	-4.3/50502-03	4.0001902-04	-3.7780492-03	4.1189612-03
.55.50	-4.660719E-03	4.000190E-04	-4.260700E-03	5.040738E-03
50.75	-4,9561865-03	4_000190E=04	-4.5561675-03	5-356205E - 03
			- 963501072 00	
/1 • U U		4.0001906704	=4.853525E=03	D.600050E=U 0
73.25	-5.583873E-03	4.000190E-04	-5.183855E-03	5.983892E-03
75 50		4 0001905-04	-5 5183012-93	6 3183F9F-03
13.50			- 0.0100E1E 30	
77.75	-4.268075E-03	4.000190E-04	-5.868056E-03	5.558094E-03.
60.00	-6.634290E-03	4.000190E-04	-6.234271E-03	7.034309E-03
10 0E		4 0001005-04	-5 8480565-07	6 6620045-03
			J.0000J32-03	
o 4 • 5 0	-5.918340E-03	4.000199E-04	-5.518321E-03	6.318359E - 03
26.75	-5-5838738-03	4.000190F-04	-5.183855E-03	5.983892E -0 3
		4 000100 E-04	-4 9675055-07	
39-00	_ ™⊃ • 263544£ ™ 03	4.000196E-04	-4.060020E-US	, p.spbasatus
21.25	-4.9561868-03	4.000190E-04	-4.556167E-03	5.356205E-03
63 EN	-4 6607192-03	4 0001905-04	-4-269709E-03	5.050738E=03
30.00 Se 30				
75.75	4.3 /5352± 1 03	4.0001902-04	-3.9760432-03	4. (150012-0 <u>0</u>
·S.00	-4.1011335-03	4.000190E-04	-3.701114E-03	4.501152E - 03
60 25	-3 8349066-03	4 000190F-04	` − 3 4340075 − 03	4 234945F-03
00.20		4.00CX/3C 04		
-2 . 50	-3.5/54095-03	4.0001908-04	-3.1/63905-03	3.916428E=US
64.75	-3.3245848-03	4.000190E-04	-2.924565E-03	3.724503E+03
57 00	-3 0784635-03	A 0001905-04	-2 -6784445-03	3 4784815-03
		4.0001701 07	2.8704442 20	
25	-2.837 <u>281</u> 8-03	.4.00C190E-04	-2.437062E-03	3.237099E-03
5.0	-2.5994754-03	4_000190E-04	-2,179455E-03	2,999494E-03
- 7 70				0 7/ 47365-07
2.2 - 15	T2.054/181TU0	4.0051905-04	-1-95459/E-U3	2 • 764700EF00
16.00	-2.131864E-03	4.0001905-04	-1.731845E-03	2.531883E-03
3 2 2 5	-1 9000145-03	4 000190E-04	-1.4999955-03	2.3000335=03
20.50	1.6 582525 − 93	4.0001902404	-1.253233E-U3	2.058271E=03
22.75	-1.4357395-03	4.000190E-64	-1.035720E-03	1.335758E-03
5.00	-1.201555F-03	4 0001906-04	-8-0153575-04	1.501574F-03
			-7 5007075-04	1.1500:05-07
21.25	-1-25234315-04	4.000190E=04	-3.5293076-04	1.1029595-00
27.50	-2.9751325-04	4.000190E-04	1.024098E-04	5.9763728-04
31 75	1 6570135-04	4-0001905-04	5.657203E-04	2-3431775-04
74 00			1 0390105-03	
24.00		4.000190E=04	1.0352102-03	-2.351/191-04
36.25	1.120982E-03	4.000190E-04	1.521001 <u>E</u> -93	-7.2396275-04
38.50	1.6150295-03	4.0001905-04	2.015048E-03	-1.215010E-03
0 0 7E	0 1010505-07	A 000100E-04	2 5313605-07	-1 7010715-07
4U • 15	2.121259E=03	4.0091902-04	2.0212575700	-1.7412315-03
43.00	2°.640456E-03	4.000190E-04	3.040475E-03	-2.240437E-03
95 - 25	3-1732395-03	4_000190E-04	3.5732585-03	-2.773220E+03
47 60	3 7001505-07-	A DOD1005-04	4 1001-05-07	
47.50	5.7201501-05	4.0001902-04	4.1201872 33	
49.75	4.281516E-03	4.000190E-04	4.6815351=03	-3.881497E-03
2-00	4_8575215+03	4-0001902-04	5.257540E-03	-4.457502E-03
		6 0001005-04		-5 0491155-07
34.23	J.440134E=U3./	+•003TA05-04	0.0401005-00	
56.50	5.053146E-03	4.000190E-04	6.4531645-03	-5.653127E-03
58 75	6-672157=03	4 _ 0 1 1 1 9 0 F - 0 4	7,072176 = - 03	-5. 272139F-03
			7 7045175-07	
<u>51.00</u>	/ . 3044,98± ≂ 03	4.0001906-04	/ · /U451/E=U3	
63.25	7.9493475-03	4.000190E-04	8.349366E - 03	-7. 549328E -03
25 50	2 6055785-07	4 0001905-04	9 0055975-03	-R_ 285550F-83
00.00				
75	9.271885E - 03	4.000190E-04	9.671904E-03	-3.3/13668-03
0.0	9.946739H=03	4.0001902-04	1.034676E-02	-9.5467205-03
·70 05	0 0713902-07	4 0001005-04	9 6718305-03	-8 8712415-03
12.20	7.2713002703			0.00113816-03
74.50	3.605571E=03	4.000190E-04	9.0055902 4 03	-3.205553E-03
76.75	7.9493425-03	4.000190E-04	8.3493615-03	-7.549323E-C3
	7 7014007-07		7. 70/5175-07	-6 0044705-01
	- 4 - C - C - C - C - C - C - C - C - C	a Tables and a state of the matrix of	to the second	

D - 16

•			と、タンのよどと二世は、	
c.).75	-408146E+02	4.3001902 04	5.8431595-03	- · · · 3121E-03
58.00	4.8575215-03	4.000190E 04	5.2575405-03	-4.4575025-03
90.25	4.281516E-03	4.000190E-C4	4.681535 ⋶− 03	-3.881497E-03
92.50	3.7201565-03	4.000190E-04	4.120175E-03	-3.320137E-03 -
94.75	3.173239E-03	4.000190E 04	3.573258E-03	-2.773220E-03
97.00	2.6404565-03	4.0001902-04	3.0404755-03	-2.240437E-03
25	2.1212505-03	4.000190E-04	2.521269E-03	-1.721231E-03
£1.50	1.6150415-03	4.000190E-04	2.015050E-03	-1.215022E-03
103.75	1.1209825-03	4.000190E-04	1.521001E-03	-7.209627E-04
0.5.00	6.381709E-04	4.000190E-04	1.038210E-03	-2.331719E-04
08.25	1.6571252-04	4.000190E-04	5-6573158-04	2.343065E-94
10.50	-2.976182E-04	4.000190E-04	1.024008E-04	6.976372E-04
12.75	-7.529441E-04	4.000190E-04	-3.5292515-04	1.152963E-03
15.00	-1.2015495-03	4.000190E-04	-8.015301E-04	. 1.601568E-03
17.25	-1.435734E-03	4.000190E-04	-1.035715E-03	1.835753E-03
19.50	-1.668246E-03	4.000190E-04	-1.2682272-03	2.0582555-03
21.75	-1.900009E-03	4.000190E-04	-1.499990E-03	2.300028E-03
24.00	-2.131859E-03	4.000190E-04	-1.731840E-03	2.531878E-03
26.25	-2.364710E-03	4.000190E-04	-1.964592E-03	2.764729E-03
28.50	-2.599470E-03	4.0001905-04	-2.199451E-03	2.9994885-03
30.75	-2.837081E=03	4.000190Ê-04	-2.4370625-03	3.237099E-03
33.00	-3.078463E-03·	4.0001905-04	-2.678444E-03	3.478481E-03
35.25	-3.324584E-03	4.000190E-04	-2.924565E-03	3.724603E - 03
27.50	-3.576409E-03	4.00C190E-04	-3.175390E-03	3.9764285-03
39.75	-3.834931E-03	4.000190E-04	-3.434912E-03	4.234950E-03
42 . 00	-4.101139E=03	4.000190E-04	-3.701120E-03	4.501157E-03
44.25	-4.375057E-03	4.000190E-04	-3.976038E-03	4.776075E-03-5
-5.50	-4.6607258-03	4.000190E-04	-4.260705E-03	5.050744E-03
4ð.75	-4.953186E+03	4.000190E-04	-4.556167E-03	5.355205E=03
1.00	-5.2635495-03	4.000190E-04	-4.863530E-03	5.6635582-03
:3 .2 5	-5.533379E-03	4.000190E-04	-5.1838605-03	5.983898E-03
50	-5.913346E+03	4.000199E+04 ·	-5.518327E-03	6.3183655-03
75	-S.268386E-03	4.000190E-04	-5.8680675-03	6.668105E - 03
CATICS	•			
	9.00000005+01 DEGR	EES		
ENDINC	STRAIN:			· ·
	9.74673738-03	· · ·		
EMBRANE	STRAIN:			

D-17

4.00018975-04 TRAIN1:

- 1.0346758E-02
- TRAIN2: -9.54672045-03

8 PTS

^{0°} ROTATION

ELASTIC TEST CASE	#1
▲ O. DEGREES OF ROTATION	-
ADII:	
0.400	
n 388	
0.400	
0.388	
2.373	
9.3 88	
LOCATION:	
9.0000000E+01	DEGREES
BENDING STRAIN:	•
9-45015752703 MEMODANE STRATA	
4_0285874F-04	
STRAIN1:	
1.03530265-02	
STRAIN2:	
-9.5473090E-03	
. *	
	<u>и</u> 1
ELASTIC TEST CASE	<u>44</u> T
- RADII.	
0.400	
0,385	
0.374	
0.390	
0_400	
0 70 5	
-a C 385	
-∰ C.385 0.374 0.370	
C.385 0.374 0.379	: .
C.385 3.374 3.379 DOCATION: 9.00000005+01	DEGREES
C.385 0.374 0.379 LOCATION: 9.0000000E+01 BENDING STRAIN:	DEGREES
C.385 3.374 3.379 LOCATION: 9.000000000000000000000000000000000000	D E G R E E S
C.385 3.374 3.379 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E-03 MEMBRANE STPAIN: 4.1255323E-04 STRAIN1: 1.0186602E-02 STRAIN2:	D E G R E E S
C.385 3.374 3.379 LOCATION: 9.000000000000000000000000000000000000	DEGREES
C.325 3.374 3.377 D.370 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E-03 MEMBRANE STPAIN: 4.1255323E-04 STRAIN1: 1.0186602E-02 STRAIN2: -9.3614953E-03	D E G R E E S
C.385 3.374 3.379 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E-03 MEMBRANE STPAIN: 4.1255323E-04 STRAIN1: 1.0186602E-02 STRAIN2: -9.3614953E-03	DEGREES
C.325 3.374 3.379 LOCATION: 9.000000000000000000000000000000000000	DEGREES #1
C.325 3.374 3.377 D.377 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E-03 MEMBRANE STPAIN: 4.1255323E-04 STRAIN1: 1.0186602E-02 STRAIN2: -9.3614953E-03 ELASTIC TEST CASE 10. DEGREES OF ROTATION	DEGREES #1
C.325 3.374 3.374 3.379 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E-03 MEMBRANE STPAIN: 4.1255323E-04 STRAIN1: 1.0186602E-02 STRAIN2: -9.3614953E-03 ELASTIC TEST CASE 10. DEGREES OF ROTATION RADII: 0.400	DEGREES #1
C.325 3.374 3.377 LOCATION: 9.000000000000000000000000000000000000	DEGREES #1
C.325 3.374 3.377 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E-03 MEMBRANE STPAIN: 4.1255323E-04 STRAIN1: 1.0186602E-02 STRAIN2: -9.3614953E-03 ELASTIC TEST CASE 10. DEGREES OF ROTATION RADII: 0.400 0.393 9.374	DEGREES #1
C.325 3.374 3.374 3.377 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E-03 MEMBRANE STPAIN: 4.1255323E-04 STRAIN1: 1.0186602E-02 STRAIN2: -9.3614953E-03 ELASTIC TEST CASE 10. DEGREES OF ROTATION RADII: 0.400 0.393 9.374 0.372	DEGREES #1
C.325 3.374 3.379 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E-03 MEMBRANE STPAIN: 4.1255323E-04 STRAIN1: 1.0186602E-02 STRAIN2: -9.3614953E-03 ELASTIC TEST 10. DEGREES OF ROTATION RADII: 0.400 0.393 9.374 0.392 0.400	DEGREES #1
C.325 3.374 3.377 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E-03 MEMBRANE STPAIN: 4.1255323E-04 STRAIN1: 1.0186602E-02 STRAIN2: -9.3614953E-03 ELASTIC TEST CASE 10. DEGREES OF ROTATION RADII: 0.400 0.393 0.374 C.392 0.400 0.393	DEGREES #1
C.325 3.374 3.377 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E-03 MEMBRANE STPAIN: 4.1255323E-04 STRAIN1: 1.0186602E-02 STRAIN2: -9.3614953E-03 ELASTIC TEST CASE 10. DEGREES OF ROTATION RADII: 0.400 0.393 9.374 0.392 0.400 0.393 9.374	DEGREES #1
C.325 3.374 3.377 D.377 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E-03 MEMBRANE STPAIN: 4.1255323E-04 STRAIN1: 1.0186602E-02 STRAIN2: -9.3614953E-03 ELASTIC TEST CASE 10. DEGREES OF ROTATION RADII: 0.400 0.393 9.374 0.372 0.400 0.333 0.374 0.372	DEGREES #1
C.325 3.374 3.377 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E=03 MEMBRANE STPAIN: 4.1255323E=04 STRAIN1: 1.0186602E=02 STRAIN2: -9.3614953E=03 ELASTIC TEST CASE 10. DEGREES OF ROTATION RADII: 0.400 0.393 9.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.374 0.372 0.400 0.393 0.374 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.374 0.372 0.400 0.393 0.374 0.374 0.372 0.400 0.393 0.374 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.374 0.372 0.400 0.393 0.374 0.372 0.400 0.393 0.374 0.374 0.372 0.400 0.393 0.374 0.374 0.372 0.400 0.393 0.374 0.374 0.372 0.400 0.393 0.374 0.374 0.372 0.400 0.393 0.374 0.3	DEGREES #1
C.325 3.374 3.377 LOCATION: 9.0000000E+01 BENDING STRAIN: 9.7740488E-03 MEMBRANE STPAIN: 4.1255323E-04 STRAIN1: 1.0186602E-02 STRAIN2: -9.3614953E-03 ELASTIC TEST CASE 10. DEGREES OF ROTATION RADII: 0.400 0.393 0.374 C.392 C.400 0.393 0.374 C.392 LOCATION: 9.0000000E+01	DEGREES #1 DEGREES

D-18

	A 790710300						
	4.F. DOT (1. 04						
21KAINI:							
A	9.49.360435-03						
<pre>STRAIM2:</pre>							
	-0.53434215-03						
_				•			
ELASTIC TE	ST CASE.	#1					-
15. DEGREE	S OF ROTATION		· • ·		•		•
RADIT				· · .	• • • •		
	n 300 ·				· .		
	0.70			· · ·	· · · •	÷	
h	0.001	at the second					
	0.375					•	
	0.394	•			· · .		
	n 390 ···						
•	0 7 9 1						
	0.381	· ·					
	0.375						
•	0.394	• ·	•		•		
1 OCATTON -				*			
LUCKITUN.	3 8 8 8 8 8 8 8 5 1 5 1						
	. y.J.UUUUUUUUUUUUU	NERKEES					
BENDING ST	RAIN:						
	8.00122235-03			· · ·	· .		
MEMBRANE S	TRAIN:					• • • •	
	A 25700375-04				•		
N	+ • 0079200E =04	•					
SIRAIN1:	•						
	8.4869247E-03						
STRAIN2:							
	-7 5155100E-07					÷	
	1.01001942-00			,			
•	•						
•						•	
ELASTIC TE	ST CASE	#1					•
CO. DEGREE	S OF POTATION	· · · · ·				`	-
LU. PLOKEL		•					
THUI II							
-	0.397						
	0.379			· · · · · ·			
	0.377						
•	0 207						
	しょう メラ		•				
	0.377				· · · ·		
i .	9.379						
$F_{\rm eff} = 1000$ km s ⁻¹	9.377					· ·	
	0 304						
	U • 37 B						•
LOCATION:				•			
•	9.0000000E+01	DEGREES					
BENDING ST	RAIN:						
	6 70496205-03						
MEMORIANIE -							
MEMBRANE S	DIKALNI						
							• •
	5.1664631E-04						
STRAIN1:	5.1664631E-04						
STRAIN1:	5.1664631E-04 7.2216154E-03		•	:	•		
STRAIN1:	5.1664631E-04 7.2215154E-03		• •	:			·
STRAIN1:	5.1664631E-04 7.2216154E-03		:	:			·
STRAIN1:	5.1664631E-04 7.2216154E-03 -6.1333228E-03			:			
STRAIN1: STRAIN2:	5.1664631E-04 7.2216154E-03 -6.1383228E-03			:	· · ·		
STRAIN1: STRAIN2:	5.1664631E-04 7.2216154E-03 -6.1333228E-03						
STRAIN1: STRAIN2:	5.1664631E-04 7.2216154E-03 -6.1333228E-03	d 1					
STRAIN1: STRAIN2: ELASTIC TE	5.1664631E-04 7.2216154E-03 -6.1383228E-03 ST CASE	<i>4</i> 1		•			
STRAIN1: STRAIN2: ELASTIC TE 25. DEGREE	5.1664631E-04 7.2216154E-03 -6.1333228E-03 ST CASE S OF ROTATION	41		•			·
STRAIN1: STRAIN2: ELASTIC TE 25. DEGREE RADII:	5.1664631E-04 7.2216154E-03 -6.1333228E-03 ST CASE S OF ROTATION	<i>4</i> 1		: •			
STRAIN1: STRAIN2: ELASTIC TE 25. DEGREE RADII:	5.1664631E-04 7.2215154E-03 -6.1333228E-03 ST CASE S OF ROTATION	<i>4</i> 1	· · · · ·				
STRAIN1: STRAIN2: ELASTIC TE 25. DEGREE RADII:	5.1664631E-04 7.2215154E-03 -6.1883228E-03 EST CASE S OF ROTATION 0.396	<i>4</i> 1	:			· · ·	
STRAIN1: STRAIN2: ELASTIC TE 25. DEGREE RADII:	5.1664631E-04 7.2216154E-03 -6.1883228E-03 ST CASE S OF ROTATION 0.396 0.377	<i>4</i> 1	:				
STRAIN1: STRAIN2: ELASTIC TE 25. DEGREE RADII:	5.1664631E-04 7.2216154E-03 -6.1883228E-03 EST CASE S OF ROTATION 0.396 0.377 0.379	<i>4</i> 1	· ·				
STRAIN1: STRAIN2: ELASTIC TE 25. DEGREE RADII:	5.1664631E-04 7.2216154E-03 -6.1883228E-03 EST CASE S OF ROTATION 0.396 0.377 0.379 0.397	<i>4</i> 1	:				
STRAIN1: STRAIN2: ELASTIC TE 25. DEGREE RADII:	5.1664631E-04 7.2216154E-03 -6.1883228E-03 EST CASE S OF ROTATION 0.396 0.377 0.397 0.397	# 1	· ·				
STRAIN1: STRAIN2: ELASTIC TE 25. DEGREE RADII:	5.1664631E-04 7.2216154E-03 -6.1383228E-03 EST CASE S OF ROTATION 0.396 0.377 0.397 0.397 0.396	# 1	· · · ·				
STRAIN1: STRAIN2: ELASTIC TE 25. DEGREE RADII:	5.1664631E-04 7.2216154E-03 -6.1383228E-03 EST CASE S OF ROTATION 0.396 0.377 0.396 0.397 0.396 0.377	# 1	· · · ·				
STRAIN1: STRAIN2: ELASTIC TE 25. DEGREE RADII:	5.1664631E-04 7.2216154E-03 -6.1383228E-03 EST CASE S OF ROTATION 0.396 0.377 0.396 0.397 0.396 0.377 0.396 0.377 0.396	# 1	D-19				
STRAIN1: STRAIN2: ELASTIC TE 25. DEGREE RADII:	5.1664631E-04 7.2216154E-03 -6.1383228E-03 EST CASE S OF ROTATION 0.396 0.377 0.396 0.397 0.396 0.377 0.396	<i>4</i> 1	D-19			· • • • • •	

;

\$ N	•	(1.5 1) ·			
BENDING	AIN: .			· · ·	
	6.70496895-03			•	
MEMBRANE	STRAIN:				
	5,16646315-04				
STRAIN1:					
-	7-22161545-03				
TRATUO	1.221/10/2 00			,	
		•			
۱.	-6.1383228E-03				
A					
ELASTIC T	ES.T CASE	#1			· · · · ·
a 30. DEGRE	ES OF ROTATION		· · ·		
RADIT			•		
	0-324		,		
_	0 375				
	0 70 0				
•	0.001	•		· ·	
	0.399				
	0.394				
	0.375				
	0.331			-	
· •	0.379	· · ·			
EOCATION:		2		•	
	4 500000F+01	DEGREES			
- PENDING S	TEATN -			· · · · · · · · · · · · · · · · · · ·	۸.,
DENDING 3	9 9 9 9 9 9 1 F 9 F - 9 7		·		·
	6.0012156E-05				
MEMBRANE	STRAIN:		•		· · · · · ·
C_{2}^{2}	4.35800265-04				
[™] STRAIN1:		á -		,	
	8.48701605-03		· .		
STRAIN2:	1		· ·		
	-7 5154155F-03			· ·	• •
	1.01041006 00				
			• .		
ELASIICI	ESI CASE	πT			
35, DEGRE	ES OF ROTATION			•	
RADIE					
	0.392				
	n <u>37</u> 4	. ,			
	0.383		•		
	6 4 2 6	·			
	0 300				
· •	0 774				
			· · ·		
	0.333				
	<u>0</u> • 4 0 0	. •			
- LOCATION:					
	4.5000000E+01	DEGREES			
BENDING S	TRAIN:			· · · ·	
~	9.01397328-03				
MEMBRANE	STRAIN:				
	4.79631075-04				
- STRAIN1.					
	9 40363035-03	· ,	•		
CTDATHO	7.47000407700		· .		
2" KAINS:					
<u></u>	-8.5343421E-03	· · ·			·
-ELASTIC T	EST CASE	#1		·	
AN. DEGRE	ES OF ROTATION	- ,			
AD TT -					.
AD LT :	0 300			•	•
A	0.020				
	5.574			• •	
	0.335		Ν	·	
-	0.40.0		D-20		• •
· -	· • •	· ·			

.

	1.430	
LOCATION:		
•	2.2500000	DE+02 DEGREES
BENDING S	TRAIN:	•
	9.7740544	4F-03
MEMBRANE	STRAIN:	
	4.1265113	3E-04
STRAIN1:		
1	1.0185706	55-02
STRAIN2:		
	-9.361403:	1E-03

0

Š,

.

D-Z1

¢.	•			
			· · ·	
FLASTIC TES	T CASE #1		5C POINTS	
) EGREES	PENDING	MEMBRANE	STRN1 STRN2	
00	-6.489025E-03	5.154712 -04	-5.973549E-C3 7.004491E-03	
44	-5.8921755-03	5.154712=-04	-5.376704E-03 6.407646E-03	
2.88	-5.301022E-03	5.1547125-04	-4.785551E-C3 5.816494E-D3	
4.32	-4.714768E-03	5.1547125-04	-4.199297E-03. 5.230240E-03	
5.76	-4.1326335-03	5.154712E-04	-3.617161E-C3 4.648104E=03	
7.20	-3.55389CE-03	5.154712E-04	-3.038419E-03 4.069361E-03	
8.64	-4.2889875-03	5.1547125-04	-3.773516E-C3 4.804458E-03	
10.08	-5.029163E-03	5.154712E-04	-4.513692E-U3 5.544634E-U3	
11.52	-5.(15286E=05	5.1547125=04		
		5.1547125=04		
14.41		5 1547125-04	=5 728877=03	
17 28		5 1547125-04	=4.685236E=03 5.716179E=03	
18 72	-4 1545055-03	5.1547125-04	-3.641034F=03 4.671976E=03	
20.16	-3.110148F=03	5_154712F=04	-2.594676F=C3 3.6256195=03	
21.60	-2.06-1615-43	5.1547125-04	-1.544692E-C3 2.575633E-U3	
23.04	-2.557642E-03	5.154712E-04	-2.042170E-C3 3.073113E-03	
24.48	-3.0598075-03	5.1547125-04	-2.544336E-C3 3.575279E-03	
25.92	-3.5670835-03	5.154712E-04	-3.051612E=u3 4.082554E=03	
77.36	-4.5799245-03	5.1547125-04	-3.564453E-03 4.595395E-03	
28.80	-4.598779E-03	5.154712E-04	-4.083308E=03 5.114250E=03.	
°C.24	-4.1442335-03	5 <u>154712E-04</u>	-3.628762E-U3 4.659704E=03	
71.68	-3.6902065-03 ,	5.1547125-04	-3.174734E-C3 4.205677E-03	
~3.12	-3.2360261-03	5.1547125-04	-2.720554E+C3 3.751497E+C3	
14.56	+2.781953E+93	5.154/12E=U4		
6.02		5 15/7125-04 5 15/7175-0/	-1.009173555 2.04U105553 -1.007356555 2.0732065-03	
		5 456740 E=04		
	- ディッシウダムタンビニム 2	5 1547128-04	-7 029331E+CA 1.733875E+03	
11 7A	-9 448773E-64	5.1547128-04	-3.294021E-04 1.360345E-03	
3.26	-4_681649F-04	5.1547125-04	4.730633F=C5 9.836361E=04	
4.64	-7.329165E-34	5.154712E-04	-2.1744535-04 1.248388E-03	
46.08	-9.096068E-24	5.154712E-04	-4.841356E-C4 1.515078E-03	
47.52	-1.268372E-03	5.154712E-04	-7.529010E-04 1.783843E-03	
48,96	-1.5793215-03	5.1547125-04	-1.623849E=C3 2.054792E=03	
50.40	-1.8125825-03	5.1547128-64	-1.297111E-C3 2.328054E=03	
-1. 84	-5.705610E-04	5.1547125-04	-5.508983E-05 1.086032E-03	
	6.86C272E-04	5.154712F-04		
4.72	1.9586528+93	5.1547125=04		
		5 156710±±04	5 072237E=03/ 0/120/E=03	
57.000 50.0%	7 000594ELF7	5 15/7125-04 5 15/7125-04	· J.0722372-03 · 4.0472742-03	
7.04 80 48	3.22793012-03	5.154712F=04	3,956377E+D3 +2,925434E+D3	
61 92	2.8817505-93	5.1547125-04	3.396221E-03 -2.365279E-03	
63.36	2.319116E-03	5.1547126-04	2.834587E-C3 -1.803645E-03	
54.87	1.7559705-03	5.1547125-04	2.271441E-03 -1.246499E-03	
÷6.24	2.236846E-13	5.154712E-04	2.752317E=03 -1.721374E=03	
47.68	2.724292E-03	5.1547128-04	-3.239763E-03 -2.208821E-03	
49.12	3-2185015-03	5.154712E-04	3.733973E-03 -2.703030E-03	
70.56	3.719624E-03	5.1547128-04	4.235095E-C3 -3.204152E-03	
72.00	4.227769E-03	5.154712E-04	4.745241E-13 -3.712297E-13	
- 3. 44	4.959382E-03	5.1547128-04	5.474853E=03 -4.443970E=03	
E S	5.770131E-03	5.154712E=04		
77.52	8.449959E=03	う。13471とと=54 5、4573435、57	0,Y00400E=C0 = = = = =	
70 20	7.4LT04954U3 7.0750005-07	フェドラ4/14とは中部4 · · · · ち、1ちんフォウビー(1ん	r + r 2 4 F 2 4 E 4 1 2 4 E 4 1 2 4 E 4 1 2 4 E 4 1 2 4 E 4 1 2 4 E 4 1 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	
9.611 Set: 61	イップイングログビデゴン ターンプロイムスロームス	- ション・シャインをたてはない。 - ダーダ ちん マイ うちゅん	8 5070175	
つい。C.44 クラー559	· · · · · · · · · · · · · · · · · · ·	5,1547125-04	8.701902F=03 -7.670959E=03	
	•			
	· · · · · · · ·		···· ····· ··· ··· ··· ··· ··· ··· ···	
			•	
---------------------------------------	---	--	-------------------------	---------------------------------------
	to the second second		0 N/2508E-03.	- A 655 -113
(• 4	• 7 • • •			
7 84	8.521524E = ⁵ 3	5.1547128 04	9.0369958-03	-r. 060535-03
0.0 0.0		E 4 E / 74 2 E - 11 /	0 07/0085-07	
24.20	CT214(20IL02)	5.134/125-64	9.1042201-U.3	
20172	2.518758F+03	5.1547125-04	9.034221E+03	-8.003279E-03
•			0 07/0795 67	AT COLOR CONTRACTOR
···2.16	8.527507E=U5	5.1547725 04	A * 730A LOF # 73	™⊘.UL CU⊃⊃ L™U ()⊅:
07 6:	8、5270476=03	5 1547125 344	9.042486F-C3	-8_011543F-03 ···
7. .				
0.4	8.4103435-03	5.15.47125-04	- 8.925814E= <u>C</u> 3	-7.8948726-05
		E AFITADE IL	9 9433475-07	-7 7813015-03
42	8.2967725=03	3.1347121704	0.0122495-1.0	-1.101JU:E-02
07 02	ℜ 1864600 = 03	5,1547128-64	8.701931F=UR	-7.678985 - 83 ⇒
• • 4				
.29.36	8.0794945-03	5.1547125-04	S 8.5949001=53	=/.)04U23E=U3
1 20 00	7 0750765-03	5 15/7125-0/	8 4014475-03	-7.460505E-03
E U.OH)	(.9/J9/0E=J0	J. /J4/122-04		
1 02.24	7.2086848-03	5.1547125-04	7.724155E-C3	-6.693212E-03
		E AELZADE OV	4 0451355-67	-5 07//925-07
15.68	6.4499545-03	5.1547725=04	0.9004205-10	T2.734462ETU2
05 12	5 7010025+03	5.1547128-04	6.215563F=C3	-5.1846215-03
				1 11797(5-07
16.56	4.0593085-03	5.1547128-04	5.4/4//YE=US	- 4.4430306 - U3
1 10 10	. 2276675-113	5 1577722=04	6 763138E=C3	-3,712196F-03
	4.2270071-00	J. J. J. J. J. L. U.		
10.44	3,7195508-03	5.1547125-04	4.2350218-03	=3.204079E#03
	7 040//75 07	5 4517435-411	7 7770705-07	-2 70004E=A3
0.00	3.2184575-93	5 + 1547 12 E TU4	2.1224246-24	
:12 32	○ 7242975 = 0.3	5,154712E=ù4	3.2397685+03	-2.208826E-03
				4 774/405-07
17.76	2.2368918=03	5.154/122-04	2./22302E=U3	-1.r21419E-03
146 D.D.	4 7560375-53	5. 15/7125-84	2 2715695-63	-1_240566F-03
2.4 4 11		S Jejjerize Of		
16.64	2.3191665-03	5.1547125-04	2.8346386-03	
		5 45/7175-D/	7 704007==07	-2 36528/5-03
SU. 3	と…おおに(ううニニジン	5.154/12E=04	2.2402215-12	-2.0022042-000
110 52	3 4408885-03	5,1547125-84	3.956359E=C3	-2.925416E-03
				7 /9/0//5-07
170.96	3.999535E+73	5.1547125-04	4.515007E=C3	■3.434004E=00
/	1 5546815-07	5 15/7125-04	5 0721525+03	-4_041209F-07
1. £. • 4 • J	4.00000000000			
173.84	3.2485115-03	5.1547128-04	3.7639826=03	•2.733040t=03_
	1 0594407-117	5 45/7425-07	2 4741435-03	• 1 447107F=03
12.24	1.4000091700	1.1.14112.04	2.4747402.00	
126.77	6,2608895-04	5.1547125-04	1.2015605+53	+1.7U6177E=04
		5 45/7425-0/	-5 /090175-05	1 0950725-07
_2 ⊱ _16	●2./☆4☆ほろと●は4	2.1247125-04	T0.470710ETNJ	
100 611	-1 812669F-03	ち 15ムブイクド=野女	=1,294978F=C3	2132792CE-03
1 A. Z. ∎ G.C.				
71.04	-1.539231E-03	5.154/12E-04	-1.U23760E=03	2.0547925-05
A 1 2	-1 $34 - 737 = 17$	ち オちんアイフ ちょのん	■7 5285615=C4	1.7837998-07
<u> </u>	■1.20002/11=00			
- 97	-9.9942365-94	5.1547125-04	-4.841523E-04	1.515095E-03
		5 45/7475-11	-2:4750425-04	1 2/8///5=03
°5.56.	*(.329(245*94	5.154712E=04	-2-1720125-54	1.1404442-00
124 80	-/ <u>/82/56</u> F-74	5 1547125-04	4,720566E - C5	9.8373685-04
Q.∎OQ				4 7/0/075-07
18.24	-8.449515E-04	5.154/125-04	=3.2948U3E=54	1.3004236763
120 20	-1 319/465-13	5 15/7125-04	=7 029891F=04	1.7339316-03
· · • ₽00				
41.12	-1.589284E-63	5.1547128-04	+1.973013E=93	ビードレイイランと = ロン
	-1 0575745-07	F 15/717F=(./	ニキ ルムウスムちビーごス	2 4733076-03
46.20	. TI ,90(000ETL0	J. J4712=-04		
14.00	-2.3246398-03	5.154712E-04		2.8401165=03
		E 4E/7435-0/	-2 2655975-07	7 206570F=83
· · · · · · · · · · · · · · · · · · ·	-2.7810582-05	○ •1047 HZ = 54	-K. 20000015- 0	3.2703.900.00
116 88	ニマ フマチリスイドーのろ	5.1547125-04	-2.72056CE-C3	3.751502E-03
			7 47 77 5 57	1 215/775-07
148.32	-3.699206E-03	5.7547725-04	●3.1(4/34±●U3	4.200076-00
140 76	-1-144233=-03	5,1547125-04	-3.628762E-13	4.659704E-03
•• : • · · ·				E 44/0855-07
11.20	-4.5987793-03	-5.1547125-04	=41.083316E=13	. 5.114230E-0 5
57 41	-/ J70019=-03	5-1547125-34	-3,5644475-53	4.595390E - 03
· J≤ ∎04/	1 · · · · · · · · · · · · · · · · · · ·	2 + 1 2 7 1 1 6 6 6 7 P A P 2 7 4 6 6 6 7		/ 09755/5-07
154.08	-3.567083E-G3	5.754772E=94	-2.121015E-722	4.4620045500
1.5.5.5.7	-7 05070Ac=03	5 1567125-06	-2.544325F-C3	3.5752688-03
ے زہ کہ ر				7 0771075-07
156.96	-2.557636E-03	5.1547128+04	-2.042103E-U3	2.972197ETV2
• c o / h	-2 6451755-603	5 15/712=-14	-1.5446738-83	2.575616E-03
1 Q • 4-9	-2.0001475-790			7 / 7 5 / 7 5 5 7
150.84	-3.1101375-03·	5.1547125-04	-2.594665E-'S	3.02000E=U0
		5 15/7175-6/	-7 661023E-C3	4 671965F=03
1 - 1 - 2 26	TH.IOCHY45TUD	J.+J4/12=04		
107 77	-5,2007070-03	5.1547129-04	-4.6852362+63	5./161/9E=US
	المناحي المناكرية البالي من العالم المن المناحية المنظم المناحية المناحية المن المناحية المن	E AE/747E 1/	-5 770775-77	6 7507805 - 03
- 4.16	-6.24431863	- J .134712E=94	-J.(2000/ERUS	
5 6 C 2 -1	-7 D2807/F-N7	5 1547128-84	-6.7734532-03	7.8043955-03
0 2 • 0 Ur	-/.200729E=V0			7 8/774/5 67
147.04	-6.5282435-03	5.1547125-04	-6.UT2772E-63	て。ほろうて下方にやける
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		5 45/7475-11/	-5 550200F-NZ	6.2007525-03
i <u>e 2</u> .48	-5.775288E-03	D . 1 0 4 / 1 4 ± € U 4		
y 🚺 o 🤉	-5 0201515-63	5.154712F-14	-4.513680E-43	5.5446222-03 :
Ч С У С				1 90///15-07
× 🕶 3.6	-4.2889708-03	う ・ 7 5 4 7 1 2 E = 0 4	=5.(/54Y85=915	4.주민44418루민주 ·
1:70 04	-7 5572405-17	5 1547125-14	=3_038397#=63	4.0693392-07
"/ ∠ .ōU				/ //0000F 07
174,274	-4.1326275-63	5.154712E-U4	-3.61/156E-53	4 - 648098E■05
	_/	5 15/7125-(1/	-4 100303E-L3	5_236245F =03
* 12 - 68	●4 。7 47 7 4と●ほう	·J • I J 4 6 I 2 5 7 (14		
יכ:ף , דיד י	-S, Z810585-03	5 1547125-04	-4. 7855795-83	う。 や16521ミーUS
•. `	• . · · ·	D-77		
· ·		$\nu - \zeta S$		· ·
		-		· · · · · · · · · · · · · · · · · · ·
				i

			 A 10 10 10 10 10 10 10 	· .
1.4.7.1	والمراجعة الواجعين	·····		1777 C. 1
[™] 1 , 4) • •		2.124711 104	=>.2/0/2/E=GD	10101055000
1-2 88	ろうちいムムに	5 154712 - 447	-4 7855735-03	5 2165165-03
16.56	ニチックトタイアチビアロシ	5.1547125704	-4.199303E-US	う とうじくそうと 一行う
195 76	A/ 130/07F=03	5 15/712 +11/	-3 6171565-03	1 618008E-03
	F4.132027L-03	2.1242125-04	-3.01/100010	4.040U20E-00
187.20	-3,5578685-03	5-154712:004	-3:0383975-03	7 169339F-03
100 44				
198.64	-4.288970E-03	5.154/12 -04	-3.773498E-U3	4.804441E-03
1.0	-5 0204515-07	5 5 45/7401_0/	-/ 5474905-07	5 5//6325-03
00	- ニン・パイネインドビニハン	2 • 1 247121 * 24	-4.010000C-100	2.2440226-02
1 52	-5.775286F-03	5,154712=-94	=5,259859E=E3	6.290752F-03
992.96	+6.5282495+03	5.154/12E=J4	-6.012777E-65	. · · · · · · · · · · · · · · · · · · ·
10/ 10	-7 2880205-37	5 15/7175-07	-6 777/585-57 -	7 8677005-03
1.44 * 4 1	-1.2003555500	J • 1 J 4 7 1 C = -04	-0.1704206-10	/.0C44UGE~UJ
195 84	-6.2443088-03	5.1547125-04	-5.7288375-03	6.7597805-03
		5 AF17435 01		5 74/4775 07
197.28		5-154712E=04	- =4.6852318=93	5.7161735-03
108 72	-/ 156/835-53	5 15/7125-07	-7 6/10175-07	/ A7105/ = 03
1 2 3 1 • 4 C	-4.1904000-00	J. (J47722-04	-J.J.J.J.J.	4.0777946-09
n no.16	-3.1101146-03	5.1547125-04	-2.594643E-C3	3.625585E=03
2 MA 2 M		E 4E/7435-01	-4 511/105-07	2 5755225-07
1 : [이나	TZ.UQ/111ETUS	3.134/1∠≤= L4 · ·	=1. 0440465 = 10	というてつつのとたていう
3 MZ 04	-2 557625F-A3	5 1547128-04	=2 042154F=F3	3 0730965-03
· · · · · · ·				
2.04.48	-3.059824E-03	5.1547125-04	=2.544353E=C3	3.575295E-03
3.05 0.5	-7 5474775-07	E 4E/710E-0/	-7 0544475-57	/ 09240/5-07
5 - 12 - 14 C	-2.20/1226-02	2-1247725-04	-3.0048-03.	4.0020046-00
2:17.36	+4_CRCCA25+A3\	5.1547125-04	-3,5645315-63	4.5954738-03
18.80	-4.59889vE=03	5.154/12E=04	-4.083419E-C3	5.114361E-U3
100 21	-/ 4//3445-07	5 15/7105-3/	7 6799/0E-17	/ <u>6507825-07</u>
. U . C 4		J ./ J 47 1 2 5 7 0 4	-3.02064.5-63	4.039/025-03
211.68	-3,6902395-A3	5,154712=+64	-3,174768==53	4.205711=-03
113.12	=3.236026≒83	5.154712=*04	-2.7200495-103	5.751491E-03
146 56	-2° 7810075-03	5 15/7125-07	-2 265532E-03 ·	ろ つなんだんちゃのろ
. ··•		5.154712.54		
16.00	-2.324561F-83	5.1547125-04	-1.8090905-03	2.8400325-03
- 17 //	• • • • • • • • • • • • • • • • • • • •	E 45/7435-8/	-4 // 22945-57	7 /777775-07
. 11 . 44	-1.90(()21-U)	5.1547125-04	- 1.442201C-UD	2.4(32231=03
249 88	-1 5201050-47	5 154712=-114	-1.0737248-53	2.104656F=03
••••				
	-1.218371E-03	5.1547125-04	-7.028995E- <u>1</u> 4	1.7338428-03
1 76	-9 1194775-01	5 45/7405-0/	-7 2070455-11	1 74077GE-17
- C I • C O	TO:+4400//5704 -	J.1J4(125-04	-3.2939031-04	
3.25	-4,6816405-04	5.1547128-04	4.730633F-05	9-836361E-04
4.64	-7.3292225-04	5.154/125=04	- 〒2-11745155に青日4	J.248393E.=U.5
· · 4 6.9	-0.00604022-07	5 15/7125-0/	-6 8613005-06	1 5153725-07
0.00		J. 1 J47 1 4 2 - 1 54	-4.0412002-24	
52	-1.2683665-03	- 5 . 154712E=04	-7.5289538-04	1.7338388+03
	· · · · · · · · · · · · · · · · · · ·	F 45/7405-0/	4 077775-07	5 05/7755 07
- 	-1.519394403	5.154/125-04	-1.0238535-05	と1054775とそした
15 1.5	-1 010577C-03	5 15/7125-07	-1 2071865-53	2 3280/85-03
7.2				
1.84	5.7~5619日一月4	5.1547128-04	-5.5089835-05	1.086632E - 03
7 7 5	(0/() / E =	5 15/717=41/	1 201/075-07	-4 7655075-07
.1 . 40	0.00.21757.4	3,1347125404	1.2014935-13	T (17 CODCOSTENA
176 72	1_9586356-03	5-1547125-04	2.4741065-13	-1_443164F-O3
	2.2485116−35	5.1547125-04	3.7639828*03	=2.73304000=000
777 66	4 ES4706EH13	5 15%7175-0%	5 0721015-07	-/ 0/10/0E-03
00	4.00772.2700	- 2.124716=-04		-4.0412470-70
30.04	3_999558F#03	5,1547125-04	4.515029E-C3	-3.484087E-03
				-2 -2 -2 -2 -2 -2 -2 -2
- 40	5.44UYUDE=5.5	D.104712E#94	3.430377E=U3	
>11 02	2 88/767F₩83	5 1547128-114	7. 39K23XF=^3	-2 365295F=03
₩ I • 7 C				
143.36	2.319155E-03	5.1547125-04	2.834626E=L3	-1.803684E-03
111 6:	4 7560455-07	5 15/7125-01/	2 271/865-53	-1 2/05//5-03
	• ()())))= ())	J.IJ4/121-04	2.2114001-00	-1.5402445-00
46.24	2.236885E-73	5.1547125-04	2.752356E+03	-1.721414E-D3
5 / 7 / 5	3 73/307E-V7	E 4E/743E-1/	7 7707495-67	-7 7059747-57
41.00	C . / C 44 7 / C = 93	- 2.1241165-04	9.697(00ETC)	-4.2000401-03
- 49,12	7.21849CE-03	5.1547125+04	3.733961E=03	-2.7030198-03
	7 7405755 27		1 3750/05 37	-7 -2014076-07
1:1:50	5.7195785-05	D ∎134712E=114.	4.2330495-03	*3.204107E*03
152 hit	ムーランファインドーロス	5 1547128+04	4.743183F=i3	-3.7122415-03
- -				
53,44	4.959336E+03	5.1547125-04	5.4748378=03	=4.4438655=93
501 00		5 15/7175-11/	6 2155695-87	-5 12/4345-03
. 4 <u>.</u> C C	ショイリムにタイムエビシー	· J. IJ4/12 = -04	0.21000E-U0	TJ.104020ETUS
11 TK 32	6.4499375-113	5.1547125-04	6_965408F=C3	-5,9344665-03
7.76	7.208649E=03	5.1547125-U4	/./2412LE=E3	-6.6931/8E-U3
. ro n u	7 07504/5-07	5 15/7105-07	8 /013855-63	-7 / 40// 20-07
7.2U	(・ダインダータビデジュー	フ ₀) 4 / ζ Ε = 0.4	0.4712025=63	-/.400442E - 03
14. 74	8_679449=-03	5,1547125-04	8,594920F-03	-7.563978F-03
62.38	₩ . 186437E=03	5.1547125-04	8.701908€+€5	/.0/09062-03
17 57	2 2047725-07	5 15/7125-0/	8 8100/75-07	-7 781701E-07
~~ •>4	0.4YC//45TUD	フォイスサイトならざいみ	0.0122932733	F . F G F D U F E = U D
N O A	8,4103665-03	5.1547125-04	8,925831E=63	-7.894889F-13
.49	8.5270485+03	J.754/725=04	9.U42519E=US	-8.011577E-93
147 97	え ちつイタルイビニクス	· 5 154712=0/	9 037012=03	-8.006070=-03
4	2 • 2 4 1 4 1 C = C 2			
69.28	8.518773E-03	5.1547125+04	9.034244E-03	+8.003302E-03
			0 07/0//5 07	-2 0077005-07
• (2	というりとだがら出来しる	3.134/12E=U4	メルロつみどみみ たきにう	, TO.ULDD 125 -03-
72 16	Q 50.1541F=12	5,1547125-04	9,0370126-03	-8_336A73E-93
	■ 2012 10 100 100 T			•
		17-24		
•		· •	,	

· • •	• 11 · · · · · · · · · · · · · · · · · ·			200110-07
17.92	186437E=03	5.154/125 4	8.7019088-03	7/U966E=U3
- 36	8.079449E-03	5.1547125-04	8.594920E=03	-7.563978E-03
120.80	7.975914E-03	5,1547128-04	8.491385E-C3	-7.460442E-03
2.24	7.2086495-03	5.1547125 04	7.72412CE-C3	-6.693178E-03
187 68	6 649962E=03	5-1547128-4	6.965414F=C3	-5.934471E-03
10.00			6 2155685+03	-5 184626E-03
56	4.959336E=U3	5.1547125-04	2 + 47 40 97 E - 92 7 - 77 7 4 97 E - 57	
228.00	4.227712E-13	5.154/12=14	4.7431835=03	= 3.712241E=U3 .
229.44	3.71957 <u>85</u> -03	5.1547125-04	4.2350492-03	-3.204107E-03
290.88	3.2184906-03	5.154712E-U4	3.733961E-03	-2.703019E-03
102 32	2.724297E-07	5.1547125-04	3.239768E-C3	-2.208826E-03
307 74		5 15/7125-04	2 752356F=03	-1-721414F-03
			2 774/945-57	-1 2405446-03
202.20	1.756015E=03	D.104/12E=04	2.2714505-93	
296.64	2.319155E-U3	5.1547125-04	2.834626E=U3	=1.803664E=03
80.820	2.8807675-03	5.154712E-04	3.396238E-C3	-2.365295E-03
:00 52	3,4409055-03	5.154712E-04	3.956377E-03	-2.925434E-03
200 96	7 999558F=03	5-154712F+04	4.515029E+C3	-3.484087E-03
		5 15/7125-04	5 072191E=03	-4.041249F-03
2.40			7 7470975-57	
5.84	3.248511E=93	5.1547125-04	3.103702E-UJ	
165.28	1.9586355-03	5.1547725-04	2.474106E=US	-1.4431046-03
116.72	6.8602155-04	5.154712E-04	1.2014935-03	-1.705503E-04
18.16	-5.705610E-04	5.154712E-04	-5.508983E-L5	1.086032E - 03
19 60	-1 812588F-33	5.154712F=04	-1.297117E-C3	2.328059E-03
14 01		5 1547125-04	=1 623838F=03	2.054781F-03
			-7 5799075-54	1 7878725-03
72.48	#7.20*351E#U3	5.1347125-04	-1.3200775-54	
13.02	-0.995844E-74	5.1547121-04	=4.841132E=04	1.01000E=01
15.36	-7.328998E+04	5.154712E-04	-2.174285E-C4	1.2483/15=057
16.86	-4.681369E-04	5.1547125-04	4.733432E-05	9.836081E-04
8.24	-8-448565E-114	5.1547125-04	-3.293853E-C4	1.360328E-03
10 68	-1 2123995-07	5-1547125-04	-7.029275E-04	1.733870E-03
17.00	_1 5000/55_07	5 15/7125+6/	-1 173774F=03	2.104716F-07
			-1 //27705=07	2 A 77313E=03
>0				
	-2.3246725-u3	5.154712E=04	-1.8092015-(3	2.0401445703
:5.44	-2.781086E+03	5.154712E+u4	-2.265615E-US	3.290008E-U3
R8.45	-3.236042E+03	`5 . 154712F−04	-2.720571E-03	3.751514E-03
18 3 2	-3 A0-216F-03	5.154712E-04	-3.1747345-03	4.205677E-03
0.74		5 15/7125-04	+3 628762E=53	4.6597545-03
				5 1147335=113
· · · · · · · ·	#4.3967025 - 33	3.1347122-04		
72.64	-4.0799975-83	5.154/128-04	-3.204430E-L3	4.393378E-03
734.08	-3.567:83E-03	5.154712E-04	-3.051612E-03	4.0825542=03
135.52	-3.059802E-03	5 . 1547125 - 04	-2.544331E-03	3.575273E-03
776 9%	-2.557647E+03	5.154712E-04	-2.042176E-03	3.073118E-03
18 / 5.	-2 06F167E=33	5.154712F-04	-1.544696E-C3	2.575638E-03
776 61		5 154712=-04	-7-594645=-03	3.6256135-03
37.04		5 15/7125-07	-7 6611125-03	4 471954F=03
41.28	-4./JC4022-UJ		_/ X050075407	5 7161/55=03
142.12	-5.2010745-03	3.134712E=04		
344.16	-6.244265E-03	5.1547125-94	-5.728743E=U3	
45.60	-7.2888515-03	5.154712E-04	-6.77338(E=1)3	7.804322E-03
147.64	-6.5282048-03	5.1547128-04	-6.012733E-C3	7.043676E-C3
718.49	-5_775286E-63	5.154712E-04	-5.259815E-03	6.290757E-03
7/0 02	-5 0201855-07	5.154712F-04	-4,5137145-03	5.544656E-03
		5 457795=07	-3 7735546-63	4-804496E-03
· > I • > 0	-4.2074222-50 7.5570295 07'	- ショイスサイトムモニシサ		4 069640E=07
: 2.80	-1.553468E-US			マックビア キャラニックリー
754,24	-4.132699E-03	5.154/125.04	-3.01/220E-L3	4.0401700703
°55.68	-4.714819E-33/	5.154712E-04	=4.199347E=03	5.2302905-03
157.12	-5.301061E-03	5.1547125-04	-4.785590E-C3	5.816532E-03
758 5K	-5, 8921925-33	5.1547128-04	-5.376720E+C3	6.497663E-03
	1•			
		CDEES		
	2.6040502E+U2 DE	UNCED -		
RENDING	STRAIN:			50 ptc
	8.52704795-03			JU. FIJ.
TEMBRAN	E STRAIN:			
	5,1547121 =- 44		-	
		D	25	
		-		
				· · · · ·

50 PTs .---

100 PTS.

LASTIC	TEST	CASE #1			×
EGREES		BENDING	MEMPRAVE	STRN1	STRN2
— 0	- 4	3437055-03	5 032307E+1A		4 3479265-03
	- 7	3437932-03	5.0323071 FA		4.047026E=03
- 6		.795279E=03	5.032307ET34	-7.2370432-03	
1.2	2.	5302462705	5.0323078704	3.033477E=03	-2.027016E+03
10.8	-1.	335049E=02	5.0323076-04	-1-2347262-02	1.385372E=U2
14.4	-4.	833939E-03	5.032307E-04	-4.330703=-03	5.337169E-03
18.0	-1.	917017E-03	5.032307E-04	-1.413786E-03	2.420243E-03
21.6	-8	853030E-04	5-032307E-04	-3.820722E-04	1.388534E-03
25 .2	-3,	.990054E-03	5.032307E-04	-8.436833E-03	9.493 <u>295</u> E - 03
28.8	-1.	242321E-03	5.032307E-04	-7.390905E-04	1.745552E-03
32.4	- 3.	014425E-03	5.032307E-04	-2.5111945-03	3.517656E - 03
36.0	· - 5,	275912E-03	5.032307E-04	-4.7736821-03	5.730143E-03
39.5	4.	081985E-03	5.032307E-04	4.535216E - 03	-3.578755E-03
43.2	-9.	.508578E-03	5.032307E~04	-9.0054472-03	1.0011912-02
46.8	- 1.	0333312-02	5.032307E-04	1.1341545-02	-1.033308E-02
50.4	- 1	1203232-02	5.032307E-04	-1.0705005-02	1.171146E-02
54.0	7	4427375-03	5-032307 E-04	7-94596803	-6-239507E-03
57.6	1	n90169E=03	5-032307F-04	1.5934005-03	-5-859331E-04
61.2	Ĺ.	2517625-03	.5.032307E=04	6 754993E=03	-5.748531F-03
54 8		110202=03	5 032307E-04	-2.6049715-03	9 £13433E-07
27•J	2	2102002-00	5.032307C-C+	2 2613135-02	
72.0	، يک • مس		P 0303075404	-1 0108445-00	1 3145112+02
75 4	1	-200100L-02	5 333075-04	1 90425555-02	-1 303400E=00
70.0	7	·000752002	5.032007E-04		
19.2	·	• 565/10E-03	5.0323072-04	4.1007402-03	-A
2.3	5.	.0345691703	5.032307E=04	5.5379002-03	
65.4	1,	.4331745702	5.U323U7E=04	1.4004976702	
·0.0	2.	.3872265-03	5.032307c=04	2.8994556-03	
• 6	1 .	-403173E=02	5.032307E-04	1.4564958-02	
- 2	5	.034586=-03	5.032307E-04	5.53/91/ETU3	
10 .0	.3	•66365¢=•03	5.032307 ± -04	4.166589c=93	-3.150423c-03
1:4.4	1	.853951 :- 02	5.032307E-04	1.904275=-02	-1.×036282-02
J8.0	-1	.253200E-02	5.032307z - 04	-1.212877E-02	1.3135235-02
111.6	2	.210768E-02	5.032307E-04	2.2512918-02	-2.1556452-02
. 5.2	-9	.109965E - 03	5.0323072-04	-8.605/34E-03	9.6131951=93
118.8	Ę	.251639E=03	5.0323072-04	6.7549205-03	-5.743454E-03
122.4	1	.090219E-03	5.032307E-04	1.5934508-03	-5.359354E-04
,26 . 0	7	.442 <u>5</u> 13E - 03	5.032307 = 04	7.945843E-03	-6.939352E-03
129.6	-1	.120320E-02	5.032307E-04	-1.0704975-02	1.171143E-02
:33.2	1	.023372E-02	5.032307E-04	1.134195E - 02	-1.033549E-02
136.8	-9	.509090E -0 3	5.032307E-04	-9.005859E=03	1.001232E - 02
146.4	4	.032127E-03	5 .032307 L- 04	4.585357E-03	-3.578396E-03
144.0	· =5	.277057E-03	5.032307E-C4	-4.7733262-03	5.730233E-03
47.6	~ 3	.014291E - 03	.5 . 032307E - 04	-2.511060E-03	3.5175222-03
151.2	-1	.242394E-03	5.032307E-04	-7.391630E-04	1.7455248-03
154.8	- 3	,990059E-03	5.032307E-04 .	-8.486828E-03	9.493290E-03
158.4	-8	.352583E→04	5.032307E-04	-3.820275E-04	1.338489E - 03
152.0	-1	.917056E-03	5.032307E=04	-1.4138258-03	2.420287E-03
165.6	-4	.833728E-03	5.032307E-04	-4.330697E-03	5.337159E - 03
169.2	-1	.335050E-02	5.032307E-04	-1.2347275-02	1.335373E-02
172.8	2	.530330E-03	5.032307E-04	3.033561E-03	-2.0271002-03
176.4	- 7	.790378E-03	5.032307E-04	-7.287147E-03	8.293608E-03
80.0	-4	.343773E=03	5.032307E-04	-3.840543E-03	4.8470045-03
133.6	· -7	_790279F=03	5.032307E-34	-7.287048E-03	3.293509E-03
200.0	<u>э</u> ,	-530240E-03 a	5.032307E-04	3.0334715-03	-2.927019E-03
R R	1	_3350474 ~ 00	5.032307E-04	-1.284724F-02	1.385370E-02
л же .0		-00000790000 	5.332307F-64	-4.3306975-03	5_3371598-93
17 ግ• ዓ 132 በ		-0007202-00 0170785=m03		-1,213×12,00 -1,213×142-03	2_420275E=03
170.U 001 /	-1	**T10495-09 **T10495-09	しょしいとししてこ し年 号 含えつスタブミーの人		1_38930%E ~ 0%
201.5		-CJ27IUE=04			2 ADX15256 65
- 0 D • 2	- >	67721: - 05	0.00100/E-04	-0,4007/2793	47JIJGE-U7

			· · · · · · · · · · · · · · · · · · ·	
.15.0	·2//1435 5	2.63.307 .4	~4.773909E+03	03702 − 05
17.6	· 080002E-03	5.032.307 E 64	4.585233E-03	-3. 187722-03
223.2	-7.508541E-03	5.0323076-04	-9.0053108-03	1.0011775-02
226.8	1.083813E-02	5.032307E-04	1.1341365-02	-1.033490E-02
230.4	-1.120805E-02	5.032307 <u>2</u> 04	-1.070482E-02	I.171128E-02
234.0	7.442572E-03	5.032307E 44	7.945803E-03	-6.9393412-03
.5	1.090230E-03	5.0323076-04	1.5934615-03	-5.369997E-04
.2	5.251683E-03	5.0323075-34	6.7549132-03	-5.748452E-03
<44 . 8	- 9.109948E - 03	5.032307E-04	-8.606717E-03	9.613179E-03
248.4	2.210962E=02	5.032307E-04	2.261285E-02	-2.1605595-02
252.0	-1.263181E-02	5.032307E-04	-1.212858E-02	1.313504E-02
255.6	1.853930E-02	5.032307E-04	1.9042535-02	-1.803607E-02
259.2	3.663715E-03	5.032307E-04	4.166945E-03	-3.160484E-03
252.8	5.034669E-03	5.032307E-04	5.537900E-03	-4.5314382-03
265.4	1.400174E-02	5.032307E-04	1.4584975-32	-1.357851E-02
270.0	2.387310E-03	5.0323078-04	2.390541E-03	-1.334079E-03
273.6	1.4081715-02	5.032307E-04	1.4534945-02	-1.357348E-02
077.2	5.034681E - 03	5.032307E-04	5.5379122-03	-4.5314505-03
280.8	3.663715E-03	5.032307E-04	4.156945E-03	-3.1504845-03
°84.4	1.853930E-02	5.032307E-04	1.9042535-02	-1.803607E-02
288.0	-1.263131E-02	5.032307E-04	-1.2128585-92	1.3135645-02
291.6	2.2109625-02	5.032307E-04	2.2612855-02	-2.169639E-02
295.2	-9.109948E-03	5.032307E-04	-8.6067172-03	2.613179F-03
298.8	5.251683E-03	5.032307E-04	6.7549135-03	-5.7484525-03
332.4	1.090230E-03	5.032307E-04	1.5934512-03	-5,8699975-04
306.0	7.442572E-03	5.032307E-04	7.9458035-03	-6.9393415-03
309.6	-1.120305E-02	5.032307E-04	-1.0704825-02	1.1711285-02
13.2	1.083813E-02	5.032307E-04	1.134136E-02	-1.0334905-02
316.8	-9.508530E-03	5.032307 ±-04	-9.005299E-03	1.0011765-02
20 . 4	4.0819748-03	5.032307E-04	4.535205E-03	-3.5787435-03
.24.0	-5.2770102-03	5.03?307E-04	-4.7737875-03	5.7302485-03
27.6	-3.014302E-03	0.032307E-04	-2.511072E-03	3.5175335=03
. : 👝 2	-1.242388E-03	5.032307E-04	-7.391574 = -04	1.7456198=03
.8	-3.990059E-03	5.032307E-04	-8.486328E-03	9.493299E-03
538.4	-8.8523048-04	5.032307E-04	-3.819996F-04	1.3884512-03
(42.0	-1.917162E-03	5.032397E-94	-1.413931E-03	2,4203937=03
:45.6	-4.833539E-03	5.032307E-04	-4.338309E-03	5.336770E=03
49.2	-1.335096E-02	5.032307E-04	-1.28+773=-02	1.3854192-02
52.8	2.530376E-03	3.032307E-04	3.0336078-03	-2.1271455-33
356.4	-7.790301E-03	5.032307E-04	-7.2370706-03	8.293532E=03
DCATION	:			
	6.8399994E+01 D	EGREES	-	
ENDING	STRAIN:	· .		
	2.21098985-02			
EMBRANE	STRAIN:			
	5.0323072E-04	•	· .	
TRAIN1:				100 PTS.
	2.2613129E-02			
TRAIN2:	· .	· .		•
	-2.1605667E-02			
*				

APPENDIX B

STRAIN PREDICTION PROGRAM PLOTS ELASTIC TEST CASE 1

INITIAL SHAPE

ELASTIC TEST CASE #1 100 POINTS

DIFFERENCE SHAPE

CALCULATED STRAIN

DIFFERENCE SHAPE

50

25

0-36

0

-25

-50 1

360

s in

3

ь. <u>г</u>

21

DIFFERENCE SHAPE

ELASTIC TEST CASE #1

50 POINTS

CALCULATED STRAIN

-3.01

INITIAL SHAPE

ELASTIC TEST CASE #1 5 DEGREES ROTATION

MEMBRANE STRAIN 0.000 BENDING STRAIN 0.010

ELASTIC TEST CASE #1 10 DEGREES ROTATION

0-41

RADII 0.400 0.383 0.374 0.392 0.400 0.383 0.374 0.392

ELASTIC TEST CASE #1 15 DEGREES ROTATION

D-42

RADII 0.399 0.381 0.375 0.394 0.399 0.381 0.375 0.394

ELASTIC TEST CASE #1

20 DEGREES ROTATION

ELASTIC TEST CASE #1 25 DEGREES ROTATION

D-44

ELASTIC TEST CASE #1 30 DEGREES ROTATION

RADII 0.394 0.375 0.381 0.399 0.394 0.375 0.381 0.399

0-45

0.392 0.374 0.383 0.400 0.392 0.374 0.383 0.400

D-46

ELASTIC TEST CASE #1 40 DEGREES ROTATION

RADII 0.390 0.374 0.385 0.400 0.390 0.374 0.385 0.400

D-47

· · · ·

CALCULATED STRAIN

APPENDIX C

COMPUTER PRINTOUTS - ELASTIC TEST CASE 2 FINITE ELEMENT RESULTS STRAIN PREDICTION PROGRAM RESULTS

FINITE ELEMENT MODEL

<u>د م</u>		.NOD	E DISPLACEME	NTS AND ROTA	TION		- -	
	IDDE L	. 0 4 D	×	¥.	7		ΥY	ZZ
4	1	1	-1.284E-02	С.	· 0.	0.	. 0.	0.
e	2	1	-1.2745-02	3.050E-06	-1.5518-06	0.	0.	-7.91 2-03
A	3	-1	-1.2445-02	3.3465-05	-3.289E-06	Q.	Û.	-1.50E-02
20	4	1	-1.193E-02	1.0312-04	-4.899E-06	0.	С.	-2.132-02
0	5	1	-1.137E-02	2.377E-04	-6.468E-06	0.	0.	-2.575-02
Ð	· 6	1	-1.064E-02	4.465E-04	-7.9812-06	0.	0.	-3.145-02
	7	1	-9.826E-03	7.376E-04	-0.4245-06	0.	0.	-3.59E-02
n	9	1	-8.947c-03	1.115 == 03	-1.0785-05	0.	0 .	-3.34E-02
	\$	1	<u>−8.0298</u> +03	1.5795-03	-1.204E-05	0.	0.	-4.033-02
+*	10	1	-7.096E+03	2.1275-03	-1.319E-05	0.	0.	-4.232-02
٢	11	1	-6.172E-03	2.7505-03	-1.420E-05	0.	0.	-4.35E-02
6	12	1	-5.2752-03	3.4418-03	-1,507E-05	,Ō.	0.	-4.38E-02
6	13	1	-4.423E-03	4.1859-03	-1.577E-05	0.	9 •	-4.35E-02
1	1 4	1	-3.631E#03	4.9713-03	-1.63QE-05	Ç.	0.	-4.25E-02
(A	15	1	-2.9102-03	5.731E-03	-1.6625-05	. o.	2.	-4.11E-02
$\hat{\mathcal{O}}$	16	1	-2.269E-03	6.5985-03	-1.6722-05	0.	. 0.	-3.912-02
•	17	1	-1.712E-03	7.4068-03	-1.658E-05	0.	Ĵ.	- 3.665 -0 2

D-51

~

.¢T, '

:

			•					
.	13	1	-1.2442-03	3.137E-03	-1, 188-05	0.	0.	-3.35E-02-
	19	1	-8.6185-04	8.9238-03	-1.548E-05	0.	0.	-3.032-92
<i>i</i> 5	2 0	1	-5.6262-04	9.399E-03	-1.448E-05	; 0.	<u>0</u> .	-2.575-02
0	21	1	-3.399E-04	1.020E-02	-1.3135-05	0.	С.	-2.27E-02
	22	1	-1.849E-04	1.071E-02	-1.1405-05	Э.	Ĵ.	-1.542-02
33	23	1	- 8.658E-05	1.1125-02	-9.255E-05	0 •	0.	-1 .43 E- 02
	24	1	-3.246E-05	1.1422-02	-6.682E-06	0.	0.	- ?. 43 E-03
<u>(</u>	25	1.	-8.5572-06	1.1505-02	-3.609E-06	0.	0.	-4.7 <u>4</u> E-03
	26	1	C.	1.1565-02	0.	ŋ.	0.	0.
<u>رچ</u>	2 !	1	-1.2846-02	0.	0.	0.	0.	0.
	28	1	-1.274E-02	3.0505-06	1.6517-06	3 .	0.	-7.812-03
	29	1	-1.244E-02	3.0462-05	3.2895-06	0.	0.	-1.50E-02
٢	30	1	-1.1/05-02	1.0312-04	4.8995-06	0.	0.	-2.13E-02
A	31	1	-1.1372-02	2.3773-04	6.468E-05	0.	ο.	-2.676-02
A	32	1	-1.064E-02	4.4652-04	7.981E-05	9	0.	-3.148-32
٩	33	1	-9.826E-03	7.3762-04	9.424E-04	0.	0.	-3. 53± -0 2
K (A)	34	1	-8.947E-03	1.1152-03	1.078E-35	0.	0.	-3.34E-02
	35	1	-8.029E+03	1.5795-03	1.204E-05	<u>0</u> -	Ō.	-4.03E-02
<u> </u>	·							

Ĵ

.

D-52

, :

: }		• .				· · · ·		
()	3 <i>E</i>	1	-7.096E-03	2.127E-03	1. 19E - 05	0.	0.	
	37	1	-6.1725-03	2.750E-03	1.420E-05	0	Ο.	-4.35E-02
<u>.</u>	3.8	1	-5.275E-03	3.441E-03	1.5075-05	0.	0.	-4.33E-02
()	39	1	-4.423E-03	4.185E-03	1.5775-05	0.	0.	-4.35E-02
	4- ().	1	-3.631E-03	4.971E-03	1.630E-05	0.	0.	-4.25E-02
	4 1	1	-2.910E-C3	5.781E-03	1.662E-05	0.	0.	-4.112-02
	. 4.2	1	-2.257E-03 ·	6.593E - 03	1.672E-05	0.	0.	-3.918-02
	4 3 [.]	1	-1.712E-03	7.4055-03	1.6585-95	0.	. Û -	-3.665-02
	44	1	-1.244 03	8.1372 - 03	1.6185-05	0.	0.	-3.33E-02
	45	1	-õ.618E→04	8.723E- <u>0</u> 3	1.5485-05	<u>.</u>	0.	-3.03E-02
	4 E	1	-5.623E-04	9.599E - 03	1.448E-05	0.	0.	-2.575-02
9	47	1.	-3.399 <u>5-</u> 04	1.020E-02	1.3135-05	G .	0.	-2.27E-02
٩	4·8	1	-1.8492-04	1.0712-02	1.1402-05	с. С	0.	-1-345-92
9	50	1	-3.2458-05	1.1425-02	6.6°25-96	0.	0.	-9.435-03
Taul I	51	1	-8.5575-06	1.1602-02	3.609E-05	0.	0.	-4.J.E-03
	52	1 ·	0.	1.166E-02	· 0 .	0.	0.	0.
2								

*D-5*3

FINITE ELEMENT MODEL

SHELL ELEMENT STRESSES			1 bbs	- · ·		
		FLEMENT	1 20	SIG-Y	STAR	SIGHYY
		· · · · · · · ·	₩4, · · ·			
2	MENDOANE	1			2	
	RENDRANE	1.	1	1.55		.00
	+T/2 SIDE	INSIDE		•00 1 45	7600 30	00
	-T/2 SIDE	OUTEURE		1.65	-7639.32	•00 10
		odisitic	•	1.0.		• . •
<i>i</i> .	MEMEDANE	· .			- 0	
	BENDING	. < .	. L	+•9ª an		.00 - 00
	+T/2 SIDE			4 94	6815 00	00
	-T/2 SIDE			4 94	+6365.91	- 0 C - 0 B
	¢					
	MEMPEANE	ζ	1	2 10	-40 71	<u>.</u>
	BENDING	ر	L.	0+17 00	-42.01	•00
	+T/2 SIDE				5004.70 6012 45	.00
	-T/2 SIDE			8,19	-6097.08	
	MEMREANE	4	1	11 37	-== 2 00	2.0
	BENDING	ſ	1)C	5275.43	.00
	+T/2 SIDE			11.37	5217.34	.00
	-T/2 SIDE			11.37	-5333.82	.30
_	MEMPEANE	Ē.	1	14,45	-75.42	6.0
• •	EENDING	· ·	•	05	4509.75	.00
,. 	+T/2 SIDE			14.45	4434.34	.00
	-T/2 SIDE	· · ·		14.45	-4585.17	.00
	MEMBRANE	5	1	17.40	-91.53	.00
	BENDING			~. 00	3755.56	.00
	+T/2 SIDE			17.40	3665.03	. 20
	-T/2 SIDE			17+40	-3843.09	00
			•			
	MEMPRANE	. 7	- 1	20.21	-107.27	:
	BENDING	•		~. 00	3020.20	.00
	+T/2_SIDE			20.21	2912.93	. 00
	-T/2 SIDE			29.21	<u>-3127.47</u>	• 00
	MEMBRANE	5	1	22.02	-122.52	• 🤉 ୦
	BENDING			- .00	2303.50	֥00
	+1/2 SIDE	•		22.62	2181.07	
	-1/2 5101			22.32	-2425.12	. 99
						•
	MEMBRANE	Ĵ.	1	25.23	-137.26	j k . 3 0
		- ·		•	· .	

•	•			. •			
	EENDING +T/2 SIDE -T/2 SIDE				1609.60 1477.34 -1745.36	00 .00 .00	
	MEMBRANE BENDING +T/2 SIDE -T/2 SIDE	13	1	27.39 00 27.39 27.39	-151.44 940.94 789.50 -1092.38	.00 .00 .00 .00	
	MEMBRANE E ENDING +T/2 SIDE -T/2 SIDE	11	1	29.27 00 29.27 29.27	-164.95 300.25 135.30 -465.22	.00 .00 .00 .00	
	MEMERANE EENDING +T/2 SIDE -T/2 SIDE	12	1	33.84 ~.09 39.84 39.34	-177.75 -307.94 -487.69 132.20	. 0 0 . 0 0 . 0 0 . 0 0	
	MEMERANE FENDING +T/2 SIDE -T/2 SIDE	13	1	32.07 .00 32.07 32.07	-189.79 -887.36 -1077.05 697.47	.00 .00 .00 .00	:
	MEMBRANE EENDING +T/2 SIDE -T/2 SIDE	14	1	32.91 .00 32.91 32.91	-201.01 -1427.38 -1530.39 1223.37	. 70 .00 .00 .00	
	MEMBRANE BENDING +T/2 SIDE +T/2 SIDE	15	1	33.34 .09 33.34 33.34	-211.33 -1934.19 -2145.51 1722.35	.00 .20 .00 .00	
· ·	MEMPRANE BENDING +T/2 SIDE -T/2 SIDE	16	1	33.30 .00 33.30 33.30	-223.73 -2399.70 -2623.43 2173.28	.00 .00 .00 .00	
	MEMBRANE BENDING +T/2 SIDE -T/2 SIDE	17	• 1	32.76 .00 32.76 32.76	-227.15 -2824.03 -3053.18 2594.83	.00 .00 .00	
	MEMPRANE	1 ô	1	31.66	-235.53	.20	
		· · ·	D-55				

. .

• •	•		x	. ** •			·
	EENDINC +T/2 SIDE -T/2 SIDE			.00 -32 31.46 -34 31.06 29	35.54 42.07 67.02	.00 .00 .00	
	MEMBRANE BENDING +T/2 SIDE -T/2 SIDE	19	1	29.96 -7 .J0 -35 29.96 -37 29.96 32	42.83 42.77 85.50 97.94	.00 .00 .00 .00	
	MEMBRANE BENDING +T/2 SIDE -T/2 SIDE	20	1	27.50 -2 .00 -38 27.60 -40 27.60 35	4 ⁸ .02 34.33 82.35 35.31	.00 .00 .00 .00	
	MEMBRANE BENDING +T/2 SIDE -T/2 SIDE	21	1	24.53 -2 .00 -40 24.53 -43 24.53 32	52.04 77.05 31.09 27.01	.00 .00 .00 .00	
	MEMBRANE BENDING +T/2 SIDE -T/2 SIDE	2.2	1	20.57 -2 00 -42 20.57 -45 20.57 40	54.84 74.00 37.86 21.13	.00 .00 .00	- -
	MEMBRANE BENDINS +T/2 SIDE -T/2 SIDE	23	1	15.25 -2 00 -44 15.25 -46 15.25 41	55.45 24.39 80.34 67.95	.00 .00 .00 .00	
	MEMPRANE BENDING +T/2 SIDE -T/2 SIDE	24	1	10.29 -2 00 -45 10.29 -47 10.29 42	55.76 23.63 39.39 65.88	.0: .0:0 .0:0 .0:0	
	MEMBRANE BENDING +T/2 SIDE +T/2 SIDE	25	1	3.61 -2 30 -45 3.61 -48 3.51 43	53.76 73.36 29.12 17.60	- 0 0 - 0 0 - 0 0 - 0 0	
	· · ·						
			D-	-56			

			· · ·	
LASTIC			8 POINTS	
EGREES	BENDING	MEMBRANE	STRN1	STRN2
				4 / 54400E=07
0.00	-6.129556E=03	3.2706575764	-5.8024915-C3	0.400022E-US 4 115391E-03
	-5.7883168-03		-5.4012305-63 -5.47/0475-67	5 7900085-03
-4.50	-5.462U32E=U3	5.2700575=14	-) 9005705-CJ	5 / 744705 -03
F.75	-5.149605E=03	5.4796575=07	-4.0220095-5	5 17703/5=03
9.00	-4.8499685-03	3.2790375704		
11.25	-4.562141E-05	3.2706375704	-4.2300705-U3	4.0072076-03
13.50	=4.285101E=03		-7 4007005-57	4.0121072-03
15.75	-4.0178555-13	5.2746275-04	-7 /77/40F-07	4.344921E=03
18.00	-3.7594855-03			7 834098E=03
20.25	-3.505932E-03	5.2700075=04 7.0707575.57		3.60066666
2.50	- <u>ご</u> - ご - ご - ご - ご - ご - ご - ご - ご - ご -	3.270027E=0/		3.3720302 03 7.7552805=03
-4.75	#1.128223t#93	2.2790272794 7.070457r=04	-2 -/490045-07	3 1331275=03
27.00		5.270057E=04		2 8053075-03
29.25	=2.508241E=93			2 40723976-92 2 4700425-03
31.50	- <u>2.5458966-03</u>	5.2700075-04 7.0707575-07		2.0707021 00
:3.75	-2.1221931-03	5.27 007E=04		2.2203205=03
16.00				2.0403445-03
18.25		3.4700075=94 7.0704575=0/		1 70157/6=03
40.50		3.2700270794 7.0764575-0/	-9 49/5145-00	1 570183E=03
42.75	-1.245117E=0.5	5.2790375-04 7.3707575-07	-4 0704005-04	1 75430/2=00
45 <u>.</u> 00		5.271027574 7.3704574-07		0 (AQ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
47.25		2.2700275704	1 17743/ELEC	5 368680E=04
49.50		- ○ • ∠ / □ □ ⊃ / 5 = ↓4 	5 7705755=0/	1 201770E=0A
11.75	2.900×2700=704 2.243274=-07	3 • 2790375 TU4 7 • 376 4575 • 57	0 5930095-04	
54.UU	0.012041E=04	2.2700275704 7.27065775-07	4.JCJZ701-14 1.3013/05-63	-7 372171E-DA
35.25	1.1042やシヒーロン 4. ログイズのフローロズ:	5.27(007 ET44 7.070657=-07	1 8378635=63	=1 170731E=03
	· 1.5007971=15	▶ • £ 7 € 0 2 7 E T 2 4 えーシスロム 5 7 E = 0 6	7 7844675=63	=1.672531==03
. / 5	1,939390E=U3	2.2700275=14	2.200002EFUD 3.75N//75=63	-2 0967125-03
-3.00	2.4233775=13 5.0027425.07	3.2710275704	2 - 7 - 7 - 7	-2.571666FEL 00
12.22 17.50	2.2927195592	○ • △ / ♡ Q ⊃ / ⊑ = U 4 	3 7131735=63	-2.07704424C0 -3.059041F=03
· / • > ! ·	- 3301078-03 7 9959705-07	2 2710275-04 7 2706575-06	4 212945E=F3	-3 558814E-07
07.70 77.00	2.0020455-07	3 2706575=94		-4.071199E=DT
2.10	4.09820JETUD / 077794E=03	3.2706576=04	5 250385E=F3	-4-5962545-03
74 - 6 0	5 / 400715=03	7 2706576=04	5.788036E=03	-5,133905E=03
79.20	2.04007710-02 4.0400806-07	3 2706575=04	6.3380555=63	-5.6839246-03
21 00	6 • 0 10,70 ° 0 ° 0 ° 0 °	3 2706575+04	6.900033F=C3	-6.245902E-03
97 75	7 1/63 025-03	3 2706575+04	7.4733685=03	-6.819237E-03
SE 50	7 7372545=03	3.2796575-04	8.0573202-03	-7.403188E-03
97.75	F 303015F=03	3 2798575+04	8.650981F-C3	-7.9968505-03
00.00	8-926168E+03	3.2706575-04	9.253234E-03	-8.599102E-03
02_25	8.3239155-03	3.2706575-04	8.650981E-E3	-7.996850E-03
94.50	7.73C264E+03	3.2706575-04	8.057330E-C3	-7.403199E-03
96.75	7.146302E-03	3.2706575-04	7.473368E-C3	-6.819237E-08
29.00	6.5729735-33	3.2706575-04	6,900038E+03	-6.245987E-03
11.25	6.011U01E-03	3.2706575-04	6.338066E-C3	-5.683935E-03
37.50	5.4609878-03	3.2706575-04	5.7880535-03	-5.133922E-03
: 05.75	4.923332E-113	3.2706575-04	5.250398E-C3	-4.596266E-03
00.80	4.398270E-03	3.270657E-04	4.7253365-03	-4.071204E-03
10.25	3.8858965-03	3.270657E-04	4.2129625-03	-3.5588305-03
12.50	3.3861075-03	3.270657E-04	3.7131735-03	-3.059041E-03
14.75	2.898738E-03	3.2706575-04	3.225804E-C3	-2.571673E-03
17 00	2.423377E-13	3.2706575-64	2.750443E-C3	-2.096312E-03
25	1.9596135-03	3.2706575-04	2.2866795-03	-1.632548E-03
50	1.5068085-03	3.270657E-04	1.8338745-03	-1797435-03
77_75	1.064294F-03	3.270657=-04	1.391360E+C3	-7.372284E-04
24 LUU	6.312866E-C4	3.270657E-04	9.583523E-C4	-3.042209E-04
78.25	2.069159E-04	3.2706575-04	5.339815E-C4	1.201499E-04
		D-57		E = 1 (S E / S E = D /
	• •			•

. .

.

15.00	124317 1	276697 04	-6.972511E-54	13825-63
7.25	-1.245106E-03	3 271 6575 4	-9.180404=-04	721725-03
	-1 ////	7 7776575 //		1 7015685-07
17.20 17.4 75				
41.75	-1.6X3290E-03	3.27.057.094	-1.3562245-03	2.010355E-03
44.00	-1.902243E-03	3 - 2 7 0 6 5 7 5 - 1) 4	. =1. 575177€ = €3	721229309E≢03 .
46.25	-2.122165E-03	3.2706575-04	-1.7950992-03	2.4492316-03
.50	-2.3438965-03	3.270657+-04	-2.0168305-03	2.670962E-03
75	-7 5682765-07	7 2706575-04	-2 2/117/5-/7	2 8057025-03
0.5.00	-2.79CU012-US	3.270657E=04	-2.408990E-13	3.123127E=05
155.25	-3.928212E-03	312736575-04	-2.701146E-C3	3.355278E-03
157.50	-3.265578E-03	3.2706578-04 -	-2.938513E-03	3.5926445-03
59.75	-3.509026E-03	3.270657E-04	-3.181961E-C3	3.8360925-03
142.00	-3 759485F-03	3 2706575-04	-3.432419F-F7	4 086551E=03
2/ 35	-/ 0172555-07	7 2704575-04		
		3.2700375-04	-2.040/045-02	4.3449212-03
56.5U	-4.2851019-05	5.2700575-04	-3.958P36E-03	4.012167E=U3
- 68.75	-4.562147E-03	3.2706575-04	-4.235081E-03	4.889213E-03
:71.60	-4.8499685-03	3.2706575-04	-4.5229U3E-C3	5.177034E-03
73,25	+5,149599=+03	- 3.270657F=04	-4.822534F-03	5.476665E-03
175 50	-5 /670/3=-03	3 2706575=04	-5 13/078E=03	5 7801005-03
		7 2704576 04		
(.()	T3./883326 TU3	5.2796575404	-2.401207E-13	0.1100962-00
1°0.00	-6.129568E-03	3.270657E-04	=5.802502E=C3	6.456633E-03
°2.25	-5.7883325-03	3.270657E-04	-5.461267E-C3	6.115398E-03
°4.50	-5,4620485-03	3-270657E-04	-5,134983F-C3	5-7891145-03
56 75	-5 1/06165-03	3 2706575+04	-4 8225505-03	5 4765825-03
50 00 C		7 3704575-04		5 4770/65-07
-9.00		3 + 27 20 3 7 5 7 24	=4. 3229142 = 13	3.1770435= 03
91.25	-4.562153E-C3	3.277657E-04.	-4.235087E-03	4.889218E=03
°93.50	-4.285113E+03	3.2706575-64	-3.958047E=03	4.6121°9E-03_
95.75	-4.C17867E-03	3.2796575-04	-3.690801E-C3	4.3449325-03
128,00	-3,7594915-03	3.270657E-04	-3.432425E-C3	4.086556E-03
00.25	-3 5000375-03	3 2706575=04	-3 1810775-13	3 8361835-03
0.2J				7 5004555-07
2.50	TO.20009ETUD	2.270027E=04	-2.930324E-US	3.3920335703
4.75	+3 <u>,</u> [282285=03	3.270657E-04	-2.7011635-53	3.3552945-03
. 00	-2.796)72E-33	3.2706575-04	-2.469006E-03	3.123138E-03
25	-0.5682585-03	3.2706575-04	-2.241193E-03	2.895324E-03
11 50	-2 3439675-03	3 2706575-04	-2.016841F-53	2.670973==03
13 75		7 2706575+04	-1 7054075-67	
				2.4472.75=03
0.00	=1.91.2639E=03	3.2700575-04	=1.373194E=Us	<-ZZY3Z3E=U1
18.25	=1.683306E=03	3.279657E-04	-1.356241E-C3	2.0103728-03
20.50	-1.464520E-03	3.270657E+04	-1.137454E-C3	1.791585E-D3
22.75	-1.245123E-03	3.2706575-04	-9.186573E-C4	1.572189E-03
75.00	-1,6243348-03	3-2706575-04	=6.972678E=C4	1.351399F-03
27 25		7 270657E=04	=2 0281CAE+C4	9 469425E=A4
		2 2204575-01		
29.50	-2.1.970798-04	3.2700575-04	1.1720785714.	3.3007302-04
31.75	2 . 0628738 - 04	3.2796575-04	5.339535E-04	1:201779E-04
34.00	6.312698E-04	<u>3.2706576-04</u>	9.583355E-C4	-3.042041E - 04
36.25	1.064283E-03	3.2706575-04	1.3913495-63	-7.372171E-04
38.50	1 506792F-03	3,2706575-04	1.833857F+C3	-1.1797265-03
<pre>0 75</pre>	1 Q50602E=03	3 2706575=04	2 2866685+13	-1 K3253KE=03
/7 00		7 2704575-04		-2 0043175-07
42.00	2.423373E=03		Z - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	
45.25	2.898727E-03	5.270657E=04	5.225793E=13	-2.521661E-US
47.50	5.3861135-07	3.2706575-04	3.713179E-C3	-3. <u>059047</u> E→ <u>0</u> 3
49.75	3.8858908-03	3.2706575-04	4.212956E-03	-3.558825E-03
09.52	4.3982825-03	3.2706575+04	4.725347E-63	-4.071216E-03
54 25	4 923326F=03	3 2706575=04	5.250392E=03	-4.596261F-03
		7 2706575-04	5 7890576-07	
レウ ・ 210			ノットロウセンシモニシン	- JEIJJ7248793 - E 2070/45 07
158.75	6. <u>511806E-03</u>	3.27.20575-04	0.3389721-13	= 3. 033741E=13
61.00	6.5729785-03	3.2766576-04	6.900044E-C3	-6.245913E-03
63.25	7.1463145-03	3.2706575+04	7.473386E+C3	-6.819249E-03
50	7.731275F-37	3,270657=-04	8_0573415-03	-7.403210F-03
75	8 7070775 17	7 2796575=04	2 K5 1000F - 7	-7 9968675-03
		ショビイ いいシイミニルサーマー うつさえをつけったい	0 • 0 2 9 7 7 7 5 7 6 7 6 7 0 • 0 5 7 0 / 5 5 - 5 7	
0.90	0.9201795-J1	3.27JOD7E=04	Y. 2002405-L1	-0.247114=-13
172,25	8.323933 5- 03	3.2706575-04	8.650999E=C3	-7.996867E-03
74.50	7.7312755-03	3.2706578-04	8.057341E-03	-7.403210E-03
76.75	7.1463145-03	3.2706575-04	A CO 7.473380E-C3	-6_819249E-03
			y-30	- · · ·

•
୰ୢୢଽୄଽୖ୶	.4650931-		5.7880596-03	- 13927E-03
5.75	4.9233325-03	3.270657- 14	5.250398E=C3	-A., 96266E=03
00.385	4.398282E-03	3.2706575-04	4.725347E-C3	-4.071216E-03
20.25	3.885996E-03	3.2706578-04	4.2129625-03	-3.5588305-03
°2.50	3.386107E-03	3.2706575 04	3.713173E-03	-3.059041E-03
04.75	2.8987275+03	2.270657 04	3.225793E-03	-2.571661E-03
<u> </u>	2.4233835-93	3.2706575 14	2.759448E-03	-2.096317E-03
.25	1.959602E-03	3.2706575-04	2.286668E+G3	-1.632536E-03
11.50	1.5067925-03	312706575-04	1.8338575-03	-1.179726E-03 -
103.75	1.0642835-03	3.270657E-04	1.391349E-03	-7.372171E-04
106.00	6.312698E-04	3.2706575-04	9.583355E-04	-3.042041E-04
-08.25	2.068934E-04	3.270657E-04	5.3395915-04	1.2017235-04
10.50	-2.098079E-04	3.270657E=04	1.172578E-C4	5.368736E-04
12.75	-6.1987075-04	3.270657E-04	-2.928050E-04	9.4693648-04
15.00	-1.024334E-03	3.2706575-04	-6.9726785-54	1.351399E-03
17.25	-1.245123E-03	3.270657E-04	-9.180573E=04	1.572189E+03
19.50	-1.464520F-03	3.270657=-04	-1.137454F-C3	1.791585E+03
21.75	-1.6833016-03	3.270657E-04	-1.356235E-C3	2.010367E-03
124.00	-1.902259E-03	3.270657E+04	-1.5751945-03	2.229325E-03
26.25	-2.122193E-03	3.2796578-94	-1.795127E-03	2.449259E - 07
28.50	-2.343901E-C3	3.2706575-04	-2.016836E-03	2.6709678-03
130.75	-2.568253E-03	3.2706575-04	-2.241187E-C3	2.895318E-03
33.00	-2.796066E-03	3.2706575-04	-2.469001E-C3	3.123132E-03 -
375.25	-3.0282235-03	3.270657E-04	-2.701157E-C3	3.3552895-03
37.50	-3.265584E-03	3.2706575-04	+2.938518E=03	3.5926505-03
739.75	-3.5090328-03	3.270657E-04	-3.181966E-93	3.836098E -0 3
142.00	-3.7594915-03	3.270657=+04	-3.432425E-C3	4.086556E-03_
.4.25	-4.017855E-03	3.270657E-04	-3.690789E-03	4.3449215-03
146.50	-4.2851018-03	3.2706575-04	-3.958036E-03	4.612167E-03
48.75	-4.5621415-03	3.270657E-04	-4.235076E-C3	4.8892075-03
151.00	-4.8499685-03	3.2706575-04	-4.522903E-U3	5.1770345-07
53.25	-5.1496058-03	3,2706575-04	-4.822539E-03	5.476670E-03
4. 50	-5.4629328-93	3.2706575-04	-5.134967E-C3	5. <u>7</u> 89098E - 03
— .75	-5.7883165-03	3.2706575-04	-5.461250E-03	6.115381E-07
DCATICY:		·		

2.76C0C00E+02 DEGREES NDING STRAIM:

	8.9261793E-03	
EMBRANE	STRAIN:	
	3.2706570E+04	
TRAIN1:	· · ·	
	9.2532448E+U3	
TRAIN2:		
	-8.5991137E-03	

8 POINTS

0 ROTATION

LASTIC	TEST CASE #2		50 80	THIS
FGREES	BENDING	MEMPRAN	STP11	STAND III
n a	-7.3193334-03	a botaCker a	-6 7071205-07	7 7414 405 07
4.4				・ 7年14回ビニアUつ (- 74月0日 - 2日の内す
2.35	-5 3690765-03	1 - 16 F - 2 - 1 - 1 5 - 001 5 G - 1 - 0 A		5.75704ETU3
4 32	-4 3991405-03			
5 76				4.3∠1079∈=03
7 20		ひょうどん サゲラ むごり 4 パー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		5.954137E=03
7. 20 5. 24		9.42214972708 . 0014097 65	······································	2.13/553c=03
10 68		4.2234932###4	-2.8116998-03	3.655979± - 03
10.00	-4.0051001-000	4.1214701705 1.0010051-000		. 4 . 428337± ~ 0∮
		+ · /21+961-94	-4.3511115-03	.5.2354115-03
12.00		9 • 2 2 1 4 2 0 1 mp 4	*5.1437425*03	j.953841±−03
5 84		4.4422949約21104 0.001709 - DA		5.7771582-03
17 03		4.J21496E704	"b.13223555"U3	h.975535±⇔03.
11.20			••4•• 333895E=03	5.173126E-03
13•72 DB 17		응 경감 방문 가지 않는 것 같아요.		4.350642E-03
1 4 5		4.2214986794	-2.73849918-03	3.592995E-03
1.1.1.2.7		4.7214938-34	-1.939738E-03	2.734037± - 03
20.04 20.49		4.2214981-194	-2.475874E-03	3.3201738-03
4.40		4.1214985-04	-3.0167952-03	3.8610265-03
43•74 37 76		4.1214981-04	-3.552940E-03	4.4072393-03
16.3h 13 26		任正式となるというでは、		4.7391502-03
	ニン・レオマ1.9・1.11100	4.2014981704 2.001603	-4.6/30445-03	5.5178:45-03.
· U • 2 9		4.221496E#04	- 4. 70452E-03	4.614752E-03
		4.2214932404	₩2.054848±₩03 .	3.709147E-03
		4.221493E704	-1:954913t=03	2.7972128-03
1.00 2.00		4.221493154	-1.0393978-03	1.3330 / RE-03
		4. 12 493 <u>-</u> - 04	-1.170344E-04	2.513559E+04
		た <u>。」21</u> 496回でいた。 としたたちにでいた。		1.1592442-03
- 00 10 20	-1.1702011-07			1.3302745-03
10.02 1.70		9.22149857984		1.5924412-03
5 • 1 ⁽) 7 · 2 0		·····································		1.9365.998-03
+ 2 • 2 0 16 - 6 5	- 1.0000202700 - 1.0000202700	4.2214931794 2.0010127.000	-1.1785USE-03	P. 0225362-07
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-1.000.0017000 	5. 305.0007=30		1.000000000000
7 50				 949300252734
1.02		9214782m04	5.776299E=04	4.6727466724
- 70 • 7 5 5 6 - 8 6	9.0013211724 1.0171732-07	4.221478E704	· · · · · · · · · · · · · · · · · · ·	#5.973272±=03
10.40			1.4393295-03	₩3.957292cm04
2 1 • 04	7.400723E704 8.7676105-004	4.2214700704	1.3587225=03	≂⊃.24422∋±≂04
20.20 22.775		りょくろ、4分の上が34。	1.2489112703	₩4.546117E₩04
	3・31110年12年34 17、762700、工具もち	991 A08 THEA		Tá Jápa (Azz TU4
- 7 - 40	- 7 - 375 - 751 - 704 ムーアウス1 4 つこ ウム	りょどど147001104 点 つつすた()21 mの人	1.1517799=53	
	1 1343865+93	9.2214901704 5.2017021-00	1 E0 0717-07	#2.0911445#04
10 45	1 • 10430500 00 1 · PA15254 == 07			
1 Q2	1 0973031467 1 0973031467	4 +2 2 1 4 7 0 1 7 0 4 	0 407143E-07	
		(***ビビエサブロビビレザ 7、001×02と皿の5		
4 26	山・サラクラオア - E.G. ダー 2代 アミミナム - 6 天	(1) - 1 - 2 - 1 HD ひとこり H 	- 2.03404/ETUS	T2.0107405705
· 6 04	2.0079010.00 3.1039075-07		3.0070010790 7.0190777-67	
27 68		4.1244705744 2.30 01 20925554	7 0007115-07	-d. //16/St-95
	0 + 0 9 0 1 0 1 0 7 U 0 7	1 • • • • • • • • • • • • • • • • • • •	3.92730111 - 03	· ••••••••••••••••••••••••••••••••••••
197 • 174 70 - 87	0.40216100 0.4070477-00	1. そのもしが見ていた。	4.2937502793	73.349465±703
10.JB 10.CA	● ● よせびに ● 人に ごびつ り カール フロト ロウド 二 ウス	・・1 ビビリダのたちにな	4.5553775mU3	
2 .UU 72 AA	ティオブジェ ひとた デリシーム・シーン ひょうかん 人名 かんしん たんがい ちゅう		4.0722526-93	-4 .3477525 - 03
13.44	キャンネロキキキにていた。 第二アーとでについていた。	きょとどえ4 牙びもかな4	5.337594E - 03	-4.4932948-03
		行・2214981764 - 2011年2月1日	5.(890075-03	-4.944707E-03
7 -5 -32	ひょくごほう じちゃ デビス・	H 214901-04	6.246405± - 93	₩5_432386±+03
70 00	かっこの才当子にとかした。 コウィー・マウト・マウ	4.0214901-m04	6.719822E=03	₩ħ.0653722 -03
73•3U 50-34	5 · / 357 · / 7781	4.12144935 7 64	1.1/8967=-03	₩8.5345872 ₩ 03
U • 11 (* 	ちょうたん ための たずほか	9.20214935454 	1.1033692703	
	· · ·	D-	60	

-

..

1 .

.

•				
. 4 5	the second states and states	1. 1. 1. 198 1.	8.0475486-03	● 二、人口不能是●前来
1. 5 6			0919212-03	- 176015-07
	7		4 078007F-07	
• • • •			6.0789291703	T/• / 5 4 5 / 4 5 TU 5
0 • × c.	/ • 0.25/57に ⁺⁺ 0.0	4957 4	A.078919E − 03	■3.234619±=03.
92.15	7.6576405-08	4.221498: 4	3.081789E -0 3	-7.2374-0E-03
<u>12</u> +60	7.685+16E+0A	4。2214982 6	8.037566E - 03	►1.2432662=03
£ 4	7.4765555=07	4,001498++ 4	7.80280803	-7-35455383
48	7 2-19947-03	6 7016096- 6	7 7134448-03	- 4 - 2 - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5
17 Un	7 1 1007 7 5 + 5 7			
00 77			- 7.0015171-03	T3.53/31/1703
19.35	5.7512775705	4.2214982704	7.353427E-03	
jj.20	6.7565802-03	4.2214981-04	7.179030E-03	~ 6.334730≘ - 03
22.24	6.2577018-03	4.2214985-04	6.7098318-03	
83.68	5.8243012-03	4.2214988-04	6-2454515 - 03	-5.4021515-03
15.12	5.3668238++03	4 0014985-04	5 7820732-03	- A - 20 AC 73233
C C C C	0153702-07			
2.05	4.0100705-00	4.0214961704	0.33752UE-US	-4,4702225=-00
98.00	4.4750125-03	4.1214981-04	4.892162E - 03	-4.0478208-03
.44	4.1431915-03	4.2214982*04	4.565340E-03	-3.7210412-03
ເວັ. ບິຣີ	3.8215878-03	4.2214981-04	4.2437375-03	- 3.3994%7£-03
12.32	3.5051575-03	4,2214982-24	7,9277065-03	-3.083007E-03
5.6 7.6 .	7 1033572-03	$A = 301 a \Psi \hat{S} = -1 A$	3 E1600E 00	-2 7717021-00
15 00			3 7000000 00	
3 D • 2 U	2 + 4 / 5 1 J E TUC	4.2314236464	3.349739=793	T2 • 4 5 0 + 5 5 = 10 5
10• 2 4	2.432743e+03	4.221498L-04	2.854893E - 03	-2.0105295-03
53.51	1.9740165-03	4.2214936-04	2.4961668-03	m1.551/662m03
· ? .52	1.20410015-03	4.2214985~04	1.9633516-03	-1.1190515-05
20.94	1,1040415-03	4,2214985-04	1 576191F-03	
2 4 3			1 00/3012-03	
- 2. - - Q Q			1.0745716-03	
2 • C+4	7.395:196-04	6Z149655715	1.101/015-93	₩3 . [{451}/±₩34₹
°2•2₫	8.077.014-04	4.221498c-04	1.0299455-03	₩3.8364552 - 04
. 5 . 7 2	3.7581161-04	4.021495c-04	1.2789615-03	-4.5466192-34
12.16	○ 9.4467335-04	4.2214938-04	1.3638232-03	➡5.2462062
	1,0173135+03	4,001448+-04	1 4394635-03	
ь С.L.		9 9014041+0A		• • • • • • • • • • • • • • • • • • •
			7 770/01 5-04	
			3.7705315-04	4.5720.00.734
• 9 4	たい そうまためひ なたびや	4.2214981-04	-1.469J //E-94	¥./53:28₩84
12 . 34	-1.0×45232-03	4. <u>221496</u> 2-04	-6.643736E-04	1.5385735-03
0.5 + 2.0	■1.6007455=03	4.2214982-04	-1.1785052-03	2.522 3955 − 63
23.24	-1,2048172-53	4,201498E-64	-9.623677F-94	1, 306 175-03
S 188	-1 174527-93	a 221498E-04	-7 480004E-04	
				• 777 J LL J • 7277 72407
* 1 • 1 2			-0.3500745-04	1.020072700
°≟•55	■ 1 = 4 / A > 7 0 ± = 0 4	4.7214981-004	₹3.206573±₹04	<u></u> +138957± - 97
∿+4 . 0(0:	━3,34≦346e - 04	412214988-04	-1.1707512-04	?. 613747∃ − 04
45.44	-1.4815418-03	4.2214986+04	±1.039391E=03	1.383691E+03
:5.88	-2.3773578-03	0.2214982-04	-1.0549085-03	2.7992075-03
-8.32	←5↓2549978+93	4.2214982-04	-2.8648482-03	5.7091577-03
. 9 . 74	-4.1954328-07	a 101448, H04	-3-7704505++33	4 当147初の第一の3
÷.1. α.α.		a 201405 == CA	-4 677636C-67	
2 K • C C				
2. b ⁴	11日。12日(12日本日本市日本) 二字:12日からにつか。19日	サンジビスサブビエアに作った。	-4.114075ETUS	4. YOY1000 - 95
247 LC	~3. 97588.45 ~ 83	4.2214985704		4.4372372-03
35.52	-3,478/346-03	#.\$21498±→04	-3.016784E-03	3,8310532∞03
: 5. 76	-0,5980245-03	4.121498E-14	-2.475274E-03	₹.3201/3Ξ→03
58.40	-0.J61371r=03	4.2214986-64	-1.9397228-03	0.7540 15-03
17.64	· · · · · · · · · · · · · · · · · · ·	4.0214922-04	-0.738682E-03	x, 5,200,202 - 02
57 F. 20			- 13383012 03	
04 • 1 d		● ● ▲ 2 名 1 ● M ② 1 ■ 1 ●		D4175191E™05
54 • 1,6	─5.554455E ─ 03	9.22149YE-04	-5.132335F-03	5.976635E - 03
-5.60	←6,338015±+03	4.221493E+64	-5.9320651-03	6.777161E+03
7.04		417214985-24	-5.1437422-03	5.931041E+03
4.8. 4.8	-4.7832565-25	4,2214985-64	-4.3611065-03	
	- <u>-</u> A 30/1762-02	0 - 3012 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0		u • tu • u • u • u • u • v • J • V • T • • • • T = • • T
		コード 佐江市 アンロール 竹	いっしょう ひとはた 二つう	1999 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 - 1992 -
1.36	-0.2000000-U0-U0	9. <u></u>	-2.tllt331-93	Ú•∋0777021™05
771 . 8101	→2.4583785+03	+.22149d±+041	-2.043224E-03	3.34752VE+03
. 74 .24	3.431900E-03	4.021493E-04	-3.0092335-03	ろ。354102日一0ろ
75.58	-4-399+512-03	4.2214982-04	-3.9773228-03	5.821461F-03.
· ·• -		D-61	· · · · · · · · · · · · · · · · · · ·	
		~ 01		

a * •	•	•	1. 77 Jahr - 6 3	1
. · · 4	1. 这种主义学的一般的	1 + C = 1	······································	41 1 4 P 3
:2°•23		4,72)#98. /	-4-9452402-07	······································
4.32	-4.3094518-03	4.22344987 (4	-7.477790/J-63	4 KU16512-60
1 .5.76		+ 121492 6		
\$7.20	-2_445372T-03	4 1014985 FA		
- -				2.03/5%6±=9& .
		● ● 公式上述 予約	TA + 7815836 T83	3.6357622703
		9.021495 6 G	° 73.084031∈=03	4.428330E→03
71.02 30.04		4.02149367.4	-4.361106E-03	5.205405€ - 03 .
74.76	TO • 0605 × / = + (5	4.221498cm64	-5.1437471-03	5.238047E-03
74.49	< =6.3030150 = 0.3	4.2214981-04	-5.932865E - 03	6.77718SE-03
95.84	₩5.554490E₩03	4 .2214985- 04	-5.132340E-03	5.976643E - 93
97.28	→ 4.7566418±03	· 4.221498E+04	-4.333891E-03	5.1781915-03
÷8.72	-3,9585202-03	4.2214985-04	-3.536370F-03	4 330140E=03
58.16	3.1603155-03	4 2214935-64	= 0.7336661 = 03	3 5300259 - 03
01.60	-1.33184463	4.221.492824	-1 0304042-03	0 7230075±03
03.04	-2.2986197-03		*10 / 75 9 / 0 5 m 0 3	2 - (JUデアリモービリ 7 - RODE/OVLE7
14.48				3.320156E-95
33.40			10.01000ET#0	3.351105±=03
-7 2		4.221490E=04		4.4372C3E=03
		4.2214985-04	4.1149285- 0 3	4.939208E-03
50.00 10.01	TO .0702975-005	4.2214988-14	-4.5731492-03	5.517449E - 03
19.24	-4.1/2674±-08	·	-3.770524E-03	4.614824E-03
.1.63	. —3 . 2≜7026E — 03	4.2014985+04	-12.854075E-03	1 31709174E-03
13.12	-2.3775878-03	4.2214938+04	-1.954998E-03	2.7992075-03
- 54	-1. 051491£+03	4.0214985-04	+1.039341E+03	1.2336418+03
15.00	-5,341,54°F~04	4.221498E−04	-1-1701=75-04	916131328 - 04
.7.44	-7.4775279-04	4.0014955-04	+	1 1.020055#63
12.65	-) 538/028-04	4.021498E+14	-5 3590055-04	1 3200002=04-
10.30	-1,1762636-03	6 70140%F+04		1,000 2 (2002 CD);
1.76	-1 37442385-03 8	4 0034085-04		1 - 507 ET 10ET 10 1 - 507 ET 10
	-1 14 1 - 5 - 5 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6			1.0950 402733
4 6.5	-1 30297 Den		-1.170003E-03	김 비원 소감 가지 않는 것 같아.
7 • 3 **		4.2214931794	••6 • 5430 55 r = 04	1.5009.68 - 03
		4.2214920-04	· ~1. 460€31£ ~ 04	9.9331L38-14
	*** + 0 ± 1 / 2 ≤ * 0 0	4.123495E-04	. 3.770321E - 04	4 . 6726745 - 34
	4,801+F25+04	4.221498E+04	9.352950E-34	-6.3993.38-05
12.40	1.0171902-03 ₀	4.221498E-04	1.439340E-03	-5.9534048-64
1.54 j	?.→£57232★04	442214986 ~ 04	1.3687228-03	₩5 . 2440265 - 54
13.2%	3.767353E-04	4.221498E-04	1.2982038-03	H4.546087E−0.
+.72	3.1776705 - 04	4.221498E-04	1.2299175-03	-7.356574E-04
:5.15	7.3940715-04	4.221498E-34	1.1517575-03	-8.1745735-04
7.60	6.7.2200-2-04	4.2214985-34	1.094430=+03	-2-5017035-04
39.04	1.1543498-03	4_221498F-04	1.5262195-07	H1 3191176-041
+0.48	1.5412236+03	4_0214986-04	1 9433738+03	-1 110074E-07
.1.92	1 _ Q (4 つ つ つ ビー さ さ	a 0014685-04	2 4661715-03	
-3.36	2.4307375+03	- <u>+ 2 2 1 7 / 0 2 - 0 7</u> - <u>4 - 0 0 1 4 0 3 5 4 6 4</u>	2 8543811 433	
4.09			3 3007472-03	
c 6 - 2 6	T 1074012±02			
	2 • 120000111000 3 · 10001577403	9 • 22 1 4 7 5 E TU 9	3.61500JETU3	-2.7/1/91z-93
-7.00	3.3931372 - 03	9 4.2214966764 	3.9273051-03	-3.3830U7E-03
47 . 1 A	5.021504E ~ 05	4.221493E=04	4.243754E-03	-31377454E-03
10.55	4.1432136-03	9.221+93E+64	4,365363E - 03	+3.721063£⇒03
, 22 . 00	4.4700515-03	9.221493Em04	4.892201E-03	−4,047/010+03
3.44	4.913399E-03	_ 4.221498E + 04	5.33754BE-03	-4_4?324?E-03
54 . こう	5,366324 <u>5</u> -03	4.2214985-04	5.733y79E-03	-4.9446795-03
36.32	5.8240345-03	4.221493E-34	6.246434E-03	-5.492134E-03
7.76	6.2875727-03	4.221493E-04	6.709822E+03	-5.8055091-03
2.20	6,7563295-03	+=2214985-04	7.178979E-03	-6.334579E-03
3.04	6.9712495-03	4.2214932-04	7.3533995-03	-4_5691902-63
.2.03	7,1094509-63	4,221493E-C4	7,531660F-03	-A 62730007
52	7.0910048-63	4 0014982-CA	7 7170A05-000	
	7 4741701-03	лартироста И ротироста	2 - 2 C C C C C C C C C C C C C C C C C	アウェクラブ上 チャラ 11 ひろ
	7 - 26555111407	- クラビビオサプのビアしゅう。 - 人につわれていつたニッム	ていてきの人がというで	-7.UO4122-83
10.440 27.12A		- <u>サ・」∠Ⅰ</u> サダウで■24	0.00/091±703	₩ 2•2350312 # 03
0.04	7 • 60 X × 6 X ± 70 0 0	<u>₩.2214955~01</u>	0.3K1019E=03	-7.237819E-03
	7.805797-+83	4.R214936-04	N.273947E-03	-7.934×472-03
/9./2	/•bpa/9/2≁03	4.2214981-04 A	8.076947E-03	m7.2341475m03
•		\mathcal{L}	<i>ъ</i> С	• •

				الإدسان المراجع	- <u>,</u> ,,
1. 40	• C 2 1 ° 244 , −C F	1,221496. A		7.7134446-03	• JAN 44 - 37
17.42	7.100450E+63.	4.221495 Jul	· .	7 531600 03	
79.34	5-9312405-463	6.0214951 15	,		
50 S.S.	1 102 00 E H 33			7 1789705-77	
0.00		2 • 213709 505 6 505 505			
20 • 6 4	5,0176725798	4.221498 S	· .	5. /398222 - 03	
<u>83</u> .68	5.8242895~03	4. 2214981 ≤ 66	· ·	6.246439E-03	⇒5.402139E - 03
.12	j.366å29∃ −0 3	4.22149896555		5.7839792-03	-4,944679E-03
	4.9153992-03	4.2214982004		5.3375488-03	-4.493249E-03
68.00	4.4709518-03	4.0234988-04	· . ·	4.9922918-03	-4.047901E-03
29.44	4-1432135-03	4-0214935-04		4 5653635-03	-3 701023E-03
90.88	3.8216042-03	A 2214985+04		4 043754E=03	-3 300/5/E-00
V0 30	3 50515775-03			7 COTYC: E-07	
37 74			•	3.727205ET03	-3.0630072-03
20+16	3.1736511703	4.2214986+04		5.6160015-03	-2.771701E-03
5.20	2.4875938-03	·····································		3.3097435-03	
95.64	2.432737±+031	14.221498E+64		2.8548868-03	-2.0105%7E-03
186 . 081.	1_9840228+03	4.2214932+04		2.406171E-03	-1.561872E-03
99.52	1.3412235-03	4.2214985-24		1.963373E-03	-1.1190748-03
(0.96	1.1340405-03	4.2214982-04		1.524210E-03	
100000					
	7 70/0715-0/			1.0444202-03	72.0010000 00
୍ଟିର୍ବ ଜେଲ ଜଳ ଜଣ୍ଡ	(.375)///2-04	4.021498±••94		1.161/5/2=03	=2.174573±=04
·D•∠Č	3.9775lbt-04	4.2214981*04		1.2299112-03	-3.°361182-04
65.72	8.7674992 ~ 34	4.2214981-04		1.298900E=03	←4,5460llE→04
18.16	9.465723E + 04	4.2214988-04		1.348722E-03	
69 . 60	1.0171798-03	4.2214988-04		1.4393295-03	-5.958272E-04
11.04	4.8315082-004	4_00149RE+04		9.0530055-04	#4 106100E#0E
48	-4 5112072-04	A 1014086-064		3 7703775-04	
17 00					9 00 00 00 00 00 00 00 00 00 00 00 00 00
7 -				-1-4-596072-04	
ションセー		라	•	-6.642097E-04	1.5785 St. ₹33
16 . 89	=1,600628c+03 -	4.2214986-04	•	-1.178473E-03	2:2227764+01
.24	-1.3344282-03	4.2214988≁€4		-91.622733E+04	1.8065782-03
.3.68	-1.1702850-03	4.221498E-04		-7.481356E-04	1.5924358-07
- 12	1 JH915812048H04	4.0214922-64		5.3597998-04	1.35900000-03
. 56	-7.47512=04	4,001498-+04	•	-3.2544048-04	1,1 <u>4</u> ,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
			-	-1 171000E=0/	
• • •		/ 001/000000		-1 076(145-07	7.6 つとは上で、してりけ 1.1 シロテロト・オロニキオ・1
				-J.039414E-J3	1.010 (SETUD
	-2.2773600-00	9.2214931709		*1.454936E=03	2.1972296-05
	-3-2×6797E-03	역•221495E←C4		-2.864848E-03	3.7091472-03
. 9 . 76	-4.17,25023-03	<u>-2214936-</u> 04	· ·	·3.770452E-03	3.614782E − 03
.1.29	-5.0451775-03	4.721498±−04	•	-4.673(27E-)3	문 1 중1 중이어 7 1 ~ 6 3
12.64	-4.5375001.03	4.2214982-04	· •	-4.1148508-03	4.5391855 - 03
14.03	+3.4350848468	410214988-04	· · · · · •	-3.56294003	4072 CE+117
5.52	•···	4 001408F+C4		-7 01673CF=03	5 SC16005-57
17 C.C				0 6759555-07	2 7 10 1 7 7 - 07
		* <u>* 223</u> * 7 5707*	-		ひょうどうよう 2 二日 ひかうち デオ・ディー・ション
10.440			•		2.134.45±=35
·········	₩3.160×3855+03	4.221498±⊷04	•	-2. <i>7386481-</i> 23	3.n32237€ = 03
1.26	►3, 100,5348+03	K.?21498±₩64	•	-3.5368445-93	A.6306.41 − 03
-2.72	-4.7569135-93	A _22≭498E→04	•	-4.333654E-93	E.1701-3E-03
.4.14	-5.5544409-03	在122149月上一日在	. •	-5.1322915-03	5.9765902-03
45.60	-5.3542481-03	4.2214988-04	•	-5.9327935-03	5.777453E+33
-7.94	₩5,545888£₩08	41.12149 月149月	۰ .	-5.14370BE-03	5,7+2760E - 93
45.48	-4.7873501-K3	C 221495+-04		4.341177-03	SJOREAR OF HOR
1997 - 1997 1997 - 1997	-a 10/107 -3%	a cotadiza <i>-c/</i>			4 AD23477 - 07
	ニュー ウマダウビショークマ			- C. + C オタサイモー スロー - A - C. + カラククローA ラー	マ・マンジャク ほどびり
1.00	TO.20070007720 /	- 9.2214メクロデジル	•	-d. (11/10±****)) 	0.6059312 * 00
92 . 80	₩2,455473±₩33	4,223,498,5574	•	-2.1433275-03	2.5176074753
≅4.24	- 3,4320498703	10.201498E-04		-3.009900E-03	3.°041095 - 03
15.68	-4.3224855-03	H.2214985-04		-3.977335E+03	41 . 301€€755 5 ⊷03
-7.12	-F.359016/-03	14.2214985-04	•	-4.4462602-03	5.79 <u>1146</u> E+nZ
	-4_3412512+03	6_22144 × F + CA		5_010012-031	6. /Guisser-463
TTON-		•			
	0 24 ADD 101 400 DC	205779			
	· 국내학원부모교국전학생은 환전 1월 11일 - 1일 - 1일 - 1일 - 1일 - 1일 - 1일 - 1	SFILLS .			· · ·
100106 8	HRAIN:				SO PTS
	7.68545075+03			•	
RICEANE S	STRAIN:) - / >		
		لل ل	ک م	· · ·	-
•				:	

· · · · · ·

- 7、 - # 各省の理想に一点で

50 pts

APPENDIX D

STRAIN PREDICTION PROGRAM PLOTS ELASTIC TEST CASE 2

INITIAL SHAPE

D-66

 χ^{\dagger}

DIFFERENCE SHAPE

DIFFERENCE SHAPE

SO POINTS

CALCULATED STRAIN

Ì

DIFFERENCE SHAPE

ELASTIC TEST CASE #2

8 POINTS

CALCULATED STRAIN

٠.

1.1

1.

APPENDIX E

COMPUTER SUBROUTINES FOR STRAIN CALCULATIONS

BABCOCK & WILCOX

```
FIG. 1 SUBROUTINE STNCAL (R. ANGLE, BNDBIN, MEMSTN, STRN1, STR.
                                                             (MAX)
      THIS SUBROUTINE APPROXIMATES THE INTERIOR CURVE OF A TUBE BY A
      PERIODIC CUBIC SPLINE. THE ARC LENGTH OF THE SPLINE IS CALCULATED
C
      TOGETHER WITH ESTIMATES OF THE MEMBRAME AND BENDING STRAINS.
С
        R - ARRAY OF RADII IN COUNTER-CLOCKWISE ORDER (INPUT).
    ANGLE - DEGREES MEASURED FROM R(1) IN A COUNTER-CLOCKWISE DIRECTION
            TO THE POINT OF MAXIMUM BENDING STRAIN (DUTPUT).
   BNDSTN - BENDING STRAIN (OUTPUT).
C
   MEMSIN - MEMBRANE STRAIN (REAL VARIABLE) OUTPUT).
Ċ
    STRN1 - MEMSTN+BNDSTN (OUTPUT).
Ċ
    STRN2 - MEMSTN-BNDSTH (OUTPUT).
C
     TMAX - ANGLE IN RADIANS (OUTPUT).
С
      DIMENSION R(8), WKAREA(8,4)
      REAL KAPPAM
      COMMON A(8), CIRCUM, DEG, KAPPAM, MODE, P1D4, RC1RCM, RDEG, RO, TC(4, 8),
     . TCP(3,8), TCPP(2,8), TD2, THICK, TWOP1
      REAL KMAX, MEMSTN
      IF (MODE . EQ. 1) GO TO 20
         TWOPI=6. 2831853
         PID4=TWOPI/S.
         DEG=PID4/45.
         RDEG=45.7P1D4
          CIRCUM=TWOPI*R0
          RCIRCM=1. /CIRCUM
          TD2=. 5*THICK
          DO 10 I=1/8
          A(I)=FLOAT(I-1)*PID4
   10
          MODE=1
       OBTAIN THE SPLINE COEFFICIENTS.
С
   20 CALL POSI(A, R, B, TWOPI/TC, WKAREA(1, 1), WKAREA(1, 2), WKAREA(1, 3),
      WKAREA(1, 4)
       CALCULATE THE COEFFICIENTS FOR THE DERIVATIVES OF THE SPLINE.
       DO 30 1=1,8
          TCP(1,1)=3. *TC(1,1)
          TCP(2, 1) = 2. * (0(2, 1))
          TCP(3, I) = TC(3, I)
          TCPP(1,1)=6. #TC(1,1)
          TCPP(2, 1) = TCP(2, 1)
    30
       CALCULATE THE ARCLENGTH.
 ਼
       ARCLEN=0.
       DO 40 1=1,8
          CALL ROMBRG(I, SUMI)
          ARCLEN=ARCLEN+SUMI
    40
       CALCULATE THE MEMBRANE STRAIN.
 С
       MEMBIN= (ARCLEN-CIRCUM) *RCIRCH
       CALCULATE WHERE THE CURVATURE HAS CHANGED THE MOST.
 С
       KAPRAMETWOP I / ARCLEN
       GALL DELCUR (DCMAX, KMAX, TMAX)
       CALCULATE THE SENDING STRAIN
 С
       BNDSTN=TD2*DCMAX
       CALCULATE THE ANGLE LOCATION OF THE MAXIMUM BENDING STRAIN.
 С
       ANGLE=RDEG*TMAX
       STRN1=MEMSTN+BNDSTN
       STRN2=MEMSTN-BNDSTN
       RETURN
       END
```

F-

APPENDIX F

COMPUTER SUBROUTINE FOR CALCULATING MAXIMUM BENDING STRAIN

```
FIG. 2
      SUBROUTINE DELCUR (DCMAX, KMAX, TMAX)
      THIS SUBROUTINE MAXIMIZES (THE ADSOLUTE BENDING STRAIN)/(THICK/2).
Ċ
С
      FIRST WE CALCULATE THE CURVATURE AT TNEW, WHERE
      TNEW IS THE RADIAN MEASURE FROM THE LAST KNOT (I. E., FROM T
Ç
C
      A(I)). THIS USES THE FORMULATION OF THE RADIUS OF CURVATURE
      WHERE THE CURVE IS PARAMETERIZED BY THETA.
                                                    SEE CALCULUS AND
С
      ANALYTIC GEOMETRY BY GEORGE B. THOMAS, JR., THIRD EDITION, PP.
С
С
      588-589.
С
    DCMAX - (THE BENDING STRAIN)/(THICK/2) AT TMAX.
С
     KMAX - THE CURVATURE AT TMAX.
С
     TMAX - THE LOCATION IN RADIANS MEASURED COUNTER-CLOCKWISE FROM R(1)
             OF THE MAXIMUM ABSOLUTE BENDING STRAIN.
C
      REAL KAPPAM
      COMMON A(8), CIRCUM, DEG, KAPPAM, MODE, PID4, RCIRCM, RDEG, RO, TC(4, 8),
     . TCP (3, 8), TCPP (2, 8), TD2, THICK, TWOP I
      REAL KAPPA, KMAX
      DIMENSION DCTMP(8), TTMP(8)
      00 10 I=1,8
         TTMP(I)=0.
         R = TC(4, 1)
         DRDT=TCP(3,1)
         DERDTE=TOPP(2,1)
         DRDT2=DRDT*DRDT
         P=2, *DRDT2+R*(R-D2RDT2)
         01 = DRDT2 + R \Rightarrow R
         G=SGRT(01*01*01)
         KAPPA=P/Q
         DCTMP(1) = ABS((KAPPAM-KAPPA)/(1, +TD2*KAPPA))
         DO 10 J=1,44
             TNEW=FLOAT(J)*DEG
             R=((TC(1,I)%TNEW+TC(2,I))%TNEW+TC(3,I))*TNEW+TC(4,I)
             DRDT=(TCP(1, I)*TNEW+TCP(2, I))*TNEW+TCP(3, I)
             D2RDT2=1CPP(1, I)*TNEWFTCPP(2, I)
             DRDT2=DRDT*DRDT
             P=2.*DRDT2+R*(R-D2RDT2)
             Q1=DRDT2+R#R
             Q=SQRT(G1*Q1*Q1)
             KAPPA=P/Q
             DONEW=ABS((KAPPAM-KAPPA)/(1, +TD2*KAPPA))
             IF (DONEW LE DOTMP(I)) GO TO 10
                TIME(I) #TNEW
                DOTMP(I)=DONEW
             CONTINUE
   10
      DOMAX=DOTMP(1)
      INT=1
      TMAX=TTMP(1)
      DO 20 1=2,8
          IF (DCIMP(1) LE. DCMAX) QO TO 20
             DCMAX=DCTMP(I)
             INT=I
             TMAX=A(1)+TTMP(1)
   20
         CONTINUE
      T=TTMP(INT)
      R=((TC(1,INT)*T+TC(2,INT))*F)TC(2,INT))*T+TC(4,INT)
      DRDY=(TCP(1, INT) *TFTCP(2, )Hf))*T+TCP(3, INT)
      D2RDT2=TCPP(1, INT)*T+TCPP:2, 1PT)
      DRDT2=DRDT*DRDT
      P=2.#DRDT2+R+(R+D2RDT2)
      Q1=DRDT2+R*R
      Q=SGRT(G1*01:G1)
      KMAX=P/Q
      DCMAX=(KAPPAH-KMAX)/(1 + 1)/2×KMAX)
      RETURN
      END
```