## ENCLOSURE 1 TO NL-09-170

## FEX-00050-02

## Indian Point - 125 VDC Battery Sizing Calculation

ENTERGY NUCLEAR OPERATIONS, INC INDIAN POINT NUCLEAR GENERATING UNIT NO. 2 DOCKET No. 50-247

## CON EDISON CALCULATION / ANALYSIS COVER SHEET

11/27/00

### Calculation Number: FEX-00050-02 Entry Date: 11/27/2000

**Type:** CA12 ELECTRICAL SYSTEM

Project Number: NONE Document Page : 9 Old\_Calculation: Modification: NONE Scanned: N Revision:

Title INDIAN POINT - 125VDC BATTERY SIZING CALCULATION

**Tag Number** BATT22

Component Type Description BATT BATTERY Component Style Style Description BATT BATTERY

SystemDescriptionDCBATTERIES AND 125V DC

StructureDescriptionCBCONTROL BUILDING

| Preparer: W.E. KEEGAN   | Update Date Reviewer: G. WII | LSON               |
|-------------------------|------------------------------|--------------------|
| Signature: W. C. Keegon | 11/27/2000 Signature/Date:   | <u> </u>           |
| Approval/Date           | 1. 11/30/00.                 | Confirm. Required? |
| Concurrence (If Requi   | red)                         |                    |

| 22CON EDISON CALCULATI                                        | UN/ANALYSIS SHEEI                                    | CALCULATION No.<br>FEX-00050 -02                  | 02                                                                                                          | ON NO PAGE 2   |
|---------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------|----------------|
| PREPARER/DATE                                                 |                                                      | REVIEWER/DATE                                     |                                                                                                             | OF 9           |
| PREPARER/DATE<br>W.E. Koogan <u>W.C. Kev</u><br>SUBJECT/TITLE | Jan 11/22/00                                         | G. Wilson S. C.                                   |                                                                                                             | CT No.         |
|                                                               |                                                      | TION                                              | None                                                                                                        |                |
| INDIAN POINT - 125VDC B                                       |                                                      |                                                   |                                                                                                             | <u> </u>       |
|                                                               |                                                      |                                                   | MOD.<br>None                                                                                                |                |
| DESCRIPTION OF CHA                                            | NGE SHEET                                            |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
| Revision Number                                               | Description of (                                     | Change                                            | <u>Reason for Change</u>                                                                                    |                |
| 00                                                            | Original Issue.                                      | This calculation supersedes<br>ation EGE-00013-02 | 1997 RFO Modificati                                                                                         | 0 <b>ns</b>    |
| 01                                                            | Revised Batter<br>This calculation<br>Calculation FE | n supersedes                                      | Reduced Design marg<br>from 1.10 to 1.05, rev<br>load profile, and revis<br>Use the appropriate of<br>Curve | ised<br>sed to |
| 02                                                            | Revised Batter<br>removal of sea<br>battery #22.     | y Sizing to reflect the<br>l oil pump load from   | Modification Proced<br>FEX-98-1326-E                                                                        | ure            |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   | ,                                                                                                           |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |
|                                                               |                                                      |                                                   |                                                                                                             |                |

| 22CON EDISON CALCULATION/ANALYSIS SHEET                                                                                                                                   | CALCULATION No.                                  | <b>REVISION NO</b> | PAGE 3      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--------------------|-------------|
|                                                                                                                                                                           | FEX-00050 -02                                    | 02                 |             |
|                                                                                                                                                                           | ·                                                |                    | <u>OF</u> 9 |
| PREPARER/DATE                                                                                                                                                             | REVIEWER/DATE                                    | CLASS              |             |
| W.E. Keegar W.E. Keedan 11/22/00                                                                                                                                          | G. Wilson S. W. Jan 11/22/00                     | ]E                 |             |
| SUBJECT/TITLE                                                                                                                                                             |                                                  | PROJECT No.        |             |
|                                                                                                                                                                           |                                                  | None               |             |
| INDIAN POINT - 125VDC BATTERY 22 SIZING CALCULA                                                                                                                           | TION                                             |                    |             |
|                                                                                                                                                                           |                                                  |                    |             |
|                                                                                                                                                                           |                                                  | MOD. NO            | REV.        |
|                                                                                                                                                                           |                                                  | None               |             |
|                                                                                                                                                                           |                                                  |                    |             |
| OBJECTIVE<br>The objective of this calculation is to determine t<br>following the removal of the seal oil pump load,<br>of an emergency diesel generator and loss of cool | for two hours of plant operation for a postulate |                    |             |
| METHODOLOGY                                                                                                                                                               |                                                  | ·                  |             |
| Perform the battery sizing calculation as per IEE<br>Design Margin=1.05, Temperature Correction Fa<br>Sizing is calculated to a final voltage of 1.81 volts               | actor=1.05 and Aging Factor=1.25.                | es required .      |             |
| This calculation utilizes the load profile modeled pump load.                                                                                                             | in EGP-00012-04 and adjusted for the deletion    | of the emergency   | seal oil    |

#### REFERENCES

1. UFSAR, Chapter 8, Section 8.2.3.5, Batteries and Battery Chargers: specification for 2-hour duty cycle.

2. EPG- 00012-04, 125 VDC Load Study for Battery 22

3. 485-1997 IEEE Recommended Practice for Sizing Large Lead Storage Batteries for Generating Stationss and Substations

4. Exide Specification for Type GN Battery

5. TNMS Tag; BATT22 lists the battery as an Exide, 2GN-23, 58 cells, Class A.

6. Modification Procedure; FEX-98-1326-E, Relocate Emergency Seal Oil Pump From Battery 22 to Battery 11.

7. As per a telephone discussion with Mr. Patel of Yuasa Exide in 12/4/97, the curves that Yuasa Exide issues incorporate the *coup de fouet* effect (temporary initial decrease in cell voltage, due to the transition time required for a fully charged cell to completely initiate the chemical reaction at the plate/electrolyte boundary during battery discharge) and no further compensation of the data is necessary.

#### CONCLUSIONS

The attached analysis shows that the number of positive plates, corrected for aging, design margin, and temperature is 5.95. The installed Exide GN 23 battery has eleven positive plates and is, therefore, more than adequately sized for the 2-hour duty cycle.

The existing Battery #22 capacity testing parameters under PT-R76B envelopes the 2-load duty cycle.

Page 4 of 9

#### BATTERY 22 SIZING

#### FEX-00050-02

|         | ERATURE CORF        | ECTION FAC       | CTOR              | 1.05<br>1.05    |                        |    |            |              |
|---------|---------------------|------------------|-------------------|-----------------|------------------------|----|------------|--------------|
|         | FACTOR              |                  |                   | 1.25            |                        |    |            |              |
|         |                     |                  | LOAD              |                 | TIME                   |    |            |              |
|         | DURING FIRST        | CYCLE            | A1=               | 265             | 1                      |    |            |              |
|         | DURING SECON        |                  | A2=               | 175             |                        |    |            |              |
|         | DURING THIRD        |                  | A3=               | 185             | 1                      |    |            |              |
|         | DURING FOURT        |                  | A4=               | 175             | 17                     |    |            |              |
|         | DURING FIFTH        |                  | A5=               | 203             | 1                      |    |            |              |
|         | DURING SIXTH        |                  | A6=               | 175             | 9                      |    |            |              |
|         | DURING SEVEN        |                  | A7=               | 215             | 1                      |    |            |              |
|         | DURING EIGHTH       |                  | A8=               | 175             | 29                     |    |            |              |
|         | DURING NINTH        |                  | A9=               | 195             | 1                      |    |            |              |
|         | DURING TENTH        |                  | A10=              | 175             | 58                     |    |            | REQUIRED     |
|         | DURING ELEVER       |                  | A11=              | 285             | 1                      |    |            |              |
| 20,10   |                     |                  | ,,,,,             | 200             |                        |    | CAPACITY   | SECTION SIZE |
|         | LOAD CHANGE         |                  | DURATION          | • -             | TIME TO END OF SECTION |    | AT 'T' MIN | POS/NEG      |
|         | IN LOAD             |                  | OF PERIOD         |                 |                        |    | RATE       | VALUE        |
| SECTI   | ON 1 - First Perio  | d - If A2 is are |                   | ao to s         | section 2              |    | hait       | *ALUL        |
| A1=     | 265 A1-0            | 265 M1=          | 1 т=м1=           | 90.0            |                        | 1  | 138.63     | 1.91         |
| ,       |                     |                  |                   |                 |                        | •  | TOTAL      | 1.91         |
|         |                     |                  |                   |                 |                        |    |            |              |
| SECTION | ON 2 - First 2 Per  | iods If A3 is a  | reater than A2    | 2. ao ta        | o section 3            |    |            |              |
| A1=     | 265 A1-0=           | 265 M1=          | 1 T=M1+M2=        | -, 3            |                        | 2  | 136        | 1.95         |
| A2=     | 175 A2-A1=          | -90 M2=          | 1 T=M2=           |                 |                        | 1  |            |              |
|         |                     |                  |                   |                 |                        |    | TOTAL      | 1.30         |
|         |                     |                  |                   |                 |                        |    |            |              |
| SECTK   | ON 3 - First 3 Per  | iods - If A4 is  | greater than A    | 13. ao 1        | to section 4           |    |            |              |
| A1=     | 265 A1-0            | 265 M1=          |                   |                 |                        | 3  | 135        | 1.96         |
| A2=     | 175 A2-A1           | -90 M2=          | 1 T=M2+M3=        |                 |                        | 2  |            | -0.66        |
| A3=     | 185 A3-A2           | 10 M3=           | 1 т=мз=           |                 |                        | 1  | 138.63     | 0.07         |
|         |                     |                  |                   |                 |                        |    | TOTAL      | 1.37         |
|         |                     |                  |                   |                 |                        |    |            |              |
| SECTIO  | ON 4 - First 4 Peri | iods - IF A5 is  | greater than J    | A4, go          | to section 5.          |    |            |              |
| A1=     | 265 A1-0            | 265 M1=          | 1 T=M1+M2+A       | <b>13+M4</b> =  |                        | 20 | 110        | 2.41         |
| A2=     | 175 A2-A1           | -90 M2=          | 1 т∍м2+м3+м       | 44≖             |                        | 19 | 111        | -0.81        |
| A3=     | 185 A3-A2           | 10 M3=           | <b>1</b> т=мз+м4= |                 |                        | 18 | 114        | 0.09         |
| A4=     | 175 A4-A3           | -10 M4=          | 17 т=м4=          |                 |                        | 17 | 114.5      | -0.09        |
|         |                     |                  | ·                 |                 |                        |    | TOTAL      | 1.60         |
|         |                     |                  |                   |                 |                        |    |            |              |
| SECTIO  | DN 5 - First 5 Peri | ods - If A6 is   | greater than A    | <b>.5, go</b> 1 | to section 6           |    |            |              |
| A1=     | 265 A1-0=           | 265 M1=          | 1 T=M1+M2+M       | -<br>13+M4+M5   | i=                     | 21 | 109.5      | 2.42         |
| A2=     | 175 A2-A1=          | -90 M2=          | 1 т=м2+м3+м       | 14+M5=          |                        | 20 | 110        | -0.82        |
| A3=     | 185 A3-A2=          | 10 M3=           | 1 т=мз+м4+м       | 15=             |                        | 19 | 111        | 0.09         |
| A4=     | 175 A4-A3=          | -10 M4=          | 17 т₌м4+м5⇔       |                 |                        | 18 | 114        | -0.09        |
| A5=     | 203 A5-A4=          | 28 M5=           | 1 T=M5            |                 |                        | 1  | 138.63     | 0.20         |
|         |                     |                  | -                 |                 |                        |    | TOTAL      | 1.81         |
|         |                     |                  |                   |                 |                        |    |            |              |

SECTION 6 - First 6 Periods - If A7 is greater than A6, go to section 7

Page 5 of9

## BATTERY 22 SIZING

| A1=   | 265 A1-0=          | 265 M1=            | 1 T=M1+M2+M3+M4+M5+M6=            | 30   | 94     | 2.82     |
|-------|--------------------|--------------------|-----------------------------------|------|--------|----------|
| A2=   | 175 A2-A1=         | -90 M2=            | 1 T=M2+M3+M4+M5+M6                | 29   | 99     | -0.91    |
| A3=   | 185 A3-A2=         | 10 M3 <del>=</del> | 1 T=M3+M4+M5+M6=                  | 28   | 100    | 0.10     |
| A4=   | 175 A4-A3=         | -10 M4=            | 17 T=M4+M5+M6=                    | 27   | 101    | -0.10    |
| A5=   | 203 A5-A4=         | 28 M5=             | 1 т=м5+м6                         | 10   | 125    | 0.22     |
| A6=   | 175 A6-A5=         | -28 M6=            | 9 T=M6=                           | 9    | 125.5  | -0.22    |
|       |                    |                    |                                   | Т    | OTAL   | 1.91     |
|       |                    |                    |                                   |      |        |          |
| SECTI | ON 7 - First 7 Per | iods - If A8 is g  | greater than A7, go to section 8  |      |        |          |
| A1=   | 265 A1-0=          | 265 M1=            | 1 T=M1+M2+M3+M4+M5+M6+M7≖         | 31   | 93.5   | 2.83     |
| A2=   | 175 A2-A1=         | -90 M2=            | 1 T=M2+M3+M4+M5+M6+M7=            | 30   | 94     | -0.96    |
| A3=   | 185 A3-A2=         | 10 M3=             | 1 T≖M3+M4+M5+M6+M7≖               | 29   | 99     | 0.10     |
| A4=   | 175 A4-A3=         | -10 M4=            | 17 T=M4+M5+M6+M7=                 | 28   | 100    | -0.10    |
| A5=   | 203 A5-A4=         | 28 M5=             | 1 T=M5+M6+M7=                     | 11   | 124    | 0.23     |
| A6=   | 175 A6-A5=         | -28 M6=            | 9 т=м6+м7=                        | 10   | 125    | -0.22    |
| A7=   | 215 A7-A6=         | 40 M7=             | 1 T=M7=                           | 1    | 138.63 | 0.29     |
|       |                    |                    |                                   | т    | OTAL   | 2.17     |
|       |                    |                    |                                   |      |        |          |
|       |                    |                    |                                   |      |        |          |
|       |                    | ods - If A9 is g   | reater than A8, go to section 9   |      |        |          |
| A1=   | 265 A1-0=          | 265 M1=            | 1 T=M1+M2+M3+M4+M5+M6+M7+M8=      | 60   | 72.72  | 3.64     |
| A2=   | 175 A2-A1=         | -90 M2=            | 1 T=M2+M3+M4+M5+M6+M7+M8=         | 59   | 74.13  | -1.21    |
| A3=   | 185 A3-A2=         | 10 M3=             | 1 T <b>≕M3+M4+M5+M6+M7+M8</b> ≖   | 58   | 75     | 0.13     |
| A4=   | 175 A4-A3=         | -10 M4=            | 17 т <u>≖</u> м4+м5+м6+м7+м8⊐     | 57   | 76     | -0.13    |
| A5=   | 203 A5-A4=         | 28 M5=             | 1 T=M5+M6+M7=+M8                  | 40   | 87.5   | 0.32     |
| A6=   | 175 A6-A5=         | -28 M6=            | 9 T=M6+M7+M8=                     | 39   | 88     | -0.32    |
| A7=   | 215 A7-A6=         | 40 M7≕             | 1 T=M7+M8=                        | 30   | 94     | 0.43     |
| A8=   | 175 A8-A7=         | -40 M8=            | 29 т≞ма=                          | 29 _ | 99     | -0.40    |
|       |                    |                    |                                   | т    | OTAL   | 2.46     |
|       |                    |                    | · · · · · · · · · ·               |      |        |          |
|       |                    |                    | greater than A9, go to section 10 |      | -      | <b>•</b> |
| A1=   | 265 A1-0=          | 265 M1=            | 1 T=M1+M2+M3+M4+M5+M6+M7+M8+M9=   | 61   | 72     | 3.68     |
| A2=   | 175 A2-A1=         | -90 M2=            | 1 T=M2+M3+M4+M5+M6+M7+M8+M9=      | 60   | 72.72  | -1.24    |
| A3=   | 185 A3-A2=         | 10 M3=             | 1 T≖M3+M4+M5+M6+M7+M8+M9=         | 59   | 74.14  | 0.13     |
| A4=   | 175 A4-A3=         | -10 M4=            | 17 T=M4+M5+M6+M7+M8+M9=           | 58   | 75     | -0.13    |
| A5=   | 203 A5-A4=         | 28 M5=             | 1 T=M5+M6+M7=+M8+M9=              | 41   | 87     | 0.32     |
| A6=   | 175 A6-A5=         | -28 M6=            | 9 T≖M6+M7+M8+M9=                  | 40   | 87.5   | -0.32    |
| A7=   | 215 A7-A6=         | 40 M7=             | 1 T=M7+M8+M9=                     | 31   | 93.5   | 0.43     |
| A8=   | 175 A8-A7=         | -40 M8=            | 29 T=M8+M9⇒                       | 30   | 94     | -0.43    |
| A9=   | 195 A9-A8=         | 20 M9=             | 1 т=м9≖                           | 1    | 138.63 | 0.14     |
|       |                    |                    |                                   | 1    | OTAL   | 2.59     |
|       |                    |                    |                                   |      |        |          |

Page 6 of 9

#### **BATTERY 22 SIZING**

| SECTIC | ON 10 - First 10 Pe | eriods - If A11 | is greater than A10, go to section 11   |                 | •      |                   |
|--------|---------------------|-----------------|-----------------------------------------|-----------------|--------|-------------------|
| A1=    | 265 A1-0=           | 265 M1=         | 1 T=M1+M2+M3+M4+M5+M6+M7+M8+M9+M10=     | 11 <del>9</del> | 50.45  | 5.25              |
| A2=    | 175 A2-A1=          | -90 M2=         | 1 T=M2+M3+M4+M5+M6+M7+M8+M9+M10=        | 118             | 51     | -1.76             |
| A3=    | 185 A3-A2=          | 10 M3=          | 1 T=M3+M4+M5+M6+M7+M8+M9+M10⇒           | 117             | 52     | 0.19              |
| A4=    | 175 A4-A3=          | -10 M4=         | 17 т∍м4+м5+м6+м7+м8+м9+M10 <del>=</del> | 116             | 53     | -0.19             |
| A5=    | 203 A5-A4=          | 28 M5=          | 1 T≖M5+M6+M7=+M8+M9+M10 <del>=</del>    | 99.             | 57     | 0.49              |
| A6=    | 175 A6-A5=          | -28 M6=         | 9 T=M6+M7+M8+M9+M10=                    | 98              | 58     | -0.48             |
| A7=    | 215 A7-A6=          | 40 M7=          | 1 T=M7+M8+M9+M10=                       | 89              | 62     | 0.65              |
| A8=    | 175 A8-A7=          | -40 M8=         | 29 т₌ма+мэ+м1о≕                         | 88              | 65     | -0.62             |
| A9=    | 195 A9-A8=          | 20 M9=          | 1 T=M9+M10=                             | 59              | 74.14  | 0.27              |
| A10=   | 175 A10-A9=         | -20 M10=        | 58 T+M10                                | 58              | 75     | -0.27             |
|        |                     |                 |                                         | Т               | OTAL   | 3.80              |
|        |                     |                 |                                         |                 |        |                   |
| SECTIC | N 11 - First 11 Pe  | eriods - If A11 | is greater than A10, go to section 12   |                 |        |                   |
| A1=    | 265 A1-0=           | 265 M1=         | T=M1+M2+M3+M4+M5+M6+M7+M8+M9+M10+M11=   | 120             | 50.45  | 5.25              |
| A2=    | 175 A2-A1=          | -90 M2=         | 1 T=M2+M3+M4+M5+M6+M7+M8+M9+M10+M11≈    | 119             | 50.45  | -1.78             |
| A3=    | 185 A3-A2=          | 10 M3≕          | 1 T=M3+M4+M5+M6+M7+M8+M9+M1+M110≖       | 118             | 51     | 0.20              |
| A4=    | 175 A4-A3=          | -10 M4=         | 17 T=M4+M5+M6+M7+M8+M9+M10+M11=         | 116             | 53     | -0.1 <del>9</del> |
| A5=    | 203 A5-A4=          | 28 M5=          | 1 T=M5+M6+M7=+M8+M9+M10+M11=            | 100             | 56     | 0.50              |
| A6=    | 175 A6-A5=          | -28 M6=         | 9 T=M8+M7+M8+M9+M10+M11⇒                | 99              | 57     | -0.49             |
| A7=    | 215 A7-A6=          | 40 M7=          | 1 T=M7+M8+M9+M10+M11=                   | 90              | 59.09  | 0.68              |
| A8=    | 175 A8-A7=          | -40 M8=         | 29 T=M8+M9+M10+M11=                     | 8 <del>9</del>  | 62     | -0.65             |
| A9=    | 195 A9-A8=          | 20 M9=          | 1 T=M9+M10+M11=                         | 60              | 72.72  | 0.28              |
| A10=   | 175 A10-A9=         | -20 M10=        | 58 T=M10+M11                            | 59              | 74.14  | -0.27             |
| A11=   | 285 A11-A10=        | 110 M11=        | 1 T=M11                                 | 1               | 138.63 | 0.79              |
|        |                     |                 |                                         | T               | OTAL   | 4.32              |
|        |                     |                 |                                         |                 |        |                   |

NUMBER OF POSITIVE PLATES =

4.32

#### CORRECTED NUMBER OF PLATES FOR AGING, DESIGN MARGIN AND TEMPERATURE =

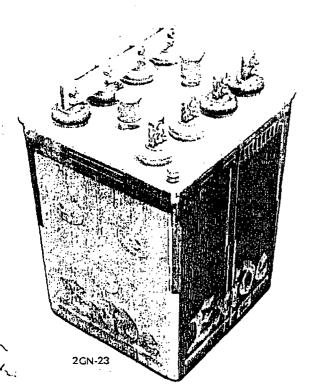
5.95

EX-00050-02 Page 70+9

# EXIC Calcium Flat Plate

## Type GN Nuclear Qualified

a the second second


- I flighest-f-minute rates
- Lowest maintenance—lowest water loss, lowest maintenance costs
- Slide Lock<sup>\*\*\*</sup> terminal post seal—virtually<sup>\*\*\*</sup> climinates terminal post corrosion
- 20-year life expectancy
- Flat-plate construction—calcium alloy grids

A REAL AND A

For floating applications where high ambient temperatures are not probable

D Optimum ratio of plate surface area to electrolyte volume for maximized performance in discharges of 1-minute to 8-hours duration. Specifically suited for demanding complex load profiles requiring high initial and end currents

THINK WELL THE STATE OF THE STATE OF



## SPECIFICATIONS

PLATE DIMENSIONS-HEIGHT WIDTH THICKNESS 17.3 in./439 mm 12.7 in./323 mm 0.31 in./7.9 POSITIVE: NEGATIVE: 17.3 in./439 inm 12.7 in./323 inm 0.21 in./5.3 SEDIMENT SPACE: 1.32 in./33.5 mm ELECTROLYTE OVER PLATES: 3.4 in/86 inm **CONTAINER:** Thermoplastic resin COVER: Thermoplastic resin SEPARATORS: Microporous rubber RETAINERS: "Vitrex" - glass liber POST TYPE: GN-13 and 15 - Single Post, lead-plated copper GN-17 through 23 - Double Posts, lead-plated company POST SEAL TYPE: Side-Lock" PLATE SUSPENSION TYPE: POSITIVE: Bridge hung NEGATIVE: Bottom supported ELECTROLYTE WITHDRAWAL TUBE: One per cell VENT TYPE: Flame arrestor, fused alumina FLOAT VOLTAGE: Acceptable Range: 2.17-2.26 VPC Recommended: 2.25 VPC SPECIFIC GRAVITY: 1.215 BOLT CONNECTORS: Stainless steel, standard English measure, hex-head INTERCELL CONNECTORS: Lead-plated copper NUCLEAR QUALIFICATION: IEEE-323-1974 IEEE-344-1975 JEEE-535-1979

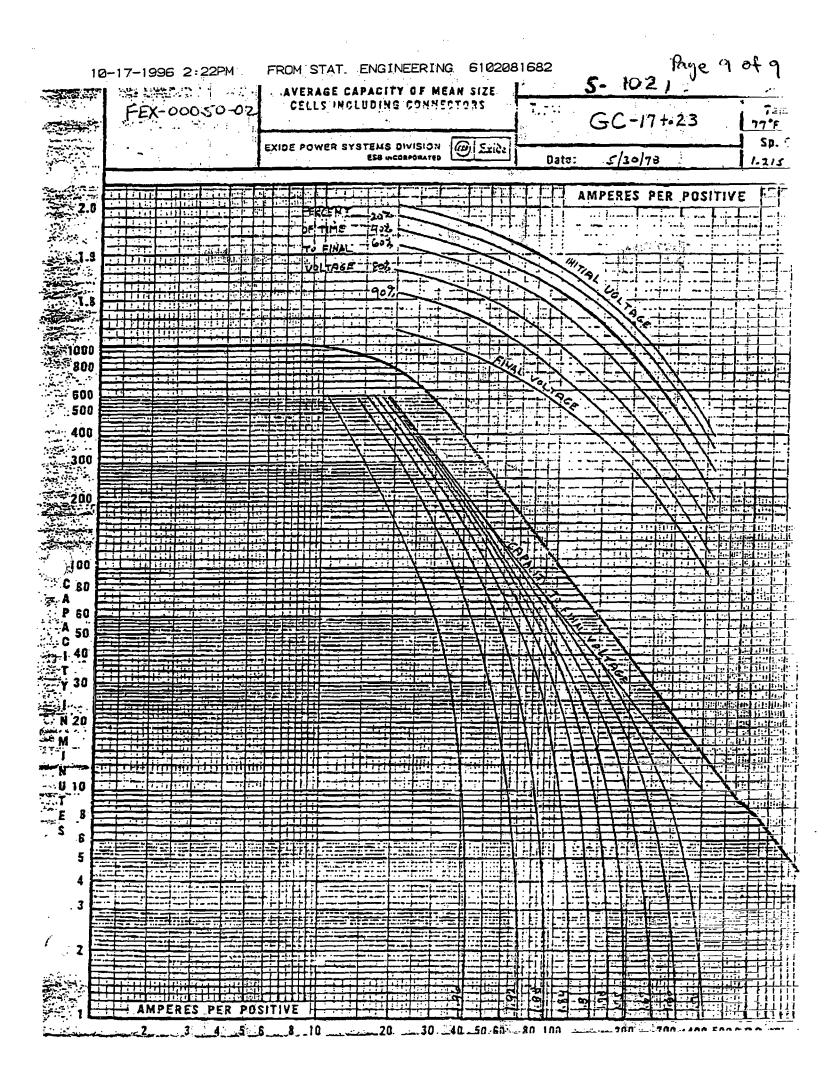
## FEX-00050-02

Page 80f9

## Capacities-Dimensions-Weights

|        | NOM.         |        | OVER     | ALL D | IMENS   | IONS  |         | ł    | WEIGHTS-VOLUMES |             |        |     |          |                  |      | OUTLINE                    |         |      |    |     |
|--------|--------------|--------|----------|-------|---------|-------|---------|------|-----------------|-------------|--------|-----|----------|------------------|------|----------------------------|---------|------|----|-----|
| TYPE"  | A.H.<br>CAP. | LEN    | 1        | WIC   | 6       |       | снт<br> | UNPA |                 |             | KED    |     | 1.215 \$ | YTE O<br>SP. GR. | NLY  | DRAWING:<br>SEE<br>CATALOG |         |      |    |     |
|        | -            | , in ' | mm       | In    | mm      | In    | mm      | lbs  | kg              | lbs         | kg     | lbs | kg kg    | gal              |      | SECTION                    |         |      |    |     |
| 2GN-13 | 1140         | 10.0   | 315      | 15.1  | 1, 5, 1 | 1.5.1 | 15.     | 15.1 | 15.1 384        | 27.2        | 691    | 445 | 202      | 465              | 211  | 119                        | 54      | 11.9 | 45 |     |
| 2GN-15 | 1260         | 12.4   | 315      |       | 100     | 1.00  | 1.00    | 41.2 | 21 27.2         | <i>41.2</i> | .2 051 | 485 | 220      | 505              | 229  | 111                        | 50      | 11,1 | 42 | 1 · |
| 2GN-17 | 1500         |        | <b> </b> | 1     |         |       | 1       | 1    | 585             | 265         | 607    | 275 | 163      | 74               | 16.3 | 62                         | 1 57.00 |      |    |     |
| 2GN-19 | 1600         |        | \<br>    |       |         |       |         | 620  | 281             | 642 -       | 291    | 155 | 70       | 15.5             | 59   | 57.40                      |         |      |    |     |
| 2GN-21 | 1700         | 16.6   | 422      | 1.5.1 | 384     | 27.2  | 691     | 655  | 297             | 677         | 307    | 147 | 67       | 14.7             | 56   | 1 .                        |         |      |    |     |
| 2GN-23 | 1800         |        |          |       | 1       |       |         | 695  | 315             | 717         | 325    | 139 | 63       | 13.9             | 53   | 1 ·                        |         |      |    |     |

Profix Nomber Industry, Colla Per Unit, Softix Number Industates, Jolat Planis Put Coll


## Average Cell Performance Data\*

(Discharge Rates in Amperes.

1.215 SP. GR. ELECTROLYTE AT 77° (25°C), INCLUDING CELL CONNECTORS

| TYPE  | NOM.<br>A.H.<br>CAP. | 72<br>HR. | 24<br>HR. | 12<br>HR. | <sup>9</sup><br>મર્સ. | 5<br>HR. | 4<br>HR. | з<br>ня. | 2<br>HA. | 1.5<br>HR. | 1<br>HR. | 30<br>MIN. | 15<br>MIN. | 1<br>MIN. | TO 1.50<br>VPC<br>1 MIN. |
|-------|----------------------|-----------|-----------|-----------|-----------------------|----------|----------|----------|----------|------------|----------|------------|------------|-----------|--------------------------|
| To 1  | .75                  | VPO       | C Fi      | nal       |                       |          |          | -        |          |            |          |            |            |           |                          |
| GN-13 | 1140                 | 24.3·     | 64 ·      | 109       | 143                   | 198      | 225      | 270      | 355      | 420        | 535      | 760        | 922        | 1090      | 2035                     |
| GN-15 | 1260                 | 25.7      | 69        | 118       | 157                   | 215      | 248      | 295      | 390      | 465        | 600      | 860        | 1046       | 1230      | 2300                     |
| GN-17 | 1500                 | 30.0      | 77        | 135       | 187                   | 255      | 304      | 365      | 480      | 560        | 710      | 980        | 1230       | 1680      | 3360                     |
| GN-19 | 1600                 | 31.1      | 82        | 145       | 199                   | 280      | 333      | 400      | 525      | 615        | 785      | 1075       | 1365       | 1830      | 3725                     |
| GN-21 | 1700                 | 31.8      | 86        | 154       | 213                   | 300      | 360      | 430      | 565      | 670        | 855      | 1160       | 1500       | 1970      | 4085                     |
| GN-23 | 1800                 | 31.9      | 89        | 160       | 225                   | 325      | 385      | 460      | 605      | 725        | 925      | 1240       | 1625       | 2100      | 4430                     |
| To 1  | 81                   | VPO       | C Fi      | nal       |                       |          |          |          |          |            |          |            |            |           |                          |
| GN-13 | 1140                 |           |           | 103       | 136                   | 185      | 212      | 250      | 315      | 370        | 465      | 610        | 719        | 817       |                          |
| GN-15 | 1260                 |           |           | 112       | 149                   | 200      | 231      | 270      | 350      | 400        | 525      | 690        | 815        | 922       |                          |
| GN-17 | 1500                 |           |           | 129       | 175                   | 240      | 284      | 336      | 430      | 505        | 625      | 805        | 965        | 1200      | ]                        |
| GN 19 | 1600                 |           |           | 139       | 189                   | 260      | 310      | 367      | 474      | 555        | 685      | 885        | 1070       | 1315      | ]                        |
| GN-21 | 1700                 |           |           | 147       | 203                   | 283      | 385      | 396      | 515      | 605        | 745      | 960        | 1170       | 1425      | ]                        |
| GN-23 | 1800                 |           |           | 155       | 214                   | 303      | 360      | 422      | 555      | 650        | 800      | 1035       | 1265       | 1525      | 1                        |

\*Rules shown depict average values and are subject to IEEE-485.



#### Calculation No. FEX-00050- Rev. 02

### ATTACHMENT 7.1 PAGE 1 OF 1

#### CONSOLIDATED EDISON

#### **INDIAN POINT 2**

#### DESIGN VERIFICATION DOCUMENTATION COVER SHEET

| Project No      | N/A       |                  | Verification Date |        | 0  |  |
|-----------------|-----------|------------------|-------------------|--------|----|--|
| Modification No | Cal. No.  | FEX-00050-02     |                   | _Rev.: | 02 |  |
| Title/SubjectIF | 2 125 VDC | Battery Sizing C | alculation        |        |    |  |

| Design Verifier <u>G</u> | . Wilson           | _ Dept <u>Elect.</u>                  | Projec | <u>sts &amp; Pr</u> | ograms   |   |
|--------------------------|--------------------|---------------------------------------|--------|---------------------|----------|---|
| Discipline Engineer      | r <u>W. Keegan</u> | · · · · · · · · · · · · · · · · · · · | Dept   | Elect.              | Projects | & |
| -                        |                    |                                       |        |                     |          |   |

Programs

<u>Documents Verified</u> (Itemize below all items reviewed. Identify revision status as appropriate; i.e. memo dates, drawing revisions)

For multiple design documents, subject to a single verification, enter the words "see attached list" and attach a list of all documents, their revision numbers and titles.

#### See Attachment

Method of Verification (check one)

Design Review\* X Alternate Calculation Validation Testing

\* If the Design Review method has been used , include the completed Design Verification Checklist (Attachment 7.2).

The listed documents above have been verified and are acceptable.

| Discipline Engineer:          | W. Keegan/ <u>W. 2. Keegan</u><br>(print/signature) | / <u>/30/80</u><br>Date |
|-------------------------------|-----------------------------------------------------|-------------------------|
| Design Verifier:              | <u>G. Wilson/ C. Witson</u><br>(print/signature)    | /30/యా<br>Date          |
| Supervisory Concurrence       |                                                     |                         |
| (if required per Step 5.2.3.) | (print/signature)                                   | Date                    |

\*

#### DE-SQ-12.513 REV. 0

#### Calculation No. FEX-00050- Rev. 02

#### ATTACHMENT 7.2 PAGE 1 OF 4

#### **DESIGN VERIFICATION CHECKLIST\***

Answer all questions. Attach copies of all comment forms and additional sheets as needed. Checklist questions that do not apply to the items being verified shall be noted as N/A, not applicable.

| *Do   | cument NoFEX-00050-02                                                                                                                                                                                                                     | Revision02                            |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Title | : IP2 125VDC Battery Sizing Calculation                                                                                                                                                                                                   |                                       |
| Proj  | ect No.: <u>N/A</u> Mod No.: <u>N/A</u>                                                                                                                                                                                                   | Rev.:0                                |
| Desi  | ign Verifier: <u>G. Wilkson</u>                                                                                                                                                                                                           | Disc Engr.:W Keegan <u>%Perkeegan</u> |
|       | ltem                                                                                                                                                                                                                                      | Comments                              |
| 1.    | Were the inputs correctly selected and incorporated into the design?                                                                                                                                                                      | YES                                   |
| 2.    | Are assumptions necessary to<br>perform the design activity adequately<br>described and reasonable? Where<br>necessary, are the assumptions<br>identified for subsequent reverification<br>when the detailed activities are<br>completed? | 467                                   |
| 3.    | Are the appropriate quality and quality assurance requirements specified?                                                                                                                                                                 | 463                                   |
| 4.    | Are the applicable codes, standards<br>and regulatory requirements, includ-<br>ing issue and addenda properly<br>identified and are their requirements<br>for design met?                                                                 | YES                                   |

Attachment 7.2 shall be completed if the Design Review method is being used for verification.

#### Calculation No. FEX-00050- Rev. 02

#### ATTACHMENT 7.2 PAGE 2 OF 4

#### **DESIGN VERIFICATION CHECKLIST**

#### Item

- 5. Have applicable construction and operating experience been considered?
- 6. Have the design interface requirements been satisfied?
- 7. Was an appropriate design method used?
- 8. Is the output reasonable compared to the inputs?
- 9. Are the specified parts, equipment and processes suitable for the required application?
- 10. Are the specified materials compatible with each other and the design environmental conditions to which the material will be exposed?
- 11. Have adequate maintenance features and requirements been specified?
- 12. Are accessibility and other design provisions adequate for performance of needed maintenance and repair?
- 13. Has adequate accessibility been provided to perform the in- service inspection expected to be required during the plant life?

<u>Comments</u>

YES

YES

YES

A/N

N/ N

N/A N/A N/A

Calculation No. FEX-00050- Rev. 02

#### ATTACHMENT 7.2 PAGE 3 OF 4

#### **DESIGN VERIFICATION CHECKLIST**

#### <u>Item</u>

- 14. Has the design properly considered radiation exposure to the public and plant personnel?
- 15. Are the acceptance criteria incorporated in the design documents sufficient to allow verification that design requirements have been satisfactorily accomplished?
- 16. Have adequate pre-operational and subsequent periodic test requirements been appropriately specified?
- 17. Are adequate handling, storage, cleaning and shipping requirements specified?
- 18. Are adequate identification requirements specified?
- 19. Has ALARA been adequately considered using ADDENDUM 8.3 as a guide?
- 20. Were the results of the EQ and SQ evaluation guidelines contained in DE-SQ-12.502 (Section 5.2 of OP-290-1) reviewed?
- 21. Are the applicable standards for EQ and SQ listed in the equipment specification?
- 22. Are the vendor qualification documents for EQ and SQ requested in the equipment specification?

<u>Comments</u>

N/A

YES

N/A

A/A

YES

( NIA

N/A

N/A

NIA

DE-SQ-12.5

#### Calculation No. FEX-00050- Rev. 02

#### ATTACHMENT 7.2 PAGE 4 OF 4

## **DESIGN VERIFICATION CHECKLIST**

|     | ltem                                                                                                                                                              | <u>Comments</u> |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| 23. | Have system/equipment electrical<br>protection requirements been<br>appropriately specified? (see EI-<br>2028, "Protection Setting and<br>Coordination Criteria") | N /A            |
| 24. | Have the corrosion effects of boric acid been considered?                                                                                                         | N/A<br>YEI      |
| 25. | Are the necessary supporting<br>calculations completed, checked<br>and approved? Are all required<br>calculations completed?*                                     |                 |
| 26. | Have all the affected design documents been identified?                                                                                                           | 453             |
| 27. | Does the design satisfy the requirements of the initial request?                                                                                                  | , YEJ           |
| 28. | Have the impacts on all DBDs and UFSAR been considered?                                                                                                           | 453             |
| 29. | Are the safety margins for the impacted systems for the proposed modification still adequate?                                                                     | 453             |
| 30. | Have the requirements in the Cable Separation<br>Checklist been considered? (See Exhibit K, EI-203                                                                | ッ/ へ<br>31)     |

\* The person verifying this item may be a different person than the person(s) who reviewed the calculations for correctness. In such situations, it is not necessary to do another check for the correctness of the calculations provided the "Calculation/ Analysis Summary Sheet" is properly signed off by the reviewer.

Exhibit I Page 1 of 1

#### CON EDISON MEMORANDUM

Date: 11-30-2000

L

| To:      | Nuclear Services                                       |  |
|----------|--------------------------------------------------------|--|
| From:    | Mark Entenberg<br>Section Manager                      |  |
| Subject: | Non-Modification Related Calculations for Microfilming |  |
| Cal      | alculation No. <u>FEX-00050-00</u> Rev No. <u>02</u>   |  |
| Cla      | lass: [X]A []FP []MET []Non-Class                      |  |
| Titl     | tle/Subject: <u>IP2 VDC Battery Sizing Calculation</u> |  |

Transmitted herewith, please find the original of the subject calculation, and design review documentation (if Class A, FP and/or MET). Please have them microfilmed in accordance with Company procedures. Upon completion of the microfilming, please return the calculation to me and indicate in the space provided below the Microfilm File Index Number for my records.

Section Manager

The above referenced calculation has been microfilmed and scanned into the computer system. The Microfilm File Index Number is indicated below:

Nuclear Services

Sect. 5.16 OP-290-1 Supercedes All Previous

Exhibit J Page 1 of 1

#### CON EDISON MEMORANDUM

Date <u>11/30/00</u>

To: Distribution

From: <u>Mark Entenberg</u> Section Manager

 Subject: Calculation # FEX-00050
 Rev 02

 Description
 IP2 125 VDC Battery Sizing Calculation

Transmitted herewith, please find a copy of the subject calculation without attachments for your use in determining whether the results of this calculation may affect Plant procedures. If you have any questions please call <u>W. Keegan</u> Telephone # <u>788</u> - <u>3344</u>. Calculation **F**reparer

CC: Manager, Configuration Management & Control Manager, Design Engineering Manager, Generation Support Manager, Instrumentation & Control Manager, Maintenace Manager, Nuclear Safety & Licensing Manager, Site Engineering Manager, Test & Performance System Engineer(s):

Sect. 5.16 OP-290-1 Supercedes Jan. 2, 1995

Page 2 of 38 pages