Attachment IV to IPN-93-007

1

LOOP ACCURACY/SETPOINT CALCULATIONS

NEW YORK POWER AUTHORITY INDIAN POINT 3 NUCLEAR POWER PLANT DOCKET NO. 50-286 DPR-64

9302260265 930218 PDR ADUCK 05000286 P PDR

CALC. NO. <u>IP3-CA</u>	ALC-RPC-00298	OR INFO	RMAIN 107 1493	Pag	e <u>1</u> of <u>20</u>
A CATECORY: I		Γτηλι. ν			
A CALEGORI: _1_	FRELIMINARI	$_$ FINAL. $\underline{\lambda}$	·		
ROJECT/TASK: 3	<u>Ewenty Four (24) Neactor Protection</u>	<u>Month Operating</u>	<u>Cycle Project</u> PC)		
TITLE:	Instrument Loop Ac	ccuracy/Setpoint	Calculation	RC Loop Low	Flow
ESIGN ENG.:	NAME		SIGNATURE		DATE
PREPARER :	J. McNeil		RValvan	FOR TM	8/3/92
CHECKER:	<u>G. Durniak</u>				8/3/92
APPROVED:	<u>A. Petrenko</u>		ift		8/18/92
This calculation DESIGN BASIS/AS The low RC flow	n has been prepar SUMPTIONS instrumentation	ed in accordance serves to trip t	the reactor of	57.04, IES-3	and DCM-2.
flow face. The flow accident.	IOW IIOW Crip pro	tects the core i	TOM DNB TOIL	bwing a loss	(ref. 3.2.2)
Selsmic event 1	s not considered	coincident with	any other por	stulated acc	ident.
SOUTHAR I / CONCLUS	LOND				1
The existing Tr the total chann is required.	ip Setpoint for R el uncertainty, t	C Loop Low Flow herefore, it is	is set highe: conservative	r than is re . No Setpoi	quired by nt change
The existing Tr the total chann is required. For RC Loop Low to insure that additional drif	ip Setpoint for R el uncertainty, t Flow trip, suffi channel trip occu t and uncertainti	C Loop Low Flow herefore, it is cient margin ex rs within the An es for the 24 mo	is set higher conservative sts for the malytical Lim onth ±25% oper	r than is re No Setpoi existing tri it (AL) cons rating cycle	quired by nt change p setpoint idering
The existing Tr the total chann is required. For RC Loop Low to insure that additional drif	ip Setpoint for R el uncertainty, t Flow trip, suffi channel trip occu t and uncertainti	C Loop Low Flow herefore, it is cient margin ex rs within the An es for the 24 mo SYSTER:	is set higher conservative sts for the malytical Lim onth ±25% oper REC	r than is re No Setpoi existing tri it (AL) cons rating cycle	quired by nt change p setpoint idering
The existing Tr the total chann is required. For RC Loop Low to insure that additional drif REFERENCES	ip Setpoint for R el uncertainty, t Flow trip, suffi channel trip occu t and uncertainti	C Loop Low Flow herefore, it is cient margin exi rs within the An es for the 24 mo SYSTEM: QA CAT:	is set higher conservative sts for the malytical Lim onth ± 25 % oper RE CRT L	r than is re No Setpoi existing tri it (AL) cons rating cycle	quired by nt change p setpoint idering
The existing Tr the total chann is required. For RC Loop Low to insure that additional drif REFERENCES See Section 3.0	ip Setpoint for R el uncertainty, t Flow trip, suffi channel trip occu t and uncertainti	C Loop Low Flow herefore, it is cient margin exi rs within the An es for the 24 mo GASTER: QASTER:	is set higher conservative sts for the halytical Lim onth ± 25 % open \mathcal{PR} \mathcal{CRT} T	r than is re No Setpoi existing tri it (AL) cons rating cycle	quired by nt change p setpoint idering AUG 2 1 NYPA
The existing Tr the total chann is required. For RC Loop Low to insure that additional drif REFERENCES See Section 3.0 AFFECTED SYSTEM	ip Setpoint for R el uncertainty, t Flow trip, suffi channel trip occu t and uncertainti S/COMPONENTS/DOCU	C Loop Low Flow herefore, it is cient margin exi rs within the An es for the 24 mo GYSTEN QACAT FILES MENTSCOMP. FAL	is set higher conservative sts for the halytical Lim onth ± 25 % oper \mathcal{PR} \mathcal{CRT} <u>T</u>	r than is re No Setpoi existing tri it (AL) cons rating cycle	quired by nt change p setpoint idering AUG 2 1 NYPA
The existing Tr the total chann is required. For RC Loop Low to insure that additional drif REFERENCES See Section 3.0 AFFECTED SYSTEM FT-414, FT-4	ip Setpoint for R el uncertainty, t Flow trip, suffi channel trip occu t and uncertainti S/COMPONENTS/DOCU 15, FT-416 FC-4	C Loop Low Flow herefore, it is cient margin ext rs within the An es for the 24 m SYSTEM: QA CAT: FILE : MENTS COMP. FRU 14, FC-415, FC-4	is set higher conservative sts for the malytical Lim onth ± 25 % open $\mathcal{P}\mathcal{K}$ $\mathcal{C}\mathcal{K}$ \mathcal{T} \mathcal{I} $\mathcal{C}\mathcal{K}$ \mathcal{T} \mathcal{I}	FQ-415, FQ-	quired by nt change p setpoint idering AUG 21 NYPA
The existing Tr the total chann is required. For RC Loop Low to insure that additional drif REFERENCES See Section 3.0 AFFECTED SYSTEM FT-414, FT-4 FT-424, FT-4	ip Setpoint for R el uncertainty, t Flow trip, suffi channel trip occu t and uncertainti S/COMPONENTS/DOCU 15, FT-416 FC-4 25, FT-426 FC-4	C Loop Low Flow herefore, it is cient margin exi- rs within the An es for the 24 m OA CAT: FILE : MENTS COMP. For 14, FC-415, FC- 24, FC-425, FC- 34 FC-435 FC-	is set higher conservative sts for the nalytical Lim onth ± 25 % oper \mathcal{PR} \mathcal{CRT} <u>T</u> \mathcal{CRT} <u>T</u> \mathcal{CRT} <u>T</u> \mathcal{CRT} <u>T</u> \mathcal{CRT} <u>T</u> \mathcal{CRT} <u>T</u> \mathcal{CRT} <u>T</u>	FQ-415, FQ- FQ-425, FQ- FQ-435 F0-	quired by nt change p setpoint idering AUG 2 1 NYPA 6 416 426 436
The existing Tr the total chann is required. For RC Loop Low to insure that additional drif REFERENCES See Section 3.0 AFFECTED SYSTEM FT-414, FT-4 FT-424, FT-4 FT-434, FT-4	ip Setpoint for R el uncertainty, t Flow trip, suffi channel trip occu t and uncertainti S/COMPONENTS/DOCU 15, FT-416 FC-4 25, FT-426 FC-4 35, FT-436 FC-4 45, FT-446 FC-4	C Loop Low Flow herefore, it is cient margin exi- rs within the An es for the 24 ma GA GAT FILE : MENTS COMP 14, FC-415, FC-4 34, FC-435, FC-4 44, FC-445, FC-4	is set higher conservative sts for the halytical Lim onth ± 25 % oper \mathcal{PR} $\mathcal{C}_{\mathcal{R}} \mathcal{T} \mathcal{T}$ \mathcal{T} 	FQ-415, FQ- FQ-445, FQ- FQ-445, FQ-	quired by nt change p setpoint idering AUG 2 1 NYPA 416 426 436 446
The existing Tr the total chann is required. For RC Loop Low to insure that additional drif REFERENCES See Section 3.0 AFFECTED SYSTEM FT-414, FT-4 FT-424, FT-4 FT-434, FT-4 FT-444, FT-4	ip Setpoint for R el uncertainty, t Flow trip, suffi channel trip occu t and uncertainti S/COMPONENTS/DOCU 15, FT-416 FC-4 25, FT-426 FC-4 35, FT-436 FC-4 45, FT-446 FC-4 BY:	C Loop Low Flow herefore, it is cient margin exirs within the An es for the 24 m QACAT FILES MENTSCOMP 14, FC-415, FC-4 24, FC-425, FC-4 34, FC-435, FC-4	is set higher conservative sts for the malytical Lim onth ± 25 % open $\mathcal{P}\mathcal{R}$ $\mathcal{C}\mathcal{R}$ \mathcal{T} \mathcal{I} $\mathcal{C}\mathcal{R}$ \mathcal{T} \mathcal{I} \mathcal{I} $\mathcal{C}\mathcal{R}$ \mathcal{T} \mathcal{I}	FQ-415, FQ- FQ-445, FQ- FQ-445, FQ- FQ-445, FQ-	quired by nt change p setpoint idering AUG 2 1 NYPA 416 426 436 446

...

-

C	ALCULATION NO. <u>IP3-CALC-RPC-00298</u>	RE	VIS	510	N _	0								
F T F F	roject <u>IP3</u> itle <u>Instr. Loop Accur./Setpt. Calc.</u> reliminary <u> </u>	Pa Da Pr Ch	ge te epa ecl	_2 are	d t by	_ 0 	f _ <u>J.</u> <u>G.</u>	20 Mc Du	<u>Nei</u> rni	1 Lak	1 D	99) ato		13/4 12/1
	TABLE OF CONT	ENTS												
1.0	PURPOSE		•		•	•	•			•	•	•	•••	•
2.0	ASSUMPTIONS	•••	•			•	•			•	•	•		•
3.0	REFERENCES		•		•	•	•				•	•		•
4.0	LOOP FUNCTION		•		•	•	•		•	•	•	•	• •	
5.0	LOOP (BLOCK) DIAGRAM		•		•	•			•	•	•		•	•
6.0	LOOP UNCERTAINTY EQUATIONS	•••	•	 	•	•	•	 	•			•	• •	•
7.0	DETERMINE CHANNEL UNCERTAINTY (CU)	••	•		•	•			•	•	•	•	• •	•
8.0	OBTAIN ANALYTICAL LIMIT (AL)		•		•	•	•		•	•	•	•	•	•
9.0	DETERMINE SETPOINT (TS)		•		•	•	•	• •	•	•	•	•	•	•••
10.0	DETERMINE ALLOWABLE VALUE (AV)			• •		•	•	•	•		•	•	•	•••
11.0	SUMMARY		•	•	• •	•	•	•	••	•	•	•	•	
12.0	ATTACHMENTS		•	•		•	•	•		•	•			

,

Ne	w York	Power			
		CALC	ULATION	NO. <u>IP3-CALC-RPC-00298</u>	REVISION 0
		Proj Titl Prel Fina	ect <u>ll</u> e <u>Instr</u> iminary 1	P3 . Loop Accur./Setpt. Calc. X	Page <u>3</u> of <u>20</u> Date <u>1992</u> Prepared by <u>J. McNeil</u> Date <u>6/3/32</u> R/fu Checked by <u>G. Durniak</u> Date <u>8/2/47</u> M
	1 0	PURPO	SE		<i>د</i>
	1.0	Verif addit cycle	y that o ional in from 18	channel trip will occur with nstrument drift or uncertain 8 months ± 25% to 24 months :	in the Analytical Limit (AL), considering ties due to extension of the operating t 25%.
	2.0	ASSUM	PTIONS		
	·	2.1	Per FSA or equa Equipma pre-tes maximu	AR section 16.3.3, IP3's sets al to 0.2g. WCAP-7817, "Sets ent", states that the transmi st condition after each sets m setsmic test acceleration o	smic horizontal acceleration is less than smic Testing of Electrical and Control atter output returned to its original mic test (note: tests were based on a of 0.7g).
			Simila: trippin effect	rly, bistables were also test ng action of the bistable was is considered negligible.	ted at 0.7g and results indicate that s not impaired. Therefore, seismic (Ref. 3.1.9 & 3.2.5)
			Since simila:	the issuance of WCAP-7817, va r equipment. Therefore, seis	arious components have been replaced with smic effect is considered negligible.
			In add accider	ition, seismic event is not on the not of the set of th	considered coincident with any other
		2.2	Additi used i	onal "margin" is not used in s inherently conservative.	the calculation, since the methodology
		2.3	Indica	tion portion of loop is not a	addressed in this calculation.
		2.4	The min	nimum ambient temperature for	r instrument calibrations will be 68°F.
	•	2.5	Instru	ment bus voltage variations of	do not exceed ± 2.0%. (Ref. 3.1.22)
		2.6	No crea Instru enviro	dit is taken in the Safety Amentation following a LOCA/H nment inside containment are	nalysis for operation of the Low RC Flow SLB. Therefore, effects of the accident not included in this calculation.
	3.0	REFER	ENCES		
		3.1	Genera	1	
			3.1.1	U.S. NRC, Regulatory Guide Setpoints For Safety-Relate	1.105, Rev. 2, February, 1986 "Instrument d Systems".
			3.1.2	ANSI/ISA-S67.04-1988 Standa Instrumentation", dated 2/4	rd "Setpoints for Nuclear Safety-Related /88.
	*		3.1.3	ISA-RP67.04, Part II, Draft of Setpoints for Nuclear Sa	9, "Methodologies for the Determination fety-Related Instrumentation", dated 3/22/91
	/				

. ر

	CALCULATION	NO. <u>IP3-CALC-RPC-00298</u>	REVISION <u>0</u>
	Project <u>II</u> Title <u>Instr.</u> Preliminary	23 Loop Accur./Setpt. Calc.	Page <u>4</u> of <u>20</u> Date <u>1992</u> Prepared by <u>J. McNeil</u> Date <u>8/3/42</u> R/A
			Checked by <u>G. Durniak</u> Date
*	3.1.4	IES-3, Rev. 0, 1/3/91, Instr Calculations.	ument Loop Accuracy and Setpoint
	3.1.5	DCM-2, Rev. 1, 1/18/91, Prep Analyses.	aration and Control of Calculations and
*	3.1.6	IP3 Master Equipment List, R	P System, dated 4/11/90.
*	3.1.7	Memo from D. Luce, dated Oct	ober 30, 1991; Subject: Bistables.
*	3.1.8	TSP-011, Rev. 4, EQ Spare Pa 8/30/91.	rts Review Procedure, Attachment I,
*	3.1.9	WCAP-7817, "Seismic Testing December, 1971.	of Electrical and Control Equipment",
	3.1.10	System Description No. 1.1,	Reactor Coolant System, Rev. 1.
	3.1.11	WCAP-7338, "Setpoint Study f Stations II and III, R. Reym	or Consolidated Edison's Nuclear Power ers, September 1969.
*	3.1.12	Tech Manual FO-008, Rev. 0, November 1987. (System Erro	Overpressurization Protection System, r Analysis)
*	3.1.13	WCAP-12128, "Westinghouse Im Instrument Uncertainty Metho	proved Thermal Design Procedure dology For NYPA IP3," January 1989.
	3.1.14	System Description No. 28, C 2.1.6.	verall Unit Protection, Rev. 0, Section
*	3.1.15	NYPA Telephone Documentation (NYPA) and S. Nunn (Foxboro)	Form dated 1/9/92, between J. McNeil
	3.1.16	Instrument Drift Analysis fo Preliminary Rev. 0.	r RPS Report No. IP3-RPT-RPC-00357,
	3.1.17	Deleted	
	3.1.18	MOD 88-03-101-RCS, RCS RTD E (Electrical Design).	ypass Elimination Modification
*	3.1.19	RTD Bypass Elimination Licer WCAP-12009 Revision 1, dated	sing report for Indian Point Unit 3, l January 1989.
	3.1.20	"Westinghouse Setpoint Metho systems", C.R. Tuley, IEEE 1 No.1. February.	dology for Control and Protection Transactions on Nuclear Science, Vol 33,

				i
New York	Power			
Authority				
	CALCI	JLATION	NO. <u>IP3-CALC-RPC-00298</u>	REVISION 0
	Proje Title	ect <u>II</u> e <u>Instr</u>	23 . Loop Accur./Setpt. Calc.	Page <u>5</u> of <u>20</u> Date <u>1992</u>
	Final	lminary l	<u> </u>	Checked by <u>G. Durniak</u> Date <u>3/42</u> (142).
*		3.1.22	Tech Manual WE-117, One Phase	Instrument Power Supply, August 1979.
	3.2	Final S	Safety Analysis Report (FSAR) F	Rev. 7, July 1991.
		3.2.1	Chapter 4, Section 4.2.9.	
*		3.2.2	Chapter 7, Section 7.2, Protection	ctive Systems.
*		3.2.3	Chapter 14, Safety Analysis, 1	Rev. 1, dated 7/91.
*		3.2.4	Chapter 15, Technical Specific 111, dated 3/9/92.	cation and Bases, through Amendment No.
*		3.2.5	Chapter 16 Design Criteria for	r Structures and Equipment.
	3.3	Drawing	gs	
*		3.3.1	RPS Rack Layout Drawings:	·
	·		9321-H-39903, Sht. 1, Re 10, Rev. 2 9321-H-39903, Sht. 18, Rev. 2 9321-H-39 39903, Sht. 24, Rev. 1 93	ev. 2 9321-H-39903, Sht. Sht. 11, Rev. 3 9321-H-39903, 9903, Sht. 19, Rev. 2 9321-H- 321-H-39903, Sht. 25, Rev. 1
*		3.3.2	Interconnection Wiring Diagram	ms:
			9321-H-39923, Sht. 10, Ro 11, Rev. 2 9321-H-39923, Sht. 24, Rev. 2 9321-H-39 9321-H-39923, Sht. 33, Ro	ev. 2 9321-H-39923, Sht. Sht. 23, Rev. 2 9321-H-39923, 9923, Sht. 32, Rev. 2 ev. 2
*		3.3.3	Instrument Arrangement Drawin	gs:
			9321-F-70273, Rev. 14, C 9321-F-70283, Rev. 18, C 9321-F-70253, Rev. 8, P	ontainment Bldg. Instrumentation ontainment Bldg. Instrumentation rimary Plant Instrument Piping &
			9321-F-70263 Rev. 11, P	supports, Sht. 1 rimary Plant Instrument Piping & Supports, Sht. 2
		3.3.4	Deleted.	
		3.3.5	9321-H-70863 Westinghouse Sug Transmitter.	gested Routing, Reactor Coolant Flow
*		3.3.6	9321-F-27383, Rev. 22, Flow D	iagram Reactor Coolant System Sht. 1

* Used as Design Input.

New York Po Authority	wer	·····	
c	ALCULATION	NO. <u>IP3-CALC-RPC-00298</u>	REVISION
P T P F	Project <u>I</u> Pitle <u>Instr</u> Preliminary Pinal	P3 . Loop Accur./Setpt. Calc. 	Page <u>6</u> of <u>20</u> Date <u>1992</u> Prepared by <u>J. McNeil</u> Date <u>88/92</u> R/bs.JF Checked by <u>G. Durniak</u> Date <u>8/240</u> M
*	337	Instrument Block Diagram	
		IP3V-526-4.14-0075, (BD-2 IP3V-526-4.14-0076, (BD-2	20), Rev. 2 21), Rev. 2
*	3.3.8	Instrument Rack Drawing	
		9321-F-70513, Sht. 4, Rev	7. 9
	3.3.9	Equipment Arrangement Control	Building.
		9312-F-30523, Sht. 1, Rev	7. 36
3.	.4 Calibr	ation Procedures	
	3.4.1	IC-AD-2, Rev. 7, Calibration a Equipment.	and Control of Measuring and Test
*	3.4.2	AP-19, Rev. 10, Surveillance	Test Program.
*	3.4.3	AP-17, Rev. 5, Calibration of	M&TE.
*	3.4.4	3PT-M03, Rev. 15, Surveillance Analog Functional.	e Test Procedure, Reactor Coolant Flow
*	3.4.5	3PC-R2, Rev. 9, Reactor Coolar	nt Loop Flow Calibration.
3.	.5 Foxbor	o Product Literature	
	3.5.1	Deleted	
*	3.5.2	Foxboro Product Specification Pressure Transmitters, dated	: PSS-2A-1C1H, E13DH Electronic Gauge 1984.
	3.5.3	Deleted	
*	3.5.4	Foxboro General Specification August 1975.	, GS-2A-5A2-A, 63U-AC Difference Alarm,
*	3.5.5	Foxboro Instruction 18-690, M	odel 63U-A Single Alarm, January 1969.

* Used as Design Input.

New York Power Authority

CALCULATION NO. <u>IP3-CALC-RPC-00298</u>

REVISION 0

Project <u>IP3</u>	Page <u>7</u> of <u>20</u>
Title Instr. Loop Accur./Setpt. Calc.	Date 1992 //
Preliminary	Prepared by J. McNeil Date 8/3/92 Rites Try
Final X	Checked by <u>G. Durniak</u> Date <u>(2)</u>

4.0 LOOP FUNCTION

The low flow reactor trip protects the core against DNB in the event of a loss of one or two reactor coolant pumps. (Ref. 3.2.4, page 2.3-6)

Flow transmitters are installed in the intermediate leg of each RCS loop and serve to indicate whether a reduction in the flow rate has occurred. Each transmitter supplies a flow indicator on panel SAF in the control room, a computer input (CI), and low flow comparator (bistable). At 93% of normal flow the comparator generates a low flow trip signal and an alarm on panel SAF. If two out of three flow comparators associated with a given loop trip, then the coincidence logic gate generates a loop low flow signal which may or may not cause a reactor trip depending upon the current power level and whether a low flow condition exists in any other RCS loops. (Ref. 3.1.14)

The diagram above is similar for each of the twelve (12) instrument loops, as follows:

REACTOR COOLANT LOOP	FLOW TRANSMITTER	POWER SUPPLY	BISTABLE
31	FT-414	FQ-414	FC-414
	FT-415	FQ-415	FC-415
	FT-416	FQ-416	FC-416
32	FT-424	FQ-424	FC-424
	FT-425	FQ-425	FC-425
	FT-426	FQ-426	FC-426
33	FT-434	FQ-434	FC-434
	FT-435	FQ-435	FC-435
	FT-436	FQ-436	FC-436
34	FT - 444	FQ-444	FC-444
	FT - 445	FQ-445	FC-445
	FT - 446	FQ-446	FC-446

(Ref. 3.3.3, 3.3.2, 3.3.6 & 3.3.7)

noricy							
,	CALCULATI	ON NO. <u>IP3-</u>	CALC-RPC	-00298		REVISION 0	
	Project	IP3 tr. Loop Ac ry	cur./Set	pt. Calc.		Page <u>9</u> of <u>20</u> Date Prepared by <u>J. M</u> o	0
	Final	<u>X</u>				Checked by <u>G. Du</u>	urniak Date (12/12/14)
6.0	LOOP UNCER	TAINTY EQUA	TIONS				•
	(SEE	ATTACHMENT	C I)				
	6.1 LOOP	COMPONENTS	;		(Ref.	3.1.6, 3.3.1, 3.3	.2, 3.3.3, & 3.3.8)
		TAG	SYSTEM	BLDG	RACK	MODEL NO	
		FT-414 FT-415 FT-416	RP	VC Elev 68'	F20	E13DH-SAH1	
		FT-424 FT-425 FT-426	RP	VC Elev 68'	F20	E13DH-SAH1	
		FT-434 FT-435 FT-436	RP	VC Elev 68'	F20	E13DH-SAH1	
		FT-444 FT-445 FT-446	RP	VC Elev 68'	F20	E13DH-SAH1	
	•	FQ-414 FQ-415 FQ-416	RP	CB ELEV 53'	R4 R8 R11	610AC-0	
		FQ-424 FQ-425 FQ-426	RP	CB Elev 53'	R4 R8 R11	610AC-0	
		FQ-434 FQ-435 FQ-436	RP	CB Elev 53'	R4 R8 R11	610AC-0	
		FQ-444 FQ-445 FQ-446	RP	CB Elev 53'	R4 R8 R11	610AC-0	
		FC-414 FC-415 FC-416	RP	CB Elev 53'	R4 R8 R11	63U-AC-OHAAF	_
		FC-424 FC-425 FC-426	RP	CB Elev 53'	R4 R8 R11	63U-AC-OHAAF	
		FC-434 FC-435 FC-436	RP	CB Elev 53'	R4 R8 R11	63U-AC-OHAAF	
1		FC-444 FC-445	RP	CB Elev 53'	R4 R8	63U-AC-OHAAF	

norre	- y						
	CALC	ULATION NO. <u>IP3-CALC-RPC-00298</u>	REVISION 0				
	Proj Titl Prel Fina	ect <u>IP3</u> e <u>Instr. Loop Accur./Setpt. Calc.</u> iminary l <u>X</u>	Page <u>10</u> of <u>20</u> Date <u>1992</u> Prepared by <u>J. McNeil</u> Date <u>\$/3/92</u> Checked by <u>G. Durniak</u> Date <u>\$/3/92</u>	- R K			
7.0	DETER	MINE CHANNEL UNCERTAINTY (CU)					
	Total	Channel Uncertainty (CU)					
	The t descr	cotal Channel Uncertainty is calculate ribed in Attachment I:	d as follows. The methodology is				
		$CU = \pm \sqrt{PM_1^2 + PE_1^2 + IRE_1^2 + e_1^2 + e_2^2} \pm B^{\pm}$					
		$CU = \pm \sqrt{2.27^2 + 1.0^2 + 0^2 + 1.55^2 + .68^2}$					
	Where	e, bias $B = 0$,					
		$CU = \pm 3.0$ % flow span					
		Converting "% flow span" to "% flow" 120% flow,	given that the instrument loop span i (Ref. 3.4.	is .5)			
		$CU = \pm 3.0$ % flow span X (120%)	· · ·				
		CU = ±3.6% flow					
		The loop uncertainties are given as	as follows:				
	7.1	Process Measurement Uncertainty (PM_1)				
		PMA is an allowance for non-instrume PMA terms used are the effect of the (Tavg) on the density of the primary d/p transmitters are used to infer f flow calorimetric used to normalize transmitters.	nt related effects. Examples of the accuracy of the rod control system coolant in the cold leg elbow where low rate, and the accuracy of precision the cold leg elbow tap d/p (Ref. 3.1.2	on 20)			
		Westinghouse provides two values (in Measurement Uncertainty, PMA ₁ and PM combined algebraically as follows:	terms of % flow span) for Process A ₂ . For conservatism, these values ar	:e			
		$PM_1 = PMA_1 + PMA_2 = .25 + 2.02 = 4$	2.27% flow span (Page 19 of Ref. 3.1.)	L9)			
		Values for PMA_1 , PMA_2 , and PE_1 were of Ref. 3.1.19 and reflect plant spectrum operating conditions of Indian Point	obtained from Tables 3.1-1 through 3.1 cific measurement uncertainties and c 3.	-4			
	7.2	Primary Element Uncertainties (PE ₁)	= ± .3% flow span				
		Primary Element Accuracy (PEA) is ar for the measurement of flow. When a function, the d/p transmitter used t a precision flow measurement to reduce coefficient for the elbow. The PEA	allowance for use of a metering devia in elbow is used for a protection to make the measurement is normalized the uncertainty for the flow term is then an allowance for the noi	ce to sy			

New York Power		
Authority		
CALC	ULATION NO. <u>IP3-CALC-RPC-00298</u>	REVISION 0
Proj Titl Prel	ect <u>IP3</u> e <u>Instr. Loop Accur./Setpt. Calc.</u> iminary	Page <u>11</u> of <u>20</u> Date <u>1992</u> Prepared by <u>J. McNeil</u> Date <u>6/3/32</u> (Afra)
Fina	<u>1 X</u>	Checked by <u>G. Durniak</u> Date <u>3/3/47</u>
	Primary Element uncertainty, due to ins across an elbow in the suction of the R \pm .3% of flow span. For added conservat \pm 1.0% of flow span.	tallation of flow transmitters CP, is given by Westinghouse to be ism this value will be increased to
	$PE_1 = PEA_1 = \pm 1.0$ % flow span	(Page 19 of Ref. 3.1.19)
Note:	Ref 3.1.21 details that a calibr as any other standard primary de order of ±0.2%. Therefore, ± 1.	cated elbow meter is just as accurate evice and has a repeatability in the .0% is conservative.
7.3	Insulation Resistance Effect (IRE)	
	The twelve (12) flow transmitters are 1 (Ref. 3.1.6 and 3.3.3). Per Assumption considered.	ocated in the Containment Building 2.6, accident effects are not
	IRE effects are negligibly small under	normal, non-accident conditions. (Ref. 3.1.3)
7.4	Transmitter Uncertainties (e ₁)	
	$\theta_1 = \pm \sqrt{RA_1^2 + DR_1^2 + TE_1^2 + RE_1^2 + SE_1^2 + HE_1^2 + SE_1^2}$	$SP_1^2 + MTE_1^2 + PS_1^2 \pm B_1^*$
	$\theta_1 = \pm \sqrt{.5^2 + 1.80^2 + .68^2 + 0^2 + 0^2 + 0^2 + 1.}$	$5^2 + .72^2 + .1^2$
	$e_1 = \pm 2.59$ % of ΔP Span	
	Please note that no bias uncertainties	were identified.
	Reactor Coolant flow is determined by d connected to elbow taps. The above e ₁ span". In order to calculate total cha uncertainty must be converted from "% o Westinghouse provides this conversion a	differential pressure transmitters uncertainty, is given in "% of ΔP unnel uncertainty for RC flow, the e_1 of ΔP span" to "% flow". as follows:
	e_i (% flow) = (ΔP uncertainty) (1/2) $\left(\frac{Tran}{2}\right)$	$\left(\frac{nsmitter span}{100} \right)^2$ (pg. 19 of ref. 3.1.13)
	Where RCS flow transmitter span	is 120%, and nominal flow is 100%.
	In order to convert e ₁ above to "% flow transmitter span, and multiply by 100.	span", divide both sides by Therefore,
	e_1 (% flow span) = $\left(\frac{\Delta P \ uncertainty}{2}\right) \left(\frac{transport containty}{2}\right)$	<u>nsmitter span</u> 100
	Solving for e ₁ ,	
	$e_1 = \left(\frac{2.59\$}{2}\right) \left(\frac{120}{100}\right) \$ \text{ flow span}$	
	e ₁ = ±1.55% flow span	

,

New York Power _Authority			
CALCULATION	NO. <u>IP3-CALC-RPC-00298</u>	REVISION 0	
Project <u>I</u> Title <u>Instr</u> Preliminary Final	P3 . Loop Accur./Setpt. Calc. X	Page <u>12</u> of <u>20</u> Date <u>1992</u> Prepared by <u>J. McNeil</u> Date <u>5/3/42</u> Checked by <u>G. Durniak</u> Date <u>5/3/42</u>	¥6,e 7
The fl	ow transmitter uncertainties	are given as follows:	
7.4.1	Reference Accuracy $(RA_1) = :$	t.5% of ΔP Span (Ref. 3.5.2).	
	Analysis of ref. 3.4.5 deta 500 inches of H_2O . Per Ref Accuracy is \pm .5% of ΔP spa	ils that the pressure span is less than . 3.5.2, the corresponding Reference n.	
	The Calibration Procedure T be ±.5% of span (2mV tolera	olerance for the transmitters is shown to nce of 400 mV span) (Ref. 3.4.5).	,
	Therefore, either value may uncertainty.	be used to calculate the transmitter	
7.4.2	Drift $(DR_1) = 1.2$ of ΔP Sp. the drift uncertainty for a term, and that drift varies period, drift for 30 months follows:	an, per year (Ref. 3.1.15). Given that given period is a random and independent linearly with time within any one (2 1/2 periods) may be calculated as	
	$DR_1 = \sqrt{1 \cdot 2^2 + 1 \cdot 2^2 + \left(\frac{1 \cdot 2}{2}\right)^2}$	(Paragraph 6.2.7 of Ref. 3.1.3))
	= ±1.80% of ΔP span, for	30 months	
7.4.3	Temperature Effect (TE ₁)		
	The Temperature Effect at t calculated as follows:	he normal operating temperature can be	
	Temp. Effect $(TE_1) = \pm 2.0$ %	of ΔP span, per 100°F (Ref. 3.5.2)	>
	The normal containment temp	erature is 102°F at elevation 68′	
		(Ref. 3.1.8)
-	Given that calibration is d temp. change $\Delta T = 102 - 68$	one at 68°F (Assumption 2.4), the max. = 34°F.	
	Given that the temperature difference (Ref. 3.1.3),	Effect (TE) will vary linearly with temp.	
	$\frac{2.0\%}{100^\circ F} = \frac{TE}{34^\circ F}$		
	TE_1 (Normal) = ± .68% of ΔP	Span	
7.4.4	Radiation Effect $(RE_1) = 0$.	(Assumption 2.6)
	Radiation effects under nor negligible.	mal operating conditions are considered	

hority			
(CALCULATION	NO. <u>IP3-CALC-RPC-00298</u>	REVISION 0
	Project <u>II</u> Title <u>Instr</u>	23 Loop Accur./Setpt. Calc.	Page <u>13</u> of <u>20</u> Date <u>1992</u> Prepared by I McNeil Date <i>Alsia</i> D/
	Final	<u>x</u>	Checked by <u>G. Durniak</u> Date <u>1/3/02</u>
	7.4.5	Seismic Effect $(SE_1) = 0$.	(Assumption 2.1)
	7.4.6	Humidity Effect $(HE_1) = 0$.	(Assumption 2.6)
	7.4.7	Static Pressure Effect (SP_1)	= ± 1.5% of ΔP span (Ref. 3.5.2)
	7.4.8	Measurement and Test Equipmer	t uncertainty (MTE ₁)
		The following three instrumer as shown in the block diagram	nts are used to test the transmitters, a (Section 5.0) and Ref. 3.4.5:
		MTE1: Pressure Gag MTE2: Precision Re MTE3: Digital Volt	ge sistor, 10 ohms : Meter (DVM)
		The reference standards used uncertainty (error) requirement tolerance of the equipment be	for calibrating M&TE have an ent of not more than 1/4 of the eing calibrated (Ref. 3.4.3).
;	~	Measuring and Test Equipment equal to that of the equipmen	shall have an accuracy greater than or at being calibrated (Ref. 3.4.2).
		Given the relative high accur guidelines stated above, it i	acy of the M&TE, and the procedural s conservative to assume that:
		MTE1 = MTE3 = The transmitter M&TE reading error, and refer	Reference Accuracy (RA), including any ence standard uncertainty.
		The Precision Resistor (MTE2) 10.01 ohms or $\pm .1$ % of span.	shall have a tolerance of 9.99 to (Ref 3.4.3, Resistor Calibration Log)
		Therefore, per Ref. 3.1.3:	$MTE = \sqrt{MTE \ 1^2 + MTE \ 2^2 + MTE \ 3^2}$
			$= \sqrt{.5^2 + .1^2 + .5^2}$
			= ± .72% of ΔP span
	7.4.9	Power Supply Effect $(PS_1) = \frac{1}{2}$ supply voltage (Ref. 3.5.2).	1% of ΔP span for a ± 10% deviation in
		Per Assumption 2.5, instrumen exceed ±2.0%, therefore, it :	nt bus voltage variations will not is conservative to assume,
		$PS_1 = \pm 0.1$ % of ΔP span	

√ew York Authorit	Power v		
	CALCULATIO	N NO. TP3-CALC-RPC-00298	REVISION 0
		<u> </u>	
	Project	IP3	Page <u>14</u> of <u>20</u>
	Title <u>Inst</u>	r. Loop Accur./Setpt. Calc.	Date 1992
	Preliminar Final	У	Checked by <u>C. Durpick Date 6/3/92 K/k/2</u>
-	rinai	<u> </u>	checked by <u>G. Durniak</u> Date <u>114</u>
	7.4.1	.0 Monthly Calibration Tolerand	ce Analysis
		Please note that the flow t the monthly calibration pro- due to extension of the Ope monthly basis.	ransmitter output is monitored as part of cedure. Therefore, any additional drift rating Cycle will be evaluated on a
		The monthly calibration tole (± 2.5 % of ΔP span) (Ref. 3.4 transmitter output at 100% represents the normal combine transmitter as seen during this tolerance should be no	erance for the transmitters is ±10mV 4.4). This procedure records actual flow. Therefore, this tolerance ned channel uncertainty for the elbow and operation: Using values from Sec. 7.0, greater than:
		given,	
		$PM_1 = PMA_1 = \pm 0.30 \ \& \Delta PE_1 = PEA = \pm 0.50 \ \& \Delta B = 0$	P span (Table 3.1.4 of Ref. 3.1.19) P span (Table 3.1.4 of Ref. 3.1.19)
		$\sqrt{PM_1^2 + PE_1^2 + RA_1^2 + DR_1^2 + TE_1^2}$	$+ SP_1^2 + MTE^2 + PS_1^2$
		$\sqrt{.30^2 + .50^2 + .5^2 + 1.8^2 + .6^2}$	$8^2 + 1.5^2 + .72^2 + .1^2 = \pm 2.66$ of ΔP span
		The monthly calibration tol therefore, conservative.	erance is less than this value, and
	7.5 Bista	able Uncertainty`(e ₂)	
	As sh uncei	nown on the block diagram (Sec rtainty may be calculated as fo	tion 5.0), the alarm (bistable) ollows:
		$\Theta_2 = \pm \sqrt{RA_2^2 + DR_2^2 + TE_2^2 + RE_2^2 + SE_2^2 + HE_2^2}$	$+SP_2^2 + MTE_2^2 + PS_2^2 \pm B_2^*$
		$= \pm \sqrt{.5^2 + .2^2 + .52^2 + 0^2 + 0^2 + 0^2 + 0^2 + 0^2}$	$+.71^2 + .5^2 \pm 0$
		$e_2 = \pm 1.14$ % of ΔP span,	
	Pleas	se note that no bias uncertain	ties were identified.
	Simi must There	larly to Section 7.4, the bist be converted to "% flow" usin efore,	able uncertainty given in "% of ∆P span" g the Westinghouse conversion factor.
	e2 (8	$flow span) = \left(\frac{1.14}{2}\right) \left(\frac{120}{100}\right)$	
		$e_2 = \pm 0.68$ % flow span	
	The 1	bistable uncertainties are give	en as follows:

,

CALCULAI	ION NO. <u>IP3-CALC-RPC-00298</u>	REVISION 0
Project	IP3	Page <u>15</u> of <u>20</u>
Prelimir	ary	C. Date 1992 Prepared by I McNeil Date 8/3/02
Final	<u>X</u>	Checked by G. Durniak Date $\sqrt{2k_2}$
	· · · · · · · · · · · · · · · · · · ·	
7.5	.1 Reference Accuracy (RA ₂)
	Reference Accuracy for span.	the Model 63U-AC alarm is given as \pm .5% of \angle (Ref 3.5.
~	The Calibration Procedu	The Tolerance is given as \pm .2 mV, (\pm .5%). (Ref. 3.4.
	Therefore, either value uncertainty.	e may be used to calculate the bistable
	Foxboro Bistable units externally on a termina wiring diagram (Ref. 3. included in the specifi Therefore, the uncertai be addressed separately	with cord sets have a resistor (RM1) mounted al block, as shown on the interconnecting 3.2). The resistor uncertainty (±.1%) is led bistable Reference Accuracy (Ref. 3.5.5) inty of the external resistor does not need to 7.
	NOTE: The total re loop is with loop resista transmitters introduce an 3.5.2).	sistance of all resistors in the in the vendors recommended "output nce operating area" for the . Therefore, the resistors do not y additional loop uncertainty (Ref.
7.5	5.2 Drift $(DR_2) = \pm .2$ % of Δ Analysis).	P span per year (Ref. 3.1.12, System Error
	The overpressurization 0.2%/yr. for various 62 are also series 63U bis acceptable to use this	system manual provides drift values of ± BU series bistables. The RC Flow bistables stables. Therefore, by similarity it is drift value for the bistable uncertainty.
	The bistables are check drift value is conserva	ked and calibrated monthly, therefore this ative.
7.5	5.3 Temperature Effect (TE ambient temperature.) = $\pm .5$ % of ΔP span, for a 50°F change in (ref. 3.5.
	Control Room equipment 120°F.	is designed for a maximum temperature of (page 7.2-7 of ref 3.2.
-	Given that calibration the temperature effect 68°F) is assumed to var	may be performed at 68°F (assumption 2.4), over a temperature change of 52°F (120°F- ry linearly as follows:
	$\begin{array}{rcl} TE_2 &= \pm 0.5 & \left(\frac{52}{50}\right) \\ TE_2 &= \pm 0.52 & \text{of} \end{array}$	ΔP span
	-	

New York I Authority	Power			· · ·	
	CALCULATION	NO. IP3-CALC-RPC	-00298	REVISION 0	
	Project <u>I</u> Title <u>Instr</u> Preliminary Final	P3 . Loop Accur./Set	pt. Calc.	Page <u>16</u> of Date Prepared by <u>J. M</u> Checked by <u>G. D</u>	20
	7.5.4	Radiation effect	$(RE_2) = 0$		
	•	The bistable is	located in a mild	l environment.	
	7.5.5	Seismic Effect ($SE_2) = 0$		(Assumption 2.1)
	7.5.6	Humidity Effect	$(\mathrm{HE}_2) = 0$		
		The rack is loca	ted in a mild env	vironment.	
	7.5.7	Static Pressure	$Effect (SP_2) = 0$		
		Pressure Effects	are not applicat	ole for electroni	c components.
	7.5.8	Measuring and Te	st Equipment (MTH	E ₂)	
		Two instruments in the block dia	are involved in o gram (section 5.0	calibrating the b)) and Ref. 3.4.4	istables, as shown :
		MTE4: MTE5:	Test Point resis Digital Volt Met	stor (Part of the cer	Foxboro Rack)
		As described in	Section 7.4.8:		
		MTE4 = MTE5 = Bi	stable Reference	Accuracy (RA ₂)	
		Therefore:	MTE2 = √MTE	$24^2 + MTE5^2$	
			$=\sqrt{.5^2}$	+ . 5 ²	
			= ±.71	% of ∆P span	
			$MTE_2 = \pm .71$	≹ of ΔP span	
	7.5.9	Power Supply Eff in line voltage.	<pre>fect (PS₂) = ±.5% (Ref. 3.1.12, Sy </pre>	of ∆P span, due t ystem Error Analy	to a ± 10% change sis)
		This value is ty assumption 2.5, 2.0%, therefore,	pical for a 63U s instrument bus vo , it is conservat	series bistable. oltage variations ive.	Also, per will not exceed ±
8.0	OBTAIN ANALY	TICAL LIMIT (AL)			
	8.1 The Ar is 879	alytical Limit us of loop flow.	ed in the safety	analysis for low (page 1	flow reactor trip L4.1-4 of Ref 3.2.3)

	•					
	CALCI	ULATION NO.	IP3-CALC-RPC-	00298 REVIS	ION <u>0</u>	
	Proj	ect <u>IP3</u>		Page	<u>17</u> of <u>20</u>	
	Titl	e <u>Instr. Lo</u>	op Accur./Setp	<u>ot. Calc.</u> Date		1992 Alon 2
	Fina	iminary 1		rrepa: Check	red by <u>J. McNell</u> ed by <u>C. Durniak</u>	Date $\frac{2}{2}$
		<u></u>			<u>et by <u>et burniak</u></u>	Date & star of
9.0	DETER	MINE SETPOI	NT (TS)			
	9.1	Calculated	trip setpoint	:		
		The trip s	etpoint can be	e calculated from the f	ollowing equation	1:
			$TS = AL \pm$: (CU + Margin)	(Section 7.2 o	f Ref. 3.1.3)
		given, Mar	$\begin{array}{rcl} \text{cgin} &= 0\\ \text{CU} &= \pm 3. \end{array}$	60% flow	(As	(Section 7.0)
		CU is then direction,	combined with in order to c	n the Analytical Limit letermine the Trip Setp	(AL) in an approp oint, as shown be	oriate 2low.
			TS = 87% TS = 90.6	+ 3.60% % flow		
	9.2	Determinat	ion of existin	ng setpoint		
		The existi 3PT-M03, R only, to s values may	ng setpoint fo lev. 15 (Ref. 3 show the existing change at eac	or each bistable can be 3.4.4). The following ing Trip Setpoint in % ch refueling.	found from proce is provided for i flow. Please not	dure nformation ce that these
		LOOP	BISTABLE TAG NO.	EXPECTED TRANSMITTER OUTPUT (mV DC)	TRIP SETPOINT (mV DC)	
			FC-414	377	339.58	
		31	FC-415	388	349.09	
					· · · · ·	
			FC-416	380	342.17	
		J1	FC-416 FC-424	380 365	342.17 329.20	
		32	FC-416 FC-424 FC-425	380 365 380	342.17 329.20 342.17	
	·	32	FC-416 FC-424 FC-425 FC-426	380 365 380 376	342.17 329.20 342.17 338.71	
		32	FC-416 FC-424 FC-425 FC-426 FC-434	380 365 380 376 384	342.17 329.20 342.17 338.71 345.63	
		32	FC-416 FC-424 FC-425 FC-426 FC-434 FC-435	380 365 380 376 384 387	342.17 329.20 342.17 338.71 345.63 348.23	
		32	FC-416 FC-424 FC-425 FC-426 FC-434 FC-435 FC-436	380 365 380 376 384 387 382	342.17 329.20 342.17 338.71 345.63 348.23 343.90	
		32	FC-416 FC-424 FC-425 FC-426 FC-434 FC-435 FC-435 FC-436 FC-444	380 365 380 376 384 387 387 382 365	342.17 329.20 342.17 338.71 345.63 348.23 343.90 329.20	
		32 33 34	FC-416 FC-424 FC-425 FC-426 FC-434 FC-435 FC-436 FC-436 FC-444 FC-445	380 365 380 376 384 387 382 365 384	342.17 329.20 342.17 338.71 345.63 348.23 343.90 329.20 345.63	

New York Power Authority

CALCULATION NO. <u>IP3-CALC-RPC-00298</u>	REVISION 0
Project <u>IP3</u> Title <u>Instr. Loop Accur./Setpt. Calc.</u> Preliminary <u> </u>	Page <u>18</u> of <u>20</u> Date <u>1992</u> Prepared by <u>J. McNeil</u> Date <u>6/3/42</u> $\kappa^2/5$ k^2 Checked by <u>G. Durniak</u> Date <u>8/3/42</u> k^2

The expected "as found" flow transmitter output is given in the monthly calibration procedure (Ref. 3.4.4), and is based upon previous transmitter operating behavior. The relationship of the calibration procedure Trip Setpoint and the expected transmitter output is given as follows:

$$X = \sqrt{\frac{TS - 100}{\Delta P - 100}} (100) \ \text{\% flow}$$

Where,

X = Trip Setpoint in % flow

TS = Trip Setpoint in mV DC

 ΔP = Transmitter Output (mV) at 100% Nominal Flow

Solving for X, given the above values for bistable FC-414,

 $X = \sqrt{\frac{339.58 - 100}{377 - 100}}$ (100) % flow X = 93% flow

10.0 DETERMINE ALLOWABLE VALUE (AV)

TS

The Allowable Value (AV) can be calculated from the following equation (method 3 of ref. 3.1.3).

 $AV = TS \pm CU_{CAL}$

Where,

Trip Setpoint

CU_{CAL} = Channel Uncertainty (CU) as seen during calibration. Therefore, uncertainties due to a harsh environment, process measurement, or primary element are not considered. For conservatism, only RA, DR, and MTE uncertainties are considered.

The AV will be calculated using the Square-Root-Sum-of-the-Squares (SRSS) method which is consistent with the method used for the determination of the trip setpoint. Therefore, a check calculation is not required. (ref. 3.1.3)

10.1 Determine e_{CAL}

From Section 7.4,

$$\Theta_1 = \pm \sqrt{RA_1^2 + DR_1^2 + TE_1^2 + RE_1^2 + SE_1^2 + HE_1^2 + SP_1^2 + PS_1^2 + MTE_1^2 \pm B_1}$$

CALCU	LATION NO. IP3-	CALC-RPC-00298	REVISION <u>0</u>
Proje	et <u>IP3</u>		Page <u>19</u> of <u>20</u>
Title	Instr. Loop Ac	<u>cur./Setpt. Calc.</u>	Date 1992 Brongrad by L MaNail Data 6/
Final	<u>X</u>		Checked by <u>G. Durniak</u> Date $\frac{2}{2}$
			,
	As defined abov during calibrat	re, CU _{CAL} only consider ion, therefore the mo	s the normal uncertainties as seen dule uncertainty equation e ₁ reduce
	e _{1CAL}	$= \pm \sqrt{RA_1^2 + DR_1^2 + MTB_1^2}$	
	The e ₁ effects above equation:	for RA, DR, and MTE f	rom section 7.4 are substituted in
	Therefore,		
	e _{1CAL}	$= \pm \sqrt{.5^2 + 1.8^2 + .72^2}$	
	e _{1CAL}	= ± 2.0% of \P span	
	Similarly for e associated with	e_2 and using values fraction e_2 calibration is:	om section 7.5, the uncertainty
	e _{2CAL}	$= \pm \sqrt{.5^2 + .2^2 + .71}$	
	e _{2CAL}	= \pm .89% of ΔP span	
10.2	Determine CU _{CAL}		
	Given the above Section 7.0 red	e CU _{CAL} definition, th luces to:	e channel uncertainty equation from
	CU _{CAL}	$= \pm \sqrt{\Theta_{1CAL}^2 + \Theta_{2CAL}^2}$	
	Therefore,		
	CU _{CAL}	$= \pm \sqrt{2.0^2 + .89^2}$	· · · · ·
	CU _{CAL}	= ± 2.19% of \D spa	n
	converting "% c Section 7.4,	of ∆P span" to "% flo	span" given the conversion factor
	CU _{CAL}	$= \pm \left(\frac{2.19\%}{2}\right) \left(\frac{120}{100}\right) \%$	low span
	CU _{CAL}	= ± 1.31% flow span	
	CU _{CAL} Multiplying by	= ± 1.31% flow span 120%,	
	CU _{CAL} Multiplying by CU _{CAL}	= ± 1.31% flow span 120%, = ± (1.31%) (120%)	· ·

. -

ew York I thority	Power		
	CALCULATION NO. <u>IP3-CALC-R</u>	PC-00298 REV	VISION
	Project <u>IP3</u> Title <u>Instr. Loop Accur./S</u> Preliminary <u> </u>	Paj <u>etpt. Calc.</u> Da Pro Cho	ge <u>20</u> of <u>20</u> te <u>1992</u> epared by <u>J. McNeil</u> Date <u>8/3/92</u> R Fac, ecked by <u>G. Durniak</u> Date <u>8/3/42</u> M
	10.3 Allowable Value (AV)	Calculation	
	Calculating for RC lo	ow flow allowable value	ана стана стан Стана стана стан
	given, TS = 90.6%	flow	(Sec. 9.1)
	CU _{CAL} = ± 1.57	% flow	
	The magnitude of CU _{CA} direction to determin	L is combined with the ne AV for a decreasing	trip setpoint in an appropriate signal. Therefore,
	$AV = TS - CU_{CA}$	L	
	AV = 90.6 - 1	. 57	
	AV = 89.0% flo	ow	
11.0	SUMMARY		
		CALCULATE	D EXISTING
	Trip Setpoint (TS)	90.6% flow(Sec. 9.1)	<u>93% flow (Ref. 3.4.4)</u>
	Limiting Safety System Set	ting	90% flow (Sec. 2.3 of Ref. 3.2.4)
	Allowable Value (AV)	89.0% flow(Sec. 10.3)	,
	Analytical Limit (AL)	87% flow (Sec. 8.1)	87% flow (Sec. 8.1)
	NOTES :		
	1. The calculated Allowa condition for the inst	able Value (AV) represe strument loop.	ents the limiting "as-found"
·	2. Normal operating RC :	flow is 100%.	
	11.1 CONCLUSION:		
	The existing Trip Set than is required by conservative. No Set	tpoint for Reactor Cool the total channel uncer tpoint change is requir	lant Loop Low Flow is set higher ctainty, therefore it is ced.
	For RC Loop Low Flow setpoint to insure t (AL) considering add operating cycle.	trip, sufficient margi hat channel trip occurs itional drift and uncer	in exists for the existing trip s within the Analytical Limit rtainties for the 24 month ± 25%

I. Channel Uncertainty Equations

7

.....

ATTACHMENT I CHANNEL UNCERTAINTY EQUATIONS

SHEET 1 OF 2

CALC NO.	<u>1P3-CALC-RPC-00298</u>	REV. <u>0</u>	PROJECT <u>IP3</u>

REFERENCE IES-3, Rev. 0, Instrument Loop Accuracy and Setpoint Calculations

1.0 Total Channel Uncertainty (CU)

The calculation of an instrument channel uncertainty can be performed with a single loop equation containing all potential uncertainty values, or by a series of related term equations. A specific channel calculation coincides with a channel's layout from process measurement to final output module or modules.

The typical linear channel uncertainty calculation has the following form:

 $CU^{*} = + \sqrt{PM^{2} + PE^{2} + IRE^{2} + (Module_{1})^{2} + (Module_{2})^{2} + \dots (Module_{n})^{2} + B^{*}}$ $CU^{-} = - \sqrt{PM^{2} + PE^{2} + IRE^{2} + (Module_{1})^{2} + (Module_{2})^{2} + \dots (Module_{n})^{2} - B^{-}}$

Where:

- CU = Channel Uncertainty (CU) at a specific point in the channel: the CU can be calculated for any point in a channel from Module 1 to Module n, as needed.
- PM = Random uncertainties that exist in the channel's basic Process Measurement (PM).
- PE = Random uncertainties that exist in a channel's Primary Element (PE), if it has one, such as the accuracy of a flowmeter table.
- IRE = Insulation resistance effect, leakage allowance in % of
 span.

MODULE 1, 2, n - Total random uncertainty of each module that makes up the loop from Module 1 through Module n.

B⁺ = The total of all positive biases associated with a channel; this would include any uncertainties from PM, PE, or the Modules that could not be combined as a random term (biases, arbitrarily - distributed uncertainties, and random bias).

 B^- = The total of all negative biases associated with a channel.

ATTACHMENT I CHANNEL UNCERTAINTY EQUATIONS

SHEET 2 OF 2

CALC NO.	<u>1P3-CALC-RPC-00298</u>	REV. <u>0</u>	PROJECT <u>IP3</u>
----------	---------------------------	---------------	--------------------

REFERENCE IES-3, Rev. 0, Instrument Loop Accuracy and Setpoint Calculations

2.0 <u>Module (en) Uncertainties</u>

The individual module random uncertainties are in themselves a statistical combination of uncertainties. Depending on the type of module, its location, and the specific factors that can affect its accuracy, the determination of the module uncertainty will vary. For example, the module uncertainty for a module may be calculated as:

$$e^{+} = +\sqrt{RA^{2} + DR^{2} + TE^{2} + RE^{2} + SE^{2} + HE^{2} + SP^{2} + PS^{2} + MTE^{2} + B^{+}}$$

$$e^{-} = -\sqrt{RA^{2} + DR^{2} + TE^{2} + RE^{2} + SE^{2} + HE^{2} + SP^{2} + PS^{2} + MTE^{2} - B^{-}$$

Where:

е

- Uncertainty of module,
- RA = Module Reference Accuracy specified by the manufacturer,
- DR = Drift of the module over a specific period,
- TE = Temperature Effect for the module; the effect of ambient temperature variations on module accuracy; the TE may be a normal operating TE, or an accident TE, as required,
- RE = Radiation Effect for the module; the effect of radiation exposure on module accuracy; the RE may be a normal operating RE, an accident RE, or time of trip RE as required,
- SE = Seismic Effect or vibration effect for the module; the effect of seismic or operational vibration on the module accuracy,
- HE = Humidity Effect for the module; the effect of changes in ambient humidity on module accuracy, if any,
- SP = Static Pressure effects for the module; the effect of changes in process static pressure on module accuracy,
- MTE = Measuring and Test Equipment effect for the module; this accounts for the uncertainties in the equipment utilized for calibration of the module,
- PS = Power Supply effect,
 - Biases associated with the module, if any.

В

EP3	X
JAF	

INDEPENDENT DESIGN VERIFICATION CONTROL SHEET

VERIFICATION OF:	IP3-CALC-RP	<u>C-00298/Set</u>	point Calcul	lation for R	C Loop Low Flow	
(Document Ti	tle/Number				
SUBJECT:	24 Month Op	erating Cyc	le – Reactor	r Scram Sett	ting	
MOD/TASK NUMBER (If Applicabl	e):				
QA CATEGORY:	<u>Cat I</u>				····	
DISCIPLINE REVIEW Check as required	: ELEC	MECH	c/s	I&C	OTHER (SPECIFY) O & M X	
METHOD USED *: VERIFIER'S NAME: VERIFIER'S INITIALS/DATE: APPROVED BY:	DR W. Wittich <u>Uttab</u> St A Petron				 Date:8/-8	3/32
REMARKS/SCOPE OF	VERIFICATION	i :				
Verification comp	leted in acc	ordance wit	h Attachmen	t 4.3 of DCI	14, Rev. 7.	
<u>Calculation is cl</u>	ear and tech	nically und	lerstandable	. The assu	nptions, approad	ch,
and technique are	in accordan	ce with ind	lustry pract:	<u>ice. The r</u>	esults are valio	1
and reasonable.						
<u>In addition to an</u>	overall eva	luation of	the calcula	tion, indep	endent verificat	tion
compared the resu	lts of this	calculation	<u>to results</u>	from simila	ar plants. The	total

calculated channel uncertainty of 3.0% of flow span is consistent with the total

* Methods of verification: Design Review (DR), Alternate Calculations (AC), Qualification Test (QT)

Page 2 of 2

IP3 X

JAF

INDEPENDENT DESIGN VERIFICATION CONTROL SHEET

allowance used elsewhere. Both the Turkey Point Tech Specs and the W Standard

Technical Specification document a total channel uncertainty with margin of 2,5% -

4.6% of span.

.

DESIGN VERIFICATION CHECKLIST DESIGN REVIEW METHOD

VERIFICATION OF: <u>RC Loop Low Flow/IP3-CALC-RPC-00298</u> Document/Title/Number	
<u>SUBJE</u>	CT:Setpoint Calculations for 24 Month Cycle
MOD/TASK NO.: (If Applicable) N/A	
DISCIPLINE REVIEW	
	OTHER ELEC MECH C/S I&C (SPECIFY) O&M
Check Requi	as red X
	Yes/No/Not Applicable
1.	Were the inputs correctly selected and incorporated Yes No/NA into the design?
2.	Are assumptions necessary to perform the design activity adequately described and reasonable: Where necessary, are the assumptions identified for subsequent reverifications when the detailed design activities are completed?
3.	Are the appropriate quality and quality assurance Yes/No NA requirements specified? e.g., safety classification.
4.	Are the applicable codes, standards and regulatory requirements including issue and addenda properly identified and are their requirements for design met?
5.	Have applicable construction and operating experience Yes/No/NA been considered?
6.	Have the design interface requirements been satisfied? Yes/No/NA
7.	Was an appropriate design method used? Yes/No/NA
8.	Is the output reasonable compared to inputs?
9.	Are the specified parts, equipment and processes suitable Yes/No/NA for the required application?

-

DESIGN VERIFICATION CHECKLIST DESIGN REVIEW METHOD

Yes/No/Not Applicable Are the specified materials compatible with each Yes/No/NA other and the design environmental conditions to which the materials will be exposed? Have adequate maintenance features and requirements Yes/No been satisfied? Are accessibility and other design provisions Yes/No adequate for performance of needed maintenance and repair? Has adequate accessibility been provided to perform Yes/No the in-service inspection expected to be required during the plant life? Has the design properly considered radiation exposure to the public and plant personnel? (ALARA/cobalt reduction) Are the acceptance criteria incorporated in the design No/NA documents sufficient to allow verification that design requirements have been satisfactorily accomplished? Have adequate pre-operational and subsequent periodic No /NA test requirements been appropriately specified? Are adequate handling, storage, cleaning and shipping requirements specified? Are adequate identification requirements specified? Are the conclusions drawn in the Safety Evaluation fully Yes/No supported by adequate discussion in the test or Safety Evaluation itself? Are necessary procedural changes specified and are Yes/No responsibilities for such changes clearly delineated? Are requirements for record preparation, review, approval, retention, etc., adequately specified? Yes/No/NA Have supplemental reviews by other engineering disciplines (seismic, electrical, etc.) been performed on the integrated design package?

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

DESIGN VERIFICATION CHECKLIST DESIGN REVIEW METHOD

Yes/No/Not Applicable

23. Have the drawings, sketches, calculations etc., included in the integrated design package been reviewed?

Yes/No/NA

24. References used as part of the design review which are not listed as part of the design calculation/analysis.

NONE DESIGN VERIFIER: Signature/Date -NOSG ruices Inc, pervisor basco