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Preface

As the number of nuclear power plants on order continues to grow
(currently more than thirty per year in the United States alone). the demand
for nuclear engineers should also increase, and a new text on reactor
shielding is overdue. Shielding technology has matured considerably in the
last decade, and shield physics must routinely be translated into shield
design. Since the publication in 1959 of Fundamental Aspects of Reactor
Shielding, by Herbert Goldstein, new generations of computers have become
available to exploit techniques heretofore considered too costly. and new
measurement techniques have been devised. The energy and angular
distributions of neutrons and gamma rays can be followed, both in theory
and in practice, throughout their transport histories. Such powerful tools
have brought correspondingly large dividends to the shielding communicy.

These advances and their underlying fundamentals are recorded in this
volume. which is intended as a text for a two-semester course in reactor
shielding directed at an advanced undergraduate or graduate level. The reader
is assumed to have some familiarity with calculus through partial differential
equations and with nuclear physics through particle interaction theory,
although pertinent aspects of the latter are reviewed in Chap. 3. The material
is arranged to cover fundamental transport considerations in the first
semester; portions of Chap. 4 could be reserved for the second semester. The
second semester could then consist of special topics, such as Monte Carlo
techniques, albedos, ducts, shield-analysis projects, seminars on experimental
shielding, and shield design. Instructors will doubtless follow plans of their
own choosing. Chapters 2 through 6 have problems appended, with solutions
given at the back of the book. Metric units have been used exclusively.
Citations of classified literature have been avoided, and technical reports
have been referenced only where no journal articles could be given.

Although titled Reactor Shielding, this text should be applicable in related
areas where neutron and gamma-ray attenuation are important, as in nuclear
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iv PREFACE

weapons shielding and in isotope source applications. The study of space
radiation and high-energy-accelerator shielding, although closely related to
the present subject, has been considered outside the scope of this book.

Dr. Samuel Glasstone originally conceived the idea for this text; he
concluded that the book was needed and originally proposed to prepare it.
In the preliminary planning of the project. the U.S. Atomic Energy
Commission asked me to collaborate with Dr. Glasstone. Notwithstanding
many plans and discussions for this collaboration, Dr.Glasstone had to
relinquish his role in order to carry out a number of other projects. It is a
pleasure to acknowledge his efforts in the planning of this book and his
useful critiques of early drafts. I sincerely regret that our proposed
association could not be continued.

For their assistance in the preparation of this manuscript, I am greatly
indebted to many people in a number of ways. First, no book on shielding
could be readied for publication at this time without acknowledgment of the
pervasive influence of one man, the late E. P. Blizard. Not the least of his
many contributions to the development of the technology was his
encouragement of the efforts of others. including my own effort in preparing
this manuscript.

The many services and suggestions provided by the staff of the Radiation
Shielding Information Center, Oak Ridge National Laboratory. were
extremely helpful, particularly in scanning the current literature. It is a
distinct pleasure to acknowledge many useful discussions with others at
ORNL: Lorraine Abbott, Clyde Claiborne, Charles Clifford, Paul Stevens.
and Dave Trubey, each of whom supplied references and data in addition to
contributions cited elsewhere. My colleagues Mike Wells and Bob French
have also contributed in this way and in their forbearance.

I owe thanks for reviews and comments on various portions of the
manuscript to Arthur Chilton and his students at the University of Illinois.
Don Dudziak of Los Alamos Scientific Laboratory, Charles Eisenhauer of
National Bureau of Standards, Cliff Horton of Rolls Royce, Lid.,
Richard Faw of Kansas State University, Norman Francis. David Mesh, and
their associates of General Electric Knolls Atomic Power Laboratory.
Gene Hungerford of Purdue University, John Lamarsh of New York Uni-
versity, Fred Maienschein of Oak Ridge National Laboratory, Ed Profio of
University of California at Santa Barbara, and Leigh Secrest of Texas
Christian University. [ am particularly indebted to Lew Spencer of National
Bureau of Standards for his detailed review of the complete manuscript and
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for his many useful suggestions. Most of these reviewers provided recommen-
dations based on teaching experience in shielding.

The guidance and counsel of John Inglima during the planning stages and
of Robert Pigeon during the manuscript drafting, both of th~ U. S. Atomic
Energy Commission, is gratefully acknowledged. For technical editing 1 am
grateful to Jean Smith and Marian Fox, also of the U.S. Atomic Energy
Commission, and, for typing a difficult manuscript, to Monsita Quave of
Radiation Research Associates, Inc. 1 am especially grateful to Ceil Schaeffer
for relieving me of many burdensome proofing tasks and, most of all, for her
understanding and encouragement.

N. M. Schaeffer
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Historical Background

N. M. SCHAEFFER ].

Early reactor shields were largely a matter of educated guesses. The complex
of phenomena that had to be considered for an accurate shield analysis was
an imposing obstacle. Microscopic-particle interaction processes were reason-
ably well understood, but their relative importance depended on largely
unknown physical parameters called cross sections. Bulk attenuation
properties of materials for two principal radiations of interest, neutrons and
gamma rays, were also unknown. Even for an empirical approach, there was
no opportunity under the wartime pressures of the Manhattan Project to
launch a systematic investigation of the attenuation properties of materials.
It was obvious that hydrogenous materials were needed for neutrons and
dense materials for gamma rays. It was also evident that simple exponential
attenuation based on the total cross section was a thoroughly inadequate
concept for determining layer thicknesses. The shield of concrete and
paraffinized wood for the Argonne National Laboratory graphite pile in
1943 was adequate for gamma rays and was overdesigned for neutrons. The
X-10 reactor at Oak Ridge National Laboratory (ORNL) included a 2.1-m
concrete shield, of which the central 1.5 m contained a special mixture
incorporating the mineral haydite. The large water-of-crystallization content
of haydite made it appear especially useful for neutron attenuation. This
shield was also overdesigned for neutrons and about adequate for gamma
rays, although streaming problems were evident for both radiations around
access holes in the shield.t

The special requirement for a thin shield for the Hanford reactor was
dictated in 1944 by the maximum length of aluminum tubing that could be

tHistorical material for this chapter has been drawn from H. Goldstein, Everitt Pinnel Blizard,
1916-1966, Nuclear Science and Engineering, 27: 145 (1967), the dedication of a special issue
prepared as a memonal to E. P. Blizard. Additional information was graciously provided by Mrs, L. S.
Abbort from the archives of the Neutron Physics Division, Oak Ridge National Laboratory, Mr. C. C.
Horton of Rolls Royce, Ltd., has kindly provided reminiscences of British developments.
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drawn. E.Fermi and W.Zinn had made some provisional attenuation
measurements in Chicago in 1943. H. Newson and L. Slotin made some
gold-foil measurements for masonite and iron slabs in the core hole at the
rear of the X-10 pile in 1944. A young engineer, C. E. Clifford, was assigned
to help them. The Hanford reactor shield was built of iron slabs sandwiched
between masonite layers. Although initially a good neutron attenuator, the
masonite suffered severe radiation damage and decomposed. The CP-3
(Chicago Pile-3, 1944) shield was composed of ordinary concrete; although
thicker than necessary, it performed satisfactorily.

The early reactor projects clearly demonstrated that the design of a
shield for neutrons and gamma rays that was optimal, efficient, or
economical required answers to a great many questions. In 1946 the Navy
initiated an intensive study program for a nuclear-powered submarine, and
the Air Force, a similar study for a nuclear-powered aircraft. Space and
weight limitations for these nuclear applications added more impetus to the
open questions in shielding. In the spring of 1947, E. P. Blizard, then a Navy
physicist assigned by Capt. H. Rickover to ORNL, was directed to start a
program of shielding measurements. He proposed a program of neutron and
gamma-ray attenuation measurements through several types of concrete
placed in the rear core hole (a 60-cm square aperture) of the X-10 reactor.
C. E. Clifford of the laboratory staff was assigned to work with him because
of his experience with measurements for the Hanford shield in 1944, Slabs
of material were placed in the aperture, and detectors were positioned within
and beyond the slabs. This effort marked the first organized research
program in reactor shielding. A spiral-duct mock-up placed in the hole
demonstrated that properly designed passages could penetrate the shield
without transmitting excessive radiation. These studies also led to the
recognition that the production of secondary gamma rays by neutron
interactions in the shield was clearly a significant design consideration.

By 1948 shielding studies supporting various reactor projects were in
progress at Hanford, Knolls Atomic Power Laboratory, Bettis Atomic Power
Laboratory, and Massachusetts Institute of Technology (MIT). As additional
results of measurements in the X-10 core hole were made, Blizard became
convinced that too much radiation streamed around the test samples for
accurate measurements and a better facility was needed. He concluded that a
fission plate—a thin disk of enriched uranium covering the core hole—
would provide a local source of fission neutrons and would be more
accessible for attenuation measurements. Clifford suggested that a tank of
water be placed adjacent to the fission plate so that materials and
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instruments could be submerged, which would greatly reduce the radiation
background. These two ideas culminated in the Lid Tank Shielding Facility,
which began operating in 1949.

In the United Kingdom shielding research efforts were started in 1948
and were geared to the British philosophy of reactor development: large
gas-cooled reactors for plutonium production to be followed by develop-
ment of these systems for electricity generation. The research reactor BEPO
had just been completed: it had a 15-cm iron thermal shield followed by a
bulk shield of barytes concrete and had a layout similar to the Oak Ridge
X-10 reactor. The Windscale reactors were under construction in 1948 and
included a thermal shield similar to BEPO but Portland concrete was used
rather than barytes. Early design calculations were made by B. T. Price, D. ]J.
Littler, and F. W. Fenning. :

A shielding group was set up under C.C. Horton as part of Fenning’s
reactor physics group at Harwell to investigate shielding problems connected
with large concrete shields, heating effects, and radiation streaming in the
large ducts that are integral to gas-cooled systems. In these systems heat
generation in the first 30 cm or so of the shields was recognized to be an
important problem, and Horton, later with K. Spinney. developed some
models to predict the distribution of heat generation by neutrons and
gamma rays. Horton, J. R. Harrison, and D. Halliday of the Harwell group
also initiated a program of duct-streaming measurements in 1952 at the
BEPO facility.

During an intensive working session at ORNL in shielding in the summer
of 1949 with interested participants from a number of installations (one of
many organized by Blizard), T. A. Welton of MIT developed the concept of
the removal cross section for treating neutron attenuation in heavy materials
mixed with hydrogenous materials. Recognizing the importance of the
removal concept, Blizard initiated a new series of measurements in the Lid
Tank to verify applicability and to obtain removal cross sections for many
materials. The removal-cross-section concept quickly came into widespread
use and became the principal method of treating neutron attenuation. Two
decades later it is still regarded as a useful, valid technique for many
applications. So great were the demands on the Lid Tank that a second
fission-plate facility was constructed on the reactor at Brookhaven National
Laboratory, and a program of additional removal-cross-section measurements
was carried out under the direction of R. Shamberger (Chap. 4).

Blizard proposed an additional test apparatus for complete 4w shields
since they could not be tested in the Lid Tank. Tests for the mock-up for the
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Materials Testing Reactor (MTR) indicated that this type of reactor would
make a useful source for shield tests. Construction was authorized, and the
Bulk Shielding Reactor (BSR) was completed in 1950. The facility was so
versatile that it became the pattern for swimming-pool research reactors
around the world. The BSR group included L. Meem, F. Maienschein, and
R. Peelle. Numerous basic and applied results were forthcoming on materials,
shield mock-ups, and a definitive measurement of the fission gamma-ray
spectrum (Chap. 2).

The British workers also realized the need for a special facility; they
required data to support the design of large shields for power reactors. A
group under the direction of Fenning was set up to design and build this
reactor. Horton was responsible for the physics and general layout of the
facility. The reactor (LIDO) was completed in 1956. Unlike the Oak Ridge
facility, the entire pool was constructed above the ground to allow access to
three caves in the shield wall, in which substantial dry mock-ups could be
placed. The reactor could be traversed through the pool to provide a source
for these mock-ups, and an important design criterion for the pool layout
was that construction of a mock-up in one cave could be carried out while
experiments were continuing in another.

Aircraft shielding required measurements away from the ground; thus
Blizard and Clifford conceived the idea in 1952 of a facility in which a
reactor might be suspended at a sufficient height to eliminate the effects of
ground scattering. They planned an arrangement of four towers in a
rectangle with cable hoists for elevating a BSR-type reactor and crew
compartment 60 m above ground. The Oak Ridge Tower Shielding Facility
began operation under Clifford’s direction in 1954, and it proved versatile in
applications far beyond the ill-fated nuclear aircraft program (Chap. 9).

Although destined for cancellation in 1961, the aircraft nuclear
propulsion (ANP) program produced a number of other useful shielding
efforts. The Nuclear Aerospace Research Facility at Convair, Fort Worth,
Tex., included two reactors: the Ground Test Reactor (GTR), a copy of the
BSR, and the Aircraft Shield Test Reactor (ASTR). In 1954 B. Leonard and
N. Schaeffer proposed a program of ground and flight studies with these
reactors to resolve the major shielding uncertainties affecting airframe
design. The GTR was operated in a small water tank suspended from a crane
at a height of 30 m to obtain an early measurement of ground scattering. It
was also placed in a mock-up consisting of the empty fuselage of a retired
aircratt (the XB-36) with a shielded cylinder representing a crew compart-
ment. From these measurements and concurrent air-transport results at the
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Oak Ridge towers, the large contribution of secondary gamma rays produced
by neutron radiative capture in air was first observed in 1955. The
importance of these secondary gamma rays was a surprise to both groups;
previous estimates of the probability for gamma-ray production by neutron
capture in nitrogen had been too low, and these measurements were the first
to reveal the discrepancy. The ASTR was carried in the aft bomb bay of a
specially modified B-36 in a series of test flights from 1955 to 1957 at
altitudes from sea level to 11 km. The program provided data on radiation
transfer by air and aircraft structure from reactor to shielded crew
compartment. The program culminated with a joint effort at ORNL in which
the ASTR and the crew compartment were suspended at the towers in the
same relative positions as when installed in the B-36 (Chap. 8).

The decade from 1951 to 1961 is the period when shield technology
came into its own. The major facilities were all in operation from 1954
onward, and large shielding groups at General Electric in Cincinnati, Ohio,
Pratt and Whitney in Hartford, Conn., Convair in Fort Worth, Tex., and
Lockheed in Marietta, Ga., were participating in the ANP program. The
submarine effort was concentrated at the Westinghouse Bettis Laboratory
near Pittsburgh, Pa., and the General Electric Knolls Atomic Power
Laboratory in Schenectady, N. Y. The Oak Ridge group was extremely busy
supporting both efforts. These groups contributed to the technology by
developing design methods, by measuring attenuation through shield
materials (including mock-ups of various shield designs), and by devising new
experimental and analytical approaches. The demise of the ANP program
and the successes of the nuclear submarine are well known. The U.S.S.
Nautilus sailed on nuclear power for the first time in January 1955. This
date is to be compared with 1954, 1956, and 1957, the years in which
nuclear-fueled electric plants first went on line in Russia, Great Britain, and
the United States, respectively.

The nuclear-applications programs gave impetus to the development of
shield-analysis methods as well as to large-scale experimental programs. By
the early 1950s an intensive program in radiation physics was under way at
the National Bureau of Standards (NBS) under the direction of U. Fano.
G. W. Grodstein published a definitive set of X-ray attenuation coefficients,
and L. V. Spencer’s method-of-moments solution of the Boltzmann trans-
port equation was first described. Shortly afterward a group at Nuclear
Development Associates, Inc., under the direction of H. Goldstein joined
with Spencer and Fano in an intensive program of moments-method
calculations, which culminated in 1954 with publication of the Goldstein
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and Wilkins report on gamma-ray buildup factors. R. Aronson, J. Certaine,
M. Kalos, and P. Mittelman, with Goldstein, applied the method to neutrons.
Fano, Spencer, and M.J. Berger published a definitive exposition of
gamma-ray penetration in 1959, which included a summary of the moments
method as well as other techniques (Chap. 4).

Work on neutron attenuation in the United Kingdom followed a
somewhat different path from the efforts in the United States. Horton and
J. D. Jones devised the removal-diffusion method, the first results of which
were reported at the second Atoms for Peace conference at Geneva in 1958.
Since 1956, A. Avery and J. Butler have further developed these techniques
at Harwell (Chap. 4). '

Although H. Kahn of Rand Corporation published two papers on the
application of Monte Carlo techniques to shielding in 1950, in which he
identified virtually all the principal concepts, widespread use of the
technique and its subsequent development had to await the improvement of
the digital computer. Prominent among early contributors in delineating the
techniques and concepts were E. Cashwell and C. Everett of Los Alamos
Scientific Laboratory (LASL) and G. Goertzel and M. Kalos of Nuclear
Development Associates, Inc. Kalos and F. Clark of ORNL reported on the
theory of importance sampling and finite variance estimators. At NBS,
E. Hayward and J. Hubbell reported photon albedo calculations in 1953;
M. Berger and J. Doggett extended their results in 1955. The first successful
Monte Carlo applications in air scattering were reported in 1957~1958 by
Berger, C. Zetby of ORNL, and M. Wells of Convair. The completion of the
OSR system of Monte Carlo programs by R. Coveyou at ORNL in 1958
must be regarded as a significant advance in shield technology. The O5R
system required a great deal of its users, but it was extremely flexible and
widely used. At the Geneva (Atoms for Peace) conference in 1964, Blizard
and Mittelman reported on eight major Monte Carlo programs in use in the
United States. The MORSE Monte Carlo code of E. Straker, P. Stevens,
D. Irving, and V. Cain was completed in 1969; it has produced results in
excellent agreement with analytic solutions (Chap. 5).

Monte Carlo has been regarded as one of the sophisticated techniques,
but the workhorse method of shield design has been the point-kernel
approach. Blizard, J. Miller, D. Trubey, and G.Chapman of ORNL and
J. MacDonald, W. Edwards, and J. Moteff of General Electric (GE) made
notable contributions to the use of removal cross sections. K. Shure of
Westinghouse Electric Corporation developed an analysis technique for
metal—hydrogenous shields based on a combination of point kernel and a
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numerical method using spherical harmonics called a P; multigroup (later a
Py) solution of the one-dimensional transport equation. In the development
and application of gamma-ray buildup factors to kernel techniques, the work
of J. Taylor of Westinghouse, M. Capo of GE, M. Berger and J. Hubbell of
NBS, R.French of Convair, M. Grotenhuis of Argonne, F.Clark and
D. Trubey of ORNL, and A. Chilton of the University of Illinois should be
listed as principals in devising empirical representations of the data and
simplified schemes for its application (Chaps. 4, 6, and 8).

From the outset many investigators in shield analysis sought manageable
numerical techniques for achieving analytical solutions of the Boltzmann
equation. Of all the efforts in this direction, such as the' method of moments,
spherical harmonics, numerical integration, and invariant imbedding, perhaps
the most significant in terms of present usage is the discrete-ordinates
method. B. Carlson of LASL had developed a discrete-ordinate method
for reactivity calculations in 1955 which became known as S, and which has
been successfully applied to a variety of transport problems. F. Mynatt and
W. Engle of ORNL developed ANISN in 1965, which incorporated improved
differencing and convergence techniques and made the method more suitable
for shielding applications. A two-dimensional version of ANISN called DOT
was described a year later by F. Mynatt, F. Muckenthaler, and P. Stevens
(Chap. 4).

The S, programs, although not without problems in some geometries,
have been used with a great deal of success in obtaining detailed radiation
distributions in complicated two-dimensional geometries. Several labora-
tories have recently studied the utility and applicability of coupling Monte
Carlo and discrete-ordinate calculational links. Thus the latter is used for
those portions of a geometry reducible to two dimensions and the former
where the description requires three dimensions.

A more complete historical survey would include the developments and
researchers in nuclear instrumentation for shielding. As shield analysis has
been paced by the development of the digital computer, so shielding
experimentation has been gaited to innovations in particle detectors and fast
electronics. A survey of neutron and gamma-ray detectors is given in
Chap. 9.

In the foregoing chronology we have been limited to an outline of
United States shielding research with only brief insertions of corresponding
British activities. Significant and occasionally large shielding efforts have also
been maintained elsewhere, notably, Belgium, Canada, France, Italy, Japan,
the Netherlands, Norway, Russia, Sweden, and West Germany. These
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programs principally support national power reactor developments, although
the literature also contains many reports of maritime and space reactor
shielding studies from Europe and Asia.

We have used some terms that will be meaningless to the uninitiated.
However, the chapter references will aid the curious in locating the
appropriate explanations; the objective here has been to trace the early
developments and to introduce some of the literature.

The newcomer will find the following earlier books on this subject to be
useful references: The first handbook in reactor shielding was published in
1956 and was edited by T. Rockwell,! who had been in the original shielding
group at Oak Ridge. B. Price, C. Horton, and K. Spinney? of the British
group active in reactor shielding wrote the first text to appear (in 1957) on
the subject. The text by Goldstein® was published in report form in 1957
and appeared in hard cover in 1959. The Shielding volume of the Reactor
Handbook, edited by Blizard and Abbott,* was published in 1962.
T. Jaeger® wrote a text on Principles of Radiation Protection Engineering,
which was published in 1960 in German and translated by L. Dresner of
ORNL for publication in English in 1965. From the standpoint of
dissemination of shielding information, probably the most important event
was not a publication date but the founding in 1962 of the Radiation
Shielding Information Center (RSIC) at Oak Ridge. Originally organized by
K. Penny, D. Trubey, and B. Maskewitz, RSIC has performed a remarkable
job of serving the needs of the shielding community. The specialized needs
of civil defense have lead to a separate technology of fallout shielding, which
is available in a 1962 monograph by Spencer® and a 1966 collection edited
by Kimel.”

From 1966 to 1970, ORNL published Chaps. 2, 3, 4, and 5 of the
Weapons Radiation Shielding Handbook, edited by Abbott, Claiborne, and
Clifford.® Authors for this handbook contributed revised material from the
earlier publication to the present text. Recently the Engineering Compen-
dium on Radiation Shielding,® R.G. Jaeger, editor-in-chief, was published,
Vol. I in 1968, Vol. III in 1970, and Vol. II in press. This compendium is
sponsored by the International Atomic Energy Agency, Vienna, and is an
excellent source for the international shielding literature.

The extensive Russian shielding literature deserves further mention here
since it is referenced in only a few instances elsewhere in this work. A
guide to the Soviet literature was published by J. Lewin, J. Gurney, and
D. Trubey!® for RSIC in 1968. A recent computer scan of Russian
entries in the RSIC bibliography produced over 200 entries. Most of these
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articles are available in English translation 1 to 2 years after their original

Russian publication. Current reports will be found in Soviet Atomic Energy

(Atomnaya Energiya).

.11 Collections that are useful reports of current

progress are found in a series entitled Problems in the Physics of Reactor
Shielding; Vol. 4 is the most recent volume available in English.'?
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Sources of Radiation

2

Shield analysis is usually subdivided into three or four phases: separate
calculations are performed for the radiation components that are significant

W. E. SELPH and C. W. GARRETT

at each phase. Occasionally two or more of the phases may be combined, but
each represents a distinct consideration in a shield analysis. The first phase
involves defining the source in sufficient detail to provide the parameters for
input to the succeeding phases. The second phase involves calculating the
intensity and distribution of the radiation that penetrates the shield about
the source; it is the principal phase in the analysis of a reactor shield. The
third phase consists in determining the intensity and distribution of radiation
traveling from the shield to the receiver. “Receiver” describes the points or
region for which the radiation intensity is desired, e.g., a radiation detector
(real or hypothetical), a human for whom biological exposure is desired, or
equipment for which the exposure is desired to assess possible radiation
damage. This third phase typically involves a calculation of radiation
interactions in air. A fourth phase may be defined if the receiver has a
separate shield, e.g., for some applications of nuclear propulsion it is
advantageous to divide the shielding and use separate shields at the reactor
(the source) and the crew (the receiver).

Thus the first task in a shield analysis or a shield design is to define and
characterize the radiation sources. This chapter contains a classification of
the various types of sources encountered in reactor shielding and a brief
description of each in a form convenient for shield analyses; the character-
istics important to the shield designer are emphasized.

Discussions of the nuclear and atomic processes that give rise to the
emission of radiation are given in any nuclear physics text. Also, the
shield designer is primarily concerned with the characteristics of the emitted
radiation, so only a cursory description of the physics of radiation
production is given here. In addition, some mathematical and fundamental

Preceding page blank 11



12 REACTOR SHIELDING FOR NUCLEAR ENGINEERS

radiation physics concepts are reviewed which are necessary for the
development of the material in this and succeeding chapters.

Subsequent chapters are devoted to the other phases of shield analysis
and to topics relevant to their application.

2.1 GAMMA-RAY AND NEUTRON SOURCES

The primary concern in reactor shield design is the specification of
suitable barriers around sources of neutrons and gamma rays to limit the
radiation exposure to biological systems or equipment that must function in
proximity to these sources. Both types of radiation are sufficiently
penetrating to be difficult to attenuate; yet they are sufficiently interacting
to be damaging to tissue and other materials.

Several other types of radiation arise from the fission event or from the
interaction of fission neutrons with nuclei. These include charged particles
and neutrinos.

Neutrinos, which possess no charge, mass, or magnetic moment, cannot
interact with matter except through the very weak, purely nuclear forces.
Thus, despite the fact that they carry away 5% of the power of a reactor,
they do not pose a shielding problem because they are incapable of causing
damage.

Conversely, charged particles are of little concern because they are so
highly interacting that relatively small amounts of material provide an
adequate barrier. The absorption of energy associated with charged particles
may, however, be an important consideration in the thermal design of a
system.

The sources of radiations of primary interest in a reactor, neutrons and
gamma rays, are discussed in the following sections.

2.1.1 Gamma-Ray Sources

A variety of sources contribute to the gamma radiation produced by a
fission reactor. The relative importance of these sources to the total
gamma-ray intensity depends primarily on the reactor design; within a given
reactor the importance of the components may vary with position in the
reactor and with reactor operating history. For example, at a point near the
reactor core, the prompt fission gamma rays may be most important during
reactor operation, the fission-product gamma rays may predominate for the
first few hours after shutdown, and subsequently the gamma rays from
activated materials in the vicinity may be more important.



SOURCES OF RADIATION 13

In power reactors the most intense gamma-ray component penetrating
the shield is frequently that from neutron interactions in the thermal shield,
pressure vessel, or biological shield. However, in special situations any of the
sources discussed in the following paragraphs may be of importance, and
each must be considered as a potentially significant source by the shield
designer.

(a) Fission Gamma Rays. The discussion on gamma rays from fission
and fission products is limited to those from 235U. Spectral distributions
and energy partitions are not known as well for other fissionable materials;
similarity to 233U is frequently assumed, but some differences have been
observed. Strictly speaking, gamma-ray energy released in fission is divided
into four time ranges, the first and last contributing more than 90% of the
total energy released as gamma rays. These time (¢) ranges are:

Prompt, ¢t < 0.05 usec (7.25 MeV).

Short-life, 0.05 < ¢ < 1.0 usec (0.43 MeV).

Intermediate-life, 1.0 usec < ¢ < 1.0 sec (0.55 MeV).

Delayed, t > 1.0 sec (6.65 MeV).

The values in parentheses are for the gamma energy released per 233U fission
and were taken from an evaluation by Holden, Mendelson, and Dudley!
except the value for prompt fission, which is quoted from a recent note by
Peelle and Maienschein.? Prompt fission gamma rays have energies from
10 keV to 10 MeV. An average of 8.1 * 0.3 photons are released per fission,
and these photons carry off 7.25#* 0.26 MeV per fission event. Prompt
fission gamma rays can contribute a significant amount to the total
gamma-ray field at points near the reactor core during reactor operation and
should be included in the core-shield analysis. The energy distribution of
prompt gamma rays is discussed in Sec. 2.4.1.

The short-life interval is similar to the prompt in energy distribution and
accounts for 5.9% (0.43 MeV) of the prompt gamma-ray energy release.

The intermediate-life interval is also usually assumed to have the same
energy distribution as the prompt interval with an energy release of about
0.55 MeV.

(b) Fission-Product-Decay Gamma Rays. The two middleweight nuclei
resulting from a fission event are called fission fragments or fission products.
Because of an excess of neutrons, most of approximately 80 possible initial
fission-product isotopes are radioactive, initially decaying by beta emission.
The beta decay is followed by gamma emission whenever the beta decay
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results in an excited state of the daughter nucleus. In a few special cases,
only gamma radiation is emitted.

The vast majority of daughter products of the initial fission fragments
are also radioactive, decaying with the emission of beta particles and gamma
rays. Having, on the average, about three stages of radioactive decay before
they become stable, fission products form a complex mixture of gamma-ray
emitters with half-lives ranging from less than a second to millions of years.
Of the approximately 21.5 MeV per fission emitted by fission products, the
greatest fraction is carried by beta particles and neutrinos. About 6.65 MeV
per 23%U fission is emitted by the fission product as delayed gamma rays:
over three-quarters of this energy is released with 103 sec following fission.

Fission-product activity will not dictate the thickness of the shield
surrounding an operating reactor. There are a few shield-design situations.
however, where protection from fission-product activity is the primary
criterion. Included in this category are primary loops in circulating-fuel
reactors and enclosures for the shipment or dismantling of used fuel rods or
assemblies. Knowledge of the dose rates from fission products is essential to
the formulation of procedures to be followed in any maintenance involving
compromise of the primary shield.

Delayed gamma rays can be classified into two groups, depending on the
time of their emission following fission. Early fission-product gamma ravs
are those emitted within a few minutes after fission; they contribute to the
total core source during the operation of a reactor. They can also be of
prime importance in regions external to the core during the operation of a
circulating-fuel reactor. Late fission-product gamma rays (those which are
emitted several minutes or longer after fission) are not of much importance
during reactor operation, but they can be a very significant source following
reactor shutdown.

Because most of the fission-product energy is contained in the early
fission products, fission-product intensity reaches a state of quasi-
equilibrium in a reactor core that has operated at steady state for only a few
hours. Thus the early decay gammas are sometimes lumped with the prompt
fission gamma rays and are considered a part of the prompt source. Energy
spectra for both the early and late fission products are discussed in
Sec. 2.4.1.

(c) Capture Gamma Rays. Radiative capture of neutrons by nuclei at
thermal and epithermal energies produces secondary gamma rays, commonly
called capture gamma rays. They are emitted promptly after neutron capture
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to relieve an unstable energy situation generated within the compound
nucleus.

The total energy available for gamma rays from capture is the sum of the
kinetic energy of the incident neutron and its binding energy in the
compound nucleus. Since the probability of capture decreases rapidly with
increasing kinetic energy, capture reactions generally are of importance only
for neutrons with kinetic energies below 25 keV. Typically, neutron binding
energies are in the region of 6 to 8 MeV, although they can range from 2.2 to
about 11 MeV. Thus binding energy is the greatest component of the total
gamma energy emitted.

Although this energy may be carried off by only one photon, it most
often is shared by two or more photons as the compound nucleus decays
through several excited states. The energy distribution of capture gamma
rays can range from sharp discrete line spectra to almost continuous spectra
produced by cascading decay; the capture interaction process is further
discussed in Chap. 3.

Since investigators studying capture spectra are primarily interested in
nuclear processes, many times only discrete spectral lines with significant
intensities are reported. In using such data, we must be careful to ascertain
whether or not the entire neutron binding energy is contained in the
reported gamma spectrum. Where it is not (differences can be as much as
30%), adjustments should be made by increasing the number of photons
emitted to account for the total amount since this energy is usually an
important contributor to the radiation that penetrates the shield.

Capture gamma rays are a significant source and occasionally constitute
the most important consideration in shield design because of their high
energy and the fact that they are generated throughout the shield.

(d) Inelastic-Scattering Gamma Rays. In neutron inelastic scattering,
part of the energy of the incident neutron is carried off by the scattered
neutron and part is absorbed by the target nucleus. The latter is left in an
excited state and subsequently decays by gamma-ray emission. An alterna-
tive process that may be involved is the formation of a neutron—heavy
compound nucleus by union of the target nucleus and the incident neutron.
The extra neutron is then emitted, and the target nucleus is left in an excited
state. The time between neutron interaction and gamma-ray emission is
negligible (107! * sec).

As with capture gamma rays, the excess energy may be carried off by
one or more photons. However, gamma rays from this source are generally
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less penetrating than those from neutron capture: their energies range from a
fraction of 1 MeV to several MeV. Since the energy of the incident neutron
must exceed the energy of the first excited level of the target nucleus,
inelastic scattering becomes more important as the neutron energy increases.
In general, neutrons must be in the MeV region to generate significant
gamma rays by this process.

(e) Reaction-Product Gamma Rays. The reaction-product source results
from a process resembling that of inelastic scattering except that some
particle other than a neutron is ejected from the nucleus. The nucleus is left
unstable and emits a gamma ray. An example is the '®B(n,a)” Li interaction.
which is accompanied by the emission of a gamma, ray of approximately
0.5 MeV. Sources of this type are significant only in materials containing
isotopes which have a reasonable probability of undergoing a particular
reaction and which are located in strong neutron fields. In reactors
boron-containing materials generally are the only materials that fic these
criteria.

(f) Activation-Product Gamma Rays. Capture and inelastic-scattering
gamma rays are emitted simultaneously with the neutron—target nucleus
interaction. However, the nucleus formed by a neutron interaction may be
radioactive and decay with a half-life that can range from seconds to vears.
emitting photons and other radiations in the process. These activation-
product gamma rays may be of importance to the shield analysis and are of
particular concern after reactor shutdown. They may also be emitted in
significant quantities from materials which have been exposed to the high
neutron flux of the core and which are subsequently circulated in regions
external to the reactor shield. Irradiated samples and reactor coolants both
fit this description. .

For example, the '¢O(n,p)'®N reaction produced by fast-neutron
activation of water emits gamma rays with energies of 6.1 and 7.1 MeV. The
half-life of 6N is 7.13 sec, short enough to produce high activities in
irradiated-water-coolant streams. Liquid-metal fuels and coolants must also
be considered as a source of activation-product gamma rays. In sodium
mixtures, 2?Na(n,v)?**Na produces 1.38- and 2.76-MeV photons with a
half-life of 14.8 hr.

(g) Annihilation Radiation. A few activated materials decay by the
emission of positrons, which are annihilated by subsequent combination
with electrons. Because of the relatively short distance that positrons travel
before annihilation, the process can be considered to occur at the time of
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decay and at the site of the activated nucleus. Two 0.511-MeV photons are
emitted from each positron—electron reaction. High-energy gamma rays also
can react in a converse process called pair production (discussed in Chap. 3)
to produce electron—positron pairs. These positrons also are annihilated near
their source in an identical manner and contribute further to the source of
0.511-MeV gamma rays.

(h) Bremsstrahlung. The acceleration and deceleration of electrons in
the atomic electric field produces electromagnetic radiation called brems-
strahlung. The process is identical to that occurring in the X-ray tube and is
an important consideration only where high-energy. beta particles (or
accelerated electrons) interact with materials of high atomic number. An
example is found in the use of lithium as a coolant. Neutron absorption in
"Li produces ®Li. The latter undergoes decay to ®Be by emission of beta
particles with energies as high as 13 MeV. Bremsstrahlung produced by these
high-energy electrons as they slow down in piping or containment materials
requires evaluation as a gamma-ray source.

2.1.2 Neutron Sources

By far the greatest neutron source in an operating reactor is that created
by the fission process itself, in which, along with the prompt gamma rays,
free neutrons are released as part of the fission event. However, other
reactions can also produce neutron sources of importance to the shield
designer, and all sources discussed in this section should be considered in a

shield analysis.

(a) Fission Neutrons. Approximately 2.5 neutrons are emitted per
fission event in 235U by thermal neutrons {more in other cases), and they
carry away a total energy of approximately 5MeV. Although energies can
range from the eV region to beyond 18 MeV, the average energy of a 2*°U
fission neutron is about 2MeV, and an upper limit is often taken to be
14 MeV. In fact, less than 1% of the total energy of fission neutrons is shared
by neutrons whose energies exceed 10 MeV. However, these high-energy
neutrons are very penetrating, and in some cases they can be of overriding
importance. Prompt fission-neutron spectra are discussed more fully in
Sec. 2.4.2.

For shielding purposes, fission neutrons may be assumed to be evolved
simultaneously with the fission event. The very small fraction (<1%) with
delayed emissions requires consideration as a separate source only in the case
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of a circulating-fuel reactor where the fuel loop extends beyond the core

shield.

(b) Activation Neutrons. Under certain circumstances the decay of a
radioactive nucleus can be followed by the emission of a neutron. This
occurs when the energy of excitation of the daughter nucleus is in excess of
the binding energy of the last neutron in the nucleus. In fact, when such an
energy imbalance exists, neutron emission is the preferred mode of release.
An example is the beta decay of ' 7N with a 4.14-sec half-life, which leaves
an '70 nucleus with more than enough excitation energy to eject a neutron.
Neutrons from this source have a most probable energy around 1.0 MeV.
Nitrogen-17 is formed by the ' ®O(n,p)! 7N reaction and can be important in
fast-neutron bombardment of water.

(c) Photoneutrons. A photon whose energy is greater than the neutron
binding energy of a nucleus can impart enough energy to the nucleus to
cause neutron emission. The photon energy required to make such a reaction
possible exceeds 7 MeV for all but a few nuclei. and the probabilicy for the

photoneutron reaction is quite low until photon energies above 10 MeV are
reached. Thus photoneutrons do not contribute a significant source
component in the vast majority of reactor shielding problems. The few
nuclei whose neutron binding energies are low enough to create a possible
problem in reactor shielding include 2D, ?Be, !2C, and ®Li. The threshold
photon energies for these isotopes are 2.23, 1.67, 4.9, and 5.3 MeV,
respectively. Since all four occur in moderator materials, cthese exceptions
are occasionally important.

(d) Particle-Reaction Neutrons. The interaction of alpha particles with
nuclei of lithium, beryllium, oxygen, boron, and fluorine produces neutrons.
Thus these elements are often combined with alpha-active isotopes, such as
polonium or plutonium. to form neutron sources for use in experimentation
or reactor start-up. Neutrons from this source may be important to shielding
and safety during assembly or in the pre-start-up environment of reactors
containing beryllium in the fuel-element material. Similarly, neutrons from
(o,n) reactions in oxvgen may be dominant in oxide fuel elements.

The energy distribution of these neutrons is broad since the neutron
kinetic energy depends on its angle of emission relative to the direction of
the incident alpha particle as well as on the kinetic energy of the alpha
particle. In polonium—beryllium and plutonium—beryllium sources, for
example, emergent-neutron energies range from <1 to >10 MeV.
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Neutrons may be generated by other charged-particle interactions, but
they have not been important in reactor designs to date. Incident neutrons
with energies above 10 MeV can excite a compound nucleus sufficiently to
emit two or more neutrons. Such reactions are rarely of importance in
reactor shield design.

2.2 BASIC MATHEMATICAL AND PHYSICAL CONCEPTS

The physical properties of radiation sources and fields are discussed in
the remaining sections of this chapter and in subsequent chapters. The
manner in which these properties are characterized requires an understanding
of certain basic concepts, including differential and integral distributions,
normalization and averaging techniques, solid-angle concepts, and definitions
of flux density and current density. This section contains a review of these
necessary basic considerations.

2.2.1 Differential Distributions

Most properties that characterize radiation fields and sources are
functions of one or, more often, several independent variables. Mathematical
functions may be used to describe the dependence of such a property on its
variables; functions of this type are called differential distributions. Errors in
the treatment of these distribution functions are among the more common
mistakes in shielding practice. Because of the need for precision in these
concepts, a careful explanation of the methods of treating such distributions
is in order.

Consider, for example, a radiation source nonuniformly distributed in a
three-dimensional slab whose emission rate varies with both time and one
spatial dimension. Such a source can be described by a function of four
variables, P(x,t;AV,At). Its values give the number of source particles
emitted in time interval At centered about time ¢ from a spatial volume
element of size AV centered at point x in the slab. The dependent variables
AV and At are functions of the independent variables x and ¢, respectively.
Such a function is sufficient to characterize completely the spatial and
temporal properties of the source.

The concept can be generalized to any number of variables. The general
form can be written as

P(x,y,2, .. .; 8x,Ay,Az,...)=D(x,y,z,...) Ax Ay Az ... (2.2-1)
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The function D(x,y,z, ...) is called a differential distribution function,t and
its values give the number of events per unit measure of each of the
independent variables, x,y,z, . . ., involved.

In the radiation-source example, the differential distribution

x,t;AV At)

D) = 2 Y (2.2-2)

gives the number of source emissions that occur per unit volume and per unit
time in volume element AV about x and in time interval At about t. It has
units of [7t™!, for example, particles per cubic centimeter per second.

Differential distributions are often used to describe energy spectra of
sources and fields. For example, if D(E) is a differential distribution
describing the continuous energy spectrum of a photon field, the values of
D(E) give the number of photons per unit energy interval about E, and
D(E) AE is the number of photons whose energies are in the energy interval
AE containing energy E.

Although differential distributions are useful in conjunction with finite
intervals (i.e., AV,At,AE), which need not be infinitesimals, they are
frequently applied to differentials. Thus D(x,y,z, ...) dxdy d= ... specifies,
for a distribution of events, the amount that lies in the differential volume
element dxdydz ... containing the point (x,y,z,...). The integral of a
differential distribution function over the entire domain of all variables gives
N, the total number of events or quantity contained in the distribution,

N=JLJ,.. . Dxy,..)dxdy... (2.2-3)

In our two examples, f, [, D(x,t) dt dx is the total number of particles
emitted from the radiation source and fg D(E) dE is the total number of
photons of all energies contained in the energy distribution. Differential
distributions may be displayed in graphical form, as shown in Fig. 2.1.

It is important to recognize that the value of D(x){ at a selected value of
x, say x;, does not give the number of events occurring at paint x, . Rather,
D(x,) is the number of events occurring in a unit interval of x that contains
the point x,. Thus, although the unit selected to measure the independent

T Mathematicians reserve the term distribution function for integral distributions [i.e., F, (x) and
F,(x), Eqs. 2.2-4 and 2.2-5]: however, our use of the term here is consistent with common usage in
the radiation shielding field.

$The discussion that follows is easily extended to many independent variables.
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Fig. 2.1 —Differential distribution.

variable x is arbitrary (i.e., if x is a length, centimeters, feet, yards, etc., can
be used), it is essential that this unit be specified in order for the distribution
function and its plot to have meaning.

Distributions are sometimes expressed in other forms. The cumulative
distribution function for a differential distribution of one variable is defined

by
Fi(x)= /. D(x") dx' (2.2-4)

where F,(x) gives the amount of the distribution that lies below x.t
Alternatively, the function

Fy(x)= J. D(x')dx’ (2.2-5)

gives the amount of the distribution above x. It is sometimes called the
survivorship function.

Often, distributions are normalized to the total distribution, an
operation that is valuable in comparing different distributions of the same
variables:

_Dix) ___ Dix)
f(x) - N - f_:D(X) dx (22'6)
fuis = E L B0 B (2:27)

Jo. D(x) dx

+In Eqs. 2.2-4 and 2.2-5, —= and = can be replaced by any a,b such that a < x < b; this merely
alters the range of the distribution.
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_Fyx) _J2D()dv’
) == = D) dx

(2.2-8)

where the function f(x) is the fraction of the distribution per unit interval
about x, f; (x) is the fraction of the distribution lying below x,and f; (x

the fraction lying above x. Note that f(x), f; (x), and f5(x) are constramed to
the interval [0,1], and f; (x) + fo(x) = 1. If x}, and x, denote the lower and
upper bounds of the distribution,

filxp) = fa(x,)=0 (2.2-9)
filxy) =falep) =1 | (2.2-10)

and
ey fix) dx =1 (2.2-11)

Differential distribution functions can be used to obtain the portion of
the distribution or the number of events that occur over a specified region.
In the photon-field energy-spectrum example,

E,
[’ D(E) dE

gives the number of photons with energies between E; and E,. Such integral
distributions may be plotted in histogram form (Fig. 2.2). The ordinate
D(Ax;) is given by

D(Ax;) = fx’:"” D(x) dx (2.2-12)
and gives the total number of events within Ax;, where Ax;=x;1] — x;.
Observe that the shape of a histogram depends on the selection of the
increments, Ax;. The distribution function that is plotted in Fig. 2.2 with
equal increments could give a histogram of the form shown in Fig. 2.3 if
different increment sizes were chosen. However, if a differential histogram is
constructed in which

D'(Ax;) = jx **1p (2.2-13)
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DIA x;)

Xj Xix

Fig. 2.2—Histogram for constant intervals.

D(A x;)

X'. Xl-+1

Fig. 2.3—Histogram for variable intervals.

the shape of the histogram always approximates the distribution function
D(x), and the approximation improves as the number of intervals is
increased. Note that

N= E D(Ax;) = L D'(Ax;) Ax; (2.2-14)
1
If a differential distribution function has more than one independent
variable, new differential distributions are obtained when an integration is
performed over some, but not all, of the variables. Consider the following
differential distribution function, which can be derived for the radiation-
source example:

D'(t) = [ space D(x,t) AV (2.2-15)
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Most of the time, differential data presented in shieldinganalyses have been
integrated (either mathematically or through the inherent characteristics of
an experimental device) over one or more of the variables involved. Such
data are commonly denoted singly differentiated, doubly differentiated, etc..
depending on the number of independent variables that remain after
integration of the fundamental multidimensional distribution.

2.2.2 Average and Most-Probable Values

Several parameters derived from differential distributions are of value in
characterizing the distribution. One is the integral value N (Eq. 2.2-3), which
gives the total number of events in the distributiort and is often used for
normalizing purposes.

The average value of an independent variable within a distribution is
obtained by compuring the integral

-1
x=fofy...x'D(x,y,...)dxdy...

=[x flxy, o )dvdy. (2.2-16)

which is called the first moment of the differential distribution.

The most-probable value of an independent variable of a differential
distribution is its value where the distribution function has its maximum
value. Note that the most-probable value may not be unique: for example, if
D(x) is constant over all x, every value of x is a most-probable value.

At times, higher moments of differential distributions are useful (e.g., in
the computation of standard deviations and variances). The nth moment
about the variable x is defined by

x(n) =1-1I—jx J, .. x"Dxy..)dcdy... (2.2-17)

Examples of calculations of average and most-probable values are given in
the exercises.

2.2.3 Solid Angle

Directional characteristics are essential to a complete description of
radiation fields and sources. Since the concept of solid angle is used in
specifying directional properties, some elementary definitions are reviewed.
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The solid angle subtended at a point by a surface is the projection of the
surface on a sphere of unit radius surrounding the point. Consider the solid
angle subtended at the point D by K, in Fig. 2.4. (We could consider K, or a
surface of any other shape.) The area of the projection of K; on the sphere
of unit radius is a solid angle. A unit of solid angle is called a steradian. Since
the area of a sphere is 4mr? and that of a unit sphere is 47, there are 4w

Fig. 2.4—Solid angle.

steradians about a point. If the unit vector normal to surface K| is n and the
unit vector along r through K, is §2, then the solid angle is the scalar product
n * Q (K,/r?),t when r is the length of the radius vector to K.
Radiation-source and -field angle distributions are defined by differential
functions of the form D(Q2), where D(£2) gives the distribution per unit solid
angle along the direction of vector §2. In polar coordinates, where 6 measures
polar and ¢ measures azimuthal angles,t the differential area on a unit

sphere is given by
dA =sin 6 df d¢ (2.2-18)

and is numerically equal to the differential solid angle, df2, subtended by
dA. Thus, if D(§2)is the differential angle distribution of a point radiation

tStrictly speaking, this formula is accurate only when K, < r?.
tPolar and azimuchal angles are defined in Sec. 2.3.2., where directional characteristics of
radiation sources are discussed.
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source located at the center of the sphere, D(Q2) sin 6 d6 d¢ particles are
emitted which pass through d4, and

fo* f5> D(S) sin 6 df do

gives the number of source particles having directions bounded by polar
angles 6, and 8, and by azimuthal angles ¢, and ¢,. Note that in the
preceding discussion, the angles 6 and ¢ define the directional vector, £,
which has a unit magnitude.

2.2.4 Measures of Radiation Intensity

Essential to a discussion of intensity is the concept of a receiver, or a
detector, a mathematical concept used in defining the necessary units and
describing the fields. As will be seen, theoretical detectors take the form of
points, surfaces, and volumes, depending on the quantity being measured.
Measures of radiation intensity commonly used in shield analysis include
particle density, flux density, current density, absorbed dose rate, kerma
rate, and exposure rate. The first three are used to characterize a radiation
field and are defined in this section. The last three are used to characterize
radiation interactions with matter and are discussed in Chap. 3. The time
integral of the last three quantities over an operating cycle or exposure
duration provides a basis for estimating the damaging effect of the radiation
involved.

The quantities discussed in this section are obtained by taking a limit of
measured radiation-particle densitiest in a finite volume or passing through a
finite area as the volume or area approaches zero in size. This is a very special
limiting process that requires careful definition to avoid a contradiction
between the mathematical concept of a differential and the physical reality
of the random nature of particle tracks. In moving to such a conceptual
limit, we can reach a point where the detector size is so small that for further
reductions in volume the probability of finding a particle within it also
approaches zero, and thus the limit of the particle density is zero. In the
special limiting process implied in the definitions that follow, this is not

tThe terms particle and density are used in a general sense. Particle refers both to particles having

rest mass and to photons. Density refers to a differential function of one or more variables, i.e.,

particles/cm?, particles/cm?, MeV cm™ sec™, etc.
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allowed to occur. Rather, in setting the limit, we stop shrinking the detcctor
volume or area as soon as a further reduction in size would not change the
value of the density quantity being measured. At the same time, we must
keep the detecting volume large enough to contain a statistically significant
number of particles or particle interactions. In radiation fields with very
steep gradients, this special limiting process raises difficulties because the
two conflicting requirements on detector size may be mutually exclusive. [n
such cases we introduce an averaging process to overcome the conceptual
problem.

A complete description of a radiation field includes the number of
particles of a given type and energy which at a given time exist at a given
position and travel in a given direction, all particle types, energies. positions,
and directions being considered at all times. Such complete descriptions are
seldom required, however, except in the most sophisticated particle-
transport calculations, and a radiation field cannot be measured in such
detail. Therefore particle populations are usually described in terms of a
lesser number of parameters.

Instead of the indefinite number of variables used in the previous
discussion on distributions in general (x,y,z,...), we now limit the
discussion to the seven dimensions necded to define the kinematics of a
particle. These are the three spatial coordinates: the particle kinetic energy
(velocity is used alternatively), two angles defining direction, and time. The
three spatial coordinates can be specified as the radius vector, r, and the two
direction angles reduced to a unit direction vector, §. These variables define
phase space, which is indicated functionally as f(r,E,§,t).

The following discussion of particle, flux, and current densities is
adapted from a recent report by Stevens and Claiborne.? They have followed
the recommendations of the International Commission on Radiation Units
and Measurements,®*® which this text has also attempted to follow.

(a) Particle Densities. Knowledge of the particle density over all phase
space is equivalent to a complete solution of a particle-transport problem
and comprises more information than is available from most calculational
schemes now in use. When given in seven-dimensional phase space, particle

density is defined by

n(r,E,Q,t) dE dS)
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the number of particles per unit volume at space point r and time t having
energies in dE about energy E and directions in d2 about the unit direction
vector 2.

The particle density so defined is doubly differential, in energy and in
direction, and less detailed forms will often suffice. For example. we may
use the steady-statet particle-density differential in energy only, commonly
called the differential particle density and defined by

n(r,E) dE

the number of particles per unit volume at space point r having energies in
dE about E.

n(r,E) dE = [, n(r,E, ) dQ dE (2.2-19)

Or one may use the steady-state total particle density, defined as the number
of particles per unit volume at space point r and given by

)= {,, 5 n(cEQ) dE d = [ n(r,E) dE (2.2-20)

(b) Flux Densities. Even though the concept of particle density is
basically simple and has a unique interpretation, experience has shown that
the flux density,* or, as it is commonly called, the flux,{ serves better as the
dependent variable in solutions of the transport equation (discussed in
Chap. 4). The flux density is related to the particle density through the
particle’s speed, and, when described in terms of seven-dimensional phase
space, the flux density is given by

®(r,E,,t) = v n(r,E,82,t) (2.2-21)

where v is the particle’s speed and corresponds to the energy E. (The speed is
the scalar magnitude of the particle’s velocity vector, v.)

tThe steady-state, or time-independent, condition is denoted in phase-space notation by dropping
the time symbol r; seven-dimensional phase space becomes six dimensional and in phase-space notation
is given by (r,E,§2).

fAlthough this quantity is truly a density and the International Commission on Radiation Units
and Measurements* recommends the use of the term flux density, the simpler term flux is ingrained in
shielding terminology and is used extensively elsewhere. We have used flux density exclusively in this
text.
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The flux density defined in the preceding paragraph is doubly differen-
tial and is usually referred to as the angular flux density. Greater insight into
the use of the angular flux density as the dependent variable in mathematical
descriptions of particle transport is provided by its interpretation either as
the track lengths traversed per unit volume and time or as the flow of
particles per unit area and time.

Flux density is a measure of a radiation field in terms of its potential for
interaction with the material through which it is passing and is measured
with volume detectors. In the theory of radiation interactions, nuclear forces
(or coulomb forces) are additive; i.e., no shadowing of nuclei or electrons by
others occurs. This implies that the probability of-a radiation particle
interacting with matter is directly proportional to the number of nuclei (or
electrons) in whose vicinity it passes. This number, in turn, is proportional to
the distance traveled by the radiation particle. Thus the total interaction
probability of a radiation field with macter is proportional to the sum of the
distances, or total track length, traveled by all the radiation particles
traversing the medium, and the interaction rate is proportional to the total
track length generated per unit of time.

The track length interpretation of angular flux density follows from the
observation that the speed of an individual particle can be considered as its
scalar track length per unit time. The product of particle density and speed is
then the sum of the track lengths traced by all the particles within a unit
volume per unit time,t in which case the definition of the angular flux
density would be

®(r,E,Q,t) dE dS

the total track lengths traversed per unit volume and time at space pointr
and time ¢ by particles having energies in dE about energy E and directions
in d§2 about §2.

The interpretation of the angular flux density as a flow of particles per
unit area and time is closely related to the concept of angular current (to be
discussed in the next section). It will be shown in the discussion on current
that the angular flux density is identical to the magnitude of the current
vector J and thus can be interpreted as

tNote that the per-unit-time units of the flux density are associated with the particle’s speed,
which is a function only of the energy. However, the time dependence of the flux density is a
consequence of the time behavior of the particle density, which does not have time units even though
the time symbol, ¢, is included in the phase-space notation to denote a dependence on time.
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®(r,E,Q,t) dE dS2

the flow per unit area and time at space point r and time ¢ of particles having
energies in dE about E and directions in d2 about £2.

When the transport and the deposition of the particle kinetic energy are
of interest, the energy-flux-density differential in energy and angle is often
used. This quantity, called the angular energy-flux density, is defined by

I(r,E,2,t) dE dS2

the energy flow per unit area and time at space point r and time ¢t due to
particles having energies in dE about E and directions in d2 about €, and is
related to the angular flux density by

I(r,E,Q,t) = E &(1,E,Q,t) (2.2-22)

Many calculational models employ less detailed descriptions of the flux
density; for example, they may use a description in which steady state is
assumed and the angular dependencies are removed by the appropriate
solid-angle integration. This reduces the description to four-dimensional
phase space and results in a dependent variable representing the particle-
flux-density differential in energy. Commonly known as the differential flux
density, this quantity is given by

®(r,E) = f,, ®(r,E,Q)dQ (2.2-23)

Like the angular flux density, the differential flux density can be
interpreted in terms of track length per unit volume and time or in terms of
the number of particles that enter a unit sphere per unit time. In the latter
case, the solid-angle integration can be regarded as a summing of particles
that enter a sphere of unit cross section regardless of their directions of
motion. The sphere is, in effect, generated by the rotation of a circular unit
area during the integration over a 4w solid angle (see Fig. 2.5). In this
context the definition for the differential flux density can be restated as

$(r,E) dE

number of particles having energies in dE about E which enter a sphere of
unit cross section per unit time at space point .
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AA (Projected area)

Fig. 2.5—Incremental sphere concept of flux density.

Although this definition of the differential flux density is descriptive, it
is not exact. The mathematically rigorous definition is

_ 1. N(E)dE
ot de = im MO

(2.2-24)
which implies the limit process A4 — 0, with N(E) dE denoting the number
of particles having energies in dE about E which enter an incremental sphere
of cross section AA per unit time.

The concept of the incremental sphere is the best way to visualize the
energy-flux-density differential in energy. Referred to as the differential
energy-flux density, this quantity may be defined by

I(r,E) dE

the energy flow per unit time into a sphere of unit cross section at space
point r due to particles having energies in dE about E. The differential
energy-flux density is given by

Kr,E)dE = [, I(r,E,Q) dSl dE = E ®(r,E) dE (2.2-25)

Other quantities used are the total flux density, the total energy-flux
density, the group flux density, and the group angular flux density. The total
flux density, defined alternatively as the total particle track length per unit
volume and time at space point r or as the number of particles that enter a
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sphere of unit cross section per unit time at space point r, is obtained by
integrating the differential flux over all energies:

®(r) = [ ®(r,E) dE (2.2-26)

Similarly, the total energy-flux density, defined as the total energy flow
per unit time into a sphere of unit cross section at space point r, is obtained
by an integration of the differential energy-flux density over all energies:

Ir) = [T I(r,E)dE (2.2-27)

The total flux density has only limited application to practical shielding
problems because of the strongly energy-dependent nature of the particle
behavior. A more useful approach is to divide the total energy range into L
energy intervals, called energy groups,

AEG=E,~Epqy G=1,2,...L

and to define the group flux density as the integral of the differential flux
density over the corresponding energy group.

&)= L% (e E) dE 2.2.28
e =Lr oE (2.228)

with the constraint that
®(r) =)£. ®e(r) (2.2-29)

The group angular flux density (group flux density differential in angle)
has a similar definition and is obtained by integrating the angular flux
density over a specific energy group:

B (r,Q) = fsiil ®(r,E,Q) dE (2.2-30)

1The subscripts ¢ and g + 1 refer to the upper and lower limits, respectively, of the Gth energy
group, and G =1 corresponds to the highest energy group. An alternate convention would associate
G =1 with the lowest encrgy group; the subscripts ¢ + 1 and g would then correspond to the upper
and lower energy limits. L is the number of groups.
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For problems that involve directional symmetry, the group angular flux
density can be rewritten in terms of a new angular variable u = £ - r/Ir|, the
direction cosine:

G (r,u) du = O (r,) dS2 (2.2-31)

The group angular flux density can then be defined as the total particle track
length per unit volume and time at space point r of particles with energies
within energy group AE. and directions defined by direction cosines that lie
in dy abour p.

In neutron physics, another variable used to characterize a neutron speed
is lethargy. The lethargy, u, of a particle with energy E is given by

u=ln=2 (2.2-32)

where E, is an upper limit of E, often taken to be 10 MeV in fission
reactors. Appropriately, lethargy increases as energy decreases and

®(r,u) = E ®(r,E) , (2.2-33)

where ®(r,u) is the differential flux density per unit lethargy at pointr.

A useful measure of total exposure to a flux density for applications
involving energy deposition is the integral quantity called fluence. Fluence is
defined by the International Commission on Radiation Units and Measure-
ments®'® as the quotient of AN divided by AA, where AN is the number of
particles that enter a sphere of cross-sectional area AA and the A’s imply the
special limiting process described at the beginning of Sec. 2.2.4. This
definicion is equivalent to regarding fluence as a time-integrated flux density
over some specified time interval. As such, the fluence can be written

t;=1,+4t

F=J () dt (2.2-34)

where At corresponds to some specified time interval and ®(¢) can be any
one of the several kinds of flux density described in the preceding text. For
example, the energy fluence is

F(r) = [27" Ie,e) dt (2.2-35)

1
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(c) Current Densities. The characteristic property of the current vari-
able is its close relation to the convective (leakage) effects in the theoretical
description of particle transport. The most general form of the current
variable is differential both in energy (or speed) and in angle. Called the
angular current density, or, more frequently, the angular current, this
quantity is symbolized by J(r,v,9,t) and is defined as the directed flow per
unit area (normal to the £ direction) and time at the space point r and time
t of particles having speeds in dv about v and directions in d§2 about .

The relation between current and particle density can be established by
considering that (1) the product of v and the particle density can be regarded
as a vector sum of the individual codirectional velocity vectors (v), yielding
the resultant vector J=nv or (2)that the (vx dt x dA x N) particles
contained within the volume element shown in Fig. 2.6 will all exit through

Q

) )
V (V x dt)

Fig. 2.6—Particle flow concept of current. The particles contained within the volume
element will all exit through the differential area d4 within dt if v= Q.

the differential area dA within differential time dt if v = v§2. These models
can be expressed mathematically in terms of the angular current as

J(r,v,82,t) dv dS2 = Qv n(r,v,,t) dv 2 (2.2-36)

and, since the particle's kinetic energy is a function of its speed, Eq. 2.2-36
can be rewritten

J(r,E.,t) dE dQ2 = Qv n(r,E,S2,t) dE A2 (2.2-37)

where J(r,E,Q,t) dE = J(r,v,Q,t) dv and n(r,E,S2,t) dE = n(r,v,82,¢) dv. Then,
when v n(r,E,Q,t) is identified as the angular flux density, the relation
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between the angular flux density and the angular current noted in Sec. (b),
above, is obtained:

J(r,E,%¢t) dE d2 = Q ®(r,E,Q,t) dE d (2.2-38)

Other less detailed forms of the angular current are the group angular
current, Jo(r,82), and the total angular current, J(r,£2), which are obtained
by integrations over an energy group and all energies, respectively:

Jo(nR) = [;2 JeEQ)dE = 226(r0) (2.2:39)

JrQ) = [ J(r,EQ)dE =Qd(r, Q) (2.2-40)

It is apparent that the angular current variables all have essentially the same
simple relation with the corresponding angular flux density because the
energy integrations are performed directly on the flux density. For example,
in the case of the group angular current,

Jo(r.Q) = [2 Q&(r,E,Q) dE
g1
E
= i4 = -
Q [ O(LEN) dE = 206( Q) (2.2-41)

The integral of the angular current over all directions (47 solid angle)
constitutes a vector summation, and the resultant vector is regarded as the
net current, often called simply current.

The net current differential in energy only, referred to as the differential
net current, is defined as the net flow per unit area and time at space point r
and time t of particles having energies in dE about E, where the unit area is
normal to the direction of the resultant vector J(r,E,¢), or J(r,E,¢t) dE,

J(,E,t) dE = [, _J(r,E,,¢t) dQ dE
= [, Q®(r,E,Q,t) dQ dE (2.2-42)

which is the angular flux-weighted vector summation of the unit vectors §2
over a 47 solid angle. The group net current, Jo(r), and total net current,
J(r), are 47 solid-angle integrations of the group angular current and total
angular current, respectively:
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Jo(r) = [, Jc(r,R)dQ = [, Q&q(r,) dQ (2.2-43)

Jr) = f,, J(r.2) dQ = f, Qd(r,2) dQ (2.2-44)

The flow of §2-directed particles across an arbitrarily oriented differential
area is a necessary concept in the description of the directed flow of particles
in terms of a specific coordinate system and can be related to the angular
current, J(£2),t by consideration of Fig. 2.7, where the direction vector, n, is

dA (Differential area
normal to n )

JIQ)

Fig. 2.7—Schematic diagram of particle flow across an arbitrarily oriented surface.

normal to the differential area. The number of Q-directed particles crossing
the differential area dA per unit time is equal to J(§2) * (n dA). A scalar
current, J,(82), that describes the flow of the Q-directed particles per unit
area normal to the direction n is defined as

In(82) dA=J(82) - (ndA) (2.2-45)
It follows that
Ja(82)=n -+ J(2)=Q - n () = cos § () (2.2-46)

where n = the unit vector corresponding to an arbitrary direction
n = a coordinate-identifying subscript, for example, n = x when n =i
J,.(82) =the flow of Q-directed particles per unit area (normal to the
direction n) and time

tIn this furcher discussion of current, the notation J(£2) will be used to denote any of the angular
currents and J the corresponding net current: for example, J{§2) may represent J(1,E,2,t), JG(r.Q,t),
or J(r.82), and J may represent J(r,E,r), Jo(r), or J(r).
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®(82) = the angular flux variable corresponding to the angular current
J(R2)

Note that J,(R2) is a scalar quantity but is uniquely related to the
coordinate system through the direction unit vector n. The corresponding
vector current is given by

Jn(§2) =nJ,(82)=nJ(82) * n (2.2-47)

where the vector J,,(£2) is the component of the vector J(£2) with respect to
the n direction and J,,(§2) is the projection of the vector J(£2) on the n axis
and also the magnitude of the component J,(£2).

The three components of J(2) in cartesian coordinates are given by

J () =iJ ()=i®(8) (- Q)

T, (R)=j1,(2) =] ®(Q) (- ) (2.2-48)
L(Q)=k (@) =k &Q) k- Q)

and J(£2) is equal to the vector sum of the three components:

J(82) = J(R) + J,(2) + J.(2)
=] (Q)+j ], () +kJ,(2) (2.249)

It is important to recognize that, although they have the same units, the
scalar quantity flux density is not equivalent to the vector quantity current
density. The latter includes directional properties of the radiation field but
the former does not. Current density should be considered as a measure of
the passage of particles through a surface (a density per unit area), and flux
density should be considered as a measure of track length in a volume (a
density per unit volume). Only in rare instances are the two numerically
equal at a point in a radiation field. The following examples illustrate this
point.

A plane source S, (Fig. 2.8) emits monodirectional and monoenergetic

particles at the rate of 10'° particles cm™ sec™!

in a direction normal to the
surface. Let us compute the current density and flux density:

(a) At a point in a plane A whose normal ny4 is parallel to that of §; .

(b) At a point in a plane B whose normal ng is at an angle 6 with respect

tong,.
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Fig. 2.8—Plane sources.

We proceed as follows:

(a) The flow of particles per unit time and area in the positive direction
through plane A is 10'° particles cm™ sec™'. The flow rate in the
opposite direction is zero. Therefore the net current density, J, is in
the direction ny and is 10'® particles cm™ sec™. To obtain the flux
density, &, consider a unit cube (1 by 1 by 1 ¢cm) whose center lies in
A with two faces parallel to A; 10! ? particles/sec enter the cube, and
each generates a track length of 1 cm in crossing the cube. Thus the
total track length generated in the cube per unit time is 10'® c¢m/sec,
and, since the cube volume is 1 cm3, the flux density is 10!°
cm/sec 1 cm?® = 10'? particles cm™ sec™!.

(b) The net flow rate through a unit area of plane B is cos @ times that
through a unit area of plane A; i.e., the component of J in the
direction ng is J * ng, and the current density in the direction of ng
is cos@ x 10'? particles cm™ sec™. The flux density is not a
function of the direction ng and is 10! © particles cm™ sec™!.

Suppose now that we add a second plane source, S,, also shown in
Fig. 2.8, which emits monodirectional particles with the same energy but in
a direction opposite to that of S, at a rate of 6 x 10° particles cm™ sec™'.
We compute the current density in the direction n4 and the flux density at a
point in plane A when both sources are emitting particles simultaneously.
The particle flow rate is 6 x 10° particles cm™ sec™! in the negasive
direction and 10'? particles em™ sec™! in the positive direction. Thus the
net current density is 4 x 10° particles cm™ sec™. The track length
contribution from S; is 6 x 10° cm sec™’ ecm™. The flux density is thus

1.6 x 10'° particles cm™ sec”!.
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2.3 SPATIAL AND DIRECTIONAL CHARACTERISTICS

A number of parameters are needed to characterize a source. It may be
distributed in space and emit a variety of radiation types, its intensity may
vary with time, and the radiation it emits may be distributed in both energy
and direction of emission. Spatial and directional properties of typical
radiation sources are discussed in this section; important energy and time
distributions are considered in the following section.

2.3.1 Spatial Distributions !

Radiation sources are classificd into four spatial categories, point, line,
surface, and volume, depending on the number of dimensions they
encompass. Often, however, a source of two or more dimensions is
considered as a configuration of sources of lower dimension. For example, a
volume source may be viewed as an aggregate of point sources distributed
throughout the volume.

The spatial variables describing sources are independent of each other
and of other source parameters. Thus sources of any number of dimensions
and any spatial distribution within those dimensions can have independent
distributions in radiation type, direction of emission, energy. and time.
Direction, energy, and time distributions may vary from point to point in
the spatial distribution.

(a) Point Source. A source emitting radiation from a single point in
space may be considered the fundamental source configuration since all
other sources can be constructed from numbers of such point sources. Total
point-source strengths are measured in units of particles or MeV per second.
When point sources have distributions in direction, energy, and time,
differential distributions characterizing such dependencies have typical units
of particles sec™! MeV™! steradian™!. Differential point sources are of great
value in developing analytic functions of radiation-source and -field
properties. For example, at point r let S(r) be the emissions ecm™ sec™! of a
volume-distributed source. A differential point source is then given by S(r)
dV particles/sec. If f(r; r') is a function relating a radiation-field property at
r’ to a point source of unit strength at r, the field property generated at r’ by
the entire volume source is given by

F'y=[f[ flr;c') S(r) dV (2.3-1)
volume
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In fact, functions relating two spatial positions, such as f above, play an
important role in shield analysis. They are called point kernels and are
discussed more fully in Chap. 6.

" A source need not be infinitesimal in size to be classified as a point
source. When a radiation field at a detector point is being evaluated, a
point-source approximation may be used to represent a volume or area
source if the source dimensions are small compared to the source—detector
distance. In making such an approximation for volume-distributed source
configurations, we must be careful to consider radiation interactions that
occur within the source volume (self-shielding). and adjustments should be
made if required.

(b) Line Source. A source with emission confined to a line is a line
source; total line-source strengths have typical units of particles or MeV per
second per unit length of the source. Like all sources. line sources can have
differential energy, angle. and time distributions that may vary along their
length. Typical units of differential distribution describing such line sources
are particles sec™! MeV™! steradian™ c¢cm™' or MeV sec™! MeV~! steradian™
cm™!, Examples of approximate line sources encountered in reactor shielding
problems include pipes carrying radioactive material and long, thin fuel pins.

(c) Surface Source. A surface source is one in which radiation emanates
from a plane or other two-dimensional surface. The units of source strength
are particles or MeV per unit time per unit source area (i.e., particles sec™’
cm™2). Since surface source strengths have the same units as flux and current
density, care must be taken not to confuse the three quantities.
Surface-source strength is a scalar, specified in terms of a particle emission
rate per unit area of source surface. The need for such care is illustrated in
Sec. 2.3.2, where it is shown that a differential surface-source strength
function, although sharing the same units, may not be the same as the
differential function defining the flux density generated by that surface
source.

Surfaces that can be described mathematically are of high value in
specifying surface sources since many times functions describing such
surfaces admit to analytic integration and are convenient in hand and
computer numerical computations. Also, volume sources are often
characterized by the radiation passing through their exterior surfaces. Such a
representation often allows the shielding analysis to be divided into two
phases: (1) determination of the radiation transport within the source,
resulting in the definition of an equivalent surface source, and (2) analysis of
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the radiation transport external to the source. In such an approach the
calculations involved in phase (1) need not be repeated for shield-design
parameter studies, which are a part of phase (2). Reactor-core and
pressure-vessel surfaces are examples of often-used equivalent surface
sources.

(d) Volume Source. A radiation source distributed throughout a closed
surface constitutes a volume source. Typical volume sources encountered
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Fig. 2.9—Cylindrical volume source.

include cylinders, cubes, slabs, spheres, and other regular geometries in
which total source strengths are expressed in particles or energy per unit
volume per second.

As an example of a common volume source, consider a cylindrical
reactor core whose power distribution is symmetrical about its axis and
whose radial and axial power distributions are separablet (see Fig. 2.9). Let
p(r,0) and p(0,2) be the differential power distributions (watts/cm?) along
the radius at z=0 and along the reactor-core axis, respectively. If K
particles/watt-sec are emitted in the fission process, the differential particle
source density, S(r,z), at (r,z) is given by

3

(r,0) p(0,2) particles cm™ sec™! (2.3-2)
p(r,0) p(0,2) p

t1f a function p{r,z) can be written p, (r} p,(z), the variables are separable.
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and the total reactor source is
S= f;"o f::o S(r,z) 2mr dz dr particles/sec (2.3-3)

In more complex systems, power-distribution tunctions describing
volume sources may not be separable. In such cases, if analytic expressions
are unavailable or unwieldy, a power map can be constructed, and
incegrations can be performed numerically.

2.3.2 Directional Distributions

The directions of travel of radiation particles are another important
characteristic of radiation fields and sources. As suggested in Sec. 2.2.3 on
solid angle, particle directions are usually defined relative to the origin ofa
conveniently chosen coordinate system. Once such a coordinate system is
established, a direction is specified by a vector, £2, parallel to the direction of
travel and having unit magnicude.

Frequently, a radiation field or source is symmetrical in direction about
one or more lines or planes in space, and it is usually convenient to choose
the coordinate system such that one or more axes lie in the plane or line of
symmetry. In such cases directions can then be specified by a single angle.
For example, Fig.2.10 shows that two angles, 8 and ¢, are required to
specify direction without symmetry. The angle 6 is called the polar angle and
the angle ¢ the azimuthal angle in such a system. If a field is symmetrical
about a line. aligning the z-axis with that line enables one to specify
direction by use of the polar angle alone, and the field is said to have
azimuthal symmetry.

Although the direction of £ is always taken to be parallel with the
direction of travel of the radiation particles, there is no universal convention
that specifies whether £ points toward or opposite to that direction of
travel. Thus care must be taken to specify accurately which is the case when
direction distributions are defined. For example. when the directional
properties of a point source are given. the coordinate system is usually
chosen to have its origin at the point, and £ points in the direction of travel
of the emitted particles. However, when directional properties of a field at a
point detector are given, the origin is again situated at the point, and thus
the direction of £ is opposite to the direction of travel of the particles
arriving at the detector point.

As with the other properties of fields and sources, directional properties
are specified by differential distribution functions. Direction functions are
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sometimes separable from other distribution functions describing the source
or field, in which case, for example, the differential flux density, ®, may be
written

®(r,Q,E,t) = F, (r,E,t) F5 () (2.34)

and direction attributes can be examined independently of other parameters.
In cases where the directional dependence is not separable and analytic
manipulation of the total differential function is not possible,
multidimensional maps may be constructed and numerical manipulations
performed to obtain directional characteristics. ’

Fig. 2.10—Direction vector §.

The following sections discuss some of the more common direction
distributions encountered in shielding problems. The exercises at the end of
this chapter provide additional insights into the definition and manipulation
of direction distribution functions.

(a) Isotropic Distributions. An isotropic direction distribution is one in
which all directions of travel are equally likely. Since there are 4r steradians
of solid angle surrounding a point, the normalized isotropic differential
distribution function is a constant function, 1/47 per steradian, independent
of angle or direction.

Many nuclear reactions that cause the emission of radiations are
considered to be isotropic in nature. Thus the neutrons and gamma rays
emitted from a fissioning nucleus, fission products, activated nuclei, and
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electron—positron annihilations may be assumed to be isotropic. However,
certain reactions, most notably those which involve a scattering process, are
not isotropic, and assuming so can lead to significant errors (see Chap. 3).
Point, surface, and volume-distributed sources can be isotropic. When
analyzing isotropic surface sources, we must be careful to ascertain if the
quoted source strength applies to one or to both sides of its surface. Suppose

v ] ccos @

Fig. 2.11—Point isotropic sources in a plane.
we are given a plane source that isotropically emits S, particles sec™* cm™.
In some texts, S, applies only to the 27 space above the plane; in others, S,
applies to 47 space. The two interpretations of S, differ by a factor of 2. We
will choose the latter alternative and assume, unless stated otherwise, that 47
emission is intended.

Isotropic point sources distributed in a finite volume do not necessarily
generate equivalent isotropic surface sources on the boundaries of the
volume since particle interactions within the source medium may change the
directional distribution of the emerging particlés. Also, isotropic surface
sources do not generate isotropic flux densities at detectors removed from
the source plane, as shown by the following example.

Consider a plane isotropic surface source approximated by equally
spaced isotropic point sources spaced ¢ centimeters apart, as shown in
Fig. 2.11.

As the polar angle € is increased, tracks of particles from the surface
move closer together and consequently have a flux density that is higher by a
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factor of 1/cos @ than the particles emitted normal to the surface. The
angular distribution of the flux density above such an isotropic surface
source is given byt

_ i S , . -1 . -1 -2 -
®(0) = e mr particles sec™! steradian™' cm (2.3-5)

1

where S/c? is the total surface source strength (in particles sec™ cm™2).

(b) Cosine Distribution. Radiation emerging from the surface of a
volume-distributed source often depends on the cosine of the angle between
the normal to the surface and the direction of emergence. In many cases the
dependence closely approximates or is exactly a cosine distribution of that

Fig. 2.12—Cosine distribution.

angle. For such a source, if S, particles sec™! cm™ is the source strength, the
differential source angle distribution function [demonstrated in Sec.
2.3.2(d)] is (1/2m)S, cos O particles sec’! steradian™ cm™?
direction inclined at an angle 8 to the normal (Fig. 2.12). As before, the
tracks in direction @ are closer together than those which are normal to the
surface (0 = 0), and we must divide by cos 6 to obtain the flux density. The
flux density at r is then

emitted along a

particles cm™? sec”! steradian™!

Sa
2mr?
(c) Other Distributions. Various other analytical expressions have been
derived to fit observed or expected angular emittance patterns. Surface-angle

functions of higher powers of cos @ have been used to approximate the

tProof is given in Problem 2.6.
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leakage characteristics of a volume-distributed self-absorbing source whose
activity per unit volume increases with depth into the source. If the
differential angle surface-source function of such a source is proportional to
cos™ 8, the differential flux density above the surface is proportional to
cos™ ! §. However, in some cases the complexity of the leakage pattern may
prohibit use of an analytical approximation, and numerical techniques must
be employed.

In the treatment of radiation reflection from a medium, the intensity
varies with the azimuthal angle ¢ between the incident and reflected
directions as well as with the polar angle ¢. In such cases the angular
distribution will be a function of the variables 6 and ¢, as shown in Fig. 2.13.

Reflected particle

Incident particle

Fig. 2.13—Reflection angles.

The intensity in a given direction is still reported per steradian (or other
designated increment), but both angles are required to designate the
directional properties of the scattered radiation from a beam incident at a
specified angle.

(d) Normalization and Monodirectional Approximation. When an
analytic expression has been used to represent the variation of emittance rate
with angle, the expression may be normalized to.the total source strength,
So, by the relation

So=Jo, KG(R)dQ (2.3.-6)
in which G(£2) is the functional variation of the source with angle and K is a

normalization constant. Thus, for a cosine distribution from a plane surface
source, G(f2) = cos 6, and
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So = f2 Jos K cos 6(sin 0 df dg) (2.3-7)

So = 2mK particles per unit time per unit area, and K = So/2%. The source
differential angular distribution function is then given by

S(8) = K G(R)

cos @

=S, particles (unit time)™ steradian™' (unit area)™ (2.3-8)

Occasionally other powers of the cosine are useful in describing an angular
variation. For G(£2) = cos™ 8 (where n is an integer), the normalization is

So =2 [ [7*K cos” 0 sin 0 dg db (2.3-9)
and
= 2 1S
S(8) = (n:% cos™ 8 (2.3-10)

In a like manner we can show for an isotropic distribution from a plane
surface source emitting Sq particles per unit time and area that G(2) = 1,
K= 80/477, and

S(0) = i—; particles (unit time)™! steradian™' (unit area)™ (2.3-11)

For a calculation of the transport of radiation with variable angular
distribution, it is sometimes convenient to assume monodirectional sources
with representative directions. The results are combined and normalized to
the incident distribution. Such an approximation assumes that the
differential distribution shown in Fig. 2.14(a) may be approximated by the
monodirectional beams shown in Fig. 2.14(b). In normalizing these two
sources, we must assign representative solid-angle increments (AQ;) to each
of the discrete sources and weight the monodirectional intensity by use of
the relation

N(&i) = faq, KG(R)dQ (2.3-12)
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(a) (b)

Fig. 2.14—Angular distribution represented by array of monodirectional sources.

. . - | .
where N(£2;) is the monodirectional source strength of the ith source
pointing in direction §;. The total source strength is given by

S=L N, = [, KG)dQ (2.3-13)

where n is the number of representative monodirectional sources used.

2.4 ENERGY DISTRIBUTIONS

Monoenergetic radiation fields are rarely encountered. A few
monoenergetic gamma-ray sources are available in the form of separated
isotopes with no daughter products, and monoenergetic neutrons are
obtained from charged-particle reactions in accelerators. Even though only
one radiation energy is emitted by these sources, interaction with
environmental materials or within the source itself will lead to the presence
of radiation of various degraded energies in the radiation field.

Some isotope sources emit two or three discrete energies; other sources,
such as fission, provide a continuum of evolved radiation energies within
certain energy ranges. In analytic treatments an energy-distributed radiation
field is often approximated as a series of monoenergetic sources. All the
radiation within an energy increment is assumed to have the same energy,
which may be chosen as the midpoint of the increment, the average energy
within the increment, or some weighted average based on a particular
interaction probability. This is analogous to approximations used in the
other distributions, such as the use of a fixed direction to represent an
angular increment, a point source to approximate a source-volume
increment, etc. Methods that are used to select the representative energy of
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an energy increment are discussed in Sec. 2.2.2. In particular, the average
energy is often used, in which case the integral of Eq. 2.2-16 is carried out
‘over the range of the energy increment.

For many purposes an average energy will not suffice, and the actual
energy distribution must be carried through the analysis from source to
detector. The term spectrum is used interchangeably with energy
distribution, following the practice of the spectroscopist.

2.4.1 Energy Distributions of Gamma-Ray Sources

A few relevant characteristics of the spectra of gamma-ray sources
encountered in reactors were included in the discussion of the various source
types (Sec. 2.1.1). The two most important sources are the prompt fission
reactions and fission products; their energy spectra are discussed in the
following two sections. Capture and inelastic neutron-scattering gamma-ray
spectral data are given in Appendix A.

(a) Prompt Fission Gamma-Ray Spectra. The spectrum of gamma rays
given off simultaneously with the fission of 235U has been rather extensively
studied. The measurements of Peelle and Maienschein? are the most accurate
published data; they contain uncertainties of at most 15%, and, in most
energy regions, the uncertainty is less. Figure 2.15 presents the differential
energy distribution (photons fission™ MeV~™!) measured by Peelle and
Maienschein.® Kirkbride” found that the spectra for 233U and 23*Pu were
not significantly different from that for 235U. Even 23 2Cf, which fissions
spontaneously, exhibits a prompt gamma-ray spectrum very similar to that
of 235U (Ref. 8). The spectrum of Fig. 2.15 may be approximated by the
segmented fit:

6.6 0.1 < E< 0.6 MeV
I'E)=4120.2exp (-1.78E) 0.6 < E<1.5MeV (2.4-1)
7.2 exp (—1.09E) 1.5< E< 10.5 MeV

The equation agrees with the experimental spectrum plus uncertainty to
within 10% from 0.6 to 7.5 MeV except at 1.2 and ~5.0 MeV, where it
deviates ~16%. The constant yield agrees with experiment from 0.1 to
0.6 MeV to within ~20% except at 0.26 MeV. An approximation for the
energy region from 0.01 to 0.6 MeV, which may be adequate for shielding
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Fig. 2.15—The energy spectrum of gamma rays emitted within 69 nsec after fission of
335U by thermal neutrons. The two lines, which represent the random (largely
propagated from counting statistics) 2/3 confidence limits on the spectrum, are drawn as
straight lines between adjacent mean window energies. The nearly Gaussian shapes shown
at the lower left and upper right indicate the energy resolution (From Peelle and
Maienschein.®)

calculations, is the emission of 3.75 photons/fission of average energy
0.324 MeV.

Although the approximation of Eq. 2.4-1 is useful, for most applications
accuracy demands the use of a numerical representation of the spectrum
rather than these less-precise analytical functions. Photon yields per fission
in fine and broad energy groups are given in Appendix A.
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Fig. 2.16—Gamma-ray energy release from fission of 23*U as a function of time after
fission. The so-called prompt fission gamma rays are emitted at times much shorter than
those shown on the graph. (From F.C. Maienschein, Engineering Compendium on
Radiation Shielding, Vol. 1, p. 76, Springer-Verlag, New York, 1968.)

(b) Fission-Product Gamma Rays. Analysis of fission-product decay is
often complicated by the time history of fission-product generation. Data on
the decay of products of simultaneous fissions are of interest in the analysis
of nuclear-weapon fallout or of a short reactor power burst: Of more general
interest in reactor shielding is the decay of fission products built up during
sustained operation or over complex operating cycles.

Two types of events contribute gamma rays to fission-product decay.
Between 1078 and 1073 sec after fission of 23° U, decay of isomers in excited
states to the ground states contributes most of the decay gamma rays. After
about 107! sec, beta decays of the unstable nuclei contribute most of the
decay gammas. Figure 2.16 illustrates the relationship of these processes.

In an operating reactor the primary importance of the gamma rays from
early decays is their contribution to the steady-state environment. Decay
gamma rays reach saturation very soon after start-up. Gamma rays from
these short-lived isotopes constitute the majority of all fission-product
gamma rays; about 75% are released within 107 sec after fission. If the
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fission-product gammas are integrated over time, the magnitude and shape of
the energy distribution is close to that for prompt fission gammas.
Maienschein® gives

N(E)=7.4 ¢ 1-10E photons fission™ MeV™! (2.4-2)

as a simple, though approximate, expression for the fission-product
spectrum. Equation 2.4-2 corresponds to an estimated total fission-product
gamma-ray energy release of 6.8 + 1.0 MeV/fission, which is composed of
5.9 ¢ 0.7 MeV/fission for 1 sec < t < 10% sec and E > 0.28 MeV;
0.6 = 0.6 MeV/fission, E <0.28 MeV; and 0.3 + 0.2 MeV/fission for ¢t < 1 sec.
As noted in Sec. 2.1.1, this component is often combined with the prompt
fission gamma rays.

Measurements of the gamma radiation evolved by decay of the fission
products between 0.2 and 45 sec after fission were made by Engle and
Fisher.!® Listed in Table 2.1 are the values of the total radiation integrated
over energy and over the time period from 0.2 to 45 sec for four fissionable
isotopes. Comparison of these values with the totals from the long-lived
fission products shows that a significant fraction of the fission-product
energy is evolved within the first 45 sec following fission.

Table 2.1 —RESULTS OF DELAYED GAMMA SPECTRA
INTEGRATED OVER ENERGY AND TIME FROM
0.20 TO 45.0 SEC AFTER FISSION'®

Isotope Photons/fission MeV/fission MeV/photon
233y 2.02 1.97 0.975
235y 3.31 3.18 0.961
238y 5.50 5.08 0.924
239py 3.26 2.86 0.877

The energy spectra for five time intervals are shown in Fig. 2.17 for
fission of 22°U. Engle and Fisher!? give similar data for other fissionable
isotopes, 238U, 233U, 232U, and 22?Pu. It is worth noting that the spectra
for these isotopes vary considerably from that of 223U (}, to 2 times) in this
early time interval.

The long-lived (late) fission products are unimportant during operation
of the reactor, but they represent a significant source of radiation after
shutdown, particularly for a reactor core with many hours of operating
history. From a knowledge of the direct yield and half-life of each fission
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(From Engle and Fisher.'?)

fragment and the intensity and energy of each emitted gamma ray, along
with similar data for each daughter isotope in each decay chain, it is possible
to calculate the energy and time distributions of fission-product gamma rays
as a.function of reactor operating time. In this manner the important gamma
emitters in each time and energy interval can be identified, and more
importantly a source term for the shutdown reactor core may be obtained
for any operating history. Although the task is onerous and exacting, a
number of investigators have tackled it with results that compare increas-
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ingly better with measurements as the number of identified decay chains
increases. Perhaps the most authoritative work was published by Perkins and
King'! and later updated by Perkins.'? The results of the later work are
given in Appendix A. For instantaneous fission and 1, 10, 100, and 1000 hr
of reactor operation, these data give disintegration rate, beta-ray energy
release, and total gamma-ray energy release and further subdivide the gamma
rays into seven energy intervals. Unfortunately, the uppermost energy
interval contains everything above 2.6 MeV. Results calculated by Scoles!?
avoid this shortcoming since his energy intervals are 1 MeV wide, except the
topmost, which contains only one line at 5.4 MeV. These results were used
considerably for some years since they were uniquely suited to shielding
problems for times to 10 hr of reactor operation and to 10* hr after
shutdown. Perhaps a reader of this text will update this work.

For approximate calculations the total fission-product decay rate is given
within 20% from 10 min to 30 days after fission by Goldstein'*

Cr(t) = 1.5¢712 MeV fission™! sec™! (2.4-3)

where ¢ is the time (in seconds) after fission.

2.4.2 Neutron Spectra from Fission

The energy distribution of neutrons from fission is obviously one of the
principal inputs in the preparation of the source term for a reactor. The
energy range of importance in shielding for thermal fission in 2?*U, 3 to
17 MeV, was measured by Wartt,'5 who also reviewed measurements by
others in lower ranges and proposed an empirical expression to fit the data
from 0.075to 17 MeV:

N(E) = 0.484¢ “E sinh (2E)* neutrons MeV™! fission™ (2.4-4)

where ‘N(E) is the fraction of neutrons per unit energy interval emitted per
fission and E is neutron energy in MeV. The Watt fission spectrum was
widely used until Cranberg, Frye, Nereson, and Rosen'® reported new
measurements from 0.18 to 12 MeV.

These results were based on time-of-flight measurements to about 8 MeV
and photographic emulsion exposures to 12 MeV. Cranberg et al. reported
that
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N(E) = 0.453¢~E/0.965 5inh (2.29E)% neutrons MeV ™! fission™! (2.4-5)

was a more accurate fit over the entire range.

Note, however, that uncertainties in the measurements, 15% or less to
8 MeV, were 30% or more at 12 MeV and above. Equation 2.4-5 is plotted in
Fig. 2.18 and tabulated for numerical use in Ref. 14. The tabulation
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Fig. 2.18—Fraction of neutrons per MeV interval emitted at energy E from the thermal
fission of 23%U. (From Herbert Goldstein, Reactor Handbook, Second Edition, Vol. 11,
Part B, Shielding, E. P. Blizard (Ed.), p. 19, Interscience Publishers, a division of John
Wiley & Sons, Inc., New York, 1962.) '

also gives the fraction of neutrons above E and the energy per fission carried
by neutrons above E.

An even simpler expression that is within 15% of Eq. 2.4-5 over its range
of validity (and within 7%, 5 < E < 13 MeV) is due to Goldstein:'*

N(E) = 1.75¢7%766E peutrons MeV~! fission™!

(4< E< 14 MeV)  (2.4-6)

This form is very convenient in analytical manipulations and adequately
covers the energy range of greatest interest in many reactor shielding
problems.

Both the spectrum and the total number of neutrons evolved in fission
vary with the energy of the incident neutron and with the species of
fissionable material. In experiments at Los Alamos, Grund! and Neuer!” and
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Leachman!® compared the spectra from the fission of 235U, 233U, and
23%Pu. Using the average energy, E, asa parameter, they represented the
spectra from all three isotopes by the formula

% E

N(E)= E%e (2.4-7)

From correlations of these and other data, Terrell'® found that E may be
expressed in terms of 7, the average number of neutrons given off per fission,
by

E=>0.78+0.621 (F+ 1)* MeV (2.4-8)
Values of P for fissions resulting from thermal-neutron absorption in various

isotopes are listed in Table 2.2.

Table 2.2—NUMBER OF NEUTRONS PRODUCED BY FISSION

Fissionable isotope v
133y 2.54 £ 0.04
235y 2.46 * 0.03
13%py 2.88 £ 0.04

The value for ¥ increases almost linearly with energy as the incident-
neutron energy rises above thermal. For 235U

V(E) = U + 0.15(E — Et) (2.4-9)

where P is the value at thermal energy, E7, and E is the energy of the
neutron-producing fission. From Egs. 2.4-8 and 2.4-9, it is seen that the
average emitted neutron energy, E, increases at a rate of about 4% of the
increase in incident-neutron energy. For most practical shielding problems,
this effect may be safely ignored. Variations between fissionable isotopes are
more significant, however, and should be considered. The values of 7 given in
Table 2.2 indicate that a breeder reactor whose power is. evolved primarily
from ?3°Pu fissions will be a 20% stronger neutron source than an
equivalent power reactor employing 225 U.
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2.4.3 Effect of Medium on Spectra

It is evident that the shape of the neutron or gamma-ray energy
distribution depends on the type of source. However, it is not so obvious
that the attenuation properties of the medium through which the radiation is
transmitted also have a strong influence on the spectrum. In fact, the
spectrum of the neutrons or gamma rays emerging from a reactor shield is
determined by the shield moderator and structure layers and not by the type
of fission. The detailed reasons for this will become apparent from the
discussion on interactions in Chap. 3 and on transport in Chap. 4. For the
present it will suffice to illustrate the importance of the medium for two
familiar media, water and lead. ‘

Figure 2.19 shows the measured and calculated spectra from a
fission-neutron source after the neutrons have penetrated various thicknesses

10° I | I l T

105}—

NIOBE CALCULATION

104} —

109

102

10’

olu = 1, r.E),neutrons cm 2sec™’ MeV™1steradian™' watt™!

100 " " N i “
0 2 4 6 8 10 12

NEUTRON ENERGY, MeV

Fig. 2.19—Neutron spectrum vs. penetration through water measured in a direction
normal to the slab with a collimated detector. [From V. V. Verbinski, M. S. Bokhari, J. C.
Courtney, and G. E. Whitesides, Nuclear Science and Engineering, 27: 283 (1967).]
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Fig. 2.20—Differential energy spectrum for a 10-MeV plane monodirectional gamma-ray
source vs. penetration depth through a lead slab. (From Goldstein and Wilkins.??)

of a water shield. As the thickness increases, the lower energy neutrons
become less important, and the higher energy neutrons become more
important; i.e., the higher energy neutrons comprise a higher percentage of
the total neutron-flux density.
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Both the measurements and the calculations demonstrate the effect of
the water medium. In this case the calculation is performed by direct
integration of the Boltzmann equation, a technique discussed in Chap. 4.

The effect of attenuation on photons from a plane monoenergetic source
through various thicknesses of lead is shown in Fig. 2.20. In this illustration
the initial source spectrum is a vertical bar at 10 MeV. Despite this the
distribution is almost horizontal at 1.76 cm. Note that a pronounced peak
develops between 2 and 3 MeV as the depth increases.
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EXERCISES

2.1 The survivorship function for the time dependence of radicactive decay is given by
N(t) = Nge™

where N(t) is the number of radioactive atoms existing at time t, Ng = N(0), and N is
a constant for a given isotope. (a) Find the differential time distribution function
p(t), where p(t) dt gives the number of atoms disintegrating in interval dt. (b) Using
the definitions given in Sec.2.2.1, obtain the cumulative distribution F,(t)
(Eq. 2.24) and the fractional distributions f,(t) (Eq. 2.2-7) and f,(t) (Eq. 2.2-8).
(c) Sketch these distributions. (d) Compute the number of atoms disintegrating
between times T| and T,.

2.2 (a) Compute the solid angle £ subtended by a circular disk of radius a at a point P
that is located a distance R from the disk, where P lies on the normal n passing
through the center of the disk. (b) AsR=>0ora—>o, >?

2.3 An isotropic surface source of S, particles sec™’ ecm™? is located on the surface of a
sphere of radius R. Assuming a nonabsorbing medium within the sphere:
(a) compute the flux density at the center of the sphere; (b) compute the net
current density at the center of the sphere through a midplane.

2.4 Compute (a) the flux density and (b)the current density for the geometry of
Problem 2.3 when the surface source is located only on the hemisphere above the
midplane.

2.5 In the geometry shown by the following sketch, the plane P is parallel to the
isotropic disk source §,, which emits S, particles sec’ cm™. Point source
S, is isotropic and emits S particles/sec. Compute (a) the flux density and (b) the
net current density through plane P at point D.
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Exercise 2.5—Disk plus point source.

Derive Eq. 2.3-5 given in Sec. 2.3.2 for the flux density above a surface array of

isotropic point sources; i.e., show

d@)=

Ame? cos particles cm™ sec™! steradian™

A slab of thickness X that is infinite in the other two dimensions (see sketch for this
exercise) is nonabsorbing and contains a uniformly distribucted volume source of S,
particles cm™ sec”!. At a point P on the surface of the slab, compute the following:
(a) Compute the surface source differential distribution G(f), where G(8)dS is the
flux density emerging in solid-angle element d2 about Q. (2 is inclined at an angle §
to the normal of the slab.) Compare the result with that of Problem 2.6
(b) Compute the differential flux-density distribution ®(8), where ®(8) dS is
particles sec’! steradian™ emicted into dS2 about Q from the slab surface element
dS. (c) Compute the total surface flux (particles sec”! cm™? ) emerging from the slab.
(d) What is an equivalent isotropic flux? {e) Compute the differential angle flux
density H(8), where H(§) df is the flux density of particles whose directions lie in
angle element df about §2, integrated over all 27 azimuthal angles. (f) Compute the
relative total flux density in the following angle intervals of 8: 0° to 10°, 40° to 50°,
75° 10 85°, 80° to 90°.

Exercise 2.7—Nonabsorbing slab source.
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2.8 A differential energy distribution for the fission spectrum is often chosen to be
N(E) = 0.77E% ™07 7¢E

because it is simpler than Eq. 2.4-7 and accurate within 12% for E <9 MeV. For thls
distribution, compute: (a) the most probable energy, E; (b) the average energy, E,
and its associated speed, vE; and (c) the average speed, ¥, and its associated energy
Ej. Recall that for E in MeV and v in cm? /sec,

E=0.525 x 107'8,2
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with Matter
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Once the source of radiation has been properly defined for a particular shield
analysis, the second phase of the analysis can be performed. This phase
involves the calculation of the intensity and distribution of the radiation that
penetrates the shield or, alternatively, the attenuation afforded by the shield.

Although radiation attenuation is simply the macroscopic ramification of
the microscopic interaction processes between the particle and the atoms of
the medium, the transition from the individual processes to the gross
behavior of the radiation field is a complex one. Not only must some
consideration be given to the statistical nature of these processes but also the
relative importance of the various interactions must be considered for the
type of radiation and the appropriate range of energy. Thus an understand-
ing of the energy-transfer mechanisms involved in the various interactions
and of the relative probabilities among the several possible interactions is
fundamental to shield analysis.

To begin a discussion of interactions, we will review the concept of cross
section, the basic measure of a radiation interaction. Then we will review the
atomic and nuclear processes important to photon and neutron transport and
to attenuation calculations. We conclude the chapter with a discussion
of some important interaction rates, namely, absorbed dose rate, kerma
rate, and exposure rate, which are often used to characterize radiation
fields. As in Chap. 2, for convenience we use the word particle to include
photons as well as particles with mass.

3.1 CROSS SECTIONS

Consider a particle traversing a medium; numerous factors influence the
probability of interaction with the nuclei and electrons of the medium.
Some of the more important (but not necessarily independent) factors

63
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include (1) nuclides in the medium, (2) partial densities of each nuclide,
(3) electron density within the medium, and (4)energy and direction
distributions of the incident radiation.

' Other factors must sometimes be considered as well. For low-energy
particles, particularly thermal neutrons, the physical state of the medium
may be important; for example, a nucleus bound in a crystal lattice may
have a different interaction probability associated with it than an identical
but unbound nucleus. Further, although we usually assume in shield analyses
that target nuclei are at rest, thermal motion of the nuclei can sometimes be
significant. For example, when the shield design involves the analysis of
thermal-neutron transport through high-temperature regions of a reactor, the
shift in value of the thermal-neutron energy must be considered.

3.1.1 Microscopic Cross Section

The basic measure of the probability that a neutron or photon will
interact with a nucleus, an electron, or an atom is a quantity called the
microscopic cross section. Microscopic cross sections are functions of all the
variables listed above and traditionally are denoted by the symbol o.
Subscripts are used to denote specific interactions to which a cross section
refers; e.g., 0, refers to an absorption cross section, 0;, to an inelastic-
scattering cross section, 0, to scattering, and 0, to a total cross section.
Functional dependencies are often shown;e.g., 0,(E) represents the value of
an absorption microscopic cross section as a function of the energy, E, of the
incident radiation.

A microscopic cross section has units of area, hence the term cross
section. It may be visualized as the effective projected cross-sectional area of
a sphere centered about the target particle through which an incident
radiation particle must pass if an interaction is to occur. In general, this
effective area represents the range of the interaction force between incident
particle and target nuclei and is not directly related to the size of the
nucleus. The effective area for absorption (g,) may be very different from
the effective area for scattering (o;) for the same target and incident
radiation.

Calculation and measurement of microscopic cross sections have been
active fields of endeavor for many years, and extensive files of evaluated data
on computer tape serve as a primary source for input to radiation shielding
analysis. For a given target, radiation type, and interaction process,
microscopic cross sections are usually tabulated as functions of incident
radiation energy. Sometimes, however, cross sections are reported as average
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values, the average being taken over a distribution in energy of the incident
particle. For example, thermal-neutron cross sections are reported in this
manner where the energy distribution of the neutrons is assumed to
approximate a Maxwell—Boltzmann distribution.

The body of information on neutron cross sections has grown so rapidly
in the past 10 years that it is no longer feasible to revise and update
compilations; they have become so large as to be practicable only through
the use of a computer. The National Neutron Cross Section Center at
Brookhaven National Laboratory has concentrated more on developing
cross-section data files on computer tape than on updating publications (for
example, those cited in the section on neutron interaction later in this
chapter). Evaluated nuclear data files, abbreviated ENDF/B, are available
from National Neutron Cross Section Center, Brookhaven National Labora-
tory, Upton, New York 11973.

If very current data are not needed, the compilations of neutron cross
sections cited in the following sections should be helpful. Sources of
gamma-ray cross-section data are also cited.

Microscopic cross sections are usually measured in units of barns (b),

millibarns (mb), and microbarns (ub). A barn is 1072% cm?; a millibarn,
10?7 c¢m?; and a microbarn, 1073° ¢m?2.

3.1.2 Macroscopic Cross Section

Although microscopic cross sections deal with probabilities of the
interaction of radiation with individual targets (nuclei and electrons),
macroscopic cross sections are related to probabilities for interaction with
the aggregate of targets that compose the medium through which the
radiation is passing. Almost invariably shield analysis requires macroscopic
cross sections that, as shown in the following text, are computed from a
knowledge of microscopic cross sections and the constituents of the
medium. Two symbols universally used to denote macroscopic cross sections
are 4 and Z; the former is most often applied to photon cross sections and
the latter to neutron cross sections. As with microscopic cross sections,
subscripts and functional dependencies are often used in conjunction with
these symbols.

If N is the target particle density (nuclei/cm?), the relation between the
macroscopic cross section, Z, and the microscopic cross section, o, for a
specified interaction as a function of incident-radiation energy, E, is

Z(E) = N o(E) (3.1-1)
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Macroscopic cross sections as defined by Eq.3.1-1 thus have units of
reciprocal length (usually em™ ) and are often called linear cross sections or
coefficients. (The term macroscopic cross section is used principally for
neutrons; following historical precedent in attenuation of light, the term
coefficient, with various modifiers to distinguish types, is used for gamma
rays.) In fact, such a macroscopic cross section is the total apparent
cross-sectional area of interaction presented to a radiation field per unit
volume of material (i.e., cm?/cm?).

For mixtures of target nuclides, the macroscopic cross section for a
specified interaction process is given by

Z(E)= L N; 0(E) (3.1-2)

where N; is the volumetric density of the ith nuclide and o;(E) is the
microscopic cross section for the ith nuclide. It is easily shown that

Z(E)= ) S2 6 0fE) (3.1-3)

where A, is Avogadro’s number (6.023 x 10%?), 4; is the atomic weight of
the ith nuclide, and p; is the partial density (g/cm?) of the ith nuclide in the
mixture.

Macroscopic cross sections can be added. Thus, if Z (E) and Z,(E) are
scattering and absorption macroscopic cross sections, respectively, the cross
section for both processes taken together is Z (E) + Z,(E).

If Eq. 3.1-1, 3.1-2, or 3.1-3 is divided by the density, p, of the medium,
the apparent cross-sectional area of interaction per unit mass of material
(cm?/g) is obtained. Such mass attenuation coefficients are most often
encountered in photon shielding calculations and are usually denoted by w/p,
u being the linear macroscopic cross section.

3.1.3 Radiation Reaction Rates

It was noted in the discussion of measures of radiation intensity
(Sec. 2.2.4, Chap. 2) that interaction rates of a radiation field with its
environment are important and often-used characterizations of radiation
intensity. However, further discussion of the concept was deferred to this
chapter so that the various microscopic processes of interaction could first
be reviewed.
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Many interaction processes can be used to measure a radiation field. With
a photon field, for example, the total photon collision rate (number of
photons interacting by all processes per unit volume per unit time) can be
used. The rate of energy removal (MeV ¢cm™ sec™ ) from the primary photon
beam can also be used. A third example might be the rate of local energy
deposition (MeV cm™ sec™), which has the same dimensions but may not
equal the energy removal in the local region being considered because of the
energy carried away from and/or delivered to the local site by secondary
processes. Rates of these types are regularly used in the calculation and
evaluation of reactor shields; they are discussed later in this chapter. First,
however, some fundamental considerations are in order.'

The macroscopic cross section may be viewed as the reaction rate per
unit number flux density of a radiation field. Thus, for a linear macroscopic
cross section, the reaction-rate density is given by

RR = u® reactions cm™ sec™! (3.1-4)

if the cross section, p, is in units of cm™ and the flux density, ®, is in units
of cm™ sec™!. Of course, the reaction or reactions whose rates are calculated
by Eq.3.3-1 are those associated with the particular macroscopic cross
section used.

In a similar manner, the reaction rate per unit mass density is given by

RR = %4’ reactions g™! sec”! (3.1-5)

where & is again the flux density and p/p is the mass macroscopic cross
section. The total reaction rate over energy flux spectrum and volume, V, is
given by the integral

RR= [, fE R(E) @ (r,E) dE dV reactions/sec (3.1-6)

in which the differential flux density, ®(r,E), is defined by Eq. 2.2-23 of
Sec. 2.2.4 and dV is the differential volume element.

3.2 RADIATION INTERACTIONS

The physics of important neutron.and photon interaction processes for
radiations having energies found in fission reactors is well known, and
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thorough discussions can be found in nuclear science texts as well as in
specialized treatments such as those of Foderaro,! Blizard,? and Goldstein.3
We will summarize the basic interactions here and make reference to sources
of cross-section data for them.

3.2.1 Photon Interactions

The energy range of interest for gamma rays associated with fission or
from fission-neutron interactions extends from the low keV range to about
10 MeV. There are many possible mechanisms for the interaction of gamma
rays in this energy range, but only three interactions contribute in a
significant way to photon attenuation. These are the photoelectric effect,
pair production, and Compton scattering. Of the numerous possible
references to photon-interaction data, we will mention only two: Hubbell,?
a recent tabulation with summary discussions of the processes of interest,
and Hubbell and Berger,® an article prepared a year earlier and appearing in
the Engineering Compendium on Radiation Shielding.

(a) Photoelectric Effect. In the photoelectric process, a photon is
absorbed and an orbital electron is emitted. The entire energy of the photon
is transferred to the electron, which is ejected from its shell and emerges
from the atom as a photoelectron. Momentum is conserved by recoil of the
whole atom, and the more tightly bound electrons have the greatest
probability of being ejected. The photoelectron is ejected from the atom
with kinetic energy T=E, — B,, where B, is the binding energy of the
orbital electron. The orbital vacancy is then filled by transition of an outer
electron; this transition is accompanied by emission of characteristic X rays
called fluorescent radiation. Neither the photoelectron nor its fluorescent
radiation is sufficiently energetic to be of further interest in shield analysis.

Extensive tabulations of photoelectric cross sections are given by
Hubbell* and Hubbell and Berger.® Qualitatively the photoelectric cross
section depends on atomic number, Z, and incident gamma-ray energy, E,,

z" 3.2-1
a‘peczE‘—% ( )

where n varies from 3 to 5. We see that the probability of interaction is
proportional to the —3 power of the photon energy and to the third to fifth
power of the atomic number of the target atom. Thus the importance of the
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photoelectric effect is greater for the higher Z elements and diminishes
rapidly with increasing photon energy for any element.

Since the K-shell electrons are the most tightly bound, they have the
highest probability of a photoelectric absorption. For incident-photon
energy below the K-shell ionization energy, only L-shell or higher electrons
are available (with a lower probability for interaction). Thus discontinuities
in the cross sections for the photoelectric effect are found at the ionization
energies of the various electron shells. Figure 3.1 illustrates this phenomenon
for lead; both the K-edge and the L-edge are shown.

-
o

E R | [ l I

g \-‘\L-edge

] \

-

&

G 10°— —
Ww

(19

w

o

O K - edge

s

o103 — —
c

2

2 | | | | |

0 20 40 60 80 100 120

PHOTON ENERGY, keV
Fig. 3.1—Photoelectric effect in lead.

The ionization energy for a given electron shell increases with increasing
atomic number; the energy of the K-edge as a function of Z is shown in
Table 3.1. Also shown in Table 3.1 is the photon energy at which the
photoelectric effect accounts for half the total photon interaction probabil-
ity. At energies above the Ey value, the photoelectric effect diminishes in
importance. At energies below Ey, it becomes increasingly more important
(see discussion on total attenuation coefficients at the end of this section).

As shown in Table 3.1, the energies at which the photoelectric effect
predominates lie well below the region of 0.5 to 10 MeV, which is of greatest
concern in reactor shielding. Although not predominant, the effect is still
significant within that range. However, the greatest significance of the
photoelectric effect is that it establishes a lower limit to the photon energy
requiring consideration in a shield analysis. Because of the rapid increase in
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Table 3.1—ENERGY AT WHICH THE PHOTO-
ELECTRIC EFFECT PROVIDES ONE-HALF
THE TOTAL ABSORPTION COEFFICIENT

(Ey, ) AND ENERGY OF K-SHELL
IONIZATION (Ex )t

Z Element Eg,MeV Ey, MeV
1 Hydrogen 1.4x 107 10
4  Beryllium 2.2x 107 0.011
6  Carbon 2.8 X 10:4 0.016
8  Oxygen 5.2x 107 0.025

13 Aluminum 1.5x%x 10~ 0.046

20  Calcium 4,0 x 1072 10.079

26 Iron 6.9 x 107 0.11

42 Molybdenum 2.0x 1072 0.195

50 Tin 2.9 x 1072 0.25

74 Tungsten 6.06 X 1072 0.42

82 Lead 8.8x 1072 0.50

92  Uranium 11.6 X 107 0.62

tFrom Goldstein.’

the photoelectric absorption cross section with decreasing photon energy, a
point in energy is reached below which, for all practical purposes, no
photons exist.

(b) Compton Effect. The Compron effect is the scattering of a photon
by a free electron. The photon imparts energy to the electron and is altered
in direction and energy. A very important feature of this effect is the fact
that, except when the scattering angle is large, the photon emerges from the
interaction with a significant fraction of the incident-photon energy. This
fact accounts for much of the complexity associated with gamma-ray
transport analysis.

In the analysis of the Compton effect, the electrons are assumed to be
free, neither interacting among themselves nor bound within the atom. The
Compton effect for an atom is therefore the additive effect of all its
electrons, and the macroscopic cross section for Compton scattering is
determined by the electron density. Thus the dependence of this process on
atomic number is merely a linear dependence on the number of electrons per
atom. Figure 3.2 illustrates the process. The photon is scattered through an

angle 0 and carries a portion of its incident energy. The remainder of the
energy is taken up as kinetic energy by the recoiling electron, which scatters
through an angle .
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Fig. 3.2—Compton scattering.

The equations describing the angle and energy relations of the Compton
process are most easily expressed when photon energies are measured either
in units of the rest mass energy of an electron (m,c?) or in units of Compton
wavelengths. In these units, if E* is energy in units of MeV, the energy E in
units of m,c? is given by

E*
E 0511 (3.2-2)
and the Compton wavelength is given by the reciprocal:
_1_0.511
N=p=, (3.2-3)

One unit of Compton wavelength is equal to h/m,c, or 0.02426 A, where h
is Planck’s constant (6.625 x 10727 erg-sec). Subsequent equations in this
section on Compton scattering are written in terms of these units of energy
and wavelength.

From the conservation of energy and momentum, it may be shown that
the relation between the incident-photon energy, E, scattered-photon
energy, E', and scattering angle, 8, for a Compton collision is

. E
E 1+ E(1 — cos 8) (3.2:4)
In terms of Compton wavelengths, the relation seems even simpler
AN —A=1—cos® (3.2-5)

where A’ refers to the scattered photon.



72 REACTOR SHIELDING FOR NUCLEAR ENGINEERS

From these equations it is seen that straight-ahead scattering (8=0)
results in no energy loss for the photon; the electron recoil angle, ¥, is 90° in
this case. A lower limit to the scattered photon energy occurs in backward
scattering (6 — 180°), where

' E
and
Npax =N +2 (3.27)

The electron recoil angle, Y, is zero in this case. Thus the photon can scatter
in any direction, but electron recoil is limited to forward (relative to the
initial photon’s track) directions.

The energy of the scattered photon varies from the initial energy down
to the lower limit. For initial energies much greater than 1 rest mass
(>0.511 MeV), the lower limit is approximately E/2.

The essence of the process is contained in the Klein—Nishina formula,
which describes, to a very good approximation, the probability per electron
that a photon will Compton scatter into a unit solid angle about a scattering
angle, 8. This differential function takes on a convenient form when the
microscopic electron cross section is measured in Thomson units (T.U.). One
T.U. = 8n/3(e*/m,c?)? =0.665b. In these units the Klein—Nishina rela-
tion, expressed in terms of energy or Compton wavelength, is

.3 5’)’(5 E_ it o) " sreradiant
a(6) = Tom (E E,+ 7 — sin #] T.U. electron™ steradian (3.2-8)
or
=L(_7\_)z(£ A i 6) ! reradian”!
a(é) Tor \n 7\+}\, sin® ) T. U. electron™ steradian™ (3.2-9)

[Since 0(f) is a differential microscopic cross section (unit area per unit solid
angle), some authors prefer to denote these functions by do/dQ2 to
emphasize the differential.] It should be noted that the variables E', E, and
sin @ (or X', A, and sin @) are not independent in the preceding equations
but are related through Eq. 3.2-4 (or 3.2-5). Thus o(f) is actually a function
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only of initial and scattered photon energy or initial photon energy and
scattering angle. This is explored in the exercises.

The total cross section for Compton scattering by an electron may be
obtained by integration of Eq. 3.2-8 over all scattering angles.

3 (1+E [2E (1+E
aC(E)=Z{ ; 1(+2+E )_ ln(l+2£)]

N In (1+2E) - 1+ 3E T.U./electron  (3.2-10)
2E (T +2E)7

l
where o.(E) is the microscopic cross section for Compton scattering per
electron for a photon of energy E. For very low energies (E € 1), 0.(E)
approaches 1 T.U. In the other extreme (E > 1),

o (E)= 8—31;: (ln 2E + %) T.U./electron (3.2-11)

As noted in the preceding text, the energy of the incident photon is
divided into two parts in a Compton collision: that contained in the kinetic
energy of the recoiling electron and thus deposited very close to the site of
the collision, and that carried away from the collision site by the scattered
photon. The fraction, f(6), of energy deposited locally (i.e., transferred to
the electron) as a function of scattering angle is given by

fio) =E==19) —};.E @) (3.2-12)

The average fractional energy loss per Compton colh'sion,f—'c, is given by

R

_ f¢:=;ff(e) o(9) dQ (3.2-13)
_ c
where the integration is carried out over all solid angle. The quantity
0calE) = f. 0.(E) (3.2-14)
is a cross section reflecting the probability of local energy deposition in a

Compton collision and is called the Compton energy absorption cross
section,
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The relations between initial- and scattered-photon energies, scattering
angle, Compton cross section, and energy transferred to the electron are
sufficiently complex that they are not intuitively obvious. Figure 3.3
illustrates the relation between initial and scattered photon energies as a
function of scattering angle. For initial photon energies of 0.1 MeV or less,
there is little energy degradation. For larger initial energies, degradation is
large for large scattering angles. Figure 3.4 shows the dependence of electron
recoil energy on initial photon energy and scattering angle. Figure 3.5 shows
the differential Compton cross section, a(f), for several representative initial
photon energies. This graph shows that in the 1- to 10-MeV range the cross
section is peaked in the forward direction and demonstrates that Compton
scattering is highly forward. Figure 3.4 is taken from Nelms,® who presents
over 80 graphs showing the interrelations of these parameters with scales
sufficiently expanded to allow reasonable accuracy. Finally, Table 3.2 lists
the total Compton cross section per electron, g, as a function of initial
photon energy. Also given in this table are values of 0, and 0, — 0_,; the
former cross section relates to the energy deposited by the incident photon,
and the latter is a cross section related to the energy carried off by the
scattered photon.

Some gamma-ray analysis methods require that the differential cross-
section data be put into some format other than that just given. For
example, in many Monte Carlo calculations the integral probability
distribution for scattering at an angle a < is expressed as a function of 6.
Such a function has the limits of 0 probability at 8 = 0° and 1 at 6 = 180°.
All the more sophisticated methods require differential angle cross-section
data in some form.

(c) Pair Production. In the process of pair production, a photon
interacts with the electric field of atomic electrons or the nucleus. The
incident photon is completely annihilated, and its energy is converted into
the mass of an electron—positron pair. Clearly, the incident photon must
have at least enough energy to create the mass of the electron—positron pair.
Thus a threshold for the pair-production process is 2m,c?, or 1.022 MeV.
Any excess energy of the incident photon is given to the kinetic energies of
the two charged particles produced in the process and to the recoiling
nucleus. As in the photoelectric effect, the nucleus plays an essential part in
pair production since its recoil is necessary to conserve momentum in the
process.

For a given nuclide the nuclear pair-production cross section increases
rapidly from the threshold of 1.022 MeV to 10 MeV. This is illustrated in
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Fig. 3.3—Reduction in gamma-ray energy by Compton scattering (E, = initial energy;
E = reduced energy).
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Fig. 3.4—Recoil-electron energy vs. angle of recoil. (From Nelms.®)

Fig. 3.6, which shows the dependence of the cross section on incident-
photon energy in lead. As a function of atomic number, pair production for
interactions with atomic electrons is proportional to Z, and that for nuclear
pair production, to Z2. This latter effect increases the dominance of nuclear
pair production in reactor shield materials. In fact, below 10 MeV the
probability of pair production with atomic electrons ranges from 10 to 30%
of that for nuclear pair production in hydrogen and is negligible in high-Z
materials such as lead.
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Table 3.2—TOTAL AND ENERGY-ABSORPTION CROSS
SECTIONS FOR THE COMPTON EFFECT?

E, MeV 0c, b/electron Ocq, bjelectron 0. — 0.4, b/electron

0.0 0.665 0 0.665
0.01 0.637 0.0077 0.629
0.015 0.627 0.0138 0.613
0.020 0.616 0.0196 0.596
0.030 0.596 0.0295 0.566
0.040 0.578 0.0380 0.540
0.050 0.561 0.0451 0.516
0.060 0.546 0.0509 0.459
0.080 0.517 0.061 0.456
0.10 0.4929 0.0685 I 0.4244
0.150 0.4436 0.0812 0.3624
0.200 0.4066 0.0886 0.3180
0.300 0.3535 0.0958 0.2577
0.4 0.3167 0.0982 0.2185
0.5 0.2892 0.0984 0.2866
0.6 0.2675 0.0984 0.1691
0.8 0.2350 0.0959 0.1391
1.0 0.2112 0.0929 0.1183
1.5 0.1716 0.0849 0.0867
2.0 0.1464 0.0777 0.0687
3.0 0.1151 0.0664 0.0487
4.0 0.0960 0.0582 0.0378
5.0 0.0828 0.0519 0.0309
6.0 0.0732 0.0471 0.0261
8.0 0.0599 0.0399 0.0200
10.0 0.0510 0.0349 0.0161
15.0 0.0377 0.0268 0.0109

tFrom Goldstein.>

As discussed in the next section, the photoelectric process, the Compton
process, and pair production all compete for the absorption of the energy of
a photon field. However, rarely are photoelectric effect and pair production
simultaneously of importance. In low-Z materials, the photoelectric and
Compton processes are dominant. Only in iron and higher Z elements does
pair production account for over one-half the energy absorption for photons
with an energy less than 10 MeV. Table 3.3 lists the photon energy above
which pair production accounts for one-half or more of the total energy
absorption.
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Fig. 3.6—Pair-production cross section in lead. (From Hubbell.*)

Hubbell* and Hubbell and Berger® give discussions of the models used to
calculate pair-production cross sections and tabulations of both nuclear and
electron pair-production cross-section data for a wide range of photon
energies in many elements and several compounds and mixtures.

Although pair production results in the annihilation of the incident
photon and plays an important part in the attenuation of high-energy
photons, it also results in a secondary photon source that should be
considered in some shield analyses. The positron created in the process
combines with an electron very close to the site of the pair production, and
both the positron and electron are, in turn, annihilated. This gives rise to two
0.511-MeV photons that emerge in opposite directions. For most purposes
this secondary source may be considered to originate at the site of the initial
pair-production event. This secondary source can account for as much as 5%
of the total energy deposited.
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Table 3.3—ENERGY AT WHICH PAIR PRODUCTION
PROVIDES ONE-HALF THE TOTAL ABSORPTION

COEFFICIENT?

Z Element E, MeV Z Element E, MeV

1 Hydrogen 78 26 Iron 9.5

4 Beryllium 35 42  Molybdenum 7.5

6 Carbon 28 50 Tin 6.5

8  Oxygen 20 74  Tungsten 5.2
13  Aluminum 15 82 Lead 5.0
20  Calcium 12 92  Uranium 4.8

tFrom Goldstein.?

(d) Other Processes. Several other photon interactions, such as coherent
electron scattering, Thomson nuclear scattering, and Delbriick scattering,
exist; however, coherent scattering, also called Rayleigh scattering, is the
only one that has any possible significance in reactor shielding situations.
These other interactions are summarized in Refs. 4 and 5.

Coherent scattering is similar to Compton scattering in that the incident
photon is scattered from an electron. However, in contrast to the Compton
process, the binding forces of the orbital electrons are significant in coherent
photon scattering. In this process the recoil momentum is assumed by the
whole atom with the result that the scattered photon emerges with an energy
that is, for all practical purposes, equal to that of the incident photon.
Further, in the photon energy range of interest for fission sources, the
photon scattering angles, 6, are small, for example, less than 15° at 0.1 MeV
and 2° at 1.0 MeV in aluminum. The practical effect of coherent scattering is
to scatter a photon in the forward direction with no reduction in energy, and
thus it may be treated as though no interaction took place.

However, if coherent scattering is ignored, care must be taken with the
cross sections used in photon-attenuation calculations. Often the cross
section for coherent scattering is included in tabulations of total photon-
attenuation coefficients. Since such use would treat the coherent scatter as
an attenuating event when, in fact, it has essentially no effect on photon
attenuation, the coherent portion should be subtracted from the total cross
section. The tabulations in Refs. 4 and 5 list such data both with and
without the coherent portion.

(e) Total Photon-Attenuation Coefficients. The three processes that
contribute to photon attenuation in reactor shields are the photoelectric
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effect, Compton scattering, and pair production. Each process causes some
or all of the energy of the incident photon to be deposited at the site of the
interaction, and the last two cause photons of reduced energy to be emitted
in new directions. Thus the total microscopic cross section per atom of
atomic number Z for photon attenuation is given by

0= 0pe+ 0y +0py (3.2-15)

where Ope is the cross section per atom for the photoelectric effect,
0, = Zd,, and 0, is the cross section per atom for pair production. If we
include coherent scattering as well as Compton scattering, we replace o, . by
Ocoh- The term 0., is sometimes written 04,3 to’explicitly show that
coherent scattering is not included. As functions of photon energy, 65, and
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Fig. 3.7—Total gamma-ray cross sections for oxygen. (From Goldstein.?)

0,. decrease with increasing energy; Opps however, increases as the
incident-photon energy increases. Thus for a]f elements a minimum occurs in
the total cross section at some energy. This behavior is illustrated in Figs. 3.7
and 3.8, where all three components and the total cross section are plotted
for oxygen and lead, respectively. The Compton effect is predominant for
intermediate energies, 1 to 5 MeV for lead and other high-Z materials and a
wider range for low-Z materials. In hydrogen the Compton effect accounts
for the total cross section over the entire energy range of interest. As
suggested by these two figures, the point in energy where the minimum in
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total cross section occurs decreases with increasing atomic number.
Figure 3.9 is a plot of the location of the minimum as a function of Z.

It should be noted that a macroscopic cross section computed from the
total microscopic cross section of Eq. 3.2-15 is a total interaction coefficient
and includes more than energy deposition by virtue of the fact that the
entire Compton cross section is included. Thus these macroscopic cross
sections are sometimes called narrow-beam absorption coefficients since all
processes, including Compton events, effectively remove photons from a
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collimated beam. However, they are more commonly called attenuation
coefficients. Thus u,(= No,) is called a linear attenuation coefficient, and
u¢lp, a mass attenuation coefficient. The total interaction rate is sometimes
called the reaction rate. The reaction rate per unit volume is simply the
product Pu,.

Another macroscopic cross section, which actually reflects the local
energy removed from a photon field by an element of atomic number Z, is
given by

Mg = N(ope +Zo.,+0 (3.2-16)

pp)
|

where N is the atomic density (atoms/cm?®) of the element and o.,, the

Compton energy absorption cross section per electron, is defined by

Eq. 3.2-14. The quantities p, and u,/p are known as linear and mass

energy-deposition coefficients, respectively.

The fact that electrons are reaction products of each of the three
gamma-ray interactions important to transport through shields deserves one
further comment. Bremsstrahlung (Sec. 2.1.1) is produced by the decelerat-
ing electrons and represents an additional form of the initial gamma-ray
energy. In this book we will usually assume that this radiation is absorbed at
the point of formation, with one important exception, which is discussed in
Sec. 3.3, Responses to Radiation.

3.2.2 Neutron Reactions

In several respects the processes associated with neutron attenuation
contrast sharply with those associated with photons. For example, only
three photon processes are significant at photon energies found in fission
reactors, but many neutron reactions must be considered. Also, although all
photon reactions of interest involve electrons, no neutron reactions are with
electrons; they are all with nuclei. Most cross-section data for photons are
accurately obtained by calculation (well verified by experiment); exactly the
opposite is true for neutrons. The processes associated with nuclear
interactions are far more complicated and, in many cases, are not well
understood. Thus most neutron cross sections must be measured experimen-
tally. Active experimental programs have been under way for many years;
however, important gaps in certain data still exist. With the exception of the
K-edge, L-edge, etc., in the photoelectric cross section, photon-interaction
probabilities are smooth functions of both energy and atomic number. In
many neutron cross sections, however, resonance and threshold phenomena
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cause abrupt excursions. Further, neutron cross sections are the ramification
of complex interactions of nuclear forces, which depend on several factors in
addition to simple atomic number and weight. Thus interpolations are in
many instances impossible, and neutron cross sections must be determined
nucleus by nucleus. It should be noted, however, that for certain neutron
reactions theoretical considerations are effectively used in making incerpola-
tions. Foderaro! discusses in detail the application of nuclear models to
calculate neutron cross sections.

The neutron has a mass of 1.00898 atomic mass units, slightly greater
than the proton mass of 1.00759 amu. Since it does not possess electrical
charge, a neutron is not affected by the atomic electric field. Consequently it
travels through matter unhindered until it passes close enough to a nucleus
to interact with the short-range nuclear forces. A nuclear interaction may
alter the energy and direction of the neutron or may result in its absorption
into the nucleus. Scattering may be either elastic, in which the kinetic energy
of the system is conserved, or inelastic, in which some of the kinetic energy
is transformed into excitation energy of the nucleus. As discussed in Chap. 2,
a neutron absorption can result in the emission of one or more gamma rays,
charged particles, and, at times, one or more neutrons. Inelastic scattering
also produces secondary emissions, and, of course, neutron absorption can
cause fission in certain isotopes. Thus all neutron interactions, except elastic
scattering, produce a secondary source of radiation.

As with photons, the total neutron cross section for an interaction with a
specified nucleus is the sum of the absorption and scattering cross sections

0, = 0, + 0, b/nucleus (3.2-17)

Most often the scattering probabilities are subdivided into elastic and
inelastic portions, as are the various types of absorption reactions. Care must
be used in the interpretation of the term absorption. In the present context
absorption implies the disappearance of the incident neutron as a separate
entity, the neutron becoming a part of the new nucleus created by the
interaction. However, as mentioned in the section on inelastic reactions,
certain scattering processes are also assumed to involve the absorption of a
neutron by a nucleus followed by the emission of one or more secondary
neutrons.

Many nuclear processes have certain characteristics that are relatively
invariant over broad bands of neutron energy. It is thus convenient to divide
the energy spectrum of fission-produced neutrons into four energy groups.



INTERACTIONS OF RADIATION WITH MATTER 85

Neutrons in the lowest group, ranging from 0 to about 0.4 eV, are called
thermal, or slow, neutrons. Their energy distribution approximates the
Maxwell-Boltzmann distribution given by

fulE) =ﬁ E% g E/RT (3.2-18)

where f,(E) is the fraction of neutrons per unit energy about energy E, k is
the Boltzmann constant (8.6 x 1075 eV/°K), and T is the absolute
temperature of the medium.t In the thermal range neutrons are assumed to
be in equilibrium with the thermal agitation of the nuclei of the medium.
Because neutron absorption often varies with the reciprocal of neutron speed
in the thermal region, this region is also known as the 1/v region.

The next higher energy region ranges from 0.4 eV to about 1 keV and is
called the resonance, or epithermal, region because many cross sections
exhibit one, a few, or many resonance peaks in this region. The cross
sections at these peaks can have values several orders of magnitude above the
base level; their effect on the average cross section across the resonance
region depends on both their number and their widths. These latter
quantities vary greatly among nuclei.

Depending on the nucleus, the resonance region stops somewhere from 1
to 50 keV. For convenience we call neutrons in the range from a few keV to
500 keV intermediate neutrons.

The highest energy region ranges from 0.5 MeV to the upper limit of
energy of fission neutrons, about 18 MeV. In this fast-neutron region, some
resonances are found, most often in the low-energy portion, but, for the
most part, cross sections are relatively smooth and, in general, have lower
values than those of the lower energy regions.

Consistent with our treatment of photon interaction, we will briefly
describe neutron reactions in this section and refer the reader to detailed
discussions elsewhere. In particular, a recent text on neutron interactions by
Foderaro! should be noted here since it is well-suited to the needs of

shielding specialists.

(a) Elastic Neutron Scattering. In elastic neutron scattering both kinetic
energy and momentum are conserved. Thus the simple billiard-ball collision

tStrictly speaking, the average neutron temperature equals the temperature of the medium only
for nonabsorbing media. For absorbing media the average neutron temperature will be somewhat
higher, and the distribution will depart from that of Maxwell—Boltzmann.
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model can be used to obtain the direction of motion and the speed of the
scattered neutron and recoiling nucleus relative to the direction and speed
(or energy) of the incident neutron.

Actually two processes are assumed to produce elastic scattering of
neutrons. The first is known as resonance, or capture, scattering. In this
process the neutron is assumed to be absorbed by the target nucleus and
reemitted in (possibly) another direction. The second process is called
potential, or diffraction, scattering. In this process the neutron is assumed
not to enter the target nucleus but rather to be elastically scattered by
interaction with the potential well created around the nucleus by the
short-range nuclear forces. The probability for elastic scatter is the sum of
the probabilities for both processes; the cross section for elastic scattering is
based on this sum and is often denoted by g,,. In adding these probabilities,
we must take account of the spin states of the particles since coherent
effects are involved.

Resonance elastic scattering is most important at low or intermediate
neutron energies, where it causes an oscillating behavior of the elastic-
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scattering cross section. At higher energies (i.e., the fast region), almost all
resonance scattering is inelastic since the compound nucleus formed by
resonance scattering results in an excited nucleus following neutron
reemission. Kinetic energy is therefore not conserved, and some of the
kinetic energy reappears as a photon. Potential scattering, which is generally
a smooth function of neutron energy, is the predominant component of
elastic scattering in the fast region.

The scattering angle-energy relations for elastic interactions are given
most simply in the center-of-mass coordinate system in which the total
momentum is constant zero, and particle speeds after collision are equal to
those before collision. Figure 3.10 illustrates the collision geometry in bath
the laboratory and the center-of-mass systems.

The energy, E, of the elastically scattered neutron is related to the
energy, Eq, of the incident neutron, the atomic mass, A, of the target
nucleus, and the scattering angle, ¢ (in the center-of-mass system), by the
equation

2
E _A'+2Acosg+1 (3.2-19)
E, (A+1)2

The scattering angle, 6, in the laboratory system is related to ¢ by the
equation

Acos¢gp+1
(A2 +2A cos ¢ +1)%

cos f = (3.2-20)

It is seen that for hydrogen scattering (A = 1) the neutron can lose all its
energy in just one coilision. Maximum energy loss occurs where ¢ = 7, and
Eq. 3.2-19 becomes

2
Emin _ (A - 1) _ )
el Ve (3.2-21)

For low-energy neutrons elastic scattering is approximately isotropic in
the center-of-mass system, and the average scattering angle in the laboratory
system is given by

2
cos 6 =34 (3.2-22)
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Equation 3.2-22 illustrates the point that scattering (in the laboratory
system) is peaked in the forward direction (1> cos 6 > 0) and that, as A
increases, § approaches /2. Thus, for low energies and heavy nuclei,
scattering approaches isotropy in the laboratory system as well.

However, the approximation of isotropic scattering in the center-of-mass
system deteriorates as the incident-neutron energy increases, and above
about 0.1 MeV scattering is anisotropic for all except the lightest nuclei. In
this energy region Goldstein® quotes an approximate equation for § (where

E, is in units of MeV)

g = (F.z_)();‘%l—"; degrees (3.2-23)
which indicates that for incident energies in the fast region anisotropy
increases with increasing A.

As with photon scattering, differential angle scattering probabilities for
elastic neutron scattering play an important role in neutron-transport
calculations. The compilation of experimentally determined angle-distribu-

tion data by Goldberg, May, and Stehn” is widely used.

(b) Inelastic Neutron Scattering. In inelastic neutron scattering the
inelastic collision differs from an elastic event primarily in that a portion of
the incident-neutron energy appears as excitation of the target nucleus. The
excited nucleus subsequently decays by photon emission: thus inelastic
neutron scattering was first introduced in Chap. 2 as a secondary gamma-ray
source. The inelastically scattered neutron leaves the collision site usually
altered in direction and generally with much-reduced energy as well. In fact,
inelastic scattering is an important means of reducing fast (>>1 MeV) neutron
energies in reactor shields not only because a large amount of energy can be
transferred to the nucleus in one inelastic collision but also because of the
increasing importance of inelastic scattering with energy in the 1- to 14-MeV
range. For most elements of interest, elastic-scattering cross sections are
slowly oscillating, generally decreasing in the fast-energy region. Since
inelastic scattering is a threshold reaction, the corresponding cross section
usually increases with increasing energy. (An exception occurs if particle
reactions are present; the inelastic cross section will decrease with energy if
there are competing particle reactions.)

Inelastic scattering cannot occur unless the incident neutron has a kinetic
energy somewhat greater than the first excited state of the target nucleus.
Depending on the nucleus, this threshold varies from 0.1 to 4 or 5 MeV. As
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.
the neutron kinetic energy exceeds energy states of the nucleus above the
first, these higher states may also become excited, and thus the neutron may
excite the nucleps to any level up to the limit of the incident-neutron
energy. As the excitation energy is increased, spacing between levels
decreases until a continuum is reached. For a given nuclear species and
neutron energy, there is a fixed probability for exciting each energy level.
For all but the first level, there are alternate routes by which the nucleus

Table 3.4—TYPICAL CROSS SECTIONS FOR NEUTRON
INELASTIC SCATTERING AT FOUR ENERGIESt

Approximate !
threshold Cross section, b
energy,
Element MeV 14 MeV 5,16 MeV 2,0 MeV 1.0 MeV
Tungsten
Onn’ (L) 0.0115 0 0.095 1.23 2.34
Onn' (C) 0.99 2.49 2.47 1.35 0.005
Lead
Oy’ (L) 0.57 0 0 7.7 0.34
Onn' (C) 3.13 2.52 2.06 0 0
Nickel
Onn’ (L) 1.4 0 0 0.6 0
Onn’ (C) 4.02 1.13 1.17 0 0
Carbon
Onn’ (L) 4.91 0.268  0.0436 0 0
Ony’ (C) 9.4 0.216 0 0 0

t From Troubetzkoy et al.?

may release the excitation energy: one photon may be given off, dropping
the nucleus to the ground state; or a cascade of photons may be emitted as a
result of the presence of the intermediate levels. There is, therefore, one set
of probabilities for exciting the various levels and another set of probabilities
for alternate decay routes from each of the levels. Cross-section data that
account for all these alternatives are necessarily somewhat complex.

The total cross section for all inelastic events is often split into two
components: 0,,'(L), which is the probability of excitation to any level
from which discrete gamma ‘rays are emitted, and o¢,,’(C), which is the
probability for excitation to the region in which levels are so closely spaced
that the emission is essentially continuous. Table 3.4 shows for four
elements the neutron-energy threshold and the values of o,,,'(C) and 0,,,"(L)
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for four energies. The general trend is for the inelastic cross section to
increase as either the atomic weight of the target nucleus or the energy of
the neutron increases. The threshold for inelastic scattering decreases with
increasing Z.

Inelastic-scattering cross sections useful for detailed radiation-transport
calculations are often expressed in terms of the gamma-ray spectrum emitted

Table 3.5—NUMBER OF GAMMA RAYS EMITTED PER NEUTRON.PRODUCING REACTION IN LEAD?

Ey Mev

E,. MeV 0.25 0.78 1.28 1.7§ 2.25 2.75 32 378 4.28 4.75 5.25 6.50
1.802x 10" 0.539 0.2730  0.168 0.119  0.095 0.069  0.059 0.047 0035 0.031 0.023 0.062
1.700 0.567 0.293 0.182 0.130 0.099 0.075  0.057 0.043 0033 0.023 0.015 0.029
1.600 0.579  0.301 0.188 0.134 0.099 0.071 0.053 0.035 0.025 0.015 0.009 0.009
1.500 0.587 0.305 0.188 0.132  0.095 0.063 0.047 0.031 0.017  0.009 0.00%5 0.0026
1.450 0.587 0.305 0.186 0.123 0.087 0.057  0.039 0.023 o0.011 0.005 0.003 0.0019
1.400 0.587 0.292 0.180 0.123 0.079 0.047 0.027 0.015 0.007 0.003 0.001 0.0015
1.350 0.583  0.269 0.174 Q.119  0.06% 0035 0.019 0.011 0.005 0.003 0.001 0.0019
1.300 0.5M 0.277 0.164 0.103  0.059 0.027  0.011 0.009 0.003 0.001 0.001 0.0036
1.250 0.559 0.261 0.1547  0.087 0.045 0023 0009 0.007 0003 0.003 0.001 0.0047
1.200 0.540  0.252 0.142 0.072 0.032 0.020  0.008 0010 0.006 0.004 0.004 0.0138
1.150 0.522 0.248 0.134 0.056 0.020 0.020 0010 0014 0010 0008 0.006 0.021
1.100 0.463 0.254 0.125 0.044 0.014 0.032 0.014 0.022 0018 g.012 0.012 0.038
1.050 0.404 0.259 oz 0.040 0.012 0.052 0.020 0.034 0.028 0.020 0.018 0.058
1.000 0.285 0.277 0.112 0.053 0.018 0.081 0032 0048 0040 0.032 0.026 0.080
9.500 x 10°  0.205  0.292 0111 0.065 0.026 0.111 0.045 0.069 00S% 0.045 0.037 0.107
9.000 0.103 0319 0.109 0.087 0.03% 0153 0058 0.089 0.078 0.058 0.045 0.133
8.500 0.054 0.351 0.110 0.112  0.050 0.200 0.062 0.106 0098 0075 0.054 0.141
8.000 0.034 0.391 0.112 0.140 0.063 0.246 0.065 0.119 0.110 0.089 0.057 0.136
7.500 0.025 0.429 0.113 0.158 0.072 0.291 0.064 0.124 0.113  0.098 0.053 0.091
7.000 0.021 0.467 0.117 0.18} 0078 0.3 0.061 0N 0.113  0.100  0.043 0.041
6.500 0.022 0.49 0.120 0.196¢ 0.073 0370  0.055 0.133 o0amn 0.093 0.026 0.015
6.000 0.027 0.523 0,127 0.208  0.062 0.393  0.050 0.134 0.0l 0.069  0.007
5.500 0.029 0.553 0,133 0.213  0.046 0.402  0.043 0.131 0.087 0.038
§.000 0.030 0.575 0.135 0.200 0.030 0.395 0.035 0.112 0.060 0.010
4.500 0.026 0.623 0137 0.182 0.018 0.376 0.026 0.069  0.021
4.000 0.018 0.692 0.135 0.162 0.006 0.337 0.012 008
3.500 0.013 0.745 0.120 0.130 0.281
3.250 0.006 0.761 0.108 0.115 0.2
3.000 0.870 0.092 0.104 0.185
2.750 1.060 0.080 0.100 0.080
2.500 1.126 0.057 0.068
2.250 1.128 0.043 0.037
2.000 1.095 0.027 0.013
1.750 1.062 0.015
1.500 1.037
1.250 1.000

t From Troubctzkoy et ul."

by the nucleus for specific incident-neutron energies. These data may include
gamma rays from other nonelastic events, i.e., reactions other than elastic
scattering including inelastic scarcering, (n,2n), (n,p), etc. Data of this type
are shown in Table 3.5, which gives the number of gamma rays given off at
various gamma-ray energies per neutron-producing reaction in lead, (n,n’)
and (n,2n). These values are not interaction cross sections but rather give the
distribution of gamma rays resulting from an interaction. The data were
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obtained from the report of Troubetzkoy et al,® which is an evaluation of
calculations, measurements, and extrapolation. Multiplication of these values
by the total cross section for neutron-producing events would give the
gamma rays produced per unit neutron-flux density.

In most stationary power reactors with concrete shields, gamma rays
from inelastic scattering are usually not a determining factor in the shield
design. In cases such as mobile reactors with lead or tungsten as gamma-ray
shields, however, a careful analysis of inelastic scattering is required. Also, in
fast reactors with high-Z materials in their structure, it may be necessary to
include inelastic gamma rays from the core as a part of the source definition.

As with elastic scattering, theoretical concepts have been used to
describe the nature of inelastic neutron cross sections. For the most part,
however, such treatments rely on parameters that must be determined by
measurement. Reference 7 contains a compilation of measured neutron
inelastic-scattering angle distributions. A summary of gamma rays from
inelastic neutron scattering based on both calculation and measurement is
givé‘n in Appendix A.

(c) Neutron Radiative Capture. For neutron energies in the lower
ranges, radiative capture competes in importance with the elastic-scattering
process. In radiative capture the incident neutron is absorbed by the target
nucleus; the compound nucleus is almost invariably left in an excited state
and decays in a variety of ways, emitting one or more gamma rays. The total
excitation energy is equal to the energy of the incident neutron plus the
neutron binding energy.

The binding energy of neutrons varies from 3.2 MeV in hydrogen to 11
MeV in nitrogen, averaging about 7 MeV. Thus energetic gamma rays can be
emittdd. The probability for the emission of such a photon is highest in light
and rﬁagic'f nuclei. If, however, the compound nucleus formed by the
absorption has energy levels lower than the combined binding and kinetic
energies of the incident neutron, a gamma-ray cascade can result. Recent
theoretical work in the prediction of the gamma-ray spectra from capture
reactions is discussed by Foderaro,! Troubetzkoy et al,® Yost,” and
Howerton and Plechaty.!®

Experimental work on gamma-ray yields from neutron capture is a
continuing effort of a number of laboratories (notably in Canada and the
USSR). A compilation of data to 1960 is given in the Shielding volume of

tThese are relatively more stable nuclei that contain 2, 8, 20, 52, 82, or 126 neutrons or protons.
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the Reactor Handbook.? More recent data can be found in the journal
Nuclear Data.'! One to five gamma rays, ranging in energy from less than 1
to 12 MeV, are emitted per capture. Typical emittance spectra taken from a
compilation in the Reactor Handbook? are shown in Fig. 3.11.

The thermal-neutron cross sections for radiative capture in most
elements and isotopes are given in the famous “barn book.”!'? Very few
measurements have been made on the o(n,y) cross sections at neutron
energies other than thermal. Generally, the capture cross section becomes
quite small for neutron energies above 10 to 20 keV. Therefore the total
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Fig. 3.11—Typical gamma-ray spectra from neutron capture, v (E) (photons per MeV per
capture) vs. gamma-ray energy, E. [From E. P. Blizard (Ed.), Reactor Handbook, 2nd ed.,

Vol. 111,

Part B, Shielding, pp. 50-51,

Wiley & Sons, Inc., New York, 1962.]

Interscience Publishers, a division of John
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energy emitted as gamma rays is almost equal to the neutron binding energy
because the energy of the incident neutron is generally quite small by
comparison. The gamma-ray spectra resulting from neutrons captured at
epithermal energies may differ significantly from the thermal capture
spectra. However, since the data are frequently lacking, gamma-ray yield
data for thermal neutrons are often used for all capture energies. Yost and
13 show that this assumption leads to considerable error in
gamma-ray transport for many designs. Yost? has developed a method for
calculating the capture gamma-ray spectrum as a function of neutron energy.

Solomito

(d) Other Nonelastic Reactions. There are reactions other than inelastic
scattering in which the kinetic energy of the system is hot conserved. These
include (n,2n), (n,fission), and (n,charged particle) reactions. The nonelastic
neutron cross section, 0,,,, is defined by

One(E) = 04(E) — 0¢4(E) (3.2-24)

in which g, is the total neutron cross section and o, is the cross section for
elastic scatter. Since 0,,, is easier to measure than the inelastic-scattering
cross section, g;,,, it is often quoted. It should be recognized that 0;, < g,,,.

Charged-particle reactions generally are produced by neutrons with
energies greater than 1 MeV. At lower energy these reactions are generally
inhibited either by the energetics of the process or by the Coulomb barrier,
which must be penetrated by the charged reaction products. However, some
light-particle thermal-neutron reactions do occur. One of these of impor-
tance to shielding because of its high thermal-neutron absorption cross
section is the ! ® B(n,a)7 Li reaction, which is accompanied by the emission of
a relatively soft 0.5-MeV gamma ray. Borated materials are widely used in
reactor shields because ! ® B competes for the absorption of thermal neutrons
and thus inhibits the production of more-energetic secondary gamma rays by
reducing radiative capture in other isotopes.

(e) Activation Cross Sections. Many neutron interactions result in the
production of excited nuclei, which decay by a variety of means. Cross
sections that describe the probability of the formation of a specific
radioactive nucleus are often called activation cross sections and are specified
in units of barns per nucleus. Thus the total radiative capture cross section of
a nucleus may be the sum of several activation cross sections. On the other
hand, the total activation cross section may include processes other than
radiative capture.
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Activation cross sections are useful in making estimates of secondary
sources in reactor shields and materials, in radioisotope-production calcula-
tions, and in the relatively new and rapidly growing field of activation
analysis. The details of decay schemes, emitted-particle energies, branching
ratios, etc., can be found in several sources. Perhaps the best current source
for such data is Nuclear Data Sheets.!® Activation cross sections are also
found in the barn book.!?

3.3 RESPONSES TO RADIATION

It was noted in the discussion of measures' of radiation intensity
(Sec. 2.2.4) that interaction rates of a radiation field with its environment
are important and are often-used characterizations of radiation intensity.
However, further discussion of the concept was deferred to this chapter so
that the various microscopic processes of interaction could first be reviewed.

Calculations of radiacion transport are fundamentally in terms of flux
densities and currents (described in Chap. 2). However, the quantity most
often measured and the quantity by which the shield design criteria are
specified is a property of the radiation field called dose. We use the term ina
generic sense to include any quantity that relates the energy deposited by
the radiation field to biological damage. Therein lies the rub. Biological
damage is intrinsically difficult to measure and even more ditficult to
predict. Fortunately we limit our shielding interest in biological effects to
defining a proper interface between the shield designer and the radio-
biologist.

In an ideal situation a given dose would always produce the same
biological effect irrespective of the nature and energy of the radiation or of
the body organ being irradiated. However, studies by radiobiologists in
which doses and biological damage to specific organs have been correlated
for known radiation fields have established that nature is not that simple. In
addition to being a function of absorbed energy, biological responses are
functions of the irradiated organ and of the type, rate, and energy of the
radiation. From these studies the concept of relative biological effectiveness
(RBE) has evolved. The RBE is a weighting factor that is used to compare
the biological effects produced by the same physical dose (same amount of
energy deposited) of a standard radiation with radiation of a different type
and/or energy. When the physical dose is multiplied by the RBE, it becomes
a biological dose.
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The foregoing gives some indication of the problems associated with
establishing doses for shield design that are related to biological hazards. The
shield designer’s task is further complicated by the perturbation of the
radiation field by the human body, an effect not usually included in a
typical shielding calculation. Obviously the dose received at a particular
location within the body is not the same as the dose in a small detector at
the same location in space with the body absent. It is apparent that shielding
studies should include anthropomorphic phantoms as part of the shield
configuration, a theoretically possible but usually impractical consideration.

As an alternative, slab or cylindrical phantoms of a composition
resembling that of the human body have been used, and the doses have been
calculated or measured as a function of depth in the phantom for a given
incident radiation field. The results are then used as response functions to
relate an unperturbed radiation field (usually called a free field) to the dose
in a human body had it been present.

The following discussion on the various quantities used to define
physical and biological doses reveals the confusion that has developed in the
terminology and in the definition of units, both because of the burgeoning
nuclear science and technology and because radiobiologists and shield
designers basically differ in their viewpoints. The International Commission
on Radiation Units and Measurements (ICRU) has as its principal objective
the development of internationally acceptable recommendations regarding
quantities and units of radiation and radioactivity, procedures suitable for
the measurement and application of these quantities, and physical data
needed in the application of these procedures. The ICRU recognized the
confusion that existed, and in an effort to mitigate it recommended a
consistent set of definitions and units.!® Although shield designers have
accepted most of the ICRU recommendations, they have continued to use
terms not included in the recommendations because these terms are so
ingrained in the shielding field and because the ICRU did not include all the
concepts needed in shield design. In the following descriptions the ICRU
recommendations and the traditional viewpoints are contrasted.

Trubey!® describes the impact of the ICRU recommendations on the
shielding community.

3.3.1 Absorbed Dose

Absorbed dose is the energy imparted by radiation to a unit mass of
matter and as such is a physical quantity as opposed to a biological effect. A
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formal definition for the energy imparted, Ep, is: The energy imparted by
ionizing radiationt to the matter in a volume is the difference between the
sum of the energies of all the directly and indirectly ionizing particles which
have entered the volume and the sum of the energies of all those which have
left it plus the energy equivalent (Q) of any decrease in rest mass that took
place in nuclear or elementary-particle reactions with the volume. For all
practical purposes the energy imparted is usually equal to the heating effect,
but in some cases part of the energy deposited may resulc in changes in
interatomic-bond energies.
As proposed by the ICRU,'* the energy imparted can be expressed as

Ep=LEn-LE.+LQ (3.3-1)

where LE;, =sum of the energies (excluding rest energies) of all those
directly and indirectly ionizing particles which have entered

the volume
LE,, =sum of the energies (excluding rest energies) of all those
directly and indirectly ionizing particles which have left the

volume

L Q=sum of all the energies released minus the sum of all the
energies expended in any nuclear reactions, transformations,
and elementary-particle processes that have occurred within

the volume

The absorbed dose (D) is

_AEp

o (3.3-2)

where AEp Y is the energy imparted by ionizing radiation to the matterina
volume element and A)! is the mass of the matter in that volume element.

tlonizing radiation is a radiation consisting of directly or indirectly ionizing particles or a mixture
of both. Directly ionizing particles are charged particles (electrons, protons, alpha particles, etc.)
having sufficient kinetic energy to produce ionization by collision. Indirectly ionizing particles are
uncharged particles (neutrons, gamma rays, etc.) which can liberate directly ionizing particles or can
initiate a nuclear transformation.

$The notation AEp, implies that the volume element AV associated with the element of mass AM
be of an appropriate size such that the limiting process D = AEp/AM yields a meaningful estimate of
the absorbed dose, and we invoke the special limiting process of Sec. 2.2.4.
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The special unit of absorbed dose is the rad:
1 rad = 100 ergs/g (3.3-3)

The absorbed dose rate is

Absorbed dose rate = % (3.34)

where AD is the increment in absorbed dose in time, At. A special unit of
absorbed dose rate is any quotient of the rad or its multiple or submultiple
divided by a suitable unit of time (rads/sec, mrads/hr, etc.).

Energy can be imparted to a volume of matter by many different particle
reactions. Particles having the same initial energy do not necessarily deposit
the same amount of energy because, of course, energy deposition depends
not only on the initial energy but also on the type of radiation and the kinds
of interactions that occur. Schematic representations of energy imparted to
the matter contained within a volume element AV for two particles having
initial energies Ey and Ej are shown in Fig. 3.12 (superscripts 1 and 2
identify the reactions produced by particles 1 and 2, respectively). The
corresponding equations for the energy imparted are

AEL =Eq, - Eg—E; - Q' (3.3-5)
AEhL =E} —E3+Q° (3.3-6)

where AEp, is the energy imparted to the matter within the volume element
AV, Q is the energy equivalent of any change in the rest mass due to nuclear
or elementary-particle reactions within the volume, and subscripts 8 and
refer to the type of particle leaving the volume. In reaction 1 an incident
gamma ray undergoes Compton scattering within volume element AV. The
term Q! indicates the binding energy of the Compton electron, which is
usually of negligible magnitude. The Compton electron loses some of its
energy through ionization within the volume and then departs with the
energy Ej. The scattered (degraded) gamma ray also leaves the volume. In
the second reaction a neutron undergoes radiative capture and a gamma ray
is produced which leaves the volume. The term Q? indicates the binding
energy associated with neutron capture, which appears as excitation energy.
Secondary collisions within the volume element were purposely omitted in
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2
EO

Fig. 3.12—Schematic representation of relation between absorbed dose (energy deposi-
tion) and kerma.

this schematic representation to illustrate that the volume element AV
should be large enough for many primary interactions to occur but
sufficiently small so that a primary particle and/or secondary neutrons or
gamma rays usually would not suffer collisions subsequent to the initial
collision by the incident particle within the volume element AV,

The average energy imparted to the matter within the volume element
AV by all reactions of particles of a particular type and energy can be
written as

_ Lryp)EfE)
Ep(E) z Rl-(E)

(3.3-7)

where Ep (E) = average energy imparted in ergs or MeV
R(E) =rate of the ith type of reaction for particles of energy E
within the volume element AV
;(E) = energy imparted, in ergs or MeV, associated with a particle of
energy E undergoing reaction i within the volume element
AV

E
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3.3.2 First-Collision Dose and Kerma

The quantity absorbed dose discussed in the previous section is a
. physical variable that is closely related to the biological effect of a radiation
field but for a real situation is sometimes very difficult to calculate
accurately or to relate to the response in a human being. Consequently other
concepts have been devised and used.

One of these concepts is the first-collision dose (also called the
single-collision dose). This quantity has been subject to several interpreta-
tions that differ from one another in subtle ways. We will discuss the two
that are pertinent to the present discussion:

1. The first-collision dose is the absorbed dose!contributed by all
particles incident on an isolated small mass (unless the term is explicitly
modified to include only one component, e.g., neutrons) in which
charged-particle equilibrium#t exists.

2. The first-collision dose is the energy transferred from wuncharged
incident radiation, regardless of origin, to the charged particles formed in a
limitingly small probe that may be located anywhere. Charged-particle
equilibrium in the probe is not a requirement.

The small mass specified in the first interpretation means that the probe
is small enough to leave the radiation field unperturbed and the probability
is negligible that the incident particles will interact with the probe more than
once or that secondary gamma raysf produced within the mass will be
absorbed within it. The small probe specified in the second interpretation
has the same requirements, but it can be smaller than that required for the
first interpretation because charged-particle equilibrium is not necessary.

The first interpretation is widely used, particularly by experimentalists,
and is often called the free-field dose, the air dose, or the free-air dose.
However, in an attempt to alleviate confusion, the ICRU chose the second
interpretation to use as a basis for an exact definition and called the quantity
so defined the kerma (kinetic energy released in material). In fact, the
ICRU!3 encourages the exclusive use of the term kerma with the implication
that the term first-collision dose and its other interpretations be avoided.

tCharged-particle equilibrium may be viewed as that condition when, on the average, as many
charged particles, such as electrons, enter the volume element AV as leak out, thereby resulting in an
essentially zero net transfer of energy by the flow of electrons,

$As used here secondary gamma rays refer to those gamma rays produced by interaction of the
incident neutrons with the medium (e.g., capture gamma rays and inelastic-scattering gamma rays).
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The definition of kerma, K, as recommended by the ICRU! % is

AEg
= —K 3.3-8
K= ( )

where AEg is the sum of the initial kinetic energies (ergs) of all the charged
particles liberated by indirectly ionizing particles in a volume element of
material AV and AM is the mass (grams) of the material contained in the
volume element AV

The kerma rate is

Kerma rate = % (3.3-9)

where AK is the increment in kerma in time Atr.

Since AEg is the sum of the initial kinetic energies of all charged
particles liberated by indirectly ionizing particles, it includes not only the
kinetic energy these charged particles expend in collisions but also the
bremsstrahlung they radiate and the energy of any charged particles that are
produced in secondary processes. Note also that no restriction is placed on
the volume into which these secondary radiations penetrate.

The kerma or kerma rate for a specified material in free space or at a
point inside a different material will be that which would be obtained if a
small quantity of the specified material were placed at the point of interest.

With the definition of kerma in mind, we have interpreted the reactions
shown in Fig. 3.12 in terms of the initial kinetic energy imparted to charged
particles

AEx =Ey - E} - Q' (3.3-10a)
AE% =E} -E1+Q* (3.3-10b)

We can see that the expression for AE¥ and the expression given in Eq. 3.3-6
for AE}, are the same. However, the expression for AEg differs from thac
given in Eq.3.3-5 for AE}, because the Compton electron produced by
reaction 1 did not deposit all its energy in the volume element and there was
no compensating inleakage of an electron; i.e., charged-particle equilibrium
did not exist, and AEg > AEJ],. If charged-particle equilibrium did exist, we
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could assume that, on the average, a recoil electron with energy E;; would
enter AV of Fig. 3.12 from an adjacent region. This would then increase
AEp and make it equal AEg (latter is unaltered).

The choice of the second interpretation was not a popular one for
experimentalists. Auxier'? expressed the issue clearly. He argues that the
first interpretation should be formally recognized as first-collision dose,
principally because the quantity measured with ionization chambers,
proportional counters, and other devices is absorbed energy and not
transferred kinetic energy.

Therefore, since measured doses cannot be interpreted as kerma, except
by deduction, some dosimetrists are insisting on retaining the term
first-collision dose. On the other hand, if charged-particle equilibrium exists,
which it may or may not, and if bremsstrahlung radiation is ignored, then
tirst-collision dose and kerma are equivalent. In bulk shields or large tissue
masses, first-collision dose and kerma have nearly the same magnitude, but in
thin layers, such as clothing or skin, they can be quite different. It is possible
to find the factors by which fluence must be modified to convert to kerma.
Such calculations have been made and are indispensable for comparing
analytical results with measurement.

The early calculations of first-collision dose per unit fluence were
performed by Snyder'® for monoenergetic neutrons incident on a four-
element tissue model. Although the term kerma had not yet been
introduced, the doses obtained by Snyder are those described by the second
interpretation and thus are kerma per unit fluence. His calculations
considered only neutron captures and elastic scatterings; the latter was
assumed to take place isotropically in the center-of-mass system. Later,
Henderson!® made similar calculations for neutrons for a four-element tissue
model and for ethylene. He reported his results as absorbed dose (in rads per
hour per unit flux), but they are actually kerma rate per unit flux.

The most recent and most comprehensive calculations of neutron kerma
factors (kerma per unit fluence) were made by Ritts, Solomito, and
Stevens.?® They included essentially all reactions,.considered anisotropic
scattering in those reactions for which angular cross-section data were
available, and in all cases used the most recent cross-section data. One of the
models they used was an 11-element standard-man model in which all tissue
organs and bone were homogenized; other models were for specific body
organs. The elemental compositions used in the calculations, the reactions
considered, and the neutron-fluence-to-kerma conversion factors for stan-
dard man are given in Appendix B. The kerma factor for a particular
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Fig. 3.13—Neutron-fluence-to-kerma factors for standard-man modcl and for elements

contributing to standard-man model. (From Ritts et al.2®)

irradiated material can be found by summing the averages of the kinetic
energies imparted to the struck nuclei and the energies associated with
charged particles that are emitted.

The kerma per unit fluence can be expressed as

Rk =LL C N{(E) 0(E) E;; (3.3-11)
i)

1

where N; = number density of element i (atoms/g)

0jj microscopic cross section of reaction j for element i (cm?/atom)
E;; = average energy deposited by reaction j for element i (MeV)
C=1.602 x107® (ergs/MeV) '

Since the kerma values are given per unit fluence, they are fluence-to-
kerma conversion factors (usually referred to simply as kerma factors). Such
kerma factors for the standard-man model are plotted in Fig. 3.13 and
tabulated in Appendix B along with kerma factors for the individual
elements making the greatest contributions to the total factor.

Kerma-rate factors for monoenergetic gamma rays incident on carbon,
air, and a four-element tissue model were calculated by Henderson'® and are
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son.! 9)

plotted in Fig. 3.14. (Henderson's gamma-ray results, like his neutron results,
were actually reported as absorbed dose, the term kerma not having been
introduced yet.)

3.3.3 Exposure

Exposure is a term that should be used only for gamma rays. Formerly
called exposure dose, it came into common use after the problem of
specifying biological dose associated with X rays was first encountered. As
recommended by the ICRU, exposure (X) describes the deposition of energy
in air by electromagnetic radiation and is defined by

X

AQ
N (3.3-12)
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where AQ is the sum of the electrical charges of all the ions of one sign
produced in air when all electrons liberated by photons in a volume of air
AV are completely stoppedt and AM is the mass of the material contained in
the volume element AV. Exposure rate is given by AX/Ar, where AX is the
increment of exposure during the increment of time At.

The unit of exposure is the roentgen (R). It is the quantity of X or
gamma radiation that produces, in air, ions carrying 1 electrostatic unit (esu)
of charge per 0.001293 g of dry air (or 2.58 x 10™ coulomb/kg). In terms
of ergs, the roentgen is equal to 87.7 ergs per gram of air or 96 ergs per gram
of tissue. For gamma rays above 3 MeV in energy, the range of secondary
electrons in low-atomic-number materials becomes comparable with the
relaxation length of the gamma rays. Consequently the ionization produced
in a small volume is no longer a sole measure of the intensity of the radiation
at that point. The ICRU does not recommend the use of the roentgen above
3 MeV; in practice, however, it is still used above 3 MeV with instruments
calibrated in terms of energy absorption in air.

Since 1 rad is equal to 100 ergs per gram of irradiated material, the
roentgen and the rad are frequently interchanged when tissue exposure is
referred to, the difference of 4% being no real consequence in shielding
calculations. Strictly speaking, however, the rad should be reserved for
describing an absorbed dose.

Away from boundaries the distinction between kerma and exposure loses
relevance if only the three principal processes (Compton scattering,
photoelectric effect, and pair production) are considered and if the
photoelectric effect and pair production are assumed to be absorptions. For
this simple and widely used model,i the fluence-to-exposure conversion
factor is proportional to the product of the photon energy and the
energy-deposition coefficient, in which case exposure, absorbed dose,
first-collision dose, and kerma in air are all equal in magnitude.

In some calculations, however, a slightly more complex model is used in
which pair production contributes to scattering as well as absorption. Asin
the preceding model the total kinetic energy of the electron pair created in
the pair-production process is assumed to be absorbed at the point of its
emission. However, the two 0.51-MeV gamma rays produced by the

tThe ionization that would be produced by the bremsstrahlung associated with secondary
electrons is not included in AQ. Except for this small difference, which is insignificant for photon
energies less than 15 MeV, exposure is equivalent to kerma.

$For this and the subsequent model, the bremsstrahlung radiation that would be produced by the
secandary electrons (and positrons) is assumed to be immediately absorbed.
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annihilation of the positron are treated as scattered gamma rays, and pair
production is also viewed as a scattering process. Absorption from pair
production is described in terms of a modified cross section, which is given

by
’ 1.022
Hpp = Hpp (1 - _E_) (for E>1.022 MeV)  (3.3-13)

where E is the energy of the incident photon (MeV).

3.3.4 RBE Dose; Dose Equivalent

Whenever the biological response of a human organ to radiation exposure
is of concern, merely knowing the absorbed dose (energy deposited) is not
sufficient to predict the biological consequence. Biological responses vary
both with the nature and energy of the radiation and with the composition
and function of the irradiated organs. Thus, when an organ is exposed to a
mixed radiation field or to a field of radiation comprised of one type of
particle with various energies, the energy deposited by each type of particle
of a given energy must be weighted by some factor before the total
biological dose received by the organ can be determined by a summing of the
individual contributions.

For a specific biological effect in a particular mass, the weighting factor
is mainly a function of the linear rate of energy transfer (LET) to the system
by charged particles set in motion by the interactions of incident radiation.
The LET of a material is related to the linear stopping power, but the
concepts are somewhat different. The linear stopping power is the average
energy loss per unit path length by a charged particle in traversing a medium
regardless of where the energy is absorbed. The LET, however, refers to
energy imparted within a limited volume. These two quantities are equal
only in the special case when the LET includes the absorption of all
secondary particles, in which case it is called LET,,. These quantities are
described more completely by Trubey.!®

The LET-dependent weighting factor is called the relative biological
effectiveness (RBE) and is defined as

RBE = (rads of standard radiation producing a given
biological effect)/(rads of another type of radiation
producing the same effect) (3.3-14)

The standard radiation referred to is X rays of 250 keV energy, and thus by
definition the RBE for 250-keV X rays is 1.
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When a dose given in rads is weighted by an RBE value, the resulting
dose, sometimes referred to as the RBE dose, is given in rems, a unit derived
from the term roentgen equivalent man:

RBE dose in rems = dose in rads x RBE (3.3-15)

It follows that for 250-keV X rays the rad dose and the rem dose are
numerically equal.

Table 3.6—QUALITY FACTOR AS A FUNCTION
OF LINEAR ENERGY TRANSFER AND
ION-PAIR FORMATION? 2?2

Average specific
lonization, Average LET,
QF ion pairs/u of water keV/u of water

1 <100 <3.5

2 200 7.0

5 650 23
10 1500 53
20 2000 175

The rem is quantitatively defined as rhe absorbed dose due to any
ionizing radiation that has the same biological effectiveness as 1 rad of X
rays with an average specific ionizarion of 100 ion pairs per micron of water
in terms of its air equivalent. It turns out that X rays and gamma rays
generally do not exceed this specific ionization (LET < 3.5 keV/u). which is
considered to be the boundary between low-LET and high-LET radiation
and thus to be the limiting condition for RBE = 1.

In the past RBE has been used in the fields of radiobiology and radiation
protection, but this generated concern because of the differences in
application and, to some extent, in concept. Consequently ICRU recom-
mends that RBE be used only for correlating radiobiological experiments
and that a new term, the quality factor (QF), be used in the field of
radiation protection. Quality factors are actually those values of RBE which
are intended to embrace all effects that are hazardous to human beings. In
other words, QF values are not related to specific organs of the body as are
some of the RBE values. When a QF value is used to weight absorbed dose,
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the resulting dose, in rems, is identified as the dose equivalent {DE). Dose
equivalents, like RBE doses, are assumed to be additive.

Alchough the QF is defined in purely physical terms (that is, as a
function of LET only, which, in turn, is a function of the number of ion
pairs produced per centimeter of travel by charged particles), the basis of the
legislated value is biological. Table 3.6 shows the recommendations of the
International Commission on Radiological Protection (ICRP)?!:22 for the
relation between QF and both LET and ion-pair formation.

The ICRP recommends a QF of 1 for X rays, gamma rays, electrons, and
positrons of any specific ionization;?' QF values for neutrons, protons, and
heavy recoil nuclei vary with energy. The ICRP recommendations tor QF
values for neutrons between 0.01 and 1000 MeV are plotted in Fig. 3.15.
Tabulated values for lower energy neutrons are also shown. These values are

B L AL L R AL

QUALITY FACTOR

] - Quality —
Energy factor
Thermat 3

2 0.1 keV 2

B 5.0 keV 2.5 ]

20.0 keV ] ; “J

1 LOVEE e 1 lllllrl‘ L] |

1072 107" 10° 10’ 102 103

ENERGY, MeV

Fig. 3.15—Quality factors for neutrons.
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based on the calculated results of Snyder and Neufeld.?® As a rough and
conservative approximation, a QF of 10 is applicable to protons and a QF of
20 can be used for heavy recoil nuclei.

The preceding QF values are assumed to be applicable for whole-body
irradiation. When specific organs are being considered, additional modifying
factors may be needed For example, ICRP specifies that, when the lens of
the eye is being irradiated, a modifying factor of 3 should be used if the
QF > 10 and a modifying factor of 1 should be used when the QF = 1.
Strangely enough, no recommendations are given for 1 <QF < 10. Pre-
sumably, linear interpolation is to be used between these limits.

When the dose in an organ is nonuniform, a dose:distribution factor {DF)
should also be applied. These factors cannot be established with certainey,
and only one, the relative damage factor applied in calculating the dose
equivalent in bone from internal radiation. is in current use.

In general, the shielding community has accepted the use of QF and DE,
as is reflected by the latest shielding literature. From a practical viewpoint
the change merely amounts to replacing RBE by QF and calling the product
of the quality factor and absorbed dose the dose equivalent (DE) instead ot
the RBE dose. Consequently no confusion should exist when the older
literature is consulted. It should be kept in mind, however, that QF values
are chosen by such groups as the ICRP and thus are more subject to change
than would be an RBE value based on experimental data.

All quality factors and other moditying factors are intended solely for
chronic exposure tc low-level radiation fields, with genetic damage being the
hazard considered. High accidental exposures must be assessed on the basis
of particular circumstances. The ICRP has no recommendations for such
exposures, but in many cases the absorbed dose will give a better indication
of the biological risks than will the dose equivalent. In other words, for acute
effects due to massive exposures, the QF should be taken as unity, which
partially results because energy may be wasted from the standpoint of the
production of biological effects. Consequently, for military applicarions
during war, when early death or incapacitation is the effect to be considered.
the dose, in rems, may be taken as numerically equal to the absorbed or
physical dose until better information becomes available.

3.3.5 Maximum Absorbed Dose; Maximum Dose Equivalent

As was pointed out in the introduction to this section, the usual
shielding calculation provides a detailed description ot the unperturbed
radiation field (free field): that is, perturbations of the field by a human
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body are not considered. This greatly simplifies the analysis without
seriously compromising the overall accuracy. However, the results must
somehow be related to the hazards to a human being if he were exposed to
such a radiation field.

A correlation between the unperturbed radiation field and the dose ina
human body has been accomplished through the use of slab and cylindrical
phantoms, which have dimensions and compositions resembling those of the
human body. Calculations (or measurements) of the absorbed dose or the
biological dose were made as a function of depth in the phantom for given
monoenergetic neutrons or gamma rays incident on the phantom. The
incident angular distribution was a monodirectional beam or an isotropic
flux. (Calculations for neutrons include the contribution to the dose by
secondary gamma rays.) The maximum values in the depth—dose distribu-
tions were identified as the maximum absorbed dose and maximum dose
equivalent for the absorbed (physical) and biological doses, respectively.
Since these values were obtained and reported on the basis of a unit particle
entering the phantom, they can be used as response functions to relate an
unperturbed field of mixed radiation to the maximum dose that would be
received by some part of the body. Use of these maximum values is dictated
by a conservative design philosophy that does not allow the permissible dose
to be exceeded at any point in the body.

(a) Neutron Doses in Phantoms. The first dose calculations in a
phantom were performed by Snyder and Neufeld’? for a beam of
monoenergetic neutrons normally incident on a phantom represented by a
slab of tissue. The slab, infinite in the transverse directions, was assumed ro
be 30 cm thick. Snyder and Neufeld determined the distribution of the
absorbed dose through the slab and found that the maximum dose occurred
at nearly the surface or within a few centimeters of the surface. In these
calculations only neutron captures and elastic scatterings were considered,
which limited the contribution by secondary gamma rays to capture gamma
rays. The resulting maximum absorbed doses and biological doses as a
function of the incident-neutron energy are shown in Table 3.7. These values
have been used widely in reactor-shield design to convert neutron fluences to
doses and have become virtual standards since these dose equivalents have
been stipulated for use by the Federal Register.?*

In similar calculations, performed later by Auxier, Snyder, and Jones,??
the infinite slab was replaced by a finite cylindrical phantom that more
nearly represented a human body. The phantom was 60 cm high and 30 cm
in diameter. It was divided into annular shells cut into 60° angular sectors
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and five layers 15 cm high. This division yielded 150 volume elements. The
maximum doses (averaged for a volume element) occurred in the outermost
volume element at the midplane on the side facing the beam. These
maximum doses are given in Appendix C, Table C.1.

Table 3.7—MAXIMUM ABSORBED DOSE AND MAXIMUM DOSE
EQUIVALENT FOR MONOENERGETIC NEUTRONS
INCIDENT ON A SLAB TISSUE PHANTOM{t

Maximum absorbed Maximum dose
Neutron energy, dose, equivalent,§ Effective
MeV mrad neutron”™! cm™’ mrem neutron ' c¢m - QF
Thermal 3.2 {=7)% 1.04(—6) 3.25
0.0001 6.9 (=7 1.39(—6) 2.01
0.005 5.7 (—7) 1.22(~6) 2.14
0.02 57 (=7) 2.35(-6) 4.12
0.1 1.10{—6) 8.3 (—6) 7.55
0.5 2.4 (-6) 2.30{-5) 9.61
1.0 3.8 (~6) 3.80(—5) 10.0
2.5 4.3 (—6) 3.41(=5) 7.93
5.0 5.8 (-6) 3.80(-5) 6.55
7.5 7.1 (-6) 4.16(-5) 5.85
10 7.0 (=6) 4.16(—5) 5.94

tFrom Snyder and Neufeld.??

tMultiply by 3600 to convert to (mrad/hr)/(neutron cm™ sec’') or 1o
(mrem/hr)/(neutron/cm 2 sec’').

§Read: 3.2 X 107, etc.

The effective quality factors shown in Tables 3.7 and C.1 are the ratios
of the maximum dose equivalent to the maximum absorbed dose for a given
incident-neutron energy and phantom configuration. The magnitude of the
effective quality factor is very close to but usually slightly less than that
recommended by the ICRP (see Fig. 3.15). The differences in the values
would be expected since the values recommended by the ICRP consider only
the initial collision of the neutron whereas the values of the effective quality
factors represent an average of all collisions experienced by the neutron
within the phantom.



INTERACTIONS OF RADIATION WITH MATTER 111

(b) Gamma-Ray Doses in Phantoms. Claiborne and Trubey?® recently
calculated the dose delivered to a phantom by monoenergetic gamma rays.
Using the discrete-ordinates method, with some checks by the Monte Carlo
method (both of these transport methods are described in the next chapter),
they calculated the dose distributed in a 30-cm-thick infinite-slab phantom
having the standard-man composition shown in Appendix B, Table B.2. Their
maximum dose rates, which occurred at nearly the surface or within the first
2 cm of the surface, are compared in Fig. 3.16 with the experimental results
of Jones.?”?
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Fig. 3.16—Maximum gamma-ray dose rate in slab phantom of standard-man composi-
tion. Comparison with kerma calculations and with phantom measurements. (From
Claiborne and Trubey.?¢) '
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3.3.6 Multicollision Dose

The term multicollision dose, which until recently has been used solely
for neutron exposure, is not recognized by the ICRU. The multicollision-
dose concept was developed by health physicists in an effort to relate the
neutron flux or fluence incident upon a configuration of tissue representing
the human body to the absorbed dose or to the dose equivalent. The
multicollision dose could, in turn, be related to a maximum permissible dose
(MPD) established by shield-design criteria. The term has tacitly been
defined by common usage in shield design as the sum of the maximum dose
equivalents {or maximum absorbed doses) delivered by each neutron-energy
group to a slab of tissue as defined by Snyder and Neufeld?? This includes
the dose due to secondary gamma rays produced by the neutrons in the slab.
This dose is calculated by

(Eg)

/) (3.3-16)

max

Multicollision dose = L l,"Jg D
£

where , is the group fluence and D_,, (E,) is the maximum dose
equivalent {or maximum absorbed dose) in the slab for an incident neutron
of the energy corresponding to the gth neutron group.

Gamma-ray multicollision doses are similarly calculated with Eq. 3.3-16,
with, of course, V¥, and Doy (E,) being the appropriate values for gamma
rays.

The total dose for a mixed-radiation field incident on a tissue slab is
determined by adding the neutron and gamma-ray multicollision doses
obtained separately for the slab.

Although the concept of multicollision doses, or dose rate, is not
recognized by the ICRU, it seems clear that, to fully implement the trend to
preciseness in the fields of radiobiology and radiation protection, the dose
calculated in shield design should be given recognition by some official body.
Perhaps the term multicollision dose can be retained for the neutron-induced
contribution, and the term total multicollision dose can be used when the
incident gamma-ray contribution is also included. Or perhaps an entirely new
term could be introduced; several have been suggested but none have been
accepted as yet.
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EXERCISES

3.1 Assume thac air has the following composition by volume: nitrogen, 78.5%; oxygen,
20.99%; and argon, 0.96%. Calculate, at standard temperature and pressure (273°K,
76 cm Hg): (a) The partial density in air of each constituent. (b) The weight percent
of each constituent. (c) The atomic density in air of each constituent. (d) The
electron density of air. (e) The average atomic number of air. (Densities at STP are as
follows: nitrogen, 0.00125 g/cml; oxygen, 0.00143 g/cm3; argon. 0.00178 g/’cm3;
and air, 0.00129 g/cm3. Atomic numbers and weights, respectively, are nitrogen, 7
and 14.0; oxygen, 8 and 16.0; and argon, 18 and 39.9.)

3.2 It is often convenient to treat mixtures such as air and compounds such as water as
homogeneous media made up of one pseudoelement. For water, compute the
following properties of the pseudoelement: (a) Atomic density. (b) Electron density.
(c) Atomic number. {Assume the density of water to be 1.0 g/cm? )
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3.3 At 0.10 and 3.0 MeV, Hubbell* lists the photon microscopic cross sections shown in
the table for Exercise 3.3.

TABLE FOR EXERCISE 3.3,
PHOTON CROSS SECTIONS

a;, blatom
With Without Opes 9pp
coherent coherent b/atom bfatom
E=0.1 MeV
Nitrogen 3.54 3.45 0.041
Oxygen 4.06 3.94 0.071
Argon 9.85 8.87 3.6
Hydrogen 0.493 0.493
E = 3.0 MeV
Nicrogen 0.806 0.025
Oxygen 0.921 0.032
Argon 2.07 0.17
Hydrogen 0.1151 0.00052

(a) Explain the blanks in the table.

(b) For nitrogen at STP, compute the total mass attenuation coefficient (cm?/g) and
the linear attenuation coefficient (cnf’) without coherent scattering at 0.1 MeV.

{c) Using the results of Problem 3.1, _comp_ute the total mass and linear attenuation
coefficients for air at 3.0 MeV.

(d) What is the mean free path in air for 3.0 MeV photons? Express your answer in
meters.

(e) Compute the two scattering, the photoelectric, and the pair-production micro-
scopic cross sections at 0.1 and 3.0 MeV for the water pseudoelement. Express the
results in terms of barns per molecule.

3.4 A thin (0.04 g/cm?) aluminum disk 2 cm in radius is subjected on one side to a
monodirectional photon flux density of 10'® photons cm™ sec™, normal to the disk.
The photon energy is 0.10 MeV. Hubbell® lists the following microscopic cross
sections for aluminum whose density is 2.7 g/cm?:

O, = 6.79 b/atom

o = 6.41 b/atom

incoh ~

Ope = 0.78 b/atom

Compute: (a) The total reaction rate (photons per second) in the disk. (b) The rate at
which photons are absorbed on their first collision in the disk. (c) The first-collision
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scattering rate in the disk. (d) The exit flux density of 0.1-MeV photons.
(e) Approximately what fraction of the disk’s atoms are reacting with the photon
beam per unit time?

3.5 For scattering angle 8 (0 <8< n/4), the differential scattering cross section for
Compton scattering of 1.25-MeV photons is closely approximated by

0(8) = (29.5 — 78.3 cos 8 + 56.6 cos® 8) X 102° cm? electron™ steradian™

For the disk of Problem 3.4, compute the flux density of singly scattered photons at
a point P located 2 cm from the center and on the opposite side of the disk from a
normally incident 1.25-MeV photon flux density of 10'® photons cm™ sec™.

3.6 The differential speed distribution of thermal neutrons is given by

-mu? 2
niv)dv=Avie ™’ I2kT 4y neutrons/cm® whose speed is in dv about v

where A and k are constants, T is the neutron temperature, and m is the neutron
mass. Show that, for a material whose cross section varies as 1/v [o(v) = C/v], the
average cross section for the reaction rate of neutrons with this speed distribution is
given by

mm

%
=C (-ék_T) (C is a constanr)

Ql

and thus the energy for which o(v) = Tis 4kT/x.

3.7 The accompanying table gives the densities and mass energy transfer coefficients y/p
for four materials. Compute the kerma rate (ergs g'' sec’') in a small volume of each
material (a, b, ¢, d) located in a vacuum 100 cm from a 1-Ci isotropic ®®Co point
source.

TABLE FOR EXERCISE 3.7

‘-‘k,p!
cm?jg o, glem?
(a) Air 0.0268 0.00129

(¢) Iron 0.0253 7.90

)
(b) Water 0.0300 1.00
(d) Lead 0.0350 11.35

(e) Compute the absorbed dose rate in tissue, where i, /p = 0.029 cm? /g. Assume that
charged-particle equilibrium exists and bremsstrahlung is negligible. Give the answer
in rads per hour.
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3.8 In Sec. 3.2.1, the energy—angle relation, expressed in units of Compton wavelength,
was noted to be

N —-A=1-—cosé
and the differential angle scattering cross section was given as

_do_ 3 x=<>\',\ .,) - _—
0(8) = 3 " 1en (7\,) X + 37— sin 8) T.U. electron™’ steradian

Show that, when reduced to its one independent variable, N, the differential angle
scattering distribution of photons of initial wavelength A is given by

AN N LR ' "2 -1 .-
(a) o(f) = e \) % *ot 2(A =A) + (A= A)*°| T.U. electron” steradian

and thus that
n_do _3(A\?
(b) O(h ) - dkl - 8 (A’)

X [% + %4— 20 =)+ (A - 7\')2] T.U. electron”™ unit wavelength™

where a(\') d\'/0, gives the probability that a photon of energy X which undergoes a
Compton scatter has a scattered energy in wavelength interval dA" about A






Radiation Transport
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Radiation transport is to neutron or photon interactions what dynamics of
rigid bodies is to particle kinematics. In each case the former represents the
macroscopic manifestation of the latter. The principal task in shield analysis
is to solve the transport equation. In the following sections we will discuss
some simple concepts and then develop the Boltzmann transport equation,
which is not so simple. Subsequent sections are devoted to descriptions of
several techniques for solving this equation by direct analysis and by
alternate approaches. The Monte Carlo method of solution has been so
successful in reactor shielding that we have devoted Chap. 5 exclusively to it.

In many instances solutions are tabulated. Thus a shield designer must, at
most, choose one method from several methods of solving the transport
problem or, frequently, apply a predecessor’s result. The selection of one of
these techniques for application to a particular problem depends on the
nature of the problem, the accuracy required, and, mundanely, the time and
funds available. Of course, the most economical technique for handling the
problem and obtaining the necessary accuracy is the optimum choice.
However, there is no simple way in which to make this choice. We have
attempted to describe the theory involved in the various methods in a
manner that will allow the shield designer to utilize his best judgment in
making a good selection. Subsequent chapters discuss the application of
these methods in various practical situations.

The radiation field at a point in space removed from the source can be
divided into two components. The first is the uncollided, or, as it is
sometimes called, the unscattered radiation (particles that arrive at the point
without having undergone any interactions with the transporting medium).
The second component is composed of the collided, or scattered, particles
(particles that have undergone one or more interactions that have caused a
change in direction or energy or both). Primary radiation particles and those
generated in secondary reactions both may be so classified, although

Preceding page blank 119
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secondary particles are sometimes treated as a portion of the collided
component of the primary beam.

Solution of the generalized Boltzmann equation can result in the
determination of both components simultaneously; however, the calculation
is often divided into two parts, which are performed separately. The first is a
computation of the uncollided component, and the second, a calculation of
the scattered component. Analysis of the uncollided component is rather
straightforward even though complexities of energy spectra and geometry
sometimes require use of numerical techniques. Analysis of the scarrered
component, on the other hand, may become quite complicated, and it is
toward this task that most of the efforts in shield analysis are devoted.
Following scatter, a particle or photon will have altered interaction
probabilities owing to a shift in energy, and subsequent scatters will furcher
alter these probabilities. The distribution of absorptions within the shield is
also complicated by scattering since absorptions can occur following
scattering.

As the radiation penetrates deeper into the shield, a higher percentage of
the toral flux density will be scattered radiation. The ratio of scattered to
uncollided radiation may increase to some maximum value, which is a
complex function of the incident spectrum and material cross sections, or {as
is usually the case) the ratio may continue to increase indefinitely. Thus the
thicker the shield, the more important the scattered radiation becomes.

As will be seen in subsequent sections, most practical situations involve
complicated geometries and source characteristics, and calculation of che
scattered component requires the use of simplifving assumptions.

There has been an active effort to develop and retine methods for
predicting scattered radiation. It is important to remain in close touch with
the technical literature because new developments appear frequently.

4.1 FUNDAMENTAL CONSIDERATIONS

The flux density at a detector point is influenced by two factors: the
geometric relation between the source and the detector (including the source
angular distribution} and the character of the material between the source
and the detector. These two factors combine in a multiplicative fashion in
simple geometries and are illustrated in the following example.

Consider the uncollided flux density at the detector point in Fig. 4.1.
Even if the two slabs of materials are identical and the source strengths
-1

{particles cm™ sec”' incident on the surface of the slab) are equal, the
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Fig. 4.1 —Geometric differences due to sources.
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Fig. 4.2—Slab attenuation, monodirectional flux density.

radiation intensity will be different at the two detectors owing to the
different source angular distributions, i.e., different geometries. On the other
hand, if the macerial in one slab were altered, the detector response behind
that slab would change with no change in source—detector geometry. This
illustrates the attenuation (sometimes called barrier) factor.

In the absence of external forces, particles travel in straight lines. From
this elementary statement it follows that the flux density in the beam of a
plane monodirectional source does not vary with distance from the source
unless, of course, it is attenuated by some material. This fact is useful in the
analysis of individual components of a radiation field, and we apply it here
to develop another elementary result.

Consider the slab geometry of Fig. 4.2, in which a monodirectional

2 cppenl

source of P, particles cm™ sec™ is normally incident on a slab. Every
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interaction within the slab removes a particle from the uncollided beam. We
shall compute the flux density, ®(x), of uncollided particles that emerge
from the slab. Incident on the differential slab volume d} of cross-sectional
area dA4 and thickness dx’ (dV = dA dx') are ®(x') particles cm™ sec™®, and
emerging from dl” are ®(x’' + dx') parricles cm™ sec™. As shown in Chap. 3,
the interaction rate per unit volume occurring in dV is given by T, ®(x'),
where Z, is the toral linear attenuacion coefficient (or total macroscopic
cross section). Thus particle conservation in volume dV" demands that

$(x' +dx')dd - B(x")dd = Z, d(x') dIV (4.1-1)

where the minus sign on the right side is introduced because collisions
remove particles from the uncollided beam. After both sides have been
divided by d4, Eq. 4.1-1 may be written

dP(x') = ~Z; d(x') dx’ (4.1-2)

or
L dd(x) = -5, dx’ (4.1-3)
q)(x') - t L ;

This familiar differential equation has the solution
B(x') = ceZex (4.1-4)

where ¢ is a constant. By applying the condition that (0! = &,, we obtain
) piying / 0

’

B(x') = @yeZtx ) (4.1-5)
Thus the exit flux density of the uncollided component is given by

d(x) = byeZex - (+.1-6)

)
This exponential attenuation law is basic to the calculation of radiation
rransport through matter.

Consider a point isotropic source at the center of a spherical shell of
material, as shown in Fig. 4.3. With no shell material present, the flux
density of uncollided particles at the detector would be given by
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®(R) =S/4mR*, where S is the source strength. However, the flux density
passing through the shell is reduced by a factor of eZt*. Thus

e-Z1x (4.1-7)

the product of a geometric factor, 1/47R?, and an attenuation factor, e Z¢X.

Detector

x/‘\
Fig. 4.3—Spherical shell attenuation.

Successively complex radiation-transport calculations occur if (1) the
radiation is allowed to scatter with no change in energy, (2) scattering with
energy degradation is allowed, and (3) secondary radiations are taken into
account. An accurate analysis of neutrons and gamma rays from a reactor
source requires that energy degradation and secondaries be considered.

Consider a material in which only scattering and absorption occur. The
total macroscopic cross section, Z;, consists of two components: X, the
scattéring cross section, and Z,, the absorption cross section. For a parallel
monoenergetic beam incident to a slab, one component of the penetrating
radiation will be that which has not interacted with the shield, given by
®e-Ztx. The other penetrating component will be the radiation that has
scattered one or more times within the shield. This scattered component will
exit the shield in all directions and over a continuous energy distribution
even though the incident radiation is of only one energy and one direction.

4.2 THE BOLTZMANN TRANSPORT EQUATION

The complex form of radiation transport in which scattering and energy
degradation occur was originally described by the differential equation due
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to Boltzmann. In a book on transport theory, Kuscer' notes that Boltzmann
formulated this equation in 1872 to calculate the coefficient of self-diffusion
for a gas in which the molecules were assumed to scatter as elastic spheres.
The gas problem is equivalent to the radiation problem of interest here.
KuSCer states that a solution of the equation was not achieved until early this
century and contrasts the ease with which transport problems are formulated
with the difticulties encountered in obraining solutions. Basically this
equation is a “‘bookkeeping” statement that accounts for additions to and
subtractions from the radiation in a given increment of space, energy, and
direction. Purricles may be interpreted as either neutrons or gamma rays in
the derivation. _

The differential flux density is a function of seven independent variables: -
three that define the spatial position of the detector point, two that define
direction of particle motion, one that measures particle energy. and one that
measures time. In vector notation these can be reduced to three quantities: a
vector defining spatial position. a vector defining momentum (specifying
both direction and energy). and one scalar time variable. A radiation field is
completely defined (i.e.. the radiation-transport problem of interest is
solved) when the particle or energy-flux density at every spatial point within
the region of interest is known.

For shield analysis a steady state is ordinarily assumed, and the time
variable is not required. It is also customary to use a unit vector for direction
and an independent scalar variable for energy (or its equivalents, speed or
wavelength). Thus we define

®(r,Q,E)dSL dE  particles unit area™ sec™!

as the flux density (or track length per unit volume per second) of particles
at spatial point r whose directions of travel lie in the solid angle d©2 about Q
and whose energies lie in the increment dE about E. We derive the
Boltzmann equation using particle conservation in a differential volume
dV dS2 dE of six scalar dimensions, in which d1” is a differential spatial
volume element. as illustrated in Fig. 4.4. The six-dimensional system. of
which dV d§2 dE is a differential element, is sometimes called a six-dimen-
sional phase space, and the differential element. a differential phase-space
cell. Care must be taken when using spherical coordinates for the spatial
coordinate system; the polar (8,) and azimuthal (y,) angles defining the
direction of r must not be confused with the polar (6} and azimuthal ()
angles defining unic vector 2, which measires particle direction.
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X

Fig. 4.4—Volume element in phase space.

Particles of the appropriate energy (dE about E) and direction (d€2 about
Q) can be introduced into dV d§2 dE by the following processes:

1. They can be born in dV/ at the appropriate energy and direction by a
source located there.

2. They can flow into dV with the proper energy and direction from
adjacent spatial regions.

3. Particles bearing other directions or energies or both can undergo an
interaction within dV” such that the scattered particle is in dV dS2 dE (the
inscatter source).

In a similar fashion, particles within dV dQ dE can be removed from that
differential element by the following processes:

1. They can undergo an interaction that causes them to be absorbed or
changed in direction or energy or both.

2. They can flow out of dV into adjacent spatial regions.

In a steady state the losses from dV d§2 dE must equal the gains. Further,
the leakage gains and losses into and out of dV can be combined into one
term: net leakage. Thus

Net leakage + interactions = Inscattering + source

where, by convention, net leakage is defined as being positive in the outward
direction (a loss).

The net leakage term, NL, is equal to V-Q&(r,Q,E) dV dQ2 dE particles/
sec, a fact that we will demonstrate. Consider a small spatial volume element
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AV enclosed by surface AS (Fig. 4.5): dS is a surface differential area on AV
with outward normal n, and dA is the projection of dS normal to Q. The
particle flow through dS and dA in direction Q is given by
¢ (r,Q,E) d2 dE d4 particles/sec, which may be written

as

dA

As

Fig. 4.5—Differential surface element,

&(r.Q,E) dQL dE {dA/dS) dS. However, since d4/dS = (n* ), the net leakage,
d(NL), through dS is

d(NL) = ®(r,Q,E) d2 dE (n-Q) dS (4.2-1)

[Proof that Eq. 4.2-1 gives net racher than outward leakage through dS is
given as one of the problems in cthe exercises.] The vector property
(u*v) = v+u enables us to write

d(NL) = [Q®(r,,E) dQ dE] * ndS 4.2

1o
N

The total net leakage from AV is then given by
ANL = [, d(NL)= [as [Q®(r,Q.E) dLdE| *n dS (4.2-3)

But AV, AS, and Q®(r,Q,E) dS2 dE meet the conditions for application of
the divergence theorem (stated in Appendix D). and the net leakage from
AV is thus

ANL= [, V-Q®(r,9.F) dQdEdV

Now consider the limit as Al approaches d1’. The function V-Q®{r,Q.E)
d€2 dE becomes a constant with respect to r, and

lim ANL = [V-Q&(r.Q,F)dQdE] lim [, dv
AV—dV AV=dl
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The limit of the integral is simply dV. Thus the net leakage, NL, from dV is
given by

NL = V- Q®(r,Q,E) dV d§2 dE particles/sec (4.2-4)

Every interaction within dV/ (except for coherent scattering withour a
change in direction) removes particles initially in dV dS2 dE from that
differential element. Thus the interaction loss term, IL, is given by

IL = Z(t,E) ®(r,Q,E) dV dS2 dE particles/sec (4.2-5)

The macroscopic loss coefficient is taken to be the total attenuation
coefficient, Z;.

The source term is handled formally. If S(r,Q,E) is defined to be the
differential source distribution (particles per second per unit volume, solid
angle, and energy), the total source in dV dQ2 dE is

S =S8(r,Q,E} dV d§2 dE particles/sec (4.2-6)

The remaining term expresses the inscattering. Let p(E'=E,Q'->Q)
dQ dE be the probability that a particle of energy E' and direction Q'
scatters into dE about E and df2 about Q. The rate at which scattering
events in dVdQ)' dE' occur is given by Z(r,E') ®(r,Q'E')dV dQ’ dE’
particles/sec, in which Z(r,E') is the macroscopic scattering coefficient.
Inscattering from dV d2' dE’ into dV dS2 dE is then

Z4(r,E') p(E'~E,Q'>Q) d2 dE ®(r,Q",E")dV dQ' dE’
The total inscattering rate, IS, is given by

15 = Jp Jo Z4(t.E') p(E'~E,Q'>Q) d2 dE &(r,Q',E')
X dV dQY' dE' particles/sec  (4.2-7)

Conservation requires that losses equal gains: NL +IL =]S +S or

V- Qd(r,2,E) + Z4(r,E) P(r,Q.E)

>

= fe S S0 E') p(E'~E Q'>Q)0(r,2 ') dQ' dE' + S(r,,E)  (4.2-8)
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in which the common factor dV dS2 dE has been cancelled from each term.
Equation 4.2-8 is the integro-differencial form of the Boltzmann equation
and is that most often used as a starting point in the solution of the radiation
transport problem, although other forms (i.e., purely integral) are sometimes
encountered. Equation 4.2-8 is applicable to both neutron and photon
transport. Simple transformations (some are given in the exercises) allow the
Boltzmann equation to be expressed in terms of wavelength X (A = hy/E)
rather than energy and differential energy-flux densities I(r,Q,E) and
I(r,22\) rather than number-flux densities. In photon transport, because of
the relatively simple expressions that result, the form involving I(r,Q\) =
AP(r,2,A) (N in units of Compton wavelength) is convenient.

The appearance of the Boltzmann equation varies considerably with the
coordinates involved, the type of radiation being considered, and whether
energy degradation is allowed. For this discussion the vector notation is
used, and various symbols representing interaction parameters are defined.
Appendix D lists the transformation between the three common coordinate
systems and defines various vector operators, functions, and theorems
helpful in deriving and manipulating the Boltzmann equation.

A direct, analytic solution of the Boltzmann equation can be found only
in a few very simple and highly idealized cases. For the most part,
approximate solutions are all that are possible in practical situations.
Approximate solutions can be obtained in two ways: simplifying assump-
tions can be made which alter the Boltzmann equartion so that an analytic
solution is obtainable or numerical methods can be used. An example of the
first type is the elementary one-speed diffusion equation of reactor physics
which, although usually derived differently, can be shown to be a form of
Eq. 4.2-8 with the proper assumptions invoked.

Successful numerical solutions to the Boltzmann equation have been
obtained with difference methods and iterative procedures. These methods
evolved in parallel with, and were influenced by, the development of
high-speed computing machines, which are a necessary tool in their
application.

The approach generally used involves the derivation of a difference
approximation to the Boltzmann equation for each point of a mesh filling
the shield volume. Steps in such a calculation include:

1. Choosing the division points between energy groups.

2. Choosing a method of representing the differential scattering cross
section and the angular dependence of the flux density.
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3. Integrating the Boltzmann equation over each energy group (cross
sections must be suitably averaged over each group).

4. Approximating the equations relating the spatial derivatives of the
differential (angle and energy) flux density as functions of r by a finite
difference system at each mesh point.

5. Solving the resulting system of equations by an iterative method.

The various difference methods used in solving the Boltzmann equation
differ primarily in their method of representing the angular dependence,
although they may also differ in the iteration scheme indicated in step 5.

Before proceeding to a review of various solution methods, we should
point out that Eq. 4.2-8 includes some undefined funcrions, in particular
those contained in the functions S(r,R,E) and p(E' = E,Q' = Q). To solve
the Boltzmann equation, we must replace these expressions with functions
that describe the processes involved in the problem being considered.

4.3 SPHERICAL HARMONICS METHOD

Although the method of spherical harmonics is not currently in
widespread use, it was one of the first developed and embodies concepts
used in other techniques in this chapter., The method as applied to the
solution of the Boltzmann ctransport equation consists in representing the
various angle-dependent terms as expansions in the spherical harmonics
polynomials. These polynomials, commonly called associated spherical
harmonics,t vary in definition from one referen'_ce to another. We use the
polynomials described by Weinberg and Wigner.?

Applying the spherical harmonics technique to the general transport
problem is inherently complex. However, a simplified and lucid illustration
of the method can be shown for a steady-state (no time dependence),
one-speed (no energy dependence), one-dimensipnal (slab geometry with
azimuthal symmetry), homogeneous (constant system parameters) neutron
transport problem. Consistent with these simplifications, the general
Boltzmann transport equation can be written}

0d(x, +1 ' , ,
" _(a’;#) + 2 ®(xn) = St + L1 Ztua) dlxu) d (4.31)

tDefinitions and theorems of associated spherical harmonics and the related Legendre functions
are given in Appendix D.
$The derivation of Eq. 4.3-1 is given as a problem in the exercises.
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where ®(x,u) = angular flux density (neutron-flux density per unit u)
x = spatial variable in slab geometry, the direction of which is
specified by the unit vector i
u = direction cosine with respect to the x-axis
= Q*i=cosb
total macroscopic cross section

Z:
Zs(uu') du

a scattering cross section that describes the probability that a
neutron with an incicent direction cosine u’ will be scattered
so that its emergent direction has a direction cosine in du
about u
Zs(ua') = J3" Z(0.9") dy
Z¢(2,2") = the macroscopic differential scattering cross section
S(x,u) = source particles per unit u. volume, and time

The angle-dependent terms of Eq. 4.3-1 can be represented as a series of
spherical harmonics of the first kind. the Legendre polynomials Pj{u).
Expanding the angular flux density and source term in terms of these
polynomials yields

@(en) = L @) Piia) (4.3:2)
S(x,u) = Jgo Sj(x) Pjiu) (4.3-3)

where ®;(x) = position-dependent Legendre coefficients corresponding to
the flux density:

2i+ 1
=4
jlx) = 2

+1
[i" @) Pip) due (j=0,1,2,...) (4.3-4)

and Sj(x) = position-dependent Legendre coefficients corresponding to the
source term:

2j+1_ 4l \ , .
Si(x) =2 — = [ Stxu) Piu) die (7= 0,1,2,...) (4.3-3)

Since for most practical situations the differential scattering cross section
depends only on the change in direction given by uy = 2:Q’, the series
expansion for I (Q,Q') is made in terms of the Legendre polynomials
Pi(uo):
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22,2 = & miPiluo) (4.3-6)

where the values of n; are the Legendre coefficients (i= 0,1,2,...,%)
corresponding to the differential scattering cross section

_2i+1
77,' 3

[ 24(9.9") Pi(uo) duto (4.3-7)

The spherical harmonics form of the Boltzmann equation is obtained by
introducing the preceding series representations for ®(x,u), S(x,u), and
Z+(2,8') into Eq. 4.3-1, multiplying each term by the Legendre polynomial
Py(u), and integrating over all 4 (-1 to +1). When Egs. 4.3-2, 4.3-3, and
4.3-6 are substituted into Eq. 4.3-1 and the orthogonality property of
Legendre polynomials is used along with the addition theorem and a
recursion relation,t the following set of coupled differential equations is
obtained:

n+l d n d 47

2t 3 de Pt (%) YT T Prax) = 5o

— 2 b, (x) + Su(x)  (forn=0,1,2,...,%) (4.3-8)

This set of equations, which no longer involves the directional variables and
therefore is more amenable to solution than Eg. 4.3-1, is called the second
(or spherical-harmonics component) form of the Boltzmann equation by
Weinberg and Wigner? and others.

Practical methods of solution require that the series representations of
®(x,u) be limited to a finite number of terms, say (n + 1) terms; n is
commonly called the truncation number, and the corresponding calculation
is called the P, approximation. The P; approximation is equivalent to
diffusion theory (see Sec. 4.6) and involves only a linear representation of
the flux density, which restricts its application to situations wherein the
neutron-flux density is nearly isotropic, a severe limitation for deep-penetra-
tion problems,

The accuracy of the spherical-harmonics calculation is also influenced by
the number of terms used to represent the differential scattering cross
section. Only a few terms are necessary for nearly isotropic scattering, but a

tThese properties are given in Appendix D. The use of the addition theorem makes possible the
evaluation of the inscattering-integral term containing Z(§,8'), which is necessarily expanded in
terms of P;(u, ) rather than Pi(u).
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large number of terms are required for adequate treacment of anisotropic
scattering; in the past this has limited the use of the spherical harmonics
treatment. However, recent advances in cross-section technology and
increased computer capacity have for all practical considerations removed
this limitation.

Shure® found that a multigroup P; approach in one dimension for
calculating spatial and spectral neutron distributions in meral hydrogenous
reactor shields yielded satisfactory estimates of neutron attenuation for
reasonable amounts of computer time. Further, Lanning® recognized that
for some design problems the low-order approximations were sufficiently
accurate. He successfully calculated the spatial distribution of the gamma-ray
energy-flux density in one-dimensional slab geomerry.

4.4 DISCRETE-ORDINATES §,, METHOD{

The discrete-ordinates S, method is a means of effecting a numerical
solution of the Boltzmann transport equation. The most recent versions of
the method permit anisotropic scatrering to be included and thus make it
suitable for both neutron and gamma-ray deep-penetration calculations in a
wide variety of shielding problems. Since the method is fundamentally
formulated as a finite-difference equation, a minimum number of limiting
assumptions are required. and the solutions apparently approach the exact
solution of the Boltzmann equation as the space, angle, and energy mesh
approach differential size. The method can be applied withour significant
restrictions to the problem of calculating criticality, and it can be used for
both homogeneous and laminated shields with a variety of source contigura-
tions, including surface- and volume-distributed sources.

We should note that a finite-difference equation is defined as an algebraic
statement relating values of the variable (in this instance. the discrete
ordinate flux density) from point to point in phase space. To obtain the
difference equations. we section phase space into a finite number of discrete
points and relate the flux density at each point to the flux densities at
adjacent points. As will be shown. this is accomplished by integrating the
conservative form of the Boltzmann equation over a finite-difference cell in
phase space. This procedure replaces the Boltzmann integro-differential
equation with a system of simultaneous difference equations. The latter may
then be solved numerically by an iterative technique.

tThis section is primarily the work of F. R. Mynatt.
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Early applications of discrete ordinates, such as the Wick®—~Chan-
drasekhar® method, were limited to simple problems, such as the transport
of monoenergetic neutrons isotropically scattered in one-dimensional slabs.
The fundamental assumption in the Wick—Chandrasekhar method was that
the integral in the Boltzmann equation could be approximated by a Gaussian
quadrature formula; consequently functions involved in the integral had to
be evaluated only at the angles corresponding to the Gaussian zeros.
Although this original discrete-ordinates method could be extended to
anisotropic scattering, it was limited to slab geometry.

A discrete-ordinates technique that could be extended to spherical and
cylindrical geometries was introduced by Carlson;’ this method is commonly
called the discrete-ordinates S,; method.

Other approaches that can be classified as discrete-ordinates methods are
the direct numerical integration techniques employed by the NIOBE? and
other codes, but these techniques have not been so widely used for shielding
problems.

Early versions of the S, method assumed that the angular flux density
varies with angle as connected line segments in an even number of equally
spaced angular increments. This representation, although reasonably accurate
for homogeneous one-dimensional systems, was found to be unsuitable for
the general problem. Recursions involving many terms are required, and an
extension of the method to two-dimensional geometries is most difficult.
These shortcomings are largely alleviated by the use of the diamond
difference technique described by Carlson, Lee, and Worlton,® which relates
the angular flux density within each particular angular increment in a general
way to the end-point values of the increment. With the diamond difference
method, the Boltzmann equation can be integrated over an angular
increment, yielding, for the derivative terms, a two-poinc difference equation
involving the angular flux density evaluated at the increment end points.

The linear Boltzmann equation is a flow balance for a differential
phase-space cell, treating the events causing an increase or a decrease in the
number of particles contained in the cell. The discrete-ordinates difference
equations can be formulated in an equivalent manner considering a
finite-difference cell (it is presented this way in most references). For some
time it was not clear that the difference equations would, in general,
approach the analytic form of the Boltzmann equation as the finite-dif-
ference phase-space cell approached differential size. Lathrop'® showed that
they would for the one-dimensional geometries, and this is established
implicitly in the following paragraphs in which the difference equations for
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spherical geometry are derived directly from the analytic Boltzmann
equation. Spherical geometry, although simple, serves to illustrate all the
characteristics of the discrete-ordinates equations except for discrete ray
streaming, which occurs only in two- or three-dimensional geomerry.

4.4.1 Transport Equation and Phase-Space Geometry

The derivation of the discrete-ordinates equations is given for the special
case of spherical symmertry in spherical (position) coordinates. With only
slight modifications these results can be made to apply to slab and
infinite-cylinder geometries. This discussion also embodies the central
features of two-dimensional derivations while "avoiding much of the
complexity. The differential phase-space cell is defined by three variables:
the scalar value of the radius, r (Fig. 4.4), the cosine of the angle of the
particle direction relative to the radius, u = (1/r)r*Q, and the energy of the
particle, E; that is,

Differential phase-space cell = dVV du dE

= 47r® dr du dE (4.4-1)

The finite-difference cell is obrained by integrating Eq.4.4-1 over
selected finite intervals of radius, angle, and energy: it is given by

Finite-difference cell = V[ Aup AEg

=i31(r§+l — r})(kd+1 — Bd)(Eg+1 — Eg) (4.4-2)

The following subscript notation is used throughout this section:
subscripts [, D, and G denote functions whose values are associated with the
Ith space interval, Dth angular interval, and Gth energy group, respectively; i
and i + 1 refer to a function evaluated at the lower and upper limits of the
Ith space interval, d and d + 1 refer to a function evaluated at the lower and
upper limits of the Dth angular interval, and g and ¢ + 1 refer to a function
evaluated at the lower and upper limits of the Gth energy group.’

For this problem (one-dimensional spherical geomerry), the following
two analytic formst of the Boltzmann transport equation can be considered:

tDerivation of these equations is given as a problem in the exercises.



RADIATION TRANSPORT 135

d 1 — p?
i &(r,u,E) + (—ri) ;;tb(r,u,E) +Z4®(r,u,E)
+1 b ’ ’ ’ ! !
=S(rwE) + [1 J, T E~Eu,) d(rE' ') dE' dy'  (4.4-3)
and
X

0
£ 3 (POCE)] + 5o (1~ i) B(rKE)] + il E)BlruE)

= S(ratE) + J3 Jy To(r,E' = Eg)®(r,E' w')dE' du’'  (4.4-4)

where ®(r,u,E) = particle track length per unit volume (flux density)
about r, per unit time, per unit energy about E, and
per unit direction cosine about u
Z¢(r,E) = position- and energy-dependent macroscopic total
cross section
Z;(r,E' = E,uo ) dE' dy’ = differential scattering cross section describing the
probability that a particle with an initial energy E’
and direction cosine -y’ undergoes a collision at r,
resulting in a change of flight direccion described
by the cosine of the scattering angle uy, which
places it in a new direction that lies in du about u
with a new energy in dE about E
Ko = cosine of the scattering angle = Q'
2,9’ = final and initial flight direction unit vectors,
respectively
S(r,u,E) = source particles per unit volume about r, per unit
time, per unit energy about E, and per unir
direction cosine about u

Equation 4.4-4 is called the conservative form of the transport equation,
and its integration over any phase-space volume results in interface terms,
which may be identified as leakage terms, that satisfy the divergence
theorem exactly. As a consequence the conservative equation is the preferred
formal basis for numerical analyses.

For convenience we number the terms in Eq. 4.4-4 consecutively so that
it becomes

Tl + Tz + T3 = T4 + TS (44-43)
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4.4.2 Derivation of Finite-Difference Equation

The discrete-ordinates difference equation is obtained by applying the
following integral operator to the transport equation (Eq. 4.4-4) in a manner
consistent with the classical technique for obtaining difference equations:

Integral operator = J;EV[ fu€AuD fEeAEG 47nr® dr du dE (4.4-5)
This operator integrates each term of the transport equation over the
ditference cell. [The integration limits are expressed symbolically by xeX,

which implies a definite integral with respect to the variable x over the
interval X.] Application of the operator to the first term of Eq. 4.4-4 gives

_ ﬁ_a_ 2 2 ,
T, = LVI LAHD LGAEG 55 [ ®(npE)] 4r? dr du dE (4.4-6)

which when rearranged becomes

- 9 2f o : ,
T, =47 j:eVI LeAuD” 3, [r EeAEGCb'\r,,u,E) dE] du dr (4.4-7)

The integral of che flux density over the energy group G may be identified as
the group angular flux

Pg(ru) = fEeAEG ®(r,u,E) dE (4.4-8)
in which case Eq. 4.4-7 becomes

0
T=4f df—zdn(‘d 4.4
! i HeAuDu H reVlar' [r G\r,#)] r ( 9)

The volume integral in Eq. 4.4-9 can be modified and evaluated in the
following manner:

3
Lv,a_, [ @G (r.u)] dr=frep.ld[r2c1>c(r,u)]

=1l Qg i+ (M) — i g ilu) (4.4-10)

where @G i+ (1) = @G (ri+1 .#) and D¢ (1) = g (riu).
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Substitution of Eq. 4.4-10 into Eq. 4.4-9 yields the following expression for
the first term:

T, =4n quA#D uri, @G i+ (1) du — 4 fueﬂuD pr} G, i(k) du (4.4-11)

It follows from the mean-value theorem that any integral can be approxi-

mated by
:,1x flx) dx =% f(X) Ax (forx, <X¥<x;,and Ax =x, —x;) (4.4-12)

The parameter.X may be adjusted to give the equality; for well-behaved
functions, the closer ¥ is to the true mean, the better the approximation.
Applying the mean-value theorem to Eq. 4.4-11 to evaluate the solid-angle
intervals results in

T, =4n(@p r%, ®G i+1,p &up —Bp 1} ®G,ip Aup) (4.4-13)
where &g ;p = ®¢ ;(Ep) and Hp is a mean-value approximation for the
direction cosine over the direction increment Aup. Identifying the surface

areas of the volume increment by

14, = 47‘{1’2

Al'+1 = 4"7‘%_{,1 (4.4'14)
yields the final form for the first term:
T, =8p Aup(Ai+) Pg,i+1,p— 4i®G,i,D) (4.4-15)

The integral operator (Eq. 4.4-5) is next applied to the second term in
Eq. 4.4-4, and the result is rearranged:

— i 2 1

If we introduce the group angular flux as before, Eq. 4.4-16 becomes

- 0 2
T, = 4”.Lv, rdr LEL\“D % (1 —p?) dg(ru)] du  (4.417)
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The integration over u is accomplished according to the procedure suggested
by Eq. 4.4-10 with the following result

T, =47 [J‘reV[(l - #éi-l ) q)G,d‘*'l (r)r dr
- reV](l - l-‘?{)qjc,d(r) 4 er (4'4-18)

The remaining integration over the radius variable is performed using the
mean-value approximation (Eq. 4.4-12)

Ty =47[(1 = pgey) OG d+y,1 71 A1y — (1 = 13) ©G 4,1 77 Ar)] (4.4-19)
Equation 4.4-19 reduces to a two-point difference in the angle index

Ty = (Brd+1 9G,d+1,1 = Br,d $G,d.1) (4.4-20)
if a curvature coefficient, By 4, is defined by the expression
By,d = 4nrp A7) (1 - pg) (4.4-21)

Consistent with the conservation property of the technique, Eq. 4.4-19
or Eq. 4.4-20 gives an overall neutron balance. This is apparent since a
summation of Eq.4.4-19 over M direction increments Aup vields
(1 — pi+1) Pr,6,m+1 — (1 — i) ®r,c,1 ], which is identically zero since
Mr+y = —1 and u; = +1 (M is the total number of angle increments).
Equation 4.4-21, which defines the curvature coefficients, can be recast in
the form of a recursion relation that involves the coefficients By g+, and
By 4. First, By g4 is subtracted from By, 4+, (where By 4 and By 4+, are given
by Eq. 4.4-21}:

Bl d+1 ~ Bl 4= — 4w Arg(ud,, — Ha) (4.4-22)
We assume that 7; in Eq. 4.4-22 is the arithmetic mean: that s,

= _Ti+1 g

Then it follows that
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Following similar arguments, the factor (#%4, — u%) can be expressed as

(4F+, — H3) = 28p Apg (4.4-25)

Introducing Eqs. 4.4-24 and 4.4-25 into Eq. 4.4-22 yields the fonllowing

recursion relation:

Brd+\ — Br,d = —4n(rf; —r} ) ip Aup (4.4-26)

The final form for the recursion relation is obrained by introducing the cell
areas A;+, and A; (from Eq. 4.4-14) and rearranging:

B d+1 = Br,d —up Aup (Aj+y — Aj) (4.4-27)

where By pm+1 = 0. Equation 4.4-27 is the form of the curvature coefficient
found in the literature. The only approximation made in the preceding
derivation is in the application of mean values.

When the integral operator, Eq. 4.4-5, is applied to the fifth term of
Eq. 4.4-4 (the inscattering integral), the result is

- +1 oo
TS = freV[ fpsAuD fEeAEG -1 fo Zs(r,E’ - E,[.lo)
X ®(r,E'\u') dE' du' 4nr* drdudE  (4.4-28)

The differential scattering cross section can be approximated by a truncated
Legendre polynomial expansion in the cosine of the scattering angle:

N
Zi(rnE' = Epo) =5 L Tn(r,E' > E) Pp(no) (4.4-29)

ST

where the Z" values are Legendre coefficients of the expansion. The
Legendre polynomial, P, (i), of the scattering angle cosine, uq, is related to
the initial and final angle direction cosines, u,u’, by the addition theorem for
Legendre polynomials,t which for spherically symmetric geometry is simply

Py(ro) = Pp(u) Pn(n') (4.4-30)

tThe addition theorem is quoted in Appendix D.
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In adapting Eq. 4.4-28 to a multigroup calculation, the integrals over all

incident energies and all incident angles are replaced by sums ot integrals
over the primed phase-space cell. Symbolically this is denoted by

Jeeary fIE') dE'

O
w I

Jy fiE") dE' =

+1 . M
Illf(l-ll) du' = D'z=1 Iu'eAu'D f(#’) du’ (4.4-31)

where L and M signify the number of energy groups and the number of
angular increments, respectively.

Combining Egs. 4.4-29 and 4.4-30 wicth Eq:. 4.4-28, expressing the
incident energy and angle integrals by Eq.4.4-31, and evaluating all
remaining integrals by the mean-value theorem yields (after considerable
rearrangement of terms) the following forms for the inscattering integral:

Vidup § § ni ¥ _
Ts = : 2# G’2=1 Eo Po(Bp) Z¢'>c Z_ICbI:G'.D' Pnitp') Aup’
V]A[.ID n,I " 1.1
- — GE”Z_J Palup) T o /7 o (4.4-32)

where Z?J'[-'G is the nth Legendre moment of the multigroup scatrering

cross section (multigroup macroscopic transfer coefficient), defined by

EE -c = [477 reVy fEeAEG fE'EAEG' zn(")E' - E)
x [1' ®(r,E'W') P,y (') du' dE’ dE r* dr)
X[frEVI fE'eAEG' .tl Q(r,E'u') P ( ) du' dE' r? dr] (4.4-33)

and jf ¢ is the nth Legendre coefficient of the angular dependence of the
group flux density, calculated from
M
e DZil ®; ¢’ p' Pullp’) Aup’ (4.4-34)

Application of the integral operator (Eq. 4.4-5) to the removal term
(third term) of Eq. 4.4-4 gives

Ty = Sevy Jienup Jeeacg To(rE) @(ruE) 4mr? dr dudE  (4.4-35)
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The evaluation of Eq. 4.4-35 requires some effort to avoid the
assumption of angle—energy separability in the weighting of the multigroup
cross sections. As the first step in evaluating Eq. 4.4-35 in terms of a cross
section that is independent of angle, the energy integral of Eq. 4.4-35 is
written as

"rg =J‘E€AEC Et(rlE) (b(rrp'rE) dE

= E&(r) ®s(ru) — R (4.4-36)

where R is the correction factor that is to be determined and Z§&(r) is the
flux-density weighted group-G total cross section defined by

Jeeneg Zt(r,E) j° (r,E) dE
Jj°(r.E) dE

TL(n = (4.4-37)

in which j°(r,E) is the zeroth Legendre coefficient of the angular dependence
of the flux density; j°(r,E) is identical to the differential flux density,
®(r,E).

Rearrangement of Eq. 4.4-36 provides an explicit expression for R:

R =ZE(r) @ (ru) — Jeearg S4(r.E) ®(rwE)dE  (4.4-38)

The correction factor, R, is determined by expressing the angular flux
densities as truncated Legendre series and then combining the two terms that
comprise Eq.4.4-38. The truncated Legendre series representation of the
flux density is |

N
®(r,,E) 522"; L m(n,E) P () (4.4-39)
n=0

When Eq. 4.4-39 is substituted into Eq. 4.4-38, the result is

N
2n+1 .,
R= E&(r) 2 2 J&(r) Pn(#) - fEeAEG Z:t(rrE)
n=0

N
m+1
xZO ”2 Mr,E) P, (u) dE  (4.4-40)
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which can be written as

N
2
R=HZO'"§1 [Z&(r) = Z&(7)] J&(r) Py(w) (4.4-41)

where
J&(1) = Jeease /"(nE) dE
and the energy moments of the cross section are defined by

JEeaEG Z4(r,E) j*(r.E) dE
Jetr)

Z&(r) (4.4-42)

Substitution of Eq. 4.4-41 into Eq. 4.4-36 vyields the final form for the
energy integral:

;\r
2n+1 |
75 = T5() @girm) 2, 2o jA() Palu)
n=0

N
2n+1 .
- 2 F 3500 — TG0 ) Pals) (4443

With this form for the energy integral in Eq. 4.4-35, the remaining
integrals are evaluated by the mean-value approximation: the result is

7

2n+1 -~
B z 2 (ZE,I - EE",I)J?;,I inD}] (4.4-44)
n=0

The series in Eq. 4.4-44 is verv similar in form to the inscattering integral
term (Ts) and may be included there by replacing ZE"[_,G in Eq. 4.4-32 with

zg-[_(réod) = zg!_)c +(2n+1) (BL ;- ZE )b o1 (4.4-45)

where 5G,G' =1 i#f G =G and 0if G’ # G. The modified removal term then
has the desired form

Ty = ViAup Z¢ 1®¢ 1,0 (4.4-46)
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Application of the integral operator to the source term of Eq. 4.4-4 is
straightforward since, with the exception of multigroup constants, the
mean-value approximation is used for all variables. The final result for a
general fixed source is

Ty =ViAup Sy gD (4.4-47)

If multiplication (fission) is present, the source term is represented by

S(r,u,E) = kl X(E) Jy vEArE" °(r,E) dE’ (4.4-48)
e :
which gives
XG L
= ' ;0 ' -
Ta = Vyhup koss GEI G KR IRe (4.4-49)

where ke ff = effective multiplication constant of the system
Z{G = macroscopic fission cross section at energy G’
"v = number of neutrons per fission by neutrons of energy G'
XG = fission spectrum defined by

XG = fEeAEG X(E) dE

Jeearg VENE) 32,
ire'

vE{,Gr =

The discrete-ordinates difference equation is obtained by substituting the
derived expressions for each of the five terms into Eq. 4.4-4 and then
dividing through by Aup. The result is

_ 1
up(Ai1®c i+1p —Ai%c,iD) +_A#D (Bg+1 ®c 1p+1 — Ba®g 1,4)

N

Vi L
t - - nlimod
+ViZ5 126,10 = VS, 10+ =5 L Palip) B TEAT )

M
X zlq)I,G',D'Pn(ﬂD') Aup'  (4.4-50)

-
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Although derived for spherical geometry, that is, for A;= 4nr} and V;=
(4m/3)(r}y, —1?), Eq.4.4-50 is the general discrete-ordinates difference
equation for one-dimensional geometries. The equations for the other
geometries can be obtained from Egq. 4.4-50, with A;=1.0 and V; = Ar; for

aslab and A; = 27r; and V= w(rk | — r}) for a cylinder.

4.4.3 Numerical Solution of the Discrete-Ordinates Equation

Equation 4.4-50 contains discrete flux-densitv variables having both
centered and end-point subscripts. This in effect increases the number of
unknowns such that an insufficient number of determining relations are
available for their solution. This difficulty can be resolved by relating the
centered and end-point flux densities in some consistent fashion. The
diamond difference technique is the most widely used method for this
purpose and includes two relations for the spatial variable,

®c 1D =APc ey pt(1-A)dg ;p (for u> 0) (4.4-31)
and

®c1p=(1-A4) 2G4, p + A% ;p (foru<0) (4.4-52)
and a single expression for the angular variable

qDC,I,D = B(pc,f,d‘*'l + (1 - B) (I)G,I,d (44-53)
where A and B are constants that can be assigned values of the interval
(1/2,1). When A = B =1/2, Egs. 4.4-51 and 4.4-52 are the same for all values
of # and, together with Eq. 4.4-53, are known as the ordinarv diamond
difference equations, which we rewrite:

CbG,i+1,D = zq)G,I,D - q)G,i,D (for ip > 0) (4.4-34)
or

®cip=2%c 10~ PG+, 0 (forBp <0 (4.4-33)
and

bc.rd+1 = 2%¢,1,0 — ¥c,1,d (4.4-56)
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These equations form the basis for most current computer solutions. For a
spatial sweep when up > 0, Eqs. 4.4-54 through 4.4.56 are combined to
provide the following explicit expression for the centered discrete-ordinate
ﬂux, QG,I,D:

ch’I’D = [TID(AHI + Ai) ‘DC,;',D + (I/A“D)(Bl,dﬂ + BI,_d) QC,I,d

+ ViSg,1,0] [AD(24i+1) + (2Br g+ /Bup) + VI I 1] (4.4-57)

where the source term S 1 p includes the fixed source and all inscattering
sources. For a typical spatial mesh sweep (fp > 0), Eq. 4.4-57 is used to
solve for the centered flux ®¢ j p. Then the end-point fluxes ®¢ ;4 p and
dG 1,4+1 are calculated by Egs. 4.4-54 and 4.4-55, respectively. The next
centered flux ®; 14, p is then calculated again with Eq. 4.4-57 and so on. If
the flux is decreasing so rapidly that the centered flux ¢  p is less than
one-half of either previous end-point flux, @¢ ; p or ®¢ 1 4, then the newly
calculated end-point flux, @5 ;4+; p or ®5 4+, will be negative. This
phenomenon is called diamond difference breakdown and will result in a
meaningless positive—negative oscillation of the calculated fluxes. The
calculation may be modified by refining the space or angle mesh or both to
remedy this, but this would necessarily increase the computational time.
However, most problems are reasonably well behaved except possibly for a
few points. A technique called negative flux fix-up has been used where
negative values occur. The troublesome fluxes are immediately recal-ulated
with the step difference equations, which always yield positive fluxes.

If A= B=1in Eqgs. 4.4-51 through 4.4-53, the step-function relation is
obtained which equates the centered fluxes to the appropriate end-point
fluxes. The step difference equations are:

¢G,i+1,D = q)G,I,D (for gp > 0) (4.4-58)
or
bcip=%cp (forEp<0) (4.4-59)
and

¢ rd+1 = %c,1,D (4.4-60)
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An explicit expression for the centered flux ®g ;p is obtained for the
Mp > 0 spatial mesh sweep by substituting Eqs. 4.4-58 and 4.4-60 into
Eq. 4.4-50. The result is

q) _FpAi®c,ip + (1/Aup)(B1,a®q,1,4) * ViSc 1D
¢LD HpAiry * (Bp g+ /&up) + V; 2 |

(4.4-61)

These difference equations are solved by the same calculational sequence
described earlier for the ordinary diamond difference equations. The
step—function relation is less accurate than the ordinary diamond difference
scheme for the same mesh: however. it has the advantage of always giving
positive flux densities for positive sources.

The choice of the discrete directions plavs an important role in the
discrete-ordinates S, method. It does not appear that a most accurate (or
best) quadrature scheme for a specific problem can be selected in advance.
The efficiency of a given set of discrete directions (quadrature set) depends
on problem parameters, such as geometry, optical thickness. energy-group
structure, spatial mesh size, etc., and a generalization of these dependencies
is not possible.

The discrete directions and associated weights (which represent solid
angle) define the quadrature used in the inscattering integral: the directions
also define the mean values for the angles, such as &p, and thus affect the
approximations in the convection term.

In all S, codes the discrete directions are represented as points on the
surface of a unit sphere located at the point in space for which the flux
density is to be defined and oriented in a fixed manner with respect to the
coordinate system. The points or directions are located on the sphere
symmetrically with respect to the three planes defining an octant such that
the point description of one octant defines the whole sphere. This is not an
absolute necessity but is usually required because of reflecting boundaries.

The more recent S, codes allow specification of direction weights as well
as the directions themselves. Lee® developed an elegant method of areas
which computes directions and direction weights that are symmetric with
respect to rotational interchange of the axes of the unit sphere. Although the
directions and weights in this method are somewhat adjustable. the best
results occur with the recommended values, which satisfy various approxi-
mate moment conditions and asymptotic theories. The area method has the
advantage of rotation symmetry and the important advantage of all positive
weights for any order of §,,.
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Although rotation-reflection symmetry has desirable qualities, only
three-dime nsional calculations would benefit from full symmetry: two-
dimensional problems thus require twofold symmetry, and one-dimensional
problems require no symmetry conditions within the octant. Thus for one-
and two-dimensional geometries, and especially for problems where other
conditions outweigh the symmetry considerations, some liberty in choosing
directions may be exercised.

The selection of a set of directions and the weights (biasing scheme) is
particularly important and is geometry dependent. The recommendation of
the programmer should be followed when his machine program is used. A
bad direction set will lead to implausible flux densities in particular
directions.

A typical computer solution of the discrete-ordinates problem is a
procedure for iterating the solution to some prescribed degree of conver-
gence. The sweep of the mesh points (i.e.. the sequence for moving through
the discrete points) is carefully ordered to follow the neutrons {or gamma
rays). For shielding problems all particles undergoing scattering will always
be degraded in energy. Therefore the calculation will begin with the highest
energy group (G =1) and progress sequentially through the lower energv
groups. The angular sweep is performed in the direction of increasing D
(decreasing fip) beginning with D = 1, which for most penetration problems
corresponds to the most important direction. The spatial sweep begins at a
boundary along which the inwardly directed flux values are specified, and
the sweep is made to the other boundary and then repeated for the next
angle. The spatial sweep for negative iy begins at the other boundary, at
which point the reentrant fluxes are usually specified as zero, and proceeds
to the source boundary. After the spatial sweep has progressed through all
angles at one energy, the next lower energy group is treated in a similar
manner and so on.

In the solution of Eq. 4.4-57 or Eq. 4.4-61 for the centered flux ®¢ ; p,
some of the required discrete-ordinate fluxes have not yet been calculated:;
e.g., the within group scattering involves some as vet undetermined fluxes.
those which correspond to angles tip’, where D' = D. Therefore the solution
is obtained through the process of inner iteration, whereby values for the
unknown fluxes are taken as their previous iterate estimates. Details of the
various iterarion schemes and of the related convergence problem are
omitted here. Several iteration schemes are described by Mynatt'! as part of
a detailed development and experimental evaluation of the two-dimensional
equation in his dissertation. An iterative technique called the synthetic
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method was developed by Kopp'? to calculate neutron transport and has

13

been adapted by Gelbard and Hageman'® to accelerate convergence of S,

calculations.

4.4.4 Advantages and Disadvantages

From the results of calculations made with S, codes. the discrete-
ordinates methods appear to have the following advantages for shielding
applications:

1. Depending somewhat on the sophistication desired, the S, calcula-
tions are easy to prepare.

2. The method is not stochastic, and flux-density errors at deep
penetration are systematic rather than statistical.

3. A series of problems having similar characteristics benefit from
knowledge of flux densities calculated in a similar case.

4. Secondary gamma ravs can be calculated by the same method, either
as a second calculation or simultaneously with neutrons. The gamma-ray
yield distribution may also be made a function of the energy of the captured
neutron.

5. The range of neutron energies from highest fission energies to thermal,
including upscattering in energy, can be calculated by the same method.

6. The one-dimensional calculations are much faster (in computer time)
than similar Monte Carlo calculations (see Chap. 5). In two dimensions the
type of problem and the desired answers determine whether S, or Monte
Carlo is better.

The following disadvantages are evident, but proponents believe that
additional development can alleviate or eliminate them:

1. Convergence of an iteration method is not always uniform and
well-defined. The best method currently used is to determine from each
iterate the maximum deviation in the scalar flux density at any point in
space relative to the previous iterate value. Iterations proceed until the
maximum deviation falls below a specified limit.

2. Flux-density aberrations are frequently observed in two dimensions
owing to localized sources and the propagation of neutrons in discrete
directions (this is sometimes called the ray effect).

3. No basic ground rules exist to define for a particular problem the best
direction set, space mesh, multigroup structure, and polynomial expansion
limit.
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4.5 MOMENTS METHOD

The method of moments was formulated by Spencer and Fano'!“ and
was the first technique to be successfully applied to the Boltzmann equation
for solutions useful to reactor shielding. In addition to its historical
prominence, this technique has some important advantages not shared by
other methods, one being that foreknowledge about the behavior of the
solution can be incorporated analytically in a very natural wav, thereby
often reducing the effort required to achieve a specific result or a desired
accuracy or both. Another is that the type of recursion relation developed
precludes a truncation at a crucial part of the calculation; that is, a finite
number of moments can be calculated exactly (ignoring errors due to the
numerical solution) without considering the influence of higher moments.

In the moments method one considers first the formal definition for the
moments and the manner in which they relate to some system parameter of
interest, say f(x). If f{x) is defined for all x within the interval A <x <B,
then the nth moment of f(x) is

M, = ff x" fix) dx (4.5-1)

provided the integral exists. Only nonnegative integer values of n are
considered in practical applications.

Definite interpretations may be associated with the various moments.
For example, the zeroth moment is a normalizing number, and the first,
second, third, and fourth moments are closely related to the mean value,
variance, skewness, and kurtosis, respectively. In the physics of statics and
dynamics, the first moment of the mass is the center of gravity and the
second is the moment of inertia.

No such particular meanings are given to the moments as they are used in
the solution of radiation-transport problems (although the second moment
of the flux density is proportional to the Fermi age). Rather, they are
regarded as a transform, much the same as Laplace, Fourier, or finite
trigonometric transforms. The major portion of the calculation is performed
in terms of the transform (moments) space; then, by an appropriate
inversion, the desired answer is reconstructed.

The application of the moments method to the solution of the
Boltzmann transport equation is limited with respect to the source—shield
configuration. It is usually applied only to infinite homogeneous media with
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plane, line, or point sources. The method as applied to gamma rays has been
described by Fano, Spencer, and Berger!® and by Goldstein and Wilkins,' ¢
and, as applied to neutrons, by Goldstein.!” The technique is basically the
same for both neutrons and gamma rays, and a description for one should
suffice for the other. The most significant differences lie in the treatment of
the scattering integral and in the more complex nature of the neutron cross
sections. The following description is for slab geometry in terms of the
simpler gamma-ray problem in which the dependent variable is the angular
energy-flux density, I(x,A\,u) and the Compton wavelength is taken as the
energy variable.
Consider the following specialized form of the Boltzmann equation: t

al
5;+Z(?\) I(x,t\,,u)=f f I, N ek (),

S1+N -A-a-Q)
27

X Q' d\' + S(p) 8(x)  (4.5-2)

where I(x,\,u) dE du = energy-flux density (MeV per unit area and time)
due to gamma rays with energies in dE about E and
direction cosines that lie in du about u
x = spatial coordinate in slab geometry
\ = gamma-ray energy after scattering expressed in terms
of its Compton wavelength
A" = gamma-ray wavelength prior to scattering
u = direction cosine with respect to the x-axis
Z(\) = total macroscopic cross section evaluated at the
energy corresponding to the gamma-ray wavelength,
A

2°Q' = cos 6 = cosine of the scattering angle between initial
and final gamma-ray directions, where Q' and Q are
the initial and final unit direction vectors, respec-
tively
€ = electron density
(N ) =27 (AWX) o(N,6)
o(N'.8) = microscopic cross section per electron for Compton

scattering given by the Klein—Nishina formula

tThe derivation is given as a problem in the exercises.
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§(x) = Dirac delta functiont that locates the plane at x = 0
5(1+A —A—-9Q-Q')=Dirac delta functiont that prescribes that the
' angular change (22* Q') be consistent with the change
in wavelength (A —\') as given by the Compton
scattering equation, A —\' =1 — -9/
S(A\.u) dE du = plane source of gamma rays (energy emission per
unit area and time of gamma rays with energies in
dE about E and direction cosines that lie in du about

u).

Solving Eq. 4.5-2 by the moments method is similar to using the
spherical-harmonics treatment (see Sec. 4.3) in that the angular energy-flux
density is first expanded as a Legendre polynomial series:

D 2+ 1
IeAw) = D) o Fi(w) Bya) (4.5-3)
70

where the Legendre coefficients are given by
L) = J1 IxAom) Pyiu) du (4.5-4)

It can be shown that Iy(x,\) is the energy-flux density and that I, (x,}A) is the
energy-current density.

With this series representation for the angular energy-flux density, the
integro-differential equation (Eq. 4.5-2) with the dependent variable I(x,A,u)
and three continuous independent variables can be transformed into a
sequence of integro-differential equations for the variables I;(x,\), which are
dependent on only two independent variables. This desired result is obtained
by multiplying Eq. 4.5-2 by the Legendre polynomial Pj(u) and integrating
over all solid angle. The result (after some manipulation) is the following
sequence of equations: :

j+1 0L+, + j o 9
%+1 ax 2 +1 o=

$ T IxA) = S;(0) 8(x) + Jy P1+N —N)

X ek(N'\) Ii(x,\') AN (j=0,1,2,....00; (4.5-5)

tProperties of the Dirac delta function are given in Appendix D.
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The spatial variable in this sequence of equations is eliminated by
applying the moments of the Legendre coefficients of the angular energy-
flux density, which are defined as

Eg+l +on
bri(\) = —— Ju Li(x\) x" dx (4.5-6)

n!

where Z, is the total macroscopic cross section evaluated at the source
energy. The equations satisfied by b,j(A) are obtained by multiplying
Eq. 4.5-6 by 8% (x"/n!) and integrating with respect to x from —oo to +o.
Because of this integration over all space, the application of the moments
method to the transport problem becomes restricted to the infinite-medium
geometry. With the use of Eq. 4.5-6, the original Boltzmann equation can be
reduced to the following doubly indexed sequence of linear integral
equations (the variable upper limit in the integral classifies it as the Volterra
tvpe):

s
TN bufN) = Jo BV A) Pi(14N —X) byj(N) dA'+ 2]T°1 [G+1) bt s

jbny jor ]+ HeSi(N) 8o (4.37)

where j =0, 1, 2, ..., 0, and n=0, 1, 2, ..., . The Kronecker delta function
Spo=1ifn=0,8,,=0ifn#0.

The moments for a given problem can be evaluated by a straightforward
numerical solution of Eq. 4.5-7. The ease of numerical calculation depends
on the form of the source function Si(\). Many problems involve
monoenergetic sources, and the Sj(7\) are given by ?\051-5(7\ — Ng), where A is
the Compton wavelength of the source energy. Since the presence of the
delta function is undesirable for machine calculation, the following trans-
formation is made:

buj(\) = Buj(A) + Ag 8(A—Xo) Cnj (4.5-8)

Introducing the transformation defined by Eq. 4.5-8 into Eq. 4.5-7 yields
the defining equations for B,; and Cy;:

A r ’ /] ! ] Z .
ZBnj = Jy, €R(N' ) Pi{1+N =) Bpj(N) dN' + EJ+—O1 [(j+1)

X Bp.1 j+1 +jBu-1,j-1] + Aok(Ao . N) Pi(1+ho —A) Cy;  (4.5-9)
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SC,i= T, (L2
" 0 (2]+1

Cnotj+1 * 2—]{*-_1 Cn-l,j-l) +295i8no (4.5-10)

The equations that define Cpj are similar in form to the equations that
define byj and Byj except that the inscattering integral does not appear. [t
follows that Ag8(A—Xq) Cpj are the moments for the unscattered-energy-flux
density. Therefore the transformation given by Eq. 4.5-8 separates the
unscattered-energy-flux density (energy-flux density corresponding to Cp;)
from the total energy-flux density (energy-flux density corresponding to
bnj). The solution to Eq. 4.5-9 requires values of C,; as input, and the
calculated moments By; are associated only with the scattered-energy-flux
density. This is convenient since the uncolhded angular energy-flux density,
I%(x,Ap), is easily calculated, and values of Cpj are then umquely
determined.

For a typical calculation, the quantity of greatest interest is usually the
total, or scalar, energy-flux density, [4(x,A). Therefore only the moments
Bno (n=0,1,2,..,N) are required. However, the calculation of a given By;
requires the prior calculation of By.y j+; and Bu.y ;. ; therefore moments
other than the By, moments must be calculated. In general, the moments
Boj (7=0,1,2,....]) can be calculated directly, but a By,j moment cannot be
calculated until calcularions have been made of all the By'j'’s for which
(n+j) — (n' +j') is a nonnegative even integer (including zero) and n’' <n.
Table 4.1 illustrates a typical calculation sequence (for n = 5). As noted, all

Table 4.1 —SEQUENCE OF MOMENTS CALCULATION FOR n =5

B,,j
nmoj=0 =1t j=2  j=3  j=4  j=5

>
"
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the moments shown in the table must be calculated to determine B, for
n<5,
We rewrite the Eq. 4.5-9 integral in the following form:

Z00) v0) = [ HOWA) o) d)' + T(A,) (4.5-11)

where A, = A + nAX
AN = arbitrary increment of wavelength
v(Ay) = ano\n)
H\, N') = ek(N )\, Pi( 140N =),,)
T(An) = [Z6/(2/+1)] [+ 1)Bna j+1 T iBuy j+1 ] + Ao H(Ay,Ap) Crj

This type of integral equation (Volterra type) is characterized by (1) the
limit of integration being the independent variable A,; (2) the value of the
dependent variable v(),) depending on the values of v(X') if \" <A, but not
if N> \n; and (3) T(\,) involving only known or previously calculated
quantities. A numerical evaluation of the integral is required. and several
schemes are available. Regardless of which scheme is used, there are
coefficients M,k such that Eq. 4.5-11 can be rewritten as

n-1
Z(\n) v(\p) = k2=‘.0 H\p Ak ) vAE) My
+ HAp\p) v(Ap) My + T(N,)  (4.5-12)

where

3 -
H()\mkn) = k(>\?‘b>\n) P](1+)\n_}\n) = Z‘ (43-13)

Trapezoidal rule is used for the (n = 1) interval for which M,, = A\/2, and
the following explicit expression for v(}, ) is obtained:

TN ) + H o) v(Ro) (AN/2)

Ar)= 4.5-14)
V) TN ) — (3AM8) ( )
Forn>1, My, = AN/3, and Eq. 4.5-12 is rewritten
b5
T(An) + 1 <gHOm M) v(Ag) Mk
) = (4.5-15)

Z(An) — (AN4)
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The coefficients Mpi for n even are determined by Simpson’s rule. For
n=3, the following coefficients are used: M;, =5/16. M;, =1, and
My, =5/4; for n odd but greater than 3, the integral from Xy to A5 is
evaluated using the special (11 = 3) coefficients, and the integral from X; to
Ay is evaluated by Simpson’s rule. The gamma-ray scattering process is such
that

HOwA\e) =0  (when N, >\, +2) (4.5-16)

Therefore the sums on the index k involve only a fixed number of terms.
Also

H\pN\g) =0 (when X, > Xg +2) (4.5-17)

and the second term in T(A,, > X\, + 2) also vanishes: H(A,,.\;} can be
calculated directly since onlv the Klein—Nishina formula and the Legendre
polvnomials are involved.

At this point we assume that the moments for a given problem can be
calculated and consider the problem of reconstructing the flux densities. It
should be emphasized that the calculation to this point can be performed
with very few approximations.t excluding the approximations involved in
the numerical procedures. The major source of error will lie in the
subsequent reconstruction process since only a finite number of moments
are available. In fact, for a finite number of moments. there is an infinice
number of allowable functions. The problem is basically one of choice: the
selection of a functional form that will come as close as possible to
describing the spatial dependence of I;(x,}).

Two methods have been used to reconstruct the flux densities: the
polvnomial expansion method and the method of undetermined parameters.
Both were developed by Spencer and Fano.'* A more recent description is
given by Spencer.'® The polynomial expansion method assumes that [;(0.\)
behaves roughly as some trial function f(p). where p is measured in mean
free paths at the initial energv:ie., p = Zyx. Then

Li{p.\) = flp) gi(p,N) (4.5-18)

tThese few assumptions can be very limiring, however, since they include the assumptions of
homogeneity and infinite extent of the transporting medium.
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where g;(p,\) contains the \ dependence of the jth coefficient and provides a
correction for the p dependence. If a reasonable choice of f(p) can be made,
then g:(o,\). need be only a gently varying smooth function of p; for
example, a polynomial of degree N in p when (N + 1) moments are available.
The gj(p,7\) could be represented as an infinite series with respect to a set of
orthogonal polynomials of degree n:

/(0N = L Ani(N) pn(p)t (4.5-19)
The orthogonality relation is given by
[ Ppix) P (x) fix) dx = Smm (4.5-20)

where f(x) is a weighting function as well as the trial function f{p). In

practice this representation of gi(p,A) is limited to a finite number of terms

since, given (N + 1) moments, only (N + 1) values of A,;; can be obtained.
The approximation for Ij(p,?x) can then be written

N
Lo\ =f(p),£‘o Anj(\) Py(p) (4.5.21)

where I;(p,?\) is the jth Legendre coefficient of the scattered component of
the angular flux density. This assumes that values of (N + 1) moments By;
are available for the reconstruction of If(p,K), which is accomplished by
evaluating the (N+ 1) coefficient An; in terms of the known (N+1)
moments By for a given value of j. To this end Ij(p,?\) is multiplied by
pm(p) dp, and the product is integrated from —eo to +oo:

AnN) = [T 0N pa(eddo (4.5-22)

The polynomial p,,(p) can be written

pn(@)= L a;pf (4.5-23)

where the g;’s are known parameters for a given type of polynomial. The
expression for Anj(h) then becomes

Anj(A) = .EO a; I L(p.N) pidp (4.5-24)
Jj=

tThe polynomial set (p,,) is any orthogonal set, one of which is the Legendre polynamial set.
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The moments Bj; are defined as
1 (= .
By =7 [ B0 pidp (4.5-25)

Elimination of the integrals between the preceding expressions for A,,]-O\)
and B;;(n) provides the desired relacion

n

Ani(\) = L (i!) ¢;B

L i (4.5-26)

Practical considerations will usually restrict accurate calculation to the
differential energy-flux density I§(p,\), and then only the A,q(X)’s are
required; that is,

N
I§(o,\) = flp) ngoAno(?\) Pn(0) (4.5-27)

where
Apo(N) = EO (i') A;B;o

In principle, A,;(A) for j > 0 can be calculated. However, since the angular
flux density I{x,A\,u) is usually highly peaked in the forward direction, the
series

J
2j+1
Fe ) = D) 22 1560 pyw) (4.5-28)
J=0

converges slowly, thereby requiring a large number of values of If(x,)\),
which, in turn, would require a large number of moments. Finally,
unscattered-energy-flux densities are easily obtained for most simple
geometries and combined with the scattered energy-flux densities:

Io(x,\) = I3 (x,\) + I3 (x,\) (4.5-29)

The polynomial expansion method described in the preceding text is
most often used for reconstructing the energy-flux density of the gamma-ray
problem. This is partly for historical reasons and partly due to the ability of
the method to make full use of largé numbers of moments within the same
systematic framework of analysis. For the neutron problem the selection of
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a suitable weighting (or test) function is not obvious, and the method loses
much of its flexibility.

When the method of undetermined parameters is used to reconstruct the
flux densities, I(p,\) is represented as

Ii{o,\) = ;a,-,-O\) h;i(p) (4.5-30)

where h;j(p) is a function having the general expected behavior of Li(p,\) but
containing one or more undetermined parameters, and the a;; are undeter-
mined parameters that include the X dependence. In particular, let j = 0 and
assume that (N + 1) values of the B, o(A) moments are known; then

(o) = IE aio(\) hig(p) (4.5-31)

The moments corresponding to j = 0 can be written as
1 e . =
Bno(\) = =~ JoBGMN e dp (n=0,12,.N)  (4.5-32)

Substituting Eq. 4.5-31 into 4.5-32 yields the following set of (N +1)
equations:

1 +oo
Bro(\) = — ;a,'o(?\) Jw hig(@) pndp  (n=0,1,2,....N) (4.5-33)

Values of hjo(p) should be selected so that the above integration can be
evaluated either analytically or numerically, and, if (N + 1) moments are
available, then a total of (N + 1) undetermined parameters are allowed.

Problems not amenable to other methods can sometimes be solved by
the method of undetermined parameters because of the much greater choice
that can be made in the h;(p) values. As a result this method has been more
widely applied to the neutron-penetration problem. A characteristic of the
method is when it fails, it fails catastrophically, leaving no doubt about its
applicability. Usually not all the moments available are needed to obtain a
satisfactory solution. The surplus moments can be used to check the
accuracy by constructing moments corresponding to the unused moments, a
feature not so easily accomplished by the other methods.

The application of the moments method to neutron-transport problems
is similar in many respects to the gamma-ray formulation. The primary
differences are the use of differential neutron-scattering cross sections rather
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than Compton scattering cross sections, particle-ﬂux density, &(r,E, Q),
rather than energy-flux density, and the use of neutron lethargy in
performing integrals over energy.

The spatial moments in the neutron case are defined as

Ini(u) =% J= I(u,x) xn dx (4.5-34)
and the set of interlocked integral equations has the form

0clae) Int(u) = 21 B S Lug(u') o i) fiod' 1) Pile) s

+

1 [T+ Vpoy per Yy 1] + Spa(u) (4.5-35)

where u is a variable based on the neutron energy, u = In (E/E,); & is the
cosine of the scattering angle in the center-of-mass system: and « is the
cosine of the scattering angle in the laboratory system.

Differences also appear in the means of reconstructing the flux density
from the moments. For neutrons the results are more sensitive to the choice
of f(p).

Cross sections change more rapidly with energy for neutrons, and the
scattering integral limits vary from element to element. For hydrogen the
scattering integral may be integrated directly by numerical means as was
done for gamma rays. For all other elements, three optional approaches are
available, depending on whether energy degradation in scattering is treared
exactly or approximately or ignored entirely.

For sufficiently large nuclei, the energy degradation may be ignored. The
minimum mass for which this approximation can be made will depend on
the other constituents of the material. For example, energy degradation by
oxygen may be ignored in the presence of hydrogen but not in a thick shield
consisting primarily of heavy elements.

The approximate treatment consists in ignoring degradation for heavy
elements but accounting for it with hydrogen scattering. This treatment has
been found to give results within 20% of the exact treatment for a mass of 6
or 7 amu where hydrogen accounts for most of the slowing down. Similar
accuracy is obtained at 10 to 20 mean free paths for atomic masses above 20
in the absence of lower weight elements. A method for a more exact

treatment of degradation was developed by Certaine.!?
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4.6 APPLICATION OF DIFFUSION THEORY

An approach to the particle-transport problem which neglects the
detailed directional aspects of particle motion comes from diffusion theory.
If we consider the neutron balance in a medium, the equation of continuity
is a statement that the neutron gains are equal to the losses in a given volume
element. We assume no energy degradation and that all neutrons have one
velocity.

[ rate of gain } _ [ source per ]

per unit volume unit volume

_ [ absorption ] B [ leakage ]

per unit volume per unit volume

In four-dimensional phase space, (r,t), this statement becomes

a??”=$@¢)—2a®@ﬁ-V°ﬂnn (4.6-1)
where n(r,t) = neutron density (neutrons/cm?)
T, = macroscopic absorption cross section (cm™!)

S(r,t) = general source term (neutrons cm™ sec™)

®(r,t) = total neutron-flux density (neutrons crm™? sec’™!)

J(r,t) = net neutron-current density (neutrons cm™ sec™')

dn/dt = time rate of change of the neutron density (neutrons cm’

sec’ ')

24 ®(r,t) = loss of neutrons due to absorption (neutrons cm”
¥ +J(r,t) = loss of neutrons due to convection (neutrons cm”

3

3
3

sec’!)
sec’!)

Equation 4.6-1 can be regarded as a precise relation that can be applied
without restriction to the general problem of particle transport. However, a
basic limitation in its use is that, except for certain very restricted situations,
a tractable form for the net neutron current, J(r,t), does not exist. If we
assume that absorption is small compared with scattering and confine
ourselves to steady-state (time-independent) conditions, the net current
density depends on the change in neutron flux with position

J(r) = — D V&(r) (4.6-2)

where D is the position-independent diffusion coefficient (cm) and V&(r) is
the gradient of the total neutron flux. It is noted that with the steady-state
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assumption, phase space has been reduced to three position variables
denoted by the vector (r). Equation 4.6-2 is known as Fick’s law, which
simply states that the net diffusion of particles (or molecules) in liquids and
gases will be from regions of high particle density to regions of low particle
density, with the gradient of the particle-flux density as the driving
potential.

Substitution of Eq. 4.6-2 into the steady-state form of Eq. 4.6-1 leads to
the diffusion equation

DVid(r) - Z,®(r)+S(r)=0 (4.6-3)

Equation 4.6-3 has the same form as the steady-state form of the P,
approximation to the spherical-harmonics treatment of the Boltzmann
equation (see Sec. 4.3).

Certain limitations are inherent to diffusion theory: (1) the scattering
process is assumed to be isotropic in the laboratory frame of reference (the
use of a “transport-corrected” diffusion coefficient, D = 1/3Z;,, removes
this limitation); (2) the directional distribution of the particle-flux density is
nearly isotropic; (3) the diffusing medium must be a poor absorber, i.e.,
Z, < Z;; and (4) the resules are invalid for regions within two to three mean
free paths of boundaries, strong sources, and strong sinks. The existence of
these limitations is a clear indication of the approximate nature of diffusion
theory insofar as the physical situation is concerned. In reality, the preceding
conditions of applicability for diffusion theory are seldom satisfied.
However, with the judicious selection of system parameters, the diffusion-
theory solutions of certain problems* compare favorably with solutions
obtained with more exact theories or with the physical situation itself.

A neutron shielding problem would involve a continuous energy
spectrum over a wide energv range (typically from a low keV region to
10 MeV); thus a group approach is required to adequately describe the
diffusion process. The energy range is divided into G energy groups with the
gth group corresponding to the energy width Egsy — Eg.

The group-diffusion equation for the gth group is given by

Dy V2 ®y(x) — T4 &(r) + Sg(r) = 0 (4.6-4)

tFor example, diffusion theory is used in fast reactor shielding design since the leakage spectrum
peaks below 0.5 MeV and the materials involved are nonhydrogenous (sodium and graphite}. Also, the
small source (reactor core) requires two-dimensional calculations, which are much simpler with
diffusion theory.

4
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where D, = group-averaged diffusion coefficient

rEer p(E) &(r,E) dE

- _Eg
q’g(’)
®4(r) = total flux density corresponding to the gth energy group (g =
1,2,...,C) -

E
=[5 ®(r,E) dE
. g
Z§ = group-averaged macroscopic absorption cross section

fEig_” T 4(E) ®(r,E) dE

CI’g(l')

Sg(r) = general source termt for the gth group
= [2* S(r.E) dE
4

However, the typical neutron shielding problem is not amenable to solution
by the straightforward application of diffusion theory, because the neutrons
are on the average very energetic and possess a strong forward directional
bias. The limitations cf diffusion theory under these conditions are clearly
violated, and results thus obtained would be meaningless. However, when
applied to certain special problems in combination with other methods,
diffusion theory has proved useful. Applications of diffusion theory to the
neutron shielding problem are discussed further in Sec. 4.8.

The use of diffusion theory to predict gamma-ray energy-flux densities
seems to be unjustified on superficial examination of the gamma-ray-trans-
port phenomenon. Certainly deep penetration by gamma radiation cannot be
described by diffusion theory, because the resultant gamma-ray-flux densicy
is due to photons that have maintained a strong directional correlation.
However, diffusion theory seems to be adequate for small-to-moderate
penetrations relatively near the source under conditions where the low-
energy end of the spectrum predominates and the scattering is more nearly
isotropic. These restricted conditions exist, for example, for most gamma-ray
heating calculations.

tObserve that the source term includes both particles born in energy group (EgEg+1)and particles
that have scattered into that energy interval from other groups. Thus the set of equations 4.6-4
(g = 1.2,...,G) is coupled through the source term.
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4.7 INVARIANT IMBEDDING METHOD

The method of invariant imbedding is not another method for solving
the Boltzmann transport equation; rather, it is a different fundamental
approach to the mathematical description of particle transport. The method
has for its historical basis the early works of a Russian astrophysicist,
Ambarzumian,?? whose interest was in the transport problems of astro-
physics. Recent investigations of Bellman, Kalaba, and Wing®! and Wing??
have shown that the invariant imbedding approach can be applied with
high-speed computers to a much broader class of problems, including the
neutron- and gamma-ray-transport problems encountered in radiation shield-
ing. '

The dependent variables of the invariant imbedding formulation are the
reflection and transmission functions, with the region dimensions (shield
thickness) and the energy and direction of the particle comprising a
six-dimensional phase space. In this context a particular shielding problem is
viewed as being imbedded in a more general class of shields having different
dimensions. Characteristically, and in contrast with solutions of the
Boltzmann transport equation, the invariant imbedding method provides
transmission and reflection information for a large variety of shields as well
as for the specific problem of interest. However, the detailed behavior of the
radiation during transport through the shield is not explicit during the
analysis and for that reason is unavailable, a not too serious shortcoming, if
not a real advantage, for the typical shielding problem. The pertinent
equations can be derived by applying the usual conservation principles of
radiation transport to a shield system, the dimensions of which are allowed
to vary by differential amounts. For simplicity and greater clarity, the
derivations are performed in slab geometry with azimuthal symmetry. Phase
space becomes three dimensional: the shield thickness, X, the energy
variable, E, and the direction variable, u (= cos 8). A schematic representa-
tion of this configuration is shown in Fig. 4.6.

The reflection function R(X;u,E;tg,Eq) du dE is defined as the number of
particles reflected from a slab of thickness X with energies in dE about E and
directions that lie in du about u per incident particle with energy E, and
direction gy the function can be regarded as an angular flux density within
the differential slab thickness dX. The reflection equation describes the
change in the reflection function due to changes in the shield thickness and
is formulated without involving the transmission function. The derivation is
accomplished by equating the difference in the reflection functions for slabs

.
e
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Fig. 4.6—Geomertry for invariant imbedding technique.

of thicknesses X + dX and X with the net change in the reflection function

which results from collisions suffered by the particles within the differential
slab dX:

R(X+dX;p,E;ug,Eq) dp dE — R(X;1,E;p0,Eo) dp dE

dX
= — ZH(X,Ep) R(X;u,E;up,Ep) I-‘_ du dE
0

dX dX .
— ZH(X,E) R(X;u,E;u0,Eq) - du dE + ™ Zo(X;u,Eino,Ep)
0

0 an
+ [ du' [ dE 2,000 E o, Eq) R(Xiw, B E) %’—‘du dE
- 0

ld ' = ! 1 [ ? ’
+f —:: j; dE" R(X;u,E'po,Eq) Zg(X;m,E;u',E") dX du dE
0

ldﬂ' fo y’fﬁ ] = r . 14 7_
+ f B f; dEj; dE" R(X; [E'to,Eo)

X To(X:u" E"w' E') R(X;u,E;u" E") dX du dE (4.7-1)

where Z4(X,E,) is the position-dependent total macroscopic cross section
evaluated at the particle energy Eq and Zo(X;u',E' 1o,Eq) dut’ dE’ represents
the position-dependent differential scattering cross section which describes
the probability that a particle with an initial energy E, and an initial
direction g, undergoes a scattering collision that places it into a direction
which lies in du’ about p’ with a new energy in dE’ about E'.
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The first and second terms on the right-hand side of Eq. 4.7-1 represent
the particle losses due to collisions within dXt (any collision is presumed to
alter the particle’s energy and direction). The first term is the loss of incident
particles scattered within dX such that they do not enter the slab of
thickness X, and the second term is the loss of particles that are scattered
within dX such that they are prevented from emerging from the slab of
thickness X +dX. The third, fourth, fifth, and sixth terms represent the
inscattering gains due to scattering collisions within dX. The fourth term is
the gain from particles that scatter from dX into the slab of thickness X with
energies in dE’ about E' and directions du' about u’ and then are reflected
from the slab of thickness X with the proper emergent angle and direction.
The fifth term is the gain from particles that scatter from the slab of
thickness X into dX with energies in dE' about E' and directions du’ about p’
and then are scattered within dX with the proper emergent energy and
direction. The sixth term is the gain from particles that scatter from the slab
of thickness X into dX with energies in dE' about E' and direction du’ about
p', are scattered back into the slab of thickness X with energies in dE"' about
E" and direction du” about u”, and are finally reflected from the slab of
thickness X with the proper emergent energy and direction. A rearrangement
of terms leads to the usual form of the reflection equation

TiX.Eo) | 2:<x,E>]
1

d 1
~3 R(X;u,E;u0,Eg) = — Z5 (XiM,Esuo,Eq) — [ p
0

dX Mo
O ’ * 14 ! 14
X R(X;u,E;ug,Ep) +f1 du J; dE" Z(X;u' ,E u9,Eq)

1 du’ = i
X R(XuEn' E')— + f d—“-f dE' R(X;u".E"itto,Eo)
M 0 M Jo

0
X Zo(X;mEu' E') + J;l dTl'f’flodu”j;de'j;de”
X R(X;u',E"suo,Eq) To(X;u'" E" ' E') R(X;I-l,E;l-l'l',E") (4.7-2)
with the initial condition that

R(O;u,E;up,Eq) =0 (4.7-3)

tThe flight paths within the volume element dX are dX/u, and dX/u for the first and second
terms, respectively,
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The transmission function T(X;u,E;uq,Eq) de dE is defined as the
number of particles that are transmitted through a slab of thickness X and
emerge with energies in dE about E and directions in du about u per incident
particle with energy E, and direction .

The transmission equation is derived in a manner similar to that used to
derive the reflection equation, making use of the fact that the difference in
the transmission functions for slabs of thickness X + dX and S is due to
collisions suffered by the particles within the differential slab dX. A familiar
form of the transmission equation is

d Z+{X,E
(X,'I-I,E,Ho,Eo) = - __t(—O)'

< T Y =1 ’ !
% o T(XmE;1o,Ep)

0 -
+I1 du"j; dE' Z.(X;u',E i9,Eq)

t oy 1 1 dl-’-' LT N "
X T(X;u,E;u ,E)—+f —f duf dEf dE
Ho Jo u Ja 0 0

X R(X;u',E"spto,Eq) Z5(X;u",E" st ,E')
X T(X;u,E;u'" ,E") (4.7-4)
with the initial condition that
T(0su,E;u9,Eq) du dE = §(t — o) 8(E — Eo) du dE (4.7-5)

The first term on the right-hand side of Eq. 4.7-4 represents the loss of
incident particles due to collisions suffered within dX (any collision is
assumed to alter particle energy and direction). The second and third terms
represent the inscattering gains due to scattering collisions within dX. The
second term is the gain from particles that scatter from dX into the slab of
thickness X with energies in dE' about E' and directions in du' about ¢’ and
finally emerge with energies in dE about E and directions in du about u. The
third term is the gain from particles that are reflected from the slab of
thickness X into dX and are then scattered back into the slab of thickness X,
finally emerging with energies in dE about E and directions in du about u.

The reflection equation (Eq. 4.7-2) and the transmission equation
(Eq. 4.74) are both nonlinear integro-differential equations that for the
radiation-transport problems of nuclear engineering form problems of the
initial-value type. The reflection equation involves only the reflection
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function as the dependent variable; thus it can be solved without
consideration of the transmission equation. The transmission equation
appears simpler in form (fewer terms) but contains the reflection function,
which must be known before a solution can be effected. Therefore a typical
shielding transmission problem (initial value) would involve the solution of a
coupled pair of nonlinear integro-differential equations. This is in contrast to
the Boltzmann equation, which is a linear integro-differential equation and
for the same application forms a boundary-value-type problem.

Analytical solutions of the reflection and transmission equations for
practical problems are not possible because of their complexity. Conse-
quently all useful solutions are numerical in nature and are accomplished
with digital computers. The numerical techniques are similar to those used to
solve the Boltzmann equation by the discrete-ordinates technique, in which a
specific combination of the independent variables defines discrete values of
the neutron flux &g 1 p (see Sec. 4.4 for a more complete description).

In invariant imbedding specific combinations of the energy and direction
of the particle define the ith particle state. In this context the discrete
reflection variable R;;(X) is the number of particles in state 7 reflected by a
slab of thickness X due to a unit source of particles in state ; that are
incident on the slab. The discrete transmission variable T;j(X) is the number
of particles in state i that penetrate a slab of thickness X due to a unit source
of particles in state j that are incident on the slab. The reflection and
transmission equations in discrete-variable notation, along with a general
description of the numerical techniques used in their solution. are given by

Mathews, Hansen, and Mason.?3

The paper of Mathews et al. also describes the application of invariant
imbedding to practical energy-dependent neutron shielding problems, such as
for a thick water shield and a thinner heterogeneous iron—polyethylene—
iron shield. A very detailed set of reflection and transmission equations in
particle-state notation for the monoenergetic-neutron-transport problem in
slab geometry is given by Mingle,?* who includes applications of the method
of escape probabilities, blackness coefficients. and critical-size determina-
tions. Solutions for the gamma-ray-transport problem in slab geometry,
including results for slabs of iron, water, lead, and concrete, are given by
Shimizu and Mizuta.?®

The advantages and disadvantages of the invariant imbedding method
relative to other techniques should strongly influence the extent and
direction of future applications. The advantages of the method are that it
yields very detailed solutions (gives energy and angular distributions), is
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efficient for deep penetrations with reasonably short computer times. is well
suited for heterogeneous shield configurations. the effects of boundaries are
implicitly and exactly included in the solution, and it has the computational
advantages of being an initial-value problem. The disadvantages of the
method are that it is inefficient for thin shields (the method is very slow
during initial phases of solution), difficult to apply to other than slab
geometries, and does not generate detailed particle-state information within
the shield (actually an advantage from a computational point of view).
Furthermore, the basic equations are nonlinear (not too serious if the
solution is obtained numerically), and the calculational techniques and
computer programs are not as advanced as those -for the solutions of the
Boltzmann equation.

4.8 KERNEL TECHNIQUE

The kernel technique, which in the language of mathematical phyvsics is
known as the method of Green's functions. is one of the more widely used
methods for the solution of both gamma-ray and neutron shielding
problems. The point kernel used in shielding, K(Ir —r'l), is formally the
solution to the unit point-source problem and is defined as the desired
response of a detector (particle-flux density, energy-flux density. dose, or
energy absorption) at the space point r due to a unit point source of
radiation at the space point r'. This kernel provides the means for solving a
variety of problems that involve distributed sources. As an illustration of the
procedure, consider the surface-source problem. In terms of the point kernel.
the detector response at a distance [r —r'|= R away from a differential
source area dA(R) of intensity S4(R) (particles cm™ sec™!) is
d® = [S4(R) dA(R)] K(R) (4.8-1)

The differential area dA(R) is selected so that the term [S4(R) dA(R)] can
be considered as a point source located at a distance R from the detector.
The total detector response (the desired answer to the surface-source
problem) is obtained by integrating over the entire source surface:

®=Jdb=J, S4(R)K(R)dA(R) (4.8-2)

The utility of the method is conside_rably enhanced if the in-tegral can be
evaluated analytically.

e
4
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Kernels that are used in practical shielding calculations almost invariably
result from solutions (either analytical or numerical) for infinite homoge-
neous media. Consequently applications of these kernels to finite-geometry
configurations require corrections for boundary effects.

Kernel techniques for gamma-ray-penetration analysis have evolved
somewhat differently than those for neutron-penetration analysis. For
photon transport the parameters within the kernels have been developed
primarily by numerical methods (predominantly Monte Carlo and moments
calculations) and were validated by experimental measurement. On the other
hand, most parameters used in neutron-attenuation kernels historically have
been empirical quantities obtained by measurement. For certain cases,
calculations have been made to verify the experimental results. and more
recently Monte Carlo and moments calculations have also been effectively
applied to the neutron problem.

It is convenient to divide the discussion of kernel techniques into two
parts. The following two sections discuss the basic concepts of kernel
methods for photons and neutrons, respectively. Applications of these
techniques are further discussed in Chaps. 6 and 8.

4.8.1 Gamma-Ray Calculationst

In the analysis of gamma-ray-transport problems, the uncollided-flux
density (i.e., the flux density due to source gamma rays that arrive at the
point of interest without suffering an interaction) is usually easily calculated.
For a monoenergetic point isotropic source in an infinite medium. the

uncollided-flux density (gamma rays cm™ sec™) is given by

po(r) = s CLEE 4.8-3)
(R)=S—2T (4.8-3)

where S = source strength (gamma rays/sec)
u(E) = macroscopic total cross section evaluated at the initial
gamma-ray energy, E (cm™)
eM(E)R = material attenuation factor, which is the probability that a
gamma ray of energy E travels a distance R (cm) without
suffering a collision

(4mR?)™! = geometric attenuation for a point source {cm™)

tIn this section we will not need direction cosines, and we will return to the usual notation u for
gamma-ray macroscopic cross section.
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Calculation of the scattered-flux density is, in general, much more
complex. The scattered component can be handled by introducing a buildup
factor, which accounts for the increase (i.e., buildup) in the flux density at
'some point r that is due to the scattered gamma rays. This buildup factor,
defined as

B = [some desired property (particle-flux density, energy-flux density,
dose, etc.) of the total gamma-ray-flux density at R)/{same property
due to the uncollided-flux density at R]

serves as the basis for formulating the point kernels required for gamma-ray
shield analysis. For the calculation of dose, the kernel is given by

e (E) E °(R)

K;(R) =—— B

_ Mar (E)Ee-M(E)R B, (4.8-4)
47R%p,

where g (E) is the macroscopic energy-absorption cross section for tissue

evaluated at the initial gamma-ray energy E: p; is the density of tissue

(usually taken as 1.0 g/cm?): and B, is the exposure buildup factor.t which

is the ratio of the actual dose at R to the uncollided dose at R. Similarly, if

the desired property is the energy absorbed per unit mass, the kernel is given

by

CI)O
KR) =ua<E>fp R)

uq(E) EeH(E)R B
- 47R%p a

(4.8-5)

where u,(E) is the macroscopic energv-absorption cross section evaluated at
the initial gamma-ray energy E for the material in which the energy is
absorbed, and B, is the energy-absorption (or energy-deposition) buildup
factor, which is the ratio of the actual energy absorbed at R to the
uncollided energy absorbed at R.

tFormerly called dose buildup factor. Away from boundaries for energies pertinent to reactor
shields, gamma-ray absorbed dose, kerma, and exposure are numerically equal (see Chap. 2).
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The results of many accurate gamma-ray-attenuation calculations are
reported in terms of buildup factors, which in combination with the kernel
technique provide a relatively simple and, in many cases, accurate calcula-
tional method. The primary source of buildup data is the collection of
moments-method data reported by Goldstein and Wilkins'®
isotropic and plane monodirectional sources. The point-source data are
perhaps the most widely used because of their application to point-kernel
solutions. The infinite-plane data also find use in approximations such as

for point

predicting the gamma-ray penetration through the side of a large cylindrical
or rectangular shield surrounding a large, diffuse source.

Tables of the exposure buildup factor vs. atomic number for various
penetration depths and initial energies are shown in Appendix E for a point
isotropic source and infinite-medium geometry.

A variety of functions have been derived to fit the buildup data. Some of
the more commonly used functions are:

1. The linear form

B(EuR} =1+ A, (E) uR (4.8-6)
with only one constant, 4, to be evaluated as a function of energy. This
form has the advantage of simplicity but does not provide a consistently

accurate fit.
2. The quadratic form

B(E,uR) = 1+ A; (E) uR + b(E) (uR)’ (4.8-7)

should be applied to deep-penetration calculations.
3. The form due to Taylor?® is

B(E,uR) = Ae®1 (EHM + (1 — A)e®2 (E)KR (4.8-8)
4. The polynomial form is

3
B(E,uR) = L Bn{E) (LR)" (4.8-9)
n:

Capo®” published a set of the coefficient §,(E) for a wide range of
materials and gamma-ray energies.
5. The form due to Berger??®

B(E,uR) = 1 + C(E) uReD(E)uR (4.8-10)

P
- T
-
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This two-parameter formula is only slightly more complicated than the linear
form but provides better accuracy.

Trubey?? published a review and evaluation of these and other empirical
equations which contains values of the fitted parameters and comparisons of
the expressions with the data of Goldstein and Wilkins.!® Some of the
conclusions of his study are:

1. The linear form is generally not adequate.

2. The best fit is provided by the four-term polynomial fit by Capo.

3. For most purposes the function proposed by Berger is recommended

because it is simpler to apply and provides accuracy approaching that of the
more complicated forms.

Values of the coefficients for all these forms of the buildup factor are
given for a variety of materials, photon energies, and source—detector
distances in Appendix F. Data in all these tables are for a point isotropic
source geometry. Applications of buildup factors to gamma-ray transport
problems are discussed in Sec. 6.4.1 and to gamma-ray heating in Sec. 8.1.1.

There are many other possible forms of buildup factors, such as those
cited by Hubbell,>® but they are generally more complicated than the forms
given here. Hubbell's power-series form, for example, converges adequately
at short distances only and thus usually requires many terms, but it has the
advantage of allowing separation of the variables dependent on the medium
properties, geometry, and thickness.

Sometimes solutions to photon shielding problems can be reasonably
approximated from attenuation data for a disk or rectangular source and a
slab shield. These simple plane-source problems are amenable to analytic or
numerical solution by integrating a point kernel of the form of Eq. 4.8-3
over the source area. The results when tabulated or plotted are directly
usable in practical applications.

Consider, for example, a detector shielded from a plane disk source that
is uniformly emitting S monoenergetic photons cm™ sec™ isotropically in
4 steradians (see Fig. 4.7). When the point kernel as given by Eq. 4.8-3 is
applied, the unscattered dose rate along the disk axis is

To -t sec 8 (9 d
Dlutre,2) = S GE) [ S 2 e (4.8-11)

in which G(E) is a particle-flux-density to dose-rate conversion function. Its
units will determine the units of the dose calculated.
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Fig. 4.7—Schematic diagram of disk source.

Since R? =r? + 2%, Eq. 4.8-11 can be transformed to

ut/1+(r, /2) -y
SGZ(E) f 2 dy (4.8-12)

D(ut,z/rq) = ut e

where y = ut sec 8. When integrated, Eq. 4.8-12 becomes

Pluezirg) =208 (E, (ue) — By e/ T+ e ) (48-13)

where E, is the exponential integral funcriont of the first order and is

defined by

= g
E,(x)Ef erv (4.8-14a)

- \ /

In general,
E,(x)=xn1 Js e Yy dy (4.8-14h)

[Equation 4.8-13, as well as the following equations for computing
uncollided doses, can be used to determine the total dose (uncollided plus
scattered) by using the Taylor form of the buildup factor.]

For an isotropic flux density ®(0) at the source plane, which is
equivalent to a current density with a cos 8 angular distribution (as shown in
Chap. 2), the unscattered dose rate is

tGraphs of this function (as well as e*, E,, and E,) are given in Appendix G.

s -
- T ——
=
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ehtsec ¥ g0 (27r) dr

= (4.8-15)
which integrates to
Dt 2/rg) = ZLLEE) {Ez ()
—\/T:__I(T’T)- Eg[ut\/1+(r0/z)7]} (4.8-16)

where E, is the exponential function of the second order.

The angular current density J(f) equivalent to ®(0) in the forward
hemisphere is [$(0)/47] cos 8, defined as the number of photons per unit
solid angle crossing a unit area on the source plane in the directions within
the interval —1<cosf <1 as measured normal to the source plane.
Therefore

1
J(0) = 2 cpig) cosBd.Q=f0 %:Ose 27

X d(cos 8) = @ (4.8-17)

If the current density in the forward direction is used, 4J(0) must be
substituted for ®(0) in Eq. 4.8-16.
In general, for the cos” 6 angular distribution in the forward direction,

(n+1) ®'(0) cosn 6

4.8-18)
2 ( )

() =

where ®'(0) is the total or scalar flux density in the forward direction only,
and

(n+1) $(0) G(E)
2

lut,z/ro) = {En+z(#t)

3 Ep+o [H&/1 + (rp/z2) ]}
I (role)? |7 81

— .- el e X - i i C e me e — et ™
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For the off-axis position at a distance p measured perpendicularly to the
disk axis (see Fig.4.7), integrations must be done numerically. Hubbell,
Bach, and Herbold®' integrated an expression similar to Eq. 4.8-11, the
isotropic source case, for off-axis positions and tabulated the results in terms
of the parameters ut, z/7q, and p/ry. These results are shown in Appendix H.
The quantity tabulated is 47 T(ut,2/rq,0/r0)/ (S G(E)|, which is the same as
4m ®O(p/ry)/S, where ®°(p/ry) is the uncollided-flux density at p/74.

Similarly, Trubey®? determined the data for an isotropic flux density.
The results are given in Appendix H as 2I'(ut,z/rq,0/rq)/ [®(0) G(E)], which
is the same as 26°/$(0).

Certain circular aperture and disk-source conflguratlons to which these
results might be applied are shown in Fig. 4.8.
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Fig. 4.8—Some circular aperture or disk-source shield configurations to which point
kernels are applicable (From Hubbell et al.?!)
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A solution was developed by Hubbell, Bach, and Lamkin®3 for the
uncollided-flux density at a distance z from a plane isotropic rectangular
source. Expressed as the product of separable source and geometry
functions, the uncollided-flux density is given by

&%(a,b) = 2 2"; L gn pulab) (4.8-20)
n=0

where g,, and p,,(a,b) are Legendre coefficients of the source and geometry

functions, respectively.

If a = H/z and b = W/z, where H and W are the height and width,
respectively, of the source plane (see Fig. 4.9), then Eq. 4.8-20 gives the flux
density at the corner position, that is, the flux density at a distance = along
the normal to the corner of the rectangular source. It follows that the use of

T
4

Detector

P

Fig. 4.9—Schematic diagram demonstrating the use of the corner position of a
rectangular source to calculate dose at an arbitrary position by point-kernel techniques.
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the half-height and half-width gives one-fourth of the flux density at z along

a normal to the center of the source plane. The source function is
g, = J1 glcos 8) Py(cos 8) d(cos 8) (4.8-21)

where g(cos ) represents the angular flux density at the source plane for the
case of a slab shield of thickness ¢ (z > t) located between the source and the
detector at a distance z from the source; that is,

S e-Mt/cosl

g(ut,cos 8) = (4.8-22)

47 cos 0

Substituting Eq. 4.8-22 into Eq. 4.8-21, Hubbell et al.?3 evaluated g,, and p,,
numerically and solved Eg. 4.8-20. The results for a corner position
(a = H/z, b = W/z) are given in Appendix H as 47["/[S G(E)], or 4®°/S, in
terms of the parameters ut, a, and b.

Similarly, Trubey®? numerically evaluated the equivalent of Eq. 4.8-20
for an isotropic flux density (cosine distribution of the angular current
density), that is, for

$(0) e-Mt/cosh

Ny
- (4.8-23)

glut,cos ) =

These results for a corner position are given in Appendix H as 2I'/ [$(0) G(E)],
or 29°%/®(0), which is the same quantity tabulated for the disk source in
Appendix H. For a square, the dose will be slightly greater than that for a
disk of radius W.

Although these results relate directly to the response of a detector in a
corner position, they are also applicable to any arbitrary position lying
within the projection of the source plane. It is obvious from Fig. 4.9 that the
dose rate at the detector is

T(H/zWiz) =T, [s*zﬁ w]

z

) b

V4 b4 z

+T, (ﬁ @)+ I, [(1 —o)H (1 —B)W]

+T, [—(1 — 4 BW (4.8-24)

z z
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4.8.2 Neutron Techniques

As noted previously, the use of buildup factors in the attenuation
function, or kernel, for neutrons has not developed to a large extent,
primarily because neutron interactions are more complex than gamma-ray
interactions. However, a simple kernel developed by Albert and Welton,?*
which uses an energy-dependent hydrogen cross section, has been widely
applied to hydrogenous shields. This section contains a description of the
Albert—Welton kernel and a discussion of removal cross sections that are
required in the kernel when other shield materials are used in conjunction
with the hydrogenous medium.

Other kernels that can be used to calculate differential energy spectra of
neutrons in hydrogenous media can be developed from the moments method
or Monte Carlo calculations. For example, the moments-method code
RENUPAK was used®? to calculate the differential energy-flux density as a
function of distance from a point fission source in an infinite medium of
lithium hydride, and an empirical attenuation function based on the results
was then incorporated in the point-kernel code QAD by Solomito and
Stockton3® for use in space-reactor shield designs. Since these kernels are for
an infinite medium, some caution should be exercised in their use. However,
simple neutron-dose attenuation functions determined from such calcula-
tions can be used for preliminary shield-design applications, and some of
these functions for concrete and several other materials are included in this
section.

(a) Removal Cross Sections. Measurements in the Oak Ridge National
Laboratory (ORNL) Lid Tank Shielding Facility?® showed that the insertion
of relatively thin slabs of material between a fission source and a thick water
shield gives an effect that can be correlated by a simple exponential
attenuation factor that is characteristic of absorption processes alone. This
behavior might not be expected since nonabsorption effects predominate in
fast-neutron attenuation. However, the large thickness of water (at least
6 g/cm?) filters out the neutrons deflected by the sample and thereby effects
their complete removal. Therefore the effect of slabs of shield materials
when followed by large thicknesses of hydrogenous material can be
described by an equivalent absorption cross section averaged over energy,
called the removal cross section.

An ideal way to experimentally determine the validity of the concept
would be to use a plane monodirectional source of fission neutrons incident
on a tank of water. For such a configuration the removal-cross-section

- a’-:__
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concept would be valid if the doses measured at the source distance z in
water could be correlated by

D,(z) =D, (z) e ZR! (4.8-25)

where D, (z) is the observed neutron dose attenuated through a distance z of
water, D, (z) is the observed neutron dose attenuated through a slab of
material of thickness ¢t (inserted between source and water) plus water of
thickness z, and Zg is the macroscopic removal cross section.

In the experimental shielding facility where this concept was originally
tested, the source was a finite isotropic disk rather than a plane
monodirectional source. However, with a few simple assumptions about the
behavior of neutron penetration, an analog to Eq. 4.8-25 was derived and
used in obtaining removal cross sections from experimental data.?’

Values of microscopic removal cross sections (or) determined from
measurements at the Lid Tank Shielding Facility for several elements and
compounds are shown in Table 4.2. Empirical functions useful for interpola-
tion in the experimental data have been derived by Zoller:?*®

z
TR=0.19Z‘°'743 cm?/g  (for Z < 8)
=0.12527°565 cm?/g  (for Z> 8) (4.8-26)
ZR -% 7-0.294
5 = 0.206A47% Z0294 ~ 0,206 (AZ)"% (4.8-27)

where Z is the atomic number. Most of the macroscopic removal cross
sections given in Table 4.3 were obtained with Eq. 4.8-26.

[t should be emphasized that most of the removal cross sections
determined by experiment were obtained for a slab-type configuration with
water following the shield material and may not be applicable to other
configurations. Trubey and Chapman®® reported that in a homogeneous
medium the removal cross section for oxygen is 0.75 * 0.05 b rather than
0.99 £0.10 b as shown in Table 4.2. They also note that the removal cross
section may vary with sample thickness (the value for oxygen obtained from
the homogeneous-medium measurements increased from 0.72 b at a distance
90 cm from the source to 0.79 b at a distance 140 cm from the source).
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Table 4.2—MICROSCOPIC REMOVAL CROSS SECTIONS OF VARIOUS
ELEMENTS AND COMPOUNDS MEASURED AT THE ORNL

LID TANK SHIELDING FACILITYt

Material Op,blatom Material Og,b/atom
Aluminum 1.31 £0.05 Tungsten 3.36
Beryllium 1.07 £ 0.06 Zirconjum 2.36 £0.12
Bismuth 3.49£0.35 Uranium 3.6+0.4
Boron 0.97 £0.10 Boric oxide, B, O, 4.30 £ 0.41
Carbon 0.81 £ 0.05 Boron carbide, B4 C 4.7 0.3
Chlorine 1.2+0.8 Fluorothene, C,F3Cl 6.66 £ 0.8
Copper 2.04 £0.11 Heavy water, D,O 2.76 £0.11
Fluorine 1.29 £ 0.06 Hevimet (90 wt.% W,

Iron 1.98 £0.08 6 wt.% Ni, 4 wt.% Cu) 3.22%0.18
Lead 3.53£0.30 Lithium fluoride, LiF 2.431£0.34
Lithium 1.01 £0.05 Oil, CH, 2,84 £0.11
Nickel 1.89 £0.10 Pa.raffin, C30H62 80.5£5.2
Oxygen 0.99 £0.10 Perfluorcheptane, C;F, ¢ 26.3:0.8

tFrom E. P. Blizard (Ed.), Reactor Handbook, 2nd ed., Vol.IIl,
Part B, Shielding, p. 83, Interscience Publishers, a division of John
Wiley & Sons, Inc., New York, 1962.

There is really no reason to expect the removal cross section to remain
constant with sample thickness since the removal concept is the result of a
crude application of theoretical principles; however, the variation should not
be very great up to about five relaxation lengths.

Another point to be emphasized is that the removal cross section for a
material can be applied only when that material is used in conjunction with a
hydrogenous shield since hydrogen is required to moderate and absorb the
scattered neutrons, as occurred in the experiments for determining the
removal cross sections. Thus a minimum thickness of hydrogenous material
following the sample is required to validate the use of removal theory. When
the hydrogenous material is water, moments-method calculations have
shown that about 60 cm is required, whereas experimental results indicate
that about 45 cm is adequate. If the hydrogen thickness is less than that
provided by this amount of water, the neutrons interacting with the heavier
elements will not be adequately “removed”, and the effective removal cross
section will be decreased.

It follows from the removal-cross-section concept that the removal cross
sections of elements in a series of slabs or mixed together should be additive;
i.e., the number of relaxation lengths becomes
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z. ZR,‘ti

where the index i refers to the various elements. This additive property has
been generally accepted, even though some discrepancies have been noted,
particularly in regard to compounds.

Removal cross sections can be predicted theoretically. Phenomenologi-
cally, the removal process can be considered equivalent to the total reaction
rate minus the forward component of the scattering process. This suggests
that an estimate of the removal cross section could be obtained from the
transport cross section. As it turns out, Zr = Z;, for neutrons between 6
and 8 MeV; therefore 1

Sp=Z4y=3%,— 2,050 | (4.8-28)

where cos 0 is the average cosine of the neutron scattering angle per collision
in the laboratory system.
Removal cross sections can also be estimated from

SR =<3, (4.8-29)

where Z; is the average total macroscopic cross section between 6 and
8 MeV, and from

E—j = 0.21470:58 (4.8-30)

where p is the density and A is the atomic weight. Figure 4.10 compares
graphs of measured values of Zgr/p and Z;/p at 8 MeV as a function of
atomic weight. A reasonably good fit to the curve for A > 10 is obtained by
Eq. 4.8-30.

(b) Removal Cross Sections for Hydrogen-Deficient Shields. The tradi-
tional removal cross section as discussed in the preceding section is limited in
application to a shield configuration that has a hydrogen density of at least
6 g/cm? in its outer layer. Recognizing the usefulness of a removal cross
section that could be applied for shields that contain less hydrogen, Dudziak
and Schmucker®® performed a series of calculations to investigate the effect
on the removal cross section of varying the surface density of the hydrogen.
Using a simplified P; approximation to the transport equation, they

—
o=
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Table 4.3—FAST-NEUTRON REMOVAL CROSS SECTIONS
AND MASS ATTENUATION COEFFICIENTSt

Zple Zrlp
Atomic P, (calc.), Zg., (exg.).
Element number g/em®  em?/g em” cm® /g
Aluminum 13 2.699 0.0293 0.0792 0.0292 *0.0012
Antmony 51 6.691 0.0136 0.0907
Argon 18 0.0244
Arsenic 33 5730 0.0173 0.0993
Barium 56 3.500 0.0129 0.0450
Beryllium 4 9.013 0.0678 0.1248 0.0717 £ 0.0043
Bismuth 83 9.747 0.0103 0.1003 0.010 £ 0.0010
Boron 5 3.330 0.0575 0.1914 0.0540 * 0.0054
Bromine 35 3120 0.0168 0.0523
Cadmium 48 8.648 0.0140 0.1213
Calcium 20 1.540 0.0230 0.0354
Carbon 6 1.670 0.0502 0.0838 0.0407 % 0.0024
Cerium 58 6.900 0.0126 0.0870
Cesium 55 1.873 0.0130 0.0243
Chlorine 17 0.0252 0.020 % 0.014
Chromium 24 6.920 0.0208 0.1436
Cobalt 27 8.900 0.0194 0.1728
Copper 29 8.940 0.0186 0.1667 0.0194 £0.0011
Dysprosium 66 8.562 0.0117 0.1003
Erbium 68 4,770 0.0115 0.0550
Europium 63 5166 0.0120 0.0621
Fluorine 9 0.0361 0.0409 £ 0.0020
Gadolinium 64 7.868 0.0119 0.0938
Gallium 31 5.903 0.0180 0.1060
Germanium 32 5.460 0.0176 0.0963
Gold 79 19.320 0.0106 0.2045
Hafnium 72 13.300 0.0112 0.1484
Helium 2 0.1135
Holmium 67 0.0116
Indium 49 7.280 0.0139 0.1009
lodine 53 4.930 0.0133 0.0654
Iridium 77 22.420 0.0107 0.2408
lron 26 7.865 0.0198 0.1560 0.0214 *0.0009
Krypton 36 0.0165
Lanthanum 57 6.150 0.0127 0.0783
Lead 82 11.347 0.0104 0.1176 0.0103 = 0.0009
Lithium 3 0.534 0.0840 0.0449 0.094 * 0.007
Lutetium 71 0.0112
Magnesium 12 1.741 0.0307 0.0535
Manganese 25 7.420 0.0203 0.1505
Mercury 80 13.546 0.0105 0.1424
Molybdenum 42 10.200 0.0151 0.1543

tFrom L. K. Zoller, Nucleonics, 22(8): 129 (1964)
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Table 4.3—(Continued)

ZR P ZR p
Atomic o, (calc.). Zgr, (exg.).
Element number g/o:m3 cm?/g cm ' ecm®/g .

Neodymium 60 6.960 0.0124 0.0861

Neon 10 0.0340

Nickel 28 8900 0.0190 0.1693 0.0190%0.0010
Niobium 41 8.400 0.0153 0.1288

Nitrogen 7 0.0448

Osmium 76 22.480 0.0108 0.2432

Oxygen 8 0.0405 0.031 * 0.002
Palladium 46 12.160 0.0144 (0.1747

Phosphorus 15 1.820 0.0271 0.0493

Platinum 78 21.370 0.0107 0.2279

Potassium 19 6.475 0.0237 0.1533

Praseodymium 59 6.500 0.0125 0.0812

Radium 88 5.000 0.0100 0.0498

Rhenium 75 20.53¢ 0.0109 0.2238

Rhodium 45 12.440 0.0145 0.1810

Rubidium 37 1.532 0.0163 0.0249

Ruthenium 44 12.060 0.0147 0.1777

Samarium 62 7.750 0.0121 0.0941

Scandium 21 3.020 0.0224 0.0676

Selenium 34 4,800 0.0170 0.0818

Silicon 14 2420 0.0281 0.0681

Silver 47 10.503 0.0142 0.1491

Sodium 11 0.971 0.0322 0.0313

Strontium 38 2.540 0.0160 0.0407

Sulfur 16 2.070 0.0261 0.0540

Tantalum 73 16.600 0.0111 0.1838

Tellurium 52 6.240 0.0134 0.0837

Terbium 65 0.0118

Thallium 81 11.860 0.0104 0.1238

Thorium 90 11.300 0.0098 0.1111

Thulium 69 0.0114

Tin 50 6.550 0.0137 0.0898

Titanium 22 4500 0.0218 0.0981

Tungsten 74 19.300 0.0110 0.2120 0.0082 +0.0018
Uranium 92 18.700 0.0097 0.1816 0.0091 £ 0.0010
Vanadium 23 5.960 0.0213 0.1267

Xenon 54 0.0131

Ytterbium 70 0.0113

Yttrium 39 3.800 0.0158 0.0599

Zinc 30 7.140 0.0183 0.1306

Zirconium 40 6.440 (0.0156 0.1001

183
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Fig. 4.10—Removal cross sections per unit mass for fission neutrons as a function of
atomic weight. (From Chapman and Storrs.> %)

calculated the transport of neutrons from a Po—Be source through lead
followed by varying amounts of polyethylene in spherical geometry. They
showed that removal cross sections for large thicknesses of polyethylene
approached the asymptotic value of 0.116 £0.01 cm™ (3.53+0.30b)
reported from the Lid Tank Shielding Facility measurements with a fission
source. They also found that by extrapolating the cross-section curve back to
a zero thickness of polyethylene they obtained a value that was very close to
the value of 0.128 cm™ for lead alone reported by Price and Dunn?!
basis of experiments with Po—Be neutrons.

on the

Dudziak®? later performed calculations with better cross sections, more
neutron-energy groups, and an SgP; approximation and reached essentially
the same conclusions. The results of the calculations by Dudziak and
Schmucker®? are shown in Table 4.4. The macroscopic removal cross
sections given in the table were fit to within 1.4% by a least-squares
procedure to an analytical expression given by
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ZR(t)=0.1106 (1 — 0.9836 ¢°-19%) (4.8-31)
where ¢ is the polyethylene thickness in centimeters.

In calculations similar to those of Dudziak and Schmucker, but for a
fission source, Shure, O’Brien, and Rothberg*? determined removal cross
sections for both iron and lead followed by polyethylene thicknesses up to
50 cm. They used two cutoff energies, E;, 302 keV and 0.625 eV, in their
dose calculations. The resulting microscopic removal cross sections. shown in
Table 4.5, indicate that, at least for small thicknesses of polyethylene, the
removal cross sections are relatively insensitive to the cutoff energy chosen.
Shure et al also found that the asymptotic values for iron and lead are in
very good agreement with the experimental values of 1.98 +0.08 b and
3.53%0.30 b, respectively, obtained from Lid Tank measurements.?” When
no polyethylene was present, the value for lead of 0.74 b (0.0243 cm™)
obtained for the fission source is nearly twice that for the Po—Be source,
which could be expected since the Po—Be spectrum is harder. The fact that
the asymptotic removal cross sections are in agreement for the two different
sources shows that the inelastic scattering in lead apparently degrades the
high-energy part of the spectra sufficiently to produce spectra that
equilibrate about equally after traversing approximately 10 cm of polveth-
ylene.

Table 4.4—EFFECTIVE MACROSCOPIC REMOVAL CROSS
SECTIONS FOR LEAD FOLLOWED BY VARIOUS
THICKNESSES OF POLYETHYLENE (Po—Be SOURCE)t

Polyethylene Lead

thickness, removal cross
cm section, cm !

3 0.0328

5 0.0473

7 0.0597

9 0.0701

15 0.0901

21 0.0999

25 0.1036

31 0.1069

35 0.1081

41 . 0.1093

t From Dudziak and Schmucker.?®

4
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Table 4.5—EFFECTIVE MICROSCOPIC REMOVAL CROSS SECTIONS
FOR IRON AND LEAD FOLLOWED BY VARIOUS
POLYETHYLENE THICKNESSES (FISSION SOURCE)+

Removal cross section, b

Polyethylene

thickness, Iron Lead
cm E. =302 keV E.=0.625eV E. =302 keV E.=0.625 eV
0 0.76 0.61 0.88 0.74
1 0.94 0.78 1.17 1.00
2 1.08 0.91 141 1.22
5 1.37 1.24 1.92 1.74
10 1.66 1.60 2.47 2.36
15 1.84 1.79 2.83 2.77
20 1.91 1.89 3.06 3.03
25 1.95 1.95 3.20 3.19
30 1.97 1.97 3.29 3.28
40 1.99 1.99 3.37 3.37
50 1.99 1.99 341 341

tFrom K. Shure, J. A. O'Brien, and D. M. Rothberg, Nuclear Science and Engi-
neering, 35: 373 (1969).

Shure et al. also investigated the use of these removal cross sections for
hydrogen-deficient shields with the technique that is normally used when
removal cross sections are applied to large thicknesses of hydrogenous
shielding following the laminations of nonhydrogenous material. The normal
expression used to estimate the neutron dose transmitted through t ¢cm of
hydrogenous material and several slabs of nonhydrogenous materials is

Digm (%,t) = Deale(0.1) exp (_ L N,-o,-r,-) (4.8-32)
where D, = calculated dose for the hydrogenous material alone
N; = density
0; = removal cross section

thickness of the ith nonhydrogenous material

H
-
I}

Equation 4.8-32 was applied to three different shield configurations using
lead and iron followed by various thicknesses of polyethylene. Values of
Dcajc were obtained, and values of o; from Table 4.5 were used. A
comparison of the resulting dose rates with dose rates obtained with a
separate, complete transport calculation showed that the frequently used
design technique exemplified by Eq. 4.8-32 does provide good estimates

i
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(within 10%) of the dose rates when the removal cross sections for
hydrogen-deficient shields are used.

(c) Albert—Welton Kernel. The experimentally determined removal
cross section provides a simple method for determining the attenuation
through nonhydrogenous portions of shield material if there is a hydrog-
enous portion of the shield. Albert and Welton?* developed a semiempirical
theory of neutron attenuation which provides a simple method for
calculating neutron attenuation through the complete shield: this theory is
based on the removal-cross-section concept. Basic to the Albert—Welton
model is the assumption that any collision with hydrogen has the effect of
an absorption. This, in effect, neglects the buildup of scattered neutrons that
have undergone only small-angle scatterings bv hydrogen. Inelastic scatter-
ings with heavier nuclei are also regarded as absorptions because of the
characteristically large energy loss. Other collisions are mainly small-angle
elastic scatterings within the forward peak of the angular distribution., which
amount to virtually no collisions. Attenuation through the materials in the
shield is described in terms of removal cross sections. For hvdrogen the
removal cross section is taken to be its energv-dependent total cross section.
and for the heavier nuclides it is taken to be an empirical energy-independent
removal .cross section, such as the removal cross sections described in the
preceding paragraphs. Thus the Albert—Welton model provides a theoretical
basis for the removal-cross-section concept.

The Albert—Welton formulation for fission neutrons from a plane
monodirectional source which penetrate through a mixture of water and

heavy materials is given by

o(r)xexp(~ Lf; Zr,r) Jy S(E) e ZTHIE) gE (4.8-33)

where ®(r) = number flux density at a distance r from the source
ZR; = macroscopic removal cross section of ith element (other than

hydrogen)
fi = volume fraction of ith nonhydrogenous material
S{E) dE = fraction of fission neutrons at E in interval dE for a total
source of 1 fission cm™? sec™
Z g = total macroscopic cross section for hvdrogen

The proportionality constant included in the original Albert—Welton
derivation has been removed from Eq. 4.8-33 to avoid the implication that
the actual number flux density can be computed from this relation.

. ol
e =4
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Integration of Eq. 4.8-33 yields the original Albert—Welton kernel for
the hydrogenous portion of the shield, which is included in the first set of
braces in the following relation:

®(r) = {(fwr)®2° exp(-0.928(f,,r)° % * ]}
Xexp [~ furZr, = (1= f,)r L fiZr;]  (4.834)

where f = volume fraction of water
X R, =removal cross section of oxygen
ZR; = removal cross section of nonhydrogenous materials other than
the oxygen in the water
r = distance (in ¢cm) from source

Although the derivation was for a plane source, Eq. 4.8-34 holds for a
point source when multiplied by the geometric factor 1/4mr?, and the
integral of S(E) is normalized to 1 fission/sec. The relation is also valid when
slabs of heavy material are laminated with the water. A minimum of about
50 or 60 cm of water is required between the dose point and the last of the
heavy materials (whether as slabs or in a mixture) to comply with the
limitations of the removal-cross-section concept.

On the basis of more recent experimental results, Casper®* evaluated
new constants for the Albert—Welton kernel. The result for a point
fission-spectrum source is

4mr? D(r) = 2.78 X 1075 [(fwr)o-349e'°-422(fw’)°'693J e0-0308fyr
(4.8-35)

where D(r) is the neutron dose rate r centimeters from the source [in
(rads hr™! )/(neutrons sec”')]. When shield materials are inserted between the
water and the fission source, Eq. 4.8-35 is multiplied by

exp [—- (1-1f,) }l:. ZRl.ff]

to obtain the dose rate at the shield surface.

4.9 COMBINATION REMOVAL-DIFFUSION METHODS

The removal-cross-section concept described in Sec. 4.8.2 provides a
method for calculating the dose rate due to high-energy neutrons that
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penetrate a hydrogenous shield; however, the technique cannot be used to
predict the dose rate due to neutrons that have been moderated to
epithermal and thermal energies or to predict the thermal-neutron-flux
density, which is used to obrtain the caprure gamma-ray source distribution
within the shield.t

The energy and spatial distributions of the moderated neutrons
throughout a shield have sometimes been calculated by using the elementary
theories of neutron diffusion and moderation (see Sec. 4.6). However, these
methods of reactor physics are normally used to predict the average behavior
of neutrons involved in reactor criticality problems, and, in the typical
shielding problem, the neutron of significance is the unusual fission neutron
that is born with an energy much greater than the average and contributes
very little to reactor criticality. This unusual neutron penetrates into regions
deep within the shield.

The inadequacy of both the removal concept and the elementary
methods of reactor-core physics in calculations of the whole shielding
problem has resulted in neutron transport’s being regarded as a two-step
process: a step in which a high-energy neutron penetrates to a position deep
within the shield, where it suffers a collision that degrades its energy
significantly, and a step in which the resulting low-energy neutron enters a
diffusion process. Characteristically, the distance traveled by the neutron
during the diffusion process is very much shorter than the distance it
traveled as a fast neutron, and, once it has entered this second phase. the
methods of elementary reactor physics conceivably could apply. Such
reasoning prompted the first-flight correction to the age in Fermi age
theory.? This correction was necessary because a neutron cannot enter a
process described as continuous slowing down (as required by Fermi age
theory) until it has had at least one collision.

The development of high-speed computers and the resulting extensive
use of multigroup diffusion theory for reactor criticality problems made the
development of a technique that utilized diffusion theory even more
attractive. In one of the first attempts to develop such a technique.
Haffner*S in 1958 used diffusion theory to calculate thermal-neutron-flux
densities within a reactor shield and then normalized the results at each
space point according to the fast-neutron dose rate obtained with the
Albert—Welton kernel (see Sec. 4.8.2). Anderson and Shure®® used a similar
technique when they applied a known pure-water kernel to normalize

tCalculations of capture gamma-ray doses are discussed in Chap. 6.
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diffusion (actually P, multigroup) results for a metal-water mixture. In
general, they obtained good results for laminated iron—water shields.
(Shure**7 later showed that a straightforward Py calculation without the
use of a kernel also gave good results.) The main assumption in the
Anderson—Shure technique is ‘that the multigroup procedure correctly
calculates the ratio between the flux densities in water and those in a
metal—water mixture.

After several attempts had been made to develop a technique by
correcting diffusion-theory results, a different approach to the problem
evolved: a first-flight correction was made before the diffusion-theory
calculation was performed. In the early calculations this was done by
computing the singly scattered neutron-flux density from the uncollided-flux
density and then using it as a source for the diffusion-theory calculation. A
difficulty inherent in this procedure, especially for hydrogenous media, is
that the penetrating component does not consist of uncollided neutrons
alone but rather is composed largely of neutrons that have had one or more
collisions and have suffered only small angular deflections. When these
neutrons were accounted for, the first successful two-step model for
neutron-penetration calculations became available. The method, in which the
fast-neutron removal concept and age-diffusion theory are combined, is
commonly referred to as the Spinney method, after its chief developer. The
remainder of this section is devoted to a description of the original version of
this removal—age-diffusion method and subsequent variations of it.

4.9.1 The Spinney Method

The Spinney method as first described by Avery, Bendall, Butler, and
Spinney*? is characterized by the following basic physical assumptions:

1. The penetrating component of the source neutrons consists of the
high-energy neutrons that suffer only small energy loss through small-angle
elastic collisions and the uncollided neutrons.

2. Neutrons that suffer large energy loss through either wide-angle elastic
or inelastic scattering are regarded as being removed from the fast beam.

3. The removed neutrons are degraded in energy in accordance with age
theory and do not travel significantly from the point of removal.

4. The removed neutrons have a spectral and spatial distribution closely
described by the conventional age-diffusion theory near the source.

5. Neutrons removed after they have penetrated deep into a homoge-
neous medium develop an equilibrium spectrum and are attenuated at the
same rate as the penetrating component.
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6. The equilibrium spectrum of the degraded neutrons is disturbed near
the boundaries between dissimilar media. [Note: Assumptions 4, 5, and 6
are not required in recent versions of the Spinney method.]

The neutron-flux density (removal flux) that corresponds to the
penetrating component of the source neutrons is given by the kernel

S e-ZRT

&0 (r) 3 (4.9-1)

4ar
where Sg is the source strength of high-energy neutrons of energy E, Zg is
the removal cross section evaluated at the source energy E (determined
experimentally or approximated by the transport .cross section (see
Sec. 4.8.2), and r is the distance traveled by the neutron to its first collision.

The removed neutrons are regarded as a local source of degraded
neutrons, the behavior of which can be adequately described by diffusion
theory. The intensity of this source is given by

_SoZReZRT

S(r) = ®°(r) Tg = 22225

(4.9-2)
These neutrons (i.e., the removed neutrons) are then introduced into the
highest energy group of an appropriate set of multigroup diffusion equations
to calculate the distribution of the low-energy neutron-flux density. The
equations comprising the multigroup set are given by

z:al S(") _
VIR (r) — b By = 52 Bi() =0 (=1
Zai D;, ktg-l @, (r) -
v D;(r)— kl? b;(r) - Ffbi(r) + P =0 (i>1) (4.9-3)

where ®; = group flux density for the ith group
Z4i = group-averaged macroscopic absorption cross section
D; = group-averaged diffusion coefficient
k;' = slowing-down length for the ith group

The slowing-down length is calculated according to age theory and for

the ith group is given by

1\ _ (5 dE
(E) ) j;i-l 38(E) Z4(E) Z4, (E) E (4.9-4)
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where £(E) is the average change in lethargy per collision for neutrons of
energy E, Z((E) is the macroscopic scattering cross section for neutrons of
energy E, and Z;,(E) is the macroscopic transport cross section for neutrons
of energy E.

In the original formulation of the Spinney method, five energy groups
were taken for the multigroup diffusion calculation. The bottom group,
which was a thermal group, had an upper energy of 2.81kT
(k= 8.61 X 107 eV/°K), and the highest group (i = 1) had an upper energy
of 2 MeV. All removed source neutrons were assumed to be placed directly
into the highest group. Solution of the group-diffusion equations, of course.
required that boundary conditions be specified at the inner and outer
surfaces of the shield. A zero reentrant condition was imposed at the outer
boundary: this was stated in terms of the extrapolated boundary condition,
which requires that the flux densities vanish at a distance 3.13D; beyond the
physical boundary. The boundary conditions at the inner surface of the
shield were established by requiring that the flux densities and current
densities be equal to those determined from reactor-core calculations.

The original formulation was used with some success in predicting the
distribution of low-energy neutrons in concrete shields for existing graphite-
moderated reactors, but it was not suited for general application. Some of its
inadequacies were that (1) all the removed neutrons were placed in one
group, which neglected any additional diffusion-type transport that could
have been accomplished at energies greater than 2 MeV: (2) not enough
groups were used to adequately represent the continuous slowing-down
process; and (3) the transfer of neutrons from one energy group to the next
lower group did not describe the large energy losses experienced by neutrons
that had suffered an inelastic scattering or a collision with hydrogen.

4.9.2 Variations of the Spinney Method

Many modifications and variations of the Spinney method have been
developed, such as the RASH E, MAC, NRN, SABINE, and ATTOW codes.t
In the RASH E formulation of Bendall®® and Butler,* ® the modifications in-
clude an increase in the number of groups to 16 and a broader energy range
(0 to 10 MeV). Also, the mulcigroup equations have been modified to include

tRASH E is the latest member of the RASH family of codes utilizing the Spinney method.
RASH E is included in a FORTRAN code package known as COMPRASH and can be obtained from
the Radiation Shielding Information Center, Oak Ridge Narional Laboratory, Oak Ridge. Tenn. Code
packages for MAC, NRN, SABINE, and ATTOW are also available from this center.
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a direct source of removed neutrons into the nine highest energy groups. The
equations so modified are as follows:

L]

z Uy (r)
V2, (r) =k B (r) — = &, (r)+——=0 (i=1
) . ®, (1) B, 1(r) D, (i )
, 5 Zai
Ve Dilr) — ki ®i(r) — — dilr)
D;
D;., k3 i
+"',]13,- = ¢i-1(r)+wg:) =0 (i=2.3,..,9)

p2g
V? @i(r) — kf ®4(r) — 55 ®ilr)
!

Dy, ki, ,
+T P, (r)=0 (i=10,11, ..., 15)
1
z7 D, sk}
V? er(r) - —=br(r) + —5— Pi5(r) =0 (i=16) (4.9-5)
Dr T

where T corresponds to i = 16 and designates the thermal-group flux density.

The source term for the ith group resulting from removed neutrons is
designated as ¥;(r) and is determined in the following manner. The fission
spectrum is divided into 18 energy bands of 1-MeV width. Neutrons removed
from the jth energy band are given by

/

Si{r) =S4

E+1 F(E) Zg(E) e TR (E)r
. . dE (j=1,2,..,18) (4.9-6)

§ 47r

where S, is a magnitude factor determined by the power level of the reactor
and F(E) is the normalized fission spectrum.
The neutrons from each of the removal bands in the energv range 0 to

8 MeV (j=18, 17, 16, ..., 11) are introduced into the energy group whose
upper energy limit corresponds to the mid-energv of the band. Neutrons
from all the bands above 8 MeV {j =10, 4, 8, ..., 1) have a mean energy of

about 10 MeV and are all introduced into the highest energv group
(group 1), which has an upper energy of 10.5 MeV. This transfer scheme,
along with the removal-band and energy-group structures for RASHE, is
given in Table 4.6.
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Table 4.6—REMOVAL-BAND AND ENERGY-GROUP STRUCTURES
USED IN RASH Et

Removal bands Diffusion groups Band-to-

. . .. group

Band Energy limits, MeV Group Energy limits, MeV teansfer
No. Upper  Lower No. Upper Lower scheme
1 18 17 1 1.05 x 10" 7.5 x 10° 1-1
2 17 16 2 7.5 x 10° 6.5 x 10° 21
3 16 15 3 6.5 x 10° 5.5 x 10° 3-1
4 15 14 4 5.5 x 10° 4.5 % 10° 41
5 14 13 5 45x10° ,35x10° 5-1
6 13 12 6 3.5 x 10° 2.5 x 10° 61
7 12 11 7 2.5x 10° 1.5 x 10° 7-1
8 11 10 8 1.5 x 10° 5.0 x 10" 81
9 10 9 9 5.0 x 107" 5.0 X 1072 91
10 9 8 10 5.0 X 10°° 5.0 103 101
11 8 7 11 50x 10 5.0x 10" 11-2
12 7 6 12 50x10*  s.0x107° 12—-3
13 6 5 13 50x10°  50x10° 13— 4
14 5 4 14 5.0 X 108 55X 10" 145
15 4 3 15 55x 107  7.0x107® 1526
16 3 2 16 Thermal 16 =>7
17 2 1 178
18 1 0 189

tFrom Bendall.*®

' and Canali, llsemann, and

In the MAC formulation of Peterson®
Preusch,®? the number of energy groups for the group-diffusion calculation
is increased to 31 over an energy range from 0 to 10 MeV. Again the fission
spectrum is divided into 18 removal bands of 1-MeV width. The flux density
for the source of the removed neutrons (usually called removal flux)
corresponding to the gth removal band, which is introduced into the ith

energy group, is given by

Eg+1 F(E) e LRI(E)r
agi=se o B (4.9

The removed neutrons are introduced into the five highest energy groups
only. The transfer scheme, along with the removal-band and energy-group
structures, is given in Table 4.7.
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Table 4.7—REMOVAL-BAND AND ENERGY-GROUP STRUCTURES USED IN MACt

Removal bands Diffusion groups Band-to-
- . .. group
Band Energy limits, MeV Group Energy limits, MeV rransfer
No. Upper Lower No. Lower Upper * scheme
1 18 17 1 6.065 x 10° 1.000 x 10™" 1-1
2 17 16 2 3.679 x 10° 6.065 x 10° 21
3 16 15 3 2.231 x 10° 3.679 x 10° 31
4 15 14 4 1.353 x 10° 2.231 x 10° 41
5 14 13 5 8.208 x 10™" 1.353 x 10° 51
6 13 12 6 3.876 x 10”' 8.208 x 107" 61
7 12 11 7 1.830 x 107" 3.876 x 107! 71
8 11 10 8 6.733 x 107% 1.830 x 10! 8—>1
9 10 9 9 2.600 X 1072 6.733 X 10° 9 -1
10 9 8 10 2.000 x 1072 2.600 X 107* 10 > 1
11 8 7 11 9.118 x 1073 2.000 x 1072 11 -1
12 7 6 12 3.355 x 107° 9.118 x 10°° 121
13 6 5 13 1.234 x 1073 3.355 x 107° 13—2
14 5 4 14 4.540 x 107 1.234 x 107° 14 - 2
15 4 3 15 3.199 x 107* 4.540 x 107° 152
16 3 2 16 2.255 x 10™ 3.199 x 107* 16 >3
17 2 1 17 1.120 x 10™ 2.255 x 1074 174
18 1 0 18 6.147 x 10°° 1.120 x 107 18—>5
19 3.374 x 10°% 6.147 X 10°°
20 1.515 x 10°° 3.374 x 10°°
21 1.016 x 10°  1.515x 10™°
22 4.565x 10°® 1.016 x 107
23 1.375 x 10°¢ 4.565 x 1078
24 9.214 x 107’ 1.375 x 10°¢
25 6.716 X 107" 9.214 X 1077
26 4,140 x 107 6.716 X 107’
27 2.775 X 107 4.140 x 107’
28 1.860 x 107 2.775 x 107
29 1.247 x 1077 1.860 X 107’
30 7.595 x 10 1.247 x 107
31 0 7.595 x 108

tFrom Peterson.’!

The MAC formulation differs from the original Spinney method in two
major respects: (1) the removal flux density is added directly to the
group-diffusion flux density after the diffusion calculation has been
performed, and the combined flux density is then used to calculate source
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neutrons for the lower energy groups; and (2) the general treatment of the
downscatter transfer of neutrons allows for a more accurate representation
of inelastic scattering and collisions with hydrogen.

The highest energy group (i = 1) in the diffusion part-of the calculation is
not actually treated as a diffusion group. The collision density,

12
Zu | £ ogu 0]

which is based on the removal flux densities (corresponding to the energy
bands 1 to 12), provides neutrons by downscattering from the first group
into the kth group, k=2, 3,...,K. The kinds of possible interactions. as
described by their respective group-to-group removal cross section. Z 3, will
determine the extent of the downscatter. A diffusion calculation is then
performed on the second group, the neutrons removed from group 1 being
used as the source. Solution of the group 2 diffusion equation

K 12
Dy V2 €30~ L Tak 0,(6) — Ty &) + T2 ( L 00) =0 (4.98)

yields the group-diffusion flux density ®;(r). The group 2 removal flux
densities are then added to the diffusion flux density so that the downscatter
source of neutrons from group 2 into the lower energy groups can be
calculated. The downscatter source into group k (k = 3, 4, .. .,K) is given by

15
z + ol \]
2k [‘pz(l’) g=213 g2 (r)
The calculation proceeds in a similar fashion from one group to the next
lower group and so on. In general, for i > 2 the group-diffusion equations are

given by
K

D; 92 ®ir) — L Ty &i(r) — T, Bilr)
k=i+1

1
+ L Zj [<I>,-(r) + § <I>g°j] =0 (i=3,4,...) (499

j=i-1
and the downscatter source term from the ith group into the kth group is
Zik [®ilr) + 23]

53

In the NRN formulation of Hjarne®? and Hjarne and Leimdorfer,®* the

energy structure for the removal bands and energy groups differs signifi-
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cantly from that used in the RASH and MAC formulations. The group
structure for the group-diffusion calculation consists of 24 groups over an
energy range 0 to 18 MeV, and the fission spectrum is divided into 30 bands
of varying widths. The removal-band and energy-group structures are given in

Table 4.8.

Table 4.8—REMOVAL-BAND AND ENERGY-GROUP STRUCTURES USED IN NRN*

Removal bands Diffusion group
Band Energy limits, MeV Group Energy limits. MeV
No. Upper Lower No. Upper Lower
1 1.8 x 10! 1.43 x 10’ 1 1.8 x 10! 1.35 x 10"
2 1.43 x 10! 1.136 x 10" 2 1.35 X 10! 1.0 x 10*
3 1.136 x 10" 9.021 x 10° 3 1.0 x 10! 7.8 x 10°
4 9.021 x 10° 7.166 x 10° 4 7.8 x 10° 5.9 x 10°
5 7.166 x 10° 5.692 x 10° 5 5.9 x 10° 4.4 x 10°
6 5.692 x 10° 4.521 x 10° 6 4.4 % 10° 3.4 x 10°
7 4.521 x 10° 3.591 x 10° 7 3.4 x10° 2.6 x 10°
8 3.591 x 10° 2.853 x 10° 8 2.6 x 10° 2.0 x 10°
9 2.853 x 10° 2,267 x 10° 9 2.0 x 10° 1.5 x 10°
10 2.267 x 10° 1.800 x 10° 10 1.5 x 10° 1.2 x 10°
11 1.800 x 10° 1.430 x 10° 11 1.2 x 10° 9.0x 10!
12 1.430 x 10° 1.136 x 10° 12 9.0 x 107 7.0 107!
13 1.136 x 10° 9.021 x 107" 13 7.0 x 10! 5.1 x 107!
14 9.021 x 107! 7.166 X 10™ 14 5.1 % 10 3.8%x 10"
15 7.166 x 107" 5.692 x 107" 15 3.8 x 10 3.0x 10"
16 5.692 x 10! 4.521 x 107! 16 3.0x 107" 1.0 x 10!
17 4.521 x 10°" 3.591 x 10™! 17 1.0x 107! 3.10x 107
18 3.591 x 10! 2.853 x 107! 18 3.10 x 1072 1.10 X 1072
19 2.853 x 10! 2.267 X 107! 19 1.10 x 107 1.10 x 1073
20 2.267 x 107" 1.800 x 10! 20 1.10 x 107 1.10x 10
21 1.800 x 107" 1.430 x 10™! 21 1.10 x 107 1.10x 1073
22 1.430 x 107! 1.136 x 107! 22 1.10 X 10°° 1.10 X 10°¢
23 1.136 X 107! 9.021 x 102 23 1.10 x 10°® 1.05 x 10”7
24 9.021 x 1072 7.166 x 107 24 Thermal
25 7.166 X 1072 5.692 X 1072
26 5.692 X 1072 4,521 x 107
27 4.521 x 1072 3.591 x 1072
28 3.591 x 1072 2.853 x 107
29 2.853 x 1072 2.267 X 1072
30 2.267 X 107 1.80 x 10

tFrom Hjarne.s 3

all-\
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The NRN method allows for the transfer of removed neutrons from each
removal band to many diffusion groups. The source for the ith diffusion
group arising from all removal collisions is

L sgg

where @ is the removal flux density in the gth energy band and Z§; is the
energy-averaged removal cross section for the transfer of neutrons from the
gth removal band into the ith energy group.

The calculation also allows transfer from each diffusion group to all
lower energy diffusion groups. The group-diffusion equation for the ith
group is given by

K
D; v? &i(r) - L . Zik D4(r) — Zg; By(r)

k=i
1
+ I_:Z‘.I__lzj,- ®;(r) + £9; ®9 = (4.9-10)

where the various diffusion-theory parameters have conventional definitions.

The SABINE code, described by Ponti, Preusch, and Schubart®® and by
Nicks. Perline, and Ponti,®® represents later European technology than
RASH and NRN. SABINE uses 19 removal groups and 26 diffusion groups.
The code is also one dimensional and can solve problems in slab, cylindrical,
and spherical geometries. Particular attention has been paid to the coupling
of the removal flux with the diffusion equations. The assumed model in
SABINE makes use of the same transfer matrix for band-to-group and
group-to-group transfers, i.e.,

2ji=Zyi

where the removal band g and diffusion group i correspond to the same
energy and j % i. Within-group transfer of removal neutrons to the diffusion
group of the same energy range is also included.

Gamma-ray transport is accomplished by using seven energv groups and
empirical region-dependent buildup factors based on transport calculations.
Both primary sources (fission gamma ravs) in the reactor core and secondary
sources (capture and inelastic-scattering gamma rays) generated within the
shield can be included.

The ATTOW code is a recent British development described by Collier
and Curtis” and by Avery and Curtis.®® [t is a two-dimensional (finite

-
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cylinder or 2D rectangular) diffusion code that can accept removal sources
prepared by a built-in subroutine. The removal-source subroutine calculates
sources at points determined by the routine and fits two-dimensional
polynomials, of order chosen by the user, to the results. These data are put
on tape in a form that can be used by ATTOW. The spatial integration over
the reactor core is performed by a Gaussian scheme using a stored table of
zeros and weights.

Removal cross sections Zg4; are input to the program, allowing the user
control of the removal assumptions. The full group-to-group transfer matrix
Zj; is also assumed for the diffusion treatment.

The ATTOW code has been used extensively in the United Kingdom for
solving problems associated with fast breeder reactors. It was found chat the
results were somewhat sensitive to the energy-group structure chosen.®® A
23-group structure was judged best. This sensitivity is most pronounced
when materials such as graphite are present and is attributed to the
continuous slowing-down (age theory) assumption, although even a full-
scatter matrix cannot preserve the energy—angle correlation in diffusion
theory. These difficulties should not be apparent in hydrogenous materials.
which generally have short diffusion lengths.

4.9.3 Differences in Current Methods

A comparison of the preceding formulations shows that, with respect to
the removal-band and energy-group schemes, RASH E and MAC are similar
in concept and identical in many respects. The NRN, SABINE, or ATTOW
approach is more general and should provide the most accurate model if the

required removal and transfer cross sections are known,
With regard to removal cross sections, RASH E and MAC use the cross

sections suggested by the original Spinney formulation, which has the
general form

SR =% - fZe (4.9-11)

where Zg = removal cross section
Z; = total macroscopic cross section
Z ¢l = elastic-scattering cross section
f = fraction of elastic collisions that can be regarded as glancing

If fis taken to be the average cosine of scattering in the laboratory system.
Ho. the removal cross section becomes the transport cross section originally
used by Spinney. In general. the parameter f cannot be determined

., -
- T
-—
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intrinsically, and thus a value must be assumed or determined empirically.
This has been done for a large variety of typical shield configurations, and
the removal cross sections thus determined are used with a high degree of
confidence.

The NRN removal cross sections are obtained by experimentally
determining the angles of scatter above which elastic collisions can be
considered as removals. The removal cross section is given by

TR = I — 27 feosg 0(8) d(cos 6) (4.9-12)

where 0(f) is the differential elastic-scattering cross section per unit solid
angle about the scattering angle € in the center-of-mass system and 6 is the
scattering angle above which the collision is considered to be a removal. The
value of fp is determined by comparing predicted neutron reaction rates
with experimental values. Aalto®® obtained a best value of cos §g = 0.45 for
hydrogen, and cos g = 0.60 was obtained for other nuclides. With these
values of 8g, a full set of removal cross sections can be derived.

The NRN removal cross sections may not have anv advantage over the
Spinney cross sections since each scheme involves only a single adjustable
parameter, O and f, respectively. '

The MAC scheme for transferring removed neutrons into energy groups
differs significantly from that used by either RASH E or NRN. The
procedure in MAC is to add the removal flux density to the newly calculated
group-diffusion flux density to establish the group-to-group downscatter
source. In contrast, RASH E and NRN introduce the removed neutrons into
given groups as source neutrons to that group, a more natural procedure for
the group-diffusion calculation. The RASH E has a very restricted transfer
scheme wherein the removed neutrons from a given removal band are
introduced into a prescribed energy group and into no other. The NRN
provides for a much more general scheme, using a removal matrix to describe
the transfer of removed neutrons from a given removal band into any of the
lower energy groups.

Of the methods mentioned, the slowing-down model embodied in
NRN, and especially in SABINE, gives the most accurate description of the
slowing-down process. It involves a general-group to any lower energy-group
transfer matrix using detailed elastic and inelastic scattering cross sections
for all nuclides. A similar scheme is employed by MAC; however, some
inaccuracy is allowed in the description of the nonhydrogen elastic
scattering.

i
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The RASH E uses a group-to-group transfer cross section based on the
continuous slowing-down (age) model, which allows transfer to the next
lower energy group only. This could lead to serious inaccuracies, particularly
with respect to inelastic scatterings and collisions with hydrogen.

In conclusion, we should note that the Spinney method, used much
more in Europe than in the United States, provides reliable results. As with
any empirical method, it should be applied with some caution. Before being
used extensively for design, removal-diffusion results should be compared
with rigorous calculational methods or experiments for similar configura-
tions. The simplicity and speed of computation give the Spinney method a
significant advantage over more-sophisticated methods in design work.
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EXERCISES

4.1

4.2

4.3

Explain why the expression
&(r,QE) dQ2 dE (n*Q) dS

in Eq. 4.2-1 gives the net (outward minus inward) leakage through the differential
surface dS.

Transform the particle-flux-density form of the Boltzmann equation with energy as
an independent variable (Eq. 4.2-8) into its equivalent form with the energy-flux
density, I = E®, as the dependent variable and the wavelength, A, as an independent
variable. [Hint: I(X) = I(E). ]

Starting with the Boltzmann equation (Eq.4.2-8), show that for a one-speed
one-dimensional slab geometry with azimuthal symmetry the equation reduces to

2 27 p1 , , , .
w2 g, ey = st + 2 T ST 1 540.9) @0 ) dit do do

in which g = cos 6, where @ is the polar angle of £ with respect to the x-axis, thus
verifying Eq. 4.3-1.

a]h-
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4.4 Show that for the one-dimensional spherical geometry the Boltzmann equation can

4.5

2
u od(r,u,E) . (1 — 4*) 0P(r,i,E)

of{x,A,u)
u—_—
0x

be reduced to

+ Er q)(r,}.l,E)

or r ou
1 = 1 ’ 4 ’ !
+StrmE) + L1 Jy T, E'~Eue) ®(r.E w') dE' du
thus proving Eq. 4.4-3.

Using the form of the Boltzmann equation obtained as a result in problem 4.2, show
that for a one-dimensional slab geometry photon transport is described by

+ Z,() Itx, A1) = S(\ ) 6 (x)

A ’ 14 ! !} A ) ’ ’ ’
+ J f4,,z(x,>\,u;.zg(x,sz-n)75(1 A+ N - Q0 dQ A

in which u = §2-i (i is the unit vector along the x-axis), Z,(\) is the toral attenuation
coefficient, and Z,(A',2'+8) is the differential macroscopic Compton cross section
for scattering from wavelength X' through an angle whose cosine is Q'+ €. This
proves Eq. 4.5-2.






Monte Carlo Methods

for Radiation Transport

W.E. SELPH and C. W. GARRETT 5

Monte Carlo techniques have been so important in shield analysis in the past
decade that a separate chapter on this subject is warranted. For a more
formal and detailed development of general Monte Carlo techniques. the
reader is referred to one of the texts devoted to the subject.' ™ We will be
concerned primarily with the step-by-step development of radiation-
transport applications of the method based on a knowledge of microscopic
cross sections and elementary probability theory. A brief discussion on use
of the method to solve integral equations is given as an aid to understanding
the equivalence of this method with other means of solving the Boltzmann
transport equation.

We assume that the reader has some grasp of the elementary concepts of
probability, namely, that the probability of one of several possible events
occurring will be approximately equal to the ratio of the number of
times the desired event occurs to the toral number of events observed in an
unbiased manner. As the number of observations increases, this ratio should
more closely approximate the true probability. Beyond this simple concept.
more specific definitions will be developed as they are required.

Much of the information available on the physics of individual nuclear
interactions is obtained experimentally by observing the fate of large
numbers of particles. In like manner. Monte Carlo may be considered as a
means of repeatedly applying interaction probability data to individual
particles selected randomly until a sufficient number of particles have been
observed to allow conclusions to be drawn concerning the macroscopic
multicollision behavior of the total population of parcicles within a material
region. Dependence on such a mathematical experiment for the macroscopic
probabilities {shield leakage. particle absorption density, etc.) is in many
ways analogous to the laboratory determination of microscopic interaction
cross sections. To be sure, the laboratory experiment may be based on the

observation of a much larger sample than can be processed economically in
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the mathematical game, but the principles are the same. Research on the
problem of increasing the sample size or employing other methods to reduce
the uncertainty associated with Monte Carlo data has led to the development
of special techniques combining analytical estimates with random particle
tracking.

It is possible to show how the various steps involved in a Monte Carlo
solution correspond to terms of the Boltzmann transport equation. Although
Monte Carlo may be considered a means of solving the Boltzmann equation,
it is more properly a modeling of the principles from which the
Boltzmann equation was developed; that is, the method may be developed
and properly applied to radiation-transport problems without reference to a
differential transport equation. The general course followed in this chaprer is
to develop individually, and in a logical sequence, the steps required to solve
a radiation-transport problem by the Monte Carlo method.

Before getting into the detailed operations involved in generating a
particle track, we will first discuss the general organization of the tasks.
Approaches to accomplishing these tasks then will be developed through the
chapter. Since our objective is to explain the logical processes involved in
applying the Monte Carlo method, little space is devoted to explaining how
these operations are programmed for the computer. Programming is a strong
function of the nature of the computer, its auxiliary equipment, and the
language used. Further, a large number of general-purpose computer codes
using the Monte Carlo method for shielding applications are readily available,
and the probability is rather high that developing a new code for a particular
application will not be required.

Simply stated, the Monte Carlo approach requires that we construct case
histories of the travel of individual particles through the geometry and then
analyze these histories to derive relevant data, such as flux density and dose
rate. One particle history includes the birth of a particle at its source, its
random walk through the transporting medium as it undergoes various
scattering interactions, and its death, which terminates the history. A death
can occur when the particle becomes absorbed, leaves the geometric region
of interest, or loses significance owing to other factors (e.g., low energy).

It we assume for the moment that the source—shield geometry has been
mathematically modeled, the major steps involved in generating a particle-
track history are shown in Fig. 5.1,

The loop 2 through 4 is continued until the particle parameters fall
outside some predetermined limit of values, such as geometrical bounds,
minimum energy, or minimum statistical weight (a concept to be developed

== -
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later). This process only generates particle histories. Separate provision must
be made for estimating desirable output quantities, such as flux density,
current density, or interaction densities. The first three operations in Fig. 5.1
involve the selection of parameters at random from a probability distribution
of all possible values of these parameters. Thus a sufficiently large number of

' |

Choose Select Com_piute
source Select o collision particle
parameters o path length parameters pfarameters‘
(1) (2) 3 after collision
{4)

Fig. 5.1 —History generator.

selections of a given parameter would be distributed in the same manner as
the corresponding probabilities. The steps in making a random selection
from such probability distributions are based on the use of numbers
randomly distributed between the limits of 0 and 1.

5.1 SAMPLING FROM PROBABILITY DISTRIBUTION FUNCTIONS

As suggested earlier, all physical processes, including the emission of
radiations from sources and their subsequent transport through material, are
probabilistic; that is. one cannot predict, with certainty, exactly whar will
occur for every individual particle in the process. Nevertheless, such
stochastic, or random. processes can be effectivelv characterized and
predictions can be made by describing the average behavior of many
elements or by estimating with a known degree of confidence (but never
with certainty) the behavior of one element. Mathematically this charac-
terization is accomplished through the use of various probability functions.
Processes dependent on one or many independent variables may be so

handled.

An event is a physical occurrence. for example, a coin toss resulting in a
head or a photon assuming a specific energy Eq. An event space is the set of
all possible (mutually exclusive) events within the process under considera-
tion. Event spaces, sometimes called sample spaces, may be finite and
discrete (the coin-toss problem where it contains only two points, heads and

tails), continuous (the visible electromagnetic spectrum), and/or infinite in
extent.
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Clearly, events such as heads and tails require numerical representation
to be handled effectively from a mathematical standpoint. Thus events are
mapped onto real numbers by a function called a random variable. For
example, a coin-toss random variable might be a function that assigns 0 to
tails and 1 to heads. To be precise, one must define the random-variable
functions used. For the subject matter of this text, however, the event and
the value assigned it by the random variable (e.g., a photon produced at
energy E is assigned the value E) will be quite clear, and we will not
explicitly define the mapping function.

Inherent in the Monte Carlo procedure is the concept of the probability
density function (PDF) (also called frequency functions and probability
distributions). This concept is an extension of differential distribution
functions introduced in Sec. 2.2.1. The probability density function, f{x),
describes the relative frequency of occurrence of its random variable, x. Its
domain (all possible values of x) constitutes the event space.

Let P(x<xo<x+Ax) be the probability that a random variable x, lies
within the interval (x.x + Ax) of its evenrt space. The PDF f(x)1 is related to
this probability by the equality

P(x<xo<x+Ax) = flx) Ax 5.1-1)

as Ax becomes vanishingly small. Thus the PDF is central to the prediction

problem, and knowledge of the PDF enables one to obtain the probability of

occurrence of a specific event. Equation 5.1-1 shows that the PDF fix) gives

the probability of occurrence per unit interval of the random variable x.
Over larger intervals PDF’s are used with differentials. Thus

P(a<x<b) = [ f(x) dx (5.1-2)

Since PDF’s describe relative frequencies of occurrences of events within an
event space, two properties of PDF’s emerge; namely,

0 < f(x) | (5.1-3)

and

f_:f(x) dx =1 (5.1-4)

tAs with differential distributions, the contept is easily extended to two or more variables and
may be changed to phase-space nctation by substitutng P for x, where P represents (1.Q,E).
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Equation 5.1-4 states that the probability of finding a chosen event
somewhere within its event space must be unity, and Eq. 5.1-3 accrues from
the fact that relative frequencies (i.e., probability values) must be positive.
The cumulative distribution function (CDF) gives the probability that
the random variable x has a value less than or equal to some fixed value. [t is

given by
P(x<xq} = Flxg) = [ ° flx) dx (5.1-5)

Two restrictions placed on F(x) that follow from Egs. 5.1-3 and 5.1-4 are

|
—

lim F(x) =

X

(5.1-6)

and

I}
(o]

lim Fix)

X— -

(5.1-7)

The probability P(a<x<b) of x lying within an interval (a.b) is thus given
by

P(a<x<b) = [ flx) dx = F(b) — Fla) (5.1-8)

Clearly, if the variable x can only take on values within some finite range,
then one may substitute the lower bound of that range for —e and the upper
bound for +oo in the preceding expressions.

Various distribution functions may be encountered which are not
probability density functions. For example, a variable may be limited to the
region 2<x <4 and be distributed proportional to x? in that region. The

function x?

violates both of the preceding restrictions on probability values
but may, with proper normalization. be converted to a PDF. In this case the

PDF f(x) is given by

)= —— 1-9}
flo = w5 (5.1-9)
and
_ 3 x? dx B .
F(xq) = 5 %7 d (3.1-10)
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Or, stated more generally, where g(x) is any function of x that is positive for
all values of x,

flx) = = aix) dx ;1((3 . (5.1-11)

and

_JPg(x) dx

F(xO) f_: q(x) dx

(5.1-12)

Where the event space is discrete, the random variable can only take on
selected values, and the PDF f(x;) is defined by

Pxj. <xi <xitq) = flxi) (i=1,2,...) (5.1-13)
where

Lflxi)=1

The CDF becomes
Pli<xn) = Flen) = E flxi) (5.1-14)

The mean value of a distribution is given by

= e = L x; flx;) (5.1-15)

i=1
in the discrete case, or by

x= e = [T x flx) dx (5.1-16)

in the continuous case. Since the average of a large sample of values of x
tends to this point. u is sometimes called the expected value of x.

The expected value of g(x) is then

o

g =L glxi) flxi) (5.1-17)

1
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and in the continuous case

2= /2 g(x) fix) dx (5.1-18)
Note that

_’5=

x

x? f(xi) (5.1-19)

ISR

The variance of a distribution function is a measure of how closely the
distribution is grouped about the mean. The variance, denoted 02, is defined
as

0% = (xi - w)? flx) (5.1-20)

in the discrete case or as

0% =f" (x —p)? flx)dx (5.1-21)
in the continuous case. A little manipulation will show that
02 =x2 — uk (5.1-22)

in either of the preceding expressions. The standard deviation is often used
instead of the variance as a measure of the dispersion about the mean. The
standard deviation, oy, is given, logically enough, by

oy = (02)* (5.1-23)

In analyzing and solving problems involving random processes, one must
randomly select events from distributions for which the PDF’s are known,
exactly or approximately. Thus the problem is first to choose a value of f(x)
[or its equivalent, F(x)] by some random process. Then, having obtained
f(x), find x, which, of course, defines the desired event. Comprehending this
inverse process is often difficult for the beginner, who is accustomed to
calculating values of f(x), given x. It is common practice to use random
numbers equally distributed between 0 and 1 to obtain random samples of a
variable that will be distributed in the same manner as f(x). If a random
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number n (0 < n < 1) is chosen, the value of the associated random variable
x may be obtained by solving the inverse of the equation

n = F(x) (5.1-24)
for x, where F(x) is a cumulative distribution function. We emphasize that

the random number 7 is a value chosen from the range of the function Fi{x),
whereas the desired random variable x is a value within the domain of F(x).

fix)

X

Fig. 5.2—Rejection technique.

It is also possible to select randomly from a continuous probability
distribution by a powerful method known as a rejection technique. Consider
the function f(x} as plotted in Fig. 5.2. The objective is to generate a
sequence of values of x such that f(x) is approximated by the relative
frequency of occurrence of values of x within the collection formed by the
sequernce.

We first choose a value K that exceeds all values of f(x) within the
region. Then, using appropriate techniques, we obtain a random number n,
which is used to select a value x; (x| < x; < x;) by the relation

xi=x; +n(x, —x,) (5.1-25)

= .
-
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The value of f{x;) is evaluated at the selected value of x;. Taking another
random number #', we next select a number N from a random distribution
between 0 and K by setting

N=n'K (5.1-26)

If N> f(x;), the value of x; is rejected. The process is repeated by generating
new values of x; and N until N < f{x;). When this occurs the value of x; is
accepted and used as the random sample. The probability of a particular x;
being accepted is given by f(x;)/K and the probability of rejection is |[K —
flxi)]/K. Thus, after a large number of determinations for various valucs of
x, the distribution in x of the values accepted would approximate the
function f(x). _

The efficiency of this technique for selecting from f(x) is given by the
ratio of the area under the curve to the total area, or

_ S flx) dx

= (5.1-27)
K(xy —xy)

For highest efficiency, the value K should be the smallest possible value that
always exceeds f(x) in the region.

Within a computer program, random numbers may be taken from tables
called into the machine memory or they may be gencrated by a subroutine
as needed. Random-number-gencrator routines are available as standard
software with most gencral-purposc computers. Numbers abtained in either
way are more properly termed pseudorandom because they are systemati-
cally obtained.

Despite their availability and short length, the codes that genecrate
pscudorandom numbers are not trivial. In fact, a precise test to verify the
randomness of a generator has yet to be defined. Various criteria can be
applied which test for necessary conditions: the test for sufficiency awaits
further research. It is sound practice when selecting a random-number-
generator code to examine the tests to which it has been put. In fact, some
generators that had been used for years were found to be not so random
after all when sophisticated tests were applied. Appendix [ is an introduction
to random-number generators, including descriptions of some in general use
and a discussion of tests for randomness.
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5.2 THE EVALUATION OF INTEGRALS

A theorem of statistics called the law of large numbers provides the basis
for evaluating integrals with the Monte Carlo method. To illustrate this
theorem, we will consider the integral

Z=[_ Z(x) flx) dx (5.2-1)
where f(x) is a probability distribution. The term Z is called the expected

value of the function Z(x). The law of large numbers states thac this integral
may be approximated by

. 1 N
ZN='\TZZ‘V1) (5.2-
1

wn
(B8]
»

and that Z*N will approach Z as a limit as N approaches «. The x,, x4, . . .,xN
are randomly selected from the PDF f(x) (the rejection technique could be
used), and Zy is called an estimate of Z.

Biasing may be defined as any means of distorting the sampling
technique to advantage and may be introduced into the evaluation of the
preceding integral by means of a biasing function, h(x)

f Z(x h(\‘) (5.2-3)

This equation is then evaluated by sampling from a PDF given by the
product [f(x) h(x)], and each sample is adjusted by 1/h(x). A reasonable
choice of the function h(x) is one that will encourage choices of x most
likely to give values of Z lying at or near the expected value; that is, the
variance of the distribution [f h(x)] should be less than that of f(x)

goal is that the product [f(x) h(x)] approach a constant such that there is

zero variance and

N

(%)

zZ= h(x)

for any choice of x (5.2-4)

The integral Boltzmann transport equation may be expressed in a form
similar to the preceding equation for Z. To evaluate the density ®(P) of
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particles emerging from collision in a unit of phase space dP, (e.g.. dP = dE
dS§l dr), we can write the Boltzmann equation

&(P) = [ K(P' = P) &(P') dP’' + S(P) (5.2-5)

The term K(P'>P) dP is the transfer kernel giving the probability of a
particle emerging from a collision in increment dP about P given that one
particle emerged from a collision at P’; S(P) is the density of the source
generating particles in dP directly. In generating random-particle tracks
through a medium, we are essentially generating a ®(P’) by straightforward
sampling. Performing a statistical estimation of the contribution to dP from
each collision point is a means of evaluating the kernel K(P'=>P). Evaluation
of the estimates from each collision point then is equivalent to performing
the integral over volume, energy, and angle. The transfer kernel may be
decomposed into the form

K(P'=P) = T(t'>r|E' 82") C(E'~E,2'>8r) (5.2-6)

That is, the transfer kernel K is expressed as a product of T, a transport
kernel. and C, a collision kernel. The vertical line in the arguments of the
two functions indicates quantities that are held constant;in 7, ' = r for a
given E', Q'; in C, both E' = E and ' = Q for a given r. The function T
would contain a delta function that vanishes everywhere except where r lies
aJong the ray Q': otherwise it is essentially the probability of interaction per
unit length along the rayv.

Functions that are introduced into this equation to provide biasing of
parameters are often called importance functions because they provide
sampling in those areas most important to the answer. For example, an
importance function depending on position alone may be introduced into
the function T by defining

I(r)
; 5.2-7
0] ( )

—

T* = T(r'>rlE',Q")

~

‘I

The I(r) function often assumes an exponential form in penetration
problems. This function can then be combined in whole or in part with the
exponential in the transport kernel. A Monte Carlo application of position
biasing is discussed in the section on selection of path lengths.
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Other importance functions of energy, angle, or position may be
introduced into the equation in a comparable manner. Goertzel and Kalos*
developed the Monte Carlo application to radiation transport in phase-space
notation.

A more systematic and generally successful approach to importance
sampling is to use the value function, a solution to the equation adjoint to
the Boltzmann equation. The value function has been shown by Coveyou,
Cain, and Yost® to be a very good, sometimes optimum, importance
function for biasing the Monte Carlo procedure. Cain® has shown that the
value function can be readily obtained by S, methods and applied to the
Monte Carlo problem.

5.3 SOURCE PARAMETERS

With this background in selecting from distributions, we are now ready
to consider the first block in the history-generator routine: choose source
parameters. The source parameters will be assumed to include the energy,
spatial point of origin, and direction of motion of the source particle, as well
as biasing parameters.

These parameters may be independent, or they may be interrelated in
various ways. For example, where the energy distribution is dependent on
the direction of motion, the order of selection would call first for selection
of the initial angle and then for selection from the energy distribution
applicable to that angle. When biasing parameters are used, they are tied to
one or more of the other parameters.

5.3.1 Selection from an Energy Distribution

The most convenient form for expressing an energy distribution depends
on the nature of the distribution. Some of the forms of distribution that
may be available for input to the problem are discussed in Chap. 2. Where
possible, a cumularive energy distribution should be input at frequent energy
points such that interpolation may be used with reasonable accuracy. Most
distributions can be input in this form without an undue amount of data
handling. The source-energy selection process proceeds as shown in Fig. 5.3.
For some types of problems, energy groups may be defined by using
boundary values: E,..... E +, for n groups. The particles may then be
classified both by their energies and by the 1 groups to which they belong.
This procedure adds one parameter which must be specified at the source
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but which does not necessarily alter the procedure for selecting the source
energy.
5.3.2 Selection of Spatial Point of the Source Particle

The problem of locating and tracking particles from point to point in
material regions is primarily one of geometry. Physics becomes involved only

Generate 3 Set Evaluate £ from
random number stored values of
n n=F(E) . Evs. F(E)

Fig. 5.3—Selection of initial energy.

in the determination of track lengths or in the fate of the particle at the
interaction point.

The means of expressing geometric parameters depends on the choice
of the coordinate system: for example, infinite-medium calculations lend
themselves to spherical geometry, but many reactor shielding problems are
best handled in cylindrical or rectangular geometry. Some examples of the
selection of source spatial position are discussed in the following paragraphs.

For sources uniformly distributed on a disk, the probability density
function describing the distribution of source points as a function of radius
is 2mr/mR%, where R, is the radius of the disk, and the cumulative
probability distribution is
-2
R}

Pir)= [ fir') dr' = (5.3-1)

Here a random number 7 used to select a value P{r) can be used to select
a random value of r directly. Since

r2

n=Pir)=—

—

it follows that

r=R n%

—
wn
L.;J
(3]
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Art a given r the source positions are equally distributed in azimuthal angle ¢;

thus
- - ¢
n = P(¢) 7
and
¢ =2mn
If ¢ is to be measured only to %7, then
o=m(2n-1)
and
g+

(5.3-3)

(5.3-4)

(5.3-5)

(5.3-6}

This may be extended to the case of a uniform cylindrical volume

distribution by next selecting a Z coordinate equally distributed between the

limits on Z.

For a nonuniform spherical-shell distribution, consider a spherical shell
bounded by radius limits r; and r, in which the volume density of source

particles is given by
p = kr
The distribution function in r is given by

47r? (kr)
flry = 2

The cumulative distribution is given by

L fehdr e

= .y 4 4
mh (r3 —ri)

P(r} =

/

And the randomly selected radius is given by

r=[r‘1'+n(r§ -

[Cfydt o

(5.3-7)

(5.3-8)

(5.3-10)
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The corresponding @ and ¢ coordinates would be selected for uniform
distribution over the shell at radius r (Sec. 5.3.3).

A variety of other distributions may be expressed analytically so that
coordinates may be selected from a continuous distribution. In practical
application it may not be possible to express the distribution analyrically. In
such cases the distribution may be numerically integrated to provide a

a6

a9

Fig. 5.4—Integral for isotropic distribution.

cumulative distribution in each dimension. Where the dimensional probabili-
ties cannot be separated, i.e., where P(r,6,¢) cannot be expressed in terms of
P(ry P(8) P(¢), it may be necessary to specify P(6) and P(¢) or P(8,¢) for
each interval in r. Two approximations are then possible in making a random
selection: either a value of ris classified as being within a given Ar increment
and the P/8) and P(¢) values for that increment are selected or the P(8} and
P(¢) values are interpolated between the two adjacent values of r for which
they are input.

5.3.3 Selection of Initial Direction of Source Particle

We turn next to the problem of assigning a direction to a source particle.
Consider first sources that are emitting isotropically. Picking a uniformly
distributed direction is tantamount to selecting unit vectors terminating
uniformly on the surface of a unit sphere. The cumulative probability
function is therefore given by the integral over the spherical surface area
shown schematically in Fig. 5.4.
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The distribution in § is given by

[ 2rsin8'de’ 1
n=DpP0)==2 =—(1 - 8 5.3-11
e ST 2msin 8’ d6’ y L cosd) ( )
and
6 =cos! (1 - 2n) (5.3-12)

The angle ¢ will be uniformly distributed between 0 and <r, or
¢ =m(2n — 1) ‘ (5.3-13)

Note that the direction cosines are functions of these two angles and can
be computed once the angles are known.

For a surface source emitting isotropically, the direction would be
selected randomly from a 27 half-space, or

27 sin ' 46’
n= f::, -1 _cost (5.3-14)
f'° 2nsin @' df

and
6 =cos! (1 —n) (5.3-15)
or, since (1 — n) is distributed in the same manner as n,
8 =cos? n (5.3-16)

In like manner, for a surface source emitting a cosine distribution, the PDF is
given by sin 8’ cos 8’ and the angles 8 would be selected from

cos? § =n ' (5.3-17)
or
6 =cos!\/n (5.3-18)

Any arbitrary distribution in direction may be put in terms of tabulated
values of P(f) and P(¢). When various source distributions are to be
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considered incident on the same shield configuration, it may be advan-
tageous to run individual unit source problems. The results obtained from
the unit source problems can then be combined with various weightings to
stimulate a variety of source distributions.

5.3.4 Source-Biasing Parameters

In certain calculations it may be desirable to prejudice the selection of
one or more source parameters to favor those most likely to contribute to

Fig. 5.5—Source direction biasing.

the quantity of interest, such as shield leakage or detector response. This can
be done by selecting a larger number of the important source particles and
assigning to each particle a number, called its weight, to adjust for cthe bias
that was introduced. Figure 5.5 illustrates this concept.

Consider an isotropic source located at .4 and a detector at B. Clearly,
source particles leaving .4 in the direction of B will contribute more to the
flux density at B than those leaving in opposite directions. (We assume, of
course, that scattering is permitted in the transporting medium.) Suppose, in
following 10,000 source particles, we estimate that 2000 would lie in A2 in
the unbiased isotropic case. However, because of their greater importance,
we desire to force 6000 of the 10,000 to lie in AQ. The weight assigned to
them is }; to remove this bias. Further, the weight of the remaining 4000
outside of AL must be increased to 2 since each history in the biased case
represents two particles in the unbiased case. Table 5.1 summarizes these
facts. As each particle history is generated, its contribution, ¢, to the total
flux density at B can be determined. This total flux density is given by

10,000
d=K L W, (5.3-19)
i=1

where IV; is the weight (/5 or 2) of the particle contributing ®; and K is a
source-normalization constant. (For a unit source strength, K =1/10,000.)

rl"\
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When biasing is used, the summation of particle weights equals that of
the unbiased case where the weights are identically 1. However, because of
the altered statistical sample, a more representative answer is usually
obtained for a fixed total number of source particles.

Table 5.1 —WEIGHTS FOR BIASING ILLUSTRATION

Unbiased case Biased case
No. of Particle No. of Particle
histories weight histories weight
Histories in AQ 2,000 1 6,000 A
Histories outside AQ2 8,000 1 4,000 2
Total No. of histories 10,000 10,000

To amplify the example, suppose the 180° range of 8 is divided into 18
intervals of 10° each and the cumulative probability emission of a source
particle in the jth increment is given by AP;(8),j=1,2,..., 18:

18
]};“.IAP]-(G) =1=P4(6) (5.3-20)

This distribution may be adjusted in any arbitrary manner by assigning
probability values APJ'-(H) and weights Wj to each angular group such that

Wj AP;(6) = AP;(6) (5.3-21)

provided one does not violate the rule of probability that APJ'-(H) <1 and
that

L AP6)=1 (5.3-22)

As a second example, consider the case of a plane isotropic source where
it is desired to bias the histories toward directions near the normal to the
plane. The unbiased cumulative angular distribution at 6 = 10° (measured
from the normal) as computed by Eq. 5.3-14 s 0.015. This value is to be
increased by a factor of 5 such that

P\, (0) = 0.075 (5.3-23)
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Particles generated within this interval will have a weight 0.2, and particles
generated in all other categories will have probability increments

1 — P{(10°)
. =pP.(0) ———L = (. : .3-24)
P(6) = P(6) T p7ge = 0-939P, (5.3-24)
and will have weights given by
P, 1-P ) )
W, =?;=1—_1;{ = 1.065 (5.3-25)

Thus the total particle weight generated by selecting N particles will be
0.270.075)N + 1.065(1 — 0.075)N = N (5.3-26)

Situations where biasing might be used include:

1. Selecting more source points near the periphery of a reactor.

2. Selecting more particles with an initial direction toward the shield or
detector.

3. Selecting more particles with a high energy or with an energy
corresponding to a low total cross section.

Probability and weight adjustments can be developed for biasing the
starting position or energy for a particular situation. It is important to
remember that an adjustment in one category (e.g., angle interval or energy
group) affects not only that group but the entire distribution.

In summary, if the number of particles within a particular category is
increased by a factor k, then their weight is decreased by a factor 1/k. The
weight of particles in other categories is increased such that the summation
of particle weights is equivalent to the number of particles generated.

5.4 PATH LENGTH

Thus far the geometry has been defined and a set of source-particle
parameters has been selected. Next we determine the particle path length
from the source to the point of interaction. The path length along with the
parameters of initial direction defines the point at which an interacrion
occurs.
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Assume initially a single infinite region through which particles are being
tracked. If the total macroscopic cross section of the region is Z;(E), then
the number of particles of energy E penetrating to depth L out of Ny, trials is

N, e Zt(E) L

and the probability of penetration to depth L is

_ number penetrating to L _ e ZHE) L

P(L) (5.4-1)

number of trials

The probability of particle interaction at some path length <L is thus given

by
P(L)=[1-eZe(E)L (5.4-2)

If path lengths L to first collision are to be sampled at random, the random
number, 1, is set equal to P'(L), or

n=1-e2t(E)L (5.4-3)

from which

1 !
Et(l:) In (1 - n) =—— Inn (54-4)

L= Z4(E)

since 1 — n is distributed in the same manner as #n.

Suppose now that a single region is bounded such that the boundary is
encountered at path length L =A. If the randomly selected path length
exceeds the value A, then the particle will be assumed to have escaped the
system. Thus values of L may be selected as shown above for an infinite
medium and tested to determine whether they exceed A. If they do the
particle has escaped and the history is terminated: if they do not, a collision
is assumed to have occurred at the selected point, and collision parameters
are calculated. The value of A will be a function of the initial direction of
the particle and the geomeiry of the region boundary, and it should be
calculated after the source direction has been selected so that it will be
available for the test against L.

Consider next a multiregion geometry with each region homogeneous. A
ray extending in the direction of particle motion encounters region

—_— -
e
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thicknesses in the various regions given by A, A,, ..., Ax with associated
total cross sections given by Z¢, Z¢p, . . o, Zex.

The effect of successive probabilities is such that the escape probability
from the entire system is equal to the product of the individual

YES YES |(b-(2 A +Z_A)|ETC
b)EHA‘l (b-ZI1A1)>Zr2A2 >ZrJA;13 1 272
NO NO l
- ETC.
L=b/T, L=A1+b‘:nA|
“r2

Fig. 5.6— Selection of path length.

zone-penetration probabilities. Thus the fate of the parricle along the track
could be determined in the following way:

Select a path length at random assuming an intfinite medium with cross
section Z;y.

If L, exceeds A,, move the particle to the point where its track
intersects the boundary between region 1 and region 2.

Select a path length at random, in the original direction, assuming an
infinite medium with cross section Z;,.

If L, excecds A,, translate the particle to the region 2 — region 3
boundary. This procedure is repeated until one of the L; < A; or until the
particle escapes.

The total escape probability will be given by

Pp =exp — (2 A1+ Zt2Ads - - Tex Ax) (5.4-5)

Instead cf selccting path lengths in each of the materials successively, as
described above, it would perhaps be simpler to decide the fate of the
particle by sclecting only one random number. For this purpose we will
define b =L Z,; A;. where A4; is the thickness of material i lying along the

i
particle path between the source point and the first collision. The value of b
is selected at random from

b=Ilnn (5.4-6)

The process of finding the path length corresponding to the selected value of
b is symbolized in Fig. 5.6. This search is continued until L is defined. Flow
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charts for calculating boundary-intercept distances for several types of
geometry are given by Cashwell and Everett.?

Biasing may be introduced into the path-length selection in a manner
similar to that in source-particle selection; i.e., the true distribution is
distorted in some arbitrary fashion, and the particle weight is adjusted to
account for this distortion. The mechanics of track-length biasing depend on
the motive for biasing. Where it is desired to improve the statistics on
collisions internal to a region, particles may be prevented from escaping by
picking collision points from a cumulative distribution which becomes 1.0 at
the boundary; the weight of the colliding particle is then reduced by
subtracting the fraction that would ordinarily escape the region. Where it is
desired to improve the statistical data on particles penetrating a thick shield,
particle track lengths may be stretched in a direction favoring penetration
and reduced to the opposite direction with a commensurate adjustment in
particle weight. In some cases the approximartion is made to replace
transport in an adjacent region by a surface effect or albedo, and one forces
collisions to occur only at the boundary.

To illustrate the first type of biasing in its simplest form, we return to
the case of a single limited region. If the initial weight of a source particle is
Wo and the path length to escape is A, then a particle of weight W, = It
e A1Z¢ is allowed to escape, and a particle of weight

W= Wy (l—eZtdn) (5.4-7)

is forced to have a collision prior to escape. The cumulative probability of
collision P(L) is given by

P(L)=nPA,)=n(l-eZtdr) (5.4-8)

where P(L) is given by P(L) =1 — e =L Solving for L,

L=ein[1=n(l-eZedi) (5.4-9)
P

In a multiregion problem, this procedure could obviously be repeated for
paths beyond the first, forcing the particle to remain within the region of
interest until the history is terminated by minimum-weight or minimum-
energy criteria.
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Biasing of track length to affect deeper penetration can be done by
sampling from a linear rather than an exponential distribution wich track
length. For example, for a thick-slab shield with the incident radiation
normal to the shield, the first-collision depth could be sampled from
L =nA,, where L is the depth to first collision, n is a random number, and
A, is the total shield thickness. For the linear distribution the probability of
collision between some arbitrary path length L, and L, + dL is given by
dL/A,, whereas the probability in the true distribution is £, e Z¢L1 dL. A
weighting function must be assigned to the particles such that the product of
the number colliding times their weight is equivalent in the two systems, or

aL . T, e Tl drw, (5.4-10)

<41

From this equality the weighting funcrtion

— =4, el 411
o ATe (5.4-11)

is given, where W is the weight assigned to particles at depth L, and W is
the initial particle weight in the unbiased system. Although the particle
weight is less, a larger fraction of source particles penetrates to great depths,
which increases the accuracy of the averaging there.

Similarly, any other arbitrary distribution of collision densities may be
used with the appropriate weighting schemes. One of these, the exponential
transform, is designed to maintain approximately the same population of
particles at any point within the shield. Since the particle population and
flux density decrease approximately exponentially with travel through the
shield, these quantities are weighted by a function that increases exponen-
tially with shield penetration. In this scheme a solution is sought for the
quantity

®(r,w,E) = N(r,w,E) ef(n-@:E) (5.4-12)

where N = unbiased flux density

r = sparial position
w = direction of particle motion

E = particle energy

h]l»l
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In a source-free region this amounts to biasing of track lengths only, butin a
distributed source the same importance function is applied both to source
starting positions and to track length.

We will consider only the implications to initial track-length selection
and particle weight in this section.

For an exponential adjustment we may define a pseudo cross section Z}

given by
Z,=2Z; (E) —g(r,w,E) (5.4-13)

and select from a distribution of first collisions given by

* -TAL

fiLy=%27e (5.4-14)

The weight applicable to a particle suffering a first collision at depth L can
be obtained by equating the products of first-collision density times the
weight in the biased and unbiased svstems

W(L)Z; e Tl dL =W, 3, eTel drL (5.4-15)

from which

wiL) 3,
Wo  Z¢—g(r.w.E)

eg(r.w.E)L (5.4-16)

Thus, for positive values of g, the following observations may be made
concerning the collisions occurring at a large value of L:
1. A larger number of particles are available for interaction.
2. The number of interactions occurring per unit flux density is smaller.
3. The weight of interacting particles is smaller unless Z¢ < 1.

One form of the transform. first proposed by Kahn,” is given by
glrwk) =€ wC (5.4-17)

where € is a unit vector in the direction for which penetration is to be
studied, w is the direction of particle motion, and C is a constant governing
the magnitude of the transforming factor. In this form the magnitude of che
transform is proportional to the cosine of the angle between € and w [ie.,
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g(r,w.E)=C when the particle motion is in the direction € and
g(r,w.E) = —C in the opposite direction].
Eriksson® has proposed a form

g(r,w.E) =%C [(x — x0)2 + (y — yo)? + (z — 20)%]* (5.4-18)

which would give spherically inward or outward biasing (depending on the
selection of sign) about the point (xg,yq,2¢). Perkins and Burrell® have
proposed the form

z

*
t

=%, [1 - Muw " é)] - (5.4-19)

and have made efficiency comparisons between this and the form

=2 -C(w-e) (5.4-20)

No clear preference was indicated for either of these two methods from their
study.

One of the most persistent difficulties in applying the exponential
transform is the possibility that the effective cross section Z* may become
negative. Some users® ™! © have prevented this by restricting the choice of ¢ so
that Z# is positive for the minimum value of Z; encountered in the
problem. However, such a restriction in the choice of g may result in a severe
limitation on the efficiency of application of the transform.

Leimdorfer! ! proposes two alternatives. The first is to set

TT=2'>0 (5.4-21)

whenever £* becomes less than zero, where the value Z' is arbirtrarily chosen
by the user. The second method is simply to accept the negative value and
select from the resulting distribution. This method is generally restricted to
problems that have finite external boundaries at distance T, in the direction
of transport. Negative values are then allowed only for penetration <T|;
bevond the boundary they are replaced by an arbitrary positive value as
above. Thus, along a particular track crossing the boundary, two weighting
functions might be applied, one for each of the segments lying on either side
of the boundary.
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Extending these concepts to a track along which Z* varies with the track
length and negative values are permissible, the track-length distribution is
given by

F(L)=IZ] (L)l exp [~ fF £} (S) dS] (5.4-22)

where Z#(S) is the total cross section as a function of track length, or, if
collision is to be forced between some limits 0 < L < T, then

(L) = IZF(L)| exp[—J§ Z{(S)dS] (5.4-23)
T{Z#(L) exp [-J§ Z¢(S) dS]}dL

As in previous cases, the weighting function is given by

_ Fo(L) W

W= —FD

where the subscript zero refers to the unbiased values.
Clark'? has prepared an excellent review of the exponential transform in

which he discusses the efficiency of the method as a function of the form

and magnitude of g(r,w,E). For highenergy (7 MeV) gamma-ray sources

uniformly distributed through a 100-cm slab of ordinary concrete and for

the transform given by

g=w-€C (5.4-25)

he found that the estimated relative errort reached a minimum near C/Z = 1.
Where the sources were distributed with slab thickness, Z, in accord with the
function e#Z and Leimdorfer’s first scheme for treating negative values of Z
was used, the minimum relative error was obtained at values of C/Z lying on
either side of 1.0 (e.g., 0.6 and 1.6) over a wide range of values of the
parameter k (0.5 < k < ). As slab thickness is increased, the minimum error
again occurs near C/Z = 1.0, although this minimum is a larger value owing
to the increased penetration. When negative cross sections were dealt with
and Leimdorfer’s second scheme was used, increased efficiency was noted,
and the minimum relative error in all cases was C/Z = 1.

tEsomated relative error = deviation of the mean/estimate of the mean = o/u.
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With various particle-weighting techniques, it occasionally happens that a
particle arrives deep within the shield with a weight far in excess of the
average weight of particles at that depch. The presence of these high-weight
particles adversely affects the convergence of the value of flux density per
unit source particle for the region. This can be prevented by use of the
technique of splitting, which decreases the particle weight and increases the
number of particles by the same factor. Splitting may be instituted at the
point of collision or where previously defined boundarics are crossed. A
parallel problem is that of particles scattering back into a region where their
weight is so far below the average weight that further tracking would have
lictle effect on the average flux density. This is adjusted by a game of
Russian roulette. Whether or not the particle survives is determined by the
ratio of particle weight to some arbitrary weight typical of the region. As
discussed in the following text, a random number is used to determine the
future of such particles.

One may define certain minimum and maximum permissible particle-
weight values for a given region. When a particle appears with ItV < It i . a
random number is obtained and compared with W/IVi,. It 0 < W0/ WG,
the particle is saved and its weight is increased by the ratio W jn/IV so that
it has weight Whin. [f 7> W/Wni,. the particle perishes; i.e., its history is
terminated. Any arbitrary value IV between W in, and Wq,« (eg.. an
average of the two limits} could be set as the weight of particles surviving
Russian roulette provided the corresponding ratio (W/IV) is permicted to
survive. When W > Wg;,, a further test is made to determine whether
W> Wnax. If it is, the particle is split into a number of particles given by
the integer value of the ratio W/Wn,«. denoted as [IW/ W ,« . Each particle
resulting from the split is assigned a lower weight, IV, given by

v
[WiWmax]

w
+
I~
(@)

Wy =

—~

and then each is tracked separately to its death.

The boundarics at which splitting and Russian roulette occur may be
arbitrarily defined without regard to region boundaries. The values of W,
and Wmin assigned to regions should be based on the expected behavior of
the flux density. Where strong biasing is used in a particular direction, the
flow of particles in the opposite direction may be adequately controlled by
the biased track lengths so that Russian roulette is not necessary. Splitting
may still be required, however, to cover cases where the weight-adjustment

B
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quantity (Z;/Z;) e 8L becomes very large owing to approximately equal
values of Z; and g.

An alternative to the splitting and Russian roulette techniques is a
technique that also performs the biasing function. In this method boundaries
are defined at which particles crossing in one direction are automatically
split into an arbitrary multiple, M, and those passing in the opposite
direction suffer a fractional mortality equivalent to 1 — (1/M).

For example, such boundaries could be defined at surfaces where the
flux density would be expected to decrease by a factor of 2, and the
particles crossing the boundary toward the reduced-flux-density region
would be doubled. In this manner the particle population would remain
approximately at the same level through the shield, and the average particle
weight would reflect the degree of attenuation. The efficiency of this
method would depend in part on how well the flux-density behavior is
predicted at the outset.

5.5 COLLISION PARAMETERS

When it has been determined on the basis of the total material cross
section that a collision has occurred, it is then necessary to determine which
of the possible nuclear species was involved and which of the possible
interactions of that species took place. For this determination both the total
and the individual interaction cross sections must be available to the
computer for each nuclide over the energy range of interest.

In a material containing several elements of atomic density p; (nuclei/
cm?®), and total cross section o (cm?/nucleus), the total marerial macro-
scopic cross section is given by

Z, SP10 T P20y o PuOy, (5.5-1)

and the probability of a particular species’ being involved is given by the
fraction of the total cross section represented by that species p;0+;/Z;. The
nucleus involved in a collision can be obtained by selecting a random number
r and comparing it to a cumulative distribution,

k
-21 L0t

Plk) = e = s (5.5-2)

and solving for k, where k can be any integer between 1 and n, inclusive.
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In a like manner, the type of interaction can be determined by
comparing another random number to

where the ojj are the various components of the different interactions
making up the total cross section of element i.

For neutrons the 0;; would ordinarily be the cross sections for elastic
scatter, absorption, fission, (n,n'), (1,2n), and (1,31, Other identifiable
reaction types can ordinarily be classed into one of these categories: e.g.,
(m,p), (ma), (n,d), etc., are absorptions, and (n,n’,06)) could be classed as
(n,n") since the resulting charged particles are of no interest except as they
may affect the energy of the neutron given off.

Secondary neutrons and gamma rays are associated with most of these
interactions. Ordinarily the secondary neutrons would be included by
tracking them in turn after the historv of the incident neutron is terminated.
The secondary gamma-ray source dara would be stored for later processing
by a gamma-ray transport program.

For gamma rays only three cross-section components, photoelectric
effect, compton scattering, and pair production, would be involved. Two of
these, photoelectric effect and pair production, would terminate the history.
although pair production would result in secondary gamma rays from
positron annihilation, which should be included as a new isotropic source of
0.511-MeV gamma ray.

At first glance the choice of collision parameters would appear to be one
of the simpler tasks in tracking a particle. This is deceptive, however, because
the task of amassing the required cross-section data in the proper format can
dwarf that of coding the problem. A distinguishing feature of the better
Monte Carlo codes is the degree to which the cross-section preparation task
has been automated (or the availabilicy of an auxiliarv code for that
purpose). In addition to data at individual energy points, provision must be
made (through interpolation or analytic fit) to cover all possible energies of
interest. Schemes often used in this task include linear or logarithmic
interpolations or polynomial fits to the data within certain energy bounds.

An additional complicating factor is the use of biasing in the selection of
the interaction type. For example, incident neutrons may be assumed to
scatter at every interaction point, and the weight of each after scattering will
be reduced by the fraction Z;/Z,, the ratio of the scattering to the tocal
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cross section. In this manner the average scattering kernel will be the same as
though the proper number of neutrons were allowed to scatter with no
weight degradation, but the computing efficiency will generally be greater
because histories will not be terminated by capture events.

In practice the entire transport problem can be run with only scattering
interactions being allowed to occur (making the proper weight reductions)
and with the collision parameters at each interaction being stored for future
processing. The collision parameters are then analyzed to determine
absorption density, to make flux-density estimates (as discussed later in this
chapter), or to calculate energy-absorption density. '

5.6 PARTICLE PARAMETERS AFTER COLLISION

The next task is the determination of the parameters of the particle(s)
that survive an interaction. These parameters include the type, number,
energy, and direction of the surviving incident particle and of any
secondaries created in the interaction. Depending on the purpose of the
calculation, one may also wish to determine the energy deposited in the
system. The determination of these parameters involves the application of
differential cross-section data in even greater detail in the selection of the
interaction type. The details of the method will necessarily depend on the
format used in specifying cross sections.

Rather than catalog the large number of possible nuclear interactions
involving neutrons and gamma rays and the optional methods that may be
employed in treating these in a Monte Carlo code, we will give examples
illustrating the principles involved.

Reference should be made to Chap. 3 for a discussion of the types of
interactions and of some of the expressions for particle energy following

collisicn.

5.6.1 Neutron Elastic Scattering

We recall that the angular distribution of elastically scattered neutrons is
approximately isotropic in the center-of-mass system for the lighter elements
and becomes more complicated for the heavier elements in which forward
(and occasionally backward) scattering is usually favored. The anisotropic
behavior generally intensifies with increasing energy of the incident neutron.
Most Monte Carlo programs use scattering angles measured in the center-of-
mass system for selecting the scattering angle and computing energy after



MONTE CARLO METHODS FOR RADIATION TRANSPORT 237

scattering. The angle of the scattered neutron is then converted to the
laboratory system for tracking.

The scattering angle ¥ in the center-of-mass system, measured from the
direction of travel of the neutron, will be selected randomly from an
isotropic distribution by the formula

cosy=u=2n-1 (5.6-1)

where 7 is a random number. This is identical to choosing the polar angle of
emission from an isotropically emitting source.

Where the isotropic scattering approximation cannot be used, the
differential angular scattering cross sections, o(y,E), must be used to
determine the probability distribution of scattering angle. A customary
procedure is to tabulate values of the cumulative scattering probability

_Jyo(y,E)dy

POE) = o S E) v (

5.6-2)

at discrete values of Y and E and use interpolation in both dimensions. There
are disadvantages to this method, however, from the standpoint of
interpolation inaccuracies and machine-storage requirements. As an alterna-
tive, the differential cross section o(¥,E) may be fit by a function such as

o(y,E) = Ag + Bg cos Y + Cg cos® (5.6-3)

and the selection may be performed using the differential probabilities in
conjunction with a rejection technique.t Values of the coefficients Ag, BE,
and Cr may be input for various values of energy where the function
provides an adequate fit. Where the function cannot provide an adequate fit,
the differential form may still be used by selecting values at fixed values of ¥
and E and using interpolation in conjunction with a rejection technique. This
latter method would be inferior to using the cumulative distribution where
computing time is concerned, although input requirements for the differen-

tial form are simpler.
Once the scattering angle y has been obtained in the center-of-mass
system, the energy loss can be computed from the energy and momentum

tWe should note that a(¢,E) is often given by Legendre polynomial coefficients, providing an
alternative to Eq. 5.6-3.

nlh,
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Select y Calculate E’ Calculate 0 Select ¢
based on gly, £/ (Eq. 5.6-4) (Eq. 5.6-5} ¢=n2m

Fig. 5.7 —Elastic scattering.

balance equations and the laboratory scattering angle can be calculated. The

before, we assume that the mass ratio of the target nucleus to the neutron is
A,

§_1+Af+2;-1,-cosyl/ S 6.41
E (Ai+ 1)2 ( S
and
1+ A;cosy
cos 6 = (5.6-3)

(1+A? +24; cos V)4

where E' = energy after scatter
E = energy before scatter
A; = mass of a nucleus of type i (neutron mass = 1)
8

¥ = scattering angle in the center-of-mass coordinates

scattering angle in the laboratory system

With E' and 6 known, the only parameter needed to resume tracking the
neutron is the azimuthal angle ¢, which is, in all cases (except where
polarization is considered), selected from a distribution equally probable in
the region 0 < ¢ < 27, or ¢ = n2m.

In summary, the basic operations in cthe neutron elastic-scattering routine
are illustrated by Fig.5.7. The directions of the neutron may then be
translated into direction cosines taken relative to the geometry axes based on
the known direction of the incident neutron and the deflection (8,¢) from
that direction.

5.6.2 Neutron Inelastic Scattering

An added parameter is included for neutron inelastic scattering, i.e., the
amount of energy deposited in the target nucleus. The loss of energy by this
means prevents the energy of the neutron after collision from being a unique

g
- T
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tunction of the scattering angle. The equations derived from energy and
momentum conservationt corresponding to the elastic-scattering equations
' (Eqs. 5.6-4 and 5.6-5) then become

E’' 1 € €\4 .

€ \%
+ A; _ —
1 A,cosd/(l E)

[1+.-1,-2 (1—%)+ 2.-1icosll/(1—§)‘&]% \

where € is the excitation energy of the target nucleus. These equations
reduce to the elastic-scattering relations when € = 0. For € > 0 and for .4;
large, they become approximately E'=F —€ and cos 8 =cos y. As with
elastic scattering, the distribution in ¥ must be an input quantity.

A particular nucleus may have various excited states, each with its own
excitation energy,€. The neutron energy required for excitation of a
particular level is E> [(A + 1)/A]e. When the energy of the neutron is
sufficiently high that any one of several levels may become excited, the
interaction probabilities may be expressed in a total inelastic-scattering cross
section, Ouy'(E), with an associated probability distribution P(E) among the
levels, or in terms of separate cross sections 0,n'(E,€) associated with the
levels. In light nuclei the levels may be dealt with individually. This may
also be possible for some levels in heavy nuclei, but in many cases (notably
at higher excitation energies) a large number of closelv spaced levels may
appear which require an alternate treatment. One procedure is to split the
possible values of incident and deflected neutron energyv into bands and use
experimentally determined probabilities for group-to-group transfer. These
are expressed as cumulacive probabilities over the possible E' (energy after
scatter) groups for a given incident group. Then E' is selected by search
and interpolation as discussed previously. An alternative approach that can

be used in some cases is to assume a distribution in the continuum region of
El

. _E' _p
fIE) == BT (5.6-8)

tEquations 5.6-4 to 5.6-7 are developed in detail by Cashwell and Everett.?

— . -
o=
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where T is a constant (or a function of E). This is a result of the statistical
model of the nucleus developed by Blatt and Weisskopf' ? and frequently
used in neutron-cross-section estimates. This function could be integrated to
obtain P(E'), but it would be more appropriate to select E' from the f(E')
distribution function using a rejection technique.

More than one secondary energy law may be used for particles of a given
incident energy. For example, the probability of exciting any one of several
widely spaced levels may be 0.3, and the corresponding probability of falling
into the continuous range may be 0.7. By generating a random number, the
code could choose the technique to be used in calculating E'.

5.6.3 Compton Scattering

The treatment of Compton scattering collisions is similar to that for
neutron elastic scattering in thac the scattering angle is ordinarily picked
from stored distributions and the photon energy is computed as a function
of incident energy and scattering angle. Center-of-mass coordinates are no
simpler in this case; thus laboratory coordinates are used.

The photon energy after collision (discussed in Sec. 3.2.1) is given by

_ E
1+ E(1 —cos@)

E' (5.6-9)
where both E and E’ are expressed in terms of the electron rest-mass energy
(mc? = 0.511 MeV). Extensive graphs and tables of the angular distribution
are available!*'!® for input to the program. Some investigators have elected
to select scattering angles exactly by a rejection technique, using the
Klein—Nishina formula (see Chap. 3) as the probability density function.
Methods of making such an exact selection are given by Kahn'® and by
Cashwell and Everett.?

5.6.4 Particle Absorptions

There are no particle parameters to be calculated following an absorption
interaction. This event simply terminates the particle history. However, a
record of the particle parameters at the time of collision may be desired for
collision analysis.

As with neutrons, it may be desirable to increase the average number of
photon scatterings per particle by forcing a scattering at each interaction
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point and making the appropriate weight adjustment to account for the
portion of photons that, in reality, are absorbed.

In an absorption event secondary particles of the same type radiation as
the incident particle may be tracked from the absorption point in the same
calculation. If the secondary particle is of another type (e.g., gamma rays
from neutron capture), the capture parameters will be used in formulating a
source distribution for a separate calculation of the transport of the
secondary particles.

Fission of heavy nuclei is a special case of absorption in which secondary
neutrons and gamma rays will be generated with a known yield, vy, per
interaction and a known energy distribution. With secondary neutrons.
account must be taken of the weight, W, of the neutron initiating the fission.
For example, one neutron could be generated with a weight »oIt.
Alternately, a number of neutrons could be selected from a distribution of
integral values whose average is v, and each of these assigned a weight . In
both cases the neutron energy would be determined by selection from a
cumulative energy distribution, and the direction would be chosen from an
isotropic distribution.

5.6.5 Calculation of Emergent-Direction Cosines

Usually particle directions are defined by recording the direction cosines
of the particle-track vector. As discussed previously, scattering angles at a
collision point are characterized by calculating the polar angle 6 (determined
by the differential scattering cross section) and the azimuthal angle ¢ (picked
at random between 0 and 27) of the scattered track relative to the incident
track. If (a,8,y) are the direction cosines of the incident particle, the
direction cosines of the scattered particle (o' ,§',y’) are given by the set of
equations:

ar=aco59+7asm5C(;sfb_ﬁsmﬂsnzd)_
(1—7%)4 (1— ")
sin 8 cos ¢ sin @ sin ¢

B =BcosB +%0 TP a(l-—yz)’%

v =ycosB — (1 —v*)%sinf cos ¢ (5.6-10)
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2

except in the case where 1 — v* approaches zero, in which case the

degenerate form

o =sin 0 cos ¢
B’ =sin 0 sin ¢
v =y cos¢ (5.6-11)

15 used.

5.7 PARTICLE SCORING

The discussions to this point have concerned the generation of source
particles, tracking to the first collision, and the determination of the new
particle direction and energy following collision. The process of picking
track lengths and analyzing collisions may be continued until the particle
history is terminated. The terminatrion may, as previously mentioned, be the
result of exceeding predetermined bounds placed upon energy, spatial
position, and/or particle weight.

We next consider the output of the Monte Carlo calculation. Specifically,
answers are required for the following questions: What is cthe desired form of
the output data? How do particle histories contribute to obtaining these
answers’

Consider the case of a point source and an infinite-slab shield of
thickness T. Typical of the results that might be desired are the following:

1. Flux density as a function of position, direction, and/or energy inside
the shielding material.

2. The penetrating dose or flux density.

3. The energy and angular distribution of the penetrating particles.

4, The distribution of penetrating particles relative to the number of
collisions encountered before penetrating.

5. The distribution in time of arriving particles.

There are obviously many other possibilities.
The flux density per unit source particle incident per unit area inside the
infinite slab can be obtained by the sum

1 W;
(b—n Ecos 0; (5.7-1)
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of particles crossing a plane surface parallel to the sides of the slab, where 6
is the angle between the particle direction and the normal to the plane. The
result is normalized to a unit source by dividing by the number of case
histories, .

The flux density at a particular location can be estimated by describing a
volume region about that location and calculating the weight times the track
length per unit volume of particles passing through the region. The flux

Fig. 5.8 —Statistical estimation.

density at a point can be obtained by a method known as statistical
estimation. This technique is used to estimate cthe scattered-radiation
contribution to point detectors from scattering events within the shield and
is often used with the forced-scattering technique discussed in Sec. 5.4.
Consider, for example, a track within the shield in Fig. 5.8. The flux density
at point D is estimated by determining the particle weight wich which the
particle would arrive at D (within a unit spherical detector) if it were forced
to scatter in that direction from each point of interaction, S. If the angle
between the incident-particle direction and the line of sight (S to D) is 6;
and the particle is incident on S with energy E, then the weight W; of the
particle forced to scatter to D is

os(E)

w; = W, o E]

fl65,E) (5.7-2)

where W, = weight of the incident particle (at §)
0s(E) = total scattering cross section of the element involved in the
collision
0¢(E) = total cross section of that element
f(65,E) = probability density per steradian of scattering through angle 6;

Note that [ f(85.E) dS2 = 1 and that the product o5 f(6,E) is equivalent to the

differential angular scattering cross section o(8,E).

n

Vv
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The contribution ®; of the scattered particle to the flux density at D is
given by

e~Zt(E')R

b= W; R

(5.7-3)

where Z;(E) is the total macroscopic cross section of the scattered particle.
The flux density at point D is estimated by summing the contributions from
all scattering interactions:

&=>L - (5.7-4)

This estimate is independent of the particle-tracking procedure and does
not terminate the history. Ordinarily the only calculation common to bath
the estimator and the tracking routine is the determination of which nuclear
species in the material was involved in the collision. In the estimating
process, every collision is assumed to be a scatter in the direction of the
detector, but, for tracking purposes, completely independent determinations
are made of interaction type and particle parameters after collision. A better
justification for this technique is given in Sec. 5.2.

The problems of convergence using statistical estimation of this type
have been examined by Kalos.!” He shows that an infinite variance and a
preferential tendency to converge from below (as the number of hiscories is
increased) result. Nevertheless the process does converge, and it has been a
very useful technique in many situations.

Where surface detectors are of primary interest, a different form of
estimator may be used. In this form flight-path length and direction are
selected normally just as in statistical estimation, but estimates are made by
extending flight paths in a straight line until a surface intersection is
obtained. In one form, known as the last-flight estimate, this estimator
consists in stretching every flight path that will provide an intersection. In
another form, known as the first-flight estimate, the first-flight path length is
adjusted, where possible, such that all collisions lie on the surface. Of course,
appropriate weight adjustments must be made.

To illustrate the last-flight estimator, let us consider a point source in an
infinite medium with a spherical surface detector at radius R. Collision
points in Fig. 5.9 are assumed at points A to D, and estimates are made by
stretching each track until an intersection with the sphere is obtained. Note
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that intersection is always possible for tracks inside the sphere. Projection of
tracks from collision points outside the sphere may not intersect, but, when
they do, there will be a double score since the particle penetrates the sphere

Fig. 5.9— Last-flight estimator.

twice. The estimate of flux density, ®;(R), at the sphere for one particle
flight will be given by

Iv; e Zidi

47R? @;(R) = ———— (5.7-5)

lcos B;1

where IV; = particle weight on the ith flight
d; = total distance along the selected flight direction to the point of

intersection
angle between the normal to the surface and the track at the

Bi
point of crossing
Z; = total cross section of the medium for particles on the ith flight

Thus the weight of the particle is adjusted by the attrition probability of the
total flight to the surface. For the path originating at point D (the 5th
flight), the estimaror will be

-z d -z d'
Ws (72575 +e<595) )
R.2 R 5 - ’-l -6\
m IS( ) IC S BS' . (3 /

to account for the double encounter with the surface. Here again the
tracking continues independently of the estimates, but particle parameters
after collision are used as a basis for making the estimates.

The first-flight estimator is similar to the last-flight estimator except that
adjustments are made in the first flight so that, where possible, each collision
point lies on the surface of the sphere. In Fig. 5.10, the simulated tracks
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involved in the estimate for each collision in the history shown in (a) are
shown in (b) through (d). In (b) the first flight is adjusted to make the first
collision point lie on the surface. In (c) the first flight is extended so that the
randomly determined end point of the second flight is shifted (parallel to the

(a) (b)

(c) {d)

Fig. 5.10—First-flight estimator. (a) True particle track. {b) Adjustment for first flight.
(c) Adjustment for second flight. (d) Adjustment for third flight.

firse flight path) until it coincides with the surface. In (d) the firse-flight
length is reduced so that the third collision lies on the sphere. These tracks
have been confined to a plane for case of illustration, but adjustment of

collision points lying outside the plane must still be in a direction paralle! to
the first flight.
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Numerically, the flux value of the particle scored in each case is

_W; T, e Zods

Zilcos af

47R? ®;(R) (5.7-7)

where df = first-flight length after adjustment
o = angle between the first-flight path and the normal at the point of
intersection
2o = total cross section at the source particle energy
Z; = total cross section on the ith flight

This expression is similar to the last-flight estimator in that the path-length
weighting factor is eZ9. Primary differences are that the angle of
intersection with the sphere is determined by the first flight rather than che
last flight and that the weight is adjusted by Z4/Z; to account for the fact
that interaction occurs at energy during the ith flight rather than the source
energy. In Fig. 5.10(d) the interaction point is outside the sphere: thus the
first flight must be adjusted backward to provide intersection. The estimate
cannot be made for points external to the sphere if projection in line with
the first flight does not intersect the sphere or if the adjustment requires a
negative first flight. The estimator on the first leg [Fig. 5.10(b)] will be
numerically equivalent whether the first- or last-flight estimators are used.
Trubey!® performed a series of calculations for point sources of fission
neutrons and 14-MeV neutrons in water to compare the results of these two
estimators. He concluded that either of the two forms may be applied with
equal ease, but the first-flight estimator appeared to give better results,
particularly in the low-energy (0.01 to 4 MeV) fission-neutron range.

5.8 STATISTICAL VARIANCE

The number of histories that must be followed to yield acceptable results
in a given problem depends to a large extent on the nature of the answer
desired. For example, a calculation could yield a value of total dose per
source particle accurate to 1% and at the same time have a very large
uncertainty associated with the current of neutrons in the range
3MeV< E< 4MeVand 10°< 6 < 30°.

A theorem of mathematical statistics that may be invoked as a means of
estimating statistical uncertainty is the central limit theorem. Consider an
experiment that can result in K different ways, designated as I, . . .IWg with
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associated probabilities P;...Pg, where L P;=1. In this case the average
i=1
(or mean) result may be defined as 4 = [ Px W and the dispersion (variance

about the expected value) as
02 =L Px (Wk — n)* = (LPxWk) — 1? (5.8-1)

Suppose now that in a Monte Carlo penetration calculation N source
particles are started and that the total penetrating weight (summed over N
trials) of particles in a certain category is M. The central limit theorem states
that

M —erf !
p ~ M <e€ —erﬁ + pN (5.8-2)

This relates the probability that our answer will fall within some variation €
about the true average to the number of trials and the desired maximum

value of €
2 x
erf(x) =\/—F fo e du : (5.8-3)
t=eN* o} (5.8-4)

pN > 0asN—>oo

The value of py would be given in terms of the third moment of the
distribution and for large N would not be a significant contribution. Thus,
for a given level of probability (given value of ¢}, the size of € is directly
proportional to 4/0./N. Thus doubling the number of histories decreases the
value of € only by a factor of 27% This is a very general result; i.e., Eq. 5.8-2
is true provided only that u and o, exist. Spanier and Gelbard' discuss this
and other aspects of statistical variance in some detail.

In cases involving direct analog calculations with no particle weighting, it
may be prohibitively expensive to increase N sufficiently to bring € within
acceptable limits. Then an alternate means of decreasing € would be to
decrease the dispersion, 0., by introducing biasing and weighting schemes
that increase the number of samples for a particular output category per
source particle, or give contributions that on the average lie closer to the
average value, or that do both.
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To illustrate how 0, might be estimated in a particular problem, let us
suppose N source particles are generated and their contributions to
penetrating particles of a certain category are X,,X;, ..., Xy.The average of
this sample is defined as

U=-;7Z_: Xi (5.8-5)
and the sample variance is given by
ot =L (X - U
- rx-(Frx)
=X _ 12 (5.8-6)

It should be noted that U is not the true expected value; it is a computed
average for the sample, which should approach the expected value for
large N if the problem has been formulated properly. Thus Eq. 5.8-6 is only
an estimate of the variance.

The variance 02 about the expected value a is related to the variance o2
about the average U of a series of observations by

5 =0 (5.8-7)
Thus an estimate of 02 is given by
1 1 2 _
ot=m L x5 (LX) (5.8-8)

In some Monte Carlo programs, the X; and X} are tabulated for use in
calculating the variance of the answers obtained in one or more categories. In
others qualitative judgments of the output are made on the basis of
convergence and stability of the average as N increases.

Some investigators have shown apparent reductions in the estimated
variance by grouping the data, although this is not a real improvement in the
certainty of the answer. Suppose, for example, a penetration calculation is to
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be made with 4000 particle histories. The data may be subdivided into 40
groups of 100 histories each and averages, u;, computed. The variance of
these p; about an overall average, I, would ordinarily be much smaller than
the variance of the individual data.

The question frequently arises concerning the effect on variance of some
biasing scheme. This question is not easily answered. As noted in Sec. 5.2,
the optimum importance function gives zero variance, but we do not know it
is optimum unless we have prior knowledge of the result we seek to
calculate. Obviously, the importance function must reduce the variance of
the result below thatr obtained from an unbiased calculation or it is useless.
Furthermore, there are cases where the apparent (computed) variance is
reduced, but the answer is clearly erroneous. Consequently the task of
proving or demonstrating the adequacy of the importance function rests
heavily on the shoulders of its advocate. Numerous schemes are used, e.g.,
comparisons with nonstochastic calculations, with measurement, and with
unbiased, straight analog Monte Carlo.

Systematic sampling is a technique used to obtain more representative
answers when only a few histories are to be run—such as may be done in
the check-out of a code. In this system the cumulative probability dis-
tribution of an occurrence (e.g., source angle, track length, or scattering
angle) may be divided into increments, and, instead of the random selection
of variable values, selections are made by systematically rotating through the
increments. Instead of

FXy=[" filX)dX=n (5.8-9)
one may use
i — (1/2
F(x) = =2 (5.8-10)
wherei =1, 2,..., N and N is the number of probability increments defined

between 0 and 1.0. To relieve any bias that may be introduced by sampling
from the midpoint of the increment, one may select from

{i—n
N

F(X) = (5.8-11)

where i = 1,2,...,Nand » is a random number. In this system the increments
are rotated but the position within an increment is selected at random.

R
=



MONTE CARLO METHODS FOR RADIATION TRANSPORT 251

5.9 DEMONSTRATION MONTE CARLO PROGRAM

The previous sections of this chapter introduce a number of concepts
" used in a Monte Carlo calculation. A simple and obvious way to interrelate
various segments of the problem is to formulate a Monte Carlo program.
Following standard practice in devising a computer program, we will define
the problem and list the major divisions of the program; in Appendix J we
give a logic flow chart and a FORTRAN listing of the program. Appendix J
also lists the input-data requirements and presents a test problem, including
input and output, which an interested reader can use to verify that his copy
of this program is running properly. Although this program does not include
all the techniques discussed in earlier sections, its use should provide a
first-hand appreciation of Monte Carlo methods. We have compiled and run
this program on a small (8K core of 16-bit words) computer with only the
card reader and printer and its FORTRAN compiler.

The program listing contains a number of comments that describe what
each set of statements accomplishes. Although the computer will ignore
these comments (and they need not be included in working copies), they will
be useful to the inexperienced programmer as explanatory notes to relate to
the text.

PROBLEM DEFINITION

Neutron source: Point, monoenergetic, cosine current located on
the face of the shield.

Shield: Homogeneous semi-infinite slab of thickness ¢
composed of a light element of atomic weight
A.

Assumptions: (1) Only capture and isotropic (center of mass)

scattering are allowed.

{2) No biasing.

{3) No energy or geometry cucoff.

(4) Cross-section handling will provide Z,(E)
and Z; on request.

(3) A random-number-generating routine will
provide random numbers on request.

(6) Appropriate values of constants, such as
source energy, shield thickness, maximum
number of histories, flux-density-to-dose-rate
conversion factors, and energy-dependent
macroscopic cross sections, are input data.
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Output requirements:

Leakage energy and angle-dependent current,

fluence, and dose for both shield surface and
neutrons absorbed as a function of energy and
z position within the shield. Neutrons leaving
the shield at z=1t are called transmirtted
neutrons, and those leaving at z = 0 are called

reflected neutrons.

Geometry:
Symbols used: n

6
¢
k

E,
EI
7]

05

&5

H
Hmax
L
N(E,0)
F(E,6)
D(E,8)
Ny(E,B)
a,B,y
Z

K(E)

Fig. 5.11.

random number

incident polar angle

incident azimuthal angle

cutoff angle below which 8 is as-
sumed to be zero

source energy

energy after scattering

cosine of scattering angle in center-

of-mass system
laboratory scartrering angle

azimuth of scattered direction

history number

number of histories to be run

path length

number of leakage neutrons

flux density of leakage neutrons

dose transmitted by leakage neutrons

number of absorbed neutrons

direction cosines of particle

coordinate of particle in direction
normal to shield (=0 1is the
shield surface on which particles
are incident)

Flux-density-to-dose-rate conversion
factors

No attempt is made to account for particle positions in the x-y plane. The
only information desired from the leakage particles is their energy and the

angle at which they penetrate either shield surface. Calculation of the x,y

coordinates could easily be added to the diagram, if desired, since the

direction cosines and track length are known for each particle flight.
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The cross-section handling subroutine, XSEC, and the random-number-
generating routine, RAND, which are included, are intended only for
illustrative purposes and to allow the reader to duplicate results obtained in
the text. The subroutine XSEC reads a set of cross-section data the first time

Incident particle

Fig.5.11—Geometry for demonstration Monte Carlo program.

it is called. Then a linear interpolation is performed to determine the total
and scattering cross sections as the energy transferred to XSEC through its
argument list. After the first call of XSEC, no data are read, and only the
interpolation is performed. The subroutine RAND is actually not a
random-number generator but a table of 23 numbers and a stepping
procedure to alter the sequence of using them. For a realistic computation,
XSEC could be used provided the cross-section variation is approximately
linear with energy; however, RAND should be replaced with an actual
random-number generator.

Major divisions of the program logic are numbered below in the same
way as the flow chart (shaded connector symbols) in Appendix J and may be
categorized as follows:

1. Source-particle generation

A. Select direction angles § and ¢.

B. Calculate direction cosines «, 8, and 7.

C. Step history counter.

D. Test for history completion.

E. If all histories are complete, branch to print area.
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2. Path-length determination
A. Calculate path length L.
B. Calculate z coordinate.
C. Test for penetration through either slab surface.
D. If penetration occurs, store results and terminate history.
3. Collision-parameter calculations
A. Select scatter or absorption.
B. If absorption, store absorption parameters and terminate history.
C. If scattering, calculate scattering angle u.
D. Calculate neutron energy E’ after collision.
E. Calculate direction angles 8 and ¢ of scattered neutron.
4. New-particle-direction calcularion
A.Determine new direction cosines ¢, B, and ' using coordinate
rotation equations (see second chart in Appendix J).
B. Return to {2) for next flight calculations.
5. Analysis of leakage radiation
A. Calculate dose rate per bin.
B. Print out flux density and dose rate.
C. Print out absorptions per increment.

A listing of the FORTRAN coding of this problem is shown in
Appendix J. Designation of input variables has been changed in some cases
from those previously given for ease of coding. A table has been included to
define input variables, limits, and input formart requirements. Finally, the
test problem is defined with specimen input and output.

5.10 PROGRAMMING SUGGESTIONS

A few additional remarks are in order concerning use of the Monte Carlo
method for solving shielding problem:s.

Monte Carlo codes tend to become quite large and complex as the
various options on geometry, biasing, and analysis are incorporated. The
programs are more manageable if they are broken into subroutines which are
called into the computer fast memory only when needed (unless the fast
memory is large enough to contain the whole program and working data).
They have also been coded as completely separate routines linked by data
tapes. For example, one code generates source-particle parameters and stores
these on tape. Another code reads the source parameters and generates
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collision histories. A third code analyzes the tape output of the collision-
history processor and calculates the desired output data, such as flux
density, dose, and current. Each of those programs must have compatible
features and use overlapping input data for geometry description, cross
sections, etc.

Checking or debugging Monte Carlo codes is a tedious and difficult task
since the nondeterministic nature of the calculation may mask errors large
enough to influence the answer but not large enough to make the answer
appear unreasonable. Debugging is the step that separates the men from the
boys. It has been found useful to debug each subroutine separately and in
various aggregates prior to assembling the entire program. Simple problems
can be devised to check individual calculations by allowing only one
interaction or by inputting an extreme in geometry or encrgy. Additional
output features can be inserted into the program for use during debugging
and complete particle histories can be printed out. If the sequence of path
lengths, particle weights, and parameters after collision is available, errors are
easier to detect.

The energy cutoff specified in a fast-neutron calculation to a large extent
will determine the average computing time required per history and thus
should not be set lower than required by the accuracy of the problem. In
problems designed to calculate fast-neutron dose, an energy cutoff near 0.1
MeV is ordinarily used.

A reasonably economical calculation can be made of thermal-neutron
transport and diffusion from a source of thermal neutrons, but the
epithermal region between fast and thermal is much more difficult to treat.
The application of Monte Carlo to reactor criticality studies has been quite
limited. The Monte Carlo method cannot compete with analytical and
semiempirical methods because of the large number of collisions required to
thermalize fast neutrons. It has found limited application,!®:?® however,
because of the ability to treat complex three-dimensional geometries. Monte
Carlo has been successfully used to determine the thermal slowing-down
density for the input to a thermal-neutron diffusion or transport code. The
choice of a low-energy cutoff point is less important for gamma rays because
of the rapid rise in the photoelectric cross section with decreasing energy.
There is usually little or no incentive to track photons with energies below
0.01 MeV.

Monte Carlo techniques may be designed to reproduce a physical model
in as much detail as is necessary and so provide a powerful tool for solving
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problems with very few compromises with the physics. The Monte Carlo
method can incorporate any geometry. To use Monte Carlo successfully,
however, one generally must invest a considerable amount in analysis,
programming, and computer machine time. The importance of machine time
is often overemphasized. and analysis and programming are underempha-
sized, The user should keep in mind that a well-developed theory exists
which specifies, in principle, a near-optimum procedure for solving a given
problem. This procedure consists in obtaining the best possible approxima-
tion to the value function for the problem and then using this function to
obtain parameters for importance-sampling techniques or to guide develop-
ment of new sampling techniques. .

As an aid to the programmer, the concept of a Monte Carlo programming
system was developed. For example, the 05R system?! and its updated
version O6R can, in principle, be used to solve any neutron-transport
problem. The framework is there (cross-section handling, geometry-solving
routines, random-walk procedures, etc.), but the programmer must incorpo-
rate the special features he desires by adding subroutines to the framework.

More recently a highly versatile and easy to use multipurpose neutron-
and gamma-ray-transport code, the MORSE code.?* has been developed at
the Oak Ridge National Laboratory. Some of its features include the ability
to treat the transport of either neutrons or gamma ravs or to simultaneously
treat the transport of neutrons and secondary gamma rays; the incorporation
of multigroup cross sections: an option for solving either the forward or
adjoint problem: modular input—output: cross section, analysis, and geome-
ry modules; debugging routines; time dependence for both shielding and
criticality problems, and albedo option at any material boundary: one-, two-,
and three-dimensional geometry packages; and several tvpes of optional
importance sampling. )

Traditionally, Monte Carlo codes for solving neutron- and gamma-ray-
transport problems have frequently been separate codes because of the
physics of the interaction processes and the corresponding cross-section
information required. However, when multigroup cross sections are used, che
energy group-to-group transfers contain the cross sections for all processes.
Also, for anisotropic scattering each group-to-group transfer has an associ-
ated angular distribution that is a weighted average over the various cross
sections involved in the energy-transfer process. Thus these multigroup cross
sections have the same format for both neutrons and gamma ravs. In
addition, the generation of secondary gamma rays may be considered as just
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another group-to-group transfer. Therefore, when multigroup cross sections
are used, the logic of the random-walk process (the process of being
transported from one collision to another) is identical for both neutrons and
gamma rays.

In general, the Monte Carlo method is not the best method for
one-dimensional problems since discrete-ordinates codes are likely to be
much faster than Monte Carlo codes. For two-dimensional problems, Monte
Carlo and discrete-ordinates methods are somewhat comparable, but for
three-dimensional or two-dimensional time-dependent problems, there is no
competitor to Monte Carlo for accurate solutions to transport problems.
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EXERCISES

5.1 Define the event (sample) space and specify a typical event for the following: (a) One
die randomly tossed once. (b) Two dice randomly tossed together. (c) One die
randomly tossed twice in sequence. (d) The fission-neutron spectrum. (e} A photon
undergoing a Compton scatter.

5.2 For 5.1(a), 5.1(b), and 5.1(c), describe and plot: (a) The probability density function
(PDF). (b) The cumulative distribution function (CDF). (c) Were you forced to use a
random-variable function? (Hint: Suppose the six sides of a die were labeled
a,b,c.d,e.f rather than with spots).

5.3 Figures 2.1 and 2.4 in Chap. 2 present spectral data. (a) Is either function a PDF?
(b} Can the other functions be converted to a PDF? How?

5.4 Using 1-MeV intervals, compute and plot the CDF for your answer to 5.3(a).

5.5 A PDF is known to have the form f(x) = Csin x over the integral (0 < x < 7). where
C is a constant. (a) Compute C. Does the PDF satisfv Eqgs. 5.1-3 and 5.1-4?
(b) Compute the CDF. Does it satisfy Egs. 5.1-6 and 5.1-7? (c) On one set of axes,
plot the PDF and CDF. (d) Rather than generate random numbers, select an evenly
distributed set of numbers in the interval {0.1) (e.g.. at 0.1 intervals). Using the CDF

: F““
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plotted in 5.5(c), obtain the values of x for each selected number. Use n = F(x)
(Eq. 5.1-24). (e) Is the distribution of events obtained in 5.5(d) consistent with the
PDE? (f) Would it have been so if the numbers had been selected randomly? (g) Note:
5.5(d), 5.5(e), and 5.5(f) illustrate the principle of biasing as well as random sampling.
Why?

5.6 The following experiment illustrates the rejection technique. As with any random
process, no two experimenters should obtain exactly the same answer. One side of a
die is labeled A, two sides B, and the remaining three sides C. The accompanying
graph is a proper distribution function for one toss of such a die, as the student
should verify.

A B c

Graph for Exercise 5.6(a). Distribution function for one toss of a die.

(a) Is this a graph of a PDF? Why? (b) Use a normal die to randomly select with equal
probability a letter from A, B, or C. For example, let 1 or2=A4,30r4=B,and 5
or 6 = C. From the graph find N associated with the selected letter. Then roll the
normal die again to obtain N', a number from 1 to 6. If N'< N, accept the letter
choice. If N' > N, reject it. Repeat the process until a sequence of accepted letters
has been established. Tabulate the distribution within the sequence. If both you
and your die were honest, the ratio of A’s to B’s to C’s should approach 2:4:6.






Shield Attenuation
Calculations

W.E. SELPH and C. W. GARRETT 6

Now we can turn to some of the practical considerations for applying data
and empirical formulas to attenuation problems. Two previously mentioned
observations are worth repeating. There are several levels of attenuation
calculations, ranging from elegant and precise to improvised and approxi-
mate. Since no one method satisfies all applications, the reader should
become familiar with a number of techniques so that he can select the one
most appropriate for a particular application. The second observation is that
for most of these techniques a good bit of the calculation has already been
done: a particular application usually reduces to assembling the appropriate
data martrix from the existing literature and integrating over the particular
shield geometry and composition of interest.

6.1 ANALYSIS OF THE SOURCE

Although this topic was discussed in an earlier chapter, some additional
remarks are pertinent. There are, in general, two approaches to the analysis
of the radiation source depending on the methods to be used in analyzing
the shield. The direct approach is to treat the source and shield as an entity
and to obtain as a single calculation the distributions of radiations leaving
the shield which originated within the source, thus solving the source-
description and shield-penetration problems simultaneously. The direct
approach is used for a “one-shot” calculation where the system can be
precisely defined and only one set of answers is required. An example would
be a final, detailed analysis of a reactor shield ‘“‘as built.”

The alternate approach is to split the source description and shield
penetration into two distinct phases. The first phase involves calculating the
radiation leakage from the source region to obtain an energy and angular
discribution incident to the shield. This distribution can then be applied to

Preceding page blank 261
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shield-attenuation calculations. This method provides a useful means for
comparing several designs based on parametric data and is more economical
than the direct method where a number of designs are to be analyzed or
where the effect of small variations in shield design is to be studied.

The task of analyzing the radiation emitted by a reactor source is often
as complex as the shield-artenuation calculation because of a plurality of
sources. The source density must be determined for fission neutrons and
gamma rays, fission-product gamma rays, secondary gamma rays from
nonfission neutron interactions, and, in some instances, secondary neutrons
from photoneutron interactions. This analysis requires a detailed knowledge
of the density of fission events, the material compositions, and the neutron
spectrum as a function of position within the reactor.

For example, the local source strength of gamma rays (except for the
fission-product source) in an energy group AEj, will be given by

FG+LL &Noy; Vi
i J

where F = local fission density
Gy = yield of gamma rays per fission within AE,

®; = local flux density of neutrons in energy group AE;
atomic density of element j '

oij=local microscopic cross section for radiative interaction of

neutrons of energy i with element j

Yijk = yield of gamma rays per interaction

To this sum the fission-product sources should be added.

The method used in evaluating fission-product sources will vary with
their relative importance and with the operating history of the reactor. Their
intensity will increase with time of operation of the reactor at a given power
level until some maximum or “saturation” level is attained. It is common
practice to combine the saturation fission-product activity with the fission
gamma-ray source and consider only this maximum condition. A source
spectrum for this condition is given in Chap. 2.

The fission density and low-energy neutron spectrum, as a function of
position within the reactor core and reflector, are usually derived in an
iterative process using transport and diffusion theory. These data, obrained
in the process of reactor design, are ordinarily available to the shield
designer. If only the fission density is available, the low-energy neurron-flux-
density spectrum may be calculated using a combination of transport and
diffusion calculations, or an S,, (or P,) calculation. In general, the methods
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used in shield analysis are not adequate for the task of determining the
distribution of fissions within the reactor core or for determining criticality.

- The reverse is also true, most reactor analysis codes do not do an adequate
job of predicting the radiation leakage from the reactor. Although the theory
is analogous in reagtor and Shiclding codes, the emphasis is different and the
accuraey with which a particular reaction type is analyzed varies signifi-
cantly, Twe methods that do provide adequate results in both reactor and
shield analysis are the Monte Carlo and the discrete ordinate S,,.

Once the position, energy, and intensity of all sources within the reactor
have been evaluated, reactor leakage can be analyzed. The form used in
expressing the energy and spatial distribution of the sources will vary with
the intended method of performing the leakage calculation. The methods
used in performing the leakage calculation are the same as those used for the
analysis of shield penetration as discussed below,

For a direct Monte Carlo solution, a separate source generator routine is
used to generate particles with the appropriate distribution in energy, angle,
and position. Biasing can be used to generate more of the particles expected
to be important to shield penetration, such as those born at high energy,
E!-’e\.vc—hng in a radial direction, and/or originating near the periphery. In a
discrete-ordinate S,, calculation, the spatial variation of source strength can
be expressed analytically. If existing data sets, either experimental or
analytical, are used, then it is sometimes desirable to express the source as an
equivalent gimple source, such as a disk, an infinite plane, or a series of point
sQurces,

6.2 DIRECT SOLUTIONS

One means of obraining shield-attenuation data is the direct application
of Monte Carlo, moments method, S,,, or other similar methods that directly
use the material cross sections. Chapters 4 and 5 are devoted to the general
theory of the methods involved in direct solutions. Applications of these
methods invariably involve the use of rather sophisticated computer
programs and an expenditure that some problems may not justify.
Consequently direct solutions are not widely used in shield design and
evaluation studies. They are mentioned here only to call attention to the fact
that they may be applied directly to a shield-attenuation problem.

To some extent a judgment based on analogy with similar designs or with
the available basic data will assist in the selection of a method by
determining which penetrating components are likely to be most important.



264 REACTOR SHIELDING FOR NUCLEAR ENGINEERS

For example, where low—energy neutrons are not expected to be significant
in heating or in the penetrating-radiation component, a Monte Carlo
approach may provide the most accurate analysis. If gamma rays from
thermal-neutron capture are expected to be the primary factor, then a
moments method, S,,, or a combination of transport and diffusion methods

may be selected.

ne

6.3 APPLICATION OF PARAMETRIC DATA

A variety of data is available from calculations and experiments that have
been performed to determine the penetration of radiation from basic, typical
sources of neutrons and gamma rays through materials of general interest.
These data may be scaled to approximate the solution to a variety of
attenuation problems.

The concept of the unit source, introduced in Chap. 2, is integral to the
understanding and application of parametric data. The term unit source
generally refers to a source of unit strength, i.e., 1 particle/sec, 1 watt cm™,
1 MeV sec™! cm™, etc. All the radiation evolved from such a source need not
necessarily come from the same point, be traveling in the same direction, or
be of the same energy. Distributions in each of the independent variables
(position, angle of emission, and energy) commonly chosen for unit-source
characterization are listed below. Various combinations of the listed spatial,
angular, and energy distributions have been used.

The most frequently used spatial distributions are point, plane, disk, and
line; angular distributions are usually isotropic, monodirectional, cosine, and
(cosine)”; energy distributions are usually monoenergetic, uniformly distrib-
uted, and fission spectra.

For a given shield material, the number of dimensions involved in the
parametric data is determined by the calculational method used to obtain
the data, the shield geometry, and the type of detector assumed. For
example, in the geometries represented by a point source in a spherical shield
or an infinite-plane source and shield, the data can be applied to any poinr at
a given radius or thickness. On the other hand, for a point source and slab
geometry, the position on the exit face also becomes a parameter. Source
energy and angle and exit energy and angle may also be parameters. Thus
parametric data available for application to shield analysis vary from
one-dimensional sets of dose vs. thickness to nine-dimensional sets involving
all the parameters mentioned (two source angles, source energy, material

thickness, two exit coordinates, two exit angles, and exit energy). In
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specialized studies one might include additional parameters, such as the
number of collisions suffered by the particle before exiting the shield or the
time of flight from source to detector.

In addition to direct applications of parametric-data matrices, interpola-
tion (linear, logarithmic, or other) is often required between particular values
of one or more of the parameters to improve accuracy. Graphical
interpolation is one of the most widely practiced methods because together
with simplicity it provides a more direct view of the behavior of the data
with respect to a particular parameter. Computer programs have been
written for complex interpolations between two or more variables where
nonautomated methods would become quite tedious. In addition, some of
the data sets have been fir with analytical functions. With these functions
analytical representations of the parameters can be used for calculating
transmission or reflection probabilities at any desired point.

Occasionally the shape of an energy or angular distribution does not
change with distance within some range. Such a distribution is said to be in
equilibrium for that range. It is always desirable to observe such equilibrium
conditions because of the resulting simplifications in representing the data.
The existence of equilibrium with distance is an indication that the distance
variable can be separated in the distribution function.

The three types of data most likely to be available for application to a
shielding problem include data resulting from moments-method calculations,
Monte Carlo analyses, and experiments. These three categories are reviewed
in the following sections. Other types of analyrtical data, particularly from S,
calculations, may be available and just as applicable to a particular shielding
problem. In such cases the methods of application are analogous to those
discussed in the following sections but have to be adjusted to the number
and form of the variables considered.

6.3.1 Moments-Method Differential Energy Spectra

(a) Neutrons. The moments method has been applied to neutron
penetration through a variety of materials. Data from these calculations have

' and more recently by Krumbein and

been summarized by Goldstein
O’Reilly.? Studies have included penetration of point isotropic fission
sources through water, hydrogen, lithium, lithium hydride, lichium hydrox-
ide, beryllium, carbon, and various combinations of carbon and hydrogen. In
addition, data were obtained for penetration from monocenergetic sources

through water and hydrogen.
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Fig. 6.1—Differential number spectrum of neutrons in water from a point isetropic
fission source emitting 1 neutron sec '. (From Goldstein.')

A sample of the data from these calculations is given in Fig. 6.1, which is
a graph of the differential neutron spectrum for various penetration depths
in water resulting from a point isotropic fission source of 1 neutron sec™.

The slope of the curves in Fig. 6.1 decreases with increasing penetration,
indicating a hardening of the spectrum {increasing fraction of higher energy
particles). This trend is followed in all materials containing significant
concentrations of hydrogen and is a consequence of the dependence of the
hydrogen cross section on neutron energy. As the neutron energy ‘ncreases,
the hydrogen cross section decreases, and higher energy neutrons then suffer
fewer collisions in crossing a given thickness of hydrogenous material than
lower energy neutrons. The energy loss in hydrogen is so great that neutrons
will usually be thermalized very near their point of initial interaction. For

- .
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Fig. 6.2— Differential neutron-flux density (X 4mr?) vs. penetration (r) in carbon due to
unit point isotropic fission-neutron source. (From Goldstein.!)

this reason the initial flight is quite important to the distribution deep within
the shield. A larger fraction of the higher energy will be transmitted and will
thus contribute to a reduction in slope (or hardening) of the energy
distribution.

Figure 6.2 shows similar graphs for carbon except that the parameters
have been switched so that the flux density, as a function of depth, is
plotted for various energies. Here the slopes are essentially equal beyond
30g cm®, which indicates that an equilibrium spectrum is established.
Moments-method neutron-penetration data for several materials are given in
Appendix K in tabular form.

In all these calculations the point source is assumed to be surrounded by
an infinite medium. Thus particle spectra calculated at a given depth include
radiation that has been scattered back to that depth from more distant
points. For a shield whose outer surface corresponds to that depth, the flux
density at the surface is overpredicted by the infinite-medium data
(particularly at lower energy where a large percentage of the flux density is
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due to backscattering); thus corrections are necessary for applications of
infinite-medium data to shield layers. A severe limitation of the moments-
method data is that angular-distribution information on the flux density is
not given.

This type of data can be applied to surface sources by breaking the
surface into small increments and treating each increment as an equivalent
point source. In like manner leakage from a volume-distributed source is
usually represented by volume-distributed point sources or by points on the
surface of the volume source. As an application of these data, consider the
following problem:

Find the flux density of neutrons lying above 2 MeV at a penetration
depth of 60cm in water from a small (assumed point) fission source
generating 1 watt of power. The solution is obtained by multiplying the
60-cm differential spectrum curve (Fig. 6.1) by the source strength {con-
verted to neutrons sec’' ) and then integrating over energies above 2 MeV:

1

S (source strength, neutrons sec™' ) = (3.1 x 10'° fissions sec”! watt™!}

x (2.47 neutrons tission™)

=7.56 x 10'° neutrons sec™

Fmax 47,2 N (r.E) dE (6.3-1)

_7.56 x 10!° f
2

(4} =
o 47(60)?
where the integral is carried out over the 60-cm curve given in Fig. 6.1.

(b) Gamma Rays. The gamma-ray data generated by infinite-medium
moments-method calculations have found wide application in shielding
calculations. These data are quite extensive both in the number of materials
and the variety of source types that have been considered. Extensive
discussions of these calculations, their results, and their application are
given by Goldstein.''®> The gamma-ray penetration data are more ex-
tensive and also more precise than the neutron data. Goldstein has esti-
mated the overall accuracy of the data at $20%. Since backscactering for
gamma rays is much less than for neutrons, interface effects are less
important for gamma rays, and infinite-medium data can be applied to finite
layers to a good approximation.

Examples of the differential spectra are shown in Appendix L for the
penetration of gamma rays of various energies through water and lead. One
significant difference between these data and the neutron data discussed in
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the preceding section is that the photon data at a given range have been
multiplied by 4nr2eMor, where pq is the linear absorption coefficient of the
material at the source energy. Since the exponential factor accounts only for
the attenuation of the unscattered component, the flux density at a given
energy falls off less rapidly than e*°’. Thus these data, which have been
multiplied by 4nr?elo” increase with increased penetration.

These data have also been integrated over a flux-density-to-dose-rate
response function and expressed as a ratio of total dose rate to the dose rate
due to unscattered photons alone. These ratios, called dose buildup factors,
are a more compact representation of the data that are useful for
applications where biological dose is of primary importance and the
spectrum is of only secondary interest. Buildup factors were discussed in
Sec. 4.8.1 and values are found in Appendixes E and F. Applications of dose
buildup factors are discussed in Sec. 6.4.1.

The data for water indicate that an equilibrium spectrum is established at
very shallow penetrations and does not vary greatly, even at penetration
depths approaching 20 mean free paths. The spectra for lead exhibit a wider
variation in distribution with penetration depth. Differences in the shape of
the wy vs. E curves for water and lead are instructive in understanding the
relative spectral shifts (see Chap. 3).

Differential spectra for gamma rays are applied to shield attenuation
calculations in much the same manner as the neutron data. An added benefit
in the case of gamma rays is the broader range of materials for which data
are available and the apparent smooth variation of the data with atomic
number, which allows interpolation between elements for which data are
available. A variety of computer programs have been written to perform this
interpolation, also to interpolate between source energies and penetra-
tion depths. One method of performing this interpolation is discussed in
Sec. 6.3.4. These programs also integrate over a complex source geometry
and estimate the combined effect of a mixture of elements in a shield.
Integrations over a complex source are performed numerically by breaking
the source into individual point sources representing volume increments and
by breaking the source spectrum into individual monoenergetic sources
representing energy increments. The programs are limited in that they
consider only the materials lying in the straight-line path from a source point
to the detector and also in thac they must apply infinite-medium data and
cannot account for the effects of interfaces along the path. The limitations
are not severe in that interface effects are small (~10%) and may be
compensated with appropriate corrections.
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6.3.2 Monte Carlo

The Monte Carlo method has an advantage over the moments method in
that Monte Carlo techniques can accepr a wider range of source types and
can predict the angular distribution of the neutrons and gamma rays at the
exterior surface or at any arbitrary internal point in the material. This
feature, however, spreads the existing calculacions through a wider range of
possible parameter variations and thus decreases the probability of finding an
existing set of data to fit a particular need.

With few exceptions, Monte Carlo has been used more for obraining
precise answers to individual problems than for the generation of parametric
data. This is probably the most economical approach since, as mentioned
previously, it would be difficult and expensive to obtain data for all
foreseeable parameter combinations. Data have been generated. however, for
the penetration of unit sources through finite slabs and through infinite
media of some materials.

Monte Carlo neutron data have probably found wider application than
gamma-ray data. This is due partially to the fact that the moments.
method gamma-ray data have proven to be widely adaptable and have
. compared favorably with experiments and other analyses, thus obviating
the need for Monte Carlo photon data.

With Monte Carlo techniques very complex penetration and reflection
probabilities can be obtained. For example, consider a monoenergertic
monodirectional beam incident on a laterally infinite slab at polar angle 8;
and azimuthal angle ¢; (Fig. 6.3). Penetration probability values,
P(6,,t,Ex.¢;iR,8.6.8,E), and reflection probability values, «(6;Ej.¢;:
R'3',0'¢' E'), are needed. In general practice, however, data of this nature
are more expensive to obtain and more complex than most applications
warrant. Furthermore, in any Monte Carlo study, as the number of variables
increases, the accuracy of the differential data degenerates for a given total
number of histories. Consequently the reflected energy E' can be
eliminated by tabulating only the exit dose rate or the distance R’ can be
eliminated by integrating over the surface, or, indeed, all the exit parameters
can be eliminated and only the total exit dose rate calculated.

If the calculational mode! described in the preceding text is being used to
simulate a collimated narrow beam of radiation incident on a shield, the
variation of intensity with the position of exit is sometimes an important
parameter to the design of the shield. The same model can be used for
broad-beam incidence with the principle of reciprocity. The reciprocal
relation of adjacent entrance and exit points indicates that the integral of the
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Fig. 6.3—Particle history parameters.

current density from a 1-cm? beam is equivalent to the leakage per square
centimeter from a broad beam of the same intensity per square centimeter as
the collimated beam. Thus the integral

| P04, R,B,¢.E) dA
over exit
surface

where the transmission probabilities in the integral are for a collimated
source of 1 particle/sec, yields the probability of leakage per square
centimeter due to a broad-beam source of 1 particle sec™ ¢cm™.

The parameter E can be eliminated by integrating the leakage radiation
to obtain a total particle current density, energy current density, or dose
current. All these quantities are assumed to be dependent on the exit angle.
There is little or no advantage to performing a parametric study by Monte
Carlo unless the angular dependence is retained. The term dose current is
used for the quantity that is given by the product of the differential angular
current density (particles cm™ sec™! steradian™) and the flux-density-to-
dose-rate conversion factor. This quantity is a convenient way of expressing
the radiation intensity in terms of a dose response while maintaining the

angular dependence. Dose current, D(8',¢"), is given by
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D' ¢') = [](6' ¢ E)R(E)dE (6.3-2)

where J(6'¢',E) is the current density per steradian about the direction
(0'4¢') and R(E) is the flux-density-to-dose-rate conversion factor. An
application of the data reported in this form is illustrated by the fact that
the dose rate at a point outside the shield from a differential area, dA, of the
surface is

D=r1—2](9',d>',E) R(E) dE dA =D(%'¢’) dA (6.3-3)

where the detector is at distance r in the direction (6",¢"). This quantity is
integrated over the surface of the shield to obtain a total dose rate at the
external point. The variation of the direction of the detector with position
on the shield surface usually necessitates a numerical integration. The
directional energy-current density or particle-current density can be applied
in the same manner as discussed for the dose current. However. the total
energy or particle-flux density at a detector is not generally as important as
the biological dose rate.

Sample results of a typical Monte Carlo study are shown in Fig. 6.4 from
a report by Allen, Futterer, and Wright.* These investigators calculate the
total neutron-energy distribution (integrated over angle) and a total angular
distribution (integrated over energy) but not doubly differential data, i.e.,
energy distribution within a particular angular interval. The data result from
a calculation for 2-MeV neutrons incident on a 60-cm-thick lacerally infinite
slab of water at an angle of 45° from the slab normal. In this analysis the
calculation 1s performed for a thick slab, and the neutrons are tagged on
their first and subsequent penetrations through a given thickness plane. In
this manner both initial and mulriple penetrations are tallied, and flux
density vs. thickness and flux density vs. depth are calculated simulta-
neously. The initial penetrations correspond to the flux density vs. thickness
as though the slab had nothing beyond the plane; thus there is zero
probability of scattering back into the material once the neutrons penetrate.
Of course. the multiple-penetration calculations do contain the effects of
backscattering. Figure 6.4 shows the curves of total flux density vs. thickness
and flux density vs. depth resulting from these calculacions. The data for
flux density vs. thickness remain 30 to 50% below the data for flux densicy
vs. depth over a wide range of material thickness, illustrating the effect at
each depth into the slab of backscatfering from deeper regions.

: f‘l’\
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6.3.3 Measured Data

Experimental data can be applied directly to some shielding problems by
properly scaling source intensities and by adjusting for geometry differences.
Experiments are essential for the verification of an analysis or design and for
obtaining cross-section information. In the early days of nuclear technology,
empirical data were widely used either directly in design work or as the basis
of semiempirical analysis methods (see, for example, Sec. 6.4.2).

The source energies available naturally limic the parameter range of

experimental results. Other parameters of the experiment, such as incident

angle, exit angle, and energy at the detector, can be controlled or measured
fairly accurately. Reactor-shield experiments are generally performed with
either reactor sources or the cleaner source of fission neutrons and gamma
rays from a fission-source plate. Other neutron sources include various
pseudo-fission spectra (obtained in accelerators from boil-off in heavy-
element bombardment) and a few monoenergetic sources obtained from
low-energy charged-particle interactions. Notable among the more useful
particle interactions are the d—rt interacrion, obrained by accelerating
deuterons into a tritium target, and the d—d interaction, obtained by
accelerating deuterons into a deuterium target. The Q values (kinetic energy
release) of these interactions are 17.58 and 3.26 MeV, respectively, and the
neutrons evolved are approximately 14 and 2.5 MeV, respectively. Relatively
low intensity neutron sources formed by combining «- or y-emitting isotopes
with light elements, such as deuterium, beryllium, lithium. boron, and
fluorine, have been used for shield experimentation on a limited basis.
Neutrons from these interactions are generally of little interest for shield
measurements because they comprise mixed energies that do not approxi-
mate any spectrum to which the shield will be subjected.

Gamma-ray sources available for shielding experiments include fission
gamma rays, fission-product gamma rays, and individual gamma-ray-emitting
isotopes. Difficulties are encountered with fission gamma-ray sources
because of the interference of secondary gamma rays from neutron
interactions. The spectrum from fission products gives a lower average energy
but is useful in testing containers for spent fuel elements and in
weapons-fallout shielding analyses. Individual isotopes can provide useful
monoenergetic photon sources for obraining penetration data in the range
below 1.5 MeV; however, most of the sources emitting gamma rays of energy
above 1 MeV emit undesirable background energies. Three of the isotopes
frequently used for shield measurements are ®°Co, which emits one
1.17-MeV and one 1.33-MeV gamma ray per disintegration; ! 37 Cs, whose
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daughter, '37Ba, emits one 0.662-MeV gamma ray per disintegration; and
144Ce, which emits 17 gamma rays of energy 0.134 MeV per 100
disintegrations accompanied by 2 at 0.1 MeV, 2 at 0.08 MeV, and 17 at
0.04 MeV.

Some of the experimental data quoted here were originally reported
before the adoption of the terms kerma and absorbed dose (as defined in
Chap. 2). We have converted the obsolete unit rep to the kerma unit on the
basis that 1 rep = 100 ergs/g. Examples of data obtained with fission sources,
either in fission plates- or reactors, are shown in Figs. 6.5 through 6.7.
Figure 6.5 shows the neutron dose rate vs. distance through warter as
measured along the center line of the Lid Tank Shielding Facility.® This
curve has been widely used as a check on the validicy of methods for
calculating neutron penetration through hydrogenous media. Figure 6.6
shows typical results from an experiment using the Aerospace Shield Test
Reactor® housed in an aboveground tank. The angular distribution of
neutrons exiting slabs of borated polyethylene was measured as a function of
slab thickness. A narrowly collimated detector was rotated on a circle of
4.9-m radius centered at a point on the exit face. The reactor neutrons
incident on the shield were precollimated into a 15.2.cm beam. Figure 6.7
shows the variation in thermal-neutron-flux density as a function of range in
air from the Tower Shielding Reactor.” The influence of the ground is seen
as an increase in the thermal-neutron-flux density as the detector height was
decreased from 46 to 1,0 m.

Figure 6.8 is an example® of time-of-flight peutron measurements in
which a boil-off spectrum from a lead target in a linear accelerator was used.
Spectra are shown for the source and for the neutrons penetrating slabs of
zirconium hydride of various thicknesses, With this method a very fine
angular resolution of the penetrating neutrons can be obtained. The spectra
shown are for penetrations normal to the slab along the source—shield—
detector axis.

Data from experiments to determine the transport of ¢®Co gamma rays
through air from an isotropic source are shown in Fig. 6.9, taken from
Burton.” A collimated detector was used for measuring the relative
gamma-ray spectra for a variety of detector polar angles about the
source—detector axis. The data are therefore on a per-unit-solid-angle basis,
which means that the total counts per angular increment were obtained by
dividing by the solid angle intercepted by the increment. Figure 6.10
shows the geometry and results obtained from measurements by Serduke
and Smich'? of ®°Co gamma-ray penetration through iron, Here the angular



276 REACTOR SHIELDING FOR NUCLEAR ENGINEERS

10° i I 10!
10t — — 100 %
- a
3 2
- T
E - — <
'Tm [
o e
S @
s [ ] S

r [%7]
w -
< 3 -1 <
e 10 e —_— 10 =

<
s s
o o4
w w
v, — ] X

b=
2 )
c o
- b=
= >
fwv] e — w
% i
7 2
I 102 — — 102 &

N

10’
0 20 a0 80 80 100 120 140

DISTANCE FROM SOURCE PLATE, cm
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the ORNL Lid Tank Shielding Facility. (From Casper.®)

distribution is also given but this time as a cumulative distribution. This
represents the integral of flux density over solid angle

[I,®(0) 2nsin 6’ do’

as the value of 0" ranges from 7/2 to 6.

: fll“
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Fig. 6.6—Angular distribution of fast-neutron dose rate from particular thicknesses of
3% borated polyethylene slabs. (From Western.®) ’

6.3.4 Fitted-Parameter Data

The data from a parametric shield analysis or experiment may comprise a
bewildering collection of numbers that can be laborious to apply in design
situations. It is, therefore, desirable to find some means of reducing the bulk
of information without losing detail or accuracy. One solution is to fit
analytical functions to the data. An advantage offered by this approach, in
addition to the reduction of data, is that it may provide a means of
analytically integrating over one or more parameters. As an example,
consider the variation of exit current density with slab penetration thickness.
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Fig. 6,7—CR* ®;;, as a function of slant range (R) and detector height (Dy). Reactor
height, approximately 53m; C=4n (0.093). (From Muckenthaler, Holland, and
Maerker.”)

This often fits an exponential function of the form

. -at+b . - - .
(t'=J, e articles cm™ sec™! (6.3-4}
\ Q \ /

or in rare cases by a simpler exponent (b = 0). The variation with exit angle

often approximates a function of the form
Jit8)y=7Jit) k[a+ b (cos 8)c] particles sec™ steradian™  {6.3-5)

where the constant k normalizes to unity the integral of the function over
the 27 solid angle at the exit face, that is,
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Fig. 6.8—Time-of-flight measurement of neutron spectra penetrating zirconium hydride.
[From W.E. Selph, Transactions of the American Nuclear Society, 7(1): 42 (June
1964).]

k [T (a+b(cos6)C] 27sin 6 d =1 (6.3-6)

Sometimes the angular distribution has been observed to be a function of
penetration. When this occurs, the constants in the angular-distribution
equation must be evaluated at each depth. At other times the distribution
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has reached an equilibrium after penetrating a depth of one relaxation length
or less, which suffices for most requirements.

The energy spectrum of the penetrating radiation is likely to require a
more complex fitting function than the other distributions and consequently
is usually left in numerical or graphical form.

The problem of fitting a function to the energy spectrum is avoided if
the calculation requires only the total particle-current density, energy-flux
density, or dose rate of the exit radiation. Use of these units may also
involve an angular distribution. For example, an angular distribution of the

. rl‘*}
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dose rate can be obtained from that of the flux density or that of the current
density. The dose rate due to flux density at angle 6 is given by

D(B) = [ ™ &(0.E) R(E) dE (6.3-7)
where ®(6,E) is the flux density at energy E per unit solid angle about the
polar angle 6 (azimuthal symmetry is assumed) and R(E) is the flux-densicv-
to-dose-rate conversion factor.

In addition, the quantity called dose current (Sec. 6.3.2) is defined as

D(6) = [¢ ™ J(8 ) R(E) dE (6.3-8)

where J{0.E) is the current density per steradian per MeV exiting at polar
angle 6.

A set of data giving dose rate vs. depth and dose rate vs. angle is much
more compact than triple differencial data in depth, energy, and angle.
particularly if one angular distribution can be used at most depths.

The variations of dose rate with thickness and angle can be combined
into a single equation. In rare cases a function can be found that fits dose
rate vs. angle, thickness, and energy of the incident particle.

In an attempt to fit all the parameters adequately, the empirical
equations can become so complex and so difficult to apply that the
advantage over raw tabular or graphical data is lost for hand calculations.
Such complex equations may still have an advantage for computer
applications in that the computer memory required for storing constants and
evaluating the equations generally is less than that required for storing the
original data and interpolating between data points.

An example of such a fitted function is one developed by Peterson to
represent the moments-method differential gamma-ray-energy spectra for use
in the C-17 point-kernel computer program.!! The probability, f, of gamma
rays’ of source energy E, being degraded to penetration energy E in
penetrating a thickness u, ¢ relaxation lengths was fitted by a quadratic in
the variables u,t and the effective atomic number, Z ¢, of the shield
material. The form of the equation is

o6 )

Y ]= Ay ) + A (1 t) + Az () Z g

+AgZegf + As(Zegp)® + 46 (6.3-9)
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where a set of coefficients, A, is given for each combination of source and
final energy. For particular initial and final energies, this equation provides a
continuous probability distribution over penetration thickness and material
composition. The effective atomic number, Z,¢¢, is found by computing the
quantity

2.-3 KiZ;

r= —27' (6.3-10)

summing over the constituents of the material. This value can be used to
select a Z ¢¢ from a plot of y; vs. Z. For most cases the Z,¢f so determined
will be very close to the average atomic number of the material.

Although this form of curve fit results in a racher extensive library of
coefficients, it is more efficient in application than attempting to store all
the moments-method data. It can be compared to the use of the equation of
a surface as opposed to a numerical listing of points on the surface.

Equations can also be derived to fit parameters appearing in equations
for dose rate vs. marterial thickness. Discussions in Sec. 4.8.1 and the
following section on the buildup-factor approach to the moments-method
gamma-ray data present examples of such equations.

6.4 SIMPLIFIED SOLUTIONS

It is natural that attempts should be made to simplify the solution to
problems as complex as those associated with radiation transport. It is also
inevitable that most simplifications result in some sacrifice in the number of
parameters or in the precision associated with the solution.

Simplifications of radiation-transport analyses can generally be classified
as those resulting from (1) analysis of detailed analytical or experimental
data which reveals a simpler means of obtaining some gross quantity, such as
dose rate or total flux density, or (2) attempts to simplify the mathematical
models of radiation-transport physics and thereby obtain (in an easier
manner) data which are a little less precise but which are possibly as detailed
as the more complex solutions. The use of gamma-ray-dose buildup factors
and removal theory fall into the first category; the other methods are
broadly classed in the second category.
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6.4.1 Applications of Gamma-Ray Buildup Factors

The definitions and theory of exposure and energy-deposition buildup
factors were presented in Sec. 4.8.1. In this section we describe some typical
applications.

For a thin shield and narrow beam (Fig. 6.11), the buildup factor is
unity, B = 1, because scattering events deflect the gamma rays out of the

v/ %

——————

Fig. 6.11—Narrow-beam geometry.

beam and thus away from the detector, Where ¢ is small and the detector size
can be neglected, the gamma-ray-flux density at the detector is given by

- S _-H{E)t
(I)_41TR2 e (6.4-1)

where s is the source strength, u(E) is the linear attenuation coefficient

(cm™ ), and r is the shield chickness {cm).

For the geometry of Fig. 6.12, as the thickness of the shield is increased
so that multiple scatters become more prevalent or as the width of the beam

Source 0

-

e e

Fig. 6.12—Wide-beam geometry.

; ﬁl'ﬁ
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is increased so that single scatters may reach the detector, the buildup factor

increases to values greater than 1. The value of B continues to increase with

increasing beam width or shield thickness. A saturation point is reached

when the size of the beam forms a 27 solid-angle intercept at the detector.
The gamma-ray-flux density at the detector in this case is

(Eo)t

® B(Eg ut) e (6.4-2)

-5
" 47R?

Note that the value of B is dependent on the angular distribution of the
source incident on the shield, the shield thickness, and the energy of the
gamma rays. We should also recognize that this buildup factor applies only
to the photon-flux density. As mentioned previously, the concept of buildup
can be applied to any detector response, but, for a given set of conditions,
the dose buildup factor, flux-density buildup factor, or energy-flux-density
buildup factor are not necessarily numerically equal. To be generally useful
therefore, buildup factors must be identified as to source—shield geometry,
source energy, shield thickness, shield material, and detector response. An
example is the dose buildup factor for an infinite-plane collimated source of
2-MeV gamma rays shielded by an infinite-plane slab of lead four mean free
paths thick.

As an example of the application of buildup factors, consider the
penetration of gamma rays from an infinite-plane source (Fig. 6.13). The
source is assumed to emit monoenergetic gamma rays isotropically with a
source strength of Sy photons cm™ sec™!.

The dose rate at the detector is given by

oo _#R
D, =S, F(E)_/; 42132 B(E,uR) 27r dr (6.4-3)

%
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T' A

Detector
_L —_— /

Fig. 6.13—Buildup from infinite-plane source.
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where r is the radius along the source plane to the source element, z is the
distance of the detector from the source plane, and F(E) is the flux-density-
to-dose-rate conversion function. By changing the variable from r to R and
replacing B(E,uR) with the Berger formula, B(E,uR) = 1 + C(E) uReD(E)uR
(see Sec. 4.8.1), the expression becomes

p, =S F(E) g(b/‘ [T e*R v cur eD“R)éf;— (6.4-4)

Introducing the exponential integral

E x)=xml [T eVy™dy (6.4-5)

the expression becomes

: > [Ex(“:) *1-p¢ (6.4-6)

Graphs of the function E,(x) for n=1, 2, and 3 are available in
Appendix G.

szsoF(E) C -(l—D)pz]

6.4.2 Applications of Neutron-Removal-Theory Kernels

In the discussion of neutron-removal-theory kernels (Sec. 4.8.2), the
Albert—Welton kernel'? was discussed as one method of handling neutron
“attenuation in hydrogenous shields. The Albert—Welton kernel is especially
useful in the following two applications:

1. This kernel can be used to correct measured or calculated data when
small changes are made in the heavy elements of a shield. For example,
suppose that a lead layer and a water layer surround a point source. If the
lead layer is increased and the water thickness remains the same, the new
dose rate is given by

2 2 -Ipt -
4nrs D(ry)=4mnri Dy(r;) e "R (6.4-7)

where Zp = removal cross section for lead
= change in lead thickness=r; + ¢

~
|

new distance from source

.,
=)
Il

D(r,) = new dose rate
r, = original distance
D, (ry) = original dose rate



SHIELD ATTENUATION CALCULATIONS 287

Notice that the assumption is made that the water thickness (and its
effect) remains unchanged. Consequently the dose rates are evaluated art
different positions.

2. The kernel can be used to correct results obtained for one hydroge-
nous medium so that they apply for another hydrogenous medium. The
assumption is that the hydrogen effect remains constant for a given
hydrogen length, with the effects of other elements accounted on the basis
of removal cross sections. Thus the hydrogen attenuation kernel in one
medium is set equal to the hydrogen attenuation in the other, which gives

4mr3 D(ry) e¥Ra"2 = 4mr} D, (r,) e SR, (6.4-8)
with the constraint, to ensure the equivalence of cthe hydrogen effect, of
Par2 =pPy7) (6.4-9;
where p, = hydrogen density in medium for which D(r,) is unknown

py = hydrogen density in reference medium for which D,/r}) is
known

'ZR

» = removal cross section for all elements except hydrogen in the

medium being analyzed

ZR, =removal cross section for all elements except hydrogen in the
reference medium

Combining the preceding equations yields

2\2
D(ry) = D, (szzfpl)(%) exp (ZR, ”;”’ - erz) (6.4-10)

1

A word of caution is appropriate here. The preceding equations represent a
simple model of rather complex phenomena, and rather large errors are
possible.

Although the differences are not great, values of the removal cross
section measured in homogeneous—hydrogenous mixtures are slightly lower
than those measured in slabs preceding hydrogenous materials. The value
would be expected to vary slightly with the ratio of atomic densities of
hydrogen to the material being measured. Table 6.1 shows the extent of
these variations in some particular measurements given in the shielding
volume of the Reactor Handbook.! 3
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Table 6.1 —COMPARISONS OF Z, AND Iy,

. Measured in homogeneous mixcure
Zp measured in slab

Element preFeding H; 0 IR Mixture
Carbon 0.81 £0.05 0.72 £0.05 Ci12H220,, —= HJO
c7-0.38 CH and CH, {moments-
method calculation)
Lithium 1.01 £0.05 0.9 LiH
Oxygen 0.99 £0.01 0.92£0.05 Oil and water

In both neutron and gamma-ray calculations in all tvpes of media,
estimates of the approximate change in derector response with material
thickness can occasionally be made with an effective relaxation length, Ay,
for the material. The effective relaxation length is defined as the marerial

1

thickness required to reduce the response by a factor of ™! . or

R e (6.4-11
R, ~

neglecting any differences in geometric attenuation. The value of A ¢f is
determined from an examination of basic experimental or analvtical data.
The selection of a value for A ¢f is fraught with hazards because it may be a
function of many variables, such as distribution in energy, angle, and
position of the source and the total thickness of the shielding material. Also,
slight differences may be observed in the response as a function of thickness
or in the response as a function of depth due to spectral shift with increasing
penetration. Provided that data can be obrtained under analogous circum-
stances, use of an effective relaxation length can provide a quick and
Inexpensive estimate.

6.4.3 Other Point-Kernel Applications

The point-kernel method has been discussed in preceding sections, burt
not all applications of the method have been covered. It should be
emphasized that this method is not a means of obraining basic penetration
data but is racther a widely used means of applying these data. This method
can be used in combination with appropriate point-source, infinite-medium
data to determine either dose rate or spectrum at a point due to a distributed
source. It can also be used in combination with total-cross-section data to
obtain the uncollided component at a point due to a distributed source.

W
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A

Fig. 6.14—Cylindrical point-kernel model.

Other applications are distinguished by the nature of the source being
analyzed. In the last-collision method (to be discussed at the end of this
section), the source is proportional to the local scattering density. In the
analysis of secondary radiation, the source is proportional to the local
density of radiative interactions.

(a) Numerical Techniques. The major steps in performing a numerical
integration over the source volume are: (1) divide the source into increments
that may be considered as point sources, (2) determine the source strength
to be associated with each increment, (3) determine the attenuation along
each source—detector ray, and (4) sum the contributions from individual
sources to obtain a total detector response.

These tasks are considered in order in the following discussion. As with
all forms of numerical integration, the number and size of the increments
selected and the means of averaging within an increment are critical to the
accuracy that can be obtained. Consider the three detector positions near the
cylindrical source shown in Fig. 6.14. Assuming uniform distribution of the
source strength throughout the cylinder, the nearest region will account for
most of the response at detector D;. Consequently nearby increments
should be smaller in size than those at a greater distance so that the averaging
in chis region is at least as precise as that for more distant points. The
increment size selected should be such that the distance from any point in
the increment to the detector would be a very weak function of position in
the increment. In addition, the material attenuation across the increment
should be small. Under these conditions the midpoint of the volume element
can be used as a representative average of all source points within the
increment. The maximum acceptable increment size is therefore influenced
both by the distance to the detector and by the relaxation length of the
source region. For detectors at great distances from the source, the
increment size is determined primarily by material relaxation length. For
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nearby or internal detectors, particular caution should be exercised in laying
out local increments lest a source point be so nearly coincident with the
detector that its effect overshadows all others.t Other factors that will
influence increment layout include source-density variations and shield
inhomogeneities. The estimated relative importance of a given source region
to total detector response should determine the precision in layout of the
region.

The source strength to be associated with each of the assumed central
point sources is given by the integral of source density over the increment or,
if the source density is fairly uniform, by the product of source density
times volume associated with the increment:

n=f pdv=plv (6.4-12)

The attenuation along each source—detector ray is generally determined
from a set of basic penetration information. The material chickness along the
ray (g cm™2) is the criterion used in normalizing to the basic data. The effect
of a material mixture or laminate along the ray is assumed to be the same as
that of each of the component materials taken individually and in sequence
with no perturbation due to interface effects.

Any of the various types of attenuation daca that have been discussed in
Secs. 4.8 and 6.3 may be used in this manner. The choice depends on
whether spectrum or dose response is required at the detector and also on
the availability of data for the elements involved. Depending on the tvpe of
attenuation data used, the summation of the contributions from the
individual source points may be as simple as adding dose-rate values or as
complicated as adding contributions to individual energy and angular
increments.

(b) Attenuation Kernels from Monte Carlo Calculations. Results from
Monte Carlo calculations {or from other transport methods) for dose-race
transmission through slab shields with an incident beam of neutrons can be
quite useful when expressed in terms of attenuation kernels, i.e., as plots of
transmission factors or dose-rate attenuation as a function of slab thickness.
With such graphs it is a simple matter to estimate the fraction of the dose
rate that is transmitted for each incident-energy group of neutrons, the total
dose rate being the sum of the dose rates from all energv groups.

t1/4nr? gets very large as r gets very small.
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Clark, Betz, and Brown'? performed Monte Carlo calculations for
monoenergetic beams of neutrons normally incident on slabs of ordinary
concrete and also on a semi-infinite medium (half-space) of concrete. The
neutron energies were 0.7, 1.3, 2, 3, 4, 6, 8, 10, 12, and 14 MeV. The
density of the concrete was assumed to be 2.43 g cm™, and its composition,
other than its water content, was representative of that given for ordinary
concrete 01 in Report ANL-5800 (Ref. 15). The resulting curves for dose
attenuation are shown in Appendix M (Figs. M-1 through M-10). In addition
to being useful directly, these results can be helpful in adjusting the large
body of infinite-medium neutron-attenuation data for concrete (for ex-
ample, Trubey and Emmett!®) to finite layers. After one or two relaxation
lengths, the penetrating characteristics of neutrons in an infinite medium of
concrete should differ very little from those of neutrons in a semi-infinite
medium. Therefore data such as is shown in Figs. M-1 to M-10, which in all
other respects appear to be appropriate for application to a particular
situation, can be adapted to a finite system by correcting the data in
proportion to the ratio of the curve for the semi-infinite medium (dashed
curve) to the curve for the slab configuration (solid curve) at the proper
penetration distance and energy.

Other useful results were obtained by Allen and Futterer,'” who
determined the attenuation of the multicollision dose rate in the materials
listed in Table M-1 due to monoenergetic neutron beams incident at various
angles. The neutron energies used were 5, 3, 2, 1, and 0.5 MeV, and the
results are plotted in Figs. M-11 through M-15. In order to use these curves,
we must know the multicollision dose rate at che inner surface of a slab of
one of these materials due to neutrons incident in a broad beam at an angle
(or angle band) and energy (or energy band) close to the angle and energy
for which the attenuation data are given. The attenuation factor appropriate
to the material, thickness, energy, and angle is read from the curve, and the
incident dose rate multiplied by that factor should approximate the dose
rate that has penetrated the slab.

(c) Formulas Derived from Kernel Integrations. Transformations of
source geometries with kernel integrations are elucidated by Blizard,
Foderaro, Goussev, and Kovalev.!® They have derived equations to relate
dose rate (or other nondirectional radiation quantities) from one type of
source geometry to that of another. For example, the dose rate from a finite
disk source may be related to either that from a point source or that from an
infinite-plane source. A cylindrical source may be shown equivalent to a line
source buried within the cylinder. Additionally, the attenuation of various
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sources in passing through slab shields can often be expressed in terms of
standard integral equations whose values are well known as a function of the
parameters involved. The formulas derived in this manner are useful in the
" evaluation of the recurring regular geometry problems that may require only
a preliminary estimate of shield effectiveness. The exponential integral
functions (Eq. 6.4-5) are involved in the formulas and are given for reference
in Appendix G. The function

Flbur)= J, et o (6.4-13)

is known as Sievert’s integral and is occasionally involved. Numerical values
(detailed plots} are given by Blizard etal.!?''® We will summarize some
useful cases using the following symbols for source intensities:
Volume sources (S,), particles cm™ sec™
2 -1

Surface sources (S,), particles em™ sec

Line sources (S;), particles cm™ sec™

Point sources (Sy). particles sec™

Shield penetration depth is denoted by {ut) as though only one material
were involved. Where there is more than one shield material. the symbol
should be interpreted as T u;t;.

Basic point-source kernels are

So

¢ =R

(6.4-14)

for the direct-beam (uncollided) component of an unshielded source,

Ut
_Soe‘J

—W (\6.4-15)

for the direct-beam component with an intervening absorbing shield, and

e'“t
4nR?

® = Sy Blut) (6.4-16)

for the toral {direct and scattered) component with an intervening absorbing
and scattering shield where B(ut) is the buildup factor for shield thickness
(ut) at the source energy.
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An element dl in an unshielded line source (Fig. 6.15) gives

R (6.4-17)
but, since
dl=asec? 6 do (6.4-18)
Sy
®= (0, +6,) | (6.4-19)

Fig. 6.15—Line source.

If a shield is placed between the line source and the detector, the uncollided
flux density is given by

S; dl e-ut sec 0

d® = 41(a sec 0)? (6.4-20)

e_ut sec 6
= - 2
S1 =4y df (6.4-21)
51 6, _utsec 6, _utsech
@=— ([ e o0 dp + [ do) (6.4-22)
51
= o= [F(8, ut) + F(6 t)] (6.4-23)

In like manner the integral over a disk source (Fig.6.16) can be
evaluated in terms of the exponential functions, E,, (x).
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S

!
I
R
I

o

Fig. 6.16—Disk source.

At point P on the axis of the disk, the uncollided flux-density
contribution of the source increment in a differential ring at radius r from
the center is given by

S,(2mr dr) ,
4o = a\‘“m2 o Mt sec g (6.4-24)

Substituting p? = 1? +a*,p dp =rdr,and sec 6’ = p/a

S, dp
db = — Pl (6.4-25)

2 p

or, it [J.t‘p/a =,
Sa f utsecd -t
= — e -7 \
e == /. —dt (6.4-26)
Sa

= - [Ev(ut) — B (ut, sec 9)) (6.4-27)

Similar although more complex expressions can be derived for volume-
distributed sources, such as a cylinder or an infinite slab. 3

(d) Special Applications. A first estimate of the scartered radiation can
be obtained by performing a kernel integration over the density of first
collisions within a medium. Consider Fig. 6.17 for a point source and slab

shield.
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So

Fig. 6.17—Single-scattering geometry.

The uncollided flux density at dV'is

e‘zrtl S€C 61

4wR?

where Z, is the total cross section.
The density of first collisions within dV/ is

SoZ,dV

Z,®, dV =20

exp (— f,t, sec 0,)

and the flux density at D due to single scatters within dV is

Z,(0)

d¢0=¢1 dV R%

exp (— Z,t, sec 05)

295

(6.4-28)

(6.4-29)

(6.4-30)

where Z (8) is the value of the angular-distribution function (macroscopic

differential-scattering cross section) for scattering

angle 6,

2.(0)=No(f). Integrating Eq. 6.4-30 over the entire scattering volume
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vields the singly scattered flux density at point D. This method gives a
reasonable estimate of the total scattered flux density in cases where the
scattering medium is thin with respect to the relaxation length of the
radiation, i.e., where there is a small probability of multiple scactering within
the medium. In such cases, especially for problems of air scattering, it is
common practice to neglect the attenuation within the scattering medium of
both the unscattered and the singly scattered radiation, which approximately
corrects for the buildup of the multiply scattered component.

The last-collision method!® can be used in estimating the angular
distribution of the radiation penetrating a shield. Prior knowledge of the
approximate flux density vs. shield thickness must be available from other
sources, however. The approach is similar to that for the single-scattering
model except that a total flux density (rather than an uncollided flux
density) is used in determining the density of scatters. The total-flux-
density-vs.-penetration data are taken from any of the basic sources
discussed in Sec. 6.3. In this method we assume that the total flux density
within the slab is collimated in the direction of the incident beam and is of
the same energy as the source. For a broad-beam flux density &, normally
incident on a slab (Fig. 6.18). where the flux density vs. penetration depth

l'1| )
LR
6

to

111

Fig. 6.18—Last-collision geometry for a slab.

can be expressed in terms of an exponential function utilizing the removal
cross section, exp [—Z g (Eq) t], the local scattering density is given by

ZS¢ dI‘/= ZS(EO\’ ¢0 EXP [_ZR(\EO) fll dV (64-31‘)

If we assume that the energy after scatter, E, is given by an elastic scatter of
particles at the initial energy and that the cross section for scattering into a
unit solid angle about the direction of the detector is T {E, .8}, then the flux
density at the detector due to scattering in d1” is given by

M
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ZS(EOve)
d=——7— o exp — [Zp(Eo) ts + ZH(E) ] AV (6.4-32)

The term Z (E,,0) is the differential scattering cross section. Equa-
tion 6.4-32 can be integrated over that portion of the shield lying within
solid-angle increments as seen by the detector. A differencial angular
distribution at the detector can be obtained by expressing d® on a per-unit
solid-angle basis. This is done by dividing by the differential solid angle
(2w sin § df) and integrating along r.

The last-collision method can be applied to any geometry using
numerical techniques, and in certain simple geometries the integration can be
carried out analytically. In the slab-geomertry broad-beam normal-incidence
case, the flux density per steradian incident at angle € per unit incident flux
density at energy E, is

Zs(Eo 8) exp [-ZR(Eo) t]
L, (E)— ZR(Eg) cos b

$(0.Eq) =

x (1~ exp {—sec [T, (E) — Zp(Eo) cos 8]t }) (6.4-33)

where t,,, is the slab thickness. Evaluation of this equation at representative
angles provides an estimate of the differential angular distribution at the
detector. Where a spectrum of radiation is incident, an evaluation can be
made at each angle for each incident-energy group. The energy spectrum at
the detector is estimated by logging the contributions from the particular
incident-energy—scattering-angle combinations into appropriate energy bins
at the detector. This approach ignores the spectral shift likely to be
encountered as the radiation penetrates the shield. However, energy loss due
to the last collision is included.

Consider another geometry: a detector on the axis of a cylindrical shield
as shown in Fig. 6.19. Broad-beam incidence is assumed with all particles
incident at angle 8 with respect to a plane through the axis of the cylinder.
In this case the scattering angle is 6 and the reference angle at the detector is
«. The integral equation for scattered flux density per steradian per incident
neutron at energy E, and direction f i3
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INCIDENT
NEUTRONS\

Fig. 6.19—Last collision for cylindrical geometry.

]
T sin @

£ Pmax
[ [ fmex (o 0) exp {~[ZR Eo) 1

+ ZE) ty ]}do dr (6.4-34)

P(a)p, 5=

where t; = [(r3 — r? sin® @)% — r cos ¢] csc B
ty =(r—ry)csc

T -
Bmax =5+ cos” (11 /1)

In stating Eqgs. 6.4-33 and 6.4-34, the flux density vs. penetration depth
was given in terms of an exponential function. The method can also be
applied with a basic set of spectrum-vs.-depth data, although the integrations
could no longer be carried out analytically but would require a numerical
solution. French!® demonstrates that the simplified approach (ignoring
spectral shift) gives results in reasonable agreement with experiment and
Monte Carlo analyses for LiH shields of about 10- and 20-cm thickness.

6.4.4 Methods for Estimating Low-Energy Neutron-Flux Density

Estimating the thermal-neutron-flux density as a function of position
inside the shield presents a dilemma. The diffusion methods for analyzing



SHIELD ATTENUATION CALCULATIONS 299

neutrons are generally inadequate for predicting the transport of higher
energy components, which are the source of thermal neutrons deep within
the shield. Likewise, some of the transport methods are extremely inefficient
for obtaining thermal-flux density because of the many decades of energy
degradation that must be considered. Various combinations of transport and
diffusion methods have been used to resolve this dilemma. The assumption is
made that at some energy around 1 keV the neutron angular distribution
changes from forward-peaked, which is best treated by transport theory, to
nearly isotropic, which is characteristic of diffusion. One of the earliest
corrections to diffusion theory was the first-flight correction to the age in
Fermi age theory.?® The correction is applied because the neutron cannort
enter a process described by continuous slowing down (as Fermi age theory
requires) until it has collided at least the first time.

A calculational model formulated by Blizard?! equates the slowing-
down source to the rate of removal from the fast beam. The resulting
equation for the equilibrium thermal-neutron-flux density {ignoring diffu-
sion at thermal) is

Jiz) et/N \
P .h(2) =__)\T_ (6.4-35)
~a

where ®,} (=) = thermal-neutron-flux density

J

= fast-neutron current density

z)
A

z. = thermal-neutron-absorption cross section

relaxation length of J(z)

=Y

T = average age of neutrons from removal to thermal

Obvious limitations of this model are the need for empirically determined
values of J(z), N\, and 7. These values are dependent on penetration depth,
material, and geometry: thus values from one measurement do not
necessarily apply to another set of conditions.

The development of more sophisticated multigroup diffusion models
made it possible to obtain reasonably good estimates of the thermal-to-fast-
neutron ratio in a material, even though the penetration of the fast
component could not be treated in this way. Haffner?? used such an
approach and normalized the results to the fast-neutron distribution given by
the Albert—Welton kernel. In this approach the corrected thermal-neutron
flux is given by
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o JKi(E} $(ER) dE
®rpy = D(R) - (6.4-36)
[ K2 (E) ®(E,R) dE

where K, (E) = response of detector used to measure thermal-neutron-flux

densitv
K, (E) = response of a fast-neutron dosimeter
D(R) = Albert—Welton kernel dose rate at position R

®(E,R} = flux density computed by the multigroup diffusion code

Good results were obtained with this method, but it is limited to cases where
a reliable D(R) kernel is available.

A refinement of the preceding method is to perform a multigroup
diffusion calculation using as a source the neutrons recoiling from first
collisions within the shield. Although this method has been used with some
success bv Schreiber and Kodras?? in predicting thermal-neutron distribu-
tions in beryllium oxide, difficulties are encountered in hvdrogenous media
owing to neutrons which have suffered one or more small-angle collisions but
which have retained their directional character. Spinney?¢ used a removal
kernel rather than an uncollided kernel for the diffusion source to solve this
difficulty. The removal concept was applied to individual source energies in
order to approximate a transport kernel for individual energv groups which
accounted for both the uncollided and the small-angle scattered components.
Spinney first used age theory to predict slowing down of a removed neutron
and later used the concept in multigroup diffusion calculations.?® This
combination of removal and diffusion theory has come to be known as the
Spinney method, the theory of which is discussed in Sec. 4.9.

Trubey?® proposed a direct coupling of a multigroup diffusion code to
the results of a transport code such as RENUPAK (moments method},
NIOBE {numerical integration of the Boltzmann equaction), or Monte Carlo
codes. In a trial calculation of the transfusion (transport diffission) method.
Trubey chose the RENUPAK transport code for fast-neutron calculations
and the MODRIC diffusion code for the analysis of neutrons below 1 keV.
MODRIC is a one-dimensional multigroup diffusion code written for the
IBM 7090 computer. With RENUPAK, an energy spectrum of neutrons was
calculated at various spatial points between 0 and 160 cm. These values were
then interpolated to provide spectra at 226 spatial points. Two separate
determinations were made with lower energy limits of 1 and 10 keV to test
sensitivity. The spectral values were written on magnetic tape and used as a
source distribution for the low-energy portion of the transfusion calculation.

o
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Variation of the cutoff energy from 1 to 10 keV affected the thermal-flux
density by only 1 to 5%. Figure 6.20 compares the thermal-neutron-flux
density calculated by Trubey using the transfusion method with measure-
ments in water at the Lid Tank Shielding Facility. The experimental data
have been converted to an equivalent point source, and all data have been
normalized to unit-source strength. The transfusion method provides a much
closer fit to the measurements than does the application of diffusion theory
alone.

6.5 APPLICATION OF KERNEL TECHNIQUE TO CALCULATIONS
OF SECONDARY GAMMA-RAY DOSEt

Often a large fraction of the radiation dose rate behind reactor and
shelter shields is the gamma-ray dose rate due to neutron capture and, in
some instances, to inelastic scattering wichin the shield. If the sparial
distribution of the neutron-flux density is known, the gamma-ray dose rate
can be calculated for a large number of configurations by integrating the
dose kernel over the source volume. With the kernel technique as
exemplified by Eq. 4.8-4 and the slab geometry shown in Fig. 6.21, the dosc
rate, ['(r,a,b), on the shield surface due to a distributed monoenergetic
isotropic gamma-ray source, S{x), bounded by planes at a and b is given by

e'#R

b =)
[{t,ab) =G(E)j; S{x) dxj; B,(uR) iR? 27p dp (6.5-1}

where x = one-dimensional spatial coordinate measured from the reference
plane
= shield thickness
p = radial distance to source point measured from the detector axis
R = distance from the source point to the detector

total macroscopic cross section for gamma rays of source energy E
G(E)

flux density to dose rate in tissue conversion factor, which
for conversion to rads/hr is 5.767 x 107° [u,(E)/p]E, where u,/p
is the mass energy absorption coefficient for tissue

B, (4R = dose buildup factor for gamma rays of energv E

tThis section by P. A. Stevens and D. K. Trubey is adapted from Methods for Calculating Neutron
and Gamma Ray Attenuation, in Weapons Radiation Shielding Handbook, Chap. 3, USAEC Report
DASA-1892-3, Oak Ridge National Laboratory, 1968.
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Fig. 6.20—Comparison of measured and calculated thermal-neutron-flux densities as a
function of distance from the source. (From Trubey.n)



SHIELD ATTENUATION CALCULATIONS 303

J DETECTOR

T ——

Fig. 6.21 —Geometry for integration over exponential source distribution.

Since R? = p2? + 22,

b - -UR
['{t,a,b) =¥f S(x) dxf B,(#R)eT dR (6.5-2)

The gamma-ray source term usually can be represented quite well either
by fitting with several terms or by piecewise fitting of the thermal-neutron-
flux density distributiont (or of the fast-flux density distribution if inelastic
scattering is being considered) with a function of the form

S(x) = S,e (6.5-3)

1The production of secondary gamma rays by the capture of nonthermal neutrons is usually
insignificant for thermal reactors. It can be important in fast reactors and in thermal reactors where
absorbing layers deplete the thermal flux.
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where S, is the gamma-ray source at x = 0, which gives S(x) in the interval
(a,b), and k is the reciprocal of the effective neutron relaxation length.
Usually S, can be calculated by

S,=y ®(a) (6.5-4;

where y is the number of photons of energy E released per neutron capture
(or per inelastic scattering), ®(a} is the neutron-flux density (usually
thermal-flux density for capture and fast-flux density for inelastic scatter-
ing), and Z is the macroscopic neutron cross section for thermal-neutron
capture (or for inelastic scattering).

When exponential or polynomial forms of the buildup factor are used
(see Sec. 4.8.1) together with the source description given by Eq. 6.3-3. then
Eq. 6.5-2 can be integrated analytically, and very useful results can be
obtained. In the following paragraphs examples of such integrations are given
for two cases of interest: a slab shield of finite thickness t and a semi-intinite
shield (t = oo}, the latter corresponding to a real problem in which the shield
is very thlck.

6.5.1 Calculation for Slab Shield

Trubey?”’ calculated the secondary gamma-ray dose rate for a slab shield
using the Berger form of the buildup factor

B,/EuR) =1+ C(E) uR eDHR (6.3-3)
used in Eq. 6.5-2. The equation then becomes

G(E) b by [fﬂ IJR \
F(t,abu——,)—S f dx rox ;.LR d(/.iR

m

+f CLE) eM (D-LIR d(uR)] (6.5-6)
Bit-x)

where the uncollided dose rate, ['y(t,a,bl, is represented by the first term
and the scattered .dose rate, I',{t.q,b). is given by the second term.

Letting u{r — x) = y and integrating the first term of Eq. 6.5-6 by parts,
we find the dose rate from the uncollided gamma-ray dose rate is given by
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G(E) Sae-a#t u{t-a) WiE-a) e
Fothad) = S5 sy b ) 000 [0 2y £ )
oltab) 2au ¢ 1) p(t-b; u{t-b) ¢ Yy %
G(E) S, '
= e Er it - )] - By [(1 - ault - a)]
+E;[(1 —@)u(t — b)] — et (t-b) E | [u(t — b)]} (6.5-7)

where a = k/u and E, is an exponential function of the first order and is

defined by

= e‘y
Eilx) './; T Y (6.5-8)

Appendix G contains graphs and other details of the exponential functions.

If «=1 or 0 (case of uniform source distribution} or if b=r,
indeterminate forms result which may be resolved by I'Hospital’s rule, by
series expansions, or by integrating Eq. 6.5-6 for k=u, k=0, and b=t,
respectively. These cases are as follows:

Forb<tanda=0

GIE)S

\ a

Co(t,a,b) =

2 {#(b—a) E, (u(t-b)]

+ut Ey (u(t—a)] —ur E, [#(f—b)]} (6.5-9)
Forb<tanda=1

G(E) S,

FO(tsa!b) = 2# {e-#d El [“(t_a;‘l]

— e E [u(t=b)] + e In :_;Z} (6.5-10)

Forb=tanda+#Qor1l
G(E) S

)
Fo(rat) =‘Wﬁ (e E,\ [u(r—a))

- {E m1-a)(r—a)] +In 11 —al})  (6.5-11)
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Forb=tanda=0

G(E) S,

Tolt,at) = {1+u(t—a) E, [u(t—a)] =P} (6.512)

Forb=tanda=1

u(t-a)] — e Inyu(t-a)} (6.5-13)

GIE)S
Fo(t,a,t) = —Z—;J,—a {e'“a E

where ¥ = 0.5772153665. . ., Euler’s constant.
For the special case of b=t and a =0, Eq. 6.5-11 can be represented by

G(E) S,
Tolt,0,8) =

Uo (ut.o) (6.5-14)

where
Voluta) = 2% (Ey(ut) — e {E, [(1 — aut] +1n 11 —ai}) (6.5-13)

Equation 6.5-15 is plotted in Fig.N.1 as a function of the number of
mean-free-paths pt with o as a parameter. [Equations 6.5-9 through 6.5-15
can be used to calculate the total gamma-ray dose (uncollided + scattered)
when the Taylor form of the buildup factor is used (see Sec. 4.8.1).]

Since z =t — x, the scattered dose rate behind a slab shield can be
determined by expressing the second term of Eq. 6.5-6 (i.e., the Berger term)
as

[ (tab)=

G(E) CIE) § e *H* f t-a
t

> dzf eauz o (DR goupy  (6.5-16)

-b z

Integrating Eq. 6.53-16 gives

—qut

G(E) C(E) Sge (e by \ -

Ftab = a | [e-(l-D-a)u\r-b) g (\l-D-Q,u(t-a)] (6.5-17)
21-D)(1-D-au

A
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Fig. 6.22—The coefficient D for the Berger form of the gamma-ray-dose buildup factor.
(Based on data from Chilton.?®)

Equations 6.5-16 and 6.5-17 reveal that, unless D is less than 1, negative dose
rates are obtained. However, D is always significantly less than 1, as is shown
in Fig. 6.22 from the work of Chilton.??

When o+ D =1, Eq. 6.53-17 gives an indeterminate form, which, when
resolved, becomes

G(E) C(E) S, e ™'

2(1 - D)

(b —a)

T(tab)= (6.5-18)

For the special case when b = r and a = 0, Eq. 6.5-18 can be expressed as

G(E) C(E) S, eDH!

Fs(f,o,l’) = “(1 _ D)

Uy () (6.5-19)

where

e-a'ut [1 B e-ut(l-a')]
: i

Uy luta) = (6.5-20)

and @’ = a + D. The function given by Eq. 6.5-20 is shown in Fig. N.2,
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6.5.2 Calculation for Semi-Infinite Shield

Solutions of Eq. 6.5-2 for a semi-infinite shield, i.e., for b = o0, give useful
results that are generally applicable for the special case in which a=0,
particularly if one is interested in a gamma-ray heating rate within a shield.
Using the polynomial form of the buildup factor

3
B, (uR)= L A, (uR)" {6.5-21)
n=0
Claiborne??® determined solutions to Eq. 6.5-2 for this case which were all in
the form
c$m42
Pux) = — nl AL, (6.5-22)
n=0

The dose rate from the uncollided-flux density is represented by the first

D (6.5-23)

and the sum of the next three terms represents the scattered contribution.

term and is given by

|1+«
il —«

Vo (ut) = ﬁ (El(ut) — et {El [{(1—a)ut] = In

The terms are

—aut 1— - (l-cjut 1
li’l(l-”)zez [ i @ +1+o<] (6.5-24)
- 4e_auf _ (1 +a\2(2 _a)e-“t _ {\1 +a>2{\1 — a)p.fe-“t-(G . ,)5\
Yq(ut) = 41— (1+a? (6.3-2))
"r‘-Z’ N 1 . 1 e'aut
LEILY 3"/2 i1 —a)’ (1+a)’ 6

2 -ut
SRR L e 6526
2l —ar (1 —ai® {1 —a)? ‘ ’

When « =0, an indeterminate form occurs in Eq. 6.5-23, and, when
« =1, indeterminate forms occur in Egs. 6.5-23 cthrough 6.5-26. The
E)llowing equations result when the indeterminate forms are evaluated:

= -
T
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-ut
1
Fora=0 Volur) = 1 +“7" E,(ut) —eT =1-2E;(ut) (6.5-27)
_ut
[ \
Fora =1 \oo(m)=5_12~“_r'+e2 In (2yuz) (6.5-28)
1 eH!
\ = —_ | — 29
Yy () (ut+ 2) > (6.5-29)
12 2 e_“t ' - .
2 (ut) = =L+ +1] — .3-
¥, (ut) > [2(ut)? + 1] TE (6.5-30)

(6.5-31)

The functions given by Egs. 6.5-28 through 6.5-31 for the semi-infinite
medium are plotted in Figs. N.3 and N.4 for various values of a. These
figures can be compared with Figs. N.1 and N.2, which are the corresponding
functions evaluated for a slab shield.

These solutions contain the contribution from the gamma-ray sources
between the detector position at f and infinity since integration of Eq. 6.5-2
from x =0 to x = % produces two integrals: one gives the contribution from
the interval 0 < x < ¢ and the other gives the contribution from the interval
t < x € oo, In the usual shield, however, the contribution from the second
interval at deep penetrations is small, and the gamma-ray dose rate outside a
shield of thickness ut will be only slightly less than that calculated for a
distance ut within a semi-infinite shield.

If Eq. 6.5-22 is used for gamma-ray heating calculations within a shield,
the coefficients A, must correspond to the polynomial fit of the
energy-absorption buildup factor, and the conversion factor for expressing
the heating rate (in watts g™ ) becomes

o
u
v
[O%)
1~

u
G(E}=1.6x 1073 ?" E

where u,/p is the mass energy absorption coefficient of the material in which
heat is generated.
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EXERCISES

These exercises can be done with data given in this and previous chapters and the
appendixes.

6.1 Two isotropic fission point sources, A and B, are contained in a tank of water, as

shown by the plan view in the accompanying sketch. Sources .4 and B both emit 10! °
neutrons/sec. (a) Estimate the spectra at points 1 and 2 at the edge of the tank. (b}
Estimate the total energy-flux density (MeV cm™ sec™ ) at points 1 and 2. {¢) Make a
rough estimate of the thermal-flux density at points 1 and 2.

6.2 An ordinary concrete slab is to be used to shield a 15.25-cm-diameter beam tube from

a fission reactor. The fast-neutron-flux density ac the face of the core is known to be
isotropic with a value of 10'? neutrons cm™ sec™ at the core face. Estimate the
thickness x required to reduce the neutron dose rate at point A to 1 mrad/hr. Neglect

scattering in the walls of the beam tube.
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Beam-tube geometry, Exercise 6.2

6.3 In the beam-tube slab shield of Problem 6.2, estimate the thermal-flux density
emerging at point A.

6.4 A thin °Co disk source 10 cm in radius with a strength of 5000 Ci is shielded in a
large pool of water. Using the Berger form of the buildup factor: (a) Compute the
dose rate (DR) at a point 75 cm from the disk along its axis. (b) Compute the buildup
factor for this situation. Note: At 1.25 MeV, (u,/p)H,0 =0.064 cm?/g and
u,/p = 0.03 cm?/g.

6.5 It was decided to add 5 cm of lead to the inside face of the concrete slab covering the
beam tube of Problem 6.2 to lower the gamma dose rate. How does this addition
affect the fast-neutron dose rate calculated in Problem 2? Use removal theory.

6.6 Approximately what was the prompt fission gamma-ray dose-rate reduction that
resulted from adding the 5 cm of lead in Problem 6.5?

i



Albedos, Duects,
and Voids

W. E. SELPH 7

We turn now to a number of subjects we might euphemistically call special
topics. They are special only in the sense that they are necessities. In
contrast to previous chapters that deal fundamentally with one topic,
transport in dense media, this chapter and Chap. 8 deal with a number of

topics equally important to shield design. We might call them engineering
considerations, perhaps another euphemism. At any rate some of the
following considerations will arise in any reactor-shield design.

[ this chapter we are concerned exclusively with an interface between
two media, usually air and a shield material. The geometrical shape of the
interface may be an infinite plane, a wall of a room, a cylindrical tube with
several bends, or a spherical cavity.

Because the most successful methods for analysis of these interfaces use
an albedo concept, the first half of the chapter is devoted to the definition
and description of albedos. The most important application of an albedo for
a reactor-shield designer is the analysis of ducts that penetrate the shield.
Accordingly, duct analysis occupies most of the last half of the chapter. A
brief final section covers a closely related topic. voids.

On the assumption that these topics are considered to be advanced in
shielding and on our opinion that they are still in a state of development, we
present this material in review form with a discussion of approaches taken by
several laboratories. Experimental results play an important role here and are
included in greater number than in earlier subjects for comparison with
analysis and to illustrate trends.

7.1 INTRODUCTION TO ALBEDOS
Backscartering of radiation incident to a dense medium has been treated

with some success as a reflection phenomenon. Borrowing the oprical
concept of albedo, we represent the scattering from interfaces, such as ducts

313
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and walls, strictly as a surface effect. So long as the surface dimensions are
large compared with the relaxation length of radiation in the medium, the
approximation is valid and useful.

When applied to nuclear radiation, the definition of albedo is much
broader than the tradirional one used in optics. Nuclear-radiation albedos
include radiation that is scattered at depths of the order of a relaxation
length rather than just from the surface of the medium since particles
scattering from these depths contribute significantly to the toral radiation
emerging from the surface. The tacit assumption made in most applications
of albedo theory is that particles emerge from the medium at the same
points on the surface at which they were incident. Some nuclear-radiation
albedos refer to mixed radiations; i.e., emergent particles are sometimes of a
type different from the incident particles. Such albedos more properly carry
the modifier effecrive, the emergent radiation being identified as a particular
tvpe of secondary radiation. For example, effective capture gamma-ray
albedos are albedos specifying the gamma-ray dose emerging from a medium
which is caused bv incident neutrons being captured within the medium.
This type of albedo is especially important since for some duct configura-
tions the capture gamma-ray doses can exceed the scattered-neutron doses.

Theoretically, calculations of nuclear-radiation albedos should be
straightforward since a large body of information is available on interaction
probabilities, the angular distribution of scattered radiation, and the
emergent energy vs. scactering angle for a variety of incident energies and
materials. However. even though the single-event probabilities are well
known, the solution of the macroscopic multicollision albedo problem
becomes complex. Consequently the value of the single-event probabilities
lies primarily in their usefulness in predicting trends. For example, if the
ratio of the scattering cross section to the absorption cross section is high, as
it is for neutrons diffusing in concrete, the resulting albedo will tend to be
high. If, however, the scattering is predominantly in the forward direction. as
it is for high-energv gamma ravs, the albedo will be low. The albedo
properties of concrete have been thoroughly investigated since this material
is used in virtuallv every tvpe of fixed shield. Other materials have been
studied, such as water, iron, lead. borated polyethylene, aluminum. and
various soils. but the albedo data for each are generally more limited.
Investigations have consisted primarily of calculations with the Monte Carlo
machine programs. [n addition, a number of measurements have been made
to establish the validity of the calculated data. In nearly all cases the
calculated results have been fitted to empirical expressions.

, fJLl
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7.2 DEFINITIONS

Traditicnally, albedo refers to the ratio of the radiation current reflected
from a surface to the current incident on that surface. Consider a
monodirectional source of radiation of energy E, incident on a surface at
polar angle 8, (see Fig.7.1). The reflected current of energy E per unit
energy per unit solid angle at polar angle 6 and azimuthal angle ¢ is given by

](E:01¢) = ](EO’GO) Q(Eoﬂo:E,e,d’) (72'1)

where J(Eq,8,) is the incident current and a(E(,8,E,8,9) is the albedo.

RECEIVER

Fig. 7.1 —Geometry for calculating neutron and gamma-ray reflection from a surface.

When applied to nuclear radiation, albedo is not always expressed as the
ratio of the reflected current per incident current but instead may be given
as the ratio of reflected current per unit incident flux density, of reflected
dose per unit incident current, of reflected dose per incident dose, etc.
Neutron and gamma-ray albedos are available in several forms. The form
used in Eq. 7.2-1 is doubly differential; i.e., it is differential with respect to
both the reflected energy, E, and the reflected direction (as determined by 6
and ¢). A singly differential albedo is integrated over either energy or
direction. Dose albedos obrtained experimentally as a function of exit
directions are also examples of singly differential albedos since dose is an
integral quantity with respect to energy. The term total albedo always
implies that integration has been performed over both energy and direction.
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In this text differential albedos are denoted by the symbol @, as in Eq. 7.2-1,
and total albedos by the symbol A.

‘Three different types of differential and total albedos have been used by
various investigators in reporting their results on material reflectivicy. The
first type, denoted here by the subscript 1, is an albedo that represents an
incident flux density of particles and an emergent current. The second and
third types, denoted by subscripts 2 and 3, are albedos for which the
incident and emergent particles are considered to be the same, current for
the type 2 albedo and flux density for the type 3 albedo. Flux densities and
currents are related functionally by the cosine of the entrance or exit angles.
For example, if ®(E,0,8)..is the reflected differential flux density per unit
energy per steradian, then the reflected current per unit energy per steradian.
J(E,B,0), is equal to $(E,f,¢) cos 6.

If the albedo being considered represents some weighting of the
particle-flux density, such as dose or energy-flux density. then the
subscripted letter D or E will precede the numerical subscript. In the
following albedo definitions, the term dose or dose rate is used in the generic
sense. The albedo definitions are not affected by the various types or names
of doses that are used. The choice of the dose definition and the flux-to-dose
conversion ratio govern whether the quantity is exposure, absorbed dose,
kerma, or dose equivalent. A functional notation is used in conjunction with
the albedo symbols to designate the independent variables for the particular
albedo being considered.

7.2.1 Differential-Dose Albedos

The three types of differential albedos for which the particle-flux density
has been weighted by a dose response function are defined as follows:

The form ap,(Eq.90.0,8) represents differential current out (in dose
units) per incident flux density (in dose unirts). If the dose due to particles of
energy E, incident at angle 0 is Dy, then the particle current (in dose units)
per steradian reflected in the direction 6,0 is given by Dgap,. The
reflected-particle current in dose units (or dose current) has no physical
meaning but is merely a computational convenience. It is expressed
machematicallv by

D(8,¢) = [ K(E) J(E,0.,6)dE (7.2-2)
where J(E,0,0) = ¢(E,0,6) cos and K(E) is the flux-to-dose conversion

o L
-
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factor for particles of energy E. The current measuring plane in these
definitions is the material-interface plane.

The form ap;(E,80.8,¢) is used for differential current out (in dose
units) per incident current (in dose units). If the dose due to particles of
energy E, incident at angle 8, is Dy (flux density in dose units), then the
particle current (in dose units) per steradian reflected in the direction 6,6 is
given by D, cos (64 )apa, where Dy cos 8, is the incident-particle current in
dose units. This type differs from the traditional current albedo only in that
the current is weighted by a dose response function.

The form ap;(Ee,00.0,¢) is used for differential flux density out (in
dose units) per incident flux density (in dose units). If the dose due to
particles of energy E, incident at angle 8, is Dy, then the dose per steradian
due to particles reflected in the direction 6,¢ is Doap;. If the incident-
particle current per unit surface area is J{E, ), then Dy = K(Ey) J(E,) sec 0.
If the reflected-particle current per unit surface area is J(E,0,¢), then the
reflected differential dose is

D(8.¢) = | K(E) J(E,8,9) sec § dE (7.2-3)
where D(0,¢) is the dose per steradian due to particles reflected in the

direction 9,9.
These three types of albedos are related by

ap, =ap, cos 8y =ap, cos b (7.2-4)

7.2.2 Total-Dose Albedos

Total-dose albedos are obtained by integrating differential-dose albedos
over the solid angle represented by the exit hemisphere. Thus the three types
of total-dose albedos corresponding to the differential albedos described in
the preceding section are defined by

Api1(Eg8o) = [ ap,(Eg.fy.0.9) d2 (7.2-5)
Ap2(Eo o) = [ ap2(Eq.0,.8.9) d2

= sec 60 faDl(E0,90,6,¢)dQ (72-6)
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AD3(Eo8o) = Jap;(Eg.0,.0,0)d2

faDl(Eo,00,8,¢) sec 0 dQ

cos By [ ap,(Eq.00.0.9) sec 6 d) (7.2-7)

where d2 = sin 0 df d¢ and the limits of integration are from 6 = 0 to 7/2
and from ¢ =0 to 27.

Differential data must be available when data for Ap; are being
compared with the other two types of total albedos, whereas Ap, and Ap,
are directly related; i.e.. Ap, = cos 8Ap,.

7.2.3 Other Albedos

Particle flux density or current- and energy-flux density or current
albedos. which refer either to particle or energy flow, have also been used. In
keeping with the previous nomenclacure, these are

A or o = particle current out per unit particle flux density in
A, or a, = particle current out per unit parricle current in
Aj; or a3 = particle flux density out per unit particle flux density in

For the case in which energy flow is considered, these particle-flow
quantities are weighted by the energy and Ag; or ag, = energy current out
per unit energy-flux density in, etc.

All the parameters involved in these albedo definitions are the same as in
the dose albedo definitions except that neither the incident nor the reflected
flux density (or current) is converted to dose units.

An effective albedo may be defined for the emergence of secondary
gamma rays from a material due to incident neutrons. Examples are capture
gamma-ray albedo, inelastic gamma-ray albedo, or activation gamma-ray

albedo.

7.3 NEUTRON ALBEDOS

The fundamental mechanisms that result in neutron backscattering are
elastic and inelastic scattering, the two processes being distinguished by the
condition of the target nucleus following its collision with the neutron.
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Owing to the relatively weak variation of the dose response function
with energy, neutron-dose albedos are more nearly proportional to the
particle-flux-density albedo than to the total-energy albedo. Calculations of
neutron albedos have been successfully performed and experimentally
verified in a number of cases. Investigations fall into three major categories,
distinguished by the energies of the reflected neutrons: fast neutrons,
intermediate-energy neutrons. and thermal neutrons. Studies of thermal-
neutron albedos have been further categorized as relating to those resulting
from incident thermal neutrons and those resulting from neutrons incident
at energies higher than thermal energy. Since neutrons incident at thermal
energy scatter in a more orderly process than do higher energy neutrons, this
category has yielded to direct analytical approach more readily than the
other categories.

7.3.1 Fast-Neutron Albedos

Major contributions to the data on fast-neutron albedos have resulted
from studies made at Oak Ridge National Laboratory (ORNL) by Maerker
and Muckenthaler! and at the U.S. Army Ballistic Research Laboratories
(BRL) by Allen, Futterer, and Wright.? Both groups performed detailed
Monte Carlo calculations to determine the reflection of fast neutrons as a
function of incident energy and angle. The results of Maerker and
Muckenthaler are more detailed than those of Allen efal. in that the
reflection data are differential with respect to both the reflected direction
(see Fig.7.1) and to the reflected energy. The data of Allen efal are
differential with respect to the direction only. The ORNL results are limited
to concrete; the BRL studies include several additional materials.

The calculations by Maerker and Muckenthaler were performed as part
of an extensive analytical and experimental program that covered a wide
range of neutron energies (see Secs.7.3.2 and 7.3.3) and included an
investigation of secondary gamma-ray albedos (see Sec.7.5). In the
measurements a 23-cm-thick concrete slab that was reinforced with steel bars
at a depth of 3.8cm from either side was used. For the fast-neutron
calculations the steel was not considered, and the concrete composition was
assumed to be a typical concrete of the composition shown in Table 7.1.

Calculations were performed for six incident-energy bands covering the
energy range between 0.2 and 8 MeV. In a given problem neutrons incident
to the concrete were sampled uniformly from each incident-energy band,
and a statistical estimation technique was used to obtain estimates of the
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Table 7.1 —COMPOSITION OF CONCRETE USED
IN MONTE CARLO CALCULATIONS

Composition,
102! atoms cm™>
Maerker and
Muckenthaler! Allen et al.?

Element

Hydrogen 9.43 13.75

Oxygen 47.6 45.87

Silicon 11.85 20.15

Calcium 7.8
Density, g cm™> 2.35 2.26

current emerging from the surface at various angles from a normal to the
surface.

Emergent angles were determined by the intersection points of a grid
formed by nine space-fixed polar angles and six azimuthal angles. The
results, obrained for distinct values of 8,6, and ¢, were grouped into energy
bands AE, and AE. There were 10 reflected-energy bands, which, like the
incident-energy bands. covered the range between 0.2 and 8 MeV. (Albedos
that include neutrons reflected atr energies less than 0.2 MeV were
determined separately and are discussed in Secs. 7.3.2 and 7.3.3.)

The differential albedo ap,(Eq.04.E,0.,¢0) calculated by Maerker and
Muckenthaler is in units of reflected current (in single-collision dose units)
per MeV per steradian per incident current (in single-collision dose units) of
a “gun-barrel” beam source. The average statistical uncertainty associated
with the Maerker—Muckenthaler data is about 10% for the doubly
differential albedos and about 3% for singly differential albedos.

Results from these calculations are shown in Figs. 7.2 through 7.5.
Figure 7.2 shows the variation of the total albedo (integrated over both the
reflected energy and the reflected angle} as a function of the incident angle
and incident-energy band. Figures 7.3 and 7.4 show the dependence of the
d'tferential-dose albedo on the reflection angles 8 and ¢: Fig. 7.4 clearly
illustrates that an assumption of no dependence on the reflected azimuthal
angle ¢ can lead to considerable error in the differential albedo for some
conditions. The dependence on the azimuthal angle is strongest for
high-energy neutrons at grazing angles of incidence and emergence; it
becomes very weak for low-energy neutrons or for values of ¢ greater than
45°. This trend is consistent with what would be expected since the first
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Fig, 7.2—Total single-collision dose albedo as a function of cos 8, and AE, for fast
neutrons (>0.2 MeV) reflected from concrete. [From R. E. Maerker and F.J. Mucken-
thaler, Nuclear Science and Engineering, 22: 458 {1965).]

scatterings of high-energy neutrons are in the forward direction and since
neutrons that have scattered more than once tend to have “‘forgotten” their
initial direction and thus emerge from the material in 2 random manner.
Figure 7.5 shows how the ratio of the total-dose albedo for singly scattered
neutrons to the total-dose albedo for singly plus multiply scattered neutrons
increases with increasing values of the polar angle of incidence.

Maerker and Muckenthaler developed an expression to fit their angular
differential-dose-albedo data which reproduces their Monte Carlo results
within 10%. The expression involves two terms: the first accounts only for
singly scattered neutrons and the second includes all multiply scattered
neutrons; it is assumed that the configuration is effectively a semi-infinite
body of concrete. The expression is

cos 8
cos 8 + K| [AE,) cos 0,

@D, (AEg,0,.0,6) =

X E Gm(AE,) P 6,)+ cos 9
&, Om(BEo) Pmlcos Os) 4 g AE, B0.0)
K

x L Bu(AEg) Py(cos 6;) (7.3-1)

k=0
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where cos 65 = sin 84 sin 6 cos ¢ — cos 8 cos 0; Py, and Pj are Legendre
polynomials of orders m and k;

I ; J
K, (AEy,04.0) = E (cos 6} Z a;j(AE,) cosi 8, (7.3-2)

and the constants G, B, K, and ajj are given in Appendix O, Table O.1.
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Fig. 7.3—Differential single-collision dose albedo per steradian as a function of cos 8 and
¢ for 1.5- to 3-MeV neutrons incident on concrete at 85 = 60°. [From R. E. Maerker and
F.J. Muckenthaler, Nuclear Science and Engineering, 22: 458 (1965).]

To provide experimental verification of these data, Maerker and
Muckenthaler used their differential albedos to predict reflected fast-neutron
doses from a collimated beam of reactor neutrons incident at various angles
to a 1.8-m-square, 23-cm-thick concrete slab and compared calculations with
corresponding measurements at the ORNL Tower Shielding Facility (TSF).
The values of the incident angles 8, covered in the calculations and the
experiment were 0°, 45°, 60°, and 75°. The calculations were weighted by
an incident spectrum that had been previously measured at the TSF, and the
incident dose rate used was the dose rate determined by integrating the
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measured dose rates over the effective cross-sectional area of the incident
beam.

Agreement was considered good in that the root-mean-square deviarion
between the predicted and measured values was 3.1% and the largest single
deviation was 9%. Maerker and Muckenthaler subsequently incorporated
these results in a duct calculation for comparison with a series of
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Fig. 7.4—Differential single-collision dose albedo per steradian as a function of cos § and
¢ for 6- to 8-MeV neutrons incident on concrete at 8 = 85°. [From R. E. Maerker and
F. J. Muckenthaler, Nuclear Science and Engineering, 22: 458 (1965).]

measurements in a three-legged duct. Their results are described later in this
chapter.

The Monte Carlo calculations performed by Allen et al.> were used to
determine the fraction of neutrons from monoenergetic sources that was
transmitted through and reflected from infinite slabs of various materials,
including concrete. The source energies were 0.10, 0.25, 0.50, 1.0, 2.0, 3.0,
5.0, and 14 MeV, and the angles of incidence were 0°, 30°. 45°, and 70°
- from the normal to the slab. The low-energy cutoff was 10 eV. Transmitted
and reflected neutrons were accumulated in energy and angle intervals, the
reflected data yielding the multicollision-dose albedos ap4(Eq.80,8) and
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Fig. 7.5—Ratio of total single-collision dose albedo for fast neutrons (>0.2 MeV) singly
scattered from concrete to total albedo for singly plus multiply scattered neutrons as a
function of cos 8y and Eq. {From R. E. Maerker and F. J. Muckenthaler, Nuclear Science
and Engineering, 22: 458 (1965).]

Ap3(Eq.80). Energy spectra of the reflected flux were also determined for
each incident energy—angle combination, but the albedo was not calculated
as a function of the energy of reflected particles.

In addition to concrete, the materials included in the calculations were
water, iron, borated polyethylene (8% B,C by weight), and three Nevada
Test Site (NTS) soils that differed only in moisture content. The densities
and elemental content of the materials are given in Appendix O, Table O.2.
In all cases the slabs were assumed to be sufficiently thick to yield albedo
data approximating those for a semi-infinite geometry.

Some results from the calculations of Allen et al.? are shown in Figs. 7.6
through 7.9. Figures 7.6 through 7.8 are plots of the total-dose albedos for
the various materials as a function of the hydrogen content for incident
source energies of 0.1, 2.0, and 14.0 MeV. Figure 7.9 gives the angular
distributions of reflected neutrons from a 1.0-MeV source.

French and Wells® analyzed the differential data of Allen et al.® and
obtained a fit that is a function of the incident and reflected polar angles
only. The lesser detail of the BRL results led to the conclusion that the

=
S T=
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Fig. 7.6—Total multicollision dose albedo for 0.1-MeV neutrons incident on various
materials. (From Allen, Futterer, and Wright.3)

dependence of the reflected azimuthal angle ¢ was weak and for the most
part irregular; thus the dose reflection data were averaged over ¢. The
dependence on the reflected polar angle was found to fit a cos 8 function,
and the dependence on the incident angle was approximated by cos® 6,
which yielded an expression of the formt

ap, = k{Ey) cos®%84 cos § (7.3-3)

where k(E,) is a normalizing constant that includes the effect of incident
energv and reflecting material. Values of k(E,) are shown in Appendix O,
Table O.3. for concrete, the three NTS soils, and iron for eight monoen-

tThe original data of Allen et al.®> were converted by French and Wells to a type 1 albedo {see
Sec. 7.2).



326 REACTOR SHIELDING FOR NUCLEAR ENGINEERS

1.2 T
Iron
1.0
Concrete
|
. Soil {saturated)
|
O'BAL * r Soil (50% saturated)
|
'5 Soil {dry)
~ i
g Q.6 *
Water
|
i | Polyethyiene —l
. ; ]
0.4 g
\ l
Eo = 2.0 MeV
o 60 = o° J
0.2— 4 8o = 30° (
afg =45°
48y =70° X
0 ! R | 1
0 10 20 30 40 50 60 70

HYDROGEN, at. %

Fig. 7.7—Total multicollision dose albedo for 2.0-MeV neutrons incident on various
materials. (From Allen, Futterer, and Wright.3)

ergetic scurces and a fission source. Equation 7.3-3 is assumed to be valid for
all materials of low to moderate hydrogen content (Zy/Z; < 0.3). (The
water data of Allen et al. show a less pronounced dependence on 8 and are
not represented by Eq. 7.3-3.)

French and Wells found that, except for incident energies near
cross-section peaks of the elements in the material. the total-dose-albedo
data of Allen et al.® could be correlated by a linear function of the ratio of
the macroscopic hyvdrogen cross section of the material to its macroscopic
total cross section. There is also an excellent correlation when the total
albedo is averaged over the fission-neutron spectrum. as is shown in Fig. 7.10
for normally incident and normally reflected fission neutrons. This should be
a useful correlation in extrapolating to other materials for which calculations
have not been performed.

Song® used the Monte Carlo data of Allen er al.? to obtain values of an
energy-dependent parameter that would give the best fit to a semiempirical
formula he had derived for the fast-neutron differential-dose albedo for
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Fig. 7.8—Total multicollision dose albedo for 14.0-MeV neutrons incident on various
materials. (From Allen, Futterer, and Wright.3)

concrete. The formula, analogous to that used by Chilton and Huddleston®
for gamma rays (given in Sec. 7.4), is

F(E,) cos 8
cos By +cos 6

aDz(Eo,eo,o) = (73-4)

where F(E,) is the energy-dependent parameter. Song obtained values of this
parameter from a least-squares analysis of the Monte Carlo data for concrete
which gave the best fit to the equation. The values were then empirically
correlated as a function of energy by

F(Eg) = Eg exp (0.9719 — 2.895/Eq + 0.3417E,) (7.3-5)

Another investigation of fast-neutron albedos was performed by Henry,
Mooney, and Prevost,” who studied the reflection of fast neutrons normally
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incident on various thicknesses of steel and 6% borated polyethylene. Their
work included both Monte Carlo calculations and experiments utilizing a
well-collimated reactor beam. In the experiments total-dose albedos (Ap ;)
were evaluated from data obtained by traversing the beam area with a
dosimeter in a plane adjacent to the slab and repeating the traverse in the
same plane with the slab removed. Figure 7.11 shows experimental and
calculated results.

The data of Henry et al. are of particular interest because they show the
dependence of the albedo on material thickness. In addition, Fig. 7.12 shows
the reduction of the steel albedo caused by facing the steel slab with various
thicknesses of polyethylene. In Fig. 7.11 it appears that the albedo for steel
is approaching a value of nearly 0.6, which is lower than the value of 0.84

.
=
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AAZ(AEo,ec)):&l +62IJ.0 (73'7)

where g = cos 8, gy = cos 8, and the constants are given in Appendix O.
Table O.4. for each incident-energy group. When the expression for the
differential albedo was determined. all exit neutrons were assumed to have a
1/E energy distribution within each energy group. The expression for the
total albedo was obtained by integrating Eq. 7.3-6 over all exit angles.

7.3.3 Thermal-Neutron Albedos

As mentioned previously, two types of thermal-neutron albedos can be
considered: the purely thermal albedo. for which both the incident and the
reflected neutrons are at thermal energy, and the albedo for emergent
thermal neutrons that result from the moderation of neutrons that are
incident at energies higher than thermal. These two categories are treated
separately.

(a) Neutrons Incident at Thermal Energy. Various approximations to
the purely thermal albedo have been derived analvtically. with isotropic
scattering and capture being the only interactions allowed. In some
approximations only the total albedo is derived. and it is expressed as a
function of the incident angle, assuming that the reflected neutrons will
emerge with isotropic or cosine distributions. In other approximations
differential albedos that are functions of both the incident angle and the exit
angle are obrtained.

In analytical treatments of purely thermal scattering, the exit current is
independent of the azimuthal angle by virtue of the assumption of isotropic
scattering. Monte Carlo calculations made with this assumption have shown
reasonable agreement with the other forms of analysis: however. Monte
Carlo calculations in which anisotropic scattering was assumed for hvdrogen
contained in the material have shown that the albedo exhibits an azimuchal
dependence. although to a lesser extent than was shown for fast neutrons.
Results from Monte Carlo calculations in which both tvpes of scattering
assumptions were used follow the discussion of various analvrical
approaches.

Probably the first investigation of thermal-neutron reflection was
performed by Fermi.® who showed that for large values of N (N = Z,/Z ;. the

£ 1 rrl - cocerrtinn rAa th  shearnrinn rrace carrian) the roral



ALBEDOS, DUCTS, AND VOIDS 333

albedo for thermal neutrons incident on an infinitely thick isotropically
scattering medium bounded by a plane is given approximately by

vVN-1
VN +4/3cos b,

where A, (fy) is the number of thermal neutrons reflected per incident

A, (6p) = (7.3-8)

thermal neutron and 6, is the angle of incidence.
A rigorous calculation was carried out later by Halpern, Lueneburg, and
Clark,!® who obtained the formula

k

A, =1-
: N+

(7.3-9)

where k