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1. INTRODUCTION

1.1 SUMMARY

The Nuclear Regulatory Coummission (NRC) Staff issued their technical report

NUREG-0460, "Anticipated Transients Without Scram for Light Water Reactors,"

Volumes 1, 2, and 3, in 1978. Volume 3 describes recommendations for mitiga-
tion systems, for the various plant categories. In February 1979, the Staff
requested General Electric to document the response of the BWR with proposed

mitigation systems (February 15, 1979 letter from R. J. Mattson to
G. G. Sherwood).

General Electric considers the NRC proposed anticipated transient without

scram (ATWS) mitigation systems to be unwarranted in light of the high relia-
bility of the current BWR shutdown system. Nevertheless, General Electric has
-performed the assessment illustrating the capability of the timed, two-pump

standby liquid control system (SLCS) to mitigate the consequences of the

hypothetical ATWS event. The preliminary design of this mitigation system

was described in NEDE-24222, Volume I (May 1979), and is further defined in

the conceptual functional control diagrams later in the report.

Volume 1 identified the three most likely limiting ATWS transients and evaluated

them on a generic basis for a representative BWR/4-Mark I, BWR/5-Mark II, and
BWR/6-Mark III. This study extends the scope to cover all ATWS transients for
the three product lines given above as listed in NUREG 0460 (Volume 3). This

evaluation has verified the original assumptions in Volume 1 that the selected
transients were either bounding or the difference being insignificant. Accord-

ingly this study contains sensitivity studies for the three events evaluated
in Volume I. Additionally, the analytical results are extended to examine

a representative BWR/4-Mark II.

1-1
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1.2 APPROACH USED IN THIS STUDY

The approach used in this study was to complete the evaluation of all the
hypothesized ATWS events for the three product lines given above and to pro-
vide sensitivity studies of the three transients selected in Volume I for the
same three product lines. For clarity, certain sections of the Volume I are
repeated. There are some minor differences in the evaluation of Volume 1 and
those in this report due to the ube of more realistic parameters (see
Section 3.1.1). These differences, which have negligible impact on the results
and conclusions, are described at the beginning of each appropriate section of
this report (Section 3.1, 3.2, 3.3).

The description of the BWR/4 Turbine Trip event has been modified from the descrip-
tion in the proprietary report in order to show the effects of MSIV closure, which
was previously neglected.

The BWR/4-Mark II is covered on a representative basis by utilizing appropriate
sensitivity studies on a representative BWR/4-Mark I and BWR/5-Mark II plants.
The BWR/4-Mark II is represented by the BWR/4-Mark I for all reactor variables
and bulk pool temperatures. Containment loading and local suppression pool
temperatures are represented by the BWR/5-Mark II results.

Sensitivity studies are provided for the BWR/4-Mark I, BWR/5-Mark II, and
BWR/6-Mark III for the key parameters affecting suppression pool temperature,
fuel integrity, water level, and overpressure for the three transients
evaluated in Volume 1.

Due to the extremely low probability of the occurrence of an ATWS, nominal
parameters and initial conditions have been used in these analyses. This is
consistent with the NRC Staff request. Additionally, since NUREG-0460
(Volume 3) suggests an implementation schedule of at least 2 years after rule-
making, this analysis whenever possible utilizes parameters expected to be
present at that time, such as all-8x8 fuel. It should be noted that in spite
of this approach, many conservatisms remain in the analysis.

1-2
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The basis of these analyses i' that the systems used to mitigate the postulated

ATWS events are selected such that ATWS consequences do not result in a threat

to public health and safety. Spocifically, the mitigation capability meets

the following criteria:

1. The reactor coolant pressure boundary shall remain below emergency

pressure limits.

2. The containment pressure shall remain below design limits. The sup-

pression pool temperature shall remain below local saturation

temperature limits as defined in Section 4.2.3.

3. A coolable core geometry shall be maintained.

4. Radiological releases shall be maintained within 1OCFR100 allowable

limits.

5. Equipment necessary to mitigate the postulated ATWS event shall be

evaluated to provide a high degree of assurance (assurance of

function) that it will function in the environment (pressure,

temperature, humidity, radiation) predicted to occur as a result

of the ATWS event.

The assessment was performed using the following General Electric computer codes:

S

*

Bars in right-hand margins ihdicate

Information deleted.

General Electric Company Proprietary
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1.3 CONCLUSIONS

In response to the requirements of Alternate 3,.set forth in NUREG-0460,
(Volume 3) mitigation of the consequences of a postulated ATWS event have been
assessed for representative BWR/4/5/6 plants. The conclusions drawn from this
assessment are:

a. Recirculation Pump Trip (RPT) on high vessel pressure or low water
level maintains vessel pressure within emergency limits, and quickly
reduces power to well below rated.

b. Alternate Rod Insertion (ARI), utilizing diverse logic and sensors on
high vessel pressure or low water level, or manual initiation, results
in rod insertion after a delay of approximately 15 seconds. The
combination of RPT and ARI results in low suppression pool tempera-
tures, assures core coverage, and maintains core temperatures well
within acceptable limits.

c. Two-pump SLCS, initiated on high vessel pressure or low water level, or
manually, and after confirmation of an ATWS condition, results in
acceptably low suppression pool temperatures, core coverage, and
acceptable core temperatures for all initiating ATWS events.

d. The radiological analysis demonstrates that the limits of 1OCFR100
are not exceeded for any ATWS event, and would not be exceeded,
even if 100% of the fuel cladding failed.
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2. DESCRIPTION OF ATWS ANALYSES

This section defines the basis for the scope and content of this submittal.

Specifically, the classification of plants chosen for analysis is discussed,

the reasons for choosing the particular plant transients analyzed are given,

the plant conditions utilized and the assumptions employed are listed, and

the equipment and systems required to be operative are specified and discussed.

2.1 CLASSIFICATION OF PLANTS ANALYZED

ATWS event analyses and sensitivity studies are provided for three classes of

BWRs, consistent with General glegtric product line designations. The three

classes contained in this report, the BWR/4 (Mark I), BWR/5 (Mark II) and

BWR/6 (Mark III), are described in Table 2.1-1. The BWR/4 (Mark II) product

line is shown by sensitivity studies to be representative of the BWR/4 (Mark I)

and consequently no additional evaluations have been performed.

The analyses were performed using normalized parameters such that all units

within a product line can utilize these results to the maximum extent practical.

2.2 ATWS EVENTS ANALYZED

In the May ATWS submittal(1) to the NRC, results of failure to scram were

presented for three initiating transients. These transients, and the rationale

for their selection, are:

A. MSIV Closure Event. Previous General Electric studies( 2' 3 ) have

shown that this transient, coupled with a postulated scram system

1Assessment of BWR Mitigation of ATWS (NUREG 0460 Alternate #3), General

Electric May, 1979 (NEDE-24222, Volume 1, Class III).

2 Analysis of Anticipated Transients Without Scram, Licensing Topical Report,
March 1971 (NEDO-10349).

3 Studies of BWR Designs for Mitigation of Anticipated Transients Without Scram
General Electric Licensing Topical Report, October 1974 (NEDO-20626).
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failure is the most limiting transient from the standpoint of peak

vessel pressure, peak heat flux, and peak suppression pool tempera-

ture, (although design limits are not exceeded). This conclusion

was reached for analyses of the BWR 4, 5 & 6 product lines assuming

recirculation pump trip and automatic initiation of the SLCS.

B. Inadvertent opening of a safety/relief valve was included because,

depending on the operator action taken following failure of manual

scram, this transient can result in high, but acceptable, suppression

pool temperatures.

C. To demonstrate acceptable performance during most other types of

ATWS events, the turbine trip/load rejection transient with scram

failure was presented. Lower pool temperatures result during this

ATWS event due to the accessibility of the condenser heat sink and

the ability of the feedwater system to make up coolant inventory in

the reactor vessel. This event also results in moderately high core

power for the first few minutes into the transient, and hence

represents additional fuel duty considerations.

This report contains sensitivity studies which expand the previous evaluations

for these three transients by analyzing the effect of variation of significant

parameters impacting fuel duty, overpressure, and pool temperature about the

base values in Volume 1.

All other significant anticipated operational transients have also been

analyzed in this report to illustrate BWR behavior during the hypothesized

ATWS events. The-results of the transient analyses substantiate the conclusions

in Volume 1 that the automated SLCS provides adequate mitigation.

Recent studies have shown that postulated failures of the steam bypass system

with turbine trip have a frequency of less than one per plant lifetime. General

Electric does not believe that the bypass failure event should be included in

any required ATWS study. On the other hand, the consequences of the turbine

trip without bypass ATWS. event have been shown to be essentially the same as

2-2

failure is the most limiting transient from the standpoint of peak 

vessel pressure, peak heat flux, and peak suppression pool tempera­

ture, (although design limits are not "exceeded). This conclusion 

was reached for analyses of the BWR 4, 5 & 6 product lines assuming 

recirculation pump trip and automatic initiation of the SLCS. 

B. Inadvertent opening of a safety/relief valve was included because, 

depending on the operator action taken following failure of manual 

scram, this transient can result in high, but acceptable, suppression 

pool temperatures. 

C. To demonstrate acceptable performance during most other types of 

ATWS events, the turbine trip/load rejection transient with scram 

failure was presented. Lower pool temperatures result during this 

ATWS event due to the accessibility of the condenser heat sink and 

the ability of the feedwater system to make up coolant inventory in 

the reactor vessel. This event also results in moderately high core 

power for the first few minutes into the transient, and hence 

represents additional fuel duty considerations. 

This report contains sensitivity studies which expand the previous evaluations 

for these three transients by analyzing the effect of variation of significant 

parameters impacting fuel duty, overpressure, and pool temperature about the 

base values in Volume 1. 

All other significant anticipated operational transients have also been 

analyzed in this report to illustrate BWR behavior during the hypothesized 
" , 

ATWS events. The"results of the transient analyses substantiate the conclusions 

in Volume 1 that the automated SLCS provides adequate mitigation. 

Recent studies have shown that postulated failures of the steam bypass system 

with turbine trip have a frequency of less than one per plant lifetime. General 

Electric does not believe that the bypass failure event should be included in 

any required ATWS study. On the other hand, the consequences of the turbine 

trip without bypass ATWS. event have been shown to be essentially the same as 

2-2 



NEDO-24222

the MSIV closure event; thus, information on the turbine trip without bypass
ATWS event will also be presented as requested by the NRC Staff.

2.3 PLANT CONDITIONS

Initial operating conditions for the typical plants used to represent each BWR
Product Line are listed in Table 2.3-1. They are consistent with NUREG-0460 guide-
lines and represent nominal operating though not bounding conditions. The list-
ing shows most parameters which are expected to ir~fluence the course of the ATWS
events. Wherever possible, these parameters are normalized to the rating of the
unit so that most effective generic use of this report can be made by units of
all sizes within a product line (e.g., initial quppression pool volume is given
in full-flow-minutes of rated feedwater).

Only AlternaLe 2 and Alternate 3 (NUREG 0460, Volume 3) modifications are assumed
to be implemented in these analyses. The features of Alternate 3 include all
Alternate 2 features plus the implementation of automated SLCS repiped to new
injection locations and the simultaneous operation of both SLCS pumps. The
automatic initiation of SLCS includes a two minute delay to allow for ARI and
other actions to cause rod insertion, thus, avoiding unnecessary boron injection.

The analysis for acceptable ATWS performance assumes the use of quenchers on
the safety/relief valve discharge piping on each plant.

2.4 OPERATIVE EQUIPMENT AND SYSTEMS

2.4.1 Systems Utilized

The systems which perform the functions during ATWS events are the same as
those given and discussed in Volume I. They are repeated here for clarity.
Recirculation Pump Trip and the ATWS logic for the automated standby liquid
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control system will be designed to meet the criteria in NUREG 0460 (Volume 3,

Appendix C, Items A-H). Alternate Rod Insertion will meet IEEE-279, 1971.

a) Recirculation Pump Trip (RPT)

b) Safety/Relief Valves (S/RV)

c) Control Rod Drives

d) Alternate Rod Insertion (ARl) Valves

e) High Pressure Coolant Injection (HPCI); High Pressure Core Spray

(HPCS); Reactor Core Isolation Cooling (RCIC)

f) Standby Liquid Control System (SLCS)

g) Suppression Pool and Containment

h) Residual Heat Removal System (RHR)

i) Main Condenser (not mandatory for ATWS mitigation)

j) Main Steam Isolation Valves (MSIV)

k) Feedwater System (runback function)

1) Turbine Pressure Control and Bypass System (not mandatory

for ATWS mitigation)

m) Condensate Storage Tank (CST)

n) Reactor Water Cleanup System (isolation function)

o) Standby Gas Treatment System
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p) Diesel Generator

q) ATWS Logic

r) Instrumentation (Primary functions)

i) Reactor Power - LPRM/APRM

ii) Control Rod Position Indication

iii) Dome Pressure

iv) Vessel Water Level

v) Suppression Pool Temperature

2.4.2 Equipment Performance Assumed in Analysis

Characteristics of the important pieces of equipment used to mitigate the
consequences of failure to scram are listed in Tables 2.4-1 - 2.4-3.

The peak SRV discharge suppression pool bubble pressure during ATWS was com-
pared to the design SRV discharge pressure with the following results:

1. The form of the forcing function for S/RV discharge phenomena is the
same for both the ATWS and design cases (i.e. idealized Rayleigh
bubbles).

2. The relationship between pressure amplitude and building response

is linear at a given frequency.

3. Realistic S/RV discharge loads used for ATWS are bounded by current
design requirements.
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4. The S/RV frequency range during ATWS is bounded by the S/RV forcing

function used for design.

These results are supported by Monticello data for the GE "T-quencher" and

Caorso data for the "X-quencher". In the case of non-GE quenchers, a pre-

liminary assessment indicates that a similar statement can be made for the

non-GE quenchers. Thus, no unique ATWS load evaluation is necessary.

NSSS integrity is not compromised by the peak reactor vessel pressure calculated

to occur during the most severe postulated ATWS event. This is demonstrated

by showing that the ATWS pressures are less than that pressure which results

in "Service Level C" stresses.

Operability of the systems and components necessary for ATWS mitigation will

be also demonstrated by showing peak ATWS pressures are bounded by existing

operability test data or are consistent with the pressures used in the defini-

tion of Plant Conditions and Load Combinations for "Service Level C" Condi-

tions. General Electric's implementation of Regulatory Guide 1.48 requires

that stresses in pumps and valves remain below yield point for both upset and

emergency conditions. Operability will not be impaired by these low stresses

since no permanent deformation will occur. Even if performance could be

slightly degraded during the ATWS pressure peaking (a few seconds duration),

no impact on ATWS mitigation would occur since such equipment is not required

until the pressure is back within normal bounds. Pumps and valves will then

function in a normal manner.

Based upon the foregoing, it is concluded that ATWS pressure peaks will not

cause any loss of pressure boundary integrity or deformations which would

prevent an ATWS mitigationt system from performing its intended function.

This, coupled with the fact that none of the mitigation systems which could

be affected by system pressure are required until well after the pressure

peaking has subsided, leads to the conclusion that ATWS pressure is not a

concern with regard to mitigation system operability.
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Additional information is contained in Appendix A.3.

2.4.3 ATWS Functional Control Diagrams

Conceptual functional control diagrams for potential automated standby

liquid control injection and other BWR ATWS mitigation and prevention

features have been evolving since the early topical reports introduced high

pressure and low level recirculation pump trip (NEDO-10349). Figures 2.4.3-1

to 2.4.3-3 show one possible functional logic configuration for BWR/4,5 and

6 plants if implementation of Alternate 3 is required. Some refinements

may be added as the design becomes finalized.

2-7

NEPO-24222 

Additional information is contained in Appendix A.3. 

2.4.3 ATWS Functional Control Diagrams 

Conceptual functional control diagrams for potential automated standby 

liquid control injection and other BWR ATWS mitigation and prevention 

features have been evolving since the early topical reports introduced high 

pressure and low level recirculation pump trip (NEDO-10349). Figures 2.4.3-1 

to 2.4.3-3 show one possible functional logic configuration for BWR/4.5 and 

6 plants if implementation of Alternate 3 is requ~red. Some refinements 

may be added as the design becomes finalized. 

2-7 



Table 2.3-1

TYPICAL INITIAL OPERATING CONDITIONS

2-8

Table 2.3-1 

TYPICAL INITIAL OPERATING CONDITIONS 

2-8 



IIUD9.L242? 2

Table 2.4-1

EQUIPMENT PERFORMANCE CHARACTERISTICS

(see page 2-15 for notes)

2-9

--

Table 2.4-1 

EQUIPMENT PERFORMANCE CHARACTERISTICS 

(see page 2-15 for notes) 

2-9 



NEDO-24222,

Table 2.4-1 (Continued)

EQUIPMENT PERFORMANCE CHARACTERISTICS

2-10

NEDO~24222 , 

Table 2.4-1 (Continued) 

EQUIPMENT PERFORMANCE CHARACTERISTICS 

2-10 



N)DO-24222

Table 2.4-2
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Table 2.4-2 (Continued)
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Table 2.4-3
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3. RESULTS OF ATWS EVENT EVALUATIONS

3.1 RESULTS OF ATWS EVENTS - BWR/4 (MARK I)

3.1.1 Closure of Main Steam Isolation Valves (MSIV)

3.1.1.1 Overview of Response Without Scram

The behavior of the plant is separable into an early or short term transient

involving a sharp pressure rise and power peak, and a longer term portion

that requires evaluation of coolant and containment conditions as the

reactor is ultimately brought to shutdown.

The effectiveness of RPT presented in NEDO 10349, NEDO 20626, and Volume I

are completely reconfirmed by this analysis. It assists the relief valves

in limiting the pressure disturbance acceptably and allows the estabishment

of a relatively low power generation rate for the long term portion of the

transient. Figure 3.1.1-1 illustrates the first period. Since.Volume 1,

several changes have been made to the base case calculations (shown in

Tables 2-1 and 3-1). They include:

a. The increased Doppler reactivity coefficient is now more typical of

all plants. (The previous value was an unrealistically low, bounding

assumption.) All plants were surveyed and nearly identical coefficients

are expected for them. Variations of this term are included in the

sensitivity Section 3.4.

b. S/RV reclosure pressure is now 110 psi below the opening pressure

setpoint which is more typical of the actual performance.

c. Feedwater flow characteristics due to automatic limiting action or loss

following isolation are assumed to result in shutoff 40 seconds after

isolation begins.
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The ultimate resolution to the lack of scram situation must involve insertion

of negative reactivity into the reactor, thereby bringing the reactor to a fully

shutdown condition. ARI is provided as an effective way to mitigate common-

cause failures in the logic of the scram system. The effectiveness of ARI

to mitigate events is clearly in Figure 3.1.1-2 which shows its effect on the

MSIV closure transient. In the case of its ineffectiveness, the automated

SLCS provides further protection and shutdown capability. Coolant inventory

is adequately maintained by HPCI and RCIC available in each BWR/4 to

replace the coolant loss as steam flow leaves the primary system through

the relief valves. Simply adding more water is not a totally satisfactory

answer because it also has the effect of raising the power generation rate

and the amount of inventory leaving the system as steam thus increasing

suppression pool temperature. The steam reaching the suppression pool con-

tinues to heat it and pressurize the containment until the power generation/

steam flow can be reduced to the RHR capacity and/or finally terminated. The

RHR (pool cooling mode) ultimately cools the pool and eventually the reactor

also (shutdown cooling mode) if the MSIV's cannot be reopened establishing flow

to the main condenser (the preferred method of cooldown).

3.1.1.2 Sequence of Events for MSIV Closure

The MSIV closure transient provides some of the most severe conditions follow-
ing a postulated failure to scram. Listed in Table 3.1.1-1 in the sequence of

occurrence are significant points of the transient with representative times

when each highlight occurs.

The sequence of events begins with the closure of the MSIVs in 4 seconds.

With closure of the MSIVs, the pressure immediately begins to rise, resulting

in a reduction in void fraction and rapid increase in power. This sequence

of events is shown in Table 3.1.1-1. This power reaches a maximum of 527%

of the initial value at 4.0 seconds into the event and rapidly decreases

thereafter. At 4 seconds, the setpoint pressure of the relief valves is
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reached and they open to arrest the pressure rise. At about the same time

that the relief valves are opening, it is expected some of the fuel will

experience transition boiling. Shortly after 4 seconds, the vessel dome

pressure reaches 1150 psig, the RPT trip; both recirculation pumps trip.

A delay of 530 milliseconds exists from the time the pressure reaches

1150 psig until the time that RPT occurs. This delay time (500 milliseconds

delay in the sensor and 30 milliseconds in the logic and trip) is consistent

with industry experience. At the same time that the RPT occurs, the logic

chain is activated which would initiate ARI.

Pressure continues to rise for a short period of time until, at approximately

9 seconds into the event, it reaches its peak and begins to decrease. The

maximum pressure at the vessel bottom is 1296 psig at 8.99 seconds. The

relief valves begin to close shortly after 20 seconds; pressure is then sta-

bilized at the relief valve setpoint. This portion of the transient is shown

in Figure 3.1.1-1. Peak values for key variables for all BWR/4 events are

given in Table 3.1-1.

The same pressure signal (1150 psig) that initiated RPT will cause the opening

of valves on the scram air header (ARI) which allows the air pressure in the

header to bleed down. In the event that scram has not already occurred

from any of the several available signals, this reduced pressure allows

the scram discharge valves to open and the control rods to insert. Tests

have shown that the pressure in the header will have been reduced suffi-

ciently in 15 seconds to allow the control rods to insert. All rods will be

fully in the core after 5 additional seconds. ARI completely mitigates the

ATWS situation and 25 seconds after the event began, it is essentially over.

Following ARI, normal shutdown procedures are utilized to bring the plant to

cold shutdown.

If the ARI is not effective, the BWR/4 is still able to mitigate the event.

With an assumed ARI failure and zero feedwater flow, at 43 seconds, the

level of the bulkwater in the vessel will decrease to Level 2, the level

at which HPCI and RCIC are initiated. Twenty seconds later, water from

these systems will begin to enter the reactor vessel.
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Following confirmation from the flux monitoring system and the rod position indi-
cating system that scram has not taken place, the SLCS will activate. This sys-
tem will be started 2 i4nutes after the ATWS signal; heron will reach the core
after an additional 1 minute of transport time in the lines and the vessel.
Therefore, Miclear shutdown begins at 3 minutes into the event using the SLCS.
Additionally on confirmation that scram has not taken place, this feedwater
flow is ramped to zero flow in 15 seconds. With an 86 GPM volumetric flow
rate of sodium pentaborate, the reactor will be brought to hot shutdown in
approximately 18 minutes from the beginning-of the event. This can be seen in
the lower left hand graph of Figure 3.1.1-3. The behavior of several other
parameters is also depicted in Figure 3.1.1-3.

Bulkwater level within the vessel continues to decrease until approximately
4 minutes at which time HPCI and RCIC supply more water than is required to
make up for steam flow out of the vessel. At this time it reaches its lowest
level and begins to rise. It is important to note that adequate core cooling
is maintained at all times. As the level is increasing, core flow is
increased, thereby reducing the average void fraction. The various contri-

butors to reactivity insertion and power production (boron, voids, etc.)
must always be in balance with the power production. Water level is com-
pletely restored by HPCI and RCIC which cycle on at low level (L2) and off
at high level (L8) to maintain adequate level in the vessel.

Following hot shutdown, the decay power will continue to generate a small amount
of steam which will continue to cycle the relief valves. At 28 minutes the
suppression pool temperature will reach its maximum value of 186*F. The maxi-
mum containment pressure is 10.4 PSIG. Figure 3.1.1-4 is a detailed plot of
pool temperature and containment pressure.

Thus it can be seen that an MSIV closure event combined with a failure to scram
is adequately mitigated for a representative BWR 4/Mark I.

3.1.2 Turbine Trip

3.1.2.1 Overview of Response Without Scram

The overview given for the MSIV closure event, section 4.1.1, is generally
applicable to the Turbine Trip event. The key difference is that the main
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condenser is available for steam discharge during a portion of this event.
During the time that steamflow is within the bypass capacity, the main con-
denser will be used to remove the steam from the vessel. This base case
event has also been updated as given in Section 3.1.1.

3.1.2.2 Sequence of Events for Turbine Trip

The Turbine Trip event begins with the rapid closure of the turbine stop valves
and the resultant opening of the turbine bypass valves. After the stop valves
close in 0.1 seconds, the pressure immediately begins to rise which results
in a reduction in void fraction and rapid increase in power. The sequence of
events is shown in Table 3.1.2-1. This power reaches a maximum of 392% of the
initial value at 0.9 seconds into the event and rapidly decreases again. At
approximately 1.5 seconds, the setpoint pressure of the relief valves is
reached and they begin to arrest the pressure rise. Shortly after 2 seconds,
it is expected that some of the fuel will experience transition boiling, however,
coolable geometry is maintained. At about the same time, the vessel dome pres-
sure reaches 1150 psig, the maximum recirculation pump trip point; consequently,

.both recirculation pumps trip.

At the same time that RPT occurs the logic chain is activated to start ARI.

Pressure will continue to rise until 3 seconds when it peaks and begins to
decrease. The maximum pressure occurs at the vessel bottom and is 1193 psig at
2.50 seconds. Although the feedwater pumps remain available for the turbine
trip case, it is necessary to reduce the amount of power produced. Therefore,
the feedwater flow will be limited to a minimum flow value, which for this
design has been chosen to be zero. This minimizes power generation and resul-
tant steam. Some of the generated steam flows through the bypass to the main
condenser. The remainder of the steam is discharged through the relief valves
into the suppression pool. The relief valves begin to close very early in
this transient (about 9 seconds) and then open and close as needed to reduce
vessel pressure. The first portion of this transient is shown in Figure 3.1.2-1.
Peak values of other key variables in the system are given in Table 3.1.2-2.
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from any of the several available signals, this reduced pressure allows the
scram discharge valves to open and the control rods to insert. Tests have
shown that the pressure in the header will have been reduced sufficiently in
15 seconds to allow the control rods to insert. All rods will be fully in
the core after 5 additional seconds. ARI completely mitigates the ATWS
situation and 25 seconds after the event began, it is over. For this
event the feedwater system will continue to function and provide water to the
reactor. The effectiveness of ARI to mitigate the Turbine Trip event is clearly
shown in Figure 3.1.2-2.

If for some reason the ARI is also, not effective, the BWR/4 is still able to
mitigate the event. With an assumed ARI failure and feedwater flow now having
reached zero, at 58 seconds the level of the, bulkwater in the vessel will
Oecrease to Level 2, the level at which HPCI and RCIC are initiated. At 20
seconds later water from these systems will begin to enter the reactor vessel.

Following confirmation from the flux monitoring system and the rod position indi-
cating system that scram has not taken place, the SLCS will activate. This sys-
tem will be started 2 minutos after the ATWS signal; boron will reach the core
after an additional 1 minute of transient time in the lines and the vessel.
Therefore, nuclear shutdown begins at 3 minutes into the event using the SLCS.
With an 86 GPM volumetric flow rate of sodium pentaborate, the reactor will be
brought to hot shutdown in approximately 18 minutes from the beginning of the
event. This can be seen in the lower left hand graph of Figure 3.1.2-3.

Beginning at about 4 minutes, transient oscillations of neutron flux, pressure,
core flow, and steam flow are calculated. This is shown in Figure 3.1.2-3.
These result from interactions between the thermal, hydraulic and nuclear
characteristics in the core apd circulation system, and turbine pressure
controls. The oscillations terminate shortly after the MSIV closure at low
reactor water Level 1, which decouples the reactor from the turbine pressure
control. As shown in Figure 3.1.2-4, if the MSIV closure setpoint remained
at the current Level 2 instead of having been changed to Level 1, as part
of the Alternate 3 plant modifications, there would be no predicted oscil-
lations and the transient response would be similar to the MSIV closure event.
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The calculated oscillations in neutron flux with the MSIV closure at Level 1

last for a short period of time, with an average power level of about 25%

and peak values near 80% of rated power. Fuel thermal power swings are less

than 10%. No fuel damage is expected as a result of these oscillations, and

coolable geometry is maintained. The oscillations stop after a few minutes,

and the reactor then proceeds to complete shutdown.

At 5 minutes, MSIV closure occurs because of low vessel water level (Level 1)

and causes an increase in the reactor pressure and a momentary power peak.

Bulkwater level within the vessel continues to decrease until approximately

6 minutes at which time HPCI and RCIC begin supplying more water than is required

to make up for steamflow out of the vessel and the level begins to rise. As the

level increases, core flow is increased, thereby reducing the average void frac-

tion. The various contributors to reactivity insertion and power production

(boron, voids, etc.) must always be in balance with the power production. Water

level is completely restored by HPCI and RCIC at approximately 17 minutes. At

this time HPCI and RCIC will be controlled automatically to maintain adequate

level in the vessel.

Following hot shutdown, the decay power continues to generate a small amount

of steam which flows into the suppression pool. Since the MSIV closure does

not occur until 5 minutes into this event, some steam goes to the main con-

denser and the temperature rise in the suppression pool is less than the MSIV

closure initiating event. The maximum suppression pool temperature calculated

in this case is 162 0 F. The maximum containment pressure is 6.1 psig.

Thus it can be seen that a Turbine Trip with bypass event combined with a

failure to scram is adequately mitigated for a representative BWR 4/Mark I.

3.1.3 Inadvertent Open Relief Valve (IORV)

3.1.3.1 Overview of Response Without Scram

This event has no rapid excursions.as the previous two events, but is merely

a long term depressurization. RPT does not occur until late in the event

after hot shutdown is achieved.

Except for steam flow through the open relief valve and the use of the liquid

boron solution for shutdown, the nuclear steam supply system is in a normal
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operating state. The suppression pool is the only system exposed to off-normal

conditions. This base case event has also been updated as given in Section 3.1.1.

The sequence of events follow.

3.1.3.2 Sequence of Events for inadvertent Opei Rel' ,t Vl%'c

This event begins when one of the primary relief valves on the main steamlines

inadvertently opens without influence from any other portion of the system. All

pressure levels in the reactor coolant pressure boundary are at a nominal valuq

prior to the event. This sequence of events is shown in Table 3.1.3-1.

At the time that the relief valve opens, there is a momentary depressurization

(a few seconds) until the turbine pressure control senses it and closes slightly

to control the pressure. After approximately two minutes, the suppression pool

temperature, which was initially at 90*F, has risen to the alarm point of 95*F.

The operator will turn on the RHR system in the pool cooling mode to maintain

pool temperature. The temperature will continue to rise and at 7.5 minutes

will reach 110F at which point the operator is required to manually scram the.

reactor. At this point manual scram and ARI are activated.

If neither normal manual scram nor the ARI are effective, the BWR/4 is still

able to mitigate the event. The ATWS logic would have determined that the

control rods are not inserted and at 9 minutes into the event, the SLCS will

be activated. At 9.5 minutes into the event the SLCS starts and at 10 minutes

the control liquid reaches the core and shutdown begins. For this case with

the recirculation pumps operating the delay time inside of the vessel is

small and 0.5 minutes of boron transport time is sufficient. Within 24 minutes,

the power has been reduced to the point that the amount of steam generated is

less than the relief valve capacity and the pressure now begins to decrease

more rapidly. The turbine control valves have closed completely due to the

pressure decrease. These events are depicted in Figure 3.1,3-1. By 28 min-

utes, the pressure will have dropped to the low steam line pressure isolation

point of 800 psi g and the MSIV's will close. For plants with turbine-driven

feedwater pumps, the feedwater is assumed to be lost in 20 seconds. This

cnuses the wnLt'I 10eVOcI it t lie vwsSel to dc-crease and at 29 minutes the low
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level point (L2) is reached where the recirculation pumps are automatically

tripped and HPCI and RCIC are activated. These systems will continue to

cycle on at low level (L2) and off at high level (L8) to maintain water inven-

tory in the vessel. Depressurization of the vessel will continue with the

relief valve discharging into the suppression pool; the maximum pool temperature

of 183 0 F will occur at 95 minutes. The suppression pool temperature trace is

shown in Figure 3.1.3-2. The values given here are bounding values. Each

specific plant size has some features which may reduce the severity of this

event.

In cases where ARI is activated (8 minutes), the maximum suppression pool

temperature is 1630 F.

Thus it can be seen that the inadvertent opening of a relief valve event com-

bined with a failure to scram is adequately mitigated for a representative BWR 4/

Mark I.

3.1.4 Sensitivity Study Results - BWR/4 Base Cases

A wide variety of parameters were studied to examine the sensitivity and

potential impact of plant differences and/or uncertainties on the results of the

three BWR/4 base cases. While the overall objective of these sensitivity

studies is to provide guidance for assessing the adequacy of plants having

certain parameters different from the generic analyses, caution must be

exercised when combining the results of several parameter variations, due to

the non-linearities involved (see Section 3.3.4.4).

The results are documented in the following subsections:

3.1.4.1 MSIV-ATWS Sensitivity Studies

3.1.4.1.1 Variation of Boron Delay

3.1.4.1.2 Variation of Boron Capacity/Mixing

3.1.4.1.3 Variation of HPCI/RCIC Capacity

3.1.4.1.4 Variation of RHR Capacity

3.1.4.1.5 Variation of RHR Delay
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3.1.4.1.4 Variation of RHR Capacity 

3.1.4.1.5 Variation of RHR Delay 
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3.1.4.1.6

3.1.4.1.7

3.1.4.1.8

3.1.4.1,9

3.1.4.1.10

3.1.4.1.11

3.1.4.1.12

3.1.4.1.13

3.1.4.1.14

Variation

Variation

Variation

Variation

Variation

Variation

Effect of

Variation

Variation

of Pool & Service Water Temperature

of RMR Capacity and Service Water

of Pool Size

of S/RV Capcity

of RPT Delay

of RPT Inertia

Partial Rod Insertion

of Void Coefficient

of Doppler Coefficient

Table 3.1.4.1-1 summarizes the results for this event.

3.1.4.2 Turbine Trip Sensitivity Studies

3.1.4.2.1

3.1.4.2.2

3.1.4.2.3

3.1.4.2.4

3.1.4.2.5

3.1.4.2.6

3.1.4.2.7

Variation of Boron Delay

Variation of Boron Capacity/Mixing

Variation of HPCI/RCIC Capacity

Variation of RHR Delay

Variation of Void Coefficient

Variation of Doppler Coefficient

Limit Cycle Sensitivity Study

Table 3.1.4.2-1 summarizes the results for this event.

3.1.4.3 IORV Sensitivity Studies

3.1.4.3.1

3.1.4.3.2

3.1.4.3.3

3.1.4.3.4

3.1.4.3.5

3.1.4.3.6

3.1.4.3.7

3.1.4.3.8

Variation of

Variation of

Variation of

Variation of

Variation of

Variation of

Variation of

Variation of
Temperature

S/RV Capacity

Boron Delay

Boron Capacity/Mixing

RHR Capacity

RHR Delay

Ppol Size

Pool and Service Water Temperature

RHR Capacity and Service Water

Table 3.1.4.3-1 summarizes the results of this event.
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3.1.4.2.1 Variation of Boron Delay 
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3.1.4.2.3 Variation of HPCI/RCIC Capaci~y 
3.1.4.2.4 Variation of RHR Delay 

3.1.4.2.5 Variation of Void C~ef~icient 
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3.1.4.3.5 Variation of RHR Delay 
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3.1.4.1 MSIV Sensitivity Studies

3.1.4.1.1 Variation of Boron Delay

The SLCS timer delay was varied between 30 seconds (75% below the nominal

timer setting of 120 seconds) and 240 seconds (100% above the nominal time)

resulting in peak pool temperature 16°F less and 12*F greater respectively com-

pared to the base case. Containment pressures decreased and increased accordingly.

Figure 3.1.4.1.1 graphically shows this parameter variation.* Minimum level was

increased by 2.4 feet at 30 seconds delay and was decreased 0.9 feet when the

timer was extended to 240 seconds.

3.1.4.1.2 Variation of Boron Capacity/Mixing Efficiency

The effective rate of boron injection into the core is the product of the boron

pumping capacity and mixing efficiency. This effective rate was varied by ±50%

resulting in peak pool temperatures 16*F below and 49 0 F above the base case

respectively. The base case represents an 86 gpm SLCS pumping rate in a 251

inch vessel with 95% assumed mixing efficiency and with vessel inventory propor-

tional to the 218 size value given in Table 2.3-1. The -50% variation point

equivalently represents 43 gpm at 95% efficiency or 86 gpm at 48% efficiency.

Differences for plant size are covered by comparing the boron rate and the ves-

sel inventory of the plant (e.g., the 86 gpm on a 251 size plant is equivalent

to 66 gpm on a 218 size plant). Figure 3.1.4.1.2 graphically shows this

variation.

3.1.4.1.3 Variation of HPCI/RCIC Capacity

The rated flow of the HPCI/RCIC system was varied by 20%. Figure 3.1.4.1.3-1

graphically shows variation. For the case of increased flow, pool temperature

and containment pressure increased by 12'F and 2.8 psi, respectively. The

increase in temperature is due to the higher power level maintained by the

increased core flow. Minimum water level increased more than a foot. Decreasing

*Note that points representing calculated results of sensitivity studies are con-
nected by lines to add clarity to general trends. This does not imply detailed
knowledge of the variation between points.

3-11

NEDO-24222 

3.1.4.1 MSIV Sensitivity Studies 

3.1.4.1.1 Variation of Boron Delay 

The SLCS timer delay was varied between 30 seconds (75% below the nominal 

timer setting of 120 seconds) and 240 seconds (100% above the nominal time) 

resulting in peak pool temperature 16°F less and 12°F greater respectively com­

pared to the base case. Containment pressures decreased ~nd increased accordingly. 

Figure 3.1.4.1.1 graphically shows this parameter variation.* Minimum level was 

increased by 2.4 feet at 30 seconds delay and was decreased 0.9 feet when the 

timer was extended to 240 seconds. 

3.1.4.1.2 Variation of Boron Capacity/Mixing Efficiency 

The effective rate of boron injection into the core is the product of the boron 

pumping capacity and mixing efficiency. This effective rate was varied by ±50% 

resulting in peak pool temperatures 16°F below and 49°F above the base case 

respectively. The base case represents an 86 gpm SLCS pumping rate in a 251 

inch vessel with 95% assumed mixing efficiency and with vessel inventory propor­

tional to the 218 size value given in Table 2.3-1. The -50% variation point 

equivalently represents 43 gpm at 95% efficiency or 86 gpm at 48% efficiency. 

Differences for plant size are covered by comparing the boron rate and the ves­

sel inventory of the plant (e.g., the 86 gpm on a 251 size plant is equivalent 

to 66 gpm on a 218 size plant). Figure 3.1.4.1.2 graphically shows this 

variation. 

3.1.4.1.3 Variation of HPCI/RCIC Capacity 

The rated flow of the HPCI/RCIe system was varied by 20%. Figure 3.1.4.1.3-1 

graphically shows variation. For the case of increased flow, pool temperature 

and containment pressure increased by 12°F and 2.8 psi, respectively. The 

increase in temperature is due to the higher power level maintained by the 

increased core flow. Minimum water level increased more than a foot. Decreasing 

*Hote that points representing calculated results of sensitivity studies are con­
nected by lines to add clarity to general trends. This does not imply detailed 
knowledge of the variation between points. 

3-11 



NEDO-24222

HPCI/RCIC flow lowered peak temperature and pressiore by 8°I1' aind 1.6 psi.

Minimum level was slightly reduced.

3.1.4.1.4 Variation of RHR Capability

To determine the effect of varying RHR heat exchanger capabilities, the base

capacity of 1.85% NBR at 1000 F AT )429 BTU/sec-F for the 218 size plant used as
the base case) was altered by ±50%. Increasing the capacity by 50% yielded a

20F temperature reduction and lowered the peak containment pressure by 0.5 psi.
For the opposite case of a 50% decrease in RHR capacity the results were a

13'F increase in temperature' and a 3 psi pressure rise. Sensitivity of pool
temperature is shown graphically in Figure 3.1.4.1.4.

3.1.4.1.5 Variation of RHR Delay

The effect of varying RHR start time was found to be small for the BWR/4 MSIV

case. Increasing the start time from 11 (base) to 16 minutes increased peak
pool temperature by only 2*F. A decrease of 2 Minutes resulted in a 1"F reduc-

tion in pool temperature. This very weak sensitivity of the pool temperature

to RHR startup delay is shown graphically in Figure 3.1.4.1.5.

3.1.4.1.6 Variation of Pool and Service Water Temperature

The pool and service water temperature were assumed to vary together (with the
pool assumed to be 5°F above the service water). This variation was found to
significantly affect peak pool temperature and containment pressure. Increasing
these temperatures by 20'F (to the operating technical specification) produced

a rise in pool temperature of 19°F and an increase of about 5 psig in peak
pressure. Reducing the temperatures by 20*F yielded decreases of 18'F and

about 4 psi respectively. Figure 3.1.4.1-7 graphically shows the pool temper-

ature variation plotted directly vs pool and service water temperature change.
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3.1.4.1.7 Variation of RHR Capacity and Pool and Service Water Temperature

Varying both parameters simultaneously was done to examine different RHR

designs due to different plant site water temperatures. It showed that pool

and service water temperature was the dominant variable. Simultaneous

increases of +50% in RHR capacity and +20'F in pool and service water temper-

ature (and a similar set of decreases) produced temperature changes of +17

and -4*F. Peak pressures varied accordingly by +4 and -1 psi. These varia-

tions are shown in Figures 3.1.4.1.4 and 3.1.4.1.6.

3.1.4.1.8 Variations of Pool Size

The suppression pool mass was varied by ±20% to simulate different sized plants.

The larger pool mass provides a bigger heat sink, thus reducing the peak pool

temperature by 13°F and peak pressure by about 3 psi. For the lower pool mass,

pool temperature increases 20*F and peak pressure by 5 psi. Figure 3.1.4.1-8

graphically shows the result. BWR 4 Mark I and Mark II plants can utilize this

sensitivity study to estimate the effect of different pool sizes on bulk pool

temperature.

3.1.4.1.9 Variations of S/RV Capacity

The S/RV capacity was varied by ±20%. The larger and smaller valve capacity

resulted in a maximum pressure (vessel bottom) of 66 psi less than and 37 psi

higher than the base case, respectively. Figure 3.1.4.1.9-1 shows these

results graphically. Pool temperature variation was very small (<2*F).

3.1.4.1.10 Variations of RPT Delay

The base value of RPT delay*(0.53 secs) was increased by 0.5 second and

1.0 second. The maximum neutron flux and maximum average fuel heat flux

remained unchanged. The minimum pressure (vessel bottom) increased by 11 and

24 psi as shown by Table 3.1.4.1-1 and Figure 3.1.4.1.9-1.
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3.1.4.1.11 Variations of RPT Inertia

The recirculation pumping system inertia- was increased by 50% and reduced by

20%. In both cases no noticable changes were observed in the values of

maximum neutron flux and maximum average fuel heat flux. Maximum vessel

pressure increased by 9 psi and decreased by 2 psi, respectively, as indicated

by Table 3.1.4.1-1 and Figure 3.1.4.1.9.

3.1.4.1.12 Effect of Partial Rod Insertion

All ATWS analyses are done for the case of no rod motion. In reality,

it is very likely that some rod-insertion would occur. This would

greatly reduce the maximum/peak values shown in the bulk of this report.

Analyses for the BWR/6 product line are shown in Section 3.3.4.1.2 and similar

results can be expected for the BWR/4 product line.

3.1.4.1.13 Variation of Void Coefficient

The effect of void coefficient on peak transient parameters (neutron flux,

average surface heat flux, vessel pressure and suppression pool temperature)

was studied for the MISV closure with bypass transient. Void coefficient was

varied from -6 to -140/% rated voids (nominal 1 -11C/%). In all cases the

recirculation system was tripped on high vessel'pressure. The change in total

effective worth of injected boron with void fraction was accounted for.

Figures 3.1.4.1.13-1 shows the flux and pressure peaks for the MSIV transient,

as a function of void coefficient for several values of Doppler coefficients.

Figures 3.1.4.1.13-2 shows peak suppression pool temperature as a function

of void coefficient.

3.1.4.1.14 Variation of Doppler Coefficient

The effect of Doppler coefficient on transient peak neutron flux average surface

heat flux and vessel pressure during an MSIV closure was studied for the range

-0.20 to -0.32€/ 0 F (nominal = -0.283I/'F). Figure 3.1.4.1.14-1 shows the peaks

plotted as a function of Doppler coefficient. Peak pool suppression temperature .--

is plotted against Doppler coefficient in Figure 3.1.4.1.13-2.
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3.1.4.2 Turbine Trip Sensitivity Studies

The Turbine Trip event and associated sensitivity characteristics are similar

to the MSIV Closure event, except that the Turbine Trip event has greater

margin with respect to suppression pool temperature because more steam goes

to the main condenser. Because of this, the Turbine Trip sensitivity studies

on suppression pool temperature have less detail than those presented for the

MSIV Closure event. Figure 3.1.4.2 shows a special case that is similar to

the base turbine trip case with ARI failure but also neglects MSIV closure, thus

maintaining continued access to the condenser. For this case, the amount of

steam transmitted to the suppression pool is significantly less since the relief

valves close at about 4 minutes without subsequent reopening. The peak suppres-

sion pool bulk temperature is only 1020 F, which results in a maximum containment

pressure of 0.6 psig. This special case differs from the base case in another

respect; the calculated oscillations in neutron flux and several other parameters

are aggravated by neglecting the MSIV closure. These predicted oscillations do

not affect the ability of the BWR to successfully mitigate an ATWS. This special

case has been used as a basis for much of this Turbine Trip event sensitivity

study instead of the base case, because the Turbine Trip base case is so similar

to the MSIV Closure base case.

3.1.4.2.1 Variation of Boron Delay

The SLCS timer delay was varied between 30 seconds and 150 seconds (nominal)

delay = 120 sec). As noted previously, the effect on pool temperature or

containment pressure is negligible. Water level does vary by 2.6 feet and

+0.6 feet from the special case level.

3.1.4.2.2 Variation of Boron/Capacity Mixing Efficiency

This case is covered in Section 3.1.4.2.7.3 of this report for this event.

3.1.4.2.3 Variation of HPCI/RCIC Capacity

The HPCI/RCIC flow was varied from 90% to 125% of its nominal value. Minimum

water level varies from about 2 feet above special case minimum for the increased

HPCI/RCIC case to about 1 foot below for the reduced flow case. The minimum

water level for the 125% flow case would not reach the Level I setpoint for

MSIV closure. (ATWS analyses assume that MSIV closure on low water level has
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been moved from Level 2 to Level I). If the MSLV closure occurs, the steam
must then go-to the suppression pool via the relief valves, and the higher
temperature (by 60*F) of Table 3.1.4.2-1 will occur. For the 90% HPCI flow
case, the results are shown for the MSIV closure condition only. These results
are shown in Figure 3.1.4.2.3-1.

3.1.4.2.4 Variation of RHR Delay

For the base case, suppression pool temperature is bounded by the MSIV closure
event. Because the flow of steam to the pool is complete for the special case
before the RHR is expected to be started, there is no variation of peak con-
tainment temperature or pressure because of changes in the RHR start time.

3.1.4.2.5 Variation of Void Coefficient

The effect of void coefficient variation on the Turbine Trip with bypass transient
was studied similar to the MSIV closure reported in Section 3.1.4.1.13. Fig-
ures 3.1.4.2.5-1 and 3.1.4.2.5-2 show the results. Those cases in which the
peak pressure was more than 5 psi below the nominal did not reach the high pres-
sure ATWS trip setpoint of 1150 psig. See Sectiop 3.2.4.5 for further discussion.

3.1.4.2.6 Variation of Doppler Coefficient

Figure 3.1.4.2.6-1 shows the effect of Doppler coefficient variation on the Turbine
Trip event. The effect on suppression pool peak temperature is shown in Fig-
ure 3.1.4.2.5-2.

3.1.4.2.7 Sensitivities Affecting Turbine Trip ATWS Limit Cycles

The existence of a limit cycle in previous calculations of a Turbine Trip event
with ARI failure and neglecting MSIV closure prompted a study to determine how
several operating parameters affected the predicted behavior. The base case Tur-
bine Trip event with MSIV closure at reactor water Level 1 is presented in Figure
3.1.2-3. As stated in Section 3.1.4.2, MSIV closure at the existing water Level 2
eliminates the neutron flux oscillations. A special case with no lSIV closure
was used as a basis for assessing the impact of limit cycles and is shown in
Figure 3.1.4.2. For this special case, the oscillations in neutron flux
have characteristics similar to a limit cycle for a short period of time with an
average power level of about 25% and peak near 150%. Fuel thermal power swings
are less than 10%. The study was performed by individually varying each
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3.1.2-3. As stated in Section 3.1.4.2, MSIV clos~re at the existing water Level 2 

eliminates the neutron flux oscillations. A special case with no MSIV closure 

was used as a basis for assessing the impact of+imit c~c1es and is shown in 

Figure 3.1.4.2. For this special case~ the oscillations in neutron flux 

have characteristics similar to a limit cycle for a short period of time with an 

average power level of about 25% and peak near 150%. Fuel thermal power swing~ 

are less than 10%. The study was performed by individually varying each 
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parameter about its base value and noting the effect on the limit cycle magnitude
and duration. Various input parameters were selected which could have impact on the
event, including boron delay time, boron capacity/effectiveness, void and Doppler
reactivity coefficients, and HPCI/RCIC capacity. Observed output parameters were
neutron flux, average surface heat flux, and net reactivity. Vessel pressure and
water level were also examined, but only very small cycling was observed. The
frequency of the cycles is virtually the same for all predicted bases, giving
a limit cycle period of about 8 seconds.

Table 3.1.4.2.7-1 shows the maximum/minimum values from the predicted limit
cycle for key performance parameters as a function of several operating vari-
ables. They are normalized to the special case values given in Table 3.1.4.2.7-2
to give relative relationships for the sensitivity cases. Normalized neutron
flux and average surface heat flux have been plotted in Figures 3.1.4.2.7-1
through 3.1.4.2.7-6. It should be noted that although neutron flux at times
experiences large oscillations, the range of average surface heat flux is
relatively small. A detailed discussion of each variable is presented below.

3.1.4.2.7.1 HPCI Capacity

As shown in Figure 3.1.4.2.7-1, increasing HPCI flow tends to decrease the
magnitude of oscillations. The effect is significant from 18-22% (of NBR feed
flow) and then tends to level out for maximum neutron flux, while minimum
neutron flux continues a rapid increase. As expected, average surface heat
flux can be seen to follow the same trend as neutron flux. The effect of
increasing HPCI flow on average power can also be seen in the increasing
value of average neutron flux due to increased water level and subcooling.

Limit cycle duration was also reduced substantially at higher HPCI flow.
(Table 3.1.4.2.7-1)

3.1.4.2.7.2 Boron Timer

The effect of varying the time at which the sodium pentaborate solution

reaches the core can be seen in Figure 3.1.4.2.7-2. The maximum-minimum

range of neutron flux increases as time to boron injection is increased.
Figure 3.1.4.2.7-3 shows the time plots of plant behavior for the case with
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30 second time delay near the nini [ntum SeLLing which st ii a llows for AIRI action
before SLCS injection begins. The impact of boron injection time is due to
changes in the boron concentration in the core during the limit cycle. As
time to injection decreases, boron concentration during the limit cycle will'
increase, thereby restricting reactivity swings.

3.1.4.2.7.3 Boron Injection Rate and/or Mixing Efficiency

Figure 3.1.4.2.7-4 shows the sensitivity to changes in boron injection capacity
and/or mixing efficiency. No strong effect was seen over the range studied.
The special case point (100% capacity and 95% mixing efficiency) represents a
251 BWR/4 with 86 gpm SLCS capacity and the current boron solution and storage
tank.

3.1.4.2.7.4 Doppler Reactivity Coefficient

Variation of the Doppler reactivity coefficient as characterized by the full
power, full fuel temperature value, gave the results shown in Figure 3.1.4.2.7-5.
At higher Doppler values the average power/flow conditions were shifted slightly,
giving somewhat larger limit cycles. The original base case for Turbine Trip

was run with a Doppler coefficient of -0.23€/'F and no MSIV closure. It is shown
in Figure 3.1.4.2.7-6. It follows closely the trend shown by this sensitivity study.

3.1.4.2.7.5 Void Reactivity Coefficient

Another parameter important to BWR behavior is the void reactivity coefficient.
Figure 3.1.4.2.7-7 shows the change in limit cycle characteristics caused
by variation of this term. The range and values quoted make use of the sim-
ulated full power, rated void fraction value of the coefficient to character-
ize this parameter, although its actual value varies throughout each evene as
core void fraction changes. Figure 3.1.4.2.7-8 shows the time history of
the case with a move negative coetficient (-14o /1%).
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3.1.4.2.7.5 Void Reactivity Coefficient 

Another parameter important to BWR behavior is the void reactivity coefficient. 

Figure 3.1.4.2.7-7 shows the change in limit cycle characteristics caused 

by variation of this term. The range and values quoted make use of the sim­

ulated full power, rated void fraction value of the coefficient to character­

ize this parameter, although its actual value varies throughout each event as 
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3.1.4.2.7.6 Fuel Conditions During Limit Cycle Oscillation

The effect of the limit cycle corepower oscillations on the fuel was analyzed.

This section outlines the analysis and summarizes the results.

The core power, core pressure and clad surface heat transfer conditions for

the fuel were initialized at the 100 percent operating conditions. The linear

heat generation rate was initialized at the technical specification limit of

13.4 kw/ft. In the first few seconds of the fuel transient the core power

and core pressure were ramped down from initial values to those corresponding

to average conditions expected during the predicted limit cycle oscil-

lations in a Turbine Trip event without MSIV closure (see Table 3.1.4.2.7-1).

The fuel clad heat transfer was conservatively assumed to decrease and remain
in the pool film boiling conditions. For this analysis, the expected rewetting

of the fuel rod was conservatively neglected. The fuel was allowed to attain

steady state temperatures at the new conditions. Then power oscillations

were imposed on the new steady state as shown in Figure 3.1.4.2.7-9. The core
pressure was maintained constant during the power oscillation.

The precise shape of the limit cycle power oscillation is not particularly

important for these relatively high frequency oscillations. Therefore, the

shape was assumed to be as shown in Figure 3.1.4.2.7-10. Here "A" represents

the average core power during the oscillation and "T" is the period. "FO" is

the fraction of the cycle during which the power is greater than the average

power. The power rise and fall during the oscillation are assumed to be linear.

The two cross hatched areas shown, "abc" and "cde", are equal, thus making

the total energy generated during a cycle equal to that which would be gen-

erated at the average power level in the same time interval. The fraction "F"

determines how high the peak power during cycle is. This assumed shape of the

cycle is considered to be representative for the fuel cycles.

The fuel condition was analyzed for various values of "F" at an average power

level of 25 percent which bounds the value for the Turbine Trip special case.
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The difference between the maximum ;iai(I mininush c'lad t. mlper titres calculated from

the analysis are tabulated in Table 3.1.4.2.7-3 and shown graphically in Fig-
ure 3.1.4.2.7-11 (page 3-93b). It can be seen that for all the cases analyzed,
the clad temperature only varies up to 130*F and that the temperature swings have
saturated in the sense that any higher magnitudes of the limit cycles will not
appreciably increase the temperature transient on the fuel. The peak cladding

temperature constructed in this bounding limit cycle is near 1250*F. This clad
temperature variation occurs over only a very small section of the fuel. As "F"

decreases, it is seen that the difference between the maximum and minimum clad

temperatures slowly increases. This can be attributed to the increase in the
excess energy deposited during the first part of the cycle. (This excess energy
is given by A T/2 (1-F) and is represented by the area of the triangle abc in the
Figure 3.1.4.2.7-10.)' Therefore, even with conservative assumptions about the
limit cycle shape, the fuel peak clad temperature is within 70'F of that with-
out limit cycles. Thus, fuel cladding temperature is dominantly determined by
the average power level and fuel integrity is not significantly affected by the
small temperature swings seen in the predicted oscillations.

3.1.4.3 IORV Sensitivity Studies

Table 3.1.4.3-1 summarizes the results of the sensitivities on the BWR/4

IORV - ATWS event. The effect of the listed parameters on peak suppression
pool temperature and peak wetwell airspace pressure was determined.

3.1.4.3.1 Variation of S/RV Capacity

The capacity of the S/RVs was varied 120%. Peak pool temperature changed

by -8'F and +6'F, respectively. Corresponding peak containment pressures

changed by +1.3 and -1.5 psi from the base case value. This change is shown
in Figure 3.1.4.3.1-1.

3.1.4.3.2 Variation of Boron Delay

The boron is assumed to reach the core at 2½ minutes after the manual scram

attempt. The effects of increasing this time by 5 and 10 minutes were deter-

mined. An increase of 5 minutes resulted in a suppression pool temperature

increase of 70F and an increase of 10 minutes resulted in a temperature

increase of 13*F. Containment pressure varied accordingly. This change is

shown in Figure 3.1.4.3.2-1.
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3.1.4.3.3 Variation of Boron Capacity/Mixing

The effective rate of boron injection into the core is the product of the
boron pumping capacity and mixing efficiency. This effective rate was varied
by ±20% resulting in peak pool temperatures of 30F below and 4VF above the
base case value, respectively. Peak containment pressures varied accordingly,
This is shown in Figure 3.1.4.3.3-1.

3.1.4.3.4 Variation in RHR Capacity

To determine the effect of varying RHR heat exchanger capacities, the base
capacity of 428 BTU/sec- 0 F was altered by ±50%. Increasing the capacity to
642 BTU/sec yielded a 10F temperature reduction and lowered the peak con-
tainment pressure by less than 2 psi. For the opposite case of decreasing

capacity to 214 Btu/sec- 0 F the results were a 17 0 F increase in temperature
and a 4 psi pressure rise. The temperature change is shown in Fig-
ure 3.1.4.3.4-1.

3.1.4.3.5 Variation of RHR Delay

The RHR system is assumed to be in operation at time zero of this event. This
was varied by delaying RHR start by 5 minutes and 10 minutes from time zero.
The effect on peak pool temperature was an increase of about 10F and 10F,
respectively.

3.1.4.3.6 Variations of Pool Size

The suppression pool mass was varied by 20% to simulate different sized

plants. The larger pool mass provides a bigger heat sink, thus reducing

the peak pool temperature by nearly 80 F and peak pressure by 1.5 psi. For
the lower pool mass, pool temperature increases 120F and peak pressure by
nearly 3 psi. BWR 4 Mark I and Mark II plants can utilize this sensitivity

study to estimate the effect of different pool sizes on bulk pool temperature.
The variation is shown in Figure 3.1.4.3.6-1.
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3.1.4.3.7 Variation of Pool and Service Water Temperatures

The pool and service water temperatures were found to significantly affect

peak pool temperature and containment pressure. Increasing these temperatures

by 20*F produced a rise in pool temperature of 8°F and an increase of 1.7 psi

in peak pressure. Reducing the temperatures by 20'F yielded decreases of

6*F and 1.2 psi, respectively. This is shown in Figure 3.1.4.3.7-1.

3.1.4.3.8 Variation of RHR Capacity and Service Water Temperature

In some plants, the RHR heat exchanger size is defined dependent on design

service water temperature. For example, a higher service water temperature

will require a larger RHR heat exchanger. in this analysis, these two items

were varied together. The service water temperature was varied ±200 F and the

RHR heat exchanger capacity was varied ±50% for the larger heat exchanger and

higher temperature, the maximum suppression pool temperature was changed by

-3*F and for the lower service water temperature and smaller heat exchanger,

the maximum suppression pool temperature was changed by +12°F. Containment

pressures changed by -0.6 psi and +2.7 psi, respectively. Temperature

variation is shown in Figure 3.1.4.3-4 and 3.1.4.3.7-1.

3.1.5 Loss of Condenser Va'cuum

3.1.5.1 Overview of Response Without Scram

This transient starts with turbine trip due to low condenser vacuum. There-

fore the beglnning is the same as Turbine Trip events (see Section 3.1.2).

There is a rapid steam shutoff causing pressure and power increases which

are limited by the action of the S/RVs and RPT. Note that direct pump

trip from Turbine Trip was conservatively neglected. Since the MSIVs and

turbine bypass valves also close when condenper vacuum has further dropped

to their setpoint, S/RV cycling increases considerably compared to the original

Turbine Trip case. Even so, the bulk pool temperature and pressure remain
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This transient starts with turbine trip due to low condenser vacuum. There­

fore the beginning is the same as Turbine Trip events (see Section 3.1.2). 
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well within the containment design requirements. Therefore, this event is

similar to the Turbine Trip event as far as the peak power and pressure

characteristics are concerned and similar to the MSIV closure case with respect
to suppression pool temperature and pressure.

3.1.5.2 Sequence of Events for Loss of Condenser Vacuum

The listing of significant events during this ATWS event is provided in

Table 3.1.5-1. Results with and without ARI are presented.

This transient starts with the closure of all turbine stop valves (within

about 0.1 second) when the unexpected decline in condenser vacuum reaches the

turbine trip setpoint. If the unit has turbine driven feedwater pumps, they
also trip at the same low vacuum setpoint. For the ARI failure case,

the feedwater is assumed to remain as if motor-driven pumps were available

until the feedwater limit action shuts them down (the most limiting case).
Figure 3.1.5-1 shows the initial portions of the event for the more likely

plant ATWS transient in which ARI provides a diverse logic path to quickly

shut down the reactor, Figure 3.1.5-2 shows the initial portion for this
case in which ARI also is assumed to fail.

In both cases, the initial power and pressure increase. Neutron flux

reaches 403% NBR within 1 second; fuel average heat flux reaches 133% NBR

at about 2 seconds. Some fuel may experience boiling transition, however,

coolable geometry is maintained. Peak pressure occurs at the vessel bottom

and is 1195 psig at 2.7 seconds. The normal reactor scram signals occur from

position switches on the valves, high neutron flux, and high vessel pressure

but are ignored for this analysis. The transient pressure is limited

within the Service Level C overpressure limit of 1500 psig. This is due to

automatic action of RPT which is initiated when vessel dome pressure exceeds
1150 psig and the relieving action of the S/RVs which all open then start
reclosing near 13 seconds. By about 30 seconds, the condenser vacuum is

assumed to have fallen enough (8 in Hg) to initiate MSIV and bypass valve

closure. This results in another pressure and power rise to 1134 psig and
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until the feedwater limit action shuts them down (the most limiting case). 

Figure 3.1.5-1 shows the initial portions of the event for the more likely 

plant ATWS transient in which ARI provides a diverse logic path to quickly 

shut down the reactor, Figure 3.1.5-2 shows the initial portion for this 

case in which ARI also is assumed to fail. 

In both cases, the initial power and pressure increase. Neutron flux 

reaches 403% NBR within 1 second; fuel average heat flux reaches 133% NBR 

at about 2 seconds. Some fuel may experience boiling transition, however, 

coolable geometry is maintained. Peak pressure occurs at the vessel bottom 
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94% NBR, respectively. Both of these peaks are lower than the earlier values.

Peak heat flux rises momentarily, but remains less than 45% and fuel geometry

is maintained.

The long term behavior of this transient is very much like the MSIV closure

event which is discussed in detail in Section 3.1.1. Figure 3.1.5-3 shows

the long term behavior predicted for this event. The peak bulk pool tempera-

ture and pressure which occur after 27 minutes are 1880 F and 10.7 psig,

respectively. These values remain well within the containment design require-

ments. Table 3.1.5-2 summarizes the significant values.

Thus it can be seen that the loss of condenser vacuum event combined with

failure to scram is adequately mitigated for a representative BWR 4/Mark I.

3.1.6 Pressure Regulator Failure - Zero Steam Demand

The failure of the controlling pressure regulator to the lower limit passes

control of the main turbine control valves to the backup regulator. The

backup regulator is nominally set 3 to 5 psi higher than the controlling

regulator. As the transfer is made, a disturbance is introduced to the system

but none of the variables are disturbed sufficiently to reach any scram

trip setpoint. This transient is expected to be milder than the Turbine Trip

case and is not included in BWR/4 safety analysis reports. For these reasons,

this event is not analyzed here as an ATWS event for BWR/4.

3.1.7 Loss of a Feedwater Heater

3.1.7.1 Overview of Response Without Scram

This is a mild transient compared to the other ATWS events. The neutron

flux does not reach the scram setpoint, and the pressure rise is insignificant.

Therefore, automatic ATWS logic (e.g., RPT) does not occur, nor are HPCI or

RCIC initiated. This is a gradual subcooling transient. The entire trans-

ient settles out when the feedwater temperature fully stabilizes. The

reactor settles out to a new equilibrium power condition at full core flow

3-24

NEDO-24222· 

94% NBR, respectively. Both of these peaks are lower than the earlier values. 

Peak heat flux rises momentarily, but remains less than 45% and fuel geometry 

is maintained. 

The long term behavior of this transient is very much like the MSIV closure 

event which is discussed in detail in Section 3.1.1. Figure 3.1.5-3 shows 

the long term behavior predictea for this event. The peak bulk pool tempera­

ture and pressure which occur after 27 minutes are 188°F and 10.7 psig, 

respectively. These values remain well within the containment design require­

ments. Table 3.1.5-2 summarizes the significant values. 

Thus it can be seen that the loss of condenser vacuum event combined with 

failure to scram is adequately mitigated for a representative BWR 4/Mark 1. 

3.1.6 Pressure Regulator Failure - Zero Steam Demand 

The failure of the controlling pressure regulator to the lower limit passes 

control of the main turbine control valves to the backup regulator. The 

backup regulator is nominally set 3 to 5 psi higher than the controlling 

regulator. As the transfer is made, a disturbance is introduced to the system 

but none of the variables are disturbed sufficiently to reach any scram 

trip setpoint. This transient is expected to be milder than the Turbine Trip 

case and is not included in BWR/4 safety analysis reports. For these reasons, 

this event is not analyzed here as an ATWS event for BWR/4. 

3.1.7 Loss of a Feedwater Heater 

3.1.7.1 Overview of Response Without Scram 

This is a mild transient compared to the other ATWS events. The neutron 

flux does not reach the scram setpoint, and the pressure rise is insignificant. 

Therefore, automatic ATWS logic (e.g., RPT) does not occur, nor are HPCI or 

ReIe initiated. This is a gradual subcooling transient. The entire trans­

ient settles out when the feedwater temperature fully stabilizes. The 

reactor settles out to a new equilibrium power condition at full core flow 

3-24 

.-, 



NEDO-24222

with recirculation flow assumed to be under manual control. If automatic

flow control was active, the power increase would be less. Manual operator

action accomplishes reactor shutdown.

3.1.7.2 Sequence of Events for Loss of a Feedwater Heater

Table 3.1.7-1 gives the sequence of events for this transient.

In this event, loss of a key group of feedwater heaters gives the reactor

coolant feedwater flow (decreased 65 0 F) which produces an increase in core

inlet subcooling leading to an increase in core power. Following the trans-

port delay through the feedwater lines (neglected in this analysis) and the

time constant for cool-down of the heater tubes, average fuel surface heat

flux rises to a maximum value of 112% which is lower than the flux scram

setpoint. No fuel reaches boiling transition, even if the plant was initially

at thermal operating limits. The reactor is conservatively assumed to be on

manual flow control, therefore, core inlet flow remains at 100%. Had the

reactor been on automatic flow control, core inlet flow would have changed

to decrease the severity of the transient. The peak pressure (vessel bottom)

of 1046 psig occurs near 56 seconds. Figure 3.1.4.7-1 shows the response of

this event. The water level remains within the normal control range throughout

the transient.

When the power reaches 108% NBR near 34 seconds, a high power alarm occurs.

For this analysis, it is assumed that attempts will be made to bring the power

down by inserting rods. If this is not successful, manual scram will be

initiated. This also initiates ARI and the SLCS timed logic. However, in

this analysis, manual scram is also assumed to fail. By about 11 minutes,

ARI will have been accomplished and power is terminated. If the ARI function

is arbitrarily assumed to fail, as well as all other attempts to insert con-

trol rods within the two minute period, the automatic start of boron injection

will begin through the jet pump instrument lines. By about 35 minutes the

power has decreased below 1% NBR. Recirculation flow remains active during

boron injection, providing mixing and dispersion throughout the primary

system.
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Thus it can be seen that a loss of feedwater heater event combined with a
failure to scram can be adequately mitigated for a representative BWR 4/
Mark I. Note that this event was analyzed for a 65 0 F loss in feedwater
heating rather than the 600F as specified in NUREG 0460 (Volume 3).

3.1.8 Feedwater Controller Failure - Maximum Demand

3.1.8.1 Overview of Response Without Scram

The behavior of the plant is separable into an early or short term transient
resulting in a gradual power increase, then a sharp pressure rise and power
peak. The longer term segment requires evaluation of coolant and containment
conditions as the reactor is finally brought to shutdown. The relief valves
open in the early part of the transient and stay closed for the rest of the

event (except for the possibility of single valve cycling very late in the
event). Figures 3.1.4.8-1 and 3.1.4.8-2 illustrate the early period. The
relief valves are assisted by RPT to limit the pressure disturbance accept-
ably. Note that the direct RPT from turbine trip was conservatively ignored.
RPT also assures the establishment of a relatively low power generation rate
for the long term portion of the transient. The effectiveness of RPT as pre-
sented in earlier reports is once again confirmed by this analysis.

Containment peak temperature and pressure remain well below design limits
since relief valves stay open for a relatively short period. The power

shutdown is achieved in either of two ways. ARI employs an alternate design
of the protection logic leading to a diverse insertion of the control rods.
In the unlikely event that ARI also fails, the automated SLC& provides fur-
ther protection and shutdown capability.

3.1.8.2 Sequence of Events for Feedwater Controller Failure - Maximum
Demand

The time sequence of events for this transient is presented in Table 3.1.8-1.
Both successful ARI initiation, and ARI failure cases are considered. The
initiating event is the failure of the feedwater controller to the maximum

3-26

NF.DO-?j~2?? 

Thus it can be seen that a loss of fcedwater heater event combined with a 

failure to scram can be adequatoely mitigated for a representative BWR 4/ 
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initiating event is the failure of the feedwater controller to the maximum 
1 
J ) 

3-26 



NED0,-24222

demand position (125% NBR was assumed). The feedwater flow rapidly responds,

causing vessel level to rise. When the high level trip setpoint (L8) is

reached near 6 seconds, the turbine and feedwater are tripped. This results

in a scram signal which for purposes of this analysis fails to initiate a

scram. With the occurrence of the turbine trip, this event becomes very

similar to the Turbine Trip transient. Figures 3.1.8-1 and 3.1.8-2 show the

early portion of the event for the cases of ARI failure, and successful ARI

actuation, respectively. For each case, the peak power and flux are the same

with a maximum flux of 511% NBR near 7 seconds and a peak vessel bottom

pressure of 1195 psig around 9 seconds. Fuel average heat flux reaches a

maximum at 8 seconds of 137% NBR. Some fuel may experience boiling transi-

tion, if the core were operating at its thermal limit. The peak cladding

temperature reaches about 1530 0 F, and coolable geometry is maintained.

Despite the assumed failure to scram based upon high neutron flux, vessel

level and dome pressure generated scram signals, the transient pressure is

maintained well below the 1500 psig Service Level C overpressure limit.

This is accomplished through the combination of RPT (initiated on high dome

pressure) and actuation of relief valves. Relief valve flow begins at 8

seconds, ceases at 37 seconds. S/RV's will open and cycle before permanently

closing. This is shown along with vessel steam flow. The difference in

vessel and relief steam flow is made up by the steamflow through the turbine

bypass valves to the condenser.

At approximately 28 seconds, ARI will begin to insert control rods into the

core thereby shutting down the reactor. This will deactivate the SLCS turning

the remainder of the event into normal feedwater flow controller failure

transient. No further relief valve flow will occur. The decay heat will be

passed through the turbine bypass valves to the condneser.

The RHR can be activated in the pool cooling mode whenever convenient to

reduce the pool temperature and any final, single valve cycles can be accommo-

dated. Vessel level, which drops due to feedwater shutoff at high water level,

is recovered and maintained in the normal water range by means of the HPCI/

RCIC systems.

3-27

NE~4222 

demand position (125% NBR was assumed). The feedwater flow rapidly responds, 
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In the unlikely event of ARI failure, the event can still be mitigated through
action of the SLCS. With confirmation from the flux monitoring system and the
rod position indicating system that scram has not occurred, the SLCS will be
activated. The long term behavior predicted for this event is shown in
Figure 3.1.3-3. Boron first enters the core at about 3 minutes Via the jet
pump instrument lines and commences to shut down the system, with hot shutdown
occurring near 17 minutes. Vessel level experiences slow cycles about the
normal water level caused by the intermittent action of the RCIC and HPCI
systems assumed to be automatically cycling between L2 and L8. Boron concentra-
tion will continue to increase until the entire inventory has been injected
into the core around 50 minutes. At this point the concentration is sufficient
to maintain cold nuclear shutdown conditions when the RHR system is switched
to the reactor shutdown cooling mode and the plant is brought to a cold shut-
down condition.

Thus it can be seen that a feedwater controller failure event (maximum
demand) combined with a failure to scram is adequately mitigated for a
representative BWR 4/Mark I.

3.1.9 Pressure Regulator Failure - Maximum Steam Demand

3.1.9.1 Overview of Response Without Scram

The initial portion of this transient consists of a decrease in reactor pres-
sure and power as the turbine control valves open to the maximum position
followed by a rapid rise in pressure and power due to MSIV closure on low
steam line pressure. Scram is normally initiated at this time from the MSIV
position switches. Should they fail, additional scram signals occur from
high flux, high pressure and low water level. Once the MSIV's close, the
characteristics of the remaining portion of the transient are very much the
same as the MSIV event.

The power and pressure increases are limited by the action of the S/RV's and
RPT. With normal scram assumed to be failed, the long term power shutdown
is ashieved in either of two ways. ARI employs an alternate design of the
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protection logic leading to diverse insertion of the control rods. In the

unlikely event that ARI fails the automated SLCS provides further protection

and shutdown capability.

3.1.9.2 Sequence of Events for Pressure Regulator Failure - Maximum
Demand

The significant events during this event are provided in Table 3.1.9-1.

Results for both cases - with ARI and also assuming its failure - are

presented.

This event begins with the failure of the pressure regulator to the maximum

steam demand value. The turbine control valves open allowing an increase in

vessel steam flow which results in a rapid decrease in vessel pressure. This

leads to a low pressure isolation signal at about 19 seconds when the MSIV's

are tripped close. Once this occurs, the transient becomes much like an MSIV

closure event. The isolation is followed by a rapid rise in power and pressure.

Figure 3.1.9-1 shows the event for the more likely plant ATWS transient in

which ARI quickly shuts down the reactor. The initial portion of the case in

which ARI also fails and the automated SLCS is called upon to shut down the

reactor shown in Figure 3.1.9.2. In both cases, the peak power and pressure

are the same. The neutron flux reaches 585% NBR near 25 seconds, fuel average

heat flux reaches 139% NBR at about 27 seconds. Some fuel experiences boiling

transition (just less than 17% if the core was initially at its operating

thermal limit) however, peak cladding temperature is about 1630OF and

coolable geometry is maintained. The peak pressure occurs at vessel bottom

and is 1280 psig at approximately 31 seconds. The normal reactor scrams occur

from position switches on MSIV's, high neutron flux, and the high vessel

pressure, but are ignored for this analysis. The transient pressure is limited

well within the Service Level C overpressure limit of 1500 psig. This is due

to the automatic action of RPT which is initiated when vessel pressure exceeds

1150 psig near 26 seconds and the relieving action of the S/RV's which all

open, then start reclosing near 47 seconds.
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protection logic leading to diverse insertion of the control rods. In the 

unlikely event that ARI fails the automated SLCS provides further protection 

and shutdown capability. 
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Demand 

The significant events during this ,event are provided in Table 3.1.9-1. 

Results for both cases - with ARl and also assuming its failure - are 

presented. 

This event begins with the failure of the pressure regulator to the maximum 

steam demand value. The turbine control valves open allowing an increase in 

vessel steam flow which results in a rapid decrease in vessel pressure. Thi~ 

leads to a low pressure isolation signal at about 19 seconds when the MSlV's 

are tripped close. Once this occurs, th~ transient becomes much like an MSlV 

closure event. The isolation is followed by a rapid rise in power and pressure. 
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which ARl also fails and the automated SLCS is called upon to shut down the 

reactor shown in Figure 3.1.9.2. In both cases, the peak power and pressure 
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heat flux reaches 139% NBR at about 27 seconds. Some fuel experiences boiling 

transition (just less than 17% if the core was initially at its operating 

thermal limit) however, peak cladding temperature is about l630°F and 

coolable geometry is maintained. The peak pressure occurs at vessel bottom 

and is 1280 psig at approximately 31 seconds. The normal reactor scrams occur 

from position switches on MSlV's, high neutron flux, and the high vessel 

pressure, but are ignored for this analysis. The transie~t pressure is limited 

well within the Service Level C overpressure li~it of 1500 psig. This is due 
• 

to the automatic action of RPT which is initiated when vessel pressure exceeds 

1150 psig near 26 seconds and the relieving action of the S/RV's which all 

open t then start reclosing near 47 seconds. 
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By about 46 seconds, the high pressure logic which began the ATWS protection
will have implemented the ARI function. The remainder of the event is a
normal pressure regulator failure shutdown.

If the ARI function is assumed to fail as well as all other attempts to
insert control rods within the two-minute timed period, the ATWS logic will
continue to sense that the APRM signals are not downscale and not enough rods
are in their full-in positions, and the automatic start of boron injection

will begin. The long term behavior predicted for this event is shown in
Figure 3.1.9-3. Introduction of boron to the core allows the restoration of
level and core flow before reaching nuclear shutdown at 18 minutes. There-
after, only decay heat reaches the pool, giving the peak pool temperature
of 189'F (11.0 psig) at about 27 minutes. These Values remain well within
the pressure suppression requirements. Water level inside the core shroud
is a two-phase mixture which remains well above the core and up into the
steam separator standpipes as RCIC and HPCI flow provide coolant inventory.
The boron will continue to build the poison concentration in the vessel

until it is all injected near 50 minutes making it possible for a controlled
reactor cooldown. The total concentration is specified to be enough to main-
tain cold nuclear shutdown conditions even when the RHR system is eventually
switched to the reactor shutdown cooling mode, bringing the plant by normal
procedures. Listed in Table 3.1.9-2 is a summary of the maximum conditions.

Thus it can be seen that a pressure regulator failure (maximum demand) com-

bined with a failure to scram is adequately mitigated for a representative
BWR 4/Mark I.

3.1.10 Loss of Feedwater

3.1.10.1 Overview of Response Without Scram

This event has no rapid excursions as in some of the other events but is.a

long term power reduction and depressurization.. Since the pressure begins

to fall at the outset of the transient, the need for relief valves does not
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arise until isolation occurs very late in the event and only single valve

cycling is expected to handle decay heat. Even this cycling can be avoided by
taking the mode selector switch out of the "RUN" mode to prevent isolation on
low steam line pressure. Thus, containment limits are not challenged. Except

for the use of the liquid boron solution for shutdown, the procedure followed

here is virtually identical to-the normal shutdown event.

3.1.10.2 Sequence of Events for Loss of Feedwater

In this event all feedwater flow is assumed to be lost in about 5 seconds.

The resulting sequence of events is shown in Table 3.1.10-1 for both cases

with and without ARI. Figure 3.1.10-1 shows the initial portion of the event

for the more likely plant ATWS transient in which ARI quickly shuts down the

reactor. Figure 3.1.10-2 shows the early portion of the case in which ARI

also fails and the automated SLCS is called upon to shut down the reactor.

In both cases, after the loss of feedwater has taken place, pressure, water

level and neutron flux begin to fall. Around 19 seconds low water level

(L2) is reached. This trips the recirculation drive motor breakers, initiates

ARI, initiates the HPCI and RCIC and activates the SLCS timed logic. Neglected

was the recirculation runback which would have occurred earlier from coincident

low level logic which began the ATWS protection will have initiated the ARI

function. At about 39 seconds HPCI and RCIC flows start. They replace the

main feedwater system and begin to overcome the inventory loss. The vessel

level continues to decrease folloing ARI and the minimum for the case is

reached near 61 seconds as shown in Figure 3.1.10-1. The two-phase mixture

level inside the core shroud always remains above the top of the fuel. The

HPCI and RCIC will restore level to its normal range, for either automatic

cycling between Level 2 and 8 setpoints or the operator takes over manual

level control by using the RCIC (preferred).

If the ARI function is arbitrarily assumed to fail as well as all other scrams

and attempts to insert enough control rods within the two-minute timed period,

the ATWS logic will continue to sense that the APRM signals are not downscale
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and not enough rods are in their full-in pos; It i ,i, ;ind t Il atlitonlat ic n;tar! o1

boron injection will begin. SILCS Inj•ection is started at approximately 2 min-
utes and boron reaches the core I minute later. During the following 16 minute
period (out to about 1100 seconds in Figure 3.1.10-3), the key result is that
power is suppressed slightly, reducing the steaming rate and allowing water
level to be restored. This also induces higher natural circulation core flow
which follows the water level behavior. The level reaches the high level turn-

off (Level 8) of the HPCI and RCIC at about 16 minutes. The turbine is also
tripped at this level but since the turbine steam bypass system opens immedi-

ately, no significant pressure disturbance is experienced.

By 17 minutes the generated power is below 1% NBR and continues to decrease
due to the accumulation of boron in the reactor. The net reactivity also
stays negative, (nuclear hot shutdown). At this time the generated power is
practically zero and the only heat in the vessel is the decay heat.

Thus It can be seen that a loss of feedwater combined with a failure to scram

is adequately mitigated for a representative BWR 4/Mark I.

3.1.11 Loss of Normal AC Power

3.1.11.1 Overview of Response Without Scram

Initially in this transient, a sharp rise in reactor pressure and power occur

due to MSIV closure as a result of loss of normal AC power. Scram is

initiated at this time from the MSIV position switches if it had not occurred

yet from loss of reactor trip system power. Should these signals fail to
cause scram, additional scram signals occur from high flux, high pressure and
low water level. The power and pressure increases are limited by the action
of the S/RV's and RPT (which occurs at the start of this event). With normal
scram assumed to have failed the long term power shutdown is achieved in two

ways. ARI employs an alternate design of the protection logic leading to

diverse insertion of the control rods. In the event that ARI fails, the
automated SLCS provides further protection and shutdown capability.
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3.1.11.2 Sequence of Events For Loss of Normal AC Power

The listing of significant events during this event is provided in Table 3.1.11-1.
Results for both cases - with ARI and also assuming its failure are presented.

There are two ways of experiencing this event: 1) loss of all auxiliary power
transformers; and 2) loss of all grid connections. The main difference between
the two approaches is that in the latter one, load rejection occurs at the
outset of the transient which results in turbine-generator trip. In both
cases, MSIV closure takes place near 2 seconds. This is the earliest time
isolation can occur and is based on relay-type reactor trip system (RTS)
circuitry.

Since in loss of all grid connections the turbine trips first as opposed to
MSIV closure in the loss of all auxiliary power transformers case, it turns
out to be a less severe event in terms of peak power and pressure. Therefore
the rest of the discussion is limited to the case where loss of -all auxiliary
power transformer occurs. The sequence of events as outlined in Table 3.1.11-1
describes the event.

This event begins with the loss of recirculation pumps and feedwater pumps.
This leads to an initial reduction in power and pressure. At 2 seconds,

MSIV closure is assumed to take place, which results in a rapid rise in power
and pressure. Figure 3.1.11-1 shows initial portions of the event for the

more likely plant ATWS- transient in which ARI quickly shuts down the reactor,

and Figure 3.1.11-2 shows the initial portion of the case in which ARI also
fails and automated SLCS is called upon to shutdown the reactor.

In both cases, the peak power and pressure are the same. The neutron flux
reaches 253% NBR near 7 seconds, however fuel average heat flux does not

exceed the initial value. The peak pressure occurs at vessel bottom and is

1172 psig at 8 seconds. The normal scram signals occur due to loss of AC power

and also due to position switches on MSIV's, high neutron flux and the high

vessel pressure but are ignored for this analysis. The transient pressure
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is limited within the Service Level C overpressure limit of 1500 psig. This

is due to RPT at the start of the transient and the relieving action of the

S/RV's which all open, then start reclosing near 16 seconds.

By about 28 seconds, the high pressure logic would provide ATWS protection,

by activating ARI. This eliminates the automatic boron injection and allows

the remainder of the event to proceed toward normal shutdown. The primary

relief valve flow stops near 75 seconds, followed only by single valve cycling

on the "tail" of the isolation event. The RHR can be activated in the pool

cooling mode as soon as water level recovery is clearly indicated, to control

pool temperature. Reactor water level is restored quickly to its normal range

by RCIC and HPCI flow.

If the ARI function is assumed to fail as well as all other attempts to insert

control rods within the two-minute time period, the ATWS logic will continue

to sense that not enough rods are in their full-in positions, and the automatic

boron injection will begin. The long term behavior predicted for this event is

shown in Figure 3.1.11-3. Introduction of boron to the core around 3 minutes

again restores level and core flow before decreasing power near 17 minutes when

nuclear shutdown is achieved. Thereafter, only decay heat reaches the pool,

giving the peak bulk pool temperature of 182 0 F (9.5 psig) at about 33 minutes.

These values remain well within the containment design requirements. Water

level inside the core shroud is a two-phase mixture which remains well above

the core and up into the steam separator standpipes as RCIC and HPCI flow

provide coolant inventory. The boron will continue to build the poison con-

centration in the vessel until it is all injected near 50 minutes making it

possible for a controlled reactor cooldown. The total concentration is

specified to be enough to maintain cold nuclear shutdown conditions when the

RHR system is eventially switched to the reactor shutdown cooling mode,

bringing the plant to cold shutdown.

Thus it can be seen that a loss of normal AC power combined with a failure to

scram is adequately mitigated for a representative BWR 4/Mark I.
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Table 3.1.6-i

RECIRCULATION FLOW CONTROLLER FAILURE - INCREASING FLOW

Sequence of Events

1. M/G Speed Controller Failure

2. Neutron flux reaches 120%, APRM scram assumed to
fail

3. Power peaks

4. Maximum fuel surface heat flux occurs

5. Vessel pressure peaks

6. Core flow increase levels off

7. New core equilibrium conditions
(All parameters within normal limits, power and
feedflow slowly decreasing as steady state
feedwater heating is established.)

8. Manual rod insertion or (if this fails)
manual ARI and (if it fails) SLCS initiation

9. Hot shutdown achieved

0

2

Time

seconds

seconds

2 seconds

5 seconds

6 seconds

6 seconds

20 seconds

10 minutes

30 minutes

3-35

Table 3.1.6-1 

RECIRCULATION FLOW CONTROLLER FAILURE - INCREASING FLOW 

Sequence of Events 

1. MIG Speed Controller Failure 

2. Neutron flux reaches 120%, APRM scram assumed to 
fail 

3. Power peaks 

4. Maximum fuel surface heat flux occurs 

5. Vessel pressure peaks 

6. Core flow increase levels off 

7. New core equilibrium conditions 

8. 

9. 

(All parameters within normal limits, power and 
feedflow slowly decreasing as steady state 
feedwater heating is established.) 

Hanual rod insertion or (if this fails) 
manual ARI and (if it fails) SLCS initiation 

Hot shutdown achieved 

3-35 

'!'ime 

0 seconds 

2 seconds 

2 seconds 

5 seconds 

6 seconds 

6 seconds 

20 seconds 

10 minutes 

30 minutes 



NEDO-24222

Is operating Initially at its operating Limit. A smal I prvssiirc r i tc cccur",

peaking near 6 seconds with a vessel bottom pressure of 1020 psig (compared

to an intial bottom pressure of 965 psig). Simultaneous with the above

events, vessel level experiences a small decrease and then recovers to its

initial position, and feedwater flow rises in response to the level change.

As core flow levels off to approximately 61% of rated near 10 seconds, the

power settles out as do all other parameters. At this point, the transient

is essentially over. By 20 seconds, all parameters have reached equilibrium

except power and feedwater flow which continue to slowly decrease following

the warming of the feedwater heaters.

Because of the mildness of the event, no automatic pressure or level dependent

actions are initiated. Containment is not affected since no relief valves are

actuated. Subsequent operator action would be expected to initiate a manual

shutdown, utilizing the SLCS if manual insertion or scram of rods remains

unsuccessful. Initiation of ARI/SLCS from manual scram near 10 minutes

would shut down the plant immediately (ARI) or by about 30 minutes (SLCS).

Recirculation flow would be maintained near full flow initially and at partial

flow in order to maximize boron dispersion throughout the vessel and to provide

a near-normal shutdown sequence.

Thus it can be seen that a recirculation flow control failure combined with a

failure to scram is adequately mitigated for a representative BWR 4/Mark I.

3.1.13 Startup of the Idle Recirculation Pump

This event is similar to the Recirculation Flow Controller Failure - Maximum

Demand. Both of these events result in increased Core power which results

from the increased core flow. The Startup of the Idle Recirculation Pump

Event has been shown in Safety Analysis Reports to be less severe than the

Recirculation Flow Controller Failure and, therefore, further transient-

specific analyses have not been done.
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3.1.14 Inadvertent Opening of all Bypass Valves

This event will be similar to the Pressure Regulator Failure - Maximum Steam
Demand. Since the turbine control valves will try to compensate for the
pressure reduction, the results will be less severe. For those plants with

smaller bypass capacity, the event will be even less severe.

3.1.15 Shutdown Cooling (RHR) Malfunction - Decreasing Temperature

This event can only occur at very low pressures. The shutoff head of the
shutdown cooling pumps is less thalff 300 psig. In this condition, the reactor

has almost no voids in it and therefore only little if any positive reactivity
is inserted. Therefore, this event is not considered further.

3.1.16 Rod withdrawal Error From Zero and Full Power

3.1.16.1 Power Range

The control rod withdrawal error (CRWE) in the power range is not dependent on
reactor scram for termination. The local power range monitors (LPRMs) will

sense the local power increase due to the continuous withdrawal of a control
rod. When the power exceeds the preset power point, the rod block monitor

(RBM) will block further withdrawal of the control rod before the MCPR safety

limit is exceeded thereby preventing fuel damage. Thus, scram is not required

to insure that no fuel damage occurs due to the CRWE in the power range.

3.1.16.2 Startup Range

3.1.16.2.1 Plants Employing the Banked Position Withdrawal Sequence
(Early BWR/4, All BWR/5 + 6)

In plants which employ the banked position withdrawal sequence (BPWS), only
in-sequence control rods may be withdrawn in the 100% (all rods in) to 75%

control rod density range. These control rods may be withdrawn from the fully
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inserted position to the fully withdrawn position. From the 75% control rod

density point to the low power set point (i.e. 20% of rated power) the control

rods must be withdrawn in the banked position mode of control rod withdrawal.

(See GESSAR Section 4.3.2.6 for a description of the banked position with-

drawal sequence.)

The first 25% of the control rods pulled consist of BPWS groups I and 2 or 3

and 4 and are withdrawn from full-in to full-out because the reactor core is

generally subcritical until the control rod density is lower than 75%. In some

very reactive cores, criticality may be achieved before the 75% rod density

point is reached. However, it has been determined that the first control rod

withdrawn in a group has the highest reactivity worth. All the remaining control

rods in the group will be of lower worth. Even though the first 25% of the con-

trol rods are withdrawn from full-in to full-out, the worth of these rods need

not be considered since- the reactor core is subcritical when the first group

(i.e. first 12.5%) of control rods is withdrawn. The subcritical condition

will exist in the reactor core as the first rods of the second group of control

rods are withdrawn. Criticality may be achieved after a number of control rods

in the second group have been withdrawn. However, the control rods pulled at

this point are very low worth (i.e., the rod worth is less than 0.003 tk) and

need not be considered in the context of a rod withdrawal error.

Between 75% rod density and the low power set point control rods are pulled in

the banked position mode of rod withdrawal. The rod sequence control system

(RSCS) will not allow the continuous removal of a control rod in this range

of rod withdrawal.

The BPWS limits the worth of control rods by imposing contraints on the

sequence in which specified control rods are withdrawn. The maximum positive

reactivity which can be achieved by rod withdrawal within the constraints of

the BPWS is less than 0.0035 Ak. Since the RSýCS physically prohibits removal

of rods that do not fall within the BPWS constraints, a control rod with-

drawal error analysis without scram is not necessary.
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3.1.16.2.2 Plants Employing the Group Notch Withdrawal Sequence (Early BWR/4)

In plants employing the group notch (GN) mode of rod withdrawal, only in-sequence

rods may be withdrawn in the 100% to 50% control rod density range. These rods

may be withdrawn from the fully inserted to the fully withdrawn position. From

the 50% control rod density point to the low power set point (20% of rated
power) the control rods are withdrawn in the group notch mode. Continuous con-

trol rod withdrawal is therefore not possible in the range between 50% control

rod density point and the pre-set power point.

In the 100% to 50% control rod density range continuous withdrawal of in-sequence

control rods is allowed. The group notch RSCS physically prohibits the with-

drawal of out-of-sequence control rods. Since only in-sequence rods can be

withdrawn, the control rod worth is kept low.

In-sequence control rods are normally withdrawn continuously from full-in to

full-out while the core is subcritical. When the core is critical (or near

critical), the control rods are generally withdrawn in the jog mode (notched

out) in order to maintain a constant reactor system heatup rate. If the core

is critical and a control rod is continuously withdrawn, the local power in the

region around the control rod will increase more quickly and possibly cause a

slight local power increase above the normal steady state power level associ-

ated with notch withdrawal. However, the intermediate range monitor (IRM) would

block withdrawal of the control rod when the IRM instrument reading reached 90%

of scale. Analyses indicate that even if a 1.6% Ak out-of-sequenee rod were

continuously withdrawn, the total amount of reactivity inserted into the core

would be only 0.7% Ak before an IRM block signal stopped the rod from being

withdrawn. These analyses assume the IRM system is in the worst assumed

Technical Specification bypass condition (i.e., IRM instrument closest to

rod being withdrawn in each IRM instrument string is bypassed).

Thus, if the core is critical and a low worth control rod is selected and

continuously withdrawn, there will be no power increase of any consequence.

If a relatively high worth in-sequence rod is selected and withdrawn contin-

uously, the IRM rod block function would protect the core from any potential
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Thus, if the core is critical and a low worth control rod is selected and 

continuously withdrawn, there will be no power increase of any consequence. 

If a relatively high worth in-sequence rod is selected and withdrawn contin­

uously, the IRM rod block function would protect the core from any potential 
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fuel damage. This is assuming that the in-sequence rod is of sufficient

reactivity worth to cause fuel damage. As stated above, the RSCS prohibits

withdrawal of out-of-sequence rods.

With the group notch RSCS and IRM rod block function, scram would not be

required to terminate a control rod withdrawal error in the startup range.

Hence, the CRWE without scram is of no concern.
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Table 3.1-1

SUMMARY OF ATWS RESULTS - BWR/4

ARI FAILURE, 2 PUMP SLCS, 2 MINUTE LOGIC DELAY

Maximum
Neutron

Flux
(% NBR)

Maximum
Average

Fuel Heat
Flux

(% NBR)

Maximum Z
of Fuel in

Boiling
Transition

Maximum
Pressure
(Vessel
Bottom)

(psig)

Minimum
Water
Level

(Ft Below
Separator
skirt)

Maximum
Suppression
Pool Temp.

(OF)

Maximum
Containment
Pressure

(psig)Transient

I-.

MSIV Closure

Turbine Trip with
Bypass

Inadvertent Open-
ing of a S/R
Valve

Loss of Condenser
Vacuum

Loss of a Feed-
water Heater

Feedwater Control-
ler Failure-Max
Demand

Pressure Regulator
Failure-Max Steam
Demand

Loss of Normal
Feedwater Flow

527

392

100

403

113

511

585

100

143

133

100

12 1280

1193

1044

11.59

11.77

186

162

183

188

9.7

N

4=

ro
W•

10.3

6.1

133

112

137

139

100

1

17

1195

1046

1195

1280

1044

10.98

90

8.90

11.14

9.35

10.7

99

189

90

No change

0.5

11.0

No change

\ 

Table 3.1-1 

SUMMARY OF ATWS RESULTS - BWR/4 

ARI FAILURE, 2 PUMP SLCS. 2 MINUTE LOGIC DELAY 

Minimum 
Maximum Maximum Water 

Maximum Average Maximum % Pressure Level Maximum Maximum 
Neutron Fuel Heat of Fuel in (Vessel (Ft Below Suppression Containment 

Flux Flux Boiling Bottom) Separatol" Pool Temp. Pressul"e 
Transient (% NBR) (% NBR) Transition (psig) skirt) (OF) (psig) 

MSIV Closure 527 143 12 1280 11.59 186 10.3 

Turbine Trip with 392 133 1193 11. 77 162 6.1 
Bypass 

Inadvertent Open- 100 100 1044 183 9.7 ~ 
ing of a SiR t:;1. 

0 
w Valve a 
I I\) 

""'" -'= 
~ I\) 

Loss of Condenser 403 133 1195 10.98 188 10.7 I\) 
I\) 

Vacuum 

Loss of a Feed- 113 112 1046 90 No change 
water Heater 

Feedwater Control- 511 137 1 1195 8.90 99 0.5 
ler Failure-Max 
Demand 

Pressure Regulator 585 139 P 1280 11.14 189 11.0 
Failure-Max Steam 
Demand 

Loss of Normal 100 100 1044 9.35 90 No change 
Feedwater Flow 



Table 3.1-1

SUMMARY OF ATWS RESULTS - BWR/4

ARI FAILURE, 2 PUMP SLCS, 2 MINUTE LOGIC DELAY (Continued)

Maximum
Neutron

Flux
(% NBR)

Maximum
Average

Fuel Heat
Flux

(% NBR)

Maximum %
of Fuel in
Boiling

Transition

Maximum
Pressure
(Vessel
Bottom)
(psig)

Minimum
Water
Level

(Ft Below
Separator
Skirt)

Maximum
Suppression
Pool Temp.

(OF)

Maximum
Containment

Pressure
(psig)Transient

Loss of Normal
AC Power

Recirculation
Flow Controlled
Failure-Max
Demand

Turbine Trip
with Bypass
Failure

258

530

655

100 1172

1020

10.55 182 9.5

92 90 No change

41
r'J

138 1267 10.92 191 11.4
z=

Jr
NJ

)

Vol 
I 

l:'­
N 

) 

Transient 

Loss of Normal 
AC Power 

Recirculation 
Flow Controlled 
Failure-Max 
Demand 

Turbine Trip 
with Bypass 
Failure 

Table 3.1-1 

SL~~Y OF ATWS RESULTS - BWR/4 

ARI FAILURE, 2 PUMP SLCS, 2 MINUTE LOGIC DELAY (Continued) 

Minimum 
Maximum Maximum Water 

Maximum Average Maximum % Pressure Level Maximum 
Neutron Fuel Heat of Fuel in (Vessel (Ft Below Suppression 

Flux Flux Boiling Bottom) Separator Pool Temp. 
(% NBR) (% NBR) Transition (psig) Skirt) (OF) 

258 100 1172 10.55 182 

530 92 1020 90 

655 138 1267 10.92 191 

Maximum 
Containment 
Pressure 

(psig) 

9.5 

No· change 

z 
00 g 

11.4 I 
N 
-I=' 
rv 
r,J 
t\,) 

) 
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Table 3.1.1-1

BWR/4 MSIV CLOSURE

Sequence of Events

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

11.

12.

13.

14.

15.

Nominal 4 second MSIV Closure - Scram Fails

Pressure Rise Begins

Relief Valves Lift

Some Fuel Experiences Transition Boiling

Recirculation Pumps Trip on High Pressure,
ARI is initiated, and Timed SLCS Logic is Triggered
Vessel Pressure Peaks

ARI Fails

Feedwater Flow Coasts Down to Lower Limit

HPCI and RCIC Flow Starts after Level 2 Initiation

ATWS Logic Timer Complete. SLCS Starts

Liquid Control Flow Reaches Core

Water Level Reaches Minimum and Begins to Rise
RHR Flow Begins (Pool Cooling)

Hot Shutdown Achieved*

Containment Temperature and Pressure Peak

Time

0

0

4 Seconds

5 Seconds

5

9

30

45

1

2

3

4

11

17

28

Seconds

Seconds

Seconds

Seconds

Minute

Minutes

Minutes

Minutes

Minutes

Minutes

Minutes

*Hot Shutdown is defined as generated power remaining below 1% NBR.
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Table 3.1.1-1 

BWR/4 MSIV CLOSURE 

Sequence of Events 

1. Nominal 4 second MSIV Closure - Scram Fails 

2. Pressure Rise Begins 

3. Relief Valves Lift 

4. Some Fuel Experiences Transition Boiling 

5. Recirculation Pumps Trip on High Pressure, 
ARI is initiated, and Timed SLCS Logic is Triggered 

6. Vessel Pressure Peaks 

7. ARI Fails 

8. Feedwater Flow Coasts Down to Lower Limit 

9. HPCI and Rcrc Flow Starts after Level 2 Initiation 

10. ATWS Logic Timer Complete. SLCS Starts 

11. Liquid Control Flow Reaches Core 

12. Water Level Reaches Minimum and Begins to Rise 

13. RHR Flow Begins (Pool Cooling) 

14. Hot Shutdown Achieved* 

15. Containment Temperature and Pressure Peak 

*Hot Shutdown is defined as generated power remaining below 1% NBR. 

3-43 

Time 

0 

a 
4 Seconds 

5 Seconds 

5 Seconds 

9 Seconds 

30 Seconds 

45 Seconds 

1 Minute 

2 Minutes 

3 Minutes 

4 Minutes 

11 Minutes 

17 Minutes 

28 Hinutes 
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Table 3.1.1-2

BWR/4 MSIV CLOSURE - SUMMARY

With ARI Failure

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (%)

Maximum Bulk Suppression Pool Temperature ( 0 F)

Associated Containment Pressure (psig)

86 GPM Boron 95% Mixing Eff
2 Min Logic Delay

*MSIV

527

1296

143

186

10.4

*With ARI all events occurring prior to 30 seconds remain unchanged.

3-44

NEDO-24222 

Table 3.1.1-2 

BWR/4 MSIV CLOSURE - SUMMARY 

With ARI Failure 

Maximum .Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

86 GPM Boron 95% Mixing Eff 
2 Min Logic Delay 

*MSIV 

527 

1296 

143 

186 

10.4 

*Wlth ARI all events occurring prior to 30 seconds remain unchanged. 
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Table 3.1.2-1

BWR/4 TURBINE TRIP

Sequence of Events

Time

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

Turbine Trips - Scram Fails

Pressure Rise Begins

Relief Valves Lift

Some Fuel Experiences Transition Boiling

Recirculation Pumps Trip on High Pressure, ARI is
Initiated and Timed SLCS Logic is Triggered

Vessel Pressure Peaks

ARI Fails

Feedwater Flow Run Back to Lower Limit Value

HPCI and RCIC Flow Starts on Level 2 Initiation

ATWS Logic Timer Complete, SLCS Starts

Liquid Control Flow Reaches Core

MSIV Closure

Water Level Reaches Minimum-and Begins to Rise

RHR Flow Begins (Pool Cooling)

Hot Shutdown Achieved

0

0

2 seconds

2 seconds

2 seconds
3 seconds

3 seconds

30 seconds

45 seconds

78 seconds

2 minutes

3 minutes

5 minutes

6 minutes

11 minutes

18 minutes

I
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Table 3.1. 2-1 

BWR/4 TURBINE TRIP 

1. Turbine Trips - Scram Fails 

2. Pressure Rise Begins 

3. Relief Valves Lift 

4. Some Fuel Experiences Transition Boiling 

5. Recirculation Pumps Trip on High Pressure, ARI is 
Initiated and Timed SLCS Logic is Triggered 

6. Vessel Pressure Peaks 

7. ARI Fails 

8. Feedwater Flow Run Back to Lower Limit Value 

9. HPC! and RCrC Flow Starts on Level 2 Initiation 

10. ATWS Logic Timer Complete, SLCS Starts 

Liquid Control Flow Reaches Core 

MSIV Closure 

1I. 

12. 

13. Water Level Reaches Minimum 'and Begins to Rise 

14. RHR Flow Begins (Pool Cooling) 

15. Hot Shutdown Achieved 

/ 
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Time -
0 

a 
2 seconds 

2 seconds 

2 seconds 
3 seconds 

3 seconds 

30 seconds 

45 seconds 

78 seconds 

2 minutes 

3 minutes 

5 minutes 

6 minutes 

11 minutes 

18 minutes 
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Table 3.1.2-2

BWR/4 TURBINE TRIP - SUMMARY

86 GPM Boron 95% Mixing Eff
2 Min Logic Delay

With ARI Failure Turbine Trip

Maximum Neutron Flux (%) 392

Maximum Vessel Bottom Pressure (psig) 1193

Maximum Average Heat Flux (%) 132

Maximum Bulk Suppression Pool 162

Temperature (UF)

Associated Containment Pressure (psig) 6.1

3-46

Table 3.1.2-2 

BWR/4 TURBINE TRIP - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 
Maximum Vessel Bottom Pressure (psig) 

Maximum Aver~ge Heat Flux (%) 

Maximum Bulk Suppression Pool 
Temperature CF) 

Associated Containment Pressure (psig) 

86 

3-46 

GPM Boron 95% Mixing 
2 Min Logic Delay 

Turbine Trip 

392 

1193 

132 

162 

6.1 

Eff 
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Table 3.1.3-1

BWR/4 INADVERTENT OPENING OF A RELIEF VALVE,

Sequence of Events Time

1. Relief Valve Opens Inadvertently and Fails
to Close

2. Alarm Sounds at 95*F and Operator Initiated
Pool Cooling

3. Suppression Pool Temperature Reaches 110*F, Operator
Attempts Manual Scram. ARI and Timed SLCS Logic
Initiated, Scram Fails

4. ARI Fails

5. SLCS Automatically Starts

6. Control Liquid Reached Core

7. Power is Less than Relief Valve Capacity

8. Isolation on Low Steam Line Pressure

9. Peak Suppression Pool Temperature and Pressure
are Reached

0

2 minutes

7.5 minutes

8 minutes

9.5 minutes

10 minutes

24 minutes

28 minutes

95 minutes
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Table 3.1.3-1 

BWR/4 INADVERTENT OPENING OF A RELIEF VALVE. 

Sequence of Events 

1. 

2. 

Relief Valve Opens Inadvertently and Fails 
to Close 

Alarm Sounds at 95°F and Operator Initiated 
Pool Cooling 

3. Suppression Pool Temperature Reaches 110°F. Operator 
Attempts Manual Scram. ARI and Timed SLCS Logic 
Initiated, Scram Fails 

4. ARI Fails 

5. SLCS Automatically Starts 

6. Control Liquid Reached Core 

7. Power is Less than Relief Valve Capacity 

8. Isolation on Low Steam Line Pressure 

9. Peak Suppression Pool Temperature and Pressure 
are Reached 

3-47 

Time 

o 

2 minutes 

7.5 minutes 

8 minutes 

9.5 minutes 

10 minutes 

24 minutes 

28 minutes 

95 minutes 
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Table 3.1.3-2

BWR/4 INADVERTENT OPENING OF A RELIEF VALVE - SUMMARY

86 GPM Boron 95% Mixing
Eff 2 Min Logic Delay

With ARI Failure IORV

Maximum Bulk Suppression Pool Temperature
Temperature ( 0 F)

Associated Containment
Pressure (psig)

183

9.7

3-48
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Table 3.1. 3-2 

BWR/4 INADVERTENT OPENING OF ~ RELIEF VALVE - SUMMARY 

With ARI Failure 

Maximum Bulk Suppression Pool Temperature 
Temperature (OF) 

Associated Containment 
Pressure (psig) 

3-48 

86 GPM Boron 95% Mixing 
Eff 2 Min Logic Delay 

IORV 

183 

9.7 



Table 3.1.4.1-1

BWR/4 MSIV ATWS SENSITIVITY RESULTS SUMMARY

Maximum
Neutron

Flux (% NBR)

Maximum
Average

Fuel Heat
Flux (% NBR)

Maximum
Pressure

(Vessel Bottom)
(psig)

Minimum
Water Level

(Ft. Below
Separator
Skirt)

Maximum
Suppression Pool

Bulk Temper-
ature (OF)

Maximum
Containment
Pressure

(psig)Sensitivity

4x

MS IV
Base Case

MSIV Boron
Delay - 90 Sec

MSIV Boron
Delay +120 Sec

MSIV 50% RHR
Capacity

MSIV 150% RHR
Capacity

MSIV Delay RHR
Start -2 Minutes

MSIV Delay RHR
Start +5 Minutes

MSIV Service
Water Temp (-20 0 F)

MSIV Service
Water Temp (+20 0 F)

527 @
4 sec

0

0

0

0

0

143 @
5 sec

0

0

0

0

0

1296 @
9 sec

0

0

0

0

0

0

0

0

11. 59 @
260 sec

-2.44

+0.87

0

0

0

0

0

0

186 @
28 min

-16

+12

+13

-2

-1

+2

-18

+19

10.3 @
28 min

-3.0

+2.8

+3.1

-0.4.

-0.2

+0.4

-3.3

+4.7

0

0

0

0

0

0

\ 

Table 3.1.4.1-1 

BWR/4 MSIV ATWS SENSITIVITY RESULTS SUMMARY 

Minimum 
Maximum Maximum Water Level Maximum Maximum 

Maximum Average Pressure (Ft. Below Suppression Pool Containment 
Neutron Fuel Heat (Vessel Bottom) Separator Bulk Temper- Pressure 

Sensitivity Flux (% NBR) Flux (% NBR) (psig) Skirt) ature (Op) (psig) 

MSIV 527 @ 143 @ 1296 @ 11. 59 @ 186 @ 10.3 @ 
Base Case 4 sec 5 sec 9 sec 260 sec 28 min 28 min 

MSIV Boron 0 0 0 -2.44 -16 -3.0 
Delay - 90 Sec 

MSIV Boron 0 0 0 +0.87 +12 +2.8 z 
ts:I 

Delay +120 Sec t1 
0 

I"o.l I 
I N 

.p. MSIV 50% RHR 0 0 0 0 +13 +3.1 -'= 
\0 N 

Capacity N 
N 

MSIV 150% RHR 0 0 0 0 -2 -0.4 
Capacity 

MSIV Delay RHR 0 0 0 0 -1 -0.2 
Start -2 Minutes 

MSIV Delay RHR 0 0 0 0 +2 +0.4 
Start +5 Minutes 

MSIV Service 0 0 0 0 -18 -3.3 
Water Temp (_20 0p) 

MSIV Service 0 0 0 0 +19 +4.7 
Water Temp (+20°F) 



Table 3.1.4.1-1

BWR/4 MSIV ATWS SENSITIVITY RESULTS SU'MAARY (Continued)

Maximum
Neutron

Flux (% NBR)

Maximum
Average

Fuel Heat
Flux (% NBR)

Maximum
Pressure

(Vessel Bottom)
(psig)

Minimum
Water Level

(Ft. Below
Separator
Skirt

Maximum
Suppression Pool

Bulk Temper-r
ature (OF)

Maximum
Containment
Pressure

(psig)Sensitivity

0

MSIV Suppression
Pool Size (-20%)

MSIV Suppression

Pool Size (+20%)

MSIV -50% Boron

MSIV +50% Boron

MSIV RPT Delay
(+0.5 sec)

MSIV RPT Delay
(+1 sec)

MSIV RPT Inertia
(+50%)

MSIV RPT Inertia
(-20%)

MSIV S/RV
Capacity (-20%)

MSIV S/RV
Capacity (+20%)

MSIV Nominal HPCI
Flow (-20%)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

+11

+24

+9

-2

+137

-66

0

0

0

+0.42

-0.84

-0.21

-0.13

0

-0.59

-0.86

-0.93

+0.04

+20

-13

+49

-16

+5

+5

0

+2

+2

-1

-8

+5.0

-2.5

+15.5

-3.0

+1.1

+1. 1

0

+0.4

+0.4

-0.2

-1.6

Z

0

J=
r•

I)) )

Table 3.1.4.1-1 

B\-lR/4 MSIV ATWS SENSITIVITY RESULTS SUMMARY (Continued) 

Minimum 
Maximum Maximum Water Level Maximum Maximum 

Maximum Average Pressure (Ft. Below Suppression Pool Containment 
Neutron Fuel Heat (Vessel Bottom) Separator Bulk Temper.,. Pres~ure 

Sensitivity Flux (% NBR) Flux (% NBR) (psig) Skirt ature (OF) (psig) 

MSIV Suppression 0 0 0 0 +20 +5.0 
Pool Size (-20%) 

MSIV Suppression 0 0 0 0 -13 -2.S 
Pool Size (+20%) 

MSIV -50% Boron 0 0 0 +0.42 +49 +15.5 

MSIV +50% Boron 0 0 0 -0.84 -16 -3.0 z 
\,.0.; till 
I t:1 

V1 MSIV RPT Delay 0 0 +11 -0.21 +5 +1.1 0 
0 I 

(+0.5 sec) N 
~ 
i\) 
N 

MSIV RPT Delay 0 0 +24 -0.13 +5 +1.1 N 

(+1 sec) 

MSIV RPT Inertia 0 0 +9 0 0 0 
(+50%) 

MSIV RPT Inertia 0 0 -2 -0.59 +2 +0.4 
(-20%) 

MSIV S/RV 0 0 +137 -0.86 +2 +0.4 
Capacity (-20%) 

MSIV S/RV 0 0 -66 -0.93 -1 -0.2 
Capacity (+20%) 

MSIV Nominal HPCI 0 0 0 +0.04 -8 -1.6 
Flow (-20%) 

) ) 



Table 4.4.1-1

BWR/4 MSIV ATWS SENSITIVITY RESULTS SUMMARY (Continued)

Maximum
Neutron

Flux (% NBR)

Maximum
Average

Fuel Heat
Flux (% NBR)

Maximum
Pressure

(Vessel Bottom)
(psig)

Minimum
Water Level

(Ft. Below
Separator

Skirt)

Maximum
Suppression Pool

Bulk Temper-
ature ("F)

Maximum
Containment

Pressure
(psig)

Sensitivity

Lb)
U'

MSIV HPCI Flow
(+20%)

MSIV RHR Capacity
(-50%) and Service
Water (-20 'F)

MSIV RHR Capacity
(+50%) and Service
Water (+20 F)

MSIV Nominal
Doppler (-.23C/%)

MSIV Nominal
Doppler (-.32c/%)

MSIV -8 Void
Coefficient (M/%)

MSIV - 14 Void
Coefficient (M/%)

0

0

0 0

0

0

0

0

0

+12

-8

-16

+11

-1.62

0

0

+1.40

-0.42

-1.35

+1.50

+12

-4

+17

-1

+5

+1

-1

+4.1

0

P3

I

+2.8

-0.8

+57

-30

-96

+3

-2

-0.2

+1. 1

+0.2

-0.2

-5

+4-4

., 
I 

Table 4.4.1-1 

BWR/4 MSIV ATWS SENSITIVITY RESULTS SUMMARY (Continued) 

Minimum 
Maximum Maximum Water Level Maximum Maximum 

Maximum Average Pressure (Ft. Below Suppression Pool Containment 
Neutron Fuel Heat (Vessel Bottom) Separator Bulk Temper- Pressure 

Sensitivity Flux 0: NBR) Flux (% NBR) (psig) Skirt) ature (OF) (psig) 

MSIV HPCI Flow 0 0 0 -1.62 +12 +2.8 
(+20%) 

MSIV RHR Capacity 0 0 0 0 -4 -O.B 
(-50%) and Service 
Water (-20 or) 

MSIV RHR Capacity 0 0 0 0 +17 +4.1 ~ 
w (+50%) and Service 0 
I Water (+20 F) 0 

V1 I 
I-' I\.) 

~ 

MSIV Nominal +57 +3 +12 +1.40 -1 -0.2 N 

ru Doppler (-.23¢/%) 

MSIV Nominal -30 -2 -8 -0.42 +5 +1.1 
Doppler (-.32¢/%) 

MSIV -8 Void -96 -s -16 -1.35 +1 +0.2 
Coefficient (¢/%) 

MSIV - 14 Void -4 +4 +11 +1.50 -1 -0.2 
Coefficient (¢/io) 
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BRW/4 MSIV

Doppler
Coef

¢/ 0 F

-0.200

-0.230

-0.283

-0.320

-0.200

-0.230

-0.280

-0.320

-0.230

-0.283

Void
Coef

-8

-8

-8

-8

-14

-14

_i+

-1i

-14

-14

Neutron
Flux

-11

-46

-96

-124

+93

+57

570+

-30

+39

-4

Table 3.1.4.1-2

ATWS NUCLEAR PARAMETRIC STUDY SUMMARY

Change in Peak Value

Average Heat Vessel Bottom Suppress
Flux Pressure Pool Te

% psi _ _F

-0.9 +6

-2.5 -3

-5.1 -16 +0.6

-6.8 -23

+4.0 +20

+2.5 +12 -1.3
+ -

141.1 1285+ 186.2

-1.6 -8 +5.3

+6.5 +22

+4.2 +11 -0.6

Min Level/
ion Time
mp (Wide Range)

ft/sec

F

-1.3/233

+1.4/326

+
-11.6/261

-0.4/243

+1.5/338

+ Values shown for nominal void and
Other peaks are relative to these.

Doppler coefficients are absolute peaks.
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Table 3.1.4.1-2 

BRW/4 MSIV ATWS NUCLEAR PARAMETRIC STUDY SUMMARY 

Change in Peak Value 

Min Leve1/ 
Doppler Void Neutron Average Heat Vessel Bottom Suppression Time 

Coef Coef Flux Flux Pressure Pool Temp (Wide Range) 

¢/oF C/% % % psi OF ft/sec 

-0.200 -8 -11 -0.9 +6 

-0.230 -8 -46 -2.5 -3 

-0.283 -8 -96 -5.1 -16 +0.6 -1. 3/233 

-0.320 -8 -124 -6.8 -23 

-0.200 -11 +93 +4.0 +20 

-0.230 -11 +57 +2.5 +12 -1.3 +1.4/326 

-0.280+ -11 
+ 570+ 141.1 + 1285+ 186.2 + -11.6/261 

+ 

-0.320 -11 -30 -1.6 -8 +5.3 -0.4/243 

-0.230 -14 +39 +6.5 +22 

-0.283 -14 -4 +4.2 +11 -0.6 +1.5/338 

+ Values shown for nominal void and Doppler coefficients are absolute peaks. 
Other peaks are relative to these. 

/ 
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Table 3.1.4.2-1
*BWR/4 TURBINE TRIP ATWS SENSITIVITY RESULTS SUMMARY

Maximum
Neutron

Flux (% NBR)

Average
Fuel Heat

Flux (% NBR)

Maximum
Pressure

(Vessel Bottom)
(psig)

Minimum
Water Level

(Ft. Below
Separator

Skirt)

Maximum
Suppression Pool

Bulk Temper-
ature ( 0 F)Sensitivity

Maximum
Containment
Pressure

(psig)

+0.6 @ -+5.5**
4 min

La

U'

TT Base and
Special Cases

TT Boron Delay
(-90 sec)

TT Boron
(+30 sec)

TT HPCI Capacity
(-10%)

TT HPCI
(+25%)

TT Nominal
Doppler (-.20c/%)

TT Nominal
Doppler (-32¢/%)

TT -8 Void Coeff.
TT -14 Void Coeff.

402 @
.9 sec

0

0

0

0

+50

133 @
2.7 sec

0

0

0

0

+3

1193 @
2.5 sec

0

0

11.77 @
406 sec

102 @
4 min

-2.64

+0.64

-2 -0.1

0 0

0

0

-4

-1

-4
+4

+60

+1.03 +56 +5.0 N

ri

N
NNo-3.02

-2.50

+0.62

-0.53
-4.38

+2

-2

+0.1

-0.1

-17 -1

-4
+4

0 0

-105
+136

+2
-2

+0.1
-0.1

Neglecting MSIV closure unless otherwise noted.
**With MSIV closure at Level I

Table 3.1.4.2-1 

BWR/4 TURBINE TRIP ATWS SENSITIVITY RESULTS SUMMARY * 

Minimum 
Maximum Water Level Maximum Maximum 

Maximum Average Pressure (Ft. Below Suppression Pool Containment 
Neutron Fuel Heat (Vessel Bottom) Separator Bulk Temper- Pressure 

Sensitivity Flux (% NBR) Flux (% NBR) (psig) Skirt) ature (OF) (psig) 

TT Base and 402 @ 133 @ 1193 @ 11.77 @ 102 @ ** +0.6 @ +5.5 ** +60 
Special Cases .9 sec 2.7 sec 2.5 sec 406 sec 4 min 4 min 

TT Boron Delay 0 0 0 -2.64 -2 -0.1 
(-90 sec) 

TT Boron 0 0 0 +0.64 0 0 
(+30 sec) ~ w 

I ** ** ** 8 VI TT HPCI Capacity 0 0 0 +1.03 +56 +5.0 w I 

(-10%) I\l 
-""" 
I\l 
N 

TT HPCI 0 0 0 -3.02 +2 +0.1 N 

(+25%) 

TT Nominal +50 +3 -4 -2.50 -2 -0.1 
Doppler (-.20~/%) 

TT Nominal -17 -1 -1 +0.62 0 0 
Doppler (-32~/%) 

TT -8 Void Coeff. -105 -4 -4 -0.53 +2 +0.1 
TT -14 Void Coeff. +136 +4 +4 -4.38 -2 -0.1 

* Neglecting MSIV closure unless otherwise noted. 
**With MSIV closure at Level 1 



NEDO-24222

BWR/4 TURBINE

Table 3.1.4.2-2

TRAP ATWS NUCLEAR PARAMETRIC STUIJDY SUMMARY

Change in Peak Value

Doppler
Coef
00°F

-0.200

-0.230

-0.283

-0.320

-0.200

-0.230

-0.283

-0.320

-0.200

-0.230

-0.280+

-0.320

-0.200

-0.230

-0 .283

-0.320

Void
Coef

¢/%

-6

-6

-6

-6

-8

-8

-8
-8

-14
-11

-11

-14

-14

-14
-14

-14

Neutron
Flux

-136

-144

-156

-163

-77

-88

-105

-115

+50

+30

399+

-17

+216

+183

+136

+109

Average Heat
Flux

-5.0

-6.5

-8.2

-9.4

-i.3

-2.5

-4.4

-5.6

+3.2

+2.0

132.0+

-1.3

+6.7

+5.6

+3.6

+2.4

Vessel Bottom
Pressure

.psi

-4

-5
**

-7
**

-8

-1

-2

-4

-5

+4

+3

1193+

-i

+8

+7

+4

+3

Suppression
Pool Temp

OF

+2.2

-1.6

102.0+

+0.0

1.7

Min Level/
Time

(Wide Range)

ft/sec

+0.5/260

+2.5/385

-11.8/406+

-0.6/416

+4.4/375

+Values shown for nominal
Other peaks are relative

void and Doppler coefficients are absolute peaks.

to these.

*Neglecting MSIV closure at Level 1.
**These cases did not reach high pressure trip setpoint (analytical upper limit

= 1150 psig dome pressure). See Section 3.2.4.2.5 for a discussion of this

situation.

3-54

NEDO-2422? 

Tahll' 'L1.4.2-2 

* BWR/4 TURBINE TRAP ATWS NUCLEAR PARAMETRIC STUDY ~UMMA!{Y 

Change in Peak Value 
Min Levell 

Doppler Void Neutron A'Verage Heat Vessel Bottom Suppression Time 
Coef Coef Flux Flux Pressure Pool Temp (Wide Range) 

CrF ¢/% % % ... psi OF ft/sec 

-0.200 -6 -l36 -5.0 -4 
** -0.230 . -6 -144 -6.5 -5 

-0.283 -6 -156 ** -8.2 -7 

- 0.320 -6 -163 ** -9.4 -8 

-0.200 -8 -77 -1.3 -1 

-0.230 -8 -88 -2.5 -2 

-0.283 -8 -105 -4.4 -4 +2.2 +0.5/260 
** -0.320 -8 -US -5.6 -:-s 

-0.200 -11 +50 +3.2 +4 -1.6 +2.5/385 

-0.230 -11 +30 +2.0 +3 

-0.280+ -11 399+ 132.0+ 1193+ 102.0+ -11.8/406+ 

-0.320 -11 -17 -1.3 -1 +0.0 -0.6/416 

-0.200 -14 +216 +6.7 +8 

-0.230 -14 +183 +5.6 +7 

-0 .283 -14 +136 +3.6 +4 1.7 +4.4/375 

-0 .320 -14 +109 +2.4 +3 

+Values shown for nominal void and Doppler coefficients are absolute peaks. 
Other peaks are relative to these. 

*Neglecting MSIV closure at Level 1.· 
**These cases did not reach high pressure trip setpoint (analytical upper limit 

= 1150 psig dome pressure). See Section 3.2.4.2.5 for a discussion of this 
situation. 
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Table 3.1.4.2.7-1

NORMALIZED RESULTS BWR/4 TURBINE TRIP LIMIT CYCLE CHARACTERISTICS*

Parameter
Varied

HPCI
Capacity

(19.8% of FW)

un
kLn

Doppler

Coefficient

(-0.28c/ 0 F)

Void
Coefficient

(-$.11/%)

Boron Timer
Delay

(2 Min)

Boron Mixing
Efficiency

\ and/or
Capacity

86 gpm @
(95%)

Change

(W)

+25

-10

+14.3

-28.6

+27.3

-18.2

+25
(150 sec)

-75
(30 sec)

Neutron
Flux

Max/Min

2.17/0.65

25.9/0.11

29.7/0.1

3.75/0.24

6.7/0.13

4.56/0.12

21.1/0.11

2.98/0.3

Average
Surface

Heat Flux
Max/Min

1.45/1.15

2.31/0159

1.96/0.59

1.42/0.75

1.68/0.63

1.71/0165

1.95/0.65

1.35/0.81

Net
Reactivity

Max/Min

0.55/-0.96

1.15/-9.34

0.93/-8.47

0.77/-2.72

0.95/-6.14

0.93/-6.63

1.0/-8.07

0.72/-2.04

Vessel
Pressure

Max/Min

0.98/0.97

1.0/0.95

1.0/9.97

0.99/0,97

0.99/0.97

1.0/0.97

1.0/0.97

0.99/0.97

Vessel
Level

Max/Min

1.36/1.67

1.04/2.27

1.04/2.14

0.96/1.60

0.36/1.85

1.17/2.14

1.03/2.15

1.08/1.58

Limit
Cycle

Duration
(Normalized)

0.25

1.07

1.03

0.81

1.24

0.88

1.04

0.66

Average
Neutron

Flux

1.29

0.89

1.0

1.0

0.94

1.01

1.0

1.0

0
N

No
to

+30 5.27/0.13 1.55/0.57 0.89/-5.42

1.0/-6.24

0.99/0.97

1.0/0.97

0.36/0.96

0.97/2.10

0.96

1.15

0.91

1.01-10.5 10.32/0.15 1.81/0.69

*Neglecting MSIV closure at Level 1

Table 3.1.4.2.7-1 

NORMALIZED RESULTS BWR/4 TURBINE TRIP LIMIT CYCLE CHARACTERISTICS* 
• 

Average Limit 
Neutron Surface Net Vessel Vessel . Cycle Average 

Parameter Change Flux Heat Flux Reactivity Pressure Level Duration Neutron 
Varied (%) Max/Min Max/Min Max/Min Max/Min Max/Min (Normalized) Flux 

HPCI +25 2.17/0.65 1.45/1.15 0.55/-0.96 0.98/0.97 1. 36/1.67 0.25 1.29 
Capacity 

(19.8% of FW) -10 25.9/0.11 2.31/0159 1.15/-9.34 1.0/0.95 1.04/2.27 1.07 0.89 

Doppler +14.3 29.7/0.1 1. 96/0.59 0.93/-8.47 1.0/9.97 1.04/2.14 1.03 1.0 
Coefficient 

(-0.28¢rF) -28.6 3.75/0.24 1.42/0.75 0.77/-2.72 0.99/0·.97 0.96/1.60 0.81 1.0 

Void +27.3 6.7/0.13 1. 68/0.63 0.95/-6.14 0.99/0.97 0.36/1.85 1.24 0.94 
Coefficient 

~ w (-$.11/%) -18.2 4.56/0.12 1.71/0165 0.93/-6.63 1.0/0.97 1.17 /2.14 0.88 1.01 I 
VI t:1 
VI 0 

21.1/'0.11 1.95/0.65 1. 0/-8.07 1.0/0.97 1.03/2.15 1.04 1.0 
I 

Boron Timer +25 N 
J;::: 

Delay (150 sec) N 
N 

(2 Min) -75 2.98/0.3 1. 35/0.81 0.72/-2.04 0.99/0.97 1.08/1.58 0.66 1.0 N 

(30 sec) 

Boron Mixing 
Efficiency +30 5.27/0.13 1.55/0.57 0.89/-5.42 0.99/0.97 0.36/0.96 0.96 0.91 

'-. _and/or 
Capacity 

86 gpm @ -10.5 10.32/0.15 1.81/0.69 1.0/-6.24· 1.0/0.97 0.97/2.10 1.15 1.01 
(95%) 

*Neglecting MSIV closure at Level 1 



Table 3.4.2.7-2

NORMALIZATION FACTORS CHOSEN FROM SPECIAL CASE

Parameter

HPCI + RCIC*

Doppler

Void

Boron Delay

Boron Capacity

Boron Mixing

Special Case
Value

19.8%'NBR FW

-0.28€/ 0 F

2 Min

86 GPM

95%

Average Power
During

Limit Cycle
(% NBR)

22.9

23.1

23.1

23.1

23.1

23.1

Net
Reactivity

($)

0.78

0.90

0.90

0.90

0.90

0.90

Duration** of
Limit Cycle

(sec)

454

456

456

456

456

456

*Special case for this sensitivity study used -0.23€I/F Doppler Coefficient.
**From beginning of significant cycles until elimination of S/RV cycling (> ±5%)

))

\..oJ 
I 

VI 
0\ 

Table 3.4.2.7-2 

NORMALIZATION FACTORS CHOSEN FROM SPECIAL CASE 

Average Power 
During Net 

Special Case Limit Cycle Reactivity 
Parameter Value (% NBR) ($ ) 

HPCI + RCIC* 19.8%" NBR FW 22.9 0.78 

Doppler -0. 28~;oF 23.1 0.90 

Void -llC/% 23.1 0.90 

Boron Delay 2 Min 23.1 0.90 

Boron Capacity 86 GPM 23.1 0.90 

Boron Mixing 95% 23.1 0.90 

*Specia1 case for this sensitivity study used -0.23¢/oF Doppler Coefficient. 
**From beginning of significant cycles until elimination of S/RV cycling (~ ±5%) 

Duration** of 
Limit Cycle 

(sec) 

454 

456 

456 

456 

456 

456 



Table 3.1.4.2.7-3

EFFECT OF DIFFERENT SHAPES OF LIMIT
CYCLE ON FUEL CONDITIONS

Maximum Power
F (Fraction During Limit Cycle

of Limit Cycle (% of NBR)
Where Power >P ) 'INormalized to Ave. Power]ave ________________

Fuel Clad
Temperature

During the Cycle
(Peak to Peak)

(Cycle Period = 4 Seconds)

Fuel Clad Temperature
Variation During

the Cycle
(Peak to Peak)

(Cycle Period = 8 Seconds)

0.5

0.3

0.2

0.1

50% [2.0]

"-,4

83.3%[3.33]

125%[5]

250%[10]

320F

47 0 F

500F

570F

67 0F

1090F

1150 F

126 0F

1300F0.05 500%[20] 600F

w 
I 

\Jl 

" 

F (Fraction 
of Limit Cycle 

Where Power >P ) 
ave 

o.s 

0.3 

0.2 

0.1 

0.05 

Table 3.1.4.2.7-3 

EFFECT OF DIFFERENT SHAPES OF LIMIT 
CYCLE ON FUEL CONDITIONS 

Maximum Power 
During Limit Cycle 

(% of NBR) 
INormalized to Ave. Power] 

50%[2.0] 

83.3%[3.33] 

125%[5] 

250%[10] 

500%[20] 

Fuel Clad 
Temperature 

During the Cycle 
(Peak to Peak) 

(Cycle Period = 4 Seconds) 

32°F 

47°F 

50°F 

57°F 

60°F 

Fuel Clad Temperature 
Variation During 

the Cycle 
(Peak to Peak) 

(Cycle Period = 8 Seconds) 

67°F 

109°F 

115°F 

126°F 

130°F 

~. 

8 
I 
'\) 
.",. 
N 
N 
N 
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Table 3.1.5-1

BWR/4 LOSS OF CONDENSER VACUUM

Sequence of Events

1. Main Turbine (and feedwater
turbines)*Trip due to low
Condenser Vacuum, Bypass
opens - All Normal scrams fail.

2. Pressure and power
rise begins

3. Peak power occurs

4. Relief Valves Lift

5. ATWS High Pressure
Setpoint (1150 psig) is
reached
- Recirculations pumps tripped
- ARI is initiated
- SLCS Timed Logic activated

6. Some fuel may experience boiling

transition

7. Peak Vessel pressure occurs

8. ARI Control Rod Insertion

9. ATWS logic timer completed
- Initiates feedwater flow limit

10. MSIV's and bypass close due to
low condenser vacuum

11. Reactor water level drops to
level 2
- Initiates containment isolation
- HPCI and RCIC start

With ARI

0 Seconds

0 Seconds

Time

With ARI Failure

0 Seconds

0 Seconds

1

2

2

Second

Seconds

Seconds

1

2

2

Second

Seconds

Seconds

2 Seconds

3 Seconds

22 Seconds

N/A

30 Seconds

44 Seconds

2 Seconds

3 Seconds

Fails

27 Seconds

30 Seconds

60 Seconds

*Sequence conservatively assumes motor driven feedwater pumps.
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Table 3.1. 5-1 

BWR/4 LOSS OF CONDENSER VACUUM 

Sequence of Events 

1. Main Turbine (and feedwater 
turbines)* Trip due to low 
Condenser Vacuum, Bypass 
opens - All Normal scrams fail. 

2. Pressure and power 
rise begins 

3. Peak power occurs 

4. Relief Valves Lift 

5. ATWS High Pressure 
Setpoint (1150 psig) is 
reached 
- Recirculations pumps tripped 

ARI is initiated 
- SLCS Timed Logic activated 

6. Some fuel may experience boiling 
transition 

7. Peak Vessel pressure occurs 

8. ARI Control Rod Insertion 

9. AT1-lS logic timer completed 
- Initiates feedwater flow limit 

10. MSIV's and bypass close due to 
low condenser vacuum 

11. Reactor water level drops to 
level 2 
- Initiates containment isol~tion 
- HPCI and ReIC start 

With ARI 

o Seconds 

o Seconds 

1 Second 

2 Seconds 

2 Seconds 

2 Seconds 

3 Seconds 

22 Seconds 

N/A 

30 Seconds 

44 Seconds 

Time 

With ARt Failure 

o Seconds 

o Seconds 

1 Second 

2 Seconds 

2 Seconds 

2 Seconds 

3 Seconds 

Fails 

27 Seconds 

30 Seconds 

60 Seconds 

*Sequence conservatively assumes motor driven feedwater pumps. 
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Table 3.1.5-1 (Continued)

12. HPCI and RCIC flow begins

13. Final ATWS logic times completed
- Initiates SLCS

14. Liquid control flow reaches core

15. Reactor water level reaches

minimum and begins to rise

16. RHR flow begins (pool cooling)

17. Hot shutdown achieved

18. Containment temperature and
pressure peaks occur

With ARI

64 Seconds

N/A

N/A

64 Seconds

>11 Minutes

22 Seconds

With ARI Failure

80 Seconds

2 Minutes

3 Minutes

5 Minutes

11 Minutes

18 Minutes

27 Minutes
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Table 3.1.5-1 (Continued) 

12. HPCI and RCIC flow begins 

13. Final ATWS logic times completed 
- Initiates SLCS 

14. Liquid control flow reaches core 

15. Reactor water level reaches 
minimum and begins to rise 

16. RHR flow begins (pool cooling) 

17. Hot shutdown achieved 

18. Containment temperature and 
pressure peaks occur 

3-59 

With ARI 

64 Seconds 

N/A 

N/A 

64 Seconds 

>11 Minutes 

22 Seconds 

With ARI Failure 

80 Seconds 

2 Minutes 

3 Minutes 

5 Minutes 

11 Minutes 

18 Minutes 

27 Minutes 
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Table 3.1.5-2

BWR/4 LOSS OF CONDENSER VACUUM - SUMMARY

86 GPM Boron 95%
With ARI Failure Mixing Eff 2 Min Logic Delay

Loss of Condenser Vacuum

Maximum Neutron Flux (%) 403
Maximum Vessel Bottom Pressure (psig) 1195
Maximum Average Heat Flux (%) 133
Maximum-Bulk Suppression Pool Temperature 188
(OF)

Associated Containment Pressure (psig) 10.7

3-60

NEDO-24222 

Table 3.1.5-2 

BWR/4 LOSS OF CONDENSER VACUUM - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum-Bulk Suppression Pool Temperature 
(Op) 

Associated Containment Pressure (psiS) 

3-60 

86 GPM Boron 95% 
Mixing Eff' 2 Min Logic Delay 

Loss of Condenser Vacuum 

403 

1195 

133 

188 

10.7 



Table 3".1.7-1

BWR/4 - LOSS OF FEEDWATER HEATER

Sequence of Events Time

1. Inadvertent tripping of feedwater heaters; feedwater
enthalpy begins to drop

2. Reactor and turbine-generator power begins to rise

3. APRM high power alarm (108%), operator attempts to
insert rods

4. Vessel pressure levels off after a small increase

5. Power levels off below the scram setpoint(s)

6. Manual scram attempted after control rod insertion
attempts have failed

7. Manual ARI and SLCS initiated after manual scram
fails

8. ARI control rod insertion completed, eliminating
SLCS initiation, and achieving reactor shutdown

9. Final ATWS logic timer completed

- Initiates SLCS (if ARI has failed)

10. Liquid control reaches core (if ARI has failed)

11. Hot shutdown achieved (if ARI has failed)

0 Seconds

2 Seconds

34 Seconds

56 Seconds

72 Seconds

<10-1/2 Minutes

<10-1/2 Minutes

<11 Minutes

<12-1/2 Minutes

<14 Minutes

<35 Minutes

3-61
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Table 3-.1. 7-1 

BWR/4 - LOSS OF FEEDWATER HEATER 

Sequence of EVents 

1. Inadvertent tripping of feedwater heaters; feedwater 
enthalpy begins to drop 

2. Reactor and turbine-generator power begins to rise 

3. APRM high power alarm (108%), operator attempts to 
insert rods 

4. Vessel pressure levels off after a small increase 

5. Power levels off below the scram setpoint(s) 

6. Manual scram attempted after control rod insertion 
attempts have failed 

7. Manual ARI and SLCS initiated after manual scram 
fails 

8. ARI control rod insertion completed, eliminating 
SLCS initiation, and achieving reactor shutdown 

9. Final ATWS logic timer completed 
- Initiates SLCS (if ARI has failed) 

10. Liquid control reaches core (if ARI has failed) 

11. Hot shutdown achieved (if ARI has failed) 

3-61 

Time 

o Seconds 

2 Seconds 

34 Seconds 

56 Seconds 

72 Seconds 

~lO-1/2 Minutes 

::.10-1/2 Hinutes 

<11 Minutes 

.=:.12-1/ 2 ~!inutes 

<14 Minutes 

<35 Minutes 
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Table 3.1.7-2

BWR/4 LOSS OF FEEDWATER HEATER - SUMMARY

86 GPM Boron 95% Mixing EUf
2 Min + Logic Delay

Loss of Feedwater HeaterWith ARI Failure

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (%)

Maximum Bulk Suppression Pool Temperature
(OF)

Associated Containment Pressure (psig)

113

1046

112

90

no change

7,
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Table 3.1.7-2 

BWR/4 LOSS OF FEEDWATER HEATER - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature 
(OF) 

Associated. Containment Pressure (psig) 

/ 
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86 GPM Boron 95% Mixing Eff 
2 Mi~ __ ~ Log~c Delay 

Loss of Feedwater Heater 

113 

1046 

112 

90 

no change 



NEDO-24222

Table 3.1.8-1

BWR/4 FEEDWATER CONTROLLER FAILURE - MAXIMUM DEMAND

Time

Sequence of Events With ARI With ARI Failure

1. Feedwater controller fails to
maximum demand. Reactor water
level begins to rise, as well as
a gradual power increase.

2. High water level (Level 8)
setpoint is reached
- Turbine trips, bypass opens -

All normal scram assumed to fail
- Feedwater pumps trip

3. Pressure and power rise begins

4. Some fuel experiences boiling
transition

5. Relief valves lift

6. ATWS high pressure setpoint is
reached
- Recirculation pumps are

tripped*
- ARI is initiated
- SLCS timed logic is activated

7. Maximum vessel pressure occurs

8. ARI control rod insertion com-
pleted, eliminating SLCS
initiation

9. ATWS logic limits feedwater

10. Lowest setpoint S/RV closes
and stays closed. Steam flow
to suppression pool stops and
peak containment and suppression
pool conditions occur.

0 0

6 Seconds

6 Seconds

7 Seconds

8 Seconds

8 Seconds

9 Seconds

28 Seconds

6 Seconds

6 Seconds

7 Seconds

8 Seconds

8 Seconds

9 Seconds

Fails

N/A 33 Seconds

37 Seconds30 Seconds
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Table 3.1. 8-1 

BWR/4 FEEDWATER CONTROLLER FAILURE - MAXIMUM DEMAND 

Sequence of EVents 

1. Feedwater controller fails to 
maximum demand. Reactor water 
level begins to rise, as well as 
a gradual power increase. 

2. High water level (Level 8) 
setpoint is reached 
- Turbine trips, bypass opens -

All normal scram assumed to fail 
- Feedwater pumps trip 

3. Pressure and power rise begins 

4. Some fuel experiences boiling 
transition 

5. Relief valves lift 

6. ATWS high pressure setpoint is 
reached 
- Recirculation pumps are 

tripped* 
- ARI is initiated 

SLCS timed logic is activated 

7. Maximum vessel pressure occurs 

8. ARI control rod insertion com­
pleted, eliminating SLCS 
initiation 

9. ATWS logic limits feedwater 

10. Lowest setpoint SIRV closes 
and stays closed. Steam flow 
to suppression pool stops and 
peak containment and suppression 
pool conditions occur. 

3-63 

Time 

With ARI With ARI Failure 

o o 

6 Seconds 6 Seconds 

6 Seconds 6 Seconds 

7 Seconds 7 Seconds 

8 Seconds 8 Seconds 

8 Seconds 8 Seconds 

9 Seconds 9 Seconds 

28 Seconds Fails 

N/A 33 Seconds 

30 Seconds 37 Seconds 
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Table 3.1.8-1 (Continued)

Sequence of Events With ARI

11. Reactor water level drops to
Level 2
- Initia-ts containment isolation

Initiates HPCI and RCIC

12. HPCI and RCIC flow begins

13. ATWS logic timer completed
- initiates SLCS

14. Liquid control flow reaches core

15. Reactor water level reaches
minimum and begins to rise

16. RUR flow begins (pool cooling)

17. Reactor water level is restored

shutting off and starting,
automatic cycling of the HPCI
and RCIC between L2 and L8
(neglecting preferred operator
action to manually control flow
and level).

49

69

N/A

N/A

N/A

With ARI Failure

41 Seconds

61 Seconds

2 Minutes

3 Minutes

7 Minutes

>11 Minutes 11 Minutes

16 MinutesN/A

18. Hot shutdown achieved 28 Seconds 17 Minutes

*Direct recirculation pump trip from turbine stop valve closure was

conservatively neglected.

A-h/A

NEDO-24222 

Table 3.1.S-1 (Continued) 

Sequence of Events 

11. Reactor water level drops to 
Level 2 
- Initia1:"~s containment isolation 
- Initiates HPCI and ReIC 

12. HPCI and RCIC flow begins 

13. ATWS logic timer completed 
- initiates SLCS 

14. Liquid control flow reaches core 

15. Reactor water level reaches 
minimum and begins to rise 

16. RHR flow begins (pool cooling) 

17. Reactor water level is restored 
shutting off and starting, 
automatic cycling of the HPCI 
and RCIe between L2 and LS 
(neglecting preferred operator 
action to manually control flow 
and level). 

18. Hot shutdown achieved 

With ARI 

49 

69 

N/A 

N/A 

N/A 

>11 Minutes 

N/A 

28 Seconds 

With ARI Failure 

41 Seconds 

61 Seconds 

2 Minutes 

3 Minutes 

7 Minutes 

11 Minutes 

16 Minutes 

17 Minutes 

*Direct recirculation pump trip from turbine stop valve closure was 
conservatively neglected. 
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Table 3.1.8-2

BWR/4 FEEDWATER CONTROLLER FAILURE (MAXIMUM DEMAND) - SUMMARY

86 GPM Boron 95%
Mixing Eff 2 Min Logic Delay

With ARI Failure Feedwater Controller Failure

Maximum Neutron Flux (%) 511

Maximum Vessel Bottom Pressure (psig) 1195

Maximum Average Heat Flux (%) 137

Maximum Bulk Suppression Pool Temperature 99
(OF) 0.5
Associated Containment Pressure (psig)

3-65

NEDO-214222 

Table 3.1. 8-2 

BWR/4 FEEDWATER CONTROLLER FAILURE (MAXIMUM DEMAND) - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature 
(OF) . 

Associated Containment Pressure (psig) 

3-65 

86 GPM Boron 95% 
~1xing Eff 2 Min Logic Delay 

Feedwater Controller Failure 

511 

1195 

137 

99 

0.5 
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Table 3.1.9-1

BWR/4 PRESSURE REGULATOR FAILURE (MAXIMUM DEMAND)

Time

Sequence of Events With ARI With ARI Failure

1. Pressure regulator to maximum demand

2. Pressure and power begin to fall

3. Low steamline pressure isolation set-
point reached
- MSIV closure
- Scram normally initiated (assumed

to fail)

4. Pressure and power begin to rise

5. Relief valves lift

6. Some fuel experiences boiling transition

7. ATWS high pressure setpoint is reached
(1150 psig)
- Recirculation pumps are tripped
- ARI is initiated
- SLCS and feedwater limit timed logic iP

8. Vessel pressure peaks

9. ARI control rod insertion completed

10. ATWS logic timer completed
- Initiates FW limit

11. Feedwater flow runs back to lower limit
value

12. Reactor water level drops to Level 2
- Initiates containment isolation
- Initiates HPCI and RCIC

13. HPCI and RCIC flow begins

14. Final ATWS logic timer completed
- Initiates SLCS

15. Liquid control flow reaches core

16. Reactor water level reaches minfrinum
and begins to rise

17. RHR flow begins (pool cooling)

L8. Hot shutdown acliI'ved

19. Containment Ictluepr1atrC aM!d pressure
peak

0

0

0

0

19 Seconds 19 Seconds

20

22

26

26

Seconds

Sec6nds

Seconds

Seconds

20

22

26

26

Seconds

Seconds

Seconds

Seconds

27 Seconds

activated

31 Seconds

47 Seconds

N/A

N/A

66 Seconds

86 Seconds

N/A

N/A

91 Seconds

"I.1 Minutes

47 Seconds

N/A

27 Seconds

31

Assumed

52

67

73

Seconds

to fail

Seconds

Seconds

Seconds

93 Seconds

2½ Minutes

3h Minutes

4 Minutes

11

28
27

Minutes

Minutes

Minutes

3-66

NEDO·2~222 

Table 3.1. 9-1 

BWR/4 PRESSURE REGULATOR FAILURE (MAXIMUM DEMAND) 

Sequence of Events 

1. Pressure regulator to maximum demand 

2. Pressure and power begin to fall 

3. Low steamline pressure isolation set­
point reached 
- MSIV closure 
- Scram normally initiated (assumed 

to fail) 

4. Pressure and power begin to rise 

5. Relief valves lift 

6. Some fuel experiences boiling ,transition 

7. ATWS high pressure setpoint is reached 
(USO psig) 

With ARI 

a 
o 

19 Seconds 

20 Seconds 

22 Seconds 

26 Seconds 

26 Seconds 

- Recirculation pumps are tripped 27 Seconds 
- ARI is initiated 
- SLCS and feedwater limit timed logic is activated 

8. Vessel pressure peaks 

9. ARI control rod insertion completed 

10. ATWS logic ,timer completed 
- Initiates FW limi,t 

11. Feedwater flow runs back to lower limit 
value 

12. Reactor water level drops to Level 2 
- Initiates containment isolation 
- Initiates HPCI and Rcrc 

13. HPCI and RCIC flow begins 

14. Final ATWS logic timer complete9 
- Initiates SLeS 

15. Liquid control flow reaches core 

16. Reactor water leve1 reaches minEmum 
and begins to rise 

17. RHR flow begi.ns (pool cooling) 

18. Hot shutdoWll aeh i I'VI'U 

19. Containmenl It'mpl'r'illlll"e ilnd pressure 
peak 

3-66 

31 Seconds 

47 Seconds 

N/A 

N/A 

66 Seconds 

86 Seconds 

N/A 

N/A 

91 Seconds 

:·.11 Minutes 

1\ 7 S('(~()nds 

N/A 

Time 

With ARI Failure 

19 

20 

22 

26 

26 

o 
o 

Seconds 

Seconds 

Seconds 

Seconds 

Seconds 

27 Seconds 

31 Seconds 

Assumed to fail 

S2 Seconds 

67 Seconds 

73 Seconds 

93 Seconds 

2~ Minutes 

~ Minutes 

4 Minutes 

11 Minutes 

18 Minutes 

27 Minutes .-, 
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Table 3.1.9-2
BWR/4 PRESSURE REGULATOR FAILURE (MAXIMUM DEMAND) - SUMMARY

86 GPM Boron 95% Mixing Eff
-2 Min Logic Delay

With ARI Failure Pressure Regulator Failure

Maximum Neutron Flux (%) 585

Maximum Vessel Bottom Pressure (psig) 1280

Maximum Average Heat Flux (%) 139

Maximum Suppression Pool Temperature ('F) 189

Associated Containment Pressure (psig) 11.0

3-67

NEDO ... 24222 

Table 3.1. 9-2 

BWR/4 PRESSURE REGULATOR FAILURE (MAXIMUM DEMAND) - SUMMARY 

With ARl Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

3-67 

86 GPM Boron 95% Mixing Eff 
2 Min Logic Delay 

Pressure Regulator Failure 

585 

1280 

139 

189 

11.0 
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Table 3.1.10-1

BWR/A LOSS OF FEEDWATER

Sequence of Events

1. Feedwater flow stops (flow assumed

to reduce to zero in 5 seconds)

- all normal scrams assumed to fail

2. Pressure, water level and power

starts to decline

3. Reactor water level drops to Level 2

and trips recirculation pun~ps*,

initiates ARI and also initiates

RCIC and I&CI. SLCS timed logic

is also activated.

4. ARI control rod insertion completed.

Eliminating SLCS

5. HPCI and RCIC flow starts

6. ATWS logic timer completed -

initiates SLCS

7. Liquid control flow reaches the core

8. Water level reaches minimum and

begins to rise. The top of the

core always remains covered.

9. High water level trip of HPCI and
RCIC (neglecting preferred operator

action to manually control level)

10. Hot shutdown achieved

With ARI

0

0

19 Seconds

39 Seconds

39 Seconds

N/A

N/A

61 Seconds

1i0 Minutes

39 Seconds

Time

With ARI Failure

0

0

19 Seconds

Fails

39 Seconds

2 Minutes

3 Minutes

5 Minutes

16 Minutes

17 Minutes

*Trip of recirculation drive motor breakers. Recirculation runback (from low

level alarm, L4, and coincident low feedwater flow) is conservatively neglected.

$ -b

NEDO-24222 

Table 3.1.10-1 

BWR/4 LOSS DF FEEDWATER 

Sequence of Events 

1. Feedwater flow stops (flow assumed 
to reduce to zero in 5 seconds) 
- all normal scrams assumed to fail 

2. Pressure, water level and power 
starts to decline 

3. Reactor water level drops to Level 2 
and trips recirculation pumps*. 
initiates ARI and also initiates 
RCIC and HPCI. SLCS timed logic 
is also activated. 

4. ARI control rod insertion completed. 
Eliminating SLCS 

5. HPCI and RCre flow starts 

6. ATWS logic timer completed -
initiates SLCS 

7. Liquid control flow reaches the core 

8. Water level reaches minimum and 
begins to rise. The top of the 
core always remains covered. 

9. High water level trip of HPCI and 
RCIC (neglecting preferred operator 
action to manually control level) 

10. Hot shutdown achieved 

With ARI 

o 

o 

19 Seconds 

39 Seconds 

39 Seconds 

N/A 

N/A 

61 Seconds 

'VIa Mirtutes 

39 Seconds 

Time 

With ARl Failure 

o 

o 

19 Seconds 

Fails 

39 Seconds 

2 Minutes 

3 Minutes 

5 Minutes 

16 Minutes 

17 Minutes 

*Trip of recirculation drive motor breakers. Recirculation runback (from low 
level alarm, L4, and coincident low feedwater flow) is conservatively neglected. 
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Table 3.1.10-2

BWR/4 LOSS OF FEEDWATER SUMMARY

86 GPM Boron 95%
Mixing Eff 2 Min Logic Delay

Loss of FeedwaterWith ARI Failure

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (%)

Maximum Bulk Suppression Pool Temp
Temperature (*F)

Associated Containment Pressure (psig)

100

1044 (no increase)

100

90

No change

3-69

Table 3.1.10-2 

BWR/4 LOSS OF FEEDWATER SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temp 
Temperature (OF) 

Associated Containment Pressure (psig) 

3-69 

86 GPM Boron 95% 
Mixing Eff 2 Min Logic Delay 

Loss of Feedwater 

100 

1044 (no increase) 

100 

90 

No change 
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Table 3.1.1i-L

BWR/4 LOSS OF NORMAL AC POWER
-N

Time

Sequence of Events With ARI With ARI Failure

1. Loss of all auxiliary power trans-
formers
- Recirculation pumps trip
- Condensate and feedwater pumps trip

2. Pressure and power begin to fall

3. Normal scram due to loss of AC
Power (Assumed to fail)

4. MSIV's start to close due to loss of
AC power (and initiate scram - also
assumed to fail)

5. Pressure and power begin to rise

6. SRV valves lift at relief setpoints

7. ATWS high pressure setpoint is
reached (1150 psig)
- ARI is initiated
- SLCS timed logic is activated

8. Vessel pressure and power peak

9. Some fuel experiences boiling
transition

10. ARI control rod insertion completed,
eliminating SLCS initiation

11. Reactor water level drops to Level 2
- Initiates containment isolation
- Initiates HPCI and RCIC

12. HPCI and RCIC flow begins

13. ATWS logic timer completed
- initiates SLCS

14. Liquid control flow reaches core

15. Reactor water level reaches minimum
and begins to rise. Level inside the
core shroud remains above the top
of active fuel.

16. RHR flow begins (pool cooling)

17. Hot shutdown achieved

18. Containment temperature and
pressure peak

0 0

02

2 Seconds

2 Seconds

0

2 Seconds

2 Seconds

5

7

8

Seconds

Seconds

Seconds

5

7

8

Seconds

Seconds

Seconds

Seconds

Seconds

8 Seconds

8 Seconds

28 Seconds

34 Seconds

54 Seconds

N/A

N/A

85 Seconds

>11 Minutes

28 Seconds

8

8

Fails

36 Seconds

56 Seconds

2 Minutes

3 Minutes

5 Minutes

11 Minutes

17 Minutes

33 Minutes

3-70

NEDO-24222 

Table 3.1.11.-l 

BWR/4 LOSS OF NORMAL AC POWER 

Sequence of Events 

1. Loss of all auxiliary power trans­
formers 
- Recirculation pumps trip 
- Condensate and feedwater pumps trip 

2. Pressure and power begin to fall 

3. Normal scram due to loss of AC 
Power (Assumed to fail) 

4. MSIV's start to close due to loss of 
AC power (and initiate scram - also 
assumed to fail) 

5. Pressure and power begin to rise 

6. SRV valves lift at relief setpoints 

7. ATWS high pressure setpoint is 
reached (1150 psig) 
- ARI is initiated 
- SLCS timed logic is activated 

8. Vessel pressure and power peak 

9. Some fuel experiences boiling 
transition 

10. ARI control rod insertion completed, 
eliminating SLCS initiation 

11. Reactor water level drops to Level 2 
- Initiates containment isolation 
- Initiates HPCI and RCIC 

12. HPCI and RCle flow begins 

13 . AT\-1S logic timer completed 
- initiates SLCS 

14. Liquid control flow reaches core 

15. Reactor water level 
and begins to rise. 
core shroud remains 
of active fuel. 

reaches m1n1mum 
Leve~ inside the 

above the top 

16. RHR flow begins (pool cooling) 

17. Hot shutdown achieved 

18. Containment temperature and 
pressure peak 

3-70 

With ARI 

o 

o· 
2 Seconds 

2 Seconds 

5 Seconds 

7 Seconds 

8 Seconds 

8 Seconds 

8 Seconds 

28 Seconds 

34 Seconds 

54 Seconds 

N/A 

N/A 

85 Seconds 

>11 Minutes 

28 Seconds 

Time 

With ARI Failure 

o 

o 
2 Seconds 

2 Seconds 

5 Seconds 

7 Seconds 

8 Seconds 

8 Seconds 

8 Seconds 

Fails 

36 Seconds 

56 Seconds 

2 Minutes 

3 Minutes 

5 Minute~ 

11 Minutes 

17 Minutes 

33 Minutes 
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Table 3.1.11-2

BWR/4 LOSS OF AC POWER - SUMMARY

86 GPM Boron 95%
Mixing Eff 2 Min Logic Delay

Loss of Normal AC Power
With ARI Failure

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (Z)

Maximum Bulk Suppression-Pool
Temperature (*F)

Associated Containment Pressure (psig)

258

1172

100

182

9.5

3-71

NEDO-24222 

Table 3.1.11-2 

BWR/4LOSS OF AC POWER - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression·Pool 
Temperature (OF) 

Associated Containment Pressure (psig) 

3-71 

86 GPM Boron 95% 
Mixing Eff 2 Min Logic Delay 

Loss of Normal AC Power 

258 

1172 

100 

182 

9.5 
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Table 3.1.12-1

BWR/4 RECIRCULATION FLOW CONTROLLER FAILURE -

INCREASING FLOW

Sequence of Events

1. Flow controller fails

2. Neutron flux reaches 120%, APRM scram assured to fail

3. Power peaks

4. Generator and pump reach maximum speed

5. Maximum fuel surface heat flux occurs

6. Vessel pressure peaks

7. Core flow increase levels off

8. New core equilibrium conditions (All parameters
within normal limits, power and feedflow slowly
decreasing as steady state feedwater heating is
established)

9. Manual scram or (if this fails) automatic ARI
and SLCS initiation

Time

0 Seconds

2 Seconds

3 Seconds

4 Seconds

6 Seconds

6 Seconds

10 Seconds

20 Seconds

10 Minutes

30 Minutes10. Hot shutdown achieved

3-72
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Table 3.1.12-1 

BWR/4 RECIRCULATION FLOW CONTROLLER FAILURE -
INCREASING FLOW 

Sequence of Events 

1. Flow controller fails 

2. Neutron flux reaches 120%, APRM scram assured to fail 

3. Power peaks 

4. Generator and pump reach maximum speed 

5. Maximum fuel surface heat flux occurs 

6. Vessel pressure peaks 

7. Core flow increase levels off 

8. New core equilibrium conditions (All paramete-rs 
within normal limits, power and feedflow slowly 
decreasing as steady state feedwater heating is 
established) 

9. Manual scram or (if this fails) automatic ARI 
and SLCS initiation 

10. Hot shutdown achieved 

3-72 

Time 

0 Seconds 

2 Seconds 

3 Seconds 

4 Seconds 

6 Seconds 

6 Seconds 

10 Seconds 

20 Sec9nds 

10 Minutes 

30 Minutes 
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Table 3. 1. 12-2

BWR/4 RECIRCULATION FLOW CONTROLLER FAILURE
(INCREASING FLOW) - SUMMARY

86 GPM Boron 95%
Mixing Eff 2 Min Logic Delay

Recirculation Flow Controller FailureWith ARI Failure

Maximum Neutron Flux (2)

Maximum Vessel Bottom Pressure
(psig)

Maximum Average Heat Flux (%)

Maximum Bulk Suppression Pool
Temperature (*F)

Associated Containment Pressure
(psig)

520

1020

92

90

No change

J

3-73

NEDO-24222 

Table 3.1.12-2 

BWR/4 RECIRCULATION FLOW CONTROLLER FAILURE 
(INCREASING FLOW) - SUMMARY 

Wi th ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure 
. (psig) 

MaXimum Average Heat Flux (%) 

Maximum Bulk Suppression Pool 
Temperature (OF) 

Associated Containment Pressure 
(psig) 

I 
Jr 

3-73 

86 GPM Boron 95% 
Mixing Eff 2 Min Logic Delay 

Recirculation Flow Controller Failure 

520 

1020 

92 

90 

No change 
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3.2 RESULTS OF ATWS EVENTS - BWR/5 (Mark II)

3.2.1 MSIV Closure Event

3.2.1.1 Overview of Response Without Scram

The behavior of the plant is separable into an early or short term transient

involving a sharp pressure rise and power peak, and a longer term portion that

requires evaluation of coolant and containment conditions as the reactor is

ultimately brought to shutdown.

The effectiveness of RPT presented in NEDO-10349, NEDO-20626, and Volume 1

are reconfirmed by this analysis. It assists the relief valves in limiting

the pressure disturbance acceptably and allows the establishment of a

relatively low power generation rate for the long term portion of the tran-

sient. Figure 3.2.1-1 illustrates this first period. Peak values for key

parameters in the system are given in'Tabrle 3.2-1 as well as for other BWR/5

transients. Since Volume 1, several changes have been made to the base case

calculations. They include:

a. S/RV reclosure pressure is now 110 psi below the opening pressure

setpoint which is more typical of the actual performance.

b. Feedwater flow characteristics due to automatic limiting action or

loss following isolation are assumed to result in shutoff 40 seconds

after isolation begins.

The ultimate resolution to the lack of scram situation must involve insertion

of negative reactivity into the reactor, thereby terminating the long term

aspects of the event. ARI is provided as an effective way to mitigate common-

cause failures in the logic of the scram system. In the case of its ineffec-

tiveness, the automated SLCS provides further protection and shutdown capa-

bility. Coolant inventory is adequately maintained by HPCS and RCIC available

on each BWR/5 to replace the coolant loss as steam flow leaves the primary

system through the relief valves. Simply adding more water is not a totally
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. . 
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satisfactory answer because it also has the effect of raising the power
generation rate and the amount of inventory leaving the system as steam, thus
increasing suppression pool temperature. The steam reaching the suppression
pool continues to heat it and pressurize the containment until the power
generation/steam flow can be reduced to the RHR capacity and/or finally ter-
minated. The RHR (pool cooling mode) ultimately cools the pool and eventually
the reactor also (shutdown cooling mode) if the MSIV's cannot be reopened
establishing flow to the main condenser (the preferred method of cooldown).

3.2.1.2 Sequence of Events for MSIV Closure

The MSIV closure transient provides some of the most severe conditions
following a postulated failure to scram. Listed in Table 3.2.1-1 in sequence
of occurrence are significant points of the transient with representative
times when the highlight occurs.

The sequence of events begins with the closure of the MSIV's in 4 seconds.
With motion of the MSIV's, the pressure immediately begins to rise resulting
in a reduction in void fraction and rapid increase in power. This sequence of
events is shown in Table 3.2.1-1. This power reaches a maximum of 614% of the
initial value at 4 seconds into the event and rapidly decreases thereafter.
At 4 seconds, the setpoint pressure of the relief valves is reached and they
begin to open to arrest the pressure rise. Shortly after 4 seconds, the vessel
dome pressure reaches 1150 psig, the maximum RPT trip point; both recirculation
pumps trip. A delay of 530 milliseconds exists from the time the pressure
reaches 1150 psig until the time that recirculation pump trip occurs. This
delay time (500 milliseconds delay in the sensor and 30 milliseconds in the
logic and trip) is consistent with industry experience. At the same time that
the recirculation pump trip occurs, the logic chain is activated which would
initiate ARI.
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Pressure continues to rise for a short period of time until, at approximately

7 seconds into the event, it reaches its peak and begins to decrease. The

maximum pressure at the vessel bottom is 1247 psig at 7 seconds. For those

plants which have turbine-driven feed pumps, they will begin to coast down

as soon as the MSIV's are closed and will have lost their ability to over-

come vessel pressure head at 20 seconds. For this analysis, it was assumed

that a motor-driven feedwater system was available and the feedwater shutoff

occurred slightly later (near 45 seconds) as the ATWS feedwater limiter was

activated. The relief valves begin to close near 22 seconds; pressure is then

stabilized at the relief valve setpoint. This part of the transient is shown

in Figure 3.2.1-1.

The same pressure signal (1150 psig) that initiated RPT will cause the opening

of valves on the scram air header (ARI) which allows the air pressure in the

header to bleed down. In the event that scram has not already occurred from

any of the several available signals, this reduced pressure allows the scram

discharge valves to open and the control rods to insert. Tests have shown

that the pressure in the header will have been reduced sufficiently in

15 seconds to allowthe control rods to insert. All rods will be fully in the

core after 4 additional seconds. ARI completely mitigates the ATWS situation

and 25 seconds after the event begins, it is essentially over. Following ARI,

normal shutdown procedures are utilized to bring the plant to cold shutdown.

Figure 3.2.1-2 shows the expected course of the event. Water level drifts

downward as decay energy generates small amounts of steam, and when Level 2

is reached, the HPCS and RCIC automatically start and replenish the vessel

water inventory from the condensate storage tank, up to the high level trip.

They will then reset themselves and continue to supply water to the vessel

inventory as necessary.

If the'ARI is not effective, the BWR/5 is still able to mitigate the event.

With an assumed ARI failure and zero feedwater flow, at 39 seconds the level

of the bulkwater in the vessel will decrease to Level 2, the level at which

HPCS and RCIC are initiated. Near 1 minute, water from these systems will

begin to enter the reactor vessel.
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Following confirmation from the flux monitoring system and the rod position

indicating system that scram has not taken place, the SLCS will activate.

This system will be started 2 minutes after the ATWS high pressure signal;

boron will reach the core after an additional I minute of transport time in

the lines and the vessel. Therefore, nuclear shutdown begins at 3 minutes into

the event using the SLCS. With an 86 GPM volumetric flow rate of sodium penta-

borate (in general dependent on vessel size), the reactor will be brought to

hot shutdown in approximately 22 minutes from the beginning of the event.

This can be seen in the lower left hand graph of the long-term plot of this

event, Figure 3.2.1-3. The behavior of several other parameters is also

depicted in Figure 3.2.1-3.

Bulkwater level within the vessel continues to decrease until approximately

5 minutes at which time HPCS and RCIC supply more water than is required

to make up for steam flow out of the vessel. At this time the vessel level

reaches its lowest level and begins to rise. It is important to note that

adeqaute core cooling is maintained at all times. As the level is increased,

core flow is increased, thereby reducing the average void fraction. The various

contributors to reactivity insertion and power production (boron, voids, etc)

must always be in balance with the power production. Water level is completely

restored by the HPCS and RCIC which cycle on at low level (L2) and off at high

level (L8) to maintain adequate level in the vessel. A larger scale plot of

water level is shown in Figure 3.2.1-4.

Following hot shutdown, the decay power will continue to generate a small

amount of steam which will continue to cycle the relief valves. At 46 minutes

the suppression pool temperature will reach its maximum value of 179*F. The

maximum containmentpressure is 9.1 psig. For the case where the ARI func-

tions as expected, the maximum suppression pool temperature is 138°F and it

occurs approximately 4 hours after the event. Figures 3.2.1-5 show long-

term containment conditions for these cases. Either way, the event is main-

tained within the prescribed limits.
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Thus it can be seen that an MSIV closure event combined with a failure to

scram is adequately mitigated for a representative BWR 5/Mark II.

3.2.2 Turbine Trip

3.2.2.1 Overview of Response Without Scram

The overview given for the MSIV closure event is generally applicable to the
Turbine Trip event. The key difference is that the main condenser remains

available for this event. From the time that steamflow is within the bypass
capacity, the main condenser will be used to remove the steam from the vessel.
This base case event has also been updated as given in Section 3.2.1.

3.2.2.2 Sequence of Events for Turbine Trip

The turbine trip event begins with the rapid closure of the turbine stop valves
and the resultant opening of the turbine bypass valves. After the stop valves
close in 0.1 seconds, the pressure immediately begins to rise which results
in a reduction in void fraction and rapid increase in power. The sequence
of events is shown in Table 3.2.2-1. This power reaches a maximum of 426%
of the initial value at one second into the event and rapidly decreases again.

At approximately 1.5 seconds, the setpoint pressure of the relief valves is
reached and they begin to arrest the pressure rise. Shortly after 2 seconds,
it is expected that some of the fuel will experience boiling transition,

however, coolable geometry is maintained. At about the same time, the vessel

dome pressure reaches 1150 psig, the maximum RPT point; both recirculation

pumps trip. In this analysis, the earlier trip of recirculation pumps directly
from the stop valve closure was conservatively neglected. It makes the early

event results even milder. At the same time that RPT occurs the logic chain
is activated to start ARI.

Pressure will continue to rise until 3 seconds when it peaks and begins to
decrease. The maximum pressure occurs at the vessel bottom and is 1192 psig
at 2.7 seconds. Although the feedwater pumps remain available for the turbine
trip case, it is necessary to reduce the amount of power produced. Therefore,

the feedwater flow will be limited to a minimum flow value which for this
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design has been chosen to be zero. This minimizes power generation and
resultant steam discharged to the suppression pool. The relief valves began
to close very early in this transient (about 9 seconds) and close for the
last time in less than 2 minutes even with failure of ARI. The remainder of
the generated steam flows through the bypass to the main condenser. The
first portion of this transient with and without ARI is shown in Figures 3.2.2-1
and 3.2.2-2.

The same pressure signal (1150 psig) that initiated RPT will casue the opening
of valves on the scram air header (ARI) which allows the air pressure in the
header to bleed down. In the event that scram has not already occurred from
any of the several available signals, this reduced pressure allows the scram
discharge valves to open and the control rods to insert. Tests have shown
that the pressure in the header will have been reduced sufficiently in
15 seconds to allow the control rods to insert. All rods will be fully in the
core after 5 additional seconds. ARI completely mitigates the ATWS situtation
and 25 seconds after the event began, it is over. Since in this event feed-
water is not los and the runback of feedwater discussed earlier does not
occur until the failure of both normal scram and ARI are confirmed, the feed-
water system will continue to function and provide water to the reactor.

If for some reason the ARI is also not effective, the BWR/5 is still able to
mitigate the event. With an assumed ARI failure and feedwater flow now having
reached zero, at 55 seconds the level of the bulkwater in the vessel will
decrease to level 2, the level of which HPCS and RCIC are initiated. At
20 seconds later, water from these systems begins to enter the reactor vessel.

Following confirmation from the flux monitoring system and the rod position
indicating system that scram has really not taken place, the SLCS will
activate. This system will be started 2 minutes after the ATWS high pressure
signal; one minute of transport time is also accounted for in the lines and the
vessel. Therefore, nuclear shutdown begins at 3 minutes into the event using
the SLCS. With an 86 GPM volumetric flow rate of sodium pentaborate, the
reactor will be brought to hot shutdown in approximately 23 minutes from the
beginning of the event. The behavior of several parameters is depicted in
Figure 3.2.2-3 for the long-term event.
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Bulkwater level within the vessel continues to decrease until approximately

4.5 minutes at which time HPCS and RCIC supply more water than is required

to make up for steamflow out of the vessel. At this time it reaches its

lowest level and begins to rise. As the level increases fore flow is

increased, thereby reducing the average void fraction. The various contrib-

utors to reactivity insertion and power production (boron, voids, etc.)

must always be in balance with the power production. Water level is com-

pletely restored by HPCS and RCIC at approximately 16 minutes. A detailed

plot of water level is shown on Figure 3.2.2-4. Water level continues to

cycle with HPCS/RCIC maintaining an adequate level in the vessel.

Following hot shutdown, the decay power continues to generate a small amount

of steam which flows through the bypass to the main condenser. Since the

major portion of the steam generated in this event goes to the main condenser,

the temperature rise in the suppression pool is minimal. The maximum sup-

pression pool temperature calculated in this case is 104*F which results in a

maximum containment pressure of 0.7 psig.

Thus it can be seen that a Turbine Trip with Bypass event combined with a

failure to scram is adequately mitigated for a representative BWR 5/Mark II.

3.2.3 Inadvertent Open Relief Valve

3.2.3.1 Overview of Response Without Scram

This event has no rapid excursion as the previous two events, but is merely

a long term depressurization. RPT does not occur until late in the event

after hot shutdown is achieved.

Except for steamflow through the open relief valve and the use of the liquid

boron solution for shutdown, the nuclear steam supply system is in a normal

operating state. The suppression pool is the only system exposed to off-

normal conditions. This base case event has also been updated as given in

Section 3.2.1. The sequence of events follows.
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3.2.3.2 Sequence of EvCe.LS for Inadvertent Open Relief Valve

This event begins when one of the primary relief valves on the main steamlines
inadvertently opens without influence from any other portion of the system.
All pressure levels in the reactor coolant pressure boundary are at a nominal
value prior to the event. The resulting sequence of events is shown in
Table 3.2.3-1.

At the time that the relief valve opens, there is a momentary depressurization
(a few seconds) until the turbine pressure control senses it and closes slightly
(dropping unit electrical output) to control pressure. For general application
of this analysis, a relief valve capacity of 8.3% NBR rated was utilized (the
nominal flow of a valve on a BWR/5-218 inch vessel plant). See Section 3.2.4
for sensitivity analyses relative to this valve size. After about two minutes,
the suppression pool temperature, which was initially assumed to be at 90*F,
has risen to the alarm point of 95 0 F. It attempts to reclose the valve are
unsuccessful, the operator will turn on the RHR system in the pool cooling
mode to maintain pool temperature. If attempts to close the valve continue
to be unsuccessful, the temperature will continue to rise and at 7.5 minutes
will reach 110'F at which point the operator is required to manually scram
the reactor. For this example case, the manual scram also activates the
ATWS protection paths to ARI. The logic paths shown in Section 2.4.2 are
utilized.

If neither normal manual scram nor the ARI are effective, the BWR/5 is still
able to mitigate the event. The ATWS logic would have determined that the
control rods are not inserted and at 9.5 minutes into the event the SLCS
will be activated.

For this case with the recirculation pumps operating, the boron mixing
efficiency is excellent (95% is assumed), and the delay time inside of the
vessel is small, so that at 10 minutes the control liquid reaches the core
and shutdown begins. Within 19 minutes, the power has been reduced to the
point that the amount of steam generated is less than the relief valve capa-
bility and the pressure now begins to decrease more rapidly. The turbine
control valves have closed complete due to the pressure decrease.
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These events are depicted in Figure 3.2.3-1. By 21 minutes, the pressure

has dropped to the low steam line pressure isolation set point and the

MSIV's close. Simulating plants with turbine-driven feedwater pumps, the

feedwater is assumed to be lost within 20 seconds of the isolation. This causes

the water level in the vessel to decrease and at 25 minutes the low level

point (L2) is reached where the recirculation pumps are automatically tripped

and the HPCS and RCIC are activated. These systems are shown to automatically

cycle on at low level (L2) and off at high level (L8) as specified to maintain

water inventory in the vessel, although manual action is expected to maintain

level with the RCIC alone. Depressurization of the vessel will continue with

the relief valve discharging into the suppression pool; the maximum pool

temperature of 187'F will occur at about 1 hours. The peak containment pres-

sure of 10.6 psig occurs at the same time, well below the 46 psig design

pressure for the Mark II containments.

In cases where ARI is activated (8 minutes), the maximum pool temperature

is 167*F.

Thus it can be seen that the inadvertent opening of a relief valve event

combined with a failure to scram is adequately mitigated for a representa-

tive BWR 5/Mark II.

3.2.4 Sensitivity Study Results - BWR/5 Base Cases

A wide variety of parameters were studied to examine the sensitivity and

potential impact of plant differences and/or uncertainties on the results of

the three BWR/5 base cases. While the overall objective of these sensitivity

studies is to provide guidance for assessing the adequacy of plants having

certain parameters different from the generic analyses, caution must be

exercised when combining the results of several .parameter variations, due to

the non-linearities involved (see Section 3.3.4.4).
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These events are depicted in Figure 3.2.3-1. By 21 minutes, the pressure 

has dropped to the low steam line pressure isolation set point and the 

MSIV's close. Simulating plants with turbine-driven feedwater pumps, the 

feedwater is assumed to be lost within 20 seconds of the isolation. This causes 

the water level in the vessel to decrease and at 25 minutes the low level 

point (L2) is reached where the recirculation pumps are automatically tripped 

and the HPCS and RCIC are activated. These systems are shown to automatically 

cycle on at low level (l2) and off at high level (L8) as specified to maintain 

water inventory in the vessel, although manual action is expected to maintain 

level with the RCIC alone. Depressurization of the vessel will continue with 

the relief valve discharging into the suppression pool; the maximum pool 

temperature of l87°F will occur at about 1 hours. The peak containment pres­

sure of 10.6 psig occurs at the same time, well below the 46 psig design 

pressure for the Mark II containments. 

In cases where ARI is activated (8 minutes), the maximum pool temperature 

is l6rF. 

Thus it can be seen that the inadvertent opening of a relief valve event 

combined with a failure to scram is adequately mitigated for a representa­

tive BWR 5/Mark II. 

3.2.4 Sensitivity Study Results - BWR/5 Base Cases 

A wide variety of parameters were studied to examine the sensitivity and 

potential impact of plant differences and/or uncertainties on the results of 

the three BWR/5 base cases. While the overall objective of these sensitivity 

studies is to provide guidance for assessing the adequacy of plants having 

certain parameters different from the generic analyses, caution must be 

exercised when combining the results of several ~arameter variations, due to 

the non-linearities involved (see Section 3.3.4.4). 
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3.2.4.1 MSIV - ATWS Sensitivity Studies

3.2.4.1.1

3.2.4.1.2

3.2.4.1.3

3.2.4.1.4

3.2.4.1.5

3.2.4.1.6

3.2.4.1.7

3.2.4.1.8

3.2.4.1.9

3.2.4.1.10

3.2.4.1.11

3.2.4.1.12

3.2.4.1.13

3.2.4.1.14

Variation

Variation

Variation

Variation

Variation

Variation

Variation

Variation

Variation

of

of

of

of

of

of

of

of

of

Boron Delay

Boron Capacity/Mixing

HPCS/RCIC Capacity

RHR Capacity

RHR Delay

Pool and Service Water Temperature

RHR Capacity and Service Water

Pool Size

S/RV Capacity

Variation

Variation

Effect of

Variation

Variation

of RPT Delay

of RPT Inertia

Partial Rod Insertion

of Void Coefficient

of Doppler Coefficient

Tables 3.2.4-1, 2, and 3 summarize the results for this event. Figures 3.2.4.1-1
and 3.2.4.1-2 also graphically show the results.

3.2.4.2 Turbine Trip Sensitivity Studies

3.2.4.2.1

3.2.4.2.2

3.2.4.2.3

3.2.4.2.4

3.2.4.2.5

3.2.4.2.6

Variation

Variation

Variation

Variation

Variation

Variation

of

of

of

of

of

of

Boron Delay

Boron Capacity/Mixing

HPCS/RCIC Capacity

RHR Delay

Void Coefficient

Doppler Coefficient

Table 3.2.4.2-1 summarizes the results for this event.
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3.2.4.1 MSrV - ATWS Sensitivity Studies 

3.2.4.1.1 Variation of Boron Delay 

3.2.4.1.2 Variation of Boron Capacity/Mixing 

3.2.4.1.3 Variation of HPCS/RCIC Capacity 

3.2.4.1.4 Variation of RHR Capacity 

3.2.4.1.5 Variation of RHR Delay 

3.2.4.1.6 Variation of Pool and Service Water Temperature 

3.2.4.1.7 Variation of RHR Capacity and Service Water 

3.2.4.1.8 Variation of Pool Size 

3.2.4.1.9 Variation of S/RV Capacity 

3.2.4.1.10 Variation of RPT Delay 

3.2.4.1.11 Variation of RPT Inertia 

3.2.4.1.12 Effect of Partial Rod Insertion 

3.2.4.1.13 Variation of Void Coefficient 

3.2.4.1.14 Variation of Doppler Coefficient 

Tables 3.2.4-1. 2, and 3 summarize the results for this event. Figures 3.2.4.1-1 

and 3.2.4.1-2 also graphically show the results. 

3.2.4.2 Turbine Trip Sensitivity Studies 

3.2.4.2.1 Variation of Boron Delay 

3.2.4.2.2 Variation of Boron Capacity/Mixing 

3.2.4.2.3 Variation of HPCS/RCIC Capacity 

3.2.4~2.4 Variation of RHR Delay 

3.2.4.2.5 Variation of Void Coefficient 

3.2.4.2.6 Variation of Doppler Coefficient 

Table 3.2.4.2-1 summarizes the results for this event. 

/ 
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3.2.4.3 IORV Sensitivity Studies

3.2.4.3.1

3.2.4.3.2

3.2.4.3.3

3.2.4.3.4

3.2.4.3.5

3.2.4.3.6

3.2. 4. 3. 7

3.2.4.3.8

Variation

Variation

Variation

Variation

Variation

Variation

Variation

Variation

of

of

of

of

of

of

of

of

Boron Capacity/Mixing

RHR Capacity

RHR Delay

Pool and Service Water Temperature

Pool Size

S/RV Capacity

Boron Delay

RHR Capacity and Service Water Temperature

Table 3.2.4.3-1 summarizes the results of this event,

3.2.4.1 MSIV Sensitivity Studies

3.2.4.1.1 Variation of Boron Delay

The SLCS timer delay was varied between 30 seconds (75% below the nominal

timer setting of 120 seconds) and 240 seconds (100% above the nominal time)

resulting in peak pool temperatures* 7*F less than 6*F greater, respectively,

compared to the base case. Containment pressures decreased and increased accord

accordingly by 1 psi. Figures 3.2.4.1.1 graphically shows this parametric

variation.* Minimum vessel level was increased by 0.9 feet at 30 seconds and

decreased by 0.3 feet at 240 seconds.

3.2.4.1.2 Variation of Boron Capacity/Mixing Efficiency

The effective rate of boron injection into the core is the product of the boron

pumping capacity and mixing efficiency. This effective rate was varied by

±20% resulting in peak pool temperatures 110 F below and 7*F above the base

case, respectively. The base case represents an 86 gpm SLCS pumping rate in a

*While the overall objective of these sensitivity studies is to provide
guidance for assessing the adequacy of plants having certain parameters
different from the generic analyses, caution must be exercised when combining
the results of several parameter variations, due to the non-linearities
involved (see Section 3.3.4.4).
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3.2.4.3 IORV Sensitivity Studies 

3.2.4.3.1 Variation of Boron Capacity/Mixing 

3.2.4.3.2 Variation of RHR Capacity 

3.2.4.3.3 Variation of RHR Delay 

3.2.4.3.4 Variation of Pool and Service Water Temperature ,-

3.2.4.3.5 Variation of Pool Size 

3.2.4.3.6 Variation of S/RV Capacity 

3.2.4.3.7 Variation of Boron Delay 

3.2.4.3.8 Variation of RHR Capacity and Service Water Temperature 

Table 3.2.4.3-1 summarizes the results of this event, 

3.2.4.1 MSIV Sensitivity Studies 

3.2.4.1.1 Variation of Boron Delay 

The SLCS timer delay was varied between 30 seconds (75% below the nominal 

timer setting of 120 seconds) and 240 seconds (100% above the nominal time) 

resulting in peak pool temperatures, 7°r less than 6°F greater, respectively, 

compared to the base case. Containment pressures decreased and increased accord 

accordingly by 1 psi. Figures 3.2.4.1.1 graphically shows this parametric 

variation.* Minimum vessel level was increased by 0.9 feet at 30 seconds and 

decreased by 0.3 feet at 240 seconds. 

3.2.4.1.2 Variation of Boron Capacity/Mixing Efficiency 

The effective rate of boron injection into the core is the product of the boron 

pumping capacity and mixing efficiency. This effective rate was varied by 

±20% resulting in peak pool temperatures 11°F below and 7°F above the base 

case, respectively. The base case represents an 86 gpm SLCS pumping rate in a 

*While the overall objective of these sensitivity studies is to provide 
guidance for assessing the adequacy of plants having certain parameters 
different from the generic analyses, caution must be exercised when combining 
the results of several par~meter variations, due to the non-linearities 
involved (see Section 3.3.4.4). ' 
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251 inch vessel with 75% assumed mixing efficiency. The -20% variation point
equivalently represents 69 gpm at 75% efficiency or 86 gpm at 60% efficiency.
Differences for plant size are covered by comparing the boron rate and the
vessel inventory of the plant (e.g., the 86 gpm on a 251 size plant is equiv-
alent to.66 gpm on a 218 size plant). Figure 3.2.4.1-1 graphically shows this
variation.

3.2.4.1.3 Variation of HPCS/RCIC Capacity

The rated flow of the HPCS/RCIC system was varied by ±20%. Figure 3.2.4.1-1
graphically shows the variation. For the case ofincreased flow, pool tempera-
ture and containment pressure increased by 60F and 1 psi, respectively. The
increase in temperature is due to the higher power level maintained by the
increased core flow. Minimum water level increased more than 2 feet. Decreas-
ing HPCS/RCIC flow lowered peak temperature and pressure by 10*F and 2 psi,
respectively. Minimum level was slightly reduced.

3.2.4.1.4 Variation of RHR Capacity

To determine the effect of varying RHR heat exchanger capabilities, the base
capacity of 2.13% NBR at 1000 F AT (670 BTU/sec- 0 F for the 251 size plant used
as the base case) was altered by ±50%. Increasing the capacity by 50% yielded
a 60F temperature reduction and lowered the peak containment pressure by more
than 1 psi. For the opposite case of 50% decrease in RHR capacity the results
were a 13 0 F increase in temperature and a 2.5 psi pressure rise. Sensitivity
of pool temperature is shown graphically in Figure 3.2.4.1.4-1.

3.2.4.1.5 Variation of RHR Delay

The effect of varying RIR start time was found to be small for the MSIV
case. Increasing the start time from 11 to 16 minutes increased peak pool tem-
perature by only 10 F. A decrease of 2 minutes resulted in less than I1F
reduction in pool temperature. Sensitivity of the pool temperature is shown
graphically in Figure 3.2.4.1.4-1.
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251 inch vessel with 75% assumed mixing efficiency. The -20% variation point 

equivalently represents 69 gpm at 75% efficiency or 86 gpm at 60% efficiency. 

Differences for plant size are 0(Jvered by comparing the boron rate and the 

vessel inventory of the plant (e.g., the 86 gpm on a 251 size plant is equiv­

alent to 66 gpm on a 218 size plant). Figure 3.2.4.1-1 graphically shows this 

variation. 

3.2.4.1.3 Variation of HPCS/RCIC Capacity 

The rated flow of the HPCS/RCIC system was varied by ±20%. Figure 3.2.4.1-1 

graphically shows the variation. For the case of increased flow, pool tempera­

ture and containment pressure increased by 6°F and 1 psi, respectively. The 

increase in temperature is due to the higher power level maintained by the 

increased core flow. Minimum water level increased more than 2 feet. Decreas­

ing HPCS/RCIC flow lowered peak temperature and pressure by 10°F and 2 psi, 

respectively. Minimum level was slightly reduced. 

3.2.4.1.4 Variation of RHR Capacity 

To determine the effect of varying RHR heat exchanger capabilities, the base 

capacity of 2.13% NBR at 100°F 6T (670 BTU/sec-~F for the 251 size plant used 

as the base case) was altered by ±50%. Increasing the capacity by 50% yielded 

a 6()F temperature reduction and lowered the peak containment pressure by more 

than 1 psi. For the opposite case of 50% decrease in RHR capacity the results 

were a 13°F increase in temperature and a 2.5 psi pressure rise. Sensitivity 

of pool temperature is shown graphically in Figure 3.2.4.1.4-1. 

3.2.4.1.5 Variation of RHR Delay 

The effect of varying RHR start time was found to be small for the MSIV 

case. Increasing the start time from 11 to 16 minutes increased peak pool tem­

perature by only 1°F. A decrease of 2 minutes resulted in less than IOF 

reduction in pool temperature. Sensitivity of the pool temperature is shown 

graphically in Figure 3.2.4.1.4-1. 
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3.2.4.1.6 Variation in Pool and Service Water Temperature

The pool and service water temperatures were assumed to vary together (with the
pool assumed to be 50 F above the service water). This variation was found to
significantly affect peak pool temperature and containment pressure. Increas-
ing these temperatures by 20 0 F (to the operating technical specification) pro-
duced a rise in pool temperature of 18 0 F and an increase of about 4 psi in
peak pressure. Reducing the temperatures by 20'F yielded decreases of 180F
and 3 psi, respectively. Figure 3.2.4.1.4-1 graphically shows the pool temp-
perature variation plotted directly vs pool and service water initial

temperatures.

3.2.4.1.7 Variation of RHR Capacity and Pool and Service Water
Temperature

Varying both parameters simultaneously was done to examine different RHR designs

due to different plant site water temperatures. It showed that pool and

service water temperature was the dominant variable. Increases of ±50% in RHR
capacity and +20°F in pool and service water temperature (and similar

decreases) produced temperature changes of +12.5 and -4.9 0 F. Peak pressures
varied accordingly by +2 and -1 psi.

3.2.4.1.8 Variations of Pool Size

The suppression pool mass was varied by 20% to simulate different size plants.
The larger pool mass provides a bigger heat sink, thus reducing the peak pool
temperature by nearly 12 0 F and peak pressure by 2 psi. For the lower pool
mass, pool temperature increases 16 0 F and peak pressure 3 psi.
Figure 3.2.4.1.4-1 graphically shows the result.

3.2.4.1.9 Variation of S/RV Capacity

The base case MSIV closure transient was run with S/RV variations of ±20%
of nominal capacity. High pressure pump trip occurred at nominal setpoint.

There was essentially no effect on the peak neutron flux or average surface
heat flux. The effect on peak vessel pressure is shown in Figure 3.2.4.1.9-1.
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3.2.4.1.6 Variation in Pool and Service Water Temperature 

The pool and service water temperatures were assumed to vary together (with the 

pool assumed to be SOF above the service water). This variation was found to 

significantly affect peak pool temperature and containment pressure. Increas­

ing these temperatures by 20°F (to the operating technical specification) pro­

duced a rise in pool temperature of 18°F and an increase of about 4 psi in 

peak pressure~ Reducing the temperatures by 20°F yielded decreases of 18°F 

and 3 psi. respectively. Figure 3.2.4.1.4-1 graphically shows the pool temp­

perature variation plotted directly vs pool and service water initial 

temperatures. 

3.2.4.1.7 Variation of RHR Capacity and Pool and Service Water 
Temperature 

Varying both parameters Simultaneously was done to examine different RHR designs 

due to different plant site water temperatures. It showed that pool and 

service water temperature was the dominant variable. Increases of ±50% in RHR 

capacity and +20°F in pool and service water temperature (and similar 

decreases) produced temperature changes of +12.5 and-4.9°F. Peak pressures 

varied accordingly by +2 and -1 psi. 

3.2.4.1.8 Variations of Pool Size 

The suppression pool mass was varied by .20% to simulate different size plants. 

The larger pool mass provides a bigger heat sink, thus reducing the peak pool 

temperature by nearly 12°F and peak pressure by 2 psi. For the lower pool 

mass, pool temperature increases 16°F and peak pressure 3 psi. 

Figure 3.2.4.1.4-1 graphically shows the result. 

3.2.4.1.9 Variation of S/RV Capacity 

The base case MSIV closure transient was run with S/RV variations of ±20% 

of nominal capacity. High pressure pump trip occurred at nominal setpoint. 

There was essentially no effect on the peak neutron flux or average surface 

heat flux. The effect on peak vessel pressure is shown in Figure 3.2.4.1.9-1. 
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3.2.4.1.10 Variation of RPT Delay

The delay in actual pump trip after exceeding the high pressure setpoint was
varied +0.5 sec and +1.0 sec of nominal for the MS1V closure base case. Again
there was not effect of peak neutron flux or average surface heat flux. That
variation of pressure with delay is shown in Figure 3.2.4.1.9-1.

3.2.4.1.11 Variation of RPT Inertia

RPT inertia was varied +50% and -20% of nominal for the MSIV closure base case.
There was essentially no effect on neutron flux or average surface heat flux.
The effect on pressure is shown in Figure 3.2.4.1.9-1.

3.2.4.1.12 Effect of Partial Rod Insertion

No credit is taken for partial insertion of control rods in this ATWS analysis.
To determine the effect of possible partial control rod insertion, cases with
$1 and $2 of control rod worth were analyzed. The resulting changes in pool
temperature were -10*F and -19 0 F, respectively. Peak containment pressures
were reduced by 4.1 and 6.4 psi.

3.2.4.1.13 Variation of Void Coefficient

The effect of void coefficient on peak transient parameters (neutron flux,
average surface heat flux, vessel pressure and suppression pool temperature)
was studied for the MSIV closure transient. Void coefficient was varied from
-6 to -14 €/% rated voids (nominal = -11 (/%). In all cases the recirculation
pumps were tripped on high vessel pressure. The change in total effective
worth of injected boron with void fraction was accounted for. Figures
3.2.4.1.13-1 shows the flux and pressure peaks for the MSIV transient, as
a function of void coefficient for several values of Doppler coefficient.
The peaks are shown relative to those with nominal nuclear coefficients.
Figure 3.2.4.1.13-2 shows peak suppression pool temperature as a function
of void coefficient.
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3.2.4.1.10 Variation of RPT Delay 

The delay in actual pump trip after exceeding the high pressure setpoint was 

varied +0.5 sec and +1.0 sec of nominal for the MSIV closure base case. Again 

there was not effect of peak neutron flux or average surface heat flux. That 

variation of pressure with delay is shown in Figure 3.2.4.1.9-1. 

3.2.4.1.11 Variation of RPT Inertia 

RPT Inertia was varied +50% and -20% of nominal for the MSIV closure base case. 

There was essentially no effect on neutron flux or average surface heat flux. 

The effect on pressure is shown in Figure 3.2.4.1.9-1. 

3.2.4.1.12 Effect of Partial Rod Insertion 

No credit is taken for partial insertion of control rods in this ATWS analysis. 

To determine the effect of possible partial control rod insertion, cases with 

$1 and $2 of control rod worth were analyzed. The resulting changes in pool 

temperature were -10°F and -19°F, respectively. Peak containment pressures 

were reduced by 4.1 and 6.4 psi. 

3.2.4.1.13 Variation of Void Coefficient 

The effect of void coefficient on peak transient parameters (neutron flux, 

average surface heat flux, vessel pressure and suppression pool temperature) 

was studied for the MSIV closure transient. Void coefficient was varied from 

-6 to -14 ~/% rated voids (nominal = -11 ~/%). In all cases the recirculation 

pumps were tripped on high vessel pressure. The ch~nge in total effective 

worth of injected boron with void fraction was accounted for. Figures 

3.2.4.1.13-1 shows the flux and pressure peaks for the MSIV transient, as 

a function of void coefficient for several values of Doppler coefficient. 

The peaks are shown relative to those with nominal nuclear coefficients. 

Figure 3.2.4.1.13-2 shows peak suppression pool temperature as a function 

of void coefficient. 
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3.2.4.1.14 Variation of. Doppler Coefficient

The effect of Doppler coefficient on transient peak neutron flux, average

surface heatflux and vessel pressure during an MSIV closure studied for the
range -0.20 to -0.32 ¢/*F (nominal - -0.285 ¢/*F). Figure 3.2.4.1.14-1

shows the peaks plotted as a function of Doppler coefficient. Peak pool sup-
pression temperature is plotted against Doppler coefficient in
Figure 3.2.4.1.13-2.

3.2.4.2 Turbine Trip Sensitivity Studies

The Turbine Trip event differs from MSIV with respect to containment effects.
For MSIV, steam continues to be discharged to the pool over a long period of

time whereas the Turbine Trip steam dump ceases within the first 30 seconds
of the event. Therefore, those sensitivities whose effect would be felt only

beyond the first 80 seconds need not be considered. These include boron timer
delay, boron pumping capacity/mixing efficiency and RHR capacity and start

time. Since boron timer delay does affect water level, its influence on that
parameter was examined. Tables 3.2.4.2-1 and 2 present the results of this
study.

3.2.4.2.1 Variation of Boron Delay

The SLCS timer delay was varied between 30 seconds and 240 seconds (nominal

delay - 120 sec). As noted previously, there is no effect on pool tempera-

ture or containment pressure. Water level does vary by -0.7 feet and
+0.7 feet from the base case level, respectively.

3.3.4.2.2 Variation of Boron Capacity/Mixing

Variation in boron capacity/mixing is expected to have no impact on the

peak pool temperature and containment pressure since the early part of the
transient would remain unchanged with S/RV's closing near 71 seconds, and no

isolation takes place.
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3.2.4.1.14 Variation of Doppler Coefficient 

The effect of Doppler coefficient on transient peak neutron flux, average 

surface heatflux and vessel pressure during an MSIV closure studied for the 

range -0.20 to -0.32 ~/oF (nominal = -0.285 ~/oF). Figure 3.2.4.1.14-1 

shows the peaks plotted as a function of Doppler coefficient. Peak pool sup­

pression temperature is plotted against Doppler coefficient in 

Figure 3.2.4.1.13-2. 

3.2.4.2 Turbine Trip Sensitivity Studies 

The Turbine Trip event differs from MSIV with respect to containment effects. 

For MSIV, steam continues to be discharged to the pool over a long period of 

time whereas the Turbine Trip steam dump ceases within the first 30 seconds 

of the event. Therefore, those sensitivities whose effect would be felt only 

beyond the first 80 seconds need not be considered. These include boron timer 

delay, boron pumping capacity/mixing efficiency and RHR capacity and start 

time. Since boron timer delay does affect water level, its influence on that 

parameter was examined. Tables 3.2.4.2-1 and 2 present the results of this 

study. 

3.2.4.2.1 Variation of Boron Delay 

The SLCS timer delay was varied between 30 seconds and 240 seconds (nominal 

delay - 120 sec). As noted previously, there is no effect on pool tempera­

ture or containment pressure. Water level does vary by -0.7 feet and 

+0.7 feet from the base case le~el, respectively. 

3.3.4.2.2 Variation of Boron Capacity/Mixing 

Variation in boron capacity/mixing is expected to have no impact on the 

peak pool temperature and containment pressure since the early part of the 

transient would remain unchanged with S/RV's closing near 71 seconds, and no 

isolation takes place. 
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3.2.4.2.3 Variation of HPCS/RCIC Capacity

The HPCS/RCIC flow was varied by ±20% about its nominal value. Since HPCS/
RCIC flow is initiated approximately 10 seconds prior to closure of the last
relief valve, the effect on pool temperature and containment pressure is
negligible. Minimum water level varies from 1.8 feet above nominal base case
minimum for the increased HPCS/RCIC case to 2.2 feet below for the reduced
flow case.

3.2.4.2.4 Variation of RHR Delay

This change does not have any effect upon the pool temperature or containment
pressure since peak containment temperature and pressure values occur much
before the RHR is turned on. Peak values occur at about 70 seconds.

3.2.4.2.5 Variation of Void Coefficient

The effect of void coefficient variation on the turbine trip with bypass
transient was studied similar to the MSIV closure reported in Section 3.2.4.1.13.
Figures 3.2.4.2.5-1 and 3.2.4.2.5-2 show the results. Those cases in which
the peak pressure was more than 7 psi below nominal did not reach the high
pressure ATWS trip setpoint at the analytical upper limit of 1150 psig. If
this happened, reactor operation at high power and continued steam dump to
the pool could continue until manual action. For the pool temperature study
a case was run at -9 C/% void coefficient and nominal Doppler, which did trip.
One option to provide protection for lower void coefficients is to lower the
ATWS trip setpoint. A case was run with -8 ¢/% void coefficient and the
setpoint at 1091 psig, the analytical upper limit of the lowest S/RV group
setpoint. This reduced setpoint would provide automatic ATWS protection for
all cases, even those that open only a small amount of S/R valves.

3.2.4.2.5 Variation of Doppler Coefficient

Figure 3.2.4.2.6-1 shows the effect of Doppler coefficient variation. The
effect on suppression pool peak temperature is shown in Figure 3.2.4.2.5-2.
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3.2.4.2.3 Variation of HPCS/RCIC Capacity 

The HPCS/RCIC flow was varied by ±20% about its nominal value. Since HPCS/ 

RCIC flow is initiated approximately 10 seconds prior to closure of the last 

relief valve, the effect on pool temperature and containment pressure is 

negligible. Minimum water level varies from 1.8 feet above nominal base case 

mini.mum for the increased HPCS/RCIC case to 2.2 feet below for the reduced 

flow case. 

3.2.4.2.4 Variation of RHR Delay 

This change does not have any effect upon the pool temperature or containment 

pressure since peak containment temperature and pressure values occur much 

before the RHR is turned on. Peak values occur at about 70 seconds. 

3.2.4.2.5 Variation of Void Coefficient 

The effect of void coefficient variation on the turbine trip with bypass 

transient was studied similar to the MSIV closure reported in Section 3.2.4.1.13. 

Figures 3.2.4.2.5-1 and 3.2.4.2.5-2 show the results. Those cases in which 

the peak pressure was more than 7 psi below nominal did not reach the high 

pressure ATWS trip setpoint at the analytical upper limit of 1150 psig. If 

this happened, reactor operation at high power and continued steam dump to 

the pool could continue until manual action. For the pool temperature study 

a case was run at -9 ~/% void coefficient and nominal Doppler, which did trip. 

One option to provide protectio~ for lower void coefficients is to lo~er the 

ATWS trip setpoint. A case was run with -8 ¢/% void coefficient and the 

setpoint at 1091 psig, the analytical upper limit of the lowest S/RV group 

setpoint. This reduced setpoint would provide automatic ATWS protection for 

all cases, even those that open only a small amount of SiR valves. 

3.2.4.2.5 Variation of Doppler Coefficient 

Figure 3.2.4.2.6-1 shows the effect of Doppler coefficient variation. The 

effect on suppression pool peak temperature is shown in Figure 3.2.4.2.5-2. 
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3.2.4.3 IORV Sensitivity Studies

Table 5.4.3-1 summarizes the results of the sensitivities on the BWR/5

IORV - ATWS event. The effect of the listed parameters was determined on

minimum water level, peak suppression pool temperature and peak wetwell

airspace pressure. Figure 3.2.4.3-1 presents the results for peak suppres-

sion pool temperature in graphic form.

3.2.4.3.1 Variation of Boron Capacity/Mixing

The effective rate of boron injection into the core is the product of the

boron pumping capacity and mixing efficiency. This effective rate was varied

by ±20% resulting in peak pool temperatures of 8°F below and 26 0 F above the

base case value, respectively. Peak containment pressures varied accordingly.

Minimum water level variation was negligible for both cases.

3.2.4.3.2 Variation of RHR Capacity

To determine the effect of varying RRR heat exchanger capabilities, the base

capacity of 670 BTU/sec- 0 F was altered by ±50%. Increasing the capacity to

1005 BTU/sec yielded a 110F temperature reduction and lowered the peak con-

tainment pressure by 2 psi. For the opposite case of decreasing capacity the

results were a 16 0 F increase in temperature and a 4 psi pressure rise.

3.2.4.3.3 Variation of RHR Delay

The RHR system is assumed to be in operation at time zero of this event.

This was varied by delaying RUR start by 5 minutes and 10 minutes from time

zero. The effect on peak pool temperature was an increase of 10F and 20 F,

respectively. Peak containment pressure varied accordingly.
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3.2.4.3.4 Variation of Pool and Service Water Temperature

The pool and service water temperature wexe found to significantly affect
peak pool temperature and containment pressure. Increasing these temperatures
by 20'F produced a rise in pool temperature of 6OF and an increase of 1.5 psi
in peak pressure. Reducing the temperatures by 20OF yielded decreases of 60 F
and 1/2 psi, respectively.

3.2.4.3.5 Variations of Pool Size

The suppression pool mass was varied by 20% to simulate different sized plants.
The larger pool mass provides a bigger heat sink, thus reducing the peak pool
temperature by nearly 9*F and peak pressure by nearly 2 psi. For the lower
pool mass, pool temperature increases 13*F and peak pressure by 3 psi.

3.2.4.3.6 Variation of S/RV Capacity

The capacity of the S/RV's were varied from 6.1% NBR to 10.5% NBR (base
case = 8.33% NBR) Peak pool temperature changed by -10OF and +10F, respectively.
This is shown in Figure 3.2.4.3-2. Corresponding peak containment pressures
changed by +2.2 and -1.9 psi from the base case value. Variation in minimum
vessel water level was found to be negligible.

3.2.4.3.7 Variation of Boron Delay

The effect of increasing the time at which liquid-boron reaches the core on
peak bulk average pool temperature and containment pressure is shown in
Table 3.2.4.3-1 and Figure 3.2.4.3-3. These cases were run for SR/V
capacities of 6.1% (typical of 251 size plants) and 8.3% (typical of 218 size
plants. The base peak bulk average pool temperature for the 8.3% SR/V case is
187'F. All cases assume start of the boron injection timer at the same time
pool temperaturehas reached 110'F and manual scram has been attempted. The
RHR (pool cooling) is also initiated by this time.
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3.2.4.3.8 Variation of RHR Capacity and Service Water Temperature

Varying both parameters simultaneously showed that RHR capacity was the

dominant variable. Increases of 50% in RHR capacity and 20*F in pool and

service water temperature produced temperature changes of -3 and +12*F. Peak

pressures varied accordingly by -0.5 and +2.9 psi.

3.2.5 Loss of Condenser Vacuum

3.2.5.1 Overview of Response Without Scram

This transient starts a turbine trip due to low condenser vacuum, there-

fore, the beginning is the same as Turbine Trip events (see Section 3.2.2).

There is a rapid steam shutoff causing pressure and power increases which

are limited by the action of the S/RV's and RPT. Note that direct pump

trip was conservatively neglected. Since the MSIV's and turbine bypass

valves also close when condenser vacuum has further dropped to the setpoints,

S/RV cycling increases considerably compared to the original Turbine Trip

case. Even so, the bulk pool temperature and pressure are well within the

containment design requirements. Therefore, this event is similar to the

Turbine Trip event as far as the peak power and vessel pressure characteris-

tics are concerned and similar to the MSIV closure case with respect so

suppression pool temperature and containment pressure.

3.2.5.2 Sequence of Events For Loss of Condenser Vacuum

The listing of significant events during this ATWS event is provided in

Table 3.2.5-1. Results with and without ARI are presented.

This transient starts with the closure of all turbine stop valves (within

about 0.1 second) when the unexpected decline in condenser vacuum reaches the

turbine trip setpoint. If the unit has turbine-driven feedwater pumps, they

also trip at the same low vacuum setpoint. For the ARI failure case, the

feedwater is assumed to remain as if motor-driven pumps were avilable until

the feedwater limit action shuts them down (the most limiting case).
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Figure 3.2.5-1 shows the initial portions of the event for the more likely
plant ATWS transient in which ARI provides a diverse logic path to quickly
shutdown the reactor, and Figure 3.2.5-2 shows the initial portion for the
case in which ARI also is assumed to fail.

In both cases, the initial power and pressure increase. Neutron flux reaches
433% NBR near 1 second; fuel average heat flux reaches 134% NBR at about
3 seconds. Some fuel may experience boiling transition, however, coolable
geometry is maintained. Peak pressure occurs at the vessel bottom and is
1193 psig near 3 seconds. The normal reactor scrams occur from position
switches on the valves, high neutron flux, and high vessel pressure but are
ignored for this analysis. The transient pressure is limited within the
Service Level C overpressure limit of 1500 psig. This is due to the automatic
action of RPT which is initiated when vessel dome pressure exceeds 1150 psig
and the relieving action of the S/RV's which all open then start reclosing
near 5 seconds. By about 30 seconds, the condenser vacuum is assumed to
have fallen enough to initiate MSIV and bypass valve closure. This results
in another pressure and power rise to 1143 psig and 122% BNR, respectively.
Both of these peaks are lower than the earlier values. Peak heat flux rises
momentarily, but remains less than 65% and fuel geometry is maintained.

The long term behavior of this transient is very much like the MISV closure
event which is discussed in detail in Section 3.2.1. Figure 3.2.5-3 shows
the long term behavior predicted for this event. The peak bulk pool tem-
perature and pressure which occur near 27 minutes are 176*F and 8.3 psig,
respectively. These values remain well within the containment design
requirement.

Thus it can be seen that the loss of condenser vacuum event combined with a
failure to scram is adequately mitigated for a representative BWR 5/Mark II.
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3.2.6 Pressure Regulator Failure - Zero Steam Demand

The failure of the controlling pressure regulator to the lower limit passes

control of the main turbine control valves to the backup regulator. The

backup regulator is nominally set 3 to 5 psi higher than the controlling

regulator. As the transfer is made, a disturbance is introduced to the

system but none of the variables are disturbed sufficiently to reach any

scram trip setpoint. This transient is expected to be milder than the Turbine

Trip case and therefore is not analyzed here as an ATWS event.

3.2.7 Loss of a Feedwater Heater

3.2.7.1 Overview of Response Without the Scram

This is a mild transient comp red to other ATWS events. The neutron flux

does not reach the scram setpoint. The pressure rise is insignificantly

small. Therefore, automatic ATWS logic (e.g., recirculation pump trip) does

not occur, nor are HPCS or RCIC initiated. This is a gradual subcooling

transient. The entire transient has settled out when the feedwater tempera-

ture stabilizes. The reactor settles out to a new equilibrium power condition

at full core flow with recirculation flow assumed to be under manual control.

If automatic flow control was active, the power increase would be less. Manual

operator action accomplishes reactor shutdown.

3.2.7.2 Sequence of Events For Loss of a Feedwater Heater

In this event, loss of a key group of feedwater heaters gives the reactor

coolant feedwater flow (decreased 65°F) which produces an increase in core

inlet subcooling leading to an increase in core power. Following the transport

delay through the feedwater lines (neglected in this analysis) and the time

constant delay for cool-down of the heater tubes, average fuel surface heat

flux rise to a maximum value of 113% which is lower than the flux scram set-

point or simulated thermal power scram setpoint. No fuel reaches boiling

transition, even if the plant was initially at thermal operating limits. The
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reactor is conservatively assumed to be on manual flow control, therefore,
core inlet flow remains at 100%. Had the reactor been on automatic flow
control, core inlet flow remains at 100%. Had the reactor been on automatic
flow control, core inlet flow would have changed to decrease the severity of
the transient. The peak dome pressure of 1025 psig occurs near 74 seconds.
Figure 3.2.7-1 shows the short term response of this event. The water level
stays at normal conditions throughout the transient.

When the power reaches 108% NBR near 30 seconds, a high power alarm is
sounded at which point the operator is alerted to the problem. For this
analysis, it is assumed that attempts are expected to be made to bring the
power down by inserting rods. If this is not successful, it is assumed that
manual scram will be initiated, which will also initiate ARI and SLCS timed
logic. However, in this analysis manual scram is also assumed to fail. By
about 11 minutes the ARI function of inserting the rods will have been
accomplished and generated power is terminated.

If the ARI function is arbitrarily assumed to fail as well as all other
attempts to insert control rods within the two minute timed period after
pressing the manual scram button, the automatic start of boron injection will
begin through the HPCS line. An extra 30 seconds is allowed in the analysis
for transport in the section of this line into the vessel without HPCS flow
on. By about 35 minutes the power has been decreased below 1% NBR and nuclear
hot shutdown has been achieved. Recirculation flow remains on during such a
boron injection, providing total mixing and dispersion throughout the primary
system.

Thus it can be seen that a loss of feedwater heater combined with a failure to
scram is adequately integrated for a representative BWR 5/Mark II. Note that
this event was analyzed for a 65*F loss in feedwater heating rather than 60*F
as specified in NUREG 0460 (Volume 3).
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3.2.8 Feedwater Controller Failure - Maximum Demand

3.2.8.1 Overview of Response Without Scram

The behavior of the plant is separable into a short and larger term behavior.
The initial short term transient results in a gradual power increase, than a
sharp pressure rise and power peak. The long term segment requires evaluation
of coolant and containment conditions as the reactor is shut down.

Relief valve action occurs only during the early portion of the transient.
RPT, acting in conjunction with the relief valves, serves to effectively
limit the pressure disturbance. Note that the direct RPT from turbine
trip was conservatively ignored. RPT also ensures relatively low power
generation during the long term portion of the event. The effectiveness of
RPT as presented in earlier reports is again confirmed by this analysis.

Containment peak temperature and pressure remain well below design limits
due to the short duration of relief flow to the suppression pool. Power
shutdown can be achieved in either of two ways. ARI employs an alternate design
of the protection logic leading to a diverse insertion of the control rods.
In the unlikely event that ARI also fails, the automated SLCS provides further
protection and shutdown capability.

3.2.8.2 Sequence of Events for Feedwater Controller Failure - Maximum Demand

The time sequence of events for this transient is presented in Table 3.2.8-1.
Both successful ARI initiation, and ARI failure cases are considered. The
initiating event is the failure of the feedwater controller to the maximum
demand position (125% NBR was assumed). The feedwater flow rapidly responds,
causIng vessel level to rise.' When the high level trip setpoint (LS) is
reached near 16 seconds, the turbine and feedwater are tripped. This results
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in a scram signal which, for purposes of this analysis, fails to initiate a
scram. With the occurrence of the turbine trip, this event becomes very
similar to the Turbine Trip transient. Figures 3.2.8-1 and 3.2.8-2 show
the early portion of the event for the cases of ARI failure, and successful
ARI actuation, respectively. For each case, the peak power and flux are the
same with a maximum flux of 450% NBR near 17 seconds and a peak vessel bottom
pressure of 1195 psig around 18 seconds. Fuel average heat flux reaches a
maximum at 18 seconds of 140% NBR. Some fuel may experience boiling transi-
tion (about 6.3% if the core were operating at its thermal limit). The peak
cladding temperature remains below 1520*F, and coolable geometry is maintained.
Despite the assumed failure to scram based upon high neutron flux, vessel
level and dome pressure generated scram signals, the transient pressure is
maintained well below the 1500 psig Service Level C overpressure limit.
This is accomplished through the combination of RPT (initiated on high dome
pressure) and actuation of relief valves. Relief valve flow begins at 17
seconds, ceases at 70 seconds. S/RV's will open and cycle 3 times before
permanently closing at 1750 seconds. This is shown along with vessel steam
flow. The difference in vessel and relief steam flow is made up by the
steamflow through the turbine bypass valves to the condenser.

At approximately 40 seconds, ARI will complete insertion of control rods into
the core thereby shutting down the reactor. This will deactivate the SLCS
turning the remainder of the event into normal feedwater flow controller
failure transient. No further relief valve flow will occur. The decay heat
will be passed through the turbine bypass valves to the condenser.

In the unlikely event of ARI failure, the event can still be mitigated through
action of the SLCS. With confirmation from the flux monitoring system and
rod position indicating that scram has not occurred, the SLCS will be acti-
vated. The long term behavior predicted for this event is shown in
Figure 3.2.8-3. Boron first enters the core at about 200 seconds via the HPCS
system and commences to shut down the system, with hot shutdown occurring
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near 23 minutes. Vessel level experiences slow cycles about the normal water

level caused by the intermittent action of the RCIC and HPCS systems assumed

to be automatically cycling between L2 and L8. Boron concentration will

continue to increase until the entire inventory has been injected into the

core around 50 minutes. At this point the concentration is sufficient to

maintain cold nuclear shutdown conditions when the RHR system is switched to

the reactor shutdown cooling mode and the plant is brought to a cold shut-

down condition.

The peak suppression pool temperature is 108*F at 29 minutes with a corre-

sponding peak pressure of 1.0 psig. The RHR can be activated in the pool cooling

mode whenever convenient to reduce the pool temperature and any final, single

valve cycles can be accommodated. Vessel level, which drops due to feedwater

shutoff at high water level, is recovered and maintained in the normal water

range by means of the HPCS/RCIC systems.

Thus it can be seen that a feedwater controller failure event (maximum demand)

combined with a failure to scram is adequately mitigated for a representative

BWR 5/Mark II.

3.2.9 Pressure Regulator Failure - Maximum Steam Demand

3.2.9.1 Overview of Response Without Scram

The initial portion of this transient consists of a decrease in reactor

pressure and power as the turbine control valves open to the maximum position

followed by a rapid rise in pressure and power due to MSIV closure on low

steamline pressure. Scram is normally initiated at this time from the MSIV

position switches. Should they fail, additional scram signals occur from

high flux, high pressure, and low water level. Onc 6 the MSIV's close, the

characteristics of the remaining portion of the transient are very much the

same as the MSIV event.
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The power and pressure increases are limited by the action of the S/RV's
and RPT. With normal scraw assumed to be failed, the long term power shut-
down is achieved in either of two ways. ARI employs an alternate design of
the protection logic leading to diverse insertion of the control rods. In
the unlikely event that ARI fails the automated SLCS provides further protection
and shutdown capability.

3.2.9.2 Sequence of Events For Pressure Regulator Failure - Maximum Demand

The listing of significant events during this event is provided below. Results
for both cases - with ARI, and also assuming its failure, are presented.

This event begins with the inadvertent failure of the pressure regulator at
the maximum demand value. This causes a quick increase in vessel steam flow
which results in a rapid decrease in vessel pressure leading to a low pressure
isolation set point at about 22 seconds. The MSIV's are tripped closed. Once
this occurs the transient is essentially much like an MSIV closure event.
The isolation is followed by a rapid rise in power and pressure. Figures 3.2.9-1
and 3.2.9-2 show the initial portions of the event for the more likely plant
ATWS transient in which ARI quickly shuts down the reactor, and the case in
which ARI also fails and the automated SLCS is called upon to shut down the
reactor. In both cases, the peak power and pressure are the same. The neu-
tron flux reaching 399% near NBR near 30 seconds, fuel average heat flux
reaches 151% NBR at about 31 seconds. Some fuel may experience boiling
transition. However, peak cladding temperature is less than 1630*F and cool-
able geometry is maintained. The peak pressure occurs at vessel bottom and is
limited to 1238 psig near 32 segonds. The normal reactor scram signals occur
from position switches on MSIV's, high neutron fluw, and the high vessel pres-
sure but are ignored for this aialysis. The transient pressure is limited
within the Service Level C overpressure limit of 1500 psig. This is due to
the automatic action of RPT which is initiated when vessel pressure exceeds
1150 psig near 30 seconds and the relieving action of the S/RV's which all
open, then start reclosing near 43 seconds.
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By about 50 seconds, the high pressure logic which began the ATWS protection

will have accomplished the ARI function. This deactivates the automatic

boron injection and feedwater limit, and turns the remainder of the event into

a normal pressure regulator failure shutdown. The relief valve flow stops

near 67 seconds. Peak suppression pool temperature will occur at the time

of the last relief action and will be 95*F. The RHR can be activated in

pooling cooling whenever convenient to control temperature. Reactor water

level is restored to its normal range by feedwater flow and RCIC and HPCS

flow.

If the ARI function is arbitrarily assumed to fail as well as all other attempts

to insert control rods within the two-minute timed period, the ATWS logic will

continue to sense that the APRM signals are not downscale and not enough rods

are in their full-in positions, and the automatic start of boron injection will

begin. The long term behavior predicted for this event is shown in

Figure 3.2.9-3. Introduction of boron to the core at 3 minutes restores

level and core flow b4fore dropping the power near 22 minutes when nuclear

shutdown is achieved. Thereafter, only decay heat reaches the pool, giving

the peak pool temperature of 175*F (8.2 psig) at about 28 minutes. These

values remain well within the containment design requirements. Water level

inside the core shroud is a two-phase mixture which remains well above the

core and up into the steam separator standpipes as RCIC and HPCS flow pro-

vide coolant inventory. The boron will continue to build the poison concen-

tration in the vessel until it is all injected near 50 minutes making it

possible for a controlled reactor cooldown. The total concentration is specified

to be enough to maintain cold nuclear shutdown conditions even when the RHR

system is eventually switched to the reactor shutdown cooling mode, bringing

the plant to cold shutdown by normal procedures.

Thus it can be seen that the pressure regulator failure (maximum demand)

combined with a failure to scram is adequately mitigated for a representative

BWR 5/Mark II.

//
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3.2.10 ýoss of Feedwater

3.2.10.1 Overview of Response Without Scram

This event does not have rapid excursions as in some of the other events but is
a long term power reduction and depressurization. Since the pressure begins to
fall at the onset of the transient, the need for relief valves does not arise
until isolation occurs very late in the event and only single valve cycling is
expected to handle decay heat. The containment limits are not approached.
Except for the use of the liquid boron solution for shutdown, the procedure
followed here is virtually identical to the normal shutdown event.

3.2.10.2 Sequence of Events For Loss of Feedwater

In this event all feedwater flow is assumed to be lost in about 5 seconds.
The resulting sequence of events is shown in Table 3.2.10-1 for both cases
with and without ARI. Figure 3.2.10-1 shows the initial portion of the event
for the more likely plant ATWS transient in which ARI quickly shuts down the
reactor. Figure 3.2.10-2 shows the case in which ARI also fails and the
automated SLCS is called upon to shut down the reactor.

In both cases, after the loss of feedwater (0-2 seconds) has taken place the
pressure, water level and neutron flux begin to fall. Around 18 seconds low
water level (L2) is reached. This trips the recirculation pumps, initiates
ARI, initiates the HPCS and RCIC and activates the SLCS timed logic. Neg-
lected was the recirculation runback which would have occurred earlier from
coincident low level alarm (L4) and low feedwater flow. By 38 seconds the low
water level logic which began the ATWS protection will have accomplished the
ARI function. This deactivates the automatic boron injection. At 32 seconds
HPCS and RCIC flows start. They replace the main feedwater system and
begin to overcome the inventory loss. The vessel level decreases slightly

3-160

3.2.10 ~QS8 of Feedwater . 
3.2.10.1 Overview of Response Without Scram 

This event does not have rapid excursions as in some of the other events but is 

a long term power reduction and depressurization. Since the pressure begins to 

fall at the onset of the tranSient, the need for relief valves does not arise 

until isolation occurs very late in the event and only single valve cycling is 

expected to handle decay heat. The containment limits are not approached. 

Except for the use of the liquid boron solution for shutdown, the procedure 

followed here is virtually identical to the normal shutdown event. 

3.2.10.2 Sequence of Events For Loss of Feedwater 

In this event all feedwater flow is assumed to be lost in about 5 seconds. 

The resulting sequence of events is shown in Table 3.2.10-1 for both cases 

with and without ARI. F!gure 3.Z.10-l shows the initial portion of the event 

for the more likely plant ATWS transient in which ARI quickly shuts down the 

reactor. Figure 3.2.10-2 shows the case in which ARl also fails and the 

automated SLCS is call~d upon to shut down the reactor. 

In both cases, after the loss of feedwater (0-2 seconds) has taken place the 

pressure, water level and neutron flux begin to fall. Around 18 seconds low 

water level (L2) is reached. This trips the recirculation pumps, initiates 

ARl,· initiates the HPCS and ReIC and activates the SLCS timed logic. Neg­

lected was the recirculation runback which would have occurred earlier from 

coincident low level alarm (L4) and low feedwater flow. By 38 seconds the low 

water level logic which began the ATWS protection will have accomplished the 

ARI function. This deactivates the automatic boron injection. At 32 seconds 

HPCS and RCIC flows start. They replace the main feedwater system and 

·begin to overcome the invento~y loss. The vessel level decreases slightly 

3-160 



NEDO-24222

faster immediately following ARI and the minimum for the simulated case is

reached near 57 seconds as shown in Figure 3.2.10-1. The two-phase mixture

level always remains above the top of the fuel. Vessel pressure continues to

decrease as shown in Figure 3.2.10-1, as quenching by the RCIC and HPCS con-

tinues. The HPCS and RCIC will restore level to its normal range, for either

automatic cycling between Level 2 and 8 setpoints or the operator takes over

manual level control by using the RCIC (preferred). Pressure is expected to

increase to the lowest S/RV setpoint when HPCS/RCIC are off (level restored),

and one cycling valve is expected without significant pool temperature increase.

If the ARI function is arbitrarily assumed to fail as well as all other scrams

and attempts to insert enough control rods within the two-minute timed period,

the ATWS logic will continue to sense that the APRM signals are not downscale

and not enough rods are in their full-in positions, and the automatic start

of boron injection will begin. The power is predicted to remain in the 10-20%

range, with core flow and level being restored during the first part of the

boron injection as shown in Figure 3.2.10-2 and extended through the long term

transient in Figure 3.2.10-3. The significant features during the early part

of the event are the same as the previous case. The key difference is that

the minimum water level is reached around 4 minutes and stays above the

Level I setpoint. MSIV isolation may be avoided by taking the mode switch out

of the "RUN" mode. This water level behavior is attributed to higher void

fraction in the core as a result of higher power relative to the previous

case in which ARI reduces power and core void fraction. SLCS boron injection

is started near 2 minutes and it reaches the core 1 minute later. During the

following 16 minute period (out to about 1100 seconds in Figure 3.2.10-3),

the key result is that power is suppressed slightly, reducing the steaming rate

and allowing water level to be restored. This also induces higher natural

circulation core flow which follows the water level behavior. The level reaches

the high level turnoff (Level 8) of the HPCS and RCIC at about 1200 seconds.

The turbine is also tripped at this level but since the turbine steam bypass
system opens immediately, no significant pressure disturbance is experienced.
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By 1110 seconds the generated power is below 1% NBR and continues to decrease
due to the accumulation of boron in the reactor. The net reactivity also
stays negative. This accomplishes hot, nuclear shutdown. The vessel pressure
is steadily decreasing and around 20 minutes MSIV isolation occurs due to lowvessel pressure. By this time the generated power is practically zero and theonly heat in the vessel is the decay heat.

The reactor pressure is expected to return to the setpoint of the lowest S/RVwhen HPCS and RCIC are off and are not quenching steam. The decay heat willcycle this lowest valve, but no significant suppression pool heatup is expected.
The reactor would be cooled down at normal rates using the relief valve(s)
to cold shutdown.

Thus it can be seen that loss of feedwater combined with a failure to scram
is adequately mitigated for a representative BWR 5/Mark II.

3.2.11 Loss of Normal AC Power

3.2.11.1 Overview of Response Without Scram

The initial portion of the transient sees a sharp rise in reactor pressure
and power due to MSIV closure as a result of loss of normal AC power. Scram
is initiated at this time from the MSIV position switches if it had not
occurred yet from loss of reactor trip system power. Should these signals
fail, additional scram signals occur from high flux, high pressure and lowwater level. The power and pressure increases are limited by the action of
the S/RV's and RPT (which occurs at the start of this event). With normal
scram assumed to have failed the long term power shutdown is achieved in eitherof two ways. ARI employs an alternate design of the protection logic leading
to diverse insertion of the control rods. In the unlikely event that ARI
fails, the automated SLCS provides further protection and shutdown capability.
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3.2.11.2 Sequence of Events For Loss of Normal AC Power

The listing of significant events during this event is provided below. Results

for both cases - with ARI and also assuming its failure are presented.

There are two ways of experiencing this event. These are loss of all auxiliary

power transformers and loss of all grid connections. The main difference

between the two approaches is that in the latter one load rejection occurs at

the outset of the transient which results in turbine-generator trip. In both

cases MSIV closure takes place near 2 seconds. This is the earliest time

isolation can occur due to coastdown of the RTS M/G set power supply.

Since in loss of all grid connections the turbine trips first as opposed to

MSIV closure in loss of all auxiliary power transformers case, it turns out

to be a less severe event in terms of peak power and pressure. Therefore the

rest of the discussion is limited to the case where loss of all-auxiliary power

transformers occur. The sequence of events as outlined in Table 3.2.11-1

describes the event. Since loss of power takes place it is assumed that the

accumulators will have enough air to last one cycle of S/RV valves at their

relief setpoints after which they will switch over to spring setpoints. The

low-low set S/RV design (if available) actually has greater capability for

cycling in the relief mode, and would give lower pressures.

This event begins with the loss of recirculation pumps and feedwater pumps

since condensate and/or booster pumps are also tripped due to loss of power.

This leads to in initial fall in power and pressure. Near 2 seconds MSIV

closure is assumed to take place, which results in a rapid rise in power and

pressure. Figure 3.2.11-1 shows initial portions of the event for the more

likely plant ATWS transient in which ARI quickly shuts down, the reactor, and

Figure 3.2.11-2 shows the initial portion of the case in which ARI also fails

and automated SLCS is called upon to shut down the reactor.
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In both cases, the peak power and pressure are the same. The neutron flux
reaches 4682 NBR near 7 seconds, fuel average heat flux reaches 109Z NBR at
about 8 seconds. No fuel experiences boiling transition. The peak pressure
occurs at vessel bottom and is 1231 psig near 9 seconds.

The normal scrams occur due to loss of AC power and also due to position
switches on MSIV's, high neutron flux and the high vessel pressure but are
ignored for this analysis. The transient pressure is limited within the
Service Level C overpressure limit of 1500 psig. This is due to RPT at the
start of the transient and the relieving action of the S/RV's which all open,
then start reclosing near 14 seconds.

By about 27 seconds, the high pressure logic would provide ATWS protection
by activating ARI. This deactivates the automatic boron injection and allows
the remainder of the event to proceed toward shutdown. The primary relief
valve flow stops near 50 seconds, followed by only single valve cycling on
the "tail" of the isolation event. The RHR can be activated in pool cooling
mode as soon as water level recovery is clearly indicated to control pool
temperature. Reactor water level is restored quickly to its normal range by
RCIC and HPCS flow.

If the ARI function is arbitrarily assumed to fail as well as all other
attempts to insert control rods within the two-minute timed period, the ATWS
logic will continue to sense that not enough rods are in their full-in posi-
tions, and the automatic boron injection will begin. The long term behavior
predicted for this event is shown in Figure 3.2.11-3. Introduction of boron
to the core around 3 minutes again restores level and core flow before
decreasing power near 20 minutes when nuclear shutdown is achieved. There-
after, only decay heat reaches the pool, giving the peak bulk pool temperature
of 170°F (7.3 psig) at about 33 minutes. These values remain well within the
containment design requirements.
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Water level inside the core shroud is a twQ-phase mixture which remains well

above the core and up into the steam separator standpipes as RCIC and HPCS

flow provide coolant inventory. The boron will continue to build the poison

concentration in the vessel until it is all injected near 50 minutes making

it possible for a controlled reactor cooldown. The total concentration is

specified to be enough to maintain cold nuclear shutdown conditions even when

the RHR system is eventually switched to the reactor shutdown cooling mode,

bringing the plant to a cold shutdown.

Thus it can be seen that a loss of normal AC power combined with a failure to

scram is adequately mitigated for a representative BWR 5/Mark II.

3.2.12 Recirculation Flow Controller Failure - Maximum Demand

3.2.12.1 Overview of Response Without Scram

This transient is not severe enough to trip any ATWS logic nor initiate HPCS

or RCIC flow. It is considerably milder than MSIV closure or turbine trip

ATWS cases. This is a short term transient with a sudden power rise and a

relatively small pressure increase. The entire transient is over within

30 seconds by which time the reactor settles out to a new equilibrium condition

less than 100% rated power. Since the peak pressure stays below the lowest

S/RV setpoint, steam flow to the suppression pool does not take place.

3.2.12.2 Sequence of Events for Recirculation Flow Controller Failure -

Maximum Demand

This event may occur for one loop only, or both loops simultaneously. One

loop failure occurs when the individual loop controller fails. The valve

stroking rate is limited by the capability of the valve hydraulics. Master

controller failure would affect both loops. For this case, the maximum valve

stroking rate is governed by the valve actuator velocity limiter so that this

event is less severe than failure in one loop. The following sequence of

events describes the failure of one loop controller.
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Water level inside the core .shroud is a two-phase mixture which remains well 

above the core and up into the steam separator standpipes as RCIC and HPCS 

flow provide coolant inventory. The boron will continue to build the poison 

concentration in the vessel until it is all injected near 50 minutes making 

it possible for a controlled reactor ~ooldown. The total concentration is 

specified to be enough to maintain cold nuclear shutdown conditions even when 

the RHR system is eventually switched to the reactor shutdown cooling mode, 

bringing the plant to a cold shutdown. 

Thus it can be seen that a loss of normal AC power combined with a failure to 

scram is adequately mitigated for a representative BWR 5/Mark II. 

3.2.12 Recirculation Flow Controller Failure - Maximum Demand 

3.2.12.1 Overview of Response Without Scram 

This tra.nsient is not severe enough to trip any ATWS logic nor initiate HPCS 

or RCIC flow. It is considerably milder than MSIV closure or turbine trip 

ATWS cases. This is a short term transient with a sudden power rise and a 

relatively small pressure increase. The entire transient is over within 

30 seconds by which time the reactor settles out to a new equilibrium condition 

less than 100% rated power. Since the peak pressure stays below the lowest 

S/RV setpoint, steam flow to the suppression pool does not take place. 

3.2.12.2 Sequence of Events for Recirculation Flow Controller Failure -
Maximum Demand 

This event may occur for one loop only, or both loops simultaneously. One 

loop failure occurs when the individual loop controller fails. The valve 

stroking rate is limited by the capability of the valve hydraulics. Master 

controller failure would affect both loops. For this case, the maximum valve 

stroking rate is governed by the valve actuator velocity limiter so that this 

event is less severe than failure in one loop. The following sequence of 

events describes the failure of one loop controller. 

3-165 



NED0-,,4222

The worst case initial conditions for this event are the conditions corres-
ponding to the minimum recirculation valve position and pump speed on the
105% NBR steamflow rod pattern flow control line. The power and core flow
at this point are 53% and 33% of rated respectively.

The event is initiated by the rapid failure open of one recirculation flow
control valve, the valve reaching the full open position in approximately
3.5 seconds. Figure 3.2.12-1 shows the behavior of key parameters during
this event. The resulting increase in core flow causes a neutron flux power
spike which reaches a maximum value of 382% NBR at 1.9 seconds. Thermal
power, as demonstrated by the heat flux at the surface of the fuel, peaks at
92% NBR near 2.8 seconds. Either of these variables (high neutron flux or
high simulated thermal power) would have initiated scram (neglected in this
analysis). No fuel encounters boiling transition even if the core is operat-
ing initially at its operating limit. A small pressure rise occurs, peaking
near 5 seconds with a vessel bottom pressure of 1007 psig (compared to an
initial bottom pressure of 961 psig). Simultaneous with the above events,
vessel level experiences a small decrease and then recovers to its initial
position, and feedwater flow rises in response to the power increase. As
core flow levels off to approximately 66% of rated near 6 seconds, the power
settles out as do all other parameters. At this point, the transient is
essentially over. By 20 seconds, all parameters have reached equilibrium
except power and feedwater flow which continue to slowly decrease following
the warming of the feedwater heaters.

Because of the mildness of the event, no automatic pressure or level dependent
actions are initiated. Containment is not affected since no relief valves are
actuated. Subsequent operator action would be expected to initiate a manual
shutdown, utilizing the SLCS if manual insertion or scram of rods remains unsuc-
cessful. Initiation of ARI/SLCS from manual scram near 10 minutes would shut
down the plant immediately (ARI) or by about 30 minutes (SLCS). Recirculation
flow would be maintained near full flow initially and at partial flow (low
frequency M/G sets on) in order to maximize boron dispersion throughout the
vessel and to provide near-normal shutdown sequence.
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at this point are 53% and 33% of rated respectively. 

The event is initiated by the rapid failure open of one recirculation flow 

control valve. the valve reaching the full open position in approximately 

3.5 seconds. Figure 3.2.12-1 shows the behavior of key parameters during 

this event. The resulting increase in core flow causes a neutron flux power 
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ing initially at its operating limit. A small pressure rise occurs, peaking 

near 5 seconds with a vessel bottom pressure of 1007 psig (compared to an 

initial bottom pressure of 961 psig). Simultaneous with the above events, 

vessel level experiences a small decrease and then recovers to its initial 

position, and feedwater flow rises in response to the power increase. As 

core flow levels off to approximately 66% of rated near 6 seconds, the power 

settles out as do all other parameters. At this poi~t, the transient is 

essentially over. By 20 seconds, all parameters have reached equilibrium 

except power and feedwater flow which continue to slowly decrease following 

the warming of the feedwater heaters. 

Because of the mildness of the event, no automatic pressure or level dependent 

~ctions are initiated. Containment is not affected since no relief valves are 

actuated. Subsequent operator action would be expected to initiate a manual 

shutdown, utilizing the SLCS if manual insertion or scram of rods remains unsuc­

cessful. Initiation of ARI/SLCS from manual scram near 10 minutes would shut 

down the plant immediately (ARI) or by about 30 minutes (SLCS). Recirculation 

flow would be maintained near full flow initially and at partial flow (low 

frequency MIG sets on) in order to maximize boron dispersion throughout the 

vessel and to provide near-normal shutdown sequence. 
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Thus it can be seen that a recirculation flow control failure combined with

a failure to scram is adequately mitigated for a representative BWR 5/Mark II.

3.2.13 Startup of the Idle Recirculation Pump

This event is similar to the recirculation flow controller failure - maximum

demand, both of these vents result in increased core power which results

from the increased core flow. The Startup of the Idle Recirculation Pump

event has been shown in safety analysis reports to be less severe than the

recirculation flow controller failure and therefore, further transient-

specific analyses have not been done.

3.2.14 Inadvertent Opening of All Bypass Valves

This event will be similar to the pressure regulator failure - maximum steam

demand. Since the turbine control valves will try to compensate for the

pressure reduction, the results will be less severe. For those plants with

smaller bypass capacity, this event will be even less severe.

3.2.15 Shutdown Cooling (RHR) Malfunction - Decreasing Temperature

This event can only occur at very low pressure. The shutoff head of the

shutdown cooling pumps is less than 300 psig. In this condition, the reactor

has almost no voids in it and therefore only little if any positive reactivity

is inserted. Therefore, this event is not considered further.
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SUMMARY

Maximum
Maximum Average
Neutron Surface
Flux Heat Flux

(% NBR) (% BNR)

614 150

426 134

Table 3.2-1

OF BWR/5 RESULTS

Maximum
Vessel Maximum
Bottom Steamline

Pressure Pressure
(psig) (psig)

1247 1193

1192 1126

co

Event

MSIV Closure

Turbine Trip With
Bypass

IORV

Loss of Condenser
Vacuum
Loss of Feedwater

Heater

Feedwater Controller
Failure - Max Demand
Pressure Regulator
Failure - Open
Loss of Normal
Feedwater Flow

Loss of Normal
AC Power

Recirculation Flow
Failure - Open

Turbine Trip Without
Bypass

433

114

450

399

100

468

382

643

134

113

140

151

100

109

92

143

1193

1071

1196

1238

1056

1205

1007

1230

1126

987

1127

1180

988

1191

969

1171

Suppression Containment
Pool Maximum Peak

Bulk Temp. Pressure
(OF) (psig)

179 9.1

104 0.7

187 10.6

176 8.3

90 no change

108 1.0

175 8.2

90 no change

170 7.3

90 no change

178 9.1

S

.%)

Maximum 
Neutron 
Flux 

Event (% NBR) 

MSIV Closure 614 

Turbine Trip With 426 
Bypass 

IORV 

Loss of Condenser 433 
Vacuum 

\...,) 

I Loss of Feedwater 114 I-' 
0'\ Heater CX) 

Feedwater Controller 450 
Failure - Max Demand 

Pressure Regulator 399 
Failure - Open 

Loss of Normal 100 
Feedwater Flow 

Loss of Normal 468 
AC Power 

Recirculation Flow 382 
Failure - Open 

Turbine Trip Without 643 
Bypass 

Table 3.2-1 

SUMHARY OF BWR/S RESULTS 

Maximum Maximum 
Average Vessel Maximum 
Surface Bottom Steamline 

Heat Flux Pressure Pressure 
(% BNR) (psig) (psig) 

150 1247 1193 

134 1192 1126 

134 1193 1126 

113 1071 987 

140 1196 1127 

151 1238 1180 

100 1056 988 

109 1205 1191 

92 1007 969 

143 1230 1171 

Suppression 
Pool Maximum 

Bulk Temp. 
(OF) 

179 

104 

187 

176 

90 

108 

175 

90 

170 

90 

178 

Containment 
Peak 

Pressure 
(psi~) 

9.1 

0.7 

10.6 

8.3 

no change 

1.0 

8.2 

no change 

7.3 

no change 

9.1 

I 
! 

~ 
8 
I 
I\) 
.:= 
I\) 
IV 
I\) 
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Table 3.2.1-1

BWR/5 MSIV CLOSURE

SEQUENCE OF EVENTS Time

1. Nominal 4 Second MSIV Closure - Scram Fails 0

2. Pressure Rise Begins 0

3. Relief Valves Lift 4 seconds

4. Recirculation Pumps Trip on High Pressure, ARI is 5 seconds
Initiated and Timed SLCS Logi is Triggered

5. Vessel Pressure Peaks 7 seconds

6. ARI Assumed to Fail 25 seconds

7. Water Level Reaches Level 2, Beginning HPCS and 34 seconds
RCIC Startup

8. Feedwater Flow Coasts Down to Lower Limit 45 seconds

9. HPCS and RCIC Flow Reaches the Vessel 54 seconds

10. ATWS Logic Timer Complete, SLCS Starts 2 minutes

11. Liquid Control Flow Reaches Core 3 minutes

12. Water Level Reaches Minimum and Begins to Rise 5 minutes

13. RHR Flow Begins (Pool Cooling) 11 minutes

14. Hot Shutdown Achieved 22 minutes

15. Maximum Containment Bulk Temperature and Pressure 46 minutes
Occur
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Table 3.2.1-1 

BWR/5 MSIV CLOSURE 

1. Nominal 4 Second MSIV Closure - Scram Fails 

2 .. Pressure Rise Begins 

3. Relief Valves Lift 

4. Recirculation Pumps Trip on High Pressure, ARI is 
Initiated and TimedSLCS Logi is Triggered 

5. Vessel Pressure Peaks 

6. ARI Assumed to Fail 

7. Water Level Reaches Level 2, Beginning HPCS and 
RcrC Startup 

8. Feedwater Flow Coasts Down to Lower Limit 

9. HPCS and RCIC Flow Reaches the Vessel 

10. ATWS Logic Timer Complete, SLCS Starts 

11. Liquid Control Flow Reaches Core 

12. Water Level Reaches Minimum and Begins to Rise 

13. RHR Flow Begins (Pool Cooling) 

14. Hot Shutdown Achieved 

15. Maximum Containment Bulk Temperature and Pressure 
Occur 
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Time 

0 

0 

4 seconds 

5 seconds 

7 seconds 

25 seconds 

34 seconds 

45 seconds 

54 seconds 

2 minutes 

3 minutes 

5 minutes 

11 minutes 

22 minutes 

46 minutes 
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Table 3.2.1-2

BWR/5 MSIV CLOSURE SUMMARY

86 GPM-2 Min Logic Delay
With ARI Failure 

MSIV

Maximum Neutron Flux (%) 
614

Maximum Vessel Bottom Pressure (psig) 
1246

Maximum Average Heat Flux (Z) 
150

Maximum Bulk Suppression Pool
Temperature ( 0F) 

179Associated Containment Pressure (psig) 
9.1
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Table 3.2.1-2 

BWR/5 MSIV CLOSURE SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool 

Temperature (OF) 

Associated Containment Pressure (psig) 

I 
) 
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86 GPM-2 Min Logic Delay 

MSIV 

614 

1246 

150 

179 

9.1 
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Table 3.2.2-1

BWR/5 TURBINE TRIP

SEQUENCE OF EVENTS

1. Turbine Trips - Scram Fails

2. Pressure "Rise.Begins

3. Relief Valve Lift

4. Some Fuel Experiences Transition Boiling

5. Recirculation Pumps Trip on HIgh Y-ressure, ARI is
Initiated and Timed SLCS Logis is Triggered

6. Vessel Pressure Peaks

7. ARI Assumed to Fail

8. Feedwater Flow Runs Back to Lower Limit Value

9. HPCS and RCIC Flow Starts on Level 2 Initiation

10. ATWS Logic Timer Complete, SLCS Starts

11. Containment Temperature and Pressure Peak

12. Liquid Control Flow Reaches Core

13. Water Level Reaches Minimum and Begins to Rise

14. RHR Flow Begins (Pool Cooling)

15. Hot Shutdown Achieved

Time

0

0

2

2

2

seconds

seconds

second•

3 seconds

22 seconds

45 seconds

60 seconds

2 minutes

2 minutes

3 minutes

5 minutes

11 minutes

23 minutes
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Table 3.2.2-1 

BWR/5 TURBINE TRIP 

1. Turbine Trips - Scram Fails 

2. Pressure "Rise Begins 

3. Relief Valve Lift 

4. Some Fuel Experiences Transition Boiling 

5. Recirculation Pumps Trip on HIgh ~ressure, ARI is 
Initiated and Timed SLCS Logis is Triggered 

6. Vessel Pressure Peaks 

7. ARI Assumed to Fail 

8. Feedwater Flow Runs Back to Lower Limit Value 

9. HPCS and RCrC Flow Starts on Level 2 Initiation 

10. ATWS Logic Timer Complete, SLCS Starts , 

11. Containment Temperature and Pressure Peak 

12. Liquid Control Flow Reaches Core 

13. Water Level Reaches Minimum and Begins to Rise 

14. RHR Flow Begins (Pool Cooling) 

15. Hot Shutdown Achieved 

3-171 

Time 

o 

o 

2. seconds 

2 seconds 

2 seconds 

3 seconds 

22 seconds 

45 seconds 

60 seconds 

2 minutes 

2 minutes 

3 minutes 

5 minutes 

11 minutes 

23 minutes 
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Table 3.2.2-2

BWR/5 TURBINE TRIP SUMMARY

86 GPM - 2 Min Logic Delay

Turbine Trip
With ART Failure

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (%)

Maximum Bulk Suppression Pool Temperature ('F)

Associated Containment Pressure (psig)

426

1192

134

104

0.7
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Table 3.2.'2-2 

BWR/5 TURBINE TRIP SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 
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86 GPM - 2 Min Logic Delay 

Turbine Trip 

426 

1192 

134 

104 

0.7 
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Table 3.2.3-1

BWR/5 IORV

Sequence of Events TTime

1. Relief valve opens inadvertently and attempts
to close it are unsuccessful

2. Alarm sounds at 95 0 F and operator initiates pool
cooling

3. Suppression pool temperature reaches ll 0 *F operator
attempts manual scram; scram fails

4. ARI assumed to fail

5. SLCS automatically starts

6. Control liquid reaches core

7. Power is less than relief valve capacity

8. Isolation on low steam line pressure

9. Peak suppression pool temperature and pressure are
reached

0

2 minutes

7.5 minutes

8 minutes

9.5 minutes

10 minutes

19 minutes

21 minutes

75 minutes
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Table 3.2.3-1 

Bw/5 IORV 

Sequence of Events 

1. Relief valve opens inadvertently and attempts 
to close it are unsuccessful 

2. Alarm sounds at 95°F and operator initiates pool 
cooling 

3. Suppression pool temperature reaches 110°F operator 
attempts manual scram; scram fails 

4. ARI assumed to fail 

5. SLCS automatically starts 

6. Control liquid reaches core 

7. Power is less than relief valve capacity 

8. Isolation on low steam line pressure 

·9. Peak suppression pool temperature and pressure are 
reached 
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Time 

o 

2 minutes 

7.5 minutes 

8 minutes 

9.5 minutes 

10 minutes 

19 minutes 

21 minutes 

75 minutes 
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Table 3.2.3-2

BWR/5 IORV - SUMMARY

With ARI Failure

Maximum Bulk Suppression Pool Temperature ( 0 F)Associated Containment Pressure (psig)

86 GPM - 2 Min Logic Delay

IORV

187

10.6

3-174

NEOO-24222 

Table 3.2.3-2 

BWR/5 IORV - SUMMARY 

With ARI Failure 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 
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86 GPM - 2 Min Logic Delay 

IORV 

187 

10.6 



Table 3.2.4.1-1

BWR/5 MSIV SENSITIVITY STUDY RESULTS

Parameter Varied

BASE CASE

Boron Timer

HPCS/RCIC Capacity

Boron Pumping Cap/
Mixing Efficiency

RHR Effectiveness

RHR Start Time

Service Water Temperature

Pool Size

RHR Effectiveness
and Service Water
Temperature

*Sized to a 251 vessel

Base Value

120 sec

13.6% NBR
Fw Flow

86 GPM*/
75%

2.13% NBR
at 100OF AT

660 sec

850F

28.4 Full Flow

(see above)

% Change

+100/-75

+20/-20

+20/-20

+50/-50

+45/-18

+20 0 F/-20*F

+20/-20

+50/-50

+20/-20

Change in
Minimum Level

(ft)

-9.8

-0.25 /+0.87

+2.26 /-0.73

-0.20 /-0.19

N/A

N/A

N/A

N/A

N/A

Change in
Peak Pool

Temperature
(OF)

179.0

+5.9 / -7.1

+5.6 /-10.4

-10.9 / +8.20

-6.0 /+13.0

+1.1 / -0.6

-18.0 /-18.0

-11.5 /+15.8

+12.5 / -4.9

Change in Peak
Containment

Pressure
(psi)

9.1

+1.0 /-1.0

+0.9 /-2.0

-2.10/+2.0

-1.3 /+2.5

0.0 / 0.0

+3.8 /-3.2

-2.2 /+3.2

+2.2 / -1.1

z

A)N)
N)
N)

Table 3.2.4.1-1 

BWR/5 MSIV SENSITIVITY STUDY RESULTS 

Change in Change in Peak 
Change in Peak Pool Containment 

Minimum Level Temperature Pressure 
Parameter Varied Base Value % Change (ft) (OF) (psi) 

BASE CASE -9.8 179.0 9.1 

Boron Timer 120 sec +100/-75 -0.25 /+0.87 +5.9 / -7.1 +1.0 /-1.0 

HPCS/RCIC Capacity 13.6% NBR +20/-20 +2.26 1-0.73 +5.6 /-10.4 +0.9 /-2.0 
Fw Flow 

Boron Pumping Cap/ 86 GPM*I +20/-20 -0.20 /-0.19 -10.9 / +8.20 -2.101+2.0 
Mixing Efficiency 75% 

w RHR Effectiveness 2.13% NBR +50/-50 N/A -6.0 /+13.0 -1.3 /+2.5 I z 
....... at 100°F .6T t>l 
'-I 8 lJI 

RHR Start Time 660 sec +45/-18 N/A +1.1 / -0.6 0.0 / 0.0 I 
N 
+::' 

Service Water Temperature 85°F +20°F/-20°F N/A -18.0 /-lR.O +3.8 /-3.2 N 
N 
N 

Pool Size 28.4 Full Flow +20/-20 N/A -11.5 /+15.8 -2.2 /+3.2 

RHR Effectiveness +50/-50 
and Service Water (see above) N/A +12.5 / -4.9 +2.2 / -1.1 
Temperature +20/-20 

*Sized to a 251 vessel 
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Table 3.2.4.1-2
BWR/5 MSIV ATWS NUCLEAR PARAMETRIC STUDY SUMMARY

Vessel Suppression
Bottom Pool

Doppler
Coef

(C/°F)

-0.200

-0.230

-0.285

-0.3200
-0.200

-0.230

-0.285

-0.320

-0.200

-0.230

-0.280t

-0.320

-0.200

-0.230

-0.285

-0.320

Void Neutron Average
Coef Flux Heat Flux

(%) (%)

Pressure

(psi)

Temperature

(OF)

Min Level/Time

(with range)

(ft/sec)

-6

-6

-6

-6

-8

-8

-8

-8

-14
-11

-1i±

-14

-14

-14
-14

-14

-159

-194

-242

-264

-18

-70

-140

-173

+180

+100

614 t

-46

+278

+192

+77

+28-

-8.5

-11.6

-16.2

-18.6

+0.6

-2.8

-7.8

-10.5

+8.0

+4.9

150.8±

-2.7

+10.9

+8.4

+4.4

+2.8

-16

-23

-35

-40

+5

-5

-17

-23

+22

+13

1252 t

-7

+30

+22

+10

+3

+1.1

-3.4

177.8%t

+1. 7

-1.7

-1.4/232

+1.3/242

-9.6/207±

-0.8/264

+1.2/233

t Values shown are nominal void and Doppler coefficients are absolute peaks.Other peaks are relative to these.
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Table 3.2.4.1-2 

BWR/S MSIV ATWS NUCLEAR PARAMETRIC STUDY SUMMARY 

Vessel Suppression 
Doppler Void Neutron Average Bottom Pool Min Level/Time 

Coef Coef Flux ~.eat Flux Pressure Temperature (with range) 

(¢;oF) (~/%) (%) (%) (psi) (OF) (ft/sec) 

-0.200 -6 -159 -8.5 -16 

-0.230 -6 -194 -11.6 -23 

-0.285 -6 -242 -16.,2 -35 

-o.no -6 -264 -18.6 -40 

-0.200 -8 -18 +0.,6 +5 

-0.2;'0 -8 -70 -2.8 -5 

-0.285 -8 -140 -7.8 -17 +1.1 -1.4/232 

-0.320 -8 -173 -10.5 -23 

-0.200 -11 +180 +8.0 +22 

-0.230 -11 +100 +4.9 +13 -3.4 +1. 3/242 

-0.280t _11+ 614+ 150.8t 1252+ 177.8+ -9.6/207t 

-0.320 -11 -46 -2.7 -7 +1. 7 -0.8/264 

-0.200 -14 +278 +10.9 +30 

-0.230 -14 +192 +8.4 +22 

-0.285 -14 +77 +4.4 +10 -1. 7 +1. 2/233 

-0.320 -14 +28. +2.8 +3 

t Values shown are nominal void and Doppler coefficients are absolute peaks. 
Other peaks are relative·to these. 
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Table 3.2.4.1-3

BWR/5 MSIV-ATWS PARAMETRIC STUDY SUMMARY

Change in Peak Value

Parameter Variation Neutron Flux
Average

Heat Flux
Vessel Bottom

Pressure

psiNominal

S/RV capacity

RPT Delay

RPT Inertia

+20%

-20%

+0.5 sec

+1.0 sec

+0

+0

+0

+0

+2

+0

+0.i

+0

+0

+0

+0

+0

- 27

+110

+0

+3

+1

-1

+50%

-20%
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Table 3.2.4.1-3 

BWR/5 MSIV-ATWS PARAMETRIC STUDY SUMMARY 

Change in Peak Value 

Average Vessel Bottom 
Parameter Variation Neutron Flux Heat Flux Pressure 

Nominal % % psi 

S/RV capacity +20% +0 .+0.1 - 27 

-20% +0 +0 +110 

RPT Delay +0.5 sec +0 +0 +0 

+1.0 sec +0 +0 +3 

RPT Inertia +50% +2 +0 +1 

-20% +0 +0 -1 

3-177 
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Table 3.2.4.2-1
BWR/5 TURBINE TRIP SENSITIVITY RESULTS

Parameter Varied

Base Case

HPCS/RCIC

Boron Delay

Base Value

13.6% NBR
Steamflow

120 sec

% Change

+20
-20

+100
-75

Change In
Minimum Level

(ft)

-6.9

+1. 8
-2.2

-0.7
+0.7

3,178
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Table 3.2.4.2-1 

BWR/5 TURBINE TRIP SENSITIVITY RESULTS 

Change In 
Minimum Level 

Parameter Varied Base Value % Change (ft) 

Base Case -6.9 

HPCS/RCIC 13.6% NBR +20 +1.8 
Steamflow -20 -2.2 

Boron Delay 120 sec +100 -0.7 
-75 +0.7 
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Table 3.2.4.2-2

BWR/5 TURBINE TRIP ATWS NUCLEAR PARAMETRIC STUDY SUMMARY

Change in Peak Value

Doppler
Coef

(o/°F)

-0.200
-0.230
-0.285
-0.320
-0.200
-0.230
-0.285
-0.320
-0.285
-0.200
-0.230

Void Neutron Average Heat
Coef

Wc /%)

-6
-6
-6
-6
-8
-8
-8
-8
-9
-11
-11

Flux

M%

Flux

(W)

-134
-148
-169
-179
- 51
- 73
-104
-120
- 70
+ 92
+ 54

+

+
+

3.9
5.7
8.6

10.2
0.9
1.1
4.5
5.7
2.5
4.5
2.8

Vessel
Bottom

Pressure

(psi)

- 7*
- 9*

-11 *
-12*
-1

-3
-12"*
- 7*

-3
+5
+3

Suppr Pool
Temp

(°F)

Min Level/Time
(wide range)

(ft/sec)

-0.280*** 427 134.4 1193

+0.8

+1.5

-0.1

103.7

+1.0

1.0
-1.0

-1.6/221

+0.7/235

-6.9/269

-1.0/252

+0.5/266
+0.5/266

-0.320
-0.200
-0.230
-0.285
-0.320

-11
-14
-14
-14
-14

- 27
-287
+220
+132
- 89

+

+

1.6
5.8
4.3
2.0
0.6

- 2
+8
+6
+3
+2

*These cases did not reach high pressure trip setpoint (analytical upper
limit = 1150 psig dome pressure) See discussion in Section 3.2.4.2.5.**This case was run at lowered high pressure trip setpoint (1091 psig)

***Values shown for nominal void and Doppler coefficients are absolute peaks.
Other peaks are relative to these.
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Table 3.2.4.2-2 

Bwl5 TURBINE TRIP ATWS NUCLEAR PARAMETRIC STUDY SUMMARY 

Change in Peak Value 

Vessel 
Doppler Void Neutron Average Heat Bottom Suppr Pool Min Level/Time 

Coef Coef Flux Flux Pressure Temp (wide range) 

(¢;aF) (¢/%) (%) (%) (psi) (OF) (ft/sec) 

-0.200 - 6 -134 3.9 - 7* 
-0.230 - 6 -148 5.7 - 9* 
-0.285 - 6 -169 8.6 -11* 
-0.320 - 6 -179 - 10.2 -12* 
-0.200 - 8 - 51 + 0.9 - 1 
-0.230 - 8 -73 1.1 - 3 
-0.285 - 8 -104 4.5 -12** +0.8 
-0; 320 - 8 -120 5.7 - 7* 
-0.285 - 9 - 70 2.5 - 3 +1.5 -1.6/221 
-0.200 -11 + 92 + 4.5 + 5 
-0.230 -11 + S4 + 2.8 + 3 -0.1 +0.7/235 

-0.280*** -11*** 427 134.4 1193 103.7 -6.9/269 

-0.320 -11 - 27 1.6 - 2 +1.0 -1.0/252 
-0.200 -14 -287 5.8 + 8 
-0.230 -14 +220 4.3 + 6 
-0.285 -14 +132 + 2.0 + 3 1.0 +0.5/266 
-0.320 -14 - 89 + 0.6 + 2 -1.0 +0.5/266 

*These cases did not reach high pressure trip set point (analytical upper 
limit = 1150 psig dome pressure) See discussion in Section 3.2.4.2.5. 

**This case was run at lowered high pressure trip setpoint (1091 psig) 
***Values shown for nominal void and Doppler coefficients are absolute peaks. 

Other peaks are relative to these. 

3-:-179 



Table 3.2.4.3-1

BWR/5 IORV SENSITIVITY STUDY RESULTS

Change in Vessel
Minimum Water

Level
(ft)

Change in Peak
Pool

Temperature
(OF)

Change in Peak
Containment
Pressure

(psi)
Parameter Varied

Base Case

Boron Capacity/
Mixing Efficiency

RHR{ Capacity

Base Value

86 GPM/95%

670 BTU
°F-sec

0 Seconds

-2.4

+50%

-50%

+50%

-50%

0

Change

0

0O RHR Start Time +5 Minutes

-10 Minutes

Service Water
Temperature

RHR Capacity and
Service Water
Temperature

Pool Size

S/RV Capacity

850F +200F

-20OF

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A

<0.5

<0.5

187

-8

+26

-11

+16

+1

+2

+6

-6

-3

+12

-9

+13

10.6

-1.7

+6.8

-21.

+4.1

+0.1

+0.3

+1. 5

-1.2

-0.5

+2.9

-1.9

+3.0

+2.2

-1.9

N)

1%)
I',
N)

(See above)

6.8 Million
Ibm

8.33% NBR
Steamflow

2 minutes,
8.33%

+50% +20OF

-50% -20°F

+20%

-20%

+26.1%

-27%

+10

-10

-7Boron Timer and
S/RV Capacity

+3 min-27% -1.6

-0.7+8 min-27% "Jo - 3

Table 3.2.4.3-1 

BWR/5 IORV SENSITIVITY STUDY RESULTS 

Change in Vessel Change in Peak Change in Peak 
Minimum Water Pool Containment 

Level Temperature Pressure 
Parameter Varied Base Value Change (ft) (OF) (psi) 

Base Case -2.4 187 10.6 

Boron Capacity/ 86 GPM/95% +50% 0 - 8 -1.7 
Mixing Efficiency 

-50% 0 +26 +6.8 

RHR Capacity 670 BTU +50% N/A -11 -21. of-sec 
" ,-_. 

w -50% N/A +16 +4.1 
~ I 

....... 8 co RHR Start Time o Seconds +5 Minutes N/A + 1 +0.1 0 I 
I\) 
~ 

-10 Minutes N/A + 2 +0.3 I\) 
I\) 
I\) 

Service Water 85°F +20 oF N/A + 6 +1.5 
Temperature 

-20°F N/A - 6 -1.2 

RHR Capacity and (See above) +50% +20°F N/A - 3 -0.5 
Service Water 
Temperature -50% -20°F N/A +12 +2.9 

Pool Size 6.8 Million +20% N/A - 9 -1.9 
Ibm 

-20% N/A +13 +3.0 

S/RV Capacity 8.33% NBR +26.1% <0.5 +10 +2.2 
Steamflow 

-27% <0.5 -10 -1.9 

Boron Timer and 2 minutes, +3 min-27% "'0 - 7 -1.6 
S/RV Capacity 8.33% 

+8 min-27% "'0 - 3 -0.7 
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Table 3.2.5-1

BWR/5 LOSS OF CONDENSER VACUUM

Time

With ARI FailureSequence of Events

1. Main turbine (and feedwater turbines)*
trip due to low condenser vacuum,
bypass opens - All normal scrams fail.

2. Pressure and power rise begins

3. Peak power occurs

4. Relief valves lift

5. ATWS high pressure setpoint
- Recirculations pumps tripped
- ARI is initiated
- SLCS timed logic activated

6. Same fuel may experience boiling
transition

7. Peak vessel pressure occurs

8. ARI control rod insertion completely
eliminating SLCS and feedwater limit-
ing actions

9. ATWS logic
Initiates feedwater flow limit

10. MSIV's and bypass close due to
low condenser-vacuum

11. Reactor water level drops to Level 2
- Initiates containment isolation
- HPCS and RCIC start

12. HPCS and RCIC flow begins

13. ATWS logic times completed
- Initiates SLCS

14. Liquid control flow reaches core

With ARI

0

0

1 Second

2 Seconds

2 Seconds

2 Seconds

3 Seconds

22 Seconds

N/A

30 Seconds

0

0

1 Second

2 Seconds

2 Seconds

2 Seconds

3 Seconds

Fails

27 Seconds

30 Seconds

36 Seconds

56 Seconds

46 Seconds

66 Seconds

2 Minutes

3 Minutes

N/A

N/A

*Sequence conservatively assumes motor driven feedwater pumps.
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Table 3.2.5-1 

BWR/5 LOSS OF CONDENSER VACUUM 

Sequence of Events 

1. Main turbine (and feedwater turbines)* 
trip due to low condenser vacuum. 
bypass opens - All normal scrams fail. 

2. Pressure and power rise begins 

3. Peak power occurs 

4. Relief valves lift 

5. ATWS high pressure setpoint 
- Recirculations pumps tripped 
- ARI is initiated 
- SLCS timed logic activated 

6. Same fuel may experience boiling' 
transition 

7. Peak vessel pressure occurs 

8. ARI control rod insertion completely 
eliminating SLCS and feedwater limit­
ing actions 

9. ATWS log~c 
Initiates feedwater flow limit 

10. MSIV's and bypass close due to 
low condenser-vacuum 

11. Reactor water level drops to Level 2 
- Initiates containment isolation 
- HPCS and ReIC start 

12. HPCS and RCIC flow begins 

13. ATWS logic times completed 
- Initiates 'SLeS 

14. Liquid control flow reaches core 

With ARI 

o 

o 

1 Second 

2 Seconds 

2 Seconds 

2 Seconds 

3 Seconds 

22 Seconds 

N/A 

30 Seconds 

36 Seconds 

56 Seconds 

N/A 

N/A 

*Sequence conservatively assumes motor driven feedwater pumps. 

Time 

With ARI Failure 

o 

o 

1 Second 

2 Seconds 

2 Seconds 

2 Seconds 

3 Seconds 

Fails 

27 Seconds 

30 Seconds 

46 Seconds 

66 Seconds 

2 Minutes 

3 Minutes 
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Table 3.2.5-1 (Continued)

Sequence of Events

15. Reactor water level reaches minimum
and begins to rise

16. RHR flow begins (pool cooling)

17. Hot shutdown achieved

18. Containment temperature and
pressure peaks occur

With ARI

50 Seconds

>11 Minutes

22 Seconds

Time

With ARI Failure

3-1/2 Minutes

11 Minutes

20 Minutes

27 Minutes

3-182
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Table 3.2.5-1 (Continued) 

Sequence of Events 

15. Reactor water level re~ches minimum 
and begins to rise 

16°. RHR flow begins (pool cooling) 

17. Hot shutdown achieved 

18. Containment temperature and 
pOres sure peaks occur 

3-182 

With ARI 

50 Seconds 

>11 Minutes 

22 Seconds 

Time 

With ARI Failure 

3-1/2 Minutes 

11 Minutes 

20 Minutes 

27 Minutes 
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Table 3.2.5-2

BWR/5 LOSS OF CONDENSER VACUUM - SUMMARY

With ARI Failure

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (%)

Maximum Bulk Suppression Pool Temperature ( 0 F)

Associated Containment Pressure I(psig)

86 GPM - 2 Min Logic Delay

Loss of Condenser Vacuum

•433

1193

134

176

8.3

7

3-183
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Table 3.2.5-2 

BWR/5 LOSS OF CONDENSER VACUUM - SUMMARY 

86 GPM - 2 Min Logic Delay 

. With ARI Failure Loss of Condenser Vacuum 

"Maximum Neutron Flux (%) 433 

Maximum Vessel Bottom Pressure (psig) 1193 

Maximum Average Heat Flux (%) 134 

Maximum Bulk Suppression Pool Temperature (OF) 176 

Associated Containment Pressure '(psiS) 8.3 

I 
/' 

3-183 
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Table 3.2.7-1

BWR/5 - LOSS OF A FEEDWATER HEATER

Sequence of Events

1. Inadvertent tripping of feedwater heaters; feedwater
enthalpy begins to drop

2. Reactor and turbine-generator power begins to rise

3. APRM high power alarm (105%), operator attempts to
insert rods

4. Vessel pressure levels off after a small increase

5. Power levels off below the scram setpoint(s)

6. Feedwater enthalpy sees the assumed full change

7. Manual scram attempted after control rod insertion
attempts have failed. ARI and timed SLCS logic
initiated, scram fails.

8. ARI control rod insertion complted, eliminating
SLCS initiation, and achieving reactor shutdown

9. Final ATWS logic timer completed

- Initiates SLCS (if ARI has failed)

10. Liquid control reaches core (if ARI has failed)

11. Hot shutdown achieved (if ARI has failed)

Time

O Second

2 Seconds

29 Seconds

80 Seconds

125 Seconds

131 Seconds

<10-1/2 Minutes

<11 Minutes

<12-1/2 Minutes

<14 Minutes

<35 Minutes

V

3-184
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Table 3.2.7-1 

BWR/5 - LOSS OF A .FEEDWATER HEATER 

Sequence of Events 

1. Inadvertent tripping of feedwater heaters; feedwater 
enthalpy begins to drop 

2. Reactor and turbine-generator power begins to rise 

3. APRM high power alarm (105%), operator attempts to 
insert rods 

4. Vessel pressure levels off after a small increase 

5. Power levels off below the scram setpoint(s) 

6.· Feedwater enthalpy sees the assumed full change 

7. Manual scram attempted after control rod insertion 
attempts have failed. ARI and timed SLCS logic 
initiated, scram fails. 

8. ARI control rod insertion complted. eliminating 
SLCS initiation, and achieving reactor shutdown . 

9. Final ATWS logic timer completed 
- Initiates SLCS (if ARI has failed) 

10. Liquid control reaches core (if ARI has failed) 

11. Hot shutdown achieved (if ARI has failed) 

3-184 

Time 

o Second 

2 Seconds 

29 Seconds 

80 Seconds 

125 Seconds 

131 Seconds 

~lO-1/2 Minutes 

<11 Minutes 

~12-l/2 Minutes 

<14 Minutes 

<35 Minutes 

/ 
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Table 3.2.7-2

BWR/5 LOSS OF FEEDWATER HEATER - SUMMARY

86 GPM - 2 Min Logic Delay

Loss of Feedwater HeaterWith ARI Failure

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (%)

Maximum Bulk Suppression Pool Temperature (*F)

Associated Containment Pressure (psig)

114

1071

113

90

no change

3-185
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Table 3.2.7-2 

BWR/5 LOSS OF FEEDWATER HEATER - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pres~re (psig) 

3-185 

86 GPM - 2 Min Logic Delay 

Loss of Feedwater Heater 

114 

1071 

113 

90 

no change 



NEDO-2 4 2 2 2

Table

BWR/5 FEEDWATER CONTROLLER

3.2.8-1

FAILURE - MAXIMUM DEMAND

Sequence of Events

1. Feedwater controller fails to maximum
demand. Reactor water level begins to
rise, power gradually increases.

2. High power level (Level 8) setpoint is
reached
- Turbine trips, bypass opens
- All normal scrams fail
- Feedwater pumps trip

3. Pressure and power rise begins

4. Relief valves lift

5. ATWS high pressure setpoint is reached
(1150 psig)
- Recirculation pumps are tripped*
- ARI is initiated
- SLCS timed logic is activated

6. Vessel pressure peaks

7. Some fuel experiences transition
boiling

8. ARI control rod insertion completed,
eliminating SLCS initiation

9. Reactor water level drops to Level 2
- Initiates containment isolation
- Initiates HPCS and RCIC

10. Lowest setpoint S/RV closes

11. HPCS and RCIC flow begins

12. Liquid control flow reaches core

13. ATWS Logic timer completed

14. Reactor water level reaches minimum
and begins to rise

15. RHR flow begins (pool cooling)
16. MSIV's close on low line pressure

17. Hot shutdown achieved

Time

With ARI With ARI Failure.

0 0

16 Seconds 16 Seconds

16

17

18

18

18

Seconds

Seconds

Seconds

16

17

18

Seconds

Seconds

Seconds

Seconds

Seconds

Seconds

Seconds

18

18

37 Seconds

40 Seconds

45 Seconds

60 Seconds

N/A

N/A

N/A

11 Minutes

N/A

27 Seconds

Fails

49 Seconds

66 Seconds

69 Seconds

198 Seconds

278 Seconds

278 Seconds

11 Minutes

20 Minutes

23 Minutes

3-186
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Table 3.2.8-1 

BWR/S FEEDWATER CONTROLLER FAILURE 

Sequence of Events 

1. Feedwater controller fails to maximum 
demand. Reactor water level begins to 
rise, power gradually increases. 

2. High power level (Level 8) setpoint is 
reached 
- Turbine trips. bypass opens 
- All normal scrams fail 
- Feedwater pumps trip 

3. Pressure and power rise begins 

4. Relief valves lift 

5. ATWS high pressure setpoint is reached 
(1150 psig) 
- Recirculation pumps are tripped* 
- ARI is initiated 
- SLCS timed logic is activated 

6. Vessel pressure peaks 

7. Some fuel experiences transition 
boiling 

8. ARI control rod insertion completed. 
eliminating SLCS initiation 

9. Reactor water level drops to Level 2 
- Initiates containment isolation 
- Initiates HPCS and RCIC 

10. Lowest setpoint S/RV closes 

11. HPes and RCTe flow begins 

12. Liquid control flow reaches core 

13. ATWS Logic timer completed 

14. Reactor water level reaches minimum 
and begins to rise 

15. RHR flow begins (pool cooling) 

16. MSIV's close on low line pressure 

17. Hot shutdown achieved 

MAXIMUM DEMAND 

Time 

With ARI With ARI Failure. 

o 

16 Seconds 

16 Seconds 

17 Seconds 

18 Seconds 

18 Seconds 

18 Seconds 

37 Seconds 

40 Seconds 

45 Seconds 

60 Seconds 

N/A 

N/A 

N/A 

11 Minutes 

N/A 

27 Seconds 

o 

16 Seconds 

16 Seconds 

17 Seconds 

18 Seconds 

18 Seconds 

18 Seconds 

Fails 

49 Seconds 

66 Seconds 

69 Seconds 

198 Seconds 

278 Seconds 

278 Seconds 

11 Minutes 

20 Minutes 

23 Minutes 
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Table 3.2.8-2

BWR/5 FEEDWATER CONTROLLER FAILURE (MAXIMUM DEMAND) - SUMMARY

With ARI Failure

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (%)

Maximum Bulk Suppression Pool Temperature (*F)

Associated Containment Pressure (psig)

86 GPM - 2 Min Logic Delay

Feedwater Controller Failure

450

1196

140

108

1.0

3-187
/' 
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Table 3.2.8-2 

BWR/5 FEEDWATER CONTROLLER FAILURE (MAXIMUM DEMAND) - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

3-187 

86 GPM - 2 Min Logic Delay 

Feedwater Controller Failure 

450 

1196 

140 

108 

1.0 
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Table 3.2.9-1
BWR/5 PRESSURE REGULATOR FAILURE - MAXIMUM STEAM DEMAND

Sequence of Events

1. Pressure regulator fails to maximum
demand

2. Pressure and power begin to fail

3. Low Pressure isolation setpoint reached
- MSIV closure
- Scram normally initiated

(assumed to fail)

4. Pressure and power begin to rise
5. Relief valves lift

6. ATWS high pressure setpoint is reached
(1150*F psig)
- Recirculation pumps are tripped
- ARI is initiated
- SLCS and feedwater limit logic is

activated

7. Vessel pressure peaks
8. Some fuel experiences boiling

transition

9. ARI control rod insertion completed
(eliminating need for SLCS initiation
and feedwater limit)

10. Reactor water level drops to Level 2
- Initiates containment isolation
- Initiates HPCS and RCIC

11. ATWS logic initiates feedwater limit
12. Feedwater flow runs back to lower value
13. HPCS and RCIC flow begins

14. ATWS logic timer completed
- Initiates SLCS

15. Reactor water level reaches minimum
and begins to rise

16. Liquid control flow reaches core
17. RHR flow begins (pool cooling)

18. hot shutdown achieved

19. Conta[ninu, i utmperattire and prctsu re
peak

With ARI

0

Time

With ARI Failure

0

0 0

22 Seconds
23 Seconds

24 Seconds

30 Seconds

34

34

Seconds

Seconds

49 Seconds
1

49 Seconds

N/A

N/A

69 Seconds

N/A

74

N/A

>11 Minutes

49 Seconds

N/A

22 Seconds
23 Seconds

24 Seconds

30 Seconds

34 Seconds

34 Seconds

fails

52 Seconds

55 Seconds

60 Seconds

72 Seconds

2-1/2 Minutes

3-1/2 Minutes

3-1/2 Minutes

11 Minutes

19 Minutes

30 MJnutes

3-188

NEDO-24222 

Table 3.2.9-1 

BWR/5 PRESSURE REGULATOR FAILURE - MAXIMUM STEAM DEMAND 

Sequence of Events 

1. Pressure regulator fails to maximum 
demand 

2. Pressure and power begin to fail 

3. Low Pressure isolation setpolnt reached 
- MSIV closure 
- Scram normally initiated 

(assumed to fail) 

4. Pressure and power begin to rise 

5. Relief valves lift 

6. ATWS high pressure setpoint is reached 
(l150°F psig) 
- Re~irculation pumps are. tripped 
- ARI is initiated 
- SLCS and feedwater limit logic is 

activated 

7. Vessel pressure peaks 

8. Some fuel experiences boiling 
transition 

9. ARI control rod insertion completed 
(eliminating need for SLCS initiation 
and feedwater limit) 

10. Reactor water level drops to Level 2 
- Initiates containment isolation 
- Initiates HPCS and RCIC 

11. ATWS logic initiates feedwater limit 

12. Feedwater flow runs back to lower value 

13. HPCS and RCIC flow begins 

14. ATWS logic timer completed­
- Initiates SLCS 

15. Reactor water level reaches minimum 
and begins to rise 

16. Liquid control flow reaches core 

17. RHRflow begins (pool cooling) 

18. Hot shutdown achieved 

19. Contalnml'lIl ("1'IIIIH'rnlllrl' and prl'SSUH' 

peak 

3-188 

With ARI 

o 

o 

22 Seconds 
23 Seconds 

24 Seconds 

30 Seconds 

34 Seconds 

34 Seconds 

49 Seconds 

49 Seconds 

N/A 

N/A 

69 Seconds 

N/A 

74 

N/A 

>11 Minutes 

49 Seconds 

N/A 

Time 

With ARI Failure 

o 

o 

22 Seconds 
23 Seconds 

24 Seconds 

30 Seconds 

34 Seconds 

34 Seconds 

fails 

52 Seconds 

55 Seconds 

60 Seconds 

72 Seconds 

2-1/2 Minutes 

3-1/2 Minutes 

3-1/2 Minutes 

11 Minutes 

19 Minutes 

'$0 MJnutC's 
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Table 3.2.9-2

BWR/5 PRESSURE REGULATOR FAILURE (MAXIMUM STEAM DEMAND) - SUMMARY

With ARI Failure

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (%)

Maximum Bulk Suppression Pool Temperature (*F)

Associated Containment Pressure (psig)

86 GPM - 2 Min Logic Delay

Pressure Regulator Failure

399

1238

151

175

8.2

3-189
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Table 3.2.9-2 

BWR/S PRESSURE REGULATOR FAILURE (MAXIMUM STEAM DEMAND) - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

3-189 

86 GPM - 2 Min Logic Delay 

Pressure Regulator Failure 

399 

1238 

151 

175 

8.2 
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Table 3.2.10-1

BWR/5 LOSS OF FEEDWATER

Sequence of Events

1. Feedwater flow stops (flow assumed to
reduced to zero in 5 seconds)
- All normal scrams assumed to fail

2. Pressure, water level and power start
to decline

3. Reactor water level, drops to Level 2 and
trips recirculation pumps*, initiates
ARI and also initiates RCIC and HPCS.
SLCS timed logic is also activated.

4. ARI control rod insertion completed.

5. HPCS and RCIC flow starts

6. ATWS logic timer completed
- Initiates SLCS

7. Liquid control flow reaches the core

8. Water level reaches minimum and begins
to rise. The top of the core always
remains covered.

9. High water level trip of HPCS and RCIC
(neglecting preferred operator action
to manually control level)

10. Low pressure MSTV closure

11. Hot shutdown achieved

*Recirculation runback (from low level alarm,
is neglected.

With ARI

0

Time

With ARI Failure

0

a 0

18 Seconds

38 Seconds

38 Seconds

N/A

N/A

57 Seconds

10 Minutes

N/A

38 Seconds

18 Seconds

Fails

38 Seconds

138 Seconds

198 Seconds

4 Minutes

20 Minutes

20 Minutes

23 Minutes

L4, and coincident low FW flow)

7

3-190
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Table 3.2.'10-1 

BWR/5 LOSS OF FEEDWATER 

Sequence of Events With ARI 

1. Feedwater flow stops (flow assumed to 0 
reduced to zero in 5 seconds) 
- All normal scrams assumed to fail 

2. Pressure, water level and power start 0 
to decline 

3. Reactor water level drops to Level 2 and 18 Seconds 
trips recirculation pumps*, initiates 
ARI and also initiates RCIC and HPCS. 
SLCS timed logic is also activated. 

4. ARI control rod insertion completed. 

5. HPCS and RCIC flow starts 

6. ATWS logic timer completed 
- Initiates SLCS 

7. Liquid control flow reaches the core 

8. Water level reaches minimum and begins 
to rise. The top of the core always 
remains covered. 

9. High water level trip of HPCS and ReIC 
(neglecting preferred operator action 
to manually control level) 

10. Low pressure MSIV closure 

11. Hot shutdown achieved 

38 Seconds 

38 Seconds 

N/A 

N/A 

57 Seconds 

10 Minutes 

N/A 

38 Seconds 

Time 

With ARI Failure 

o 

o 

18 Seconds 

Fails 

38 Seconds 

138 Seconds 

198 Seconds 

4 Minutes 

20 Minutes 

20 Minutes 

23 Minutes 

*Recircu1ation runback (from low level alarm, L4. and coincident low FW flow) 
is neglected. 

I 

/ 

3-190 
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Table 3.2.10-2

BWR/5 LOSS OF FEEDWATER - SUMMARY

With ARI Failure

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux

Maximum Bulk Suppression Pool Temperature ( 0 F)

Associated Containment Pressure (psig)

86 GPM - 2 Min Logic Delay

Loss of Feedwater

100

1056

100

90

no change

3-191
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Tab Ie 3.2. 10-2 

BWR/5 LOSS OF FEEDWATER - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

86 GPM - 2 Min Logic Delay 

Loss of Feedwater 

100 

1056 

100 

90 

no change 
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Table 3.2.11-1

LOSS OF NORMAL AC POWER TRANSIENT

Time

With ARI Failure
Sequence of Events With ARI

1. Loss of all auxiliary power transformers
- Recirculation pumps trip
- Condensate and feedwater pumps trip

2. Pressure and power begin to fall

3. Normal scram due to loss of AC
(Assumed to fail)

4. MSIV's start to close due to loss of AC
power (and initiate scram - also
assumed to fail)

5. Pressure and power begin to rise

6. S/RV valves lift at relief setpoints

7. ATWS high pressure setpoint is reached
(1150 psig)
- ARI is initiated
- SLCS timed logic is activated

8. Vessel pressure and power peak

9. Some fuel may experience boiling
transition

10. Reactor water level drops to Level 2
- Initiates containment isolation
- Initiates HPCS and RCIC

11. ARI control rod insertion completed,
eliminating SLCS initiation

12. HPCS and RCIC flow begins

13. Lowest relief setpoint S/RV closes and
the S/RV's are assumed to switch to
spring setpoints

14. ATWS logic timer completed
- Initiates SLCS

15. Reactor water level reaches minimum and
begins to rise. Level inside the core
shroud remains above the top of active
fuel.

16. Liquid control flow reaches core

17. RHR flow begins (pool cooling)

18. Hot shutdown achieved

19. Containm- nt temperature and pressure
peak

0 0

0

2 Seconds

2 Seconds

0

2 Seconds

2 Seconds

6

7

7

Seconds

Seconds

Seconds

6

7

7

Seconds

Seconds

Seconds

Seconds

Seconds

9

9

Seconds

Seconds

9

9

26 Seconds

27 Seconds

46 Seconds

N/A

55 Seconds

N/A

11 Minutes

27 Seconds

26 Seconds

Fails

46 Seconds

106 Seconds

2 Minutes

3 Minutes

3 Minutes

11 Minutes

20 Minutes

33 Minutes

3-192

Table 3.2.11-1 

LOSS OF NORMAL AC POWER TRANSIENT 

Sequence of Events With ARI 

1. Loss of all auxiliary power transformers 0 
- Recirculation pumps trip 
- Condensate and feedwater pumps trip 

2. Pressure and power begin to fall 0 

3. Normal scram due to loss of AC 2 Seconds 
(Assumed to fail) 

4. MSIV's start to close due to loss of AC 2 Seconds 
power (and initiate scram - also 
assumed to fail) 

5. Pressure and power begin to rise 

6. S/RV valves lift at relief setpoints 

7. ATWS high pressure setpoint is reached 
(1150 psig) 
- ARI is initiated 
- SLCS timed logic is activated 

8. Vessel pressure and power peak 

9. Some fuel may experience boiling 
transition 

10. Reactor water level drops to Level 2 
- Initiates containment isolation 
- Initiates HPCS and RCIC 

11. ARI control rod insertion completed. 
eliminating SLCS initiation 

12. HPCS and Rele flow begins 

13. Lowest relief setpoint S/RV closes and 
the S/RV's are assumed to switch to 
spring setpoints 

14. ATWS logic timer completed 
- Initiates SLCS 

15. Reactor water level reaches minimum and 
begins to rise. Level inside the core 
shroud remains above the top of active 
fuel. 

16. Liquid control flow reaches core 

17. RHR flow begins (pool cooling) 

18. Hot shutdown achieved 

19. Conta tnm· n t u>mperatll r(' anti prcBsu re 
peak 

3-192 

6 Seconds 

7 Seconds 

7 Seconds 

9 Seconds 

9 Seconds 

26 Seconds 

27 Seconds 

46 Seconds 

N/A 

55 Seconds 

N/A 

11 Minutes 

27 Seconds 

Time 

With ARI Failure 

o 

·0 

2 Seconds 

2 Seconds 

6 Seconds 

7 Seconds 

7 Seconds 

9 Seconds 

9 Seconds 

26 Seconds 

Fails 

46 Seconds 

106 Seconds 

2 Minutes 

3 Minutes 

3 Minutes 

11 Minutes 

20 Minutes 

33 Minutes 

---- .. 
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Table

BWR/5 LOSS OF NORMAL

With ART Failure

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (%)

Bulk Suppression Pool Temperature (OF)

Associated Containment Pressure (psig)

3.2.11-2

AC POWER - SUMMARY

86 GPM - 2 Min Logic Delay

Loss of Normal AC Power

468

1205

109

170

7.3

3-193

NEDO-24222 

Tab Ie 3. 2 • 11-2 

BWR/S LOSS OF NORMAL AC POWER - SUMMARY 

With ARt Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

3-193 

86 GPM - 2 Min Logic Delay 

Loss of Normal AC Power 

468 

1205 

109 

170 

7.3 

/ 
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Table 3.2.12-1

BWR/5 RECIRCULATION FLOW CONTROLLER FAILURE - INCREASING FLOW

Sequence of Events

1. Valve controller fails

2. Neutron flux reaches l2O%, APRM scram assumed to fail

3. Power peaks

4. Maximum fuel surface heat flux occurs

5. Flow control valve reaches full open position

6. Vessel pressure peaks

7. Core flow increase levels off

8. New core equilibrium conditions
(All parameters within normal limits, power and
feedflow slowly decreasing as steady state feedwater
heating is established.)

9. Manual scram or (if this fails) automatic ARI and
SLCS initiation

10. Hot shutdown achieved

Time

0

1 Second

2 Seconds

3 Seconds

4 Seconds

5 Seconds

6 Seconds

20 Seconds

10 Minutes

30 Minutes

3-194
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Table 3.2.12-1 

BWR/5 RECIRCULATION FLOW CONTROLLER FAILURE - INCREASING FLOW 

Sequence of Events 

1. Valve controller fails 

2. Neutron flux reaches 12'0%. APR.l.1 scram assumed to fail 

3. Power peaks 

4. Maximum fuel surface heat flux occurs 

5. Flow control valve reaches full open position 

6. Vessel pressure peaks 

7. Core flow increase levels off 

8. New core equilibrium conditions 
(All parameters within normal limits. power and 
feedflow slowly decreasing as steady state feedwater 
heating is established.) 

9. Manual scram or (if this fails) automatic ARI and 
SLCS initiation 

10. Hot shutdown achieved 

3-194 

Time 

0 

1 Second 

2 Seconds 

3 Seconds 

4 Seconds 

5 Seconds 

6 Seconds 

20 Seconds 

10 Minutes 

30 Minutes 
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Table 3.2.12-2

BWR/5 RECIRCULATION FLOW CONTROLLER FAILURE (INCREASING FLOW) - SUMMARY

With ARI Failure

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (%)

Maximum Bulk Suppression Pool Temperature ( 0F)

Associated Containment Pressure (psig)

86 GPM - 2 Min Logic Delay

Recirculation Flow
Controller Failure

382

1007

95

90

no change

3-195

NEOO ... 24222 

Table 3.2.12-2 

BWR/S RECIRCULATION FLOW CONTROLLER FAILURE (INCREASING FLOW) - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

3-195 

86 GPM - 2 Min Logic Delay 

Recirculation Flow 
Controller Failure 

382 

1007 

95 

90 

no change 
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3.3 RESULTS OF ATWS EVENTS - BWR/6 (MARK III)

3.3.1 MSIV Closure Event

3.3.1.1 Overview of Response Without Scram

A detailed description of all aspects of this event is given below as it has

been simulated for this report. The behavior of the plant is separable into

an early or short term transient involving a sharp pressure rise and power

peak, and a longer term portion that requires evaluation of coolant and

containment conditions as the reactor is ultimately brought to shutdown.

A summary of this event and other BWR/6 events is presented in Table 3.3-1.

The effectiveness of RPT presented in NEDO-10349, NEDO-20626 and Volume I are

reconfirmed completely by this analysis. it permits the relief valves to

limit the pressure disturbance acceptably, reduces the power peak which is

created early in the transient, and establishes a relatively low power

generation rate for the long-term portion of the transient. Since Volume I,

several changes have been made to the base case calculations. They include:

a. Increased Doppler reactivity coefficient is now more typical of

all plants (the previous value was an extremely low, unrealistically

bounding assumption). All plants were surveyed and nearly identical

coefficients are expected. Variations of this term are included in

the sensitivity Section 3.3.4.

b. S/RV reclosure pressure is now 110 psi below the opening pressure

setpoint which is more typical of actual performance.

c. Feedwater flow characteristics due to automatic limiting action or

loss of feedwater turbines is assumed to result in shutoff about

45 seconds after isolation begins.
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The ultimate resolution of the lack-of-scram situation must involve insertion

of negative reactivity into the reactor thereby terminating the long-term

aspects of the event. ARI is provided as an effective way to mitigate for

common-cause failure in the logic of the scram system. In the very remote

case of its ineffectiveness, automated SLCS provides further protection and

shutdown capability. Coolant inventory is adequately maintained by HPCS and

RCIC available on each BWR/6 to replace the coolant loss as steam flow leaves

the primary system through the relief valves. Simply adding more water is not

a totally satisfactory answer because it also has the effect of raising the

power generation rate and the hmount of inventory leaving the system as steam,

thus increasing suppression pool temperature. The steam reaching the suppres-

sion pool continues to heat it and to pressurize the containment until the

power generation/steam flow can either be reduced to the RHR capacity finally

terminated. The RHR (pool cooling mode) ultimately cools the pool and

eventually the reactor also (shutdown cooling mode) if the MSIV's cannot be

reopened (the preferred method of cooling down).

3.3.1.2 Sequence of Events For MSIV Closure

The MSIV closure transient provides some of the most severe conditions follow-

ing a postulated failure to scram. Listed below in the sequence of occurrence

are significant points from the transient with representative times when each

highlight occurs. Results for both cases - with ARI and also assuming its

failure - are presented.

In this event, all main steam lines are assumed to isolate starting from rated

power conditions with nominal valve closure speed (4 seconds). Figure 3.3.1-1

shows the initial portion of the event for the more likely plant ATWS transient

in which ARI quickly shuts down the unit, and Figure 3.3.1-2 shows the case in

which ARI also fails and automated SLCS is called upon to shut down the plant.
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In each case, the initial power and pressure increases are the same. Neutron
flux reaches 745% NBR near 4 seconds, and fuel average surface heat flux reaches
147% at 5 seconds. Some fuel may experience boiling transition, however, cool-
able geometry is maintained with peak fuel cladding temperature below 1500 0 F.
Peak pressure at vessel bottom is 1299 psig near 7 seconds. The normal reactor
scrams occur from position switches on the valves, high neutron flux, and high
vessel pressure but are ignored for this analysis. The transient is limited
within the Service Level C overpressure limit of 1500 psig through the automatic
action of RPT which is initiated when vessel dome pressure exceeds 1150 psig,
and by the relieving action of the S/RV's which all open, then start reclosing
near 20 seconds. The action of the RPT and the recovering reactor pressure
reduces neutron flux until at 90 seconds it is less than 20% NBR. Peak fuel
conditions are quickly reduced with the reduction in power and no fuel damage
is expected. This is true even if the analysis neglects rewetting of the fuel
which should occur after the initial power transient has subsided. By 25 seconds
the high pressure logic which began the ATWS protection will have accomplished
the ARI function, inserting the rods and shutting off the generated power. This
turns the remainder of the event into an-essentially normal isolated shutdown
as shown in Figure 3.3.1-1. Some relief valve cycling will occur to handle
steam generated by decay heat, but peak suppression pool temperature will be
only 130'F (at 2 hours, 10 minutes) assuming the RHR loops are initiated in the
pool cooling mode after 11 minutes intc the event. The water level in the
reactor drops to the Level 3 setpoint (another scram point) at about 20 seconds,
and to the Level 2 setpoint (about -2 ft on Figure 3.3.1-1) near 48 seconds,
starting the RCIC and HPCS systems and initiating containment isolation. HPCS
and RCIC replace the main feedwater system, which has assumed to coast down to
zero flow (near 45 seconds) due to loss of steam to the turbine driven pumps
or due to the action of the ATWS feedwater limiter if the plant had motor-
driven pumps. The minimum level for the simulated case is reached near 71 sec-
onds as shown in Figure 3.3.1-3, about 7 ft. above the Level 1 setpoint. HPCS
and RCIC then restore level to its normal range and an essentially normal shut-
down can be accomplished.
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If the ARI function is arbitrarily assumed to fail as well as all other
attempts to insert enough control rods within the two-minuted time period,
the ATWS logic will continue to sense that the APRM signals are not downscale
and not enough rods are in their full-in positions, and the automatic start
of boron injection will begin. Instead of shutting off power immediately,
the power is predicted to remain in the 10-30t range as shown in Figure 3.3.1-4.
The significant features and peak values during the early part of the event
are the same as the case with ARI, however, the key differences here is the
continuing reduction of water level outside the core shroud until it reaches
a minimum between the top of the jet pumps and the Level 1 setpoint at about
3 minutes. Figure 3.3.1-5 shows the level transient with more detail. The
steam-water mixture inside the core shroud remains above the core ane up into
the steam separator standpipes as RCIC and HPCS flow provide inventory. Most
of the S/RV's have been reclosed with about 3 valves handling the generated
steam, and pressure is cycling near the setpoints.

Boron injection is started by the SLCS pumps at 2 minutes and it reaches the
core about 1 minute later. During the following 15 minute period (to about
1100 seconds on these plots), the result is that power is suppressed slightly,
reducing the steaming rate and allowing water level to be restored. This also
induces higher natural circulation core flow which follows the water level
behavior. The level has reached the high level turn-off (Level 8) of the HPCS
and RCIC at about 1170 seconds and an off-on-off cycle of these systems is
shown as level swings down to Level 2 and back up to Level 8 '(between 1200 and
1300 seconds). By this time, manual operator action using the RCIC to modulate
level in the normal range would be recommended and expected.

Near 1350 seconds the generated power is dropped toward zero as net reactivity
(shown in the upper right plot 'of Figure 3.3.1-4) becomes negative and con-
tinues thereafter to be forced negative by the accumulation of boron in the
reactor. At that time the water in the vessel has 345* ppm boron assuming

*Using traditional cold water density to define ppm.
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a mixing efficiency of 75% of the injected poison. This accomplishes hot,
nuclear shutdown, and the remainder of the steam to the pool is simply due to
decay heat.

The bulk average temperature of the suppression pool and pressure in the con-
tainment are shown in Figure 3.3.1-6. They rise gradually to peaks of 167°F
and 6.9 psig respectively after 20 minutes. Beyond this time the pool cooling
capability of the RHR exceeds the steaming rate generated by decay heat and
containment conditions are reduced. The peaks are well within the design
limits: 185 0 F and 15 psig, containment integrity is maintained. The boron
continues to build the poison concentration in the vessel until it is all
injected at about 50 minutes making it possible for a controlled reactor cool-
down. The total concentration is specified to be enough to maintain cold,
nuclear shutdown conditions even when the RHR system is eventually switched to
the reactor shutdown mode, bringing the plant successfully to cold shutdown.

Thus it can be seen that an MSIV closure event combined with a failure to scram
is adequately mitigated for a representation BWR 6/Mark III.

3.3.2 Turbine Trip

3.3.2.1 Overview of Response Without Scram

This transient is described in detail in the following sections. Its initial
characteristics are much like the MSIV closure described in Section 3.3.1 with
a rapid steam shutoff. Pressure and power increases which are limited by the
action of the S/RV's and RPT. As this event progresses, however, the avail-
ability of the main condenser makes it possible for the relief valves to be
open less and close after about 60 seconds. This terminates steam flow to .the
pool, however, water level is close to the Level 1 isolation setpoint. If
isolation occurs, the final portion of the event is similar to the MSIV closure
event. This base case event has also been updated from Volume I with the new
Doppler coefficient, S/RV reclosure, and feedwater flow conditions discussed
in Section 3.3.1.

7 ,
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3.3.2.2 Sequence of Events, for Turbine Trip

The listing of significant events during this ATWS event is provided below.
Results for both cases - with ARI and also assuming its failure - are presented.
This abnormal transient event starts with an, unexpected closure of all turbine
stop valves (within about 0.1 second). Figure 3.3.2-1 shows the initial portion
of the event for the more likely plant ATWS transient in which ARI provides a
diverse logic path to quickly shut down the reactor, and Figure 3.3.2-2 shows
the case in which ARI also is assumed to fail and the automated SLCS is called
upon to shut down the reactor.

In each case, the initial power and pressure increases are the same. Neutron.
flux reaches 358% NBR near one second and fuel average heat flux reaches 135%
NBR at about 3 seconds. Some fuel may experience boiling transition, and
coolable geometry is maintained since peak fuel cladding temperature is less
than 1500'F. The peak pressure occurs at the vessel bottom and is 1225 psig
near 3 seconds. The normal reactor scram signals occur from position switches
on the valves, high neutron flux, and high vessel pressure but are ignored
for this analysis. The transient pressure is limited within the Service
Level C overpressure limit of 1500 psig through the automatic action of RPT
which is initiated when vessel dome pressure exceeds 1150 psig and the reliev-
ing action of the S/RV's which all open, then start reclosing near 8 seconds.
The plots show both the steam flow and the relief valve flow - the difference
is the flow through the bypass valves to the main condenser (a typical BWR/6
bypass capacity of 35% NBR is assumed).

By about 22 seconds, the high pressure logic which began the ATWS protection
will have accomplished the ARI function, inserting the rods and shutting off
the generated power. This deactivates the automatic boron injection and feed-
water limit, and makes the remainder of the event like a normal turbine-

generator trip shutdown. No additional relief valve flow will occur as the
bypass/pressure control system will handle steam generated by decay heat. Peak
suppression pool temperature will occur at the time of the last relief actuation
and will be only 96 0 F. The RHR can tbe activated in pool cooling whenever con-
venient to control the suppressloni#,oi temperature. Reactor water level remains
in the normal ranige throughout the event by the feedwaiter system and no RCIC
or HPCS initiatimn is expected.
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If the ARI is also assumed to be failed, the BWR/6 is still able to mitigate
the event. With an assumed ARI failure and feedwater flow now having been
limited to zero, at 56 seconds the level of the bulkwater in the vessel will
decrease past level 2, the level at which HPCS and RCIC are initiated. Eighteen
seconds later, water from these systems is assumed to begin to enter the
reactor vessel.

Following confirmation from the flux monitoring system and the rod position
indicating system that scram has really not taken place, the SLCS is activated..
This system will be started 2 minutes after the ATWS signal; one minute of boron
transport time is also accounted for in the lipes and the vessel. Therefore,
nuclear shutdown begins at 3 minutes into the event using the SLCS. With an
86 GPM volumetric flow rate of sodium pentaborate, the reactor will be brought
to hot shutdown in approximately 19 minutes from the beginning of the event.
The behavior of several parameters is depicted in Figure 3.3.2-3 for the long-
term event.

Bulkwater level within the vessel continues to decrease until approximately
2 minutes at which time HPCS and RCIC supply more water than is required to
make up for steam flow out of the vessel. At this time it reaches its lowest
level and begins to rise. At all times, the top of the vessel remains covered
with two-phase mixture inside the core shroud. As the level is regained, core
flow is increased, thereby reducing the average void fraction. The various
contributors to reactivity insertion and power production (boron, voids, etc.)
must always be in balance with the power production. Water level is completely
restored by HPCS and RCIC at approximately 16 minutes. Water level is maintained
by automatically cycling HPCS and RCIC. A larger-scale plot of water level is
shown on Figure 3.3.2-4.

Following hot shutdown, the decay power continues to generate a small amount
of steam which will go through the bypass to the main condenser. Since the
major portion of the steam generated in this event goes to the main condenser,
the temperature rise in the suppression pool is minimal. The maximum suppression
pool temperature calculated in this case is 100°F, which results in a maximum
pressure of 0.5 psig.
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These values remain well within the containment design requirements of 185OF
and 15 psig. Figures 3.3.2-5 and 3.3.2-6 show detailed plots of the water
level outside the core shroud, the pool temperature, and the containment pres-
sure through the peak portion of the event. Water level inside the core
shroud is a two-phase mixture which remains above the core and up into the
steam separator standpipes as RCIC and HPCS flow provide coolant inventory.
The boron will continue to build the poison concentration in the vessel until
it is all injected (near 50 minutes) making it possible for a controlled reactor
cooldown. The total concentration is specified to be enough to maintain cold
nuclear shutdown conditions even when the RHR system is eventually switched
to the shutdown cooling mode, bringing the plant successfully to cold shutdown.

Thus it can be seen that a Turbine Trip with bypass event combined with a
failure to scram is adequately mitigated for a representative BWR6/Mark III.

3.3.3 Inadvertent Open Relief Valve

3.3.3.1 Overview of Response Without Scram

This event has no rapid excursions as the previous two events but is merely a
long term depressurization. •RPT does not occur until late in the event after
hot shutdown is achieved.

Except for steamflow through the open relief valve and the use of the liquid
boron solution for shutdown, the nuclear steam supply system is in a normal
operating state. The suppression pool is the only system exposed to off-normal
conditions. This base case event has also been updated from Volume I with the
new Doppler, S/RV reclosure, and feedwater flow conditions discussed in
Section 3.3.1. The sequence of events follow.
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3.3.3.2 Sequence of Events For Inadvertent Open Relief Valve

This event begins when one of the primary relief valves on the main steam-

lines inadvertently opens without influence from any other portion of the

system. All pressure levels in the reactor coolant pressure boundary are at

a nominal value prior to the event. The resulting sequence of events is
shown in Table 3.3.3-1.

At the time that the relief valve opens, there is a momentary depressurization

(a few seconds) until the turbine control valve senses it and closes slightly

(dropping unit electrical output) to control the pressure. For general appli-

cation of this analysis, a relief valve capacity of 7.1% NB rated was utilized
(the nominal flow of a valve on a BWR/6-218 inch vessel plant). After about

two minutes, the suppression pool temperature, which was initially assumed to

be at 90 0 F, has risen to the alarm point of 95°F. If attempts to reclose the
valve are unsuccessful, the operator will turn on the RHR system in the pool

cooling mode to maintain pool temperature. If attempts to close the valve

continue to be-unsuccessful, the temperature will continue to rise and at
9 minutes will reach 110F at which point the operator is required to manually

scram the plant. Should scram fail to occur at this point, the manual scram
will initiate ARI as well as start the SLCS timed logic.

If for some reason neither normal manual scram or the ARI are effective, the

BWR/6 is still able to mitigate the event at this time. The ATWS logic would

have determined that ARI was unsuccessful and the control rods are still not

inserted, and at 11 minutes into the event will activate the SLCS. For this

case, with the r;circulation pumps operating, the boron mixing efficiency is

excellent (95% is assumed) and the delay time inside of the vessel is small so

that at 12 minutes the control liquid reaches the core and shutdown begins.
Within ýQ minutes, the power has been reduced to the point that the amount of

steam generated is less than the relief valve capacity and the pressure now
begins to decrease more rapidly. The turbine control valves have closed com-

pletely. These events are depicted in Figure 3.3.3-1. By 23 minutes, the pres-
sure has dropped to the low steam line pressure isolation point of 800 psig and
the MSIV's close. Simulating plants with turbine-driven feedwater pumps, the
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feedwater was assumed to be lost within 45 seconds of the isolation. This
causes the water level in the vessel to decrease and at 24 minutes the low
level point (L2) was reached where the recirculation pumps were automatically
tripped and HPCS and RCIC were activated. These systems are shown to auto-
matically cycle on at low level (L2) and off at high level (L8) as specified
to maintain water inventory in the vessel, although manual action is expected
to maintain level with the RCIC alone. The depressurization of the vessel will
continue with the relief valve discharging into the suppression pool; the
maximum pool temperature of 170°F will occur at 50 minutes. The peak contain-
ment pressure of 7.3 psig occurs at the same time (see Figure 3.3.3-3). Both
values are well below the criteria values of 1850 F and 15 psig.

In cases where ARI is activated (11 minutes), the maximum pool temperature is
1550 F.

Thus is can be seen that the inadvertent opening of a relief valve event com-
bined with a failure to scram is adequately mitigated for a representative
BWR6/Mark III.

3.3.4 Sensitivity Study Results - BWR/6 Base Cases

A wide variety of parameters were studied to examine the sensitivity and
potential impact of plant differences and/or uncertainties on the results
of the three BWR/6 base cases, The results are documented in the following
subsections:

While the overall objective of these sensitivity studies is to provide guidance
for assessing the adequacy of plants having certain parameters different from
the generic analyses, caution must be exercised when combining the results of
several parameter variations, due to the non-linearities involved (see
Section 3.3.4.4).

3.3.4.1 MSIV Sensitivity Studies

3.3.4.1.1 Variation of Boron Delay

3.3.4.1.2 Variation of Boron Capacity/Mixing
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3.3.4.1.3

3.3.4.1.4

3.3.4.1.5

3.3.4.1.6

3.3.4.1.7

3.3.4.1.8

3.3.4.1.9

3.3.4.1.10
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Variation
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of
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HPCS/RCIC Capacity

RHR Capacity

RKR Delay

Pool and Service Water Temperature

RHR Capacity and Service Water

Pool Size

S/RV Capacity

Variation

Variation

Effect of

Variation

Variation

of RPT Delay

of RPT Inertia

Partial Rod Insertion

of Void Coefficient

of Doppler Coefficient

Table 3.3.4.1-1 and 2 summarizes the results of this event.

3.3.4.2 Turbine Trip Sensitivity Studies

3.3.4.2.1

3.3.4.2.2

3.3.4.2.3

3.3.4.2.4
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Table 3.3.4.2-1 and -2 summaries the results for this event.

3.3.4.3 IORV Sensitivity Studies

3.3.4.3.1 Variation of Boron Delay

3.3.4.3.2 Variation of Boron Capacity/Mixing

3.3.4.3.3 Variation of RHE Capacity

3.3.4.3.4 Variation of RHR Delay

3.3.4.3.5 Variation of Pool and Service Water Temperature

3.3.4.3.6 Variation of RHR Capacity and Service Water Temperature

3.3.4.3.7 Variation of Pool Size

3.3.4.3.8 Variation of S/RV Capacity
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Table 3.3.4.3-1 summaries the results of this event

3.3.4.4 BWR/6 Multiple Sensitivity Results

3.3.4.1 MSIV Sensitivity Studies

3.3.4.1.1 Variation of Boron Delay

The SLCS timer delay was varied between 30 seconds (75% below the nominal timer

setting of 120 seconds) and 240 seconds (100% above the nominal time) resulting

in peak pool temperature 30F less and 60F greater, respectively compared to the

base case. Containment pressures decreased and increased accordingly by 1 psi.

Figures 3.3.4.1.1-1 and 3.3.4.1.1-2 graphically show this parameter variation.*

Minimum level was increased by 0.7 feet at 30 seconds delay and was unchanged

when the timer was extended to 240 seconds.

3.3.4.1.2 Variation of Boron Capacity/Mixing

The effective rate of boron injection into the core is the product of the boron

pumping capacity and mixing efficiency. This effective rate was varied by ±50%

resulting in peak pool temperatures 13 0 F below and 40OF above the base case,

respectively. The base case represents an 86 gpm SLCS pumping rate in a 251 inch

vessel with 75% assumed mixing efficiency. The -50% variation point equivalently

represents 43 gpm at 75% efficiency or 86 gpmat 38% efficiency. Differences for

plant size are covered by comparing the boron rate to the rated steam flow of the

plant (e.g., the 86 gpm on a 251 size plant is equivalent to 66 gpm on a 218 size

plant). Figure 3.3.4.1.2 graphically shows this variation.

3.3.4.1.3 Variation in HPCS/RCIC Capacity

The rated flow of the HPCS/RCIC system was varied by 20%. Figures 3.3.4.1.3-1

and 3.4.1.3-2 graphically show the change for the case of increased flow, pool

temperature and containment pressure increased by 70 1- and 1 psi, respectively.

The increase in temperature is due to the higher power level maintained by the

*Note that points representing calculated results of sensitivity studies are
connected by lines to add clarity to general trends. This does not imply-
detailed knowledge of the variation between points.
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increased core flow. Minimum water level increased more than a foot. Decreas-

ing HPCS/RCIC flow lowered peak temperature and pressure by 9*F and 2 psi.

Minimum level was reduced by approximately 1.8 feet.

3.3.4.1.4 Variation in RHR Capacity

To determine the effect of varying RHR heat exchanger capacity, the base

capacity of 3.2% NBR at 100*F AT (1272 BTU/sec- 0 F for the 251 size plant used

as the base case) was altered by 50%. Increasing the capacity by 50% yielded

a 3'F temperature reduction and lowered the peak containment pressure by less

than 1 psi. For the opposite case of a 50% decrease in RPR capacity the

results were a 70F increase in temperature and a 1.1 psi pressure rise.

Sensitivity of pool temperature is shown graphically in Figure 3.3.4.1.4.

3.3.4.1.5 Variation in RHR Delay

The effect of varying RHR start time was found to be small for the BWR/6 MSIV

case. Increasing the start time from 11 (base) to 16 minutes increased peak

pool temperature by less than 3*F. A decrease of 2 minutes resulted in less

than 1F reduction in pool temperature. This very weak E:ensitivity of the

pool temperature to RHR startup delay is shown graphically in Figure 3.3.4.1.5.

3.3.4.1.6 Variation in Pool and Service Water Temperature

The pool and service water temperature were assumed to vary together (with

the pool assumed to be 5*F above the service water). This variation was found

to significantly affect peak pool temperature and containment pressure.

Increasing these temperatures by 20*F (to the operating technical specifica-

tion) produced a rise in pool temperature of 18'F and an increase of about

3 psi in peak pressure. Reducing the temperatures by 20OF yielded decreases

of 190 F and about 3 psi respectively. Figure 3.3.4.1-6 graphically shows the

pool temperature variation plotted directly vs AT change.
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3.3.4.1.7 Variation of RHR CapacitX and Pool and Service Water Temperature

Varying both parameters simultaneously was done to examine different RHR
design due to different plant site water temperatures. It showed that pool
and service water temperature was the dominant variable (see Figure 3.3.4.1-6).
Simultaneous increases of +50% in RHR capacity and +20*F in pool and service
water temperature (and a similar set of decreases) produced temperature changes
of +16 and -12°F. Peak pressures varied accordingly by +2 and -2 psi.

3.3.4.1.8 Variations in Pool Size

The suppression pool mass was varied by ±20% to simulate different sized
plants. The larger pool mass provides a bigger heat sink, thus reducing the
peak pool temperature by nearly II*F and peak pressure by about 2 psi. For
the lower pool mass, pool temperature increases 16"F and peak pressure by
3 psi. Figure 3.3.4.1-8 graphically shows the result.

3.3.4.1.9 Variations in S/RV Capacity

The total S/R valve capacity was varied by ±20%. The larger and smaller valve
capacity resulted in a maximum pressure (level bottom) of 33 psi less than and
148 psi higher than the base case respectively. Figure 3.3.4.1.9-1 shows theseresults graphically. Pool terqperature variation was very small (<2*F).

3.3.4.1.10 Variations in RPT Delay

The base value of RPT delay (0.43 sec) was varied by 0.5 second and 1.0 second.
Due to the large S/RV capacity for BWR/6 the maximum neutron and maximum
average fuel heat flux remained unchanged. The maximum pressure (vessel
bottom) increased by less than 7 psi as shown by Table 3.3.1.4.1-1 and
Figure 3.3.
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3.3.4.1.11 Variation of RPT Inertia

The RPT Inertia was increased by 50% and reduced by 20%. In both cases

noticeable changes were observed in the values of maximum neutron flux,

maximum average fuel heat flux and maximum vessel pressure as indicated by

Table 3.3.4.1-1.

3.3.4.1.12 Effect of Partial Rod Insertion

All ATWS analysis are performed assuming that no rod motion takes place. It

is very likely that some rod insertion would occur. To explore the effects of

partial rod insertion, an analysis was performed assuming that rods equivalent

to $2 worth of reactivity actually insert. As expected, this significantly

reduced peak values for vessel pressure, neutron flux, etc. The peak pool

temperature reduced by about 16TF with a corresponding reduction of 2 psi in

containment pressure.

3.3.4.1.13 Variation of Void Coefficient

The effect of void coefficient on peak transient parameters (neutron flux,

average surface heat flux, vessel pressure and suppression pool temperature)

was studied for the MSIV closure transient. Void coefficient was varied from

-6 to -14f/% rated voids (nominal = -11/%). In all cases the recirculation

pumps were tripped on high vessel pressure. The change in total effective

worth of injected boron with void fraction was accounted for. Figure

3.3.4.1.13-1 shows the flux and pressure peaks for the MSIV transients,

as a function of void coefficient for several values of Doppler coefficient.

The peaks are shown relative to those at nominal nuclear coefficients.

Figure 3.3.4.1.13-2 shows peak suppression pool temperature as a function of

void coefficient.

3.3.4.1.14 Variation of Doppler Coefficient

The effect of Doppler coefficient on transient peak neutron flux average

surface heat flux and &essel pressure during an MSIV closure was studied for
/
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to $2 worth of reactivity actually insert. As expected, this significantly . 
reduced peak values for vessel pressure, neutron flux, etc. The peak pool 

temperature reduced by about 16°F with a corresponding reduction of 2 psi in 

containment pressure. 

3.3.4.1.13 Variation of Void Coefficient 

The effect of void coefficient on peak transient parameters (neutron flux, 

average surface heat flux,vesse1 pressure and suppression pool temperature) 

was studied for the MSIV closure transient. Void coefficient was varied from 

-6 to -14c/% rated voids (nominal = -11C/%). In all cases the recirculation 

pumps were tripped on high vessel pressure. The change in total effective 

worth of injected boron with void fraction was accounted for. Figure 

3.3.4.1.13-1 shows the flux and pressure peaks for the MSIV transients, 

as a function of void coefficient for several values of Doppler coefficient. 

The peaks are shown relative to those at nominal nuclear coefficients. 

Figure 3.3.4.1.13-2 shows peak suppression pool temperature as a function of 

void coefficient. 

'3.3.4.1.14 Variation of Doppler Coefficient 

The effect of Doppler coefficient on transient peak neutron flux average 

surface heat flux and v\~ssel pressure dur~_ng an MSIV closure was studied for 
/ 
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the range 0.20 to 0.32€/'F (nominal of minus 0.28€/OF). Figure 3.3.4.1.14-1
shows the peaks plotted as a function of Doppler coefficient. Peak pool
temperature is plotted against Doppler coefficient in Figure 3.3.4.1.13-2.

3.3.4.2 Turbine Trip Sensitivity Studies

3.3.4.2.1 Variation of Boron Delay

The SLCS timer delay logic was varied between 30 sec (from nominal value of
120 seconds) to 240 seconds. Suppression pool temperature and containment
pressure remain unchanged, since the early part of the transient is the same
as the base case. S/RV's close at about 70 seconds and no isolation takes
place. Tables 3.3.4.2-1 and -2 summarize all of the sensitivity studies for
the BWR/6 Turbine Trip cases.

3.3.4.2.2 Variation of Boron Capacity/Mixing

Variation in boron capacity/mixing is expected to have no impact on the peak
pool temperature and containment pressure since the early part of the transient
would remain unchanged with S/RV's closing near 71 seconds, and no isolation
takes place.

3.3.4.2.3 Variation of HPCS/RCIC Flow Capacity

The HPCS flow capacity was varied ±20%. The -20% case results in isolation
since water level falls below the Level 1 setpoint, leading to increased S/RV
cycling. This gives a suppression pool (bulk) temperature 45'F higher than the
base case. Containment pressure correspondingly increased by 3 psi. The +20%
HPCS flow case however remains unchanged. Since isolation is avoided and S/RVs
close at the some time as the base case. These results are graphically shown
in Figure 3.3.4.2.3-1.
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3.3.4.2.4 Variation in RHR Delay

The start time of the RHR was varied from 9 minutes to 16 minutes (the base

value was 11 minutes). This change does not have any effect on the pool

temperature and containment pressure since peak values occur (070 seconds)

much before RHR is turned on.

3.3.4.2.5 Variation of Void Coefficient

The effect of void coefficient variation on the Turbine Trip transient was

studied similar to the MSIV closure reported in Section 3.3.4.1.13. Figures

3.3.4.2.5-1 and 3.3.4.2.5-2 show the results.

3.3.4.2.6 Variation of Doppler Coefficient

Figure 3.3.4.2.6-1 shows the effect of Doppler coefficient variation on the

Turbine Trip transient. The effect on suppression pool peak temperature is

shown in Figure 3.3.4.2.5-2.

3.3.4.3 IORV Sensitivity Studies

3.3.4.3.1 Variation of Boron Delay

Increasing and decreasing the boron time delay by 5 minutes results in a peak

bulk pool temperature 5OF higher and lower, respectively, compared to the base

case. Containment pressures increased and decreased accordingly by "A psi.

Minimum water level essentially remained unchanged due to the long term char-

acteristic of the transient. Figure 3.3.4.3.1-1 shows the results graphically.

Table 3.3.4.2-1 lists values found for this variation as well as other

sensitivities studied for the IORV event.

3.3.4.3.2 Variation of Boron Pumping Capacity/Mixing

The effective rate of boron injection into the core is the product of the boron

pumping capacity and mixing efficiency. This effective rate was varied by
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±50% resulting in peak pool temperature 4*F below and 14*F above the base
case respectively. Containment pressures decreased and increased accordingly
by I psi and 3 psi, respectively. Figure 3.3.4.3.2-1 graphically shows thisvariation.

3.3.4.3.3 Variation of RHR Capability

To determine the effect of varying RHR heat exchange capabilities, the base
capacity of 3.2% NBR at 100*F AT (2172 BTV/sec-*F for the 251 size plant
used as the base case) was altered by ±50%. Increasing the capacity by 50%yielded a 10*F temperature reduction and lowered the peak containment pressure
by less than 2 psi. For the opposite case of a 50% decrease in RHR capacity
the results were a 16*F increase in temperature and 3 psi pressure risk.Sensitivity of pool temperature is shown graphically in Figure 3.3.4.3.3-1.

3.3.4.3.4 Variation of RHR Delay

As in MSIV case the effect of varying PdHR start time was found to be small
for the BWR/6 IORV case. Increasing the start time by 5 minutes and 10 minutesresulted in a pool temperature increase of less than 2*F. This very break
sensitivity of the pool temperature to RHR startup delay is shown graphically
in Figure 3.3.4.3.4-1.

3.3.4.3.5 Variation of Service Water Temperature

This variation in service water temperature was found to have less effect onpeak pool temperature and containment pressure than the MSIV closure case.Increasing these temperatures by 20'F (to the operating limit) produced a
rise in pool temperature of 7*F and an increase of about 1 psi in peak pres-sure. Reducing the temperatures by 20*F yielded decreases of 7'F and about
1 psi, respectively. Figure 3.3.4.3.5-1 graphically shows the pool tempera-
ture variation plotted directly versus service water temperature.
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*3.3.4.3.6 Variation of RHR Capacity and Service Water

These two parameters were changed simultaneously to

tions of RHR design and plant site water temperature:

pool temperature is more sensitive to RHR capacity ?-

temperature. Simultaneous increases of +50% in RHR

service water temperature (and a similar set of decr

temperature changes of -2 0 F and +110F, respectively.

accordingly by -0.1 and +2 psi. Figure 3.3.4.3.5-i 1

graohicallv.

3.3.4.3.7 Variation of Pool Size

The suppre3sion pool mass was varied bv t20% to sim,:r..

plants. Larger pool mass results in a temperature r

corresponding decrease of I psi in peak pressure. S3

a higher peak pool temperature and pressure by 9'F a;

Figure 3.3.4.3.7-1 graphically shows the result.

3.3.4.3.8 Variation of S/RV Capacity

The S/RV capacity was varied by +20%. From the 7.U'

in the base case, which is typical of a 218 size pXc

pool temperature was experienced when S/RV capacity

IOF lower peak pool temperature when the capacity i:

tainment pressure correspondingly changes by +1.6 p

Figure 3.3.9.3.8-i shows the results graphically.

3.3.4.4 BWR/6 Multiple Sensitivity Results

The majority of the sensitivity studies presented

impact of varying a single parameter from the ry-'

istics given in Section 2.3. They were presentee

sharp sensitivities are present for BWR ATWS pe~rc
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Although summation of more than one variation may be in the right range ifthe parameter variations are small, this multiple-parameter use of the single-
variation results has high risk of yielding misleading conclusions if changes
are too large, or non-linear interactions are missed.

A few cases are included with variation of two parameters in the general
sensitivity sections:

a. Simultaneous variation of the void and Doppler reactivity.
coefficients,

b. Simultaneous variation of RHR heat exchanger capacity and pool/
service water temperatures.

Within the ranges provided, these terms appear to combine linearly, so thatreasonable interpolations can be made for variations of both parameters. Forexample, see Figures 3.3.4.1.6-1 (Peak Bulk Pool Temperature) or 3.3.4.1.13-1
(Peak Pressure).

In order to check more complex combinations, two special multiple-variation
cases were constructed from the BWR/6 MSIV closure base case. The parameters
that were varied, and their expected individual impacts on peak bulk pool
temperature are tabulated in Table 3.3.4.4-1 and Table 3.3.4.4-2, and compared
to the calculated combined variation result. In the first case, the combined
variation was expected to produce a net result near the base case (compensating
dev iations), and the actual calculation shows close agreement.

The second case was constructed in such a way that all the parameters con-
tributed to increased severity of the event. In this situation, the simple
summation of the individual terms was less accurate (the combined calculation
showed a more severe result).
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In either situation, but especially the latter case, extreme caution must be

exercised in attempting to combine these sensitivity studies. These two cases

constitute a very small smaple of all possible combinations. While "ballpark"

results may be possible, significant deviations or discontinuities may be

present and detailed conclusions should have further support.

3.3.5 Loss of Condenser Vacuum

3.3.5.1 Overview of Response Without Scram

This transient starts with a turbine trip due to low condenser vacuum, there-

fore the beginning is the same as the Turbine Trip event (see Section 3.3.2).

There is a rapid steam shutoff causing pressure and power increases which are

limited by the action of the S/RV's and RPT. Note that direct recirculation

pump trip from turbine trip was conservatively neglected. Since the MSIV's and

turbine bypass valves also close when condenser vacuum has further dropped to

each respective setpoint, S/RV cycling increases considerably compared to the

original Turbine Trip case. Even so, the bulk pool temperature and pressure

are well within the containment design requirements. Therefore, this event

is similar to the Turbine Trip event as far as the peak power and pressure

characteristic are concerned and similar to the MSIV closure case with respect

to suppression pool temperature and pressure.

3.3.5.2 Sequence of Events For Loss of Condenser Vacuum

The listing of significant events during this ATWS event is provided in

Table 3.3.5-1. Results with ARI and also assuming its failure are presented.

This transient starts with the closure of all turbine stop valves (within

about 0.1 second) when the unexpected decline in condenser vacuum reaches

the turbine trip setpoint. If the unit has turbine-driven feedwater pumps,

they would also trip at the same low vacuum setpoint. For the ARI failure

case, the feedwater is assumed to remain as if motor-driven pumps were avail-

able until the feedwater limit action shuts them down (the most limiting case).

Figure 3.3.5-1 shows the i itial portions of the event for the more likely
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plant ATWS transient in which ARI provides a diverse logic path to quickly
shut down the reactor, and Figure 3.3.5-2 shows the initial portion for the
case in which ARI also is assumed to fail.

In both cases, the initial power and pres-sure increase. Neutron flux reaches
367% NBR near 1 second, fuel average heat flux reaches 135% NBR at about
3 seconds. Some fuel may experience boiling transition. However, coolable
geometry is maintained. Peak pressure occurs at the vessel bottcm and is
1235 psig near 3 seconds. The normal reactor scrams would occur from position
switches on the valves, high neutron flux, and high vessel pressure but are not
considered in this analysis. The transient pressure is limited within the
Service Level C overpressure limit of 1500 psig. This is due to the automatic
action of RPT which is initiated when vessel dome pressure exceeds 1150 psig,
and the relieving action of the S/RV's which all open then start reclosing near
8 seconds. By about 30 seconds, the condenser vacuum is assumed to have fallen
enough to initiate MSIV and bypass valve closure. This results in another pres-
sure and power rise to 1202 psig and 230% NBR, respectively. Both of these
peaks are lower than the earlier values. Peak heat flux rises momentarily, but
remains less than 80% and fuel geometry is maintained.

The long term behavior of this transient is very much like the MSIV closure
event which is discussed in detail in Section 3.3.1.1. Figure 3.3.5-3 shows
the long term behavior predicted for this event. The peak bulk pool temper-
ature and pressure which occur near 27 minutes are 160°F and 6.3 psig, respec-
tively. These values remain well within the containment design requirements
of 185*F and 15 psig.

Thus it can be seen that the loss of condenser vacuum event combined with a
failure to scram is adequately mitigated for a representative BWR6/Mark III.

3.3.6 Pressure Regulator Failure - Zero Steam Demand

3.3.6.1 Overview of Response Without Scram

This transient is described in detail in the following sections. Its initial
characteristics are much like the MSIV closure event. A rapid steam shutoff
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and pressure and power increases are limited by the action of the S/RV's and

RPT. The relatively slower closure of the control valves in this case makes

it less severe than the MSIV events in terms of peak neutron flux, vessel

pressure and fuel heat flux. Even though this event experiences S/RV cycling

due to isolation of the system, the bulk pool temperature and pressure are well

within the containment design requirements. The final portion of the event is

similar to the MSIV closure event.

3.3.6.2 Sequence of Events For Pressure Regulator Failure - Zero Steam Demand

The listing of significant events during this ATWS event is provided. Results

with and without ARI are presented.

This event is assumed to occur when the normal pressure regulator fails in a

closed state with the backup regulator also assumed to have failed to take'over

control. Having both regulators in a failed state simultaneously with the

reactor in a failure-to-scram condition is extremely improbable. However, a

failure (closed) without backup action causes control valve closure without

the bypass being available. The normal closure speed characteristics of the

control valves coupled with the extra steamline volume available to take up part

of the pressure disturbance, makes this event less severe than MSIV closure

case. Figure 3.3.6-1 shows the initial portions of the event for the more likely

plant transient in which ARI provides a diverse logic path to quickly shut

down the unit and Figure 3.3.6-2 shows the case in which ARI also fails and the

automated SLCS is called upon to shut down the plant.

In each case, the initial power and pressure are the same. Neutron flux reaches

404% near 2.5 seconds, fuel average heat flux reaches 143% NBR at about 3 sec-

onds. Some fuel may experience boiling transition. However, all fuel maintains

coolable geometry. The peak pressure occurs at the vessel bottom and is 1283 psig

near 5 seconds. The normal reactor scram signals would occur from position switches

on the valves, high neutron flux and high vessel pressure but are not considered

in this analysis. The transient pressure is limited within the Service Level C

overpressure limit of 1500 psig. This is due to the automatic action is RPT

which is initiated when vessel closure pressure exceeds 1150 psig and the reliev-

ing action of the S/RV's which all open, then start reclosing near 19 seconds.
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404% near 2.5 seconds. fuel average heat flux reaches 143% NBR at about 3 sec-

onds. Some fuel may experience boiling transition. However, all fuel maintains 

coolable geometry. The peak pressure occurs at the vessel bottom and is 1283 psig 

near 5 seconds. The normal reactor scram signals would occur from position switches 

on the valves, high neutron flux and high vessel pressure but are not considered 

in this analysis. The transient pressure is limited within the Service Level C 

oVerpressure limit of 1500 psig. This is due to the automatic action is RPT 

which is initiated when vessel closure pressure exceeds 1150 psig and the reliev­

ing action of the S/RV's which all open. then start reclosing near 19 seconds. 
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The long term behavior of this transient is very much like the MSIV closure
case given in detail in Section 3.3.1.2. Figure 3.3.6-3 shows the long term
behavior predicted for this transient. The peak bulk pool temperature which
occurs near 33 minutes is 167*F (6.9 psig). These values remain well within the
containment design requirements of 185*F and 15 psig.

Thus is can be seen that the pressure regulator failure (zero demand) event
combined with a failure to scram is adequately mitigated for a representative
BWR 6/Mark III.

3.3.7 Loss of a Feedwater Heater

3.3.7.1 Overview of Response Without the Scram

This is a mild transient compared to the other ATWS events. The neutron flux
dQes not reach the scram setpoint. The pressure rise is insignificantly small.
Therefore, automatic ATWS logic (e.g., RPT) does not occur, nor are HPCS or
RCIC initiated. This is a gradual subcooling transient. The entire transient
settles out when the feedwater temperature fully stabilizes. The reactor
settles out to a new equilibrium power condition at full core flow with recir-
culation flow assumed to be under manual control. If automatic flow control
was active, the power increase would be less. Manual operator action
accomplishes reactor shutdown.

3.3.7.2 Sequence of Events For Loss of a Feedwater Heater

In this event, loss of a key group of feedwater heaters gives the reactor
feedwater flow (decreased 70*F) which produces an increase in core inlet
subcooling leading to an increase in core power. Following the transport delay
through the feedwater lines (neglected in this analysis) and the time constant
delay for cool-down of the heater tubes, neutron flux !nd average fuel surface
heat flux rise to a maximum value of 114% which is lower than the flux scram
setpoint. No fuel reaches boiling transition, even if the plant was initially
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at thermal operating limits. The reactor is conservatively assumed to be on

manual flow control, therefore, core inlet flow remains at 100%. Had the

reactor been on automatic flow control, core inlet flow would have changed

to decrease the severity of the transient. The peak pressure (vessel bottom)

of 1071 psig occurs near 74 seconds. Figure 3.3.8-1 shows the short term

response of this event. The water level remains within the normal control

range throughout the transient.

When the power reaches 108% NBR near 30 seconds, a high power alarm occurs.

For this analysis, it is assumed that attempts will be made to bring the power

down by inserting rods. If this is not successful manual scram will be initiated

at 10 minutes. This action also initiates ARI and SLCS timed logic. However,

in this analysis, manual scram is also assumed to fail. By about 11 minutes,

ARI will have been accomplished and power is terminated.

If the ARI function is arbitrarily assumed to fail, as well as all other

attempts to insert control rods within the two minute period, the automatic

start of boron injection will begin through the HPCS line. An extra 30 seconds

is allowed in the analysis for transport in the section of this line into the

vessel without HPCS flow on. By about 35 minutes the power has decreased below

1% NBR. Recirculation flow remains active during boron injection, providing

mixing and dispersion throughout the primary system.

Thus it can be seen that a loss of feedwater heater event combined with a

failure to scram is adequately mitigated for a representative BWR 6/Mark III.

Note that this event was analyzed for a 70*F loss in feedwater heating rather

than 60°F as specified in NUREG 0460 (Volume 3).
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3.3.8 Feedwater Controller Failure - Maximum Demand

3.3.8.1 Overview of Response Without Scram

The initial short term portion of this transient results in a gradual powerincrease, then a sharp pressure rise and power peak. The longer term seg-
ment requires evaluation of coolant and containment conditions as the reactor
is shut down.

Relief valve action occurs only during the early portion of the transient.
RPT, acting in conjunction with the relief valves, serves to effectively limitthe pressure disturbance. Note that the direct RPT from turbine trip was con-servatively ignored. RPT also ensures relatively low power generation duringthe long term portion of the event. The effectiveness of RPT as presented inearlier reports is again confirmed by this analysis.

- Containment peak temperature and pressure remain well below design limits dueto the short duration of relief flow to the suppression pool. Power shutdowncan be achieved in two ways. ARI employs an alternate design of the protectionlogic leading to a diverse insertion of the control rods. In the event thatARI also fails, the automated SLCS provides further protection and shutdown
capability.
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3.3.8.2 Sequence of Events for Feedwater Controller Failure - Maximum Demand

The time sequence of events for this transient is presented in Table 3.3.8-1.

Both successful ARI initiation, and ARI failure cases are considered. The

initiating event is the failure of the feedwater controller to the maximum

demand position (125% NBR was assumed). The feedwater flow rapidly responds,

causing vessel level to rise. When the high level trip setpoint (L8) is

reached near 16 seconds, the turbine and feedwater are tripped. This results

in a scram signal which, for purposes of this analysis, fails to initiate a

scram. With the occurrence of the turbine trip, this event becomes very simi-

lar to the Turbine Trip transient. Figures 3.3.8-1 and 3.3.8-2 show the early

portion of the event for the cases of ARI failure, and successful ARI actuation,

respectively. For each case, the peak power and flux are the same with a

maximum flux of 396 NBR near 7 seconds and a peak vessel bottom pressure of

1214 psig around 9 seconds. Fuel average heat flux reaches a maximum at

9 seconds of 126% NBR. Some fuel may experience boiling transition, however,

coolable geometry is maintained. Despite the assumed failure to scram

based upon high neutron flux, vessel level and dome pressure generated scram

signals, the transient pressure is maintained well below the 1500 psig Service

Level C overpressure limit. This is accomplished through the combination of

RPT (initiated on high dome pressure) and actuation of relief valves. Relief

valve flow begins at 8 seconds. S/RV.'s will open and cycle before permanently

closing. This is shown along with vessel steam flow. The difference in

vessel and relief steam flow is made up by the steamflow through the turbine

bypass valves to the condenser.

At approximately 28 seconds, ARI will begin to insert control rods into the

core thereby shutting down the reactor. This will deactivate the SLCS turn-

ing the remainder of the event into normal feedwater flow controller failure

transient. No further relief valve flow will occur. The decay heat will be

passed through the turbine bypass valves to the condenser.
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Peak suppression pool temperature is 95 0 F at 200 seconds with a corresponding
peak pressure of less than I psig. The RHR can be activated in the pool cool-
ing mode whenever convenient to reduce the pool temperature and any final, single
valve cycles can be accommodated. Vessel level, which drops due to feedwater
shutoff at high water level, is recovered and maintained in the normal water
range by means of the HPCS/RCIC systems.

In the unlikely event of ARI failure, the event can still be mitigated through,
action of the SLCS. With confirmation from the flux monitoring system and the
rod position indicating system that scram has not occurred, the SLCS will be
activated. The long term behavior predicted for this event is shown in
Figure 3.3.8-3. Boron first enters the core at about 200 seconds via the HPCS
system and commences to shut down the system, with hot shutdown occurring near
17 minutes. Vessel level experiences slow cycles about the normal water level
caused by the intermittent action of the RCIC and HPCS systems assumed to be
automatically cycling between L2 and L8. Boron concentration will continue to
increase until the entire inventory has been injected into the core around
50 minutes. At this point the concentration is sufficient to maintain cold
nuclear shutdown conditions when the RHR system is switched to the reactor
shutdown cooling mode and the plant is brought to a cold shutdown condition.

Thus it can be seen that a feedwater controller failure event (maximum demand)
combined with a failure to scram is adequately mitigated for a representative
BWR 6/Mark III.

3.3.9 Pressure Regulator Failure - Maximum Steam Demand

3.3.9.1 Overview of Response Without Scram

The initial portion of the transient consists of a decrease in reactor pressure
and power as the turbine control valves open to the maximum position followed
by a rapid rise in pressure and power due to MSIV closure on low steam line
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pressure. Scram is normally initiated at this time, from the MSIV position

switches. Should these signals fail, additional scram signals occur from high

flux, high pressure and low water level. Once the MSIV's close, the charac-

teristics of the remaining portion of the transient are very much the same as

the MSIV event.

The power and pressure increases are limited by the action of the S/RV's and

RPT. With normal scram assumed to be failed, the long term power shutdown is

achieved in two ways. ARI employs an alternate design of the protection logic

leading to diverse insertion of the control rods. In the unlikely event that

ARI fails the automated SLCS provides further protection and shutdown capability.

3.3.9.2 Sequence of Events For Pressure Regulator Failure - Maximum Demand

The listing of significant events during this event is provided below. Results

for both cases - with ARI and also assuming its failure - are presented.

The event begins'with the inadvertent failure of the pressure regulator to the

maximum demand value. This causes a quick increase in vessel steam flow which

results in a rapid decrease in vessel pressure leading to a low pressure isolation

setpoint at about 16 seconds. The MSIV's are tripped closed. Once this occurs,

the transient is essentially much like an MSIV closure event. The isolation is

followed by a rapid rise in power and pressure. Figures 3.3.9-1 and 3.3.9-2

show the initial portions of the event for the more likely plant ATWS transient

in' which ARI quickly shuts down the reactor and the case in which ARI also fails

and automated SLCS is called upon to shut the reactor down. In both cases, the

peak power and pressure are the same. The neutron flux reaches 509% NBR near

23 seconds, fuel average heat flux reaches 153% NBR at about 24 seconds. Some

fuel may experience boiling transition however, coolable geometry is main-

tained. The peak pressure occurs at vessel bottom and is 1296 psig near

27 seconds. The normal reactor scrams occur from position switches on MSIV's,
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high neutron flux, and the high vessel pressure but are not considered forthis analysis. The transient pressure is limited within the Service Level Coverpressure limit of 1500 psig. This is due to the automatic action of RPT(which is initiated when vessel pressure exceeds 1150 psig near 23 seconds)
and the relieving action of the S/RV's which all open, then start reclosingnear 39 seconds.

By about 43 seconds, the high pressure logic which began the ATWS protectionwill have accomplished the ARI function. This deactivates the automatic boroninjection and feedwater limit and turns the remainder of the event into normalpressure regulator failure shutdown. The relief valve flow stops near
63 seconds.

Peak suppression pool temperature will occur at the time of the last reliefaction and will be 95*F. The RHR can be activated in pool cooling whenever
convenient to control temperature. Reactor water level is restored to itsnormal range by feedwater flow and RCIC and HPCS flow.

If the ARI function is arbitrarily assumed to fail as well as all other attemptsto insert control rods within the two-minute timed period, the ATWS logic willcontinue to sense that the APRM-signals are not cownscale and not enough rodsare in their full-in positions, and the automatic start of boron injection willbegin. The long term behavior predicted for this event is shown in Fig-ure 3.3.9-3. Introduction of boron to the core at 3 minutes and 23 secondsagain restores level and core flow before dropping the power near 20 minuteswhen nuclear shutdown is achieved. Thereafter, only decay heat reaches thepool, giving a peak pool temperature of 167*F (6.9 psig) at about 30 minutes.These values remain within the containment design requirements of 185'F and15 psig. Water level inside the core shroud is a two-phase mixture whichremains well above the core and up into the steam separator standpipes asRCIC and HPCS flow provide coolant inventpry. The boron will continue to buildthe poison concentration in the vessel until it is all injected near 50 minutes
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making it possible for a controlled reactor cooldown. The total concentration

is specified to be enough to maintain cold nuclear reactor shutdown conditions

even when the RHR system is eventually switched to the reactor shutdown cooling

mode, bringing the plant to cold shutdown by normal procedures.

Thus it can be seen that the pressure regulator failure (maximum demand) com-

bined with failure to scram is adequately mitigated for a representative

BWR 6/Mark III.

3.3.10 Loss of Feedwater

3.3.10.1 Overview of Response Without Scram

This event has no rapid excursions as in some of the other events but is

a long term power reduction and depressurization. Since the pressure begins

to fall at the outset of the transient, the need for relief valves does not

arise until isolation occurs very late in the event, and only single valve

cycling is expected to handle decay heat. The containment limits are not

approached. Except for the use of the liquid boron solution for shutdown,

the procedure followed here is virtually identical to the normal shutdown

event.

3.3.10.2 Sequence of Events For Loss of Feedwater

In this event all feedwater flow is assumed to be lost in about 5 seconds.

The resulting sequence of events is shown in Table 3.3.10-1 for both cases

with and without ARI. Figure 3.3.10-1 shows the initial portion of the event

for the more likely plant ATWS transient in which ARI quickly shuts down the

reactor. Figure 3.3.5-2 shows the case in which ARI also fails and the

automated SLCS is called upon to shut down the reactor.

In both cases, after the loss of feedwater has taken place the pressure, water

level and neutron flux begin to fall. Around 13 seconds low water level (L2)

is reached. This trips the recirculation pumps, initiates ARI, initiates the
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HPCS and RCIC and activates the SLCS timed logic. Not included in the analysiswas the recirculation runback which would have occurred earlier from coincidentlow level alarm (L4) and low feedwater flow. By 33 seconds the low water levellogic which began the ATWS protection will have accomplished the ARI function.This deactivates the automatic boron injection. At about 32 seconds HPCS andRCIC flows start. They replace the main feedwater system flow and begin toovercome the inventory loss. The vessel level decreases slightly faster imme-diately following ARI and the minimum level is reached near 47 seconds as shownin Figure 3.3.10.1. The two-phase mixture level inside the core shroud alwaysremains above the top of the fuel, however, the primarily single phase leveloutside the shroud does drop below the Level 1 setpoint, causing MSIV's to startclosing at about 45 seconds. Since drywell pressure is not elevated, ADS logicis not actuated. Since by this time the neutron flux has already been decreasedwell below 1% NBR by the ARI action, there is no significant steam generation.Vessel pressure continues to fall as shown in Figure 3.3.10-1, as quenching bythe RCIC and HPCS continues. The HPCS and RCIC will restore level to itsnormal range, for either automatic cycling between Level 2 and 8 setpointsor the operator takes over manual level control by using the RCIC (the pre-ferred method). Pressure is expected to increase to the lowest S/RV setpointwhen HPCS/RCIC are off (level restored), and one cycling valve is expectedwithout significant pool temperature increase.

If the ARI function is arbitrarily assumed to fail as well as all other scramsand attempts to insert enough control rods within the two-minute timed period,the ATWS logic will continue to sense that the APRM signals are not downscaleand not enough rods are in their full-in positions, and automatic boroninjection will begin. The power is predicted to remain in the 10-20% range, withcore flow and level being restored during the first part of the boron injectionas shown in Figure 3.3.10-2 and extended through the long term transienttransient in Figure 3.3.10-3. The significant features during the early partof the event are the same as the previous case (ARI). The key difference isthat the minimum water level is reached around 71 seconds and stays slightlyabove the Level 1 setpoint. MSIV isolation may be avoided by taking the modeswitch out of the "RUN" mode. This water level behavior is attributed to higher
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void fraction in the core as a result of higher power relative to the previous

case in which ARI reduces power and core void fraction. SLCS boron injection is

started near 2 minutes and it reaches the core 1 minute later. During the

following 16 minute period (out to about 1100 seconds in Figure 3.3.10-3), the

key result is that power is suppressed slightly, reducing the steaming rate

and allowing water level to be restored. This also induces higher natural

circulation core flow which follows the water level behavior. The level

reaches the high level turn-off (Level 8) of the HPCS and RCIC at about 100 sec-

onds. The turbine is also tripped at this level but since the turbine steam

bypass system opens immediately, no significant pressure disturbance is

experienced.

By 1125 seconds the generated power is below 1% NBR and continues to decrease

due to the accumulation of boron in the reactor. The net reactivity also stays

negative. This accomplishes nuclear hot shutdown. The vessel pressure is

steadily decreasing and at around 19 minutes, MSIV isolation occurs due to low

vessel pressure. By this time the generated power is practically zero and the

only heat in the vessel is the decay heat.

The reactor pressure is expected to return to the setpoint of the lowest S/RV

when HPCS and RCIC are off and are not quenching steam. The decay heat will

cycle this lowest valve, but no significant suppression pool heatup is expected.

The reactor would be cooled down at normal rates using the relief valve(s) to

cold shutdown.

Thus it can be seen that loss of feedwater combined with a failure to scram is

adequately mitigated for a representative BWR 6/Mark III.

3.3.11 Loss of Normal AC Power

3.3.11.1 Overview of Response Without Scram

The initial portion of the transient sees a sharp rise in reactor pressure and

power due to MSIV closure as a result of loss of normal AC power. Scram is
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initiated at this time from the MSIV position switches if it had not occurred
yet from loss of reactor trip system power. Should these signals fail, addi-
tional scram signals occur from high flux, high pressure and low water level.
The power and pressure increases are limited by the action of the S/RV's and
RPT (which occurs at the start of this event). With normal scram assumed to
have failed the long term power shutdown is achieved in either of two ways.
ARI employs an alternate .design of the protection logic leading to diverse
insertion of the control rods. In the event that ARI also fails, the automated
SLCS provides further protection and shutdown capability.

3.3.11.2 Sequence of Events For Loss of Normal AC Power

The listing of significant events during this event is provided in Table
3.3.11-1. Results for both cases - with ARI and also assuming its failure are
presented.

There are two ways of initiating this event. These are loss of all auxiliary
power transformers and loss of all grid connections. The main difference
between the two approaches is that in the latter, load rejection occurs at the
outset of the transient which results in turbine-generator trip. In either case
MSIV closure takes place near 2 seconds. This is the earliest time isolation
can occur and is based on relay-type RTS circuitry. In the case of solid state
RTS circuitry MSIV closure takes place later, and the event is less severe.

Since in loss of all grid connections the turbine trips first as opposed to
MSIV closure in the loss of all auxiliary power transformers case, it turns
out to be a less severe event in terms of peak power and pressure. Therefore
the rest of the discussion is focused on the case where loss of all auxiliary
power transformers occur. The sequence of events as outlined in Table 3.3.11-1
describes the event. Since loss of power takes place it is assumed that
accumulator will have enough air to last one cycle of the S/RV valves at their
relief setpoints after which they will switch over to spring setpoints. The
low-low set S/RV design actually has greater capability for cycling in the
relief mode, and would give lower pressures.
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This event begins with the loss of recirculation pumps and feedwater pumps

since the condensate and/or booster pumps are also tripped due to loss of

power. This leads to an initial fall in power and pressure. Near 2 seconds

MSIV closure is assumed to take place, which results in a rapid rise in power

and pressure. Figure 3.3.11-1 shows initial portions of the event for the

more likely ATWS transient in which ARI quickly shuts down the reactor, and

Figure 3.3.11-2 shows the initial portion of the case in which ARI also fails

and automated SLCS is called upon to shut the reactor down.

In both cases, the peak power and pressure are the same. The neutron flux

reaches 546% NBR near 7 seconds, fuel average heat flux reaches 101% NBR at

about 8 seconds. Some fuel may experience boiling transition. The peak

pressure occurs at vessel bottom and is 1218 psig near 8 seconds. The normal

scram signals occur due to loss of AC power and also due to position switches

on MSIV's, high neutron flux and the high vessel pressure but are not consid-

ered for this analysis. The transient pressure is limited within the Service

Level C overpressure limit of 1500 psig. This is due to RPT at the start of

the transient and the relieving action of the S/RV's which all open, then

start reclosing near 14 seconds.

By about 27 seconds, the high pressure logic would provide ATWS protection by

activating ARI. This deactivates the automatic boron injection and allows

the remainder of the event to proceed toward shutdown. The primary relief

valve flow stops near 42 seconds, followed only by single valve cycling on the
"tail" of the isolation event. The RHR can be activated in pool cooling mode

as soon as water level recovery is clearly indicated, to control pool tem-

perature. Reactor water level is restored quickly to its normal range by

RCIC and HPCS flow.

If the ARI function is arbitrarily assumed to fail as well as all other attempts

to insert control rods within the two-minute timed period, the ATWS logic will

continue to sense that not enough rods are in their full-in positions, and the

automatic boron injection will begin. The long term behavior predicted for

this event is shown in Figure 3.3.11-3. Introduction of boron to the core
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around 3 minutes again restores level and core flow before decreasing powernear 22 minutes when nuclear shutdown is achieved. Thereafter, only decay
heat reaches the pool, giving the peak bulk pool temperature of 150*F (4.5 psig)at about 33 minutes. These values remain well within the containment designrequirements of 185*F and 15 psig. Water level inside the core shroud is atwo-phase mixture which remains well above the core and up into the steamseparator standpipes as RCIC and HPCS flow provide coolant inventory. Theboron will continue to build the poison concentration in the vessel until it isall injected near 50 minutes making it possible for a controlled reactor cool-down. The total concentration is specified to be enough to maintain coldnuclear shutdown conditions even when the RHR system is eventually switched tothe reactor shutdown cooling mode, bringing the plant to cold shutdown.

Thus it can be seen that a loss of normal AC power combined with a failure toscram is adequately mitigated. for a representative BWR 6/Mark III.

3.3.12 Recirculation Flow Controller Failure - Maximum Demand

3.3.12.1 Overview of Response Without Scram

This transient is not severe enough to trip any ATWS logic nor initial HPCSor RCIC'flow. It is considerably milder than the MSIV closure or turbine tripATWS cases. This is a short term transient with a sudden power rise and rela-tively small pressure increase. The entire transient is over within 30 secondsby which time the reactor settles out to a new equilibrium condition of lessthan 100% rated power. Since the peak pressure stays below the lowest S/RVsetpoint, steam flow to the suppression pool does not take place.

3.3.12.2 Sequence of Events For Recirculation Flow Controller Failure -Maximum Demand

This event can take place in either of two ways: 1) failure occurs withineither loop's flow controller; or 2) malfunction of master controller resultsin increased core coolant flow in both loops. The most severe case of
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3.3.12.2 Sequence of Events For Recirculation Flow Controller Failure -
Maximum Demand 
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increasing coolant flow results when failure of flow controller of one

recirculation loop results in a maximum valve stroking rate while at the lowest

initial power flow conditions on the automatic flow control line. Figure

3.3.12-1 shows responses to such a failure. The initial reactor condition cor-

responds to 54% of rated power and 34% of rated flow which is based on minimum

valve position and minimum recirculation pump speed on the 105% NBR steamflow

rod pattern flow control line.

The rapid increase in core inlet flow causes a large neutron flux peak which

would initiate a reactor scram signal (assumed not to scram). As is depicted

in Figure 3.3.12-1 neutron flux then peaks at 2 seconds to a value of 247% and

settles to a steady state value of 71% which is higher than the initial value

yet within the normal power-flow range of the reactor. Surface average heat

flux increases to 88% and also settles to a value of 71%. No fuel reaches

boiling transition even if the core is operating initially at its operating

limit. The entire transient is over within 30 seconds. The peak pressure

(vessel bottom) of 1013 psig occurs near 5 seconds. Core inlet flow increases

to 65% and is held at that value, thereby insuring adequate core coverage.

As stated above, the transient is not severe enough to trip the ATWS logic nor

initiate HPCS or RCIC flow since normal feedwater and level control is

maintained. If manual rod insertion or scram is not possible, manual ARI/SLCS

will be utilized to shut down the plant. Assuming manual ARI/SLCS is initiated

at 10 minutes, ARI would shut the plant down like a normal scram, but if it

also failed, the boron injection would reduce power to below 1% and achieve

nuclear shutdown by about 30 minutes after the initial event. Recirculation

flow would be maintained near full flow initially and at partial flow (low

frequency M/G sets on) in order to maximize boron dispersion throughout the

vessel, and to provide a near-normal shutdown sequence.

Thus it can be seen that a recirculation flow controller failure combined with

a failure to scram is adequately mitigated for a representative BWR 6/Mark III.
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3.3.13 Startup of the Idle Recirculation Pump

This event is similar to the recirculation flow controller failure - maximumdemand. Both of these events result in increased core power which resultsfrom the increased core flow. Startup of the idle recirculation pump eventhas been shown in safety analysis reports to be less severe than the recircu-lation flow controller failure and therefore further transient-specific analyseshave not been done.

3.3.14 Inadvertent Opening of All Bypass Valves

This event will be similar to the pressure regulator failure - maximum steamdemand. Since the turbine control valves will try to compensate for the pres-sure reduction, the results will be less severe. For these plants with smallerbypass capacity, the event will be even less severe.

3.3.15 Shutdown Cooling (RHR) Malfunction - Decreasing Temperature

This event can only occur at very low pressures. The shutoff head of theshutdown cooling pumps is less than 300 psig. In this condition, the reactorhas almost no voids in it and therefore only little if any positive reactivityis inserted. Therefore, this event is not considered further.
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Table 3.3-1

SUMMARY OF ATWS RESULTS - BWR/6

ARI FAILURE, 2 PUMP SLCS, 2 MINUTE LOGIC DELAY
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Table 3.3-1
SUMMARY OF ATWS RESULTS - BWR/6
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Table 3.3.1-1

BWR/6 MSIV CLOSURE

Sequence of Events

1. Nominal (4-sec) MSIV closure begins -
All normal scrams fail

2. Pressure and power rise begins

3. Relief valves lift

4. ATWS high pressure setpoint is reached
(1150 psig):

Recirculation pumps are tripped,
ARI is initiated, and SLCS timed
Logic is activated

5. Some fuel may experience boiling
transition

6. Vessel pressure peaks

7. ARI control rod injection completed
eliminating SLCS and feedwater limit
actions

8. ATWS logic initiates feedwater
limit

9. Feedwater flow stops
(or limited)

10. Reactor water level drops to Level 2,
initiates RCIC and HPCS and contain-
ment isolation.

11. HPCS and RCIC flow starts

12. ATWS logic timer initiates
SLCS

13. Water level reaches minimum and begins
to rise. At all times, fuel remains
covered.

14. Liquid control flow reaches core

15. RHR flow begins (pool cooling)

16. Hot shutdown achieved

17. Peak containment pressure and pool
temperature

With ARI

0

0

4 Seconds

5 Seconds

5 Seconds

8 Seconds

25 Seconds

N/A

45 Seconds

48 Seconds

68 Seconds

N/A

71 Seconds

N/A

11 Minutes

25 Seconds

130 Minutes

Time

With ARI Failure

0

0

4 Seconds

5 Seconds

5 Seconds

8 Seconds

Fails

30 Seconds

45 Seconds

52 Seconds

72 Seconds

2 Minutes

3 Minutes

3 Minutes

11 Minutes

20 Minutes

30 Minutes

3-275
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Table 3.3.1-1 

BWR/6 MSIV CLOSURE 

Sequence of Events 

1. Nominal (4-sec) MSIV closure begins -
All normal scrams fail 

2. Pressure and power rise begins 

3. Relief valves lift 

4. ATWS high pressure setpoint is reached 
(1150 psig): 

Recirculation pumps are tripped, 
ARl is initiated, and SLCS timed 
Logic is activated 

5. Some fuel may experience boiling 
transition 

6. Vessel pressure peaks 

7. ARl control rod injection completed 
eliminating SLCS and feedwater limit 
actions 

8. ATWS logic initiates feedwater 
limit 

9. Feedwater flow stops 
(or limited) 

10. Reactor water. level drops to Level 2, 
initiates RCrC and HPCS and contain­
ment isolation. 

11. HPCS and Rcrc flow starts 

12. ATWS logic timer initiates 
SLCS 

13. Water level reaches minimum and begins 
to rise. At all times, fuel remains 
covered. 

14. Liquid control flow reaches core 

15. RHR flow' begins (pool cooling) 

16. Hot shutdown achieved 

17. Peak containment pressure and pool 
temperature 

3-275 

With ARI 

o 

o 
4 Seconds 

5 Seconds 

5 Seconds 

8 Seconds 

25 Seconds 

N/A 

45 Seconds 

48 Seconds 

68 Seconds 

N/A 

71 Seconds 

N/A 

11 Minutes 

25 Seconds 

130 Minutes 

Time 

With ARI Failure 

o 

o 
4 Seconds 

5 Seconds 

5 Seconds 

8 Seconds 

Fails 

30 Seconds 

45 Seconds 

52 Seconds 

72 Seconds 

2 !1inutes 

3 Minutes 

3 Minutes 

11 Minutes 

20 Minutes 

30 Minutes 
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Table 3.3.1-2
BWR/6 MSIV CLOSURE - SUMMARY

86 GPM- 2 Min Logic Delay
With ARI Failure 

MSIV
Maximum Neutron Flux (%) 

745Maximum Vessel Bottom Pressure (psig) 
1299Maximum Average Heat Flux (%) 
147Maximum Bulk Suppression Pool Temperature (*F) 167Associated Containment Pressure (psig) 

6.9

NEOO-24222 

Table 3.3.1-2 

BWR/6 MSIV CLOSURE - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

86 GPM - 2 Min Logic Delay 

MSIV 

745 

1299 

147 

167 

6.9 

--
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Table 3.3.2-1

BWR/6 TURBINE TRIP EVENT

T it

Sequence of Events With ARI

1. Turbine Trips, Bypass Opens - All 0
Normal Scrams Fail

2. Pressure and Power Rise Begins 0

3. Relief Valves Lift 2 Seconds

4. ATWS High Pressure Setpoint is Reached 2 Seconds
(1150 psig): Recirculation Pumps are
Tripped*, ARI is Initiated, and SLCS
Timed Logic is Activated

5. Peak Vessel Pressure Occurs 3 Seconds

6. Some Fuel Experiences Boiling Transition 3 Seconds

7. ARI Control Rod Insertion Completed, 22 seconds
Eliminating SLCS and FW-Limiting Actions

8. ATWS Logic Timer Initiates Feedwater N/A
Flow Limit

9. Reactor Water Level Drops to Level 2, N/A
Initiates RPCS and RCIC, and Contain-
ment Isolation

10. Peak Containment and Peak Bulk Tempera- 22 seconds
ture Occur when S/RV's all reclose

11. HPCS and RCIC Flow Begins N/A

12. Reactor Water Level Reaches Minimum
and Begins to Rise. Fuel always remains
covered.

13. ATWS Logic Timer Initiates N/A
SLCS

14. Liquid Control Flow Reaches Core N/A

15. RHR Flow Begins (Pool Cooling) >11 minutes

16." Hot Shutdown Achieved 22 seconds
*Direct rectrculation pump trip from turbine stop valve closure
neglected.

•e

With ARI Failure

0

0

2 seconds

2 seconds

3

3

Seconds

seconds

Fails

27 seconds

56 seconds

65 seconds

76

2

seconds

minutes

2 minutes

3

11

19

was

minutes

minutes

minutes

conservatively

3-277

NEOO-24222 

Table 3.3.2-1 

BWR/6 TURBINE TRIP EVENT 

Sequence of Events 

1. Turbine Trips, Bypass Opens - All 
Normal Scrams Fail 

2. Pressure and Power Rise Begins 

3. Relief Valves Lift 

4. ATWS High Pressure Setpoint is Reached 
(1150 psig): Recirculation Pumps are 
Tripped*, ARI is Initiated, and SLCS 
Timed Logic is Activated 

5. Peak Vessel Pressure Occurs 

6. Some Fuel Experiences Boiling Transition 

7. ARI Control Rod Insertion Completed, 
Eliminating SLCS and FW-Limiting Actions 

8. ATWS Logic Timer Initiates Feedwater 
Flow Limit 

9. Reactor Water Level Drops to Level 2, 
Initiates HPCS and RCIC. and Contain­
ment Isolation 

10. Peak Containment and Peak Bulk Tempera­
ture Occur when S/RV's all reclose 

11. HPCS and RCIC Flow Begins 

12. Reactor Water Level Reaches Minimum 
and Begins to Rise. Fuel always remains 
covered. 

13. ATWS Logic Timer Initiates 
SLCS 

14. Liquid Control Flow Reaches Core 

15. RHR Flow Begins (Pool Cooling) 

16. Hot Shutdown Achieved 

With ARI 

0 

0 

2 Seconds 

.2 Seconds 

3 Seconds 

3 Seconds 

22 seconds 

N/A 

N/A 

22 seconds 

N/A 

N/A 

N/A 

>11 minutes 

22 seconds 

Time 

With ARI Failure 

0 

0 

2 seconds 

2 seconds 

3 Seconds 

3 seconds 

Fails 

27 seconds 

56 seconds 

65 seconds 

76 seconds 

2 minutes 

2 minutes 

3 minutes 

11 minutes 

19 minutes 

*Direct rec~rculation pump trip from turbine stop valve closure was conservatively 
neglected. 

3-277 
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Table 3.3.2-2

BWR/6 TURBINE TRIP - SUMMARY

86 GPM - 2 Min Logic Delay

With ARI Failure Turbine Trip

Maximum Neutron Flux (%) 358
Maximum Vessel Bottom Pressure (psig) 1225
Maximum Average Heat Flux (%) 135
Maximum Bulk Suppression Pool Temperature (*F) 100
Associated Containment Pressure (psig) 0.5

3-278

NEDO-24222 

Table 3.3.2-2 

BWR/6 TURBINE TRIP - SUMMARY 

With ARl Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

3-278 

. 86 GPM - 2 Min Logic Delay 

Turbine Trip 

358 

1225 

135 

100 

0.5 
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Table 3.3.3-1

BWR/6 INADVERTENT OPENING OF A RELIEF VALVE

Sequence of Events

1. Relief valve opens inadvertently and fails to close

2. Alarm sounds at 95*F and operator initiates pool
cooling

3. Suppression pool temperature reaches 110*F operator
attempts manual scram, scram fails, initiating ARI
and SLCS logic

4. ARI fails

5. SLCS starts

6. Control liquid reached core

7. Power is less than relief valve capacity

8. Isolation on low steamline pressure (800 psig)

9. Peak suppression pool temperature and pressure are
reached

Time

0

2 minutes

9 minutes

9.5 minutes

11 minutes

12 minutes

20 minutes

23 minutes

50 minutes

3-279

Table 3.3.3-1 

BWR/6 INADVERTENT OPENING OF A RELIEF VALVE 

Sequence of Events 

1. Relief valve opens inadvertently and fails to close 

2. Alarm sounds at 95°F and operator initiates pool 
cooling 

3. Suppression pool temperature reaches 110°F operator 
attempts manual scram, scram fails, initiating ARI 
and SLCS logic 

4. ARI fails 

5. SLCS starts 

6. Control liquid reached core 

7. Power is less than relief valve capacity 

8. Isolation on low steamline pressure (800 psig) 

9. Peak suppression pool temperature and pressure are 
reached 

./ 

3-279 

Time 

o 
2 minutes 

9 minutes 

9.5 minutes 

11 minutes 

12 minutes 

20 minutes 

23 minutes 

50 minutes 
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Table 3.3.3-2
BWR/6 INADVERTENT OPENING OF A RELIEF VALVE - SUMMARY

86 GPM - 2Min Logic Delay
With ARI Failure 

IORV
Maximum Bulk Suppression Pool Temperature (*F) 170Associated Containment Pressure (psig) 

7.3

3-280

NED0-2-4222 

Table 3.3.3-2 

BWR/6 INADVERTENT OPENING OF A RELIEF VALVE - SUMMARY 

With ARI Failure 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

3-280 

• 
86 GPM - 2Min Logic Dela¥ 

IORV 

170 

7.3 



Table .. 3.4.1-1

BWR-6 MSIV ANWS SENSITIVITY RESULTS SUMMARY

Change in
Max Imum

Neutron Flux From
Base Value

(Z HER)

745(1)

@ 4 Sec

Change in
Max• mum

Heat Flux From
Base Value

147(1)
@ 4.9 Sec

Change in
Maximum Pressure

(Vesal Bottom) From
Base Value

(psi)

1299(1)
@ 7.3 Sec

Change in
Minimum

Water Level From
Base Value

(ft)

13.28(1)
@ 175 Sec

Change in Maximum
Bulk Suppression

Pool Temperature From
Base Value

(AF)

167-01)
@ 1200 Sec

Change in
Maximum Containment

Pressure From
Base Value

(psi)

6.85(1)

CO

Sensitivity

MSIV
Base Case

MSIV-Sensitivity to
Boron Delay - 30 See

HSIV-Sensittvity to
Boron Delay - 240 Sec

HSIV-43 GPM* (-50%)
Boron Pump Capacity

MSIV-129* GPM (+50%)
Boron Pump Capacity

NSIV-55! Boron (-27%)
Mixing Efficiency

MSIV-95% Boron (+27Z)
Mixing Efficiency

nSIV-802 Nom
HPCS Flow

MSIV-120% No*
HPCS-Flzw

MSIV-50Z RBR Capacity

MSIV-150% RHIR
Capacity

KSIV-Delay RHIR
Ttrn-on 9 Minutes

PSIV-Iklay RHIR
Turn-on 16 Minutes

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-0.68
@ 123 Sec

0

0(2)

0

0

0

+1.81
@ 144 See

-1.13
@ 210 Sec

0
@ 175 Sec

0
@ 175 Sec

0
(4 175 Sec

0
(d 175 Sec

-3
@ 1700 Sec

+6
@ 1400 Sec

+40
@ 2200 Sec

-13
@ 1700 Sec

+17
@ 1700 Sec

-8
@ 1700 Sec

-9
@ 2000 Sec

+7
@ 1100 Sec

+7

@ 4200 Sec

-3
@ 1200 Sec

-1
@ 1800 Sec

+3
(d 1200 Sec

-0.45

+0.98

+5.89

-1.82

+3.05

-1.16

rI
-1.3

+1.15

+1.15

-0.45

-0. 15

+ (1 J2

0

0

) Table ..... 3.4.i-l 

BWR-6 MSIV ATWS SENSITIVITY RESULTS SUMMARY 

Change in Change in Change in Chaoge in Change 1n Maximum Change 10 
MaX1mID 

Nui __ 
Maxim_ Pressure Minimum Bulk Suppression Naximum Containment 

Neutron Flux Fros Heat Flux From (Veuel Bottom) From Water Level Fro. Pool Temperature From Pressure From 
Base Value aue Value Base Value Baae Value Baae Value Baae Value 

Sensit! vi ty (% MBIl) (% NBIl) (I'd) ( ft) (-F) (psi) 

MSIV 745(1) 141(1) 1299(1) 13.28(1) l67 o (l} 6.85(1) 
BBse Case @ 4 Sec @ 4.9 Sec @ 7.3 Sec @ 175 Sec @ 1200 Sec 

MSIV-Seositivity to 0 0 0 -0.68 -3 -0.45 
Boron Delay - )0 Sec @ 123 Sec @ 1700 Sec 

MSIV-Sensitivity to 0 0 0 0 +6 i{).98 
Boron Delay - 240 Sec @ 1400 Sec 

MSIV-43 GPM. (-50%) 0 0 0 0(2) +40 +5.89 
Boron Pump Capacity @ 2200 Sec 

HSIV-129* GPK (+50%) 0 0 0 0 -1) -l. 82 
Boron Pump Capacity @ 1700 Sec 

HSIV-55% Boron (-27%) 0 0 0 0 +17 +3.05 
w Mixing Efficiency @ 1700 Sec l 
I t 

N ( 
CO MSJv-95% Boron (+27%) 0 0 0 0 -8 -1.16 , 
~ 

Mixing Efficiency @ 1700 Sec r 

MSIV-BO% Nom 0 0 0 +1.81 -9 -I. 3 
HPeS Flow @ 144 Sec @ 2000 Sec 

MSIV-120% No. 0 0 0 -1.13 +7 +1. IS 
HPCS-Fljiw @210 Sec @ lJOO Sec 

MSIV-SO% RBi Capacity 0 0 0 0 +7 +1.1S 
@ 175 Sec @ 4200 Sec 

HSIV-lSO% RHR 0 0 0 0 -3 -0.45 
Capac! ty @ 175 Sec @ 1200 See 

HSIV-Delay IlHR 0 0 0 0 -1 -0.15 
rdrn-on 9 Minutes (d 175 Sec @ IS00 Sec 

MSIV-Delay RHR 0 0 0 () +) -HI. iL 

Turn-on 16 Minutes (d 175 Sec (d J:!OO Sec 



Table 3.3.4.1-i (Continued
BWR-6 MSIV ATWS SENSITIVITY RESULTS SUMMARY

Change. in
Maximum

Neutron Flux From
Base Value

(Z NBR)

0

Change in
Maximum

Heat Flux From
Base Value
(2 hER)

0

Change in
Maximum Pressure

(Vessel Bottom) From
Base Value

(psi)

0

Sensitivity

HSIV-Service Water
Initially - 65*F

HSIV-Service Water
Initially - 105*F

MSIV-50% RHR Capacity
656F Service Water

MSIV-1502 RHR
Capacity I056F
Service Water

HSIV-80 Suppression
Pool Size

MSIV-120% Suppression
Pool Size

MSIV-80% SRV
Capacity

IMSIV-120Z SRI?
1Capacity

I"SX-.93 See MT
Delay

tSIV-I.43 See
HP? Delay

IEIV-1502 RiT
Inertia

MSIV-S02 RPT
Inertia

Change in
Minimum

Water Level From
Base Value

(ft)

0

@ 175 Sec

0
@ 175 Sec

0

Change in Maximum
Bulk Suppression

Pool Temperature From
Base Value

(OF)

-19
@ 1200 Sec

Change in
Maximum Containment

Pressure From
Base Value

,(psi)

-4.54

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1299
@ 7.3 Sec

0

0

0

0
@ 175 See

0
@ 175 Sec

-0.22(2)
@ 170 Sec

+0.84
9 135 Sec

18
@ 1200 Sec

-12
@ 5200 Sec

+16
@ 1201 Sec

+16
@ 1200 Sec

-11
@ 1800 Sec

+2
@ 1600 Sec

+2
@ 1600 Sec

+3.25

-1.69

+2.84

+2.84

-1.56

+0.32

+0.32

L-22

ru

ro3

0

0

0

0

0O

148
@ 12.2 Sec

-33
@ 5 Sec

+3
@ 7.75 Sec

7
@ 8.20 Sec

+2
i 7.6 Sec

0

(1) Absolute values for base case
(2) FT. belo, bottdo of Separator Skirt

* fbsd eO 251-oUSa plant

V-l 
I 

N 
ex> 
N 

Quange .. in 
Hax1_ 

Neutron Plux From 
Base Value 

Sensitivity (X NBR) 

HSIV-Service Water 0 
Initially - 65°F 

HSIV-Service Water 0 
Initially - 105°F 

HSIV-50% RHR Capacity 0 
65°F Service Water 

HSIV-ISO% RHI 0 
Capacity IOSop 
Service Water 

HSIV-BO% Suppression 0 
Pool Size 

HSIV-120X Suppression 0 
Pool Size 

KSIV-BO% SIlV 0 
I Capacity 

\MSIV-120% sav 0 
[Capacity 

IISIV-G.·93 see IPT 0 
Delay 

MSIV-l.43 Sec 0 
RPT Delay 

KSIV-15O% IlPT 0 
Inertia 

HSIV-80% RPT O. 
Illertia 

(1) Absolute valuee for "se ease 
(2) n. beloW bott. of Separator Skirt 
...... De. 251-au. ,'-t 

) 

Table 3.3.4.1-1 (Continued 

BWR-6 MSIV ATWS SENSITIVITY RESULTS SUMMARY 

(hange in Change in Changl' in Cha age in 11ax1.mum Ch~nge in 
Maxi_ Maximum Pressure Minimum Bulk Suppression Maximum Containment 

Heat Flux From (Vessel Bottom) From Water Level Prom Pool Temperature Prom Pressure From 
Base Value Base Value Base Value Base Value Base Value 

(X NBR) \ (psi) (ft) (OF) " (psi) 

0 0 0 -19 -4.54 
@ 175 Sec @ 1200 Sec 

0 0 0 18 +3.25 
@ 175 Sec @ 1200 Sec 

0 0 0 -12 -1.69 
@ 5200 Sec 

0 1299 0 +16 +2.84 
@ 7.3 Sec @ 1201 Sec 

0 0 0 +16 +2.84 
@ 175 Sec @ 1200 Sec :z: 

tZJ 

-1.56 8 0 0 0 -11 I @ 175 Sec @ 1800 Sec I\) 
-l= 

0 14B -0.22(2) +2 +0.32 I'IJ 
I\) 

@ 12.2 Sec @ 170 Sec @ 1600 Sec I\) 

0 -33 +0.84 +2 +0.32 
@ 5 Sec @ 135 Sec @ 1600 Sec 

0 +3 
@ 7.75 Sec 

0 7 
@ 8.20 Sec 

0 +2 
i 7.6 Sec 

0 0 



Table 3.3.4.1-2
BWR/6 MSIV ATWS NUCLEAR PARAMETRIC STUDY SUMMARY

Doppler Void
Coef Coef

(¢IP°F) (€1/%)

-0.200 -6

-0.230 -6

-0.280 -6

-0.320 -6

-0.200 -8

-0.230 -8

-0.280 -8

-0.320 -8

-0.200 -11

-0.230 -11

-0.3280 -11

-0.320 -14

-0.200 -14

-0.230 -14

-0.280 -14
--0. 320 -14

Neu-
tron
Flux

(M)

-181

-223

-277

-311

-13

-74

-149

-197

+158

+88

745*

-57

+113

+63

0

-43

Average
Heat
Flux

-7.5

-10.0

-13.3

-15.7

-1.0

-3.4

-6.9

-9.5

+5.2

+3.2

147.3•

-2.4

+9.9

+8.1

+5.1

+2.9

Change in Peak Value

Suppression
Vessel Bottom Pool Min Level/Time

Pressure Temperature (wide range)

(psi) (-F) (ft/sec)

-17

-27

-39

-46

+5

-6

-21 +2.1 -1.0/199

-30

+26

+15 -1.3 +0.2/157

1299• 167.1* -13.1/180•

-9 +3.1 -1.0/143

+42

+31

+16 -1.5 +0.1/143

+6

*Values shown for nominal void and Doppler coefficients
are absolute peaks. Other peaks are relative to these.

3-283

Table 3.3.4.1-2 

BWR/6 MSIV ATWS NUCLEAR PARAMETRIC STUDY SUMMARY 

Change in Peak Value 
Neu- Average Suppression 

Doppler Void tron Heat Vessel Bottom Pool Min Level/Time 
Coef Coef Flux Flux Pressure Temperature (wide range). 

(C/°F) (¢/%) (%) (%) (psi) eF) ( ft/sec) 

-0.200 -6 -181 -7.5 -17 

-0.230 -6 -223 -10.0 -27 

-0.280 -6 -277 -13.3 -39 

-0.320 -6 -311 -15.7 -46 

-0.200 -8 -13 -1.0 +5 

-0.230 -8 -74 -3.4 -6 

-0.280 -8 -149 -6.9 -21 +2.1 -1.0/199 

-0.320 -8 -197 -9.5 -30 

-0.200 -11 +158 +5.2 +26 

-0.230 -11 +88 +3.2 +15 -1. 3 +0.2/157 

-0. 280 if -11· 745· 147.3¥ 1299¥ 167.1¥ -13.1/180· 

-0.320 -11 -57 -2.4 -9 +3.1 -1. 0/ 143 

-0.200 -14 +113 
+9.9 +42 

-0.230 -14 +f>3 +8.1 +31 

-0.280 -14 0 
+5.1 +16 -1. 5 +0.1/143 

-0.320 -14 -43 
+2.9 -+6 

""Values shown for nominal void and Doppler coefficients 
are absolute peaks. Other peaks are relative to these. 

-

3-283 



Table 3.3.4.2-1

BWR/6 TURBINE TRIP - ATWS SENSITIVITY RESULTS SUMMARY

Sensitivity

TT Base Case

TT - 30 See
Boron Delay

TT - 240 See
Boron Delay

TT - 80Z Nominal HPCS

TT - 1202\!Nominal HPCS
Flow

IT - RHR
Turn-on 9 minutes

'IT - RBR
Turn-on -16 minutes

Change in
Maximum

Neutron Flux From
Base Value

(% NBR)

358(l)

0

Change in
Maximum

Beat Flux From
Base Value
(Z NER)

135(1)

0

Change in
Maximum Pressure

(Vessel Bottom) From
Base Value

(psi)

1225(1)

0

Change in
Minimum

Water Level From
Base Value

(ft)

10.42(l)(2)
@ 117 Sec

+60.33
@ 112 Sec

Change in Maximum
Bulk Suppression

Pool Temperature From
Base Value

(*F)

],00(1)

Change in
Maximum Containment

Pressure From
Base Value

(psi)

0.5(l)

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

+0.28
@ 112 Sec

+4.82
@ 153 See

-0.65
@ 95 Sec

0

0

+43
@ 2000 Sec

100O
@ 71 Sec

100O
@ 66 Sec

+3.27

0

0

0'

r\)
"3
I'.,

0

0 100°
@ 66 Sec

(1) Absolute values for Base Case
(2) FT. below Separator Skirt

) 

) 
) 

Table 3.3.4.2-1 

BWR/6 TURBINE TRIP - ATWS SENSITIVlTi RESULTS SUMMARY 

Change in 
Haxilll\llll 

Neutron Flux From 
Base Value 

Sensiti vi tI (% NBR) 

'IT Base Case 358(1) 

TT - 30 Sec 0 
Boron Delay 

TT - 240 Sec 0 
Boron Delay 

TT - 80% Nominal apcs 0 

\ 
TT - 120%\Nominal HPeS 0 
Flo,. 

TT - RHR 0 
Turn-on 9 ainutes 

TT - RIIR 0 
Turn-on -16 minutes 

(1) Absolute values for Base Case 
(2) FT. below Sepsrator Skirt 

Olange in 
HaxilllUlll 

Heat Flux From 
Base Value 

(X NBR) 

135(1) 

0 

0 

0 

0 

0 

0 

Change in Change in Change in Maximum 
Maxi.um Pressure MinimUIII Bulk Suppression 

(Vessel Bottom) Fro. Water Level From Pool Temperature From 
Base Value Base Value Base Value 

(psi) (ft) (·F) 

1225(1) 10.42(1)(2) 100(1) 
@ 117 Sec 

0 +60.3) 0 
@ 112 Sec 

0 -HI.28 0 
@ 112 Sec 

0 +4.82 +43 
@ IS) Sec @ 2000 Sec 

0 -0.65 100· 
@ 95 Sec @ 71 Sec 

0 0 100· 
@ 66 Sec 

0 0 100· 
@ 66 Sec 

Change in 
Maximum Containment 

Pressure From 
Base Value 

(I!si~ 

0.5(1) 

0 

0 

+3.27 
Z 
[>j 
t:1 

0 O· 
I 
N 
.t:: 

0 /\) 
/\) 
/\) 
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Table 3.3.4.2-2

BWR/6 TURBINE TRIP ATWS NUCLEAR PARAMETRIC STUDY SUMMARY

Dopp let
Coef

(¢/F)

-0.200

-0. 230

-0.280

-0.320

-0.200

-0.2 30

-0.280

-0.320

-0.200

-0.230

-0.280*

-0.320

-0.200

-0.230

-0.280

-0.320

Void
Coe f

-6

-6

-6

-6

-8

-8

-8

-8

-11

-11

-14

-14

-14

-14

Neu-
tron
Flux

-97

-106

-119

-128

-53

-65

-81

-92

+44

+25

35 8•

-17

+181

+50

+108

+81

Average
Heat
Flux

-6.3

-7.7

-9.8

-11.4

-1.4

-3.0

-5.5

-7.3

+3.9

+2.4

134.3w

-1.6

+7.8

+6.3

+4.0

+2.3

Change in Peak Value

Suppression
Vessel Bottom Pool Min Level/Time

Pressure Temperature (wide range)

(psi) (OF) (ft/sec)

-8

-9

-12

-13

-2

-3

-6

-8

+4

+2

1225'

-2

+8

+7

+4

+3

+1. 1

-0.8

99.8w

-0.2

-1.0

-1.8/123

+1.0/119

-10.3/126

-1. 3/110

+1.5/127

*Values shown for nominal void and Doppler coefficients

are absolute peaks. Other peaks are relative to these.
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Table 3.3.4.2-2 

BWR/6 TURBINE TRIP ATWS NUCLEAR PARAMETRIC STUDY SUMMARY 

Change in Peak Value 
Neu- Average Suppression 

Doppler Void tron Heat Vessel Bottom Pool Min Level/Time 
Coef Coef Flux Flux Pressure Temperature (wide range) 

(¢/OF) (C;/%) (%) (%) (psi) (OF) (ft/sec) 

-0.200 -6 -97 -6.3 -8 

-0.230 -6 -106 -7.7 -9 

-0.2BO -6 -119 -9.B -12 

-0.320 -6 -128 -11.4 -13' 

-0.200 -8 -53 -1.4 -2 

-0.230 -8 -65 -3.0 -3 

-0.280 -8 -81 -5.5 -6 +1.1 -1. 8/123 

-0.320 -8 -92 -7.3 -B 

-0.200 -11 +44 +3.9 +4 

-0.230 -11 +25 +2.4 +2 -0.8 +1.0/119 

-0.280'" -111(. 358¥ 134.31(. 122S¥ 99.SI(. -10.3/126'" 

-0.320 -11 -17 -1.6 -2 -0.2 -1.3/110 

-0.200 -14 +181 +7.B +8 

-0.230 -14 +50 +6 .3 +7 

-0.280 -14 +10B +4.0 +4 -1.0 +1.5/127 

-0.320 -14 +81 +2.3 +3 

*Values shown for nominal void and Doppler coefficients 
are absolute peaks. Other peaks are relative to these. 

3-285 



Table 3.3.4.3-1

BWR-6 IORV - ATWS SENSITIVITY RESULTS SUMMARY

Sensitivity

IORV - Base Case

ORV - Boron Delay
Nominal - 5 Minutes

IORV - Boron Delay
Nominal +5 Minutes

IORV - 129 GPH Boron
Capacity (150% Nom)

IORV - 43 GPM Boron
Capacity (50% Nom)

IORV - 50% Nominal ERR
Capacity (1212 Btu/Sec/
'F Nominal)
IORV - 150% Nominal
PRR Capacity

IORV - 5 Minutes MR
Delay

IORV - 10 Minutes ERR
Delay

IORV - 651F Service
Water (85*F Nominal)

IORV - 105*F Service
Water

65SF Service Water 50%
Nominal RHR Capacity

105'F Service Water 50%
Nominal RHR Capacity

802 Nominal Pool Size

1202 Nominal
Pool Size

80% SR Valve
Capacity

120% SR Valves
Capacity-

Change in Change in Change in Change in
Maximum Maximum Maximum Pressure Minimum

Neutron Flux From Heat Flux From (Vessel Bottom) From Water Level From
Base Value Base Value Base Value Base Value

(2 NBR) (2 NBR) (psi) (ft)

1012 1012 1064 2.98
@ 63 Min

0 0 0 0

0 0 0 0
@ 62 Min

0 0 0 0

0 0 0 5.35
@ 1870 Sec

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

101% 101 1064 0

0 0 0 0

0 0 0 0

0 0 0 0

Change in Maximum Change in
Bulk Suppression Maximum Containment

Pool Temperature From Pressure From
Base Value Base Value

(*F) (psi)

170* 7.33
@ 60 Min

-5 -0.78
@ 58 Min

+5 +0.85

-4 -0.63
@ 60 Kin

+14 +2.57
( 60 Min

+16 +3
@ 88 Min

-10 -1.51
@ 47 Min

+1 +0.2
@ 60 Min

+2 +0.4
@ 60 Kin

-7 -1
@ 55 Min

+7 +1.2
@ 67 Min

11 +2
@ 77 Min

-4 -0.2
@ 55 Kin

+9 +1.6
@ 55 Min

-7 -1.1
@ 65 Kin

-10 -1.5
@ 67 Kin

+9 +1.6
@ 63 Kin

z

0
N)

"3
N
N)

0

0

0

0

0

0

-0.351
@ 40 Kin

0

)

'\ Table 3.3.4.3-1 

BWR-6 IORV - ATWS SENSITIVITY RESULTS SUMMARY 

Change in Change in Change In Change in Change in Maximum Change 1n 
Maximum Maximum Maximum Pressure Minimum Bulk Suppression Maximum Containment 

Neutron Flux From Heat Flux From (Vessel Bottom) From Water Level From Pool Temperature From Pressure From 
Bsse Value Base Value Base Value Base Value Base Value Base Value 

Sens 1 ti vit~ (% NBR) (% NBR) (psi) (ft) (oF) (psi) 

IORV - Base Case 101% 101% 1064 2.98 170° 7.33 
@ 63 Min @ 60 Min 

lORV - Boron Delay 0 0 0 0 -5 -0.78 
Nominal - 5 Minutes @ 58 Min 

IORV - Boron Delay 0 0 0 0 +5 +0.85 
N~inal +5 Minutes @ 62 Min 

IORV - 129 GPH Boron 0 0 0 0 -" -0.63 
Capacity (150% Nom) @ 60 Hin 

lORY - 43 GPH Boron 0 0 0 5.35 +14 +2.57 
Capacity (50% Nom) @ 1870 Sec @ 60 Hin 

2: 
tORY - 50% Nominal RHR 0 0 0 0 +16 +3 tz:I 
Capacity (1212 Btu/Sec/ @ 88 Hin t;j 

0 
oJ OF Nominal) I 
I IORV - 150% Nominal 0 0 0 0 -10 -1. 51 N 
..> RHR Capscity @ 47 Hin .t:-
o N 

" 
N 

IORV - 5 Hinutes RllR 0 0 0 0 +1 +0.2 N 
Delay @ 60 Min 

IORV - 10 Minutes RHR 0 0 0 0 +2 +0.4 
Delay @ 60 Min 

IORV - 65°F Service 0 0 0 0 -7 -1 
Water (85°F Nominal) @ 55 Min 

IORV - 105 OF Se "ice 0 0 0 0 +7 +1. 2 
Water @ 67 Hin 

65°F Service Water 50% 101% 101% 1064 0 11 +2 
Nominal RHR Capacity @ 77 Hin 

10S"F Service Water 50% 0 0 0 0 -4 -0.2 
Nominal RHR Capacity @ 55 Hin 

80% Nominsl Pool Size 0 0 0 0 +9 +1.6 
@ 55 Min 

120% Nominal 0 0 0 0 -7 -1.1 
Pool Size @65 Hin 

80% SR Valve 0 0 0 -0.351 -10 -1.5 
Capacity @ 40 Hin @ 67 Hin 

120% SR Valves 0 0 0 0 +9 +1.6 
Capacity· @ 63 Hin 

) 
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Table 3.3.4.4-1

EFFECT OF MULTIPLE (COMPENSATING) VARIATIONS ON
PEAK POOL BULK TEMPERATURE

Parameter
(Base Value)

1. Boron Timer Delay
(2 Minutes)

2. Boron Efficiency
(75%)

3. HPCS/RCIC
Capacity (10.6%
NIBR FW)

4. RHR Capacity
(3.2% NBR*)

5. Doppler
Coefficient
(-0.28€ý/OF)

Variation
(Final Value)

+2 Min (4 Min)

+27% (95%)

-20% (8.48% NBR)

-50% (1.6% NBR*)

+14% (-0.32c/0 F)

Pool
Temperature

Change Reference

+6 0F

-80F

-90F

+7* F

+30F

-1 0F-io F

Figure 3.3.4.1.1-1

Figure 3.3.4.1.2-1

Figure 3.3.4.1.3-1

Figure 3.3.4.1.4-1

Figure 3.3.4.1.13-2

Net Results by Simple
Summation of
Individual Variations

Result Calculated for
Simultaneous
Variations

*At 1000 F AT

3-287

Table 3.3.4.4-1 

EFFECT OF MULTIPLE (COMPENSATING) VARIATIONS ON 
PEAK POOL BULK TEMPERATURE 

Parameter 
(Base Value) 

Variation 
(Final Value) 

Pool 
Temperature 

Change 

1. Boron Timer Delay 
(2 Minutes) 

+2 Min (4 Min) 

2. Boron Efficiency 
(75%) 

+27% (95%) 

3. HPCS/RCIC 
Capacity (10.6% 
NBR FW) 

4. RHR Capacity 
(3.2% NBR*) 

5. Doppler 
Coefficient 
(-O.28¢/oF) 

-20% (8.48% NBR) 

-50% (1.6% NBR*) 

+14% (-0. 32¢/or") 

Net Results by Si.mp1e = -1°F 
Summation of 
Individual Variations 

Result Calculated for = -loF 
Simultaneous 
Variations 

3-287 

Reference 

Figure 3.3.4.1.1-1 

Figure 3.3.4.1.2-1 

Figure 3.3.4.1.3-1 

Figure 3.3.4.1.4-1 

Figure 3.3.4.1.13-2 
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Table 3.3.4.4-2
EFFECT OF MULTIPLE (NON-COMPENSATING) 

VARIATIONS ONPEAK POOL BULK TEMPERATURE

Parameter
(Base Value) Variation

(Final Value)

Pool
Temperature

Change
Reference1. Boron Timer Delay

(2 Minutes)

2. Boron Efficiency
(75%)

3. RPCS/RCIC Capacity
Capacity
(10.6% NBR FW)

4. RHR Capacity
(3.2% NBR*)

5. Doppler
Coefficient
(-0.28€,/OF)

+2 Min (4 Min)

-27% (55%)

+20% (12.7% NBR)

-50% (1.6% NBR*)

+14% (-0.320/0 F)

+6 OF

+170 F

+70 F

+7 OF

+3' F

Figure 3.3.4.1.1.-i

Figure 3.3.4.1.2-1

Figure 3.3.4.1.3-1

Figure 3.3.4.1.4-1

-Figure 3.3.4.1.3-2

Net Result by SimpleSummation of
Individual Variations

Result Calculated forSimultaneous
Variations

+40*F

+480F

*At 100OF AT

3-288

1. 

2. 

3. 

4. 

5. 

'NEOO-24222 

Table 3.3.4.4-2 

EFFECT OF MULTIPLE (NON-COMPENSATING) VARIATIONS ON 
PEAK POOL BULK TEMPERATURE 

Parameter Variation 
(Base Value) (Final Value) 

Boron Timer Delay +2 Min (4 Min) 
(2 Minutes) 

Boron Efficiency -27% (55%) 
(75%) 

HPCS/RCIC Capacity +20% (12. 7% NBR) 
Capacity 
(10.6% NBR FW) 

RHR Capacity 
(3.2% NBR*) 

Doppler 
Coefficient 
(-0. 28¢/°F) 

-50% (1.6% NBR*) 

+14% (-0. 32¢rF) 

Net Result by Simple = 
Summation of 
Individual Variations 

Result Calculated for = 
Simultaneous 
Variations 

3-288 

Pool 
Temperature 

Change Reference 

+6°F Figure 3.3.4.1.1.-1 

+17°F Figure 3.3.4.1.2-1 

+7°F Figure 3.3.4.1.3-1 

+7°F Figure 3.3.4.1.4-1 

+3°F Pigure 3.3.4.1.3-2 
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Table 3.3.5-1

BWR/6 LOSS OF CONDENSER VACUUM

Time

Sequence of Events With ARI With ARI Failure

1. Main Turbine (and Feedwater
Turbines) Trip Due to Low
Condenser Vacuum, Bypass
Opens - All Normal Scrams
Fail.

2. Pressure and Power Rise
Begins

0 0

0 0

3. Peak Power Occurs

4. Relief Valves Lift

5. ATWS High Pressure Setpuint
(1150 psig) is Reached
-Recirculation Pumps Tripped

-ARI is Initiated

-SLCS Timed Logic Activated

6. Same Fuel May Experience

Boiling Transition

7. Peak Vessel Pressure Occurs

8. ARI Control Rod Insertion,

Eliminating SLCS and
Feedwater Limiting Actions

9. ATWS Logic Initiates

Feedwater Flow Limit

10. MSIV's and Bypass Close
Due to Low Condenser Vacuum

11. Reactor Water Level Drops to

Level 2
- Initiates Containment

Isolation
- HPCS and RCIC Start

1 Second

2 Seconds

2 Seconds

2 Seconds

3 Seconds

22 Seconds

I Second

2 Seconds

2 Seconds

2 Seconds

3 Seconds

Fails

N/A

30 Seconds

27 Seconds

30 Seconds

53 Seconds

3-289

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

n. 

NEDO-24222 . 

Table 3.3.5-1 

BWR/6 LOSS OF CONDENSER VACUUM 

Sequence of Events 

Main Turbine (and Feedwater 
Turbines) Trip Due to Low 
Condenser Vacuum, Bypass 
Opens - All Normal Scrams 
Fail. 

Pressure and Power Rise 
Begins 

Peak Power Occurs 

Relief Valves Lift 

ATWS High Pressure Setpuint 
(1150 psig) is Reached 
-Recirculation Pumps Tripped 
-ARI is Initiated 
-SLCS Timed Logic Activated 

Same Fuel May Experience 
Boiling Transition 

Peak Vessel Pressure Occurs 

ARI Control Rod Insertion, 
Eliminating SLCS and 
Feedwater Limiting Actions 

ATWS Logic Initiates 
Feedwater Flow Limit 

MSIV's and Bypass Close 
Due to Low Condenser Vacuum 

Reactor Water Level Drops to 
Level 2 
- Initiates Containment 

Isolation 
- HPCS and RCIC Start 

With ARI 

o 

o 

1 Second 

2 Seconds 

2 Seconds 

2 Seconds 

3 Seconds 

22 Seconds 

N/A 

30 Seconds 

/ 

3-289 

Time 

With ARI Failure 

a 

o 

1 Second 

2 Seconds 

2 Seconds 

2 Seconds 

3 Seconds 

Fails 

27 Seconds 

30 Seconds 

53 Seconds 
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Table 3.3-1 (Continued)

Sequence of Events

12. HPCS and RCIC Flow Begins

13. Reactor Water Level Drops
to Level 1

14. Reactor Water Level Reaches
Minimum and Begins to Rise

15. ATWS Logic Initiates SLCS

16. Liquid Control Flow Reaches
Core

17% RHR Flow Begins (Pool
Cooling)

18. Hot Shutdown Achieved

With ARI

N/A

N/A

N/A

>11 Minutes

22 Seconds

With ARI Failure

73 Seconds

85 Seconds

107 Seconds

2 Minutes

3 Minutes

11 Minutes

20 Minutes

27 Minutes

19. Containment Temperature andPressure Peaks Occur

3-290

12. 

13. 

14. 

15. 

16. 

17 ... 

18. 

19. 

Table 3.3-1 (Continued) 

Sequence of Events 

HPCS and RCIe Flow Begins 

Reactor Water Level Drops 
to Level 1 

Reactor Water Level Reaches 
Minimum and Begins to Rise 

ATWS Logic Initiates SLCS 

Liquid Control Flow Reaches 
Core 

RHR Flow Begins (Pool 
Cooling) 

Hot Shutdown Achieved 

Containment Temperature and 
Pressure Peaks Occur 

With ARl 

N/A 

N/A 

N/A 

>11 Minutes 

22 Seconds 

3-290 

With ARI Failure 

73 Seconds 

85 Seconds 

107 Seconds 

2 Minutes 

3 Minutes 

11 Minutes 

20 Minutes 

27 Minutes 
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Table 3.3.5-2

BWR/6 LOSS OF CONDENSER VACUUM - SUMMARY

86 GPM - 2 Min Logic Delay

With ARI Failure Loss of Condenser Vacuum

Maximum Neutron Flux (%) 367

Maximum Vessel Bottom Pressure (psig) 1235

Maximum Average Heat Flux (%) 135

Maximum Bulk Suppression Pool Temperature (0 F) 163

Associated Containment Pressure (psig) 6.3

3-291

NEDO-24222 

Table 3.3.5-2 

BWR/6 LOSS OF CONDENSER VACUUM - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

3--291 

86 GPM - 2 Min Logic Delay 

Loss of Condenser Vacuum 

367 

1235 

135 

163 

6.3 
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Table 3.3.6-1

BWR/6 PRESSURE REGULATOR FAILURE - ZERO STEAM DEMAND

Time
Sequence of Events With ARI With ARI Failure

1. Normal pressure regulator
fails to closed position,
backup regulator also
assumed to fail eliminating
opening turbine bypass
valves.

2. Turbine control valves start
to close - All normal scrams
fail

3. Pressure and power rise

begins

4. Relief valves lift

5. ATWS- High pressure setpoint
(1150 psig) is reached
-Recirculation pumps tripped
-ARI initiated
-SLCS times logic activated

6. Some fuel experiences
transition boiling

7. Peak Vessel pressure occurs

8. ARI control rod insertion com-
pleted, eliminating SLCS and
feedwater limiting actions

9. ATWS logic
Initiates feedwater flow limit*

10. Reactor water level drops to
Level 2
-Initiates containment
isolation

-HPCS and RCIC initiated

*Assumes motor-driven feedwater pumps.

0 0

0 0

0 0

2 Seconds

2 Sedonds

2 Seconds

5 Seconds

22 Seconds

2 Seconds

2 Seconds

2 Seconds

5 Seconds

Fails

N/A 27 Seconds

53 Seconds

3-292
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Table 3.3.6-1 

BWR/6 PRESSURE REGULATOR FAILURE - ZERO STEAM DEMAND 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

Sequence of Events 

Normal pressure regulator 
fails to closed position f 

backup regulator also 
assumed to fail eliminating 
opening turbine bypass 
valves. 

Turbine control valves start 
to close - All normal scrams 
fail 

Pressure and power rise 
begins 

Relief valves lift 

ATWg High pressure setpoint 
(1150 psig) is reached 
-Recirculation pumps tripped 
-ARI ini tia ted 
-SLCS times logic activated 

Some fuel experiences 
transition boiling 

Peak Vessel pressure occurs 

ARt control rod insertion com­
pleted, eliminating SLCS and 
feedwater limiting actions 

AlWS logic 
Initiates feedwater flow limit* 

Reactor water level drops to 
Level 2 
-Initiates containment 

isolation 
-HPCS and RCrC initiated 

*Assumes motor-driven feedwater pumps. 

Time 

With ARI With ARI Failure 

o o 

o o 

o o 

2 Seconds 2 Seconds 

2 Seconds 2 Seconds 

2 Seconds 2 Seconds 

5 Seconds 5 Seconds 

22 Seconds Fails 

N/A 27 Seconds 

53 Seconds 

3-292 

/ 
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Table 3.3.6-1 (Continued)

Sequence of Events

11. HPCS and RCIC flow begins

12. Reactor water level drops to
Level 1

13. ATWS logic
-Initiates SLCS

14. Reactor water level reaches
minimum and begins to rise

15. Liquid control flow reaches

core

16. RBHR flow begins (pool cooling)

17. Hot shutdown achieved

18. Containment temperature and
pressure peak

With ARI

N/A

N/A

>11 Minutes

22 Seconds

With ARI Failure

73 Seconds

101 Seconds

2 Minutes

155 Seconds

3 Minutes

11 Minutes

20 Minutes

33 Minutes

3-293

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

NEDO-24222 

Table 3.3.6-1 (Continued) 

Sequence of Events 

HPCS and RCIC flow be·gins 

Reactor water level drops to 
Level 1 

ATWS logic 
-Initiates SLCS 

Reactor water level reaches 
minimum and begins to rise 

Liquid control flow reaches 
core 

RHR flow begins (pool cooling) 

Hot shutdown achieved 

Containment temperature and 
pressure peak 

3-293 

With ARI 

N/A 

N/A 

>11 Minutes 

22 Seconds 

With ARI Failure 

73 Seconds 

101 Seconds 

2 Minutes 

155 Seconds 

3 Minutes 

11 Minutes 

20 Minutes 

33 Minutes 
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Table 3.3.6-2
BWR/6 PRESSURE REGULATOR FAILURE (ZERO STEAM DEMAND) - SUMMARY

86 GPM- 2 Min Logic Delay
With ARI Failure P

Maximum Neutron Flux (%)
Maximum Vessel Bottom Pressure (psig)
Maximum Average Heat Flux (%)

Maximum Bulk Suppression Pool Temperature (*F)
Associated Containment Pressure (psig)

ressure Regulator Failure (Closed)

404

1283

143

167

6.9

3-294

Table 3.3.6-2 

BWR/6 PRESSURE REGULATOR FAILURE (ZERO STEAM DEMAND) - SUMMARY 

• With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

86 GPM - 2 Min Logic Delay 

Pressure Regulator Failure (Closed) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

404 

1283 

143 

167 

6.9 

3-294 
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Table 3.3.7-1

BWR/6 LOSS OF A FEEDWATER HEATER

Sequence of Events

1. Inadvertent tripping of feedwater heater; feedwater
enthalpy begins to drop

2. Reactor and turbine-generator power begins to rise

3. APRM high power alarm (108%), operator attempts to
insert rods

4. Vessel pressure levels off after a small increase

5. Power levels off below the scram setpoint(s)

6. Feedwater enthalpy change complete

7. Manual scram attempted after control rod insertion
attempts have failed, manual scram fails, ARI and
SLCS logic initiated

8. ARI control rod insertion completed, eliminating
SLCS initiation, and achieving reactor shutdown

9. ATWS logic timer

Initiates SLCS (if ARI has failed)

10. Liquid control reaches core (if ARI has failed)

11. Hot shutdown achieved (if ARI has failed)

Time

0 Seconds

2 Seconds

30 Seconds

74 Seconds

124 Seconds

138 Seconds

10-1/2 Minutes

11 Minutes

12-1/2 Minutes

14 Minutes

35 Minutes

3-295

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

Table 3.3.7-1 

BWR/6 LOSS OF A FEEDWATER HEATER 

Sequence of Events 

Inadvertent tripping of feedwater heater; feedwater 
enthalpy begins to drop 

Reactor and turbine-generator power begins to rise 

APRM high power alarm (108%), operator attempts to 
insert rods 

Vessel pressure levels off after a small increase 

Power levels off below the scram setpoint(s) 

Feedwater enthalpy change complete 

Manual scram attempted after control rod insertion 
attempts have failed, manual scram fails. ARI and 
SLCS logic initiated 

ARI control rod insertion completed t eliminating 
SLCS initiation, and achieving reactor shutdown 

ATWS logic timer 
Initiates SLCS (1"£ ARI has failed) 

Liquid control reaches cor~ (if ARI has failed) 

Hot shutdown achieved (if ARI has failed) 

3-295 

Time 

o Seconds 

2 Seconds 

30 Seconds 

74 Seconds 

124 Seconds 

138 Seconds 

10-1/2 Minutes 

11 Minutes 

12-1/2 Minutes 

14 Minutes 

35 Minutes 
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Table 3.3.7-2
BWR/6 LOSS OF FEEDWATER HEATER - SUMMARY

86 GPM - 2 Min Logic DelayWith ARI Failure
Loss of Feedwater Heater

Maximum Neutron Flux (%)
Maximum Vessel Bottom Pressure (psig)
Maximum Average Heat Flux (%)
Maximum Bulk Suppression Pool Temperature (*F)Associated Containment Pressure (psig)

115

1071

114

90

no change

3-296
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Table 3.3.7-2 

BWRl6 LOSS OF FEEDWATER HEATER - SUMMARY 

With ARIFailure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

/' 

3-296 

86 GPM - 2 Min Logic Delay 

Loss of Feedwater Heater 

115 

1071 

114 

90 

no change 
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Table 3.3.8-2

BWR/6 FEEDWATER CONTROLLER FAILURE
(MAXIMUM DEMAND - SUMMARY

86 GPM - 2 Min Logic Delay

With ARI Failure Feedwater Controller Failure

Maximum Neutron Flux (%) 396

Maximum Vessel Bottom Pressure (psig) 1214

Maximum Average Heat Flux (%) 126

Maximum Bulk Suppression Pool Temperature ( 0 F) 95

Associated Containment Pressure (psig) I

3-297
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Table 3.3.8-2 

BWR/6 FEEDWATER CONTROLLER FAILURE 
(MAXIMUM DEMAND - SUMMARY 

86 GPM - 2 Min Logic Delay 

With ARI Failure Feedwater Controller Failure 

Maximum Neutron Flux (%) 396 

Maximum Vessel Bottom Pressure (psig) 1214 

Maximum Average Heat Flux (%) 126 

Maximum Bulk Suppression Pool Temperature (OF) 9S 

Associated Containment Pressure (psig) 1 

3-297 
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Table 3.3.9-1
BWR/6 PRESSURE REGULATOR FAILURE - MAXIMUM STEAM DEMAND

Time

With ARI Failure
Sequence of Events With ARI

1. Pressure regulator to maximum demand

2. Pressure and power begin to decrease
3. Low steamline pressure isolation setpoint

reached -MSIV closure
-Scram normally initiated (assumed to
fail

4. Pressure and power begin to rise
5. Relief valves lift

6. ATWS high pressure setpoint is reached
(1150 psig)
-Recirculation pumps are tripped
-ARI is initiated
-SLCS and feedwater limit timed
logic is activated

7. Vessel pressure peaks

8. Some fuel experiences boiling transition
9. ARI control rod insertion completed, elimi-

nating SLCS initiation and feedwater limit
10. ATWS logic

Initiates feedwater limit
11. Feedwater flow runs back to lower limit

value

12. Reactor water level drops to Level 2
-Initiates containment isolation
-Initiates HPCS and RCIC

13. HPCS and RCIC flow begins

14. Reactor water level reaches minimum
and begins to rise

15. ATWS logic timer
Initiates SLCS

16. Liquid control flow reaches core
17. RHR flow begins (pool cooling)

18. Hot shutdown achieved
19. Containment temperature and pressure

peak

0

0

0

0

16 Seconds
17 Seconds

16 Seconds
17 Seconds

18

23

23

26

27

43

Seconds

Seconds

Seconds

18

23

23

Seconds

Seconds

Seconds

Seconds

Seconds

Seconds

N/A

N/A

59 Seconds

79 Seconds

83 Seconds

N/A

N/A

>11 Minutes

43 Seconds

N/A

26 Seconds

27 Seconds

Fails

48 Seconds

63 Seconds

68 Seconds

88 Seconds

137 Seconds

2-1/2 Minutes

3-1/2 Minutes

11 Minutes

20 Minutes

30 Minutes

3-298
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Table 3.3.9-1 

BWR/6 PRESSURE REGULATOR FAILURE - MAXIMUM STEAM DEMAND 

Sequence of Events 

1. Pressure regulator to maximum demand 

2. Pressure and power begin to decrease 

3. Low steam1ine pressure isolation setpoint 
reached -MSIV closure 

4. 

5. 

6. 

-Scram normally initiated (assumed to 
fail 

Pressure and power begin to rise 

Relief valves lift 

ATWS high pressure setpoint is reached 
(1150 psig) 
-Recirculation pumps are tripped 
-ARI is initiated 
-SLCS and feedwater limit timed 
logic is activated 

7. Vessel pressure peaKs 

8. Some fuel experiences boiling transition 

9. ARI control rod insertion completed, elimi­
nating SLCS initiation and feedwater limit . 

10. ATWS logic 
Initiates feedwater limit 

11. Feedwater flow runs back to lower limit 
value 

12. Reactor water level drops to Level 2 
-Initiates containment isolation 

13. 

-14. 

15. 

16. 

17. 

18. 

19. 

-Initiates HPCS and RCIC 

HPCS and RCIC flow begins 

Reactor water level reaches minimum 
and begins to rise 

ATWS logic timer 
Initiates SLCS 

Liquid control flow reaches core 

RHR flow begins (pool cooling) 

Hot shutdown achieved 

Containment temperature and pressure 
peak 

3-298 

With ARI 

0 

0 

16 Seconds 
17 Seconds 

18 Seconds 

23 Seconds 

23 Seconds 

26 Seconds 

27 Seconds 

43 Seconds 

N/A 

N/A 

59 Seconds 

79 Seconds 

83 Seconds 

N/A 

N/A 

>11 Minutes 

43 Seconds 

N/A 

Time 

With ARI Failure 

0 

0 

16 Seconds 
17 Seconds 

18 Seconds 

23 Seconds 

23 Seconds 

26 Seconds 

27 Seconds 

Fails 

48 Seconds 

63 Seconds 

68 Seconds 

88 Seconds 

137 Seconds 

2-1/2 Minutes 

3-1/2 Minutes 

11 Minutes 

20 Minutes 

30 Minutes 
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Table 3.3.9-2

BWR/6 PRESSURE REGULATOR FAILURE
(MAXIMUM STEAM DEMAND) - SUMMARY

86 GPM - 2 Min Logic Delay

With ARI Failure Pressure Regulator Failure (Open)

Maximum Neutron Flux (%) 590

Maximum Vessel Bottom Pressure (psig) 1296

Maximum Average Heat Flux (%) 153

Maximum Bulk Suppression Pool Temperature (*F) 167

Associated Containment Pressure (psig) 6.9

3-29 9
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Table 3.3.9-2 

BWR/6 PRESSURE REGULATOR FAILURE 
(MAXIMUM STEAM DEMAND) - SUMMARY 

86 GPM - 2 Min Logic Delay 

With ARI Failure Pressure Regulator Failure (Open) 

Maximum Neutron Flux (%) 590 

Maximum Vessel Bottom Pressure (psig) 1296 

Maximum Average Heat Flux (%) 153 

Maximum Bulk Suppression Pool Temperature (OF) 167 

Associated Containment Pressure (psig) 6.9 

/ 

3-299 
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Table 3.3.10-1

BWR/6 LOSS OF FEEDWATER

Sequence of Events
With ARI

Time

With ARI Failure

0

1. Feedwater flow stops (flow assumed toreduce to zero in 5 seconds) - allnormal scram fail

2. Pressure, water level and power startsto decline

3. Reactor water level drops to Level 2and trips recirculation pumps*, initiatesARI and also initiates RCIC and HPCS.SLCS timed logic is also activated.

4. ARI control rod insertion completed.
Eliminating SLCS initiation

0

0 0

13 Seconds 13 Seconds

5. HPCS and RCIC flow starts

33 Seconds

33 Seconds

45 Seconds

47 Seconds

Fails

33 Seconds
6. Water level reaches Level 1. MSIVclosure initiated

7. Water level reaches minimum and beginsto rise. The top of the core alwaysremains covered.

8. ATWS logic timer initiates SLCS

9. Liquid control flow reaches the core

10. High water level trip of HPCS and RCIC(neglecting preferred operator actionto manually control level)

11. Hot shutdown achieved

12. MSIV closure on low pressure

*Recirculation runback (from low level alarm, L4,FW flow) is conservatively neglected.

N/A

71 Seconds

N/A

N/A

10 Minutes

32 Seconds

2 Minutes

3 Minutes

16 Minutes

19 Minutes

19 MinutesN/A

and coincident low

3-300

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

NEDO-24222 

Table 3.3.10-1 

BWR/6 LOSS OF FEEDWATER 

Sequence of Events 

Feedwater flow stops (flow assumed to 
reduce to zero in 5 seconds) - all 
normal scram fail 

Pressure, water level and power starts 
to decline 

Reactor water level drops to Level 2 
and trips recirculation pumps*, initiates 
ARI and also initiates RCIC and HPCS. 
SLCS timed logic is also activated. 

ARI control rod insertion completed. 
Eliminating SLCS initiation 

HPCS and RCIC flow starts 

Water level reaches Levell. MSIV 
closure initiated 

Water level reaches minimum and begins 
to rise. The top of the core always 
remains covered. 

ATWS logic timer initiates SLCS 

Liquid control flow reaches the core 

High water level trip of HPCS and RCIe 
(neglecting preferred operator action 
to manually control level) 

Hot shutdown achieved 

MSIV closure on low pressure 

With ARI 

o 

o 

13 Seconds 

33 Seconds 

33 Seconds 

45 Seconds 

47 Seconds 

N/A 

N/A 

10 Minutes 

32 Seconds 

N/A 

Time 

With ARl Failure 

o 

o 

13 Seconds 

Fails 

33 Seconds 

N/A 

71 Seconds 

2 Minutes 

3 Minutes 

16 Minutes 

19 Minutes 

19 Minutes 

*Recirculation runback (from low level alarm, L4, and coincident low 
FW flow) is conservatively neglected. 

3-300 
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Table 3.3.10-2

BWR/6 LOSS OF FEEDWATER - SUMMARY

86 GPM - 2 Min Logic Delay

With ARI Failure Loss of Feedwater

Maximum Neutron Flux (%)

Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (%)

Maximum Bulk Suppression Pool Temperature (*F)

Associated Containment Pressure (psig)

100

1061

100

90

No change

3-301
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Table 3.3.10-2 

BWR/6 LOSS OF FEEDWATER - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

3-301 

/ 

86 GPM - 2 Min Logic Delay 

Loss of Feedwater 

100 

1061 

100 

90 

No change 
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Table 3.3.11-1

BWR/6 LOSS OF NORMAL AC POWER

Sequence of Events

1. Loss of all auxiliary transformers
-Recirculation pumps trip
-Condensate and feedwater pumps trip

2. Pressure and power begin to fall

3. Normal scram due to loss of AC
(Assumed to fail)

4. MSIV's start to close due to loss of ACpower (and initiated scram - also
assumed to fail)

5. Pressure and power begin to rise

6. S/RV valves lift at relief setpoints

7. ATWS high pressure setpoint is reached
(1150 psig)
-ARI is initiated
-SLCS timed logic is activated

8. Vessel pressure and power peak

9. Some fuel experiences boiling
transition

10. Reactor water level drops to Level 2-Initiates containment isolation
-Initiates HPCS and RCIC

11. ARI control rod insertion completed,

eliminating SLCS initiation

12. HPCS and RCIC flow begins

13. Lowest relief setpoint SRV closes and
the S/RV's are assumed to switch to
spring setpoints

With ARI

0

0

2 Seconds

2 Seconds

Time

With ARI Failure

0

0

2 Seconds

2 Seconds

6

7

7

7

8

Seconds

Seconds

Seconds

6

7

7

Seconds

Seconds

Seconds

Seconds

Seconds

Seconds

Seconds

7

8

20 Seconds

27 Seconds

40 Seconds

20 Seconds

Fails

40 Seconds

66 Seconds

3-302

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 
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Table 3.3.11-1 

BWR/6 LOSS OF NORMAL AC POWER 

Sequence of Events 

Loss of all auxiliary transformers 
-Recirculation pumps trip 
-Condensate and feedwater pumps trip 

Pressure and power begin to fall 

Normal scram due to loss of AC 
(Assumed to fail) 

MEIV's start to close due to loss of AC 
power (and initiated scram - also 
assumed to fail) 

Pressure and power begin to rise 

S/RV valves lift at relief setpoints 

ATWS high pressure setpoint is reached 
(1150 psig) 
-ARI is initiated 
-SLCS timed logic is activated 

Vessel pressure and power peak 

Some fuel experiences boiling 
transition 

Reactor water level drops to Level 2 
-Initiates containment isolation 
-Initiates HPCS and RCIC 

ARI control rod insertion completed, 
eliminating SLCS initiation 

HPCS and RCIC flow begins 

Lowest relief setpoint SRV closes and 
the S/RV's are assumed to switch to 
spring setpoints 

3-302 

With ARI 

o 

o 

2 Seconds 

2 Seconds 

6 Seconds 

7 Seconds 

7 Seconds 

7 Seconds 

8 Seconds 

20 Seconds 

27 Seconds 

40 Seconds 

Time 

With Ali Failure 

o 

o 

2 Seconds 

2 Seconds 

6 Seconds 

7 Seconds .,.--

7 Seconds 

7 Seconds 

8 Seconds 

20 Seconds 

Fails 

40 Seconds 

66 Seconds 
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Table 3.3.11-1 (Conti

Sequence of Events

14. Reactor water level drops to
Level 1

15. Reactor water level reaches minimum ar,
begins to rise. Level inside the core
shroud remains above the top of activoc
fuel.

16. ATWS logic timer
Initiates SLCS

17. Liquid control flow reaches core

18. RHR flow begins (pool cooling)

19. Hot shutdown achieved

20. Containment temperature and pressure
peak

[•-303
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Table 3.3.11-1 (Ccnt~ 

Sequence of Events 

14. Reactor water level drops to 
Level 1 

15. Reactor water level reaches m:i.nimum 2.r", 

begins to rise. Level inside the cor€ 
shroud remains above the top of activ~ 
fuel. 

16. ATWS logic timer 
Initiates SLCS 

17. Liquid control flow reaches care 

18. RHR flow begins (pool cooling) 

19. Hot shutdown achieved 

20. Containment temperature and pressure 
peak 
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Table 3.3.11-2
BWR/6 LOSS OF NORMAL AC POWER - SUMMARY

86 GPM - 2 Min Logic Delay
With ARI Failure Loss of Normal AC Power

Maximum Neutron Flux (%) 
546

Maximum Vessel Bottom Pressure (psig) 1218
Maximum Average Heat Flux (%) 

101Maximum Bulk Suppression Pool Temperature ('F) 150
Associated Containment Pressure (psig) 

4.5

3-304
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Table 3.3.11-2 

BWR/6 LOSS OF NORMAL AC POWER - SUMMARY 

With ARI Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (OF) 

Associated Containment Pressure (psig) 

3-30L£ 

86 GPM - 2 Min Logic Delay 

Loss of Normal AC Power 

546 

1218 

101 

150 

4.5 

( 

--" 
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Table 3.3.12-1

BWR/6 RECIRCULATION FLOW CONTROLLER FAILURE
(MAXIMUM DEMAND)

Sequence of Events

1. One recirculation flow controller fails with
maximum valve starting rate

2. Power and flow begin to rise

3. Neutron flux reaches 120%, APRM scram assumed
to fail

4. Power peaks

5. Flow control valve reaches full open position

6. Maximum average fuel surface heat flux occurs

7. Vessel Pressure peaks

8. Core flow increase stabilizes

9. Manual scram or (if failed) ARI initiation
and (if failed) SLCS logic initiation

10. Hot shutdown achieved

Time

0.

0

2 Seconds

2 Seconds

3 Seconds

4 Seconds

5 Seconds

10 Seconds

10 Minutes

30 Minutes

3-305

1. 

2. 

3. 
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Table 3.3.12-1 

BWR/6 RECIRCULATION FLOW CONTROLLER FAILURE 
(MAXIMUM DEMAND) 

Sequence of Events 

One recirculation flow controller fails with 
maximum valve starting rate 

Power and flow begin to rise 

Neutron flux reaches 120%, APRM scram assumed 
to fail 

4. Power peaks 

5. Flow control valve reaches full open position 

6. Maximum average fuel surface heat flux occurs 

7. Vessel Press~re peaks 

8. Core flow increase stabilizes 

9. Manual scram or (if failed) ARI initiation 
and (if failed) SLCS logic initiation 

10. Hot shutdown achieved 

3-305 

Time 

o· 

o 

2 Seconds 

2 Seconds 

3 Seconds 

4 Seconds 

5 Seconds 

10 Seconds 

10 Minutes 

30 Minutes 
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Table 3.3.12-2
BWR/6 RECIRCULATION FLOW CONTROLLER FAILURE (MAXIMUM DEMAND) -- SUMMARY

86 GPM - 2 Min Logic Delay

With ARI Failure
Recirculation Flow
Controller Failure

Maximum Neutron Flux (%)
Maximum Vessel Bottom Pressure (psig)
Maximum Average Heat Flux (%)
Maximum Bulk Suppression Pool Temperature (ST)
Associated Containment Pressure (psig)

247

1013

88

90

No change

3-306
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Table 3.3.12-2 

BWR/6 RECIRCULATION FLOW CONTROLLER FAILURE (MAXIMUM DEMAND) ~ SUMMARY 

With ARl Failure 

Maximum Neutron Flux (%) 

Maximum Vessel Bottom Pressure (psig) 

Maximum Average Heat Flux (%) 

Maximum Bulk Suppression Pool Temperature (DT) 

Associated Containment Pressure (psig) 

3-306 

86 GPM - 2 Min Logic Delay 

Recirculation Flow 
Controller Failure 

247 

1013 

88 

90 

No change 
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Figure 3.4.1-1. ATWS MSIV Closure - ARI Failure (REDY) 
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Figure 3.4.1-4. ATWS Turbine Trip -ARI Failure
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3.5 ANALYSIS OF ATWS TURBINE TRIPS WITH BYPASS FAILURE

In response to NRC staff questions, this infrequent case has also been studied

for ATWS conditions. The frequency of occurrence of this event is well below

once per plant lifetime and efforts are underway to reclassify the event

(in normal SAR documentation) consistent with this experience. For informa-

ation purposes, cases for typical BWR/4, 5 and 6 plants are included here, as

requested by the NRC Staff.

3.5.1 BWR/4 Turbine Trip With Bypass Failure

3.5.1.1 Overview of Response Without The Scram

The transient is described in detail in the following sections. Except for

the initial 20-30 seconds the characteristics of this improbable event

follow the MSIV event very closely. The faster isolation of this case re-

sults in a sharp neutron flux peak which momentarily exceeds the MSIV

closure case. However, due to the very narrow peak, lower peaks are seen

for heat flux and reactor pressures.

Here as in other pressurization cases the power and pressure increases are

limited by the action of the S/RV's and RPT. The long term power shutdown is

achieved in two ways. ARI employs an alternate design of the protection logic

leading to diverse injection of the control rods. In the unlikely event that

ARI fails the automated SLCS provides further protection and shutdown

capability.

3.5.1.2 Sequence of Events For the BWR/4 Turbine Trip With Bypass
Failure

The listing of significant events during this event is provided in Table

3.5.1-1. Results for both cases - with ARI and also assuming its failure

are presented.
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This highly improbable event starts with an unexpected closure of turbine
stop valves (within about 0.1 second) accompanied by failure of the turbine bypass
valves to open. The beginning of this event is much like the MSIV closure case in
that both result in isolation of the reactor system. However, this event
sees a faster isolation because the turbine stop valves are assumed to close
within 0.1 seconds as compared to a 4 second nominal MSIV closure time.

This results in a higher neutron flux peak for this event but due to the
cushioning effect of the main steamline which absorbs some of the pressure
shock the peak pressure and fuel heat flux are lower in this case and they
combine to give a lower integrated power peak. Figure 3.5.1-1 and 3.5.1-2
show the initial portions of the event for the more likely plant ATWS
transient in which ARI provides a diverse logic path to quickly shut down
the unit, and the case in which ARI also fails and the automated SLCS is
called upon to shut down the plant.

In each case the initial power and pressure increases are the same neutron
flux reaches 655% NBR near 1 second (compared to 527% in MSIV case), fuel
average heat flux reaches 138% NBR near 2 seconds (compared to 143% in MSIV
case). Some fuel may experience boiling transition. The peak pressure
occurs at vessel bottom and is 1267 psig at about 6 seconds (compared to
(1296 psig in the MSIV case). The transient pressure is limited within the
Service Level C overpressure limit of 1500 psig. This is due to the auto-
matic action of RPT which is initiated when vessel dome pressure exceeds
1150 psig and the relieving action of the S/RV's which all open then start
reclosing near 23 seconds.

After the first 20-30 seconds the characteristics of this event follow the
MSIV case event very closely. Because of similarities between these two
events, Section 3.1.1 also represents the long term behavior of the turbine
trip with bypass failure transient. Figure 3.5.1-3 shows the long term
behavior as predicted for this event.

Peak suppression pool bulk temperature is slightly greater than the MSIV
closure case, reaching 191OF for the ARt-failure case about 25 minutes after
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the start of the event. The corresponding containment pressure is 11.4 psig.

With ARI, the results are far less severe. All values are within the contain-

ment limits.

3.5.2 BWR/5 Turbine Trip With Bypass Failure

3.5.2.1 Overview of Response Without Scram

The transient is described in detail in the following sections. Except for

the initial 20-30 seconds the characteristics of this improbable event

follow the MSIV event very closely. The faster isolation of this case results

in a sharp neutron flux peak which momentarily exceeds the MSIV closure case.

However due to the very narrow peak, lower heat flux, reactor pressures, and

integrated power peaks are seen.

Here as in other pressurization cases the power and pressure increases are

limited by the action of the S/RV's and RPT. The long term power shut-

down is achieved in-either of two ways. ARI employs an alternate design of

the protection logic leading to diverse insertion of the control rods. In

the event that ARI also fails, the automated SLCS provides further protection

and shutdown capability.

3.5.2.2 Sequence of Events for BWR/5 Turbine Trip With Bypass Failure

The listing of significant events during this event is provided below. Results

for both cases, with ARI and also assuming its failure, are presented.

This highly improbable event starts with an unexpected closure of turbine stop

valves (within 0.1 second) accompanied by failure of the turbine bypass valves

to open. The beginning of this event is much like the MSIV closure case in

that both transients result in isolation of the reactor system. However

this event sees a faster isolation because the turbine stop valves are

assumed to close within 0.1 second as compared to a 4 second nominal MSIV

closure time. This results in a higher neutron flux peak for this event but

- due to the cushioning effect of the main steamline which absorbs some of the
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pressure shock the peak pressure and fuel heat flux are lower in this case
and thus combine to give a lower integrated power peak. Figure 3.5.2-1 and
3.5.2-2 show the initial portions of the event for the more likely plant
ATWS transient in which ARI provides a diverse logic path to quickly shut
down the reactor, and the case in which ARI also fails and the automated
SLCS is called upon to shut the reactor down.

In both cases, the initial power and pressure increases are the same.
Neutron flux reaches 643% NBR near 1 second (compared to 614% in MSIV case),
fuel average heat flux reaches 138% NBR near 3 seconds (compared to 143%
in MSIV case). Some fuel may experience boiling transition. The peak
pressure occurs at vessel bottom and is 1230 psig at about 3 seconds
(compared to 1247 psig in MSIV case). The transient pressure is limited
within the service Level C overpressure limit of 1500 psig. This is due
to the automatic action of RPT (which is initiated when vessel dome pressure
exceeds 1150 psig) and the relieving action of the S/RV's which all open then
start reclosing near 18 seconds.

After the first 20-30 seconds the characteristics of this event follow the
MSIV closure event very closely. Because of similarities between these two
events, Section 3.2.1 also represents the long term behavior of turbine trip
with bypass failure transient. Figure shows the long term behavior
as predicted for this event.

Peak suppression pool bulk temperature is less than MSIV closure reaching
178 0 F for the ARI-failure case about 28 minutes after the start of the event.
The corresponding containment pressure is 9.1 psig with ARI, the results
are far less severe. All values are within containment limits.

3.5.3 BWR/6 Turbine Trip With Bypass Failure

3.5.3.1 Overview of Response Without Scram

Except for the initial 20-30 seconds the characteristics of this improbable
event follow the MSIV closure event very closely. The faster isolation of
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this case results in a sharp neutron flux peak which momentarily exceeds the
MSIV closure case. However, due to the very narrow peak, lower heat flux,
reactor pressure, and integrated power peaks are seen.

Here, as in other pressurization cases, the power and pressure increases are
limited by the action of the S/RV's and RPT. The long term power shutdown
is achieved in either of two ways. ARI (employing an alternate design of the
protection logic) leads to diverse insertion of the control rods. In the
event that ARI also fails, the automated SLCS provides further protection and
shutdown capability.

3.5.3.2 Sequence of Events for BWR/6 Turbine Trip With Bypass Failure

The listing of significant events during this event is provided below.
Results for both cases, with and without ARI, are presented.

This highly improbable event starts with an unexpected closure of turbine stop
valves (within 0.1 second) accompanied by failure of the turbine bypass valves
to open. The beginning of this event is much like the MSIV closure case in
that both transients result in isolation of the reactor system. However,
this event sees a faster isolation because the turbine stop valves are
assumed to close within 0.1 seconds as compared to a 4 second nominal MSIV
closure time. This results in a higher neutron flux peak for this event but
due to the cushioning effect of the main steamline which absorbs some of the
pressure shock the peak pressure and fuel heat flux are lower in this case
and they combine to give a lower integrated power peak. Figure 3.5.3-1 and
3.5.3-2 show the initial portions of the vent for the more likely plant
ATWS transient in which ART provides a diverse logic path to quickly shut
down the reactor and the case in which ARI also fails and the automated
SLCS is called upon to shut the reactor down.

In both cases, the initial power and pressure increases are the same.
Neutron flux reaches 773% NBR near 1 second (compared to 745% in MSIV case),
fuel average heat flux reaches 144% NBR near 2 seconds (compared to 147% in
MSIV case). Some fuel may experience boiling transition. The peak pressure
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occurs at vessel bottom and is 1285 psig at about 5 seconds (compared to
1300 psig in MSIV case). The transient pressure is limited within the
Service Level C overpressure limit of 1500 psig. This is due to the auto-
matic action of RPT (which is initiated when vessel dome pressure exceeds
1150 psig) and the relieving action of the S/RV's which all open then start
reclosing near 18 seconds.

After the first 20-30 seconds the characteristics of this event follow the
MSIV closure event very closely. Because of similarities between these two
events, Section 3.3.1 also represents the long term behavior of the turbine
trip with bypass failure transient. Figure 3.5.3-3 shows the long term
behavior as predicted for this event.

Peak suppression pool bulk temperature is less than MSIV closure, reaching
168OF for the ARl-failure case about 28 minutes after the start of the event.
The corresponding containment pressure is 7.0 psig. With ARI, the results
are far less severe. All values are within the containment limits.
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Table 3.5.1-1

BWR/4 TURBINE TRIP WITH BYPASS FAILURE TRANSIENT

Sequence of Events

1. Turbine trips - bypass fails to
open - All normal scrams fail

2. Pressure and power begin to rise

3. Power peaks

4. Relief valves lift

5. ATWS high pressure setpoint is
reached
- ARI is initiated
- SLCS timed logic is activated

6. Some fuel may experience boiling

transition

7. Pressure peaks

8. ARI control rod insertion com-
pleted, eliminating SLCS initia-
tion and feedwater limit actions

9. ATWS logic
- Initiates feedwater limit

10. Reactor water level drops to
Level 2
- Initiates containment isolation
- Initiates HPCI and RCIC

11. Feedwater flow runback to lower

limit value

12. HPCI and RCIC flow begins

13. Reactor water level reaches
minimum and begins to rise.
(Fuel always remains covered)

Wi th ARI

0

0

1 Second

1 Second

1 Second

1 Second

7 Seconds

21 Seconds

N/A

39 Seconds

59 Seconds

69 Seconds

Time

With ARI Failure

0

0

1 Second

1 Second

1 Second

1 Second

7 Seconds

Fails

30 Seconds

42 Seconds

45 Seconds

62

5

Seconds

Minutes
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BWR/4 TURBINE TRIP WITH BYPASS FAILURE TRANSIENT 

Sequence of Events 

1. Turbine trips - bypass fails to 
open - All normal scrams fail 

2. Pressure and power begin to rise 

3. Power peaks 

4. Relief valves lift 

5. ATWS high pressure setpoint is 
reached 
- ARI is initiated 
- SLCS timed logic is activated 

6. Some fuel may experience boiling 
transition 

7. Pressure peaks 

8. ARI control rod insertion co~ 
pleted, eliminating SLCS initia­
tion and feedwater limit actions 
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10. Reactor water level drops to 
Level 2 

With ARI 

0 

0 

1 Second 

1 Second 

1 Second 

1 Second 

7 Seconds 

21 Seconds 

N/A 

39 Seconds 

- Initiates containment isolation 
- Initiates HPCI and RCIC 

11. Feedwater flow runback to lower 
limit value 

12. HPer and ReIe flow begins 

13. Reactor water level reaches 
minimum and begins to rise. 
(Fuel always remains covered) 

59 Seconds 

69 Seconds 
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Time 

With ARI Failure 

0 

0 

1 Second 

1 Second 

1 Second 

1 Second 

7 Seconds 

Fails 

30 Seconds 

42 Seconds 

45 Seconds 

62 Seconds 

5 Minutes 
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Table 3.5.1-1
BWR/4 TURBINE TRIP WITH BYPASS FAILURE TRANSIENT (Continued)

Sequence of Events

14. ATWS logic timer completed
- Initiates SLCS

15. Liquid control flow reaches core

16. RHR flow begins (pool cooling)

17. Hot shutdown achieved

18. Peak containment pressure and
pool bulk temperature occur

With ARI

N/A

N/A

>11

21 Seconds

>2 Hours

Time

With ARI Failure

2 Minutes

3 Minutes

11 Minutes

18 Minutes

25 Minutes
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Table 3.5.1-1 

BWR/4 TURBINE TRIP WITH BYPASS FAILURE TRANSIENT (Continued) 

Sequence of Events 

14. ATWS logic timer completed 
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Time 

With ARI Failure 
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Table 3.5.2-1

BWR/5 TURBINE TRIP WITH BYPASS FAILURE TRANSIENT

Time
Sequence of Events

1. Turbine trips - bypass fails to
open - all normal scrams fail

2. Pressure and power begin to rise

3. Relief valves lift

4. Power peaks

5. Some fuel may experience boiling
transition

6. ATWS high pressure setpoing is reached
- ARI is initiated
- SLCS time logic is activated

7. Pressure peaks

8. ARI control rod insertion completed,
eliminating SLCS initiation and FW
limit actions

9. ATWS logic initiates FW
limit

10. Reactor water level drops to Level 2
- Initiates containment isolation
- Initiates HPCS and RCIC

11. Feedwater flow run back to lower limit

value

12. HPCS and RCIC flow begins

13. ATWS logic timer initiates
SLCS

14. Liquid control flow

15. Reactor water level reaches minimum
and begins to rise

16. RHR flow begins (pool cooling)

17. Hot shutdown achieved

18. Peak containment pressure and'i
pool bulk temperature occur /
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With ARI

0

0

1

1

Second

Second

Second

2 Seconds

3 Seconds

21 Seconds

N/A

33 Seconds

45 Seconds

53 Seconds

N/A

N/A

56 Seconds

>11 Minutes

21 Seconds

>2 Hours

With ARI Failure

0

0

1 Second

1 Second

1 Second

2 Seconds

3 Seconds

Fails

30 Seconds

40 Seconds

45 Seconds

60 Seconds

2 Minutes

3 Minutes

5.4 Minutes

11 Minutes

22 Minutes

28 Minutes

NEDO-24222 

Table 3.5.2-1 

BWR/5 TURBINE TRIP WITH BYPASS FAILURE TRANSIENT 

Sequence of Events 

1. Turbine trips - bypass fails to 
open - all n?rmal scrams fail 

2. Pressure and power begin to rise 

3. Relief valves lift 

4. Power peaks 

5. Some fuel may experience boiling 
transition 

6. ATWS high pressure setpoing is reached 
- ARI is initiated 
- SLCS time logic is activated 

7. Pressure peaks 

8. ARI control rod insertion completed, 
eliminating SLCS initiation and FW 
limit actions 

9. ATWS logic initiates FW 
limit 

10. Reactor water level drops to Level 2 
- Initiates containment isolation 
- Initiates HPCS and RCIC 

11. Feedwater flow run back to lower limit 
value 

12. HPCS and Rcre flow begins 

13. ATWS logic timer initiates 
SLCS 

14. Liquid control flow 

15. Reactor water level reaches minimum 
and begins to rise 

16. RHR flow begins (pool cooling) 

17. Hot shutdown achieved 

18. Peak containment pressure and', 
pool bulk temperature occur / 

3-393 

~ 
With ARI 

0 

0 

1 Second 

1 Second 

1 Second 

2 Seconds 

3 Seconds 

21 Seconds 

N/A 

33 Seconds 

45 Seconds 

53 Seconds 

N/A 

N/A 

56 Seconds 

>11 Minutes 

21 Seconds 

>2 Houq; 

With ARI Failure 

0 

0 

1 Second 

1 Second 

1 Second 

2 Seconds 

3 Seconds 

Fails 

30 Seconds 

40 Seconds 

45 Seconds 

60 Seconds 

2 Minutes 

3 Minutes 

5.4 Minutes 

11 Minutes 

22 Minutes 

28 Minutes 



NEDO-24222

Table 3.5.3-1

BWR/6 TURBINE TRIP WITH BYPASS FAILURE TRANSIENT

Time
Sequence of Events

1. Turbine trips - bypass fails to open -
All normal scrams fail

2. Pressure and power begin to rise

3. Relief valves lift

4. ATWS high pressure setpoint is
reclosed
- ARI is initiated
- SLCS time logic is activated

5. Power peaks

6. Some fuel may experience boiling
transition

7. Pressure peaks

8. ARI control rod insertion completed,
eliminating SLCS initiation and
feedwater limit actions

9. ATWS logic timer initiates feedwater
limit

10. Feedwater flow run back to lower
limit value

11. Reactor water level drops to Level 2
- Initiates containment isolation
- Initiates HPCS and RCIC

12. HPCS and RCIC flow begins

13. Reactor water level reaches minimum
and begins to rise. (Fuel always
remains covered).

14. ATWS logic timer initiates
SLCS

With ARI

0

0

1 Second

1 Second

1 Second

1 Second

5 Seconds

21 Seconds

N/A

45 Seconds

51 Seconds

With ARI Failure

0

0

1 Second

I Second

1 Second

1 Second

5 Seconds

Fails

30 Seconds

45 Seconds

53 Seconds

65 Seconds

128 Seconds

65

76

Seconds

Seconds

N/A 2 Minutes

3-394,

NEDO-24222 

Table 3.5.3-1 

BWR/6 TURBINE TRIP WITH BYPASS F AlLURE TRANSIENT 

Sequence of Events 

1. Turbine trips - bypass fails to open -
All normal scrams fail 

2. Pressure and power begin to rise 

3. Relief valves lift 

4. ATWS high pressure setpoint is 
reclosed 
- ARI is initiated 
- SLCS time logic is activated 

5. Power peaks 

6. Some fuel may experience boiling 
transition 

7. Pressure peaks 

8. ARI control rod insertion completed, 
eliminating SLCS initiation and 
feedwater limit actions 

9. ATWS logic timer initiates feedwater 
limit 

10. Feedwater flow run back to lower 
limit value 

11. Reactor water level drops to Level 2 
- Initiates containment isolation 
- Initiates HPCS and RCIC 

12. HPCS and RCIC flow begins 

13. Reactor water level reaches minimum 
and begins to rise. (Fuel always 

. remains covered). 

14. ATWS logic timer initiates 
SLCS 

3-394. 

With ARI With ARI Failure 

o o 

o o 

1 Second 1 Second 

1 Second 1 Second 

1 Second 1 Second 

1 Second 1 Second 

5 Seconds 5 Seconds 

21 Seconds Fails 

N/A 30 Seconds 

45 Seconds 45 Seconds 

51 Seconds 53 Seconds 

65 Seconds 65 Seconds 

76 Seconds 128 Seconds 

N/A 2 Minutes 



Table 3.5.3-1

BWR/6 TURBINE TRIP WITH BYPASS FAILURE TRANSIENT (Continued)

15.

16.

17.

18.

Sequence of Events

Liquid control flow reaches core

RHR flow begins (pool cooling)

Hot shutdown achieved

Peak containment pressure and
pool bulk temperature occur

Time

Wi th ARI

N/A

>11 Minutes

20 Seconds

>2 Hours

With ARI Failure

3 Minutes

11 Minutes

23 Minutes

28 Minutes

3-395

Table 3.5.3-1 

BWR/6 TURBINE TRIP WITH BYPASS FAILURE TRANSIENT (Continued) 

Sequence of Events 

15. Liquid control flow reaches core 

16. RHR flow begins (pool cooling) 

17. Hot shutdown achieved 

18. Peak containment pressure and 
pool bulk temperature occur 

3-395 

Time 

With ARI With ARI Failure 

N/A 3 Minutes 

>11 Minutes 11 Minutes 

20 Seconds 23 Minutes 

>2 Hours 28 Minutes 
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NEDO-24222

4. ACCEPTANCE LIMITS AND CONFORMANCE

4.1 PRIMARY SYSTEM INTEGRITY

RPV primary system peak pressures are under the emergency limit of 1500 psi
for all events analyzed.

4.2 CONTAINMENT INTEGRITY

Postulated ATWS events subject the containment structure to static and dynamic
loads which are less than those for which the containment has been designed.
This section of the report shows that containment structural integrity is
maintained by comparison with existing design loads.

4.2.1 Static Pressure and Temperature

For the static pressure and temperature loads, ATWS event consequences are much
less severe than the results of loss-of-coolant accidents which form part of
the design basis for containments as documented in Section 5.2 of Safety
Analysis Reports. The table below shows that, for all containment types, the
pressures and temperatures due to ATWS events are within the capability of
the containment.

Containment

Mark I
(BWR 4)

Mark II
(BWR 5)

Mark III
(BWR 6)

Peak Pressure (psig)
ATWS Design Basis

11 56

Bulk Pool
Temperature (0 F)

ATWS Design Basis

189 281

10

7

45

15

185

170

220*

185

*However, most Mark II plants have a design basis of 240 0 F.

4-1
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4. ACCEPTANCE LIMITS AND CONFORMANCE 

4.1 PRIMARY SYSTEM INTEGRITY 

RPV primary system peak pressures are under the emergency limit of 1500 psi 

for all events analyzed. 

4.2 CONTAINMENT INTEGRITY 

Postulated ATWS events subject the containment structure to static and dynamic 

loads which are less than those for which the containment bas been designed. 

This section of the report shows that containment structural integrity is 

maintained by comparison with existing design loads. 

4.2.1 Static Pressure and Temperature 

For the static pressure and temperature loads, ATWS event consequences are much 

less severe than the results of loss-of-coolant accidents which form part of 

the design basis for containments as documented in Section 5.2 of Safety 

Analysis Reports. The table below shows that, for all containment types, the 

pressures and temperatures due to ATWS events are within the capability of 

the containment. 

Bulk Pool 
Peak Pressure (psig) Temperature (OF) 

Containment ATWS Design Basis ATWS Design Basis 

Mark I 11 56 189 281 
(BWR 4) 

Mark II 10 45 185 220* 
(BWR 5) 

Mark III 7 15 170 185 
(BWR 6) 

*However, most Mark II plants have a design basis of 240°F. 
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4.4 FUEL INTEGRITY

A fundamental assumption in the NRC guidelines in NUREG-0460 is that the

occurrence of some fuel perforations during an ATWS event is acceptable pro-
viding: a) the extent/number of perforations does not cause unacceptable

radiological consequences; and, b) the resulting fuel condition does not
preclude coolability and ultimate safe shutdown. The safety condition is
assured through the application of the fuel damage criteria of 10CFR5O

Appendix K, which are used to assure coolable geometry during a loss-of-
coolant accident (LOCA).

4.4.1 Fuel Integrity Criteria

The fuel integrity criteria are those used to assure maintenance of a coolable
geometry. These criteria must not be violated by an ATWS event. The
specific criteria are: 1) the maximum peak cladding temperature must not

exceed 2200*F; and, 2) the maximum local cladding oxidation must not exceed 17%.

As in a LOCA event, satisfaction of these criteria will assure maintenance of
a coolable geometry in the fuel.
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4.4.2 Results of Fuel Integrity Evaluations

4.4.2.1 Peak Cladding Temperature

The peak calculated cladding temperature for all ATWS events analyzed was
significantly below the 2200*F requirement from 10CFR50 Appendix K.

4.4.2.2 Localized Cladding Oxidation

The maximum calculated local cladding oxidation for the ATWS events-analyzed was
found to be significantly below the accepted maximum
value (17% of cladding volume). Therefore, no effects due to oxidation are
expected to occur.

4.4.3 Conclusions

The foregoing sections indicate that there is substantial margin with respect
to assuring coolability of the core and safe reactor shutdown. Perforations
assumed to occur in fuel which experiences boiling transition results in
relatively small radiological releases (Section 4.5). General Electric there-
fore concludes that the ATWS rules and requirements specified in NUREG-0460
(Volume 3, Appendix IV) can be fulfilled under the most severe ATWS events.
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4.5 RADIOLOGICAL ANALYSIS

The radiological analysis prepared for this submittal has considered the BWR/4-6
reactors and the Mark I-III containments. While there are significant differ-
ences for these plants, analyses have shown that the dose consequences of all
ATWS events in a BWR/6-MK III bound the consequences for all three containment
types and product lines. A schematic of the containment system and fission
product transport pathways used in this analysis is shown in Figure 4-5.1.
One of the primary differences between the Mark I-II containments and the Mark
III containment is the "open" suppression pool for Mark III. There will be a
short period of time prior to containment isolation when fission products may
be released directly to the environment from the Mark III containment. Because
of the "closed supression pool for the Mark I-II containments this pathway does
not exist for these designs, therefore, the radiological consequences for a
BWR/6 Mark III bound the consequences for these two product lines. For the
Mark III and for some Mark I-II containments forced mixing of the air within
the secondary containment is provided. However, this is not a universal
feature, therefore one of the assumptions applied to the "conservative assess-
ment" is that zero mixing occurs within secondary containment. The meteoro-
logical conditions bound all BWR sites licensed to date.

Two analytical evaluations, which include two cases each, are presented in
subsequent sections. These two evaluations are arbitrarily defined as
"Realistic Assessment" and "Conservative Assessment."

4.5.1 Assumptions/Conditions of Analysis

The assumptions or conditions considered appropriate for the evaluation of
the radiological calculations are presented in Tables 4.5.1 - 4.5.4 Parametric
values in the conservative columns in these tables are consistent with the
guidance offered in Reference 4.4.4. Where guidance was lacking, assumptions

were made which are consistent with previous BWR licensing practice.
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Parametric values in the realistic columns are consistent with experimental

data obtained from operating BWRs or which are considered conservative if

operating data is lacking. For the zero perforation case (case 1) the

assumption is made that the activity released from defective fuel rods is

proportional to the negative change in reactor vessel pressure.

4.5.2 ATWS Events Evaluated

Radiological evaluations have been performed for nine ATWS events. For two

of these events, PREGO and FWCF, the two cases in Table 4.5.1 were evaluated

(i.e., zero fuel perforations and 100% fuel perforations) for the BWR 4/5/6.

The remaining events were evaluated with conservative assumptions, 100% fuel

perforations, and a BWR/6 only. The events evaluated for all three product

lines were:

I) Pressure Regulator Failure - Open (PREGO)

2) Feedwater Controller Failure - Maximum Demand (FWCF)

The other

were:

events evaluated for 100% fuel perforations and the BWRIG - Mark III

3) Loss of Auxiliary Power (LOAP)

4) Loss of Normal Feedwater (LNFW)

5) Turbine Trip without Bypass (TTWOB)

6) Pressure Reg. Failure Closed (PREGC)

7) Loss of Condenser Vacuum (LOCV)

8) Loss of Feedwater Heater (70FW)

9) Recirculation Flow Control Failure - Maximum Demand (FSTOP)
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Transients 8 and 9 are not expected to result in any fuel damage or isolation,
therefore, the off gases continue to be processed by the off gas system and
no additional radiological consequences are expected, therefore these events
will not be discussed hereafter.

For blowdown to an "open" suppression pool, such as for a BWR/6-Mark III con-
tainment, isolation of the containment ventilation occurs at the following
times:

Signal Initiating Isolation Signal Containment Isolated (Sec)*
Event Closure Occurs at (Sec) (Relative to 0 Time)

PREGO & High Radiation 2.5 (a) 7.5
LOCV, PREGC Plenum Exhaust

TTWOB High Radiation 4 (a) 9
& LOAP Plenum Exhaust

FWCF Low Water Level 23 28
& LNFW Level (2)

(a) Assume instantaneous homogeneous distribution of Fission Products in
containment.

*Includes allowance of 5 seconds to close ventilation valves.

4.5.2.1 Pressure Regulator Failure - Open (PREGO)

An examination of the pressure in the reactor pressure vessel for a BWR/6
shows that the pressure initially goes to about 1200 psi, drops in pressure
(due to SRV opening) to about 1113 psia, and cycles between this value and
1150 psi for approximately 240 seconds, and then cycles at lower pressure
fluctuations from that time on. As noted previously, the fission product
release for defective fuel rods is-assumed to be proportional to the negative
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change in reactor pressure. Therefore in approximately 240 seconds the fuel
is assumed to have experienced a pressure reduction equivalent to 1050 psia.
For purposes of evaluation the total "spiking" activity in Table 4.5.4 for
case I is, therefore assumed to be released uniformly to the primary coolant
over a 240 second time period. As an example, the release rate of 1-131, for
the conservative analysis, is assumed to be 14,000/240 = 58 Ci/sec. This
release rate occurs for a time period of 240 seconds after which no additional
release occurs to the RPV. The activity in'the primary coolant is determined
as follows:

dN1 /dt - -NI(A + L1 ) + S1 (1)

NI Si
(I -e

X+ LI

- (A + L1) t
) (Ci) (2)

where t in Equation 2 is valid between 0 and 240 seconds. For t > 240 seconds
the activity in the primary coolant is determined as follows:

dN1 /dt = -(A + LI)N1

N1 = SI
(1 - e

S+Li

- (X + LI) 240
) (e

- (A + LI) (t - 240)
) (3)

where:

X = radioactive decay constant (sec- )

L, = release rate from the RPV and is determined as follows:

L NG - Steam blowdown rate (#/sec)

Mass of Steam in Steam Done (#)
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L1 = Steam blowdown rate (#/sec) (0.02)

Mass of Primary Coolant (#)

SI = source input from defective fuel (Ci/sec)

The 0.02 factor in L1 is the iodine carryover fraction in steam (i.e., each
pound of steam contains 2% of the activity contained in a pound of primary
coolant).

The activity being discharged to the condenser or suppression pool is deter-
mined by multiplying Equations 2 or 3 by the appropriate value of L, which
takes into consideration the type of activity being evaluated and the actual
steam blowdown rate to these two areas. For this event all discharges were
to the suppression pool.

For case 2, where 100% clad failure is assumed to occur, it is conservatively
assumed that failure occurs at t = 0. The activity is the primary coolant is,
therefore, defined as follows:

dN1 /dt= -(X + LI) N1 (4)

= NOe-(X + Ll)tN1

Where Equation 4 is valid for the time periods of interest and the variables
are as defined previously.

The pressure transient was evaluated for a BWR/4 - Mark I and a BWR/5 -

Mark II using the same analytical approach.
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4.5.2.2 Feedwater Controller Failure - Maximum Demand (FWCF):

As for the PREGO transient event, this event has also been quantitatively
examined with the conclusion being that from a radiological viewpoint the
BWR/6 transient will bound the consequences associated with a BWR/4 or BWR/5.
For the BWR/6 after the initial 380 psi depressurization (in 1200 sees) the
RPV depressurization rate will depend on operator action. Therefore in the
case of 0% fuel failure it is assumed that 100% of the available spiking
activity is released within 1200 sees. Equations 2 and 3 from Section 4.5.2.1
are appropriate for this transient with the 240 seconds replaced by 1200
seconds.

For case 2, where 100% clad failure is assumed to occur, it is conservatively
assumed that failure occurs at t = 0 and Equation 4 of Section 4.5.2.1 is
appropriate for the time periods of interest. For this event, 100% of the
decay steam generation rate is conservatively assumed to be discharged to the
condenser.

4.5.2.3 All Other ATWS Events:

The remaining 5 events were analyzed assuming 100% fuel failure and using
the conservative assumptions in Table 4.5.1 for a BWR 16 - Mark III plant.
All doses were less than the TTWB event presented previously.

4.5.2.4 Fission Product Release to the Environment

The fission product activity released to the environment is dependent upon
the release pathway from the reactor vessel and the reduction factors and
compartmental leakage rates between the RPV and the environment. The
activity airborne in the compartments of concern is defined by the following
differential equations.

a) Activity in Condenser

dNc/dt = - (A + L6 ) Nc + L4 N1 DF (5)
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b) Activity in Primary Containment

dNpc/dt - ( + L3 + L5 ) Npc + L2 Ni DF

c) Activity in Secondary Containment

dNsc/dt - - (A + LI) Nsc + Lc Npc

where the above parameters are schematically defined in Figure 4.5.1.

4.5.2.5 Radiological Consequences

Based upon the preceeding discussion, the following radiological exposures arecalculated for the seven ATWS events of concern. These consequences can becompared to the guidelines in 10 CFR 100 which are 25 Rem whole body and 300
Rem thyroid inhalation. It can be seen that even if 100% of the rods were toperforate, the guidelines would not be exceeded.

BWR/4
Event 

Radiological Consequence (Rem)
Site Boundary Low Population Zone

Whole Body Inhalation Whole Body Inhalation
Real. Cons. Real. Cons. Real. Cons. Real. Cons.

(i) PREGO

" Case 1 1 . 1 - 5 (a) 2.3-2 7.2-8 5.8-4 3.6-6 5.1-3 1.8-7 3.4-5
" Case 2 2.5-2 2.6-1 5.7-4 5.0-2 6.3-3 7.1-2 1.4-3 3.4-2

(2) FWCF

" Case 1 2.0-5 2.1-2 2.0-6 2.3-3 4.5-6 4.7-3 5.0-6 1.4-3
" Case 2 2.4-2 1.8-1 6.3-3 4.5-1 5.0-3 4.8-2 1.5-2 3.3-1

Case I - 0% perforations Real = Realistic
Case 2 - 100% perforations Cons = Conservative
(a) 1.1-5 = 1.1 x 10-5 Rem
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b) Activity in Primary Containment 
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dNsc/dt ~ - (A + L1) Nsc + Lc Npc 

where the above parameters are schematically defined in Figure 4.5.1. 

4.5.2.5 Radiological Consequences 

Based upon the preceeding discussion, the following radiological exposures are 

calculated for the seven ATWS events of concern. These consequences can be 

compared to the guidelines in 10 CFR 100 which are 25 Rem whole body and 300 

Rem thyroid inhalation. It can be seen that'even if 100% of the rods were to 

perforate, the guidelines would not be exceeded. 

BWR/4 

Event Radiological Consequence (Rem) 

Site BOlindarl: Low POEulation Zone 

(1) PREGO 

• Case 1 

• Case 2 

(2) FWCF 

• Case 1 

• Case 2 

Whole 

Real. 

1.1-5 (a) 

2.5-2 

2.0-5 

2.4-2 

Case 1 0% perforations 

Body 

Cons. 

2.3-2 

2.6-1 

2.1-2 

1.8-1 

Case 2 100% perforations 

(a) 1.1-5 : 1.1 x 10-5 Rem 

Inhalation 

Real. Cons. 

7.2-8 5.8-4 

5.7-4 5.0-2 

2.0-6 2.3-3 

6.3-3 4.5-1 

Whole Body 

Real. Cons. - -
3.6-6 5.1-3 

6.3-3 7.1-2 

4.5-6 4.7-3 

5.0-3 4.8-2 

Real = Realistic 

Cons = Conservative 
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Event

BWR/5

Radiological Consequence (Rem)

Site Boundary Low Population

Whole Body

Real. Cons.

Inhalation

Real. Cons.

(1) PREGO

" Case

" Case

(2) FWCF

" Case

" Case

1

2

1

2

1. 5-5 (a)

3.2-2

2.0-5

3.3-2

2.9-2

2.3-1

1.4-2

2.4-1

1.1-7

8.9-4

6.0-7

4.7-3

2.0-4

2.4-1

6.8-4

3.4-1

Whole

Real.

6.1-6

8.2-3

4.9-6

6.8-3

Body

Cons.

6.6-3

6.2-2

3.4-3

6.5-2

Inhalation

Real. Cons.

2.7-7

2.1-3

1.5-6

1.1-2

1.1-4

1.8-1

4.1-4

2.4-1

Case 1 - 0% perforations

Case 2 - 100% perforations

(a) 1.5-5 = 1.5 x 10-5 Rem

Event

Real = Realistic

Cons = Conservative

BWR/6

Radiological Consequence (Rem)

Boundary Low Population

Inhalation Whole Body Inhalation

Real. Cons. Real. Cons. Real. Cons.

SitE

Whole Body

Real. ConE

(1) PREGO

" Case

" Case

(2) FWCF

" Case

" Case

1

2

1

2

r 3-5 (a)

7.7-2

2.3-5

3.9-2

5.9-2

5.8-1

1.4-2

2.9-1

6.3-7

5.9-4

9.4-7

7.0-3

3.1-4

5.8-2

9.7-4

5.0-1

1.1-5

1.3-2

5.7-6

8.1-3

1.3-2

1.2-1

3.5-3

7.8-2

2.1-7

6.8-3

2.3-6

1.7-2

1.8-4

3.1-1

5.8-4

3.6-1

Case 1 - 0% perforations

Case 2 - 100% perforations

(a) 1.3-5 = 1.3 x 10-5 Rem

Real - Realistic

Cons = Conservative

4-16

NEDO-24222 

BWR/5 

Event Radiological Consequence (Rem) 

Site Boundary Low Population 

Whole Body Inhalation Whole Body 

Real. Cons. Real. Cons. Real. Cons. .. - - --
(1) PREGO 

• Case 1 1. S-s (a) 2.9-2 1.1-7 2.0-4 6.1-6 6.6-3 

• Case 2 3.2-2 2.3-1 8.9-4 2.4-1 8.2-3 6.2-2 

(2) FWCF 

• Case 1 2.0-5 1.4-2 6.0-7 6.8-4 4.9-6 3.4-3 

• Case 2 3.3-2 2.4-1 4.7-3 3.4-1 6.8-3 6.S-2 

Case 1 0% perforations Real = Realistic 

Case 2 100% perforations Cons "" Conservative 

(a) -5 1.5-5 = 1.5 x 10 Rem 

Event 

BWR/6 

Rad'iologica1 Consequence (Rem) 

Inhalation 

Real. Cons. 

2.7-7 ·1.1-4 

2.1-3 1.8-1 

1.5-6 4.1-4 

1.1-2 2.4-1 

Site Boundary Low Population 

(1) 

(2) 

Case 

Case 

(a) 

Whole Body Inhalation 

Real. Cons. Real. Cons. 

PREGO 

• Case 1 L3-5 (a) 5.9-2 6.3-7 3.1-4 

• Case 2 7.7-2 5.8-1 5.9-4 5.8-2 

FWCF 

• Case 1 2.3-5 1.4-2 9.4-7 9.7-4 

• Case 2 3.9-2 2.9-1 7.0-3 5.0-1 

1 - 0% perforations Real - Realistic 

Whole Body 

Real. Cons. 

1.1-5 1.3-2 

1.3-2 1.2-1 

5.7-6 3.5-3 

8.1-3 7.8-2 

2 - 100% perforations Cons "" Conservative 

1. 3-5 = 
-s 1.3 x 10 Rem 

4-16 

Inhalation 

Real. Cons. 

2.1-7 1.8-4 

6.8-3 3.1-1 

2.3-6 5.8-4 

1. 7-2 3.6-1 
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BWR/6
Event Radiological Consequence (Rem)*

Site Boundary Low Population Zone
Whole Body Inhalation Whole Body Inhalation

(3) LOAP(b) <7.3- 1 (a) <6.6-1 <1.4-1 <3.5-2(4) LNFW 5.8-1 8.1-1 7.8-2 2.9-1
(5) TTWOB 7.3-1 6.6-1 1.4-1 3.5-2(6) PREGC <5.8-1 <5.8-2 <1.2-1 <3.0-1
(7) LOCV <5.8-1 <5.8-2 <1.2-1 <3.0-1

*assumed 100% perforations

(a) 7.3-1 = 7.3 x 10-1 Rem
(b) Events (3), (6), (7) were compared to other ATWS analyses with similarblowdown rates, therefore doses represent an upper bound.

4.5.3 Conclusions

Based on the results presented in Section 4.5.2.5, it can be concluded thatthe radiological exposure for the ATWS events evaluated are well below the
guideline in 10CFR1O0 for all three BWR product lines (BWR/4, 5 and 6), andfor all three BWR containment designs (Mark I, II and III).
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NEDO-ZqZZ2 

BWR/6 

Event Radiological Consequence (Rem)* 

Site Boundary Low Population Zone 

Whole Body 

(3) LOAP(b) <7.3-1(a) 

(4) LNFW 5.8-1 

(5) TTWOB 7.3-1 

(6) PREGC <5.8-1 

(7) LOCV <5.8-1 

*assumed 100% perforations 

(a) 7.3-1 = 7.3 x 10-1 Rem 

Inhalation Whole Body Inhalation 

<6.6-1 <1.4-1 <3.5-2 

8.1-1 7.8-2 2.9-1 

6.6-1 1.4-1 3.5-2 

<5.8-2 <1. 2-1 <3.0-1 

<5.8-2 <1.2-1 <3.0-1 

(b) Events (3), (6), (7) were compared to other ATWS analyses with similar 
blowdown rates, therefore doses represent an upper bound. 

4.5.3 Conclusions 

Based on the results presented in Section 4.5.2.5, it can be concluded that 

the radiological exposure for the ATWS events evaluated are well below the 

guideline 1n 10CFR10Q for all three BWR product lines (BWR/4, 5 and 6), and 

for all three BWR containment designs (Mark I, II and III). 
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(3) LOAP(b)

(4) LMF

(5) TTWOB

(6) PREGC

(7) LOCV

BWR/6

Radiological Consequence (Rem)*

Site Boundary Low Population Zone

Whole Body Inhalation Whole Body Inhalation

<7.3-1(a) < 6.6-1 <1. 4-1 <3.5-2

5.8-1 8.1-1 7.8-2 2.9-1

7.3-1 6.6-1 1.4-1 3.5-2

<5.8-1 <5.8-2 <1.2-1 <3.0-1

<5.8-1 <5.8-2 <1.2-1 <3.0-1

*assumed 100 perforations

(a) 7.3-1 - 7.3 x 10 Rem
(b) Events (3), (6), (7) were compared to other ATWS analyses with similar

blowdown rates, therefore doses represent an upper bound.

4.5.3 Conclusions

Baed on the results presented in Section 4.5.2.5, it can be concluded that

the radiological exposure for the ATWS events evaluated are well below the

guideline in 10CFR100 for all three BWR product lines (BJR/4, 5 and 6). and

for all three BWR containment designs (Mark I, II and III).
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Event 

Site 

Whole Body 

(3) LOAP(b) <7.3-1(a) 

(4) LNFW 5.8-1 
(5) TTWOB 7.3-1 

(6) PUCC <5.8-1 

(7) LOCV <5.8-1 

*assumed 100% perforations 

(a) '7.3-1 • 7.3 x 10-1 Rem 

NEOO-24222 

BWR/6 

Radiological Consequence (Rem). 

Boundary Low Population Zone 

Inhalation Whole Body Inhalation 

<6.6-1 

8.1-1 

6.6-1 

<5.8-2 

<5.8-2 

<1.4-1 

1.8-2 

1.4-1 

<1.2-1 

<1.2-1 

<3.5-2 

2.9-1 

3.5-2 

<3.0-1 

<3.0-1 

(b) Events (3). (6). (7) were compared to other ATWS analyses with similar 
blowdown rates. therefore doses represent an upper bound. 

4.5.3 Conclusions 

Ba~p.a on the results presented in Section 4.5.2.5. it can be concluded that 

the radiological exposure for the ATWS events evaluated are well below the 

guideline in 10CFR100 for all three BWR product lines (BWR/4. 5 and 6). and 

for all three BWR containment designs (Mark I. II and II!) . 
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Table 4.5.1

ASSUMPTIONS/CONDITIONS UPON WHICH RADIOLOGICAL ANALYSIS IS BASED

Parametric
Realistic

2558/3323/4146

8 x 8

Value Assumed
Conservative

2558/3323/4146

8x8

1. Power level : BWR 4/5/6

2. Fuel Type

3. Fuel Rod Perforations (%)
" Case 1
" Case 2

4. Fission Products Rel. to Pri.
Coolant (Curies)
e Case 1

1-131
Xe-133

* Case 2
Iodines
Noble Gases

5. Fission Products Rel. to Supp.
Pool or Main Turbine Condenser

(b)

6. DF in Suppression Pool/Turbine
Conden.
* Noble Gases
" Iodine

7. Pri. Containment Leak Rate (%/day)

8. Sec. Containment Leak Rate (%Iday)

9. Condenser Leak Rate (%/day)

10. Mixing in Secondary Containment (%)

11. SGTS Iodine Filter Efficiency (%)

12. Meteorology ('/Q - sec/m3 )
Site Boundary (0-2 hrs.)
Low Population Zone

0.2 hrs.
2-8
8-24
24-96
96-720

0
100

0
100

1200/1631/1810
6500/8863/9840

1.03+4/1.4+4/1.4+4
1.6+5

2% Rod Act. 2% Rod Act.
2% Rod Act. 2% Rod Act.

Proportional to mass blowdown rate,
pri. coolant vol., RPV stm. dome vol.
and 2% carryover for Iodine

1

0.01

0.5/0.5/1.0

100

1
0.1

0.5/0.5/1.0

100

1

100

99

1

0

95

2.5 x 10"5 1.8 x 10-4

10-6 2.6
1.7
2.6
1.4
5.8

x
x
X

X
x

10-5

106
10-6
10o-

(b) DF - what comes out
what goes in

(c) Realistic meteorology is avg. annual and conservative meteorology is 10%
of the 95% meteorology.
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Table 4.5.1 

ASSUMPTIONS/CONDITIONS UPON WHICH RADIOLOGICAL ANALYSIS IS BASED 

1. Power level BWR 4/5/6 

2. Fuel Type 

3. Fuel Rod Perforations (%) 
• Case 1 
• Case 2 

4. Fission Products ReI. to Pri. 
Coolant (Curies) 
• Case 1 

1-131 
Xe-133 

.• Case 2 
Iodines 
Noble Gases 

5. Fission Products ReI. to Supp. 
Pool or Main Turbine Condenser 

. (b) 

6. OF in Suppression Pool/Turbine 
Conden. 
• Noble Gases 
• Iodine 

7. Prio Containment Leak Rate O;/day) 

8. Sec. Containment Leak Rate (%/day) 

9. Condenser Leak Rate (%/day) 

10. Mixing in Secondary Containment (%) 

Parametric Value Assumed 
Realistic Conservative 

2558/3323/4146 

8 x 8 

o 
100 

1200/1631/1810 
6500/8863/9840 

2% Rod Act. 
2% Rod Act. 

2558/3323/41A6 

8 x 8 

o 
100 

1.03+4/1.4+4/1.4+4 
1.6+5 

2% Rod Act. 
2% Rod Act. 

Proportional to mass b1owdown rate, 
pri. coolant vol., RPV stm. dome vol. 
and 2% carryover for Iodine 

1 I 
0.01 0.1 

0.5/0.5/1.0 0.5/0.5/1. 0 

100 100 

1 1 

100 0 

11. SGTS Iodine Filter Efficiency (%)(c) 

12. Meteorology (X/Q - sec/m3) 
Site Boundary (0-2 hrs.) 
Low Population Zone 

99 95 

0.2 hrs. 
2-8 
8-24 
24-96 
96-720 

(b) DF = what comes out 
what goes in 

2.5 x 10..:. 5 

10-6 

l.8x 10-4 

2.6 x 10-5 
-5 1.7 x 10_

6 2.6 x 1°_6 
1.4 x 10_7 
5.8 x 10 

(c) Realistic meteorology is avg. annual and conservative meteorology is 10% 
of the 95% meteorology. 

4-19 



NEDO-24222

Table 4.5.2
FISSION PRODUCTS RELEASED .TO PRIMARY COOLANT FROM
NORMALLY FAILED OR ATWS INDUCED FAILED FUEL RODS

BWR/4 (218-560)

Activity Released (Ci)Isotope

1-131

132

133

134

135

K4-83m

83m

85

87

88

89

Xe-131m

133m

133

135m

135

137

138

Case 1

0 Perforations

Realistic Conservative

1.2+3(a) 1.0+4(b)

1.8+3 1.5+5

2.8+3 7.3+4

3.0+3 4.2+5

2.7+3 1.2+5

Case 2

100% Perforations

1.3+6

1.9+6

2.9+6

3.4+6

2.6+6

5.1+2

1. 2+3

2.8+2

2.4+3

3.4+3

4.5+3

3.7+1

1.8+2

6.5+3

1. 0+3

6.2+3

5.9+3

5.9+3

6.5+4(c)

1. 2+5

2.8+2

3.8+5

3.8+5

2.3+6

2.8+2

5.5+3

1.6+5

5.0+5

4.1+5

2.8+6

1.7+6

2.1+5

.6.6+5

2.1+4

1. 2+6

1.6+6

2.0+6

1.3+4

7.1+4

2.9+6

1.0+5

2.7+6

2.6+6

2.4+6

a) 1.2+3 = 1.2xl03 curies.
b) 1-131 release based on a release rate from the fuel for 4 hours equal

to 250 times the tech. spec. value, where the tech. spec. equals
0.2 VCi/gm dose equivalent 1-131.

c) Noble gas- values based on 1330 times normal offgas integrated over a
4 hr. period.
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Isotope 

1-131 

132 

133 

134 

135 

K4-83m 

83m 

85 

87 

88 

89 

Xe-131m 

133m 

133 

135m 

135 

137 

138 

NEDO-24222 

Table 4.5.2 

FISSION PRODUCTS RELEASED.TO PRIMARY COOLANT FROM 

NORMALLY FAILED OR ATWS INDUCED FAILED FUEL RODS 

BWR/4 (218-560) 

Activity Released (Ci) 

Case 1 Case 2 

0 Perforations 100% Perforations 

Realistic 

1.2+3 (a) 

1.8+3 

2.8+3 

3.0+3 

2.7+3 

5.1+2 

1.2+3 

2.8+2 

2.4+3 

3.4+3 

4.5+3 

3.7+1 

1.8+2 

6.5+3 

1.0+3 

6.2+3 

5.9+3 

5.9+3 

Conservative 

1.0+4 (b) 

1.5+5 

7.3+4 

4.2+5 

1.2+5 

6.5+4(c) 

1.2+5 

2.8+2 

3.8+5 

3.8+5 

2.3+6 

2.8+2 

5.5+3 

1.6+5 

5.0+5 

4.1+5 

2.8+6 

1.7+6 

1.3+6 

1.9+6 

2.9+6 

3.4+6 

2.6+6 

2.1+5 

6.6+5 

2.1+4 

1.2+6 

1.6+6 

2.0+6 

1.3+4 

7.1+4 

2.9+6 

1.0+5 

2.7+6 

2.6+6 

2.4+6 

a) 1.2+3 = l.2xl03 curies. 
b) 1-131 release based on a release rate from the fuel for 4 hours equal 

to 250 times the tech. spec. value, where the tech. spec. equals 
0.2 ~Ci/gm dose equivalent 1-131. 

c) Noble gas· values based on 1330 times normal offgas integrated over a 
4 hr. period. 
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Isotope

Table 4.5.3

FISSION PRODUCTS RELEASED TO PRIMAI!X

NORMALLY FAILED OR ATWS INDUCED FAll

BWR/5 (251-764)

Activity Relea

Case 1

0 Perforations

Realistic Conservative

1.6+3 (a) 1 .4+ 4 (b)

2.5+3 2.0+5

3.8+3 9.9+4

4.2+4 5.7+5

3.7+3 1.6+5

1-131

132

133

134

135

Kr-83m

85M

85

87

88

89

Xe-131m

133m

133

135m

135

137

138

6.9+2

1.7+3

3.8+2

3.3+3

4.7+3

6.1+3

5.0+1

2.5+2

8.9+3

1. 4+3

8.4+3

8.0+3

8.1+3

6. 5+4 (c)

1.2+5

2.8+2

3.84-5

3.8+5

2.3+6

2.8+2

5.5-3

1.6+5

5.0+5

4.1+5

2.8*6

1.7+6

a) 1.6+3 = 1.6x10 3 curies,
b) 1-131 release based on a release rate fror. tz;.

to 250 times the tech. spec. value, where t'l
0.2 wCi/gm dose equivalent 1-131.

c) Noble gas values based on 1330 times normal 1
4 hr. period.
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Isotope 

1-131 

132 

133 

134 

135 

Kr-83m 

85M 

85 

87 

88 

89 

Xe-131m 

133m 

133 

135m 

135 

137 

138 

NEDO-24222 

Teb1e 4.5.3 

FISSION PRODUCTS RELEASED TO PRnl~~:~· 

NORMALLY FAILED OR ATWS INDUCED FAj: 

BWR!5 (251-764:' 

Activity Rel~,,-· 

Case 1 

o Perforations 

Realistic Conservative 

1.6+3(a) 1.4+4 (b) 

2.5+3 2.0+5 

3.8+3 9.9+4 

4.2+4 5.7+5 

3.7+3 1.6+5 

6.9+2 6.5+4(c) 

1. 7+3 1.2+5 

3.8+2 2.8+2 

3.3+3 3.8+5 

4.7+3 3.8+5 

6.1+3 2.3+6 

5.0+1 2.8+2 

2.5+2 5.54-"3 

8.9+3 1.6+5 

1.4+3 5.0+5 

8.4+3 4.1+5 

8.0+3 2.84-"6 

8.1+3 1. 7+6 

a) 1. 6+3 = 1. 6x10 3 cud.es .• 
b) 1-131 release based on a release rate fro~ t~~ 

to 250 times the tech. spec. value, where the :. 

0.2 ~Ci/gm dose equivalent 1-131. 
c) Noble gas values based on 1330 times norrn31 u[ 

4 hr. period. 
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Table 4.5.4

FISSION PRODUCTS RELEASED TO PRIMARY COOLANT FROM

NORMALLY FAILED OR ATWS INDUCED FAILED FUEL RODS

BWR/6 (251-848)

Activity Released (Ci)Isotope

1-131

132

133

134

135

K4-83m

85m

Case 1

0 Perforations

Realistic Conservative

1. 8 +3 (a) 1.4+4(b)

2.7+3 2.0+5

4.3+3 1.0+5

4.6+3 5.7+5

4.1+3 1.6+5

Case 2

100% Perforations

2.1+6

3.2+6

4.7+6

5.5+6

4.2+6

85

87

88

89

Xe-131m

13 3m

133

135m

135

137

138

7.7+2

1.9+3

4.2+2

3.7+3

5.2+3

6.8+3

5.6+1

2.8+2

1.0+4

1. 5+3

9.3+3

8.9+3

9.0+3

6.5+4(c)

1.2+5

2.8+2

3.8+5

3.8+5

2.3+6

2.8+2

5.5+3

1.6+5

5.0+5

4.1+5

2.8+6

1.7+6

3.4+5

1.1+6

3.4+4

1.9+6

2.7+6

3.3+6

2.2+4

1.2+5

4.7+6

1.3+6

4.5+6

4.2+6

4.0+6

a) 1.8+3 1.8x10 3 curies.
b) 1-131 release based on a release rate from the fuel for 4 hours equal to

250 times the tech. spec. value, where the tech. spec. equals 0.2 pCi/gm

dose equivalent 1-131.
c) Noble gas values based on 1330 times normal offgas integrated over a

4 hr. period.
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Isotope 

1-131 

132 

133 

·134 

135 

K4-83m 

85m 

85 

87 

88 

89 

Xe-131m 

133m 

133 

135m 

135 

137 

138 

NEDO-24222 

Table 4.5.4 

FISSION PRODUCTS RELEASED TO PRIMARY COOLANT FROM 

NORMALLY FAILED OR ATWS INDUCED FAILED FUEL RODS 

BWR/6 (251-848) 

Activity Released (Ci) 

Case 1 Case 2 

0 Perforations 100% Perforations 

Realistic Conservative 

1~8+3(a) 1.4+4 (b) 2.1+6 

2.7+3 2.0+5 3.2+6 

4.3+3 1.0+5 4.7+6 

4.6+3 5.7+5 5.5+6 

4.1+3 1.6+5 4.2+6 

7.7+2 6.5+4(c) 3.4+5 

1.9+3 1.2+5 1.1+6 

4.2+2 2.8+2 3.4+4 

3.7+3 3.8+5 1.9+6 

5.2+3 3.8+5 2.7+6 

6.8+3 2.3+6 3.3+6 

5.6+1 2.8+2 2.2+4 

2.8+2 5.5+3 1.2+5 

1.0+4 1.6+5 4.7+6 

1.5+3 5.0+5 1.3+6 

9.3+3 4.1+5 4.5+6 

8.9+3 2.8+6 4.2+6 

9.0+3 1.7+6 4.0+6 

a) 1.8+3 ~ 1.8xl0 3 curies. 
b) 1-131 release based on a release rate from the fuel for 4 hours equal to 

250 times the tech. spec. value, where the tech. spec. equals 0.2 ~Ci/gm 
dose equivalent 1-131. 

c) Noble gas values based on 1330 times normal offgas integrated over a 
4 hr. period. 
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Figure 4.4-1. BWR/4 ATWS Feedwater Controller Failure Fuel Evaluation
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Figure 4.4-1. BWR/4 ATWS Feedwater Controller Failure Fuel Evaluation 
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Figure 4.4-2. BWR/4 ATWS MSIV Fuel Evaluation
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Figure 4.4-3. BWR/4 ATWS Pressure Regulator Failure (Maximum Demand) Fuel Evaluation
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Figure 4.4-3. ~ BWR/4 ATWS Pressure Regulator Failure (Maximum Demand) Fuel Evaluation 
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Figure 4.4-4. BWR/5 ATWS Feedwater Controller Failure Fuel Evaluation
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Figure 4.4-4. BWR/5 ATWS,Feedwater Controller Failure Fuel Evaluation 
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Figure 4.4-5. BWR/5 ATWS MSIV Closure Fuel Evaluation
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Figure 4.5.1. Fission Product Containment and Leakage Pathways
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5. OTHER ATWS CONSIDERATIONS

5.1 DIVERSITY CONSIDERATIONS

The primary diversity provided by ARI is in the use of an tienergized-to-trip"
circuit versus a "deenergized-to-trip" circuit in the output devices of the
current scram system. In addition, the relays in the ARI will be from a
different manufacturer than the output relays called scram contactors (scram
breakers) which directly deenergizes power to the solenoids in the Hydraulic
Control Unit (HCU) in the current scram system.

Functional diversity currently exists in the sensors of the scram system.
This diversity in the current scram system is depicted in Table 5.1-1. All plant
transients in Table 5.1-1 have at least two diverse means (level/pressure, valve
position, or flux/radiation sensors) for initiating a scram signal. Eight out
of the nine transients in Table 5.1-1 have three diverse means for initiating a
scram signal. The sensor diversity provides protection from failures due to
functional deficiency of a sensed scram variable, miscalculation of sensors,
and other maintenance errors by a single individual or crew.

5.2 EQUIPMENT OVERPRESSURE PERFORMANCE SUMMARY

A list of components affected by an ATWS was made for plants of the BWR/4
through the BWR/6 product line. The components were divided into logical
subsystems, and a conservative estimate of the peak pressure seen by that
section was calculated. (Peak pressures were calculated for the vessel-
limiting case of 1500 psig vessel bottom pressure, and for currently published
peak pressures.) The suggested design pressure of components within the scope
of GE designed parts was then listed. Rules for Service Level C conditions
(defined by ASME Section III Subsection NB) were applied to the suggested
design criteria to show the acceptable limit for the component during an
ATWS. The results show that, despite the conservatism used in estimating the
peak pressure, no piping exceeds the Service Level C pressure limit. The list
of components is given in Appendix A.3.
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ATWS was assumed to affect all valves from the vessel to the last closed

valve upstream (i.e., vessel-side) of a relief valve, storage tank, or the

suppression pool. All piping and valves from pump discharge to vessel inlet

were considered (where appropriate). It was assumed that pump discharge piping

and valve have been designed so that operability is not impaired by running

at pump shut-off head (i.e., only pressures caused by vessel peak pressures
were considered).

The peak pressure seen by each region of the reactor was taken from computer
simulations of the ATWS event for the given plants. The bounding ATWS event

chosen was a simultaneous closure of all MSIV's, with an accompanying failure

to scram. Using the peak dome pressure, steam line pressure, and maximum

recirculation pump head obtained, auxiliary pump and conservative static

heads were added to arrive at the estimated peak pressure for each system.

For the limit case the recirculation suction pressure and the vessel-bottom

pressure were assumed to be 1500 psig. Peak recirculation pump discharge
pressure was obtained by adding 50% of full load pump head to the peak

recirculation suction pressure. The pump has been decreased below this

value during the ATWS pump countdown before the peak pressure occurs.

5.3 BORON EFFECT ON BWR COMPONENTS

The systems exposed to some concentration of sodium pentaborate after an ATWS

event (or inadvertent injection) can include the following:

a. The reactor vessel, vessel internals, fuel, and the recirculation

and RHR systems. The maximum concentration of borate in these

systems is expected to be 1000.ppm equivalent boron during hot

standby, with the RHR system acting in its steam-condensation mode.

At cold shutdown conditions the maximum borate concentration is

about 750 ppm boron.
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b. The suppression pool. S/RV discharge to the suppression pool

during isolation in an ATWS transient gives the pool a concentration

of about 3 ppm boron.*

c. The main turbine condenser. The steam bypassed to the main condenser
can give the condensate inventory a concentration of up to 30 ppm
boron.*

d. Main steam lines, main steam line drains, and MSIV leakage control
system. The concentration in different locations can be anywhere

between 1 ppm boron (the low estimate for steam boration at reactor

temperature) and 1000 ppm boron, the maximum concentration in the
entrained moisture. RCIC turbine and steam lines will be exposed to
dry steam, containing between 1 and 20 ppm boron (high estimate of
steam boration).

e. Radwaste will see at most 750 ppm boron during the borate cleanup,

except for the evaporator and the system downstream, which could see
at most 25% by weight pentaborate.

f. The reactor water cleanup system will be isolated from all systems
containing borated water. It will only be used for the final
"polishing" of reactor water, and should see no more than '\ 1 ppm
boron.

g. The offgas system will be exposed to borated steam if steam-jet
air ejectors continue to operate after an ATWS transient without

isolation. The concentration in the steam will be between 1 and
20 ppm boron.

*The estimates of boron transfer to the suppression pool and main condenser
are based on conservative calculations of water carryover from the reactor.
In addition, the worst-case value of 20 ppm boron in steam was used; the
actual valve is considered to be closer to the lower estimate of 1 ppm boron.
If the latter steam carryover is used, the concentrations in the suppression
pool and condenser are cut by a factor of 5.
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At the beginning of shutdown after any ATWS transient, the reactor water pH
is between 7.5 and 8 and the borate concentration is no more than 750 ppm
boron. The borate species present are pentaborate hydrate and other poly-
borate hydrates; the exact breakdown is determined solely by the existing
shutdown conditions, not by preceding conditions, since known borate chemistry
includes no irreversible reactions.

Removal of borate from the reactor water may require a shutdown of as long
as several months. GE expects no damage to the exposed BWR systems to occur
in such short periods, although the available information on the properties
and effects of sodium pentaborate on BWR operation is rather sparse. Only the
radwaste system will continue to be exposed to borate after startup, since
borate water in storage will remain to be treated.

Relevent data and information are:

a. Corrosion tests conducted with 15000 ppm potassium tetraborate, a
similar chemical, at 680'F and pH 10 indicated no detrimental
effects on zirconium alloys, stainless steels and nickel alloys.
The lower temperature and concentration during an ATWS transient
and the subsequent shutdown should further reduce possible
corrosiveness to these metals and to carbon steels, on which no
information is available.

In addition, • 13% by weight pentaborate decahydrate at pH n 7 and
80OF has caused no known cracking or corrosion in the standby
liquid control tanks in existing GE BWR systems. These tanks are
stainless steel, and have been exposed to borate for many years.

b. Standard manufacturers' information shows that aqueous perborate
solutions (pH u 10) cause little or no damage to elastomeric
gaskets within the temperatures ranges recommended for the materials.
The low concentrations of pentaborate, at a more neutral pH, are
not expected to affect the exposed elastomers.
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c. Except for its effect on reactivity, an aqueous pentaborate solution
of 1000 ppm boron has essentially the same properties as water. The
presence of pentaborate is not expected to affect fluid flow of heat
transfer in any system during ATWS or the subsequent shutdown. The
radwaste system is designed to handle relatively concentrated solu-
tions such as the 25% pentaborate solution produced by the
evaporator.

d. Precipitation of pentaborate or other borates from these essentially
neutral -pH solutions will not occur for temperatures greater than
70°F. No caking on surfaces or clogging of nozzles is expected,

even in Radwaste.

e. The offgas recombiner catalyst is not expected to be inactivated
by exposure to borated steam. Any borate deposits can be washed
away with wet steam, since borates are soluble at steam temperatures.

The final result of an ATWS event will be the production of 2000 to 11000 ft 3

of drummed waste-during the total borate cleanup process, including processing
of stored borated water after startup. The time required for cleanup, and
the amount of waste produced, depend on the type of radwaste and condensate
treatment systems. The ATWS waste can be monitored and stored on-site in
temporary buildings. No excessive personnel exposure should result.

The available evidence supports the expectation that the injection of sodium
pentaborate during an ATWS transient is not expected to have any effect on
GE BWR system's functions and materials. Additionally no significant long
term effects are expected.

5.4 BORON MIXING

5.4.1 Definition of Mixing Efficiency

Liquid boron injected into the reactor is most effective if all of it stays
uniformly distributed in the core. However, since the reactor coolant keeps
flowing through the core, the liquid boron will spread into the other regions
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of the reactor as well. Therefore, for comparison purposes a reference
"perfectly mixed" condition is defined as one in which, at a given point in
time during the ATWS, all the liquid boron is uniformly mixed throughout
the coolant within the reactor coolant pressure boundary. Since non-uniformities
in liquid boron concentration are possible and expected, the mixed condition
at any time is related to the reference condition through a mixing efficiency
defined as follows:

W(t)
W pm(t)

where

n(t) - Mixing efficiency at time t

W(t) = Amount of liquid boron in thecore at time instant t
W PM(t) = Amount of liquid boron that would be present in the core at

time t, if perfectly mixed condition is assumed.

n(t) is also equal to the ratio of the average concentration of boron-in the
liquid part of the coolant in the core to the average concentration throughout
the coolant in the RPV (Reactor Pressure Vessel). The actual time-varying
mass of liquid in the vessel and recirculation loops was used in calculating
the vessel mixed boron concentration. When boron is injected inside or near
the core, the average concentration in the core could be greater than the
average value in the RPV, and thus the mixing efficiency as defined above
could be greater than 100%. However, as mixing and dispersal continues the
efficiency will eventually approach unity.

5.4.2 Discussion of Boron Mixing Process for Injection Through the Jet Pump
Instrumentation (JPI) Lines

Figure 3.3-2 shows the schematic of the boron injection arrangement using
the JPI lines as the points of entry into the RPV. This design'is applicable
to BWR's which in an ATWS, supply makeup water outside the core shroud by
HPCI (generally BWR/4's). The discharge side of the SLC pump is connected
to the JPI lines outside the containment. These JPI lines are connected to
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the upper part of the jet pump diffusers inside the reactor pressure vessel.
If the SLC pumps are initiated at time Top the liquid boron will first reach
the RPV at a time TV where (T 1-T 0 ) is the "transport delay" outside the RPV
and is equal to the time taken by the liquid boron flow to displace all the
water in the pipeline from the pumps to the jet pump diffusers.

Figure 5.4-1 shows typical schematic details of the connection of the upper
instrumentation tap with the top of the Jet pump diffuser. When liquid boron
is injected through this line, it issues into the diffuser flow through ten
0.09" diameter holes in the wall of the diffuser. The resulting average jet
velocity at a total flow rate of 86 GPM is approximately 22 ft/sec. This
high velocity combined with the effect of high Reynolds number of the flow
(of the order of 10 6 with 10%'of the rated flow through the jet pump diffuser)
causes thorough mixing of the liquid boron and the diffuser flow. Simulation
test observations confirm this fact. The flow and mixing of liquid boron
injected through the JPI lines was tested in a transparent simulation model.
Some features of the test model are:

a. 1/6 scale, slab geometry representation of the reactor.

b. The geometry of the reactor intervals is simulated in a simplified

way.

C. Simulation includes the portion of the reactor from bottom of the
lower plenum to the bottom of the separator skirt.

d. Reactor coolant flow is simulated with flow of water at room

temperature and pressure.

The model has provision for simulating forced circulation of the.
coolant by means of pumps and natural circulation is provided by
airlift created by bubbling air through the simulated core region.

e. The liquid boron injection into the JPI is simulated by a solution

of sodium bromide which simulates nearly all density difference

between liquid boron solution and reactor coolant at 5500F.
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Flow and mixing patterns were observed in the test model with the help of a
colored dye injected with the liquid boron flow. The observations indicated
that at all core flows greater than approximately 5% of the rated value,
the following conclusions are applicable.

a. The liquid boron injected through the JPI at the top of the diffuser
thoroughly mixes with the diffuser exit flow.

b. The jet pump exit flow fills up the lower plenum from the bottom.

These results are presently being further confirmed by quantitative measure-
ments from-the tests. Based on the above experimental observations from the
simulation tests, the following simplified picture of the boron mixing
process can be constructed. Consider the condition in which the reactor
core coolant flow (by natural circulation) is at a constant rate of Qc lbm/sec
and liquid boron flow constant at ýB lbm/sec into the jet pump diffusers.
After liquid boron enters the JP diffusers, the water flowing out at the exit
of the jet pumps will have a boron concentration of B C B/Qc++B )PPM, where
CB is the boron concentration in the sodium pentaborate solution in the SLC
tank. Core coolant with this concentration will appear at the core inlet at
a time T2, where (T 2-T 1 ) is time required by the jet exit flow to "displace"
all the water in the flow path from jet pump suction to the bottom of the
active fuel. To facilitate further discussion we define (T2 -T1 ) as the "first
pass delay" which is also the time to delay from the instant at which liquid
boron enters the RPV to the time at which it begins its effect on the core
power. As the incoming borated water displaces the coolant in the core,
core average concentration increases. This increase is modeled linearly
from 0 PPM at time < T2 to QBCB/(Qc+QB) at time T3 . Where (T3 -T 2 ), defined
as the "core passage time", is the time required for the core inlet flow to
displace all the core coolant between the bottom and the top of the active
fuel. The borated core exit flow then flows through the jet pumps, and there
picks up a higher concentration equal to 2 QB CB/(QC + B) due to the liquid
boron still being pumped into the JP diffusers. This new concentration will
appear at the core inlet after the lower plenum water is again displaced by
the jet exit flow. Thus at a time T4 , the boron concentration at the core
inlet will be 2QB CB/(Qc + B ), where T4 -T 2 ), defined as "loop delay time",
is the time taken by a particle of water to traverse the natural circulation
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flow loop through the core, separators, downcomers, Jet pump diffusers and
lower plenum. The average concentration in the core will rise to 2 4BCB/
Oc+ýB ) at T5, where (T5 -T 4 ) is again the "core passage time". This set
of events from T2 to T4 will repeat as long as the core flow and the liquid
boron are maintained at their constant values. In the foregoing discussion,
the steam leaving the separators is assumed to be made up by water flow into
the reactor (by HPCI or feedwater) keeping water level constant, and boron
that would be lost with the steam is assumed to be negligible.

The buildup of boron concentration in the core water by the process discussed
above is shown in Figure 5.4-2 by the solid curve 1. Here the values of
the different transport and delay times are calculated for a typical 251"
reactor at 151 core flow and 86 GPM liquid boron flow, and listed in
Table 5.4-1. When core flow and liquid boron are assumed to be constant
the boron buildup follows a nearly staircase function as indicated by curve 1.
However, even at constant average core flow, the flow loop times would be
actually different for different water particles because of flowing through
differently located fuel bundles, separatQr, etc. Further, the effect of
turbulence in the reactor flow tends to diffuse the sharp boron concentration
front that would otherwise be sustained by pure transport. For these reasons
the average boron concentration development in the core water is expected
to fall within a band shown by the shaded area which envelops the curve 1.

Curve 2 in Figure 5.4-2 shows the buildup of concentration when 100% is
assumed (perfect mixing as discussed in 5.4-1). It is seen that this line
lies approximately in the middle of the shaded band of actually expected
concentration buildup.

In applying the discussion of Figure 5.4-2 to the BWR's ATWS analysis, the
following must'be considered:

a. The first pass delay inside the vessel core passage time and the
flow loop delay times are inversely proportional to the core flow
rate. Similarly the increase in concentration experienced by the
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core flow in each of its passage through the jet pumps is also

inversely proportional to the core flow rate. Therefore, at core

flow rates greater than 15%, curve 1 in Figure 3 will be closer

to the 100% efficiency curve 2 (and the shaded band will be

narrower). At core flows smaller than 15%, the "steps" of the

curve 1 will be larger, but the curve 2 will still pass through

the middle of the corresponding enveloping shaded area.

b. In a typical ATWS base case for BWR's with HPCI (i.e., generally

BWR/4's), the core flow rate at the time liquid boron first enters

the RPV is generally near 20%. Further between this time and hot

shutdown, the calculated core flows are high enough to sustain a

mixing process similar to the one discussed above.

Based on the above discussion, the following assumptions made in the ATWS

analysis for injection through the JPI lines, are considered appropriate.

a. The delay (T 2 -To),.between the start of the SLC pump and the time

at which boron first becomes effective in the core is 60 seconds.

b. The mixing efficiency is assumed to be 95%. Here although 100%

mixing efficiency is appropriate, a 5% margin is allowed for unknown

uncertainties. One such uncertainty could be with respect to cir-

cumferencial distribution since fewer than all the jet pumps are

used for boron injection.

Under these assumptions, the boron concentration buildup in the core water

will also be linear. A comparison of this (Curve 3) with the Curve 1

indicates that the assumptions are justifiable.

5.4.3 Discussion of the Boron Mixing Process for Injection in Core Spray

Sparger

Figure 5.3-4 and 5.3-6 show the schematic of boron injection arrangement for

the BWR's which, in ATWS transients, supply makeup water inside the core

exit plenum (all BWR/5's and BWR/6's and some BWR/4's belong to this class).
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In this case the liquid boron is injected into the HPCS line very near the
RPV downstream of the check valve nearest to the RPV. This arrangement is
adopted because of the desirability to borate the cold HPCS water that comes
in at the top of the core.

Test data for the flow pattern of the HPCS flow under ATWS core flow conditions
is not available, and the mixing pattern of the HPCS jets with the two phase
mixture in core exit plenum is very complex. For the purposes of the present
discussion, certain "bounding" modes of flow and mixing can be postulated to
determine bounding values of initial and loop delay times. Using these delays,
the development of boron concentration in the core can be constructed in the
same manner as was done for Jet Pump Instrument line (JPI) in Section 3.1.1.3.2.
Possible modes of flow considered are:

MODE 1: The borated HPCS flow mixes with the core exist flow uniformly and
after passage through the separators, downcomer, jet pumps and lower plenum
becomes effective in the core. Subsequent flow passes through the core
bringing increased boron concentration to the core.

MODE 2: In this mode the borated UPCS flow is assumed to partially mix with
the steam water mixture in the core exit plenum and flow down into the core
bypass region (providing negative reactivity), it is assumed to mix with core
exit flow and then flow upward similar to Mode 1.

MODE 3: In this mode the borated HPCS flow is assumed to partially mix steam
water mixture in the core exist plenum and flow down through core active and
bypass regions. After filling up the lower plenum and control rod guide
tubes it is assumed to fill up the core bypass and active fuel regions pro-
viding negative reactivity. After this, it would mix with the core exit flow
and flow upward as in Mode 1.

Table 5.4-2 shows the initial delay and flow loop delay associated with the
three different flow modes postulated above. The values shown in the table
are for an assumed constant core flow rate of 10% and a HPCS jet entrainment
mixing ratio of 1:10. It is seen from the table that the flow Mode I causes

/
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the largest initial delay and the flow loop delay is the same for all the
three modes listed. Thus for boron mixing, postulating the flow Mode 1 would
be most limiting. If this flow Mode 1 is assumed, then the expected buildup
of average boron concentration in the core water with time is shown in
Figure 5.4-3 for 10% core flow. Figure 5.4-3 also shows for comparison the
concentration buildup if perfect mixing is assumed.

ATWS transient calculations indicate that a representative value of core flow
expected during the period before hot shutdown is approximately 10% of rated.
The appropriate bounding value of the initial delay time to be used for
liquid boron, therefore appears to be 80 seconds (including the transport
delay of Q20 seconds in the pipeline outside the RPV) and the appropriate
mixing efficiency appears to be nearly 100%. In the ATWS analysis for BWR/5's
and 6's a 60 second initial delay and a mixing efficiency of 75% have been
used. The latter is a traditionally used value for ATWS and is obviously
conservative. The initial delay time used is slightly less than the value
constructed above. However, parametric studies provided in the sensitivity
runs (Section 3.2.1.4 and 3.3.1.4) show that with initial delays assumed as
high as 180 seconds and mixing efficiency of 75%, the calculated ATWS
consequences for pool temperature are acceptable.

5.4.4 Description of Boron Mixing Simulation Tests for Injection Through
JPI Lines

The process of liquid boron mixing in the BWR under ATWS flow condition.was
simulated and tested in the laboratory using a scaled down model In the
following are given the bases of simulation, a description of the test and
a discussion of the applicability of the results to the prototype BWR, for
the case of injection through JPI lines.

5.4-.4.1 Bases of Simulation

Several flow and geometrical factors influence the mixing phenomenon. Important
aspects of these are considered for simulation.
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Geometry: A scaled down ratio of 1/6th is used. A two foot wide slab section

of the prototype reactor is modeled as shown in Figure 5-4. The reactor com-
ponents simulated include two jet pumps, lower plenum with two rows of control

rod guide tubes, core section, three rows of steam separators, downcomers and

liquid boron injection points.

Simulation of Reactor Coolant Flow and Liquid Boron Injection: Reactor recir-
culation flow is simulated with water at room temperature and atmospheric

pressure. The injection of sodium pentaborate soluation is simulated by an

injection of sodium bromide.

The coolant recirculation in the modeled is achieved by using an external

recirculation pump and the action of the two jet pumps. Additionally, the

natural circulation created by boiling in the core of the prototype reactor

(the core flow during ATWS is mostly by this natural circulation) is simulated

by air lift/created by bubbling air through the core region of the model. By

proper adjustment of velocities and density of sodium bromide solution conser-

vative simulation of the liquid boron mixing in the BWR can be achieved.

Molecular Viscosity and Turbulence: Typical velocity of water in the proto-

type BWR are of the order of 10 ft/sec. Using the jet pump exit diameter as

a characteristic length and fluid properties of saturated water at 550 0 F,

16this corresponds to a Reynolds number of the order of 106. Thus, the agitation
due to boiling and the various obstacles to flow provided by the reactor

intervals maintain the flow in the reactor turbulent in most regions. In the

model the Reynolds number is lower due to the smaller scale, lower flow

velocity and higher viscosity of water at room temperature. However, the flow

still remains turbulent. The lower Reynolds number and the corresponding lower
level of turbulence in the model would be a conservative simulation of mixing.

Effect Density Difference: In the reactor the sodium pentaborate solution

injected is approximately 46% higher in density compared to the saturated

water at the reactor pressure (this is mostly due to the lower density of

water at 550 0 F compared to water at normal temperatures). Sodium bromide
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solution used to simulate the liquid boron in the model is also made concentrated
enough to be 46% higher in density than the cold water in the model. In order
to properly obtain dynamic similarity with respect to density difference effects,
the flow velocity in the model is scaled down such that the modified Froude
number (which is the ratio of negative buoyancy forces to the inertia forces)
given by

Fr =Ao gL

is the same in the model and also in the prototype reactor. Here P is the
density of water recirculating in the reactor/model, Ap is the density differ-
ence between the liquid boron/sodium bromide solution and the reactor/model
water, g is the acceleration due to gravity, L is a characteristic length such
as jet exit diameter in the reactor/model and V is a characteristic velocity
such as jet exit velocity in the reactor/model. With the linear scale down
ratio of G used in the model, the characteristic velocity of flow in the model
is 1//6 of the velocity in the prototype reactor.

With the above simulation bqses used the ratio of various physical quantities
in the model to those in the prototype reactor are as follows.

Table 5.4-3

Physical Quantity Ratio Model/Prototype

Length 1/6

Velocity

Time (Transport time,
Fill up. Time, etc.) r6

Flow Pressure Drop 1/6th

Concentration (Ratio to
injection solution concentration)
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Measurements: Principal measurements made in the mixing simulation tests are
core flow rate and NaBv concentration at various locations in the core. Both
these are measured continuously as functions of time. The core flow is
obtained by measuring the jet pump exit velocity by means of a pilot tube.
Concentration is measured indirectly by measuring temperature by means of RTD
sensor installed in the model. The basis for this is discussed below.

In addition to quantitative measurements, visual observation of the mixing
process is provided by dye injection at convenient locations. The walls of the
model and those of most of the internals are purposely made of transparent
plexiglass to facilitate visual observation.

Basis for Using Temperature as a Measure of Concentration: The most dominant
mechanisms of mixing both in the model and in the prototype BWR are turbulent
dispersion and transport. Under these conditions, heat transfer and mass
transfer processes are similar. Therefore, if the distribution of heat and
mass sources/links and the boundary condition are identical, then distribution
of a nondimensional concentration and a nondimenstional temperature will be
identical throughout the model. Considering the mixing of sodium bromide in
the model, the only source is due to injection at the JPI lines. Also the
walls of the model and those of the internals in the model act perfectly imper-
vious to the transfer of NaBv across them. Now consider the introduction of
a heat source at the JPI lines by heating up the NaBr soluation to a higher
temperature. The only other source/link of heat is due to the bubbling of air
through the core of due to the heat added by the recirculation pumps if they
are used for creating flow in the model. Also, the thermal boundary conditions
at the model walls and the internals are nearly adiabatic. At any rate, the
heating/cooling effect due to pumping/air bubbling and cooling effect due to
heat loss through the walls can be. measured and separated from heating effect
due to the injection of hot NaBr solution. The similarity relationship
between the heat and mass transfer can then be written as follows:

T - Ti C - Ci
Ts - Ti Cs - Ci
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Ti, Ci = Initial temperature and NaBr concentration in the model water
before the start of NaBr injection (Ci is generally zero in most
tests).

TS, Cs = Temperature and concentration of NaBv solution that is injected
into the model at the JPI lines.

C = Concentration as a function of spatial location and time in the
model during and after the NaBr injection.

(T-Ti) = Temperature rise due to NaBr injection only, as a function of
spatial location and time.

Using the above equation, the concentration at any point in the model can be
inferred from a temperature measurement at the same point. In the tests such
an indirect measurement is verified by comparison with actual measurement of
concentration of grab samples taken at a few spatial locations in the model
several times during the test.

From a number concentration measurements in the core region of the model, the
average concentration in the core is calculated as an approimate weighted
average.

5.4.4.2 Description of a Typical Test

All tests are made at constant core flow conditions, although the core flow in
a typical ATWS situation gradually changes with time. The following is a brief
outline of a test in which core flow is driven by air lift. By controlling the
rate of air supply for air lift the core flow (as indicated by the pilot tube
velocity measurements at the jet pump diffuser exit) is adjusted to a desired
valve. The model is allowed to run at this steady flow condition for about
10 minutes. During this period and throughout the whole test the readings from
the various flow sensors and RTD's are monitored and recorded. The injection
of NaBr solution at the JPI lines at a steady rate is then started. The injection
is continued for approximately 30 minutes and then turned off. The model is
allowed to run for an additional 10 minutes during which the air supply for
air lift is maintained steady.
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Figure 5.4-5 shows the temperature trace from a typical RTD sensor installed

in the core region of the model. The line segment AB represents the steady
condition before the test. When the core flow is started up at B the RTD

response shows a slight gradient due to possible heat loss/gain to the outside
and due to air bubbling. During the hot NaBr injection the temperature rise
pronounced (line segment BC). After the hot NaBr injeqtion is stopped but the
core flow is still maintained by airlift, the RTD response shows a negative
gradient representing heat loss from the hot contents of the model (line segment
DE). The line CD' represents the predicted heat loss during the hot NaBr

injection. The slope of the line CD' is a weighted average of those of the
lines DC and DE. The vertical distance between the lines CD and CD' represents
the temperature rise at the location of the sensor under consideration due purely
to the hot NaBr injection and is a measure of the concentration buildup of NaBr
at that location.

Visual and photographic observations are also made in addition to recording
the quantitative reading from measuring sensors. A small quantity of a color
dye is injected into the NaBr supply pipeline and the dye pattern pictures are
photographed by still pictures at regular intervals of time. The whole test
is also recorded on a movie film.

5.4.4.3 Applicability of the Test Results to the Prototype BWR

The concentration measurements as a function of time in the core region of the
model can be appropriately integrated over the core region to obtain an average
core concentration as a function of time. This time varying quantity contains
both the transfer delay (time delay between the injection of NaBr and its entry
into the core) and the mixing efficiency as defined in Section 5.4.1. Within
the limitations of the model simulation bases assumptions this transport delay
and mixing efficiency can be translated into those for the prototype BWR with
the help of the model/prototype relationships given in Table 5.4-3. Some of
the limitations imposed by the assumption in the simulation bases are discussed
below.

5-17

NEDO-24222 

Figure 5.4-5 shows the temperature trace from a typical RTD sensor installed 

in the core region of the model. The line segment AB repres~nts the steady 

condition before the test. When the core flow is started up at B the RTD 

response shows a slight gradient due to possible heat loss/gain to the outside 

and due to air bubbling. During the hot NaBr injection the temperature rise 

pronounced (line segment BC). After the hot NaBr inje~tion is stopped but the 

core flow 1s still maintained by airlift, the RTD response shows a negative 

gradient representing heat loss from the hot contents of the model (line segment 

DE). The line CD' represents the predicted heat loss during the hot NaBr 

injection. The slope of the line CD' is a weighted average of those of the 

lines DC and DE. The vertical distance between the lines CD and CD' represents 

the temperature rise at the location of the sensor under consideration due purely 

to the hot NaBr injection and is a measure of the concentration buildup of NaBr 

at that location. 

Visual and photographic observations are also made in addition to recording 

the quantitative reading from measuring sensors. A small quantity of a color 

dye is injected into the NaBr supply pipeline and the dye pattern pictures are 

photographed by still pictures at regular intervals of time. The whole test 

is also recorded on a movie film. 

5.4.4.3 Applicability of the Test Results to the Prototype BWR 

The concentration measurements as a function of time in the core region of the 

model can be appropriately integrated over the core region to obtain an average 

core concentration as a function of time. This time varying quantity contains 

both the transfer delay (time delay between the injection of NaBr and its entry 

into the core) and the mixing efficiency as defined in Section 5.4.1. Within 

the limitations of the model simulation bases assumptions this transport delay 

and mixing efficiency can be translated into those for the prototype BWR with 

the help of the model/prototype relationships given in Table 5.4-3. Some of 

the limitations imposed by the assumption in the simulation bases are discussed 

below. 

5-17 



NEDO-24222

At the concentration levels expected both in the model and in the prototype BWR,

the NaBr solution or sodium pentaborate solute would have properties which

are nearly the same as those of water. The simulation of sodium penaborate

mixing by NaBr injection thus introduces only a negligible discrepency. However,

as indicated before, the Reynolds number in themodel could be couple of order of
magnitude smaller than that in the prototype BWR. However, the effect of this

is to make the simulation more conservative. Another major difference between

the model and the prototype is the 2D slab geometry used. First, the 2D aspect

makes the simulation applicable only to those cases in which the injection of

liquid boron in the BWR is nearly axisymmetry. Near axisymmetry is obtained when

the rates of sodium pentaborate injection into each jet pump diffuser is the

same. Secondly the use of slab geometric (rather than pie shaped slice geometry)
makes the (non-dimensional) transport delay in the model greater than that in

the prototype. But again this works in the direction of conservative simula-

tion. The third difference between the model and the prototype lessens the

density difference caused by cold sodium pentaborate injection. Since density

difference is the major force which segregates NaBr/sodium pentaborate solution

and lessens mixing efficiency the absence core heating in the model makes the

simulation conservative again.

The results from the tests that are used for the discussion of section 5.4.2 are

two conclusions from visual and photographic observation from several tests in

which the model core flow was approximately 5% or greater. The first of the con-
clusions is that the NaBr solution injected at JPI lines at the top of the jet pump

diffuser comes out perfectly mixed with the jet pump flow. Secondly the mixture

coming out of the jet pump diffuser sweeps the lower plenum region before it

enters the core. The latter is a conservative picture of the transport of NaBr

in the lowPer plenum. The same conclusions would be true in the prototype

reactor as long as the core flow is equal to or greater than 5%. Calculated

core flow for BWR/4 ATWS indicate that the core flow is indeed stronger than

5% well past the hot shutdown point. Therefore the conclusions from visual

observations of the model tests are appropriate for use in the BWR ATWS

analyses.
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5.5 LIQUID BORON EFFECTIVENESS

In the dynamic analysis of ATWS, the negative reactivity effect of liquid
boron is assumed to be proportional to the amount of boron present in the
core between the bottom and the top of the active fuel. The negative
reactivity due to liquid boron at any time, is calculated from the equation:

R(t) = RH , (t)
WHS

where

R(t) Liquid boron reactivity at time t ($)
RHS Liquid boron reactivity at hot shutdown condition ($)

W(t) - The weight of boron present in the core (lbm)
WHS - Amount of boron in the core necessary to maintain hot shutdown

condition.

WHS is obtained from a steady state, three dimensional core reactivity calcu
calculation assuming the following conditions:

a. No voids

b. Core coolant at 280 0 C

c. Liquid boron uniformly distributed in-the core

d. Critical rod pattern

RHS is chosen to-account for the combined void and doppler reactivity differ-
ence between the operating and no void-saturated hot shutdown conditions. It
is selected based on calculations which have been performed with a three
dimensional BWR core model which show that the assumed linear representation
is a good approximation to determine core power level down to hot shutdown.
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W W is calculated by using the boron concentration found for the time-varying
mass of liquid in the vessel and recirculation loops, then applying it to the

liquid portion of the core only. Thus, the simplified simulation accounts for

the effect of displacement of borated core water by voids.

The simplified "displacement" of boron by voids approach described above is

assumed in both the transient code formulation and the three-dimensional BWR

core model against which it has been cross-checked during the boron injection

nuclear shutdown process. The transient model only'considers the active core,

and accounts for boron which is also building up in the inactive region only

through the indirect correlation to the 3-D core model. Dynamic changes in

active core void fraction are conservatively assumed to affect all the boron

worth as if it were all in the active region. The 3-D core simulator accounts

for the boron in both regions.

A conservatism in current boron simulation by both computer tools involves

the effect of boiling on boron concentration in the core. Current methods

simply assume that void formation displaces borated water in the core (the

same as if air took the place of some of the water). Currently the concen-

tration of boron in all "drops" of water is not allowed to change as vapori-

zation takes place. Realistically the concentration of boron in the water

actually increases as some of the water is boiled while it moves up the core.

For example, if the core inlet flow under quasi-steady-state conditions has

100 ppm boron concentration, and the power conditions are such that 10% exit

quality still exists, then at the exit plane of the core the liquid flow has

a concentration of 111 ppm since boron mass conservation requires that 100*

(Inlet Flow) = 111* (Inlet Flow) (1-Xe). Both models (transient and 3-D

steady-state) neglect this factor. Granted, the core is not totally filled

with (in the above example) 100 ppm water because the voids associated with

the 10% quality condition would reduce the total amount of liquid boron mixture

in the core. The concentration of boron within the remaining liquid would not

remain altogether at the inlet value - it would be increased as it approaches

the core exit to a value determined by the exit quality.
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This effect, if properly programmed, would increase somewhat the amount of

boron calculated to be in the core and the negative reactivity it contributes

in both models. Some shift of power (toward the bottom of the core) would

also be expected, tending to increase the void fraction slightly and further

decrease power.

The net result is definitely conservative, delaying somewhat the time of

nuclear shutdown and making the calculated results of ATWS events more severe

than expected. Future simulation techniques may be able to address this
process more accurately, however, all analyses presented in this report contain

the conservatism produced by the simplified simulation.
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Table 5.4-1

TYPICAL BORON MIXING TRANSPORT AND DELAY TIMES FOR JPI INJECTION

251" Reactor Vessel 15% Core Flow 86 GPM Liquid Boron Flow

Transport Delay in Pipeline Outside RPV 44 seconds

Initial Delay Inside RPV 26 seconds

Core Passage Time 12 seconds

Loop Delay Time 120 seconds*

*Conservatively assuming water level is in the normal range; lower levels

(experienced throughout much of the event) would give shorter loop delay

times.

Table 5.4-2

BORON TRANSPORT AND DELAY TIMES FOR INJECTION IN THE HPCS SPARGER

Flow Mode Assumed

Mode 1 Mode 2 Mode 3

Delay Outside RPV* 20 20 20

Initial Delay* 60 25 50

Flow Loop Delay*** 170 170 170

*HPCS assumed to be in operation. (3500 GPM)

**Delay calculated using reduced water level present during initial

portion of events.
***Conservatively assuming water level is in the normal range; lower

levels (experienced throughout much of the event) would give shorter

loop delay times.
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CURVE 1: CONCENTRATION BUILOUP FOR CONSTANT CORE 
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Figure 5.4-2. Boron Concentration Buildup in Core Water for JPI Injection 
Liquid Boron Flow Equals 86 GPM 
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IN TEXT) 
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Figure 5.4-3. Boron Concentration Buildup in Core Water for HPCS Injection 
Liquid Boron Flow Equals 86 GPM 
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Figure 5.4-4. Schematic of Boron Mixing Simulation Test Setup
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Figure A.1.1. Evolution of the General Electric Quencher DeviceFigure A.l.1. Evolution of the General Electric Quencher Device 
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Figure A.1.2. Results From Licensee Tests of Various Hole Patterns
an Pipe Segment (Company Proprietary)
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Figure A.l.2. Results From Licensee Tests of Various Hole Patterns 
on Pipe Segment (Company Proprietary) 
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Figure A.1.3. Licensee Full-Scale Development Test Tank and Specimen Geometries
(Company Proprietary)
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Figure A.I.3A. Licensee Full-Scale Development Test Tank and Specimen Geometries
(Company Proprietary)
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Figure A.1.3B Licensee Full Scale Development Test Tank and Specimen Geometries
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Figure A. 1. 3B Licensee Full Scale Development Test Tank and Specimen Geometries 
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Figure A.1.4. Hole Sizes and Spacings Used on
Licensee Quencher Developmert
Tests (Company Proprietary)

A. 1-17

NEDO-24222 

Figure A.l.4. Hole Sizes and Spacings Used on 
Licensee Quencher Developmert 
Tests (Company Proprietary) 
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Figure A.1.5. Floor Pressure as a Function of Local Subcooling for Licensee
Full-Scale Development Tests (Subcooling Based on TSTAT = 2330 F
at 17.9 ft Submergence) (Company Proprietary)
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Figure A.l.S. Floor Pressure as a Function or Local Subcooling for Licensee 
Full-Scale Development Tests (Subcooling Based on TSTAT = 2330 F 
at 17.9 ft Submergence) (Company Proprietary) 
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Figure A.1.6. Condensation Regimes Observed in Licensee Full-Scale
Development Tests (Subcooling Based on TSAT - 2330F
at 17.9 ft Submergence) (Company Proprietary)
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Figure A.l.6. Condensation Regimes Observed in Licensee Full-Scale 
Development Tests (Subcooling Based on TSAT ~ 233°V 
at 17.9 ft Submergence) (Company Proprietary) 
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Figure A.1.7. Range of Test Conditions for Licensee Full-Scale
Quencher Condensation Development Tests
(Subcooling Based on T - 233*F at 17.9 ft

Submergence) (C any PAprietary)
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Figure A.1.8. Licensee Full-Scale In-Plant Test Pool and Quencher Geometries
(Company Proprietary)
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Figure A.1.9. General Electric Quencher Geometries
(Company Proprietary)
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Figure A.1.10. Results from Licensee Test on Segment of Full Scale
Array in Small Scale Tank (Company Proprietary)
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Figure A.l.l0. Results from Licensee Test on Segment of Full Scale 
Array in Small Scale Tank (Company Proprietary) 
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Figure 1. Temperature Histories for Extended S/RV Discharge (With RHR)
From First Monticello Test
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Figure 2. Temperature Vs. Time Time Caorso S/RV Test Phase 2
Extended Blowdown • ))
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Figure 3. BWR/4 Mark I Plants (Analytical Model)
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The pressure for each subsystem was calculated as follows:

Main steam line

Line pressure (gauge)

S/RV outlet

Main steam line drains

Dome vent lines

given in Table 1

40% of main steam line pressure (S/RV

discharge is sized to limit back

pressure to 40%)

main steam line pressure + 10 psi head

dome pressure (Table 1)

Feedwater

Feedwater line assumed losses: Sparger friction loss

25 psi; piping friction loss 20 psi;

losses + dome pressure + 10 psi static

head.

Recirculation loop

Loop suction

Pump discharge

Downstream of discharge
valves

Residual heat removal system

peak dome pressure + 10 psi head

given in Table 1

used pump discharge

Head spray

Recirculation suction

connected to RCIC head spray

same as recirculation loop suction

A. 3-2
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The pressure for each subsystem was calculated as follows: 

Main steam line 

Line pressure (gauge) 

S/RV outlet 

Main steam line drains 

Dome vent .lines 

Feedwater 

Feedwater line 

Recirculation loop 

Loop suction 

Pump discharge 

Downstream of discharge 
valves 

Residual heat removal system 

Head spray 

Recirculation suction 

given in Table 1 

40% of main steam line pressure (S/RV 

discharge is sized to limit back 

pressure to 40%) 

main steam line pressure + 10 psi head 

dome pressure (Table 1) 

assumed losses: Sparger friction loss 

25 psi; piping friction loss 20 psi; 

losses + dome pressure + 10 psi static 

head. 
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eiven in Table 1 

used pump discharge 
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same as recirculation loop suction 

A.3-2 



NEDO-24222

Recirculation return

LPCI connection

Steam condensing line

same as recirculation downstream of

discharge valves

dome pressure + 10 psi static head

same as main steam line

Reactor core isolation cooling system

Main steam to RCIC turbine

Drain line

RCIC pump discharge

same as main steam line

Main steam line + 10 psi axatic head

dome pressure + head spray nozzle loss,

20 psi + piping function loss 10 psi +

static head 10 psi

High pressure coolant injection/core spray

Main steam to HPCI turbine

HPCI/S pump discharge

Drain line

Standby liquid control system

same as main steam line

dome pressure + sparger friction loss

26 psi + piping function loss 20 psi +

static head 10 psi

main steam line + 10 psi static head

Main system, test lines,
etc

vessel bottom pressure

The maximum allowable pressure for each component was calculated from the

design pressure according to ASME Section III Subsection NB. Under

emergency conditions (as defined in ASME III NB 3113.2) piping should not

exceed 150% of design pressure (ASME III NB 3655.1). Valves are classified

A. 3- 3
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in two groups: those which are not required to operate during an ATWS must

not exceed 120% of design pressure (ASME III NB 3526a). If a valve is to

operate during an ATWS, "emergency will be specified as the normal con-

dition," (ASME III NB 3526b). As many of the valves were designed prior to

ASME III, it was felt that the intent of the NRC question could be answered

by use of hydrotest data. The logic is that if a component has been hydro-

tested to a specific pressure (for a minimum of 10 min. - see ASME III

NB 6224), that the same component will operate at least up to that pressure

during an ATWS event.

NEDO-24222 . 
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Table 1

VALUES USED FOR CALCULATIONS

BWR/4 BWR/5 BWR/6

Peak core exist pressure, psig 1281 1235 1283

Peak dome pressure, psig 1275 1228 1276
Peak steam line pressure, psig 1268 1192 1264

Recirculation pump head, psi 164 288 258

Peak recirculation pump discharge
pressure, psig 1442 1519 1536

Peak vessel bottom pressure, psig 1296 1252 1300

A. 3-5
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Peak core exist pressure, psig 1281 1235 1283 
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Recirculation pump head, psi 164 288 258 

Peak recirculation pump discharge 
pressure, psig 1442 1519 1536 
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DESCRIPTION OF TABLE 2

Product line

BWR/ 4
Design Maximum

system or
.I .'k ai ta.

S• Recirc.
loop

suction

BWR/5
Design Maximum

/
1510(1285) /

peak system
pressure
(see note 2)

design press.

1510
(1380)

component

piping

block

1150 1725 1250.'i1875/

1325 2180

Maximum
(emergency)

limit
(see note 3)

2" valves
B33F029

0

NOTES:

1. All pressures are in psig.

2. A conservative estimate of the peak pressure seen by this system or
subsystem. This is calculated for an ATWS event in which the peakvessel-bottom pressure would reach 1500 psig. Values in parentheses
are the system peak pressures associated with currently published ATWS
peak pressures.

3. Pressure boundary emergency limits are defined as follows:

1.5 x design for piping
1.2 x design for turbines, pumps, and accumulators
1.2 x design for valves

A.3-6
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. subsystem\' 
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DESCRIPTION OF TABLE 2 

BWR/4 
Design Maximum 

1510 
(1380) 

1150 1725 

o 

1. All pressure.s are in psig. 

BWR/5 
Design Maximum 

I 
1510 
(1285)/ 

125;;;;;875/ 
1325 2180 

peak system 
pressure 
(see note 2) 

design press. 

Maximum 
(emergency) 

limit 
(see note 3) 

2. A conservative estimate of the peak pressure seen by this system or 
subsystem. This is calculated for an ATWS event in which the peak 
vessel-bottom pressure would reach 1500 psig. Values in parentheses 
are the system peak pressures associated with currently published ATWS 
peak pressures. 

3. Pressure boundary emergency limits are defined as follows: -

1.5 x design for piping 
1.2 x design for turbines, pumps, and ace umula to rs 
1.2 x design for valves 

• 
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DESCRIPTION OF TABLE 2
(continued)

hThis means that the valve has been hydrotested to the indicated
pressure and shown operable subsequently.

aThis means that the valve has undergone a finite element or similar
analysis, and determined to be operable at the indicated pressure.

Legend of symbols used in Table 2

a value was determined by analysis
h hydrotest data (see explanation above)
o specified by others

NA not applicable to this plant
s suggested max/l.2
- information not available
* At a vessel bottom pressure of 1500 psig, the system

pressure exceeds the pressure boundary limit.

A.3-7
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DESCRIPTION OF TABLE 2 
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Table 2 j/-I"k

Component
BWR/ 4

Design Maximum
BWR/5

Design Maximum
BWR/6

Design-Maximum

1481
(1268)

1470
(1193)Main Steam Line

Piping

MSIV body

MSIV disc

S/R valve inlet

S/R disc

Safety valve inlet

Safety valve disc

S/R Valve Outlet

Outlet

1473
(1264)

1118 1677 1250 1875 1250 1875

1662 h

1250 1500

NA

NA

NA

NA

592
(510)

588
(480)

591
(510)

676ih

Piping

Steam drains

Piping

0 0 0

1491
(1278)

1480
(1203)

1488
(1274)

1118 1677 1250 1875 1250 1875

3" valves: F016
F019
F020
F021
FO 34
F035

0
0

0

0

0

0

0
0

0

0

0

0

0
0

0

0

0

0

'Refer to pages A.3-6 and A.3-7 for legend and key to layout of this table.
-, o, NA, h: Refer to pages A.3-6 and A.3-7 for legend and key to layoutof this table.
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Component 

Main S team Line 

Piping 

MSIV body 

MSIVdisc 

SiR valve inlet 

SiR disc 

Safety valve inlet 

Safety valve disc 

SiR Valve Outlet 

Outlet 

Piping 

Steam drains 

Piping 

3" valves: F016 
F019 
F020 
F02l 
F034 
F035 
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Table 21 

BWR/4 
Design Maximum 

1481 
(1268) 

1118 

1250 

o 

592 
(510) 

1491 
(1278) 

1118 

o 
o 
o 

·0 

o 
o 

1677 

1500 

18Ub 

2139a 

226lh 

270Sh 

1677 

Bw/5 
Design Maximum 

1470 
(1193) 

1250 

NA 

NA 

o 

588 
(480) 

1480 
(1203) 

1250 

o 
o 
o 
o 
o 
o 

1875 

1875 

.. 

BWR/6 
Design-Maximum 

1473 
(1264) , 

1250 

NA 
. 

NA 

o 

591 
(510) 

1488 
(1274) 

1250 

o 
o 
o 
o 
o 
o 

1875 

1875 

~efer to pages A.3-6 and A.3-7 for legend and key to layout of this table. 

-, 0, NA~ h: Refer to pages A.3-6 and A.3-7 for legend and key to layout 
of this table. 
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Table 2 (Continued)

Component
BWR/4

Design Maximum
BWR/5

Design Maximum
BWR/6

Design Maximum

Steam drains (cont'd)
1491

(1278)

0

0

0

1480
(1203)

1488
(1274)

2" valves: FOOl
F002
FO05

F038

1" valves: F033

0

0

0

0

0
0

NA

3/4" valves:

1/2" Lines

Piping

F003
F004

Feedwater

FO17
FO18
F023
F025
FO 26
F02 7

0

0

0

0

0

0

0

0

0

NA

0

0

0

NA
NA
NA
0

0

0
NA

0

1485
(1275)

1489
(122)

1485
(1276)

1118 1677 1250 1875 1250 1875
0

0

1540
(1330)

NA
NA

NA
NA

1544
(1283)

1540
(1331)

Piping to block

Piping beyond block

1300 1950 1300 1950 1300 1950

18" valves:

3/4" valves:

FO 10FOIl

F032

F030, 31
F074, 75
F076, 77
F067, 70,

and 71

C,

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

-, o, NA: Refer to pages A.3-6 and
table.

A.3-7 for legend and key to layout of this
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Table 2 (Continued) 

BWR/4 
Component Design Maximum 

1491 
Steam drains (cont'd) (1278) 

2" valves: FOOl 0 

F002 0 

FOOS 0 

F038 0 

1" valves: F033 

3/4" valves: F017 
FOlB 
F023 
F025 
F026 
F027 

1/2" Lines 

Piping 

F003 
F004 

Feedwater 

o 

o 
o 
o 
o 
o 
o 

1485 
(1275) 

1118 

o 
o 

1540 
(1330) 

1677 

Piping to block 

Piping beyond block 

1300 1950 

18H valves: FOIO 
FOll 
F032 

3/411 valves: F030, 31 
F074, 75 
F076. 77 
F067,70. 

and 71 

o 

o 
o 
o 

o 
o 
o 
o 

Bw/S 
Design Maximum 

1480 
(1203) 

o 
o 
o 

NA 

o 

o 
o 
NA 
NA 
NA 
o 

1489 
(122 ) 

1250 1875 

HA 
NA 

1544 
(1283) 

1300 1950 

o 

o 
o 
o 

o 

B~R/6 
Design Maxi1lUUl. 

1488 
(1274) 

o 
o 
o 

NA 

o 

o 
o 
NA 

0 

1485 
(1276) 

1250 

NA 
NA 

1540 
(1331) 

1300 

0 

0 

a 
a 

0 

0 

0 

1875 

1950 

0, NA: Refer to pages A.3-6 and A.3-7 for legend and key to layout of this 
table. 
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Table 2 (Continued)

Component
BWR/4

Design Maximum
BWR/5

Design Maximum
BWR/6

Design Maximum

Recirculating loop,
downstream of block

Piping

Sample line piping

1582
(1442)

1644
(1519)

1627
(1536)

1325

1325

1987

1987

1525

1325

2288

1987

1550

1325

2325

1987

3/4" valves: F019, 20,
21, 22

0 0

0

0

0F059

Recirculating
loop suction

Piping

NA

1500
(1285)

1500
(1238)

1500
(1286)

1150 1725 1250

2180

1875 1250 1875

2180h
Block

2" valves: FO 29
F030
F051
F05 2

0

0

0

0

0

0
0

0

0

0
0

0

0

3/4" valves: F024, 25,
25, 27, 28

Dis charge

Piping

Pump

Flow control valve

Block

Bypass

F074

NA NA

1582
(1442)

1644
(1519)

1629
(1536)

1325

1615

1986

1938

1600

2037

3071

2400

2444

3685

1650

2132

3071

2475

2550

3685NA

2 8 7 6 h

4 5 9 0 h

NA 1675 2010 0

o,. NA, h: Refer to pages A.3-6 and A.3-7
I table.

for legend and key to layout of this
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Table 2 (Continued) 

BWR/4 BWR/5 BWR/6 
Component Design Maximum Design Maximum Design Maximum 

Recirculating loop, 1582 1644 1627 
downstream of block (1442) (1519) (1536) 

Piping 1325 1987 1525 2288 1550 2325 

Sample line piping 1325 1987 1325 1987 1325 1987 

3/4" valves: F019, 20, 0 0 0 

21, 22 

F059 NA 0 0 

Recirculating 1500 1500 1500 
loop suction (1285) (1238) (1286) 

Piping 1150 1725 1250 1875 1250 1875 

Block 1750h 2180 Z180h 

2" valves: F029 0 0 0 

F030 0 0 0 

FOSI 0 0 0 

F052 0 0 0 

3/4" valves: F024, 25, 0 NA NA 
25, 27, 28 

1582 1644 1629 
Discharge (1442) (1519) (1536) 

Piping 1325 1986 1600 2400 1650 2475 

Pump 1615 1938 2037 2444 2132 2550 

Flow control valve NA 3071 3685 3071 3685 

Bl0·ck 1835h 2876h 2876h 

Bypass 1947h 2525h 4590h 

F074 NA 1675 2010 0 

0" NA, h: Refer to pages A.3-6 and A.3-7 for legend and key to layout of this 
I table. 
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Table 2 (Continued)

Component

Discharge (Cont'd)

3/4" drain and vents
F068, 69, 70, 71
F066, 72, 73

RHR Head Spray

Piping

8" valves: F019
F022
F023

Recirculation Suction

.Piping

20" valves: FO08
FO09
F020

Recirculation Return

BWR/ 4
Design Maximum

1582

(1442)

0

NA

1525
(1315)

1 1 1 8 S 1677

0

0

0
iso

1500
(1285)

i150S 1725

0

0

0

1582
(1442)

B14R/5
Design Maximum

1644
(1519)

0

BWR/6
Design Maximum

1629
(1536)

0

NA

1525
(1316)

NA

1529
(1268)

1250 1875 1250 1875

0
NA
0

1500
(1238)

0
NA
0

1500
(1286)

1475 2212 1475 2212

0
0 0

0

0

1629
(1536)

1644
(1519)

Piping 1325 1987 1475 2212 1475 2212
24" valves, F053

F050
F090
F099

Connect to LPCI

0

0

0

0

NA

0
0 0

0
NA
NA

1495
(1286)

1499
(1285)

Piping

F041
F04 2
F039

1250 1875 1250 1875

0
0 0

0

0
-, s, NA, o: Refer to pages A.3-6

table. and A.3-7 for legend and key to layout of this
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Table 2 (Continued) 

BWR/4 Bt-lR/5 BWR/6 
Component Design Maximum Design Maximum Design Maximum 

1582 1644 1629 
Discharge (Cont'd) (1442) (1519) (1536) 

3/4" drain and vents 0 0 0 

F068, 69, 70, 71 
F066. 72, 73 NA NA NA 

1525 1529 1525 
RHR Head Spray (1315) (1268) (1316) 

Piping 11185 1677 1250 .1875 ]250 1875 

8" valves: F019 0 0 0 

F022 0 NA r-TA 
F023 0 0 0 

1500 1500 1500 
Recirculation Suction (1285) ( 1238) (1286) 

.Piping 1150s 1725 1475 2212 1475 2212 

20" valves: F008 0 0 0 

F009 0 0 0 

f020 0 0 

1582 1644 1629 
Recirculation Return (1442) (1519) (1536) 

Piping 1325 1987 1475 2212 1475 2212 

24" valves, FOS3 0 0 0 

F050 0 0 0 

FOgO 0 NA 
F099 0 NA 

1499 1495 
Connect to LPCI NA (1285) (1286) 

Piping 1250 1875 1250 1875 

F041 0 0 - F042 a 0 

F039 0 

s. NA, 0: Refer to pages A.3-6 and A.3-7 for legend and key to layout of this 
table. 

A. 3-) 1 
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Table 2 (Continued)

Component
BWR/4

Design Maximum
BWR/5

Design Maximum

1470
(1193)

BWR/6
Design Maximum

Steam Condense

Piping

F051
F052
F087

Vent and drain

RCIC Turbine inlet

1481
(1268)

1478
(1264)

1118 1677 1250 1875 1250 1875

0

,.0
NA

0

1481
(1268)

0

0

0

0

1470
(1193)

0

0

0

0

1478

(1264)

1114S 1671Piping

Turbine

1118

1250

1677

1500

1114s 1671

1250 1500

4" valves: F063
F064
F045
F076

0
0
0

NA

0

0

0

0

0
0

0

0

3/4" valves: F072, 73 0 0

1480
(1203)

0

1488
(1274)Drain

Piping

1491
(1278)

1118 1677 1425 2137 1425 2137

F025, 26, 38, 39
F052, 53, 54
F067, 68

Pump Discharge

0

0

0

1525
(1315)

0

0

0

1529
(1268)

0

0
NA

1525
(1316)

Piping 1280

1500

1920

1800

1400s 2100 1114s 1671

Pump 1500 1800

-, s, NA, o: Refer to
table.

pages A.3-6 and A.3-7 for legend and key to layout of
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Table 2 (Continued) 
.-.., 

BWR/4 BWR/S BWR/6 
Component Design Maximum Design Maximum Design Maximum 

1481 1470 1478 
Steam Condense (1268) (1193) (1264) 

Piping 1118 1677 1250 1875 1250 1875 

F051 0 ('I 0 

F052 .0 0 0 

F087 NA 0 0 

Vent and drain 0 0 0 

1481 1470 1478 
RCICTurbine inlet (1268) (1193) (1264) 

Piping 1118 1677 11145 1671 11145 1671 

Turbine 1250 1500 1250 1500 

4" valves: F063 0 0 0 

F064 0 0 0 

F045 0 0 0 

F076 NA 0 0 

3/411 valves: F072. 73 0 0 0 

1491 1480 1488 
Drain (1278) (1203) (1274) 

Piping 1118 1677 1425 2137 1425 2137 

F025, 26. 38. 39 0 0 0 

F052 , 53, 54 0 0 0 

F067, 68 0 0 NA 

1525 1529 1525 
Pump Discharge (1315) (1268) (1316) 

Piping 1280 1920 1400s 2100 11148 1671 

Pump 1500 1800 1500 1800 

-, s, NA, 0: Refer to pages A.3-6 and A.3-7 for legend and key to layout of -
table. 
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Table 2 (Continued)

Component
BWR/4

Design Maximum
BWR/5

Design Maximum
BWR/6

Design Maximum

1525
(1316)Pump Discharge (Cont'd)

6" valves: F012
FO13
F065
F066
FO 46
FO 19
F021

1525
(1315)

0
0

0

NA
0

0

0

1529
(1268)

0

0

0

0

0

0

0

0

NA
0
0

0

0

0

3/4" valves, F006, 7
F034, 35

RCIC Test

Piping

F022
F059

3/4" vent: F057, 58

HPCI/S Turbine Inlet

NA
0 0

1529
(1268)

NA
0

1525
(1316)

1525
(1315)

0

0

0

0

1400 2100 1290 1935

0

0

0

0

0

0

1481
(1268) NA NA

Turbine

Piping

8" valves: F001
F002
F003

Pump

Pump

1250

1118

1500

1677

0

0

0

1535
(1325)

1539
(1278)

1535
(1326)

1500 1800 1376

1575

1651

2362

1575

1250

1326

1875Piping 0

o, NA: Refer to pages A.3-6 and A.3-7
table.

for legend and key to layout of this

A.3-13
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- Table 2 (Continued) 

BtVR/4 BWR/5 BWR/6 
Component Design Maximum Design Maximum Design Maximum 

1525 1529 1525 
Pump Discharge (Cont'd) (1315) (1268) (1316) 

6" valves: F012 0 0 0 

F013 0 0 NA 
F065 0 0 0 

F066 NA 0 0 

F046 0 a 0 

F019 0 0 0 

F021 0 0 0 

3/4" valves, F006, 7 NA NA 
F034, 35 0 0 0 

1525 1529 1525 
RCIC Test (1315) (1268) (1316) 

.Piping 0 1400 2100 1290 1935 

F022 0 0 a 
F059 0 0 0 

3/4" vent: F057, 58 0 0 0 

1481 
HPCI/S Turbine Inlet (1268) NA NA 

Turbine 1250 1500 

Piping 1118 1677 

8" valves: FOOl 0 

F002 0 

FQ03 0 

1535 1539 1535 
Pump (1325) (1278) (1326) 

Pump 1500 1800 1376 1651 1575 1326 

Piping 0 1575 2362 1250 1875 

-, 0, NA: Refer to pages A.3-6 and A.3-7 for legend and key to layout ot this 
table. 
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Table 2 (Continued)

Component
BWR/4

Design Maximum
BWR/5

Design Maximum

1539
(1278)

BWR/6
Design Maximum

Pump (cont'd)
1535

(1325)
1535

(1326)

14" valves:

3 / 4 " valves:

Test Line

Piping

10" valves:

F004
F005
F024
F026
F035
F036

F031,
F021,

0

1650
0

NA
NA
NA

1980
1650

1820
0

0

0

0

0

2184
1820 0

0

0

0

0

0

0

0

03
22

0

NA

1535
(1325)

0

0

0

1539

(1278)

15 75 s 2362

1535
(1326)

1575 2362

F'010
F011Foil

F012
F046
F023
F006
F007
F012

0

0

1650
1510

0
NA
NA
NA
NA

1980
1812

1170
1170

NA
NA
NA

1170
0
0

1170

1404*
1404*

1404*

1404*

0

0
NA
NA
NA
0

0

NA
0

NA3/4" valves: F064, 65

Drain Line

Piping

F028, 29, 36, 37,
54, 55 and 56

F071,

0

1491
(1278)

1118 1677

NA

NA NA

0

0

-, o, NA: Refer to
table.

pages A.3-6 and A.3-7 for legend and key to layout of this
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Table 2 (Continued) 

BWR/4 BWR/5 BWR/6 
Component Design Maximum Design Maximum Design Maximum 

1535 1539 1535 
Pump (cont'd) (1325) (1278) (1326) 

2184 
14 " valves: F004 0 1980 1820 1820 0 

F005 1650 1650 0 0 

F024 0 0 0 

F026 NA 0 0 

F035 NA 0 0 

F036 NA 0 0 

3/4" valves: F031, 03 0 0 0 

F02l, 22 NA 0 0 

1535 1539 1535 
Test Line (1325) (1278) (1326) 

Piping 0 15755 2362 1575 2362 

10" valves: FOlO 0 1170 1404* 0 

FOll 0 1170 1404* 0 

FOll 1650 1980 NA NA 
F012 1510 1812 NA NA 
F046 0 NA NA 
F023 NA 1170 1404* 0 

F006 NA 0 0 

F007 NA 0 NA 
F012 NA 1170 1404* 0 

3/4" valves: F064, 65 0 NA NA 

1491 
Drain Line (1278) NA NA 

Piping 1118 1677 

F028, 29. 36. 37, 0 

54, 55 and 56 

Fon, 0 

("\ , NA: Refer to pages A.3-6 and A.3-7 for legend and key to layout of this_ 
table. 
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Table 2 (Continued)

Component
BWR/ 4

Design Maximum

1500
(1296)

BWR/5
Design Maximum

1500
(1252)

BWR/6
Design Maximum

1500
(13)SLC Main

Piping

Pump

FOO 3
F004
F006
FOO 7
F008

3/4" valves: F026, 27

Test

Piping

Accumulative

1150

1400

0

1400
0

0

0

1725

1680

1680
1400*

1250

1400

0

1400
0

1875

1680

1680
1400*

1250 1875

1
1400

0

0

0

0

1680
1400*

0

00

1500
(1296)

1500
(1252)

1500
(1300)

1400

1500

2100

1500

1325 1987 1325 1987

NA NA

F029
F016
FO 17
F033
F021, 24, 25

0

0

0

0

0

0
0

0

0

0

0

0

0

0

0

-, o, NA: Refer to pages A.3-6 and
table.

A.3-7 for legend and key to layout of this

A.3-15/A.3-16

-
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Table 2 (Continued) 

BWR/4 BWR/5 BWR/6 
Component Design Maximum Design Maximum Design Maximum 

1500 1500 1500 
SLC Main (1296) (1252) (13 ) 

Piping 1150 1725 1250 1875 1250 1875 

Pump 1400 1680 1400 1680 

F003 0 1680 0 1680 1 1680 
F004 1400 1400* 1400 1400* 1400 1400* 
FOO6 0 0 0 

F007 0 <;l. 0 

F008 0 0 0 

3/4" valves: F026, 27 0 0 0 

1500 1500 1500 
Test (1296) (1252) (1300) 

Piping 1400 2100 1325 1987 1325 1987 

Accumulative 1500 1500 NA NA 

F029 0 0 0 

F016 0 0 0 

FOl7 a 0 a 
F033 0 0 0 

F021, 24, 25 0 0 0 

0, NA: Refer to pages A.3-6 and A.3-7 for legend and key to layout of this 
table. 
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1. INTRODUCTION

1. 1 SUMMARY

The NRC Staff issued their technical report NUREG-0460, "Anticipated Transients
without Scram for Light Water Reactors," Volumes 1, 2 and 3 in 1978. Volume 3
describes recommendations for mitigation systems for the various plant categories.
In February 1979, the Staff requested General Electric to document the response
of the BWR to proposed mitigation systems (February 15, 1979 letter from R. J.
Mattson to G. G. Sherwood).

General Electric considers the NRC proposed ATWS mitigation systems to be unwar-
ranted in light of the high reliability of the current BWR shutdown system.
Nevertheless, General Electric has performed the assessment illustrating the
capability of the timed, two-pump standby liquid control system (SLCS) to
mitigate the consequences of the hypothetical ATWS event within limits imposed
by the Staff. The transients evaluated in this report are based on generic
analyses representative of a BWR/4 Mark 1, a BWR/5 Mark Ii, and a BWR/6 Mark
111. They are not intended to bound all plants in each class.

1 .2 APPROACH USED IN THIS STUDY

The approach used in this study was to confirm the analyses given in NEDO-10349 1 ,
and NEDO-20626 2 , and to use these as a guide to identify the most limiting type
of transients when failure to scram is considered. The conclusicns from this
step were then checked with updated calculations for the limiting cases involved
for all reactor product lines. Although more extensive comparisons will be made
and submitted on a later schedule, the current analyses are believed to be repre-
sentative of the most limiting events from the set of anticipated transients
requiring ATWS consideration.

IAnalysis of Anticipated Transients Without Scram, March 1971 (NEDO-10349).
2Studies of BWR Designs for Mitigation of Anticipated Transients Without Scram,
October 1974 (NEDO-20626).
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1 • INTRODUCTION 

1.1 SUMMARY 

The NRC Staff issued their technical report NUREG-0460, "Anticipated Transients 

without Scram for Light Water Reactors,1I Volumes 1, 2 and 3 in 1978. Volume 3 

describes recommendations for mitigation systems for the various plant categories. 

In February 1979, the Staff requested General Electric to document the response 

of the SWR to proposed mitigation systems (February 15, 1979 letter from R. J. 

Mattson to G. G. Sherwood). 

General Electric considers the NRC proposed ATWS mitigation systems to be unwar­

ranted in light of the high reliability of the current BWR shutdown system. 

Nevertheless, General Electric has performed the assessment illustrating the 

capability of the timed, two-pump standby liquid control system (SLCS) to 

mitigate the consequences of the hypothetical ATWS event within limits imposed 

by the Staff. The transients evaluated in this report are based on generic 

analyses representative of a SWR/4 Mark I, a EWR/5 Mark II, and a BWR/6 Mark 

III. They are not intended to bound all plants in each class. 

1.2 APPROACH USED IN THIS STUDY 

The approach used in this study was to confirm the analyses given in ~EDO-l0349', 

and NEDO-206262 , and to use these as a guide to identify the ~ost limiting type 

of transients when failure to scram is considered. The conclusions from this 

step were then checked with updated calculations for the limiting cases involved 

for all reactor product lines. Although more extensive comparisons will be made 

and submitted on a later schedule, the current analyses are believed to be repre­

sentative of the most limiting events from the set of anticipated transients 

requiring Ar~S consideration. 

1 Analysls' of Anticipated Tran~ients Without Scram, March 1971 (NEDO-l0349). 

2Studies of BWR DeSigns for Mitigation of AntiCipated Transients Without Scram, 

October 1974 (NEDO-20626). 
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Power densities, pressure rate characteristics, core performance parameters,
recirculation characteristics, protection system capabilities, and pressure
relieving capacities are very similar within each BWR product line. Hence,
one plant was chosen to represent the basic behavior of all units within each
product line.

By prior agreement with the Staff, sensitivity studies are provided only for the

key parameters affecting suppression pool temperature. Additional sensitivity.

studies will be performed and submitted at a later date. Since the analyses of

this report are not intended to bound all BWRs, any significant unique features

which might exist on a particular plant will be considered later. Small

differences in hardware selection are not expected to produce significant changes

in the analysis presented here. Additionally, since NUREG-0460, Volume 3 suggests

an implementation schedule of at least two years after rulemaking, this analysis

whenever possible utilizes parameters expected to be present at that time, such
as all 8x8 fuel.

Due to the extremely low probability of the occurrence of an ATWS, nominal para-
meters and initial conditions have been used in these analyses. This is con-
sistent with the NRC Staff request. In spite of this approach, many conservatisms-
remain whiich may make the analysis conservative in light of the unlikely nature
of the ATWS event. The major emphasis in this report was on the short term
mitigation capability of the BWR. The actions necessary to achieve cold shutdown
are also addressed.

The basis of these analyses is that the systems used to mitigate the postulated
ATWS events would be designed such that the consequences do not result in a threat
to public health and safety. Specifically, the systems are based upon meeting
the following criteria:

1. The reactor coolant pressure boundary shall remain below emergency
pressure limits.

2. The containment pressure shall remain below design limits. The contain-
ment temperature shall remain below local saturation temperature limits.
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3. A coolable core geometry shall be maintained.

4. Radiological releases shall be maintained within 10CFR100 allowable
limits.

5. All equipment necessary to mitigate the postulated ATWS event shall
function in the environment (pressure, temperature, humidity) predicted
to occur as a result of the ATWS event.

1.3 CONCLUSIONS

In response to the requirements of Alternate 3, set forth in 'NUREGOJ60, Volume 3,
mitigation of the consequences of a postulated ATWS event have been assessed
for the representative BWR/4/5/6 plants chosen. The conclusions drawn from
this assessment are:

a. Recirculation Pump Trip (RPT) on high vessel pressure or low water
level maintains vessel pressure within emergency limits, and quickly
reduces power well below rated.

b. Alternate Rod Insertion (ARI), utilizing diverse logic and sensors
on high vessel pressure or low water level, in conjunction with RPT,
results in a scram after a delay of approximately 15 seconds. The
combination of RPT and ARI results in low suppression pool temperatures,
assures core coverage and maintains core temperatures well within
acceptable limits, with no expected fuel failure.

c. Two-pump SLCS initiated on high vessel pressure or low water level
in conjunction with RPT and after confirmation of an ATWS condition
results in acceptably low suppression pool temperatures, core coverage
and acceptable core temperatures for all initiating ATWS events.

d. The radiological analysis demonstrates that the limits of 10 CFR 100
are not exceeded for any ATWS event, and would not be exceeded, even
if 100% of the fuel cladding were failed.
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2. ASSESSMENT OF ATWS ISSUE

2.1 BACKGROUND

The NRC Staff in Volume 3 of NUREG-0460 has recommended a number of system design
modifications for BWRs to reduce the likelihood and consequences of Anticipated
Transients Without Scram (ATWS). As a result of extensive studies of transient
frequency, scram system reliability and consequences of ATWS, General Electric
believes that current BWRs with recirculation pump trip maintain a sufficiently
low likelihood of ATWS with severe consequences that no additional design modifi-
cations are necessary.

The results of the General Electric study submitted in September 1976 in a report
to the NRC indicate that the current likelihood of an ATWS event is less than
3x10- 6 events/reactor year. With this low expected frequency of occurrence,
the justifiable expenditure for avoidence based upon a value impact assessment
by General Electric is not more than $100,000 per plant. The basis for this
assessment was presented at the October 1978 ACRS meeting, and is consistent
with the NRC Staff assessment in NUREG-O460 when adjusted for event frequency
and likelihood of core melt.

The General Electric studies of scram system reliability have identified some
relatively simple modifications to the BWR scram system that would increase
its reliability by several orders of magnitude. It is General Electric's belief
that no more than these additional ATWS prevention measures should ever be con-
templated for resolution of the ATWS issue.

2.2 VALUE-IMPACT ASSESSMENT

Volume 3 of NUREG-0460 (Appendix F) contains a risk analysis which includes
many unrealistic conservatisms. A few of these conservatisms are:

a. All ATWS events lead to core melt.

b. Unreliability of the scram system is 3x10- 5 /demand.
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a. The number of transients with potential for severe ATWS consequence

is eight/reactor year.

d. Alternate Rod Insertion yields only a 50% reduction in scram system

unavailability; i.e., mechanical and electrical portions of the scram
are assumed to be equally reliable.

However, even using the above conservative assumptions, Appendix F of NUREG-0i60,
Volume 3, shows that for no modifications (Alternate 1) the probability of core
melt due to ATWS in all BWRs in 1992 is only a factor of two greater than
the WASH-1400 estimate of ron-ATWS core melt probability for all LWRs in 1992.

If Alternate 2 (RPT and ARI) is implemented for all BWRs, the Staff states in
Appendix F of NUREG-0460 (using the same set of conservative assumptions) that
the probability of core melt due to ATWS in all 3JRs in 1992 is reduced to
approximately one half of the WASH-1400 estimate of ncn-ATWS core melt for all
LWR's in 1992.

Therefore it can be concluded that even using the conservative NRC assumptions
stated above, implementation of Alternate 2 as defined by the Staff is all that
would be necessary to make the ATWS risk acceptable based on the Staff's own
statement in NUREG-0460, Volume 3 "...the present likelihood of severe consequences
arising from an ANES event is acceptably small and presently there is no undue
risk to the public from ATWS." The value, therefore, of implementing any modi-
fications beyond Alternate 2 is diminishingly small.

2.2.1 NRC Core Melt Assumption

Contrary to the assumptions in NUREG-3U60, not all AMWS events lead to core
melt. in fact, with RPT, there are not any ATWS events that lead to vessel
pressure exceeding emergency limits. There are also a number of manual actions
which an operator can take, given a failure to scram, to avoid core uncovery
and suppression pool overheating. They include the following: 1) the operator
can manually scram control rods, 2) the operator can selectively insert control
rods in the normal mode, and 3) the operator can reopen the main steam line.
isolation valves to gain access to the main condenser as a heat sink and the
feedwater system as an additional coolant source.
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2.2.2 Scram System Availability

An extensive study* of BWR scram system reliability has been performed by General

Electric including both relay type and solid state type logic systems. This

study involved the performance of detailed failure mode and effects analysis

(FMEA), event trees, and fault trees for all, scram system components including

the potential for common mode failure. Study results were documented to the

Staff in September 1976. Section 7.3 is a summary of the BWR scram system

reliability study and a description of its mechanical and instrumentation design.

This reliability study demonstrated that the current scram system unreliability

is on the order of 0.8x10- 6 /demand as compared to the value of 3x10- 5 used by

the Staff in NUREG-0460. This difference alone would reduce the Staff's estimate

of ATWS core melt probability by a factor of 40 giving a 1992 BWR ATNS core

melt probability of a factor of approximately 20 less than the non-ATWS core

melt probability for all LWRs in 1992 in WASH-1400.

2.2.3 Transient Frequency

The above General Electric study and a similar Electric Power Research Institute

(EPRI) study" of transient data from operating reactors showed that the frequency

of isolation transients, i.e., those transients which have the greatest capability

to lead to serious consequences occur about two times per reactor year for BWRs,

as opposed to the eight as assumed by the NRC Staff. This difference reduces

the Staff's estimated frequency of ATWS with potential for severe consequences by

an additional factor of 4.

*Transmitted via letter from E. A. Hughes, General Electric, to D. F. Ross,

NRC, dated 9/30/76, General Electric Company ATWS Reliability Report.

**R. C. Erdmann, et. al., ATWS: A Reappraisal, Part II: Evaluation of Societal

Risks due to Reactor Protection System Failure; Vol., 2: BWR Risk Analysis,

EPRI NP-265, Part 11, Vol. 2, August 1976. (Ltr from G. Lellouche (EPRI) to

B. Rusche (NRC) dated September 30, 1976.)
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Since the ATWSevent frequency is composed of the sum of the products of each
initiating transient frequency and the probability of failure to scram for that
transient, General Electric's assessment of ATW frequency is lower than NUREG-
0460 by a significant amount.

2.2.4 Benefit for Alternate Rod Insertion (ARI)

The General Electric scram system reliability study has demonstrated that the
mechanical portion of the scram system is roughly two orders of magnitude more
reliable than the electrical portion, i.e., sensors and logic. This study has
led to the conclusion that scram system reliability can be most effectively
improved by utilizing diverse sensors and logic to actuate air header exhaust
valves redundant to existing backup scram exhaust valves (i.e., add ARI). This
system has been analyzed to show a total scram system unreliability of 0.7x10"8 /
demand or a factor of approximately 125 reduction in scram system unreliability
over the original scram system.

2.2.5 Value-Impact Conclusions

NUREG-0460 Volume 3; Appendix E documents the information provided to the Staff
by industry on impact of various modifications. Ln summary, for BWR plants
under construction, the proposed Alternate 2 requirements in NUREG-0460, Vol.
3, cost $700,000 to $1,200,000 per plant for direct costs and a factor of two
times this in indirect costs giving a total cost (direct plus indirect costs)
range of 2 to 3 million dollars per plant, excluding costs due to spurious boron
injection. The proposed Alternate 3 requirements add $700,000 to $900,000 addi-
tional direct cost or 2 to 3 million dollars of additional total costs per plant
beyond Alternate 2. This excludes costs due to spurious boron injection which
would be approximately 5 million dollars per plant. Thus, the combined total
cost for Alternate 3 modification for BWR plants under construction is in the
10 to 15 million dollars/plant range due to the additional instrumentation and
control elements. This cost is not justified by the General Electric assessed
maximum justifiable expenditure of $100,000 for ATWS-related scram improvements.
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2.3 PREVENTION VERSUS MITIGATION

The General Electric studies of scram system reliability have identified the
areas that limit scram system performance. In considering ways to reduce the
risk of ATWS, it is prudent to consider additional areas of low cost prevention
before expensive full mitigation measures are specified.

A major concern with requiring full ATWS mitigation capability is that high
reliability scram system goals will no longer receive the priority that is cur-
rently given In the regulatory process. As pointed out by the General Electric
study, if scram system reliability is a primary concern, then the first level
of effort should be to improve its reliability and credit for its Improvement
should be recognized in *the regulatory area.
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3. DESCRIPTION OF ATWS ANALYSES

This section defines the considerations made in defining the scope and content

of this submittal. Specifically, the classification of plants chosen for anal-

ysis is discussed, the reasons for choosing the particular plant transients
analyzed are given, the plant conditions utilized and the assumptions employed

are listed, the equipment and systems required to be operative are specified

and discussed, and the analytical models used in the evaluation are defined.

3.1 CLASSIFICATION OF PLANTS ANALYZED

Analyses of ATWS events are provided for three classes of BWRs, consistent

with General Electric product line designations. The three classes contained

in this report, the BWR/4 (Mark I), BWR/5 (Mark II) and BWR/6 (Mark III), are

described in Table 3.1-1. BWR/3 plants are not included in this report.

3.2 ATWS EVENTS ANALYZED

The first major GE study of ATWS was presented in NEDO-10349 1 , which presents

results of failure to scram for transients when the recirculation pump trip

feature is implemented. This report evaluated peak pressures and peak heat

flux during the early portion of the transients without scram until primary

coolant conditions had returned to normal. Beyond this point, manual initia-

tion of the standby liquid control system was shown to adequately shut down

the reactor so long as the normal heat removal systems remained available.

NEDO-10349 demonstrated that the most limiting transient with failure to scram

is the MSIV closure event. A list of all anticipated operational transients

which result in a scram demand is given in Appendix 7.1.

1Analysis of Anticipated Transients Without Scram, Licensing Topical Report,

March 1971 (NEDO-10349).
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A later study was reported in NEDO-20626 1 , which presents the results of the
ATWS analysis performed in response to WASH-1270. In this report, General

Electric confirmed the conclusion reached in NEDO-10349 that the MSIV tran-
sient is the most limiting ATWS event. This conclusion is applicable to all
BWR/4, 5 and 6 product lines. NEDO-20626 presented detailed results for BWR/4,
5 and 6 product lines of the MSIV ATWS event assuming recirculation pump trip
and automatic initiation of the standby liquid control system. The MSIV closure
event is also the limiting transient for containment temperature conditions
because this transient releases the largest amount of steam into the suppres-

sion pool and, therefore, results in the highest suppression pool temperature.

Inadvertent opening of a safety/relief valve (depending on the operator action
taken following failure of manual scram) can result in high suppression pool
temperatures. For this reason, the inadvertent opening of safety/relief valves

is also included in the current study.

Finally, to demonstrate performance during most other types of ATWS events,

the turbine trip/load rejection transient with scram failure is presented.
Lower pool temperatures are reached during this ATWS event due to the accessi-

bility of the condenser heat sink and the ability of the feedwater system to
make up coolant inventory in the reactor vessel. This event also results in
moderately high core power for the first few minutes into the transient, and
hence represents additional fuel duty considerations.

Recent studies have shown that failures of the steam bypass system with turbine
trip have a frequency of less than one per plant lifetime. Because of this,
General Electric does not believe that the bypass failure event should be in-
cluded in any required ATWS study. On the other hand, the consequences of

the ATWS event are not expected to be significantly different than the MSIV
closure event, thus limited information on the turbine trip without bypass

ATWS event will also be presented.

1Studies of 3WR Designs for Mitigation of Anticipated Transients Without Scram,
General Electric Licensing Topical Report, October 1974 (NEDO-20626).
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In summary, this report contains analyses of:

a. The MSIV closure ATWS event as the most limiting event.

b. Inadvertent opening of a safety/relief valve ATWS event to examine

suppression pool temperatures.

0. Turbine trip/load rejection with bypass system operation ATWS to demon-

strate other typical performance results.

d. Turbine trip with bypass failure as requested by the Staff.

3.3 PLANT CONDITIONS

Initial operating conditions for the typical plants used to represent each
BWR Product Line are listed in Table 3.3.1. They are 'consistent with NUREG-
0460 guidelines and represent a conservative nominal operating condition.
Tle listing shows most parameters which are expected to influence the course
of the ATWS events. Wherever possible, these parameters are normalized to the
rating of the unit so that most effective generic use of this report can be
made by units of all sizes within a product line, e.g., initial suppression
pool volume is given in full-flow-minutes of rated feedwater.

Only Alternate 2 and Alternate 3 modifications are assumed to be implemented
in these analyses. The features of Alternate 3 include all Alternate 2 features
plus the implementation of automated SLCS repiped to new injection locations
and to allow operation with both pumps. The automatic initiation of SLCS in-
cludes a two minute delayed actuation to allow for operator interruption in
the event of spurious initiation after an actual scram has been confirmed.

The analysis for acceptable ATWS performance assumes the use of quenchers on
the safety relief valve discharge piping on each plant.
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Table 3.3.1

TYPICAL INITIAL OPERATING CONDITIONS

Bars in right-hand margins indicate General Electric Company Proprietary
Information deleted.
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3.4 OPERATIVE EQUIPMENT AND SYSTEMS

3.4.1 Sst Utilzed

The systems which perform the major functions during ATWS events and a brief
description of system functional requirements are given below.

3.4.I.1 Recirculation Pump Trip (RPT)

The recirculation pumps trip in ATWS events as a result of either high vessel dome
pressure (1150 psig) or low level (Level 2).

3.4.1.2 Safety/Relief Valves

The safety/relief valves open at their relief pressure set point and reclose
at their closure pressure set point.

3.4.1.3 Control Rod Drives

The control rod drives insert the control rods in response to ARI logic
actuations.

3.4.1.4 ARI Valves

The valves on the scram air header open on the same signals that initiate RPT
to reduce the air pressure in the header so that the air-operated scram discharge
valves will open, initiating reactor scram.

3.4.1.5 HPCI, HPCS and RCIC

RCIC plus one other high pressure water makeup system pump water into the
vessel when the water level reaches or goes below the low level (Level 2) point.
They turn off when the water level reaches the high level (Level 8) point.
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3.4.1.6 Standby Liquid Control System

In the event that neither normal scram nor ARI have inserted the control rods
into the core, the Standby Liquid Control System will pump the sodium pentaborate
solution into the vessel to shut down the nuclear reaction.

3.4.1.7 Suppression Pool and Containment

The suppression pool absorbs the energy discharged into it from the relief
valves. For Mark III containment automatic isolation occurs.

3.4.1.8 Residual Heat Removal (RHR) System

The RHR is capable of being placed into the pool cooling mode of operation.
Both loops are needed for this. Later in the event, after the pool has been
properly cooled and the reactor partially cooled down, it shall be capable
of operating in the shutdown cooling mode. For those plants which have steam
condensing mode, this mode is available to remove steam directly from the reactor
vessel.

3.4.1.9 Main Condenser

For those events which do not isolate the reactor vessel, the main condenser
is available for removing steam from the primary system.

3.4.1.10 Main Steam Isolation Valves (MSIV)

The MSIV's are able to close at some time during the event if their closure
was not the cause of the event in the first place. They are also capable of
being reopened following their closure.

3.4.1.11 Feedwater System

The feedwater system runs back to a lower flow rate upon receipt of an ATWS
signal.
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3.4.1.12 Turbine Pressure Controls and Bypass System

The turbine pressure controls and steam bypass system operate normally during
those ATWS events which do not isolate the reactor vessel.

3.4.1.13 Condensate Storage Tank (CST)

This is the primary source of water for the HPCI, HPCS and RCIC.

3.4.1.14 Reactor Water Cleanup System

The isolation valves in the reactor water cleanup system close to prevent that
system from diluting and removing the sodium pentaborate solution.

3.4.1.15 Standby Gas Treatment System

The standby gas treatment system is available for processing the air in the
containment.

3.4.1.16 Diesel Generator

For that case where the loss of normal a-c power is the initiating event, the
diesel generator sets are available to provide emergency a-c power to the plant.

3.4.1.17 Instrumentation

The following functions will be monitored during an ATWS event:

a. Reactor Power - LPRM/APRM

b. Control Rod Position Indication

c. Dome Pressure

d. Vessel Water Level

e. Suppression Pool Temperature
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The following secondary functions will be monitored during an ATWS event:

a. SLC Storage Tank Level

b. Condensate Storage Tank Level

c. Core Flow

d. HPCI (or HPCS) Flow

e. Feedwater Flow

f. Drywell/Containment Pressure

g. Radiation Monitoring

h. MSIV Position

3.4.2 Equipment Performance Assumed in Analysis

Characteristics of the important pieces of equipment used to mitigate the conse-
quences of failure to scram are listed in Tables 3.4.1 to 3.4.3. The BWR/4
characteristics are given in Table 3.4.1, the BWR/5 characteristics are given
in Table 3.4.2, and the E-WR/6 characteristics are given in Table 3.4.3.

3.4.3 ATWS Functional Logic

The functional logic for potential automated standby liquid control injection
and other BWR ATWS mitigation and prevention features has been evolving since
the early topical reports introduced high pressure and low level recirculation
pump trip (NEDO-10349). Figures 3.4.3-i to 3.4.3-6 show the current status
of that functional logic development and the standby liquid injection path
arrangements anticipated for BWR/4,5 and 6 plants if assigned Alternate 3
requirements from NUREG-0460, Volume 3.
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Table 3.4.1

BWR/4

EQUIPMENT PERFORMANCE CHARACTERISTICS
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Table 3.4.2

BWR/5

EQUIPMENT PERFORMANCE CHARACTERISTICS
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Table 3.4.2 

BWR/5 
EQUIPMENT PERFORMANCE CHARACTERISTICS 
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Table 3.4.3

BWR/6

EQUIPMENT PERFORMANCE CHARACTERISTICS
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Table 3.4.3 
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EQUIPMENT PERFORMANCE CHARACTERISTICS 
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Figut"t! 3.11.3-2. Arrallgement Schematic of SLCS UWR/4 
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Figure 3.4.3-4. Arrangement Schematic of SLCS, BWR/5
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Figure 3.4.3-4. Arrangement Schematic of SLCS, BWR/5 
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Figure 3.4.3-5. Simplified ATWS llitigatlon Logic BWR/6 
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3.5 COMPUTATIONAL MODELS

3.5.1 REDY/ODYN Comparison
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3.5.2 REDY Prediction of ATWS Stability
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3.5.2 REO! Prediction of ATWS Stability 
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4. RESULTS OF ATWS EVENT ANALYSES

4.1 RESULTS OF ATWS EVENTS - BWR/4 MARK I

4.1.1 MSIV Closure Event

4.1.1.1 Overview of Response Without Scram

A detailed description of the sequence of events for MSIV closure is given

below. The behavior of the plant is basically separable into an early or short

term transient involving a sharp pressure rise and power peak, and a longer

term portion that requires evaluation of coolant and containment conditions

as the reactor is ultimately brought to shutdown.

The effectiveness of the recirculation pump trip (RPT) feature presented in

NEDO-10349 and NEDO-20626 are reconfirmed by this analysis. It assists the

relief valves in limiting the pressure disturbance acceptably and allows the

establishment of a relatively low power generation rate for the long term

portion of the transient. Figure 4.1.1 illustrates this first period.

Ultimate solution to the lack of scram situation must involve insertion of nega-

tive reactivity into the reactor, thereby bringing the reactor to a fully shut-

down condition. The ARI is provided as an effective way to mitigate common-

cause failures in the logic of the scram system. In the very remote case of

ARI ineffectiveness, the automated SLCS provides further protection and shut-

down capability. Coolant inventory is adequately maintained by using HPCI and

RCIC available in each BWR to replace the coolant loss as steam flow leaves

the primary system through the relief valves. Simply adding more water without

inserting negative reactivity has the effect of raising the power generation

rate and the amount of inventory leaving the system as steam.

The steam reaching the suppression pool continues to heat it and pressurize

the containment until the power generation/steam flow can be reduced and finally

terminated. The RHR system ultimately cools the pool and eventually the reactor

also, if the Main Steam Isolation Valves cannot be reopened establishing flow

to the main condenser, the preferred method of cooldown.
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The detailed sequences of events and the results of analyses are described below.

4.1.1.2 Sequence of Events for MSIV Closure Transient

The MSIV Closure transient provides the most severe conditions following a pos-
tulated failure to scram. Listed in Table 4.1.1 is the sequence of occurrence
and significant points of the transient with representative times when each
event occurs.

The sequence of events begins with the nominal 4 second closure of the Main
Steam Isolation Valves. With motion of the MSIV's, the pressure begins to rise
which results in a reduction in void fraction and rapid increase in power. This
sequence of events is shown in Table 4.1.1. For the BWR/4, this power reaches
a maximum of 572% of the initial value at 4 seconds into the event and rapidly
decreases again. +In just under 4 seconds, the set point pressure of the relief
valves is reached and they begin to lift and arrest the pressure rise. At about
the same time that the relief valves are opening it is expected some of the fuel
will experience transition boiling. Shortly after 4 seconds, the vessel dome
pressure reaches 1150 psig, the maximum recirculation pump trip point, and both
of the recirculation pumps trip.

A delay of 530 milliseconds is used from the time the 1150 psig is reached until
the time that recirculation pump trip is effected. "nhis delay time (500 milli-
seconds delay in the sensor and 30 milliseconds in the logic and trip) is con-
sistent with industry experience. At the same time that the recirculation pump
trip occurs, the logic chain is activated to start ARI and if necessary make
the decision that an ATWS may have occurred and provide appropriate mitigation.

Pressure continues to rise for a short period of time until, at approximately
9 seconds into the event, it reaches its peak and begins to decline. The maxi-
mum pressure in the vessel is 1297 psig at 8.9 seconds. Those plants which
have turbine-driven feed pumps, will begin to coast down as soon as the MSIVs
are closed and, for this analysis, have lost their ability to overcome vessel
pressure head at 20 seconds. T"he relief valves begin to close shortly after
20 seconds and pressure is then stabilized at the relief valve set point
pressure, this part of the transient is sho%.n in Figure 4.11.1. Some peak
pressures at other points in the system are given in Table 4.1.4 as well as a
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Table 4.1.1

BWR/4 MARK I MSIV CLOSURE WITHOUT ARI

Sequence of Events

1. Nominal 4 second MSIV Closure - Scram Fails 0
2. Pressure Rise Begins 1 Second
3. Relief Valves Lift 4 Seconds
4. Some Fuel Experiences Transition Boiling 5 Seconds
5. Recirculation Pumps Trip on High Pressure, ARI is

Initiated, and Timed SLCS Logic is Triggered 5 Seconds
6. Vessel Pressure Peaks 9 Seconds
7. Feedwater Flow Coasts Down to Lower Limit 20 Seconds
8. ARI Fails 30 Seconds
9. HPCI and RCIC Flow Starts after Level 2 Initiation 57 Seconds

10. ATWS Logic Timer Complete, SLCS Starts 2 Minutes
11. Liquid Control Flow Reaches Core 3 Minutes
12. Water Level Reaches Minimum and Begins to Rise 5 Minutes
13. RHR Flow Begins (Pool Cooling) 11 Minutes
14. Hot Shutdown is Achieved 18 Minutes
15. Containment Bulk Temperature and Pressure Peak 27 Minutes

/
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summary of key parameters for this and other events. The same pressure signal
(1150 psig) that initiated the recirculation pump trip will cause the opening
of valves on the scram air header which will allow the air pressure in the
header to bleed down. In the improbable event that scram has not already
occurred from any of the several available signals, this reduced pressure
will allow the scram discharge valves to open and the control rods to insert.

For this condition (ARI), tests have shown that the pressure in the header will
have been reduced sufficiently in 15 seconds to allow the control rods to insert.
The control rods will all be expected to be fully into the core in 5 additional
seconds. ARI mitigates the ATWS situation and 25 seconds after the event began,
it is essentially over. Water level will continue to drift downward as decay
energy generates small amounts of steam, and when Level 2 is reached, the HPCI
and RCIC will automatically start and replenish the vessel water inventory,
from the condensate storage tank, to the high level trip. They will then reset
themselves and continue to supply water to the vessel inventory as necessary.

If for some reason the ARI is also not effective, the BWR/4 is still able to
mitigate the event. Without ARI and feedwater flow at zero, the level of the
water in the vessel will go down and pass Level 2, the level at which HPCI and
RCIC are initiated, at 37 seconds. Twenty seconds later, water from these systems
will begin to enter the reactor vessel.

With confirmation from the flux monitoring system and the rod position indicating
system that scram has not taken place, the SLCS will be activated.

Automatic SLCS will be started 2 minutes after the event begins. There will be
one minute of transport time in the lines and the vessel. So nuclear shutdown
begins at 3 minutes into the event if it is necessary to use the SLCS.

Using both of the SLCS pumps in most SWR/4 plants, a volumetric flow of 86 gpm
is available. With this flow rate of sodium pentaborate, the reactor will be
brought to hot shutdown in approximately 18 minutes from the beginning of the
event. This can be seen in the lower left hand graph of Figure 4 .1.2. The
reaction of several other parameters is also depicted in Figure 4.1.2.
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Even though the HPCI and RCIC are pumping water into the vessel from approxi-

mately 1 minute the water level within the vessel continues to decrease until

approximately 5 minutes. At this time it reaches its lowest level and begins

to rise. As the level is increasing, core flow is increased, thereby reducing

the average void fraction. The various contributors to reactivity insertion

and power production (boron, voids, etc.), must always be in balance with the

power production. Water level is completely restored and the HPCI and RCIC are

turned off at approximately 16 minutes. A large-scale plot of water level

is shown on Figure 4-.1.3.

Following hot shutdown, the decay power will continue to generate a small amount

of steam which will continue to cycle the relief valves. At 27 minutes the

suppression pool bulk temperature will reach its maximum value of 1890F. The

maximum containment pressure with this much energy transferred to the suppression

pool is 11.1 psig. Figure 4.1.4 provides plots of suppression pool bulk tempera-

ture and containment pressure. For the case with the ART, the maximum suppression

pool temperature is 141OF and it occurs approximately 5 hours after the event.

Either way, all parameters are maintained within the limiting criteria for this

event.

4.1.2 Turbine Trip Event

4.1.2.1 Overview of Response Without Scram

The overview which was given for the MSIV Closure Event, Section 4.1.1 in general

also applies for the Turbine Trip event. A key difference is that, with this

event, the main condenser is still- available. This means that steam will be

discharged to the suppression pool for only a short time at the beginning of

the event and that from the time steam flow is within the bypass capacity,

the main condenser will be used to remove the steam from the vessel.

4.1.2.2 Sequence of Events for Turbine Trip Transient

The Turbine Trip event begins with the rapid closure of the turbine stop valves

and the resultant opening of the turbine bypass valves. The stop valves close

in 0.1 second. The pressure immediately begins to rise which results in a reduc-

tion Jn void fraction and rapid increase in power. The sequence of events is
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shown in Table 4.1.2. For the BWR/4, this power reaches a maximum of 420% of
the initial value at 0.93 second into the event and rapidly decreases again.
At approximately 1.5 seconds, the set point pressure of the relief valves is
reached and they begin to lift and arrest the pressure rise. Shortly after
2 seconds, it is expected that some of the fuel will see heat• flux conditions
such that it will experience transition boiling. At about the same time, the
vessel dome pressure reaches 1150 psig, the maximum RPT point, and both of the
recirculation pumps trip.

At the same time that RPT occurs the logic is activated to start ARI and if
necessary to make the decision that an ATWS may have occurred and provide appro-
priate mitigating action.

Pressure will continue to rise briefly until at 3 seconds it has passed its
peak and begins to decline. The maximum pressure in the vessel is 1195 psig
at 2.7 seconds. Although the feedwater pumps remain available for the turbine
trip case, in order to reduce the amount of power produced, the feedwater
flow will be limited with this design and has been chosen to be zero. This
minimizes power generation. The relief valves begin to close very early in
this transient (about 9 seconds) and are all closed for the last time in less
than 4 minutes, even without ARI, and the remainder of the generated steam went
through-the bypass to the main condenser. The first portion of this transient
Js shown in Figure 4.1.5. Peak values of other key variables in the system
are given in Table 4.1.4.

The same pressure signal (1150 psig) that initiated the recirculation pump trip
will cause the opening of valves on the scram air header which will allow the
air pressure in the header to bleed down. In the improbable event that scram
has not already occurred from any of the several available signals, this reduced
pressure will allow the scram discharge valves to open and the control rods to
insert. For this condition, tests have shown that the pressure in the header
will have been reduced sufficiently in 15 seconds to allow the control rods to
insert. They will all be expected to be fully into the core in 5 additional
seconds. This condition is known as Alternate Rod Insertion (ARI). It com-
pletely mitigates the ATWS situation and 25 seconds after the event begins, it
is over. Since in this event feedwater is not lost and the runback of feedwater
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Table 4.1.2

BWIR/4 MARK I TURBINE TRIP WITHOUT ARI

Sequence of Events

1.

2.

3.

4.

5.

6.

7.

8.

9.
10.

11,

12.

13.

14.

15.

Turbine Trips - Assumes Scram Fails

Pressure Rise Begins

Relief Valves Lift

Some Fuel Experiences Transition Boiling

Recirculation Pumps Trip on High

Pressure, ARI is Initiated, and

Timed SLCS Logic is Triggered

Vessel Pressure Peaks

Assumes ARI Fails

Feedwater Flow Runs Back to Zero

HPCI and RCIC Flow Starts on Level 2 initiation

ATWS Logic Timer Complete, SLCS Starts

Liquid Boron Flow Reaches Core

Containment Bulk Temperature and Pressure Peak
when Relief Valves all Close

Water Level Reaches Minimum and Begins to Rise

RHR Flow Begins (Pool Cooling)

Hot Shutdown is Achieved

0

0

2 Seconds

2 Seconds

2

3
30

45

85

2

3

Seconds

Seconds

Seconds

Seconds

Seconds

Minutes

Minutes

Minutes

Minutes

Minutes

Minutes

4

5
11

21
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does not occur until the failure of both normal scram and ARI are confirmed, the
feedwater system will continue to function and provide water to the reactor.

If for some reason the ARI is not effective, the BWR/4 is still able to mitigate
the event. Without ARI and feedwater flow now having gone to zero, the level
of the water in the vessel will go down and pass Level 2, the level at which
HPCI and RCIC are initiated, at 65 seconds. Twenty seconds later water from
these systems will begin to enter the reactor vessel.

With confirmation from the flux monitoring system and the rod position indicating
system that scram has not taken place, the SLCS will now be activated. This system
will be started 2 minutes after the event begins and will reach the core after
an additional 1 minute of transport time in the lines and the vessel. Thus
nuclear shutdown begins at 3 minutes into the event if it is necessary. For
most BWR/4 plants, a volumetric flow of 86 gpm is available. With this flow
rate of sodium pentaborate, the reactor will be brought to hot shutdown approxi-
mately 21 minutes from the beginning of the event. This can be seen in the
lower left hand graph of Figure 4.1.6. The behavior of several other parameters
is also depicted in Figure 4.1.6.

In a few events, oscillations of neutron flux, pressure, core flow, and steam
flow are calculated with REDY as shown in Figure 4.1.6. These result from a
combination of inherent thermal, hydraulic, and nuclear characteristics in the
core and recirculation system and interactions with the relief valves and/or
water level pressure controls. In this event, the oscillations in neutron
flux have a characteristic expected of a limit cycle for a short period of time
with an average power level of about 25% and peak generated power near 80%.
Fuel thermal power swings are less than 10%, no fuel damage is expected and
coolable geometry is constantly maintained for all fuel. The limit cycle is
stopped as boron becomes more effective near 600 seconds and the event proceeds
to cold shutdown. From calculations of this type it has been determined that
stability will not be a problem during the ATWS event.

Even though the HPCI and RCIC are providing water into the vessel from approxi-
mately 1 minute, the water level within the vessel continues to decrease until
approximately 5 minutes. At this tiime it reaches its lowest level and begins

jto rise. As the level is increasing, core flow is increased, thereby reducing
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the average void fraction. The various contributors to reactivity insertion

and power production (boron, voids, etc.), must always be in balance with the

power production. Water level is completely restored and the HPCI and RCIC

are turned off at approximately 19 minutes. A large-scale plot of water level

is shown in Figure 4.1.7.

Following hot shutdown, the decay power will continue to generate a small amount

of steam which will go through the bypass to the main condenser. Since the major

portion of the steam generated in this event goes to the main condenser, the

temperature rise in the suppression pool will be minimal. The maximum suppression

pool temperature calculated in this case is 102 0 F which results in a maximum con-

tainment pressure of 0.6 psig.

4.1.3 Inadvertent Open Relief Valve (IORV) Event

4.1.3.1 Overview of Response Without Scram

A detailed description of the sequence for this event is given below as it has

been simulated in this analysis. This event has no rapid excursions as the

previous two events but is merely a long term depressurization. The recircula-

tion pump trip feature does not occur until late in the event after hot shutdown

is achieved.

4.1.3.2 Sequence of Events for Inadvertent Open Relief Valve

This event begins when one of the primary relief valves on the main steam lines

volunteers to open without influence from any other portion of the system. All

pressure levels in the reactor coolant pressure boundary are at a nominal value

prior to the event. This sequence of events is shown in Table 4.1.3.

At the time that the relief valve opens, there is a momentary depressurization

(a few seconds) until the turbine pressure control valve senses it and closes

slightly to control the pressure. After slightly less than two minutes, the

suppression pool temperature, which was initially at 90 0 F, has risen to the alarm

point of 951F. The operator at this point will turn on the RHR system in the

pool cooling mode to maintain low suppression pool temperature. The temperature

will continue to, rise and at 7.5 minutes will reach 110 0 F at which point the

NEOO-24222 
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operator is required to manually scram the plant. Manual scram and ARI are
activated and the logic chain will make the decision that an ATWS has occurred,
and provide appropriate mitigating action.

If for some reason neither normal manual scram nor the ARI are effective, the
BWR/4 is still able to mitigate the event. The ATWS logic will have determined
that the control rods are not inserting and at 9 minutes into the event will
activate the standby liquid control system. For this case, because the recircula-
tion pumps have not been tripped, the delay time inside of the vessel is small
and 0.5 minute of transport time is sufficient. At 9.5 minutes into the event
the standby liquid control pumps start and at 10 minutes the control liquid
reaches the core and shutdown begins. Within 24 minutes the power has been
reduced to the point that the amount of steam generated is less than the relief
valve capability flow to the turbine stops and the pressure now begins to fall
more rapidly. The turbine control valves have closed completely. These events
are depicted in Figure 4.1.8. By 28 minutes, the pressure will have dropped to
the low pressure isolation point of 850 psig and the main steam isolation valves
will close. For plants with turbine-driven feedwater pumps, the feedwater was
assumed to be lost 20 seconds later. This causes the water level in the vessel
to decrease, and at 33 minutes the low level point was reached where the recircu-
lation pumps are automatically tripped and the high pressure coolant injection
and reactor core isolation cooling systems were activated. These systems will
continue to cycle on at low level and off at high level to maintain water inventory
in the vessel. The depressurization of the vessel will continue with the relief
valve discharging into the suppression pool, and the maximum pool temperature
of 184°F will occur at 87 minutes. The suppression pool temperature trace is
shown in Figure 4.1.9. The values given here are representative values. Each
specific plant size has some features which may alter the results of this event.

Ln the case where the ARI will have the plant shut down at 8 minutes, the maximum
pool temperature would be 163 0 F.

4.1.4 Sensitivity Results

Sensitivity studies have been done to determine the manner in which peak
suppression pool temperature will vary given variations in system performance
or initial conditions.
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Table 4.1.3
BWR14 MARK I INADVERTENT OPENING OF A RELIEF VALVE WITHOUT ARI

Sequence of Events

1. Relief Valves Opens Inadvertently and Fails to Close
2. Alarm Sounds at 950 F and Operator Initiates Pool

Cooling

3. Suppression Pool Bulk Temperature Reaches 110 0 F,
Operator Attempts Manual Scram, ARI and Timed SLC Logic
Initiated, Assumes Scram Fails

4. Assumes ARI Fails
5. Standby Liquid Control System Automatically Starts
6. Liquid Boron Reaches Core
7. Power is less Than Relief Valve Capacity
8. isolation on Low Line Pressure
9. Hot Shutdown is Achieved

10. Peak Suppression Pool Bulk Temperature and Pressure
are Reached

0

2 Minutes

7.5 Minutes
8 Minutes

9.5 Minutes

10 Minutes

24 Minutes

28 Minutes

-30 Minutes

87 Minutes
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1. Relief Valves Opens Inadvertently and Fails to Close 

2. Alarm Sounds at 950 F and Operator Initiates Pool 

Cooling 

3. Suppression Pool Bulk Temperature Reaches , 10°F, 

Opera tor A ttempts Manual Scram, ARI and Timed SLC Logic 

Initiated, Assumes Scram Fails 

4. Assumes ARI Fails 

5. Standby Liquid Control System Automatically Starts 

6. Liquid Boron Reaches Core 

7. Power is less Than Relief Valve Capacity 

8. Isolation on Low Line Pressure 

9. Hot Shutdown is Achieved 

10. Peak Suppression Pool Bulk :emperature and Pressure 

are Reached 
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2 Minutes 

7.5 Minutes 

8 Minutes 

9.5 Minutes 

10 Minutes 

24 Minutes 

28 Minutes 

-30 Minutes 

81 Minutes 
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Table 4.1.4

SUMMARY BWR/4 MARK I

Without ARI:

Maximum Neutron Flux (%)

Maximum Core Pressure (psig)

Maximum Vessel Bottom
Pressure (psig)

Maximum Steamline Pressure

(psig)

Maximum Average Heat Flux (3)

Maximum Suppression Pool Bulk

Temperature (OF)

Containment Pressure (psig)

With ARI:*"

Maximum Suppression Pool

Bulk Temperature (OF)

Containment Pressure, ps.ig

669 gpm Boron, 95%

MSIV Closure

572 at 3.96 sec

1282 at 9.15 sec

1297 at 8.93 see

Mixing Eff., Two

Turbine Trip

420 at 0.93 see

1167 at 2.54 sec

1195 at 2.70 sec

Minute Timer

IORV

100 at 0

1015 at 0

1044 at 0

1269

11414

at

at

9.24

5.'1

sec

sec

1144

134

at

at

2.33

2.71

sec

sec

995

100

at

at

0

0

189 at 27 min

11.1

102 at 14 rin

0.6

184 at 87 min

10.1

141 at 5 hours

4.3

*See Note 3, Table 3.4.3.

"With ARI all events occurring prior to 3D seconds remain unchanged.

4-12

Without ARI: 

Maximum Neutron Flux (%) 

Maximum Core Pressure (psig) 

Maximum Vessel Bottom 

Pressure (psig) 

Maximum Steamline Pressure 

( psig) 

Maximum Average Heat Flux (S) 

Maximum Suppression Pool Bulk 

Temperature (OF) 

Containment Pressure (psig) 

With ARI:" 

Maximum Suppression Pool 

Bulk Temperature (Or) 

Containment Pressure, psig 

·See Note 3. Table 3.4.3. 

NEOO-24222 

Table 4.1.4 

SUMMARY BWR/4 MARK I 

66- gpm Boron, 95% Mixing Err., Two Minute Timer 

MSIV Closure 

572 at 3.96 sec 

1282 at 9.15 sec 

Turbine Trip lORV 
420 at 0.93 sec 100 at 0 

1167 at 2.54 sec 1015 at 0 

1297 at 8.93 sec "95 at 2.70 sec 1044 at 0 

1269 at 9.24 sec 1144 at 2.33 sec 995 at 0 

144 at 5.11 sec 134 at 2.71 sec 100 at 0 

189 at 27 min 102 at 4 min 184 at 87 min 

11.1 0.6 10.1 

141 at 5 hours 

**With AR! all events occur~i~g prior to 3D seconds remain unchanged. 
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The sensitivity shown in Table 4.1.5 shows the effect of plant size and boron
pumping rate on peak suppression pool temperature. The 112 gpm boron pumping
capacity in a 251 inch diameter vessel is equivalent to an 86 gpm system pumping
into a 218 inch diameter vessel. Since the goal of these analyses was to deter-
mine the maximum suppression pool temperature of a plant with a 218 inch diameter
vessel, the HPCI and RCIC flow rates, as a percent of rated feedwater flow, were
used. From this table, it may be concluded that a plant with a 218 inch diameter
vessel would typically experience a maximum suppression pool temperature of 185 0 F.

Table 4.1.6 shows variation in peak suppression pool temperature as a function
of HPCI and RCIC flow rate expressed as a percentage of rated feedwater flow.
The standby liquid control system is an 86 gpm system pumping into a 251 inch
diameter vessel. On the large BWR/4 the HPCI plus RCIC flow is 19.8% of rated
feedwater. This is exactly equivalent to the base case (BWR4-218) reported
in Section 4.1.1 which results in a maximum suppression pool temperature of

189 0F.

The 197 0 F peak suppression pool bulk temperature shown in Table 4.1.7 represents
a hypothetical plant with a 251 inch diameter vessel but with an HPCI plus RCIC
only large enough to pump this same percentage (22.9%) of rated feedwater as a
plant with a 218 inch diameter vessel. For that hypothetical 251 inch diameter
plant, the effect of reducing the boron system delay times is shown. In Table
4.1.7, the speed with which the boron system gets to the core is varied from
I to 3 minutes.

The previous sensitivity studies have been for the MSIV Closure case. One sensi-
tivity case was run for the IORV. In Section 4.1.3, it was reported that with

ARI, the maximum suppression pool bulk temperature was 163°F. If the ARI were
delayed until 10 minutes after the suppression pool bulk temperature reached
110 0 F, the maximum temperature would be 176°F.

4-13

NEDO-24222 

The sensitivity shown in Table 4.1.5 shows the effect of plant size and boron 

pumping rate on peak suppression pool temperature. The 112 gpm boron pumping 

capacity in a 251 inch diameter vessel is equivalent to an 86 gpm system pumping 

into a 218 inch diameter vessel. Since the goal of these analyses was to deter­

mine the maximum suppression pool temperature of a plant with a 218 inch diameter 

vessel, the HPCI and RCrC flow rates, as a percent of rated feedwater flow, were 

used. From this table, it may be concluded that a plant with a 218 inch diameter 

vessel would typically experience a maximum suppression pool temperature of 18SoF. 

Table 4.1.6 shows variation in peak suppression pool temperature as a function 

of HPe! and RCIC flow rate expressed as a percentage of rated feedwater flow. 

The standby liquid control system is an 86 gpm system pumping into a 251 inch 

diameter vessel. On the large BWR/4 the HPCI plus RCIC flow is 19.8% of rated 

feedwater. This is exactly equivalent to the base case (BWR4-218) reported 

in Section 4.1.1 which results in a maximum suppression pool temperature of 

189or. 

The 197°F peak suppression pool bulk temperature shown in Table 4.1.7 represents 

a hypothetical plant with a 251 inch diameter vessel but with an HPCI plus RCIC 

only large enough to pump this same perc~ntage (22.9$) of rated feedwater as a 

plant with a 218 inch diameter vessel. For that hypothetical 251 inch diamete~ 

plant, the effect of reducing the boron system delay times is shown. In Table 

4.1.7. the speed with which the boron system gets to the Core is varied from 

1 to 3 minutes. 

The previous sensitivity studies have been for the MSIV Closure case. One sensi­

tivity case was run for the IORV. In Section 4.1.3, it was reported that with 

ARI, the maximum suppression pool bulk temperature was 163Or. If the ARI were 

delayed until 10 minutes after the suppression pool bulk temperature reached 

110°F, the maximum temperature would be 176Of. 
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Table 4.1.5

BWR/4 MARK I VESSEL MSIV CLOSURE

HPCI & RCIC CAPACITY IS 22.9% OF RATED FEEDWATER FLOW

SLCS Capacity, Two Minute Timer, 95%

Mixing Efficiency

66 gpm 77 gpmw 86 gpml*

86 gpm 100 gpm 112 gpm

218 in. Vessel

251 in. Vessel

Maximum Bulk Suppression Pool

Temperature (OF) 197 at 20 min 189 at 27 min 185 at 32 min

*Note that this sensitivity case coincidentally gives the same result as shown
in Table 4.1.4. It is not, however, the reference case.

**Note that this is the typical expected result for BWR4-218, but is not the
reference case. The reference case given in Table 4.1.U is the BWRU-218,
66 gpm Boron, with 19.810 HPCI and RCIC capacity to represent all plant sizes.

4-14
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Table 4.1.5 

SWR/4 MARK I VESSEL l".5IV CLOSURE 

RPeI & RCIC CAPACITY IS 22.9% OF RATED FEEDWATER FLOW 

218 in. Vessel 

251 in. Vessel 

Maximum Bulk Suppression Pool 

Tempe~ature (OF) 

SLCS Capacity, Two Minute Timer, 95% 

Mixing Effioiency 

66 gplIl 

86 gpm 

197 at 20 min 

77 gpm· 

100 g;>m 

,89 at 27 min 

86 gpm" 

1 12 gpm 

185 at 32 min 

·Note that this sensitivity case coinc:dentally gives the same result as shown 

in T3ble 4.1.4. It is not, however, the :-e ference case. 

'·Note that this is the typica~ expected result for aWR4-218, but is not the 

reference case. The reference case given in Table 4.1.4 is the BWRU-21a, 

66 gpo Soron, with 19.8% HPCI a~d RCIC capacity to represent all plant sizes. 
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Table 4.1.6

BWR/4 MARK I 251-INCH VESSEL MSIV CLOSURE

HPCI and RCIC Capacity (% NBR Feedwater)

86 gpm Boron, 95% Mixing Efficiency

2-Minute and 1-Minute Delay

17.7 19.8w 22.9

Maximum Bulk Suppression Pool

Temperature (OF)

184 at 32 min 189 at 27 min** 197 at 20 min

'Typical HPCI + RCIC capacity for 251-in. Vessel (5600 gpm).

**This result is equivalent to the reference case (BWR4-218 - 66 gpm Boron).
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Table 4.1.6 

BWR/4 MARK I 251-INCH VESSEL MSIV CLOSURE 

HPeI and RCIC Capacity (% NBB Feedwater) 

Maximum Bulk Suppression Pool 

Temperature (~) 

86 gpm Boron, 95% Mixing Effioienoy 

2-Minute and 1-Minute Delay 
..ll.:1. 1 9 • 8 it 22 • 9 

184 at 32 min 189 at ·27 minu 197 at 20 min 

·~ypical HPCI + RC!C capacity for 251-in. Vessel (5600 gpm). 

·-This result is equivalent to the reference case (3WR4-218 - 66 gpm Boron). 
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Table 41.1.7

SENSITIVITY STUDY

BWR/4 MARK I 251 INCH SIZE MSIV CLOSURE

HPCI * RCIC CAPACITY IS 22.9% OF RATED FEEDWATER*

86 gpm Boron at 95% Mixing Erf.

Total Delay Time (Minutes)

1 2 - 3*

Maximum Bulk Suppression Pool

Temperature (OF) 186 at 30 min 192 at 25 min 197 at 20 min*

These results are for generic HPCI + RCIC capacity using a 218 -in. vessel. For

a 251-in. vessel, the peak pool bulk temperature is 189 0 F (with the 3-minute

delay - 2 =inutes for logic and I minute 'transport time).
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Table 4.1.7 

SENSITIVITY STUDY 
BWR/4 MARK I 251 INCa SIZE MSIV CLOSURE 

HPeI + RCIC CAPACITY IS 22.9~ OF RATED FEEDWATER* 

86 gpm Boron at 95~ Mixing Err. 
Total Delay Time (Minutes) 

2 

Maximum Bulk Suppression Pool 

Temperatu~ (Of) 186 at 30 min 192 at 25 mi!! 197 at 20 min. 

itThese resul ts are for' generic HPC::: ... RCIC capaci~j using a 218-in. vessel. For 

a 251-in. vessel t the peak pool bulk temper-a ~ure is 189°F ( with the 3-minute 

delay . 2 :::inutes for logic and : :ninute 'trar.sport ':.ime) • 
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4.2 RESULTS OF ATWS EVENTS - BWR 5/MARK II

4.2.1 MSIV Closure Event

4.2.1.1 Overview of Response Without Scram

A detailed description of the sequence of events for this transient is given

below. The behavior of the plant is basically separable into an early or short

term transient involving a sharp pressure rise and power peak, and a longer

term portion that requires evaluation of coolant and containment conditions

as the reactor is ultimately brought to shutdown.

The effectiveness of the recirculation pump trip (RPT) feature presented in

NEDO-10349 and NEDO-20626 are reconfirmed by this analysis. It assists the

relief valves in limiting the pressure disturbance acceptably and allows the

establishment of a relatively low power generation rate for the long term portion

of the transient. Figure 4.2.1 illustrates this first point.

Ultimate solution to the lack of scram situation must involve insertion of

negative reactivity into the reactor, thereby bringing the reactor to a fully

shutdown condition terminating the long term aspects of the event. The ARI

feature is provided as an effective way to mitigate common cause failures in

the logic of the scram system. In the very remote case of ARI ineffectiveness,

the automated SLCS provides further protection and shutdown capability. Coolant

inventory is adequately maintained by using the HPCS system and RCIC system

available on each BWR/5 to replace the coolant loss as steam flow leaves the

primary system through the relief valves. Simply adding more water without

inserting negative reactivity has the effect of r'aising the power generation

rate and the amount of inventory leaving the system as steam. The steam reaching

the suppression pool continues to heat it and pressurize the containment until

the power generation/steam flow can be reduced and finally terminated. The

RHR system ultimately cools the pool and eventually the reactor also (in the

shutdown cooling mode) if the MSIVs cannot be reopened establishing flow to

the main condenser (the preferred method of cooldown).
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4.2.1 MSIV Closure Event 

4.2.1.1 Overview of Response Without Scram 

A detailed description of the sequence of events for this transient is given 

below. The behavior of Fhe plant is basically separable into an early or short 

term transient involving a sharp pressure rise and power peak, and a longer 

term portion that requir~s evaluation of coolant and containment conditions 

as the reactor is ultimately brought to shutdown. 

The effectiveness of the recirculation pump trip (R?T) feature presented in 

NEDO-l0349 and NEDO-20626 are reconfirmed by this analysis. It assists the 

relief valves in limiting the pressure disturbance acceptably and allows the 

establishment of a relatively low power generation rate for the long term portion 

of the tranSient. Figure 4.2.1 illustrates this first point. 

Ultimate solution to the lack of scram situation must involve insertion of 

negative reactivity into the reactor, thereby bringing the reactor to a fully 

shutdown condi~ion terminating the long term aspects of the event. The ARI 

feature is provided as a~ effective w.ay to mitigate common cause failures in 

the logic of the scram system. In the very remote case of ARI ineffectiveness, 

the automated SLCS provides further protection and shutdo~ capability. Coolant 

inventory is adequately maintained by using the HPCS system and RCrC system 

available on each BWR/5 to replace the coolant loss as steam flow leaves the 

primary system through the relief valves. Simply adding more water without 

inserting negative reactivity has the effect of ~ising the power generation 

rate and the amount of i~ventory l~avi~g the system as steam. The steam reaching 

the suppression pool continues to heat it and pressurize the containment until 

the power generation/steam flow can be reduced anc finally terminated. !he 

RHR system ultimately cools the pool and eventually the reactor also (in the 
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4.2.1.2 Sequence of Events for MSIV Closure Transient

The MSIV closure transient provides the most severe conditions following a

postulated failure to scram. Listed in Table 4.2.1 in sequence of occurrence

are significant points of the transient with representative times when each

event occurs.

The sequence of events begins with the nominal 4 second closure of the main

steam isolation valves. With motion of the MISVs, the pressure begins to

rise which results in a reduction in void fraction and a rapid increase in

power. This sequence of events is shown in Table 4.2.1. For the BWR/5, this

power (neutron flux) reaches a maximum of 613% of the initial value at 4 seconds

into the event and rapidly decreases again. In just under 4 seconds, the set

point pressure of the relief valves is reached and they begin to lift and arrest

the pressure rise. Shortly after 4 seconds, the vessel dome pressure reaches

1150 psig, the maximum RPT point, and both of the recirculation pumps trip.

A delay of 530 milliseconds is used from the time the 1150 psig is reached

until the time that RPT is effected. This delay time (500 milliseconds delay

In the sensor and 30 milliseconds in the logic and trip) is consistent with

industry experience. At the same time that the RfPT occurs, the logic chain

is activated to start ARI and if necessary make the decision that an ATWS may

have occurred and provide appropriate mitigating action.
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The MSIV closure transient provides the most severe conditions following a 

postulated failure to scram. Listed in Table 4.2.1 in sequence of' occurrence 

are significant points of the transient with representative times when each 

event occurs. 

The sequence of events begins with the nominal 4 second closure of the main 

steam isolation valves. With motion or the MI5Vs, the pressure begins to 
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power (neutron flux) reaches a maximum of 6131 of the initial value at 4 seconds 

into the event and rapidly decreases again. In just under 4 seconds, the set 

point pressure of the relief valves is reached and they begin to lift and arrest 

the pressure rise. Shortly after 4 seconds, the vessel dome pressure reaches 

1150 psig f the maximum RPT point, and both of the recirculation pumps t~i~. 

A delay of 530 milliseconds is used from the time the 1150 psig is reached 

until the time that RPT is effected. Tnis delay time (500 milliseconds delay 

in the sensor and 30 milliseconds in the logic and trip) is consistent ' .. ith 

industry experience. At the same time that the RP7 occurs. the logic chain 

is activated to start ARI and if necessary make the decision that an ATWS may 

have occurred and provide appropriate mitigating action. 
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Table 4.2.1

BWR/5 MARK II

MSIV CLOSURE - WITHOUT ARI

Sequence of Events

1.

2.

4.

5.

6.

7.

8.

9.
10.

11.

12.

13.

14.

Nominal-4 Second MSIV Closure - Assume Scram Fails

Pressure Rise Begins

Relief Valves Lift

Recirculation Pumps Trip on High Pressure, ARI is

initiated and timed SLCS logic is triggered

Vessel Pressure Peaks

Feedwater Flow Coasts Down to Lower Limit

Assume ARI Fails

HPCS and RCIC Flow Starts after Level 2 Initiation

ATWS Logic Timer Complete, SLCS Starts

Liquid Boron Flow Reaches Core

Water Level Reaches Minimum and Begins to Rise

RHR Flow Begins (Pool Cooling)

Hot Shutdown is Achieved

Containment Bulk Temperature and Pressure Peak

0

1 second

4 seconds

5 seconds

7 seconds

20* to 45** seconds

30 seconds

1 minute

2 minutes

3 minutes

3 minutes

11 minutes

18 minutes

28 minutes

*Feedwater turbine coastdown assumed after loss of steam.

"Motor-driven feed pumps.
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Table 4.2.1 

8WR/5 MARIe II 

MSIV CLOSURE - WITHOUT ARI 

Sequence of Events 

, • Nominal-4 Second t-ASIV Closure - Assume Scram Fails 

2. Pressure Rise Begins 

3. Relief Valves L.ift 

4. Recirculation Pumps Trip on High Pressure, ARI is 

initiated and timed SLCS logic is triggered 

5. Vessel Pressure Peaks 

6. Feedwater Flow Coasts Down to Lower Limit 

7. Assume ARI Fails 

8. HPCS and ReIe Flow Starts after Level 2 Initiation 

9. ATWS Logic Timer Complete, SLCS Starts 

10. Liquid Boron Flow Reaches Core 

11. Water L.evel Reaches Minimum and Begins to Rise 

12. RHR Flow Begins (Pool Cooling) 

13. Hot Shutdown is Achieved 

14. Containment BulK Temperature and Pressure Peak 

*Feedwater turbine coastdown assumed af~er loss of steam. 

··Motor-dr~ven feed pumps. 
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Reactor pressure continues to rise for a short period of time until, at approxi-

mately 7 seconds into the event, it reaches its peak and begins to decline. The

maximum pressure in the vessel is 1260 psig at 7 seconds. Those plants which

have turbine-driven feed pumps will begin to coast down as soon as the MSIVs

are closed and will have lost their ability to overcome vessel pressure head

at 20 seconds(I). The relief valves begin to close shortly after 20 seconds and

pressure is then stabilized at the relief valve set point pressure. This part

of the transient is shown in Figure 4.2.1. Some peak pressures at other points

in the system are given in Table 4.2.4.

The same pressure signal (1150 psig) that initiated the RPT will cause the

opening of valves on the scram air header which will allow the air pressure

in the header to blow down. In the improbable event that scram has not already

occurred from any of the several available signals, this reduced pressure will

allow the scram discharge valves to open and the control rods to insert. For

this condition, tests have shown that the pressure in the header will have

been reduced sufficiently in 15 seconds to allow the control rods to insert.

They will all be expected to be fully inserted into the core in 4 additional

seconds. ARI completely mitigates the ATWS situation and 25 seconds after

the event begins, it is essentially over. Figure 4.2.2 shows the expected

course of the event. Water level drifts downward as decay energy generates

small amounts of steam, and when level 2 is reached, the HPCS and RCIC auto-

matically start and replenish the vessel water inventory, from the condensate

storage tank. When ,rater level is restored to the high level trip, they will

then reset themselves and continue to supply water to the vessel inventory

as necessary.

If for some reason the ARI is not effective, the BWR/5 is still able to mitigate

the event. With the ARI failed and feedwater flow at zero, the level of the

water in the vessel will go down and pass level 2, the level at which HPCS

and RCIC are initiated, at 46 seconds. Fifteen seconds later, water from these

systems will begin to enter the reactor vessel.

(1)For this analys.s, it was assumed that a motor driven feedwater (FW) system

was available and the FW shutoff occurred near 45 seconds as the ATWS FW

1iUiter was activated.
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Reactor pressure continues to rise for a short period of time until, at approxi­

mately 7 seconds into the event, it reaches its peak and begins to decline. The 

maximum pressure in the vessel is 1260 psig at 7 seconds. Those plants which 

have turbine-driven feed pumps will begin to coast down as soon as the MSIVs 

are closed and will have lost their ability to overcome vessel pressure head 
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in the system are given in Table 4.2.4. 

The same pressure signal (1150 psig) that initiated the RPT will cause the 

opening of valves on the scram air header" which will allow the air pressure 

in the header to blow down. In the improbable event that scram has not already 

occurred from any of the several available Signals, this reduced pressure will 

allow the scram discharge valves to open and the cont~ol rods to i~sert. Fer 

this condition, tests have shown that the pressure in the header will have 

been ~educed suffiCiently in 15 seconds to allow the control rods to insert. 

They will all be expeoted to be fully i~serted into the core in 4 additional 

seoonds. ARI completely mitigates the ATWS situation an~ 25 seconds after 

the event begins, it is essentially over. figure 4.2.2 shows the expected 

course of the event. Water level drifts downward as decay energy generates 

small amounts of steam, and when level 2 is reached, the HPCS and RCre auto­

matically start and replenish the vessel water inventory, from the condensate 

storage tank. When 'N.ater level is restored to the high level trip, they will 

then reset themselves and continue to supply water to the vessel inventory 

as necessary. 

If for some reason the ARI is not effective, the BWR/5 is still able to mitigate 

the even t. 'NUh the ARI failed ane ~eed".ater flew at zero t the level of the 

water in the vessel will go down and pass level 2, the level at which HPCS 

and RCre are initiated, at 46 seconds. fifteen seconds late~, ·~ter from these 

systems will begin to enter the reactor vessel. 

(1) For this ana lysis, it ·...as assumed that a motor dr-iven feedwater (F'Il) system 

was available and the FW shutoff occurred near 45 seconds as the A7WS fW 

limiter ·../as activated . 
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With confirmation from the flux monitoring system and the rod position indi-

cating system that scram has not taken place, the SLCS will now be automatically

activated. This system will be started 2 minutes after the event begins and there

will be 1 minute of transport time in the lines and the vessel. Therefore, nuclear

shutdown begins at 3 minutes into the event if it is necessary to use the SLCS.

Using both of the SLCS pumps in most BWR/5 plants, a volumetric flow of 86 gpm is

available. With this flow rate of sodium pentaborate, the reactor will be brought

to hot shutdown in approximately 18 minutes from the beginning of the event. This

can be seen in the lower left hand graph of the long-term plot of this event, Figure

4.2.3. The values of several other parameters are also depicted in Figure 4.2.3.

Even though the HPCS and RCIC are pumping water into the vessel after approxi-

mately 1 minute, the water level within the vessel continues to decrease until

approximately 3 minutes. At this time it reaches its lowest level and begins

to rise. As the level is increased, core flow is increased, thereby reducing

the average void fraction. The various contributors to reactivity insertion

and power production (boron, voids, etc.) must always be in balance with the

power production. Water level is completely restored and the HPCS and RCIC

are turned off at approximately 17 minutes. A larger-scale plot of water level

is shown in Figure 4.2.4.

Following hot shutdown, the decay power will continue to generate a small

amount of steam which will continue to cycle the relief valves. At 28 minutes

the suppression pool temperature will reach its maximum value of 177°F. The

maximum containment pressure with this much energy transferred to the suppres-

sion pool is 8.5 psig. For the case where the ARI functions as expected, the

maximum suppression pool bulk temperature is 1380F and it occurs approximately 4

hours after the event. Figures 4.2.5 and 4.2.6 show long-term containment

conditions for these cases. All parameters are maintained within the limiting

criteria for this event.
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TNith confirmation from the nux monitoring system and the rod position indi-

cating system that scram has not taken place, the SLCS will now be automatically 

activated. This system will be started 2 minutes after the· event begins and there 

will be 1 minute of transport time in the lines and the vessel. Therefore, nuclear 

shutdown begins at 3 minutes into the event if it is necessary to use the SLCS. 

Using both of the SLCS pumps in most BWR/5 plants, a volumetric flow of 86 gpm is 

available. With this flow rate of sodium penta borate , the reactor will be brought 

to hot shutdown in approximacely 18 minutes from the beginning of the event. This 

can be seen in the lower left hand graph of the long-term plot of this event, Figure 

4.2.3. :he values of several other parameters are also depicted in Figure 4.2.3. 

Even though the HPCS and RCIC are pumping water into the ',essel after approxi­

matel}' 1 minute, Che w"ater level within the vessel continues to decrease until 

approximately 3 minutes. At this time it reaches its lowest level and begins 

to rise. As the level is increased, core flow is increased, thereby reducing 

the average void fraction. The various contributors to reactivity insertion 

and power production (boron, voids, etc.) must always be in balance with the 

power product~on. Water level is completely restored and the HPCS and RerC 

are tUrned off at approximately 11 minutes. A larger-scale plot of ~ater level 

is shown in Figure 4.2.4. 

Following hot shutdown, the decay power will continue to generate a small 

amount of steam ~hich will continue to cycle the relief valves. At 28 minutes 

the suppression pool temperature will reach its maximum value of 111Of. The 

maximum containment pressure ~ith this much energy transferred to the suppres­

sion pool is 8.5 psig. For the case where the ARI functions as expected, the 

maximum suppression pool bulk temperatur~ is 1}8°F and it occurs approximately 4 

hours after the event. Figures 4.2.5 and 4.2.6 show long-te~m containment 

conditions for these cases. All parameters are maintai~ed ~ithin the limiting 

criteria for ~~is event. 
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4.2.2 Turbine Trip Event

4.2.2.1 Overview of Response Without Scram

The overview which was given above for the MSIV closure event is also essen-

tially applicable for the turbine trip event. A key difference is that, with

this event, the main condenser remains available. This means that steam will

be discharged to the suppression pool for only a short time at the beginning

of the event and that from the time that steam flow is within the bypass

capacity, the main condenser will be used to remove the steam from the vessel.

4.2.2.2 Sequence of Turbine Trip Transient Event

The turbine trip event begins with the rapid closure of the turbine stop valves

and the resultant opening of the turbine bypass valves. The stop valves close

in 0.1 second. The pressure immediately begins to rise which results in a

reduction in void fraction and rapid increase in power. The sequence of events

is shown in Table 4.2.2. For the BWR/5, this power reaches a maximum of 380%

of the initial value at one second into the event and rapid4ly decreases again.

At approximately 1.5 seconds, the set point pressure of the relief valves is

reached and they begin to lift and arrest the pressure rise. Shortly after

2 seconds, it is expected that some of the fuel will experience transition

boiling. At about the same time, the vessel dome pressure reaches 1150 psig,

the maximum RPT point, and both of the recirculation pumps trip. For this

analysis, the earlier trip of recirculation pumps directly from the stop valve

closure was conservatively neglected. It makes the early event results even

milder. At the same time that RPT occurs the logic chain is activated to start

ARI and if necessary to make the decision tl-at an ATWS may have occurred and

provide appropriate mitigating action.
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4.2.2.' Overview of Response Without Scram 
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anal.ysis, the earlier trip of reci!"culation pumps directly .fror.l the stop valve 

cl.osure was conservatively neglected. It makes the early event results even 

milder. At the same time that RPT occurs the :'..ogic cr.ain is activated to start 

AR I and if necessary to make the dec isioo that an A. TWS may have occurred and 

provide appropriate mitigati:'lg action. 
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Table 4.2.2

BWR/5 MARK II

TURBINE TRIP (TT) - WITHOUT ARI

Sequence of Events

I1.

2.

3.

4.
5.

6.

7.

8.

9.

10.

11.

12.

13.

1i4.

15.

Turbine Trips - Assume Scram Fails

Pressure Rise Begins

Relief Valve Lift

Some Fuel Experiences Transition Boiling

Recirculation Pumps Trip on High Pressure, ARI is

Initiated and Timed SLCS Logic is Triggered

Vessel Pressure Peaks

Assume ARI Fails

Feedwater Flow Runs Back to Zero

HPCI and RCIC Flow Starts on Level 2 Initiation

ATWS Logic Timer Complete, SLCS Starts

Containment Bulk Temperature and Pressure Peak

Liquid Boron Flow Reaches Core

Water Level Reaches Minimum and Begins to Rise

RHR Flow Begins (Pool Cooling)

Hot Shutdown is Achieved

0

1 second

2 seconds

2 seconds

3 seconds

3 seconds

30 seconds

45 seconds

75 seconds

2 minutes

2 minutes

3 minutes

minutes

11 minutes

18,minutes
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Table 4.2.2 

BWR/5 MARK II 

TURBINE TRIP (11) - WITHOUT ARI 

Sequence of Events 

1. Turbine Trips - Assume Scram Fails 

2. Pressure Rise Begins 

3. Relief Valve Lift 

4. Some Fuel Experiences Transition Boiling 

5. Recirculation Pumps Trip on High Pressure, ARI is 

Initiated and Timed SLCS Logic is Triggered 

6. Vessel Pressure Peaks 

7. Assume ARI Fails 

8. Feedwater flow Runs Back to Zero 

9. HPCI and Rere Flow Starts on Level 2 Initiation 

10. ATWS Logic Timer Complete. SLCS Starts 

'1. Containment Bulk Temp~~ature and Pressure Peak 

12. Liq uid Boron Flow Reaches Core 

'3. Water Level Reaches Minimum and Begins to Rise 

14. RHR Flow Begins (Pool Cooling) 

15. Hot Shutdown is Achieved . 

/ 
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Reactor pressure will continue to rise briefly until at 3 seconds it has passed

its peak and begins to decline. The maximum pressure in the vessel is 1192

psig at 2 seconds. Though the feedwater pumps remain available for the turbine

trip case, in order to reduce the amount of power produced, the feedwater flow

will be terminated. This minimizes power generation and steam passed to the

suppression pool. The relief valves begin to close very early in this transient

(about 9 seconds)-and are all closed for the last time in less than 2 minutes

even without ARI, and the remainder of the generated steam will go through the

bypass to the main condenser. The first portion of this transient with and

without ARI is shown in Figures 4.2.7 and 4.2.8. Some peak pressures at other

points in the system are given in Table 4.2.4.

The same pressure signal (1150 psig) that initiated the recirculation pump trip

will cause the opening of valves on the scram air header which will allow the

air pressure in the header to blow down. in the improbable event that scram

has not already occurred from any of the several available signals, this reduced

pressure will allow the scram discharge valves to open and the control rods to

insert. For this condition, tests have shown that the pressure in the header

will have been reduced sufficiently in 15 seconds to allow the control rods to

insert. They will all be expected to be fully into the core in 5 additional

seconds. ARI completely mitigates the ATWS situation and 25 seconds after

the event begins, it is over. Since in this event feedwater is not lost and

the runback of feedwater discussed earlier does not occur until the failure

of both normal scram and ARI are confirmed, the feedwater system will continue

to function and provide water to the reactor.

If for some reason the ARI is not effective, the 3WR/5 is still able to miti-

gate the event. Without ARI and feedwater flow now having been limited to

zero, the level of the water in the vessel will go down and pass level 2, the

level at which HPCS and RCIC are initiated, at 55 seconds. Twenty seconds

later, water from these systems begins to enter the reactor vessel (as shown

in the figures).

With confirmation from the flux monitoring system and the rod position indi-

cating system that scram has not taken place the SLCS will now be activated.

This system will be started 2. minutes after the event begins and 1 minute of

transport time is assumed for the lines and the vessel. Therefore, nuclear
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Reactor pressure will continue to rise briefly until at 3 seconds it has passed 

its peak and begins to decline. The maximum pressure in the vessel is '192 

psig at 2 seconds. Though the feedwater pumps remain available for the turbine 

trip case, in order to reduce the amount of power produced, the feedwater flow 

will be terminated. This minimizes power generation and steam passed to the 

suppression pool. The relief valves begin to close very early in this transient 

(about 9 seconds)· and are all closed for the last time in less than 2 minutes 

even without ARI, and the remainder of the generated steam will go through the 

bypass to the. main condenser. The first portion of this transient with and 

without ARI is shown in Figures U.2.7 and 4.2.8. Some peak pressures at other 

points in the system are given in Table 4.2.4. 

The same pressure signal (1150 psig) that initiated the recirculation pump trip 

will cause the opening of valves on the scram air header which will allow the 

air pressure in the header to blow down. In the improbable event that scram 

has not already occurred from any of the several available signals, this reduced 

pressure will allow the scram discharge valves to open and the control rods to 

insert. For this condition, tests have shown that the pressure in the header 

\oIi11 have been reduced sufficient 3..y in 15 seconds to allow the control rods to 

insert. They will all be expected to be fully into the core in 5 additional 

seconds. ARI completely mitigates the ATWS situation and 25 seconds after 

the event begins, it is over. Since in this event feedwater is not lost and 

the runback of feedwater discussed earlier does not occur until the failure 

of both normal scram and ARI are confirmed, the feedwater system will continue 

to function and provide water to the reactor. 

If for some reason the ARI is not effective, the aWR/5 is still able to miti­

gate the event. Without ARI and feed\olater flow now having been limited to 

zero, the level of the water in the vessel '"ill go down and pass level 2, the 

level at which HPCS and ReIe are initiated, at 55 seconds. 7wenty seconds 

later. water from these systems begi!1s to er.ter the reactor vessel (as shown 

in the figures). 

With confirma~ion rrom the flux monitoring system and the rod position indi­

cating system tr~t scram has not taken place the SLCS will now be acti~ated. 

This system ' .. ill be started 2. minutes after the event ~egins and 1 minute of 

transport !:i.:!e is assumed for the lilies and the vessel. Therefore. nuclear 
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shutdown begins at 3 minutes into the event if it is necessary to use the SLCS.

Using both of the SLCS pumps in most SWR/5 plants, a volumetric flow of 86 gpm is

available. With this flow rate of sodium pentaborate, the reactor will be brought

to hot shutdown approximately 18 minutes from the beginning of the event. The

reaction of several parameters is depicted in Figure 4.2.9 for the long-term event.

Even though the HPCS and RCIC are providing water into the vessel from approx-

imately one minute, the water level within the vessel continues to decrease until

approximately 4 minutes. At this time it reaches its lowest level and begins to

rise. As the level is increased, core flow is increased, thereby reducing the

average void fraction. The various contributors to reactivity insertion and

power production (boron, voids, etc.) will always be in balance with the power

production. Water level is completely restored and the HCS and RCIC are turned

off at approximately 14 minutes. A larger-scale plot of water level is shown

on Figure 4.2.10.

Following hot shutdown, the decay power will continue to generate a small amount

of steam which will go through the bypass to the main condenser. Since the

major portion of the steam generated in this event goes to the main condenser,

the temperature rise in the suppression pool will be minimal. The maximum

suppression pool temperature calculated in this case is 105 0 F at 2 minutes,

which results in a maximum containment pressure of 0.8 psig.

4.2.3 Inadvertent Open Relief Valve Event

4.2.3.1 Overview of Response Without Scram

A detailed description of the sequence of events is given below. This event

has no rapid excursion as the previous two events but is merely a long term

depressurization. The recirculation pump trip feature does not occur until

late in the event after hot shutdown is achieved.
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late in the event after hot shutdown is achieved. 
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4.2.3.2 Sequence of Events During Inadvertent Open Relief Valve (IORV) ATWS

Transient

This event begins when one of the primary relief valves on the main steam

lines inadvertently opens without influence from any other portion of the

system. All pressure levels in the reactor coolant pressure boundary are at

a nominal value prior to the event. The resulting sequence of events is shown

in Table 4.2.3.

At the time that the relief valve opens, there is a momentary depressurization

(a few seconds) until the turbine control valve senses it and closes slightly

(dropping unit electrical output) to control pressure. Section 4.2.4 contains

a valve sensitivity analysis. After about 2 minutes, the suppression pool

temperature, which was initially assumed to be at 900F, has risen to the alarm

point of 951F. If attempts to reclose the valve are unsuccessful, the operator

at this point will turn on the RHR system in the pool cooling mode to maintain
low pool temperature. If attempts to close the valve continue to be unsuccessful,

the temperature will continue to rise and at 7.5 minutes will reach 1100F at

wnich point the operator is required to manually scram the plant. For this

example case, the manual scram also activates the ATWS protection paths to

ARI and the logic chain which monitors if scram really occured, and if necessary

will make the decision that further ATWS mitigating action is needed. The

logic paths shown in Section 3.4 are utilized, although discussion below shows

that the largest BWR/5 plants do not require the automatic logic path from

manual scram to ATWS mitigation protection.

If for some reason neither normal manual scram nor the ARI are effective, the

BWR/5 is still able to mitigate the event. The ATWS logic will have deter-

mined that the control rods are not inserted and at 9.5 minutes into the event

will automatically activate the SLCS. For this case, because the recirculation

flow is maintained a boron mixing efficiency of 95% is assumed, and the delay

time inside of the vessel is small so that at 10 minutes the liquid boron

reaches the core and shutdown begins. E: 18 minutes the power has been reduced

to the point that the amount of steam generated is less than the relief valve
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Table 4.2.3

BWR/5 MARK II

INADVERTENT OPENING OF A RELIEF VALVE (IORV)

WITHOUT ARI, 8.3% NBR VALVE

Sequence of Events

1. Relief Valve Opens Inadvertently and

Attempts to Close it are Unsuccessful

2. Alarm Sounds at 950 F and Operator Initiates

Pool Cooling

3. Suppression Pool Bulk Temperature Reaches

110OF Operator Attempts Manual Scram;

Assume Scram Fails

4. Assume ARI Fails

5. Liquid Boron Control System Automatically Starts

6. Control Liquid Reaches Core

7. Power is Less Than Relief Valve Capacity

8. Isolation on Low Steam Line Pressure (850 psi)

9. Hot Shutdown is Achieved

10. Peak Suppression Pool Bulk Temperature and Pressure

are Reached

0

2 minutes

7.5 minutes

8 minutes

9.5 minutes

10 minutes

18 minutes

20 minutes

30 minutes

60 minutes
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Table 4.2.3 

BWR/5 MARK II 

INADVERTENT OPENING OF A RELIEF VALVE (ICRV) 

WITHOm ARI, 8.3S NBR VALVE 

Sequence of E~ent3 

1. Relief Valve Opens Inadvertently and 

Attempts to Close it are Unsuccessful 

2. Alarm Sounds at 9SoF and Operator Initiates 

Pool Cooling 

3. Suppression Pool Bulk Temperature Reaches 

1100 F Operator Attempts Manual Scram; 

Assume Scram Fa i1s 
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5. Liquid Boron Control System Automatically Starts 
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8. Isolation on Low Steam Line Pressure (850 psi) 

9. Hot Shutdown is Achieved 

10. Peak Suppression Pool Bulk Temperature and Pressure 

are Reached 

4-36 

o 

2 minutes 

7.5 minutes 

8 minutes 

9.5 minutes 

10 minutes 

18 minutes 

20 minutes 

30 minutes 

60 minutes 



NEDO-24222

capability and the pressure now begins to fall more rapidly. The turbine con-

trol valves have closed completely. These events are depicted in Figure 4.2.11.

By 20 minutes, the pressure has dropped to the low line pressure isolation point

of 850 psig and the main steam isolation valves close. Simulating plants with

turbine-driven feedwater pumps, the feedwater was assumed to be lost within

20 seconds of the isolation. This causes the water level in the vessel to

decrease and at 23 minutes the low level point (L2) was reached where the

recirculation pumps are automatically tripped and the HPCS and RCIC systems

were activated. These systems are shown to automatically cycle on at low level

(L2) and off at high level (LB) as specified to maintain water inventory in

the vessel, although manual action is expected to maintain level with the RCIC

alone. The depressurization of the vessel will continue with the relief valve

discharging into the suppression pool. The maximum pool bulk temperature of

185 0 F will occur at about 1 hour. The peak containment pressure of 10.3 psig

occurs at the same time, well below the 46 psig design pressure for the Mark

II containments.

In the case where the ARI will have brought the plant to shutdown at 8 minutes,

the maximum pool temperature would be about 1663F.

4.2.4 Sensitivity Results

Sensitivity studies have been done to determine the manner in which peak suppres-

sion pool temperature will vary, given variations in system performance or

initial conditions.

For the MSIV closure event, the sensitivity to changing boron system delay

times was studied. In Table 4.2.5 and Figure 4.2.12 time when the initial

boron flow gets to the core is varied from 3 to 7 minutes. The 3 minute values

represent the base case delay times.

Sensitivity cases were also run for the IORV transient. Variation of the

relative size of the relief valve is shown in Figure 4.2.13. Base case assump-

tions for all other parameters were maintained.
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The time of initiation of the standby liquid control injection was also studied

for the IORV event as shown on Figure 4.2.14. This study used the relief valve

capacity typical of the 251-inch vessel BWR/5 units. It shows that boron injec-

tion could be initiated more than 10 minutes after the manual scram was attempted.

It is anticipated, therefore, that these largest plants will not include the

automatic logic link from the reactor trip system manual scram to the ARI and

automated SLCS initiation logic as shown in the general logic description in

Section 3.4. Smaller plants will require added, size-dependent analyses before

they can make the same simplification.
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Table 4.2.4

SUMMARY BWR/5 MARK Ii

Without ARI 86 gpm Boron, Two Minute Timer

Maximum Neutron Flux (%)

Maximum Core Pressure (psig)

Maximum Vessel Bottom

Pressure (psig)

Maximum Steamline Pressure

(psig)

Maximum Average Heat Flux (%)

Maximum Suppression Bulk Pool

Temperature (OF)

Containment Pressure (psig)

2-M:

MSIV Closure

613 at 4.1 sec

1242 at 7.5 sec

1260 at 7.4 sec

in + 1-Min Delay

TT W/BP

380

1 168

at 1 .0 sec

at 2.6 sec

IORV

100 at

1031 at

0

0

1192 at 2.2 sec 1058 at 0

1200

150

177

8.5

at

at

7.8 see

5.0 see

1128

129

at 1.9 sec

at 2.6 sec

986 at

100 at

0

0

at 28 min 105 at 2 min

0.8

185 at 1 hour

10.3

With ARI

(All events occurring prior to

30 seconds remain unchanged)

Maximum Suppression Pool

Bulk Temperature (OF)

Containment Pressure (psig)

138 at 4 hours

3.2

98 at 2 rain

0.4 ,
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Table 4.2.5

BWR/5 MARK II

MSIV CLOSURE WITHOUT ARI

SENSITIVITY STUDY

86 gpm Boron at 75$ Mixing Eff

Total Delay Time (Minutes)

3* 5 7
Maximum Suppression Pool.

Bulk Temperature (OF)

Maximum Containment Pressure

(psig)**

177 at 28 min 188 at 35 min 194 at 38 min

a.5 10.7 12.0

*Base case has 2 minute logic delay plus ' minute transport time allowance.
*"Mark II containment design pressure is 46 Ps-g.

LI.JIC
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Table 4.2.5 

BW/5 MARK II 

MSIV CLOSURE WITHOUT !HI 

SENSITIVITY STUDY 

Maximum Suppression Pool. 

Bulk Temperature (OF) 

Maximum Containment Pressure 

(psig)** 

86 gpm Boron at 75% Mixing Eff 

Total Delay Time (Minutes) 

3* 5 7 

177 at 28 min 188 at 35 min 194 at 38 min 

8.5 10.7 12.0 
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4.3 RESULTS OF ATWS EVENTS - BWR/6 MARK III

4.3.1 MSIV Closure Event

4.3.1.1 Overview of Response Without Scram

A detailed description of all aspects of this event is given below. The behavior

of the plant is basically separable into an early or short term transient in-

volving a sharp pressure rise and power peak, and a longer term portion that

requires evaluation of coolant and containment conditions as the reactor is

ultimately brought to shutdown.

The effectiveness of the recirculation pump trip feature presented in NEDO-

10349 and NEDO-20626 are reconfirmed by this analysis. It permits the relief

valves to limit the pressure disturbance acceptably, reduces the power peak

which -is created early in the transient, and establishes a relatively low power

generation rate for the long-term portion of the transient.

Ultimate solution of the lack-of-scram situation must involve insertion of

negative reactivity into the reactor, thereby bringing the reactor to a fully

shutdown condition terminating the long-term aspects of the event. The ARt

feature is provided as an effective way to mitigate for common-cause failures

in the logic of the scram system. In the very remote case of its ineffective-

ness, the automated SLCS provides further protection and shutdown capability.

Coolant inventory must be adequately maintained by using the high pressure

coolant supply systems available on each BWR to replace the coolant loss as

steam flow leaves the primary system through the relief valves. Simply adding

more water without inserting negative reactivity has the effect of raising

the power generation rate and the amount of inventory leaving the system to

the containment. The steam reaching the suppression pool continues to heat

it and pressurize the containment until the power generation/steam flow can

be reduced and finally terminated. The RH.R ultimately recools the pool and

eventually the reactor also (in shutdown cooling mode) if the isolation valves

cannot be reopened (the preferred method of cooling down).
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4.3.1.2 Sequence of Events During the BWR/6 MSIV Closure Transient

The MSIV closure transient provides some of the most severe conditions following

a postulated failure to scram. Listed below in the sequence of occurrence are

significant points from the transient with representative times when each event

occurs. Results for both cases - with ARI and also assuming its failure are

presented in Table 4.3.1.

Table 4.3.1

BWR/6 MARK III

MSIV CLOSURE

SEQUENCE OF EVENTS

With ARI

1. Nominal ('4-sec) MSIV Closure Begins -

All Normal Scrams Fail

2. Pressure and Power Rise Begins

3. Relief Valves Lift

4. ATWS High Pressure Set Point is Reached

(1150 psig):

Recirculation pumps are tripped,

ARI is initiated, and SLCS timed

logic is activated

5. Some Fuel Experiences Transition Boiling

6. Vessel Pressure Peaks

7. Reactor Water Level Drops to Level 2

and Initiates RCIC and HPCS

8. ARI Control Rod Injection Completed,

Eliminating SLCS and FW Limit Actions

9. ATWS Logic Timer Completed - Initiate

FW Limit

10. Feedwater Flow Stops or Coasts Down

(or limited)

0

0-2 seconds

4 seconds

5 seconds

Without ARI

0

0-2 seconds

4 seconds

5 seconds

5 seconds

8 seconds

24 seconds

Fails

35 seconds

20 seconds*

5

8

seconds

seconds

24 seconds

25 seconds

N/A

20 seconds*

*FW turbine coastdown assumed after loss of steam. Motor-driven FW plants

have slightly different sequence for level and inventory supply actions.
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Table 4.3.1 (Continued)

With ARI Without ARI

11. Reactor Water Level Drops to Level 3

and Initiates Containment Isolation

12. HPCS and RCIC Flow Starts

13. Water Level Reaches Minimum and Begins

to Rise

14. Final ATWS Logic Timer Completed -

Initiate SLCS

15. Liquid Boron Flow Reaches Core

16. RHR Flow Begins (Pool Cooling)

17. Hot Shutdown is Achieved

18. Peak Containment Temperature and

Pressure

20

43

seconds

seconds

20

43

seconds

seconds

50 seconds

N/A

N/A

11l minutes

25 minutes

130 minutes

100 seconds

2

3

11
21

minutes

minutes

minutes

minutes

33 minutes

4.3.1.3 MSIV Closure Event Discussion

:n this event, all main steam lines are assumed to isolate from rated power

condition with nominal valve closure speed (4 seconds). Figures 4.3.1 and

4.3.2 show the initial portions of the event for the more likely plant ATWS

transient in which ARI quickly shuts down the unit, and the case in which ARI

also fails and the automated SLCS is called upon to shut down the plant.

In each case, the initial power and pressure increases are the same, with

neutron flux reaching 790% NBR near 4 seconds, fuel average surface heat flux

reaches 151% at 5 seconds, some fuel may experience boiling transition, and

the peak pressure is limited to 1329 psig near 8 seconds. The normal reactor

scrams from position switches on the MSIVs, high neutron flux, and high vessel

pressure are totally ignored in this analysis. The transient is limited well

within the Service Level C (Emergency) overpressure limit of 1500 psig through

the automatic action of the ATWS high pressure recirculation pump trip which

is initiated when vessel dome pressure exceeds 1150 psig and the relieving

action of the safety/relief valves which all open, then start reclosing near

20 seconds. The action of the recirculation pump trip and the diminishing

reactor pressure reduces neutron flux until near 20 seconds it is less than
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20% NBR. Peak fuel conditions are quickly reduced with the power reduction

and no fuel damage is expected. This neglects for now, rewetting of the fuel

which should occur in cases of this type after the initial power transient

has subsided.

By 25 seconds the high pressure logic which began the ATWS protection will

have accomplished the ARI function, inserting the rods and shutting off the

generated power. This deactivates the automatic boron injection and feedwater

limit and turns the remainder of the event into an essentially normal isolated

shutdown as shown in Figure 4.3.1. Some relief valve cycling will occur to

handle steam generated by decay heat, but peak suppression pool temperature

will be only 130°F (at 2 hours and 10 minutes) assuming the RHR loops are turned

on in the pool cooling mode after 11 minutes into the event. The water level

in the reactor drops to the Level 3 setpoint (another scram signal plus initia-

tion of containment isolation) at about 20 seconds, and to the Level 2 set

point (about -2 ft on Figure 4.3.1) near 25 seconds, starting the RCIC and HPCS

systems. They replace the main feedwater system which was assumed to coast down

to zero flow (near 20 seconds) due to loss of steam to the turbine driven pumps.

Zf the plant had motor-driven pumps, normal feedwater flow would remain available

and reduce the subsequent level swings. The minimum level for the simulated

case is reached near 50 seconds as shown in Figure 4.3.3, about 15 inches above

the Level I set point. The HPCS and RCIC then restore level to its normal

range and an essentially normal shutdown can be accomplished.

If the ARI function is arbitrarily assumed to fail as well as all other attempts

to insert enough control rods within the two-minute timed period, the ATWS

logic will continue to sense that the APRM signals are not downscale and not

enough rods are in their full-in positions, and the automatic start of boron

injection will begin. Instead of shutting off imediately, the power is pre-

dicted to remain in the 10-30% range beyond 20 seconds as shown in Figure 4.3.2

and extend through the long term transient in Figure 4.3.4. The significant

features and peak values during the early part of the event are the same as

the previous case, however, the key difference here is the continuing reduction

of water level outside the core shroud until it reaches a minimum between the

top of the jet jumps and the Level 1 set point at about 2 minutes. Figure 4.3.5

shows level transient with more detail. TLhe steam-water mixture inside the
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core shroud remains well above the core and up into the steam separator stand-

pipes as RCIC and HPCS flow provide inventory. Most of the relief valves have

reclosed by this time with about 3 valves handling the generated steam and

pressure, cycling near their setpoints.

Boron injection is started by the two SLCS pumps near 2 minutes and it reaches

the core about 1 minute later. During the following 15 minute period (out to

about 1100 seconds on these plots), the key result is that power is suppressed

slightly, reducing the steaming rate and allowing water level to be restored.

This also induces higher natural circulation core flow which follows the water

level behavior closely. The level has reached the high level turn-off (Level

8) of the HPCS and RCIC at about 1150 seconds and an off-on-off cycle of these

systems is shown here as level swings down to Level 2 and back up to Level

8 (between 1200 and 1400 seconds) in a fully automatic simulation. By this

time, manual operator action using the RCIC to modulate level in the normal

range would be recommended and expected.

Near 1295 seconds the generated power approaches zero as net reactivity (shown

in the upper right plot of Figure 4.3.4) becomes negative and continues there-

after to be forced negative by the accumulation of boron in the reactor. At

that time the water in the vessel has 345 ppm boron even assuming only 75%

mixing of the injected poison. This accomplishes hot shutdown, and the remainder

of the steam flow to the pool is simply due to decay heat.

The bulk average temperature of the suppression pool and pressure in the con-

tainment are shown in Figure 4.3.6. They rise gradually to peaks of 155°F

and 5.3 psig, respectively, after 33 minutes. Beyond this time the pool cooling

capability of the RHR exceeds te steaming rate generated by decay heat and

containment conditions are gran ally reduced. The peaks are well within the

design limits: 185 0 F and 15 psig, and containment integrity is maintained.

Boron continues to be injected into the vessel for about 50 minutes. At this

point controlled reactor cooldown can be initiated. The total concentration

is specified to be enough to maintain cold, nuclear shutdown conditions even

when the RHR system is eventually switched to the reactor shutdown mode, bringing

the plant successfully all the way down in temperature by normal procedures.
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4.3.2 Turbine Trip Event

4.3.2.1 Overview of System Response Without Scram

This important type of transient is described in detail in the following sections.

Its initial characteristics are much like the main steam isolation event described

above with a rapid steam shutoff and pressure and power increases which are miti-

gated by the action of the safety/relief valves and the high pressure ATWS RPT.

As the event progresses, however, the availability of the main condenser makes

it possible for the relief valves to close after about a minute. If subsequent

isolation can be avoided, this terminates steam flow to the pool. However, BWR/6

water level is close to the Level 1 isolation setpoint. If initiated, the final

portion of the event is similar to the MSIV closure event.

4.3.2.2 Sequence of Events During the BWR/6 Turbine Trip Transient

The listing of significant events during this ATWS event is provided below. Results

for both cases - with ARI and also assuming its failure - are presented in Table 4.3.2.

Table 4.3.2

BWR/6 MARK III

TURBINE'TRIP EVENT

SEQUENCE OF EVENTS

With ARI Without ARI

1. Turbine Trips, Bypass Opens - Assume all

Normal Scrams Fails 0 0

2. Pressure and Power Rise Begins 0 0

3. Relief Valves Lift 2 2 seconds

4. ATWS High Pressure Setpoint is Reached

(1150 psig): Recirculation Pumps are

Tripped,* ARt is Initiated, and SLIS

Timed Logic is Activated 2 2 seconds

*Direct recirculation pump trip from turbine stop valve closure was conservatively

neglected in this series of simulations. Later analyses will include its effect.
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Table 4.3.2 (Continued)

5. Vessel Pressure Peaks

6. Some Fuel Experiences Transition Boiling

7. ARI Control Rod Injection Completed,

Eliminating SLCS and FW Limiting Actions

8. ATWS Logic Timer Completed-Initiate

Feedwater Flow Limit

9. Reactor Water Level Drops to Level 3

and Initiates Containment Isolation

10. Reactor Water Level Drops to Level 2

and Initiates HPCS and RCIC

11. HPCS and RCIC Flow Begins

12. MSIV's Close on Low Level (Li)

.3. Final ATWS Logic Timer Completed -

initiate SLCS

14. Liquid Control Flow Reaches Core

15. Reactor Water Level Reaches Minimum and

Begins to Rise

16. RHR Flow Begins (Pool Cooling)

17. Hot Shutdown is Achieved

18. Containment Temperature and Pressure Peak

With ARI

2-3

3

22 seconds

N/A

Without ARI

2-3 seconds

3 seconds

Fails

32 seconds

50 seconds

60

78

100N/A

N/A

N/A

seconds

seconds

seconds

minutes

minutes

2

3

*11 minutes

22 seconds

3-4 minutes
11 minutes

20 minutes

33 minutes

4.3.2.3 Turbine Trip Event Discussion

This abnormal transient event starts with an unexpected closure of all turbine

stoo valves (within about 0.1 second). Figure 4.3.7 and 4.3.8 show the initial

portions of the event for the more likely plant ATWS transient in which ARI

provides a diverse logic path to quickly shut down the unit, and the case

without ARI and the automated standby liquid control system (SLCS) is called

upon to shut down the plant.

in each case, the initial power and pressure increases are the same, with neutron

flux reachirg U1iC. NBR near one second. Fuel average heat flux reaches 138%
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NBR at about 3 seconds, some fuel may experience boiling transition, and the

peak pressure is limited to 1230 psig between 2-3 seconds. The normal reactor

scram signal from position switches on the valves, high neutron flux, and high

vessel pressure are totally ignored in this analysis. Even so, the transient

pressure is limited well within the Service Level C overpressure limit of 1500

psig through the automatic action of the ATWS high pressure recirculation pump

trip (which is initiated when vessel dome pressure exceeds 1150 psig) and the

relieving action of the safety/relief valves which all open, then start reclosing

near 7 seconds. The plots show both the steam flow leaving the vessel and the

relief valve flow - the difference is the flow through the bypass valves to

the condenser.

By about 22 seconds, the high pressure logic which began the ATWS protection

will have accomplished the ARI function, inserting the rods and shutting off

the generated power. This deactivates the automatic boron injection and FW

limit, and turns the remainder of the event into an essentially normal turbine-

generator trip shutdown. No additional relief valve flow will occur as the

bypass/pressure control system will handle steam generated by decay heat. Peak

suppression pool bulk temperature will occur at the time of the last relief

actuation and will be only 96 0 F. The RHR can be activated in the pool cooling

mode whenever convenient to reduce the pool temperature. Reactor water level

remains in the normal range throughout the event by the feedwater system and

no RCIC or HPCS initiation is expected.

If the ARI function is arbitrarily assumed to fail as well as all other attempts

to insert enough control rods within the two minute timed period, the ATWS

logic will continue to sense that the APRM signals are not downscale and not

enough rods are in their full-in positions, and the automatic start of boron

injection will begin. The long-term behavior predicted for this event is shown

in Figure U.3.9. Near 95 seconds, the pressure regulator and bypass valves

close down to regain pressure control near the regulator setpoint. However,

the water level has dropped to the main steam isolation setpoint (Level !)

which occurs at about 100 seconds. Avoidance of this isolation is strongly

desired and can be accomplished by optimization of the feedwater limiter

(shown here to shut feedwater totally off). This case represents a bounding

event where the isolation might occur and maximizes the resulting pool temper-

ature. Pressure is raised to the relief setpoints and the transient takes on
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the form of the ICIV closure shown in Figure 4.3.4. Introduction of boron

to the core at 3 minutes gradually restores level and core flow before drop-

ping the power near 20 minutes when hot shutdown is achieved. Thereafter,

only decay heat is boiled off to the pool, giving the peak pool temperature

of 150 OF (4.6 psig) at about 33 minutes. These values remain well within

the containment design requirements of 185 0 F and 15 psig. Figure 4.3.10 and

4.3.11 show detailed plots of the water level outside the core shroud, the

pool temperature, and the containment pressure through the peak portion of

the event, Water level inside the core shroud is a two-phase mixture which

remains well above the core and up into the steam separator standpipes as RCIC

and HPCS flow provide coolant inventory. The boron will continue to build

the poison concentration in the vessel until it is all injected near 50 minutes

making it possible for a controlled reactor cooldown. The total concentration

is specified to be enough to maintain cold nuclear shutdown conditions even

when the RHR system is eventually switched to the reactor shutdown cooling

mode, bringing the plant successfully all the way down in. temperature by normal

procedures. In the non-isolated case, the main condenser is available to make

this shutdown even easier.

4.3.3 Inadvertent Open Relief Valve Event

4.3.3.1 Overview of Response Without Scram

A detailed description of the sequence of events for this event is given below

as it has been simulated. This event has no rapid excursions as in the previous

two events but is merely a long term depressurization. The recirculation pump

trip feature does not occur until late in the event after hot shutdown is

achieved.

4.3.3.2 Sequence of Events During Inadvertent Open Relief Valve (IORV) ATWS

Transient

This event begins when one of the primary relief valves on the main steamlines

inadvertently opens without influence from any other portion of the system.

The reactor pressure at a nominal value prior to the event. The resulting

sequence of events is shown in Table 4.3.3. At the time that the relief valve

opens, there is a momentary depressurization (a few seconds) until the turbine
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the form of the MSIV closure shown in Figure 4.3.4. Introduction of boron 

to the core at 3 minutes gradually restores level and core flow before drop­

ping the power near 20 minutes when hot shutdown is achieved. Thereafter, 

only decay heat is boiled off to the pool, giving the peak pool temperature 

of 1500 [:' (4.6 psig) at about 33 minutes. These values remain well within 

the containment design reqUirements of 1850~ and 15 psig •. Figure 4.3.10 and 

4.3.11 show detailed plots of the water level outside the core shroud, the 

pool temperature, and the containment pressure through the peak portion of 

the event. Water level inside the core shroud is a two-phase mixture which 

remains well above the core and up into the steam separator standpipes as Rere 
and HPCS flow provide coolant inventory. The boron will continue to build 

the pOison concentration in the vessel until it is all injected near 50 minutes 

making it possible for a controlled reactor cooldown. The total concentration 

is specified to be enough to maintain cold nuclear shutdown conditions even 

when the RHR system is eventually switched to the reacto~ shutdown cooling 

mode, br-inging the plant successfully all the way down in, temper-ature by normal 

pr-ocedur-es. In the non-isolated case, the oain condenser is available to make 

this shutdown even easiet". 

~.3.3 Inadvertent Open Relief Valve Event 

4.3.3.1 Overview of Response Without Scram 

A detailed description of the sequence of events for this event is giv~~ below 

as it ras been simulated. Tois event rAS no rapid excursions as in the previous 

two events but is merely a long term depressurization. The recirculation pump 

trip feature does not occur until late in the event after hot shutdown is 

achieved. 

4.3.3.2 Sequence of Events During Inadvertent Open Relief ~alve (IORV) ATWS 

Transient 

This event begins when one of the primary relief valves on the roain steamlines 

inadvertently opens , .. ithout influence from any other portion of the system. 

The reactor ~ressure at a nominal value 9rior to the event. The resulting 

sequence of events is shown in Table 4.3.3. At the time that the relief valve 

opens, there is a ~omentary depressurization (a few seconds) unti~ the turbine 
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control valves sense it and close slightly (dropping unit electrical output)

to control the pressure. For general application of this analysis, a relief
valve capacity of 7.1% net boiler rated was utilized (the nominal flow of a

valve on a BWR/6-218 inch vessel plant). Larger plants should be less severe.
After about two minutes, the suppression pool temperature, which was initially

assumed to be at 900F, has risen to the alarm point of 95 0 F. If attempts to
reclose the valve are unsuccessful, the operator at this point will turn on
the RHR system in the pool cooling mode to maintain low suppression pool temper-
ature. If attempts to close the valve continue to be unsuccessful, the temper-

ature will continue to rise and at 9 minutes will reach 110 0 F at which point
the operator is required to manually scram the plant. Should scram fail to
occur at this point, it should be obvious to the operator who would be watching
the panels for positive feedback from the manual scram attempt. If no rods
go into the core, manual ATWS protection is to be taken within 10 minutes.
The manual ATWS "button" available to the operator will initiate ARI as well

as start the SLCS timed logic.

If for some reason neither normal manual scram nor the ARI are effective, the
BWR/6 is still able to mitigate the event at this time. The ATWS logic will

have determined that even ARI was unsuccessful and the control rods are still
not inserted, and at 21 minutes into the event will activate the standby liquid
control system. For this case, because the recirculation flow is maintained,

a boron mixing efficiency of 95% is assumed and the delay time inside of the
vessel is small so that at 22 minutes the control liquid reaches the core and
shutdown begins. The power has been reduced by 38 minutes to the point that
the amount of steam generated is less than the relief valve capacity and the
pressure now begins to fall more rapidly. The turbine control valves have
closed completely. These events are depicted in Figure 4.3.12. By 41 minutes,
the pressure has dropped to the low line pressure isolation point of 850 psig
and the main steam isolation valves close. Simulating plants with turbine-
driven feedwater pumps, the feedwater was assumed to be lost within 20 seconds
of the isolation. This caused the water level in the vessel to decrease and
at 34 minutes the low level point (U) was reached where the recirculation
pumps were automatically tripped and the HPCS and RC1C systems were activated.

These systems are shown to automatically actuate on at low level (L2) and off
at high level (L8) as specified to maintain water inventory in the vessel,

although manual action is expected to maintain level using only the RCIC. The
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depressurization of the vessel will continue with the relief valve discharging

into the suppression pool, and the maximum bulk pool temperature of 170°F will

occur at 72 minutes. The peak containment pressure of 7.4 psig occurs at the

same time. Both values are well below the criteria values of 185OF and 15 psig.

Table 4.3.3
BWR/6 MARK III

INADVERTtNT OPENING OF A

RELIEF VALVE (IORV), WITHOUT ARI

1. Relief Valve Opens Inadvertently and Fails

to Close

2. Alarm Sounds at 95 0 F and Operator Initiates

Pool Cooling

3. Suppression Pool Bulk Temperature Reaches 1100F,

Operator Attempts Manual Scram, Assume Scram Fails

4. Operator Manually Initiates ATWS Protection

(ARI and SLCS)

5. Assume ARI Fails

6. Standby Liquid Control System Starts

7. Liquid Boron Reaches Core

8. Power is less than Relief Valve Capacity

9. Isolation on Low Steamline Pressure (850 psi)

10. Hot Shutdown is Achieved

11. Peak Suppression Pool Bulk Temperature and Pressure

are Reached

0

2 minutes

9 minutes

19

19

21

22

38

41

minutes

.5 minutes

minutes

minutes

minutes

minutes

72 minutes
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depressurization of the vessel will continue with the relief valve discharging 

into the suppression pool, and the maximum bulk pool temperature of 1700 F will 

occur at 72 minutes. The peak containment pressure of 1.4 pSig occurs at the 

same time. Both values are well below the criteria values of 18SoF and 15 psig. 

Table 1"3.3 
SWR/6 MARK III 

INADVERT~NT OPENING OF A 

RELIEf VALVE (IORV), WITHOUT ARt 

1. Relief Valve Opens Inadvertently and Fails 

to Close 

2. Alarm Sounds at 950 F and Operator In itiates 

Pool Cooling 

3. Suppressi~n Pool Bulk Temperature Reaches 110oF, 

Operator Attempts Manual Scram, Assume Scram Fails 

4. Operator Manually Initiates ATWS Protection 

(AR I and SLCS) 

'3. Assume ARI Fails 

6. Standby Liquid Control System Starts 

7. Liquid 80ron Reaches Core 

8. Power is less than Relief Valve Capacity 

9. Isolation on Low Steamline Pressure (850 psi) 

10. Hot Shutdown is Achieved 

11. Peak Suppression Pool Sulk Temperature and Pressure 

are Reached 
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9 minutes 
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21 minutes 
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72 minutes 
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4.3.4 Sensitivity Results

Although suppression pool temperatures for the BWR/6 Mark III designs are pre-
dicted to be well below the 185°F containment temperature criterion in all

cases, some sensitivity studies have been done to determine the manner in which
peak suppression pool temperature will vary given variations in system performance.

For the MSIV closure event, the sensitivity to changing the boron system delay
times was studied. In Table 4.3.5 the time when the initial boron. flow gets

to the core is varied from 1 to 5 minutes. The center column of 3 minutes

is for the base case delay times and specifically represents an 86 gpm boron

system pumping into a 251-inch vessel. Smaller plants which may also have
86 gpm capability may have even greater margins. Clearly, the BWR/6 plants

are well below all criteria even when the boron delay variation is considered.
A summary for all events is shown in Table 4.3.6.

Table 4.3.5

BWR/6 MARK IlI

MSIV CLOSURE WITHOUT ARI

SENSITIVITY STUDY

86 gpm Boron at 75% Mixing EFF

Total Delay Time (Minutes)

1 3' 5
Maximum Suppression Pool

Bulk Temperature (OF) 151 8 27 min 155 - 27 min 159 9 25 min

Maximum Containment Pressure

(psig)** .8 55.3 5.9

*Base case has 2 minute logic delay plus 1 minute transpcrt time allowance.

**Mark III containment design pressure is '5 psig.
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4.3.4 Sensitivity Results 

Although suppression pool temperatures for the BWR/6 Mark III designs are pre~ 

dicted to be well below the 185°F containment temperature criterion in all 
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to the core is varied from to 5 minutes. The center column of 3 minutes 
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are well below all criteria even when the boron delay variation is considered. 

A summary for all events is shown in Table 4.3.6. 

Table 4.3.5 

BWR/6 MARK III 

MSIV CLOSURE WITHOUT ARI 

SENSITIVITY STUDY 

86 gpm Boron at 75% Mixing EFF 

Total Delay Time (Minutes) 

Maximum Suppression Pool 

Bulk Temperature (OF) 

~aximum Containment Pressure 

(psig)" 

151 @ 27 min 

4.8 

3* 5 

155 § 27 min 159 g 25 min 

5.3 5.9 

·Base case has 2 mi~ute logic delay plus 1 mi~ute transpcrt :~~e allowar.ce. 

UMark I!! containment· design pressu:-e ~s ·S psig. 
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Table 4.3.6

SUMMARY BWR/6 MARK III

Without ARI:

MSIV Closure Turbine Trip IORV

Maximum Neutron Flux (%)
Maximum Vessel Bottom Pressure (psig)

Maximum Average Heat Flux (%)

Maximum Suppression Pool Bulk

Temperature (oF)

Associated Containment Pressure (psig)

790

1329

151

4.0 sec

§ 4.0 sea

@ 5.0 see

410

1230

138

@ 0.9 see

@ 2.4 sec

@ 2.6 sec

100 @ 0
1025

100 § 0

170 § 72 min

7.4

155 @ 33 rmin

5.3
150 @ 33 ruin

4.6

With ARI:

Maximum Suppression Pool Bulk

Temperature (OF)

Associated Containment Pressure (psig)

130 @ 33 ruin
2.7

96 @ 45 sec

0.4

4-67
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Table 4.3.6 

SUMMARY BWR/6 MARK II! 

Without ARI: 

Maximum Neutron Flux (S) 

Maximum Vessel Bottom Pressure 

Maximum Average Heat Flux (S) 

Maximum Suppression Pool Bulk 

Tempera ture (Of) 

Associated Containment Pressure 

With ARI: 

Maximum Suppression Pool Bulk 

Tempe!"ature (OF) 

(psig) 

(psig) 

Associated Containment Pressure (psig) 

MSIV Closure 

790 @ ~.O Sec 

1329 @ 4.0 sec 

151 @ 5.0 sec 

155 @ 33 min 

5.3 

130 @ 33 min 

2.7 
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Turbine Trip 

410 @ 0.9 sec 

1230 @ 2.4 sec 

138 @ 2.6 sec 

150 @ 33 min 

4.6 

96 @ 45 sec 

0.4 

IORV 

100 @ 0 

1025 

100 @ 0 

170 @ 72 min 

7.4 
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4.4 TRANSIENT MODEL COMPARISON

1)Analytical Methods of Plant Transient Evaluations for the GE BWR, February
1973 (NEDO-10802).

2)Qualification of the One-Dimensional Core Transient Model for Boiling Water
Reactors, October 1978 (NEDO-24154).
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Table 4 .4.1

COMPARISON OF PEAK VALUES FROM

REDY/ODYN CASES

(BWR/6 238/748)
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4.5 TURBINE GENERATOR TRIP WITH BYPASS FAILURE

in response to NRC Staff questions,

for ATWS conditions. The frequency

once per plant lifetime and efforts

with this experience. However, for

here.

this improbable case has also been studied

of occurrence of this event is well below

are under way to reclassify it consistent

information purposes, one case is included

Figure 4.5.1 shows the detailed traces of the most important variables during

the initial portion of this event as simulated for a BWR/6 plant (using REDY).

The long term portion of this event is essentially the same as the MSIV event.

Peak values are:

Neutron Flux:

Average Fuel Surface Heat Flux:

Dome Pressure:

Pressure at Bottom of Vessel:

860%

139%

1236

1262

psig

psig

This case was analyzed with the same input values as the BWR/6 238/748 analyses

provided above. Although the sharp neutron flux peak exceeds the MSIV closure

case, the integrated power peak is less as shown by the lower heat flux and

peak pressures. No unusual anomalies are seen when this unlikely event is

compared to the other pressurization cases. Characteristics of the turbine

trip without bypass event beyond 20 seconds follows the MSIV event very closely.
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5. ACCEPTANCE LIMITS AND CONFORMANCE

5.1 PRIMARY SYSTEM INTEGRITY

RPT primary system peak pressures are well under the emergency limit of 1500 psi
for all events analyzed.

5.2 CONTAINMENT INTEGRITY

Postulated ATWS events subject the containment structure to static and dynamic

loads which are less than those for which the containment has been designed.

Tnis section of the report shows that containment structural integrity is main-
tained by comparison with existing design loads.

5.2.1 Static Pressure and Temperature

For the static pressure and temperature loads, ATWS event consequences are
much less severe than the results of loss-of-coolant accidents which form part
of the design basis for containments as documented in Section 6.2 of Safety
Analysis Reports. The table below shows that, for all containment types, the
pressures and temperatures due to ATWS events are within the capability of
the containment.

Bulk Pool

Containment

Mark I

(BWR/LI)

Malrk 11

(3WR/5)

Mark i!I

IBWR/6)

Peak Pressure (psig)

ATWS Design Basis

11 56

Temperature (OF)

ATWS Design Basis

189 281

10 185 220

1857 15 170

5-1

NEDO-2Q222 

5. ACCEPTANCE LIMITS AND CONFORMANCE 

5 • 1 PRIMARY SYSTEM INTEGRITY 

RPT primary system peak pressures are well under the emergency limit of 1500 psi 

for all events analyzed. 

5.2 CONTAINMENT INTEGRITY 

Postulated ATWS events subject the containment structure to static and dynamic 

loads which are less than those for which the containment has been deSigned. 

This section of the report shows that containment structural integrity is main­
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5.2.1 Static Pressure and Temperature 

For the static pressure and temperature loads, ATWS event consequences are 

much less severe than the results of loss-or-coolant accidents which form part 

of the design basis for containments as documenced in Section 6.2 of Safety 

Analysis Reports. The table below shows that, for all containment types, the 

pressures and temperatures due to ATWS events are within the capability of 

the containment. 

Containment 

Mark I 
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(BWR/6 ) 

Peak Pressure (psig) 
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10 45 

7 15 
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Bulk Pool 

Temperature (OF) 

ATWS Design Basis 

189 281 

185 220 

170 185 
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5.2.2 S/RV Air Clearing Loads
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5.4 FUEL INTEGRITY

A fundamental assumption in the NRC guidelines in NUREG-0460 is that the occurrence

of some fuel perforations during an ATWS event is acceptable providing: a) the

extent/number of perforations does not cause unacceptable radiological consequences;

and, b) the resulting fuel condition does not preclude coolability and ultimate

safe shutdown. The safety condition is assured through the application of the fuel

damage criteria of 10CFR50 Appendix K, which are used to assure coolable geometry

during a loss-of-coolant accident (LOCA).
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5.4.1 Fuel Integrity Criteria

The fuel integrity criteria are those used to assure maintenance of a coolable
geometry. These criteria must not be violated by an ATWS event. The specific

criteria are: 1) the maximum peak cladding temperature must not exceed 22000 F;
and 2) the maximum local cladding oxidation must not exceed 17%.

As in a LOCA event, satisfaction of these criteria will assure maintenance of a

coolable geometry in the fuel.

5.4.2 Results of Fuel Integrity Evaluations

5.4.2.1 Peak Cladding Temperature

The peak calculated cladding temperature for all ATWS events analyzed was signif-

icantly below the 2200°F requirement from 1OCFR50 Appendix K.

5.4.2.2 Localized Cladding Oxidation

The maximum calculated local cladding oxidation for the ATWS events analyzed was
found to be significantly below the accepted maximum

value (17% of cladding volume). Therefore, no effects due to oxidation are

expected to occur.
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The peak calculated cladding temperature for all ATWS events analyzed was signif­

icantly below the 22000 F requirement from 10CFR50 Appendix K. 

5.4.2.2 Localized Cladding Oxidation 

The maximum calculated local cladding oxidation for the ATWS events analyzed was 

found to be significantly below the accepted maximum 

value (17% of cladding volume). r,herefore, no effects due to oxidation are 

expected to occur. 
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5.4.3 Conclusions

The foregoing sections indicate that there is substantial margin with respect to

assuring coolability of the core and safe reactor shutdown. Perforations assumed
to occur in fuel which experiences boiling transition results in relatively small
radiological releases (Section 4.5). General Electric therefore concludes that
the ATWS rules and requirements specified in NUREG-0460 (Volume 3, Appendix IV)

can be fulfilled under the most severe ATWS events.
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5.5 RADIOLOGICAL ANALYSIS

The radiological analysis prepared for this submittal has considered the BWR/4-6

reactors and the Mark I-IIl containments. While there are significant differences

for these plants, only one analysis for each ATWS event has been performed and

is shown herein to be representative of the consequences for all three containment

types and product lines. A schematic of the containment system and fission

product transport pathways used in this analysis is shown in Figure 5-5.1.

One of the primary' differences between the Mark I-Ii containments and the Mark

III containment is the "open" suppression pool for Mark Ill. There will be

a short period of time prior to containment isolation when fission products

may be released directly to the environment from the Mark III containment.

Because of the "closed" suppression pool for the Mark I-I containments this

pathway does not exist for these designs, therefore, the radiological consequences

included herein will overestimate the consequences for these two product lines.

For the Mark III and for some Mark I-I1 containments forced mixing of the air

within the secondary containment is provided. However, this is not a universal

feature, therefore one of the assumptions applied to the "conservative assessment"

is that zero mixing occurs within secondary containment. The meteorological

conditions bound all BWR sites licensed to date.

Two analytical evaluations, which include two cases each, are presented in subse-

quent sections. These two evaluations are arbitrarily defined as "Realistic

Assessment" and "Conservative Assessment."

5.5.1 Assumotions/Conditions of Analysis

The assumptions or conditions considered appropriate for the evaluation of the

radiological calculations are presented in Tables 5.5.1 and 5.5.2. Parametric

values in the conservative columns in these tables are consistent with the

guidance offered in Reference 5.4.4. Where guidance was lacking, assumptions

were made which are consistent with previous S4R licensing practice.

Parametric values in the realistic columns are consistent with experimental data

obtained from operating BWRs or which are considered conservative if operating
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data is lacking. For the zero perforation case (case 1) the assumption is made

that the activity released from defective fuel rods is proportional to the negative

change in reactor vessel pressure.

5.5.2 ATWS Events Evaluated

Radiological evaluations have been performed for three ATWS events. For each

of these events, except the IORV case, the two cases in Table 5.5.1 were evaluated

(i.e., zero fuel perforations and 17% fuel preforations). For the IORV case

only the zero perforation case (case 1) was evaluated because no rods go into

boiling transition. The events evaluated were

a. turbine trip with bypass (TTWB),

b. inadvertent opening of a safety relief valve (IORV) and

c. main steam line isolation valve closure (MSIV).

For blowdown to an "open" suppression pool, such as for a BWR/6-Mark TI Con-

tainment, isolation of the containment ventilation occurs at ti'e following times:

Event

TTVB

Signal Initiating

Closure

High Drywell

Pressure

High Drywell

Pressure

Low Water 'evel

Level (2)

Isolation Signal

Occurs At (Sec)

333

Containment Isolated (See)*

(Relative to 0 Time)

338

SORV

M ISiV

400 405

28

*includes allowance of 5 seconds to close ventilatio"n :alves.
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that the activity released from defective fuel rods is proportional to the negative 

change in reactor vessel pressure. 

5.5.2 ATWS Events Evaluated 

Radiological evaluations have been performed for three ATWS events. For each 

of these events, except the IORV case, the two cases in Table 5.5.1 were evaluated 

(i.e., zero fuel perforations and 17% fuel preforations). For the IORV case 
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IORV 

:·ISIV 
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Closure 
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?~essure 
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Pressure 
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Isolation Signal 

Occurs At (Sec) 
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23 
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(Relative to 0 Time) 
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5.5.2.1 Turbine Trip with Bypass (TTWB)

An examination of the pressure in the reactor pressure vessel for a BWR/6 shows

that the pressure initially goes to about 1200 psi, drops in pressure (due to SRV

opening) to about 1113 psia, and cycles between this value and 1150 psi for approxi-

mately 570 seconds, and then cycles at lower pressure fluctuations from that

time on. As noted previously, the fission product release for defective fuel

rods is assumed to be proportional to the negative change in reactor pressure.

Therefore in approximately 900 seconds the fuel is assumed to have experienced

a pressure reduction equivalent to 1050 psia. For purposes of evaluation the
total "spiking" activity in Table 5.5.2 for case 1 is, therefore assumed to

be released uniformly to the primary coolant over a 900 second time period.

As an example, the release rate of 1-131, for the conservative analysis, is

assumed to be 16,000/900 = 18 Ci/sec. This release rate occurs for a time period

of 900 seconds after which no additional release occurs to the RPV. The activity
in the primary coolant is determined as follows:

dN1 /dt - N,(X - L,) + S, (1)

NJ 1 (1 - e +L )N tC (2)

X + L

where t in Equation 2 is valid between 0 and 900 seconds. For t > 900 seconds

the activity in the primary coolant is determined as follows:

dN 1 /dt -( )NI

- (X + L, ) 900 - (X + LI) (t - 900)X ( - e (e (3)
X + L,
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5.5.2. , Turbine Trip with ByPass (T'rwB) 

An examination of the pressure in the reactor pressure vessel for a BWR/6 shows 

that the pressure initially goes to about 1200 pSi, drops in pressure (due to SRV 

opening) to about' 113 psia, and cycles between this value and 1150 psi for approxi­

mately 510 seconds, and then cycles at lower pressure fluctuations from that 

time on. As noted previously, the fission product release for defective fuel 

rods is assumed to be proportional to the negative change L~ reactor pressure. 

Therefore in approximately 900 seconds the fuel is assumed to have experienced 

a pressure reduction equivalent to 1050 psia. For purposes of evaluation the 

total IIspiking" activity in Table 5.5.2 for case 1 is, therefore assumed to 

be released uniformly t~ the primary coolant over a 900 second time period. 

As an example, the release rate of I-131, for the conservative analysiS, is 

assumed to be 16,000/900 = 18 Ci/sec. This release rate occurs for a time period 

of 900 seconds after which no additional release occurs to the RPV. The activity 

in the primary coolant is determined as follows: 

(1_e- CA + L,)t) (Ci) (2 ) 

where t in Equation 2 13 valid between 0 and 900 seconds. For t > 900 seconds 

the act:vity in the primary coolant is determined as follows: 

~1 : S, 
- (A + L 1 ) 900 - (A + L 1) (t - 900) 

(1-e )(e ---
A + L1 
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where:

X = radioactive decay constant (sec- 1 )

L, = release rate from the RPV and is determined as follows:

LNG : Steam blowdown rate (#/sec)
Mass of Steam in Steam Dome ('#)

Ll Steam blowdown rate (#/sec)
Mass of Liquid in Air Coolant (W) (0.02)

S, =source input from defective fuel (Ci/sec)

The 0.02 factor in I. is the iodine carryover fraction in steam (i.e., each

pound of steam contains 2% of the activity contained in a pound of primary

coolant).

The activity oeing discharged to the condenser or suppression pool is determined

by multiplying Equations 2 or 3 by the appropriate value of L, which takes into

consideration the type of activity being evaluated and the actual steam blowdown

rate to these two areas.

The pressure transient was also evaluated for a BWR/4 and BWR/5. It was deter-

mined that it took 1400 seconds to have an integrated change in RPV pressure,

due to SRV cycling, of 1031 psi, therefore, the pressure trace for the BWR/6

will be used to evaluate the consequences of this event for all classes of BWRs.

The approximate steam partitioning, as a function of time, from the RPV and

between the suppression pool and !he condenser is as follows:

Time Percent of Decay Steam Flow to

(see) Suppression Pool Condenser

0-300 3O 70

300-60G 20 80

>600 0 100
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T~e ~;essu~e transient '~s also evaluated for a BWR/4 anc 8WR/5. It was deter­

mined that it took 1400 seconds to have an integ!"ated change in RPV pressure, 

due to SRV cycling, of 103i psi, therefore. the pressuI"e trace for the BWR/6 

'"ill be ;.lsed to evaluate :'he consequences of this e'/ent fer all classes of BWRs, 

~he approxi!::late steam ;:lar~i:ioning, as a function of time, f!'"Om ':.he RPV and 

between the supp ress ion poo 1. and :he conde!'1se!" :s as follows: 

Time 

(sec) 

0-3CO 

300-600 

>000 

Percent of Decay 

Suppression Pool 

30 

20 

0 

~ ,c "-,'; 

Steam Flow to 

Condenser 

70 

30 

100 
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For case 2, where 17% clad failure is assumed to occur, it is conservatively

assumed that failure occurs at t 0 0. The activity in the primary coolant is,

therefore, defined as follows:

dN1 /dt= -(X + Lj) N, (4)

NI- Ne-(X L1 )t

Where Equation 4 is valid for the time periods of interest and the variable

is as defined previously.

5.5.2.2 Inadvertent Ogening of the Safety Relief Valve (IORV)

This event has been qualitatively evaluated for the BWR 4-6 plants and is found

to result in approximately the same depressurization rate and volumetric steaming

fractions for each plant. Therefore the radiological consequences are presented

for only the BWR/6 plant. An examination of the RPV depressurization rate shows

a AP/sec of J1J.2 psi/second. For case I it is assumed that the fission product

release rate from the normally defective fuel rods is at a constant rate for
6000 seconds. Equations 1 through 3 in Section 5.5.2.1 are therefore appropriate
for this evaluation with the 900 second value being replaced by 6000 seconds.

The approximate steam partitioning, as a function of time, from the RPV and

between the suppression pool and condenser is as follows:

Time Percent of Decay Steam Flow to

(see) Suppression Pool Condenser

0-800 5 94

800-1000 10 90

1000-1400 20 80

1400-1500 30 70

1500-1600 60 40

>1600 100 0
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Fo~ case 2, whe~e 17~ clad failure is assumed to occur, it is conse~vatively 

assumed that failure occurs at t : O. The activity in the primary coolant is, 

therefore, defined as follows: 

Where Equation 4 is valid fo~ the time periods of interest and the variable 

is as de fined p rev lOU sly. 

5.5.2.2 Inadvertent Opening of the Safety Relief Valve (IORV) 

( 1+) 

This event has been qualitatively evaluated for the BWR 4-6 plants and is found 

to result in approximately the same depressurization rate and volumetric steaming 

fractions for ~ach plant. Therefore the radiological consequences are presented 

for only the BWR/6 plant. An examination of the RPV depressurization rate shows 

a t,P/Sec of J"Q.2 psi/second. For case 1 it is assumed that the fission product 

!"elease rate from the normally defecti.,e fuel rods is at a constant rate for 

5000 seconds. Equations 1 through 3 in Section 5.5.2.1 are therefore appropriate 

for this evaluation with the 900 second value being replaced by 6000 seconds. 

The approximate steam partitioning, as a function of time, from the RPV and 

between the suppression pool and condenser is as follows: 

Time Percent of Decay Steam Flow to 

(sec) Suppression Pool Condenser 

0-800 5 94 

800-1000 10 90 

1000-1400 20 80 

1400-1500 30 70 

1500-1600 60 40 

>1600 100 0 

~ ,~ 
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5.5.2.3 Main Steam Isolation Valve Closure (MSIV)

As for the other two transient events, this event has also been qualitatively

examined with the conclusion being that from a radiologicial viewpoint the BWR/6

transient will bound the consequences associated with a BWR/4 or BWR/5. For

the BWR/6 after the initial 200 psi depressurization the RPV depressurization

rate is approximately 2 psi/sec, therefore approximately 400 seconds will be

required to have an equivalent 1030 psi pressure reduction. Equations 2 and

3 from Section 5.5.2.1 are appropriate for this transient with the 900 seconds

replaced by 400 seconds.

For case 2, where 17% clad failure is assumed to occur, it is conservatively

assumed that failure occurs at t = 0 and Equation 4 of Section 5.5.2.1 is appro-

priate for the time periods of interest. For this event, 100% of the decay steam

generation rate is discharged to the suppression pool.

5.5.2.4 Fission Product Release to the Environment

The fission product activity released to the environment is dependent upon the

release pathway from the reactor vessel and the reduction factors and compart-

mental leakage rates between the RPV and the environment. The activity airborne

in the compartments of concern is defined by the following differential equations.

a) Activity in Condenser

dNc/dt = - (X +L6) Nc + L4 N1 DF (5)

b) Activity in Primary Containment

dNpc/dt - (X L3  L5 ) Npc ÷ L NI DF

c) Activity in Secondary Containment

dNsc/dt = - (X 4 LI) Nsc 4- L, Npc

where the above parameters are schematically defined '-n Figure 5.5.1.
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The fission product activity released to the environment is dependent upon the 

release pathway from the reactor vessel and the reduction factors and compart­

mental leakage rates bet~een the RPV and the er.vironment. Tne activity airborne 

in the compartments of concern is defined by the followi~g differential equations. 

a) Activity in Condenser 

dNc/dt = - (A +L6) Nc + L4 Nl D~ 

b) Activity in Primary Containment 
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5.5.2.5 Radiological Consequences

Based upon the preceeding discussion, the following radiological exposures are

calculated for the three ATWS events of concern. These consequences can be

compared to the guidelines in 10 CFR 100 which are 25 Rem whole body and 300 Rem
thyroid inhalation. It can be seen that even if 100% of the rods were to perforate,

the guidelines would not be exceeded.

Event Radiological Consequence (Rem)

Site Boundary Low Population Zone

Whole Body Inhalation Whole Body Inhalation

Real. Cons. Real. Cons. Real. Cons. Real. Cons.
(a) T WB

* Case

e Case

'b) IORV

1
2

4.7-5 (a)

1.1-1

2.6-1

6.7-1

5.8-5

1.7-2

8.2-2

1 . 2+0

7.3-6

4.9-3

3.8-2

1.1-1

6.0-4

1.3-1

1.4-1

2.0+0

* Case 1 3.3-6 3.0-3 4.3-6 6.0-3 1.2-6 7.8-4 1.3-5 3.6-3

(c) MSIV

# Case

e Case

1
2

2.1-5

3.2-2

8.8-2

2.8-1

2.2-8

7.7-5

Real =

Cons =

7.6-4

1.4-2

9.8-6

2.0-3

1.8-2

4.7-2

5. 1-6

9.9-4

2.8-3

5.1-2

*Case 1 - 0% perforations

Case 2 - 17% perforations
(a)4.7-5 = 4.7 x 10-5 Rem

Realistic

Conservative

5.5.3 Conclusions

Based on the results presented in Section 5.5.2.5, it can be concluded that the

radiological exposure for the ATWS events evaluated are well below the guideline
in 10CFRIOO for all three BWR product lines (BWR/4, 5 and 6), and for all three

BWR containment designs (Mark I, 11 and III).

/
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5.5.2.5 Radiological Consequences 

Based upon the preceedlng discussion, the following radiological exposures are 

calculated for the three ArilS events of concern. These conseq1JenCeS can be 

compared to the guidelines in 10 CFR 100 which are 25 Rem whole body and 300 Rem 

thyroid inhalation. It can be seen that even if 100$ of the rods were to perforate, 

the guidelines would not be exceeded. 

Event Radiological Consequenoe (Rem) 

Site Boundary Low Population Zone 

Whole Body Inhalation Whole Body Inhalation 

Real. Cons. Real. Cons. Real. Cons. Real. Cons. 
(a) TTWS 

• Case 4.1-5 (a) 2.6-1 5.8-5 8.2-2 7.3-6 3.8-2 6.5-4 1.4-1 

• Case 2 1 • , -, 6.7-1 1.7-2 , .2+0 4.9-3 1. 1-1 1.3- , 2.0+0 

( ':) ) IORV 

• Case 3.3-6 3.0-3 4.3-6 6.0-3 1.2-6 7.8-4 1.3-5 3.6-3 

(c) KSIV 

• Case 2.1-5 8.8-2 2.2-8 7.6-4 9.8-6 1.8-2 5.' -6 2.8-3 

• Case 2 3.2-2 2.8-1 7.7-5 1.4-2 2.0-3 4.7-2 9.9-4 5.1-2 

*Case 1 - 0% perforatio,ns Real = Realistic 

Case 2 - 17% perforations Cons = Conservative 

(a)4.7 -5 = 4.7 x 10-5 Rem 

5.5.3 Conclusions 

Based on the results presented ::1 Section 5.5.2.5, it can be concluded that the 

radiological exposure for the ATWS events evaluated are well below the guideline 

in 10CFR100 for all three BWR product lines (BWR/U, 5 and 6), and for all three 

BWR containment designs (~~~k I, II and III). 
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Table 5.5.1

ASSUMPTIONS/CONDITIONS UPON WHICH

RADIOLOGICAL ANALYSIS IS BASED

Variable

I. Power (each MWt)

2. Fuel Type

3. Fuel Rod Perforations (%

* Case I

* Case 2

4. Fission Products Released to Primary

Coolant(a)

* Case 1

1-131

Xe-133

* Case 2

[-131

Xe-133

5. Fission Products Released to Suppression

Pool or tain Turbine Condenser

6. DF in Suppression Pool/Turbine Condenser(b)

* Noble Gases

* Iodine

7. Primary Containment leak rate (%/day)

8. Secondary Containment leak rate (5/day

9. Condenser leak rate (%/day)

10. Mixing in Secondary Containment (1)

11. SGTS Iodine filter efficiency (%)

Parametric Value Assumed

Realistic Conservative

4353 4353

8x8 8x8

0

17

0

17

1900

104

Ci
Ci4

1.0x,04 Ci

2x10 5 Ci

2% Rod Act 2% Rod Act

2% Rod Act 2% Rod Act

Proportional to mass blowdown

rate, primary coolant volume,

RPV Steam Dome Volume and 2%

carryover for Iodine

1

0.01

100

1

100

99

01

100

0

95

(a)See Table 5.5.2

(bCt)D What comes out

What goes in
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Table 5.5.1 
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1. Power (each MWt) 
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3. Fuel Rod Perforations (%) 

• Case 

• Case 2 

4. Fission Products Released to Primary 

Coolant(a) 

• Case 1 

1-131 

Xe-133 

• Case 2 
1:-131 

Xe-133 

Realistic 

4353 

8xe 

0 

17 

1900 Ci 

lOll Ci 

2$ Rod Act 

2$ Rod Act 

Value Assumed 

Conservative 

4353 

8x8 

0 

17 

1.6xiO!.! Ci 

2xl0 5 Ci 

2$ Rod Act 

2$ Rod Act 

5. ~ission Products Released to Suppression 

Pool or Main Turbine Condenser 

Proportional to mass blowdown 

6. DF in Suppression Pool/Tur~ine Condenser(b) 

• NOble Gases 

• Iodine· 

7. Primary Containment leak rate ($/day) 

8. Secondary Containment lea~ rate (~/day 

9. Condenser leak rate ($/day) 

10. Mixing in Secondary Containment ($) 

11. SGTS Iodine filter efficiency (%) 

(alSee 7able 5.5.2 

(b)OF: ~hat comes OU~ 
'tihat goes in 
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r-ate, primary coolant 

RPV Steam 

carryover 

0.01 

100 

100 

99 

Dome Volume 

for Iodine 

C.l 

100 

o 
95 
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Table 5.5.1 (Continued)

Parametric Value Assumed

Realistic ConservativeVariable

12. Meteorology (X/Q - sec/m3 )e

Site Boundary (0-2 hr)

Low Population Zone

0-2 hr

2-8 hr

8-24 hr

24-96 hr

96-720 hr

2.5 x 10-5

10-6
1(0-6
10-6

10-6

10-6

1 .8 x 10"4

2.6 x 10-5

1 .7 x 10-5

2.6 x 10-6
.6

1.4 x 10 .

5.8 x 10-7

CRealistic meteorology is average annual and conservative meteorology is ,10 Of

the 95% meteorology.
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Table 5.5.1 (Continued) 

Parametric Value Assumed 

Variable Realistio Conservative 

12. Meteorology (X/Q - sec/m3)c 

Site Boundary (0-2 hr) 2.5 x 10-5 1.8 x 10-4 

Low Population Zone 

0-2 hr 10-6 2.6 x 10-5 

2-8 hr 10-0 '.7 x 10-5 

8-24 hr 10-6 2.6 ;( 10-6 

24-96 hr 10-6 1.4 x 10-6 

96-720 hr 10-6 5.8 x 10-7 

CRealistic meteorology is ave~age annual and conservati.e meteorology is 1Q% cf 

the 93% meteorology. 
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Table 5.5.2

FISSION PRODUCTS RELEASED TO PRIMARY COOLANT

Isotope

1-131
1-132

1-133

1-134

1-135

Kr-83m

Kr-85m

Kr-85

Kr-87

Kr-88

Kr-89

Xe- 13 im

Xe-1 33M

Xe-133

Xe-135m

Xe-135

Xe-137

Xe-138

Activity Relea

Case 1

0 Perforations

Realisitic Conservative
1.9+3(a) 1.6+4(b)

2.8+3 2.3+5

4.4+3 1.2+5

4.3+4 6.6+5

4.2+3 1.9+5

7.9+3

1 .9+4

4.3+2

3.7+3

5.4+3

7.0÷3

5.5+1

2.8+2

1.0÷4

1.6-3

9.5+3

9.2+3

9.4+3

7.6+ (c)

1.4+5

3.3-2

L .5.5

4.5+5

2..7+6

3.3.2
6.5.3

2.0*5

5.9+5

4.9.5

3.3 6

2 .0o6

sed (Ci)

Case 2

17% Perforations

3.7+5

5.6*5

8.3.5

1 .7+5

7.6+5

6.2+4

1.945

5.1+3

3.5-15
4 .7+5
5.9÷5

3.3.3

2.1+4

8.3.5

2.3+5

7.9+5

7.6P5

7.1+5

a) 1 .9+3 = 1.9 x 103 ecuries

b)I- 131 release based on a release rate from the fuel for 4 hours equal to 250 times

the tech spec value, where the tech spec equals 0.2 ýXC/lgm dose equivalent " 7-131
(C)Noble 3as values based on 1600 times normal offgas integrated over a U-hour period.
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Table 5.5.2 

FISSION PRODUCTS RELEASED TO PRIMARY COOLANT 

Isotope Activity Released (C1) 

Case 1 Case 2 

0 Perforations 17~ Perforations 

Realis1t1c Conservative 

1-131 ,.9+3(a) 1 .6+4 (b) 3.7+5 

1-132 2.8+3 2.3+5 5.6+5 

1 ... 133 4.4+3 1.2+5 8.3+5 

1-134 4.8~ 6.6+5 1.7+5 

1-135 4.2+3 1.9+5 7.6+5 

Kr-83m 7.9+3 7 ' 4(C) .0+ 6.2+4 

Kr-8Sm 1 .9+4 , .4+5 1.9+3 

K1"-85 4.3+2 3.3+2 '5. '+3 

Kr-87 3.7+3 u.5+' 3.5+5 

r<r-88 5.4+3 4.5+, 4.7+5 

Kr-89 7.0+3 2.7+6 5.9+5 

Xe-1311l1 5.5+1 3.3+2 3.8+3 

Xe-133M 2.8+2 6.5+3 2.1.;.4 

Xe-' 33 1.0+4 2.:)+, 8.3+5 

Xe-13511l 1.6+3 5.9+5 2.3+5 

Xe-135 9.5 .. 3 4.9+, 7.9+5 

Xe-137 9.2 .. 3 3.3+0 7.6+5 

Xe-138 9.4+3 2.0+6 1.1+5 

(a)'.9+3 = ~.9 x 10 3 c:.l!"ies 

(b)!_ 13 1 rel ease basp.d 00 a !"elease rate ~rolll the fuel for 4 hours equal to 250 ti.:nes 

the tech spec value, OIne:o-e the tech spec equals 0.2 \.IC:.'gm dose equ':-,alent I-1 3 i. 

(C)Noble gas 'J3.1ues '::lased on 1600 t.i:nes no:--ma':' of['gas integ:o-atad' o'/e::, a 4-hO<..lr ~e!"iod. 
! 

/' 
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Figure 5.5.1. Fission Product Containment and Leakage Pathways
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5.6 EQUIPMENT ENVIRONMENTAL QUALIFICATION

Equipment relied upon to mitigate the ATWS transient must be capable fo performing

its required function under expected ATWS environmental conditions. In evaluating

equipment capability, consideration is given to the relative timing of the

equipment function and the development of various environmental conditions.

In this way, not all equipment has to be assessed against the most severe environment.

The systems utilized for ATWS mitigation are listed in Section 3.4.1. From

this list, the major systems and equipment required to operate under conditions

unique to AT'S are as follows:

RPT

HPC I/H PCS

RCIC

Standby Liquid Control System

Suppression Pool and Containment

Residual Heat Removal System

MSIV

S/RV

Control Rod Drive System

Instrumentation:

APRM (Neutron Flux)

RPIS (Rod Position)

Dome Pressure

Reactor Vessel Water Level

Condensate Storage Tank Level

In assessing the required capability 'or the above system and euipment, an

ATWS MSIV closure event was selected as being most limiting.

For an MSIV closure event the entire reactor coolant Dressure boundary is subject

to a maximum pressure below 1500 psig. .This noaximum pressure peak will occur

early in the event (about 25 seconds following initiation) after which tre

pressure will be reduced to the relief valve set points and remain there until

depressurization is initiated.
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RPT 
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ReIe 

Standby Liqui.j Control System 

Suppression Pool and Containment 

Residual Heat Removal System 
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S/RV 

Control Rod Drive System 

Instrumentation: 

APRM (Neut.~on Flux) 
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Dome Pressure 

Reactor 1essel Water Level 

Condensate Storage Tank Level 

In assessing the required capability for the a~ove system and euipment, an 

AT~S MSIV closure event ·~s selected as being most limiting. 

For an MSIV closure event the entire reactor ~oolant ~ressure ~oundary is subject 

to a maximum pressure below 1500 psig. !his ~aximum press~re peak will occur 
, . 

ear~y 1n event (about 25 seconds following initiation) a~:er which t~e 

pressure · ... ill be reduced to the relief val.ve set pOints and remain there un~il 

depressurization is initiated. 
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Depressurization is not expected to occur before approximately 4 hours into

the event.. The temperature will be at saturation for the given pressure which

is approximately 600°F for 1500 psig. The Standby Liquid Control System will

have emptied the storage tank into the vessel within 2 hours and the reactor
water will contain sodium pentaborate at a maximum concentration of approximately

0.1% by weight.

The capability of the primary system to withstand these ATWS pressurization

conditions is addressed in Section 5.1.

It is required that the recirculation pump trip breakers operate properly.
Since this happens at approximately 5 seconds into the event, the environment

and duty for this function will be at normal conditions.

As a result of the discharge through the S/RV's the suppression pool temperature

will increase which in turn will cause a general heating and pressurization of

the containment. These maximum conditions are addressed in Section 5.2 for
the three representative reactor types. These conditions 3re repeated below:

Peak ATWS Peak ATWS Bulk

Reactor/Containment Pressure Pool Temperature

BWR/4 - Mark I 11 psig 189°F

SWR/5 - Mark II 10 psig 185°F

BWR/6 - Mark III 7 psig 170 OF

The capability of the Suppression Pool and containment to withstand these ATWS

pressure and temperature conditions is addressed in Section 5.2. The above

pressures and temperatures also represent the maximum conditions to which systems

and equipment required to function thoughout the ATWS event will be subjected.

The operating conditions expected to be imposed on each system and their con-

formance are discussed in the following sections.
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have emptied the storage tank into the vessel within 2 hours and the reactor 
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Since this happens at approximately 5 seconds into the event, the environment 
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As a resul t of the discharge through the S/RV t s the suppression pool temperatut'e 

will increase which in turn will cause a general heating and pressurization of 

the containment. These maximum conditions are addressed in Section 5.2 for 

th~ three representativ~ reactor types. These conditions 3re repeated below: 

Peak ATWS Peak A'l'WS Bulk 

Reactor/Containment Pressure Pool Temperature 

BWRI ~ - Mark I , 1 psig 18g0F 

5WR/S Mark II 10 psig 185°1." 

BWR/6 Mark III 7 psig nOoF 

The capability of the Suppression Pool and containment to withstand these ATWS 

pressure and temperature conditions is addressed in Section 5.2. The above 

pressures and temperatures also represent the maximum ~onditions to wh:oh systems 

and equipment required to func:ion thoughout the A!NS event wil~ be subjected. 

The operating conditions expected to be imposed on each system and their con­

formance are discussed in the following sections. 
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5.6.1 Operating Conditions

5.6.1.1 HPCI/HPCS and RCIC

For the MSIV closure case, these are the systems which will be relied upon to
supply water inventory to the reactor. It is not mandatory that the RCIC be
available if the HPCI or HPCS is operating. The RCIC by itself cannot main-
tain inventory until hot shutdown is attained, which is approximately 28
minutes after the event begins. After that, any of these systems, can supply,
sufficient inventory. The HPCI/HPCS and RCIC pumps and valves are capable
of operating under containment design conditions which bound the ATWS condi-
tions (Section 5.2). Moisture and steam going to the HPCI or RCIC turbine
will contain a maximum of 0.01% sodium pentaborate by weight. This concentra-
tion is not known to present any equipment or material problems.

Although ATWS peak pressures are higher than the RCIC/HPCI/HPCS equipment
operating pressures, these occur at the earliest stages of the transient.
The RCIC/HPCI/HPCS systems are not initated until the return to near normal
pressure conditions.

5.6.1.2 Standby Liquid Control System

Those parts of this system which are part of the reactor coolant pressure boundary
will withstand the peak conditions given above. At two minutes the valves
must open and the pumps operate for approximately 50 minutes. :n a Mark III
containment, this system is lccated within the containment and is designed
to operate through maximum Mark III containment conditions (15 psig/1850 F).
The temperature of the suppression pool at the 2 minute actuation time, when
the explosive valves must open will be approxiamtely 1!0 0 F. The reactor water
cleanup system isolation valves are designed to close on actuation of the
Standby Liquid Control System to prevent dilution and cleanup of the boron
which was pumped into the vessel. In the case of the Mark . and Mark II
containment designs the SLCS is located outside •he containment and will not
see any abnormal ATWS environmental conditions.
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5.6.1.3 Residual Heat Removal System

Because of the isolation, all of the energy generated during this ATWS event

is deposited in the suppression pool. The RHR system is designed to remove

this energy and transfer it to the service water. Both loops of the RHR will

be needed in pool cooling mode until it is possible to change to steam condensing

mode (for those plants which have it) and then later to shutdown cooling mode.

The suppression pool temperature may be as high as 189 0 F in Mark I containments.

The RHR system pumps and valves are capable of operating under containment

design conditions which bound ATWS conditions (see Section 5.2). While the

steam condensing mode is in use, the moisture and steam will contain no more

than 0.01% sodium pentaborate by weight. When the RHR system is in the shutdown

cooling mode, the reactor water will contain approximately 0.08% sodium penta-

borate by weight. This concentration is not known to present any equipment

or material problems.

5.6.1.4 Standby Gas Treatment System

The Standby Gas Treatment System is designed to function during the LOCA event.

The LOCA gives a much more severe environment than ATWS.

5.6.1.5 Main Steamline Isolation Valves

All MSIV's are judged acceptable when subjected to ATWS conditions. Each M3LV

is production tested prior to release for shipping from the valve manufacturer's

shop. This testing follows a sequence of hydrostatic test on the valve in

the open position, hydrostatic test on the seat in the closed position, main

seat leakage test, and cyqlic test. Thus, operation of the valve is verified

from both the open and closed position following the hydrostatic test. The

hydrostatic test of the valve is in the 2175 to 2400 psi range, while the seat

test 'has been in the 1450 psi to 2400 psi range. Those tested only to 150 psi

can be justified for use at higher pressures based on their similarity to the

valves actually tested to the higher pressures.
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5.6.1.6 Safety/Relief Valves

The S/R valves are required to open at their set point during the initial pressure
rise. They must stay open through the peak pressure and temperature and then

reclose at their closure pressure set point. Several of the valves will be
required to go through multiple open/close cycles. The steam passing through
the valve will be saturated as previously described while the environment
external to the valve will be nearly the same as that for the containment which
in a BWR/4 ,Mark I may be 189 0 F and 11 psig. Moisture and steam will contain
sodium pentaborate ho a maximum concentration of 0.01% by weight. The external
environment is not any more severe than the design conditions for which these
valves must function. The sodium pentaborate concentration is not known to
present any equipment or material problems.

5.6.1.7 Control Rod Drive System

The design pressure of the CRDs is 1250 psig. The ASME code allows occasional
pressures 20% greater than the design pressure (i.e., 1500 pzig). The rest
of the CRD system which would be subjected to the postulated 1500 psig have
a design pressure of 1750 psig (2000 psig for BWR/6).

The CRDs will be capable of scram even at 1500 psig vessel pressure. However,
the time required to complete scram may be increased slightly since the IP

between the scram accumulator pressure and the RPV pressure will be reduced.

The 0.1% (by weight) concentration of sodium pentaborate in the RPV should

not affect the scram function. Therefore, based on this preliminary in:vesti-

gation the CRD system could be qualified to operate during and follow the

postulated A7WS. event.

5.6.1 .8 Instrumentation

The neutron flux and rod position indications are required during the first
few minutes of the ATWS event. Their environmental capabilities are shown in

Table 5.6-1. Dome pressure is required i'n the firs: few seconds of the ATWS

event and is no- exposed to any temperature or pressure transients during this
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time. The reactor vessel water level and CST level required throughout the

ATWS event and their environmental capabilities shown in Table 5.6-1.

5.6.2 OBE Requirements

With the exception of the Condensate Storage and Supply System,al-I other systems

have been designed to meet seismic requirements as indicated in the system

design descriptions.

The condensate storage and supply system will probably withstand the results

of the OBE level seismic event even though the analysis has not been done to

verify it. This equipment is usually designed to at least ASME Section III

Class III requirements. An available operating data point is the June 12,

1978 Japanese earthquake near the Fukushima site. This earthquake resulted

in 0.13g free field ground acceleration at the site and no damage was observed.

These two plants continued to operate through the event.

The Japanese experience serves as a useful demonstration of ability of systems

to withstand the OBE, since the 0.13g ground acceleration is near or above

the OBE level for power plants in service today.

Fianlly, the condensate storage tank is not strictly needed to accommodate

the ATWS event. The HPCS. HPCI and RCIC can take suction from the suppression

pool upon failure of the condensate storage tank.

5.6.3 Equipment Environmental Qualification

All equipment required to function during an ATWS event have been examined

for the environment in which they need to operate. The primary parameters

of concern are temperature and pressure in addition to chemistry discussed

above. Those systems located inside the containment building will be exposed

to suppression pool temperature levels and would be most critically affected.

Because most safety type components within the containment building are quali-

fied to operate in the LOCA environment, they are easily capable of taking

the ATWS environment. The following table summarizes the qualification of

the critical AfTWS components.
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Table 5.6-1
ATWS EQUIPMENT QUALIFICATION

Equipment Required
for ATWS

Reactor Coolant
Pressure Boundary

Recirculation Pump
Trip Breakers and
ARI

Safety/Relief Valves
(External Environ-
ment)

Control Rod System
(Function with 1500
psi Vessel Pressure?)

Containment Type
Mark IIMark I Mark III

1500 psi* 1500 psi* 1500 psi*

(Actuate before
Abnormal Conditions
Occur)

(Actuate before
Abnormal Conditions
Occur)

340OF
56 psi

340OF
45 psi

Yes Yes

(Actuate
Abnormal
Occur)

330OF
15 psig

Yes

185OF
15 psig

330¢F
15 psig

330OF
15 psig

before
Conditions

Standby Liquid
Control System
and Pumps

Outside Containment Outside Containment

Reactor Water Cleanup
System Isolation
Valves

HPCS/I Valves

Condensate Storage
Tank and Level
Indicators/Cabling

Feedwater Control
System

Main Steamline
Isolation Valves

RHR Injection Valves
and Check Valves

Vessel Pressure and
Level Transmitters
and Cabling

Neutron Flux Sensors
and Cabling

340OF
56 psig

340OF

56 psig

340OF
45 psig

3400F
45 psig

Outside Containment
Level is Class 1E

Outside Containment

Outside Containment
Level is 1E

Oustide Containment

Outside Containment
Level is Chass 1E

Oustide Containment

340OF
56 psig

3400?
56 ps4g

3400F
45 psig

340OF
45 psig

330OF
15 psig

330OF
15 psig

Transmitters Oustide
of Containment

230OF Continuous'

Transmitters Oustide
of Containment

230`o? Continuous"*

1850?, 15 psig
(In Containment
Outside of Drywell)

2300F Continuous"

*Service Level C
"Qualified for greater than 340OF for short periods of time

Equipment Required 
for ATWS 

Reae tor Coolant 
Pressure 80undary 

Recirculation Pump 
Trip Breakers and 
ARI 

Safety/Relief 'lalves 
(Exte~nal ~nviron­
ment) 

Control Rod System 
(Function with 1500 
psi Vessel ?~essure?) 

Standby Liquid 
Control System 
and Pumps 

Reactor 'tiater Cleanup 
System Isolation 
Valves 

HPCSII Valves 

Condensate Storage 
Tank and Level 
Indicators/Cabling 

reedwater Control 
System 

Main Steamline 
Isolation 'lalves 

RHR L'1jection Valves 
and Check Valves 

Vessel ?ressure and 
Level Transmitters 
and Cabling 

Neutron Flux Sensors 
and Cabli!1g 

'Service ~avel C 
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Table 5.6-1 
ATWS EQUIPMENT QUALIFICATION 

Mark I 

1500 psi' 

(Actuate before 
Abnormal Conditions 
Occur) 

340°F 
56 psi 

Yes 

Outside Containment 

340 0 F 
56 psig 

340°F 
56 psig 

Outside Containment 
Level is Class lE 

Ou tside Con tainment 

340°F 
56 psig 

340°F 
56 pSig 

~r-ansrnitte~s Oustide 
of Containment 

2300f Continuous" 

Containment Type 
l-f.ark II 

1500 psi' 

( Actuate before 
Abnor:na1 Conditions 
Occur) 

340°F 
45 psi 

Yes 

Outside Containment 

340 0 F 
45 psig 

3400F 
45 psig 

Outside Containment 
Level is 1E 

Oustide Containment 

340°F 
45 psig 

340°F 
45 ~sig 

Transmitters Oustide 
of Containment 

2300F Continuous*· 

··Qualified for greater than 3uOoF for shor~ periods cf time 

Mark III 

1500 psi' 

(Actua te before 
Abnor-:nal Conditions 
Occur) 

330°F 
15 psig 

Yes 

330CF 
15 psi g 

330°F 
15 psig 

Out~ide Contai~ment 

Level is C:ass 1£ 

Ousti1e Containment 

330°F 
1S psig 

330°F 
15 psig 

18Se :" 15 psig 
(In Containmen t 
Outside of Drywell) 

2300f Continuous" 
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Table 5.6-1 (Continued)
ATWS EQUIPMENT QUALIFICATION (Continued)

Equipment Required
for ATWS

Rod Position
Indication System
Cabling

Mark I
Containment Type

Mark II

230°F Continuous

Mark III

230OF Continuous 3300F
15 psig

Rod Position
Indication System
Multiplexer

Bulk Pool
Temperature
Limit for
RHR/HPCS(NPSH)

Temperature for
HPCI/RCIC Water
Supply

N/A N/A

185oF
15 psig
To 6 hrs (Containment)

Qualification require-
ments for ATWS service
are currently under
review

212oF212•F 212 0 F

Greater Than
170OF***

Greater Than
170o?***

Greater Than
1700F***

**Preferred source for these systems is ambient CST water. Qualification require-
ments for ATWS service are currently under review.

5-31/5-32

Equipment Required 
for ATWS 
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Indication System 
Cabling 

Rod Position 
Indication System 
~ultiplexer 

Bulk Pool 
Temperature 
Limit for 
RHR/HPCS(NPSH) 

Temperature for 
HPCIIRCIC '!later 
Supply 
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Table 5.6-1 (Continued) 
ATWS EQUIPMENT QUALIFICATION (Continued) 

Mark I 

230°F Continuous 

N/A 

2' 20f 

Greater Than 
170oF-** 

Containment Type 
Mark II 

230°F Continuous 

N/A 

Greater Than 
170°:*.* 

Mark III 

18s0F 
15 psig 
To 6 hrg (Containment) 

Qualification require­
ments for A7NS service 
are currently under 
review 

Greater Than 
HOor**· 

'.-Preferred source for these systems is ambient CST water. Qual~f~cati~~ ~equire­
ments for ATxS service are currently under review. 
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6. OTHER ATWS CONSIDERATIONS

6-.1 DIVERSITY CONSIDERATIONS

6.1.1 Alternate Rod Insertion

ARI has been presented as a means for improving the reliability of the existing

BWR shutdown system. ARI adds improved independence and diversity of hardware

in the part of the scram system which is most vulnerable to a common cause

failure which could lead to scram failure. A detailed analysis of the common

cause failure potential in the existing BWR scram system and ARI is provided

in the GE Scram System Reliability Analysis submitted to NRC during 1976.*

The primary diversity provided by ARI is in the use of an "energized-to-trip"

circuit versus a "deenergized-to-trip" circuit in the output devices of the

current scram system. ARI can be designed to be independent of the circuitry

of the current scram system. ARI diversity primarily provides protection

against common cause failure that affects redundant components of the same

type and manufacturer. It is unlikely that common cause failures due to envi-

ronmental or manufacturing processes would cause the loss-of-scram function

simultaneously in the current trip circuit and the ARI circuit. For example,

fires that occur in the logic control cabinets are likely to cause open circuits

in the existing trip circuit to deenergize and result in a scram. On the

other hand, a postulated failure mechanism during normal plant operation which

prevents the existing trip circuit from deenergizing would be complemented

by the diverse function of the ARI circuit. ARI would perform its function

during a demand by the "energized-to-trip" signal thereby accomplishing reactor

scram.

Common cause failures due to potential operating and maintenance errors or

functional deficiencies are primarily protected by designed diversity in the

current trip system. Approximately 98% of all plant transients requiring a

reactor scram have at least three diverse means (level/pressure, valve posi-

tion, and flux/radiation sensors) for Inititiating a scram signal. The sensor

diversity provides protection from failures due to functional deficiency of

*'cc cit page 2-3
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a sensed scram variable, miscalibration of sensors, and other maintenance errors
by a single individual or crew. ARI design provides another independent shutdown
system sensor/logic circuit which reduces the potential of failure due to a mis-
calibration or maintenance error, the most likely common cause failure.

The independent ARI logic circuit provides additional protection against common
cause failures affecting the current relay backup scram circuit, i.e., circuitry
for the actuation of redundant pilot valves on the scram air header. Although
the backup scram circuit is an "energized-to-trip" circuit, the logic uses
the same output relays as the primary "deenergized-to-trip" circuit. Therefore,
common cause failure in the existing output relays can affect both the prompt
and backup scram functions. The ARI circuit provides a separate set of output
relays which are not dependent on failure in either the primary or backup scram
circuit.

Successful reactor shutdown by ARI relies on the operation of recirculation
pump trip and the mechanical portion of the scram system. Operability of ARI
and other equipment required for reactor shutdown given loss of the prompt
scram function is discussed under Section 3.4. This discussion on diversity
assumes that this equipment will operate under the environment imposed by loss
of the prompt scram function.

6.1.2 Recirculation Pump Trip

The recirculation pump trip provides a prompt negative reactivity effect during
the initial part of an ATWS event. This recirculation pump trip function is
required to account for the ARI delay in blowing down the scram air header.
The trip function is also required for the boron injection system.

The recirculation pumps are tripped by the same sensors/logic which initiate
the ARI circuit. Therefore, the discussion of the ARI diversity is applicable
to the recirculation pump trip. Either of -he two divisional initiation signals
will trip both recirculation pumps. The recirculation pump circuit is an "ener-gized-to-trip" versus the "deenergized-to-trip" circuit for the prompt scram

initiation function. Operability of the recirculation pump trip circult given
a loss of the prcmpt scram function is discussed in Section 3.4.
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6.1..3 Automated Standby Liquid Control System (SLCS)

The prompt scram and ARI functions rely on the insertion of control blades for

negative reactivity for reactor shutdown. The auto SLCS relies on recircula-

tion pump trip (short term) and the injection of liquid poison (long term)

for negative reactivity. The SLCS is therefore functionally diverse from the

reactor scram system.

The auto-SLCS system is initiated by the same circuit which initiates the ARI

and recirculation pump trip. A discussion of the diversity of the initiating

signals is given under the ARI discussion. An additional circuit is provided

to confirm an unsuccessful control rod insertion. This circuit uses a timer,

the neutron flux signal (APRM - Average Power Range Monitors) and the control

rod position indication to prevent poison injection following a scram or suc-

cessful ARI function event. The neutron flux signal permissive is bypassed

for a loss of normal a-c power event since the loss of power to the APRM's

would inhibit the poison injection initiation.

Successful reactor shutdown by the poison injection function relies on the

successful operation of the following auxiliary systems:

0 Safety/Relief Valves

0 Containment Isolation (BWR/6 Plants)

" Reactor Water Cleanup System Isolation

" High Pressure Coolant Injection (HPCI) or High Pressure Core Spray

(HPCS) System

* Feedwater Runback

* Residual Heat Removal (RHR) System

* Suppression Pool and Containment

5-3
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A detailed systematic review of the common cause failure potential between

the poison injection system (SLCS, permissive logic, and auxiliary systems)

and the scram system has not been completed. Initial analysis of the diver-

sity/independence between the two reactor shutdown functions indicates adequate

protection against the potential for a common cause failure. With the exception
of containment isolation for BWR/6, automatic initiation of the auxiliary systems

is performed by a diverse and independent energized-to-trip circuit. The use
of the auto SLCS logic for initiation of the BWR/6 containment isolation circuit
is being reviewed in order to achieve diversity and independence with the scram

system. The majority of the auxiliary systems are initiated by motor operated

or squib valves versus air operated valves in the scram system. Although the
APRMs are used for scram initiation and the automatic SLCS permissive, their

failure will not disable both the scram and automatic SLCS function. Opera-

bility of the SLCS (including the auxiliary systems) given an unsuccessful

control rod insertion is discussed under Section 3.4.

6.2 DESCRIPTION OF BRINGING PLANT TO POST-AT`WS COLD SHUTDOWN

NEDO-24222 
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APPENDIX 7.1
EVALUATION OF ANTICIPATED OPERATIONAL TRANSIENTS

This appendix discusses the various categories of transients anticipated in

Boiling Water Reactors, the characteristics of each transient and a qualitative

discussion in some detail in order to understand the relative severity of each

event with failure to scram. This material is an update of the transient event

description originally presented in NEDO-10349.

7.1.1 Identification of Anticipated Operational Transients

Anticipated operational occurrences are those conditions of operation which

are expected to occur one or more times during the life of the nuclear power
plant. From the list of all anticipated operational transients which zould

occur, those for which scram occurs are identified in Table 7.1.1 along with

the initiating signals in the order in which they occur in time. All signals

shown after the first signal for each event are redundant to the first signal.

7.1.2 Evaluation of Anticipated Operational Transients

7.1.2.1 Events Resulting in a Nuclear System Pressure Increase

7.1.2.1.1 Loss of Main Condenser Vacuum

A loss of condenser vacuum causes turbine stop valve closure and, at a lower
vacuum set point, turbine bypass valve closure. Once initiated, all of the

turbine stop valves achieve full closure within about 0.1 second. Closure

of multiple stop valves of more than 10% initiates the first reactor scram

signal. Following the stop valve closures, the reactor pressure rises causing

the collapse of voids in the core. This results in increased neutron flux
and initiates a second reactor scram signal. As the pressure in the vessel

continues to rise a third reactor scram signal is initiated due to high vessel

pressure.

This event produces results similar to the turbine trip transient and gives the

most limiting results for the transient cases evaluated with trip scram. With

scram, this case gives more limiting results than the main steam isolation valve

A7. 1-1
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closure because of the rapid valve closure prior to scram. With failure to scram,
however, the MSIV closure event produces more limiting results due to the reduced
steam volume available to buffer the valve closure.

7.1.2.1.2 Closure of All main Steam Line Isolation Valves

Closure of one isolation valve at power less than rated is permitted for testing
purposes without initiating a scram signal. However, if three steam lines
are closed in excess of 101, it is interpreted as the beginning of a system
isolation and a reactor scram signal is initiated. If the reactor successfully
scrams on the first signal, no further scram signals will be initiated because
neutron flux and vessel pressure will not reach the scram set points. This
event results in scram at all power levels.

The short term consequences of the main steam line isolation valve events with
trip scram are less severe than the corresponding turbine trip events because
the isolation valves closure times are slower (3-5 seconds) than the turbine
stop valve closure times. In the case of a failure to scram the long term
consequences are more severe for the MS1I as discussed above.

7.1.2.1.3 Closure of One Main Steam Line Isolation Valve, High Power

Normally the operator should reduce power to about 75-90% of rated to avoid scram.
If he does test at design power, and scram is not available, the consequences
are less severe than for a complete isolation because of the lower pressurization
rate.

7.1.2.1.4 Turbine Trip/Load Rejection, High Power

A turbine trip/load rejection will have the same transient sequence as a loss
of condenser vacuum except that for a turbine trip/load rejection the turbine

bypass valves would remain open.

Turbine trip/load reJection from lower initial power levels decrease in
severity to the point where snran may even be avoided within the bypass capa-
city if auxiliary power is available from an external source.
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7.4.2.1.4.1 Bypass Valves Failure Following Turbine Trip/Load Rejection High

Power

This event is included to assessý the consequences of the turbine bypass valve

failing to open in conjunction with a turbine trip. However, this unlikely

event would produce a transient similar to, but no more severe than the M-SIV

closure event as discussed above. A sample case was presented in 4.5.

7.1.2-1-4.2 By-pass Valves Failure Following Turbine Trip/Load Rejection Low

Power

This abnormal operational transient is of interest because turbine stop valve

closure and turbine control valve fast closure scrams are automatically bypassed
when the reactor power level is low. Turbine first-stage pressure is used to

initiate this bypass. The highest power level for which these scrams remain

bypassed is about 25% of rated power. Reactor scram occurs in less than 2 second$

after initiation of the event and the consequences are less severe than the KSIII
closure transient.

7.1.2.1.5 Generator Trip, High Power

A generator trip is a loss of generator electrical load which results in a

speed up of the turbine-generator. The turbine-generator acceleration protec-

tion devices trip to initiate the control valve fast closure and a reactor

scram signal.

With trip scram, this transient is similar to the turbine trip. At power levels

below bypass capacity the bypass system will transfer steam around the turbine

and avoid scram. Above bypass capacity, high pressure scram will result unless

operator action can reduce power to within the bypass capacity.

For failure to scram, this event is similar to the turbine trip event and is

bounded by the KSIV closure ATWS event.
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7.1.2.1.6 Pressure Regulator Failure-Increasing Pressure, High Power

If the regulator fails, the backup regulator will function automatically
producing a slight 10 psi pressure change. ?ressure regulator malfunctions
that result in the turbine steam flow shutoff and a nuclear system pressure
increase are similar to, but of milder consequence, than the generator trip
decribed previously. Turbine control valve closure is slower than the
fast closure time of this valve.

7.1.2.2 Events Resulting in a Reactor Moderator Temperature Decrease

7.1.2.2.1 Loss of a Feedwater Heater-Manual Recirculation Flow Control

In the event of the loss of a feedwater heater (70 0 F), the reactor vessel
receives cooler feedwater which produces increased reactivity, and an increase
in core power results. If the reactor is not in the automatic control mode,
and if the reactor is operating near full power and flow, a high neutron flux
reactor scram signal may occur. If no shutdown action ensues, the mismatch
results in an increase in the vessel pressure. However, pressure remains below
the scram set point.

This transient is less severe from lower power levels for two main reasons:

a. lower initial power levels will have greater thermal power fuel limit
margins; and

b. The magnitude of the power rise decreases with the initial power condition.

Therefore, transients from other reactor operating states or 1cwer power levels
will be less severe.

7.1.2.2.2 Feedwater Controller Malfunction-Maximum Demand

Failure of the feedwater controller in the direction of increased feedwater
flow results in a moderator temperature decrease causing a reactor power increase
through the effect of the negative void reactivity coefficient. This initial
power increase is not sufficient to initiate a high flux scram signal and the
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reactor will continue to operate at a slightly increased power level while

water level increases. Under severe conditions, the mismatch between the steam

line mass flow rate and the feedwater mass flow rate will cause the water level

in the reactor vessel to rise at the rate of approximately 3 inches per second.

A high water level turbine trip will be initiated when the sensed level has

been increased by approximately 1 foot. This transient then reverts to that

of a turbine trip.

7.1.2.2.3 Shutdown Cooling (RHR'S) Malfunction-Decreasing Temperature

A shutdown cooling malfunction leading to a moderator temperature decrease

could result from misoperation of the cooling water controls for the RHR heat

exchangers. The resulting temperature decrease causes a slow insertion of

poitive reactivity into the core. If the reactor were critical or near critical,

a very slow reactor power increase could result. If no operator action were

taken to control the power level, a high neutron Intermediate Range Monitor

(IRM) flux reactor scram (12% of rated) would terminate the transient without

fuel damage and without any measurable nuclear system pressure increase.

7.1.2.3 Events Resulting in a Positive Reactivity Insertion

7.1.2.3.1 Continuous Rod Withdrawal During Reactor Startup

Control rod withdrawal errors are considered when the reactor is at power levels

below the power range. The most severe case occurs when the reactor is just

critical at room temperature and an out-of-sequence rod is continuously with-

drawn. The rod worth minimizer would nomally prevent withdrawal of such a

rod. It is assumed that the IRM channels are in the worst conditions of allowed

bypass. The scaling arrangement of the IRMs is such that for unbypassed IRM

channels a scram signal is generated before the detected neutron flux has increased

by more than a factor of ten. In addition, a high neutron flux scram Is generated

by the APRMs at 120% of rated power or at a lower set point as determined by the

flow reference scram.

A7 .1-5

NEOO-24222 

reactor will continue to operate at a slightly increased power level while 

water level increases. Under severe conditions, the mismatch between the steam 

line mass flow rate and the feedwater mass flow rate will cause the water level 

in the reactor vessel to rise at the rate of approximately 3 inches per second. 

A high water level turbine trip will be initiated when the sensed level has 

been increased by approximately 1 foot. This transient then reverts to that 

of a turbine trip. 

7.1.2.2.3 Shutdown Cooling (RHRtS) Malfunction-Decreasing Temperature 

A shutdown cooling ~lfunotion leading to a moderator temperature decrease 

could result from misoperation of the cooling 'Hater controls for the RHR heat 

exchangers. The ~sulting temperature decrease causes a slow insertion of 

poitive reactivity into the core. If the reactor were critical or near critical, 

a very slow ~actor power increase could result. If no operator action were 

taken to control the power level, a high neutron Intermediate Range Monitor 

(IRM) flux reactor scram (12% of rated) would terminate the transient without 

fuel damage and without any measurable nuclear system pressure increase. 

7.1.2.3 Events Resulting in a Positive Reactivity Insertion 

7.1.2.3.1 Continuous Rod Withdrawal During Reactor Startup 

Control rod withdrawal errors are considered when the reactor is at power levels 

below the power range. The most severe case occurs when the reactor is just 

critical at room temperature and an out-of-sequence rod is continuously with­

drawn. The rod worth minimizer would nomally prevent withdrawal of such a 

rod. It is assumed that the IRM channels are in the worst conditions of allowed 

bypass. The scaling arrangement of the IRMs is such that for unbypassed IRM 

channels a scram signal is generated before the detected neutron flux has increased 

by more than a factor of ten. In addition, a high neutron flux scram ~s generated 

by the APRMs at 120% of rated power or at a lower set point as determined by the 

flow reference sc:-am. 

A7.1-5 



NEDO-24222

7.1.2.4 Events Resulting in a Reactor Vessel Coolant Inventory Decrease

7.1.2.4.1 Pressure Regulator Malfunction-Decreasing Pressure, High, Medium,
Low Power

If either the operating pressure regulator or the backup pressure regulator
fails in an open direction, the turbine admission valves can be fully opened,
and the turbine bypass valves can be partially opened. This action initially
results in decreasing coolant inventory in the reactor vessel as the mass flow
rate of steam leaving the vessel exceeds the mass flow rate of water entering
the vessel. This depressurization results in the formation of voids which
causes nuetron power to decrease. The main steam line isolation valves auto-
matically close wten the pressure at the turbine decreases by approximately
100 psi. After the isolation valves begin to close, this transients reverts
to the transient for closure of all main steam line isolation valves except
with a reduced initial power level. The sequence of actions varies for this
event depending upon the initial power level.

7.1.2.4.2 Loss of Feedwater Flow

A loss of feedwater flow results in a situation where the mass flow rate of
steam leaving the reactor vessel exceeds the mass flow rate of water entering
the vessel, resulting in a net decrease in the vessel coolant inventory. Afte-
the water level in the vessel drops to the low water level scram set point
a reactor scram signal is initiated, and after an additional drop of 48 inches,
a signal to close the isolation valves is initiated. After the isolation valves
close 10%, a second reactor scram signal is initiated. This transient then
reverts to a case similar to that of an isolation valve closure.

7.1.2.4.3 Inadvertent Opening of a Safety or Relief Valve

A mild depressurization transient is introduced by the inadvertent opening
of a valve on the main steam line. Opening of a saftey valve will initiate
a scram only on drywell pressure exceeding 2 psig since neutron flux, reactor
water level, and vessel pressure are not significantly affected. Opening of
a relief valve will take longer to initiate a scram since the pressure increase
in the drywell is through the wetwell. In the meantime a mi:d depressurization
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transient is introduced. The turbine pressure regulator senses this pressure

decrease and drops turbine flow to maintain pressure control The reactor settles

to nearly the initial power until scram is initiated. Operator intervention

can avoid scram should he be able to correct the condition in time. Generally

scram is required for the event only if suppression pool temperature reaches

a prescribed limit. At that time, manual scram is required.

7.1.2.4.4 Inadvertent Opening of All Bypass Valves

This event diverts some of the turbine steam flow directly to the main condenser

causing a decrease in turbine pressure. The pressure decrease is detected

by the pressure regulator which initiates closure of the turbine control valves

in an attempt to control steam flow.

When steam flow is lower than bypass capacity the pressure regulator will rapidly

close the control valves. Bypass flow will continuously be greater than steam

line flow and depressurization will occur. Should turbine inlet pressure

decrease to the low steam line pressure set point the main steam line valves

will be closed initiating a scram signal.

When the power level is higher than bypass capacity the pressure regulator

would potentially close the control valves to maintain vessel steam flow.

Turbine flow would be decreased by an amount equal to bypass flow. The transient

would be mild and a scram signal would not be initiated.

7.1.2.4.5 Loss of Auxiliary Power

A complex sequence of events occurs when the plant loses all auxiliary power.

This transient is classified as an event resulting in a reactor vessel coolant

inventory decrease. The loss of power to all electrical pumps initiates several

types of transients. The loss of feedwater pumps causes the water inventory

in the reactor to decrease. The loss of recirculation pumps causes core flow

to drop resulting in increased voiding and a decrease in neutron power. The

loss of the main condenser circulating water pumps causes condenser vacuum

to drop to the turbine trip setting in approximately 6 seconds. The prctection

system motor-generator (MG) sets coast down to the point of scram and main

steam line isolation in approximately 5 seconds. The transient r~iverts to
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that of closure of all main steam line isolation valves except it has a reduced

initial power level.

7.1.2.5 Events Resulting in a Core Coolant Flow Increase

7.1.2.5.1 Recirculation Flow Controller Malfunction-Increase Flow

Failure of the master controller can result in a speed increase of both recircu-

lation pumps so that flow increase would cause the neutron flux to increase

beyond initial values. The most severe case, however, is the failure of the

speed controller of one of the motor-generator sets, since the speed controller

rate limits are adjusted to keep the effect of master flow controller failure

less severe than that of single speed controller failure. As a result the

high neutron flux scram set point may be reached. If this set point is not

reached, no system limits are exceeded. The bypass system can adquately handle
the increase in steam flow. The increased recirculation flow will not cause

system damage.

7.1.2.5.2 Startup of Idle Reeirculation Pump Between 60 and 65% Power

The event will not raise power sufficiently to initiate scram if initial power

is below 60%. Initial power cannot be above 65% because this is the capability

limit of one recirculation pump. If the idle loop water is sufficiently low
in temperature, a scram might be required, but even in the worst case, this
transient is less severe than 7.1.8.1 above.
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Table 7.1.1

ABNORMAL OPERATIONAL TRANSIENTS

RESULTING IN REACTOR SCRAM

Class of Transients and

Initiating Events

Nuclear System Pressure Increase

Loss of Condenser Vacuum

Closure of All Vain Steam Line

Isolation Valves

Turbine Trip, High Power

Generator Trip, High Power

Pressure Regulator Failure-Increasing

Pressure, High Power

Moderator Temperature Decrease

Loss of Feedwater Heater-Manual

Recirculation Flow Control

Feedwater Controller Malfunction-

Maximum Demand

Shutdown Cooling (RHRS) Malfunction

Decreasing Temperature

Scram Signals Initiated By

Stop Valves, Flux, Vessel Pressure

Isolation Valves, Flux, Vessel

Pressure

Stop Valves, Flux, Vessel Pressure

Control Valves, Flux, Vessel Pressure

Flux, Vessel Pressure1

Flux

Stop Valves, Flux, Vessel Pressure

Flux

Rectivity Insertion

Continuous Rod Withdrawal During

Reactor Startup

'Scram level may not be reached.

IRM Flux, APRM Flux
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Scram Signals Initiated By 
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Table 7.1.1 (Continued)

Class of Transients and

Initiating Events

Decrease of Coolant Inventory

Pressure Regulator Failure-Decreasing

Pressure, High Power

Pressure Regulator Failure-Decreasing

Pressure, Medium Power

Pressure Regulator Failure-Decreasing

Pressure, Low Power

Loss of Feedwater Flow

Inadvertent Opening of a Safety or

Relief Valve

Inadvertent Opening of All Bypass Valves

Loss of Auxiliary Power

Core Coolant Flow Increase

Recirculation Flow Controller

Malfunction-Increasing Flow

Startup of Idle Recirculation Pump,

60-65% Power

1 Scram level =ay not be reached.

Scram Signals Initiated By

Isolation Valves, Low Water Level,
Vessel Pressure

Stop Valves, Flux, Vessel Pressure

Isolation Valves, Flux, Vessel Pressure

Low Water Level, Isolation Valves,

Flux, Vessel Pressure

Containment Pressure of ,rnual 3cram
following Suppression Pool High
Temperature Alarm

FluxI

Stop Valve, Flux, Vessel Pressure

Fux

Flux1
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Table 7.1.' (Continued) 
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APPENDIX 7.2

SAR DESIGN BASIS OF EQUIPMENT

The SAR Design Bases given below are from typical SAR's and do not necessarily
reflect systems on all plants.

7.2.1 Reactor Core Isolation Cooling System (RCIC)

7.2.1.1 Safety Design Basis

The RCIC system is designed to:

Ensure that adequate core cooling takes place to prevent the reactor fuel
from overheating in the event that reactor isolation is accompanied by loss
of flow from the reactor feedwater system.

7.2.1.2 Power Generation Design Basis

The RCIC system is designed to:

a. Operate automatically in time to maintain sufficient coolant in the
RPV so that the low pressure emergency core cooling systems (ADS, LPCI

and core spray systems) are not actuated.

b. Provide for remote-manual operation of the system by an operator.

c. Provide a high degree of assurance that the system will operate when
necessary.

d. Have the power supply for the system from an immediately available energy
source of high reliability.

e. Provide for periodic testing during plant operation.
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7.2.1.3 System Description

The RCIC system consists of a steam-driven turbine-pump unit and associated valves
and piping capable of delivering makeup water to the RPV.

The steam supply to the turbine comes from the reactor vessel. The steam exhaust
from the turbine dumps to the suppression pool. The pump can take suction from
the demineralized water in the condensate storage tank or from the suppression

pool.

The pump discharges either to the feedwater line (head spray nozzle for BWR/6)
or to a full-flow return test line to the condensate storage tank. A minimum-
flow bypass line to the suppression pool is provided to protect the pump during
startup and shutdown. The makeup water is delivered into the RPV through the
feedwater line (head spray nozzle for BWR/5 and BWR/6) and is distributed within
the reactor vessel through the feedwater sparger. Cooling water for the RCIC
turbine lube oil cooler and barometric condenser is supplied from the discharge
of the pump.

Following any reactor shutdown, steam generation continues because of heat pro-
duced by the radioactive decay of fission products. Initially, the rate of

steam generation can be as much as approximately 6% of rated flow and is augmented
during the first few seconds by delayed neutrons and some of the residual energy
stored in the fuel. Steam normally flows to the main condenser through the tur-
bine bypass or, if the condenser is isolated, to the suppression pool or to the
RHR heat exchangers which function as steam condensers. The fluid removed from
the RPV is normally made up by the feedwater pumps supplemented by leakage from
the CRD system. If makeup water is required to supplement these primary sources
of water, the RCIC turbine-pump unit starts automatically on receipt of an RPV
low-water-level signal or is started by the operator from the main control room.
The RCIC delivers its design flow within 30 seconds after actuation. To limit
the amount of fluid leaving the RPV, the RPV low-water-level signal also actuates
the closure of the MSlVs.

The RCIC makeup capacity is sufficient to avoid the need for the low-pressure
0C0S. Pump suction is normally lined up to the condensate storage tank. The

volume of water stored for the RCIC is sufficient to allow operation for eight
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hours after shutdown, assuming that none of the steam generated in the RPV is
returned to the RPV as condensate. Other systems that use the same reservoir
and could jeopardize the availability of this quantity of water can be isolated.
A low-level alarm is energized when the level in the storage volume fails to
the minimum required to meet the design requirements of the RCIC system.

The RCIC system is sized to prevent actuation of the triple low level signal
for RPV isolation incidents. Prevention of this signal ensures core cooling
and prevents ADS actuation, thus preventing inadvertent blowdown of the RPV
for this situation.

The backup supply of cooling water for the RCIC is the suppression pool. The
turbine-pump assembly is located below the level of the condensate storage tank
and below the minimum water level in the suppression pool to ensure positive
suction head to the pump. NPSH requirements are satisfied by providing adequate
suction head and adequate suction line size.

All components required for initiating the RCIC are completely independent of
auxiliary ac power, plant service air, and external cooling water systems.
These components require only power derived from the station battery to operate
the valves and logic. The power source for the turbine-pump unit is the steam
generated in the RPV by the decay heat in the core. The steam is piped directly
to the turbine, and the turbine exhaust is piped to the suppression pool.

If for any reason the RPV is isolated from the main condenser, pressure in the
RPV increases but is limited by automatic or remote-manual actuation of the
safety/relief valves. After approximately 30 minutes of safety/relief valve
operation, it becomes necessary to limit any further temperature rise in the
suppression pool. Therefore, as soon as possible after isolation, the operator
directs reactor steam to the RHR heat exchangers where the steam is condensed
and subcooled. At this time, the RCIC pump suction is manually changed to the
RHR heat exchanger, where it pumps the condensate back to the RPV.

This mode of operation provides a closed-circuit cooling loop, which conserves
reactor coolant and limits the increase in temperature and volume of the sup-
pression pool. In this mode, the nuclear system pressure can be reduced by
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increasing the rate of steam condensation. This mode of operation must be
initiated deliberately to put the nuclear system in a hot standby condition.

Throughout the period of RCIC operation, exhaust from the RCIC turbine is con-
densed in the suppression pool which results in a slow temperature rise of
approximately 30F per hour in the pool. If necessary, one RHR heat exchanger
can be used to cool the suppression pool after approximately 1.5 hours. If
for any reason the RCIC is unable to supply sufficient flow for core cooling,
the ECCS provides the required boundary protection.

Long-term heat removal capability may be provided by the RCIC during scram,
pressure relief, core cooling, RPV isolation, and restoration to ac power. The
RHR system may be used for long-term heat removal during any long-term isola-
tion. These events are all situations in which the RPV is isolated from the
main condenser.

The HPCI and RCIC systems are located in separate rooms in differen: corners
of the reactcr building. Piping runs are separated and the water delivered
from each system enters the RPV via different nozzles.

7.2.1.4 Safety Evaluation

To ensure that the RCIC operates when necessary and in time to provide adequate
core cooling, the power supply for the system is taken from immediately available
energy sources of high reliability. Added assurance is given by the capability
for periodic testing during station operation. Evaluation of reliability of
the instrumentation for the RCIC shows that no failure of a single initiating
sensor either prevents or falsely starts the system.

The RCIC system components within the drywell, up to and including the outer
isolation valve, are designed in accordance with the ASME Boiler and Pressure
Vessel Code, Section IIi, Class I. For BWR/6, the RCIC is also designed as
seismic Category 1 equipment.
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7.2.1.5 Tests and Inspections

A design flow functional test of the RCIC system is performed during plant
operation by taking a suction from the condensate storage tank and discharging
through the full-flow test return line back to the condensate storage.tank.

The discharge valve to the feedwater line remains closed during the test.
Discharge is obtained by first closing the upstream discharge valve. Control
system design provides automatic return from the test to the operating mode
when system operation is-required during testing of individual components.

Periodic inspections and maintenance of the turbine-pump unit are conducted
in accordance with the manufacturer's instructions. Valve position indication
and instrumentation alarms are displayed in the main control room.

7.2.1.6 Initiating Circuits

RPV low water level is monitored by four indicating-type level switches which
sense the difference between the pressure of a constant reference leg of water
and the pressure resulting from the actual height of water in the vessel. Each
level switch contains four sets of switch contacts; two high and two low. Two
pipelines, attached to taps above and below the water level on the reactor vessel,
are required for each of the two reference legs used with the RCIC. Pipelines
are physically separated from each other and tap off the reactor vessel at widely
separated points. Two pairs of differential pressure sensing lines from the
two reference legs terminate outside the primary containment and inside the
reactor building.

The RCIC system is initiated only by low water level. The signals are derived
from relays that are part of the RHR system. The RCIC initiation circuit is
arranged in a "one-out-of-two taken twice" logic.

The RCIC system is automatically initiated after the receipt of a RPV low water
level signal and produces the design flow rate within 30 seconds. The controls
then function to provide a flow of design makeup water to the RPV until the
amount of water delivered to the RPV is adequate to restore vessel level. At
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this time, the RCIC system automatically shuts down. The controls are arranged
to allow remote-manual startup, operation, and shutdown.

High water level in the RPV indicates that the RCIC system has performed satis-
factorily in providing makeup water to the RPV. Further increase in level could
result in RCIC system turbine damage caused by gross carryover of moisture. The
reactor vessel high water level setting which trips the turbine is near the
top of the steam separators and is sufficient to prevent gross moisture carry-
over to the turbine. Two level switches that sense differential pressure are
arranged so that both switches are required to trip to initiate a turbine shutdown.

7.2.1.6.1 Redundancy, Diversity, and Separation. Four water level sensors in
a "one-out-of-two taken twice" circuit supply the start signal.

As in the ECCS, the RCIC system is separated into divisions designated I and 1'.
The RCIC is a Division I system, but the inside steamline valve is in Division I:
therefore, part of the RCIC logic is treated as Division II. The inside valve
is an ac-logic powered valve. The rest of the valves are dc-powered valves.
Division I logic is powered by 125 volt dc bus 2A and the Division II logic is
powered by 125 volt a-c bus 2B. In order to maintain the required separation,
RCIC logic relays, cabling, instruments, and manual separation from Division II
is maintained.

7.2.1.7 Actuated Devices

All automatic valves in the RCIC are equipped with remote-manual test capability
so that the entire system can be operated from the main control room. Motor-
operated valves are provided with appropriate limit switches to turn off the
motors when the fully open or fully closed positions are reached. Logic cir-
cuitry that controls valves which are automatically closed on isolation or
turbine trip signals is equipped with manual reset devices so that the valves
can be reopened by operator action. All required components of the RCIC controls
operate independent of ac power.

To ensure that the RCIC system can be brought to design flow rate within 30
seconds from the receipt of the initiation signal, the following maximum
operating times for essential RCIC valves are provided bj rhe valve operatio'n
.'echanisms:
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a. RCIC turbine steam supply valve - 15 seconds

b. RCIC pump discharge valves - 15 seconds

c. RCIC pump minimum flow bypass valve - 5 seconds

Three pump suction valves are provided in the RCIC. One valve lines up pump
suction from the condensate storage tank; the other two from the suppression
chamber. The condensate storage tank is the preferred source. All three
valves are operated by do motors. Upon receipt of a RCIC initiation signal,
the condensate storage tank suction valve automatically opens.

7.2.1.8 Environmental Considerations

The only RCIC control component located inside the primary containment that
must remain functional is the control mechanism for the inside isolation valve.
The RCIC instrumentation and controls equipment located outside the primary
containment is selected in consideration of the normal and accident environ-
ments in which it must operate.

7.2.2 High Pressure Core Spray System (HPCS) for BWR 5/6

7.2.2.1 System Description

The High Pressure Core Spray System (HPCS) consists of a single motor-driven
pump located outside the containment and associated system piping, valves, con-
trols, and instrumentation. The system is designed to operate from normal off-
site auxiliary power or from a standby diesel generator supply if offsite power
is not available.

The principal HPCS equipment is located outside the containment. Suction piping
is provided from the condensate storage tank and the suppression pool. Such
an arrangement provides the capability to use reactor grade water from the con-
densate storage tank when the HPCS system functions to backup the RCIC system.
In the event that the condensate storage water supply becomes exhausted or is
not available, automatic switchover to the suppression pool water source will
assure a closed cooling water supply for extended operation of the HPCS system.
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HPCS pump suction is also automatically transferred to the suppression pool

if the suppression pool water level exceeds a prescribed value.

After the HPCS injection piping enters the vessel, it divides and enters the

shroud. A semicircular sparger is attached to each outlet. Nozzles are spaced

around the spargers to spray the water radially over the core and into the fuel

assemblies. The HPCS injection piping is provided with an isolation valve on

each side of the containment barrier. Remote controls for operating the valves

and diesel generator are provided in the plant control room.

The HPCS system is designed to cool the reactor core sufficiently to prevent

fuel cladding tempratures from exceeding the 1OCFRSO limit of 2200°F following

any break in the nuclear system piping. The system is designed to pump water

into the reactor vessel over a wide range of pressures. For small breaks that

do not result in rapid reactor depressurization, the system maintains reactor

water level and depressurizes the vessel. For large breaks the HPCS system

cools the core by a spray.

If a loss-of-coolant accident should occur, a low water level signal or a high

containment pressure signal initiates a reactor scram, the HPCS and its supporting

equipment. The HPCS flow automatically stops when a high water level in the

reactor vessel is signaled. The HPCS system also serves as a backup to the

RCIC system in the event the reactor becomes isolated from the main condenser

during operation and feedwater flow is low.

If normal auxiliary power is not available, the HPCS pump motor is driven by

its own on-site power source.

When the system is started, initial flow rate is established by primary system

pressure. As vessel pressure decreases, flow will increase. When vessel pressure

reaches 200 psid* the system reaches rated core spray flow. The HPCS motor size

is based on peak horsepower requirements.

' psid = differential pressure between the reactor vessel and the suction source.

The elevation of the HPCS pump is such that a flooded pump suction is assured.
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Pump NPSH requirements are met even with the containment at atmospheric pres-
sure. NPSH will be calculated in accordance with Regulatory Guide 1.1.

A motor-operated valve is provided to isolate the High Pressure Core Spray Sys-
tem from the nuclear system when the HPCS system is not required for core cool-
ing or RCIC backup. This valve, installed outside the containment, is normally
closed as a backup to the inside testable check valve for containment integrity
purposes. A drain line is provided between the two valves. The test connection
line is normally closed with two valves to assure containment integrity.

If the HPCS line should break outside the containment, a check valve in the
line prevents loss of reactor water outside the containment. The HPCS pump
and piping are positioned to avoid damage from the physical effects of design-
basis accidents, such as pipe whip, missiles, high temperature, pressure, and
humidity.

To assure continuous core cooling, signals to isolate the containment do not
operate any HPCS valves.

The HPCS equipment and support structures are designed in accordance with seismic
Category I criteria.

7.2.2.2 Applicable Codes and Classification

All piping systems and components (pumps, valves, etc.) for the HPCS will comply
with the applicable codes, addenda, code cases and errata in effect at the time
the equipment is procured.

The piping and components of the HPCS system within the containment and out to
and including the pressure retaining injection valve are Class 1. All other
piping and components are Class II except the HPCS condensate storage tank test
return line downstream of the shutoff valves.

The equipment and piping of the HPCS are designed to the requirements of seismic -

Class I.
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7.2.2.3 Materials Specifications and Compatibility

Nonmetallic materials such as lubricants, seals, packings, paints and primers,
insulation, as well as metallic materials, etc., are selected for compatibility
with other materials in the system and the surroundings with concern for chemical,
radiolytic, mechanical and nuclear effects.

7.2.2.4 Provisions for Performance Testing

a. A full flow test line is provided to route water from and to the conden-
sate storage tank without entering the reactor pressure vessel. The
suction line from the condensate tank also provides reactor grade water
to treat the RPV during shutdown.

b. A full flow test line is provided to route water from and to the suppres-
sion pool without entering the reactor pressure vessel.

c. instrumentation is provided to indicate system performance during nor-
mal and test operations.

d. All motor-operated valves are capable of manual operation either locally

or remotely for test purposes.

e. System relief valves are removable for bench testing.

f. Drains are provided to leak test the major system valves.

7.2.3 High Pressure Coolant Injection (HPCI) System for 5WR/4

The HPCI system consists of a steam turbine which drives a constant-flow pump,
system piping, valves, controls, and instrumentation.

The principal HPCI system equipment is installed in the reactor building, The
turbine-pump assembly is located in a shielded area to ensure that personnel
access to adjacent areas is not restricted during operation of the HPCI system.
Suction piping comes from the condensate storage tank and the suppression pool.
Injection water is piped to the reactor feedwater pipe at a "T" connection.
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Steam supply for the turbine is piped from a main steam header in the primary
containment. This piping is provided with an isolation valve on each side of
the drywell barrier. Remote controls for valve and turbine operation are provided
in the main control room.

The HPCI system is provided to ensure that the reactor is adequately cooled to
limit fuel clad temperature in the event of a small break in the nuclear system
and a loss of coolant which does not result in rapid depressurization of the
reactor vessel. The HPCI system permits the nuclear plant to be shut down while
maintaining sufficient reactor vessel water inventory until the reactor vessel
is depressurized. The HPCI system continues to operate until reactor vessel
pressure is below the pressure at which either LPCI operation or core spray
system operation maintains core cooling.

if a LOCA occurs, the reactor scrams upon receipt of a low-water-level signal
from the reactor or a high-pressure signal from the drywell. The HPCI system
starts when the water level reaches a preselected height above the core or if
high pressure exists in the primary containment. The HPCI system automatically
stops when it receives a signal of high water level in the reactor vessel.

The HPCI system is designed to pump water into the reactor vessel for a wide
range of pressures in the reactor vessel. Two sources of water are available.
Initially, the Aystem uses demineralized water from the condensate storage tank.
approximately 100,000 gallons of the 500,000-gallon condensate storage tank
are held in reserve for the HPCI system and reactor core isolation cooling
(RCIC) system. The value of 100,000 gallons is based on (1) the megawatt thermal
rating of the plant, (2) 100°F makeup water available from the condensate storage
tank (HPCI/RCIC system design criteria), and (3) the inventory loss due to the
boil-off rate in the reactor for an eight-hour integrated decay heat factor.
System demands on the. condensate storage tank other than the HPCI systems and
RCIC system will draw from a tank internal standpipe. The inlet to this standpipe
will be set at a level so that approximately 100,000 gallons will be below the
intake and unavailable to these other systems except through a locked valve
crossover that could be opened during refueling. Both the HPCI system and RCIC
system will connect separately to the condensate storage tank near the bottom.
"n addition the condensate storage tank will have a backup capacity from the
100,000-gallon demineralized water storage tank. Should the condensate storage
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tank be drawn down to a low level, automatic transfer to the suppression pool
occurs. Water from either source is pumped into the reactor vessel via a feedwater
line. Flow is distributed within the reactor vessel through the feedwater spargers,
causing mixing with the hot water or steam in the reactor pressure vessel.

To ensure positive suction head to the pump, the pump is located below the level
of the condensate storage tank and below the water level in the suppression
pool. Pump NPSH requirements are met by providing adequate suction head and
adequate suction line size. Available NPSH 's calculated using the assumptions
of Regulatory Guide 1.1 (November 1970).

The HPCI turbine-pump assembly and piping are located so as to be protected
from the physical effects of design basis accidents such as pipe whip, flooding,
and high temperature. The equipment is located outside the primary containment.

Steam from the reactor vessel drives the HPCI turbine. Decay heat and stored
heat generate steam which is extracted from a main steam header upstream of
the main steamline isolation valves. The two HPCI system isolation valves in
the steam line to the HPCI turbine are normally open to keep piping to the tur-
bine at elevated temperatures and to permit rapid startup of the HPCI system.
Signals from the HPCI control system open or close the turbine stop valve.

To prevent the HPCI steam supply line from filling with water, a condensate
drain pot is provided upstream of the turbine stop valve. The drain pot nor-
mally routes condensate to the main condenser, but upon receipt of an HPCI
system initiation signal or a loss of control air pressure signal, isolation
valves on the condensate line close automatically.

Two devices control turbine power: 1) a speed governor limits turbine speed
to its maximum operating level and 2) a control governor with an automatic speed
set point control is positioned by a demand signal from a flow controller to
maintain constant flow over the pressure range of HPCI system operation. When
the governor is in the test mode, it can be operated manually; however, it is
automatically repositioned by the demand signal from the flow controller if
system initiation is required.
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As reactor steam pressure decreases, the HPCI turbine throttle valve opens wider

to permit passage of the steam flow required to provide sufficient core cooling
to prevent clad melting while the pressure in the reactor vessel exceeds that
at which core spray and LPCI become effective.

Exhaust steam from the HPCI turbine is discharged to the suppression pool. A

drain pot at the low point in the exhaust line collects condensate which is
discharged through a steam trap to the suppression pool or automatically

bypassed to the gland seal condenser.

The pump is designed and tested in accordance with the standards of the qydraulic

Institute.

Startup of the HPCI system is completely independent of ac power. For startup

to occur, only do power from the plant batteries and steam extracted from the
nuclearý system are required.

Various operations of the HPCI system components are summarized below.

The HPCI system controls automatically start the system and bring it to design
flow rate within 25 seconds from receipt of a low-water-level signal from the

reactor vessel or a high-pressure signal from the primary containment (drywel!).

The HPCI system turbine is shutdown automatically by any of the following signals:

a. Turbine overspeed. This prevents damage to the turbine and turbine

casing.

b. Reactor vessel high water level. This prevents flooding of steamnlines.

c. HPCI pump low suction pressure. This prevents damage to the pump due
to loss of flow.

d. HPCI turbine exhaust high pressure. This indicates a turbine or tur-

bine control malfunction.
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If an initiation signal is received after the turbine is shutdown, the system

is capable of automatic restart if no shutdown signals exist.

Because the steam supply line to the HPCI system turbine is part of the nuclear

system process barrier, certain signals automatically isolate this line, causing

shutdown of the HPCI turbine.

In addition to the automatic operational features of the system, it also provides

for remote manual startup, operation, and shutdown (provided automatic initiation

or shutdown signals do not exist). All automatically operated valves are equipped

with a remote manual functional test feature.

HPCI system initiation automatically actuates the following valves:

a. HPCI system pump discharge shutoff valve

b. HPCI system steam supply shutoff valve

c. HPCI system turbine stop valve

d. HPCI system turbine control valve

e. HPCI system steam supply line drain isolation valves

f. HPCI control loop valve

The hydraulic oil pump must be started and the hydraulic control system must

be functioning properly before the turbine valves can be opened. The gland

seal condenser components must be operating to prevent outleakage from the tur-

bine shaft seals. Startup of the equipment is automatic, but -ts failure does

not prevent the HPCI system from fulfilling its core cooling objective. When

rated flow is established, the flow controller signal adjusts the setting of

the control governor to maintain rated flow as nuclear system pressure decreases.

A minimum-flow bypass is provided for pump protection. The bypass valve auto-

matically opens on a low-flow signal and automatically closes on a high-flow

:signal. When the bypass is open, the flow is directed to the suppression pool.
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A system test line provides recirculation on the condensate storage tank during

system test. Shutoff valves are provided with proper interlocks which automa-

tically close the test line upon receipt of an HPCI system initiation signal.

7.2.3.2 Applicable Codes and Classification

The HPCI piping, components, and system designs comply, as a minimum, with appli-

cable codes, addenda, code cases, and errata in effect at the time the equipment
was procured. These systems are designed and constructed in accordance with
seismic Category I criteria.

The HPCI is divided into two classes. The Class I portion includes all piping
and components which are part of the reactor system boundary out to and including
the second isolation valve.

The Class I portions of the HPCI system is designed and constructed in accordance
with Subsection NB of the ASME Boiler and Pressure Vessel Code Section III,
Nuclear Power Plant Components.

The remaining portions of the HPCI system is designated Class 2 and are designed
and constructed in accordance with Subsection NC of the ASiC Boiler and Pressure
Vessel Code Section III, Nuclear Power Plant Components.

7.2.3.4 Materials Specifications and Compatibility

Nonmetallic materials such as lubricants, seals, packings, paints, primers,
and insulation, as well as metallic materials, are selected for compabitility
with other materials in the system and surroundings with concern for chemical,
radiolytic, mechanical, nuclear radiation, and temperature effects.

HPCI is protected against the effects of pipe whip, which might result from
piping failures up to and including the LOCA, by separation barriers, pipe-whip
restraints, or energy absorbing materials. One or more of these three methods
will be applied to provide protection against cascading damage to the piping
and components of the ECCS which could otherwise result in a reduction of ECCS

effectiveness to an unacceptable level.
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ECCS piping and components located outside the containment are protected from

internally and externally generated missiles by the reinforced concrete structure

of the ECCS pump rooms. In addition, the watertight construction of the ECCS

pump rooms below grade level protects against damage by flooding.

7.2.3.4 Provisions for Performance Testing

a. A full-flow test line is provided to route water from and to condensate

storage tank without entering the RPV.

b. A bypass-flow test line is provided to route water from and to the

suppression pool without entering the RPV.

c. instrumentation is provided to indicate system performance
and test operations.

d. All motor-operated valves are capable of manual operation,

or remote, for test purposes.

during normal

either local

e. Drains are provided to leak test the major system valves.

7.2.4 Residual Heat Removal System for BWR/4 (RHR)

7.2.4.1 Safety Design Bases

The RHR system is designed to:

a. act automatically, in the LPCI mode, in combination with other ECCS
systems, to restore and maintain the coolant inventory in the RPV so

that the core is adequately cooled to preclude fuel-clad perforation
and subsequent energy release due to a metal-water reaction.

b. give such diversity and redundancy, in conjunction with other ECCS sys-
tems, that only a highly imprcbabie combination of events could result

in its inability to provide adequate core cooling.
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c. provide a source of water for restoration of reactor vessel coolant

inventory located within the primary containment in such a manner

that a closed cooling water path is established.

d. provide a high degree of assurance that the RHR system operates

satisfactorily during a'LOCA and that each active component is capable

of being tested during operation of the nuclear system.

.e. satisfy seismic Category I requirements.

f. permit RHR service water to be pumped directly into the RHR system.

g. provide heat exchangers with a heat-removal capability for long-

term containment cooling.

7.2.4.2 Power Generation Design Bases

The RHR system is designed:

a. to have enough heat-removal capacity to cooldown the reactor to 125°F
within 20 hours after shutdown.

b. to have fuel pool connections so that the RHR heat exchangers can be

used to supplement the fuel pool cooling capacity.

c. to be able to condense reactor steam generated by decay heat and direct

the condensate to the suction side of the RCIC pumps.

d. so that closed loop flow path between the suppression pool and the

RHR heat exchangers can be established so that the heat-removal cap-

ability of these heat exchangers can be used to cool the suppression

pool.

7.2.4.3 System Description

7.2.4.3.1 Sumary. The RHR system is designed for seven modes of operation

to satisfy all the objectives and bases. The modes are summarized as follows:
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Mode'

Low-pressure coolant
injection (LPCI)

Containment spray

Condensing*

Pool cooling*

Shutdown cooling*

Minimum flow

Action

Accident safety

Post-accident safety

Abnormal operation

Abnormal operation

Planned operation

Equipment protection

Function

Restore and maintain reactor

vessel water level after a LOCA.

Limit temperature and pressure

in the torus and drywell after

a LOCA.

Condense steam while the

reactor is isolated from

the main condenser and level

is being maintained by RCIC.

Remove heat from the

suppression pool water.

Remove decay and residual

heat from the reactor core

to achieve and maintain a

cold shutdown condition.

Prevent pump damage when

operating against closed

discharge Valve.

Test System Test Test RHR system during

plant operation.

The major equipment of the RHR system consists of two heat exchangers and four
RHR pumps. The RHR service water system provides cooling water to the heat
exchangers. The equipment is connected by associated valves and piping, while
controls and instrumentation are provided for proper system operation.

*Containment cooling occurs when RHR service water and 2PCI water (with or without
containment spray water) is flowing through the RHR heat exchangers.
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The RHR pumps are sized for the flow required during LPCI operation, which is

the subsystem that requires the maximum flow rate. The pumps are arranged and
located so that adequate suction head is ensured for all operating conditions.

The pump motor is air cooled.

The heat exchangers are sized on the basis of their required duty for the shut-

down cooling function. The heat exchanger shell and tube sides are provided
with drain connections. The shell side is provided with a vent to remove non-

condensable gases. Thermal relief valves on the heat exchanger shell side,
a relief valve on the RHR pump discharge, and a relief valve on the HPCI steam
supply line to the RHR heat exchangers protect the heat exchanger from over-
pressure.

The most limiting duty is that duty associated with cooling the reactor to 125 0 F
in the normal shutdown cooling mode. The performance of this type of heat exchanger

operating in the normal shutdown cooling mode (water to water) is well established
in currently operating BWR facilities.

The steam condensing mode poses a less severe duty requirement, and the design
is very similar to an upright feedwater heater which has proven its reliability

through many years of service.

One loop, consisting of a heat exchanger, two RHR pumps in parallel, and associated

piping, is located in one area of the reactor building. The remaining heat
exchanger, pumps, and piping, all of which form a secoind loop, are located in

another area of the reactor buiilding to minimize the possibility of a single

physical event causing the loss of the entire system.

7.2.4.4 Steam Condensing Mode

During RCIC operation, there is a limit to the amount of decay heat that can be

dumped to the suppression pool without providing suppression pool cooling. This

limit is fixed by requiring that the allowable temperature does not exceed 170°F
immediately after the design basis LOCA. After a period of steam condensing,
one RHR heat exchanger must be placed in pool cooling operation to ensure that

pool temperature limits are met.
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During the reactor condensing mode, decay heat is transferred to the RHR service

water instead of the pool by using the RHR system heat exchangers as direct

steam condensers. The relatively cool condensate from the heat exchangers is

either dumped to the suppression pool or returned to the suction side of the

RCIC system pump and then pumped back into the RPV via a connection to the feed-

water line.

When the RHR system heat exchangers are operating in the steam condensing mode,

steam at reactor pressure and temperature is taken from the RPV via a connection

to the steam supply line to the HPCI system turbine. The steam is then reduced

to the desired operating pressure upstream of the heat exchanger. The steam

is condensed and subcooled by the RHR service water passing through the tubes

of the heat exchanger. The heat transfer across the tubes controls the level

of condensate in the heat exchanger. The water level in the heat exchanger

in turn controls the flow of condensate to the suppression pool by control of

a throttle valve or controls the return flow to the reactor vessel by controlling

the RCIC system turbine speed. The operator has the option to select the control

mode.

One or two hours after reactor shutdown, one RHR heat exchanger operating as

a steam condenser has sufficient heat-transfer capacity to handle decay heat.

At this time, the other heat exchanger is operated in the pool cooling mode

to cool the suppression pool directly.

7.2.4.5 Safety Evaluation

An interlock exists in the logic for the RHR shutdown cooling valves, which

are normally closed during power operation, to prevent opening of the valves

above a preset pressure set point. This set point is selected to assure that

pressure integrity of the RHE system is maintained. Administrative operating

procedures require the operator to close these shutdown cooling valves prior

to pressure operation. However, as a backup, the interlock will automatically

close these valves when the pressure set point is reached. Double indicating

lights are provided in the main control room for valve-position indication.

The RHR pump piping, controls, and instrumentation are separated and protected so

that any single physical event or missile cannot make both RHR loops inoperable.
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The RHR system piping cannot be overpressurized from a single failure for the
following reasons:

a. The suction piping may not be connected to the recirculation piping
until the pressure has decayed to 135 psig. Also, the suction piping
outside the suppression pool piping is classed as 300 lb rated.

b. The discharge piping is not overpressurized whenever the LPCI injec-
tion valve is open because a check valve between the system and the
vessel blocks pressure. Leakage past the closed check valve is
accommodated by relief valves. In addition, the injection valve may
not be opened for testing unless the upstream valve, rated for full
pressure, is also closed.

c. The heat exchanger and its piping are protected against failure of
the steam pressure control valves by relief valve.

7.2.4.6 Tests and Inspections

A design flow functional test of the RHR pumps is performed for each pair of
pumps during normal plant operation by taking suction from the suppression pool.
The discharge valves to the RHR loops remain closed during this test, and reactor
operation is undisturbed.

An operational test of the discharge valves is performed by shutting the down-
stream valve after it has been satisfactorily tested, thereby establishing the
RHR at the downstream valve, and then operating the upstream valve. The dis-
charge valves to the containment spray headers are checked in a similar manner
by operating the upstream and downstream valves individually. All these valves
can be actuated from the main control room by using remote manual switches.
Control system design provides automatic return from the test to the operating
mode if LPCI initiation is required during testing.

Testing of the sequencing of the LPCI mode of operation is performed after the
reactor is shutdown and the RHR system has been drained and flushed. Testing
of the operation of the valves required for the remaining modes of operation for
the RHR is performed at this time.
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7.2.5 Residual Heat Removal System for BWR/5 and BWR/6 (RHR)

7.2.5.1 Safety Design Bases

The safety related functions of the RHR system are:

a. Low Pressure Coolant Injection Mode

b. Containment Heat Removal Mode

7.2.5.2 Power Generation Design Bases

The RHR system shall be designed to meet the following power generation design

bases:

a. The system shall have enough heat removal capacity to cool down tne

reactor to 125°F within approximately 20 hours after shutdown.

b. Fuel pool connections shall be provided so that RHR heat exchangers

can be used to supplement the fuel pool cooling capacity.

c. The system shall be able to condense reactor steam generated by decay

heat and direct the condensate to the suction side of the RCIC pumps.

7.2.5.3 Description

7.2.5.3.1 Summary. The RHR system combined four subsystems. The major equipment

of the RHR system consists of three independent closed loops, two heat exchangers,
three main system pumps, and service water pumps. The equipment is connected
by associated valves and piping. Control and instrumentation are provided for
correct system operation.

The main system pumps are sized for the flow required during low pressure coolant

injection (LPCI) operation. The pumps are arranged and located so that adequate
suction head is assued for all operating conditions. The pump motor is air
cooled by the ventilation and heating system.

A7 .2-22

NEDO-24222 

7.2.5 Residual Heat Removal System fo~ BWR/5 and BWR/6 (RHa) 

7.2.5.1 Safety Design Bases 

The safety ~elated runctio~s of the RHR system are: 

a. Low Pressure Coolant Injection Mode 

b.Containment Heat Removal Mode 

7.2.5.2 Power Generation Design Bases 

The ~HR system shall be designed to meet the following power generation design 

bases: 

a. The system shall have enough heat removal capacity to cool down tne 

reactor to 12SoF within ap~roximately 20 hours after shutdown. 

b. ~uel pool connections shall be provided so that RHR heat exchangers 

can be used to supplement the fuel pool cooling capacity. 

c. The system shall ~e able to condense reactor steam generated by decay 

heat and direct the condensate to the suction ,side of the RCre pumps. 

7.2.5.3 Description 

7.2.5.3.1 Summary. The RHR system combined four subsystems. The major equipment 

of the RHR system consists of three independent closed loops, two heat exchange~s, 

th~ee main system pumps, and service water pumps. The equip~ent is connected 

by aSSOCiated valves and piping. Ccnt~ol and instrumentation are provided for 

cor~ect system operation. 

The main system pumps are sized for ~he flow required during low pressure coolant 

injection (LPCI) operation. The pumps a~e arranged and located so that adequate 

suction head is assued for all op~rating conditions. The pump ~otor is air 

cooled by ~he ven~ilation and heating system. 

rl.7 .2-22 



NEDO-24222

The heat exchangers are sized on the basis of their required duty for the post

LOCA function. The heat exchanger shell and tube sides are provided with drain

connections. The shell side is provided with a vent to remove noncondensable

gases. Relief valves on the heat exchanger shell side, on the RHR pump discharge,

and on the RCIC steam supply line protect the heat exchanger from overpressure.

The most limiting duty is that associated with the post LOCA mode. The perfor-

mance of this type of heat exchanger operating in the post LOCA mode (water

to water) is well established by currently operating BWR facilities.

The steam condensing mode poses a less severe duty requirement and the design

is very similar to an upright feedwater service heater which has proven its

reliability through many years of service.

Two loops, each consisting of a heat exchanger, main system pump, and associated

piping, are located in separate protected areas of the auxiliary building. The

third loop, made up of a pump and associated piping, is also located in a

separate area of the auxiliary building to minimize the possibility of a single

physical event causing the loss of the entire system.

7.2.5.4 Steam Condensing Mode in RCIC System

Decay heat is transferred to the service water directly in the steam condensing
mode by using the RHR heat exchangers as steam condensers. The relatively
cool condensate from the heat exchangers is either dumped to the suppression

pool or returned to the suction side of the RCIC pump. The condensate is usually

dumped in the suppression pool to prevent the less desirable water from entering

the reactor core during the initial stage of operation as RCIC condensers.

When operating the RHR heat exchangers in the steam condensing mode, steam at
reactor pressure and temperature is taken from the reactor vessel through a

connection to the main steam supply line. The steam is then reduced to the

operating pressure upstream by a pressure control valve upstream of the heat
exchanger. Heat transferred to the service water is controlled by controlling

the level of condensate in the heat exchanger. The water level in the heat

exchanger in turn controls the flow of condensate either to the suppression

pool, by a throttle valve, or to the reactor vessel by the RCIC turbine speed.
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About 1-1/2 hours after reactor shutdown, one RHR heat exchanger can handle

decay heat. At this time, the other RHR heat exchanger is operated to cool

the suppression pool. If pool cooling is not conducted, the RCIC turbine,

which continues to dump exhaust steam to the suppression pool, continues to

increase the suppression pool temperature (approximately 3°F/hr).

An evaluation was made to assess whether the consequences of a single valve mal-
function or operator error could result in possible damage to a heat exchanger

of the RHR system while in the steam condensing mode. The evaluation examined

the consequences from two aspects: 1) overpressurization and 2) hydrodynamic

and concluded that the systems will respond in an acceptable manner and limit
the pressure rise and loadings resulting from hydrodynamic forces to within

the RHR and RCIC design limits.

7.2.5.5 Inspection and Testing

A design flow functional test of the RHR main system pumps is separately per-
formed for each pump during normal plant operation by taking suction from the

suppression pool and discharging through the test line back to the suppression

pool. All other discharge valves remain closed during this test; reactor opera-

tion is undisturbed.

All motor- and air-operated valves required to operate for safety reasons, are

capable of being exercised periodically during normal power operation. The
layout and arrangement of critical equipment, such as drywell wall penetrations,

piping, and valves, is designed to permit access for appropriate equipment used

in testing and inspection system integrity.

Sequencing of the LPCI subsystems operation is tested after the reactor is shutdown

and the RHR system has been drained and flushed. Valves required for remaining

subsystems may be tested at this time.

Drains are provided outside the drywell wall in the piping between the iso-

lation valves for reactor process system leakage testing. Relief valves on
the low pressure lines are removable for testing. A line is provided on the

pump discharge line to take water samples.
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Periodic inspection and maintenance of the main system pumps, pump motors, and
heat exchangers are conducted in accordance with the manufacturer's instructions.

Preoperational tests are conducted during the final stages of plant construc-
tion prior to initial startup. These tests assure correct functioning of all
controls, instrumentation, pumps, piping and valves. System reference charac-
teristics such as pressure differentials and flow rates are documented during
the preoperational testing and are used as base points for measurements obtained
in subsequent operational tests.

For the suppression pool cooling system the preoperational tests verify that the
RHR heat exchanger shell side design flow rate can be obtained while circulating
water from the suppression pool, through the RHR pump, the RHR heat exchanger
and back to the suppression pool. During the test, head versus flow curves
are developed for reference in evaluating the future performance of the
suppression pool cooling mode and the RHR pumps.

During plant operations, the pumps, valves, piping, instrumentation, wiring,
and other components outside the containment can be inspected visually at any
time. Components inside the containment can be inspected only when it is open
for access. Testing frequencies are correlated with testing frequences of the
associated controls and instrumentation. When a pump or valve control is tested,
the operability of that pump or valve and its associated instrumentation is
tested by the same action. When a system is tested, operation of the component
is indicated by installed instrumentation. Relief valves are removed as
scheduled at refueling outages for bench tests and setting adjustments.

7.2.6 Condensate and Feedwater System

The purpose of the condensate and feedwater system is to deliver condensate from
the condenser to the reactor. This subsection discusses the condensate and
feedwater system from the condenser to the outermost feedwater shutoff valve.
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7.2.6.1 Design Bases

7.2.6.1.1 Safety Design Bases. The condensate and feedwater system is not

required to affect or support safe shutdown of the reactor or to perform in

the operation of reactor safety features.

The condensate and feedwater system is designed with necessary shielding and

controlled access to protect plant personnel.

7.2.6.1.2 Power-Generation Design Bases. The condensate and feedwater system

provides a dependable supply of high quality feedwater to the reactor. The

system provides the required flow at the required pressure and temperature to

the reactor, allowing sufficient margin to allow continued flow under antici-

pated transient conditions.

The feedwater system supplies the reactor with feedwater at a minimum pressure
of 1000 psia from the reactor feed pumps. This system has sufficient capacity

to provide at least 115% of the feedwater required for reactor rated flow.

The feedwater heaters provide the required temperature of feedwater to the reactor
with six stages of closed feedwater heating. The final feedwater temperature
is 420°F.

Pumped-forward heater drains are sufficiently deaerated in the shells of the

pumped (third stage) feedwater heaters to maintain a level of 70 ppb (or less)
oxygen content in the final feedwater supplied to the reactor during normal
full load operation.

To minimize the corrosion product input to the reactor, a unit startup line

is provided from the reactor feedwater supply lines, downstream of the high-
pressure feedwater heaters, to the condenser.

All components of the condensate and feedwater system that contain the system

pressure are designed and constructed in accordance with the applicable codes.

A7.2-26

NEDO-2~222 

7.2.6.1 Design Bases 

1.2.6.1.1 Safety Design Bases. The condensate and feedwater system is not 

required to affect or support safe shutdown of the reactor or to perform in 

the operation of reactor safety features. 

The condensate and feedwater system is designed with necessary shielding and 

controlled access to protect plant personnel. 

\ 

7.2.6.1.2 Power-Generation Design Bases. The condensate and feedwater system 

provides a dependable supply of high quality feedwater to the reactor. The 

system provides the required flow at the required pressure and temperature to 

the reactor, allowing sufficient margin to allow continued flow under antici­

pated transient conditions. 

The feedwatar system supplies the reactor with feedwater at a ~inimum pressure 

of 1000 psia from the reactor feed pumps. This ~ystem has sufficient capacity 

to provide at least '15% of the feedwater required for reactor rated flow. 

The feedwater heaters provide the required temperature of feedwater to the ~eactor 

with six stages of closed feedwater heating. The final feedwater temperature 
is 420°F. 

Pumped-forward heater drains are sufficiently deaerated in the shells of the 

pumped (third stage) feedwater heaters to maintain a level of 70 ppb (or less) 

oxygen content in the final feedwater supplied to the reactor during normal 

full load operation. 

To minimize the cor~osion product input to the reactor, a unit startup line 

is provided from the reactor feedwater supply lines, downstream of the ~ig~­

pressure feedwater heaters, to the condenser. 

~ll components of the condensate and feedwater system that contain the system 

pressure are desig~ed and constructed in accordance Nith the applica~le codes. 

A7.2-26 

I 
~ 



NEDO-24222

7.2.6.2 System Description

The condensate and feedwater system consists of the Piping, valves, pumps, heat
exchangers, controls, instrumentation, and the associated equipment and sub-
systems that supply the reactor with heated feedwater in a closed steam cycle
using regenerative feedwater heating.

The condensate and feedwater system is a six-heater regenerative feedwater heating
cycle.

The low pressure feedwater heaters are divided into three 1/3-capacity parallel
systems. The high pressure heaters are divided into two 1/2-capacity parallel
systems.

The final feedwater temperature is 420°F at rated unit output. The two lowest
pressure heaters are located in the condenser exhaust neck.

Condensate from the condenser hotwell is pumped by four motor-driven condensate
pumps (one spare). The condensate is prepared through the steam jet air ejector,
the gland steam packing exhauster, the offgas condenser, and the condensate
cleanup system, and then to the suction of the condensate booster pumps.

Four motor-driven condensate booster pumps are provided (one spare). The booster
pumps provide the required head to pump the condensate through the five low
pressure heaters and to provide sufficient excess head to assure proper suction
head on the reactor feedwater pumps.

Two turbine-driven reactor feedwater pumps are provided. Minimum flow through
the reactor feed pumps is controlled by utilizing a recirculation control valve
located in the pump discharge lines to permit a recirculation of feedwater to
the condenser.

7.2.6.5 Instrumentation Application

Feedwater flow control instrumentation measures the feedwater flow rate from
the condensate and feedwater system. This measurement is used by the feedwater
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control system that regulates the feedwater flow to the reactor to meet system

demands.

Instrumentation and controls regulate pump recirculation flow rate for conden-

sation pumps, condensate booster pumps, and reactor feedwater pumps.

7.2.7 Condensate and Storage Transfer System

7.2.7.1 Design Bases

The condensate storage and transfer system is designed:

a. to store condensate for the RCIC and HPCI systems

b. to maintain the level of condensate in the condenser hotwell

c. to provide condensate to other plant systems where required

7.2.7.2 System Description

The condensate storage system consists of a 500,000 gallon stainless steel

storage tank, two 500 gpm condensate transfer pumps, and the necessary piping

and instrumentation to convey and monitor the water to various systems.

The condensate storage tank is a covered atmospheric storage tank located out-

doors and built to the requirements of ASME Section III Class 3. With the

exception of small instrument connections, a drain line, which is normally closed

by a valve and a blind flange, and RCIC and HPCI suction connections to the

tank, all other lines terminate inside the tank above the 100,000 gallon level

to ensure that RCIC and HPCI systems are not deprived of their minimum reserve

storage requirements by other less essential systems. An overflow connection

on the tank is piped to the radwaste system waste surge tank.

The single condensate transfer pump will furnish condensate water to various

equipment in the reactor and radwaste building except for the RCIC, HPCI, CRD,

core spray, and condenser hotwelJ transfer lines which draw directly from the

tank. The introduction of a low-pump-discharge-pressure signal will automatically
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The condensate storage and transfer system is designed: 

a. to store condensate for the RCIC and HPCI systems 

b. to maintain the level of condensate in the condenser hotwell 

c. to provide condensate to other plant systems where ~equired 

7.2.7.2 System Description 

The condensate storage system consists of a 500,000 gallon stainless steel 

storage tank, two 500 gpm condensate transfer pumps, and the necessary pi~ing 

and instrumentation to convey and monitor the water to various systems. 

The condensate storage tank is a covered atmospheric storage tank located out­

doors and built to the requirements of ASME Section III Class 3. '.-lith the 

exception of small instrument connections, a drain line, which is normally closed 

by a valve and a blind flange, and ReIe and HPCI suction connections to tne 

tank, all other lines terminate inside the tank above the 100,000 gallon level 

to ensure that Rere and HPCI systems are not deprived of thei~ minimum reserve 

storage reqUirements by other less essential systems. An overflow connection 

on the tank :'3 piped to the radwaste system · .... aste surge t.ank. 

The single condensate transfer ~ump will furnish condensate water to various 

equipment in the reactor and radwaste bui~ding except for the ReIe, HPCI, eRD, 
core spray, and condenser hot~ell transfer lines ~hich jraw directly from ~he 

tank. The introduction of a lO'.o/-pump-discharge-pressure signal will automatically 
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start the standby pump and simultaneojusly initiate an alarm in the main control
room. To accelerate the filling of the reactor well and drywell-separator pool
during refueling, both transfer pumps are operated in parallel. A level controller
automatically maintains the level in the tank from 38 feet to 40 feet above
the tank bottom through the addition of demineralized water makeup. High tank
level (43 feet above the tank bottom) will alarm in the main control room and
water level in the tank is continuously recorded. Should the level in the tank
be depleted far below the 100,000 gallons minimum required by the HPCI system,
a low level signal (set at 12 inches above the tank bottom) automatically switches
the HPCI pump suction to the suppression pool. Pressure gauges are located
at various points in the condensate transfer system for convenience in checking
the operating conditions.

7.2.7.3 Safety Evaluation

The operation of the condensate transfer system is not a safety-related system.

The condensate storage tank is the initial source of Water for the RCIC and HPCI
systems. By providing standpipes inside the tank for outlet lines designated
for other systems, the RCIC and HPCI systems are assured of a 100,000 gallon
reserve. Should the water supply in the tank be depleted far below the minimum
100,000 gallons, through operation of the HPCI or RCIC systems, or through leak-
age, a low-level signal corresponding to 12 inches above the tank bottom auto-
matically shifts the HPCI pump suction path to the suppression pool.

Plant administrative control will limit the radioactivity level in the tank to
10-3 Ci/cc. With this level of activity, the dose at the site boundary to an
individual due to direct radiation from the tank will not exceed the requirements
of 10CFR20.

7.2.7.4 Tests and Inspections

The condensate transfer pumps shall be proven operable by virtue of being in
service during normal plant operations and by rotating the operation of the
pumps periodically. The tank can be visually inspected for leakage after filling.
Routine visual inspection and checking of components, instrumentation, and
alarms are adequate to verify systems operability.
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7.2.8 Main Steam Line Isolation Valves (MSIV)

7.2.8.1 Safety Design Basis

The MSIVs, individually or collectively, are designed to:

a. close the main steamlines within the time established by design basis

accident analysis to limit the release of reactor coolant.

b. close the main steamlines slowly enough that simultaneous (inadver-

tent) closure of all steamlines will not exceed NSSS design limits.

c. close the main steamlines when required, despite single failure in

either valve or in the associated controls, to provide a high level

of reliability for the safety function.

d. use separate energy sources as the motive force to independently close

the redundant isolation valves in the individual steamlines.

e. use local stored energy (compressed air and iprings) to close at least

one isolation valve in each steam pipeline without relying onthe

continuity of any variety of electrical power to furnish the motive

force to achieve closure.

f. be able to close the steamlines, either during or after seismic loadings,

to ensure isolation if the nuclear steam boundary is breached.

g. have the capability for being tested, during normal operating conditions,

to demonstrate that the valves will function.

7.2.8.2 Description

Two isolation valves are welded in a horizontal run of each of the four main steam

pipes. One valve is as close as possible to the primary containment barrier and

inside it, and the other is just outside the barrier. When closed, the valves form

part of the nuclear system process barrier for openings outside the containment and

part of the pressure barrier for nuclear system breaks inside ;he contai-ment.
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Figure 5.5-6 shows an MSIV. Each is a 24-inch, Y-pattern globe valve. Design
steam flow rate through each valve is 2.74 x,106 lb/hr. The main disc or poppet
is attached to the lower end of the stem and moves in guides at a 45-degree
angle from the inlet pipe. Normal steam flow tends to close the valve, and
higher inlet pressure tends to hold the valve closed.

Operating air is supplied to the valves from the plant compressed-air system
or nitrogen supply through a check valve. An accumulator tank between the con-
trol valve and the check valve provides backup operating air.

In the worst case conditions of the main steam line rupturing downstream of
the valve, steam flow would quickly increase to 200% of rated flow. Further
increase is prevented by the venturi flow restrictor upstream of the valves.

During appproximately the first 75% of closing, the valve has little affect
on flow reduction because the flow is choked by the venturi restrictor upstream
of the valves. After the valve is approximately 75% closed, flow is reduced
as a function of the valve area versus travel characteristic.

Design specification ambient conditions for normal plant operation are 135°F
normal temperature, 150OF maximum temperature, 100% humidity, in a radiation
field of 15 R/hr due to radiation gamma and 25 R/hr due to neutron-plus-gamma
radiation, continuous for design life. The inside valves are not continuously
exposed to maximum conditions, particularly during reactor shutdown, and valves
outside the primary containment and shielding are in ambient conditions that
are considerably less severe.

The MSIVs are designed to function under the following environmental conditions:

a. 340OF for 1 min at 65 psig.

b. 340°F for 3 hours at 45 psig.

c. 320°F for an additional 3 hours at 45 psig.

d. 2500F for an additional 24 hours at 25 psig.

A7 .2-31

NEDO-24222 

Figure 5.5-6 shows an MSIV. Eaoh is a 24-inch, Y-pattern globe valve. Design 

steam flow rate through each valve is 2.74 x 106 lb/hr. The main disc or poppet 

is attached to the lower end of the stem and moves in guides at a 45-degree 

angle from the inlet pipe. Normal steam flow tends to close the valve, and 

higher inlet pressure tends to hold the valve closed. 

Operating air is supplied to the valves from the plant compressed-air system 

or nitrogen supply through a check valve. An accumulator tank between the con­

trol valve and the check valve provides backup operating ai~. 

In the worst case conditions of the main steam line rupturing downstream of 
the valve, steam flow would quickly inorease to 200~ of rated flow. Further 

increase is prevented by the venturi flow restrictor upstream of the valves. 

During appproximately the first 75% of closing, the valve has little affect 

on flow reduction because the flow is choked by the venturi restrictor upstream 

of the valves. After the valve is approximately 75~ closed, Clow is reduced 

as a function of the valve area versus travel characteristic. 

Design specification ambient conditions (or normal plant operation are t35~ 

normal tempera~ure, 1500 F maximum temperature, 100% humidity, in a radiation 

field of 15 R/hr due to radiation gamma and 25 R/hr due to neutron-plus-gamma 

radiation, continuous for design life. The inside valves are not continuously 

exposed to maximum conditions, particularly during reactor shutdown, and valves 

outside the primary containment and shielding are in ambient conditions that 

are considerably less severe. 

T~e MSIVs are designed to function under the following environmental conditions: 

a. 340°F for 1 min at 65 psig. 

b. 3400r for 3 hours at 45 psig. 

c. 320°F for an additional 3 hours at 45 psig. 

d. 2500r for an additional 2~ hours at 25 psig. 

A7.2-31 



NEDO-24222

e. 200OF for an additional 100 days at 20 psig.

The valve is operated by pneumatic pressure and by the action of compressed
springs. The control unit is attached to the air cylinder. This unit contains
three types of control valves: pneumatic, ac control system A, and ac control
system B. These control valves open and close the main valve and exercise
it at slow and fast speed. Remote manual switches in the main control room
enable the operator to operate the valves.

After the valves are installed in the NSSS, each valve is tested several times
.n accordance with the preoperational and startup test procedures. Two iso-
lation valves provide redundancy in each steamline so that either can perform
the isolation function, and either can be tested for leakage after the other
is closed. The inside valve and outside valve and their respective control
systems are separated physically.

The isolation valves and their installation are designed as seismic Category
i equipment.

Electrical equipment that is associated with the isolation valves and that operates
in an accident environment is limited to the wiring, solenoid valves, and position
switches on the isolation valves.

7.2.8.4 Tests and Inspections

The MSIVs can be functionally tested for operability during plant operation and
refueling outages. During a refueling outage the MSIVs can be functionally
tested, leak tested, and visually inspected. The MSIVs can be tested and exercised
individually to the 90% open position because the valves still pass rated steam
flow when 90% open.

The MSIVs can be tested and exercised individually to the fully closed position
if reactor power is reduced sufficiently to avoid scram from reactor over-
pressure or high flow through the steamline flow restrictors.
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7.2.9 Safety Relief Valve System (S/RV)

7.2.9.1 Safety/Relief Valve Sizing

Sizing of the safety/relief valve capacity is based on establishing an adequate

margin from the peak vessel pressure to the vessel code limit (1375 psig) in
response to a specified transient. General Electric design practice and ASME
Code requirements are satisfied with the closure of all MSIVs with scram tripped
by a high-neutron flux signal as the reference transient. The minimum capacity
determined according to the specified criteria is translated into a discrete
valve requirement and compared with the total number of valves required to meet
the availability index criterion.

The safety/relief valve capacity required to provide overpressure protection

at all levels of indirect scram is derived from an evaluation of the MSIV-
pressure scram transient.

7.2.9.2 Availability Index (IA)

The availability index is based upon the number of safety/relief valves required
to provide an acceptable margin to the vessel code limit (1375 psig) for the
,MSIV-flux scram transient. The data employed in the derivation of the avail-

ability index is outlined as follows:

a. Safety/relief valves total installed 11

b. Safety/relief valves (MSIV-flux scram) 7

Valve failure rate* *failures/100 operating hours) 1.1

d. Testing interval (years) <2.2

e. Availability index 0.999999
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7.2.9.3 Safety/Relief Valve Characteristics

7.2.9.3.1 Pressure Drop in Inlet and Discharge. Pressure drop on the piping

from the reactor vessel to the valves is taken into account in calculating the

maximum vessel pressures reported above.

Pressure drop with ASME-rated flow in the discharge piping to the suppression

pool is limited by proper discharge line sizing to prevent back pressure on

each safety/relief valve from exceeding 40% of the valve inlet pressure; thus

ensuring choked flow in the valve orifice and no reduction of valve capacity

due to the discharge piping. Each safety/relief valve has its own separate

discharge line.

7.2.9.4 Safety/Relief Valve Description

These valves comply with ASME III, Paragraph N911.4(a)(1) for pilot-operated

valves.

Representative quantities and set points are as follows:

Quantity

Set Point

psig

1090

1100

1110

ASME Rated Capacity at

103% of Set Pressure

lb/hr minimum

869,000

876,800
88~4,7003

7.2.10 Standby Liquid-Control System

7.2.10.1 Design Bases

The SLCS shall meet the following safety design bases:

a. Backup capability for reactivity control shall be provided, independent

of normal reactivity control provisions 'n the nuclear reactor, to be

able to shut down the reactor if normal control ever becomes inoperative.
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b. The backup system shall have the capacity for controlling the reactivity
difference between the steady-state rated operating condition of the

reactor with voids and the cold shutdown condition, including shutdown
margin, to ensure complete shutdown from the most reactive condition
at any time in core life.

c. The time required for actuation and effectiveness of the backup control
shall be consistent with the nuclear reactivity rate of change predicted
between rated operating and cold shutdown conditions.

d. Means shall be provided by which the functional performance capability
of the backup control system components can be verified periodically
under conditions approaching actual use requirements. Demineralized
water, rather than the actual neutron absorber solution, can be injected
into the reactor to test the operation of all components of the redundant

control system.

e. The neutron absorber shall be dispersed within the reactor core in
sufficient quantity to provide a reasonable margin for leakage or
imperfect mixing.

f. The system shall be reliable to a degree consistent with its role
as a special safety system; the possibility of unintentional or
accidental shutdown or the reactor by this system shall be minimized.

7.2.10.2 Description

The SLCS is manually initiated from the main control room to pump a boron neutron
absorber solution into the reactor if the operator believes the reactor cannot
be shut down or kept shut down with the control rods.

The SLCS is required only to shut down the reactor and to keep the reactor

from going critical again as it cools.

The SLCS is used only in the highly improbable event that not enough control
rods can be inserted in the reactor core to accomplish shutdown and cooldown
in the normal manner.
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The boron solution tank, test water tank, the two positive-displacement pumps,

the two explosive valves, and associated local valves and controls are mounted

in the reactor building. The solution is piped into the RPV and discharged

near the bottom of the core shroud so it mixes with the cooling water rising

through the core.

The boron absorbs thermal neutrons and thereby terminates the nuclear fission

chain reaction in the uranium fuel.

The specified neutron absorber solution is sodium pentaborate (Na2 B1 0 01 6 1OH 2 0).

It is prepared by dissolving stoichiometric quantities of borax and boric acid

in demineralized water. A sparger is provided in the tank for mixing, using

air. To prevent system plugging, the tank outlet is located above the bottom

of the tank.

Whenever it is possible to make the reactor critical, the SLCS shall be able

to deliver enough sodium pentaborate solution into the reactor to ensure reactor

shutdown. This is accomplished by placing sodium pentaborate in the standby

liquid control tank and filling with demineralized water to at least the low-

level-alarm point. The solution is at design concentration at the low-level-

alarm point and may be diluted with water up to within 6 inches of the overflow

level volume to allow for evaporation losses or to lower the saturation temperature.

Heat tracing is run along the pipe from the tank to the pump suction to maintain

the solution temperature within 75 to 85 0 F. The heating element is controlled

by a thermostat. A temperature switch in the suction line will also actuate

the low-solution-temperature alarm in the main control room. A heater system

in the tank maintains the solution temperature at 75 to 85 0 F to prevent precipita-

tion of the sodium pentaborate from the solution during storage. High or low

temperature or high or low liquid level causes an alarm in the main control room.

Each positive-displacement pump is sized to inject the solution into the reactor

in 50 to 125 minutes depending on the amount of solution in the tank. The

pump and system design pressure between the explosive valves and the pump dis-

charge is 1400 psig. The two relief valves are set slightly under 1400 psig

to exceed the reactor operating pressure by a sufficient margin to avoid valve

leakage. The relief valves are installed with the discharge lines flooded
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to prevent evaporation and precipitation within the valve. To prevent bypass
flow from one pump in case of relief valve failure in the line from the other
pump, check valve is installed downstream of each relief valve line in the
pump discharge pipe.

The two explosive-actuated injection valves provide assurance of opening when
needed and ensure that boron does not leak into the reactor even when the pumps
are being tested.

Each explosive valve is closed by a plug in the inlet chamber. The plug is
circumscribed with a deep groove so the end readily shears off when pushed
with the valve plunger. This opens the inlet hole through the plug. The sheared
end is pushed out of the way in the chamber; it is shaped so it does not block
the ports after release.

The shearing plunger is actuated by an explosive charge with dual ignition

primers inserted in the side chamber of the valve. ignition circuit continuity
is monitored by a trickle current, and an alarm occurs in the main control
room if either circuit opens. Indicator lights show which primer circuit opened.
To service a valve after firing, a six-inch length of pipe (spool piece) must
be removed immediately upstream of the valve to gain access to the shear plug.

The SLCS is actuated by a three-position keylocked switch on the main control
room console. This ensures that switching from the off position is a deliberate
act. Switching to either side starts an injection pump, actuates both of the
explosive valves, and closes the reactor cleanup system outboard isolation
valve to prevent loss of dilution of the boron.

A green light in the main control room indicates that power is available to
the pump motor contactor and that the contactor is open (pump not running).
A red light indicates that the contactor is closed (pump running).

Instrumentation consisting of solution temperature indication and control,
tank level, and heater system status is provided locally at the storage tank.
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7.2.10.3 Safety Evaluation

The SLCS is a reactivity control system and is maintained in a standby operational
status whenever it is permissible for the reactor to be critical. The system
is expected never to be needed for safety reasons because of the large number
of independent control rods available to shut down the reactor.

However, to ensure availability of the SLCS, two sets of the components required
to actuate the system (pumps and explosive valves) are provided in parallel
redundancy.

The specified minimum average concentration of natural boron in the reactor
to provide the specified shutdown margin, after operation of the SLCS, is
660 ppm. Calculation of the minimum quantity of sodium pentaborate to be in-
jected into the reactor is based on the required 660 ppm average concentration
in the reactor coolant, including recirculation loops, the RHR system in the
shutdown cooling mode at 700 F, and reactor normal water level. The result
is increased by 25 percent to allow for imperfect mixing and leakage and to
account for the volume in other small piping connected to the reactor. An
additional 250 ppm is provided to accommodate dilution by the RHR system in
the shutdown cooling mode. This concentration will be achieved if the solu-
tion is prepared as defined above and maintained above saturation temperature
as defined by Figure 4.2-25.

The SLCS equipment essential for injection of neutron absorber solution into
the reactor is designed as seismic Category I for withstanding the specified
earthquake 'Loadings. Nonprocess equipment such as the test tank is not seismic

Category I.

The SLCS is required to be operable in the event of an offsite power failure.

Therefore, the pumps, heaters, valves, and controls are powered from the standby

ac power supply. The pumps and valves are powered and controlled from separate

buses and circuits so that a single active failure will not prevent system

operation.
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The SLCS and pumps have sufficient pressure margin, up to the system relief
valve setting of approximately .1400 psig, to ensure solution injection into
the reactor above the normal pressure in the bottom of the reactor. The nuclear
system relief and safety valves begin to relieve pressure above approximately
1100 psig. Therefore, the SLCS positive-displacement pumps cannot overpressurize
the nuclear system.

7.2.10.4 Tests and Inspections

Operational testing of the SLCS is performed in at least two parts to avoid
inadvertently injecting boron into the reactor.

With the valves from the storage tank and to the reactor closed and the three
valves to and from the test tank opened, demineralized water in the test tank
can be recirculated by locally starting either pump.

During a refueling or maintenance outage the injection portion of the system
can be functionally tested by valving the suction lines to the test tank and
actuating the system from the main control room. Both injection valves open
on actuation. System operation is indicated in the main control room.

After functional tests, the injection valve shear plugs and explosive charges
must be replaced and all the valves returned to their normal positions as indi-
cated in Figure 4.2-24.

After closing a local locked-open valve to the reactor, leakage through the
injection valves can be determined by opening valves at a test connection in
the line between the containment isolation check valves. Position-indicator
lights in the main control room indicate that the local valve is closed for
test or open and ready for operation. Leakage from the reactor through the
first check valve can be detected by opening the same test connection when
the reactor is pressurized.

The test tank contains demineralized water for approximately 3 minutes of pump
operation. Demineralized water from the makeup system or the condensate storage
system is available for refilling or flushing the system.
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Should the boron solution ever be injected into the reactor, either intention-

ally or inadvertently, after making certain that the normal reactivity controls

will keep the reactor subcritical, the boron is removed from the reactor coolant

system by flushing for gross dilution followed by operating the reactor water

cleanup (RWCU) system.

The concentation of the sodium pentaborate in the solution tank is determined

periodically by chemical analysis.

7.2.10.5 Instrumentation

The instrumentation and control system for the SLCS is designed to allow the

injection of liquid poison into the reactor and the maintenance of the liquid

poison solution well above the saturation temperature.

7.2.10.6 Logic and Sequencing

When the SLCS is initiated, both the explosive valves fire and the pump that

has been selected for injection starts.

There are no bypasses. 'When the SLCS is initiated to inject soluble neutron

absorber into the reactor, the outboard isolation valve of the RWCU is automat-

ically closed.

7.2.10.7 Redundancy and Diversity

The redundancy exists in duplicated pumps, explosive valves, check valves,

relief valves, and power supplies.

7.2.10.8 Actuated Devices

When the SLCS is initiated to inject soluble neutron absorber into the reactor,

one of the two injection pumps, and toth the explosive valves are actuated.
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7.2.10.9 Supporting Systems

The power supply to explosive valve F004A and injection pump CO01A is from
essential 600 volt bus 2C. The power supply to explosive valve F04B and injec-
tion pump COOB is from essential 600 volt bus 2D. The power supply to the
tank heaters and heater controls is connected to the essential 600 volt buses
2C and 2D.

7.2.10.10 Operational Considerations

The control scheme for the SLCS can be found in Figure 3.4.3-2. The standby
liquid control is manually initiated in the main control room by inserting
the proper key into the keylocking switch and turning it to either system A
or system B. When the injection is completed, the system is manually turned
off by returning the keylocking switch to the OFF position.

The provisions taken in accordance with General Design Criterion 19 of 10 CFR 50
Appendix A to provide the required equipment outside the main control room
for hot and cold shutdown is described in Section 7.5.

7.2.10.11 Operator Information

The SLCS indicators are as follows:

a. The system pressure is indicated with an indicator that has a range
of 0 to 1800 psig in the main control room.

b. The storage tank level is indicated with an indicator that has a range
of near empty to near full, calibrated to read in gallons of 1iquid
storage in the main control room.

c. The continuity of the explosive valve dual primer ignition circuit
is monitored by measuring a trickle current through the primers.
If either of the dual primer or the primer ignition circuits become
open circuited, the continuity meter reads downscale.
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d. Indicator lights in the main control room show if either of the pumps

is running, stopped, or tripped.

e. Indicator lights in the main control room show if either of the explosive

valves' firing circuit has an open circuit or not.

f. Indicator lights in the main control room show if service valve F008

is open or closed.

g. Indicator lights on the local panel show if the manually-controlled

storage tank heater for solution mixing is on or off.

h. Indicator lights on the local panel show if the thermostatically con-

trolled storage tank heater for maintaining solution temperature is

on or off.

The SLCS main control room annunciators annunciate when:

a. The loss of continuity of either explosive valve primers activates

a main control room annunciator.

b. The standby liquid storage temperature becomes too hot or too cold.

c. The standby liquid tank level is too high or too low.
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APPENDIX 7.3

BWR SCRAM SYSTEM RELIABILITY SUMMARY*

7.3.1 BWR Scram System Summary

The scram system for General Electric BWRs is composed of the following elements:

a. Sensors of reactor parameters

b. Reactor Protection System (RPS) logic which processes the input from

the sensor

a. Hydraulic Control Units (HCUs) (one per control rod drive) with pneuma-

tically controlled valves which open to cause the control rod drives to

scram

d. Control Rod Drives whose pistons provide the motive force for inserting

the control blades into the reactor

e. Air supply header which provides the air pressure which keeps the scram

inlet and discharge valves in the HCUs closed until a scram signal

isolates it from the HCUs

f. Scram discharge volume which receives the water discharged by the con-

trol rod drives during a scram

g. Air supply exhaust valves, which open for all scram signals to depressurize

the air supply header, and provide a backup means of opening the scram

valves.

The normal sequence of events during a BWR scram are as follows:

a. The Reactor Protection System logic processes a signal from a set of

sensors which indicate a scram is required. This signal deenergizes

the solenoids on the three way. pilot valves (139a) on all the HCUs

*loc cit page 2-3
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(see Figure 7.3.1) which isolates the HCUs from the scram air header
and depressurizes the pneumatic lines in all HCUs.

b. The three-way valves in the scram air header (F11A and F110B) are ener-
gized which isolates the scram air header from plant instrument air and

depressurizes the scram header.

c. Depressurization of the pneumatic lines on the HCUs open exhaust valve
135b which accelerates the depressurization of the pneumatic line to
the scram inlet and discharge valves (No. 126 and No. 127 on Figure 7.3.1).

d. When the pneumatic lines to valves No. 126 and No. 127 are depressurized,

the valves open, allowing the high pressure water from the HCU accumu-
lators to push up the piston in the control rod drives, while discharging
water to the scram discharge volume.

If the HCU pilot valves (No. 139a) were to fail, the depressurization of the scram
air header would eventually cause valve No. 139b to open, triggering actuation of
the two scram valves (No. 126 and No. 127). If exhaust valve (No. 139b) were to
fail also, the depressurization of the pneumatic lines would still take place
through the scram air header, but at a slower rate. If the scram inlet valve
(No. 126) were to also fail, reactor pressure on the bottom side of the CRD piston
's capable of driving the control rod into the reactor. Thus, it can be seen that
there is considerable redundancy and diversity in the scram mechanism, especially
when it is recognized that each HCU Control rod drive pair is independent from the
others.

7.3.2 Scram System Reliability Study Results Summary

1. The existing BWR scram system has an unreliability of 0.9X10- 6 /demand
(including common cause failure).

2. A limiting factor in the reliability of the existing scram system is the
common miscalibration of sensors which initiate scram. Having three different
types of sensors protects against miscalibration through diversity (see
Table 1).
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3. The control rod drives each have an unreliability of 3X10" 9 /demand for pre-
venting reactor shutdown.

4. Fifty percent of the control rod drives can fail to insert in a checker-

board pattern and the reactor will still shut down. Seventy five percent
of the control rod drives can fail to insert and the reactor will be brought
to near-decay heat levels.

5. Thirty one percent of the control rod.drives can fail to insert in a random
pattern and the reactor will still shut down.

6. Five or more control rod drives must fail to insert in a cluster before
reactor shutdown capability is lost.

7. The probability is less than 10" 8 /year that blockage in the scram discharge
headers or HCU discharge lines, will be sufficient to prevent reactor shut-

down.

8. Periodic overhaul of drives, rod motion tests and scram insertion time
tests provide adequate early warning of an impending failure mechanism
which could potentially result in failure to scram.

9. Common cause failures do not usually incapacitate an entire system.

10. Common cause failures are detectable.

11. Common cause failures can be analyzed quantitatively.

12. Common cause failures do not usually occur simultaneously; rather, they
occur progressively over a finite period of time.

13. There are many licensing requirements already in existence which are directed
toward reducing common cause failures in nuclear power plants.

In developing numerical results, random and common mode failure probabilities
were combined by taking the log normal mean as in WASH-1400. Subsequent review
of this approach has raised questions as to its justification when independent
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and dependent failure modes differ by many orders of magnitude. General Electric
is aware of this criticism but believes that results generated are supported
by engineering judgment. The 12 man-year effort to determine scram system
unreliability was not simply a numerical analysis of the statistics but included
a thorough failure mode and effects analysis, common cause analysis and a thorough
review of operating experience, examining all documented component failures.
These served as bases for the quantified study using fault trees and event trees.
Each quantitative assessment was examined against prudent engineering judgment
to assure the reasonableness of the results. The operating experience also
does not preclude the assessed probabilities given in the analysis. Therefore,
a change in methodology would not substantially modify the conclusions listed
above.

7.3.3 RPS Summary

The RPS is a shutdown actuating system which prevents the reactor from operating
under unsafe or potentially unsafe conditions by automatically initiating rapid
insertion (scram) of the control rods. The RPS is designed to be fail-safe,
highly redundant, and provides the highest practical degree of plant safety.

Some of the input parameters to the scram logic are reactor vessel level, vessel
pressure, neutron flux, main steam line high radiation, main steam line isolation
valve position, turbine control valve fast closure, and turbine stop valve posi-
tion. There are four redundant sensor input signals from .each of these parameters.

The input signals are processed through the appropriate signal conditioning
equipment for either the relay or solid state logic designs. The conditioned
signal outputs are used to automatically initiate scram of the control rods.
The control rods within the reactor core are arranged into four groups to provide
a "checkerboard" pattern. The control rod insertion pattern is near optimum
for reactor physics control in event one or more control rod groups fail to
insert.

The redundancy and diversity provided by the prompt scram logic and backup
scram logic provide a high degree of assurance that the probability of a sirngle
point failure which disables the scram function is extremely remote. The RPS
is a fail-safe system both for random mode and common cause failures.
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inser:ion (scram) of the cont~ol rods. The RPS is designed to be fail-safe, 

~ighly redundant, and provides the highest practical degree of plant safety. 

Some of the input parameters to the scram logic are reactor vessel level, vessel 

p~essure, neutron flux, main steam line high radiation, main steam line isolation 

valve position, turbine control valve fast closure, and turbine stop valve posi­

tion. There are four redundant sensor input Signals from.each or these parameters. 

The input signals are processed through the appropriate signal conditioning 

equipment for either the relay or solid state logic de$igns. The conditioned 

signal outputs are used to automatically initiate scram of the control rodS. 

The control rods within the reactor core are arranged into four groups to provide 

a "checkerboard II patter!1. The control rod insertion patter!'l is near opt::'mum 

for reactor physics control i~ event one or ~ore control ~od gr'oups fail to 

insert. 

The redundancy and diverSity provided by the pro~pt scram logic and backup 

scram logic provide a high degree of assurance that the probability of a si~g:e 

point failure which disables ~he SC~2m function is extremely remote. 7he RPS 

is ~ fail-safe system bot~ for random !:lode and co~~on cause fail~res. 
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7.3.4 Diversity-Within RPS Signals

Table 7.3.1 is a list of transient events which are expected to occur More

frequently than once in 40 years that require scram for the consequences to
be acceptable. This table illustrates the diversity of the signals used to
actuate the normal scram system. This diversity provides protection against
total failure by common design defeat, manufacturing error or calibration error.
Table 1 also shows the transients and the order of the scram signals for ARI
generated for each transient. It can be seen in Table 7.3.1 that for every

transient, except number 5, there is at least one scram trip from each diverse
category. Transient number 5 will receive two diverse inputs out of the three

possible. Therefore, diversity of the RPS sensor output is achieved because
of the diverse input device trips that operate in diverse environments, and
calibration procedures and calibration standards. Table 7.3.1 also shows all
the significant transients that will generate an ARI sensor trip given that
normal scram does not occur. There are three fundamental generic types of
sensor inputs into the normal scram system that are of interest for these
transients. These generic types of inputs are:

Pressure and Differential Pressure Sensors

Position and Micro-Switches

_MSIV

-Turbine control valve

-Turbine stop valve

Radiation Sensors

-Average Power Range Monitor (APRM)

-Main steam line radiation monitor
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7.3.5 RPS Power Supply Diversity (Solid State)

Each of the four separate division's input cabinets contain a-c to d-c power
supplies needed to operate that division's RPS circuits. Should power fail
in one division, only that division will be affected. Its consequences will
be half scram caused by deenergizing one out of the four logic strings which
will deenergize one of the two scram solenoids at each HCU. Before entering
the logic circuits all input signals are isolated and buffered to help insure
noise-free operation. The power supplies are operated well below their 100%
capability for all modes of operation. The input power to the power supply
originates from the station batteries that drive a d-c/a-c power inverter in
each division. This scheme provides nearly infinite isolation between divisions
so a common occurrence, such as lightning, loss of the station normal a-c power
or a complete failure of one RPS division will not affect the other division.

A7.3-6
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APPENDIX 7.4

QUENCHER PERFORMANCE MEMORANDUM
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Figure 742. Resulcs from Licensee Tesas of Various Hole ?acterns
on Pipe Segmenc (Companv Proprietary)
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Figure 7.4.4. Hole Sizes and Spacings Used on Licensee
Quencher Development Tests (Company Proprietary)
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Figure 7.4.6. Condensation Regimes Observed in Licensee Full-Scale Development

Tests (Subccoling 3ased on TSAT 23305 at 17.9 It. Submergence)

(Company Proprietary)
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Figure 7.4.9. General Electric Quencher Geometries
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Figure 7.4.10. Results from Li:ensee Test an Secmenc of Full Scate
Hole Array in Small Scale Tank (C2mpany Proprierart,
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Figure 7.~.lO. R~sulcs from Li~ensee Test on Se~menc of Full S~rtie 
Hole Arr3V 1n Small Scale Tank (C2~panv ?r0?rie(ar~~ 
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APPENDIX 7.5

RELATIONSHIP BETWEEN PCI AND BOILING TRANSITION

7.5.1 NRC Assessment of GE Position

An evaluation by NRC of BWR ATWS events in NUREG-0460 generally agreed with
the damage limit presented by General Electric in the main body of this report.
However the NRC staff disagrees with General Electric's assessment of pellet-
cladding interaction. They believe that as ATWS events involve reactivity
initiated power increases, fuel rod failures may result from pellet cladding
interaction (Reference 7.5.1).

The NRC is currently attempting to develop a generic PCI model for safety
analyses. However, this model is not complete and therefore they do not at
this time have an applicable licensing acceptance criteria for PCI. In'order
to overcome this limitation the NRC Staff has attempted to use a completely
different phenomena, boiling transition, to encompass the number of rods
estimated to fall as a result of both boiling transition and PCI combined
(Reference 7.5.1).

General Electric is in disagreement with this combined failure criterion and
in this appendix will demonstrate with a considerable amount of experimental
evidence that neither PCI nor boiling transition should be considered as
failure mechanisms for an ATWS event.

7.5.2 Effect of PCI and Boiling Transition

in addition to the mechanical effects, the possibility that stress dependent
fuel rod internal environmental effects may be a contributing factor to PCI
has long been suspected.

General Electric failure mechanism tests and comparisons of PCI failure sur-
face morphologies with out-of-pile stress corrosion cracking and liquid metal
embrittlement tests yield undeniable evidence that these environmental effects
do play a necessary role in PCI failures. GETR tests and field experience have
identified important parameters in determining fuel rod failure susceptibility
and the relative importance of mechanical localized strains and environmental

A7.5-,
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effects on fuel rod fractures. These parameters include magnitude of power

increase, rate of power increase, power after the increase, hold time at the

increased power level and exposure.

To assess the effect on PCI of abnormal operating transients (AOTs) both with

and without scram, the events have been examined in some detail to determine

if they possess the conditions defined by the previously mentioned important

parameters requisite for PCI fuel failure. Based on such an assessment, it is

concluded that the ATWS events analyzed are not calculated and are not

expected to result in any significant number of PCI failures. Available

data from experimental and commercial operating reactors indicate that fuel

failures due to PCI are likely to occur after a rapid power increase only if

the fuel remains at the higher power for a relatively long period of time

(many minutes to many hours). Most of the defined AOTs, however, are of very

short duration (3 to 5 seconds at the overpower conditions), and therefore, do

not fulfill the hold-time condition which is associated with PCI induced fail-

ures. The most quantitative source of data on the hold-time requirement is

the Canadian experience which identifies four parameters of failure: maxi-

mum power achieved, size of power increase, fuel burnup at the time of the

power increase, and duration of the power increase. Other sources suggesting

the hold-time characteristic include the CIRENE overpower tests where failures

were delayed 1/2 to 5 hours in six of seven tests; GETR tests where failures

were delayed from the precipitating ramp typically from many minutes to many

hours at the peak power condition; and offgas spikes which have been observed

to be delayed in time from the initiating events in operating reactors.

Figure 7.5.1 (from Reference 7.5.2) provides additional information to demonstrate

that PCI failures due to hold time at an increased power level are not expected

to occur during an ATWS event. This figure shows that short duration overpower

transients, such as an ATWS event, do not produce any significant failures below

-10 minutes. The maximum overpower duration for the ATWS events considered

has been identified as 5 seconds.

One of the main NRC concerns was that PCI failures are more likely to occur

during power increase events than reduction in flow events (Reference ?.5.1).

In the former case the fuel pellets heat up and expand more rapidly than the

cladding. In the latter ty-e of event the cladding expands more rapidly than

. A7.5-2
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the fuel pellets. The recent tests carried out under the Thermal Fuels Behavior
Program (References 7.5.3 and 7.5.4) is supportive of GEs position that the
PC! would not be expected for the AWS events analyzed. These tests (References
7.5.3 and 7.5.4) which were carried out on both fresh and preirradiated rods,
were performed in a manner which would introduce PCI stresses by a rapid ramping
of the test rods. This rapid increase in power was performed at the end of the
preconditioning period to power levels of approximately double the highest power
levels which the rods have been exposed to in any previous operation. These PCI
stresses were maintained, except for relaxation effects, during the final hour
of preconditioning. Even though these rods were operated in a boiling transition
regime with peak axial powers up to 66 kW/m no failures were detected (Reference
7.5.5). Therefore, pellet cladding interaction should not be considered as
a failure criteria for an ATWS event.

Considerable experimental evidence also exists that indicates fuel rods can
operate in transition boiling for long periods of time without failure (Ref-
erence 7.5.1) Boiling transition tests have been carried out in the United
States (Reference 7.5.6), Canada (References 7.5.7 and 7.5.8), Norway (Ref-
erence 7.5.9), and England (Reference 7.5.10). Table 7.5.1 (from Reference
7.5.11) summarizes this data. Briefly the highlights of Table 7.5.1 are as
follows:

In a test performed in the General Electric Test Reactor (GETR) a fuel rod was
operated well beyond the onset of boiling transition for a total period of about
1 hour and 15 minutes. Post irradiation examination revealed that perforation
of the cladding did not occur.

The %RU Chalk River rods operated between 6-1/2 and 10 hours past the onset of
boiling transition. The only failures occurring after multiple cycles were
due to high temperature oxidation.

in tests carried out in the Halden Reactor, one bundle experienced boiling transi-
tion 33 times with no cladding degradation. While another experienced boiling
transition 60 times over a period of 2-1/2 years reaching a peak burnup of
18,000 TWd/t with no fuel failure.
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The. ~RU Chalk River rods operated between 6-1/2 and 10 hours past the onset of 

boiling transition. The only failures occurring after multiple cycles ~ere 

due to high tempe~atu~e oxidation. 

!~ tests carried out in the Halden Reactor, one bundle ex?e~ienced boil~ng transi­

tion 33 times with no cladding deg~adation. r~il~ anothe~ experienced ~oil:ng 

transition 60 times over a period of 2-1/2 years reachi~g a peak bur~u? of 

18,000 ~~d/t with ~o fuel failure. 
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In the Winfrith SGHWR a 36 rod fuel cluster was operated with greater than 120
boiling transition excursions with no fuel failure.

The EG&G tests, which are probably the most detailed and closely monitored to
date, indicate the capability to operate up to 8 minutes with PCT as high as
2700 0 F. The only rod failures were attributable to gross amounts of cladding
oxidation due to the extremely high temperatures, which are not expected in
an ANS event.

The foregoing provides a strong basis to support the position that both stress
corrosion cracking (PCI) and boiling transition should not be a concern for
the limiting ATWS events analyzed.
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APPENDIX 7.6
JUSTIFICATION OF BORON MIXING MODEL ASSUMPTIONS

7.6.1 Definition of Mixing Efficiency

Liquid boron injected into the reactor is most effective if it stays uniformly
distributed in the core. However, since the reactor coolant keeps flowing
through the core, the liquid boron will spread into the other regions of the
reactor as well. Therefore, for comparison purposes a reference "perfectly
mixed" condition is defined in which, at a given point in time during the ATWS,
all the liquid boron is uniformly mixed throughout the reactor coolant within
the reactor coolant pressure boundary. Since nonuniformities in liquid boron
concentration are possible and expected, the mixed condition at any time is
related to the reference condition through a mixing efficiency equal to the
ratio of the average concentration of boron in the liquid part of the coolant
in the core to the average concentration throughout the coolant in the RPV.
The actual, time varying mass of liquid in the vessel and recirculation loops
was used in calculating the vessel mixed boron concentration. When liquid
boron is injected inside or near the core, the average concentration in the
core could be greater than the average value in the RPV, and thus the mixing
efficiency as defined above could be greater than 100%. However, as mixing
and dispersal continues the efficiency will eventually approach unity.

7.6.2 Discussion of Boron Mixing Process for Injection Through the Jet Pump
Instrumentation (dPI) Lines

Figure 3.4.3-2 from the main report shows the schematic of the boron injection
arrangement using the JPI lines as the points of entry into the RPV. This
design is applicable to BWR's which in an A'ZWS, supply makeup water outside
the core shroud by HPCI (generally BWR/4's). The discharge side of the SLC
pump is connected to the JPI lines outside the containment. These JPI lines
are connected to the upper part of the jet pump diffusers inside the reactor
pressure vessel. If the SLC pumps are initiated at time T0 , the liquid boron
will first reach the RPV at a time T1 , where (TI-T 0 ) is the "transport delay"
outside the RPV and is equal to the time taken by the liquid boron flow to
displace all the water in the pipeline from the pumps to the jet pump diffusers.
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Figure 7.6.1 shows typical schematic details of the connection of the upper
instrumentation tap with the top of the jet pump diffuser. When liquid boron

is injected through this line, it issues irnto the diffuser flow through ten

0.09" diameter holes in the wall of the diffuser. The resulting average jet

velocity (at a total flow rate of 86 GPM through all appropriate jet pumps is
approximately 22 ft/sec. This high velocity combined with the effect of high

Reynolds number of the flow (of the order of 106 with 10% of the rated flow
through the jet pump diffuser) causes thorough mixing of the liquid boron and
the diffuser flow. Simulation test observations confirm this fact. The flow
and mixing of liquid boron injected through the JPI lines was tested in a
transparent simulation model. Some features of the test model are:

i. 1/6 scale, slab geometry representation of the reactor.

2. The geometry of the reactor intervals is simulated in a simplified way.

3. Simulation includes the portion of the reactor from bottom of the lower

plenum to the bottom of the separator skirt.

4. Reactor coolant flow is simulated with flow of water at room temperature
and pressure. The model has provision for simulating forced circulation

of the coolant by means of pumps and natural circulation is provided by
airlift created by bubbling air through the simulated core region.

5. The liquid boron injection into the JPI is simulated by a solution of
sodium bromide which simulates nearly all density difference between

liquid boron solution and reactor coolant at 550°F

Flow and mixing patterns were observed in the test model with the help of a
color dye injected with the liquid boron flow. The observations indicated
that at all core flows greater than 5% of the rated value, the following con-
clusions are applicable.

1. The liquid boron injected through the JPI at the top of the diffuser
thoroughly mixes with the diffuser exit flow.

2. The jet pump exit flow fills up the lower plenum from the bottom.
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These results are presently being further confirmed by quantitative measure-
ments from the tests. Based on the above experimental observations from the
simulation tests, the following simplified picture of the boron mixing process
can be constructed. Consider the condition in which the reactor core coolant
flow (by natural circulation) is at a constant rate of Qo ibm/sec and liquid
boron flow constant at 4B lbm/sec into the jet pump diffusers. After liquid
boron enters the JP diffusers, the water flowing out at the exit of the jet
pumps will have a boron concentration of QBCB/c+QB) PPM, where CB is
the boron concentration in the sodium pentaborate solution entering the jet
pump diffusers. Core coolant with this concentration will appear at the core
inlet at a time T2 , where (T2 -T 1 ) is time required by the jet exit flow to
"displace" all the water in the flow path from jet pump suction to the bottom
of the active fuel. To facilitate further discussion we define (T2 -T 1 ) as the
"first pass delay" which is also the time to delay from the instant at which
liquid boron enters the RPV to the time at which it begins its effect on the
core power. As the incoming borated water displaces the coolant in the core,
core average concen-tration increases. This increase is modeled linearly from
0 PPM at time < T2 to QBCB/(÷C+QB) at time T3 . Where (T3 -T 2 ), defined
as the "core passage time", is the time required for the core inlet flow to
displace all the core coolant between the bottom and the top of the active fuel.
The borated core exit flow then flows through the jet pumps, and there picks
up a higher concentration equal to 2QB CB due to the liquid boron still

being pumped into the JP diffusers. This new concentration will appear at the
core inlet after the lower plenum water is again displaced by the jet exit
flow. Thus at a time T4 , the boron concentration at the core inlet will be

26B CB/(QOc+Q), where (T4 -T2 ), defined as "loop delay time",
is the time taken by a particle of water to traverse the natural circulation
flow loop through the core, separators, downcomers, jet pump diffusers and
lower plenum. The average concentration in the core will rise to
2 BCB/(Qc÷+B) at T5 , where (T5 -T 4 ) is again the "core passage time".
This set of events from T2 to T4 will repeat as long as the core flow and the
liquid boron are main-tained at their constant values. In the foregoing
discussion, the steam leaving the separators is assumed to be made up by water
flow into the reactor (by HPCI or feedwater) keeping water level content, and
boron that would be lost with the steam is assumed to be negligible.
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The buildup of boron concentration in the core water by the process discussed

above is shown in Figure 7.6.2 by the solid curve 1. Here the values of the

different transport and delay times are calculated for a typical 251" reactor

at 15% core flow and 86 GPM liquid boron flow, and listed in Table 7.6.1.

When core flow and liquid boron are assumed to be constant the boron buildup

follows a nearly staircase function as indicated by curve 1. However, even

at constant average core flow, the flow loop times would be actually different

for different water particles because of flowing through differently located

fuel bundles, separator, etc. Further, the effect of turbulence in the reactor

flow tends to diffuse the sharp boron concentration front that would otherwise

be sustained by pure transport. For these reasons the average boron concentra-

tion development in the core water is expected to fall within a band shown

by the shaded area which envelops the curve 1.

Curve 2 in Figure 7.6.3 shows the buildup of concentration when '00% mixing

is assumed (perfect mixing as discussed in 7.6.1). It is seen that this line

lies approximately in the middle of the shaded band of actually expected

concentration buildup.

In applying the discussion of Figure 7.6.3 to the BWR ATWS analysis, the
followirg must be considered:
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Table 7.6.1
TYPICAL BORON MIXING TRANSPORT AND DELAY TIME3 FOR JPI INJECTION

251" Reactor Vessel 15% Core Flow 86 GPM Liquid Boron Flow

Transport Delay in Pipeline Outside RPV 44 seconds

Initial Delay Inside RPV 26 seconds

Core Passage Time 12 seconds

Loop Delay TIme 120 seconds*

*Conservatively assuming water level is in the normal range lower level present
in the events give shorter delay time.
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1. The first pass delay time inside the vessel core passage time and the flow
loop delay times are inversely proportional to the core flow rate. Similarly

the increase in concentration experienced by the core flow in each of its

passage through the jet pumps is also inversely proportional to the core

flow rate. Therefore, at core flow rates greater than 15% and curve 1

in Figure 3 will be closer to the 100% efficiency curve 2 (and the shaded
band will be narrower). At core flows smaller than 15%, the "steps" of

the curve I will be larger, but the curve 2 will still pass through the

middle of the corresponding enveloping shaded area.

2. In a typical ATWS base case for BWR's with HPCI (i.e., generally BWE/4's),

the core flow rate at the time liquid boron first enters the RPV is generally
near 20%. Further between this time and hot shutdown, the calculated core

flows are high enough to sustain a mixing process similar to the one discussed

above.

Based on the above discussion, the following assumptions made in the ATWS anal-
ysis for injection through the JPI lines, are considered appropriate.

1. The delay (T 2 -To), between the start of the SLC pump and the time at which
boron first becomes effective in the core is 60 seconds.

2. The mixing efficiency is assumed to be 95%. Here although 100% mixing

efficiency is appropriate, a 5% margin is allowed for unknown uncertain-
ties. One such uncertainty could be with respect to circumferencial dis-

tribution since fewer than all the jet pumps are used

for boron injection.

Under these assumptions, the boron concentration buildup in the core water
will also be linear. A comparison of this (Curve 3) with the Curve 1 indi-

cates that the assumptions are justifiable.

7.6.3 Discussion of the Boron Mixing Process for Injection in Core Spray

Sparger

Figure 3.4.3-4 and 3.4.3-6 show the schematic of boron injection arrangement
for the BWR's which, in ATWS transients, supply makeup water inside the core
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exist plenum (all BWR/5's and BWR/6's and some BWR/4's belong to this class).
In this case the liquid boron is injected into the HPCS line very near the
RPV downstream of the check valve nearest to the RPV. This arrangement is
adopted because of the desirability to borate the cold HPCS water that comes
in at the top of the core.

Test data for the flow pattern of the HPCS flow under ATWS core flow conditions
is not available, and the mixing pattern of the HPCS jets with the two phase
mixture in core exit plenum is very complex. However, for the purposes of
the present discussion certain "bounding" modes of flow and mixing can be postulated
to determine bounding values of initial and loop delay times. Using these
delays, the development of boron concentra-tion in the core can be constructed
in the same manner as was done for Jet Pump Instrument line (JPI) in Section
7.6.2. Possible modes of flow considered are:

MODE 1: The borated HPCS flow mixes with the core exit flow uniformly and
after passage through the separators, downcomer, jet pumps and lower
plenum becomes effective in the core. Subsequent flow passes through
the core bringing increased boron concentration to the core.

MODE 2: In this mode the borated HPCS flow is assumed to partially mix with
the steam water mixture in the core exit plenum and flow down into
the core bypass region. After filling up the control guide tubes
and the core bypass region (providing negative reactivity), it is
assumed to mix with core exit flow and then flow upward similar to
Mode 1.

MODE 3: In this mode the borated HPCS flow is assumed to partially mix steam
water mixture in the core exit plenum and flow down through core active
and bypass regions. After filling up the lower plenum and control
rod guide tubes, it is assumed to fill up the core bypass and active
fuel regions providing negative reactivity. After this, it would
mix with the core exit flow and flow upward as in Mode 1.
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Table 7.6.2 shows the initial delay and flow loop delay associated with the
three different flow modes postulated above. The values shown in the table

are for an assumed constant core flow rate of 10% and a HPCS jet entrainment
mixing ratio of 1:10. It is seen from the table that the flow Mode 1 causes
the largest initial delay and the flow loop delay is the same for all the three
modes listed. Thus for boron mixing, postulating the flow Mode I would be
most limiting. If this flow Mode I is assumed, then the expected buildup of
average boron concentration in the core water with time is shown in Figure
7.6.3 for 10% core flow. Figure 7.6.3 also shows for comparison the concen-
tration buildup if perfect mixing is assumed.

ArdS transient calculations indicate that a representative value of core flow
expected during the period before hot shutdown is approximately 10% of rated.
The appropriate bounding value of the initial delay time to be used for liquid
boron, therefore appears to be 80 seconds (including the transport delay of J'20
seconds in the pipeline outside the RPV) and the appropriate mixing efficiency
appears to be nearly 100%. in the ATWS analysis for BWR/5's and 6's a 60 second
initial delay and a mixing efficiency of 75% have been used. The latter is
a traditionally used value for ATWS and is obviously conservative. The initial
delay time used is slightly less than the value constructed above. However,
parametric studies provided in the sensitivity runs (Section 4) indicate that
even with initial delays assumed as high as 180 seconds and mixing efficiency
of 75%, the calculated ATWS consequences for pool temperature are acceptable.

7.6.4 Liquid Boron Effectiveness

In the dynamic analysis of ATWS, the negative reactivity effect of liquid
boron is assumed to be proportional to the amount of boron present in the
core between the bottom and the top of the active fuel. The negative reac-
tivity due to liquid boron at any time, is calculated from the equation:
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Table 7.

BORON TRANSPORT AND
INJECTION IN THE

6.2

DELAY TIMES FOR

HPCS SPARGER

Flow

1
Delay Outside RPV*
Initial Delay**

Flow Loop Delay***

Mode

20

60

170

Mode

Mode

20

25

170

Assumed

2 Mode 3

20

50

170

*HPCS assumed to be in operation (3500 gpm).

**Delay calulated using decreased water level present durning initial borom
injection potion of events.

*"Conservatively assuming water level is in the normal range, lower levels
experienced thoughout much of the event would give shorter locp delay times.
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Table 7.6.2 

BORON TRANSPORT AND DELAY TIMES FOR 
INJECTION IN THE HPes SPARGER 

Flow Mode Assumed 
Mode Mode 2 Mode 

Delay Outside RPV* 20 20 20 

Initial Delay" 60 25 50 
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**Del~y calulated using decreased wate~ level present durn~ng i~itial bororn 

injection potion of events. 

"'Conservatively assuming water level is in the normal :-ange, lower levels 

experienced thoughout much of ':.he event ~ould gi'/e shorter loop delay times. 
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R~)= wIS ( __0 WHs(t)
Was

where:

R(t) = Liquid boron reactivity at time t ($)

RHS = Liquid boron reactivity at hot shutdown condition ($)
W(t) = The weight of boron present in the core (ibm)

WES = Amount of boron in the core necessary to maintain hot shutdown

condition

WHS is obtained from a steady state, three dimensional core reactivity calcu-
lation asuming the following conditions:

a. No voids

b. Core coolant and 2800C

c. Liquid boron uniformly distributed in the core

d. Critical rod patern

RHS is assumed to compensate for the combined void and doppler reactivity dif-
ference between the operating and no void-saturated hot shutdown conditions.
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IN TEXT) 
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APPENDIX 7.7
CONCEPTUAL DEFINITION FOR ATWS MITIGATION SYSTEMS
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