Consolidated Edison Company of New York Inc.
4 Irving Place, New York, N. Y RODS
Telephone (212) 460-5133

RECEIVED

PLACE REGULATORY
COMMISSION
REGINAL Seeding

August 6, 1976

Director of Nuclear Reactor Regulation
Attn: Mr. George W. Knighton, Chief
Environmental Projects Branch No. 1
Division of Reactor Licensing
United Stated Nuclear Regulatory Commission
Washington, D. C. 20555

RE: Docket No. 50-247

Dear Mr. Knighton:

In response to your letter dated March 26, 1976, received on March 31, 1976 and the accompanying list of questions to which you requested answers, we have attached hereto responses to questions A: 13, 16, 19, 21, 24, and 25.

The answers to the balance of the questions will be submitted when available, and we intend to complete these answers by the requested date of September 30, 1976.

Sincerely,

Carl L. Newman

jbw/klg

cc: Paul Shemin,
Stephen Lewis
Michael Curley
Sarah Chasis

Question A.13:

Define the term "peak standing crop" as used in connection with Atlantic tomcod on page VI-60. In view of this definition and considering the data on pages D-35, D-36, D-85, and D-86, is there still a basis for the statement on page VI-60 that the peak standing crop of Atlantic tomcod in 1974 was about 1000 times greater than in 1973?

Response:

The term "peak standing crop" refers to the highest standing crop estimated to exist during any sample interval when all such intervals are considered.

The statement, which appears on page VI-60, to the effect that peak tomcod standing crop in 1974 was about 1000 times greater than in 1973 is incorrect. Peak standing crop of tomcod in 1974 was about 10 times greater than in 1973.

Question A.16:

Provide a derivation for the equation at the bottom of Page VII-6.

Response:

At any time during the spawning season, while some eggs which will eventually be spawned are still contained within the ovaries of adults, the potential (effective) population of ichthyoplankton is greater than the actual standing crop. Some portion of those unspawned eggs can realistically be considered to belong to the effective standing crop. In the estimation of entrainment impact during the spawning season, it is appropriate to consider entrainment mortality as affecting the effective population, rather than simply the actual standing crop.

In order to determine the effective population, we need an estimate of survival for those unspawned eggs, since it is unrealistic to assume that all unspawned eggs would survive. Our best estimate of survival for individuals to be produced from those unspawned eggs is the survival demonstrated by individuals from eggs spawned from the start of the spawning season up to the time at which sampling occurs. If one assumes that survival of ichthyoplankton is the same whether spawning occurs instantaneously or is distributed through time, then the ratio of the actual standing crop observed during a time interval to the total eggs spawned up to that time is a measure of survival, and is equal to the ratio of the effective standing crop to the total number of eggs produced throughout the spawning period.

$$\frac{N_{i}}{e} = \frac{N_{i}}{e_{t}}$$

Where

 N_i = actual standing crop at time i

N_i = effective (adjusted) standing crop

e = eggs spawned from the start of the spawning
 period until time i

et = total eggs spawned throughout the spawning season

Estimation of effective population size for any time period requires information on egg production up to the time for which the estimate is made and for the entire spawning season. order to estimate these parameters, the sampling season was stratified into 2 week periods during 1973 and 1 week periods in 1974. All samples were considered to have been collected at the midpoint of each period. The standing crop of eggs existing at the time of ichthyoplankton sampling must be adjusted to reflect the fact that they represent only a portion of the eggs laid during a sample interval. That portion is a function of sample interval duration and hatching time. eggs spawned during a sample interval are assumed to be evenly distributed through that interval and sampling occurs at the midpoint of the interval then the ratio of egg standing crop to total egg production is equal to the ratio of hatching time to interval duration. Total eggs produced during the interval can be calculated

$$E_{i} = e_{i} \frac{t_{i}}{h_{i}}$$
 (2)

Where

E; = total eggs spawned during interval i

e; = 'estimated egg standing crop at the midpoint of interval i

t_i = interval duration for interval i

h; = egg stage duration for interval i

Thus if hatching time is 48 hours, as is commonly the case at temperatures prevailing during spawning in the Hudson River, and sample interval duration is 1 week (168 hours), then only eggs laid within the 48 hour period immediately preceding sampling would compose the egg standing crop, and they would represent 48/168 (2/7) of the total expected.

Terms e and e_t from Equation 1 can be more precisely defined in terms of the preceeding;

$$e = \frac{1}{2} e_{i} \frac{i}{h_{i}} + \frac{i-1}{z} e_{j} \frac{t_{j}}{h_{i}}$$
 (3)

Where

e = eggs spawned from the start of the spawning period
 until time i (midpoint of interval i)

ei = actual standing crop of eggs at the midpoint of interval i

t_i = duration of interval i

h; = hatching time during interval i

e; = standing crop of eggs at midpoint of interval j

t; = duration of interval j

h; = hatching time during interval j

$$e_{t} = \underset{j=1}{\overset{s}{\xi}} e_{j} \frac{t_{j}}{h_{j}}$$
 (4)

Where

 e_t = total eggs laid throughout the spawning season

s = number of sample intervals through spawning season

Substitution of these terms derived for e and e_t into Equation 1 yields

$$\frac{\mathbf{N}_{\mathbf{i}}}{\mathbf{E}_{\mathbf{i}}} = \frac{\mathbf{N}_{\mathbf{i}}}{\mathbf{N}_{\mathbf{i}}}$$

$$= \frac{\mathbf{N}_{\mathbf{i}}}{\mathbf{N}_{\mathbf{i}}}$$

Since interval duration has been the same for all intervals during a given year $(t_i = t_j)$ and hatching time is assumed to remain constant throughout all sample intervals $(h_i = h_j)$, the ratios t_i/h_i and t_j/h_j are equal. These terms can be factored from the denominator on each side of Equation 5 and cancelled.

$$\frac{N_{i}}{\frac{(t_{i})}{h_{i}}(\frac{1}{2}e_{i} + \frac{i-1}{2}e_{j})} = \frac{t_{i}}{h_{j}} \frac{s}{(\frac{1}{2}e_{j})}{\frac{t_{j}}{h_{j}}(\frac{1}{2}e_{j})}$$
(6)

$$\frac{N_{i}}{\sum_{j=1}^{N_{i}} e_{j}} = \frac{\sum_{j=1}^{N_{i}} e_{j}}{\sum_{j=1}^{S} e_{j}}$$
(7)

Multiplication of both sides of Equation 7 by $\underset{j=1}{\overset{s}{\succeq}}$ e_j yields

$$\frac{*}{N_{i}} = N_{i} \underbrace{\underbrace{\xi}_{j=1}^{e_{j}}}^{e_{j}}$$

$$\frac{i-1}{\xi}_{e_{i}} + \underbrace{\xi}_{j=1}^{e_{j}}$$
(8)

Where

N_i = actual standing crop of ichthyoplankton (eggs, larvae and juveniles) at the midpoint of interval i.

e; = standing crop of eggs at the midpoint of interval i

 e_{j} = standing crop of eggs at the midpoint of interval j

Question A.19:

With respect to the discussion of "previously impinged fish" on pages II-25 and VII-30:

- a. Confirm whether the term P on page VII-30 can be more precisely defined as "probability that an impinged fish will be both lost from the screen before collection and reimpinged."
- b. Explain how P could be greater than Ø, the probability of an impinged fish being lost before collection; such an inequality is required for values of % collection efficiency to exceed 100%?

Response:

The equation

% collection efficiency = $(1-\emptyset+P) \times 100$

was not intended for strict application but rather to demonstrate the fact that under certain circumstances more fish may be collected from the screens at the end of a sampling interval than were actually newly impinged during that interval. Ø may be defined as "the probability that a fish impinged during a time interval will be lost before collection at the end of that interval." If P is defined as "the probability that a fish impinged during a time interval will be both lost before collection at the end of that interval and reimpinged and collected during a subsequent interval" there are 2 components to P.

- 1. The probability that a fish impinged during a previous time interval will be lost before collection at the end of that interval (\emptyset_{+-1}) .
- The probability that a fish lost from a screen during an interval will be reimpinged and collected during a subsequent interval (p).

P is therefore the product p x \emptyset_{t-1} . If collection efficiency is being calculated for a sample interval during which \emptyset_{t-1} is greater than \emptyset (i.e. proportion of impinged fish lost before collection at the end of the preceding period is greater than proportion lost during sample interval) then P may exceed \emptyset and the collection efficiency may be greater than 100%.

At plants, other than Indian Point, where samples are taken over a 24-hour period once per week, there is a likelihood \emptyset_{t-1} will exceed \emptyset because of the sampling procedure. Immediately before the beginning of the sample interval, fish accumulated on the screen from previous periods may be washed from the screen into the river. Since in effect all escape collection, \emptyset_{t-1} is 1, and P, the product of \emptyset_{t-1} and p will, in all likelihood, exceed \emptyset .

At Indian Point, where collections are made from the screens daily and efforts are made to recover all fish, P could not exceed \emptyset over the long range, and overall collection efficiency could not exceed 100%.

Question A.21:

For each estimate in Tables VII-9 and VII-10 (pp. VII-33 and VII-34), provide a table, similar to Table F-2 (p. F-20), but including as additional entries (a) number marked, not adjusted for 14-days handling mortality; (b) total number of marks recaptured, both with and without impingement; and (c) total number (marked and unmarked combined) captured during recovery period, both with and without impingement. Include any other information needed to reconstruct the estimates. For young-of-the-year white perch, provide data including fin-clipped individuals.

Response:

Tables 1 and 2 provide data needed to reconstruct the Peterson population estimates reported in Tables VII-9 and VII-10 of the First Annual Report for the Multiplant Impact for white perch and striped bass, respectively. Compilation of data upon which Schumacher-Eschmeyer estimates presented in the same tables were based will be available by 15 November 1976.

Question A.24:

In "Hudson River Ecological Study," Texas Instruments, Second Semiannual Report, November 1973, Table V-15, p. V-46, the following results on sexual maturity of female striped bass collected March-May 1973, in the Hudson River are presented: of the 9 fish classified as age 5, none were mature (0%); of the 3 fish classified at age 6, two were mature (67%).

In "First Annual Report for the Multiplant Impact Study of the Hudson River Estuary" Texas Instruments, July 1975, Table VIII-1, p. VIII-6, the following results on percent maturity of female striped bass are presented: age 5 females, 80%; age 6 females, 100%. The following footnote is included: "Determinations of percentages of mature females in the several age classes were based on fish collected in May and June 1973-74 (TI, unpublished data)."

Table 1

Data used to generate Peterson population estimates for white perch in the Hudson River estuary for fall of 1973, as presented in Table VII-9 of the First Annual Report for the Multiplant.

Population	Estimates from Table VII-9	River Miles included	Marking dates included	Total marked un- adjusted	Marked 1 adjusted for mortality	Recap- ture dates included	Total recap- tures	Recap- tures exclus- ive of impinge-	Total capture	Capture exclusive of impingement
					:			ment		
young-of- year	7,824,000 ¹	12-153	mid Aug Nov. 1973	9794	9632	Jan June 1974	128	26	272,264	21,119
young-of- year	1,992,000 ²	12-62	Sept Oct. 1973	8736	8284	Nov Dec. 1973	58	₹₹	13,946	
young-of- year	2,340,000 ¹	12-62	mid Aug.+ Sept. 1973	5507	5362	mid Oct Dec. 1973		31	17,804	13,529
yearling or older	7,225,000	12-153	mid-Aug Nov. 1973	6710	6262	Jan June 1974	14	12	31,981	13,845
yearling or,older	1,467,000 ²	12-62	mid Aug Oct. 1973	3488 .	3426	NovDec. 1973	17		7,278	

^{1.} Calculation made exclusive of impingement collections data

^{2.} Calculation includes impingement collection data

Table 2

Data used to generate Peterson population estimates for striped bass young-of-the-year in the Hudson River estuary for fall 1973, as presented in Table VII-10 of the First Annual Report for the Multiplant.

Population	Estimate ¹ from Table VII-10	River Miles included	Marking dates included	Total marked unadjusted for mor-tality	Marked adjusted for mor- tality	Recapture dates in- cluded	Total Recaptures	Recaptures exclustive of impingement	total capture	Capture clusive impinge
Young-of-	1 707 0001	12-153	Sept. ³ -	14,336	14,336	Jan	Q	9	3,927	
year Young-of-	1,387,0001	12-133	Nov. 1973	14,550	14,330	May 1974				
year	2,511,000 ²	12-62	mid Aug Nov. 1973	9,616	9,355	Dec. 1973	41		10,801	

1. Calculation made exclusive of impingement collection data

- 2. Estimate of 2,511,000 represents a correction of the value 1,680,000 originally reported, and is calculated with the inclusion of impingement collection data.
- 3. Marking period erroneously reported as mid-August through November in Table VII-10 of the First Annual Report for the Multiplant.

Provide a compilation of all previously published data and of all unpublished data and discuss the apparent contradiction between the results in the Second Semiannual Report and the Multiplant Report.

Also provide all published and unpublished Texas Instruments data on egg count per female striped bass. Discuss the biological reasonableness of the irregularities (i.e., non-monotonic increasing trend) in the fourth column (Mean Egg Count/Female) of Table III-1, p. VIII-6.

Response:

Results on striped bass age and state of maturity presented in the Second Semiannual Report for the Hudson River Ecological Study were based upon fish collected March through May 1973. As Table V-15 from that report indicates, all nine age V fish and two of three age VI fish examined were collected in March. Ovaries were small and difficult to evaluate. The single age VI fish collected in May was clearly mature. In 1974 only fish collected during May and June were examined for determination of maturity, as their status was much more evident in these later spring months. Four of five age V fish examined at this time were clearly mature as were all five age VI fish examined. later data suggest that development of younger fish (age V and VI) to a state of ripeness occurs later in the spring than that of older fish, and that judgements as to state of maturity, at least for younger fish (age VII), are best made on fish collected no earlier than May. Confirmation of these observations must await the processing of samples collected during 1975.

Tables 3 and 4 provide data related to fecundity and maturation of female striped bass collected during 1973 and 1974. More complete information on date of capture for 1973 fish will require further time to compile. Irregularities in age specific fecundities reported in Table VII-1 (i.e., non-monotonic increase with age) are at least partially related to the small sample size upon which these estimates are based. It is likely that fecundity in striped bass, like that of many other fishes, is related to size more closely than to age per se. While no formal analysis of size specific fecundity has been carried out for striped bass, irregularities in age specific fecundity may be related to random variation in fish size among specimens representing various age classes, or to real differences in growth between various year classes. Mean lengths of age V (678 mm) and age VI (687 mm) mature females collected during May and June 1973 and 1974

Table 3 . Age and fecundity related data for female Striped Bass collected from the Hudson River Estuary during 1 3.

ID#	DATE OF COLLECTION	AGE (YEARS)	BODY WEIGHT (9)	TOTAL LENGTH (mm)	OVARY WEIGHT (9)	TOTAL EGGS	STATE OF MATURITY	COMMENTS
E33	5/73	2	108	218	11.1	Discisi	Immature	
E31	5/73	2	107	211	5.1		n N	
C95	4/73	3	430	347	1.7		u	
AA98	3/73	4	1030	435	4.3		u	
C98	4/73	. 4	715	420	4.4		μ	
XX2	4/73	4	908	471	8.2		n .	
SSB	4/73	4	1952	565	9.5		u	
C80	4/73	4	967	550	7.9			
C 79	4/73	4	864	516	8.8		u	
D181	4/73	4	1816	584	9.7			
XX1	3/73	. 5	1798	554	17.4		n	
AA126	3/73	5	1574	540	9.6		II	
W23	4/73	5	1544	515	12.8		II	
AA105	4/73	5	2724	645	15.3		u	
SSA	4/73	5	2679	626	20.7		u	
AA106	4/73	5	3078	675	19.8		u	
SSC	4/73	5	2838	671	27.6		n	
0116	5/73	5	2270	612	14.1		$\mathbf{u} = \mathbf{u}$	
23	5/73	5	3723	70 9	23.9		u u	
A100	3/73	6	2497	626	17.8		ii	
AA128	3/73	6	2311	582	26.9	626,000	mature	·
0906969	6/73	6	2724	622	174.3	276,000	u	
CC1	4/73	7	4994	765	271.1	1,009,000	ll .	
0193	4/73	7	6991	850	721.0	1,099,000	u	

ID#	DATE OF COLLECTION	AGE (YEARS)	BODY 1GHT (g)	TOTAL LENGTH (mm)	OVARY WEIGHT (g)	TO AL EGGS	STATE OF MATURITY	COMMENTS
CC11	4/73	7	10532	925	1445.0	2,228,000	mature	
D251	5/73	7	4769	739	303.5	1,103,000	11 II	
D179	4/73	7	7 309	679	351.3	1,127,000	n	
D123	5/73	7	3859	744	103.1	59,000	n	32.
D124	5/73	7	1680	549	44.5	249,000	II .	
D121	5/73	7	2497	615	142.0	549,000	a	
PP4	5/73	7	7718,	865	695.0	1,151,000		
C0610	6/73	7	4630	692	360.2	681,000	H ,	
D183	4/73	8	9534	929	1137.0	2,285,000	11	4
D7	4/73	8	9534	897	1020.0	1,944,000	tt	
D152	4/73	8	7673	858	878.8	1,148,000	Ħ	
D198	4/73	8	9988	953	746.1	2,141,000	u	
CC5	4/73	8	10986	1002	728.0	1,953,000	, u	
AA101	3/73	8	4568	757	51.2		· · · · · · · · · · · · · · · · · · ·	,
C83	4/73	8	10124	927	887.0	1,152,000	II.	:
D115	4/73	8	7173	859	319.2	1,137,000	II	
D173	4/73	8	6356	822	556.7	1,487,000	u i	
82 79	5/73	8	6420	835	517.8	1,215,000	u	•
D125	5/73	8	70 82	831	503.5	986,000	n .	:
D122	5/73	8	7128	851	653.4	1,085,000	H -	
PP2	5/73	8	5902	800	563.0	1,318,000	u	
PP1	5/73	8	8399	8 7 5	732.0	1,603,000	u	
D154	4/73	. 9	8126	872	861.2	1,343,000	u	
CC10	4/73	9	8853	898	802.9	1,460,000	H	
CC12	4/73	9	11213	969	1307.8	1,629,000	n n	
0153	4/73	9	9443	917	844.0	1,546,000	u u	
250	5/73	9	7400	851	914.0	891,000	n e	
1249	5/73	9	13529	840	1682.0	2,428,000	ti .	

ID#	DATE OF COLLECTION	AGE (YEARS)	BODY WEIGHT (g)	TOTAL LENGTH (mm)	OVARY WEIGHT (g)	TOTAL EGGS	STATE OF MATURITY	COMMENTS
D182	4/73	9	7446	865	535.7	1,583,000	mature	81 j. s. 1900.
D1 77	4/73	9	4540	832	484.4	1,113,000	B.	
CC89	5/73	. 9	11441	964	1761.0	2,082,000	ŧi	
D197	4/73	10	14165	1021	1486.0	2,156,000	II .	
06389	5/73	10	9988	952	1578.3	1,369,000	H	
06390	5/73	10	12122	1044	1108.5	2,417,000	ii	o
PP3	5/73	10		891	855.0	1,425,000	II .	Weight no
CC94	5/73	12		1170	1287.0	2,707,000	ti	available Weight no
CC93	5/73	12	15754	1083	794.0	1,995,000	n n	available
D192	4/73	14	11350	962	1164.0	2,189,000	ti .	i +
D45	4/73		13166	986	975.7	1,269,000	II	age not
D252	5/73		7945	881	942.3	1,030,000	· ·	available age not
9856	5/73		6810	850	679.2	1,678,000	II .	available age not
9858	5/73		6901	855	883.6	1,380,000	u	available age not
9835	5/73		9988	970	143.5	apparently	u	available age not
9833	5/73		44 49	787	289.1	sterile 506,000	u	availabl age not
9834	5/73		9534	938	1345.5	1,599,000	ll .	availabl age not
8282	5/73		3450	687	439.3	726,000	u	availabl age not availabl
			• • • • • • • • • • • • • • • • • • • •					

Table 4. Age and fecundity reland data for female Striped Bass ollected from the Hudson River Estuary during 1994.

•		•						
ID#	DATE OF COLLECTION	AGE (YEARS)	BODY WEIGHT (g)	TOTAL LENGTH (mm)	OVARY WEIGHT . (g)	TOTAL EGGS	STATE OF HATURITY	COMMENTS
C21	5/15/74	4	882	534	9.8		Immature	
C47	5/22/74	4	793	384	4.3		n	
C2	5/ 8/74	4	848	505	6.2		u u	
C17	5/15/74	4	921	550	2.4		u	
C4	5/ 8/74	4	879	524	7.5		11	
EP315	5/ 9/74	4	3686	477	3.2		U	
C28	5/16/74	4	881	527	7.4		n n	
C13	5/ 9/74	4	904	555	1.0		u	
C11	5/ 9/74	4	857	508	8.5		u u	
C31	5/16/74	5	862	505	11.4		spent	
EP1652	5/21/74	5	3178	666	419.5	810,000	mature	
F21	5/ 8/74	5	3496	633	176.7	371,000	11	
F46	5/22/74	5	615	473	15.4		immature	
C106	5/23/74	5	5130	735	544.2	1,155,000	mature	
EP302	4/22/74	6	4005	701	65.4	750,000	n	
F-40	5/16/74	6	2806	660	77.8	582,000	ıı	• • •
C-42	5/22/74	6	4812	741	804.8	990,000	ii ii	
C-23	5/16/74	6	2951	659	280.3	369,000	u	
C-40	5/22/74	6	4722	753	501.7	942,000	u	
F-35	5/22/74	7	3904	745	60.9	1,644	spent	
EP1658	5/21/74	7	# * * * *	922	216.9	1,600,000	mature	weight no
EP1695	5/23/74	7	5085	759	784.9	615,000	H ,	available
EP1406	6/ 3/74	7	No em en 12	der on ner	103.1	737,000	mature	weight an length no
C1016	6/12/74	7	6447	849	106.3	18,600	spent	available
C1018	6/12/74	7	5401	835	63.2		spent	· .

	lable 4 Contin	ueu						
ID#	DATE OF COLLECTION	AGE (YEARS)	BODY WEIGHT (g)	TOTAL LENGTH (nm)	OVARY WEIGHT (g)	TOTAL EGGS	STATE OF MATURITY	COMMENTS
C113	5/23/74	8	8172	895	1279.4	1,119,000	mature	
CEG1	5/ 8/74	8	8081	837	854.3	1,827,000	a	
CEG7	5/14/74	8	7082	843	915.9	1,520,000	н	
C41	5/22/74	8	8444	882	979.7	1,180,000	lt .	
C43	5/22/74	8	73 09	845	564.4	1,245,000	n	
EP1686	5/23/74	8	4585	755	453°,3	853.000	11	
C15	5/15/74	8	4041	694	271.1	762,000	N	
F33	5/15/74	8	3042	660	64.8	817,000	u.	
CEG201	5/30/74	8	7082	860	108.4	17,560	spent	
EP388	5/30/74	8	6673	891	141.6	1,416	spent	
EP1485	5/30/74	8	***	930	83.4		u.	
F38	5/22/74	8	7219	864	965.5	1,162,000	mature ~	
F29	5/10/74	8	7491	848	942.9	1,355,000	n n	
C107	5/23/74	. 8	6084	817.	1300.6	1,081,000	H	
C101	5/23/74	8	7309	850	1308.3	1,472,000	и	
C1004	6/10/74	8	7900	850	931.2	1,010,000	u	
F23	5/ 9/74	9	8127	843	1,150.9	2,087,000	, u	•
F31	5/10/74	. 9	11214	915	1150.7	1,588,000	u	•
EP1403	5/31/74	9	8127	871	1345.0	1,555,000	u .	. · ·
EP352	5/ 3/74	9	12258	973	1292.1	1,899,000	ŧī	
CEG9	5/15/74	9	7264	855	888.0	1,369,000	u ·	2 · · · · · · · · · · · · · · · · · · ·
C109	5/23/74	9	10533	917	1516.7	2,500,000	u	
C44	5/22/74	9	9080	923	1055.1	1,394,000	16	
F24	5/ 9/74	9	7037	816	669.9	947,000	·	
EP1486	5/30/74	9	11077	957	1159.7	2,315,000	u u	
CEG203	5/30/74	. <u>9</u>	9080	925	124.0	10,700	spent	

ID#	DATE COLLECTION	AGE (YEARS)	BODY WEIGHT (g)	TOTAL LENGTH (nun)	OVARY WEIGHT (g)	TOTAL EGGS	STATE OF MATURITY	COMMENTS
C116	5/23/74	9	9534	919	. 561.8	1,125,000	mature	
EP1653	5/21/74	9	9534	961	1325.1	1,309,000	· u	
EP1668	5/22/74	9	6855	898	337.3	931,000	u	
EP1694	5/23/74	9	6674	852	608.2	1,129,000	(1	
EP1688	5/23/74	9	6356	801	725.3	1,422,000	11	•
F30	5/10/74	9	8853	886	823.6	1,344,000	at .	
C1005	6/11/74	9	6765	870	106.4	28	spent	
C1027	6/13/74	9	5720	832	69.7		n	
F37	5/22/74	10	9352	928	1101.5	997,000	mature	
EP1687	5/23/74	10	: :===================================	1045	1297.1	2,336,000	u	weight no
F28	5/10/74	10	10669	940	1188.1	2,225,000	ŧı	available
EP324	5/16/74	10	12212	980	2068.8	2,478,000	n	
CEG6	5/14/74	10	11214	965	2125.2	1,989,000	ti	
C102	5/23/74	10	11531	971	2335.8	1,549,000	n	•
F25	5/10/74	10	8989	886	783.6	1,345,000	u	
C34	5/21/74	10	9080	915	2843.0	1,936,000	ti ,	
C103	5/23/74	10	16571	1073	3953.3	2,332,000	n	÷
C118	5/23/74	10	***	943	151.6		spent	•
F41	5/23/74	1.0	14755	1085	3366.4	3,097,000	mature	
EP317	5/15/74	10	10170	937	2402.0	1,864,000	11	
EP169 7	5/23/74	10	9761	974	1578.8	1,167,000	11	
F2 7	5/10/74	10	7990	829	802.5	1,124,000	11	
CEG8	5/14/74	10	7082	860	759.2	1,355,000	u	• .
EP1482	5/30/74	10	7763	893	403.7	1,209,000		
EP397	4/ 2/74	11	11441	980	2300.6	2,616,000	u ·	:
CEG3	5/ 9/74	11	11440	1000	254.6		spent	
		•		·	•			

ID #	DATE COLLECTION	AGE (YEARS)	BODY WEIGHT (g)	TOTAL LENGTH (mm)	OVARY WEIGHT (g)	TOTAL EGGS	STATE OF MATURITY	COMMENTS
P1426	5/31/74	11	11895	1035	1376.7	2,530,000	mature	
37	5/21/74	- 11	5630	835	260.5	768,000	u	
104	5/23/74	11	600 Gré cas and	1027	2258.7	1,565,000	н -	weight not
14	5/15/74	11	7491	862	584.8	1,359,000	i i	available
1000	6/10/74	11	11259	1120.	166.0	1,660	spent	
2	4/30/74	440 440	7892	867	540.3	1,182,000	mature	age not
27	5/16/74	gan 100	770	443	1.1	4. 14 4. 14	immature	available "
P1674	5/22/74		3405	71.1	52.1		II	H .
P353	5/ 3/74		9717	942	744.8	2,282,000	mature	
15	5/ 1/74		9480	903	724.2	1,486,000	H	u
P322	5/16/74	***	8535	861	1742.3	1,734,000	, tr	H
14	5/ 1/74	des ess	9707	908	1107.3	2,534,000	ti .	n
115	5/23/74		11577	995	2612.6	1,892,000	ii.	u
13	5/ 1/74		11385	960	1316.0	1,354,000	н	II .
ORN 3	5/29/74		14528	1052	2488.7	3,778,000	11	
P325	5/26/74		8126	825	1444.1	1,545,000	·	age not
EG204	5/30/74		7445	846	784.0	1,250,000	u	available "
42	5/23/74		5030	805	631.2	885,000	H	u
P1693	5/23/74	** ***	4676	734	795.5	959,000	ŧi	
P1484	5/30/74		8853	910	1102.1	1,969,000	п	n
E G50	6/ 4/74		7491	870	119.1	96,100	n	. H

differed very little, while the mean length of age X gravid females (954 mm) slightly exceeded that of age XI individuals (948 mm). Most pronounced irregularities in age specific fecundity reported in Table VIII-1 of the Multiplant Report occur between ages V and VI and X and XI.

Question A.25:

With respect to the analysis of density-dependent growth beginning on p. VIII-8:

- a. Provide the raw data for striped bass and white perch for each year 1965-1974 (except 1966 and 1971) on July and August total lengths. Provide the analysis leading to estimates of young-of-the-year striped bass and white perch growth from July to August.
- b. Provide the raw data for striped bass and white perch for each year 1965-1974 (except 1971) on beach seine catch and beach seine effort. Provide the analysis leading to estimates of young-of-the-year striped bass and white perch catch per catch per unit area (CPUA).
- c. Provide a table of the data in Fig. VIII-4, p. VII-11, including a tabulation, by year, of minimal daily mean centigrade surface-water temperature in June, in July and in August. Provide a figure for white perch comparable to Fig. VIII-4 for striped bass, including a tabulation of the data plotted in such a figure.

Response:

a. Table 5 provides data on mean total length for white perch and striped bass in July and August from 1965 through 1974. Growth of each species from July to August was calculated as

growth = August mean TL - July mean TL

- b. Tables 6 and 7 provide data requested concerning beach seine catch per unit area (CPUA) for striped bass and white perch, respectively.
- c. Table 8 provides the data requested from which Figure VIII-4 in the First Annual Report for the Multiplant was generated for striped bass. Similar data are presented in Table 8 for white perch. Catch per unit area and July-August growth for young-of-the-year white perch are presented in Figure 1 for the years 1965-1974. The resulting regression equation for white perch abundance and growth is

growth = 0.0060 CPUA + 12.54

with an r value of 0.034.

Table 5

July and August mean total lengths for young-of-the-year striped bass and white perch, 1965-1974 (except 1971).

Fish collected in the Indian Point area of the Hudson River.

			Mean Total Length	(mm)	August
Year	S	Jui triped Bass	White Perch	Striped Bass	-White Perch
1965	*	36.2	30.9	60.4	56.9
1966		a	38.0	a	49.4
1967		35.6	27.0	60.8	36.8
1968	/.	45.8	24.8	69.0	32.9
1969		49.8	44.9	57.1	49.9
1970	•	33.3	37.3	57.4	55.6
1972		40.4	33.7	61.5	35.8
1973		45.4	33.7	62.1	45.1
1974		47.5	, 29.7	66.1	51.2
				ψ.:	

Note:

a No young-of-year striped bass collected in Indian Point area during July-August 1966

Table 6 - Beach seine catch and effort data for striped bass collected in the Indian Point region of the Hudson River during the months of July and August for the years 1965-1974. Catch and effort are indicated by station; a blank space indicates no sample taken.

Henth and Year		·						Statio	กร							·			,	·			
	II Catch	ft ²	II : Catch	ft"	3 Catch	ft ² Swept	Catch	5 ft ² Swept	Catch	ft ² Swept	Catch	8 fc ² Swept	Catch	ft ² Swept	Catch	ft ² . Swept	Catch	ft ² Swept	Catch	ft ² Swept	Catch	Total Effort (ft ²)	CPUA
July 1671 July 1671 July 1671 July 1671 July 1773 July 1773 July 1773 July 1773 July 1773 July 1687 July 1773 July 1687 July 1773 July 1687 July 1687 July 1687 July 1773 July 1687 July 1687 July 1773 July 1687 July 1	24 5 3 6 8 0 1 3 2 5 3 5 3 5 5 5 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	10.750 12.500 13.000 15.000 5.000 12.500 15.000 12.500 15.000	0 0 19 0 5 4	31.250 1.250 2.500 15.250 1.250 1.250	173 250	5.426 53.294 10.852 33.903	21 21	5,426 29,064 10,853 31,908	261	2.713 38.752	0 77	0 48,440 33,908	1 4 13	29.064 24.220 24.220 33.908 29.064 14.532	28 33	29.064 24,220 24,220 33.908 29.064 19.376	0 29 0 307 6	29.064 24.220 24.220 24.220 29.064 29.064 19,376	68 0	29.064 19.376 24.220 33.903 29.064 19.376	114 11 468 83 136 153 21 22 197 80 375 77 406 29	10,750 41,750 30,000 36,250 169,550 115,256 92,036 96,880 10,000 28,750 15,000 34,700 140,476 130,768 116,256 72,660	105.0 d 21.5 d 156.0 d 15.1 d 16.6 d 2.2 d 16.6 d 14.6 d 1

ATU, source of data

CPUA Methods

^aMonthly CPUA = total catch for that month/total ft² swept x 10^{-4} = catch per 10,000 ft² ^bMonthly CPUA (1969) adjusted for differences in effort by NYU and Raytheon as follows

EX. July CPUA ('69) = (NYU CPUA (JULY)
$$\times \frac{\text{NYU ft}^2}{\text{NYU + RAY ft}^2}$$
) + (RAY CPUA (JULY) $\times \frac{\text{RAY ft}^2}{\text{RAY + NYU ft}^2}$)

Praytheon inc., source of data Texas instruments inc., source of data

Table 7 - Beach seine catch and effort data for white perch collected in the Indian Point region of the Hudson River during the months of July and August for the years 1965-1974. Catch and effort are indicated by station; a blank indicates no samples taken.

Month and Year								Stat	ions							· · · · · · · · · · · · · · · · · · ·		•					
	II Catch	Wl ft ² Swept	II Catch	El 2 ft ² Swept	3 Catch	ft ² Swept	3 Catch	5 ft ² Swept	Catch	6 ft ² Swept	Catch	8 ft ² Swept	8 Catch	ft ² Swept	Catch	ft ² Swept	Catch	ft ² Swept	Carch	ft ² Swept	Catch	. Total Effort (ft ²)	
101y 16511 101y 16671 101y 16671 101y 1672 101y 1773 101y 1773 101	26	10.750 12.560 30.000 35.000 5.000 10.000 12.500 15.000 31.500	0 17	31,250 1,250 2,500 16,250 3,200 1,500		5.426 53.294 10.852 13.908	0 17 3 121	5.426 29.964 10.852 33.908		2,713 38,752 10,852 38,752	7	0 48.440 33,908	0 1 0	29.064 24.220 24.220 33.908 29.064 14.532	60 48	29.054 24.220 24.220 33.908 29.064 19.376	25 34 35	24,220 24,220 29,064 29,064	193 814	29.064 19.376 24.220 33.908 29.064 19.376	11 0 24 5 609 143 88 133 3 0 13 7 381 295 1611 153	10,750 43,750 30,000 36,250 169,550 116,256 92,016 95,240 10,000 28,750 15,000 36,230 140,476 130,733 116,256 72,660	20 A 3 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D 2 D

NYU, source of data

Raytheon Inc., source of data

Texas instruments Inc., source of data

CPUA Methods

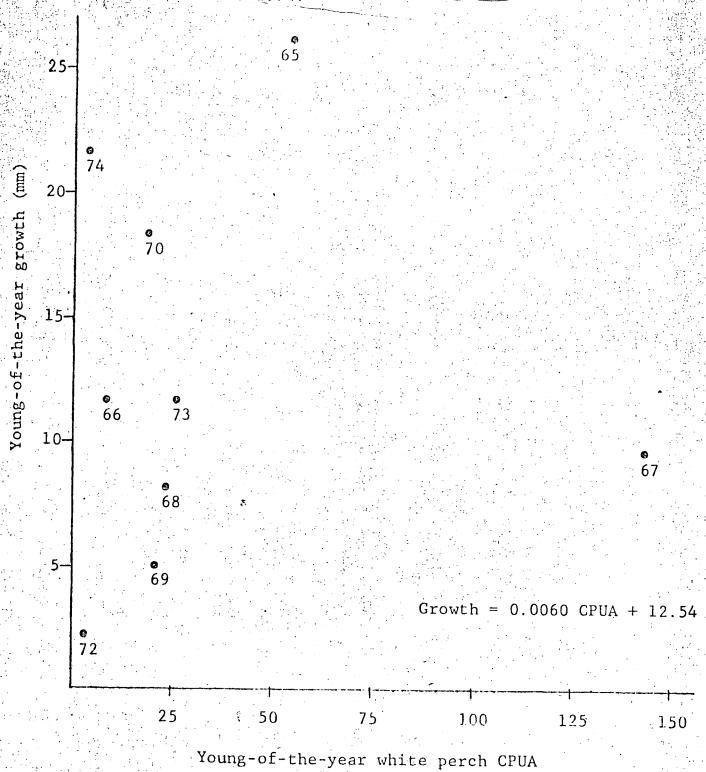
^aMonthly CPUA = total catch for that month/total ft² swept x 10⁻⁴ = catch per 10,000 ft²

^bMonthly CPUA (1969) adjusted for differences in effort by NYU and Raytheon as follows

EX. July CPUA ('69) = (NYU CPUA (JULY) x $\frac{\text{NYU ft}^2}{\text{NYU + RAY ft}^2}$) + (RAY CPUA (JULY) x $\frac{\text{RAY ft}^2}{\text{RAY + NYU ft}^2}$

Table 8 - Mean catch per unit area (CPUA) and growth data for striped bass and white perch during the months of July and August from 1965 through 1974 from which Figure VIII-4 was generated for striped bass.

	Stripe	d Bass	White Perch		. Mean Biweekly Surface Water Temp (C) in IP area ^d					
	·									
Year	JulAug. CPUA ^a	JulAug. Growth (mm)b	JulAug. CPUA ^a	JulAug. Growth (mm)b	Jun. 1-15	Jun. 16-30	Jul. 1-15	Jul. 16-31	Aug. 1-15	Aug. 16-31
1965 1966 1967 1968 1969 1970 1972 1973	9.1 0c 8.4 1.4 81.3 31.5 17.4 74.1 19.7	24.2 25.2 23.6 7.3 24.1 21.1 16.7 18.6	54.0 8.6 143.7 23.0 22.0 17.3 3.1 25.8 3.1	26.0 11.4 9.8 8.1 5.0 18.3 2.1 11.7 21.5	18.5 19.2 18.0 19.0 20.5 19.7 16.5 20.0	22.7 22.0 22.3 22.5 21.5 19.7 20.5	23.0 25.5 24.0 24.5 23.3 23.0 20.5 22.0 23.5	24.0 23.5 23.5	24.6 25.1 26.6 25.8 25.7 25.9 24.5 24.7 25.1	24.7 25.6 25.4 25.2 25.5 25.5 23.8 24.6 25.3


^aJul.-Aug. CPUA = $\frac{\text{Jul. CPUA + Aug. CPUA}}{2}$ (From Table 5, 6, and 7)

bJul.-Aug. growth (mm) = August \bar{x} TL (mm) - July \bar{x} TL (mm) - (From Table 5)

CNo yoy SB captured during Jul.-Aug. in IP area

dMinimum daily temps. are not available for all years between 65 and 74, however, for those years where daily minima and maxima are available, the difference rarely exceeds 2°C.

Figure 1. Young-of-the-year white perch growth versus abundance in July and August for the years 1965-1974.

