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ABSTRACT

This report summarizes the results of startup physics tests of
Cycle 2 for Indian Point Unit No. 2 at Hot Zero Power condi-
tions, and during reactor power level escalation. Results of

these tests satisfied Technical Specifications and demonstrated

adequate conservatism of design and analyses.
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INTRODUCTION

Indian Point Unit No. 2, Cycle 2, attainéd initial criti-
cality on September 21, 1976. Subsequently, a series'of

physics tests, described in a letter to the U.S. Nuclear

Requlatory Commission (NRC) dated July 19, 1976, were

carried out. These tests are listed in Table 1.1. The

objectives of these tests were: (a) to demonstrate that

the core performance during reactor operation would not
exceed FSAR, Reference 1, and Technical Specification,
Reference 2, limits; (b) to verify the nuclear design
calculations, Reference 3; and (c) to provide the bases
for the calibration of reactor instrumentation. Section
2 of this report deals with a brief description of the
reactor core and the core loading. Section 3 deals with
measurement methods. In Section 4, results from Hot Zero
Powerv(HZP) physics tests are presented and in Section 5,
physics tests at differenf power ievels are described.
Reactor instrumentation response and calibration are
treated in Section 6. The test results of the measured
parameters have been compared with the design results.
The latter are from the Indian.Point Unit No. 2, Cycle 2

design report, Reference 3.



TABLE 1.1

" Indian Point Unit No. 2

First Reload Startup Physics Test Program

(1) Pre-Criticality Tests:

Calibrations of the in—cofe thermocouples and RTDs will be
performed.

(2) Hot Zero Power (HZP) and Beginning of Core Life (BOL) Con-
ditlon Tests: , :

(A) A determination of the Isothermal Temperature Coefficient
will be made for the following control rod configurations:

(i) All rods withdrawn out of the core
(ii) Control Bank D inserted
(iii) Control Banks D and C inserted
(iv) Control Banks D, C, and B inserted in an overlap-
ping position at the HZP insertion limits.

(B) A determination of the differential & integral rod worths
will be made for the following banks of control rods:

(i) Control Bank D
(ii) Control Bank C with Control Bank D inserted
(iii) Control D, C, and B inserted in overlapping posi-
tions at the HZP insertion limits.

Boron’eﬁd—points for the above three test cases will
also be measured.

(C) A movable in-core detector flux map will be performed'
with the reactor at 3 to 5% of full thermal power and
all the rods withdrawn to a position out of the core.

(3) Power Ascension Tests at 75% of Full Thermal Power

(A) Ex-core and in-core instrumentation calibrations will
be performed.

(B) A power coefficient test will be performed.

(4) Power Ascension Tests at 90% of Full Thermal Power
(A) A movable in-core detector flux map will be performed.

(B) A power coefficient test will be performed.



REACTOR CORE DESCRIPTION

Indian Point Unit No. 2 core consists of 193 fuel assemblies

of slightly enriched uranium dioxide. Each fuel assembly

contains 204 fuel rods with zirconium alloy cladding, 20

‘rod cluster control (RCC) guide tubes for inserting control

rods( and a central instrumentation thimble. Burnable poison
rods, depleted from Cycle 1 andﬂcomposed of Pyrex, a boro-
silicate glass, are inserted in selected assemblies to pro-
vide a negative moderator temperature coefficient during
reactor operation, to control excess reactivity early in

the life of Cycle 2, and to improve power distributions.

2.1 Reactor Core Control
In addition to the chemical shim control by boric aéid
dissolved in.ﬁhe coolant water, control and shutdown
ofAthe reactor is accomplished by 53 full-length Rod
Cluster Control Assemblies (RCCAs). The latter con—
sists of four.control and four shutdown banks. The
reactor also has 8 part»length ;ods but the use of
these is prohibited by Technical Specifications;“
Figure 2.1 is an X-Y cross section of the reactor core
containing RCC bank positions. Figure 2.2 provides

the Cycle 2 1oadihg pattern.

2.2 Reactor Core Instrumentation
The reactor core instrumentation consists of four ex-
core detectors, six moveable incore detectors (M/D)

capable of scanning up to 50 fuel assemblies through



their central thimble guide tubes, 65 incore thermo-
couples (T/C) to monitor exit coolant temperatures,
and 32 fixed in core detectors in eight assemblies.
Figure 2.3 shows the ‘incore and excore instrumen-

tation.

Cycle 2 Core Loading

The Indian Point Unit No. 2, Cycle 2, core loading,
Figure 2.2, was accomplished by May 27, 1976. The

core loading was in agreement with the core loading
pattefn as developed by Westinghouse and described

on Westinghouse Drawing #1212E31 (Revision 4). The

verification is based on the visual observation of

Con Edison (Nuclear Power Generation) and Westinghouse .

personnel.,
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3.

MEASUREMENT METHODS

I'ne reactor was kept at the'jﬁst critical state during the
physics measurements and the reactor power was held constant
via control rod/boron exchanges and/or control rod/coolant
temperature exchanges. Sméll changes in core reactivity
during the tests were indicated by the reactivity trace

proyided by the reactivity computer.

The axial pdwer distributions were obtained using the move-

able incore detectors.

3.1 Reactivity Computer
The absolute measurement of small changes in reactivity
was provided by the on-line solution of the point-reactor
kinetics equations using anvanalog computer. The latter:
was checked out by comparing the reactivity obtained +
from‘the reactor_period with that given directly by
the reactivity computer. This comparison'is shown.in
Table 3.1. A good agreement between réactivities ob-
tained from two sources ensured the reliability of de—;
layed neutron data, given in Table 3.2. This data was
used as an input to the solution of neutron kinetics

equations by the reactivity computer.

During HZP tests, an output signal from an excore de-
tector, N-Channel 41, as shown in Figure 3.1, was fed’
into the reactivity computer. However, during the

power ascension tests, signals from the top and bottom



sections of all four excore detectors were first sum-
med and then fed into the reactivity computer, see

Figure 3.1.

Moveable In-core Detectors
The axial core power distributions provided by the
moveable incore detectors were integrated over the

Z-variable (axial) to obtain the radial or (X-Y)

power distributions of the instrumented assemblies.

The relative assembly power distributions in the
core were finally obtained using the INCORE "~ code,
References 4 and 5. The analysis of the incore flux
maps also provided measured hot channel factors -

N an3 pN
En&iand F o
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TABLE 3.1

" PERIOD TO REACTIVITY COMPARISON

Doubling Reactor Reactivity Reactivity Difference
Time (sec) Period (sec) (pcm) Meas. (pcm) (M-P) (pcm)
172 248 25 25.0 0
73 105 53 51.0 -2.0
46 66 75.5 73.5 -2.0
TABLE 3.2
DELAYED NEUTRON DATA
Group [Bieff N(sec)
I
1 0.00018 0.013
2 0.00127 0.031.
3 0.00115 0.117
4 0.00235 0 0.315
5 0.00081 1.252
6 0.00028 3.340
S Bieff = 0.00604 Biett =IpB
£?= 16.3 M sec
T = 0.970
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HOT ZERO POWER (HZP) TESTS

4.

‘distribution measurement at low reactor power (2%

Initial Criticality
The Indian Point Unit No. 2 reactor attained Cycle 2
initial criticality on September 21, 1976. The crit-

icality, at beginning of life (BOL) and HZP condition;

‘was obtained by the sequéntial withdrawal of the RCC

shutdown and control banks and by subsequently diluting
the boraged'reactor coolant. During the approach to.
criticality, ICRR (Inverse Count Rate Ratio).plots
versus time,-integrated.primary water addition, reactor
coolant boron concentration, and control rod position.
(Figures 4.1 to 4.5) were kept. Measured critical boron
concenﬁfation, at BOL, HZP, and ARO (All Rods QOut) core
condition, was equal to 1445 ppm compared to the design
result of 1476 ppm, Reference 3. The differedce of 31
ppm between measured and design boron concentrations
was less than 50 ppm, the acceptance limit for this
measuremeﬁt. HZP physicé tests included the following
measurements: (a) end—point boroﬁ concentrations for
several configuratioﬁs of RCC banks; (b) differential
and integral worths of RCC banks during normal inser=
tion/wi;hdrawal sequence, for both with ahd without

bank'ovérlap cases; and (c) isothermal temperature

coefficients for different RCC bank configurations.

In addition to the above tests at HZP, a core power

1

%
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Power) was made for the all rods out condition. This

measurement is déscribed in Section 5.

End-Point Boron Concentrations

In Table 4.1; measured end-point boron concentrations,

- for different control and shutdown RCC bank configura-

tions, are presented. The corresponding design values,
from Reference 3, are also listed. The maximum devia-
tion, as shown in Table 4.1, is 31 ppm. This satisfies

acceptance criteria of + 50 ppm.

RCC Bank Differential and Integral Worths

Measurements of the differential.and integral worth of
individual RCC control and shutdown banks were éarried
out via bqron/RCC exchange, with the reactof in the

critical state. The reactivity computer trace provided'

" the change in reactivity during insertion/withdrawal of

an RCC bank. The differential worth of a bank,Aﬁfy&sH
is defined as the amount of change in reactivity per

unit step of bank position, about an average bank posi—'
tion. The integral control bank worth was obtained by j\
summing-the differential worths for the bank positions

during the insertion or withdrawal of the RCC bank.

In Table 4.2, the integral worths of individual control
banks and overlapped banks are presented along with the ‘
design values. The cumulative worths are also given

in Table 4.2.
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In Figures 4.6 through 4.9, differential and integral

worths of control banks C and D are showh.

Figures 4.10 and 4.11 show differential and integral
worths of RCC control banks in overlap to the zero

power insertion limit. -

Measured integral worths in all cases are within + 10%
of design values (Reference 3). The latter constitutes .
the acceptance criteria for the integral worths of RCC

banks.

'~ Isothermal Temperature Coefficient

- Isothermal temperature coefficient measurements were

carried out for_se?eral RCC bank configurations. Mea-
surements involved héatup and cooldown of the reactor
coolant. In Table 4.3, measured as well as design
values of isothermal temperature coefficients for

four RCC bank configurations are presented.

Measured values are obtained from the reactivity
vérsus temperature curves provided by an X-Y plot
recorder and the design values are from Reference 3.
Measured isothermal temperature coefficients were all
negative and within the acceptahce criteria of + 3

pcm/OF.
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" PABLE 4.1

End-Point Boron Concentrations

(1) | (2) (1)-(2)

: Measured Design Deviation
Configuration (ppm) (ppm) (ppm)
All Rods Out 1445 1476 _31
c/b In : 1345 - 1360 -15
c/D and C/C In 1256 | 1260 -4

Cc/D in C/C at 80 :
c/B at 210 | 1273 1275 -2



BANK CONFIGURATION
D
C D in
B,C,D Overlap to
Insertion
Limit

* Note: All

- 16 -

TABLE 4.2

CONTROL ROD BANK INTEGRAL WORTH SUMMARY

PREDICTED MEASURED*

RTH (pcm) WORTH (pcm)
980 + 98 891
880 + 88 - 933

1800 + 180 1682

PREDICTED

TOTAL
980

1860

WORTH + 10%

98

|+

1+

-186

measurements were done at HZP, BOL, no xenon

MEASURED*

. TOTAL WORTH

891

1823
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TABLE 4.3

ISOTHERMAL TEMPERATURE COEFFICIENT

*

af/dr a/’/&T Difference
Configuration Measured Predicted M-P

pcm/ F ~ pcem/ ¥ | pcm/OF
ARO D @ 220 . -0.84 -1.60 0.76
D@oOo, C @ 198 -2.27 -3.33 1.06
C, D@ OB @ 207 ~-3.96 -5.18 1.22
‘D@O, C @75, B @ 204 -5.12 ~4.10 1.02

* Based on design values interpolated for the measured boron
concentrations. :
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AT. POWER TESTS

The power measurement tests consisted of: (a) relative

assembly power distributions at low power ¢2%), 35%, 70%,

and 90% of full power; (b) determination of power coeffi-

cient versus reactor power; and (c) reactor coolant flow

determination.

5.1 Core Power Distributions
Measurements of the core power distributions were car-
ried out with the moveable.incore detectors. The
INCORE code, References 4 and 5, was employed to
analyze the in core flux maps to provide the relative
assembly power.and hot channel factors. The analysis
required:l (i) the calculated ratié between the power
_and the fission reaction rate at the locations of the
moveable incore detectors, and (ii) célculated.(X—Y)
power distributions for the all rods out (ARO) condi-
tion.and the D .bank in case. The latter were employed
to obtain the power distribution of the partially.
rodded core by the flux synthesis method. Results.
from the analyses of 7 incore full core flux maps
and 7 quarter core flux maps taken during the startup
tests are presented in Table 5.1. Relative assembly
power disfributions derived for HZP and 90% power cases

are shown in Figures 5.1 and 5.2.

‘For the HQt Zero Power (/v2%) map, 2 out of 193

assemblies (core locations B-11 and B-12) had power
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fractions outside the acceptance criteria (+ 10%,

p'._?_ 0.9; + 158%, p; & 0.9) as indicated on the power
map Figure 5.1 (Hot Zero Pdwer). These two assemblies
were not measured directly but represent extrapolations
from neighboring assemblies with high measured, com-
pared with deéign, but acceptable power fractions.
Alllsubsequent maps taken at significént power levels
(35%8-290%) had all power fractions within the accep-

tance criteria as illustrated in Figure 5.2 (90% Power).

" This one anomaly did not repeat itself and the map

that produced it was taken at a low power level (~2%).
In addition the highest measured errors on all maps
are at the corners where the design calculations are
more prone to error. - It was therefore concluded that:
this single event did not represent a deviation from
acceptance criteria‘sufficient to impact on plant pef-

formance.

In all cases, the measured values of Fg and FN even

AH'
after being increased by their respective measurement
uncertainty factors, were within the Techniéal Specifi- .

cation limits.

Power Coefficient
The “differential"” power coefficient, @qPAAQ)Q at
a specific powei level, Q, is defined as the change

in reactivity, (fn,‘per percent change in reactor

power, Q, at that power level.
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Measurement of the power coefficient involved:

(a)’

(b)

The determination of reactivity cbmpensatioq
carried out during the increase and the de-
crease of reactor power by control bank move-
ment. This was obtained from the output of

the reactivity computer.

Determination of reactor power levél changes
from the recording of secondary plant calori-
metric dafa - steam pressure, feedwater tempera-
tures, and feedwater flow rates. Steam pressure
was obtained directly from the local gauges.

Feedwater temperatures were obtained from the

~precision thermometer installed at the feedwater

" header, and the feedwater flow from manometers

installed across the feedwater line venturi

elements.

In addition to the above data, the analysis of

power coefficient measurements included correc-

tions due to xenon changes caused by power level

variations.

Differential and integral power defects were obtained

from the folloWing equations.
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Differential Power Coefficient :
(Ap/z_sa) = Yna[(aP)en* (Bp)xe +(2p)s (A/’)f_]
Integral Power Defect

5 i 28 4

where

(25ﬂ)cn
(op)te
(aple
(ap)r

AHQ

Reactivity Compensation due to Control Rod

Reactivity Defect due to Xenon Change

Reactivity Defect due to Boron Change

Reactivity Defect due to Temperature Change‘

Change in Reactor Power

Table 5.2 gives the measured power coefficients and
the design power coefficients (Reference 3). The
measured values are within the acceptance criteria of
+ 2 pcm/%Q. The integral power defect was calculated
ffqm the measured data by a least squares fit and is

1121 pcm cbmpared with the design value of 1055 pcm.

Reactor Coolant Flow Determination
Based on elbow tap DP measurements, the Reactor Coolant
Flow was verified to be 379,250 gpm (16 = 1435 gpm)

which is greater than design (358,800 gpm).

Table 5.3 provides the power levels and the percent in-
creased reactor coolant flow above design. These re-
sults demonstrate compliance with Technical Specifica-

tion Criteria on Reactor Coolant System Total Flow Rate.
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Table 5.2

Power Coefficient (AP/AG. )
i

Average . Measured Design
Power (%)* . pcm/$Q pcm/$Q
63.0  -9.85 -9.3
77.4 ‘ -8.80 -9.0

* Average power over the test power range

Difference
pcm/%Q

-0.55
+0.20
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Table 5.3

Reactor Coolant Flow

$¢ INCREASED RC FLOW
(above design)
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REACTOR INSTRUMENTATION CALIBRATION

The calibration of excore power range detectors, overpower

and overtemperature AT setpoints and incore resistance

temperature detectors and thermocouples is presented in

this section.

6.1

Excore Detector Calibration

The variation in total excore detector current (sum
of curréhts for top and bottom detectors) versus
reactor poWer for four excore detectors is presented
in Fiqure 6.1. Reactor power in these measurements

was obtained from the plant calorimetric data.
: t

Incore axial offsets were obtained from the analysis -
of incore flux maps with the INCORE Code, References

4 and 5.

In Figures 6.2 through 6.5, variation in top and bottom
detector currents versus incore axial offsets are
given. These data serve as the basis for excore NIS

calibration.

Incore Thermodouple and Wide Range Resistance Tempera-
ture Detector Calibfation

Incore thermocouple data provide a continuous on-line
monitoring of 65 evenly distributed assembly powers
thgoughout the core. This requires calibration of in
core'tnermocouﬁles and wide range resistance tempe;a—

ture detectors (RTDs). The enthalpy hot channel factor
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ahHT/C for assembly thermocouple, i, is given by the
i .
following expression.

| £,
'FAZ,C- = MiAky (E/-ra )

where,AHi is enthalpy rise in assembly i, Eout—Ein

is the core average.enthalpy rise, B is the fractional

bypass flow,. and Mi is the normalization factor.

The bypass flow correction is required if the loop

RTD's are used to measure vessel outlet temperatures.

However, if the thermocouples are used to provide

‘the outlet temperatures, then B is set equal to zero.

The normalization factor, M, was provided by taking

the ratio of €QH obtained from thermocouple and move-

able incore detector. data.

- The thermocouple output can be obtained from the com-

puter (PRODAC) or in the case of computer malfunction,

the Honeywell meter can be used.

Thermocduple (PRODAC and Honeywell) and wide range RTD
calibrations are obtained by comparing their temperature
readings to the narrow range RTD's at the time each
reading was taken during the heatup of the_primary sys-—

tem. Table 6.1 lists the Correction Factors at 547°F.
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£>T Setpoint Calibration

The axial offset versus detector currents at 100%
power for fohr excore detectors are shown in Figures
6.2 through 6.5. This information provided the cur-

rent to voltage félationship required for F(A Q) cir-

cuit. The function, F(A Q), is defined to be that

function for which no reactor power penalty is paid
for full-power axial offset variations between1—12%
and +7%. Outside these limits, for every 1% of full
power axial offset greater than +7%, a penalty of 2%
power is assigned, and for every 1% of full-power
axial offset more negative than -12%, a penalty of

4.5% is imposed. 1In Table 6.2, information for over-

power and over-temperature A T setpoints is presented.

AT Versus Reactor Power

'Plots of four reactor coolant loopAT's versus reactor

power (obtained from plant calprimetric data) are pre-
sented in Figures 6.6 through 6.9. Extrapolated D T's
for full power are also shown. The AT's for the Loops
21 through 24 are 52.7°F, 51.5°F, 52.8°F, 52.1°F, re-

spectively. Average full power AT was equal to 52.3OF¢
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Table 6.1
. List of Thermocouple Correction Factors at T ref 547°F
Core _ . ' Core
T/C# Location Prodac = Honeywell T/C#% Location Prodac Honeywell

1 A-7 +2.1 . =10.5 34 A-11 -0.8 -12.8
2 B-3 -0.7 -10.2 35 B-6 -2.8 -13.6
3 " B-10 - - 36 B-8 -5.3 -13.4
4 B-13 +4.0 - =9.5 37 C-12 +1.6 -13.8
5 c-8 +0.2 -9.8 38 D-4 -1.9 -12.9
6 D-2. -4.1 -10.0 39 D=7 -5.5 -12.9

7 E-4 +3.8 -9.7 40 D-9 - -
8 E-8 -1.6 - -10.9 41 E-2 -2.7 -13.5
9 E-10 -3.8 ' -10.1 42 E-5 -4.5 -12.2
10 F-12 +4.5 -9.8 43 E-11 - +1.0 -13.3
11 G-2 -0.8 -10.0 44 E-14 -2.0 -13.1
12 G-9 -3.8 -9.9 45 F-5 -4.8 -14.1
13 G-15 +3.8 -10.3 46 F-9 +0.2 -14.5
14 H-1 +0.2 -8.2 47 G-4 . -2.3 -13.3
15 H-3 -2.5 -9.7 48 G-8 -4.0 -13.5
16 H-8 +4.0 -9.2 49 H-5 +1.8 -12.3
17 H-10 -0.1 - -10.2 50. H-9 -3.1 -13.1
’18 H-13 ~-4.0 -10.3 51 H-14 -4.0 -13.0
19 J-10 - - 52 J-7 +1.0 -12.9
20 J-11 -0.2 -9.3 53 K-11 -2.8 -13.5
21 K-3 -2.9 . -8.6 . 54 K-13 -4.7 -13.5
22 K-15 - +4.4 . =9.6 55 L-2 +1.3 -12.7
23 L-1 - L= 56 L-5 -3.6 -13.3
24 L-12 - -3.6 -9.9 57 L-7 -3.8 -13.1

25 M-5 +5.3 : -9.5 58 L-11 - -
26 M-8 -0.3 -10.0 59 L-14 -3: -14.3
- 27 M-10 =3.5 -9.9 - 60 N-2 -4.4 -12.7
28 M-13 +4.4 -10.5 61 N-9 +0.8 -13.9
29 N-8 +0.1 -9.4 62 pP-7 -2.7 -13.5

30 P-3 -3.9 -10.5 63 P-12 -0.4 **
31 P-5 +5.0 -9.6 64 R-5 +0.6 -13.3
32 P-13 -0.9 -10.5 65 R-10 -2.0 -13.0

33 R-8 -3.3 -9.8

Loop Wide Range RTD Correction Factors at T ref 547°F

1 2 3 4
+0.2 S +0.2  -0.1 -0.2

Correction Factor = Narrow Range RTD - Temperature reading (T/C or Wide
‘ Range RTD) : '

- T/C removed or defective

** Honeywell defective



T  sa o S .
.. S TABLEg. . o

INDIAN POINT UNIT NO. 2 F(AQ) SETPOINTS

INCORE  POWER X I ‘1 yepeP  V-BOT V AT R FLUX
EXCORE AXIAL - LEVEL FULL TOP  BOT  (yoIrs) = (VOLTS) VOLTS P%;l)*LTY TOTAL): - SIOPE" . INDICATOR
. : %) - a .
_ OFFSET  (MWT) POWER  (ua) (ua) | _ (M E2yo,, %)
Ch-41 . 0 - 2758  100% 369 384 8.33. 8.33 0 0 753 0.02257 0
Ch-41 -12 2758  100% 338 414 7.63 8.98 -1.35 0 | S -12
Ch-41 +7 2758  100% 386 367  8.71 7.96  +0.75 0 5 - +7
Ch-41 -17 2758  100% 326 427 7.36 9.26  -1.90 22.5 ©o00.02169 -17
Ch-41 #17 2758  100% 411 341 . 9.28 7.40 +1.88.  20.0 417
Ch-42 0 2758  100% 365 403 8.33 8.33 - 0 0 768 0.02282 0
Ch-42 -12 2758  100% 338 430 7.71 8.89 -1.18 0 | , -12
Ch-42 +7 . 2758 1009 .380 387 8.67 8.00 +0.67 - 0 - : +7
Ch-42 -17 2758  100% 327 . 441 7.46 9.12 -1.66 22.5 0.02067 - -17
Ch-42 +17 2758  100% 402 365 9.17 7.54  +1.63 20.0 A 417
Ch-43 0 2758  100% 402 423 8.33  8.33 0 0 825 0.02072 0
- Ch-43 -12 2758  100% 370 456 7.67 8,98 -1.31 0 | o120
Ch-43 +7 2758  100% 421 404 8.72 7.96  +0.76 0 ~ 47
Ch-43 -17 2758  100% 356 470 ©  7.38 9.26 -1.88 22.5 0.01969 -17
Ch-43 +17 2758  100% 448 377 9.28 7.42 - +1.86 20.0 | 417
Ch-44 0 2758  100% 364 403 8.33 ~ 8.33 0 0 767 0.02288 0
© Ch-44 -12 2758  100% 337 431 7.71 8,91 -1.20 0 12
Ch-44 +7 2758  100% 380 387 8.70 8.00  +0.70 0 +7
Ch-44 -17 2758  100% 325 442 7.44 9.14 -1.70 22.5 0.02067 -17
Ch-44 = +17 2758  100% 403 364 9.22 7.52  +1.70 20.0 Y
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