IP-3 DRAFT SUBMITTAL

STANDARD RADIOLOGICAL EFFLUENT TECHNICAL SPECIFICATIONS

APRIL 1983

8306100256 830606 PDR ADUCK 05000286 P PDR

LIMITING CONDITIONS FOR OPERATION SURVEILLANCE REQUIREMENTS

INDEX

SECTION

1.0 DEFINITIONS

3/4.3 INSTRUMENTATION

3/4.3.3.10 Radioactive Liquid Effluent Monitoring Instrumentation

3/4.3.3.11 Radioactive Gaseous Effluent Monitoring Instrumentation

3/4.11 RADIOACTIVE EFFLUENTS

3/4.11.1 LIQUID EFFLUENTS

Concentration

Dose

Liquid Radwaste Treatment System

Liquid Holdup Tanks

3/4.11.2 GASEOUS EFFLUENTS

Dose Rate

Dose-Noble Gases

Dose-Iodine-131, Tritium, and Radionuclides in Particulate Form

Gaseous Radwaste Treatment System

Explosive Gas Mixture

Gas Storage Tanks

- 3/4.11.3 SOLID RADIOACTIVE WASTE
- 3/4.11.4 TOTAL DOSE
- 3/4.12 RADIOLOGICAL ENVIRONMENTAL MONITORING
- 3/4.12.1 MONITORING PROGRAM
- 3/4.12.2 LAND USE CENSUS
- 3/4.12.3 INTERLABORATORY COMPARISON

INDEX

SECTION

- 3/4.3 INSTRUMENTATION
- 3/4.3.3.10 Radioactive Liquid Effluent Monitoring Instrumentation
- 3/4.3.3.11 Radioactive Gaseous Effluent Monitoring Instrumentation
- 3/4.11 RADIOACTIVE EFFLUENTS
- 3/4.11.1 LIQUID EFFLUENTS
- 3/4.11.2 GASEOUS EFFLUENTS
- 3/4.11.3 SOLID RADIOACTIVE WASTE
- 3/4.11.4 TOTAL DOSE
- 3/4.12 RADIOLOGICAL ENVIRONMENTAL MONITORING
- 3/4.12.1 MONITORING PROGRAM
- 3/4.12.2 LAND USE CENSUS
- 3/4.12.3 INTERLABORATORY COMPARISON PROGRAM

GASEOUS RADWASTE TREATMENT SYSTEM

1.6 A GASEOUS RADWASTE TREATMENT SYSTEM is any system designed and installed to reduce radioactive gaseous effluents by collecting primary coolant system offgases from the primary system and providing for delay or holdup for the purpose of reducing the total radioactivity prior to release to the environment.

MEMBER (S) OF THE PUBLIC

1.7 MEMBER(S) OF THE PUBLIC shall include all persons who are not occupationally associated with the plant. This category does not include employees of either utility, their contractors or vendors. Also excluded from this category are persons who enter the site to service equipment or to make deliveries. This category does include persons who use portions of the site for recreational, occupational or other purposes not associated with the plant.

OFFSITE DOSE CALCULATION MANUAL (ODCM)

1.8 The OFFSITE DOSE CALCULATION MANUAL shall contain the current methodology and parameters used in the calculation of offsite doses due to radioactive gaseous and liquid effluents, in the calculation of gaseous and liquid effluent monitoring alarm/trip setpoints, and in the conduct of the environmental radiological monitoring program.

PROCESS CONTROL PROGRAM (PCP)

1.11 The PROCESS CONTROL PROGRAM shall contain the current formula, sampling, analyses, tests, and determinations to be made to ensure that the processing and packaging of solid radioactive wastes based on demonstrated processing of actual or simulated wet solid wastes will be accomplished in such a way as to assure compliance with 10 CFR Part 20, 10 CFR Part 71 and Federal and State regulations and other requirements governing the disposal of the radioactive waste.

PURGE - PURGING

1.12 PURGE or PURGING is the controlled process of discharging air or gas from a confinement in such a manner that replacement air or gas is required to purify the confinement.

SITE BOUNDARY

1.14 The SITE BOUNDARY shall be that line beyond which the land is neither owned, nor leased, nor otherwise controlled by either site licensee.

SOLIDIFICATION

1.15 SOLIDIFICATION shall be the conversion of wet wastes into a form that meets shipping and burial ground requirements.

SOURCE CHECK

1.16 A SOURCE CHECK shall be the qualitative assessment of channel response when the channel sensor is exposed to a Source of increased radioactivity

UNRESTRICTED AREA

1.18 An UNRESTRICTED AREA shall be any area at or beyond the SITE BOUNDARY access to which is not controlled by either site licensee for purposes of protection of individuals from exposure to radiation and radioactive materials, or any area within the SITE BOUNDARY used for residential quarters or for industrial, commercial, institutional, and/or recreational purposes. The UNRESTRICTED AREA boundary may coincide with the exclusion (fenced) area boundary, as defined in 10 CFR 100.3(a), but the UNRESTRICTED AREA does not include areas over water bodies. The concept of UNRESTRICTED AREAS, established at or beyond the SITE BOUNDARY, is utilized in the LIMITING CONDITIONS FOR OPERATION to keep levels of radioactive materials 'in liquid and gaseous effluents as low as is reasonably achievable, pursuant to 10 CFR 50.36a.

VENTILATION EXHAUST TREATMENT SYSTEM

1.19 A VENTILATION EXHAUST TREATMENT SYSTEM is any system designed and installed to reduce gaseous radioiodine or radioactive material in particulate form in effluents by passing ventilation or vent exhaust gases through charcoal absorbers and/or HEPA filters for the purpose of removing iodines or particulates from the gaseous exhaust stream prior to the release to the environment. Such a system is not considered to have any effect on noble gas effluents. Engineered Safety Feature (ESF) atmospheric cleanup systems are not considered to be VENTILATION EXHAUST TREATMENT SYSTEM components.

VENTING

1.20 VENTING is the controlled process of discharging air or gas from a confinement in such a manner that replacement air or gas is not provided or required during VENTING. Vent, used in system names, does not imply a VENTING process.

TABLE 1.2

FREQUENCY NOTATION

NOTATION

D. W

м Q

R P

В

N.A.

FREQUENCY

Daily

Weekly

Monthly

Quarterly

Each Refueling Outage

Prior to each Startup if not done previous week

Completed before each release

Not Applicable

INSTRUMENTATION

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3.10 The radioactive liquid effluent monitoring instrumentation channels shown in Table 3.3-12 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Specification 3.11.1.1 are not exceeded. The alarm/trip setpoints of these channels shall be determined and adjusted in accordance with the methodology and parameters in the OFFSITE DOSE CALCULATION MANUAL (ODCM).

APPLICABILITY: As Shown in Table 3.3-12

ACTION

- a. With a radioactive liquid effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above specification, without delay suspend the release of radioactive liquid effluents monitored by the affected channel, or declare the channel inoperable, or change the setpoint so it is acceptably conservative.
- b. With less than the minimum number of radioactive liquid effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 3.3-12. Exert best efforts to return the instruments to OPERABLE status within 30 days and, if unsuccessful, explain in the next Semi-annual Radioactive Effluent Release Report why the inoperability was not corrected in a timely manner.

SURVEILLANCE REQUIREMENTS

4.3.3.10 Each radioactive liquid effluent monitoring instrumentation channel shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 4.3-12.

TABLE	3.	3-	-12

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

	INSTRUMENT	MINIMUM CHANNELS OPERABLE*	ACTION
1.	GROSS RADIOACTIVITY MONITORS PROVIDING ALARM AND AUTOMATIC TERMINATION OF RELEASE		
	a. Liquid Radwaste Effluent Line	(1)	1
· .	b. Steam Generator Blowdown Effluent Line	(1)	2
2.	GROSS BETA OR GAMMA RADIOACTIVITY MONITORS PROVIDING ALARM BUT NOT PROVIDING AUTOMATIC TERMINATION OF RELEA a. Service Water System Effluent Line	ASE (1)	~ 3
3.	FLOW RATE MEASUREMENT DEVICES		
	a. Liquid Radwaste Effluent Line	(1)	4
	b. Steam Generator Blowdown Effluent Line	(1)	4
	c. Discharge Canal	(1)	4

During release by the pathway, channels shall be operable and in service during such release on a continuous, uninterupted basis. Except that outages are permitted, within the time frame and limitations of the specified action, for the purpose of maintenance of required tests, checks and calibration.

5

TABLE 3.3-12 (CONTINUED)

RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

			MINIMUM CHANNELS	
	INSTRUMENT		OPERABLE	ACTION
•	RADIOACTIVITY RECORDER	S*	•	
	a. Liquid Radwaste E	ffluent Line	(1)	1
	b. Steam Generator B	lowdown Effluent Line	(1)	2
	TANK LEVEL INDICATING	DEVICES**	· · · · · ·	
	a. Refueling Water S	torage Tank	(1)	5
·	b. Primary Water Sto	orage Tank	(1)	5
	c. Monitor Tank #31	•	(1)	5
	d. Monitor Tank #32		(1)	5

* Required only if alarm/trip set point is based on recorder-controller.

5.

** Tanks included in this specification are those outdoor tanks that are not surrounded by liners, dikes, or walls capable of holding the tank contents and do not have tank overflows and surrounding area drains connected to the liquid radwaste treatment system. TABLE 3.3-12 (CONTINUED)

TABLE NOTATION

ACTION 1 -

With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases may continue provided that prior to initiating a release:

- a. At least two independent samples are analyzed in accordance with Specification 4.11.1.1, and
- b. At least two technically qualified members of the Facility Staff independently verify the release rate calculations and discharge line valving:

Otherwise, suspend release of radioactive effluents via this pathway.

- ACTION 2 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided grab samples are analyzed either for principal gamma emitters or for gross radioactivity (beta or gamma) at a lower limit of detection of at least 5 x 10 microcurie/ml (as Cs-137):
 - a. At least once per 12 hours when the specific activity of the secondary coolant is greater than 0.01 microcurie/ gram DOSE EQUIVALENT I-131.
 - b. At least once per 24 hours when the specific activity of the secondary coolant is less than or equal to 0.01 microcurie/gram DOSE EQUIVALENT I-131.
- ACTION 3 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided that, at least once per 12 hours, grab samples are collected and analyzed for gross radioactivity (beta or gamma) at a lower limit of detection of at least 5 x 10⁻⁷ microcurie/ml (as Cs-137).
- ACTION 4 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided the flow rate is estimated at least once per 4 hours during actual releases. Pump performance curves may be used to estimate flow.
- ACTION 5 With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, liquid additions to this tank may continue provided the tank liquid level is estimated during all liquid additions to the tank.

			TABLE 4.3-1	2		
	RADIC	ACTIVE LIQUID EFFLUER MONITO	RING INSTRU	MENTATION SURV	LANCE REQUIE	REMENTS
ı	,	INSTRUMENT	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST
1.	PROVI	S RADIOACTIVITY MONITORS IDING ALARM AND AUTOMATIC INATION OF RELEASE				
	a.	Liquid Radwaste Effluent Line	D*	D*	R(3)	Q(1)*
·	b.	Steam Generator Blowdown Effluent Line	D*	M*	R(3)	Q(1)*
• 2.	MONIT PROVI	S BETA OR GAMMA RADIOACTIVITY TORS PROVIDING ALARM BUT NOT IDING AUTOMATIC TERMINATION ELEASE				
	a.	Service Water System Effluent Line	. D*	M*	R(3)	Q(2)*
3.	FLOW	RATE MEASUREMENT DEVICES				
	a.	Liquid Radwaste Effluent Line	e D(4)	N.A.	R.	Q
	b.	Steam Generator Blowdown Effluent Line	D(4)	N.A.	R	N.A.
4.	RADI	DACTIVITY RECORDERS				
	a.	Liquid Radwaste Effluent Line	è D*	N.A.	R	R
	b.	Steam Generator Blowdown Effluent Line	D* ,	N.A.	R	R
5.	TANK	LEVEL INDICATING DEVICES***				
	a.	Refueling Water Storage Tank	D**	N.A.	R	R
	b.	Primary Water Storage Tank	D **	N.A.	R	R
	c.	Monitor Tank #31	D**	N.A.	R	R
	d.	Monitor Tank #32	D**	N.A.	R	R

- * When this pathway is utilized for releases, with frequency no more than indicated.
- ** During liquid additions to the tank. Required only if alarm/trip setpoint is based on recorder-controller.

*** Tanks included in this specification are those outdoor tanks that are not surrounded by liners, dikes, or walls capable of holding the tank contents and do not have tank overflows and surrounding area drains connected to the liquid radwaste treatment system.

متعجره ويردمون وموابعهم بسينين و

دىنىغاغلانى ئىت

TABLE 4.3-12 (CONTINUED)

TABLE NOTATION

- (1) The CHANNEL FUNCTIONAL TEST shall also demonstrate that automatic isolation of this pathway and control room alarm annunciation occur if the following condition exists:
 - 1. Instrument indicates measured levels above the alarm/trip setpoint.
- (2) The CHANNEL FUNCTIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exists:
 - 1. Instrument indicates measured levels above the alarm setpoint.
 - 2. Instrument controls not set in operate mode.
- (3) Radioactive calibration standards used for channel calibrations shall be traceable to the National Bureau of Standards or an aliquot of calibration solution shall be analyzed with instrumentation which is calibrated with NBS traceable standards. (Standards from suppliers who participate in measurement assurance activities with NBS are acceptable).
- (4) CHANNEL CHECK shall consist of verifying indication of flow during periods of release. CHANNEL CHECK shall be made at least once per 24 hours on days on which continuous, periodic, or batch releases are made.

9

INSTRUMENTATION

RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

LIMITING CONDITION FOR OPERATION

3.3.3.11 The radioactive gaseous effluent monitoring instrumentation channels shown in Table 3.3-13 shall be OPERABLE with their alarm/trip setpoints set to ensure that the limits of Specification 3.11.2.1 are not exceeded. The alarm/trip setpoints of these channels shall be determined and adjusted in accordance with the methodology and parameters in the ODCM.

APPLICABILITY: As shown in Table 3.3-13

ACTION:

- a. With a radioactive gaseous effluent monitoring instrumentation channel alarm/trip setpoint less conservative than required by the above Specification, without delay suspend the release of radioactive gaseous effluents monitored by the affected channel or declare the channel inoperable, or change the setpoint so it is acceptably conservative.
- b. With less than the minimum number of radioactive gaseous effluent monitoring instrumentation channels OPERABLE, take the ACTION shown in Table 3.3-13. Exert best efforts to return the instruments to OPERABLE status within 30 days and, if unsuccessful, explain in the next Semiannual Radioactive Effluent Release Report why the inoperability was not corrected within this time frame.

SURVEILLANCE REQUIREMENTS

4.3.3.11 Radioactive gaseous effluent monitoring instrumentation channels shall be demonstrated OPERABLE by performance of the CHANNEL CHECK, SOURCE CHECK, CHANNEL CALIBRATION and CHANNEL FUNCTIONAL TEST operations at the frequencies shown in Table 4.3-13.

TABLE 3.3-13

х _{х 2} х с

¢

RADIOACTIVE SEOUS EFFLUENT MONITORING INSTR ENTATION

	INSTRUMENT	MINIMUM CHANNELS OPERABLE	APPLICABLITY	ACTION
1.	WASTE GAS HOLDUP SYSTEM		۰.	
	a. Noble Gas Activity Monitor - Providing Alarm	(1)	**	6
2.	WASTE GAS HOLDUP SYSTEM EXPLOSIVE GAS MONITORING SYSTEM		· .	10
	a. Hydrogen Monitor	(1)	*** **	•
	b. Oxygen Monitor	(1)	**	
3.	CONDENSER AIR EJECTOR			
	a. Noble Gas Activity Monitor	(1)	*	8
			· .	
4.	ENVIRONMENTAL RELEASE POINTS (PLANT VENT***, ADMIN. BUILDING, CONTROLLED AREA, RAD MACHINE SHOP)		· · ·	•
	a. Noble Gas Activity Monitor	(1)	*	8
	b. Iodine Sampler	(1)	*	11
	c. Particulate Sampler	(1)	*	11
	d. Flow Rate Monitor	(1)	*	. 7
	e. Sampler Flow Rate Monitor	(1)	*	7
5.	CONTAINMENT PURGE SYSTEM			
	a. Containment Noble Gas Activity - Monitor Providing Alarm and Automatic Termination of Releas	e (1)	*	9
	* Channels shall be operable release via this pathway, time frame of the specifie performance of required te	except that outages as d action for the purpe	re permitted, with ose of maintenance	in the
	<pre>** During waste gas holdup sy offgases).</pre>	stem operation (treat	ment for primary s	ystem
	*** This will also monitor rel Vents, Fuel Storage Buildi			uilding

nelle un un version de la maine la maine de la maine de la Martin de la Martin de la maine de la maine de conserve de

1

۰.

TABLE 3.3-13 (CONTINUED)

TABLE NOTATION

With the number of channels OPERABLE less than that required by ACTION 6 the Minimum Channels OPERABLE requirement, the radioactive content of the receiving gas decay tank shall be determined daily to ensure compliance with 3.11.2.6.

With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided the flow rate is estimated at least once per 4 hours.

ACTION 8 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via this pathway may continue provided grab samples are taken at least once per 12 hours and these samples are analyzed for gross activity within 24 hours.

ACTION 9 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, immediately suspend PURGING of radioactive effluents via this pathway. During containment building ventilation in the cold shutdown condition, continuous monitoring and automatic termination of release is not required. One continuous monitor at the final release point (plant vent) is sufficient.

ACTION 10 -

ACTION 7

With the number of channels OPERABLE one less than required by the Minimum Channels OPERABLE requirement, operation of this system may continue provided grab samples of waste tank on reuse or receipt are taken and analyzed daily. With both channels inoperable operation may continue provided grab samples of waste tank on reuse or receipt are taken and analyzed as follows:

a) Every 4 hours during degassing operations

b) Daily during other operations.

ACTION 11 - With the number of channels OPERABLE less than required by the Minimum Channels OPERABLE requirement, effluent releases via the effected pathway may continue provided samples are continuously collected with auxiliary sampling equipment as required in Table 4.11-2.

,	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	COACTIVE GASEOUS EFFLUE	TABLE	4.3-13 INSTRUMENTA		LANCE REQUI	REMENTS
,	, <u>RADI</u>	· · · ·	CHANNEL CHECK	SOURCE CHECK	CHANNEL CALIBRATION	CHANNEL FUNCTIONAL TEST	MODES IN WHICH SURVEILLANCE REQUIRED
1.	WASI	TE GAS HOLDUP SYSTEM					
	a.	Noble Gas Activity Monitor-Providing Alarm	D	М	R(2)	Q(1)***	*
2.	EXPI	TE GAS HOLDUP SYSTEM LOSIVE GAS MONITORING		·		· · · · ·	
	SYSI	Hydrogen Monitor	D	N.A.	M(3)	N.A.	**
	a. b.	Oxygen Monitor	D	N.A.	M(3)	N.A.	**
3.		DENSER AIR EJECTOR	D	1	11(-1)		
	a.	Noble Gas Activity Monitor	D	M	R(2)	Q(1)***	*
4.	(PLA CONI MACH	IRONMENTAL RELEASE POINTS ANT VENT, ADMIN. BUILDING TROLLED AREA VENT, RAD. HINE SHOP VENT)					
	a.	Noble Gas Activity Monito		M	R(2)	Q(1)***	i * *
	b.	Iodine Sampler	W	N.A.	N.A.	N.A.	*
	с.	Particulate Sampler	W	N.A.	N.A.	N.A.	*
	d.	Flow Rate Monitor	D	N.A.	R	Q	*
	e.	Sampler Flow Rate Monitor	D	N.A.	R	N.A.	*
5.	CONT a.	TAINMENT PURGE SYSTEM Containment Noble Gas Act Monitor - Providing Alarm and Automatic Termination	- 1				
		of Release	D	M	R(2)	Q(1)***	*
		* Surveillance is requ removed from service					C11
		<pre>** During waste gas hol offgases).</pre>	dup system.	operation	(treatment f	or primary	system
	•	*** Will not include ope	eration of	automatic (control funct	ions.	

13

.....

TABLE 4.3-13 (CONTINUED)

TABLE NOTATION

- (1) The CHANNEL FUNCTIONAL TEST shall also demonstrate that control room alarm annunciation occurs if any of the following conditions exists:
 - 1. Instrument indicates measured levels above the alarm setpoint.
 - 2. Instrument controls not set in operate mode.
- (2) Radioactive Calibration Standards used for channel calibrations shall be traceable to the National Bureau of Standards or an aliquot of calibration gas shall be analyzed with instrumentation which is calibrated with NBS traceable standards (standards from suppliers which participate in measurement assurance activities with NBS are acceptable).
- (3) The CHANNEL CALIBRATION shall include the use of standard gas samples containing:
 - 1. Less than or equal to, two volume percent hydrogen, and
 - 2. Greater than or equal to four volume percent hydrogen,
- (4) The CHANNEL CALIBRATION shall include the use of standard gas samples containing:

1. Less than or equal to, one volume percent oxygen, and

2. Greater than or equal to four volume percent oxygen.

3/4.11 RADIOACTIVE EFFLUENTS

3/4.11.1 LIQUID EFFLUENTS

CONCENTRATION

LIMITING CONDITION FOR OPERATION

3.11.1.1 The concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS shall be limited to the concentrations specified in 10 CFR Part 20 106(a) for radionuclides other than dissolved or entrained noble gases as calculated under 10CFR20.106(a). For dissolved or entrained noble gases, the concentration shall be limited to 2 x 10⁻⁴ microcuries/ml.

APPLICABILITY: At all times.

ACTION:

With the concentration of radioactive material released in liquid effluents to UNRESTRICTED AREAS exceeding the above limits, without delay restore the concentration to within the above limits.

SURVEILLANCE REQUIREMENTS

- 4.11.1.1.1 Radioactive liquid wastes shall be sampled and analyzed according to the sampling and analysis program of Table 4.11-1.
- 4.11.1.1.2 The results of the radioactivity analyses shall be used in accordance with the methodology and parameters in the ODCM to assure that the concentrations at the point of release are maintained within the limits of Specification 3.11.1.1.

TABLE 4.11-1

RADIOACTIVE LIQUID WASTE SAMPLING AND ANALYSIS PROGRAM

		ſ		
		Minimum	,	Lower Limit of Detection
Liquid Release	Sampling	Analysis	Type of Activity	(LLD)
Туре	Frequency	Frequency	Analysis	(uCi/ml)
	1			•
A. Batch Waste	В	B		5×10^{-7}
Release Tanks	Each Batch	Each Batch	Principal Gamma Emitters	5 X 10
Tanks			EMILLEIS	
			Mo-99 Ce-144	5×10^{-6}
	· · ·		I-131	5×10^{-6} 1×10^{-6}
				1×10^{-5}
-	B Dra Datah (M	M .	Dissolved and	1×10
	One Batch/M	-	Entrained Gases (Gamma Emitters)	
		-		
	В	м	н-3	1×10^{-5}
	Each Batch	Composited		
			Gross Alpha	1×10^{-7}
	В	Q Composite ^d	Sr-89, Sr-90	5×10^{-8}
	Each Batch		51-09, 51 90	
			Fe-55	1 x 10
	- /			5×10^{-7}
B. Continuous Releases	3/W Grab Sample ^d	W Composite ^d	Principal Gamma Emitters	5 X 10
reteases	Grap sampre		FUILT CCCT 2	
			Mo-99, Ce-144	5×10^{-6}
				1 1
				1×10^{-6}
	M	м	Dissolved and	1 -x 10 ⁻⁵
· · · · · ·	Grab Sample ^d	141	Entrained Gases	1 - X 10
			(Gamma Emitters)	
		1 .		-5
	W	M d	н-3	1×10^{-5}
	Grab Sample	Composite		
	L		Gross Alpha	1×10^{-7}
			a . 00 an 00	5 x 10 ⁻⁸
	W Grab Sample ^d	Q Composite ^d	Sr-89, Sr-90	
	Gran sampre	COMPOSTCE	Fe-55	1 x 10 ⁻⁶
		1	,20	

16

TABLE NOTATION

^aThe LLD is defined, for purposes of these specifications, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. Equations used in the calculation of the LLD for a particular measurement system are presented in the ODCM.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

^bA batch release is the discharge of liquid wastes of a discrete volume. Prior to sampling for analyses, each batch shall be isolated, and then thoroughly mixed to assure representative sampling. (Steam Generators may be considered a batch release for reporting purpose during shutdown condition but should be analyzed in accordance with the continuous release section of table.)

^CThe principal gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Mn-54, Fe-59, Co-58, Co-60, Zn-65, Cs-134, Cs-137; and Ce-141. This list does not mean that only these nuclides are to be monitored. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Semiannual Radioactive Effluent Release Report pursuant to Specification 6.9.1.12.

^dA composite sample is one in which the quantity of liquid sampled is proportional to the quantity of liquid waste discharged and in which the method of sampling employed results in a specimen that is representative of the liquids released.

^eA continuous release is the discharge of liquid wastes of a nondiscrete volume, e.g., from a volume of a system that has an input flow during the continuous release.

17

DOSE

LIMITING CONDITION FOR OPERATION

- 3.11.1.2 The dose or dose commitment to a MEMBER OF THE PUBLIC from radioactive materials in liquid effluents released, from each reactor unit, to UNRESTRICTED AREAS shall be limited:
 - a. During any calendar quarter to less than or equal to 1.5 mrems to the total body and to less than or equal to 5 mrems to any organ, and
 - b. During any calendar year to less than or equal to 3 mrems to the total body and to less than or equal to 10 mrems to any organ.

APPLICABILITY: At all times.

ACTION:

a. With the calculated dose from the release of radioactive materials in liquid effluents exceeding any of the above limits, in lieu of a Licensee Event Report, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits. This Special Report shall also include (1) the results of radiological analyses of the drinking water source and (2) the radiological impact on finished drinking water supplies with regard to the requirements of 40 CFR Part 141.*

SURVEILLANCE REQUIREMENTS

- 4.11.1.2 Cumulative dose contributions from liquid effluents for the current calendar quarter and the current calendar year shall be determined in accordance with the methodology and parameters in the ODCM at least once per month.
- * Applicable only if drinking water supply is taken from the receiving water body within 3 miles of the plant discharge. In the case of river sited plants this is 3 miles downstream only.

LIQUID RADWASTE TREATMENT SYSTEM

LIMITING CONDITION FOR OPERATION

3.11.1.3 The liquid radwaste treatment system shall be used when the projected doses due to the liquid effluent, from each reactor unit, to UNRESTRICTED AREAS would exceed 0.06 mrem to the total body or 0.2 mrem to any organ in a 31 day period.

APPLICABILITY: At all times.

ACTION:

- a. With radioactive liquid waste being discharged without treatment and in excess of the above limits, in lieu of a Licensee Event Report, prepare and submit to the Commission within 30 days pursuant to Specification 6.9.2 a Special Report that includes the following information:
 - 1. Explanation of why liquid radwaste was being discharged without treatment, identification of any inoperable equipment or sub-systems, and the reason for the inoperability,
 - Action(s) taken to restore the inoperable equipment to OPERABLE status, and
 - 3. Summary description of action(s) taken to prevent a recurrence.

SURVEILLANCE REQUIREMENTS

4.11.1.3 Doses due to liquid releases from each reactor unit to UNRESTRICTED AREAS shall be projected at least once per month in accordance with the methodology and parameters in the ODCM.

19

LIQUID HOLDUP TANKS*

(Appropriate alternatives to the ACTIONS and SURVEILLANCE REQUIREMENTS below can be accepted if they provide reasonable assurance that in the event of an uncontrolled release of the tanks' contents, the resulting concentrations would be less than the limits of 10 CFR Part 20, Appendix B, Table II, Column 2, at the nearest potable water supply and the nearest surface water supply in an UNRESTRICTED AREA.)

LIMITING CONDITION FOR OPERATION

3.11.1.4 The quantity of radioactive material contained in each of the following unprotected <u>outdoor</u> tanks shall be limited to less than or equal to <u>10</u> curies, excluding tritium and dissolved or entrained noble gases.

- a. Refueling Water Storage Tank
- b. Primary Water Storage Tank
- c. 31 Monitor Tank
- d. 32 Monitor Tank
- e. Outside Temporary Tank

APPLICABILITY: At all times

ACTION:

a. With the quantity of radioactive material in any of the above listed tanks exceeding the above limit, immediately suspend all additions of radioactive material to the tank, within 48 hours reduce the tank contents to within the limit, and describe the events leading to this condition in the next Semi-annual Radioactive Effluent Release Report.

SURVEILLANCE REQUIREMENTS

- 4.11.1.4 The quantity of radioactive material contained in each of the above listed tanks shall be determined to be within the above limit by analyzing a representative sample of the tank's contents at least once per month when radioactive materials are being added to the tank.
- * Tanks included in this specification are those outdoor tanks that are not surrounded by liners, dikes, or walls capable of holding the tank contents and that do not have tank overflows and surrounding area drains connected to the liquid radwaste treatment system.

3/4.11.2 GASEOUS EFFLUENTS

DOSE RATES

LIMITING CONDITION FOR OPERATION

3.11.2.1	The dose rate due to radioactive materials released in gaseous
	effluents from the site to areas at and beyond the SITE BOUNDARY
	shall be limited to the following:

- a. For noble gases: Less than or equal to 500 mrems/yr to the
 total body and less than or equal to 3000 mrems/yr to the skin, and
- b. For iodine-131, for tritium, and for all radionuclides in particulate form with half lives greater than 8 days: Less than or equal to 1500 mrems/yr to any organ.

APPLICABILITY: At all times.

ACTION:

With the dose rate(s) exceeding the above limits, without delay restore the release rate to within the above limit(s).

SURVEILLANCE REQUIREMENTS

- 4.11.2.1.1 The dose rate due to noble gases in gaseous effluents shall be determined to be within the above limits in accordance with the methodology and parameters in the ODCM.
- 4.11.2.1.2 The dose rate due to iodine-131, tritium, and all radionuclides in particulate form with half lives greater than 8 days in gaseous effluents shall be determined to be within the above limits in accordance with the methodology and parameters in the ODCM by obtaining representative samples and performing analyses in accordance with the sampling and analysis program specified in Table 4.11-2.

TABLE 4.11-2

RADIOACTIVE GASEOUS WASTE SAMPLING AND ANALYSIS PROGRAM

Gaseous Release Type	Sampling Frequency	Minimum Analysis Frequency	Type of Activity Analysis	Lower Limit of Detection (LLD ^a (uCi/cc)
A. Waste Gas Storage Tank	B Each Tank Grab Sample	B Each Tank	Principal Noble Gas Gamma Emitters	1 x 10 ⁻⁴
B. Containment PURGE	B Each PURGE Grab Sample	B Each PURGE	Principal Noble Gas Gamma Emitters	1×10^{-4}
C. Condenser Air Ejector	Grab Sample	M	Principal Noble Gas Gamma Emitters	1 x 10 ⁻⁴
D. Environmental Release Points (Plant Vent,	Mc Grab Sample	MC	Principal Noble Gas Gamma Emitters	1×10^{-4}
Admin. Bldg. Controlled Area Vent, Radioactive Machine Shop Vent)	M ^{d,e} Grab Sample	M ^d ,e	H-3	1×10^{-6}
	Continuous ^f	W ^g Charcoal Sample	I-131	1 x 10 ⁻¹²
	Continuous ^f	W ^g Particulate Sample	Principal Gamma Emitters ^D (I-131, Others)	1 × 10 ⁻¹¹
	Continuous ^f	M Composite Particulate Sample	Gross Alpha	1 x 10 ⁻¹¹
	Continuous ^f	Q Composite Particulate Sample	Sr-89, Sr-90	1 x 10 ⁻¹¹
	Continuous ^f	Noble Gas Monitor	Noble Gases Gross Beta or Gamma	1 × 10 ⁻⁶

Ĩ

TABLE NOTATION

^aThe LLD is defined, for purposes of these specifications, as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. Equations used in the calculation of the LLD for a particular measurement system are presented in the ODCM.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

^bThe principal gamma emitters for which the LLD specification applies exclusively are the following radionuclides: Kr-87, Kr-88, Xe-133, Xe-133m, Xe-135, and Xe-138 for gaseous emissions and Mn-54, Fe-59, Co-58, Co-60, Zn-65,CS-134, Cs-137, and Ce-141 for particulate emissions. This list does not mean that only these nuclides are to be monitored. Other gamma peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Semiannual Radioactive Effluent Release Report pursuant to Specification 6.9.1.12.

^CThe main plant vent shall be sampled and analysed following shutdown, startup, or a THERMAL POWER change (within one hour) exceeding 15 percent of RATED THERMAL POWER unless either (1) analysis shows that the DOSE EQUIVALENT I-131 concentration in the primary coolant has not increased more than a factor of 3: or (2) the noble gas activity monitor shows that effluent activity has not increased by more than a factor of 3. Under no circumstances would iodine samples be required more than once per day.

^dPlant vent Tritium grab samples shall be taken at least once per 24 hours when the refueling canal is flooded unless continuous sampling equipment is in use.

^ePlant Vent Tritium grab samples shall be taken at least once per 7 days from the ventilation exhaust from the spent fuel pool area, whenever spent fuel is in the spent fuel pool unless continuous sampling equipment is in use.

¹The ratio of the sample flow rate to the sampled stream flow rate shall be known for the time period covered by each dose or dose rate calculation made in accordance with Specification 3.11.2.1, 3.11.2.2 and 3.11.2.3.

^gSamples shall be changed at least once per 7 days and analyses shall be completed within 48 hours after changing, or after removal from sampler. Sampling shall also be performed at least once per 24 hours for at least 7 days following each shutdown, startup or THERMAL POWER change exceeding 15 percent of RATED THERMAL POWER in one hour and analyses shall be completed within 48 hours of changing. When samples collected for 24 hours are analyzed, the corresponding LLDs may be increased by a factor of 10. This requirement does not apply if either (1) analysis shows that the DOSE EQUIVALENT I-131 concentration in the primary coolant has not increased more than a factor of 3; or (2) the noble gas monitor shows that effluent activity has not increased more than a factor of 3.

DOSE - NOBLE GASES

LIMITING CONDITION FOR OPERATION

- 3.11.2.2 The air dose due to noble gases released in gaseous effluents, from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited to the following:
 - During any calendar quarter: Less than or equal to 5 mrads for gamma radiation and less than or equal to 10 mrads for beta radiation and,
 - b. During any calendar year: Less than or equal to 10 mrads for gamma radiation and less than or equal to 20 mrads for beta radiation.

APPLICABILITY: At all times

ACTION:

a. With the calculated air dose from radioactive noble gases in gaseous effluents exceeding any of the above limits, in lieu of a Licensee Event Report, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

SURVEILLANCE REQUIREMENTS

4.11.2.2 Cumulative dose contributions for the current calendar quarter and current calendar year for noble gases shall be determined in accord-ance with the ODCM at least once per month.

DOSE - IODINE-131, TRITIUM, AND RADIONUCLIDES IN PARTICULATE FORM

LIMITING CONDITION FOR OPERATION

3.11.2.3 The dose to a MEMBER OF THE PUBLIC from iodine-131, tritium and all radionuclides in particulate form with half-lives greater than 8 days in gaseous effluents released, from each reactor unit, to areas at and beyond the SITE BOUNDARY shall be limited to the following:

a. Dur any calendar quarter: Less than or equal to 7.5 mrems

to any organ and,

b. During any calendar year: Less than or equal to 15 mrems to any organ.

APPLICABILITY: At all times

ACTION:

a. With the calculated dose from the release of iodine-131, tritium and radionuclides in particulate form with half lives greater than 8 days, in gaseous effluents exceeding any of the above limits, in lieu of a Licensee Event Report, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2 a Special Report that identifies the cause(s) for exceeding the limit and defines the corrective actions that have been taken to reduce the releases and the proposed corrective actions to be taken to assure that subsequent releases will be in compliance with the above limits.

SURVEILLANCE REQUIREMENTS

4.11.2.3 Cumulative dose contributions for the current calendar quarter and current calendar year for iodine-131, tritium, and radionuclides in particulate form with half lives greater than 8 days shall be determined in accordance with the methodology and parameters in the ODCM at least once per month.

GASEOUS RADWASTE TREATMENT SYSTEM

LIMITING CONDITION FOR OPERATION

3.11.2.4 The appropriate GASEOUS RADWASTE TREATMENT SYSTEM and the appropriate VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaswous waste prior to their discharge when the projected gaseous effluent air doses due to gaseous effluent releases, from each reactor unit, to areas at and beyond the SITE BOUNDARY would exceed 0.2 mrad for gamma radiation and 0.4 mrad for beta radiation in a 31 day period: The VENTILATION EXHAUST TREATMENT SYSTEM shall be used to reduce radioactive materials in gaseous waste prior to their discharge when the projected doses due to gaseous effluent releases, from each reactor unit, to areas at and beyond the SITE BOUNDARY would exceed 0.3 mrem to any organ in a 31 day period.

APPLICABILITY: At all times

ACTION:

- a. With gaseous waste being discharged without treatment and in excess of the above limits, in lieu of a Licensee Event Report, prepared and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report that includes the following information:
 - 1. Explanation of why gaseous radwaste was being discharged without treatment, identification of any inoperable equipment or subsystems, and the reason for the inoperability,
 - 2. Action(s) taken to restore the inoperable equipment to OPERABLE status, and
 - 3. Summary description of action(s) taken to prevent a recurrence.

SURVEILLANCE REQUIREMENTS

4.11.2.4.1 Doses due to gaseous releases from each reactor unit to areas at and beyond the SITE BOUNDARY shall be projected at least once per month in accordance with the methodology and parameters in the ODCM.

EXPLOSIVE GAS MIXTURE (Hydrogen rich systems not designed to withstand a hydrogen explosion)

LIMITING CONDITION FOR OPERATION

3.11.2.5B The concentration of oxygen in the waste gas holdup system shall be limited to less than or equal to 2% by volume whenever the hydrogen concentration exceeds 4% by volume.

APPLICABILITY: At all times

ACTION:

- a. With the concentration of oxygen in the waste gas holdup system greater than 2% by volume but less than or equal to 4% by volume, reduce the oxygen concentration to the above limits within 48 hours.
- b. With the concentration of oxygen in the waste gas holdup system greater than 4% by volume and the hydrogen concentration greater than 2% by volume, immediately suspend all additions of waste gases to this portion of the system and reduce the concentration of oxygen to less than or equal to 2% by volume without delay.

SURVEILLANCE REQUIREMENTS

4.11.2.5B The concentrations of hydrogen and oxygen in the waste gas holdup system shall be determined to be within the above limits by monitoring the waste gases in the waste gas holdup system with the hydrogen and oxygen monitors required OPERABLE by Table 3.3-13 of Specification 3.3.3.11.

GAS STORAGE TANKS

LIMITING CONDITION FOR OPERATION

3.11.2.6 The quantity of radioactivity contained in each gas storage tank shall be limited to less than or equal to 50,000 curies noble gases (considered as Xe-133).

APPLICABILITY: At all times

ACTION:

a. With the quantity of radioactive material in any gas storage tank exceeding the above limit, immediately suspend all additions of radioactive material to the tank and within 48 hours reduce the tank contents to within the limit.

.

SURVEILLANCE REQUIREMENTS

4.11.2.6 The quantity of radioactive material contained in each gas storage tank shall be determined to be within the above limit at least once per 24 hours when radioactive materials are being added to the tank in accordance with the methodology and parameters in the ODCM.

3/4.11.3 SOLID RADIOACTIVE WASTE

LIMITING CONDITION FOR OPERATION

3.11.3 The solid radwaste system shall be used in accordance with a PROCESS CONTROL PROGRAM to process wet radioactive wastes to meet shipping and burial ground requirements.

APPLICABILITY: At all times

ACTION:

a. With the provisions of the PROCESS CONTROL PROGRAM not satisfied suspend shipments of defectively processed or defectively packaged solid radioactive wastes from the site.

SURVEILLANCE REQUIREMENTS

- 4.11.3 The PROCESS CONTROL PROGRAM shall be used to verify the SOLIDIFICATION of at least one representative test specimen from at least every tenth batch of each type of wet radioactive waste (e.g., filter sludges, spent resins, evaporator bottoms, boric acid solutions, and sodium sulfate solutions).
 - a. If any test specimen fails to verify SOLIDIFICATION, the SOLIDIFICATION of the batch under test shall be suspended until such time as additional test specimens can be obtained, alternative SOLIDIFICATION parameters can be determined in accordance with the PROCESS CONTROL PROGRAM, and a subsequent test verifies SOLIDIFICATION. SOLIDIFICATION of the batch may then be resumed using the alternative SOLIDIFICATION parameters determined by the PROCESS CONTROL PROGRAM.
 - b. If the initial test specimen from a batch of waste fails to verify SOLIDIFICATION, the PROCESS CONTROL PROGRAM shall provide for the collection and testing of representative test specimens from each consecutive batch of the same type of wet waste until at least 3 consecutive initial test specimens demonstrate SOLIDIFICATION. The PROCESS CONTROL PROGRAM shall be modified as required, as provided in Specification 6.13, to assure SOLIDIFICATION of subsequent batches of waste.

3/4.11.4 TOTAL DOSE

LIMITING CONDITION FOR OPERATION

3.11.4 The annual (calendar year) dose or dose commitment to any MEMBER OF THE PUBLIC due to releases of radioactivity and to radiation from uranium fuel cycle sources shall be limited to less than or equal to 25 mrems to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems.

APPLICABILITY: At all times.

ACTION:

With calculated doses from the release of radioactive materials а. in liquid or gaseous effluents exceeding twice the limits of Specification 3.11.1.2.a, 3.11.1.2.b, 3.11.2.2.a, 3.11.2.2.b, 3.11.2.3.a, or 3.11.2.3.b, calculations should be made including direct radiation contributions from the reactor units and from outside storage tanks to determine whether the above limits of Specification 3.11.4 have been exceeded. If such is the case in lieu of a Licensee Event Report, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report that defines the corrective action to be taken to reduce subsequent releases to prevent recurrence of exceeding the above limits and includes the schedule for achieving conformance with the above limits. This Special Report, as defined in 10 CFR Part 20.405c, shall include an analysis that estimates the radiation exposure (dose) to a MEMBER OF THE PUBLIC from uranium fuel cycle sources, including all effluent pathways and direct radiation, for the calendar year that includes the release(s) covered by this report. It shall also describe levels of radiation and concentrations of radioactive material involved, or the cause of the exposure levels or concentrations. If the estimated dose(s) exceeds the above limits and if the release condition resulting in violation of 40 CFR Part 190 has not already been corrected, the Special Report shall include a request for a variance in accordance with the provisions of 40 CFR Part 190. Submittal of the report is considered a timely request, and a variance is granted until staff action on the request is complete.

SURVEILLANCE REQUIREMENTS

 \square

- 4.11.4.1 Cumulative dose contributions from liquid and gaseous effluents shall be determined in accordance with Specifications 4.11.1.2, 4.11.2.2, 4.11.2.3 and in accordance with the methodology and parameters in the ODCM.
- 4.11.4.2 Cumulative dose contributions from direct radiation from the reactor units and from radwaste storage tanks shall be determined in accordance with the methodology and parameters in the ODCM. This requirement is applicable only under conditions set forth in Specification 3.11.4.a.

14.12 RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.1 MONITORING PROGRAM

LIMITING CONDITION FOR OPERATION

3.12.1 The radiological environmental monitoring program shall be conducted as specified in Table 3.12-1.

APPLICABILITY: At all times.

ACTION:

- With the radiological environmental monitoring program not being conducted as specified in Table 3.12-1, 'in lieu of a Licensee
 Event Report, prepare and submit to the Commission, in the Annual Radiological Environmental Operating Report required by Specification
 6.9.1.11, a description of the reasons for not conducting the program as required and the plans for preventing a recurrence.
- b. With the level of radioactivity as the result of plant effluents in an environmental sampling medium at a specified location exceeding the reporting levels of Table 3.12-2 when averaged over any calendar quarter, in lieu of a Licensee Event Report, prepare and submit to the Commission within 30 days, pursuant to Specification 6.9.2, a Special Report that identifies the cause(s) for exceeding the limit(s) and defines the corrective actions to be taken to reduce radioactive effluents so that the potential annual dose to A MEMBER OF THE PUBLIC is less than the calendar year limits of Specifications 3.11.1.2, 3.11.2.2, and 3.11.2.3. When more than one of the radionuclides in Table 3.12-2 are detected in the sampling medium, this report shall be submitted if:

concentration	(1)	+ concentration (2)	+	<u>></u> 1.0
reporting level	<u>(1)</u>	reporting level (2)		

When radionuclides other than those in Table 3.12-2 are detected and are the result of plant effluents, this report shall be submitted if the potential annual dose to A MEMBER OF THE PUBLIC is equal to or greater than the calendar year limits of Specifications 3.11.1.2, 3.11.2.2, and 3.11.2.3. This report is not required if the measured level of radioactivity was not the result of plant effluents; however, in such an event, the condition shall be reported and described in the Annual Radiological Environmental Operating Report.

с.

With milk or fresh leafy vegetable samples unavailable from one or more of the sample locations required by Table 3.12-1, identify locations for obtaining replacement samples and add them to the radiological environmental monitoring program within 30 days. The specific locations from which samples were unavailable may then be deleted from the monitoring program. In lieu of a Licensee Event Report and pursuant to Specification

6.9.1.12, identify the cause of the unavailability of samples and identify the new locations(s) for obtaining replacement samples in the next Semiannual Radioactive Effluent Release Report and also include in the report a revised figure(s) and table for the ODCM reflecting the new locations(s).

SURVEILLANCE REQUIREMENTS

4.12.1.1 The radiological environmental monitoring samples shall be collected pursuant to Table 3.12-1 from the specific locations given in the table and figure(s) in the ODCM and shall be analyzed pursuant to the requirements of Table 3.12-1, and the detection capabilities required by Table 4.12-1.

32

TABLE 3.12-1

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Exposure Pathway and/or Sample

1. Direct Radiation

Number of Representative Samples and Sample Locations^a

40 routine monitoring stations (DR1-DR40) with two or more dosimeters for measuring and recording integrated dose continuously placed as follows:

an inner ring of stations, one in each meteorological sector in the general area of the site boundary (DR1-DR-16)

an outer ring of stations, one in each meteorological sector in the 6 to 8 km range from the site (DR17-DR-32)

the balance of the stations (DR33-DR40) to be placed in special interest areas and in one area to serve as a control station.

Sampling and Collection Frequency

Quarterly

Type and Frequency of Analysis

Gamma dose quarterly

33

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Exposure Pathway and/or Sample	Number of Representative Samples and Sample Locations ^a	Sampling and Collection Frequency	Type and Frequency of Analysis
2. Airborne Radioiodine and Particulates	Samples from 5 locations (A1-A5): 3 samples (A1-A3) from close to the 3 site boundary locations in dif-	Continuous sampler operation with sample collection weekly, or more frequently if required by dust loading.	Radioiodine Cannister: I-131 analysis weekly. Particulate
	<pre>ferent sectors, of the highest calcula- ted annual average ground level D/Q. l sample (A4) from the vicinity of a community</pre>		sampler: Gross beta radioactivity analysis fol- lowing filter change; Gamma isotopic
	<pre>having the highest calculated annual average ground- level D/Q. l sample (A5) from a control location, as for example 15- 30 km distant and in the least prevalent wind direction</pre>		analysis of composite (by location) quarterly.
3. Waterborne a. Surface	wind direction. l sample upstream ^f (Wal) l sample downstream (Wa2)	Composite sample over l month period g	Gamma isotopic analysis ^e monthly. Composite for tritium analysis quarterly. Gamma isotopic ^e and tritium analysis quarterly.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

3.12-1 (CONTINUED)

Number of Type and Representative Frequency Sampling and Samples and Exposure Pathway Sample Locations^a of Analysis Collection Frequency and/or Sample 3. Waterborne Gross beta and Grab monthly 1 sample (Wbl) of b. Drinking gamma isotopic the nearest surface analysis monthly drinking supply Composite for tritium analysis quarterly. Gamma isotopic 2 annually at least 2 samples (Wcl-Wc2) c. Sediment analysis^e 90 days apart from 1 sample (Wcl) from Shoreline downstream area with existing or potential recreational 1.11 value. l control sample (Wc2) from an upstream area. 4. Ingestion Gamma isotopic Semimonthly when animals Samples from milka. Milk

ing animals in 3 locations (Ial-Ia3) within 5 km distance having the highest dose potential. If there are none, then 1 sample from milking animals in each of 3 areas (Ial-Ia3) between 5 to 8 km distant if available where doses are calculated to be greater than 1 mrem per yr¹.

1 sample from milking animals at a control location (Ia4), 15-30 km distant and in the least prevalent wind direction. are on pasture, monthly at other times.

Gamma isotopic and I-131 analysis semimonthly when animals are on pasture; monthly at other times.

Concurrently with indicator locations.

RADIOLOGICAL ENVIRONMENTAL MONITORING PROGRAM

Exposure Pathway and/or Sample	Number of Representative Samples and Sampling and Sample Locations ^a Collection Frequency		Type and Frequency of Analysis	
4. Ingestion		· · ·	<	
b. Fish and Invertebrates	<pre>2 samples (ibl, Ib2) 1 sample (Ibl) of each of 2 species commercially and/or recreationally im- portant species of fish or invertebrate in the vicinity of the discharge when available. 1 sample (Ib2) of each of 2 commercially and or recreationally important species (the same species as in Ibl if available) from an</pre>	Sample in season, or semiannually if they are not seasonal	e 1	
	area not influenced by plant discharge.			
c. Food Products	Samples of 3 different kinds of broad leaf vegetation (edible or inedible) grown nearest each of two different offsite locations of highest predicted annual average ground level D/Q if milk sampling is not performed (Ic10-Ic13)	Monthly when availa	ble Gamma isotopic ^e and I-131 analysis.	
	l sample of each of the similar broad leaf vege- tation grown 15-30 km distant in the least prevalent wind direction if milk sampling is not performed (Ic20-Ic23).	Monthly when availa	ble Gamma isotopic ^e and I-131	

.

.

TABLE NOTATION

^aThe code letters in parenthesis (e.g., DR1, A1, etc.) refer to sample locations as specified in the ODCM. Specific parameters of distance and direction sector from the centerline of one reactor, and additional description where pertinent, shall be provided for each and every sample location in Table 3.12-1 in a table and figure(s) in the ODCM. Refer to NUREG-0133, "Preparation of Radiological Effluent Technical Specifications for Nuclear Power Plant," October 1978, and to Radiological Assessment Branch Technical Position, Revision 1, November 1979. Deviations are permitted from the required sampling schedule if specimens are unobtainable due to hazardous conditions, seasonal unavailability, malfunction of automatic sampling equipment and other ligitimate reasons. If specimens are unobtainable due to sampling equipment malfunction, every effort shall be made to complete corrective action prior to the end of the next sampling period. All deviations from the sampling schedule shall be documented in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.11. It is recognized that, at times, it may not be possible or practicable to continue to obtain samples of the media of choice at the most desired location or time. In these instances suitable alternative media and locations may be chosen for the particular pathway in question and appropriate substitutions made within 30 days in the radiological environmental monitoring program. In lieu of a Licensee Event Report and pursuant to Specification 6.9.1.12, identify the cause of the unavailability of samples for that pathway and identify the new location(s) for obtaining replacement samples in the next Semiannual Radioactive Effluent Release Report and also include in the report a revised figure(s) and table for the ODCM reflecting the new location(s).

^bOne or more instruments, such as a pressurized ion chamber, for measuring and recording dose rate continuously may be used in place of, or in addition to, integrating dosimeters. For the purposes of this table, a thermoluminescent dosimeter (TLD) is considered to be one phosphor; two or phosphors in a packet are considered as two or more dosimeters. Film badges shall not be used as dosimeters for measuring direct radiation.

^CThe purpose of this sample is to obtain background information. If it is not practical to establish control locations in accordance with the distance and wind direction criteria, other sites that provide valid background data may be substituted.

^d Airborne particulate sample filters shall be analyzed for gross beta radioactivity 24 hours or more after sampling to all ow for radon and thoron daughter decay. If gross beta activity in air particulate samples is greater than ten times the yearly mean, of the previous calendar year, of control samples, gamma isotopic analysis shall be performed on the individual samples.

TABLE NOTATION

^eGamma isotopic analysis means the identification and quantification of gammaemmitting radionuclides that may be attributable to the effluents from the facility.

^f"Upstream" samples shall be taken near the intake structures as described in the ODCM. The "downstream sample" shall be taken from the mixing zone at the diffuser to the discharge canal.

-

^gA composite samples is one in which the quantity (aliquot) of liquid sampled shall be collected at time intervals that are very short (e.g., hourly) relative to the compositing period (e.g., monthly) in order to assure obtaining a representative sample.

^h The dose shall be calculated for the maximum organ and age group using the methodology and parameters in the ODCM.

TABLE 3,12-2

REPORTING LEVELS FOR RADIOACTIVITY CONCENTRATIONS IN ENVIRONMENTAL SAMPLES

•		Reporting Leve	els .		·
Analysis	Water (pCi/l)	Airborne Particulate or Gases (pCi/m ³)	Fish (pCi/kg, wet)	Milk (pCi/l)	Food Product (pCi/kg, wet
H- 3	20,000*		· · ·	- · ·	
Mn-54	1,000		30,000		
Fe-59	400		10,000		
Co-58	1,000		30,000		
Co-60	300		10,000		
Zn-65	300		20,000		
Zr-Nb-95	400				
1-131	2	0.9		3	. 100
Cs-134	30	.10	1,000	60	1,000
Cs-137	50	20	2,000		2,000
Ba-La-140	200	·	· · · · · · · · · · · · · · · · · · ·		

ပ္သ

* For drinking water samples. This is 40 CFR Part 141 value. If no drinking water pathway exists, a value of 30,000 pCi/L may be used.

TABLE 4.12-1

DETECTION CAPABILITIES FOR ENVIRONMENTAL SAMPLE ANALYSIS^a

LOWER LIMIT OF DETECTION (LLD)^{b,c}

· · ·				·		•
Analysis	Water (pCi/l)	Airborne Particulate or Gas (pCi/m [°])	Fish (pCi/kg, wet)	Milk (pCi/L)	Food Products (pCi/kg, wet)	Sediment (pCi/kg, dr
	<u> </u>					
gross beta	4	0.01				-
H- 3	2,000*		<i>.</i>	· · ·		
		· · ·			. · · ·	
Mn-54	15		130	·		
		;	• •			· .
Fe-59	30		260	• • •	•	
	•					
Co-58, 60	15		130	. •		
Zn-65	30		260			
,						
Zr-Nb-95	15		i			
	د					
1-131	ıd	0.07	• •	1	60	
					<u> </u>	150
Cs-134	15	0.05	130	15	60	150
				10	80	180
Cs-137	18	0.06	150	18	80	100
	_			15		
<u>Ba-La-140</u>	15	·				·

* If no drinking water pathway exists, a value of 3,000 pCi/l may be used.

Б

TABLE NOTATION

^aThis list does not mean that only these nuclides are to be considered. Other peaks that are identifiable, together with those of the above nuclides, shall also be analyzed and reported in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.11.

^DRequired detection capabilities for thermoluminescent dosimeters used for environmental measurements are given in Regulatory Guide 4.13.

^CThe LLD is defined, for purposes of these specifications as the smallest concentration of radioactive material in a sample that will yield a net count, above system background, that will be detected with 95% probability with only 5% probability of falsely concluding that a blank observation represents a "real" signal. Equations used in the calculation of the LLD for a particular measurement system are presented in the ODCM.

It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement. Analyses shall be performed in such a manner that the stated LLDs will be achieved under routine conditions. Occasionally background fluctuations, unavoidable small sample sizes, the presence of interfering nuclides, or other uncontrollable circumstances may render these LLDs unachievable. In such cases, the contributing factors shall be identified and described in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.11.

^dLLD for drinking water samples. If no drinking water pathway exists, the LLD of gamma isotopic analysis may be used.

RADIOLOGICAL ENVIRONMENTAL MONITORING

3/4.12.2 LAND USE CENSUS

LIMITING CONDITION FOR OPERATION

3.12.2 A land use census shall be conducted and shall identify within a distance of 8 km (5 miles) the location in each of the 16 meteorological sectors of the nearest milk animal, the nearest residence and the nearest garden of greater than 50 m² (500 ft²) producing broad leaf vegetation. Broad leaf vegetation sampling of at least three different kinds of vegetation may be performed at the site boundary in each of two different direction sectors with the highest predicted D/Qs in lieu of the garden census. Specifications for broad leaf vegetation sampling in Table 3.12-1.4c shall be followed, including analysis of control samples.

APPLICABILITY: At all times.

ACTION:

- a. With a land use census identifying a location(s) that yields a calculated dose or dose commitment greater than the values currently being calculated in Specification 4.11.2.3, in lieu of a Licensee Event Report, identify the new location(s) in the next Semiannual Radioactive Effluent Release Report, pursuant to Specification 6.9.1.12.
- b. With a land use census identifying a location(s) that yields a calculated dose or dose commitment (via the same exposure pathway) two times greater than at a location from which samples are currently being obtained in accordance with Specification 3.12.1, add the new location(s) to the radiological environmental monitoring program within 30 days. The sampling location(s), excluding the control station location, having the lowest calculated dose or dose commitment(s), via the same exposure pathway, may be deleted from this monitoring program after (October 31) of the year in which this land use census was conducted. In lieu of a Licensee Event Report and pursuant to Specification 6.9.1.12. Identify the new location(s) in the next Semiannual Radioactive Effluent Release Report and also include in the report a revised figure(s) and table for the ODCM reflecting the new location(s).

SURVEILLANCE REQUIREMENTS

4.12.2 The land use census shall be conducted during the growing season at least once per calendar year using that information that will provide the best results, such as by a door-to-door survey, or by consulting local agriculture authorities. The results of the land use census shall be included in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.11.

3/4.12/3 INTERLABORATORY COMPARISON PROGRAM

LIMITING CONDITION FOR OPERATION

3.12.3 Analyses shall be performed on radioactive materials supplied as part of an Interlaboratory Comparison Program that has been approved by the Commission.

APPLICABILITY: At all times.

ACTION:

a. With analyses not being performed as required above, report the corrective actions taken to prevent a recurrence to the Commission in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.11.

SURVEILLANCE REQUIREMENTS

4.12.3 A summary of the results obtained as part of the above required Interlaboratory Comparison Program shall be included in the Annual Radiological Environmental Operating Report pursuant to Specification 6.9.1.11. INSTRUMENTATION

BASES

3/4.3.3.10 RADIOACTIVE LIQUID EFFLUENT MONITORING INSTRUMENTATION

The radioactive liquid effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in liquid effluents during actual or potential releases of liquid effluents. The alarm/trip setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/ trip will occur prior to exceeding the limits of 10 CFR Part 20. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63 and 64 of Appendix A to 10 CFR Part 50. The purpose of tank level indicating devices is to assure the detection and control of leaks that if not controlled could potentially result in the transport of radioactive materials to UNRESTRICTED AREAS.

3/4.3.3.11 RADIOACTIVE GASEOUS EFFLUENT MONITORING INSTRUMENTATION

The radioactive gaseous effluent instrumentation is provided to monitor and control, as applicable, the releases of radioactive materials in gaseous effluents during actual or potential releases of radioactive materials in gaseous effluents during actual or potential releases of gaseous effluents. The alarm/trip setpoints for these instruments shall be calculated and adjusted in accordance with the methodology and parameters in the ODCM to ensure that the alarm/trip will occur prior to exceeding the limits of 10 CFR Part 20. This instrumentation also includes provisions for monitoring (and controlling) the concentrations of potentially explosive gas mixtures in the waste gas holdup system. The OPERABILITY and use of this instrumentation is consistent with the requirements of General Design Criteria 60, 63 and 64 of Appendix A to 10 CFR Part 50. 3/4.11 RADIOACTIVE EFFLUENTS

BASES

3/4.11.1 LIQUID EFFLUENTS

3/4.11.1.1 CONCENTRATION

This specification is provided to ensure that the concentration of radioactive materials released in liquid waste effluents to UNRESTRICTED AREAS will be less than the concentration levels specified in 10 CFR Part 20, Appendix B, Table II, Column 2. This limitation provides additional assurance that the levels of radioactive materials in bodies of water in UNRESTRICTED AREAS will result in exposures within (1) the Section II.A design objectives of Appendix I, 10 CFR Part 50, to a MEMBER OF THE PUBLIC and (2) the limits of 10 CFR Part 20.106(e) to the population. The concentration limit for dissolved or entrained noble gases is based upon the assumption that Xe-135 is the controlling radioisotope and its MPC in air (submersion) was converted to an equivalent concentration in water using the methods described in International Commission on Radiological Protection (ICRP) Publication 2.

This specification applies to the release of liquid effluents from all reactors at the site.

3/4.11.1.2 DOSE

This specification is provided to implement the requirements of Sections II.A, III.A and IV.A of Appendix I, 10 CFR Part 50. The Limiting Condition for Operation implements the guides set forth in Section II.A of Appendix The ACTION statements provide the required operating flexibility and I. at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in liquid effluents will be kept "as low as is reasonably achievable." Also, for fresh water sites with drinking water supplies that can be potentially affected by plant operations, there is reasonable assurance that the operation of the facility will not result in radionuclide concentrations in the finished drinking water that are in excess of the requirements of 40 CFR Part 141. The dose calculation methodology and parameters in the ODCM implement the requirements in Section III.A of Appendix I that conformance with the quides of Appendix I be shown by calculational procedures based on models and data, such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The equations specified in the ODCM for calculating the doses due to the actual release rates of radioactive materials in liquid effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I, "Revision 1, October 1977 and Regulatory Guide 1.113, "Estimating Aquatic Disperison of Effluents from Accidental and Routine Reactor Releases for the Purpose of Implementing Appendix I," April 1977.

RADIOACTIVE EFFLUENTS

BASES

This specification applies to the release of liquid effluents from each reactor at the site. For units with shared radwaste treatment systems, the liquid effluents from the shared system are proportioned among the units sharing that system.

3/4.11.1.3 LIQUID RADWASTE TREATMENT SYSTEM.

The requirement that the appropriate portions of this system be used, when specified, provides assurance that the releases of radioactive materials in liquid effluents will be kept "as low as is reasonably achievable". This specification implements the requirements of 10 CFR Part 50.36a, General Design Criterion 60 of Appendix A to 10 CFR Part 50 and the design objective given in Section II.D of Appendix I to 10 CFR Part 50. The specified limits governing the use of appropriate portions of the liquid radwaste treatment system were specified as a suitable fraction of the dose design objectives set forth in Section II.A of Appendix I, 10 CFR Part 50, for liquid effluents.

This specification applies to the release of liquid effluents from each reactor at the site. For units with shared radwaste treatment systems, the liquid effluents from the shared system are proportioned among the units sharing that system.

3/4.11.1.4 LIQUID HOLDUP TANKS

The tanks listed in this Specification include all those outdoor tanks that are not surrounded by liners, dikes, or walls capable of holding the tank contents and that do not have tank overflows and surrounding area drains connected to the liquid radwaste treatment system.

Restricting the quantity of radioactive material contained in the specified tanks provides assurance that in the event of an uncontrolled release of the tanks' contents, the resulting concentrations would be less than the limits of 10 CFR Part 20, Appendix B, Table II, Column 2, at the nearest portable water supply and the nearest surface water supply in an UNRESTRICTED AREA.

3/4.11.2.1 DOSE RATE

This specification is provided to ensure that the dose at any time at and beyond the SITE BOUNDARY from gaseous effluents from all units on the site will be within the annual dose limits of 10 CFR Part 20. The annual dose limits are the doses associated with the concentrations of 10 CFR Part 20, Appendix B, Table II, Column 1. These limits provide reasonable assurance that radioactive material discharged in gaseous effluents will not result in the exposure of a MEMBER OF THE PUBLIC, either within or outside the SITE BOUNDARY, to annual average concentrations exceeding the limits specified in Appendix B, Table II of 10 CFR Part 20 (10 CFR Part 20.106(b)). For MEMBERS OF THE PUBLIC who may at times be within the SITE BOUNDARY, the occupancy of that MEMBER OF THE PUBLIC will usually be sufficiently low to compensate for any increase in the atmospheric diffusion factor above that for the SITE BOUNDARY. Examples of calculations for such MEMBER OF THE PUBLIC, with the appropriate occupancy factors, shall be given in the ODCM. The specified release rate limits restrict, at all times, the corresponding gamma and beta dose rates above background to a MEMBER OF THE PUBLIC at or beyond the SITE BOUNDARY to less than or equal to 500 mrems/year to the total body or to less than or equal to 3000 mrems/year to the skin. These release rate limits also restrict, at all times, the corresponding thyroid dose rate above background to a child via the inhalation pathway to less than or equal to 1500 mrems/year.

This specification applies to the release of gaseous effluents from all reactors at the site.

3/4.11.2.2 DOSE - NOBLE GASES

This specification is provided to implement the requirements of Sections II.B, III.A and IV.A of Appendix I, 10 CFR Part 50. The Limiting Condition for Operation implements the guides set forth in Section II.B of Appendix I. The ACTION statements provide the required operating flexibility and at the same time implement the guides set forth in Section IV.A of Appendix I to assure that the releases of radioactive material in gaseous effluents will be kept "as low as is reasonably achievable." The Surveillance Requirements implement the requirements in Section III.A of Appendix I that conformance with the guides of Appendix I be shown by calculational procedures based on models and data such that the actual exposure of a MEMBER OF THE PUBLIC through appropriate pathways is unlikely to be substantially underestimated. The dose calculation methodology and parameters established in the ODCM for calculating the doses due to the actual release rates of radioactive noble gases in gaseous effluents are consistent with the methodology provided in Regulatory Guide 1.109, "Calculation of Annual Doses to Man from Routine Releases of Reactor Effluents for the Purpose of Evaluating Compliance with 10 CFR Part 50, Appendix I," Revision 1, October 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric Transport and Dispersion of Gaseous Effluents in Routine Releases from Light-Water Cooled Reactors," Revision 1, July 1977. The ODCM equations provided for determining the air doses at and beyond the SITE BOUNDARY are based upon the historical average atmospheric conditions.

This specification applies to the release of gaseous effluents from each reactor at the site. For units with shared radwaste treatment systems, the gaseous effluents from the shared system are proportioned among the units sharing that system.

IOACTIVE EFFLUENTS	-	
<u>25</u>	 	

.11.2.3 DOSE - IODINE-131, TRITIUM, AND RADIONUCLIDES IN PARTICULATE FORM

This specification is provided to implement the requirements of Sections C, III.A and IV.A of Appendix I, 10 CFR Part 50. The Limiting Conditions Operation are the guides set forth in Section II.C of Appendix I. The ION statements provide the required operating flexibility and at the same e implement the guides set forthin Section IV.A of Appendix I to assure that releases of radioactive materials in gaseous effluents will be kept "as as is reasonably achievable." The ODCM calculational methods specified the Surveillance Requirements implement the requirements in Section II.A of endix I that conformance with the guides of Appendix I be whown by calculonal procedures based on models and data, such that the actual exposure of EMBER OF THE PUBLIC through appropriate pathways is unlikely to be substanlly underestimated. The ODCM calculational methodology and parameters for culating the doses due to the actual release rates of the subject materials consistent with the methodology provided in Regulatory Guide 1.109, "Calculan of Annual Doses to Man from Routine Releases of Reactor Effluents for the pose of Evaluating Complaince with 10 CFR Part 50, Appendix I," Revision 1, ober 1977 and Regulatory Guide 1.111, "Methods for Estimating Atmospheric nsport and Dispersion of Gaseous Effluents in Routine Releases from Lighter-Cooled Reactors," Revision 1, July 1977. These equations also provide determining the actual doses based upon the historical average atmospheric ditions. The release rate specifications for iodine-131, tritium, and radiolides in particulate form with half lives greater than 8 days are dependent n the existing radionuclide pathways to man, in the areas at and beyond the E BOUNDARY. The pathways that were examined in the development of these culations were: 1) individual inhalation of airborne radionuclides, 2) depoion of radionuclides onto green leafy vegetation with subsequent consumption man, 3) deposition onto grassy areas where milk animals and meat producing mals graze with consumption of the milk and meat by man, and 4) deposition on ground with subsequent exposure of man.

This specification applies to the release of gaseous effluents from each ctor at the site. For units with shared radwaste treatment systems, the eous effluents from the shared system are proportioned among the units sharing t system.

.11.2.4 GASEOUS RADWASTE TREATMENT SYSTEM

The requirement that the appropriate portions of these systems be used, when cified, provides reasonable assurance that the release of radioactive materials gaseous effluents will be kept "as low as is reasonably achievable". This cification implements the requirements of 10 CFR Part 50.36a, General Design terion 60 of Appendix A to 10 CFR Part 50, and the design objectives given in tion II.D of Appendix I to 10 CFR Part 50. The specified limits governing the of appropriate portions of the systems were specified as a suitable fraction the dose design objectives set forth in Sections II.B and II.C of Appendix I, CFR Part 50, for gaseous effluents.

This specification applies to the release of gaseous effluents from each ctor at the site. For units with shared radwaste treatment systems, the gaseous luents from the shared system are proportioned among the units sharing that system.

EXPLOSIVE GAS MIXTURE

This specification is provided to ensure that the concentration of potentially explosive gas mixtures contained in the waste gas holdup system is maintained below the flammability limits of hydrogen and oxygen. Maintaining the concentration of hydrogen and oxygen below their flammability limits provides assurance that the releases of radioactive materials will be controlled in conformance with the requirements of General Design Criterion 60 of Appendix A to 10 CFR Part 50.

3/4.11.2.6 GAS STORAGE TANKS

4.11.2.5

The tanks included in this specification are those tanks for which the quantity of radioactivity contained is not limited directly or indirectly by another Technical Specification to a quantity that is less than the quantity that provides assurance that in the event of an uncontrolled release of the tank's contents, the resulting total body exposure to a MEMBER OF THE PUBLIC at the nearest SITE BOUNDARY will not exceed 0.5 rem in an event of 2 hours duration.

Restricting the quantity of radioactivity contained in each gas storage tank provides assurance that in the event of an uncontrolled release of the tank's contents, the resulting total body exposure to a MEMBER OF THE PUBLIC at the nearest SITE BOUNDARY will not exceed 0.5 rem. This is consistent with NUREG-0133.

3/4.11.3 SOLID RADIOACTIVE WASTE

This specification implements the requirements of 10 CFR Part 50.36a and General Design Criterion 60 of Appendix A to 10 CFR Part 50. The process parameters included in establishing the PROCESS CONTROL PROGRAM may include but are not limited to waste type, waste pH, waste/liquid/solidification agent/catalyst ratios, waste oil content, waste principal chemical constituents, and mixing and curing times.

3/4.11.4 TOTAL DOSE

This specification is provided to meet the dose limitations of 40 CFR Part 190 that have been incorporated into 10 CFR Part 20 by 46 FR 18525 The Specification requires the preparation and submittal of a Special Report whenever the calculated doses from plant generated radioactive effluents and direct radiation exceed 25 mrems to the total body or any organ, except the thyroid, which shall be limited to less than or equal to 75 mrems.

For sites containing up to 4 reactors, it is highly unlikely that the resultant dose to a MEMBER OF THE PUBLIC will exceed the dose limits of 40 CFR Part 190 if the individual reactors remain within twice the dose design objectives of Appendix I, and if direct radiation doses from the reactor units and outside storage tanks are kept small. The Special Report will describe a course of action that should result in the limitation of the annual dose to a MEMBER OF THE PUBLIC to within the 40 CFR Part 190 limits. For the purposes of the Special Report, it may be assumed that the dose commitment to the MEMBER OF THE PUBLIC from other uranium fuel cycle sources is negligible, with the exception that dose contributions from other nuclear fuel cycle facilities at the same site or within a radius of 8 km must be considered. If the dose to any MEMBER OF THE PUBLIC is estimated to exceed the requirements of 40 CFR Part 190, the Special Report with a request for a variance (provided the release conditions resulting in violation of 40 CFR Part 190 have not already been corrected), in accordance with the provisions of 40 CFR Part 190.11 and 10 CFR Part 20.405c, is considered to be a timely request and fulfills the requirements of 40 CFR Part 190 until NRC staff action is completed. The variance only relates to the limits of 40 CFR Part 190, and does not apply in any way to the other requirements for dose limitation of 10 CFR Part 20, as addressed in Specifications 3.11.1.1 and 3.11.2.1. An individual is not considered a MEMBER OF THE PUBLIC during any period in which he/she is engaged in carrying out any operation that is part of the nuclear fuel cylce.

3/4.12 ' RADIOLOGICAL ENVIRONMENTAL MONITORING

BASES

3/4.12.1 MONITORING PROGRAM

The radiological environmental monitoring program required by this specification provides representative measurements of radiation and of radioactive materials in those exposure pathways and for those radionuclides that lead to the highest potential radiation exposures of MEMBERS OF THE PUBLIC resulting from the station operation. This monitoring program implements Section IV.B.2 of Appendix I to 10 CFR Part 50 and thereby supplements the radiological effluent monitoring program by verifying that the measurable concentrations of radioactive materials and levels of radiation are not higher than expected on the basis of the effluent measurements and the modeling of the environmental exposure pathways. Program changes may be initiated based on operational experience.

The required detection capabilities for environmental sample analyses are tabulated in terms of the lower limits of detection (LLDs). The LLDs required by Table 4.12-1 are considered optimum for routine environmental measurements in industrial laboratories. It should be recognized that the LLD is defined as an <u>a priori</u> (before the fact) limit representing the capability of a measurement system and not as an <u>a posteriori</u> (after the fact) limit for a particular measurement.

3/4.12.2 LAND USE CENSUS

This specification is provided to ensure that changes in the use of areas at and beyond the SITE BOUNDARY are identified and that modifications to the radiological environmental monitoring program are made if required by the results of this census. The best information from the door-to-door survey, from aerial survey or from consulting with local agricultural authorities shall be used. This census satisfies the requirements of Section IV.B.3 of Appendix I to 10 CFR Part 50. Restricting the census to gardens of greater than 50 m² provides assurance that significant exposure pathways via leafy vegetables will be identified and monitored since a garden of this size is the minimum required to produce the quantity (26 kg/ year) of leafy vegetables assumed in Regulatory Guide 1.109 for consumption by a child. To determine this minimum garden size, the following assumptions were made: 1) 20% of the garden was used for growing broad leaf vegetation (i.e., similar to lettuce and cabbage), and 2) a vegetation yield of 2 kg/ m².

3/4.12.3 INTERLABORATORY COMPARISON PROGRAM

The requirement for participation in an approved Interlaboratory Comparison Program is provided to ensure that independent checks on the precision and accuracy of the measurements of radioactive material in environmental sample matrices are performed as part of the quality assurance program for environmental monitoring in order to demonstrate that the results are reasonably valid for the purposes of Section IV.B.2 of Appendix I to 10 CFR Part 50.

6.0 ADMINISTRATIVE CONTROLS

6.5.1 PLANT OPERATING REVIEW COMMITTEE (PORC)

RESPONSIBILITIES

- 6.5.1.6 The PORC shall be responsible for:
 - k. Review of every unplanned onsite release of radioactive material to the environs including the preparation of reports covering evaluation, recommendations and disposition of the corrective action to prevent recurrence and the forwarding of these reports to the Resident Manager and to the Safety Review Committee.
 - 1. Review of changes to the PROCESS CONTROL PROGRAM and the OFFSITE DOSE CALCULATION MANUAL.

6.5.2 SAFETY REVIEW COMMITTEE (SRC)

AUDITS

- 6.5.2.8 Audits of unit activities shall be performed under the cognizance of the (SRC). These audits shall encompass:
 - k. The radiological environmental monitoring program and the results thereof at least once per 12 months.
 - 1. The OFFSITE DOSE CALCULATION MANUAL and implementing procedures at least once per 24 months.
 - m. The PROCESS CONTROL PROGRAM and implementing procedures for processing and packaging of radioactive wastes at least once per 24 months.

6.8 PROCEDURES AND PROGRAMS

- 6.8.1 Written procedures shall be established, implemented and maintained covering the activities referenced below:
 - f. PROCESS CONTROL PROGRAM implementation.
 - g. OFFSITE DOSE CALCULATION MANUAL implementation.

ADMINISTATIVE CONTROLS

6.9 REPORTING REQUIREMENTS

ROUTINE REPORTS AND REPORTABLE OCCURRENCES

6.9.1 In addition to the applicable reporting requirements of Title 10, Code of Federal Regulations, the following reports shall be submitted to the Director of the Regional Office of Inspection and Enforcement unless otherwise noted.

THIRTY DAY WRITTEN REPORTS

- 6.9.1.8 The types of events listed below shall be the subject of written reports to the Director of the Regional Office within thirty days of occurrence of the event. The written report shall include, as a minimum, a completed copy of a licensee event report form. Information provided on the licensee event report form shall be supplemented, as needed, by additional narrative material to provide complete explanation of the circumstances surrounding the event.
 - a. An unplanned offsite release of 1) more than 1 curie of radioactive material in liquid effluents, 2) more than 150 curies of noble gas in gaseous effluents, or 3) more than 0.05 curie of radioiodine in gaseous effluents. The report of an unplanned offsite release of radioactive material shall include the following information:

1. A description of the event and equipment involved.

2. Cause(s) for the unplanned release.

3. Actions taken to prevent recurrence.

4. Consequences of the unplanned release.

ANNUAL RADIOLOGICAL ENVIRONMENTAL OPERATING REPORT*

6.9.1.9 Routine Radiological Environmental Operating Reports covering the operation of the unit during the previous calendar year shall be submitted prior to May 1 of each year.

The Annual Radiological Environmental Operating Reports shall include summaries, interpretations, and an analysis of trends of the results of the radiological environmental surveillance activities for the report period, including a comparison, as appropriate, with preoperational studies, with operational controls, and with previous environmental surveillance reports, and an assessment of the observed impacts of the plant operation on the environment. The reports shall also include the results of land use censuses required by Specification 3.12.2.

The Annual Radiological Environmental Operating Reports shall include the results of analysis of all radiological environmental samples and of all environmental radiation measurements taken during the period pursuant to the locations specified in the Table and Figures in the ODCM, as well as summarized and tabulated results of these analyses and measurements in the format of the table in the Radiological Assessment Branch Technical Position, Revision 1, November 1979. In the event that some individual results are not available for inclusion with the report, the report shall be submitted noting and explaining the reasons for the missing results. The missing data shall be submitted as soon as possible in a supplementary report.

The reports shall also include the following: a summary description of the radiological environmental monitoring program; at least two legible maps** covering all sampling locations keyed to a table giving distances and directions from the centerline of one reactor; the results of licensee participation in the Interlaboratory Comparison Program, required by Specification 3.12.3; discussion of all deviations from the sampling schedule of Table 3.12-1; and discussion of all analyses in which the LLD required by Table 4.12-1 was not achievable.

* A single submittal may be made for a multiple unit station.

** One map shall cover stations near the site boundary; a second shall include the more distant stations.

SEMIANNUAL RADIOACTIVE ELUENT RELEASE REPORT*

6.9.1.12 Routine Radioactive Effluent Release Reports covering the operation of the unit during the previous 6 months of operation shall be submitted within 60 days after January 1 and July 1 of each year. The period of the first report shall begin with the date of initial criticality.

The Radioactive Effluent Release Reports shall include a summary of the quantities of radioactive liquid and gaseous effluents and solid waste released from the unit as outlined in Regulatory Guide 1.21, "Measuring Evaluating, and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plant," Revision 1, June 1974, with data summarized on a quarterly basis following the format of Appendix B thereof or as modified in the R.E.T.S.

The Radioactive Effluent Release Report to be submitted within 60 days after January 1 of each year shall include an annual summary of hourly meteorological data collected over the previous year. This annual summary may be either in the form of an hour-by-hour listing on magnetic tape of wind speed, wind direction, atmospheric stability, and precipitation (if measured), or in the form of joint frequency distributions of wind speed, wind direction, and atmospheric stability.** This same report shall include an assessment of the radiation doses due to the radioactive liquid and gaseous effluents released from the unit or station during the previous calendar year. This same report shall also include an assessment of the radiation doses from radioactive liquid and gaseous effluents to MEMBERS OF THE PUBLIC due to their activities inside the SITE BOUNDARY during the report period. All assumptions used in making these assessments, i.e., specific activity, exposure time and location, shall be included in these reports. The meteorological conditions concurrent with the time of release of radioactive materials in gaseous effluents, as determined by sampling frequency and measurement, shall be used for determining the gaseous pathway doses. (For ORs: approximate and conservative approximate methods are acceptable.) The assessment of radiation doses shall be performed in accordance with the methodology and parameters in the OFFSITE DOSE CALCULATION MANUAL (ODCM).

The Radioactive Effluent Release Report to be submitted 60 days after January 1 of each year shall also include an assessment of radiation doses to the likely most exposed MEMBER OF THE PUBLIC from reactor releases and other nearby uranium fuel cycle sources, including doses from primary effluent pathways and direct radiation, for the previous calendar year to show conformance with 40 CFR Part 190, Environmental Radiation Protection Standards for Nuclear Power.

- A single submittal may be made for a multiple unit station. The submittal should combine those sections that are common to all units at the station; however, for units with separate radwaste systems, the submittal shall specify the releases of radioactive material from each unit
- ** In lieu of submission with the first half year Radioactive Effluent Release Report, the licensee has the option of retaining this summary of required meteorological data on site in a file that shall be provided to the NRC

Operation. Acceptable methods for calculating the dose contribution from liquid and gaseous effluents are given in Regulatory Guide 1.109 Rev. 1, October 1977.

The Radioactive Effluent Release Reports shall include the following information for each class of solid waste (as defined by 10 CFR Part 61) shipped offsite during the report period:

- a. Container volume,
- b. Total curie quantity (specify whether determined by measurement or estimate),
- c. Principal radionuclides (specify whether determined by measurement or estimate),
- d. Source of waste and processing employed (e.g., dewatered spent resin, compacted dry waste, evaporator bottoms),
- e. Type of container (e.g., LSA, Type A, Type B, Large Quantity), and
- f. Solidification agent or absorbent (e.g., cement, urea formaldehyde).

This information will be presented in tabular form similar to that of Table 3 of Reg. Guide 1.21.

The Radioactive Effluent Release Reports shall include a list and description of unplanned releases from the site to UNRESTRICTED AREAS of radioactive materials in gaseous and liquid effluents made during the reporting period.

The Radioactive Effluent Release Reports shall include any changes made during the reporting period to the PROCESS CONTROL PROGRAM (PCP) and to the OFFSITE DOSE CALCULATION MANUAL (ODCM), as well as a listing of new locations for dose calculations and/or environmental monitoring identified by the land use census pursuant to Specification 3.12.2.

SPECIAL REPORTS .

Special reports may be required covering inspections, test and maintenance activities. These special reports are determined on an individual basis for each unit and their preparation and submittal are designated in the Technical Specifications.

- 6.9.2 When required, special reports shall be submitted to the NRC Regional Office listed in Appendix D, 10 CFR Part 20, with a copy to the Director, Office of Inspection and Enforcement, U.S. Nuclear Regulatory Commission, Washington, D.C. 20555 within the time period specified for each report.
 - h. Release of radioactive effluents in excess of limits (Specification 3.11)
 - i. Radioactive environmental sampling results in excess of reporting levels (Specification 3.12)