Rescives with Land

Summary Report of Safety and Relief Valve Installation and Re-Analysis for ASME Class 1 and Class 2 Systems In Indian Point Unit No. 2

PDR

July 13, 1972

1. INTRODUCTION

In accordance with the May 12, 1972 AEC Directorate of Licensing letter to Con Edison (Reference 1), a review has been conducted for pressure-relieving devices located in systems that would be functionally classified in accordance with ANS-N18.2* and Safety Guide No. 26** as ASME*** Class 1 and 2. The analytical methods used are described in Section 5, Methods of Analysis. The results of the review and modifications required for the main steam safety and relief valve installations previously presented to the Atomic Safety and Licensing Board (Tr. 5424) are summarized herein. Other pressure relieving devices have been completely reanalyzed The re-analysis indicated that, in some cases, as requested. incorporation of properly evaluated valve thrust forces required relocation and addition of supports and restraints (Table 2) to insure that all stresses in the piping systems, under the combimation of all applicable loads, are within code allowable values. In the case of the three (3) pressurizer safety valves, it was determined that weld overlay reinforcement would be required

*ANS-N18.2, Nuclear Safety Criteria for the Design of Stationary Pressurized Water Reactor Plants, January 1972.

**Safety Guide 26, Quality Group Classifications and Standards, March 23, 1972.

***ASME Code 1971 Edition.

to bring the stresses within the applicable code allowable values for the combined loading condition.

1.1

2. SCOPE

The safety-relief valve installations reviewed for structural adequacy in accordance with the AEC request are.

- a) Reactor Coolant System Pressurizer Safety Valves and Power Operated Relief Valves.
- b) Main Steam Safety Valves and Power Operated Relief Valves.
- c) Chemical and Volume Control System relief values on the letdown lines, reactor coolant pump seal water return, charging pump discharge and volume control tank.
- d) Residual Heat Removal System Reactor coolant side.
- e) Safety Injection System Accumulator tank, Accumulator nitrogen supply and high head safety injection pump discharge.
- f) Hydrogen Recombiner System.
- g) Component Cooling Water System inside containment boundary.
- h) Service Water System inside containment boundary.

3. DESIGN AND INSTALLATION CRITERIA

- Connected piping designed, fabricated, erected, supported, inspected, and tested in accordance with Power Piping Code ANSI B31.1.0., 1967 Edition.
- Connected piping materials and allowable stresses in accordance with Power Piping Code ANSI B31.1.0, 1967 Edition.
- 3) Vessel Codes American Society of Mechanical Engineers, Boiler and Pressure Vessel Code, Section III, Nuclear Vessels, 1965 Edition with applicable adenda.

4. SIGNIFICANT ASSUMPTIONS

- Detailed stress analysis of the ASME Class 1 and
 2 safety-relief and power operated relief valve installations were performed considering the following loads:
 - a. Thrust Loading Applied to the piping system when valve operates. The thrust force caused by valve discharge is composed of velocity and pressure components that include considerations for the fluid flow behavior and dynamic action of the valve.

The loads are based on the rated full flow and the corresponding system overpressure. (including thrust peak loads and directional changes due to dynamics of flow).

- b. Weight Loading A load caused by the piping,
 fluid and valve deadweight.
- c. Seismic Loading Loads resulting from the Design Basis Earthquake ground accelerations of 0.1g vertical and 0.15g horizontal.
- d. Internal Pressure Loads caused by internal piping fluid pressure.
- All loads described in (1) above are assumed to act simultaneously.
- 3) Maximum combined stresses tabulated were based on an evaluation of combined loading conditions considering both single and multiple valve operation where applicable, and peak dynamic loads at the first two elbows downstream of the safety valve.

5. METHODS OF ANALYSIS

The stress analysis of the safety and power operated relief valve installations was performed using standard analytical methods for valve installations and connected piping between natural supports.⁽¹⁾ A summary of the various analytical

(1) Natural supports - those supports beyond which considered loads are not transmitted or are of insignificant value.

· 4 –

5

- a) U. S. Navy MEL-40 computer program was used to evaluate the stresses in a piping system caused by dead weight and loads applied externally to the piping system.
- b) ADL-PIPE computer program was used to input the dynamic response and evaluate the corresponding stresses resulting from the seismic occurrence.
- c) Pressure-volume analysis was used to define the pressure stresses in uniform tubular pipe section.
- d) Pressure-area analysis was used to define the pressure stresses in pipe wall sections where the thickness varies.
- e) Local stress analysis of the effects of externally applied loads at nozzle or pipe junctures was performed using CYLNOZ computer program which is based on Reference 2.

6. RESULTS AND CONCLUSIONS

Final system conditions associated with the modifications required for the main steam safety and relief value installations, the pressurizer safety value installations, and the relocation and addition of supporting devices are summarized in Table 2. The stresses applicable to the final installation of the pressure relieving devices in accordance with final system conditions are summarized in Table 3 and compared with the allowable stresses from applicable codes.

The evaluation was made to assure that safety relief valve system combined loads (Section 4 above) do not cause stresses above those permitted by the applicable code. This evaluation includes nozzle stresses which are within applicable code allowables. Thermally induced loads and stresses within piping systems were also evaluated for each installation and are less than the ANSI B31.1.0, 1967, code allowable.

The combined stresses at all other points in the valve installations and connected piping were found to be less than those values listed in Table 3.

REFERENCES

- Docket No. 50-247. Letter from Assistant Director for Pressurized Water Reactors, Directorate of Licensing, to Consolidated Edison Company of New York, Inc., dated May 12, 1972.
- Bulletin No. 107, Revision 2, dated July 1970. Welding Research Council Bulletin, "Local Stresses in Spherical and Cylindrical Shells due to External Loads" by K. R. Wichman, A. C. Hopper and J. L. Mershon.

Safety	and	Relief	Valve	Methods	of	Analysis	
· · · · · · · · · · · · · · · · · · ·							

System	Valve No.	Thrust	Deadweight	Seismic	Pressure
Reactor Coolant System - Pressurizer Safety and Power Operated Relief	PCV-464 PCV-466 PCV-468 PCV-455C PCV-456	MEL-40	MEL-40	ADL-PIPE	Pressure Volume
	Nozzles	Welding Research Shell Connection	Council Bulletin	n No. 107 used f	or Nozzle to
Main Steam - Safety	MS-45* MS-46* MS-47* MS-48* MS-49*	CYLNOZ (Welding Research Council Bulletin No. 107)	 a. MEL-40 for gross piping. b. CYLNOZ for Local 	 a. ADL-PIPE for gross piping, b. CYLNOZ for Local 	Pressure Area
Main Steam - Power Operated Relief	PCV-1134 PCV-1135 PCV-1136 PCV-1137	NO. 2077	Valve Effect,	Valve Effect.	
Main Steam - Safety for Turbine Driven Auxiliary Boiler Feed Pump	MS-52	MEL-40	MEL-40 ·	MEL-40	Pressure Volume

* 4 valves each.

-1-

System	Valve No.	Thrust	Deadweight	Seismic	Pressure
Chemical and Volume Control	RV-203 RC-218 RC-231				
	RY-234	MEL-40	MEL-40	MEL-40	Pressure
	RV-237 RV-263 RV-264			•	Volume
_	KV-204				
	Volume Control Tank Nozzles	Welding Shell Co	Research Council B onnection	ulletin No. 107 u	sed for Nozzle to
Auxiliary Coo- lant System	RV-1836	MEL-40	MEL-40	MEL-40	Pressure Volume
Safety Injection System	RV-892A RV-892B BV-892C				
	RV-892D RV-1816	MEL-40	MEL-40	MEL-40	Pressure Volume
	RV-855				
-	Accumulator	Welding Shell Co	Research Council E	Bulletin No. 107 u	used for Nozzle to
,	1022105			· · · · · · · · · · · · · · · · · · ·	
Hydrogen Recombiner	1884 1671	MEL-40	MEL-40	MEL-40	Pressure Yolume
Service Water	SWN-42 (5 valves)	MEL-40	MEL-40	MEL-40	Pressure Volume

TABLE 1 (Continued)

.

-2-

	TABLE 1
	(Continued)
,	•

.

.

ŧ.,

and the second sec

System	Valve No.	Thrust	Deadweight	Seismic	Pressure
Component Cooling Water System	819A 819B 783A 783B 783C 783D 821H 792	MEL-40	MEL-40	MEL-40	Pressure Yolume
		· · · · ·			

• .

a

.

-3-

Summary of Final System Conditions

<u>System</u> Main Steam Safety Valves	Valve <u>No.</u> MS-45* MS-46 * MS-47* MS-48* MS-49*	Final Condition Discharge piping modified: nozzle to main steam pipe connection reinforced by weld buildup.
Main Steam - Safety for Turbine Driven Auxiliary Boiler Feed Pump	MS-52	Remove support on inlet piping; add support on discharge piping.
Main Steam Power- Operated Relief Valve	PCV-1134 PCV-1135 PCV-1136 PCV-1137	Restraints added to discharge piping and main steam pipe.
Reactor Coolant System Pressurizer - Safety Valves	PCV-464 PCV-466 PCV-468	Vessel safety valve nozzles and saferends reinforced, restraints relocated on discharge piping.
Pressurizer Power- Operated Relief Valves	PCV-455C PCV-456	Restraints relocated on discharge piping.
Chemical and Volume	RV-203	Restraint added to discharge piping.
CONTLOT SARTEW	RV-218	Restraint added to discharge piping.
•	RV-264	Restraints and supports added to discharge piping.

· . . .

.

STATE STATES

272272372

* 4 valves each.

-1-

System	Valve No.	Final Condition
Auxiliary Coolant System	RV-1836	Restraints added to inlet and discharge piping.
Safety Injection System	892A 892B 892C 892D	Restraint added to discharge piping.
	1816	Modified support to provide rigid restraint.
H ₂ Recombiner	1671	Add support on discharge piping.
Component Cooling Water	783A	Add support on discharge piping.
	783B	Add restraint on discharge piping.
	783C	Add restraint on discharge piping.

TABLE 2 (Continued)

-2-

; ;

19

٥

. . . .

		Mount	Mounting of Pressure Relieving Devices Indian Point Unit No. 2				
System	•	Component No.	0	Location of Maximum Stress (Including Material and Operating Temperatures)	Maximum Combined Stress, KSI	Applicable <u>Code</u>	Allowabl Stress K
Reactor Coolant System Pressur- izer	·		·. ·	· · · · · · · · · · · · · · · · · · ·			
Safety Valves	·.•	PCV-464	•	(Stainless Steel) Nozzle to Pipe (A-403-WP-316, 650°F)	(Stainless Steel) 12.6	ANSI B31.1.0 (1967)	(Stainless Steel) 19.
•		PCV-466 PCV-468		(Carbon Steel) Manifold Junction (A-106, Grade B, 400°F)	(Carbon Steel) 16.7	ANSI B31.1.0 (1967)	(Carbon Steel) 18.
Power Operated Relief Valves	<u></u>	PCV-455C PCV-456		Nozzle to Pipe (A-376, Type 316, 650°F)	9.2	ANSI B31.1.0 (1967)	19.2
· · · ·		Nozzles		Nozzle Body (SA-216, Grade WCC, 650°F)	•. 23.7	ASME Section III, Class A (1965 Edition plus addenda through 1968)	. 28.9
				· · · · · · · · · · · · · · · · · · ·	· · ··· ···	furondu 1998)	

-1-

Summary of Stresses Applicable to Mounting of Pressure Relieving Devices Indian Point Unit No. 2

System	Component No.	Location of Maximum Stress (Including Material and Operating Temperatures)	Maximum Combined Stress, KSI	Applicable Code	Allowable Stress
Main Steam				· · ·	
Safety Valves	MS-45* MS-46* MS-47* MS-48* MS-49*	Main Steam Header at Weldolet (A-155, Grade KC-70, Class 1, 560°F)	17.0	ANSI B31.1.0 (1967)	21.0
Main Steam - Safety for Turbine Driven Auxiliary Boiler Feed Pump	MS-52	Elbow on inlet side (A-106, Grade B, 560°F)	15.4	ANSI B31.1.0 (1967)	18.0
Main Steam Power Operated Relief Valves	PCV-1134 PCV-1135 PCV-1136 PCV-1137	Main Steam Header at Weldolet (A-155, Grade KC-70, Class 1, 560°F)	20.9	ANSI B31.1.0 (1967)	21.0
Chemical Volume Control System					
Letdown Line	RV-203	Elbow on inlet side. (A-312, Type 304, 400°F).	12.3	ANSI B31.1.0 (1967)	17.9

Summary of Stresses Applicable to Mounting of Pressure Relieving Devices Indian Point Unit No. 2

System	Component No.	Location of Maximum Stress (Including Material and Operating Temperatures)	Maximum Combined Stress, KSI	Applicable Code	Alloyable Strest KS
Seal Water Return Line	RV-218	Elbow on inlet side. (A-312, Type 304, 240 F)	10.1	ANSI B31.1.0 (1967)	19.3
- Charging Pump Discharge Line -	RV-231 RV-234 RV-237	Elbow on inlet side. (A-312, Type 304, 250 F)	9.6	ANSI B31.1.0 (1967)	19.3
Letdown Line	RV-263	Tee on inlet side. (A-312, Type 304, 200°F)	10.4	ANSI B31.1.0 (1967)	19.8
Volume Control Tank	RV-264	Second support on discharge side. (A-312, Type 304, 250°F).	12.3	ANSI B31.1.0 (1967)	19.3
- - -	Nozzle	Shell at nozzle penetration. (SA-240, Type 304, 250°F).	•	ASME Section III, Class C (1965 Edition plus addenda through summer (1967).	16.5

TABLE 3

-3-

Summary of Stresses Applicable to Mounting of Pressure Relieving Devices Indian Point Unit No. 2

TABLE 3

System	Component No.	Location of Maximum Stress (Including Material and Operating Temperatures)	Maximum Combined Stress, KSI	Applicable Code	Allowable Stress KS
Safety Injection System					
Accumulators	RV-892A RV-892B RV-892C RV-892D	Elbow on inlet side. (A-312, Type 304, 300°F)	16.3	ANSI B31.1.0 (1967)	18.0
	Nozzle	Shell at nozzle penetration. (SA-516, Grade 70, 300°F).	17.1	ASME Section III, Class C. (1965 Edition plus addenda through Summer 1967).	17.5
Accumulators Nitrogen Supply	RV-1816	At support on discharge side. (A-312, Type 304, Ambient).	•. 3.7	ANSI B31.1.0 (1967)	22.5
High Head Injection	RV-855	Tee on inlet side. (A-312, Type 316, 120°F).	5.7	ANSI B31.1.0 (1967)	20.8

.

-4-

Summary of Stresses Applicable to Mounting of Pressure Relieving Devices Indian Point Unit No. 2

System	Component No.	Location of Maximum Stress (Including Material and Operating Temperatures)	Maximum Combined Stress, KSI	Applicable Code	Allowable Stress,
H ₂ Recombiner	1884	Tee on inlet side. (A-312, Type 304, 150°F).	6.5	ANSI B31.1.0 (1967)	20.8
	1671	Anchor at Equipment (A-53, Grade A, 150°F)	7.0	ANSI B31.1.00 (1967)	12.3
Component Cooling	821H	First tee on inlet side. (A-106, Grade B, 150°F).	13.0	ANSI B31.1.0 (1967)	18.0
·	792	First elbow on inlet side. (A-53, Grade A, 120°F).	6.9	ANSI B31.1.00 (1967)	12.3
	783A	Tee on inlet side. (A-106, Grade B, 550°F)	13.9	ANSI B31.1.0 (1967)	18.0

-5-

Summary of Stresses Applicable to Mounting of Pressure Relieving Devices Indian Point Unit No. 2

em	Component No.	Location of Maximum Stress (Including Material and Operating Temperatures)	Maximum Combined Stress, KSI	Applicable Code	Allowable Stress, SI
	783B	Tee on inlet side. (A-106, Grade B, 550°F).	9.8	ANSI B31.1.0 (1967)	18,0
. •	783C	Tee on inlet side. (A-106, Grade B, 550°F).	12.1	ANSI B31.1.0 (1967)	18,0
	783D	Tee on inlet side. (A-106, Grade B, 550°F).	10.7	ANSI B31.1.0 (1967)	18.0
•	819A	Connection on 12" line. (A-53, Grade A, l20°F).	3.0	ANSI B31.1.0 (1967)	12.3
	8198	Connection on 12" line. (A-53, Grade A, 120°F).	4.3	ANSI B31.1.0 (1967)	12.3

•1

25

System

-6-

Summary of Stresses Applicable to Mounting of Pressure Relieving Devices Indian Point Unit No. 2

System	Component No.	Location of Maximum Stress (Including Material and Operating Temperatures)	Maximum Combined Stress, KSI	Applicable Code	Allowable Stress KSI
Service Water System	SWN-42A	Elbow on inlet side. (A-312, Type 304, 270°F).	4.7	ANSI B31.1.0 (1967)	19.0
	SWN-42B	Support point on discharge. (A-312, Type 304, 270°F).	3.4	ANSI B31.1.0 (1967)	19.0
	SWN-42C	Connection on 10" pipe. (A-312, Type 304, 270°F).	5.6	ANSI B31.1.0 (1967)	19.0
	SWN-42D	Inlet Flange Weld (A-312, Type 304, 270°F).	3.7	ANSI B31.1.0 (1967)	19.
	SWN-42E	Inlet Flange Weld (A-312, Type 304, 270°F).	a. 2.7	ANSI B31.1.0 (1967)	19.0
Auxiliary Coolant System			*	°.	
RHR Heat Exchanger	RV-1836	First elbow on discharge side. (A-312, Type 304, 350°F).	12.2	ANSI B31.1.0 (1967)	18.3

AEC DISTRIBUTION FOR PART 50 DOCKET MATERIAL (TEMPORARY FORM)

١

CONTROL NO: 3871

					•	.'	
FROM: Consolidated Edison Co. of	DATE OF DOC:	DATE REC'	D LTR	MEMO	RPT	OTHER	
N.Y. New York, N.Y. 10003	7-12-70	7-14-70			1		
WIIIIam J. Canili, Jr.	/-13-/2	/-14-/2		•			
TO:	ORIG	CC OTHE	R	SENT	ARC FD		
Mr. John F. O'Leary				SENT 1		PDR V	·
	1 signed	39					
CLASS: U PROP INFO	INPUT	NO CYS REC'	DÍ	DOCKE	T NO:		
						•	
		40		50-247			
DESCRIPTION: Ltr re our 5-12-	72 1tr	ENCLOSURES:	Summary	Report	t of Sa	itety &	Relief
trans the following:		Valve In	stallatio	n & Re-	-Analys	sis for .	ASME Cla
	•		s 2 Systè	m s in]	Indian	Pt. Uni	t ² dtd
		/-13-/2.	• • • •				
							•
	ý.	(40 cve	enci rec	4)	n) MOT I	DEBAUN
	•	(40 0)0	cher ree	~ <u>~</u> ,		JINUI	NLIWUVL
PLANT NAMES: Indian Pt. Unit	2 Station	. · ·		4	A C		FRAFA
· · · · · · · · · · · · · · · · · · ·					πv	ILING VUE	the half the Ballet
	FOR ACTION/I	MFORMATION	DT. 7-	17-72			
BUTLER(L) VENIEL(L)	VASSAL	LO(L)	ZIEMANN(L)	۲X	IIGETON(ENVIRO
W/ Copies W/9 Copies	W/ Co	pies	W/ Copi	es	W	Copie	s
CLARK(L) SCHWENCER(L) H. DEN	TON	CHITWOOD	(FM)	•	• • • •	-
W/ Copies W/ Copies	W/ Co	pies	W/ Copi	es	W	Copie	s.
GOLLER(L) STOLZ(L)	SCHEME	L(L)	DICEER(E	NVIRO)		· -	
W/ Copies W/ Copies	W/ Co	pies	W/ Copi	es	W/	Copie	5
	TNPERMAL DIS	TRUTION			~		
REG FILES	VOLLME	R-L	KABAS-L	L/A EVE		TELLO-L	
AEC PDR	DENTON	-L (4)	MASON-L	L/A BWE	V	DR. HEND	RI E
REG OFER (2) LANGE-L	GRIMES	-L	BROWN-L	L/A PWR		1. STEEL	E
OGC-RM P-506 PAWLICKI-L	GAMMIL	L-L	WILSON-L	L/A PW	R		
MUNTZING & STAFF THOMPSON-L	KNIGHT	ON-ENVIRO	KARI-L	L/A BWR	2	·	1
GIAMBUSSO-L TEDESCO-L	DICKER	-ENVIRO	SMITH-L	l/a bur	2		
BOYD-L-BWR LONG-L	PROJ LI	DR ENVIRO:	GEARIN-L	L/A BW	r		
VDEYOUNG-L-PWR VLAINAS-L	-		DIGGS-L	L/A			
MULLER-L-ENVIRO SHAO-L	SALTZM	AN-IND.	TEETS-L	L/A			
SAUVHULT-L-OPER BENAROXA-L	MCDONA.	LD-PLANS	GEARIN	L/A EN	/IRO	•	
MACCAPY-I DIPE-I	NUSSBA	UMER-FM TM	BRATIMAN				
SCHBOEDTB_I F CASE_I	D COL		HARLESS-	RIVATKO			
	TEXTRERNAL DISC	TP TRUPTON	MOURE-L			· · · · · · · · · · · · ·	
1-LOCAL PDR Montrose, N.Y.			1-SAN/TA	/ <u>///</u> PD	R		
							
L-DTIE-(LAUGHLIN)	9-NATIONAL LA	AB'S	1-CHIEF	MATER R	EACTOR	S	
L-NSIC-(BUCHANAN)	ANL/ORML/BI	NWL	1-RD	E. HALL	F-30	9 GT	
1-ASLB-YORE/SARYE	1-R. CARROLL	-0C, GT					
WOODWARD/H. ST.	1-R. CATLIN,	A-170, GT					
1-C. MILES-C-459, GT	1-CONSULTANT	'S .	•				
5 CYS ACRS-HOLDING	NEWMARK/BLU	JME/AGBABIAN					
	1-DR. GERALD	S. LELLOUCHE	5				
	BROOKHAVEN	NATIONAL LAP	3				