<u>Sectio</u>	<u>n <u>Title</u></u>	<u>Page</u>
2.0	SITE CHARACTERISTICS	
2.1	GEOGRAPHY AND DEMOGRAPHY	2.1-1
2.1.1	Site Location and Description	2.1-1
2.1.1.1	Specification of Location	2.1-1
2.1.1.2	Site Area Map	2.1-1
2.1.1.3	Boundaries for Establishing Effluent Limits	2.1-2
2.1.2	Exclusion Area Authority And Control	2.1-2
2.1.2.1	Authority	2.1-2
2.1.2.2	Control of Activities Unrelated to Plant Operation	2.1-2
2.1.2.3	Arrangements for Traffic Control	2.1-2
2.1.2.4	Abandonment or Relocation of Roads	2.1-2
2.1.3	Population Distribution	2.1-2
2.1.3.1	Population Within 10 Miles	2.1-3
2.1.3.2	Population Between 10 and 50 Miles	2.1-3
2.1.3.3	Transient Population	2.1-4
2.1.3.4	Low Population Zone	2.1-4
2.1.3.5	Population Center	2.1-5
2.1.3.6	Population Density	2.1-5
2.2	NEARBY INDUSTRIAL, TRANSPORTATION, AND MILITARY FACILITIES	52.2-1
2.2.1	Location and Route	2.2-1
2.2.2	Descriptions	2.2-1
2.2.2.1	Description of Facilities	2.2-1
2.2.2.2	Description of Products and Materials	2.2-1
2.2.2.3	Pipelines	2.2-1
2.2.2.4	Waterways	2.2-1
2.2.2.5	Airports	2.2-2
2.2.2.6	Projections of Industrial Growth	2.2-2
2.2.3	Evaluation of Potential Accidents	2.2-2
2.2.3.1	REFERENCES	2.2-3
2.3	METEOROLOGY	2.3-1
2.3.1	Regional Climate	2.3-1
2.3.1.1	Data Sources	2.3-1
2.3.1.2	General Climate	2.3-1
2.3.1.3	Severe Weather	2.3-2
2.3.2	Local Meteorology	2.3-5
2.3.2.1	Data Sources	2.3-5
2.3.2.2	Normal and Extreme Values of Meteorological Parameters	2.3-6
2.3.2.3	Potential Influence of the Plant and Its Facilities on Local Meteorology	2.3-8
2.3.2.4	Local Meteorological Conditions for Design and Operating Bases	2.3-9
2.3.3	Onsite Meteorological Measurements Program	2.3-9

<u>Section</u>	<u>Title</u>	<u>Page</u>
2.3.3.1	Preoperational Program	2.3-9
2.3.3.2	Operational Meteorological Program	2.3-12
2.3.3.3	Onsite Data Summaries of Parameters for Dispersion Meteorology	2.3-13
2.3.4	Short-Term (Accident) Diffusion Estimates	2.3-14
2.3.4.1	Objective	2.3-14
2.3.4.2	Calculation Results	2.3-17
2.3.5	Long-Term (Routine) Diffusion Estimates	2.3-18
2.4 HY	DROLOGIC ENGINEERING	2.4-1
2.4.1	Hydrological Description	2.4-1
2.4.1.1	Sites and Facilities	2.4-1
2.4.1.2	Hydrosphere	2.4-2
2.4.2	Floods	2.4-6
2.4.2.1	Flood History	2.4-6
2.4.2.2	Flood Design Considerations	2.4-7
2.4.2.3	Effects of Local Intense Precipitation	2.4-9
2.4.3	Probable Maximum Flood (PMF) on Streams and Rivers	2.4-12
2.4.3.1	Probable Maximum Precipitation (PMP)	2.4-13
2.4.3.2	Precipitation Losses	2.4-14
2.4.3.3	Runoff and Stream Course Model	2.4-14
2.4.3.4	Probable Maximum Flood Flow	2.4-18
2.4.3.5	Water Level Determinations	2.4-25
2.4.3.6	Coincident Wind Wave Activity	2.4-26
2.4.4	Potential Dam Failures, Seismically Induced	2.4-28
2.4.4.1	Dam Failure Permutations	2.4-28
2.4.4.2	Unsteady Flow Analysis of Potential Dam Failures	2.4-40
2.4.4.3	Water Level at Plantsite	2.4-40
2.4.5	Probable Maximum Surge and Seiche Flooding	2.4-40
2.4.6	Probable Maximum Tsunami Flooding	2.4-40
2.4.7	Ice Effects	2.4-41
2.4.8	Cooling Water Canals and Reservoirs	2.4-42
2.4.9	Channel Diversions	2.4-42
2.4.10	Flooding Protection Requirements	2.4-42
2.4.11	Low Water Considerations	2.4-44
2.4.11.1	Low Flow in Rivers and Streams	2.4-44
2.4.11.2	Low Water Resulting From Surges, Seiches, or Tsunami	2.4-44
2.4.11.3	Historical Low Water	2.4-44
2.4.11.4	Future Control	2.4-45
2.4.11.5	Plant Requirements	2.4-45
2.4.12	Dispersion, Dilution, and Travel Times of Accidental Releases of Liquid E	Effluents
2.4-46		
2.4.12.1	Radioactive Liquid Wastes	2.4-46
2.4.12.2	Accidental Slug Releases to Surface Water	2.4-46
2.4.12.3	Effects on Ground Water	2.4-48

Section	Title	<u>Page</u>
2.4.13	Groundwater	2.4-49
2.4.13.1	Description and On-Site Use	2.4-49
2.4.13.2	Sources	2.4-50
2.4.13.3	Accident Effects	2.4-51
2.4.13.4	Monitoring and Safeguard Requirements	2.4-52
2.4.13.5	Design Basis for Subsurface Hydrostatic Loading	2.4-52
2.4.14	Flooding Protection Requirements	2.4-52
2.4.14.1	Introduction	2.4-53
2.4.14.2	Plant Operation During Floods Above Grade	2.4-54
2.4.14.3	Warning Scheme	2.4-56
2.4.14.4	Preparation for Flood Mode	2.4-56
2.4.14.5	Equipment	2.4-58
2.4.14.6	Supplies	2.4-59
2.4.14.7	Plant Recovery	2.4-59
2.4.14.8	Warning Plan	2.4-59
2.4.14.9	Basis For Flood Protection Plan In Rainfall Floods	2.4-60
2.4.14.10	Basis for Flood Protection Plan in Seismic-Caused Dam Failures	2.4-66
2.4.14.11	Special Condition Allowance	2.4-68
	OLOGY, SEISMOLOGY, AND GEOTECHNICAL ENGINEERING SU DATION CONDITIONS	JMMARY 2.5-1
2.5.1	Basic Geology and Seismic Information	2.5-2
2.5.1.1	Regional Geology	2.5-3
2.5.1.2	Site Geology	2.5-27
2.5.2	Vibratory Ground Motion	2.5-34
2.5.2.1	Seismicity	2.5-34
2.5.2.2	Geologic Structures and Tectonic Activity	2.5-42
2.5.2.3	Correlation of Earthquake Activity With Geologic Structures to Tec	tonic Prov-
inces		2.5-42
2.5.2.4	Maximum Earthquake Potential	2.5-43
2.5.2.5	Seismic Wave Transmission Characteristics of the Site	2.5-45
2.5.2.6	Safe Shutdown Earthquake	2.5-45
2.5.2.7	Operating Basis Earthquake	2.5-45
2.5.3	Surface Faulting	2.5-45
2.5.3.1	Geologic Conditions of the Site	2.5-45
2.5.3.2	Evidence of Fault Offset	2.5-45
2.5.3.3	Earthquakes Associated With Capable Faults	2.5-54
2.5.3.4	Investigations of Capable Faults	2.5-54
2.5.3.5	Correlation of Epicenters With Capable Faults	2.5-56
2.5.3.6	Description of Capable Faults	2.5-56
2.5.3.7	Zone Requiring Detailed Faulting Investigation	2.5-56
2.5.3.8	Results of Faulting Investigations	2.5-56
2.5.4	Stability of Subsurface Materials	2.5-57
2.5.4.1	Geologic Features	2.5-57

<u>Section</u>

<u>Section</u>	<u>Title</u>	<u>Page</u>
2.5.4.2	Properties of Subsurface Materials	2.5-57
2.5.4.3	Exploration	2.5-90
2.5.4.4	Geophysical Surveys	2.5-90
2.5.4.5	Excavations and Backfill	2.5-93
2.5.4.6	Groundwater Conditions	2.5-101
2.5.4.7	Response of Soil and Rock to Dynamic Loading	2.5-103
2.5.4.8	Liquefaction Potential	2.5-103
2.5.4.9	Earthquake Design Basis	2.5-114
2.5.4.10	Static Analysis	2.5-114
2.5.4.11	Safety-Related Criteria for Foundations	2.5-115
2.5.4.12	Techniques to Improve Subsurface Conditions	2.5-116
2.5.4.13	Construction Notes	2.5-118
2.5.5	Stability of Slopes	2.5-119
2.5.5.1	Slope Characteristics	2.5-119
2.5.5.2	Design Criteria and Analysis	2.5-120
2.5.5.3	Logs of Borings	2.5-128
2.5.5.4	Compaction Specifications	2.5-128
2.5.6	Embankments	2.5-12

Section

Table 2.1-1	Watts Bar
	1986 Peak Hours Recreation Visitation
	Within 10 Miles of the Site
Table 2.1-1a	Watts Bar
	1990 Estimated Peak Hour Recreation Visitation
	Within 10 Miles Of The Site
Table 2.1-1b	Watts Bar
14010 2.1 10	2000 Estimated Peak Hour Recreation Visitation
	Within 10 Miles Of The Site
Table 2.1-1c	Watts Bar
10010 2.1 10	2010 Estimated Peak Hour Recreation Visitation
	Within 10 Miles Of The Site
Table 2.1-1d	Watts Bar
10010 2.1 10	2020 Estimated Peak Hour Recreation Visitation
	Within 10 Miles Of The Site
Table 2.1-1e	Watts Bar
10010 2.1-10	2030 Estimated Peak Hour Recreation Visitation
	Within 10 Miles Of The Site
Table 2.1-1f	Watts Bar
1000 2.1-11	2040 Estimated Peak Hour Recreation Visitation
	Within 10 Miles Of The Site
Table 2.1-1g	School Enrollments In Area
1 abic 2.1-1g	Of Watts Bar Nuclear Plant
Table 2.1-2	Watts Bar
1 auto 2.1-2	1970 Population Distribution
	Within 10 Miles of The Site
Table 2.1-3	Watts Bar
1 abic 2.1-5	1978 Population Distribution
	Within 10 Miles of The Site
Table 2.1-4	Watts Bar
1 abic 2.1-4	1980 Population Distribution
	Within 10 Miles of The Site
Table 2.1-4a	Watts Bar
1 abic 2.1-4a	1986 Population Distribution
	Within 10 Miles of The Site
Table 2.1-5	Watts Bar
1 abic 2.1-5	1990 Population Distribution
	Within 10 Miles of The Site
Table 2.1-6	Watts Bar
10010 2.1 0	2000 Population Distribution
	Within 10 Miles of The Site
Table 2.1-7	Watts Bar
1 4010 2.1 /	2010 Population Distribution
	Within 10 Miles of The Site

Section

Section	<u>Title</u>
Table 2.1-8	Watts Bar
	2020 Population Distribution
	Within 10 Miles of The Site
Table 2.1-8a	Watts Bar
	2030 Population Distribution
	Within 10 Miles of The Site
Table 2.1-8b	Watts Bar
	2040 Population Distribution
	Within 10 Miles of The Site
Table 2.1-9	Watts Bar
	1970 Population Distribution
	Within 50 Miles of The Site
Table 2.1-10	Watts Bar
	1978 Population Distribution
	Within 50 Miles of The Site
Table 2.1-11	Watts Bar
	1980 Population Distribution
	Within 50 Miles of The Site
Table 2.1-11a	Watts Bar
	1986 Population Distribution
	Within 50 Miles of The Site
Table 2.1-12	Watts Bar
	1990 Population Distribution
	Within 50 Miles of The Site
Table 2.1-13	Watts Bar
	2000 Population Distribution
	Within 50 Miles of The Site
Table 2.1-14	Watts Bar
	2010 Population Distribution
	Within 50 Miles of The Site
Table 2.1-15	Watts Bar
	2020 Population Distribution
	Within 50 Miles of The Site
Table 2.1-15a	Watts Bar
	2030 Population Distribution
	Within 50 Miles of The Site
Table 2.1-15b	Watts Bar
	2040 Population Distribution
	Within 50 Miles of The Site
Table 2.1-16	Deleted by Amendment 83
Table 2.1-17	Deleted by Amendment 83
Table 2.2-1	Waterborne Hazardous Material Traffic (Tons)
Table 2.2-2	Waterborne Hazardous Material Traffic Survey Results
Table 2.3-1	Thunderstorm Day Frequencies

Section

<u>Section</u>	<u>Title</u>
Table 2.3-2	Temperature Data (°F)
	Decatur, Tennesee*
Table 2.3-3	Temperature Data (°F)
	Chattanooga, Tennessee*
Table 2.3-4	Watts Bar Dam Precipitation Data (Inches)*
Table 2.3-5	Snowfall Data (Inches)
	Decatur, Tennessee
Table 2.3-6	Snowfall Data (Inches)
	Chattanooga and Knoxville, Tennesseea,b
Table 2.3-7	Average Relative Humidity Data (Percent) - Selected Hours
	Chattanooga, Tennessee*
Table 2.3-8	Relative Humidity (Percent)
	National Weather Service Station
	Chattanooga, Tennessee*
Table 2.3-9	Absolute Humidity (gm/m3)
	National Weather Service Station
	Chattanooga, Tennessee*
Table 2.3-10	Relative Humidity (Percent)
	Watts Bar Nuclear Plant Meteorological Facility*
Table 2.3-11	Absolute Humidity (Gm/m3)*
	Watts Bar Nuclear Plant Meteorological Facility**
Table 2.3-12	Fog Data*
Table 2.3-13	Joint Percentage Frequencies of Wind Speed By Wind Direction Disre-
	garding Stability Class, Watts Bar Nuclear Plant
Table 2.3-14	Joint Percentage Frequencies Of Wind Speed
	By Wind Direction Disregarding Stability Class,
	Watts Bar Nuclear Plant
Table 2.3-15	Wind Direction Persistence Data
	Disregarding Stability,
	Watts Bar Nuclear Plant
Table 2.3-16	Wind Direction Persistence Data
	Disregarding Stability,
	Watts Bar Nuclear Plant
Table 2.3-17	Joint Percentage Frequencies Of Wind Speed
	By Wind Direction Disregarding Stability Class,
	Watts Bar Nuclear Plant
Table 2.3-18	Joint Percentage Frequencies Of Wind Speed
	By Wind Direction Disregarding Stability Class,
	Watts Bar Nuclear Plant
Table 2.3-19	Joint Percentage Frequencies Of Wind Speed
	By Wind Direction Disregarding Stability Class,
	Watts Bar Nuclear Plant
Table 2.3-20	Joint Percentage Frequencies Of Wind Speed
	By Wind Direction Disregarding Stability Class,

Section

Table 2.3-21	Watts Bar Nuclear Plant Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class,
Table 2.3-22	Watts Bar Nuclear Plant Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-23	Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-24	Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-25	Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-26	Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-27	Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-28	Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-29	Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-30	Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-31	Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-32	Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-33	Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-34	Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-35	Joint Percentage Frequencies Of Wind Speed

Section

<u>Section</u>	<u>Title</u>
	By Wind Direction Disregarding Stability Class,
	Watts Bar Nuclear Plant
Table 2.3-36	Joint Percentage Frequencies Of Wind Speed
	By Wind Direction Disregarding Stability Class,
	Watts Bar Nuclear Plant
Table 2.3-37	Joint Percentage Frequencies Of Wind Speed
	By Wind Direction Disregarding Stability Class,
T 11 A A A	Watts Bar Nuclear Plant
Table 2.3-38	Joint Percentage Frequencies Of Wind Speed
	By Wind Direction Disregarding Stability Class,
T_{-1}	Watts Bar Nuclear Plant
Table 2.3-39	Joint Percentage Frequencies Of Wind Speed
	By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant
Table 2.3-40	Joint Percentage Frequencies Of Wind Speed
1 aute 2.3-40	By Wind Direction Disregarding Stability Class,
	Watts Bar Nuclear Plant
Table 2.3-41	Percent Occurrence Of Wind Speed*
10010 2.5 11	For All Wind Directions
Table 2.3-42	Percent Occurrences Of Inversion Conditions And Pasquill Stability
	Classes A-G*
	Watts Bar Nuclear Plant
Table 2.3-43	Deleted By Amendment 63
Table 2.3-44	Inversion Persistence Data
	Watts Bar Nuclear Plant
Table 2.3-45	Joint Percentage Frequencies Of Wind Speed By Wind Direction For
	Stability Class A (Delta T<=-1.9 C/100 M),
	Watts Bar Nuclear Plant
Table 2.3-46	Joint Percentage Frequencies Of Wind Speed By Wind Direction For
	Stability Class B (-1.9< Delta T<=-1.7 C/100 M),
T 11 0 0 17	Watts Bar Nuclear Plant
Table 2.3-47	Joint Percentage Frequencies Of Wind Speed By Wind Direction For
	Stability Class C ($-1.7 < Delta T <= -1.5 C/100 M$),
T_{-1}	Watts Bar Nuclear Plant
Table 2.3-48	Joint Percentage Frequencies Of Wind Speed By Wind Direction For Stability Class $D(1.5 \le Data T \le 0.5 C/100 M)$
	Stability Class D (-1.5< Delta T<=-0.5 C/100 M), Watts Bar Nuclear Plant
Table 2.3-49	Joint Percentage Frequencies Of Wind Speed By Wind Direction For
1 aut 2.3-49	Stability Class E (-0.5 > Delta T <= $1.5 \text{ C}/100 \text{ M}$),
	Watts Bar Nuclear Plant
Table 2.3-50	Joint Percentage Frequencies Of Wind Speed By Wind Direction For
	Stability Class F ($1.5 < \text{Delta } T <= 4.0 \text{ C}/100 \text{ M}$),
	Watts Bar Nuclear Plant
Table 2.3-51	Joint Percentage Frequencies Of Wind Speed By Wind Direction For

Section

Title Stability Class G (Delta T > 4.0 C/100 M), Watts Bar Nuclear Plant Table 2.3-52 Joint Percentage Frequencies Of Wind Speed By Stability Class, Watts Bar Nuclear Plant Table 2.3-53 Joint Percentage Frequencies Of Wind Speed By Wind Direction For Stability Class A (Delta T<=-1.9 C/100 M), Watts Bar Nuclear Plant Joint Percentage Frequencies Of Wind Speed By Wind Direction For Table 2.3-54 Stability Class B (-1.9< Delta T<=-1.7 C/100 M), Watts Bar Nuclear Plant Table 2.3-55 Joint Percentage Frequencies Of Wind Speed By Wind Direction For Stability Class C (-1.7< Delta T<=-1.5 C/100 M), Watts Bar Nuclear Plant Table 2.3-56 Joint Percentage Frequencies Of Wind Speed By Wind Direction For Stability Class D (-1.5< Delta T<=-0.5 C/100 M), Watts Bar Nuclear Plant Table 2.3-57 Joint Percentage Frequencies Of Wind Speed By Wind Direction For Stability Class E (-0.5< Delta T<= 1.5 C/100 M), Watts Bar Nuclear Plant Table 2.3-58 Joint Percentage Frequencies Of Wind Speed By Wind Direction For Stability Class F (1.5< Delta T<= 4.0 C/100 M), Watts Bar Nuclear Plant Table 2.3-59 Joint Percentage Frequencies Of Wind Speed By Wind Direction For Stability Class G (Delta T > 4.0 C/100 M) Watts, Bar Nuclear Plant Joint Percentage Frequencies Of Wind Speed By Stability Class, Watts Table 2.3-60 Bar Nuclear Plant Table 2.3-61 Calculated 1-hour Average Atmospheric Dispersion Factors (X/q) At Minimum Distance (1100 Meters) Between Release Zone (100 M Radius) And Exclusion Area Boundary (1200 M Radius) For Watts Bar Nuclear Plant Table 2.3-61a Calculated 1-hour Average Atmospheric Dispersion Factors (X/q) At Minimum Distance (1100 Meters) Between Release Zone (100 M Radius) And Exclusion Area Boundary (1200 M Radius) For Watts Bar Nuclear Plant Table 2.3-62 Calculated 1-hour Average And Annual Average Atmospheric Dispersion Factors (X/q) At Low Population Zone Distance (4828 Meters) For Watts Bar Nuclear Plant Table 2.3-62a Calculated 1-hour Average And Annual Average Atmospheric Dispersion Factors (X/q) At Low Population Zone Distance (4828 Meters) For Watts Bar Nuclear Plant Values Of 5th Percentile Overall Site 8-hour, 16-hour, 3-day, And Table 2.3-63 26-day Atmospheric Dispersion Factors (X/q) At Low Population Zone Distance (4828 Meters) For Watts Bar Nuclear Plant Table 2.3-63a VALUES OF 5TH PERCENTILE OVERALL SITE 8-HOUR,

<u>Section</u>	Title
Section	
	16-HOUR, 3-DAY, AND 26-DAY ATMOSPHERIC DISPERSION FACTORS (X/Q) AT LOW POPULATION ZONE DISTANCE (4828 METERS) FOR WATTS BAR NUCLEAR PLANT
Table 2.3-64	0.5th Percentile Sector Values Of 8-hour, 16-hour, 3-day, And 26-day Atmospheric Dispersion Factors (X/q) At Low Population Zone Outer
	Boundary Distance (4828 Meters) For Watts Bar Nuclear Plant
Table 2.3-64a	0.5th Percentile Sector Values Of 8-hour, 16-hour, 3-day, And 26-day
	Atmospheric Dispersion Factors (X/q) At Low Population Zone Outer
	Boundary Distance (4828 Meters) For Watts Bar Nuclear Plant
Table 2.3-65	Deleted By Amendment 63
Table 2.3-66	Atmospheric Dispersion Factors (X/q), Sec/m3, For Design Basis Acci- dent Analyses Based On Onsite Meteorological Data For Watts Bar Nu- clear Planta
Table 2.3-66a	Atmospheric Dispersion Factors (X/q) , Sec/m3, For Design Basis Acci-
	dent Analyses Based On Onsite Meteorological Data For Watts Bar Nu- clear Plant1
Table 2.3-67	Dispersion Meteorology - Onsite 10-meter Wind Data - 5th Percentile
	Values Of Inverse Wind Speed (1/u) Distributions For Post-loca Control
	Bay Dose Calculations For Watts Bar Nuclear Plant
Table 2.3-67a	Dispersion Meteorology - Onsite 10-meter Wind Data - 5th Percentile
	Values Of Inverse Wind Speed (1/u) Distributions For Post-loca Control Pay Dose Calculations For Watta Par Nuclear Plant
Table 2.4-1	Bay Dose Calculations For Watts Bar Nuclear Plant Facts About Major TVA Dams and Reservoirs
Table 2.4-2	Facts About Non-TVA Dam and Reservoir Projects
Table 2.4-3	Flood Detention Capacity TVA Projects Above Watts Bar Nuclear Plant
Table 2.4-4	Location of Surface Water Supplies in the 58.9 Mile Reach of the Main-
	stream of the Tennessee River Between Watts Bar Dam (Trm 529.9) and Chichamagua Dam (Trm 271.0)
Table 2.4-5	Probable Maximum Storm Rainfall and Precipitation Excess
Table 2.4-6	Unit Hydrograph Data
Table 2.4-7	Flood Flow And Elevation Summary
Table 2.4-8	Floods From Postulated Seismic Failure of Upstream Dams
Table 2.4-9	Sheets 1 and 2 Deleted By Amendment 63
Table 2.4-10	Well and Spring Inventory
Table 2.4-11	Within 2-mile Radius of Watts Bar Nuclear Plant Site Deleted by Amendment 83
Table 2.4-11 Table 2.4-12	Weir Length Description And Coefficients
1000 2.4 12	of Discharge For Areas 3 and 4
Table 2.4-13	Drainage Area Peak Discharge
Table 2.4-14	Dam Safety Modification Status (Hydrologic)
Table 2.5-1	Soil Strength Tests
Table 2.5-2	Watts Bar Nuclear Plant Soil Investigation 500-kv Transformer Yard Summary Of Laboratory Test Data
Table 2.5-3	WATTS BAR NUCLEAR PLANT SOIL INVESTIGATION 500-KV

<u>Section</u>	<u>Title</u>
	TRANSFORMER YARD SUMMARY OF LABORATORY TEST
	DATA
Table 2.5-4	WATTS BAR NUCLEAR PLANT SOIL INVESTIGATION NORTH
	COOLING TOWER SUMMARY OF LABORATORY TEST DATA
Table 2.5-5	WATTS BAR NUCLEAR PLANT SOIL INVESTIGATION SOUTH
	COOLING TOWER SUMMARY OF LABORATORY TEST DATA
Table 2.5-6	Watts Bar Nuclear Plant Soil Investigation Diesel Generator Building
	Summary of Laboratory Test Data
Table 2.5-7	Watts Bar Nuclear Plant
	Soil Investigation
	Essential Raw Cooling Water Supply
	Summary of Laboratory Test Data
Table 2.5-8	Watts Bar Nuclear Plant
	Intake Channel
	Soil Investigation
	Summary of Laboratory Test Data
Table 2.5-9	Watts Bar Nuclear Plant
	Intake Channel
	Soil Investigation
	Summary of Laboratory Test Data
Table 2.5-10	Watts Bar Nuclear Plant
	Class Ie Conduits
	Soil Investigation
	Summary Of Laboratory Test Data
Table 2.5-11	Watts Bar Nuclear Plant
	Class Ie Conduits
	Soil Investigation
T 11 0 5 10	Summary of Laboratory Test Data
Table 2.5-12	Soil Design Values
Table 2.5-13	Surface Settlements (S) and Average Deformation Moduli (E) for
T 11 0 5 14	Center of Flexible Circular Footings Loaded With 5 Ksf
Table 2.5-14	Effect of Removing Top 10 Feet of Rock on Settlement of
T-11-25-15	10-foot Diameter Flexible Footing
Table 2.5-15	Average In Situ Down-hole Soil Dynamics
Table 2 5 16	Diesel Generator Building
Table 2.5-16	Average Seismic Refraction Soil Dynamics
Table 2 5 17	Diesel Generator Building
Table 2.5-17	In-Situ Soil Dynamic Properties Watts Bar Nuclear Power Plant Class Ie Conduits and Ercw Piping
Table 2.5.17A	· •
Table 2.5-17A Table 2.5-17B	Dynamic Soil Properties - Diesel Generator Building Dynamic Soil Properties - Additional Diesel Generator Building
Table 2.5-17B Table 2.5-17C	Dynamic Soil Properties - Refueling Water Storage Tanks
Table 2.5-17D	Dynamic Soil Properties - North Steam Valve Room
Table 2.5-17D Table 2.5-18	Watts Bar Nuclear Plant
1 0010 2.3-10	

Section

Section	litie
	Borrow Investigation
	Summary of Laboratory Test Data
Table 2.5-19	Watts Bar Nuclear Plant
	Additional Borrow Areas
	Summary of Laboratory Test Data
Table 2.5-19a	Soil Properties, Borrow Area 7
Table 2.5-20	Grout Usage
Table 2.5-21	Watts Bar Nuclear Plant Intake Channel
	Summary of Laboratory Test Data Remolded Channel Area Soils
Table 2.5-22	TVA Soil Testing Laboratory
	Summary of Test Results Watts Bar Liquefaction Study
Table 2.5-23	Waterways Experiment Station, Corps of Engineers
Table 2.5-24	Watts Bar Nuclear Plant
	Ercw and Hpfp Systems
	Soil Investigation
	Summary of Laboratory Test Data
Table 2.5-25	Watts Bar Nuclear Plant
	Summary Of Laboratory Test Data
	Borrow Soil Classes
Table 2.5-26	Watts Bar Nuclear Plant
	Intake Channel
	Sand Material
	Summary of Cyclic Loading Test Data
Table 2.5-27	Watts Bar Nuclear Plant
	Intake Channel
	Clay Material
	Summary of Static Test Data
Table 2.5-28	Drill rod lengths and weights versus spt sample depths
	Applying to 1976 and 1979 reports
Table 2.5-29	Watts Bar Nuclear Plant
	ERCW Conduit
	1976 Report
Table 2.5-30	Watts Bar Nuclear Plant
	ERCW Conduit
	1976 Report
Table 2.5-31	Recommended Procedures and Guidelines
T 11 0 5 00	for Standard Penetration Testing
Table 2.5-32	Drill Rod Lengths and Weights Versus SPT
T 11 0 7 22	1981 Report
Table 2.5-33	Watts Bar Nuclear Plant
	ERCW Conduit
Table 2 5 24	1981 Report Watta Dar Nuclear Plant
Table 2.5-34	Watts Bar Nuclear Plant
	Essential Raw Cooling Water Piping System

Section

	Liquefaction Investigation
	Summary Of Laboratory Test Data
Table 2.5-35	Laboratory Procedure For Performing Cyclic Triaxial R Tests
Table 2.5-36	Results of Stress-Controlled Cyclic Triaxial Tests on Ercw Route Soils
Table 2.5-37	Summary Of Classification Data
Table 2.5-38	Summary of Classification Data
Table 2.5-39	Summary of Classification Data
Table 2.5-40	Summary of Classification Data
Table 2.5-41	Comparison of Classification and Density
	Data of Test Pit and Undistributed Boring Samples
Table 2.5-42	Watts Bar Nuclear Plant
	Soil-Supported Structures
	Representative Basal Gravel Samples
	Summary of Laboratory Test Data
Table 2.5-43	Watts Bar Nuclear Plant
	Soil-Support Structures
	Undistributed Sampling
	Summary of Laboratory Test Data
Table 2.5-44	WBNP - Bearing Capacity - Category I Soil-Supported Structures
1	Adopted Soil Properties For Bearing Capacity Determination
Table 2.5-45	Watts Bar Nuclear Plant
	ERCW Liquefaction
	Trench A
	Summary of Laboratory Test Data
	Borrow Soil Classes
Table 2.5-45a	Watts Bar Nuclear Plant ERCW Liquefaction, Trench A Supplemen-
14010 2.0 104	tal Borrow
	Summary of Laboratory Test Data Borrow Soil Classes
Table 2.5-46	Watts Bar Nuclear Plant
14010 2.5 10	ERCW Liquefaction
	Trench B
	Summary of Laboratory Test Data
	Borrow Soil Classes
Table 2.5-47	Watts Bar Nuclear Plant
14010 2.5 17	ERCW Liquefaction
	Borrow Area 9
	Summary of Laboratory Test Data
	Borrow Soil Classes
Table 2.5-48	Watts Bar Nuclear Plant
14010 2.5 10	ERCW Liquefaction
	Borrow Area 10
	Summary of Laboratory Test Data
	Borrow Soil Classes
Table 2.5-49	Watts Bar Nuclear Plant
14010 2.5-77	

<u>Section</u>	<u>Title</u>
	ERCW Liquefaction
	Borrow Area 11
	Summary of Laboratory Test Data
	Borrow Soil Classes
Table 2.5-50	Watts Bar Nuclear Plant
	ERCW Liquefaction
	Borrow Area 12
	Summary of Laboratory Test Data
	Borrow Soil Classes
Table 2.5-51	Watts Bar Nuclear Plant
	ERCW Liquefaction
	Borrow Area 13
	Summary of Laboratory Test Data
	Borrow Soil Classes
Table 2.5-52	Watts Bar Nuclear Plant
	ERCW Liquefaction
	Borrow Area 2c
	Summary of Laboratory Test Data
T 11 0 5 50	Borrow Soil Classes
Table 2.5-53	Watts Bar Nuclear Plant
	ERCW Liquefaction
	Borrow Area 2c Extension
	Summary of Laboratory Test Data
Table 2 5 51	Borrow Soil Groups
Table 2.5-54 Table 2.5-55	Summary of Laboratory Test Data
1 able 2.3-35	Granular Material Design Values Section 1032 Material
Table 2.5-56	Watts Bar Nuclear Plant
1 abic 2.3-30	Relative Density Test Results on Engineered
	Granular Fill Beneath the Diesel Generator Building
Table 2.5-57	Watts Bar Nuclear Plant
1000 2.5 57	Sieve Analysis of 1032 Gravel
	Tennessee Valley Authority
Table 2.5-58	Watts Bar Nuclear Plant
1	ERCW – Piezometers
	Water Level Readings
Table 2.5-59	ERCW Route Liquefaction Evaluation
	Maximum and Average Element Stresses and Peak Accleration
	at the Top of Each Layer
Table 2.5-60	Factors of Safety with Depth When the Water Table is not Considered
Table 2.5-61	Factors of Safety with Depth Assuming the Water Table
	is 16.5 feet Below Ground Surface
Table 2.5-62	SUMMARY OF SPT SAMPLES OF SILTY SANDS (SM) BELOW
	ERCW PIPELINES HAVING FACTOR OF SAFETY

<u>Section</u>	<u>Title</u>
	LESS THAN UNITY FOR 0.4 G PEAK GROUND SURFACE AC-
	CELERATION
Table 2.5-63	SUMMARY OF SPT SAMPLES OF SILTS (ML) BELOW ERCW
	PIPELINES HAVING FACTOR OF SAFETY LESS THAN UNITY
	FOR 0.4 G PEAK GROUND SURFACE ACCELERATION
Table 2.5-64	SUMMARY OF SPT SAMPLES OF SILTY SANDS (SM) BELOW
	ELECTRICAL CONDUITS HAVING FACTOR OF SAFETY LESS
	THAN UNITY FOR 0.4 G PEAK GROUND SURFACE ACCELERA-
	TION
Table 2.5-65	Strain Criteria for Determining Potential Settlement Of Soils Subject
	to Earthquake With Peak Top-Of-Ground Acceleration of 0.40g At
	Watts Bar Nuclear Plant
Table 2.5-66	Soil Bearing Capacities and Factors of Safety for Soil-Supported Cate-
	gory I Structures

Section

<u>Title</u>

Section	
Figure 2.1-1	Location of Watts Bar Nuclear Plant Site
Figure 2.1-2	Watts Bar Site Location 0-50 Miles
Figure 2.1-3	Watts Bar Site Location 0-10 Miles
Figure 2.1-4a	Watts Bar Topographic Map & Reservation Boundary
Figure 2.1-4b	Site Boundary / Exclusion Area Boundary
Figure 2.1-5	Main Plant General Plan
Figure 2.1-6	Deleted by Amendment 63
Figure 2.1-7	Deleted by Amendment 63
Figure 2.1-8	Deleted by Amendment 63
Figure 2.1-9	Deleted by Amendment 63
Figure 2.1-10	Deleted by Amendment 63
Figure 2.1-11	Deleted by Amendment 63
Figure 2.1-12	Deleted by Amendment 63
Figure 2.1-13	Deleted by Amendment 63
Figure 2.1-14	Deleted by Amendment 63
Figure 2.1-15	Deleted by Amendment 63
Figure 2.1-16	Deleted by Amendment 63
Figure 2.1-17	Deleted by Amendment 63
Figure 2.1-18	Deleted by Amendment 63
Figure 2.1-19	Deleted by Amendment 63
Figure 2.1-20	1994 Cumulative Population Within 30 Miles Of The Site
Figure 2.1-21	2034 Cumulative Population Within 30 Miles of the Site
Figure 2.2-1	Airways in the Area of the Plant
Figure 2.2-2	Military Airways in the Area of the Plant
Figure 2.3-1	Normal Sea Level Pressure Distribution Over North America and The
	North Atlantic Ocean
Figure 2.3-2	Total Number of Forecast-Days of High Meteorological Potential For
	Air Pollution in a 5 Year Period
Figure 2.3-3	Climatological Data Sources in Area Around Watts Bar Site
Figure 2.3-4	Wind Speed at 9.72 Meters All Stability classes, Watts Bar Nuclear
	Plant, January 1, 1974 -December 31, 1993
Figure 2.3-5	Wind Speed at 46.36 Meters All Stability Classes, Watts Bar Nuclear
	Plant, January 1, 1977 -December 31, 1993
Figure 2.3-6a	Percent Occurrences Of Pasquill Stability Classes A, B, C, And D By
	Time Of Day, Watts Bar Nuclear Plant, 1974-1993
Figure 2.3-6b	Percent Occurrences Of Pasquill Stability Classes E, F, and G By Time
	of Day, Watts Bar Nuclear Plant, 1974-1993
Figure 2.3-7	Wind Speed at 9.72 Meters for Stability Class A, Watts Bar Nuclear
	Plant, January 1, 1974 - December 31, 1993
Figure 2.3-8	Wind Speed at 9.72 Meters for Stability Class B, Watts Bar Nuclear
	Plant, January 1, 1974 - December 31, 1993
Figure 2.3-9	Wind Speed at 9.72 Meters for Stability Class C, Watts Bar Nuclear
	Plant, January 1, 1974 - December 31, 1993
Figure 2.3-10	Wind Speed at 9.72 Meters for Stability Class D, Watts Bar Nuclear

List of Figures

Section

	Plant, January 1, 1974 - December 31, 1993
Figure 2.3-11	Wind Speed at 9.72 Meters for Stability Class E, Watts Bar Nuclear
2	Plant, January 1, 1974 -December 31, 1993
Figure 2.3-12	Wind Speed at 9.72 Meters for Stability Class F, Watts Bar Nuclear
8	Plant, January 1, 1974 -December 31, 1993
Figure 2.3-13	Wind Speed at 9.72 Meters for Stability Class G, Watts Bar Nuclear
	Plant, January 1, 1974 - December 31, 1993
Figure 2.3-14	Topography Within 10 Mile Radius - N
Figure 2.3-15	Topography Within 10 Mile Radius - NNE
Figure 2.3-16	Topography Within 10 Mile Radius - NE
Figure 2.3-17	Topography Within 10 Mile Radius - ENE
Figure 2.3-18	Topography Within 10 Mile Radius - E
Figure 2.3-19	Topography Within 10 Mile Radius - ESE
Figure 2.3-20	Topography Within 10 Mile Radius - SE
Figure 2.3-21	Topography Within 10 Mile Radius - SSE
Figure 2.3-22	Topography Within 10 Mile Radius - S
Figure 2.3-23	Topography Within 10 Mile Radius - SSW
Figure 2.3-24	Topography Within 10 Mile Radius - SW
Figure 2.3-25	Topography Within 10 Mile Radius - WSW
Figure 2.3-26	Topography Within 10 Mile Radius - W
Figure 2.3-27	Topography Within 10 Mile Radius - WNW
Figure 2.3-28	Topography Within 10 Mile Radius - NW
Figure 2.3-29	Topography Within 10 Mile Radius
Figure 2.4-1	Tennessee River Basin Mean Annual Precipitation 35-Year Period
	1935-1969
Figure 2.4-2	General Plan Elevation & Sections Watts Bar Hydro Project
Figure 2.4-3	General Plan Elevations & Sections Fort Loudon Project
Figure 2.4-3a	General Plan Elevations and Sections Fort Loudon Project
Figure 2.4-4	Norris Dam Plan-Elevations and Sections
Figure 2.4-5	General Plan Elevations & Sections - Melton Hill Project
Figure 2.4-6	General Plan Elevation And Sections - Fontana Project
Figure 2.4-7	General Plan Elevation & Sections - Douglas Project
Figure 2.4-8	General Plan Elevations & Sections - Cherokee Project
Figure 2.4-9	General Plan Elevation & Sections - Fort Patrick Henry Project
Figure 2.4-10	General Plan Elevations & Sections - Boone Project
Figure 2.4-11	General Plan Elevations &. Sections - Watauga Project
Figure 2.4-12	General Plan Elevation & Sections - South Holston Project
Figure 2.4-13	General Plan Elevation & Sections - Tellico Project
Figure 2.4-14	General Plan Elevation &. Sections - Chickamauga Project
Figure 2.4-15	Multiple-Purpose - Reservoir Operations Watts Bar Project
Figure 2.4-16	Multiple-Purpose - Reservoir Operations - Fort Loudoun Project
Figure 2.4-17	Multiple-Purpose - Reservoir Operations Norris Project
Figure 2.4-18	Multiple-Purpose - Reservoir Operations - Fontana Project
Figure 2.4-19	Multiple-Purpose - Reservoir Operations - Douglas Project
0	r - r - r - r

Section

LIST OF FIGURES

Figure 2.4-20	Multiple-Purpose - Reservoir Operations - Cherokee Project
Figure 2.4-21	Multiple-Purpose - Reservoir Operations - Boone Project
Figure 2.4-22	Multiple-Purpose - Reservoir Operations - Watauga Project
Figure 2.4-23	Multiple-Purpose - Reservoir Operations - South Holston Project
Figure 2.4-24	Multiple-Purpose - Reservoir Operations - Tellico Project
Figure 2.4-25	Tennessee River-Mile 529.9 - Reservoir Areas And Volumes - Watts
C	Bar Project
Figure 2.4-26	Multiple-Purpose -Reservoir Operations - Chickamauga Project
Figure 2.4-27	Tennessee River Mile 602.3 - Reservoir Areas And Volumes - Fort Lou-
-	doun Project
Figure 2.4-28	Clinch River Mile 79.8 - Reservoir Areas And Volumes - Norris Project
Figure 2.4-29	Clinch River Mile 23.1 - Reservoir Areas and Volumes - Melton Hill
-	Project
Figure 2.4-30	Little Tennessee River Mile 61.0 - Reservoir Areas and Volumes - Fon-
	tana Project
Figure 2.4-31	French Broad River Mile 32.3 - Reservoir Areas And Volumes - Doug-
	las Project
Figure 2.4-32	Holston River Mile 52.3 - Reservoir Areas And Volumes - Cherokee
	Project
Figure 2.4-33	S.F. Holston River Mile 8.2 - Reservoir Areas and Volumes - Fort Pat-
	rick Henry Project
Figure 2.4-34	South Fork Holston River Mile 18.6 - Reservoir Areas and Volumes -
	Boone Project
Figure 2.4-35	Watauga River Mile 36.7 - Reservoir Areas And Volumes - Watauga
	Project
Figure 2.4-36	S.F. Holston River Mile 49.8 - Reservoir Areas And Volumes - South
	Holston Project
Figure 2.4-37	Little Tennessee River Mile 0.3 - Reservoir Areas And Volumes - Tel-
	lico Project
Figure 2.4-38	Tennessee River Mile 471.0 - Reservoir Areas And Volumes - Chicka-
	mauga Project
Figure 2.4-39	Deleted by Amendment 63
Figure 2.4-40	Tennessee River Mile 464.2 - Distribution Of Floods At Chattanooga,
	Tennessee
Figure 2.4-40a	Main Plant Site Grading And Drainage System For Flood Studies Sheet
	1
Figure 2.4-40a	Main Plant Site Grading and Drainage System For Flood Studies Sheet
	2
Figure 2.4-40a	Main Plant Site Grading and Drainage System For Flood Studies Sheet
	3
Figure 2.4-40b	Main Plant General Plan
Figure 2.4-40c	Yard Site Grading and Drainage System For Flood Studies
Figure 2.4-40d-1	Main Plant Plant Perimeter Roads Plan and Profile Sheet 1
Figure 2.4-40d	Main Plant Plant Perimeter Roads Plan and Profile - Sheet 2

<u>Title</u>

Section

<u>dection</u>	nae
Figure 2.4-40d	Main Plant Plant Perimeter Roads Plan and Profile - Sheet 3
Figure 2.4-40e	Access Highway TVA DWG 1001H202 R4 - Sheet 1
Figure 2.4-40e	Access Highway TVA DWG. 1001H201 R4 - Sheet 2
Figure 2.4-40f	Main Plant Main Plant Tracks Plan - Sheet 1
Figure 2.4-40f	Main Plant Main Plant Tracks Sections & Profiles - Sheet 2
Figure 2.4-40f	Main Plant Main Plant Tracks Sections & Profiles - Sheet 3
Figure 2.4-40g	Yard, Grading Drainage and Surfacing Transformer & Switchyard -
	Sheet 1
Figure 2.4-40g	Yard, Grading Drainage and Surfacing Transformer & Switchyard -
0 0	Sheet 2
Figure 2.4-40g	Yard, Grading Drainage and Surfacing Transformer & Switchyard -
0 0	Sheet 3
Figure 2.4-40h	Probable Maximum Precipation Point Rainfall
Figure 2.4-40i	Deleted by Amendment 83
Figure 2.4-40j	Deleted by Amendment 83
Figure 2.4-40k	Deleted by Amendment 83
Figure 2.4-40L	Deleted by Amendment 83
Figure 2.4-41	Probable Maximum March Isohyets (21,400-sq. mi. downstream) 1st
-	6 Hours (IN.)
Figure 2.4-42	Probable Maximum March Isohyets (7980 Sq. Mi.) 1st 6 Hours (IN.)
Figure 2.4-43	Rainfall Time Distribution Adopted Standard Mass Curve
Figure 2.4-44	72-Hour March Probable Maximum Storm Depths (IN) Tennessee Riv-
-	er Watershed Above Chickamauga Dam
Figure 2.4-45	Hydrological Model Unit Areas
Figure 2.4-46	6-Hour Unit Hydrographs Sheet 1 of 11
Figure 2.4-46	6-Hour Unit Hydrographs Sheet 2 of 11
Figure 2.4-46	6-Hour Unit Hydrographs Sheet 3 of 11
Figure 2.4-46	6-Hour Unit Hydrographs Sheet 4 of 11
Figure 2.4-46	6-Hour Unit Hydrographs Sheet 5 of 11
Figure 2.4-46	6-Hour Unit Hydrographs Sheet 6 of 11
Figure 2.4-46	2-Hour Unit Hydrographs Sheet 7 of 11
Figure 2.4-46	2-Hour Unit Hydrographs Sheet 8 of 11
Figure 2.4-46	6-Hour Unit Hydrographs Sheet 9 of 11
Figure 2.4-46	6-Hour Unit Hydrographs Sheet 10 of 11
Figure 2.4-46	6-Hour Unit Hydrographs Sheet 11 of 11
Figure 2.4-47a	Watts Bar Probable Maximum Flood Fort Loudon - Tellico Outflow
Figure 2.4-47b	Fort Loudon Dam Rating Curve
Figure 2.4-47c	Tellico Dam Rating Curve
Figure 2.4-48	General Plan Elevation & Sections
Figure 2.4-49	Hydrologic Model Verification - 1973 Flood
Figure 2.4-50	1973 Flood-Chickamauga Reservoir Unsteady Flow Model Verification
Figure 2.4-51	Steady- State Model Verification Watts Bar Dam Tailwater Rating
Figure 2.4.52	Curve Watta Par Nuclear Plant Probable Maximum Flood Discharge
Figure 2.4-52	Watts Bar Nuclear Plant Probable Maximum Flood Discharge

Section

Figure 2.4-53	West Saddle Dike Location Plan and Section
Figure 2.4-54	Watts Bar Probable Maximum Flood -Watts Bar Embankment Failure
Figure 2.4-55	Watts Bar Dam Rating Curves
Figure 2.4-56	Watts Bar Probable Maximum Flood Watts Bar Dam Outflow
Figure 2.4-57	Watts Bar Probable Maximum Flood Watts Bar Headwater Elevation
Figure 2.4-58	Watts Bar Probable Maximum Flood Chickamauga Headwater Eleva-
0	tions
Figure 2.4-59	Chickamauga Darn Rating Curves
Figure 2.4-60	Watts Bar Probable Maximum Flood Chickamauga Outflow
Figure 2.4-61	Watts Bar Probable Maximum Flood Water Levels Before and After
	Embankment Failure
Figure 2.4-62	Relative Bore Height (After J. J. Stroker, REF. 31)
Figure 2.4-63	Assumed Limits of Embankment Failure Wave Expansion
Figure 2.4-64	Watts Bar Nuclear Plant Probable Maximum Flood Elevation
Figure 2.4-65	Tennessee River - Mile 514-530 - Watts Bar Nuclear Plant Flood and
	Thalweg Profile
Figure 2.4-66	Extreme Value Analysis 30-Minute Wind Speed From The Southwest
	Chattanooga, TN 1948-74
Figure 2.4-67	Watts Bar Nuclear Plant Wind Wave Fetch
Figure 2.4-68	Powerhouse & Spillway Results of Analysis For Operating Basis Earth-
	quake - Watts Bar Dam
Figure 2.4-69	Embankment Results of Analysis For Operating Basis Earthquake
Figure 2.4-70	Deleted by Amendment 83
Figure 2.4-71	Powerhouse & Spillway Results of Analysis For Operating Basis Earth-
	quake - Fort Loudoun Dam
Figure 2.4-72	Embankment Results Of Analysis For Operating Basis Earthquake -
	Fort Loudoun Darn
Figure 2.4-73	Nonoverflow & Spillway Results of Analysis For Operating Basis
	Earthquake - Tellico Dam
Figure 2.4-74	Embankment Results For Analysis For Operating Basis Earthquake -
	Tellico Darn
Figure 2.4-75	Spillway & Nonoverflow Results of Analysis For OBE & 1/2 PMF-Nor-
	ris Dam
Figure 2.4-76	Analysis For OBE & 1/2 PMF Assumed Condition of Dam After Failure
	Norris Dam
Figure 2.4-77	Spillway & Nonoverflow Results of Analysis For Operating Basis
	Earthquake -Cherokee Dam
Figure 2.4-78	Embankment Results of Analysis For Operating Basis Earthquake -
	Cherokee Dam
Figure 2.4-79	Assumed Condition of Dam After Failure PBE And 1/2 Probable Max
	Flood - Cherokee Dam
Figure 2.4-80	Spillway & Nonoverflow Results of Analysis For Operating Basis
	Earthquake - Douglas Dam
Figure 2.4-81	Saddle Dam No. 1 Results of Analysis For Operating Basis Earthquake

Section

	- Douglas Dam
Figure 2.4-82	Douglas Dam Assumed Condition of Dam After Failure aBE And 1/2
C	Probable Maximum Flood - Douglas Project
Figure 2.4-83	Fontana Dam Assumed Condition of Dam after Failure aBE And 1/2
C	Probable Maximum Flood - Fontana Dam
Figure 2.4-84	Deleted by Amendment 63
Figure 2.4-85	Deleted by Amendment 63
Figure 2.4-86	Spillway Results of Analysis For SSE Earthquake Fort Loudoun Dam
Figure 2.4-87	Embankment Results of Analysis For SSE Earthquake Fort Loudoun
0	Dam
Figure 2.4-88	Fort Loudoun Dam Assumed Condition of Dam After Failure SSE
0	Combined With a 25 Year Flood - Fort Loudoun Dam
Figure 2.4-89	Tellico Dam Assumed Condition of Dam After Failure SSE Combined
C	With a 25 Year Flood Tellico Project
Figure 2.4-90	Norris Dam SSE + 25 Year Flood Judged Condition of Dam After Fail-
C	ure - Norris Dam
Figure 2.4-91	SSE With Epicenter In North Knoxville Vicinity
Figure 2.4-92	Time and Date Flood Hydrographs
Figure 2.4-93	SSE With Epicenter In West Knoxville Vicinity
Figure 2.4-94	Location of SSE For Simultaneous Failure of The Douglas and Fontana
C	Dams
Figure 2.4-95	Tennessee River Mile 523.2 Watts Bar Nuclear Plant Rating Curve
Figure 2.4-96	Cross Sections Tennessee River (mile 521.00) (mile 520.70) (mile
0	520.60)
Figure 2.4-97	Channel Profile Tennessee River (mile 520.0 to mile 521.37)
Figure 2.4-98	Main Plant General Grading Plan
Figure 2.4-99	Grading Plan Intake Channel
Figure 2.4-100	Deleted by Amendment 83
Figure 2.4-101	Deleted by Amendment 33
Figure 2.4-102	Wells And Spring Inventory Within 2-Mile Radius of Watts Bar Nucle-
	ar Plant Site
Figure 2.4-103	Water-Level Fluctuations In Observation Wells at The Watts Bar Site
Figure 2.4-104	Locations of Ground - Water Observation Wells
Figure 2.4-105	Generalized Water-Table Contour Map January 1972
Figure 2.4-106	Mechanical - Flow Diagram Fuel Pool Cooling and Cleaning System
Figure 2.4-107	Powerhouse Units 1 & 2 Flow Diagram - Residual Heat Removal Sys-
	tem
Figure 2.4-108	Schematic Flow Diagram Flood Protection Provisions Open Reactor
	Cooling (Unit 1 Shown, Unit 2 Similar)
Figure 2.4-109	Schematic Flow Diagram Flood Protection Provisions Natural Convec-
	tion Cooling (Unit 1 Shown, Unit 2 Similar)
Figure 2.4-110	Watts Bar Nuclear Plant Rainfall Flood Protection Plan Basis For Safe
	Shutdown For Plant Flooding
Figure 2.4-111	Douglas PMF Failure Wave at Watts Bar Plant

Section

Figure 2.5-1	Regional Physiographic Map
Figure 2.5-2	Regional Geologic Map
Figure 2.5-3	Subregional Geologic Setting (Please See Figures DVD For Actual Fig-
	ure)
Figure 2.5-4	Regional Tectonic Map
Figure 2.5-5	Regional Bouguer Gravity Anomaly Map
Figure 2.5-6	Regional Magnetic Map
Figure 2.5-7	Regional Fault Map
Figure 2.5-8	Subregional Fault Map
Figure 2.5-9	Geologic Map Of Plant Area (North Segment)
Figure 2.5-10	Geologic Map of Plant Area (South Segment)
Figure 2.5-11	Geologic Section Through Plant Area (Please See Figures DVD For Ac-
	tual Figure)
Figure 2.5-12	Core Drill Hole and Seismic Refraction Locations
Figure 2.5-13	Core Drill Layout and Summary
Figure 2.5-14	Graphic Log Hole 1 Sta. C-60+00
Figure 2.5-15	Graphic Log Hole 2 Sta. C-64+00
Figure 2.5-16	Graphic Log Hole 3 Sta. C-68+00
Figure 2.5-17	Graphic Log Hole 4 Sta. E-60+00
Figure 2.5-18	Graphic Log Hole 5 Sta. E-62+00
Figure 2.5-19	Graphic Log Hole 6 Sta. E-64+00
Figure 2.5-20	Graphic Log Hole 7 Sta. E-66+00
Figure 2.5-21	Graphic Log Hole 8 Sta. E-88+40
Figure 2.5-22	Graphic Log Hole 9 Sta. G-60+00
Figure 2.5-23	Graphic Log Hole 10 Sta. G-62+00
Figure 2.5-24	Graphic Log Hole 11 Sta. G-64+00
Figure 2.5-25	Graphic Log Hole 12 Sta. G-66+00
Figure 2.5-26	Graphic Log Hole 13 Sta. G-68+00
Figure 2.5-27	Graphic Log Hole 14 Sta. J-60+00
Figure 2.5-28	Graphic Log Hole 15 Sta. J-62+00
Figure 2.5-29	Graphic Log Hole 16 Sta. J-64+00
Figure 2.5-30	Graphic Log Hole 17 Sta. J-66+00
Figure 2.5-31	Graphic Log Hole 18 Sta. J-82+25
Figure 2.5-32	Graphic Log Hole 19 Sta. L-60+00
Figure 2.5-33	Graphic Log Hole 20 Sta. L-6l+00
Figure 2.5-34	Graphic Log Hole 21 Sta. L-62+00
Figure 2.5-35	Graphic Log Hole 22 Sta. L-64+00
Figure 2.5-36	Graphic Log Hole 23 Sta. L-66+00
Figure 2.5-37	Graphic Log Hold 24 Sta. L-68+00
Figure 2.5-38	Graphic Log Hole M-59+00
Figure 2.5-39	Graphic Log Hole 26M-60+00
Figure 2.5-40	Graphic Log Hole 27 Sta. M-61+00
Figure 2.5-41	Graphic Log Hole 28 Sta.M-62+00
Figure 2.5-42	Graphic Log Hole 29 Sta. M-63+00

Section

Figure 2.5-43	Graphic Log Hole 30 Sta. M-64+00
0	
Figure 2.5-44	Graphic Log Hole 31 Sta. M-65+00
Figure 2.5-45	Graphic Log Hole 32 Sta. M-66+00
Figure 2.5-46	Graphic Log Hole 33 Sta. N-59+00
Figure 2.5-47	Graphic Log Hole 34 Sta. N-60+00
Figure 2.5-48	Graphic Log Hole 35 Sta. N-61+00
Figure 2.5-49	Graphic Log Hole 36 Sta. N-62+00
Figure 2.5-50	Graphic Log Hole 37 Sta. N-63+00
Figure 2.5-51	Graphic Log Hole 38 Sta. N-64+00
Figure 2.5-52	Graphic Log Hole 39 Sta. N-65+00
Figure 2.5-53	Graphic Log Hole 40 Sta. N-66+00
Figure 2.5-54	Graphic Log Hole 41 Sta. 0-60+00
Figure 2.5-55	Graphic Log Hole 42 Sta. 0-61+00
Figure 2.5-56	Graphic Log Hole 43 Sta. 0-62+00
Figure 2.5-57	Graphic Log Hole 44 Sta. 0-63+00
Figure 2.5-58	Graphic Log Hole 45 Sta. 0-64+00
Figure 2.5-59	Graphic Log Hole 46 Sta. 0-65+00
Figure 2.5-60	Graphic Log Hole 47 Sta. 0-66+00
Figure 2.5-61	Graphic Log Hole 48 Sta. P-60+00
Figure 2.5-62	Graphic Log Hole 49 Sta. P-62+00 (Sheet 1 of 4)
Figure 2.5-63	Graphic Log Hole 50 Sta. P-63+00
Figure 2.5-64	Graphic Log Hole 51 Sta. P-64+00
Figure 2.5-65	Graphic Log Hole 52 Sta. P-65+00
Figure 2.5-66	Graphic Log Hole 53 Sta. P-66+00
Figure 2.5-67	Graphic Log Hole 54 Sta. P-68+00
Figure 2.5-68	Graphic Log Hole 55 Sta. R-62+00
Figure 2.5-69	Graphic Log Hole 56 Sta. R-64+00
Figure 2.5-70	Special Studies Layout And Summary
Figure 2.5-71	(Please see Figures DVD for Actual Figure)
Figure 2.5-72	3-D Elastic Properties Tabulation Sta. L-61+00 Depth 32.0 - 46.5
Figure 2.5-73	3-D Elastic Properties Tabulation Sta. L-61+00 Depth 47.0 - 61.5
Figure 2.5-74	3-D Elastic Properties Tabulation Sta. L-61+00 Depth 62.0 - 76.5
Figure 2.5-75	3-D Elastic Properties Tabulation Sta. L-61+00 Depth 77.0 - 91.5
Figure 2.5-76	3-D Elastic Properties Tabulation Sta. L-61+00 Depth 92.0 - 106.5
Figure 2.5-77	3-D Elastic Properties Tabulation Sta. L-61+00 Depth 107.0 - 121.5
Figure 2.5-78	3-D Elastic Properties Tabulation Sta. L-61+00 Depth 122.0 - 136.5
Figure 2.5-79	3-D Elastic Properties Tabulation Sta. L-61+00 Depth 137.0 - 151.5
Figure 2.5-80	3-D Elastic Properties Tabulation Sta. L-61+00 Depth 152.0 - 166.5
Figure 2.5-81	3-D Elastic Properties Tabulation Sta. L-61+00 Depth 167.0 - 176.0
Figure 2.5-82	Graphic Log and Elastic Moduli Sta. M-63+00
Figure 2.5-83	3-D Elastic Properties Tabulation Sta. M-63+00 Depth 44.0 - 58.5
Figure 2.5-84	3-D Elastic Properties Tabulation Sta. M-63+00 Depth 59.0 - 73.5
Figure 2.5-85	3-D Elastic Properties Tabulation Sta. M-63+00 Depth 74.0 - 88.5
Figure 2.5-86	3-D Elastic Properties Tabulation Sta. M-63+00 Depth 89.0 - 90.0
0	······································

<u>Section</u>

Title Figure 2.5-87 Graphic Log and Elastic Moduli Sta. N-61+00 Figure 2.5-88 3-D Elastic Properties Tabulation Sta. N-61+00 Depth 35.0 - 49.5 Figure 2.5-89 3-D Elastic Properties Tabulation Sta. N-61+00 Depth 50.0 - 64.5 Figure 2.5-90 3-D Elastic Properties Tabulation Sta. N-61+00 Depth 65.0 - 79.5 Figure 2.5-91 3-D Elastic Properties Tabulation Sta. N-61+00 Depth 80.0 - 92.0 Figure 2.5-92 Graphic Log and Elastic Modula Sta. N-62+00 Figure 2.5-93 3-D Elastic Properties Tabulation Sta. N-62+00 Depth 45.0 - 59.5 Figure 2.5-94 3-D Elastic Properties Tabulation Sta. N-62+00 Depth 60.0 - 70.0 Figure 2.5-95 Graphic Log and Elastic Moduli Sta. 0-60+00 Figure 2.5-96 3-D Elastic Properties Tabulation Sta. 0-60+00 Depth 38.0 - 52.5 Figure 2.5-97 3-D Elastic Properties Tabulation Sta. 0-60+00 Depth 53.0 -67.5 Figure 2.5-98 3-D Elastic Properties Tabulation Sta. 0-60+00 Depth 68.0 - 80.0 Figure 2.5-99 Graphic Log and Elastic Moduli Sta. 0-61+00 Figure 2.5-100 3-D Elastic Properties Tabulation Sta. 0-61+00 Depth 37.0 - 51.5 Figure 2.5-101 3-D Elastic Properties Tabulation Sta. 0-61+00 Depth 52.0 - 66.5 Figure 2.5-102 3-D Elastic Properties Tabulation Sta. 0-61+00 Depth 67.0 - 81.5 Figure 2.5-103 3-D Elastic Properties Tabulation Sta. 0-61+00 Depth 82.0 - 92.0 Figure 2.5-104 Graphic Log And Elastic Moduli Sta. 0-62+00 Figure 2.5-105 3-D Elastic Properties Tabulation Sta. 0-62+00 Depth 43.0 - 57.5 Figure 2.5-106 3-D Elastic Properties Tabulation Sta. 0-62+00 Depth 58.0 - 72.5 Figure 2.5-107 3-D Elastic Properties Tabulation Sta. 0-62+00 Depth 73.0 - 87.5 Figure 2.5-108 3-D Elastic Properties Tabulation Sta. 0-62+00 Depth 88.0 - 101.0 Figure 2.5-109 **Cross-Hole Dynamic Sections And Summary** Figure 2.5-110 Plan View Geologic Map of Reactor, Auxiliary And Control Buildings Figure 2.5-111 Plan View Geologic Map of Turbine Building Figure 2.5-112 Geologic Section Along A+8 And A+14 Lines From T6 To T11 Figure 2.5-113 Geologic Section Along N Line From Cl To C13 Figure 2.5-114 Section Along A4+9.5 From T+3.5 To W+12.5 Figure 2.5-115 Geologic Section and Panoramic Photograph Q-4 Line From A4-3 To A12+3 Figure 2.5-116 Geologic Sections Auxiliary And Turbine Buildings Figure 2.5-117 Geologic Sections And Panoramic Photographs (Unit 2) Figure 2.5-118 Geologic Sections And Panoramic Photographs (Unit 1) Figure 2.5-119 Geologic Sections and Panoramic Photographs of Reactor 2 East Perimeter Wall Figure 2.5-120 Geologic Section and Panoramic Photograph of Reactor 1 West Perimeter Wall Figure 2.5-121 Geologic Plan And Sections Intake Structure Foundation Figure 2.5-122 Generalized Geologic Section And Soil Profile Figure 2.5-123 Fault Shown Cutting Across Auxiliary Building at A4+28 Feet and East-West Reactor Centerline, Through SE Perimeter of Reactor #1, and Into Auxiliary Building West Wall Near U Line. Viewed Southwest. Figure 2.5-124 Fault In Auxiliary Building Wall, Approximately 9 Feet West Of A5 and 6 Feet South of East-West Reactor Centerline. Fault Continues

Section

	Across SE Perimeter of Reactor #1. Viewed Southwest.
Figure 2.5-125	Minor Thrust Fault and Associated One-Eighth Inch Clay Seam Located
e	In East Foundation Cut at Q Line and C13+12 Feet. Viewed East.
Figure 2.5-126	Closeup of Reactor #1 Normal Fault at 72 Degrees. Viewed West.
Figure 2.5-127	Closeup of Fault In Reactor #1 Cavity West Wall Between Elevations
0	of 678.5 And 690.0 Feet. Viewed West. Scale: 1 Inch = 0.56 Feet.
Figure 2.5-128	Fault In Auxiliary Building at All And East-West Reactor Centerline.
0	Fault Continues NE Through NW Perimeter of Reactor #2 Building.
	Viewed Northeast.
Figure 2.5-129	Gravity or Normal Fault on Northeast Reactor #1 Perimeter at 233 De-
U	grees. Fault Plane Dips North at 40 Degrees. Viewed West.
Figure 2.5-130	Fault in Reactor #2 East Wall at Approximately 130 Degrees. Viewed
U	East.
Figure 2.5-131	Fault in Reactor #2 Cavity Wall at Approximately 354 Degrees. Eleva-
C	tion 680.0 at Base. Viewed Southwest.
Figure 2.5-132	Fault In South Wall of Discharge Channel Showing Truncation By
C	Overlying Terrace Gravel Deposit.
Figure 2.5-133	Fault In North Wall of Discharge Channel Showing Truncation By Ter-
-	race Gravel Deposit.
Figure 2.5-134	Fault Truncation by Terrace Gravel Deposit at 20 Feet East of A8 and
	18.50 Feet North of Y. Elevation at Bench Cut is 706.35. Viewed North.
Figure 2.5-135	Fault in Vertical Excavation Cut at 20 Feet East of A8 and 18.50 Feet
	North of Y. Viewed North.
Figure 2.5-136	Inset Area. Blue-Grey Clay Seam Along Fault Trace Where Truncated
	by Terrace Gravel Deposit. Location: 20 Feet East of A8 And 18.50
	Feet North of Y. Viewed North.
Figure 2.5-137	Saprolite - Terrace Gravel Contact. Hematitic Crusts are Seen to be Dis-
	persed at Several Levels in the Terrace Gravel. Viewed South in the Ex-
	haust Cut Approximately 150 Feet East of The Powerhouse Foundation.
Figure 2.5-138	Site of Wood Specimen Collection for Carbon 14 Age Dating. Location
	is 3 Feet Above Terrace Gravel Deposit. Scale: Opened Brunton Com-
	pass = 8.5 Inches. Location: Approximately 18.51 North of Y at A5
	Line. Approximate Elevation 717.5.
Figure 2.5-139	Layout Diagram For Horizontal and Angle Holes
Figure 2.5-140	Plane Intersecting Disintegrated Shale Pocket
Figure 2.5-141	Plane View Onto The 673 Elevation
Figure 2.5-142	Plane View Onto The 671 Elevation
Figure 2.5-143	Drill Layout Diagram For Vertical Holes Viewed Onto The 671 Eleva-
	tion
Figure 2.5-144	Reactor 2 Grout Layout
Figure 2.5-145	Earthquake Epicenters
Figure 2.5-146	Major Earthquake In United States Through 1972
Figure 2.5-147	Isoseismal Map Maximum Effects 1811-1812 New Madrid Earthquake
Figure 2.5-148	Isoseismal Map 1811 New Madrid Earthquake

Section

Figure 2.5-149	Felt Area Maps	
Figure 2.5-150	Isoseismal Map 1886 Charleston, S.C. Earthquake	
Figure 2.5-151	Felt Area Map East Tennessee Earthquake of April 17, 1913	
Figure 2.5-152	Isoseismal Map 1916 Southern Appalachian Earthquake	
Figure 2.5-153	Isoseismal Map 1916 Alabama Earthquake	
Figure 2.5-154	Isoseismal Map 1924 Southern Appalachian Earthquake	
Figure 2.5-155	Felt Area Map 1940 Chattanooga Earthquake	
Figure 2.5-156	Isoseismal Map 1968 Southern Illinois Earthquake	
Figure 2.5-157	Felt Area Map East Tennessee Earthquake July 13, 1969	
Figure 2.5-158	Isoseismal Map Elsgood, West Virginia Earthquake (November 20, 1969)	
Figure 2.5-159	Isoseismal Map Maryville-Alcoa Earthquake November 30, 1973	
Figure 2.5-160	Seismic Reflection Profile	
Figure 2.5-161	Index Map - All Earthquakes Latitude 32.5-38.5 North Longitude 80.5- 89.0 West	
Figure 2.5-162	Earthquake Listing All Earthquakes Latitude 32.5-38.5 North Longi- tude 80.5-89.0 West	
Figure 2.5-163	Earthquake Listing All Earthquakes Latitude 32.5-38.5 North Longi- tude 80.5-89.0 West	
Figure 2.5-164	Earthquake Listing All Earthquakes Latitude 32.5-38.5 North Longi- tude 80.5-89.0 West	
Figure 2.5-165	Earthquake Listing All Earthquakes Latitude 32.5-38.5 North Longi- tude 80.5-89.0 West	
Figure 2.5-166	Earthquake Listing All Earthquakes Latitude 32.5-38.5 North Longi- tude 80.5-89.0 West	
Figure 2.5-167	Earthquake Listing All Earthquakes Latitude 32.5-38.5 North Longi- tude 80.5-89.0 West	
Figure 2.5-168	Earthquake Listing All Earthquakes Latitude 32.5-38.5 North Longi- tude 80.5-89.0 West	
Figure 2.5-169	Index Map -Earthquakes 4.3 Richter or Greater Latitude 32.5-38.5 North Longitude 80.5-89.0 West	
Figure 2.5-170	Earthquake Listing 4.3 Richter or Greater Latitude 32.5-38.5 North Longitude 80.5-89.0 West	
Figure 2.5-171	Earthquake Listing 4.3 Richter or Greater Latitude 32.5-38.5 North Longitude 80.5-89.0 West	
Figure 2.5-172	Earthquake Listing 4.3 Richter or Greater Latitude 32.5-38.5 North Longitude 80.5-89.0 West	
Figure 2.5-173	Index Map -Earthquakes 4.3 Richter or Greater Latitude 30-37 North Longitude 78-92 West	
Figure 2.5-174	Earthquakes Listing 4.3 Richter or Greater Latitude 30-37 North Longi- tude 78-92 West	
Figure 2.5-175	Earthquakes Listing 4.3 Richter or Greater Latitude 30-37 North Longi- tude 78-92 West	
Figure 2.5-176	Earthquakes Listing 4.3 Richter or Greater Latitude 30-37 North Longi-	

Section

	tude 78-92 West
Figure 2.5-177	Earthquakes Listing 4.3 Richter or Greater Latitude 30-37 North Longi- tude 78-92 West
Figure 2.5-178	Earthquakes Listing 4.3 Richter or Greater Latitude 30-37 North Longi- tude 78-92 West
Figure 2.5-179	Earthquakes Listing 4.3 Richter or Greater Latitude 30-37 North Longi- tude 78-92 West
Figure 2.5-180	Earthquakes Listing 4.3 Richter or Greater Latitude 30-37 North Longi- tude 78-92 West
Figure 2.5-181	Index Map -Earthquakes 6.3 Richter or Greater Latitude 30-37 North Longitude 78-92 West
Figure 2.5-182	Earthquakes Listing 6.3 Richter Or Greater Latitude 30-37 Longitude 78-92 West
Figure 2.5-183	Earthquake Listing List of References
Figure 2.5-184	Earthquake Listing Notes
Figure 2.5-185	Yard Soil Borings Location Plan
Figure 2.5-185a	Yard Soil Borings Location Plan
Figure 2.5-186	Transformer Yard & Switchyard Soil Investigation
Figure 2.5-187	Cooling Towers Soil Investigation
Figure 2.5-188	Pumping Station Foundation Investigation
Figure 2.5-189	Office & Service Building Foundation Investigation
Figure 2.5-190	Diesel Generator Building Sections AA & BB Foundation Investigation
Figure 2.5-191	Essential Cooling Water Supply Soil Investigation
Figure 2.5-192	Intake Channel, Section DD Foundation Investigation
Figure 2.5-193	Intake Channel, Section EE Foundation Investigation
Figure 2.5-194	Intake Channel, Section CC Foundation Investigation
Figure 2.5-195	Intake Channel, Section FF Foundation Investigation
Figure 2.5-196	Class IE Conduits Soil Investigation
Figure 2.5-197	Class IE Conduits Soil Investigation
Figure 2.5-198	Soil Investigation Borings For ERCW & HPFP Systems
Figure 2.5-199	Soil Investigation Borings For ERCW & HPFP Systems
Figure 2.5-200	Soil Investigation Borings For ERCW & HPFP Systems
Figure 2.5-201	Soil Investigation Borings For ERCW & HPFP Systems
Figure 2.5-202	Soil Investigation Borings For ERCW & HPFP Systems
Figure 2.5-203	Intake Channel Trench
Figure 2.5-204	Intake Channel Test 1
Figure 2.5-205	Intake Channel Strength Evaluation Test 2
Figure 2.5-206	Class IE Conduit Alignment Q (Unconsolidated, Undrained, Undis- turbed) Samples.
Figure 2.5-207	ERCW Piping and IE Conduit Alignments R (Consolidated - Undrained) Silt and Clay Samples Natural Moisture Content
Figure 2.5-208	Class IE Conduit Alignment S-Direct Shear
Figure 2.5-209	Type 1-Soft Shale Type 2-Hard Shale -Type 3 Limestone
Figure 2.5-210	Location of Test Holes

Section

Title	e

Figure 2.5-211	Deformation Moduli From Menard Pressuremeter Tests
Figure 2.5-212	Comparison of Moduli Obtained With Menard Pressuremeter and
0	Birdwell 3D Sonic Logger
Figure 2.5-213	Influence Factors For Determining Stresses Below The Center of Flex-
-	ible Circular Footing 10, 50, 100, and 200 Ft. in Diameter
Figure 2.5-214	Eia For Holes Tested With Menard Pressuremeter
Figure 2.5-215	Settlement at Center of Flexible Circular Footing Loaded With SKSF
Figure 2.5-216	Correlation Used To Estimate Average Moduli For Holes Where De-
-	tailed Calculations Were Not Made.
Figure 2.5-217	Distribution of Deformation Moduli For 10 Foot Diameter Footings
Figure 2.5-218	Simplified Plan of Lock foundation Showing Location of Modulus Cal-
-	culations
Figure 2.5-219	Settlement of Face of Block R-10 (Point F, fig. 16)
Figure 2.5-220	Yard Soil Investigations Borrow Soils
Figure 2.5-221	Yard Soil Investigations Borrow Soils
Figure 2.5-221a	Yard Soil Investigations Borrow Soils
Figure 2.5-222	Borrow Investigation (Please See Figures DVD for Actual Figure)
Figure 2.5-223	Additional Borrow Exploration
Figure 2.5-224	Additional Borrow Area 4
Figure 2.5-225	Main Plant Excavation & Backfill Category I Structures
Figure 2.5-226	Main Plant Excavation & Backfill Category I Structures
Figure 2.5-226a	Excavation and Backfill Category I Structures
Figure 2.5-227	Typical In-Situ Soil Dynamics Measurements Layout & Section
Figure 2.5-228	Soil Dynamics Intake Channel Station 13 + 26E, 21 + 12S
Figure 2.5-229	Soil Dynamics Intake Channel Station 14 + 27E, 24 + 12S
Figure 2.5-230	Soil Dynamics Intake Channel Station 12 + 67E, 25 + 32S
Figure 2.5-231	Soil Dynamics Intake Channel Station 10 + 07E, 23 + 53S
Figure 2.5-232	Seismic Refraction Dynamic Properties Intake Channel
Figure 2.5-233	Soil Dynamics Diesel Generator Building Down Hole Seismic 8 Refrac-
	tion Measurement
Figure 2.5-233a	Class A Backfill -Shear Modulus Reduction with Shear Strain
Figure 2.5-233b	Class A Backfill -Damping Ratio Variation with Shear Strain
Figure 2.5-233c	Crushed Stone Backfill - Shear Modulus Reduction with Shear Strain
Figure 2.5-233d	Crushed Stone Backfill - Damping Ratio Variation with Shear Strain
Figure 2.5-233e	In Situ Cohesive Soils - Shear Modulus Reduction with Shear Strain
Figure 2.5-233f	In Situ Cohesive Soils - Damping Ratio Variation with Shear Strain
Figure 2.5-233g	Non-Plastic In Situ Soil - Shear Modulus Reduction with Shear Strain
Figure 2.5-233h	Non-Plastic In Situ Soils - Damping Ratio Variation with Shear Strain
Figure 2.5-233i	Basal Gravel - Shear Modulus Reduction with Shear Strain
Figure 2.5-233j	Basal Gravel - Damping Ratio Variation with Shear Strain
Figure 2.5-233k	Weathered Shale - Shear Modulus and Damping Variation with Shear
	Strain
Figure 2.5-234	Main Plant Borrow Areas, Moisture - Penetration Test
Figure 2.5-235	Compaction Test Borrow Areas (Family Of Curves)

Section

٦	Гi	tl	e

000000	
Figure 2.5-236A	Operating Basis Earthquake Response Spectra For Rock Support Struc- tures
Figure 2.5-236b	Safe Shutdown Earthquake Response Spectra For Rock Support Struc- tures
Figure 2.5-237	Intake Channel Seismic Stability Analysis
Figure 2.5-238	Static Design Case 2
Figure 2.5-239	Intake Channel-Lateral Excavation & Replacement
Figure 2.5-240	Wedge Used To Determine Horizontal Displacement of The Intake Channel By Newmark's Method
Figure 2.5-241	ERCW Piping Alignment Q (Unconsolidated Undrained - Undisturbed Samples)
Figure 2.5-242	ERCW Piping Alignment S (Direct Shear) Undisturbed Samples
Figure 2.5-243	Deleted by Amendment 71
Figure 2.5-244	Borrow Area 4 Q - (Unconsolidated - Undrained) 95% STD Proctor
1 igure 2.5 244	Density 3% Above Optimum Moisture Remolded Samples
Figure 2.5-245	Watts Bar Nuclear Plant Borrow Area 4R - (Consolidate Undrained)
	95% STD Proctor Density 3% Below Optimum Moisture Remolded Samples
Figure 2.5-246	Borrow Area 4 S -(Direct Shear) 95% STD Proctor Density 3% Below
1 Iguite 2.5-240	Optimum Moisture Remolded Samples
Figure 2.5-247	Intake Channel Q - (Unconsolidated - Undrained - Undisturbed Sam-
1 iguite 2.5 2 i /	ples) Silty Sands
Figure 2.5-248	Intake Channel Q - (Unconsolidated-Undrained) Undisturded Samples
e	Lean Clays
Figure 2.5-249	Intake Channel R - (Consolidated-Undrained) Undisturbed Samples
	Silty Sands
Figure 2.5-250	Intake Channel R - (Consolidated-Undrained) - Undisturbed Samples
	Lean Clays
Figure 2.5-251	Intake Channel Q - (Unconsolidated Undrained) Remolded Samples
	95% SDT Proctor Density 4% Above Optimum Moisture
Figure 2.5-252	Site Studies Intake Channel Additional Soils Investigation
Figure 2.5-253	Intake Channel Additional Soil Investigation Section AA
Figure 2.5-254	Intake Channel Additional Soil Investigation Section BB
Figure 2.5-255	Intake Channel Additional Soil Investigation Section CC
Figure 2.5-256	Intake Channel - Lateral Excavation and Replacement Downstream
	Side of Intake Channel with Bedrock at 656
Figure 2.5-257	Intake Channel - Lateral Excavation and Replacement Downstream
	Side of Intake Channel with Bedrock at 650
Figure 2.5-258	Intake Channel - Lateral Excavation and Replacement Upstream Reser-
D: 0.5.050	voir End with Rockfill Placed at 665
Figure 2.5-259	Intake Channel - Lateral Excavation and Replacement Downstream
	Reservoir End With Rockfill Placed at El. 650
Figure 2.5-260	Soil Profile - Borrow Area 7, Boring PAH-1
Figure 2.5-261	Soil Profile - Borrow Area 7, Boring PAH-2

Section

	<u></u>
Figure 2.5-262	Soil Profile - Borrow Area 7, Boring PAH-3
Figure 2.5-263	Soil Profile - Borrow Area 7, Boring PAH-4
Figure 2.5-264	Soil Profile - Borrow Area 7, Boring PAH-5
Figure 2.5-265	Soil Profile - Borrow Area 7, Boring PAH-6
Figure 2.5-266	Soil Profile - Borrow Area 7, Boring PAH-7
Figure 2.5-267	Soil Profile - Borrow Area 7, Boring PAH-8
Figure 2.5-268	Soil Profile - Borrow Area 7, Boring PAH-9 (SS, PA, HA, TP, Boring)
Figure 2.5-269	Soil Profile - Borrow Area 7, Boring PAH-10
Figure 2.5-270	Soil Profile - Borrow Area 7, Boring PAH-11
Figure 2.5-271	Compaction Test (Family of Curves) - Borrow Area 7
Figure 2.5-272	Moisture - Penetration Test - Borrow Area 7
Figure 2.5-273	Yard Category I ERCW Piping and Conduits Plan
Figure 2.5-274	Soil Profile (SS, PA, HA, TP, Boring) 1E Conduit Banks
Figure 2.5-275	Soil Profile (SS, PA, HA, TP, Boring) 1E Conduit Banks
Figure 2.5-276	Soil Profile (SS, PA, HA, TP, Boring) IE Conduit Banks Sheet 1 of 2
Figure 2.5-276	Soil Profile (SS, PA, HA, TP, Boring) ID Conduit Banks Sheet 2 of 2
Figure 2.5-277	Soil Profile (SS, PA, HA, TP, Boring) ID Conduit Banks
Figure 2.5-278	Soil Profile (SS, PA, HA, TP, Boring) ID Conduit Banks
Figure 2.5-279	Soil Profile (SS, PA, HA, TP, Boring) ID Conduit Banks
Figure 2.5-280	Soil Profile (SS, PA, HA, TP, Boring) ID Conduit Banks
Figure 2.5-281	(Please see Figures DVD for Actual Figure) (Sheet 1 of 2)
Figure 2.5-281	(Please see Figures DVD for Actual Figure) (Sheet 2 of 2)
Figure 2.5-282	Soil Profile
Figure 2.5-283	Soil Profile (Sheet 1 of 2)
Figure 2.5-283	Soil Profile (Sheet 2 of 2)
Figure 2.5-284	Soil Profile
Figure 2.5-285	Soil Profile (Sheet 1 of 2)
Figure 2.5-285	Soil Profile (Sheet 2 of 2)
Figure 2.5-286	Soil Profile (Sheet 1 of 2)
Figure 2.5-286	Soil Profile (Sheet 2 of 2)
Figure 2.5-287	Soil Profile (Sheet 1 of 2)
Figure 2.5-287	Soil Profile (Sheet 2 of 2)
Figure 2.5-288	Soil Profile
Figure 2.5-289	Soil Profile (Sheet 1 of 2)
Figure 2.5-289	Soil Profile (Sheet 2 of 2)
Figure 2.5-290	Soil Profile
Figure 2.5-291	Soil Profile
Figure 2.5-292	Soil Profile (Sheet 1 of 2)
Figure 2.5-292	Soil Profile (Sheet 2 of 2
Figure 2.5-293	Soil Profile
Figure 2.5-294	Soil Profile (Sheet 1 of 2)
Figure 2.5-294	Soil Profile (Sheet 2 of 2)
Figure 2.5-295	Soil Profile
Figure 2.5-296	Soil Profile (Sheet 1 of 2)
0	

Section

<u></u>	
Figure 2.5-296	Soil Profile (Sheet 2 of 2)
Figure 2.5-297	Soil Profile (Sheet 1 of 2)
Figure 2.5-297	Soil Profile (Sheet 2 of 2)
Figure 2.5-298	Soil Profile (Sheet 1 of 2)
Figure 2.5-298	Soil Profile (Sheet 2 of 2)
Figure 2.5-299	Soil Profile (Sheet 1 of 2)
Figure 2.5-299	Soil Profile (Sheet 2 of 2)
Figure 2.5-300	Soil Profile (Sheet 1 of 2)
Figure 2.5-300	Soil Profile (Sheet 2 of 2)
Figure 2.5-301	Soil Profile
Figure 2.5-302	Soil Profile (Sheet 1 of 2)
Figure 2.5-302	Soil Profile (Sheet 2 of 2)
Figure 2.5-303	Soil Profile (Sheet 1 of 2)
Figure 2.5-303	Soil Profile (Sheet 2 of 2)
Figure 2.5-304	Soil Profile (Sheet 1 of 2)
Figure 2.5-304	Soil Profile (Sheet 2 of 2)
Figure 2.5-305	Soil Profile (Sheet 1 of 2)
Figure 2.5-305	Soil Profile (Sheet 2 of 2)
Figure 2.5-306	Soil Profile
Figure 2.5-307	Soil Profile (Sheet 1 of 2)
Figure 2.5-307	Soil Profile (Sheet 2 of 2)
Figure 2.5-308	Soil Profile (Sheet 1 of 2)
Figure 2.5-308	Soil Profile (Sheet 2 of 2)
Figure 2.5-309	Soil Profile
Figure 2.5-310	Soil Profile
Figure 2.5-311	Soil Profile
Figure 2.5-312	Soil Profile
Figure 2.5-313	Soil Profile
Figure 2.5-314	Soil Profile
Figure 2.5-315	Soil Profile
Figure 2.5-316	Soil Profile (Sheet 1 of 1)
Figure 2.5-317	Soil Profile
Figure 2.5-318	Soil Profile
Figure 2.5-319	Soil Profile
Figure 2.5-320	Soil Profile
Figure 2.5-321	Soil Profile (Sheet 1 of 2)
Figure 2.5-321	Soil Profile (Sheet 2 of 2)
Figure 2.5-322	Soil Profile
Figure 2.5-323	Soil Profile
Figure 2.5-324	Soil Profile
Figure 2.5-325	Soil Profile
Figure 2.5-326	Soil Profile (Sheet 1 of 2)
Figure 2.5-326	Soil Profile (Sheet 2 of 2)
Figure 2.5-327	Soil Profile (Sheet 1 of 2)
5	× ,

Section

Title Figure 2.5-327 Soil Profile (Sheet 2 of 2) Figure 2.5-328 Soil Profile (Sheet 1 of 2) Figure 2.5-328 Soil Profile (Sheet 2 of 2) Figure 2.5-329 Soil Profile Figure 2.5-330 Soil Profile (Sheet 1 of 2) Figure 2.5-330 Soil Profile (Sheet 2 of 2) Figure 2.5-331 Blank Page Soil Profile (Sheet 1 of 2) Figure 2.5-332 Figure 2.5-332 Soil Profile (Sheet 2 of 2) Figure 2.5-333 Soil Profile (Sheet 1 of 2) Figure 2.5-333 Soil Profile (Sheet 2of 2) Figure 2.5-334 Soil Profile (Sheet 1 of 2) Figure 2.5-334 Soil Profile (Sheet 2 of 2) Figure 2.5-335 Soil Profile (Sheet 1 of 2) Figure 2.5-335 Soil Profile (Sheet 2 of 2) Figure 2.5-336 Soil Profile (Sheet 1 of 2) Figure 2.5-336 Soil Profile (Sheet 2 of 2) Figure 2.5-337 Soil Profile Figure 2.5-338 Soil Profile Figure 2.5-339 ERCW Route Liquefaction Evaluation Graphic Logs No. 50 & 65 Figure 2.5-340 **ERCW** Liquefaction Figure 2.5-341 **ERCW** Liquefaction Figure 2.5-342 Liquefaction Figure 2.5-343 Liquefaction Figure 2.5-344 Liquefaction Figure 2.5-345 Liquefaction Figure 2.5-346 Liquefaction Figure 2.5-347 Liquefaction Figure 2.5-348 Liquefaction Figure 2.5-349 Liquefaction Figure 2.5-350 Liquefaction Figure 2.5-351 Liquefaction Figure 2.5-352 Liquefaction Figure 2.5-353 Results Of Stress Controlled Cyclic Triaxial Tests On ERCW Route Soils Liquefaction Study ERCW Pipeline Figure 2.5-354 Figure 2.5-355 Liquefaction Study ERCW Pipeline Figure 2.5-356 Liquefaction Study ERCW Pipeline Figure 2.5-357 Liquefaction Study ERCW Pipeline Figure 2.5-358 Additional Soil Investigations Category I Soil Supported Structures Figure 2.5-359 Category I Soil Supported Structures Soil Investigation Figure 2.5-360 Category I Soil Supported Structures Soil Investigation Figure 2.5-361 Category I Soil Supported Structures Soil Investigation Figure 2.5-362 Category I Soil Supported Structures Soil Investigation

Section

	<u></u>
Figure 2.5-363	Category I Soil Supported Structures Soil Investigation
Figure 2.5-364	Category I Soil Supported Structures Soil Investigation
Figure 2.5-365	Category I Supported Structures S-Direct Shear Test Remolded Basal
	Gravel
Figure 2.5-366	Soil Supported Structures
Figure 2.5-367	Soil Supported Structures
Figure 2.5-368	Soil Supported Structures
Figure 2.5-369	Soil Supported Structures
Figure 2.5-370	Soil Supported Structures
Figure 2.5-371	Soil Supported Structures
Figure 2.5-372	Gravel Boring No. 125
Figure 2.5-373	Gravel Boring No. 129
Figure 2.5-374	Watts Bar Nuclear Plant Category I Soil Supported Structures Q - (Un-
	consolidated - Undrained)
	Test Fine Grained Soils (Undisturbed Samples)
Figure 2.5-375	Watts Bar Nuclear Plant Category I Soil Supported Structures R (Total)
	- (Consolidated - Undrained)
	Test Fine Grained Soils (Undisturbed Samples)
Figure 2.5-376	Watts Bar Nuclear Plant Category I Soil Supported Structure R (Effec-
	tive) -
	(Consolidated -Undrained) Test Fine Grained Soils (Undisturbed Sam-
	ples)
Figure 2.5-377	Soil Profile
Figure 2.5-378	Soil Profile
Figure 2.5-379	Soil Profile
Figure 2.5-380	Soil Profile
Figure 2.5-381	Soil Profile
Figure 2.5-382	Soil Profile
Figure 2.5-383	Soil Profile
	(Sheet 1 of 2)
Figure 2.5-383	Soil Profile
	(Sheet 2 of 2)
Figure 2.5-384	Soil Profile
	(Sheet 1 of 2)
Figure 2.5-384	Soil Profile
	(Sheet 2 of 2)
Figure 2.5-385	Soil Profile
Figure 2.5-386	Soil Profile
Figure 2.5-387	Soil Profile
Figure 2.5-388	Soil Profile
Figure 2.5-389	Soil Profile
Figure 2.5-390	Soil Profile
Figure 2.5-391a	Soil Profile
Figure 2.5-392	Soil Profile

Section

Figure 2.5-393	Soil Profile
Figure 2.5-394	Soil Profile
Figure 2.5-395	Soil Profile
Figure 2.5-396	Soil Profile
Figure 2.5-397	Soil Profile
Figure 2.5-398	Soil Profile
Figure 2.5-399	Soil Profile
Figure 2.5-400	Soil Profile
Figure 2.5-401	Soil Profile
Figure 2.5-402	Soil Profile
Figure 2.5-403	Soil Profile
Figure 2.5-404	Soil Profile
Figure 2.5-405	Soil Profile
-	Soil Profile
Figure 2.5-406	Soil Profile
Figure 2.5-407	
Figure 2.5-408	Soil Profile
Figure 2.5-409	Soil Profile
Figure 2.5-410	Soil Profile
Figure 2.5-411	Soil Profile
Figure 2.5-412	Soil Profile
Figure 2.5-413	Soil Profile
Figure 2.5-414	Soil Profile
Figure 2.5-415	Soil Profile
Figure 2.5-416	Soil Profile
Figure 2.5-417	Soil Profile
Figure 2.5-418	Soil Profile
Figure 2.5-419	Soil Profile
Figure 2.5-420	Soil Profile
Figure 2.5-421	Soil Profile
Figure 2.5-422	Soil Profile
Figure 2.5-423	Soil Profile
Figure 2.5-424	Soil Profile
Figure 2.5-425	Soil Profile
Figure 2.5-426	Soil Profile
Figure 2.5-427	Soil Profile
Figure 2.5-428	Soil Profile
Figure 2.5-429	Soil Profile
Figure 2.5-430	Soil Profile
Figure 2.5-430	Soil Profile
Figure 2.5-432	Soil Profile
-	
Figure 2.5-433	Soil Profile
Figure 2.5-434	Soil Profile
Figure 2.5-435	Soil Profile
Figure 2.5-436	Soil Profile

Section

E: 0 5 427	C '1 D C'1
Figure 2.5-437	Soil Profile
Figure 2.5-438	Soil Profile
Figure 2.5-439	Soil Profile
Figure 2.5-440	Soil Profile
Figure 2.5-441	Soil Profile
Figure 2.5-442	Soil Profile
Figure 2.5-443	Soil Profile
Figure 2.5-444	Soil Profile
Figure 2.5-445	Soil Profile
Figure 2.5-446	Soil Profile
Figure 2.5-447	Soil Profile
Figure 2.5-448	Soil Profile
Figure 2.5-449	Soil Profile
Figure 2.5-450	Soil Profile
Figure 2.5-451	Soil Profile
Figure 2.5-452	Soil Profile
	Soil Profile
Figure 2.5-453	
Figure 2.5-454	Soil Profile
Figure 2.5-455	Soil Profile
Figure 2.5-456	Soil Profile
Figure 2.5-457	Soil Profile
Figure 2.5-458	Soil Profile
Figure 2.5-459	Soil Profile
Figure 2.5-460	Soil Profile
Figure 2.5-461	Soil Profile
Figure 2.5-462	Soil Profile
Figure 2.5-463	Soil Profile
Figure 2.5-464	Soil Profile
Figure 2.5-465	Soil Profile
Figure 2.5-466	Soil Profile
Figure 2.5-467	Soil Profile
Figure 2.5-468	Soil Profile
Figure 2.5-469	Soil Profile
Figure 2.5-470	Soil Profile
Figure 2.5-471	Soil Profile
Figure 2.5-472	Soil Profile
-	Soil Profile
Figure 2.5-473	
Figure 2.5-474	Soil Profile
Figure 2.5-475	Soil Profile
Figure 2.5-476	Soil Profile
Figure 2.5-477	Soil Profile
Figure 2.5-478	Soil Profile
Figure 2.5-479	Soil Profile
Figure 2.5-480	Soil Profile

Section

<u>Title</u>

Figure 2.5-481Soil ProfileFigure 2.5-482Soil ProfileFigure 2.5-484Soil ProfileFigure 2.5-485Soil ProfileFigure 2.5-486Soil ProfileFigure 2.5-487Soil ProfileFigure 2.5-488Soil ProfileFigure 2.5-488Soil ProfileFigure 2.5-489Soil ProfileFigure 2.5-490Soil ProfileFigure 2.5-491Soil ProfileFigure 2.5-492Soil ProfileFigure 2.5-493Soil ProfileFigure 2.5-494Soil ProfileFigure 2.5-495Soil ProfileFigure 2.5-496Soil ProfileFigure 2.5-497Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518<		
Figure 2.5-483 Soil Profile Figure 2.5-485 Soil Profile Figure 2.5-486 Soil Profile Figure 2.5-487 Soil Profile Figure 2.5-488 Soil Profile Figure 2.5-489 Soil Profile Figure 2.5-491 Soil Profile Figure 2.5-492 Soil Profile Figure 2.5-493 Soil Profile Figure 2.5-494 Soil Profile Figure 2.5-495 Soil Profile Figure 2.5-494 Soil Profile Figure 2.5-495 Soil Profile Figure 2.5-496 Soil Profile Figure 2.5-497 Soil Profile Figure 2.5-498 Soil Profile Figure 2.5-499 Soil Profile Figure 2.5-501 Soil Profile Figure 2.5-502 Soil Profile Figure 2.5-503 Soil Profile Figure 2.5-504 Soil Profile Figure 2.5-505 Soil Profile Figure 2.5-505 Soil Profile Figure 2.5-504 Soil Profile Figure 2.5-505 Soil Profile <t< th=""><th>Figure 2.5-481</th><th>Soil Profile</th></t<>	Figure 2.5-481	Soil Profile
Figure 2.5-484Soil ProfileFigure 2.5-485Soil ProfileFigure 2.5-485Soil ProfileFigure 2.5-487Soil ProfileFigure 2.5-488Soil ProfileFigure 2.5-489Soil ProfileFigure 2.5-490Soil ProfileFigure 2.5-491Soil ProfileFigure 2.5-492Soil ProfileFigure 2.5-493Soil ProfileFigure 2.5-494Soil ProfileFigure 2.5-495Soil ProfileFigure 2.5-496Soil ProfileFigure 2.5-497Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-510<	Figure 2.5-482	Soil Profile
Figure 2.5-485Soil ProfileFigure 2.5-486Soil ProfileFigure 2.5-488Soil ProfileFigure 2.5-488Soil ProfileFigure 2.5-489Soil ProfileFigure 2.5-491Soil ProfileFigure 2.5-492Soil ProfileFigure 2.5-493Soil ProfileFigure 2.5-494Soil ProfileFigure 2.5-495Soil ProfileFigure 2.5-496Soil ProfileFigure 2.5-497Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520<	Figure 2.5-483	Soil Profile
Figure 2.5-486 Soil Profile Figure 2.5-487 Soil Profile Figure 2.5-488 Soil Profile Figure 2.5-489 Soil Profile Figure 2.5-490 Soil Profile Figure 2.5-491 Soil Profile Figure 2.5-492 Soil Profile Figure 2.5-493 Soil Profile Figure 2.5-494 Soil Profile Figure 2.5-495 Soil Profile Figure 2.5-496 Soil Profile Figure 2.5-497 Soil Profile Figure 2.5-498 Soil Profile Figure 2.5-499 Soil Profile Figure 2.5-500 Soil Profile Figure 2.5-501 Soil Profile Figure 2.5-502 Soil Profile Figure 2.5-503 Soil Profile Figure 2.5-504 Soil Profile Figure 2.5-505 Soil Profile Figure 2.5-506 Soil Profile Figure 2.5-510 Soil Profile Figure 2.5-510 Soil Profile Figure 2.5-510 Soil Profile Figure 2.5-511 Soil Profile <t< th=""><td>Figure 2.5-484</td><td>Soil Profile</td></t<>	Figure 2.5-484	Soil Profile
Figure 2.5-487 Soil Profile Figure 2.5-488 Soil Profile Figure 2.5-488 Soil Profile Figure 2.5-490 Soil Profile Figure 2.5-491 Soil Profile Figure 2.5-492 Soil Profile Figure 2.5-493 Soil Profile Figure 2.5-494 Soil Profile Figure 2.5-495 Soil Profile Figure 2.5-496 Soil Profile Figure 2.5-497 Soil Profile Figure 2.5-498 Soil Profile Figure 2.5-499 Soil Profile Figure 2.5-499 Soil Profile Figure 2.5-500 Soil Profile Figure 2.5-501 Soil Profile Figure 2.5-502 Soil Profile Figure 2.5-503 Soil Profile Figure 2.5-504 Soil Profile Figure 2.5-505 Soil Profile Figure 2.5-506 Soil Profile Figure 2.5-507 Soil Profile Figure 2.5-510 Soil Profile Figure 2.5-510 Soil Profile Figure 2.5-511 Soil Profile <t< th=""><td>Figure 2.5-485</td><td>Soil Profile</td></t<>	Figure 2.5-485	Soil Profile
Figure 2.5-488 Soil Profile Figure 2.5-489 Soil Profile Figure 2.5-490 Soil Profile Figure 2.5-491 Soil Profile Figure 2.5-492 Soil Profile Figure 2.5-493 Soil Profile Figure 2.5-494 Soil Profile Figure 2.5-495 Soil Profile Figure 2.5-496 Soil Profile Figure 2.5-497 Soil Profile Figure 2.5-498 Soil Profile Figure 2.5-499 Soil Profile Figure 2.5-498 Soil Profile Figure 2.5-500 Soil Profile Figure 2.5-501 Soil Profile Figure 2.5-502 Soil Profile Figure 2.5-503 Soil Profile Figure 2.5-504 Soil Profile Figure 2.5-505 Soil Profile Figure 2.5-506 Soil Profile Figure 2.5-507 Soil Profile Figure 2.5-508 Soil Profile Figure 2.5-510 Soil Profile Figure 2.5-511 Soil Profile Figure 2.5-512 Soil Profile <t< th=""><td>Figure 2.5-486</td><td>Soil Profile</td></t<>	Figure 2.5-486	Soil Profile
Figure 2.5-489Soil ProfileFigure 2.5-490Soil ProfileFigure 2.5-491Soil ProfileFigure 2.5-492Soil ProfileFigure 2.5-493Soil ProfileFigure 2.5-494Soil ProfileFigure 2.5-495Soil ProfileFigure 2.5-496Soil ProfileFigure 2.5-497Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-500Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimu	Figure 2.5-487	Soil Profile
Figure 2.5-490Soil ProfileFigure 2.5-491Soil ProfileFigure 2.5-492Soil ProfileFigure 2.5-493Soil ProfileFigure 2.5-494Soil ProfileFigure 2.5-495Soil ProfileFigure 2.5-496Soil ProfileFigure 2.5-497Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-500Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-488	Soil Profile
Figure 2.5-491Soil ProfileFigure 2.5-492Soil ProfileFigure 2.5-493Soil ProfileFigure 2.5-494Soil ProfileFigure 2.5-495Soil ProfileFigure 2.5-496Soil ProfileFigure 2.5-497Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-500Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Wa	Figure 2.5-489	Soil Profile
Figure 2.5-492Soil ProfileFigure 2.5-493Soil ProfileFigure 2.5-494Soil ProfileFigure 2.5-495Soil ProfileFigure 2.5-496Soil ProfileFigure 2.5-497Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-500Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-490	Soil Profile
Figure 2.5-493Soil ProfileFigure 2.5-494Soil ProfileFigure 2.5-495Soil ProfileFigure 2.5-496Soil ProfileFigure 2.5-497Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-500Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Wa	Figure 2.5-491	Soil Profile
Figure 2.5-494Soil ProfileFigure 2.5-495Soil ProfileFigure 2.5-496Soil ProfileFigure 2.5-497Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-500Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-492	Soil Profile
Figure 2.5-495Soil ProfileFigure 2.5-496Soil ProfileFigure 2.5-497Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-500Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-493	Soil Profile
Figure 2.5-496Soil ProfileFigure 2.5-497Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-500Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-494	Soil Profile
Figure 2.5-497Soil ProfileFigure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-500Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-495	Soil Profile
Figure 2.5-498Soil ProfileFigure 2.5-499Soil ProfileFigure 2.5-500Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-496	Soil Profile
Figure 2.5-499Soil ProfileFigure 2.5-500Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-497	Soil Profile
Figure 2.5-500Soil ProfileFigure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-498	Soil Profile
Figure 2.5-501Soil ProfileFigure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-499	Soil Profile
Figure 2.5-502Soil ProfileFigure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-500	Soil Profile
Figure 2.5-503Soil ProfileFigure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-501	Soil Profile
Figure 2.5-504Soil ProfileFigure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-502	Soil Profile
Figure 2.5-505Soil ProfileFigure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-503	Soil Profile
Figure 2.5-506Soil ProfileFigure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-504	Soil Profile
Figure 2.5-507Soil ProfileFigure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-505	Soil Profile
Figure 2.5-508Soil ProfileFigure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (-	
Figure 2.5-509Soil ProfileFigure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (0	
Figure 2.5-510Soil ProfileFigure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (U	
Figure 2.5-511Soil ProfileFigure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (-	
Figure 2.5-512Soil ProfileFigure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (0	
Figure 2.5-513Soil ProfileFigure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (•	
Figure 2.5-514Soil ProfileFigure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (-	
Figure 2.5-515Soil ProfileFigure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (e	
Figure 2.5-516Soil ProfileFigure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (0	
Figure 2.5-517Soil ProfileFigure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (-	
Figure 2.5-518Soil ProfileFigure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (0	
Figure 2.5-519Soil ProfileFigure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (0	
Figure 2.5-520Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R - (Consolidated -Undrained) 95% STD Proctor Density (ASTM D698) 3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (-	
General Consolidated -Undrained)95% STD Proctor Density (ASTM D698)3% Below Optimum MoistureFigure 2.5-521Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (0	
Figure 2.5-5213% Below Optimum MoistureWatts Bar Nuclear Plant Underground Barrier Trench A Backfill R (Figure 2.5-520	e
Figure 2.5-521 Watts Bar Nuclear Plant Underground Barrier Trench A Backfill R (
5		1
Consolidated -Undrained) 100% STD Proctor Density (ASTM D698)	Figure 2.5-521	6
		Consolidated -Undrained) 100% STD Proctor Density (ASTM D698)

Section

<u>Title</u>

	3% Below Optimum Moisture Content
Figure 2.5-522	Watts Bar Nuclear Plant Underground Barrier Trench B Backfill R (
C	Consolidated - Undrained) 95% STD Proctor Density (ASTM D698)
	3% Below Optimum Moisture Content
Figure 2.5-523	Watts Bar Nuclear Plant Underground Barrier Trench B Backfill R (
C	Consolidated -Undrained) 100% STD Proctor Density (ASTM D698)
	3% Below Optimum Moisture Content
Figure 2.5-524	ERCW Liquefaction Trench A Borrow
Figure 2.5-525	ERCW Liquefaction Trench A Supplemental Borrow
Figure 2.5-526	ERCW Liquefaction Trench B
Figure 2.5-527	ERCW Liquefaction Borrow Area 9
Figure 2.5-528	ERCW Liquefaction Borrow Area 10
Figure 2.5-529	ERCW Liquefaction Borrow Area 11
Figure 2.5-530	ERCW Liquefaction Borrow Area 12
Figure 2.5-531	ERCW Liquefaction Borrow Area 13
Figure 2.5-532	ERCW Liquefaction Borrow Area 2C
Figure 2.5-533	ERCW Liquefaction Borrow Area 2C
Figure 2.5-534	ERCW Liquefaction Trench A
Figure 2.5-535	ERCW Liquefaction Trench A Supplemental Borrow
Figure 2.5-536	ERCW Liquefaction Trench B
Figure 2.5-537	ERCW Liquefaction Borrow Area 9
Figure 2.5-538	ERCW Liquefaction Borrow Area 10
Figure 2.5-539	ERCW Liquefaction Borrow Area 11
Figure 2.5-540	ERCW Liquefaction Borrow Area 12
Figure 2.5-541	ERCW Liquefaction Borrow Area 13
Figure 2.5-542	ERCW Liquefaction Borrow Area 2C
Figure 2.5-543	ERCW Liquefaction Borrow Area 2C
Figure 2.5-544	Watts Bar Nuclear Plant Granular Fill (1032) Q-(Unconsolidated-
	Undrained) 70% Relative Density (ASTM D2049)
Figure 2.5-545	Watts Bar Nuclear Plant Granular Fill (1032) S-Direct Shear 70% Rel-
	ative Density (ASTM 02049)
Figure 2.5-546	Watts Bar Nuclear Plant Granular Fill (1032) Q- (Unconsolidated -
	Undrained) 80% Relative Density (ASTM D2049)
Figure 2.5-547	Watts Bar Nuclear Plant Granular Fill (1032) R- (Consolidated-
	Undrained) S-Direct: Shear 80% Relative Density (ASTM D2049)
Figure 2.5-548	Summary. of Granular Fill Test Data -Relacive"Density Diesel Genera-
	tor Building
Figure 2.5-549	ERCW Pipeline Section A-A (Please see Figures DVD for Actual Fig-
	ure) (Sheet 1 of 4)
Figure 2.5-549	ERCW Pipeline Section A-A (Please see Figures DVD for Actual Fig-
	ure) (Sheet 2 of 4)
Figure 2.5-549	ERCW Pipeline Section A-A (Please see Figures DVD for Actual Fig-
	ure) (Sheet 3 of 4)
Figure 2.5-549	ERCW Pipeline Section A-A (Please see Figures DVD for Actual Fig-

Section

<u>Title</u>

	ure) (Sheet 4 of 4)
Figure 2.5-550	ERCU Pipeline Section B-B (Please see Figures DVD for Actual Fig-
	ure)
Figure 2.5-551	ERCU Pipeline Section C-C (Please see Figures DVD for Actual Fig-
D : 0.5.550	ure)
Figure 2.5-552	ERCW Pipeline Section D-D
Figure 2.5-553	ERCW Pipeline Section E-E
Figure 2.5-554	Category I Electrical Conduits Section F-F (Please see Figures DVD for Actual Figure)(Sheet 1 of 2)
Figure 2.5-554	Category I Electrical Conduits Section F-F (Please see Figures DVD for
6	Actual Figure)(Sheet 2 of 2)
Figure 2.5-555	Category I Electrical Conduits Section G-G (Please see Figures DVD
C	for Actual Figure)
Figure 2.5-556	Category I Electrical Conduits Section H-H (Please see Figures DVD
	for Actual Figure)
Figure 2.5-557	Class IE Conduit
Figure 2.5-558	Class IE Conduit
Figure 2.5-559	Class IE Conduit
Figure 2.5-560	Class IE Conduit
Figure 2.5-561	Class IE Conduit
Figure 2.5-562	Class IE Conduit
Figure 2.5-563	Class IE Conduit
Figure 2.5-564	ERCU & HPFP System
Figure 2.5-565	ERCU & HPFP System
Figure 2.5-566	Intake Channel Grain Size Analysis
Figure 2.5-567	ERCW Piping System - Generalized Profile TVA DWG NO. 604K1009
-	RO
Figure 2.5-568	ERCW Piping System - Generalized Profile TVA DWG NO. 604K1010
-	RO
Figure 2.5-569	One-Dimensional Soil Profile Used for Liquefaction Evaluation
Figure 2.5-570	Comparison of Induced Shear Stress and Shear Stress Required to Cause
-	5% Strain and Resulting Factors Of Safety With Depth Below Ground
	Surface
Figure 2.5-571	ERCW Pipeline Section A-A
C	(Please See Figures DVD For Actual Figure)(Sheet 1 of 4)
Figure 2.5-571	ERCW Pipeline Section A-A
	(Please See Figures DVD For Actual Figure)(Sheet 2 of 4)
Figure 2.5-571	ERCW Pipeline Section A-A
	(Please See Figures DVD For Actual Figure)(Sheet 3 of 4)
Figure 2.5-571	ERCW Pipeline Section A-A
	(Please See Figures DVD For Actual Figure)(Sheet 4 of 4)
Figure 2.5-572	ERCW Pipeline Section B-B
Figure 2.5-573	(Please see Figures DVD for Actual Figure)
Figure 2.5-574	ERCW Pipeline Section D-D

Section

<u>Section</u>	<u>Title</u>
Figure 2.5-575	ERCW Pipeline Section E-E
Figure 2.5-576	Category I Electrical Conduits Section F-F
-	(Please see Figures DVD for Actual Figure)(Sheet 1 of 2)
Figure 2.5-576	Category I Electrical Conduits Section F-F
-	(Please see Figures DVD for Actual Figure)(Sheet 2 of 2)
Figure 2.5-577	Category I Electrical Conduits Section G-G
-	(Please see Figures DVD for Actual Figure)
Figure 2.5-578	Category I Electrical Conduits Section H-H
	(Please see Figures DVD for Actual Figure)
Figure 2.5-579	Miscellaneous ERCW Piping and IE Conduit Soil Borings
	(Please See Figures DVD For Actual Figure)
Figure 2.5-580	Yard Underground Barriers for Potential Soil Liquefaction
	TVA DWGNO. 10N213-1 R1
Figure 2.5-581	Yard Underground Barriers for Potential Soil Liquefaction
	TVA DWGNO. 10N213-2 R6
Figure 2.5-582	Yard Category I ERCW Piping and Conduits - Plan
Figure 2.5-583	Remedial Treatment for Potential Soil Liquefaction -Stability Analysis
	Summary
	(Please See Figures DVD For Actual Figure)
Figure 2.5-584	Finished Grading - Underground Barrier As-Built Cross-Sections
Figure 2.5-585	Powerhouse -Settlement Stations -Bench Mark Assembly
Figure 2.5-586	Settlement VS. Time For Unit 1 Reactor Building
Figure 2.5-587	Settlement VS. Time For Unit 2 Reactor Building
Figure 2.5-588	Maximum Settlement -Auxiliary Building Settlement Station 10; Mini-
	mum
	Settlement -Auxiliary Building Settlement Station 20 (1973-1982)
	(Please see Figures DVD for Actual Figure)
Figure 2.5-589	Maximum Settlement - Diesel Generator Building Settlenent Station 1
	& Intake Pumping Station Settlement Station 3A;
	Minimum Settlement Diesel Generator Building Settlement Station 4 &
	Intake Pumping Station Settlement Station 4 (1975-1982)
E ¹ 2.5.500	(Please see Figures DVD for Actual Figure)
Figure 2.5-590	General Location Of Relative Movement Detectors
Eirer 2.5.501	TVA DWG NO. 10N203-3 R1
Figure 2.5-591	Watts Bar Dam Probability Distribution: November - March Rainfall
Eigura 2.5.502	Period 1940 - 1983 Vard EPCW Dinaling EST, 25 VP High Water Table
Figure 2.5-592	Yard ERCW Pipeline EST. 25-YR High Water Table
Figure 2.5-593	Water Table Profiles
Figure 2.5-594	Yard Underground Barrier Trench A STA 1 + 78 (Please See Figures DVD For Actual Figure)
Figure 2.5.505	Yard Underground Barrier Trench A STA 3 + 78
Figure 2.5-595	(Please See Figures DVD For Actual Figure)
Figure 2.5-596	Yard Underground Barrier Trench A STA 5 + 78
1 15ulo 2.5-570	(Please See Figures DVD For Actual Figure)
	(i rease see i igures D v D i or recuar i igure)

Section

	<u>Title</u>	
round	Barrier	Trei
	DIND I	-

Figure 2.5-597	Yard Underground Barrier Trench A STA 7 + 78 (Please See Figures DVD For Actual Figure)
Figure 2.5-598	Summary of Earthfill Test Data - Density
Figure 2.5-599	Summary Of Earthfill Test Data -Moisture Content
Figure 2.5-600	Summary Of Earthfill Test Data -Density
Figure 2.5-601	Summary Of Earthfill Test Data - Moisture Content
Figure 2.5-602	Yard Underground Barrier Trench B STA 1 + 100
	(Please See Figures DVD For Actual Figure)
Figure 2.5-603	Yard Underground Barrier Trench B STA 2 + 50
	(Please See Figures DVD For Actual Figure)
Figure 2.5-604	Yard Underground Barrier Trench B STA 3 + 00
	(Please See Figures DVD For Actual Figure)
Figure 2.5-605	Yard Underground Barrier Trench B STA 4 + 50
	(Please See Figures DVD For Actual Figure)
Figure 2.5-606	Summary of Fill Test Data -Density
Figure 2.5-607	Summary of Earthfill Test Data - Moisture Content
Figure 2.5-608	Summary of Earthfill Test Data -Density
Figure 2.5-609	Summary of Earthfill Test Data - Moisture Content
Figure 2.5-610	Summary of Granular Fill Test Data - Relative Density

2.0 SITE CHARACTERISTICS

2.1 GEOGRAPHY AND DEMOGRAPHY

2.1.1 Site Location and Description

2.1.1.1 Specification of Location

The Watts Bar Nuclear Plant is located on a tract of approximately 1770 acres in Rhea County on the west bank of the Tennessee River at river mile 528. The site is approximately 1-1/4 miles south of the Watts Bar Dam and approximately 31 miles north-northeast of the Sequoyah Nuclear Plant.

The 1770 acre reservation is owned by the United States and is in the custody of TVA. Also located within the reservation are the Watts Bar Dam and Hydro-Electric Plant, the Watts Bar Steam Plant, the TVA Central Maintenance Facility, and the Watts Bar Resort Area.

The resort area buildings and improvements have been sold to private individuals and the associated land mass leased to the Watts Bar Village Corporation, Inc. Due to this sale and leasing arrangement no services are provided to the resort area from the Watts Bar Nuclear Plant.

The location of each reactor is given below:

UNIT 1 35°36' 10.430 <u>"</u> N	84°47' 24.267 <u>"</u> W
UNIT 2 35°36' 10.813 <u>"</u> N	84°47' 21.398 <u>"</u> W

Shitehore manorence menorion (meters)	UNIVERSAL	TRANSVERSE MERCATOR	(Meters)
---------------------------------------	-----------	---------------------	----------

Northing	Easting
UNIT 1 N3, 941,954.27	E 700,189.94
UNIT 2 N3, 941,967.71	E 700,261.86

2.1.1.2 Site Area Map

Figure 2.1-1 is a map of the TVA area showing the location of all power plants. Figure 2.1-2 shows the Watts Bar site location with respect to prominent geophysical and political features of the area. This map is used to correlate with the population distribution out to 50 miles. The population density within 10 miles is keyed to Figure 2.1-3. This map shows greater detail of the site area. Figures 2.1-4a and 2.1-4b are maps of the Watts Bar Site Area. The Watts Bar reservation boundary and the exclusion area boundary are boldly outlined. Details of the site and the plant structures may be found on Figure 2.1-5.

2.1.1.3 Boundaries for Establishing Effluent Limits

The boundary on which limits for the release of radioactive effluents are based is the site boundary shown in Figure 2.1-4b.

2.1.2 Exclusion Area Authority And Control

Due to the large size of the Watts Bar site, the exclusion area boundary is smaller than, and is completely within, the site boundary. The exclusion area is determined by a circle of radius 1200 meters centered on a point 20 feet from the north wall of the turbine building along the building centerline. The exclusion area boundary will be clearly marked on all access roads. The exclusion area is shown on Figure 2.1-4b.

2.1.2.1 Authority

All of the land inside the exclusion area is owned by the United States and in the custody of TVA. TVA controls all activities within the reservation.

2.1.2.2 Control of Activities Unrelated to Plant Operation

There will be no residences, unauthorized commercial operations, or recreational areas within the exclusion area. No public highways or railroads transverse the exclusion area. A portion of the Tennessee River does, however, cross the eastern portion of the exclusion area. This portion of the river is accessible for fishing, pleasure boating, and commercial transportation.

2.1.2.3 Arrangements for Traffic Control

Arrangements have been made and formalized through the Tennessee Multijurisdictional Radiological Emergency Plan to establish traffic control responsibilities on the portion of the Tennessee river within the exclusion zone as follows:

- (a) Non-commercial traffic Tennessee Wildlife Resources Agency (TWRA).
- (b) Commercial traffic U.S. Coast Guard (USCG).

2.1.2.4 Abandonment or Relocation of Roads

No public roads cross the exclusion area.

2.1.3 Population Distribution

Historical and projected population information is contained in this section. Both resident and transient populations are included. For 2000, population was based on data from the U.S. Census Bureau, Census of Population, 2000, including block group, block, and census track data. Projections were based on county projections by Woods& Poole.

Economic Analysis Division, Bureau of Economic Analysis, U.S. Department of Commerce, 1992. Subcounty population estimates were prepared using a constant share of the 1990 county total. County Census maps and 1:250,000 topographic maps were used to disegregate sub-county population data into the annular segments.

Considerations included municipal limits, topography, road system, land ownership (e.g., National Forest), and land use (e.g., strip mines).

Transient population consists of two components - recreation visitation and school enrollments. Peak hour visitation to recreation facilities is based on the maximum capacity of the facility plus some overflow. For2008 are from the Tennessee Department of Education Report Card 2008 (http://www.state.tn.us/education/). Projected enrollments are based on projected population growth in the respective counties.

2.1.3.1 Population Within 10 Miles

About 18,900 people lived within 10 miles of the Watts Bar site in 2000, with more than 75% of them between five and 10 miles from the site. Two small towns, Spring City and Decatur, which in 2007 had populations of 2,002 and 1,456 respectively, are located between five and 10 miles from the site. Decatur is south and of the site, while Spring City is northwest and north-northwest. Most of the remainder of the area is sparsely populated, especially within five miles of the site. The pattern is expected to continue.

Tables 2.1-2 through 2.1-8b show the estimated and projected population distribution within ten miles of the site for 2000, 2010, 2020, 2030, 2040, 2050, and 2060. Figure 2.1-3 shows the area within ten miles of the site overlaid by circles and sixteen compass sectors.

2.1.3.2 Population Between 10 and 50 Miles

The area between 10 and 50 miles from the site lies mostly in the lower and middle portions of east Tennessee, with small areas in southwestern North Carolina and in northern Georgia. The population of this area is projected to increase by about 62%, or 660,000 persons, between 2000 and 2060. About 71% of this total increase is expected to be in the area between 30 and 50 miles from the site.

The largest urban concentration between 10 and 50 miles is the city of Chattanooga, located to the southwest and south-southwest. This city had a population in 2007 of 169,884; about 80% of this population is located between 40 and 50 miles from the site, while the rest is located beyond 50 miles. The city of Knoxville is located to the east-northeast of the site and is slightly larger than Chattanooga. However, only a small share, less than 10 percent, of its population of 183,546, is located between 40 and 50 miles of the site with the remainder beyond 50 miles.

There are three smaller urban concentrations in this area with population greater than 20,000. The city of Oak Ridge, which had a 2007 population of 27,514, is located about 40 miles to the northeast. The twin cities of Alcoa and Maryville, which had a combined population in 2007 of about 35,300, are located between 45 to 50 miles to the east-northeast. Cleveland, with a 2007 population of 39,200, is located about 30 miles to the south. Most of the population growth is expected to occur around these and the larger population centers.

There are, in addition, a number of smaller communities dispersed throughout the area, surrounded by low-density rural areas.

Tables 2.1-8 through 2.1-14 contain the 2000, 2010, 2020, 2030, 2040,2050, and 2060 population distribution at various distances and directions from the site out to 50 miles. Figure 2.1-2 shows the area within 50 miles of the site overlaid by the circles and 16 compass sectors.

2.1.3.3 Transient Population

Transient population consists of visitors to recreation sites and students in schools. There are no major active industrial facilities or other major employers in the vicinity of the plant.

Recreation--Estimated and projected peak hour visitation to recreation facilities within 10 miles of the plant are contained in Tables 2.1-15 through 2.1-21. The visitation is based on the maximum capacity of facilities plus some overflow. Capacities are based on the TVA data base of recreation facilities in the area. There are no recreation facilities beyond 10 miles which are large enough to cause significant variations in the total population within any annular segment.

Schools--Eight schools are currently located within ten miles of Watts Bar Nuclear Plant. In 2008, these schools served 4,155 students, distributed as shown in Table 2.1-22. Enrollments for 2008 are from the Tennessee Department of Education Report Card 2008 (http://www.state.tn.us/education/). Enrollments at these schools are projected based on county population projections by Woods & Poole.

2.1.3.4 Low Population Zone

The low population zone (LPZ) distance as defined in 10 CFR 100 has been chosen to be three miles (4828 meters). The population of this area (2976 in 2010) and the population density (105 people per square mile in 2010) are both low. Population includes permanent residents (759) and transients (2217) estimates for 2010. Transients are "Peak Hour Recreation Visitors". In addition, this area is of such size that in the unlikely event of a serious accident there is a reasonable probability that appropriate measures could be taken to protect the health and safety of the residents. Specific provisions for the protection of this area are considered in the development of the Watts Bar Nuclear Plant site emergency plan. The present and projected population figures for this area are included in Tables 2.1-1a through 2.1-8b. Features of the area within the low population zone distances are shown on Figure 2.1-3.

2.1.3.5 Population Center

The nearest population center (as defined by 10 CFR 100) is Cleveland, Tennessee, which had a 2007 population of 39,200. Cleveland is located approximately 30 miles south of the Watts Bar site.

2.1.3.6 Population Density

Cumulative population around the site out to 30 miles is plotted on Figures 2.1-20 and 2.1-21 for 2010 and 2060. Also plotted on Figure 2.1-20 is the cumulative population

I

that would result from a uniform population density of 500 persons per square mile. Figure 2.1-21 contains a similar plot except that it is for a uniform density of 1,000 persons per square mile. For all distances for both years the population around the site is significantly smaller than that based on the uniform population density.

REFERENCES

None.

<u>Within 10 Miles of the Site</u> (Sheet 1 of 1)								
<u>Distance</u> From Site (Miles)								
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10	
Ν	0	9	0	0	66	1,674	1,749	
NNE	0	0	9	200	90	862	1,161	
NE	0	0	9	150	140	403	702	
ENE	0	0	9	150	140	242	541	
E	0	4	210	150	300	1,553	2,217	
ESE	0	0	0	13	20	377	410	
SE	4	0	0	14	19	406	443	
SSE	10	0	0	120	201	614	945	
S	8	0	0	0	966	1,863	2,837	
SSW	0	0	10	0	0	266	276	
SW	0	0	0	0	0	727	727	
WSW	0	4	25	41	87	492	649	
W	0	10	15	70	62	491	648	
WNW	0	0	15	87	55	339	496	
NW	0	75	230	260	364	1,837	2,766	
NNW	0	0	0	120	<u>85</u>	2,156	2,361	
TOTAL	22	102	532	1,375	2,595	14,302	18,928	

Table 2.1-1 <u>Watts Bar</u> 2000 Population Distribution <u>Within 10 Miles of the Site</u> (Sheet 1 of 1)

I

I

I

I

I

Table 2.1-2 <u>Watts Bar</u> 2010 Population Distribution Within 10 Miles Of The Site (Sheet 1 of 1)

Distance From Site Miles 2-3 3-4 Direction 0-1 1-2 4-5 5-10 0-10 Ν 1,863 1,946 NE 1,292 NE ENE Е 1,902 2,715 ESE SE SSE 1,157 S 1,183 2,282 3,475 SSW SW WSW W WNW NW 2,044 3,077 NNW 2,399 2,628 TOTAL 1,599 3,085 16,556 21,999

Table 2.1-3 <u>Watts Bar</u> 2020 Population Distribution Within 10 Miles Of The Site (Sheet 1 of 1)

Miles							
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10
N	0	11	0	0	81	2,064	2,157
NNE	0	0	11	247	111	1,063	1,432
NE	0	0	14	235	219	630	1,098
ENE	0	0	14	235	219	379	846
E	0	6	329	235	469	2,430	3,468
ESE	0	0	0	20	31	590	641
SE	6	0	0	22	30	635	693
SSE	16	0	0	188	314	961	1,478
S	13	0	0	0	1,511	2,914	4,438
SSW	0	0	16	0	0	416	432
SW	0	0	0	0	0	896	896
WSW	0	5	31	51	107	607	800
W	0	12	18	86	76	605	799
WNW	0	0	18	107	68	418	612
NW	0	92	284	321	449	2,265	3,411
NNW	0	0	0	148	105	2,658	2,911
TOTAL	35	126	735	1,895	3,790	19,531	26,112

Table 2.1-4 <u>Watts Bar</u> 2030 Population Distribution Within 10 Miles Of The Site (Sheet 1 of 1)

			Mile	es			
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10
Ν	0	12	0	0	90	2,284	2,386
NNE	0	0	12	273	123	1,176	1,584
NE	0	0	17	287	268	770	1,342
ENE	0	0	17	287	268	463	1,035
E	0	8	401	287	574	2,969	4,239
ESE	0	0	0	25	38	721	784
SE	8	0	0	27	36	776	847
SSE	19	0	0	229	384	1,174	1,806
S	15	0	0	0	1,847	3,561	5,423
SSW	0	0	19	0	0	509	528
SW	0	0	0	0	0	992	992
WSW	0	5	34	56	119	671	885
W	0	14	20	96	85	670	885
WNW	0	0	20	119	75	463	677
NW	0	102	314	355	497	2,507	3,775
NNW	0	0	0	164	116	2,942	3,222
TOTAL	42	141	854	2,205	4,520	22,648	30,410

Table 2.1-5 <u>Watts Bar</u> 2040 Population Distribution Within 10 Miles Of The Site (Sheet 1 of 1)

			Mile	es			
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10
Ν	0	13	0	0	96	2,432	2,541
NNE	0	0	13	291	131	1,252	1,687
NE	0	0	20	326	304	875	1,525
ENE	0	0	20	326	304	525	1,175
Е	0	9	456	326	651	3,370	4,812
ESE	0	0	0	28	43	818	889
SE	9	0	0	30	41	881	961
SSE	22	0	0	260	436	1,333	2,051
S	17	0	0	0	2,096	4,043	6,156
SSW	0	0	22	0	0	577	599
SW	0	0	0	0	0	1,056	1,056
WSW	0	6	36	60	126	715	943
W	0	15	22	102	90	713	942
WNW	0	0	22	126	80	492	720
NW	0	109	334	378	529	2,669	4,019
NNW	0	0	0	174	123	3,132	3,429
TOTAL	48	152	945	2,427	5,050	24,883	33,505

Table 2.1-6 <u>Watts Bar</u> 2050 Population Distribution Within 10 Miles Of The Site (Sheet 1 of 1)

			Mi	les			
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10
Ν	0	14	0	0	103	2,616	2,733
NNE	0	0	14	313	141	1,347	1,815
NE	0	0	22	370	346	995	1,733
ENE	0	0	22	370	346	597	1,335
Е	0	10	518	370	740	3,833	5,471
ESE	0	0	0	32	49	931	1,012
SE	10	0	0	35	47	1,002	1,094
SSE	25	0	0	296	496	1,516	2,333
S	20	0	0	0	2,384	4,598	7,002
SSW	0	0	25	0	0	657	682
SW	0	0	0	0	0	1,136	1,136
WSW	0	6	39	64	136	769	1,014
W	0	16	23	109	97	767	1,012
WNW	0	0	23	136	86	530	775
NW	0	117	359	406	569	2,871	4,322
NNW	0	0	0	188	133	3,369	3,690
TOTAL	55	163	1,045	2,689	5,673	27,534	37,159

Table 2.1-7 <u>Watts Bar</u> 2060 Population Distribution Within 10 Miles Of The Site (Sheet 1 of 1)

			Mi				
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10
Ν	0	15	0	0	110	2,800	2,925
NNE	0	0	15	335	151	1,442	1,943
NE	0	0	25	415	387	1,115	1,942
ENE	0	0	25	415	387	669	1,496
Е	0	11	581	415	830	4,296	6,133
ESE	0	0	0	36	55	1,043	1,134
SE	11	0	0	39	53	1,123	1,226
SSE	28	0	0	332	556	1,698	2,614
S	22	0	0	0	2,672	5,154	7,848
SSW	0	0	28	0	0	736	764
SW	0	0	0	0	0	1,216	1,216
WSW	0	7	42	69	146	823	1,087
W	0	17	25	117	104	821	1,084
WNW	0	0	25	146	92	567	830
NW	0	125	385	435	609	3,073	4,627
NNW	0	0	0	201	142	3,607	3,950
TOTAL	61	175	1,151	2,955	6,294	30,183	40,819

Table 2.1-8Watts Bar2000 Population DistributionWithin 50 Miles Of The Site(Sheet 1 of 1)										
Direction	0-10	10-20	20-30	30-40	40-50	Total				
Ν	1,749	1,259	1,602	3,132	4,475	12,217				
NNE	1,161	9,604	15,206	10,307	1,790	38,068				
NE	702	2,941	13,742	22,022	55,634	95,041				
ENE	541	2,493	16,128	36,931	154,413	210,506				
E	2,217	7,598	11,798	16,630	23,599	61,842				
ESE	410	4,782	13,201	3,306	2,247	23,946				
SE	443	15,239	11,527	2,936	3,353	33,498				
SSE	945	6,871	10,259	2,397	26,218	46,690				
S	2,837	3,164	29,107	38,758	11,403	85,269				
SSW	276	2,789	34,031	37,215	92,251	166,562				
SW	727	9,365	12,610	52,880	97,063	172,645				
WSW	649	8,946	2,067	2,031	2,744	16,437				
W	648	2,409	4,083	2,270	4,300	13,710				
WNW	496	1,515	3,055	4,424	15,262	24,752				
NW	2,766	1,874	10,487	6,066	11,383	32,576				
NNW	2,361	900	19,046	6,533	4,450	33,290				
TOTAL	18,928	81,749	207,949	247,838	510,585	1,067,049				

_

Table 2.1-9Watts Bar2010 Population DistributionWithin 50 Miles Of The Site(Sheet 1 of 1)									
Direction	0-10	10-20	20-30	30-40	40-50	Total			
Ν	1,947	1,499	1,733	3,388	4,841	13,407			
NNE	1,292	10,080	15,960	10,818	1,936	40,087			
NE	860	3,087	14,423	23,114	60,063	101,547			
ENE	663	3,075	19,892	45,550	175,297	244,276			
Е	2,716	8,191	13,656	19,249	28,719	72,531			
ESE	502	5,155	15,280	3,827	2,601	27,365			
SE	543	16,1428	13,342	3,398	3,427	37,138			
SSE	1,158	7,407	11,059	2,584	29,017	51,225			
S	3,475	3,411	32,214	42,895	12,620	94,615			
SSW	338	2,867	31,982	38,255	94,830	171,272			
SW	809	10,423	12,962	54,358	110,380	188,932			
WSW	722	9,956	2,351	2,310	3,120	18,459			
W	721	2,601	4,210	2,340	4,433	14,306			
WNW	552	1,636	3,150	4,561	16,614	26,513			
NW	3,078	2,231	11,416	6,603	12,391	35,720			
NNW	2,628	1,072	22,678	7,779	4,929	39,084			
TOTAL	22,003	89,118	229,308	271,030	565,218	1,176,677			

Table 2.1-10 <u>Watts Bar</u> 2020 Population Distribution Within 50 Miles Of The Site (Sheet 1 of 1)

		Di	istance From S Miles	Site		
Direction	0-10	10-20	20-30	30-40	40-50	Total
Ν	2,157	1736	1931	3,776	5,395	14,995
NNE	1,432	10,671	16,895	11,452	2,158	42,608
NE	1,098	3,268	15,269	24,469	67,259	111,362
ENE	846	3,696	23,913	54,758	198,719	281,932
Е	3,468	8,684	14,840	20,918	34,692	82,602
ESE	641	5,465	16,605	4,158	2,826	29,696
SE	693	17,416	14,499	3,693	3,630	39,931
SSE	1,478	7,853	11,725	2,739	32,182	55,978
S	4,438	3,616	35,728	47,575	13,997	105,355
SSW	432	2,979	36,346	39,747	98,527	178,030
SW	896	11,547	13,468	56,477	114,879	197,268
WSW	800	11,031	2,446	2,404	3,248	19,929
W	799	2,773	4,534	2,521	4,775	15,401
WNW	612	1,744	3,392	4,912	17,849	28,509
NW	3,411	2,584	12,265	7,094	13,313	38,666
NNW	2,911	1,241	26,262	9,008	5,293	44,716
TOTAL	26,113	96,304	250,119	295,702	618,741	1,286,979

I

Table 2.1-11Watts Bar2030 Population DistributionWithin 50 Miles Of The Site(Sheet 1 of 1)									
Direction	0-10	10-20	20-30	30-40	40-50	Total			
Ν	2,387	1,990	2,148	4,199	5,999	16,723			
NNE	1,584	11,347	17,966	12,178	2,400	45,475			
NE	1,342	3,475	16,236	26,019	75,084	122,156			
ENE	1,034	4,358	28,195	64,563	244,050	322,200			
Е	4,238	9,269	16,170	22,793	41,046	93,516			
ESE	784	5,834	18,093	4,531	3,080	32,322			
SE	847	18,590	15,799	4,024	3,871	43,131			
SSE	1,807	8,382	12,515	2,924	35,644	61,272			
S	5,423	3,860	39,571	52,692	15,502	117,048			
SSW	528	3,124	38,123	41,689	103,342	186,806			
SW	992	12,779	14,126	59,238	120,676	207,811			
WSW	886	12,207	2,570	2,525	3,412	21,600			
W	884	2,975	4,907	2,728	5,167	16,661			
WNW	677	1,871	3,671	5,316	19,479	31,014			
NW	3,774	2,962	13,385	7,742	14,528	42,391			
NNW	3,222	1,422	30,099	10,324	5,715	50,782			
TOTAL	30,409	104,445	273,574	323,485	678,995	1,410,908			

Table 2.1-12Watts Bar2040Population DistributionWithin 50Miles Of The Site(Sheet 1 of 1)										
Direction	0-10	10-20	20-30	30-40	40-50	Total				
Ν	2,541	2,218	2,281	4,460	6,373	17,873				
NNE	1,687	11,747	18,599	12,607	2,549	47,189				
NE	1,524	3,597	16,808	26,935	80,896	129,760				
ENE	1,174	4,918	31,814	72,849	244,656	355,411				
Е	4,811	9,773	17,518	24,692	46,384	103,178				
ESE	890	6,151	19,601	4,909	3,336	34,887				
SE	961	19,601	17,155	4,359	3,985	46,021				
SSE	2,051	8,838	13,196	3,083	38,513	65,681				
S	6,157	4,070	42,757	56,934	16,750	126,668				
SSW	599	3,215	39,231	42,901	106,346	192,292				
SW	1,056	13,605	14,537	60,959	127,447	217,604				
WSW	943	12,996	2,714	2,667	3,603	22,923				
W	941	3,150	4,984	2,771	5,249	17,095				
WNW	721	1,981	3,729	5,400	19,945	31,776				
NW	4,018	3,302	13,705	8,129	14,875	44,029				
NNW	3,430	1,586	33,560	11,512	6,092	56,180				
TOTAL	33,504	110,748	292,149	345,167	726,999	1,508,567				

Table 2.1-13Watts Bar2050Population DistributionWithin 50Miles Of The Site(Sheet 1 of 1)										
Direction	0-10	10-20	20-30	30-40	40-50	Total				
Ν	2,733	2,457	2,452	4,795	6,851	19,288				
NNE	1,814	12,275	19,435	13,174	2,740	49,438				
NE	1,733	3,759	17,564	28,147	87,451	138,654				
ENE	1,335	5,522	35,726	81,809	267,271	391,663				
Е	5,472	10,308	18,878	26,610	52,132	113,400				
ESE	1,012	6,488	21,123	5,290	3,569	37,509				
SE	1,093	20,674	18,445	4,698	4,151	49,061				
SSE	2,333	9,322	13,918	3,252	41,612	70,437				
S	7,002	4,293	46,197	61,515	18,098	137,105				
SSW	681	3,325	40,575	44,371	109,989	198,941				
SW	1,136	14,635	15,035	63,048	134,126	227,980				
WSW	1,014	13,980	2,865	2,807	3,792	24,449				
W	1,013	3,335	5,204	2,893	5,480	17,925				
WNW	775	2,097	3,894	5,638	21,002	33,406				
NW	4,323	3,658	14,431	8,560	16,063	47,035				
NNW	3,690	1,757	37,176	12,752	6,490	61,865				
TOTAL	37,159	117,885	312,909	369,359	780,844	1,618,156				

Table 2.1-14Watts Bar2060 Population DistributionWithin 50 Miles Of The Site(Sheet 1 of 1)										
Direction	0-10	10-20	20-30	30-40	40-50	Total				
Ν	2,926	2,696	2,624	5,129	7,329	20,704				
NNE	1,942	12,804	20,272	13,741	2,931	51,690				
NE	1,942	3,921	18,320	29,359	94,005	147,547				
ENE	1,497	6,127	39,639	90,768	289,886	427,917				
Е	6,133	10,843	20,239	28,528	57,880	123,623				
ESE	1,134	6,824	22,646	5,671	3,855	40,130				
SE	1,225	21,748	19,774	5,037	4,317	52,101				
SSE	2,614	9,806	14,641	3,421	44,711	75,193				
S	7,848	4,515	49,638	66,097	19,446	147,544				
SSW	763	3,435	41,919	45,841	113,633	205,591				
SW	1,216	15,666	15,533	65,136	140,806	238,357				
WSW	1,086	14,965	2,999	2,946	3,981	25,977				
W	1,084	3,519	5,424	3,016	5,712	18,755				
WNW	830	2,213	4,058	5,877	22,060	35,038				
NW	4,627	4,014	15,544	8,991	16,872	50,048				
NNW	3,949	1,928	40,792	13,992	6,888	67,549				
TOTAL	40,816	125,024	334,062	393,550	834,312	1,727,764				

I

	<u>Within 10 Miles Of The Site</u> (Sheet 1 of 1)										
Distance Miles											
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10				
Ν	450	0	0180	0	0	0	630				
NNE	130	0	175	0	125	630	1,060				
NE	125	0	180	0	1,250	1,702	3,257				
ENE	125	125	290	120	120	0	780				
Е	0	0	0	0	0	0	0				
0	0	0	0	0	0	0	0				
SE	0	0	0	0	0	0	0				
SSE	0	0	0	0	0	0	0				
S	115	0	0	140	0	0	255				
SSW	0	40	0	0	110	480	630				
SW	0	115	110	0	0	115	340				
WSW	0	0	0	0	0	0	0				
W	0	0	0	0	0	0	0				
WNW	0	0	0	0	0	0	0				
NW	0	0	0	0	0	2,125	2,125				
NNW	0	0	0	0	0	1,032	1,032				
TOTAL	945	280	935	260	1,605	6,084	10,109				

Table 2.1-15 Watts Bar2009 Estimated Peak Recreation VisitationWithin 10 Miles Of The Site(Sheet 1 of 1)

I

<u>Within 10 Miles Of The Site</u> (Sheet 1 of 1)										
Distance Miles										
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10			
Ν	462	0	185	0	0	0	647			
NNE	133	0	180	0	128	646	1,087			
NE	128	0	185	0	1,282	1,746	3,341			
ENE	128	128	298	123	123	0	800			
Е	0	0	0	0	0	0	0			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	0	0	0			
SSE	0	0	0	0	0	0	0			
S	118	0	0	144	0	0	262			
SSW	0	41	0	0	113	492	646			
SW	0	118	113	0	0	118	349			
WSW	0	0	0	0	0	0	0			
W	0	0	0	0	0	0	0			
WNW	0	0	0	0	0	0	0			
NW	0	0	0	0	0	2,180	2,180			
NNW	0	0	0	0	0	1,059	1,059			
TOTAL	969	287	961	267	1,646	6,241	10,371			

Table 2.1-16 Watts Bar2010 Estimated Peak Recreation VisitationWithin 10 Miles Of The Site(Sheet 1 of 1)

I

		<u>Wi</u>	<u>thin 10 Mile</u> (Sheet		<u>Site</u>						
Distance Miles											
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10				
Ν	508	0	203	0	0	0	711				
NNE	147	0	198	0	141	712	1,198				
NE	141	0	203	0	1,412	1,923	3,679				
ENE	141	141	328	136	136	0	882				
Е	0	0	0	0	0	0	0				
ESE	0	0	0	0	0	0	0				
SE	0	0	0	0	0	0	0				
SSE	0	0	0	0	0	0	0				
S	130	0	0	158	0	0	288				
SSW	0	45	0	0	124	542	711				
SW	0	130	124	0	0	130	384				
WSW	0	0	0	0	0	0	0				
W	0	0	0	0	0	0	0				
WNW	0	0	0	0	0	0	0				
NW	0	0	0	0	0	2,401	2,401				
NNW	0	0	0	0	0	1,166	1,166				
TOTAL	1,067	316	1,056	294	1,813	6,874	11,420				

Table 2.1-17Watts Bar2020 Estimated Peak Recreation VisitationWithin 10 Miles Of The Site(Sheet 1 of 1)

I

<u>Within 10 Miles Of The Site</u> (Sheet 1 of 1)									
			Dista Mil						
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10		
Ν	560	0	224	0	0	0	784		
NNE	162	0	218	0	156	784	1,320		
NE	156	0	224	0	1,556	2,119	4,055		
ENE	156	156	361	149	149	0	971		
Е	0	0	0	0	0	0	0		
ESE	0	0	0	0	0	0	0		
SE	0	0	0	0	0	0	0		
SSE	0	0	0	0	0	0	0		
S	143	0	0	174	0	0	317		
SSW	0	50	0	0	137	598	785		
SW	0	143	137	0	0	143	423		
WSW	0	0	0	0	0	0	0		
W	0	0	0	0	0	0	0		
WNW	0	0	0	0	0	0	0		
NW	0	0	0	0	0	2,645	2,645		
NNW	0	0	0	0	0	1,285	1,285		
TOTAL	1,177	349	1,164	323	1,998	7,574	12,585		

Table 2.1-18 Watts Bar2030 Estimated Peak Recreation VisitationWithin 10 Miles Of The Site(Sheet 1 of 1)

I

	-	<u>Wi</u>	i <u>thin 10 Mile</u> (Sheet		<u>Site</u>		
			Dista Mil				
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10
Ν	581	0	232	0	0	0	813
NNE	168	0	226	0	161	813	1,368
NE	161	0	232	0	1,614	2,197	4,204
ENE	161	161	374	155	155	0	1,006
Е	0	0	0	0	0	0	0
ESE	0	0	0	0	0	0	0
SE	0	0	0	0	0	0	0
SSE	0	0	0	0	0	0	0
S	148	0	0	181	0	0	329
SSW	0	52	0	0	142	620	814
SW	0	148	142	0	0	148	438
WSW	0	0	0	0	0	0	0
W	0	0	0	0	0	0	0
WNW	0	0	0	0	0	0	0
NW	0	0	0	0	0	2,743	2,743
NNW	0	0	0	0	0	1,332	1,332
TOTAL	1,219	361	1,206	336	2,072	7,853	13,047

Table 2.1-19 Watts Bar2040 Estimated Peak Recreation VisitationWithin 10 Miles Of The Site(Sheet 1 of 1)

I

<u>Within 10 Miles Of The Site</u> (Sheet 1 of 1)												
	Distance Miles											
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10					
Ν	621	0	248	0	0	0	869					
NNE	179	0	241	0	172	869	1,461					
NE	172	0	248	0	1,724	2,347	4,491					
ENE	172	172	400	166	166	0	1,076					
Е	0	0	0	0	0	0	0					
ESE	0	0	0	0	0	0	0					
SE	0	0	0	0	0	0	0					
SSE	0	0	0	0	0	0	0					
S	159	0	0	193	0	0	352					
SSW	0	55	0	0	152	662	869					
SW	0	159	152	0	0	159	470					
WSW	0	0	0	0	0	0	0					
W	0	0	0	0	0	0	0					
WNW	0	0	0	0	0	0	0					
NW	0	0	0	0	0	2,931	2,931					
NNW	0	0	0	0	0	1,423	1,423					
TOTAL	1,303	386	1,289	359	2,214	8,391	13,942					

Table 2.1-20 Watts Bar2050 Estimated Peak Recreation VisitationWithin 10 Miles Of The Site(Sheet 1 of 1)

I

Within 10 Miles Of The Site (Sheet 1 of 1)										
Distance Miles										
Direction	0-1	1-2	2-3	3-4	4-5	5-10	0-10			
Ν	661	0	264	0	0	0	925			
NNE	191	0	257	0	184	926	1,558			
NE	184	0	264	0	1,837	2,501	4,786			
ENE	184	184	426	176	176	0	1,146			
E	0	0	0	0	0	0	0			
ESE	0	0	0	0	0	0	0			
SE	0	0	0	0	0	0	0			
SSE	0	0	0	0	0	0	0			
S	169	0	0	206	0	0	375			
SSW	0	59	0	0	162	705	926			
SW	0	169	162	0	0	169	500			
WSW	0	0	0	0	0	0	0			
W	0	0	0	0	0	0	0			
WNW	0	0	0	0	0	0	0			
NW	0	0	0	0	0	3,122	3,122			
NNW	0	0	0	0	0	1,516	1,516			
TOTAL	1,389	412	1,373	382	2,359	8,939	14,854			

Table 2.1-21 Watts Bar2060 Estimated Peak Recreation VisitationWithin 10 Miles Of The Site(Sheet 1 of 1)

<u>Table 2.1-22 School Enrollments</u> <u>Within 10 Miles of</u> <u>Watts Bar Nuclear Plant</u>								
					Enrollm	ent		
School Name	Location	2008	2010	2020	2030	2040	2050	2060
Meigs South Elementary	S 5-10	418	442	565	691	784	892	999
Meigs North Elementary	S 5-10	437	463	591	772	820	932	1045
Meigs Middle	S 5-10	399	422	539	659	748	851	954
Meigs County High	S 5-10	534	565	722	882	1001	1139	1276
Rhea County High	WSW 5-10	1,405	1,434	1,589	1758	1872	2014	2156
Spring City Elementary	NW 5-10	633	646	716	792	843	907	971
Spring City Middle	NW 5-10	309	315	349	387	412	443	474
Evensville Center	WSW 5-10	20	20	23	25	27	29	31
Total		4,155	4,307	5,094	5,916	6,507	7,207	7,906

WATTS BAR

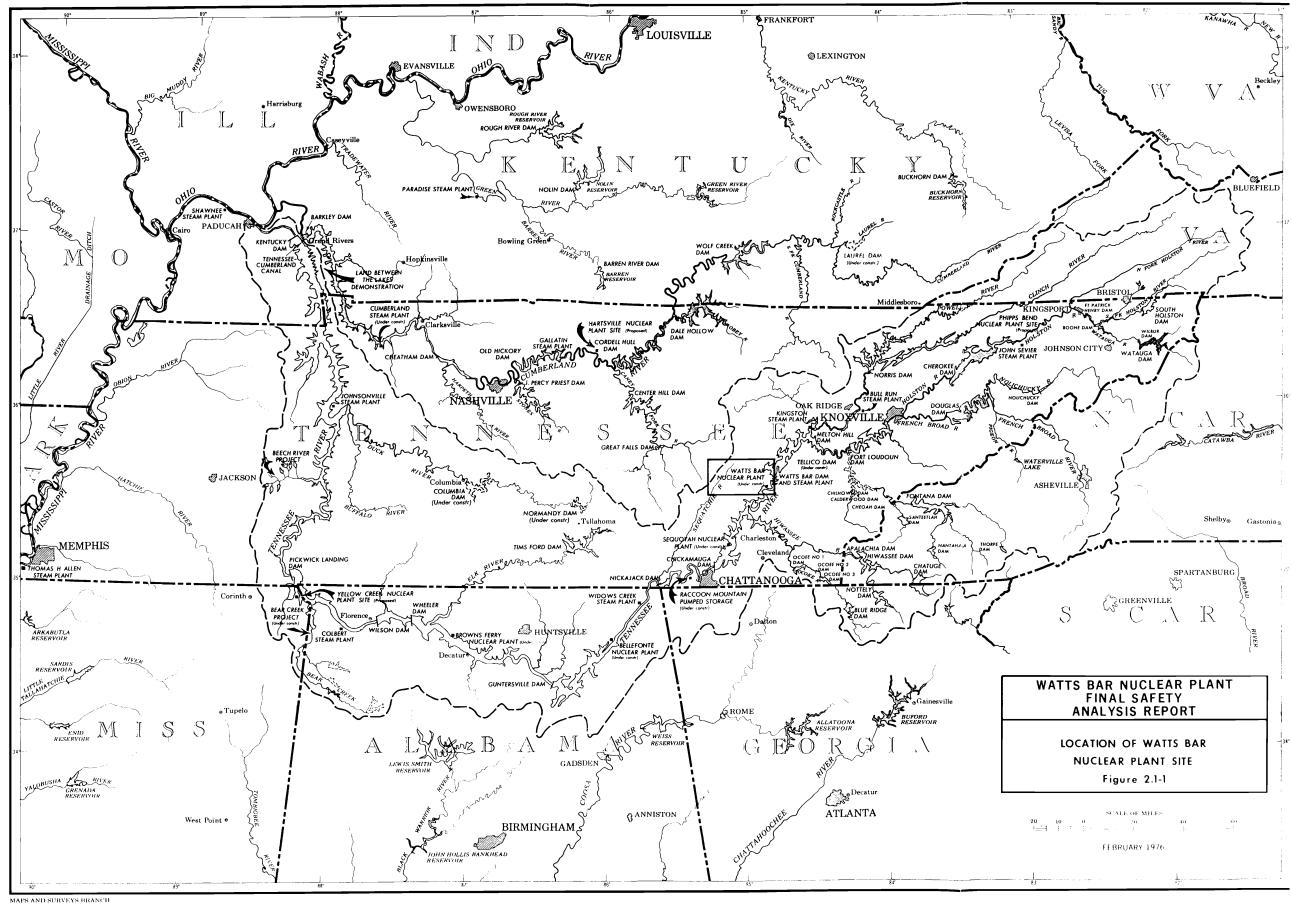


Figure 2.1-1 Location of Watts Bar Nuclear Plant Site

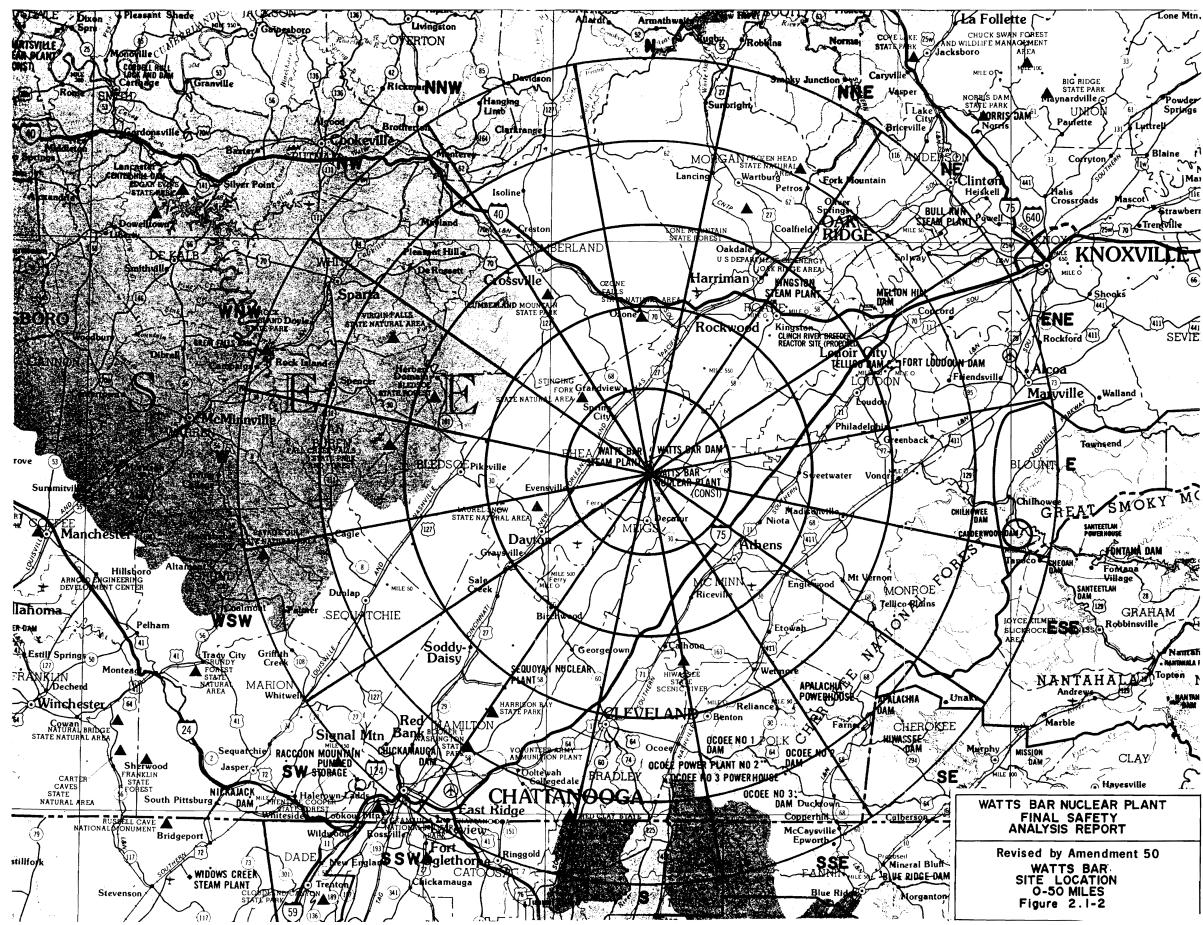


Figure 2.1-2 Watts Bar Site Location 0-50 Miles

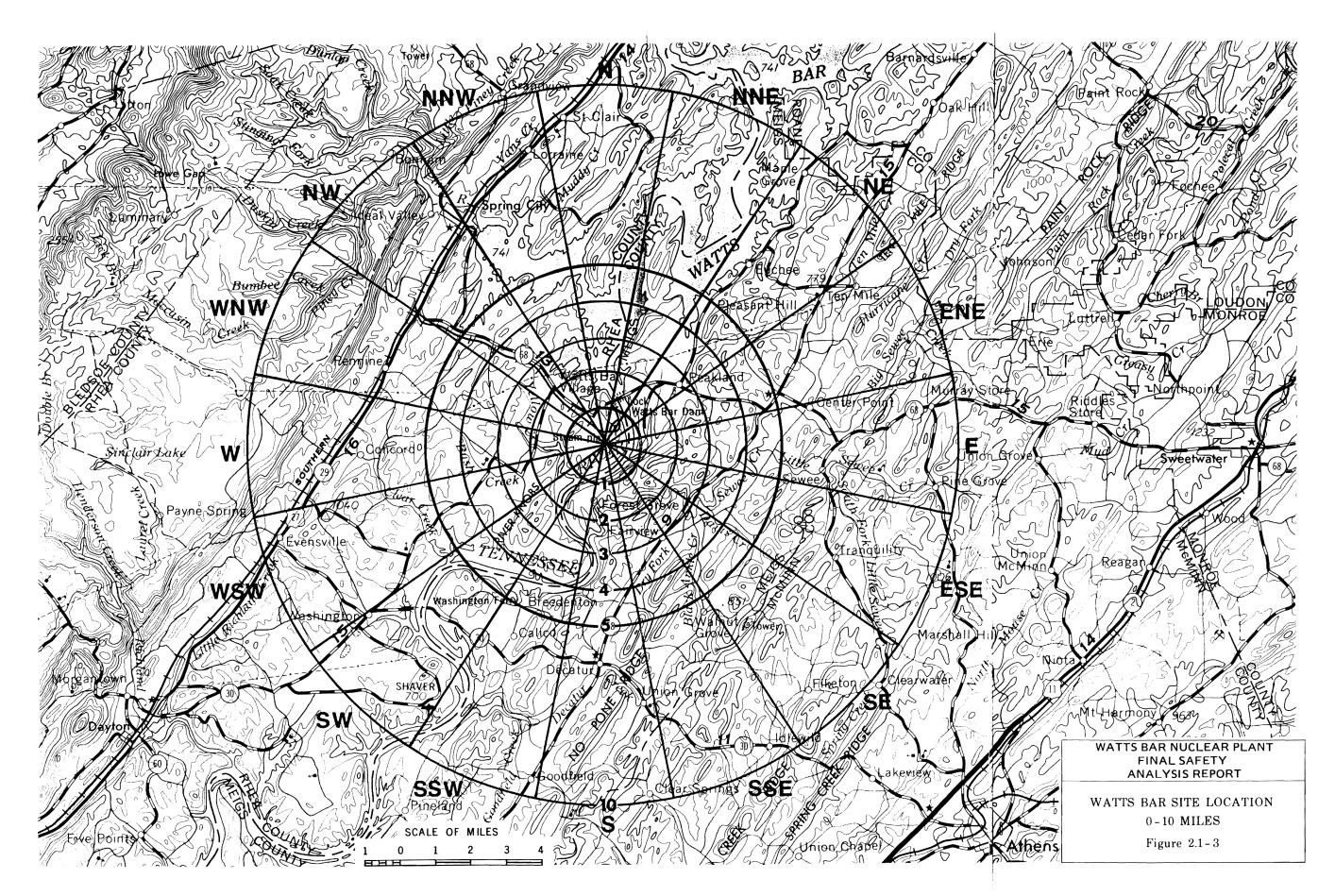


Figure 2.1-3 Watts Bar Site Location 0-10 Miles

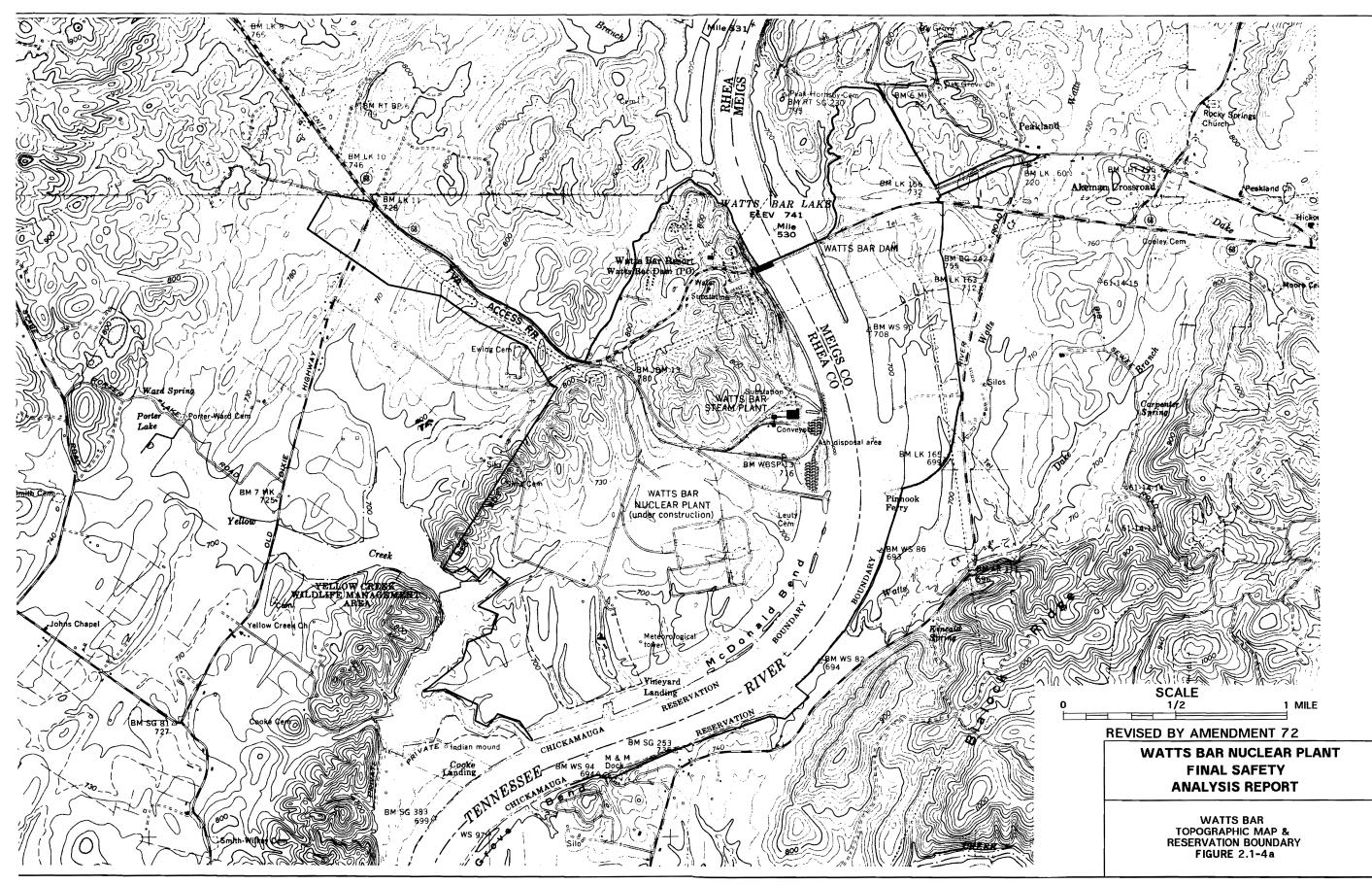
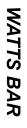
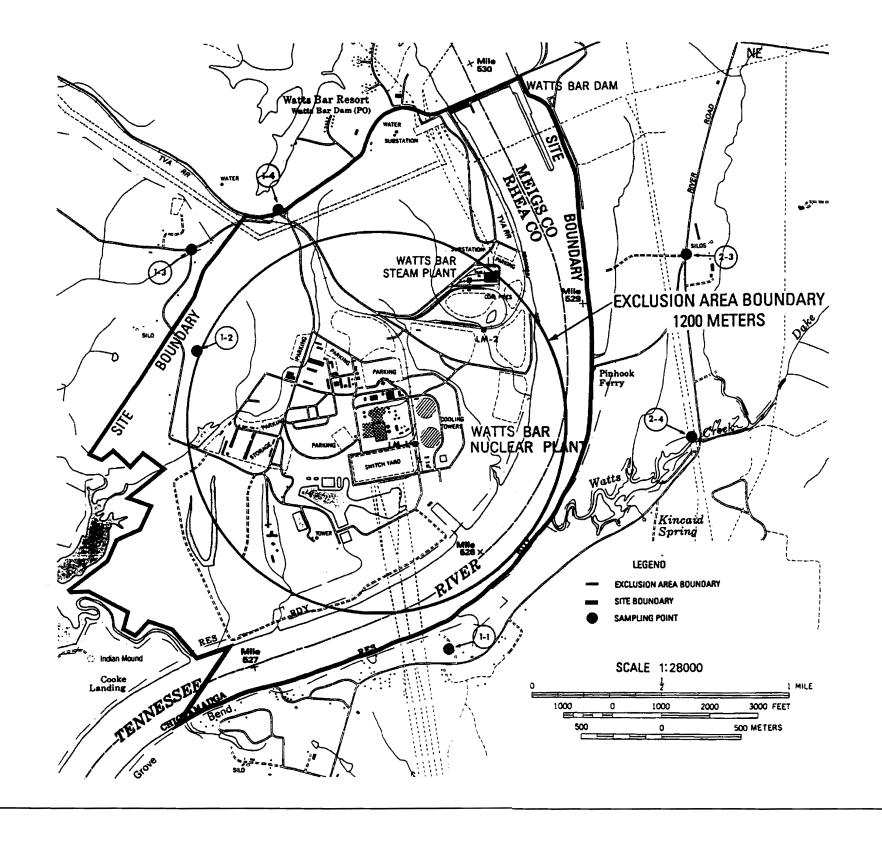




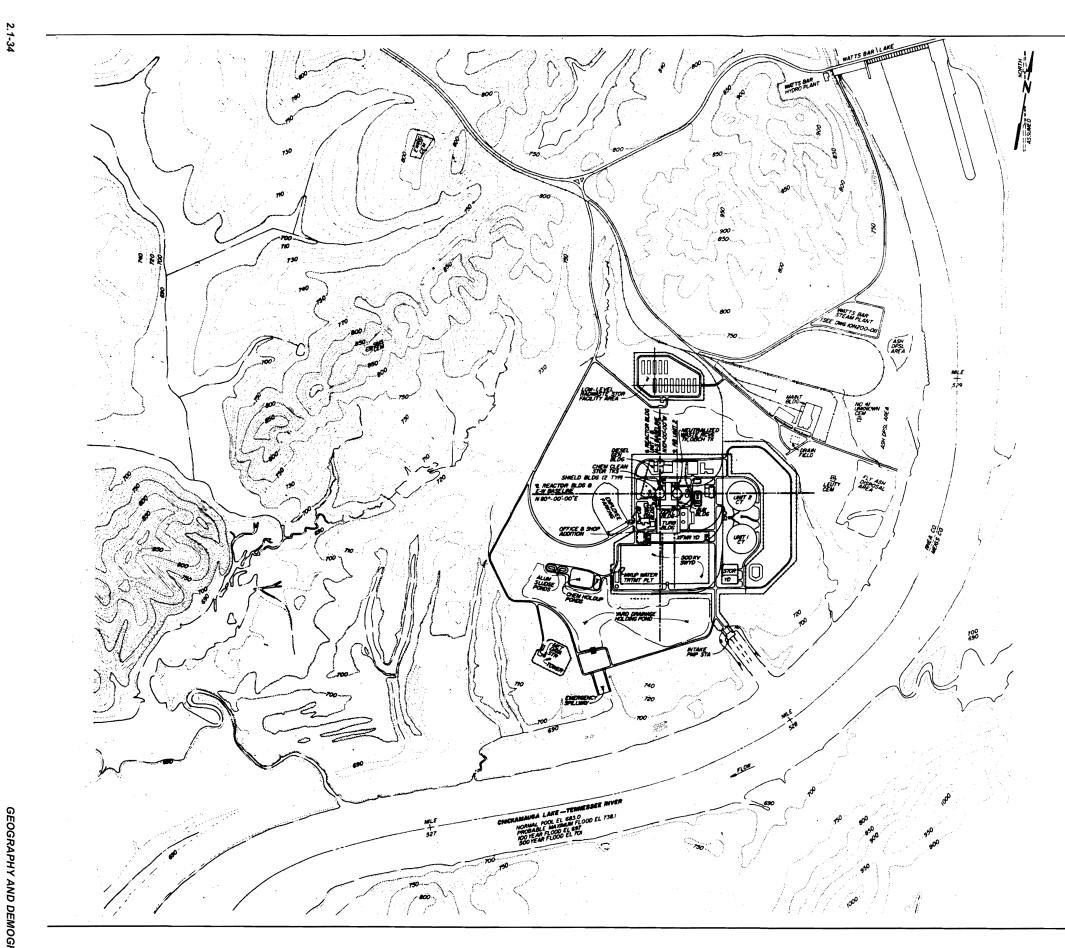
Figure 2.1-4a Watts Bar Topographic Map & Reservation Boundary

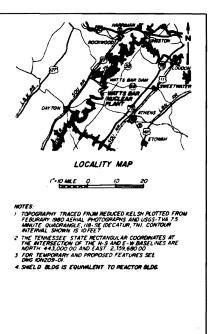
WATTS BAR NUCLEAR PLANT

2.1-33

IMPORT, NOT DELETI COMPUTERAPHICS FILE NC FSAR_FIG_2.1-4-b

REVISED BY AMENDMENT 72


WATTS BAR NUCLEAR PLANT FINAL SAFETY ANALYSIS REPORT


SITE BOUNDARY/ EXCLUSION AREA BOUNDARY FIGURE 2.1-4b

SCANNED DOCUMENT THIS IS A SCANNED DOCUMENT MANTAINED ON THE WENP OPTIGRAPHICS SCANNER DATABASE

IMPORTANT! DO NOT DELETE COMPUTER GRAPHICS FILE NO. FSAR_FIG_2.1-4b

WBNP-72

REVISED BY AMENDMENT 72

WATTS BAR NUCLEAR PLANT FINAL SAFETY **ANALYSIS REPORT**

> MAIN PLANT GENERAL PLAN TVA DWG NO. 10E200-01 FIGURE 2.1-5

Figure 2.1-6 Deleted by Amendment 63

Figure 2.1-7 Deleted by Amendment 63

Figure 2.1-8 Deleted by Amendment 63

Figure 2.1-9 Deleted by Amendment 63

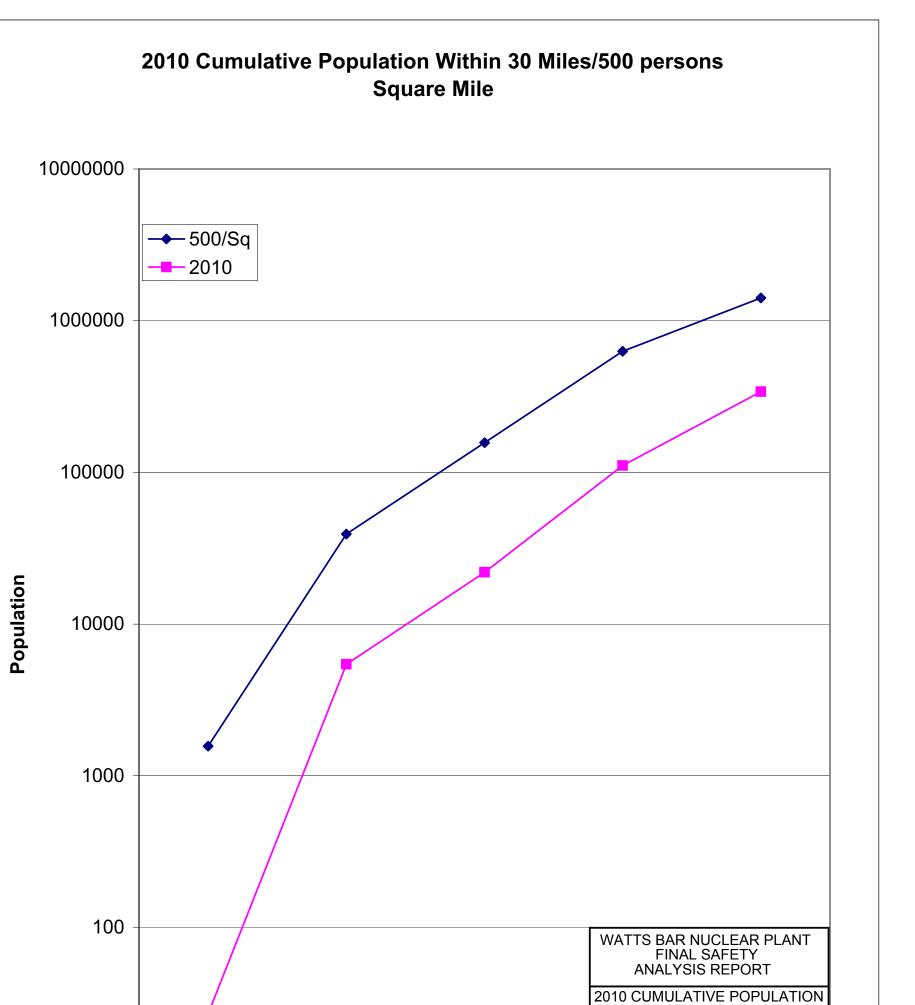
Figure 2.1-10 Deleted by Amendment 63

Figure 2.1-11 Deleted by Amendment 63

Figure 2.1-12 Deleted by Amendment 63

Figure 2.1-13 Deleted by Amendment 63

Figure 2.1-14 Deleted by Amendment 63


Figure 2.1-15 Deleted by Amendment 63

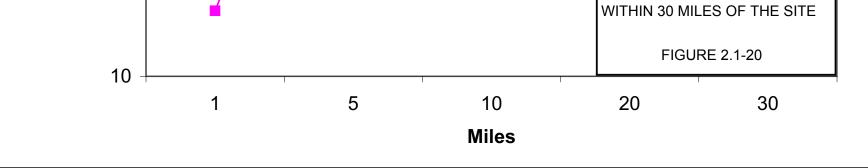
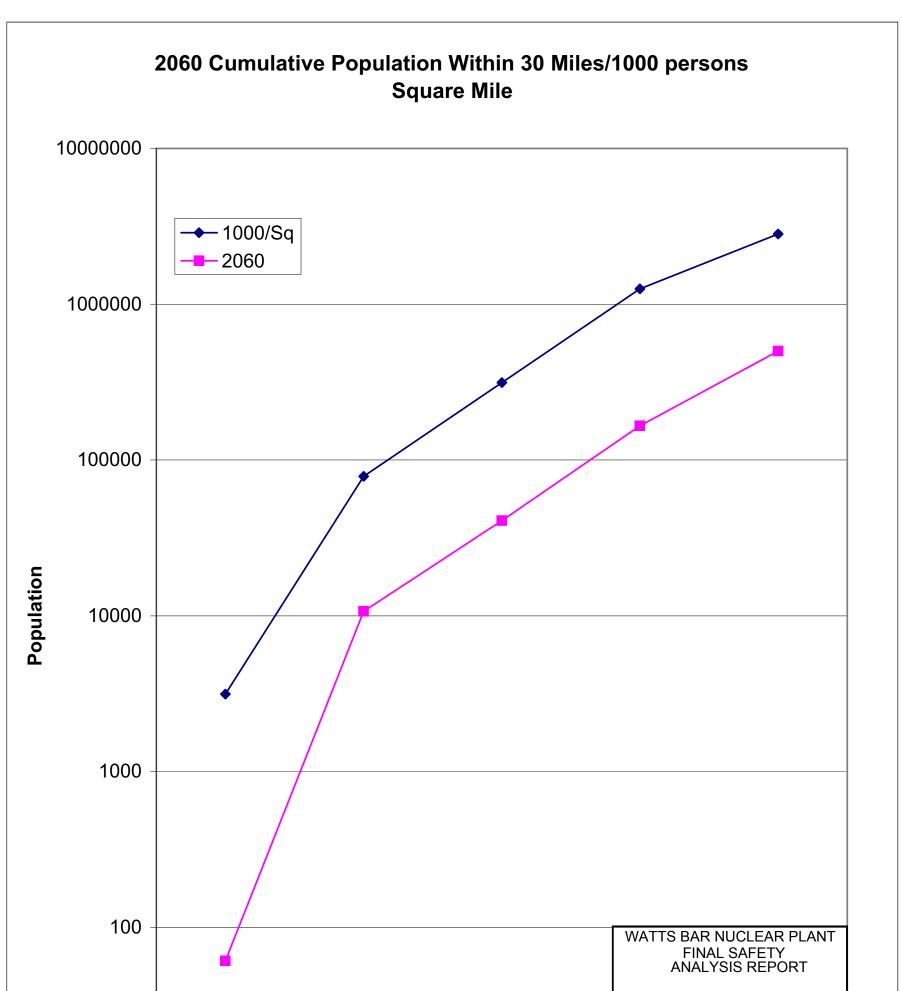

Figure 2.1-16 Deleted by Amendment 63

Figure 2.1-17 Deleted by Amendment 63


Figure 2.1-18 Deleted by Amendment 63

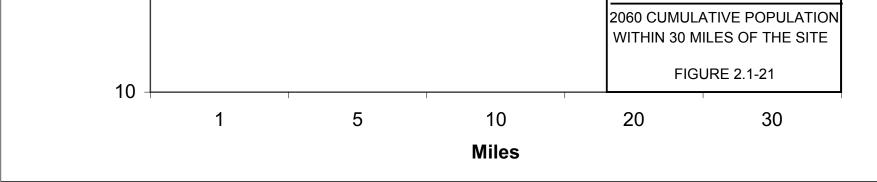

Figure 2.1-19 Deleted by Amendment 63

Figure 2.1-20 2010 Cumulative Population Within 30 Miles/ 500 persons per Square Mile

Figure 2.1-21 2060 Cumulative Population Within 30 Miles/ 1000 persons per Square Mile

2.2 NEARBY INDUSTRIAL, TRANSPORTATION, AND MILITARY FACILITIES

2.2.1 Location and Route

Maps showing the area are found on Figures 2.1-2 and 2.1-3. The only significant nearby industrial facility is the Watts Bar Steam Plant.

The nearest land transportation route is State Route 68, about one mile north of the Site. The Tennessee River is navigable past the site.

A main line of the CNO&TP (Norfolk Southern Corporation) is located approximately 7 miles west of the site. A TVA railroad spur track connects with this main line and serves the Watts Bar Steam Plant and Watts Bar Nuclear Plant. The spur has fallen into disuse and would need to be repaired prior to use.

No other significant industrial land use, military facilities, or transportation routes are in the vicinity of the nuclear plant.

2.2.2 Descriptions

2.2.2.1 Description of Facilities

The Watts Bar Steam Plant is a coal-fired electric generating facility with a total capacity of 240,000 kW which during normal operation has about 100 employees. The plant is not currently operating, but could be reactivated in the future.

The Tennessee River is a major barge route in which a 9-foot navigation channel is maintained.

2.2.2.2 Description of Products and Materials

Table 2.2-1 shows the total amount of certain hazardous materials shipped past the Watts Bar Nuclear Plant from 2002 to 2007 on a yearly basis. Total traffic past the site was 670,716 tons in 2008 compared to 1,294,959 tons in 1990 and to 760,000 tons in 1975.

Traffic on the TVA railroad spur consisted of heavy components for the nuclear plant. If Watts Bar Steam Plant were reactivated, the spur would also be used for the delivery of heavy components and coal to it.

2.2.2.3 Pipelines

No pipelines carrying petroleum products are located in the vicinity of the nuclear plant.

2.2.2.4 Waterways

The Watts Bar Nuclear Plant site is located on a 9-foot navigable channel on Chickamauga Reservoir. Its intake structure is located approximately two miles downstream of Watts Bar Lock and Dam. Watts Bar lock is located on the left bank of the Tennessee River with dimensions of 60' wide x 360' long. Towboat sizes vary from 1500 to 1800 horsepower for this section of the Tennessee River (Chattanooga to

I

Knoxville). The most common type barge using the water way is the 35'x 195' jumbo barge with 1,500 ton capacity. There were also numerous liquid cargo (tank) barges of varying size with capacity to 3,000 tons.

2.2.2.5 Airports

No airports are located within 10 miles of the site. Mark Anton airport is the nearest, 11 to 12 miles southwest of the site. Its longest runway is 4,500 feet and is hard surfaced. It has no commercial facilities. Lovell Field about 45 miles south-southwest is the nearest airfield with commercial facilities. The annual number of movements per year is about 62,000 for Lovell Field and about 4,000 at Mark Anton of which 1,300 are student pilots executing "touch and go's".

Figures 2.2-1 and 2.2-2 show the plant in relation to civilian and military airways, respectively. Traffic on airway V51 totals fewer than 2,000 flights per year based on 2008 data.

2.2.2.6 Projections of Industrial Growth

Within five miles of the Watts Bar Nuclear Plant are two major potential industrial sites. Three-to-five miles southwest of the plant is a 3,000 acre tract and about 3 miles north is a 200 acre tract. The 3,000 acre site is currently under the ownership of the Mead Corporation. A site impact analysis for the possible development of a paper plant has been performed on the site. However, the Mead Corporation has withdrawn its application to build the plant and there are no immediate or future plans for development. The 200 acre tract is still undeveloped and there are no immediate or future plans for future plans for development of the site.

2.2.3 Evaluation of Potential Accidents

None of the activities being performed in the vicinity of the site are considered to be a potential hazard to the plant.

A study of the products and materials transported past the site by barge reveals that no potential explosion hazard exists. The worst potential condition for onsite essential safety features other than the intake pumping station arising from an accident involving the products transported near the site (coal, fuel oil, asphalt, tar and pitches) would be the generation of smoke by the burning of these products. The hazard to the Main Control Room from the generation of smoke from these products is covered in Section 6.4.4.2.

Gasoline supply to Knoxville is via pipeline. As specified in Section 2.2.2.3, this pipeline is not in the vacinity of the Watts Bar Nuclear Plant. As of 1974, with the pipeline in full operation, no future gasoline barge shipments past the Watts Bar Nuclear Plant site are expected. The potential for damage to the Watts Bar Nuclear Plant from a gasoline barge explosion is therefore negligible.

Fuel oil is shipped by barge past the Watts Bar Nuclear Plant Site. In case of a fuel oil barge accident, fire and dense smoke may result. Neither fire or dense smoke will effect plant safety, however.

The intake pumping station is protected against fire by virtue of design and location. Pump suction is taken from the bottom of the channel. All pumps and essential cables and instruments are protected from fire by being enclosed within concrete walls. Also, the embayment is just downstream of the Watts Bar Dam, which is locked on the opposite side of the Tennessee River. Consequently, any oil released to the river would be swept by the current past the embayment that leads to the intake pumping station due to the fact that the embayment is located on the inside of a bend in the Tennessee River.

Even if fuel oil from a spill should enter the embayment and reach the intake pumping station, the oil would have no significant effect on the water intake system or the systems it serves. Entry of oil in the intake is unlikely since the oil will float on water. A concrete skimmer wall exists at the pumping station and the pumps take suction approximately 20 feet below the minimum normal water level. The pump suction would be approximately 10 feet below the water surface even in the event of failure of the downstream dam. Any oil that did enter the pumps would be highly diluted and in such a state would have a minor effect on system piping losses and heat exchanger capabilities.

2.2.3.1 REFERENCES

None.

Table 2.2-1 <u>Waterborne Hazardous Material Traffic (Tons)</u> (U.S. Army Corps of Engineers) 2002-2007 Sheet 1 of 1)						
COMMODITIES	2002	2003	2004	2005	2006	2007
Ammonium Nitrate Fertilizers			3110			
Carbon (Including Carbon Black), NEC	15232	7605	1348	1518		
Ethyl Alcohol (Not Denatured) 80% or More Alcohol	137147	118594	137464	133412	76993	8947
Fuel Oils, NEC			3400			7209
Lubrication Petroleum Oils from Petrol & Bitum Min				12732		
Other Light Oils from Petroleum & Bitum Minerals						9120
Petro.Bitumen, Petro.Coke, Asphalt, Butumen mixes NEC	1531	12708	25183	11437	3148	71061
Petroleum Oils/Oils from Bituminous Minerals, Crude				6674		
Pitch & Pitch Coke from Coal Tar/Oth Mineral Tars	248986	258584	236716	254001	235381	164752
Vermiculite, Perlite, Chlorites			1642		1643	
Grand Total	402896	397491	408863	419774	317165	261089

WATTS BAR

I

I

I

I

I

I

| | |

1

Table 2.2-2 Deleted by Amendment 94

Figure 2.2-1 Airways in the Area of the Plant

NEARBY INDUSTRIAL, TRANSPORTATION, AND MILITARY FACILITIES

Figure 2.2-2 Military Airways in the Area of the Plant

NEARBY INDUSTRIAL, TRANSPORTATION, AND MILITARY FACILITIES

2.3 METEOROLOGY

2.3.1 Regional Climate

2.3.1.1 Data Sources

Most of the climatic data summaries and other publications used in describing the site region meteorology are included in the list of references for Section 2.3. Those used in a general way not specifically referenced are the following: (1) U.S. Department of Commerce, Normal Weather Charts for the Northern Hemisphere, U. S. Weather Bureau, Technical Paper No. 21, October 1952, and (2) U.S. Department of Commerce, Climatic Atlas of the United States, Environmental Science Services Administration, Environmental Data Service, June 1968.

2.3.1.2 General Climate

The Watts Bar site is in the eastern Tennessee portion of the southern Appalachian region. This area is dominated much of the year by the Azores-Bermuda anticyclonic circulation shown in the annual normal sea level pressure distribution (Figure 2.3-1).^[1] This dominance is most pronounced in late summer and early fall and is accompanied by extended periods of fair weather and widespread atmospheric stagnation. ^[2] In winter and early spring, the normal circulation becomes diffuse over the region as eastward moving migratory high- or low-pressure systems, identified with the mid-latitude westerly upper air circulation, bring alternately cold and warm air masses into the Watts Bar site area with resultant changes in wind, atmospheric stability, precipitation, and other meteorological elements. In the summer and early fall, the migratory systems are less frequent and less intense. Frequent incursions of warm, moist air from the Gulf of Mexico and occasionally from the Atlantic Ocean are experienced in the summer.

The site is primarily influenced by cyclones from the Southwest and Gulf Coast that translate toward the Northeast U.S. Coast by passing along either the west side or the east side of the Appalachian chain and by cyclones from the Plains or Midwest that move up the Ohio Valley. Topography around the site strongly influences the local climate. Mountain ranges located both northwest and southeast of the site, which is in the upper Tennessee River Valley, are oriented generally northeast-southwest and rise 3,000 to 4,000 feet MSL and, in places, 5,000 to 6,000 feet MSL. The latter elevations are in the Great Smoky Mountains to the east and southeast. They provide an orographic barrier that reduces the low-level atmospheric moisture from the Atlantic Ocean brought into the area by winds from the East. However, considerable low-level atmospheric moisture from the Gulf of Mexico is often brought into the area by winds from the south, southwest, or west.

The predominant air masses affecting the site area may be described as interchangeably continental and maritime in the winter and spring, maritime in the summer, and continental in the fall. Temperature patterns generally conform to the seasonal trends typical of continental, humid subtropical climates. Precipitation is normally well distributed throughout the year, but monthly amounts are generally

I

largest in the winter and early spring and smallest in the late summer and fall. The primary maximum occurs in March and is associated with cyclones passing through or near the region. A secondary maximum of precipitation occurs in July and is characteristically the result of diurnal thunderstorms occurring most frequently in the afternoon and evening. The minimum monthly precipitation normally occurs in October. Snow and sleet usually occur only during the period November through March and generally result from cold air pushing southward through the area against relatively warm, moist air.

2.3.1.3 Severe Weather

Severe storms are relatively infrequent in east Tennessee, being east of the area of major tornadic activity, south of nearly all storms producing blizzard conditions, and too far inland to be affected often by the remnants of intense tropical cyclones. Damage from such remnants of tropical cyclones is rare, occurring only about once every 18 years, and is generally restricted to flood effects from heavy rains.^[3]

The probability that a tornado will strike the Watts Bar site is quite low. During a period of 92 years, 1916-2008, one tornado was reported in Rhea County, in which the plant site is located. ^[4,5,6] This tornado occurred west and northwest of the plant site on June 4, 1983. It had a southwest to northeast track about 20 miles long with an average width of 50 yards, and it ended west of the Tennessee River just northeast of Spring City. Tornadoes in the eastern Tennessee area usually move northeastward and cover an average surface path five miles long and 100 yards wide.^[7] Using the principle of geometric probability described by H. C. S. Thom, ^[8] the probability of a tornado striking any point in the one degree latitude by one degree longitude square containing the plant site may be calculated. Thom's equations are the following:

$$P = \frac{\overline{z}t}{A} \qquad (1)$$

$$R = \frac{1}{P}$$
 (2)

P = mean probability of a tornado striking a point in any year in a one-degree square.

 \overline{Z} = mean path area of a tornado (mi²)

 \overline{t} = mean number of tornadoes per year.

A = area of one-degree latitude, one-degree longitude square (mi^2), which is 3887 mi^2 for the one-degree square containing the Watts Bar site.

R = mean recurrence interval for a tornado striking a point in the one- degree square.

For the baseline approach used by the Nuclear Regulatory Commission, Thom's \overline{z} = 2.8209 mi² and a t = 0.46 tornado per year^[9] give a probability of 3.34 x 10^{-4} and a recurrence interval of about once in 3,000 years. However, the average tornado path area of 0.2841 mi² (5 miles by 100 yards) for eastern Tennessee reduces the probability to 3.36×10^{-5} and the recurrence interval to about once in 30,000 years. An updated set of tornado probability statistics was obtained from the National Severe Storms Forecast Center in November 1987. ^[10] The calculations were based on tornadoes that occurred during 1950-1986 in a 30-nautical mile (nm) radius area centered at the onsite meteorological tower. A circle with a 30 nm radius has an area about the same as a one-degree latitude-longitude square. Based on 27 tornado occurrences in the 37-year period, the annual return probability is 1.48 x 10⁻⁴ and the mean return interval is 6,755 years for any point in the circle. The annual occurrence frequency in the circle was 0.73. The June 4, 1983 tornado had the longest track of the 27 with a path length of 21 miles, rounded to the nearest mile. For consideration in station blackout criteria, the annual expectation of tornadoes with winds exceeding 113 mph is 9.38×10^{-5} per square mile.

Windstorms are relatively infrequent, but may occur several times a year.^[7] The fastest mile of wind recorded in 13 years (1995-2008) at the Chattanooga airport NWS station was 54 mph in March 1997.^[11]The fastest mile of wind recorded at the Knoxville airport NWS station during a 13-year period (1995-2008) was 76 mph in April 1996. ^[12] Moderate and occasionally strong winds sometimes accompany migrating cyclones and air mass fronts. The strong winds are usually associated with lines of thunderstorms along or ahead of cold fronts and are more probable in the late winter and spring than any other time of the year. Brief, strong gusts of wind due to downdraft and outflow from individual thunderstorms can occur, but are generally limited to the large, intense thunderstorms that develop in the spring and summer. During the period 1955-1967, winds \geq 50 knots (> 57 mph) were reported only three or four times per year in the one-degree square containing the site.^[9]

Hail 3/4 inch in diameter or larger has been reported only 15 times in a 13-year period (1955-1967) in the one-degree square containing the Watts Bar site.^[9] For a 52-year record (1879-1930) at Chattanooga and a 60-year record (1871-1930) at Knoxville, the average number of days with hail (any size) was less than one per year. ^[13]

Annual and seasonal densities of lightning flashes to ground may be estimated by using a monthly flash density equation^[14] and thunderstorm day statistics. For thunderstorm day frequencies observed at Chattanooga (Table 2.3-1) and a latitude of 35°, the annual and seasonal densities of flashes to ground per km² are estimated to be the following: 3.17 (annual), 0.14 (winter), 0.64 (spring), 2.19 (summer), and 0.21 (fall).

Relative potential for air pollution is indicated by the seasonal distribution of atmospheric stagnation cases of four days or more analyzed by Korshover.^[15]In a 35-year period (1936-1970), there were about one case in the winter, 11 cases in the spring, 24 cases in the summer, and 34 cases in the fall. According to Holzworth ^[16] there were about 35 forecast-days of high meteorological potential for air pollution in a 5-year period based on data collected in the 1960s and early 1970 (Figure 2.3-2). On

the average, about seven air pollution forecast-days per year can be expected, with significantly greater probability in the summer and fall than in the winter and spring.

Frost penetration depth is important for protection of water lines and other buried structural features that are subject to freeze damage. The average depth for the 1899 through 1938 period was about six inches, and the extreme depth during the 1909 through 1939 period was about 14 inches.^[17]

Estimations of regional glaze probabilities have been made by Tattelman, et al. ^[18] For Region V, which contains Tennessee, point probabilities for glaze icing 5.0 cm or more thick and 2.5 cm or more thick in any one year are about 1.0×10^{-4} and 4.0×10^{-4} , respectively. These probabilities correspond to recurrences of about once in 10,000 years and about once in 2,500 years. Ice thicknesses of 2.0, 1.8, 1.7, and 1.5 cm correspond to return periods of 100, 50, 25, and 10 years.

All ice storms with glaze thicknesses 2.5 cm or greater that were analyzed were accompanied by maximum wind gusts 10 m/sec or greater. However, only one had maximum gusts 20 m/sec or greater, and that storm had ice thicknesses less than 5.0 cm.

The point probabilities for lesser ice thicknesses are about 0.20 for > 1.25 cm and 0.37 for \ge 0.63 cm, and the respective recurrence intervals are once in five years and once in three years. However, glaze ice thicknesses 1.25 cm or less generally result in little structural damage, except for above-ground utility wires when strong winds are combined with the storms. The major impact of storms which produce these lesser ice thicknesses is a hazard to travel in the affected areas.

Snowfall records for Chattanooga (1937-2008) and Knoxville (1951-2008) show maximum 24-hour and single storm amounts of 20 and 47 inches, and 18.2 and 15 inches, respectively.^[11,12,19] The weight of the 100-year return period snow pack in the Watts Bar site area is estimated to be about 14 pounds per square foot.^[20]Assuming that the 22.5 inches of snow that fell at Knoxville on December 4-6, 1886, had the water equivalency ratio of 1:7, or 0.14 inch per inch of snow, the weight would be about 17 pounds per square foot. The sum of these values would be about 31 pounds per square foot on a flat surface. The same assumptions for the Chattanooga single storm maximum of 14.5 inches (December 4-6, 1886) yield about 11 pounds per square foot for a sum of about 25 pounds per square foot. For conservatism, the weight of the maximum single storm snowfall recorded in Tennessee during the 1871 through 1970 period was estimated. This 28-inch snowfall occurred on February 19-21, 1960 at Westbourne, on the Cumberland Plateau in northeastern Tennessee.^[21] A more conservative water equivalency ratio of 1:6 was used to give an estimated weight of about 24 pounds per square foot. The total snow load for this case would be about 38 pounds per square foot. Design loading considerations, including the snow load, for the reactor shield building and other Category I structures are presented in Sections 3.8.1 and 3.8.4, respectively.

No meteorological parameters were used in evaluating the performance of the ultimate heat sink, which consists of a once-through cooling system utilizing the Chickamauga

Reservoir on the Tennessee River. A demonstration of adequate water flow past the site is used in the design bases. This is discussed in Section 2.4.11.

The site is located in Region I for Design Basis Tornado considerations. The design conditions assumed for the Watts Bar Nuclear Plant reactor shield building (and other safety-related structures) are the following:

- (1) 300 mph = Rotational Speed
- (2) 60 mph = Translational Speed
- (3) 360 mph = Maximum Wind Speed
- (4) 3 psi = Pressure Drop
- (5) 1psi/sec = Rate of Pressure Drop (3 psi/3 sec is assumed)

For the additional Diesel Generator Building and structures initiated after July 1979, the design basis tornado parameters are as follows:

- (1) 290 mph = Rotational Speed
 (2) 70 mph = Translational Speed
 (3) 360 mph = Maximum Wind Speed
 (4) 3 psi = Pressure Drop
 (5) 2 pai/way
- (5) 2 psi/sec = Rate of Pressure Drop (3 psi/1.5 sec is assumed)

These and tornado-driven missile criteria are discussed in Sections 3.3 and 3.5. The fastest mile of wind at 30 feet above ground is about 95 mph for a 100-year return period in the site area.^[22] The vertical distribution of horizontal wind speeds at 50, 100, and 150 feet above ground is 102, 113, and 120 mph on the basis of the speed at 30 feet and a power law exponent of 1/7. A gust factor of 1.3 is often used at the 30-foot level, but this would be conservative for higher levels. The wind load for the Shield Building is based on 95 mph for that level, as discussed in Section 3.3. Estimates of the probable maximum precipitation (PMP) and the design considerations for the PMP are discussed in Section 2.4.

2.3.2 Local Meteorology

2.3.2.1 Data Sources

Short-term site-specific meteorological data from the TVA meteorological facility at the Watts Bar Nuclear Plant site are the basis for dispersion meteorology analysis. Data representative of the site or indicative of site conditions for temperature, precipitation, snowfall, humidity, fog, or wind were also obtained from climatological records for Chattanooga, Dayton, Knoxville, Oak Ridge, and Watts Bar Dam, all in Tennessee. Short-term records for the Sequoyah Nuclear Plant site were used. These data source locations are shown relative to the plant site in Figure 2.3-3.

I

2.3.2.2 Normal and Extreme Values of Meteorological Parameters

Temperature data for Dayton ^[13] and for Chattanooga^[11] are presented in Tables 2.3-2 and 2.3-3, respectively. The Chattanooga and Dayton data are provided as reasonably representative and recent (1971-2000) temperature information. Mean temperatures have ranged from the low 40s in the winter to the upper 70's in the summer at both locations. Mean maxima ranged from about 50°F in mid winter to about 90°F in midsummer. The mean minima ranged from about 24°F for both locations to about 74°F for Dayton and 75°F for Chattanooga. The extreme maxima recorded for the respective data periods were 107°F at Decatur and 106°F at Chattanooga, while the extreme minima recorded were -15°F and -10°F, respectively.

Precipitation data for Watts Bar Dam^[23] are presented in Table 2.3-4. Rain or snow has fallen on an average of 110 days per year, and the annual average precipitation for 1941 through 1970 was nearly 53 inches. The maximum monthly rainfall has ranged from about seven inches to nearly 15 inches. The minimum monthly amount for September 1939 through September 1989 was zero. The maximum in 24 hours was 5.3 inches on January 6-7, 1946. Mean monthly data reveal the wettest period as late fall through early spring, with March normally the wettest month of the year. The data show a secondary peak of rainfall in July. Thunderstorm activity is most predominant in the spring and summer seasons, and the maximum frequency of thunderstorm days (Table 2.3-1) is normally in July.

Appreciable snowfall is relatively infrequent in the area. Snowfall data are summarized in Table 2.3-5 for Dayton^[13] and in Table 2.3-6 for Chattanooga^[11] and Knoxville.^[12] The Dayton, Chattanooga and Knoxville records provide current information and offer a complete picture of the pattern of snowfall in the Tennessee River Valley from Chattanooga to Knoxville. Mean annual snowfall has ranged from 4.8 inches at Chattanooga to about 10 inches at Knoxville. Dayton, about halfway between those locations, averaged about 4 inches annually for an earlier period of record. Generally, significant snowfalls are limited to November through March. For the data periods presented in the tables, respective 24-hour maximum snowfalls have been 18.5, 8, and 11.1 inches at Chattanooga, Dayton, and Knoxville. Severe ice storms of freezing rain (or glaze) are infrequent, as discussed in the regional climatology section.

Atmospheric water vapor content is generally rather high in the site area, as was indicated in the discussion of the regional climatology. Long-term relative humidity and absolute humidity data for Chattanooga are presented in Tables 2.3-7 through 2.3-9.^[11,25] Short-term humidity data based on measurements at the onsite meteorological facility are summarized in Tables 2.3-10 and 2.3-11 for comparison with the data in Tables 2.3-8 and 2.3-9. A typical diurnal variation is apparent in Table 2.3-7. Relative humidity and absolute humidity are normally greatest in the summer.

Fog data for Chattanooga,^[11] Knoxville,^[12] and Oak Ridge,^[26] Tennessee, and from Hardwick ^[27] are presented in Table 2.3-12. These data indicate that heavy fog at the Watts Bar site likely occurs on about 35 days per year with the fall normally the foggiest season. Sources of data on fogs with visibilities significantly less than 1/4 mile and on durations of fogs which can be considered representative of the site have not been identified.

Wind direction patterns are strongly influenced by the northeast-southwest orientation of the major topographic features, as evidenced in the onsite data, Sequoyah Nuclear Plant data^[28], and the records for Knoxville^[12] and Oak Ridge.^[26] The Watts Bar wind direction and wind speed data are summarized in Tables 2.3-13 and 2.3-14 (annual at 10 and 46 meters); Tables 2.3-15 and 2.3-16 (directional persistence at 10 and 46 meters); and Tables 2.3-17 through 2.3-40 (monthly at 10 and 46 meters). The annual wind roses for each level are shown in Figures 2.3-4 and 2.3-5.

The most frequent wind direction at 10 meters has been from south-southwest (about 16%). The next highest frequencies (about 8%) are from the north-northeast and northwest wind. The data in Table 2.3-41 and the data in Table 2.3-13 show a predominance of wind from the north-northwest and northwest, respectively, for wind speeds less than about 3.5 mph. More discussion of this very light wind speed pattern is contained in Section 2.3.3.3. It is very significant that the frequencies of calms differ so markedly between the two sets of onsite data. It appears that the higher frequency of calm conditions is primarily a consequence of the location of the temporary meteorological facility in a "sink." The maximum wind direction persistence period at 10 meters is shown in Table 2.3-15 as 44 hours from the south-southwest direction. The monthly summaries show some minor variation in the wind direction patterns, but the upvalley-downvalley primary and secondary frequency maxima generally are fully evident.

In the summary tables for 46 meters, the upvalley-downvalley wind direction pattern is very clear and dominant. The two highest frequencies are 19% from the south-southwest wind direction and 11% from the north-northeast wind direction. The maximum wind direction persistence (Table 2.3-16) during the 17-year period was 48 hours from the south-southwest.

Wind speed is normally lower than for most parts of the United States. The other data sources referenced in the discussion of wind direction patterns also reflect this condition. Annually, the onsite data show about 53% of the hourly average wind speeds at 10 meters were less than 3.5 mph and about 85% were less than 7.5 mph. At 46 meters, the respective frequencies show the wind speeds are relatively lighter in summer and early fall and relatively stronger in late fall, winter, and spring.

Mean mixing height data for the United States have been researched by Holzworth.^[16] However, his analysis has utilized data to estimate morning mixing heights (after sunrise) and mid afternoon mixing heights. Night-time mixing heights are not addressed. Average daily mixing heights are likely to be reasonably similar to the mean morning mixing heights. The seasonal and annual estimates of these mixing heights are the following: winter, about 500 meters; spring, about 530 meters; summer, about 430 meters; fall, about 350 meters; and annual, about 450 meters.

Low-level inversion frequencies in the eastern Tennessee area have been studied by Hosler.^[29] His seasonal frequencies indicate inversions in the Watts Bar area about 40% of the time in winter, 30% in spring, 45% in summer, and 45% in fall. The annual frequency is about 40%. The monthly and annual percent frequencies of hours with inversions measured at the Watts Bar onsite meteorological facility for the 20-year

period, 1974 through 1993, are presented in Table 2.3-42. In comparison to Hosler's seasonal and annual values, the winter, summer, and fall values are slightly lower and the spring value is higher and has the greatest departure. The highest monthly frequency in Table 2.3-42 is about 44% in October and the lowest is about 31% in January, with an annual average of about 39%. Monthly and annual frequencies of Pasquill stability classes A-G are also presented in the same table and indicate that the most stable time of year is the fall. Korshover's statistics on atmospheric stagnation cases^[15] discussed under "General Climate," provide the same indication.

Table 2.3-44 presents a summary of onsite inversion persistence data, with a breakdown by stability class, for the same 20-year period discussed above. Persistence in this case is defined as two or more consecutive hours with vertical temperature gradient (ΔT) values > 0 degrees Celsius. However, the individual classes are allowed one-hour departures among themselves. The data analyzed correspond to the ΔT interval between 10 and 46 meters above the ground. The longest periods of inversion were 45 hours in January 1982 and 42 hours in December 1989. Other long periods, up to 21 hours, occurred in winter. A combination of cold, dry air masses with the shorter length of the solar day in that half of the year and fresh snow on the ground surface can increase the probability for inversion durations greater than 14 hours in that time of year. The unusual case of 45 hours of inversion persistence at this site occurred from January 19 to 21, 1982 at the end of a 10-day period of very cold weather. Persistent fog and low overcast with a synoptic pattern of warm air advection above an initially frozen, snow-covered ground surface and very light, variable winds at the 10-meter level created this condition.^[30,31,32] The unusual case of 42 hours of inversion persistence occurred from December 29-31, 1989 during a period in which a cold front stalled to the west of the site. All of Eastern Tennessee (including the Watts Bar site) was covered by heavy fog with occasional light rain and drizzle.^[33, 34, 35]

Distributions of stability classes A-G are presented in Figures 2.3-6A and 2.3-6B. The average diurnal variations of stability class frequencies are quite evident, with the neutral (class D) and unstable (A, B, and C) lapse conditions predominant in the daytime and the stable classes (E, F, and G) predominant through the nighttime.

2.3.2.3 Potential Influence of the Plant and Its Facilities on Local Meteorology

The Watts Bar site is about 45 miles north-northeast of Chattanooga. It is located on the west shore of Chickamauga Lake on the Tennessee River, which flows generally southwesterly through eastern Tennessee. The site (about 700 feet MSL) is near the center of a northeast-southwest aligned valley, 10 to 15 miles wide, flanked to the west by Walden Ridge (900 to 1,800 feet MSL,) and to the east by a series of ridges reaching elevations of 800 to 1,000 feet MSL. Figure 2.1-3 consists of a map of the topographic features (as modified by the plant) of the site area for 10 miles in all directions from the plant. Profiles of maximum elevation versus distance from the center of the plant are shown in Figures 2.3-14 through 2.3-29 for the sixteen compass point sectors (keyed to true north) to a radial distance of 10 miles.

The only plant systems which may have any pragmatic effects on the local climatic patterns of meteorological parameters discussed in the preceding section are the two

natural draft cooling towers and their blowdown discharge system. During their operation, some small increase in ambient atmospheric moisture and temperature can be expected from the vapor plumes discharged from the tower tops. Also, some increase in the surface water temperature of Chickamauga Lake will be associated with the discharge of heated water from the plant (primarily the cooling tower blowdown). The vapor plumes may produce some additional localized fog on rare occasions on top of Walden Ridge (about eight miles, at its closest point, to the west-northwest). The increased lake surface temperature will likely increase the frequency of river steam fog slightly over a relatively small area of the reservoir downstream from the plant. No significant environmental impacts are expected from these effects. Discontinuities in ambient thermal structure of the atmosphere related to differential surface temperatures between land and water should produce no detectable effect on the local wind patterns or stability conditions. The physical plant structures will alter wind and stability somewhat in the immediate lee of the structures by mechanical turbulence factors produced in the building wake(s). However, these effects are expected to be generally insignificant beyond the first one or two thousand feet downwind.

2.3.2.4 Local Meteorological Conditions for Design and Operating Bases

All design basis meteorological parameters are discussed or referenced in Section 2.3.1.3.

2.3.3 Onsite Meteorological Measurements Program

2.3.3.1 Preoperational Program

Onsite meteorological facilities have been in operation since 1971 when a temporary 40-meter (130-foot) instrumented tower was installed. It was located about 760 meters (0.5 mile) west-southwest of the unit 1 Reactor Building and had a base elevation of 2 meters (8 feet) below plant grade. The temporary facility collected wind speed, wind direction, and temperature data at the 10-meter (33-foot) and 40-meter levels until it was decommissioned in September 1973. Since the FSAR dispersion meteorology data base was collected exclusively by the permanent facility, only that facility is described in detail in this section.

Permanent Meteorological Facility

The permanent meteorological facility consists of a 91-meter (300-foot) instrumented tower for wind and temperature measurements, a separate 10-meter (33-foot) tower for dewpoint measurements, a ground-based instrument for rainfall measurements, and an environmental data station (EDS), which houses the data processing and recording equipment. A system of lightning and surge protection circuitry and proper grounding is included in the facility design. This facility is located approximately 760 meters south-southwest of the Unit 1 Reactor Building and has a base elevation of 4 meters (11 feet) below plant grade.

Data collected included: (1) wind direction and wind speed at 10, 46, and 91 meters; (2) temperature at 10, 46, and 91 meters; (3) dewpoint at 10 meters and (4) rainfall at 1 meter (3 feet). More exact measurement heights for the wind and temperature

parameters are given in the EDS manual.^[37] Elsewhere in the text of this document, temperature and wind sensor heights are given as 10, 46, and 91 meters.

Data collection at the permanent facility began May 23, 1973, with measurements of wind speed and wind direction at 10 and 93 meters (305 feet), temperature at 1, 10, 46, and 91 meters and dewpoint, and rainfall at 1 meter. Measurements of 46-meter wind speed and wind direction and 10-meter dewpoint began September 16, 1976. Measurements of 1-meter dew point were discontinued September 30, 1977. Wind Sensors at 93-meter (actual height was 93.3 meters) were moved to their present height on May 18, 1978. Measurements of 1-meter temperature were discontinued on April 2, 1981. The 10-meter dewpoint sensor was removed from the meteorological tower and a new dewpoint sensor was installed on a separate tower 24 meters to the northwest on April 11, 1994.

Instrument Description

A description of the meteorological sensors follows. More detailed sensor specifications are included in the EDS Manual. Replacement sensors, which may be of a different manufacturer or model, will satisfy the Regulatory Guide 1.23 (Revision 0) specifications.^[36]

Sensor	Height (Meters)	Description
Wind Direction and Wind Speed	10, 46, and 91	Ultrasonic wind sensor.
Temperature	10, 46, and 91	Platinum wire resistance temperature detector (RTD) with aspirated radiation shield.
Dewpoint	10	Chilled-mirror dewpoint system.
Rainfall	1	Tipping bucket rain gage.

Data Acquisition System

The previous data collection system, which included a NOVA minicomputer, was replaced by a new system on March 2, 1989. This data acquisition system is located at the EDS and consists of meteorological sensors, a micro-VAX minicomputer (with appropriate peripherals). These devices send meteorological data to the plant and to the Central Emergency Control Center (CECC) and to a Remote Access Computer that enables callup for data validation and archiving.

System Accuracies

The meteorological data collection system is designed and replacement components are chosen to meet or exceed specifications for accuracy identified in RG 1.23. The meteorological data collection system root-sum-squared (RSS) satisfies the RG 1.23 accuracy requirements. A detailed listing of error sources for each parameter is included in the EDS manual.

Data Recording and Display

The data acquisition is under control of the computer program. The output of each meteorological sensor is scanned periodically, scaled, and the data values are stored.

Meteorological sensor outputs are measured at the following rates: horizontal wind direction and wind speed, every five seconds (720 per hour); temperature and dewpoint, every minute (60 per hour); and rainfall, every hour (one per hour). Prior to February 1, 1975, only one reading of temperature and dewpoint was made each hour. Software data processing routines within the computer accumulate output and perform data calculations to generate 15-minute and hourly average of wind speed and temperature, 15-minute and hourly vector wind speed and direction, hourly average of dewpoint, hourly horizontal wind direction sigmas, and hourly total precipitation. Prior to February 11, 1987, a prevailing wind direction calculation method was used. Subsequently, vector wind speed and direction have been calculated along with arithmetic average wind speed.

Selected data each 15 minutes and all data each hour are stored for remote data access.

Data sent to the plant control room every minute includes 10-, 46-, and 91-meter values for wind direction, wind speed, and temperature.

Data sent to the CECC computer in Chattanooga every 15 minutes includes 10-, 46-, and 91-meter wind direction, wind speed, and temperature values. These data are available from the CECC computer to other TVA and the State emergency centers in support of the Radiological Emergency Plan (REP), including the Technical Support Center at Watts Bar. Remote access of meteorological data by the NRC is available through the CECC computer.

Data are sent from the EDS to an offsite computer for validation, reporting, and archiving.

Equipment Servicing, Maintenance, and Calibration

The meteorological equipment at the EDS is kept in proper operating condition by staff that are trained and qualified for the necessary tasks. Most equipment is calibrated or replaced at least every six months of service. The methods for maintaining a calibrated status for the components of the meteorological data collection system (sensors, recorders, electronics, DVM, data logger, etc) include field checks, field calibration, and/or replacement by a laboratory calibrated components may be conducted, on the

basis of the operational history of the component type. Detailed procedures are used and are referenced in the EDS Manual.

2.3.3.2 Operational Meteorological Program

The operational phase of the meteorological program includes those procedures and responsibilities related to activities beginning with the initial fuel loading and continuing through the life of the plant. This phase of the meteorological data collection program will be continuous without major interruptions. Operational system checks on the meteorological facility will be made once a week. The meteorological program has been developed to be consistent with the guidance given in RG 1.23 (Revision 0) and the reporting procedure in RG 1.21 (Revision 1).^[40] The basic objective is to maintain data collection performance to assure at least 90% joint recoverability and availability of data needed for assessing the relative concentrations and doses resulting from accidental or routine releases.

The restoration of the data collection in the event of equipment failure or malfunction will be accomplished by replacement or repair of affected equipment. A stock of spare parts and equipment is maintained to minimize and shorten the periods of outages. Equipment malfunctions or outages are detected by maintenance personnel during routine or special checks. Equipment outages that affect the data transmitted to the plant can be detected by review of data displays in the reactor control room. Also, checks of data availability to the emergency centers are performed each work day. When an outage of one or more of the critical data items occurs, the appropriate maintenance personnel will be notified.

In the event that the onsite meteorological facility is rendered inoperable, or there is an outage of the communication or data access systems; there is no fully representative offsite source of meteorological data for identification of atmospheric dispersion conditions. Therefore, TVA has prepared objective backup procedures to provide estimates for missing or garbled data. These procedures incorporate available onsite data (for a partial loss of data), offsite data, and conditional climatology. The CECC meteorologist will apply the appropriate backup procedures.

2.3.3.3 Onsite Data Summaries of Parameters for Dispersion Meteorology

Annual joint frequency distributions of wind speed by wind direction for Pasquill atmospheric stability classes A-G, based on the onsite data for January 1974 through December 1993 are presented in Tables 2.3-45 through 2.3-52. These tables are summaries of hourly data for the wind at 10 meters and vertical temperature difference (Δ T) between 10 and 46 meters (in the form of stability classes A-G). Tables 2.3-53 through 2.3-60 were prepared from the hourly data for the wind at 46 meters and Δ T between 10 and 46 meters (as stability classes A-G) for January 1977 through December 1993. The frequency distributions in Tables 2.3-45 through 2.3-51 are also displayed in Figures 2.3-7 through 2.3-13.

The upvalley-downvalley primary wind pattern at 46 meters exists for all seven stability classes. The 10-meter wind level also shows upvalley-downvalley wind direction patterns. However, for classes E-G, the flow patterns become progressively more

diffuse, with peaks from the northwest which become primary maxima in classes F and G (Tables 2.3-50 and 2.3-51). These directional peaks for the stable classes are most pronounced in the lighter wind speed ranges. The combination of these very light winds with the more stable conditions near the earth's surface indicate that very poor atmospheric dispersion conditions for ground-level plant releases of air-borne effluent occur most frequently at night and with the northwest wind direction.

The period of record for the joint frequency tables for the 46-meter wind measurement level is three years shorter than the record used for the 10-meter wind level. Collection of wind data at the 46-meter level began in September 1976. Tables 2.3-53 through 2.3-60 were originally prepared with 93-meter wind data and 10- to 91-meter ΔT data for the July 1973-June 1975 period. The 46-meter wind level is near the height of the reactor building; and the 10- to 46-meter ΔT interval is more representative than the 10- to 91-meter interval for stability classification, particularly for poorer dispersion conditions. The 10-meter wind level is applicable to design accident analysis and to semiannual reports on routine plant operations. The 46-meter wind level is used in radiological emergency dispersion and transport calculations.

The 20-year period for the tables with 10-meter wind data and the 17-year period for the tables with 46-meter wind data reasonably represent long-term dispersion conditions at the site. The length of the record is an important factor, and patterns of unusually wet weather in the 1970s and unusually dry weather in the 1980s are included in this data base. The dispersion meteorology varied during the 20-year period, but the period is climatologically representative of long-term conditions. An increase in the frequency of 10-meter level calm winds (values less than 0.6 mi/hr) occurred in the early 1990s. The calm wind frequency increased from 1.6% for 1974-1988 to about 3.0% for 1974-1993. Consistent with the increase in calms, average wind speed decreased from 4.2 mi/hr for 1974-1988 to 4.1 mi/hr for 1974-1993.

Potential climate change associated with a global warming of the earth's lower atmosphere may occur in the Watts Bar site area. Should that occur during the life of this nuclear plant, the dispersion meteorology will be evaluated for any significant changes and consequent impacts on plant design and operation.

2.3.4 Short-Term (Accident) Diffusion Estimates

2.3.4.1 Objective

Revised estimates of atmospheric diffusion expressed as dispersion factors (X/Q) have been calculated for accident releases considered as ground-level releases from the Watts Bar Nuclear Plant for specified time intervals and distances. The revised X/Q values are based on an updated onsite meteorological data base for 1974 through 1993 and RG 1.145 calculation methodology.^[41] The original FSAR calculations were based on data collected at the Watts Bar onsite meteorological facility for the period July 1, 1973 through June 30, 1975 and R.G. 1.4 methodology.^[42] All data used include wind direction and wind speed at 10 meters above ground and vertical temperature difference (Δ T) between 10 and 46 meters above ground. The revised X/Q values at the exclusion area boundary and at the outer boundary of the low population zone (LPZ) were calculated as stated below.

Nomenclature for RG 1.145 Method

X/Q = centerline ground-level relative concentration (sec/m³)

- $Σ_y$ = lateral plume spread with meander and building wake effects (m), as a function of atmospheric stability, wind speed «₁₀, and distance (for distances greater than 800 meters, $Σ_y$ = (M-1) $σ_y$ 800_m + $σ_y$).
- σ_v = lateral plume spread as a function of atmospheric stability and distance (m).
- σ_z = vertical plume spread as a function of atmospheric stability and distance (m).
- x = distance from effluent release point to point at which atmospheric dispersion factors (X/Q values) are computed (m).
- \overline{U}_{10} = mean hourly horizontal wind speed at 10 meters (m/sec)
- M = σ_v correction factors for stability classes D, E, F, and G from Figure 3 in RG 1.145.

A = minimum containment and Auxiliary Building cross-sectional area (m^2) .

Atmospheric dispersion factors (X/Q values) were calculated for a 1-hour averaging period and assumed to apply to the 2-hour period immediately following an accident. The following equations were used to determine these values:

$$X/Q = \frac{1}{\overline{U}_{10}(\pi\sigma_y\sigma_z + A/2)}$$
(1)

$$X/Q = \frac{1}{\overline{U}_{10}(3\pi\sigma_y\sigma_z)}$$
(2)

$$X/Q = \frac{1}{\overline{U}_{10}\pi\Sigma_{\gamma}\sigma_{z}}$$
(3)

For stability classes D, E, F, or G and windspeeds less than 6 meters per second (m/s), the higher value from equations (1) and (2) was compared to the value from equation (3). The lower of these compared values was selected for the X/Q distributions. For wind speeds greater than 6 m/s in these classes and for all wind speeds in stability classes A, B, and C, the higher of the values from equations (1) and (2) was selected.

The minimum cross-sectional area, A, for Watts Bar Nuclear plant is 1630 m^2 . The exclusion boundary distance is 1200 m, as shown in Figure 2.1-4b. However, to avoid possible nonconservative accident X/Qs, the distance that was used to calculate the

X/Qs is 1100 m, which is the minimum distance from the outer edge of the release zone to the exclusion area boundary. The assumed release zone is a 100-m radius circular envelope, which contains all of the structures that are potential sources of accidental releases of airborne radioactive materials. A distance of three miles (4828 m) was used as the low population zone (LPZ) outer boundary distance.

The 1-hour X/Q values for the exclusion boundary distance were distributed in the downwind 22.5-degree compass-point sectors (plume sectors) based on wind direction. Calm wind speeds (less than 0.6 mi/hr) were distributed based on the wind direction frequencies for non-calm wind speeds less than 3.5 mi/hr. The 0.5th and 5th percentile values for each sector and for all sectors combined were identified. For the LPZ distance, the 0.5th percentile and 5th percentile 1-hour values for each sector, the annual average values for each sector, and the 0.5th and 5th percentile 1-hour values for all sectors combined were determined. The annual average X/Qs were calculated from hourly average data according to guidance in Regulatory Guide 1.111 for constant mean wind direction models.^[43] All calculations used an assumed wind speed of 0.6 mile per hour (0.268 m/s), which is the starting threshold of the anemometer, for hours with values less than that and thus defined as calms. Sitespecific adjustment factors for terrain confinement and recirculation effects on concentrations at the LPZ distance were calculated and applied to the initial annual average X/Qs. The method used to develop these adjustment factors is the same as that discussed in the offsite dose calculation manual for Watts Bar Nuclear Plant. The 16 sector adjustment factors are the following:

<u>N</u>	<u>NNE</u>	<u>NE</u>	<u>ENE</u>	<u>E</u>	<u>ESE</u>	<u>SE</u>	<u>SSE</u>
1.36	1.65	2.01	1.61	1.58	1.81	1.28	1.49
<u>S</u>	<u>SSW</u>	<u>SW</u>	<u>WSW</u>	<u>W</u>	<u>WNW</u>	<u>NW</u>	<u>NNW</u>
1.81	1.77	1.86	1.47	1.00	1.49	1.00	1.00

LPZ distance X/Qs for 8-hour, 16-hour, 3-day, and 26-day averaging periods were obtained by logarithmic interpolation between 1-hour values used for the 2-hour averaging period and annual average values. Sector values were interpolated between the 0.5th percentile 1-hour values assumed for the 2-hour time period and the annual average values for the respective sectors (e.g., between southeast sector 0.5th percentile 2-hour X/Q and southeast sector annual average X/Q). The 5th percentile overall site X/Q values were interpolated between the 5th percentile 1-hour value (assumed for the 2-hour time period) for all sectors combined and the maximum sector annual average value selected from the 16 sector annual average values.

2.3.4.2 Calculation Results

The 1-hour sector-specific and overall (all directions combined) atmospheric dispersion factors (X/Q) for the exclusion boundary are presented in Table 2.3-61 based on the 15-year data set of 1974-1988 and Table 2.3.61a based on the 20-year data set of 1974-1993. The maximum 0.5th and 5th percentile X/Q values are from the 15-year data set and are $6.040 \times 10^{-4} \text{ sec/m}^3$ and $5.323 \times 10^{-4} \text{ sec/m}^3$, respectively. The maximum 0.5th and 5th percentile X/Q values from the 20-year data sets (6.070)

I

x 10^{-4} sec/m³ and 5.263 x 10^{-4} sec m³, respectively) are essentially unchanged from the 15-year values.

The 1-hour 0.5th percentile, 1-hour 5th percentile, and annual average X/Q values for each of the 16 plume sectors and the 1-hour overall 0.5th and 5th percentile X/Q values for the low population zone distance are presented in Table 2.3-62 based on the 15-year data set of 1974-1988 and Table 2.3-62a based on the 20-year set of 1974-1993. Only minor differences exist between the two sets of values.

For 8-hour, 16-hour, 3-day, and 26-day averaging periods, the X/Qs were obtained by logarithmic interpolation between the 1-hour and annual average X/Q values. The 5th percentile overall site 1-hour X/Q and the maximum sector annual average X/Q were used to produce the values given in Table 2.3-63 (1974-1988) and Table 2.3-63a (1974-1993).

The 0.5th percentile 1-hour X/Q and annual average X/Q for each sector were used to produce the values given in Table 2.3-64 (1974-1988 and Table 2.3-65 (1974-1993).The maximum sector set corresponds to the southeast plume sector. The respective values are:

<u>Period</u>	<u>1974-1988</u>	<u>1974-1993</u>
8-hour	6.765 x 10 ⁻⁵	6.677 x 10 ⁻⁵
16-hour	4.629 x 10 ⁻⁵	4.592 x 10 ⁻⁵
3-day	2.032 x 10 ⁻⁵	2.039 x 10 ⁻⁵
26-day	6.230 x 10 ⁻⁶	6.353 x 10 ⁻⁶

In Section 2.3.3.3, the representativeness of the onsite data summarized in the joint frequency distributions of wind direction and wind speed by atmospheric stability class was discussed. Topographic effects have been mentioned previously, but some expansion relative to the 10-meter wind data is necessary. There is a predominance of northwest wind direction frequencies for a combination of very light wind speeds and quite stable atmospheric stability conditions. The terrain at the site has a general, gradual downward slope toward the south and southeast. Apparently, this is influencing the air flow over the site during periods with very light winds and stable conditions.

Dispersion meteorology used in accident analyses in Chapter 15 include X/Q values in Table 2.3-66 and 1/U values in Table 2.3-67. These values were based on the 15-year data set for 1974-1988. Table 2.3-66a and 2.3-67a present the same information based on the 20-year data set for 1974-1993. The original FSAR values are presented with the updated bases for comparison.

2.3.5 Long-Term (Routine) Diffusion Estimates

The X/Qs and D/Qs and the respective calculation methodologies are presented in the Offsite Dose Calculation Manual for Watts Bar Nuclear Plant.

The joint frequency distributions of wind speed and wind direction by stability class in Tables 2.3-45 through 2.3-51 form the basis for Offsite Dose Calculation Manual estimation of long-term X/Qs. RG 1.111 methodology is used to calculate these X/Qs from the onsite meteorological data base. Additional information is provided in the Offsite Dose Calculation Manual.

The long-term representativeness of the 20-year onsite meteorological data base is discussed in Sections 2.3.3.3 and 2.3.4.2.

REFERENCES

- (1) U. S. Atomic Energy Commission, A Meteorological Survey of the Oak Ridge Area, Weather Bureau, Publication ORO-99, Oak Ridge, Tennessee, November 1953, page 377.
- (2) Ibid., page 192.
- (3) Dickson, Robert R. Climates of the States Tennessee, Climatography of the United States No. 60-40, U. S. Department of Commerce., Weather Bureau, February 1960, page 3.
- (4) National Oceanic and Atmospheric Administration (NOAA), "A Summary of Tennessee Tornadoes, 1916-1970," National Weather Service Office for State Climatology, Nashville Metropolitan Airport, Nashville, Tennessee, December 1971.
- (5) Vaiksnoras, John V. Tornadoes in Tennessee (1916-1970) with Reference to Notable Tornado Disasters in the United States (1880-1970) Issued by the University of Tennessee, Institute for Public Service, Knoxville, Tennessee, revised October 1972.
- (6) U.S. Department of Commerce. Storm Data, August 1972-February 1989, NOAA, National Climatic Data Center, Asheville, North Carolina.
- (7) From discussion with John V. Vaiksnoras, State Climatologist for Tennessee, National Weather Service Office, Nashville, Tennessee, July 6, 1972.
- (8) Thom, H.C.S. "Tornado Probabilities," Monthly Weather Review, October-December 1963, pages 730-736.
- (9) U.S. Department of Commerce. Severe Local Storm Occurrences, 1955-1967, ESSA Technical Memorandum, WBTM FCST 12, September 1969.
- (10) Tornado data for the Watts Bar Nuclear Plant Site, prepared by the National Severe Storms Forecast Center, NOAA, NWS, Kansas City, Missouri, November 1987.
- (11) U.S. Department of Commerce. Local Climatological Data, Annual Summary with Comparative Data, 2008, Chattanooga, Tennessee, NOAA, National Climatic Data Center, Asheville, North Carolina.
- (12) U.S. Department of Commerce. Local Climatological Data, Annual Summary with Comparative Data, 2008, Knoxville, Tennessee, NOAA, National Climatic Data Center, Asheville, North Carolina.
- (13) U.S. Department of Commerce. Climatography of the United States No. 20, 1971-2000 Dayton 2, SE, TN.

I

I

- (14) Pierce, E. T. "Natural Lightning Parameters and Their Simulation in Laboratory Tests," from 1975 Lightning and Static Electricity Conference Proceedings, Culham, England, April 1975.
- (15) Korshover, J. "Climatology of Stagnating Anticyclones East of the Rocky Mountains, 1936-1970," NOAA Technical Memorandum ERL ARL-34, U.S. Department of Commerce, Air Resources Laboratories, Silver Spring, Maryland, October 1971.
- (16) Holzworth, G. C. Mixing Heights, Wind Speeds, and Potential for Urban Air Pollution Throughout the Contiguous United States, Environmental Protection Agency, Research Triangle Park, North Carolina, January 1972.
- (17) U.S. Department of Commerce/U.S. Department of Agriculture. Weekly Weather and Crop Bulletin, NOAA/USDA Joint Agricultural Weather Facility, Washington, D.C., December 18, 1984, page 14.
- (18) Tattelman, Paul, et al. "Estimated Glaze Ice and Wind Loads at the Earth's Surface for the Contiguous United States," Air Force Cambridge Research Laboratories, L. G. Hanscom Field, Massachusetts, October 16, 1973.
- (19) American Meteorological Society. "Extremes of Snowfall: United States and Canada," Weatherwise, Vol. 23, December 1970, page 291.
- (20) American National Standards Institute, Inc. "American National Standard Building Code Requirements for Minimum Design Loads in Buildings and Other Structures." A58.1-1972, New York, New York, Figure 4, page 27.
- (21) Ludlum, David M. Weather Record Book, United States and Canada, Weatherwise, Inc., 1971, page 73.
- (22) Thom, H. C. S. "New Distributions of Extreme Winds in the United States,"
 "Journal of the Structural Division Proceedings of the American Society of Civil Engineers, Paper 6038, July 1968, pages 1787-1801.
- (23) Tennessee Valley Authority. Record for TVA raingauge station 421, Watts Bar Dam, Tennessee, Data Services Branch, Knoxville, Tennessee, summarized February 1976 and updated for extremes in October 1989.
- (24) Deleted by Amendment 94.
- (25) Magnetic tape of Chattanooga, Tennessee, National Weather Service Station data, obtained from the National Climatic Data Center, Asheville, North Carolina. Period of data analyzed, 1965-1971.
- (26) U.S. Department of Commerce. Local Climatological Data, Annual Summary with Comparative Data, 2008, Oak Ridge, Tennessee, NOAA, National Climatic Data Center, Asheville, North Carolina.

I

I

- (27) Hardwick, W. C. "Monthly Fog Frequency in the Continental United States," Monthly Weather Review, Volume 101, October 1973, pages 763-766.
- (28) Tennessee Valley Authority. Final Safety Analysis Report for Sequoyah Nuclear Plant, Section 2.3, Figure 2.3-5.
- (29) Hosler, C. R. "Low-Level Inversion Frequency in the Contiguous United States," Monthly Weather Review, Vol. 89, September 1961, pages 319-339.
- (30) U.S. Department of Commerce. Local Climatological Data, January 1982, Knoxville, Tennessee, NOAA, National Climatic Data Center, Asheville, North Carolina.
- *(31)* U.S. Department of Commerce. Local Climatological Data, January 1982, Chattanooga, Tennessee, NOAA, National Climatic Data Center, Asheville, North Carolina.
- (32) U.S. Department of Commerce. Daily Weather Maps, January 18-24, 1982, NOAA, Washington, D.C.
- (33) U.S. Department of Commerce. Local Climatological Data, December 1989, Chattanooga, Tennessee, NOAA, National Climatic Data Center, Asheville, North Carolina.
- (34) U.S. Department of Commerce. Local Climatological Data, December 1989, Knoxville, Tennessee, NOAA, National Climatic Data Center, Asheville, North Carolina.
- (35) U.S. Department of Commerce. Daily Weather Maps, December 25-31, 1989, NOAA, Washington, D.C.
- (36) U.S. Atomic Energy Commission. Regulatory Guide 1.23, Revision 0, "Onsite Meteorological Programs," Washington, D.C., February 1972.
- (37) Tennessee Valley Authority. "Watts Bar Nuclear Plant Environmental Data Station Manual."
- (38) Deleted by Amendment 94.
- (39) Deleted by Amendment 94.
- (40) U.S. Atomic Energy Commission. Regulatory Guide 1.21, Revision 1, "Measuring, Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants," Washington, D.C., June 1974.
- (41) U.S. Nuclear Regulatory Commission. Regulatory Guide 1.145, Revision 1, "Atmospheric Dispersion Models for Potential Accident Consequence Assessment at Nuclear Power Plants," Washington, D.C., November 1982.

- (42) U.S. Atomic Energy Commission. Regulatory Guide 1.4, Revision 2, "Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss of Coolant Accident for Pressurized Water Reactors," Washington, D.C., June 1974.
- (43) U.S. Nuclear Regulatory Commission. Regulatory Guide 1.111, Revision 1, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water-Cooled Reactors," Washington, D.C., July 1977.

	<u>Chattanooga¹</u>	<u>Knoxville</u> ²
December January February	0.6 1.3 2.0	0.70.81.5
Winter	3.9	3
March April May	3.6 4.8 7.1	3.2 4.6 6.8
Spring	15.5	14.6
June	9.0	8.4
July	11.1	9.8
August	8.8	6.8
Summer	28.9	25
Contombor	3.0	2.0
September October	3.9 1.4	3.0 1.3
November	1.4	1.3
	1.0	1.1
Fall	6.8	5.4
Annual	55.1	48

Table 2.3-1 Thunderstorm Day Frequencies

 National Oceanic and Atmospheric Administration, 2008 Local Climatological Data Annual Summary with Comparative Data Chattanooga, TN (KCHA) period of record 61 years.
 Knoxville, TN (KTYS)

I

Table 2.3-2 <u>Temperature Data (°F)</u> Dayton, Tennesee*						
<u>Month</u>	Daily <u>Average</u>	Daily Average <u>Maximum</u>	Daily Average <u>Minimum</u>	Extreme <u>Maximum</u>	Extreme <u>Minimum</u>	
January	36.2	45.9	26.5	75	-15	
February	40.5	51.6	29.3	79	-4	
March	48.8	60.8	36.7	85	3	
April	57.4	70.3	44.4	92	22	
Мау	65.4	77.3	53.5	94	30	
June	73.3	84.7	61.8	100	40	
July	76.9	87.7	66.1	107	49	
August	76.0	86.9	65.0	104	49	
September	70.1	81.0	59.1	100	30	
October	58.3	70.4	46.1	90	23	
November	48.1	58.8	37.3	83	9	
December	39.3	49.0	29.6	76	-5	
Annual	57.5	68.7	46.3	107	-15	

* Climatography of the United States No. 20 1971-2000 Dayton 2 SE, TN National Climate Data Center, Ashville, NC.

Chattanooga, Tennessee [*]						
<u>Month</u>	Daily <u>Average</u> ^a	Daily Average <u>Maximum</u> ^a	Daily Average <u>Minimum</u> ^a	Extreme <u>Maximum</u> ^b	Extreme <u>Minimum</u> ^b	
January	39.4	48.8	29.9	78	-10 ^d	
February	43.4	54.1	32.6	79	1	
March	51.4	62.8	40.0	89	8	
April	59.6	72.1	47.0	93	25	
Мау	67.7	79.1	56.2	99	34	
June	75.4	86.2	64.6	104	41	
July	79.6	89.8	69.4	106 ^c	51	
August	78.5	88.7	68.3	105	50	
September	72.1	82.5	61.7	102	36	
October	60.4	72.3	48.5	94	22	
November	50.3	61.1	39.5	84	4	
December	42.4	52.0	32.7	78	-2	
Annual	60.0	70.8	49.2	106 ^c	-10 ^d	

Table 2.3-3 Temperature Data (°F)

* Local Climatological Data, Annual Summary with Comparative Data, 1974 and 1988, Chattanooga, Tennessee, U.S. Department of Commerce, NOAA, NCDC, Asheville, N.C.

a. Normals - based on record for the 1971-2000 period.

b. Period of record, 1928-2001.

c. 1952.

d. 1966.

	(1940-1975)			(9/39-9/89 Extremes Recorded)			
<u>Month</u>	Average No. of Days 0.01 <u>Inch or More</u>	(1941- 1970) <u>Average</u>	Extreme <u>Maximum</u>	Extreme <u>Minimum</u>	24-hour <u>Maximum</u>		
January	11	5.30	11.67	0.93	5.31 a		
February	10	5.34	9.79	0.74	3.50		
March	11	5.62	11.75	1.32	5.00		
April	10	4.56	8.66	0.80	3.10		
Мау	9	3.57	10.94	0.56	3.20		
June	9	3.81	12.30	0.03	3.73		
July	10	5.14	12.50	0.50	4.80		
August	9	3.20	7.13	0.52	3.19		
September	7	3.69	14.78 b	0.45	4.50		
October	6	2.90	7.91	0.00	3.05		
November	8	4.13	14.06	0.94	4.63		
December	10	5.31	12.08	0.30	4.15		
Annual	<u>110</u>	<u>52.57</u>					

Table 2.3-4 Watts Bar Dam Precipitation Data (Inches)*

* TVA raingage station 421, located on roof of Control Building at Watts Bar Dam.

a. January 1946.

b. September 1957.

Dayton, Tennessee					
<u>Month</u>	Monthly <u>Average</u> *	Maximum <u>Monthly</u> *	Maximum in <u>24 Hrs.</u> *		
January	1.8	9.7	7		
February	1.6	13.3	7		
March	0.8	13	8		
April	.1	3	0		
Мау	0	0	0		
June	0	0	0		
July	0	0	0		
August	0	0	0		
September	0	0	0		
October	0	0	0		
November	Trace	Trace	Trace		
December	0.1	1.1	3		
Annual	4.4	13.3 ^a	8 ^b		

Table 2.3-5 Snowfall Data (Inches)

*Climatography of the United States No. 20 1971-2000 Dayton 2 SE, TN National Climate Data Center, Ashville, NC.

a.1979

b.1993

	<u>Monthly</u>	Average ^c	<u>Maximum</u>	<u>Monthly^d</u>	<u>Maximum</u>	<u>in 24 Hrs.^d</u>
<u>Month</u>	<u>Chat.</u>	<u>Knox.</u>	<u>Chat.</u>	<u>Knox.</u>	<u>Chat.</u>	<u>Knox.</u>
January	2.0	3.7	10.2	14.2	10.2	8.8
February	1.3	3.0	8.7	18.4	5.5	8.1
March	1.2	1.6	20	15.1	18.5	11.1
April	0.2	.8	2.8	10.7	2.8	10.5
May	0	0	0	Trace	0	0
June	0	0	0	0	0	0
July	0	0	0	0	0	0
August	0	0	0	0	0	0
September	0	0	0	0	0	0
October	Trace	Trace	Trace	Trace	Trace	Trace
November	0	.1	0.3	1.0	0.3	1.0
December	0.1	.7	1.9	3.3	1.6	2.0
Annual	4.8	9.9	20	18.4	18.5	11.1

Table 2.3-6Snowfall Data (Inches)Chattanooga and Knoxville, Tennessee

a.<u>Local Climatological Data, Annual Summary with Comparative Data, 2008</u>, Chattanooga, Tennessee, U.S. Department of Commerce, NOAA, NCDC, Asheville, N.C.

b.<u>Local Climatological Data, Annual Summary with Comparative Data, 2008</u>, Knoxville, Tennessee, U.S. Department of Commerce, NOAA, NCDC, Asheville, N.C.

c.Period of record, 1971-2000.

d.Chattanooga record, 1971-2000; Knoxville record, 1971-2000

e.Maximum in locality was 20 inches, March 1993.

f.Maximum in locality was 18.4 inches, February 1979.

g.Maximum in locality was 18.5 inches, March 1993.

h.March 1993.

Chattanooga, Tennessee* (Eastern Standard Time)				
	Hour	Hour	Hour	Hour
<u>Month</u>	<u>0100</u>	<u>0700</u>	<u>1300^b</u>	<u>1900^b</u>
January	79	81	63	66
February	77	82	58	58
March	76	82	55	53
April	78	85	49	49
Мау	87	89	55	58
June	87	90	57	60
July	87	90	57	62
August	88	92	58	64
September	89	92	59	66
October	88	91	55	68
November	83	86	59	68
December	80	83	62	68
Annual	83	87	57	62

Table 2.3-7	Average Relative Humidity Data (Percent) - Selected Hours					
Chattanooga, Tennessee*						
(Eastern Standard Time)						

* Local Climatological Data, Annual Summary with Comparative Data, 2008, Chattanooga, Tennessee, U.S. Department of Commerce, NOAA, NCDC, Asheville, N.C. Period of record, 1979-2008.

National Weather Service Station Chattanooga, Tennessee* January 1965-December 1971						
<u>Month</u>	<u>Average</u>	<u>Avg. Max.</u>	<u>Avg. Min.</u>	Extreme Max.	<u>Extreme Min.</u>	
December	75.3	83.6	67.7	100.0	10.7	
January	72.3	74.6	69.5	100.0	18.6	
February	67.0	76.8	58.0	100.0	12.1	
<u>Winter</u>	71.5	78.3	65.1	100.0	10.7	
March	64.1	71.4	55.0	100.0	13.8	
April	64.6	72.3	56.9	100.0	12.8	
Мау	71.1	77.1	65.0	100.0	19.0	
<u>Spring</u>	66.6	73.6	58.9	100.0	12.8	
June	72.3	77.4	68.3	100.0	23.1	
July	75.5	80.1	71.2	100.0	26.9	
August	78.4	82.9	75.3	100.0	32.5	
<u>Summer</u>	75.4	80.1	71.6	100.0	23.1	
September	79.7	84.0	75.2	100.0	26.0	
October	76.6	83.0	71.1	100.0	18.2	
November	72.6	79.7	66.2	100.0	16.1	
<u>Fall</u>	76.3	82.2	70.8	100.0	16.1	
Annual	72.5	78.6	66.6	100.0	10.7	

Table 2.3-8 Relative Humidity (Percent)

* Analysis based on data tapes obtained from National Climatic Data Center, Asheville, North Carolina. Observations recorded on tape are for 3-hourly synoptic times.

National Weather Service Station Chattanooga, Tennessee* January 1965-December 1971													
<u>Month</u>	<u>Average</u>	<u>Avg. Max.</u>	<u>Avg. Min.</u>	Extreme Max.	<u>Extreme Min.</u>								
December	5.8	7.2	4.5	16.1	0.9								
January	4.8	5.3	4.5	14.0	0.4								
February	4.5	5.8	3.4	14.1	0.8								
Winter	5.0	6.1	4.1	16.1	0.4								
March	5.9	7.2	4.6	16.6	1.1								
April	8.6	10.3	7.0	20.1	2.4								
May	11.4	12.8	9.9	19.6	3.4								
<u>Spring</u>	8.6	10.1	7.1	20.1	1.1								
June	14.7	15.9	13.5	22.7	4.9								
July	16.7	17.7	15.6	24.2	8.6								
August	17.0	18.2	16.0	25.8	9.6								
<u>Summer</u>	16.1	17.3	15.0	25.8	4.9								
September	14.8	16.2	13.6	23.6	4.2								
October	10.0	11.6	8.5	20.8	3.0								
November	6.5	7.9	5.1	17.8	1.2								
Fall	10.4	11.9	9.1	23.6	1.2								
Annual	10.0	11.4	8.8	25.8	0.4								

Table 2.3-9 Absolute Humidity (gm/m³)

* Analysis based on data tapes obtained from National Climatic Data Center, Asheville, North Carolina. Observations recorded on tape are for 3-hourly synoptic times.

Table 2.3-10 <u>Relative Humidity (Percent)</u> <u>Watts Bar Nuclear Plant Meteorological Facility</u> * July 1, 1973 - June 30, 1975													
<u>Month</u>	<u>Average</u>	<u>Avg. Max.</u>	<u>Avg. Min.</u>	Extreme Max.	Extreme Min.								
December	71.2	85.1	53.8	100.0	30.2								
January	73.6	87.5	54.5	100.0	10.4								
February	70.3	87.5	50.9	100.0	21.4								
<u>Winter</u>	71.7	86.7	53.1	100.0	10.4								
March	69.9	88.4	49.8	100.0	22.6								
April	64.5	87.8	38.6	100.0	11.2								
Мау	78.3	94.1	56.9	100.0	28.3								
<u>Spring</u>	70.9	90.1	48.5	100.0	11.2								
June	75.2	91.6	55.0	100.0	34.6								
July	76.2	93.4	48.4	100.0	10.1								
August	78.7	93.6	55.1	100.0	36.7								
<u>Summer</u>	76.7	92.9	52.9	100.0	10.1								
September	77.9	91.8	56.8	100.0	29.3								
October	71.5	89.9	43.2	100.0	19.7								
November	69.0	87.0	47.4	96.5	26.9								
<u>Fall</u>	72.8	89.6	49.1	100.0	19.7								
Annual	73.0	89.8	50.9	100.0	10.1								

Table 2.3-10 Relative Humidity (Percent)

* Meteorological facility located 0.8 km SSW of Watts Bar Nuclear Plant. Temperature and dewpoint instruments at 4 feet above ground.

Table 2.3-11 <u>Absolute Humidity (Gm/m</u> ³)* Watts Bar Nuclear Blant Meteorological Eacility**													
<u>watts bar r</u>													
<u>Average</u>	<u>Avg. Max.</u>	<u>Avg. Min.</u>	Extreme Max.	Extreme Min.									
5.2	6.6	4.0	14.5	1.5									
6.1	7.8	4.3	13.2	1.0									
5.7	7.3	4.3	15.1	1.5									
5.7	7.2	4.2	15.1	1.0									
7.1	8.9	5.3	14.7	1.8									
8.3	10.3	6.4	17.7	2.0									
13.7	15.9	11.6	21.5	4.9									
9.7	11.7	7.8	21.5	1.8									
14.7	17.2	12.4	22.1	7.8									
17.1	19.3	13.7	22.7	1.8									
16.7	18.9	14.9	24.4	10.1									
16.2	18.4	13.7	24.4	1.8									
14.4	16.5	12.5	21.9	4.9									
9.2	11.0	7.7	17.7	3.1									
7.0	8.7	5.4	16.6	2.1									
10.2	12.1	8.5	21.9	2.1									
10.4	12.4	8.5	24.4	1.0									
	Average 5.2 6.1 5.7 5.7 7.1 8.3 13.7 9.7 14.7 17.1 16.7 14.4 9.2 7.0 10.2	Watts Bar Nuclear Plant I July 1, 1973 - JAverageAvg. Max.5.26.66.17.85.77.35.77.27.18.98.310.313.715.99.711.714.717.217.119.316.718.916.218.414.416.59.211.07.08.710.212.1	Watts Bar Nuclear Plant Meteorologic July 1, 1973 - June 30, 1975AverageAvg. Max.Avg. Min. 5.2 6.6 4.0 6.1 7.8 4.3 5.7 7.3 4.3 5.7 7.2 4.2 7.1 8.9 5.3 8.3 10.3 6.4 13.7 15.9 11.6 9.7 11.7 7.8 14.7 17.2 12.4 17.1 19.3 13.7 16.7 18.4 13.7 16.2 18.4 13.7 14.4 16.5 12.5 9.2 11.0 7.7 7.0 8.7 5.4 10.2 12.1 8.5	Watts Bar Nuclear Plant Meteorological Facility** July 1, 1973 - June 30, 1975AverageAvg. Max.Avg. Min.Extreme Max.5.26.64.014.56.17.84.313.25.77.34.315.15.77.24.215.15.77.24.215.17.18.95.314.78.310.36.417.713.715.911.621.59.711.77.821.514.717.212.422.117.119.313.722.716.718.914.924.416.218.413.724.414.416.512.521.99.211.07.717.77.08.75.416.610.212.18.521.9									

Table 2.3-11 <u>Absolute Humidity (Gm/m</u> ³)*
Natts Bar Nuclear Plant Meteorological Facility**
July 1, 1973 - June 30, 1975

* Calculations based on temperature and dewpoint measurements 4 feet above ground.

** Meteorological facility located 0.8 km SSW of Watts Bar Nuclear Plant.

Month	<u>Chat.</u> ^a	<u>Knox.</u> b	<u>Oak R.</u> c	Est. from <u>Hardwick</u> d
January	2.9	2.6	2.7	1
February	1.5	1.8	1.3	2
March	1.2	1.6	1.8	1
April	1.3	1.3	1.8	1
Мау	2.2	2.2	5.6	2
June	1.6	1.9	4.8	2
July	1.6	2.1	6.1	2
August	1.9	3.5	5.0	3
September	3.4	3.7	7.5	4
October	4.8	4.2	7.7	6
November	3.4	2.9	4.4	4
December	2.4	2.4	4.1	3
Annual	28.2	30.2	52.8	33

Table 2.3-12 Fog Data*

* Mean number of days with heavy fog, which is defined by horizontal visibility 1/4 mile or less.

 <u>Local Climatological Data, Annual Summary with Comparative Data, 2008</u>, Chattanooga, Tennessee, U.S. Department of Commerce, NOAA, NCDC, Asheville, North Carolina. Period of record, 1979-2008. Period of Record 45 years.

 Local Climatological Data, Annual Summary with Comparative Data, 2008, Knoxville, Tennessee, U.S. Department of Commerce, NOAA, NCDC, Asheville, North Carolina. Period of record, 1979-2008. Period of Record 45years.

c. <u>Local Climatological Data, Annual Summary with Comparative Data, 2008</u>, Oak Ridge, Tennessee, U.S. Department of Commerce, NOAA, NCDC, Asheville, North Carolina. Period of record, 1979-2008. Record 9 years.

d. Hardwick, W. C. "Monthly Fog Frequency in the Continental United States", <u>Monthly Weather Review</u>, Volume 101, October 1973, pages 763-766.

Watts Bar Nuclear Plant Jan 1, 74 - Dec 31, 88												
						SPEED(MPH)						
WIND												
DIRECTION	<u>CALM</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.41</u>	<u>8.5-24.4</u>	<u>>=24.5</u>	<u>TOTAL</u>		
Ν	0.067	0.683	1.401	1.693	1.432	1.586	0.076	0.000	0.000	6.938		
NNE	0.065	0.588	1.432	2.102	1.996	2.189	0.120	0.000	0.000	8.492		
NE	0.081	0.690	1.815	1.663	1.079	0.747	0.011	0.001	0.000	6.088		
ENE	0.131	1.066	3.004	1.354	0.487	0.176	0.003	0.000	0.000	6.221		
Е	0.087	0.995	1.687	0.660	0.172	0.054	0.002	0.000	0.000	3.658		
ESE	0.030	0.405	0.537	0.205	0.034	0.015	0.001	0.000	0.000	1.227		
SE	0.047	0.595	0.851	0.340	0.081	0.058	0.018	0.000	0.000	1.990		
SSE	0.083	0.890	1.670	0.627	0.196	0.170	0.043	0.004	0.000	3.681		
S	0.114	0.995	2.551	1.848	0.893	0.778	0.213	0.026	0.001	7.419		
SSW	0.140	1.079	3.265	3.970	3.067	3.351	0.716	0.064	0.000	15.652		
SW	0.116	1.240	2.363	1.471	0.807	0.556	0.092	0.005	0.001	6.650		
WSW	0.127	1.730	2.208	0.694	0.394	0.363	0.105	0.005	0.000	5.626		
W	0.130	2.012	2.003	0.678	0.586	0.701	0.110	0.010	0.002	6.232		
WNW	0.119	2.059	1.613	0.633	0.563	0.805	0.092	0.006	0.000	5.890		
NW	0.158	2.581	2.308	0.783	0.738	1.082	0.116	0.002	0.000	7.768		
NNW	0.097	1.445	1.572	1.016	0.944	1.309	0.083	0.001	0.000	6.468		
SUBTOTAL	1.593	19.055	30.279	19.737	13.471	13.939	1.799	0.124	0.004	100.000		

Table 2.3-13 Joint Percentage Frequencies of Wind Speed By Wind Direction Disregarding Stability Class

			٦		<u>d Direction Dis</u> Watts Bar	<u>ge Frequencies O</u> regarding Stability Nuclear Plant Dec 31, 88	
Wind				(Wind S	peed(Mph)		
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>
Ν	0.068	0.502	1.248	1.148	1.305	2.863	0.512
NNE	0.115	0.739	2.240	2.276	2.220	3.011	0.433
NE	0.170	1.075	3.314	2.464	1.648	1.647	0.123
ENE	0.149	0.997	2.858	1.317	0.758	0.458	0.029
E	0.077	0.841	1.137	0.521	0.209	0.107	0.010
ESE	0.036	0.423	0.511	0.286	0.061	0.032	0.003
SE	0.039	0.381	0.632	0.338	0.111	0.091	0.033
SSE	0.076	0.581	1.382	0.716	0.215	0.266	0.118
S	0.122	0.710	2.441	1.832	0.912	0.913	0.335
SSW	0.149	0.660	3.189	4.307	3.445	4.559	1.932
SW	0.085	0.520	1.684	1.997	1.715	2.457	0.793
WSW	0.055	0.398	1.009	0.766	0.523	0.800	0.321
W	0.044	0.391	0.752	0.434	0.399	0.878	0.332
WNW	0.036	0.381	0.558	0.420	0.468	1.253	0.448
NW	0.041	0.371	0.683	0.500	0.653	1.421	0.420
NNW	0.043	0.385	0.722	0.654	0.708	1.610	0.466
ubtotal	1.307	9.355	24.359	19,975	15.350	22.365	6.308

Total Hours Of Valid Wind Observations Total Hours Of Observations Recoverability Percentage Meteorological Facility Located 0.8 Km SSW Of Watts Bar Nuclear Plant Wind Speed And Direction Measured At 46.36 Meter Level Mean Wind Speed = 5.81 Note: Totals And Subtotals Are Obtained From Unrounded Numbers <u>18.5-24.4</u>

0.014

0.008

0.001

0.000

0.000

0.001

0.011

0.018

0.102

0.363

0.130

0.090

0.059

0.029

0.026

0.016

0.866

101227

105192

96.2

<u>>=24.5</u>

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.017

0.041

0.021

0.024

0.009

0.002

0.002

0.001

0.116

<u>Total</u>

7.659

11.041

10.442 6.566

2.901

1.353 1.636

3.372

7.383

18.644

9.403

3.984

3.298 3.596

4.116

4.606

100.000

>
-
m
1
n.
0
Ā
Ó
Ē
0
G
~

Persistence								Win	d Direc	tion									ACC.	ACC.
(Hours)	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	wsw	W	WNW	NW	NNW	CALM	TOTAL	TOTAL	FREQUENCY
2	665	663	645	731	428	103	170	369	800	931	739	608	709	622	802	660	143	9788	21411	100.00
3	260	356	266	336	166	32	63	167	369	526	287	247	275	243	393	304	85	4375	11623	54.29
4	169	228	172	166	60	8	17	60	207	399	148	100	152	140	208	166	44	2444	7248	33.85
5	111	138	104	101	26	0	8	20	122	305	97	49	87	94	133	88	27	1510	4804	22.44
6	82	118	62	52	14	0	2	17	82	201	30	34	52	49	86	62	20	963	3294	15.38
7	59	74	51	28	6	0	3	3	38	200	27	17	18	24	50	38	12	648	2331	10.89
8	52	64	26	16	2	0	0	4	20	140	20	15	28	15	42	20	5	469	1683	7.86
9	28	32	10	8	0	0	0	2	14	106	11	5	6	14	18	24	4	282	1214	5.67
10	24	43	11	9	0	0	0	2	7	98	8	5	8	4	10	8	2	239	932	4.35
11	19	24	6	2	0	0	0	0	11	72	5	4	4	8	9	9	0	173	693	3.24
12	13	14	2	1	0	0	2	1	8	59	0	0	2	2	2	6	0	112	520	2.43
13	10	12	3	2	0	0	0	0	1	50	1	1	0	1	2	5	1	89	408	1.91
14	4	9	3	0	0	0	0	0	2	31	2	0	1	1	0	1	2	56	319	1.49
15	2	10	0	0	0	0	0	0	1	28	3	1	1	0	1	6	0	53	263	1.23
16	4	5	3	1	1	0	0	0	0	17	0	1	0	0	2	2	0	36	210	0.98
17	3	7	1	0	0	0	0	0	1	14	1	0	0	0	0	1	0	28	174	0.81
18	2	6	2	0	0	0	0	1	0	14	1	1	0	0	1	0	0	28	146	0.68
19	3	7	0	0	0	0	0	0	0	18	0	0	1	1	2	1	0	33	118	0.55
20	3	5	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	17	85	0.40
21	1	5	0	0	0	0	0	0	0	1	1	0	0	0	1	1	0	10	68	0.32
22	1	4	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	11	58	0.27
23	0	0	0	0	0	0	0	0	1	5	0	0	0	0	0	1	0	7	47	0.22
24	0	3	0	0	0	0	0	0	0	2	0	0	0	0	0	1	0	6	40	0.19
25	1	0	0	0	0	0	0	0	1	2	0	0	0	0	0	1	0	5	34	0.16
26	0	1	1	0	0	0	0	0	0	6	0	0	0	0	1	0	0	9	29	0.14
27	0	0	0	0	0	0	0	0	0	2	0	0	0	0	1	0	0	3	20	0.09
28	0	0	0	0	0	0	0	0	0	3	0	0	0	0	0	1	0	4	17	0.08
29	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	13	0.06

Table 2.3-15 Wind Direction Persistence Data

Disregarding Stability, Watts Bar Nuclear Plant Jan 1, 74 - Dec 31, 88 (Sheet 1 of 2)

	Table 2.3-15 <u>Wind Direction Persistence Data</u> Disregarding Stability, Watts Bar Nuclear Plant Jan 1, 74 - Dec 31, 88 (Sheet 2 of 2)																				
Persistence Wind Direction ACC. ACC.																					
(Hours)	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	CALM	TOTAL	TOTAL	FREQUENCY	
Maximum Persistence (Hours)	25	37	26	16	16	4	12	18	25	44	21	18	19	19	27	28	14				
50.0% 80.0% 90.0% 99.0% 99.9%	3 6 8 16 22	3 6 9 20 26	3 5 6 12 18	2 4 5 10 13	2 3 4 7 16	2 3 3 4 4	2 3 4 7 12	2 3 4 8 18	3 4 6 11 23	4 8 11 22 37	2 4 5 11 18	2 4 5 10 16	2 4 5 10 15	2 4 5 11 14	3 5 6 11 26	3 4 6 15 25	3 5 6 10 14				

Meteorological Facility Located 0.8 Km SSW Of Watts Bar Nuclear Plant

Wind Speed And Direction Measured At The 9.72 Meter Level

2	
ī.	
-	
m	
0	
Ā	
Õ	
Ē	
0	
ดั	
₹	

									Watts I	Bar Nuc ec 31, 8	lear Pla)							
Persistence									Wind	Directio	n								ACC.	ACC.
(Hours)	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	wsw	W	WNW	NW	NNW	CALM	TOTAL	TOTAL	FREQUENCY
2	553	713	781	622	257	104	130	315	720	885	768	352	274	258	300	362	133	7527	17582	100.00
3	240	358	370	271	79	18	43	103	312	540	364	114	85	124	151	180	54	3406	10055	57.19
4	152	245	279	156	36	12	13	47	150	408	232	59	70	97	80	82	29	2147	6649	37.82
5	110	133	177	78	10	4	7	18	90	269	136	40	32	47	64	47	13	1275	4502	25.61
6	82	118	110	52	1	0	2	8	60	202	81	19	26	39	36	35	13	885	3227	18.35
7	63	97	89	24	3	0	3	5	29	174	51	9	11	23	24	22	1	625	2342	13.32
8	33	47	50	18	2	0	0	1	13	126	38	8	9	10	9	23	4	396	1717	9.77
9	34	41	41	4	0	0	1	1	8	100	35	8	5	11	11	15	0	315	1321	7.51
10	24	34	27	7	0	0	1	1	7	87	12	1	3	2	9	6	0	220	1006	5.72
11	13	18	12	2	0	0	0	0	5	66	9	3	0	4	6	11	2	152	786	4.47
12	16	25	24	1	0	0	0	1	2	60	8	1	1	2	4	8	0	152	634	3.61
13	4	17	8	0	0	0	0	0	1	43	8	1	1	0	4	0	0	88	482	2.74
14	13	14	8	0	0	0	0	0	0	46	3	0	2	2	4	3	0	93	394	2.24
15	6	16	6	0	0	0	0	0	0	36	2	2	1	0	2	1	0	74	301	1.71
16	4	9	4	0	0	0	0	0	0	19	0	0	1	1	4	2	0	41	227	1.29
17	2	6	2	0	0	0	0	0	0	17	1	0	0	0	1	1	0	30	186	1.06
18	1	9	2	0	0	0	0	0	0	16	1	0	0	0	1	0	0	31	156	0.89
19	3	7	1	0	0	0	0	0	0	12	1	0	0	1	1	0	0	25	125	0.71
20	0	2	0	0	0	0	0	0	0	13	2	1	0	0	0	0	0	19	100	0.57
21	1	3	1	0	0	0	0	0	0	5	2	0	0	0	1	0	0	12	81	0.46
22	2	5	1	0	0	0	0	0	0	10	1	0	0	0	0	0	0	20	69	0.39
23	0	2	0	0	0	0	0	0	0	7	2	0	0	0	1	0	0	11	49	0.28
24	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	38	0.22
25	0	3	0	0	0	0	0	0	0	4	0	0	0	0	0	0	0	9	37	0.21
26	0	0	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0	2	28	0.16
27	1	1	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	5	26	0.15
28	1	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	3	21	0.12
29	0	0	0	0	0	0	0	0	0	5	0	0	0	0	0	0	0	5	18	0.10

Table 2.3-16 Wind Direction Persistence Data

Disregarding Stability,

	Table 2.3-16 Wind Direction Persistence Data Disregarding Stability, Watts Bar Nuclear Plant Jan 1, 77 - Dec 31, 88 (Sheet 2 of 2)																			
30	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	13	0.07
31	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	2	12	0.07
32	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	1	10	0.06
>32	0	1	0	0	0	0	0	0	0	8	0	0	0	0	0	0	0	9	9	0.05
TOTAL	1358	1925	1995	1253	388	138	198	506	1397	3166	1760	618	521	621	709	798	249	17582		
MAXIMUM PERSISTENCE (HOURS)	28	33	27	12	8	5	9	18	13	41	32	20	16	19	22	17	11			
50.0%	3	3	3	2	2	2	2	2	2	4	3	2	2	3	3	3	2			
80.0%	6	6	5	4	3	3	3	3	4	8	5	4	4	5	5	5	4			
90.0%	8	9	7	5	4	4	4	4	5	11	7	5	6	6	7	7	5			
99.0%	16	19	14	9	7	5	8	8	10	23	14	11	12	11	15	12	8			
99.9%	27	30	26	11	8	5	9	18	12	34	25	20	16	19	27	17	11			

Meteorological Facility Located 0.8 Km SSW Of Watts Bar Nuclear Plant

Wind Speed And Direction Measured At The 9.72 Meter Level

	Table 2.3-17 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class,</u> Watts Bar Nuclear Plant January (74-88)										
Wind				0u	• • •	peed(MPH)					
Direction	CALM	0.6-1.4	<u>1.5-3.4</u>	<u>3.5-5.</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	12.5-18.4	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>	
Ν	0.061	0.640	1.288	1.471	1.764	2.266	0.101	0.000	0.000	7.591	
NNE	0.068	0.484	1.654	2.293	2.193	2.211	0.128	0.000	0.000	9.032	
NE	0.090	0.740	2.083	1.946	1.115	0.576	0.000	0.000	0.000	6.550	
ENE	0.131	0.914	3.189	1.179	0.384	0.128	0.000	0.000	0.000	5.924	
E	0.078	0.740	1.700	0.493	0.201	0.119	0.000	0.000	0.000	3.331	
ESE	0.025	0.292	0.493	0.155	0.046	0.027	0.000	0.000	0.000	1.039	
SE	0.034	0.320	0.758	0.192	0.037	0.000	0.000	0.000	0.000	1.341	
SSE	0.074	0.667	1.663	0.402	0.101	0.018	0.037	0.027	0.000	2.989	
S	0.067	0.402	1.709	1.124	0.841	0.503	0.201	0.018	0.000	4.864	
SSW	0.111	0.704	2.778	3.445	2.440	2.979	0.685	0.027	0.000	13.168	
SW	0.067	0.640	1.462	1.170	0.859	0.576	0.192	0.000	0.000	4.965	
WSW	0.096	0.895	2.120	1.352	0.969	0.877	0.420	0.009	0.000	6.739	
W	0.105	1.343	1.955	1.069	1.352	1.389	0.375	0.018	0.000	7.607	
WNW	0.092	1.316	1.581	1.042	1.033	1.626	0.119	0.000	0.000	6.808	
NW	0.128	1.663	2.348	1.279	1.462	2.239	0.247	0.000	0.000	9.366	
NNW	0.097	1.096	1.937	1.489	1.553	2.339	0.174	0.000	0.000	8.686	
SUBTOTAL	1.325	2.856	28.719	20.102	16.347	17.873	2.677	0.101	0.000	100.000	
Total Hours Of Vali	d Wind Observation	s					10944				
Total Hours Of Obs	servations						11160				
Recoverability Pere	centage						98.1				
Meteorological Fac	cility Located 0.8 KM	SSW Of Watts B	ar Nuclear Plan	ıt							
Wind Speed And D	irection Measured A	At 9.72 Meter Leve	el								
Mean Wind Speed	= 4.81										
Note: Totals And S	Subtotals Are Obtain	ed From Unround	led Numbers								

WATTS BAR

Table 2.3-18 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class,</u> Watts Bar Nuclear Plant January (77-88)										
Wind					Wind S	peed (MPH)				
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.053	0.309	1.315	1.132	1.361	3.477	0.789	0.000	0.000	8.437
NNE	0.085	0.458	2.162	2.436	2.528	3.397	0.549	0.000	0.000	11.615
NE	0.106	0.606	2.642	2.768	2.207	1.990	0.057	0.000	0.000	10.377
ENE	0.099	0.595	2.448	1.155	0.595	0.229	0.000	0.000	0.000	5.120
E	0.067	0.606	1.453	0.309	0.069	0.034	0.000	0.000	0.000	2.538
ESE	0.020	0.252	0.366	0.092	0.023	0.000	0.000	0.000	0.000	0.752
SE	0.025	0.355	0.400	0.092	0.103	0.023	0.000	0.011	0.000	1.008
SSE	0.044	0.366	0.995	0.366	0.172	0.023	0.011	0.000	0.000	1.977
S	0.074	0.400	1.876	1.190	0.618	0.526	0.137	0.069	0.023	4.912
SSW	0.093	0.343	2.505	3.431	2.848	3.683	1.258	0.343	0.023	14.527
SW	0.055	0.377	1.315	1.441	1.521	2.642	0.789	0.103	0.046	8.290
WSW	0.041	0.275	0.995	0.721	0.618	1.418	0.503	0.252	0.092	4.914
W	0.034	0.252	0.801	0.435	0.869	1.658	0.732	0.297	0.046	5.124
WNW	0.027	0.286	0.538	0.709	1.075	2.573	0.858	0.034	0.000	6.100
NW	0.031	0.217	0.743	0.789	1.407	3.042	1.167	0.080	0.000	7.477
NNW	0.037	0.309	0.812	0.972	1.235	2.699	0.766	0.000	0.000	6.831
SUBTOTAL	0.892	6.005	21.366	18.037	17.248	27.416	7.618	1.190	0.229	100.000
Total Hours Of Valio	d Wind Observati	ons					8743			
Total Hours Of Obs	ervations						8928			
Recoverability Perc	centage						97.9			
Meteorological Fac	ility Located 0.8 k	KM SSW Of Watt	s Bar Nuclear Pl	ant						
Wind Speed and Di	irection Measured	d at 46.36 Meter	Level							
Mean Wind Speed	= 6.57									
Note: Totals and S	ubtotals are Obta	ined From Unrou	unded Numbers							

	Table 2.3-19 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class,</u> Watts Bar Nuclear Plant February (74-88)										
Wind					Wind	Speed (MPH)					
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>	
Ν	0.077	0.595	1.795	1.704	1.523	2.158	0.061	0.000	0.000	7.912	
NNE	0.079	0.666	1.805	2.693	2.521	2.572	0.141	0.000	0.000	10.477	
NE	0.101	0.777	2.370	2.037	1.281	0.978	0.040	0.000	0.000	7.584	
ENE	0.171	1.543	3.782	1.311	0.393	0.161	0.000	0.000	0.000	7.361	
E	0.081	0.857	1.674	0.555	0.252	0.111	0.010	0.000	0.000	3.540	
ESE	0.024	0.313	0.424	0.121	0.061	0.000	0.000	0.000	0.000	0.941	
SE	0.031	0.464	0.514	0.192	0.030	0.050	0.000	0.000	0.000	1.282	
SSE	0.046	0.514	0.918	0.383	0.141	0.151	0.050	0.010	0.000	2.214	
S	0.075	0.605	1.745	0.988	0.474	0.524	0.383	0.030	0.000	4.825	
SSW	0.099	0.756	2.340	2.652	2.229	3.267	1.412	0.071	0.000	12.826	
SW	0.080	0.716	1.785	1.573	1.029	1.361	0.232	0.010	0.000	6.787	
WSW	0.090	0.958	1.835	1.049	0.797	0.958	0.313	0.010	0.000	6.009	
W	0.097	1.251	1.765	0.908	0.817	1.190	0.171	0.010	0.000	6.208	
WNW	0.076	1.059	1.311	0.676	0.958	1.452	0.262	0.030	0.000	5.824	
NW	0.131	1.795	2.279	0.918	1.261	1.835	0.212	0.000	0.000	8.430	
NNW	0.084	1.008	1.624	1.392	1.180	2.309	0.182	0.000	0.000	7.779	
SUBTOTAL	1.341	13.877	27.965	19.151	14.946	19.080	3.469	0.171	0.000	100.000	
Total Hours Of Valid W	ind Observations	;				9916					
Total Hours Of Observ	ations					10176					
Recoverability Percent	age					97.4					
Meteorological Facility	Located 0.8 KM	SSW Of Watts E	Bar Nuclear Plar	nt							
Wind Speed And Direc	tion Measured A	t 9.72 Meter Lev	vel								
Mean Wind Speed = 4	.92										
Noto: Totale And Subt	otolo Aro Obtoinc	d From Unroun	dod Numboro								

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

2.3-42

	Table 2.3-20 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class,</u> Watts Bar Nuclear Plant February (77-88)										
Wind					•••	/ Speed (MPH)					
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>	
Ν	0.047	0.400	1.424	1.312	1.949	3.811	0.737	0.000	0.000	9.680	
NNE	0.085	0.650	2.636	3.298	2.711	3.573	0.700	0.000	0.000	13.653	
NE	0.126	0.737	4.123	3.136	2.411	2.011	0.325	0.000	0.000	12.869	
ENE	0.096	0.925	2.799	1.524	0.887	0.462	0.050	0.000	0.000	6.743	
E	0.040	0.550	0.987	0.437	0.125	0.075	0.050	0.000	0.000	2.264	
ESE	0.016	0.262	0.350	0.200	0.012	0.000	0.000	0.000	0.000	0.840	
SE	0.016	0.187	0.450	0.150	0.012	0.062	0.000	0.000	0.000	0.879	
SSE	0.030	0.375	0.775	0.375	0.075	0.112	0.100	0.050	0.000	1.891	
S	0.046	0.375	1.412	0.850	0.500	0.562	0.425	0.162	0.012	4.344	
SSW	0.048	0.250	1.599	2.511	2.086	3.373	1.712	0.600	0.062	12.242	
SW	0.038	0.325	1.162	1.937	1.562	2.699	1.262	0.250	0.037	9.271	
WSW	0.028	0.287	0.812	0.712	0.525	1.349	0.650	0.162	0.050	4.576	
W	0.024	0.287	0.650	0.487	0.487	1.462	0.525	0.125	0.000	4.047	
WNW	0.020	0.362	0.425	0.412	0.550	2.174	0.737	0.062	0.000	4.743	
NW	0.022	0.200	0.650	0.437	1.000	2.649	0.725	0.050	0.000	5.732	
NNW	0.029	0.275	0.862	0.862	0.950	2.249	0.937	0.062	0.000	6.226	
SUBTOTAL	0.712	6.447	21.114	18.641	15.842	26.624	8.933	1.524	0.162	100.000	
Total Hours Of Vali	id Wind Observat	tions					8004				
Total Hours Of Obs	servations						8136				
Recoverability Per	centage						98.4				
Meteorological Fac	cility Located 0.8	Km SSW Of Wat	ts Bar Nuclear Pl	ant							
Wind Speed and D	irection Measure	ed at 46.36 Meter	Level								
Mean Wind Speed	= 6.66										
Note: Totals and S	Subtotals are Obt	ained From Unro	unded Numbers								

WATTS BAR

2
2
-
ິ
ω
Ň

	By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant											
	March (74-88)											
Wind				Wind Spe	ed (MPH)							
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>		
Ν	0.057	0.503	1.406	1.565	1.500	2.310	0.149	0.000	0.000	7.489		
NNE	0.061	0.652	1.397	1.751	1.621	2.459	0.121	0.000	0.000	8.062		
NE	0.087	0.950	1.993	1.406	0.959	1.248	0.037	0.000	0.000	6.682		
ENE	0.146	1.323	3.595	1.155	0.615	0.205	0.019	0.000	0.000	7.057		
E	0.079	0.922	1.742	0.577	0.186	0.028	0.000	0.000	0.000	3.535		
ESE	0.026	0.345	0.531	0.149	0.075	0.028	0.000	0.000	0.000	1.153		
SE	0.037	0.568	0.689	0.317	0.158	0.224	0.140	0.000	0.000	2.133		
SSE	0.052	0.633	1.118	0.568	0.261	0.475	0.168	0.000	0.000	3.275		
S	0.060	0.624	1.397	1.313	0.671	1.341	0.587	0.112	0.009	6.114		
SSW	0.079	0.624	2.049	3.484	3.335	5.933	2.133	0.084	0.000	17.721		
SW	0.072	0.680	1.742	1.481	1.183	1.183	0.233	0.000	0.009	6.583		
WSW	0.091	1.053	2.003	0.680	0.456	0.596	0.121	0.019	0.000	5.018		
W	0.079	1.239	1.416	0.717	0.522	1.108	0.251	0.084	0.028	5.444		
WNW	0.070	1.136	1.239	0.615	0.466	1.388	0.186	0.037	0.000	5.137		
NW	0.100	1.574	1.816	1.127	0.913	1.993	0.289	0.028	0.000	7.841		
NNW	0.060	0.857	1.174	1.080	1.323	2.077	0.177	0.009	0.000	6.757		
SUBTOTAL	1.155	13.683	25.307	17.986	14.242	22.597	4.611	0.373	0.047	100.000		
Total Hours of Val	id Wind Observa	tions					10736					
		10115					11160					
Total Hours of Ob												
Recoverability Pe	rcentage						96.2					
Meteorological Fa	cility Located 0.8	3 KM SSW Of Wa	tts Bar Nuclear P	lant								
Wind Speed and I	Direction Measur	ed At 9.72 Meter	Level									
Mean Wind Speed	d = 5.35											
Note: Totals and	Subtotals Are Ob	otained From Unro	ounded Numbers									

Table 2.3-21 Joint Percentage Frequencies Of Wind Speed

Table 2.3-22 Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant March (77-88)											
Wind				Wind Spo	eed (MPH)						
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>		
Ν	0.045	0.339	1.263	1.158	1.287	4.023	0.772	0.012	0.000		
NNE	0.078	0.503	2.234	2.140	1.731	3.158	0.409	0.000	0.000		
NE	0.120	0.819	3.415	2.433	1.380	1.988	0.269	0.000	0.000		
ENE	0.082	0.538	2.351	1.076	0.690	0.620	0.082	0.000	0.000		
Е	0.040	0.538	0.877	0.573	0.316	0.175	0.023	0.000	0.000		
ESE	0.023	0.292	0.503	0.211	0.105	0.058	0.000	0.000	0.000		
SE	0.014	0.140	0.351	0.316	0.152	0.222	0.211	0.094	0.000		
SSE	0.034	0.234	0.982	0.573	0.187	0.690	0.538	0.035	0.000		
S	0.048	0.433	1.251	1.193	0.725	1.181	0.807	0.363	0.070		
SSW	0.060	0.409	1.696	2.678	2.363	5.170	3.860	0.912	0.082		
SW	0.041	0.351	1.099	1.719	2.012	3.392	1.813	0.409	0.058		
WSW	0.029	0.211	0.807	0.819	0.573	0.924	0.526	0.105	0.023		
W	0.024	0.257	0.596	0.386	0.351	1.064	0.620	0.082	0.035		
WNW	0.018	0.222	0.409	0.456	0.468	1.485	0.819	0.094	0.023		
NW	0.026	0.269	0.655	0.632	0.912	2.035	0.784	0.047	0.012		
NNW	0.020	0.222	0.491	0.655	0.901	2.187	0.959	0.035	0.012		
SUBTOTAL	0.702	5.778	18.982	17.018	14.152	28.374	12.491	2.187	0.316		
Total Hours Of Valid	d Wind Observatio	ons					8550				
Total Hours Of Obs	ervations						8928				
Recoverability Perc	entage						95.8				
Meteorological Fac	ility Located 0.8 K	M S Of Watts Bar	Nuclear Plant								
U U	2										
Wind Speed And D	irection Measured	a At 46.36 Meter L	evel								
Mean Wind Speed	= 7.34										

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

<u>Total</u> 8.899 10.253 10.424 5.439 2.543 1.192 1.499 3.274 6.071 17.229 10.895 4.017 3.416 3.995 5.371 5.482 100.000

Table 2.3-23 Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class. Watts Bar Nuclear Plant April (74-88)												
Wind				Wind Spe	ed (MPH)							
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>		
Ν	0.041	0.656	0.994	1.254	1.254	1.611	0.154	0.000	0.000	5.964		
NNE	0.042	0.569	1.148	1.968	1.650	2.228	0.183	0.000	0.000	7.789		
NE	0.056	0.762	1.524	1.080	1.177	0.839	0.010	0.000	0.000	5.449		
ENE	0.093	1.158	2.614	1.023	0.627	0.309	0.000	0.000	0.000	5.823		
E	0.072	1.177	1.756	0.878	0.299	0.068	0.000	0.000	0.000	4.249		
ESE	0.028	0.579	0.560	0.357	0.029	0.010	0.000	0.000	0.000	1.562		
SE	0.033	0.704	0.627	0.424	0.135	0.058	0.000	0.000	0.000	1.982		
SSE	0.052	0.714	1.399	0.714	0.318	0.328	0.164	0.010	0.000	3.699		
S	0.067	1.023	1.688	1.505	0.839	0.994	0.598	0.106	0.000	6.820		
SSW	0.083	0.907	2.479	3.126	3.454	6.174	1.978	0.376	0.000	18.577		
SW	0.085	1.283	2.180	1.457	0.888	0.801	0.232	0.048	0.000	6.973		
WSW	0.093	1.794	1.987	0.772	0.367	0.666	0.212	0.019	0.000	5.910		
W	0.086	1.601	1.891	0.772	0.637	1.264	0.309	0.010	0.000	6.569		
WNW	0.069	1.688	1.119	0.637	0.502	1.437	0.260	0.000	0.000	5.713		
NW	0.087	1.804	1.708	0.743	0.762	1.611	0.280	0.000	0.000	6.994		
NNW	0.063	1.225	1.331	0.801	0.820	1.553	0.135	0.000	0.000	5.928		
SUBTOTAL	1.052	17.644	25.005	17.509	13.757	19.950	4.515	0.569	0.000	100.000		
Total Hours Of Va	alid Wind Observ	vations					10366					
Total Hours Of Ot	oservations						10800					
Recoverability Pe	ercentage						96.0					
Meteorological Fa	acility Located 0	.8 KM SSW Of	Watts Bar Nucle	ar Plant								
Wind Speed And	Direction Measu	ured At 9.72 Me	ter Level									
Mean Wind Spee	d = 5.08											

	Table 2.3-24 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class.</u> Watts Bar Nuclear Plant April (77-88)												
		Wind Spe	ed (MPH)					Wind					
<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	>=24.5	<u>Total</u>					
0.335	0.881	0.906	0.844	2.581	0.546	0.012	0.000	6.148					
0.533	1.799	1.650	1.762	2.643	0.633	0.012	0.000	9.117					
0.744	2.767	1.700	1.328	1.687	0.161	0.000	0.000	8.515					
0.732	2.469	0.955	0.769	0.682	0.012	0.000	0.000	5.737					
0.397	0.844	0.583	0.347	0.298	0.000	0.000	0.000	2.514					
0.211	0.509	0.347	0.136	0.037	0.000	0.000	0.000	1.267					
0.149	0.434	0.434	0.186	0.099	0.025	0.000	0.000	1.349					
0.372	0.968	0.844	0.248	0.459	0.273	0.112	0.000	3.324					
0.521	1.663	1.625	1.042	0.968	0.571	0.236	0.087	6.792					
0.484	2.419	3.337	3.437	5.943	4.007	0.893	0.211	20.838					
0.385	1.514	1.762	1.762	3.189	1.613	0.409	0.074	10.776					
0.360	0.856	0.819	0.695	1.191	0.707	0.273	0.087	5.032					
0.385	0.695	0.633	0.447	1.228	0.856	0.099	0.025	4.407					
0.273	0.447	0.509	0.372	1.737	1.241	0.037	0.000	4.642					
0.273	0.695	0.471	0.806	1.861	0.558	0.087	0.000	4.787					
0.285	0.496	0.583	0.645	1.861	0.806	0.050	0.000	4.756					
6.439	19.454	17.159	14.826	26.464	12.010	2.221	0.484	100.000					
ns					8060								
		8640											
					93.3								

Recoverability Percentage

<u>Calm</u>

0.044

0.085

0.128

0.117

0.045

0.026

0.021

0.049

0.080

0.106

0.069

0.044

0.039

0.026

0.035

0.028

0.943

Total Hours Of Valid Wind Observations

Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant

Wind Speed And Direction Measured At 46.36 Meter Level

Mean Wind Speed = 7.17

Total Hours Of Observations

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

2.3-47

Wind **Direction**

Ν

NNE

NE

ENE

Е

ESE

SE

SSE

S

SSW

SW

WSW

W

WNW

NW

NNW

SUBTOTAL

WATTS BAR

Table 2.3-25 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class,</u> Watts Bar Nuclear Plant May (74-88)										
Wind				Wind Spe	ed (MPH)					
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.056	0.670	1.293	1.695	1.235	1.178	0.048	0.000	0.000	6.175
NNE	0.050	0.421	1.321	1.752	1.676	1.762	0.057	0.000	0.000	7.040
NE	0.069	0.642	1.791	1.800	1.092	0.948	0.000	0.000	0.000	6.341
ENE	0.115	1.025	3.026	1.446	0.776	0.354	0.010	0.000	0.000	6.751
E	0.095	1.369	1.982	0.891	0.268	0.038	0.010	0.000	0.000	4.654
ESE	0.036	0.603	0.670	0.306	0.029	0.019	0.000	0.000	0.000	1.664
SE	0.056	0.958	1.025	0.622	0.134	0.057	0.000	0.000	0.000	2.853
SSE	0.091	1.178	2.001	0.814	0.163	0.192	0.000	0.000	0.000	4.438
S	0.120	1.226	2.978	2.164	1.015	1.044	0.182	0.000	0.000	8.728
SSW	0.149	1.494	3.725	4.376	3.476	3.581	0.527	0.010	0.000	17.337
SW	0.112	1.513	2.432	1.695	0.929	0.718	0.067	0.000	0.000	7.467
WSW	0.120	2.269	1.934	0.479	0.335	0.153	0.019	0.000	0.000	5.310
W	0.125	2.375	2.001	0.622	0.440	0.335	0.019	0.000	0.000	5.918
WNW	0.084	1.599	1.341	0.613	0.440	0.393	0.000	0.000	0.000	4.469
NW	0.118	2.164	1.973	0.546	0.460	0.689	0.019	0.000	0.000	5.969
NNW	0.079	1.417	1.369	0.756	0.479	0.766	0.019	0.000	0.000	4.886
SUBTOTAL	1.475	20.923	30.863	20.578	12.946	12.228	0.977	0.010	0.000	100.000
Total Hours Of Valio	I Wind Observatio	ons					10443			
Total Hours Of Obse	ervations						11160			
Recoverability Perc	entage						93.6			
Meteorological Faci	lity Located 0.8 K	M SSW Of Watts	Bar Nuclear Plar	ıt						
Wind Speed And Di	rection Measured	I At 9.72 Meter Le	evel							
Mean Wind Speed	= 4.00									
Nata: Tatala And C	ubtatala Ara Obta	in a d Frame I Invaria	a d a d Numah a ra							

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

WATTS BAR

Table 2.3-26 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class,</u> Watts Bar Nuclear Plant May (77-88)										
Wind				Wind Spe	ed (MPH)					
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.052	0.437	1.094	1.025	1.163	1.877	0.449	0.012	0.000	6.108
NNE	0.108	0.852	2.314	1.969	1.704	2.510	0.414	0.000	0.000	9.871
NE	0.161	1.255	3.454	2.349	1.301	1.531	0.104	0.000	0.000	10.154
ENE	0.135	1.025	2.924	1.255	0.817	0.829	0.058	0.000	0.000	7.042
Е	0.067	0.691	1.266	0.679	0.253	0.150	0.000	0.000	0.000	3.106
ESE	0.033	0.242	0.714	0.495	0.058	0.058	0.012	0.000	0.000	1.610
SE	0.033	0.288	0.691	0.461	0.207	0.161	0.000	0.000	0.000	1.841
SSE	0.071	0.622	1.451	0.863	0.173	0.311	0.092	0.000	0.000	3.582
S	0.115	0.645	2.729	2.107	1.186	1.232	0.507	0.069	0.000	8.589
SSW	0.136	0.714	3.258	4.432	3.408	5.584	2.752	0.461	0.023	20.766
SW	0.083	0.507	1.923	2.233	2.107	2.821	0.840	0.138	0.000	10.652
WSW	0.059	0.587	1.128	0.702	0.541	0.806	0.242	0.035	0.000	4.100
W	0.047	0.449	0.933	0.449	0.311	0.679	0.196	0.000	0.000	3.064
WNW	0.036	0.437	0.610	0.391	0.368	0.702	0.173	0.000	0.000	2.718
NW	0.033	0.322	0.656	0.472	0.472	0.852	0.299	0.000	0.000	3.107
NNW	0.041	0.403	0.794	0.645	0.587	1.013	0.207	0.000	0.000	3.690
SUBTOTAL	1.209	9.475	25.938	20.527	14.656	21.114	6.344	0.714	0.023	100.000
Total Hours Of Valid \	Wind Observatior	าร					8686			
Total Hours Of Obser	vations						8928			
Recoverability Percer	ntage						97.3			
Meteorological Facilit	y Located 0.8 KN	A SSW Of Watts	Bar Nuclear Plar	nt						
Wind Speed And Dire	ection Measured	At 46.36 Meter L	evel							
Mean Wind Speed =	5.68									

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

1	Ŵ
	TTS
	B,A
	Z

Table 2.3-27 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class,</u> Watts Bar Nuclear Plant June (74-88)												
Wind				Wind Spe	ed (MPH)							
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>		
Ν	0.050	0.387	1.038	2.011	1.218	1.152	0.057	0.000	0.000	5.912		
NNE	0.046	0.387	0.925	1.671	1.624	2.096	0.217	0.000	0.000	6.965		
NE	0.055	0.406	1.152	1.067	0.651	0.538	0.000	0.000	0.000	3.868		
ENE	0.108	0.802	2.256	1.557	0.491	0.170	0.009	0.000	0.000	5.394		
E	0.104	1.123	1.831	0.614	0.208	0.019	0.000	0.000	0.000	3.899		
ESE	0.040	0.557	0.566	0.198	0.057	0.028	0.009	0.000	0.000	1.455		
SE	0.072	0.934	1.114	0.453	0.047	0.000	0.009	0.000	0.000	2.630		
SSE	0.115	1.350	1.907	0.755	0.245	0.094	0.000	0.000	0.000	4.466		
S	0.175	1.444	3.530	2.558	1.303	0.727	0.028	0.000	0.000	9.765		
SSW	0.222	1.378	4.937	5.560	4.219	3.426	0.198	0.000	0.000	19.941		
SW	0.178	1.907	3.162	2.218	1.057	0.359	0.009	0.000	0.000	8.891		
WSW	0.165	2.256	2.435	0.510	0.227	0.085	0.000	0.000	0.000	5.678		
W	0.142	2.228	1.793	0.642	0.415	0.227	0.019	0.000	0.000	5.465		
WNW	0.125	1.954	1.595	0.632	0.680	0.406	0.009	0.000	0.000	5.402		
NW	0.144	2.435	1.652	0.538	0.576	0.444	0.019	0.000	0.000	5.808		
NNW	0.081	1.180	1.114	0.840	0.680	0.529	0.038	0.000	0.000	4.461		
SUBTOTAL	1.822	20.729	31.008	21.824	13.696	10.298	0.623	0.000	0.000	100.000		
Total Hours Of Va	alid Wind Obser	vations					10594					
Total Hours Of O	bservations						10800					
Recoverability Pe	ercentage						98.1					
Meteorological F	Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant											
0	Wind Speed And Direction Measured At 9.72 Meter Level											
-												

Mean Wind Speed = 3.78

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

WAJ
TTS
BAR

	Table 2.3-28 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class,</u> Watts Bar Nuclear Plant June (77-88)												
Wind				Wind Spe	ed (MPH)								
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>			
Ν	0.093	0.649	1.121	1.251	1.416	2.324	0.283	0.012	0.000	7.148			
NNE	0.149	0.826	2.017	2.053	1.758	2.690	0.484	0.012	0.000	9.988			
NE	0.212	1.380	2.666	1.817	1.003	1.168	0.024	0.012	0.000	8.282			
ENE	0.193	1.050	2.643	1.286	0.790	0.437	0.012	0.000	0.000	6.411			
Е	0.099	0.826	1.062	0.602	0.212	0.153	0.000	0.000	0.000	2.954			
ESE	0.049	0.366	0.566	0.342	0.083	0.047	0.000	0.012	0.000	1.465			
SE	0.066	0.484	0.767	0.531	0.047	0.035	0.012	0.000	0.000	1.941			
SSE	0.126	0.684	1.723	1.038	0.295	0.189	0.012	0.000	0.000	4.067			
S	0.206	0.967	2.973	2.572	1.227	0.908	0.071	0.012	0.000	8.937			
SSW	0.231	0.779	3.622	6.571	4.943	6.041	1.215	0.047	0.012	23.461			
SW	0.127	0.613	1.817	2.572	2.194	2.926	0.519	0.012	0.000	10.781			
WSW	0.080	0.413	1.121	0.779	0.401	0.708	0.106	0.000	0.000	3.608			
W	0.050	0.378	0.578	0.330	0.366	0.602	0.071	0.024	0.000	2.398			
WNW	0.062	0.625	0.566	0.354	0.472	0.802	0.071	0.000	0.000	2.953			
NW	0.047	0.401	0.496	0.354	0.448	0.672	0.059	0.012	0.000	2.489			
NNW	0.050	0.389	0.566	0.566	0.555	0.849	0.142	0.000	0.000	3.118			
SUBTOTAL	1.840	10.831	24.304	23.018	16.210	20.552	3.079	0.153	0.012	100.000			
Total Hours Of Valio	d Wind Observa	ations					8476						
Total Hours Of Obs	ervations						8640						
Recoverability Perc	centage						98.1						
Meteorological Fac	ility Located 0.8	3 KM SSW Of W	atts Bar Nuclear	⁻ Plant									
Wind Speed And D	irection Measur	red At 46.36 Me	ter Level										
Mean Wind Speed	= 5 14												

Mean Wind Speed = 5.14

Table 2.3-29 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class.</u> Watts Bar Nuclear Plant July (74-88)										
Wind				Wind Spe	eed (MPH)					
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.037	0.475	1.078	1.343	0.868	0.329	0.000	0.000	0.000	4.131
NNE	0.032	0.393	0.941	1.754	1.745	1.188	0.027	0.000	0.000	6.081
NE	0.038	0.393	1.179	1.663	1.106	0.375	0.009	0.000	0.000	4.762
ENE	0.073	0.621	2.421	1.626	0.731	0.155	0.000	0.000	0.000	5.629
E	0.066	0.950	1.791	0.996	0.210	0.073	0.000	0.000	0.000	4.087
ESE	0.034	0.484	0.914	0.457	0.073	0.000	0.000	0.000	0.000	1.962
SE	0.059	0.850	1.617	0.685	0.073	0.046	0.009	0.000	0.000	3.340
SSE	0.104	1.407	2.915	1.069	0.228	0.164	0.000	0.000	0.000	5.888
S	0.131	1.444	4.002	2.842	1.005	0.621	0.018	0.000	0.000	10.064
SSW	0.156	1.462	5.016	5.720	3.390	1.928	0.101	0.000	0.000	17.773
SW	0.140	1.672	4.139	1.919	0.768	0.311	0.000	0.000	0.000	8.949
WSW	0.124	2.266	2.860	0.567	0.174	0.091	0.000	0.000	0.000	6.081
W	0.110	2.120	2.431	0.567	0.384	0.238	0.000	0.000	0.000	5.848
WNW	0.099	2.019	2.102	0.694	0.356	0.192	0.009	0.000	0.000	5.472
NW	0.107	2.166	2.257	0.484	0.393	0.274	0.009	0.000	0.000	5.690
NNW	0.060	1.243	1.234	0.749	0.612	0.338	0.009	0.000	0.000	4.245
SUBTOTAL	1.371	19.965	36.897	23.136	12.116	6.323	0.192	0.000	0.000	100.000
Total Hours Of Valid W	ind Observations						10944			
Total Hours Of Observa	ations						11160			
Recoverability Percentage 98.1										
Meteorological Facility	Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant									
Wind Speed And Direc	tion Measured At	9.72 Meter Level								
Mean Wind Speed = 3.	Mean Wind Speed = 3.43									
Note: Totals And Subte	otals Are Obtained	l From Unrounde	ed Numbers							

Wμ
TTS
: ₿⁄
Ā

Table 2.3-30 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class.</u> Watts Bar Nuclear Plant July (77-88)											
Wind				Wind Spe	ed (MPH)						
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>	
Ν	0.075	0.725	1.438	1.127	0.989	0.989	0.046	0.000	0.000	5.388	
NNE	0.103	0.897	2.070	1.794	2.105	2.174	0.161	0.012	0.000	9.315	
NE	0.144	1.346	2.818	1.875	1.438	1.035	0.012	0.000	0.000	8.666	
ENE	0.123	0.943	2.622	1.622	1.127	0.472	0.035	0.000	0.000	6.943	
E	0.067	0.667	1.265	0.886	0.472	0.081	0.000	0.000	0.000	3.437	
ESE	0.031	0.288	0.621	0.483	0.138	0.081	0.000	0.000	0.000	1.642	
SE	0.048	0.299	1.081	0.794	0.207	0.058	0.035	0.000	0.000	2.520	
SSE	0.097	0.552	2.254	1.254	0.230	0.184	0.035	0.000	0.000	4.605	
S	0.148	0.805	3.473	2.818	1.150	1.047	0.081	0.000	0.000	9.521	
SSW	0.187	0.782	4.623	6.786	4.669	4.566	0.690	0.058	0.000	22.360	
SW	0.101	0.495	2.427	3.036	2.116	2.082	0.391	0.012	0.000	10.659	
WSW	0.054	0.552	1.024	0.978	0.518	0.460	0.104	0.012	0.000	3.700	
W	0.047	0.437	0.932	0.725	0.414	0.460	0.092	0.000	0.000	3.107	
WNW	0.039	0.472	0.667	0.368	0.414	0.575	0.035	0.012	0.000	2.581	
NW	0.041	0.426	0.748	0.506	0.380	0.403	0.115	0.000	0.000	2.617	
NNW	0.041	0.414	0.782	0.506	0.495	0.679	0.012	0.012	0.000	2.940	
SUBTOTAL	1.346	10.098	28.844	25.555	16.860	15.342	1.840	0.115	0.000	100.000	
Total Hours Of Valid	Wind Observation	าร					8695				
Total Hours Of Obse	rvations						8928				
Recoverability Perce	ntage						97.4				
Meteorological Facili	ty Located 0.8 KM	A SSW Of Watts	Bar Nuclear Plai	nt							
Wind Speed And Dire	ection Measured	At 46.36 Meter L	evel								
Mean Wind Speed =	4.72										

Table 2.3-31 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class.</u> Watts Bar Nuclear Plant August (74-88)											
Wind				Wind Sp	eed(MPH)						
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>	
Ν	0.056	0.671	1.526	1.949	1.214	0.837	0.018	0.000	0.000	6.272	
NNE	0.038	0.303	1.186	1.775	2.133	1.637	0.037	0.000	0.000	7.109	
NE	0.052	0.386	1.664	1.278	0.864	0.515	0.009	0.000	0.000	4.769	
ENE	0.102	0.791	3.237	1.913	0.561	0.248	0.000	0.000	0.000	6.852	
E	0.073	1.011	1.857	0.956	0.138	0.046	0.000	0.000	0.000	4.082	
ESE	0.029	0.432	0.708	0.340	0.009	0.000	0.000	0.000	0.000	1.519	
SE	0.048	0.680	1.223	0.543	0.129	0.120	0.000	0.000	0.000	2.743	
SSE	0.096	1.232	2.538	1.140	0.313	0.147	0.000	0.000	0.000	5.466	
S	0.143	1.517	4.110	3.338	1.205	0.754	0.009	0.000	0.000	11.076	
SSW	0.166	1.674	4.855	4.754	3.034	1.830	0.028	0.000	0.000	16.340	
SW	0.134	1.857	3.402	1.315	0.349	0.092	0.000	0.000	0.000	7.150	
WSW	0.126	2.345	2.621	0.441	0.083	0.009	0.000	0.000	0.000	5.625	
W	0.108	2.317	1.931	0.340	0.202	0.018	0.000	0.000	0.000	4.917	
WNW	0.101	2.271	1.701	0.451	0.101	0.046	0.000	0.000	0.000	4.671	
NW	0.137	2.989	2.418	0.478	0.257	0.101	0.009	0.000	0.000	6.390	
NNW	0.082	1.462	1.766	0.644	0.644	0.414	0.009	0.000	0.000	5.020	
SUBTOTAL	1.490	21.940	36.745	21.655	11.237	6.814	0.120	0.000	0.000	100.000	
Total Hours Of Valid W	ind Observation	S					10875				
Total Hours Of Observ	ations						11160				
Recoverability Percent	tage						97.4				
Meteorological Facility	Located 0.8 KM	I SSW Of Watts	Bar Nuclear Pla	int							
Wind Speed And Direc	tion Measured A	At 9.72 Meter Le	vel								
Mean Wind Speed = 3	.36										

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

WATTS BAR

ATTS BAR	A
----------	---

By Wind Direction Disregarding Stability Class, Watts Bar Nuclear Plant										
August (77-88)										
Wind Wind Speed (MPH)										
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.090	0.586	1.519	1.172	1.160	1.830	0.156	0.000	0.000	6.513
NNE	0.147	0.981	2.476	1.950	2.165	2.428	0.108	0.000	0.000	10.255
NE	0.218	1.292	3.828	2.022	1.244	0.957	0.060	0.000	0.000	9.620
ENE	0.185	1.160	3.194	2.093	0.945	0.586	0.036	0.000	0.000	8.200
E	0.100	0.981	1.376	0.801	0.239	0.144	0.012	0.000	0.000	3.653
ESE	0.051	0.467	0.742	0.562	0.084	0.048	0.012	0.000	0.000	1.965
SE	0.056	0.455	0.849	0.514	0.156	0.156	0.012	0.000	0.000	2.197
SSE	0.111	0.742	1.854	1.112	0.502	0.251	0.024	0.000	0.000	4.596
S	0.204	1.041	3.744	3.254	1.471	1.112	0.048	0.000	0.000	10.874
SSW	0.262	0.933	5.215	6.328	4.593	3.888	0.455	0.012	0.000	21.685
SW	0.129	0.634	2.404	2.416	1.495	1.148	0.156	0.000	0.000	8.383
WSW	0.062	0.455	1.005	0.694	0.263	0.191	0.036	0.000	0.000	2.706
W	0.047	0.443	0.670	0.287	0.144	0.179	0.012	0.000	0.000	1.782
WNW	0.045	0.383	0.670	0.335	0.227	0.120	0.012	0.000	0.000	1.791
NW	0.065	0.586	0.933	0.359	0.239	0.287	0.084	0.000	0.000	2.553
NNW	0.058	0.538	0.813	0.694	0.478	0.598	0.048	0.000	0.000	3.227
SUBTOTAL	1.830	11.675	31.292	24.593	15.407	13.923	1.268	0.012	0.000	100.000
Total Hours Of Valid	Wind Observatior	าร						8360		
Total Hours Of Obser	rvations							8928		
Recoverability Perce	ntage							93.6		
Meteorological Facili	ty Located 0.8 KN	A SSW Of Watts	Bar Nuclear Plai	nt						
Wind Speed And Dire	Wind Speed And Direction Measured At 46.36 Meter Level									

 Table 2.3-32
 Joint Percentage Frequencies Of Wind Speed

Mean Wind Speed = 4.41

Table 2.3-33 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class.</u> Watts Bar Nuclear Plant September (74-88)										
Wind Wind Speed (MPH)										
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	>=24.5	<u>Total</u>
Ν	0.083	0.889	1.960	2.323	1.682	1.262	0.019	0.000	0.000	8.218
NNE	0.062	0.621	1.520	2.648	2.352	3.231	0.076	0.000	0.000	10.511
NE	0.072	0.545	1.950	2.457	1.482	1.052	0.019	0.010	0.000	7.586
ENE	0.111	0.879	2.954	1.558	0.421	0.163	0.000	0.000	0.000	6.086
E	0.070	0.774	1.625	0.832	0.105	0.048	0.000	0.000	0.000	3.454
ESE	0.023	0.249	0.535	0.172	0.029	0.029	0.000	0.000	0.000	1.036
SE	0.035	0.363	0.841	0.258	0.086	0.019	0.019	0.000	0.000	1.622
SSE	0.070	0.822	1.587	0.707	0.229	0.076	0.000	0.000	0.000	3.492
S	0.124	1.338	2.935	2.084	1.195	0.841	0.029	0.000	0.000	8.546
SSW	0.125	1.204	3.088	3.872	2.753	1.587	0.076	0.000	0.000	12.705
SW	0.109	1.453	2.304	1.157	0.344	0.096	0.000	0.000	0.000	5.462
WSW	0.108	1.960	1.768	0.325	0.057	0.010	0.000	0.000	0.000	4.228
W	0.130	2.619	1.864	0.268	0.229	0.057	0.000	0.000	0.000	5.168
WNW	0.150	3.221	1.960	0.507	0.249	0.134	0.000	0.000	0.000	6.221
NW	0.197	4.130	2.638	0.574	0.401	0.335	0.000	0.000	0.000	8.274
NNW	0.127	2.189	2.180	1.147	0.784	0.965	0.000	0.000	0.000	7.392
SUBTOTAL	1.596	23.258	31.708	20.887	12.398	9.903	0.239	0.010	0.000	100.000
Total Hours Of V	alid Wind Obser	vations					10461			
Total Hours Of O	bservations						10800			
Recoverability P	ercentage						96.9			
Meteorological F	acility Located ().8 KM SSW Of V	Vatts Bar Nuclear	Plant						
•		ured At 9.72 Met	er Level							
Mean Wind Spee	ed = 3.62									
Note: Totals And	Note: Totals And Subtotals Are Obtained From Unrounded Numbers									

METEOROLOGY

otal		

WATTS BAR

By Wind Direction Disregarding Stability Class. Watts Bar Nuclear Plant										
September (77-88)										
Wind Wind Speed(MPH)										
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.086	0.602	1.332	1.537	1.588	2.843	0.179	0.000	0.000	8.166
NNE	0.155	0.999	2.484	2.651	2.907	3.893	0.589	0.000	0.000	13.677
NE	0.247	1.524	4.034	3.240	1.959	2.228	0.154	0.000	0.000	13.385
ENE	0.211	1.498	3.253	1.626	0.820	0.576	0.026	0.000	0.000	8.009
E	0.095	1.191	0.960	0.474	0.192	0.064	0.000	0.000	0.000	2.977
ESE	0.052	0.627	0.538	0.423	0.064	0.051	0.013	0.000	0.000	1.768
SE	0.061	0.551	0.820	0.269	0.102	0.077	0.038	0.013	0.000	1.930
SSE	0.111	0.845	1.665	0.960	0.282	0.320	0.000	0.000	0.000	4.184
S	0.170	0.948	2.881	2.113	0.948	1.165	0.115	0.013	0.000	8.353
SSW	0.208	1.076	3.611	4.444	3.573	3.714	0.756	0.090	0.000	17.470
SW	0.108	0.743	1.690	1.793	1.447	1.268	0.026	0.000	0.000	7.074
WSW	0.062	0.410	0.986	0.602	0.256	0.128	0.026	0.000	0.000	2.469
W	0.048	0.474	0.615	0.333	0.141	0.231	0.013	0.000	0.000	1.854
WNW	0.051	0.448	0.692	0.269	0.231	0.448	0.013	0.000	0.000	2.151
NW	0.057	0.525	0.768	0.410	0.295	0.538	0.000	0.000	0.000	2.593
NNW	0.059	0.576	0.756	0.653	0.602	1.165	0.128	0.000	0.000	3.939
SUBTOTAL	1.780	13.036	27.084	21.795	15.405	18.709	2.075	0.115	0.000	100.000
Total Hours Of Valio	l Wind Observatio	ons				7809				
Total Hours Of Obs						8640				
Recoverability Percentage 90.4										
Meteorological Faci	lity Located 0.8 K	M SSW Of Watts	Bar Nuclear Plar	nt						
Wind Speed And Di	irection Measured	At 46.36 Meter L	evel							
Mean Wind Speed = 4.80										

Table 2.3-34 Joint Percentage Frequencies Of Wind Speed

Table 2.3-35 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class.</u> Watts Bar Nuclear Plant October (74-88)										
Wind Wind Speed (MPH)										
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.133	1.093	1.782	1.874	1.893	2.141	0.046	0.000	0.000	8.961
NNE	0.109	0.818	1.553	2.361	2.085	2.260	0.175	0.000	0.000	9.361
NE	0.119	0.790	1.801	1.902	1.231	0.818	0.000	0.000	0.000	6.661
ENE	0.189	1.406	2.701	1.415	0.404	0.156	0.000	0.000	0.000	6.271
E	0.099	0.937	1.222	0.469	0.147	0.092	0.000	0.000	0.000	2.966
ESE	0.030	0.340	0.312	0.083	0.000	0.028	0.000	0.000	0.000	0.793
SE	0.048	0.533	0.514	0.101	0.064	0.037	0.000	0.000	0.000	1.298
SSE	0.102	0.836	1.378	0.312	0.184	0.083	0.028	0.000	0.000	2.922
S	0.151	1.029	2.251	1.764	0.827	0.597	0.083	0.000	0.000	6.701
SSW	0.174	1.102	2.683	3.197	2.398	2.251	0.202	0.000	0.000	12.007
SW	0.145	1.323	1.828	0.983	0.496	0.220	0.009	0.000	0.000	5.005
WSW	0.189	1.929	2.177	0.459	0.175	0.101	0.009	0.000	0.000	5.040
W	0.235	2.912	2.186	0.469	0.303	0.423	0.000	0.000	0.000	6.528
WNW	0.256	3.721	1.837	0.671	0.606	0.661	0.028	0.000	0.000	7.780
NW	0.364	4.695	3.197	0.726	0.524	0.717	0.046	0.000	0.000	10.267
NNW	0.181	2.067	1.865	1.222	0.818	1.277	0.009	0.000	0.000	7.439
SUBTOTAL	2.526	25.531	29.288	18.006	12.154	11.860	0.634	0.000	0.000	100.000
Total Hours Of Va	alid Wind Observ	vations					10885			
Total Hours Of Ol	oservations						11160			
Recoverability Pe	ercentage						97.5			
Meteorological Fa	acility Located 0.	.8 KM SSW Of W	atts Bar Nuclear	Plant						
Wind Speed And	Direction Measu	ured At 9.72 Mete	er Level							
Mean Wind Spee	d = 3.69									
Note: Totals And	Noto: Totala And Subtatala Ara Obtainad From Unrounded Numbara									

$\mathbf{\Sigma}$
TTS
BAI

Table 2.3-36 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class.</u> Watts Bar Nuclear Plant October (77-88)										
Wind Wind Speed (MPH)										
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	>=24.5	<u>Total</u>
Ν	0.082	0.524	1.161	1.002	1.593	3.654	0.592	0.000	0.000	8.607
NNE	0.162	0.774	2.561	2.686	2.436	2.971	0.216	0.000	0.000	11.805
NE	0.226	1.320	3.346	2.629	1.787	1.730	0.023	0.000	0.000	11.062
ENE	0.250	1.502	3.665	1.093	0.774	0.307	0.034	0.000	0.000	7.626
E	0.137	1.662	1.172	0.330	0.182	0.114	0.023	0.000	0.000	3.620
ESE	0.065	0.956	0.376	0.171	0.011	0.000	0.000	0.000	0.000	1.578
SE	0.064	0.717	0.603	0.137	0.057	0.080	0.011	0.000	0.000	1.669
SSE	0.120	1.024	1.457	0.535	0.171	0.285	0.080	0.000	0.000	3.671
S	0.182	1.161	2.595	1.696	0.797	0.774	0.273	0.046	0.000	7.523
SSW	0.213	0.933	3.460	4.086	3.517	3.904	1.559	0.137	0.000	17.809
SW	0.124	0.774	1.776	1.593	1.389	1.650	0.387	0.034	0.000	7.727
WSW	0.075	0.444	1.104	0.615	0.455	0.421	0.137	0.000	0.000	3.251
W	0.072	0.558	0.922	0.273	0.307	0.615	0.205	0.000	0.000	2.951
WNW	0.044	0.330	0.580	0.364	0.433	1.195	0.387	0.011	0.000	3.345
NW	0.049	0.444	0.569	0.421	0.546	1.138	0.205	0.000	0.000	3.373
NNW	0.048	0.387	0.603	0.501	0.706	1.730	0.410	0.000	0.000	4.384
Subtotal	1.912	13.510	25.950	18.131	15.160	20.567	4.541	0.228	0.000	100.000
Total Hours Of Valid	Wind Observation	ns					8786			
Total Hours Of Obse	rvations						8928			
Recoverability Perce	ntage						98.4			
Meteorological Facili	ty Located 0.8 KI	M SSW Of Watte	Bar Nuclear Pla	ant						
Wind Speed And Dire	ection Measured	At 46.36 Meter	Level							
Mean Wind Speed =	Mean Wind Speed = 5.18									

Watts Bar Nuclear Plant November (74-88)									
Wind Speed (MPH)									
<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>				
0.988	1.315	1.660	1.459	1.631	0.182				
1.017	2.111	2.601	2.476	2.351	0.096				
0.998	2.255	1.718	1.180	0.441	0.010				
1.296	3.129	1.084	0.202	0.029	0.000				
1.171	1.689	0.441	0.019	0.010	0.000				
0.413	0.413	0.077	0.000	0.010	0.000				
0.413	0.528	0.144	0.048	0.067	0.029				
0.489	1.094	0.374	0.096	0.240	0.029				
0.672	2.121	1.142	0.691	0.758	0.259				
0.806	2.524	3.292	2.649	3.426	0.710				
0.940	1.843	1.142	0.873	0.384	0.058				
1.545	2.150	0.749	0.461	0.422	0.086				
2.236	2.361	0.749	0.787	0.950	0.048				
2.668	1.804	0.470	0.528	0.797	0.096				
2.985	2.466	1.065	0.854	1.200	0.106				

1.152

13.474

1.084

17.793

1.334

14.050

0.067

1.775

Table 2.3-37 Joint Percentage Frequencies Of Wind Speed

By Wind Direction Disregarding Stability Class.

Total Hours Of Valid Wind Observations	10420
Total Hours Of Observations	10800
Recoverability Percentage	96.5
Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant	
Wind Speed And Direction Measured At 9.72 Meter Level	

1.574

29.376

Mean Wind Speed = 4.11

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

2.3-60

Wind Direction

> N NNE

NE

ENE

Е

ESE

SE

SSE

S

SSW

SW

WSW

W

WNW

NW

NNW

SUBTOTAL

<u>Calm</u>

0.131

0.178

0.185

0.252

0.163

0.047

0.054

0.090

0.159

0.190

0.159

0.211

0.262

0.255

0.311

0.203

2.850

1.996

20.633

Total

7.367

10.831

6.788

5.991

3.493

0.959

1.282

2.413

5.802

13.645

5.399

5.623

7.393

6.618

8.986

7.411

100.000

<u>18.5-24.4</u>

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.048

0.000

0.000

0.000

0.000

0.000

0.000

0.048

>=24.5

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

~
-
S
CO I
B,
_

Table 2.3-38 Joint Percentage Frequencies Of Wind Speed By Wind Direction Disregarding Stability Class.							
Watts Bar Nuclear Plant November (77-88)							
Wind Speed (MPH)							
<u>1.5-3.4</u>	<u>3.5-5.4</u>	5.5-7.4	<u>7.5-12.4</u>	<u>12.5-18</u>			

Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	5.5-7.4	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	>=24.5	<u>Total</u>
Ν	0.082	0.591	1.276	0.969	1.146	3.118	0.768	0.047	0.000	7.996
NNE	0.138	0.886	2.280	2.315	2.658	3.331	0.461	0.012	0.000	12.080
NE	0.226	1.146	4.028	2.988	1.996	1.996	0.130	0.000	0.000	12.511
ENE	0.209	1.299	3.485	1.240	0.543	0.165	0.000	0.000	0.000	6.942
E	0.111	1.122	1.417	0.331	0.106	0.000	0.000	0.000	0.000	3.088
ESE	0.044	0.614	0.390	0.059	0.012	0.000	0.000	0.000	0.000	1.119
SE	0.051	0.602	0.567	0.189	0.071	0.083	0.024	0.000	0.000	1.587
SSE	0.088	0.626	1.394	0.378	0.154	0.224	0.201	0.012	0.000	3.077
S	0.132	0.661	2.351	1.264	0.638	0.803	0.591	0.165	0.000	6.605
SSW	0.160	0.650	3.000	3.284	2.634	4.181	2.091	0.307	0.024	16.330
SW	0.087	0.579	1.406	1.595	1.240	2.303	0.780	0.047	0.012	8.048
WSW	0.070	0.378	1.228	0.827	0.685	0.850	0.425	0.142	0.012	4.618
W	0.056	0.472	0.803	0.366	0.484	1.051	0.319	0.024	0.000	3.576
WNW	0.036	0.307	0.508	0.425	0.378	1.158	0.413	0.000	0.000	3.225
NW	0.051	0.449	0.709	0.602	0.567	1.571	0.378	0.000	0.000	4.327
NNW	0.067	0.472	1.051	0.543	0.543	1.843	0.354	0.000	0.000	4.874
Subtotal	1.606	10.855	25.892	17.375	13.855	22.679	6.934	0.756	0.047	100.000

Total Hours Of Valid Wind Observations	8466
Total Hours Of Observations	8640
Recoverability Percentage	98.0
Material Sciller Leasted 0.9. Km SSW Of Water Day Nuclear Diget	

Meteorological Facility Located 0.8 Km SSW Of Watts Bar Nuclear Plant

Wind Speed And Direction Measured At 46.36 Meter Level

Mean Wind Speed = 5.75

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

2.3-61

Wind

Table 2.3-39 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class.</u> Watts Bar Nuclear Plant December (74-88)										
Wind Wind Speed (MPH)										
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.046	0.632	1.350	1.475	1.580	2.212	0.077	0.000	0.000	7.373
NNE	0.056	0.747	1.667	2.011	1.916	2.347	0.182	0.000	0.000	8.925
NE	0.069	0.919	2.069	1.628	0.833	0.670	0.000	0.000	0.000	6.189
ENE	0.099	1.082	3.199	0.948	0.220	0.029	0.000	0.000	0.000	5.577
E	0.053	0.919	1.379	0.211	0.038	0.000	0.010	0.000	0.000	2.610
ESE	0.013	0.259	0.297	0.029	0.000	0.000	0.000	0.000	0.000	0.597
SE	0.024	0.345	0.709	0.134	0.029	0.019	0.010	0.000	0.000	1.269
SSE	0.051	0.785	1.408	0.249	0.067	0.077	0.038	0.000	0.000	2.675
S	0.060	0.584	2.030	1.245	0.613	0.632	0.201	0.048	0.000	5.414
SSW	0.078	0.805	2.567	4.023	3.410	3.965	0.632	0.163	0.000	15.641
SW	0.065	0.852	1.983	1.552	0.939	0.642	0.086	0.000	0.000	6.118
WSW	0.092	1.446	2.548	0.958	0.661	0.431	0.086	0.000	0.000	6.222
W	0.099	1.858	2.423	1.034	0.967	1.264	0.134	0.000	0.000	7.780
WNW	0.086	1.992	1.724	0.575	0.862	1.178	0.153	0.010	0.000	6.579
NW	0.125	2.509	2.921	0.919	1.034	1.619	0.163	0.000	0.000	9.291
NNW	0.076	1.599	1.695	1.006	1.293	1.887	0.182	0.000	0.000	7.738
Subtotal	1.092	17.336	29.968	17.996	14.462	16.972	1.954	0.220	0.000	100.000
Total Hours Of Va	lid Wind Observa	ations					10441			
Total Hours Of Ob	servations						11160			
Recoverability Pe	rcentage						93.6			
Meteorological Fa	cility Located 0.8	3 KM SSW Of Wa	tts Bar Nuclear P	lant						
Wind Speed And	Direction Measur	red At 9.72 Meter	Level							

Mean Wind Speed = 4.50

Table 2.3-40 <u>Joint Percentage Frequencies Of Wind Speed</u> <u>By Wind Direction Disregarding Stability Class,</u> Watts Bar Nuclear Plant December (77-88)										
Wind				Wind Spe	ed (MPH)					
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	5.5-7.4	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.051	0.524	1.152	1.222	1.199	3.852	0.803	0.070	0.000	8.873
NNE	0.072	0.524	1.862	2.421	2.235	3.457	0.512	0.047	0.000	11.129
NE	0.106	0.733	2.770	2.665	1.757	1.501	0.186	0.000	0.000	9.719
ENE	0.096	0.722	2.456	0.919	0.349	0.163	0.000	0.000	0.000	4.705
Е	0.053	0.838	0.919	0.244	0.000	0.000	0.012	0.000	0.000	2.067
ESE	0.028	0.489	0.454	0.070	0.012	0.000	0.000	0.000	0.000	1.053
SE	0.027	0.338	0.570	0.163	0.023	0.035	0.023	0.012	0.000	1.191
SSE	0.047	0.524	1.036	0.314	0.105	0.151	0.047	0.012	0.000	2.235
S	0.086	0.559	2.293	1.280	0.640	0.687	0.396	0.093	0.012	6.045
SSW	0.113	0.570	3.177	3.678	3.212	4.609	2.828	0.512	0.058	18.758
SW	0.063	0.454	1.641	1.851	1.699	3.305	0.954	0.163	0.023	10.154
WSW	0.043	0.396	1.013	0.908	0.722	1.141	0.407	0.105	0.023	4.756
W	0.033	0.303	0.791	0.500	0.442	1.292	0.349	0.058	0.000	3.769
WNW	0.031	0.431	0.582	0.431	0.594	2.037	0.640	0.093	0.000	4.837
NW	0.028	0.349	0.582	0.524	0.745	1.990	0.640	0.035	0.012	4.905
NNW	0.030	0.361	0.640	0.675	0.791	2.432	0.838	0.035	0.000	5.803
Subtotal	0.908	8.112	21.939	17.865	14.525	26.653	8.636	1.234	0.128	100.000
Total Hours Of Valio	d Wind Observatio	ons					8592			
Total Hours Of Obs	ervations						8928			
Recoverability Perc	entage						96.2			

Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant

Wind Speed And Direction Measured At 46.36 Meter Level

Mean Wind Speed = 6.45

THIS PAGE INTENTIONALLY BLANK

Table 2.3-41 <u>Percent Occurrence Of Wind Speed*</u> For All Wind Directions									
July 1, 1971 - June 28, 1972 Annual									
Wind			Wind S	peed (MPH)**					
Direction	<u>1-3</u>	<u>4-7</u>	<u>8-12</u>	<u>13-18</u>	<u>> 19</u>	<u>Total</u>			
Ν	4.33	1.07	0.14	0.03	-	5.57			
NNE	4.16	2.11	0.29	0.01	-	6.57			
NE	5.26	4.12	0.49	-	-	9.87			
ENE	3.90	2.07	0.23	0.01	-	6.21			
Е	1.64	0.50	0.04	-	-	2.18			
ESE	1.11	0.45	0.25	-	-	1.81			
SE	1.72	0.50	0.33	-	-	2.55			
SSE	2.27	0.81	0.16	-	-	3.24			
S	2.94	2.83	0.68	0.15	-	6.60			
SSW	2.54	4.69	1.80	0.33	-	9.36			
SW	2.54	3.08	0.62	0.04	-	6.28			
WSW	2.07	1.08	0.20	0.03	-	3.38			
W	2.18	1.26	1.02	0.09	-	4.55			
WNW	2.38	1.21	0.90	0.01	-	4.50			
NW	4.97	1.74	0.73	0.06	-	7.50			
<u>NNW</u>	<u>5.71</u>	<u>2.13</u>	<u>0.29</u>	<u>0.05</u>	=	<u>8.18</u>			
Total	49.72	29.65	8.17	0.81	-	88.35			
<u> </u>									

Calm = 11.64

All columns and calm total 100 percent of net valid observations, which represent 91 percent of total record.

* Watts Bar temporary meteorological facility. Wind instruments 10 meters aboveground.

** Wind speed class 1-3 mph includes values 0.6-3.5 mph; class 4-7 mph includes values 3.6-7.5 mph; etc.

	Table 2.3-42 Perce		Watts B	ar Nuclear Pla 74 - Dec 31, 8	ant			
				STABILI	TY CLASS			
	INVERSIONS	Α	В	С	D	E	F	G
JANUARY	29.5	2.2	2.1	4.6	47.5	27.4	11.1	5.0
FEBRUARY	34.0	3.5	3.6	5.8	42.3	23.8	12.2	8.9
MARCH	36.6	4.9	4.0	6.5	36.9	24.3	12.1	11.2
APRIL	39.8	5.1	4.1	7.7	32.7	22.5	13.0	14.9
MAY	40.2	4.1	3.8	7.2	33.5	26.1	17.0	8.3
JUNE	40.9	5.3	4.8	8.6	31.0	26.7	17.5	6.1
JULY	38.7	4.8	4.3	8.5	32.8	29.1	16.0	4.5
AUGUST	39.6	4.8	4.0	7.6	31.9	32.7	16.3	2.8
SEPTEMBER	40.5	4.9	4.5	6.8	31.9	30.5	17.6	3.9
OCTOBER	43.8	3.9	3.7	6.6	32.7	24.3	20.5	8.3
NOVEMBER	40.3	1.6	2.1	4.7	39.3	27.1	14.9	10.3
DECEMBER	37.5	1.6	1.8	5.0	42.0	27.4	14.1	8.1
ANNUAL	38.5	3.9	3.6	6.6	36.2	26.9	15.2	7.6

* Inversion Conditions Distributed Within Total Hours With Valid Vertical Temperature Difference Data. Stability Classes Distributed Within Total Hours With Valid Wind Direction, Wind Speed, And Vertical Temperature Difference Data.

Meteorological Facility Located 0.8 Km Ssw Of Watts Bar Nuclear Plant. Temperature Difference Between 9.51 And 45.63 Meters And Wind Direction And Wind Speed At 9.72 Meter Level.

Table 2.3-43 Deleted By Amendment 63

Table 2.3-44Inversion Persistence DataWatts Bar Nuclear PlantJan 1, 74 - Dec 31, 88 (Delta-T Given In Degrees Celsius)(Sheet 1 of 2)

DISREGARDING INVERSION

NO. HOURS	E 0.0 <delta-t<=1.5< th=""><th>F 1.5<delta-t<=4.0< th=""><th>G DELT A-T>4.0</th><th>F AND G DELT A-T>1.5</th><th>STRENGTH DELTA-T>0.0</th></delta-t<=4.0<></th></delta-t<=1.5<>	F 1.5 <delta-t<=4.0< th=""><th>G DELT A-T>4.0</th><th>F AND G DELT A-T>1.5</th><th>STRENGTH DELTA-T>0.0</th></delta-t<=4.0<>	G DELT A-T>4.0	F AND G DELT A-T>1.5	STRENGTH DELTA-T>0.0
2	1522	835	390	289	631
2 3	748	535	242	238	423
3 4	533	453	242	230	423 302
4 5	359	384	200	206	252
6	249	374	146	200	232
6 7	170	296	146	246 226	208
8	107	290	76	220	190
9	63	174	78 92	262	206
9 10	53	174	92 70	300	200
10	45	97	70	352	336
12	45 30	48	41	300	591
12	16	40	29	271	543
13	6	14	29 21	157	421
14	4	3	4	113	334
16	4	1	4	35	185
10	1	0	0	6	74
18	0	0	0	1	17
19	0	1	0	2	7
20	0	0	0	2	0
20	0	0	0	1	1
22	0	0	0	0	0
23	0	0	0	0	0
24	0	0	0	0	0
25	0	0	0	0	0
26	0	0	0	0	0
20	0	0 0	0	0	0
28	0	0	0	0	0
	-				
29	0	0	0	0	0
30	0	0	0	0	0
31	0	0	0	0	0
32	0	0	0	0	0
>=32	0	0	0	0	2*

WATTS BAR

Table 2.3-44 Inversion Persistence Data Watts Bar Nuclear Plant Jan 1, 74 - Dec 31, 88 (Delta-T Given In Degrees Celsius) (Continued) (Sheet 2 of 2)

NO. HOURS	E 0.0 <delta-t<=1.5< th=""><th>F 1.5<delta-t<=4.0< th=""><th>G DELT A-T>4.0</th><th>F AND G DELT A-T>1.5</th><th>STRENGTH DELTA-T>0.0</th></delta-t<=4.0<></th></delta-t<=1.5<>	F 1.5 <delta-t<=4.0< th=""><th>G DELT A-T>4.0</th><th>F AND G DELT A-T>1.5</th><th>STRENGTH DELTA-T>0.0</th></delta-t<=4.0<>	G DELT A-T>4.0	F AND G DELT A-T>1.5	STRENGTH DELTA-T>0.0
TOTAL	3907	3552	1713	3467	5193
Maximum Hours of Persistence	17	19	16	21	45

Meteorological Facility Located 0.8 Km SSW Of Watts Bar Nuclear Plant Temperature Instruments Located 45.63 And 9.51 Meters Above Ground

*January 1982

WATTS BAR

WA
TTS
BAR

Table 2.3-45 Joint Percentage Frequencies Of Wind Speed By Wind Direction For										
				ity Class A						
			0.0000	•	r Nuclear P		-,,,			
					'4 - Dec 31,					
				J an 1, 7	4 - Dec 31,	00				
Wind					Wind Spe	ed (MPH)				
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.000	0.001	0.009	0.020	0.030	0.067	0.003	0.000	0.000	0.129
NNE	0.000	0.001	0.009	0.063	0.077	0.156	0.006	0.000	0.000	0.311
NE	0.000	0.000	0.030	0.077	0.074	0.092	0.000	0.000	0.000	0.273
ENE	0.000	0.001	0.028	0.067	0.080	0.037	0.000	0.000	0.000	0.213
Е	0.000	0.002	0.031	0.037	0.019	0.006	0.000	0.000	0.000	0.095
ESE	0.000	0.000	0.014	0.011	0.002	0.001	0.000	0.000	0.000	0.028
SE	0.000	0.001	0.015	0.026	0.005	0.002	0.001	0.000	0.000	0.050
SSE	0.000	0.001	0.030	0.047	0.020	0.016	0.002	0.000	0.000	0.117
S	0.000	0.001	0.037	0.103	0.112	0.121	0.015	0.001	0.000	0.391
SSW	0.000	0.001	0.032	0.167	0.388	0.744	0.130	0.007	0.000	1.468
SW	0.000	0.000	0.009	0.067	0.113	0.120	0.015	0.000	0.000	0.323
WSW	0.000	0.000	0.005	0.020	0.015	0.072	0.025	0.002	0.000	0.139
W	0.000	0.000	0.003	0.010	0.012	0.060	0.019	0.001	0.000	0.105
WNW	0.000	0.000	0.001	0.005	0.008	0.028	0.007	0.000	0.000	0.049
NW	0.000	0.000	0.003	0.006	0.011	0.029	0.008	0.000	0.000	0.057
NNW	0.000	0.001	0.005	0.024	0.040	0.068	0.013	0.000	0.000	0.151
SUBTOTAL	0.001	0.009	0.262	0.747	1.006	1.618	0.244	0.011	0.000	3.898

Total Hours Of Valid Stability Observations	125417
Total Hours Of Stability Class A	4884
Total Hours Of Valid Wind Direction-Wind Speed-Stability Class A	4789
Total Hours Of Valid Wind Direction-Wind Speed-Stability Observations	122869

Total Hours Of Valid Wind Direction-Wind Speed-Stability Observations

Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant

Stability Based On Delta-T Between 9.51 And 45.63 Meters

Wind Speed And Direction Measured At 9.72 Meter Level

Mean Wind Speed = 7.57

	Table 2.3-46 <u>Joint Percentage Frequencies Of Wind Speed By Wind Direction For</u> Stability Class B (-1.9< Delta T<=-1.7 C/100 M), Watts Bar Nuclear Plant Jan 1, 74 - Dec 31, 88									
Wind					Wind Sp	eed (MPH)				
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.000	0.000	0.015	0.051	0.046	0.080	0.007	0.000	0.000	0.199
NNE	0.000	0.001	0.037	0.103	0.124	0.203	0.015	0.000	0.000	0.483
NE	0.000	0.000	0.051	0.112	0.107	0.085	0.002	0.000	0.000	0.357
ENE	0.000	0.001	0.045	0.096	0.077	0.029	0.000	0.000	0.000	0.248
E	0.000	0.001	0.055	0.061	0.019	0.002	0.000	0.000	0.000	0.137
ESE	0.000	0.002	0.018	0.024	0.002	0.001	0.000	0.000	0.000	0.047
SE	0.000	0.000	0.023	0.029	0.003	0.002	0.002	0.000	0.000	0.059
SSE	0.000	0.001	0.042	0.050	0.017	0.007	0.000	0.000	0.000	0.116
S	0.000	0.002	0.043	0.115	0.072	0.061	0.011	0.002	0.000	0.306
SSW	0.000	0.000	0.047	0.176	0.296	0.257	0.049	0.004	0.000	0.829
SW	0.000	0.000	0.020	0.088	0.093	0.033	0.004	0.000	0.000	0.238
WSW	0.000	0.000	0.007	0.019	0.026	0.025	0.008	0.000	0.000	0.085
W	0.000	0.000	0.003	0.009	0.024	0.056	0.011	0.001	0.000	0.104
WNW	0.000	0.000	0.005	0.005	0.013	0.056	0.008	0.000	0.000	0.087
NW	0.000	0.000	0.007	0.015	0.015	0.061	0.007	0.002	0.000	0.107
NNW	0.000	0.000	0.009	0.031	0.034	0.081	0.009	0.001	0.000	0.165
Subtotal	0.000	0.007	0.425	0.984	0.969	1.040	0.133	0.010	0.000	3.568

122869

Total Hours Of Valid Stability Observations	125417
Total Hours Of Stability Class B	4466
Total Hours Of Valid Wind Direction-Wind Speed-Stability Class B	4384

Total Hours Of Valid Wind Direction-Wind Speed-Stability Observations

Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant

Stability Based On Delta-T Between 9.51 And 45.63 Meters

Wind Speed And Direction Measured At 9.72 Meter Level

Mean Wind Speed = 6.61

Table 2.3-47 <u>Joint Percentage Frequencies Of Wind Speed By Wind Direction For</u> Stability Class C (-1.7< Delta T<=-1.5 C/100 M), Watts Bar Nuclear Plant Jan 1, 74 - Dec 31, 88										
Wind					Wind Sp	eed (MPH)				
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	>=24.5	<u>Total</u>
Ν	0.000	0.001	0.037	0.094	0.118	0.168	0.009	0.000	0.000	0.427
NNE	0.000	0.001	0.094	0.214	0.238	0.300	0.022	0.000	0.000	0.868
NE	0.000	0.002	0.118	0.225	0.168	0.138	0.002	0.000	0.000	0.652
ENE	0.000	0.000	0.109	0.181	0.098	0.033	0.001	0.000	0.000	0.423
E	0.000	0.003	0.109	0.152	0.027	0.007	0.001	0.000	0.000	0.299
ESE	0.000	0.001	0.042	0.046	0.004	0.000	0.000	0.000	0.000	0.094
SE	0.000	0.000	0.049	0.058	0.011	0.002	0.003	0.000	0.000	0.122
SSE	0.000	0.001	0.088	0.123	0.037	0.013	0.004	0.000	0.000	0.266
S	0.000	0.001	0.106	0.242	0.122	0.081	0.020	0.002	0.000	0.573
SSW	0.000	0.000	0.085	0.420	0.430	0.305	0.075	0.006	0.000	1.320
SW	0.000	0.001	0.046	0.181	0.120	0.046	0.009	0.000	0.000	0.403
WSW	0.000	0.000	0.024	0.063	0.040	0.028	0.012	0.000	0.000	0.168
W	0.000	0.001	0.020	0.031	0.053	0.070	0.013	0.003	0.000	0.191
WNW	0.000	0.000	0.012	0.020	0.037	0.120	0.016	0.000	0.000	0.205
NW	0.000	0.000	0.022	0.043	0.057	0.161	0.019	0.001	0.000	0.303
NNW	0.000	0.000	0.024	0.066	0.092	0.137	0.011	0.000	0.000	0.330
Subtotal	0.000	0.011	0.986	2.160	1.651	1.609	0.216	0.011	0.000	6.644

Total Hours Of Valid Stability Observations	125417
Total Hours Of Stability Class C	8348
Total Hours Of Valid Wind Direction-Wind Speed-Stability Class C	8164
Total Hours Of Valid Wind Direction-Wind Speed-Stability Observations	122869

Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant

Stability Based On Delta-T Between 9.51 And 45.63 Meters

Wind Speed And Direction Measured At 9.72 Meter Level

Mean Wind Speed = 6.20

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

METEOROLOGY

Table 2.3-48 <u>Joint Percentage Frequencies Of Wind Speed By Wind Direction For</u> Stability Class D (-1.5< Delta T<=-0.5 C/100 M), Watts Bar Nuclear Plant Jan 1, 74 - Dec 31, 88										
Wind					Wind Sp	eed (MPH)				
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.002	0.037	0.437	0.850	0.938	1.164	0.049	0.000	0.000	3.477
NNE	0.002	0.037	0.544	1.219	1.335	1.464	0.061	0.000	0.000	4.663
NE	0.003	0.057	0.648	0.976	0.632	0.384	0.008	0.001	0.000	2.709
ENE	0.003	0.092	0.814	0.597	0.178	0.059	0.002	0.000	0.000	1.745
E	0.003	0.125	0.619	0.295	0.079	0.020	0.000	0.000	0.000	1.140
ESE	0.001	0.057	0.232	0.089	0.015	0.009	0.000	0.000	0.000	0.403
SE	0.002	0.069	0.365	0.173	0.031	0.028	0.009	0.000	0.000	0.677
SSE	0.003	0.123	0.610	0.264	0.059	0.058	0.021	0.002	0.000	1.139
S	0.004	0.108	0.941	0.872	0.358	0.330	0.110	0.013	0.001	2.737
SSW	0.005	0.095	1.161	1.878	1.141	1.244	0.300	0.028	0.000	5.851
SW	0.003	0.094	0.696	0.750	0.255	0.182	0.022	0.002	0.001	2.005
WSW	0.002	0.071	0.478	0.347	0.182	0.136	0.039	0.001	0.000	1.255
W	0.002	0.081	0.429	0.353	0.387	0.439	0.055	0.003	0.000	1.751
WNW	0.002	0.094	0.343	0.371	0.408	0.558	0.061	0.004	0.000	1.842
NW	0.002	0.072	0.354	0.409	0.544	0.794	0.079	0.000	0.000	2.252
NNW	0.001	0.046	0.350	0.518	0.628	0.948	0.050	0.000	0.000	2.542
SUBTOTAL	0.037	1.260	9.020	9.962	7.170	7.816	0.866	0.054	0.002	36.187

Total Hours Of Valid Stability Observations	125417
Total Hours Of Stability Class D	45215
Total Hours Of Valid Wind Direction-Wind Speed-Stability Class D	44463
Total Hours Of Valid Wind Direction-Wind Speed-Stability Observations	122869

Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant

Stability Based On Delta-T Between 9.51 And 45.63 Meters

Wind Speed And Direction Measured At 9.72 Meter Level

Mean Wind Speed = 5.52

	Table 2.3-49 <u>Joint Percentage Frequencies Of Wind Speed By Wind Direction For</u> Stability Class E (-0.5< Delta T<= 1.5 C/100 M), Watts Bar Nuclear Plant Jan 1, 74 - Dec 31, 88									
Wind					Wind Sp	eed (MPH)				
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	>=24.5	<u>Total</u>
Ν	0.015	0.157	0.531	0.639	0.299	0.091	0.002	0.000	0.000	1.734
NNE	0.011	0.132	0.398	0.466	0.235	0.087	0.004	0.000	0.000	1.334
NE	0.013	0.139	0.471	0.239	0.098	0.038	0.000	0.000	0.000	0.999
ENE	0.027	0.243	1.015	0.337	0.049	0.011	0.001	0.000	0.000	1.683
E	0.018	0.290	0.522	0.101	0.021	0.013	0.002	0.000	0.000	0.966
ESE	0.006	0.135	0.147	0.032	0.009	0.002	0.001	0.000	0.000	0.332
SE	0.009	0.192	0.228	0.046	0.029	0.024	0.004	0.000	0.000	0.532
SSE	0.019	0.308	0.591	0.122	0.060	0.079	0.015	0.001	0.000	1.195
S	0.030	0.382	1.016	0.475	0.222	0.187	0.062	0.009	0.000	2.383
SSW	0.039	0.434	1.389	1.145	0.771	0.811	0.165	0.021	0.000	4.776
SW	0.031	0.461	0.971	0.306	0.198	0.150	0.027	0.003	0.000	2.147
WSW	0.031	0.605	0.824	0.186	0.108	0.081	0.014	0.001	0.000	1.850
W	0.029	0.662	0.698	0.229	0.109	0.073	0.011	0.000	0.000	1.811
WNW	0.028	0.641	0.639	0.203	0.090	0.042	0.002	0.002	0.000	1.646
NW	0.032	0.719	0.753	0.255	0.122	0.058	0.002	0.000	0.000	1.940
NNW	0.020	0.383	0.553	0.336	0.152	0.083	0.002	0.000	0.000	1.530
SUBTOTAL	0.360	5.882	10.746	5.116	2.573	1.832	0.314	0.037	0.000	26.859

Total Hours Of Valid Stability Observations	125417
Total Hours Of Stability Class E	33679
Total Hours Of Valid Wind Direction-Wind Speed-Stability Class E	33002
Total Hours Of Valid Wind Direction-Wind Speed-Stability Observations	122869

Meteorological Facility Located 0.8 K SSW Of Watts Bar Nuclear Plant

Stability Based On Delta-T Between 9.51 And 45.63 Meters

Wind Speed And Direction Measured At 9.72 Meter Level

Mean Wind Speed = 3.43

	Table 2.3-50 <u>Joint Percentage Frequencies Of Wind Speed By Wind Direction For</u> Stability Class F (1.5< Delta T<= 4.0 C/100 M), Watts Bar Nuclear Plant Jan 1, 74 - Dec 31, 88									
Wind					Wind S	peed (MPH)				
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.027	0.274	0.269	0.032	0.008	0.001	0.000	0.000	0.000	0.610
NNE	0.022	0.215	0.238	0.033	0.001	0.001	0.000	0.000	0.000	0.511
NE	0.028	0.238	0.322	0.024	0.002	0.001	0.000	0.000	0.000	0.616
ENE	0.048	0.339	0.636	0.065	0.002	0.002	0.000	0.000	0.000	1.093
E	0.026	0.292	0.228	0.009	0.001	0.001	0.000	0.000	0.000	0.556
ESE	0.008	0.112	0.054	0.001	0.000	0.000	0.000	0.000	0.000	0.175
SE	0.013	0.168	0.100	0.004	0.001	0.000	0.000	0.000	0.000	0.287
SSE	0.025	0.281	0.226	0.020	0.003	0.002	0.000	0.000	0.000	0.558
S	0.032	0.323	0.326	0.043	0.006	0.005	0.000	0.000	0.000	0.734
SSW	0.039	0.350	0.443	0.192	0.073	0.015	0.000	0.000	0.000	1.112
SW	0.046	0.440	0.497	0.075	0.019	0.007	0.001	0.000	0.000	1.085
WSW	0.064	0.673	0.623	0.041	0.008	0.000	0.000	0.000	0.000	1.408
W	0.069	0.843	0.557	0.033	0.001	0.002	0.000	0.000	0.000	1.505
WNW	0.066	0.918	0.432	0.024	0.002	0.001	0.000	0.000	0.000	1.443
NW	0.104	1.257	0.856	0.045	0.005	0.002	0.001	0.000	0.000	2.270
NNW	0.056	0.680	0.457	0.034	0.005	0.000	0.000	0.000	0.000	1.231
SUBTOTAL	0.672	7.405	6.263	0.676	0.138	0.040	0.002	0.000	0.000	15.194

TOTAL HOURS OF VALID STABILITY OBSERVATIONS	125417
TOTAL HOURS OF STABILITY CLASS F	19142
TOTAL HOURS OF VALID WIND DIRECTION-WIND SPEED-STABILITY CLASS F	18669
TOTAL HOURS OF VALID WIND DIRECTION-WIND SPEED-STABILITY OBSERVATIONS	122869
METEOROLOGICAL FACILITY LOCATED 0.8 KM SSW OF WATTS BAR NUCLEAR PLANT	
STABILITY BASED ON DELTA-T BETWEEN 9.51 AND 45.63 METERS	
WIND SPEED AND DIRECTION MEASURED AT 9.72 METER LEVEL	
MEAN WIND SPEED = 1.63	
NOTE: TOTALS AND SUBTOTALS ARE OBTAINED FROM UNROUNDED NUMBERS	

METEOROLOGY

~
~
D
•,
00
\sim

Table 2.3-51 <u>Joint Percentage Frequencies Of Wind Speed By Wind Direction For</u> Stability Class G (Delta T > 4.0 C/100 M), Watts Bar Nuclear Plant Jan 1, 74 - Dec 31, 88										
Wind					Wind Spe	ed (MPH)				
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	5.5-7.4	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.021	0.194	0.077	0.002	0.000	0.000	0.000	0.000	0.000	0.292
NNE	0.022	0.194	0.101	0.002	0.000	0.000	0.000	0.000	0.000	0.320
NE	0.032	0.255	0.168	0.001	0.000	0.000	0.000	0.000	0.000	0.455
ENE	0.057	0.384	0.363	0.009	0.000	0.001	0.000	0.000	0.000	0.814
E	0.030	0.276	0.117	0.001	0.000	0.000	0.000	0.000	0.000	0.424
ESE	0.009	0.096	0.027	0.000	0.000	0.000	0.000	0.000	0.000	0.132
SE	0.017	0.163	0.058	0.000	0.000	0.000	0.000	0.000	0.000	0.237
SSE	0.021	0.190	0.081	0.002	0.000	0.000	0.000	0.000	0.000	0.293
S	0.021	0.188	0.090	0.005	0.002	0.000	0.000	0.000	0.000	0.306
SSW	0.024	0.201	0.110	0.013	0.002	0.000	0.000	0.000	0.000	0.349
SW	0.029	0.248	0.126	0.007	0.000	0.000	0.000	0.000	0.000	0.409
WSW	0.050	0.402	0.256	0.006	0.000	0.000	0.000	0.000	0.000	0.714
W	0.056	0.438	0.291	0.006	0.000	0.000	0.000	0.000	0.000	0.790
WNW	0.046	0.420	0.181	0.004	0.000	0.000	0.000	0.000	0.000	0.651
NW	0.066	0.556	0.308	0.011	0.001	0.000	0.000	0.000	0.000	0.942
NNW	0.037	0.326	0.153	0.003	0.000	0.000	0.000	0.000	0.000	0.519
SUBTOTAL	0.537	4.530	2.505	0.072	0.004	0.001	0.000	0.000	0.000	7.649

TOTAL HOURS OF VALID STABILITY OBSERVATIONS	125417
TOTAL HOURS OF STABILITY CLASS G	9683
TOTAL HOURS OF VALID WIND DIRECTION-WIND SPEED-STABILITY CLASS G	9398
TOTAL HOURS OF VALID WIND DIRECTION-WIND SPEED-STABILITY OBSERVATIONS	122869
METEOROLOGICAL FACILITY LOCATED 0.8 KM SSW OF WATTS BAR NUCLEAR PLANT	
STABILITY BASED ON DELTA-T BETWEEN 9.51 AND 45.63 METERS	
WIND SPEED AND DIRECTION MEASURED AT 9.72 METER LEVEL	
MEAN WIND SPEED = 1.30	
NOTE: TOTALS AND SUBTOTALS ARE OBTAINED FROM UNROUNDED NUMBERS	

	Table 2.3	-52 Joint Perce			peed By Stabilit	<u>y Class,</u>				
	Watts Bar Nuclear Plant Jan 1, 74 - Dec 31, 88									
			Jan 1, 74 -		~~					
WIND SPEED STABILITY CLASS										
(MPH)	Α	В	С	D	E	F	G			
CALM	0.001	0.000	0.000	0.037	0.360	0.672	0.537			
0.6-1.4	0.009	0.007	0.011	1.260	5.882	7.405	4.530			
1.5-3.4	0.262	0.425	0.986	9.020	10.746	6.263	2.505			
3.5-5.4	0.747	0.984	2.160	9.962	5.116	0.676	0.072			
5.5-7.4	1.006	0.969	1.651	7.170	2.573	0.138	0.004			
7.5-12.4	1.618	1.040	1.609	7.816	1.832	0.040	0.001			
12.5-18.4	0.244	0.133	0.216	0.866	0.314	0.002	0.000			
18.5-24.4	0.011	0.010	0.011	0.054	0.037	0.000	0.000			
>=24.5	0.000	0.000	0.000	0.002	0.000	0.000	0.000			
TOTAL	3.898	3.568	6.644	36.187	26.859	15.194	7.649			
TOTAL HOURS OF	VALID STABILITY	OBSERVATIONS			125417					
TOTAL HOURS OF	VALID WIND DIRE	CTION-WIND SPE	ED-STABILITY OBS	ERVATIONS	122869					
TOTAL HOURS OF OBSERVATIONS 131496										
JOINT RECOVERABILITY PERCENTAGE 93.4										
METEOROLOGICA	AL FACILITY LOCAT	ED 0.8 KM SSW O	F WATTS BAR NUC	LEAR PLANT						
STABILITY BASED	STABILITY BASED ON DELTA-T BETWEEN 9.51 AND 45.63 METERS									

WIND SPEED AND DIRECTION MEASURED AT 9.72 METER LEVEL

_
~
10
S
0
U

	Table	9 2.3-53		oility Class A Watts E	uencies Of A (Delta T<= Bar Nuclear , 77 - Dec 3'	=-1.9 C/100 Plant		<u>Direction Fo</u>	r	
Wind					Wind	l Speed (Mph)				
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.000	0.000	0.008	0.016	0.024	0.075	0.022	0.001	0.000	0.146
NNE	0.000	0.001	0.009	0.041	0.083	0.149	0.024	0.000	0.000	0.308
NE	0.000	0.002	0.030	0.058	0.087	0.127	0.009	0.000	0.000	0.313
ENE	0.000	0.001	0.030	0.064	0.084	0.082	0.003	0.000	0.000	0.264
E	0.000	0.001	0.017	0.026	0.017	0.009	0.000	0.000	0.000	0.071
ESE	0.000	0.001	0.013	0.015	0.004	0.003	0.000	0.000	0.000	0.036
SE	0.000	0.002	0.013	0.024	0.002	0.001	0.002	0.000	0.000	0.044
SSE	0.000	0.001	0.018	0.037	0.016	0.016	0.004	0.002	0.000	0.095
S	0.000	0.000	0.030	0.067	0.055	0.090	0.028	0.003	0.000	0.273
SSW	0.000	0.000	0.023	0.117	0.186	0.625	0.329	0.054	0.009	1.343
SW	0.000	0.000	0.008	0.061	0.121	0.347	0.160	0.023	0.000	0.720
WSW	0.000	0.001	0.005	0.008	0.014	0.050	0.067	0.026	0.011	0.183
W	0.000	0.000	0.002	0.003	0.004	0.029	0.034	0.003	0.004	0.080
WNW	0.000	0.000	0.000	0.003	0.002	0.021	0.042	0.002	0.000	0.071
NW	0.000	0.001	0.001	0.002	0.002	0.017	0.012	0.003	0.000	0.038
NNW	0.000	0.002	0.003	0.011	0.018	0.048	0.016	0.001	0.000	0.100
SUBTOTAL	0.001	0.013	0.212	0.553	0.719	1.691	0.753	0.118	0.024	4.084

TOTAL HOURS OF VALID STABILITY OBSERVATIONS	101940
TOTAL HOURS OF STABILITY CLASS A	4112
TOTAL HOURS OF VALID WIND DIRECTION-WIND SPEED-STABILITY CLASS A	4046
TOTAL HOURS OF VALID WIND DIRECTION-WIND SPEED-STABILITY OBSERVATIONS	99059
METEOROLOGICAL FACILITY LOCATED 0.8 KM SSW OF WATTS BAR NUCLEAR PLANT	
STABILITY BASED ON DELTA-T BETWEEN 9.51 AND 45.63 METERS	
WIND SPEED AND DIRECTION MEASURED AT 46.36 METER LEVEL	
MEAN WIND SPEED = 9.40	
NOTE: TOTALS AND SUBTOTALS ARE OBTAINED FROM UNROUNDED NUMBERS	

METEOROLOGY

	Stability Class B (-1.9< Delta 1<=-1.7 C/100 M), watts Bar Nuclear Plant Jan 1, 77 - Dec 31, 88									
				Jan 1	, // - Dec 3	51, 88				
Wind		Wind Speed(MPH)								
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.000	0.000	0.025	0.030	0.046	0.106	0.023	0.000	0.000	0.231
NNE	0.000	0.002	0.031	0.084	0.090	0.219	0.043	0.000	0.000	0.470
NE	0.000	0.000	0.049	0.109	0.109	0.138	0.011	0.000	0.000	0.417
ENE	0.000	0.002	0.081	0.094	0.099	0.079	0.001	0.000	0.000	0.356
E	0.000	0.001	0.028	0.043	0.023	0.008	0.001	0.000	0.000	0.105
ESE	0.000	0.000	0.017	0.025	0.004	0.001	0.000	0.000	0.000	0.047
SE	0.000	0.000	0.020	0.027	0.005	0.003	0.001	0.001	0.000	0.058
SSE	0.000	0.000	0.031	0.056	0.009	0.010	0.001	0.000	0.000	0.107
S	0.000	0.000	0.029	0.076	0.051	0.048	0.011	0.004	0.001	0.221
SSW	0.000	0.001	0.039	0.135	0.162	0.294	0.113	0.027	0.004	0.775
SW	0.000	0.000	0.015	0.084	0.146	0.187	0.048	0.009	0.003	0.493
WSW	0.000	0.000	0.002	0.012	0.016	0.046	0.017	0.010	0.002	0.106
W	0.000	0.000	0.005	0.001	0.006	0.045	0.032	0.009	0.000	0.099
WNW	0.000	0.000	0.003	0.004	0.007	0.056	0.040	0.001	0.001	0.112
NW	0.000	0.000	0.002	0.009	0.005	0.049	0.027	0.001	0.001	0.095
NNW	0.000	0.000	0.007	0.018	0.023	0.067	0.039	0.002	0.001	0.158
SUBTOTAL	0.001	0.006	0.387	0.808	0.803	1.357	0.411	0.065	0.013	3.849

Table 2.3-54 Joint Percentage Frequencies Of Wind Speed By Wind Direction For
Stability Class B (-1.9< Delta T<=-1.7 C/100 M), Watts Bar Nuclear Plant

Total Hours Of Valid Stability Observations	101940
Total Hours Of Stability Class B	3879
Total Hours Of Valid Wind Direction-Wind Speed-Stability Class B	3813
Total Hours Of Valid Wind Direction-Wind Speed-Stability Observations	99059

Meteorological Facility Located 0.8 Km Ssw Of Watts Bar Nuclear Plant

Stability Based On Delta-T Between 9.51 And 45.63 Meters

Wind Speed And Direction Measured At 46.36 Meter Level

Mean Wind Speed = 7.90

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

WATTS BAR

	Jan 1, 77 - Dec 31, 88									
Wind	Wind Speed (MPH)									
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	>=24.5	<u>Total</u>
Ν	0.000	0.000	0.032	0.099	0.080	0.197	0.043	0.001	0.000	0.452
NNE	0.000	0.000	0.057	0.134	0.185	0.339	0.065	0.000	0.000	0.779
NE	0.000	0.002	0.121	0.215	0.173	0.202	0.013	0.000	0.000	0.726
ENE	0.000	0.003	0.151	0.179	0.142	0.060	0.008	0.000	0.000	0.543
E	0.000	0.001	0.042	0.098	0.022	0.011	0.000	0.000	0.000	0.175
ESE	0.000	0.002	0.029	0.059	0.007	0.003	0.000	0.000	0.000	0.100
SE	0.000	0.001	0.039	0.045	0.008	0.002	0.004	0.001	0.000	0.101
SSE	0.000	0.001	0.054	0.083	0.032	0.018	0.006	0.000	0.000	0.194
S	0.000	0.000	0.059	0.133	0.067	0.066	0.024	0.011	0.001	0.360
SSW	0.000	0.003	0.074	0.246	0.283	0.361	0.126	0.027	0.005	1.126
SW	0.000	0.001	0.037	0.162	0.209	0.231	0.042	0.015	0.002	0.700
WSW	0.000	0.001	0.018	0.039	0.038	0.052	0.023	0.012	0.002	0.187
W	0.000	0.000	0.013	0.017	0.021	0.059	0.027	0.005	0.002	0.144
WNW	0.000	0.000	0.004	0.012	0.023	0.113	0.080	0.008	0.000	0.240
NW	0.000	0.000	0.011	0.021	0.029	0.147	0.058	0.001	0.000	0.268
NNW	0.000	0.002	0.022	0.037	0.045	0.137	0.047	0.000	0.000	0.292
SUBTOTAL	0.000	0.017	0.764	1.580	1.365	1.999	0.567	0.082	0.012	6.386

 Table 2.3-55
 Joint Percentage Frequencies Of Wind Speed By Wind Direction For

 Stability Class C (-1.7< Delta T<=-1.5 C/100 M), Watts Bar Nuclear Plant</td>

Total Hours Of Valid Stability Observations	101940
Total Hours Of Stability Class C	6506
Total Hours Of Valid Wind Direction-wind Speed-stability Class C	6326
Total Hours Of Valid Wind Direction-wind Speed-stability Observations	99059

Meteorological Facility Located 0.8 Km Ssw Of Watts Bar Nuclear Plant

Stability Based On Delta-t Between 9.51 And 45.63 Meters

Wind Speed And Direction Measured At 46.36 Meter Level

Mean Wind Speed = 7.37

Jan 1, 77 - Dec 31, 88										
Wind	Wind Speed(MPH)									
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.002	0.040	0.284	0.476	0.614	1.793	0.380	0.011	0.000	3.600
NNE	0.003	0.060	0.408	0.861	1.195	1.906	0.283	0.007	0.000	4.723
NE	0.005	0.082	0.669	0.982	0.876	1.042	0.088	0.000	0.000	3.745
ENE	0.006	0.113	0.689	0.594	0.349	0.186	0.013	0.000	0.000	1.950
E	0.004	0.100	0.428	0.234	0.103	0.051	0.006	0.000	0.000	0.927
ESE	0.002	0.049	0.194	0.113	0.022	0.015	0.003	0.000	0.000	0.399
SE	0.002	0.048	0.223	0.156	0.043	0.039	0.010	0.005	0.000	0.528
SSE	0.003	0.085	0.386	0.278	0.067	0.078	0.048	0.009	0.000	0.953
S	0.005	0.077	0.586	0.564	0.295	0.310	0.148	0.052	0.008	2.045
SSW	0.006	0.074	0.800	1.421	1.094	1.436	0.769	0.158	0.020	5.779
SW	0.004	0.047	0.513	0.864	0.622	0.757	0.269	0.047	0.012	3.136
WSW	0.003	0.045	0.354	0.344	0.208	0.336	0.131	0.026	0.008	1.457
W	0.002	0.062	0.248	0.193	0.193	0.517	0.205	0.037	0.003	1.460
WNW	0.002	0.055	0.199	0.201	0.275	0.893	0.271	0.018	0.000	1.913
NW	0.002	0.043	0.236	0.234	0.363	0.988	0.304	0.020	0.001	2.193
NNW	0.002	0.040	0.231	0.311	0.384	1.132	0.346	0.013	0.000	2.459
SUBTOTAL	0.055	1.021	6.448	7.828	6.703	11.479	3.274	0.406	0.052	37.265

Table 2.3-56 Joint Percentage Frequencies Of Wind Speed By Wind Direction For
Stability Class D (-1.5< Delta T<=-0.5 C/100 M), Watts Bar Nuclear Plant
lan 4 77 Dec 24 00

Total Hours Of Valid Stability Observations	101940
Total Hours Of Stability Class D	37699
Total Hours Of Valid Wind Direction-Wind Speed-Stability Class D	36914
Total Hours Of Valid Wind Direction-Wind Speed-Stability Observations	99059

Meteorological Facility Located 0.8 Km Ssw Of Watts Bar Nuclear Plant

Stability Based On Delta-T Between 9.51 And 45.63 Meters

Wind Speed And Direction Measured At 46.36 Meter Level

Mean Wind Speed = 7.05

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

WATTS BAR

Jan 1, 77 - Dec 31, 88										
Wind					Wind	Speed(Mph)				
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.020	0.146	0.350	0.268	0.418	0.641	0.024	0.000	0.000	1.867
NNE	0.033	0.217	0.612	0.564	0.460	0.368	0.009	0.000	0.000	2.264
NE	0.047	0.313	0.871	0.545	0.288	0.131	0.004	0.000	0.000	2.199
ENE	0.039	0.313	0.683	0.230	0.074	0.047	0.004	0.000	0.000	1.391
E	0.024	0.287	0.312	0.095	0.039	0.026	0.003	0.000	0.000	0.786
ESE	0.012	0.153	0.142	0.058	0.020	0.008	0.000	0.001	0.000	0.394
SE	0.011	0.128	0.164	0.055	0.037	0.041	0.016	0.004	0.000	0.457
SSE	0.024	0.209	0.394	0.155	0.071	0.128	0.060	0.007	0.000	1.047
S	0.041	0.272	0.773	0.529	0.311	0.344	0.126	0.032	0.007	2.436
SSW	0.054	0.282	1.094	1.266	1.038	1.425	0.552	0.097	0.003	5.811
SW	0.029	0.189	0.560	0.514	0.448	0.723	0.244	0.032	0.004	2.744
WSW	0.018	0.150	0.298	0.222	0.164	0.247	0.083	0.014	0.001	1.197
W	0.013	0.112	0.225	0.134	0.125	0.192	0.035	0.005	0.000	0.842
WNW	0.011	0.120	0.164	0.128	0.125	0.147	0.017	0.000	0.000	0.713
NW	0.013	0.125	0.210	0.130	0.209	0.208	0.024	0.001	0.000	0.921
NNW	0.012	0.115	0.197	0.157	0.169	0.218	0.020	0.000	0.000	0.889
SUBTOTAL	0.401	3.131	7.049	5.051	3.996	4.897	1.223	0.194	0.015	25.956

Table 2.3-57	Joint Percentage Frequencies Of Wind Speed By Wind Direction For	ſ		
Stability Class E (-0.5< Delta T<= 1.5 C/100 M), Watts Bar Nuclear Plant				
-	lan 1 77 Dec 21 99			

Total Hours Of Valid Stability Observations	101940
Total Hours Of Stability Class E	26543
Total Hours Of Valid Wind Direction-Wind Speed-Stability Class E	25712
Total Hours Of Valid Wind Direction-Wind Speed-Stability Observations	99059

Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant

Stability Based On Delta-T Between 9.51 And 45.63 Meters

Wind Speed And Direction Measured At 46.36 Meter Level

Mean Wind Speed = 5.24

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

WATTS BAR

Stability Class F (1.5< Delta T<= 4.0 C/100 M), Watts Bar Nuclear Plant										
				Jan 1, 77	7 - Dec 31, 8	8				
Wind					Wind Spe	ed (MPH)				
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.036	0.203	0.345	0.149	0.092	0.038	0.001	0.000	0.000	0.865
NNE	0.067	0.297	0.715	0.387	0.149	0.034	0.000	0.000	0.000	1.649
NE	0.092	0.454	0.937	0.318	0.076	0.012	0.000	0.000	0.000	1.889
ENE	0.074	0.406	0.713	0.081	0.004	0.002	0.000	0.000	0.000	1.279
E	0.036	0.326	0.220	0.009	0.004	0.001	0.000	0.000	0.000	0.596
ESE	0.016	0.164	0.079	0.009	0.000	0.000	0.000	0.000	0.000	0.267
SE	0.018	0.162	0.114	0.023	0.011	0.003	0.000	0.000	0.000	0.331
SSE	0.034	0.206	0.303	0.071	0.014	0.014	0.000	0.000	0.000	0.641
S	0.058	0.269	0.613	0.267	0.090	0.047	0.002	0.001	0.000	1.346
SSW	0.068	0.229	0.802	0.701	0.462	0.352	0.032	0.000	0.000	2.646
SW	0.039	0.214	0.378	0.209	0.132	0.187	0.022	0.001	0.000	1.182
WSW	0.023	0.141	0.214	0.084	0.062	0.055	0.003	0.000	0.000	0.582
W	0.021	0.158	0.157	0.054	0.032	0.023	0.001	0.000	0.000	0.447
WNW	0.017	0.146	0.107	0.045	0.027	0.014	0.000	0.000	0.000	0.357
NW	0.018	0.134	0.139	0.058	0.035	0.019	0.001	0.000	0.000	0.405
NNW	0.022	0.156	0.170	0.075	0.051	0.013	0.001	0.000	0.000	0.488
SUBTOTAL	0.638	3.665	6.005	2.538	1.243	0.816	0.064	0.002	0.000	14.970
Total Hours Of Va	lid Stability Obs	ervations					101940			
Total Hours Of Sta	ability Class F						15456			
Total Hours Of Va	lid Wind Directi	on-Wind Spee	ed-Stability Cla	ss F			14829			
Total Hours Of Va	lid Wind Directi	on-Wind Spee	d-Stability Ob	servations			99059			
Meteorological Fa	Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant									
Stability Based On Delta-T Between 9.51 And 45.63 Meters										
Wind Speed And	Wind Speed And Direction Measured At 46.36 Meter Level									

Table 2.3-58 Joint Percentage Frequencies Of Wind Speed By Wind Direction For Stability Class F (1.5< Delta T<= 4.0 C/100 M), Watts Bar Nuclear Plant

Mean Wind Speed = 3.02

WATTS BAR

		Stabli	ity class G	•	4.0 C/100 M 77 - Dec 31	•	r Nuclear Pla	ant		
Wind					Wind	Speed (MPH)				
Direction	<u>Calm</u>	<u>0.6-1.4</u>	<u>1.5-3.4</u>	<u>3.5-5.4</u>	<u>5.5-7.4</u>	<u>7.5-12.4</u>	<u>12.5-18.4</u>	<u>18.5-24.4</u>	<u>>=24.5</u>	<u>Total</u>
Ν	0.014	0.116	0.202	0.084	0.019	0.011	0.000	0.000	0.000	0.446
NNE	0.026	0.166	0.403	0.187	0.075	0.010	0.000	0.000	0.000	0.865
NE	0.038	0.226	0.625	0.223	0.040	0.005	0.000	0.000	0.000	1.158
ENE	0.030	0.162	0.498	0.061	0.000	0.001	0.000	0.000	0.000	0.750
E	0.010	0.128	0.098	0.004	0.000	0.001	0.000	0.000	0.000	0.241
ESE	0.004	0.055	0.031	0.005	0.000	0.000	0.000	0.000	0.000	0.095
SE	0.005	0.043	0.058	0.006	0.003	0.001	0.000	0.000	0.000	0.116
SSE	0.013	0.087	0.197	0.039	0.007	0.003	0.000	0.000	0.000	0.346
S	0.020	0.101	0.351	0.185	0.042	0.008	0.000	0.000	0.000	0.708
SSW	0.020	0.080	0.375	0.405	0.224	0.091	0.003	0.000	0.000	1.197
SW	0.011	0.074	0.175	0.110	0.043	0.037	0.001	0.000	0.000	0.451
WSW W	0.008 0.007	0.061 0.059	0.111 0.099	0.049 0.026	0.024 0.018	0.009 0.009	0.000 0.000	0.000 0.000	0.000 0.000	0.262 0.218
WNW	0.007	0.059	0.099	0.020	0.018	0.009	0.000	0.000	0.000	0.218
NW	0.000	0.069	0.074	0.030	0.009	0.003	0.000	0.000	0.000	0.100
NNW	0.007	0.069	0.094	0.038	0.019	0.001	0.000	0.000	0.000	0.228
SUBTOTAL	0.226	1.557	3.474	1.497	0.538	0.194	0.004	0.000	0.000	7.489
Total Hours Of Val	id Stability Ot	oservations					101940			
Total Hours Of Sta	bility Class G	ì					7745			
Total Hours Of Val	id Wind Direc	tion-Wind Sp	peed-Stability	Class G			7419			
Total Hours Of Valid Wind Direction-Wind Speed-Stability Observations							99059			
Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant										
Stability Based On Delta-T Between 9.51 And 45.63 Meters										
Wind Speed And I	Wind Speed And Direction Measured At 46.36 Meter Level									
Mean Wind Speed	Mean Wind Speed = 2.87									

Table 2.3-59 Joint Percentage Frequencies Of Wind Speed By Wind Direction For Stability Class G (Delta T > 4.0 C/100 M) Watts, Bar Nuclear Plant Image: A 177 Dec 24 89

Note: Totals And Subtotals Are Obtained From Unrounded Numbers

WATTS BAR

	Table 2.	3-60 <u>Joint Perce</u>	entage Frequenc Watts Bar Nu Jan 1, 77 - D	clear Plant	ed By Stability Cl	<u>ass.</u>	
Wind Speed	Wind Speed Stability Class						
(MPH)	Α	В	С	D	E	F	G
CALM	0.001	0.001	0.000	0.055	0.401	0.638	0.226
0.6-1.4	0.013	0.006	0.017	1.021	3.131	3.665	1.557
1.5-3.4	0.212	0.387	0.764	6.448	7.049	6.005	3.474
3.5-5.4	0.553	0.808	1.580	7.828	5.051	2.538	1.497
5.5-7.4	0.719	0.803	1.365	6.703	3.996	1.243	0.538
7.5-12.4	1.691	1.357	1.999	11.479	4.897	0.816	0.194
12.5-18.4	0.753	0.411	0.567	3.274	1.223	0.064	0.004
18.5-24.4	0.118	0.065	0.082	0.406	0.194	0.002	0.000
>=24.5	0.024	0.013	0.012	0.052	0.015	0.000	0.000
TOTAL	4.084	3.849	6.386	37.265	25.956	14.970	7.489
Total Hours Of Vali	d Stability Observa	tions			101940		
Total Hours Of Vali	d Wind Direction-W	/ind Speed-Stability O	bservations		99059		
Total Hours Of Obs	servations			105192			
Joint Recoverability Percentage					94.2		
Meteorological Facility Located 0.8 KM SSW Of Watts Bar Nuclear Plant							
Stability Based On Δt Between 9.51 And 45.63 Meters							
Wind Speed And Direction Measured At 46.36 Meter Level							

Table 2.3-61 Calculated 1-hour Average Atmospheric Dispersion Factors (X/q) At Minimum Distance (1100 Meters) Between Release Zone (100 M Radius) And Exclusion Area Boundary (1200 M Radius) For Watts Bar Nuclear Plant (Sheet 1 of 1)

Plume Sector <u>Direction</u>	0.5th Percentile <u>X/Q Value (sec/m³)</u>	5th Percentile <u>X/Q Value (sec/m</u> ³)
Ν	3.312E-4	3.396E-5
NNE	3.341E-4	4.596E-5
NE	3.954E-4	3.314E-5
ENE	5.060E-4	2.883E-5
E	5.293E-4	3.177E-5
ESE	5.321E-4	2.721E-5
SE	<u>6.040E-4</u>	5.996E-5
SSE	4.705E-4	2.622E-5
S	3.068E-4	2.662E-5
SSW	2.901E-4	2.806E-5
SW	3.441E-4	1.791E-5
WSW	4.394E-4	3.217E-5
W	3.704E-4	_**
WNW	1.322E-4	_**
NW	2.242E-4	_**
NNW	3.154E-4	_**
All Directions Combined	1.217E-3	<u>5.323E-4</u>

Based on RG 1.145 and Meteorological Data for 1974 Through 1988*

* Meteorological facility located 0.8 km SSW of reactor site. Temperature instruments 9.51 and 45.63 meters above ground. Wind speed and direction measured at 9.72-meter level. Joint percent valid data in data base = 93.4.

** Less than 5% of the hours had nonzero X/Q values.

Minimum Distance (1100 Meters) Between Release Zone (100 M Radius) And Exclusion Area Boundary (1200 M Radius) For Watts Bar Nuclear Plant (Sheet 1 of 1)

Plume Sector	0.5th Percentile	5th Percentile
Direction	<u>X/Q Value (sec/m³)</u>	<u>X/Q Value (sec/m³)</u>
Ν	3.674E-4	3.550E-5
NNE	3.808E-4	5.036E-5
NE	4.597E-4	3.990E-5
ENE	5.305E-4	3.181E-5
E	5.297E-4	2.989E-5
ESE	5.089E-4	2.572E-5
SE	<u>6.069E-4</u>	4.769E-5
SSE	4.645E-4	2.375E-5
S	3.452E-4	2.598E-5
SSW	3.171E-4	2.721E-5
SW	3.703E-4	2.376E-5
WSW	4.728E-4	3.286E-5
W	3.701E-4	_**
WNW	1.452E-4	_**
NW	2.357E-4	_**
NNW	3.239E-4	_**
All Directions Combined	9.297E-3	5.263E-5

Based On Rg 1.145 And Meteorological Data For 1974 Through 1993*

* Meteorological facility located 0.8 km SSW of reactor site. Temperature instruments 9.51 and 45.63 meters above ground. Wind speed and direction measured at 9.72-meter level. Joint percent valid data in data base = 93.7.

** Less than 5% of the hours had nonzero X/Q values.

Plume Sector <u>Direction</u>	0.5th Percentile <u>x/Q Value (sec/m³)</u>	5th Percentile <u>x/Q Value (sec/m³)</u>	Annual Average <u>x/Q Value (sec/m³⁾</u>
Ν	7.665E-5	4.828E-6	7.054E-7
NNE	7.799E-5	8.040E-6	1.150E-6
NE	9.809E-5	4.720E-6	1.225E-6
ENE	1.298E-4	3.714E-6	1.282E-6
E	1.348E-4	4.333E-6	1.391E-6
ESE	1.331E-4	3.357E-6	1.533E-6
SE	1.445E-4	1.060E-5	1.467E-6
SSE	1.183E-4	3.148E-6	9.964E-7
S	7.146E-5	3.246E-6	7.454E-7
SSW	6.759E-5	3.542E-6	7.091E-7
SW	8.790E-5	1.467E-6	8.111E-7
WSW	1.206E-4	4.466E-6	9.701E-7
W	9.350E-5	_**	4.400E-7
WNW	2.284E-5	_**	2.335E-7
NW	4.944E-5	_**	2.507E-7
NNW	7.223E-5	_**	3.935E-7
All Directions Combined	2.717E-4	<u>1.352E-4</u>	-

Based on R.G. 1.145 and Meteorological Data for 1974 Through 1988*

* Meteorological facility located 0.8 km SSW of reactor site. Temperature instruments 9.51 and 45.63 meters above ground. Wind speed and direction measured at 9.72-meter level. Joint percent valid data in data base = 93.4.

** Less than 5% of the hours had nonzero x/Q values.

WBNP-67

Plume Sector Direction	0.5th Percentile <u>X/Q Value (sec/m³)</u>	5th Percentile <u>X/Q Value (sec/m</u> ³)	Annual Average <u>X/Q Value (sec/m³)</u>
Ν	0.798E-4	5.094E-6	0.842E-6
NNE	0.845E-4	8.854E-6	1.386E-6
NE	1.135E-4	5.827E-6	1.639E-6
ENE	1.338E-4	4.514E-6	1.561E-6
E	1.365E-4	4.128E-6	1.600E-6
ESE	1.305E-4	3.181E-6	1.655E-6
SE	<u>1.411E-4</u>	7.997E-6	1.526E-6
SSE	1.161E-4	2.853E-6	1.035E-6
S	0.772E-4	3.211E-6	0.881E-6
SSW	0.731E-4	3.444E-6	0.814E-6
SW	0.930E-4	2.451E-6	1.001E-6
WSW	1.239E-4	4.608E-6	1.212E-6
W	0.897E-4	_**	0.469E-6
WNW	0.265E-4	_**	0.263E-6
NW	0.502E-4	_**	0.272E-6
NNW	0.691E-4	_**	0.416E-6
All Directions Combined	2.797E-4	1.349E-4	-

Based on R.G. 1.145 and Meteorological Data for 1974 Through 1993*

* Meteorological facility located 0.8 km SSW of reactor site. Temperature instruments 9.51 and 45.63 meters above ground. Wind speed and direction measured at 9.72-meter level. Joint percent valid data in data base = 93.7.

** Less than 5% of the hours had nonzero X/Q values.

Table 2.3-63 Values Of 5th Percentile Overall Site 8-hour, 16-hour, 3-day, And 26-day Atmospheric Dispersion Factors (X/q) At Low Population Zone Distance (4828 Meters) For Watts Bar Nuclear Plant

Based on R.G. 1.145 Method of Logarithmic Interpolation Between Overall 5th Percentile 1-hour X/Q Assumed to Apply for 2-hour Period and Maximum Sector Annual Average X/Q (underscored in Table 2.3-62)*

Averaging Period	5th Percentile <u>X/Q Value (sec/m</u> ³)
8-hour	6.447E-5
16-hour	4.452E-5
3-day	1.993E-5
26-day	6.288E-6

* 1-hour and annual average X/Qs calculated from meteorological data for 1974 through 1988. Meteorological facility located 0.8 km SSW of reactor site. Temperature instruments 9.51 and 45.63 meters above ground. Wind speed and direction measured at 9.72-meter level. Joint percent valid data in data base = 93.4.

Table 2.3-63a VALUES OF 5TH PERCENTILE OVERALL SITE 8-HOUR, 16-HOUR, 3-DAY, AND 26-DAY ATMOSPHERIC DISPERSION FACTORS (X/Q) AT LOW POPULATION ZONE DISTANCE (4828 METERS) FOR WATTS BAR NUCLEAR PLANT

Based on RG 1.145 Method of Logarithmic Interpolation Between Overall 5th Percentile 1-hour X/Q Assumed to Apply for 2-hour Period and Maximum Sector Annual Average X/Q (from Table 2.3-62a)*

Averaging Period	5th Percentile <u>X/Q Value (sec/m</u> ³)
8-hour	6.516E-5
16-hour	4.529E-5
3-day	2.057E-5
26-day	6.621E-6

* 1-hour and annual average X/Qs calculated from meteorological data for 1974 through 1993. Meteorological facility located 0.8 km SSW of reactor site. Temperature instruments 9.51 and 45.63 meters above ground. Wind speed and direction measured at 9.72-meter level. Joint percent valid data in data base = 93.7.

Table 2.3-64 0.5th Percentile Sector Values Of 8-hour, 16-hour, 3-day, And 26-day Atmospheric Dispersion Factors (X/q) At Low Population Zone Outer Boundary Distance (4828 Meters) For Watts Bar Nuclear Plant

Based on R.G. 1.145 Method of Logarithmic Interpolation Between 0.5th Percentile 1-hour X/Q for Each Sector and Annual Average X/Q for Same Sector.*

	Sector-Specific X/Q Values (sec/m ³)					
Plume Sector	<u>8-hour</u>	<u>16-hour</u>	<u>3-day</u>	<u>26-day</u>		
Ν	3.531E-5	2.396E-5	1.034E-5	3.090E-6		
NNE	3.884E-5	2.741E-5	1.286E-5	4.342E-6		
NE	4.752E-5	3.308E-5	1.507E-5	4.874E-6		
ENE	6.049E-5	4.130E-5	1.804E-5	5.492E-6		
E	6.328E-5	4.336E-5	1.909E-5	5.877E-6		
ESE	6.363E-5	4.399E-5	1.975E-5	6.257E-6		
SE	6.765E-5	4.629E-5	2.032E-5	6.230E-6		
SSE	5.370E-5	3.618E-5	1.536E-5	4.488E-6		
S	3.361E-5	2.305E-5	1.017E-5	3.139E-6		
SSW	3.182E-5	2.183E-5	9.639E-6	2.980E-6		
SW	4.051E-5	2.750E-5	1.187E-5	3.550E-6		
WSW	5.433E-5	3.647E-5	1.535E-5	4.433E-6		
W	3.855E-5	2.475E-5	9.465E-6	2.381E-6		
WNW	1.071E-5	7.329E-6	3.221E-6	9.895E-7		
NW	2.064E-5	1.333E-5	5.167E-6	1.325E-6		
NNW	3.051E-5	1.983E-S	7.784E-6	2.033E-6		

* 1-hour and annual average X/Qs calculated from meteorological data for 1974 through 1988. Meteorological facility located 0.8 km SSW of reactor site. Temperature instruments 9.51 and 45.63 meters above ground. Wind speed and direction measured at 9.72-meter level. Joint percent valid data in data base = 93.4.

Table 2.3-65 0.5th Percentile Sector Values Of 8-hour, 16-hour, 3-day, And 26-day Atmospheric Dispersion Factors (X/q) At Low Population Zone Outer Boundary Distance (4828 Meters) For Watts Bar Nuclear Plant

Based on RG 1.145 Method of Logarithmic Interpolation Between 0.5th Percentile 1-hour X/Q for Each Sector and Annual Average X/Q for Same Sector.*

	Sector-Specific X/Q Values (sec/m ³)					
Plume Sector	8-hour	<u> 16-hour</u>	<u>3-day</u>	<u>26-day</u>		
Ν	3.760E-5	2.581E-5	1.141E-5	3.534E-6		
NNE	4.281E-5	3.048E-5	1.458E-5	5.060E-6		
NE	5.631E-5	3.967E-5	1.855E-5	6.228E-6		
ENE	6.412E-5	4.438E-5	1.997E-5	6.347E-6		
E	6.545E-5	4.532E-5	2.041E-5	6.494E-6		
ESE	6.340E-5	4.418E-5	2.018E-5	6.553E-6		
SE	<u>6.677E-5</u>	<u>4.592E-5</u>	<u>2.039E-5</u>	<u>6.353E-6</u>		
SSE	5.319E-5	3.601E-5	1.544E-5	4.579E-6		
S	3.683E-5	2.545E-5	1.141E-5	3.606E-6		
SSW	3.475E-5	2.396E-5	1.070E-5	3.359E-6		
SW	4.397E-5	3.023E-5	1.341E-5	4.174E-6		
WSW	5.765E-5	3.933E-5	1.715E-5	5.208E-6		
W	3.763E-5	2.438E-5	0.950E-5	2.458E-6		
WNW	1.234E-5	0.843E-5	0.369E-5	1.124E-6		
NW	2.116E-5	1.375E-5	0.539E-5	1.406E-6		
NNW	2.969E-5	1.946E-5	0.777E-5	2.084E-6		

* 1-hour and annual average X/Qs calculated from meteorological data for 1974 through 1993. Meteorological facility located 0.8 km SSW of reactor site. Temperature instruments 9.51 and 45.63 meters above ground. Wind speed and direction measured at 9.72-meter level. Joint percent valid data in data base = 93.7.

Table 2.3-66 Atmospheric Dispersion Factors (X/q), Sec/m³, For Design Basis AccidentAnalyses Based On Onsite Meteorological Data For Watts Bar Nuclear Plant^a(Sheet 1 of 1)

A. Regulatory Guide 1.4 Results in original FSAR (5th percentile values) for July 1973 Through June 1975 Data.^b

Period <u>(hours)</u>	Minimum Distance to Exclusion Boundary <u>(1100 m)^c</u>	Low Population Zone <u>(4828 m)</u>
0-2	0.692E-3 ^d	0.160E-3d
2-8	-	0.844E-4d
8-24	-	0.854E-5
24-96	-	0.455E-5
96-720	-	0.198E-5

B. Regulatory Guide 1.145 Results (maximum sector 0.5th percentile 1-hour value for 0-2 hours at exclusion area boundary and at low population zone; and 8-hour, 16-hour, 3-day and 26-day values for 2-8, 8-24, 24-96, and 96-720 hours from logarithmic interpolation between 0.5th percentile maximum sector 1-hour value at 2 hours and corresponding sector annual average value at 8760 hours at low population zone) for 1974 through 1988 Data^e.

<u>Period</u>	<u>(1100 m)</u> c	<u>(4828 m)</u>
0-2	0.604E-3	0.145E-3
2-8	-	0.677E-4
8-24	-	0.463E-4
24-96	-	0.203E-4
96-720	-	0.623E-5

^a Hourly 10-m wind and 10- and 46-m temperature data. Meteorological facility located 0.8 km SSW of reactor site.

- ^b Calms assigned a wind speed of 0.3 mph.
- ^c Travel distance from 100-m radius release zone to 1200-m exclusion area boundary distance.
- ^d Actual 2-hour and 6-hour X/Q averaging periods were used.

^e Calms assigned a wind speed of 0.6 mph.

Table 2.3-66a Atmospheric Dispersion Factors (X/q), Sec/m³, For Design Basis Accident Analyses Based On Onsite Meteorological Data For Watts Bar Nuclear Plant¹

A. Regulatory Guide 1.4 Results in original FSAR (5th percentile values) for July 1973 Through June 1975 Data.²

Period <u>(hours)</u>	Minimum Distance to Exclusion Boundary <u>(1100 m)</u> ³	Low Population Zone (4828 m)
0-2	0.692E-3 ⁴	0.160E-3 ⁴
2-8	-	0.844E-4 ⁴
8-24	-	0.854E-5
24-96	-	0.455E-5
96-720	-	0.198E-5

B. Regulatory Guide 1.145 Results (maximum sector 0.5th percentile 1-hour value for 0-2 hours at exclusion area boundary and at low population zone; and 8-hour, 16-hour, 3-day and 26-day values for 2-8, 8-24, 24-96, and 96-720 hours from logarithmic interpolation between 0.5th percentile maximum sector 1-hour value at 2 hours and corresponding sector annual average value at 8760 hours at low population zone) for 1974 through 1993 Data⁵.

	Minimum Distance to	
Period <u>(hours)</u>	Exclusion Boundary <u>(1100 m)</u> ³	Low Population Zone <u>(4828 m)</u>
0-2	0.607E-3	0.141E-3
2-8	-	0.668E-4
8-24	-	0.459E-4
24-96	-	0.204E-4
96-720	-	0.635E-5

- 1. Hourly 10-m wind and 10 and 46-meter temperature data. Meteorological facility located 0.8 km SSW of reactor site.
- 2. Calms assigned a wind speed of 0.3 mph.
- 3. Travel distance from 100-m radius release zone to 1200-m exclusion area boundary distance.
- 4. Actual 2-hour and 6-hour X/Q averaging periods were used.
- 5. Calms assigned a wind speed of 0.6 mph.

Table 2.3-67 Dispersion Meteorology - Onsite 10-meter Wind Data - 5th Percentile Values Of Inverse Wind Speed (1/u) Distributions For Post-loca Control Bay Dose Calculations For Watts Bar Nuclear Plant

A. July 1973 through June 1975 Wind Speed and Direction Data

Plume Sectors	Averaging Periods				
(degrees)	<u>1-hour</u>	<u>8-hour</u>	<u> 16-hour</u>	<u>3-day</u>	<u>26-day</u>
89.75-157.25	1.59	0.834	0.670	0.447	0.348
132.25-199.75	1.61	0.864	0.688	0.496	0.361
154.75-222.25	1.44	0.743	0.598	0.441	0.300
192.25-259.75	1.33	0.719	0.601	0.437	0.302

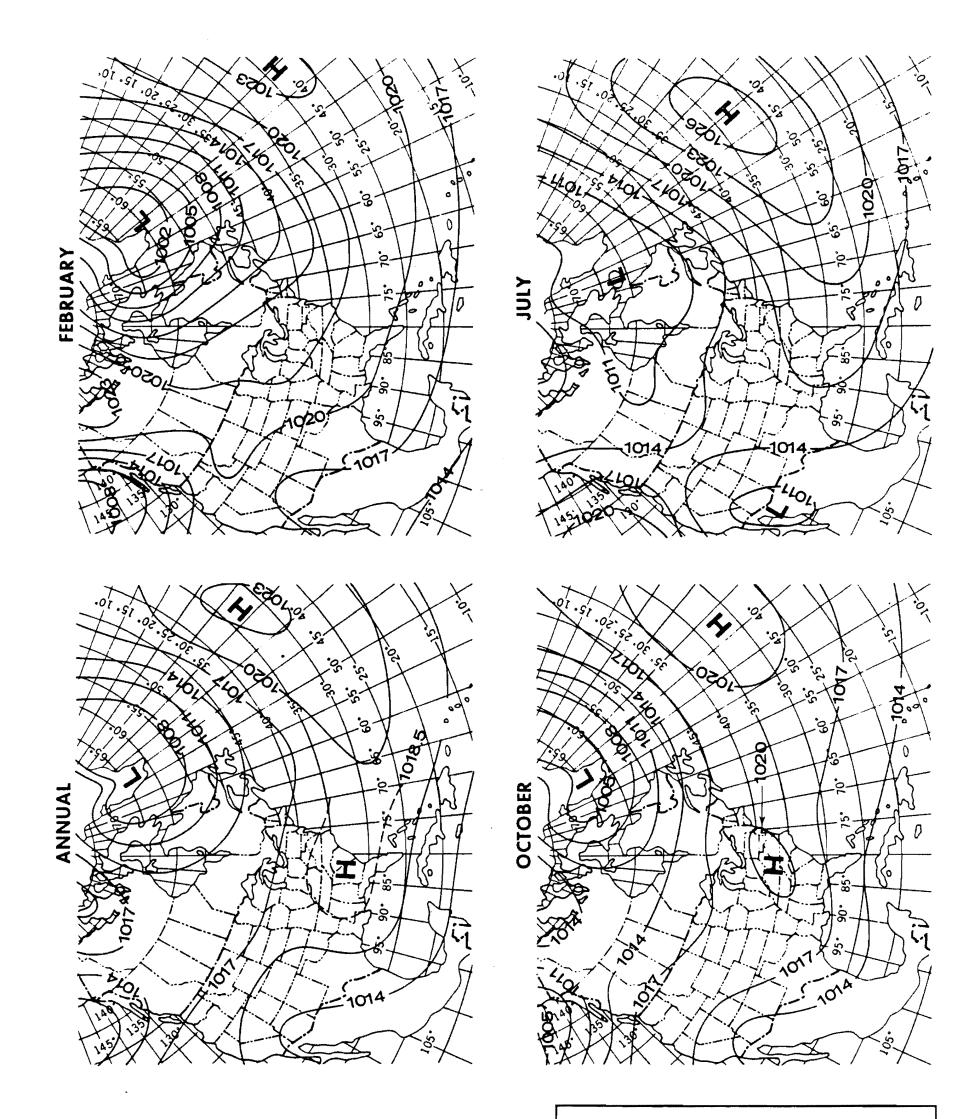
B. January 1974 through December 1988 Wind Speed and Direction Data

Plume Sectors	Averaging Periods				
<u>(degrees)</u>	<u>1-hour</u>	<u>8-hour</u>	<u>16-hour</u>	<u>3-day</u>	<u>26-day</u>
89.75-157.25	1.82	1.04	0.852	0.593	0.463
132.25-199.75	1.27	0.760	0.626	0.440	0.316
154.75-222.25	0.866	0.574	0.497	0.360	0.264
192.25-259.75	1.04	0.653	0.576	0.416	0.266

- NOTE: The calculations for the 2-year data base were slightly conservative in comparison to those for the 15-year data base. The 2-year values were computed in 1976 with the speed assigned to calm hours assumed to be 0.3 mph. The 15-year values were computed in 1989 with the speed assigned to calms assumed to be 0.6 mph, which is the starting threshold for the anemometer.
- * Meteorological facility located 0.8 km SSW of reactor site.

Table 2.3-67a Dispersion Meteorology - Onsite 10-meter Wind Data - 5th Percentile Values Of Inverse Wind Speed (1/u) Distributions For Post-loca Control Bay Dose Calculations For Watts Bar Nuclear Plant

A. July 1973 through June 1975 Wind Speed and Direction Data


Plume Sectors	Averaging Periods				
(degrees)	<u>1-hour</u>	<u>8-hour</u>	<u> 16-hour</u>	<u>3-day</u>	<u>26-day</u>
89.75-157.25	1.59	0.834	0.670	0.447	0.348
132.25-199.75	1.61	0.864	0.688	0.496	0.361
154.75-222.25	1.44	0.743	0.598	0.441	0.300
192.25-259.75	1.33	0.719	0.601	0.437	0.302

B. January 1974 through December 1993 Wind Speed and Direction Data

Plume Sectors	Averaging Periods				
<u>(degrees)</u>	<u>1-hour</u>	<u>8-hour</u>	<u> 16-hour</u>	<u>3-day</u>	<u>26-day</u>
89.75-157.25	1.97	1.04	0.862	0.607	0.456
132.25-199.75	1.29	0.784	0.626	0.434	0.312
154.75-222.25	0.891	0.606	0.516	0.368	0.255
192.25-259.75	1.10	0.713	0.610	0.435	0.300

NOTE: The 2-year values were computed in 1976 with the speed assigned to calm hours assumed to be 0.3 mph. The 20-year values were computed in 1994 with the speed assigned to calms assumed to be 0.6 mph, which is the starting threshold for the anemometer.

* Meteorological facility located 0.8 km SSW of reactor site.

From <u>A Meteorological Survey of the</u> Oak Ridge Area, U. S. Atomic Energy Commission Publication ORO-99, Weather Bureau, Oak Ridge, Tennessee, November 1953. Page 377. WATTS BAR NUCLEAR PLANT

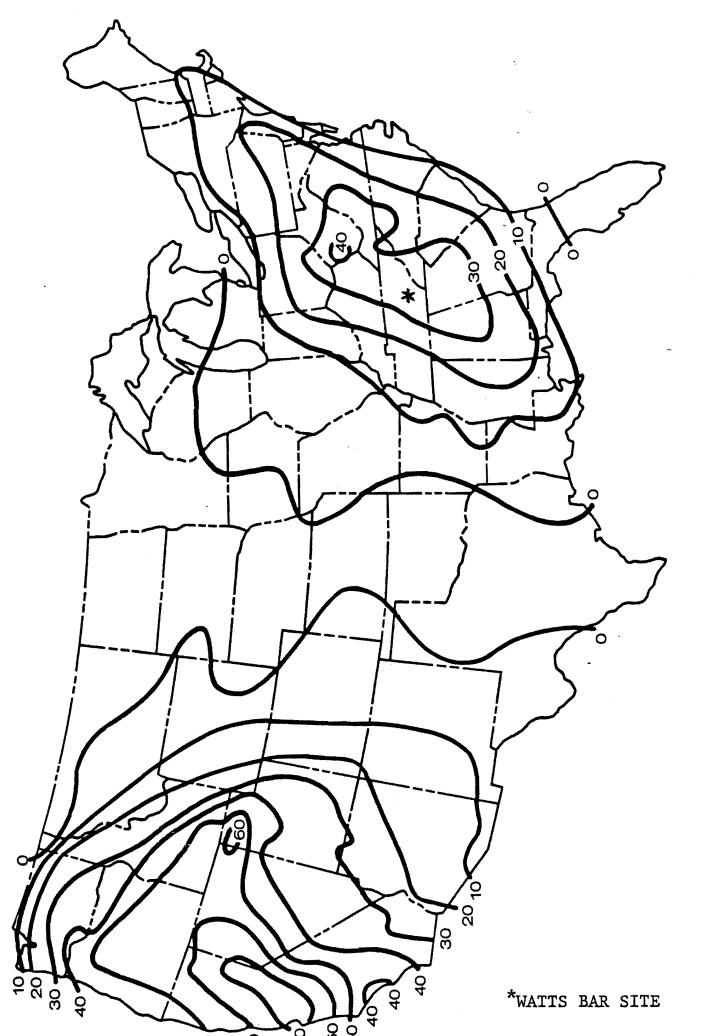
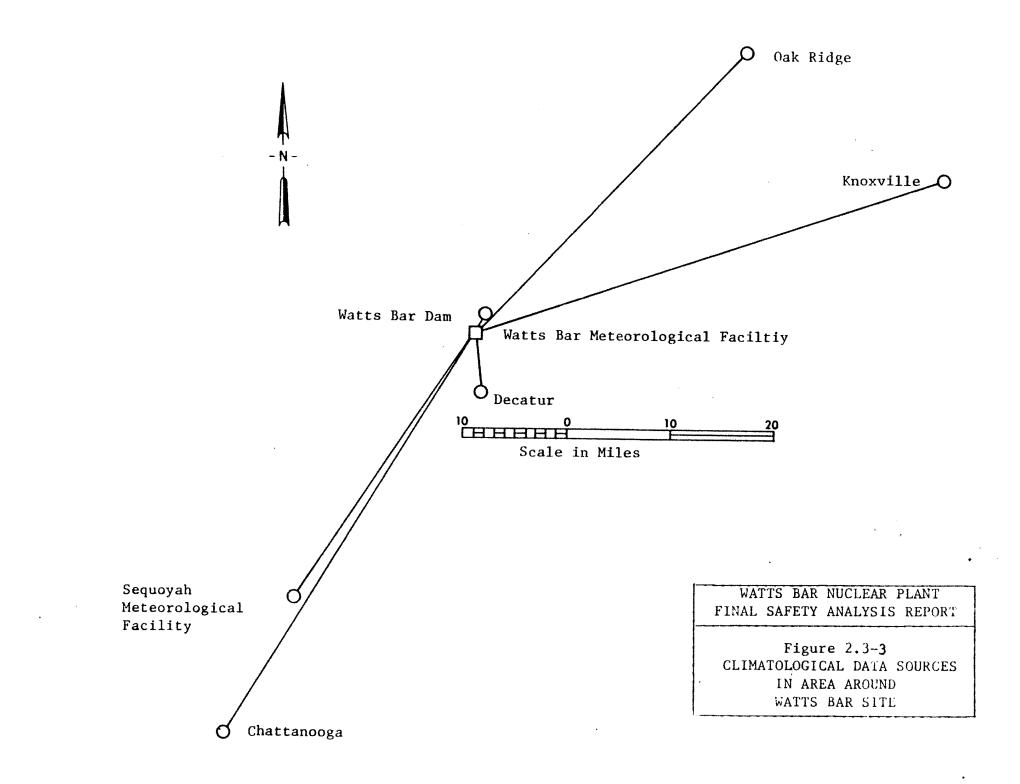

FINAL SAFETY ANALYSIS REPORT

Figure 2.3-1

Normal Sea Level Pressure Distribution Over North America and the North Atlantic Ocean

Figure 2.3-1 Normal Sea Level Pressure Distribution Over North America and The North Atlantic Ocean

METEOROLOGY



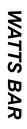

From Holzworth, <u>Mixing Heights, Wind</u> <u>Speeds, and Potential for Urban Air</u> <u>Pollution Throughout the Contiguous</u> <u>United States</u>, EPA, Research Triangle Park, N.C., January 1972. Page 96. WATTS BAR NUCLEAR PLANT FINAL SAFETY ANALYSIS REPORT

Figure 2.3-2

Total Number of Forecast-Days of High Meteorological Potential for Air Pollution in a 5 Year Period

Figure 2.3-2 Total Number of Forecast-Days of High Meteorological Potential For Air Pollution in a 5 Year Period

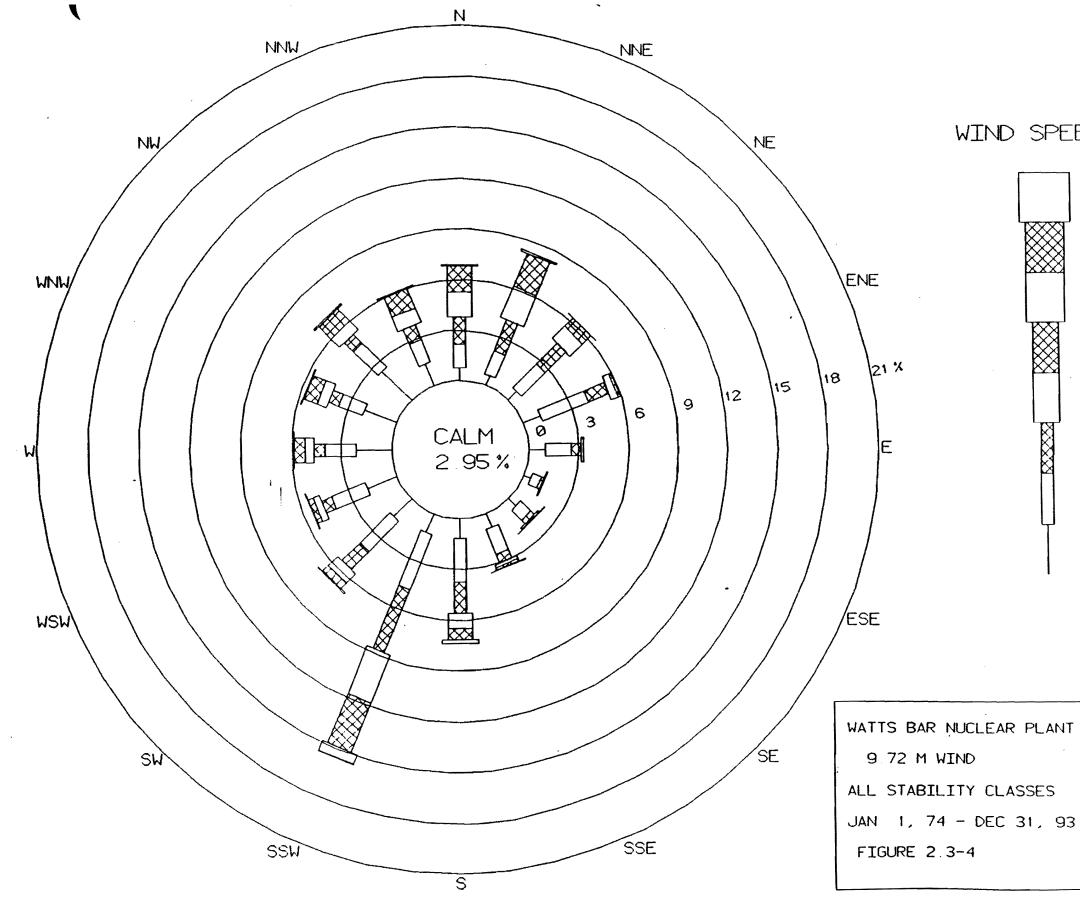
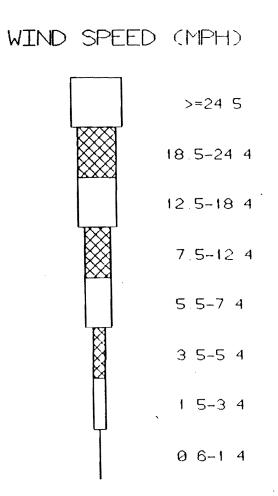



Figure 2.3-4 Wind Speed at 9.72 Meters All Stability classes, Watts Bar Nuclear Plant, January 1, 1974 -December 31, 1993

WATTS BAR

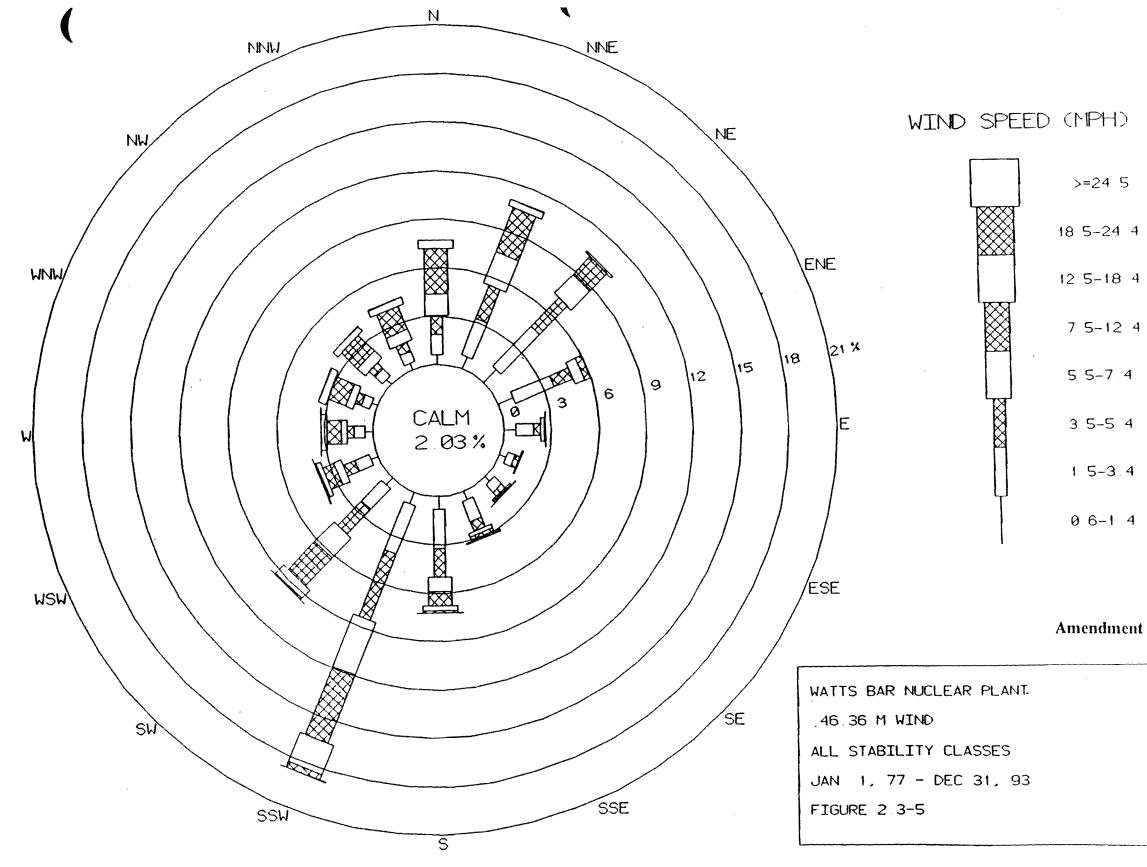
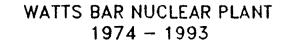
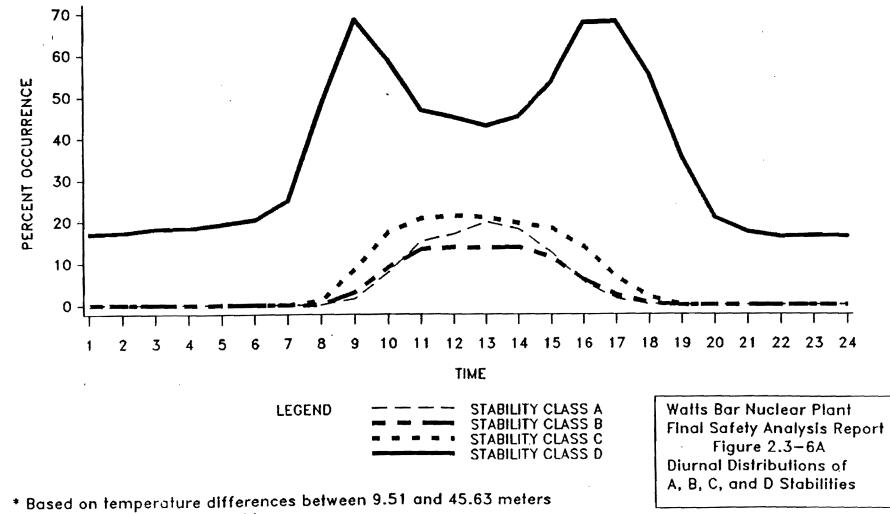




Figure 2.3-5 Wind Speed at 46.36 Meters All Stability Classes, Watts Bar Nuclear Plant, January 1, 1977 -December 31, 1993

ANT.	,		
S			
93			

PERCENT OCCURRENCE OF PASQUILL STABILITY CLASSES * A, B, C, AND D BY TIME OF DAY

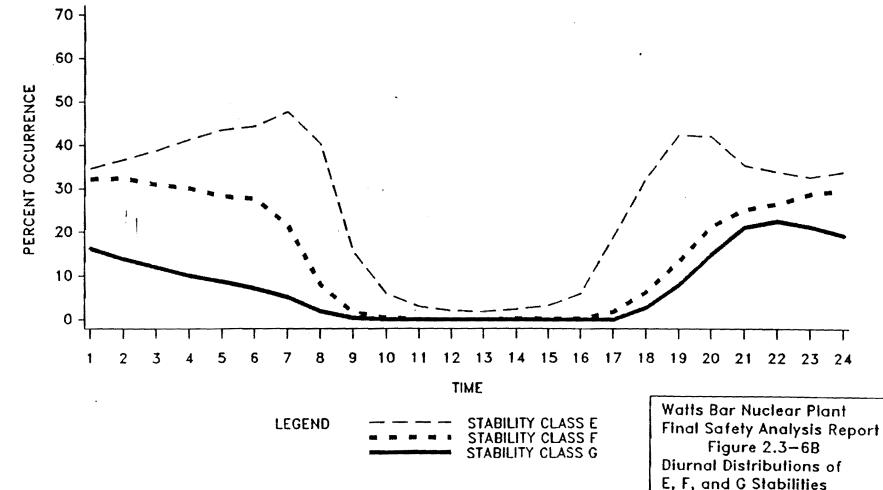

on the onsite meteorological tower.

Figure 2.3-6a Percent Occurrences Of Pasquill Stability Classes A, B, C, And D By Time Of Day, Watts Bar Nuclear Plant, 1974-1993

PERCENT OCCURRENCE OF PASQUILL STABILITY CLASSES E, F, AND G BY TIME OF DAY WATTS BAR NUCLEAR PLANT

* Based on temperature differences between 9.51 and 45.63 meters on the onsite meteorological tower.

Amendment 89

METEOROLOGY

Figure 2.3-6b Percent Occurrences Of Pasquill Stability Classes E, F, and G By Time of Day, Watts Bar Nuclear Plant, 1974-1993

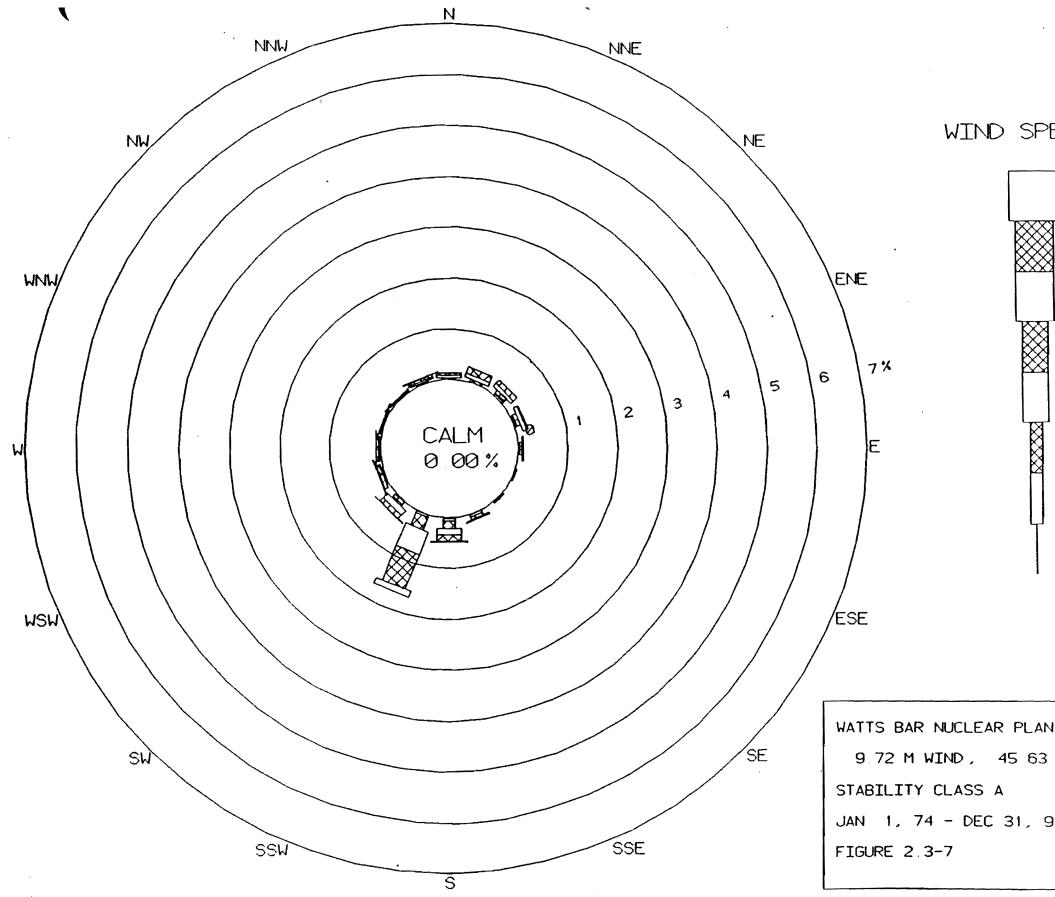
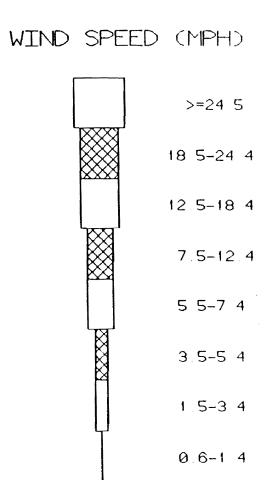



Figure 2.3-7 Wind Speed at 9.72 Meters for Stability Class A, Watts Bar Nuclear Plant, January 1, 1974 - December 31, 1993

٩T		
8	9 51. M	TEMP
93		

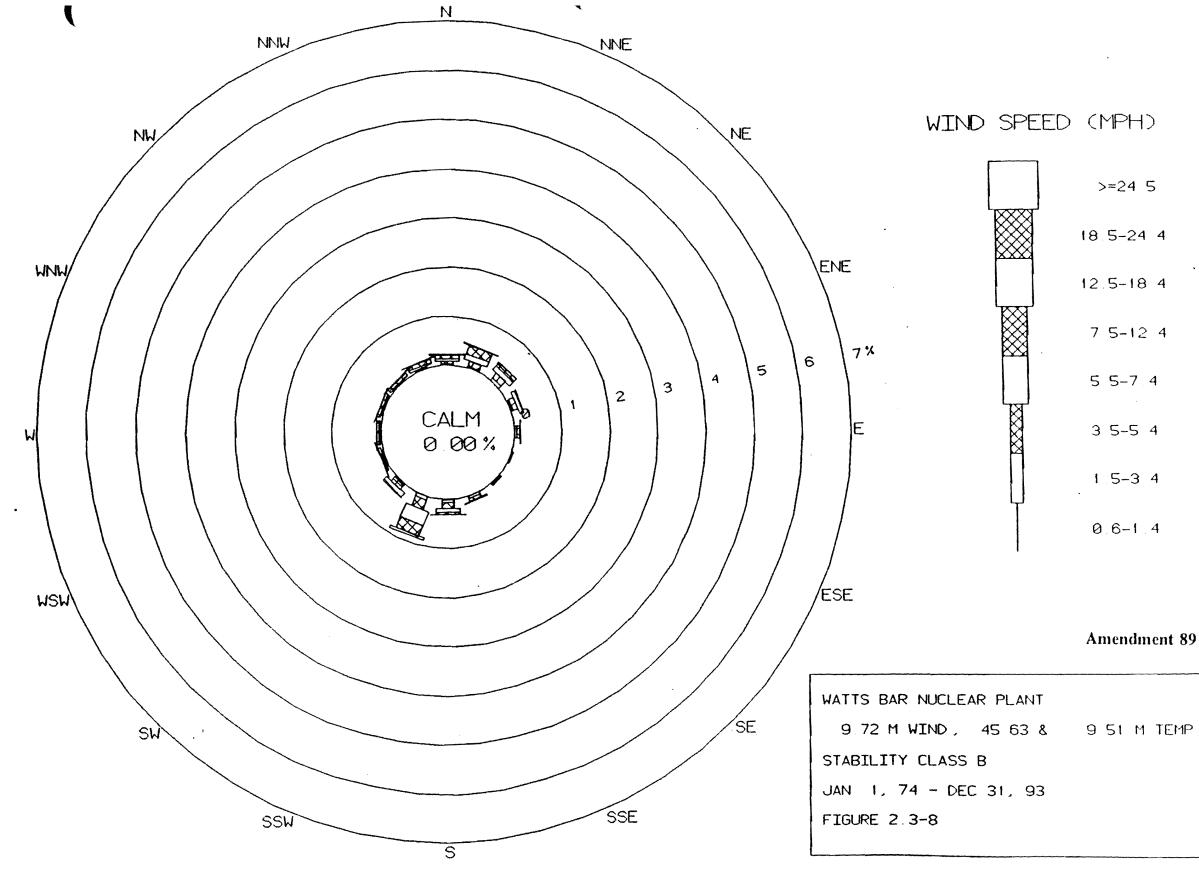
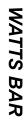



Figure 2.3-8 Wind Speed at 9.72 Meters for Stability Class B, Watts Bar Nuclear Plant, January 1, 1974 - December 31, 1993

÷

. . . .

.

PLANT					
63 &	9	51	Μ	TEMP	
1, 93					

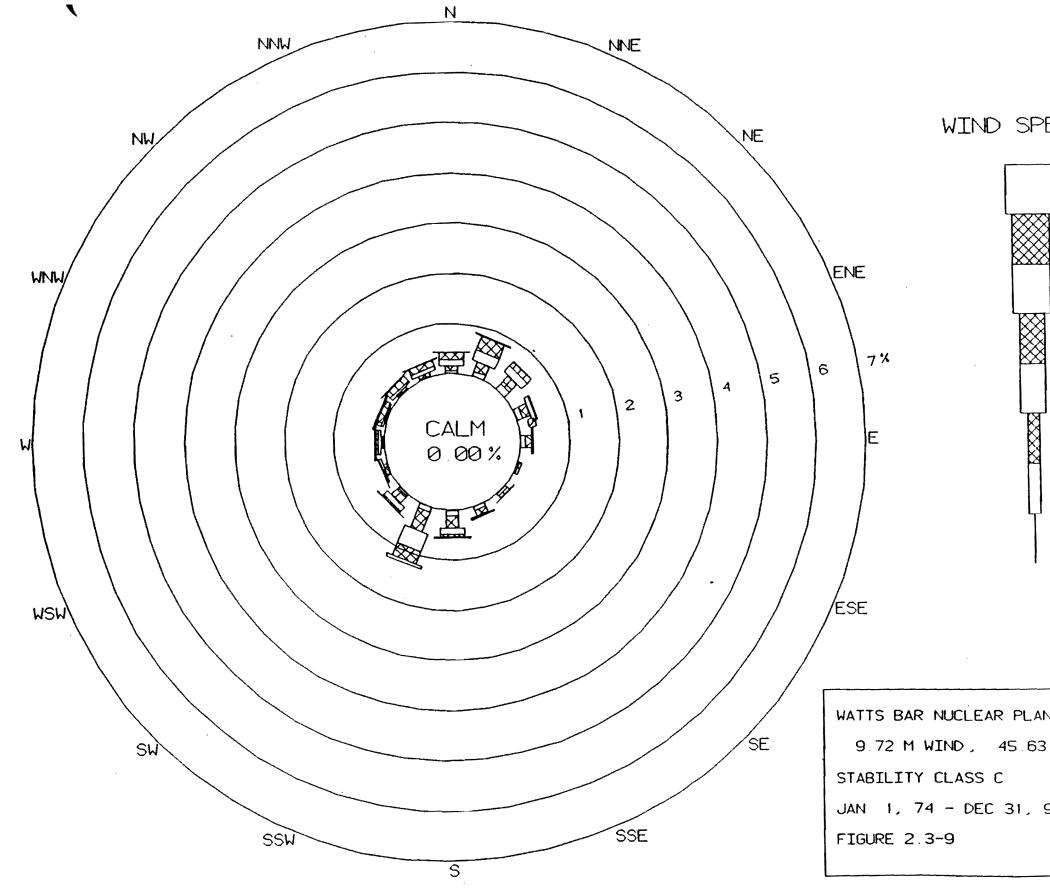
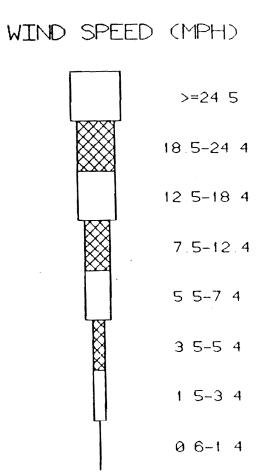



Figure 2.3-9 Wind Speed at 9.72 Meters for Stability Class C, Watts Bar Nuclear Plant, January 1, 1974 - December 31, 1993

NT					
88	9	51	Μ	TEMP	
93					

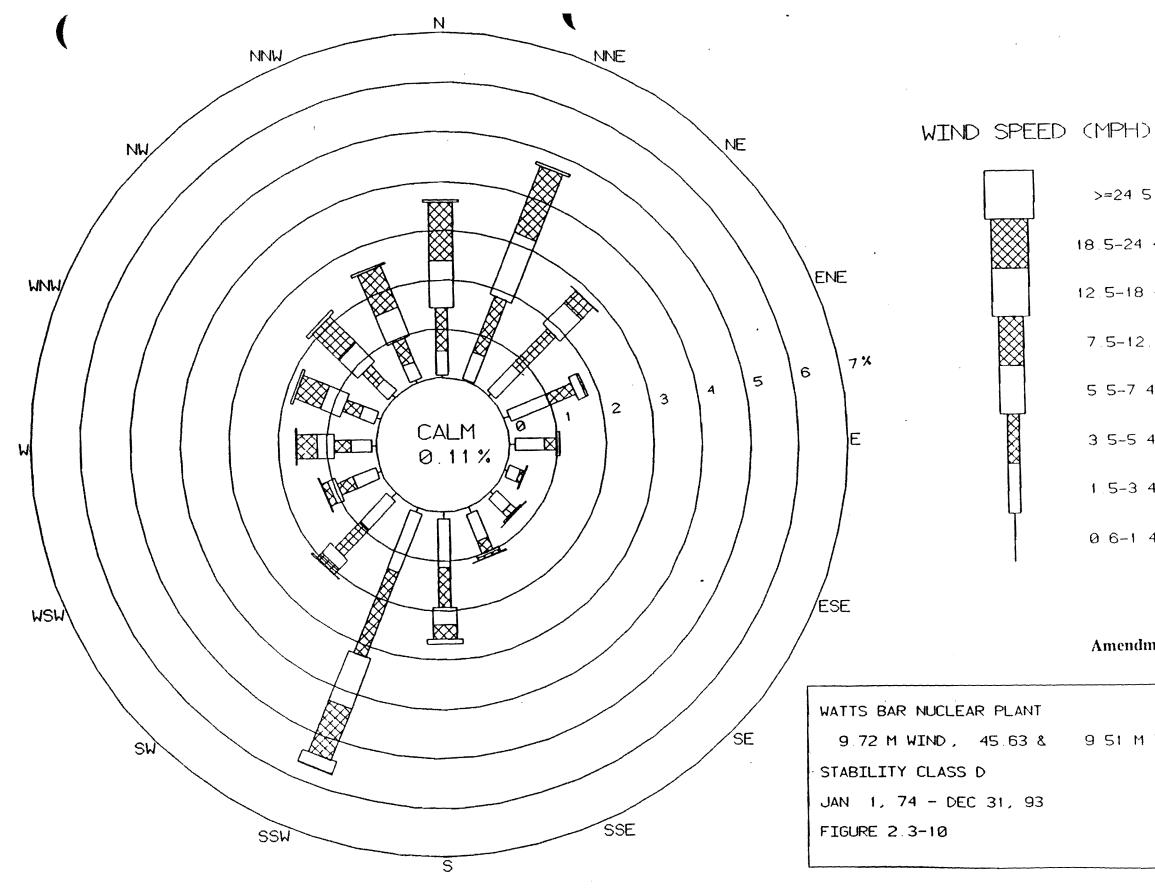


Figure 2.3-10 Wind Speed at 9.72 Meters for Stability Class D, Watts Bar Nuclear Plant, January 1, 1974 - December 31, 1993

>=24 5 18.5-24 4 12.5-18.4 7.5-12.4

•

. 1

- 5 5-7 4
- 3 5-5 4
- 1.5-3.4
- 0.6-1.4

Amendment 89

9 51 M TEMP

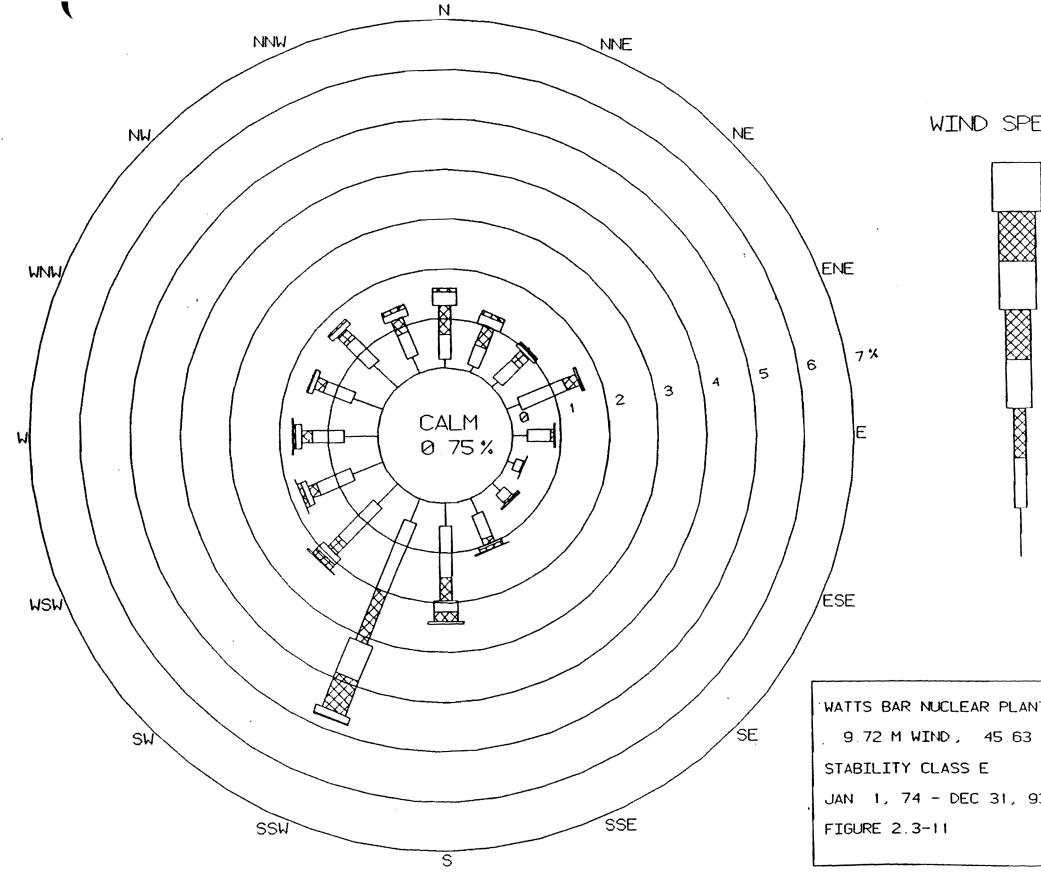


Figure 2.3-11 Wind Speed at 9.72 Meters for Stability Class E, Watts Bar Nuclear Plant, January 1, 1974 -December 31, 1993

EED (MPH)
>=24.5
18 5-24 4
12 5-18 4
7 5-12 4
5 5-7 4
3 5-5 4
1 5-3 4

$$0 6-1 4$$

1T			
8	9 51	M TEMP	
93			

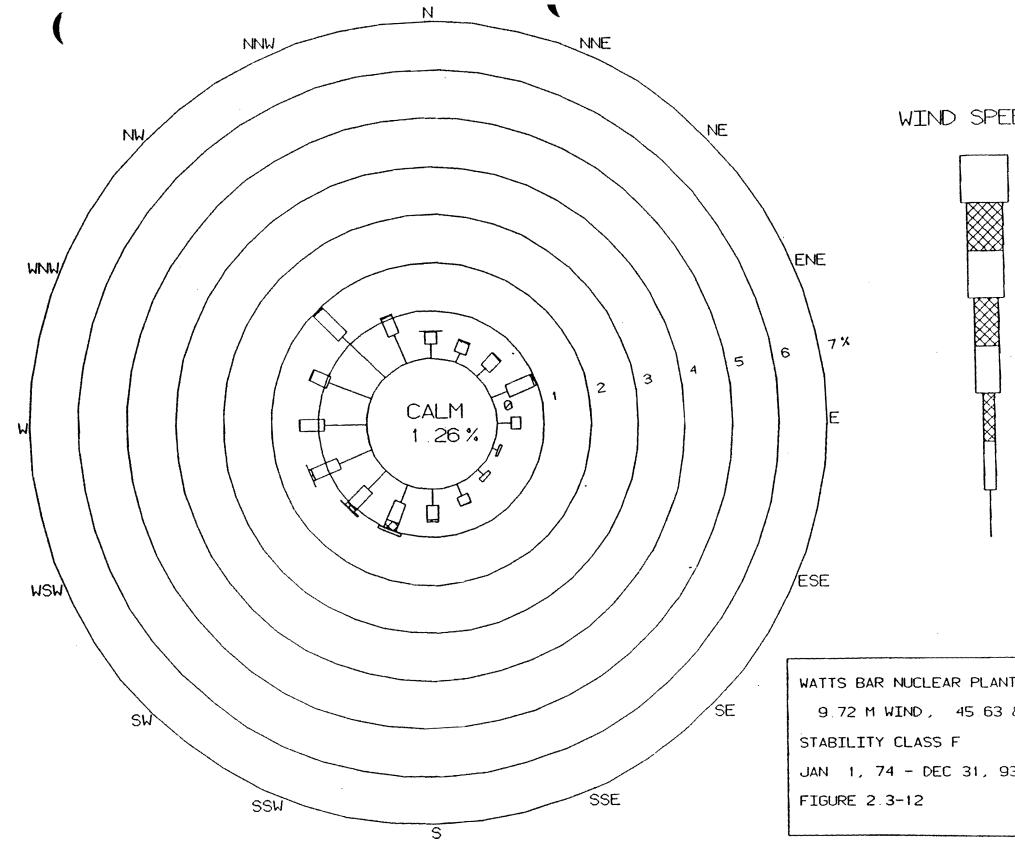


Figure 2.3-12 Wind Speed at 9.72 Meters for Stability Class F, Watts Bar Nuclear Plant, January 1, 1974 -December 31, 1993

ED (MPH)

$$>=24 5$$

 $18 5-24 4$
 $12 5-18 4$
 $7 5-12 4$
 $5 5-7 4$
 $3 5-5 4$
 $1 5-3 4$
 $0 6-1 4$

NT					
88	9	51	М	TEMP	
93					

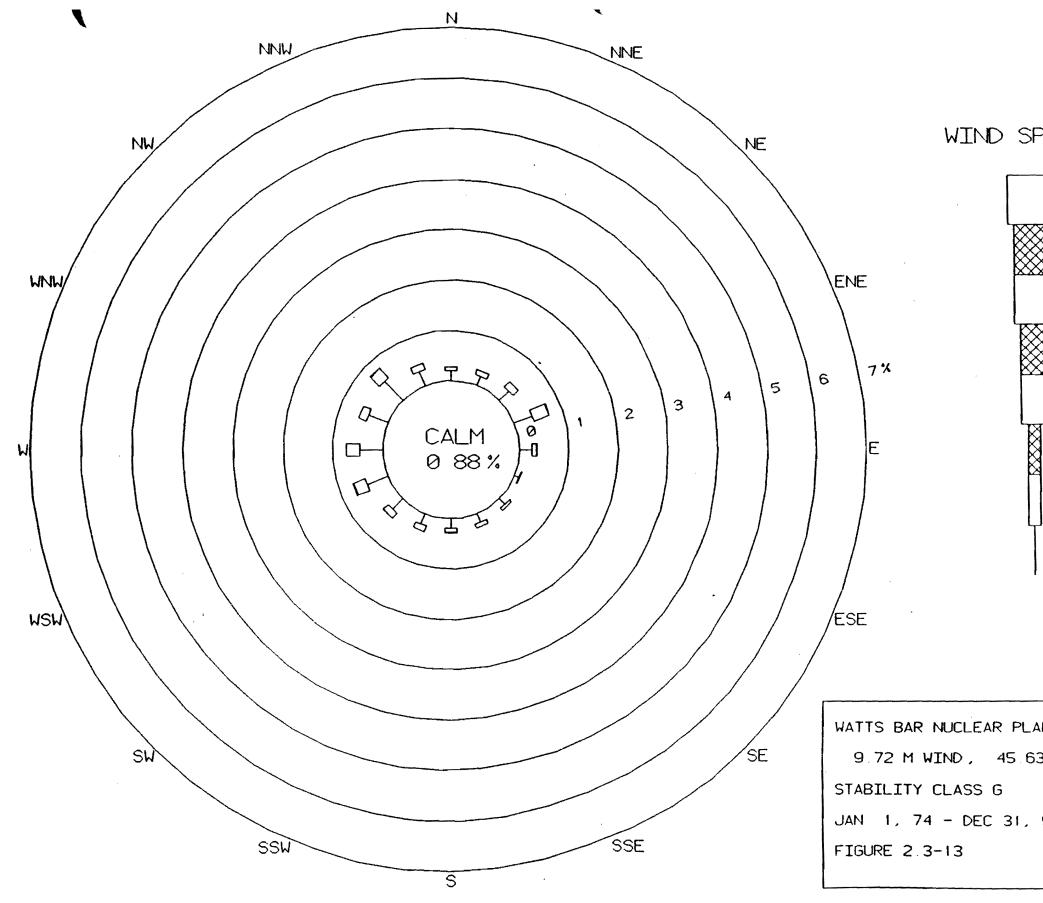
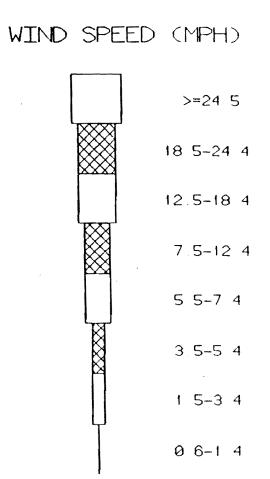
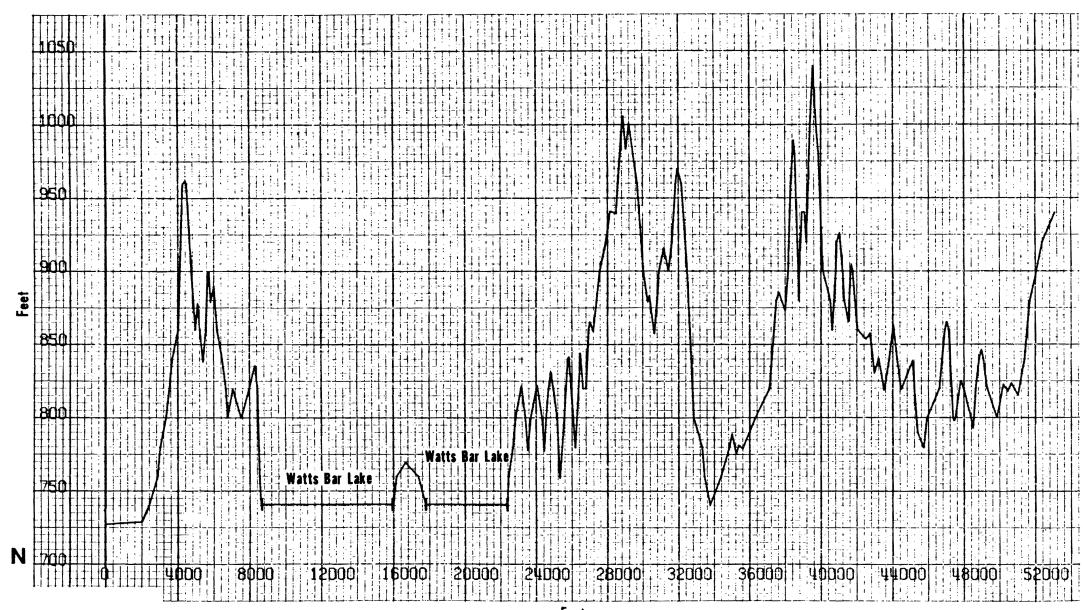
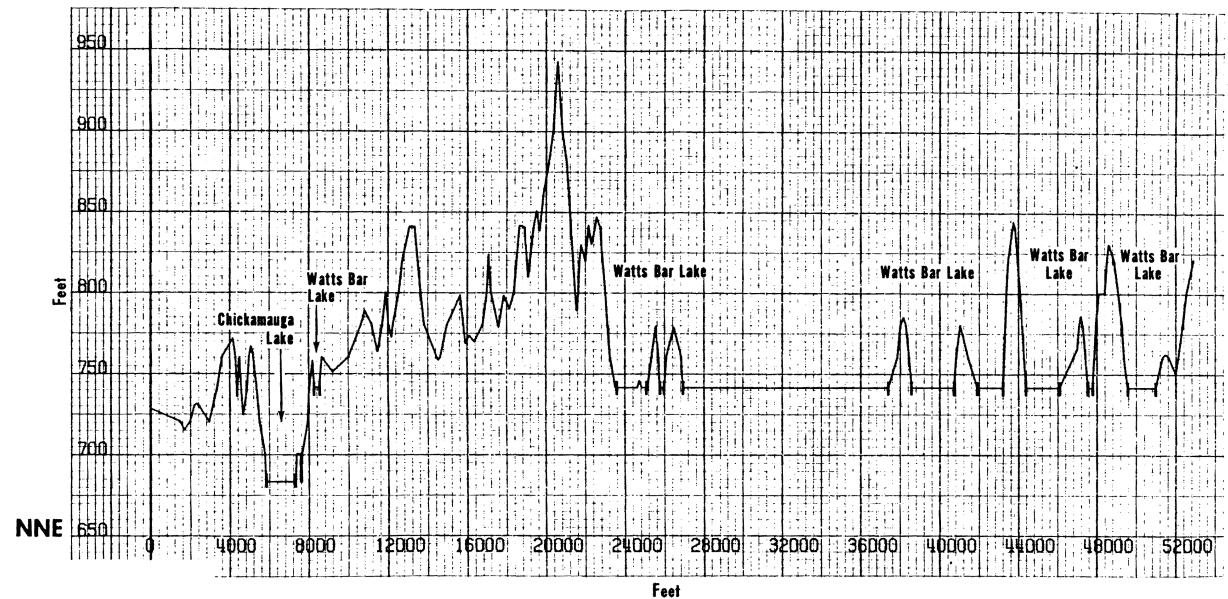




Figure 2.3-13 Wind Speed at 9.72 Meters for Stability Class G, Watts Bar Nuclear Plant, January 1, 1974 - December 31, 1993

WATTS BAR

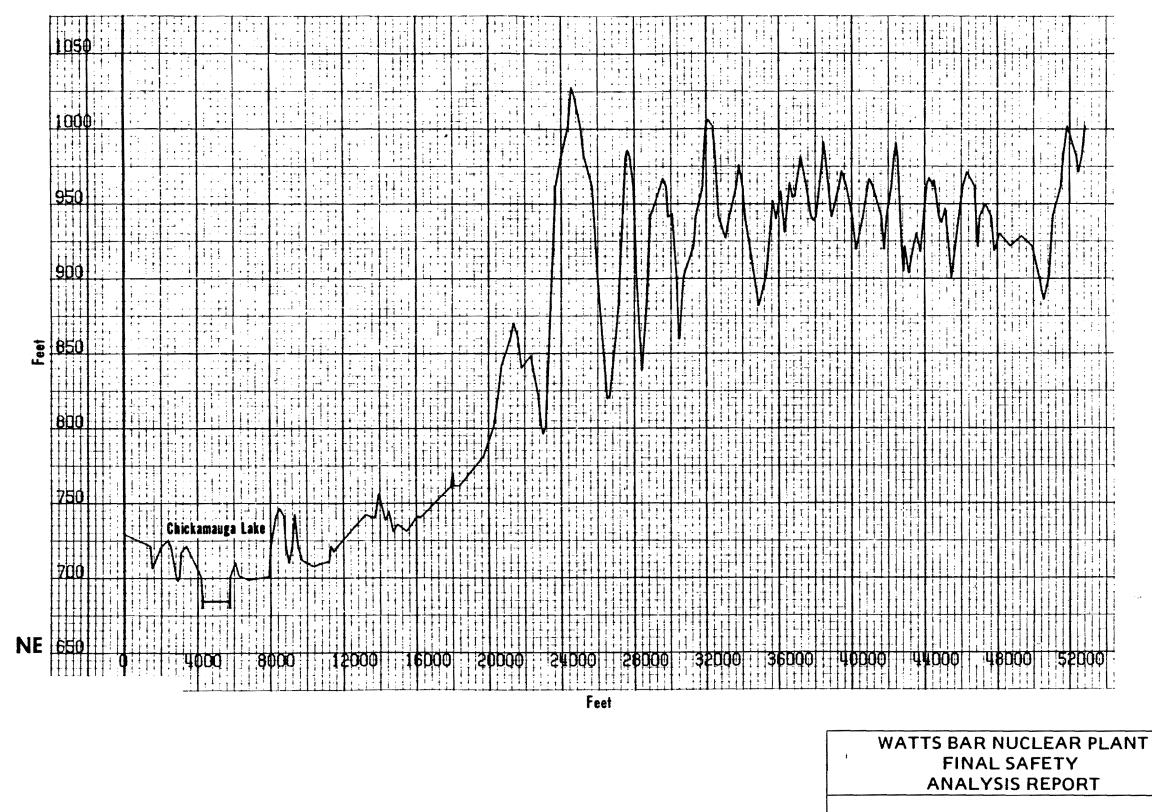
ANT		
38	9 51 _. M	TEMP
93		


Feet

WATTS BAR NUCLEAR PLANT FINAL SAFETY ANALYSIS REPORT **TOPOGRAPHY WITHIN 10**

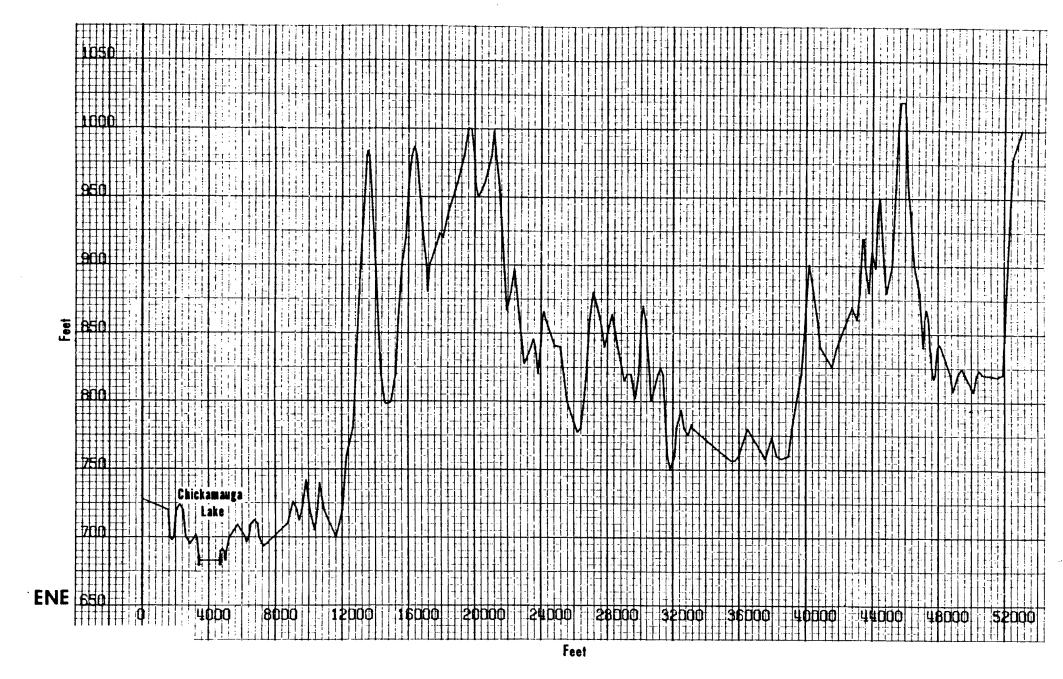
MILE RADIUS

Figure 2.3-14



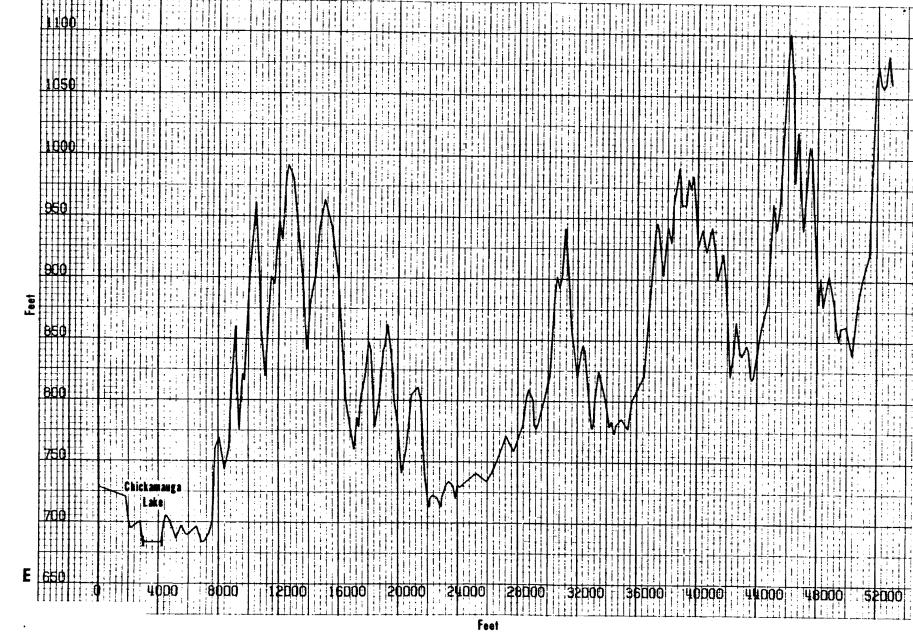
WATTS BAR NUCLEAR PLANT **FINAL SAFETY** ANALYSIS REPORT TOPOGRAPHY WITHIN 10 MILE RADIUS

Figure 2.3-15 Topography Within 10 Mile Radius - NNE


Figure 2.3-15

TOPOGRAPHY WITHIN 10 MILE RADIUS

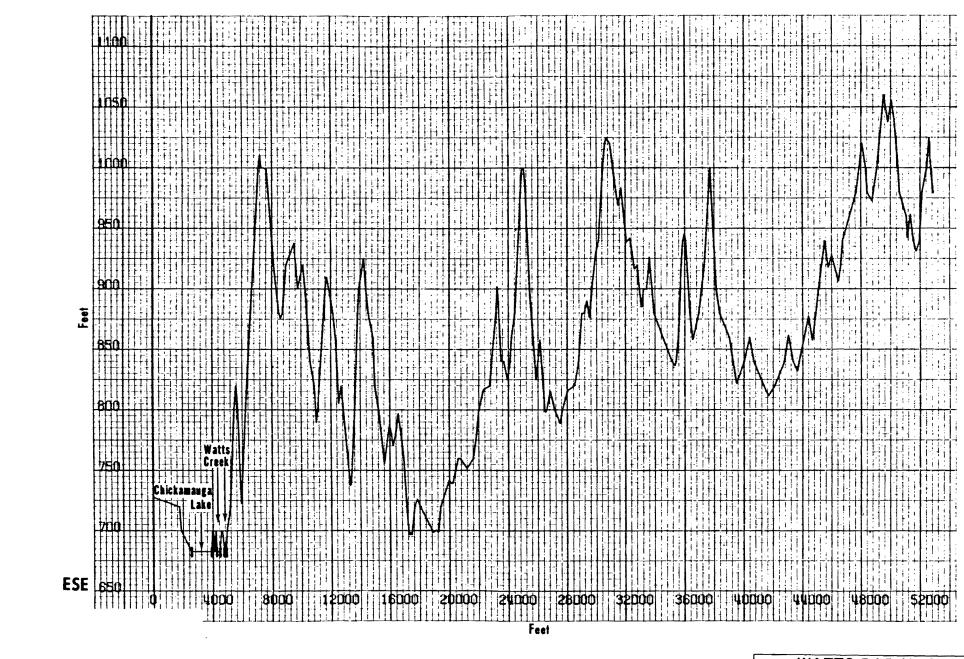
Figure 2.3-16


٦

WATTS BAR NUCLE FINAL SAFE ANALYSIS REE	T
TOPOGRAPHY WITHIN	
MILE RADIUS	
Figure 2.3-17	

AR PLANT TY PORT

10


WATTS BAR NUCLE FINAL SAFE ANALYSIS RE
TOPOGRAPHY WITHI
MILE RADIUS
Figure 2.3-18

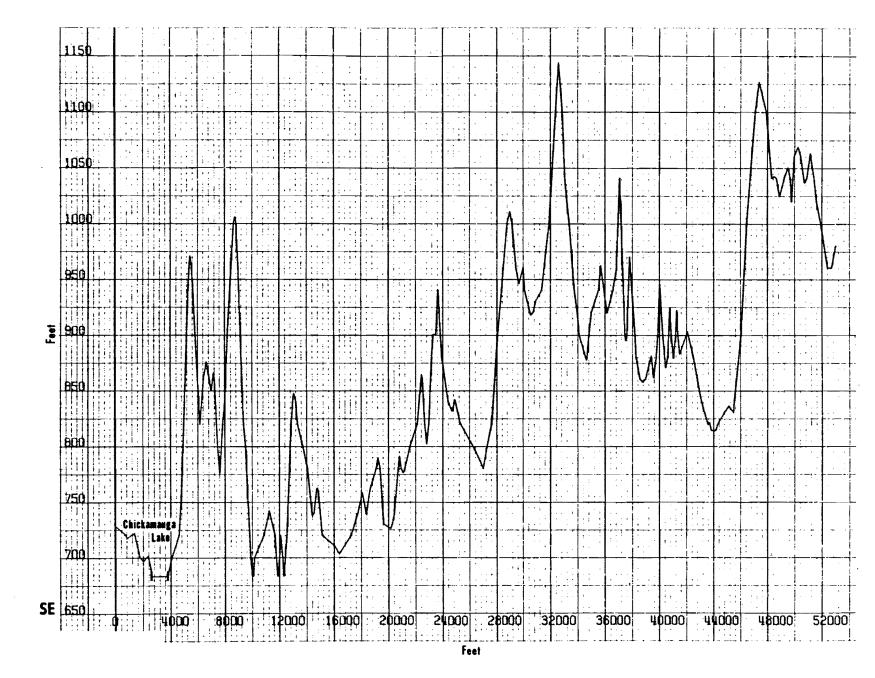
[
Ľ	
T	
L	
•	
H	
1	
4	
!	
4	
i	
+	
+	
1	
;	
1	
-	
1	
;	
ł	
ţ	
-	
1	
بالتريس سلام يستعمله يتبرعت فليستعم المتعرب والمترير والمترين والمتعرفية والمترير فالمترون والمترافع فستركز والمترافع فستركز والمترافع فستركز والمترافع فستركز والمترافع فستركز والمترافع فستركز والمترافع فللمترافع والمترافع والمترافة والمترافع والمترافي والمترا	
•	
-	

EAR PLANT ETY EPORT

·.•

IN 10

BAR	NU	CL
FINA	L SA	۱F
NALY	'SIS	R
	FINA	BAR NU FINAL SA NALYSIS


TOPOGRAPHY WITHIN 10

MILE RADIUS

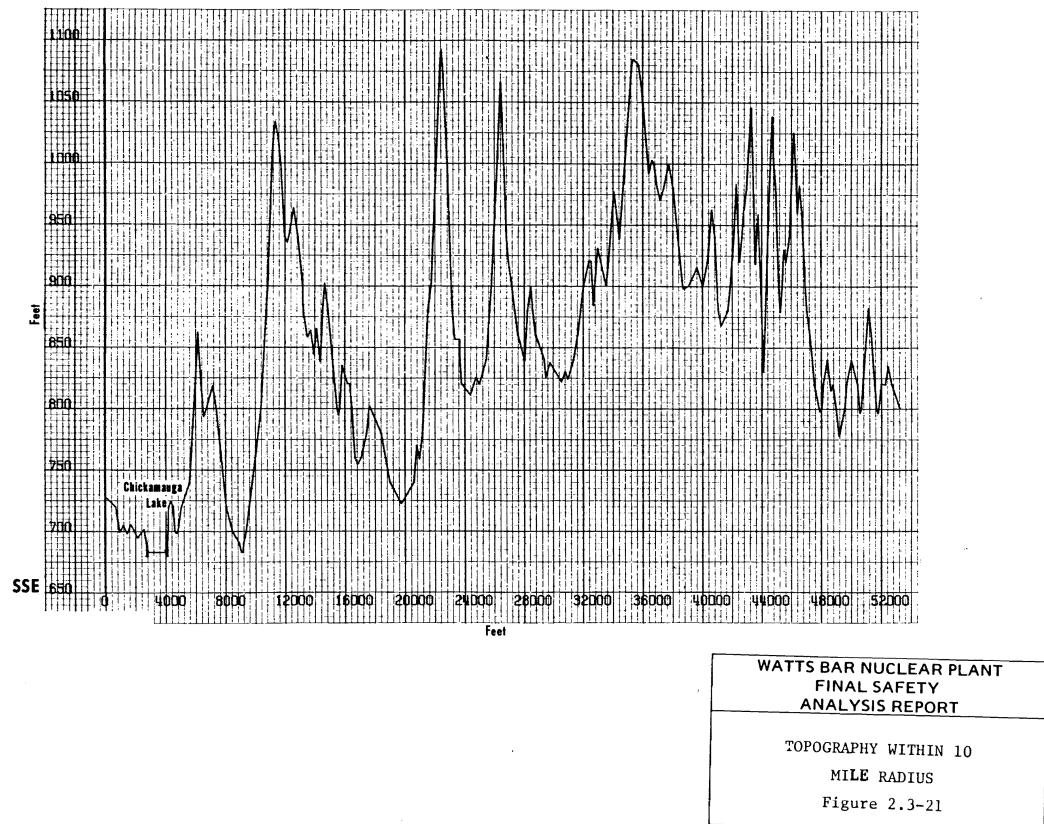
Figure 2.3-19

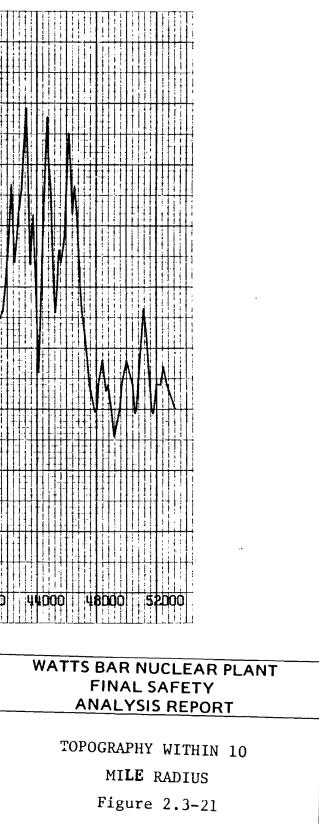
EAR PLANT ETY EPORT

.

WATTS BAR NUCLEA FINAL SAFET ANALYSIS REP
TOPOGRAPHY WITH
MILE RADIU
Figure 2.3-2

AR PLANT TY PORT

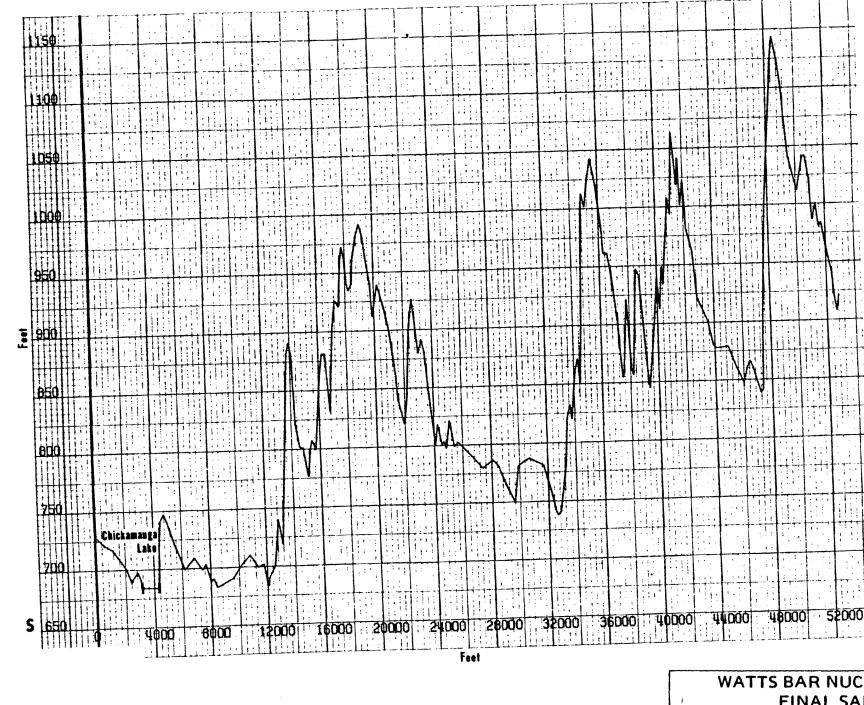

.


.

HIN 10

US

20



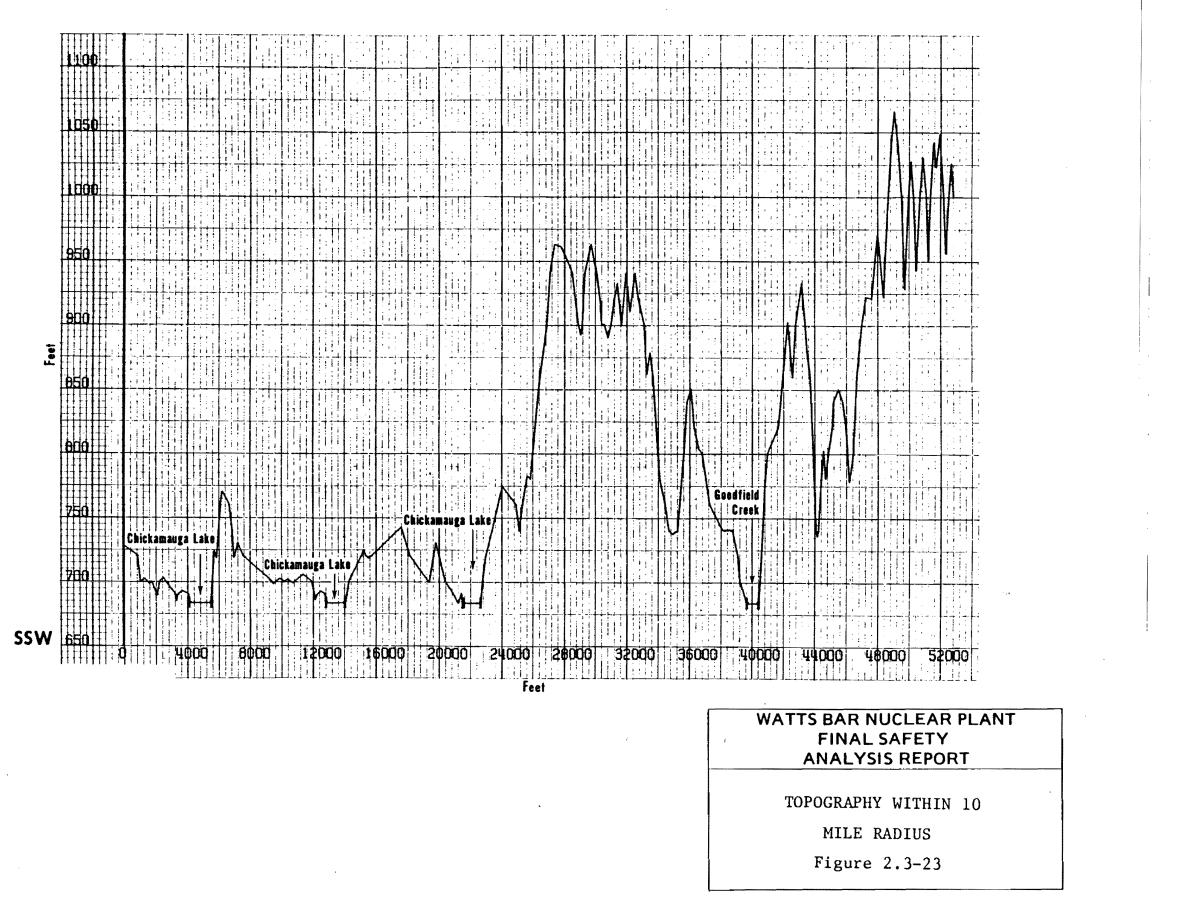
٠

Figure 2.3-21 Topography Within 10 Mile Radius - SSE

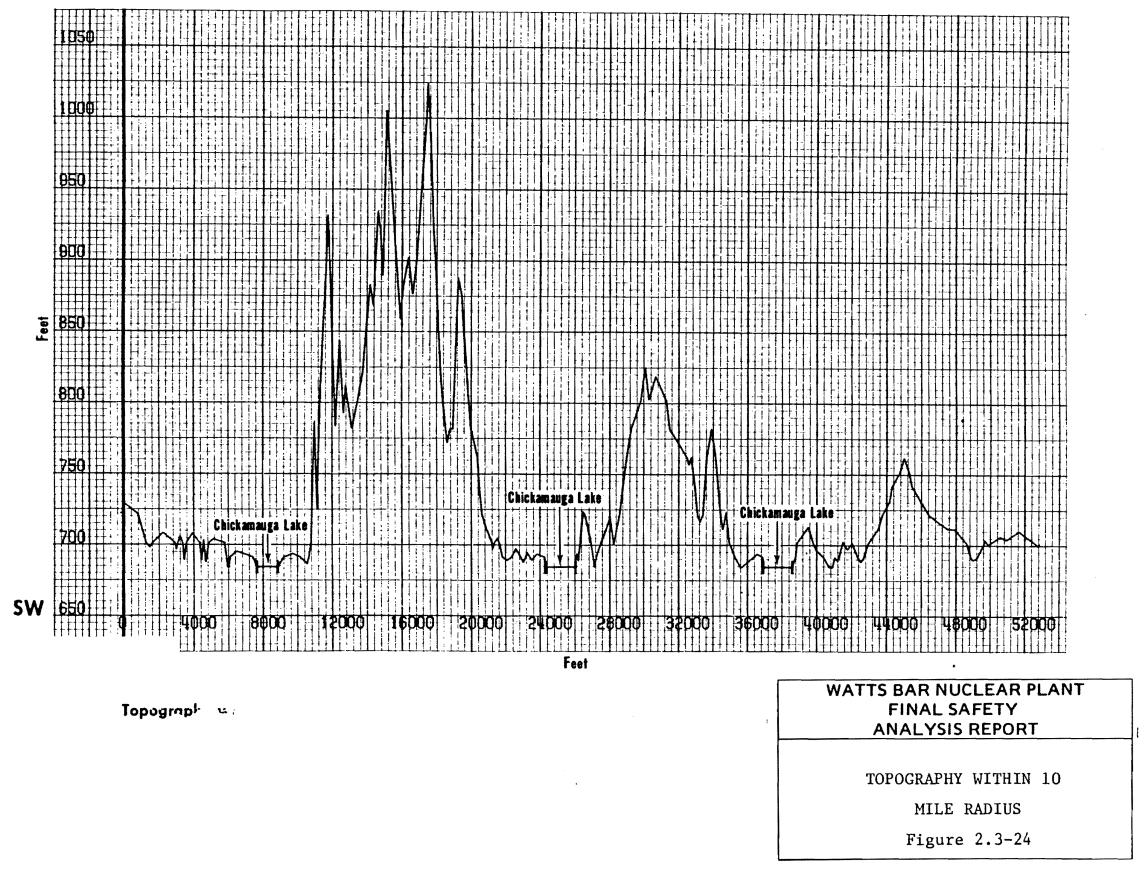
2.3-120

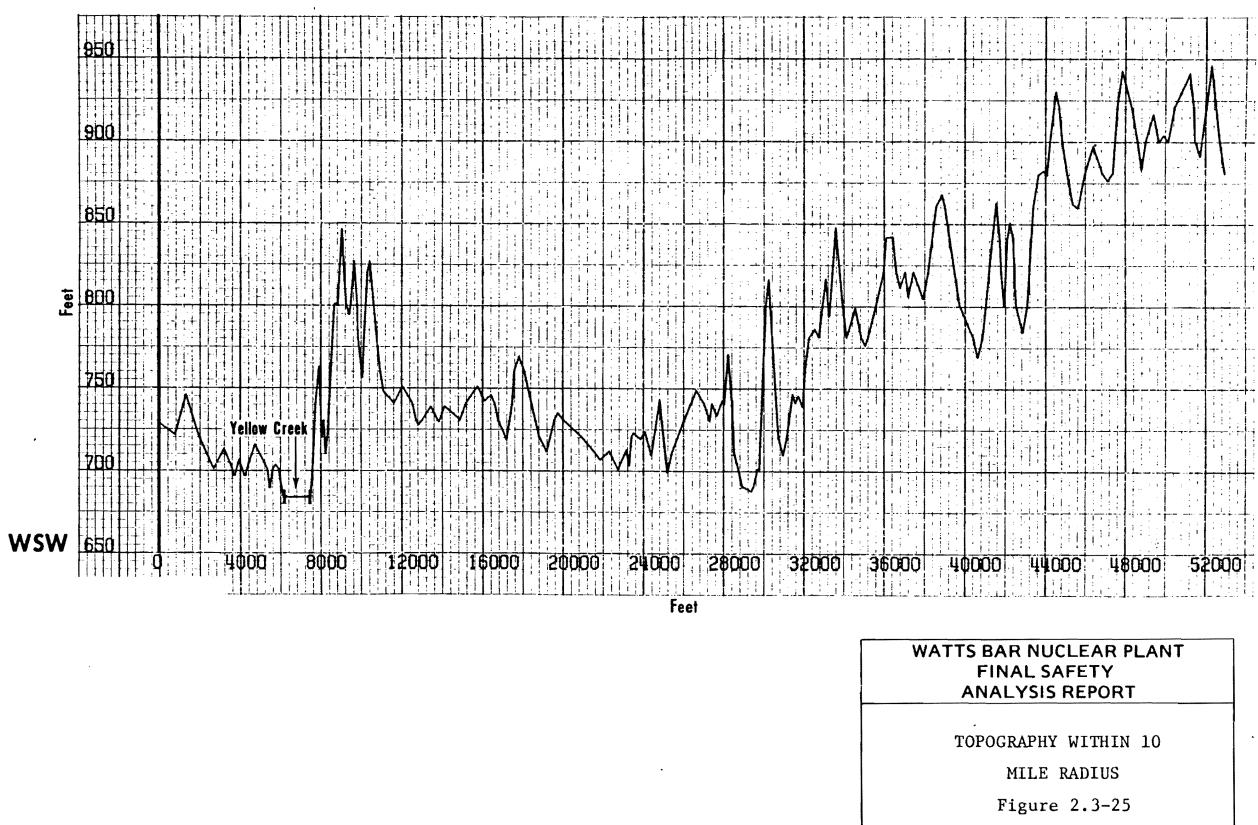
.

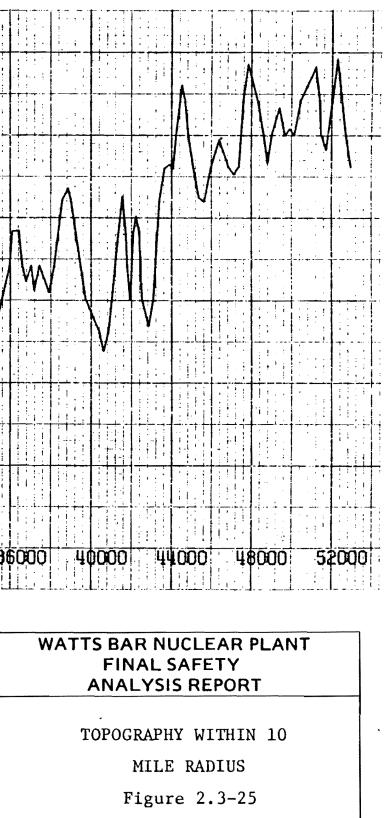
MILE RADIUS


Figure 2.3-22

•		
-		
i		
-		
-		
1		
÷.		
:		
Γ,		
Ľ		
Ļ		
ł		
+		
0		
t:		
0		
Т		
· <u> </u> .		
, ['		÷
. [:		
<u></u>		
U i		
<u> </u>		
CLE	A	R


R PLANT **FINAL SAFETY** ANALYSIS REPORT


...


TOPOGRAPHY WITHIN 10

N

180	0 :	_	 			!			1 }	↓	; ;			<u> </u>	. <u> </u>	<u> </u>	<u> </u>	<u> </u>		┢		ļ	• 		: ;		•	<u> </u>		<u> </u>
· · · · · ·	<u> -</u>		-	+	;	- ‡.	• • •	 	ŀ						ļ					ļ	+		, .							
185	¢.		ļ	<u> </u>	-				; ;		 			<u> .</u>	+		! -				ļ				;		<u>.</u>	M	1	
				- -	.L	 	• • •				 		+			1	+ 	.		L	¦ +				:		:	4]	
180	•	_			-	-			ļ		 						ļ				 	ļ	•	<u>.</u>	<u>.</u>	ļ	, ,	H		A_r
				ļ 		· -] -				:	ļ.,			+	. <u> </u>				¦		ļ		•	ļ	1 • · · · · ·	; -	.			V
175	<u>0.</u>					· 		•				+		-	1	+	<u> </u>	<u> </u>	<u> </u>	-						 		╢—	÷	
	+						• • •			ļ .	1.40	ļ	1]	.	÷	.	ן ג. ה		 .	L					ļ	-	i.			
170	<u>.</u>				+	-			+		+				÷	+	<u> </u>					<u> </u>					<u> </u>		Ļ.	
		-		÷	+					ļ	+	+										+				 		+-		<u> </u>
165		-			+	+		·	<u> </u>	<u> </u>	+		+	+	+						┝━							+	<u> </u>	
111	Шī	-				+			<u> </u>	<u>l</u>	+		<u> </u>		+		<u> 1</u>		<u>.</u>			<u> </u>			+		ļ		<u> </u>	·
150	e :				+	+		·	+		+		 		<u> </u>		<u> </u>			-	<u> </u>	<u> </u>			+		<u> </u>	+	<u> </u>	
ΞĦ	ΗI														+		1					+ 						 		
155							····		<u> </u>		+	+			1.1	+	<u> </u>	•	+									<u> </u>		
III	Πī									<u> </u>	+		+			+ -							 	 			<u> </u>	 		
150		-				+														thi					↓ <u>;</u> ;			1	 	<u>`</u>
145	İi				+	-	- <u>-</u>				+	+			1:			111.			1		┝ <u>╶</u>	,	+		+- †	+		
143	Ĩ					Ť.								1				1												· · ·
140	Ηŀ			t · · ·	 																TT:			-	 					-
	Ī															1												1		· .
135	IIT					T					· · ·			† 1.		1		15.								†			••••••••••••••••••••••••••••••••••••••	
i												1																1		
130	ti t				1																				11.					
															46	Hi:	; . . ; .		· .	[.::]										, x : ; ;
125	8					:							:		· .								• • • •	1 1			ľ			
					1:44						ļ									ļ,					ļ. :		L.			.
120																					1								. :	1.
						1			<u> </u>			<u></u>														ļ				
115	Pił	4				4.		<u>}</u>	[:: 			líi	1													┟╌╴				<u> </u> :-
						: : 		 		44			·								1					ļ.			+	:
110	BII				11	-						<u> :-</u>	 ;			<u> </u>					1.1.1	• • • • • • • • •			<u> </u>		Щ.	<u> </u>		:
	HI.	1				-1-											 					44					#	+	':. 	
105						1.	1				ļ								*****				.,.		1.11-		Ľ			
	+		- - 4-4-4-			1	++++						<u>.</u>	<u></u>			<u> </u> +-	<u> </u>		<u> </u>							 	÷	+	
1 CO		+				+		i.							<u> </u>															
		+				+	1.11	++							<u> </u>				t	Λ										
9 2510		'	****		<u> </u> -+-	++	, 			1 1	Πī,				: :-:			T	n							IA		+		
	HT	╢				÷+÷				┝┑╌╍┶	╡┊┝╬╍				+	††	1	t th			╎	<u> </u>		 ↓ ↓				†		
		1			<u> </u>		÷	<u>:</u>		<u></u>			<u> </u>	 			₩₩	W†	₩		-				1	11	1111	1		1
	Π	t			<u>†</u> ;-	:†- 1					 - +	 	1	17	h	† ∦ ÷		Y	<u> </u>	- -	+ - + - .			. :	ĮΎ	,		†		 ;
650	Ħ	1		:	†						 		\mathbb{M}	†	M	1		'.		$ \uparrow $				1	1	1.		+		-
BOO	Ħ	1			1	1		:			-1.54+. : ` ` i	W			1		• ••• • 1 ;	 			┝┫┵┝┷	-		x	175	1			+-	
	ţŢ.	1		÷.,		1						İT-		IT.				: ' ;		ti t		T	1					-	+	
		Ī										V		ľ	1						T ^	1	- + -		• • • • •					<u>1.</u>
		: F						н. Колдония Колония Колония Колония Колония Колония Колония Колония Колония Колония Колония Колония Колония Колония Колония Колония Колония Колония Колония Колония К К С С К С С С С С С С С С С С С С С	. :	1	M									111	4							[:
5114	Ī			h	W		Yeller	r Cree		V					TII									T.						
		I				T		-1	9														ill					11.		
-								11	11																					
ΠI	Ŧ	q	11	14	000	, [00	T	2000	1.1	6000	2	0000	2	000	1 2	000	3	2000	15 3	6000	1.4	0000	4	1000	4	0000	5	200

WATTS BAR NUCLEAR PLANT FINAL SAFETY ANALYSIS REPORT TOPOGRAPHY WITHIN 10 MILE RADIUS

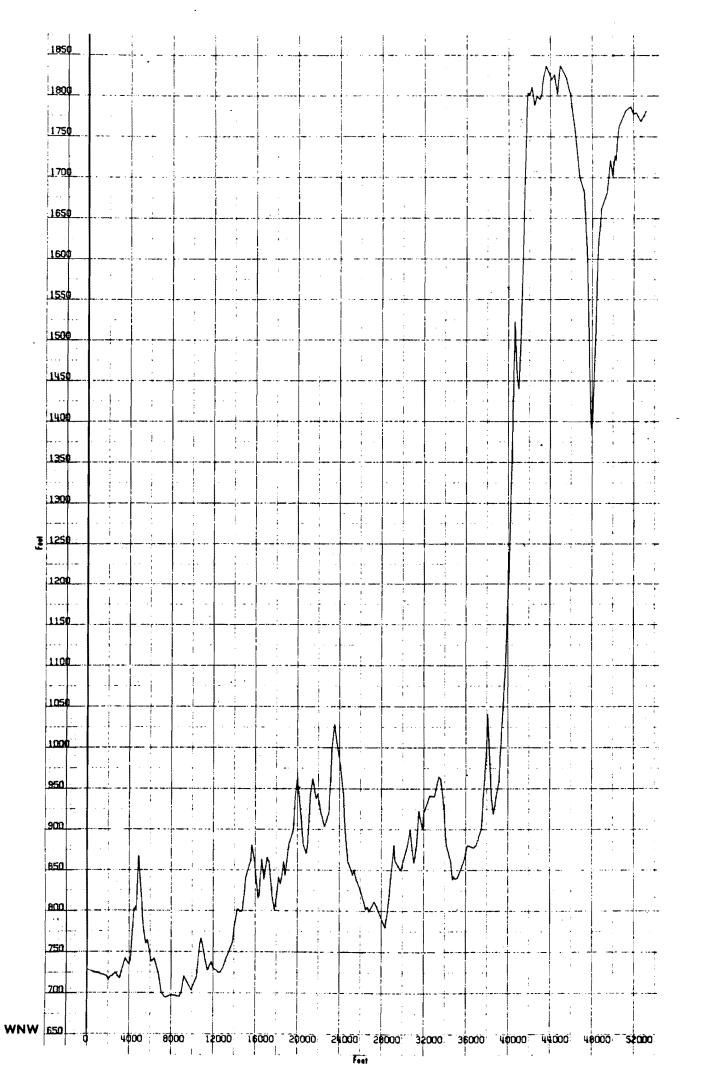
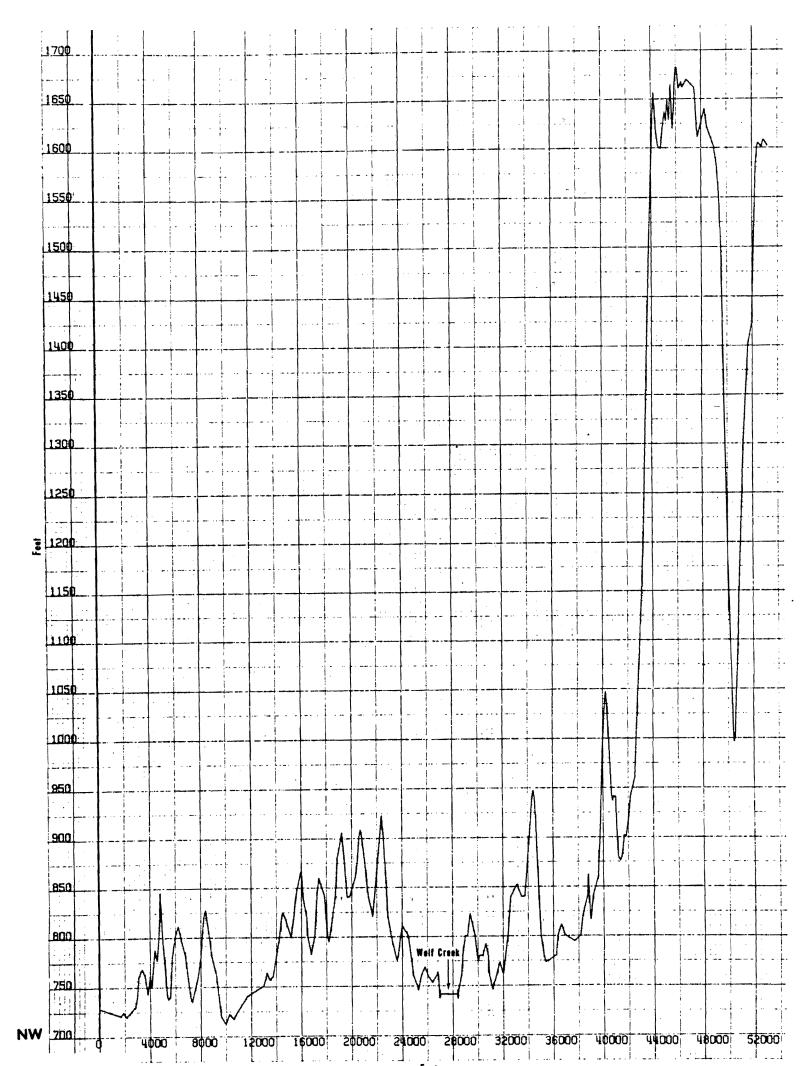

.

Figure 2.3-26

Figure 2.3-26 Topography Within 10 Mile Radius - W


METEOROLOGY

2.3-125

WATTS BAR NUCLEAR PLANT FINAL SAFETY ANALYSIS REPORT TOPOGRAPHY WITHIN 10 MILE RADIUS Figure 2.3-27

Figure 2.3-27 Topography Within 10 Mile Radius - WNW

WATTS BAR NUCLEAR PLANT FINAL SAFETY ANALYSIS REPORT TOPOGRAPHY WITHIN 10 MILE RADIUS Figure 2.3-28

Figure 2.3-28 Topography Within 10 Mile Radius - NW

2.3-127

. <u>530</u>			. 	· ·~					. 	·	+		<u> </u>		· ·		ļ	1 <u>†</u>	+	-	L				•		
2 2 - 1 - 1 1		· · · -		:		•	•	: t		1 1 1 1 1			ļ	1 1 1 1 1 1 1 1		: : ···				÷.,			, ,				
بر مربع بر مربع مربع مربع مربع ا					-	• •••••••											 	• •	<u> </u>		Í	:. <u>.</u> .	; ,			2 X	
	1	, ,				I		1						1	İ	•		1 			-	•	ì			! ¥	
	·	1	<u> </u>	!			+				•		+	!		<u> </u>			•				 -		+ ∤	₩	-1
tuch					-	• • • 		-		 	- i	 		 .	· · ·					:		·					:
1400				- 	+		- +		+				+ 	<u>.</u>		 	+	<u>.</u>		1 1		 				• •	
.350				1								• • • •		+ 						-		• • • •	•	•		· · ·	•
1	1		+		+	- -	-	- * *			1	1	 		†	†		;					- - - 1	ы., 	- ب با ب ر. ب		·4
: * .	1 -	~ .	1			• • •	-	•		• • • •				•	1				ł	•	ł		¥ 2		: '		;
						;						 				i				,							1
1250			ļ	ļ.		<u> </u>	-	<u> </u>				 		ļ	 	: 		•	ļ	:			: 			.	1
•				: : :															•	ţ		•					1
15 <u>10</u>	-	· · · ·											+	 			-			•	 		1			•. •.	; , ,
				+	-		•	-		ļ., .		: : 			 					•				· •		1 4 m	
1150		' 	+		+						ļ			<u> </u>	· · ·					•			ļ. 	••	┼╋╸╸		-
	-		•					+	:: 				ļ		: : : :			+	 				; 	i • · · ·			
1100		+				 	•	• :											+					• • • •	<u> </u>		-
				-			- <u></u> 	• •• • • •																			
1050	+		+			•	+											├ •			 	1 1 1			#		-
			.		· · · ·	1		-	.							· · · ·					+ . <u>.</u> .			İ		· · · · · ·	
1000	1		-									+							+			 	+	+			-
950				· · · · ·	1	-				- 			-	+		•••••		•				,		;			
	:									1	. :					· · · · ·										i	
900						Å						.		· .	[1011 	
900		· · · ·			·			 			A	Δ.			· , , ·	ļ ļ.						 					
850				<u> </u>				ļ.,		Å-			ļ		 	 		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;			A	 `	 	·	 	-	
			hickor	auga L	 	•		ļ		#		4									MA				ļ		
800			1	-	- <u>_</u>		Lowe B	ranch	 ∧	1_V			. . 							╟╌┨			\mathcal{N}	:			_
			M	AA	*/¥		A										ddy Cr	•ek	h^{N}	W		\bigvee	· · ·			 	-
750		$\left \right $	+	W		1 -			Ņ					Piney	River		M_		* : :					 			-
	-	¥	ļ: 	1	· · · · · · ·	1	- · · · ·													11. 1.,,		·					
V <u>200</u>	<u> </u>	<u>-</u>	000-		000		2000	1	6000		0000	5	1000	2	000	3	2000	- 1	6000		0000		1000		0000		3₹

.

10pograp^L

·

.

WATTS BAR NUCLEAR PLANT FINAL SAFETY ANALYSIS REPORT

TOPOGRAPHY WITHIN 10

MILE RADIUS

٠

Figure 2.3-29

Figure 2.3-29 Topography Within 10 Mile Radius

•

METEOROLOGY