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RESPONSIBLE STAFF

The model application and report were prepared by Edward M. Buchak, Shwet Prakash, and
Venkat 8. Koliuru of ERM'. Surfaoewatsr MoGroup. Quality Assurance reviews were
performed f Krallis, also a member of ERM's Surfacewater Modeling Group
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OBJECTIVE

ERM's Surfacewater Modeling Group has been contracted byvAREVA NP Inc. (AREVA), to
compute the size and configuration of the thermal plume from the cooling tower blowdown
,discharge at the proposed Bell Bend Nuclear Power. Plant (BBNPP) and to compute the dilution
rates for this same discharge for various locations of interest.

Specifically, the assignment included the following tasks:

* Assemble relevant information

" Review applicable agency standards for thetmal discharges

* Perform CORMIX computations for centerline dilution and lateral distribution

* Compute 50 mile dilution

* Provide:dilution and travel time estimates at additional locations, namely

o thenearest.shoreline,

o the maximum impacted shoreline,

o the, point on the shoreline where the site'property ends,

o the nearest recreational •shore (beach),

o the nearest public water supply intake, and

o the plant's cooling water intakes for all units.

o 50 ft from the discharge
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2. METHODOLOGY

To compute the size and configuration of the thermal plume and provide the dilution rates-at the
specified locations Identified by AREVA, two types of models were used. These models are
CORMIX for the near-field and GEMSSO for the far-field. To show the cumulative thermal effects
of the BBNPP, the size and configuration of the thermal plume from the existing cooling tower
blowdown discharge-from the Susquehanna Steam Electric Station (SSES) was also computed.

Descriptions of the two models are presented in the following sections; Table 1 summarizes
their characteristics (U.S. Atomic Energy Commission, 1974).

Table I Characteristics of the models
,OR,,. GES1

Field (1) Near-field (4) Complete-field
Dimension Longitudinal Yes Yes

Lateeal Yes Yes
Vertical Yes Yes

'Mathematical approach (1) Phenomenological (3) Finite difference
Approximations (not strictly applicable for (2) Boussinesq; (3) Hydrostatic pressure

phenomenological models)
Model verification Yes Yes
Computer program (1) Proprietary (must be purchased, (2) Available on request (open source

source code unavailable) but requires user registration to obtain)

2.1. CORMIX

The Cornell Mixing Zone Expert System (CORMIX) is primarily a design tool that, has also been
used by regulatory agencies to-estimate the- size and configuration of proposed and existing
mixing, zones resulting from wastewater discharges. CORMIX Is a near-field model, i.e., it
applies to the region adjacent to the discharge structure in which the wastewater plume is
recognizable as-separate from the ambient water and b9 e0 laomilnsd by the
discharge rate, effluent density, and geometry of' the discharge stkuctum. The CORMIX
calculation is based on defining the various hydraulic zones an effluent plume-traverses whe~n
Introduced into a receiving waterbody, then applying an analytical solution or empirical
relationship to compute the-plume trajectory and dilution rate in each zone. Each of. these
aaaW dufw nd empuka $s has been vad by fthe developers and other

against " t and %W s . CORMIX has been apptle to many cases and
is rwgrfned by the USEPA as an arpmpr•ae model.

CORi•DX v5.OGT (Whst -used for the BBNPP calculations (MkZon Inc. 2007).

CORMIX has severW lkftdions. It assumes steady-state conditons and unldiretional, uniform
flow In the receiving w bo. Secondly, COR k has simplifedtgeomettic capabilities. It
assumes an ideafted wiwt; st'aght sides and a sngle, poofte bottom .slope or no
slope at a••. CORNIX cannot consider mufltple-discharge structures with overlapping plumes.
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Because CORMIX does not apply- to the far-flod, which is the region In the receiving waterbody
in which theambient flow fields dominate te. traso fowas ater, a thr imensional
hydrodynamic, transport, and:fate model is generaly used to compute the trajectory and dilution
of the wastewater plume in the far-field.

2.2. GEMSS

The hydrodynamic model chosen toiassess the far-fleld charadeulstcs of the thermal plume and
dilution Is the Generalized Environmental Mod•eling System for Surfape Water (GElSS).
GEMSS is an Integrated system of 3-• hydrodynamic and transport modules emrbdd0d in a
geographic information and'environmental data system. GEMSS is in the public domain and has
been used for similar studies throughout the USA arnd worldw-de. ER's Surfacewater Modeling
Group has special expertise with the model in that ERM staff contributes to the source code and
has cpmpteted many applicaons with the model.

GEMSS includes a grid generator and editor, contrl frileeneralor, 2-D and.3-1, post
processing viewers, and an animation tool. It uses a database-appromch to store and access
model. results. The database approach is also used for f#ld data; as a result, the GEMSS
viewers can be used to display mode reslus,, field data orboth, a capability useful for
understanding the behavior of the protope-as well as for calibrating the model. The f#id data
analysis features"can be used independenty usig GEMS Modeling, pabkltty.

GEMSeSwas developed In the mid-ASBOVs as a hydrodynamic platforn for transport. ad.fate
modeling. The hydrodynamic platform fkermel") provides 3v-D flow fields from which the
disrbibution of various constituents can be.computed. The oinstituent transport and fate
computations are gouped into modules. GEMSS modules include thermal ana*yss, Water
quality, sediment transport, particle tracking, oil and chemical spills, e inment, and toxics.

The thereticgal basis of the hyrodynamic kernel of GES is the three-dimensional
Generalized, Lorgltudinal-Latera•-Vert•dymiand Tranprt(GLLVHT) model which

wasfirstpresented -in Edinger andr IRhak'(1tN-) •asubsequently In Edinger and Buchak
(1985). The GLLVHT computtion has b,*".rpeer rem'w and publihed (Edinger and Buchak,
1995; Edinger, t :al., 1994). The kernel Is anextesIon of theowell known longiuinal-vertical
tranvort moodel that fbars the hyd0dn olc and transport basis of the Corps. of Engineers'
water quality model CE-QUAL-W2. Improvements th thatransport scheme. construction of the
constituent modules, incorpoomtion of supporting software tools, GIS interoperablitty,
visualizaton toos, graphical user interface (GUI), and post-processors have been developed by
Kolluru et at (10K: 19; 2003a;. 203b).

Applications of GEMSS andits IndIvidual component modules havebeen accepted by
regulatory agencies in the. U.S. and Gana.. GENS-based studies have been accepted by the
U.S. Environmental Prdteulen A•s (NA), and state agecAoes includ•i those of California,
Massachusetts, PennsylWvanla, L.ouina, Texas, New York, and Delaware. Washington State's
Department of Ecol••y h a ted GEIS$ as a tool for estwrine and water quality modeling.
Most recently GEMS$ has been ubflshed as a recommended three-dmensIonal hydrodynamic
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in whldh th&anibient flowftefd$ dominate Ole ~.,.po.rt»f>wa~(i~er,a th~irt1$nsion~J 
hydrodynamic, transport, 'sndfate mode1is §et1iill'r&!Jy IlsStUt}OOftlJlut» the tl'ajeetory and dilution 
Of the Wf)Stewatet plume fn thefar-fiel~, 

2.2. GEMSS 

The hydrodynamic model chdSenroassess. the;far.;,fiek:l~rlsttcsofthethennal plume and 
dilution It;. the ,GentWaliZ(;)d EnvirqnmeRtal ~E!ling Sy,stem fQr$,urfa~W~WJ!$ ('GEM$$.,. 
GEMSS is an Integrated syStem ofa..Jl:hydrtldYnamic~nd.·tran$J1Ort l'J'Kidulesembedded in a 
g~l'$phic information and'envirol"tmentaldatasyst$m. GEMSS is in the pubUe domain and has 
b(:)en u5,ed for similar studies throughout itJe' USA.ad Worlqwfde. Epw'$ Surfacewate:r Mo(1efing 
Greup has special sxperttsewtth themooel in'fuat ERM.$f.t\ff ¢0titrfbutes to the soureEJcodeand 
hasoqmptet$d manyappllC$tlons with the model. 

GEMSS® includes a gridgen$n~tQr ande:dttor~ f;Q'ntroi fite :!1J$O'e.rator.2-D and ·3~D' PQ$t 
proC$SSfng viswers, and an animation tOOl. ~t uses $,daftilQaseapp~hto;s19~',~d ~~ 
mooel results. The database approacll is alSO: usedft1r 'HiMa data; as a result,the GEMSS 
vieWEJflS~n be y~ed to display mQ(ie1 R3Sult$" fi(tld data'orb.oth, a~p;:tb:ifity useful for 
undemtandiQ9 the,behiMor ofth& prototWe,. welles for caU.,iaUiigth$ illOdef~ The:fieJddala 
analy$i$ feaWr~oan 0$' uS$d:!ndepeltden1ly ·U$ing:SEIMs.S ~Ifng:capa,b)tltty. 

GEM6S· w$;developedhlthe mld .. t98£)!sasa hydroo)"tatflic platfor:m fottr'e.nsp$rtartdfate 
modeUng. The hyt:irodYflamicpl~ t'I<em~·)provt~8s3i-[) fl~w flfit .. frQmwtJiqh the 
disttibutlon ofvariousconstlttielitscart bebOmpL$Jd. The eotlstftUfmttfartspnrtari<Uate 
oomp.tion$ aregroup.ed intomo,dw.~~GEM$S module$ ineluclethermalanafysis, water 
qua1lty, ~Iment transport, particle tracking, oil and chemjcal spills~ erttralnl'rtent, and toxics. 

~$ th~ra,tloa[ p8$is Qf the hydr~_amlc f(fjfTle! QfGEM$$ is th.ethr~ifT1~nstonal 
Generalized, LongltUdina14..ateral,.\tertft$l. ti¥.IlQd¥hil-mICand Traospbrt(GLLVHT) mo-ctelwhich 
was'fi'rslpresented-,jnE(fingenutCl aUfim.;(1-0a0)$'Id<$l~uently:in Edinger and Buchak 
(t985). The GLLVHT comPt$.tfon h$~b~'~r re¥i~w.ed';all~ publiMEK:l (:!3dmger and Buchak, 
f995; EdInger, eta!., 1.g94)~ Th$' kem&i h;an:~$l0n Qf1tt$WSIl knItWf.l Iongitudlnal.;.vettical 
transport model th~t fotnlsthe h~~G and transport basis of the' CorpS of Engineers' 
water quality model CE.;.QUAL-M. Impr,ov,etnents to thalransport s.cheme; oonstructlon of the 
constit.iJent mQ(iI,"l:ls,inCQrporaticm of SLiPPQrting software tools. Glt:; interoperabi1tty, 
vlsuaUzationtoals, graphical user interface (GUI), and post:"processors have Deen developed by 
KoUun,£ et at (19fj8; 1999; 2003e;,20Qaij). 

Applications of GEMSS® and'its IndIYtdual component modUles. have ,been a~ed by 
regulatoryagt~mc~s in th~ U;S.~qO~$.GeM$S~basad stu~ie'tii b~ve b~atOOep.ted by the 
u..S, Environmental Pt6tecuen A§$nCy (ePA). alid state 8§eMGies including those of California, 
~chus$tts;~nnS}4~arll.1 lQut$t$(la. Texas, New York, an(dDefaw;are. W.shingron Stattil"s 
Department of 6OOlogy' h~s'ad.~d GEMSSS$8 topl foresQn:lrine limO' ~ter quatltymOdefing . 
. Most recenl1yGEMSShl!SbEmnptibIiShed, asarecdmmended thr~mensional hydrOdynamic 
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and Water quality. model in studies funded by EPA and by the Water Environment Research
Foundation (WERF).

has been used-*ttihfo tWata-tI.analyses at Comanche Peak, fart•y, and
Aranim Nuclear One. In Pennsmyana, It, ha.s been applied at PPL's Bruntrrslwand Steam
Electric Station on the tower Susqtnne River, Exelon's Cromby and Limedck Genm•ting
Stio on the Schuytkill River,. and at sevei.ilither electric power fadiltes,. Rtier applications
for eleckic power facilities have been made on the Susqulihanria {Brurnner slai), the Missouri
(Labadi), the Delaware (Mercer and Gilbert), the ConnectiCut (Connecticut Yankee), and
othereU-

A GEMSS® application requires two types of data: (1) spatial data, primarily-the waterbody
shoreline and bathymetry, but also the locations, elevations, and configuratios of man-mde
structures and (2) temporal data, that is, time-varying boundary condition data defining tidal
elewation, Inflow rate and temperature, inflow convstituent=4conra on, outflow rate, and
meteorologlcal data. AD detoministic mrels, including GEMSS, require uninterrupted time-
vayitng boundary condition data. Them.can be no long gaps in the datasets and all required
datasets must be available during thespan of the proposed simulation period.

-For ...........npt to the mbelthe satiaatais-en -a-l• in tinpjutffi16:-the -contWi-_n-d
bathymetry files. These files are geo-referenced. The temporal data is encoded in many file.--
each file representing a set of time-varying boundary conditions, for example, meteorologica.
data for surface heat exchange and wind shear, or inflow rates for a trilbutary stream. Each
record in the boundary condition files Is stamped with a year-month-day-hour-minute addresi.
The data can be subjected to quality assurance procedures by using GEMSS to plot, the"'i
visually inspect Individual data points, trends and o•.I • !•,,J!-

-_GEMSS executable -constitbte-the-model application.

The theory, assumptions, and basis for applicability of GEMSS are presented in Appendix A:
GEMSS Theory, Assumptions and Applicability. Inasmuch as the BBNPP is a proposed facility,
the model has not been verified for this application by comparing computed and observed
values.
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and ~ater quality model in studies funded by EPA and by the Water Environment Research 
Foundation (WERF). 

has been used-for"tdt1litltWffetrstl«'analyses at Comanche PeI.dc:,Fattey, and 
Afkana' Nuclear One. In Penns~,:It: bfJ_. been apptled at PPL's.Brurtn.,.·,lttaftd Steam 
E1~c Station on the tower Susqll6f$n.f.Ia RWer, Exefon's Cromby and Un1:ertd( Generating 
Station's on the SchuylkHIRiver,. and·at flav_tather·eIeclrtc powerfllciltie$. River' appUcations 
for eledric power facilities have been m. Qfl the Susque11an,. (erun,. .1$1."), fha ~uri 
(Labadie), the Detaware (Mercetand Gilb&!tl:. the COnneditut (Connecticut Yankee). and 
others~ - - -- ......... - .. _.- . ..,.,.~-- . ...-- .,111 ... . ........... ..s... . ~_~ .... __ ..... _w_ .. __ .'-

A GEMSS® application requires two types of data: (1) spatial data, primarily. the waterbody 
shoreline and bathymetry, but also the locations, elevations, and GonffguraUons of man-mad, 
structures and (2) temporal data, that is, time-varying boundary condition data defining tidal 
efevation, Inflow ratEtand tfmlperatUre. inflow con"ent®n~n. outflow rate, and 
m_ral~lcaI data. AD d6tenninl8tlc mode18.~ Including GEMSS, require uninterrupted time­
vatyint b'oundafy condidon data. ~:can be no long gaps in the datasets and all required 
dataeeta must be 8vatlable during the span of the propose,d simulation period. 

i
FOdriPUnO the mooel~tfie spatiaraatifis-enoode(rp-rimarily,J~ ~ inpufflles:-ttie control an~ 
bathymetry files. These fifes are gao-referenced. The temporal data is encoded in many flleef;­
each file representing a set of time-varying boundary conditions, J. or example. ~teorofogicai . 
data for surface heat exchange and wind shear. or inflow rates for a tributary stream. Each I 

I record in the boundary condition files Is stamped with a year-month-day-hour-minute add .... 

I 
The data can be subjected to quality 8$Surance p~ures by using GEMSS to plotJ the~-
visually insp~t Individual data points. trends and o~J;Q,P.._g.f jllQLd AfM.jP!Ub.~.~ . 

L_GEMS~_exe.cutabte.constltuteJhe_model_applicatlo·n. 

LJ 
The theory, assumptions, and basis for applicability of GEMSS are presented in Appendix A: 
GEMSS Theory, Assumptions and Applicability. Inasmuch as the BBNPP Is a proposed facility, 
the model has not been verified for this application by comparing computed and observed 
values. 
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3. DATASETS

The datasets used to apply CORMIX and GEMSS to the BBNPP site are described below.

3.1. SPATIAL DATA

The spsd daa requked'fori•e near- and far-field mGzta (COMI) and GESS, rmpw-tiv*)

en ft Suwquehwn Rhwver ft ond w~t(the tatm f oW the lowon of the
shoraline. For u in GIE S, fth spOalf or& qUir to be, gd nced to
Pennsylveanla State Plane - Nort, f

The baty and shoreline da t were obbk I t- US Amiy Corps of Engonsem,
Philadelphia District (USACE), who provided digital terrain maps (TIN'S), shorene da In

AiC/ at filWW e bwmat (eOO). and .avro Ahedr IFEMA HEC-RAS
niefooe1 {A s, 200). Theft mlit M~J na n cdah tqualter #W Ve; t~ dfte may not be
u eforotw enolneering.f ,0 os. The~data cm wasW•vm iver •ie 205
(Scranton) to Rivr Mile 104 (Mll' , e bv Sby.And Haeburg). The
BBNPP site is-at, River Mile 165. The cross-section data were converted to a point bathymetry
file with'an approximate spacing of 50.0 ft longitudinally. More s .. etaieled:o tl
contours in the immediate vicinity of the SSES intake and discharge were obtained from
Pennsylvania Power and Llot COMP { -( W8), FHXM 2.4-3.

The contours were digitized and geo-referenced and combined with the data obtained from the
USACE. The combined dataset was used. to create the GEMSS finite difference grid, shown in
Figure 1. The grid extends from 4,5.0.0 ft upstream of the SSES intake to 15 miles downstream,
with decreasing detail in the downstream direction. Typical horizontal resolution near the
BBNPP site is 30*ft by 50 ft, and 85 ft by 5500 ft at the downstream end. The vertical layers (not
shown) are 1 ft thick so that there are typically 8-12 layers representing the depth of the
Susquehanna River near the BBNPP site.

Values of the depth and width for CORMIX's simpler representation of the Susquehanna in the
vicinity of the BBNPP were also. derived from the USACE and the Pennsylvania Power and
Light Company (1978) FIGURE 2.4-3. The elevation of the bottom of the Susquehanna River at
the BBNPP dischargevwas found to be at 476 ft. The CORMIX parameter values are shown in
Table 2; the scenarios are introduced and discussed in Section 4.

depth, ft 11.5 0 13.8 10.8 13.8

th e discharge. ft 11.5 10 13.8. 10.8 13.8
Widh,ft 750 680 790 720 790
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3. DATASETS 

The datasets used to apply CORMIX and ~EMSS to the BBNPP site are described below. 

3.1. SPATIAL DATA 

TOO s~ daltlaD w~fQnha nGar .. andf:ar-fi®ld m~ (CO~m ~ GEMSS, soopootiwBy) 
aro~ $aA~~IPU.v4w~·$.fld~,(ttit21 ~®Wl ~h 1~1ro oo~!S 
shomlll11@. for uJs0 in GlE •• ·~ S~fi\t~ Zf~rvqiJif$d aob®~Il'DC3d ftc 
P0nooylvsnlm·Siat$· Oltana - NcrllBl, fit. 

Th&.~and·shonlline dataHts weAl ~"fmrn the us Anny Corps of Engineem, 
Philadelphia District (USACE). who PfGyjded digital terrain maps (TtN's); shoretlne daIIa In 
.0ltNf'0' J~·flte fom1at (eOf). aAtS ~~ •• ~~;~eJr FEMA HEC-RAS 
mot~t{Ara __ t .2008). ThEH'lInamMlt teI.et contafnSiiH'U1fil. N~1s dahl may not be 
~$:f¢roth$r'~",Jneering·~,jlq~lO. Th~~_ ~'"J:~m'AN$fMfIe 205 
(Scranton) to RMitrMlle 104 (Miu.~i' ~~'St.mbUry'and HantIlJrg). 'The 
BBNPP' site is at, River Mile 165. The cross-section·data were converted to a point bathymetry 
file with 'an appr6~imate spacing of 50.0 ft longitudinallY. More~1a11"~trt¢ 
contours in the immediate vicinity "Of the SSES intake and discharge were obtained from 
Pennsylvania Power and ~t OO",~($1e), FIGUAE 2.4-3. 

The contours were digitized ·and geo-referenced and combined with the data obtained from the 
USACE. The combined dataset was used,to.create the'GEMSS finite difference grid, shown in 
Figure 1. The grid extends from 4,5.00 ft upstream of the SSES intake to 15 miles downstream, 
with decreasing detail in the dQwnstreamdirection. Typic~1 horizontal resolution near the 
BBNPP site is 30ftby 50 ft, and 85 ft by 5500 ft at the downstreamenp. The vertical layers (not 
shown) are 1 ft thick so that there are typically 8-12 layers representing'the depth of the 
S.usquehanna River near the BBNPP site. 

Values of the depth and width for CORMIX's simpler representation of the, Susquehanna in the 
vicinity of the BBNPP were also· derived from the USACE a'nd the Pennsylva'nia Power and 
Light Company (1978) FIGURE 2.4-3. The elevation of the botlomof the Susquehanna River at 
the BBNPP distharge;wasfound to be at 476 ft. The CORMIX parameter values are shown in 
Table 2; the scenarios are fntroduced and di.scussed in Section 4. 
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3.Z. BOUNDARY CONDITION DATA

Boundary condition data are used to estimate.-surface heat exchange at the water surface and
to compute the flow of mass and energy entering and leaving the model domain. All simulations
used steady values of the boundary condition data.

All values for the boundary conditions discussed in the following sections are summarized in
Table 4.

To capture the seasonal behavior of the thermal plume, a summer and a winter period were
chosen for simulation. Inasmuch as the boundary condition datasets are cataloged monthly, this.
approach required choosing a single month to represent these periods and obtaining the
corresponding boundary.condition data. The representative summer and winter months were
chosen on the ýbasis of the observed occurrences of the maximum and minimum temperature,
described below.

Susquehanna Rivertemperature and solids data

Ecology III has measured water temperatures 1620 ft upstream of the SSES intake structure on
the west bank of the Susquehanna River daily beginning in 1974 (Ecology I1l, Inc., 2008).
Maximum and minimum temperatures occur in August and January and these months were
selected to be representative of summer and' winter conditions. The maximum water
temperature of 86.5 F was recorded on 15 Aug 1988 and 4 Aug 2007. A minimum water
temperature of 32.0 F was recorded numeroustimes in January.

Total mineral solids (TMS) values for the Susquehanna River were obtained from Sargent &
Lury (2m), A,. 3,. T , 4, 00 f " 8E vwlum br 2/2W for wler and: 6IV20W
forsummer.r .

Susquehanna River flow and water surface elevation data

RoW t `t1in th*:tqr et rff t MW S~t Ow " surVey (PSGS0)
sites upstream of the BBNPP site at Wilkes-Barre (Station No. 01536500) and downstream of
the site at Denville (Station No. 01540500). In addition there are several statist,,Laa 'o•
low and mean flows at these stations. These summanes are discussed below.

USGS flow data and statistics for the stream gauges at Wilkes-Barre and at Danville are found
at the USGS website http://waterdata.usgs.gov/pa/nwis/inventory/?site-no=01536500&amp and
http://waterdata. usgs.gov/pa/nwis/inventory/?siteno=01540600,&4rp, respectvely,
Screenshots of both-are provided as Figure 2 and Figure 3. For -the selected January and
August s•mulatiOns, mean and low flows at the site are required to show the extremes of the
computed size of the thermal plume-and thedownmtream dilution values. Data and statistics for
the Wilkes-Barre .gauge, upstream of the site, were used in this analysO.

Low flow frequency stUMs~c gne d by Pennsylvania Depatet of Environmental
Prohweion (PA DEP) for the .- g -can be found at the PA DEP website
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3.2. BOUNDARY CONDITION DATA 

Boundary condition data are used to estimate··surface heat exchange at the water surface and 
to compute the flow of mass and energy entering and leaving the model domCiin. All simulations 
used steady values of the boundary condit jon data. 

All values for the boundary condiUons discussed in the following sections ,are summarized iri 
Table 4. 

To capture the seasonal behavior of the thermal plume, a summer and a winter period were 
chosen for simulation. Inasmuch as the boundary condition datasets.are cataloged monthly, this. 
approach required choosing a single month to represent these periods and obtaining .the 
corresponding boundary.condition data. The representative summer and winter months were 
chosen on the basis of the observed occurrences of the maximum and minimum temperature, 
described below. 

Susquehanna River'temperature and solids data 

EcolQgy III has measured water temperatur:es 1620 ft upstream of the SSE$ intake structure on 
the west bank of the Susquehanna River daily beginning. in197 4 (EcOlogy III: Inc., 2008). 
Maxim.um and minimum temperatures occur in AUQust and January and these months were 
selected to be representative of summer and' winter conditions. The maximum water 
temperature of 86.5 F was recorded on 15 Aug 1988 and 4 Aug 2007. A minimum water 
teniperature of 32.0 F was recorded numerous ·times in January. 

Total mineral solids (TMS) values for the Susquehanna River were obtained from Sargent & 
l~ (20000). ~.3,. T~l?J1!® ~t ~ .. Wi® O$$\ES" ,,~~ fur 2fl~ ~Il' wiUlltler si'ld: &i·Sf2006 
for .summer. 'r'''' , -::-yo - , 

Susquehanna Rivertlow and water surface elevation data 

RJw rams1n1hii~etfal11fa ~t:JNffttfaSun!thlittlt'i1t9d;~ ~ S'utvey (USOO) 
sites upstream of the BBNPP site at Wilkes-Barre (Station No. 01536500) and downstream of . 
the site at Danville (Station No. 01540500). In addition there are several statistw ~~~ol 
10wand mean flows at these stations. These summaries are discussed below . ..... _ ..... ~-.. - ". - -' -or -- . 

USGS flow data and statistics for the stream gauges. at Wilkes-Barre and at Danville are found 
at the USGS website http://waterdata.usgs.gov/pa/nwis/inventQry/?~ite _110=01536500&amp and 
http://waterdata.usgs.gov/pa/nwis/inventory/?site _no=O 154050.O&atilp, rupedively. 
Scree.nshots of both'are provided as Figure 2 and Figure 3; FortheseJected January and 
AtJgust $lrOulatiQns, mean and low flows • tile site are required to $howth$ extr8mes of the 
comput$dS:i2.e.of,thethennat plume and thedowf!tstreamdilution values. Data and statistics for 
theWilkes.,Batregeuge, upstream of1hesite, were used inthis:anaJysia. 

Low low frequenoy * ... C&..~ by Pem$ylvania Department of Environmental 
Protection (PA OEP) forthe·~;~·~' can be found at the PA DEI' website 
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of ft• b se Is pm s sV.14ure. This .,s". s a vak e dOBMos • for f arnnual
7-fty, 10-year 100 ftw (7Q10} rte ow-ft pv4~mt~ v n $ 1.almsRm

IMo 19M.ThisanuW-1ve by-f A DIEP-40M @pt
con f •:wudl 7010 o. f,*,m-7odrfuft. Is- 32, rad
fth dful multp~lierfor August Is 1.4 (A DIEP, 2003).

The monfti, mean foo used In, th eimulatons. for Januay and AuMWu w=r ofrod Im the
historical F otf • -,lfi ,0tre0,' d I=to MS. " dt 0ta Were
retrieved from the USGS website referenced above for Wilkes-Barre. The monthly data are
pmrded In Figure 5.

For each selected flow, the corresponding water surface elevation was obtained from the rating

table presented as Attachment 7 in Ecology III (1991).

Meteorological data

To compute surface heat exchange, the coefficient of surface heat exchange (K) and
equilibrium temperature (E) method was used. Monthly average and extreme values of K and E
for National Weather Service sites in the USA are cataloged by the Environmental Protection
Agency (Environmental Protection Agency, 1971). The nearest cataloged site to BBNPP is
Avoca, Pennsylvania (WBAN 14777), 27 miles to the northeast. Other candidate sites
considered for this study were located at Williamsport-Lycoming County Airport (WBAN 14778),
which is 43 miles WNW of'the site and at Penn Valley Airport, Selinsgrove (WBAN 14770)
which is 43 miles WSW of the site. Values from the Avoca site were chosen because of its
nearness to the BBNPP site.

For these simulations, the extreme values shown in FIGURE 104 (Environmental Protection
Agency, 1971) were used.

Susquehanna Steam Electric Station (SSES) data

The location of the SSES intake and discharge structures was obtained from PP&L Drawing No.
E105151. This drawing was scanned, digitized and geo-referenced to Pennsylvania State Plane
- North, ft. The general configuration and dimensions of the SSES discharge structure were
obtained from Bechtel DRAWING No. C-95. The SSES intake structure was assumed to draw
from the bottom of the Susquehanna River.

For implementation in CORMIX, the discharge structure-related parameter values are shown in
Table 3.
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&rttp:l/~.wafter.Wlg$.~/~~tsIt~.AS~q~WCU;'D=2416. A acreen$hot 
o\'~ ~ d® is p~ oo~ilW'\&~. Thl$~.~~s Q"~ Of 390ds'for ~ siWIue~ 
7..my1 ~O-yeelr IoWWow(7CU(i),~ ~~ ~ ~ in~f) .. ~~Ml River, 
'ftOOD to 1003. ~.~nLJ€llm10wl!$"):_~ by'fdroar ~A ~~;.~ M~ 00 
oon~ Wtr®:Mrl!JtQ17Q~OtG'~1',~iQ%Q ~'. ~~L~lt~ is 32, 8100 
IlDl® ~tn~ mLlltlpl""fQrAusln.am Is i.~ {~ DlEIP.. 20tla}. 

The momNym~n ~ IUI_ m~ elmut.nsfor:J~ $IildAIJ:il~ ~~1f'Qm the 
historical ~~~~"~i~for-~'~ 'i~.Q:e 1~. Th_dtjtaWGre 
retrieved from the USGS website referenced above for Wilkes-Barre. The monthly, data are 
provi~ BUll Figum 5. 

For each selected flow, the corresponding water surface elevation was obtained from the rating 
table presented as Attachment 7 in Ecology III (1991). 

Meteorological data 

To compute surface heat exchange, the coefficient of surface heat exchange (K) and 
equilibrium temperature (E) method was used. Monthly average and extreme values of K and E 
for National Weather Service sites in the USA are cataloged by the Environmental Protection 
Agency (Environmental Protection Agency, 1971). The nearest cataloged sitetoBBNPPis 
Avoca. Pennsylvania (WBAN 14777), 27 miles to the northeast. Other candidate sites 
'considered for this study were located at Williamsport-Lycoming County Airport (WBAN 14778). 
which is 43 miles WNWof'the.site and at Penn Valley Airport, Selinsgrove (WBAN 14770) 
which is 43 miles WSW of the site. Values from the Avoca site were chosen because of its 
neamess to the. BBNPP site. 

For these simulations, the extreme values.shown in FIGURE 104 (Environmental Protection 
Agency. 1971) were used. 

Susquehanna Steam Electric· Station (SSES) data 

The location of the SSES intake and discharge structures was obtained from PP&L Drawing No. 
E105151. This drawing was scanned. digitized and geo-referenced to Pennsylvania State Plane 
- North. ft. The general configuration and dimensions of the SSES discharge structure were 
obtained from Bechtel DRAWING No. C-95. The SSES intake structure was assumed to draw 
from the bottom of the Susquehanna River. 

For implementation in CORM IX, the discharge structure-related parameter values are shown in 
Table 3. 
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Table;3CORMIX dlschare structure-related parameter values

Surface, single- or multi-port Multi-port with 72 Individual ports
Opening diameter, in 4
Horizontal angle, degrees 0
Vertical angle, degrees 45
Height, ft 0 (at river bottom)

The CORMIX variable "height" is the distance of the ports above the waterbody bottom. Bechtel
DRAWING No. C-95 indicates rocks placed nearly to the height of the ports (15 in above the
nominal bottom). For this calculation, it was assumed the ports are located at the bottom.

The SSES intake and discharge rates and temperature rise were obtained from PPL
Susquehanna, LLC (2006b) Page 4.1-1 and 4.1-2.

Total mineral solids (TMS) values for the SSES discharge were obtained from Sargent & Lundy
(2008b),, Att. 3, Table 4, using the "BLOW DOWN" values for 2/23/2006 for winter and
8(16/2006 for summer. These values represent a concentration factor of about four times.

Bell Bend Nuclear Power Plant (BBNPP) data

The location of the BBNPP intake and discharge structures was obtained from Sargent & Lundy
DRAWING NO. CSK-014, REV 1. The drawing contained the site utilization plan for BBNPP
overlaid on the existing SSES site. The BBNPP discharge structure was assumed to be
identical to the SSES discharge structure. The BBNPP intake structure was assumed to draw
from the bottom of the Susquehanna River.

Maximum and average. intake and discharge rates for the BBNPP were obtained from. Sargent &
Lundy (2008b), Page 4ýof 33.

Discharge temperature! rises for BBNPP were derived as follows:

The. discharge temperature rise for the summer (August) scenario was calculated by subtracting
the maximum observed summer ambient temperature of 86.5 F from the 90 F.discharge
temperature provided by Sargent & Lundy (2008a). The 90 F discharge temperature represents
Option lb, i.e., no auxiliary heat exchanger (Page 4), yielding a discharge'temperature rise of
3.50F.

The•,pemm vks for the winler (Jsnuary) scenario was calculWad as follow. First the
dmr~p Umeiems wes* ~ y~quFng fth MDTI option (oonservavive In that the

ap' Upem:m is higher than for the other options), then by dchoosng ft January
mp Wt bulb uf .of 23,8 F (Page 9, Saeent & Lundy, 2Wft) end an approach

temper-tre of 307 (Fig. 6-1 of OW •M Mpoot), and Mally by incrementing he ftIftr by 6"F,
as noted on Page 24 of that-some reott -W the 90 F approach curve. The rssulftN dischage
temperature for the January • •d, i 85.8, F. The January t temperature was
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The CORMIX variable "height" is the distance of the ports above the waterbody bottom. Bechtel 
DRAWING No. C-95 indicates rocks placed nearly to the height of the ports (15 in above the 
nominal bottom). For this calculation. it was assumed the ports are located at the bottom. 

The SSES intake and discharge rates and temperature rise were obtained from PPL 
Susquehanna. LLC (2006b) Page 4.1-1 and 4.1-2. 

Total mineral solids (TMS) values for the SSES discharge were obtained from Sargent & Lundy 
(2008b)"Att. 3. Table 4. using the "BLOW DOWN" values for 2/23/2006 for winter and 
8/16/2006 for summer. These values represent a concentration factor of about four times. 

Bell Bend Nuclear Power Plant (BBNPP) data 

The location ofthe BBNPP intake and discharge structures was obtained from Sargent & Lundy 
DRAWING NO. CSK-014. REV 1. The drawing contained the site utilization plan for BBNPP 
overlaid on the existing SSES site. The BBNPP discharge structure was assumed to be 
identical to the SSES discharge structure. The BBNPP intake structure was assumed to draw 
from the bottom of the Susquehanna River. 

Maximum and average, intake and discharge rates for the BBNPP were obtained from Sargent & 
Lundy (2008b), Pag~ 4'.of33. 

Discharge tempe(ature' rises for BBNPP were derived as follows: 

The, discharge temperature rise for the summer (August) scenario was calculated by subtracting 
the maximum observed summer ambient temperature of 86,.5 F fr'6mthe9.D Fdischarge 
temperature provided by Sargent & Lundy (2008a). The 90 F discharge temperature represents 
Option 1 b, Le .. no auxiliary heat exchanger (Page 4). yielding adischargeterhperature rise of 
3.5~F. 

TM~~m I1lu for the wtnfter (Jilnuar.y) scenario was calculsaed as follows. First the 
~fI'\P~f0 ~"~_'·_umfng~ IItIlDl~ option ~nS9rvdve in thaa the 
ap~ wm~ is higher than for·the other options), thoo by chOaeIl"Ig tis January 
~. ~blJllb~G,of23.lB."f {PageS, Ssrg~m lA lundy, 2008a) Mdan approach 

'. . 

te~l'Gof S0
9 W: (fig. 8--1' of~~ r$p,qo:1). and hUy by incrementmg the latter by S·F, 

as nOlted on ~ u ofthat8tml~ ~rt'fOr il$ SO F®pproach CUNe. The resulting 'discharge 
UemparmullSfor the Januery~eArto'li 65;8; F. The J~nuary ambOeInt temp$reture was 
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subtracted 1Er the Janugfy discharge temperature to obtain the'discharge temperature rise of
33.8 0F.

Total mineral solids (TMS) values for.BBNPP discharge were assumed to be equaltothe SSES
values.

Table.4 Parameter values for the, simulations

Month January August-

Extreme~ambient F `32.0 Ecology lUI, Inc., '2008 86:5, Ecology Ill, Inc.,_2008
lemperature, 7 7
Discharge tperiture F 65:8 Sargent-&'Lundy; 2008a 90.0 Sargent.& Lundy, 2008b
Temperature rise 'F' 33.8 caculiated 3.5 calculated'
.Discharge.TMS mg/I 556 Sargent.&Lundy. 2008b 642 S argent,&Lundy, 2008b'
Average'intAke rate .gpm 27,850 Sargent.& Lundy, .2008b 27,850 Sargent & Lundy, 2008b
Maximium ihtake-rate gpm 34;460 Sargent & Lundy;2008b '34,460 Sargent & Lundy, 2008b

lAvelrslIase rate gpm 9,290 Sargent &Lundy,'2008b 9,290 Sargent & Lundy, 2008b
i lrate gpm 11,170 Sargent &.Lundy, 2008b 11,170 Sargent & Lundy, 2008b
Low'84qte nft4nRevr cfs 2,848 PA DEP, 20,03/USGS 1,246 .PA DEP, 2003 / USGS
flow website website
Low Susquehanna River ft 486.8 Ecology III, Inc., 1991 486.0 Ecology III, Inc., 1991
:elevation
Mean'Susquehanna cts 12,482 'USGS website 4,473 USGS websile

NRiverw.fl__w
Mean Susquehanna ft 489.8 Ecology III, Inc., 1991 48715 Ecologylll, Inc;, 1991
RiverelevAtion
Susquehanrhariver TIMS mg/I 134 Sargent'& Lundy. 2008b 196 Sargent & Lundy, 2008b
Heat-exchange BTUftU 58 Environmental Protection 104 Envir6nmentalProtection
coefficient (K), day'-1 °F Agency, 1971 Agency, 1971
Equillbrium Temperature F 34 Environmental Protection 85 Environmeytal Pr1tection
(E) Agency, 1971 Agency. 1971
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subtracted 1frit:'i'i the JaI/1I:l8~ diSct'l,arge temperature toobtaih 'the' discharge temperature rise of 
33.8°F. 

Total mineral solids (TMS) values forBBNPP disc:harge Werea$sumed to,be equal'toJhe'SSES' 
values. 

Table'~ Parameter values forthe'simulations 
~---- ~ 

Month' 
Extreme -ambient F 
temperature: ' 
Discharge temperature F 
Temperature ,rise "F' 

piscl1arge .TMS' mgll 
Average intake rate ,gpm 
Maxihiuniintake'rate gpm 

'Ave~ dlScOargEt,nite gpm 

I Mmdtnllm 
" 

,rate gpm 

l.GW'e~naflUv$r cfs 
now 
L~w $.usq!-lel,lannaRlver ft 
elevation 
Mean'Susquehanna cfs 
·River .. now 

, ' Mean Susquehanna 'ft 
River'Eilevcition 

, Susquehanna river TMS mg/I 
Heat:excharige BTUft'" 
coefficient (K)' day·1 °F1 

Equiliorium· Temperature F 
(E) 
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January 

'32.0. 

65:B 
,3~.S 

~59 
27',S5O. 
34;460. 

9,290. 
1'1;170. 
2,848 

486.8 

12,482 

489.8 

134 
58 

34 

,August' 
Ecology III, Inc:, :2O.OB B6:p, E!;olOgy III, Inc.,,200B 

Sargent'&Lundy; 2DO.Ba 90..0. Sargent& Lundy,,200Sb 
cal,c:ulated 3.5 calculated 
S,argl'lnt:&::Lundy,; 200Bb ~42 $,argent, & ,tul1dy, zO.O.Sb' 
Sargent,&: Lundy, .zODBh 27,850. Sargent & Lunqy,2o'QSb 
Sargent & Lundy; 2O.DBb '34,460. Sargent & Lundy.2O.O.Bb 
Sargent& Lundy, ~2O.O.,Bb 9,290. Sargem & Lundy, 2O.08b 
Sargent &L,undy. 2O.D8b 11.170. ,Sargent &: Lurdy. 2Q98b, 
.PA DEP, 2O.Q3/USGS 1;246 ' PA DEP, 20.0.3/ USGS 
website website 
EcOlogy III, I,nc .• 1991 4S6,O ' Ecology III, Inc:. 1991 

'USGS website 4,473 USGSwebsile 

Ecology III, Inc., 1991 487.5, Ecology'lII. Inc;. 199,1 

Sarg~nr&: Lundy; 2O.08b 196, Sargent & Lundy. 2O.08b 
El)vii'onmental Protec,tion 10.4 EnvircinmentarProteCtion 
Agency; 1971 AgenCy, 1.9.71 
Environmental Protection 85 Environme,rital'Prqtectlon 
Agency. 1971 Agency, 1971 
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4. SIMULATIONS AND RESULTS

Five scenarios were simulated with both CORMIX and GEMSS®. The scenarios are
summarized in Table 5 and consist of combinations of summer and winter mean and low
Susquehanna River flow conditions. For each scenario, design values of the SSES and BBNPP
intake and discharge rates, temperatures, and total dissolved minerals were used' as shown in
Table 5. Parameters common to all scenarios are shown in Table 4.

For both models, the term "excess temperature" is used. Excess temperature is the increase in
temperature over background temperature ("ambient" or "natural") due to a heated water
discharge.

To show boththeim In ita ef -Re WRP thio6rml pjuv as well as the cumulative
impaotof the combined SSES and BBNPP thermal plumes, two sets of simulations wore made
wth: GEMS)for each scenario. In the first set of simulations a single excess temperature was
Includod In the mode, the sources of which were the temperature rises for the SSES discharge
andfor the B8NPP-discharge. This set of simulations showed the combined thermal plume ft
two g, I.e., the cumulative plume. The second set of simulations included only the
OBW disOarge-as-the source of excess temperature, but did include the SSES dischargeý'
correctly model its effe on the ambient temperature. This set of simulations shows-e

thermal plume due wly.-_tot•, p r Ja.e-twe, napiue

Including both discharges In a single C(MIX simulallon Is not possible w.0
incapable of'modeling -two plumes slmu For fth near-field, only the-1060*
modeled. This approach Is sea ry bem ue i .Ole,•Ar-fletd, the plumee do not overlap due

to the 380 ft sepation of the SSES and BBNPP dithsiges.
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4. SIMULA TlONS AND RESUL TS 

Five scenarios were simulated with both CORM IX and GEMSS®. The scenarios are 
summarized in Table 5 and consistofcombina:tions of summer and winter mean and low 
Susquehanna River flow conditions. For each scenario, design values of the SSESand BBNPP 
intake and discharge rates, temperatures,and total dissolved minerals were used as shown in 
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Table 5 Simulation summa with scenario descril t ions

Description Summer Summer low Winter mean Winter low Annual mean
mean flow flow (August) flow flow flow

(August). (January) (January) (January)
Susquehanna River flow, 4,473 1,246 12,482 2,848 12,800
cfs
Water surface elevation, ft 487.5 486.0 489.8 486.8 489.8

Susquehanna River 86.5 86.5 32.0 32.0 32.0
Temperature, F
SSES
Temperature rise, deg.F 12.5 12.5 31.0 31.0 31.0

Intake rate, gpm 42,300 42,300 42,300 42,300 42,300
Discharge rate, gpm 11,200 11,200 11,200 11,,200 11,200

BBNPP

Temperature rise, deg.F 3.5 3.5 33.1 33.8 33.8
Intake rate, gpm 34,458 34,458 34,458 34,458, 34.458

Discharge rate, gpm 11,172 11,172 11,172 11,172 11.172

4.1. THERMAL PLUME CONFIGURATION AND SIZE

The thermal plume was first modeled using CORMIX for the near-field region and then using
GEMSSe for the far-field region. Use of these two models provides a detailed near-field plume
configuration along with the far-field plume behavior for non-uniform channel geometry.

Near-field

CORMIX was used for near-field modeling of the thermal plume. The winter scenarios
(Scenarios 3, 4 and 5) used an ambient river temperature of 32 F (0 C). CORMIX has an
inherent limitation that requires that the ambient temperature be at least 39.2 F (4 C). In
CORMIX, the ambient- temperature is used to compute density and to establish the buoyancy
differential between the effluent and ambient water. Since water has its maximum density at 4 C
which decreases with both increasing and decreasing temperature, there are temperatures
above 39.2 F with densities identical to temperatures below this value. In this case 46 F (7.8 C)
has a density identical to the density of water at 32 F. This temperature, was used in the winter
,CORMIX simulations.

The BBNPP discharge structure was assumed to be identical in configuration to the SSES
diffuser. The ambient and effluent characteristics werf.t• fe Tzom T" -S & Togle
5 and the discharge was modeled in CORMIX as a hed$oherge usng ft.e heat kess
coefficients listed in Table 5. The near-field plumes ftromn t five sornsotosar show, in Figure
6 br2 Sca;lo I, Rpm 7 *r'-W 2 P four® e to6 Sc*,r o 3, Figutr 9 -fo io 4, and
Figure 10 for Scenario 5. Note that CORMIX automatically wft te•aft seotand thus the
swim wfts f-m onordWV~w~ftn0* Thev~de Ilm ,• tltugh the origin
(0.0,0) Wlong fthe y-ash d • týt4$ of- Is 108 ft in alI these diegrms.
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Scenario 2 with the smallest Susquehanna River flow has the largest near-field plume as there
is limited mixing near the diffuser, resulting in an expanded near-field region. Scenario 4 has the
plume with the highest peak temperature due to the largest temperature rise (33.80 F) combined
with the. lowest Susquehanna River flow. During the summer period, Scenario 2 has the plume
with the higher peak temperature due to lower Susquehanna River flow compared to Scenario
1. The excess temperature values in the near-field, along the downstream distance for all five
scenarios are shown in Figure 11.

In the near-field, the excess temperature decreases to small yalues due to rapid mixing. During
the summer period, the discharge: has an excess temperature of 3.5°F (1.90C) which decreases
to 0.13 0F (0.07RC) and to 0.29°F (0.160C) within 50 ft of the discharge for Scenarios 1 and 2,
respectively. The winter period shows excess temperatures decreasing to 0.5 0 F (0.300), 1.759F
(0.97°C) and 0.5°F (0.300) for-Scenarios 3, 4 and 5, respectively at 50 ft.

It is also desirable to compute the surface area and volume of the plume at different
temperature rise isotherms. These areas and volumes provide an estimate of how much of the
waterbody is affected by the thermal discharge. Figure 12 shows the area of the plume and
Figure 13 shows the volumeof the plume for the five scenarios against the temperature rise on
the x-axis. A larger area (and volume) of the waterbody is impacted at lower temperature rise
levels. These areas and volumes decrease with increasing temperature rise levels. A summary
of these plots is shown in Table 6 which lists the areas and volumes for preset temperature rise
levels.

Table 6 Near-field olume area (ft2 l and volume Mft3)

5 T18
1-..u I I V I I./*"- Q I I I_-,._

15.5 569 305.7 110 14.4

3 21 2.8 26 3.4 152 27.6 1739 2851.5 133 21.9

2 67 8.8 83 10.9 352 136.8 4034 15759.5 314 118.3
1 113 14.8 296 89.8 1462 2358.6 No Nochied 1285 1960.4

I edievd in In near~alad
; nrearAWet

Table 7 Near-field plume ara m and volume (m3

5.6 - -- 9 1.2 11 1.4- 1.1
2.8 - - - - 11 1.4 -53 28A 0 1.4

1.7 2 0.3 2 0.3 14 2.6 162 264.9 12 2-.0

1.1 6 0.88 1.0 33 12.7 375 1464.1 29 11.0

0.6 10 1.4 28 8.4 136 219.1 Not 1 119 182th I near-field in 170ar-,•o

Far-field

GEMSS 0 was set up to model the far-field thermal plume emerging from the BBNPP discharge
for the five scenarios. All five scenarios were run under two different setups to capture both the
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cumulative and incremental thermal plume. The first setup included both the SSES and BBNPP
discharges as excess temperature sources while the second setup included only the BBNPP
discharge as an excess temperature source. This approach facilitated studying the thermal
plume from BBNPP combined with the SSES thermal plume as well as studying it separately.

Scenarios 2 and 4 represent the low flow conditions during summer and winter periods,
respectively. In general, during these conditions, the thermal plume is able to spread out due to
decreased ambient velocities. The diffuser is closer to the western shore and thus Scenarios 1
and 3, which represent the mean flow conditions for summer and winter respectively, show that
the thermal plume is pushed towards the western shore due to higher ambient velocities.
Scenario 5, which is similar to Scenario 3, exhibits similar plume characteristics. This process,
however, does not decrease the overall mixing of the discharge because during the high flow
periods there is more water available to mix and the river surface elevations are higher.

The cumulative impacts of the SSES and the BBNPP for the surface and bottom thermal
plumes are shown in Figure 14 and Figure 15 for Scenario 1, Figure 18 and Figure 19 for
Scenario 2, Figure 22 and Figure 23 for Scenario 3, Figure 26 and Figure 27 for Scenario 4, and
finally in Figure 30 and Figure 31 for Scenario 5. During the summer period, the excess
temperature from BBNPP is small (3.460 F). However, the thermal plume at-the bottom shows
excess temperatures greater than the BBNPP temperature rise because the temperature rise
from the SSES discharge is large (12.5 0 F). The extent of this combined thermal plume,
however, is very small. The surface excess temperatures are less than 0.29F (0.1:0C) for
Scenario 1, less than 0.80F (0.40C) for Scenario 2, less than 0.6°F (0.3°C) for Scenario 3, less
than 0.6 0F (0.36C) for Scenario 4 and less than 0.60F (0.30C) for Scenario 5. Since the
discharge is located near the river bottom, the combined thermal plume near the bottom shows
a slightly increased maximum excess-temperature with less than 2.70F (1.5°C)for Scenario 1,
less than 3.0°F (1.7°C) for Scenario 2, less than 13.5°F (7.5 0C) for Scenario 3, less than 25.0°F
(13.90C) for Scenario 4 and less than 13.5°F (7.5°C) for Scenario 5. The extent of-these plumes
at the bottom are, however, very small (2.7 0F contour for Scenario 1 near BBNPP-discharge is
only 75 ft). Both mean flow simulations (Scenario 1 and Scenario 3) have lower maximum
excess temperature compared to their respective low flow counterparts for the period (Scenario
2 and Scenario 4). The plumes for Scenario 1, Scenario 3 and Scenario 5 are pushed against
the western shoreline while the plumes for Scenario 2 and Scenario 4 are more spread out
laterally. Scenario 5 (also Scenario 3 which is very similar) has the highest river flow which
pushes the plume further towards the western shoreline compared to the other scenarios and,
when combined with the shallow, near-shore bathymetry produces a small recirculation eddy
that helps replace the water withdrawn from the intakes. This phenomenon results in the
thermal plume extending upstream as seen in Figure 30 and Figure 31.

The second setup shows the thermal plume attributable only to the BBNPP discharge, i.e, the
incremental impact. Under this setup the thermal plumes for the summer period are
considerably smaller (Figure 16 and Figure 17 for Scenario 1 and Figure 20 and Figure 21 for
Scenario 2) as the BBNPP discharge has a small excess temperature (3.5 0F). During the winter
period, the BBNPP excess temperature from the discharge is higher at 33.8°F (18.80C). The
maximum excess temperature seen at the surface are at less than 0.04°F (0.02°C) for Scenario
1, less than 0.3°F (0.20C) for Scenario 2, less than 0.35°F (0.20'C) for Scenario 3, less than
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cumulative and incremental thermal plume. The first setup included both the SSES and BBNPP 
discharges as excess temperature sources while the second setup included only the BBNPP 
discharge as an excess temperature .source. This approach facilitated studying the thermal 
plume from BBNPP combined with the SSES thermal plume as well as studying it separately. 

Scenarios 2 and 4 represent the low flow conditions during summer and winter periods, 
respectively. In general, during these conditions, the thermal plume is able to spread out due to 
decreased ambient velocities. The diffuser is closer to the western shore and thus Scenarios 1 
and 3, which represent the mean flow conditions for summer and winter respectively, show that 
the thermal plume is pushed towards the western shore due to higher ambient velocities. 
Scenario 5, which is similar to Scenario 3, exhibits similar plume characteristics. This process, 
however, does not decrease the overall mixing of the discharge because during the high flow 
periods there is more water available to mix and the river surface elevations are higher. 

The cumulative impacts of the SSES and the BBNPP for the surface and bottom thermal 
pi umes are shown in Figure 14 and Figure 15 for Scenario 1, Figure 18 and Figure 19 for 
Scenario 2, Figure 22 and Figure 23 for Scenario 3, Figure 26 and Figure 27 for Scenario 4, and 
finally in Figure 30 and Figure 31 for Scenario 5. During the summer period, the excess 
temperature from BBNPP is small (3.46°F). However, the thermal plume aUhe bottom shows 
excess temperatures greater than the BBNPP temperature rise because the temperature rise 
from the SSES discharge is large (12.5°F). The extent of this combined thermal plume, 
however, is very small. The surface excess temperatures are less than O.2°F (0.1°C) for 
Scenario 1, less than 0.8°F (0.4°C) for Scenario 2, less than 0.6°F (0.3°C) for Scenario 3, less 
than 0;6°F (0.3°C) for Scenario 4 and less than 0.6°F (0.3°C) for Scenario 5. Since the 
discharge is located near the river bottom, the combined thermal plume near the bottom shows 
a slightly increased maximum excess-temperature with less than 2.rF (1.5°C)"forScenariQ 1, 
less than 3.0°F (1.rC) for Scenario 2, less than 13.5°F (7.5°C) for Scenario 3, less than 25.0°F 
(13.9°C) for Scenario 4 and less than 13.5°F (7.5°C) for Scenario 5. The extent ofthese.plumes 
at the bottom are, however, very small (2.rF contour for Scenario 1 near BBNPP'discharge is 
only 75 ft). Both mean flow simulations (Scenario 1 and Scenario 3) have Iqwer maximum 
excess temperature compared to their respective low flow counterparts for the period (Scenario 
2 and Scenario 4). The plumes for Scenario 1, Scenario 3 and Scenario 5 are pushed -against 
the western shoreline while the plumes for' Scenario 2 and Scenario 4 are more spread .out 
laterally. Scenario 5 (also Scenario 3 which is very similar) has the highest river flow which 
pushes the plume further towards the western shoreline compared to the other scenarios and, 
when combined with the shallow, near-shore bathymetry produces a small recirculation eddy 
that helps replace the water withdrawn from the intakes. This phenomenon results in the 
thermal plume extending upstream as seen in Figure 30 and Figure 31. 

The second setup shows the thermal plume attributable only to the BBNPP discharge, i.e. the 
incremental impact. Under this setup the thermal plumes for the summer period are 
considerably smaller (Figure 16 and Figure 17 for Scenario 1 and Figure 20 and Figure 21 for 
Scenario 2) as the BBNPP discharge has a small excess temperature (3.5°F). During the winter 
period, the BBNPP excess temperature from the discharge is higher at 33.8°F (18.8°C). The 
maximum excess temperature seen at the surface are at less than 0.04 of (0.02°C) for Scenario 
1, less than O.3°F (O.2°C) for Scenario 2, less than 0.35°F (O.20°C) for Scenario 3, less than 
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0.3'F (0.2°C) for Scenario 4 and less than 0.35°F (0.20'C) for Scenario 5. The bottom excess
temperatures are, however, in the same range as the combined thermal plume with maximum
values at less than 2.5°F (1.40C) for Scenario 1, less than 3.0°F (1.7°C) for Scenario 2, less
than 13.0°F (7.20C) for Scenario 3, less than 25.0°F (13.9°C) for Scenario 4 and tess than
13.0°F (7.2°C) for Scenario 5. The plumes are shown in Figure 24 and Figure 25 for Scenario 3,
Figure 28 and Figure 29 for Scenario 4, and Figure 32 and Figure 33 for Scenario 5. The extent
of the bottom plume is very small (the 0.25 0F contour is only 400 ft from the discharge for
Scenario 1, 0.30°F is only 300 ft from the discharge for Scenario 2, 1.3°F is only 600 ft from the
discharge for Scenario 3, 2.5°F is only 650 ft from the discharge for Scenario 4 and 1.30F is only
580 ft from the discharge for Scenario 5)

4.2. PENNSYLVANIA STANDARDS

Pennsylvania provides the following criteria for temperature (Pa. Code, Chapter 93. Water
Quality Standards, § 93.7. Specific water quality criteria):

"Maximum temperatures in the receiving water body resulting from heated waste
sources are regulated under Chapters 92, 96 and other sources where temperature
limits are necessary to protect designated and existing uses. Additionally, these wastes
may not result in a change by more than 2°F during a 1-hour period."

The protected water use for the Susquehanna River adjacent to BBNPP is Warm Water Fishery
(WWF), as shown in Pa. Code, Chapter 93. Water Quality Standards, § 93.9k. Drainage List K
as WWF ("Warm Water Fishes-Maintenance and propagation of fish species and additional
flora and fauna which are indigenous to a warm water habitat") for the reach from the
Lackawanna River to West Branch Susquehanna River. The WWF temperatures and
temperatures for two other protected uses are presented in Table 8. These values represent the
maximum allowable water temperatures at an unspecified distance downstream of the
discharge where fully-mixed conditions occur.
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0.3°F (0.2°C) for Scenario 4 and less than O.35°F (O.20°C) for Scenario 5. The bottom excess 
temperatures are, however, in the same range as the combined thermal plume with maximum 
values at less than 2.5°F (1.4°C) for Scenario 1, less than 3.0°F (1.rC) for Scenario 2, less 
than 13.00F (7.2°C) for Scenario 3,Iess than 25.0°F (13.9°C) for Scenario 4 and less than 
13.0°F (7 .2°C) for Scenario 5. The plumes are shown in Figure 24 and Figure 25 for Scenario 3, 
Figure 28 and Figure 29 for Scenario 4, and Figure 32 and Figure 33 for Scenario 5. The extent 
of the bottom plume is very small (the 0.25°F contour is only 400 ft from the discharge for 
Scenario 1, O.30°F is only 300 ft from the discharge for Scenario 2, 1.3°F is only 600 ft from the 
discharge for Scenario 3, 2.5°F is only 650 ft from the discharge for Scenario 4 and 1.3°F is only 
580 ft from the discharge for Scenario 5) 

4.2. PENNSYL VANIA STANDARDS 

Pennsylvania provides the following criteria for temperature (Pa. Code. Chapter 93. Water 
Quality Standards, § 93.7. Specific water quality criteria): 

"Maximum temperatures in the receiving water body resulting from heated waste 
sources are regulated under Chapters 92, 96 and other sources where temperature 
limits are necessary to protect designated and existing uses. Additionally, these wastes 
may not result in a change by more than 2°F during a 1-hour period." 

The protected water use for the Susquehanna River adjacent to BBNPP is Warm Water Fishery 
(WWF), as shown in Pa. Code, Chapter 93. Water Quality Standards, § 93.9k. Drainage list K 
as WWF ("Warm Water Fishes-Maintenance and propagation of fish speCies and additional 
flora and fauna which are indigenous to a warm water habitat") for the reach from the 
Lackawanna River to West Branch Susquehanna River. The WWF temperatures and 
temperatures for two other protected uses are presented in Table 8. These values represent the 
maximum allowable water temperatures at an unspecified distance downstream of the 
discharge where fully-mixed conditions occur. 
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Table 8 Protected use receiving water body temperatures, F

CWF=Cold Water Fishes; WWF=Warm Water Fishes; TSF=Trout Stocking

CRITICAL USE: CWF WWF TSF
PERIOD
January 1-31 38 40 40
February 1-29 38 40 40
March 1-31 42 46 46
April 1-15 48 52 52
April 16-30 52 58 58
May 1-15 54 64 64
May 16-31 58 72 68
June 1-15 60 80 70
June 16-30 64 84 72
July 1-31 66 87 74
August 1-15 66 87 80
August 16-30 66 87 87
September 1-15 64 84 84
September 16-30 60 78 78
October 1-15 54 72 72
October 16-31 50 66 66
November 1-15 46 58 58
November 16-30 42 50 50
December 1731 40 42 42

The SSES NPDES permit does not contain specific discharge temperature limits (PPL
Susquehanna, LLC, 2006a), although the station is required to meet WWF water temperatures
(Table 8) and to limit temperature changes to 2°F per hour.

Experience with other sites and an examination of the language in the PA DEP guidance
document (PA DEP, 2003) indicates PA DEP may include in the NPDES permit for BBNPP an
end-of-pipe limit of 110 F and a heat load limit based on the difference between ambient
temperature and the critical use temperatures shown in Table 8. Because actual limits are set
when the NPDES permit is issued, no definitive statement can be made regarding the thermal
discharge limits that will be set for the BBNPP, except to note that SSES does not have either
the 110 F or the heat load limit. In developing the NPDES permit conditions for BBNPP, PA
DEP may choose to consider the cumulative effects of the combined SSES and BBNPP
thermal.

Because the WWF temperature limits vary by season as shown in Table 8, limiting blowdown
temperatures to less than the maximum WWF temperature of 87 F does not guarantee that the
system wilI be in compliance with WWF temperatures at other times. To assess compliance at
seasonal extremes, additional near-field simulations were made to determine the size of the
thermal plume under conditions when blowdown temperatures are at a maximum and
Susquehanna River temperatures are at a minimum, yielding the maximum temperature rise in
the River. These simulations utilized average Susquehanna River flows to represent a severe,
but not extreme, case. The comparison metric is the distance along the centerline downstream
of the BBNPP discharge where WWF temperatures are attained. These distances are shown in
Table 9. In this table, the blowdown temperature rise is the difference between the blowdown
temperature and the WWF ambient stream temperature (PPL Susquehanna, LLC, 2006a). The
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Table 8 Protected use receiving water body temperatures, F 

CWF=Cold Water Fishes; WWF=Warm Water Fishes; TSF=Troul Stocking 

The SSES NPDES permit does not contain specific discharge temperature limits (PPL 
Susquehanna, LLC, 2006a), although the station is required to meet WWF water temperatures 
(Table 8) and to limit temperature changes to 2°F per hour. 

Experience with other sites and an examination of the language in the PA DEP guidance 
document (PA DEP, 2003) indicates PA DEP may include in the NPDES permit for BBNPP an 
end-of-pipe limit of 110 F and a heat load limit based on the difference between ambient 
temperature and the critical use temperatures shown in Table 8. Because actual limits are set 
when the NPDES permit is issued, no definitive statement can be made regarding the thermal 
discharge limits that will be set for the BBNPP, except to note that SSES does not have either 
the 110 F or the heat load limit. In developing the NPDES permit conditions for BBNPP, PA 
DEP may choose to consider the cumulative effects of the combined SSES and BBNPP 
thermal. 

Because the WWF temperature limits vary by season as shown in Table 8, limiting blowdown 
temperatures to less than the maximum WWF temperature of 87 F does not guarantee that the 
system will be in compliance with WWF temperatures at other times. To assess compliance at 
seasonal extremes, additional near-field simulations were made to determine the size of the 
thermal plume under conditions when blowdown temperatures are at a maximum and 
Susquehanna River temperatures are at a minimum, yielding the maximum temperature rise in 
the River. These simulations utilized average Susquehanna River flows to represent a severe, 
but not extreme, case. The comparison metric is the distance along the centerline downstream 
of the BBNPP discharge where WWF temperatures are attained. These distances are shown in 
Table 9. In this table, the blowdown temperature rise is the difference between the blowdown 
temperature and the WWF ambient stream temperature (PPL Susquehanna, LLC, 2006a). The 
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WWF ambient stream temperature is an assumed natural temperature typically used by the PA
DEP in computing waste heat load allocations. The target excess temperature in Table 9 is the
difference between the WWF ambient temperature and the WVVF temperature limit; this
difference represents the excess temperature isotherm at which the WWF temperature limit is
attained.

Table 9 Extreme period~anall sis of plume size

January 1-31 40 35 65.8 30.8 5.0 1.T
July 1-31 87 75 90 15.0 12.0 0.3
August 1-15 87 74 90 16.0 13.0 0.3

August 16-30 87 74 90 16.0 13.0 0.3

Centerline distances are very small and none of the target excess temperature contours reach
the water surface. The results of this calculation indicate that BBNPP blowdown plume will be in
compliance with WWF temperatures during other WWF periods.

4.3. DILUTION RESULTS

Using the near-field and far-field models, dilution of a numerical, non-decaying dye representing
only the BBNPP discharge was computed along with the thermal plume. The dye was released
at a nominal concentration of 100 mg/I. The results are reported as "dilution", defined as in
Equation 1 where CoEscharge is the concentration of dye released from the discharge (100 mg/i)
and C is the concentration at a particular location of interest. To obtain the concentration of any
other constituent at a location at which dilution is available, Equation 2 can be used.

Equation 1

Dilution - Oischarge
C

Equation 2

C - CDischarge

Diluion

Near-field

CORMIX simulations for thermal plume provided near-field dilution values. These dilution values
are shown in Figure 34 and in Table 10 for all five scenarios. Note that Scenario 2 has the
lowest dilution as this is the scenario with the lowest Susquehanna River flow while Scenario 3
has the highest dilution due to high Susquehanna River flow. The dilution values range from 11
to 70 near the end of the near-field region. Any subsequent dilution occurs in the far-field region
and was modeled using GEMSS®.

SURFACEWATER MODELING GROUP
ENVIRONMENTAL RESOURCES MANAGEMENT

SUSQUEHANNA RIVER THERMAL PLUME AND DILUTION MODELING 17 JUNE 2008

REVISION 1, PAGE 22

WWF ambi~nt stream temperature is an assumed natural temperature typically used by the PA 
DEP in computing waste heat load allocations. The target excess temperature in Table 9 is the 
difference between the WWF ambient temperature and the WWF temperature limit; this 
difference represents the excess temperature isotherm at which the WWF temperature limit is 
attained. 

T bl 9 E t • "d I " f I • 
Period WWF,F WWF Blowdown Blowdown Target excess Centerline 

ambient, F temperature, temperature temperature for distance to 
F rise, OF compliance, OF WWF, ft 

January 1-31 40 35 65.8 30.8 5.0 1.0 

July 1-31 87 75 90 15.0 12.0 0.3 
August 1-15 87 74 90 16.0 13.0 0.3 
August 16-30 87 74 90 16.0 13.0 0.3 

Centerline distances are very small and none of the target excess temperature contours reach 
the water surface. The results of this calculation indicate that BBNPP blowdown plume will be in 
compliance with WWF temperatures during other WWF periods. 

4.3. DILUTION RESUL TS 

Using the near-field and far-field models, dilution of a numerical, non-decaying dye representing 
only the BBNPP discharge was computed along with the thermal plume. The dye was released 
at a nominal concentration of 100 mg/1. The results are reported as "dilution", defined as in 
Equation 1 where Co;scharge is the concentration of dye released from the discharge (100 mgtl) 
and C is the concentration at a particular location of interest. To obtain the concentration of any 
other constituent at a location at which dilution is available, Equation 2 can be used. 

Equation 1 

D ·,. _C_D_i.lC_" "....:;rgc...e 
/ullOn = 

C 

Equation 2 

c = _C_D_is,_."a....:;rg_" 

Dilulion 

Near-field 

CORMIX simulations for thermal plume provided near-field dilution values. These dilution values 
are shown in Figure 34 and in Table 10 for all five scenarios. Note that Scenario 2 has the 
lowest dilution as this is the scenario with the lowest Susquehanna River flow while Scenario 3 
has the highest dilution due to high Susquehanna River flow. The dilution values range from 11 
to 70 near the end of the near-field region. Any subseq.uent dilution occurs in the far-field region 
and was modeled using GEMSS@ 
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Table 10. Near-field dilution values

Scenario 1 26.9
Scenario 2 11.8
Scenario 3 67
Scenario 4 19.2
Scenario 5 68.7

Far-field

The far-field dilution values obtained from GEMSS® at different locations of interest (shown in
Figure 35) are listed in Table 15, shown in Section 7 Landscape-formatted tables and figures.
The model was run for a period of 21 days which was sufficient to achieve a steady state. The
numerical dye used to compute dilution values eventually spreads across the entire cross-
section of the river resulting in fully-mixed conditions. The distance at which these fully-mixed
conditions are achieved varies with different scenarios and is also listed in Table 11. All
locations beyond this fully-mixed region will have same fully-mixed concentration that can be
computed using Equation 3. Figure 36 shows the fully-mixed concentrations obtained from
GEMSS® for the five scenarios. The itaricized numbers on the plots show values computed from
Equation 3 for these scenarios. Equation 4 shows an example calculation for Scenario 1.

Equation 3

CRiver * + * Q+1VCI,
QRe,. + Q8I1,1,

Equation 4

0.0 * 4351.83 + 100.0 * 24.89

4351.83+ 24.89 0.571gll

Scenario 2 again has the highest fully-mixed concentration and the lowest dilution while
Scenario 3 has the lowest fully-mixed concentration and the highest dilution.
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Table 10. Near-field dilution values 
Scenario Dilulion (50') from BBNPP Discharge 
Scenario 1 26.9 
Scenario 2 11.8 
Scenario 3 67 
Scenario 4 19.2 
Scenario 5 68.7 

Far-field 

The far-field dilution values obtained from GEMSS® at different locations of interest (shown in 
Figure 35) are listed in Table 15, shown in Section 7 Landscape-formatted tables and figures. 
The model was run for a period of 21 days which was sufficient to achieve a steady state. The 
numerical dye used to compute dilution values eventually spreads across the entire cross­
section of the river resulting in fully-mixed conditions. The distance at which these fully-mixed 
conditions are achieved varies with different scenarios and is also listed in Table 11. All 
locations beyond this fully-mixed region will have same fully-mixed concentration that can be 
computed using Equation 3. Figure 36 shows the fully-mixed concentrations obtained from 
GEMSS® for the five scenarios. The italicized numbers on the plots show values computed from 
Equation 3 for these scenarios. Equation 4 shows an example calculation for Scenario 1. 

Equation 3 

c - C Rive,. * QRil'C/' + CB8NPP * Q88,vPI' 
FuI""/v1ixee) - Q Q . . + 

RiI'CI' 8/JN!'!' 

Equation 4 

C 0.0 * 4351.83 + 100.0 * 24.89 = 0.57 mg II 
FIl/lyMixcd = 4351.83 + 24.89 

Scenario 2 again has the highest fully-mixed concentration and the lowest dilution while 
Scenario 3 has the lowest fully-mixed concentration and the highest dilution. 
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Table 11 Distance from BBNPP discharge

SSES cooling Water intake 1050 3-20
BBNPP cooling water intake 650 198
Nearest Shoreline 300 91
Maximum impacted shoreline Scenario dependent (see Table Scenario dependent (see Table

15) 15)
Property boundary 330 101
S Hicks Ferry Rd 3250 991
Fully-mixed Scenario dependent (see Table Scenario dependent (see Table

15) 15)
Public water supply intake (Danville) 158,400 48,280
Recreational shore (Sunbury) 264,000 80,467

4.4. TRA VEL TIMES

For the near-field, CORMIX provided the travel time for the peak to reach a distance 50 ft from
the discharge. For the far-field, travel times were computed by releasing a numerical dye from
the BBNPP discharge structure, then determining its arrival time at the locations of interest with
GEMSS. The dye was released over a 1-hour duration at a concentration of 100 mg/I. The
concentrations of the dye were then studied at the locations listed in Table 11 to obtain the time
of arrival of the peak concentration. The arrival time was used to compute the travel time from
the BBNPP discharge.

Near-field

As stated, CORMIX provided the travel times for the spill to reach a distance 50 ft from the
discharge. Travel times for the five scenarios in the near-field are listed in Table 12. Scenario 3
with the highest Susquehanna River flow rate has the shortest travel time of 45 seconds, while
Scenario 2 with the lowest Susquehanna River flow rate has the longest travel time of 110
seconds.

Table 12 Near-field travel times obtained from CORMIX simulations

Scenario 1 1.38 83
Scenario 2 1.83 110
Scenario 3 0.75 45
Scenario 4 1.63 98
Scenario 5 0.74 44

Far-field

The 1-hour dye release from the BBNPP discharge was simulated and then the concentrations
at various locations were studied to detect the passage of the peak concentration. The
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T bl 11 0' t f BBNPP d' h • 
Location Distance from the BBNPP Distance from the BBNPP 

discharge (ft) dlschargp. (m) 

SSES codling water intake 1050 3'20 

BBNPP cooling water intake 650 198 

Nearest Shoreline 300 91 

Maximum impacted Shoreline Scenario dependent (see Table Scenario dependent (see Table 
15) 151 

Property boundary 330 101 

S Hicks Ferry Rd 3250 991 

Fully-mixed Scenario dependent (see Table Scenario dependent (see Table 
15) 15) . 

Public water supply intake (Danville) 158,400 48,280 

Recreational shore (Sunbury) 264,000 80,467 

4.4. TRA VEL TIMES 

For the near-field, CORMIX provided the travel time for the peak to reach a distance 50 ft from 
the discharge. For the far-field, travel times were computed by releasing a numerical dye from 
the BBNPP discharge structure, then determining its arrival time at the locations of interest with 
GEMSS. The dye was released over a 1-hour duration at a concentration of 100 mg/1. The 
concentrations of the dye were then studied at the locations listed in Table 11 to obtain the time 
of arrival of the peak concentration. The arrival time was used to compute the travel time from 
the BBNPP discharge. 

Near~field 

As stated, CORM IX provided the travel times for the spill to reach a distance 50 ft from the 
discharge. Travel times for the five scenarios in the near-field are listed in Table 12, Scenario 3 
with the highest Susquehanna River flow rate has the shortest travel time of 45 seconds, while 
Scenario 2 with the lowest Susquehanna River flow rate has the longest travel time of 110 
seconds. 

Table 12 Near-field travel times obtained from CORMIX simulations 
Scenario Travel Time (minutes) Travel Time (seconds) 
Scenario 1 1.38 83 
Scenario 2 1.83 110 
Scenario 3 0.75 45 
Scenario 4 1.63 98 
Scenario 5 0.74 44 

Far-field 

The 1-hour dye release from the BBNPP discharge was simulated and then the concentrations 
at various locations were studied to detect the passage of the peak concentration. The 
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difference in times between the release and the peak at these locations was used to estimate
the travel time to these locations. Locations downstream of the GEMSS® grid were also beyond
the fully-mixed location as seen in Table 11. Thus, the travel times to these locations were
computed by adding the time needed to travel to these locations from fully-mixed location using
the average flow velocity and the time taken to reach the fully-mixed location as shown in

Equation 5 and Equation 6. The travel times to these locations are listed in Table 13 in hours
and in Table 14 in minutes.

As was the case for the near-field times, the travel times are usually shortest for Scenario 3 and

longest for Scenario 2. However, there are two locations (nearest the shoreline and nearest the
property boundary) where Scenario 4 has the longest travel time. This result is due-to the plume

configuration and the location of interest relative to the discharge. Scenario 4 has a higher
Susquehanna River flow rate than Scenario 2. The higher rate pushes the plume further
downstream. The near-shore and property boundary locations are close to the discharge and
thus the plume takes longer to get to these locations once it has been pushed away from the
BBNPP discharge.

Equation 5

D I.oc - D• F ul/ly,%1i.ve.d

Ti-avelTimeLo. : Time,,.l,,,..,ed +
ntix

Equation 6

QRiv

, CSAreai,,

TravelTimeLo = travel time to the location of interest

Tine, = travel time to the fully-mixed location

DL,,c and DF,ItAj.,ej = distance to the location of interest and fully-mixed location

CSA rea o,, and QR,,. = cross-sectional area and flow rate for Susquehanna River
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difference in times between the release and the peak at these locations was used to estimate 
the travel time to these locations. Locations downstream of the GEMSS® grid were also beyond 
the fully-mixed location as seen in Table 11. Thus, the travel times to these locations were 
computed by adding the time needed to travel to these locations from fully-mixed location using 
the average flow velocity and the time taken to reach the fully-mixed location as shown in 
Equation 5 and Equation 6. The travel times to these locations are listed in Table 13 in hours 
and in Table 14 in minutes. 

As was the case for the near-field times, the travel times are usually shortest for Scenario 3 and 
longest for Scenario 2. However, there are two locations (nearest the shoreline and nearest the 
property boundary) where Scenario 4 has the longest travel time. This result is due·to the plume 
configuration and the location of interest relative to the discharge. Scenario 4 has a higher 
Susquehanna River flow rate than Scenario 2. The higher rate pushes the plume further 
downstream. The near-shore and property boundary locations are close to the discharge and 
thus the plume takes longer to get to these locations once it has been pushed away from the 
88NPP discharge. 

Equation 5 

TravelTime I.QC = Time F"/lI.MiI"d + 
D I.oc - D 1-",,/~I'Mixed 

U"'X 

Equation 6 

U aq; =. 

CSArea Riv 

TravelTime Loc ::= travel time to the location of interest 

TimeFllllrMixed ::= travel time to the fully-mixed location 

D Loc and D FII/~dfiml = distance to the location of interest and fully-mixed location 

CSA rea R,,, and QRil ::= cross-sectional area and flow rate for Susquehanna River 
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Tab4e 13 fravel times hours for varlou&|ocatlonsot interest
Toabioe 1cnai 1 rave tcemesi 2fus Sorri vaiu Socations 4t interest

SSES cooling water
intake

Surface 2.92 6.67 2.08 5.58 2.00
4 4 +

Bottom 3.08 7.00 2.08 5.42 2.00

BBNPP cooling Surface 2.33 3.58 1.67 4.83 1.58
water intake Bottom 2.33 3.83 1.58 4.83 1.50

Surface 1.92 1.33 1:17 2.58 1.17

Nearest Shoreline Bottom 1.92 1.42 1.08 2.25 1.08

Surface 1.67 1.17 1.08 2.25 1.08
Property boundary Bottom 1.67 1.17 1.00 1.92 1.00

Maximum impacted Surface 2.08 5.50 1.25 3.50 1.25
shoreline Bottom 2.17 5.75 1.33 2.83 1.25

Surface 2.08 3.08 1.42 2.50 1.42

S Hicks Ferry Rd Bottom 2.08 3.58 1.42 2.67 1.42
Public water supply Surface 154 480. 64 220 63
intake (Danville) Bottom 154 480 64 220 63

Recreational shore Surface 290 925 119 420 117
(Sunbury) Bottom 290 925 119 420 117

Table 14.Travel times (minutes) for various locations of interest
0octil Scnai 1 Scnai 2 Scn riS *Seai. 0 * Si

SSES cooling water Surface 175 400 125 335 120
intake Bottom 185 420 125 325 120

BBNPP cooling Surface 140 215 100 290 95

water intake Bottom 140 230 95 290 90

Surface 115 80 70 155 70
Nearest Shoreline Bottom 115 85 65 135 65

Surface 100 70 65 135 65

Property boundary Bottom 100 70 60 115 60

Maximum impacted Surface 125 330 75 210 75

shoreline Bottom 130 345 80 170 75

Surface 125 185 85 150 85

S Hicks Ferry Rd Bottom 125 215 85 160 85
Public water supply Surface 9240 28800 3840 13200 3780
intake (Danville) Bottom 9240 28800 3840 13200 3780

Recreational shore Surface 17400 55500 7140 25200 7020
(Sunbury) Bottom 17400 55500 7140 25200 7020
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6. PORTRAIT-FORMATTED FIGURES

Figure 1 GEMSS finite difference grid

The green lines are surface contours.
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Nevt Esuiftsibe t~o mwtswpb nmtITcaticons

USGS 011536500 Susqueha~nna~ River at Wilkes-Ba~rre, PA

~.A~N! P LL~LA.!O T O "M

Stream/Rive~r Site

LOCATION,
Latih12e 41"15'03% LDIritUd1e 7505r52' MAD27
Luzerme County, Pe ryfvat~a . Iiydr~obic Unit 02050107

DESCRIPTION
Drainage ajea: 9,96 squa~ren miles
Datumr of gage: 5R0.86 feet above sees I_-ve4 N4AVD88.

AVAILABLE DATA;
DMaa Type I&Sein Datel End Date I0ouni

ReaI4ime I This is a real-time sit,6

iD~a htge. cubic feet perT swev 1EI8-990-O4-0 FIW-42 Fm7i-m
Daily Sb~tistics

Di~dilnrg. c-bcwee ! per -z~n 56i--6461 5 -667459-35 13W2-
Month ly Stokiskitie____

OisdII&A~e. cubic feet pek secoa-w FiTe;0-42007-09

Dmha~rge, cw,- feet we sead F18n99 207

Ift Pelstremflaw F176-1W0 1207-3-16 F1-22
o~e5en 189-0-3 ~~i ,--6 7-52

~dIaba~raulivsat~eaI193~0-7 100-0-19fio

OPERATION;
Reaund for ttkis site i5 ma!lr~tairs try the USGS PerrnSyli~a.if Water~ciw=c Cent-er
En%6il questio-ns sbo ut thiBs!%ite tiýPen n~ilvania Watei-ýDAtA lnouirie~

ADOMONAL INFORMATION

STATIO)N.--fl153650iJ1 SVS01TZ-AA3X2A LI'VZR AT WILKE3-B.AREE

Figure 2 USGS Station No. 01536500 (Susquehanna River at Wilkes-Barre) information sheet
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USGS 01536500 SUSQuehanna River at Wilkes-,Bar~~, PA 

Stream/River Site 
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! Pealcstre8rnRow '1~-10-O? 1:roo7-o3-1i? f"1i2 
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Reo!mj fer tlais si"'..e i5m.!!.int!I~ by ~ lJSGS Pe:rmsytva-r.ia Wate.r.~ Cer.ter 
Email quertio.ns.boutthissi~...!OJ.enI.lDlvaniaWat:$-4)attliInguiries 

ADDITlONAt.INFORMAllON 

ST1t.TIOli.--{)lBE!!Hl 9USOULRAJi¥,A RIVE:!!. AT WIILE:!l-l!JU!.lU:, 

PA 

Figure 2 USGS Station No. 01536500 (Susquehanna River at Wilkes-Barre) information sheet 
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New! Subsoibe to NWIS~leb noicaticr-.

USGS 01540500 Susquehanna River at Danville, PA

%JMM OF &L AVMA&L~z GV.T^ r7- 01

Sbream/River Site

LOCATION
Lattzd- 40-57-29. .itude 76-3710- MAD27
Montour Cou-Ty, Peivimsyknia , Kydroloqic th-dt 02050107

DESCRIPTION
Draiwqzare it. 1.1220 squarm- m&il3
Datum of gsge: 431.29 feet aorve sea t-v,--4 NGVD29.

AVAILMLE DATA;

Data Type Dae Date
_______________________________ TDati a-ie Date

Dernperat*Lev aterd~rs Ceisius r s0 F f76 7126

Dischaxye. cubic: feet per seorid 5ý [3764

Specifi crutance, water, UnTifltered. micmwsenmarw 1945-0- F9 760.. 1
per cermtrieter at 25 degrees Celsiua 156

SUSPenIded sedimentd cor-nta~tiwi, m Mqlraiiis per fiter 132z-I -[932

Swzperviled ze im-eisl discharge, to=~ par day 16-3 t96 3

IDailyt Skstatiets____

D~schairqe. cubic feet per secoriid F105-4 [37-438

S~urpended sediment coixentration, milligra'mz per 1962-03- It96 931
lite'r 114 lai.-M0

Suspeaded sedimenit disdarqe, tons per day 1962-03- I1976-
14 109-30 931

Discharge, cubic feet per seco:4 F19OS-04 F2667-09
.2iupended Sedim~ent =W tratic n' miflipramzt per 19623 4Y976

Suspended sedfimersi Tdws~rge. tens per day 31 962.063 11976-09
Annual Statistics

Dsd~iaie, cubic feet per zevaond 11905 1207-
Suspended sediment cmu-eritratioat millivants Per cm -

Figure 3 USGS Station No. 01540500 (Susquehanna River at Danville) information sheet
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USGS 01540500 Susquehanna River at ~anville, PA 

Shearn/River Site 
LOCATION 

I..atlt~ 40"sr29", ~'* 76"37100" KA027 
MO~UT Cour.'ty. Pe.muytv:lni3 ,H:y4J1OobgX Unit 02050107 
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iJte:.. 14 -30 I ,~ .. 
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! Monthly StatiStiC:S 

D~. cubk feoet per =mI 11905 12007 

J. _ ~(J sediment ~ntns_ti:m. _k%LJ1~7.';_. 

Figure 3 USGS Station No. 01540500 (Susquehanna River at Danville) information sheet 

SURFACEWATER MOOELING GROUP 
ENVIRONMENTAL RESOURCES MANAGEMENT 

SUSQUEHANNA RIVER THERMAL PLUME ANO:OILUTION MODELING 17 JUNE 2008 

REVISION 1. PAGE 32 



.USGS Low-Flow Statistics for
Pennsylvania Streams

Developed by the U.S& Geological Survey for the
Pennsylvania Department of Environmental Protection

om

Pe=Mw anyt. SLo-f~ SUsk -aueuv m

LOW-FLOW STATISTICS.
[Alflow satisic in c~ubkfeet per secbtid (ft 31s)]

Mudm amor edick oz table hwUinp (o.,Titz deabifiýofsotiafitir

STREAM NAMEF Sw.W-hucru River
GAGE OR BRinG! SITTh bridgs
REFERENCE GAGk01536500

COUNW. LUZ-flu
USGS QUAD Wiflkes-BarreWest

L4kTrrUIX 411456
LONGITuII m5307,
DILAINAGE AREA (s4 =)r 9

.'I &I shu'. 1BE tam NE I 9 ý
&.'I.4 I4 goo ta07 L2800 1420 .s5m
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Figure 4 Low flow statistics at Wilkes-Barre
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USGS Surface-Water Monthly Statistics for the Nation
The estiatisc generated fronm this site are ba:%ed on approved daily-men data and may not match those
oublished by the USGS in official publications. The user is respn'sible for assesment and use ofisttaticsfn
this site For rno-re details on why the statUitics may not maute--, click here.

USGS 01536500 Susquehanna River at Wilkes-Bane, PA
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1! _ I 19. _8,1991_10.6701_ 14,1801 6.5081 _1_9' 1,841 L 1.352jj _. 80'1._L 160
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Figure 5 Monthly statistics at Wilkes-Barre
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Figure 6 Near-field thermal plume orientation and size for Scenario I

Scenario 1 is summer mean flow. The CORMIX graphical engine automatically scales diagrams; scales vary from
one figure to the next.
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Figure 6 Near-field thermal plume orientation and size for Scenario 1 

Scenario 1 is summer mean flow. The CORMJX graphical engine automatically scales diagrams; scales vary from 
one figure to the next. 
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Figure 7 Near-field thermal plume orientation and size for Scenario 2

Scenario 2 is summer low flow.
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Figure 7 Near-field thermal plume orientation and size for Scenario 2 

Scenario 2 is summer low flow. 
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Figure 8 Near-field thermal plume orientation and size for Scenario 3

Scenario 3 is winter mean flow The CORMIX graphical engine automatically scales diagrams: scales vary from one
figure to the next.
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Figure 8 Near-field thermal plume orientation and size for Scenario 3 

Scenario 3 is winter mean flow The CORMIX graphica l engine au tomatically scales diagrams: scales vary from one 
figu re to the next. 
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Figure 9 Near-field thermal plume orientation and size for Scenario 4

Scenario 4 is winter low flow.

SUjRFAA;-WA IR MCD)ELINO GROUI P IC'FHANNA MCVF I T IFRMA, dklE AND DILUTION MODt IN6 1 1" N
NVIR)NMNI N IAL RESOURCES MANAGf E' N ;T V!II N 1.

33.81 deg.F o 

Scenario 04 

Figure 9 Near-field thermal plume orientation and size for Scenario 4 

Scenario 4 is winter low flow. 
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Figure 10 Near-field thermal plume orientation and size for Scenario 5

Scenario 5 is average annual flow
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Figure 10 Near-field thermal plume orientation and size for Scenario 5 

Scenario 5 is average annual flow 
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7. LANDSCAPE-FORMA TTED TABLES AND FIGURES

Table 15 Dilution values and related distances for various locations of interest

The location of the property boundary was taken from PETERS CONSULTANTS, INC. (2008).

4 I. I. 4 4 4- I-
.:5tz I,.cooing
water intake

2598 2623 Does hot reach Does not reach 289 167 I Does not reach Does not react; 287 166

BBNPP cooling 936 918 Does tot reach Does not reach 285 179 Does not reach Does not reacth 279 176
water intake II
Nearest 623 623 Does not reach Does not reach 208 138 Does not reach Does not reach 200 134
Shoreline
Maximum 101 90 44 44 108 85 106 106 108 86
impacted
shoreline
Distance of 3000 2275 8000 8000 1750 1975 8000 4450 1750 1975
maxim um
impacted
shoreline from
BBNPP
Discharge (f,) "_
Property 620 620 9265 13233 224 132 Does not reach 5850 216 128
boundary

S Hicks Ferry Rd 101 101 57 53 109 102 Doesnotreach 5850 216 128
Fully-mixed 175 175 46 46 500 500 111 111 500 500

Distance to fully- 41300 53000 66300 26150 66300
mixed (ft)
Locations Beyond Fully-mixed Region

Public water 175 175 46 46 500 500 11l 111 500 500
supply intake
(Danville)

Recreational 175 175 46 46 500 500 111 111 500 500
shore (Sunbury)
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7. LANDSCAPE-FORMATTED TABLES AND FIGURES 

Table 15 Dilution values and related distances for various locations of interest 

The location of the property boundary was taken from PETERS CONSULTANTS, INC. (2008). 

SSES cooling 2598 
water intake 
BBNPP cooling 936 
water intake 
Nearest 623 
Shoreline 
Maximum 101 
impacted 

3000 

620 

175 
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175 
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285 
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44 44 108 

8000 8000 1750 

9265 13233 224 

46 46 500 

46 46 500 

167 287 166 

179 279 176 

138 Does 110( roach 200 134 

85 106 106 108 86 
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Figure 11 Excess temperature versus downstream distance for all five scenarios
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Figure 11 Excess temperature versus downstream distance for all five scenarios 
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Figure 12 Near-field plume surface area versus temperature rise isotherms for all five scenarios
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Figure 12 Near-field plume surface area versus temperature rise isotherms for all five scenarios 
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Figure 13 Near-field plume volume versus temperature rise isotherms for all five scenarios
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Figure 13 Near-fie ld p lume volume versus temperature rise isotherms for all five scenar ios 
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Figure 14 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 1

Scenario 1 is summer mean flow; note that the temperature scale varies from diagram to diagram.
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Figure 14 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 1 

Scenario 1 is summer mean now; note that the temperature scale varies from diagram to diagram. 

SURFACEWATER MODELING GROUP 
ENVIRONMENTAL RESOURCES MANAGEMENl 

SUSQUEHANNA RIVER THERMA. PLUME AND DILUTION MODE.INC II ;dNE 2008 
RFVISION PAGE 44 



Scenaro 01_01 NCjudb iExem. Temperalluro 11Fi 0120MA2000 00:00

Figure 15 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 1

Scenario 1 is summer mean flow.
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Figure 15 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 1 

Scenario 1 is summer mean flow. 
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Figure 16 Excess temperature at the surface for incremental BBNPP impact for Scenario 1

Scenario 1 is summer mean flow.
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Figure 16 Excess temperature at the surface for incremental BBNPP impact for Scenario 1 

Scenario 1 IS summer mean flow. 
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Figure 17 Excess temperature at the bottom for incremental BBNPP impact for Scenario 1

Scenario 1 is summer mean flow.
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Figure 17 Excess temperature at the bottom for incremental BBNPP impact for Scenario 1 

Scenario 1 is summer mean flow. 
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Figure 18 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 2

Scenario 2 is summer low flow.
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Figure 18 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 2 

Scenario 2 is summer low flow. 
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Figure 19 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 2

Scenario 2 is summer low flow
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Figure 19 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 2 

Scenario 2 is summer low now. 
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Figure 20 Excess temperature at the surface for incremental BBNPP impact for Scenario 2

Scenario 2 is summer low flow.
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Figure 20 Excess temperature at the surface for incremental BBNPP impact for Scenario 2 

Scenario 2 is summer low flow. 
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Figure 21 Excess temperature at the bottom for incremental BBNPP impact for Scenario 2

Scenario 2 is summer low flow.
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Figure 21 Excess temperature at the bottom for incremental BBNPP impact for Scenario 2 

Scenario 2 is summer low flow. 
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Figure 22 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 3

Scenario 3 is winter mean flow
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Figure 22 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 3 

Scenario 3 is winter mean now 
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Figure 23 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 3

Scenario 3 is winter mean flow.
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Figure 23 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 3 

Scenario 3 is winter mean now. 
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Figure 24 Excess temperature at the surface for incremental BBNPP impact for Scenario 3

Scenario 3 is winter mean flow
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Figure 24 Excess temperature at the surface for incremental BBNPP impact for Scenario 3 

Scenario 3 is winter mean flow . 
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Figure 25 Excess temperature at the bottom for incremental BBNPP impact for Scenario 3

Scenario 3 is winter mean flow.
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Figure 25 Excess temperature at the bottom for incremental BBNPP impact for Scenario 3 

Scenario 3 IS winter mean flow. 
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Figure 26 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 4

Scenario 4 is winter low flow
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Figure 26 Excess temperature at the surface for cumulative SSES and BBNPP impacts for Scenario 4 

Scenario 4 is winter low flow 
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Figure 27 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 4

Scenario 4 is winter low now.
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Figure 27 Excess temperature at the bottom for cumulative SSES and BBNPP impacts for Scenario 4 

Scenario 4 is winte r low flow. 
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Figure 28 Excess temperature at the surface for incremental BBNPP impact for Scenario 4

Scenario 4 is winter low flow
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Figure 28 Excess temperature at the surface for incremental BBNPP impact for Scenario 4 

Scenario 4 IS w inter low flow 
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Figure 29 Excess temperature at the bottom for incremental BBNPP impact for Scenario 4

Scenario 4 is winter low flow
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Figure 29 Excess temperature at the bottom for incremental BBNPP impact for Scenario 4 

Scenario 4 is winter low flow 
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Figure 30 Excess temperature at the surface for cumulative SSES and BBNPP impact for Scenario 5

Scenario 5 is average annual flow
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Figure 30 Excess temperature at the surface for cumulative SSES and BBNPP impact for Scenario 5 

Scenario 5 is average annual flow 
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Figure 31 Excess temperature at the bottom for cumulative SSES and BBNPP impact for Scenario 5

Scenario 5 is average annual flow
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Figure 31 Excess temperature at the bottom for cumulative SSES and BBNPP impact for Scenario 5 

Scenario 5 is average annual flow 
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Figure 32 Excess temperature at the surface for incremental BBNPP impact for Scenario 5

Scenario 5 is average annual flow.

9F =, J.';CXWýANNA IýIV' R ýýFqk!A, ý` JW AN') )Jý JTJý)14

Scenario 05_02 NC.mdb Exce •• Temperature (F, 10412012008 00;00 

Figure 32 Excess temperature at the surface for incremental BBNPP impact for Scenario 5 

Scenario 5 is average annua l now. 
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Figure 33 Excess temperature at the bottom for incremental BBNPP impact for Scenario 5

Scenario 5 is average annual flow.
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Figure 33 Excess temperature at the bottom for incremental BBNPP impact for Scenario 5 

Scenario 5 is average annual flow. 
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Figure 34 Near-field dilution versus downstream distance for all five scenarios
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Figure 34 Near-field dilution versus downstream distance for all five scenarios 
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Figure 35 Dilution value locations
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Figure 36 Fully-mixed concentrations for dilution study

Curves show values obtained from GEMSS simulations and the italicized text shows values obtained from fully-mixed analytical calculation (Equation 3)
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GEMSS® uses many models written in FORTRAN code that computes time-varying velocities,
water surface elevations, and water quality constituent concentrations in rivers, Lakes, reservoirs,
estuaries, and coastal waterbodies. The computations are done on a horizontal and vertical grid
that represents the waterbody bounded by its water surface, shoreline, and bottom. The water
surface elevations are computed simultaneously with the velocity components. The water quality
constituent concentrations are computed from the velocity components and elevations. Included
in the computations are boundary condition formulations for friction, wind shear, turbulence,
inflow, outflow, surface heat exchange, and water quality kinetics.

The flow 'and constituent fields are discretized in time, and the computation marches forward in
time steps of 100 s to 900 s, computing the dependent variables throughout the grid at each of
these steps. To march the calculations through time, boundary condition data consisting of
meteorological data; inflow rates, temperatures, and constituent concentrations; and outflow rates
are required. These boundary conditions data are assembled as separate input files.

The theoretical basis of the three dimensional model was first presented in Edinger and Buchak
(1980) and subsequently in Edinger and Buchak (1985) under the previous name called
GLLVHT. It provides three-dimensional, time-varying simulations of rivers, lakes,
impoundments, estuaries and coastal water bodies. GEMSS has been peer reviewed and
published (Edinger and Buchak, 1995; Edinger, et al., 1994 and 1997). The fundamental
computations are an extension of the well known longitudinal-vertical transport model that was
developed by J. E. Edinger Associates, Inc. beginning in 1974 and summarized in Buchak and
Edinger (1984). This model forms the hydrodynamic and transport basis of the Corps of
Engineers' water quality model CE-QUAL-W2 (U. S. Army Engineer Waterways Experiment
Station, 1986).

The hydrodynamic and transport relationships used in the GLLVHT are developed from the
horizontal momentum balance, continuity, constituent transport and the equation of state. The
basic relationships are given in Edinger and Buchak (1980, 1985 and 1995). These relationships
have six unknowns (U, V, W - velocities in x, y and z directions, respectively, ri - water surface
elevation, p - density, C,, - constituent n) in six equations with tile momentum and constituent
dispersion coefficients (A,, Ay, A,, D,, Dy, Dj) evaluated from velocities and the density
structure.

In the x and y momentum balances, the forcing terms are the barotropic or water surface slope,
the baroclinic or density gravity slope, the Coriolis acceleration, the advection of momentum in
each of the three coordinate directions, the dispersion of momentum in each of the coordinate
directions and the specific momentum as would apply to a high velocity discharge. The
baroclinic and barotropic slopes are atrived at from the hydrostatic approximation to vertical
momentum and horizontal differentiation of the density-pressure integral by Leibnitz' rule. The
baroclinic slope is seen to be the vertical integral of the horizontal density gradient and becomes
the major driving force for density-induced flows due to discharge buoyancy.

The hydrodynamic equations are semi-implicit in time. The semi-implicit integration procedure
has the advantage that computational stability is not limited by the Courant condition that Ax/At,
Ay/At < (gh.,,) /2 where h,, is the maximum water depth that can lead to inefficiently small time
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steps of integration. Since the solutions are semi-irmplicit (for example, explicit in the constituent
transport and the time lagged momentum terms) the stability is controlled by the Torrence
condition (UAt/Ax., VAt/Ay < I; Ax and Ay are grid sizes in x and y directions, respectively).
Hence, the integration time step can be chosen to realistically represent the details of the
boundary data which is about 15 minutes for tides and up to one hour for meteorological data.

The vertical momentum dispersion coefficient and vertical shear is presently (but not limited to)
evaluated from a Von Karman relationship modified by the local Richardson number, Ri, which
is defined as the ratio of vertical buoyant acceleration to vertical momentum transfer
(Leendertse, 1989). Higher order turbulence closure schemes (two equations k-co second moment
closure model by Mellor and Yamada, 1982) are also included in the module. The longitudinal
and lateral dispersion coefficients are scaled to the dimensions of the grid cell using the
dispersion relationships developed by Okubo and modified to include the velocity gradients of
the velocity field using Smagorinsky relationship. The wind stress and bottom shear stress are
computed using quadratic relationships with appropriate friction coefficients.

A summary of the hydrodynamic model characteristics is given in Table 1.
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Table 1 Features of GEMSS-HDM

III Proert Decito datg
AX, AY, AZ Variable from cell to

cell. Curvilinear
Fit shorelines precisely, provide more refined grid detail where
needed. Each cell has its own orientation for accurate orientation of
winds

Layer/ cell addition Yes Allows adding and subtracting layers over large water surface
subtraction elevation changes. Flooding and drying of tidal flats and marshes.

Interior Boundaries Yes Representation of interior structures such as breakwaters, marinas,
underflow/overflow curtain walls.

Vertical momentum Included. Relaxes Important for draw down at outflow structures, mixing devices, and
Hydrostatic Approx. accurate representation of water surfaces in regions of large

horizontal velocity changes.

Discharge All three directions Used for proper representation of high velocity discharges.
Momentum

Time Stepping Implicit solution over Not limited by the Courant wave speed criterion of At <
Solution all space on each Ax/(gHmax) 0 5 . Typical time step for 3-D baroclinic circulation is

time step. approximately 15 minutes
Coriolis Acceleration Variable with Can do large water bodies with large time steps.

latitude.
Incorporated in
implicit part of the
time step
computations.

Transport Scheme Quickest, Ultimate Better prediction of constituent profiles in regions of sharp changes
Turbulence Closure Higher Order Better description of turbulence in regions of rapid changes in

Schemes bathymetry and around structures. Also at density interfaces.
Wind Speed Variable through Realistic representation of wind events on a water body.

time and across grid
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I Prpry - Decito Advatag
Surface Heat

Exchanqe
Time varying term
by term heat budQet

Accurate representation of diurnal variations in heat exchange.

Linkage to Water Coupled with water More realistic representation of processes taking place.
Quality Models quality models of

different levels of
complexity

Other Supported Sediment transport Additional routines can be included in a modular fashion and run
Routines and Spill Model directly in GLLVHT on a real time basis.

Processes Toxics Model
Intake Entrainment
Model.

Linkage to Water 
Quality Models 

Other Supported 
Routines and 

Processes 

Time varying term 
term heat bud et 

Coupled with water 
quality models of 
different levels of 
com exi 
Sediment transport 
Spill Model 
Taxies Model 
Intake Entrainment 
Model. 

Accurate representation of diurnal variations in heat exchange. 

More realistic representation of processes taking place. 

Additional routines can be included in a modular fashion and run 
directly in GLLVHT on a real time basis. 



The model is built to accept a large number of transport constituents and constituent relationships
depending on the water quality model being used. The list of transport variables available in
GLLVHT to analyze flushing, entrainment, thermal pollution, boundary exchange, etc. is given
below.

* Temperature
* Salinity
" Excess Temperature
• Instantaneous Tracer Dye
* Continuous Tracer Dye

1. MATHEMATICAL FORMULATION

1.1 MODEL DEsCRIPTION

The hydrodynamic and transport relationships used in the GLLVHT are developed from the
horizontal momentum balance, continuity, constituent transport and the equation of state. The
horizontal momentum balances for the horizontal velocity components, U and V in the x- and
y-coordinate horizontal directions, with z taken positive downward are

Z

aU/o-&t =g caz'/ax - g/p z' (a p/cx ) az + fV - C9 UU/cx -OVU/ay -DWU/Dz + SMK

+ aAx(aU/ax)/ax + aAy(aU/ody)/ody + aAz(aUiaz)/Oz (A- .1)

NV/Ot = gOz'/y - g/P z' (ap/0y)aOz - fU - 8UV/O-x - aVV/Oy - a /WV!z + SMy

+ c)A.(aV/cax)/1o + aAy(aV/o-y)/Oy + 8A,(aW/az)/az (A-2)

Local continuity for the vertical velocity component W is

aW/az = - alU/ax - dV/a y (A-3)

Vertically integrated continuity for the surface elevation, z', is
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Local continuity for the vertical velocity component W is 

awlOz = - ou/ax - aV/ay 

Vel1ically integrated continuity for the surface elevation, z', is 
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The constituent transport relationship for n number of constituents (,for example, salinity, dye
and sediment) is

ac,/ = - aUC,,!Cax - aVC,1 -y - DWC,/'z .4- '(D- C'x)/ax

+ a(DOC,,/y)/ay + a(D.aC./&a)/&1 + H1, (A-5)

And, the equation of state relating density, r, to constituents is

P = f (CI,C2,...,Co) (A-6)

These relationships have six unknowns (U, V, W, z', r, C,) in six equations, assuming that the
momentum and constituent dispersion coefficients (Ax, Ay, Az, Dx, Dy, Dz) can be evaluated from
velocities and the density structure.

In the x and y momentum balances, the right-hand terms are successively the barotropic or water
surface slope, the baroclinic or density gravity slope, the Coriolis acceleration, the advection of
momentum in each of the three coordinate directions, the dispersion of momentum in each of the
coordinate directions and the specific momentum as would apply to a high velocity discharge.

The baroclinic and barotropic slopes are arrived at from the hydrostatic approximation to vertical
momentum and horizontal differentiation of the density-pressure integral by Leibnitz' rule. The
baroclinic slope is seen to be the vertical integral of the horizontal density gradient and becomes
the major driving force for density-induced flows due to discharge buoyancy.

The specific momentum terms, SM,, and SMy, are evaluated from the velocity and flow rate of a
discharge into a model cell as Udis*Qdis/(Dx*Dy*Dz) where Dx, Dy and Dz are the model cell
dimensions. The specific momentum is directed vectorially parallel to the direction of the
discharge velocity.

1.2 NUMERICAL SCHEME

The hydrodynamic relationships are integrated numerically, implicitly forward in time, by
evaluating the horizontal momentum balances as

OU/- = goz'/Ox + F,, (A-7)

av/Ot = gaz'/ay + F,' (A-8)

where U, V and z are taken simultaneously forward in time and all the other terms are
incorporated in the forcing functions F, and Fy and are lagged in time. Equations (A-7) and (A-
8) are substituted (either by cross-differentiation or algebraically from the finite difference
forms) into vertically integrated continuity to give the surface wave equation of
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•a-z'tot2+ ga(Haz'/ax)/o&)x + ga(Haz'/Oy)/dy = /lax( z' Fsaz) ± l/,y (z' Fyaz) (A-9)

where z' is the surface displacement and H is the total water column depth. The surface wave
equation has second order derivative in time which makes solving of Equation (A-9) quite
cumbersome. So, the second order time derivative is converted to first order by expanding
52Z'/6t 2 using Equation (A-4).

The computational steps in GLLVHT on. each time step of integration are: (1) to evaluate F., and
Fy from U, V, W, r known frorn the previous time step; (2) to solve the surface wave equation
for new z' for the spatial grid using a modified form of Gauss-Jordan elimination by back
substitution; (3) to solve for new U and V using Equations (A-7) and (A-8); (4) to solve for W
using Equation (A-3); (5) to re-evaluate z' from Equation (A-4) for precision; and, (6) to solve
the constituent relationships, Equations (A-5).

The semi-implicit integration procedure has the advantage that computational stability is not
limited by the Courant condition that Dx/Dt, Dy/Dt < (gh,•,)) 2 where h", is the maximum water
depth that can lead to inefficiently small time steps of integration. Since the solutions are
semi-implicit (for example, explicit in the constituent transport and the time lagged momentum
terms) the stability is controlled by the Torrence condition (UDt/Dx, VDt/Dy < 1). Hence, the
integration time step can be chosen to realistically represent the details of the boundary data
which is about 15 minutes for tides and up to one hour for meteorological data.

There are a number of auxiliary relationships which enter the computations. First, the vertical
momentumrn dispersion coefficient and vertical shear is presently (but not limited to) evaluated
from a Von Karman relationship modified by the local Richardson number, Ri, (the ratio of
vertical buoyant acceleration to vertical momentum transfer) as

A,= kLm 2/2[(oU!8z) 2 + (OV/Caz) 2]112 Exp(- 1.5 Ri) (A-10)

where k is the Von Karman constant; Lin is a mixing length that can be a function of depth;
and, Ri is the local Richardson number. The Richardson. number function is from Leendertse
and Liu (1975). The longitudinal and lateral dispersion coefficients are scaled to the dimensions
of the grid cell using the dispersion relationships developed by Okubo (1971) of

D1 =5.84 x1 0 4(LI)l (A-I l)

where D, is the longitudinal or lateral dispersion coefficient in square meters per second and LI
is the longitudinal or lateral cell dimension in meters.
Wind surface stress enters the relationships for each of the coordinate directions as

A&aU/la L,-WSX (A-12)
and,

A•,OV/z I WSy (A- 13)
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where W(W,) and W(Wy) are surface shear functions of wind speed.
Bottom friction enters the computations through a Chezy friction relationship as

A,.0U/0z 1, = (g/Ch2)U2  (A- 13)
A,c9V/az I1, = (g/C1,)V 2

where CQ is the local Chezy friction coefficient and h is the bottom elevation at which bottom
friction is evaluated.

Transport computation is explicit in time. It is developed so that transport coefficients can be
computed once and used for all constituents during that time step at a given "n", "k" location.
The solution time is not too sensitive to the number of constituents being examined. Constituent
computations are performed using a higher order transport scheme. This scheme uses second
order upwind differencing following the method of Mei and Plotkin (1985). The scheme includes
an adjustment factor to account for "undershoots" and "overshoots" that normally occurs in any
higher order scheme in the presence of sharp gradients. The adjustment factor is computed using
local second order and first order gradients similar to ULTIMATE (1988).

The model is built to accept a large number of transport constituents and constituent
relationships. The basic parameter obtained from the water quality model is 'the constituent flux,
H(n,k,nc). For example H(n,k,4) = -KR4*C(n,k,4)*dxdydz for the decay of constituent 4. Dxdydz
is the volume of the grid cell and KR4 is the decay constant).

2. NUMERICAL CONFIGURATION

2.1 GRID AND COORDINATE TRANSFO.RMATIONS

Rectilinear (quasi-curvilinear) grid for mapping to different detail in different parts of a
waterbody is used in GEMSS. Horizontal grid dimensions changing with depth is also used. The
model domain is a space staggered finite difference grid with elevations and constituent
concentrations computed at cell centers and velocities through cell interfaces. This scheme
facilitates implementation of control volume approach resulting in perfect water balance.

Both Z-level and sigma level methods are used for gridding in the vertical direction. Z-level
allows the use of variable layer thicknesses in the vertical direction and facilitates
implementation of the layer cell add and subtract algorithm for modeling tidal flats; It also
allows the use thicker layers in deeper water. Sigma level model is described in Section 7.

The curvilinear model grid is obtained using GridGen tool ofGEMSS. GridGen is an automated
grid generation tool which is a menu and mouse driven graphical software that allows the user to
develop rectilinear as well as curvilinear coordinates from digitized maps containing shorelines
and bathymetric soundings, transects and contours. These maps are loaded in GEMSS using
widely used shaped file format (.shp, .dbf, .shx, .sbn, .sbx, .prj files) of ESRI. For applications
where no digital maps are available, GEMSS has a unique format .GShp which can be used to
draw waterbodies and specify depths for subsequent gridding. This format is normally used to set
up some simple waterbodies such as rectangular basin etc.
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2.2 WETTING AND DRYING

The basic model variable for water surface elevation, Z, is relative to a local datum at the top of a
fixed horizontal layer, KT. When the water surface rises so that it enters a new layer, the current
thick layer is divided into two, Z is modified and KT is decremented by .1. The reverse action is
taken on falling water surface. When the rising surface floods dry cells, they are also activated
(and deactivated when dried again). Wetting and drying is important to account for tidal flats and
wetlands.

2.3 ARRAY STRUCTURE

Hydrodynamic variables identified by surface cell number "n" and vertical layer "k" as (or
example U(n,k), V(n,k), W(n,k), Az(n,k). Constituent and water quality variables identified with
a water quality constituent number, "nc", as C(n,k,nc). This approach reduces array storage and
simplifies computational loops.

2.4 SOLUTION METHOD

H.DM used a family of fully implicit schemes, either the banded matrix solver (small grids) or
the preconditioned conjugate gradient, successive over relaxation, or modified strongly implicit
methods (large grids). After performing a series of numerical experiments on conventional
problems as well as real world applications, the preconditioned conjugate gradient method is the
ultimate solution method used in HDM because of its less computer storage, CPU time and high
convergence speed.

2.5 SOURCES, SINKS AND SPECIFIC MOMENTUM

Discharges/Intakes (e.g. river inflows, outfalls, marine disposals, thermal intakes and discharges
etc.) are introduced as sources/sinks to the continuity and transport equations; in addition, sub
grid scale jet discharge can be accommodated using a source term for the momentum equations
as discussed in the description section. Sources and sinks for continuity equation are applied
using the flow rate variable Q(n,k) and for transport equations using the constituent flux variable,
H(n,k,nc). Constituent fluxes are also computed from water quality routines.

3. PROGRAM STRUCTURE

3.1 MODEL DESIGN

The unique design of GEMSS gives the user the power of writing adaptation routines to
introduce different initial conditions, time variant boundary conditions, replace existing
algorithms for source and sink computations related to water quality, sediment transport etc. and
nonstandard features or customize the output. In this scheme GEMSS-HDM behaves like a black
box. Efficient routines for specifying input time varying data to the model such as meteorological
data, inflows, discharge loads, time series boundary data using standards formats (e.g., Microsoft
Excel csv format). Separate control switches and input "cards" for hydrodynamics and water quality
constituents. Examples of input cards for hydrodynamics include specifying time of begimning and
ending computations; types of outputs and their starting and ending times and frequencies; location
and characteristics of inflows, discharges and intakes including recirculation coupling; control cards
for water quality routines include in addition specification of rate parameters and specifying
different combinations of constituents that might be required for a particular simulation.
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3.2 INTERFACE TO OTHER MODELS

The design structure of GLLVHT is very flexible to accommodate different three dimensional
water quality models. Examples include 1) EPA's EUTRO and the Corps' CE-QUAL-ICM
(Integrated Compartment Model), sources of water quality kinetics routines.

3.3 PROGRAMMING LANGUAGE AND OPERATING SYSTEM

GEMSS numerical models are written in FORTRAN 90 and developed on Compaq's Visual
Fortran compiler that runs on Windows NT and XP operating systems. We have also developed
add-on tools for GEMSS that takes advantage of multi language programming (e.g. linking
Visual Basic or Visual C++ with FORTRAN) available in Visual Fortran.

4. BOUNDARY CONDITIONS

The model handles a wide variety of boundary conditions through the use of control file
generator module of GEMSS and they are listed below.

1. Fresh water inflows and outflows.
2. Outfall discharges.
3. Water intakes.
4. Powerplant intake and discharges. Specific discharge momentum for high velocity

discharges.
5. Instantaneous dye releases; useful for flushing and each water parcel residence time

computations.
6. Continuous dye releases; useful for dilution computations for wastewater discharges;

screening tool for design scenarios.
7. Intantaneous and continuous oil, chemical and sewage spills.
8. Forced open boundary; option for different types of distribution along the boundary, tidal

elevation amplification factor, tidal elevation lag time.
9. Free open boundary; use of first and higher order derivations of elevation, velocity and

constituents.
10. Radiation boundary; used for elevation, velocity and constituents.
11. Slugging different regions of water body.
12. Interior boundaries for representation of interior structures such as breakwaters, marinas,

weirs, gates, culverts, underflow/overflow curtain walls.
13. Surface precipitation/exchange.
14. Bottom deposition/releases.
15. Re-circulation boundary.
16. Entrainment source and target; used for larval and bio-organisms entrainment

computations in water intakes.
17. Velocity boundary; used when no information is available other than field data from

current meters.
18. Bubblers;
19. Distributed flows; used for representing non-point sources.
20. Grid cell activation/non-activation; quick way to alter the grid pattern.
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5. TRANSPORT SCHEMES

The transport module in GEMSS-SHWET is capable of running in fully explicit to fully implicit
mode in vertical direction while performing explicit computations in the horizontal direction. A
Finite difference scheme is based on control volume (cv) approach. Let's assume transport in 1-
D as shown in figure 1.

Ui-1 Ui

Figure 1 1-D transport schematic

The mass balance based on the CV approach can be written as:

C = C" - (M.ass),,, + (Ma.ass),,, (1)

Massin = (adv), + (Dif)o (2)
Masseur = (adv)E + (Dif)E (3)

(Adv)w = Courw*Crf (4)
(Adv)E = CourE*CQE (5)

Cour UE *dt (6)
dx

Where, Cfw and Cf- are the face concentration values at the west and east cell faces respectively.
Courw and Courý are the courant numbers defined at the west and the east cell faces respectively.
Unlike velocities, concentrations are defined at the cell centers in GEMSS and thus interpolation
needs to be done in' order to calculate the required face concentrations. The various transport
schemes used in GEMSS differ in the interpolation scheme used to calculate these face
concentration.

The transport scheme can also be Explicit or Implicit. In a fully explicit scheme, all the terms
used to calculate the face concentrations are from the current time step while in a fully implicit
scheme the face concentrations are calculated based on the concentrations at the next time step.
Implicit formulation requires solving matrix and thus is computationally expensive. On the other
hand implicit formulation relaxes the time step constraints. In GEMSS, the vertical transport can
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be solved using the implicit scheme. It also allows for different combinations (weightage) of
Explicit-Implicit formulation. This weightage can be specified in the form of two parameters 0,,
and 0. The variable 0, specifies the contribution of implicit formulation for advective transport
in the vertical direction and the variable 0d specifies the contribution of implicit formulation for
diffusive transport. The transport equation in 3 -dimension with implicit and explicit formulation
can thus be written as

cin+l c

ACC _(Adv)Ex +(Adv)y( +(D +(Dif)EX +(l-OOXAdv)EZ +e0 (Adv),z
Af

+ (1- ed XDif)ýz + eS (Dif),z

(7)

Where, (Adv)Ex, (Adv)Ev and (Adv)Ez are the explicit part of the advective fluxes in the x, y and
z directions respectively and (Dif)EX. (Dif)O;y and (Dif)EZ are the explicit part of the diffusive
fluxes in the x, y and z directions respectively. (Adv)iz and (Dif) 1z are the implicit part of the
advective and diffusive fluxes in the z direction.

When 0,a = 0 d = 0, then the transport equation is completely explicit and when 0, = Od = 1, then
the transport equation is completely implicit in the z direction. Note that the transport in x and y
are always solved explicitly. When Oa = Od = 0.55, then the transport scheme is called Crank-
Nicholson in the z direction.

The explicit transport schemes used in GEMSS are:

a) Upwind
b) QUICKEST
c) QUICKEST+ ULTIMATE

5.1 UPWIND SCH E ME

Upwind is the simplest transport scheme of First order with the upstream bias. That is it assumes
that the concentration at the face is equal to the concentration of the grid upstream of the face.
So, if the velocity at the right face is positive (left to right) then the concentration at the right face
is C, and if the velocity at the right face is negative then the concentration at the right face will be
C>,+. Figure 2 shows the choice of these concentration values.

be solved using the implicit scheme. It also allows for different combinations (weightage) of 
Explicit-Implicit fOIl11Ulation. This weigbtage can be specified in the tonn of two parameters 8a 

and ed. The variable ea specifies the contribution of implicit formulation for advective transport 
in the vertical direction and the variable 8d specifies the contribution of implicit fonnulation for 
diffusive transport. The transport equation in 3 -dimension with implicit and explicit fonnulation 
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Where, (Advhx, (Adv)EY and (Adv)EZ are the explicit part of the advective fluxes in the x, yand 
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Nicholson in the z direction. 

The explicit transport schemes used in GEMSS are: 
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c) QUICKEST + ULTIMATE 

5.1 UPWIND SCHEME 

Upwind is the simplest transport scheme of first order with the upstream bias. That is it assumes 
that the concentration at the face is equal to the concentration of the grid upstream of the face. 
So, if the velocity at the right face is positive (left to right) then the concentration at the right face 
is C; and if the velocity at the right face is negative then the concentration at the right face will be 
C+I. Figure 2 shows the choice of these concentration values. 
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Figure 2 1-D transport schematic with face values for UPWIND scheme

For the .East face (E),

If ui > 0 then,
Ctz: Ci
If ui < 0 then,

Cr. = Ci+f

For the West face (W)

If u,., > 0 then,
C= Ci-I

If ui.1 < 0 then,
C,, = Ci

Using these face values, the advective flux is calculated. For the diffusive flux, central
differencing at the cell face is applied. This gives, for the east face, the following expression for
di ffusion:

(Dif)E= a (Ci,0 -C,) (8)

a= D-. dx (9)
(AX)2

where D, is the horizontal diffusion coefficients in x -direction.

5.2 QUICKEST SCHENMF

The QUICKEST (Quadratic Upstream Interpolation for Convective Kinematics with Estimated
Streaming Terms) scheme originally developed by, Leonard (1979) has been extended to three
dimensions and incorporated in GEMSS. Unlike upwind scheme, it is third order accurate and
perfornms well for sharp gradients. Both advection and diffusion are solved using the QUICKEST
algorithm with the diffusion flux calculation based on Spasojevic et. al. (1994). QUICKEST

Figure 2 

For the East face (E), 

IfUj ~ 0 then, 
Cre' Cj 

If Uj ~ 0 then, 
ere =: Cj+1 

For the West face (W) 

If U,_j 2: 0 then, 
Cj"w = Cj_, 

If Uj_j :s 0 then, 
Cfw=C 
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I-D transport schematic with face values for UPWIND scheme 

Using these face values, the advective flux is calculated. For the diffusive flux, central 
differencing at the cell face is applied_ This gives, for the east face, the following expression for 
diffusion: 

where Dx is the horizontal diffusion coefficients in x -direction. 

5.2 QUICKEST SCHEME 

(8) 

(9) 

The QUICKEST (Quadratic Upstream Interpolation for Convective Kinematics with Estimated 
Streaming Tem1s) scheme originally developed by Leonard (1979) bas been extended to three 
dimensions and incorporated in GEMSS. Unlike upwind scheme, it is third order accurate and 
perfonns well for sharp gradients. Both advection and diffusion are solved using the QU[CKEST 
algorithm with the diffusion flux calculation based on Spasojevic et. al. (1994). QUICKEST 



employs a three point upstream biased interpolation scheme to calculate the face concentrations
for the cell. The selection of Upstrearn (U), Current(C) and Downstream (D) cells is according to
the following figure 3

Figure 3 1-D transport schematic with face values for QUICKEST scheme

For the East face (E),

If uI > 0 then,
U=i-l, C=i andD=i1+

If ui < 0 then,
U =i+2, C=i+t andD=I
For the West face (W)

If ui-, > 0 then,
U =i-2, C= i-1 and D=i

If uj.j _<0 then,
U=-i-l,C=i andD=i+1

Using this nomenclature, the concentrations are defined as Cu, Cc and CO for the upstrearn,
current and the downstream cell respectively. Then the face concentration for west face is
written, using QUICKEST interpolation, as

C _,, C +C2- + Courw (C -C ,-1) --'(1-Cour,'ýC,
2 2 6eceo c is,

Similarly for the east face the concentration is,

2*Cc +C,)

(10)

Cfe Cj +Cj+ Coure ((C CJl(Cour2YC2-C +C0 )- 2 - 26
(11)

employs a three point upstream biased interpolation scheme to calculate the face concentrations 
for the cell. The selection of Upstream (U), Current(C) and Downstream (D) cells is according to 
the following figure 3 
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Figure 3 1-0 transport schematic with face values for QUICKEST scheme 

For the East face (E), 

1 f Ui 2: 0 then, 
U = i-I, C = i and D = i+ 1 

If Ui ~ 0 then, 
U = i+2, C = i+ land 0 = i 
For the West face (W) 

lfui-I 2: 0 tben, 
U = i-2, C = i-I and 0 == i 

If Ui-I :s 0 then, 
U = i-I, C = i and D = j+ l 

Using this nomenclature, the concentrations are defined as Cu, Cc and Co for the upstream, 
current and the downstream cell respectively. Then the face concentration for west face is 
written, using QUICKEST interpolation, as 

C =Cj+Ci-I+Courw'(C_C )-~(l-Cour 2\rC -2*C +C) 
fw 2 2 I J-L 6 w }, uc 0 

(10) 
Similarly for the east face the concentration is, 

(I I) 



Using these face concentration, the advective fluxes are calculated in all the three directions. The
diffusive fluxes are given in the form of following equations 1.2 and 13

(Dif),= a,[(Ci _CiJ Courw (CU -2"Cc +CD)l (12)

(Dif)00 aLE(C -C) Cour2 (Cu-2*Cc+C, (13)
2j

5.3 QUICKEST WITH ULTIMATE
The QUICKEST scheme is not monotonous, i.e.,.it produces overshoots and undershoots. Thus
in order to avoid these oscillations, a universal limiter based on Leonard's work (1991) can also
be applied. This limiter is called ULTIMATE (Universal Limiter for Transient Interpolation
Modeling of the Advective Transport Equation) and is applied to each cell faces individually.
The algorithm requires the calculation of the CURV and DEL as defined in the equations 14 and
15

CURV = Co + Cu - 2 *Cc (14)
DEL = C0 - Cu (15)

Depending on the values of CURV and DEL, the ULTIMATE limiter is applied to maintain it
monotonic.

* If ICURVI < 0.6 IDELI, then the face concentration calculated by QUICKEST is
used.

* If CURVJ >IDELI, then C.= Cc.
* Otherwise CR7:1 is computed according to the equation 16

Cc - Cu
CREF = Cu + (17)

Courf

If DEL > 0, chose Cf so that Cc < Cf< ruin [CRFF, CD]

If DEL < 0, chose Cf so that max [Ciul:, C0 ]< Cr < Cc

5.4 EXAMPLE APPLICATION

In order to further illustrate the difference in these algorithms consider a 2-D problem. The
following results are obtained for a simplified reservoir problem with transport only in x and Z
direction. The grid sizes are uniform. The reservoir is subjected to meteorology data and the
results were plotted for different combination of explicit-implicit transport schemes. The results
shown here are for the three explicit schemes with three different combinations of 0, and Od. The
chosen values for 0a (=Od) are 0.00, 0.55 and 1.00. A schematic of the reservoir is shown in figure
4.

Using these face concentration, the advective fluxes are calculated in all the three directions. The 
diffusive fluxes are given in the tonn offollowing equations 1.2 and 13 
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DEL = Co - Cu 
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Depending on the values of CURY and DEL, the ULTIMATE limiter is applied to maintain it 
monotonic. 

• If ICURYI S 0.6 IDELI, then the face concentration calculated by QUICKEST is 
used. 

• IfICURYI2: IDELI, then Cf = Cc . 

• Otherwise CREF is computed according to the equation 16 

C 
Cc -Cu C REF = U + ----='---=­
Courr 
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5.4 EXAMPLE ApPLICATION 
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In order to further illustrate the difference in these algorithms consider a 2-D problem. The 
following results are obtained for a simplified reservoir problem with transport only in x and Z 
direction. The grid sizes are unifoml. The reservoir is subjected to meteorology data and the 
results were plotted for different combination of explicit-implicit transport schemes. The results 
shown here are for the three explicit schemes with three different combinations of 8a and Od. The 
chosen values for 8a (=Od) are 0.00,0.55 and 1.00. A schematic of the reservoir is shown in figure 
4. 



Figure 4 Schematic of 2-D transport problem to illustrate the difference between
various transport schemes

The results for this problem are shown in Figures 5 through 7 using the three transport schemes
and 3 different values of implicit weighting. It is expected that the reservoir will be stratified and
the formation of this stratification (temperature vertical profile) is more realistic when higher
order schemes, QUICKEST or QUICKEST+I-JLTIMATE, are used.

Figure 5 Vertical profile of temperature using UPWIND
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various transport schemes 

The results for this problem are shown in Figures 5 th.rough 7 using the three transport schemes 
and 3 different values of implicit weighting, It is expected tbat the reservoir will be stratified and 
the fom1ation of thi s stratification (temperature vertical profile) is more realistic when higher 
order schemes, QUICKEST or QUICKEST+U LTIMATE, are used . 
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Figure 5 Vertical profile of temperature using UPWIND 



Figure 5 Vertical profile of temperature using QUICKEST

Figure 5 Vertical profile of temperature using QUICKEST with ULTIMATE

The schemne selection should be problem and goal specific. When the focus is on computational
efficiency UPWIND can be used. This computational efficiency is compromised when the higher
order schemes are adopted but they result in much better stratification and also
QUICKESTi ULTI MATE smoothes out any computational overshoots/undershoots.
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Vertical profile of temperature using QUICKEST 
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Vertical profile of temperature usin g QUICKEST with ULTiMATE 

The scheme selection should be problem and goa l speciflc. When the foc lls is on computational 
efficiency UPWIN D can be used. This computat ional effi ciency is compromised when the higher 
order schemes are adopted but they result in much better stratification and also 
QU ICKEST +UL TIMATE smoothes out any computational overshoots/undershoots. 


