

DECOMMISSIONING PLAN SHIELDALLOY METALLURGICAL CORPORATION NEWFIELD, NEW JERSEY REVISION 16: AUGUST 2009

Appendix 19.1 ENVIRONMENTAL REPORT Appendix D-O

Volume 2 of 2

Prepared by

Integrated Environmental Management, Inc. and CTRC Environmental Corporation

APPENDIX D - SELECTED GEOLOGIC/SOIL DATA

,

APPENDIX D - SELECTED GEOLOGIC/SOIL DATA

Select SMC Soil Borings from Remedial Investigation Storage Yard Borings

Geotechnical Test Data for Select Subsurface Soil Samples

Map 4 - Hudson's Branch Exposure Rates (uR/hour)

Map 6 - Uranium-238 Concentrations in Soil, Sediment and Water Samples

Map 7 - Thorium-232 Concentrations in Soil and Water Samples

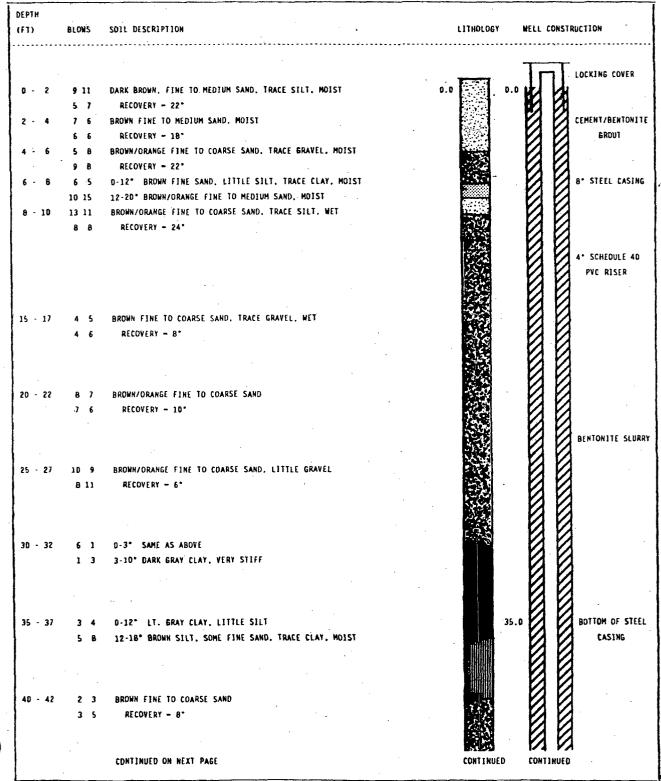
Map 8 - Radium-226 Concentrations in Soil, Sediment and Water Samples

CERCLA Soil Data Summary Sheets - 1990 RI (Tables 23a-d, 24a-d, and 25a-d)

CERCLA Soil Data Summary Sheets – 1996 FS, Volume 1 (Tables 1-7a-e)

Analytical Results for Radiologic Soil, Sediment and Surface Water Sampling -

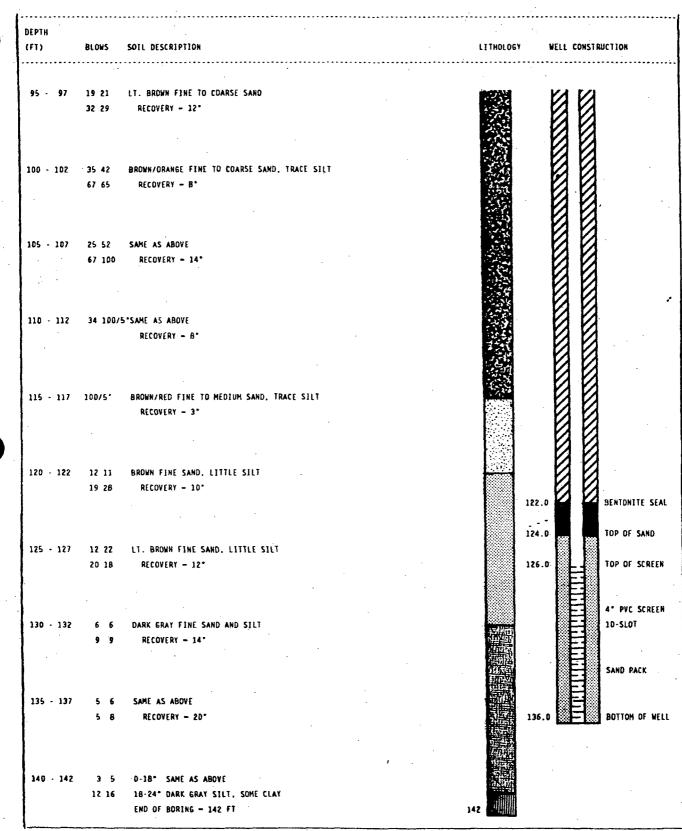
1992 Site Characterization Report (Appendix K)

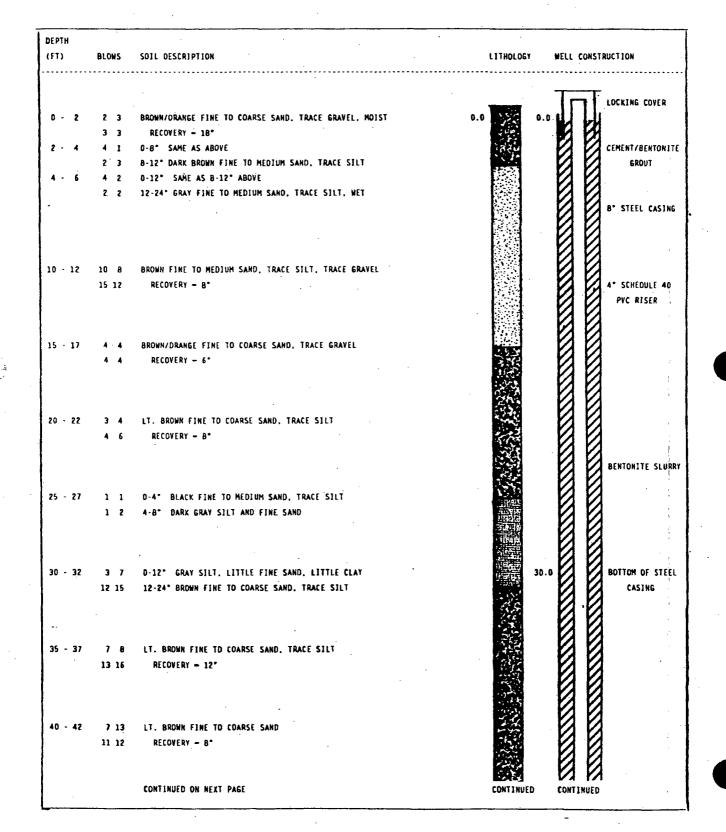


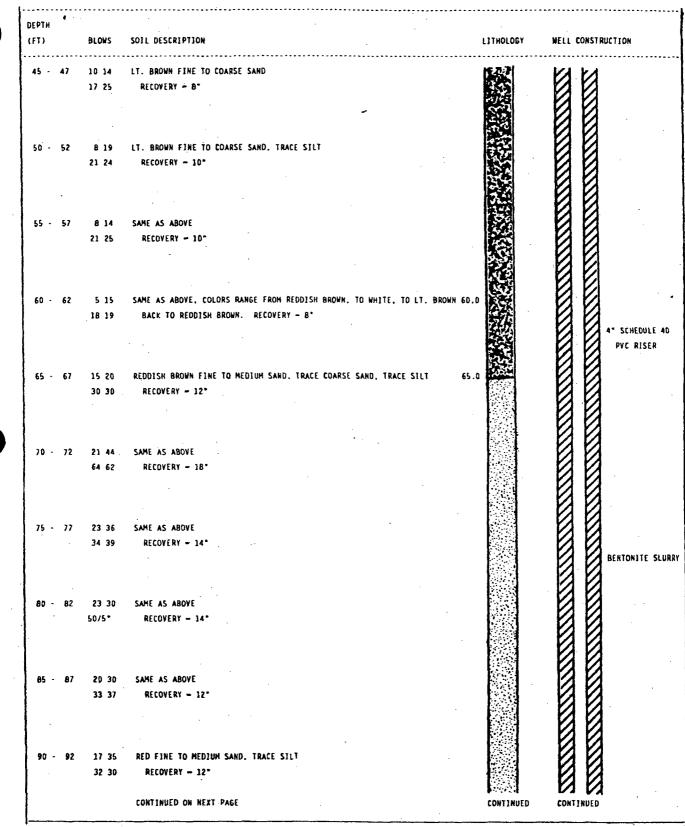
BORING NO.: SC-12D PROJECT NO.: 7650-N51 PROJECT: SHIELD ALLOY CLIENT: SHC LOCATION: NEWFIELD, NJ BORING DEPTH: 142 FT

CONTRACTOR: DRILLERS: TRC INSPECTOR: DRILLING METHOD: GROUND ELEVATION:

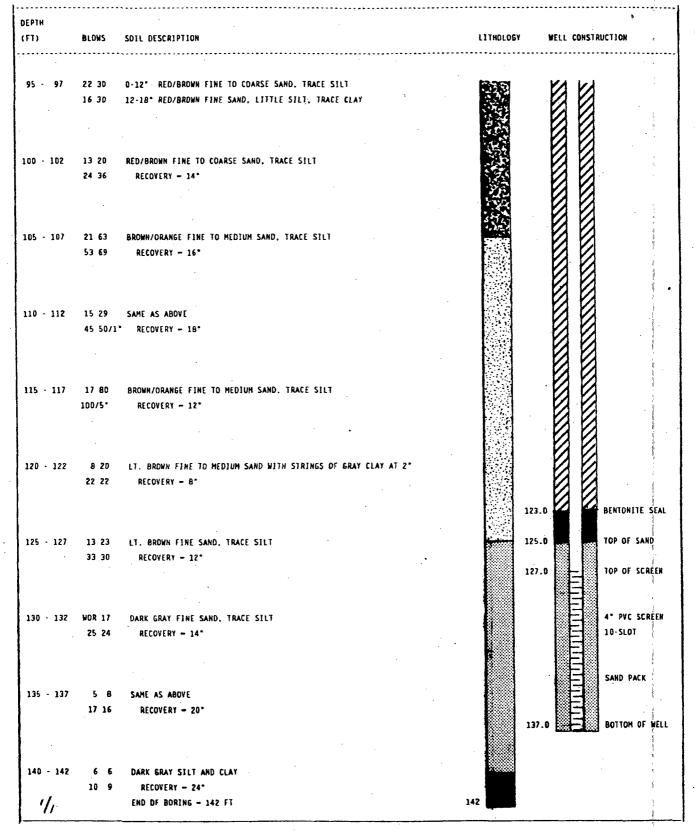
EMPIRE SOILS KENNEY. EDWARDS MCMORROW MUD ROTARY 102.16 INNER CASING ELEVATION: 103.19


DATE STARTED:	11/16/90
DATE COMPLETED:	11/19/90
WATER TABLE LEVEL:	9.0' FT
LOCATION: N	258008.45
£	1901049.83
NJDEP PERMIT NUMBER:	3135226-0


SC-12D PAGE 2 OF 3


SC-12D PAGE 3 OF 3

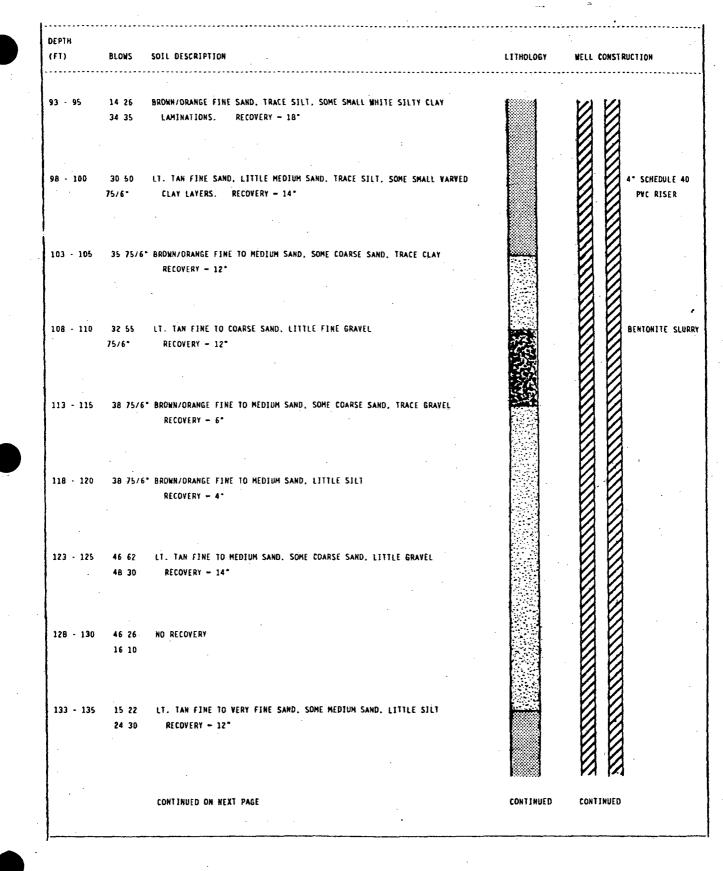
BORING NO.:	SC - 13D	CONTRACTOR:	EMPIRE SOILS	DATE STARTED:	11/20790
PROJECT NO .:	7650-N51	DRILLERS:	KENNEY, EDWARDS	DATE COMPLETED:	11/21/90
PROJECT:	SHIELD ALLOY	TRC INSPECTOR:	MCMORROW	WATER TABLE LEVEL:	5.5 FT
CLIENT:	SHC	DRILLING METHOD:	MUD ROTARY .	LOCATION: N	257662.57
LOCATION:	NEWFIELD. NJ	GROUND ELEVATION:	99.67	Ę	1901067.82
BORING DEPTH:	142 FT	INNER CASING ELEVATION:	101.99	NJDEP PERMIT NUMBER:	3135227-8



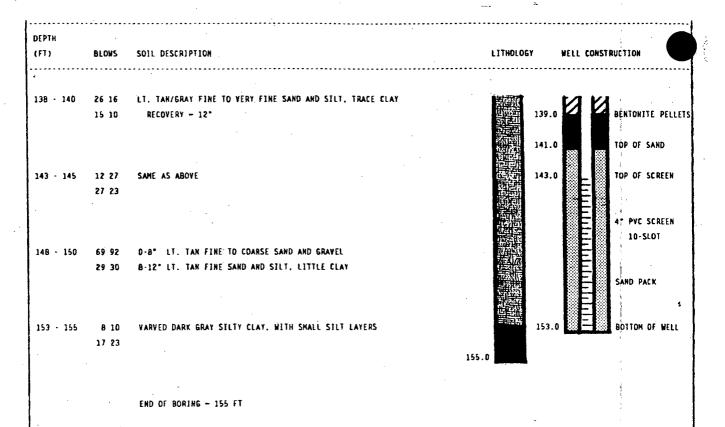
SC-13D PAGE 2 OF 3

SC-13D PAGE 3 OF 3

BORING NO.:	SC-17D	CONTRACTOR:	EMPIRE SOILS	DATE STARTED:	11/14/90
PROJECT NO. :	7650 -N51	DRILLERS:	EMPSON, SNYDER	DATE COMPLETED:	11/28/90
PROJECT:	SHIELD ALLOY	TRC INSPECTOR:	GLEZEN	WATER TABLE LEVEL:	16.0 FT
CLIENT:	SHC	DRILLING METHOD:	NUD ROTARY	LOCATION: N	257933.78
LOCATION:	NEWFIELD, NJ	GROUND ELEVATION:	106.48	ε	1899201.04
BORING DEPTH:	155 FT	INNER CASING ELEVATION:	108.07	NJDEP PERMIT NUMBER:	3135223-5

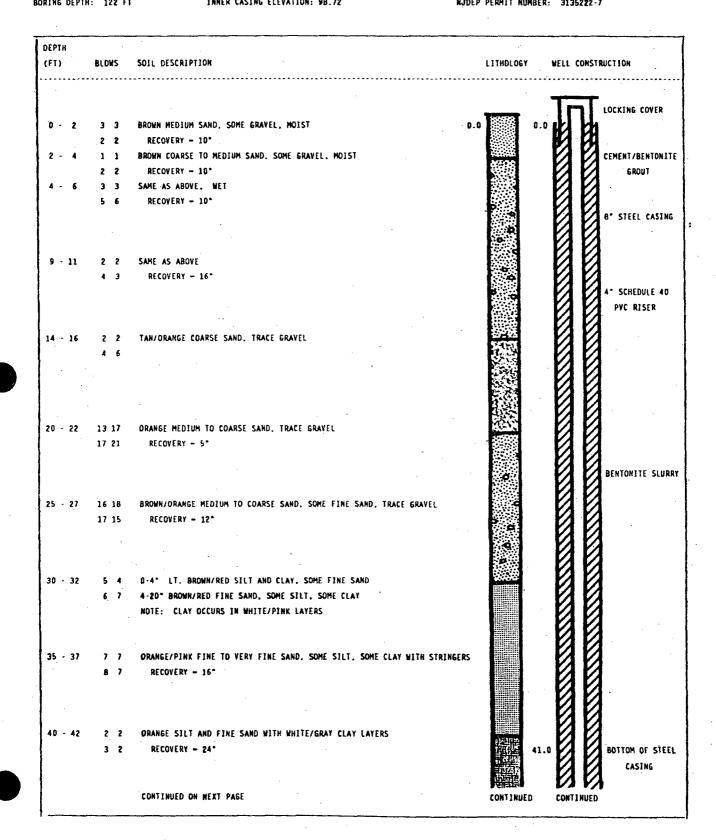

۲.

SC-17D PAGE 2 OF 4


ţ

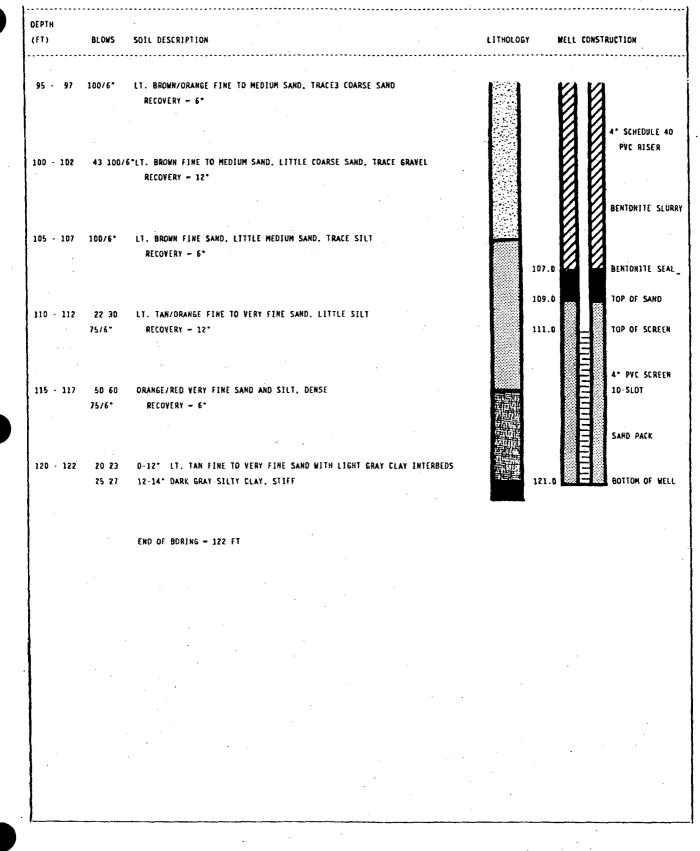
DEPTH (FT)		BLOWS	SOIL DESCRIPTION	LITHOLOGY	WELL CONSTRUCTION
45 - 47	••••	15 35	LT. TAN/PINK FINE TO MEDIUM SAND. TRACE COARSE SAND. TIGHT		KA KA
		65 65	RECOVERY - 5"		
50 - 52	!	12 14	LT. BROWN MEDIUM TO COARSE SAND, LITTLE GRAVEL		
		25 32	RECOVERY - 12"		
				9	
				0	
55 - 53		21 35 100/6• ·	TAN/PINK FINE TO MEDIUM SAND. TRACE COARSE SAND		
		100/6-	RECOVERY - 4*		4° SCHEDULE 40 PVC RISER
60 - 6	2	22 43	LT. TAN/PINK FINE TO MEDIUM SAND. TRACE COARSE SAND. TIGHT		
		44 59	RECOVERY - 12"		
65 - 6	7	18 60	LT. TAN/PINK FINE SAND, TRACE HEDIUM SAND, TIGHT		
		71 60	RECOVERY - 8*		
7D - 7	,	24 26	SAME AS ABOVE. SOME COARSE SAND		
, ,	4	35 32	RECOVERY - 8*		BENTONITE SLURRY
		JJ JL			
	-				
75 · 7	7	35 22	LT. TAN/PINK FINE TO MEDIUM SAND, SOME COARSE SAND, LITTLE GRAVEL		
		28 28	RECOVERY - 8"		
80 - 8	2	18 22 26 26	LT. TAN/PINK FINE SAND. SOME SILT, WITH FINE LAMINATIONS OF WHITE SILT RECOVERY - 14"		
85 - 8	7	6 13	LT, TAN FINE TO VERY FINE SAND, SOME SILT; WITH SMALL WHITE SILT LAYERS		
		16 35	RECOVERY - 14"		
88 - 9	0	18 35	PINK/TAN FINE TO VERY FINE SAND, LITTLE SILT		
		75/6°	RECOVERY - 8*		
			CONTINUED ON NEXT PAGE	CONTINUED	CONTINUED
				·	p

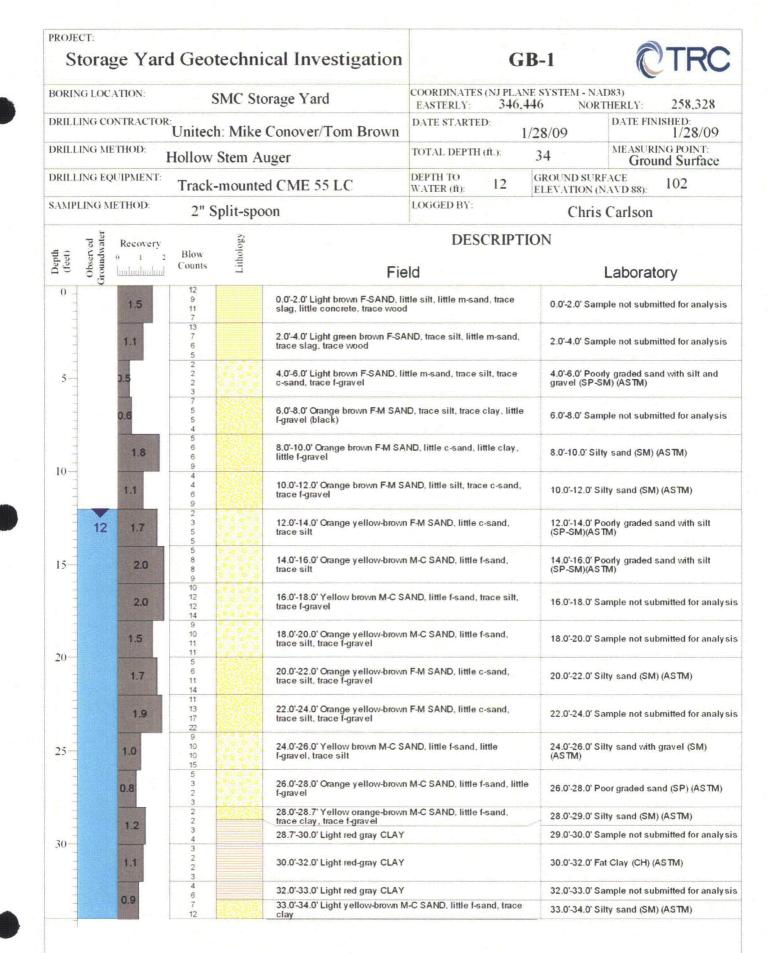
SC-17D PAGE 3 OF 4



SC-17D PAGE 4 OF 4

قىيىدۇ. مەرك


BORING NO .:	SC - 220	CONTRACTOR:	EMPIRE SOILS	DATE STARTED:	11/16790
PROJECT NO .:	7650-N51	DRILLERS:	EMPSON, SNYDER	DATE COMPLETED:	
PROJECT:	SHIELD ALLOY	TRC INSPECTOR:	GLEZEN	WATER TABLE LEVEL:	5.0°FT
CLIENT:	SHC	DRILLING METHOD:	NUD ROTARY	LOCATION: N	257593.05
LOCATION:	NEWFIELD. NJ	GROUND ELEVATION:	96.1B	E	1900417.75
BORING DEPTH:	122 FT	INNER CASING ELEVATION:	9B.72	NJDEP PERMIT NUMBER:	3135222-7



SC-22D PAGE 2 OF 3

РТН Т)	BLOWS	SOIL DESCRIPTION	LITHOLOGY	WELL CONSTRUCTION	е 1,
 5 - 47	33 33	RED/DRANGE MEDIUM TO COARSE SAND, SOME FINE SAND, TRACE GRAVEL		••••••	
5 - 47	48 42	RECOVERY - 18"		ผผ	, j
	70 72	HEAVENT TO AN		8 8	1
				8 10	- 1 × .
				66	
0 - 52	34 43	DRANGE MEDIUM SAND, SOME COARSE SAND, LITTLE FINE SAND, TRACE GRAVEL		6 6	۶
	48 53	RECOVERY - 14"		<u> </u>	· ·
				88	
				- 14 IA	2
				1 212	
5 - 57	8 12	LT. TAN/PINK FINE TO MEDIUM SAND, SOME COARSE SAND, TRACE GRAVEL	100 H	6 6	
	19 24	RECOVERY - 18"		4. SCHEDL	LE 40
				PVC RIS	ER .
				NN -	· · ·
				8 8	k
0 · 62	18 23	ORANGE MEDIUM TO COARSE SAND. SOME FINE SAND, TRACE SILT	1.1.1.1	ผห	,
	26 30	RECOVERY - 14"		ทย -	
				N N	2
				ผผ	
				ผห	ł
5 - 67	13 25	LT. TAN FINE TO MEDIUM SAND, TRACE COARSE SAND, TRACE SILT		N N	
	28 28	RECOVERY - 12"		ทย	
				ผผ	ţ
	•	•		ผผ	
				ผห	ķ
70 - 72		TAN FINE TO MEDIUM SAND. LITTLE SILT		ผผ	b. ∦
	13 13	RECOVERY -12"		BENTONIT	E SLURRY
				N N	i. L
				N N	
				88	
5 - 77	24 43	TAN/PINK MEDIUM TO COARSE SAND. SOME FINE SAND, LITTLE GRAVEL	1000	ผห	
	38 50	RECOVERY - 14°		หห	
				N N	ē
				N N	1
				ผผ	- 10 - T
30 - 82		ORANGE FINE TO MEDIUM SAND, TRACE CLAY		N N	4
	77	RECOVERY - 7*		ทห	5
				ผผ	
				- N N	1
85 - B7	EA 10-	CERDANN MENTIN TO PONDEE CAND. FONE PONNEL LITTLE FINE FINE		ผผ	
o⊃ • 18/		/6"BRDWN MEDIUM TO COARSE SAND, SOME GRAVEL, LITTLE FINE SAND	****?	1 212	1000 - 17 - A S
	• •	RECOVERY - 12*		ทย	ļ
				ผผ	4
				ผผ	ų.
		PERALWATE THE TA BEATH FLER FAIR PART PART FLER		ผผ	2
90 - 92	43 100	/6°BROWN/PINK FINE TO HEDIUH SAND, SOME COARSE SAND		ผผ	1
		RECOVERY - 12°		N N	•
		· · ·	U AN J		i,
		CONTINUED ON NEXT PAGE	CONTINUED	CONTINUED	ì

SC-22D PAGE 3 OF 3

proje S1		e Yarc	I Geot	techn	ical Investigation	G	B-2	CTRC	
BORIN	G LOCA	TION:	S	MC St	orage Yard	COORDINATES (NJ PLA EASTERLY: 346	0.00	AD83) THERLY: 258,372	
DRILL	ING CON	TRACTOR:	Unitech	n: Mike	Conover/Tom Brown	DATE STARTED: 1/28/09 DATE FINISHED: 1/29/09			
DRILL	ING MET	THOD:	Hollow	Stem A	uger	TOTAL DEPTH (ft.):	34	MEASURING POINT: Ground Surface	
DRILL	ING EQU	IPMENT:	Track-	mounte	ed CME 55 LC	DEPTH TO WATER (it): 15	FACE 106 NAVD 88): 106		
SAMPI	LING ME	THOD:	2" S	plit-spo	oon	LOGGED BY: Chris Carlson			
Depth (feet)	serv indw	Recovery 1 2 unhunhunhunh	Blow Counts	Lithology	Fie	DESCRIPT	FION	Laboratory	
0 –			18 13	14.14.14.14L	0.0'-0.5' Grey F-GRAVEL. some	f-sand			
-		1.8	13 14 19 8		0.5'-2.0' Light brown F-SAND, lit	tle m-sand, trace slag	0.0'-2.0' Silty	y sand (SM) (ASTM)	
		1.4	5 4 7		2.0'-4.0' Brown F-SAND, trace c	lay, trace silt, trace f-gravel	2.0'-4.0' Silty	y clayey sand (SC-SM) (ASTM)	
5-		1.6	3 3 5 5		4.0'-6.0' Orange brown F-SAND, f-gravel	trace clay, tace silt, trace	4.0'-6.0' San	nple not submitted for analysis	
		1.2	4 5 4 5		6.0'-8.0' Orange brown F-SAND,	trace c-sand, trace f-gravel	6.0'-8.0' Silty	y sand (SM) (ASTM)	
-		1.5	3 4 5 6		8.0'-10.0' Orange brown F-SAND), trace c-sand, trace f-grave	8.0'-10.0' Po (SP-SM) (AS	oorly graded sand with silt STM)	
10-		0.5	1 1 1 4		10.0'-12.0' Orange brown F-SAN	D, trace m-sand, trace c-sa	nd 10.0'-12.0' V (SW-SM) (A	Vell-graded sand with silt STM)	
-		2.0	15 21 22 11		12.0'-14.0' Orange brown F-SAN trace f-gravel	D, little m-sand, trace silt,	12.0'-14.0' S	Silty sand (SM) (ASTM)	
15		1.7	5 7 9 10		14.0'-16.0' Orange brown F-M S/ trace f-gravel	AND, little c-sand, trace silt	14.0'-16.0' S	ample not submitted for analy	
	15	1.0	7 8 11 9		16.0'-18.0' Orange brown F-M S/ trace f-gravel	AND, little c-sand, trace silt	' 16.0'-18.0' S	ample not submitted for analy	
20		1.2	3 5 5 7		18.0'-20.0' Orange brown F-M S/ f-gravel	AND, little c-sand, little	18.0'-20.0' S (ASTM)	ilty sand with gravel (SM)	
20-		1.0	6 4 4 5		20.0'-22.0' Orange brown F-M S/ f-gravel	AND, little c-sand, little	20.0'-22.0' S	ample not submitted for analy	
		1,3	4 7 7 7		22.0'-24.0' Orange brown M-C S. f-gravel	AND, little f-sand, little	22.0'-24.0' P gravel (SP-5	'oorly graded sand with silt and SM) (ASTM)	
25-		1.0	5 7 6 8		24.0'-26.0' Orange brown M-C S. f-gravel	AND, trace f-sand, trace	24.0'-26.0' S	ample not submitted for analy	
		2.0	4 5 4 6		26.0'-28.0' Orange brown C-SAN sand	ID, some f-gravel, little f-m		Vell-graded sand with silt and SM) (ASTM)	
20),4	12 10 11 12		28.0'-30.0' Orange brown C-SAN sand, trace c-gravel	ID, little f-gravel, little f-m	28.0'-30.0' S	ample not submitted for analys	
30-			4 3		30.0'-30.5' Orange brown M-C S. f-gravel	AND, little f-sand, trace	30.0'-32 0' M	Vell-graded sand with silt	
3		1.5	5 7		30.5'-32.0' Orange gray brown F	M SAND, little c-sand	(SW-SM) (A		
Ę		1.3	2 5 5 6		32.0'-34.0' Orange brown F-M S/	AND, little c-sand	32.0'-34.0' P (SP-SM) (AS	toorly graded sand with silt STM)	

St	torag	ge Yarc	l Geot	techni	cal Investigation	GB	-3	CTRC		
BORIN	G LOC.	ATION:	S	SMC Sto	orage Yard	COORDINATES (NJ PLANE EASTERLY: 347,014	•	AD83) THERLY: 258,151		
DRILL	ING CO	NTRACTOR U	J nitech :	Mike (Conover/Chuck Searles	DATE STARTED: 1/29/09		DATE FINISHED: 1/29/09		
DRILL	ING ME	THOD: I	Hollow	Stem A	uger	TOTAL DEPTH (ft.):	38	MEASURING POINT: Ground Surface		
DRILL	ING EQ	UIPMENT:	Track-	mounte	d CME 55 LC	DEPTH TO WATER (it): 19 GROUND SURFACE ELEVATION (NAVD 88): 110				
SAMPI	LING M	ETHOD:	2" S	plit-spo	on	LOGGED BY:	Chris	Carlson		
Depth (feet)	Observed Groundwater	Recovery 0 1 2 Innhunlund	Blow Counts	Lithology	Fie	DESCRIPTIO	N	Laboratory		
0 -	Ŭ	1.7	11 9 9 11		0.0'-0.5' Gray brown F-SAND, so 0.5'-1.1' Orange brown F-M SAN 1.1'-2.0' Gray brown F-SAND, tra	AND, trace silt, trace f-gravel 0.0'-2.0' Well-graded sand wi				
1		2.0	9 9		2.0'-2.9' Dark gray brown F-SAN		2.0'-2.9' San	nple not submitted for analysi		
-			12 16 9		2.9'-4.0' Dark brown F-SAND, litt	le silt, little clay, little f-gravel	2.9'-4.0' San	nple not submitted for analysi		
5-		1.6	12 12 18		4.0'-6.0' Dark brown F-SAND, litt		4.0'-6.0' Silt	y clayey sand (SC-SM) (ASTN		
		1.7	17 18 22 16		6.0'-6.5' Dark brown F-SAND, litt 6.5'-8.0' Orange brown F-M SAN f-gravel		6.0'-8.0' Cla	yey sand (SC) (ASTM)		
		0.9	14 12 12 13		8.0'-10.0' Dark brown F-SAND, li f-gravel	ttle silt, little clay, trace	8.0'-10.0' Sa	mple not submitted for analys		
10-		2.0	8 7 6 7		f-gravel	5' Orange brown F-C SAND, little silt, little clay, trace 10.0'-12.0' Silty 0' Orange brown F-SAND, trace m-c sand				
		1.5	7 12 10 9			4.0' Orange brown F-M SAND, little c-sand, trace 12.0'-14.0' Sa				
15		1.5	7 9 9 9		14.0'-16.0' Orange brown F-M S/ f-gravel	AND, little c-sand, trace	14.0'-16.0' Sample not submitted for anal			
1-1-1		1.8	10 6 7 9		16.0'-18.0' Orange brown F-M SA f-gravel	AND, little c-sand, trace	16.0'-18.0' S	ilty sand (SM) (ASTM)		
20	10	1.6	6 8 7 7		18.0'-20.0' Orange brown F-SAN f-gravel	D, little m-c sand, trace	18.0'-20.0' S	ample not submitted for analy		
20-	19	1.8	5 5 5 7		20.0'-22.0' Orange brown M-C S/ trace f-gravel	AND, little f-sand, trace silt,	20.0'-22.0' S	ilty sand (SM) (ASTM)		
		1.5	6 11 8 8		22.0'-24.0' Orange brown M-C S/ f-sand	AND, little f-gravel, little	22.0'-24.0' S	ample not submitted for analy		
25		2.0	7 6 8 9		24.0'-26.0' Orange brown M-C S/ f-sand	AND, little f-gravel, little	24.0'-26.0' P gravel (SP-5	loonly graded sand with silt ar SM) (ASTM)		
		1.3	5 8 10 11		26.0'-28.0' Orange brown C-SAN f-gravel	D, little f-m sand, little	26.0'-28.0' S	ample not submitted for analy		
30-		1.6	6 8 10 12		28.0'-30.0' Orange brown C-SAN sand	D, some f-gravel, little f-m		Vell-graded sand with silt and SM) (ASTM)		
		1.6	8 7 7 12		30.0'-32.0' Orange brown C-SAN sand	D, some f-gravel, little f-m	30.0'-32.0' S	ample not submitted for analy		
		1.2	6 6 7 7		32.0'-34.0' Orange brown C-SAN sand	D, some f-gravel, little f-m		Vell-graded sand with silt and SM) (ASTM)		
35-		2.0	6 12 12		34.0'-35.7' Orange brown C-SAN sand	D, some f-gravel, little f-m	34.0'-35.7' S	ample not submitted for analy		
		2.0	14 5 10 7 5		35.7'-36.0' Light yellow brown F I-gravel 36.0'-37.1' Orange brown C-SAN sand 37.1'-38.0' Orange brown F-SAN	D, some f-gravel, little f-m		ample not submitted for analy loorly graded sand with silt STM)		

Project No. 105106.0100.0000

Page 1 of 1

PROJEC St		ge Yarc	l Geot	echni	cal Investigation	GB				
BORING	G LOC/	ATION:	S	MC Sto	orage Yard	COORDINATES (NJ PLANE EASTERLY: 346,77				
DRILLI	NG CO	NTRACTOR:	Initech	Mike	Conover/Chuck Searles	DATE STARTED:	30/09 DATE FINISHED: 1/30/09			
DRILLING METHOD: Hollow Stem Auger						TOTAL DEPTH O	MEASURING POINT:			
DRILLI	NG EQ	UIPMENT:			ed CME 55 LC	DEPTH TO WATER (b): 11 GROUND SURFACE ELEVISION (ALVED SE): 108				
SAMPL	ING MI	ETHOD:		plit-spo		WATER (ft): 11 LOGGED BY:	ELEVATION (NAVD 88): 100 Chris Carlson			
	2		23		- M	DESCRIPTION				
The formation of the fo						DESCRIPTIO	Laboratory			
0	U	1.2	10 12 100/3 		0.0'-2.0' Gray brown F-SAND & S	SILT, little f-gravel (slag)	0.0'-2.0' Silty sand with gravel (SM) (ASTM			
		0	-		2.0'-4.0' NO RECOVERY; Auger	ed through obstruction	2.0'-4.0' No Recovery			
5		0.5	3 5 5 8 2		4.0'-6.0' Gray brown F-SAND & S	SILT, little f-gravel (slag)	4.0'-6.0' Silty sand with gravel (SM) (ASTM			
		1.3	2 3 2 3		6.0'-8.0' Gray brown F-SAND & S	GILT, little f-gravel (slag)	6.0'-8.0' Sample not submitted for analysis			
10-		0.6	3 3 2 2		8.0'-8.2' Black SLAG 8.2'-10.0' Orange brown F-M SAI f-gravel	ND, trace c-sand, trace	8.0'-10.0' Silty sand (SM) (ASTM)			
	11	1.4	2 1 5 5		10.0'-12.0' Orange brown F-M SA f-gravel	AND, little c-sand, trace	10.0'-12.0' Silty sand (SM) (ASTM)			
		1.5	5 6 7 7 5		12.0'-14.0' Orange brown M-C S/ f-gravel	AND, little f-sand, trace	12.0'-14.0' Sample not submitted for analysi			
15-		1.4	5 5 5 6		14.0'-16.0' Orange brown M-C S/ f-gravel	AND, little f-sand, trace	14.0'-16.0' Silty sand (SM) (ASTM)			
		1.3	7 6 6 4		16.0'-18.0' Orange brown F-M S/ trace f-gravel	AND, little c-sand, trace silt,	16.0'-18.0' Sample not submitted for analys			
20-		0.9	5 5 4 5		18.0'-20.0' Orange brown F-M SA trace f-gravel	AND, little c-sand, trace silt,	18.0'-20.0' Poorly graded sand with silt (SP-SM) (ASTM)			
		1.0	4 4 6 3		20.0'-22.0' Orange brown F-M SA trace f-gravel	AND, little c-sand, trace silt,	20.0'-22.0' Sample not submitted for analys			
		0.9	3 5 6 3		22.0'-24.0' Orange brown F-M SA trace f-gravel	AND, little c-sand, trace silt,	22.0'-24.0' Poorly graded sand with silt (SP-SM) (ASTM)			
25-		0.8	5 6 8 4		24.0'-26.0' Orange brown F-M SA trace f-gravel	AND, little c-sand, trace silt,	24.0'-26.0' Sample not submitted for analys			
		1.3	4 6 7 9 4		26.0'-28.0' Orange brown F-M SA trace f-gravel	AND, little c-sand, trace silt,	26.0'-28.0' Poorly graded sand with silt (SP-SM) (ASTM)			
30-		0.7	4 3 5 8 4		28.0'-30.0' Orange brown F-M SA trace f-gravel	AND, little c-sand, trace silt,	28.0'-30.0' Sample not submitted for analys			
		0.8	4 5 6		30.0'-32.0' Orange brown F-M SA trace f-gravel		30.0'-32.0' Poorly graded sand with silt (SP-SM) (ASTM)			
		1.0	6 8 12 8		32.0'-32.5' Orange brown F-M SA trace f-gravel 32.5'-34.0' Orange brown F-SAN		32.0'-32.5' Sample not submitted for analys			
35-		1.3	1 2 2 2		34.0'-36.0' Orange brown F-SAN f-gravel, trace silt	D, trace m-c sand, trace	34.0'-36.0' Silty sand (SM) (ASTM)			
		CONTRACTOR OF CALL	-	CONTRACTOR DATABASE		n an	and a second			

Project No. 105106.0100.0000

Page 1 of 1

S	torage	Yard	I Geot	techn	ical Investigation	GI	8-5	CTRC	
BORIN	G LOCATI	ON:	S	SMC St	orage Yard	COORDINATES (NJ PLANE SYSTEM - NAD83) EASTERLY: 346,649 NORTHERLY: 258,014			
DRILL	ING CONT	RACTOR:	Jnitech	: Mike	Conover/Kinard Lopez	DATE STARTED: DATE FINISHED: 1/29/09 1/30/09			
DRILL	ING METH	^{IOD:} I	Hollow	Stem A	uger	TOTAL DEPTH (ft.):	32	MEASURING POINT: Ground Surface	
DRILL	ING EQUIF	PMENT:	Track-	mounte	ed CME 55 LC	DEPTH TO WATER (ft): 11	GROUND SUI		
SAMPI	LING METI	HOD:	2" S	plit-spo	oon	LOGGED BY:	Chri	s Carlson	
Depth (feet)	serv ndw	ecovery 1 2 huduuluul	Blow Counts	Lithology	Fie	DESCRIPTION Field Laboratory			
0 _	0.0		5 6 50/2		0.0'-2.0' NO RECOVERY; Likely	due to boulder/slag	0.0'-2.0' No	Recovery	
	0.5		100/6 		2.0'-4.0' Gray F-SAND & SILT, s	ome f-c gravel (pulverized)	2.0'-4.0' We sand (GW-4	ell-graded gravel with silt and GM) (ASTM)	
5-	0.0		-		4.0'-6.0' NO RECOVERY; Augen	ed through obstruction	4.0'-6.0' No	Recovery	
	1.7		3 2 2 10		6.0'-8.0' Light brown gray F-SAN trace f-gravel	ID, some silt, some clay,	6.0'-8.0' Sili	ty sand (SM) (ASTM)	
47	1.8		10 11 8 10		8.0'-8.9' Dark gray black F-SANI f-gravel 8.9'-10.0' Orange brown F-M SAI		8.0'-9.0' Sample not submitted for analysis 9.0'-10.0' Silty sand (SM) (ASTM)		
10-	2		10 8 6 5		f-gravel 10.0'-12.0' Orange brown F-M SA f-gravel	AND, trace c-sand, trace		Sample not submitted for analys	
	11 -		8 4 5 5		12.0'-14.0' Orange brown F-M SA	AND, little c-sand, trace	12.0'-14.0' F (SP-SM) (A	Poorly graded sand with silt	
15-	17		7 3 4 5		14.0'-16.0' Orange brown F-M SA f-gravel	AND, little c-sand, trace		Sample not submitted for analys	
	1.9		5 3 5 8 8		16.0'-18.0' Orange brown F-M SA f-gravel	AND, little c-sand, trace	16.0'-18.0' I (SP-SM) (A	Poorly graded sand with silt STM)	
	1		7 5 7 8		18.0'-20.0' Orange brown F-M SA f-gravel	AND, little c-sand, trace	18.0'-20.0' \$	Sample not submitted for analys	
20-	1.2		5 5 7 8		20.0'-22.0' Orange brown F-M SA f-gravel	AND, little c-sand, trace	20.0'-22.0' I (SP-SM) (A	Poorly graded sand with silt STM)	
	1.2		5 7 9 7		22.0'-24.0' Orange brown F-M SA f-gravel	AND, little c-sand, trace	22.0'-24.0' \$	Silty sand (SM) (ASTM)	
25-	1.2		7 6 6 7		24.0'-26.0' Orange brown F-M SA f-gravel	AND, little c-sand, trace	24.0'-26.0' \$	Sample not submitted for analys	
	1.9		4 8 10 10		26.0'-27.5' Orange brown F-M SA f-gravel		26.0'-28.0' S (ASTM)	Silty sand with gravel (SM)	
	2.0		4 5 8		27.5-28.0' Red gray CLAY, trace 28.0-29.0' Orange brown F-M SA f-gravel			Sample not submitted for analys	
30-			8 4 5		29.0'-30.0' Red gray CLAY 30.0'-32.0' Red gray CLAY			Sample not submitted for analys Fat clay with sand (CH) (ASTM)	

Project No. 105106.0100.0000

Page 1 of 1

Boston Atlanta New York

www.geocomp.com/geotesting

May 14, 2009

Ms. Jean Oliva TRC Environmental Corp. 21 Griffin Road North Windsor, CT 06095

Re: SMC Project (GTX-8990)

Dear Ms. Oliva:

Enclosed are the test results you requested for the above referenced project. GeoTesting Express, Inc. (GTX) received seven soil samples from you on April 29, 2009. These samples were labeled as follows:

GB-2 (4-6 ft) GB-2 (14-16 ft) GB-3 (8-10 ft) GB-3 (12-14 ft) GB-3 (18-20 ft) GB-5 (8-9 ft) GB-5 (10-12 ft)

GTX performed the following tests on each of these samples:

Grain Size Analysis (ASTM D 422) with hydrometer Atterberg Limits (ASTM D 4318) USCS Soil Classification (ASTM D 2487)

A copy of your test request is attached.

The results presented in this report apply only to the item tested. This report shall not be reproduced except in full, without written approval from GeoTesting Express. The remainder of the sample will be retained for a period of sixty (60) days and will then be discarded unless otherwise notified by you. Please call me if you have any questions or require additional information. Thank you for allowing GeoTesting Express the opportunity of providing you with testing services. We look forward to working with you again in the future.

Respectfully yours,

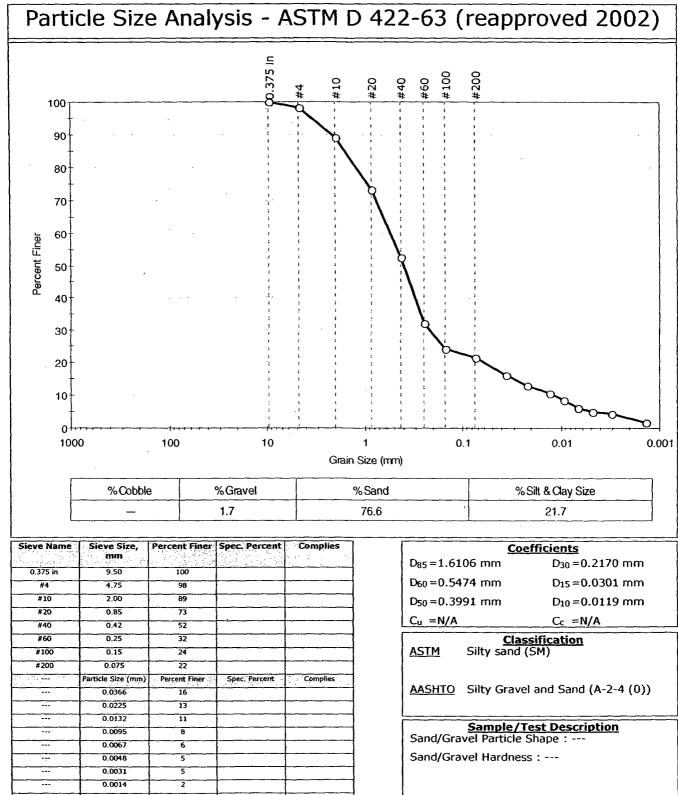
Joe Tomei Laboratory Manager

GeoTesting express a subsidiary of Geocomp Corporation

1145 Massachusetts Avenue Boxborough, MA 01719 978 635 0424 Tel 978 635 0266 Fax

Geotechnical Test Report

May 14, 2009


GTX-8990 SMC Project

Newfield, NJ

Prepared for:

TRC Environmental Corp.

Coo Tooting	Client: Project:	TRC Enviro	onmental Corp.					
GeoTesting	Location:	Newfield,	NJ			Project No:	GTX-8990	
express	Boring ID:			Sample Type:	bag	Tested By:	jbr	
subsidiary of Geocomp Corporation	Sample ID	:GB-2		Test Date:	05/08/09	Checked By:	jdt	
	Depth :	4-6 ft		Test Id:	151750			
	Test Comm	nent:						
	Sample De	scription:	: Moist, dark yellowish brown silty sand					
	Sample Co	mment:						

a subsidiary of Geocomp Corporation

Client:	TRC Envir	onmental Corp.	•			*
Project:	SMC					
Location:	Newfield,	N)			Project No:	GTX-8990
Boring ID:			Sample Type	: bag	Tested By:	cam
Sample ID:	GB-2		Test Date:	05/07/09	Checked By:	n/a
Depth:	4-6 ft		Test Id:	151757		
Test Comm	nent:					
Sample De	scription:	Moist, dark ye	ellowish brown	silty sand		
Sample Co	mment:				······	

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	GB-2		4-6 ft	9	n/a	n/a	n/a	n/a	Silty sand (SM)
			l						

48% Retained on #40 Sieve

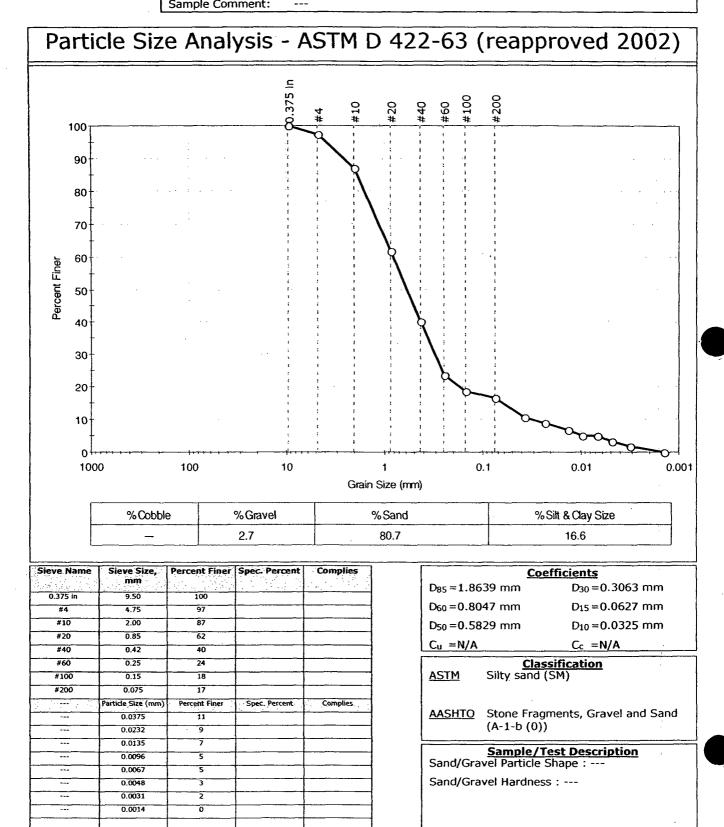
Dry Strength: NONE

Dilentancy: RAPID

Toughness: n/a

The sample was determined to be Non-Plastic

	Client:	TRC Environmental C	orp.			
GeoTesting	Project:	SMC				
	Location:	Newfield, NJ			Project No:	GTX-8990
express	Boring ID:		Sample Type:	bag	Tested By:	cam
subsidiary of Geocomp Corporation	Sample ID	:GB-2	Test Date:	05/12/09	Checked By:	jdt
	Depth :	4-6 ft	Test Id:	151764		
	Test Comr	nent:				
	Sample De	escription: Moist, dar	k yellowish brown	silty sand		
	Sample Co	mment:				


USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
	GB-2	4-6 ft	Silty sand	SM	1.7	76.6	21.7

Remarks: Grain Size analysis performed by ASTM D422, results enclosed Atterbeg Limits performed by ASTM 4318, results enclosed

eo Testing	Client: Project:	TRC Enviro	onmental Corp.					1
	Location:	Newfield,	NJ			Project No:	GTX-89	990
express	Boring ID:			Sample Type	: bag	Tested By:	jbr	
subsidiary of Geocomp Corporation	Sample ID	:GB-2		Test Date:	05/11/09	Checked By:	jdt	
	Depth :	14-16 ft		Test Id:	151751			•
	Test Comn	nent:						
	Sample De	escription:	Moist, brownis	sh yellow silty	sand			
	Sample Co	mmont						

ieo Testing	Client: Project:	TRC Enviro	onmental Corp.	,		~ ~	
	Location:	Newfield,	U.J.			Project No:	GTX-8990
express	Boring ID:			Sample Type:	bag	Tested By:	cam
subsidiary of Geocomp Corporation	Sample ID	GB-2		Test Date:	05/07/09	Checked By:	n/a
	Depth :	14-16 ft		Test Id:	151758		
	Test Comm	ient:					· · · · · · · · · · · · · · · · · · ·
	Sample De	scription:	Moist, brownis	sh yellow silty :	sand		
	Sample Co	mment:				,	

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth.	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	GB-2		14-16 ft	- 11	n/a	n/a	n/a	n/a	Silty sand (SM)

60% Retained on #40 Sieve

Dry Strength: NONE

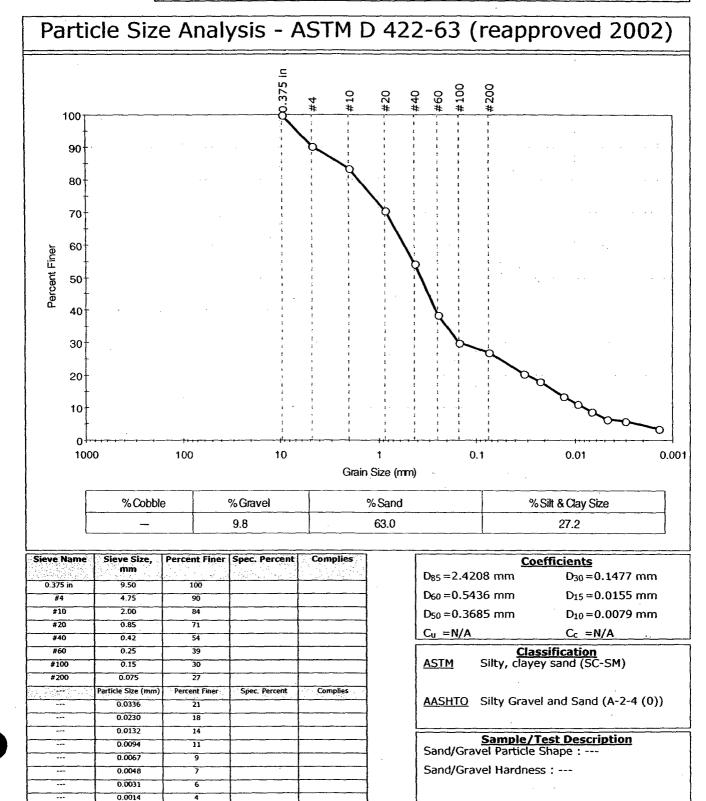
Dilentancy: RAPID

Toughness: n/a

The sample was determined to be Non-Plastic

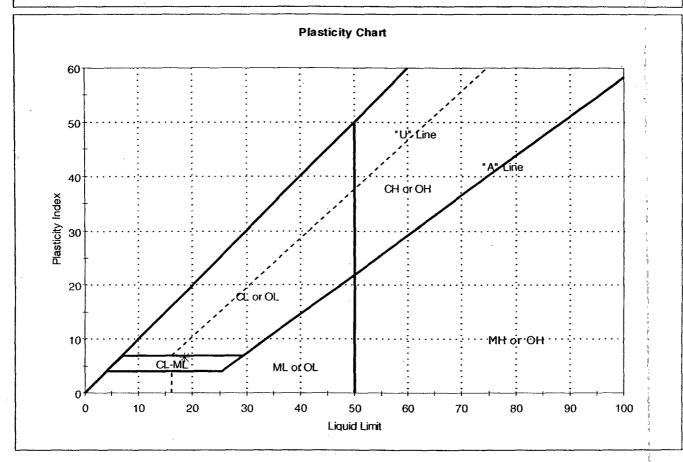
.

GeoTesting		TRC Enviro	onmental Corp.			e		4 1
	Location:	Newfield,	СN			Project No:	GTX-	8990
express	Boring ID: -			Sample Type:	bag	Tested By:	cam	2
a subsidiary of Geocomp Corporation	Sample ID:	GB-2		Test Date:	05/12/09	Checked By:	jdt	ir Ir
	Depth : :	14-16 ft		Test Id:	151765			
	Test Comm	ent:						1
	Sample Des	scription:	Moist, brownis	sh yellow silty	sand			
	Sample Cor	nment:						1
								N D


USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %	
	GB-2	14-16 ft	Silty sand	SM	2.7	80.7	16.6	

Remarks:


Grain Size analysis performed by ASTM D422, results enclosed Atterbeg Limits performed by ASTM 4318, results enclosed

GeoTesting	Client: Project: Location:	TRC Envir SMC Newfield,	onmental Corp.			Project No:	GTX-8990
express	Boring ID:			Sample Type:	bag	Tested By:	jbr
a subsidiary of Geocomp Corporation	Sample ID	:GB-3		Test Date:	05/11/09	Checked By:	jdt
	Depth :	8-10 ft		Test Id:	151752		
	Test Comn	nent:					
	Sample De	scription:	Moist, dark ye	llowish brown	silty, clayey	/ sand	
	Sample Co	mment:					

GeoTesting	Client: Project:	TRC Enviro	onmental Corp	· ·		····•		
No. of Concession, Name	Location:	Newfield,	CN			Project No:	GTX-8	8990
express	Boring ID:			Sample Type:	bag	Tested By:	cam	
a subsidiary of Geocomp Corporation	Sample ID	:GB-3		Test Date:	05/07/09	Checked By:	n/a	i.
	Depth :	8-10 ft		Test Id:	151759			5
	Test Comn	nent:						1
	Sample De	scription:	Moist, dark y	ellowish brown	silty, claye	/ sand		e.
	Sample Co	mment:						

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	GB-3		8-10 ft	9	19	12	7	0	Silty, clayey sand (SC-SM)

Sample Prepared using the WET method

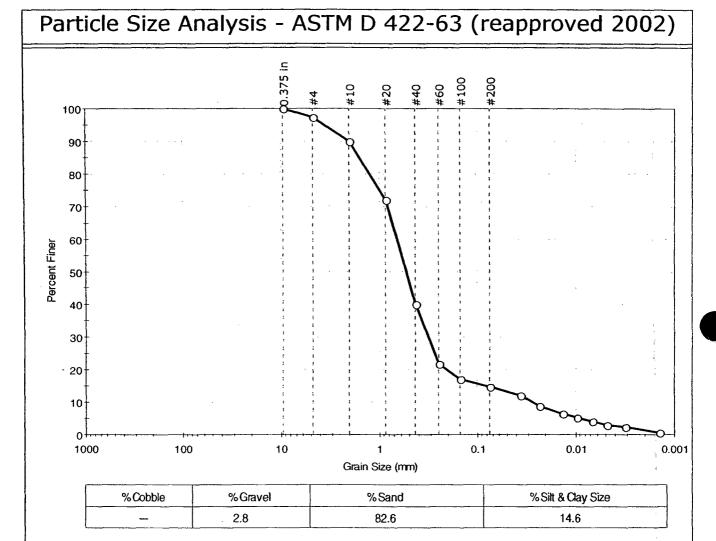
46% Retained on #40 Sieve

Dry Strength: VERY HIGH

Dilentancy: SLOW

Toughness: LOW

GeoTesting	Client: Project:	TRC Enviro	onmental Corp.			~ ~	
	Location:	Newfield,	U)			Project No:	GTX-8990
express	Boring ID:			Sample Type	: bag	Tested By:	cam
subsidiary of Geocomp Corporation	Sample ID:	GB-3		Test Date:	05/12/09	Checked By:	jdt
	Depth :	8-10 ft		Test Id:	151766		
	Test Comm	ent:					
	Sample De	scription:	Moist, dark ye	llowish brown	silty, clayes	/ sand	
	Sample Co	mment:					


USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
	GB-3	8-10 ft	Silty, clayey sand	SC-SM	9.8	63.0	27.2
			[-]

Remarks: Grain Size analysis performed by ASTM D422, results enclosed Atterbeg Limits performed by ASTM 4318, results enclosed

GeoTesting	Client: Project: Location:	TRC Enviro SMC Newfield,	onmental Corp.			Project No:	GT	X-8990
express	Boring ID:			Sample Type:	bag	Tested By:	ibr	
a subsidiary of Geocomp Corporation	Sample ID	:GB-3		Test Date:	05/11/09	Checked By:	jdt	-1
	Depth :	12-14 ft		Test Id:	151753			
	Test Comn	nent:						
	Sample De	scription:	Moist, brownis	sh yellow silty :	sand			
	Sample Co	mment:						

Sieve Name	Sieve Size,	Percent Finer	Spec. Percent	Complies
ang	mm			
0.375 in	9.50	100		
#4	4.75	97		
#10	2.00	90		
#20	0.85	72		
#40	0.42	40		
#60	0.25	22		
#100	0.15	17		
#200	0.075	15		
. A state way	Particle Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0364	12		
	0.0234	9		
	0.0136	6		
	0.0096	5		
	0.0068	4		
	0.0048	3		
	0.0031	2		
	0.0014	1		

C	fficiente
	fficients
D ₈₅ = 1.5765 mm	D ₃₀ =0.3168 mm
D60 = 0.6547 mm	D15 = 0.0830 mm
D ₅₀ =0.5275 mm	D ₁₀ =0.0275 mm
$C_{\rm U} = N/A$	$C_c = N/A$
Class	sification
ASTM Silty sand (
, ,	- -
	ments, Gravel and Sand
(A-1-b (0))	
Sample/Te	est Description
Sand/Gravel Particle S	Shape :
Sand/Gravel Hardness	5:
4	,

GeoT esting	Client: Project:	TRC Enviro	onmental Corp.			·		
Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec.	Location:	Newfield, I	CV			Project No:	GTX-8990	
express	Boring ID:			Sample Type:	bag	Tested By:	cam	1
a subsidiary of Geocomp Corporation	Sample ID	:GB-3		Test Date:	05/07/09	Checked By:	n/a	
	Depth :	12-14 ft		Test Id:	151760			
•	Test Comn	nent:				······································		1
	Sample De	scription:	Moist, brownie	pist, brownish yellow silty sand				
	Sample Co	mment:					<u> </u>	

Atterberg Limits - ASTM D 4318-05

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	GB-3		12-14 ft	6	n/a	n/a	n/a	n/a	Silty sand (SM)

60% Retained on #40 Sieve

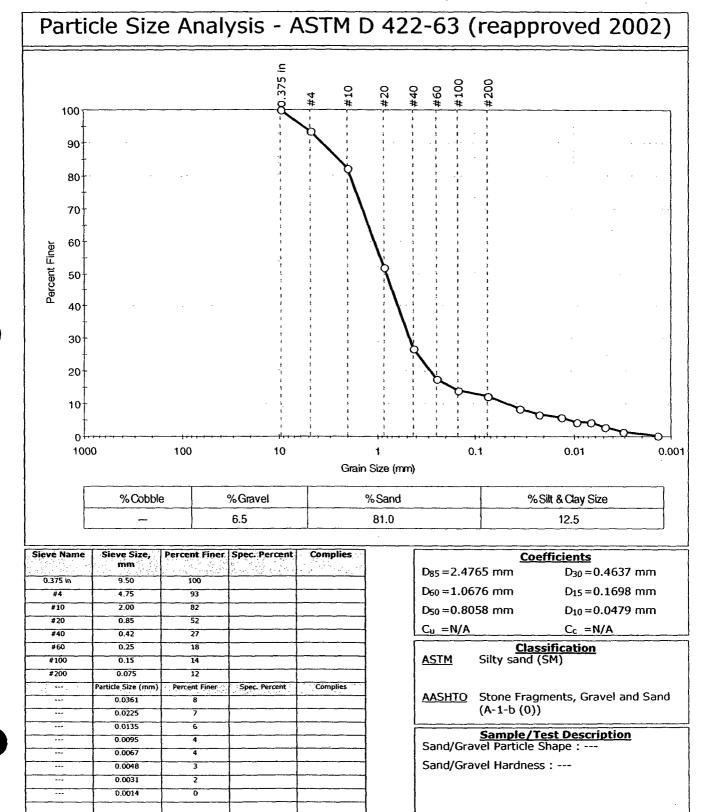
Dry Strength: NONE

Dilentancy: SLOW

Toughness: n/a

The sample was determined to be Non-Plastic

A - T - A - i - A	Client: Project:	TRC Envir SMC	onmental Corp.				
GeoTesting	Location:	Newfield,	NJ			Project No:	GTX-8990
express	Boring ID:			Sample Type:	bag	Tested By:	cam
a subsidiary of Geocomp Corporation	Sample ID	:GB-3		Test Date:	05/12/09	Checked By:	jdt
	Depth :	12-14 ft		Test Id:	151767		
	Test Comn	nent:	<u></u>				
	Sample De	scription:	Moist, brownis	sh yellow silty :	sand		
	Sample Co	mment:					


USCS Classification - ASTM D 2487-06

Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
GB-3	12-14 ft	Silty sand	SM	2.8	82.6	14.6
				Symbol	Symbol %	Symbol %

Remarks: Grain Size analysis performed by ASTM D422, results enclosed Atterbeg Limits performed by ASTM 4318, results enclosed

)

GeoTesting	Client: Project:	TRC Enviro	onmental Corp.			, ^h	
	Location:	Newfield, I	UJ			Project No:	GTX-8990
express	Boring ID:			Sample Type:	bag	Tested By:	jbr
subsidiary of Geocomp Corporation	Sample ID	:GB-3		Test Date:	05/11/09	Checked By:	jdt
	Depth :	18-20 ft		Test Id:	151754		
	Test Comm	nent:					
	Sample De	scription:	Moist, brownis	sh yellow silty s	sand		
	Sample Co	mment:			:		

GeoTesting	Client: Project:	SMC	onmental Corp.					
	Location:	Newfield,	NJ			Project No:	GTX-8990	
express	Boring ID:			Sample Type:	bag	Tested By:	cam	
a subsidiary of Geocomp Corporation	Sample ID	:GB-3		Test Date:	05/07/09	Checked By:	jdt	1
	Depth :	18-20 ft		Test Id:	151761			
	Test Comn	nent:					·····	
	Sample De	escription:	Moist, brownis	sh yellow silty s	sand			
	Sample Co	mment:						

Atterberg Limits - ASTM D 4318-05

Sample Determined to be non-plastic

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	GB-3		18-20 ft	13	n/a	n/a	n/a	n/a	Silty sand (SM)
									i
									4. 1

73% Retained on #40 Sieve

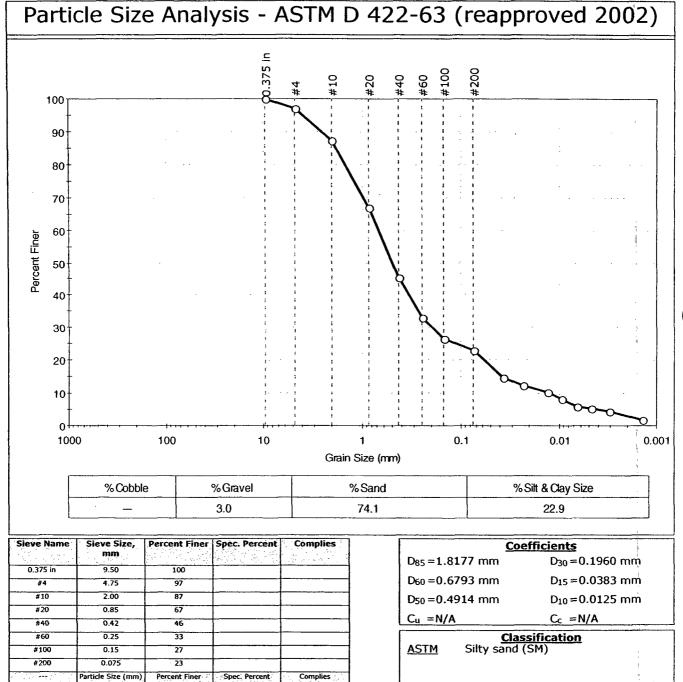
Dry Strength: NONE

Dilentancy: RAPID

Toughness: n/a

The sample was determined to be Non-Plastic

	Client:	TRC Environm	ental Corp.				· · · · · · · · · · · · · · · · · · ·
GeoTesting	Project:	SMC					
	Location:	Newfield, NJ				Project No:	GTX-8990
express	Boring ID:			Sample Type:	bag	Tested By:	cam
a subsidiary of Geocomp Corporation	Sample ID	:GB-3		Test Date:	05/12/09	Checked By:	jdt
	Depth :	18-20 ft		Test Id:	151768		
	Test Comn	nent:					
	Sample De	scription: Mo	oist, brownis	h yellow silty s	and		
	Sample Co	mment:					
	Test Comn Sample De	nent: scription: Mo	•				


USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
	GB-3	18-20 ft	Silty sand	SM	6.5	81.0	12.5
1		1					
	L	L					

Remarks: Grain Size analysis performed by ASTM D422, results enclosed Atterbeg Limits performed by ASTM 4318, results enclosed

	Client:	TRC Envir	onmental Corp	•				
Geo Testing	Project:	SMC						1
	Location:	Newfield,	NJ		·	Project No:	GTX-	8990
express	Boring ID:			Sample Type:	bag	Tested By:	jbr	1
subsidiary of Geocomp Corporation	Sample ID	:GB-5		Test Date:	05/11/09	Checked By:	jdt	
	Depth :	8-9 ft		Test Id:	151755			
	Test Comm	nent:						
	Sample De	scription:	Moist, dark ye	ellowish brown	silty sand			
	Sample Co	mment:						

<u>AASHTO</u> Stone Fragments, Gravel and Sand (A-1-b (0))

Sample/Test Description Sand/Gravel Particle Shape : ---Sand/Gravel Hardness : ---

....

....

0.0373

0.0231

0.0131

0.0095

0.0066

0.0047

0.0031

0.0014

15

13

10

8

6

5

4

2

	Client:	TRC Enviro	onmental Corp.				}
GeoTesting	Project:	SMC					
	Location:	Newfield,	NJ [(N			Project No:	GTX-8990
express	Boring ID:			Sample Type:	bag	Tested By:	cam
a subsidiary of Geocomp Corporation	Sample ID	:GB-5		Test Date:	05/07/09	Checked By:	jdt
	Depth :	8-9 ft		Test Id:	151762		
	Test Comm	nent:					
	Sample De	scription:	Moist, dark ye	llowish brown	silty sand		
	Sample Co	mment:					

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	GB-5		8-9 ft	8	n/a	n/a	n/a	n/a	Silty sand (SM)

54% Retained on #40 Sieve

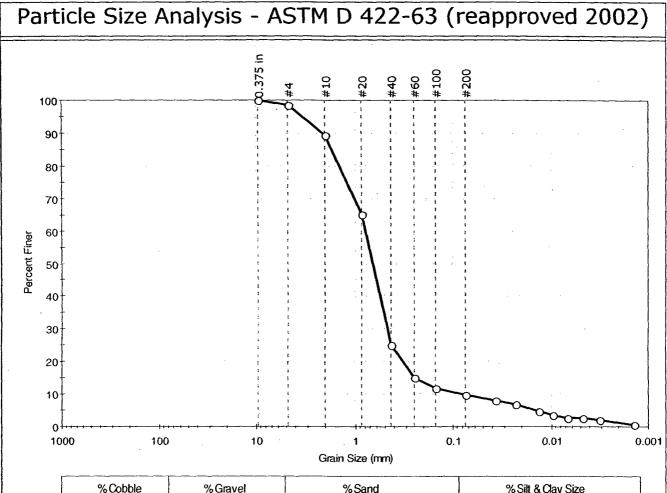
Dry Strength: HIGH

Dilentancy: RAPID

Toughness: n/a

The sample was determined to be Non-Plastic

GeoTesting	Project: SM	C Environmental Corp. IC wfield, NJ			Project No:	GTX-8990	
express	Boring ID:	· · · · · · · · · · · · · · · · · · ·	Sample Type:	: bag	Tested By:	cam	_
a subsidiary of Geocomp Corporation	Sample ID:GB-	-5	Test Date:	05/12/09	Checked By:	jdt	`
	Depth : 8-9	l ft	Test Id:	151769			
	Test Comment						
	Sample Descri	ption: Moist, dark ye	llowish brown	silty sand			
	Sample Comm	ent:					- 1


USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %	
	GB-5	8-9 ft	Silty sand	SM	3.0	74.1	22.9	
								İ.,
L		L		l	L.,			1 .

Remarks: Grain Size analysis performed by ASTM D422, results enclosed Atterbeg Limits performed by ASTM 4318, results enclosed

printed 5/12/2009 11:39:44 AM

GeoTesting	Client: Project: Location:	TRC Enviro SMC Newfield, 1	onmental Corp.			Project No:	GTX-8990
express	Boring ID:			Sample Type:	bag	Tested By:	jbr
a subsidiary of Geocomp Corporation	Sample ID	:GB-5		Test Date:	05/12/09	Checked By:	jdt
	Depth :	10-12 ft		Test Id:	151756		
	Test Com	nent:					
	Sample De	escription:	Moist, brownis	h yellow sand	with silt		
	Sample Co	mment:					

% Cobble	%Gravel	% Sand	% Silt & Clay Size
	1.6	88.8	9.6

	mm	Percent Finer	Spec. Percent	
0.375 in	9.50	100		
#4	4.75	98		
#10	2.00	89		
#20	0.85	65	··	
#40	0.42	25	[
#60	0.25	15		<u> </u>
#100	0.15	12	[······	
#200	0.075	10	<u> </u>	
Pa	article Size (mm)	Percent Finer	Spec. Percent	Complies
	0.0378	8		
	0.0233	7		
	0.0135	5		
	0.0096	4		
	0.0067	3		
	0.0047	3	t	
	0.0031	2		[
	0.0014	1	t	t
	0.0014	1		

Coet	fficients						
D ₈₅ =1.7183 mm	D ₃₀ =0.4629 mm						
D ₆₀ =0.7759 mm	D15=0.2488 mm						
D ₅₀ =0.6531 mm	D ₁₀ = 0.0849 mm						
Cu =9.139	Cc = 3.253						
Class	ification						
	ed sand with silt (SP-SM)						
AASHTO Stone Frage	nents, Gravel and Sand						
(A-1-b (0))							
	est Description						
Sand/Gravel Particle S	паре:						
Sand/Gravel Hardness :							
f							

GeoTesting	Client: Project:	TRC Enviro	onmental Corp.		,			
	Location:	Newfield,	NJ		• • • •	Project No:	GTX-	8990
express	Boring ID:			Sample Type:	bag	Tested By:	cam	
a subsidiary of Geocomp Corporation	Sample ID	:GB-5		Test Date:	05/07/09	Checked By:	jdt	
	Depth :	10-12 ft		Test Id:	151763			
	Test Comn	nent:		3				
	Sample De	scription:	Moist, brownis	sh yellow sand	with silt			
	Sample Co	mment:						

Atterberg Limits - ASTM D 4318-05

Symbol	Sample ID	Boring	Depth	Natural Moisture Content,%	Liquid Limit	Plastic Limit	Plasticity Index	Liquidity Index	Soil Classification
*	GB-5		10-12 ft	12	n/a	n/a	n/a	n/a	Poorly graded sand with silt (SP-SM)

75% Retained on #40 Sieve

Dry Strength: NONE

Dilentancy: RAPID

Toughness: n/a

The sample was determined to be Non-Plastic

GeoTesting	Client: Project: Location:	TRC Envir SMC Newfield,	onmental Corp.	· · · · · · · · · · · · · · · · · · ·		Project No:	GTX-8990
express 🛛 🗍	Boring ID:			Sample Type	: bag	Tested By:	cam
a subsidiary of Geocomp Corporation	Sample ID	:GB-5		Test Date:	05/12/09	Checked By:	jdt
	Depth :	10-12 ft		Test Id:	151770		
	Test Comn	nent:					
	Sample De	escription:	Moist, brownis	sh yellow sand	with silt	•	
	Sample Co	mment:					<u> </u>

USCS Classification - ASTM D 2487-06

Boring ID	Sample ID	Depth	Group Name	Group Symbol	Gravel, %	Sand, %	Fines, %
	GB-5	10-12 ft	Poorly graded sand with silt	SP-SM	1.6	88.8	9.6

.

Remarks: Grain Size analysis performed by ASTM D422, results enclosed Atterbeg Limits performed by ASTM 4318, results enclosed

									5101							r 			
and the second secon	CLIENT						Val.	لى <u>نە</u> ئىلىرىغۇ مەركى			ROJEC	X - 200	and the second	la la seta di s Nel seta di seta	and a second	GeoTesting E	xpress.	nc.	
Company: TRC						Pr	oject Na	ame: Chie	dalla	1 Moto	ling	ral Con	sorat	on, Storage	Yeek.	1145 Massad	husetts	Avenue	
Address: 21 Grifin R.	ead h	Jorth				Ac	ldress:				<u>~</u>	lient Project #	‡:			Boxborough,			
City, State, Zip: Wind Sor	<u> </u>	, 060	<u> 25</u>				ty, State	e, Zip:	Ne	which		77				800 434 106	52 Toll I	Free	
Contact: Larry Ruflic	E-r	nail: QL	in Q1	<u>icsolutia</u>	ms.com	Or	n-site Co	ontact:			E	-mail:				978 635 026	6 Fax		
Phone: 200-146-6225	Fa	x: &@·	198-6	399] [Ph	ione:				F	ax:							
INVOICE (comp	lete if diffe	erent from	client)					Order #4		C	ENER			a light an		2662 Holcon			uite 310
Company: Address:								Order #:	· · · · · · · · · · · · · · · · · · ·			TX Sales Ord ate Shipped:				Alpharetta, C 770 645 657		£ 2	
		•					ipped E									770 645 657			
City, State, Zip:								hipment:				equested Tu				//004003/	0 1 4		
Contact:		nail:					nd Res			LIENT C	FFICE					www.geotesti	na com		
Phone:	Fax	X:					nd Hes	ults Via:	XE.	MAIL	🗌 FAX		AL L] HARD CO					
SOIL *please include boring # and		Ratio Is below	tion	2937)	M D 3080) is below	ar is below	ity	D 422) ter	olidation			Permasbility/ Hydraulic Conductivity (Fixed Wall - ASTM D 2434) (Flexible Wall - ASTM D 6804) please circle one		on I D 698) D 1557)		0) 77 1110) s below	ression		
depth if known	Atterberg Limits #	California Bearing Ratio (ASTM D 1883) *specify conditions below	USCS - Classification (ASTM D 2487)	Density (ASTM D 2937)	Direct Shear (ASTM D 3080) *specify conditions below	Direct Simple Shear (ASTM D 6528) *specify conditions below	Electrical Resistivity (ASTM G 57)	Grain Size (ASTM D 422) Si <u>eve Only /</u> Sieve & Hydrometer please circte one	Incremental Consolidation (ASTM D 2435)	Moisture Content (ASTM D 2216)	Organic Content (ASTM D 2974)	Permaability/ Hydraulic Conduc (Fixed Wall - AST) 5084) please circle one	Ph (ASTM D 4972)	Proctor Compaction (Standard – ASTM D 698) (Modified – ASTM D 1557) please circle one	Specific Gravity (ASTM D 854)	Triaxial Shear (UU - ASTM D 2850) (CU - ASTM D 2850) (CU - ASTM D 4767) (CD - US COE EM1110) *specify conditions below please circle one	Unconfined Compression (ASTM D 2166)		
Semple ID	Atterbe (ASTM	Califorr (ASTM *specifi	USCS-	Density	Direct S	Direct S (ASTM *specif)	Electric (ASTM	Grain S Sieve 0 Sieve 8	Increme (ASTM	Moistur (ASTM	Organic (ASTM	Permaa Hydrau (Fixed \ (Flexibl 5084) please	Ph (ASTM	Proctor (Standa (Modifie	Specific (ASTM	Triaxial (UU - A (CU - A (CD - U (CD - U *specify	Unconfi (ASTM	Other:	Other:
$\frac{\text{Sample ID}}{1 (B.) (4-6)}$	×		\times	<u> </u>				×											
2 (B-2(14-16)																			
3 68.3(8-10)													. <u></u>						
4 (B-3(12-14))	++-																		
5 (-R-3 (18-20)	+			<u> </u>					•••										
			i {											<u> </u>					
$\frac{6}{100} \frac{100}{100} \frac{100}$			\mathbf{V}^{-}																·
7 GB-S(10-12)			4					¥							<u> </u>	· .			
*Specify Test Conditions (Undis			d, Densit	y and n	noisture,	, Test N	ormal L	oads, Test	Confini	ing Stre	sses, et	c.):		······		······································			
* If enough soil	prese	·M	· · · · · · · · · · · · · · · · · · ·		<u></u>														
AUTHORIZE BY SIGNING ANI	DATIN	Gi ta di C		lin an	******			anna iomPathiatha an			1								ti i
SIGNATURE:	\underline{e}			F	PRINT N	IAME: _		has his	ndahl			DATE: 4	28	9_					
Relinquished By:	R	·····			D	ATE: ME:	4/2	2/09	Rec	eived I	Зу:		7,~	P		D	ATE: 4	125 p	9
Relinquished By:			3	<u> </u>	D	ATE:		2	Rec	eived l	By:			t		· · · ·	ME: 7		-
																	ME:]	

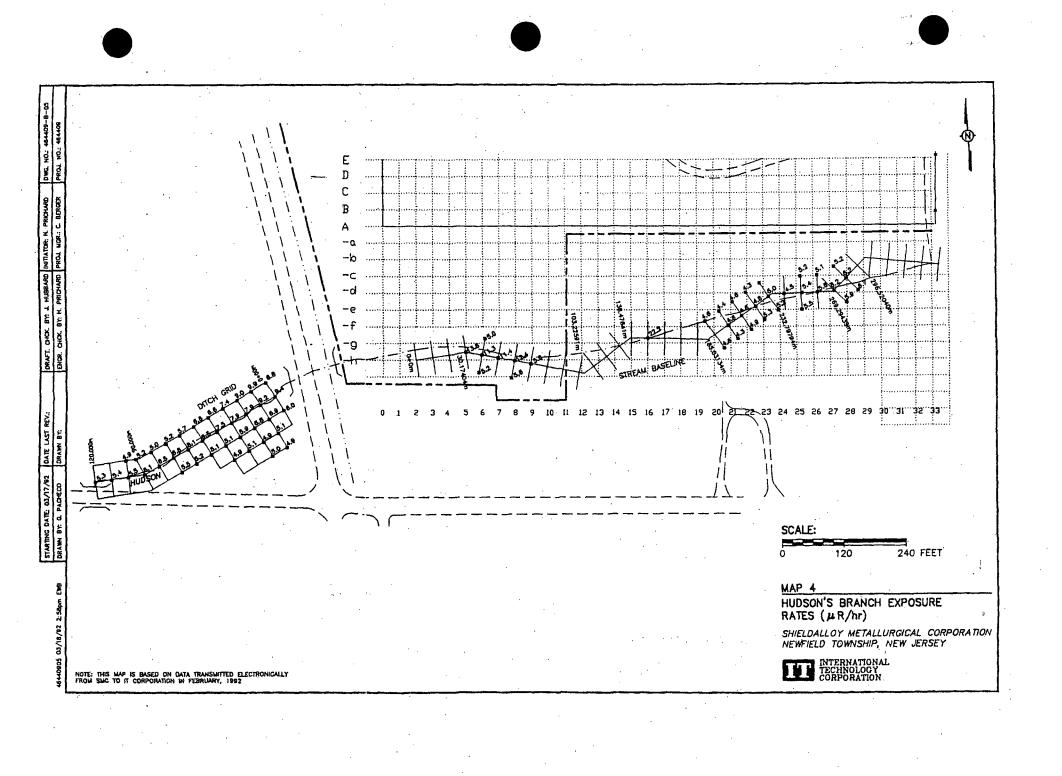
express
a subsidiary of Geocomporation

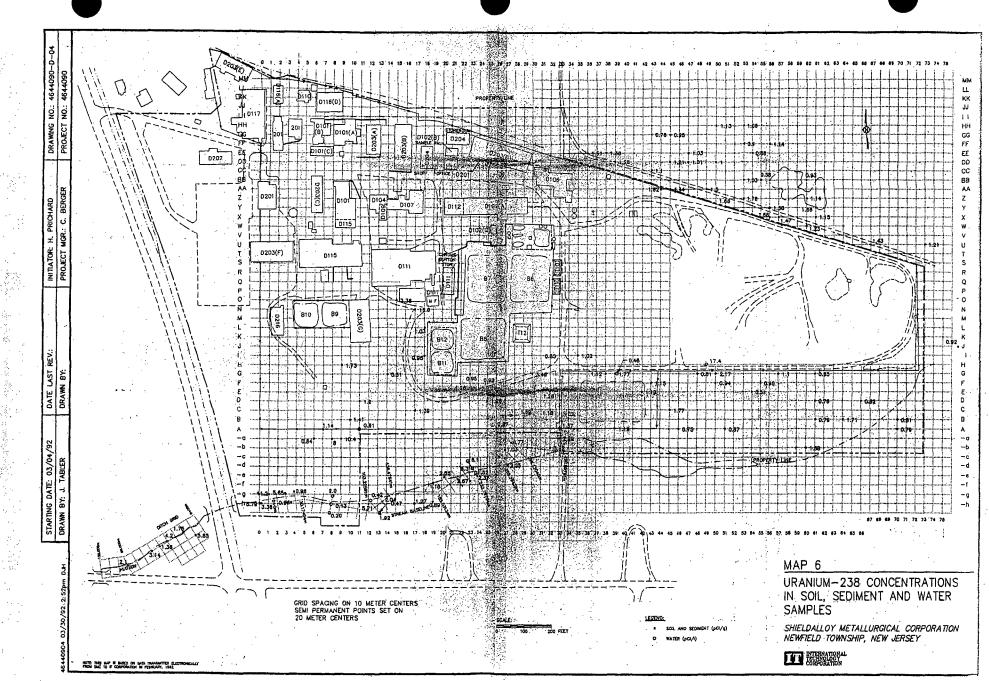
SOIL CHAIN OF CUSTODY & TEST REQUEST

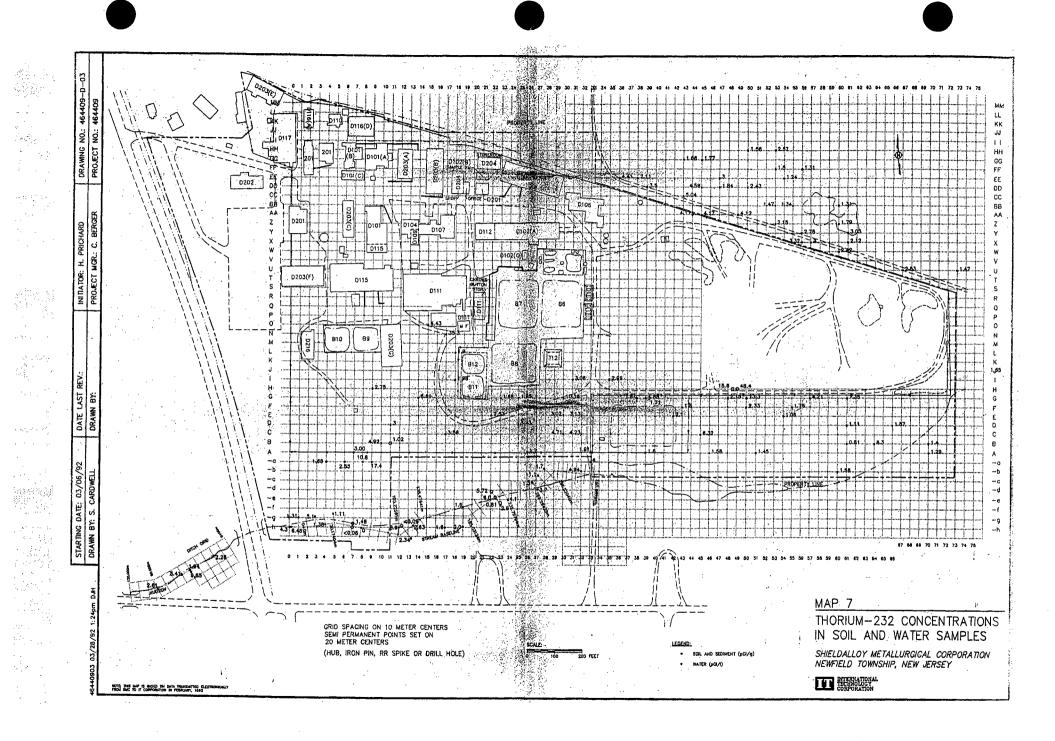
WARRANTY and LIABILITY

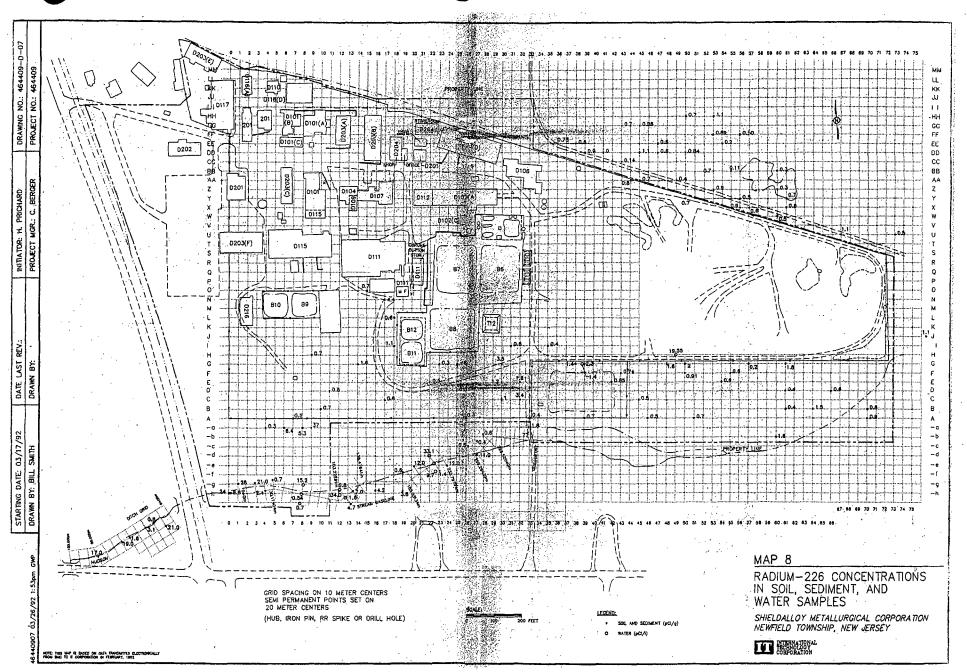
GeoTesting

xpress


GeoTesting Express (GTX) warrants that all tests it performs are run in general accordance with the specified test procedures and accepted industry practice. GTX will correct or repeat any test that does not comply with this warranty. GTX has no specific knowledge as to conditioning, origin, sampling procedure or intended use of the material.


GTX may report engineering parameters that require us to interpret the test data. Such parameters are determined using accepted engineering procedures. However, GTX does not warrant that these parameters accurately reflect the true engineering properties of the *in situ* material. Responsibility for interpretation and use of the test data and these parameters for engineering and/or construction purposes rests solely with the user and not with GTX or any of its employees.


GTX's liability will be limited to correcting or repeating a test which fails our warranty. GTX's liability for damages to the Purchaser of testing services for any cause whatsoever shall be limited to the amount GTX received for the testing services. GTX will not be liable for any damages, or for any lost benefits or other consequential damages resulting from the use of these test results, even if GTX has been advised of the possibility of such damages. GTX will not be responsible for any liability of the Purchaser to any third party.


Commonly Used Symbols

	Commonly	oscu oym	0013
Α	pore pressure parameter for $\Delta \sigma_1 - \Delta \sigma_3$	Т	temperature
B	pore pressure parameter for $\Delta\sigma_3$	t	time
čιυ	isotropically consolidated undrained triaxial shear test	U, UC	unconfined compression test
CR	compression ratio for one dimensional consolidation	UU, Q	unconsolidated undrained triaxial test
C _c	coefficient of curvature, $(D_{30})^2 / (D_{10} \times D_{60})$	ua	pore gas pressure
C _u	coefficient of uniformity, D_{50}/D_{10}	ue	excess pore water pressure
C_{c}	compression index for one dimensional consolidation	u, u _w	pore water pressure
C_{α}	coefficient of secondary compression	ν	total volume
	coefficient of consolidation	Vg	volume of gas
с _v с	cohesion intercept for total stresses	V _s	volume of solids
c'	cohesion intercept for effective stresses	V,	volume of voids
p	diameter of specimen	V.	volume of water
D_{10}	diameter at which 10% of soil is finer	V,	initial volume
10	diameter at which 15% of soil is finer	v	velocity
5	diameter at which 30% of soil is finer	W	total weight
30 D ₅₀	diameter at which 50% of soil is finer	W,	weight of solids
	diameter at which 50% of soil is finer	Ŵ	weight of water
D ₆₀	diameter at which 85% of soil is finer	w	water content
D ₈₅	displacement for 50% consolidation	w _c	water content at consolidation
d _{so}	•	Wf	final water content
d ₉₀	displacement for 90% consolidation	W ₁	liquid limit
d ₁₀₀	displacement for 100% consolidation Young's modulus	Wn	natural water content
E	void ratio	w _p	plastic limit
e	void ratio	ws	shrinkage limit
e _c	initial void ratio	w _o , w _i	initial water content
e _o		α	slope of q _f versus p _f
G	shear modulus	α'	slope of q_f versus p_f '
G _s	specific gravity of soil particles	γı	total unit weight
H	height of specimen	Ya	dry unit weight
PI 	plasticity index	γs	unit weight of solids
·i	gradient	γw	unit weight of water
K.	lateral stress ratio for one dimensional strain	3 3	strain
k	permeability	£ _{vol}	volume strain
LI	Liquidity Index	ε _h , ε _v	horizontal strain, vertical strain
m _v	coefficient of volume change	μ	Poisson's ratio, also viscosity
n	porosity	ч 0	normal stress
Pl	plasticity index	σ'	effective normal stress
Pc	preconsolidation pressure	σ _c , σ',	consolidation stress in isotropic stress system
p	$(\sigma_1 + \sigma_3) / 2$, $(\sigma_v + \sigma_h) / 2$	$\sigma_{\rm c}, \sigma_{\rm c}$	horizontal normal stress
p'	$(\sigma'_{1} + \sigma'_{3})/2, (\sigma'_{v} + \sigma'_{h})/2$	σ _ν , σ' _ν	vertical normal stress
p'c	p' at consolidation	σ, σ,	major principal stress
Q	quantity of flow		intermediate principal stress
q	$(\sigma_1, \sigma_3)/2$	σ ₂	
	q at failure	σ3 τ	minor principal stress shear stress
qi	initial q		friction angle based on total stresses
- Yc	q at consolidation	φ (a ²	friction angle based on effective stresses
S	degree of saturation	φ' «'	residual friction angle
SL	shrinkage limit	φ ' ,	•
Su Su	undrained shear strength	Φuh	φ for ultimate strength
T	time factor for consolidation		

.

.

TABLE 23a SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE CONSTITUENTS DETECTED IN SURFACE SOIL SAMPLES

SAMPLE IDENTIFICATION:	PA34-01	RA58-01	9872-01	DA58-07 1	9459-01	8459-02	PA60-01 I	3460-02
SAMPLE DEPTH BELOW GRADE (INCHES):		6-12		18-24	6-12	18-24	6-12	18-24
SAMPLE DEP IN BEECH SHADE (HONES).	v u		RA58-01	10-24	0-12	10 24	v-12	10-27
					<u></u>			
VOLATILE ORGANICS (PPB)								
CHLOROETHANE		· —	-			-	. —	-
BROMOMETHANE	-	-	-	· —	·	-	-	
VINLY CHLORIDE	-		, <u> </u>	<u> </u>	-	-	_	-
CHLOROETHANE		. 🗕	-	. —	-	-	-	-
METHYLENE CHLORIDE	71 R*	120 BJ*	96 R*	83 BJ*	76 BJ*	88 BJ*	74 BJ*	67 BJ
ACETONE	31 BJ*	32 BJ*	23 N*	23 N*	20 N*	24 BJ* -	19 N*	21 N'
CARBON DISULFIDE	-	-		·		-	-	· -
1,1-DICHLORETHENE	-		-	· <u> </u>	``		-	-
1,1-DICHLORETHANE	-	_	-		-	-	-	_
1,2-DICHLORETHENE (total)	-	-	-	-			-	. –
CHLOROFORM		-	-	. —	-	·	-	
1,2-DICHLORETHANE	·	-	-	-	-	· _	-	
2-BUTANONE		-	-	-			-	
1,1,1-TRICHLOROETHANE	-	-	-	-		·	· . _	-
CARBON TETRACHLORIDE	· -				·	-		-
VINYL ACETATE	-	-	-	-		· <u>-</u>	· —	-
BROMODICHLOROMETHANE	-	-	-	-				-
1,2-DICHLOROPROPANE	÷-,	-	-	-		-	— .	-
cis-1,3-DICHLOROPROPENE	-	_	- '		-	-	· _	-
TRICHLOROETHENE	· 4 J	SΙ	1 J	1 J	· 3J		5 J	-
DIBROMOCHLOROMETHANE	-	· —		_	-		_	-
1,1,2-TRICHLOROETHANE	-	-	-	-		-	-	-
BENZENE			-	-	-	~	_	-
trans-1,3-DICHLOROPROPENE	-	-	-	_	-	· _	-	-
BROMOFORM	-	-	-	-		-	-	-
4-METHYL1-2-PENTANONE	-	-		-	-	-	-	-
2-HEXANONE	-	· —	· _	·	 -	-	_	***
TETRACHLOROETHENE	-	3 J		1 J	4 J	· —	4 J	-
1,1,2,2-TETRACHLOROETHANE	-	-		-	-			-
TOLUENE		2 J	· -	1 J	-	-		-
CHLOROBENZENE	-	-	-	· _	-	-		. –
ETHYLBENZENE		-	-	-	-	· –	_	· !
STYRENE	-		-	-	·	-	-	-
XYLENE (total)	· —	. –	-	. –		-		`_
Total VOCs	35	160	1	86	83	112	83	67

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE/PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND.

TABLE 23b

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF SEMI-VOLATILE CONSTITUENTS DETECTED IN SURFACE SOIL SAMPLES PAGE 1 of 2

SAMPLE IDENTIFICATION:	RA34-01 RA	58-01 RA	72-01 F	A58-02 R	159-01 F	A59-02 R	A60-01 R	A60-02
SAMPLE DEPTH BELOW GRADE (INCHES):			DUPE	18-24		18-24	6-12	
		RA	58-01					
BASE NEUTRAL / ACIDS (PPB)								
PHENOL	-		-		· —		· _	-
bis(2–CHLOROETHYL)ETHER	-	-	-		-		- :	-
2-CHLOROPHENOL	-	-	-		-	. –	-	. –
1,3-DICHLOROBENZENE	-	-	-	· -	. –	-	-	-
1,4-DICHLORBENZENE	-	-	-	_	-	-		-
BENZYL ALCOHOL	i . —		-	-		. –	· <u>-</u> ,	
1,2-DICHLOROBENZENE	 .	-	_	· _	-	_	. –	
2-METHYLPHENOL		-	· _	 '	_	_		· –
bis(2-CHLOROISOPROPYL)ETHER	-	_	-	· _	÷	<u> </u>	_ ,	· · ·
4-METHYLPHENOL	-	-	-	-	-	_	· … /	· · —
N-NITROSO-DI-N-PROPYLAMINE		·	-			_	· _	-
HEXACHLOROETHANE		-	· _		-	-	-	. <u>—</u>
NITROBENZENE	-	-	_	· _	_ `	-		
ISOPHORONE	-	-	-	-	-		 `	-
2-NITROPHENOL	-	_		-	<u> </u>	. —	 .	-
2.4-DIMETHYLPHENOL	· 🗕		-	· _	-			
BENZOIC ACID	-	-	-	_	· _	_	_	-
bis (2-CHLOROETHOXY) METHANE	· _	_	_	-	_	_	- '	_
2,4-DICHLOROPHENOL	-		-		· … ·	_		<u></u>
1,2,4-TRICHLOROBENZENE	. –	-	· _		·	_		
NAPHTHALENE	-	-		-	-	_	_,	_
4-CHLOROANILINE	-				: _	· _	[.]	_
HEXACHLOROBUTADIENE	-	_	_	-	· _	-	[!] .	
4-CHLORO-3-METHYLPHENOL	-	-		_ '	-	_		
2~METHYLNAPHTHALENE	-	_	_	_	_	_		-
HEXACHLOROCYCLOPENTADIENE	_	_	_	_	_	-		
2,4,6-TRICHLOROPHENOL			-					-
2,4,5-TRICHLOROPHENOL		_	· _	_	_	_		_
2-CHLORONAPHTHALENE		_	_	·		-	-	-
2~NITROANILINE		_		-	_	-	í	_
DIMETHYLPHTHALATE	_		_	-	_	_	_	_
ACENAPHTHYLENE			_	· 🗕	_			_
2.6-DINITROTOLUENE			_			`		_

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE/PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND.

TABLE 23b SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF SEMI-VOLATILE CONSTITUENTS DETECTED IN SURFACE SOIL SAMPLES PAGE 2 of 2

SAMPLE IDENTIFICATION:	RA34-01 I						•••••••••••••••••••	
SAMPLE DEPTH BELOW GRADE (INCHES):	0-6	6-12	DUPE	18-24	6-12	18-24	6-12	18-24
			RA58-01					
BASE NEUTRAL / ACIDS (PPB) (continued)								
ACENAPHTHENE	·	-	-	-	-	_	· -	-
1.4-DINITROPHENOL	-	· —	-	. –	-	-	-	-
4-NITROPHENOL	-	-		-			-	-
DIBENZOFURAN	-	-	-	-		-	· _	-
2,4-DINITROTOLUENE	-	-	-		-	-	-	-
DIETHYLPHTHALATE	-	-		-	`~	-		-
4-CHLOROPHENYL-PHENYLETHER	-	-	-		-		-	<u> </u>
FLUORENE			-		-	-	-	-
4-NITROANILINE	-	-		-			÷	
4,6-DINITRO-2-METHYLPHENOL	-	-	·		-	-		-
N-NITROSODIPHENYLAMINE		-	-	-	-		-	•••
4-BROMOPHENYL-PHENYLETHER	-	-		-				-
HEXACHLOROBENZENE	-	-		-		-	-	·
PENTACHLOROPHENOL	-	66 J	40 J	74 J	43 J	71 J	-	-
PHENANTHRENE	-	-		-	. · · —	_	-	-
ANTHRACENE	_			-	-		´	·
DI-n-BUTYLPHALATE	210 JB	220 N*	430 N*	170 N*	220 N*	230 N*	240 N*	110 N*
FLUORANTHENE	-	-		-	-		-	-
PYRENE	· -	52 J	57 J	~	. —	_	-	-
BUTYLBENZYLPHTHALATE	-	-		-	_	-	. –	
3,3'-DICHLOROBENZIDINE	-	-		-		-	· <u>-</u>	
BENZO(a)ANTHRACENE				-	-		-	-
CHRYSENE		52 J		-	-	·	-	
bis(2-ETHYLHEXYL)PHTHALATE	85 J	87 N*	84 N*	150 N*	100 N*	290 N*	51 N*	40 N*
DI-n-OCTYL PHTHALATE		-			-	-		-
BENZO (b) FLUORANTHENE		40 J			-	· _		-
BENZO(k)FLUORANTHENE	-	_	-		-	· _	-	-
BENZO (a) PYRENE	<u> </u>	-	·		-		•	-
INDENO(1,2,3-cd)PYRENE	_	-		-	-	-	-	-
DIBENZO (A, H) ANTHRACENE	-	-	-	-	-		-	
BENZO (g,h,i) PERYLENE	-	-	-	-		-	-	-
TOTAL caPAHs	0	92	52	0	0	0	0	0

B - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE/PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND.

TABLE 23c SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF PESTICIDE/PCB CONSTITUENTS DETECTED IN SURFACE SOIL SAMPLES

SAMPLE IDENTIFICATION:	RA34-01 R	***********************************			*****************************			
SAMPLE DEPTH BELOW GRADE (INCHES):	0-6		DUPE 58-01	18-24	6-12	18-24	8-12	18-24
PESTICIDES/PCB'S (PPB)							•	
ALPHA-BHC	-	-	-	. –	_		. — .	-
BETA-BHC	-	_	_	-		-		
DELTA-BHC	-	-	-	-	-		-	
GAMMA-BHC(LINDANE)	-	-	-	-	-	-	- :	
HEPTACHLOR		-	-	-	-		— :	
ALDRIN	-		-	-	-	-		
HEPTACHLOR EPOXIDE	-	-	-	-	-	· <u>-</u>	. – .	-
ENDOSULFANI	-	-	-		-	-	-	-
DIELDRIN		-	_	-		- ,	<u> </u>	-
4,4-DDE	-	_	-	-	-	-	-	. –
ENDRIN	-		-	-	-	-	-	
ENDOSULFAN II	-	-	-	-	-	-	- 1	
4,4-DDD	_		-	-	-	-		-
ENDOSULFAN SULFATE	_	-	-	-	· -	-	-	-
4,4-DDT	-	-	_	_	_	· — ·	_ ¹	_
METHOXYCHLOR	-	_	_	-	<u> </u>	_	_	-
ENDRIN KETONE		. –			_		- ·	•
ALPHA-CHLORDANE	-				-	_	·	
GAMMA-CHLORDANE	_	-	-	-		-	-	· _
TOXAPHENE	-	-	-	-	_		<u> </u>	-
AROCLOR-1016	_	-	-	_	-	-	·	·
AROCLOR-1221	-	_	-	-	-	-	·	-
AROCLOR-1232	_	-		_	_	-		-
AROCLOR-1242	_	_	-	-	-	_	_	+
AROCLOR-1248	1900	—	-	. —		_ ·	1 - C	_
AROCLOR-1254	1500 J	-			-		<u> </u>	
AROCLOR-1260	-	·	_	_		_	- ł	

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

TABLE 23d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC CONSTITUENTS DETECTED IN SURFACE SOIL SAMPLES PAGE 1 OF 8

SAMPLE IDENTIFICATION: SAMPLE DEPTH BELOW	HA01-01 0-6	0-6	0-6	RA04-01	0-6	HA06-01	HAU7-01 0+6		
	0-6	0-0	U-D	0-0	V-6	0-0	0+B	0-6	0-6
GRADE (Inches)		<u></u>			<u></u>	<u> </u>			
INORGANICS (PPM)						• •			
ALUMINUM	3080	3120	3760	3920	7260	1500	4130	3140	3230
ANTIMONY	-	· -	-	· ·		÷	-		
ARSENIC	1.8 B	1.6 B	3.1	2.7	4.5	1 B	1.7 B	1.8	1.6 B
BARIUM	16.6 B	12.4 B	19.9 B	24.3 B	57.8	15.2 B	14.6 B	15.1 B	11.9 B
BERYLLIUM	. –	· -			1.4	-	-	0.27 B	0.72 B
CADMIUM	· _	· –	-	_	-	-	-	-	-
CALCIUM	121 B	66.2 B	210 B	186 B	750 B	431 B	166 B	826 B	394 B
CHROMIUM	2.1 B	2.6 B	5.1	12.2	29.7	36.2	54.7	11.6	5.7
CHROMIUM VI	-	· <u> </u>	-	-	·	-	-	-	-
COBALT	-	.	-	-	1.7 B	-	-	_	1.8 B
COPPER	17.2	6.1	39.5	19.7	8.6	5.5 B	2.8 B	4.0 B	5.1 B
IRON	5340	4080	7290	8010	10300	1790	3630	4050	6160
LEAD	15.1	11.3	49.2	93	76.4	49.4	8.7	20.3	10.4
MAGNESIUM	135 B	115 B	114 B	221 B	572 B	202 B	188 B	392 B	251 B
MANGANESE	68.4	41.3	24.1	37	26.6	102	54.8	214	49.3
MERCURY	-	0.52	0.24	0.23	0.27	0.52	0.29	0.45	0.11
NICKEL	-	_	3.9 B	7.5 B	26.9	9.0 B	2.4 B	5.9 B	6.7 B
POTASSIUM	-	-		· -	516 B	-	294 B	218 B	262 B
SELENIUM	-			0.44 B	-	-	-	_	-
SILVER	-	-	. —		-	_	-		-
SODIUM	29.8 B	43.4 B	42.4 B	50.6 B	171 B	36.9 B	42.9 B	73.8 B	82.1 B
THALLIUM	-		-				-	-	-
VANADIUM	6.2 B				203	36.4	20	34.5	124
ZINC	13.7	24.9	20.4	27.8	31.1	22.5	13.5	28.1	17.1
CYANIDE	-	-	_	-		_	-	_	-
BORON	-	-	-		-	-	-	_	-
NIOBIUM		-	-	· <u> </u>		-		-	-
STRONTIUM	-			· _		. –	· —		-
TITANIUM	79.3	73.9	106	127	159	. 78.1	88.6	99.6	112
ZIRCONIUM	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE, THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

'I' - CHROMIUM +6 VALUE IS THE RESULT OF WATER LEACH METHOD

N/A -- NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMIT

TABLE 23d

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC CONSTITUENTS DETECTED IN SURFACE SOIL SAMPLES PAGE 2 OF 8

SAMPLE IDENTIFICATION:		RA11-01							
SAMPLE DEPTH BELOW	0-6	06	0-6	0-6	0-6	0-6	0~6	0-6	0-6
GRADE (Inches)									
INORGANICS (PPM)		•							
ALUMINUM	2410	2300	37400	7120	8720	1550	4940	4340	4950
ANTIMONY	-	-	-	·	-	-	-	. –	
ARSENIC	1.7 B	3.1	4	6.2	4.2 B	0.67 B	1.1 B	2.1	3.1 B
BARIUM	9.6 B	44.2 B	739	56.3 B	182	6.3 B	15.1 B	8.6 B	11.5 B
BERYLLIUM	0.17 B	2.1	60.1	6.8	12.8	-	0.89 B	0.40 B	0.39 B
CADMIUM		-	5.3	-	1.6	-	-	-	-
CALCIUM	164 B	1400 B	7320	3130	3670	90.7 B	923 B	127 B	106 B
CHROMIUM	38	45.1	5870	123	218	6.1	8.2	18.7	3.1
CHROMIUM VI			- !*	0.38 !*	- !*	·	-	0.12	0.33
COBALT	-	_	87.1	3.1 B	19.5	-	2.1 B	1.3 B	2.1 B
COPPER	2.0 B	5.5 B	887	17.6	33.6	1.1 B	3.0 B	1.4 B	1.5 B
IRON	2530	5750	32300	12000	9050	1890	7790	9230	13900
LEAD	11.3	40.8	760	319	257	3.5 B	9.8	6.4	8
MAGNESIUM	155 B	1720	4380	2980	3680	111 B	454 B	168 B	139 B
MANGANESE	62	71	1680	354	1110	36.8	106	21.7	19
MERCURY	0.26	-	0.51	0.44	0.17	-	-	-	-
NICKEL	3.7 B	17.8	3360	90.4	1290	3.8 B	15.7	5.1 B	6 B
POTASSIUM	208 B	480 B	1040 B	845 B	257 B	-	305 B	-	245 B
SELENIUM	-	-		-	0.51 B	-	_	-	-
SILVER	-	-	-	-	_	-	· _	_	-
SODIUM	29.3 B	184 B	349 B	218 B	163 B	17.8 B	33.1 B	34.8 B	24.6 B
THALLIUM	-	-	-	-	-	_	-	-	-
VANADIUM	21.6	403	12100	1360	2560	24.2	131	34.4	20.8
ZINC	9.9	56.5	1310	87	355	4.3	14.3	18.4	6.1
CYANIDE		_	-	-	-	-	-	-	· -
BORON	-	. –	N/A	-	_	N/A	-	-	-
NIOBIUM	-	-	N/A	<u></u>	81.2	N/A	-	-	
STRONTIUM	-	-	N/A	-	30.2	N/A	-		
TITANIUM	70.3	51.5	N/A	197	197	N/A	103	57.8	61.8
ZIRCONIUM	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE, THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

'I' - CHROMIUM +6 VALUE IS THE RESULT OF WATER LEACH METHOD

N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMIT

TABLE 23d

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC CONSTITUENTS DETECTED IN SURFACE SOIL SAMPLES PAGE 3 OF 8

SAMPLE IDENTIFICATION:	RA19-01			7A22-01 I	RA23-01 I	RA24-01	RA25-01 I	7A26-01	RA27-01
SAMPLE DEPTH BELOW	0-6	0-6	06	0-6	0-6	0-6	0-6	0-6	0+6
GRADE (Inches)									
INORGANICS (PPM)							. •		
ALUMINUM	2430	1970	3430	3740	7950	2260	2710	4170	5360
ANTIMONY	-		-	-	-	-	-	_	
ARSENIC	1.9 B	1.2 B	1.5 B	1.3 B	4.4	1.1 B	1.1 B	5	1.3
BARIUM	10.2 B	11.2 B	11.7 B	26.8 B	24.4 B	9.6 B	18.5 B	25.5 B	26.5 B
BERYLLIUM	-	-	0.95	3.3	8.9	-	0.46 B	1.8	2.3
CADMIUM	-	-	-	·	-	·	-	-	-
CALCIUM	594 B	996 B	616 B	1440	8650	402 B	828 B	563 B	574 B
CHROMIUM, TOTAL	6.6	3.8	8.9	51.4	102	7.6	8.1	16.3	57.6
CHROMIUM VI	-	-	-	0.30	0.96 !*	·	<u> </u>	-	
COBALT	-	-	1.3 B	2.1 B	2.9 B		_	3.6 B	3.4 B
COPPER	3.9 B	6.2	4.1 B	10.9	9.1	3 B	2.5 B	5.3	12.2
IRON	2860	2150	4400	4650	3890	2620	3570	12300	6620
LEAD	26.5 B	9.8	8.7	12	98.9	10.3	26.1	15 B	19.3 B
MAGNESIUM	111 B	150 B	1890	1090	14900	171 B	361 B	484 B	454 B
MANGANESE	42.9	47.4	39.3	408	100	77.9	123	164	591
MERCURY	0.09	0.41	-	-	· <u> </u>	0.12	0.14		-
NICKEL	· _	<u></u>	8.3	91.5	189	3.5 B	9.1	29.9	42.1
POTASSIUM	· _	-	316 B	180 B	388 B	— ,	-	223 B	577 B
SELENIUM	-	-	-	-	-	-	-		
SILVER		-	-	-	-	-	-	2.2	-
SODIUM	37.4 B	36.6 B	150 B	434 B	264 B	23.6 B	23.8 B	189 B	59.6 B
THALLIUM		-	·	_	_		_ .	-	· -
VANADIUM	14.4	11.5	175	654	1810	21.1	61.8	280	453
ZINC	24.3	26.9	25.9	28	96	21.4	18.8	79.4	30.5
CYANIDE	-	-	-	-		· _	-		-
BORON	-	-		-	-	-	_	-	-
NIOBIUM	-		-	-	-		-	N/A	· -
STRONTIUM	-		-		29.4	-	.	-	
TITANIUM	65.3	51.9	.96.6	128	101	61.5	94,4	121	142
ZIRCONIUM	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE, THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

'I' - CHROMIUM +6 VALUE IS THE RESULT OF WATER LEACH METHOD

N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMIT

TABLE 23d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC CONSTITUENTS DETECTED IN SURFACE SOIL SAMPLES PAGE 4 OF 8

SAMPLE IDENTIFICATION:	RA28-01	RA29-01	RA30-01	RA31-01	RA32-01	RA33-01	RA34-01	RA35-01	RA36-01
SAMPLE DEPTH BELOW	0-6	0-6	Q-6	0-6	0-6	0+6	0-6	0-6	0-6
GRADE (Inches)									
INORGANICS (PPM)									÷
ALUMINUM	42900	7940	3710	4060	11000	13100	28700	3700	1660
ANTIMONY	-	. –	_	5.9 B	13.8	_		_	6.2 B
ARSENIC	2.7	1.2 B	4.2	1.6 B	1.6 B	1.1 B	3.1	6.1	0.74 B
BARIUM	166	77.2	26.1 B	23.3 B	149	650	400	53.7	6.5 B
BERYLLIUM	22.5	6.3	2.1	0.68 B	1.9	7.1	11.9	1.8	0.30 B
CADMIUM	0.91	2.8	-		_		-		. –
CALCIUM	49500	4960	639 B	231 B	8410	7050	71900	840 B	107 B
CHROMIUM	368	130	421	67.2	469	113	148	24.0	່ 3.0
CHROMIUM VI	0.46 !*	0.82 !*	1.6 !*	_	2.7 l*	0.19 !*	-	-	; <u> </u>
COBALT	19	8.0 B	3.9 B	2.2 B	3.5 B	12.2	6.1 B	2.9 B	· –
COPPER	47.5	21.9	6.4	2.8 B	10.8	8.5	16.3	4.5 B	1.2 B
IRON	27100	16500	8400	6060	9070	2460	5100	8530	2540
LEAD	43.2	80	25.6	11.4	46.0	34.4	142	91.7	2.9 B
MAGNESIUM	26000	4620	477 B	_	50500	8290	33800	1150	190 B
MANGANESE	2830	1540	701	332	241	269	543	242	37.5
MERCURY	-	-	-	-		-	-	_	
NICKEL	1110	239	78	10.0	356	534	299	39.9	4.1 B
POTASSIUM	342 B	169 B	-	-	1110	305 B	741 B	-	-
SELENIUM		-	-	-	-	· —		-	-
SILVER	-	-	<u> </u>		-	-	· · -	-	- .
SODIUM	217 B	171 B	69.1 B	159 B	629 B	618 B	1520	219 B	160 B
THALLIUM	-	-	-	-	· ' -	-	-	-	-
VANADIUM	4750	1270	390	102	436	1510	2450	302	35.9
ZINC	- 110	148	29	110	41.6	28.9	209	476	10.0
CYANIDE	-	· –	-	-	-	-	N/A		
BORON	102	37.9	-	-	146	64.1	59.5	-	-
NIOBIUM	-	-		_	-	81.5	-	-	· —
STRONTIUM	117	-	-	· -	22.8	127	171	-	· -
TITANIUM	941	416	151	119	154	204	256	158	55.2
ZIRCONIUM	N/A	N/A	N/A	N/A	N/A	N/A	101	N/A	N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE, THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

'I' - CHROMIUM +6 VALUE IS THE RESULT OF WATER LEACH METHOD

N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMIT

TABLE 23d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC CONSTITUENTS DETECTED IN SURFACE SOIL SAMPLES PAGE 5 OF 8

SAMPLE IDENTIFICATION:				RA71-01	RA40+01	RA41-01	RA42-01	RA43-01	RA44-01
SAMPLE DEPTH BELOW	0-6	0-6	0-6	DUPE	0-6	0…6	06	06	06
GRADE (Inches)				RA39-01					
INORGANICS (PPM)									
ALUMINUM	1180	2350	3510	4530	2020	1820	17900	66900	6480
ANTIMONY	7.0 B	-	7.3 B		-	-	-	-	8.8 B
ARSENIC	0.95 B	0.68 B	1.5 B	1.6 B	1.7 B	1.0 B	2.0 B	2.9 B	1.3 B
BARIUM	8.0 B	9.1 B	18.4 B	22.8 B	11.6 B	15.9 B	121	394	455
BERYLLIUM	• 0.36 B	0.37 B	0.38 B	0.39 B	0.34 B	5.5	13.0	26.6	4.3
CADMIUM		-	·	-		·		-	· · · · · - ·
CALCIUM	111 B	198 B	257 B	243 B	219 B	612 B	13300	81800	8680
CHROMIUM	16.3	3.6	5.6	5.8	10.7	147	295	121	144
CHROMIUM VI	-	_	<u> </u>	-	-	0.14 !*	0.34 !*	-1*	0.70 *
COBALT	-	_	-	_	-	-	8.0 B	4.9 B	-
COPPER	2.8 B	1.3 B	1.5 B	2.9 B	3.3 B	5.1	73.7	21.9	36.5
IRON	1530	2260	4260	5300	2400	1760	25400	3120	3850
LEAD	11.2	4.4	4.9	5.7	16.8	11.2	41.4	203	556
MAGNESIUM	146 B	212 B	367 B	412 B	193 B	239 B	6650	42000	27600
MANGANESE	47.9	36.8	53.5	52.6	101	137	1060	370	890
MERCURY	-	-	-	-	-	-	<u> </u>	0.11	-
NICKEL	4.2 B	3.9 B	5.5 B	4.8 B	5.6 B	32.7	326	306	65.5
POTASSIUM	-	-		-	_	_	·	_	2830
SELENIUM	-	-	-	0.52 B	-		-	·	-
SILVER	-	-	-	1.5 B	-	-	_	· _	-
SODIUM	250 B	166 B	162 B	156 B	222 B	354 B	253 B	473 B	31300
THALLIUM.	-	· -	-	-	-		· 	-	·
VÄNADIUM	65.3	43.6	39.7	36.2	47.7	715	1770	3780	551
ZINC	10.4	13.3	9.2	8.6	21.4	13.0	72.0	192	. 288
CYANIDE	-	-	-	-	. —		. –	0.52R*	-
BORON	-	-	-	_	-	-	-	69.5	65.3
NIOBIUM	-		-	-	-		69.7	104	845
STRONTIUM	_	-	. –	-	-	_	26.5	139	68,5
TITANIUM	53.6	60.6	110	. 142	66.2	89.7	246	216	305
ZIRCONIUM	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE, THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

'I' - CHROMIUM +6 VALUE IS THE RESULT OF WATER LEACH METHOD

N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMIT

TABLE 23d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC CONSTITUENTS DETECTED IN SURFACE SOIL SAMPLES PAGE 6 OF 8

SAMPLE IDENTIFICATION:	RA45-01	RA46-01	RA47-01	RA48-01	RA49-01	RA70-01	RA50-01	RA51-01	RA52-01
SAMPLE DEPTH BELOW	0-6	0-6	0-6	0-6	0-6	DUPE	0-6	0-6	0-6
GRADE (Inches)						RA49-01			
INORGANICS (PPM)		•						•	· ·
ALUMINUM	1420	1710	2220	1230	74300	60100	91300	1580	952
ANTIMONY	-	-	7.3 B		_	-	_	_	·
ARSENIC	1.5 B	2.1 B	1.8 B	0.93 B	3.1	2.6	3.1 B	1.5 B	0.79 B
BARIUM	11.3	7.1 B	7.7 B	4.3 B	248	177	683	10.9 B	9.3 B
BERYLLIUM	0.31 B	0.34 B	0.32 B	_	29.3		18.8	0.28 B	÷
CADMIUM			· · -	_	_	_	_	· · · · ·	
CALCIUM	43.9 B	43.3 B	31.8 B	40.6 B	87100	70500	103000	73.0 B	58.3 B
CHROMIUM	7.3	9.1	6.1	5.4	114	201	176	12.5	2.4
CHROMIUM VI	· _		-	-	- !*		— J*		· · -
COBALT	-	-	-	-	6.7 B	7.9 B	4.3 B		, <u>-</u>
COPPER	2.0 B	2.5 B	1.8 B	2.4 B	14.7	49.5	14.3	2.6 B	1.7 B
IRON	3030	3610	3690	1430	3740	9480	4280	3480	1610
LEAD	10.4	19.8	52.0	7.2	74.2	66.0	96.7	8.2 B	4.6
MAGNESIUM	-	-	131 B	117 B	36400	26000	45800	181 B	107 B
MANGANESE	7.3	7.0	5.6	4.3	562	255	337	10	6.3
MERCURY	-	· —	-	-	-	-	-		·
NICKEL	-	-	-	-	530	660	144	3.3 B	2.2 B
POTASSIUM	-		-	-			-	_	
SELENIUM	· _	-		0.47 B		-	-	0.42 B	' -
SILVER	-		-	1.5 B	-		-	_	-
SODIUM	173 B	195 B	180 B	174 B	521 B	393 B	546 B	116 B	122 B
THALLIUM	-	-	-	-	-	-		-	: -
VANADIUM	34.3	40.5	29.6	31.0	3990		2660	36.0	15.0
ZINC	8.9	10.6	7.6	6.3	59.4		89.0	6.9	6.0
CYANIDE	-R*	R*	-R*	-R*	0.615R*		-	-	·
BORON	-	-	-	-	104		208		-
NIOBIUM	-	-	-	-	52.1		52	-	_
STRONTIUM	-	-	-	-	. 118		228		<u> </u>
TITANIUM	66.9	76.7	70.3	42.5	165		190	78.3	52.2
ZIRCONIUM	N/A	<u>N/A</u>	<u>N/A</u>	N/A	<u>N/A</u>	N/A	N/A	<u>N/A</u>	N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE, THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

'I' - CHROMIUM +6 VALUE IS THE RESULT OF WATER LEACH METHOD

N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMIT

TABLE 23d

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC CONSTITUENTS DETECTED IN SURFACE SOIL SAMPLES PAGE 7 OF 8

SAMPLE IDENTIFICATION:	RA53-01					************************************			
SAMPLE DEPTH BELOW	0-6	0-6	0-6	0-6	0-6	6-12	DUPE	42-48	6-12
GRADE (Inches)							RA58-01		
INORGANICS (PPM)		· · · ·							
ALUMINUM	1500	1060	4770	6120	4350	4090	4720	4070	2820
ANTIMONY	6.5 B	5.9 B	5.2 B	. –		-	6.1 B	~	4.7 B
ARSENIC	1.3 B	1.1 B	1.5 B	1.3 B	· _	1.6 B	1.7 B	1.4 B	1.2 B
BARIUM	11.7 B	5.6 B	19.8 B	51.2		26.0 B	22 B	22 B	21.2 B
BERYLLIUM	0.27 B	0.33 B	0.60 B	1.8	_	0.5 B	.4 B	.23 B	-
CADMIUM	·	-	<u> </u>	-	-	-	-		-
CALCIUM	38.4 B	39.1 B	556 B	1960	-	247 B	186 B	92.6 B	🤺 133 B
CHROMIUM	9.1	4.6	9.0	39.2	11.3	18.2	11.8	6.1	2.1 B
CHROMIUM VI	<u> </u>	_	-	-	_	-	_	-	 .
COBALT		_	2.3 B	4.0 B	-	2.7 B	1.9 B	1.9 B	-
COPPER	3.8 B	2.3 B	3.9 B	7.4	7.5	20.7	12.5	4.3 B	3.2 B
IRON	2830	2380	7680	7410	7500	8230	6560	4820	3630
LEAD	41.6	9.7 B	13.4	58.4	21.5	17.9 B	19.2	6.6	8.6
MAGNESIUM	136 B	111 B	411 B	989 B	148	251 B	238 B	151 B	164 B
MANGANESE	5.8	5.3	69.1	222	-	103	62.8	38.4	19.2
MERCURY		-	<u></u>	-	-	_	-	-	
NICKEL	2.3 B		7.1 B	28.1		8.3	4.7 B	4.5 B	3.4 B
POTASSIUM	· _	-	227 B	208 B	-	241 B		-	-
SELENIUM	0.51 B	-	-	-	-	-	_	-	0.49 B
SILVER	1.4 B	1.4 B		_	-	-			0.37 B
SODIUM	188 B	180 B	132 B	152 B		130 B	122 B	114 B	112 B
THALLIUM	<u></u>		-	_	-	-		-	· _
VANADIUM	31.6	36.5	59.9	208	49.4	53.8	38.6	19.5	8.1 B
ZINC	10.7	6.2	155	335	112	18.1	7.4	7.6	16.7
CYANIDE	R*	-R*	-	-	N/A	-	-	-	-
BORON	-	-		· -	-		-	-	-
NIOBIUM	.—	· _	-	-	-		_	-	-
STRONTIUM	_	-	-	-	_	-	_	-	· 🕳
TITANIUM	70.9	61.9	125	150	142	123	116	91.6	59.1
ZIRCONIUM	N/A	N/A	N/A	N/A	N/A	-	_	-	-

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE, THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

'I' - CHROMIUM +6 VALUE IS THE RESULT OF WATER LEACH METHOD

N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMIT

TABLE 23d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC CONSTITUENTS DETECTED IN SURFACE SOIL SAMPLES PAGE 8 OF 8

SAMPLE IDENTIFICATION:	RA59-02 F	RA60-01	RA60-02 F	RA64-01	
SAMPLE DEPTH BELOW	42-48	0-6	42-48	0-6	
GRADE (Inches)					
INORGANICS (PPM)				· · ·	
ALUMINUM	2890	1840	2520	4660	
ANTIMONY	. -	. –	-	11.2 B	
ARSENIC	1.1 B	1.2 B	1.9 B	69.8	
BARIUM	8.9 B	17.7 B	17.5 B	370	
BERYLLIUM	0.29 B	· —	· · · ·	0.57 B	
CADMIUM	-	. -	-	1 B	
CALCIUM	49.9 B	220 B	127 B	49300	
CHROMIUM	· —	1.6 B	1.5 B	801	
CHROMIUM VI	-	-	<u> </u>	201 !*	
COBALT	1.6 B	·	1.5 B	4 B	
COPPER	3.2 B	2.7 B	3.2 B	21.4	
IRON	10700	3220	6620	10300	
LEAD	3.8 B	6.7	7.8	101	
MAGNESIUM	96.9 B	170 B	190 B	2250	
MANGANESE	22.6	35.7	31.8	110	
MERCURY	· —	-	-	0.05	
NICKEL	2.4 B	2.5 B	2.2 B	6.3 B	
POTASSIUM		-		678 B	
SELENIUM			· <u> </u>	4	
SILVER		·	·	4.4	
SODIUM	102 B	113 B	112 B	353 B	
THALLIUM	—		_	-	
VANADIUM	12.3	8.0 B	9.0 B	67	
ZINC	12.3	15.2	10.4	248	
CYANIDE	·	-		N/A	
BORON	-	حفتك	_	N/A	
NIOBIUM	_	. -	-	N/A	
STRONTIUM	· ·	-	_	N/A	
TITANIUM	62.3	49.3	78.6	N/A	
ZIRCONIUM	. <u> </u>		<u> </u>	N/A	

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE, THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N - QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

'!' - CHROMIUM +6 VALUE IS THE RESULT OF WATER LEACH METHOD

N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL – CONTRACT REQUIRED DETECTION LIMIT

TABLE 24a

SHIELD ALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN TEST PIT SOIL SAMPLES

SAMPLE IDENTIFICATION: SAMPLE DEPTH BELOW GRADE (FT):	TP0101 12 fi	TP02-01	TP0301 8 ft	TP0401 7 ft	TP05-01 5 ft
VOLATILE ORGANICS (PPB)					
CHLOROMETHANE	-	-		· -	-
BROMOMETHANE	-	_	-	_	-
VINLY CHLORIDE	-	-	_	-	- ·
		-	-	-	-
METHYLENE CHLORIDE	66 BJ*	68 BJ*	150 BJ*	150 BJ*	150 BJ*
	17 BJ*	18 N*	110 BJ*	93 BJ*	120 BJ*
		 .	— .	-	· -,
1,1-DICHLORETHENE	-			-	. —
1,1-DICHLORETHANE	. –		-	-	. –
1,2-DICHLORETHENE (total)	-			-	-
CHLOROFORM	· -	-	- .		-
1,2-DICHLORETHANE		-	-	-	-
2-BUTANONE		-	_	-	-
1,1,1-TRICHLOROETHANE				-	-
CARBON TETRACHLORIDE	. - .	-	-		-
	. —	-	- .		-
BROMODICHLOROMETHANE	-	-			-
1,2-DICHLOROPROPANE		_	_	-	-
cis-1,3-DICHLOROPROPENE	· _			-	-
TRICHLOROETHENE	-	-	-	-	-
DIBROMOCHLOROMETHANE	· — ·	-	. –	-	-
1,1,2-TRICHLOROETHANE	-	-		-	-
BENZENE	-	_	-	<u> </u>	-
trans-1,3-DICHLOROPROPENE	-	•	-	-	
BROMOFORM		_	_	-	· _
4-METHYL1-2-PENTANONE	-	-	-		-
2-HEXANONE	-	-	-	-	-
TETRACHLOROETHENE	-	-		-	-
1,1,2,2-TETRACHLOROETHANE	-				-
TOLUENE	· <u>-</u>		-		
CHLOROBENZENE	_	-	-	- ,	-
ETHYLBENZENE	<u></u>		-	_	-
STYRENE	-	-	. .	 .	— ·
XYLENE (total)	-	-		-	-
TOTAL VOCs	83	68	260	243	270

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE INDICATES POSSIBLE/PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

- NA PARAMETER NOT ANALYZED FOR THIS COMPOUND.
- '-' NOT DETECTED TO THE REPORTED DETECTION LIMIT.

TABLE 24b

SHIELD ALLOY METALLURGICAL CORPORATION SUMMARY OF SEMI-VOLATILE ORGANIC COMPOUNDS DETECTED IN TEST PIT SOIL SAMPLES PAGE 1 OF 2

SAMPLE IDENTIFICATION:	TP01-01	TP02-01	TP03-01	TP0401	TP05-01
SAMPLE DEPTH BELOW GRADE (FT):	12 ft	11 ft	8 ft	7 ft	5 ft
BASE NEUTRAL / ACIDS (PPB)					
PHENOL	NA	-	NA	NA	NA
bis(2-CHLOROETHYL)ETHER	NA	-	NA	NA	NA
2-CHLOROPHENOL	NA	_	NA	NA	NA
1,3-DICHLOROBENZENE	NA	÷	NA	NA	NA
1,4-DICHLORBENZENE	NA	-	NA	NA	NA
BENZYL ALCOHOL	NA	·	ŇA	NA	NA
1,2-DICHLOROBENZENE	NA	-	NA	NA	NA
2-METHYLPHENOL	NA	- <u>-</u>	NA	NA	NA
bis(2-CHLOROISOPROPYL)ETHER	NA NA		NA	NA	NA
4-METHYLPHENOL	NA	_	NA	NA	NA
N-NITROSO-DI-N-PROPYLAMINE	NA	· <u> </u>	NA	NA	NA
HEXACHLOROETHANE	NA	-	NA	NA	NA
NITROBENZENE	NA		NA	NA	NA
ISOPHORONE	NA	 _	NA	NA	NA -
2-NITROPHENOL	NA	_	NA	NA .	NA
2,4-DIMETHYLPHENOL	NA	-	NA	NA	NA
BENZOIC ACID	NA		NA	NA	NA
bis(2-CHLOROETHOXY)METHANE	NA	-	NA	NA	NA
2,4-DICHLOROPHENOL	NA	· -	NA	NA	NA
1,2,4-TRICHLOROBENZENE	NA	- .	NA	NA	NA 🗄
NAPHTHALENE	NA	-	NA	NA	NA 👘
4-CHLOROANILINE	NA	-	NA	NA	NA .
HEXACHLOROBUTADIENE	NA	-	NA	NA	NA
2,4,6-TRICHLOROPHENOL	NA		NA	NA	NA
2,4,5-TRICHLOROPHENOL	NA	-	NA	NA	NA
2-CHLORONAPHTHALENE	NA	-	NA	NA	NA
2-NITROANILINE	NA	-	NA	NA	NA
DIMETHYLPHTHALATE	NA	-	NA	NA	• NA • •
ACENAPHTHYLENE	NA	-	NA	NA	NA
2,6-DINITROTOLUENE	NA	-	NA	NA	NA
3-NITROANILINE	NA		NA	NA	NA

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE INDICATES POSSIBLE/PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

NA – PARAMETER NOT ANALYZED FOR THIS COMPOUND.

TABLE 24b

SHIELDALLOY METALLURGICAL CORPORATION

SUMMARY OF SEMI-VOLATILE ORGANIC COMPOUNDS DETECTED IN TEST PIT SOIL SAMPLES PAGE 2 OF 2

SAMPLE IDENTIFICATION:	TP0101	TP02-01	TP03-01	TP04-01	TP05-01
SAMPLE DEPTH BELOW GRADE (FT):	12 ft	<u>11 ft</u>	8 ft	7 ft	5 ft
BASE NEUTRAL / ACIDS (PPB)					
(continued)					
ACENAPHTHENE	NA	-	NA	NA	NA
2,4-DINITROPHENOL	NA		NA	NA	NA
4-NITROPHENOL	NA	-	NA	NA	NA
DIBENZOFURAN	NA		NA	NA	NA
2,4-DINITROTOLUENE	NA	-	NA	ŇA	NA
DIETHYLPHTHALATE	NA	-	NA	NA	NA
4-CHLOROPHENYL-PHENYLETHER	NA	<u></u>	NA	NA	NA
FLUORENE	NA	-	NA	NA -	NA
4-NITROANILINE	NA	- .	NA	NA	NA
4,6-DINITRO-2-METHYLPHENOL	NA	-	NA	NA	NA
N-NITROSODIPHENYLAMINE (1)	NA	-	NA	NA	NA
4-BROMOPHENYL-PHENYLETHER	NA	_	NA	NA	NA
HEXACHLOROBENZENE	NA	-	NA	NA	NA
PENTACHLOROPHENOL	NA	_	NA	NA	NA
PHENANTHRENE	NA		NA.	NA	NA
ANTHRACENE	NA	_	NA	NA	NA
DI-N-BUTYLPHTHALATE	NA	210 N*	NA	NA	NA
FLUORANTHENE	NA	43 J	NA	NA	NA
PYRENE	NA	58 J	NA	NA	NA
BUTYLBENZYLPHTHALATE	NA	_	NA	NA	NA
3,3-DICHLOROBENZIDINE	NA	-	NA	NA	NA
BENZO(A)ANTHRACENE	NA	-	NA	NA	NA
CHRYSENE	NA	-	NA	NA	NA
BIS(2-ETHYLHEZYL)PHTHALATE	NA -	130 N*	NA	NA	NA
DI-N-OCTYL PHTHALATE	NA	_	NA	NA	NA
BENZO(B)FLUORANTHENE	NA	-	NA	NA	NA
BENZO (K) FLUORANTHENE	NA	_	NA	NA	NA
BENZO (A) PYRENE	NA	_	NA	NA	NA
INDENO (1,2,3-CD) PYRENE	NA	-	NA	NA	NA
DIBENZO (A,H) ANTHRACENE	NA	-	NA	NA	NA
BENZO (G,H,I) PERYLENE	· NA	· _	NA	NA	NA
TOTAL caPAH	NA	0	NA	NA	NA

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE INDICATES POSSIBLE/PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N - QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R - DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

NA - PARAMETER NOT ANALYZED FOR THIS COMPOUND.

TABLE 24c

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF PESTICIDE/PCB COMPOUNDS DETECTED IN TEST PIT SOIL SAMPLES

SAMPLE IDENTIFICATION:	TP01-01	TP02-01	TP03-01	TP04-01	TP05-01
SAMPLE DEPTH BELOW GRADE (FT):	12 ft	<u>11 ft</u>	8 ft	7 ft	<u>5 ft</u>
PESTICIDES/PCB'S (PPB)					
ALPHA-BHC	NA	-	NA	NA	NA
BETA-BHC	NA	-	NA	NA	NA
DELTA-BHC	NA	-	NA	NA	NA
GAMMA-BHC(LINDANE)	NA	-	NA	NA	NA
HEPTACHLOR	NA	-	NA	NA	NA
ALDRIN	NA	-	NA	NA	• NA
HEPTACHLOR EPOXIDE	NA	. —	NA	NA	NA
ENDOSULFAN I	NA		NA	NA	NA
DIELDRIN	NA		NA	NA	NA
4.4-DDE	NA		NA	NA	NA
ENDRIN	NA	-	NA	NA	NA
ENDOSULFAN II	NA	-	NA	NA	NA
4.4-DDD	NA		NA	NA	NA
ENDOSULFAN SULFATE	NA	-	NA	NA	NA
4.4-DDT	NA		NA	NA	NA
METHOXYCHLOR	NA	_	NA	NA	NA
ENDRIN KETONE	NA	-	NA	NA	NA
ALPHA-CHLORDANE	NA		NA	NA	NA
GAMMA-CHLORDANE	NA	-	NA	NA	NA
TOXAPHENE	NA		NA	NA	NA
AROCLOR-1016	NA	_	ŇĂ	NA	NA
AROCLOR-1221	NA	_	NA	NA	NA
AROCLOR-1232	NA	-	NA	NA	NA
AROCLOR - 1242	NA	 .	NA	NA	NA
AROCLOR-1248	NA		NA	NA	NA
AROCLOR-1254	NA		NA	NA	NA
AROCLOR - 1260	NA NA	_	NA	NA	NA

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE INDICATES POSSIBLE/PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

NA - PARAMETER NOT ANALYZED FOR THIS COMPOUND.

TABLE 24d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC COMPOUNDS DETECTED IN TEST PIT SOIL SAMPLES

SAMPLE IDENTIFICATION:	TP01-01	TP02-01	TP03-01	TP04-01	TP05-01
SAMPLE DEPTH BELOW GRADE (FT)	12 ft	11 ft	<u>8 ft</u>	7 ft	<u>5 ft</u>
INORGANICS (PPM)					
ALUMINUM	4440	6720	6330	2090	4540
ANTIMONY	-	15.7	<u> </u>	_	<u> </u>
ARSENIC	2.4	2.8		3.5	4.1
BARIUM	30.8 B	17.0 B	-	9.3 B	19.7 B
BERYLLIUM	3.4	1.5	2.0	0.21 B	0.25 B
CADMIUM	_	_	· _	-	
CALCIUM	2770	109 B		144 B	112 B
CHROMIUM	92.5	44.9	69.5	17.1	6.6
CHROMIUM VI	0.31	0.34	1.6	1.0	`
COBALT	7.5 B	5.9 B	15.8	1.5 B	2.5 B
COPPER	14.6	4.3 B	6.6	2.2 B	2.0 B
CYANIDE, TOTAL	_	-R*	_	_	<u> </u>
IRON	10600	15700	18300	3900	6530
LEAD	-	12.4	13	4.2	3.0
MAGNESIUM	11600	351 B	-	118 B	218 B
MANGANESE	3950	487	659	42.4	30.1
MERCURY	-	-	_	-	N/A
NICKEL	84.0	11.3	17.7	4.6 B	
POTASSIUM	314 B	417 B		157 B	217 B
SELENIUM	-	-	-	-	
SILVER	-	-		-	. —
SODIUM	352 B	215 B	_	41.9 B	57.3 B
THALLIUM	-	-	-	-	-
VANADIUM	736	298	335	37.3	7.8 B
ZINC	67.7	29.6	18.1	3.5	2.2
BORON	47.3	· _	-	-	-
NIOBIUM	-	-	-	<u>.</u>	-
STRONTIUM	-	-	**		-
TITANIUM	398	129	155	85.3	115

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE INDICATES POSSIBLE/PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

NA - PARAMETER NOT ANALYZED FOR THIS COMPOUND.

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 1 OF 6

SAMPLE IDENTIFICATION:	SB01-02	SB02-02	SB03-02	SB04-03	SB05-02	SB06-02	SB07-03	SB13-03	SB20-04	SB22-05	SB24-05	SB27-02	SB29-01	SB29-01	\$829-04
SAMPLE DEPTH BELOW GRADE (FT)	2-4	2-4	2-4	4-6	2-4	24	46	46	6-8	8-10	46	2-4	0+2	DUPE	68
**VOLATILE ORGANICS (PPB) **						4									
CHLOROMETHANE	-	-	-	-	-	-	-	· 🛶	-	-	-	-	-	· 🗕	_ · ·
BROMOMETHANE		-		-	-	-	<u> </u>	-	-	-	-	÷	-	-	-
VINLY CHLORIDE		-	-	-		-	- '	-		· 🕳	<u> </u>	-	-	-	-
CHLOROETHANE		-		-					·	-	· 🗕	. .	·	<u> </u>	-
METHYLENE CHLORIDE	54 BJ*	31 N*	38 BJ*	46 BJ*	48 BJ*	43 BJ*	36 BJ*	48 BJ*	32 N*	36 BJ*	40 BJ*	41 N*	43 BJ*	36 R*	65 BJ*
ACETONE	31 N*	50 BJ*	70 BJ*	57 BJ*	79 BJ*	62 R*	160 BJ*	37 BJ*	56 BJ*	65 BJ*	45 BJ*	37 BJ*	82 BJ*	73 BJ*	61 BJ*
CARBON DISULFIDE	-	-	-	-		-	-	·	-	 .	-	· · _	<u> </u>		·
1,1-DICHLOROETHENE	-	-	-	-	-		-	-	÷.		·	-		-	-
1,1-DICHLOROETHANE	-	-	-	-	-	-	-	~	 .		-	-	-	_ `	-
1,2-DICHLOROETHENE (total)	-	- ·	-	-	_ ·	-	-	-				-	•••	-	-
CHLOROFORM	-	-	-	-	-		-		_ ·	-	-	. 1 J	-		-
1,2-DICHLOROETHANE	-	-	-	-	 ,	-	· 🗕	-	_ `		_		-		-
2-BUTANONE	-	-	-	-	-		-	-	· ·		· 🗕	-	8 J -	9 JB	-
1,1,1-TRICHLOROETHANE	-	-	-		-		-	-	-	-	-	-	—	-	-
CARBON TETRACHLORIDE	-	-	-		-	-				-	·		-	-	-
VINYL ACETATE	-	-	-	-		-	-	-	-	-	-	-			
BROMODICHLOROMETHANE	-	-	-	-	-		-	-	-		-	-			-
1,2-DICHLOROPROPANE	-		-	-	-	-	-	~		-		-		-	-
cis-1,3-DICHLOROPROPENE	-		-	-	-	-	-	-	-	-	-	-	· 🛶	-	÷
TRICHLOROETHENE	24		-	-	-	-	1 J*	8	-	-	3 J	6	2 J	1 J	-
DIBROMOCHLOROMETHANE		-	-	-	-	-	-		-		-	-		-	-
1,1,2-TRICHLOROETHANE	-		-	-	-	-	-	-	-	<u> </u>	-	-	-		-
BENZENE				-		-	-	-				-	-	-	-

B - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N - QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIMES EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 2 OF 6

SAMPLE IDENTIFICATION:	SB01-02	SB02-02	SB03-02	SB04-03	SB05-02	S806-02	SB07-03	SB13-03	SB20-04	SB22-05	SB24-03	SB27-02	SB29-01	SB29-01	S829-04
SAMPLE DEPTH BELOW GRADE (FT] 2-4	2-4	2-4	46	2-4	24	4-6	46	6-8	8-10	46	2-4	0-2	DUPE	68
**VOLATILE ORGANICS (PPB) **					,										
(CONTINUE	D)														
trans-1,3-DICHLOROPROPENE	-	-	-	-	-	-	-	-		-	-			-	-
BROMOFORM	-	-	-	-	-	-	-	***	-	· 🗕		· • ·	-	- .	-
4-METHYL1-2-PENTANONE	-		-	-	· _			-	-	-		-	-	-	-
2-HEXANONE	<u> </u>	-	-	-	-			- ,	-	- .	j 🛥	·	-	-	 .
TETRACHLOROETHENE	4 J	-	-	-		-	-	-	-	-	-	-		-	-
1,1,2,2-TETRACHLOROETHANE	-	-	-	-	-	-	-	~	-		· _ ·	-	- .	-	
TOLUENE	2 J	-	-		-	-	_ ·		-	-	-	-	-	-	 '
CHLOROBENZENE	·	-	-		-	-	-	-	-	<u> </u>		-	-	· —	-
ETHYLBENZENE	-	-		-	-	` 		-,	-	-		-	·	-	
STYRENE	-			-	-	-	-	-	-	_	-		-	-	-
XYLENE (total)			-		-	-			-	-		 .	-	-	-
DIETHYL ETHER	-	-	-	-		-		-		-	-	-			-
ТРН	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TOTAL VOCs	84	50	108	103	127	43	197	93	56	101	88	44	135	83	126

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIMES EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

TPH - TOTAL PETROLEUM HYDROCARBONS

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 3 OF 6

SAMPLE IDENTIFICATION:	SB32-04	SB39-04	SB40-02	2 SB40-05	SB41-02	S842-0	S642-04	SB42-05	SB44-01	SB44-02	SB45-02	SB45-03	SB46-01	SB46-04	SB47-04
SAMPLE DEPTH BELOW GRADE (FT)	6-8	6-8	2-4	8-10	2-4	0-2	6-8	8-10	0-2	2-4	2-4	46	0-2	6-8	6-8
VOLATILE ORGANICS (PPB) **										***					
CHLOROMETHANE	-	-	-		-	~	-		-		-			-	-
BROMOMETHANE	-	-				-	-		-	-	· _	-	-		-
VINLYCHLORIDE	-	-	-	-		-	-		-	-	-	-	-	-	- [
CHLOROETHANE	-		-	-	-	-	-	-	-	-	-	-	-		
METHYLENE CHLORIDE	37 R*	30 N*	31 R*	34 R*	51 R*	34 BJ*	25 B	18 N*	47 R*	44 R*	42 BJ*	32 R*	30 R*	34 R*	40 BJ*
ACETONE	160 BJ*	150 BJ*	43 BJ*	26 BJ*	45 BJ*	98 BJ*	140 B	42 N*	3900 R*	4200 R*	180 BJ*	56 N*	23 BJ*	72 BJ*	65 BJ*
CARBON DISULFIDE	-		-	-	- .	-	-	-	3 J	16	-	**	-		-
1,1-DICHLOROETHENE	-	_		-	-	-			-	-	-	-	-	- .	· -
1,1-DICHLOROETHANE		-	-	-	-	-	-		-	` 	· 		-		
1,2-DICHLOROETHENE (total)	-	-	3 J		-	-	-		2 J	-	-		-		-
CHLOROFORM	-	- ',	-	-		_ ·	-	-		-	- 1 J	-	-	-	· · =
1,2-DICHLOROETHANE	-	-	-	-	-	-	-		-	-	-	-	- , .	-	
2-BUTANONE	.—			-	***	-	-	9 N*			7 J	·	-		~
1,1,1-TRICHLOROETHANE	-	-	-		-	-	-			-	-	-	-	-	-
CARBON TETRACHLORIDE	-	-	-	-	-	-	-		-	-	-	-	-	· 🗕	(
VINYL ACETATE	-	-	-	-	~			-	-	-	- .	-			
BROMODICHLOROMETHANE	-	-		-	-	·	-	-	-	-		-	-	-	-
1,2-DICHLOROPROPANE	-	-		-	-	-	-	_	-	— ·	-	-	-	-	-
cis-1,3-DICHLOROPROPENE		-	-		-	·	-	-	-	-	-	-	_ '	-	- 1
TRICHLOROETHENE	-	3 J	2 J			3 J	2 J	-	2 J	-	2 J	. 🗕	-	-	-
DIBROMOCHLOROMETHANE	·	-	-	-	-			-	-	-	-	-	-	-	-
1.1,2-TRICHLOROETHANE	-	-		-	-			· —	.—		- '	-	· -	-	÷
BENZENE						<u> </u>			150		. —				

B - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIMES EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 4 OF 6

SAMPLE IDENTIFICATION:	SB32-04	SB39-04	1 SB40-02	SB40-0	5 SB41-02	SB42-01	SB42-04	SB42-05	SB44-01	SB44-02	SB45-02	SB45-03	SB46-01	SB46-04	SB47-0
SAMPLE DEPTH BELOW GRADE (FT) 6-8	6-8	2-4	8-10	2-4	0-2	6 ~- 8	8-10	0+2	2-4	2-4	4-8	0-2	6-8	6-8
(CONTINUE															
trans-1.3-DICHLOROPROPENE	0)														
	-		-	-	-	-	-		-	· -	-	-	-	-	-
BROMOFORM		-	-		-	-	-			-			-		-
4-METHYL1-2-PENTANONE	-	-	. —		-	-	-	-		· •••	-	-	-	-	-
2-HEXANONE	-	-	-	-	-	· _		-	-		-	-	-	-	
TETRACHLOROETHENE		-	-	-	-	3 J	·	~ .	3 J				— .	· •••	-
1,1,2,2-TETRACHLOROETHANE	-		-			-	. –		-	-	-		-	-	-
TOLUENE	-		-	-		2 J	- .		7	-	-		-	-	-
CHLOROBENZENE	-	-	-	- .	-	-			-	-		-		- · ·	-
ETHYLBENZENE		-	-			· •••		-	58		· •••				
STYRENE	-	-	-	-	-	-	-	-	. 🗕	-	 ·	-			-
XYLENE (total)	-	-	_	-		-	-	-	360		-	· 🗕	_	-	
DIETHYLETHER			-	-	-		· _	-		-	-	-	- '	***	-
TPH	N/A	N/A	N/A	N/A	35000	4500	8000	-	N/A	N/A	N/A	N/A	N/A	N/A	N/A
TOTAL VOC:	160	153	48	26	45	140	167	0	585	16	232	0	23	72	105

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N - QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIMES EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

TPH - TOTAL PETROLEUM HYDROCARBONS

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 5 OF 6

SAMPLE IDENTIFICATION:	SB55-04	S860-02	SB72-01	S872-04	SB73-02	SB73-04	S873-04	SB77-03	SB84-05	5891-01	S891-04
SAMPLE DEPTH BELOW GRADE (FT		2-4	0-2	68	2-4	6-8	DUPE	46	8-10		DUPE
VOLATILE ORGANICS (PPB)									0		
CHLOROMETHANE	-	-	-	-	-	-	-		_	_	
BROMOMETHANE	-	-	-	-	-	-	- .		· 🗕	<u> </u>	
VINLY CHLORIDE	-	-	-	-	-	-	-	-	-	-	· · ·
CHLOROETHANE		-	-	_	-	-		-	-		-
METHYLENE CHLORIDE	26 BJ*	32 R*	44 B	38 BJ*	30 R*	40 R*	28 R*	38 N*	60 BJ*	25 BJ*	21 N*
ACETONE	58 BJ*	30 BJ*	57 R*	160 EB*	70 BJ*	82 BJ*	62 BJ*	16 N*	70 BJ*	140 BJ*	130 BJ*
CARBON DISULFIDE			-	-	<u> </u>	-	-	-	-		-
1,1-DICHLOROETHENE	-	-	-	-	~		-		-	-	-
1,1-DICHLOROETHANE	-	-		-	-		- ·	-		-	-
1,2-DICHLOROETHENE (total)		-	-		-	-		-		-	-
CHLOROFORM	-	-	-	-	-	-	-	-	-	-	-
1,2-DICHLOROETHANE	-	-	·	-	-	-	-	-	-	-	-
2-BUTANONE		-	-	-		-	-	-	-		-
1,1,1-TRICHLOROETHANE	-		-	-	·	4 J	-	-	-		-
CARBON TETRACHLORIDE	-	-		-	· 🗕	••••	-	-	-	-	-
VINYL ACETATE	-	-	-	-		-	_	-	-	-	-
BROMODICHLOROMETHANE	-	-	-	-	~	-	-	-	-	-	-
1,2-DICHLOROPROPANE	-	-	-	-	-	-		-	-	-	-
cis-1,3-DICHLOROPROPENE		-	-		-	-	-	-	- 2	-	
TRICHLOROETHENE	-		2 J	-	-		-	-	-	2 J	-
DIBROMOCHLOROMETHANE	-	-	-	-	-	-	-	-	-	-	
1,1,2-TRICHLOROETHANE	-	-	-		-	-	-	. 🗕		_	-
BENZENE	~	-	-	-	-	-		-			<u> </u>

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIMES EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

TABLE 25a

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 6 OF 6

SAMPLE IDENTIFICATION	SB55-04	SB60-02	SB72-01	SB72-04	SB73-02	SB73-04	SB73-04	SB77-03	SB84-05	SB91-01	SB91-04
SAMPLE DEPTH BELOW GRADE (FT)	6-8	2-4	0-2	6-8	2-4	6-8	DUPE	4-6	8-10	DUPE	DUPE
VOLATILE ORGANICS (PPB)	*****				***********					······	,
(CONTINUED)										
trans-1,3-DICHLOROPROPENE	_	-	-	-	-	-	-	-			-
BROMOFORM	-		-	-	-	·	-	-	·		-
4-METHYL1-2-PENTANONE	-	-	-	<u> </u>		-	-	-	-		-
2-HEXANONE	-		-		-	-	-	-	· 🗕	-	-
TETRACHLOROETHENE	-	-	3 J -	4 J	-		 `	- '	-	-	-
1,1,2,2-TETRACHLOROETHÂNE	-		-	-		-	-		. ·	-	
TOLUENE	-	 '	2 J	2 J	-	-	-		 ·	· 🛶	-
CHLOROBENZENE	-	-	-	-	-		-			-	. 🗕
ETHYLBENZENE	-	÷		-	-	-	-	-		-	-
STYRENE	-	-	-	-	-	-	-	-	-	<u> </u>	
XYLENE (total)	-	-	-	→ , ,	-	÷	-	_	-	-	
DIETHYL ETHER	-		- ·	-	-	-			· 🗕	-	-
TPH	N/A	N/A	18000	69000	N/A	3400J	4000	N/A	3300J		·
TOTAL VOCs	84	30	51	204	70	86	62	0	130	167	130

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIMES EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

'-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

TPH - TOTAL PETROLEUM HYDROCARBONS

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF SEMI-VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 1 OF 6

SAMPLE IDENTIFICATION	SB01-02	SB02-02	SB03-02	SB04-03	SB05-02	SB06-02	SB07-03	SB13-03	SB20-04	SB22-05	SB24-03	SB27-02	SB29-01	S829-01	S829-04
SAMPLE DEPTH BELOW GRADE (FT):	2-4	2-4	2-4	46	2-4	24	46	46	6+8	8-10	46	24	0+2	DUPE	6-8
**BASE NEUTRAL / ACIDS (PPB) **															
PHENOL	 *	-		-		-	-	160 J	120 J		·	_	· _	190 JB	
bis(2-CHLOROETHYL)ETHER	-	-	-	-	-	-	-	-	· -	-	-	-			-
2-CHLOROPHENOL	-	-	-	-	—	-	· -	·	-		_ ·	-		- .	
1,3-DICHLOROBENZENE		-	-	-	-	-	-	-	. —	. —	-	-			-
1,4-DICHLORBENZENE	-		-	-		-	-	-	÷		·		-		
BENZYL ALCOHOL	-		-		 .		-	· 🛶	-	-	-	-		-	-
1,2-DICHLOROBENZENE		-	-	-		-	-	-		-		_	-		-
2-METHYLPHENOL	-	-	-	-	-			-	- .		-	-	~	-,	-
bis(2-CHLOROISOPROPYL)ETHER		-	-	-	-		-		-	-	-	. —	-	- .	-
4-METHYLPHENOL N-NITROSO-DI-N-PROPYLAMINE		-	-		-	-	-	. 🗝	-	.			-	-	-
HEXACHLOROETHANE			-				-		-		· _ ·	-	-		~
NITROBENZENE		-	_	-	-		-				-	-	-	. —	-
ISOPHORONE	_	-	_	-	-	·	-	-	-	- ·	-	-	-	-	-
2-NITROPHENOL	-	_	_	_	_	-		-	-	_	-	_	-	-	
2.4 - DIMETHYLPHENOL	_	_	_	-	_	_	_		. —	_	_	-	-	-	_
BENZOIC ACID	360 JB	_	_	_	_	=	_	380 JB	_		_	240 BJ*	_	59 J	_
bis(2-CHLOROETHOXY) METHANE	000 00	_	-	_	_	_	_	300 30	-	_	_	240.00	-	030	_ 1
2.4-DICHLOROPHENOL			-		_	-	-	_	-	-	87 J	49 J	-		
1.2.4 - TRICHLOROBENZENE		-	-			-	-	-	· _	_			-	-	_ 1
1,2,4-TRICHLOROBENZENE NAPHTHALENE	~		-	-					-	-	-	-			_
4-CHLOROANILINE	-	-		-	-	-		-	-	-	-		-		-
HEXACHLOROBUTADIENE	-	-		_	-	-	-	_	-	-	-	_	-	-	-
4-CHLORO-3-METHYLPHENOL	-	-		-	-				— ·	-		-	****	· _	-
2,4,6-TRICHLOROPHENOL	-	-	-	-	-		-	-	-	. —		-		 .	-
2,4,5-TRICHLOROPHENOL	-	-	-	••••	-	-	-	-	 '	-	130 J		-	÷	-
2-CHLORONAPHTHALENE	-	-	-	-	-	-	-	-	_	-		 .		-	-
2-NITROANILINE	- .	-	-	· -	-		_ ·	-	-	-	 ·		-	-	-
DIMETHYLPHTHALATE	-	-	-		-	-	-	-	-	-	-		-		-
ACENAPHTHYLENE	-	-	-		-	-	- .	-	-			-		-	-
2,6 - DINITROTOLUENE	-	-	-	-	-	-		-		·—			-		-
3-NITROANILINE	~	<u></u>			-	•••	-				-		_	•••	

3 - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATESPOSSIBLE / PROBABLE CONTAMINATION.

I - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

I – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

1 - DATA IS REJECTED DUE TO HOLDING TIMES EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

- INDICATES QUALIFIER PLACED BY TRC-ECI.

I/A - NOT ANALYZED FOR THIS COMPOUND

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF SEMI-VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES

PAGE 2 OF 6

						AGE 2 C									
SAMPLE IDENTIFICATION:	SB0102	8802-02	: 5803-02	SB04-03	SB05-02	SB06-02	8807-03	SB13-03	SB20-04	SB22-05	i SB24-03	SB27-02	SB29-01	8829-01	SB29-04
SAMPLE DEPTH BELOW GRADE (FT):	2-4	2-4	2-4	4-6	2-4	24	4-6	4-6	6-8	8-10	4-6	2-4	0-2	DUPE	6-8
**BASE NEUTRAL / ACIDS (PPB) **															and the second se
(CONTINUED)															
ACENAPHTHENE 2.4-DINITROPHENOL	_	-	-	_	. —	-	-	-	-			_	_	-	_
4-NITROPHENOL	-	. .	-	-	-	-	-	-	-	_	_		<u> </u>	-	-
DIBENZOFURAN		-		_	_		_	_	-			-	_	_	-
2.4-DINITROTOLUENE	-	-	-		-	-		-	-	- .	· _	_	-		
DIETHYLPHTHALATE	-	-	~	-	-	-	- .	-	-	-	-	-		. –	-
4-CHLOROPHENYL-PHENYLETHER	-	-				-	-	-	-	-	-		-		-
FLUORENE 4-NITROANILINE	· <u> </u>	_	-		_			_	_			- · ·	_	-	_
4.6-DINITRO-2-METHYLPHENOL	-	_	-	_	_	· _	_	_	_	-	_	-	-	_	_
N-NITROSODIPHENYLAMINE	-	-	~	-	-		-	-		-	-	-	-	-	-
4-BROMOPHENYL-PHENYLETHER	-		~	-	_	-		-		-	-		-		-
HEXACHLOROBENZENE	-	-	~	-	-	-	-	- <u>-</u> -	-	-	-			-	
PENTACHLOROPHENOL	-	-		-			-	85 J	-	_	-	180 JB	130 J	140 J	- 1
PHENANTHRENE ANTHRACENE	-	-	-		-	-		-	-	-	-	-			
DI-N-BUTYLPHTHALATE	1000 R*	· 	-	52 N*	49 R*	_	890 R*	280 R*	410 R*	52 R*	1600 R*	730 B	110.J	130 J	50 J
FLUORANTHENE	1000 H	_	-	JE N	43 N		030 1	200 1	410 1	JZ 1 1	1000 H	750 0	44 J	40 J	30 0
	-	-	-	-		-	-	-	-	-	-				-
PYRENE	· -	-	-		-	-	-	-	-	-	-	81 J	50 J	42 J	-
BUTYLBENZYLPHTHALATE	-	-	-	-	-	<u> </u>	-	-	-	-	-	100 J	. —	_ ·	-
BENZO(a)ANTHRACENE		-		-	-	-	-	-	-	-	-	-		-	-
CHRYSENE	-	-	-	<u> </u>	-	-	~		· 🕳	-	-	—	. 🗕 .	- '	-
bis(2-ETHYLHEXYL)PHTHALATE	170 JB		-	160 J	-	-	260 JB	270 JB	-	- 0	_	240 JB	62 J	110 J	180 J
BENZO(b)FLUORANTHENE	_	-	-	-	-		_	_	-	- 0	· _	_	_	_	1
BENZO(k)FLUORANTHENE	-	-	~	_	_	_	-	·	_	_	· _	_	_		-
BENZO (a) PYRENE	_	_	_			_	_	_	_	-		_	_	_	
INDENO(1,2,3-cd)PYRENE	_	_		-	- .	_	_		_	_	.—	-		_	
	-	-	-		-	-	-	-	-	-	. –		-	. –	-
BENZO(g,h,i)PERYLENE	<u> </u>	-	-	_	_	-	-	·	-	_	-		-	_	-
TOTAL CAPAH	<u> </u>	0	0	0	0	0	0	0	0	0	0	<u>0</u>	0	0	0

B - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATESPOSSIBLE / PROBABLE CONTAMINATION.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N - QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R - DATA IS REJECTED DUE TO HOLDING TIMES EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF SEMI-VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES

PAGE 3 OF 6

SAMPLE IDENTIFICATION:	S832-04	SB39-04	SB40-02	SB40-05	SB41-02	SB42-01	SB42-04	SB42-05	SB44-01	SB44-02	SB45-02	SB45-03	SB46-01	SB46-04	SB47-04
SAMPLE DEPTH BELOW GRADE (FT)	6-8	6-8	2-4	8-10	2-4	0-2	6-8	8-10	0-2	2-4	2-4	6-8	0-2	6-8	6-8
**BASE NEUTRAL / ACIDS (PPB) **															
PHENOL	-		65 J	-	-	<u> </u>	-		46 J	-	44 N*	43 N*	-	-	_ '
bis(2-CHLOROETHYL)ETHER	-	-			-		÷	-				-	<u> </u>	.	-
2-CHLOROPHENOL		-	47 J	-	-		-		÷ 1	-	-	-	-	-	- 1
1,3-DICHLOROBENZENE		-		-		· _	-	~ `		-	-	-			- · •
1.4 - DICHLORBENZENE			-		÷ .		-		-	-	-		` 	-	- 1
BENZYL ALCOHOL		-	-				-		-		—	-		-	-
1,2-DICHLOROBENZENE	-	- .	-	-	-	-	-		-	-	-	-	-		-
2-METHYLPHENOL	-		-	•••• ·	-	-		-		— ·	-	-	-	-	-
bis(2-CHLOROISOPROPYL)ETHER	-	-		-		-	-			-		-	-	-	. –
4-METHYLPHENOL			-	-	-	-	-	-	-	-	-		-	 .	-
N-NITROSO-DI-N-PROPYLAMINE		-		-	-	-		-	-	-	· -	-	-	. —	-
HEXACHLOROETHANE	-			-		-		-	· -	-	-	· 	-	-	-
NITROBENZENE	-	-		-	-		-	-	-		-	-	-	-	. —
ISOPHORONE	-		-		-					-	- '	-	 .		-
2-NITROPHENOL	-	-	-		-	-				-	-		-	-	
2,4-DIMETHYLPHENOL	-	-	~~ .		-		-				-	-		-	
BENZOIC ACID			95 J	-	-	150 J	-	-	88 J	-	-		-		-
bis (2-CHLOROETHOXY) METHANE	-	78 J			-	-		-			_	-	-	· ••••	
2,4 - DICHLOROPHENOL 1,2,4 - TRICHLOROBENZENE	-	/6 J	***	-		-	-			-	-	. –		_	110 J
NAPHTHALENE	-	-		-	-			-	120 1	-		-	-	~ ·	-
4-CHLOROANILINE	-	-	-	_	_			-	130 J			-	-	· · ·	-
HEXACHLOROBUTADIENE	_	Ξ	-	-	-		-	-	-	-		-		. –	- ·
4-CHLORO-3-METHYLPHENOL	_	_	_	_	_	-	-	-	_	39 J	-		_	-	
2,4,6-TRICHLOBOPHENOL	-		_	_	-	-	-	-	· <u> </u>	390	=	_	-	_	_
2,4,5-TRICHLOROPHENOL	_	160 J	40 J	_	<u> </u>	_	-	_	· <u> </u>	36 J		_	-	=	200 J
2-CHLORONAPHTHALENE	-				_	_	_	_	<u> </u>		_	· _	_	_	
2-NITROANILINE	_				_	_	_			· _	_	-		_	
DIMETHYLPHTHÄLATE	-	_		-								-		_	1
ACENAPHTHYLENE						_		_		_	_	_	· •		I
2.6-DINITROTOLUENE	-	-			-	_	_						-		<u> </u>
3-NITROANILINE															
13-INT RUAINLINE	.		-	-	-	-	-	-			-			₩.	

B - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATESPOSSIBLE / PROBABLE CONTAMINATION.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N - QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R - DATA IS REJECTED DUE TO HOLDING TIMES EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF SEMI-VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES

PAGE 4 OF 6

						AGE 4								·····	
SAMPLE IDENTIFICATION:	SB32-04	\$839-04	SB40-02	SB40-05	SB41-02	SB42-01	SB42-04	8842-05	i SB44-01	SB44-02	SB45-02	SB45-03	SB4601	SB46-04	6847-04
SAMPLE DEPTH BELOW GRADE (FT)	6-8	6-8	2-4	8-10	2-4	0-2	6-8	8-10	0-2	2-4	2-4	6-8	0-2	6-8	6-8
**BASE NEUTRAL / ACIDS (PPB) ** (CONTINUED)													<u>, , , , , , , , , , , , , , , , , , , </u>		
ACENAPHTHENE (CONTINUED)	-	_	_	_		_	_		_	_		_	_	_	
2.4-DINITROPHENOL	-	_	_	=	_	_	_		-	~			-	_	_
4-NITROPHENOL	-	-	99 J			_	·	-	1000 J		·	 .	-		
DIBENZOFURAN	-		_		-	-	-	-	-	-	~~		-	-	-
2,4-DINITROTOLUENE	-		-	-	-	-	-	-	110 J	-	-			- '	-
DIETHYLPHTHALATE		-		-	-	-	-		***	-	-		~	-	- 1
FLUORENE	_	-	_	_		_	_	-	_		_	-	-	_	Ξ
4-NITROANILINE					_	_		_	-	-		***	-	-	_
4.6-DINITRO-2-METHYLPHENOL		-	. 🗕		-		-	-	-	-	-	-	-	-	-
N-NITROSODIPHENYLAMINE	-	-	-		-	-	-	-	-				· •	-	-
4-BROMOPHENYL-PHENYLETHER		-	-	-		-	-	-	-	-		-		-	-
HEXACHLOROBENZENE PENTACHLOROPHENOL	-	-	250 J	160 J	150 J	-	130 J	-	790 J	300 J	120 J	110 J	110 J	160 J	-
PHENANTHRENE	_	_	250 3	100 J	59 J		42 J	_	130 J	49 J	1200	1100	45 J	39 J	_
ANTHRACENE	_	-	_	-	393	-	425	-	84 J	495	_	-	450	390	
DI-N-BUTYLPHTHALATE	1200	71 R*	300 JB*	76 JB	67 JB	200 JB	59 JB	880	300 JB	140 JB	72 J	58 J	120 JB	58 JB	85 N*
FLUORANTHENE	-	-		50 J	78 J		62 J	-	290 J	78 J	37 J	-	71 J	52 J	
PYRENE	_	39 J	59 JB*	100 JB	120 JB		110 JB		350 JB	140 JB	42 J	-	100 JB	95 JB	_
	-	990	39 JB.	100,08	120 38	-	110.00	-		140.00	42 J	-	100.35	93.95	-
BUTYLBENZYLPHTHALATE		-	-			-	-	~	120 J		•		-		-
BENZO (a) ANTHRACENE		-	36 J	39 J	53 J		46 J		420	52 J	-		-	46 J 🖞	-
CHRYSENE	-	-		-	39 J	-	38 J	-	580	46 J			-	40 J	-
bis(2-ETHYLHEXYL)PHTHALATE	-	-	48 J	-	100 J	-	- .	-	250 J			37 J	71 J	-	-
BENZO (b) FLUORANTHENE	240 JB	-	40 J	-	-	-	-		350 J	~				-	
BENZO(k)FLUORANTHENE	-	— `	51 J		-	-	-	~	160 J	~			-	- .	-
BENZO (a) PYRENE	-	-	44 J		-	_		-	740	<u> </u>		-		-	_
INDENO(1,2,3-cd)PYRENE	-	-	37 J			-	-	-	380 J	·		· 🕳	-	-	_
BENZO(g,h,i)PERYLENE		-	59 J	-	_	-	-	-	1100	<u> </u>	-		-	· _	
TOTAL caPAH	240	0	208	39	92	0	84	0	2630	98	Q	0	0	86	0

B - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N - QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R - DATA IS REJECTED DUE TO HOLDING TIMES EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERFOR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED. * - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF SEMI-VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES

PAGE 5 OF 6

			TAUL .						
SAMPLE IDENTIFICATION:	S855-04	SB60-02	SB72-01	SB72-04	SB73-02	SB73-04	SB73-04	SB77-03	SB8405
SAMPLE DEPTH BELOW GRADE (FT):	6-8	2-4	0-2	6-8	2-4	6-8	DUPE	4-6	8-10
** BASE NEUTRAL / ACIDS (PPB) **					********		(CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR		· · · · · · · · · · · · · · · · · · ·
									•
PHENOL	-	-	-		-		· -	-	-
bis(2-CHLOROETHYL)ETHER		-	-	-	-	-			
		-	-	-		-	-	-	-
1,3-DICHLOROBENZENE	-	-	-	-	-		-	-	-
1,4-DICHLORBENZENE	-	-		_	-	-	-	-	-
BENZYL ALCOHOL				-		-	-	-	-
1,2-DICHLOROBENZENE	-	-			-	-	-	-	
2-METHYLPHENOL	-	-	-	-	-	-	-	-	-
bis(2-CHLOROISOPROPYL)ETHER	-	-	-	-	-	-	-		- ·
4-METHYLPHENOL	-	-	-	-	-	-	-	-	-
N-NITROSO-DI-N-PROPYLAMINE	-	-	-		-	-	-	-	-
HEXACHLOROETHANE		-	-	-	-	-	-	. 	-
NITROBENZENE	-	-	-	-		-		-	-
ISOPHORONE		-	-	-	-	-	-	-	-
2-NITROPHENOL		-	-	-			-	-	-
2,4-DIMETHYLPHENOL	-	-	-	-	-	-	-	-	-
BENZOIC ACID	180 JB*			-	-	-	-	-	-
bis(2-CHLOROETHOXY)METHANE	-	-		-	-	-	-	-	
2,4-DICHLOROPHENOL	 1	-	-	-		-	-	· 🕶	-
1,2,4-TRICHLOROBENZENE	-	-		-	-	-	-		-
NAPHTHALENE	- ·				-	-	-	-	- .
4-CHLOROANILINE	-	-	-	-	-	-	- .	-	-
HEXACHLOROBUTADIENE	-	-	-	-	-	-		· 🛥	. —
4-CHLORO-3-METHYLPHENOL		-	-	-	-	-	-	-	
2,4,6-TRICHLOROPHENOL	-		-	-	~	-		-	··
2,4,5-TRICHLOROPHENOL	-	-	-		-	-	-	-	- .
2-CHLORONAPHTHALENE	-				-		-	-	-
2-NITROANILINE	-	-	-	. .	-	-			- · .
DIMETHYLPHTHALATE	- '	-	-	-	-	-	-	-	-
ACENAPHTHYLENE	-		-		-	-	-	-	-
2,6-DINITROTOLUENE	-	-	-	-	-	-		-	
3-NITROANILINE	_		-	-	_	_	_		_

B - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N - QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R - DATA IS REJECTED DUE TO HOLDING TIMES EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDE

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF SEMI-VOLATILE ORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES

			PAGE	6 OF 6						
SAMPLE IDENTIFICATION:	SB55-04	SB60-02	2 SB72-01	SB72-04	SB73-02	SB73-04	SB73-04	SB77-03	SB84-0)5
SAMPLE DEPTH BELOW GRADE (FT):	6-8	2-4	0-2	6-8	2-4	6-8	DUPE	4-6	8-10	
** BASE NEUTRAL / ACIDS (PPB) **										
(CONTINUED)										
ACENAPHTHENE	_	_	_	_	_ .	_	_	_		
4-NITROPHENOL	_	-		-	_				_	
DIBENZOFURAN	-	-	-	-	- .	-	-	-	-	
2,4 – DINITROTOLUENE DIETHYLPHTHALATE	-	-	-	-	-	-	-	-		
	-			-	-		-	. –	-	
		-	_	-	_	_	_	_		
4-NITROANILINE	-	-	_	-	_	_	_	-	_	
4.6-DINITRO-2-METHYLPHENOL				-			-	_	-	
4,6-DINITRO-2-METHYLPHENOL	_ ·			-		-	-	·		•
4-BROMOPHENYL-PHENYLETHER	-	-	-		-	-	-	-		
HEXACHLOROBENZENE PENTACHLOROPHENOL	370 JB	_	-	170 J	-	-	-	-		
PHENANTHRENE	37038	_	77 J	160 J	_	_	_	_	46 J	
ANTHRACENE	_	-	115	55 J	-	_	· -	_	400	·
DI-N-BUTYLPHTHALATE	870 B	830	-	120 JB	100 JB	57 JB	200 JB	_	-	
FLUORANTHENE	-	_	110 J	240 J	-	_	_	-	56 J	
PYRENE	73 J	-	140 JB	250 JB			· _	-	60 J	
BUTYLBENZYLPHTHALATE	77 J	-	_	_		-	-	-	-	
BENZO(a) ANTHRACENE	-	-	-	130 J	-	-	-		-	
CHRYSENE	-	·	73 J	130 J	-	-	-	-	-	
bis(2-ETHYLHEXYL)PHTHALATE	950 B	-	-	88 J	-	-	-	-		
BENZO(b) FLUORANTHENE	-		47 J	61 J	-	-	-	-	-	
BENZO(k)FLUORANTHENE	-	-	-	75 J	-	-	-	-	-	1
BENZO(a) PYRENE		-	-	66 J	-	-	-	-	-	
INDENO(1,2,3-cd)PYRENE	-	-	-			-	-	-	-	
BENZO(g,h,I)PERYLENE	-	-	-	-	-	-	-	-		[
TOTAL caPAH	0	0	120	332	0	0	0	0	0	

B - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

N - QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R - DATA IS REJECTED DUE TO HOLDING TIMES EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERFOR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

TABLE 25c SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF PESTICIDE/PCBs DETECTED IN SOIL BORING SAMPLES PAGE 1 OF 2

SAMPLE IDENTIFICATION:	SB01-02	2 SB05-02	SB07+03	SB13-03	SB20-01	SB20-04	SB22-05	SB24-03	SB27+02	SB30-01	SB30-04	SB31-01	SB31-04	SB32-01	SB32-04
SAMPLE DEPTH BELOW GRADE		2-4	4-6	4-6	0-2	68	8-10	46	2-4	0-2	6-8	0-2	6-8	0-2	6-8
PESTICIDES/PCB'S (PPB)															
ALPHA-BHC	-	-	-	-	NA	-	-	-	-	NA	NA	NA	NA	NA	-
BETA-BHC			-	-	NA	-		-		NA	NA	NA	NA	NA	
DELTA-BHC			-	-	NA		-		-	NA.	NA	NA	NA	NA	
GAMMA-BHC(LINDANE)	÷	-	-	-	'NA	-	-	-	-	NA	NA	NA	NA	NA	-
HEPTACHLOR	-		· _	_	NA	-	-			NA	.NA	NA	NA	NA	
ALDRIN					NA	***			-	NA	NA	NA	NA	NA	
HEPTACHLOR EPOXIDE				-	NA	-				NA	NA	NA	ŇA	NA	. —
ENDOSULFANI			.	-	NA				· _	NA	NA	NA	NA	NA	
DIELDRIN	-			-	NA	-		-	-	NA	NA	NA	NA	NA	-
4.4-DDE			-		NA	-	-	-		NA	NA	NA	NA	NA	· _
ENDRIN		-			NA	-	-	-		NA	NA	NA	NA	NA	-
ENDOSULFAN II	-	-	-		NA	-	-			NA	NA	NA	NA	NA	
4.4-000					NA		-	-		NA	NA	NA	NA	NA	
ENDOSULFAN SULFATE	-	-	-	-	NA	-	-	-	-	NA	NA	NA	NA	NA	
4.4-DDT			9.3 J	9.8 J	NA	26000	31000	***		NA	NA	NA	NA	NA	·
METHOXYCHLOR		-	-	-	NA		-	_		NA	NA	NA	NA	NA	
ENDRIN KETONE		-	-	-	NA	· _		_	-	NA	NA	NA	NA	NA	. 🗕
ALPHA-CHLORDANE		_	-	-	NA	_		-		NA	NA	NA	NA	NA	-
GAMMA-CHLORDANE			-	-	NA				-	NA	NA	NA	NA	NA	-
TOXAPHENE	-	-	~	-	NA					NA	NA	NA	NA	NA	-
AROCLOR-1016			-	-	-	-	-		~	-	-	-		_	
AROCLOR-1221	-	-	-		<u> </u>	-	-	-	-		-	-	-		- . '
AROCLOR-1232			-		-	-					· —		<u> </u>	· _	_
ARUCLOR-1242	·		- .	-		-			-		-		-	-	-
AROCLOR-1248								-	-	-		-		-	
AROCLOR-1254		-		-						-	-	13 J	. —	130	-
AROCLOR-1260	-				22 J	-			-	<u> </u>		-			- '

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE.

NA - NOT ANALYZED

TABLE 25c
SHIELDALLOY METALLURGICAL CORPORATION
SUMMARY OF PESTICIDE/PCBs DETECTED IN SOIL BORING SAMPLES
PAGE 2 OF 2

SAMPLE IDENTIFICATION:	SB33-01	SB33-04	SB34-01	SB34-04	4 SB94-04	5835-01	8B35-04	SB39-04	SB42-05	SB47-04	SB55-04	SB60-02	SB73-04	SB77-03	SB84-05
SAMPLE DEPTH BELOW GRADE	0-2	6-8	0-2	68	DUP SB34	0-2	6-8	68	8-10	68	6-8	2-4	6-8	4-6	8+10
PESTICIDES/PCB'S (PPB)	<u></u>														
ALPHA-BHC	NA	NA	• NA	NA	NA	NA	NA	-	-	-	-			-	-
BETA-BHC	NA	NA	NA	NA	NA	NA	NA	-	-		-	-		-	-
DELTA-BHC	NA	NA	NA	NA	NA	NA	NA		-	-		-	-	-	- 1
GAMMA-BHC(LINDANE)	NA	NA	NA	NA	NA	NA	NA	-		-	-		-	-	- 1
HEPTACHLOR	NA	NA	NA	NA	NA	NA	NA	-	-	` 	-	-			
ALDRIN	NA	NA	NA	NA	NA	NA	NA	-	-	-	-		-	-	-
HEPTACHLOR EPOXIDE	NA	NA	NA	NA	NA	NA	NA	-	-		-	-	-	-	- !
ENDOSULFANI	NA	NA	NA	NA	NA	NA	NA	-	-	-	- '	·	-	-	
DIELDRIN	NA	NA	NA	NA	NA	NA	NA		-	-	-	-		. —	-
4.4-DDE	NA	NA	NA	NA	NA	NA	NA	-	-	-		-	-	-	-
ENDRIN	NA	NA	NA	NA	NA	NA-	NA	-	-	-	-	-	-	-	- !
ENDOSULFAN II	NA	NA	NA	NA	NA	NA	NA	-	-	-		-	-		- 1
4,4-DDD	NA	NA	NA	NA	NA	NA	NA	-		-		-	- .		- 1
ENDOSULFAN SULFATE	NA	NA	NA	NA	NA	NA	NA	-	-	-	-		-	-	-
4,4-DDT	NA	NA	NA	NA	NA	NA	NA	20	-	-		-	37000		- !
METHOXYCHLOR	NA	NA	NA	NA .	NA	NA	NA		-		-	-	-		-
ENDRIN KETONE	NA	NA	NA.	NA	NA	NA	NA	— '	-			-			
ALPHA-CHLORDANE	NA	NA	NA	NA	NA	NA -	NA	-	-	-	-		· 	-	-
GAMMA-CHLORDANE	NA	NA	NA	NA.	NA	NA	NA	-	-	-	-	-		-	-
TOXAPHENE	NA	NA	NA	NA	NA	< NA	NA	-	-	-		-		-	-
AROCLOR-1016	-	. .	-	-		-		-	-		· . -	. '			
AROCLOR-1221	-	-	-	-	-	-	-			. –	-			-	-
AROCLOR-1232	-	-	-	-	-	. —		-	-		-	-	-	-	-
ABOCLOB-1242	-		-		-	-		-	-	-		-	-	-	-
AROCLOR-1248		-	-	-	. 🗕	-	-	-	-	-		 .	- ,		-
AROCLOR-1254	16 J		-		-	-		· -		. —	-	-	-	-	
AROCLOR-1260	-		-	-				<u></u>	-	-					<u>28 J</u>

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS AN ESTIMATE. NA - NOT ANALYZED '-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT

TABLE 25d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 1 OF 10

SAMPLE DEPTH BELOW GRADE (FT)	5801-02 S 2-4	3805-02 3 2-4	5807-01 S 0-2	8807-03-8 4-6	0-2	DUPE	3808-02 S 2-4	809-01 8 0-2	2-4	B10-01 \ 0-2	55110-0515 4-6	3511-01 3 0-2	3811-02 \ 2-4	5B12-03 4-6
INORGANICS (PPM) SILVER, TOTAL	-	_	-	_	_	_	_	_		2 B	_	_	_	
ALUMINUM, TOTAL ARSENIC, TOTAL	459	927 0.78 B	2090	1590	5360 1.4 B	3220 0.87 B	3510 0.81 B	4550 0.7 B	3980 1.6 B	4360 0.78 B	1070 0.96 B	6400 0.71 B	1690	3330 1.2 B
BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL	3.9 B 	8.3 B 0.47 B 237 B	9.1 B 0.66 B 65.7 B	6.3 B 0.76 B 113 B	13 B 2.1 4950	18:4 B 3.2 1270	12.7 B 1 B 274 B	19.4 B 1.6 95.5 B	20.7 B 7.2 1150	14.7 B 84.8 B	4.9 B 35.1 B	27.9 B 129 B	8.8 B	15.9 B 4.5 1520
CADMIUM, TOTAL COBALT, TOTAL	-	_	-	-	-	1.7 B	-	1.7 B	4.7 B	1.5 B	-	· _	-	зB
CHROMIUM, TOTAL CHROMIUM VI COPPER, TOTAL	1.1 B	16.2 2,2 B	3.3 0.15 1.7 B	3.8 1.8 B	30.8 2.3 B	27.7 5.2	6.5 2.1 B	178 22.8 + 3.1 B	375 41.7 + 8.8	3.9 2.1 B	1.7 B 1.9 B	5.2	4.9 1.5 B	18.1 0.25 7.3
CYANIDE, TOTAL IRON, TOTAL MERCURY, TOTAL	- R* 405	-R* 1240	R* 2460	-R* 2400	2200	5180	4300	4440	8860	4330	2480	6000	2840	5800
MERCURY, TOTAL POTASSIUM, TOTAL MAGNESIUM, TOTAL	- 82.2 B	 154 B	235 B 305 B	316 B	2440	1440	391 B 410 B	655 B 554 B	539 B 2160	291 B 178 B	79.5 B	421 B	105 B	319 B 594 B
MANGANESE, TOTAL SODIUM, TOTAL	2.6 B 46.1 B	40.5 53.7	11 44,5	15.6 41.4 B	92.9 103 B	142 142 B	32.3 101 B	36.8 188 B	441 216 B	22.7 185 B	17.6 112 B	20.2	15.9	65,6 55.8 B
NICKEL, TOTAL LEAD, TOTAL ANTIMONY, TOTAL	3.5	10,9 <u>4</u>	3.5	.3,9 B 2,5	11.6 9.3	73.7 14.9	3,9 B 3.2	11 3,4	245 33.9	4.5	2.2	2.8 B 5.8	2.9 B 1.2	81.9 20.1
SELENIUM, TOTAL THALLIUM, TOTAL		-	-	-	-		-	-	0.47 B	-		0.55 B	-	-
VANADIUM, TOTAL ZINC, TOTAL BORON	4,9 B 25,3	105 6.3	128 7.7	145 9.4	435 9.2	472 20.2	182 8.1	324 8.7	1630 40 29.1	10.2 B 8.8 N/A	6,5 B 3.3 N/A	7.4 B 5.4 N/A	2.7 B 2.3 B N/A	903 29.9 N/A
NIOBIUM STRONTIUM	- - -	 35,9	- 85.2	- 85.8		-	168	121	_	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A
TITANIUM ZIRCONIUM SULFATE	32.5 N/A	35.9 	05.2 N/A N/A	85.6 N/A	85.2 N/A	94.5 	N/A	N/A N/A	98.1 N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A 51.7	N/A N/A	N/A N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J - QUALIFIER INDICATES THE SAMPLE WAS ANALYZED DURING THE TEN DAY HOLDING TIME BUFFER PERIOD.

R - QUALIFIER INDICATES THAT THE HOLDING TIME WAS EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

+ - INDICATES Cr+6 DATA BY LEACH METHOD

N/A - NOT ANALYZED

'-' - INDICATES THE PARAMETER WAS NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMITS.

TABLE 250
SHIELDALLOY METALLURGICAL CORPORATION
SUMMARY OF INORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES
PAGE 2 OF 10

SAMPLE IDENTIFICATION: SAMPLE DEPTH BELOW GRADE (FT):	SB13=01 S 0-2	6-6	3B14-01 0-2	BI4-01 S	814-02 2-4	SB15=01 0-2	SB15-02 S 2-4	65515-03 S	0-2	3817-02 X 2-4	0-2	SB18-01 N DUPE	2-4	SB19-03 S 4-6	SE20-01 0-2
INORGANICS (PPM)															
SILVER, TOTAL ALUMINUM, TOTAL	9000	2140	2290	2.1 3140	1.3 B 749	5190	2.1 1920	1410	1.3 B 1720	1.5 B 1620	2.2 7440	1.9 B 6750	2 B 4940	3830	7950
ARSENIC, TOTAL BARIUM, TOTAL	1.5 B 110	1 B 21.7 B	1.1 B 6.9 B	0.75 B 6.4 B	2.9 B	1.7 B 39.6 B	0.79 B 5.8 B	0.5 B 3.7 B	1.6 B 8.1 B	0.48 B 7.4 B	1.3 B 37.3 B	1,5 B 113	1.7 B 24.1 B	1 B 26,4 B	4.7
BERYLLIUM, TOTAL CALCIUM, TOTAL	2560	1.2 364 B	0.25 B 80.2 B	0.25 B 55.9 B	37.3 B	1 B 706 B	61.5 B		297 B	0.26 B 32,3 B	0.38 B 81.6 B	3.5 4350	0.21 B 80.2 B	1.1 327 B	152 5.7 13100
CADMUM, TOTAL COBALT, TOTAL	_	2.7 B	-			2.5 B	=	-		_	1.9 B	2.4 B	3.4 B	2.5 B	1.7 9.7 B
CHROMIUM, TOTAL	4.7 B 32.4	98.6	2.3	1.1 B	3.2	29.7	3.8	1.6 B	11.5	2.6	7.2	29.3	4.7	31.8	143 0.15 +
COPPER TOTAL CYANIDE TOTAL	12.2 	17.8 ~- B*	2.4 <u>B</u>	2.9 B	1.3 B	7.5	1.6 B		4.8 <u>B</u>	1.5 B	4.2 B	11.1	2.8 B	5.3	342
IRON, TOTAL MERCURY, TOTAL	8170	3480	7400	10800	1110	7030	2580	2700	2200 0.08	2300	7620	8580	5240	5970	18900
POTASSIUM, TOTAL MAGNESIUM, TOTAL	230 B 1090	182 B	134 B	134 B	58.9 B	325 B 654 B	121 B	65.6 B	220 B 1200	190 B 165 B	1180 533 B	382 B 4210 342	778 B 378 B	342 B	556 B 4070
MANGANESE, TOTAL SODIUM, TOTAL	1090 547 76.1 B	135 65.1 B	24,5 86,2 B	20.3 101 B	5.6 87.5 B	56.5 159 B	9.9 115 B	7 39.4 B	62.3 223 B	6.3 164 B	24.2 479 B	342 264 B 64.2	43.9 329 B	458 38.7 B	1510 206 B
LEAD, TOTAL	76.1 B 94.4 2.04	44.2 2.31	3 B 4.8	3.2	1.7	13.6 14.8	2.2	0.78 B	13.4 25.9	0.58	3.8 B 4.6	64.2 55.8	3 B 3.4	17.6 3.5	322 3.62
ANTIMONY, TOTAL SELENIUM, TOTAL	_	_		-		0.51 B	-	-	-	-	_	=	-	-	
THALLIUM, TOTAL	417	229	19.2	9.1 B 3.7 B	8.9 B	139	16.2	2.9 B	153	21.7	24.8	517	14.8	245	1160
ZINC, TOTÁL BORON	75	229 35.5	3.8 B N/A	3.7 B N/A	4.2	49.6 N/A	1.8 B N/A	2.3 B N/A	25,5 N/A	1.7 B N/A	5.7 N/A	53.7 N/A	4 B N/A	20,4 N/A	59.8
NOBIÚM STRONTIUM	22.5 200	-	N/A N/A	N/A N/A	N/A N/A N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A N/A	N/A N/A	N/A N/A	110
TITANIUM ZIRCONIUM	200 N/A	125	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	110 341 N/A
SULFATE	N/A N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A N/A

6

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL

J - QUALIFIER INDICATES THE SAMPLE WAS ANALYZED DURING THE TEN DAY HOLDING TIME BUFFER PERIOD.

R - QUALIFIER INDICATES THAT THE HOLDING TIME WAS EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

+ - INDICATES Cr+6 DATA BY LEACH METHOD

N/A - NOT ANALYZED

'-' - INDICATES THE PARAMETER WAS NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMITS.

TABLE 25d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 3 OF 10

	6-8	3821-01 8 0-2	8-8	0-2	6-8	5822-05 S 8-10	0-2	DUPE	8-10	4-6	3825-01 X 0-2	DUPE	6-8	0-2
INORGANICS (PPM)											P		Р	
SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL	3030 10.4 B	10400 1.2 B	6700 15.5 B	6030 1.1 B	2800 8 B	N/A N/A N/A	3050 0.57 B	6000 0.65 B	2770 1.8 B 21.0 B	3000 0.8 B 8.5 B	24400	2000 0.51 B 4.7 B	86300	6040 1.1 B 28.4 B
BERYLLÍUM, TOTAL CALCIÚM, TOTAL CADMIUM, TOTAL	0.23 B 50.4 B	71.8 7.7 7690	46.6 B	44.4 0.59 B 269 B		N/A N/A N/A	21.5 B 0.68 B 268 B	18.5 B 0.29 B 145 B	4.1 908 B	0.24 B 70.1 B	14 25000	0.11 B 37.6 B	18.3 106000	0.25 B 1930
COBALT, TOTAL CHROMIUM, TOTAL CHROMIUM VI COPPER, TOTAL	2.8 B 	10 B 162 0.84 + 49.4	3.3 B 4 3.9 B	2.6 B 32.7 0.66 3.6 B	1.8 B 3.6 2.9 B	N/A N/A N/A N/A	31.4 3 B	1.45 51 3.4 B	3.7 B 834 0.28 + 4.8 B	5 B 3.5 - 3.3 B	46.9 12.2	1.2 B	83.1 12.9	10.1 1.5 B
CYANIDE, TOTAL IRON, TOTAL MERCURY, TOTAL POTASSIUM, TOTAL	-R* 12900	15000 389 B	12100 216 B	R* 7610 375 B	8* 5520 	N/A N/A N/A	7390 0.09 320 B	8700 499 B	9090 0.07 652 B	-R* 7510 -	3340 0.12	4520 0.1	2600 0.1	5410 206 B
MAGNESIUM, TOTAL MANGANESE, TOTAL SODIUM, TOTAL NICKEL, TOTAL	70 B 24.8 34 B 2.5 B	6330 3150 195 B 463	296 B 37.6 80 B 5 B	640 B 85.7 332 B 11.4	33 B 10.8 40.8 B	N/A N/A N/A N/A	547 B 62.4 284 B 12.5	672 B 31.2 295 B 6.3 B	503 B 348 321 B 3.8 B	131 B 203 81.7 B	10600 49,1 210	32.2 B 6.8	50900 217 1540 214	754 B 25.3 505 B 2.0 B
LEAD, TOTAL ANTIMONY, TOTAL SELENIUM, TOTAL THALLIUM, TOTAL	-	68.3	3.9	4.1	5.8	N/A N/A N/A N/A	8.4 B	12.9 6.7 B	54.2 8.4 B	4.7 B	68.7 -	2.7	110 	2.00 6 - -
VANADIUM, TOTAL ZINC, TOTAL BORON NIOBIUM	2.4 B 8.5	1810 286 N/A	11.1 5.7 N/A	82.9 23.7	5.1 B 34.3	N/A N/A N/A	93.8 9 N/A	27.2 5 N/A	732 79.6 N/A	8.6 B 10.3	2780 20.4 N/A	3.9 B N/A	3660 92.7 N/A N/A	14,1 9.7 N/A
STRONTIUI TITANIUM ZIRCONIUM SULFATE	74.6 N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A	- 133 N/A 55.7	82.1	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	103 83.9	- N/A N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J - QUALIFIER INDICATES THE SAMPLE WAS ANALYZED DURING THE TEN DAY HOLDING TIME BUFFER PERIOD.

R -- QUALIFIER INDICATES THAT THE HOLDING TIME WAS EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

+ - INDICATES Cr+6 DATA BY LEACH METHOD

N/A - NOT ANALYZED

'-' - INDICATES THE PARAMETER WAS NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMITS.

TABLE 25d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 4 OF 10

SAMPLE IDENTIFICATION SAMPLE DEPTH BELOW GRADE (FT)	SB25-04 S 6-8	8827-02 S 2-4	3827-04 6-8	5828 <u>-01</u> 0-2	5828-04 6-8	5829-01 0-2	SU29-01 DUPE	SB29-04 6-8	SB30-01 0-2	SB30-04 6-8	5531=01 -3 0-2	31331-04 6-8	5832-01 0-2	5832-04 6-8
INORGANICS (PPM)														
SILVER, TOTAL ALUMINUM, TOTAL	2180	12000	2290	104000	1750	8980	1.5 B 6390	7810	6900	1.4 B 12500	6620	687	3890	2.1 3080
ARSENIC, TOTAL BARIUM, TOTAL	0,49 B 8.3 B	0.93 B 26.8 B	0.58 B 12.8 B	2.6 B 228	0.69 B 4,6 B	0.58 B 12.4 B	0.92 B 10.9 B	0.55 B 20.6 B	1 B 39.9 B	13.3 B	0.86 B 26.1 B	2.6 B	1.1 B 30.8 B	12.3 B
BERYLLIUM, TOTAL CALCIUM, TOTAL	0.16 B 36.5 B	0.51 B 76 B	0.28 B 66.5 B	19.2 115000	0.19 B 427 B	0.59 B 680 B	0.41 B 1370	0.3 B 157 B	1.4 1690	0.41 B 135 B	0,68 B 1670	26.1 B	7.8 1010 B	63.2 B
CADMIUM, TOTAL COBALT, TOTAL	1,5 B		-	3.3 B	1,6 B	5.2 B	-	2.8 B	0.92 B 5.7 B	10.9 B	3.2 B	2.5 B	3.3 B	4 B
CHROMIUM, TOTAL	1.6 B	4.9 B 7.5 B	2.6	127	5.9 0.13	13 N/A	2 B 7.2 N/A	3.5 N/A	2280 1.3 +		783 0.64 +	11.3 0.22	1100 0.79 +	
COPPER TOTAL CYANIDE TOTAL	1.5 B	3.7 B	1.5 B 	33.6	1.5 B	7.5	6.9	'é.9	10.8	11.7	6.7	-	13.1	2.6 B
IRON, TOTAL MERCURY, TOTAL	4290	21600	2990	1670	4770	26400	11600	18400	13400	46800	10900	2580	8210	6290
POTASSIUM, TOTAL MAGNESIUM, TOTAL	35.7 B	450 B 525 B	189 B . 111 B	43000	195 B	773 B 296 B	561 B 360 B	679 B 149 B	426 B 720 B	233 B	653 B 572 B	22.6 B	285 B 707 B	98 B
MANGANESE TOTAL	28.3 211 B	49.9 161 B	11 119 B	113 1020	15.1 271 B	120 26.3 B	107	36.1 65.5 B	1240 96,1 B	70.6 101 B	163 101 B	21.9 38 B	565 268 B	25,2 120 B
SODIUM, TOTAL NICKEL, TOTAL		7 B	2.9 B	469	1.5 B	5.1 B	102 B 4.5 B	3.5 B	24 43	3.7 B 4.3 B	7.4 B 57.2	0.95 B	108	2.8
LEAD, TOTAL ANTIMONY, TOTAL	1.2	4,9 B	2.8 5.8 B	70.4	1.8	11.3	8.6 -	5.9 _	39.5	4.3 0	16.8	0.95 B		2.0
SELENIUM, TOTAL THALLIUM, TOTAL	-			5.1								10 -	-	
VANADIUM, TOTAL	6.8	- 21.2 12.5	35,9 2,7 B	3630 49,1	16.7 5.5	48.9 10.8	28.7 5.8	15.9 5.4	_262 75	13.8 7,5	_109 30.5	12.6	1190 243	8,4 B 1,6 B
BORÓN NIOBIUM	N/A N/A N/A	-	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	=
STRONTIUM TITANIUM	N/A	241	N/A N/A	N/A N/A	N/A N/A	N/A 160	N/A 113	N/A 140	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	78,6
	N/A N/A	1120 N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J - QUALIFIER INDICATES THE SAMPLE WAS ANALYZED DURING THE TEN DAY HOLDING TIME BUFFER PERIOD.

R - QUALIFIER INDICATES THAT THE HOLDING TIME WAS EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

+ - INDICATES Cr+6 DATA BY LEACH METHOD

N/A - NOT ANALYZED

'-' - INDICATES THE PARAMETER WAS NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMITS.

TABLE 25d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 5 OF 10

SAMPLE IDENTIFICATION: SAMPLE DEPTH BELOW GRADE (FT): ""INORGANICS (PPM)""	SB33-01 0-2	5833-04 6-8	9834-01 0-2	5834-04 6-8	SB34-04 DUPE	5835-01 0-2	5835-04 6-8	S836-01 0-2	SB35 -04 6-8	SB37-01 0-2	5837-04 6-8	8838-01 0-2	5838-04 6-8	5839-01 0-2
SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CALCIUM, TOTAL	2.3 4910 1,1 B 26.3 B 1.1 891 B	2.1 B 4080 12.8 B	4470 1.2 B 33.7 B 1250	5210 9.9 B 40.5 B	5510 8,1 B 0.27 B 58.8 B	3040 0.6 B 7.5 B 0.24 B 1610	2470 5.4 B 45.2 B	5290 1.2 B 99.6 6.3 4790 0.92 B	3720 0.77 B 21.4 B 0.37 B 121 B	5660 0.76 B 8.3 B 2.7 1310	2040 0.63 B 2.8 B 59 B	3550 0.65 B 9.2 B 222 B	1610 4,3 B 0.34 B 56.1 B	1990 0.53 B 16.7 B 1.6 341 B
COBALT, TOTAL CHROMIUM, TOTAL CHROMIUM VI COPPER, TOTAL CYANIDE, TOTAL IRON, TOTAL MERCURY, TOTAL POTASSIUM, TOTAL	3.3 B 180 5.1 B 8480	1.7 B 313 3.2 B 6820	1.7 B 14.8 3.1 B 6770 0.1	5.7 B 56.8 9.1 3.5 B 18800	7.4 B 77.5 7.7 5.1 B 36100	3.1 B 762 0.19 + 2.6 B 7490	1.6 B 0.89 B 2.5 B 7790	3.7 B 1630 5.6 + 10.6 5010 0.1	2.7 B 57.5 2.3 5320	2.5 B 32.7 0.18 4.1 B 8020	21.6 2.2 B 3450	1.7 B 17.4 2.5 B 5250	3.9 1.2 B 1730	2.2 B 101 0.22 + 3.4 B -R* 3840 -
MAGNESIUM, TOTAL MAGNESIUM, TOTAL MANGANESE, TOTAL SODIUM, TOTAL NICKEL, TOTAL LEAD, TOTAL ANTIMONY, TOTAL SELENIUM, TOTAL	191 B 683 B 236 187 B 36.4 15.4 	69.1 B 21.6 524 B 4.2 6.8 B	464 B 201 B 44.6 152 B 9.4	105 B 44.3 90.1 B 2.5 6.5 B	111.B 48.1 34 B 2.3	322 B 219 B 56.3 56.1 B 2.5 17.9	275 B 47.2 B 13.3 45 B 2 4.6 B	422 B 2180 158 137 B 116 20.6 19.8 2	491 B 217 B 33.8 90.3 B 2.9 B 7	301 B 548 B 33.7 66.5 B 12.4 B 0.47 B	112 B 10.5 49.8 B 7.9 B	275 B 37.5 32.2 B 4.8	116 B 9.7 1.2 0.47 B	254 B 192 30.2 B 25.4 5.5
THALLIUM, TOTAL VANADIUM, TOTAL ZINC, TOTAL BORON NIOBIUM STRONTIUI TITANIUM ZIRCONIUM SULFATE	15244 14,24 2,24 2,24 2,24 2,24 2,24 2,24	9.7 B 1.8 A N/A A N/A N/A N/A	8.2 B 11.4 N/A N/A N/A N/A N/A	– B 5.6.5 N/A N/A N/A N/A N/A		28.2 6.7 N/A N/A N/A N/A N/A	32/44 32/44 2/44	1250 117 N/A N/A N/A N/A N/A	47.8 7.4 N/A N/A N/A N/A N/A	594 7.8 N/A N/A N/A N/A N/A	22.7 3.3 B N/A N/A N/A N/A N/A N/A	13.4 4.9 N/A N/A N/A N/A N/A	76.7 7.8 N/A N/A N/A N/A N/A	328 40.1

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J - QUALIFIER INDICATES THE SAMPLE WAS ANALYZED DURING THE TEN DAY HOLDING TIME BUFFER PERIOD.

R - QUALIFIER INDICATES THAT THE HOLDING TIME WAS EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

+ - INDICATES Cr+6 DATA BY LEACH METHOD

N/A - NOT ANALYZED

'-' - INDICATES THE PARAMETER WAS NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMITS.

TABLE 25d
SHIELDALLOY METALLURGICAL CORPORATION
SUMMARY OF INORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES
PAGE 6 OF 10

SAMPLE DEPTH BELOW GRADE (FT)	SI339-04 S 6-8	5840-02 X 2-4	3840-05 8-10	SB42-04 1 6-8	SB42-04 S DUPE	842-05 8-10	SB43=01 0-2	5843-04 5 6-8	SB44-01	5844-02 X 2-4	5545-02 X 2-4	SB45-03 3 4-6	6846-01 0-2	5846-04 S 6-8	647-01 0-2
INORGANICS (PPM)											· ·				
SILVER, TOTAL	1090	3960	257	N/A N/A N/A	3260	2.7	3.3 4010	2130	6760	5760	3780	2270	1770	3160	7060
ARSENIC, TOTAL	-	1.2 B	-	N/A	0.55 B	-	43.1	0.71 B	1.7 B	1,9 B -	1.1 B 7.8 B	0.62 B	18	0.85 B	4
BARIUM, TOTAL BERYLLIUM, TOTAL	4.2 B 0.44 B	30.2 B	-	N/A N/A	6.2 B 0.25 B	3.7 B 0.26 B	123 0.91 B	9.5 B	15.8 B 6.6	26.9 B 0.26 B	0.47 B	4.9 B	8.7 B 1.6	11 B 0.38 B	59.9 20
CALCIUM, TOTAL CADMIUM, TOTAL	0.44 B 61.9 B	553 B	27.8 B	N/A N/A	0.25 B 76 B	112.B	1740	143 B	2340	240 B	466 B	95.7 B	1710	131 B	8460 1.5
COBALT, TOTAL	Ξ	-	0.95 B	N/A N/A	2.5 B	1.6 B	32.8	2.4 B	<u>5</u> B	1.8 B		- <u>-</u>	·	10.2	9.5 B
CHROMIUM, TOTAL CHROMIUM VI	8 0.37	3.5 N/A	-	N/A N/A	_	1.2 8	260 N/A +	4.5 N/A	97.5 N/A	5.1 N/A	57.8 N/A	5.1 N/A	6.6 N/A	N/A	87.3 N/A
COPPER TOTAL	-B*	1.7 B 	-R*	N/A N/A	2.1 B	1.2 B	121 0.7	6	4.4 B − B*	2.5 B - B*	4.7 B	1.2 B	2.3 B 	1.3 B R*	32.2
CYANIDE, TOTAL IRON, TOTAL MERCURY, TOTAL	2440	4110	760	N/A	11200	8780	31100	4170	21000	7480	4910	3040	2610	11200	9810
POTASSIUM, TOTAL	_	279 B	-	N/A N/A		0.06	0.11 248 B	.=	467 B	389 B	266 B	219 B	213.B	362 B	
MAGNESIUM, TOTAL MANGANESE, TOTAL	70.7 B 16.5	319 B 85.9	3.8	N/A N/A N/A	63.2 B 26.4	11	639 B 2380	151 B 56.1	1130	891 B 54.6	369 B 48.7	191 B 50.4	844 B 22	142 B 69.8	3510 1810
SCOIUM, TOTAL	42.5 B	52.2 B		N/A	31.6 B	21 B	192 B		66.3 B	179 B	97.4 B	65.5 B	35.4 B	71.9 B	410 B
NICKEL TOTAL LEAD, TOTAL	2.2 4.4 B	8.8	28.2 B 1.4	N/A N/A	2.6	1.9	41.9 105	5.2 B	5.9 <u>B</u> 9 B	4.6 8	2.3 B 52.6	1.9	19	3.2	339
ANTIMONY, TOTAL SELENIUM, TOTAL	4.4 B	-	-	N/A N/A		-	0.75 B				0.48 B	_	_	=	0.42 B
THALLIUM, TOTAL			_	N/A		-	-								
VANADIUM, TOTAL ZINC, TOTAL	82.6 9.8	7.3 B 8.7	4.2	N/A N/A	6.4 B 4.3	8.3 B 4.1 B	176 159	5.5 B 38.6	1280 13.7	12.4 8.5	86.8 13.8	23.6 3.2 B	308 6	44 5.7	4110
NIOBIUM	-	Ň/Ă N/A		N/A N/A		<u>=</u>	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	3.2 B N/A N/A	N/Ă N/A	N/A N/A	-
STRONTIUI		N/A		N/A	·		N/A	N/A	N/A	N/A 205	N/A	N/A	N/A	N/A	46.4
TITANIUM ZIRCONIUM	40.4	120 N/A	29.4 N/A	N/A N/A N/A	93.5	44.2 43.5	N/A N/A	N/A N/A	156 N/A	205 N/A	99.4 N/A	82 N/A	81.8 N/A	98.5 N/A	219 N/A
SULFATE	<u>N/A</u>	<u>N/A</u>		N/A	<u> </u>		N/A	N/A	N/A	N/A	N/A	N/A N/A	N/A	N/A	<u> </u>

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL

J - QUALIFIER INDICATES THE SAMPLE WAS ANALYZED DURING THE TEN DAY HOLDING TIME BUFFER PERIOD.

R - QUALIFIER INDICATES THAT THE HOLDING TIME WAS EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

+ - INDICATES Cr+6 DATA BY LEACH METHOD

N/A - NOT ANALYZED

'-' - INDICATES THE PARAMETER WAS NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMITS.

TABLE 25d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 7 OF 10

SAMPLE IDENTIFICATION: SAMPLE DEPTH BELOW GRADE (FT):	8847=04 R 6-8	3B48-01 0-2	5848-04 5 6-8	0-2	6-8	6650-01 S 0-2	6-8	1851-01 S 0-2	851-02 8 2-4	3852-01 8 0-2	3852-04 S 6-8	3853-01 N 0-2	853-04 6-8	5854-01 0-2
INOHGANICS (PPM)	· 14													
SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL CADMIUM, TOTAL	867 5.3 B 0.5 B 198 B	10900 2.5 39.6 B 0.46 B 384 B	2020 4.8 B 45.3 B	3140 0.97 B 44.2 3.8 266 B	2770 9 B 0.73 B 114 B	4480 1.2 B 15.5 B 4.2 372 B	1290 0.49 B 3.1 B 1.2 94.1 B	4010 1.2 B 14.9 B 2.1 149 B	3270 1.2 B 9.2 B 197 B	19600 1,5 B 119 3,8 21500	2250 0.42 B 7.2 B 0.08 B 44.8 B	3570 0.88 B 160 7.6 1160	1620 6.1 B 0.08 B 69.5 B	15000 0.6 B 178 2.2 11700
COBALT, TOTAL CHROMIUM, TOTAL CHROMIUM VI COPPER, TOTAL CYANIDE TOTAL	1.7 B 	4.5 B 7.6 N/A 5.3 B	4.1 N/A 3.1 B	3 B 7.1 0.32 3.6 B	108 3.1 B	6.1 B 6.4 0.58 3.3 B	10.2 0.45 1.2 B	2.4 B 5.8 0.35 3 B –	1.4 B 5 3.5 B	1.4 B 206 0.38 + 6.1	1.5 B 2.2 0.12 0.88 B	10.3 473 1.3 + 9.9	1.5 B 2.9 0.1	6.3 B 334 4.8 + 7.1
IRON, TOTAL MERCURY, TOTAL POTASSIUM, TOTAL MAGNESIUM, TOTAL	899 	13800 493 B 1010 B	3710 68.3 B	8320 	2320 	6610 253 B 528 B	1640 202 B	5570 839 B 504 B	4440 443 B 361 B	3380 9260	3400 0.08 54.2 B	4140 2060	2680 	2300
MANGANESE, TOTAL SODIUM, TOTAL NICKEL, TOTAL LEAD, TOTAL	53.2 61 B 3 B 1.5	72 64.2 B 4.2 B 4.2	9,8 32.5 B 2	70.6 214 B 11.3 6.6	21.2 126 B 11.3 17.8	26.1 110 B 221 4.4 B	7.3 136 B 7.3 B 2.5	55 59.3 B 3.8 B 21 B	19.1 143 B 2.6 B 7	128 892 B 43,3 30,8	7.7 87.4 B 4.5	233 557 B 275 34.8	14.9 98.7 B 4.2	150 1030 B 677 40.5
ANTIMONY, TOTAL SELENIUM, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL	5 B 	0.65 B 35.5	 3.4 B		0.43 B	0.53 B 928	265	- - 466	- - 7.9 B	742	3.1 B	 1510		433
ZINC, TOTAL BORÓN NIOBIUM	13.2	18.7 N/A N/A	2.9 B N/A N/A	8.5 N/A N/A	6 N/A N/A	16.3 N/A N/A	2.4 B N/A N/A	7.4 N/A N/A	6.4 N/A N/A	28.9 N/A N/A	3.0 B N/A N/A N/A	30.6 N/A N/A	10.5 N/A N/A	48,3 N/A N/A
STRONTIUM TITANIUM ZIRCONIUM SULFATE	50.1 N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J - QUALIFIER INDICATES THE SAMPLE WAS ANALYZED DURING THE TEN DAY HOLDING TIME BUFFER PERIOD.

R - QUALIFIER INDICATES THAT THE HOLDING TIME WAS EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

+ - INDICATES Cr+6 DATA BY LEACH METHOD

N/A - NOT ANALYZED

'-' - INDICATES THE PARAMETER WAS NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMITS.

TABLE 25d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 8 OF 10

SAMPLE IDENTIFICATION: SAMPLE DEPTH BELOW GRADE (FT):	8854-04 6-8	8855-01 0-2	5855-04 6-8	5856-01 0-2	SB56-04 6-8	5857-01 0-2	SB57-03 S 4-6	5860-02 2-4	5860-04 S 6-8	0-2	5661-04 6-8	SB62-01 0-2	SB62-04 6-8	5863-01 0-2
INOHGANICS (PPM)														
SILVER, TOTAL ALUMINUM, TOTAL ARSENIC, TOTAL BARIUM, TOTAL BERYLLIUM, TOTAL CALCIUM, TOTAL	5190 0.63 B 35.7 B 3.8 2070	8610 0.74 B 36.2 B 3.5 1890	9440 23 B 0.51 B 74.4 B	3650 1.4 B 53.2 19.4 1050 B	3010 0.81 B 15.6 B 0.25 B 78 B	8420 1.1 B 128 4.1 5430	2340 0.83 B 12.9 B 0.83 B 121 B	4370 13.4 B 0.38 B 96.3 B	5570 0.48 B 16.1 B 0.45 B 73.4 B	5250 0.83 B 22.9 B 0.31 B 84.3 B	3190 6.3 B 40.2 B	3940 0,42 B 12,9 B 0,42 B 94,9 B	2290 9.9 B 0.23 B 50.9 B	- 2440 0.66 B 17.5 B 0.3 B 597 B
CADMIUM, TOTAL COBALT, TOTAL CHROMIUM, TOTAL CHROMIUM VI COPPER, TOTAL	2.1 B 145 3.4 B	1.2 8.2 B 158 0.89 + 91.3	11.3 6.4 0.28 2.2 B	12.4 67.6 0.34 15.1	1.5 B 3.6	3.4 B 61.8 0.43 9.9	378 1.1 B	4.4 B 28.4 3.7 B	4.3 B 17.4 4.6 B	3.3 B 33 4.9 B	2.1 B 12.5 3.4 B	1.5 B 50.7 1.9 B	9,2 0.26 1.3 B	17 3.8 B
CYANIDE, TOTAL IRON, TOTAL MERCURY, TOTAL POTASSIUM, TOTAL MAGNESIUM, TOTAL	6340 928 B 1410	- R* 23200 	R* 31500 511 B 464 B	6960 0.09 3320	4140 	6210 	2500 188 B	17800 223 B	20000 254 B 231 B	12000 405 B 271 B	8750 99.9 B	7270 	3210 245 B 106 B	2780 318 B 252 B 133
MANGANESE, TOTAL SODIUM, TOTAL NICKEL, TOTAL LEAD, TOTAL ANTIMONY, TOTAL SELENIUM, TOTAL	60.6 646 B 30.8 4.3	371 188 B 176 9 B –	68.5 77 B 3.7 B 14.7	627 174 B 912 46.1	28 65.4 B 3.0 B 3.4 -	129 153 B 345 49.1	123 115 B 9,1 7.0 B	93 67.8 B 11.2 8.3	91.4 60.7 B 14.4 13.2	78.9 210 B 10.9 .10.7	23.7 147 B 3.5 B 2 -	48.4 6.4 	37.9 35.1 B 5.2 B 2.2 –	38.6 6.2 B 12.8
SELENIUM, TOTAL THALLIUM, TOTAL VANADIUM, TOTAL ZINC, TOTAL BORÓN NIOBIUM	721 7.1 N/A N/A	- 671 48.9 N/A N/A	16.6 7.5	3950 50.9 N/A N/A	- 25.8 5.3 N/A N/A	- 802 33.3 N/A N/A	146 16.6 N/A N/A	46 11.4	53.9 13.4 N/A N/A	- 29.4 17.3 N/A N/A	8.8 B 7.7 N/A N/A	55.4 11.2 N/A N/A	30.4 22.2 N/A N/A	54.1 17.2 N/A N/A
STRONTIUM TITANIUM ZIRCONIUM SULFATE	N/A N/A N/A N/A	N/A N/A N/A N/A	193 44.1 N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A	103 N/A	N/A N/A N/A N/A	N/A N/A N/A	N/A N/A N/A	N/A N/A N/A N/A	N/A N/A N/A	N/A N/A N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J - QUALIFIER INDICATES THE SAMPLE WAS ANALYZED DURING THE TEN DAY HOLDING TIME BUFFER PERIOD.

R - QUALIFIER INDICATES THAT THE HOLDING TIME WAS EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

+ - INDICATES Cr+6 DATA BY LEACH METHOD

N/A - NOT ANALYZED

'-' - INDICATES THE PARAMETER WAS NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMITS.

TABLE 25d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 9 OF 10

SAMPLE DEPTH BELOW GRADE (FT):	8863-04 9 6-8	B64-01 3	5864-04 5 6-8	5877-01 0-2	5877-03 3 4-6	5878-01 0-2	5878-03 4-6	SB79-01 S 0-2	879-02 2-4	8880-018 0-2	880-03 4-6	SB81-01 8 0-2	6-8-03 4-8	5882-01 0-2
INOHGANICS (PPM)									****					
SILVER, TOTAL ALUMINUM, TOTAL	4640	5070	5670	17100	9160	4080	5050	6320	5420	6970	1830	4580	4520	3320
ARSENIC, TOTAL	1.2 B	-	0.89 B 23.7 B	0.96 B	0.61 B	1.3 B	1.0 B	-	-	0.66 B	0.76 B	1.3 B	0,81 B	1.5 B 15.4 B
BARIUM, TOTAL BERYLLIUM, TOTAL	18.8 B 0.77 B	15.5 B 0.35 B	0.43 B	138 8,3	33.2 B 0.65 B	74.5 0.38 B	17.3 B 0.2 B	29.0 B 1.4	10.9 B 0.23 B	102 6	7.0 B 0.11 B	216 2.8	118 2.4	0.32 B
CALCIUM TOTAL CADMIUM, TOTAL	677 B	86.6 B	152 B	10300	2020	295	45.8 B	315 B 0.62	27.6 B	785 B	47.0 B	1190	1100	235 B
COBALT, TOTAL CHROMIUM, TOTAL	27.4	2.2 B 2.3	2.2 B	5 B 135	2.6 B 3.9	16.1	2.6 B 2.4	2.7 B 49.3	1.9 B 12.1	9.3 B 66.2	1.1 B 2.8	4.5 B 211	4 B .95,5	10.9
CHROMIUM VI	0.12	-	<u> </u>	0.46 +	·	0.37	-	0.48	0.45	_	0.15	0.17 +	-	-
COPPER, TOTAL CYANIDE_TOTAL	5.1	1.8 B	2.3 B	14.1	3.6 B	3.7 B	2.7 B	3.4 B	3.5 B	8.7	-	13	10.8	2.5 B
IRON, TOTAL MERCURY, TOTAL	6760	11500	8120	14400	12700	4540 0.14	8750 0.1	8160 0.04	9960 0,1	10300 0.07	3040 0.06	7590	7010	3720
POTASSIUM, TOTAL MAGNESIUM, TOTAL	206 B 4070	226 B	248 B 629 B	1240 9590	957 B	620 B 2060	294 B 148 B	1000 399 B	737 B 105 B	283 B 3210	119 B	335 B 1180	425 B 1010 B	349 B 311 B
MANGANESE, TOTAL	87.6	30,3	43.7	1480	45.2	47.9	34.1	26.2	13.6	299	10.3	557	573	51,1
SODIUM, TOTAL NICKEL, TOTAL	190 B 16.4	3.7 B	71 B 6.7 B	5400 115	540 B 5.7 B	315 B 7.7 B	490 B 2.3 B	772 B 4.0 B	809 B 3.5 B	129 B 617	73.6 B	292 B 176	193 B 131	75.3 B 5.4 B
LEAD, TOTAL ANTIMONY, TOTAL	18.6	4.3	6,4	124	5.8	63.2 5.7 B	6 4.6 B	23.6	66.2	102	2.5	165	17.4	13 6.5 B
SELENIUM, TOTAL	-	0.42 B	0.65 B	1.1		-	_	-	1.1 B	-	-		0,52 B	
VANADIUM, TOTAL	125	29.5	36.9	1760	75.8	52.8	6.2 B	209	15.1	1120	10.2 B	612	532	68.3
ZINC, TOTAL BORON	65.2 N/A	3.8 B N/A	14 N/A	72.8 N/A	3.1 <u>B</u>	37.5 N/A	N/A	9.3 N/A	8.8 N/A	95.2 N/A	5.5 N/A	48 N/A	53.1 N/A	9.6 N/A N/A
	N/A N/A	N/A N/A	N/A N/A	N/A N/A	-	N/A N/A	N/A N/A	N/A N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A N/A
	N/A N/A	N/A N/A	N/A N/A	N/A N/A	198	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A N/A
SULFATE	<u> </u>	N/A	<u> </u>		N/A	N/A	N/A	N/A	<u>N/A</u>	<u>N/A</u>	<u>N/A</u> _	<u> </u>	N/A	N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J - QUALIFIER INDICATES THE SAMPLE WAS ANALYZED DURING THE TEN DAY HOLDING TIME BUFFER PERIOD.

R - QUALIFIER INDICATES THAT THE HOLDING TIME WAS EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

+ - INDICATES Cr+6 DATA BY LEACH METHOD

N/A - NOT ANALYZED

'-' - INDICATES THE PARAMETER WAS NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMITS.

TABLE 25d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC COMPOUNDS DETECTED IN SOIL BORING SAMPLES PAGE 10 OF 10

SAMPLE IDENTIFICATION:			883-03	· · · · · · · · · · · · · · · · · · ·
INORGANICS (PPM)		V. 2		· · · · · · · · · · · · · · · · · · ·
SAMPLE DEPTH BELOW GRADE (FT);	4010 0.65 B 11.2 B 2 B 4.8 3.4 B 7470 202 B 127 B 21.5 35.7 B 2.4 - - - - - - - - - - - - - - - - - - -	0-2 4660 1.4 B 29.9 B 0.51 B 618 B 2 B 35.5 5.4 8300 307 B 415 B 118 59.8 B 11.7 14.7 14.7	4-6 5090 0.88 B 27.1 B 0.23 B 94.1 B 2.5 B 7.4 3.8 B 7540 234 B 360 B 40.9 52.3 B 4.4 B 5.1 - - 16.9	
ZINC, TOTAL BORON NIOBIUM STRONTIUM TITANIUM ZIRCONIUM SULFATE	8.0 N/A N/A N/A N/A N/A N/A	21 N/A N/A N/A N/A N/A	8.9 N/A N/A N/A N/A N/A	

B -- INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J -- QUALIFIER INDICATES THE SAMPLE WAS ANALYZED DURING THE TEN DAY HOLDING TIME BUFFER PERIOD.

R - QUALIFIER INDICATES THAT THE HOLDING TIME WAS EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

+ - INDICATES Cr+6 DATA BY LEACH METHOD

N/A - NOT ANALYZED

'-' - INDICATES THE PARAMETER WAS NOT DETECTED TO THE REPORTED DETECTION LIMIT

CRDL - CONTRACT REQUIRED DETECTION LIMITS.

TABLE 1-7aSURFACE SOIL SUMMARY TABLEBY-PRODUCT STORAGE AREASUPPLEMENTAL SAMPLING INVESTIGATIONSHIELDALLOY METALLURGICAL CORPORATIONPage 1 of 5

SAMPLE ID:			Dup	SS-40 of SS-15
SAMPLE INTERVAL (FT):	0-1	0-1	0-1	0-1
PCBS (µg/kg)				
Aroclor-1016	35 u	36 u	43 u	41 u
Aroclor-1221	71 u	71 u	87 u	82 u
Aroclor-1232	35 u	36 u	43 u	41 u
Aroclor-1242	35 u	36 u	43 u	41 u
Aroclor-1248	35 u	36 u	43 u	41 u
Aroclor-1254	35 u	64	100	78
Aroclor-1260	35 u	NR	43 u	NR
		•		

ug/kg=micrograms per kilogram (ppb)

u=Analyzed, Not detected

NR=Not Reported; A combination of Aroclor - 1254 and Aroclor - 1260 was present in samples SS-14 and SS-40. The Aroclor quantified and reported was, in the analyst's opinion, the predominant PCB in the sample extract. However, the reported value was based on peaks common to both Aroclors to give the most accurate PCB result.

TABLE 1-7b SURFACE SOIL SUMMARY TABLE DEPARTMENT 106 SUPPLEMENTAL SAMPLING INVESTIGATION SHIELDALLOY METALLURGICAL CORPORATION Page 2 of 5

Į

SAMPLE ID:	SS-9	SS-10	SS-11	SS-12
SAMPLE INTERVAL (FT):	0-1	0-1	0-1	0-1
INORGANICS (mg/kg)				
Aluminum	-	· _	_	-
Antimony	-	-	-	-
Arsenic	-	-		-
Barium	-		_	-
Beryllium		·	1.8	1.9
Cadmium		-		-
Calcium		-		_
Chromium	67.9	146	335	463
Chromium VI	0.95	4.2	1.4	0.27
Cobalt				-
Copper	-	_	-	·
Iron	-	-	-	-
Lead	-	'		· _
Magnesium	-		-	-
Manganese			-	-
Mercury	- '	-	-	-
Nickel	-		-	·
Potassium	~		-	-
Selenium				-
Silver	- .	_		-
Sodium		-	_	-
Vanadium	-		292	317
Zinc	~			-
Thallium			-	-

mg/kg=milligrams per kilogram (ppm) -- = Not Analyzed

U=Analyzed, Not detected

TABLING SURFACE SOIL SOMMARY TABLE HUDSON BRANCH FLOODPLAIN SUPPLEMENTAL SAMPLING INVESTIGATION SHIELDALLOY METALLURGICAL CORPORATION Page 3 of 5

SAMPLE ID:	SS-16	SS-17	SS-18	SS-19	SS-41	SS-20	SS-25	SS-28
SAMPLE INTERVAL (FT)	0-1	0-1	0-1	0-1	Dup of SS-19 0-1	0-1	0-1	0-1
INORGANICS (mg/kg)								
Aluminum	724	97 9	1230	5480	1200	782		1090
Antimony	3.8 u	4.7	3.9 u	3.6 u	3.6 u	3.9 u	~	2.8 u
Arsenic	0.25 u	1.3	3.7	1.4	1.3	0.7		2.1
Barium	21	4.1	10.3	75.1	5,7	6.8		4.3
Beryllium	0.43	0.16	0.51	6.1	0.11	0.67	0.24	0.1
Cadmium	0.44 u	0.42 u	0.44 u	0.41 u	0.41	. 0.44 u	~	0.3 u
Calcium	981	60,6	110	2760	106	228	~	35.9
Chromium	8.3	3.7	11,1	86.9	4.6	18.8		7.7
Chromium VI	1.1	5.3	1.1 u	2.5	1.1 u	1.4 u		0.52 u
Cobalt	0.41 u	0.39 u	0.61	3.8	0.85	0.41 u		0.4
Copper	7.7	4.2	4.8	11.9	6	1.8		1.7
Iron	773	2010	2450	9010	2620	669		23509
Lead	18.6	13.4	39.9	- 114	15	14.9		14.3
Magnesium	177	67.3	· 91	1710	84.8	106	-	46.1
Manganese	. 89	4.2	37	329	3.9	22.9		6.3
Mercury	0.07	0.16	0.21	0.08	0.09	0.1		0.09
Nickel	7.3	0.92 u	4.9	166	1.7	5.3		1. 9
Potassium	140	153	341	243	241	81 u		59.4 ú
Selenium	0,16	0.4	0.62	0.27	0.24	0.31		0.13 u
Silver	0.35 u	0,43	0.36 u	0.33 u	0.33 u	0.36 u		0.26 u
Sodium	109	598	84.1	129	685	158		44.5
Vanadium	44.4	17,3	62.6	- 1120	21.4	83.9	-	12.7
Zinc	23.4	6	9.6	77.1	15,1	8.2	••	4.8
Thallium	0.28 u	0.27 u	0.37	0.27 u	0.26 u	0.28 u		0.21 u

mg/kg=milligrams per kilogram (ppm) u=Analyzed, Not detected

- = Not Analyzed

TABLE 1-7d SURFACE SOIL SUMMARY TABLE NORTHERN OFF-SITE SURFACE SOIL SAMPLES SUPPLEMENTAL SAMPLING INVESTIGATION SHIELDALLOY METALLURGICAL CORPORATION Page 4 of 5

SAMPLE ID:	SS-1	SS-2	SS-3	S5-4	SS-5	SS-6	SS-7	SS-B
SAMPLE INTERVAL (FT):	0-1	0-1	0-1	0-1	0-1	0-1	0-1	0-1
INORGANICS (mg/kg)								
Aluminum	-		- .	-	-		-	·
Antimony	**	-				-		
Arsenic					-			
Barlum		••	-		-			-
Beryllium	0.52	0.55	0.68	0.84	4.1	1.7	0.8	0.38
Cadmium					-	-		-
Calcium	-		-		-			-
Chromium					360	283	38.3	8.9
Chromium VI		· 🛶		-	5.9	0.41	0.23 u	0.23
Cobalt			-		-			-
Copper				-				-
Iron				-			-	-
Lead		-			-			-
Magnesium	-		••			· 🛥		· •
Manganese	-		· ••		-			•
Mercury		-	 .		-	••		-
Nickel		-	••	-		-		-
Potassium			-					-
Selenium			••		•	••	••	-
Silver		••	-			· ••		-
Sodium		-	••					-
Vanadium		-		-	739	275	101	17.8
Zinc		-				· •••	÷ 1	-
Thallium				-	-		••	· •

Þ

mg/kg=milligrams per kilogram (ppm) -- =Not Analyzed U=Analyzed, Not detected

TABLE 1-70 SURFACE SOIL SUMMARY TABLE SOUTHERN OFF-SITE SURFACE SOIL SAMPLES SUPPLEMENTAL SAMPLING INVESTIGATION SHIELDALLOY METALLURGICAL CORPORATION Page 5 of 5

SAMPLE ID:	SS-21	SS-22	SS-23	SS-24	SS-26	SS-27
SAMPLE INTERVAL (FT):	0-1	0-1	0-1	0-1	0-1	0-1
INORGANICS (mg/kg)						
Aluminum	2760	1390	2670	2140	-	
Antimony	3 บ	3 U	3.4 u	3.3 u	-	
Arsenic	2.3	1.5	2.3	1.6		-
Barium	18.5	12.3	12.8	14.5		·
Beryllium	0.13	0.13	0.28	0.19	4.3	0.35
Cadmium	0.35 u	0.34 u	0.39 u	0.37 u	-	·
Calcium	1750	785	1090	845		
Chromium	11.6	8	8.6	9.5	_	
Chromium VI	0.23 u	0.22 u	0.25 u	0.24 u		
Cobalt	0.43	0.34	0.39	1	-	·
Copper	8	3.7	4.4	3.8		
Iron	3030	1850	5050	2380		
Lead	20.4	15.5	17.3	14.4	-	· _
Magnesium	222	87.2	103	83.2		
Manganese	123	69.7	78.3	100		
Mercury	0.31	0.21	0.38	0.19		
Nickel	4	2.2	2.4	3.4		
Potassium	147	130	76.4	147		
Selenium	0.16	0.11 u	0.3	0.22		
Silver	0.28 u	0.27 u	0.31 u	0.3 u	-	
Sodium	61.3	65. 6	331	155	_ '	
Vanadium	19.7	14.1	22.4	22.4		
Zinc	30.7	45.8	23.6	22.3		
Thallium	0.23 u	0.22 u	0.25 u	0.24 u		-

mg/kg=milligram per kilogram (ppm)

- = Not Analyzed

u=Analyzed, Not detected

APPENDIX K Analytical Results For Soil, Sediment and Water Sampling

	Sample Type											
Grid Location	Soil/Sediment or Water	U-238 (pCi/g)*	Th-232 (pCi/g)	Ra-226 (pCi/g)	Ra-228 (pCi/g)	Pb-214 (pCi/g)	Bi-214 (pCi/g)	Th-228/A (pCi/g)	Pb-212 (pCi/g)	TI-208 (pCi/g)	Gross Alpha (pCi/L)	Gross Beta (pCi/L)
-h0	S	5.79	4.3	24	31	26	24					
-h2	S	3.36	6.45	8.8	8.9	9.9	8.8					
-g1	S	11.2	1.31	28	28							
-632	S	3.92	4.94	77	83							
-b60	S	1.80	2.35	2.2		0.93	0.79	1.7	1.8	1.5		
-660 (DUP 1)	S	1.58	1.48	1.4		0.67	0.53	0.85	0.80	0.64		
-b60 (DUP 2)	S	1.58	2.00	1.6		0.69	0.74	1.1	0.99	0.97		
-a4	S	0.84	1.66	0.3	0.4	0.4	0.3	·				
-a6	s	1.17	2.58	6.4	9.7	4.0	<3.9					
-a6 (DUP)	s	0.94	2.55	0.3	<0.6	0.5	< 0.3					
-a8	S	8.00	10.8	5.3	10	6.5	5.3					
-89	s	10.4	1.74	37	47	40	37					
-833	s	2.29	6.0	1.8	6.7	2.7	1.8					
A-33	w								· .		4.2	6.0
A7	s	1.14	2.39	0.5	<0.7	1.0	<0.4					
A11	w	0.61	1.02	1.04	<3.6	<7	<7.3				15	15
A26	s	0.87	1.70	0.3	<1.0	0.6	< 0.4					
A33 (QC)	s	1.37	1.91	0.4	0.3	0.4	<0.3					Į
A39	S	1.19	1.6	0.7	0.7	0.6	<0.4					
A46	s	0.75	1.58	0.5	< 0.6	0.5	0.5		· · ·			;·
A51	S ·	0.87	1.45	0.7	0.6	0.8	<0.4					
A70	S	0.79	1.29	0.9	0.8	1.0	0.9					
B 10	S	1.41	4.92	0.7	1.I	0.6	0.7					

· · ·

<u>.</u>

APPENDIX K (Continued)

÷.

.

	Sample Type											
Grid Location	<u>S</u> oil/Sediment or <u>W</u> ater	U-238 (pCi/g)*	Th-232 (pCi/g)	Ra-226 (pCi/g)	Ra-228 (pCi/g)	Pb-214 (pCi/g)	Bi-214 (pCi/g)	Th-228/A (pCi/g)	Pb-212 (pCi/g)	TI-208 (pCi/g)	Gross Alpha (pCi/L)	Gross Beta (pCi/L)
B61	. S	0.79	0.81	0.4	0.3	0.4	0.4					
B64	S	1.71	.63	1.5	4.1	2.2	1.5					
в70	S	0.81	1.40	0.6	0.3	0.5	0.6					
C17	S	1.30	3.56	0.6	1.4	1.1	0.6					
C30	S	1.69	4.71	1.0	1.5	1.4	1.0					
C32	S	1.18	4.23	3.4	1.5	3.5	3.4					
C45	s	1.77	6.32	0.5	< 0.5	0.7	0.5	1.8	1.7	1.7		
D11	s	1.20	3.00	0.5	1.0	0.7	<0.4					
D25	s	1.26	3.43	<0.3	<0.5	<0.2	<0.3					
D61	S	0.76	1.11	0.6	0.2	0.5	<0.3					
D66	s	0.82	1.57	0.6	0.3	0.5	<0.3					
E22	S	1.26	2.53	0.5	<0.5	0.4	0.5		-			
E30 (QC)	s	1.32	3.02	1.2	1.0	1.4	1.2					
E32	s	1.26	3.13	1.6	1.9	1.8	1.6					
E42	s	1.18	2.1	0.85			0.51	0.56	0.58	0.41		
E54	S	0.51	1.06	<0.6		0.43	0.38	0.60	0.47	0.42		
F43	S	1.15	1.80	0.74		0.44	0.40	0.56	0.46	.043		
F50	S	0.94	2.33	0.91		0.44	0.35	0.68	0.50	0.47		ļ
F55	S	0.95	1.75	0.6	<0.8	1.0	0.6	0.47	0.50	0.32		
G14	S	3.31	8.61	1.6	2.9	1.4	<0.6					μ
G23	S	0.95	1.68	< 0.3	<0.5	<0.2	<0.3					
G25	s	0.92	1.95	· 0.5	<0.5	0.4	0.5					

	Sample Type			······								
Grid Location	Soil/Sediment or Water	U-238 (pCi/g)*	Th-232 (pCi/g)	Ra-226 (pCi/g)	Ra-228 (pCi/g)	Pb-214 (pCi/g)	Bi-214 (pCi/g)	Th-228/A (pCi/g)	Pb-212 (pCi/g)	TI-208 (pCi/g)	Gross Alpha (pCi/L)	Gross Beta (pCi/L)
G30	S	3.49	10.16	3.5	9.0	3.3	3.5					
G38	S	1.12	1.81	1.1		0.81	0.66	0.52	0.55	0.47		
G38 (DUP)	S	1.52	2.43	1.4		0.72	0.59	0.60	0.53	0.67		
G39	w	0.48	1.71	1.38	<3.8	< 8	<9.8				16	16
G39	S	١.77	1.85	2.3		1.5	1.3	0.93	0.97	0.10		
G48	S	0.81	2.15	1.6	<0.6	0.7	0.5	0.64	0.56	0.54		
G50	S			2.0		1.3	1.2	4.9	4.0	4.0		
G50	S	2.17	13.3	1.9	5.2	1.7	1.9					
G57	S	1.1	4.21	<0.2	<0.6	< 0.3	< 0.2	2.4	2.0	2.0		
G61	S	0.63	1.35	1.8		0.58	0.43	0.54	0.45	0.46		
H49	w	17.4	48.4	19.55	66	44	34				1220	888
H49 (QC)	w	8.1	15.6	10.07	21.1	15	14				488	353
H9	S	1.73	2.75	0.7	1,1	0.8	0.7					
I18	S	0.95	1.98	1.1	<1.7	0.9	1.1					
131	S	0.83	3.06	0.6	<0.6	0.6	0.6					
135 (QC)	S	1.02	2.99	0.4	0.7	0.6	0.4					
135	S	1.02	2.99									
J76.5	S		1.38	<0.5		0.40	0.31	0.36	0.36	0.33		
J76.5 (DUP 1)	S			1.3		0.52	0.40	0.46	0.36	0.39		
J76.5 (DUP 2)	S			1.1		0.64	0.52	0.61	0.64	0.68		¹⁴
L18	S	1.03	1.90	0.6	0.8	0.5	0.6			_		
N17	s	1.60	35.3	4.4	12	5.2	4.4					

APPENDIX K (Continued)

.

.

.....

.

. ____ -=

.

	Sample Type		1									
Grid Location	Soil/Sediment or <u>W</u> ater	U-238 (pCi/g)*	Th-232 (pCi/g)	Ra-226 (pCi/g)	Ra-228 (pCi/g)	Pb-214 (pCi/g)	Bi-214 (pCi/g)	Th-228/A (pCi/g)	Pb-212 (pCi/g)	TI-208 (pCi/g)	Gross Alpha (pCi/L)	Gross Beta (pCi/L)
015	S	2.36	4,43	0.7	1.5	1.0	0.7					
U67	S	1.43	2.53	1.1 -		0.61	0.48	0.74	0.77	0.54		
U73	S	1.21	1.47	0.5	0.6	0.4	0.5					
W 60	S	1.23	2.42	< 0.5		0.55	0.48	0.72	0.62	0.54		
X56	S	1.68	3.32	0.6	0.7	0.6	0.9					
X 57	S	1.47	3.00	0.6	0.9	0.8	0.6					
X61	S	1.15	2.12	. < .6		0.55	0.49	0.53	0.52	0.50		
¥50	S	1.66		0.7	1.0	0.6	0.7					
¥56	S	1.38	2.76	0.5	0.5	0.5	0.5					
Z53	S	1.78	2.15	1.1	0.9	1.0	0.9					
Z60	S	1.14	1.79	0.4	0.3	0.3	< 0.2					
AA44	S	1.62	4.17	0.8	0.9	1.0	0.8	、				
A A 45	S	1.44	4.17	0.7	1.4	1.0	0.7					
AA49	S	1.3	41.2	0.4	0.9	0.6	0.4					
BB53	S	1.03	1.47	0.70		0.46	0.46	0.53	0.43	0.39		
BB55	S .	0.58	1.34	0.11		0.53	0.44	0.56	0.59	0.46		
BB60	s	0.93	1.31	0.3	0.3	0.3	0.3					
CC43	S	1.1	5.04	0.14		0.70	0.65	0.12	1.1	0.93		
DD39	S	1.28	3.50	<0.9	. *	0.70	.064	1.1	.094	.093		
DD41	S											¥
DD45 (QC)	S	1.21	4.58	.090	3.6	0.90	< 0.39				· .	······
DD45	S	1.43	7.54	1.1		0.73	0.63	2.6	2.1	2.2		

.

- . .-

APPENDIX K (Continued)

7

	Sample Type					_						
Grid Location	<u>S</u> oil/Sediment or <u>W</u> ater	U-238 (pCi/g)*	Th-232 (pCi/g)	Ra-226 (pCi/g)	Ra-228 (pCi/g)	Pb-214 (pCi/g)	Bi-214 (pCi/g)	Th-228/A (pCi/g)	Pb-212 (pCi/g)	TI-208 (pCi/g)	Gross Alpha (pCi/L)	Gross Beta (pCi/L)
DD47	S	1.01	1.84	<0.6		0.50	0.44	0.54	0.47	0.48		
DD50	s	1.00	2.43	0,84		0.49	0.47	0.50	0.44	0.54		
EE36	S	1.51	4.41	0,75		0.87	0.77	0.99	0.86	0.80		
EE38	S	1.38	2.11	0.6	0.3	0.6						
EE47	Ś	1.03	3.00	<0.6		0.69	0.62	1.0	0.99	0.81		
EE47 (DUP)	s					0.92	0.82	3.2	2.5	2.6		
EE54	s	0.86	1.24	0.2	0.2	0.2	0.2			_		
FF53	· s	0.90	1.50	0.89		0.44	0.42	0.56	0.53	0.47		
FF56	s	1.14	1.31	0,94	0.5	0.5	0.5					
FF56 (QC)	s	1.11	1.47	0.5	0.4	0.5	0.4					
GG43	s	0.76	1.66	<0.7		0.54	0.45	0.46	0.47	0.45		
GG45	s	0.95	1.77	0.98		0.52	0.45	0.70	0.62	0.59		
нн50	s	1.13	1.58	<0.7		0.51	0.44	0.56		.04		
НН53	S	1.06	2.57	1.1		0.57	0.616	0.69	0.65	0.72		
Settling Pond, SE	s	1.26	2.19	1.3	0.7	1.1	1.3					
Settling Pond, E	<u>s</u>	2.77	2.59	4.4	4.0	4.9	4.4					
Settling Pond, SW	S	5.15	1.67	. 1.4	1.0	1.7	1.4					
Settling Pond, W	<u>s</u>	1.93	4,03	2.2	0.6	2.2	2.2					
Settling Pond, N	S	3.06	2.89	0.6	<0.6	0.5	0,6	·				
0+10, 10L	S	5.65	5.1	21	22	24	21					
-0+10, 10L	S	5.65		21	22	24	21		1	· ·		<u> </u>
-0+20	S	1.75	3.17	0,8	1	0.8	0.8					

APPENDIX K (Continued)

	Sample Type	·							· .			
Grid Location	Soil/Sediment or Water	U-238 (pCi/g)*	Th-232 (pCi/g)	Ra-226 (pCi/g)	Ra-228 (pCi/g)	Pb-214 (pCi/g)	Bi-214 (pCi/g)	Th-228/A (pCi/g)	Рь-212 (pCi/g)	TI-208 (pCi/g)	Gross Alpha (pCi/L)	Gross Beta (pCi/L)
-0+30	S	4.20		3.1	8.2	4.2	3.1					
-0+50	S	1.36	1.94	1.6	<1.1	1.3	1.6					
-0+50 (QC)	S	1.63	9.56	14	<11	14	< 7.6					
-0+60	S	3.14	3.41	19	18	21	19					
-0+90	S	2.10	2.61	17	14	18	17					
-3+50 (QC)	S	1.63		14	<11	14	14					
0+20	S	2.57	1.38	2.4	1.6	2.6	2.4					
0+60, R	w	0.17	<0.079	0.71	<3.9	<9.2	<11				1,3	2.6
0+30, 10L	S	0.96	1.11	0.7	<0.7	0.8	<0.8					
0+60, L	w	1.98	1.48	15.2	9.9	10.4	9 .0				.86	65
0+100, 10L	S	5.71	8.86	34	30	36	34					
1+10	w	0.47	0.53	1.63	<3.9	9.0	10.0				9.9	10
1+10R	w										0	. 1.7
1+10L	w	0.42	< 0.06	0.8	3.3	6.0	< 5.6		_		1.5	1.8
1+10, 10R	S	1.92	2.34	4.7	.54	6.4	4.7					
1+20	S		2.63	7.0	4.2	7,4	7.0					
1+50, 10R	S	1.27	1.56	2.1	4.2	4.3	4.2					
1+60	W	0.18	0	0.69	0						7800	3600
1+80, 10R	S	0.89	1.62	1.9	2.8	4.4	3.8					
1+80, 10L	S	1.18	1.97	0.6	1.0	0.9	1.0					ţ,
1+100, 10L	S	2.55		12	8.1	13	12					
2+20	w	6.3	6.0	10.32	30.9	<2.1	<3.2				323	221

(m)

. .

Г

	Sample Type											
Grid Location	Soil/Sediment or Water	U-238 (pCi/g)*	Th-232 (pCi/g)	Ra-226 (pCi/g)	Ra-228 (pCi/g)	Ръ-214 (pCi/g)	Bi-214 (pCi/g)	Th-228/A (pCi/g)	Pb-212 (pCi/g)	TI-208 (pCi/g)	Gross Alpha (pCi/L)	Gross Beta (pCi/L)
2+20R	w	1.52	0.81	9.67	7.8	< 8.8	<8.7				23	22
2+20L	w	6,1	5.72	33.11	36.3	59.9	46.0				247	239
2+20, 10R	S	2.67	2.93	<1.4	<1.0	< 0.8	<1.0					
2+30, 10R	S	2.37	4.11	12	6.2	14	12					
2+60, 10L	S	1.10	1.31	0.5	0.3	20.7	0.5					
2+70	S	2.25	3.73	11	4.6	12	11					
2+80, 10L	S	1.03	1.11	0.4	0.3	0.5	<0.3					
2+90, 10L	S	0,77	1.68	0.6	0.8	0.8	0.6					
3+80, 10R,(QC)	S	1.38	1.51	8.1	3.8	8.2	8.1					
LOC-6	S			1.2		0.53	0.47	0.50	0.65	0.47		
BACKGROUND 1	S	0.83	1.48	^ 0.6	0.5	0.7	0.0					
BACKGROUND 2	S	1.38	0.28	1.0	·	0.51	0.47	0.55	0.47	0.44		
BACKGROUND 3	S	1.37	1.91	- 0.82		0.20	0:19	0.21	0.33	0.29		· ·
BACKGROUND 4	S	0.92	1.68	<0.5		0.30	0.28	0.44	0.34	0.32		
BACKGROUND 5	S	1.04	1.19	0.85		0.32	0.31	0.43	0.42	0.27		
BACKGROUND 6	S	0.42	1.35	0.81		0.38	0.31	0.37	0.37	0.26		······································
J76.5 (BACKGROUND)	S	0.86	1.71									
J76.5 (BACKGROUND)	S	0.99	1.87						,			~~~~,*******

• pCi/L for water samples

APPENDIX E – GROUND WATER IMPACTS ANALYSIS REPORT

GROUND WATER IMPACTS ANALYSIS

BASED ON SUBSURFACE SOIL SAMPLING AND GROUND WATER MONITORING

DECOMMISSIONING PLAN SHIELDALLOY METALLURGICAL CORPORATION NEWFIELD, NEW JERSEY

Prepared for

Shieldalloy Metallurgical Corporation

Newfield, New Jersey

21 Griffin Road North Windsor, CT 06095

860.298.9692 PHONE 860.298.6399 FAX

www.TRCsolutions.com

and

6700 Baum Drive, Suite 19, Knoxville, Tennessee 37919 Phone (865) 588-9180 Fax (865-588-9661

www.IEM-Inc.com

Revised: August 2009

Rev. 1b, Page i

TABLE OF CONTENTS

SECTION		PAGE
EXECUTIV	E SUMMARY	ES-1
1.0 INTR	ODUCTION	
	kground	
	logic and Hydrogeologic Setting	
1.2.1	Site-Specific Geology	
	Site-Specific Hydrogeology	
2.0 SUBS	SURFACE SOIL INVESTIGATION AND RESULTS	2-1
2.1 Sam	pling Protocol and Sample Locations	
	Background Sample Collection	
	Test Pit Sample Collection	
	d Screening of Samples	
	rpretation of Screening Results	
3.0 GRO	UND WATER QUALITY CHARACTERIZATION AND	
	ΓΑΤΙΟΝ	
3.1 Sum	mary of Ground Water Sampling Events and Results	
	luation of Ground Water Results	
3.3 Reg	ional Context for Radium in Ground Water	3-5
4.0 CON	CLUSIONS	
5.0 REFE	ERENCES	
TABLES		
1-1	Existing/Historic Monitoring/Extraction Well Construction Details	
3-1	Ground Water Radiological Summary Table	
3-2	Summary of Concentrations of Key Constituents in 2008 Ground Wate	r Samples
FIGURES	· ·	
1-1	Storage Yard Plan (2005 Aerial Photo)	
1-2	Monitoring Well Location Plan	
2-1	Subsurface Soil Sample Locations	
3-1	Monitoring Well Locations Characterized for Radiological Parameters	
3-2	Monitoring Well SC-32D and Newfield Wells 3 & 5 Location Map	
3-3	Combined Radium and Nitrate + Nitrite in Ground Water (July 2008)	
3-4	Combined Radium and pH in Ground Water (July 2008)	

Rev. 1b, Page ii

- 3-5 Combined Radium and Calcium in Deep Wells (July 2008)
- 3-6 Comparison of Radiological Data Shallow Monitoring Wells
- 3-7 Comparison of Radiological Data Deep Monitoring Wells

ATTACHMENTS

- A Photographs
- B Soil Logs
- C Qualifications
- D Field Activity Daily Logs
- E Instrument Records
- F Survey Records
- G Screening Results
- H Chain-of-Custody Forms
- I Certificates of Analysis
- J Subsurface Soil Concentrations
- K Select Supporting Figures

Rev. 1b, Page ES-1

EXECUTIVE SUMMARY

Shieldalloy Metallurgical Corporation (SMC) is seeking to decommission its Newfield, New Jersey facility (SMC facility) so that most of the property may be released for unrestricted use. In a small portion of the property which is referred to as the Storage Yard, there exist several piles of legacy residual radioactive materials. SMC proposes to consolidate those materials into a single pile ("the consolidated material") and cover the pile with an engineered barrier to provide for their long term isolation. Access to the Storage Yard is and will remain restricted, and the area will be maintained in accordance with the terms and conditions of a Long Term Control (LTC) License to be issued by the U. S. Nuclear Regulatory Commission (NRC), with the NRC providing long term oversight and control over the restricted area.

As part of the preparation of a decommissioning plan ("DP") for the facility, SMC has undertaken a comprehensive testing and measurement program to determine the release rate of radioactivity from the various materials that are currently present in the Storage Yard. An important aspect of that program is to determine the potential for future leaching of radioactivity into the ground water. The results of an ongoing test of leachability potential are reported in a separate document.

In its DP, SMC is addressing whether licensed activities conducted in the past at the SMC facility and the presence of these materials in the Storage Yard in an uncovered state for between 10 and 40+ years have resulted in the migration of radioactivity from the materials to the local ground water. To answer that question, the following activities have been conducted:

- A detailed review of the radioactivity measured in the local ground water through sampling and analysis campaigns that have taken place between 1988 and the present day was performed;
- An evaluation of the potential for agriculturally-induced leaching of natural radioactivity in soil within the general Newfield area was researched; and
- The potential presence of leached radioactivity in the soil immediately below the materials in the Storage Yard was investigated.

The findings from these activities are described in this Report. Briefly summarized, there is no credible evidence of radioactivity above drinking water standards in the shallow ground water under the SMC facility. In contrast, multiple rounds of samples collected from deep wells, including wells upgradient and sidegradient of the Storage Yard, indicate radioactivity above or approaching the drinking water standard, as well as elevated nitrate levels. Because agriculturally-induced leaching of natural radioactivity into the ground water is a common occurrence in southern New Jersey, particularly when associated with elevated nitrate levels, the few instances of radioactivity in the ground water above drinking water standards beneath the facility are attributable to agricultural activities that are on-going in the vicinity of the facility.

Other indicators of agricultural activities that are commonly associated with the naturally elevated radioactivity levels in southern New Jersey (e.g., low pH and elevated calcium) were also found in ground water samples collected from the deep wells, further confirming this interpretation. Furthermore, no leached radioactivity was found in the soil directly below the Storage Yard stockpiles. This lack of leached radioisotopes directly below the stockpiles further supports the conclusion that there is no link between the deep well results and the materials present in the Storage Yard. From these findings it is reasonable to conclude that the presence of licensed radioactive materials at the SMC facility for the past 40+ years has had no impact on the local ground water.

1.0 INTRODUCTION

In 1988, Oak Ridge Associated Universities (ORAU), under contract to the NRC, performed a radiological assessment of the SMC facility.¹ One of the issues evaluated was whether licensed radioactivity from the Storage Yard had moved into the ground water. The following was stated in the report prepared by ORAU:

Soil around the slag piles is contaminated on the surface, but the contaminants appear to be limited to the upper 30-60 cm of soil. At other locations little evidence of subsurface soil contamination was noted. Water samples from boreholes and wells have contamination levels well below the NRC guideline for water in unrestricted areas. With only a few exceptions, the concentrations are below the EPA screening levels of 15 pCi/l gross alpha and 50 pCi/l gross beta for community drinking water systems. These low concentrations in subsurface soil and water are evidence that contamination from the site operations is not migrating into the soil and ground water. (Berger and Luck, 1988)

As part of its site-wide decommissioning effort, and in response to NRC inquiries, SMC has re-assessed the likelihood that its former operations at its SMC facility and the storage of radioactive materials in the Storage Yard may have had a radiological impact on the local ground water. A determination as to whether radioactivity may have migrated from the Storage Yard into the ground water over the last 40 years² was made from the following:

- Research into the potential for agriculturally-induced leaching into the ground water of radioactivity that is naturally present in soil;
- A characterization of the local ground water quality from routine sampling/analysis campaigns that took place from 1988 to the present day; and
- A 2008 investigation into whether radioactivity can be found within the soils immediately below the stockpiled material in the Storage Yard.

Included in this report is background information about the SMC facility and its operations, a description of the geologic and hydrologic character of the area, a summary of

¹ Berger, J. D. and A. D. Luck, Oak Ridge Associated Universities Report No. ORAU 88/G-79, "Radiological Survey of the Shieldalloy Corporation; Newfield, New Jersey", Final Report, prepared for U. S. Nuclear Regulatory Commission (Division of Industrial and Medical Nuclear Safety), Region I Office, July, 1988.

 $^{^{2}}$ Aerial photographs from 1951, 1962, 1965, 1974 and 1986 show that licensable materials were first placed in the Storage Yard between 1951 and 1962, with the storage volume growing through the 1986 aerial photo. This is consistent with known production.

agricultural land use patterns that may impact the leaching of natural radioactivity within this geologic setting, the findings of the June 2008 subsurface soil investigation, and a ground water quality assessment based on sampling and analysis campaigns that have taken place over several years. From this information, SMC has concluded that licensed operations at Newfield and the storage of radioactive materials in the Storage Yard have not resulted in the release of radioactivity to the local ground water.

1.1 Background

Processing of naturally radioactive ores at the SMC facility was performed for a number of years pursuant to a source material license issued by the NRC. The facility's operations resulted in the presence at the site of ferrocolumbium slag, baghouse dust, and other materials containing naturally occurring radioactive elements. Those materials have been stored since their generation in the eastern portion of the plant property, in an area referred to as the Storage Yard. They have been placed on the surface of the ground, with no underlying barrier and no cover. They have been subjected to the effects of precipitation, heat and sunlight, wind, freezing and thawing, and other natural climatic forces for more than 40 years. Figure 1-1 shows the Storage Yard area and identifies the various stockpiles of materials. Materials characterization activities conducted within the Storage Yard demonstrate the greatest quantities of radioactive materials are located in Areas 3, 4, and 6 with 80% of the total amount of uranium and thorium being present in slag located in Area 4.

United States Geological Survey (USGS) studies (Kozinski, et al., 1995) have shown that a combination of the geology, geochemistry, and land use in southern New Jersey has an impact on the distribution of naturally occurring radionuclides in the ground water. Therefore, the results of the characterization of the soils at the SMC facility and the ground water in the facility's vicinity must be interpreted in the context of the important factors of local geology, geochemistry and land use.

Elevated concentrations of Radium-224 (Ra-224), Radium-226 (Ra-226), and Radium-228 (Ra-228), as well as gross alpha activity in excess of 15 pCi/l, are common in ground water in the aquifer system in the New Jersey Coastal Plain (Kozinski, et al., 1995; Szabo et al., 2005). These studies demonstrated that the sum of dissolved Ra-226 and Ra-228 in 26 of 81 ground

water samples was greater than the U.S. Environmental Protection Agency's (EPA's) Maximum Contaminant Level (MCL) for drinking water of 5 pCi/l. Concentrations were greatest in ground water samples in the vicinity of outcrop areas of the Bridgeton Formation, where agricultural land use is prevalent within a 500-meter (1,640-foot) radius of the sampling locations. Natural leaching of uranium and radium from mineralogically immature sediments of the Bridgeton Formation, and the chemical processes associated with agricultural land use in the area, may enhance the release of some of the radionuclides to the ground water. A positive correlation was established between dissolved Ra-226 and Ra-228 concentrations and the concentrations of other dissolved chemical constituents, including nitrate plus nitrite (as nitrogen), chloride, magnesium, barium, and potassium. A rank regression model shows ground water that contains nitrate plus nitrite (as nitrogen) at levels greater than five (5) mg/l also has total radium concentrations in excess of five (5) pCi/l to 99 percent confidence.

SHIELDALLOY METALLURGICAL CORPORATION "Decommissioning Plan for the SMC facility" August 2009

Rev. 1b, Page 1-4

As part of its Source Water Assessment Program, the New Jersey Department of Environmental Protection (NJDEP) has also evaluated each public water system's susceptibility to contamination, specifically pathogens, nutrients, pesticides, volatile organic compounds (VOCs), inorganics, radionuclides, radon, and disinfection byproduct precursors (DBPs). Because the communities of Newfield and Vineland both obtain their potable water supplies entirely from ground water, the associated Source Water Assessment evaluations focused on the potential for the production wells to be impacted. NJDEP's analyses, based on sensitivity³ and intensity of use factors, provide susceptibility ratings (high, medium, or low) for each contaminant category for each well and intake. A more detailed discussion of the basis for these ratings is presented in Section 3.4.2.6 of the Environmental Report (ER). The two Borough of Newfield wells, which are located north/northeast and upgradient of the SMC facility, rate high in terms of susceptibility for radionuclides. Specifically, Newfield Well 5 has a high susceptibility rating for nutrients and radionuclides, and Well 3 has a high susceptibility rating for nutrients, radionuclides, and VOCs. Similarly, all of the Vineland public water supply wells, including wells which are not downgradient of the SMC facility, have a high susceptibility rating for radionuclides (NJDEP, 2004a; 2004b). These NJDEP assessments are consistent with the results of USGS studies of ground water in the Cohansey Sand of southern New Jersey.

In 2005, 2006, and 2007, the City of Vineland Water Utility reported exceedances of the MCLs for radium and alpha emitters, indicating in their annual water reports that the source was erosion of natural deposits (City of Vineland Water Utility, 2005; 2006; and 2007). The highest levels were reported in 2007, with gross alpha activity concentrations from 6.3 to 31.0 pCi/l, and combined Ra-226/228 concentrations ranging from 2.39 to 12.11 pCi/l. As a result, radium removal treatment systems were installed on the three wells that exhibited the highest gross alpha and combined Ra-226/228 activities, and additional permanent radium removal systems are in the design/construction phase for other wells.

There is agricultural land use within a 500-meter radius of the Storage Yard. Moreover, the Bridgeton Formation-crops out in the vicinity of the SMC facility. These circumstances

³ Sensitivity factors consider the sensitivity of a water source to contamination. For example, a shallow well or surface water source like a reservoir is more sensitive to contamination from the surface or above ground than a deep well would be.

suggest a potential for increased concentrations of radionuclides in the local ground water in the vicinity of the facility from agriculturally-induced leaching of natural radioactivity in the soils.

1.2 Geologic and Hydrogeologic Setting

The SMC facility is located in the Atlantic Coastal Plain physiographic province, which extends from the Delaware Bay in the southwest to the Raritan Bay in the northeast, and from the Fall Line in the west to the Atlantic Ocean in the east. The Coastal Plain is a seaward (southeast)-dipping wedge of unconsolidated sediments that range in age from Cretaceous to Holocene. The formations comprising the Coastal Plain typically crop out in sequential bands striking northeast-southwest, becoming older in outcrop to the northwest.

The Upper Cretaceous and most Tertiary sediments were deposited in beach and shelf environments. Interbedded fine-grained sediments are transgressive marine deposits that formed during major incursions of the sea. The Tertiary Kirkwood and Cohansey Sand Formations are part of the Kirkwood-Cohansey aquifer system, which underlies the SMC facility and crops out in more than half of Gloucester County. Local public water supply wells are generally screened within the Kirkwood-Cohansey aquifer.

The Tertiary and Quaternary Kirkwood-Cohansey aquifer system is composed predominantly of quartz sand and gravel of the Miocene Kirkwood Formation, the Miocene-Pliocene Cohansey Sand, and locally, from oldest to youngest, the Pleistocene Bridgeton, Pensauken, and Cape May Formations. Unconformities separate each of these Formations (Hardt and Hilton, 1969; Rhodehamel, 1973). The Pensauken and Cape May Formations are not present in the area of the SMC facility. The following are descriptions of the Kirkwood Formation, the Cohansey Sand, and the Bridgeton Formation:

- The Kirkwood Formation consists of clay, silt, and very fine to coarse quartzose micaceous sand, and is only a minor aquifer in the Newfield area.
 The Kirkwood Formation ranges in thickness from 15 to 49 meters (50 to 160 feet).
- The Cohansey Sand is composed of fine to coarse quartz sand, lenses of clay, and lenses of gravel. This formation dips southeast about 2 meters per kilometer (11 feet per mile) and is approximately 40 meters (130 feet) thick in the Newfield area. Grain size varies both vertically and laterally, which is

consistent with deposition within a coastal environment. The Cohansey Sand is a productive aquifer.

The Bridgeton Formation is composed of fine to very coarse quartz sand and gravel, possibly of glacial or interglacial origins. Clast composition and paleocurrent indicators suggest that the sediments of the Bridgeton Formation were derived from crystalline and sedimentary rocks of the Hudson River Valley, the Reading Prong, and the Newark Basin. Because the source is uraniferous, the sands and gravels of the Bridgeton Formation have the potential to be richer in minerals containing uranium and thorium than the relatively pure quartz sands of the Cohansey Sand (Kozinski, et al., 1995).

1.2.1 Site-Specific Geology

Erosion, deposition, cutting, and filling have altered the landscape in and around the area of the SMC facility. These processes expose the Cohansey Sand at the ground surface at locations where the Bridgeton Formation has been removed. Reworked sediments of the Bridgeton Formation and the Cohansey Sand are present in stream valleys and floodplains. The Geologic Map of New Jersey (Lewis and Kummel, 1950) indicates that the surficial sediments at the facility and in the general Newfield area comprise the Bridgeton Formation.

The geology at the SMC facility was characterized during Superfund site investigations that included the completion of soil borings and monitoring wells. Surficial materials are characterized as brown sand of the Bridgeton Formation. The thickness of the Bridgeton Formation, measured during the Remedial Investigation (TRC, 1992), ranges from 0 meters in the vicinity of well SC-17D (located off-site and to the west of the SMC facility) to 8.5 meters (28 feet) in the vicinity of well SC-12D, just west of the Storage Yard (see Figure 1-2 for well locations). Four shallow soil borings located to the east of the Storage Yard (i.e., borings SB-25 through SB-28) indicated the presence of Bridgeton Formation sand to at least the total borehole depths of 2.5 meters (8 feet).

The Cohansey Sand underlies the Bridgeton Formation at the SMC facility. The Cohansey Sand is composed of coarse sands and little-to-trace silt in the upper 12 meters (40 feet), and generally finer sand and some silt, with some clay and silt stringers in the lower 18 to 24 meters (60 to 80 feet). Discontinuous silt and clay lenses up to 1.8 meters (6 feet) thick were encountered in some portions of the facility. The Kirkwood Formation, described as a gray silt

and clay layer, was encountered at depths ranging from 37 meters (121 feet) below grade (on-site well SC-22D) to 46.6 meters (153 feet) below grade (off-site well SC-17D).

1.2.2 Site-Specific Hydrogeology

The shallow aquifer beneath the SMC facility is comprised of two main hydrogeologic units, based on grain size differences: the upper Cohansey Sand and the lower Cohansey Sand. The upper Cohansey Sand is approximately 12 to 15 meters (40 to 50 feet) thick. The lower Cohansey Sand varies in thickness between 18 and 24 meters (60 and 80 feet) and is characterized by generally finer-grained sand and a larger percentage of silt and clay than the upper Cohansey Sand. Shallow wells (screened above 15 meters or 50 feet) and deep wells (screened below 15 meters) confirm the characterization of the two units.

Around the vicinity of the Storage Yard, the two hydrogeologic units are separated by a low conductivity clay "wedge" ranging from 1.8 meters (6 feet) to 10.6 centimeters (4 inches) thick. There is a vertical hydraulic gradient of approximately 0.5% between the two Cohansey Sand units.

The ground water data for shallow wells are typically evaluated separately from the data for deep wells. A tabular summary of the SMC monitoring wells located at and surrounding the facility is provided in Table 1-1. Figure 1-2 depicts the ground water monitoring well locations in the immediate vicinity of the SMC facility.

The ground water flow direction at the facility generally corresponds to surface topography, which slopes gently to the southwest. Ground water contours for the upper and lower Cohansey Sand for the July 2005 ground water monitoring event were presented in Figures F-3 and F-4 in Appendix F of Rev. 1 of the Decommissioning Plan (IEM/TRC, 2005).

Typically, depths to ground water range from 0 at the Hudson Branch to approximately 5.2 meters (17 feet) below grade in the northwest portion of the facility. Depths to ground water in the on-site wells have not changed significantly over the past ten years of monitoring (i.e., since 1998).

The Bridgeton Formation is hydraulically connected to the underlying Cohansey Sand. Ground water is unconfined, and the water table occurs locally within the Bridgeton Formation. Depths to ground water in the vicinity of the Storage Yard have historically averaged 1.8 to 4.3

meters (6.1 to 14.2 feet) below ground surface, depending on the well location, based on quarterly water level data collected at wells SC-11S, SC-12S and SC-13S between 2001 and 2008. The saturated zone in this area encompasses the lower portion of the Bridgeton Formation.

2.0 SUBSURFACE SOIL INVESTIGATION AND RESULTS

2.1 Sampling Protocol and Sample Locations

On June 19 and June 20, 2008, TRC field team members used a combination of test pit and bucket auger methods to collect subsurface soil samples beneath and immediately next to the stockpiled materials within the Storage Yard area. Sample locations were selected to characterize soils beneath the stockpiles that contain most of the radioactivity in the Storage Yard, namely the electric arc furnace slag contained in Area 4 (sample location HA-6) and the CANAL slag (crushed electric arc furnace slag) contained in Area 3 (sample location HA-3). Samples were also collected beneath the aluminothermic slag in Area 6 (sample location HA-5) and the baghouse dust stockpile in Area 8 (sample location HA-4). In all cases, samples were collected as far beneath the outer edge of the stockpiles as possible. In addition, two background samples (HA-1 and HA-2) were collected that are representative of Bridgeton Formation conditions. The locations of all subsurface samples, including the background samples, are shown in Figure 2-1.

Samples were collected over consecutive 15-centimeter (6-inch) intervals, from the ground surface to depths as great as seven feet. In some sampling locations, slag was observed within the matrix of the near-surface soils. This appears to be the result of the intermingling of surface soils with smaller pieces of slag. Photographs of the test pits that demonstrate this phenomenon are included in Attachment A.

After collection, the samples were placed into coolers, removed from the Storage Yard, and transferred to Building 117 for field screening of gross radioactivity, as described further in Section 2.2. The GPS coordinates were determined for each sample location using a Trimble Asset Surveyor, Version 5.22.

2.1.1 Background Sample Collection

A bucket auger method was used for sample collection at the two background sample locations, HA-1 and HA-2. A thoroughly cleaned and decontaminated bucket auger was advanced into the soil, with samples collected over consecutive 15-centimeter (6-inch) intervals to the maximum depth. At background sample location HA-1, samples were collected to a depth

of 1.4 meters (4.5 feet), and at background sample location HA-2, samples were collected to a depth of 1.2 meters (4 feet). Soil logs are provided in Attachment B.

For each 15-centimeter (6-inch) sample interval, the auger was emptied into a stainless steel bowl and the sample was thoroughly mixed using a decontaminated stainless steel spoon. Approximately one liter of the mixed solids was then placed into a ziploc bag. Each bag was marked with a sample ID designating the sample location and depth, the date and time of sample collection, and the initials of the person collecting the sample.

The bucket auger was decontaminated between sample locations. Sample bowls were decontaminated between the collection of samples while sample spoons were dedicated to a given sample interval.

2.1.2 <u>Test Pit Sample Collection</u>

At sample locations HA-3 through HA-6 within the Storage Yard, a backhoe was used to excavate beneath the edges of the stockpiled material and collect subsurface soil samples. A John Deere 310G backhoe with a 24-inch bucket, operated by KB Construction, was used for the test pit excavations. Sample collection is described below for each of the sample locations, and the soil logs are provided in Attachment B.

HA-3 – HA-3, which was located southwest of the CANAL slag (Area 3), intersected the slag/soil interface and extended to a depth of 1.7 meters (5.5 feet) below the ground surface (bgs), with some slag noted to a depth of 0.8 meters (2.5 feet) bgs. Samples were collected at every six-inch interval from the ground surface to a depth of 1.7 meters (5.5 feet).

HA-4 - HA-4 was located southwest of the baghouse dust area (Area 8), beneath an edge of the pile covered with slag, lime, and metal debris. Slag intermixed with sand was observed to a depth of 0.5 meters (1.5 feet) bgs. The test pit ended at a depth of five feet bgs. Samples were collected at 15-centimeter (six-inch) intervals from the ground surface to a depth of 1.4 meters (4.5 feet).

HA-5 – HA-5 was located to the south of the aluminothermic slag in Area 6, between Areas 6 and 7. Slag was incorporated in the soil matrix to a depth of 1.2 meters (4 feet) bgs. Wet soil was encountered at a depth of 1.4 meters (4.5 feet) bgs. Due to the thickness of intermixed soil/slag at this location, sampling continued to a depth of 2.1 meters (7 feet) bgs using a bucket auger from 1.4 to 2.1 meters (4.5 to 7 feet) bgs.

Samples were collected at every 15-centimeter (six-inch) interval from the surface to a depth of 2.1 meters (7 feet). To determine if the wet soil encountered at a depth of 1.4 meters (4.5 feet) was due to perched water, nearby well SC-11S (see Figure 1-2 for location) was gauged immediately after completion of the test pit. The depth to ground water at SC-11S was four meters (13 feet) bgs, supporting the conclusion that the wet soil encountered at location HA-5 was due to localized perched ground water and not the true water table.

HA-6 - HA-6 was located to the west of the northwest portion of the electric arc furnace slag contained in Area 4. Little or no slag was observed as being intermixed with the soil below the ground surface at this location. The test pit ended at a depth of 1.4 meters (4.5 feet) bgs, with samples collected at 15-centimeter (six-inch) intervals from the ground surface to that depth.

A standard round-point shovel, decontaminated between sample intervals, was utilized to collect samples for each 15 centimeter (six-inch) interval of the test pit sidewalls for the sample locations described above. Each sample was transferred to a decontaminated stainless-steel bowl, homogenized using a dedicated stainless steel spoon, and then transferred into a ziploc bag. Each bag was marked as described in Section 2.1.1 above.

2.2 Field Screening of Samples

After collection, the samples were transferred from the Storage Yard to Building D-117 where they were field-screened for the presence of radioactivity. The results were recorded on the sample collection log. Field screening was conducted by IEM personnel pursuant to IEM Procedure No. RSP-106, "Radionuclide Screening of Slag and Baghouse Dust at Newfield", Rev. 0, June 12, 2008, a copy of which is included in Attachment G. The qualifications of the IEM employee conducting the screening are presented in Attachment C. Attachment D contains a copy of the Field Activity Daily Logs that were maintained during the on-site effort.

The instruments used for the field screening included the following:

- Ludlum Model 19 microRem Meter for ambient gamma measurements;
- Ludlum Model 12 ratemeter with a Ludlum 44-9 pancake GM probe for surface contamination measurements; and
- Ludlum Model 2241 ratemeter with a Model 44-10 sodium iodide detector for the field screening of the samples.

Each instrument was checked prior to use to ensure proper functioning, response checked to a reference radiation source, and inspected for physical damage.

Background measurements were made in the parking lot of the facility, near the southwest access gate. Average background for the Model 19 was six microRem/hr. For the Model 2241/44-10, the background averaged approximately 4,000 counts per minute (cpm). Background for the Ludlum Model 12/44-9 varied from 50 to 60 cpm in Building D-117 and in the facility parking lot, and up to 200-300 cpm near the Storage Yard access point. A separate background for the Model 2241/44-10 was obtained in Building D117 where the samples were field screened. These results were approximately 5000 to 6000 cpm. Attachment E contains the instrument records for this project.

In Building D-117, two processing areas were designated: the first area for sample storage and the second area for sample handling and screening. A baseline contamination survey was performed in each area in order to characterize the pre-work radiological conditions (see Attachment F). After the survey was complete, the floors were covered with plastic sheeting.

On June 20, 2008, the samples in the ziploc bags were subject to gross radioactivity scanning using the Model 2241/44-10. Those with count rates above background had a portion of their contents transferred into a one-liter Marinelli beaker, which was subsequently field-screened pursuant to RSP-106 (see Attachment G). Ambient exposure rates in the work area were monitored at least hourly throughout the screening process.

Upon completion of the screening, each sample aliquot in the Marinelli beaker was returned to its respective ziploc bag, and the bag was placed into a sample cooler. Those bags that exhibited background levels of radioactivity during the gross radioactivity scans were also placed into sample coolers for subsequent storage.

A chain-of-custody form was prepared for the filled coolers (see Attachment H). Custody of each cooler was then relinquished to the SMC Radiation Safety Officer, who moved the coolers into a locked room adjacent to the Building D-117. A post-operational contamination survey of the work areas in Building D-117 was performed and documented. The results of the survey demonstrated no radiological contamination due to the field screening (see Attachment

F).

2.3 Interpretation of Screening Results

Aliquots from ten of the field-screened samples were sent to an off-site laboratory for radionuclide analyses for use in generating a calibration curve for the gross radioactivity screening results, pursuant to RSP-106. The aliquots were selected to represent a range of count rates, from low to high. At the laboratory, the moisture content of each sample was measured, and the samples were then prepared (by drying, grinding, sieving, sealing into a counting container, etc.), stored for at least 21 days from the date of sample preparation, and then analyzed by the methodology of gamma spectroscopy. Attachment I contains the Certificates of Analysis.

For the 10 aliquots, a regression analysis between the analytical results for thorium, uranium, and radium and the corresponding radioactivity screening values produced the following results:

- Thorium (Ac-228): X-coefficient = 0.0010; intercept = 1.579; and $R^2 = 83\%$.
- Uranium (Th-234): X-coefficient = 0.0008; intercept = 0.959; and $R^2 = 22\%$.⁴
- Radium (Bi-214): X-coefficient = 0.0006; intercept = 1.427; and $R^2 = 99\%$.

These results translate into the following equations that model the correlation between the analyzed isotopic concentrations and the screening values:

- Th-232 (pCi/g) = cpm (net) x 0.0010 + 1.579
- U-238 (pCi/g) = cpm (net) x 0.0008 + 0.959
- Ra-226 (pCi/g) = cpm (net) x 0.0006 + 1.427

A table showing the calculated and measured radionuclide concentrations, along with the recorded visual observations (see Attachment J), demonstrates that radioactivity levels clearly above background were present only in those samples that contained visible amounts of slag or

⁴ Two of the analytical results for Th-234 were atypical of those that expected from a natural distribution of thorium and uranium isotopes: Lab ID 20080583-03 (Client ID HA-1/0.0-0.5) and Lab ID 20080585-05 (Client ID HA-3/1.0-1.5). Nonetheless, these results, although likely attributable to an analytical anomaly, were included in the regression analysis, and the goodness of fit reflects the variation.

baghouse dust. Soil samples collected from below the depth where slag or baghouse dust was identified exhibited radionuclide concentrations that were undistinguishable from background (i.e., less than about 2 pCi/g) and isotopic distributions that are typical for both SMC facility materials and for natural soil (i.e., approximately equal concentrations of uranium, thorium and radium).⁵

For example, samples collected at location HA-3 exhibit thorium, uranium or radium concentrations in excess of a nominal 2 pCi/g background concentration to a depth of about 2.5 feet bgs. The field notes for that test pit show slag was present to a depth of 2.5 feet bgs. However, below 2.5 feet, the radionuclide concentrations are within the range of background, the isotopic ratios are approximately equal, and the field notes indicate that slag is not present. Similarly, samples collected at location HA-4 exhibit radionuclide concentrations above 2 pCi/g and the visual presence of slag and sand (likely baghouse dust) to a depth of about 1 foot. At greater depths, the radionuclide concentrations are indistinguishable from background, the isotopic ratios approximately equal and no slag is identified.

It is also important to note that for all of the test pits, radionuclide concentrations above background levels were only observed to a maximum depth of one meter (three feet) bgs (i.e., sample locations HA-3 and HA-5), which is well-above the depth to ground water under the Storage Yard (i.e., from 6 feet in the northeast corner to 4.3 meters (14 feet) in the northwest corner). This provides additional evidence that no radioactivity from the SMC facility has migrated to the water table, and thus it is reasonable to conclude, from the screening and analysis of soil under the various stockpiles in the Storage Yard, that radioactivity has not come in contact with the ground water and that no leaching of the more environmentally mobile isotopes (i.e., those of radium) has taken place. The absence of elevated radioactivity levels in the soil between the base of the stockpiles of slag (HA-3, HA-5 and HA-6) or baghouse dust (HA-4) and the water table further demonstrates that migration has not occurred since the time of initial placement of the slag in the Storage Yard over 40 years ago.

⁵ Because all testing performed to date on SMC's slag and baghouse dust demonstrates the uranium and thorium therein are tightly bound and that surface radium is mobilized only under highly basic conditions, if leaching contributed to the radionuclide concentrations in the subsurface soil layers, one would expect results that were enriched in radium.

3.0 GROUND WATER QUALITY CHARACTERIZATION AND INTERPRETATION

The radiological content of the ground water at the SMC facility and in the adjacent areas has been assessed frequently over the course of recent years through the performance of radioactivity analyses in connection with ground water monitoring events, including those in connection with regularly scheduled CERCLA chemical ground water monitoring. These events have included the characterization of ground water both at the SMC facility and at off-site (including upgradient) locations.

3.1 Summary of Ground Water Sampling Events and Results

Several rounds of ground water sampling for radioactivity were conducted from the late 1980s through 1990, in 1995, and then again in 2004, 2005, 2007, and 2008. Measured radionuclide concentrations obtained in those sampling rounds were compared to drinking water standards set by the EPA.

Drinking water standards have been established by EPA for combined Ra-226/228 (5 picocuries per liter or pCi/l standard), uranium (30 ug/l standard), for gross alpha activity (15 pCi/l) and for gross beta/photon emitter activity (four mrem/yr dose potential). For beta-photon emitter activity, the screening level of 50 pCi/l defined at 40 CFR 141 was used in the evaluation of ground water quality.

The wells that were included in the radiologic ground water monitoring events and the years in which they were sampled are indicated on Figure 3-1. Monitoring included on-site monitoring wells and USGS observation well OBS-2A (representative of background conditions), as well as select off-site well locations, which are indicated in Figure 3-2. The purpose of these analyses was to determine if licensed radioactivity has impacted ground water beneath the facility. During some events, both filtered and unfiltered ground water samples were analyzed to determine the effects of suspended solids on ground water quality data.

The results of the radiological ground water analyses are summarized by well location in Table 3-1. For the ground water samples collected in the late 1980s through 1990 by Dan Raviv Associates (DRAI, 1990), when isotopic analyses were conducted, all results were less than 5 pCi/l. Gross alpha activities were also below the 15 pCi/l drinking water standard. The highest

detected level of gross beta activity was 530 pCi/l in an unfiltered sample collected at well SC-13S. Exceedances of the gross beta screening level of 50 pCi/l were also detected in a filtered sample collected from well SC11S and in filtered and unfiltered samples from well SC-12S. Wells W2, W3, and A, however, were consistently below the standards/screening levels for both gross alpha and beta activity.

In July 1995, ground water samples were collected from wells A, W2(R), SC-11S(R), SC-12S, SC-13S, and SC-14S and analyzed for Actinium-228, Bismuth-214, Lead-212, Lead-214, and Thallium-208. No exceedances of standards or screening criteria were identified.

The annual Superfund-related ground water sampling event conducted in April 2004 included the collection of additional sample volumes to undergo radiochemical analysis (TRC, 2004). At the request of the NJDEP, ground water from select well locations surrounding the Storage Yard was analyzed for gross alpha activity, gross beta activity, Ra-226, Ra-228, and Uranium-238 (U-238). In addition, samples from USGS observation well OBS-2A (an off-site upgradient well) were submitted for radiochemical analysis. Samples were collected for both filtered and unfiltered analyses. For the filtered samples, the sediment removed by the filter was also analyzed for U-238.

None of the wells, including USGS observation well OBS-2A, exhibited gross alpha, Ra-226, Ra-228 or U-238 concentrations in excess of applicable drinking water standards. One of the monitoring wells (SC-12S) exhibited gross beta levels (in the unfiltered sample) that exceeded the 50 pCi/l screening level. The unfiltered sample from monitoring well SC-12S exhibited 128 pCi/l gross beta, which was confirmed by the duplicate sample (SC-32S at 115 pCi/l). Another set of samples was collected from SMC wells SC-25S, SC-11S, SC-12S, and SC-13S on April 13, 2005. A Borough of Newfield well was also sampled at that time to obtain representative background levels. The samples (both filtered and unfiltered fractions) were analyzed for gross alpha/beta, isotopic thorium, isotopic uranium, and isotopic radium. The results of this sampling round are included in Table 3-1. The non-radium isotopes met the EPA's drinking water standard for non-radium nuclides. The combined Ra-226 and Ra-228 results for two on-site wells (SC-11S and SC-13S) and for the background Borough well were slightly higher than 5 pCi/l, the MCL for combined Ra-226 and Ra-228. The results of the single sample collected from the Borough well did not indicate non-compliance with the drinking water

standards because compliance with those standards for public water supplies is assessed based on annual average radionuclide concentrations (i.e., average of quarterly monitoring results, not a single measurement).

Additional radiological ground water sampling and analyses were conducted in July 2007, March 2008, and July 2008. In July 2007, samples were collected from wells A, W2(R), SC-11S(R), SC-12S, SC-12D, SC-14S, SC-20S, SC-20D, SC-22S, SC-25S, SC-26D, IWC-2, IWC-3, and SC-32D as well as Newfield wells #3 and 5. The July 2007 samples were subjected to gross alpha/beta analysis (including 48-hour assessments), Potassium-40 (by gamma spectroscopy), isotopic thorium, isotopic uranium, and isotopic radium analyses. Sampling of wells SC-20S and SC-20D was also conducted in March 2008, with the samples analyzed only for isotopic radium. For the July 2007 sampling event, gross beta activities in filtered and unfiltered samples collected from well SC-12S exceeded the 50 pCi/l screening level, and the gross alpha activities in the unfiltered samples from wells SC-12S, SC-20D, and Newfield Well #5 exceeded the 15 pCi/l standard. The 5 pCi/l standard for combined radium was not exceeded in wells SC-12S or Newfield Well #5, but was exceeded in well SC-20D (where Ra-226 was detected at 3.34 +/- 0.360 pCi/L and Ra-228 was detected at 3.46 +/- 0.065 pCi/L). This measurement for well SC-20D, which was thought to be attributable to seasonal variations, was repeated in the March 2008 sampling round, at which time the total radium concentrations were only slightly above the standard (Ra-226 was detected at 3.02 +/- 0.344 and Ra-228 was detected at 3.09 +/- 0.76).

In July 2008, samples were collected from wells A, W2(R), SC-11S(R), SC-12S, SC-12D, SC-13S(R), SC-14S, SC-20S, SC-20D, and SC-25S, as well as Newfield wells #3 and 5 and USGS observation well OBS-2A. The July 2008 samples were analyzed for isotopic radium and the presence of other, non-radiological, parameters of interest (barium, magnesium, calcium, aluminum, alkalinity, chloride, and nitrate), as identified by the USGS studies discussed in Section 1.1. Field measurements of pH and oxidation/reduction potential were also made. In the July 2008 sampling event, the combined radium concentration in well SC-20D again slightly exceeded the 5 pCi/l standard (Ra-226 was detected at 4.59 +/- 0.485 pCi/L and Ra-228 was detected at 2.20 +/- 0.527 pCi/L), and the combined radium concentration in Newfield Well #5,

which is screened within the deep Cohansey Sand, was below the 5 pCi/l standard (Ra-226 was detected at 1.25 +/- 0.259 pCi/L and Ra-228 was detected at 1.34 +/- 0.058 pCi/L).

3.2 Evaluation of Ground Water Results

Based on all the ground water characterization data, exceedances of the 5 pCi/l standard for combined radium isotopes have occurred only in isolated locations and sampling events (i.e., well SC-11S -- April 2005 filtered sample only; well SC-13S -- April 2005 unfiltered sample only) or have been limited to deep wells (i.e., SC-20D -- July 2007 and March and July 2008 samples, and a Newfield well sample from April 2005. Similarly, exceedances of the gross alpha standard have also been limited to wells SC-12S, SC-20D and Newfield Well #5 in 2007.

With respect to the beta-photon emitter activity limit of 50 pCi/l, that level was exceeded in shallow wells SC-11S and SC-13S in the late 1980s/1990 and in shallow well SC-12S in the late 1980s/1990, 2004 and 2007. However, based on the results of the July 2007 sampling round, where K-40 analyses were a part of the analytical protocol, the levels of gross beta activity in these wells are attributable to elevated potassium concentrations and not to releases of radioactivity from the SMC facility. The isotope K-40 is a naturally-occurring radionuclide that is found wherever potassium is found.^{6,7}

As indicated in Section 1.1, the USGS has documented a correlation between certain constituents and combined radium levels, including a correlation between elevated combined radium levels of greater than five pCi/l and nitrate plus nitrite (as nitrogen) levels greater than five mg/l. Therefore, the 2008 ground water samples were analyzed for additional constituents and properties (barium, magnesium, calcium, aluminum, alkalinity, chloride, nitrate, pH, and oxidation reduction potential (ORP)) to determine if any correlations exist between their presence for ground water in the vicinity of the facility and the radium levels measured at some locations. A summary of the 2008 analytical results for the key constituents identified by the

⁶ The human body maintains relatively tight homeostatic control over potassium levels, meaning the consumption of food or water that contains potassium will not increase the body's potassium content. As such, eating foods like bananas or drinking water with elevated K-40 concentrations does not increase the individual's radiation dose.

⁷ It is unclear what the origin of the K-40 is. K occurs naturally, KNO_3 is used agriculturally, and $KClO_4$ was historically used at the SMC facility. Potassium perchlorate was used at the SMC facility, giving potassium chloride as a reaction product appearing as a component of the slag and baghouse dust. In addition, potassium was present as a "tramp" (i.e., extraneous) element in a number of the raw materials in use at the SMC facility.

USGS as having clear correlations with radium levels is provided in Table 3-2 for shallow and deep wells.

The radium/nitrate correlation was identified in the July 2008 data for well SC-20D and Newfield Well #5; the samples from these two wells contained combined radium at levels approaching or greater than 5 pCi/l and also contained nitrate plus nitrite (as nitrogen) levels exceeding 10 mg/l. This relationship is shown graphically in Figure 3-3. Table 3-2 and Figure 3-3 also show that the combined radium concentrations of the other deep wells are all significantly higher than the combined radium concentrations of the shallow wells. Furthermore, the nitrate plus nitrite concentrations of at least four of the six deep wells are significantly higher than the shallow well nitrate plus nitrite concentrations.

The USGS also found that radium levels are inversely correlated with pH levels. Figure 3-4 graphically shows combined radium concentrations relative to pH levels for shallow and deep wells. As indicated there and in Table 3-2, three wells screened within the deep Cohansey Sand have pH less than 5.0, whereas pH is greater than 5.0 in all of the shallow wells. It is also significant that total alkalinity is low to non-detectable in the deep ground water, in contrast to much higher alkalinity in most of the shallow wells (see Table 3-2). Only the two deep wells (wells A and OBS-2A) with the highest pH have some (low) alkalinity. The nearly complete lack of buffering capacity of the deep ground water reflects the generally acidic water migrating through this section of the aquifer.

The USGS also found a positive correlation between concentrations of combined radium and concentrations of calcium. As indicated in Table 3-2 and Figure 3-5, the deep wells (SC-20D and Newfield Well #5), which exhibited the highest combined radium levels, also exhibited the highest calcium levels among the wells screened in the deep Cohansey Sand.

3.3 Regional Context for Radium in Ground Water

Elevated concentrations of Ra-224, Ra-226, and Ra-228, as well as gross alpha activity concentrations in excess of 15 pCi/l, are common in ground water in the Kirkwood-Cohansey aquifer system in the New Jersey Coastal Plain (Kozinski, et al., 1995; Szabo et al., 2005). Some of this radioactivity is attributed to leaching of uranium and radium from naturally occurring, mineralogically immature sediments of the Bridgeton Formation, and this leaching is enhanced

by agricultural chemicals. The relationship between the level of radioactivity in ground water and geology and land use is statistically significant and nonrandom (Kozinski, et al., 1995).

The Cohansey Sand dips on average southeast about 1.9 to 2.0 meters per kilometer (10 to 11 feet per mile) and ranges in thickness from about a meter in the updip limit area of the Cohansey Sand in the northwest to 39.6 meters (130 feet) at Newfield. The Cohansey Sand is in angular unconformable contact with the relatively flat-lying Bridgeton Formation over an extensive area of Gloucester County (see Figure 1 of Attachment K; Hardt and Hilton, 1969). This angular contact provides the means for the radioactive constituents leached from the Bridgeton Formation to directly enter the Cohansey Sand at all stratigraphic levels.

Figures 3-6 and 3-7 indicate the concentrations of combined radium (226 and 228) and nitrate plus nitrite (as nitrogen), as well as pH, in the shallow and deep wells based on the July 2008 ground water data. The figures show that the higher combined radium levels and nitrate levels are detected in the wells screened within the deeper Cohansey Sands, including an upgradient deep well. In contrast, lower concentrations of these constituents are detected in shallow wells. The paired wells SC-12S/SC-12D and SC-20S/SC-20D also show lower pH in the deeper screened wells. Table 3-2 also shows that the chemistry of the shallow ground water is very different from that of the deep ground water.

The Cohansey Sand contains many extensive clay lenses up to 25 feet thick and, at least locally, has more than one water-bearing zone. Low pressure confined conditions exist over relatively large areas, especially in the lower sections of the aquifer (Hardt and Hilton, 1969; Rhodehamel, 1973). This stratification of the aquifer, combined with the angular contact with the Bridgeton Formation, provides an explanation for the different levels of radioactivity observed in shallow and deep ground water beneath the facility. This stratification is reflected in the very different chemistry of shallow and deep ground water.

The Kirkwood Formation and the Cohansey Sand are hydraulically connected, and the potentiometry of the Kirkwood Formation (see Figure 2, Attachment K) indicates generally smooth radial southwest-south-eastward regional ground water migration from about the center of Gloucester County (Rhodehamel, 1973). Although the water table in the Cohansey Sand is highly irregular (see Figure 3, Attachment K), following local surface topography (Hardt and

Hilton, 1969), deeper regional potentiometry and ground water migration in the stratified aquifer should be broadly similar to the Kirkwood Formation.

The differences in chemistry of the shallow and deep ground water at the SMC facility support different flow paths and recharge areas of each section of the Cohansey Sand. The broad south-to-southeastward component of ground water migration in the lower Cohansey Sand from the updip areas where it subcrops the Bridgeton Formation, in contrast to the irregular potentiometry and local flow paths of shallow ground water, is an important factor in the interpretation of differences in radium, nitrate, and pH in the shallow and deep ground water at the facility. The lower Cohansey Sand is in direct contact with the Bridgeton Formation updip to the northwest of the facility over a large area (Figure 1, Attachment K). Numerous large tracts of farmland are present in this area (Figure 4, Attachment K). These farms and the underlying Bridgeton Formation are the likely source of the radioactivity and nitrate levels in the deep ground water beneath the facility. The Bridgeton Formation is missing over large areas of southern Gloucester County, where the upper Cohansey Sand is exposed at the ground surface (Figure 1, Attachment K). Moreover, the hydraulically upgradient (local gradient) area of Cohansey Sand overlain by Bridgeton Formation is limited in the vicinity of the facility (compare Figures 1 and 3, Attachment K). This limitation, combined with relatively sparse agricultural activity to the northeast (up-gradient) of the facility (Figure 4, Attachment K), explains the comparatively low radionuclide content of the shallow ground water.

There is some agricultural activity in the immediate vicinity and upgradient of the facility (Figure 5, Attachment K), where the Cohansey Sand is overlain by the Bridgeton Formation (Figure 1, Attachment K). This may, at least partially, account for the levels of radioactivity in the shallow ground water beneath the facility, which are nonetheless low. Furthermore, natural leaching of the Bridgeton Formation from infiltration of precipitation where it overlies the Cohansey Sand probably contributes to the radioactivity in shallow ground water beneath the facility.

The increasing truncation of the Cohansey Sand in the updip direction also limits the potential sources and load of radioactive constituents to the upper Cohansey Sand. Natural contributions to radioactivity of the ground water in the upper Cohansey Sand are limited by the limited area of Bridgeton Formation overlying the upper Cohansey Sand. Only farms relatively

near the facility, within an area of Bridgeton Formation at the surface, and directly up the local upgradient can augment the natural contributions to the radioactivity in the shallow ground water that migrates beneath the facility. In contrast, the deeper ground water migrating beneath the facility can receive natural and agricultural-induced loads from a very broad area up-dip and up-gradient. These loads can be introduced directly to the lower Cohansey Sand, where the lower section subcrops the Bridgeton Formation over a broad area. Additionally, loads to the stratigraphically higher section (within shallow ground water) over a much broader area can migrate downward into deeper ground water under vertical hydraulic gradients associated with infiltration of precipitation.

The lower radium concentrations in the shallow ground water relative to the higher radium concentrations in the deeper ground water beneath the facility lead to the conclusion that leachate from the slag piles could not have caused or contributed to the radium levels in the deep ground water. Such levels are the result of natural processes and agricultural activities upgradient of the SMC facility. Likewise, natural and agriculturally-induced leaching of the Bridgeton Formation also occurs in the vicinity of the facility, thus the radium levels, albeit low, in shallow ground water beneath the facility do not result from leaching of the slag.

4.0 <u>CONCLUSIONS</u>

A 1998 subsurface soil and ground water assessment performed by an NRC contractor (ORAU) demonstrated that radionuclides were not migrating from the Storage Yard and into the ground water at the Newfield site. A 2008 subsurface soil sampling campaign within the Storage Yard also demonstrated that no radioactivity has migrated to the ground water from the materials that have been stockpiled there for over 40 years. Likewise, the many ground water sampling/analysis events that have taken place since 1988 show radionuclide concentrations have been, with few exceptions, well below the MCLs set by the EPA. Those exceptions that were verified by more than one round of sampling were in samples collected from deep wells, including wells upgradient and sidegradient of the Storage Yard, that exhibit elevated nitrate and low pH levels indicative of agriculturally-induced leaching of natural radium. Thus, the materials present in the Storage Yard have not resulted in the migration of radionuclides into the ground water in the vicinity of the Newfield site.

5.0 <u>REFERENCES</u>

City of Vineland Water Utility, 2005. <u>Annual Water Quality Report, Water Testing Performed</u> in 2005, City of Vineland Water Utility, 2005.

City of Vineland Water Utility, 2006. Annual Water Quality Report, Water Testing Performed in 2006, City of Vineland Water Utility, 2006.

City of Vineland Water Utility, 2007. Annual <u>Water Quality Report</u>, <u>Water Testing Performed</u> <u>in 2007</u>, City of Vineland Water Utility, 20074.

DRAI, 1988. <u>Ground Water Remediation Alternatives, Shieldalloy Corporation, Newfield, New</u> Jersey, Dan Raviv Associates, Inc., April 1987, Finalized January 1988.

DRAI, 1990. <u>Summary of Geohydrologic Information Collected since January 1988</u>, Shieldalloy Metallurgical Corporation, Newfield, New Jersey; Dan Raviv Associates, Inc., April 1990.

Hardt, William F., and Hilton, George S., 1969. <u>Water Resources and Geology of Gloucester</u> <u>County, New Jersey</u>, Special Report 30, USGS, 1969.

IEM/TRC, 2005. <u>Decommissioning Plan, Shieldalloy Metallurgical Corporation, Newfield, New</u> Jersey, Revision 1, October 2005.

Kozinski, Jane; Szabo, Zoltan; Zapecza, O.S.; and Barringer, T.H.; 1995. <u>Natural Radioactivity</u> in, and Inorganic Chemistry of, Ground Water in the Kirkwood-Cohansey Aquifer System, <u>Southern New Jersey, 1983-89</u>. USGS Water Resources Investigations Report 92-4144, 1995.

Lewis & Kummel, 1950. Geologic Map of New Jersey. 1910-1912, revised 1931 and 1950.

NJDEP, 2004a. <u>Source Water Assessment Report for Newfield Water Department</u>, New Jersey Department of Environmental Protection, November 2004.

NJDEP, 2004b. <u>Source Water Assessment Report for Vineland Water and Sewer Utility</u>, New Jersey Department of Environmental Protection, November 2004.

Rhodehamel, E.C., 1973. <u>Geology and Water Resources of the Wharton Tract and the</u> <u>Mullica River Basin in Southern New Jersey</u>. U.S. Geological Survey Special Report 36, 1973.

Szabo, et al., 2005. <u>Occurrence of Radium-224, Radium-226, and Radium-228 in Water of the Unconfined Kirkwood-Cohansey Aquifer System, Southern New Jersey.</u> USGS Scientific Investigations Report 2004-5224, 2005.

TRC, 1992. <u>Remedial Investigation Technical Report</u>, TRC Environmental Consultants, Inc., April 1992.

TRC, 2004. <u>Report, Ground Water Monitoring Results, February, March and April 2004</u>, <u>Shieldalloy Metallurgical Corporation</u>, TRC Environmental Corporation, June 2004.

Weston, 1972. <u>Hydrogeologic Investigation of Ground Water Contamination, Interim Report</u>, Roy F. Weston, Inc., 1972.

Woodward-Moorehouse, 1974. <u>Preliminary Report, Groundwater Contamination Study, Phase</u> <u>II</u>, Woodward-Moorehouse and Associates, Inc. and Woodward-Envicon, Inc., 1974. SHIELDALLOY METALLURGICAL CORPORATION "Decommissioning Plan for the SMC Facility" August 2009

Rev. 1b

TABLES

		EXIST	TING AND HISTO			ON WELL CONS		N DETAILS	
WELL #	LOCATION REF.	PERMIT #	INSTALLATION DATE	CASING TYPE / DIAMETER	GROUND ELEVATION (msl) ⁽²⁾	TOP OF INNER CASING ELEV. (msl) ⁽²⁾	WELL DEPTH (ft) ⁽³⁾	SCREENED INTERVAL (ft) ⁽³⁾	SCREENED INTERVAL ELEVATION (msl) ^{(1) (2)}
EXISTING M		WELLS SCR	 EENED IN THE LO	 DWER COHANS	EY SAND:				
A	Fig. 3-14	51-142	1970	STEEL/2"	-	94.82	124	114 to 124	-21.18 to -31.18
IWC3	Fig. 3-14	51-222	1/74	STEEL/2"	-	97.83	60	55 to 60	40.83 to 35.83
IWC4	Fig. 3-14 Fig. 3-14	51-223 51-224	1/74 1/74	STEEL/2" STEEL/2"	-	98.61	80 100	75 to 80	21.61 to 16.61
IWC5 W3D	Fig. 3-14 Fig. 3-14	31-25759	12/5/86	PVC/4"	-	98.03 108.37	100	95 to 100 88 to 108	1.03 to -3.97 18.37 to -1.63
W-4	Fig. 3-14	51-219	5/8/74	PVC/4"	- ·	104.58	.75	55 to 75	47.58 to 27.58
SC-12D	Fig. 3-14	31-35226-0	11/28/90	PVC/4"	102.16	103.19	140	126 to 136	-23.84 to -33.84
SC-13D	Fig. 3-14	31-35227-8	11/29/90	PVC/4"	99.67	101.99	140.5	127 to 137	-27.33 to -37.33
SC-20D	Fig. 3-14	31-38187	1/10/92	PVC/4"	101.55	104.53	139	129 to 139	-27.45 to -37.45
SC-22D SC-1D	Fig. 3-14 Fig. 3-14	31-35222-7 31-21619-6	11/21/90 5/30/84	PVC/4" PVC/2"	96.18 88.00	98:72 90.90	125 115	111 to 121 85-95/100-115	-14.82 to -24.82 3 to -7 / -12 to -27
SC-2D(R)	Fig. 3-14	31-38194	1/3/92	PVC/4"	90.62	92.70		106 to 116	-15.38 to -25.38
SC-3D(R)	Fig. 3-14	31-38195	1/7/92	PVC/4"	88.75	91.06	-	102 to 112	-13.25 to -23.25
SC-4D	Fig. 3-14	31-21690-1	6/8/84	PVC/2"		92.64	120	110 to 120	-19.36 to -29.36
SC-5D	Fig. 3-14	31-21876-8	6/12/84	PVC/2"	-	97.00	120	90 to 120	5.00 to -25.00
SC-6D	Fig. 3-14	31-21878-4	6/26/84	PVC/2"	- '	94.38	125	110 to 120	-17.62 to -27.62
SC-10D SC-17D	Fig. 3-14 Fig. 3-14	31-23370 31-35223-5	11/12/85 11/27/90	PVC/4" PVC/4"	106.48	95.72 108.07	125 153	105 to 125 143 to 153	-11.28 to -31.28
SC-17D SC-18D	Fig. 3-14 Fig. 3-14	31-35223-5	11/20/90	PVC/4 PVC/4"	93.56	96.01	153	143 to 153	-36.52 to -46.52 -25.44 to -35.44
SC-19D	Fig. 3-14	31-35221-9	11/26/90	PVC/4"	89.65	92.03	133	120 to 130	-25.44 to -35.44 -30.35 to -40.35
SC-21D	Fig. 3-14	31-35220-1	11/27/90	PVC/4"	90.44	91.65	140	125 to 135	-34.56 to -44.56
SC-24D	Fig. 3-14	3142083	8/24/93	PVC/4"	-	93.52	115	105 to 115	-13.48 to -23.48
SC-26D	Fig. 3-14	31-39500	7/9/1992	PVC/4"	100.68	100.45	143	127 to 137	-26.32 to -36.32
IW-2	Fig. 3-14 Fig. 3-14	31-47408	11/12/85 8/16/95	PVC/6" PVC/4"	107.41	91.05	70 153	40 to 70	49.05 to 19.05
SC-28D SC-29D	Fig. 3-14	31-47400	2/20/97	PVC/4"	106.50	106.87 106.23	148	133 to 153 128 to 148	-25.59 to -45.59 -21.50 to -41.50
SC-30D	Fig. 3-14	31-63686	6/14/02	PVC/2"	114.59	115.58	157	147 to 157	-32.41 to -42.41
SC-31D	Fig. 3-14	31-66758	6/25/02	PVC/2"	99.78	102.61	130	120 to 130	-20.22 to -30.22
SC-32D	Fig. 3-14A	3500027314	12/16/06	PVC/2"	-	-	102	92 to 102	
OBS-2A**	Fig. 3-14	31-06092	-	-	-	122.80	154	129 to 149	-8.20 to -28.20
EXISTING G	ROUND WA		ENT SYSTEM EX		LLS SCREENE	D IN THE LOWE	R COHAN	SEY SAND:	
W-9	Fig. 3-14	31-19648	10/17/82	PVC/6"	-	94.43	130	110 to 130	-17.57 to -35.57
RW6D	Fig. 3-14	31-28711	08/05/88	PVC/8"	-	93.08	125	90 to 125	1.08 to -33.92
			EENED IN THE L		SEY SAND: "				
W2	Fig. 3-14	51-218	5/21/1974	PVC/4*	-	-	120	55 to 60	• • •
. 1				ł	!		and	116 to 120	· · ·
EXISTING M	ONITORING	WELLS SCR	EENED IN THE U	PPER COHANS	EY SAND:				
В	Fig. 3-14	51-143	1970	STEEL/2"	-	94.33	46	36 to 46	56.33 to 46.33
к	Fig. 3-14	51-152	1971	STEEL/2"	-	99.18	46	36 to 46	61.18 to 51.18
L IWC1	Fig. 3-14 Fig. 3-14	51-153 51-220	1971 1/74	STEEL/2" STEEL/2"	-	103.51 98.13	52 20	42 to 52 15 to 20	59.51 to 49.51 81.13 to 76.13
IWC2	Fig. 3-14	51-221	1/74	STEEL/2"	_	98.51	40	35 to 40	61.51 to 56.51
W2(R)	Fig. 3-14	31-38189	12/20/91	PVC/4"	95.88	97.96	17	2 to 17	93.88 to 78.88
SC-9S	Fig. 3-14	31-23368-6	8/1/85	PVC/4"	-	96.23	30	15 to 30	79.23 to 64.23
SC-11S(R)	Fig. 3-14	31-39512	7/1/92	PVC/4"	106.91	108.12	24	9 to 24	97.91 to 82.91
SC-12S	Fig. 3-14	31-29140-6	9/2/88	PVC/2"	- mont well insta	104.76	25	15 to 25	87.76 to 77.76
SC-13S(R) SC-14S	adj to SC-13S Fig. 3-14	31-35215-4	11/15/90	Replace	ment well insta 105.83	lled in June 2008; 108.38	not yet su 27	rveyed 12 to 27	93.83 to 78.83
SC-145 SC-15S	Fig. 3-14	31-35216-2	11/13/90	PVC/4	105.83	108.32	27.5	12.5 to 27.5	93.56 to 78.56
SC-16S	Fig. 3-14	31-35217-5	11/14/90	PVC/4"	105.32	108.05	27	12 to 27	93.32 to 78.32
SC-20S	Fig. 3-14	31-35218-3	11/13/90	PVC/4*	101.74	104.45	22	7 to 22	94.74 to 79.74
SC-22S	Fig. 3-14	31-35219-7	11/14/90	PVC/4"	96.17	99.65	18	3 to 18	93.17 to 78.17
SC-23S SC-25S	Fig. 3-14 Fig. 3-14	31-35437-8 31-38188	11/16/90 12/23/91	PVC/4" PVC/4"	102.83	102.21 102.27	24 21	9 to 24 6 to 21	93.83 to 78.83
SC-255 SC-27S	Fig. 3-14	31-41031	12/15/92	PVC/4"		102.27	21	7 to 22	94.27 to 79.27 91.54 to 76.54
SC-1S	Fig. 3-14	31-28825-1	6/22/88	PVC/4"	-	87.26	55	35 to 55	50.26 to 30.26
SC-3S	Fig. 3-14	31-28914-2	6/8/88	PVC/4"	-	90.32	55	35 to 55	53.32 to 33.32
SC-4S	Fig. 3-14	31-21689-7	6/7/84	PVC/2"		93.65	45	35 to 45	56.65 to 46.65
SC-5S	Fig. 3-14	31-35434-1	11/28/90	PVC/4"	94.18	96.55	20	5 to 20	89.18 to 74.18
SC-6S	Fig. 3-14 Fig. 3-14	31-21691-5 31-23369	6/21/84 11/11/85	PVC/2" PVC/4"	-	94.62	75	45 to 75	47.62 to 17.62
SC-10S SC-17S	Fig. 3-14 Fig. 3-14	31-23369	11/19/90	PVC/4 PVC/4*	- 106.53	95.38 109.26	55 28	35 to 55 13 to 28	58.38 to 38.38 93.53 to 78.53
SC-18S	Fig. 3-14	31-35230-8	11/15/90	PVC/4"	93.43	95.72	19	4 to 19	89.43 to 74.43
SC-19S	Fig. 3-14	31-35224-3	11/15/90	PVC/4"	90.14	92.98	17	2 to .17	88.14 to 73.14
SC-21S	Fig. 3-14	31-35225-1	11/15/90	PVC/4*	90.57	92.64	18	3 to 18	87.57 to 72.57
SC-24S	Fig. 3-14	31-35435-1	11/28/90	PVC/4"	91.57	93.57	20	5 to 20	86.57 to 71.57
IW-1	Fig. 3-14	-	4/5/83	PVC/6*	89.06	90.33	62	32 to 62	57.06 to 27.06
EXISTING G			ENT SYSTEM EX		LS SCREENE				
Layne	Fig. 3-14	51-154	1971	STEEL/6"	-	94.11	47	42 to 47	50.11 to 45.11
RW6S	Fig. 3-14	31-28710	06/16/88	PVC/8"	-	92.70	75	55 to 75	35.70 to 15.70
RIW2	Fig. 3-14	31-28712	08/02/88	PVC/8"	-	91.52	75	30 to 55	59.52 to 34.52
			EENING IN THE U		EY SAND: (4)				
Ŵ3S	Fig. 3-14	31-25760	12/05/86	PVC/4"	•	-	62	42 to 62	
0.0440	Fig. 3-14	31-29139-2	09/01/88	PVC/2"	· ·	-	27	20 to 27	
SC11S SC-13S	Fig. 3-14	31-29570-3	9/9/88	. PVC/2"	-	101.41	24.7	14.7 to 24.7	84.71 to 74.71

(1) - Screened interval elevations for well locations without surveyed ground elevations calculated assuming a ground elevation of 2 feet below the surveyed well

elevation (i.e., top of inner casing elevation). (2) - All elevations based on vertical datum NGVD 1929 (3) - Feet Below Grade

 (a) - Only historic wells which were used for radiological ground water characterization are listed.
 * - Monitoring well not surveyed, casing elevation is approximate.
 * - USGS observation well (NJ-WRD Well Number 15-0372) land surface is 120 feet above NGVD 1929, with the measuring point 2.80 ft above the land surface. The total well depth is 154 feet, with a screened interval of 129-149 feet below grade. (USGS Water Resources Data, New Jersey Water Year 2002 Vol. 2: Water Data Report NJ-02-2)

All wells are owned by SMC, except for well OBS-2A which, as indicated above, is a USGS observation well and all wells are "active" (i.e., not damaged or abandoned). All wells are other monitoring wells or extraction wells used for CERCLA ground water remediation, as noted in the table. msi - Feet Above Mean Sea Level ft - Feet

WELL NUMBER DATE SAMPLED			A 17/1988			A 4/25/1989				A /1989	•		A 9/28/1989	
LABORATORY ID NUMBER	MT24072 Filtered	MT24073 Unfiltered	MT24074 Unfiltered	SMC Unfiltered	MT28511 Filtered	MT28512 Unfiltered	SMC Unfiltered	Teledyne74140 Filtered		Teledyne74141 Filter Paper	Teledyne74142 Filter Paper	Teledyne79778 Filtered	Teledyne79778 Unfiltered	Teledyne7977 Filter Paper
PARAMETERS (pCi/L)														
0	1							1		1				
Gross Alpha Gross Beta	<2 4.7 +/- 2.2	<2 9.1 +/- 2.4	NA NA	NA NA	<2 <3	<2 3.2 +/- 1.7	NA NA	<4.0 <5.0	<5.0 <6.0	<0.5 <0.7	<0.4 <0.8	<3.0 <5.0	<3.0 <5.0	<0.4 <0.7
						0.2 7 77				-0.1	-0.0	-0.0	-0.0	
pH Sulfate	NA NA	NA NA	NA 49	10.70 82	NA	NA	10.32	NA	NA	NA	NA	NA	NA	NA
Suilale	NA	NA	49	82	NA	NA	57	NA	NA	NA	NA	NA	NA	NA
WELL NUMBER	1						·		·	• • • • • • • • • • • • • • • • • • • •		*	*	
DATE SAMPLED	A 7/18/1995		A Apr-04		A 7/25/2007	A 7/10/08								
LABORATORY ID NUMBER	L5069-7	E40100111-014	F4D100111-006	E40100111.022		20080595-14								
SAMPLE TYPE	N/A	Filtered	Unfiltered	Filter Paper	Unfiltered	Unfiltered								
PARAMETERS														
Radiological (pCi/L)														
Gross Alpha (48 hour)	NA	NA	NA	NA	0.53 +/- 1.69	NA								
Gross Beta (48 hour)	NA	NA	NA	NA	0 +/- 7.83	NA								
Gross Alpha	NA	0.55U +/- 0.9	0.70 +/- 1.1	NA	NA	NA								
Gross Beta	NA	13.0 +/- 2.0	1.9J +/- 1.2	NA	. NA	NA								
Actinium 228	0 +/- 7.6	NA	NA	NA	NA	NA								
Bismuth 214	-2.5 +/- 4.4	NA	NA	NA	NA	NA								
Potassium 40	48 +/- 32	NA	NA	NA	2.46 +/- 2.14	NA								
_ead 212	-0.1 +/- 4.9	NA	NA	NA	NA	NA						· ·		
_ead 214	3.2 +/- 4.9	NA	NA	NA	NA	NA								
Thailium 208	1.4 +/- 2.7	NA	NA	NA	NA	NA								
Radium 226	NA	0.110 +/- 0.12	0.10 +/- 0.1	NA	0.407 +/- 0.199	0.485 +/- 0.217								
Radium 228	NA	0.380 +/- 0.38	-0.11U +/- 0.3	NA	0.173 +/- 0.048	0.752 +/- 0.454								
Thorium 232	NA	NA	NA	NA	0.139 +/- 0.068	NA								
Thorium 230	NA	NA	NA	NA	0.441 +/- 0.140	NA								
Thorium 228	NA	NA	NA	NA	0.026 +/- 0.051	NA								
Jranium 235	NA	NA	NA	NA	0.144 +/- 0.120	NA								
Jranium 234	NA	NA	NA	NA	0.77 +/- 0.261	NA								
Jranium 238	NA	NA	NA	0.31J +/- 0.12	0.106 +/- 0.160	NA								
Other Constituents										•				
Barium (ug/L)	NA	NA	NA	NA	NA	ND								
Magnesium (ug/L)	NA	NA	NA	NA	NA	ND								
Calcium (ug/L)	NA	NA	NA	NA	NA	5600								
Aluminum (ug/L)	NA	NA	NA	NA	NA NA	NA								
Alkalinity, Bicarbonate (mg/L)	NA	NA	NA	NA	NA NA	237								
Alkalinity, Carbonate (mg/L)	NA	NA	NA	NA	NA NA	237 ND								
Alkalinity, Total as CaCO3 (mg/L)	NA	NA	NA	NA	NA	22								
Chloride (mg/L)	NA	NA	NA	NA	NA NA	10.7								•
Chromium, Hexavalent (mg/L)	NA	NA	NA	NA	NA NA	10.7 ND								
Nitrogen, Nitrate (mg/L)	NA	NA	0.079B	NA	NA NA	ND 4.3								
Nitrogen, Nitrate + Nitrite (mg/L)	NA	NA	NA U.U/9B	NA	NA NA	4.3 4.3								
Nitrogen, Nitrite (mg/L)	NA	NA	NA NA	NA						•				
Sulfate (mg/L)	NA	NA	42.2		NA	0.021								
Field pH	NA	NA		NA	17.7	ND								
Dxidation/reduction	NA	NA	6.67	NA	6.65	8.23								
JAIUAIION/FEQUCION	NA	NA	NA	NA	NA	-284								

Notes: pC/U - Picocuries per liter; April 2004 isotopic uranium analyses of filter paper samples are reported in picocuries/sample NA - Not Analyzed N/A - Not Available

V/A - Not Available J - Result is greater than sample detection limit but less than stated reporting limit U - result is less than the sample detection limit

WELL NUMBER DATE SAMPLED			N2 7/1988			W2 4/25/1989			W2 8/1/1989			W2 9/28/1989	
LABORATORY ID NUMBER	MT24069	MT24070	MT24071	SMC	MT28509	MT28510	SMC	Teledyne74132	Teledyne74133	Teledyne74134	Teledyne79767	Teledyne79768	Teledyne79769
SAMPLE TYPE	Filtered	Unfiltered	Unfiltered	Unfiltered	Filtøred	Unfiltered	Unfiltered	Filtered	Unfiltered	Filter Paper	Filtered	Unfiltered	Filter Paper
PARAMETERS (pCi/L)								ļ					
Gross Alphø	<2	<2	NA	NA	1 (<1)	1.9 +/- 1.0	NA	<3.0	<4.0	<0.4	<2.0	<2.0	<0.4
Gross Beta	40+/- 4	39+/-4	NA	NA	12+/-2 (14+/-2)	14 +/- 2	NA	20 +/- 0.4	24 +/- 0.5	<0.8	14 +/- 0.4	12 +/- 0.4	<0.7
pH	NA	NA	NA	6.34	NA	NA	6.09	NA	NA	NA .	NA	NA	NA
Sulfate	NA	NA	220	253	NA	NA	90	NA	NA	NA	NA	NA	NA

.

WELL NUMBER	. W2(R)		W2 (R)			2 (R)	W2 (R)
DATE SAMPLED	7/17/1995		Apr-04			4/07	7/9/2008
LABORATORY ID NUMBER	L5069-5	F4D100111-013		F4D100111-021	20070717-07	20070717-07	20080595-02
SAMPLE TYPE	N/A	Filtered	Unfiltered	Filter Paper	Filtered	Unfiltered	Unfiltered
PARAMETERS							
Radiological (pCI/L)		1					1
Gross Alpha (48 hour)	NA	NA	NA	NA	0.594 +/- 1.07	4.59 +/- 1.52	NA
Gross Beta (48 hour)	NA	NA	NA	NA	8.93 +/- 3.14	7.96 +/- 3.2	NA
Gross Alpha	NA	0.32U +/- 0.57	1.75J +/- 0.98	NA	NA	NA	NA
Gross Beta	NA NA	1.6U +/- 1.1	3.4J +/- 1.2	NA	NA	NA	NA
Actinium 228	-6 +/- 5.8	NA	NA	NA	NA	NA	NA
Bismuth 214	-1.3 +/- 5.0	NA	. NA	NA	NA	NA	NA
Potassium 40	1 +/- 27	NA	NA	NA	9.31 +/- 8.09	8.32 +/- 7.23	NA
Lead 212	2.3 +/- 5.3	NA	NA	NA	NA	NA	NA
Lead 214	1.4 +/- 4.7	NA	NA	NA	NA	NA	NA
Thallium 208	1.0 +/- 2.8	NA	NA	NA	NA	NA	NA
Radium 226	NA	0.13U +/- 0.11	0.05U +/- 0.13	NA	0.119 +/- 0.122	0.813 +/- 0.431	0.082 +/- 0.100
Radium 228	NA	0.22U +/- 0.34	0.16U +/- 0.34	NA	0 +/- 0.092	1.05 +/- 0.098	0 +/- 0.602
Thorium 232	NA NA	NA ·	NA	NA	0.239 +/- 0.110	0.539 +/- 0.210	NA
Thorium 230	NA	NA	NA	NA	0.125 +/- 0.146	0.994 +/- 0.389	NA
Thorium 228	NA	NA	NA	NA	0.122 +/- 0.087	0.265 +/- 0.213	NA
Uranium 235	NA	NA	NA	NA	0.322 +/- 0.413	0.711 +/- 0.526	NA
Uranium 234	NA	NA	NA	NA	1.05 +/- 0.717	1.26 +/- 0.621	NA
Uranium 238	NA	NA	NA	0,38 +/- 0.13	0.445 +/- 0.553	0.905 +/- 0.571	NA
Other Constituents							
Barlum (ug/L)	NA	NA	NA	NA NA	NA	NA	ND
Magnesium (ug/L)	NA	NA	NA	NA	NA	NA	9500
Calcium (ug/L)	NA	NA	NA	NA	NA	NA	5270
Aluminum (ug/L)	NA	NA	NA	NA	NA	NA	757
Alkalinity, Bicarbonate (mg/L)	NA	NA	NA	NA	NA-	NA	48.5
Alkalinity, Carbonate (mg/L)	NA	NA	NA	NA	NA	NA	ND
Alkalinity, Total as CaCO3 (mg/L)	NA	NA	NA	NA	NA	NA	50.3
Chloride (mg/L)	NA	NA	NA	NA	NA	NA	3.3
Chromium, Hexavalent (mg/L)	NA	NA	NA	NA NA	NA	NA NA	ND
Nitrogen, Nitrate (mg/L)	NA	NA	NA	NA	NA	NA	0.74
Nitrogen, Nitrate + Nitrite (mg/L)	NA	NA	NA	NA	NA	NA	0.74
Nitrogen, Nitrite (mg/L)	NA	NA	NA	NA	NA	NA	ND
Sulfate (mg/L)	NA	NA	7.53	NA	NA	20.7	ND
Field pH	NA	NA	8.13	NA	NA	6.72	7.09
Oxidation/reduction	NA	NA	NA	NA	NA	NA .	197.3
CARGE CONTRACTOR CONTRACT							101.0

Notes: pCi/L - Picocuries per liter; April 2004 isotopic uranium analyses of filter paper samples are reported in picocuries/sample NA - Not Analyzed Field duplicate data are in brackets. J - Result is greater than sample detection limit but less than stated reporting limit U - result is less than the sample detection limit Field duplicate data are in brackets.

WELL NUMBER DATE SAMPLED		W- 12/17				W-3 4/25/1				W-3S 8/1/1989	
LABORATORY ID NUMBER SAMPLE TYPE	MT24056 Filtered	MT24057 Unfiltered	MT24058 Unfiltered	SMC Unfiltered	MT28500 Filtered	MT28501 Unfiltered	SMC Unfiltered	MT28501 Filter Paper	Teledyne74125 Filtered	Teledyne74126 Unfiltered	Teledyne74127 Filter Paper
PARAMETERS (pCi/L)											
Gross Alpha	<5	<5	NA	NA	3.7 +/- 1.1	4.4 +/- 1.2	NA	. <1	<2.0	1.2 +/- 0.8	<0.4
Gross Beta	<6	<6	NA	NA	6.9 +/- 1.8	7.6 +/- 1.9	NA	<3	6.6 +/- 1.7	7.5 +/- 1.8	<0.8
Thorium 232	<1	<1	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thorium 230	<1	<1	NA	NA.	NA	NA	NA	NA	NA	NA	NA
Total Uranium	<1	<1	NA	NA	NA	NA	NA	NA	NA	NA	NA
рН	NA	NA	NA	5.48	NA	NA	4.79	NA	NA	NA	NA
Sulfate	NA	NA	5.3	12	NA	NA	<10	NA	NA	NA	NA

WELL NUMBER DATE SAMPLED		W-3S 9/28/1989				W-3S 1/10/1990					W-35 4/16/1990		
LABORATORY ID NUMBER SAMPLE TYPE	Teledyne79770 Filtered	Teledyne79771 Unfiltered	Teledyne79772 Filter Paper	Teledyne90127 Filtered	Teledyne90126 Unfiltered	Teledyne90128 Filter Paper	Teledyne90129 Filter Paper	SMC Unfiltered	Teledyne99504 Filtered	Teledyne99503 Unfiltered	Teledyne99505 Filter Paper	Teledyne99506 Filter Paper	SMC Unfiltered
PARAMETERS (pCi/L)													
Gross Alpha	<2.0	<2.0	<0.4	<3.0	<3.0	<0.6	<0.5	NA	2.7 +/- 0.9	4.6 +/- 1.1	<0.6	<0.5	NA
Gross Beta	6.2 +/- 3.3	7.6 +/- 3.4	<0.7	13.0 +/- 7.0	10.0 +/- 7.0	<0.7	<0.7	NA	9.7 +/- 2.8	6.5 +/- 2.5	<0.7	<0.7	NA
Thorium 232	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thorium 230	NA	NA	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	NA
Total Uranium	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
рН	NA	NA	NA	NA	NA	NA	NA	5.24	NA	NA	NA	NA	4.77
Sulfate	NA	NA	NA	NA	NA	NA	NA	<10	NA	NA	NA	NA	<10

Notes: pCi/L - Picocuries per liter NA - Not Analyzed

WELL NUMBER DATE SAMPLED			115 71988			SC-11S 4/26/1989			SC-1 8/1/1					SC-11S 1/10/1990		
LABORATORY ID NUMBER SAMPLE TYPE	MT24059 Filtered	MT24060 Unfiltered	MT24061 Unflitered	SMC Unfiltered	MT28502 Filtered	MT28503 Filtered	SMC Unfiltered	Teledyne74121 Filtered	Teledyne74122 Unfiltered	Teledyne74123 Filter Paper	Teledyne74124 Filter Paper	Teledyne90131 Filtered	Teledyne90130 Unfiltered	Teledyne90132 Filter Paper	Teledyne90133 Filter Paper	SMC Unfilterer
PARAMETERS (pCi/L)																
Gross Alpha	<2	4.0 +/- 2.6	NA	NA	<1	5.5 +/- 1.3	NA	<5.0	5.4 +/- 3.7	<0.5	<0.4	<3.0	<5.0	3,0 +/- 1.5	1.1 +/- 0.8	NA
Gross Beta	3.8 +/- 2.0	28 +/- 8	NA	NA	<3	75 +/- 1.9	NA	<8.0	16.0 +/- 0.7	<0.7	<0.8	<10.0	6.5 +/- 3.2	4.4 +/- 0.9	1.4 +/- 0.6	NA
Radium 226	NA	NA	NA	NA	NA	1.2 +/- 0.2	NA	NA	1.4 +/- 0.8	NA	NA	NA	NA	NA	NA	NA-
Thorium 232	<1	<1	NA	NA	NA	<1	NA	NA	<3.0	NA	NA	NA	NA	NA	NA	NA
Thorium 230	<1	<1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thorium 228	NA	NA	NA	NA	NA	<1	NA	NA	<10.0	NA	NA	NA	NA	NA	NA	NA
Uranium 235	NA	NA	NA	NA	NA	<1	NA	NA	<0.1	NA	NA	NA	NA	NA	NA	NA
Uranium 234	NA	NA	NA	NA	NA I	2.6 +/- 1.1	NA ·	NA	0.33 +/- 1.8	NA	NA	NA	NA	NA	NA	NA
Uranium 238	NA	NA	NA	NA	NA	2.8 +/- 1.1	NA	NA	0.33 +/- 2.0	NA	NA	NA	NA	NA	. NA	NA
Total Uranium	<1	3.9 +/- 1.0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
рН	NA	NA	NA	6.52	NA	NA	6.62	NA	NA	NA	NA	NA	NA	NA -	NA	6.78
Sulfate	NA	NA	60	81	NA	NA	42	NA	NA	NA	NA	NA	NA	NA	NA	26

WELL NUMBER	T		SC-11S			SC-11S(R)	1	SC-11S(R)			1S (R)		IS(R)	SC-115 (R)
DATE SAMPLED			4/16/1990			7/17/1995	_	Apr-04			/2005		/2007	7/9/2008
LABORATORY ID NUMBER	Teledyne99508		Teledyne99509		SMC	L5069-2	F4D100111-010	F4D100111-002		20050277-02	20050277-02	20070717-03	20070717-03	20080595-04
SAMPLE TYPE	Filtered	Unfiltered	Filter Paper	Filter Paper	Unfiltered	N/A	Filtered	Unfiltered	Filter Paper	Filtered	Unfiltered	Filtered	Unfiltered	Unfiltered
PARAMETERS	1													
Radiological (pCi/L)														
Gross Alpha (48 hour)	<0.9	2.1 +/- 1.0	<0.6	<0.5	NA	NA	NA	NA	NA	NA	NA	0.894 +/- 1.03	2.62 +/- 1.46	NA
Gross Beta (48 hour)	4.2 +/- 2.3	4.7 +/- 2.9	<0.7	<0.7	NA	NA	NA	NA	NA	NA	NA	4.20 +/- 2.84	0 +/+ 3.62	NA
Gross Alpha	NA	NA	NA	NA	NA	NA	0.52U +/- 0.56	0.590 +/- 0.87	NA	NA	NA	NA	NA	NA
Gross Beta	NA	NA	NA	NA	NA	NA	2.5J +/- 0.94	2.7J +/- 1.2	NA	NA	NA	NA	NA	NA
Actinium 228	NA	NA	NA	NA	NA	0 +/- 7.4	NA	NA	NA	NA	NA	NA	NA	NA
Bismuth 214	NA	NA	NA	NA	NA	-1 +/- 5.5	NA	NA	NA	NA	NA	NA	NA	NA
Potassium 40	NA	NA	NA	NA	NA	-10 +/- 27	NA	NA	NA	NA	NA	2.2 +/- 1.91	2.15 +/- 1.87	NA
Lead 212	NA	NA	NA	NA	NA	2.8 +/- 5.0	NA	NA	NA	NA	NA	NA	NA	NA
Lead 214	NA	NA	NA	NA	NA	0.4 +/- 4.8	NA	NA	NA	NA	NA	NA	NA	NA
Thaillum 208	NA	NA	NA	NA	NA	2.1 +/- 2.8	NA	NA	NA	NA	NA	NA	NA	NA
Radium 226	NA	NA	NA I	NA	NA	NA	0.17U +/- 0.13	0.140 +/- 0.13	NA	<0.431	<0.293		0,189 +/- 0,208	
Radium 228	NA	NA	NA	NA	NA	NA	0.24U +/- 0.36	-0.14 +/- 0.27	NA	5.50	1.79	0.250 +/- 0.048	0.394 +/- 0.093	0 +/- 0.690
Thorium 232	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.256	<0.336	0.143 +/- 0.154	0.223 +/- 0.137	NA
Thorium 230	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.696	<0.636			NA
Thorium 228	NA .	NA	NA	NA	NA	NA	NA	NA	NA	0.373	< 0.366			NA
Uranium 235	NA	NA	NA I	NA	NA	NA	NA	NA	NA	<0.942	<1.29		0.456 +/- 0.330	NA
Uranium 234	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.91	2.89	1.36 +/- 0.367	1.23 +/- 0.471	NA
Uranium 238	NA	NA	NA	NA	NA	NA	NA	NA	0.29 +/- 0.12	<1.77	3.03	0.110 +/- 0.143		NA
Other Constituents														
Barlum (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA -	NA	ND
Magnesjum (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA NA	NA	NA.	NA NA	ND
Calcium (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND
Aluminum (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	357
Alkalinity, Bicarbonate (mg/L)	NA	NA	NA I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.6
Alkalinity, Carbonate (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.6 ND
Alkalinity, Total as CaCO3 (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	22.6
Chloride (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	4.5
Chromium, Hexavalent (mg/L)	NA	NA	NA I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Nitrogen, Nitrate (mg/L)	NA	NA	NA I	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	ND 0.78
Nitrogen, Nitrate + Nitrite (mg/L)	NA	NA	NA I	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	
Nitrogen, Nitrite (mg/L)	NA	NA	NA I	NA	NA	NA	NA	NA	· NA					0.78
Sulfate (mg/L)	NA	NA	NA NA	NA	NA 24	NA NA	NA NA			NA	NA	NA	NA	ND
Field pH	NA	NA	NA NA	NA				25.8	NA	NA	30.7	NA	14.2	19.1
Oxidation/reduction	NA	NA	NA NA	NA	6.40 NA	NA NA	NA	6.93	NA	NA	5.79	NA	5.81	5.29
O ALUGUOU POULOUDI	NA .		INA	NA	INA .	NA	NA	NA	NA	NA	NA	NA	NA	252.9

Notes: pC/L - Picocuries per liter; April 2004 isotopic uranium analyses of filter paper samples are reported in picocuries/sample NA - Not Analyzed N/A - Not Available J - Result is greater than sample detection limit but less than stated reporting limit U - result is less than the sample detection limit

WELL NUMBER	SC-125 10/26/1988		SC-128 12/17/19					SC-12S 25/1989			B/1/	-12S 1989			SC-12S 9/28/1989				SC-12S 1/10/1990		
LAB. ID NUMBER SAMPLE TYPE	AKEMP0103719 Unfiltered	MT24062 Filtered	MT24063 [24064] Unfiltered	MT24085 Unfiltered	SMC Unfiltered	MT28504 Filtered	MT28505 Unfiltered	SMC Unfiltered	MT28505 Filter Paper	Teledyne74128 Filtered	Teledyne74129 Unfiltered	Teledyne74130 Filtør Paper	Teledyne74131 Filter Paper	Teledyne77993 Filtared	Teledyne79774 Unfiltered	Teledyne79775 Filter Paper	Teledyne90131 Filtered	Teledyne90130 Unfiltered	Teledyne90132 Filler Paper	Teledyne90133 Filter Paper	3 SMC Unfilter
PARAMETERS (pC/L)									l	<u> </u>		ļ	L					<u> </u>	ļ		<u> </u>
Gross Alpha	5.6 +/- 3.1	4.5 +/- 2.0	<3 [<3]	NA	NA	4.0 +/- 1.6	4.4 +/- 1.4	NA	<2	<5.0	<9.0	<0.5	<0.4	<9.0	<9.0	<0.4	<6.0	<7.0	<0.9	<0.9	NA
Gross Beta	83 +/- 9	59 +/- 6	100+/- 10 [130 +/- 20]	NA	NA	71+/-8	38 +/-4	NA	<3	39 +/- 0.9	73 +/- 1.7	<0.7	<0.8	69 +/- 1.5	70 +/- 1.5	<0.7	84+/-18	130 +/- 20	1.4 +/- 0.8	1.4 +/- 0.6	NA
Thorium 232	NA	<1	<1 [<1]	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.1	<0.1	NA	NA	NA
Thorium 230	NA	<1	<1 [2.8 +/- 0.6]	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thorium 228	NA	NA	NA	NA	NA	NA	-NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.3	<0.3	· NA	NA	NA
Total Uranium	NA	<1	<2 [<2]	NA	NA	NA	NA	NA	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Uranium 234	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	. NA	NA	NA	NA '	NA	4.7 +/- 1.3	3.2 +/- 1.1	NA	NA	NA NA
Uranium 235	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	. NA	NA	NA ·	0.6 +/- 0.48	<0.1	NA	NA	NA
Uranium 238	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.98 +/- 0.74	<0.3	NA	NA	NA
Radium 226	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<1.0	<1.0	NA	NA	NA
рН	NA	NA	NA	NA	7.55	NA	NA	6.98	NA	NA	NA	NA	NA	NA	NA [·]	NA	NA	NA	NA	NA	7.04
Sulfate	NA I	NA	NA	46	81	NA	NA	79	NA	NA'	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	99

WELL NUMBER			SC-12S 4/16/1990				SC-12S 7/17/1995	1 1	SC-12S Apr-04		SC-32S	(Blind duplicate of Apr-04	(SC-12S)		-125 /2005	SC- 7/24/	125	SC-12S 7/9/2008	SC-325 (dup) 7/9/2008
	7-1-1-00510	Teledyne99511		17.1.4									F4D100111-020	20050277-03	20050277-03	20070717-04	20070717-04	20080595-05	20080595-07
LAB. ID NUMBER SAMPLE TYPE	Teledyne99513 Filtered	Unfiltered	Teledyne99512 Unfiltered Duplicate	Teledyne90132 Filter Paper	Teledyne90133 Filter Paper	SMC Unfiltered	L5069-3 N/A	F4D100111-011 Filtered	F4D100111-003 Unfiltered	F4D100111-019 Filter Paper	F4D100111-012 Filtered	Unfiltered	Filter Paper	Filtered	Unfiltered	Filtered	Unfiltered	Unfiltered	Unfiltered
PARAMETERS			Copicalo							1	ł	1					1		l
Radiological (pCi/L)				· · · · · · · · · · · · · · · · · · ·							· · · · · · · · · · · · · · · · · · ·								
Gross Alpha (48 hour)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA '	'NA	NA	NA	8.11 +/- 3.81	13.1 +/- 4.88	NA	NA
Gross Bata (48 hour)	NA	NA	NA	NA	I NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	115 +/- 12.6	112 +/- 11,1	NA	NA
Gross Alpha	<9	10 +/- 7	<9	<0.6	<0.5	NA .	NA	0.910 +/- 0.97	8.8U +/- 9.8	NA	0.290 +/- 0.85	14.00 +/- 10.0	NA	NA	NA	2.0 +/- 3.11	11.0 +/- 3.85	NA	NA
Gross Beta	180 +/- 30	200 +/- 30	220 +/- 30	1.1 +/- 0.5	<0.7	NA	NA	14.0 +/- 2.1	128 +/- 16.0	NA	15.3 +/- 2.3	115 +/-15.0	NA	NA	NA	113 +/- 10.5	95 +/- 10.0	NA	NA
Actinium 228	NA	NA	NA	NA	NA	NA	1.6 +/- 7.5	NA	NA	NA	NA	NA '	NA	NA	NA NA	NA	NA	NA	NA
Bismuth 214	NA	NA	NA	NA	NA	NA	3.6 +/- 5.3	NA	NA	NA	NA	NA	NA	NA -	NA	NA	NA	NA	NA
Potassium 40	NA	NA	NA	NA	NA	NA	42 +/- 34	NA	NA	NA	NA	NA	NA	NA	NA	85 +/- 73.8	78.8 +/- 68.5	NA	NA
Lesd 212	NA	NA	NA	NA	NA	NA	0.6 +/- 4.9	NA	NA	NA	I NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead 214	NA	NA	NA	NA	NA	NA	1.6+/-4.9	NA	NA	NA	I NA	NA	NA	NA	NA	NA	NA	NA	NA
Thallum 208	NA	NA	NA	NA	NA	NA	0.5+1-2.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Radium 226	<1	NA	<1	NA	NA	NA	NA	0.82J +/- 0.24	0.52J +/- 0.18	NA	1.09 +/- 0.26	0.98J +/- 0.24	NA	0.598	< 0.325	0.537 +/- 0.231	1.53 +/- 0.256	0.154 +/- 0.077	0.401 +/- 0.20
Radium 228	NA	NA	NA	NA	NA	NA	NA	0.58U +/+ 0.41	0.42U +/- 0.31	NA	1.24 +/- 0.43	0.61J +/- 0.37	NA	2.28	4.47	1.04 +/- 0.051	2.62 +/- 0.120	0.211 +/- 0.668	0.069 +/- 0.41
Thorium 232	<0.04	NA	2.9 +/- 0.4	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0,312	<0.246	0.701 +/- 0.192	0.656 +/- 0.140	NA	NA
Thorium 230	NA	NA	NA	NA	NA	ŇA	NA	NA	NA	NA	NA	NA	NA	<0.648	<0.674			NA	NA
Thorium 228	0.29 +/- 0.14	NA	4.3 +/- 0.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	<0.222	<0.227	0 113 +/- 0.105	0.743 +/- 0.148	NA	NA
Uranium 235	0.034 +/- 0.029	NA	0.087 +/- 0.048	NA	NA	NA	NA	NA	NA	NA	1 NA	NA	• NA	<0.281	<0,154	0.107 +/- 0.344	0.239 +/- 0.233	NA	NA
Uranium 234	.96 +/- 1.3	NA	1.3 +/+ 0.2	NA	NA	NA	NA	NA	NA	NA	I NA	NA	NA	0.666	0.427	1 64 +/- 0 602	1 78 +/- 0.522	NA	NA
Uranium 238	0.99 +/- 0.13	NA	0.99 +/- 0.15	NA	NA	NA	NA	NA	NA	0.433 +/- 0.14	· NA	NA	0.48J +/- 0.15	<0.483	<0.272	0.489 +/- 0.401	0.796 +/- 0.356	NA	NA
	0.00 1.0.00		0.00 1.0.10				1444			0.400 11 0.14			0.000			0.405	0.700 77 0.000	NA	NA
Other Constituents								1			i				1		1	1	[
Berium (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	ND) ND
Magnesium (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	40700	39200
Calcium (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	6080	6390
Aluminum (ug/L)	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	3250	3510
Alkalinity, Bicarbonate (mg	NA	'NA	NA	NA	NA	NA	NA	NA	NA	, NA	NA	NA	NA	NA	NA	NA	NA	503	501
Alkalinity, Carbonate (mg/L	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND	ND
Alkalinity, Total as CaCO3		NA	· NA	NA	NA	NA ·	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	505	502
Chloride (mg/L)	NA NA	NA	NA	NA NA	NA) NA	NA	NA	NA NA	NA	I NA	NA NA) NA	NA	NA	NA -	NA	14.5	14,5
Chromium, Hexavalent (m		NA	NA	NA	NA	NA	NA	NA	NA	NA	Î NA	NA	. NA	NA	NA	NA	NA	0.16	0.16
Nitrogen, Nitrate (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	4,69	• NA	NA	4.46	NA	NA	NA	NA	NA	1.9	1.9
Nitrogen, Nitrate + Nitrite (NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA .	1.9	1.9
Nitrogen, Nitrite (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	NA	NA	NA	NA	NA	NA	ND	ND
Sulfate (mg/L)	NA	NA	NA	NA	NA	118	NA	NA	68.6	NA	NA	68.2	NA	NA	40.7	NA	51.6	32.3	32,6
Field pH	NA	NA	NA	NA	NA	7,60	NA	NA	7.44	NA	NA	7.44	NA	NA	5,85	NA	6.76	6,25	6.25
Oxidation/reduction	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	253.5	253.5

.

Notes: pC/LI - Picocuries per liter; April 2004 leotopic uranium analyses of filter paper samples are reported in picocuries/sample NA - Not Analyzed NA - Not Available J - Result is greater han sample detection limit but less than stated reporting limit U - result is as than the sample detection limit Field duplicate data are in brackets.

Page 5 of 7

WELL NUMBER	SC-13S 10/26/1988		SC-1 12/17/				SC-13S 4/25/1989				SC-135 - 8/1/1989	•			SC-135 9/28/1989	
LABORATORY ID NUMBER	AKEMP0102740 Unfiltered	MT24066 Filtered	MT24067 Unfiltered	MT24068 Unfiltered	SMC Unfiltered	MT28506 [28508] Filtered	MT28507 Filtered	SMC Unfiltered	Teledyne74136 Filtered	Teledyne79779 Filtered	Teledyne74135 Unfiltered	Teledyne74137 Filter Paper	Teledyne74138 Filter Paper	Teledyne79780 Unfiltered	Teledyne74781 Filter Paper	Teledyne74766 Filter Paper
PARAMETERS (pCI/L)	· · · · ·	·														
Gross Alpha	7.1+1-3.4	4	<2	NA	NA	10 +/- 2 (7.2 +/- 1.8)	<2	NA	<1.0	<10.0	<20.0	<0.5	<0,4	<10.0	<0.6	<0.4
Gross Beta	19 +/- 4	12 +/- 3	14+/- 3	NA	NA	25 +/- 3 [31 +/- 4]	18 +/- 2	NA NA	30 +/- 1.4	<20.0	<40.0	<0.7	<0.8	<20,0	0.85 +/- 5.3	<0.7
Radium 226	NA	NA	NA	NA	NA	<1 [1.0 +/- 0.1]	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thorium 232	NA	<1	<1	NA	NA	<1 [<1]	NA	NA	I NA	NA	NA	NA	NA	NA	NA.	NA
Thorium 230	NA	<1	<1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thorium 228	NA	NA	NA	NA	NA	<1 [<1]	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Uranium 235	NA	NA	NA	NA	NA	<1 (<1)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Uranium 234	NA	NA	NA	NA	NA	6.5 +/- 1.4 (4.4 +/- 1.0)	NA	NA	NA	NA	NA	·NA	NA	NA	NA	NA
Uranium 238	NA	NA	NA	NA	NA	5.5 +/- 1.2 [5.1 +/- 1.1]	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Uranium	NA	<2	2.1 +/- 1.0	NA	NA	NA	NA	NA	NA	NA	· NA	NA	NA	NA	NA	NA
рн	NA	NA	NA	NA	6.56	NA	NA	6.47	NA	NA	NA	· NA	NA	NA	NA	-NA
Sulfate	NA	NA	NA	310	409	NA	NA	259	NA	NA	NA	NA	NA	NA	NA	. NA

WELL NUMBER				C-135			SC-13S 4/16/1990						T	SC-13S Apr-04		SC- 4/13/	SC-13S (R) 7/9/2008	
LABORATORY ID NUMBER	W.T. J	T-I-A-COMMA		Teledyne90141	Teledyne90142	SMC	Teledyne99517	Teledyne99516	Teledyne99518	Teledyne99519	SMC	7/17/1995 L5069-6	F4D100111-015		F4D100111-023	20050277-04	20050277-04	20080595-10
	Teledyne90140	Teledyne90138	Teledyne99512 Unfiltered	Filter Paper	Filter Paper	Unfiltered	Filtered	Unfiltered	Filter Paper	Filter Paper	Unfiltered	N/A	Filtered	Unfiltered	Filter Paper	Filtered	Unfiltered	Unfiltered
SAMPLE TYPE	Filtered	Unfiltered	Duplicate	Filter Paper	Filler Paper	Unintered	Fikered	Unnitered	Filter Paper	Finer Paper	Unintered	N/A	Patered	Unikered	Puter Paper	Fillered	Unimerad	Unintered
PARAMETERS									ļ	{ [· ·			}			
Radiological (pCi/L)								1.										
Gross Alpha	<60	<80.0	<80.0	<0.7	<0.5	NA	<200	<200	<0.7	<0.5	NA	NA	-0.3U +/- 1.5	2,6U +/- 2.4	NA	NA	NA	NA
Gross Beta	430 +/- 130	530 +/- 160	480 +/- 160	<0.7	<0.7	' NA	<800	<800	0.86 +/- 0.54	<0.7	NA	NA	2.3J +/- 1.2	17.6 +/- 2.5	NA.	NA	NA	NA
Actinium 228	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-2.5 +/- 5,7	NA	NA	NA	NA	NA .	NA
Bismuth 214	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-4.5 +/- 5.2	NA	NA	NA	NA	NA	NA
Potassium 40	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	11+/- 29	NA	NA	NA	NA	NA	NA
Lead 212	NA	NA	NA	NA	NA L	NA	NA	NA	NA	NA	NA	0.5 +/- 5.0	NA	NA	NA	NA	NA	NA
Lead 214	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	-2.6 +/- 4.6	NA	NA	NA	. NA	NA	NA
Thallium 208	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.6 +/- 2.7	NA	NA	NA	NA	NA	NA
Radium 226	<0.2	<0.2	<0.2	NA	NA	NA	<1	<1	NA	NA	NA	NA	0.41J +/- 0.17	0.3J +/- 0.17	NA	<0.715	<0,418	0.351 +/211
Radium 228	NA	NA	NA	NA	NA L	NA	I NA	NA	NA	NA	NA	NA	0.10 +/- 0.38	0.390 +/- 0.27	NA	< 0.532	7.64	0 +/- 0.747
Thortum 232	<0.06	<0.06	<0.03	NA	NA	NA	<0.2	<0.2	NA	NA	NA	' NA	NA ·	NA	NA	<0.207	<0.219	NA
Thorium 230	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA -	<0.587	<0.606	NA
Thorium 228	<0.3	<0.3	<0.2	NA	NA	NA	<0.4	<0.4	NA	NA	NA	NA	NA	NA	NA	· <0.232	<0,267	NA
Uranium 235	<1.0	<2.0	<2.0	NA	NA	NA	0.23 +/- 0.1	0.094 +/- 0.085	NA	NA	NA	· NA	NA	NA	NA	<0.220	<0.498	NA
Uranium 234	6.0 +/- 2.3	<60	6.6 +/- 2.2	NA	NA	NA	4.3 +/- 0.4	4.5 +/- 0.5	NA	NA	NA	NA	NA	NA	NA	1.14	2.57	NA
Uranium 238	3.4 +1- 2.0	<4.0	4.2 +/- 1.8	NA	NA	NA	3.4 +/- 0.4	3.7 +/- 0.4	. NA	NA	NA	NA.	NA	NA	0.24J +/- 0.11	1.25	1.86	NA
Other Constituents															1			
Barium (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA .	NA ·	NA	ND
Magnesium (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	23400
Calcium (ug/L)	NA	NA	NA	NA	NA L	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	5230
Aluminum (ug/L)	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	19700
Alkalinity, Bicarbonate (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA	NA	NA	466
Alkalinity, Carbonate (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA .	NA	NA	NA	· NA	NA	NA	NA	NA	- ND
Alkalinity, Total as CaCO3 (mg	NA	NA	' NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	469
Chloride (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	. NA	7.1
Chromium, Hexavalent (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA) NA	NA NA	NA	NA	NA .	NA	NA	0.064
Nitrogen, Nitrate (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	· 0.076B	NA	NA	NA .	ND
Nitrogen, Nitrate + Nitrite (mg/	NA	NA	NA	NA	NA I	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.28
Nitrogen, Nitrite (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	0.38
Sulfate (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1768	NA	NA	63.4	NA	NA	305	89.3
Field pH	NA	NA	NA	NA	NA	11.94	NA	NA	NA	NA	9.84	NA	NA	7.22	NA	NA	9.19	9.64
Oxidation/reduction	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	145.7

Notes: DCIL - Piccouries per liter: April 2004 isotopic uranium analyses of filter paper samples are reported in piccouries/sample NA - Not Analyzed NA - Not Available J - Result is greater than sample detection limit but less than stated reporting limit U - result is less than the sample detection limit

TABLE 3-1 GROUND WATER RADIOLOGICAL SUMMARY TABLE SHIELDALLOY METALLURGICAL CORPORATION NEWFIELD, NJ

WELL NUMBER		12D	SC-12D	SC-145		SC-14S		SC-14S	SC-145	SC-20S	SC-205	SC-20S	SC-20D	SC-20D	SC-20D	SC22S		255	SC-25S	SC-25S	SC-26D
DATE SAMPLED	7/25		7/9/2008	7/17/1995		Apr-04		7/25/2007	7/9/2008	7/25/2007	3/1B/2008	. 7/9/2008	7/25/2007	3/18/2008	7/9/2008	7/25/2007		2005	7/24/2007	7/9/2008	7/25/2007
LABORATORY ID NUMBER	20070717-05	20070717-05	20080595-06	L5069-1	F4D100111-009	F4D100111-001	F4D100111-017	20070717-02	20080595-03	20070717-12	20080245-01	20080595-12	20070717-13	20080245-02	20080595-13	20070717-08	20050277-01	20050277-01	20070717-01	20080595-01	20070721-03
SAMPLE TYPE	Filtered	Unfiltered	Unfiltered	N/A	Filtered	Unfikered	Filter Paper	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	Unfiltered	DerellinU	Unfiltered	DerefilinU	Fillered	Unliltered	Unfiltered	Unlillered	Unfiltered
PARAMETERS																	1				
Radiological (pCi/L)									1				F							I	1
Gross Alpha (48 hour)	4.69 +/- 1.57	7.39 +/+ 1.76	NA	NA	NA	NA	NA	3.56 +/- 1.23	NA	1.23+/-1.39	NA	NA	24.8+/-3.05	NA	NA	1.00+/-1.28	NA NA	NA	6.52 +/- 1.75	NA	1.89 +/- 1.30
Gross Beta (48 hour)	1.06 +/- 3.71	8.33 +/- 3.05	NA	NA	NA	NA	NA	6.17 +/- 2.93	NA	7.33+/-3.42	NA	NA	18.9+/-3.71	NA	NA	1.56+/-3.83	NA	NA	8.81 +/- 4.28	NA	4.88 +/- 2.96
Gross Alpha	NA	3.06 +/- 1.41	NA	NA	0.410 +/- 0.84	1.1U +/- 1.0	NA	NA	NA	NA	NA	NA	11.5 +/- 2.21	NA	NA	NA	NA	1 NA	2.15 +/- 1.22	NA	NA
Gross Beta	NA	1.13 +/- 3.71	NA	NA	7.3 +/- 1.4	5.3 +/- 1 5	NA	NA	NA	NA	NA	NA	11.7 +/- 3.46	NA	NA	NA	NA	NA	4.77 +/- 4.16	NA	NA
Actinium 228	NA NA	NA	NA	15 +/- 16	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA
Bismuth 214	NA	NA	NA	-7.4 +/- 8.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Polassium 40	1.38 +/- 1.18	1.2 +/- 1.04	NA	-1 +/- 68	NA	NA	NA	3.5 +/- 3.04	NA	11 +/- 9.56	NA	NA	1.97 +/- 1.71	NA	NA	12.4 +/- 10.8	NA	NA	2.28 +/- 1.98	NA	8.31 +/- 7.2
Lead 212	NA	NA	NA	4 +/- 8.5	NA	NA	NA	NA ·	NA	NA	[NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA	NA
Lead 214	NA	NA	NA	6 +/- 9.3	NA	NA	NA	I NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA NA	NA	NA
Thallium 208	NA	NA	NA	-2 +/- 6,1	NA	NA	I NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA
Radium 226	2.74 +/- 0.306	2.09 +/- 0.27B	2.24 +/- 0.408	NA	0.33J +/- 0.15	0.110 +/- 0.1	NA	0.202 +/- 0.157	0.208 +/- 0.102	-0.030+/-0.223	0.225+/-0.133	0.204 +/- 0.097	3.34+/-0.360	3.02+/-0.344	4.59 +/- 0.485	0.494+/-0.169	<0.352	<0.454	0.164 +/- 0.147	0.023 +/- 0.132	2 0.186 +/+ 0.1
Redium 228	0.127 +/- 0.048	0.668 +/- 0,049	0.09 +/- 0.469	NA	0.89J +/- 0.32	0.91J +/- 0.36	NA	0.569 +/- 0.050	0 +/- 0.461	0.292+/-0.047	0.524+/-2.29	0.539 +/- 0.427	3.46+/-0.065	3.09+/-0.76	2.20 +/- 0.527	0.220+/-0.048	1.18	16.9	0.439 +/- 0.049		0.094 +/- 0.0
Thorium 232	0.213 +/- 0.115	0.197 +/- 0.106	NA	NA	NA	NA	NA	0.531 +/- 0.184	NA	0.311+/-0.129	NA	NA	0.167+/-0.118	NA	NA	0.715+/-0.187	<0.301	<0.335	0.340 +/- 0.187	NA NA	0.473 +/- 0.1
Thorium 230	0.169 +/- 0.124	0.300 +/- 0.143	NA	NA	NA	NA	NA	0.660 +/- 0.208	NA	0.056+/-0.168	NA	NA	0.323+/-0.160	NA	NA	0.739+/-0.214	<0.811	<0.751	0.198 +/- 0.258	NA	0.125 +/- 0.1
Thorium 228	0.137 +/- 0.090	0.032 +/- 0.077	NA	NA	NA	NA	NA	0 +/- 0,117	NA	0.272+/-0.123	NA	NA	0.063+/-0.078	NA	NA	0.150+/-0.101	<0.455	<0.455	0.071 +/- 0.143	NA	0.103 +/- 0.1
Uranium 235	0.331 +/- 0.264	0.112 +/- 0.154	I NA	NA	I NA	NA	NA	0.026 +/- 0.173	NA	0.289+/-0.231	NA	NA	0.114+/-0.171	NA	NA	0.165+/-0.131	0.628	0.628	0.088 +/- 0,198	NA	0.933 +/- 0.4
Uranium 234	1.18 +/- 0.451	0.393 +/- 0.248	NA	NA	NA	NA	NA	0.361 +/- 0.309	NA	0.967 +/- 0.394	NA	NA	0.994+/-0.342	NA	NA	0.637+/-0.271	3.65	3.65	1.06 +/- 0.492	NA	3.18 +/- 0.73
Uranium 238	0.839 +/- 0.367	0.126 +/- 0,175	NA	NA	NA	NA	0.31J +/- 0.12	0.079 +/- 0.285	NA	0.197+/-0.280	NA	NA	0.110+/-0.273	NA	NA	0.310+/-0.181	0.725	0.725	0.117 +/- 0.294	NA	0.988 +/- 0.4
Other Constituents	ł		Į į		l l		l	l	1	1			ļ	Į	l		· ·		}	l	1
Barium (ug/L)	NA	NA	ND	NA	NA	NA	NA	NA	ND	NA	NA	ND	NA	NA	ND	NA NA	NA	NA	NA	NA	NA
Magnesium (ug/L)	NA	NA	ND	NA	NA NA	NA	NA	NA	ND	NA	NA	10500	NA	NA	ND	NA	NA	NA	NA	NA	NA
Calcium (ug/L)	NA	NA	ND	NA	NA	NA	NA	NA	9150	NA	NA	19100	NA	NA	10100	A1A	NA	NA	NA	NA	NA
Aluminum (ug/L)	NA	NA	ND	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Alkelinity, Bicarbonate (mg/L)	NA	NA	ND	NA	NA	NA	NA	NA .	13.6	NA	NA	122	NA	NA	ND		NA	NA	NA	MA	NA
Aikalinky, Carbonate (mg/L)	NA	NA	ND	NA	NA	NA	NA	NA	ND	NA	NA	ND	NA NA	NA	ND	NA	NA	NA	NA	NA	NA
Alkalinity, Total as CsCO3 (mg/L)		NA	ND.	NA	NA	NA	NA	NA	13.6	NA	NA	122	NA	NA	ND	NA	NA	NA	NA	NA	NA
Chlorida (mo/L)	NA	NA	2.5	NA	NA	NA	NA	NA	17.7	NA	NA	34.4	NA	NA ·	14.9	NA	NA NA	NA	NA	NA	NA
Chromium, Hexavalent (mg/L)	NA	NA	ND	NA	NA	NA	NA	NA	0.088	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Nitrogen, Nitrate (mg/L)	NA	NA	0.22	NA	NA	NA	NA	NA	1.9	NA	NA	0.68	NA	NA	11.8	NA	NA NA	NA NA	NA	NA	NA NA
Nitrogen, Nitrate + Nitrite (mg/L)	NA	NA	0.22	NA	NA	NA	l NA	NA	1.9	l NA	NA	0.71	NA NA	NA	11.8	NA NA	NA	NA	NA	NA	NA
Nitrogen, Nitrite (mg/L)	NA NA	NA	ND	NA	NA	NA) NA	NA NA	ND	NA	NA	0.028	NA NA	NA	ND	NA	NA	NA	NA	MA	NA
Sulfate (mg/L)	NA	10.4	13.4	NA	I NA	19.9	NA	21.7	23.4	NA	NA	NA	NA	NA	NA	22.6	NA	10.3	10	NA	29.2
Field pH	NA	5.38	4,58	NA	NA NA	6.13	NA	6.00	5.48	NA	NA	6.67	NA	NA	6.02	6.77	NA	7.23	7.6	NA	7.76
Oxidation/reduction	NA	NA	281.6	NA	NA	NA	NA	NA	227.4	100	NA	-127.2	NA	NA	94.2	5.//		1.23 NA	NA NA	NA	NA

WELL NUMBER	SC-30S	SC-		WC-2	IWC-3		OBS-2A		OBS-2A	Newfield W	ell (BN4-05)	NW-3	Newfield #3	NW-5	Newfield #5
DATE SAMPLED	7/17/1995	7/25	2007	7/25/2007	7/25/2007		4/4/2004		7/9/2008		/2005	7/25/2007	7/9/2008	7/25/2007	7/9/2008
LABORATORY ID NUMBER	L5069-4	20070717-06	20070717-06	20071717-10	20070717-11	F4D100111-018	F4D100111-008	F4D100111-024	20080595-11	20050277-05	20050277-05	20070721-01	20080595-09	20070721-02	20080595-08
SAMPLE TYPE	N/A	Filtered	Unfiltered	Unfiltered	Unfiltered	Filtered	Unfiltered	Filter Paper	Unfiltered	Filtered	Unfiltered	Unfiltered	Unfiltered	Unlittered	Unfiltered
PARAMETERS			_												
Radiological (pCvL)									1						
Gross Alpha (46 hour)	NA	4.85+/-1.56	7.01 +/-1,68	1.46+/-2.25	9.33+/-1.98	NA	NA	NA	NA I	NA	NA	5.81 +/- 1.67	NA	16.6 +/- 2.42	I NA
Gross Bets (48 hour)	NA	1.58+/-3.07	0.259+/-3.94	13.3+/-4.31	11.7+/-3.20	NA	NA	NA	NA	NA	NA	5.55 +/- 3.23	NA	11.5 +/- 3.16	NA
Gross Alpha	NA NA	NA	5.52 +/- 1.63	NA	3.16 +/- 1.36	2.08J +/- 0.83	4.0 +/- 1.2	NA	NA	NA	NA	2.40 +/- 1.03	NA	3.17 +/- 1.46	NA
Gross Beta	NA	NA	5.87 +/- 3.24	NA	7.8 +/- 3.04	3.0J +/- 1.2	3.4J +/- 1.2	NA	NA	NA	NA	4.82 +/- 2.86	NA	2.19 +/+ 3.76	NA
Actinium 228	7 +/- 7,3	NA	NA	NA I	NA	. NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Bismuth 214	6.5 +/- 5.7	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA ·
Potassium 40	31 +/- 31	1.14 +/- 0.99	1.09 +/+ 0.95	20.8 +/- 18.1	4.4 +/- 3.82	NA	NA	NA	NA	NA	NA	1.12 +/- 0.097	NA	2.1 +/- 1.82	NA
Lead 212	1.7 +/- 5.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead 214	6.5 +/- 5.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Thalkum 208	21+1-2.9	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA
Radium 226	NA	2.17+/-0.277	3.36+/-0.461	1.27+/-0.223	0.205+/-0.112	1.23 +/- 0.28	0.95J +/- 0.26	NA	0.648 +/- 0.144	<0.459	<1.00	0.439 +/- 0.157	0.431 +/- 0.127	1.25 +/- 0.259	0.967 +/- 0.236
Radium 228	NA	0.86+/-0.096	0.843+/-0.054	0.026+/-0.048	1.86+/-0.056	0.68J +/- 0.39	0.58J +/- 0.33	NA	1.48 +/- 0.632	5.39	5.54	0.551 +/- 0.049	1.30 +/- 0.650	1.34 +/- 0.058	3.55 +/- 0.503
Thorium 232	NA	0.080+/-0.075	0.061+/-0.146	0.521+/-0.151	0.350+/-0.140	NA	NA	NA	NA	0.310	0.144	0.443 +/- 0.171	NA	0.444 +/- 0.196	NA
Thorium 230	NA	-0.110+/-0.089	-0.038+/-0.192	0.300+/-0.157	0.575+/-0.199	NA	NA	NA	NA	<0.616	<0.653	0.454 +/- 0.230	NA	0.581 +/- 0.266	NA
Thorium 228	NA	0.196+/-0.155	0.186+/-0.097	0.299+/-0.127	0.299+/-0.127	NA		NA	NA	0.177	<0.405	0.011 +/- 0.093	NA	0.257 +/- 0.159	NA
Uranium 235	NA	0.187+/-0.178	0.120+/-0.101	0.131+/-0.124	0.131+/-0.124	NA		NA	NA	0.331	0.532	0.123 +/- 0.359	NA	0 +/- 0.105	NA
Uranium 234	NA	0.344+/-0.264	1.37+/-0.340	0.628+/-0.244	0.628+/-0.244	NA		NA	NA	1.23	0.645	1.13 +/- 0.660	NA	0.302 +/- 0.215	NA
Uranium 238	NA	0.139+/-0.179	0.162+/-0.142	0.269+/-0.173	0.269+/-0.173	NA		0.32J +/- 0.13	NA	0.527	<0.271	0.265 +/- 0.436	NA	0.009 +/- 0.177	NA
Other Constituents									•				· .		
Barium (ugA_)	E NA	NA	NA	NA I	NA	NA	NA	NA				L			
Magnesium (ugA.)	NA NA	NA	NA	NA	NA	NA	NA	NA	ND ND	NA	NA NA	NA	ND	NA	ND
Calcium (ug/L)	NA	NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	ND	NA	ND
Aluminum (ug/L)	NA NA	NA	NA	NA	NA	NA	NA NA	NA	ND NA	NA		NA	ND	NA	14000
Alkalinity, Sicarbonata (mg/L)	NA NA	NA	NA	NA	. NA	NA	NA	NA	21.0	NA	NA	NA	NA	NA	NA
Alkalinity, Carbonate (mg/L)	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA	21.0 ND	NA	NA	NA	ND	NA	ND
Alkalinity, Total as CaCO3 (mg/L)	NA NA	NA	NA	NA	NA	NA		NA NA		NA	NA	NA	ND	NA	ND
Chioride (mg/L)	NA NA	NA	NA	NA	NA	NA	NA NA	NA NA	21.5	NA	NA NA	NA .	ND	NA	ND
Chromium, Hexavalent (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA NA	5.5	NA	NA	NA	9.7	NA	21.8
Nitrogen, Nitrate (mg/L)	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA		NA	NA	NA	NA
Nitrogen, Nitrate (mg/L)	NA	NA NA	NA .	NA NA	NA NA	NA	NA	NA NA	0.23	NA	NA	NA	3.7	NA	10,5
Nitrogen, Nitrite (mg/L)	NA	NA	NA	NA	NA	NA NA			0.23	NA	NA	NA	3.7	NA	10.1
Sulfate (mg/L)	NA NA	NA NA	NA NA	NA NA		NA NA	NA	NA	ND	NA	NA	NA	ND	NA	ND
Field pH				7.55	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA
Oxidation/reduction	NA NA	NA NA	5.11 0.348	7.55	NA NA	NA NA	NA	NA	6.25	NA	NA,	NA	3.60	NA	4.90
O KIGANDA/FEGLICTION			0.348	35.2	I NA	NA	NA	NA	-131.8	NA	NA	NA	339.2	NA	940

Notes: pCIL: Procouries per liter; April 2004 isotopic uranium snelyses of filter paper samples are reported in picoouries/sample NA - Not Anysted NA - Not Anysted VA - Not Anysteat VA - Not Anysteat WA - Not Anysteat WA - Start for a second of the 2005 Newfield well sample (BM4-05) is unidentified; NW-3 is Newfield Well 3; NW-5 is Newfield Well 5 The specific source of the 2005 Newfield well sample (BM4-05) is unidentified; NW-3 is Newfield Well 3; NW-5 is Newfield Well 5

 TABLE 3-2

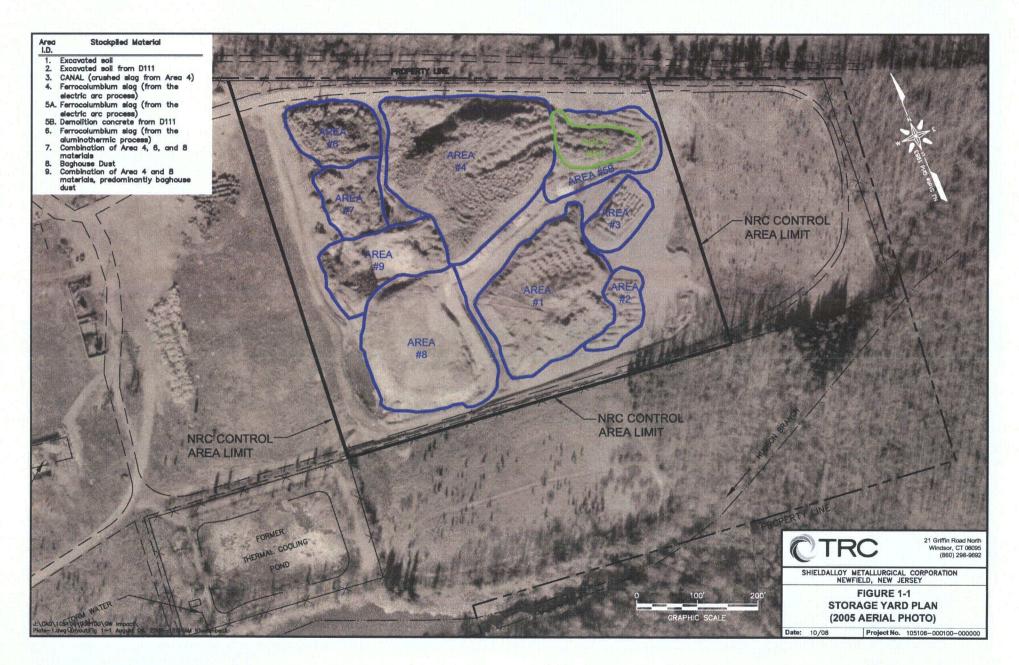
 SUMMARY OF CONCENTRATIONS OF KEY CONSTITUENTS IN 2008 GROUND WATER SAMPLES

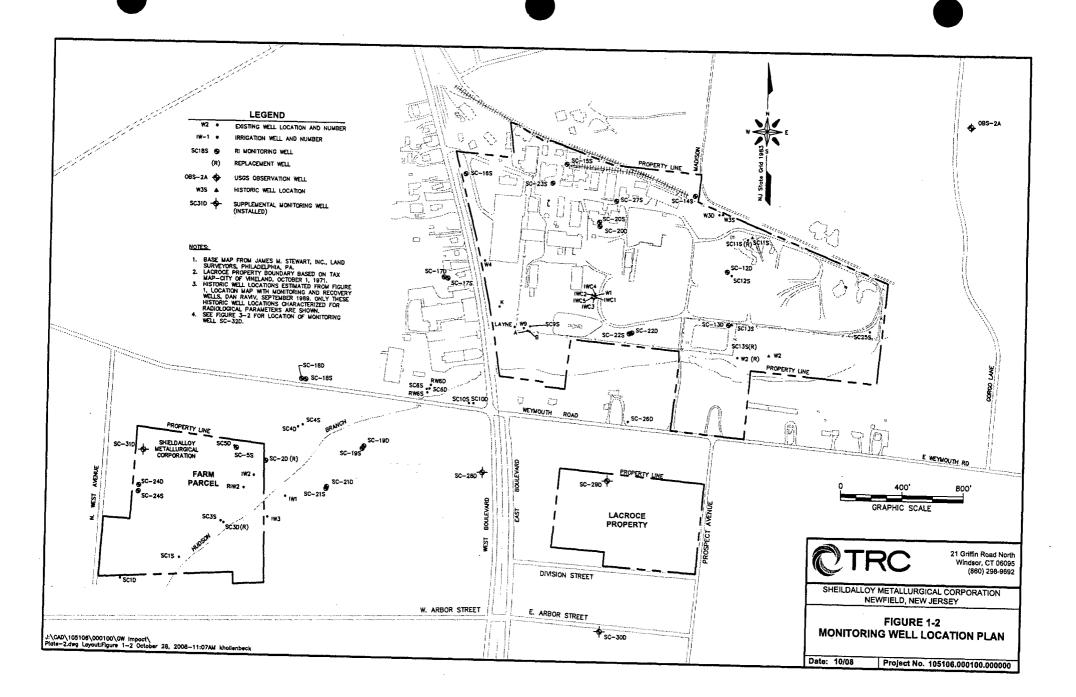
 Shieldalloy Metallurgical Corporation, Newfield, New Jersey

	-			Shallow wells	_	Deep wells							
Analyte Well:	W2(R)	SC-11S	SC-12S	SC-12S (DUP)	SC-13S	SC-14S	SC-20S	Α	SC-12D	SC-20D	OBS-2A	NW-3	NW-5
Combined Radium (pCi/l)	0.082	0.379	0.365	0.47	0.351	0.208	0.743	1.237	2.33	6.79	2.106	1.731	4.517
Barium (ug/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Magnesium (ug/L)	9500	. ND	40700	39200	23400	ND	10500	ND	ND	ND	ND	ND	ND
Calcium (ug/L)	5270	ND	6080	6390	5230	9150	19100	5600	ND	10100 -	ND	ND	14000
Aluminum (ug/L)	757	357	3250	3510	19700	ND	NA	' NA	ND	NA	NA	NA	NA
Alkalinity, Bicarbonate (mg/L)	48.5	22.6	503	501	466	13.6	122	237	ND	ND	21.0	ND	ND
Alkalinity, Carbonate (mg/L)	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Alkalinity, Total as CaCO3 (mg/L)	50.3	22.6	505	502	469	13.6	122	22	ND	ND	21.5	ND	ND
Chloride (mg/L)	3.3	4.5	14.5	14.5	7.1	17.7	34.4	10.7	2.5	14.9	5.5	9.7	21.8
Chromium, Hexavalent (mg/L)	ND	ND	0.16	0.16	0.064	0.088	NA	ND	ND	NA	NA	NA	NA
Nitrogen, Nitrate (mg/L)	0.74	0.78	. 1.9	1.9	ND	1.9	0.68	4.3	0.22	11.8	0.23	3.7	10.1
Nitrogen, Nitrate + Nitrite (mg/L)	0.74	0.78	1.9	1.9	0.28	1.9	0.71	4.3	0.22	11.8	0.23	3.7	10.1
Nitrogen, Nitrite (mg/L)	ND	ND	ND	ND	0.38	ND	0.028	0.021	ND	ND	ND	ND	ND
Sulfate (mg/L)	ND	19.1	32.3	32.6	89.3	23.4	NA	ND	13.4	NA	NA	NA	NA
Field pH	7.09	5.29	6.25	6.25	9.64	5.48	6.67	8.23	4.58	6.02	6.25	3.60	4.90
Oxidation/reduction	197.3	252.9	253.5	253.5	145.7	227.4	-127.2	-284	281.6	94.2	-131.8	339.2	940

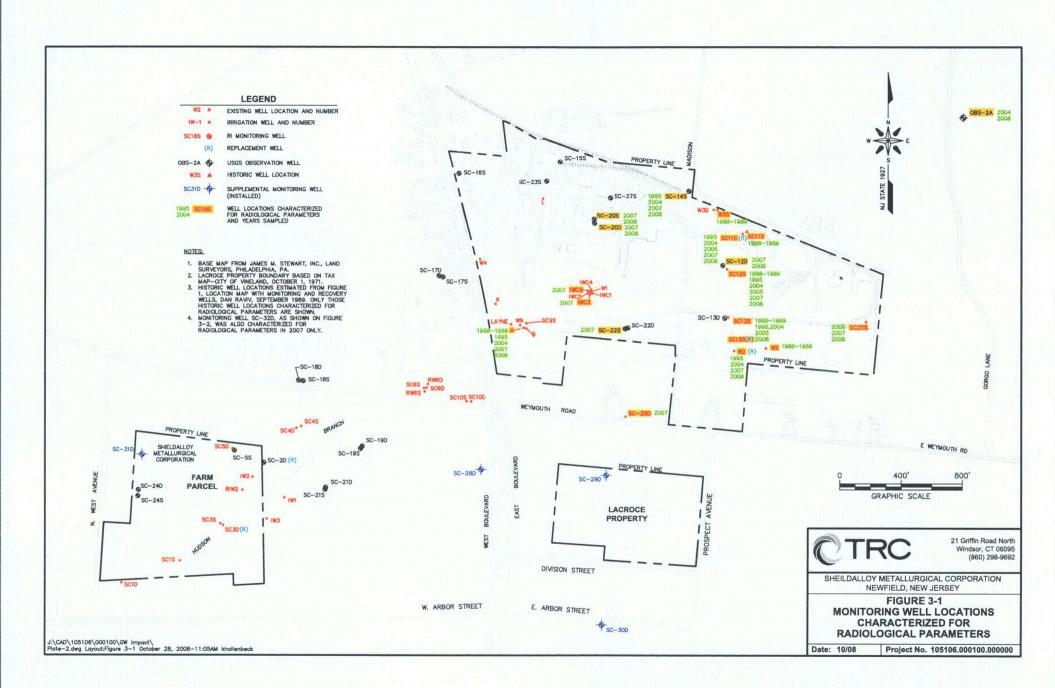
Combined Radium = Ra-226 plus Ra-228

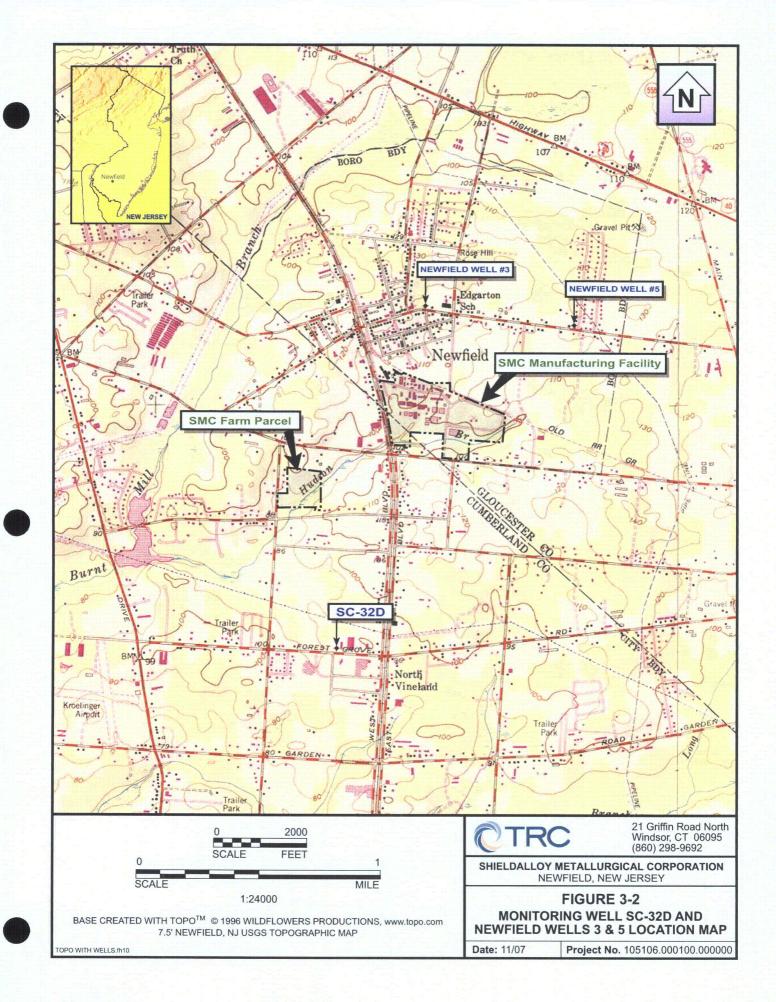
SHIELDALLOY METALLURGICAL CORPORATION "Decommissioning Plan for the SMC Facility" August 2009

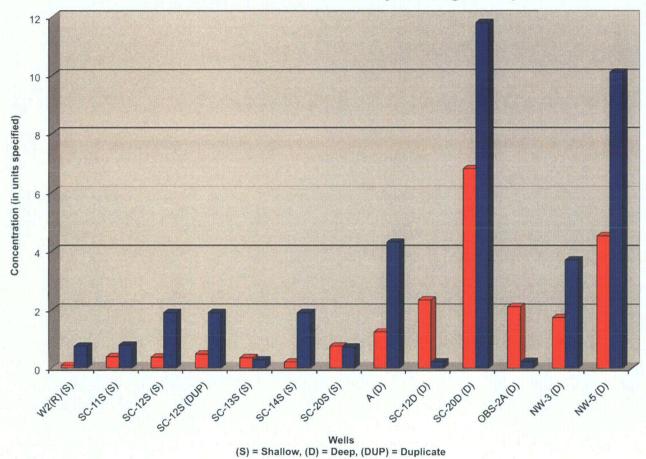

Rev. 1b

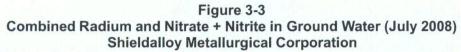

FIGURES



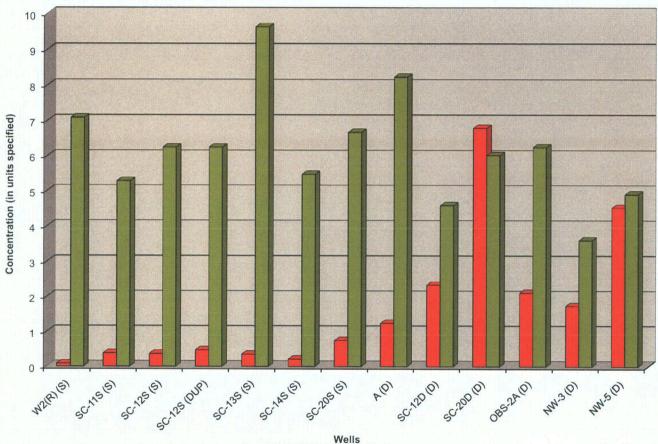
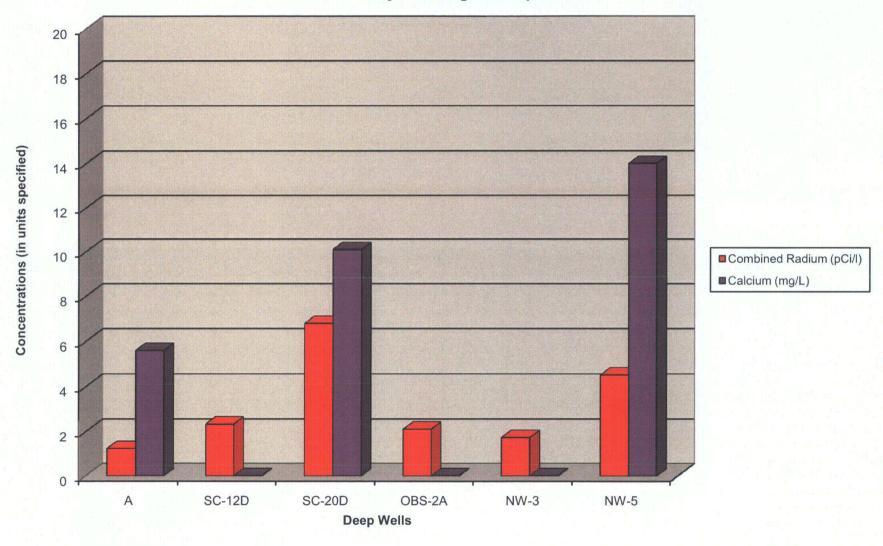


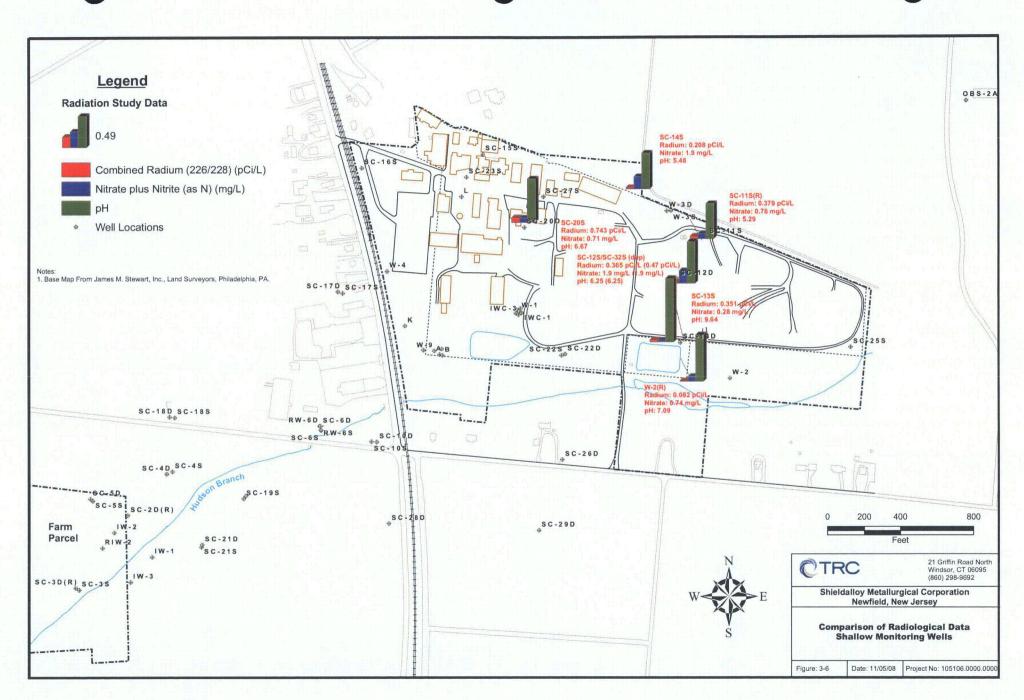


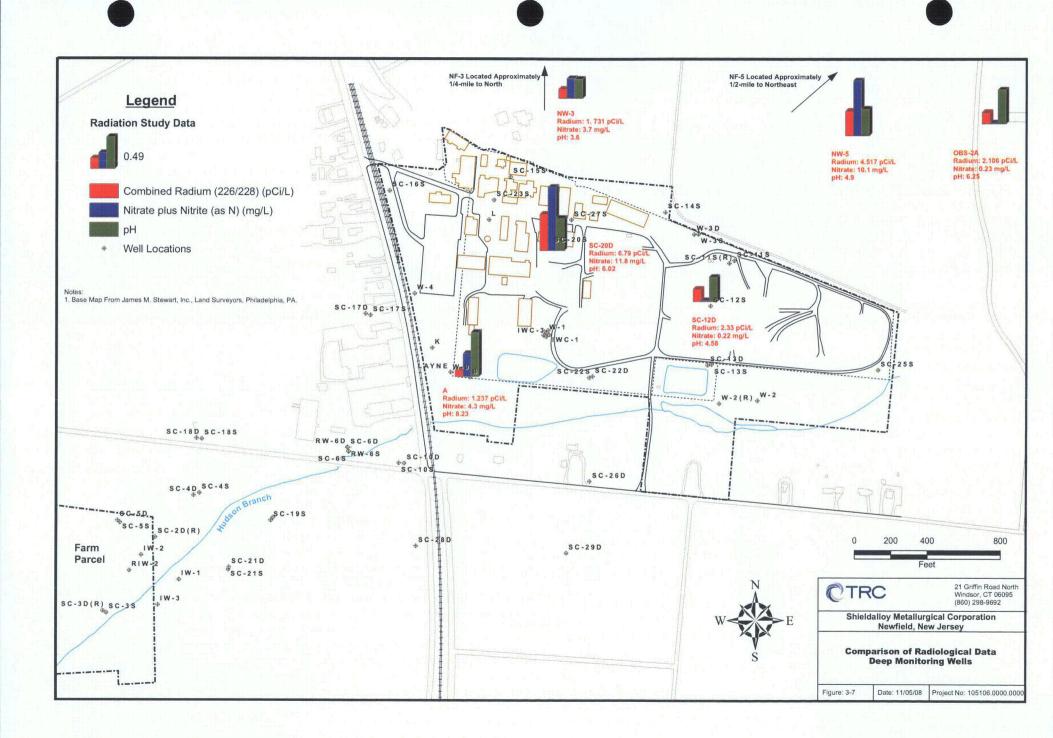




Combined Radium (pCi/l) Nitrogen, Nitrate + Nitrite (mg/L)


Figure 3-4 Combined Radium and pH in Ground Water (July 2008) Shieldalloy Metallurgical Corporation


Wells (S) = Shallow, (D) = Deep, (DUP) = Duplicate

Combined Radium (pCi/l) Field pH

Figure 3-5 Combined Radium and Calcium in Deep Wells (July 2008) Shieldalloy Metallurgical Corporation

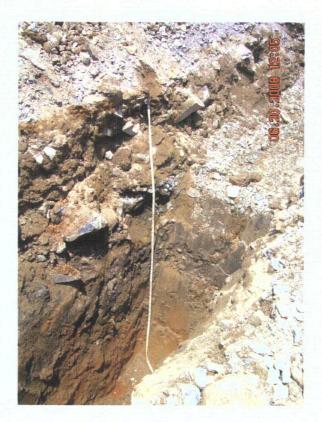
SHIELDALLOY METALLURGICAL CORPORATION "Decommissioning Plan for the SMC facility" August 2009

Rev. 1b

.

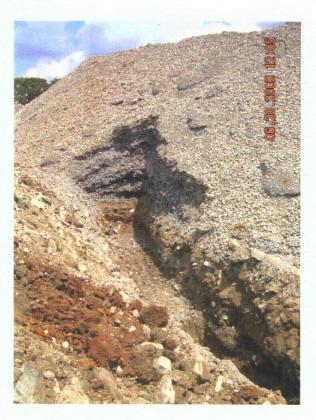
ATTACHMENT A

PHOTOGRAPHS



Test Pit HA-3 – Northern end

Test Pit HA-3 – Northern End



Test Pit HA-3 – Southern End

Test Pit HA-3 – From South Looking North

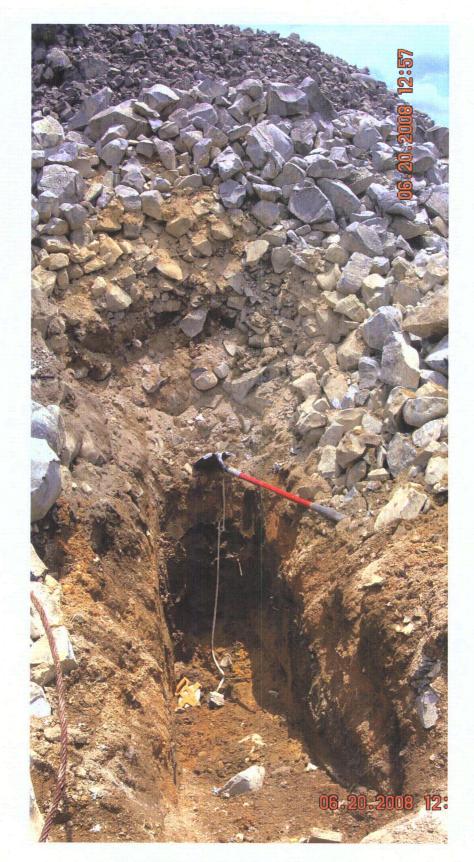
Test Pit HA-3 –Northern End

Test Pit HA-4

Test Pit HA-4

Test Pit HA-5

Test Pit HA-5 - Close Up



Test Pit HA-5 – Transition to Saturated Material

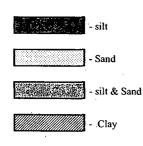
Test Pit HA-6 (two photos combined)

Test Pit HA-6 Location

Rev. 1b

ATTACHMENT B

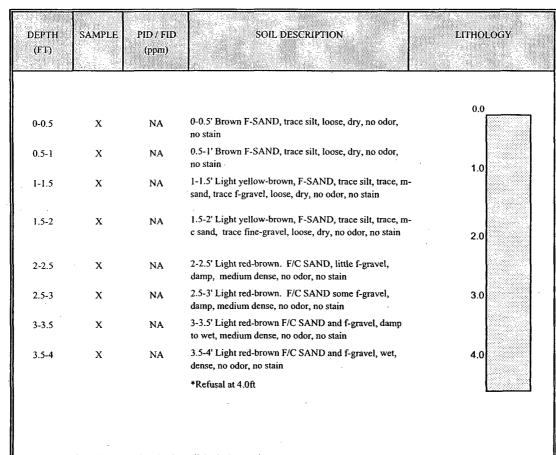
SOIL LOGS

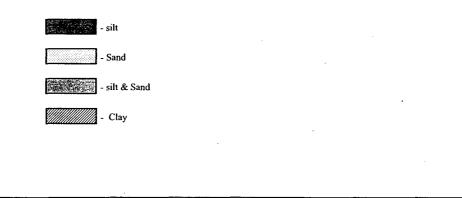

SOIL PROBE LOCATION: HA I PROJECT NO: 105106 .000100.000000 PROJECT: SMC STORAGE YARD SOIL SAMPLING LOCATION: NEWFIELD, NJ

TRC INSPECTOR: CARLSON, CHRIS DRILLING RIG: HAND AUGER

DATE STARTED: 6/19/2008 DATE COMPLETED: 6/19/2008 LOCATION: N

DEPTH (FT)	SAMPLE	PID / FID (ppm)	SOIL DESCRIPTION	LITHOLOGY
				0.0
0-0.5	Х	NA	0-0.5' Light brown F-SAND, some silt, loose, dry, no odor, no stain	
0.5-1	х	NA	0.5-1' Light red-brown. F-SAND some silt, loose, dry, no odor, no stain	1.0
1-1.5	х	NA	1-1.5' Light red-brown. F-SAND some silt, medium dense, dry, no odor, no stain	
1.5-2	х	NA	1.5-2' Light red-brown. F-SAND some silt, medium dense, dry, no odor, no stain	2.0
2-2.5	x	NA	2-2.5' Light red-brown. F-SAND, little silt, trace f-gravel, medium dense, dry, no odor, no stain	
2.5-3	х	NA	2.5-3' Light. red-brown F-SAND, trace silt, little f-gravel, trace c gravel, medium dense, dry, no odor, no stain	3.0
3-3.5	х	NA	3-3.5' Light. red-brown F/C SAND, little f-gravel, trace c-gravel medium dense, dry, no odor, no stain	
3.5-4	х	NA	3.5-4' Light red-brown. F/C SAND, little f-gravel, trace c- gravel, medium dense, dry, no odor, no stain	4.0
4-4.5	X	NA	4-4.5' Light red-brown. F/M SAND, little f-gravel, medium dense, dry, no odor, no stain	
			* Refusual @ 4.5'	


Notes: Samples retained onsite for radiological screening on a Ludlum Model 2241 scaler/ratemeter


1

SOIL PROBE LOCATION: HA2 PROJECT NO: 105106.000100.000000 PROJECT: SMC STORAGE YARD SOIL LOCATION: NEWFIELD, NJ

TRC INSPECTOR: CARLSON, CHRIS DRILLING RIG: HAND AUGER DATE STARTED:6/19/2008 DATE COMPLETED:6/19/2008 LOCATION: N

Notes: Samples retained onsite for radiological screening on a Ludlum Model 2241 scaler/ratemeter

2

PROJECT NO. <u>CLIENT</u> 105106.000100.000000 SMC			TEST PIT NO. HA 3				
LOCATION			ELEVATION & DATUM				
	E YARD AR	E	N/A				
CONTRACTOR			TRC INSPECTOR	· · · · · · · · · · · · · · · · · · ·			
(B Constr			Carlson, Chris				
		<u> </u>	DATE START/COMPLETIC	<u>DN</u>	STATUS		
ohn Deer	e 310G Bad	ckhoe with 24" bucket	6/20/2008		Backfilled		
SAMPLER	R TYPE	······································	TOTAL DEPTH	WATER LEV			
N/A			5.5'	<u>OBS.</u> NA	<u>STAB.</u> NA		
DEPTH (ftbg)	WATER (ftbg)	SAMPI	LE DESCRIPTION	SAMPLE ⁽¹⁾ (ftbg)	PID/FID (ppm/ppm)		
0-2		Light brown F-C SAND, som some slag	Light brown F-C SAND, some silt, some f-c gravel, some slag				
2-2.5	· ·	Light brown F-C SAND + SII slag (highly cemented)	X*	NA			
2.5-4		Dark brown F-SAND + SILT	X*	NA			
4.5-5		Light red-brown F-C SAND, gravel, dense to medium de		X*	NA		
		· ·					
				•			
					· · · · · · · · · · · · · · · · · · ·		
		Notes:			·		
		 1) x*= 0-5 ft. samples were 2) Radioactive screening period 					
		Ludlum Model 2241 scaler/r					
			×				

PROJECT NO. <u>CLIENT</u> 105106.000100.000000 SMC			<u>TEST PIT NO.</u> HA4				
			ELEVATION & DATUM				
LOCATION STORAGE YARD AREA			N/A				
CONTRACTOR KB CONSTRUCTION			TRC INSPECTOR CARLSON, CHRIS				
QUIPMEN		khoe with 24" bucket	DATE START/COMPLETION 6/20/2008	STATUS Backfilled			
SAMPLER N/A	TYPE		TOTAL DEPTH 5	<u>WATER LEVEL</u> <u>OBS. STAB.</u> NA NA			
DEPTH (ftbg)	WATER (ftbg)	SAMP	LE DESCRIPTION	SAMPLE ⁽¹⁾ (ftbg)	PID/FID (ppm/ppm)		
		Black F-M SAND + SILT, so	ome slag, no odor, no stain	X*	NA		
2'-3'	.•	Brown F-M SAND, some sil stain	X*	NA			
2'-5'			nt orange-brown F-C SAND + SILT, little clay, little f- vel, damp, no odor, no stain , very sticky		NA		
					<u>,</u>		
	•						
		Notes: 1) x*= 0-5 ft. samples were 2) Radioactive screening pe Ludlum Model 2241 scaler/r	erformed on-site on				
		2) Radioactive screening p	erformed on-site on				

4

PROJECT NO. <u>CLIENT</u> 105106.000100.000000 SMC			TEST PIT NO. HA5				
05100.000		JU SINC					
LOCATION STORAGE YARD AREA			ELEVATION & DATUM N/A				
CONTRACTOR KB CONSTRUCTION			TRC INSPECTOR CARLSON, CHRIS				
EQUIPMENT John Deere 310G Backhoe with 24" bucket			DATE START/COMPLETION 6/20/2008	<u>STATUS</u> Backfilled			
SAMPLER TYPE N/A			TOTAL DEPTH 7.0'	WATER LEVEL OBS. STAB. 4' NA			
DEPTH (ftbg)	WATER (ftbg)	SAMP	LE DESCRIPTION	SAMPLE ⁽¹⁾ (ftbg)	PID/FID (ppm/ppm)		
0-4		Dark grey-brown SAND, sor stain	ne slag, damp, no odor, no	X*	NA		
4-4.5	4.5	Light red-brown, F-M SAND dense, damp, no odor, no s		X*	NA		
4.5-5		Light red-brown, F-M SAND dense, wet, no odor, no stai		X*	NA		
5-5.5		Light red-brown, F-M SAND dense, wet, no odor, no stai	ght red-brown, F-M SAND some f-gravel, medium nse, wet, no odor, no stain				
5.5-6			ight red-brown, F-C SAND, little silt, some f-gravel, ledium dense, no odor, no stain				
6-6.5			ht red-brown, F-C SAND, some silt, some f-gravel, edium dense, wet, no odor, no stain		NA		
6.5-7			ht red-brown, F-C SAND, some silt, some f-gravel, edium dense, wet, no odor, no stain		NA		
					·		
		Notes: 1) x*= 0-4 ft. samples were 2) Radioactive screening pe Ludlum Model 2241 scaler/r	erformed on-site on				
			•				

5

					······································	
СT	RC	· 7	FEST PIT LOG			
PROJECT NO. CLIENT			TEST PIT NO.			
105106.000100.000000 SMC			HA 6			
LOCATION			ELEVATION & DATUM			
STORAGE YARD AREA			N/A			
CONTRAC	TOR	·	TRC INSPECTOR			
KB CONST	RUCTION		CARLSON, CHRIS			
EQUIPMEN	VT T		DATE START/COMPLETION	<u></u>	STATUS	
John Deere	e 310G Bao	ckhoe with 24" bucket	6/20/2008	·	Backfilled	
SAMPLER	TYPE		TOTAL DEPTH	WATER LEVE		
N/A			4.5'	NA	<u>STAB.</u> NA	
DEPTH	WATER	SAMPL	E DESCRIPTION	SAMPLE ⁽¹⁾	PID/FID	
(ftbg)	(ftbg)			(ftbg)	(ppm/ppm)	
0-1.3		Red brown F-C SAND, some cemented)	ed brown F-C SAND, some f-gravel, little silt (lightly emented)		NA	
1.5-3			erk brown F-SAND + SILT, little clay, trace roots, very ense, damp, no odor, no stain			
3-4.5		Light orange-brown F-SAND stain	, little f-gravel, no odor, no	X*	NA	
	·					
		· · ·				
	<u> </u>					
					•	
		Notes: 1) x*= 0-5 ft. samples were of 2) Radioactive screening pe Ludlum Model 2241 scaler/r	rformed on-site on			

Rev. 1b

ATTACHMENT C

QUALIFICATIONS

<u>R. Alan Duff</u>

Professional Qualifications

Mr. Duff has over 30 years of experience in nuclear and hazardous materials project management, design support, surveillance, operational health physics, training, and decommissioning activities. He has prepared numerous plans, procedures, and license documents for U. S. Department of Energy facilities, U. S. Department of Defense facilities, U. S. Nuclear Regulatory Commission licensees, and commercial client facilities that are regulated by agreement states. Mr. Duff is well versed in the area of civilian and government radioactive and mixed waste transport and disposal requirements. He is registered by the National Registry of Radiation Protection Technologists (NRRPT).

Education

Advanced Radioactive Material Transportation and Disposal Classes, 1989, 1993, 2003, and 2007.

GPS/GIS Backpack Survey Training Classes, 2007.

IT Corporation Project Management Course (40 hours), 1992.

40-Hour OSHA HAZWOPER (29 CFR 1910.120) Training, 1987.

Eight-hour Supervisor Training, 1990

Eight-hour OSHA Annual Refresher (29 CFR 1910.120), 2008.

Operational Water Chemistry and Radiological Controls, U.S. Navy, 1982

Engineering Laboratory Technician School, U.S. Navy, 1980.

Nuclear Power Training Unit (prototype), U.S. Navy, 1980.

Naval Nuclear Power School, U.S. Navy, 1978.

Registrations/Certifications

Registered Radiation Protection Technologist (RRPT), National Registry of Radiation Protection Technologists

Radiation Safety Officer - MDE Radioactive Materials License No. MD-31-281-01.

Authorized User - MDE Radioactive Materials License No. MD-31-281-01.

Experience and Background

2002-Present

Vice President of Nuclear Services, Integrated Environmental Management, Inc., Knoxville, Tennessee - As the director of IEM's Nuclear Services Division, which operates as a compliment to our consulting capability by providing support services and on-site project management for major client initiatives, Mr. Duff is responsible for turn-key decontamination and decommissioning of nuclear facilities - including the preparation of all planning documentation, characterization surveys and sampling, facility and equipment decontamination, final status survey performance, waste packaging/transport/disposal coordination, routine facility surveillance services, emergency response, leak testing of sealed sources, instrument rental, employee monitoring services for internal and/or external exposures, training, and a host of other applied health physics operations. Mr. Duff also serves as the Radiation Safety Officer (RSO) for IEM operations pursuant to Maryland Department of the Environment Radioactive Materials License No. MD-31-281-01.

1995-2002 Program/Project Manager, Integrated Environmental Management, Inc., Knoxville, Tennessee - Provided high-quality project management and remediation services to commercial and government clients. As a member of the client's response team, worked with clients to: Develop scopes-of-work and bid packages for specialty subcontractors handling highly focused assignments; identify those subcontractors who will provide the greatest value to the client; manage teams of specialty subcontractors to ensure that the client's goals and expectations (technical, regulatory, and financial) are met from the beginning until project completion; provide insights into future regulatory issues and their impact as input to the client's long-range business planning and cost forecasting process; provide site remediation/decommissioning services for radioactive and hazardous materials; advise and train clients on waste transportation and disposal issues; and develop project specific plans and procedures to conduct on site activities.

1994-1995

Senior Environmental Specialist, AWK Consulting Engineers, Inc., Pittsburgh, Pennsylvania While assigned to the Oak Ridge, Tennessee office, was responsible for performing technical and administrative duties required to satisfy customer needs on site characterization and pre-remedial design support projects and for all aspects of D&D projects. Responsible for preparing project plans, project work plans, task specific Health & Safety Plans, and budgets/schedules for these projects. Also responsible for identifying and implementing decommissioning and decontamination methods for these projects.

1987-1994 Project Manager, Health Physics Supervisor, Nuclear/Mixed Waste Engineering Services, IT Corporation, Knoxville, Tennessee. Provided project management and health physics support services for nuclear and mixed waste projects throughout the United States.

1978-1987 Engineering Laboratory Technician (ELT), Leading Petty Officer, Radiological Controls Shift Supervisor, United States Navy Supervised a division of 40 personnel, provided support for nuclear powered submarines, and performed over 250 error-free shipments of radioactive materials. Served as Leading ELT and Engine Room Supervisor on the USS Grayling, SSN 646.

Professional Society Memberships

Health Physics Society (Plenary Member)

American Nuclear Society

Conference of Radiation Control Program Directors (Advisor to the Radioactive Waste Management Committee E-5 and to the D&D Committee E-24)

Awards

Navy Achievement Medal for conducting the first Trident Class submarine ion exchange resin discharge and solidification.

IT Corporation Project Management Associate

Example Project Descriptions

Project Manager for health physics field activities during characterization, remediation and survey of several oil production sites with soil contaminated with Naturally-Occurring Radioactive Materials (NORM) for multiple clients in support of litigation defense.

Project Manager for the first contaminated soil remediation project conducted in Venezuela. Soil was contaminated with cesium-137 from a sealed source that was suspected to be improperly disposed of and had exposure rates up to 10 mr/hr on contact with the soil.

Project Manager for the radiological characterization (MARSSIM surveys) of a facility that manufactured thorium fluoride for use as an optical surfacing product. Conducted radiation and contamination surveys and obtained analytical samples of building materials. Returned to the facility to conduct surveys in support of property ownership transfer. Supervised radiological remediation of facility including floor and wall contamination, underground tank removal, drain line removal, roof decontamination, and equipment demolition including ventilation systems, fume hoods, and scrubber systems. Responsible for coordination for treatment and disposal of radioactive and mixed wastes generated during the project and conducted final status surveys at the facility upon completion of work.

Project Manger for Phase 1 Environmental Assessments conducted at six radioactive waste processing and disposal facilities and investigative characterization activities at two of those facilities including coring through concrete floors to obtain soil samples under buildings.

Radioactive waste broker and DOT shipper for multiple client sites for shipping and disposal of client's sealed sources and radioactive process wastes.

Project Manager and Health Physicist for the remediation and final status surveys/sampling of a former oilfield pipe scale facility. Supervised the demolition of the site building, excavation and disposal of twelve truckloads of NORM- contaminated soil, and excavation and release of over 175 truckloads of clean soil. Interfaced with the client and state regulators on the planning and final release of the facility. Work performed under the terms/conditions of License No. MD-31-281.01.

Project Manager and Health Physicist for the remediation and final status survey of a pharmaceutical company's radiological laboratories contaminated with Hydrogen-3 and Carbon-14. Supervised the on site demolition of the labs including fume hoods, lab furniture and ventilation systems. Supervised the disposal of radioactive and mixed wastes from the site and the performance of the final status survey of the facility.

Project Manager for the decommissioning of an oven contaminated with mercury and thorium (mixed waste). Arranged for subcontractors to conduct decontamination and disposal activities, prepared project plans, supervised all field activities, and conducted all radiological surveys during the decommissioning. Responsible for coordination for treatment and disposal of mixed and hazardous wastes generated during the project. Later conducted removal of a central vacuum system that was contaminated with mercury and thorium at the same facility.

Conducted audits of a client's radiation protection program including tour of the site, interviews with employees to verify radiological and respirator training, review of shipping, waste disposal, sealed source, training, and survey records. Also conducted leak tests of client's radioactive sealed sources.

Project Manager for escalated decommissioning a State-licensed site that manufactured, tested, and distributed gauging devices in anticipation of the sale of the company and the possibility of its moving its operations to another location. Responsible for preparation of work plans, negotiations with regulatory agencies, decontamination of indoor and outdoor areas, performance and documentation of a final status survey, shipment of waste, and project-specific health and safety.

Project Manager and health physicist for the remediation of a building foundation drainage system and the processing of over 100,000 gallons of water contaminated with cobalt-60 up to levels of one (1) microcurie per liter for a commercial client. Responsible for coordination of a water processing subcontractor, an excavation subcontractor, and off-site analytical laboratory activities. Also interfaced with on-site U. S. Nuclear Regulatory Commission, U. S. Environmental Protection Agency, and a variety of state and local agencies. Follow up work at the same facility included development of decommissioning funding plans and site decommissioning plans.

Technical writer for the development of a logic flow diagram for identifying radioactive and mixed wastes at the U. S. Department of Energy's Portsmouth (Ohio) Gaseous Diffusion Plant. Technical writer for the Fernald Remedial Investigation/Feasibility Study (RI/FS). Provided technical guidance to engineering staff, generated reports on radioactive and mixed waste packaging, transport, and disposal.

Site Manager for the characterization survey of an EPA Superfund site three story warehouse that had been used in the past as a lantern mantle manufacturing facility and had been contaminated with thorium. Assisted in the development of project plans and final reports, supervised a crew of Health Physics technicians performing characterization surveys, interfaced with the facility owner and EPA personnel while on site.

Project Manager for the decommissioning and decontamination of three facilities at Sandia National Laboratory contaminated with radioactive and mixed waste. Responsible for the coordination of resources for the development of project plans, development of Project Work Plan, and maintaining project budget and schedule commitments.

Health Physics Supervisor for a transuranic (TRU) waste repackaging project. Supervised the characterization, repackaging and shipment of 130 containers of high-activity americium-241 and plutonium-238 hot cell waste. The waste was packaged to meet the WIPP waste acceptance criteria and was transported (highway route controlled quantity) to the Idaho National Engineering Laboratory (INEL) for storage.

Project Manager for the excavation and disposal of radium waste cells for the Corps of Engineers at Bergstrom Air Force Base in Austin, TX. Developed all project plans, supervised field efforts, and coordinated waste transport and disposal activities.

Project Manager for the decontamination and final release survey of a 70,000 ft² facility that manufactured cesium-137 level gauges. Decontamination efforts involved overhead areas, work area concrete floors, and removal of soil under the floor slab. Facility was released from their license following a verification survey by the state radiological licensing agency. Developed state approved decommissioning plan and final status survey report.

Project Manager for the packaging and disposal of 55,000 Curies of cobalt-60 teletherapy sources. Sources were loaded into cask liners in the facility hot cell and loaded into Type B casks for shipment for disposal. Also supported the packaging and disposal of several low level waste drums and HEPA filters that required the use of shielded Type A and B shipping containers.

Project Manager for the decommissioning and decontamination of IT Corporation's Oak Ridge Mixed Waste Analytical Laboratory. Developed the decommissioning and decontamination plan that was approved by the State of Tennessee. Also supervised the field crew during final surveys of facility.

Project Manager for the decommissioning and decontamination of a magnesium-thorium waterfall grinding booth at Tinker Air Force Base in Oklahoma. Responsible for the

development of project plans, schedule and budget management, and disposal of radioactive and mixed wastes.

Project Manager for the decommissioning of a commercial facility which had previously processed ores containing uranium and thorium. Generated the decommissioning plan submitted to and approved by the U. S. Nuclear Regulatory Commission, and was responsible for schedule, budget, and on site activities.

Project Manager for the removal of a 22 MeV particle accelerator from a major university medical center. Developed State-approved decommissioning and decontamination plans, arranged for waste disposal and transfer of the accelerator to a university in Beijing, China, and was responsible for budget, schedule and all on site activities.

Project Manager for the decommissioning and decontamination of two radioactive source manufacturing laboratories at Chevron Research and Technology. The laboratories housed a neutron generator and were contaminated with tritium, carbon-14, cesium-134, and cobalt-60. Negotiated plan approvals with the State agency, and was responsible for budget, schedule, and all on site activities including waste transport and disposal.

Project Manager for the routine quarterly surveillance and special radiological projects at a metallurgical facility licensed by the NRC. Conducted radiation, contamination, and airborne radioactivity surveys as well as personnel bioassay and dosimetry program and environmental monitoring program each quarter. Provided health physics coverage for non-routine activities such as baghouse and stack testing, heats of specialty materials, final release surveys of an excavated road area, storage yard, and a warehouse formerly used for storage of radioactive materials, and recovery of radioactively contaminated equipment improperly released from site. Responsible for the generation of quarterly surveillance reports.

Project Manager for the development of a conceptual decommissioning plan for a maintenance facility located in South Carolina. The plan was generated to provide support for the facility's decommissioning funding plan.

Health and Safety Manager/Project Manager at the U. S. Department of Energy's Fernald site thorium silo and bins decommissioning and decontamination project. Developed the project-specific health and safety plan, and interfaced with the client on health physics and health/safety issues. This project received safety and quality awards from the client.

Health Physics Supervisor responsible for the sampling of underground storage tanks with radioactive and mixed wastes at Brookhaven National Laboratory.

Health and Safety Manager for the U. S. Department of Energy's Fernald Plant K-65 Silo sampling project. Developed the health/safety and sampling plans. The silos contained up to 0.5 microcurie of Radium-226 per gram and were the largest single source of radon gas in the U.S.

D&D Technical Manager for the decommissioning of the U. S. Department of Energy's LEHR facility at the University of California at Davis. Developed project decommissioning and decontamination plans and field procedures.

Health Physics Supervisor for the excavation of waste materials which included mixtures of uranium and explosives.

Project Manager for the MARSSIM type final status survey of a potentially contaminated 10 acre property on Staten Island, New York. Developed site characterization/survey plans, supervised the on site characterization survey and soil sampling at the site, and developed the project report for submittal to regulators.

Developed numerous business proposals for nuclear decommissioning and decontamination projects including job walk downs, cost estimation, scheduling, and technical content of proposals.

While in the US Navy, acted as radioactive materials shipper for the Trident Submarine Refit Facility. Performed over 250 error-free shipments of radioactive materials including Type B quantity radiography source shipments and radioactive waste shipments to the naval shipyard.

Rev. 1b

ATTACHMENT D

FIELD ACTIVITY DAILY LOGS

INTEGRATED ENVIRONMENTAL MANAGEMENT, INC. FIELD ACTIVITY DAILY LOG

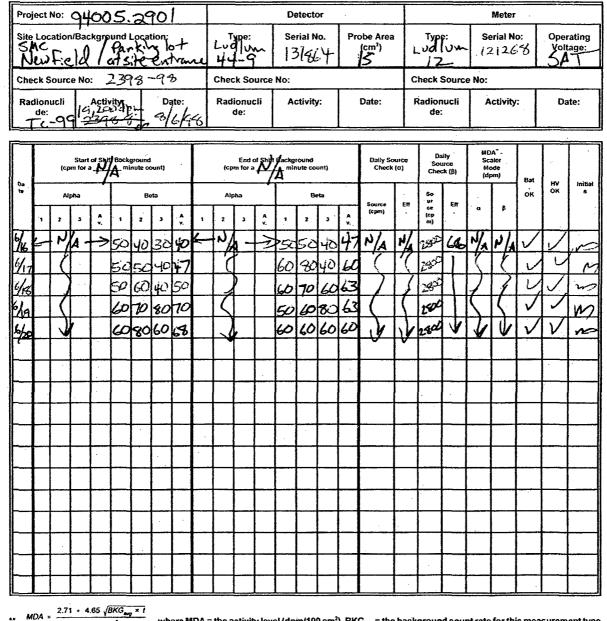
Page _ _ _ of _ _

Facility: Shieldalloy Metallurgical Corp.
Date: 6/20/08 Job/Task Number: 94005.290]
Client Name: Shieldaloy
Address of Work Site: West Blvd. New Field. NT
Description of Work COWN + Mg Samm 125
DESCRIPTION OF DAILY ACTIVITIES AND EVENTS
Arrived on site at (insert date and time): 6/20/08
1400 Received samples from TRC personnel for counting. There is
not sufficient time to prepare all souples for counting n
Marinelli beakers > screened all 6t Samples on the outside
of their ziploc bags. All that exhibited detectable counts
> bkgd, were weighed, photographed, I counted in a
Marinelli beaker for 2 minutes in DIIT, The Cave.
- Completed on site work, samples were labeled placed
into coolers and a chain of cubtody was completed for
lach cooler. The sample coolers were taken to an adjace
Smith of TRC until it is thermined what analyses
are to be performed.
No
Further
Entries
This
PATE
Departed site at (insert date and time): $\frac{6}{20} \left(\frac{08}{9} \right)$
Changes from Plans and Specifications, and Other Special Orders and Important Decisions:
Not sufficient amount of fime to perform detailed 2
Min counts on all samples just screened some samples in bag
Weather Conditions: Important Telephone Calls and Interactions:
Non Mon
Personnel on Site: Duff(IEM)
Name (print): Q AL D FF Signature: PM M
Name (print): R. Alan Datt Signature: Paterna
· · · · · · · · · · · · · · · · · · ·

Copyright @ Integrated Environmental Management, 1998

Rev. 1b

ATTACHMENT E


INSTRUMENT RECORDS

INTEGRATED ENVIRONMENTAL MANAGEMENT, INC. EXPOSURE RATE SURVEY INSTRUMENT DATA SHEET

Project No	. 9460	25.29	DI		Dete	ctor			Me	eter	
13	ion/Backor	pund Location Parking site en	 .	Type:				Type: Lud lum	Seria 183	1	perating Voltage:
Check So	urce Numbe F3:	r 347		Radionuc		-137			n Activity ar	nd Date: ↓ L(
		S	itart of Shift	Backgroun	d		End of Shift	Background	i i i i i i i i i i i i i i i i i i i	Daily	
Date	Units	1	2	3	Avg.	1	2	3	Ave.	Respons e (µR/hr)	Initials
6/11/08	inklim	6	6	5	6	6	6	7	6	130	P
6/17/08	uk/n	6	5	6	6	6	6	6	6	180	2
6/18/06	nk/n	6	6	6	6	6	-6	6	6	180	p
719/08	nR	6	6	6	6	6	6	6	6	190	ちろ
-7 19 08	pm	(2	6			6		<u> </u>	6	180	
											ļ
											<u> </u>]
										· · · ·	<u> </u>
				·							
ļ											
 								·			
·											
				·							
II I					l					1	1

Radiation Safety Procedure No. RSP-008, "Instrumentation", Rev. 5 (Attachment 8.16)

INTEGRATED ENVIRONMENTAL MANAGEMENT, INC. CONTAMINATION SURVEY INSTRUMENT DATA SHEET

 $MDA = \frac{2.71 + 4.65 \sqrt{BKG_{avg} \times t}}{t \times E \times \frac{A}{100}}$, where MDA = the activity level (dpm/100 cm²), BKG_{mg} = the background count rate for this measurement type

(cpm), t = the sample measurement duration (min), $E \approx$ the 4-n instrument efficiency; and A = the physical probe area (cm²).

Radiation Safety Procedure No. RSP-008, "Instrumentation", Rev. 5 (Attachment 8.17)

INTEGRATED ENVIRONMENTAL MANAGEMENT, INC. EXPOSURE RATE SURVEY INSTRUMENT DATA SHEET

	Project No	940	05.29	01	[Dete	ctor			M	eter	
!	Site Locati		Parking of Site	tot	Lualivi 44-10	5	Serial No 5(70		していたい	\mathbf{n}		perating /oltage: AT
:		Irce Numbe			Radionuc		-137		1/	n Activity a 97	nd Date:	
			s	itart of Shift	Backgroun	đ		End of Shift	Backgroun	d	Daily	
	Date	Units	1	2	3	Avg.	1	2	3	Ave.	Respons e (uR/hr)	Initials
	6/16/08	cpm	4K	4K	5K	4K	HK	4K	4K	445	210	BO .
	6/17/08	- - [4K	4K	4K	4K	4K	HK_	<u>YK</u>	YK_	205	br.
ł	9/18/08		11.5Z3	4K.	1,289	<u>4 K</u> 11,431	<u>ЧҚ.</u>	<u>4K</u>	YK-	14K *	208	(pro)
Т Х	919100 Gho/28		11,230	11.315		11,269				×	209	pro pro
-yr												
										ļ		
									<u> </u>			
					-							
						- <u></u>			· · ·			······
									ļ			
								·		[
			<u>·</u>									
¥	Perfor	med	3 2-h	nin cou	nots to	o deter	mine	bkge	e. pri	ior to	o coun	ting
	Samp	ples	in Mar	rinell	: bea	kers.	. Sev	er al	2-1	nin. C	ounts	were
												sas hot
	a s	ign:	fican	+ ch	ange	in th	e bke	jel.	Sam	ples	d bkg	d. wer
	Coinn Radiation S	tel Safety Pro	$\mathcal{L} \mathcal{D}$	RSP-008,	"He c "Instrume	ave ntation", R	lev. 5 (Atta	chment 8.	16)			

GRIFFIN INSTRUMENTS

DATE		7100		1003700		Att	
				LOCATION:		Griffin	
TECH	: Joan	ne Glenn		DATE LAST C	AL EXPIRES:	03/27	7/08
Reasc	on For Calibratio	n:	Due For	r Calibration	🔿 Re	pair (See Rem	arks)
			Other (S	See Remarks)	ິ Du	le and Repair (See Remarks)
	and the states of ATA Waymen must added of ad	NIST TRACI	EABLE EQUIP	MENT USED DUR	ING CALIBRATIC	<u>)N</u>	and
MODI	EL: M-500	S	ERIAL #:	114512	CAL. DI	JE: 12/20/0)8
MODI	EL:	S	ERIAL #:		CAL DU	IE:	
Fast/Slow	Switch working	properly	Audio Res	ponse 🗌 Geo	tropism CA	BLE LENGTH	39"
CONDITION	N: Sat						
		Yes 🛞 I	No	DATTENVOUE	the Cat		
NEW BATTI		Yes ● ● Sat 〇		BATTERY CHEC	:K: Sat	· ·	- -
HV TEST					· · · · · · · · · · · · · · · · · · ·		
	JT SENSITIVITY			AL INPUT SENSIT		A.F.	
AF INPU	JT SENSITIVITY	(mV) #2:	N/A	AL INPUT SENSIT	VITY (mV) #2 :	N/A	
AF INPU	JT SENSITIVITY	(mV) #3:	N/A	AL INPUT SENSIT	VITY (mV) #3:	N/A	
AF INPL	JT SENSITIVITY	(mV) #4:	N/A	AL INPUT SENSIT	IVITY (mV) #4:	N/A	
			۰. •				
RATE CPM	AS FOUND %	ERROR AS LEF	T % ERROR		· · ·		aliferan (ilan da angan da angan ang ang ang ang ang ang ang ang
250		0.0% A.F.		to the An Fe	und Data Within 2	197 at the Dat D	inint0.
2500		0.1% A.F.					omer:
25K		0.1% A.F.		\odot	Yes 🔿 No	•	
And the second se		0.40/ 0.5					
250K	250.254 K	0.1% A.F.	•	· · · · · ·			· , , ·
	250.254 K		ECTOR 2:	DI	ETECTOR 3:	DE	TECTOR 4:
			ECTOR 2: AL 1-6	DI AF 1-6	ETECTOR 3: AL 1-6	DE AF 1-6	
DETE	ECTOR 1:	DETI		•			
DETE AF 1-6	ECTOR 1: AL 1-6	DETE AF 1-6	AL 1-6	AF 1-6	AL 1-6	AF 1-6	AL 1-6
DETE AF 1-6	ECTOR 1: AL 1-6 A.F. A.F.	DETI AF 1-6 N/A N/A	AL 1-6	AF 1-6	AL 1-6	AF 1-6	AL 1-6
DETE AF 1-6 1006 S-6 100 -2	ECTOR 1: AL 1-6 A.F. A.F. A.F.	DETF AF 1-6 N/A N/A N/A	AL 1-6 N/A N/A N/A N/A	AF 1-6	AL 1-6 N/A N/A N/A N/A	AF 1-6	AL 1-6
DETE AF 1-6 1006 S-6	ECTOR 1: AL 1-6 A.F. A.F. A.F. A.F.	DETI AF 1-6 N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A	AF 1-6	AL 1-6 N/A N/A N/A N/A N/A	AF 1-6	AL 1-6 N/A N/A N/A N/A N/A N/A
DETE AF 1-6 006 S-6 100 -2	ECTOR 1: AL 1-6 A.F. A.F. A.F.	DETF AF 1-6 N/A N/A N/A	AL 1-6 N/A N/A N/A N/A	AF 1-6	AL 1-6 N/A N/A N/A N/A	AF 1-6	AL 1-6
DETE AF 1-6 1006 S-6 100 -2	ECTOR 1: AL 1-6 A.F. A.F. A.F. A.F.	DETI AF 1-6 N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A	AF 1-6	AL 1-6 N/A N/A N/A N/A N/A	AF 1-6	AL 1-6 N/A N/A N/A N/A N/A N/A
DETE AF 1-6 1006 S-6 1100 -2	ECTOR 1: AL 1-6 A.F. A.F. A.F. A.F. A.F.	DETE AF 1-6 N/A N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6 N/A N/A N/A N/A N/A N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6 N/A N/A N/A N/A N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A
DETE AF 1-6 1006 S-6 1100 -2 / n 00 s	ECTOR 1: AL 1-6 A.F. A.F. A.F. A.F. A.F.	DETT AF 1-6 N/A N/A N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6 N/A N/A N/A N/A N/A N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6 N/A N/A N/A N/A N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A
DETE AF 1-6 1006 S-6 1100 -2 / n 00 s	ECTOR 1: AL 1-6 A.F. A.F. A.F. A.F. A.F. A.F. A.F.	DETE AF 1-6 N/A N/A N/A N/A N/A PR151704.	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6 N/A N/A N/A N/A N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A
DETE AF 1-6 1006 S-6 1100 -2 / n 00 s	ECTOR 1: AL 1-6 A.F. A.F. A.F. A.F. A.F. A.F.	DETE AF 1-6 N/A N/A N/A N/A N/A PR151704.	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6 N/A N/A N/A N/A N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A
DETE AF 1-6 1006 S-6 100 -2 / n 00 s MARKS: Cali es Instrument	ECTOR 1: AL 1-6 A.F. A.F. A.F. A.F. A.F. A.F. A.F.	DETE AF 1-6 N/A N/A N/A N/A N/A PR151704.	AL 1-6 N/A N/A N/A N/A N/A N/A	AF 1-6	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6 N/A N/A N/A N/A N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A
DETE AF 1-6 1006 S-6 100 -2 / 00 s MARKS: Cali es Instrument libration Stick	ECTOR 1: AL 1-6 A.F. A.F. A.F. A.F. A.F. A.F. brated w/44-10 #	DETT AF 1-6 N/A N/A N/A N/A N/A PR151704.	AL 1-6 N/A N/A N/A N/A N/A N/A Yes	AF 1-6 N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6 N/A N/A N/A N/A N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A
DETE AF 1-6 1006 S-6 100 -2 / 00 s MARKS: Cali es Instrument libration Stick	ECTOR 1: AL 1-6 A.F. A.F. A.F. A.F. A.F. A.F. A.F. brated w/44-10 # t Meet Final Acce there Attached?:	DETT AF 1-6 N/A N/A N/A N/A N/A PR151704.	AL 1-6 N/A N/A N/A N/A N/A N/A Yes Yes	AF 1-6 N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6 N/A N/A N/A N/A N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A
DETE AF 1-6 1006 S-6 100 -2 / n 00 s MARKS: Cali es Instrument libration Sticks te Instrument	ECTOR 1: AL 1-6 A.F. A.F. A.F. A.F. A.F. A.F. A.F. brated w/44-10 # t Meet Final Acce ter Attached?: is Due For Next (DETE AF 1-6 N/A N/A N/A N/A PR151704. PR151704. optance Criteria?: Calibration:	AL 1-6 N/A N/A N/A N/A N/A N/A Ve: • Ye: • Ye: • 2/07/05	AF 1-6	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6	AL 1-6
DETE AF 1-6 1006 S-6 100 -2 / 00 s MARKS: Cali es Instrument libration Stick	ECTOR 1: AL 1-6 A.F. A.F. A.F. A.F. A.F. A.F. A.F. brated w/44-10 # t Meet Final Acce ter Attached?: is Due For Next (DETT AF 1-6 N/A N/A N/A N/A N/A PR151704.	AL 1-6 N/A N/A N/A N/A N/A N/A Ve: • Ye: • Ye: • 2/07/05	AF 1-6 N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A	AF 1-6 N/A N/A N/A N/A N/A N/A N/A	AL 1-6 N/A N/A N/A N/A N/A N/A N/A

	GRIFFIN INSTR	UMENTS	Ž
CALIBRATION CERTIFICATE	FOR 44-10	PROBE #	PR151704
DATE: 02/07/08 TECH: Joanne Glenn	and the second	ATION: LAST CAL EXPIRES:	Griffin Inst 03/22/08
	r (See Remarks) and Repair	Cable Length I.S.	
NIST TRACEABLE EC	UIPMENT AND STANDAR	DS USED DURING CALIE	BRATION
MODEL: 2241 MODEL:	SERIAL #: 1435 SERIAL #:	62 CAL. DUE: CAL. DUE:	02/07/09
SOURCE #: Other ISOTOPI	E: ACTIVIT	Y: ASSA	Y DATE:
SOURCE #: 99-1816 ISOTOPE ECMETRY: Jig upside down with source Physical Condition: Sat Un			Y DATE: 08/12/99
Efficiency From Last Calibration: 5.	7% Previo	ous HV Set Point:	1000 V
Counts (CPM) Backgro	ound (CPM) Net	CPM: Decay	(yrs): 8.50
0	0	0 AF Efficien	
Is the AF efficiency within 20% of the effi Reproducibility: 139650 14 Are the individual counts within 10% of the second	40910 138420	Average: 139660	Yes () No).00 Yes () No
Reproducibility: 139650 14	40910 138420	Average: 139660	0.00
Reproducibility: 139650 14 Are the individual counts within 10% of the second	40910 138420 / ne average?	Average: 13966(0.00
Reproducibility: 139650 14 Are the individual counts within 10% of the individu	40910 138420 A he average? CPM): Background (CPM	Average: 13966(0.00
Reproducibility: 139650 14 Are the individual counts within 10% of the second	40910 138420 A he average? CPM): Background (CPM 5020 7800	Average: 13966(0.00
Reproducibility:13965014Are the individual counts within 10% of theHigh Voltage:Source Response (0750112030800121860850130130	40910 138420 / he average? CPM): Background (CPM 5020 7800 7880	Average: 13966 (): Net CPM: 107010 114060 122250	0.00
Reproducibility:13965014Are the individual counts within 10% of the High Voltage:Source Response (0750112030800121860	40910 138420 A he average? CPM): Background (CPM 5020 7800	Average: 13966 (): Net CPM: 107010 114060	0.00
Reproducibility: 139650 14 Are the individual counts within 10% of the individual	40910 138420 A he average? CPM): Background (CPM 5020 7800 7880 8340 8620 8610	Average: 13966 Net CPM: 107010 114060 122250 126230 130450 133290	0.00
Reproducibility: 139650 14 Are the individual counts within 10% of the individual	40910 138420 A he average? CPM): Background (CPM 5020 7800 7880 8340 8620	Average: 13966 Net CPM: 107010 114060 122250 126230 130450	0.00
Reproducibility: 139650 14 Are the individual counts within 10% of the individual	40910 138420 A he average? CPM): Background (CPM 5020 7800 7880 8340 8620 8610	Average: 13966 Net CPM: 107010 114060 122250 126230 130450 133290	0.00
Reproducibility: 139650 14 Are the individual counts within 10% of the individual	40910 138420 A he average? CPM): Background (CPM 5020 7800 7880 8340 8610 9260	Average: 13966 Net CPM: 107010 114060 122250 126230 130450 133290	0.00
Reproducibility: 139650 14 Are the individual counts within 10% of the individual	40910 138420 A he average? CPM): Background (CPM 5020 7800 7880 8340 8620 8610 9260 8610 9260 8610	Average: 13966 Net CPM: 107010 114060 122250 126230 130450 133290 129670 	0.00 Yes () No
Reproducibility: 139650 14 Are the individual counts within 10% of the individual counts within 112030 # High Voltage: Source Response (0 # High Voltage: # High Voltage: # High Voltage:	40910 138420 he average? CPM): Background (CPM 5020 7800 7880 8340 8620 8610 9260 8610 9260 130880	Average: 13966 Net CPM: 107010 114060 122250 126230 130450 133290 129670 Lecay (yrs):	0.00 Yes <u>No</u> 8.50
Reproducibility: 139650 14 Are the individual counts within 10% of the individu	40910 138420 he average? CPM): Background (CPM 5020 7800 7800 7800 8620 8610 9260 800 800 8610 9260 130880 rated w/2241 #143562.	Average: 13966 Net CPM: 107010 114060 122250 126230 130450 133290 129670 Lecay (yrs):	0.00 Yes <u>No</u> 8.50
Reproducibility: 139650 14 Are the individual counts within 10% of the individual	40910 138420 he average? CPM): Background (CPM 5020 7800 7800 7800 8620 8610 9260 800 800 8610 9260 130880 rated w/2241 #143562.	Average: 139660	0.00 Yes <u>No</u> 8.50
Reproducibility: 139650 14 Are the individual counts within 10% of the individu	40910 138420 / he average? CPM): Background (CPM 5020 7800 7880 8340 8620 8610 9260 8610 8620 8620 8620 8620 8620 8620 8620 862	Average: 13966 Net CPM: 107010 114060 122250 126230 130450 133290 129670 Decay (yrs): Efficiency: No	0.00 Yes <u>No</u> 8.50
Reproducibility: 139650 14 Are the individual counts within 10% of the individu	40910 138420 / he average? CPM): Background (CPM 5020 7800 7800 7800 7880 8340 8610 9260 8610 9260 8610 9260 8610 9260 8610 9260 130880 rated w/2241 #143562. ria?: • Yes • Yes 02/07/09	Average: 13966 Net CPM: 107010 114060 122250 126230 130450 133290 129670 Decay (yrs): Efficiency: No No	0.00 Yes <u>No</u> 8.50

GRIFFIN INSTRUMENTS Calibration Certificate

Serial #	182648	Model	19	Owner	IEM
Probe #	N/A	Model	N/A	PO #	IEM
Source Used	10250	Model	28-6A	Cert Date	6/25/04
Pulser Serial	114512	Model	500	Cal Due:	12/11/07
Temperature	71.6 F	Pressure	30.06"	Humidity,	57%

Batteries: Sat $(\sqrt{})$ Unsat ()

Sat () Unsat () N/A ($\sqrt{}$) Desiccant:

Saturation: Sat ($\sqrt{}$) Unsat ()

Geotropism: Sat ($\sqrt{}$) Unsat ()

Mechanical Zero: As Found: 0

HV = A.F.=800V A.L.=800V As Left: 0

Scale	Units 🔬		As Found	As Left
5000	mR/hr	4.0	3.5	3.75
5000	mR/hr	2.5	2.3	2.5
5000	mR/hr	1.0	1.0	1.1
500	uR/hr	400*	360	395
500	uR/hr	250*	230	250
500	uR/hr	100*	90	100
250	uR/hr	200*	185	200
250	uR/hr	125*	115	125
250	uR/hr	50*	45	50
50	uR/hr	40*	36	39.5
50	uR/hr	25*	23	25
-50	uR/hr	10*	9	10
25	uR/hr	20*	18.5	20
25	uR/hr	12.5*	12	12.5
25	uR/hr	5*	4.5	5

*Pulsed

Are As Left readings w/in 10% of the Set Point? Yes No

Remarks: 142 cpm/uR/hr. Len Performed/Reviewed By Date: 7/12/07 Calibration Due Date: 7/12/08

GRIFFIN INSTRUMENTS

EL: M EL: Switch M I: S ERIES:	02/07/08 Joanne G alibration: //-500 //orking prop sat O VOLTS 1000 V fo 1500 V fo	<u>NIST TRA</u> perly 'es	CEA SEF SEF	Other (BLE EQUII RIAL #: RIAL #: Audio Re: F MECHAM	r Calibration See Remark PMENT USE 114512 sponse NICAL ZERC BATTERY	AST CAL s) D DURIN Geoti : CHECK	IG CALIB C C C ropism	 Repair (\$ Due and RATION AL. DUE: AL DUE: CABI AL MECHAI 	Griffin Inst 04/05/08 See Remarks) Repair (See Remark 12/20/08 LE LENGTH 39" NICAL ZERO:	(s)
en For Ca EL: M EL: S Switch M I: S ERIES: 400 - 150 <u>HV</u> 500 V: 250 V: 250 V: 250 V:	Alibration: A-500 Vorking prop Sat OUVOLTS 1000 V fo	<u>NIST TRA</u> perly 'es	CEA SEF SEF	Other (BLE EQUII RIAL #: RIAL #: Audio Res F MECHAN	r Calibration See Remark PMENT USE 114512 sponse NICAL ZERC BATTERY	n s) D DURIN Geoti : : : :	(I <u>G CALIB</u> C C T ropism 0	 Repair (\$ Due and RATION AL. DUE: AL DUE: CABI AL MECHAI 	See Remarks) Repair (See Remark 12/20/08 LE LENGTH 39"	
en For Ca EL: M EL: S Switch M I: S ERIES: 400 - 150 <u>HV</u> 500 V: 250 V: 250 V: 250 V:	Alibration: A-500 Vorking prop Sat OUVOLTS 1000 V fo	<u>NIST TRA</u> perly 'es	CEA SEF SEF	Other (BLE EQUII RIAL #: RIAL #: Audio Res F MECHAN	r Calibration See Remark PMENT USE 114512 sponse NICAL ZERC BATTERY	n s) D DURIN Geoti : : : :	(I <u>G CALIB</u> C C T ropism 0	 Repair (\$ Due and RATION AL. DUE: AL DUE: CABI AL MECHAI 	See Remarks) Repair (See Remark 12/20/08 LE LENGTH 39"	
EL: M EL: Switch M I: S ERIES: 400 - 150 <u>HV</u> 500 V: 250 V: 250 V:	M-500 Vorking prop Sat O VOLTS 1000 V fo	perly 'es	CEA SEF SEF	Other (BLE EQUII RIAL #: RIAL #: Audio Res F MECHAN	See Remark PMENT USE 114512 sponse NICAL ZERC BATTERY	s) D DURIN Geoti : : : :	IG CALIB C C C ropism	Due and RATION AL. DUE: AL DUE: CABI AL MECHAI	Repair (See Remark 12/20/08 LE LENGTH 39"	
EL: Switch w I: S ERIES: 400 - 150 <u>HV</u> 500 V: 250 V: 250 V:	A-500 Vorking prop Sat OUVOLTS 1000 V fo	perly 'es	CEA SEF SEF	BLE EQUI RIAL #: RIAL #: Audio Re: F MECHAN	PMENT USE 114512 sponse NICAL ZERC BATTER	D DURIN Geoti CHECK	IG CALIB C C ropism 0	RATION AL. DUE: AL DUE: CABI AL MECHA	12/20/08 LE LENGTH 39"	
EL: Switch w I: S ERIES: 400 - 150 <u>HV</u> 500 V: 250 V: 250 V:	A-500 Vorking prop Sat OUVOLTS 1000 V fo	perly 'es	SEF SEF 2 A No	RIAL #: RIAL #: Audio Re: F MECHAN	114512 sponse NICAL ZERC BATTERY	Geoti : CHECK	C C ropism 0	AL. DUE: AL DUE: CABI AL MECHA	E LENGTH 39"	
EL: Switch w I: S ERIES: 400 - 150 <u>HV</u> 500 V: 250 V: 250 V:	vorking prop Sat OU VOLTS 1000 V fo	perly 'es	SEF A No	RIAL #: Audio Re: F MECHAN	sponse NICAL ZERC BATTER	CHECK	C ropism 0	AL DUE: CABI AL MECHA	E LENGTH 39"	
Switch w I: S ERIES: 400 - 150 <u>HV</u> 500 V: 250 V: 250 V:	5at O VOLTS 1000 V fo	res ()	A	Audio Res	NICAL ZERC	CHECK	ropism 0	CABI		
I: S ERIES: 400 - 150 <u>HV</u> 500 V: 250 V: 2000 V:	5at O VOLTS 1000 V fo	'es I	A No	FMECHAN	NICAL ZERC	CHECK	ropism 0	CABI		· ·
ERIES: 400 - 150 <u>HV</u> 500 V: 250 V: 2000 V:	⊖ Y 00 VOLTS 1000 V fo	'es ම	No	• 	BATTER	CHECK			NICAL ZERO:	(
400 - 150 <u>HV</u> 500 V: 250 V: 250 V:	00 VOLTS 1000 V fo			<u>.</u>	-	_				
<u>HV</u> 500 V: 250 V: 2000 V:	1000 V fo	or 177s			• N//	-		Sat		
500 V: 250 V: 2000 V:		or 177s		AS FOLIN		NO.	Sat C	Unsat		
250 V: 2000 V:		or 177s			<u> HV</u>		AS	LEFT HV	44,79,9,999,8 499,8 499,9 499,9 499,9 499,9 499,9 499,9 499,9 499,9 499,9 499,9 499,9 499,9 499,9 499,9 499,9 4	
250 V: 2000 V:		or 177s		500		·		A.F.		
2000 V:				1250				A.F.		
	1000 7 10			1950				A.F.		
ENSITIV										
and the sea war even	11Y (mV):			33	AL INPUT S	ENSITIV	ITY (mV)		35	
and and a second se	RA	remen	E	R				s - S	CALER	
						CDDOD		aliantiana in 19 Maria		
CALE I	RATE CPIM	AS FOUN	<u>v</u>	% ERROR	AS LEFT %	EKRUK	MS FUL		OR AS LEFT % ER	<u>KOR</u>
1 or x1	100	100		0.0%	A.F.					
Ļ							Santanine Juliane	A State of the state of the state of the state of the		
			-+							
										
10 or			Tel						2 - 19 - 19 - 19 - 19 - 19 - 19 - 19 - 1	
x100						· · · · ·				
F		<u></u>								
100 or		100			A.F.					-
(1000 🕇	250K	250	ĸ	0.0%	A.F.					
F	400K	400	K	0.0%	A.F.					
is ti	he As Found	d Data Wit	hin :	20% of the	Set Point?:	and an an and the state of the state	۲	Yes O	No	
laced bro	ken reset sw	vitch. Marri	ed w	/44-9 #PR1	31864.	•				
t Meet Fin	al Acceptan	ce Criteria?	?:	Ye	s O	No				
er Attach	ed?:			Ye	s C	No				
is Due Fo	or Next Calib	oration:		02/07/0	9					
viewed t	by: Æ	Charles Charles	r		Date: 2/7/200)8	La a Vigt o	Entered	by: <u>P</u> Initials	
	<u></u>	ywne	•							
						Calibrati	ions perform	ed to ANSI N323A	-1997 standards.	
	or x1	or x1 100 250 400 1 or 1000 x10 2500 4000 0 or 10K 100 25K 40K 00 or 100K 1000 25K 40K 1000 250K 400K 1000 250K 400K 100K 100K 100K 100K 100K 100K 10	or x1 100 100 250 250 400 400 1 or 1000 1000 x10 2500 2500 4000 4000 4000 0 or 10K 10 100 25K 25 40K 40 00 or 100K 100 1000 250K 250 400K 400 400 8 the As Found Data Wit 400 400K aced broken reset switch. Marri Meet Final Acceptance Criteria ar Attached?: s Due For Next Calibration:	or x1 100 100 250 250 400 400 1 or 1000 1000 1 or 1000 1000 x10 2500 2500 4000 4000 4000 0 or 10K 10 K 100 25K 25 K 40K 40 K K 00 or 100K 100 K 1000 250K 250 K 400K 400 K K 1000 250K 250 K 400K 400 K K Is the As Found Data Within A K aced broken reset switch. Married w Meet Final Acceptance Criteria?: K aced broken reset Switch. Married w Meet Final Acceptance Criteria?: K s Due For Next Calibration: X X	or x1 100 100 0.0% 250 250 0.0% 400 400 0.0% 1 or 1000 1000 0.0% 4000 4000 0.0% 4000 4000 0.0% 0 or 10K 10 K 0.0% 100 25K 25 K 0.0% 40K 40 K 0.0% 250K 250 K 0.0% 400K 400 K 0.0% 1000 250K 250 K 0.0% 400K 400 K 0.0% Is the As Found Data Within 20% of the aced broken reset switch. Married w/44-9 #PR1 Meet Final Acceptance Criteria?: • Ye or Attached?: • Ye s Due For Next Calibration: 02/07/0	or x1 100 100 0.0% A.F. 250 250 0.0% A.F. 400 400 0.0% A.F. 1 or 1000 1000 0.0% A.F. 1 or 1000 1000 0.0% A.F. 1 or 1000 1000 0.0% A.F. 1 or 1000 2500 0.0% A.F. 0 or 10K 10 K 0.0% A.F. 100 25K 25 K 0.0% A.F. 100 25K 25 K 0.0% A.F. 100 25K 25 K 0.0% A.F. 0 or 100K 100 K 0.0% A.F. 1000 250K 250 K 0.0% A.F. 1000 250K 250 K 0.0% A.F. 1000 250K 250 K 0.0% A.F. Is the As Found Data Within 20% of the Set Point?: aced broken reset switch. Married w/44-9 #PR131864. Meet F	or x1 100 100 0.0% A.F. 250 250 0.0% A.F. 400 400 0.0% A.F. 1 or 1000 1000 0.0% A.F. 1 or 1000 1000 0.0% A.F. 1 or 1000 2500 2500 0.0% A.F. 0 or 10K 10 K 0.0% A.F. 100 25K 25 K 0.0% A.F. 1000 250K 250 K 0.0% A.F. 1000 250K 250 K 0.0% A.F. 1000 250K 250 K 0.0% A.F. sceed broken reset switch. Married w/44-9 #PR131864. Meet Final Acceptance Criteria?: Y	or x1 100 100 0.0% A.F. 250 250 0.0% A.F.	or x1 100 100 0.0% A.F. 250 250 0.0% A.F.	250 250 0.0% A.F. 400 400 0.0% A.F. 1 or 1000 1000 0.0% A.F. 400 4000 4000 0.0% A.F. 100 25K 25 K 0.0% A.F. 40K 40 K 0.0% A.F. 400 400 K 0.0% A.F. 1000 250K 250 K 0.0% A.F. 1000 100K 100% 0.0% A.F. No acced broken reset switch. Married w/44-9 #P

	*			RUMENT			
		TIFICATE FO	R 44-9	PF	ROBE #	PR131864	
······································	EM	an an S 199 19 28 quaptum manufati dan kabupaten s					
	2/07/08 Danne Glenn			OCATION:		Griffin Inst	
IEUN: JO	AINE GIEIIN				AL EAPIRE	S: 04/05/08	
Due For	r Calibration		N FOR CALIBRA Remarks) O		Remarks)	O Due and Repair	
		,		· ·		·	
GA	BLE LENGTH:	NIST TRACEABLE E		· .			
MODEL:	12	SERIAL			CAL. DUE	-	
MODEL:	, E	SERIAL			CAL. DUE		
y t t t t	ng a ng ang ang ang ang ang ang ang ang	<u>NIS</u>	T TRACEABLE S	OURCES			
SOURCE #:	ļ	99TC470-1814	S	OURCE #:			
ISOTOPE:		Tc99	· · · · ·	SOTOPE:			
ACTIVITY (dp	om):	37300	A	CTIVITY:			
ASSAY DATE	:	08/03/99	A	SSAY DATE	•	· ·	
	COUNTS:	4319 42	51 422	7	AVERAG		
TC-99 EFFICI	ENCY: 11.20 MINUTE COUN	6% 18.02%	51 422 SR-90 CO SR-90 CO	UNT:	AVERAG	SR-90 EFF:	
TC-99 EFFICI S LEFT ONE M TC-99 EFFICI	IENCY: 11.20 MINUTE COUN IENCY:	5% <i>18.02%</i> TS:	SR-90 CO SR-90 CO	UNT:	AVERAG	5R-90 EFF: E:	n aversterniskerte
TC-99 EFFICI S LEFT ONE M TC-99 EFFICI	ENCY: 11.20 MINUTE COUN ENCY: efficiency with	6% 18.02% ITS:	SR-90 CO SR-90 CO	UNT:	AVERAG	SR-90 EFF: SR-90 EFF:	
TC-99 EFFICI S LEFT ONE M TC-99 EFFICI the as found aturation Test eproducibility	ENCY: 11.20 MINUTE COUN ENCY: efficiency with t Satisfactory r: Are the indiv	6% 18.02% ITS: hin 20% of eff. from vidual counts within	SR-90 CO SR-90 CO last cal.?	UNT: UNT:	 AVERAG Yes Yes Yes Yes 	SR-90 EFF: SR-90 EFF: No *See Remarks No No No	n averden federe
TC-99 EFFICI S LEFT ONE M TC-99 EFFICI the as found aturation Test eproducibility oes the probe	ENCY: 11.20 MINUTE COUN ENCY: efficiency with t Satisfactory r: Are the indiv meet final act	5% 18.02% ITS: hin 20% of eff. from vidual counts within ceptance criteria?	SR-90 CO SR-90 CO last cal.?	UNT: UNT:	AVERAG S Yes Yes Yes	SR-90 EFF: E: SR-90 EFF: ONo *See Remarks No	- and the state of
TC-99 EFFICI S LEFT ONE M TC-99 EFFICI the as found aturation Test eproducibility oes the probe	ENCY: 11.20 MINUTE COUN ENCY: efficiency with t Satisfactory r: Are the indiv	5% 18.02% ITS: hin 20% of eff. from vidual counts within ceptance criteria?	SR-90 CO SR-90 CO last cal.?	UNT: UNT:	 AVERAG Yes Yes Yes Yes 	SR-90 EFF: SR-90 EFF: No *See Remarks No No No	- water make
TC-99 EFFICI S LEFT ONE M TC-99 EFFICI the as found aturation Test eproducibility bes the probe alibration stic	ENCY: 11.20 MINUTE COUN ENCY: efficiency with t Satisfactory r: Are the indiv meet final act	5% 18.02% ITS: hin 20% of eff. from vidual counts within ceptance criteria?	SR-90 CO SR-90 CO last cal.?	UNT: UNT:	 AVERAG AVERAG Yes Yes Yes Yes Yes 	SR-90 EFF: SR-90 EFF: No *See Remarks No No No	
TC-99 EFFICI S LEFT ONE M TC-99 EFFICI the as found aturation Test eproducibility bes the probe alibration stic Remarks:	ENCY: 11.20 WINUTE COUN ENCY: efficiency with t Satisfactory : Are the indiv meet final act ker attached? Married w/12 #	5% 18.02% ITS: hin 20% of eff. from vidual counts within ceptance criteria?	SR-90 CO SR-90 CO last cal.? 10% of the avera	UNT: UNT:	 AVERAG Yes Yes Yes Yes Yes Yes Yes 	SR-90 EFF: SR-90 EFF: No *See Remarks No No No	
TC-99 EFFICI S LEFT ONE M TC-99 EFFICI the as found aturation Test eproducibility oes the probe alibration stic Remarks:	ENCY: 11.20 WINUTE COUN ENCY: efficiency with t Satisfactory : Are the indiv meet final act ker attached? Married w/12 #	6% 18.02% ITS: hin 20% of eff. from vidual counts within ceptance criteria? #121268.	SR-90 CO SR-90 CO last cal.? 10% of the avera	UNT: uNT: age?	 AVERAG Yes Yes Yes Yes Yes Yes Yes 	SR-90 EFF: SR-90 EFF: No *See Remarks No No No	
TC-99 EFFICI S LEFT ONE M TC-99 EFFICI the as found aturation Test eproducibility oes the probe alibration stic Remarks:	ENCY: 11.20 WINUTE COUN ENCY: efficiency with t Satisfactory : Are the indiv meet final act ker attached? Married w/12 #	6% 18.02% ITS: hin 20% of eff. from vidual counts within ceptance criteria? #121268.	SR-90 CO SR-90 CO last cal.? 10% of the avera	UNT: uNT: age?	 AVERAG Yes Yes Yes Yes Yes Yes Yes 	SR-90 EFF: SR-90 EFF: No *See Remarks No No No	
TC-99 EFFICI S LEFT ONE M TC-99 EFFICI the as found aturation Test eproducibility oes the probe alibration stic Remarks:	ENCY: 11.20 MINUTE COUN ENCY: efficiency with t Satisfactory r: Are the indiv meet final act ker attached? Married w/12 # OBE IS DUE Fo	6% 18.02% ITS: hin 20% of eff. from vidual counts within ceptance criteria? #121268.	SR-90 CO SR-90 CO last cal.? 10% of the avera	UNT: uNT: age? 02/07/0	 AVERAG Yes Yes Yes Yes Yes Yes Yes 	SR-90 EFF: SR-90 EFF: No *See Remarks No No No	als
TC-99 EFFICI S LEFT ONE M TC-99 EFFICI the as found aturation Test eproducibility bes the probe alibration stic Remarks: DATE PRO	ENCY: 11.20 MINUTE COUN ENCY: efficiency with t Satisfactory r: Are the indiv meet final act ker attached? Married w/12 # OBE IS DUE Fo	6% 18.02% ITS: hin 20% of eff. from vidual counts within ceptance criteria? #121268. OR NEXT CALIBRAT	SR-90 CO SR-90 CO last cal.? 10% of the avera	UNT: uNT: age? 02/07/0	 AVERAG Yes Yes Yes Yes Yes Yes Yes 	SR-90 EFF: SR-90 EFF: No *See Remarks No No No No No	als

1

.360

Rev. 1b

ATTACHMENT F

SURVEY RECORDS

			~	1		. IN1	reg ሰ	RA	۲ED ا	EN RADI	VIR IOLC	ONI OGIC	AEN Ál s	TAL URV	. MA Yey h	NA Fori	GEI M	MEN	NT, I	NC.			1			,
iurve	ey N	umbe	er_5	tor	ad	2 70	wd	Ac	<u>, ee</u>	s/	EX:	+									Pa	ge		- 0	ʻ	<u> </u>
Inst	ume	nt/SN	l:					Cal	ibratio	on Due	e:					Site	Nam	e:5/	nc	Now	fie	ll	Dat	te: /	Tim	26 /
Inst	rume	nt/SN	I					Cali	ibratio	on Due	et					Loc	ation:	SM	10	Sto	ra	24	and	(
Inst	ume	nt/SN						Cali	ibratio	on Due	9:					Pur	pose:	Da. Shr	ily (-ver	Exit of	· fi · ve	ror hicl	- a es/	rea, equ	ione	nt.
Sun	vey F	Perfor	med B	By (Pri			2.A	Ia	\square	Inf	F					Sun	vey P	erform	bad B	y (Sig				1	<u> </u>	
Х в	atter	y OK			Ŕ	ØHV (ЭК				S∕ s	ource	Chec	k OK	•	0	I Dime mete feet		ns:	2		 		rs		
	A	8	с	D	E	۰F	G	н	,	L	к	L	м	N	0	Ρ	a	R	s	7	υ	v	w	×	Y	z
1			<u> </u>	ļ	ļ				L	ļ	ļ								ļ			ļ			<u> </u>	
2		6/	16/0	8-	<u>∔</u> ₽	Per	For	ms	R	d	ire	et	E	ris	K.	F.	ver		1	L	es	,	an	p	me	
3		<u> </u>	<u> </u>		e	qui	pm	en	tu	80	1,	1	-	on		<u> </u>	an	LS	41	ce	<u>t</u> _	u	ρo	'n		<u> </u>
4		-	ļ.,		<u> </u>	ki-	<u>f</u> o	4	th	e (End	~	1	the	<u> </u>	Tor			91		{	nts	ΙŻ.	þKg	d.)	ote
5 6		P/-	17/4	-8-	te	wit	tor 1	ne	× s	Liz	ect	<u>t</u> t	<u>r`</u>	k	of				0-1	ire	, ک	lus	e	15	unf	11.00
ь ,					eg	vif	me	L_T	. P	10 .	on	ne	Ļ	ran	23		205		hpo	h	ex:	t_c	+	the	ļ	
, 8		1				tor	0	2 4	rai		1+	Inz	her	a	n	ał	r ei	ret	or	the	e i	50.	rk.	La	7,	
9		1	10	 	pe Pe	T	ou	nt	s.		Ka	d.	no		<u> </u>			1	<u> </u>				0		F	
10		118	10	<u>× -</u>		Ι.	ber	nee		lire	<u>les</u>	+		K.	1					, .	s,i x,i	h Se		200	P	5
11			-	+		Uir to r	- 0	$\frac{1}{2}$	1	ars		ne		L	,	££ 0	er F	h	Γ	-	X				10	1
12				+			6	10	in a	te	10	hn		<u> </u>	т <u>-</u> е	n	OT_	<u></u>	e u	Joc.		ha	3,-	no	00	hnt
13	6/	191	104		0	Ę	o v n			1	1	2	-: <	V	٥F	VR	1	<u>م (</u> م	ti	re.	<u> </u>	-80	2		al	
14			e	*	e	hin		+	08	250	nr	0				Fee			1.	 2 '_	+ 1	Ę.	th	<	k-	D
15		1			1		at	- 1	1 m	-la		ų,	the		1	F.	A.		n)	on	. h	6 (on	nt	39
16					31	bk	ad	· 1	hat	el			•				10	() -	~~~	_	J	7				
17	6	201	68	-	Pa	rf.	orn	e	Ľd	ir	A	- 5	ris	k	Ъ.	vel	nie	le-	tir	وح	4	80	l s	ang	ola	
18				ļ	e	via	me	Ŧ	, al		sur		h			H		<u> </u>	00	a d	, 2 y ÷	7	F	H	و	
19		<u> </u>	<u> </u>	ļ		to	ra	eg_	4	l	L, V	Ō	م	~ ~	13	>	ЬÅ	a	2	10-	kd	2.				
20		<u> </u>	ļ	1			 	0	V									0								
21		<u> </u>	ļ	ļ	ļ	ļ	ļ																			
22		ļ	. 	ļ					<u> </u>		[]]										
23		ļ	ļ	ļ	ļ																					
24			-		.				after for page (the inter																	
25		L	1		<u> </u>		l]										
Note	: s :																									

Radiation Safety Procedure No. RSP-018, "Surveillance", Rev. 3 (Attachment 1)

nst	ume	nt/SN:						Cal	bratio	n Due	9:					Site	e Nam		1C1				Dat		Tim	e: (
nst	rume	nt/SN	, , ,	+	140	1-1-	/	Cal	bratio	n Due): 					Loc	ation:	D	117	/1	he	6	we			
Inst	rume ¥4		Lud 12	126	8/13	ae 3186	4	Cal	bratio	n Due	"2j	1-1	6 <u>9</u>			Pur	pose:	Pr	117 e-1	Nor	-k	Su	\sim	ey		
Sur	vey P	erform					R.	<u>A)</u> .	ín_	D.	·F	P				Sur	vey P	erforn	ned By	y (Sig	nature): \	-			
XB	attery	/ OK			Ø	HTV C	Ж			l	Xs	ource	Chec	k OK		0	d Dim mete feet	ensioi rs	ns:	MA		x inche centi	es imeter			
	A	в	с	D	E	F	G	н	1	J	к	L	м	N	0	Р	٩	Ŕ	s	T	υ	v	w	×	Y	z
1		<u> </u>					ļ						ļ	ļ		ļ	<u> </u>	ļ		ļ			·	<u> </u>		<u> </u>
2														 					184)						
4																	(201	ort	5						
5			66	opo MP	En (<u> </u>								1	50	-l	tor	ref.					
6			100	£ .	\frown										Ç.		-			6-	7					
7			AR	£*		N	9-7	5-1	70		60					60		0	1 6	ž						
8								-						5	2			60	_6	٥						
9							60		50				6	F	<u> </u>	0								OAV David	el	
10							6				60					[!	60	·	60		力	<u>_</u>		000		
11								-	60					e	0						T					
12		ļ		am			د	<u>Þ</u>						~												
13										9	20			1			ļ.		_6	2			Ro	11_1	<u> </u>	
14														60							K				P	
15										60-													Į) ØØ`		
16									-	-																
17		ļ										50					4	_								
18								50										-			\downarrow					
19								2										 								
20		ļ																·			-					
21	L						·																			
22		ļ															 									
23	 	ļ															[
24 -																										
25																										
Note	es: _	##	+ - +	oto	. € ∼ <₁	38	in	0	unt	5/n 1.	nin	Epn	~) (5-0 w/.	55	, k	kg E	e =	60)cp	m ;	50	1-7	ers "/	ed	

nst	rume	nt/SN	:					Ca	libratio	on Du	ə:					Site	Nam	e:51	40	Nei	H:	ell	Dat	20/6	Tirr	ie: 4
	-	nt/SN						Cal	libratio	on Due	e:					Loc	ation:		DI	17	T	he	Car	e		
nst	rume 44-	nt/SN	in, 212	N.2~ 681	-M (31	s 261 862	1 \2/ t	Cal	libratio	on Du): 	4	100	7		Pur	pose:		25	ł_1	مر	rk	Cav Su	SY V	فب	
			ned B	y (Prir			R	Al	an	D.	,FT	-				Sur	vey P	erform	ned B	y (Sigi		$\frac{3}{4}$		~		
K B	atten	y OK			6	KHV (ЪК				₿	ource	Chec	k OK		0	l Dime mete feet	ensior rs	ns:	N		∫ ¥ inch icent	es imeter	rs		
	A	в	ċ	D	E	F.	G	н	- 1	L	к	L	м	N	0	Р	٩	R	s	т	U	v	w	x	Y	z
1					•	<u> </u>				ļ		ļ			ļ			N -					ļ	ļ	<u> </u>	<u> </u>
2	L	. <u> </u>	ļ			 		 		10	e		1	ļ			and	ple	~	·		 	 	ļ	ļ	
3			ļ		ļ	ļ	 	ļ	2	for	X		<u> </u>	ļ)	20r	•			 		ļ	ļ	ļ
4	L	<u> </u>	ļ		ļ	 	ļ	1	1	4	ea.			<u> </u>		-4						ļ	 	 		·
5		_						-	0	Γ,						L V		50		6			<u> </u>	ļ	ļ	
6		<u> </u>				└──┫		<u>×</u>	F	6	F		66			0	[(<u>p=</u>	60			ļ				
7		<u> </u>	ļ		L		60		4	b							-79			50-		ļ	ļ		ļ	<u>_</u>
8		ļ						60-	Ē	·	70	ļ	10				4	-	2	<u> </u>	\pm		ļ		Lav	اع
9	ļ						ļ	Ē	16	2	ļ		69			6	<u>o</u>				1	L	P	ers	on	-
0 '		ļ			·		5			Ē.							-				K		[ĺ	
11		<u> </u>					60														+					
2									60			6	50							~~	+	-				
13																. (0		-	<u>50</u>						
14										1											T					
15										60					60						T		Ro	11-	PP	
6												0					1	2			4			Doc	br	
17											4	2					1	-								
8									70					c	0				69							
9															-						7	-				
20		1																			1					
21																										
2									1										·							
23	h a n								 																	
24		1	 .									·														
25		n f a wa a wa marao na ma							 																	an Yannanganaa
	L	L	-te	+.1	12	Y	•	0		-31	hai	n	epm	G	ros	55.	Ь	Kay	₽.=	d	25	pm	.5	ur	rei	xe.

Radiation Safety Procedure No. RSP-018, "Surveillance", Rev. 3 (Attachment 1)

Rev. 1b

.

ATTACHMENT G

SCREENING RESULTS

,

ATTACHMENT 8.1 SCREENING LOG

Counted 6/20/08

ple No.	Collection	on Date	Collec Loca		Sample Description		Measured Exposure Rate	Ana	alytical Re (pCi/g)	sult
							Counts/2min	Ac-228	Bi-214	Th-234
P-8xcut 1-1.5	6/20/08	1040	SEE TR RE	C TRHP	Bugh	Dust Soil	19,704			
2-8 x cut 4-4.5	6/0/08	1044	RE	POKI	,		15,497			
HA-3,0-0.5		1135			50	;]	7176			
HA-3 p.5-1		137					51,366			
HA-3 1-1.5		1139					25,274			
HA-3 15'-2'	· · · · · · · · · · · · · · · · · · ·	1141					24,982			
HA-3, 2-2.5		1143					18,652			
HA-3 a.5-3	·	1145					14,302			
<u>P-8xcut 1-15</u> <u>2-8xcut 4-45</u> <u>HA-3</u> ,0-0.5 <u>HA-3</u> ,0-0.5		1147					11,977			
HA-2 3.2-7		[141					11,945			
HA-4,0-0.5' HA-4,0.5'-1'		1150					11,872			
HA-4,0-0.5		0955					16,691			
HA-4,0.5'-1'		6957					16,919			
· • • · · · · · · · · · · · · · · · · ·		0959					12,276			
HA-4 1.5'-2'		1000								
HA-5, 0'-0.5' HA-5, 0.5-1' HA-5, 1'-1.5'		0845					37,347			
HA-5,0.5-1		0848					70,990			
HA-5, 1'-1.5'		0450					100,530			
14-5, 1.5'-2'		0853					33,477			
HA-5, 2'-2.5'		0455					14,920			
HA-5, 2.5'-3'		ল্ডৎপ্থ					14,634			·····
HA-5, 3'-3.5'		0900					12,423			
HA-6, 0-0.5		12.45					16,267			
HA-6,05'-1'		1247					14,463			
HA-5, 25'-3' HA-5, 25'-3' HA-6, 0-0.5 HA-6, 05'-1' HA-6, 05'-1' HA-1, 1'-1.5'	6/0/06	1249	V	1		V	14,920 14,634 12,423 16,267 14,463 12,072			
	"····									
			<u></u>		*					
				<u> </u>					<u> </u>	

SHIELDALLOY METALLURGICAL CORPORATION "Decommissioning Plan for the SMC facility" August 2009

Rev. 1b

ATTACHMENT H

CHAIN-OF-CUSTODY FORMS

INTEGRATED ENVIRONMI ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

Page Reference No

94005

of

11) Client Name	(7) Samples Shipment Date	(5) Bill to:
(2)Collected By:	(8) Lab Destination	
(3) Job/Task No:	(9) Lab Contact	
(4) Project Manager:	(12) IEM Technical Contact/Phone	(10) Report to:
(6) Purchase Order No.	(13) Carrier/Waybill No.	
(11) Required Report Date		

ONE CONTAINER PER LINE

(14) Sample Number	(15) Sample Description/Type	(16) Date/Time Collected	(17) Container Type	(18) Sample Volume	(19) Preservative	(20) Requested Testing Program
HA-3	0'-0.5'	6/20/08 11:35	Ziploc Bug	~ Ika	None	
	0.5'-1.0	11:37				
	1.01-1.5	11:39				
	1.51-2.01	11:41				
	2.0'-2.5'	11:43				34 5 1.
	2.5'-3.0'	11:45	· · · ·			
	3.0'-3.5'	11:47				
	3.5'-4.0	1, 11:49				
× V	4.0'-4.5'	V 11:50	V			CARGE AND STREET, MICH. ST. P. S. S. P. S.
23) Special Instructions	Potentie	1 NOTh	Contami no	ation		
24) Possible Hazard Identific Ion hazard D ¹ Flammal		Poison B 🗆 Unknown C].	(25) Sample Disposal Return to Client □ Disp	osal by Lab 🗆 🛛 Archive	months
26) Turnaround Time Requir	ed: Normal 🗅	Rush 🗆		(27) OC Level: 1 🗆 11 🗆	III 🗆 Project Specific	
28) Relinquished by: (signature, date, time):	An 1/2 6/2	109 109 1400	Received by: (signature, dat	e, time)	
Relinquished by: (signature, date, time):			Received by: (signature, dat	- 140 150 V/S/00	· · ·
Relinguished by: /	signature, date, time):			Received by: (signature, dat	a timel	

(6) Purchase Order No.

(11) Required Report Date

INTEGRATED ENVIRONMI TAL MANAGEMENT, INC. ANALYSIS ROUEST AND CHAIN OF CUSTODY RECORD

Page 2 of 2Reference No 94005.

ONE CONTAINER PER LINE

(13) Carrier/Waybill No.

(14) Sample Number	4) Sample Number (15) Sample Description/Type		(17) Container Type	(18) Sample Volume	(19) Preservative	(20) Requested Testing Program
HA.3	4.5'-5.0	6/20/08 11:52	Ziplox Bug	~ 1kg	None	
HA-3	5.0'-5.5'	6/20/08 11:54				,
HA-4	0'-0.51	09:55				
	6.5'-1.0'	09:57	· · ·			
	1.0'-1.5'	09:59				
	1.5'-2.0'	10:00	х			
	2.0'-2.5'	10:01				
	2.5'-3.0'	10:03				
	3.0'-3.5'	10:05	V.	V		
(23) Special Instructions	Potent.	ial ud Th	Contami	ntion		
(24) Possible Hazard Identific Non-hazard C Flammal		Poison B 🗆 🛛 Unknown 🗆]	(25) Sample Disposal Return to Client □ Disp	osal by Lab 🗆 Archive	months
(26) Turnaround Time Requir	ed: Normal 🗆	Rush 🗆	· · · · · · · · · · · · · · · · · · ·	(27) QC Level: 🗆 🗆	III 🗆 Project Specific	
(28) Relinquished by: (signature, date, time):	200-01 6/2	0/04 (400)	Received by: (signature, date	e, time)	
Relinquished by: (signature, date, time):			Received by: (signature, date	e, time)	
Relinguished by: (signature, date, time):		(See Reverse for Instru	Received by: (signature, date	e, time)	

INTEGRATED ENVIRONM TAL MANAGEMENT, INC. ANALYSIS REQUEST AND **CHAIN OF CUSTODY RECORD**

(1) Client Name

(2)Collected By:

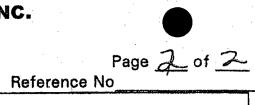
Page <u>|</u> of ...

Referen	ce l	No	94	005	

3) '	J	C	V	-r	e	С	Π	e	ſ	e	T	e	٦	1	

 (7) Samples Shipment Date	(5) Bill to:
 (8) Lab Destination	
(9) Lab Contact	

(3) Job/Task No:	(9) Lab Contact	
(4) Project Manager:	(12) IEM Technical Contact/Phone	(10) Report to:
(6) Purchase Order No.	(13) Carrier/Waybill No.	
(11) Required Report Date		


ONE CONTAINER PER LINE

(14) Sample Number	(15) Sample Description/Type	(16) Date/Time Collected	(17) Container Type	(18) Sample Volume	(19) Preservative	(20) Requested Testing Program	
1-1A-4	3,5'-4,0'	6/20/08 10.07	Zirlac Barg	$\sim 1 kq$	None		
HA-4	4.0'-4.5	10:10	1		1		
HA-4	4.5' - 5.0'	10:13					
HA-5	0.0'-0.5'	08:45					
	0.5'-1.0'	08148					
	1.0'-1.5	08:56					
	1.51-2.01	08,23				х.	
	2.0'-2.5'	, 08'55					
	2.5'-3.0'	V 08:58	V	-	V		
(23) Special Instructions	Potentia	14Th	Contami	hation			
(24) Possible Hazard Identific Non-hazard 🔀 Flammal		Poison B 🗆 Unknown 🗆	נ	(25) Sample Disposal Return to Client 🗆 Disp	osal by Lab 🗆 🛛 Archive	months	
(26) Turnaround Time Requir	ed: Normal 🗅	Rush 🗆		(27) QC Level: 1 🗆 11 🗆	III 🗆 Project Specific		
(28) Relinquished by: (signature, date, time):	Prino 1	Received by: (signature, date, time)				
Relinquished by: (signature, date, time):	~		Received by: (signature, date, time)			
Relinquished by: (Relinquished by: (signature, date, time):						

(See Reverse for Instructions)

INTEGRATED ENVIRONM STAL MANAGEMENT, INC. ANALYSIS REQUEST AND **CHAIN OF CUSTODY RECORD**

(1) Client Name	(7) Samples Shipment Date	(5) Bill to:
(2)Collected By:	(8) Lab Destination	
(3) Job/Task No:	(9) Lab Contact	
(4) Project Manager:	(12) IEM Technical Contact/Phone	(10) Report to:
(6) Purchase Order No.	(13) Carrier/Waybill No.	
(11) Required Report Date		

ONE CONTAINER PER LINE

(14) Sample Number	(15) Sample Description/Type	(16) Date/Time Collected	(17) Container Type	(18) Sample Volume	(19) Preservative	(20) Requested Testing Program	
HA-5	3.0'-3,5	6/20/08 09:00	Ziploc Bag	~ Ika	None		
1	3.5'-4.0'	09:02					
	4.0'-4.5'	08:10					
	4.5'-5.0'	08:05					
	5.0'-5.5	08:15					
	5.5 - 6.0	08:20				:	
	6.0'-6.5'	08:25					
\vee	6.5'-7.0'	08:30		V			
HA-6	0.01-0.51	V 12:45	Y		\bigvee		
(23) Special Instructions	Pote	utial 44	- Th Con-	tun ination			
(24) Possible Hazard Identifi Non-hazard X Flamma	cation	Poison B 🗆 Unknown 🗆		(25) Sample Disposal Return to Client 🗆 Disp	osal by Lab 🗆 🛛 Archive	months	
(26) Turnaround Time Requir	red: Normal 🗅	Rush 🗆	· · · · · · · · · · · · · · · · · · ·	(27) QC Løvel: 1 🗆 11 🗆	III 🗆 Project Specific		
(28) Relinquished by: (signature, date, time):	BNDN	\$/20/28 1800	Received by: (signature, date	e, time)		
				Réceived by: (signature, date, time)			
Relinquished by: (signature, date, time):			Received by: (signature, date	, time)		

(See Reverse for Instructions)

INTEGRATED ENVIRONME TAL MANAGEMENT, INC. ANALYSIS REQUEST AND **CHAIN OF CUSTODY RECORD**

Page _____ of _____ Reference No_______A4005.2

(1) Client Name	(7) Samples Shipment Date	(5) Bjill to:
(2)Collected By:	(8) Lab Destination	
(3) Job/Task No:	(9) Lab Contact	
(4) Project Manager:	(12) IEM Technical Contact/Phone	(10) Report to:
(6) Purchase Order No.	(13) Carrier/Waybill No.	
(11) Required Report Date		
	ONE CONTAINER PER LI	INE

(14) Sample Number	(15) Sample Description/Type	(16) Date/Time Collected	(17) Container Type	(18) Sample Volume	(19) Preservative	(20) Requested Testing Program
HA-1	01-0,51	6/19/08 13:40	Zipbe Bag	~ 1 kg	None	
	0.5'-1.0'	13:45	5		1	
	1.0'-1.5'	13:50				
	1.5'-2.0'	3:55				· ·
	2.0'-2.5'	14:00				
	2.51-3.0	14:05				
	3.01-3.51	14:08				
	3.51-4.0	4:10		\/		
\mathbf{V}	4.0'-4.5'	14:15	¥	V		
(23) Special Instructions						
(24) Possible Hazard Identific Non-hazard C Flammab		Poison B 🗆 Unknown D	3	(25) Sample Disposal Return to Client 🗆 Dispo	osal by Lab 🗆 🛛 Archive	months
(26) Turnaround Time Require	ed: Normal 🗅	Rush 🗆		(27) QC Level: 🗆 🗆	III 🗆 Project Specific	
(28) Relinquished by: (s	signature, date, time):	KAY)/Y C	5/20/08 1400	Received by: (signature, date	;, time)	
Relinquished by: (s	signature, date, time):	10-		Received by: (signature, date	, time)	
Relinquished by: (s	signature, date, time):		(See Reverse for Instru	Received by: (signature, date	; time)	

INTEGRATED ENVIRONMI AL MANAGEMENT, INC. ANALYSIS REQUEST AND **CHAIN OF CUSTODY RECORD**

Reference No 94GOS

Page

(1) Client Name	(7) Samples Shipment Date	(5) Bill to:
(2)Collected By:	(8) Lab Destination	
(3) Job/Task No:	(9) Lab Contact	
(4) Project Manager:	(12) IEM Technical Contact/Phone	(10) Report to:
(4) Project Manager: (6) Purchase Order No.	(12) IEM Technical Contact/Phone (13) Carrier/Waybill No.	(10) Report to:

ONE CONTAINER PER LINE

(14) Sam	ple Number	(15) Sample Description/Type	(16) Date	/Time Collected	(17) Con	tainer Type	(18) Samj	ple Volume	(19) P	reservative	(20) Requested Testing Program
HA	-2	0'-0.5'	610	7/08 14:30	Zipl	oc Big	~	l ka	N.	ave	
		0.5'-1.0'		14:32)	,]		
		1.01-1.51		14:35							
		1.5'-2.0'		14:38							r
	4	2.0'-2.5'		14:40		-					
		2.51-3.01		4:43							
		3.0'-3.5'		14:48							2.2 V
·	,	3.5'-4.0'	(.	14:52		V	\langle	V		V	
	V	a fan far in skrater mei stats fan 'e seren af stat skrater			and subtraction of the state of	e a the station of the state of			anter and	an a shirt carrie the sur	
(23) Special	Instructions		· · ·								
(24) Possibl Non-hazard	e Hazard Identific Flammat		Poison B	🗆 Unknown E]		(25) Sample Return to Cl	•	osal by Lab I	Archive	months
(26) Turnar	ound Time Requir	ed: Normal 🗆	Rush 🗆			÷	(27) QC Leve			roject Specific	
(28)	Relinquished by: (:	signature, date, time):	BA)	M 6/	20/08	1300	Received by	: (signature, date	e, time)		n yan yan anyan kuto yan baranga kuto yan kutoka na kata ya kata ya kata ya kata ya kutoka kutoka kata yanga ya
F	Relinquished by: (s	signature, date, time):		10			Received by	: (signature, date	e, time)	· .	
1	Relinquished by: (signature, date, time):	en variade	in a state as a state of the state	a Martin (1994) and a state of the		Received by	: (sinnature, date	, time)		

(See Reverse for Instructions)

INTEGRATED ENVIRONME ANALYSIS REQUEST AND CHAIN OF CUSTODY RECORD

Page _____ of _____ Reference No _________

(1) Client Name	(7) Samples Shipment Date	(5) Bill to:
(2)Collected By:	(8) Lab Destination	
(3) Job/Task No:	(9) Lab Contact	
(4) Project Manager:	(12) IEM Technical Contact/Phone	(10) Report to:
(6) Purchase Order No.	(13) Carrier/Waybill No.	
(11) Required Report Date		

ONE CONTAINER PER LINE

(14) Sample Number	(15) Sample Description/Type	(16) Date/Time Collected	(17) Container Type	(18) Sample Volume	(19) Preservative	(20) Requested Testing Program
HA-6	0.5'-1.0'	6/20/08 12:47	Ziploc Bag	~(kg	None	
	1.0'-1.5'	12:49				
	1.5-2.01	12:5]				
	2.0'-2.5'	12:53				
	2.5'-3.0'	12:55				
	3.0'-3.5	12:57	·			
	3.5'-4.0'	19:59			· ·	
\checkmark	4.0'-4.5	13:01				
PSXLUT	1.0'-1.5'	V 10:40	V	N.		
(23) Special Instructions	Potentia	1 U $+$ Th	Contami	nation		
(24) Possible Hazard Identific Non-hazard 🕱 Flammal	cation	Poison B 🗆 🛛 Unknown 🗆]	(25) Sample Disposal Return to Client 🗆 Disp	osal by Lab 🗆 Archive	months
(26) Turnaround Time Requir	red: Normal 🗅	Rush 🗆		(27) QC Level: 1 🗆 11 🗆	III 🗆 Project Specific	
(28) Relinquished by: (signature, date, time):	tor ma	6/20/08 1400	Received by: (signature, dat	e, time)	
Relinquished by: (signature, date, time):	- UV		Received by: (signature, dat	e, time)	
Relinguished by: (signature, date, time):		(See Reverse for Instru	Received by: (signature, dat	e, time)	

INTEGRATED ENVIRONM AL MANAGEMENT, INC. ANALYSIS REQUEST AND **CHAIN OF CUSTODY RECORD**

	CHAIN OF CUSTODY I	
(1) Client Name	(7) Samples Shipment Date	Reference No 94005,290
(2)Collected By:	(8) Lab Destination	
(3) Job/Task No:	(9) Lab Contact	
(4) Project Manager:	(12) IEM Technical Contact/Phone	(10) Report to:
(6) Purchase Order No.	(13) Carrier/Waybill No.	
(11) Required Report Date		

ONE CONTAINER PER LINE

(14) Sample Number	(15) Sample Description/Type	(16) Date/Time Collected	(17) Container Type	(18) Sample Volume	(19) Preservative	(20) Requested Testing Program
P8XCUT	2.2'-2.5	6120/08 10:42	Ziplac Bag	~ kg	None	
PRXCUT	4.0'-4.5'	6/20/08 10:44	Ziploc Big	~ 1kg	None	-
			·			
				4.		
an a	an yadaa tali. Tali adaayee o Nanatra Indo	and a sequency of the set of the s	All and definition of the other states in the state of th			
(23) Special Instructions	Potential.	WATh	Contam in	ation		
(24) Possible Hazard Identific Non-hazard & Flammal		Poison B 🗆 🛛 Unknown 🗆	· · ·	(25) Sample Disposal	osal by Lab 🗆 🛛 Archive	months
(26) Turnaround Time Requir	ed: Normal 🗆	Rush 🗆		(27) QC Level: 1 🗆 🛛 🗆	III 🗆 Project Specific	
(28) Relinquished by: (signature, date, time):	for Jun 6	20/04 400	Received by: (signature, date	e, time)	
Relinquished by: (s	signature, date, time):	00-1		Received by: (signature, date), time)	
Relinquished by: (s	signature, date, time):		(See Reverse for Instru	Received by: (signature, date	, tíme)	

Rev. 1b

ATTACHMENT I

.

CERTIFICATES OF ANALYSIS

Broken Arrow, OK 74012 September 11, 2008 (918) 251-2515 FAX (918) 251-0008

> Carol Berger Integrated Environmental Management, Inc. 8 Brooks Ave #205 Gaithersburg, MD 20877

CLIENT PROJECT NAME: 94005.29.05 OUTREACH LAB ID: 20080585

Dear Ms. Berger:

Please find enclosed the analytical report for your samples received in our laboratory on July 08, 2008 for the above captioned project. Ten samples were received in good condition. These samples were dried, ground and sealed for 21 days prior to analyzing for naturally occurring radionuclides by gamma spectroscopy, per your instructions. At your request, sample #5 was recounted and the original results were confirmed.

All Quality Control for the requested analysis is reported on the analytical report and is within control limits with the exception for the DUP RPD for TI-208, Pb-212, and Bi-214.

Per your instructions, these samples will be disposed 30 days after the report date with the exception of samples #3, #4,and #5. These samples exceed our disposal limits and will be returned to you. Please provide a return address.

Thank you for choosing Outreach Laboratory and if you have any questions, please call us at 918-251-2515.

Laboratory Director

ODEQ ID #9517 NRC ODEQ LIC. #27522-01

CERT. ID #OK001 See Certified Parameter List

Ostreac Ocrato	ry		Client: Client Proje Lab Numbe Date Report Date Receiv Page Numbe	r: ed: ed:	· · ·		IEM 94005.29.05 20080585 9/11/2008 7/8/08 1 of 5
Broken Arrow, OK (918) 251-2515 FAX (918) 251-000	_	Analytical R	eport				
	Method	Result	Units	DL	Prep Date	Analysis Date	Analyst
Lab ID: Client ID: Date Sampled: Vlatrix:	20080585-01 HA-1/ 1.0 - 1.5 6/19/2008 1:50:00 PM Solid						
		Radiochemical Analyse	s				
<u>C-40</u>	HASL 300	6.39 +/- 1.30		0.597	N.	8/1/2008	SD
Г1-208	HASL 300	0.264 +/- 0.072	pCi/g	0.074		8/1/2008	SD
3i-212	HASL 300	0.513 +/- 0.229	pCi/g	0.348		8/1/2008	SD
Ъ-212	HASL 300	0 +/- 0.108	pCi/g	0.215		8/1/2008	SD
3i-214	HASL 300	0.684 +/- 0.134	pCi/g	0.115		8/1/2008	SD
Pb-214	HASL 300	6.55 +/- 0.119	pCi/g	0.237		8/1/2008	SD
Ac-228	HASL 300	0.625 +/- 0.210	pCi/g	0.420		8/1/2008	SD
Г h-2 34	HASL 300	0.548 +/- 0.178	pCi/g	0.356		8/1/2008	SD
		Inorganics Analyses			•		
Percent Moisture	ASTM D2216	-98 53.3	%		7/8/2008	7/10/2008	RP
Lab ID:	20080585-02						· · ·
Client I D :	HA-2/2.0 - 2.5						
Date Sampled:	6/19/2008 2:40:00 PM						
Vlatrix:	Solid						
		Radiochemical Analyses	S .				
۲-40	HASL 300	1.48 +/- 1.07	pCi/g	1.12		8/1/2008	SD
Г І-208	HASL 300	0.210 +/- 0.074	pCi/g	0.073		8/1/2008	SD
3i-212	HASL 300	0.362 +/- 0.329	pCi/g	0.523		8/1/2008	SD
Ъ-212	HASL 300	0.612 +/- 0.132	pCi/g	0.114		8/1/2008	SD
3 i-2 14	HASL 300	0.429 +/- 0.140	pCi/g	0.147		8/1/2008	SD
'b-214	HASL 300	0.436 +/- 0.103	pCi/g	0.133		8/1/2008	SD
Ac-228	HASL 300	0.724 +/- 0.248	pCi/g	0.294		8/1/2008	SD
[h-234	HASL 300	0.528 +/- 0.955	pCi/g	1.12		8/1/2008	SD
		Inorganics Analyses					
'ercent Moisture	ASTM D2216	-98 66.7	%		7/8/2008	7/10/2008	RP
Lab ID:	20080585-03						
Client ID:	HA-3/ 0.0 - 0.5						
Date Sampled:	6/20/2008 11:35:00 AM						
Matrix:	Solid						
		Radiochemical Analyses	5				
. 🛡	HASL 300	4.01 +/- 2.23		2.52		8/1/2008	SD
.1-208	HASL 300	9.89 +/- 0.795		0.546		8/1/2008	SD
3i-212	HASL 300	17.6 +/- 2.99		3.11		8/1/2008	SD
'b-212	HASL 300	27.0 +/- 2.47		0.447		8/1/2008	SD
BDL = Below Detec							

.

311 North Aspen Broken Arrow, OK 74012 (918) 251-2515 FAX (918) 251-0008 Client: Client Project: Lab Number: Date Reported: Date Received: Page Number: IEM 94005.29.05 20080585 9/11/2008 7/8/08 2 of 5

Analytical Report

	Method	Result	Units	DL	Prep Date	Analysis Date	Analyst
Bi-214	HASL 300	18.3 +/- 1.34	pCi/g	0.683	•	8/1/2008	SD
Pb-214	HASL 300	19.1 +/- 1.26	pCi/g	0.655	• .	8/1/2008	SD
Ac-228	HASL 300	26.9 +/- 1.79	pCi/g	1.24		8/1/2008	SD
Г h-234	HASL 300	1.19 +/- 1.49	pCi/g	2.84		8/1/2008	SD
	Inc	organics Analyses					•
Percent Moisture	ASTM D2216-98	67.3	%		7/8/2008	7/10/2008	RP
Lab ID:	20080585-04						
Client ID:	HA-3/0.5 - 1.0						
Date Sampled:	6/20/2008 11:37:00 AM						
Matrix:	Solid						
· .	Radi	iochemical Analyse	5				
K-40	HASL 300	8.90 +/- 2.23	pCi/g	2.14		8/1/2008	SD
ГІ-208	HASL 300	11.1 +/- 0.641	pCi/g	0.541		8/1/2008	SD
Bi-212	HASL 300	19.0 +/- 2.49	pCi/g	2.65		8/1/2008	SD
P'	HASL 300	58.4 +/- 5.96	pCi/g	2.27		8/1/2008	SD
B114	HASL 300	13.6 +/- 0.986	pCi/g	0.556		8/1/2008	SD
Pb-214	HASL 300	20.1 +/- 2.31	pCi/g	1.33		8/1/2008	SD
Ac-228	HASL 300	29.1 +/- 1.28	pCi/g	0.647	. '	8/1/2008	SD
Th-234	HASL 300	10.2 +/- 4.99	pCi/g	3.60		8/13/2008	SD
	Inc	organics Analyses					
Percent Moisture	ASTM D2216-98	73.0	%		7/8/2008	7/10/2008	RP
Lab ID:	20080585-05						
Client ID:	HA-3/1.0 - 1.5						
Date Sampled:	6/20/2008 11:39:00 AM						
Matrix:	Solid					,	e de la composición de la comp
	Radi	ochemical Analyse	5				
K-40	HASL 300	3.87 +/- 1.58	pCi/g	1.74	•	8/1/2008	SD
Г1-208	HASL 300	6.62 +/- 0.450	pCi/g	0.288		8/1/2008	SD
Bi-212	HASL 300	14.5 +/- 2.00	pCi/g	2.06		8/1/2008	SD
Pb-212	HASL 300	18.5 +/- 2.13	pCi/g	0.721		8/1/2008	SD
Bi-214	HASL 300	6.26 +/- 0.501	pCi/g	0.371		8/1/2008	SD
Pb-214	HASL 300	6.58 +/- 0.571	pCi/g	0.593		8/1/2008	SD
Ac-228	HASL 300	18.7 +/- 1.03	pCi/g	0.447		8/1/2008	SD
Th-234	HASL 300	3.30 +/- 0.840	pCi/g	1.18		8/1/2008	SD
	Inc	organics Analyses			\$		
P Moisture	ASTM D2216-98	57.8	%		7/8/2008	7/10/2008	RP

Cutreac Contreac Sill North Aspen Broken Arrow, OK	ry		Client: Client Proj Lab Numb Date Repo Date Recei Page Numl	er: rted: wed:			IEM 94005.29.05 20080585 9/11/2008 7/8/08 3 of 5
(918) 251-2515 FAX (918) 251-000		Analytical R	eport				
	Method	Result	-	DL	Prep Date	Analysis Date	Analyst
_ab ID:	20080585-06				-		
Client ID:	HA-3/ 1.5 - 2.0						
Date Sampled:	6/20/2008 11:41:00 AM						
Matrix:	Solid			•			
		liochemical Analyse	s				
८-40	HASL 300	9.13 +/- 4.88	pCi/g	5.26		8/1/2008	SD
[1-208	HASL 300	9.80 +/- 0.917	pCi/g	0.468		8/1/2008	SD
3i-212	HASL 300	15.1 +/- 2.99	pCi/g	4.97		8/1/2008	SD
²b-212	HASL 300	3.60 +/- 0.529	pCi/g	0.551		8/1/2008	SD
3i-214	HASL 300	10.9 +/- 1.16	pCi/g	0.899		8/1/2008	SD
² b-214	HASL 300	5.96 +/- 0.542	pCi/g	0.653		8/1/2008	SD
Ac-228	HASL 300	4.84 +/- 1.02		1.25		8/1/2008	SD
Гb-234́	HASL 300	0 +/- 2.65	pCi/g	5.30		8/1/2008	SD
11-2,5+		organics Analyses	pone	5.50		0/1/2000	50
'ercest Moisture	ASTM D2216-98	86.1	%		7/8/2008	7/10/2008	RP
Lab ID:	20080585-07						,
Client ID:	HA-3/ 3.0 - 3.5						
Date Sampled:	6/20/2008 11:47:00 AM						· .
Matrix:	Solid						
		liochemical Analyse	e				
Հ-40	HASL 300	4.35 +/- 1.17		0.680		8/1/2008	SD
[1-208	HASL 300	0.383 +/- 0.089	pCi/g pCi/g	0.080		8/1/2008	SD
3i-212	HASL 300	0.518 +/- 0.451	pCi/g pCi/g	0.539		8/1/2008	SD
vb-212	HASL 300	1.09 +/- 0.165		0.039		8/1/2008	SD
3i-214	HASL 300	0.726 +/- 0.158	pCi/g pCi/g	0.122		8/1/2008	SD
vb-214	HASL 300	0.859 +/- 0.134					
	HASE 300			0.105		8/1/2008	SD
Ac-228)		0.787 +/- 0.172	pCi/g	0.222		8/1/2008	SD
Th-234	HASL 300	0 +/- 2.08	pCi/g	0.778		8/1/2008	SD
'ercent Moisture	ASTM D2216-98	organics Analyses 59.1	%		7/8/2008	7/10/2008	RP
ab ID-	20000505 00						
Lab ID:	20080585-08						
Client ID:	HA-3/3.5-4.0	. *					
)ate Sampled:	6/20/2008 11:49:00 AM						
Aatrix:	Solid	1					
, ()		iochemical Analyses		0.000		0/1 /0000	00
	HASL 300	5.93 +/- 1.08	pCi/g	0.625		8/1/2008	SD
1-208	HASL 300	0.408 +/- 0.067	pCi/g	0.057		8/1/2008	SD
3i-212	HASL 300	0.479 +/- 0.456	pCi/g	0.564		8/1/2008	SD
'b-212	HASL 300	0.356 +/- 0.366	pCi/g	0.109		8/1/2008	SD

BDL = Below Detection Limit

311 North Aspen Broken Arrow, OK 74012 (918) 251-2515 FAX (918) 251-0008

Client: Client Project: 94005.29.05 Lab Number: Date Reported: Date Received: Page Number:

IEM

20080585

9/11/2008

7/8/08

4 of 5

Analytical Report

	Method	Result	Units	DL	Prep	Analysis	Analyst
·					Date	Date	
Bi-214	HASL 300	. 1.01 +/- 0.156	pCi/g	0.137		8/1/2008	SD
b-214	HASL 300	1.18 +/- 0.126	pCi/g	0.187		8/1/2008	SD
Ac-228	HASL 300	0.861 +/- 0.188	pCi/g	0.214		8/1/2008	SD
`h-23 4	· HASL 300	2.61 +/- 1.16	pCi/g	1.72		8/1/2008	SD
	Ja	norganics Analyses					
ercent Moisture	ASTM D2216-98	60.1	%		7/8/2008	7/10/2008	RP
ab ID:	20080585-09						
lient ID:	HA-4/ 0.0 - 0.5						
ate Sampled:	6/20/2008 9:55:00 AM						
atrix:	Solid			. •			
	Ra	diochemical Analyses	5				
-40	HASL 300	3.87 +/- 0.870	pCi/g	1.74		8/1/2008	SD
1-208	HASL 300	1.11 +/- 0.159	pCi/g	0.157		8/1/2008	SD
i-2 <u>12</u>	HASL 300	2.74 +/- 0.915	pCi/g	1.17		8/1/2008	SD
	HASL 300	2.34 +/- 0.750	pCi/g	0.335		8/1/2008	SD
1-214	HASL 300	2.57 +/- 0.267	pCi/g	0.202		8/1/2008	SD
b-214	HASL 300	2.52 +/- 0.207	pCi/g	0.168		8/1/2008	SD
c-228	HASL 300	3.36 +/- 0.385	pCi/g	0.433		8/1/2008	SD
h-234	HASL 300	0.053 +/- 0.070	pCi/g	0.323		8/1/2008	SD
	ľ	norganics Analyses					
ercent Moisture	ASTM D2216-98	64.1	%		7/8/2008	7/10/2008	RP
ab ID:	20080585-10						
lient ID:	HA-4/ 0.5 - 1.0						
ate Sampled:	6/20/2008 9:57:00 AM						
latrix:	Solid						
		diochemical Analyses					
-40	HASL 300	2.65 +/- 1.02		0.876		8/1/2008	SD
1-208	HASL 300	0.748 +/- 0.134	pCi/g	0.122		8/1/2008	SD
i-212	HASL 300	1.29 +/- 0.840	pCi/g	1.04		8/1/2008	SD
b-212	HASL 300	2.24 +/- 0.300	pCi/g	0.138		8/1/2008	SD
i-214	HASL 300	2.57 +/- 0.299	pCi/g	0.200		8/1/2008	SD
b-214	HASL 300	2.92 +/- 0.280	pCi/g	0.155		8/1/2008	SD
c-228	HASL 300	2.04 +/- 0.297	pCi/g	0.301		8/1/2008	SD
h-234	HASL 300	0 +/- 0.565	pCi/g	1.13		8/1/2008	SD
	I	norganics Analyses					
Moisture	ASTM D2216-98	58.4	·%		7/8/2008	7/10/2008	RP

311 North Aspen Broken Arrow, OK 74012 (918) 251-2515 FAX (918) 251-0008 Client: Client Project: Lab Number: Date Reported: Date Received: Page Number: IEM 94005.29.05 20080585 9/11/2008 7/8/08 5 of 5

Lab Approval:

BDL = Below Detection Limit

SMU	NEWFI	ELD, NJ ()8344 • (6	80ULEVAI 09) 692-42					attal Cu	101 01 01					
Project No: FEM	Preject	No. 9	4005	29.05	Chain of Tape No:	•		21.8	ers.	^N O ^Y					
Sampler: (Print Nar	ne)				Purchase Order:	Э		N N	(9 ⁸ /	/ /		r		Nui	mber of
Sample No./ dentification	Colle Date	ction Time	Preserv.	Lab Sar Numl	•	Sample Matrix							pH*	/	ntainers/ MARKS
HA-1 /1.0-1.5	6/19/08	13:50	none	Zplec	Bea	Soil		X		[
HA-2/2.0-2.5	Ŵ	14:40	1		J	1	[×		1				· · · · · · · · · · · · · · · · · · ·	
HA-3/0.0-0.5	6/20/08							X						· · ·	
HA-3/0.5-1.0	(11:37			•			x							
4A-3/1.0-1.5		11:39						X							
44-3/1.5-2.0		11:41						X							
HA-3/3.0-3.5		11:47	·					X						· · ·	
1A-3/3.5-4.0		11:49				1		X						•	
4A-4/0.0-0.5		09:55		. k	······································			X		:				· · · ·	,
HA-4/0.5-1.0	V	09:57	V	V		V		X			<u> </u> .	(918)	251-	2515	
	······································			, ;			· · ·								
		·			·····	Son	1+0	O	utrea	ch	Labo	ratery	, ·	· · ·	
									ttn	Sa	mple		iving		
										Vorth	As	pen	J		
							·	_	Brek		rrow	OK	74	012	
Relinquished By:	(Signature)	Sn X	f	<u></u>	Date 7/7/08	Time	Receiv	ed By:	Signature)	Elis)		Date	Time 1440
~	~2		N					yes in		Q			4 ;		
2							2.			·····					
3. Sample Disposal	Mothod:						3. Dianaa	ed By: (s				·····			
Sample Disposal	methou.)			Dispus	eu by. (a	signature)		÷				
SAMPLE COLLE	CTOR/WI	TNESS: <i>(S</i>	ignature)				ANALY	TICALL	ABORA	TORY A	ND CO	NTACT:			<u> </u>

SHIELDALLOY METALLURGICAL CORPORATION "Decommissioning Plan for the SMC facility" August 2009

Rev. 1b

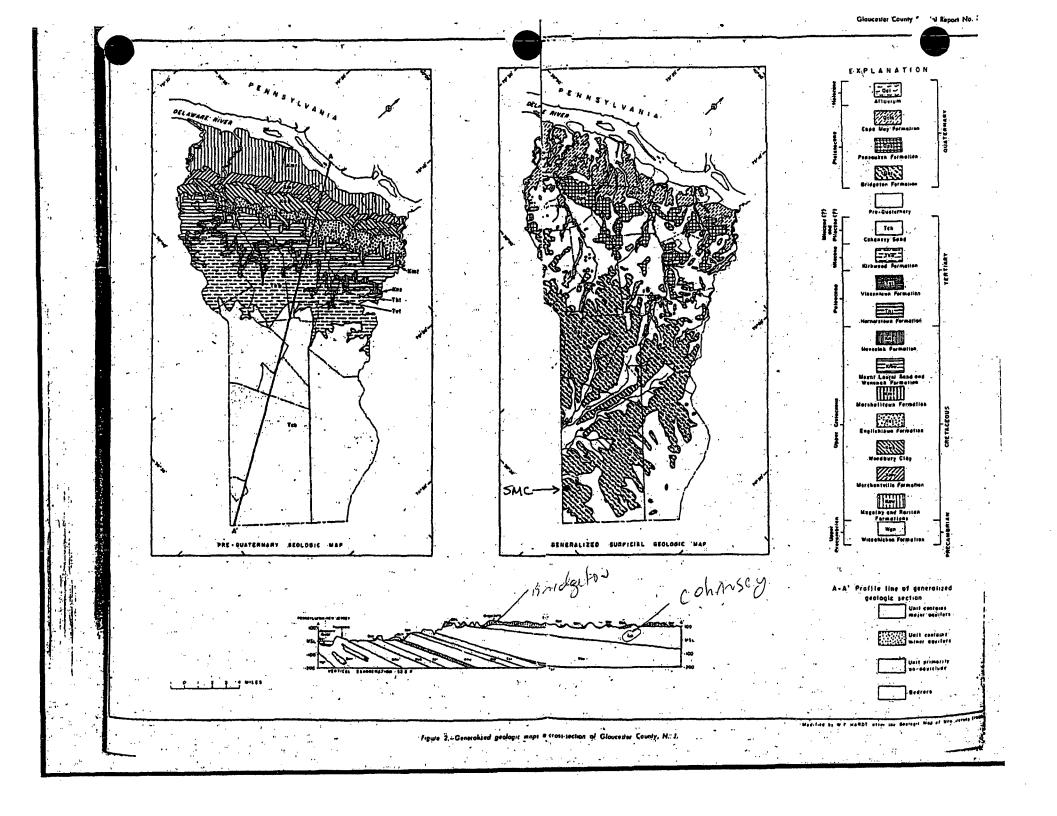
ATTACHMENT J

SUBSURFACE SOIL CONCENTRATIONS

STORAGE YARD SUBSURFACE SOIL SAMPLING SUMMARY Shieldallov Metallurgical Corporation

7				Shieldalloy Metallurgical Corpora				Ī		Measured		<u></u>	Calculated						
Г		×				Gross		Net											
			Sampling		Denth	Screenin	Error	Screeni	Error	Th-232	U-238	Ra-226	Th-232	Error	U-238	Error	Ra-226	Error	
	Sample ID Location	Location	Method	Notes	(ft)	g Result	(95%)	ng	(95%)	(pCi/g)	(pCi/g)	(pCi/g)	(pCi/g)	(95%)	(pCi/g)	(95%)	(pCi/g)	(95%)	
			method		()	(cpm)	(00,0)	Result (cpm)	()	(i ²	(1° - °° 3)	(i 5)	(P 3)	(•••••,	(= 3)	(****)	(1 3)	(,-,	
F				Sampled every 0.5 ft from surface to 4.5 feet below ground surface															
н	A-1	Background	Hand Auger	(bgs)	0 to 0.5	5835	153	0					2		· 1		1		
		•		Generally light red-brown fine to coarse sands	0.5 to 1	5835	153	0					2		1		1		
				Refusal at 4.5 feet bgs	1 to 1.5	5835	153	0		0.625	0.548	0.684	2		1	•	1		
					1.5 to 2	5835	153	0					2		1		1		
					2 to 2.5 2.5 to 3	5835 5835	153 153	0					2		1		1		
					2.5 to 3 3 to 3.5	5835	153	0					2		1		1		
					3.5 to 4	5835	153	0					2		1		1		
					4 to 4.5	5835	153	0					2		1		1	•	
					4 10 4.0	5055	100	U .		-			L		•		•		
Н	A-2	Background	Hand Auger	Sampled every 0.5 ft from surface to 4 feet bgs Generally brown to yellow-brown trending to red-brown fine to	0 to 0.5	5835	153	0					2		1		1	-	
				coarse sands	0.5 to 1	5835	153	0					2		1		1		
				Refusal at 4 feet bgs	1 to 1.5	5835	153	0					2		1		1		
					1.5 to 2	5835	153	0				• • • • • •	2		1		1		
					2 to 2.5	5835	153	0		0.724	0.528	0.429	2		1		1		
					2.5 to 3	5835	153	0					2		.1		1		
					3 to 3.5	5835	153	0					2		1		1		
_					3.5 to 4	5835	153	0					2		1		1		
					4 to 4.5	5835	153	0			-		2		ŀ		1		
		Between Areas		· · · · · · · · · · · · · · · · · · ·														····	
H	A-5	6&7	Test Pit	Dark gray/brown sand with slag to 4 ft bgs	0 to 0.5	18674	273	12839	313				15	2	12	1	9		
			Hand Auger	Red brown sand & gravel, trace silt, medium dense 4 ft to 7 ft bgs	0.5 to 1	35495	377	29660	407				32	-2	25	1	19		
				Perched water at 4.5 ft bgs	1 to 1.5	50265	448	44430	474				48	2	38	1	28		
				Sampled every 0.5 ft from surface to 7 ft bgs	1.5 to 2	16739	259	10904	301				13	2		1	8		
					2 to 2.5	7460	173	1625	231				3	2	2	1	2		
			•	Gauged adjacent well SC11S(R) - water at 13 ft bgs; supports															
				perched ground water at 4.5 ft at HA-5	2.5 to 3	7317	171	1482	230				3	. 2	2	1	2		
					3 to 3.5	6212	158	377	220				2	2	1	1	2		
					3.5 to 4	5835	153	0	216				2	2	1	1	1		
					4 to 4.5	5835	153	0	216				2	-2		1	1		
					4.5 to 5	5835	153	0	216				2	2		1	1		
	-				5 to 5.5	5835	153	0	216				2	2	1	1	1		
					5.5 to 6	5835	153	0	216				2	2	1	1	1		
					6 to 6.5 6.5 to 7	5835 5835	153 153	0 0	216 216				2	. 2		1	1		
					0.0 10 7	0000	153	U	210				Z	.2	T	1	1		
		West Side of				<u></u>						<u> </u>							
H	A-4	Area 8	Test Pit	Sampled every 0.5 ft from surface to 4.5 ft bgs	0 to 0.5	8346	183	2511	238	3.360	0.053	2.570	4	2	3	1	3		
				Slag intermixed with sand 0 - 1.5 ft bgs	0.5 to 1	8460	184	2625	239	2.040	0.000	2.570	. 4	2	-	1	3		
				Black fine/med sand & silt from 0.5 to 2 ft bgs	1 to 1.5	6138	157	303	219				2	. 2		1	2		
				Brown f/m sand, some silt, trace gravel 2.0 to 3.0 ft bgs	1.5 to 2	5922	154	87	217				2	2		1	1		
					2 to 2.5	5835	153	0	216				2	2		1	1	-	
					2.5 to 3	5835	153	0	216				2	2		1	1		
					3 to 3.5	5835	153	0	216				2	2		1	1		
					3.5 to 4 4 to 4.5	5835	153 153	0	216				2	2		1	1	Î	
				It orange brown f/c sand & silt; little clay; damp little f gravel 3.0 to	4 10 4.5	5835	153	. 0	216				2	2	1	1	1	1	
				5.0 ft bgs	4.5 to 5	5835	153	0	216				2	2	1	1	1	-	
					7.5 10 5	0000	100	0	210				2	2	1	1	1		

.


Sample ID	Location	Sampling Method	Notes	Depth (ft)	Gross Screenin g Result (cpm)	Error (95%)	Net Screeni ng Result (cpm)	Error (95%)	Th-232 (pCi/g)	U-238 (pCi/g)	Ra-226 (pCi/g)	Th-232 (pCi/g)	Error (95%)	U-238 (pCi/g)	Error (95%)	Ra-226 (pCi/g)	Err (95
A-3	Southwest Side of	Test Pit	Sampled every 0.5 ft from surface to 5.5 ft bgs	0 to 0.5	35881	379	30046	409	26.900	1.190	18.300	33	2	26	1	20	
						-											
	Area 3, between Areas		Intermixed sand & slag from 0 to 2.5 ft bgs Lt brown F/C sand, some silt, some F/C gravel, some slag, cobbles,	0.5 to 1	25683	321	19848	355	29.100	58.500	13.600	22	2	17	1	13	
3 & 4	3&4		boulders 0 to 2 ft bgs	1 to 1.5	12637	225	6802	272	18.700	3.300	6.260	9	2	7	1	6	
				1.5 to 2	12492	224	6657	271	4.840	0.000	10.900	8	. 2	6	1	5	
				2 to 2.5	9326	193	3491	246				5	2	4	1	4	
			Lt brown F/C sand & silt, F/C gravel, slag, highly cemented 2 to 2.5														
			ft bgs	2.5 to 3	7151	169	1316	228				3	2	2	1	2	
			Dk brown F sand & silt, some F gravel, very dense 2.5 to 4 ft bgs	3 to 3.5	5988	155	153	218	0.787	0.000	0.726	2	2	1	1	2	
				3.5 to 4	6022	155	187	218	0.861	2.610	1.010	2	2	1	1	2	
			Lt red brown F/C sand, It silt, trace clay, some F gravel, dense to								•						
			medium dense 4 to 5.5 ft bgs	4 to 4.5	5936	154	101	217				2	2	1	1	1	
				4.5 to 5	5835	153	0	216				2	2	1	1	1	
	·			5 to 5.5	5835	153	0	216				2	2	1	1	1	
_	Between Areas														·		
4-6	4 and 6	Test Pit	Sampled every 0.5 ft from surface to 4.5 ft bgs Red brown F/C sand, some F gravel, little silt, lightly cemented 0 to	0 to 0.5	8134	180	2299	237				. 4	2	3	. 1	3	
			1.3 ft bgs	0.5 to 1	7232	170	1397	229				3	2	2	1	2	
· · ·			Dark brown F sand & silt, little clay, trace roots, very dense 1.3 to 3														
			ft bgs	1 to 1.5	6036	155	201	218				2	2	1	1	2	
			Lt orange brown fine sand, little fine gravel 3 to 4.5 ft bgs	1.5 to 2	5835	153	0	216				2	2	1	1	1	
				2 to 2.5	5835	153	0	216				2	2	1	1	1	
				2.5 to 3	5835	153	0	216				2	2	1	1	1	
				3 to 3.5	5835	153	0	216				2	2	1	1	1	
				3.5 to 4	5835	153	0	216		-		2	2	1	1	1	
				4 to 4.5	5835	153	0	216				2	2	1	1	1	

Rev. 1b

ATTACHMENT K

SELECT SUPPORTING FIGURES

Figure 1

Figure 2

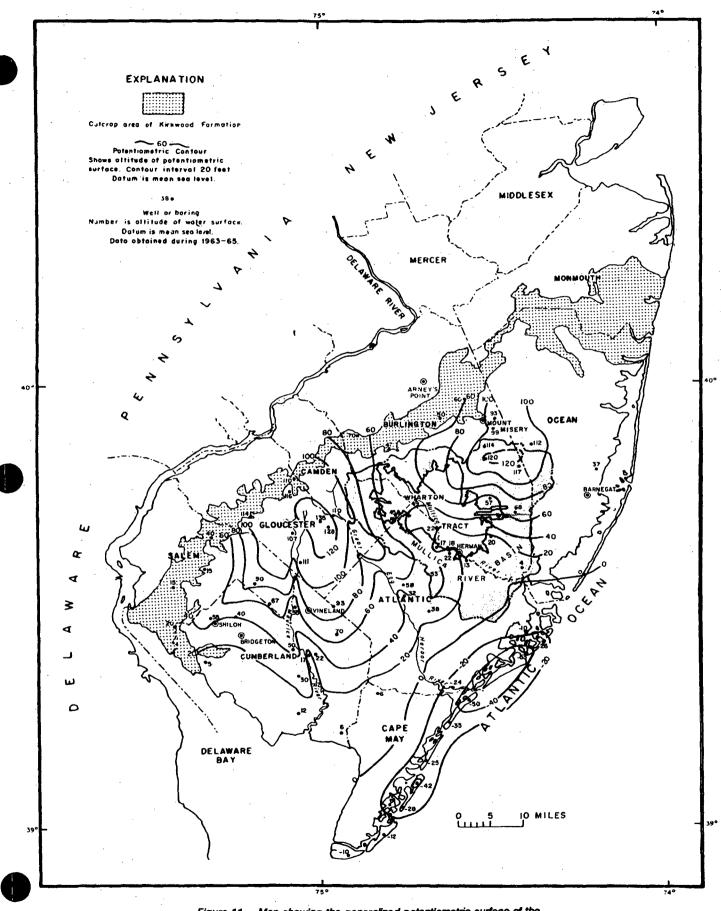
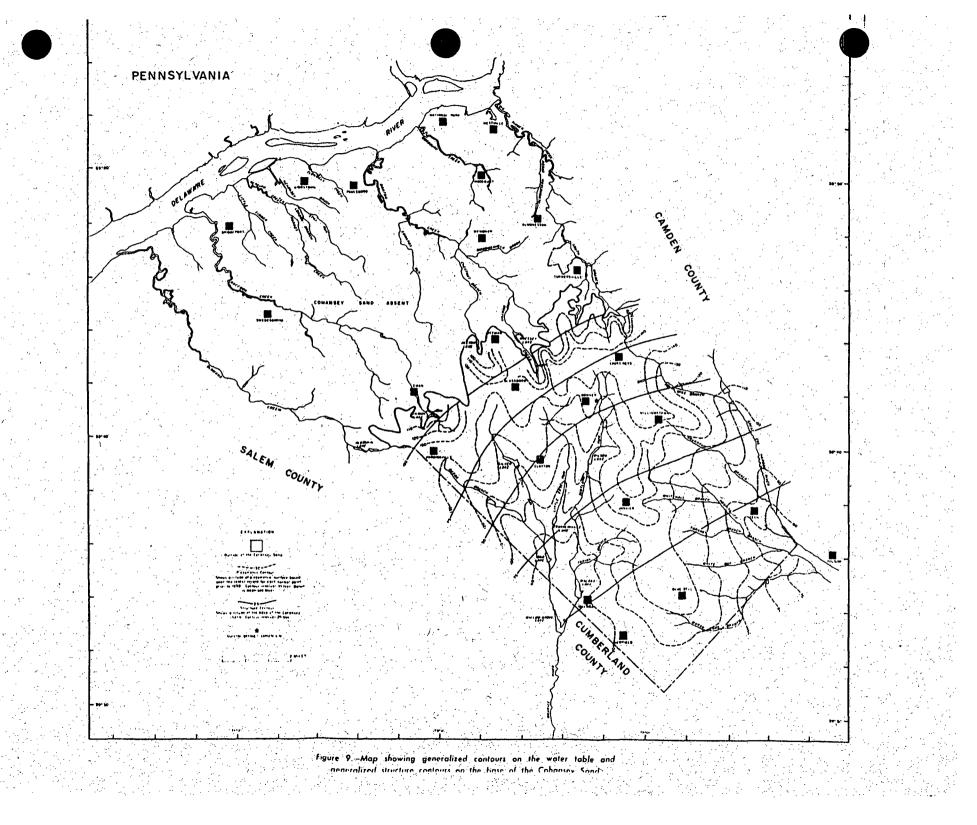



Figure 11. – Map showing the generalized potentiometric surface of the Kirkwood Formation in southern New Jersey.

25

Figure 3

1

1

Figure 4

.

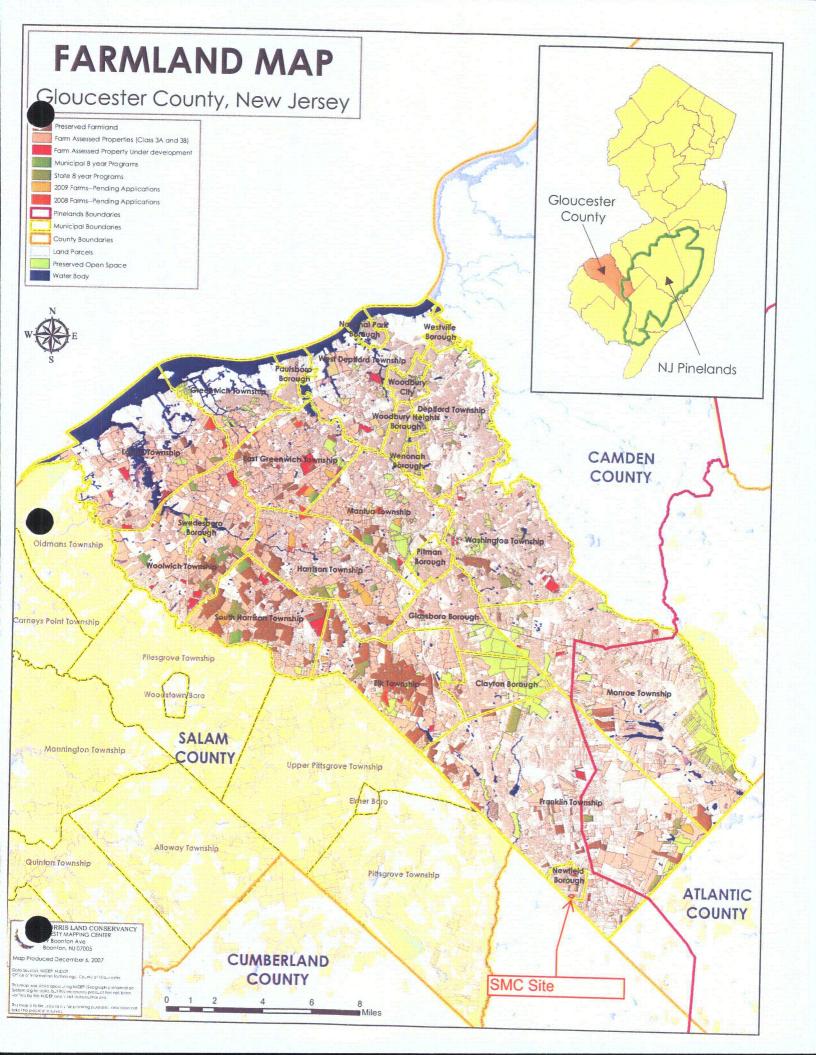


Figure 5

APPENDIX F – HYDROLOGIC DATA FOR THE MAURICE RIVER BASIN

}

APPENDIX F - HYDROLOGIC DATA FOR THE MAURICE RIVER BASIN

Surface Water Records – Maurice River at Norma

Surface Water Records – Various Hudson Branch Locations

Low-Flow Characteristics and Flow Duration of New Jersey Streams – Maurice River Data

Table F-1 – Summary of NJPDES Discharge Flow Data 2000 - Present

01411500 MAURICE RIVER AT NORMA, NJ

MAURICE RIVER BASIN

LOCATION .-- Lat 39°29'44", long 75°04'37" referenced to North American Datum of 1983, Pittsgrove Township, Salem County, NJ, Hydrologic Unit 02040206, on right bank just upstream from bridge on Almond Road (County Route 540) at Norma, 0.8 mi downstream from Blackwater Branch, and 2.9 mi west of Vineland.

DRAINAGE AREA.-112 mi².

SURFACE-WATER RECORDS

PERIOD OF RECORD.--July 1932 to current year. Monthly discharge only for December 1933, published in WSP 1302.

REVISED RECORDS.--WSP 1382: 1933. WDR NJ-79-1: 1967(P). WDR NJ-82-2: Drainage area. WDR US-2007: 2000, 2003.

GAGE.--Water-stage recorder and crest-stage gage. Concrete control since Dec 27, 1937. Datum of gage is 46.94 ft above NGVD of 1929.

REMARKS.--Records fair. Occasional regulation by lakes and ponds above station. Several measurements of water temperature were made during the year. Satellite gage-height telemetry at station.

PEAK DISCHARGES FOR CURRENT YEAR .-- Peak discharges greater than base discharge of 380 ft3/s and (or) maximum (*):

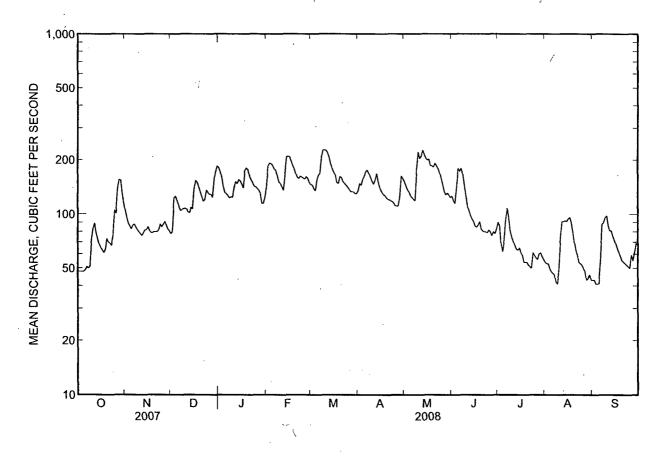
Date	Time	Discharge (ft³/s)	Gage height (ft)
Mar 9	0430	· *227	*3.05

01411500 MAURICE RIVER AT NORMA, NJ-Continued

DISCHARGE, CUBIC FEET PER SECOND WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008 DAILY MEAN VALUES

				•								
Day	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jui	Aug	Sep
1	48	105	78	182	143	146	135	152	126	90	54	43
2	48	96	80	173	185	145	148	144	119	86	53	43
3	48	89	123	159	192	138	145	137	115	68	53	41
4	48.	86	126	142	. 191	135	157	133	142	62	50	41
5	48	83	119	132	187	156	163	127	180	71	48	41
6	49	87	113	130	179	166	172	124	173	94	47	55
7	51	88	105	127	176	168	176	121	180	108	46	88
8	50	85	- 106	123	163	209	169	119	167	95	42	90
9	51	82	107	125	151	227	161	178	145	81	41	96
.10	72	80	108	124	148	227	153	221	128	75	49	98
11	83	78	107	141	142	226	147	204	112	71	75	87
12	89	76	103	152	136	219	155	210	104	67	91	81
13	79	79	102	148	166	207	168	226	98	64	91	81
14	73	82	109	156	208	191	152	215	94	63	92	76
15	68	82	107	153	210	180	141	205	91	65	91	72
16	65	85	140	147	209	172	135	200		~ 61	94	68
17	63	81	154	140	198	165	130	202	85	59	96	<i>6</i> 4
18	61	79	150	175	188	150	128	187	87	54	90	61
19	64	79	141 .	181	180	148	. 125	186	91	54	80	58
20	73	80	133	177	169	162	122	183	83	54	70	55
21	70.	80	125	162	161	160	121	192	81	52	63	54
22	69	80	118	155	158	152	119	186	80	51	59	53
23	· 67	82	121)	149	163	149	118	180	80	50	54	52
24	76	88	136	143	161	145	116	170	79	61	53	51
25	105	85	132	142	159	142	112	158	82	59	52	50
26	101	88	129	139	157	138	111	146	80	57	50	59
27	140	91	129	136	162	134	111	134	76	56	48	55
28	156	87	124	131	158	133	123	128	80	60	43	61
29	155	83	159	115	150	133	163	131	78	61	44	69
30	· 132	81	171	115		130	158	128	83	58	46	67
31	116		185	124		130		124		56	43	
otal	2,418	2,527	3,840	4,498	4,950	5,083	4,234	5,151	3,205	2,063	1,908	1,910
lean	78.0	84.2	124	145	171	164	141	166	107	66.5	61.5	63.7
Aax	156	105	185	182	210	227	176	226	180	108	96	98
Ain	48	76	78	115	136	130	111	119	76	50	41	41
fsm	0.70	0.75	1.11	1.30	1.52	1.46	1.26	1.48	0.95	0.59	0.55	0.5
n.	0.80	0.84	1.28	1.49	1.64	1.69	1.41	1.71	1.06	0.69	0.63	0.63

STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1933 - 2008, BY WATER YEAR (WY)


	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Mean	112	139	168	189	199	228	227	187	146	122	120	118
Max	266	330	385	380	418	427	437	387	325	333	327	591
(WY)	(1990)	(1973)	(1973)	(1936)	(1939)	(1979)	(1984)	(1958)	(2003)	(1975)	(1958)	(1940)
Min	48.6	46.7	57.1	64.7	69.4	89.9	90.9	79.5	57. 7	35.6	32.1	40.6
(WY)	(1966)	[′] (1966)	(1966)	(1966)	(2002)	(2002)	(1966)	(1977)	(1966)	(1966)	(2002)	(1965)

-2--

01411500 MAURICE RIVER AT NORMA, NJ-Continued

		SUMMARY SI	ATISTICS			
	Calendar Y	ear 2007	Water Ye	ar 2008	Water Year	s 1933 - 2008
Annual total	61,535		41,787		······································	
Annual mean	169		114		163	
Highest annual mean					253	1973
Lowest annual mean					67.4	1966
Highest daily mean	1,520	Apr 17	227	Mar 9,10	5,260	Sep 2, 1940
Lowest daily mean	48	Sep 30	41	Many days	20	Aug 16, 2002
Annual seven-day minimum	• 48	Sep 29	43	Aug 30	20	Aug 16, 2002
Maximum peak flow			227	Mar 9-11	^a 7,360	Sep 2, 1940
Maximum peak stage			3.05	Mar 9-11	8.72	Sep 2, 1940
Instantaneous low flow	1		39	Aug 8, Sep 5	20	Aug 15, 2002
Annual runoff (cfsm)	1.51	•	1.02	U / I	1.45	U I
Annual runoff (inches)	20.44		13.88		19.75	
10 percent exceeds	296		180		278	
50 percent exceeds	126		114		143	
90 percent exceeds	61		53		67	

^a From rating curve extended above 3,000 ft³/s by logarithmic plotting, peak was highest since at least 1867, when Union Lake Dam was built in Millville.

CHAMADY CTATICTICS

ł

-- 3 -

01411500 MAURICE RIVER AT NORMA, NJ-Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 1953, 1962-63, 1965 to September 1997, December 1998 to current year.

PERIOD OF DAILY RECORD .--

DISSOLVED OXYGEN: August and September 2007.

DISSOLVED OXYGEN PERCENT OF SATURATION: August and September 2007.

PH: November 1992 to April 1994, August and September 2007.

SPECIFIC CONDUCTANCE: January 1980 to November 1986, November 1992 to September 1994, August and September 2007. WATER TEMPERATURE: January 1980 to November 1986, November 1992 to September 1994, August and September 2007.

REMARKS.--Cooperative Network Site Descriptor: Watershed Integrator, New Jersey Department of Environmental Protection Watershed Management Area 17. The samples on Jul 29 and Sep 16 were for the National Monitoring Network. The sample on Aug 27 was for both networks.

COOPERATION.--Physical measurements and samples for laboratory analyses on Nov 20, Feb 26, May 14, and Aug 27 were provided by personnel of the NJ Department of Environmental Protection. Determinations of dissolved ammonia, dissolved orthophosphate, and suspended residue on those dates were performed by the NJ Department of Health and Senior Services, Environmental and Chemical Laboratory.

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

Part 1 of 5

Date	Time	Instan- taneous dis- charge, ft3/s (00061)	Turbdty white light, det ang 90+/-30 corrctd NTRU (63676)	UV absorb- ance, 254 nm, wat fit units /cm (50624)	UV absorb- ance, 280 nm, wat fit units /cm (61726)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfitrd field, std units (00400)	Specif- ic conduc- tance, wat unf µS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)	Temper- ature, water, deg C (00010)	Hard- ness, water, mg/L as CaCO3 (00900)
Nov 20	0830	80	1.1	.128	.102	765	9.5	83	6.6	118	7.5	9.3	24
Feb	0050	00	1.1	.120	.102	105	7.5		0.0	110	1.5	7.5	24
26	0800	157	1.7	.198	.151	756	10.2	81	6.5	137	4.0	6.8	26
May 14 Jul	0800	217	2.8	.602	.471	765	7.0	68	6.3	98	13.5	14.0	20
29	1020	62	2.5	.144	.114	761	8.2	94	6.6	110	27.5	22.2	22
Aug 27	0900	49	1.4	.163	.127	764	7.5	80	6.6	117	19.0	19.1	23
Sep		ر ب	л. т	.105	.141	707	1.5	00	0.0	117	17.0	17.1	4.5
16	1100	68	1.8	.171	.133	765	8.2	92	6.5	113	19.0	21.1	22

01411500 MAURICE RIVER AT NORMA, NJ-Continued

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008 Part 2 of 5

[Remark codes: <, less than; E, estimated.]

Date	Calcium water, fitrd, mg/L (00915)	Magnes- ium, water, fltrd, mg/L (00925)	Potas- sium, water, fltrd, mg/L (00935)	Sodium, water, fitrd, mg/L (00930)	ANC, wat unf fixed end pt, lab, mg/L as CaCO3 (90410)	Alka- linity, wat fit fxd end lab, mg/L as CaCO3 (29801)	Alka- linity, wat fit inf tit field, mg/L as CaCO3 (39086)	Bicar- bonate, wat fit infl pt titr., field, mg/L (00453)	Chlor- ide, water, fltrd, mg/L (00940)	Fluor- ide, water, fitrd, mg/L (00950)	Silica, water, fitrd, mg/L as SiO2 (00955)	Sulfate water, fitrd, mg/L (00945)	Residue water, fltrd, sum of consti- tuents mg/L (70301)
Nov													
20	5.02	2.79	2.32	10.2	9			′	15.7	<.12	7.8	10.6	69
Feb 26	5.47	2.91	2.05	12.8	7				20.8	<.12	7.1	12.1	76
May									2010				
14	4.12	2.29	1.82	8.64	9				14.8	<.12	5.8	8.14	55
Jul													
29	4.49	2.49	2.34	9.48	、	12	10	12	15.5	<.12	5.51	6.70	E60
Aug													
27	4.73	2.69	2.27	11.3	12	12		·	15.9	<.12	5.67	8.36	E66
Sep													
16	4.63	2.60	2.23	9.85		12	E9	E10	15.8	<.12	5.53	8.64	E61

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

Part 3 of 5

					[Remark co	des: <, les		stimated.]			ı •		
r - rates	Residue		Ammonia	Ammonia	1	Nitrate	1.1	· · · ·	Partic-			Ortho-	
Date	on evap. at 180degC wat fit mg/L (70300)	Residue total non- filter- able, mg/L (00530)	+ org-N, water, fltrd, mg/L as N (00623)	+ org-N, water, unfitrd mg/L as N (00625)	Ammonia water, fltrd, mg/L as N (00608)	+ nitrite water fltrd, mg/L as N (00631)	Nitrate water, fitrd, mg/L as N (00618)	Nitrite water, fitrd, mg/L as N (00613)	ulate nitro- gen, susp, water, mg/L (49570)	Total nitro- gen, water, fitrd, mg/L (00602)	Total nitro- gen, water, unfitrd mg/L (00600)	phos- phate, water, fitrd, mg/L as P (00671)	Phos- phorus, water, fitrd, mg/L as P (00666)
Nov 20	82	3	.31	· ••	.034	2.03			E.04	2.3	E2.4	<.010	E.006
Feb 26	91	4	.27		.019	1.97			.05	2.2	2.3	<.010	E.007
May 14	88	2	.51		.016	.85			.07	1.4	1.4	<.010	.013
Jul 29	76		.29	.29	<.020	1.60	1.60	.003	E.02	1.9	E1.9	E.005	.006
Aug 27	73	3	.38	.32	.029	1.72	1.72	.003	E.04	2.1	E2.1	E.004	.008
Sep 16	70		.31	.31	.022	1.43	1.43	.003	.04	1.7	1.7	<.006	.008

01411500 MAURICE RIVER AT NORMA, NJ-Continued

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008 Part 4 of 5

[Remark codes: <, less than; E, estimated.]

Date	Phos- phorus, water, unfitrd mg/L as P (00665)	Total carbon, suspnd sedimnt total, mg/L (00694)	Inor- ganic carbon, suspnd sedimnt total, mg/L (00688)	Organic carbon, suspnd sedimnt total, mg/L (00689)	Organic carbon, water, fitrd, mg/L (00681)	Organic carbon, water, unfitrd mg/L (00680)	Arsenic water, fitrd, µg/L (01000)	Boron, water, fitrd, µg/L (01020)	lron, water, fitrd, μg/L (01046)	Lithium water, fitrd, µg/L (01130)	Selen- ium, water, fitrd, µg/L (01145)	Stront- ium, water, fitrd, µg/L (01080)	Vana- dium, water, fitrd, µg/L (01085)
Nov													
20	.009	.4	<.04	.4	3.1			36					
Feb					÷					,			
26	.011	.4	<.04	.4	4.7			34			;	'	
Лау				. "									
14	.022	.9	<.04	.9	11.1			39			,	· ·	
Jul													•
29	.014	.2	<.04	.2	3.0	3.5	1.6	37	270	E.7	.09	27.8	.57
lug		÷											
27	.013	.4	<.04	.4	3.8	4.7	1.5	42	318	E.8	.10	30.2	.59
Sep													
16	.014	.5	<.04	.5	3.9	4.7	1.3	37	244	E.7	.07	30.6	.41

WATER-QUALITY DATA

WATER YEAR OCTOBER 2007 TO

SEPTEMBER 2008 Part 5 of 5

[Remark codes:

<, less than; E, estimated.]

,	estimated.]
	Sus-
	pended

sedi-
ment
concen-

	tration
Date	mg/L
	(80154)

	,
Nov	
20	
Feb	
26	
May	
14	
Jul	
29	2
Aug	

4 1	2
Sep	
16	3

01411500 MAURICE RIVER AT NORMA, NJ--Continued

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008 Part 1 of 7

[Remark codes: <, less than; E, estimated.]													
Date	1-Naph- thol, water, fitrd 0.7u GF μg/L (49295)	2,6-Di- ethyl- aniline water, fitrd 0.7u GF µg/L (82660)	2Chloro -2',6'- diethyl acet- anilide wat flt µg/L (61618)	CIAT, water, fitrd, µg/L (04040)	2-Ethyl -6- methyl- aniline water, fitrd, µg/L (61620)	3,4-Di- chloro- aniline water, fltrd, µg/L (61625)	3,5-Di- chloro- aniline water, fitrd, µg/L (61627)	4- Chloro- 2methyl phenol, water, fitrd, μg/L (61633)	Aceto- chior, water, fitrd, µg/L (49260)	Ala- chlor, water, fitrd, µg/L (46342)	alpha- Endo- sulfan, water, fitrd, µg/L (34362)	Atra- zino, water, fltrd, µg/L (39632)	Azin- phos- methyl oxon, water, fltrd, μg/L (61635)
Jul									,,				
29	<.04	<.006	<.010	E.006	<.010	<.006	<.008	<.005	<.006	<.006	<.006	E.005	<.04
Aug													
27	<.04	<.006	<.010	E.008	<.010	<.006	<.008	<.005	<.006	<.006	<.006	E.006	<.04
Sep													
16	<.04	<.006	<.010	E.008	<.010	<.006	<.008	<.005	<.006	<.006	<.006	<.007	<.04

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

Part 2 of 7

	,				[Remark co	odes: <, les	s than; E, e	stimated.]						
Date	Azin- phos- methyl, water, fltrd 0.7u GF μg/L (82686)	Ben- flur- alin, watør, fltrd 0.7u GF µg/L (82673)	Car- baryl, water, fitrd 0.7u GF µg/L (82680)	Carbo- furan, water, fltrd 0.7u GF µg/L (82674)	Chlor- pyrifos oxon, water, fitrd, µg/L (61636)	Chlor- pyrifos water, fitrd, µg/L (38933)	cis- Per- methrin water fltrd 0.7u GF µg/L (82687)	cis- Propi- cona- zole, water, fitrd, µg/L (79846)	Cyana- zine, water, fitrd, µg/L (04041)	Cyflu- thrin, water, fitrd, µg/L (61585)	lambda- Cyhalo- thrin, water, fitrd, µg/L (61595)	Cyper- methrin water, fitrd, µg/L (61586)	DCPA, water, fitrd 0.7u GF µg/L (82682)	
Jul														
29	<.120	<.010	<.060	<.020	<.06	<.005	<.010	<.006	<.020	<.016	<.004	<.014	E.002	
Aug														
27	<.120	<.010	<.060	<.020	<.06	<.005	<.010	<.006	<.020	<.016	<.004	<.014	E.004	
Sep														
16	<.120	<.010	<.060	<.020	<.06	<.005	<.010	<.006	<.020	<.016	<.004	<.014	E.003	

-7-

01411500 MAURICE RIVER AT NORMA, NJ-Continued

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

Part 3 of 7 [Remark codes: <, less than; E, estimated.]

Date	Desulf- inyl- fipro- nil, water, fttrd, µg/L (62170)	Diazi- non, water, fitrd, µg/L (39572)	Dicro- tophos, water, fitrd, µg/L (38454)	Diel- drin, water, fitrd, µg/L (39381)	Dimeth- oate, water, fitrd 0.7u GF µg/L (82662)	Disulf- oton sulfonø water, fltrd, µg/L (61640)	Disul- foton, water, fitrd 0.7u GF µg/L (82677)	Endo- sulfan sulfate water, fitrd, µg/L (61590)	EPTC, water, fltrd 0.7u GF µg/L (82668)	Ethion monoxon water, fltrd, µg/L (61644)	Ethion, water, fitrd, µg/L (82346)	Etho- prop, water, fitrd 0.7u GF µg/L (82672)	Fenami- phos sulfone water, fitrd, µg/L (61645)
Jul						;							
29	<.012	<.005	<.08	<.009	<.006	<.01	<:04	<.022	<.002	<.02	<.006	<.012	<.053
Aug													
27	<.012	<.0Ó5	<.08	<.009	<.006	<.01	<.04	<.022	<.002	<.02	<.006	<.012	<.053
Sep 🐳						r.							
16	<.012	<.005	<.08	<.009	<.006	<.01	<.04	<.022	<.002	<.02	<.006	<.012	<.053

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

Part 4 of 7

	[Remark codes: <, less than; E, estimated.]												
Date	Fenami- phos sulf- oxidə, water, fitrd, µg/L (61646)	Fenami- phos, water, fitrd, µg/L (61591)	Desulf- inyl- fipro- nil amide, wat fit µg/L (62169)	Fipro- nil sulfide water, fitrd, µg/L (62167)	Fipro- nil sulfonə water, fitrd, µg/L (62168)	Fipro- nil, water, fltrd, µg/L (62166)	Fonofos water, fitrd, µg/L (04095)	Hexa- zinone, water, fltrd, µg/L (04025)	lpro- dione, water, fitrd, µg/L (61593)	lsofen- phos, water, fitrd, µg/L (61594)	Mala- oxon, water, fitrd, µg/L (61652)	Mala- thion, water, fitrd, µg/L (39532)	Meta- laxyl, water, fitrd, μg/L (61596)
Jul													
29	<.20	<.03	<.029	<.013	<.024	<.020	<.010	<.008	<.01	<.006	<.020	<.016	.013
Aug													
27	<.20	<.03	<.029	<.013	<.024	<.020	<.010	<.008	<.01	<.006	<.020	<.016	.015
Sep												·	
16	<.20	<.03	<.029	<.013	<.024	<.020	<.010	<.008	<.01	<.006	<.020	<.016	E.015

01411500 MAURICE RIVER AT NORMA, NJ-Continued

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008 Part 5 of 7

					[Remark co	odes; <, les	s than; E, e	stimated.]					
Date	Methid- athion, water, fitrd, µg/L (61598)	Methyl para- oxon, water, fitrd, µg/L (61664)	Methyl para- thion, water, fitrd 0.7u GF µg/L (82667)	Metola- chlor, water, fitrd, µg/L (39415)	Metri- buzin, water, fltrd, µg/L (82630)	Moli- nate, water, fitrd 0.7u GF µg/L (82671)	Myclo- butanil water, fitrd, µg/L (61599)	Oxy- fluor- fen, water, fltrd, µg/L (61600)	Pendi- meth- alin, water, fitrd 0.7u GF µg/L (82683)	Phorate oxon, water, fitrd, µg/L (61666)	Phorate water, fitrd 0.7u GF µg/L (82664)	Phosmet oxon, water, fitrd, µg/L (61668)	Phosmet water, fltrd, µg/L (61601)
Jul													. <u> </u>
29	<.004	<.01	<.008	.013	E.007	<.003	<.010	<.006	<.012	<.03	<.040	<.05	<.008
Aug													
27	<.004	<.01	<.008	.036	<.012	<.003	<.010	· <.006	<.012	<.03	<.040	<.05	<.008
Sep					,			•					
16	<.004	<.01	<.008_	.021	<.012	<.003	<.010	<.006	<.012	<.03	<.040	<.05	<.008

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

Part 6 of 7

[Remark codes: <, less than; E, estimated.]

Date	Prome- ton, water, fltrd, µg/L (04037)	Prome- tryn, water, fitrd, μg/L (04036)	Propy- zamide, water, fitrd 0.7u GF µg/L (82676)	Pro- panii, water, fitrd 0.7u GF µg/L (82679)	Propar- gite, water, fitrd 0.7u GF µg/L (82685)	Sima- zine, water, fltrd, µg/L (04035)	Tebu- thiuron water, fltrd 0.7u GF µg/L (82670)	Teflu- thrin, water, fitrd, µg/L (61606)	Ter- bufos oxon sulfone water, fitrd, μg/L (61674)	Terbu- fos, water, fitrd 0.7u GF µg/L (82675)	Ter- buthyl- azino, water, fitrd, µg/L (04022)	Thio- bencarb water, fitrd 0.7u GF µg/L (82681)	trans- Propi- cona- zole, water, fitrd, µg/L (79847)
Jul												``.	
2 9	E.01	<.006	<.004	<.006	<.04	E.007	E.01	<.003	<.04	<.02	<.01	<.010	<.02
Aug						3							
27	E.01	<.006	<.004	<.006	<.04	.027	<.02	<.004	<.04	<.02	<.01	<.010	<.02
Sep					,								
16	E.01	<.006	<.004	<.006	<.04	.021	.02	<.003	<.04	<.02	<.01	<.010	<.02

.

01411500 MAURICE RIVER AT NORMA, NJ-Continued

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

Part 7 of 7

_

Ż

լլ	Remari	< codes	:<,	less	than;	E,	estimated.	J
----	--------	---------	-----	------	-------	----	------------	---

Date	Tribu- phos, water, fitrd, μg/L (61610)	Tri- flur- alin, water, fitrd 0.7u GF µg/L (82661)	Di- chlor- vos, water, fltrd, µg/L (38775)
Jul	. 025		1
29 Aug	<.035	<.009	<.01
27	<.035	<.009	<.01
Sep 16	<.035	<.009	<.01

10-

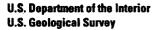
1

01411483 HUDSON BRANCH AT NEWFIELD, NJ

MAURICE RIVER BASIN

LOCATION.--Lat 39°32'05", long 75°01'50" referenced to North American Datum of 1983, Vineland City, Cumberland County, NJ, Hydrologic Unit 02040206, at bridge on West Arbor Avenue, 0.7 mi northwest of North Vineland, 1.0 mi southwest of Newfield, and 0.8 mi upstream of mouth.

DRAINAGE AREA.--1.41 mi².


SURFACE-WATER RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water years 2000, 2008.

GAGE.--None.

DISCHARGE MEASUREMENTS WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

	Discharge,
Date	in tt³/s
Jul 17, 2008	0.45
Sep 2, 2008	0.30

01411483 HUDSON BRANCH AT NEWFIELD, NJ-Continued

WATER-QUALITY RECORDS

PERIOD OF RECORD.--Water years 2004, 2007-08.

REMARKS.--Cooperative Network Site Descriptor: Trace Element Assessment (303d) special study site.

COOPERATION.--Physical measurements and samples for laboratory analyses were provided by personnel of the NJ Department of Environmental Protection.

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

Part	1 of 2	
[QC, quality control sample.	Remark codes: <, less	than.]

Date	Time	Sample medium and type	Turbdty white light, det ang 90+/-30 corrctd NTRU (63876)	Baro- metric pres- sure, mm Hg (00025)	Dis- solved oxygen, mg/L (00300)	Dis- solved oxygen, percent of sat- uration (00301)	pH, water, unfitrd field, std units (00400)	Specif- ic conduc- tance, wat unf µS/cm 25 degC (00095)	Temper- ature, air, deg C (00020)
Jan									
0 8	0920	QC - Artificial, field blank							
08	1000	Surface water, regular	4.1	766	9.6	83	8.2	630	13.0
Apr									
03	0910	QC - Artificial, field blank							
03	0930	Surface water, regular	3.7	773	10.8	93	8.3	656	5.5
Jun									
17	0905	QC - Artificial, field blank				<u></u> -			
17	0930	Surface water, regular	24	755	5.6	64	7.9	663	25.0

WATER-QUALITY DATA WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

Part 2 of 2 [QC, quality control sample. Remark codes: <, less than.]

Date	Temper- ature, water, deg C (00010)	Mercury water, fitrd, μg/L (71890)	Mercury water, unfitrd recover -able, µg/L (71900)
Jan			
<i>08</i>		<.010	
08	8.7	.015	.028
Apr			
<i>03</i>		<.010	
03	8.7	.016	.027
Jun			
17		<.010	
17	20.4	.012	.064

3

 $s^{\rm f}$

01411481 HUDSON BRANCH 250 FT DOWNSTREAM OF WEST WEYMOUTH ROAD, AT NEWFIELD, NJ

MAURICE RIVER BASIN

LOCATION.--Lat 39°32'18", long 75°01'32" referenced to North American Datum of 1983, Vineland City, Cumberland County, NJ, Hydrologic Unit 02040206, 250 ft downstream of West Weymouth Road, 0.6 mi south of Newfield, 0.8 mi north of North Vineland, and 1.4 mi upstream of mouth.

DRAINAGE AREA.--1.20 mi².

SURFACE-WATER RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water year 2008. GAGE.--None.

DISCHARGE MEASUREMENTS WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

	Discharge,
Date	in tt ^e /s
Jul 17, 2008	0.44
Sep 2, 2008	0.42

01411479 HUDSON BRANCH 300 FT UPSTREAM OF WEST BOULEVARD, AT NEWFIELD, NJ

MAURICE RIVER BASIN

LOCATION.--Lat 39°32'22", long 75°01'18" referenced to North American Datum of 1983, Vineland City, Cumberland County, NJ, Hydrologic Unit 02040206, 300 ft upstream of West Boulevard (County Route 614), 0.5 mi south of Newfield, 0.9 mi north of North Vineland, and 1.6 mi upstream of mouth.

DRAINAGE AREA.-1.07 mi².

SURFACE-WATER RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water year 2008.

GAGE .-- None.

DISCHARGE MEASUREMENTS WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

	Discharge,
Date	in ft³/s
Jul 17, 2008	0.52
Sep 2, 2008	0.55

U.S. Department of the Interior . U.S. Geological Survey

01411480 HUDSON BRANCH 200 FT UPSTREAM OF WEST WEYMOUTH ROAD, AT NEWFIELD, NJ

MAURICE RIVER BASIN

LOCATION.--Lat 39°32'20", long 75°01'25" referenced to North American Datum of 1983, Vineland City, Cumberland County, NJ, Hydrologic Unit 02040206, 200 ft upstream of West Weymoth Road, 0.5 mi south of Newfield, 0.9 mi north of North Vineland, and 1.5 mi upstream of mouth.

DRAINAGE AREA .-- 1.14 mi².

SURFACE-WATER RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water year 2008.

GAGE.--Reference point only.

DISCHARGE MEASUREMENTS WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

	Discharge,
Date	in ft ^o /s
Jul 17, 2008	0.51
Sep 2, 2008	0.37

01411482 HUDSON BRANCH 200 FT UPSTREAM OF WEST ARBOR AVENUE, AT NEWFIELD, NJ

MAURICE RIVER BASIN

LOCATION.--Lat 39°32'07", long 75°01'49" referenced to North American Datum of 1983, Vineland City, Cumberland County, NJ, Hydrologic Unit 02040206, 200 ft upstream of West Arbor Avenue, 0.7 mi northwest of North Vineland, 0.9 mi southwest of Newfield, and 1.1 mi upstream of mouth.

DRAINAGE AREA.--1.40 mi².

SURFACE-WATER RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water year 2008.

GAGE .-- None.

DISCHARGE MEASUREMENTS WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

,	Discharge,				
Date	in ft²/s				
Jul 17, 2008	0.36				
Sep 2, 2008	0.28				

U.S. Department of the Interior U.S. Geological Survey

01411484 HUDSON BRANCH 1,400 FT DOWNSTREAM OF NORTH WEST AVENUE, NEAR VINELAND, NJ

MAURICE RIVER BASIN

LOCATION.--Lat 39°31′54″, long 75°02′04″ referenced to North American Datum of 1983, Vineland City, Cumberland County, NJ, Hydrologic Unit 02040206, 1,400 ft downstream of North West Avenue, 0.6 mi upstream of mouth, 1.2 mi southwest of Newfield, and 3.2 mi north of Vineland.

DRAINAGE AREA.-1.90 mi².

SURFACE-WATER RECORDS

PERIOD OF RECORD.--Occasional low-flow measurements, water year 2008.

GAGE .-- None.

DISCHARGE MEASUREMENTS WATER YEAR OCTOBER 2007 TO SEPTEMBER 2008

	Discharge,
Date	in ft ³ /s
Jul 17, 2008	0.40
Sep 2, 2008	0.20

UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

LOW-FLOW CHARACTERISTICS AND FLOW DURATION OF NEW JERSEY STREAMS

By Brian D. Gillespie and Robert D. Schopp

Open-File Report 81-1110

Prepared in cooperation with the NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION, DIVISION OF WATER RESOURCES

Trenton, New Jersey

January 1982

UNITED STATES DEPARTMENT OF THE INTERIOR

JAMES G. WATT, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information, write to:

U.S. Geological Survey Room 430, Federal Building 402 East State Street Trenton, New Jersey 08608

DELAWARE BAY BASINS

	HAP NO.	STATION NUMBER	STATION NAME	QUADRANCLE MAP 7.5 MINUTE SERIES	PACE
			DELAWARE DAY DASINS FISHING CREEK DASIN		
•	1	01411400	FISHING CHEEK AT RIO GRANDE	RIO GRANDE	116
	2	01413404	GREEN CREEK AT GREEN CREEK	RIO GRANDE	116
	3	01411408	DIAS CREEK BASIN DIAS CREEK NEAR CAPE MAY COURT HOUSE	STONE HARBOR	116
			BIDWELL DITCH BASIN BIDWELL DITCH:	. :	
	4	01411410	BIDWELL DITCH TRIBUTARY NEAR CAPE MAY COURT HOUSE	STONE HARBOR	116
	5	01411412	BIDWELL DITCH TRIBUTARY NO. 2 NEAR CAPE MAY COURT HOUSE	STONE HARBOR	117
		· · . –	GOSHEN CREEK BASIN		
	6	01411418	GOSHEN CHEEK AT GOSHEN	WOODBINE	117
			DENNIS CREEK BASIN		
			DENNIS CHEEK:		
	7	01411430	SLUICE CREEK AT CLERMONT	WOODBINE	117
		-	MAURICE RIVER BASIN		
	. 8	01411500	HAURICE RIVER AT NORMA		117
	9	01411800	MAURICE RIVER NEAR MILLVILLE		118
	10	01411850	HILL CREEK NEAR HILLVILLE	MILLVILLE	118
	11	01412000	MENANTICO CREEK NEAR MILLVILLE	FIVE POINTS	118
	12	01412100	WANUMUSKIN RIVER HEAR MANUMUSKIN	PORT ELIZABETH	118
	13	01412500	WEST BRANCH COHANSEY RIVER AT SEELEY	SHILOH	119
			STOW CREEK BASIN	••	
	14	01413050	STOW CREEK AT JERICHO	SHILOH	119
	15	01413060	CANTON DRAIN NEAR CANTON	SALEM	119

01411412 BIDWELL DITCH TRIBUTARY NO. 2 NEAR CAPE WAY COURT HOUSE, NJ

7

7

DATS

7

2 YEARS

10.0 (0.00)

LOCATION -- LAT 39 06 25, LONG 074 50 12, CAPE MAY COUNTY, AT CULVERT PIPE ON GOSHEN ROAD, 1.8 M1 (2.9 KM) NORTHWEST OF CAPE MAY COURT HOUSE, 2.3 MI (3.7 KM) SOUTHEAST OF GOSHEM, AND 3.6 M1 (5.8 KM) UPSTREAM FROM MOUTH. DRAINAGE AREA -- 0.19 50-MI (0.89 50-KM) TRIBUTARY TO -- BIDWELL DITCH STATION TYPE -- LOW-FLOW PARTIAL-RECORD STATION REMARKS -- LOW-FLOW FREQUENCY ESTIMATES BASED ON CORRELATIONS WITH GAGING STATIONS 01409500, 01410000, 01411000 AND 01411500. CORRELATIONS RATED GOOD.

LOW-FLOW FREQUENCY -- PERIOD

ERIOD 1967-72 Average Annual Minihum discharge in Cu FT/S (Cu M/S) for indicated becurrence intervals PERIOD OF CONSECUTIVE DATS

	30	YEARS
-	0.0	(0.00)

01411418 GOSHEN CREEK AT GOSHEN, NJ

LOCATION -- LAT 39 OT 39, LONG OTN 50 N5, CAPE MAY COUNTY, AT CULVERT PIPE ON GOSHEM ROAD, 1.0 MI (1.6 KM) SOUTHEAST OF GOSHEN, 3.3 MI (5.3 KM) NORTHWEST OF CAPE MAY COURT HOUSE, AND 3.3 MI (5.3 KM) UPSTREAM FROM MOUTH. DRAINAGE AREA -- 0.33 SO-MI (0.85 SO-KM) TRIBUTARY TO -- DELAWARE BAY STATION TYPE -- LOW-FLOW ARTIAL-RECORD STATION REMARKS -- LOW-FLOW FREQUENCY ESTIMATES BASED ON CORRELATIONS WITH GAGING STATIONS 01409500, 01411000 AND 01411500. CORRELATIONS RATED GOOD.

LOW-FLOW FREQUENCY -- PERIOD 1967-72 PERIOD OF AVERAGE ANNUAL MINIMUM DISCHARGE IN CU FT/S (CU M/S) FOR INDICATED RECURRENCE INTERVALS PERIOD OF CONSECUTIVE DAYS

2 YEARS	10 YEARS
0.0 (0.00)	0.0 (0.00)

OINIINSO SLUICE CREEK AT CLERMONT, NJ

LOCATION -- LAT 39 09 25, LONG 074 46 18, CAPE NAY COUNTY, AT CULVERT PIPE ON STATE ROUTE 83, 0.6 MI (1.0 KM) NORTHWEST OF CLERMONT, 3.7 MI (6.0 KM) SOUTHEAST OF DENNISVILLE, AND 5.6 MI (9.0 KM) UPSTREAM FROM

NONIMERSI OF CLEARONAL, 3.7 OF 10.0 AND SUCHEAST OF DEFINITIONS IN DEFINITIONS IN DEFINITION OF THE SUCHEAST OF DEFINITION OF THE SUCHEAST OF DEFINITION FREQUENCY ESTIMATES BASED ON CORRELATIONS WITH GAGING STATIONS 01409500, 01411000 AND 01411500. CORRELATIONS RATED GOOD.

LOW-FLOW FREQUENCY -- PERIOD 1967-72 PERIOD OF AVERAGE ANNUAL MINIHUM DISCHARGE IN CU FT/S (CU M/S) FOR INDICATED RECURRENCE INTERVALS CONSECUTIVE

2 YEARS	10	YEARS	
0.0 (0.00)	0.0	(0.00)	

01411500 HAURICE RIVER AT HORMA, MJ

LOCATION -- LAT 39 29 42, LONG 075 D4 38, SALEM COUNTY, ON RIGHT BANK JUST UPSTREAM FROM ALMOND ROAD BRIDGE IN WORMA, AND 0.8 MI (1.3 KM) DOWNSTREAM FROM BLACKWATER BRANCH. TRIBUTARY TO -- DELAWARE BAT SIATIOM TYPE -- COMTINUOUS RECORD GAGING STATIOM AVERAGE DISCHARGE -- 168 CU FT/S (4.76 CU M/S) DAILY DISCHARGE EXTREMES -- MAXIMUM 5260 CU FT/S (149 CU M/S) MINIMOM 23 CU FT/S (149 CU M/S) REMARKS -- OCCASIONAL REGULATION; PROBABLY NOT SIGNIFICANT. DURATION TABLE OF DAILY FLOW -- PERIOD 1933-75 DISCHARGE WHICH WAS EXCEEDED FOR INDICATED PERCENT OF TIME

	2.0\$	5.0\$	10.05	20.0\$	30.05	40.05	50.03	60.05	70.01	80.0\$	90.05	95.05	98.01	99.0%	99-58
CU FT/S	430	345	287	233	198	173	150	129	108	90.0	68.8	55-3	44.1	37.7	33.5
CU M/S	12.2	9.77	8.13	6.60	5.61	4.90	4.25	3.65	3.06	2.55	1.95	1.57	1.25	1.07	0.949
	FREQUENCY PERIOD OF OWSECUTIV DAYS			934-75 ANNUAL	MININU	M DISCH	ARGE IN	CU FT/	S (CU M	/S) FOR	INDICA	TED NEC	UARENCE	INTERV	ALS

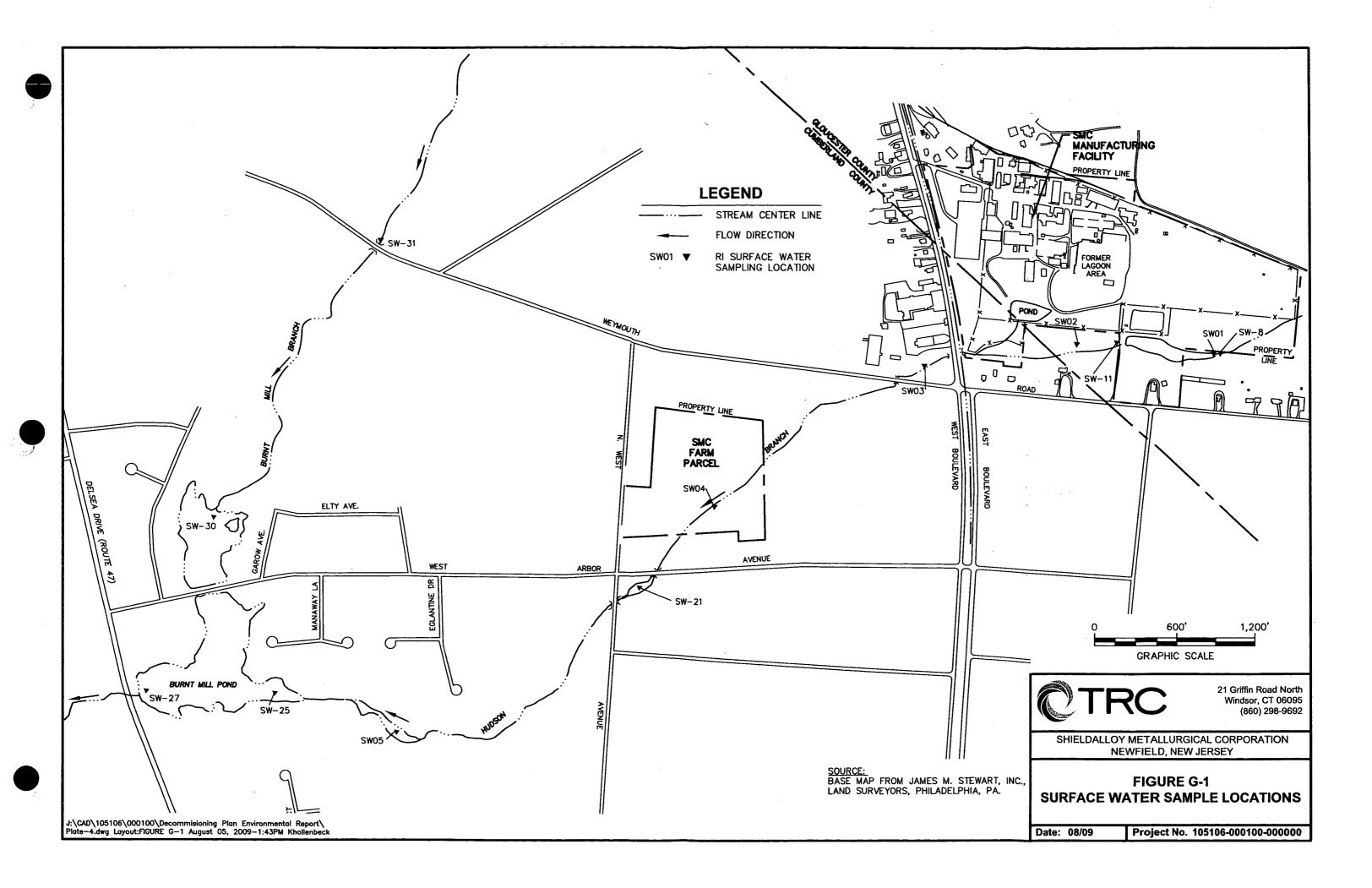
2 YEARS	5 YEARS	10 YEARS	20 YEARS
53 (1.5)	39 (1.1)	33 (0.93)	28 (0.79)
59 (1.7)	44 (1.2)	37 (1.0)	32 (0:91)
70 (2.0)	51 (1.4)	43 (1.2)	38 (1.1)
90 (2.5)	86 (1.9)	55 (1.6)	47 (1.3)

TABLE F-1 SUMMARY OF NJPDES DISCHARGE FLOW DATA 2000 - PRESENT DSN001B AND DSN004A

Shieldalloy Metallurgical Corporation, Newfield, New Jersey

Outfall DSN 001B Remediated Ground Water & Storm Water		Remediated	Outfall DSN 004A Remediated Ground Water & Storm Water	
Month	Ave. Flow (MGD)	Month	Ave. Flow (MGD)	
Jan 00	0.326	Jan 03	0.364	
Feb	0.348	Feb	0.461	
Mar	0.344	Mar	0.439	
Apr	0.332	Apr	0.447	
Мау	0.324	May	0.45	
Jun	0.235	Jun	0.504	
Jul	0.26	Jul	0.425	
Aug	0.23	Aug	0.46	
Sep	0.116	Sep	0.473	
Oct	0.381	Oct	0.384	
Nov	0.492	Nov	0.451	
Dec	0.433	Dec 🧳	0.448	
Jan 01	0.346	Jan 04	0.326	
Feb	0.379	Feb	0.418	
Mar	0.443	Mar	0.42	
Apr	0.368	Apr	0.42	
May	0.473	May	0.4	
Jun	0.441	Jun	0.38	
Jul	0.464	Jul	0.404	
Aug	0.424	Aug	0.396	
Sep	0.446	Sep	0.369	
Oct	0.43	Oct	0.398	
Nov	0.372	Nov	0.4	
Dec	0.372	Dec	0.399	
Jan 02	0.401	Jan 05	0.387	
Feb	0.362	Feb	0.68	
Mar	0.342	Mar	0.398	
Apr	0.351	Apr	0.4	
May	0.361	May	0.37	
Jun	0.306	Jun	0.37	
Jul	0.39	Jul	0.33	
Aug	0.393	Aug	0.376	
Sep	0.35	Sep	0.36	
Oct	0.385	Oct	0.43	
Nov	0.244	Nov	0.387	
Dec	0.281	Dec	0.35	
Min. Mo. Ave.	0.116	Jan 06	0.34	
Max. Mo. Ave	0.492	Feb	0.34	
Mon. Ave:	0.360	Mar	0.34	
	0.000	Apr	0.339	

TABLE F-1 SUMMARY OF NJPDES DISCHARGE FLOW DATA 2000 - PRESENT DSN001B AND DSN004A Shieldalloy Metallurgical Corporation, Newfield, New Jersey


Outfall DSN 004A Remediated Ground Water & Storm Water Month Ave. Flow			
	(MGD)		
May -	0.315		
Jun	0.36		
Jul	0.33		
Aug	0.34		
Sep	0.419		
Oct	0.388		
Nov	0.42		
Dec	0.365		
Jan 07	0.337		
Feb	0.32		
Mar	0.32		
Apr	0.36		
May	0.38		
Jun	0.25		
Jul	0.29		
Aug	0.276		
Sep	0.3		
Oct	0.3		
Nov	0.22		
Dec	0.25		
Jan 08	0.29		
Feb	0.3		
Mar	0.247		
Apr	0.319		
May	0.298		
Jun	0.312		
Jul	0.25		
Aug Sep	0.34 0.31		
Oct	0.31		
Nov	0.3		
Dec	0.35		
Jan 09	0.26		
Feb Mar	0.28 0.26		
Apr	0.26		
May	0.319		
-			
Min. Mo. Ave.	0.22		
Max. Mo. Ave Mon. Ave:	0.68 0.361 ~		

)

APPENDIX G - SURFACE WATER SAMPLING RESULTS

APPENDIX G - SURFACE WATER SAMPLING RESULTS

Figure G-1 - Surface Water Sample Locations Summary of Field Measurements - 1990 RI Chemical Analysis Results - 1990 RI (Table 31a-31d) Chemical Analysis Results - 1995 Supplemental Sampling (Table 1-9)

TABLE 7

SHIELDALLOY METALLURGY CORPORATION	
SURFACE WATER	
FIELD MEASUREMENTS	

SAMPLE ID NUMBER	TEMPERATURE (degree C)	рH	SPECIFIC CONDUCTIVITY (micromhos)
SMC-SW01-01	3.8	6.98	273
SMC-SW02-01	5.4	6.99	275
SMC-SW03-01	4.3	7.76	270
SMC-SW04-01	4.9	7.28	265
SMC-SW05-01	5.8	7.60	250
· · · · · · · · · · · · · · · · · · ·			

TABLE 31a SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SURFACE WATER SAMPLES

SAMPLE IDENTIFICATION:	SW1-01	SW2-01	SW3-01	SW10-01	SW4-01	SW5-01	SW6-01	SW7-01	SW8-01	SW9-01
VOLATILE ORGANICS (ppb)										
CHLOROMETHANE		·	-	-	9 J		-	-	-	-
BROMOMETHANE	-	-	-		. –	· _	-	-		-
VINLY CHLORIDE	-	-	-				-	-	· <u></u>	· ~
CHLOROETHANE		· _	·	. 		-		-	_	· -
METHYLENE CHLORIDE	19 R*	17 R*	18 R*	18 R*	10 BJ*	10 BJ*	41 R*	36 R*	35 R*	19 R*
ACETONE	12 BJ*	6 JB	6 JB	5 JB	7 JB	7 JB	6 N*	10 N* /	- 9 N*	4 N*
CARBON DISULFIDE		-				. –	2 N*	2 N*	2 N*	2 N*
1,1-DICHLORETHENE	·	-	-	-	-		_	-	- .	- '
1,1-DICHLORETHANE	-	_	-	-	. –	-	_	_		-
1,2-DICHLORETHENE (total)	-	· — ·	-	_	2 J		-	·	_ .	-
CHLOROFORM	-	-		_	-	-	·	<u> </u>	`	-
1,2-DICHLORETHANE	-	-	_	_	_	· _	· _	_		<u></u>
2-BUTANONE	-	-	-	· _	- , [,]	- '		- . ·		-
1,1,1-TRICHLOROETHANE	. –	-	-		_	_		·	<u> </u>	-
CARBON TETRACHLORIDE	· _	-	—	·	<u> </u>	<u> </u>	_	· _	-	- '
VINYL ACETATE	-	- .	-	-	-	-	-	-		-
BROMODICHLOROMETHANE	· - ·	-	<u> </u>			<u> </u>	-	-		-
1,2-DICHLOROPROPANE	-	-	· -	<u> </u>	-		-	-	-	-
cis-1,3-DICHLOROPROPENE	-		- '	_	-		-	<u> </u>	_	.
TRICHLOROETHENE	· _ ·	-		—	3 J	-	-	-	· -	, · -
DIBROMOCHLOROMETHANE	<u> </u>	-	·	_	-		-	_		· _ ·
1,1,2-TRICHLOROETHANE	. 🗕	-	 .	_	-	-	-	-	· _ ·	-
BENZENE	-	_	· <u>-</u>		-		· _	. –	-	-
trans-1,3-DICHLOROPROPENE	<u> </u>			<u> </u>	_	·	_	_	-	-
BROMOFORM	·	-	-	-	-		-	_	·	··
4-METHYL1-2-PENTANONE	·	_ ·	_	·		-	-		_	<u></u>
2-HEXANONE		. –	-	-			<u> </u>	-	_	· <u></u>
TETRACHLOROETHENE	-	-	-	· _	· _	-	-	-	_	 . ·
1,1,2,2-TETRACHLOROETHANE	-	· _	<u> </u>	_	— <u> </u>	-	-		-	_ ·
TOLUENE	- .	-	-	-	· · · ·	<u> </u>		· 🕳		
CHLOROBENZENE	-	-	-	_	_	-	· _	-	_	
ETHYLBENZENE	-	***	·	-	_	_	_	_	·	- 1
STYRENE	-	-	· - ·	_	_	-	. —	-	-	
XYLENE (total)	-	-	-	-	-		-	_	-	
TOTAL VOCs	12	. 6	6	.5	31	17	8	0	0	o

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI. N/A - NOT ANALYZED FOR THIS COMPOUND

TABLE 31b SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SURFACE WATER SAMPLES PAGE 1 OF 2

SAMPLE IDENTIFICATION: SI	N1-01	SW2-01	SW3+01	SW10-01	SW4-01	SW5-01	SW6-01	SW7-01	SW8-01	SW9+01
BASE NEUTRAL / ACIDS (ppb)					<u></u>					
PHENOL	-	N/A	N/A	N/A	-	N/A	·	-	_	_
bis(2-CHLOROETHYL)ETHER	-	N/A	N/A	N/A		N/A		~	-	-
2-CHLOROPHENOL	-	N/A	N/A	N/A		N/A	_	_	_	-
1.3-DICHLOROBENZENE	-	N/A	N/A	N/A		N/A	. –	_	_	
1.4-DICHLORBENZENE		N/A	N/A	N/A	-	N/A	·	_		
BENZYL ALCOHOL	_	N/A	N/A	N/A	 .	N/A	_ · · ·	— .	-	_ ·
1,2-DICHLOROBENZENE	· _	N/A	N/A	N/A		N/A		_	_	· _
2-METHYLPHENOL	-	N/A	N/A	N/A	_	N/A	<u>~</u>	-		_
bis(2-CHLOROISOPROPYL)ETHI	-	N/A	N/A	N/A		N/A	· ·			
4-METHYLPHENOL		N/A	N/A	N/A		Ň/A	_		_	_
N-NITROSO-DI-N-PROPYLAN	_	N/A	N/A	N/A		N/A	_	_	·	-
HEXACHLOROETHANE	_	N/A	N/A	N/A	-	N/A	-	-		-
NITROBENZENE	-	N/A	N/A	N/A		N/A	-	_	-	_
ISOPHORONE	_	N/A	N/A	N/A	_	N/A	-	_		_
2-NITROPHENOL		N/A	N/A	N/A	_	N/A	_	_	-	-
2.4-DIMETHYLPHENOL	 '	N/A	N/A	N/A	-	N/A		-	-	
BENZOIC ACID	_	N/A	N/A	N/A	-	N/A	_	-	-	-
bis(2-CHLOROETHOXY)METHAN	_	N/A	N/A	N/A	· _	• N/A	· ·	_	_	
2.4-DICHLOROPHENOL	-	N/A	N/A	N/A	-	N/A	_			-
1,2,4-TRICHLOROBENZENE	-	N/A	N/A	N/A	-	N/A	-	<u> </u>	· _	-
NAPHTHALENE	-	N/A	N/A	N/A	-	N/A	<u> </u>	_		·
4-CHLOROANILINE	_	N/A	N/A	N/A	_	N/A	-	-		-
HEXACHLOROBUTADIENE	- '	N/A	N/A	N/A	-	N/A	-	-	·	. –
4-CHLORO-3-METHYLPHENO	· _ ·	N/A	N/A	N/A	-	N/A	. .	-		<u> </u>
2-METHYLNAPHTHALENE	-	N/A	N/A	N/A	-	N/A	-	-	· _ ·	-
HEXACHLOROCYCLOPENTADIE	-	N/A	N/A	N/A	-	N/A		-	-	· _ ·
2,4,6-TRICHLOROPHENOL		N/A	N/A	N/A	· _	N/A	_	<u> </u>	_	-
2,4,5-TRICHLOROPHENOL		N/A	N/A	N/A	-	N/A	· 🗕	_	_	-
2-CHLORONAPHTHALENE		N/A	N/A	N/A	-	N/A	<u> </u>	-	_	
2-NITROANILINE	-	N/A	N/A	N/A	 .	N/A	·		-	-
DIMETHYLPHTHALATE		N/A	N/A	N/A	_	N/A	-	-	-	-
ACENAPHTHYLENE	. _	N/A	N/A	N/A	` ~	N/A	_		· –	- .
2,6-DINITROTOLUENE	_	N/A	N/A	N/A	<u>-</u>	N/A		-		<u> </u>

B - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION. R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR

OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED, BLANK CONTAMINATION, INSTROMENT CALIBRATION ENK

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

TABLE 31b SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF VOLATILE ORGANIC COMPOUNDS DETECTED IN SURFACE WATER SAMPLES PAGE 2 OF 2

	SW1-0	1 SW2-01	SW3-01	SW10-01	SW4-01	SW5-01	SW6-01	SW7-01	SW8-01	SW9-01
BASE NEUTRAL / ACIDS (ppb) (continuea)	•									
3-NITROANILINE	-	N/A	⁻ N/A	N/A	_ ·	N/A	-	_	_	
ACENAPHTHENE	_	N/A	N/A	N/A		N/A	_	.—		-
1.4-DINITROPHENOL	_	N/A	N/A	N/A	-	N/A	-		_	· _
4-NITROPHENOL		N/A	N/A	N/A	-	N/A	· ·	-	-	-
DIBENZOFURAN	_	N/A	N/A	N/A	-	N/A	_	·		 .
2.4-DINITROTOLUENE	-	N/A	N/A	N/A	_	N/A		_	-	.
DIETHYLPHTHALATE	-	N/A	N/A	N/A	<u></u>	N/A	-	-	-	_
4-CHLOROPHENYL-PHENYLET	-	N/A	N/A	N/A	-	N/A		_	-	
FLUORENE		N/A	N/A	N/A	÷ '	N/A		-	-	_
4-NITROANILINE		N/A	N/A	N/A		N/A	_	_	-	-
4.6-DINITRO-2-METHYLPHENC	-	N/A	N/A	N/A	-	N/A		-	-	
N-NITROSODIPHENYLAMINE		N/A	N/A	N/A		N/A		·		-
4-BROMOPHENYL-PHENYLETH	-	N/A	N/A	N/A	_	N/A	_	_ .		_
HEXACHLOROBENZENE	-	• N/A	N/A	N/A	_	N/A	_	-	-	-
PENTACHLOROPHENOL	_	N/A	N/A	N/A		N/A			_	-
PHENANTHRENE		N/A	N/A	N/A		N/A			· _	_
ANTHRACENE	<u> </u>	N/A	N/A	N/A		N/A	·	-	· _ `	<u> </u>
DI-n-BUTYLPHALATE	1 J	N/A	N/A	N/A	1 J	N/A	-	2 J	2 J	1 J .
FLUORANTHENE	- '	N/A	N/A	N/A		N/A	_	-	 .	-
PYRENE	. 	N/A	N/A	N/A	· 🛶 '	N/A	_		_	
BUTYLBENZYLPHTHALATE	– '	Ń/A	N/A	N/A	_	N/A		<u> </u>	_	_
3,3'-DICHLOROBENZIDINE	-	N/A	N/A	N/A	- ·	N/A	. <u>-</u>	_	-	·
BENZO(a) ANTHRACENE	-	N/A	N/A	N/A	-	N/A	· _	-	·	- '
CHRYSENE	-	N/A	• N/A	N/A	_	N/A		-	<u>_</u>	-
bis(2-ETHYLHEXYL)PHTHALATE	·	N/A	N/A	N/A	2 J	N/A	-	_		-
DI-n-OCTYL PHTHALATE	-	N/A	N/A	N/A	. – '	N/A	-	_	_	
BENZO(b) FLUORANTHENE		N/A	N/A	N/A	-	N/A	_	· · ·	-	-
BENZO(k) FLUORANTHENE	_	N/A	N/A	N/A		N/A	_	· _	-	-
BENZO (a) PYRENE	-	N/A	N/A	N/A		N/A	· _	· _	-	 •
INDENO(1,2,3-cd)PYRENE	-	N/A	• N/A	N/A		N/A	-	— ·	_	·
DIBENZO(A,H)ANTHRACENE	·	N/A	N/A	N/A		N/A	-		. . •	_
BENZO(g,h,i) PERYLENE	-	N/A	N/A	N/A	-	N/A	 .	_	-	-
TOTAL caPAH	0	N/A	N/A	N/A	0	N/A	0	. 0	0	0

B - QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J - QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS: THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION.

R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR OTHER MAJOR CONTROLLING LIMITS ARE EXCEEDED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND

TABLE 31c SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF PESTICIDES/PCB COMPOUNDS DETECTED IN SURFACE WATER SAMPLES

SAMPLE IDENTIFICATION:	SW1-01	SW2-01	SW3-01	SW10-01	SW4-01	SW5-01	SW6-01	SW7-01	SW8-01	SW9-01
PESTICIDES/PCB'S (ppb)										•.
ALPHA-BHC		N/A	N/A	N/A	_	N/A	· ·	. ,		· · · · ·
BETA-BHC	<u> </u>	• N/A	N/A	N/A	<u> </u>	N/A	·	· - ·	 '	'
DELTA-BHC	- ·	• N/A	N/A	N/A		N/A	· _	···		
GAMMA-BHC(LINDANE)	- .	N/A	N/A	N/A	_ '	N/A		-	·	·
HEPTACHLOR	-	N/A	N/A	N/A		N/A	-	·		_
ALDRIN	l, 🚣	N/A	N/A	N/A	-	N/A		_	-	-
HEPTACHLOR EPOXIDE	<u> </u>	N/A	N/A	N/A	<u> </u>	N/A	·		-	-
ENDOSULFANI		N/A	N/A	N/A	-	N/A	 .	· · -	·	·
DIELDRIN		• N/A	N/A	N/A	_ `	N/A	· · · ·	· _ ·	. .	-
4,4-DDE	-	N/A	N/A	N/A	_	N/A		· _	-	-
ENDRIN	· <u>-</u>	N/A	N/A	N/A	-	N/A		· · · ·	· _	
ENDOSULFAN II		N/A	N/A	N/A	_ ·	N/A	·	. —		-
4,4-DDD		N/A	N/A	N/A	-	N/A	<u>-</u>	-	-	-
ENDOSULFAN SULFATE	-	N/A	N/A	N/A	-	N/A		<u> </u>	· · · ·	_
4,4-DDT	· -	N/A	N/A	N/A		N/A		_ .		
METHOXYCHLOR	´` −.	N/A	N/A	∿ N/A	- ;	N/A		-		· _ ·
ENDRIN KETONE	-	N/A	N/A	N/A		N/A		-	· ·	_
ALPHA-CHLORDANE	-	N/A	N/A	N/A	· <u></u>	N/A	- '	•		<u></u>
GAMMA-CHLORDANE	-	N/A	N/A	N/A	_	N/A		- ¹ ,	_	
TOXAPHENE	-	N/A	N/A	N/A	· _	N/A			<u> </u>	_ ·
AROCLOR-1016	-	N/A	N/A	N/A	-	N/A		<u> </u>		
AROCLOR-1221	- .	N/A	N/A	. N/A		N/A	-	· _ · ·		-
AROCLOR-1232	-	N/A	N/A	N/A	_	Ň/A		-	_	·
AROCLOR-1242	· `	N/A	N/A	N/A	-	N/A	-	~ .		_
AROCLOR-1248	-	N/A	N/A	N/A	-	N/A		· _ ··	<u> </u>	-
AROCLOR-1254	-	N/A	N/A	N/A	-	N/A	·	-	_ '	
AROCLOR-1260		N/A	N/A	N/A		N/A	· · 🗕 .	<u> </u>		· _ ·

B – QUALIFIER USED WHEN THE ANALYTE IS FOUND IN THE ASSOCIATED METHOD BLANK AS WELL AS IN THE SAMPLE. IT INDICATES POSSIBLE / PROBABLE CONTAMINATION.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

N – QUALIFIER INDICATES THE CONCENTRATION FOUND IN THE SAMPLE IS LESS THAN THREE TIMES THE CONCENTRATION FOUND IN THE ASSOCIATED BLANKS. THE PRESENCE OF THE ANALYTE IS NEGATED DUE TO LABORATORY CONTAMINATION. R – DATA IS REJECTED DUE TO HOLDING TIME EXCEEDED, BLANK CONTAMINATION, INSTRUMENT CALIBRATION ERROR, OR

* - INDICATES QUALIFIER PLACED BY TRC-ECI. N/A - NOT ANALYZED FOR THIS COMPOUND

TABLE 31d SHIELDALLOY METALLURGICAL CORPORATION SUMMARY OF INORGANIC COMPOUNDS DETECTED IN SURFACE WATER SAMPLES

SAMPLE IDENTIFICATION:	SW1-01	SW2-01	SW3+01	SW10-01	SW4-01	SW5-01	SW6+01	SW7-01	SW8-01	SW9-01
INORGANICS (ppb)			· .		:		,			
ALUMINUM	4610	44800	544	442	319	224	3450	48100	12800	9300
ANTIMONY	44.2 B	151	-	-	_	-	-	· · -	- .	-
ARSENIC	2.0 B	34.6	_ ·	_	2.4 B	-	-	116	2.4 B	2.2 B
BARIUM	78.2 B	962	44.4 B	43.6 B	40.8 B	24.5 B	205	400	65.1 B	160 B
BERYLLIUM	1.3 B	25.1	1.0 B	1.0 B	1.0 B	_	· <u> </u>	468	15.4	37.2
CADMIUM	<u> </u>	9.0 '	- .	_	<u> </u>	-	~	5.2		-
CALCIUM	5480	18100	4040 B	3960 B	4600 B	4940 B	9200	30300	13300	11000
CHROMIUM	43.3	8520	120	106	208	99.0	29.8	313	91.4	283
CHROMIUM VI		-	` -	-	0.054	-	0.031	0.057	0.028	0.14
COBALT		62.2	· · -		-	-	_	13.1 B		
COPPER	8.0 B	432	13.7 B	11.8 B	7.7 B	7.3 B	6.3 B	64.2	16.3 B	23,2 B
CYANIDE, TOTAL (UG/L)	-	11.0J*	-	-	· -	-	-	94.4		12.3
IRON	4660	71000	1210	1020	933	697	128	13900	14200	6820
LEAD	28.0	-	7.6	9.3	3.8 B	5.5 B	8	1240	1050	170
MAGNESIUM	9250	5670	1700 B	1690 B	2060 B	2400 B	16500	63200	12000	27800
MANGANESE	622	2590	220	219	342	131	10.7 B	1160	223	500
MERCURY	_	21.4	-			÷	 .			-
NICKEL	20.8 B	618	29.6 B	34.5 B	17.7 B	17.1 B	· -	415	49.2	242
POTASSIUM	8670	4670 B	1610 B	1890 B	4310 B	4490 B	9300	171000	6890	14400
SELENIUM	-	-	-	- .	-			29 B	-	2.1 B
SILVER	-	. –		· _	. — ·	、 -	· -	·	-	-
SODIUM	25900	20300	24400	23900	107000	è 65200	64900	90100	23800	80700
THALLIUM	-	—		· 		-	-	-		-
VANADIUM	272	5700	310	307	246	286	1410	8650	3380	8350
ZINC	56.4	1070	41.8	32.4	25.4	20,8	58.6	942	108	234
BORON	828	N/A	N/A	N/A	585	N/A	14100	4960	286	320
NIOBIUM	-	N/A	N/A	N/A	-	N/A	.—	527	- -	-
STRONTIUM	-	N/A	N/A	N/A	-	N/A	221		-	- ·
TITANIUM	- • •	. N/A	N/A	N/A	-	N/A	· -	443	193	143
ZIRCONIUM	-	N/A	N/A	N/A	-	N/A	N/A	N/A	N/A	N/A
FLUORIDE	0.87	0.92	1.1	1.1	0.84	0.97	N/A	N/A	N/A	N/A
SULPHATE	68.7	25.8	12.2	-11.7	139	80.2	N/A	N/A	N/A	N/A

B - INDICATES THAT THE REPORTED VALUE IS LESS THAN THE CRDL BUT GREATER THAN THE IDL.

J – QUALIFIER USED TO INDICATE AN ESTIMATED VALUE. THE CONCENTRATION IS QUANTITATIVELY QUALIFIED AND THE FINAL RESULT REPORTED IS ESTIMATED.

* - INDICATES QUALIFIER PLACED BY TRC-ECI.

N/A - NOT ANALYZED FOR THIS COMPOUND '-' - NOT DETECTED TO THE REPORTED DETECTION LIMIT CRDL - CONTRACT REQUIRED DETECTION LIMITS. IDL - INSTRUMENT DETECTION LIMITS.

TABLE 1-9 SURFACE WATER SUMMARY TABLE INORGANICS SUPPLEMENTAL SAMPLING INVESTIGATION SHIELDALLOY METALLURGICAL CORPORATION

SAMPLE ID:	SW-8	SW-11	SW+32 Dup of SW-11	SW-21	SW-25	SW-27	SW-30	SW-31
INORGANICS (µg/L)								
Aluminum	979	1,770	227	169	2310	286	163	. 127
Antimony	27.2 u	27.2 u	27.2 u	27.2 u	27.2 u	27.2 u	27.2 u	27.2 u
Arsenic	3.2	1.8 u	1.8 u	1.8 u	2.8	1.8 u	1.8 u	1.8 u
Barium	34	53.3	21.1	40.4	87.1	119	174	162
Beryllium	0.7 u	0.7 u	0.7 u	. 1	2.6	1	0.7 u	0.7 u
Cadmium	2.9 u	2.9 u	2.9 u	2.9 u	3.1 u	3.1 u	3.1 u	3.1 u
Calcium	3,650	4,250	4,200	5,189	4660	5220	8960	8330
Chromium	101	47.6	23	19.6	46.8	38.7	· 2.7 u	2.7 u
Chromium VI (mg/L)	0.02 u	0.02 u	0.02 u	0.02 u	0.02 u	0.02 u	0.02 u	0.02 u
Cobalt	2.9 u	4.9	2.9 u	2.9 u	10.1	7.4	6.3	7.9
Copper	23.2	17.6	13.5	6.2	7.9	6	2.7	3.3
iron	655	1,710	143	150	3080	374	301	259
Lead	2.9	0.7 u	0.7 u	0.7 u	2.7	3.4	0.9 u	0.9 u
Magnesium	3,210	7,770	3,620	3,860	8670	2620	4440	4160
Manganese	42.3	42.3	28.2	9.4	88	194	180	271
Mercury	0.1 u	0.1 u	0.1 u	0.1 u	0.1 u	0.1 u	0.1 u	0.1 u
Nickel	10.2	12.3	6.8 u	6.8 u	19.2	8.1	6.9 u	10.5
Potassium	18,600	21,000	22,700	15,800	8960	4890	3080	2600
Selenium	4.4	1.2 u	1.2 u	1.2 u	1.7	1.5 u	1.5 u	1.5 u
Silver	2.5 บ	2.5 u	2.5 u	2.5 u	2.5 u	2.5 ù	2.5 u	2.5 u
Sodium	~ 177,000	196,000	215,000	150,000	44,600	15,000	6390	5970
/anadium	64.3	33	33.9	257	413	144	3.5 u	3.5 u
Zinc	287	54.1	54.4	47.5	24.6	55.1	77.6	85.9
Thallium	2 u	2 u	2 u	2 u	2 u	2 u	2 u	2 u
Cyanide	5 U	5 u	5 u	5 u	5 u	5 u	5 u	 5 u
Hardness (mg/L)	21.6	22.5	22.5	20.6	23.5	29.4	38.3	37.4

µg/L=micrograms per liter mg/L=milligrams per liter

u=Analyzed, Not Detected

APPENDIX H - REGIONAL HYDROGEOLOGIC INFORMATION

APPENDIX H - REGIONAL HYDROGEOLOGIC INFORMATION

Qualitative Description of the New Jersey Coastal Plain Aquifer System New Jersey Coastal Plain Aquifer System Sole Source Aquifer Designation Regional Ground Water Quality: Gloucester and Cumberland Counties, New Jersey; USGS Well MW-24

Regional Ground Water Quality: Gloucester and Cumberland Counties, New Jersey; USGS Well OU02

Biosolids Dredging Drinking Water

Estuaries Great Lakes

Groundwater

Infrastructure

Lakes, Rivers, Streams

Oceans

Stormwater

Waste Water

Water Quality

Wetlands

Non-point Pollution

Permits & Compliance

Watershed Protection

U.S. Environmental Protection Agency

Region 2 Water

Serving New Jersey, New York, Puerto Rico, US Virgin Islands and 7 Tribal Nations

Recent Additions | Contact Us | Print Version Search:

EPA Home > Region 2 > Water > Aquifers > New Jersey Coastal Plain Aquifer

New Jersey Coastal Plain Aquifer

Support Document.

Atlantic, Burlington, Camdén, Cape May, Cumberland, Gloucester, Mercer, Middlesex, Monmouth, Ocean, and Salem Counties New Jersey May 1988

I. Introduction

- o A. Statement of Section 1424 (e)
- o B. Receipt of Petition
- o C. Area of Consideration
- o D. Topography
- II. Hydrogeology
 - A. Geologic Framework
 - o B. Geologic Setting (Major Aquifers and Confining Units)
 - o C. Ground Water Hydrology
 - 1. Recharge
 - 2. Discharge
 - 3. Streamflow Source Zone
 - o D. Ground Water Quality
 - o E. Designated Areas
 - o F. Ground Water Use
- III. Susceptibility to Contamination
- IV. Alternative Sources of Drinking Water
- V. Summary
- VI. Selected References
- VII. Tables
 - <u>Table 1.</u> Characteristics of the New Jersey Coastal Plain Aquifer System
 - <u>Table 2.</u> Total Drinking Water Pumped from the New Jersey Coastal Plain Area
 - <u>Table 3.</u> Major Ground Water Withdrawals from the Coastal Plain Area
 - o Table 4. Population within Coastal Plain Aquifer System
- VIII. Figures
 - o Figure 1. The Coastal Plain of New Jersey
 - Figure 2. Physiographic Provinces of New Jersey
 - o Figure 3. Coastal Plain Aquifer System Designated Area
 - o Figure 4. Aquifer Outcrop Areas of the Coastal Plain
 - o Figure 5. Generalized Cross Section of the Coastal Plain Aquifers
 - o Figure 6. Drainage Basins in the Coastal Plain of New Jersey
 - o Figure 7. Delineation of Fall Line

I. Introduction

http://www.epa.gov/region02/water/aquifer/coast/coastpln.htm

A. Statement of Section 1424 (e)

The Safe Drinking Water Act (SDWA), Public Law 93-523, of December 16, 1974 contains a provision in Section 1424(e), which states that:

If the Administrator determines, on his own initiative or upon petition, that an area has an aquifer which is the sole or principal drinking water source for the area and which, if contaminated, would create significant hazard to public health, he shall publish notice of that determination in the Federal Register. After the publication of any such notice, no commitment for Federal financial assistance (through a grant, contract, loan guarantee, or otherwise) may be entered into for any project which the Administrator determines may contaminate such aquifer through a recharge zone so as to create a significant hazard to public health, but a commitment for Federal financial assistance may, if authorized under another provision of law, be entered into to plan or design the project to assure that it will not so contaminate the aquifer.

This section allows for the specific designation of areas which are dependent upon ground water supplies. Following designation, the review process will ensure that federal agencies will not commit funds toward projects which may contaminate these ground water supplies.

B. Receipt of Petition

On December 4, 1978 the Environmental Defense Fund, Inc. and Sierra Club New Jersey Chapter petitioned the U.S. Environmental Protection Agency (EPA) Administrator to determine that the Counties of Monmouth, Burlington, Ocean, Camden, Gloucester, Atlantic, Salem, Cumberland, Cape May and portions of Mercer and Middlesex Counties, New Jersey, constitute an area whose aquifer system is "the sole or principal drinking water source for the area and which, if contaminated, would create a significant hazard to public health".

C. Area of Consideration

The area of the New Jersey Coastal Plain Aquifer System includes the area for the Counties of Monmouth, Burlington, Ocean, Camden, Gloucester, Atlantic, Salem, Cumberland, Cape May and portions of Mercer and Middlesex Counties, New Jersey. Pursuant to section 1424(e), Federally assisted projects proposed for construction in the New Jersey Coastal Plain Area and the project review area within portions of its streamflow source zone will be subject to EPA review.

The streamflow source zone for the New Jersey Coastal Plain Aquifer System includes upstream portions of the Delaware River Basin in the States of Delaware (New Castle County), New Jersey (Mercer-part, Hunterdon-part, Sussex-part, and Warren Counties), New York (Delaware, Orange, Sullivan and Ulster Counties), and Pennsylvania (Berks-part, Bucks, Carbon-part, Chester-part, Delaware, Lackawanna-part, Lancaster, Lehigh, Luzerne-part, Monroe, Montgomery, Northampton, Philadelphia, Pike, Schuykill and Wayne Counties).

The project review area includes that portion of the streamflow source zone which lies within two miles of the Delaware River in the States of New Jersey (in Mercer, Hunterdon, Sussex and Warren Counties), Delaware (in New Castle County), Pennsylvania (in Delaware, Philadelphia, Bucks, Monroe, Northampton, Pike and Wayne Counties) and New York (in Delaware, Orange and Sullivan Counties).

D. Topography

The New Jersey Coastal Plain is part of the Atlantic Plain physiographic province. The Coastal Plain physiographic province lies along the Atlantic and Gulf Coasts from Long Island to Mexico and contains one of the most prolific system of aquifers in the country. The area petitioned by the Environmental Defense Fund, Inc. and the Sierra Club New Jersey Chapter is the New Jersey Coastal Plain Aquifer System, which is located between the Delaware River and Bay, the Atlantic Coast, Staten Island and a belt of more rugged, generally higher terrain called the Piedmont province. A Fall Line, extending northeast along the Delaware River and through Mercer and Middlesex counties, separates the Coastal Plain from the Appalachian Highlands. The Fall Line separates areas with major differences in topography, geology, and hydrology.

The New Jersey Coastal Plain Aquifer System, lying southeast of the Fall Line, covers about 4,200 square miles. More than half of the land area is below an altitude of fifty feet (50') above sea level (NGVD). The area is largely surrounded by salty or brackish water and is bounded by the Delaware River on the west, Delaware Bay on the south, the Atlantic Ocean on the east, and Raritan Bay on the north.

The land surface is divided into drainage basins. A drainage basin is an area that contributes runoff to a stream and its tributaries. A drainage divide marks the topographic boundary between adjacent drainage basins. A major stream divide in the Coastal Plain of New Jersey separates streams flowing to the Delaware River and the Atlantic Ocean.

II. Hydrogeology

A. Geologic Framework

The following physiographic and hydrogeologic descriptions are excerpted from the United States Geological Survey (USGS) Report on the New Jersey Coastal Plain Area (Vowinkel and Foster, 1981). The New Jersey Coastal Plain is underlain by a wedge shaped mass of unconsolidated sediments composed of clay, silt, sand and gravel. The wedge thins to a featheredge along the Fall Line and attains a thickness of over six-thousand feet (6,000') at the tip of Cape May County, New Jersey. These sediments range in age from Cretaceous to Holocene and can be classified as continental, coastal or marine deposits. The Cretaceous and Tertiary age sediments generally strike on a northeast-southwest direction and dip gently to the southeast from ten to sixty feet (10 - 60') per mile. The overlying Quaternary deposits, where present, are basically flat lying. The unconsolidated Coastal Plain deposits, are unconformably underlain by a Pre-Cretaceous basement bedrock complex, which consists primarily of Precambrian and early Paleozoic age rocks. Locally, along the Fall Line in Mercer and Middlesex Counties, Triassic age rocks underlie the unconsolidated sediments.

Potomac Raritan Magothy aquifer system is divided into two aquifers. They are the Farrington aquifer and the Old Bridge aquifer. These aquifers are both upper Cretaceous in age and would be stratigraphically equivalent to the Raritan and Magothy formations, respectively.

B. Geologic Setting (Major Aquifers and Confining Units)

The wedge of sediment comprises one interrelated aquifer system that includes several aquifers and confining units. These sediments range in age from Cretaceous to Holocene and can be classified as continental, coastal or marine

deposits. In general, aquifers and confining units in the Coastal Plain Aquifer System correspond to the geologic formations presented in <u>Table 1</u>. However, the boundaries of the aquifers and confining beds may not be the same as the geologic formations for the following reasons: (1) the formations may change in physical character from place to place and may act as an aquifer in one area or a confining bed in another; (2) some formations are divided into several aquifers and confining beds; and (3) adjacent formations may form a single aquifer or confining bed.

There are five major aquifers in the New Jersey Coastal Plain Aquifer System. They are the Potomac-Raritan-Magothy aquifer system, Englishtown aquifer, Wenonah-Mount Laurel aquifer, lower "800 foot" sand aquifer of the Kirkwood Formation and the Kirkwood-Cohansey aquifer. The major aquifers and their respective confining units are described in ascending order from the bedrock surface.

Overlying the consolidated rocks of the bedrock is the Potomac-Raritan-Magothy aquifer system. This wedgeshaped mass of sediments of Cretaceous age is composed of alternating layers of clay, silt, sand, and gravel. These deposits range in thickness from a featheredge along the Fall Line to more than 4,100 feet beneath Cape May County. The Potomac-Raritan-Magothy aquifer system is exposed in a narrow outcrop along the Fall Line and the Delaware River. The aquifer is confined except in outcrop areas by the underlying crystalline rocks and the overlying Merchantville-Woodbury confining unit. In the northern part of the Coastal Plain, the Potomac-Raritan-Magothy aquifer system is divided into two aquifers. They are the Farrington aquifer (mainly Raritan age) and the Old Bridge aquifer (Magothy age).

The Merchantville Formation and Woodbury Clay form a major confining unit throughout most of the Coastal Plain of New Jersey. Although their permeability is very low, the Merchantville-Woodbury confining unit can transmit significant quantities of water when sizeable differences in potentiometric head exist between overlying and underlying aquifers.

The Englishtown aquifer overlies the Merchantville and Woodbury confining unit in the central and northern parts of the Coastal Plain. The aquifer is a significant source of water for Ocean and Monmouth Counties. In northern and eastern Ocean County, the Englishtown aquifer can be subdivided into two waterbearing sands. Upper and lower units of quartz sand with thin interbeds of dark sandy silt are separated by a thick sequence of sandy and clayey lignitic silt (Nichols, 1977).

The Marshalltown Formation overlies the Englishtown sand in most of the Coastal Plain but overlies the Woodbury Clay in much of Salem County. The formation has a maximum thickness of thirty feet (30'). Because the Marshalltown Formation is thin and contains some slightly to moderately permeable beds, it acts as a leaky confining bed.

Although the Wenonah Formation and Mount Laurel Sand are distinct lithologic units, they are hydraulically connected and together form the Wenonah-Mount Laurel aquifer. The Mount Laurel Sand, a coarser sandunit than the Wenonah Formation, is the major component of the aquifer. The combined thickness of the Wenonah Formation and Mount Laurel Sand in outcrop is as much as one hundred feet (100'). In the subsurface they range in thickness from forty feet (40') to slightly more than two hundred feet (200') (Nemickas, 1976). The Wenonah-Mount Laurel aquifer is an important water producing aquifer in the northern and western parts of the Coastal Plain.

Overlying the Wenonah-Mount Laurel aquifer is a confining unit that comprises several geologic units. The confining unit consists of the Navesink Formation, Red Bank Sand, Tinton Sand, Hornerstown Sand, Vincentown Formation, Manasquan Formation, Shark River Marl, Piney Point Formation and the basal clay of the

Page 5 of 15

Kirkwood Formation. Some of these geologic units may act as aquifers on a local basis.

The Kirkwood Formation includes several waterbearing units. The major Kirkwood aquifer is the principal artesian aquifer within the Kirkwood Formation, also known as the Atlantic City "800 foot" sand (Barksdale and others, 1936). The Kirkwood "800 foot" sand aquifer extends along the Atlantic Coast from Cape May to Barnegat Light and some distance inland. In Cape May and Cumberland Counties, the upper artesian aquifer of the Kirkwood Formation is defined as the Rio Grande waterbearing zone (Gill, 1962). This aquifer is productive only locally in Cape May County. Along the coast north of Barnegat Light and inland from the coast in Ocean, Burlington, Atlantic, and the western part of Cumberland Counties, the sands of the upper part of the Kirkwood Formation are hydraulically connected to the overlying Cohansey Sand.

The Cohansey Sand is typically a lightcolored quartzose sand with lenses of silt and clay. The Cohansey Sand is exposed throughout most of the outer part of the Coastal Plain and attains a maximum thickness of about two hundred fifty feet (250'). Ground water in the Cohansey aquifer occurs generally under watertable conditions except Cape May County, where the aquifer is confined. Inland from the coast and in the northern part of Ocean County, the upper part of the Kirkwood Formation is in hydraulic connection with the Cohansey Sand and they act as a single aquifer.

C. Ground Water Hydrology

Man has modified the natural equilibrium of the New Jersey Coastal Plain Aguifer System by increasing the rate of outflow from the system to the ocean. One major effect of the increased outflow of water is a regional decline in ground water levels. This decline in potentiometric head (the level to which water will rise under a given pressure with respect to aknown datum) within the aguifers may change the direction of ground water flow and cause induced recharge and/or saltwater encroachment into the system. Significant regional waterlevel declines have occurred in the Potomac-Raritan-Magothy aquifer system, Englishtown aquifer, Wenonah-Mount Laurel aquifer and the "800 foot" sand aquifer of the Kirkwood Formation. Ground water withdrawals from the Potomac-Raritan-Magothy aguifer system have resulted in ground water level declines of 1.5 to 2.5 feet per year from 1966 to 1976 (Luzier, 1980). These declines in head are causing a reversal in the direction of ground water flow near pumping centers. Model studies have indicated that about forty three percent (43%) of the total inflow to the Potomac-Raritan-Magothy aquifer system in 1973 was induced recharge from the Delaware River (Luzier, 1980). Saline water in the Delaware River Estuary threatens water quality in the aquifers along Salem and Gloucester Counties. sustained increases in the rate of withdrawal from the Potomac-Raritan-Magothy and in the consumptive uses of Delaware River water portends continued and increased movement of inferior quality water into the aquifer.

The head reductions in the Potomac-Raritan-Magothy aquifer system have also increased leakage from the overlying Englishtown and Wenonah-Mount Laurel aquifers through the Merchantville Formation Woodbury Clay confining unit. In model simulation, approximately thirty percent (30%) of the recharge to the Potomac-Raritan-Magothy aquifer system in 1973 was due to leakage from overlying aquifers (Luzier, 1980).

Withdrawal of water from the Englishtown aquifer has had a marked effect on the water level in the overlying Wenonah-Mount Laurel aquifer. Decline in head in the Englishtown aquifer from 1959 to 1970 was 8 to 12 ft/yr over a large area. As a consequence of this change in head, increased quantities of water apparently leak from the Wenonah-Mount Laurel aquifer, through the confining layers, and into the

Englishtown aquifer (Nichols, 1977).

Since the recharge from precipitation and induced infiltration is insufficient to replace ground water in heavily pumped areas close to the saltwater-freshwater interface, the interface can advance toward pumping centers.

1. Recharge

The Delaware River and Estuary, Sandy Hook Bay, the Atlantic Coast and the older, harder rocks of the Piedmont province constitute the recharge boundaries of the New Jersey Coastal Plain aquifers. These hydrographicfeatures represent the interfaces across which water either moves into or out of the ground water reservoir. Natural recharge occurs primarily through direct precipitation on the outcrop area of the geologic formations. A smaller component of natural recharge to the deeper layers of the system occurs by vertical leakage from the upper layers. This accounts for a small percentage of the total amount of recharge; however, over a large area and a long period of time the amount of water transmitted can be significant.

Natural recharge to the New Jersey Coastal Plain Area occurs primarily through direct precipitation on the outcrop area of the geologic formations. Based primarily on estimates of ground water contributing to streamflow and basin runoff, several estimates of ground water recharge in the Coastal Plain have been made. In the outcrop areas of the Potomac - Raritan - Magothy aquifer system, where it is unconfined, recharge to the aquifer is about twelve (12) inches per year (in/yr). In the outcrop area of the Farrington aquifer, the recharge to ground water is twelve (12) in/yr. Recharge ranges from twelve to twenty (12 - 20) in/yr in the outcrop of the Old Bridge aquifer.

Another component of natural recharge to deep, confined aquifers is primarily by vertical leakage from the upper layers. Only a small percentage of the water within the unconfined ground water system leaks to the confined aquifers; but over a large area and a long period of time, the amount of water transmitted can be significant (Vowinkel & Foster, 1981).

2. Discharge

The New Jersey Coastal Plain Aquifer discharges to the surface through streams, springs and evapotranspiration. Many streams ultimately flow into bays or directly into the ocean. Development of the ground water reservoir as a water supply source constitutes another discharge component which today accounts for a significant portion of discharge from the overall system. In certain areas (e.g., along the Delaware River) heavy pumping has caused a reversal in the normal discharge from the aquifer (Raritan-Magothy) such that the surface stream (Delaware River) now recharges the aquifer. This phenomenon implies that, in addition to the New Jersey Coastal Plain Area, the Delaware River Basin within Delaware, New Jersey, Pennsylvania and New York must be regarded as a streamflow source zone (an upstream headwaters area which drains into a recharge zone), which flows into the Coastal Plain Area.

3. Streamflow Source Zone

http://www.epa.gov/region02/water/aquifer/coast/coastpln.htm

The New Jersey Coastal Plain Aquifer System discharge to the surface through streams, springs and evapotranspiration. Many streams ultimately flow into bays or directly into the ocean. Development of the ground water reservoir as a water supply source constitutes another discharge component which today accounts for a significant portion of discharge from the overall system. In certain areas (e.g. along the Delaware River) heavy pumping has caused a reversal in the normal discharge from the aquifer (Raritan-Magothy) such that the surface stream (Delaware River) now recharges the aquifer. This phenomena implies that, in addition to the New Jersey Coastal Plain Area, a major portion of the Delaware River Basin must be regarded as a streamflow source zone (an upstream headwaters area which drains into a recharge zone), which flows into the designated area.

D. Ground Water Quality

Fresh, uncontaminated ground water in the New Jersey Coastal Plain is low in dissolved solids (generally less than 150 milligrams per liter (mg/l). Calcium and bicarbonate are usually dominant ions in solution with smaller amounts of sodium, potassium, magnesium sulfate and chloride. Locally, concentrations of iron and manganese present a problem near the water table because the ground water tends to have a low pH. These waters are treated to make them palatable. Historically, no significant quantities of heavy metals, pesticides, organics or coliform bacteria have been found in the artesian aquifers. Except for specific parameters (e.g. iron) and contamination incidents, water quality in the artesian ground water system meets or exceeds Federal and State drinking water standards. The quality of ground water in the outcrop area, on the other hand, is variable, being largely determined by local conditions at the land surface.

A large part of the Potomac-Raritan-Magothy aguifer system in the southern Coastal Plain of New Jersey contains salty ground water with chloride concentrations ranging from less than 250 to as high as 27,000 mg/L (Luzier, 1980). The concentrations of chloride increase with depth as well as toward the ocean.

E. Designated Areas

The proposed Sole Source Aquifer designation areas for the New Jersey Coastal Plain Aquifer System are defined within the Counties of Monmouth, Burlington, Ocean, Cumberland and Cape May, and portions of Mercer and Middlesex Counties, New Jersey, and that portion of the streamflow source zonewhich lies within two miles of the Delaware River in the States of New Jersey (in Mercer, Hunterdon, Sussex and Warren Counties), Delaware (in New Castle County), Pennsylvania (in Delaware, Philadelphia, Bucks, Monroe, Northampton, Pike and Wayne Counties) and New York (in Delaware, Orange and Sullivan Counties). Outside the New Jersey Coastal Plain Area and further than two miles from the Delaware River in the streamflow source zone, only those Federally assisted proposed projects requiring the preparation of an Environmental Impact Statement will be reviewed. The two-mile limit for the project review area along the Delaware River is based on the climate and hydrologic setting of the area.

F. Ground Water Use

Ground water use for public supply in the Coastal Plain area, was about 250 million gallons per day (MGD) in 1978. Use of surface water for public supply in this same area amounts to 79 MGD. Of the estimated 400 MGD withdrawn from the Coastal Plain aquifer system in 1978, approximately seventy-five percent (75%) was used

http://www.epa.gov/region02/water/aquifer/coast/coastpln.htm

for drinking water purposes to serve 2.3 million people.

Estimates for industrial and commercial consumption of ground water range from 75 MGD (USGS, 1978) to 97 MGD (NJ Water Supply Master Plan, WSMP, 1976). Agriculture is also a major consumer of ground water, pumping anywhere from 11 MGD (USGS, 1978) to 50 MGD (NJWSMP, 1976).

No accurate tally of domestic consumption in the Coastal Plain Area is available; however, the New Jersey Water Supply Master Plan estimates that as much as 40 MGD of ground water was pumped to private households.

The PotomacRaritanMagothy aquifer system is the most widely used aquifer in the Coastal Plain, but it is not the primary source of drinking water for every county. The Cohansey and Kirkwood aquifers are the primary sources of ground water in Atlantic, Cape May and Cumberland County. In these counties, the Potomac-Raritan-Magothy aquifer contains saltwater. The Englishtown and Wenonah-Mount Laurel aquifers are productive mainly in the northern and central counties of the Coastal Plain.

III. Susceptibility to Contamination

The New Jersey Coastal Plain Aquifer System is susceptible to contamination across several interfaces. In the outcrop areas, the water table conditions and the highly permeable nature of the soil, with its low attenuation capability, facilitate the movement of contaminants from the land surface into the system. Significant pollution sources include septic tanks, landfills, chemical spills and dumping, chemical storage leaks, industrial waste lagoons, highway deicing and agricultural chemicals. These sources have immediate local impacts as well as long term cumulative impacts as they progress through to the lower system.

EPA has identified roughly 150 hazardous waste disposal sites within the New Jersey Coastal Plain area which have the potential for contaminating the environment.

Municipal Land Disposal

Municipal land disposal sites frequently are discovered to contain other than municipal wastes. One example is Jackson Township, Ocean County. The Township disposal site has been found to be leaching chlorinated industrial solvents and other toxic organic chemicals into the aquifer that serves private drinking water wells of more than 100 homes in a nearby development. A second site is the Price Landfill in Pleasantville, New Jersey. The contamination emanating from this site does threaten the Atlantic City water supply.

Pipelines and Storage Tanks

Pipelines and tanks which carry and store petroleum products and other chemicals are subject to accidental rupture, external corrosion, and structural failure from a wide variety of causes. In the Pinelands, there are fourteen (14) storage tanks which are required to have Federal and/or State permits because of their size. Approximately 13.9 million gallons are stored in these facilities, and additional amounts are transferred through them.

Industrial Waste Lagoons

Industrial waste lagoons are constructed for the primary purpose of providing temporary storage of waste materials. Seven industrial lagoons have been

identified in the Pinelands, and three have been linked to contaminated wells (New Jersey Pinelands Comprehensive Management Plan, 1980).

Hazardous Waste Sites

The lower Delaware along the TriCounty and Salem County area is highly industrialized, densely populated and contains a concentration of hazardous waste sites as well as an assortment of treatment, storage and disposal facilities. The potential for pointsource contamination of ground andsurface water quality is therefore greater in this area.

Fertilizer

In the Pinelands, there is increasing evidence to support an association between fertilizer use and nitrate in ground water. For example, high ground water nitrate levels possibly stemming from agricultural fertilization has been noted in Winslow Township. (New Jersey Pinelands Comprehensive Management Plan)

Hydraulic Gradient Variability Across Confining Units

Contamination across the confining units is another mechanism through which the Coastal Plain aquifer system is susceptible to contamination. Significant hydraulic gradients and variabilities in the integrity of these units has facilitated the migration of pollutants from one formation into another in South Brunswick (Geraghty and Miller, 1979)

Salt Water Encroachment

The Coastal Plain aquifers are also susceptible to contamination by saltwater encroachment. A large part of the Potomac-Raritan-Magothy aquifer system in the southern Coastal Plain of New Jersey contains saline ground water. m e concentrations of chloride increase with depth as well as distance toward the ocean. According to Luzier (1980), head reductions caused by withdrawal of ground water near the saltwater interface are more than sufficient to cause the slow migration of the saltwater toward pumping centers.

Lateral Salt Water Intrusion

Lateral saltwater intrusion is occurring in a part of the Old Bridge aquifer in the vicinity of Keyport and Union Beach Boroughs in Monmouth County, NJ. The reduction in water levels has caused a reversal in the direction of ground water flow in the Old Bridge aquifer. Prior to development, water in the aquifer flowed into Raritan Bay; however, saltwater is now flowing inland from the submerged (exposed) outcrop of the aquifer beneath Raritan Bay. As previously discussed, saltwater contamination is a threat to the Potomac-Raritan-Magothy Aquifer along the Delaware River.

In summary, problems in the New Jersey Coastal Plain Aquifer System revolve around rapid migration of contaminants as a result of the predominantly permeable hydrogeology. This poses an immediate threat to existing water supplies, as in the case of the Price Landfill, or may result in a more chronic contamination of the large interrelated aquifers.

IV. Alternative Sources of Drinking Water

The New Jersey Coastal Plain Aquifer System area is heavily dependent upon the ground water system for its drinking water supply. The many streams throughout

the area might be considered alternative supplies; however, the streams are not as readily accessible to everyone as is ground water. Since the ground water has historically been the primary source of supply, considerable cost would be associated with tapping, treating and distributing this surface resource as an alternative supply. Most importantly, the close interrelationship between the ground water system and quality and baseflow of the streams precludes stream resource as a viable longterm alternative in the event of ground water contamination. The Delaware River may be considered an alternative source of supply for portions of the area; however, existing competitive uses severely limit the availability of additional water for drinking purposes.

In the event of contamination, it is possible to relocate drinking water wells to different depths and, in some portions of the Coastal Plain, to different formations. Deeper wells inevitably incur higher costs for drilling, piping and pumping. As evidenced in the discussions on ground water movement and susceptibility to contamination, the practical lifetime of this alternative can be limited and very costly.

Desalinization is also an alternative source of drinking water for the Coastal and Bay areas; however, conversion of saltwater requires considerable energy and the economic constraints make desalinization an impractical alternative.

Since the ground water resources of the New Jersey Coastal Plain Aquifer System are vast in magnitude and distribution, no alternative sources of water supply are considered viable.

V. Summary

Based upon the information presented, the New Jersey Coastal Plain Aquifer System, as defined in this document, meet the technical requirements for Sole Source Aquifer designation. More than fifty percent (50%) of the drinking water for the aquifer service areas is supplied by the aquifer system. In addition, there are no economically feasible alternative drinking water sources which could replace the aquifer systems. Therefore, it is recommended that the New Jersey Coastal Plain Aquifer System be designated a Sole Source Aquifer. This will provide an additional review of ground water protection measures, incorporating state and local measures whenever possible, for only those projects which request Federal financial assistance.

The Coastal Plain Aquifer System of New Jersey is an interrelated hydrologic system which responds to natural and manmade stresses. The wedge of unconsolidated sediments underlying the Coastal Plain Aquifer System of New Jersey is comprised of a series of hydrologic units that have varying thickness, lateral extent, and waterbearing characteristics. Some of the units act as aquifers, while others act as confining beds. Previous to development by wells, the groundwater system is in a state of dynamic equilibrium.

Withdrawal of ground water by wells is a stress superimposed on a previously balanced groundwater system. The response of an aquifer to pumping stresses may result in an increase in recharge to the aquifer, a decrease in the natural discharge, a loss of storage within the aquifer, or a combination of these effects. Also, the response of an aquifer to stress may extend beyond the limits of the aquifer being evaluated.

The following findings, which are the basis for the determination:

(1.) The New Jersey Coastal Plain Area depends upon the under-lying Coastal Plain Aquifer System for seventy-five percent (75%) or more of its drinking water to

serve 3 million people.

(2.) Data show that the formations of the New Jersey Coastal Plain Area are hydrologically inter-connected such that they respond collectively as an interrelated aquifer system.

(3.) If the aquifer were to become contaminated, exposure of the persons served by the system would constitute a significant hazard to public health.

(4.) Alternative supplies capable of providing fifty (50) percent or more of the drinking water to the designated area are not available at similar economic costs.

VI. Selected References

1. Atlantic County Ground Water Quality Management Planning Agency, <u>208 Water</u> <u>Quality Management Plan, Atlantic County, New Jersey</u>.

2. Betz, Converse and Murdoch, Inc., <u>Potential Impact of Development on Flow</u> <u>Regime</u>, Technical Memorandum SW III2, February 1980.

 Delaware River Basin Commission, January 1967, Delaware River Basin. Compact, West Trenton, New Jersey.

4. Delaware River Basin Commission, October 1979, <u>Final Report; Environmental</u> <u>Impact Statement of the Level B Study</u>.

5. Delaware Valley Regional Planning Commission, 1977, <u>Draft 208 Water Quality</u> <u>Management Plan, Burlington, Camden and Gloucester Counties</u>.

6. Disko, M. Associates, 1978, Draft Report, Groundwater Management Planning, prepared for the Ocean County 208 Project.

7. Geraghty and Miller, Inc., October 1976, Groundwater, Description of Groundwater System, prepared for Delaware Valley Regional Planning Commission, 208 AreaWide Waste Treatment Management Planning.

8. Geraghty and Miller, Inc., 1971, <u>Status of Groundwater Resources in 1970 in</u> <u>Cape May County, New Jersey prepared for Cape May County Water Policy</u> Advisory Committee and the Cape May County Board of Chosen Freeholders.

9. Geraghty & Miller, Inc., APRIL 1979, Investigation of Ground Water Contamination in South Brunswick Township, New Jersey.

10. Geraghty and Miller, Inc., August 1979, <u>Statewide Water Supply Master Plan,</u> Task 7.C., Ground Water Management Interim Output.

11. Geraghty and Miller, Inc., March 1980, <u>Pinelands Commission New Jersey</u> <u>Hydrogeology Assessment</u>, prepared for Betz, Converse, Murdock, Inc.

12. Gill, Harold E., 1962, <u>Groundwater Resources of Cape May County, N.J.,</u> <u>Saltwater Invasion of Principal Aquifers</u>, State of New Jersey Department of Conservation and Economic Development, Division of Water Policy and Supply, Special Report 18.

13.Gill, H. E., and Farlekas, G. M., 1976, <u>Geohydrologic Maps of the Potomac</u> Raritan-Magothy Aquifer System in the New Jersey Coastal Plain; U.S. Geological

Survey Hydrologic Investigations Atlas, HA557.

14. Harbaugh, A. W., James E. Luzier, and Flavaian Stellerine, May 1980, Computer Model Analysis of the Use of Delaware River Water to Supplement Water from the Potomac-Raritan-Magothy Aquifer System in Southern New Jersey, Water Resources Investigation 8031.

15. Lower Raritan/Middlesex County 208 Water Quality Management Planning Agency, September 1979. Task 2.7. Water Resource Characterization for Middlesex 208 Area.

16. Luzier, J. E., 1980, <u>Digitalsimulation and protection of head changes in the</u> <u>Potomac-Raritan-Magothy aquifer system</u>, <u>Coastal Plain</u>, <u>New Jersey</u>; U.S. Geological Survey WaterResources Investigations No. 8011.

17. New Jersey Pinelands Co~mission, June 1980, <u>Draft Comprehensive</u> Management Plan for the Pinelands National Reserve (National Parks and Recreation Act 1978) and Pinelands Area (New Jersey Pinelands Protection Act, 1979), Volumes I, II, and Plates.

18. Nichols, W. D., 1977, <u>Geohydrology of the Englishtown Formation in the</u> <u>Northern Coastal Plain of New Jersey</u>; U.S. Geological Survey WaterResources Investigations 76123.

19. Rhodehamel, E. C., 1973, <u>Geology and water resources of the Wharton Tract</u> and <u>Mullica River Basin in Southern New Jersey</u>: New Jersey Department of Environmental Protection, Division of Water Resources Special Report No. 36.

20. State of New Jersey, Department of Environmental Protection, <u>Draft Water</u> Quality Management Plan Monmouth County, New Jersey.

21. U.S. Army Corps of Engineers, Philadelphia District, April 1980, <u>Camden</u> Metropolitan Urban Study, Volumes I, II, and III.

22. U.S. Department of Interior, Northeast Regional Office, Heritage Conservation and Recreation Service, September 1980, <u>Draft Environmental Impact Statement</u>, Proposed Comprehensive Management Plan for the Pinelands National Reserve.

23. Vowinkel, Eric F. and W. Rendall Foster, April 1981, <u>Hydrogeologic Conditions</u> in the Coastal Plain of New Jersey, Open File Report 81405.

24. WAPORA, Inc., December 26, 1979, <u>Analysis of Sole Source Designations</u> <u>Pursuant to Section 1424(e) of the Safe Drinking Water Act and the Proposed</u> <u>Coastal New Jersey Designation</u>, prepared for the Homebuilders League of South Jersey and submitted to EPA for inclusion in the public record.

VII. Tables

Table 1. Characteristics of the New Jersey Coastal Plain Aquifer System

System	Formation	Thickness	Lithology
	Alluvial & Cape May Formation	80'	Sand, silt, black mud
	Pennsauken &		Sand, quartz, light-colored

http://www.epa.gov/region02/water/aquifer/coast/coastpln.htm

200'

40'

250'

780'

220'

140'?

180'

100'

35'

25'

150'

50'

220'

30'

220'

325'

4100'

sandy

micaceous

clayey, pebbly, glauconite Gravel, guartz, light-colored

Sand, quartz, light-colored,

medium to coarse-grained, pebbly; local clay beds

fine- to medium-grained,

fine- to coarse-grained

Sand, quartz, gray to tan, very

Sand, quartz and glauconite,

Sand, quartz and glauconite, gray, brown, and green, fine- to

coarse-grained, clayey and green silty and sandy clay Sand, quartz and glauconite, gray, brown, and green, fine- to

coarse-grained, clayey and green silty and sandy clay Sand, quartz, gray and green, fine- to coarse-grained, glauconitic, and brown clayey.

very fossiliferous, glauconite and

quartz calcarenite

clayey

clayey

beds

glauconitic, silty

glauconitic

Sand, glauconite, green,

medium- to coarse-grained,

Sand, quartz, and glauconite,

brown and gray, fine- to coarse grained, clayey, micaceous Sand, quartz, and glauconite,

brown and gray, fine- to coarse grained, clayey, micaceous Sand, glauconite, and quartz, green, black and brown,

medium- to coarse grained,

fine- to coarse-grained,

Sand, quartz, brown and gray,

Sand, quartz, and glauconite,

to medium-grained; local clay

Clay, gray and black, micaceous,

Sand, quartz, light-gray, fine- to coarse-grained, pebbly, arkosic,

dark-gray lignitic clay/red, white and varigated clay/alternating clay, silt, sand and gravel

gray and black, very fine- to medium-grained, very clayey Sand, quartz, tan and gray, fine-

TertiaryBridgeton FormationBeacon Hill FormationCohansey SandKirkwood FormationPiney Point FormationShark River MarlManasquan FormationVincentown FormationVincentown FormationCretaceousTinton SandRed Band SandNavesink FormationMarshalltown FormationFormationMount Laurel Sand / Wenonah FormationMarshalltown FormationReglishtown FormationMarshalltown FormationMagothy - Rariton - Potomac Formations				
Beacon Hill FormationCohansey SandKirkwood FormationPiney Point FormationShark River MarlManasquan FormationVincentown FormationVincentown FormationHornerstown SandCretaceousTinton SandRed Band SandNavesink FormationMount Laurel Sand / Wenonah FormationMarshalltown FormationEnglishtown FormationFormationWoodbury Clay / Merchantville FormationWoodbury Clay / Merchantville Formation				
Cohansey Sand Kirkwood Formation Piney Point Formation Shark River Marl Manasquan Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Woodbury Clay / Wornation Wagothy - Rariton -		Tertiary	Bridgeton Formation	
Kirkwood Formation Piney Point Formation Shark River Marl Manasquan Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -			Beacon Hill Formation	
Kirkwood Formation Piney Point Formation Shark River Marl Manasquan Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Woodbury Clay / Merchantville Formation Woodbury Clay / Magothy - Rariton -		L	L	
Piney Point Formation Shark River Marl Manasquan Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Werchantville Formation Woodbury Clay / Werchantville Formation			Cohansey Sand	
Piney Point Formation Shark River Marl Manasquan Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Werchantville Formation Woodbury Clay / Werchantville Formation				
Piney Point Formation Shark River Marl Manasquan Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Werchantville Formation Woodbury Clay / Werchantville Formation			Kidwigod Formation	
Shark River Marl Manasquan Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -				
Shark River Marl Manasquan Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -			Piney Point Formation	Γ
Manasquan Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Woodbury Clay / Merchantville Formation				-
Manasquan Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Woodbury Clay / Merchantville Formation				
Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -			Shark River Marl	
Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -				
Formation Vincentown Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Woodbury Clay / Werchantville Formation Magothy - Rariton -			Managguan	
Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Werchantville Formation Magothy - Rariton -			Formation	
Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Werchantville Formation Magothy - Rariton -			·	
Formation Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Werchantville Formation Magothy - Rariton -				
Hornerstown Sand Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Werchantville Formation Magothy - Rariton -				
Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -			romation	
Cretaceous Tinton Sand Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -				L F
Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / 			Hornerstown Sand	
Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -				
Red Band Sand Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -		Cretacoous	Tinton Sand	
Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -		Cretaceous	Tinton Gand	
Navesink Formation Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -				Ĩ
Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -			Red Band Sand	
Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -) <u></u> [
Mount Laurel Sand / Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -		A.	Navesink Formation	
Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -				
Wenonah Formation Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -				ſ
Marshalltown Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -				
Formation Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -				Ē
Englishtown Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -				
Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -			Formation	
Formation Woodbury Clay / Merchantville Formation Magothy - Rariton -			Englishtown	Γ
Merchantville Formation Magothy - Rariton -			Formation	
Merchantville Formation Magothy - Rariton -			Woodbury Clay /	Γ
Magothy - Rariton -			Merchantville	
Magothy - Rariton - Potomac Formations				J_ F
Potomac Formations			Magathy Pariton	
			Potomac Formations	
		4		
1.	the second s	• • • • •		•

X		
http://www.epa.gov/r	egion02/water/aquifer/coast/	coastpln.htm

Pre-

Sources of information:

(a) USGS Report on the NJ Coastal Plain Area; Database: 1978. (b) Respective Water Quality Management Plans; database: 1970-75. © New Jersey Water Supply Master Plan; database: 1976.

Table 3. Major Ground Water Withdrawals from the Coastal Plain Area

	(Million Gallons per day)								
County	PRM E W-MK		K	K-C	Other				
Atlantic				9.12	16.75	0.30			
Burlington	38.96	0.49	1.14		0.36				
Camden	69.57	0.76	0.88		0.04	0.98			
Cape May				5.36	0.38	0.56			
Cumberland				0.80	20.12	0.45			
Gloucester	25.19		0.02		1.76				
Mercer	8.12								
Middlesex	49.38								
Monmouth	21.60	6.25	1.31		1.14	0.31			
Ocean	11.53	4.59	0.03	4.22	12.50	4.84			

Precambrian and lower Pre-Cretaceous Paleozoic crystalline rocks, Unconsolidated rocks ? metamorphic schist and gneiss; Cretaceous and Wissahickon locally Triassic basalt, Formation sandstone, and shale

Table 2. Total Drinking Water Pumped from the New Jersey **Coastal Plain Area**

	(Million Gallons per day)						
County	USGS (a)	208 Plan (b)	NJWSMP ©	Est. Private Use ©			
Atlantic	20.1	28.5	17.7	4.4			
Burlington	30.5	25.5	32.4	4.7			
Camden	67.5	66.7	70.3	2.4			
Cape May	10.9	9.0	11.3	2.5			
Cumberland	14.2	13.5	13.5	4.2			
Gloucester	16.6	15.0	16.0	4.0			
Mercer	7.2	6.5	4.5	1.5			
Middlesex	24.7	25.8	24.1	1.5			
Monmouth	26.0	28.6	28.6	4.2			
Ocean	29.6	28.5	29.5	3.1			
Salem	2.8	3.0	3.0	2.2			
TOTAL	251.0	251.0	251.0	39.6			

http://www.epa.gov/region02/water/aquifer/coast/coastpln.htm

Page 15 of 15

Salem	6.10		1.32		1.86	0.82
TOTAL	230.45	12.09	4.70	19.50	60.92	8.26

PRM = Potomac-Raritan-Magothy

W = Englishtown

WM = Wenonah-Mount Laurel K = Kirkwood

KC = Kirkwood-Cohansey

Source: Vonwinkle and Foster, 1981.

Table 4. Population within Coastal Plain Aquifer System

County	1985	2000	Change	
Atlantic	226,800	277,400	50,600	
Burlington	372,900	471,900	99,000	
Camden	482,600	555,900	73,300	
Cape May	85,500	91,600	6,100	
Cumberland	135,100	142,600	7,500	
Gloucester	206,300	269,100	62,800	
Mercer	100,330	111,602	11,272	
Middlesex	256,440	302,840	46,400	
Monmouth	515,700	588,200	72,500	
Ocean	370,100	447,300	77,200	
Salem	66,500	6,100	2,600	
TOTAL	2,818,270	3,327,542	509,272	

VIII. Figures

Coastal Plain Figures

For information on this page, contact: Rinaldo.Lawrence@epamail.epa.gov

EPA Home | Privacy and Security Notice | Contact Us

Last updated on Wednesday, June 25th, 2003 URL: http://www.epa.gov/region02/water/aquifer/coast/coastpln.htm

http://www.epa.gov/region02/water/aquifer/coast/coastpln.htm

U.S. Environmental Protection Agency

Region 2 Water

 Serving New Jersey, New York, Puerto Rico, US Virgin Islands and 7 Tribal Nations

 Recent Additions | Contact Us | Print Version

 Search:

 EPA Home > Region 2 > Water > Aquifers > New Jersey Coastal Plain Aquifer

New Jersey Coastal Plain Aquifer

Federal Register Notice

Volume 53, No. 122, Page 23791 Friday, June 24, 1988 Sole Source Aquifer Determination for the New Jersey Coastal Plain Aquifer System

EPA Home > Region 2 > Water > Aquifers > New Jersey

ANVIADATE PROTECTION

Biosolids

Dredging

Drinking Water

Estuaries

Great Lakes

Groundwater

Infrastructure

Lakes, Rivers, Streams

Non-point Pollution

Oceans

Permits & Compliance

Stormwater

Waste Water

Water Quality

Watershed Protection

Wetlands

SUMMARY
DATES

AGENCY

ACTION

SUPPLEMENTARY INFORMATION

- o I. Background
 - II. Basis for the Determination
 - III. Description of the New Jersey Coastal Plain Area Aquifer Systems. Its Recharge Zone and Its Streamflow Source Zone
 - o IV. Information Utilized in Determination
 - o V. Project Review
 - o VI. Summary and Discussion of Public Comments

AGENCY

Environmental Protection Agency

ACTION

Notice.

SUMMARY

Notice is hereby given that, pursuant to section 1424(e) of the Safe Drinking Water Act, the Administrator of the U.S. Environmental Protection Agency (EPA) has determined that the New Jersey Coastal Plain Aquifer System, underlying the New Jersey Coastal Plain Area, is the sole or principal source of drinking water for the Counties of Monmouth, Burlington, Ocean, Camden, Gloucester, Atlantic, Salem, Cumberland, Cap May and portions of Mercer and Middlesex Counties, New Jersey, and that the aquifer, if contaminated, would create a significant hazard to public health.

As a result of this action EPA will review Federally assisted projects (projects which receive Federal financial assistance through a grant, contract, loan guarantee, or otherwise) proposed for constructed in a project review area which includes the New Jersey Coastal Plain Area and a portion of the aquifer streamflow source zone.

The streamflow source zone includes upstream portions of the Delaware River Basin in the States of Delaware, New Jersey, New York and Pennsylvania. Federally assisted projects will be reviewed to ensure that they are designed and constructed so that they do not

http://www.epa.gov/region02/water/aquifer/coast/fr_coast.htm

9/12/2005

create a significant hazard to public health. Projects outside of the project review area but within the streamflow source zone will be reviewed if they require an Environmental Impact Statement (EIS).

DATES

This determination shall be promulgated for purposes of judicial review at 1:00 P.M., Eastern Time on July 7, 1988. This determination shall become effective on August 8, 1988.

ADDRESS: The data on which these findings are based, detailed maps of the New Jersey Coastal Plain Area and the project review area, a compilation of public comments and the Agency's response to those comments, are available to the public and may be inspected during normal business hours at the U.S. Environmental Protection Agency, Water Management Division, 26 Federal Plaza, New York, New York 10278. In addition, copies of a map showing the designated area and a responsiveness summary to public comment are available upon request.

FOR FURTHER INFORMATION CONTACT: John S. Malleck, Chief, Office of Ground Water Management, U.S. Environmental Protection Agency, 26 Federal Plaza, New York, NY 10278, (212) 264-5635.

SUPPLEMENTARY INFORMATION

Notice is hereby given that pursuant to section 1424(e) of the Safe Drinking Water Act (42 U.S.C., 300f, 300h-3(e), Pub. L. 93-523), the Administrator of the U.S. Environmental Protection Agency (EPA) has determined that the New Jersey Coastal Plain Aquifer System, underlying the New Jersey Coastal Plain Area, is the sole or principal source of drinking water for the Counties of Atlantic, Burlington, Camden, Cape May, Cumberland, Gloucester, Monmouth, Ocean, Salem, and portions of Mercer and Middlesex Counties, New Jersey.

Pursuant to section 1424(e), Federally assisted projects proposed for construction in the New Jersey Coastal Plain Area and the project review area within portions of its streamflow source zone will be subject to EPA review.

The streamflow source zone for the New Jersey Coastal Plain Aquifer System includes upstream portions of the Delaware River Basin in the States of Delaware (New Castle County), New Jersey (Mercer-part, Hunterdon-part, Sussex-part, and Warren Counties), New York (Delaware, Orange, Sullivan and Ulster Counties), and Pennsylvania (Berkspart, Bucks, Carbon-part, Chester-part, Delaware, Lackawanna-part, Lancaster, Lehigh, Luzerne-part, Monroe, Montgomery, Northampton, Philadelphia, Pike, Schuykill and Wayne Counties).

The project review area includes that portion of the streamflow source zone which lies within two miles of the Delaware River in the States of New Jersey (in Mercer, Hunterdon, Sussex and Warren Counties), Delaware (in New Castle County), Pennsylvania (in Delaware, Philadelphia, Bucks, Monroe, Northampton, Pike and Wayne Counties) and New York (in Delaware, Orange and Sullivan Counties).

I. Background

Section 1424(e) of the Safe Drinking Water Act states: (e) If the Administrator determines, on his own initiative or upon petition, that an area has an aquifer which is the sole or principal drinking water source for the area and which, if contaminated, would create a significant hazard to public health, he shall publish a notice of the determination in the Federal Register. After the publication of any such notice, no commitment for Federal financial assistance (through a grant, contract, loan guarantee, or otherwise) may be entered into for any project which the Administrator determines may contaminate such aquifer through a recharge zone so as to create a significant hazard to public health, but a

http://www.epa.gov/region02/water/aquifer/coast/fr_coast.htm

9/12/2005

commitment for Federal financial as-sistance may, if authorized under another provision of law, be entered into to plan or design the project to assure that it will not so contaminate the aquifer.

On December 4, 1978 the Environmental Defense Fund, Inc., and Sierra Club New Jersey Chapter petitioned the EPA Administrator to determine that the Counties of Monmouth, Burlington, Ocean, Camden, Gloucester, Atlantic, Salem, Cumberland, Cap May and portions of Mercer and Middlesex Counties, New Jersey, constitute an area whose aquifer system is "the sole or principal drinking water source for the area and which, if contaminated, would create a significant hazard to public health." On March 21, 1979, EPA published the petition in the Federal Register. Public hearings on the petition request were heal May 1, 15 and 17, 1979 in Lindenwold, Trenton, Freehold and Pomona, New Jersey. A May 19, 1983 Federal Register notice announced the availability of additional technical information and the extension of public comment period to July 15, 1983.

II. Basis for the Determination

Among the factors to be considered by the Administrator in con-nection with the designating an area under section 1424(e) are:

(1) Whether the aquifer is the area's sole or principal source of drinking water and (2) whether contamination of the aquifer would create a significant hazard to public health.

On the basis of information available to this Agency, the Administrator has made the following findings, which are the basis for the determination noted above:

(1.) The New Jersey Coastal Plain Area depends upon the under-lying Coastal Plain Aquifer System for seventy-five (75) percent or more of its drinking water to serve 3 million people.

(2.) Data show that the formations of the New Jersey Coastal Plain Area are hydrologically inter-connected such that they respond collectively as an interrelated aquifer system.

(3.) If the aquifer were to become contaminated, exposure of the persons served by the system would constitute a significant hazard to public health.

(4.) Alternative supplies capable of providing fifty (50) percent or more of the drinking water to the designated area are not available at similar economic costs.

The New Jersey Coastal Plain Aquifer System is highly susceptible to contamination through its recharge zone from a number of sources, including but not limited to, chemical spills, leachate from landfills, stormwater runoff, highway deicing, faulty septic systems, wastewater treatment systems and waste disposal lagoons. The aquifer is also susceptible to contamination to a lesser degree fro the same sources through its streamflow source zone. Since ground water contamination can be difficult or impossible to reverse completely and since the aquifer in this area is solely or principally relied upon for drinking water purposes by the population of the New Jersey Coastal Plain Area, contamination of the aquifer could pose a significant hazard to public health.

III. Description of the New Jersey Coastal Plain Area Aquifer Systems, its Recharge Zone and its Streamflow Source Zone

The New Jersey Coastal Plain Aquifer System consists of a wedge-shaped mass of unconsolidated sediments composed of clay, silt, sand and gravel. The wedge thins to a feathered edge along the Fall Line and attains a thickness of 6,000 feet at the tip of Cape May County, New Jersey.

These sediments range in age from Cretaceous to Holocene and can be classified as continental, coastal or marine deposits. There are five major aquifers within the Coastal Plain Aquifer System. They are the Potomac-Raritan-Magothy Aquifer System, Englishtown

Aquifer, Wenonah-Mount Laurel Aquifer, Kirkwood Aquifer and the Cohansey-Aquifer. Natural recharge to the New Jersey Coastal Plain Aquifer System occurs primarily through direct precipitation on the outcrop area of the geologic formations. A smaller component of natural recharge to the deeper layers of the system occurs by vertical leakage from the upper layers. This accounts for a small percentage of the total amount of recharge; however, over a large area and a long period of time the amount of water transmitted can be significant.

The New Jersey Coastal Plain Aquifer discharges to the surface through streams, springs and evapotranspiration. Many streams ultimately flow into bays or directly into the ocean. Development of the ground water reservoir as a water supply source constitutes another discharge component which today accounts for a significant portion of discharge from the overall system. In certain areas (e.g., along the Delaware River) heavy pumping has caused a reversal in the normal discharge from the aquifer (Raritan-Magothy) such that the surface stream (Delaware River) now recharges the aquifer. This phenomenon implies that, in addition to the New Jersey Coastal Plain Area, the Delaware River Basin within Delaware, New Jersey, Pennsylvania and New York must be regarded as a streamflow source zone (an upstream headwaters area which drains into a recharge zone), which flows into the Coastal Plain Area.

IV. Information Utilized in Determination

The information utilized in this determination includes the petition, written and verbal comments submitted by the public, and various technical publications. The above data are available to the public and may be inspected during normal business hours at the U.S. Environmental Protection Agency, Region II, Water Management Division, 26 Federal Plaza, New York, New York 10278.

V. Project Review

When the EPA Administrator publishes his determination for a sole or principal drinking water source, no commitment for Federal financial assistance may be committed if the Administrator finds that the Federally assisted project may contaminate the aquifer through a recharge zone so as to create a significant hazard to public health...Safe Drinking Water Act section 1424(e), 42 U.S.C. 300h-3(e). In many cases, these Federally assisted projects would also be analyzed in an "Environmental Impact Statement" (EIS) under the National Environ-mental Policy Act (NEPA), 42 U.S.C. 4332(2)(C). All EIS's, as well as any other proposed Federal actions affecting an EPA program or responsibility, are required by Federal law (under the so-called "NEPA/309" process) to be reviewed and commented upon by the EPA Administrator. Therefore, in order to streamline EPA's review of the possible environmental impacts on designated aquifers, when an action is analyzed in an EIS, the two reviews will be consolidated and both authorities cited. The EPA review (under the Safe Drinking Water Act) of Federally assisted projects potentially affecting sole or principal source aquifers, will be included in the EPA review (under the "NEPA/309" process) of any EIS accompanying the same Federally assisted project. The letter transmitting EPA's comments on the final EIS to the lead agency will be the vehicle for informing the lead agency of EPA's actions under Section 1424(e).

All Federally assisted proposed projects will be reviewed, within the New Jersey Coastal Plain Area (Counties of Monmouth, Burlington, Ocean, Cumberland and Cape May, and portions of Mercer and Middlesex Counties, New Jersey (as delineated on maps included in the petition), and that portion of the streamflow source zone which lies within two miles of the Delaware River in the States of New Jersey (in Mercer, Hunterdon, Sussex and Warren Counties), Delaware (in New Castle County), Pennsylvania (in Delaware, Philadelphia, Bucks, Monroe, Northampton, Pike and Wayne Counties) and New York (in Delaware, Orange and Sullivan Counties) (asdelineated on maps included in the public record).

Outside the New Jersey Coastal Plain Area and further than two miles from the Delaware River in the streamflow source zone, only those Federally assisted proposed projects requiring the preparation of an EIS will be reviewed. The Agency has chosen a two-mile limit for the project review area along the Delaware River based on the climate and hydrologic setting of the area. The two-mile distance is consistent with the two-mile review radius included in the EPA guidelines for Ground Water Classification and is protective of human health.

VI. Summary and Discussion of Public Comments

There has been much controversy over the possible designation of this aquifer system. The majority of the public comments from the original 1979 public hearings were in direct opposition to such a designation. More than half of all responses received were against designation. Several commenters felt constrained by the original comment period and thereby requested an extension. EPA complied with this request on two occasions, once by announcing at the four public hearings it held throughout the area under consideration that the agency had extended the formal comment period from May 14, 1979, to December 31, 1979, and again in a May 19, 1983 Federal Register Notice that announced the availability of additional information and extension of the public comment period to July 15, 1983. Although a number of ground water protection measures are available at the Federal, State and local level, none of these, either individually or collectively, permit EPA to act as directly as would a sole source aquifer designation in the review and approval of Federally assisted projects. In addition, EPA feels that the sole source project review process will foster integration rather than duplication of environmental review efforts. Memoranda of Understanding have been negotiated with various Federal agencies with the purpose of streamlining the review process and minimizing project delays. Most of the commenters expressed concern that a designation would be a duplication of efforts already existing on the state and local levels. Some commenters felt that a sole source aguifer designation would give EPA the power to reject any applications for Federally funded projects indiscriminately and to delay any project underway. Another main concern of many commenters was that a designation would cause a strong negative impact on the area in question and curtail needed development, thus eliminating jobs. EPA is sympathetic to the concerns of the commenters; however, the Agency feels that a sole source aquifer designation would not interfere with economic development. Federal financial assistance will be withheld only in those instances where it is determined that a proposed project may contaminate the aquifer so as to create a significant hazard to public health and no acceptable remedial measures are available to prevent the potential hazard.

Dated: June 16, 1988. Lee M. Thomas, Administrator

[FR Doc. 8814293 Filed 6/23/88; 8:45 am] BILLING CODE 656050M

For information on this page, contact: Rinaldo.Lawrence@epamail.epa.gov

EPA Home | Privacy and Security Notice | Contact Us

Last updated on Wednesday, June 25th, 2003 URL: http://www.epa.gov/region02/water/aquifer/coast/fr_coast.htm

http://www.epa.gov/region02/water/aquifer/coast/fr_coast.htm

9/12/2005

Regional Ground Water Quality: Gloucester and Cumberland Counties, New Jersey (Source: USGS Water Quality Database)

USGS Well MW-24, Station Number 39401407506	0001, Camden, NJL		
Parameter	Units	Concentration 8/22/2000	Concentration
		555550/22/2900 	7/18/2005
Temperature	. deg C	· 16	13.5
Barometric pressure	mm Hg	765	760
Specific conductance	ms/cm	245	200
Dissolved oxygen mg/L	mg/L	. 10.5	10.8
рН	1	4.5	5
Ammonia (filtered)	mg/L	<0.02	<0.04
Nitrite (filtered)	mg/L	<0.01	<0.008
Ammonia + Org. Nitrogen	mg/L	0.09	0.09
Nitrate + Nitrite	mg/L	10.9	8.74
Orthophosphate	mg/L	<0.01	<0.02
Organic carbon	mg/L	3.2	0.8
Hardness	mg/L as CaCO3	78	68
Calcium	mg/L	20.1	18.0 .
Magnesium	mg/L	6.56	5.59
Sodium	mg/L	1.85	1.75
Potassium	mg/L	3.01	2.90
Chloride	mg/L	16.2	11.2
Sulfate	mg/L	29.1	32.8
Fluoride	mg/L	<0.10	0.05
Silica	mg/L	8.2	7.3
Arsenic	mg/L	<0.9	0.2
Barium	mg/L	331	241
Boron	mg/L	12	13
Cadmium	mg/L	<1.00	0.36
Chromium	mg/L	0.8	1.0
Copper	mg/L	1.2	2.0
liron	mg/L	7	5
Lead	mg/L	1.73	1.36
Manganese	mg/L	93.5	55.2
Nickel	mg/L	NA	2.83
Silver	mg/L	<1.0	<0.2
Thallium	mg/L	NA	0.04
Zinc	mg/L	1.4	1.0
Antimony	mg/L	NA	<0.20
Aluminum	mg/L	383	256
Selenium	mg/L	2.5	2.0
Gross beta radioactivity	pci/L	<4.0	, NA
Propachlor	ug/L	<0.007	<0.025
Butylate	ug/L	<0.002	<0.004
Simazine	ug/L	<0.002	<0.004
Prometon	ug/L	<0.003	<0.005
2-Chloro-4-isopropylamino-6-amino-s-triazine	ug/L	0.093	0.030
Cyanazine	ug/L	(<0.004	<0.018
Fonofos	ug/L	<0.004	<0.003
Alpha radioactivity	ug/L	6.2 \	NA NA
Bromodichloromethane	`ug/L	0.2 \ <0.1	<0.1
Tetrachloromethane	ug/L	<0.1	<0.2
1,2-Dichloroethane	ug/L	<0.2	<0.2
Tribromomethane	ug/L	<0.2 <0.2	<0.2
		1	
Dibromochloromethane	ug/L	<0.2	<0.2
Trichloromethane	ug/L	<0.1	<0.1
Toluene	ug/L	<0.1	<0.1
Benzene	ug/L	<0.1	<0.1
alpha-HCH	ug/L	<0.002	<0.005
Chlorobenzene	ug/L	<0.1	<0.1

Regional Ground Water Quality: Gloucester and Cumberland Counties, New Jersey (Source: USGS Water Quality Database)

USGS Well MW-24 Station Number 39401407506	001. Camden, NJ=	Gloucester County	
Parameter	Units	Concentration	Concentration
	CIIICS	8/22/2000	7/518/2005
Ethylbenzene	ug/L	<0.1	<0.1
Dichloromethane	ug/L	<0.1	<0.1
Tetrachloroethene	ug/L	<0.2 <0.1	<0.2
Trichlorofluoromethane	ug/L	<0.1	<0.1
1.1-Dichloroethane	ug/L	<0.2	<0.2
1,1-Dichloroethene	ug/L	<0.1	<0.1
1,1,1-Trichloroethane	ug/L	<0.1	<0.1
1,2-Dichlorobenzene	ug/L	<0.1	<0.1
1,2-Dichloropropane	ug/L	<0.1	<0.1
trans-1,2-Dichloroethene	ug/L	<0.1	<0.1
1,3-Dichlorobenzene	ug/L	<0.1	<0.1
1,4-Dichlorobenzene	ug/L	<0.1	<0.1
p,p'-DDE	ug/L	<0.006	<0.003
Dichlorodifluoromethane	ug/L	<0.2	<0.2
Chlorpyrifos	ug/L	<0.004	<0.005
Vinyl chloride	ug/L	<0.2	<0.2
Trichloroethene	ug/L	<0.1	<0.1
Lindane	ug/L	<0.004	<0.004
Dieldrin	ug/L	0.013	<0.009
Metolachlor	ug/L	<0.002	<0.006
Malathion	ug/L	<0.002	<0.027
Parathion	ug/L	<0.004	<0.010
Diazinon	ug/L	<0.002	<0.005
Atrazine	ug/L	0.177	0.022
Alachlor	ug/L	0.013	<0.005
Acetochlor	ug/L	<0.002	<0.006
tert-Butyl ethyl ether	ug/L	<0.1	<0.1
Methyl tert-pentyl ether	ug/L	<0.2	<0.2
Turbidity	NTU	4.2	NA
Alpha radiactivity 72-hr, wat flt Th-230	pci/L	NA	4.6
Alpha radiactivity 30-d, wat flt Th-230	pci/L	NA NA	· 2.2
Beta radiactivity 72-hr, wat fit Cs-137	pci/L	NA	3.4
Beta radiactivity 30-d, wat flt Cs-137	pci/L	NA	3.7
Mercury	ug/L	<0.2	<0.010
Alpha radioactivity 2-sigma	ug/L	3.2	NA
Beta radioactivity 2-sigma	ug/L	4.1	NA
cis-1,2-Dichloroethene	ug/L	<0.1	<0.1
Styrene	ug/L	<0.1	<0.1
o-Xylene	ug/L	<0.1	<0.1
1,1,2-Trichloro-1,2,2-trifluoroethane	ug/L	<0.1	<0.1
Methyl tert-butyl ether	ug/L	<0.2	<0.2
Diethyl ether	ug/L	<0.2	<0.2
Diisopropyl ether	ug/L	<0.2	<0.2
Sampling method	ug/L	4040	4040
Metribuzin	ug/L	<,0.004	,0.006
2,6-Diethylaniline	ug/L	<0.003	<0.006
Trifluralin	ug/L	<0.002	<0.009
Ethalfluralin	ug/L	<0.004	<0.009
Phorate	ug/L	<0.002	<0.011
Terbacil	ug/L	<0.007	<0.034
Linuron	ug/L	<0.002	<0.035
Methyl parathion	ug/L	<0.006	<0.015
EPTC	່ ug/L	< 0.002	<0.004
Pebulate	√ ug/L	<0.004	<0.004
Tebuthiuron	ug/L	<0.01	<0.02

Regional Ground Water Quality: Gloucester and Cumberland Counties, New Jersey (Source: USGS Water Quality Database)

USGS Well MW-24. Station Number 394014075060001. Camden, NJ - Gloucester County							
Parameter	Units	Concentration	Concentration				
E anneter a	Onits	8/22/2000					
Molinate	ug/L	<0.004	<0.003				
Ethoprop	ug/L	<0.003	<0.005				
Benfluralin	ug/L	<0.002	<0.010				
Carbofuran	ug/L	<0.003	、<0.020				
Terbufos	ug/L	<0.01	<0.02				
Propyzamide	ug/L	<0.003	<0.004				
Disulfoton	ug/L	<0.02	<0.02				
Triallate	ug/L	<0.001	<0.006				
Propanil	ug/L	<0.004	<0.011				
Carbaryl	ug/L	<0.003	<0.041				
Thiobencarb	ug/L	<0.002	<0.010				
DCPA	ug/L	<0.002	<0.003				
Pendimethalin	ug/L	<0.004	<0.022				
Napropamide	ug/L	<0.003	<0.007				
Propargite	ug/L	<0.01	<0.02				
Azinphos-methyl	ug/L	<0.001	<0.050				
cis-Permethrin	ug/L	< 0.005	<0.006				
m-Xylene plus p-xylene	ug/L	<0.2	<0.2				
Specific conductance	ug/L /	227	194				
Acid neutralizing capacity	ug/L	<1	<5				
Diazinon-d10	ug/L	104	101				
alpha-HCH-d6	ug/L	85.5	97.8				
1,2-Dichloroethane-d4, surrogate	ug/L	106	127				
Toluene-d8, surrogate	ug/L	103	102				
1-Bromo-4-fluorobenzene	ug/L	87.8	66.1				

Regional Ground Water Quality: Gloucester and Cumberland Counties, New Jersey (Source: USGS Water Quality Database)

Ç

١,

USGS Well OU02, Station Nur	nbor 202	020075011	00120011012	DO NUE O	mberand	Countress	ALCONTAGES STR			
A TATION OF A DATA STATE AND A DATA STATE	00.00003-200	SZUDI SU LU	son, annene				<u>on</u>			
Parameter	Units	9/24/1996	9/24/1996	9/24/1996			12/18/1996		9/13/1999	7/26/2004
Temperature	dec C						15.8	15.9	20	15.9
Barometric Pressure	mm Hg						756	000	763	765
Specific conductance	ms/cm						232 6.3	236 5.7	250	345
Dissolved Oxygen pH	mg/L	•					6.3 4.4	5.7 4.5	6 4.4	6.7 4.3
Bicarbonate	mg/L						4.4 0	4.5	4.4	4.5 <1
Ammonia	mg/L						<0.01	<0.01	≤0.02	<0.04
Nitrite	mg/L			ŕ			<0.010	0.01	≤.010	<0.008
Ammonia	mg/L						0.04	<0.20	0.10	0.06
Nitrate	mg/L					·	4.3	4.3	2.77	4.83
Phosphorus	mg/L						<0.01			
Orthophosphate	mg/L						<0.01	<0.01	<0.01	<0.02
Organic Carbon	mg/L						0.9	0.9	0.9	1.0
Calcium	mg/L						8.5	8.6	10.1	5.86
Magnesium	mg/L						3.4	3.6	4.21	4.83
Sodium	mg/L						25	23	23.5	38.8
Potassium Chloride	mg/L						3 26	2.9	3.89	2.77 76.5
Sulfate	mg/L mg/L						20 38		43.2 27.0	76.5 8.36
Fluoride	mg/L			ĺ ĺ			<0.1		<0.010	<0.30 <0.17
Silica	mg/L						4.9	5.00	6.0	7.2
Arsenic	ug/L		•					<1	<1	<0.2
Barium,	ug/L							82	116	372
Beryllium	ug/L							<1.00		0.23
Boron	ug/L							44		29
Cadmium	ug/L							<1.00	<1.0	0.31
Chromium	ug/L						1	2	<1.0	<0.8
Cobalt	ug/L							4		
Copper	ug/L							<1.0	1.5	1.3
Iron Lead	ug/L ug/L						23	4 <1.00	<10	<6
Manganese	ug/L ug/L						30	<1.00 30	<1 36.8	0.46 47.1
Molybdenum	ug/L							<1.0	30.0	47.1
Nickel	ug/L							3.0		5.43
Silver	ug/L	4						<1.0	<1.0	<0.2
Strontium	ug/L							23		
Zinc	ug/L			``	1			6	23	9.3
Antimony	ug/L							<1.00		<0.2
Aluminum	ug/L							315	470	446
Selenium	ug/L								1	1.3
Gross beta	pCi/L								25.6	
Propachlor	ug/L						<0.007		< 0.007	<0.025
Butylate Bromacil	ug/L						<0.002 <0.04		<0.002	<0.004
Bromacii Simazine	ug/L ug/L						<0.04 Est.<0.004		<0.005	<0.005
Prometon	ug/L ug/L						<0.02		<0.005	<0.005
CIAT	ug/L						<0.02		<0.02	< 0.006
Cyanazine	ug/L						< 0.004		< 0.004	<0.018
Fonofos	ug/L						<0.003		< 0.003	<0.003
Gross Alpha	pĊi/L								35.4	
Ra-226,	pCi/L	i 1						0.42		
Uranium	ug/L							<1.00		
Dibromomethane	ug/L					<0.10				
Bromodichloromethane	ug/L					<0.10		•	<0.1	<0.1
Tetrachloromethane	ug/L					<0.05	·		<0.2	<0.2
1,2-Dichloroethane	ug/L					<1			<0.2	<0.2
Tribromomethane	ug/L	L				<0.20	l		<0.2	<0.2

Regional Ground Water Quality: Gloucester and Cumberland Counties, New Jersey	
(Source: USGS Water Quality Database)	

USGSWell/0U02 Station Nun	nber/392	920075011	901.Vinela	nd-NUE Gi						
Parameter	.Units	9/24/1996	19/24/1996	9/24/1996		Concentration 12/18/1996		12/18/1996	9/13/1999	7/26/2604
		014-14-00-0		0,00,000	- AANTO AA	0.000	0.000			
Dibromochlormethane	ug/L					<0.1			<0.2	<0.2
Trichloromethane	ug/L					Est.<).04			<0.1	0.1
Toluene	ug/L					<0.05			<0.1	<0.1
Benzene	ug/L	,		,		<0.05			<0.1	<0.1
Acrolien	ug/L					<2				
Acrylonitrile	ug/L				•	<2				
Alpha-HCH	ug/L		ľ				<0.002		<0.002	<0.005
Chlorobenzene	ug/L					<0.05			<0.1	<0.1
Chloroethane	ug/L					<0.1				
Ethylbenzene	ug/L					<0.05			<0.1	<0.1
Høxachloroethane Bromomethane	ug/L ug/L					<0.1				
Chloromethane	ug/L					<0.1 <0.2				
Dichloromethane	ug/L					<0.2 <0.1			<0.2	<0.2
Tetrachloroethene	ug/L					<0.1			<0.1	<0.2
Trichlorofluoromethane	ug/L					<0.1 <0.10			<0.1 <0.2	<0.1
1,1-Dichloroethane	ug/L	l				<0.10			<0.2 <0.1	<0.2
1,1-Dichloroethene	ug/L					<0.00			<0.1	<0.1
1,1,1-Trichloroethane	ug/L		1			<0.10			<0.1	<0.1
1,1,2-Tetrachloroethane	ug/L		1			<0.00			NO.1	-0.1
1,1,2,2-Tetrachloroethane	ug/L					<0.10				
1.2-Dichlorobenzene	ug/L					<0.05			<0.1	<0.1
1,2-Dichloropropane	ug/L					<0.05			<0.1	<0.1
1,2-Dichloroethene	ug/L					<0.05			<0.1	<0.1
1,2,4-Trichlorobenzene	ug/L					<0.2				
1,3-Dichlorobenzene	ug/L					<0.05			<0.1	<0.1
1,4-Dichlorobenzene	ug/L					<0.05			<0.1	<0.1
p,p'-DDE,	ug/L						<0.006		<0.006	<0.003
Dichlorodofluoromethane	ug/L					<0.2			<0.2	<0.2
Naphthalene,	ug/L					<0.2				
trans-1,3-Dichloropropene	ug/L					<0.10				
cis-1,3-Dichloropropene	ug/L					<0.10				
Dicamba	ug/L						<0.04			
Linuron	ug/L						<0.02			
MCPA	ug/L						<0.05			
MCPB	ug/L						<0.04			
Methiocarb	ug/L						<0.03			
Propoxur	ug/L						<0.04			
Bentazon	ug/L						<0.01			
2,4-DB	ug/L						<0.04			,
Fluometuron	ug/L						<0.04			
Oxamyl	ug/L						< 0.02			·
Chlorpyritos	ug/L						<0.004		<0.004	<0.005
Vinyl Chloride Trichloroethene	ug/L					<0.1			<0.2	<0.2
Aldrin	ug/L					<0.05	-0.01		<0.1	<0.1
Lindane	ug/L ug/L	{ ·	[<0.01 <0.004		<0.004	<0.004
Chlordane	ug/L ug/L		1	N			<0.004		<0.004	<0.004
p,p'-DDD	ug/L ug/L	· ·					<0.1			
p,p'-DDE	ug/L	1					<0.01 <0.01			
p,p'-DDT	ug/L	1					<0.01			
Dieldrin	ug/L	l					<0.01 0.06		0,108	<0.009
Endrin	ug/L						<0.08		0,100	-0.003
Toxaphene	ug/L						<0.01			
Heptachlor	ug/L ug/L						<0.01			
Metolachior	ug/L						<0.01 <0.002		<0.002	0.012
Heptachlorepoxide	ug/L		I				<0.002		NO.002	0.012
riepidonorepoxide	uy/L	.	1	L	L	L	<u><u></u> <u></u> </u>	لــــــــــــــــــــــــــــــــــــــ		

-1

Regional Ground Water Quality: Gloucester and Cumberland Counties, New Jersey (Source: USGS Water Quality Database)

USGS Well 0102 Station Nun	1ber 392	920075011	901, Vinela	ind NJ Ci	Imberland	County				
Parameter	Units		9.15 S.			Concentrati				K. K
		9/24/1996	9/24/1996	9/24/1996	9/24/1996	1/2/18/1996	12/18/1996	12/18/1996	9/13/1999	7/26/2004
PCBs	ug/L						<0.1			
Malathion	ug/L						<0.005		<0.005	<0.027
Parathion	ug/L						< 0.004		< 0.004	<0.010
Diazinon	ug/L						<0.002		<0.002	<0.005
Atrazine	ug/L						<0.001		<0.004	<0.007
Hexachlorobutadiene	ug/L					<0.2				
Picloram	ug/L						<0.01			
2,4-D	ug/L						<0.01			
2,4-D	ug/L						< 0.04			
2,4,5-T	ug/L						< 0.01			
2,4,5-T Mirex	ug/L						< 0.04			
Silvex	ug/L ug/L						<0.01 <0.01		•	
Silvex	ug/L ug/L						<0.01 <0.02		,	
Alachlor	ug/L ug/L		j				<0.02		<0.002	<0.005
Triclopyr	ug/L		. .				<0.002		~0.00Z	~0.005
Propham	ug/L						<0.03			
Acetochlor	ug/L						<0.002		<0.002	<0.006
Picloram	ug/L						<0.05			
Oryzalin	ug/L		[<0.02			
Norflurazon	ug/L		I				<0.02			
Neburon	ug/L						<0.02			
1-Naphthol	ug/L						<0.01			
Methomyl	ug/L						<0.02	· · ·		
Fenuron	ug/L				۲		<0.01			
Esfenvalerate	ug/L						<0.02			
2Methyl4,6dinitrophenol	ug/L						<0.04			
Diuron Dinoseb	ug/L						<0.02			· ·
Dichlorprop	ug/L ug/L						<0.04 <0.03			
Dichlobenil	ug/L ug/L						<0.03 <0.02			
Dacthalmonoacid	ug/L						<0.02			
Clopyralid	ug/L		[<0.02			
Chlorothalonil	ug/L						<0.04			
Hydroxycarbofuran	ug/L		N N.				<0.01			•
Carbofuron	ug/L						<0.03			·
Carbaryl	ug/L						≤.008			
Bromoxynil	ug/L						<0.04			
Aldicarb	ug/L						<0.02			
Aldicarb sulfone	ug/L						<0.02			
Aldicarbsulfoxide	ug/L						<0.02	4 (A)		
Acifluorfen	ug/L						<0.04			·
Methylacrylate	ug/L					<2				
Tetramethylbenzene 1,2,3,5-Tetramethylbenzene	ug/L ug/L					<0.1				
1,2,3,5-Tetramethylbenzene Bromoethene	ug/L ug/L					<0.1 <0.1				
t-Butylethylether	ug/L ug/L					<0.1 <0.10			<0.1	<0.1
Methyltertpentylether	ug/L ug/L					<0.10			<0.1 <0.2	<0.1 0.7
Turbidity						∼ ∪. I		0.2	<0.2 4.1	0.7
Chlorambenmethylester	ug/L						<0.01	V.2	7.1	0.0
Alpha radiactivity 72-hr, Th-230	pCi/L									49
Alpha radiactivity 30-d, Th-230	pCi/L									7.5
Beta radiactivity 72-hr,Cs-137	pCi/L									26
Beta radiactivity 30-d,Cs-137	pCi/L									18
Solids	mm	0.6	0.5	0.4	0.4					
Solids	mm	1.4	1.5	1.1	0.9					
Solids,	mm	2.4	3.1	2	1.4					
Bromide	mg/L						0.08			
Mercury	ug/L	1						0.2	<0.1	0.632
trans-1,4-Dichlorobutene	ug/L					<5.0				<i>i</i> ,
Ethylmethacrylate	ug/L	L	1			<1.0				

Regional Ground Water Quality: Gloucester and Cumberland Counties, New Jersey (Source: USGS Water Quality Database)

)

USGS Well OU02 Station Nun	n ber 392	920075011	901; Vinela	nd, NJ - Ci	imberland	County				
Parameter	Units					Concentrati				
		9/24/1996	9/24/1996	9/24/1996	9/24/1996	12/18/1996	12/18/1996	12/18/1996	9/13/1999	7/26/2004
Alpha radioactivity	pCi/L								6.8	
Beta radioactivity	pCi/L								5.3	
Ra-228	pCi/L	· · ·						1.4		
Ra-226	pCi/L						1	0.07		
Rn-222	pCi/L							36		- 4
Carbon disulfide	ug/L					<0.05				
Vinyl acetate	ug/L					<5				
cis-1,2-Dichloroethene	ug/L					<0.05			<0.1	<0.1
Methyl n-butylketone	ug/L					<5.0				
Styrene	ug/L					<0.05			<0.1	<0.1
Xylene	ug/L					<0.05			<0.1	<0.1
1,1-Dichloropropene	ug/L					<0.05				
2,2-Dichloropropane	ug/L					<0.05				
1,3-Dichloropropane	ug/L					<0.1				
Ethyltoluene	ug/L					<0.05				
1,2,3-Trimethylbenzene	ug/L					<0.1				
1,2,4-Trimethylbenzene	ug/L					<0.05				
Isopropylbenzene	ug/L					<0.05				
n-propylbenzene	ug/L					<0.05				
1,3,5-Trimethylbenzene	ug/L					<0.05				
2-Clorotoluene	ug/L					<0.05				
4-Chlorotoluene	ug/L					<0.05				
Bromochloromethane	ug/L					<0.10		. <i>C</i>		
n-Butylbenzene	ug/L					<0.1				
sec-Butylbenzene Itert-Butylbenzene	ug/L					< 0.05				
	ug/L					< 0.05				
4-Isopropyltoluene 1,2,3-Trichloropropane	ug/L ug/L					<0.05 <0.2				
1,1,1,2-Tetrachloroethane	ug/L ug/L					<0.2 <0.05				
1,2,3-Trichlorobenzene	ug/L ug/L					<0.05 <0.2				
1,2-Dibromoethane	ug/L ug/L					<0.2 <0.1				
CFC-113	ug/L					<0.1			~0 1	<0.1
Methyl-t-butylether	ug/L ug/L					<0.05 0.3			<0.1 0.4	<0.1 30.5
Chloropropene	ug/L					<0.0			0.4	30.5
Isobutyimethylketone	ug/L		•			<5.0				
Ra-228	pCi/L					<0.0		6		
Acetone	ug/L					· <5		U		
Bromobenzene	ug/L					< 0.05				
Di-ethylether	ug/L					<0.1			<0.2	<0.2
Diisopropylether	ug/L	l							<0.2	<0.2
Methylacrylonitrile	ug/L					<2.0				
Ethylmethylketone	ug/L					<5				
Methylmethacrylate	ug/L					<1.0				
Tetrahydrofuran	ug/L					<5				
Dicamba	ug/L						<0.01			
Dichlorprop	ug/L						<0.01			
Rn-222	pČi/L							300		
p,p'-Ethyl-DDD	ug/L						<0.1			
p,p'-Methoxychlor	ug/L						<0.01			
alpha-Endosulfan	ug/L						<0.01	,		
PCNs	ug/L						<0.1			- ·
Dibromochloropropane	ug/L]				<0.5				
Metribuzin	ug/L						<0.004		<0.004	<0.006
2,6-Di-ethylaniline	ug/L						<0.003		<0.003	<0.006
Trifluralin	ug/L						<0.002		<0.002	<0.009
										i i

APPENDIX I - LOCAL HYDROGEOLOGIC DATA

.

APPENDIX I - LOCAL HYDROGEOLOGIC DATA

Table I-1 Summary of Large Capacity Well Search Results Table I-2 Summary of Well Search Results – Lower Capacity Wells

Find the second second results Edword Cupacity from

Figure I-1 - Location of Large Capacity Water Supply Wells

Figure I-2 – Location of Vineland Well Restriction Area

City of Vineland Well Restriction Area Description

Figure I-3 - Ground Water Contours - Shallow Wells, April 2008

Figure I-4 - Ground Water Contours - Deep Wells, April 2008

Table I-3 October 2008 Quarterly Ground Water Sampling Results - On-site Wells Table I-4 October 2008 Quarterly Ground Water Sampling Results - Off-site Wells Ground Water Contaminant Isopleth Maps

Figure I-5	TCE Concentration	(ppb): Shallow	Wells, April 2008
	ren concentration	(ppo), onano	

Figure I-6 TCE Concentration (ppb); Deep Wells, April 2008

- Figure I-7 Total Chromium Concentration (ppb); Shallow Wells, April 2008
- Figure I-8 Total Chromium Concentration (ppb); Deep Wells, April 2008
- Figure I-9 Hexavalent Chromium Concentration (ppb); Shallow Wells, April 2008

Figure I-10 Hexavalent Chromium Concentration (ppb); Deep Wells, April 2008

Table I-5 Ground Water/Suspended Solids Radiological Results - April 2004 Table I-6 Average Depths to Ground Water – Monitoring Wells MW-11S, MW-12S

and MW-13S, January 2001 – January 2009

Description of Radiological Ground Water Sampling Procedures

September 8, 1995 Letter Report – Analytical Result from Water Sampling (July 17, 1995)

May 3, 2004 Severn Trent Analytical Report (April 6 and 7, 2004)

June 9, 2005 Letter Report - Results of Ground Water Sampling (April 13, 2005)

August 29, 2007 Outreach Laboratory Analytical Report (July 24, 2007)

Select pages from January 11, 2008 USNRC Inspection Report - NRC Analysis of 2007 Split Samples

October 8, 2007 ORISE Analytical Report (July 24, 2007)

April 15, 2008 Outreach Laboratory Analytical Report (March 18, 2008)

October 9, 2008 Outreach Laboratory Analytical Report (July 9, 2008)

Table I-1 Summary of Large Capacity Well Search Results Shieldalloy Metallurgical Corporation

		Permit	Local			Distance / Direction	Well Depth	Pump Capacity	Withdrawal
Number	Owner's Name	Number	Identification	Latitude	Longitude	(miles) / (Compass)	(feet)	(gpm)	Rate (gpd)
2237P	Shieldalloy Metalurgical Corp.	3119648	W9	393224	750120	0.30/SW	130	100	70000
2237P	Shieldalloy Metalurgical Corp.	3105842	Layne	393224	750123	0.33/SW	47	100	30000
2237P	Shieldalloy Metalurgical Corp.	3128710	RW6S	393220	750128	0.43/SW	75	100	135000
2237P	Shieldalloy Metalurgical Corp.	3128711	RW6D	393220	750128	0.43/SW	125	100	130000
2237P	Shieldalloy Metalurgical Corp.	3128712	RIW2	393213	750143	0.69/SW	75	200	220000
5147	Newfield Borough Water Dept	3104559	3	393254	750121	0.54/NW	162	400	265000
5147	Newfield Borough Water Dept	5100046	5	393246	750031	0.59/NE	140	500	335000
CU0029	Sepers Nursery	5500158	Well 5	393232	750157	0.84/W	85	300	108000
CU0129	Petronglo Farms, Inc.	3121627	Well 6	393213	750146	0.73/SW	100	350	126000
CU105R	Lopergolo, Mike	3500032	Well 1	393147	750143	0.89/SW	129	90	21,600*
GL0048	Pine Grove Camp, Inc.	3503230	Well 1	393148	750145	0.91/SW	100	500	180000
GL0182	Leshay Farms, Samuel	3104823	Well 2	393243	750132	0.59/NW	130	1000	360000
GL0182	Leshay Farms, Samuel	5100392	Well 1	393253	750045	0.49/N	104	1000	360000
	Leshay Farms, Samuel**	3122330	Well 3	393241	750035	0.43/NE	130		
	Leshay Farms, Samuel**	3158063	Well 4	393233	750128	0.45/NW	100		
	Leshay Farms, Samuel**	3163314	Well 5	393238	750059	0.20/N	109	1	
	Leshay Farms, Samuel**	3106890	Well 6	393239	750102	0.22/NW	100		

Notes:

Source: NJDEP - Water Supply Element, Bureau of Water Allocation; Large Capacity (100,000 GPD) Well Search Within 5 Miles of Site Focus; Performed on 3/17/00 Number field indicates either a Water Allocation Permit, Agricultural Certification, or Registration Number

Distance field indicates the distance in miles between the well current slag pile.

Direction field indicates compass direction from the search focus.

Withdrawal rate for Shieldallow Metalurgical Corp. wells based on ground water remediation system operation records

Withdrawal rates for Newfield Borough Water Dept wells based on reports by Mr. Jack Harris, Water Department Superintendant, Borough of Newfield

5

* Maximum pumping rate from well permit

** Information provided to TRC by NJDEP July 26, 2004

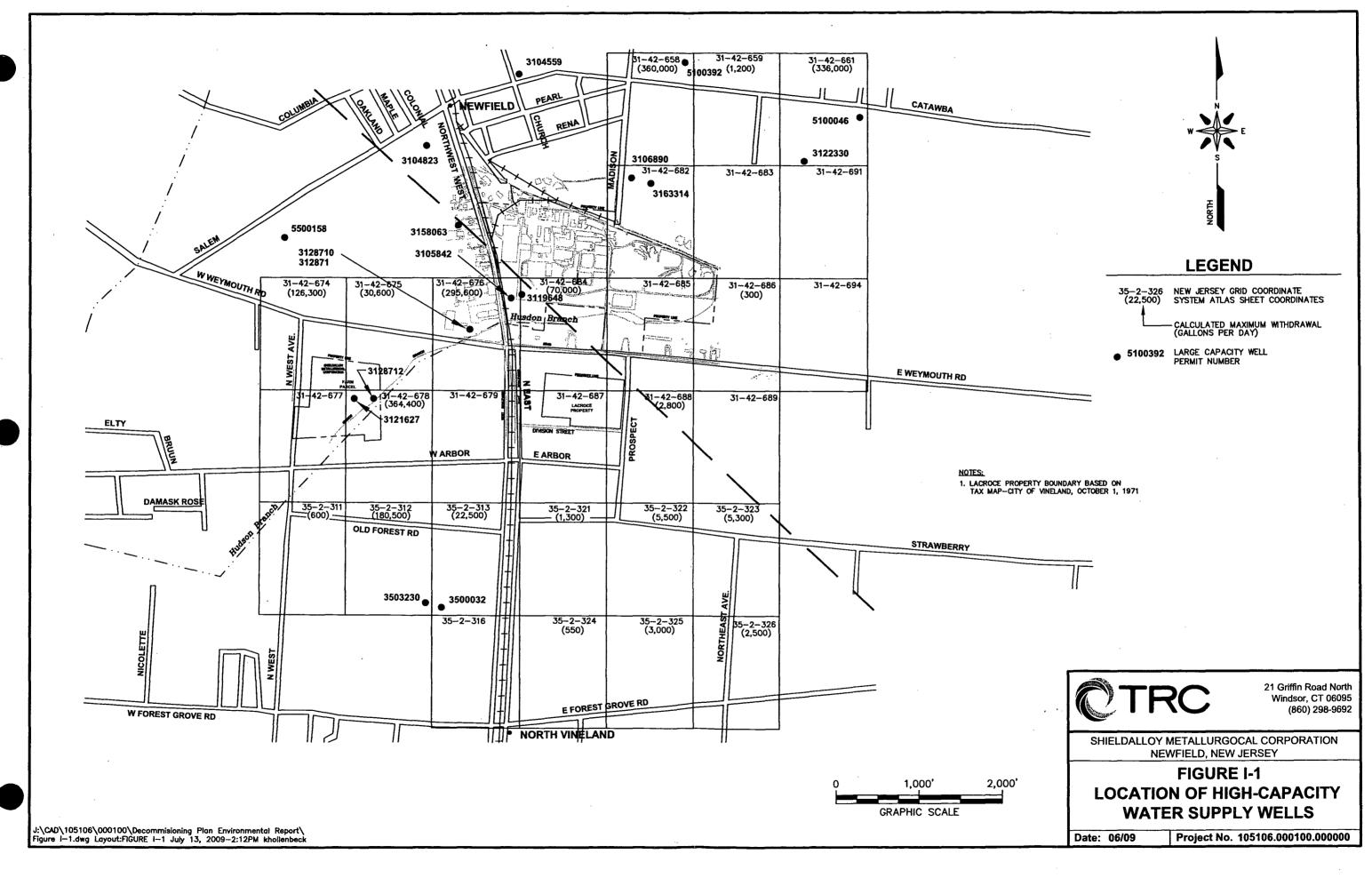



Table I-2 Summary of Well Search Results - Lower Capacity Wells¹ Shieldalloy Metallurgical Corporation

Permit Number	Install Date	Well Owner	Owner's Address	Well Location Address	Atlas Sheet Coordinates	Well Location Lot/Block	Screen Diameter	Screened Interval (FBG)	Average Withdrawal (GPD)	Maximum Pumping Rate (GPD)	Specific Capacity (GPM/FT)	Pump Capacity (GPM)	Well Usage
Sheet 31	nistai Date		Owner's Address	I vvei Location Address	Coordinates	LOVBIOCK	Diameter	(FBG)		Hale (GPU)			VVeir Usage
31-6890	4/18/1973	Leshay Bros.	Newfield	Catawba Ave	31 42 658		6	70-100			50		Irrigation
31-31860	8/29/1989	Sam Le Shay	Catawba Ave., Newfield	Same	31 42 659	17/24	4	75-85			1.58		Domestic
31-31859	8/29/1989	Sam Le Shay	Catawba Ave., Newfield	Same .	31 42 659	18a/24	4	80-90			1.58		Domestic
31-20606	3/20/1984	D&M Builders	596 Clayton Rd., Franklin Twp.		31 42 661	3c/519	2	55-59	500	500		9	Domestic
31-20755	7/20/1984	D&M Builders	596 Clayton Rd., Franklin Twp.		31 42 661	3d/519	2	54-58	500	500		9	Domestic
31-21627	6/12/1984	Carman Petronglo	5014 N. Delsea Drive, Vineland		31 42 674	13/83	5	40-60				350*	Irrigation
31-28468	5/20/1989	Sol Finkelstein	882 S. Spring Rd, Vineland		31 42 674	1.05/43	2	145-150	150	300		10	Domestic
31-19465	9/18/1982	James Bringer	555 E. Elm Rd., Vineland		31 42 675	3/968	4	75-85				15	Domestic
31-143	5/15/1950	Gus Hauser	Weymouth Rd., Newfield		31 42 675		4	140-150		30,000	2.5	NI	Irrigation
31-49153	4/27/1996	Eugene Magliocco	756 Strawberry Ave., Vineland	Same	31 42 676	4/6901	4	90-100				12	Domestic
31-19723	4/5/1983	Petronglo Farms	5014 N. Delsea Drive, Newfield		31 42 678	10/83	6	42-62					Irrigation
31-9125	8/14/1975 9/12/1985	J. Ruberto	605 W. Arbor Ave., Vineland	Arbor Ave/West Ave	31 42 678	10/07	2	51-61	300	400		50	Domestic
31-23513		Bruce Wean	R.D. 1 Box 511 W. Garden Rd.	Pottsgrove Twp.	31 42 678	46/67	3	62-72				50	Irrigation
31-6092	11/3/1969	Borough of Newfield	Borough Hall, Newfield	Main St., Newfield	31 42 685		10	129-149			21.91	500	Public Supp
31-13812	6/13/1978 9/1/1984	Krykory Torgover	Weymouth Rd., Vineland	Same	31 42 686	6b/581	2	53-58	200	300			Domestic Domestic
31-21871		Newlin Caudill	Aura Willow Grove Rd.	Weymouth Rd.	31 42 688	0.1504	4	90-100	500	600		12	Domestic
31-21871 31-19468	9/26/1984 9/27/1982	Newlin Caudill Richard Krason	Aura Willow Grove Rd. 3151 North East Ave., Vineland	Weymouth Rd. East Avenue	31 42 688 31 42 688	6c/581	4	80-90 70-80	500	600		16 15	Domestic
31-1066	7/10//53	Louis Pelts	Prospect Ave., Vineland	Same	31 42 688	1	4	45-51	500	600		10	Domestic a
3111000	11 (0100		in respect Ave., vinerand	Salle	31 42 000		4	40-51	300	000		10	Poultry
31-1133	9/12/1953	Alfred Osterman	Arbor Ave., Vineland	Same	31 42 688		4	65-71	300	400	5.5	10	Domestic
Sheet 35 35-12130	7/15/1991	Frank Marchisella	3183 N. East Blvd, Vineland	10									Demet
35-12130	1/1982	Gene Brenner	Arbor Ave, Vineland	Same	35 02 311	12/114	4	90-100 65-70		500		11	Domestic Domestic
35-3230	4/12/1982	Joseph Petronglo Jr.	4724 N. Delsea Dr.	Same	35 02 312		2		200	500		12 500*	1
35-3230	7/12/1950	Frank Russo	West Blvd, N. Vineland	West Ave Same	35 02 312 35 02 313		3 4	34-64 99-129		21600	8.25	90	Irrigation Irrigation
35-4248	7/1/1984	Bob Carpenter	168 Arbor Ave., Vineland	Same	35 02 313	8/83	2	90-95		21000	0.60	10	Domestic
35-75	3/5/1952	Joseph Girardi	E. Blvd & Strawberry Ave., Vineland	Same	35 02 313	0/03	4	25.5-31.5	300	300		8	Domestic
35-14281	8/16/1993	John Ruggiano	311 Baylor Ave., Vineland	Strawberry Ave.	35 02 313	24.03/114	4	80-90	300	300		•	Return
35-1653	5/10/1978	Ronald Jacobson	181 Strawberry Ave	Suawberry Ave.	35 02 321	24.03/114	3	84-94	200	400			Domestic
35-18262	12/14/1997	W. Serad	745 Strawberry Ave.	Same	35 02 321	. 67/7004	4	90-100	200	400		12	Domestic
35-5352	2/24/1986	Leo Palmonai	3127 N.E. Blvd	Sallie	35 02 321	10/114	4	80-90	150	300		' '	Domestic
35-11946	5/16/1991	Richard Bruno	3120 N. East Ave., Vineland	Same	35 02 322	28/114	4	95-105	400	600		25	Domestic
35-12625	1/7/1992	Richard Lorenzini	3181 N. East Ave., Vineland	Same	35 02 322	20/121	4	90-100	400	600		10	Domestic
35-13775	8/16/1993	John & Margaret Ruggiano	311 Baylor Ave., Vineland	Strawberry Ave.	35 02 322	24.03/114	4	85-95				25	Domestic
35-14414	9/27/94	Richard Linn	1069 Linda Lane, Vineland	Strawberry Ave.	35 02 322	24.02/114	4	108-118	500	750		20	Domestic
35-14783	4/11/1995	Wells Cornell	1022 Holmes Ave, Vineland	Strawberry Ave.	35 02 322	24.03/114	4	73-83	500	1800	2.08	20	Domestic
35-15257	9/27/1994	Richard Linn	1019 Linda Lane, Vineland	Strawberry Ave.	35 02 322	24.02/114	4	100-110	500	1000	2.00		Heat Pump
35-3132	2/2/1982	Daniel S. Falasca	Box 127 Morris Ave	Strawberry Ave.	35 02 322		з	69-79				15	Discharge Domestic
35-3133	2/2/1982	Daniel S. Falasca	Box 127 Morris Ave.	Strawberry Ave.	35 02 322		3	69-79				15	Domestic
35-06267	5/15/1987	KDR Contractors	PO Box 2370, Vineland	Suawouny Ave.	35 02 323	32.01/114	2	84-90	500	600		10	Domestic
35-10153	1/24/1990	James Schrier	560 E. Forest Grove Rd.	Same	35 02 323	11/121	4	115-130	500	~~~		15	Domestic
35-12597	11/13/1992	Phil Schreiber	935 Magnolia Rd	N. E. Ave	35 02 323	32/114	4	80-90				25	Domestic
35-12842	3/21/1992	Louis Dalesandro	3005 N. East Ave., Vineland	Same	35 02 323	15/121	4	58-68	500	1800		12	Domestic
35-13276	8/28/1992	Charles Schaser	3176 N. East Ave., Vineland	Same	35 02 323		4	110-120	400	600		20	Domestic
35-3611	3/17/1983	Charles R. Johnson	741 Strawberry Ave.	1	35 02 323	1B/583	2	120-127					Domestic
35-4916	9/14/1985	Robert Petrongio	2060 Weymouth Rd.		35 02 323	1/46	- 4	125-135	200	500		25	Domestic
35-08272	2/16/1989	Garden Homes	N. Delsea Dr. / Garden Rd.	Forest Grove Rd.	35 02 324	32.02/114	4	73-83	150	150	1.1	11	Domestic
35-13626	12/23/1992	Mary H. Gamba	3095 North East Blvd, Vineland	Same	35 02 324	9/114	2	88-98	300	400	7.8	10	Domestic
35-05892	5/20/1987	Daniel McDermott	2668 Division St, Vineland	Same	35 02 325	34/114	2	78-85					Domestic
35-14509	12/17/1993	Philo & Maxine Chapman	2388 N. East Ave	Same	35 02 325	5/127	4	80-90	400	600		15	Domestic
35-15381	10/31/1994	Mary C. Meyer-Bowen	855 E. Forest Grove Rd., Vineland	Same	35 02 325	4/128	4	86-96	400	600		10	Domestic
35-17000	6/21/1996	Audrey McDermott	330 Grove Road, Vineland	Same	35 02 325	35/114	4	73-83				20	Domestic
35-17367	1/20/1997	Edward & Bridget Conrow	311 Central Ave, Vineland	Forest Grove Rd.	35 02 325	1/124	4	90-100				25	Domestic
35-15575	1/20/1995	Steven Gatier	267 E. Forest Grove Rd.	Same	35 02 326	6/123	4	75-85	300	400		8	Domestic
35-02260	4/1/1981	Richard McDermott	Division Street		35 02 326		2	71-76	200	500		18	Domestic
35-3929	11/15/1984	William Sirawatka			35 02 326	9,10/121	2	72-79				NI	Domestic
35-07901	7/2/1988	Lottie Reed Jones	304 E. Forest Grove Rd.	Same	35 02 326	36/114	4	90-100	500	750		11	Domestic

¹ Source: NJDEP - Water Supply Element, Bureau of Water Allocation; Well Permit Search Within 1 Mile of Site Focus; Performed March 2000 Ni. - Pump not installed * - Pump capacity reported in Large Capacity Well Search

.

I. KY: SMC NEWFIELD

CITY OF VINEL WRITER-SOWER LITELITY

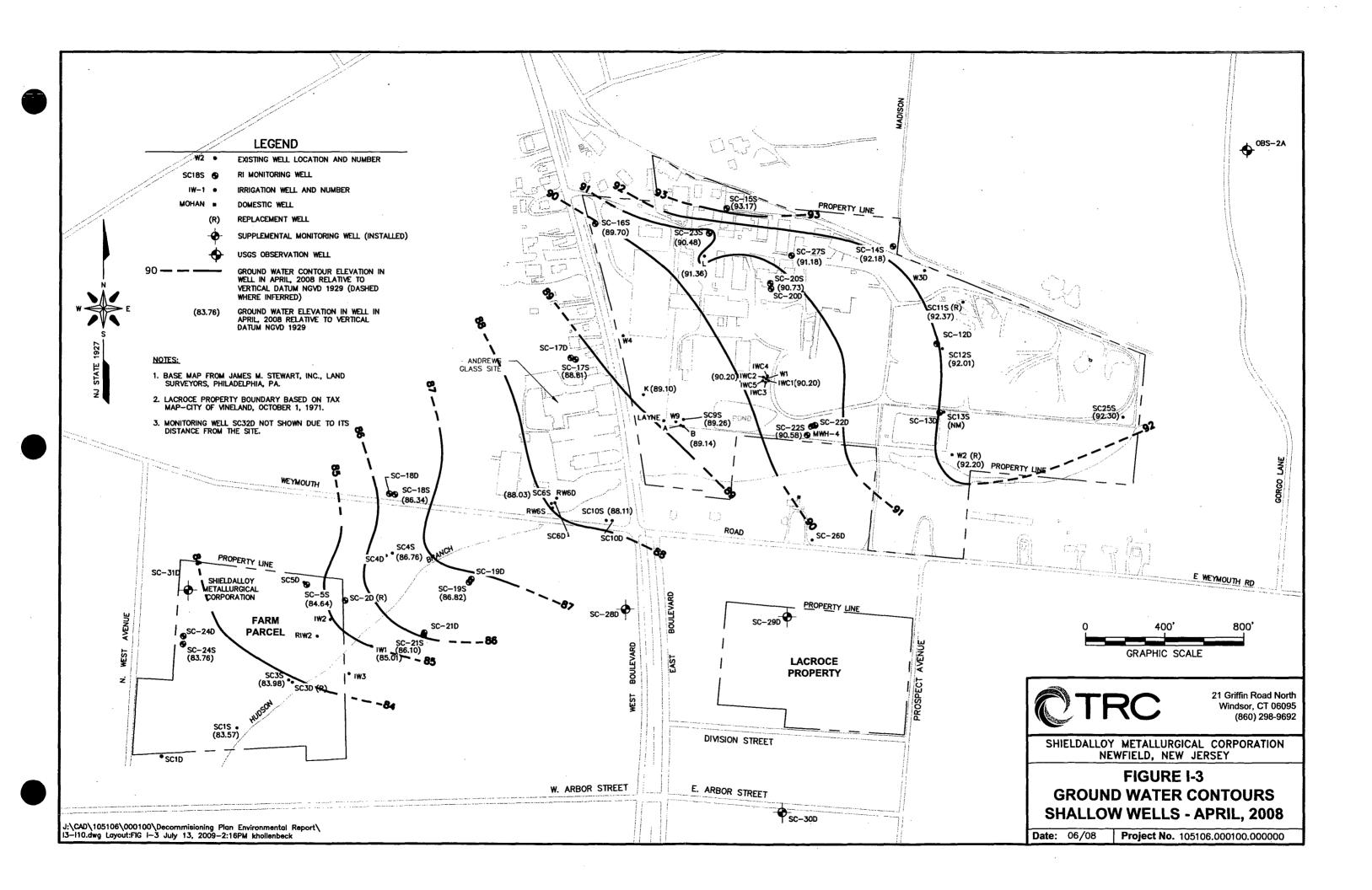
; 6- 5-96 ; 2:04PM ;

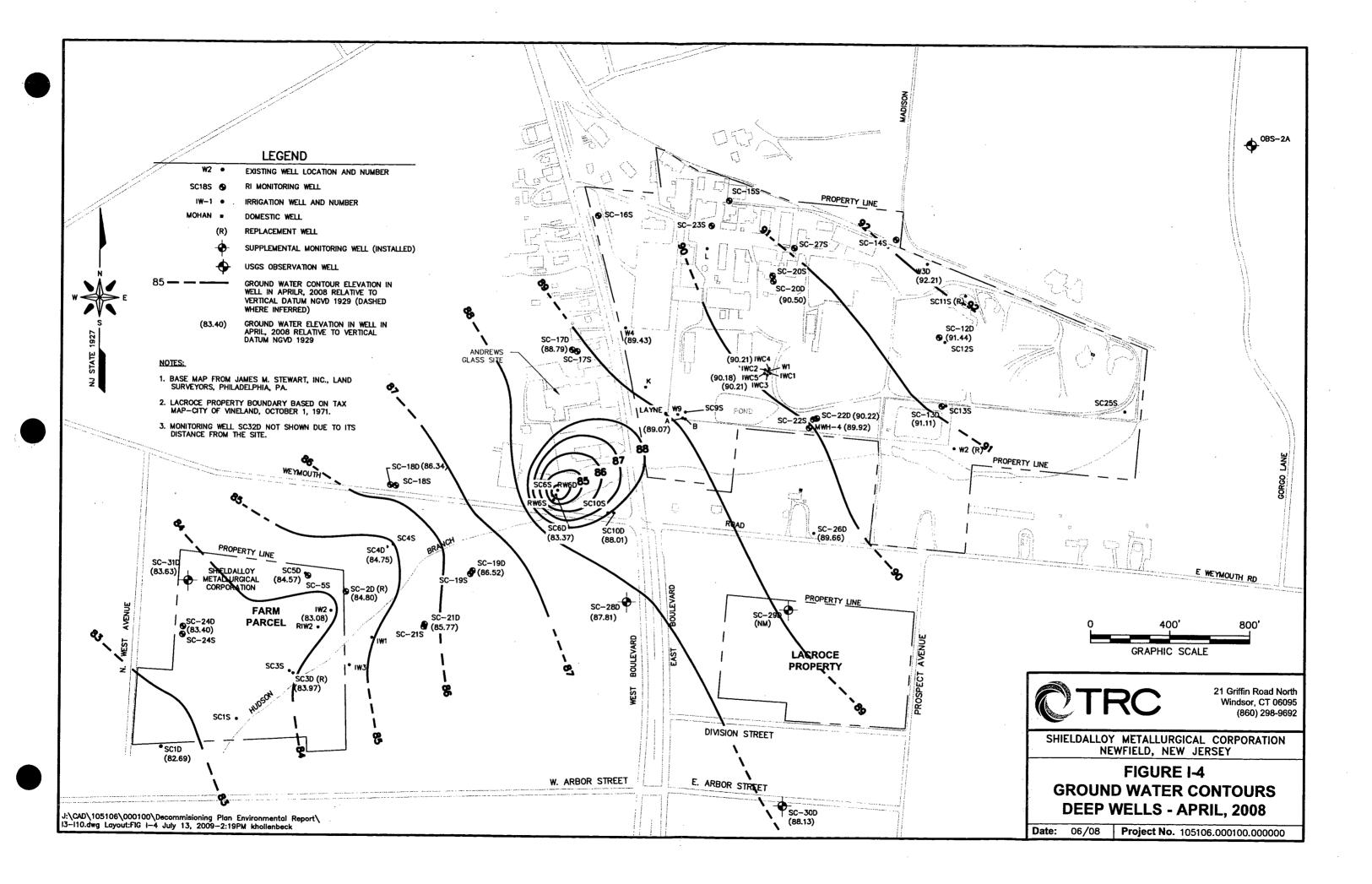
	TTTA CALAN ON	
3-91	FAX NO:	697-9025
inio Aust		
MR. Jim V	ALENERE	
Pau Horner	2	
r of sheets inc	LUDING COVER	SHEETI \$2
DESCRIP	tion of W	en RESTRICTION
AREA ins 1	NORTH Vine	KAND

- 	÷.	
- •		
	3-91 1100 ALLOY MR. Jim V PAN HORMAN CR OF SHEETS INC DESCRIP	3-91 HAX NON HIR. Jim VALENERE MR. Jim VALENERE PAN HORNERE PAN HORNERE DESCRIPTION OF W AREA IN NORTH VINE 194-6182

6037944056 CITY OF VINELANDWATER UILLIT UUT PO

MHEREAS, the State legislature has provided, in N.J.S. 40:63-52, et seq., for local ordinances requiring mandatory connection with water systems, and the State of New Jersey, Department of Environmental Protection, has ordered mandatory scaling of wells in accordance with N.J.S.A. 58:4A-4.1 at seq., and N.J.S.A. 58:12A-1 at seq.;


NOW, THEREFORE, BE IT ORDAINED by the City Council of the City of Vincland, County of Cumberland, and State of New Jersey, as Eollows:


I. All buildings located upon a street in which the public water supply main is constructed in the area designated by the State of New Jersey, Department of Environmental Protection, identified in Section 2 of this Ordinance, shall be connected with the public water supply main, and the private water supply well shall be permanently . sealed.

2. All private water supply wells in the following area shall be sealed pursuant to mandatory order issued by the State Department of Environmental Protection, and the City of Vineland shall contract therefor upon connection of all properties to the Municipal Mater Utility's distribution mains in said area: N. West Avenue, from Weymouth Road to Forest Grove Road; W. Arbor Avenue, from N.J. Route No. 47 (Delses . Drive) to N. West Boulevard: Old Forest Road, from N. West Avenue to N. West Boulevard; W. Forest Grove Road, from 1,225 feet west of N.J. Route No. 47 (Delses Drive) to N. West Boulevard; N.J. Route No. 47, from W. Forest Grove Road to 1,200 feet north of W. Arbor Avenue; N. West Boulevard, from W. Forest Grove Road to City Limit; W. Neymouth Road, from 210 feet wast of N. West Avenue to N. West Boulevard; Gerow Avenue, from W. Arbor Avenue to Bity Avenue; Hity Avenue, from Gerow Avenue to Bruan Avenue; Bruan Avenue, from Bity Avenue to W. Arbor Avenue; Burnt Hill Road, from W. Arbor Avenue to Regina Blana Avenue; Tessa Court, from Burnt Mill Drive to cul-de-sac; Regina Elena Avenue, from Burnt Mill Drive to easterly terminus.

-2-

NNUWATER UTILITY

														t TAW DNUO O	EWFIELD, I	CAL CORPO NJ FICAL RESU LLS									·						
WELL NUMBER LAB ID SAMPLE DATE	A J51820-1 07/10/08	B J51604-3 07/10/08		L J51831-2 07/10/08	IWC2 J51573-11 07/10/08	IWC5 J51604-1 07/10/08	SC9S J51604-2 07/09/08		SC12S J51573-4 07/09/08	SC32S ⁽¹⁾ J51573-5 07/09/08	SC12D J51573-6 07/09/08	J51573-8	SC13D J51573-9 07/09/08	SC14S J51573-2 07/09/08	SC22S J51573-10 07/10/08	MWH-4 J51693-1 07/10/08	MWH-10 ⁽²⁾ J51693-2 07/10/08	SC-23S J51831-1 07/10/08	SC25S J51573-1 01/16/07	W2(R) J51573-7 07/09/08	W3(D) 07/09/08	SC20D 07/09/08	SC20S	LAYNE J51820-3 07/10/08		INFLUENT J51820-4 07/10/08	EFFLUENT J51820-5 07/10/08	TB102308A 10/23/08	TB102208	TB102308	FB102208
SCREENED INTERVAL (FT) PARAMETER	114-124	36-46	36-46	42-52	35-40	95-100	15-30	9-24	15-25	15-25	126-136			12-27	3-18	119-129	119-129	9-24	7-22	2-17				42-47	110-130			10/2000		10.2000	10.2200
VOCs (ug/L) Acrolein	υ	U	υ	NA	U	U	U	NA	NA	NA	NA	NA	NA	NA	u	U	U	u	NA	NA	u	NA	NA	NA .	NA	NA	NA	u	U	<u>н</u>	u
Acrylonitrile	U	U	U	NA	U	U	U	NA	NA	NA	NA	NA	NA	NA	Ŭ	U	Ū	U	NA	NA	U	NA	NA	NA	NA	NA	NA	Ū	U	Ŭ	Ū
Benzene Bromodichloromethane	U U	U U	บ บ	NA NA		U	U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	. U	U	U	U	NA NA	NA NA	· U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	U II ·	U	U U	
Bromoform	U	U	U	NA	U	U	U	NA	NA	NA	NA	NA	NA	NA	Ŭ	Ŭ	U	Ū	NA	NA	U	NA	NA	NA	NA	NA	NA NA	U U	U	U U	Ŭ
Bromomethane Carbon tetrachloride	U U	U 11	U	NA NA	U .	U		NA NA	NA	NA	NA	NA	NA	NA	U	U	U	U	NA	NA	U	NA	NA	NA	NA	NA	NA	U	U	U	U
Chlorobenzene	U	Ŭ	U	NA	U	U	U	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	U U	UU	U	UU	NA NA	NA NA	U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	U	UU	U U	U
Chloroethane	U	U	U	NA	U	U	Ŭ	NA	NA	NA	NA	NA	NA	NA	U	Ŭ	Ű	U	NA	NA	Ŭ	NA	NA .	NA	NA	NA	NA	U	U	U U	Ŭ
2-Chloroethyl vinyl ether Chloroform	UU	ี บ	U	NA NA	U			NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	U	U U	U	UU	NA NA	NA NA	U	NA • NA	NA NA	NA NA	NA NA	NA NA	NA NA	U	U U	<u>บ</u> ม	
Chloromethane	Ŭ	Ű	Ŭ	NA	U	U U	U	NA	NA	NA	NA	NA	NA	NA	U.	υ	U	U	NA	NA	U	NA NA	NA NA	NA NA		NA NA	NA NA	U U	U U	U	U
Dibromochloromethane	U	U	U	NA	U	U	U	NA	NA	NA	NA	NA	NA	NA	U	U	U	Ŭ	NA	NA	U	NA	NA	NA	NA NA	NA	NA	U	U	ບ	Ŭ
1,2-Dichlorobenzene 1,3-Dichlorobenzene	UU	UU	U	NA . NA	U	U U	U U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	U U	U	U	UU	NA NA	NA NA	U	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	U	U	U 11	U
1,4-Dichlorobenzene	Ŭ	Ŭ	υ	NA	U	υ	Ŭ	NA	NA	NA	NA	NA	NA	NA	U.	U	U	U	NA	NA	U	NA NA	NA NA	NA NA	NA NA		NA NA	U U	U	0	
1,1-Dichloroethane	U	U	υ	NA	U	U	U	NA	NA	NA	NA	NA	NA	NA	U	U	U	Ū	NA	NA	U	NA	NA	NA	NA	NA	NA	U	U	U	Ū
1,2-Dichloroethane 1,1-Dichloroethene	UU	U		NA NA	ี ย ม	UU	U U	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	U	U	UU	U	NA	NA	U U	NA	NA ·	NA	NA	NA	NA	U	U	U	U
1,2-Dichloroethene (total)	U	Ŭ	Ŭ	NA .	Ŭ	U	U	NA .	NA	NA	NA	NA .	NA	NA	U	U.	0.23 J	U	NA NA	NA NA	0	NA NA	NA	NA NA	NA NA	NA NA	NA NA	U U	U	U U	
1,2-Dichloropropane	U	U	U	NA	U	U	U	NA	NA	NA	NA	NA	NA	NA	Ü	U	U	U	NA	NA	Ū	NA	NA	NA	NA	NA	NA	Ŭ	Ŭ	Ŭ	Ű
cis-1,3-Dichloropropene trans-1,3-Dichloropropene	UU	U U	U	NA NA	U U	U	U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	U	U	U	U	NA NA	NA NA	U U	NA NA	NA NA	NA	NA NA	NA	NA NA	U	U	U	U
Ethylbenzene	U	Ŭ	U	NA	U	U	Ŭ	NA	NA	NA	NA	NA	. NA	NA	U	U	U	2.5	NA	NA	U	NA NA	NA	NA NA	NA	NA NA	NA NA	บ บ	U U	l u	U U
Methylene chloride	U	U	U	NA	U	υ	U	NA	NA	NA	NA	NA	NA	NA	U	U	U	U	NA	NA	U	NA	NA	NA	NA	NA	NA	U	Ŭ	Ŭ	U
1,1,2,2-Tetrachloroethane Tetrachloroethene	U	U		NA NA		U		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	U	UU	UU	UU	NA	NA	U	NA	NA	NA .	NA	NA	NA	U I	บ ม	U U	U
Toluene	U	Ŭ	Ŭ	NA	Ŭ	Ŭ	Ŭ	NA	NA	NA	NA	NA	NA	NA	U	U	Ŭ	U	NA NA	NA NA	UU	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	U	U U		
1,1,1-Trichloroethane	U	U	U	NA	υ	U	U	NA	NA	NA	NA	NA	NA	NA	U	U	U	U	NA	NA	U	NA	NA	NA	NA	NA	NA	U	U .	Ŭ	Ŭ
1,1,2-Trichloroethane Trichloroethene	υυ	U U	2.3	NA NA	U 0.56 J		UU	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	UU	U	U	U	NA	NA	U	NA	NA	NA	NA	NA	NA	U	U	U	U
Trichlorofluoromethane	U U	U	U 2.3	NA	U.30 J	U	U	NA	NA	NA	NA NA	NA NA	NA	NA NA	U	10.7 U	11.8 U	U	NA NA	NA NA	U	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	U 11	0		
Vinyl chloride	U	U	U	NA	U	U	υ	NA	NA	NA	NA	, NA	NA	NA	Ű	U	U	U	NA	NA	Ū	NA	NA	NA	NA	NA	NA	Ŭ	Ŭ	U	U
Xylenes (total)	U	<u> </u>	U	NA	U	U	<u> </u>	NA	NA	NA	NA	NA	NA	NA	U	U	U	8.7	NA	NA	U	NA	NA	NA	NA	NA	NA	U	U	U	<u> </u>
Volatile TICs INORGANICS (ug/L)	11 J	U	U	NA	U	U	U	NA	NA	NA	NA	NA	NA	NA	U	U	U	36.91 J	NA	NA	υ	NA	NA	NA	NA	NA	NA	U	U	U	U
Aluminum	NA	NA	NA	NA	NA	NA	NA	υ	346	11	L u	46900	426	u	NA	NA	NΔ	NA	611	5080	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Boron	NA	NA	NA	NA	NA	NA	NA	274	6430	6540	U	7950	420 U	1260	NA	NA	NA	NA	2190	755	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Chromium (Totał) Hexavalent Chromium	105 U	1310	184	291	886	219	20.9	12.1	239	235	U	U	U	167	104	1960	2040	826	21.0	44.4	U	NA	NA	919	NA	NA	NA	NA	NA	NA	U
Hexavalent Chromium Nickel	NA	U NA	41 NA	U NA	780 NA	200 NA	13 NA	U NA	220 . NA	240 NA	U NA	300 NA	U NA	220 U	U NA	740 NA	700 NA	830 NA	13 NA	U NA	U NA	NA NA	NA NA	770 NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	UNA
Sodium	96400	15600	33500	16000	110000	79300	91500	7830	111000	115000	1970	605000	3620	14800	NA 33300	65900	67500	63100	20500	NA 22000	NA 3950	NA NA	NA NA	105000		NA NA	NA NA	NA NA	NA NA	NA NA	
	NA	NA	NA	NA	NA	NA	NA	U	1590	1390	U	118000	U	U	NA	NA	NA	NA	U	1340	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
OTHER PARAMETERS (mg/L)	7.72	7.75	7.41	7.21	7.48	11.11	7.06	6.96	7.08	7.08	7.56	10.52	7.43	5.90	6.97	0.04	0.04	5.07	7.00	7.4	E 04	NA						NIA			1
Sulfate	71.2	26.4	5.3	4.3	63.6	U	68.4	16.0	51.3	7.08 53.9	17.6	225	13.6	38.3	6.87 · 30.7	8.84 22.5	8.84 22.4	5.67 172	7.20 U	7.34 14.10	5.31 U	NA NA	NA NA	8.18 62.1	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA U
VOC Analysis performed via Method 60 Total metals performed via Method 60 FT - Feet below ground surface. U - Indicates compound analyzed for b J - Indicates an estimated value (organ B - The analyte is found in the associat NA - Not analyzed (1) - Duplicate sample of well SC12S (2) - Duplicate sample of well MWH-4	0B; Hexavaler ut not detected ics).	(organics a	nd inorganics).			om a reading t	that was less	than the Contr	act Required	Detection Lin	nit (CRDL) but	not greater th	an or equal t	o the Instrume		imit (IDL) (inorg								-						

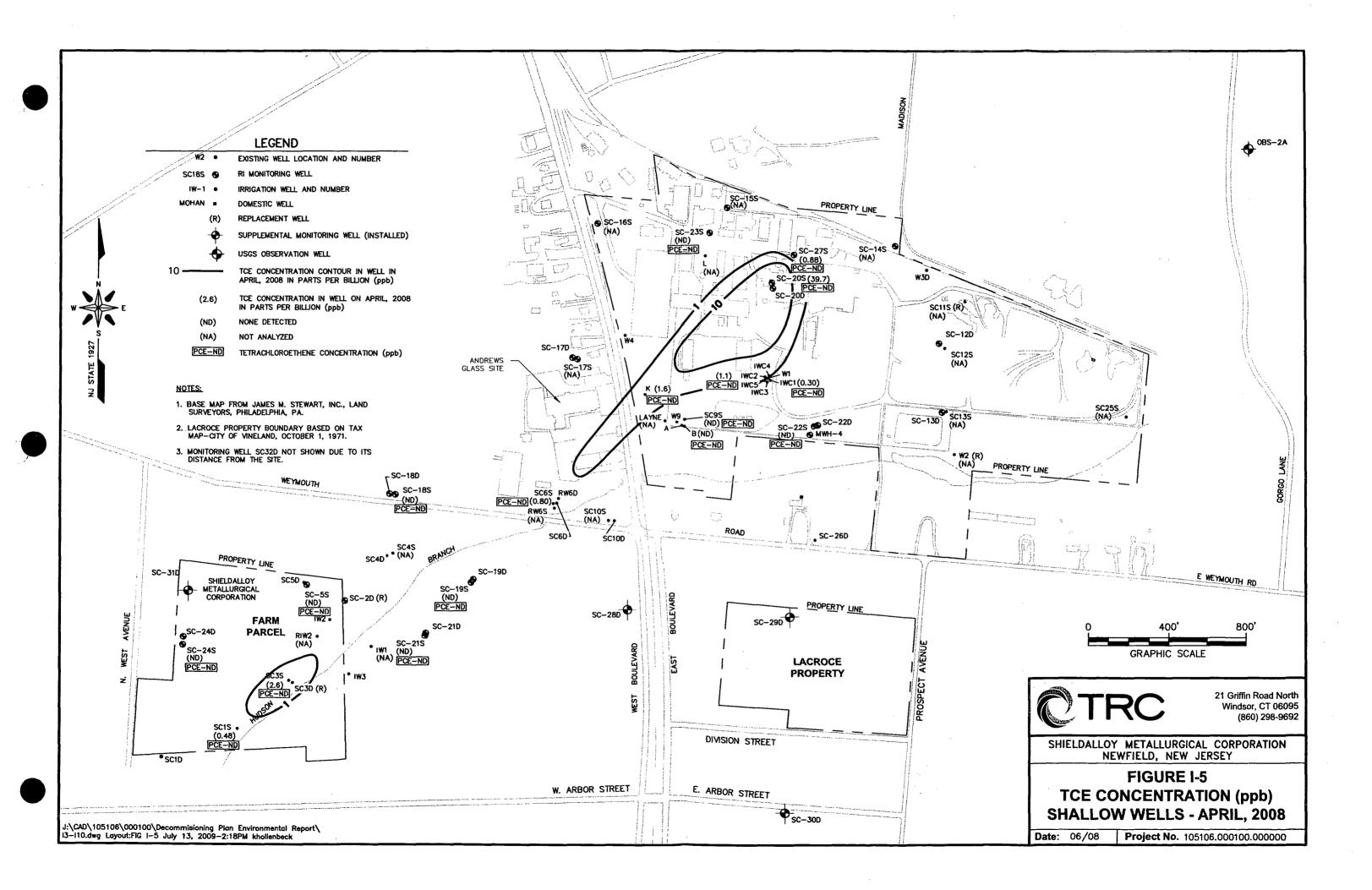
.

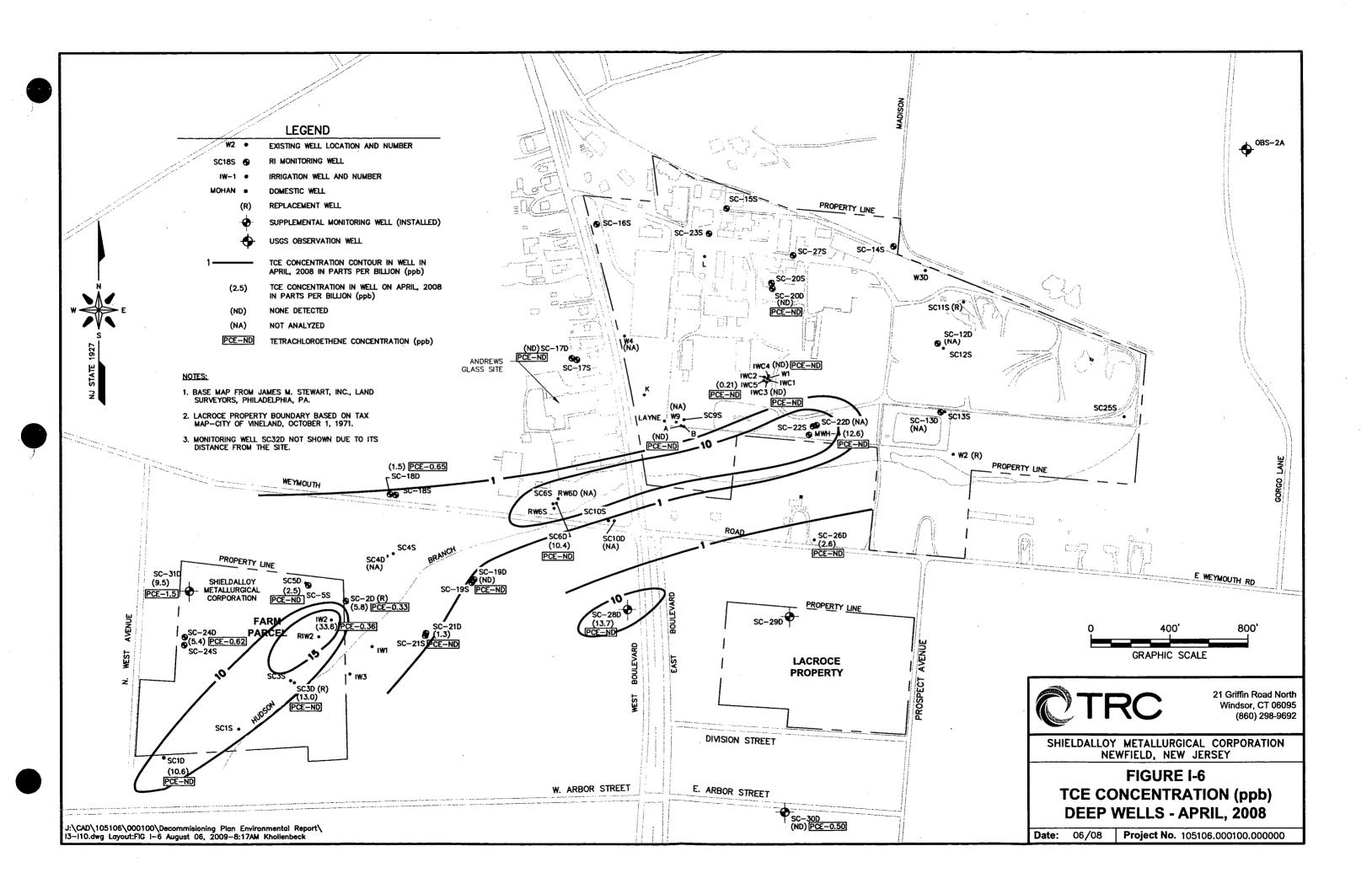
.

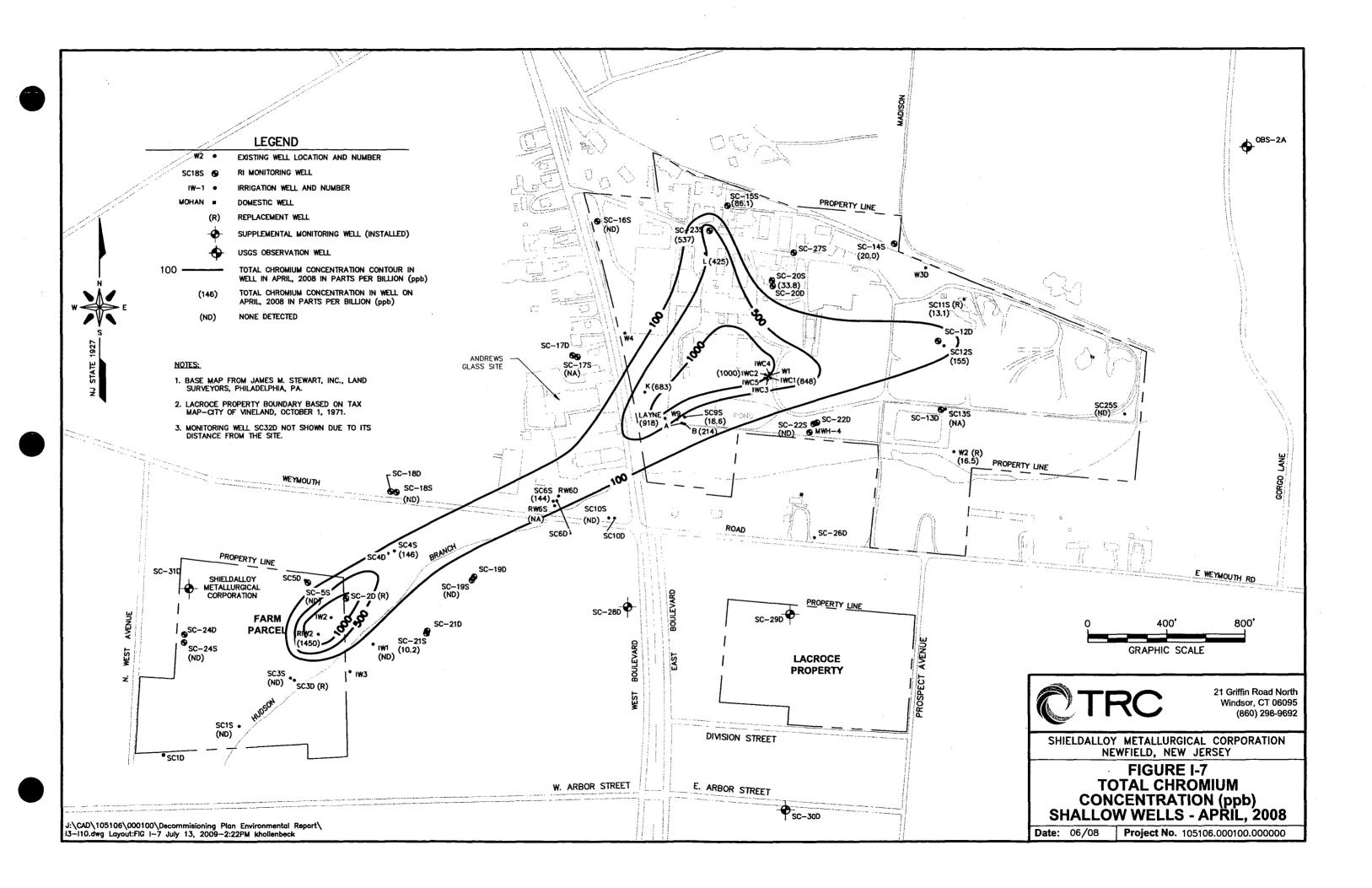
5

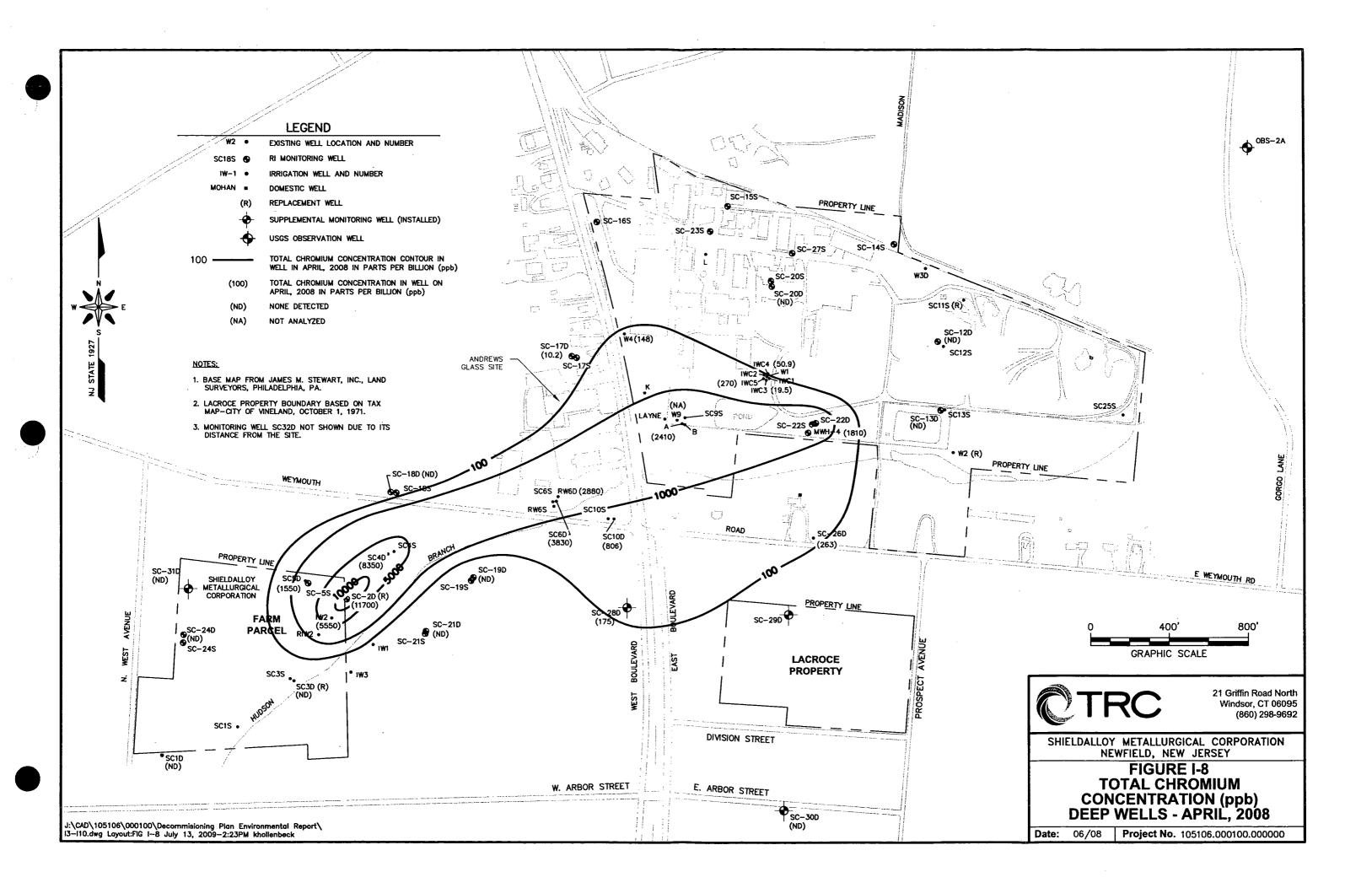
·

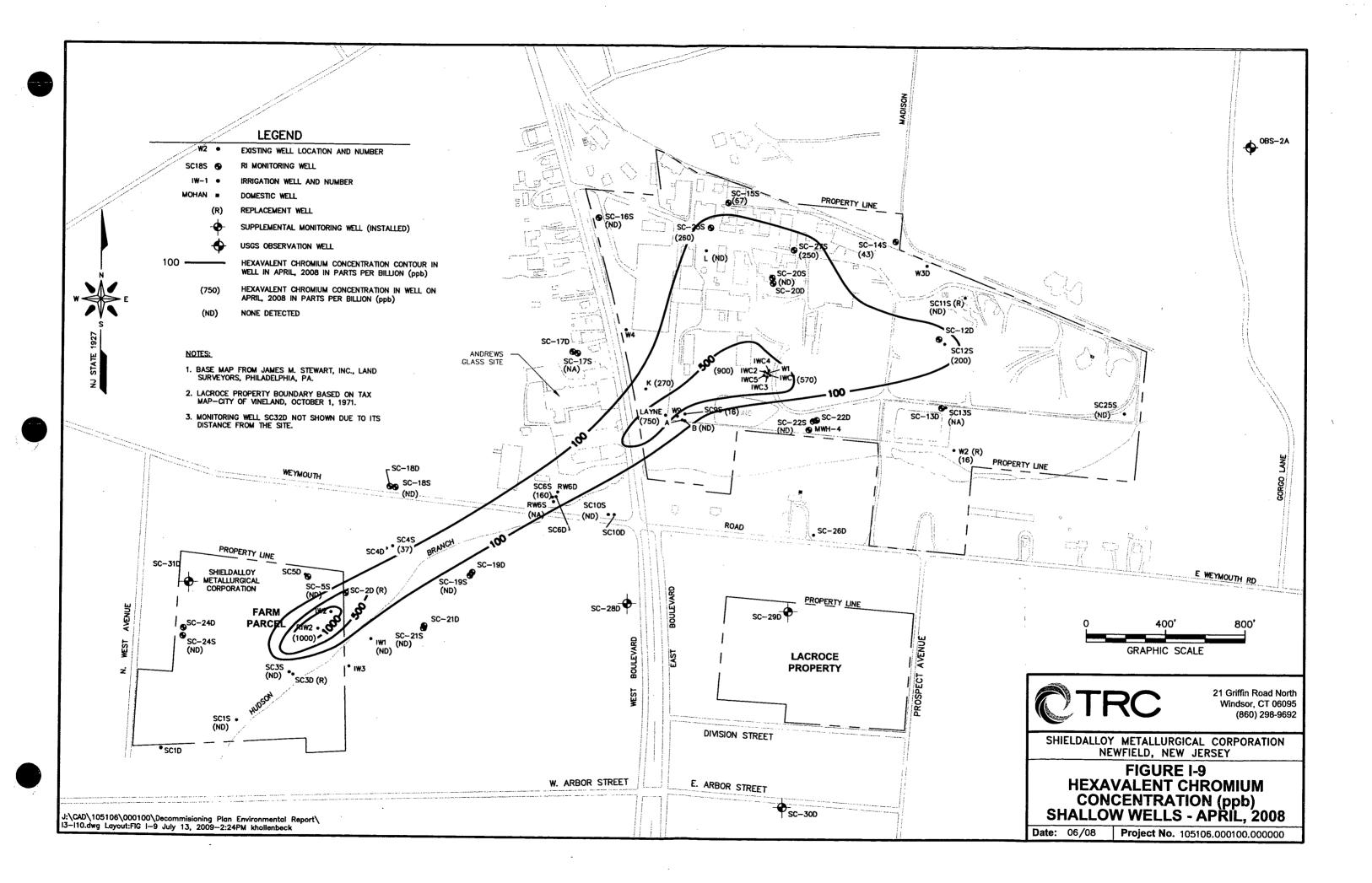
															SH	GROUND	NEWFIE	ELD, NJ IALYTICAL WELLS																	
ELL NUMBER	SC1S J51574-5	SC1D J51574-4	SC2D(R J51603-4				SC5S J51603-2	SC5D	SC6S	SC6D			SC19S	SC19D	SC21S	SC21D	SC24S				SC30D				IW2	RIW2		OBS-2A		TB102308A	TB102208	TB102308	FB102208	NEWFIELD NO.3	NEWFIELD NO
AMPLE DATE				07/09/08		07/09/08		07/10/08	J51702-4			J51819-2 07/09/08	J51702-9	J51702-10	J51702-11 07/10/08	J51702-12 07/10/08	J51702-2	J51702-3	J51574-1		07/09/08	J51702-1			J51574-10		J51702-6		J51702-7						1
CREENED INTERVAL (FT)	35-55	85-95 / 100-115	106-116		102-112		5-20	90-120	45-75	110-120		105-125	2-17	120-130	3-18	125-135	5-20	105-115		133-153			92-102		07/09/08 40-70	07/09/08 30-55	55-75	07/09/08	90-125	10/23/08	10/22/08	10/23/08	10/22/08	7/9/2008	7/9/2008
RAMETER		100-115	}	1				1												1															
DCs (ug/L)				1		1	<u> </u>	1	-		1					†			1																
rolein	U	U	υ	U	U	U	U	U	U	U	NA	NA	U	U	U	U U	U	U	U	U	U	U	U	NA	υ	NA	NA	NA	NA	υ	U	ίυ	l u	NA	NA
rylonitrile nzene	U U	U	U U	U U	U	U	U	U	U	U	NA	NA	U	U	U	U	U	U	U	U	U	U	υ	NA	U	NA	NA	NA	NA	Ū	Ũ	Ū	Ū	NA	NA
omodichloromethane	l ŭ l				U	U	0	U	U	U	NA NA	NA NA	U		U	U	0	10	U	U	U	U	UU	NA NA		NA	NA	NA	NA	U	U	U	U	NA	NA
omotorm	t ŭ l		Ū	- ŭ	1 U		1-0-	1-0-	U	t ŭ	NA	NA	- 0		U U	U U	- 0	- U		U U	1 0	<u> </u>	+	NA NA		NA NA	NA NA	NA NA	NA NA	U U	U U	U U		NA NA	NA
omomethane	0	U	U	ບ	U	Ū	U	Ū	Ū	Ū	NA	NA	Ū	Ū	Ū	Ū	บั	υ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	NA	Ŭ	NA	NA	NA	NA	ŭ	ŭ	U U	U U	NA	NA NA
arbon letrachloride	U	U	U	U	U	U	U	U	U	U	NA	NA	U	υ	U	U U	U	U	U	U	Ŭ	U	Ū	NA	Ū	NA	NA	NA	NA	Ŭ	Ŭ	Ŭ	Ŭ	NA	NA
hlorobenzene	<u> </u>		<u> </u>	U	<u>ι.υ</u>	U .	<u> </u>				NA	NA	<u> </u>	<u> </u>	U	U U	U U	<u> </u>	U U	<u> </u>	U	U	U	NA	U	NA	NA	NA	NA	U	U	Ű	U	NA	NA
Chloroethyl vinyl ether	υ	υ	υ	U U	U U	U .	U				NA NA	NA NA	U				U U	U U	U U	U U	U		UU	NA NA		NA	NA	NA	NA	U	U	U	U	NA	NA
hloroform	Ū	Ŭ	Ŭ	ŭ	Ŭ	Ŭ	Ŭ	υŬ	υ	Ŭ	NA	NA	Ŭ	Ŭ	U	U	υ	U	υ	U	U	U	U U	NA	U	NA NA	NA • NA	NA NA	NA NA	UU	UU	UU	U U	NA	NA NA
hloromethane	U	U	U	U	U	U U	U	Ū	Ū	Ū	NA	NA	Ū	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	υ	Ŭ	NA	Ŭ	NA	NA	NA	- NA	U U	ŭ	U U	υ	NA	NA NA
bromochloromethane	U	U	U	U	U	0.	U	U	U	U	NA	NÁ	U	U	U	U	U	U	U	U	U	υ	U	NA	Ū	NA	NA	NA	NA	Ū	Ŭ	Ŭ	Ŭ	NA	NA
2-Dichlorobenzene 3-Dichlorobenzene	UU	U		UU	U U	U	U	U U		U	NA	NA	U	U	U	U	U	U	U	U	U	U	U	NA	U	NA	NA	NA.	NA	U	ម	U	U U	NA	NA
4-Dichlorobenzene	ŭ.	U U		l ŭ	U U		U U			U	NA	NA NA	U	U			U	U	U	U	U	U	U	NA NA	U	NA NA	NA NA	NA	NA NA	U	U	U	U	NA	NA
1-Dichloroethane	Ū	Ū	Ŭ	Ū	ŤŬ	1 Ŭ	Ŭ	1 0	t ŭ	Ŭ	NA	NA		Ŭ	<u> </u>		- ŭ	t-ŭ-	1 1	U	1 0	1 1	U U	NA NA	<u> </u>	NA NA	NA	NA NA	NA	U U	<u> </u>	U		NA NA	NA NA
2-Dichloroethane	U	υ	U	l u	Ų	U	U	U	U U	U	NA	NA	Ū	Ŭ	Ū	Ū	Ū	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	NA	Ιŭ	NA	NA	NA	NA	ŭ	Ŭ	ŭ	U	NA	NA
1-Dichloroethene	U	U	U	U	U	U	U	U	U	U	NA	NA	U	U	U U	U U	U	U	U	U	U	U	U	NA	2.7	NA	NA	NA	NA	Ū	Ũ	Ŭ	Ŭ	NA	NA
2-Dichloroethene (total) s-1,2-Dichloroethylene	NA	NA	NA	NA	U	U NA	U NA	U		U	NA	NA	U	U	<u> </u>	<u> </u>	U	· U	0.73 J	4.4	U	U	U	NA	3,4	NA	NA	NA	NA	. U	U	U	U	NA	NA
ans-1,2-Dichloroethylene	NA	NA	NA	NA	NA NA	NA ·	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA	NA
2-Dichloropropane	U	U	U	U	U	U	U	U	Ű	U	NA	NA	Ű	U	Ű	U U	υ	U	U U	1 10	U U	U U	U U	NA		NA NA	NA	NA	NA		NA U	NA U		NA NA	NA NA
s-1,3-Dichloropropene	U	U	U	U	U	U	υ	U	U	U	NA	NA	U	U	U	U	U	Ū	Ū	Ū	Ū	Ŭ	Ιŭ	NA	Ŭ	NA	NA	NA	NA	Ŭ	ŭ	ŭ	Ŭ	NA	NA
ans-1,3-Dichloropropene	U	U	U	U	U U	U -	U [U	U	U	NA	NA	U	U	U	U	υ	U	U	U	U	U	U	NA	. U	NA ·	NA	NA	NA	U	- U	Ū	U	NA	NA
thylbenzene lethylene chloride		U U	U U	U		U .		UU		U U	NA NA	NA NA	U U	U	U	U	U	U U	UU	UU	UU	U	U	NA NA	U	NA	NA	NA	NA	U	U	U_	U	NA	NA
1,2,2-Tetrachloroethane	Ŭ	Ŭ	Ŭ	Ŭ	υŬ	U.	Ιŭ	Ιŭ	Ŭ	ιŭ	NA	NA	U U	0 U									U	NA NA	U U	NA NA	NA NA	NA NA	NA NA	U	U	U	U U	NA	NA
strachloroethene	U	U	U	U	U	U	Ū	U	Ū	Ū	NA	NA	Ŭ	Ŭ	Ŭ	Ŭ	Ŭ	t ŭ	Ŭ	Ŭ	<u>+</u>	1.3	Ŭ	NA	0.71 J	NA	NA	NA	NA	<u> </u>		U U	U U	NA	NA NA
pluene	U	U	U	U	U	U	U	U	U	U	NA	NA	U	U	บ	U	U	U	U	U U	Ū	U	Ū	NA	U	NA	NA	NA	NA	Ŭ	ŭ	Ŭ	Ŭ	NA	NA
1,1-Trichloroethane 1,2-Trichloroethane	U	U 11			U	U		U	U U	U	NA NA	NA	U	U	U	U	U	U	U	υ	U	U	U	NA	2.1	NA	NA	NA	NA	U	U	U	U	NA	NA
ichloroethene	0.63 J	8.3	4.3	1.9	14.7	14.4		2.4	<u> </u>	9.8	NA NA	NA NA	U	U	<u>U</u>	U	U	U	U	U	U	U	U	NA	U	NA	NA	NA	NA	U	U	U	U	NA	NA
ichlorofluoromethane	U.035	U	U	U 1.9	U 14.7	U 14.4	υ	U 2.4	υŬ	9.8 U	NA NA	NA NA	U U	U U	ี - บ	1.1		4.5 U	2.8 U	16.1 U	U	13.6 U		NA NA	22.0 U	NA NA	NA NA	NA NA	NA NA	U U	U	U	U	NA	NA
inyl chloride	U	U	Ū	Ū	Ū	Ŭ	υŬ	Ŭ	Ŭ	ບ	NA	NA	Ŭ	Ŭ	บั	υ	Ŭ	U	υ	U U	U	U	U	NA	U U	NA	NA NA		NA NA	UU	บ ม	U 11	U U	NA NA	NA NA
ylenes (total)	U.	U		U	U	U	U	U	U	U	NA	· NA	U	U	Ű	Ű	U	Ū	U	Ū	Ū	U	Ŭ	NA	Ŭ	NA	NA	NA	NA	Ŭ	Ŭ	ນ	Ŭ	NA	NA
olatile TICs	0.79 J	0.81 J		1 11	U	1	1 1		1 11	u	NA	NA																							
VORGANICS (ug/L)	0.753	0.01 J		+	+ <u> </u>	- U	+	+	<u>ــــــــــــــــــــــــــــــــــــ</u>	<u> </u>	NA NA	NA	U	0	U	U	. U	<u> </u>	UU	U	U	<u> </u>	U	NA	4 J	NA	NA	NA	NA	U	U	U	U	NA	NA
hromium (Total)	U	U	12000	U	υ	u [†]	υ	1610	36.9	2550	4	557	U	u	υ	U		U	196	154	U		U	U	2430	1360	NA	NA	1.510	NA	NA		I		
exavalent Chromium	Ū	Ū	10200	υŬ	Ŭ	Ŭ,	υ	1600	35	2700	U	460	Ŭ	Ŭ	Ŭ	Ŭ	υ	U	196	120	υ	ŬŬ	U	U U	2430	1360	NA NA		1510 1500	NA NA	NA NA	NA NA	U		NA NA
valent Chromium	U	U	NA	U	υ	U	U	υ	NA	NA	NA		NA	NA	NA	NA	NA	NA	NA	NA	NA	Ŭ	NA	NA	U 2000	U U			1		19/5		NA		
dium THER PARAMETERS (mg/L)	64200	61100	54500	101000	75400	75400	5590	35900	129000	169000	103000	236000	25000	21900	8510	28300	7060	33500	130000	233000	4690	36700	5210	93000	56600	65100	NA	NA	101000	NA	NA	NA	U	NA	NA
{	5.22	5.25	5.73	5.12	4.36	4.36	4.41	5.40	6.06	6.07	6.00		E 10	0.00	6.45	4.00		1	0.70	1															1
errous Iron (Fe ⁺²)	NA	0.25 NA	NA NA	NA NA	4.36 NA	A.Jb NA	NA	5.40 NA	6.25 NA	6.07 NA	6.60 NA	8.88 NA	5,10 NA	3.89 NA	5.45 NA	4.28 NA	3.97 NA	5.03	8.70	6.46	9.02	5.20	7,79	5.81	5,79	5.82	NA	NA	6.36	NA	NA	NA	NA	NA	NA
liate	90.2	76.4	26.3	178	120	119	16.7	42,3	137	NA 322	111 NA	117	NA 33.7	NA 20,1				NA 16.4	NA 65.2	NA 220	NA	NA	NA	NA	NA 52.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
/OC Analysis performed via Method fotal metals performed via Method T - Feet below ground surface. J - Indicates compound analyzed to	5624 (Monitoria 6010B; Hexava	ng well SC2t ilent Chromi	BD via Meth um via Meth	od 524.2). od 7196A; a				1 42.3	<u>137</u>	322	1 111	117	33.7	20.1	24.3	27.2	72.2	46.4	65.3	220	<u>i</u> U	28.1	<u> </u>	113	53.3	95.8	NA	NA	113	NA	NA	NA	U	NA	NA NA

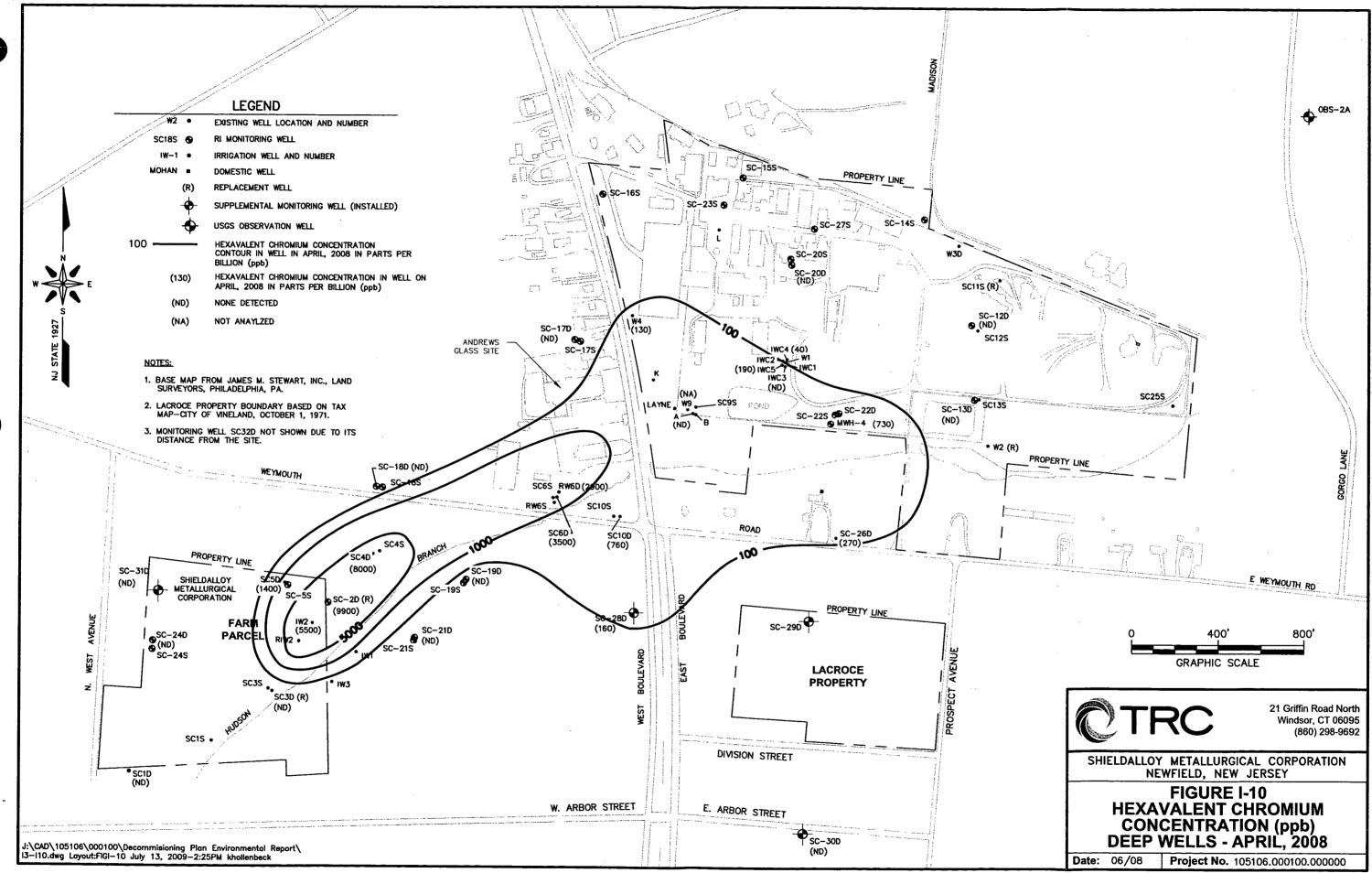

FT - Feet below ground surface. U - Indicates compound analyzed for but not detected (organics and inorganics). J - Indicates an estimated value (organics). B - The analyte is found in the associated blank as well as in the sample (organics) or the reported value was obtained from a reading that was less than the Contract Required Detection Limit (CRDL) but not greater than or equal to the Instrument Detection Limit (IDL) (inorganics). N - Not analyzed (1) - Duplicate sample of well SC3D(R)


.


.


.


.



.

TABLE I-5

GROUND WATER / SUSPENDED SOLIDS RADIOLOGICAL RESULTS SHIELDALLOY METALLURGICAL CORPORATION NEWFIELD, NJ APRIL 2004

WELL NUMBER SCREENED INTERVAL (FT)		A . 114-124			W2(R) 2-17			OBS-2A ⁽¹⁾ 129-149			SC11S(R) 9-24	
	F4D100111-006 Unfiltered		F4D100111-022 Filter Paper	F4D100111-005 Unfiltered		F4D100111-021 Filter Paper	F4D100111-008 Unfiltered	F4D100111-016 Filtered	F4D100111-024 Filter Paper	F4D100111-002 Unfiltered		F4D100111-018 Filter Paper
PARAMETERS												
Radiochemical Parameter (pCi/L)												
Gross Alpha	0.7U +/- 1.1	0.55U +/- 0.9	NA	1.75J +/- 0.98	0.32U +/- 0.57	NA	4.0 +/- 1.2	2.08J +/- 0.83	NA	0.59U +/- 0.87	0.52U +/- 0.56	NA
Gross Beta	1.9J +/- 1.2	13.0 +/- 2.0	NA	3.4J +/- 1.2	1.6U +/- 1.1	NA	3.4J +/- 1.2	3.0J +/- 1.2	NA	2.7J +/- 1.2	2.5J +/- 0,94	NA
Radium 226	0.1U +/- 0.1	0.11U +/- 0.12	NA	0.05U +/- 0.13	0.13U +/- 0.11	NA	0.95J +/- 0.26	1.23 +/- 0.28	NA	0,14U +/- 0.13	0.17U +/- 0.13	NA
Radium 228	-0.11U +/- 0.3	0.38U +/- 0.38	NA	0.16U +/- 0.34	0.22U +/- 0.34	NA	0.58J +/- 0.33	0.68J +/- 0.39	NA	-0.14U +/- 0.27	0.24U +/- 0.36	NA
Uranium 238 (pCi/sample) ⁽⁴⁾	NA	NA	0.31J +/- 0.12	NA	NA	0.38J +/- 0.13	NA	NA	0.32J +/- 0.13	NA	NA	0.29J +/- 0.12

WELL NUMBER SCREENED INTERVAL (FT)		SC12S 15-25			SC32S ⁽²⁾ 15-25			SC13S 14.7-24.7			SC14S 12-27	
LABORATORY ID NUMBER	F4D100111-003	F4D100111-011	F4D100111-019	F4D100111-004	F4D100111-012	F4D100111-020	F4D100111-007	F4D100111-015	F4D100111-023	F4D100111-001	F4D100111-009	F4D100111-017
UNFILTERED/FILTERED/FILTER PAPER	Unfiltered ⁽³⁾	Filtered	Filter Paper	Unfiltered ⁽³⁾	Filtered	Filter Paper	Unfiltered	Filtered	Filter Paper	Unfiltered	Filtered	Filter Paper
PARAMETERS												
Radiochemical Parameter (pCi/L)								_				
Gross Alpha	· 8.8U +/- 9.8	0.91U +/- 0.97	NA	14.0U +/- 10.0	0.29U +/- 0.85	NA	2.6U +/- 2.4	-0.3U +/- 1.5	NA	1.1U +/- 1.0	0.41U +/- 0.84	NA
Gross Beta	128 +/- 16.0	14.0 +/- 2.1	NA	115 +/- 15.0	15.3 +/- 2.3	NA	17.6 +/- 2.5	2.3J +/- 1.2	NA	5.3 +/- 1.5	7.3 +/- 1.4	NA
Radium 226	0.52J +/- 0.18	0.82J +/- 0.24	NA	0.98J +/- 0.24	1.09 +/- 0.26	NA	0.3J +/- 0.17	0.41J +/- 0.17	NA	0.11U +/- 0.1	0.33J +/- 0.15	NA
Radium 228	0.42U +/- 0.31	0.58U +/- 0.41	NA	0.61J +/- 0.37	1.24 +/- 0.43	NA	0.39U +/- 0.27	0.1U +/- 0,36	NA	0.91J +/- 0.36	0.89J +/- 0.32	NA
Uranium 238 (pCi/sample) ⁽⁴⁾	NA	NA	0.43J +/- 0.14	NA	NA	0.48J +/- 0.15	NA	NA	0.24J +/- 0.11	NA	NA	0.31J +/- 0.12

Notes:

FT - Feet below ground surface.

pCi/L · Picocuries per liter

NA - Not analyzed

J - Result is greater than sample detection limit but less than stated reporting limit

U - Result is less than the sample detection limit.

(1) - USGS observation well (NJ-WRD Well Number 15-0372) located northeast of the SMC site.

(2) - Duplicate sample of well SC12S.

(3) - The standard reporting limit was exceeded due to a reduction of sample size attributed to the sample's high residual mass. The analytical results are reported with the MDA achieved.

(4) - isotopic uranium (U-238) analysis was conducted on the sediment retained on the filter.

Sample Analyses:

Gross Alpha/Beta by GFPC (EPA 900.0 MOD).

Radium-226 by EPA 903.0 MOD.

Radium-228 by GFPC (EPA 904 MOD).

Isotopic Uranium by Alpha Spectroscopy (DOE A-01-R MOD).

TABLE I-6

AVERAGE DEPTHS TO GROUND WATER - MONITORING WELLS MW-11S, MW-12S AND MW-13S

JANUARY 2001 - JANUARY 2009

Shieldalloy Metallurgical Corporation, Newfield, New Jersey

		SC11S			SC12S		SC13S		
			Depth to			Depth to			Depth
			Ground Water			Ground Water			Ground W
	Ground	Ground Water	from Ground	Ground	Ground Water	from Ground	Ground	Ground Water	from Gro
Sample Date	Elevation	Elevation	Surface	Elevation	Elevation	Surface-	Elevation	Elevation	Surfac
Jan-09	106.91	91.96	14.95	102.41	91.62	10.79	NA	92.04	
Oct-08	106.91	90.16	16.75	102.41	89.75	12.66	NA	90.04	
Jul-08	106.91	92.13	14.78	102.41	91.83	10.58	NA	92.33	
Apr-08	106.91	92.37	14.54	102.41	92.01	10.40	NA	NM	
Jan-08	106.91	91.5	15.41	102.41	91.2	11.21	NA	NM	
Oct-07	106.91	90.99	15.92	102.41	90.6	11.81	NA	NM	
Jul-07	106.91		13.49	102.41	92.99	9.42	NA	NM	
Apr-07	106.91	96.37	10.54	102.41	. 95.71	6.70	99.31	96.64	
Jan-07	106.91	94.51	12.40	102.41	94.15	8.26	99.31	94.77	
Oct-06	106.91		16.26	102.41	91.31	11.10	99.31	91.80	
Jul-06	106.91		14.10	102.41	92.56	9.85	99.31	93.57	
Apr-06	106.91			102.41	92.69	9.72	99.31	93.15	
Jan-06	106.91		13.65	102.41		9.42	99.31	93.66	
Oct-05	106.91		14.12	102.41	92.76	9.65	99.31	94.07	
Jul-05	106.91		13.44	102.41	93.14	9.27	99.31	93.55	
Apr-05	106.91	94.61	12.30	102.41	94.34	8.07	99.31	95.05	
Jan-05	106.91	92.70	14.21	102.41	92.50	9.91	99.31	93.30	
Oct-04	106.91	91.99	14.92	102.41	91.73	10.68	99.31	92.36	
Jul-04	106.91	93.67	13.24	102.41	93.35	9.06	99.31	93.80	4
Apr-04	106.91		12.54	102.41	94.04	8.37	99.31	94.65	
Jan-04	106.91	94.79	12.12	102.41	94.40	8.01	99.31	94.99	
Oct-03	106.91	93.53	13.38	102.41	93.15	9.26	99.31	93.47	1
Jul-03	106.91	95.13	11.78	102.41	94.67	7.74	99.31	95.01	1
Apr-03	106.91	94.42	12.49	102.41	94.03	8.38	99.31	94.46	
Jan-03	106.91	91.98	14.93	102.41	91.74	10.67	99.31	92.31	
Oct-02	106.91	89.63	17.28	102.41	89.49	12.92	99.31	90.34	
Jul-02	106.91	90.40	16.51	102.41	90.16	12.25	99.31	90.92	
Apr-02	106.91	89.61	17.30	102.41	89.40	13.01	99.31	90.29	1
Jan-02	106.91	89.60	17.31	102.41	89.34	13.07	99.31	90.10	•
Oct-01	106.91	90.76	16.15	102.41	90.43	11.98	99.31	91.08	
Jul-01	106.91	92.61	14.30	102.41	92.26	10.15	99.31	92.76	
Apr-01	106.91	94.05	12.86	102.41	93.69	8.72	99.31	94.19	
Jan-01	106.91	91.20	15.71	102.41	91.96	10.45	99.31	92.80	
	Ave. depth to g	round water:	14.35			10.11			

Note: Well MW-13S was destroyed in 2007 and replaced in 2008. A new ground surface elevation has not been surveyed for the replacement well.

+0
to
Water
ound
ce
NA
NA
NA
NA
NA
NA
NA
2.67
4.54
7.51
5.74
6.16
5.65
5.24
5.76
4.26
6.01
6.95
5.51
4.66
4.32
5.84
4.30
4.85
7.00
8.97
8.39
9.02
9.21
8.23
6.55
5,12
6.51
6.11

APPENDIX I

DESCRIPTION OF RADIOLOGICAL GROUND WATER SAMPLING PROCEDURES

For the 1988-1989 radiological analyses of ground water samples conducted by Dan Raviv, the report in which the data summary tables were provided did not specifically describe sampling procedures. Other Dan Raviv ground water sampling reports from the same period indicate that ground water samples were collected in accordance with Dan Raviv sampling protocols, which were based on NJDEP requirements. Samples were analyzed for gross alpha and gross beta, with isotopic analyses (specific analyses varied with the sampling date) performed if gross alpha or beta exceeded specific screening criteria. The summary tables presented in the DP, Rev. 1, Appendix 19.2 (Table VII, "Summary of Analytical Results - Radiological Parameters, Quarterly Sampling of 'Slag Area' Wells") provide detection limits for those samples where relevant isotopes were not detected, along with the analytical uncertainty.

For the 1995 ground water sampling and radiological analyses, the ground water samples were collected by TRC in accordance with CERCLA ground water sampling procedures. The samples were analyzed by gamma spectroscopy with the concentration of all positively identified radionuclides reported. (If not positively identified, the detection limits for Ac-228, Bi-214, K-40, Pb-212, Pb-214 and Tl-208 were reported). A September 8, 1995 letter summarizing the results, with the laboratory report attached, is included herein.

For the April 2004 ground water sampling and radiological analyses, the ground water samples were collected by TRC followed CERCLA ground water sampling procedures. Gross alpha, gross beta, Radium 226 and Radium 228 analyses were performed on filtered and unfiltered samples. Summary Table I-5 presents detection limits for those samples where radioisotopes were not detected (indicated by a "U" qualifier) and the uncertainties associated with the analyses. The data package is also provided herein.

For the April 2005 ground water sampling and radiological analyses, the ground water samples were collected by TRC following CERCLA ground water sampling procedures. Isotopic analyses (Ra-226, Ra-228, Th-232, Th-230, Th-228, U-238, U-235 and U-234) were performed on filtered and unfiltered samples. The summary tables within the June 9, 2005 letter report presented herein include detection limits for those samples where radioisotopes were not detected. The data package is also provided herein.

For the July 2007 ground water sampling and radiological analyses, the ground water samples were collected by TRC following CERCLA ground water sampling procedures. Gross alpha, gross beta and isotopic analyses (isotopic Uranium, isotopic Thorium, K-40, Ra-226 and Ra-228) were performed on filtered and unfiltered samples. Laboratory data packages are presented herein that include detection limits and uncertainties associated with the analyses. This data was provided to Region I NRC on October 30, 2007.

For the March and July 2008 ground water sampling and radiological analyses, the ground water samples were collected by TRC following CERCLA ground water sampling procedures. In March 2008, two wells (SC-20S and SC-20D) were sampled and analyzed for isotopic radium. The July 2008 ground water samples were analyzed for isotopic radium and the presence of other, non-radiological, parameters of interest (barium, magnesium, calcium, aluminum, alkalinity, chloride, and nitrate). Laboratory data packages are included herein.

9040 Executive Park Drive, Suite 205 Knoxville, TN 37923 Phone: (615) 531-9140 Fax: (615) 531-9130

1680 East Gude Drive, Suite 305 Rockville, MD 20850 Phone: (301) 762-0502 Fax: (301) 762-0638

September 8, 1995

Lee Harp, Esq. Archer & Greiner One Central Square Post Office Box 3000 Haddonfield, New Jersey 08033-0968

Re: Analytical Results from Water Sampling at Shieldalloy Metallurgical Corporation's Newfield, New Jersey Plant

Dear Mr. Harp:

Pursuant to the request of Mr. Robert Smith of TRC Environmental Corporation, I arranged to have seven (7) samples of groundwater that were collected from Shieldalloy Metallurgical Corporation's Newfield, New Jersey site analyzed for their radiological constituents. Enclosed are the certificates of analysis, quality assurance data, and the chain of custody record from this effort. Enclosed also are the specifications provided to the analytical laboratory for the work that they performed.

As you can see from review of these data, none of the radionuclides in the licensable inventory at the Newfield plant are present in statistically-significant concentrations. The only concentrations of note are for an isotope of potassium (40 K), which is a common constituent in groundwater. For your information, rocks and soils contain between eight (8) and 20 pCi/g of 40 K.¹ Therefore, groundwater that runs through rocks and soil contains measurable 40 K. Surface water and rain water typically contain lesser concentrations of this naturally-occurring radionuclide.

Similar to the results of previous analyses of Newfield groundwater, this ⁴⁰K concentration, in concert with the beta emissions from the series radionuclides, would reflect elevated gross beta

National Council on Radiation Protection and Measurements, NCRP Report No. 94, "Exposure of the Population in the United States and Canada from Natural Background Radiation", December 30, 1987.

CONTROL ALFORNEY NORK-PRODUCT

activity if this analysis was performed.² However, ⁴⁰K and stable potassium are essential elements and under close metabolic (homeostatic) control. Therefore, variations in dietary composition have little effect on the body content or on the radiation dose received. Thus knowledge of ⁴⁰K concentrations in groundwater is of no practical value in assessing human radiation exposures.

To summarize, there are no radionuclides present in these groundwater samples that would cause a member of the general public, if that individual consumed only water from these wells, to exceed the U. S. Environmental Protection Agency's dose standard for radionuclides in drinking (40 CFR 141). In addition, these data confirm that operations with licensable radioactive materials at the Newfield plant have not negatively impacted the groundwater.

If I can answer any questions or provide you with additional information, please do not hesitate to call me at (301) 762-0502. I am looking forward to speaking with you again soon.

Sincerely,

Carol D. Berger, C.H.P.

cc: C. S. Eves

While "gross beta analysis" is frequently used as a screening mechanism for radioactivity in water, positive results are only indicative of the presence of beta-emitting radioactivity. Any numerical concentrations that are reported should be used with caution since transforming the measurement results (e.g., counts per minute per liter of water) into activity (e.g., picocuries per liter of water) is heavily influenced by counting geometry, instrument energy response, and the problems associated with applying a single counts-to-activity conversion factor to samples that contain a mixture of radionuclides.

CONFIDENTIAL ATTORNET WORK PRODUCT

SPECIFICATIONS SUBMITTED TO LOCKHEED ANALYTICAL SERVICES FOR ANALYSIS OF GROUNDWATER SAMPLES

- 1. Once authorization to ship has been given, IEM will forward up to six samples of water to your Las Vegas laboratory by overnight mail (Federal Express or equivalent) for priority delivery.
- 2. The sample sizes will be approximately one liter each.
- 3. Upon receipt, the samples shall be analyzed by gamma spectroscopy (Method HASL 300 or equivalent).

4. Count times should be sufficient to achieve a nominal detection limit of 50 picocuries of ⁴⁰K per liter of water, and 10 picocuries (each) of those beta/gamma-emitting daughters that are typically found in the natural decay series per liter of water. If it is not possible to achieve these detection limits within a three-hour count time, an explanation should be provided.

- 5. The concentration (pCi/l) of all gamma-emitting radionuclides that are positively identified in the sample shall be reported.
- 6. If not positively identified, the detection limit for ²¹⁴Pb, ²¹²Pb, ⁴⁰K, ²¹⁴Bi, ²²⁸Ac, and ²⁰⁸Tl shall be reported.
- 7. Preliminary results, stamped or marked as "draft" or "preliminary" shall be sent by facsimile to me at IEM's Rockville, Maryland office. For initial reporting purposes, Lockheed may fax reports generated directly by the instrumentation.
- 8. Once the preliminary results are approved, the final report may be issued. All paper or electronic copies in your possession that are marked "draft" or "preliminary" shall be destroyed.
- 9. After authorization is given by IEM, the samples may be disposed of by Lockheed.
- 10. Lockheed shall commit to delivery of the preliminary results within 21 days after sample receipt. The final report may be issued within 10 business days after approval of the draft report. The final report should be sent to me at IEM's Rockville, Maryland office.
- 11. Invoices for this work should reference Job Number 95008.01.

CONFIDENTIAL=AFEORNEY-WORK_PRODUCT

Lockheed Analytical Services

IEM, INC.

ANALYTICAL DATA REPORT

FOR

RADIOCHEMISTRY

LOG-IN NUMBER:L5069QUOTATION NUMBER:Q521450DOCUMENT FILE NUMBER:0808574

Lockheed Environmental Systems & Technologies Co. Lockheed Analytical Services 975 Kelly Johnson Drive Las Vegas, Nevada 89119-3705 Telephone 702-361-0220 800-582-7605 Facsimile 702-361-8146

LOCKHEED

September 5, 1995

Ms. Carol Berger IEM, Inc. 1680 East Gude Dr., Suite 305 Rockville, MD 20850

RE:	Log-in No.:	L5069
	Quotation No.:	Q521450
	Document File No.:	0808574

The attached data report contains the analytical results of samples that were submitted to Lockheed Analytical Services on August 8, 1995. The temperature of the cooler upon receipt was 22°C. Sample containers received agree with the chain-of-custody documentation. Sample containers were received intact. Samples were received in time to meet the analytical holding time requirements.

The case narratives included in the following attachments provide a detailed description of all events that occurred during sample preparation, analysis, and data review specific to the samples and analytical methods requested.

A list of data qualifiers, chain-of-custody forms, sample receiving checklist, and log-in report are also enclosed representing the samples received within this group.

If you have any questions concerning the analysis or the data please call Karen Germann at (702) 361-3955, ext. 289.

Release of this data report has been authorized by the Laboratory Director or the Director's designee as evidenced by the following signature.

Sincerely,

Karen Germann Client Services Representative

cc: Client Services Document Control

Lockheed Analytical Services

Log-in No.: L5069 Quotation No.: Q521450 Document File No.: 0808574 Page 1

CASE NARRATIVE RADIOCHEMICAL ANALYSES

The routine calibration and quality control analyses performed for this batch include as applicable: instrument calibration, initial and continuing calibration verification, quench monitoring standards, instrument background analysis, method blanks, yield tracer, laboratory control samples, matrix spike samples, duplicate samples.

Holding Time Requirements

All holding time requirements were met.

Analytical Method Gamma Spectrometry

The gamma spectrometry was performed using standard operating procedure, LAL-91-SOP-0063. The samples were analyzed in workgroup 26262. No problems were encountered during preparation or analysis. No re-analyses were performed.

Andrea Tippett Prepared By September 5, 1995 Date

Lockheed Analytical Services DATA QUALIFIERS FOR RADIOCHEMICAL ANALYSES [Revised 08/28/92]

	For Use on the Analytical Data Reporting Forms
В	Any constituent that was also detected in the associated blank whose concentration was greater than the reporting detection limit (RDL) and/or minimum detectable activity (MDA).
С	Presence of high TDS in sample required reduction of sample size which increased the MDA.
D	Constituent detected in the diluted sample.
E	Constituent concentration exceeded the calibration or attenuation curve range.
F	For Alpha Spectrometry Only-FWHM exceeded acceptance limits.
Н	Sample analysis performed outside of method-specified maximum holding time requirement.
Y	Chemical yield exceeded acceptance limits.
	For Use on the QC Data Reporting Forms
*	QC data (i.e., percent recovery data for laboratory control standard and matrix spike; and RPD for replicate analyses) exceeded acceptance limits.
a ¹	The spike recovery and/or RPD for matrix spike and duplicates cannot be evaluated due to insufficient spiking level compared to the elevated sample analyte concentration.
b ¹	The RPD cannot be computed because the sample and/or duplicate concentration was below the MDA.

¹ Used as foot note designations on the QC summary form.

Lockheed Analytical Laboratory SAMPLE SUMMARY REPORT (su02) IEM, Inc.

Client Sample Number	LAL Sample Number	SDG Number Matrix	Method
A ~	L5069-7	Water	GAMMA SPEC LAL-00
REPORT TYPE	L5069-8	Water	RAD RPT TYPE 2
SCIISR	L5069-2	Water	GAMMA SPEC LAL-00
SC12S	L5069-3	Water	GAMMA SPEC LAL-OC
SC13S	L5069-6	Water	GAMMA SPEC LAL-00
SC14S	L5069-1	Water	GAMMA SPEC LAL-OC
SC30S ,	L5069-4	Water	GAMMA SPEC LAL-00
WR2	L5069-5	Water	GAMMA SPEC LAL-0

LOCKHEED ANALYTICAL SERVICES LOGIN CHAIN OF CUSTODY REPORT (1n01) Aug 08 1995, 05:18 pm Login Number: L5069 Account: 574 IEM, Inc. Project: IEM GAMMA WATERS Waters for gamma spec Client Collect Receive Laboratory Due Sample Number Sample Number Date Date PR Date L5069-1 SC14S 17-JUL-95 08-AUG-95 29-AUG-95 TEMP 22 Location: 157 1 S GAMMA SPEC LAL-0063 Hold:13-JAN-96 Water L5069-2 SC11SR 17-JUL-95 08-AUG-95 29-AUG-95 TEMP 22 Location: 157 1 S GAMMA SPEC LAL-0063 Hold:13-JAN-96 Water L5069-3 SC12S 17-JUL-95 08-AUG-95 29-AUG-95 TEMP 22 Location: 157 1 S GAMMA SPEC LAL-0063 Hold:13-JAN-96 Water L5069-4 SC30S 17-JUL-95 08-AUG-95 29-AUG-95 TEMP 22 Location: 157 1 S GAMMA SPEC LAL-0063 Hold:13-JAN-96 Water L5069-5 WR2 L 17-JUL-95 08-AUG-95 29-AUG-95 TEMP 22 Location: 157 1 S GAMMA SPEC LAL-0063 Hold:13-JAN-96 Water L5069-6 SC13S 17-JUL-95 08-AUG-95 29-AUG-95 TEMP 22 Location: 157 1 S GAMMA SPEC LAL-0063 Hold:13-JAN-96 Water L5069-7 A 18-JUL-95 08-AUG-95 29-AUG-95 TEMP 22 Location: 157 1 S GAMMA SPEC LAL-0063 Hold:14-JAN-96 Water L5069-8 REPORT TYPE 08-AUG-95 08-AUG-95 29-AUG-95 Location: Water 1 S RAD RPT TYPE 2

Page 1

Signature:

Date: X-2 080857

			· A	NALYSIS REQU	EST	CHAIN	OF C	USTO	DY RE	CORI	D		·····
SMC	SUC	10N 9					ALYS	ES					
Project No.	500	8.0	\		Purchase Q5	Order 21450		Le m	9/ /		/*		
Sampler: (Print	Name)	WDEN				Custody Tape	No.	105 5/		/ : /	/ /	Nu	mber of
Sample No./ Identification	Colle Date	ction	Preserv.	Lab Sample Number		le Matrix Sludge, etc.)	NO.	3				/ Cor	ntainers/ MARKS
56145	7/17/95	13:45			wr	105	1						
SCHSR		14:05			1		1						
SCI25		14:30		·									
SC 305		14:45				••••• = •••• =••• =••• =•••							
War		15:35											
56.135	4	16:00		· · · · · · · · · · · · · · · · · · ·									
<u>A</u>	7/18/95	11:00		· · · · · · · · · · · · · · · · · · ·	1								
							ļ						
						<u></u>							
					-		<u> </u>						
Relinquished by	//				Date	Time	Heceiv	ed by: (S	ignature)			Date	Time
Kelany	Touc	en la			7/18/95	5 15:00		in Ste	ruite			7/18/15	15:00
2. Lidia	Starie	k			8/7/95	- 16:30	Pa		Jank	,		8.08.95	
3.		•					1						
4.				<u> </u>		· · ·							
5.		<u></u>				· · ·					· .		
Sample Disposal Method						Dispos	ed of by:	(Signatu	ire)		Date	Time 🔐	
SAMPLE COLLE			(Signature)	, and a set of the set of t				TICAL L	ABOARAT			en Geri	medo
y	and the second s												
ΩNº 001€	524												* ·
- - -							•						

LOCKHEED

MA

R

080851

Sample Login Login Review Checklist

Lot Number 5669

The login review should be conducted by that person logging in the samples as well as a peer. Please use this checklist to ensure that such reviews occur in a uniform basis. Please sign and date below to verify that a login review has occurred. This checklist should be affixed to each login package prior to distribution.

For effective login review, at a minimum, five reports form the login process are required. These are the COC (or equivalent), the login COC report, the sample summary report, the sample receiving checklist, and the login quotation. Before beginning review, ensure that these five components are available. Jobs with single component samples, the sample summary report may be omitted.

SAMPLE SUMMARY REPORT	<u>YES</u>	NO	<u>N/A</u>	Comment
1. Are all sample ID's correct?	<u></u> д			
2. Are all samples present?	<u>×</u>			
3. Are all matrices indicated correctly?	X			
•. Are all analyses on the COC logged in for the appropriate samples?	<u>×</u>			-
5. Are all analyses logged in for the correct container?	\			
6. Are samples logged in according to LAS batching procedures?	<u>X</u> -			
LOGIN CHAIN OF CUSTODY	<u>YES</u>	NO	<u>N/A</u>	Comment
1. Are the collect, receive, and due dates correct for every sample?	<u>_X</u> _			
2. Have all appropriate comments been indicated in the comment section?			<u>_x</u>	
SAMPLE RECEIVING CHECKLIST	<u>YES</u>	NO	<u>N/A</u>	Comment
1. Are all discrepancies between the COC and the login noted (if applicable)? May reviewed by		5 hr	<u>X</u> 195	<u></u>
10 (0) 0110 5-05-95 1/10	1 PC	1.0	11.	<u> </u>

ockh. Jd Analytical Services	•	÷	• •	Page 1 of
ample Receiving Checklist		10-10		
lient Name: 1. 4. 117	Job No, 4-	5067	Cooler ID: / 1(pr'	· · · · · · · · · · · · · · · · · · ·
OOLER CONDITION UPON RECEIPT	•			
emperature of cooler upon receipt:				
mperature of temp, blank upon receipt:			<u>, and a second descent descent and a second descent and a second descent and a second descent and a second des</u>	
	Yes	No	Commente/Discrepancies	
stody scals intact	·~	•		
ain of custody present	X			
ue ice (or equiv.) present/frozen			31 . CE- 1: EE 1) CA	
d survey completed	· X	· ·		
AMPLE CONDITION UPON RECEIPT				· · · · · · · · · · · · · · · · · · ·
	Yes	No	* Comments/Discrepancies	
l bottles labeled				
i botiles labeled imples intact	<u> </u>			
roper container used for sample type	<u> </u>			
mple volume sufficient for analysis	<u> </u>			
roper pres. indicated on the COC	<u>A</u>			
OA's contain headspace	<u> </u>			
re samples bi-phasic (if so, indicate sample ID'S):		1712		
		- files	· · · · · · · · · · · · · · · · · · ·	
·				
			· · · · · · · · · · · · · · · · · · ·	
AISCELLANEOUS ITEMS				
	Yes	No	Commonte/Discrepancies	
amples with short holding times		X		
samples to subcontract	 	4 1	·	
		hus		· · · · · · · · · · · · · · · · · · ·
ADDITIONAL COMMENTS/DISCREPANCIES	·			
		· · · · · · · · · · · · · · · · · · ·		
	· · · · · · · · · · · · · · · · · · ·		<u></u>	
			· · · · · · · · · · · · · · · · · · ·	
	13-75	·		
Sent to the client (date/initials): 8/11 95 MBK		** Client's	signature upon receipt:	·
Notes: • = contect the appropriate CSR of any discrepancies immediate	y apon reacht		n an	
** - ploase serview this information and return via thesimille to the appr	and the Party Party at 12			& · · · · · · · · · · · · · · · · · · ·

RAD DATA REPORT (ra01)

IEM, Inc.

Waters for gamma spec (Project IEM GAMMA WATERS)

Clien	t Sample	ID:	SC14S
Date	Collected	t:	17-JUL-95

Matrix:

Water

LAL Sample ID: L5069-1

Date Received: 08-AUG-95

0.00	-		74-410-05	GAMMA SPEC LAL-0063 26262	15		70	- • -
-228					15.	16.	30.	pCi/L
-214			26-AUG-95	GAMMA SPEC LAL-0063_26262	-7.4	8.8	15.	pCi/L
40			26-AUG-95	GAMMA SPEC LAL-0063 26262	-1	68.	. 99.	pCi/L
-212		· . · ·	26-AUG-95	GAMMA SPEC LAL-0063 26262	4.0	8.5	11	 pCi/L
				GAMMA SPEC LAL-0063 26262	6.0		41	
b-214						9.3	14.	pC .
-208			26-AUG-95	GAMMA SPEC LAL-0063_26262	-2.0	6.1	8.8	pCi/l

RAD DATA REPORT (ra01)

IEM, Inc.

Waters for gamma spec (Project IEM GAMMA WATERS)

Client Sample ID: SC11SR

Matrix: .

LAL Sample 1D: L5069-2 Date Received: 08-AUG-95

Date Collected: 17-JUL-95

Water

Login Number: 15069

Constituent	Analyzed	Daliji	Activit		PRUA. 0	ataQual Unit
Ac-228	26-AUG-95	GAMMA SPEC LAL-0063_20	5262 0	7.4	14.	pCi/
Bi-214	26-AUG-95	GAMMA SPEC LAL-0063 20	5262 -1.	5.5	8.9	pCi/
K-40	26-AUG-95	GAMMA SPEC LAL-0063 20	6262 -10.	27.	47.	pCi/
Pb-212	26-AUG-95	GAMMA SPEC LAL-0063 20	5262 2.8	5.0	7.3	pCi/
Pb-214	26-AUG-95	GAMMA SPEC LAL-0063 20	5262 0.4	4.8	8.1	pCi/
11-208	26-AUG-95			2.8	4.0	DCi

RAD DATA REPORT (ra01)

IEN, Inc.

Waters for gamma spec (Project IEM GAMMA WATERS)

Client Sample ID: SC12S Date Collected: 17-JUL-95

Water

Natrix:

LAL Sample ID: L5069-3

Date Received: 08-AUG-95

Constituent	Analyzed Batch	Act	ivity Error	NDA D	ataQual Units
Ac-228	27-AUG-95 GAMMA SP	EC LAL-0063 26262 1.6	7.5	14.	pCi/L
Bi-214	27-AUG-95 GAMMA SP	EC LAL-0063 26262 3.6	5.3	8.0	pCi/L
K-40	27-AUG-95 GAMMA SP	EC LAL-0063 26262 42.	34.	47.	pCi/L
Pb-212	27-AUG-95 GAMMA SP	EC LAL-0063_26262 0.6	4.9	7.3	pCi/L
Pb-214	27-AUG-95 GAMMA SP	EC LAL-0063 26262 1.6	4.9	8.2	pCiA
TL-208	27-AUG-95 GAMMA SP	EC LAL-0063_26262 0.5	2.7	4.0	pCiA

RAD DATA REPORT (ra01)

IEM, Inc.

Waters for gamma spec (Project IEM GAMMA WATERS)

Client Sample ID:	sc30s
Date Collected:	17-JUL-95
Natrix:	Vater

LAL Sample ID: L5069-4

Date Received: 08-AUG-95

Constituent	Analyzed Batch	Activit	y Error	NDA D	ataQual Units
Ac-228	28-AUG-95 GAMMA SPEC LAL-0063_26262	7.0	7.3	13.	pCi/L
Bi-214	28-AUG-95 GAMMA SPEC LAL-0063 26262	6.5	5.7	8.2	pCi/L
K-40	28-AUG-95 GANMA SPEC LAL-0063 26262	31.	31.	44.	pCi/L
Pb-212	28-AUG-95 GAMMA SPEC LAL-0063 26262	1.7	5.1	7.5	pCi/L
Pb-214	28-AUG-95 GAMMA SPEC LAL-0063 26262	6.5	5.2	7.9	pCi/L
T1-208	28-AUG-95 GAMMA SPEC LAL-0063 26262	2.1	2.9	4.1	pCi/L

LOCKHEED ANALYTICAL SERVICES	LOCKHEED	ANALYTICAL SER	VICES
------------------------------	----------	----------------	-------

RAD DATA REPORT (ra01)

IEN, Inc.

Waters for	gamma	spec	(Project	IEN	GAMMA	WATERS)	
------------	-------	------	----------	-----	-------	---------	--

Client Sample ID:	WR2			LAL Sample ID:	L5069-5
Date Collected:	17- JUL-95			Date Received:	08-AUG-95
Matrix:	Water		•	Login Number:	L5069

Ac-228	28-AUG-95 GAMMA SPEC LAL-0063 26262	-6.0	5.8	14.	pCi/
Bi-214	28-AUG-95 GAMMA SPEC LAL-0063 26262	-1.3	5.0	8.3	pCi/
K-40	28-AUG-95 GAMMA SPEC LAL-0063_26262	1.	27.	44.	DCi/
Pb-212	28-AUG-95 GAMMA SPEC LAL-0063_26262	2.3	5.3	7.9	pCi/
РЬ-214	28-AUG-95 GAMMA SPEC LAL-0063_26262	1.4	4.7	7.9	pCi
TL-208	28-AUG-95 GAMMA SPEC LAL-0063_26262	1.0	2.8	4.2	pCi

RAD DATA REPORT (ra01)

IEN, Inc.

Waters for gamma spec (Project IEM GAMMA WATERS)

Client Sample ID:	SC13S
Date Collected:	17-JUL-95
Matrix:	Water

LAL Sample ID: L5069-6

Date Received: 08-AUG-95

Ac-228	25-AUG-95	GAMMA SPEC LAL-0063 26262	-2.5	· 5_7	14.	pCi/
Bi-214		GAMMA SPEC LAL-0063 26262	-4.5	5.2	9.0	pCi/
(-40	25-AUG-95	GAMMA SPEC LAL-0063 26262	11.	29.	46.	pCi/
Pb-212	25-AUG-95	GAMMA SPEC LAL-0063_26262	0.5	5.0	7.5	pCi/
Pb-214	25-AUG-95	GAMMA SPEC LAL-0063 26262	-2.6	4.6	8.0	pCi/
TL-208	25-AUG-95	GAMMA SPEC LAL-0063 26262	0.6	2.7	4.1	pCi/

RAD DATA REPORT (ra01)

IEM, Inc.

Waters for gamma spec (Project IEM GAMMA WATERS)

Client	Sample ID	: A
Date Co	ollected:	18-JUL-95

Water

LAL Sample ID: L5069-7

Date Received: 08-AUG-95

Matrix:

Login Number: 15069

Ac-228	· · · :	25-AUG-95	GAMMA SPEC LAL-0063_26262	0	7.6	14.	pCi/
Bi-214	•	25-AUG-95	GAMMA SPEC LAL-0063 26262	-2.5	4.4	7.5	pCi/
K-40		25-AUG-95	GANMA SPEC LAL-0063 26262	48.	32.	42.	pCi/
Pb-212		25-AUG-95	GAMMA SPEC LAL-0063 26262	-0.1	4.9	7.5	pCi/
Pb-214		25-AUG-95	GAMMA SPEC LAL-0063 26262	3.2	4.9	8.2	pCi/
TL-208		25-AUG-95	GAMMA SPEC LAL-0063 26262	1.4	2.7	4.0	pCi/

•	

RADIOCHEMISTRY ANALYTES

QC Data Summary For Reagent Blank Analysis

Analyte	Batch ID	MDA	Acceptance Limit	Date Analyzed	Reagent Blank Result	Dat a Qualifier
Ac-228	26262	29.8	29.8	08/27/95	5.65	
Bi-214	26262	16	16	08/27/95	-2.2	
Co-60	26262	7.59	7.59	08/27/95	-0.122	
Cs-137	26262	6.98	6.98	08/27/95	0.783	·
K-40	26262	81.8	81.8	08/27/95	-10.6	
Pb-212	26262	12.2	12.2	08/27/95	-2.62	
Pb-214	26262	12.7	12.7	08/27/95	0.47	
TL-208	26262	8.56	8.56	08/27/95	-0.64	

RADIOCHEMISTRY ANALYTES

QC Data Summary For Laboratory Control Sample Analysis

Analyte	Batch ID	Date Analyzed	LCS Result	Error 2 Sigma	True Value	(X) Recovery	Data Qualifiers
Co-60	26262	08/27/95	199	23.5	218	91	
Cs-137	26262	08/27/95	182	23.4	197	93	

RADIOCHEMISTRY ANALYTES

QC Data Summary For Duplicate Sample Analysis

Analyte	Batch ID	Client ID	LAL ID	Date Analyzed	Sample Result	Error 2 Sigma	Duplicate Result	Error 2 Sigma	RER	RPD	9
Co-60	26262	SC14S	L5069-1	08/26/95	1.23	3.71	0.25	3.6	0.13	132	T
K-40	26262	SC14S	L5069-1	08/26/95	-0.902	67.7	. 47.7	60.3	0.38	208	
Pb-214	26262	SC14S	L5069-1	08/26/95	6.01	9.32	-8.09	4.31	1	1360	