VIEW GRAPHS

ACCOMPANYING PRESENTATIONS

BY R. LIPINSKI AND

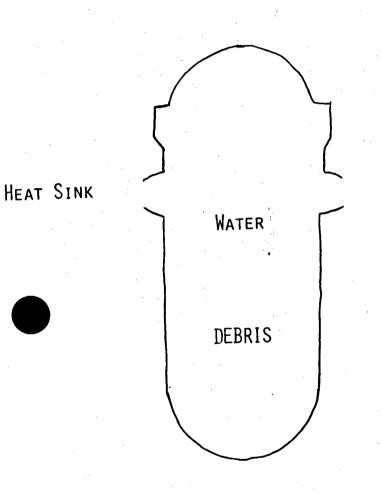
W. MURFIN

SANDIA LABORATORIES

ON

IN-VESSEL AND EX-VESSEL DEBRIS BED COOLABILITY

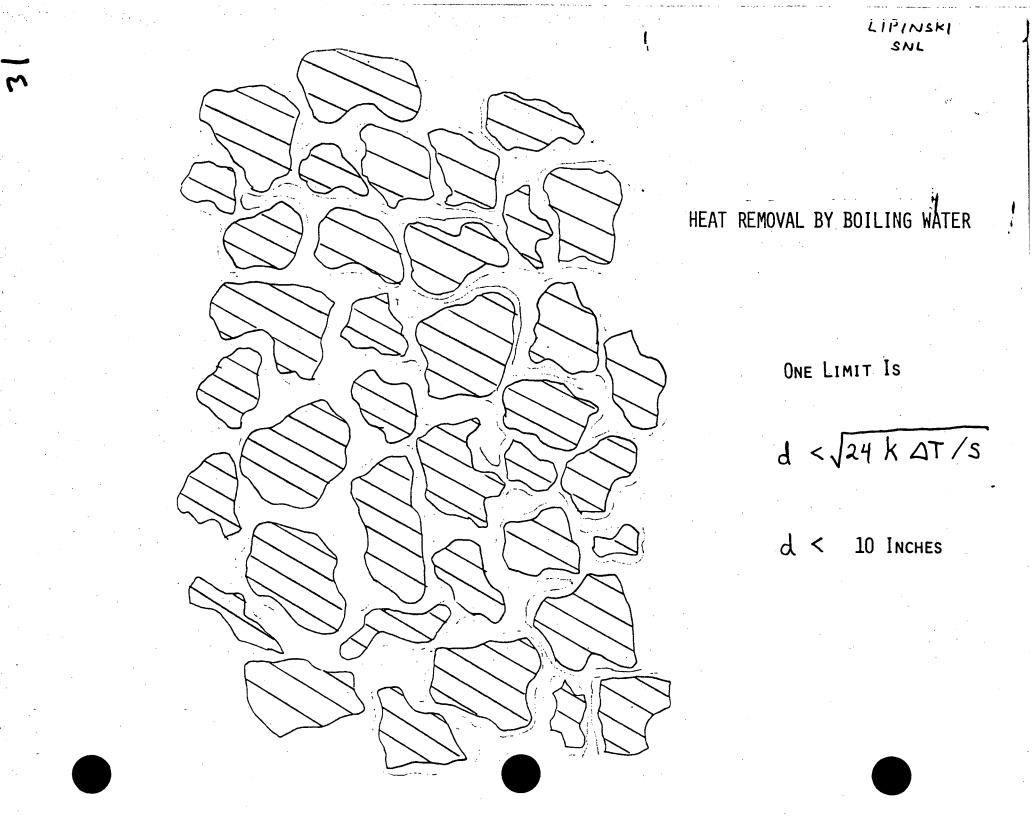
AND


BASE MAT PENETRATION

ASSUMPTIONS

May 7, 1930

ຂ


IN-VESSEL DEBRIS BED COOLING

HEAT SINK WATER PARTICLE BED

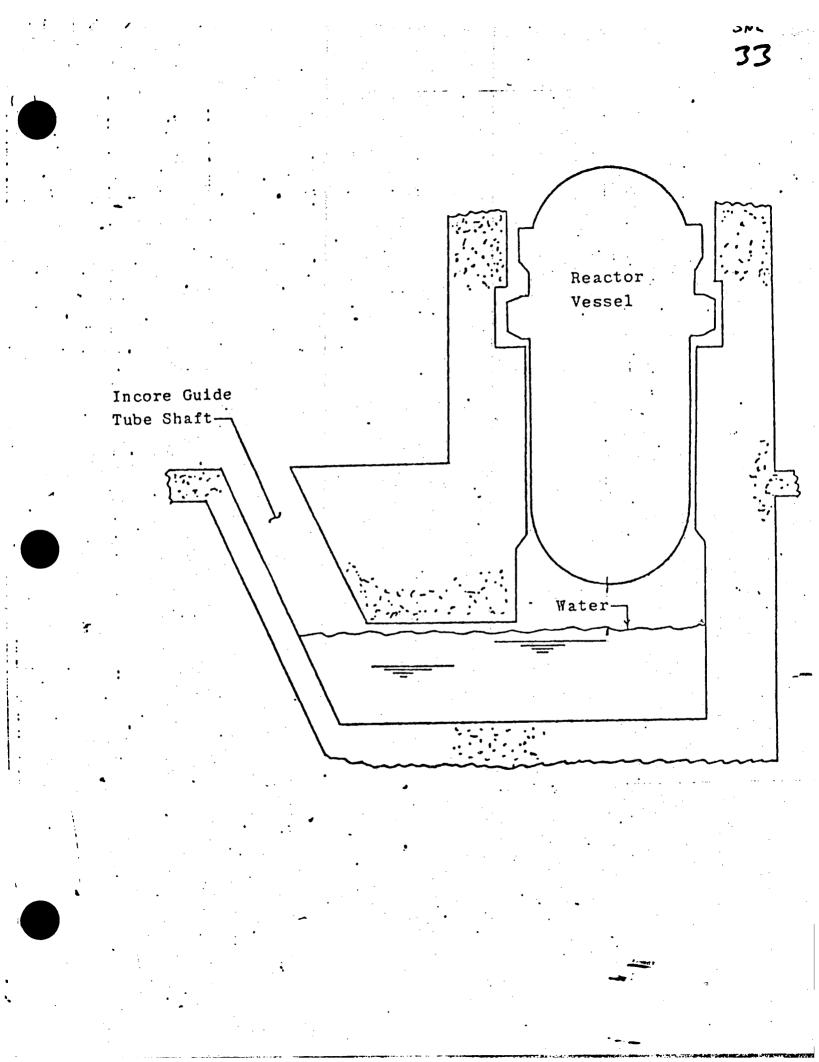
IMPERMEABLE SUPPORT PLATE

BOILING

SMALL PARTICLES YIELD DRYOUT

DRYOUT LEADS TO HIGH TEMPERATURE

FUEL MELT WITH A 3.5 INCH DRY ZONE


DRYOUT IS PRINCIPAL CONCERN OF PARTICLE BED STUDIES

OTHER LIMIT IS

q > ;

Wet

Dry

EFFECTS OF WATER IN THE CAVITY ASSUMPTIONS

•AT LEAST 300,000 POUNDS OF WATER IN THE CAVITY (7 FEET DEEP) Amount Can Vary Widely

• THE WATER IS INITIALLY AT THE ATMOSPHERIC BOILING POINT COULD BE COOLER BUT EFFECT IS SMALL

 Amount and Temperature of Core Melt Determined by MARCH All UO₂ and Zr Plus More than Equal Mass of Structure 2550 K (4130°F) Molten

• All of Debris is Quenched by the Water in a Short Time (Dictated by Condensation Rate)

> Sudden Vessel Failure and Core Dump Thorough Mixing No Dispersal onto Dry Surfaces

BASE PENETRATION - ASSUMPTIONS - INITIAL CONDITIONS

* DEBRIS COMPOSITION -ALL UO2 ALL Zr AS ZrO2

BOTTOM HEAD

IN-CORE STEEL

PART CORE BARREL AND SUPPORT STRUCTURE

- * INITIAL TEMPERATURES AS CALCULATED BY MARCH
- * DEBRIS FALLS INTO DRY CAVITY, OR IF WATER IS PRESENT, DEBRIS IS NOT PERMANENTLY COOLED, DRIES OUT, AND REMELTS

* INITIAL CONTACT AREA = 29.2-45.4 m²

* INITIAL CAVITY IS FLAT BOTTOMED

* AS A CONSEQUENCE OF THE ASSUMPTION ON COOLING OF DEBRIS, MELT INTER-ACTS WITH CONCRETE. IF DEBRIS IS PERMANENTLY COOLED, NO INTERACTION TAKES PLACE * ALL CONCRETE TYPES ASSUMED TO HAVE 4% INITIAL FREE WATER

* EFFECTIVE HEAT OF ABLATION INCLUDES DECOMPOSITION REACTIONS

* QUASI-STEADY STATE ABLATION

* NO SPALLATION OR CRACKING

* REBAR 13.5 WT. PERCENT

* INITIALLY 20° C

* GRANITIC, LIMESTONE, OR CRBR CONCRETE

BASE PENETRATION - ASSUMPTIONS - CONCRETE

BASE PENETRATION - ASSUMPTIONS - DECAY POWER

* POWER AND NUCLIDES BY ORIGEN - "AVERAGE" PWR FUEL MANAGEMENT

* FISSION PRODUCT RELEASE PER WASH1400

 * MOST FISSION PRODUCTS IN OXIDE PHASE. METALLIC PHASE HAS ONLY NOBLE METALS, PLUS METALLIC ACTIVATION PRODUCTS, PLUS RU, PLUS PART TE
* OXIDATION OF METALLIC FISSION PRODUCTS BY GASES NOT ACCOUNTED FOR BASE PENETRATION - ASSUMPTIONS - POOL THERMO-HYDRAULICS

- * DENSITY DRIVEN SEPARATION OF METALLIC AND OXIDE PHASES
- * ISOTHERMAL LAYERS
- * GAS BUBBLE DRIVEN CIRCULATION
- * HEAT TRANSFER TO CONCRETE ACROSS GAS FILM
- * LIQUID CONCRETE CONSTITUENTS INCORPORATED INTO OXIDE PHASE
- * LIQUID REBAR INCORPORATED INTO METALLIC PHASE
- * PERCOLATING GASES REACT WITH MELT
- * PROPERTIES ARE FUNCTIONS OF TEMPERATURE AND COMPOSITION
- UPPER SURFACE HEAT TRANSFER VIA:
 - 1. RADIATION TO REACTOR REMNANTS INITIALLY 500° C PLUS CONCRETE INITIALLY 100° C; HEAT TO MELTING POINTS; MOLTEN MATERIALS DRIP INTO POOL

-OR-

2. CONSTANT 500° C SURROUNDINGS

-OR-

3. QUIESCENT WATER POOL

* EMPIRICAL AEROSOL GENERATION MODEL

BASE PENETRATION - ASSUMPTIONS - SOLIDIFICATION BEHAVIOR

* EACH PHASE SOLIDIFIES INDEPENDENTLY

- * SOLIDUS TEMPERATURE OF EACH PHASE IS DETERMINED BY COMPOSITION
- * INSTANTANEOUS SOLIDIFICATION OF AN ENTIRE PHASE
- * POST-SOLIDIFICATION PENETRATION RATE = 2-3 CM/HR
- * NO DEFINITION OF CAVITY SHAPE AFTER SOLIDIFICATION