CALC. NO. <u>IP3-CALC-RPC-00291</u> REV. <u>0</u> REV. <u>0</u>	
IOD /TASK NO	Page 1 of 23 IP3 X JAF 24
	RECEIVEN
A CATEGORY: <u>I</u> PRELIMINARY: FINAL: <u>X</u>	
PROJECT/TASK:Twenty-Four (24) Month Operating Cycle ProSYSTEM NO./NAME:Reactor Protection and Control (RPC)STITLE:Instrument Loop Accuracy/Setpoint Calculat and Underfrequency	ject By D.C.A. Mary ion/6.9kV Undervoltage
NAME SIGNATU	RE DATE
PREPARER G. Durniak	Intivitaz.
HECKER: R. Valvano Rahvano	10/11/19:2
VERIFIER: NO W. Wittich	10/14/62
A. Petrenko	
PROBLEM/OBJECTIVE/METHOD V	
cycle from 18 months \pm 25% to 24 months \pm 25% This calculation has been prepared in accordance with IES	-3, DCM-2 and ISA RP67.04.
DESIGN BASIS/ASSUMPTIONS	
The 6.9kV bus undervoltage and underfrequency trip circui against a loss of coolant flow incident. (See	ts provide protection ction 14.1.6 of Ref. 3.2.3)
Seismic event is not considered coincident with any other	accident.
SUMMARY/CONCLUSIONS	
Undervoltage Relays:	
This calculation demonstrates that the performance of the based primarily on actual As-Found, As-Left plant data, i month \pm 25% calibration interval. The calibration interv should not be extended.	Westinghouse SV relay, s not suitable for a 24 al for the SV relays
Undervoltage Time Delay and Underfrequency Relays:	
The existing Trip Setpoints provide sufficient margin to will occur within the Analytical Limit (AL), for an exten \pm 25% operating cycle. No setpoint changes are required.	insure that channel trip ded twenty-four (24) month
REFERENCES	RPC
	CAT I
See Section 3.0	
See Section 3.0 AFFECTED SYSTEMS/COMPONENTS/DOCUMENTS	in a second s
See Section 3.0 AFFECTED SYSTEMS/COMPONENTS/DOCUMENTS RPS/Undervoltage, Undervoltage Time Delay, and Underfreque Undervoltage Undervoltage Time Delay	ency Relays <u>Underfrequency</u>
See Section 3.0 AFFECTED SYSTEMS/COMPONENTS/DOCUMENTS RPS/Undervoltage, Undervoltage Time Delay, and Underfrequent Undervoltage Undervoltage Time Delay 27-1A 27-1-62A	ency Relays <u>Underfrequency</u> 81-1
See Section 3.0 AFFECTED SYSTEMS/COMPONENTS/DOCUMENTS RPS/Undervoltage, Undervoltage Time Delay, and Underfreque Undervoltage Undervoltage Time Delay 27-1A 27-1-62A 27-2A 27-2-62A	ency Relays <u>Underfrequency</u> 81-1 81-2
See Section 3.0AFFECTED SYSTEMS/COMPONENTS/DOCUMENTSRPS/Undervoltage, Undervoltage Time Delay, and UnderfrequeUndervoltage Time Delay, and UnderfrequeUndervoltage Time Delay27-1A27-1A27-1-62A27-2A27-2-62A27-3A27-3-62A27-4A	ency Relays <u>Underfrequency</u> 81-1 81-2 81-3 81-4
See Section 3.0 AFFECTED SYSTEMS/COMPONENTS/DOCUMENTS RPS/Undervoltage, Undervoltage Time Delay, and Underfrequent Undervoltage Undervoltage Time Delay 27-1A 27-1-62A 27-2A 27-2-62A 27-3A 27-3-62A 27-4A 27-4-62A	uency Relays <u>Underfrequency</u> 81-1 81-2 81-3 81-4
See Section 3.0 AFFECTED SYSTEMS/COMPONENTS/DOCUMENTS RPS/Undervoltage, Undervoltage Time Delay, and Underfreque Undervoltage Undervoltage Time Delay 27-1A 27-1-62A 27-2A 27-2-62A 27-3A 27-3-62A 27-4A 27-4-62A VOIDED OR VOIDS OR SUPERSEDED BY: SUPERSEDED	uency Relays <u>Underfrequency</u> 81-1 81-2 81-3 81-4 S: <u>N/A</u>

CALCU	LATION NO. <u>IP3-CALC-RPC-00291</u>	REVI	SI 0	N _0							_		
Proje	ct IP3	Page	_2		of	_24			1.			;	. :
Title Preli	<u>Instr. Loop Accur/Setpoint Calc.</u> minary	Date Prep	are	d by	G.	Du	rni	ak	 	<u>192</u> ate	-/ <i>6/</i>	H	n II
Final		Chec	ked	by	<u>R</u> .	Va	lva	no	Da	<u>ate</u>	170	c <u>//</u>	192 R
	TABLE OF CON	ITENT	S										
													PACE
													1100
1.0	PURPOSE	• •			•		•					•	3
2.0	ASSUMPTIONS												3
2 0	DEEEDENCES				-				-	-		-	3
5.0		••	•••	•••	•	•••	•	• •	•	•	•••	•	ر د
4.0	LOOP FUNCTION	••	•••	• •	•	•••	•	•••	•	•	•••	•	6
5.0	LOOP (BLOCK) DIAGRAM	•••	•••	• •	•	•••	•	• •	•	•	•••	•	7
6.0	LOOP UNCERTAINTY EQUATIONS	• •	•••		•	•••	•	• •	•	•	•••	•	8
	6.1 LOOP COMPONENTS		•••		•								8
7.0	DETERMINE CHANNEL UNCERTAINTY (CU)				•		•						8
8.0	OBTAIN ANALYTICAL LIMIT (AL)								•			_	18
0.0		•••			•		• ·		•	-		-	20
9.0	DETERMINE SELFOINT (IS)	• •	•••	•••	•	•••	•	• •	•	•	• •	•	20
10.0	DETERMINE ALLOWABLE VALUE (AV)	• •	•••	•••	•	•••	•	•••	•	•	•••	•	21
11.0	SUMMARY	••	••		•		•		•	•	••	•	23
12.0	ATTACHMENTS						•	•. •	•		•••	•	24

.

New Vork	Power	•						
Authorit	rower							
CALC	ULATIO	ON NO. IP	3-CALC-RPC-00291	REVISION 0				
Proj Titl Prel Fina	Project <u>IP3</u> Title <u>Instr. Loop Accur/Setpoint Calc.</u> Preliminary Final		p Accur/Setpoint Calc.	Page <u>3</u> of <u>24</u> Date <u>1992</u> Prepared by <u>G. Durniak</u> Date <u>6/14/42</u> M Checked by <u>R. Valvano</u> Date <u>10/14/92</u> R				
				·				
1.0	PURP	OSE						
	Veri cons oper	fy that c idering a ating cyc	hannel trip will occur wi dditional Instrument drif le from 18 months ± 25% t	ithin the Analytical Limit (AL), Et or uncertainties due to extension of the to 24 months ± 25%.				
2.0	ASSU	MPTIONS						
	2.1	2.1 Seismic event is not considered coincident with any other accident.						
2.2 Additional "margin" is not used in the calculation used is inherently conservative.				in the calculation , since the methodology				
	2.3	Deleted		· · · ·				
	2.4	The mini	mum ambient temperature f	for instrument calibration will be 68°F.				
	2.5 The Safety Analysis assumes a t to the initiation of control ro calculation, one-half (1/2) of Analytical Limit for the Underv Section 8 2)			ime delay from the time of loss of voltage d motion. For the purpose of this this total time delay will be assumed as the oltage time delay relay trip setpoint. (See				
	2.6	The maxi be 9 cyc energize conserva typicall	mum trip time for the Real les (150 ms). This time f d, to opening of the auxi tive, given that Westing y trip within 8 cycles.	actor Coolant Pump breakers is assumed to is from the moment the trip coil is iliary contacts. This value is house has verified that 75DH500 Breakers (ref. 3.1.9)				
3.0	REFE	RENCES						
	3.1	General						
		3.1.1	U.S. NRC, Regulatory G "Instrument Setpoints 1	uide 1.105, Rev. 2, February, 1986 For Safety-Related Systems".				
		3.1.2	ANSI/ISA-S67.04-1988 S Related Instrumentation	tandard "Setpoints for Nuclear Safety- n", dated 2/4/88.				
*		3.1.3	ISA-RP67.04, Part II, Determination of Setpo Instrumentation", date	Draft 9, "Methodologies for the ints for Nuclear Safety-Related d 3/22/91.				
*		3.1.4	IES-3, Rev. 0, 1/3/91, Calculations.	Instrument Loop Accuracy and Setpoint				
		3.1.5	DCM-2, Rev. 1, 1/18/91 and Analyses.	, Preparation and Control of Calculations				
*		3.1.6	Master Equipment List,	LVOLT System, dated 4/2/90.				

FORM DCM 2, 4.2 (JAN. 1991)

* Used as Design Input

·			
New York Power Authority			
CALCULATION	N NO. <u>IP3-</u>	CALC-RPC-00291	REVISION 0
Project <u>II</u> Title <u>In</u> Preliminar Final	P3 str. Loop y X	Accur/Setpoint Calc.	Page <u>4</u> of <u>24</u> Date <u>1992</u> Prepared by <u>G. Durniak</u> Date <u>0/4/97</u> Checked by <u>R. Valvano</u> Date <u>0/4/97</u> <u>R</u>
	3.1.7	System Description No. 27	1, Electrical Systems, Rev. 0.
*	3.1.8	System Description No. 11	.0, Ventilation System, Rev. 0.
	3.1.9	Notes of telephone convers Adamsky/Westinghouse, date time of 75DH500 breakers,	sation, between G. Durniak/NYPA and W. ed 10/20/92, concerning trip response Shop Order 25-Y-6757.
	3.1.10	Memo from A.J. Wettlaufer, February 26, 1976, System	/W. I. Sayed to M.W. Hultgren dated Underfrequency/DNB, DSR-110877.
	3.1.11	JB-D&A84-101, Letter from dated Oct. 29, 1984, Degra III, Report No. RPT-EDA-84	J. Bashian to G. Laszlo/L. Burnett, aded Grid Voltage Studies Report, Phase 4-08. (DSR No. 169370)
	3.1.12	Memo from G.D. Rockefeller Settings for L&P Underfree	r to J. Tamburri, dated Jan. 7, 1974, quency and Undervoltage Relays.
	3.1.13	Memo from G. D. Rockefelle Temporary Settings for L&	er to J. Tamburri, dated July 25, 1975, P Undervoltage Relays.
	3.1.14	Memo from G.D. Rockefeller 1976, Relay Settings for D	r to J. Tamburri, dated October 29, Reactor Undervoltage Trip.
	3.1.15	Memo from H. Calhoun/ABB SV, KF Relay Data.	to G. Durniak/NYPA, dated 1/10/92, CV-7,
*	3.1.16	NYPA Response Letter to N August 29, 1977. (DSR No	RC, from W. Cahill to R. Reid, dated . 37486)
*	3.1.17	IPN-80-53, NYPA Response 3 Varga, dated May 30, 1980	Letter to NRC, from P. Early to S. (DSR No. 35843).
	3.1.18	IEEE Transactions on Power No. 1, Jan/Feb 1976, Deter	r Apparatus and Systems, Volume PAS-95, rmination of Frequency Decay Rates.
*	3.1.19	Notes of telephone conver W. Elmore/ABB, dated 5/21 Uncertainty.	sation, between G. Durniak/NYPA and /92, Westinghouse KF Relay Power Supply
3.2	Final Safe	ety Analysis Report (FSAR)	Rev. 7, July 1991.
	3.2.1	Chapter 16, Design Criter	ia for Structures and equipment.
	3.2.2	Chapter 8, Section 8.2.2,	Station Distribution System.
	3.2.3	Chapter 14, Safety Analys	is.
*	3.2.4	Chapter 15, Technical Spe No. 111, dated 3/9/92.	cification and Bases, through Amendment

~

AUT	noricy		
	CALCULATI	ON NO. <u>IP3</u>	-CALC-RPC-00291 REVISION 0
r	Project	IP3	Page <u>5</u> of <u>24</u>
	Title <u>I</u> Prelimina	<u>nstr. Loop</u> ry	<u>Accur/Setpoint Calc.</u> Date <u>1992</u> Prepared by G. Durniak Date ////////////////////////////////////
	Final	<u>X</u>	Checked by <u>R. Valvano</u> Date <u>10/14</u> 92 A
	3.3	Drawings	
		3.3.1	Main Three Line Diagrams
			9321-F-30113, Sht. 1, Rev. 23
			9321-F-30113, Sht. 2, Rev. 0
			9321-F-30113, Sht. 3, Rev. 0
	*	3.3.2	Elementary Wiring Diagrams:
			500B971, Sht. 15, Rev. 5
			500B971, Sht. 16, Rev. 4
			500B971, Sht. 17, Rev. 3
			500B971, Sht. 18, Rev. 4
			500B971, Sht. 19, Rev. 5
			500B971, Sht. 20, Rev. 3
	*	3.3.3	Equipment Arrangement Drawings:
			9321-F-70053, Rev. 10, Equipment Arrangement, Turbine Building
		3.3.4	617F643, Rev. 7, 6900V One Line Diagram.
		3.3.5	617F645, Rev. 11, Main One Line Diagram.
	*	3.3.6	Reactor Protection System Schematics:
			113E301, Sht. 2, Rev. 8
			113E301, Sht. 11, Rev. 12
		3.3.7	Schematic Diagrams
			9321-LL-31133, Shts. 7, 8, 9, 10, Rev. 8
	3.4	Calibrati	on Procedures
		3.4.1	IC-AD-2, Rev. 7, Calibration and Control of Measuring and Test Equipment.
	*	3.4.2	AP-19, Rev. 10, Surveillance Test Program.
	*	3.4.3	AP-17, Rev. 5, Calibration of M&TE.
	*	3.4.4	3PC-R5A, Rev. 8, 6.9kV Undervoltage Relay Calibration and Agastat Time Response.
	*	3.4.5	3PC-R5B, Rev. 7, 6.9kV Underfrequency Relays Calibration.

.

New Aut	York	Power	r		
	CALCU	LATI	ON NO. <u>IP3</u>	-CALC-RPC-00291	REVISION _0
	Proje Title Preli Final	ct <u>I</u> mina	IP3 nstr. Loop ry X	Accur/Setpoint Calc.	Page 6 of 24 Date 1992 Prepared by G. Durniak Date 10/14/47 Checked by R. Valvano Date 11/4/92
	*		3.4.6	PT-M6, Rev. 0, 6.9kV Und Functional.	ervoltage/Underfrequency Analog Channel
5	¥		3.4.7	3PT-R91, Rev. 5, Reactor and Trip Verification.	Trip and Bypass Breaker Response Time
	*	3.5	IP3-RPT-F	PC-00357, Preliminary Rev	. O, Instrument Drift Analysis for RPS.
		3.6	Product I	iterature	
	k		3.6.1	I. L. 41-766.1E, Westing November 1986, Tech Manu	house SV Voltage Relay Instructions, al WE-036.
	k		3.6.2	I. L. 41-503L, Westinghov Tech Manual WE-49.	use KF Underfrequency Relay Instructions,
			3.6.3	Agastat 2100 Series Timin Corp. Industrial Catalog	ng Relay, dated December 1989 Amerace
,	k .		3.6.4	ABB/Westinghouse Instrum Transformers, Type VOY a	ent Transformer Reference, Voltage nd VOZ. (ABB File No. 42-000 H90)
, 1	*		3.6.5	I. L. 41-766.1J, Westing Type SV Relay.	house Instruction, dated December 1984,
k	*		3.6.6	I.L.41-753.1J, Westingho Effective September 1975	use MG-6 Relay Instruction Manual,
			-		
	4.0	LOOF	FUNCTION		· · ·
		A lo Pump	oss of cool os Power Su	ant flow incident can resupply.	ult from a fault in the Reactor Coolant
		The nece	6.9kV low ssary prot	voltage and low frequency cection against a loss of	trip circuits provide a part of the coolant flow incident. (Section 14.1.6 of Ref. 3.2.3)
		**			

_

* Used as Design Input

CALCULATION NO. <u>IP3-CALC-RPC-00291</u>	REVISION 0	• · ·
Project <u>IP3</u> Title <u>Instr. Loop Accur/Setpoint Calc.</u> Preliminary Final <u>X</u>	Page <u>8</u> of <u>24</u> Date Prepared by <u>G. Durniak</u> I Checked by <u>R. Valvano</u> I	1992 Date <u>10/14/4</u> 2 // Date <u>10/14</u> /42 R

6.0 LOOP UNCERTAINTY EQUATIONS

(SEE ATTACHMENT I)

6.1 LOOP COMPONENTS

(Ref. 3.1.6)

TAG	SYSTEM	BLDG	BUS	MODEL
27-1A 27-2A 27-3A 27-4A	ED	TB ELEV. 15	1 2 3 4	WESTINGHOUSE SV
27-1-62A 27-2-62A 27-3-62A 27-4-62A	ED	TB ELEV. 15	1 2 3 4	AGASTAT 2122DH39Y (Sht. 20 of Ref. 3.3.2)
81-1 81-2 81-3 81-4	ED	TB ELEV. 15	1 2 3 4	WESTINGHOUSE KF

7.0 DETERMINE CHANNEL UNCERTAINTY (CU)

Total Channel Uncertainty (CU)

The total Channel Uncertainty is calculated for the Undervoltage Relays, the Undervoltage Time Delay Relays, the Underfrequency Relays and the Underfrequency Relay Time Delay as follows. The methodology is described in Attachment I:

a) $CU = \pm \sqrt{PM^2 + PE^2 + IRE^2 + e_1^2} \pm B^{\pm}$ (Undervoltage (LOV) Relays) $= \pm \sqrt{0^2 + .36^2 + 0^2 + 39^2}, -3$ $= \pm 39, -3 \ VAC$ $= +39 \ VAC$ $= -42 \ VAC$ b) $CU = \pm \sqrt{PM^2 + PE^2 + IRE^2 + e_2^2} \pm B^{\pm}$ (Undervoltage (LOV) Time Delay Relays) $= \pm \sqrt{0^2 + 0^2 + 0^2 + 11^2}, +5^{\pm}$ $= \pm 11^{\pm}, +5^{\pm} \text{ of Setting}$

CU = +16%

= -11% of Setting

New Verla Deces	······	
New fork Power Authority	- · · .	-
CALCULATI	ON NO. <u>IP3-CALC-RPC-00291</u>	REVISION 0
Project _	IP3	Page <u>9</u> of <u>24</u>
Title I	nstr. Loop Accur/Setpoint Calc.	Date 1992
Final Final	ry	Checked by R. Valvano Date ///4/4/ R
c)	$CU = \pm \sqrt{PM^2 + PE^2 + IRE^2 + \sigma_3^2} \pm B^{\pm}$ (Unde	rfrequency Relays/Time Delay)
	$= \pm \sqrt{0^2 + 0^2 + 0^2 + 25^2}, +16\%,$	
	= ±25, +16% of Setting,	
	CU = -25%	
	= +41% of Setting	
d)	$CU = \pm \sqrt{PM^2 + PE^2 + IRE^2 + \theta_4} \pm B^* (Under$	rfrequency Relays)
	$= \pm \sqrt{0^2 + 0^2 + 0^2 + .56^2},18\%, +.18\%,$	+3.64%
	= +4.38%	
	=74% of Setting,	
Give	n the following Loop Uncertainties:	
7.1	Process Measurement Uncertainty (H	PM)
	Process Measurement Uncertainty is frequency measurement, and not app	s considered negligible for a voltage or olicable for a time delay.
	Therefore, PM = 0	
7.2	Primary Element Uncertainties (PE))
	Westinghouse 6.9kV potential trans Class.	sformers are typically ANSI 0.3 Accuracy (Ref. 3.6.4)
	This corresponds to $\pm .3$ % x 120 VAC	C (Secondary) = $\pm .36$ VAC.
7.3	Insulation Resistance Effect (IRE))
	Both the Undervoltage (LOV) and Un 31 and 32 are located in the Turbi environment.	nderfrequency Relays in 6.9kV Switchgear ine Bldg., Elev. 15, which is a mild (Ref. 3.3.3)
	Furthermore, IRE is only a concern circuits.	n for sensitive, low signal level
	Therefore, IRE - 0	
7.4	Undervoltage (LOV) Relay Voltage U	Jncertainty (e ₁)
	$\Theta_1 = \pm \sqrt{RA_1^2 + DR_1^2 + TE_1^2 + RE_1^2 + SE_1^2 + HE_1^2}$	$+ SP_1^2 + MTE_1^2 + PS_1^2 \pm B_1^*$
	$\theta_1 = \pm 0^2 + 39^2 + 0^2 +$	$3^2 + 0^2$, -3
	$\theta_1 = \pm 39$, -3 VAC Given the following	g Undervoltage (LOV) Relay uncertainties:

CALCULA	TION NO. IP	3-CALC-RPC-00291	REVISION 0				
Project	IP3 —		Page 10 of 24				
Title	Instr. Loo	p Accur/Setpoint Calc.	Date 1992				
Prelimi	nary		Prepared by <u>G. Durniak</u> Date <u>10/14/00</u>				
Final	<u>X</u>		Checked by <u>R. Valvano</u> Date <u>1014</u> 192 K				
	7.4.1	Reference Accuracy (RA ₁)					
		Vendor reference accurac	y is not given for the SV-7 relays. (Ref. 3.6.1)				
		The Calibration Procedur is shown to be +3, -0 VA Reference Accuracy.	e Tolerance for the Undervoltage Relays C. This value will be used as the (Ref. 3.4.4)				
		This Calibration Procedu sooner for a decreasing negative bias on a loop	re Tolerance will cause the relay to trip variable. Therefore, it represents a basis equal to -3 VAC.				
	7.4.2	Drift (DR ₁)					
		Vendor drift data is not	not available for the undervoltage relays.				
		However, the Instrument provides an evaluation of statistical study of act Maximum Expected Drift f relays is shown to be wi	Drift Analysis for RPS (Ref. 3.5) f relay performance, based on a ual "as-found" and "as-left" values. The or a 30 month period (MED30) for the thin ± 39 VAC.				
		"MED30" represents the c effects.	ents the combined uncertainty due to RA, DR and MTE				
		For conservatism, in thi represent drift only.	s calculation, MED30 will be used to				
	7.4.3	Temperature Effect (TE ₁)					
		The relays are located i	n a mild environment.				
		Ventilation air in the T equipment (page 5 of Ref	urbine Hall is warmed by heat lost from . 3.1.8)				
		No temperature uncertair undervoltage relays (Ref	ties are identified by the vendor for the . 3.6.1).				
		However, calibrations any year, at various ambient conservative to assume to Section 7.4.2.	e performed at different times of the temperatures. Therefore, it is hat any temperature effect is included in				
	7.4.4	Radiation Effect (RE_1) -	0				
		The undervoltage relays	are located in a mild environment.				
	7 / 5	Solution Effect (SE) $= 0$	(Assumption 2 1)				

uth	hority		
	CALCULATION NO. 1P3.	-CALC-RPC-00291	REVISION 0
	Project <u>IP3</u> Title <u>Instr. Loop</u> Preliminary <u>X</u>	Accur/Setpoint Calc.	Page <u>11</u> of <u>24</u> Date <u>1992</u> Prepared by <u>G. Durniak</u> Date <u>16/14/12</u> Checked by <u>R. Valvano</u> Date <u>16/14/12</u> R
	7.4.6	Humidity Effect (HE ₁) = 0	
		The relays are located in	a mild environment.
	7.4.7	Static Pressure Effect (S	$(P_1) = 0$
		Pressure effects are not	applicable for undervoltage relays.
	7.4.8	Measurement and Test Equi	pment uncertainty (MTE ₁)
		The following instrument as shown in the block dia	is used to test the Undervoltage relays, agram (Section 5.0) and Ref. 3.4.4:

MTE₁: Digital Volt Meter (DVM)

The reference standards used for calibrating M&TE have an uncertainty (error) requirement of not more than 1/4 of the tolerance of the equipment being calibrated (Ref. 3.4.3).

Measuring and Test Equipment shall have an accuracy greater than or equal to that of the equipment being calibrated (Ref. 3.4.2).

Given the relative high accuracy of the M&TE, and the procedural guidelines stated above, it is conservative to assume that:

MTE - The value used as the relay Reference Accuracy (RA), including any M&TE reading error, and reference standard uncertainty.

Therefore,

 $MTE_1 = \pm 3 VAC$

7.4.9 Power Supply Effect $(PS_1) = 0$ %

The undervoltage relays are powered from the potential transformers on the 6.9kV bus. Therefore, any PS effects are included in Sec. 7.2.

7.5 Undervoltage (LOV) Time Delay Relay Uncertainty, (e₂)

 $\Theta_2 = \pm \sqrt{RA_2^2 + DR_2^2 + TE_2^2 + RE_2^2 + SE_2^2 + HE_2^2 + SP_2^2 + MTE_2^2 + PS_2^2 \pm B_2^{\pm}}$

 $= \pm \sqrt{5^2 + 6.3^2 + 5.7^2 + 0^2 + 0^2 + 0^2 + 5^2 + 0^2}, +5$

e₂ = ±11%, +5% of setting, given the following Undervoltage (LOV) Relay time delay uncertainties:

CALCULATION NO. 1P3	-CALC-RPC-00291	REVISION 0
Project <u>IP3</u> Title <u>Instr. Loop</u> Preliminary <u> </u>	Accur/Setpoint Calc.	Page <u>12</u> of <u>24</u> Date <u>1992</u> Prepared by <u>G. Durniak</u> Date <u>/0/14/4</u> ? <u>M</u> Checked by <u>R. Valvano</u> Date / <u>0/14/4</u> ? R
7.5.1	Reference Accuracy (RA ₂))
	The Vendors Repeat Accu	racy is given as ± 5% at 25°C. (page 11 of Ref. 3.6.3
	The Calibration Procedu delay relays is shown t milliseconds. (Ref. 3.4	re Tolerance for the Undervoltage time o be -25 milliseconds for a setting of 500 .4).
	This calibration toleration toleration an increasing variation positive bias on a loop $\frac{25 \text{ ms}}{500 \text{ mg}}$ = + 5% of Setting.	nce will cause the relays to trip sooner ble. Therefore, this represents a basis. This bias is equivalent to:
	For conservatism, both Tolerance bias will be delay relay uncertainty	the Reference Accuracy and the Calibration used to calculate the undervoltage time
7.5.2	Drift (DR ₂)	
	Vendor drift data is no Delay relays (Ref. 3.6.	t available for the undervoltage Time 1).
	However, the Instrument provides an evaluation statistical study of ac Maximum Expected Drift relays is shown to be w	Drift Analysis for RPS (Ref. 3.5) of relay performance, based on a tual "as-found" and "as-left" values. The for a 30 month period (MED30) for the ithin ± 6.3% of setting.
	"MED30" represents the effects.	combined uncertainty due to RA, DR and MT
	For conservatism, in th represent drift only.	is calculation, MED30 will be used to
7.5.3	Temperature Effect (TE ₂)
	The relays are located	in a mild environment.
	Ventilation air in the equipment.	Turbine Hall is warmed by heat lost from (page 5 of Ref. 3.1.8
	The vendor specified av within ± 20% of the ave reduced effect at lesse	erage time between -55°C and 85°C will be rage at 25°C, with a proportionally r extremes. (page 11 of Ref. 3.6.3
	This represents a tempe	rature change of 140°C.

CALCULATION NO. I	P3-CALC-RPC-00291	REVISION 0
Project IP3		Page <u>13</u> of 24
Title <u>Instr. Lo</u>	op Accur/Setpoint Calc.	Date 1992 ududa 4
Preliminary Final X	<u> </u>	Prepared by <u>G. Durniak</u> Date <u>0.1440</u>
	Given that calibration Assumption 2.4, it is c temperature change will	may be performed at 68°F (20°C) per onservative to assume that the actual not exceed 40°C. Therefore,
	$\frac{20\%}{140°C} = \frac{TE_2}{40°C}$	
	$TE_2 = \pm 5.7$ % of Setting	
7.5.4	Radiation effect (RE_2) ·	- 0
	The relays are located	in a mild environment.
7.5.5	Seismic Effect $(SE_2) = 0$) (Assumption 2.1)
7.5.6	Humidity Effect (HE ₂) -	0
	The relays are located	in a mild environment.
7.5.7	Static Pressure Effect	$(SP_2) = 0$
	The pneumatic time dela environment. Ambient P	y relays are located in a mild ressure effects are negligible.
7.5.8	Measuring and Test Equi	pment (MTE)
	The following instrumen time delay relays, as s and Ref. 3.4.4:	t is used to calibrate the undervoltage hown in the block diagram (section 5.0)
	MTE ₂ : Timer	
	The reference standards uncertainty (error) req tolerance of the equipm	used for calibrating M&TE have an uirement of not more than 1/4 of the ent being calibrated (Ref. 3.4.3).
	Measuring and Test Equi or equal to that of the	pment shall have an accuracy greater than equipment being calibrated (Ref. 3.4.2).
	Given the relative high guidelines stated above	accuracy of the M&TE, and the procedural , it is conservative to assume that:
	MTE — The value used as including any M&TE read uncertainty.	the relay Reference Accuracy (RA), ing error, and reference standard
	Therefore,	
	$MTE_2 = \pm 5\%$	
	_	

New York Power		<u> </u>	
Authority			
CALCULATIO	N NO. <u>IP3</u>	-CALC-RPC-00291	REVISION 0
Project <u>I</u>	P3		Page <u>14</u> of <u>24</u>
Title In	str. Loop	Accur/Setpoint Calc.	Date 1992
Preliminar Final	У <u></u>		Prepared by <u>G. Durniak</u> Date <u>10/19/9</u> AC
I IIIaI	<u></u>		Checked by <u>R. Valvano</u> Bace <u>Mini</u> 200
	7.5.9	Power Supply Effect	$(PS_2) = 0$
		The preset time dela delay) pneumatic rel energized. No power	ay period for an Agastat Series 2122 (off- lay begins as soon as the coil is de- r is required during the timing period.
			(page 11 of Ref. 3.6.3)
7.6	Underfreq	uency Relay Uncertain	nty, Time Delay (e ₃)
	$ \Theta_3 = \pm \sqrt{RA_3^2} $	$+ DR_3^2 + TE_3^2 + RE_3^2 + SE_3^2 +$	$+ HE_3^2 + SP_3^2 + MTE_3^2 + PS_3^2 \pm B_3^*$
	$= \pm \sqrt{0^2} +$	$19.4^2 + 0^2 + 0^2 + 0^2 + 0^2$	$+ 16^2 + 0^2$, $+ 16$ %
	e ₃ = ±25%,	+16% of setting,	given the following Underfrequency Relay time delay uncertainties:
	7.6.1	Reference Accuracy	(RA ₃)
		The Vendor Reference Relay time delay.	e Accuracy is not given for the Underfrequency (Ref. 3.6.2)
		The Calibration Proc time delay is shown will be used as the	cedure Tolerance for the Underfrequency relays to be016 seconds (Ref. 3.4.5). This value Reference Accuracy.
		This calibration to for an increasing varepresents a positive $\frac{.016}{.1}$ = +16% of Setti	lerance will cause the relay to trip sooner ariable (time). Therefore, this tolerance ve bias on a loop basis, and is equivalent to: .ng.
	7.6.2	Drift (DR ₃)	
		Vendor drift data is time delay (Ref. 3.0	s not available for the underfrequency relays 6.2).
		However, the Instrum provides an evaluat statistical study of Maximum Expected Dr relays is shown to b	ment Drift Analysis for RPS (Ref. 3.5) ion of relay performance, based on a f actual "as-found" and "as-left" values. The ift for a 30 month period (MED30) for the be within ± 19.4% of setting.
		"MED30" represents effects.	the combined uncertainty due to RA, DR and MTE
	<	For conservatism, in represent drift only	n this calculation, MED30 will be used to y

N A

ew uth	York Power ority		
	CALCULATION NO. IP3	-CALC-RPC-00291	REVISION 0
	Project <u>IP3</u> Title <u>Instr. Loop</u> Preliminary <u> </u>	Accur/Setpoint Calc.	Page <u>15</u> of <u>24</u> Date <u>1992</u> Prepared by <u>G. Durniak</u> Date $\frac{19/14}{192} \frac{1}{10}$ Checked by <u>R. Valvano</u> Date $\frac{10/14}{192} \frac{1}{2} \frac{1}{8}$
	7.6.3	Temperature Effect (TE ₃)	,
		The relays are located in	n a mild environment.
		No temperature uncertaint Underfrequency relays tim	ties are identified by the vendor for the (Ref. 3.6.2)
		However, calibrations are year, at various ambient conservative to assume th Section 7.6.2.	e performed at different times of the temperatures. Therefore, it is nat any temperature effect is included in
	7.6.4	Radiation effect (RE_3) =	0
		The underfrequency relays	s are located in a mild environment.
	7.6.5	Seismic Effect (SE ₃) = 0	(Assumption 2.1)
	7.6.6	Humidity Effect (HE ₃) = 0	
		The underfrequency relays	are located in a mild environment.
	7.6.7	Static Press. Effect $(SP_3$) - 0
		Pressure Effects are not	applicable for an underfrequency relay.
	7.6.8	Measuring and Test Equip	ment (MTE)
		The following instrument relays time delay, as sho and Ref. 3.4.5:	is used to calibrate the underfrequency own in the block diagram (section 5.0)
		MTE ₃ : Timer	

The reference standards used for calibrating M&TE have an uncertainty (error) requirement of not more than 1/4 of the tolerance of the equipment being calibrated (Ref. 3.4.3).

Measuring and Test Equipment shall have an accuracy greater than or equal to that of the equipment being calibrated (Ref. 3.4.2).

Given the relative high accuracy of the M&TE, and the procedural guidelines stated above, it is conservative to assume that:

MTE = The value used as the relay Reference Accuracy (RA), including any M&TE reading error, and reference standard uncertainty.

Therefore,

 $MTE_3 = \pm 16$ % of setting

New York Power			
Authority			
CALCULATION NO. IP	3-CALC-RPC-00291	REVISION 0	<u> </u>
Project <u>IP3</u> Title <u>Instr. Loo</u> Preliminary <u> </u>	p Accur/Setpoint Calc.	Page <u>16</u> of <u>24</u> Date <u>1</u> Prepared by <u>G. Durniak</u> D Checked by <u>R. Valvano</u> D	992 ate <u>10/14/42</u> XV ate <u>10/14/</u> 92 A
7.6.9	Power Supply Effect (PS	₃) = 0	
	Per conversation with A uncertainty for a KF re	BB (Ref. 3.1.19), the power lay with a DC timer is negli	supply gible.
7.7 Underfre	equency Relay Uncertainty	(e ₄)	
θ4 :	$= \pm \sqrt{RA_4^2 + DR_4^2 + TE_4^2 + RE_4^2 + SE_4^2}$	$^{3} + HE_{4}^{2} + SP_{4}^{2} + MTE_{4}^{2} + PS_{4}^{2} \pm B_{4}^{\pm}$	
	$x^{2} \pm \sqrt{0^{2} + .5^{2} + .18^{2} + 0^{2} + 0^{2} + 0^{2} + 0^{2}}$) ² + .18 ² + 0 ² ,18%, +.18%, +3.6	48
e, -	= ± .56%,18%, +.18%, +3.64	of setting, given the foll Underfrequency Relay uncer	owing tainties:
7.7.1	Reference Accuracy (RA ₄)	
	The vendor reference ac Relays.	curacy is not given for the	Underfrequency (Ref. 3.6.2).
	The Calibration Procedu is shown to be +.1 Hz. the Reference Accuracy.	re Tolerance for the underfr (Ref. 3.4.5) This value will	equency relays be used as
	This calibration tolera decreasing variable. T on a loop basis. The c	nce causes the relays to tri herefore, this represents a alibration tolerance is equi	p sooner for a negative bias valent to:
	$\frac{.1}{55} =18$ of Setting (1	Maximum).	(See Sec. 8.4)
7.7.2	Drift (DR ₄)		
	Vendor drift data is no	t available for the underfre	quency relays.
· ·	However, the Instrument provides an evaluation statistical study of ac Maximum Expected Drift relays is shown to be w	Drift Analysis for RPS (Ref of relay performance, based tual "as-found" and "as-left for a 30 month period (MED30 ithin ± .5% of setting.	. 3.5) on a " values. The) for the
	"MED30" represents the effects.	combined uncertainty due to	RA, DR and MTE
	For conservatism, in th represent drift only.	is calculation, MED30 will b	e used to
7.7.3	Temperature Effect (TE ₄)	
	The Temperature Effect (-30°C) to 158°F (70°C)	is shown to be within ±.1 Hz (Fig. 6 of Ref. 3.6.2). Th	: from -86°F his is
	equivalent to: $\frac{.1}{55} = \pm .1$	8% of setting (Maximum).	(See Sec. 8.4)

CALCULATION NO. IF	3-CALC-RPC-00291	REVISION 0
Project IP3		Page <u>17</u> of <u>24</u>
Title <u>Instr. Loc</u>	p Accur/Setpoint Calc.	Date 1992
Preliminary		Prepared by <u>G. Durniak</u> Date <u>0/14/14</u>
		checked by <u>R. Valvano</u> Date <u>10/44/92</u> R
	The relays are located therefore conservative.	in a mild environment. This value is
	Ventilation air in the equipment.	Turbine Hall is warmed by heat lost from (page 5 of Ref. 3.1.8
7.7.4	Radiation effect (RE_4)	- 0
	The relays are located	in a mild environment.
7.7.5	Seismic Effect (SE ₄) =	0 (Assumption 2.1)
7.7.6	Humidity Effect (HE4) -	0
,	The relays are located	in a mild environment.
7.7.7	Static Press. Effect (S	$(\mathbf{P}_{\star}) = 0$
	Pressure Effects are no	t applicable for underfrequency relays.
7.7.8	Measuring and Test Equi	Dment (MTE,)
	The following instrumer relays, as shown in the 3.4.5:	at is used to calibrate the underfrequency block diagram (section 5.0) and Ref.
	MTE ₄ : Digital Volt	Meter
	The reference standards uncertainty (error) req tolerance of the equipm	used for calibrating M&TE have an uirement of not more than 1/4 of the ment being calibrated (Ref. 3.4.3).
	Measuring and Test Equi or equal to that of the	pment shall have an accuracy greater than equipment being calibrated (Ref. 3.4.2).
	Given the relative high guidelines stated above	accuracy of the M&TE, and the procedural a, it is conservative to assume that:
	MTE — The value used as including any M&TE read uncertainty.	s the relay Reference Accuracy (RA), ling error, and reference standard
	Therefore,	
	MTE ₄ = ± .18% of s	etting
7.7.9	Power Supply Effect (PS	54)
	For an AC impressed vol transformer), the minim 1 HZ for a setting of	ltage as low as 60 VAC (from the potential num trip frequency is shown to be within E 55 Hz. (Sec. 8.4 and Fig. 7 of Ref. 3.6.2
	This will cause the rel (frequency). Therefore	lay to trip later for a decreasing variable e, this represents a positive bias on a
	loop basis, equivalent	to: $\frac{.1}{55}$ = +.18% of Setting (Maximum).
		(See Sec. 8.4

ĺ

1

CALCULA	TION NO. IP	3-CALC-RPC-00291	REVISION 0
Project Title Prelimin	<u>IP3</u> <u>Instr. Loo</u> hary	p Accur/Setpoint Calc.	Page <u>18</u> of <u>24</u> Date <u>1992</u> Prepared by <u>G. Durniak</u> Date <u>19/14</u> NK
Final	<u>_X</u>		Checked by <u>R. Valvano</u> Date/0/14/97 R/
· .	7.7.10	Rate of Change Effect	
		In addition to the Effe provides the change in in bus frequency.	ects itemized above, the vendor also Trip Frequency due to the Rate of Change
		The safety analysis ass to be 10 Hz/Sec.	umes the Rate of Change in bus frequency (page 14.1-42 of Ref. 3.2.
		The change in trip freq change in frequency of cycle delay setting.	uency at contact closure for a rate of 10 Hz/Sec is shown to be -2 Hz, for a 6 (Fig. 5 of Ref. 3.6.)
		This change causes the variable. Therefore, t basis, equivalent to: -	relay to trip later for a decreasing this represents a positive bias on a loop $\frac{2}{55}$ = +3.64% (Maximum). (See Sec. 8.4
3.0 OB 8.	TAIN ANALYT l Undervol	TCAL LIMIT (AL)	
		cage (Dot)	
	SV insta provide	ntaneous undervoltage rel an undervoltage trip upor	ays on each of the four 6.9 kV Buses n loss of bus voltage.
	SV insta provide The basi reactor maintain 6.9kV bu	intaneous undervoltage rel an undervoltage trip upor s for the 6.9kV Undervolt protection in anticipation ing coordination with pha- uses in order to prevent u	ays on each of the four 6.9 kV Buses a loss of bus voltage. tage trip setpoint is to provide adequate on of a primary system loss of flow, while ase and ground fault protection on the innecessary reactor trips. (Response 1.e of Ref. 3.1.1
	SV insta provide The basi reactor maintain 6.9kV bu The limi Voltage.	ntaneous undervoltage rel an undervoltage trip upor s for the 6.9kV Undervolt protection in anticipation ing coordination with pha- uses in order to prevent u ting trip point assumed in The potential transform	ays on each of the four 6.9 kV Buses a loss of bus voltage. tage trip setpoint is to provide adequate on of a primary system loss of flow, while ase and ground fault protection on the unnecessary reactor trips. (Response 1.e of Ref. 3.1.1 in the safety analysis is 68% of Nominal mer (PT) ratio is 7200/120 (Ref. 3.3.2).
	SV insta provide The basi reactor maintain 6.9kV bu The limi Voltage. Therefor is equiv	an undervoltage rel an undervoltage trip upor s for the 6.9kV Undervolt protection in anticipation ing coordination with pha- uses in order to prevent u ting trip point assumed in The potential transform re, the Analytical Limit a valent to:	ays on each of the four 6.9 kV Buses a loss of bus voltage. Tage trip setpoint is to provide adequate on of a primary system loss of flow, while ase and ground fault protection on the innecessary reactor trips. (Response 1.e of Ref. 3.1.1) In the safety analysis is 68% of Nominal mer (PT) ratio is 7200/120 (Ref. 3.3.2). At the output of the potential transformer
	SV insta provide The basi reactor maintain 6.9kV bu The limi Voltage. Therefor is equiv .68	<pre>intaneous undervoltage rel an undervoltage trip upor is for the 6.9kV Undervolt protection in anticipation ing coordination with pha- uses in order to prevent u ting trip point assumed in The potential transform re, the Analytical Limit a valent to: 8 x 6900 VAC x 120/7200 -</pre>	ays on each of the four 6.9 kV Buses a loss of bus voltage. Tage trip setpoint is to provide adequate on of a primary system loss of flow, while ase and ground fault protection on the innecessary reactor trips. (Response 1.e of Ref. 3.1.1) In the safety analysis is 68% of Nominal mer (PT) ratio is 7200/120 (Ref. 3.3.2). At the output of the potential transformer 78.2 VAC.
. 8.	SV insta provide The basi reactor maintain 6.9kV bu The limi Voltage. Therefor is equiv .68 2 Undervol	<pre>intaneous undervoltage rel an undervoltage trip upor is for the 6.9kV Undervolt protection in anticipation ing coordination with pha- uses in order to prevent u ting trip point assumed in The potential transform re, the Analytical Limit a valent to: 8 x 6900 VAC x 120/7200 - .tage (LOV) Time Delay</pre>	ays on each of the four 6.9 kV Buses a loss of bus voltage. Tage trip setpoint is to provide adequate on of a primary system loss of flow, while ase and ground fault protection on the unnecessary reactor trips. (Response 1.e of Ref. 3.1.1 In the safety analysis is 68% of Nominal mer (PT) ratio is 7200/120 (Ref. 3.3.2). At the output of the potential transformer 78.2 VAC.
. 8.	SV insta provide The basi reactor maintain 6.9kV bu The limi Voltage. Therefor is equiv .68 2 Undervol An Agast delay is undervol	<pre>intaneous undervoltage rel an undervoltage trip upor is for the 6.9kV Undervolt protection in anticipation ing coordination with pha- uses in order to prevent u ting trip point assumed in The potential transform te, the Analytical Limit a valent to: is x 6900 VAC x 120/7200 = tage (LOV) Time Delay tat Timer is associated with provided to minimize uni- tage conditions.</pre>	ays on each of the four 6.9 kV Buses a loss of bus voltage. Tage trip setpoint is to provide adequate on of a primary system loss of flow, while ase and ground fault protection on the unnecessary reactor trips. (Response 1.e of Ref. 3.1.1 In the safety analysis is 68% of Nominal mer (PT) ratio is 7200/120 (Ref. 3.3.2). At the output of the potential transformer 78.2 VAC. The each SV undervoltage relay. A time mecessary unit trips due to transient (Ref. 3.1.1)

	ON NO TP3-CALC-PPC-00291	REVISION O		
CALCULATION NO. <u>HIJ-CALC-RIG-00291</u>		REVISION = 0		
Project	nstr. Loop Accur/Setpoint Calc.	rage <u>19</u> 01 <u>24</u> Date	Page <u>19</u> of <u>24</u> Date 1992 / / //	
Prelimina	ry	Prepared by <u>G. Dur</u>	<u>niak</u> Date <u>10/14/92</u>	
Final	_X	Checked by <u>R. Val</u>	<u>vano</u> Date <u> 0/14/92</u> R/	
	However, the Safety Analysis ass from the time of loss of power t As shown in the block diagram (s	umes a time delay (max to the initiation of co (page sec. 5.0) this maximum	<pre>imum) of 1.2 seconds ntrol rod motion. 14.1-42 of Ref. 3.2.3 time delay must be</pre>	
	reduced by the response times of the reactor trip breaker. Howev not available from Westinghouse/	the SV relay, the int rer, a drop out time fo 'ABB.	erposing relays, and r the SV relays is	
	Therefore, per Assumption 2.5, o will be used as the Analytical I remaining half is assumed to be the SV relay, two interposing re conservative given that each of magnitude faster than the specif	ne-half (1/2) of the m imit for the time dela the total time require lays and the Reactor T these components opera fied time delay.	aximum time delay y relays. The d for actuation of rip Breaker. This i te an order of	
	Therefore, $AL = \frac{1.2}{2} = .6$ seconds.		· ·	
8.3	Underfrequency Relay/Time Delay			
	As described on page 34 of Ref. would require a time delay of at for a typical power system distu	3.1.18, an underfreque : least 1.5 seconds to urbance.	ncy setpoint of 55Hz avoid a spurious tri	
	However, the Safety Analysis ass from the moment the underfrequer initiation of control rod motion	numes a time delay (max ncy trip setpoint is re n. (Page 14.1-4 and	imum) of 1.25 second ached, to the 14.1-42 of Ref. 3.2.	
	As shown in the block diagram (S reduced by the response times of trip breaker, as follows:	Sec. 5.0) this maximum I the interposing relay	time delay must be 's, and the reactor	
	DEVICE	RESPONSE_TIME	REFERENCE	
٤	Westinghouse MG-6 Relay	5 cycles (~84 ms)	3.6.6, 3.3.2	
	Westinghouse BF Relay	25 ms (max.) Drop-out	3.6.7, 3.3.6	
	Westinghouse 75DH 500 Breaker	150 ms (max.)	3.3.7 & Assump. 2.6	
	Reactor Trip Breaker	150 ms (max.)	3.4.7	
	The maximum time delay for the u	underfrequency relay is	therefore:	

CALCULATION NO. <u>IP3-CALC-RPC-00291</u>	REVISION 0
Project <u>IP3</u> Title <u>Instr. Loop Accur/Setpoint Calc.</u> Preliminary <u> </u>	Page <u>20</u> of <u>24</u> Date <u>1992</u> Prepared by <u>G. Durniak</u> Date <u>10/14/4</u> Checked by <u>R. Valvano</u> Date <u>10/14/92</u> R

8.4 Underfrequency Relay

A 55 Hz Trip Setpoint was assumed in the Safety Analysis.

(page 14.1-42 of Ref. 3.2.3)

Therefore, AL = 55Hz

9.0 DETERMINE SETPOINT (TS)

CU is combined with the Analytical Limit in an appropriate direction, in order to determine the Trip Setpoint, as shown below.

9.1 Undervoltage (LOV) Setpoint

The positive value of CU is used for a decreasing variable, to insure that the relay will trip above the Analytical limit.

 $TS = AL \pm CU$ (Paragraph 7.0.6.2 of Ref. 3.1.4)

= 78.2 +39

(+39 VAC, Sec. 7.0a)

= 118 VAC (rounded up to the nearest volt)

Given that the nominal potential transformer secondary voltage is only 6900 VAC x 120/7200 = 115 VAC, this trip setpoint is not practical.

9.2 Undervoltage (LOV) Time Delay Relay Setpoint

The Undervoltage (LOV) Time Delay Analytical Limit (AL) is .6 Seconds (Sec. 8.2). The negative value of CU is used for an increasing variable to insure that channel trip occurs below the Analytical Limit.

 $TS = AL \pm CU$

(Ref. 3.1.4)

= .6 - (.11) TS

(- 11% of setting, Sec. 7.0b)

 $= \frac{.6}{(1+.11)}$

= .54 second (rounded down to the nearest hundredth)

9.3 Underfrequency Relay/Time Delay Setpoint

The Underfrequency Relay/Time Delay Analytical Limit (AL) is .7 sec. (Sec. 8.3). The negative value of CU is used for an increasing process variable (time). (para. 7.2 of ref. 3.1.3)

 $TS = AL \pm CU$ (Ref. 3.1.4)

= .7 - (.25)*TS*

(- 25% of setting, Sec. 7.0c)

	_		
ew York	Power		
		BC 00201	DEVICTON
CALC	ULATION NO. <u>IFS-CALC-R</u>	<u>FC-00291</u>	
Proj Titl	ect <u>IP3</u> e Instr Loop Accur/	Setpoint Calc	Page <u>21</u> of <u>24</u> Date 1992
Prel	iminary	beepoine outo.	Prepared by <u>G. Durniak</u> Date <u>10/14/4</u>
Fina	1 <u>X</u>		Checked by <u>R. Valvano</u> Date <u>10/14</u> /92.R
	= .7 (1+.25)	- 	
	≖ .5 <i>Sec</i> (rounded down to	the nearest tenth second)
	9.4 Underfrequency 1	rip Setpoint	
	The Analytical I used for a decre	limit (AL) is 55 asing process va	Hz (Sec. 8.4). The Positive valve of CU is riable (frequency).
	$TS = AL \pm CU$		(Ref. 3.1.4
	≖ 55 +(.0438) <i>TS</i>		(+4.38% of Setting Sec. 7.0d
	$=\frac{55}{(10438)}$		
	= 57.5 Hz		
10.0	DETERMINE ALLOWABLE V	VALUE (AV)	
	The Allowable Value ((AV) can be deter	mined as follows (Ref. 3.1.4):
	AV - TS ± CU _{CAL} , Where	2:	
	TS = 1	Trip Setpoint	
	CU _{CAL} = 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	The Channel Uncer Therefore, uncert measurement, or p conservatism, onl considered.	tainty (CU) as seen during calibration. ainties due to a harsh environment, process orimary element are not considered. For y RA, DR, and MTE uncertainties are
	AV will be calculated is consistent with th Therefore, a check ca	l using the Squar ne method used fo alculation is not	e Root Sum of Squares (SRSS) method which or the determination of the trip setpoint. c required. (ref. 3.1.3
	10.1 Determine e _{CAL}		
	As defined above during calibrat	e, CU _{CAL} consider: Lon, RA, DR and M	s only the normal uncertainties as seen MTE.
	In each case be direction, and t	low, the calibrat therefore not inc	cion tolerance is a bias in the conservative cluded.
	Therefore, the m	nodule uncertain	ty equation from Section 7.4 reduces to:
	$e_{1C\bar{AL}} = \pm \sqrt{RA_1^2}$	$+ DR_1^2 + MTE_1^2$	
	•		
	$e_{1CAL} = \pm \sqrt{0^2}$	$+39^2+3^2$	

CALCULATION NO. <u>IP3-CALC-RPC-00291</u>	REVISION 0
Project <u>IP3</u> Title <u>Instr. Loop Accur/Setpoint Calc.</u>	Page <u>22</u> of <u>24</u> Date <u>1992</u> ((o()
Preliminary	Prepared by <u>G. Durniak</u> Date <u>10/14/4</u>
Final <u>X</u>	Checked by <u>R. Valvano</u> Date <u>10114</u> 92 R

Similarly,

 $e_{2CAL} = \pm \sqrt{5^2 + 6.3^2 + 5^2}$ = ± 9.5 % of Setting (Undervoltage Time Delay) $e_{3CAL} = \pm \sqrt{0^2 + 19.4^2 + 16^2}$ = ± 25 % of Setting (Underfrequency Time Delay) $e_{4CAL} = \pm \sqrt{0^2 + .5^2 + .18^2}$

 $= \pm .53$ % of Setting (Underfrequency)

10.2 AV for the Undervoltage (LOV) Setpoint

As shown in Sec. 9.1, the calculated Trip Setpoint is not practical. Therefore, the Allowable Value can not be evaluated.

 $CU_{1CAL} = N/A$ $AV_1 = N/A$

10.3 AV for the Undervoltage (LOV) Time Delay Setpoint

Given the definition of CU_{CAL} above, the Channel Uncertainty equation from Section 7.0 becomes:

 $CU_{2CML} = \pm \sqrt{e_{2CML}^2}$ = ± 9.5 % of Setting AV₂ = TS $\pm CU_{2CAL}$

= $.54 + (.095 \times .54) = .59$ sec, rounded down to nearest hundredth 10.4 AV for the Underfrequency Time Delay Setpoint

Similarly,

 $CU_{3CM} = \pm \sqrt{\sigma_{3CM}^2}$ = ± 25 % of Setting AV₃ = TS $\pm CU_{3CAL}$

- $.5 + (.25 \times .5) = .6$ sec, rounded down to nearest tenth 10.5 AV for the Underfrequency Trip Setpoint

Similarly,

 $CU_{4CAL} = \pm \sqrt{\theta_{4CAL}^2}$ = $\pm .53$ % of Setting AV₄ = TS $\pm CU_{4CAL}$ = 57.5 - (.0053 x 57.5) = 57.2 Hz, rounded up to nearest tenth

uchoric	<i>y</i>		
CALC	ULATION NO. IP3-CALC-RPC-00291	REVISION 0	
Proj Titl Prel Fina	ect <u>IP3</u> e <u>Instr. Loop Accur/Setpoint Ca</u> iminary 1 <u>X</u>	Page <u>23</u> c alc. Date Prepared by <u>C</u> Checked by <u>R</u>	of <u>24</u> <u>1992</u> <u>G. Durniak</u> Date <u>14/14/14</u> <u>R. Valvano</u> Date <u>10/14</u> /92 <i>R</i>
11.0	SUMMARY		
	11.1 Undervoltage (LOV) Trip Set	tpoint:	
		CALCULATED	<u>EXISTING</u>
	Trip Setpoint (TS) Limiting Safety System Setting Allowable Value (AV) Analytical Limit (AL)	<u>N/A</u> (Note 4) <u>N/A</u> (Sec. 10.2) <u>78.2 VAC</u> (Sec. 8.1)	<u>86.25 VAC</u> (Ref. 3.4.4) <u>80.5</u> (Note 2)
	11.2 Undervoltage (LOV) Time De	lay Relay	
		CALCULATED	EXISTING
	Analytical Limit (AL) Allowable Value (AV) Limiting Safety System Setting Trip Setpoint (TS)	<u>.6</u> (Sec. 8.2) <u>.59</u> (Sec. 10.3) <u>.54 Sec.</u> (Sec. 9.2)	<u>N/A</u> (NOTE 3) <u>.5 Sec.</u> (Sec. 9.5)
	11.3 Underfrequency Time Delay		
		CALCULATED	EXISTING
	Analytical Limit (AL) Allowable Value (AV) Limiting Safety System Setting Trip Setpoint (TS)	<u>.7</u> (Sec. 8.3) <u>.6</u> (Sec. 10.4) <u>.5 Sec</u> (Sec. 9.6)	<u>N/A</u> (NOTE 3) <u>.1 Sec.</u> (Ref. 3.4.5)
	11.3 Underfrequency		
		CALCULATED	EXISTING
	Trip Setpoint (TS) Limiting Safety System Setting Allowable Value (AV) Analytical Limit (AL)	<u>57.5 Hz</u> (Sec. 9.4) <u>57.2</u> (Sec. 10.5) <u>55</u> (Sec. 8.3)	<u>57.5 Hz</u> (Ref. 3.4.5) <u>55 (Page 2.3-3 of Ref. 3.2.4)</u>

chority	·
CALCULATION NO. <u>IP3-CALC-RPC-00291</u>	REVISION 0
Project <u>IP3</u>	Page <u>24</u> of <u>24</u>
Title Instr. Loop Accur/Setpoint Calc.	Date 1992 / / //
Preliminary	Prepared by <u>G. Durniak</u> Date <u>10/14/14</u>
Final X	Checked by <u>R. Valvano</u> Date <u>10/14</u> /92 R

NOTES: 1. The calculated Allowable Valve (AV) represents the limiting "As-Found" condition for the instrument loop.

- 2. 70% x 6900 VAC x 120/7200 = 80.5 VAC (page 2.3-3 of Ref. 3.2.4)
- 3. A Limiting Safety System Setting for Time Delay is not specified in the existing Technical Specification (page 2.3-3 of Ref. 3.2.4).
- 4. As shown in Section 9.1, the Westinghouse SV relay performance is not suitable for a 30 month calibration interval.

11.4 Undervoltage Relays:

This calculation demonstrates that the performance of the Westinghouse SV relay, based primarily on actual As-Found, As-Left plant data, is not suitable for a 24 month \pm 25% calibration interval. The calibration interval for the SV relays should not be extended.

11.5 Undervoltage Time Delay and Underfrequency Relays:

The existing Setpoints provide sufficient margin to insure that channel trip will occur within the Analytical Limit (AL), for an extended twenty-four (24) month \pm 25% operating cycle. No setpoint changes are required.

12.0 ATTACHMENTS

1. Channel Uncertainty Equations (2 Shts.)

ATTACHMENT I CHANNEL UNCERTAINTY EQUATIONS

CALC NO. II	P3-CALC	-RPC-00	291	REV	'. <u>0</u>		PROJECT	
REFERENCE	IES-3,	Rev. (), Instrument	Loop	Accuracy	and	Setpoint Calculations	

1.0 Total Channel Uncertainty (CU)

The calculation of an instrument channel uncertainty can be performed with a single loop equation containing all potential uncertainty values, or by a series of related term equations. A specific channel calculation coincides with a channel's layout from process measurement to final output module or modules.

The typical linear channel uncertainty calculation has the following form:

 $CU^{*} = + \sqrt{PM^{2} + PE^{2} + IRE^{2} + (Module_{1})^{2} + (Module_{2})^{2} + \dots (Module_{n})^{2} + B^{*}}$ $CU^{-} = -\sqrt{PM^{2} + PE^{2} + IRE^{2} + (Module_{1})^{2} + (Module_{2})^{2} + \dots (Module_{n})^{2} - B^{-}}$

Where:

- CU Channel Uncertainty (CU) at a specific point in the channel: the CU can be calculated for any point in a channel from Module 1 to Module n, as needed.
- PM Random uncertainties that exist in the channel's basic Process Measurement (PM).
- PE Random uncertainties that exist in a channel's Primary Element (PE), if it has one, such as the accuracy of a flowmeter table.
- IRE Insulation resistance effect, leakage allowance in % of span.

MODULE 1, 2, n - Total random uncertainty of each module that makes up the loop from Module 1 through Module n.

B⁺ - The total of all positive biases associated with a channel; this would include any uncertainties from PM, PE, or the Modules that could not be combined as a random term (biases, arbitrarily - distributed uncertainties, and random bias).

- B-
- The total of all negative biases associated with a channel.

ATTACHMENT I CHANNEL UNCERTAINTY EQUATIONS

CALC NO. 11	P3-CALC	-RPC-	002	91	REV	0		PROJE	CT IP3	
REFERENCE	IES-3,	Rev.	0,	Instrument	Loop	Accuracy	and	Setpoint	Calculations	

2.0 <u>Module (en) Uncertainties</u>

The individual module random uncertainties are in themselves a statistical combination of uncertainties. Depending on the type of module, its location, and the specific factors that can affect its accuracy, the determination of the module uncertainty will vary. For example, the module uncertainty for a module may be calculated as:

$$\Theta^{+} = + \sqrt{RA^{2} + DR^{2} + TE^{2} + RE^{2} + SE^{2} + HE^{2} + SP^{2} + PS^{2} + MTE^{2} + B^{+}}$$
$$\Theta^{-} = - \sqrt{RA^{2} + DR^{2} + TE^{2} + RE^{2} + SE^{2} + HE^{2} + SP^{2} + PS^{2} + MTE^{2} - B^{-}}$$

Where:

- e = Uncertainty of module,
- RA Module Reference Accuracy specified by the manufacturer,
- DR = Drift of the module over a specific period,
- TE Temperature Effect for the module; the effect of ambient temperature variations on module accuracy; the TE may be a normal operating TE, or an accident TE, as required,
- RE = Radiation Effect for the module; the effect of radiation exposure on module accuracy; the RE may be a normal operating RE, an accident RE, or time of trip RE as required,
- SE = Seismic Effect or vibration effect for the module; the effect of seismic or operational vibration on the module accuracy;
- HE Humidity Effect for the module; the effect of changes in ambient humidity on module accuracy, if any,
- SP Static Pressure effects for the module; the effect of changes in process static pressure on module accuracy,
- MTE Measuring and Test Equipment effect for the module; this accounts for the uncertainties in the equipment utilized for calibration of the module,

PS = Power Supply effect,

B = Biases associated with the module, if any.

SHEET 2 OF 2

JAF

INDEPENDENT DESIGN VERIFICATION CONTROL SHEET

VERIFICATION OF:	IP3-CALC-RPC-00291/Setpoint Calculation/6.9kV Undervoltage and Underfrequency Document Title/Number					
SUBJECT:	24 Month Operating Cycle					
MOD/TASK NUMBER (If Applicable):					
QA CATEGORY:	<u>Cat I</u>					
DISCIPLINE REVIEW Check as required	OTHER OTHER MECH C/S I&C (SPECIFY) O & M O & M X X					
METHOD USED *: VERIFIER'S NAME: VERIFIER'S INITIALS/DATE: APPROVED BY:	DR W. Wittich					
REMARKS/SCOPE OF	VERIFICATION:					
Verification comp	pleted in accordance with Attachment 4.3 of DCM 4, Rev. 7.					
<u>Calculation is cl</u>	lear and technically understandable. The assumptions, approach,					
and technique are	in accordance with industry practice. The results are valid					
and reasonable.						
The calculated to settings on simil	<u>rip setting and calibration uncertainties are consistent with the lar plants (see Trojan and DC Cook Tech Specs).</u>					

 Methods of verification: Design Review (DR), Alternate Calculations (AC), Qualification Test (QT)

Form DCM 4, 4.1 (MAR. 1989)

IP3-CALC-RPC-00291

DESIGN_VERIFICATION_CHECKLIST DESIGN_REVIEW_METHOD

.

<u>VERIFICATION OF</u> : <u>6.9kV Undervoltage and Underfrequency/IP3-CALC-RPC-00291</u> Document/Title/Number					
SUBJECT:					
MOD/TASK NO.: (If Applicable) N/A					
DISCIPLINE REVIEW					
OTHER ELEC MECH C/S I&C (SPECIFY) O&M					
Check as Required					
Yes/No/Not_Applicable					
 Were the inputs correctly selected and incorporated Yes/No/NA into the design? 					
2. Are assumptions necessary to perform the design activity adequately described and reasonable: Where necessary, are the assumptions identified for subsequent reverifications when the detailed design activities are completed?					
Are the appropriate quality and quality assurance Yes/No(NA) requirements specified? e.g., safety classification.					
Are the applicable codes, standards and regulatory Yes/No/NA requirements including issue and addenda properly identified and are their requirements for design met?					
5. Have applicable construction and operating experience (Yes)No/NA been considered?					
6. Have the design interface requirements been satisfied? (Yes/No/NA					
7. Was an appropriate design method used? Yes/No/NA					
8. Is the output reasonable compared to inputs? Yes No/NA					
9. Are the specified parts, equipment and processes suitable Yes/No NA for the required application?					

.

2

DESIGN VERIFICATION CHECKLIST DESIGN REVIEW METHOD

Are the specified materials compatible with each other and the design environmental conditions to which the materials will be exposed? Have adequate maintenance features and requirements heen satisfied? Are accessibility and other design provisions adequate for performance of needed maintenance and repair? Has adequate accessibility been provided to perform the in-service inspection expected to be required during the plant life? Has the design properly considered radiation exposure to the public and plant personnel? (ALARA/cobalt reduction) Are the acceptance criteria incorporated in the design Yes documents sufficient to allow verification that design requirements have been satisfactorily accomplished?

Have adequate pre-operational and subsequent periodic 16. test requirements been appropriately specified?

10.

11.

12.

13.

14.

15.

- Are adequate handling, storage, cleaning and shipping 17. requirements specified?
- 18. Are adequate identification requirements specified?
- Are the conclusions drawn in the Safety Evaluation fully 19. supported by adequate discussion in the test or Safety Evaluation itself?
- Are necessary procedural changes specified and are 20. responsibilities for such changes clearly delineated?
- Are requirements for record preparation, review, approval, 21. retention, etc., adequately specified?

Have supplemental reviews by other engineering 22. disciplines (seismic, electrical, etc.) been performed on the integrated design package?

Yes/No/Not Applicable

Yes/No/NA

Form DCM 4, 4.2 (Page 2 of 3), (MAR. 1989)

DESIGN VERIFICATION_CHECKLIST DESIGN REVIEW METHOD

Yes/No/Not Applicable

23. Have the drawings, sketches, calculations etc., included in the integrated design package been reviewed? Yes/No/NA

24. References used as part of the design review which are not listed as part of the design calculation/analysis.

NONE DESIGN VERIFIER: Signature/Date <u>Supervising</u> Engine Title Nuclean Ops of Satety Ebasco Services Inc.