EGG-CDAP-5379 July 1981

ZIRCALOY CLADDING SHAPE AT FAILURE (BALON2)

D. L. Hagrman

Idaho National Engineering Laboratory

Operated by the U.S. Department of Energy

This is an informal report intended for use as a preliminary or working document

Prepared for the U.S. Nuclear Regulatory Commission Under DOE Contract No. DE-AC07-76ID01570 FIN No. A6050

INTERIM REPORT

Accession N	10
Report No.	EGG-CDAP-5379

Contract Program or Project Title: Fuel Behavior Model Development

Subject of this Document: Zircaloy Cladding Shape at Failure (BALON2)

Type of Document: Status Report

Author(s): D. L. Hagrman

Date of Document: July 1981

Responsible NRC Individual and NRC Office or Division:

G. P. Marino, NRC-RES

This document was prepared primarily for preliminary or internal use. It has not received full review and approval. Since there may be substantive changes, this document should not be considered final.

EG&G Idaho, Inc. Idaho Falls, Idaho 83415

Prepared for the U.S. Nuclear Regulatory Commission Washington, D.C. Under DOE Contract No. DE-AC07-761D01570 NRC FIN No. <u>A6050</u>

INTERIM REPORT

ABSTRACT

i

The derivation and some implications of a simple true stress cladding failure criterion are presented in this report. An associated model, BALON2, which uses the true stress failure criterion to calculate cladding shape at failure is described, and the results of a sensitivity study to determine the important parameters affecting cladding shape are included. Recently proposed licensing standards for LOCA analysis are compared with the BALON2 model predictions and are shown to be inconsistent when the pressure differential across the cladding varies.

SUMMARY

The main progress represented by this report is the use of local stress to predict cladding failure. The large scatter inherent in engineering stress or engineering strain expressions has been eliminated as have numerous limitations and special correlations for such effects as heating rate, circumferential temperature gradients, etc., which are necessary when improper failure criteria are employed. The failure stress is only a function of temperature and oxygen content once cold work and irradiation damage are annealed.

Although the failure criterion is simplified by the use of true stress, the calculation of cladding shape at failure is made fairly complex by the interaction of deformation, cladding temperatures and local stress. BALON2, a model for cladding deformation which deals with these interactions is developed and demonstrated. The model shows that circumferential temperature gradients tend to decrease circumferential strain at failure, and that slow heating rates cause both large circumferential strains at failure and small circumferential temperature gradients because they allow time for removal of circumferential temperature gradients. The rate of change of the pressure differential across the cladding is shown to have an effect on the cladding shape. BALON2 model predictions are compared to recently proposed liscensing standards for LOCA analysis. Results of this comparison suggest that the standards may be inadequate because they do not consider several of the parameters that affect cladding shape.

CONTENTS

ABSTRACT	i
SUMMARY	ii
INTRODUCTION	I
THE FAILURE CRITERION	2
A MODEL FOR CALCULATING CLADDING SHAPE	17
Calculation of Local Stress in the Cladding	19
Check for Sufficiently Small Time Step Size	25
Update of Cladding Temperatures	29
Calculation of Strain Component Increments	32
Estimation of Cladding Dimensions at the End of the Time Step	34
PARAMETRIC STUDIES AND COMPARISON WITH DATA	40
CONCLUSIONS	63
REFERENCES	64
APPENDIX AEQUATION OF STATE FOR ZIRCALOY CLADDING PLASTIC DEFORMATION	A-1
APPENDIX BBALLOON CODE LISTING AND EXAMPLE OUTPUT	B-1
APPENDIX CDERIVATION OF KRAMER AND DEITRICH'S EXPRESSION FOR STRESS	C-1
APPENDIX DDERIVATION OF MODEL FOR BENDING	D-1

FIGURES

1.	Local tangential stress at failure versus temperature assuming a circular cross section at failure	12
2.	Sequence of model calculations	18
3.	Effect of $\sigma_{zz} \frac{d^2 s}{dz_0^2}$ term	24

4.	Effect of $\frac{\Delta P}{h_{cvl}} = \frac{d^2 r}{d \theta^2}$ term	26
5.	Effect of relative deformation of all segments of the cladding circumference	35
6.	Use of circular cross section and bending models to determine cladding mid-wall radii	38
7.	Effect of heating rate on total circumferential elongation	41
8.	Hot node true and failure stresses for a heater heating rate of 4 K/s	42
9.	Hot node true and failure stresses for a heater heating rate of 40 K/s	43
10.	Model calculations for the effect of varying pressurization rates	46
11.	Tests by Busby and Marsh showing the effect of increasing pressurization rates on total circumferential elongation	47
12.	Total circumferential elongation versus circumferential temperature variation at burst and heating rate	48
13.	Comparison of MRBT data with constant pressure model calculations	53
14.	MRBT correlations compared with constant pressure and increasing pressure model calculations	55
15.	MRBT correlations for O K/s compared with O K/s data with increasing internal pressure from Busby and Marsh	56
16.	Model calculations versus measured elongation for MRBT Test SR-37	57
C-1.	Schematic illustration of the position vector, \vec{r} , and two bases vectors tangent to the deformed surface element	C-3
C-2.	Schematic illustration of typical orientations of vectors normal to the z_0 = constant and θ_0 = constant edges	C-5
C-3.	Forces acting on an element of deformed cladding surface	C-10
D-1.	Cladding configuration assumed for bending model	D-2

iv

TABLES

1.	Summary of Multirod Burst Test Data	4
2.	Summary of Data from the Hobson-Rittenhouse Tests	6
.3.	Summary of Data from the Chung-Kassner Tests	7.
4.	Summary of Data from the Bauer et al. Tests	8
B-1.	Listing of the BALON2 Code	B-3
B-2.	BALON2 Code Driver Program	B-21
B-3.	Example Output	B-24

ļ

INTRODUCTION

A key consideration in assessing the severity of postulated light water reactor accidents is the post-accident configuration of fuel cladding. Events which could lead to final configurations that restrict coolant flow are more hazardous than scenarios which lead to more easily cooled reactor core geometries. An analysis of data provided by the U.S. Nuclear Regulatory Commission's research program has provided a simple failure criterion and a concise computer subcode which have had success in reducing the uncertainty of predictions of posttest cladding shapes. The criterion and associated subcode, BALON2, are described in this report. In addition, the results of a sensitivity study to determine the important parameters affecting cladding shape and a comparison with detailed measurements of cladding shape at burst are presented.

Predictions for cladding shape at rupture have traditionally been based on correlations of total circumferential elongation (the difference between circumference and initial circumference divided by the initial circumference) versus burst temperature. These correlations display major trends like the minimum elongation found in the alpha plus beta region (1090 to 1255 K burst temperatures) but there is at least a fifty percent uncertainty associated with this approach. Efforts to improve the correlations by adding more variables, like heating rate or circumferential temperature variation at failure, have had very little success.

As experiments improved, it became obvious that a significant part of the problem with correlations for the circumference of cladding at failure is the fact that failure is a local event occurring at one part of the circumference while the circumferential elongation is a global quantity made up of the sum of local elongations at all locations around the circumference. The logical approach, then, was to look for a simple local failure criterion. The success of this effort encouraged development of a computer code to sum all the local elongations as a function of time to obtain a total circumferential elongation at the moment of failure. Early experience with the code has shown it to be successful at explaining much of the previously confusing scatter in total circumferential elongation data.

THE FAILURE CRITERION

Arguments are presented in this section which demonstrate that zircaloy cladding failure can be predicted by comparing the tangential component of true or local stress with a failure stress which is a function of cladding temperature, irradiation and cold work. Heating rate and strain rate do not affect this criterion. The failure stress as a function of temperature is given by the following expressions.

For cladding temperatures between or equal to 300 and 750 K,

$$\sigma_{\theta F} = 1.36 K_{A} . \tag{1a}$$

For cladding temperatures between 750 and 1050 K, $^{\rm a}$

$$\sigma_{\theta F} = 46.861429 K_{A} \exp - \frac{1.9901087}{T^{2}} 10^{6}$$
 (1b)

For cladding temperatures between or equal to 1050 and 2100 K

$$\sigma_{\Theta F} = 7.7 \ \kappa_{A} \tag{1c}$$

where

 $\sigma_{AF} = tangential component of true stress at burst (Pa)$

K_A = strength coefficient used to describe the plastic deformation of annealed cladding (Pa). Correlations for the strength coefficient are given in Appendix A

T = cladding temperature (K).

a. Several significant figures are used in this expression in order to minimize discontinuities at 750 and 1050 K.

For cold worked or irradiated cladding the failure stress is increased by four tenths of the increase of the strength coefficient due to irradiation and cold work.

Equation (1) is estimated to have a standard error of 0.2 times the failure stress. The error and the error estimate are discussed later in this section.

The failure criterion given by Equation (1) is based on data from tests which reported initial cladding dimensions, temperature at failure, pressure at failure, wall thickness at the failed region and some means of estimating the axial and azimuthal radii of curvature at the burst region. In all cases the wall thickness measurements were accurate to no better than ten percent and the azmimuthal radii of curvature were obtained from circumference measurements by assuming a circular cladding cross section. The assumption that the cross section was circular at the moment of burst may be suspected of introducing some systematic error in the failure stress, but cross sections observed close to ruptures (where the shape has not been changed by the rupture tear) are circular.

The most useful data have been produced by the Multirod Burst Test Program sponsored by the U.S. Nuclear Regulatory Commission. All of these tests used internal heaters and an external steam environment. Heating rates varied from 0 to 28 K/s. Estimated burst temperatures, burst pressures and burst strains (average circumferential strain) have been published for a number of single rod tests.^{1,2} Also, calibrated photographs of cross sections through the burst regions of some of the tests have been published.²⁻⁵ These cross sections were used to determine wall thickness at burst. The axial radius of curvature at burst was estimated from side view photographs of the burst tubes.⁶⁻⁸ The Multirod Burst Test Program data from tests for which complete data are available are summarized in Table 1.

Test No.	Burst Temperature (K)	Differential Pressure at Burst (MPa)	Average Circumferential Strain (m/m)	Wall Thickness as Burst (mm)	Axial Radius of Curvature (cm)
PS-10	1174a	6.000 ^a	0.20a	0.079 ^C	2.1¢
PS-17	1051 ^a	12.130 ^a	0.25 ^a	0.176 ^C	1.2 ^C
PS-18	1444a	0.772ª	0.24a	0.111d	0.99
PS-19	1232a	2.590a	0.28ª	0.079 ^C	0.6C
SR-23	1350 ^a	0.960 ^a	0.35 ^a	0.164 ^e	1.jh
SR-25	1365 ^a	0.960a	0.78ª	0.077e	0.61
SR-34	1039 ^b	5.820 ^b	0.316 ^b	0.109 ^b	1.6 ^C
SR-35	1048 ^b	4.470 ^b	0.290 ^b	0.073 ^f	3.1C
SR-37	1033 ^b	13.560 ^b	0.231 ^b	0.263f	3.7C
SR-41	1030 ^b	9.765 ^b	0.274 ^b	0.199b	2.7C
SR-43	1046 ^b	7.620 ^b	0,290 ^b	0.179 ^b	3.5 ^C

TABLE 1. SUMMARY OF MULTIROD BURST TEST DATA

- a. Reference 1 pages 18 and 19.
- b. Reference 2 pages 7 and 31.
- c. From photographs sent by R. H. Chapman, ORNL.
- d. Reference 3 page 35.
- e. Reference 4 pages 120 and 121.
- f. Reference 5 page 26.
- g. Reference 6 page 19.
- h. Reference 7 page 22.
- i. Reference 8 page 17.

Data from tests by Hobson and Rittenhouse⁹ were also employed. The Hobson-Rittenhouse tests were conducted with a radiant heating furnace and BWR cladding in an argon environment. Heating rates from 5.6 to 56 K/s were used. Table 2 is a summary of the data that were used from the tests by Hobson and Rittenhouse. Burst temperatures, wall thickness measurements, and the average circumferential strains were obtained from figures in Reference 9. Burst pressures were obtained by private communication from R. H. Chapman, and axial radii of curvature were estimated from cladding samples sent by D. O. Hobson.

Table 3 is a summary of data obtained from tests by H. M. Chung and T. F. Kassner¹⁰ which were used in the development of Equation 1. The burst temperature, differential pressure at burst, average circumferential strain and axial radius of curvature were obtained from Reference 10. The wall thickness at burst was obtained from photographs of cross sections obtained from Chung. An important feature of these tests is that the tests in Table 3 have an internal mandrel which applied an unknown axial stress to the cladding.

None of the data discussed so far were obtained from irradiated cladding or at temperatures below 1000 K. The only available low temperature data with irradiated cladding were obtained from studies by A. A. Bauer, L. M. Lowry, W. J. Gallagher, A. J. Markworth and J. S. Perrin^{11,12,13} on spent fuel cladding obtained from the H. B. Robinson reactor. The data from this project which were used to develop Equation (1) are presented in Table 4. Tests M12-16, M12-4 and M12-15 were conducted on as-received cladding while tests D9-7, D9-8, D9-13 and D9-14 were conducted on cladding which had been annealed. Wall thicknesses adjacent to the burst were obtained from unpublished photographs similar to Figure 7 of Reference 11. The axial radii of curvature in these tests is unknown.

Two sources of in-reactor data were employed. One is the irradiation effects test IE-5 conducted in the Power Burst Facility.^{14,15} The measured rod internal gas pressure in this test was reported (page 12 of

Test No.	Burst Temperature (k)	Differential Pressure at Burst (MPa)	Average Circumferential Strain (m/m)	Wall Thickness at Burst (mm)	Axial Radius of Curvature (cm)
35 34 40 18 19 21 8 16 5 26a 27 15 37 26 9 28 11 32 29 36	1061 1081 1111 1145 1158 1160 1171 1179 1195 1196 1205 1213 1214 1215 1220 1235 1253 1253 1299 1302 1432 1440	6.170 7.584 4.654 4.826 4.205 4.895 3.102 3.826 3.999 3.757 3.068 2.241 2.275 2.344 3.033 1.448 1.413 1.434 0.745 0.676 0.827	$\begin{array}{c} 0.63\\ 0.58\\ 0.79\\ 1.25\\ 0.57\\ 0.51\\ 0.30\\ 0.22\\ 0.42\\ 0.44\\ 0.27\\ 0.55\\ 0.41\\ 0.40\\ 0.53\\ 0.43\\ 0.85\\ 0.68\\ 0.93\\ 0.92\\ 0.50\\ \end{array}$	0.25 0.23 0.18 0.20 0.23 0.18 0.20 0.25 0.20 0.25 0.20 0.28 0.15 0.18 0.13 0.20 0.18 0.13 0.20 0.18 0.25 0.25 0.25 0.23 0.23	2.9 1.8 1.8 3.0 2.5 1.8 1.7 1.3 1.7 1.0 1.8 1.1 1.1 1.4 1.5 2.7 2.8 1.5 2.1 2.5 1.5
4 36a	1472	0.662	0.74	0.20	2.5

TABLE 2. SUMMARY OF DATA FROM THE HOBSON-RITTENHOUSE TESTS

Test No.	Burst Temperature (K)	Differential Pressure at Burst (MPa)	Average Circumferential Strain (m/m)	Wall Thickness at Burst (mm)	Axial Radius of Curvature (cm)
AS-40	1089	5.302	1.01	0.39	2.9
AS-36	1310	0.558	1.11	0.26	2.9
AS - 9	1329	1.282	1.24	0.12	3.2
AS -5	1348	1.334	1.02	0.42	1.6

TABLE 3. SUMMARY OF DATA FROM THE CHUNG-KASSNER TESTS

Test No.	Burst Temperature ^a (K)	Burst Strength ^a (MPa)	Average Circumferential Strain (m/m)	Wall Thickness at Burst ^D (mm)
M12-16	477	749.4	0.026	0.57
M12-4	644	659.1	0.052	0.60
M12-15	644	684.6	0.028	0.61
D9-7	644	356.4	0.212	0.45
D9-8	644	350.9	0.204	0.46
D9-13	644	372.3	0.225	0.51
D9-14	644	367.5	0.292	0.48

TABLE 4. SUMMARY OF DATA FROM THE BAUER ET AL. TESTS

a. From Reference 12, pages 3 and 7.

b. From photographs sent by A. A. Bauer and L. W. Lowry of Battelle Columbus Laboratories. Reference 15) to be 5.2 MPa in excess of the coolant pressure and the cladding temperature was estimated from microstructure studies to be near 1100 K. The average circumferential elongation (engineering strain) was reported to be 0.25 (page 16 of Reference 15). The wall thickness at burst was estimated to be 0.09 mm using Figure 5 of the post-irradiation examination results report¹⁵ and the axial radius of curvature was estimated to be approximately four times the rod diameter from the photograph on page 91 of Reference 15.

The second source of in-reactor data is a series of tests in the FR2 reactor in Germany.¹⁶ Complete data from three tests were presented (A2.3, B1.2 and B1.3) but two of the cladding cross sections had burst edges rolled in--evidence of contact with the shroud. For that reason, only data from test B1.2 were used. The average circumferentail elongation, axial radius of curvature, burst pressure, burst temperature and wall thickness at burst (0.249, 1.5 cm, 4.52 MPa, 1188 K and 0.16 mm, respectively) were taken from Reference 16. The coolant pressure was assumed to be the typical value of 0.3 MPa given on page 2 of the reference.

One out-of-pile test result from Germany¹⁷ was used in developing the failure criterion. The test was performed in air (0.1 MPa pressure) with an internal heater. The burst temperature, internal gas pressure at burst, average circumferential elongation and wall thickness at burst (1114 K, 7.1 MPa, 0.37 mm, and 0.215 mm, respectively) were taken from Figure 13 of Reference 17. The axial radius of curvature was estimated to be approximately three times the cladding radius at burst by inspection of X-ray photographs of similar tests just prior to burst.

The development of Equation (1) was preceded by attempts to use average circumferential elongation, engineering hoop stress and wall thinning versus burst temperature as failure criteria, but these criteria all exhibited unacceptable scatter when the data base just discussed was used to test them. Local stress versus burst temperature not only showed less scatter, but those data that exhibited scatter could be explained by a careful examination of experiment details.

Local stresses at failure were estimated from the data just presented and the equilibrium equation for a membrane element at the time of failure 18

$$\frac{\sigma_{ZF}}{r_{Z}} + \frac{\sigma_{\theta F}}{r_{\theta}} = \frac{P_{F}}{t_{F}}$$
(2)

where

P_F = difference between gas pressure and coolant pressure at failure (Pa)

 σ_{ZF} = axial stress at failure (Pa)

 $\sigma_{\Theta F}$ = tangential stress at failure (Pa)

r = axial radius of curvature at failure (m)

 r_{θ} = circumferential radius of curvature at failure (m)

t_F = cladding thickness at burst (m).

Two approximations are needed to deduce an estimate of $\sigma_{\theta B}$ from Equation (2) and the data. The first approximation is that the cross section perpendicular to the cladding axis is approximately circular, or

$$r_{\theta} \approx undeformed radius \cdot \frac{circumference at burst}{undeformed circumference}$$
 (3)

This approximation is necessary because the shape at the moment the burst tear begins is unknown.

The second approximation is needed to estimate the axial stress, σ_{ZF} . The maximum axial stress is limited by a physical consideration. It must have been less than $\sigma_{\Theta F}$ for failure to occur along an axial line. Since r_Z is typically several times r_{Θ} , the first term of Equation (2) is small as long as σ_{ZF} is less than $\sigma_{\Theta F}$ so a crude approximation is acceptable. The maximum value of σ_{ZF} ($\sigma_{\Theta F}$) is therefore used to estimate the contribution of the first term. This approximation tends to underpredict $\sigma_{\Theta F}$ while the assumption of Equation (3) tends to overpredict $\sigma_{\Theta F}$ because Equation (3) ignores the reduction of r_{Θ} due to local bulges in the plane perpendicular to the cladding axis.

The expression for tangential stress at failure obtained from Equation (2) with the two approximations just discussed is

 $\sigma_{\theta F} = \frac{P_F}{t_F} \left[\frac{1}{\frac{1}{r_z} + \frac{1}{r_{\theta}}} \right].$

Figure 1 is a plot of the local tangential failure stress obtained from Equation (4) and the data. Approximate heating rates during burst are indicated to show that there is no systematic variation with heating rate. Comparison of the burst stresses obtained from Hobson's tests with both Chapman's tests and the two in-reactor data show there is no significant effect of oxide films or alpha layers on the burst stress, at least at the heating rates used in these tests. The most probable interpretation of this observation is the suggestion that the relatively thin oxide and alpha layers are cracked before the burst stress of the underlying beta layers is achieved.

(4)

Most of the burst stresses shown in Figure 1 form a locus which looks very similar to a plot of the strength coefficient for plastic deformation of zircaloy.^a The exceptions are not scattered randomly. They all lie

a. The strength coefficient is discussed in Appendix A.

Figure 1. Local tangential stress at failure versus temperature assuming a circular cross section at failure.

above the main collection of points. Closer inspection indicates that the tests which yielded unusually high tangential burst stresses had features which caused the assumptions used in calculating tangential burst stress to be questionable. These features are discussed, on a test by test basis, in the next several paragraphs. The exceptional data are individually labeled in Figure 1.

For rod IE-19 of the PBF Test IE-5 the maximum temperature of the cladding burst region was determined by metallography to be approximately 1100 K. Postirradiation examination results¹⁵ show the maximum temperature of the fracture area was less than the maximum cladding temperature at other azimuthal locations in the axial plane of the fracture. The interpretation given to this information in the postirradiation examination results report is that 1100 K was also the burst temperature because no increase could have occurred on the protruding fracture tips after the rod burst. This conclusion may be slightly overstated. The test results report (see Figure 13 of Reference 19) shows that the adjacent 45 degree thermocouple which also protruded experienced a 50 K temperature rise after the initial temperature increase. Therefore a more realistic estimate of the burst temperature of the cladding in rod IE-19 is 1000 to 1050 K.

Test PS-10 from Chapman's studies was performed with a heater which has an unusually large circumferential variation in temperature.²⁰ In this case very local ballooning is likely, and Equation (4) is probably a poor approximation for the circumferential radius of curvature near the time of burst. Because of the questionable validity of Equation (4) for this test and because of the large difference between the calculated burst stress of this test and several other data obtained at similar burst temperatures, this test was omitted from the failure analysis.

Test 18 from the Hobson-Rittenhouse series burst at a thermocouple temperature of 1145 K, yet had an average circumferential strain characteristic of temperatures in the alpha phase. Moreover, the axial

profile of this test is almost triangular (see Figure 4 of Reference 9). In all probability the axial radius of curvature given in Table 2 (estimated from the bottom half of the sample) is much too large. The test was therefore eliminated from the data base.

Test 26 from the Hobson-Rittenhouse series is the only sample in the entire test series which did not exhibit approximate mirror symmetry of wall thickness about a plane through the burst area and the cladding centerline. In this test, one half of the cross section is essentially undeformed and one half is uniformly thin. Thus, both the axial and circumferential radii of curvature estimated for this test are questionable. Therefore the test was removed from the data base.

Tests AS-9 and AS-5 by Chung are the most difficult of all the data shown in Figure 1 to understand. It is probable that the constraining mandrel used in these tests caused a large axial stress which perturbed the test. Moreover, test AS-36 which differed only in heating rate from AS-5 and AS-9 does not differ from the Hobson or Chapman tests which burst at similar temperatures. Tests AS-5 and AS-9 were removed from the data base solely because they differ markedly from the two tests by Chapman which were conducted in steam with an internal heater--two features which are believed to make Chapman's test more representative of in-reactor cladding failure.

The remaining data shown in Figure 1 were used to find the tangential burst stress at failure above 1000 K. The failure stress derived from the data was divided by the strength coefficient obtained from the correlation given in Appendix A and the quotients were averaged. For the alpha phase data with burst temperatures above 1000 K, the average quotient is 7.48 \pm 0.91; for the alpha plus beta region, it is 7.54 \pm 1.03; and for the beta phase, it is 8.14 \pm 1.84. Since there is no significant variation of the quotient, the average obtained for the entire temperature range above 1000 K, 7.70 \pm 1.29, was used in Equation (1).

The estimated uncertainty of ± 0.2 times the predicted failure stress is slightly larger than the fractional standard error^a of the preliminary fit (± 0.17) because of the additional error associated with possible variations in shape. The additional factor of 0.03 is the author's intuitive judgement.

Equations (3) and $(4)^{D}$ were also used with the low temperature data of Table 4 to estimate low temperature failure stresses. In this case the ratios of failure stress to strength coefficient obtained were much smaller than those of the high temperature data. A ratio of 0.84 ± 0.03 was found for the annealed cladding and 0.80 ± 0.06 was found for the irradiated cladding. These ratios were not used for the failure stress correlation because the axial radii of curvature needed to accurately calculate the failure stresses were not known (infinity was assumed). Instead, the measured failure strains were used with the equation of state for zircaloy plastic deformation (Appendix A), an assumed strain rate sensitivity exponent of zero, and typical anisotropy coefficients^C to calculate failure stresses consistent with the equation of state and the measured strain. This approximation is more reasonable than estimating axial radii of curvature at low temperature because (a) the unknown strain rate at failure is unimportant at low temperature and (b) the stress-strain curve at low temperature is very flat so that small uncertainties in stress are equivalent to large uncertainties in strain. The factor of 1.36 for

a. The standard error of the preliminary fit was estimated with the expression $\left[\sum_{\tau=0}^{\sigma_{\theta}F} \frac{\sigma_{\theta}F}{\tau} - 1\right]^{2}/(number of measurements - 1)\right]^{0.5}$.

b. The axial radius of curvature was assumed to be three times the circumferential radii of annealed cladding and infinite for the irradiated cladding.

c. The irradiated cladding was assumed to be isotropic when effective stress and strains were calculated but the annealed cladding was assumed to have typical anisotropy coefficients.

annealed cladding and an increase of burst strength equal to four tenths of the increase in the strength coefficient due to cold work or irradiation in Equation (la) reproduce the failure strains listed in Table 4. Equation (lb) is simply an assumption contrived to extrapolate between the two regions where data are available without producing unreasonable predictions for failure strain in the temperature range where it is used.

A MODEL FOR CALCULATING CLADDING SHAPE

Equation (1) is sufficient to provide a complete description of both the time of cladding failure and the shape of failed cladding if they are used with an equation of state for zircaloy plastic deformation and a model which determines cladding shape as a function of temperature and pressure histories. A suitable equation of state is available as part of the MATPRO materials properties package and is discussed briefly in Appendix A. More detailed descriptions are available in Reference 21. This section describes a large deformation model, BALON2, which determines cladding shape at failure using the MATPRO equation of state and the failure criterion given by Equation (1). The model has been programmed as a FORTRAN IV computer code. Input/output information and a listing of the BALON2 code are provided in Appendix B.

Time step increments are used to model the deformation of cladding. Figure 2 illustrates the sequence of the calculations. First, local stresses are calculated using given pressures, temperatures, midwall radii and wall thicknesses. Then, the given time step size is checked to see if it is short enough to prevent significant change in the local stresses during the time step. If the given step is too long, it is divided into several shorter steps. For some options, cladding temperatures are recalculated to account for effects of the deformation during the previous time step on cladding temperature. The effects of annealing are also considered for these options,

Next, requested start-of-step information is printed and all nodes are checked for failure. If failure has occurred, final shape information is printed and the calculation is complete.

If cladding failure has not occurred, the description of the cladding texture (anisotropy constants) is updated and the effective strain prior to deformation is calculated. This initial effective strain is used to calculate strain component increments, and the increments are used to

Figure 2. Sequence of model calculations.

calculate new dimensions at the end of the time step under the assumption that local stress and temperatures are constant during the time step. Requested end-of-step information is printed and a check is made to see if deformation for all of the given time step has been calculated. If it has, control is returned to the driving program and the next time step is considered. If it has not, the remaining part of the given time step is input and the process beginning with the calculation of local stress is repeated. The following sections describe details of the calculations mentioned in Figure 2.

Calculation of Local Stress in the Cladding

The internal rod gas pressure, the external coolant pressure, cladding shape, forces from the fuel pellets and forces from the spacer grids all contribute to local cladding stresses. It is assumed in this model that the cladding experiences only an axial constraint force from the grids or fuel stack. The constraint force is an input parameter.

The effect of pressure and shape changes is discussed in more detail below. First, a thin-wall approximation is used to find the principal stress components in a right circular cylinder. The thin wall approximation is based on the expressions for tangential and radial stress in a thick walled cylinder.²² The expressions used for the thick walled cylinder are

$$\sigma_{\theta\theta} = \frac{P_{i}\left(c^{2} + \frac{c^{2}b^{2}}{r^{2}}\right) - P_{o}\left(\frac{c^{2}b^{2}}{r^{2}} + b^{2}\right)}{b^{2} - c^{2}}$$
(5)

$$\sigma_{rr} = \frac{P_{i}\left(c^{2} - \frac{c^{2}b^{2}}{r^{2}}\right) + P_{o}\left(\frac{c^{2}b^{2}}{r^{2}} - b^{2}\right)}{b^{2} - c^{2}}$$
(6)

		•
σ _{θθ}	=	tangential component of stress
^o rr	=	radial component of stress
Po	=	pressure of fluid outside the cylinder
P _i	=	pressure of fluid inside the cylinder
С	Ξ	inner radius of the cylinder
Ь	-	outer radius of the culinder

The thin-wall expression used for the radial stress is obtained by replacing $\frac{1}{r^2}$ by its average value across the wall of the cylinder,

$$\frac{1}{b - c} \int_{c}^{b} \frac{1}{r^{2}} dr = \frac{1}{cb} .$$
 (7)

Thus,

1

where

$$\sigma_{rr} \approx -\frac{P_0 b + P_i c}{b + c}$$
 (8)

In order to derive a thin wall expression for $\sigma_{\theta\theta}$ that is compatable with the perturbation theory to be introduced shortly for a noncylindrical shape, the variables

$$h_{cyl} = b - c \tag{9}$$

$$a = \frac{b + c}{2}$$

and

are substituted into Equation (5) and the resultant equation is expressed in powers of wall thickness, h_{cvl} .

(10)

$$\sigma_{\theta\theta} = \frac{P_i \left\{ a^2 \left[1 + \frac{a^2}{r^2} \right] - h_{cyl} \left[a \left(1 + \frac{a^2}{r^2} \right) - \frac{a^3}{r^2} \right] + \text{higher powers of } h_{cyl} \right\}}{2 a h_{cyl}}$$

$$-P_{o}\left\{a^{2}\left[1+\frac{a^{2}}{r^{2}}\right]+h_{cy1}\left[a\left(1+\frac{a^{2}}{r^{2}}\right)-\frac{a^{3}}{r^{2}}\right]+higher powers of h_{cy1}\right\}$$

$$2ah_{cy1}$$
(11)

The quantity $\frac{1}{r^2}$ in Equation (11) is again replaced by its average value over the wall of the cylinder [see Equation (7)] to obtain

$$\sigma_{\theta\theta} \approx (P_i - P_0) \frac{a}{h_{cyl}} - \frac{P_i + P_0}{2}$$
(12)

to order $\left(\frac{h_{cyl}}{a}\right)^{0}$. The second term is frequently dropped but is kept in this case in order to have zero effective stress^a for isotropic cladding with $P_i = P_0$.

The expression used for the axial stress, σ_{zz} , is the net axial force for a closed cylindrical tube divided by the cross sectional area of cladding:

a. The effective stress is given by Equation (25).

$$\sigma_{zz} = \frac{\pi P_{1}c^{2} - \pi P_{0}b^{2} + F_{z}}{\pi (c^{2} - b^{2})}$$

=

where

 σ_{zz} = axial component of stress

F,

additional axial force applied by any constraints.

When the snape of the cladding departs from a right circular cylinder, the stresses change significantly. A perturbation theory developed by Kramer and Deitrich²³ is used to approximate the effect of shape on stress. The derivation of the expression for the effect of shape change on stress is summarized in Appendix C. It is shown that to first order in $\frac{\delta}{a}$ the σ_{27} and σ_{rr} components do not change while the σ_{aa} component changes by

$$\sigma_{\delta}^{1} \approx \frac{\Delta P \delta}{h_{cyl}} - \frac{a \Delta P h_{\delta}}{h_{cyl}^{2}} + \frac{\Delta P}{h_{cyl}} \frac{\partial^{2} \delta}{\partial \theta_{0}^{2}} + \frac{\sigma_{zz}}{\lambda^{2}} a \frac{\partial^{2} \delta}{\partial z_{0}^{2}}$$
(14)

where

δ

= change in $\sigma_{\theta\theta}$ due to departure of the cladding shape 1 from a right circular cylinder

- $\Delta P = P_i P_o$
 - = local perturbation of the cladding midwall radius (radius - average radius)

h_δ = local perturbation of the cladding wall thickness (wall thickness - average wall thickness)

a = average radius

22

(13)

^θo, ^Zo coordinates that material particle occupied before deformation

 λ = exponent of the average true axial strain component of the cylinder, $exp(\epsilon_{2})$.

The four terms of the right hand side of Equation (14) can be given sound physical interpretations. The first two terms represent the effect of local changes in radius and wall thickness, while the second two terms are the contributions due to local changes in the radii of curvature.

Figure 3 is a schematic illustration of the effect of the fourth term of Equation (14) on a ballooned section of cladding. In the center region the hoop stress is reduced because

$$\frac{\partial^2 \delta}{\partial z_0^2} \left(\text{which is equal to } \frac{\partial^2 r}{\partial z_0^2} \right)$$

 $\frac{\partial^2 \delta}{\partial z^2}$

is negative. The curvature of the cladding allows σ_{zz} to exert a force on the bulged section which pulls with the force exerted by $\sigma_{\theta\theta}$ against the internal pressure, P_i . At the ends of the bulged region

is positive. In this region σ_{ZZ} exerts a force which pulls with the internal pressure against the restraining force exerted by $\sigma_{\theta\theta}$. A larger $\sigma_{\theta\theta}$ is thus required to hold the internal pressure at the ends of the ballooned regions. The fourth term of Equation (14) is thus the term which describes the axial propagation of ballooned regions.

Figure 4 is a schematic illustration of the effect of the third term of Equation (15) on a ballooned section of cladding. In the bulged section,

$$\frac{\partial^2 \delta}{\partial \theta_0^2} \left(\text{which is equal to } \frac{\partial^2 r}{\partial \theta_0^2} \right)$$

is negative. The small local radius of curvature allows the force exerted by $\sigma_{\theta\theta}$ to act at a relatively acute angle to P_i and thus counter the force exerted by P_i with a smaller $\sigma_{\theta\theta}$. At the ends of the local bulge,

$$\frac{\partial^2 \delta}{\partial \theta_0^2} \text{ is positive } \left(\frac{\partial^2 \delta}{\partial \theta_0^2} = 0 \text{ for a circle} \right).$$

In this region, $\sigma_{\theta\theta}$ acts more nearly at right angles to P_i, and a large $\sigma_{\theta\theta}$ is required to have a sufficiently large force to oppose the normal force exerted by P_i. The third term of Equation (14) is thus the term which tends to propagate local bulges around the circumference to form a circular cross section.

Since all four terms of Equation (14) act simultaneously, determining which term will dominate for a given deformation is difficult. The problem is complicated further by the interactions between heat sources, heat sinks, cladding shape, cladding temperatures and cladding strength.

Check for Sufficiently Small Time Step Size

Once the local stress is known, it is possible to test the given time step to see if it is sufficiently small to prevent significant change in the local stress during the time step. The test begins with a comparison of the tangential stress at each node with the cladding strength coefficient times the strain raised to the strain hardening exponent. If

the tangential stress is less than this product, the given time step size is adopted. For tangential stresses greater than the product, the maximum allowed time step interval is determined with the relation

(15)

$$\Delta t = \left(\frac{\varepsilon_{\theta\theta}^{h}K}{\sigma_{\theta\theta}}\right)^{\frac{1}{m}} 10$$

where

Δt	=	maximum allowed time step interval
К	Ξ	cladding strength coefficient
m	=	cladding strain rate sensitivity exponent
n	=	cladding strain hardening exponent
εθθ	=	tangential component of strain at start of step.

Equation (15) results from a Taylor series approximation used with the MATPRO equation of state for zircaloy plastic deformation and the requirement that the strain increment be limited to no more than 0.01. The form of the equation of state used is

$$\epsilon_{f} = \left[\left(\frac{n}{m} + 1 \right) 10^{-3} \left(\frac{\sigma}{K} \right)^{\frac{1}{m}} \Delta t + \epsilon_{i} \left(\frac{n}{m} + 1 \right) \right]^{\frac{m}{n+m}}$$
(16)

where

٤f

=

effective strain at the end of the time interval

- $\varepsilon_i = \text{effective strain at the start of the time interval}$
- σ = effective stress during the time interval

and the other variables have been defined previously. Using the Taylor series approximation for a small time interval, Equation (16) can be rewritten as

$$\epsilon_{f} \approx \epsilon_{i} \left[1 + \frac{10^{-3} \left(\frac{\sigma}{K}\right)^{\overline{m}} \Delta t}{\frac{(n+m)}{\epsilon_{i}} + \cdots} \right].$$
(17)

Solution of Equation (17) for Δt yields

$$\Delta t \approx 10^3 \left(\epsilon_i^h \frac{K}{\sigma} \right)^{\frac{1}{m}} \left(\epsilon_f - \epsilon_i \right) .$$
(18)

Substitution of $\epsilon_{f} - \epsilon_{i} = 0.01$ and approximation of the effective stress and strain with the tangential components converts Equation (18) to Equation (15), the expression used for calculating the maximum allowed time interval, Δt .^a If the given time step is greater than Δt , it is replaced by Δt and the given time step less Δt is resubmitted as a subsequent given time step when the calculation with Δt is complete.

a. For temperatures in the alpha and beta phase region, the Δt given by Equation (15) is increased by a factor of five because experience showed too many time steps were being used without this adjustment.

Update of Cladding Temperatures

After the time step size is determined, the cladding temperature can be calculated. There are several options that can be used to calculate the cladding temperature:

1. Assume constant fuel surface heat flux

2. Assume constant fuel surface temperature

- 3. Interpolate cladding temperatures from tables of measured values
- 4. Assume cladding temperatures are constant for the length of the given time step [which can be much longer than the time step determined with Equation (18)].

In the FORTRAN listing of BALON2 in Appendix B, the input MODE variable is used to select one of these options. A value of 0 for MODE causes a constant fuel surface heat flux assumption to be used while MODE = 1 causes use of a constant fuel surface temperature assumption. If MODE = 2, temperatures and pressures are interpolated from tables of data that are read in at the start of a problem. If MODE = 3, the input temperatures are used for the duration of the input time step. The MODE = 0 and MODE = 1 options will be discussed in more detail in the remainder of this section.

The equation used to calculate cladding surface temperatures for the constant fuel_surface heat flux assumption (MODE = 0) is

$$T_{c} = T_{c_{0}} \exp\left(\frac{h_{s}\Delta t}{\rho C_{p}h}\right) + \frac{q r_{f} + h_{s}r_{c1}T_{s}}{h_{s}r_{c1}} \left[1 - \exp\left(\frac{h_{s}\Delta t}{\rho C_{p}h}\right)\right]$$
(19)
T _c	=	cladding temperature after time interval Δt
T _c	=	cladding temperature at the start of the time interval
h _s	=	cladding surface heat transfer coefficient
ρ	=	cladding density
С _р	=	cladding specific heat capacity
h	Ξ	cladding wall thickness
q	=	fuel surface heat flux
r _f	=	fuel surface radius
r _{cl}	=	cladding midwall thickness
Τ _s	=	steam temperature.

Equation (19) is derived by equating the rate-of heat loss from the fuel surface to the rate energy is retained in the cladding plus the rate of heat loss from the cladding surface to steam:

$$\mathbf{r}_{f} = \left[c_{p} \rho h \frac{dT_{c}}{dt} + h_{s} (T_{c} - T_{s}) \right] \mathbf{r}_{c1} .$$
 (20)

Solution of this equation for the time-dependent cladding temperature with all other quantities assumed constant yields Equation (19). Radiative heat transfer from fuel to cladding or cladding to shroud is not considered in this formulation.

The equation used to calculate cladding surface temperatures for the constant fuel surface temperature assumption (MODE = 1) is

$$T_{c} = \left[h_{g} T_{f} + h_{s} T_{s} + \frac{C_{p} \rho h}{\Delta t} T_{c_{0}} + e_{f} \sigma \left(T_{f} + T_{c_{0}} \right) \left(T_{f}^{2} + T_{c_{0}}^{2} \right) T_{f} + e_{s} \sigma \left(T_{c_{0}} + T_{sh} \right) \left(T_{c_{0}}^{2} + T_{sh}^{2} \right) T_{sh} \right] / \left[h_{g} + h_{s} + \frac{C_{p} \rho h}{\Delta t} \right]$$

$$+ e_{f} \sigma \left(T_{f} + T_{c_{0}} \right) \left(T_{f}^{2} + T_{c_{0}}^{2} \right) + e_{s} \sigma \left(T_{c_{0}} + T_{sh} \right) \left(T_{c_{0}}^{2} + T_{sh}^{2} \right) \right]$$

$$(21)$$

where

h _q =	gas	gap	heat	transfer	coefficient
------------------	-----	-----	------	----------	-------------

T_f = fuel or heater element surface temperature

e_f = effective emissivity of the combined fuel and cladding inner surfaces

$$\sigma$$
 = Stefan's constant

e_s = effective emissivity of the combined cladding outer and shroud inner surfaces

T_{sh} = shroud surface temperature.

This equation is derived with an energy balance like Equation (20) but with the different assumption that fuel surface temperature rather than fuel heat flux is approximately constant during the given time step [note that the given time step size may have been reduced considerably due to the limit set by Equation (15) to arrive at Δt , the time step size used in Equations (19) and (21)].

Equation (21) is derived by equating the rate at which heat is supplied to the cladding by convection and radiation to the rate that energy is retained in the cladding plus the rates of heat loss to surrounding steam by convection and a shroud by radiative heat exchange:

$$h_{g}(T_{f} - T_{c}) + e_{f}\sigma \left(T_{f}^{4} - T_{c}^{4}\right) = C_{p}\rho h \frac{\left(T_{c} - T_{c}\right)}{\Delta t}$$

+ $h_{s} \left(T_{c} - T_{s}\right) + e_{s}\sigma \left(T_{c}^{4} - T_{sh}^{4}\right)$. (22)

Next, the approximations

$$T_{f}^{4} - T_{c}^{4} \approx (T_{f} - T_{c}) \left(T_{f} + T_{c_{0}}\right) \left(T_{f}^{2} + T_{c_{0}}^{2}\right)$$
 (23)

and

$$T_{c}^{4} - T_{sh}^{4} \approx \left(T_{c} - T_{sh}\right) \left(T_{c_{0}} + T_{sh}\right) \left(T_{c_{0}}^{2} + T_{sh}^{2}\right)$$
(24)

are employed to convert Equation (24) to a linear equation. The resultant expression is solved for T_c .

Equations (19) and (21) have both been included because they bracket the usual behavior of a ballooned fuel rod where the heat flux decreases and fuel surface temperature increases as the gas gap resistance increases.

Calculation of Strain Component Increments

With stress, an acceptable time step size, and cladding temperature known, calculation of strain component increments is possible. The effective stress which is needed for the equation of state for zircaloy plastic deformation is calculated with the equation

$$\sigma_{e} = \left[A1S \left(\sigma_{\theta\theta} - \sigma_{zz}\right)^{2} + A2S \left(\sigma_{zz} - \sigma_{rr}\right)^{2} + A3S \left(\sigma_{rr} - \sigma_{\theta\theta}\right)^{2} \right]^{\frac{1}{2}}$$
(25)

e = effective stress

AlS, A2S, A3S = coefficients of anisotropy (provided by the MATPRO model CANISO).

The effective strain at the end of a time step interval is obtained with the integral form of the equation of state for plastic deformation used in the MATPRO package,^a Equation (16). Finally strain component increments during the time step are obtained from the Prandtl-Reuss flow rule¹⁸:

$$d\epsilon_{\theta\theta} = \frac{d\epsilon}{\sigma_{\rho}} \left[\sigma_{\theta\theta} \left(A IE + A 3E \right) - \sigma_{zz} A IE - \sigma_{rr} A 3E \right]$$
(26)

$$d\varepsilon_{zz} = \frac{d\varepsilon}{\sigma_e} \left[-\sigma_{\theta\theta} A IE + \sigma_{zz} \left(A2E + A IE \right) - \sigma_{rr} A2E \right]$$
(27)

$$d\epsilon_{rr} = \frac{d\epsilon}{\sigma_e} \left[-\sigma_{\theta\theta} A3E - \sigma_{zz} A2E + \sigma_{rr} (A3E + A2E) \right]$$
(28)

where

de ee,	=	true	strain	increments	in	the	θ,	Z	and	r
dezz,		dire	ctions,	respective	ly.					
derr										

a. This form of the equation of state is used by the CSTRNI model.

 $d\epsilon = \epsilon_{f} - \epsilon_{i}$

Ale, A2E, A3E = co

coefficients of anisotropy (provided by the MATPRO model CANISO in the FORTRAN program of Appendix B).

Estimation of Cladding Dimensions at the End of the Time Step

Equations (26) to (28) are sufficient to calculate cladding circumference, wall thickness and length change but not the cladding midwall radii. Figure 5 illustrates one of the two additional global considerations required to find the radii--the effect of the relative deformations of all parts of the cladding circumference. The top cross section in Figure 5 represents the deformation of the most rapidly deforming segment of the cladding circumference as it probably happens. There is some tangential component to the displacement and the stiffer, less rapidly deforming segments merely move outword with minimal increase in circumference. The middle cross section of the figure illustrates a pure radial displacement which would be expected by symmetry if all segments were equally stiff. The radial displacement is frequently assumed for simplicity 18,23 and was tried during the development of this model. The assumption was found to be invalid and abandoned in favor of the approximation shown at the bottom of the figure, namely that the tangential component of the cladding displacement is sufficient to maintain a nearly circular cross section. The key observations in favor of the circular cross section assumption are (a) the third term of the local stress expression, Equation (14), causes cross sections to tend to be circular (see Figure 4) and (b) the circular cross section assumption is more consistent with the circular cross section assumption made during the derivation of the failure stress. Calculations using the radial displacement assumption did not match data unless the failure stress was reduced by a factor of 0.6. This was not believed to be realistic.

The second global consideration required before one can predict the midwall radii of the deforming cladding is the effect of bending due to different changes in cladding length as the ballooning proceeds. The expression used for bending at the K-th axial node through the J and $\frac{NJ}{2}$ - th circumferential nodes is

$$dX = \left[\frac{ZBEND^{2}}{8 r_{o} \left\{\exp\left[\epsilon_{\theta \theta}(K,J)\right] + \exp\left[\epsilon_{\theta \theta}(K,J + \frac{NJ}{2})\right]\right\}}\right]$$
$$\left[d\epsilon_{zz}\left(K,J + \frac{NJ}{2}\right) - d\epsilon_{zz}(K,J) - \left[\epsilon_{zz}\left(K,J + \frac{NJ}{2}\right) - \epsilon_{zz}(K,J)\right]\right]$$
$$\left[\frac{d\epsilon_{\theta \theta}(K,J) + d\epsilon_{\theta \theta}(K,J + \frac{NJ}{2})}{2}\right]$$
(29)

where

dX = decrease in the midwall radius of the surface element at the K-th axial and J-th circumferential node caused by the incremental strains de_{zz} and $de_{\theta\theta}$

ZBEND = average length contributing to the bending

 $r_0 = radius of the undeformed cladding.$

The derivation of this equation is given in Appendix D.

An important limitation of the bending model is the assumption that length changes at each node around the circumference are independent of local stresses caused by length changes at neighboring nodes. The assumption causes the calculation of unrealistically large variations of bending displacements from node to node around the cladding circumference. Experience with the model has shown that this undesireable feature is avoided by averaging the midwall radius of each circumferential node with its two neighbors when the bending model is used.

Because of the highly simplified nature of the bending model that results in Equation (29), the model is used only up to the time the deforming cladding contacts the fuel (typically ~1% circumferential elongation). The model thus serves to estimate the most important effect of bending, the local heating due to fuel-cladding contact, but is not used for large strains where the approximations made in the derivation of Equation (29) do not justify use of the model.

Figure 6 illustrates the way that the circular cross section and bending models are combined to determine cladding midwall radii prior to cladding heater contact. The smaller circle represents the fuel and the larger circle represents the deformed cladding. After the radius of each node is increased by a factor equal to the exponent of the tangential strain increment for the node, the bending is calculated with Equation (29). The minimum radius, \overline{CM} , at each axial position is then identified. The displacement distance, \overline{DC} , is the average radius of the cladding (circumference calculated from $\varepsilon_{\theta\theta}$ values divided by 2π) minus \overline{CM} . Once \overline{DR} , the average radius, and \overline{DC} are known the midwall radius at an angle θ to the minimum radius is given by

$$\overline{CR} = \left(\overline{DR}^2 - \sin^2\theta \ \overline{DC}^2\right)^{1/2} - \cos\theta \ \overline{DC} \ .$$
(30)

The expression is derived by using the Pythagorean theorem on a right triangle whose hypotenuse is the line \overline{DR} and one leg of which is the constructed line \overline{CR} sin θ .

Once contact between the fuel and cladding has occurred at some orientation, the bending model is inactive. The cladding and fuel are assumed to remain tangent at their initial point of contact.

With midwall radii calculated for each node, the remainder of the cladding shape information can be calculated using the definition and values of axial and radial strain.

$$h = h_0 \exp(\epsilon_{rr})$$
(31)

(32)

$$\Delta Z = \Delta Z_0 \exp(\epsilon_{77})$$

where

h O	=	initial cladding thickness
۵Z	=	length of a given axial node
۵Z	=	initial length of the given axial node.

PARAMETRIC STUDIES AND COMPARISON WITH DATA

This section presents several illustrations of the use of the BALON2 model to understand how various parameters contribute to cladding shape at failure. The main conclusion is that the parameters traditionally used to describe cladding shape interact. That is, burst temperature, heating rates, pressure history, circumferential temperature variations and axial temperature variations affect cladding shape at failure and each of these parameters can affect the others. A second conclusion is that the relatively simple concept of failure caused by true stress exceeding a failure stress (which is primarily a function of temperature) is the most useful quide to understanding cladding shape at failure.

Figure 7 shows the model-predicted effect of variations in the linear heating rate of an internal heater. For the nine analyses shown, a constant pressure difference of 14.5 MPa was assumed. (The figure could look quite different with a different pressure difference.) The heater was assumed to have a 1% axial and a 1% circumferential hot spot. The large number shown next to each analysis is the cladding burst temperature and the small number is the circumferential temperature variation at failure.

As shown in Figure 7, the total circumferential elongation decreases significantly with increasing heating rate. However, the decrease may not be directly due to the heating rate because the increasing heating rate causes increased burst temperature and circumferential temperature variation which also contribute to reduced elongation. The increased burst temperature lowers the failure stress so that less deformation is required to reach the failure stress. The circumferential temperature variation tends to localize the strain at one part of the circumference.

The effect of heating rate is more clearly understood when attempts at correlating elongation with heating rate are abandoned in favor of plots of the true and failure stresses at the hot node versus time. Figures 8 and 9

Heater heating rate (K/S)

Base heater temperature (K)

Figure 8. Hot node true and failure stresses for a heater heating rate of 4 K/s.

Figure 9. Hot node true and failure stresses for a heater heating rate of 40 K/s.

show these stresses for analyses using 4 K/s and 40 K/s heating rates, respectively. The two figures use equal stress and time scales but begin at much different times.

For the 4 K/s heating rate shown in Figure 8, the failure stress is nearly constant and the true stress increases over a period of several seconds to intersect the failure stress. Burst occurs in the mid 900 K temperature range where the failure stress is high because the cladding temperature remains in that range for the several seconds required for deformation to increase the local stress to the failure stress.

With the 40 K/s heating rate shown in Figure 9, the failure stress has a significant negative slope because of the rapid heating rate.^a Deformation begins in the 900 K temperature range but is not sufficiently rapid to raise the local stress to the failure stress until a temperature near 1040 K is attained. At that temperature, the failure stress is significantly reduced so less deformation is required to raise the local stress to failure.

Close inspection of Figures 8 and 9 reveals a secondary effect of the heating rate. For equal temperatures the failure stress in Figure 9 is higher than that of Figure 8 and the deformation (rate of true stress increase) is lower in Figure 9 than that of Figure 8. Both differences are caused by the presence of some residual cold work strength in the cladding with the rapid heating rate.

a. The nonlinear portion of the failure stress curve near 10 seconds is caused by the nonlinear increase in cladding temperature as deformation begins and the cladding bends into the heater at the hot node. This decrease was not visable in Figure 8 because it occurred prior to 85 seconds.

If a rapid heatup rate can reduce the failure stress and thus require less deformation for failure, it is logical to expect a rapid internal gas pressurization rate (or a rapid decrease in external pressure) to increase local stress to failure with relatively little deformation. This effect is interesting because it has been ignored in most analyses of cladding burst shape and because the small gas volume near the expanding region of a full length fuel rod could lead to large deformations by causing lowered internal gas pressure as the rod deforms. The decreasing internal pressure would require more extensive deformation than a constant pressure test to increase the local stress to the failure stress.

Calculations for the effect of varying pressurization rates are shown in Figure 10. In the six analyses shown, temperature was increased at 100 K/s from 600 K to 1073 K and stopped while internal pressure was ramped at the rate shown in the figure. The decrease in circumferential elongation from 0.9 to 0.4 as the pressurization rate is increased from 0.1 MPa/s to 2 MPa/s shows that cladding shape is sensitive to pressure history.

Figure 11 shows the same trend using data reported by Busby and Marsh. 24 In four tests^a with temperature held constant at 922 K and pressure increased at 0.09, 0.17 and 0.81 MPa/s, the calculated trend is confirmed.

Another important parameter for determining the cladding shape is the circumferential temperature variation, If the cladding has a hot spot, the deformation will be localized at the hot spot and the total circumferential elongation will be small. Figure 12 shows data from $Chapman^2$ and $Wiehr^{25}$ as well as lines representing a number of model calculations for heater heating rates of 4 K/s and 30 K/s. All of the bursts occurred in

a. Samples 8, 9, 24, and 23.

Approximate internal pressure increase rate (MP/s)

Figure 11. Tests by Busby and March showing the effect of increasing pressurization rates on total circumferential elongation.

Figure 12. Total circumferential elongation versus circumferential temperature variation at burst and heating rate.

the high temperature alpha phase.^a The data show considerable scatter because varying internal pressures and heating rates were used, but the trend of decreasing circumferential elongation with increasing circumferential temperature variation at burst is observable.

The calculations are from analyses with a constant pressure difference of 14.5 MPa and 1% axial and circumferential temperature variation (10 K) of the heater temperature. The calculated results not only agree with the trend of the data but also illustrate how heating rate and cladding circumferential temperature variation at burst can be coupled in the alpha phase of Zircaloy (temperature less than 1090 K). The left end of each line represents analyses with high temperature steam and hot shroud (825 K) while the right end represents low temperature steam and cool shroud (600 K). For the 30 K/s heating rate, cladding bending $^{\rm b}$ and the cladding mass result in a temperature variation of at least 50 K. The cladding hot spot bends into the internal heat source and fails before the heat flux from the colder side of the heater (which must cross a wide gas gap) can raise the cladding temperature close to the hot-side temperature. For the 4 K/s neating rate, the hot spot does not fail before the cold side of the cladding can be heated across the gas gap. The circumferential variation of the cladding in the 4 K/s test is thus closer to the 10 K difference of the neater. Since the calculation shows both large elongations and small temperature variations are associated with slow heating rates, it is not possible to decide whether the slow heating rate or the small temperature variation is the main cause of the large elongations.

a. 950 to 1090 K.

b. The bending is caused by Zircaloy anisotrophy in the alpha phase which in turn causes a reduction in length which is proportional to the amount of deformation. The final parameter mentioned at the beginning of this section is axial temperature variation. The mechanism for the effect of axial temperature variation was discussed during the interpretation of Equation (14) where it was noted that a positive

 $\frac{d^2r}{dZ^2}$

term reduces the hoop stress. The reduced stress allows greater deformation to occur before the failure stress is attained. Since increasing axial temperature variations cause increasing values of

 $\frac{d^2r}{dZ^2}$,

increasing elongation with increasing axial temperature variation is expected.

Calculations of this effect are not shown because the simplified treatment of cladding bending used in the model assumes that the hot azimuthal node remains in contact with fuel at each axial node. This in turn causes

to be zero for the hot azimuthal node and no effect is calculated. The expected relation between total circumferential elongation and axial temperature variation at failure was observed with an earlier version of the model which assumed radial displacement of the cladding. Since post-rupture shapes exhibit some displacement from the fuel surface, a moderate increase in elongation with increasing axial temperature gradients should be expected even though calculations with the model described here do not predict the trend.

It is useful to compare the results of the parametric study just discussed with recently proposed liscensing standards for determining cladding deformation for loss of coolant accident analysis.²⁶ The standards propose using a temperature versus engineering hoop stress and heating rate correlation devised by R. H. Chapman for a best estimate of burst time

$$T_{\rm R} = 3960 - \frac{20.4 \text{ S}}{1 + \text{H}} - \frac{8,510,000 \text{ S}}{100 (1 + \text{H}) + 2790 \text{ S}}$$
(33)

where

$$T_R$$
 = rupture temperature (°C)

S = engineering hoop stress (Kpsi)

- H = 0 if the heating rate is less than 0
 - = 1 if the heating rate is greater than 28°C/s
 - = ratio of the heating rate to 28°C/s if the heating rate is in the range 0 to 28°C/s.

Once the burst temperature is determined from Equation (33), it is used with correlations for total circumferential elongation versus burst temperature. One correlation is supposed to bound the data for heating rates less than or equal to 10° C/s, and another is for heating rates greater than or equal to 25° C/s.

The parametric study discussed at the beginning of this section has already shown that burst temperature is only one of five parameters affecting burst shape. For large circumferential temperature variations, fast heating rates, small local axial temperature variations and increasing differential pressure across the cladding, the elongation correlations of Reference 26 significantly overestimate the circumferential elongation at failure calculated with the model. On the other hand, if circumferential temperature variations are small, heating rates are low or negative, local

axial (pellet-to-pellet) temperature variations are large and the gas volume near the ballooning region is small, the correlations of Reference 26 will underestimate the elongation at failure calculated with the model. The arbitrary selection of burst temperature and fast or slow heating rates as shape parameters is restrictive and may not produce meaningful results. The model indicates that more reliable results could be expected by specifying approximate pressure-time and temperature-time tables with assumed typical temperature variations in the heat source. In case of concern about particular problems, more detailed analysis with the model could always be used to confirm the approximate results from the tables because the tables would be based on true stress-true strain considerations.

The procedure just recommended would eliminate the need for Equation (33) and the attendent problems of determining which of a continuously varying series of heating rates to use. However, the fact that Equation (33) is based on excellent data from the Multirod Burst Test (MRBT) program makes comparison useful. Figure 13 is a comparison of the MRBT correlation for heating rates faster than 28°C/s, the MRBT data for heating rates of 28°C/s²⁶ and several model analyses assuming constant pressure (therefore constant engineering stress) and a heater heating rate of 30° C/s. The model essentially reproduces the correlation as well as the data. The main discrepancy is a trend by the model to predict higher failure temperatures than the data. The probable reason for this discrepancy is the fact that the data report the hottest thermocouple reading, not necessarily the hottest region of the cladding. In the alpha phase region where the cladding bends into the heater at the hot spot, the model calculations show a highly localized hot spot at the point of contact. In the high temperature beta phase region where bending does not occur, the trend does not occur.

All of the MRBT data were taken with nearly constant pressure differentials across the cladding. Since in-reactor tests can involve changing cladding differential pressures due to changing coolant pressure

Engineering Hoop Stress (MPa)

Figure 13. Comparison of MRBT data with constant pressure model calculations.

or increasing rod volume, several ramped pressure runs were compared with the MRBT correlations. Figure 14 illustrates the results. The three curves are the calculations using Equation (33) for heating rates of 28 K/s, 14 K/s and 0 K/s. The triangles represent the results of the constant pressure runs at the various heatup rates that were used to generate Figure 7. These results are in agreement with the MRBT correlation.^a The squares represent the results of analyses with pressure ramped at 1 MPa/s and temperature ramped to a fixed value, then held constant. These burst points are significantly above and to the right of the 0 K/s line calculated for burst by the MRBT correlation.

Figure 15 compares the O K/s MRBT correlation to the O K/s data from Busby and Marsh.²⁴ The data fall above and to the right of the correlation line and the distance from the line increases as the pressurization rate (shown in MPa/s next to each result) increases. Interpretation of this trend is a direct application of the true stress failure criterion. Since failure occurs when the true stress equals the failure stress, the tests with higher pressurization rates achieve the failure stress with higher pressure and less deformation than tests with lower pressurization rates.

Figure 16 is an example of the most complete analysis attempted to date with the model for cladding shape at failure. MRBT test $SR-37^2$ was selected from a number of well documented tests. The information reported includes temperature versus time data from three groups of four thermocouples placed 90 degrees apart at distances of 18.7, 23.7, and 69.7 cm above the bottom of an internal heater. These data were used to input cladding temperatures for an analysis with the model. In addition,

a. The main disagreement is that the models predict no limit to the effect of heating rate at 28°C/s. Since few data are available with internal heat sources and heating rates greater than 28°C/s, it is suggested that removal of the 28°C/s limit based on the model results would improve the correlation of Equation (33).

Figure 15. MRBT correlation for 0 K/s compared with 0 K/s data with increasing internal pressure from Busby and Marsh.

Figure 16. Model calculations versus measured elongation for MRBT Test SR-37.

heater temperature variations obtained during a preliminary infrared scan of one quadrant of the heater surface were reported. The top graph in Figure 16 is a reproduction of the ratio of local-to-average temperature obtained from this scan. The lower graph of the figure shows measured total circumferential elongation and the calculated elongation for the lower 40 cm of the 100 cm specimen.

The reasonable agreement shown between the model calculation and experiment results for the full 40 cm was obtained only after Equation (A-18) was added to the MATPRO equation of state for Zircaloy cladding plastic deformation. Comparison of the shape of the upper and lower curves shows that local maximums and minimums of the heater temperature profile are reproduced by both the measured and calculated elongations. Where differences exist, they can be explained by the difference between the cladding temperatures measured by the thermocouples and the heater temperature profile measured in the infrared scan. An outline of the method used to interpolate the thermocouple measurements is required in order to assess these differences.

Since the model uses sixteen circumferential and sixteen axial nodes, some means of interpolating the data of the twelve thermocouples was required. Temperatures of circumferential nodes not at the azimuthal angle of the thermocouples were obtained by averaging the temperatures at the azimuthal angle of the thermocouples for each axial location. Thus, even at the elevations of the thermocouples, a hot spot falling between the thermocouples would not be entered into the table of temperatures required for this analysis. A missing hot spot is the most likely explanation for the over-prediction of elongation at the location of the 18.7 cm elevation.

Temperatures at axial nodes without thermocouples were obtained with a combination of interpolation of thermocouple data and heat balance estimates. The effect of steam heating is estimated for this unheated shroud test by estimating the heat transferred from the cladding to the steam with the equation

$$h_{s}[T_{c}(Z) - T_{s}(Z)] 2\pi r = m_{steam} C_{p_{steam}} \frac{dT_{s}(Z)}{dZ}$$
(34)

Since the cladding is far more massive than the steam, it is assumed that the steam temperature varies much more than the cladding temperature. Equation (34) with $T_c(Z)$ assumed constant leads to the following expression for T_{steam} (Z) in terms of the inlet steam temperature, T_{steam} (0), and the average cladding temperature, T_c .

$$\frac{T_{c} - T_{s}(Z)}{T_{c} - T_{s}(O)} = \exp\left(\frac{-2\pi r h_{s} Z}{\frac{c}{m_{steam}} c_{p}}\right)$$
(35)

Equating the heat flux from the heater at one elevation to the heat lost to steam plus the energy used to raise the cladding temperature at that elevation shows

$$h_{g}[T_{f}(Z) - T_{c}(Z)] = h_{s}[T_{c}(Z) - T_{s}(Z)] + C_{p}h\rho \frac{dT_{c}(Z)}{dt}$$
 (36)

h g	=	gas gap heat transfer coefficient
T _f (Z)	=	fuel or heater surface temperature at elevation Z
С _р	=	specific heat per unit mass of cladding
h	=	cladding wall thickness
ρ	=	cladding density
t	=	time.

Substitution of Equation (35) into Equation (36) leads to the approximate expression

$$T_{c}(Z) = T_{f}(Z) - \frac{h_{s}}{h_{g}} [T_{c} - T_{s}(0)] \exp \left(\frac{-2\pi r h_{s} Z}{\frac{1}{m_{steam}} C_{p}}\right) + \frac{C_{p}h_{s}}{h_{g}} \frac{dT_{c}}{dt}.$$
 (37)

The first term of Equation (37) shows that the change in cladding temperature with axial position is proportional to the change in heater temperature while the second term represents the effect of steam heating and the third is not a function of Z. The infrared heater scan provides the data necessary for an approximate evaluation of the effect of heater temperature variations. The data necessary to use the second term to evalutate the effect of steam heating are given by Champman. The expression used to estimate cladding temperatures at position Z from a thermocouple measurement at z_0 is

$$T_{c}(Z) = T_{c}(Z_{0}) \left[1 + \frac{T_{h}(Z)}{T_{h}} - \frac{T_{h}(Z_{0})}{T_{h}} \right]$$
$$- \frac{h_{s}}{h_{g}} \left[T_{c}(Z_{0}) - T_{s}(Z_{0}) \right] \left[exp \left(\frac{-2\pi rh_{s} Z}{\frac{rh_{s} Z}{m \text{ steam}^{c} p \text{ steam}}} \right) - exp \left(\frac{-2\pi rh_{s} Z_{0}}{\frac{rh_{s} Z_{0}}{m \text{ steam}^{c} p \text{ steam}}} \right) \right] (38)$$

 $T_h = average heater temperature.$

If there are thermocouples both upstream and downstream from a particular Z, a weighted average of the temperatures calculated from the two thermocouples is used. The weighting factor for each thermocouple is proportional to the distance to the other thermocouple

$$f_{d} = \frac{Z - Z_{u}}{Z_{d} - Z_{u}}$$
$$f_{u} = \frac{Z_{d} - Z_{u}}{Z_{d} - Z_{u}}$$

where

f_d = weighting factor for temperature from downstream
thermocouple

 $f_u =$ weighting factor for temperature from upstream thermocouple

Z₁₁ = position of upstream thermocouple

Z_d = position of downstream thermocouple.

The principal reason for differences between the shape of the heater temperature profile and the circumferential elongation calculated using the model is the fact that thermocouple measurements did not exactly reproduce

the heater temperature profile. The thermocouple at 23.7 cm measured significantly lower temperatures than those at 18.7 cm during test SR-37, in spite of the fact that the infrared scan shows nearly equal peaks at these two points. An obvious explanation for this difference is the fact that the infrared scan sampled only one quadrant of the heater's circumference. The temperature variation on the other quadrants could have been quite different. In spite of this possible difference, the fact that the general features of the shape of the infrared trace and the measured elongation are the same leaves little doubt that the heater temperature profile is an important parameter for this cold-shroud test.

CONCLUSIONS

The principal conclusion from this study is that local or true stress can be used to provide a mechanistic approach to calculating Zircaloy cladding shape at failure. The large scatter inherent in engineering stress or engineering strain expressions has been explained and the need for numerous limitations and special correlations for such effects as neating rate, circumferential termperature gradients, etc., has been eliminated. The correlation for true stress at failure coupled with a mechanical model, BALON2, which calculates local stress reproduces special correlations which have been derived for burst temperature versus burst pressure (engineering stress), total circumferential elongation versus circumferential temperature variation at failure and total circumferential elongation versus heating rate. In addition, other correlations such as total circumferential elongation versus rate of change of pressure differential across the cladding have been demonstrated with model calculations.

There is consistent agreement with experimental data where such data are available. The model has also provided a reasonable means of extrapolating limited data. For example, the model suggests that the arbitrary use of 28°C/s heating rate data to describe faster heating rates is incorrect. The trends observed from 0°C/s to 28°C/s should be continued to at least 100°C/s.

REFERENCES

- 1. R. H. Chapman, Multirod Burst Test Program Quarterly Progress Report for April-June 1977, ORNL/NUREG/TM-135, December 1977.
- 2. R. H. Chapman, J. L. Crowley, A. W. Longest and E. G. Sewell, Effect of Creep Time and Heating Rate on Deformation of Zircaloy-4 Tubes Tested in Steam with Internal Heaters, ORNL/NUREG/TM-245 and NUREG/CR-0345, October 1978.
- 3. R. H. Chapman, Multirod Burst Test Program Quarterly Progress Report for April-June 1976, ORNL/NUREG/TM-74, January 1977.
- R. H. Chapman, <u>Multirod Burst Test Program Progress Report for</u> July--December 1977, ORNL/NUREG/TM-200, June 1978.
- 5. R. H. Chapman, <u>Multirod Burst Test Program Progress Report for</u> January--March 1978, ORNL/NUREG/TM-217 and NUREG/CR-0225, August 1978.
- 6. R. H. Chapman, <u>Multirod Burst Test Program Quarterly Progress Report</u> for January--March 1976, <u>ORNL/NUREG/TM-36</u>, September 1976.
- 7. R. H. Chapman, <u>Multirod Burst Test Program Quarterly Progress Report</u> for October--December 1976, ORNL/NUREG/TM-95, April 1977.
- 8. R. H. Chapman, <u>Multirod Burst Test Program Quarterly Progress Report</u> for January--March 1977, ORNL/NUREG/TM-108, May 1977.
- 9. D. O. Hobson and P. L. Rittenhouse, <u>Deformation and Rupture Behavior</u> of Light-Water Reactor Fuel Cladding, ORNL-4727, October 1971.
- 10. H. M. Chung and T. F. Kassner, <u>Deformation Characteristics of Zicaloy</u> <u>Cladding in Vacuum and Steam Under Transient-heating Conditions:</u> <u>Summary Report, ANL-77-31 and NUREG/CR-0344</u>, July 1978.
- 11. A. A. Bauer, L. M. Lowry and J. S. Perrin, <u>Evaluating Strength and</u> <u>Ductility of Irradiated Zircaloy: Quarterly Progress Report for</u> January through March 1976, BMI-NUREG-1948, March 1976.
- 12. A. A. Bauer, W. J. Gallagher, L. M. Lowry and A. J. Markworth, <u>Evaluating Strength and Ductility of Irradiated Zircaloy.</u> Quarterly <u>Progress Report July through September 1977</u>, BMI-NUREG-1985, October 1977.
- 13. A. A. Bauer, W. J. Gallagher, L. M. Lowry and A. J. Markworth, Evaluating Strength and Ductility of Irradiated Zircaloy. Quarterly Progress Report October through December 1977, BMI-1992 and NUREG/CR-0026, January 1978.

- 14. D. W. Croucher, Behavior of Defective PWR Fuel Rods During Power Ramp and Film Boiling Operation, TREE-1267 and NUREG/CR-0283, February 1979.
- 15. T. F. Cook, S. A. Ploger and R. R. Hobbins, <u>Postirradiation</u> Examination Results for the Irradiatin Effects Test IE-5, TREE-NUREG-1201, March 1978.
- 16. E. H. Karb, "Results of the FR-2 Nuclear Tests on the Behavior of Zircaloy Clad fuel Rods," Paper Presented at the 6th NRC Water Reactor Safety Research Information Meeting, Gaithersburg, MD, November 7, 1978.
- 17. K. Wiehr, H. Schmidt, Out-of-Pile Versuche zum Aufblahvorgang von Zirkaloy-Hullen Ergenbnisse aus Vorversuchen mit verkurzten Brennstabsimulatoren, KfK 2345, October 1977.
- 18. L. J. Siefken, M. P. Bohn, S. O. Peck, J. A. Dearien, <u>FRAP-T5: A</u> <u>Computer Code for the Transient Analysis of Oxide Fuel Rods</u>, TREE-1280 <u>NUREG-CR-0840</u>, June 1979.
- 19. D. W. Croucher, T. R. Yackle, C. M. Allison and S. A. Ploger, <u>Irradiation Effects Test Series IE 5 Test Results Report</u>, <u>TREE-NUREG-1130</u>, January 1978.
- 20. R. H. Chapman, Multirod Burst Test Program Quarterly Progress Report for October--December 1975, ORNL/NUREG/IM-TO, May 1976.
- 21. D. L. Hagrman, G. A. Reymann and R. E. Mason, MATPRO-VERSION 11 Revision 1. A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior, NUREG/CR-0497 TREE-1280, Rev. 1, February 1980.
- 22. S. P. Timoshenko and J. N. Goodier, <u>Theory of Elasticity</u>, 3rd edition, New York: McGraw-Hill Book Company, 1970, p. 70.
- 23. J. M. Kramer and L. W. Deitrich, <u>Cladding Failure by Local Plastic</u> Instability, ANL-77-95, December 1977.
- 24. C. C. Busby and K. B. Marsh, <u>High Temperature Deformation and Burst</u> <u>Characteristics of Recrystallized Zircaloy-4 Tubing</u>, WAPD-TM-900, January 1970.
- 25. K. Wiehr et al., Jahreskolloguim 1977 des Projekts Nukleare Sicherheit.
- 26. D. A. Powers and R. O. Meyer, <u>Cladding Swelling and Rupture Models for</u> LOCA Analysis, NUREG-0630, April 1980.
APPENDIX A

EQUATION OF STATE FOR ZIRCALOY CLADDING PLASTIC DEFORMATION

The equation of state for Zircaloy cladding plastic deformation is taken from the MATPRO handbook of materials properties (Reference 21 of the main text). All strain or stress components are assumed to be true strain^a or true stress.^b The basic equation used to relate stress and plastic strain is

$$\sigma = K \varepsilon^{n} \left[\frac{\cdot}{10^{-3}} \right]^{m}$$
 (A-1)

where

σ = true effective stress (Pa)
 ε = true effective plastic strain (unitless)
 ε = rate of change of true effective plastic strain (s⁻¹)
 K,n,m = parameters which describe the metallurgical state of the cladding. These parameters will be discussed in detail below.

a. True strain equals the change in length divided by the length at the instant of change integrated from the original to the final length.

b. True stress equals the force per unit cross sectional area determined at the instant of measurement of the force.

Equation (16) of the main text, the integrated form of the equation of state, is obtained by integrating Equation (A-1) over a time interval Δt , assuming that σ , K, n, and m are constant over the interval. The equation is repeated here as Equation (A-2) and is used in the CSTRNI model of MATPRO:

$$\epsilon_{f} = \left[\begin{pmatrix} \frac{n}{m} + 1 \end{pmatrix} 10^{-3} \frac{\sigma}{\kappa} \frac{1}{m} \frac{n}{m+1} \right]^{\frac{m}{n+m}}$$
(A-2)

where

- ε_f = true effective strain at the end of a time interval (unitless)
- ε_i = true effective strain at the start of a time interval (unitless)
- Δt = duration of the time interval (s).

Effective stress for use with the equation of state is obtained from stress components and Equation (25) of the main text

$$\sigma = \left[A1S (\sigma_1 - \sigma_2)^2 + A2S (\sigma_2 - \sigma_3)^2 + A3S (\sigma_3 - \sigma_1) \right]^2$$
(A-3)

where

$$\sigma_1, \sigma_2, \sigma_3 = \text{principal axis stress components (Pa)}$$

AlS,A2S,A3S = coefficients of anisotropy provided by the CANISO subcode of the MATPRO package.

Once effective stress is known and Equation (A-2) has been used to find the end-of-step effective strain the Prandtl-Reuss flow rule, Equations (26) through (28) of the main text, are used to find the strain components. The Prandtl-Reuss equations are

$$d\varepsilon_{1} = \frac{d\varepsilon}{\sigma} [\sigma_{1} (A1E + A3E) - \sigma_{2}A1E - \sigma_{3} A3E]$$
 (A-4)

$$d\varepsilon_{2} = \frac{d\varepsilon}{\sigma} \left[-\sigma_{1} A IE + \sigma_{2} (A2E + AIE) - \sigma_{3} A2E \right]$$
(A-5)

$$d\varepsilon_{3} = \frac{d\varepsilon}{\sigma} \left[-\sigma_{1} A3E - \sigma_{2} A2E + \sigma_{3} (A3E + A2E) \right]$$
(A-6)

where

 $d\epsilon = \epsilon_{f} - \epsilon_{i}$

A1E, A2E, A3E =	coefficients of	anisotropy	provided	by the	CANISO
	subcode of the	MATPRO pack	age.		

As mentioned in conjunction with Equations (A-3) through (A-6), coefficients of anisotropy are provided by the CANISO model. The information required by this model is the temperature, the three prinicpal components of plastic strain during a time interval, three constants related to the cladding basal pole distribution at the start of the time interval, and three constants related to the deformation history of the cladding prior to the time interval. For each time step, the CANISO model updates the six constants required and provides the six coefficients of anisotropy required by Equations (A-3) through (A-6). Initial (no plastic deformation) values of the constants related to the basal pole distribution and deformation history constants will be discussed in conjunction with the following summary.

A-3

For undeformed cladding with σ_1 , σ_2 , and σ_3 of Equations (A-3) through (A-6) taken to be the axial, circumferential, and radial components of stress, the expressions used to find the stress anisotropy constants from the basal pole distribution are

$$A1S = (1.5 f_{-} - 0.5) g(T) + 0.5$$
 (A-7)

$$A2S = (1.5 f_{7} - 0.5) g(T) + 0.5$$
 (A-8)

$$A3S = (1.5 f_{2} - 0.5) g(T) + 0.5$$
 (A-9)

where

g(T) = a function which is 1.0 for temperatures below 1090 K, 0 for temperatures above 1255 K and found by linear interpolation for temperatures between 1090 and 1255 K

$$f_r, f_z, f_\theta$$
 = average of the squared cosine between the c axis
of grains in the cladding and the radial, axial and
tangential reference directions, respectively, weighted
by the volume fraction of grains at each orientation.
These averages can be obtained from a pole figure and
the CTXTUR model of the MATRPRO package or the typical
values of f_r = 0.66, f_z = 0.06 and f_θ = 0.28
can be used.

The change of the factors f_r , f_{θ} , and f_z of Equations (A-7) through (A-9) due to deformation is modeled with the following correlations:

$$df_r = d\epsilon_3 (-1.505 + T \ 0.00895)$$
 (A-10)

$$df_{z} = d\epsilon_{1} (-1.505 + T \ 0.00895)$$
(A-11)

$$df_{\theta} = d_{\varepsilon_2} (-1.505 + T \ 0.00895)$$
 (A-12)

where

$$df_r, df_z, df_a = change in f_r, f_z, and f_{\theta} due to$$

deformation

Т

644 K for temperature less than 644 K, the temperature when it is between 644 K and 1090 K and 1090 K when the temperature is above 1090 K

and the numbering convention of z = 1, $\theta = 2$ and r = 3 has been assumed for strain components.

The strain anisotropy coefficients AlE, A2E, and A3E are given by Equations (A-7) through (A-12) with AlS, A2S, and A3S replaced by AlE, A2E, and A3E when the cladding temperature is below 650 K. However, limited data at temperatures above 800 K have suggested initial strain anisotropy coefficients of 0.5 (the isotropic values). The description of hign temperature strain isotropy thus requires a separate set of values for f, set initially at the isotropic values and changed during each time step by an amount given by Equations (A-10) through (A-12). The expressions for AlE, A2E, and A3E which are used to model this rather complex switching from texture dependent to deformation dependent strain anisotropy are

A1E =
$$\frac{A1S + [(1.5 f'_{r} - 0.5)g(T) + 0.5] \exp\left(\frac{T - 725}{18}\right)}{\exp\left(\frac{T - 725}{18}\right) + 1}$$
(A-13)

$$A2E = \frac{A2S + [(1.5 f'_{z} - 0.5)g(T) + 0.5] \exp\left(\frac{T - 725}{18}\right)}{\exp\left(\frac{T - 725}{18}\right) + 1}$$

$$A3E = \frac{A3S + [(1.5 f'_{\theta} - 0.5)g(T) + 0.5] \exp\left(\frac{T - 725}{18}\right)}{\exp\left(\frac{T - 725}{18}\right) + 1}$$
(A-15)

where

$$f'_{r}, f'_{z}, f'_{\theta}$$
 = deformation dependent parameters set equal to 1/3 at zero deformation and changed like the parameters for $f_{r}, f_{z}, and f_{\theta}$ in Equations (A-10) through (A-12).

Effects of cladding temperature, cold work, irradiation, in-reactor annealing and oxidation on mechanical properties are expressed as changes in the strength coefficient, K; the strain hardening exponent, n; and the strain rate sensitivity exponent, m, of Equations (A-1) and (A-2). For fully annealed Zircaloy cladding the temperature and sometimes strain rate or strain dependent values of m, n, and K are as shown below.

1. Values of the Strain Rate Sensitivity Exponent, m^a

For temperature, T, less than 730 K,

m = 0.02.

(A-16a)

a. Eight to ten significant figures are used in these expressions to minimize discontinuities, not to imply accuracy.

For temperature between 730 and 900 K,

$$m = 2.063172161 \times 10^{1} + T [-7.704552983 \times 10^{-2} + T (9.504843067 \times 10^{-5} + T (-3.860960716 \times 10^{-8}))].$$
(A-16b)

For temperature between 900 and 1090 K,

$$m = -6.47 \times 10^{-2} + T 2.203 \times 10^{-4}$$
. (A-16c)

For temperature between 1090 K and 1172.5 K,

$$m = -6.47 \times 10^{-2} + T 2.203 \times 10^{-4}$$

$$\begin{bmatrix} 0 & \text{for } \epsilon \ge 6.34 \times 10^{-3} / \text{s} \\ \text{or} \\ + & 6.78 \times 10^{-2} \left[\frac{\text{T} - 1090}{\text{82.5}} \right] \ln \left[\frac{6.34 \times 10^{-3}}{\epsilon} \right] \\ \text{for } \epsilon < 6.34 \times 10^{-3} / \text{s} \\ & (\text{A-16d}) \end{bmatrix}$$

For temperature between 1172.5 K and 1255 K

$$m = -6.47 \times 10^{-2} + T 2.203 \times 10^{-4}$$

$$\begin{cases} 0 \text{ for } \epsilon \ge 6.34 \times 10^{-3}/\text{s} \\ \text{or} \\ + \\ 6.78 \times 10^{-2} \left[\frac{1255 - T}{82.5} \right] \ln \left[\frac{6.34 \times 10^{-3}}{\epsilon} \right] \\ \text{for } \epsilon < 6.34 \times 10^{-3}/\text{s} \end{cases}$$
(A-16e)

For temperature greater than or equal to 1255 K,

$$m = -6.47 \times 10^{-2} + T 2.203 \times 10^{-4}$$
. (A-16f)

2. Values of the Strain Hardening Exponent, n The strain hardening exponent for strains larger than n/(1 + m), the ultimate strain, is given by the following equations,

For temperature, T, less than 1099.0722,

 $n = -9.490 \times 10^{-2} + T (1.165 \times 10^{-3})$

+ T (-1.992 x
$$10^{-6}$$
 + T 9.588 x 10^{-10})). (A-17a).

For temperature between 1099.0722 and 1600 K,

$$n = -0.22655119 + 2.5 \times 10^{-4} T.$$
 (A-17b)

For temperatures above 1600 K,

$$n = 0.17344880$$
 (A-17c)

When the strain is less than n/(1 + m) the strain hardening exponent is modified^a to a larger value than the one given by Equations (A-17a) through (A-17c). The expression used to modify n for strains less than n/(1 + m) is

n' = the smaller of
$$\begin{bmatrix} ANL & or \\ n^2/[(1 + m) \epsilon] \end{bmatrix}$$
 (A-18)

where

		0.17 for temperatures <730 K
ANL	=	0.056 • temperature -11.218 for temperatures in the range 730-780 K
		0.95 for temperatures >780 K
n	=	the number given by Equations (A-17a) to (A-17c)
n'	2	the revised number to be used with Equation (A-1) or $(A-2)$ in place of p

a. This modification is not found in the MATPRO-11 Rev. 1 package of February 1980. The modification is proposed for future MATPRO revisions as a result of studies with the ballooning code.

Values of the Strength Coefficient, K 3.

For temperature, T, less than 750 K,

$$\kappa = 1.17628 \times 10^9 + T [4.54859 \times 10^5 + T (-3.28185 \times 10^3 + T 1.72752)].$$
(A-19a)

(A-19a)

For temperature between 750 and 1090 K,

$$K = 2.522488 \times 10^{6} \exp\left(\frac{2.8500027 \times 10^{6}}{T^{2}}\right)$$
(A-19b)

For temperature between 1090 K and 1255 K, $K = 1.841376039 \times 10^8 - T \ 1.4345448 \times 10^5.$ (A-19c)

For temperature between 1255 K and 2100 K,

$$K = 4.330 \times 10^{7} + T [-6.685 \times 10^{4} + T (3.7579 \times 10^{1} - T 7.33 \times 10^{-3})].$$
(A-19d)

The changes in form of Equations (A-16a) through (A-19d) in various temperature ranges are caused by changes in the physical mechanism of the plastic deformation. At 700 to 900 K, the deformation becomes significantly strain rate dependent, the strength of the material begins to decrease rapidly with temperature and strain hardening becomes relatively unimportant. This change is generally attributed to thermal creep at high temperature, but the specific deformation system change has not been identified. The 1090 to 1255 K region is the alpha plus beta phase region for Zircaloy and the region above 1255 K is the beta phase region for this material.

The change in the strain hardening exponent due to irradiation and cold working of cladding is described by multiplying the value of the n given in Equations (A-17a) through (17c) by

$$R = [0.847 \exp (-39.2 \text{ C}) + 0.153 + \text{C} (-9.16 \times 10^{-2} + 0.229 \text{ C})]$$

$$\exp\left[\frac{-(\phi^{1/3})}{3.73 \times 10^7 + 2 \times 10^8 \text{ c}}\right]$$
(A-20)

where

- R = strain hardening exponent for irradiated and cold worked material divided by the expression in Equations (A-17a) through (A-17c)
- C = effective cold-work for strain hardening exponent (unitless ratio of areas). Changes in the effective cold work as a function of time and temperature are modeled with the CANEAL model of MATPRO

The change in the strength coefficient due to irradiation and cold working of the cladding is modeled with the expression

 $DK = 0.546 C K + 5.54 \times 10^{-18} \phi$

where

DK = strength coefficient for irradiated and cold worked Zircaloy minus the expression in Equations (A-19a) through (A-19d). The strain rate sensitivity exponent does not change as a function of irradiation or cold work.

Additional expressions for the change in m, n, and K due to oxidation of the Zircaloy are available in MATPRO, but they are not recommended for the current ballooning model because the extension of the model to treat multi-layered cladding (the oxide layers, the oxygen stabilized alpha layers and the beta layer) has not been completed.

APPENDIX B

BALON2 CODE LISTING AND EXAMPLE OUTPUT

Table B-1 is a listing of the BALON2 code which has been discussed throughout this report. Table B-2 is an example of a driver program designed to provide input data to the subroutine. Table B-3 presents example output data.

The data shown are the result of an analysis with a heater heating rate of 50 K/s starting at 600 K. Thirty-one calls to BALLOON with a given time step of 0.3 s were calculated to burst the cladding. The burst occurred during the seventy-fourth substep of the thirty-first call when the total time elapsed was 9.046 s. The last substep was 5 x 10^{-4} s long.

Several matrices of information are provided. In these matrices, the sixteen axial nodes are listed across the page in two groups of eight columns and the sixteen azimuthal nodes are listed in rows. The first matrix shows temperatures at the nodes at failure. Inspection of the matrix shows the hot node at the eighth axial and fourth azimuthal position of the cladding burst at 1073.5 K. An azimuthal temperature variation of 87.7 K is indicated at the eighth axial node. Even at the first axial node, where the heater's circumferential temperature variation was input as zero, there is a 61.3 K azimuthal temperature variation because of the varying gap thickness.

The second matrix shows local tangential stress components during the last time step. The next four matrices show the effective cold work and fast neutron fluences calculated with the MATPRO CANEAL model for cladding annealing. Approximately two thirds of the initial 0.5 cold work for strength remains while the cold work for strain hardening has essentially been annealed to zero. Fast neutron fluences remain at their initial values of zero.

B-1

The next group of output data shows details of calculated cladding shape for each of sixteen nodes 5×10^{-3} meters apart. The average radius in meters, the average wall thickness in meters, the value of a contact indicator and the total circumferential elongation (engineering or average strain) at the axial node is given. The fact that the contact switch is equal to one means the cladding has contacted the heating element. Details of the shape at each axial node are provided by printing midwall radii, wall thickness and axial lengths for each of the sixteen azimuthal nodes (J = 1 through 16) at each axial node. As expected, the minimum midwall radius occurs at the hot azimuthal node, J = 4. TABLE B-1. LISTING OF THE BALON2 CODE

•

	C T	KNICT,C	ISTRS	KFA						JIANA	9 3 F K IN		
· ,		HE BALON	Z° SUB	ROUT	NEC	OMPUI	ES N	ON SY	MMETR	IC CL	ADD IN(S DEFI	JRMATI
, ,	. Č	FAIL		UTPU	FAI	LURE	INDE	X					
		HSTRS	= 0	UTPU	FA		HOOP	STRE	SS IN	THE	NODE	r 3	•
. / * ********	Č K	NTCT	* (UTPU (FUE	CON1	LADD	ING C	UNTAC	TINO	ĒX		·
	ر (TEMP(K,J)	UTPU	E CLA	DDIN(S-TEM	PERAT	URE A	TAXI	AL NO	E K.	
	C C C			CIRCI STEP DETEI	JMFER TSTP MINE	ENTI (DE) DBY	AL NO SREES BALO	DE J F). ON IN	AT MI NODE ITIAL	DPDIN S K A IZING	T OF NO J Rout	TIME ARE LNE	
	č) KNL Køð	} = (K,J/	T EN		TIME	STEP	(UNI	TLESS))	NUL	
	Č.	STRNR (K, J) = (AT N	DE K	IAL (OMPO END	NENT OF T	OF TR IME S	UE PL TEP (ASTIC	STRA ESSI	IN
	-C	HRNA (Køj]	AT NO	DE K	AL LI	FEND	OF T	IME S	TEP (UNITL	5	N
· · ·	Č	STRNC (K, J) = (AT N	TAN DEK	GENT		OMPOK OF T	ENT DINE S	F TRU	E PLA UNITL	STIC ESSI	STRAIN
	Č	· # 0 · 1 · 9 · 0 · 7		ATN	DE K	, J A	END	OF T	IME S	TEP (INCHE	S)	
	CCC	TWALL(K, J) = ((UTPU END (F VAL DF TI T AXT	L TH ME S Al I	(CKNE Fep (Ength	SS AT Inche — NF — N	NODE S) DDE-4	K J T K J	AT		
	Č			END	FTI	MES	EP (INCHE	ŜĴ.	NODE	AT E		· .
	Č			OFT	ME S	TEP	(INCH	ES##3)		an at c i	10	
;,	ç			DUTPU DUTPU	F TIM	E AT E STI	END P SI	OF TI ZE DF	ME-ST	EP (S	RNAL	TIME	STEP (
	č	ILCEL	- (1.170	с А ј	ENU	Ur II	FIC 31				
	C I	HTNC	=]	NPUT	CLAD	DING	SURF	ACT H	EAT T	RANSF	ER CO	EFFIC	IENT
÷	č	TBULK	=	INPUT	BULK	Ċoo	LANT	TEMPE	RATUR	E (DE	GREES	F) _	
 _	- <u>C</u> '	FCLI		IS F	-CLAD IRSI	DING	AVER	AGE-T FGRFF	EMPER S Fl-	A TURE	DINN	-BALO Y	UN
	Č	TFLI	•	WHEN	K FLG FUEL	SUR	FACE	TEMPE	RATUR	EWHE	N BAL	DON I	S
	č	_		WHEN	KFLG	± 0	DEGR						· · · · · ·
	C				RUD	MODI		(BTU AND	KFLG	+1++2 = 0 = 1 /1)))•	USED	
	č	RO		INPUT	INIT	IAL	UNDE	FORME	DÌCL	ADDIN	GOUT	SIDE	
							i sta tan						

•

B-3

,

. .

.

· · · ·

	4			
	HO FTEMP(K,J)	RADIUS (IN) INPUT INITIAL (UNDEFORM INPUT FUEL SURFACE TEMP MODPOINT OF TIME STEP	ED) CLADDING WALL THI ERATURE AT NODE K,J /	CKNESS (IN)
	QL(K+J) Stemp(K+J)	ONLY WHEN MODE = 1 AND INPUT ROD HEAT FLUX AT INPUT SHROUD SURFACE TE MIDPOINT OF TIME STEP T	KFLG = 1 NODE K,J (BTU/(S*(FT* PERATURE AT NODE K, STP (DEGREES F), USE(**2))). AT
	PC PS RMP	USED ONLY WHEN MODE = (INPUT COOLANT PRESSURE INPUT FUEL ROD PRESSURE INPUT UNIFORMLY EXPANDED) AND KFLG = 1 (PSI) (PSI) D CLADDING MIDPLANE	
	CFLUX FA	RADIUS WHEN BALDON IS I USED ONLY WHEN KELG EQU INPUT FAST NEUTRON FLUX INPUT ADDITIONAL AXIAL	FIRST CALLED (IN). JALS 0 (NEUTRONS/((M**2)*S) FORCE APPLIED TO CLAE))DING
· · (KBALN =	BY CONSTRAINTS (POUNDS) INPUT FRAT-T INDEX OF B ONLY WHEN MODE = 1	ALLOONING NODE	
	KFLG •	INPUT LENGTH OF FRAP-TH ONLY WHEN KFLG EQUALS (INPUT INITIALIZATION FL) O CAUSES BALOON	(DDE (INCHES). USED)) Ag FO INITILIZE ITSELF	
C C C	MODE •	INPUT SWITCH WHICH DETER FINDING CLADDING TEMPER O CAUSES CLADDING	LON RMINES METHOD OF RATURES AND ANNEALING G TEMPERATURES TO BE	
		HEAT FLUX ASSUL 1 CAUSES CLADDING CALCULATED USI TEMPERATURE	APTION TEMPERATURES TO BE NG CONSTANT FUEL SURF SUMPTION	ACE
		2 CAUSES CLADDING TO BE TAKEN FRI INITIALIZATION	S TEMPERATURES AND PR DM A TABLE READ IN DU	RESSURES JRING
		CONSTANT DURING CONSTANT DURING STEP. UNLIKE I ANNEALING IS NO	TEMPERATURES TO BE THE ENTIRE FRAP - 1 MODES O TO 2 CLADDING OT CONSIDERED INTERN/	
	NPRINT .	INPUT SWITCH WHICH DETEN INFORMATION PRINTED FR O NO PRINT OUT UN	RMINES THE AMOUNT OF OM WITHIN THE SUBROUT VLESS THE TIME STEP F	INE ROM
		300 SUB-STEPS 1 PRINTS SUB-STEP SUBSTEP	P NUMBER DURATION (S)	
		AVERAGE AXIAL AVERAGE AXIAL VALHE OL	SUB-NODE (M) SUB-NODE (M) SUB-NODE (M) SUB-NODE (M)	ACH
č		CLADDING	3 FAILURE LOCATION	

,

TABLE B-1.	(CONTINUED)
------------	-------------

. .

		CLADDING AT FAIL 2 IN ADDITION TO HEN NOPINT	TANGENTIAL STRESS URE (PA) THE INFORMATION PRIN VALUES OF THE FOLL	
		ARGUMENTS ARE I CTEMP(K, STRESF(K) RAD(K,J)	PRINTED FOR EACH TIM J) IN KELVINS J) IN N/(M**2) IN METERS	IE
- -		TWALL(K) DELZ(K) 3 IN ADDITION TO WHEN NPRINT	J) IN METERS) IN METERS THE INFORMATION PRIN 2 VALUES OF THE FOLL	UTED OWING
		ARGUMENTS ARE I STEP CWNE(K)J	PRINTED FOR EACH TIM	
		4 IN ADDITIUN FU WHEN NPRINT = ARGUMENTS ARE F STEP	VALUES OF THE FOLL PRINTED FOR EACH TIM	OWING
	GMIX(L) = INPU	FNCK(K)J T MOLE FRACTIONS OF N <u>D IN THE GAP (UNITL</u>	IN NEUTRONS/(M++2) THE GAS COMPONENTS ESS)+ USED ONLY FOR	MODE
		■ 1 IS HELIUM ■ 2 IS ARGON ■ 3 IS KRYPTON		
		= 4 IS XENUN = 5 IS HYDR DGEN = 6 IS NITROGEN = 7 IS OXYGEN		
	L L GTMPEINPU	 B IS CARBON MOND) 9 IS CARBON DIDXI 10 IS WATER VAPOR T GAP GAS TEMPERATURE 	(IDE IDE E	
	TIMET = INPU ONL TIM TSTP = INPU	T TIME AT START OF T Y WITH CLADDING TEMPE E TABLE OF MODE = 2 T FRAP TIME STEP SIZE	IME STEP• USED ERATURE AND (S)• E-(S)-	
	V = INPU TIM DELZ(K,J) = INPU STA	T GAS VOLUME OF SWELL E STEP (INCHES**3) T AXIAL LENGTH OF NOU RT OF TIME STEP (INCH	LING NUDE AT START C DE AT Køj At Hest	JF
	TWALL(K,J) = INPU STA ONL RAD(K,J) = INPU	T WALL THICKNESS AT N RT OF TIME STEP (INCH Y WHEN KFLG = 1 T MIDWALL RADIUS OF (NDDE K,J AT HES). USED CLADDING	
	AT USE STRNC(K,J) = INPU AT	NODE K,J AT START OF D ONLY WHEN KFLG = 1 T TANGENTIAL COMPONEN NODE K,J AT START OF	TIME STEP (INCHES). NT OF TRUE PLASTIC S TIME STEP (UNITLESS	TRAIN
	ÛŠE	D ONLY WHEN KELG = 1.		· - ·

B-5

· · · · · · · · · · · · · · · · · · ·	
C C C C C	STRNA(K,J) = INPUT AXIAL COMPONENT OF TRUE PLASTIC STRAIN AT NODE K,J AT START OF TIME STEP (UNITLESS) USED ONLY WHEN KFLG = 1.
ç	STRNR(K, J) - INPUT RADIAL COMPONENT OF TRUE PLASTIC STRAIN AT NODE K, J AT START OF TIME STEP (UNITLESS)
	STRNL(K,J) = INPUT EFFECTIVE TRUE PLASTIC STRAIN AT NODE K,J AT START OF TIME STEP (UNITLESS). USED
Č C C	CTEMP(K,J) = INPUT CLADDING TEMPERATURE AT NODE K,J AT MIDPOINT OF PREVIOUS TIME STEP, USED ONLY IF KFLG = 1.
Č	PREVIOUS TIME STEP. USED ONLY IF KFLG = 1. 0. NO. CONTACT
C	I CONTACT DUE TO BOWING - KFAIL - INPUT FAILURE INDEX. BALDON DUES NOTHING BUT RETURN IF KFAIL IS NOT EQUAL TO O
ن د د	COMMON BLOCK/MATPRC/STORES MATPRO PARAMETERS USED TO DETERMINE CLADDING MATERIAL PROPERTIES
C	COMMON /MATPRC/ AMATPC(1) , # FNCK1(1) , FNCN1(1), CWKF1(1) , CWNF1(1), # CDBAA1(1) , CDBAC1(1), CDBAC1(1),
	<pre># CDBAD1(1), CDBAE1(1), CDBAF1(1), CDBAG1(1), # CDBAH1(1), CDBAI1(1), DDXCFR(1), WDXC(1), # EMETWA(1), DADXFR(1), DTMPCL , CANRIN, KAXMTP</pre>
Č	ARRAYS IN COMMON BLOCK /MATPRC/ ARE INDEXED WITH AXIAL NODE
Č	FNCK1 = EFFECTIVE FAST FLUENCE FOR STRENGTH COEFFICIENT (N/M**2) -FNCN1
	(N/M**2) = EFFECTIVE COLD WORK FOR STRENGTH COEFFICIENT (AO-A)/AO CWNF1 = EFFECTIVE COLD WORK FOR STRAIN HARDENING EXPONENT (AO-A)/A
Č C C	COBAA1 THRU COBAIL DXYGEN CONCENTRATIONS AT BETA-ALPHA+BETA INTERFACES IN SUBROUTINE COBILD CALCULATIONS
	DOXCFR = AVERAGE OXYGEN CONCENTRATION IN BETA (WT. FRACTION) DAOXFR = AVERAGE OXYGEN CONCENTRATION IN ALPHA (WT. FRACTION) WOXC = TOTAL OXYGEN UPTAKE (KG/M##2)
C C	- EMEINA - HEAT GENERATED BY ZR-H2D REACTION (W/M) DTMPCL = MAXIMUM CIRCUMFERENTIAL VARIATION IN CLADDING TEMPERA- TURE (K)
Č	CANRIN = CONTRACTILE STRAIN RATIO DURING UNIAXIAL TENSILE TEST. CIRCUMFERENTIAL STRAIN/RADIAL STRAIN
C	KAXMTP = AXIAL NODE NUMBER Common Block/Bln/ Stores information needed to restart baloon
	COMMON /BLN/ KSUB(1),DZO(1,16),TSTPO(1),CWKF2(1,1,1), # CWNF2(1,1,1),FNCK2(1,1,1),FNCN2(1,1,1),FCP2(1,1,1),

B-6

TABLE B-1. (CONTINUED)

· · · · ·	# FRP2(1.1.1).FAP2(1.1.1).ACD2(1.1.1).AAD2(1.1.1).
~	# ARD2(1,1,1)
č	KSUB(I) - NUMBER OF SUBCODES USED WITHIN THE I TH AXIAL
C.	NODE OF FRAM (UNITEESS) D70(Tak) = INITIAL FRATH OF K TH SUB-NODE OF THE TITH
Č	AXIAL NODE OF FRAP (M)
C	TSTPD(I) = PREVIOUS TIME STEP SIZE (S) CWKE2(I+K+J) = EFFECTIVE COLD WORK FOR STRENGTH COFFEICIENT
č	AT FRAP AXIAL NODE I, BALOON AXIAL SUB-NODE K
C	AND ACIMUTHAL SUB-NUDE J
Č	CWNF2(I,K,J) = EFFECTIVE COLD WORK FOR STRAIN HARDENING EXPONENT
Č.	AT PRAMAATAL NUDE IS DALUUN AATAL SUB-NUDE N AND AZIMUTHAL SUB-NODE J
<u>c</u>	ENCKONT V. IN - EEEECTIVE EAST NEUTOON ELLENCE EDD STDENCTH COEEE
Č	AT ERAP AXIAL NODE I, BALDON AXIAL SUB-NODE K
Ç.	AND AZIMUTHAL SUB-NODE J (NEUTRONS/M##2)
č	FNCN2(I,K,J) = EFEECTIVE FAST NEUTRON FLUENCE FOR STRAIN
Ç	HARDENING EXPONENT AT FRAP AXIAL NODE 19 Batron Axia: Subnode K and Azimuthat Sub-Node 1
ğ	(NEUTRONS / M++2)
. C	FCV2(I)K)J) VOLUME WEIGHTED AVERAGE GUSINE OF THE ANGLE BETWEENSCLADDING BASAL POLES AND THE TANGENTIAL
Č	DIRECTION AT FRAP AXIAL NODE I, BALOON AXIAL
č	FRP2(IoKoJ) = VOLUME WEIGHTED AVERAGE COSINE OF THE ANGLE
Č	BETWEEN GLADDING BASAL POLES AND THE RADIAL
G	SUB-NODE K AND AZIMUTHAL SUB-NODE J
<u>c</u>	FAP2(I,K,J) = VOLUME WEIGHTED AVERAGE COSINE OF THE ANGLE RETUREN CLADDING BASAL POLES AND THE AXIAL
č	DIRECTION AT FRAP AXIAL NODE I, BALOON AXIAL
ç-	
Č	AT FRAP AXIAL NODE I, BALDON AXIAL SUB-NODE K
	AND ALIMUMAL SUB-NUDE J
Ž č	AT FRAP AXIAL NODE I, BALOON AXIAL SUB-NODE K
Č	ARD2(I)K,J) = HIGH TEMPERATURE STRAIN AXISDTROPY COEFFECIENT
<u> </u>	AT FRAP AX TAL NODE IN BALCON AXIAL SUB-NODE K
č	SEE SUBROUTINE LISTING FOR RELATION BETWEEN
<u> </u>	ACD2, AAD2, ARD2, STRAIN COMPONENTS AND EFFECTIVE
č	
	UIMENSIUN HIGSIO91019151M(10910)9QL(10910) DIMENSION DELZ(16916)9TWALL(16916)9RAD(16916)9CTEMP(16916)
	DIMENSION DELOXY(16,16)
	DIMENSION FIERF(IO)IOJJSIERF(IO)IOJ

. .

DIMENSION AC DIMENSION AC DIMENSION AC DIMENSION AC DIMENSION ST DIMENSION RT DIMENSION RT DIMENSION C DIMENSION FN DIMENSION FN DIMENSION DI DIMENSION DI DIMENSION DI DIMENSION DI THE EQUATION THE EQUATION (1) J. M. KR LOCAL PL (2) L. J. SI TRANSIEN NUREG/CR	S(16,16), E(16,16), P(16,16), RNC(16,16), RNC(16,16), RNC(16,16), CK(16,16), CK(16,16), CK(16,16), CK(16,16), SP(16,16),	AAS(1 AAE(1 AAD(1 FRP(1) 5),STR 5),RST 5),RS	6,16), A 6,16), A 6,16), A 6,16), A NR(16,1 RAN(16,1 Z(16,16) A(16), S (16,16) 6,20), T (16), RA SUBROU DEITRI	RS(16,10 RE(16,10 AP(16,10 6),STRN/ 16) TRESF(10 PCWKF(10 MP(20),T DR(16) TINE AR(CH, C1A	5) 5) 5) 5) 5) 5) 5) 16), TSTRES(1 5, 16), CWNF(16, TPIT(20), TPOT(E BASED ON	(16,16) 6,16) 16) 20)	
DIMENSION AC DIMENSION AC DIMENSION AC DIMENSION ST DIMENSION B DIMENSION ST DIMENSION ST DIMENSION ST DIMENSION GM DIMENSION DI DIMENSION DI THE EQUATION RESULTS DISCU (1) J. M. KR LOCAL PL (2) L. J. SI TRANSIEN NUREG/CR	D(16,16), P(16,16), RNC(16,16), RNC(16,16), CYTH(16,16), CK(16,16), CK(16,16), CK(16,16), CK(16), DEA SP(16,16), SUSED IN AMER AND ASTIC INS EFKEN, ET ANALYSI	AAD(1 FRP(1 5),STR 5),RST 6),RST	6,16),A 6,16),F NR(16,1 RAN(16,1 2(16,16) A(16),S (16,16) 6,20),T (16),RA SUBROU DEITRI	RD(16,10 AP(16,10 6),STRN/ 16) TRESF(10 PCWKF(10 MP(20), DR(16) TINE AR(CH. CLA	5) A (16, 16), STR NL 5, 16), TSTRES (1 6, 16), CWNF (16, FP IT (20), TPOT (E BASED ON	(16,16) 6,16) 16) 20)	
DIMENSION ST DIMENSION ST DIMENSION RA DIMENSION RA DIMENSION ST DIMENSION GM DIMENSION GM DIMENSION DI DIMENSION DI THE EQUATION RESULTS DISCI (1) J. M. KR LOCAL PL (2) L. SI TRANSIEN NUREG/CR	RNC (16, 16 RNC (16, 16 FMP (16, 16 YTH (16, 16) RESR(16), CK (16, 16) (16), 0EA SP (16, 16) SP (16) SP	5), STRES 5), DBY 5), DBY 5), DBY 5), FNCN 5), FNCN 7(16, 1 16, 16, 16, 16, 16, 16, 16, 16, 16, 16,	NR(16,1 RAN(16,1 RAN(16,16) X(16,16) A(16),S (16,16) G,20),T (16),RA SUBROU DEITRI ITY, AN	AP (10) 6) 5) TRESF(10) CWKF(10) MP(20) DR(16) TINE CH. C14	A (16, 16), STR NL 5, 16), TSTRES (1 6, 16), CWNF (16, TPIT(20), TPOT(E BASED ON	(16,16) 6,16) 16) 20)	
DIMENSION RT DIMENSION DB DIMENSION ST DIMENSION ST DIMENSION FN DIMENSION DI DIMENSION DI DIMENSION DI THE EQUATION RESULTS DISCI (1) J. M. KR LOCAL PL (2) L. J. SI TRANSIEN NUREG/CR	EMP(16,16) YTH(16,16) RESR(16) CK(16,16) IX(10) (20),TMT H(16),DEA SP(16,16) S USED IN AMER AND ASTIC INS EFKEN, ET T ANALYSI	SJARST SJADBY STRES JACIG STRES JACIG STRES STRE	RAN(16, Z(16,16) A(16),S (16,16) 6,20),T (16),RA SUBROU DEITRI	16) TRESF(10 CWKF(10 MP(20), DR(16) TINE AR(CH. C1A1	5,16),TSTRES(1 5,16),CWNF(16, FPIT(20),TPOT(E BASED ON	6,16) 16) 20)	
DIMENSION RA DIMENSION ST DIMENSION FN DIMENSION GM DIMENSION DE DIMENSION DI THE EQUATION RESULTS DISCI (1) J. M. KR LOCAL PL (2) L. J. SI TRANSIEN NUREG/CR	VE(16) RESR(16), CK(16,16) IX(10) (20), TMT1 H(16), DEA SP(16,16) SP(16,16) SSED IN USSED IN AMER AND ASTIC INS EFKEN, E1 T ANALYSI	STRES) FNCN T(16,1 A(16)) RADC N THIS L. W. TABIL	A(16), S (16, 16) 6, 20), T (16), RA SUBROU DEITRI	TRESF(10 • CWKF(10 MP(20)• DR(16) TINE AR(CH• C14	5,16),TSTRES(1 5,16),CWNF(16, TPIT(20),TPOT(E BASED ON	6,16) 16) 20)	
DIMENSION FN DIMENSION GM DIMENSION DE DIMENSION DE DIMENSION DI THE EQUATION RESULTS DISC (1) J. M. KR LOCAL PL (2) L. J. SI TRANSIEN NUREG/CR	CK(16,16) IX(10) (20),TMTI H(16),DEA SP(16,16) SP(16,16) SSED IN AMER AND ASTIC INS EFKEN, EI T ANALYSI), FNCN F(16,1 A(16)), RADC N THIS L. W. STABIL	(16,16) 6 ,20), T (16),RA <u>SUBROU</u> DEITRI	•CWKF(1) MP(20)• DR(16) TINE AR(CH• CLA)	5,16), CWNF(16, FPIT(20), TPOT(E BASED ON	16) 20)	· ·
DIMENSION TM DIMENSION DEF DIMENSION DI THE EQUATION RESULTS DISC (1) J. M. KR LOCAL PL (2) L. J. SI TRANSIEN NUREG/CR	(20), TMT H(16), DEA SP(16, 16) USSED IN AMER AND ASTIC INS EFKEN, ET T ANALYSI	THIS L. W. TABIL	6,20),T (16),RA SUBROU DEITRI ITY, AN	MP(20)) DR(16) TINE AR(CH: CLA	TPIT(20), TPOT(20)	-
DIMENSION DI THE EQUATION RESULTS DISCI (1) J. M. KR/ LOCAL PL/ (2) L. J. SI TRANSIEN NUREG/CR	SP(16,16) SP(16,16) USSED IN AMER AND ASTIC INS EFKEN, EI T ANALYSI	THIS	(16), RA SUBROU DEITRI ITY, AN	DR(16) TINE AR(CH. CLA	BASED DN		- - -
THE EQUATION RESULTS DISC (1) J. M. KR LOCAL PL (2) L. J. SI TRANSIEN NUREG/CR	S USED IN USSED IN AMER AND ASTIC INS EFKEN, ET T ANALYSI	THIS	-SUBROU DEITRI	TINE ARI	BASED ON		
RESULTS DISC (1) J. M. KR/ LOCAL PL/ (2) L. J. SI TRANSIEN [*] NUREG/CR*	USSED IN AMER AND ASTIC INS EFKEN, ET T ANALYSI	L. W. STABIL	DEITRI ITY. AN	CH. CI AI		D V	
LOCAL PL (2) L. J. SI TRANSIEN NUREG/CR	ASTIC INS EFKEN, EI T ANALYSI	STABIL	ITY. AN		DDING FAILURE	D.I ·	
TRANSIEN NUREG/CR	T ANALYSI	· · · · · · · · · · · · · · · · · · ·	FRAP-	L-77-95	(DECEMBER 197	7) 8 THE	
HUNLOFCK.	-0840 1		DXIDE F	ŮĔĹĨŖŎĎS	S, TREE-1281 A	ND .	•
THE COLLONIAN			~~~	ዋ እነ - ምግ በምን			
CANISO OF JU	6-3006000 LY 1979		- CALLEU	- <u>+ N</u> -+ M+-	S SUBKUUTINE		
CANEAL OF UC	TUBER 197 NE 1978	78	. *		· · ·		1°
CMLINT OF FE	BRUARY 19 CEMBER 19	280					
CKMN OF OCTO	BER 1978		•				ī. N
POLATE OF TO	BE PUBLI	ISHED-	······································				
	IUDER 171		ı				•
CODED BY J.	A- DEARIE	E.N				• • • • • • • • • • • • • • • • • • • •	
MUDIFIED BY	D. L. HAG	GRMAN	DECEMBE	K 1980			
AN MODIFIED	FOR SMALL	STRA	INS OPT	ION-IN-(STRNI	·	
					· · ·		
THE FOLLOWING	G ARE DUN	MMY AR	GUMENTS	FOR CML	IMT		
CINRAD = 1.0	E-02						
CAXSTR = 1.01	E+06	•			· · · ·		
UELIMY							
NJ = NUMBER NJ = 16	UF CIRCUN	MFEREN	TIAL NO	DES USEI)		
$\frac{ND = NJ/2}{M1 = ND + 1}$		· · · · · · · · · · · · · · · · · · ·	````		· · · ·		
	NUREGICR THE FOLLOWIN CANISO OF JU CSTRNI OF OF CANEAL OF JU CSTRNI OF FE CELMOD OF DE CKMN OF OCTO CCP OF FEBUA POLATE OF TO GTHCON OF OC CODED BY J. MODIFIED BY AN MODIFIED BY	NUREG/CR-0840 (NUREG/CR-0840 (THE FOLLOWING SUBCODI CANISO OF JULY 1979 CSTRNI OF OCTOBER 197 CANEAL OF JUNE 1978 CMLIMI OF FEBRUARY 1978 CELMOD OF DECEMBER 1078 CELMOD OF DECEMBER 1978 CCP OF FEBUARY 1980 POLATE OF TO BE PUBL GTHCON OF OCTOBER 197 CODED BY J. A. DEARIM MODIFIED BY D. L. HAN AN MODIFIED BY D. L. HAN AN MODIFIED FOR SMALL THE FOLLOWING ARE DUN CINKID = 1.2E=04 CINRAD = 1.0E=02 CAXRAD = 0.0E=02 CAXRAD =	NUREG/CR-0840 (JUNE 1 NUREG/CR-0840 (JUNE 1 THE FOLLOWING SUBCODES ARE CANISO OF JULY 1979 CSTRNI OF OCTOBER 1978 CALEAL OF JUNE 1978 CMLIMT OF FEBRUARY 1980 CELMOD OF DECEMBER 1977 CKMN OF OCTOBER 1978 CCP OF FEBUARY 1980 POLATE OF TO BE PUBLISHED GTHCON OF OCTOBER 1979 CODED BY J. A. DEARIEN MODIFIED BY D. L. HAGRMAN AN MODIFIED FOR SMALL STRA THE FOLLOWING ARE DUMMY AR CINKID = 1.2E=04 CINRAD = 1.0E=02 CAXRAD = 1.0E=02 CAXRAD = 1.0E=03 CAXSTR = 1.0E=06 DELTMP = 50. NJ = NUMBER OF CIRCUMFEREN NJ = 16 ND = NJ/2 M1 = ND + 1	NUREGACR-0840 (JUNE 1979) THE FOLLOWING SUBCODES ARE CALLED CANISO OF JULY 1979 CSTRNI OF OCTOBER 1978 CANEAL OF JUNE 1978 CMLIMT OF FEBRUARY 1980 CELMOD OF DECEMBER 1977 CKMN OF OCTOBER 1978 CCP OF FEBUARY 1980 POLATE OF TO BE PUBLISHED GTHCON OF OCTOBER 1979 CODED BY J. A. DEARIEN MODIFIED BY D. L. HAGRMAN DECEMBE AN MODIFIED FOR SMALL STRAINS OPT THE FOLLOWING ARE DUMMY ARGUMENTS CINKID = 1.2E=04 CINRAD = 1.0E=02 CAXPAD = 1.0E=03 CAXSTR = 1.0E=06 DELTMP = 50 NJ = NUMBER OF CIRCUMFERENTIAL NO NJ = 10 H = ND + 1	NUREGACR-0840 (JUNE 1979) THE FOLLOWING SUBCODES ARE CALLED IN THIS CANISO OF JULY 1979 CSTRNI OF OCTOBER 1978 CANEAL OF JUNE 1978 CALLAL OF JUNE 1978 CALLAL OF JUNE 1978 CALLAL OF JUNE 1978 CALLAL OF OF FEBUARY 1980 CCP OF FEBUARY 1980 POLATE OF TO BE PUBLISHED GTHCON OF OCTOBER 1979 CODED BY J. A. DEARIEN MODIFIED BY D. L. HAGRMAN DECEMBER 1980 AN MODIFIED FOR SMALL STRAINS OPTION IN (THE FOLLOWING ARE DUMMY ARGUMENTS FOR CMI CINKAD = 1.2E=04 CINRAD = 1.0E+03 CAXPAD = 1.0E+03 CAXPAD = 1.0E+06 DELTMP = 50. NJ = NUMBER OF CIRCUMFERENTIAL NODES USEI ND = NJ/2 M1 = ND + 1	TRANSIENT ANALTSIS UNE 1979) THE FOLLOWING SUBCODES ARE CALLED IN THIS SUBROUTINE CANISO OF JULY 1979 CSTRNI OF OCTOBER 1978 CANEAL OF JUNE 1978 CALLAT OF FEBRUARY 1980 CELMOD OF DECEMBER 1977 CKMN OF DCTOBER 1978 CCP OF FEBUARY 1980 POLATE OF IO BE PUBLISHED GTHCON OF OCTOBER 1979 CODED BY J. A. DEARIEN MODIFIED BY D. L. HAGRMAN DECEMBER 1980 AN MODIFIED FOR SMALL STRAINS OPTION IN CSTRNI THE FOLLOWING ARE DUMMY ARGUMENTS FOR CMLIMT CINKID = 1.2E=04 CINRAD = 1.0E+03 CAXSTR = 1.0E+06 DELIMP = 50. NJ = NUMBER OF CIRCUMFERENTIAL NODES USED NJ = NUMBER 19 ND = NJ/2 M1 = ND + 1	NURANSIENT ANALTSIS OF UNIDE FOEL RUDS, TREE-1201 AND NUREG/CR-0840 (JUNE 1979) THE FOLLOWING SUBCODES ARE CALLED IN THIS SUBROUTINE CANISD OF JULY 1979 CSTRNI OF OCTOBER 1978 CANEAL OF JUNE 1978 CANEAL OF JUNE 1978 CANEAL OF JUNE 1978 CELMOD OF DECEMBER 1977 CKMN DF DECEMBER 1978 CCP OF FEBUARY 1980 POLATE OF TO BE PUBLISHED GTHCON OF OCTOBER 1979 CODED BY J. A. DEARIEN MODIFIED BY D. L. HAGRMAN DECEMBER 1980 AN MODIFIED FOR SMALL STRAINS OPTION IN CSTRNI THE FOLLOWING ARE DUMMY ARGUMENTS FOR CMLIMT CINWID = 1.2E-04 CINWID = 1.0E+02 CAXEAD = 1.0E+03 CAXEAT = 1.0E+06 DELTMP = 50- NJ = NUMBER OF CIRCUMFERENTIAL NODES USED NJ = 10 NJ = NUMBER OF CIRCUMFERENTIAL NODES USED NJ = NUMBER OF CIRCUMFERENTIAL NODES USED NJ = NUMBER OF 10 MI = ND + 1

٠

C	DELTH = 6.28/NJ NJ1 = NJ - 1 NJ2 = NJ - 2				
Č	CONVERT INPUT TO HTCM = HTNC # 2 TBLKM = (TBULK +	SI UNITS •044E+04 459•67)/1•8			
· · · ·	RHTR = RF * 2.54 RGUT = RO * 2.54 WO = HO * 2.54	E + 04 E - 02 E - 02 4E - 02			
ар на	PU = PC /1.450 PI = PS /1.450 FAX = FA + 4.44 VM = V + 1.630	-04 -04 8 7E-05			
ç	GTEMP = (GTMPF + CONVERT INPUT REC AND FIND AXIAL	459.67)/1.8 DUIRED ONLY FOR UB-NODE LENGTH	INITIALIZATI S	ON	
· · · · ·	FR = 0.0 TCLO = (TCLI + 4 TFLO = (TFLI + 4	459.67)/1.8 59.67)/1.8			
5	ZBLNN = ZBALN # 2 NK = 18 NK = NK + 2	2.54E-02		~~ TO 5	
	IF(NK .LT. 4) NK KSUB(KBALN) = NK NK1 = NK - 1	3 4			
	DZO(KBALN,1) = (7 DZO(KBALN,2) = D DZO(KBALN,NK1) = DZO(KBALN,NK1) =	ZBLNN - (5.0E-0 ZO(KBALN,1) DZO(KBALN,1) DZO(KBALN,1)	3 * (NK - 4)))/4.	
10	IF(NK • EQ• 4) GO DD 10 K=3,NK2 DZO(KBALN,K) = 5.	TO 15 •0E-03		·	
Ç Ç 20	DELTO = TSTP CONVERT INPUT RE(SET NK EQUAL TO P TE(KELG IT I)	DUIRED ONLY FOR NUMBER OF AXIAL	UPDATES SUB-NODES		•
	NK = KSUB(KBALN) DELTO = TSTPO(KB) DC 30 K=1, NK DD 30 L=1-N1	ALN)			
	DELZ(K,J) = DELZ(K,J) = RAD(K,J) = RAD(K,J) = TWALL(K,J) = TWALL(K,J	(K,J) * 2.54E-02 J) * 2.54E-02 LL(K,J) * 2.54E	2 -02		
č	FNCN(K, J) = FNCN2	(KBALN,K,J)		<u>.</u> .	
			•	<u>Annal III III III III III III III III III I</u>	

ç		CWKF(K,J) = CWKF2(KBALN,K,J)	
č		$FCP(K_{2}J) = CRP2(KBALN_{2}K_{2}J)$	
Č	<u></u>	$\frac{FRP(K,J)}{FRP2(KBALN,K,J)}$	
č		ACD(K+J) = ACD2(KBALN+K+J)	· · · · · · · · · · · · · · · · · · ·
Č		AAD(K,J) = AADZ(KBALN, K, J)	
L		$\frac{AKU(K_{\bullet}J)}{FTEMP(K_{\bullet}J)} = (FTEMP(K_{\bullet}J) + 459.67)/1.8$	
C		QL(K,J) = QL(K,J) + 1.136E+04	
	30	$\frac{51 + 17}{51 + 12} = \frac{51 + 17}{51 + 12} + \frac{47}{50} + \frac{11}{10} = \frac{51}{10} = \frac{51 + 17}{10} + \frac{11}{10} = \frac{51 + 17}{10} = \frac{51 + 17}{10}$	
•	4ŏ	CONTINUE	
L.		DE 50 K=1. NK	
		-DO 50 J=1,NJ	· · · · · · · · · · · · · · · · · · ·
Ľ		ALLOW FUR FUTURE INPUT OF SPACE VARYING PARAMETERS HTCS(K.1) = HTCM	
		TSTM(K,J) = TBLKM	
	50	$\frac{1}{DFLOXY(K \bullet J)} = \frac{1}{DOXCFR(KBALN)}$	
ç			
<u> </u>		COPRES - PI - PO	
		DTIME = 0.0	
с		NSTEP = 0 CLADDING DENSITY FROM WCAP-3269-41 (CONVERTED TO KG	/(***3))
······		CDENS = 6-55E+03	NDING PENDING
L		ZBEND IS THE BENUING RADIUS ASSUMED TO ESTIMATE CCA	DUING BENDING
c		MAX - 600	
С		INITIALIZE ASSUMENG A THETA INVARIENT INITIAL GEOME	TRY
ç		AND TEMPERATURE	
(IF (KFLG - EQ. 1) GO TO 100	
. C		KÁN IŚ Á SWITCH TO ÁVOID LONG TIMES AT PREINSTABIL	ITY STRAINS
С		KAN ¥ U	
, -			
·····			
		KNTĈT = Ŏ Du 60 k≖1,nk	
·······		KNTĈT = 0 D0 60 K≖1, NK D0 60 J=1, NJ CTENCKI - TCLO	
C		KNTĈT = Ŏ DŪ 60 K≖1,NK DŪ 60 J=1,NJ <u>CTEMP(K,J) = TCLO</u> QL(K,J) = QM	
C	-	KNTĈT = O DO 60 K=1,NK DO 60 J=1,NJ CTEMP(K,J) = TCLO QL(K,J) = OM FTEMP(K,J) = TFLO	
C		KNTĈT = Ŏ DD 60 K=1,NK DD 60 J=1,NJ CTEMP(K,J) = TCLO QL(K,J) = QM FTEMP(K,J) = TFLO DELZ(K,J) = DZO(KBALN,K) THE FOLLOWING TEXTURE INITIALIZATIONS ARE TEMPORARY	
с с		KNTCT = O DO 60 K=1,NK DO 60 J=1,NJ CTEMP(K,J) = TCLO QL(K,J) = OM FTEMP(K,J) = TFLO DELZ(K,J) = DZO(KBALN,K) THE FOLLOWING TEXTURE INITIALIZATIONS ARE TEMPORARY AND FOR TYPICAL CLADDING DNLY	
C C C C		KNTĈT = O DD 60 K=1,NK DD 60 J=1,NJ CTEMP(K,J) = TCLO QL(K,J) = OM FTEMP(K,J) = TFLO DELZ(K,J) = DZO(KBALN,K) THE FOLLOWING TEXTURE INITIALIZATIONS ARE TEMPORARY AND FOR TYPICAL CLADDING ONLY THE PARAMETERS SHOULD BE PASSED INTO BALOON WHEN FR MODELS THE FEFECT OF DEFORMATION ON ANTSOTROPY USIN	A P G
C 		KNTĈT = O DO 60 K=1,NK DO 60 J=1,NJ CTEMP(K,J) = TCLO QL(K,J) = OM FTEMP(K,J) = TFLO DELZ(K,J) = DZO(KBALN,K) THE FOLLOWING TEXTURE INITIALIZATIONS ARE TEMPORARY AND FOR TYPICAL CLADDING ONLY THE PARAMETERS SHOULD BE PASSED INTO BALOON WHEN FR MODELS THE EFFECT OF DEFORMATION ON ANISOTROPY USIN THE MATRPO SUBROUTINE CANISO	A P G

٠

ę.

TABLE B-1. (CONTINUED)

......

· · ·	-260	DC 260 DBYZ(K	K=2,NK1	0 * ((R)	D{K+1,J}	- RAD (K.		AL NoK+1 } +
		# DZO(K # DZO(K # DZO(K	BALN,K)) BALN,K−1 BALN,K−1	- (RAD()))/(DZ	(KBALN)	(K-1, J) (+1) + 2.0	V DZOCKBA DZOCKBA	N9K) + LN9K) +
C	-	FIND A FIND A DO 308 T = 0.	TRESS.CO VERAGE T K≖1, NK 0	MPONENTS HICKNESS	• INSIDE	AND DUTS	IDE RADII	
	305	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	J=1,NJ + EXP(ST + TWALL(R NC (K , J) K , J)				
		TWALA RI = R RO = R	= T/NJ AVE(K) - AVE(K) +	TWALA	2.)			
C C C	200	STRESA STRESA IF(FR DD 300	(K) = (P •LT• 1•0 J=1•NJ	I*RI*RI E-02) GC	- P0*R0*1 - P0*R0*1] T0 306	(1 + FAX)	3.14)/(RD*)	(0 - RI*RI)
		# - RA # + RAV # + CD	VE(K) * E(K) * S PRES * D	CDPRES TRESA(K) BYTH(K, J	(TWALL() * DBY) / TWAL	(, J) - TW Z(K, J) / A - (PI +	LA)/(TWAL) (EXP(STRI PD)/2.	* TWALA) NA(K,J)))**2)
Ę.	306 307	DO 307 STRESF # - RAV	J=1,NJ (K,J) = E(K) = C	CDPRES 4 DPRES *	RAVE(K)	TWALA J) - TWAI	A)/(TWALA	* TWALA)
ç	308	# - (PI CONTIN DETERM	+ PO) / 2 UE INE SIZE	OF POSS	IBLE TIM	E STEP SU	BDIVISION	KJJ111++ 21
- CCCC		CALCUL ASSUMP	ATE CLAD	DING TEM	PERATURE	S USING CI	DNSTANT HE	AT FLUX
ČC C		START- USING	by deter New dime	MINING 1 NSIONS A	HE MAXIMU	JM SIZE OF TRESS BUT	THE TIME OLD TEMPER	STEP
č C c		IF OUT TO DEF IF(CDP	SIDE PRE ORMATION RES .LE.	SSURE IS CALCULA O) GD 1	S NOT LESS TIOIN TO 415	S THAN IN:	SIDE PRESSU	JRE SKIP
Č		TIMAX IF(KNT DD 320	- TSTP CT • EQ• K=1,NK	DTIME 1 AND.	TIMAX .G	T. 1.00)	[IMAX = 1.0	20
		CALL C	KMN (CTEM	P(KyJ)yE	ELOXY(K,	J), FNCK(K	J) FNCN(K)	, \$} ,

	CALL CSTRNI(DELT, CTEMP(K, J), DELDXY(K, J), FNCK(K, J), FNCN(K, J),
	$ = \frac{1}{16} \left(\frac{1}{16} + \frac{1}{$
	RSTRAN(K, J) = DEP/DELT
	$\frac{d}{d} = \frac{d}{d} + \frac{d}$
	DEA(J) = DEP + (AAE(K,J) + (STRESA(K) - STRESR(K))
	# + ACE(K,J) * (STRESA(K) - STRESF(K,J)) # /TSTRES(K,J)
	$\frac{\text{DER} = \text{DEP} + (\text{ARE}(K, J) + (\text{STRESR}(K) - \text{STRESF}(K, J))}{\# + \text{AAE}(K, J) + (\text{STRESR}(K) - \text{STRESA}(K))}$
	* ATSTRES(K,J) STRNC(K,J) = STRNC(K,J) + DEH(J)
	$\frac{\text{STRNA}(K,J) = \text{STRNA}(K,J) + \text{DEA}(J)}{\text{STRNA}(K,J) = \text{DEA}(J)}$
~	STRINE $(K_j J) = STRINEL$
- <u> </u>	CALL CANISU FUR EFFECT OF DEFURMATION ON TEXTORE
	# - F KH LK9 J J9 AUU LK9 J J9 AAU LK9 J J9 AKU LK9 J J9 ACS (K9 J J9 AAS (K9 J)9 ARS (K9 J)9 # - ACE (K9 J)9 AAE (K9 J)9 AR E (K9 J)3
	FIND END OF TIME STEP DIMENSIONS
C	TWALL (K.J.) = TWALL (K.J.) + FXP(DER)
	$\begin{array}{rcl} RAD'(K,J) &= RAD(K,J) &= EXP(DEH(J)) \\ 420 & DEL7(K,J) &= DEL7(K,J) &= EXP(DEA(J)) \\ \end{array}$
	T = 0.0
	D = 421 J = 1 N J
	421 T = T + TWALL(K,J)
	KAVE(K) = K#KBAK/NJ TAVE = T/NJ
G	IF (KNTCT • EQ. 1) GO TO 458
	DD 430 J=1, ND M = J + ND
	$\frac{\text{DISP}(K,J) = (\text{DEA}(J) - \text{DEA}(M) - (\text{STRNA}(K,J) - \text{STRNA}(K,M)) + (\text{DEH}(M))/2 + (7 \text{BEND} + 2) / (7 BEN$
C	ADD BENDING INCREMENT TO RADIUS
	M = J + ND
	$= R H I N \Rightarrow R H I R + (T H A L L (K_2 J) / 2)$
	$ F(KAU(K_{J}) \circ GE \circ RMIN) GO TO 440 \\ RAD(K_{J}M) = RAD(K_{J}M) - (RMIN - RAD(K_{J}J)) $
	KNTCT = 1 RAD(K,J) = RMIN
	440 CONTINUE

· ·	DD 450 J=M1, NJ M = J - ND RAD(K-J) = RAD(K-J) + DTSP(K-J)
	RMIN = RHTR + (TWALL(K, J) / 2.) IF(RAD(K, J).GE.RMIN) GO TO 450
	$\frac{RAD(KJH) - RAD(KJH) - (RHIN - RAD(KJJ))}{RAD(KJJ) - RHIN}$
C C	50 CONTINUE SMOOTH PRE-CONTACT RADII TO COMPENSATE FOR FAILURE OF BENDING MODEL TO CONSIDER AZMUTHAL NEIGHBOR INTERACTION:
	$\begin{array}{rcl} RADHL &= & RAD(K,1) \\ RAD(K,1) &= & (RAD(K,NJ) + & RAD(K,1) + & RAD(K,2) &)/3. \\ 0.0 & 451 & 3=2,0 & 11 \\ \hline & & & PAD(K,1) \\ \hline & & & PAD(K,1) \\ \hline & & & PAD(K,1) \\ \hline & & & & PAD(K,1) \\ \hline \end{array}$
	RAD(K,J) = (RADHL + RAD(K,J) + RAD(K,J+1))/3. RADHL = RADH 451 CONTINUE
C	RAD(K,NJ) = (RADHL + RAD(K,NJ) + RADH1)/3.
č	CIRCULAR CROSS SECTION DISPLACEMENT MODEL RSML = 10.0
	DO 453 J=1,NJ IF (RAD(K,J) .LT. RSML) JMIN = J 453 IF (RAD(K,J) .LT. RSML) RSML = RAD(K,J)
4	458 CONTINUE DO 454 J=1,NJ IF(CTEMP(K,J) .GT. 1172.5) FR = 1.0
	+>4 RADR(J) = RAD(K,J) +>6 IF(KNTCT .NE. 1) GO TO 457 JMIN = JLDK RSML = RHTR + (TWALL(K.JMIN) * 0.5)
C C	FIND ANGLE BETWEEN J AND JMAX THEN CALCULATE DISPLACED CIRCLE RADII DD 455 J=1,NJ
c	DISPA = 6.28 + (JMIN - J)/NJ 455 RADC(J) = (RAVE(K) + RAVE(K) - SIN(DISPA) + SIN(DISPA) # + DSPMX+DSPMX) + + 0.5 - CDS(DISPA) + DSPMX
C C	
Ć	AS INSTRUCTED BY FR # FRACTION RADIAL DISPLACEMENT MODEL
· · · ·	60 RAD(K, J) = RADC(J) IF(NPRINT .EQ. 0) GD TD 490 TCE = (RAVE(K) - RBAR)/RBAR
	THE AVE AVE AVE AVE AVE AVE AVE AVE AVE AV

.....

.

	IF(NPRINT +LT+ 2) GO TO 490	YH LE ≈9E10+3}
012	PRINT 9129 (J9RAD(K9J)9TWALL(K9J)9DELZ(K9J)9J=19	NJ) H HALL THICKNESS -
	#E12.6,7H DELZ =,E12.6)	H WALL HILLSUNDJ -
C 490	CONTINUE	
500	ĬF(NŠTĒP•GE•MAX) GO TO 890	
Č	COMPARE TOTAL TIME SINCE CALL TO INPUT TIME STE DTIME = DTIME + DELT TELTSTP - DTIME - GT_0) GD_TO 100	P SIZE AND BRANCH
ç		
	$\frac{1}{200} = 0.0$	· · · · · · · · · · · · · · · · · · ·
510 C	DD 510 J=1,NJ IF(CHSTRS .LT. STRESF(K,J)) CHSTRS = STRESF(K,J)
Č	STORE COMMON BLOCK INFORMATION FOR NEXT CALL	
C C	DD 810 K=19NK DD 810 J=19NJ	
Ç	- CWKF2 (KBALNøKøJ) ☎- CWKF (KøJ) CWNF2 (KBALNøKøJ) ☎- CWNF (KøJ)	
000	FNCK2(KBALN, K, J) = FNCK(K, J) $ FNCN2(KBALN, K, J) = FNCN(K, J)$	
č	$FRP2(KBALN_{y}K_{y}J) = FRP(K_{y}J)$	
CCC	FAP2(KBALN,K,J) = FAP(K,J) $ACD2(KBALN,K,J) = ACD(K,J)$ $AAD2(KBALN,K,J) = AAD(K,J)$	· · · · ·
Č 810	ARD2(KBALN,K,J) = ARD(K,J)	· · ·
CC	CONVERT DUTPUT FROM SI UNITS TO ENGLISH UNITS	
	<u>CHSTRS = CHSTRS + 1.45E-04</u>	
	DD 820 K=1,NK DD 820 J=1,NJ	
	STEMP(K, J) = STEMP(K, J) $*$ 1.8 - 459.67	
C	$QL(K_{y}J) = QL(K_{y}J) / 1.136E+04$ CTEMP(K_{y}J) = CTEMP(K_{y}J) + 1.8 - 459.67	
820	TWALL(K_{J}) = TWALL(K_{J}) / 2.54E-02 DELZ(K_{J}) = DELZ(K_{J}) / 2.54E-02 CONTINUE	
C C		
C	NOTE MAX-OUT IF IT OCCURED	
914	FORMAT(15H MAX STEPS-, 13, 30H- EXCEEDED IN B	ALCON-2 SUBCODE)
1000	STOP. RETURN END	
		1.

TABLE B-2. BALON2 CODE DRIVER PROGRAM

	GMIX(8) = 0. GMIX(9) = 0. GMIX(10) = 0. GTMPE = 620.33		· · · · · · · · · · · · · · · · · · ·		· · ·	
	TIMET = 0.0 TSTP = 0.3 FNCK1(KBALN) = FNCN1(KBALN) =	0.0	· ·	· · · · · · · · · · · · · · · · · · ·	· .· .	
	CWKFI(KBALN) = CWNFI(KBALN) = V = 1.0	0.50 0.04	• .			
Č.	STEPS FOR INTE FTRAT = HEATIN FTRAT = 50. *	R-CALL UPDAT G RATE OF FU 1.8 1.6 Steps set	E ONLY IEL SURFACE	TEMPERATURE	(DEGREES F)
	NJ = 16 CIRMP = 0.010 AXAMP = 0.01 D0 5 K=5.12					·
5 #	DO 5 J=1,NJ DTSURF(K,J) = + AXAMP + SIN DO 10 J=1.NJ	1.0 + (CIRMP (3.14159 * (* (1.0 + 5 K-4)/8)	SIN(6.2832*J/	NJ))/2.0)	
	DTSURF(1,J) = DTSURF(2,J) = DTSURF(3,J) = DTSURF(3,J) =	1.0	· · ·	· .		
	DTSURF(13,J) = DTSURF(14,J) = DTSURF(15,J) =	1.0 1.0 1.0		· .		
C C	DD 15 K=1, NK	1.0			:	
	$\begin{array}{c} D_{1} \\ D_{1} \\ F_{1} \\$	21.33				
15	CONTINUE KNTCT = 0 KFAIL = 0	0276				
	PRINT 901, N CALL BALDN2(HT PC, PS, RMP, CF	NC, TBULK, TCL LUX, FA, KBALN	I, TFLI, Q, RF J, ZBALN, KFL(FOR HOP FTEMP MODE NPRINT	, QL, STEMP, GMIX, GTMP	F.,
ç	NPRINT = 0 BREAK SYMMETRY	KFAIL)	J). FOR M	DDE = 1	TRNEYGTERP	· · ·
Č	SYMMETRY DF CT	EMP(K,J) SHO	ULD BE BROM	(EN IN A SIMI	LAR FASHON	}
				· · · · · · · · · · · · · · · · · · ·		

. .

.

.

B-23

TABLE B-3. EXAMPLE OUTPUT

			-						
							1		
				,		,	1		
	27 TH CAL	L OF BALOON		•					
				· · · · · · · · · · · · · · · · · · ·			·	· · · · · · · · · · · · · · · · · · ·	
	28 TH CAL	L OF BALDON					1		
	29 TH CAL	L DE BALOON						4	
					÷		:	· · · · ·	
-	30 TH CAL	L OF BALDON			,		(
	21 TH CAL						·		
	SL IN CAL	L OF DALUUN							
	T	THE STEP 74	DURATION	.50000E-03 SEC	NET =	.9046E+01 PRESSURE	DIFF .	.14480E+08	
	TEMPERATUR	ES DURING TIME	STEP AXIAL NO	IDES ACROSS CIRCUP	FERENTIAL NOD	ES DOWN THE TABLE	1		
			· · · · · ·	and marked and a summary second second					
•	-10216E+04	.10216E+04	.10216E+04	.10214E+04	10260E+04 10412E+04	•10267E+04	+10269E+04	• 10268E+04	
····	10466E+04	10466E+04	10466E+04	10464E+04	10559E+04		10600E+04	10608E+04	
φ	+10575E+04 +10466E+04	.105/5E+04 .10466E+04	•105/5E+04 •10466E+04	+10575E+04	.10559F+04	+ 10712E+04 + 10577F+04	.10/29E+04	•10/35E+04 •10608F+04	
Ń	•10346E+04	10346E+04	10346E+04	10344E+04	.10412E+04	·10425E+04	10434E+04	-10434E+04	
				-10108F+04		•10129F+04	10269E+09 10127E+04	10123F+04	
	.10037E+04	10037E+04	.10037E+04	.10037E+04	.10022E+04	.10021E+04	10013E+04	. 10008E+04	
	• 99932E+03	• 99932E+03	•99930E+03	•99952E+03	•99475E+03	•99429E+03	•99319E+03	•99250E+03	
				.996645+03			-96622E+U1	98577F+03	
	•99696E+03	99696E+03	.99693E+03	.99731E+03	•99023E+03	•98956E+03	.98822E+03	•98744E+03	
	•99930E+03	•99930E+03	•99928E+03	•99949E+03	•99471E+03	•99425E+03	•99314E+03	• 99245E+03	
	.10109E+04	10109E+04	10109E+04	.10107E+04	•10126E+04	•10128E+04	10126E+04	10122E+04	
	102405+04	102425404	102605106	103665406	102165104	102175.04	103175404	103175404	
			-10200E+04	•10246E+04	• 10210E+04	.10346F+04	- 10346E+04	10346F+04	
	• 10600E+04	·10577E+04	.10560E+04	.Į0534Ē+04	10464E+04	•10465E+04	.10465E+04	•10465E+04	
	•10729E+04	•10712€+04	•10686E+04	• 10555E + 04	•10575E+04	•10575E+04	• 10575E+04	•10575E+04	•
		10425E+04			• 10344E+04		-10346E+04	10346E+04	
	+10269E+04	•10267E+04	•10260E+04	-10246E+04	•10216E+04	• 10217E+04	.10217E+04	•10217E+04	
	• 10127E+04 - 10013E+04	+10129E+04	-10127E+04 -10023E+04	+10117E+04	• 10107E+04	•10108E+04	.10108E+04	• 10108E+04	
					99871E+03				
	•98925E+03	• 98957E+03	•99043E+03	•99027E+03	•99626E+03	+99607E+03	•99608E+03	•99608E+03	
	• 90030E+U3 • 98822F+03	• 48798E+03 • 98955E+03	• 48843F+03 • 00041F+03	•98884E+03 -990256+03	• 44244E+03 • 99625E+03	• 99527E+03 • 99606E+03	• 99528E+03	•99528E+03	
		99424E+03				\$ 99857E+03	99858E+03		
	.10013E+04 .10126E+04	.10020E+04 .10128E+04	.10023E+04 .10126E+04	.10016E+04 .10116E+04	<pre>.10032E+04 .10107E+04</pre>	<pre>.10032E+04 .10107E+04</pre>	+10033E+04 •10108E+04	•10033E+04 •10108E+04	,

47
	TANGENTIAL	STRESS COMPONEN	TS DURING TIME S	STEP	n .	VI.1 - VAVE AND -	
	1867E+09 2111E+09	• 11867E+09 • 12111E+09	•11880E+09 •12119E+09	•12068E+09 •12195E+09	•12697E+09 •13327E+09	•13367E+09 •14213E+0 •14081E+09 •15124E+0	9 • 14444E+09 9 • • 16202E+09
	2607E+09 2417E+09 2111E+09	• 12607E+09 • 12417E+09 • 12111E+09	• 12613E+09 • 12422E+09 • 12119E+09	•12572E+09 •12429E+09 •12195E+09	14878E+09 14772E+09 13326E+09	16239E+09 1904E+0 15421E+09 10542E+0 14081E+09 15123E+0	9 .19261E+09 9 .19261E+09 9 .16201E+09
• 1 • 1 • 1 • 1	16776+09 1673E+09 1673E+09	• 11730E+09 • 11674E+09 • 11674E+09 • 11642E+09	• 110000000 • 117576+09 • 116996+09 • 116746+09	.12079E+09 .12166E+09 .12272E+09	12334E+09 12119E+09 11996E+09	13047E+09 138E+0 12924E+09 13712E+0 12903E+09 13722E+0 12903E+09 13722E+0	9 • 13444E09 9 • 12007E+09 9 • 11037E+09
• 1 • 1	1622E+09 1627E+09 1627E+09 1641E+09	• 11624E+09 • 11628E+09 • 11628E+09 • 11642E+09	•11661E+09 •11661E+09 •11664E+09 •11674E+09	•123950409 •12386E+09 •12355E+09 •12273E+09	11929E+09 11907E+09 11929E+09 11996E+09	12923E+09 12923E+09 12916E+09 13776E+0 13776E+0 13776E+0 13776E+0 13776E+0	9 .1016E+09 9 .10116E+09 9 .10358E+09 9 .1030E+09
. :i	1737E+09	•110737E+09	•11756E+09	•121679E+09	•12332E+09	•13045E+09 •13826E+0	• • • • • • • • • • • • • • • • • • •
• 1 • 1 • 1	4214E+09 5124E+09 6967E+09 9041E+09	• 13367E+09 • 14084E+09 • 15433E+09 • 16252E+09			•11995E+09 •12178E+09 •12457E+09 •12609E+09	•11890E+09 •11883E+0 •12137E+09 •12132E+0 •12449E+09 •12446E+0 •12637E+09 •12634E+0	99 • 11863E+09 99 • 12132E+09 99 • 1246E+09 99 • 12634E+09
• 1 • 1 • 1	6967E+09 5123E+09 4214E+09 3830E+09	• 15433E+09 • 14084E+09 • 13367E+09 • 13043E+09	• 14188E+09 •13351E+09 •12816E+09 •12544E+09		•12457E+09 •12178E+09 •11995E+09 •11936E+09	.12449E+09	19 12446E+09 19 12132E+09 19 11883E+09 11745E+09
	3716E+09 3734E+09 3782E+09 3804F+09		• 12422E+09 • 12380E+09 • 12372E+09 • 12372E+09	.11948E+09 .11866E+09 .11823E+09 .11810E+09	- +11949E+09 +11990E+09 +12027E+09 +12041E+09	• 11680E+09 • 11675E+0 • 11657E+09 • 11641E+0 • 11643E+09 • 11625E+0 • 11639E+09 • 11625E+0	19 11674E+09 19 11640E+09 19 11624E+09 19 11620E+09
	37835+09 37355+09 37165+09 38295+09	- •12904E+09 •12894E+09 •12917E+09 •13041E+09	•12372E+09 •12380E+09 •12421E+09 •12543E+09		120276+09 119906+09 119496+09 119496+09	• 11643E+09 • 11657E+09 • 11658E+09 • 1168E+09 • 11675E+0 • 11648E+09 • 11675E+0	11624E+09 11640E+09 19 11674E+09 11674E+09 11674E+09
	COLD WORK F	OR STRENGTH DUR	ING TIME STEP				
	8894E+00			• 38925E + 00		• 37423E+00 • 37311E+0 • 35634E+00 • 35401E+0	0
• 3	6874E+00 6435E+00 6874E+00	• 36874E+00 • 36435E+00	- 36873E+00 - 36434E+00	• 369 06E + 00 • 364 62E + 00	• 34519E+00 • 33929E+00 • 36519E+00	-34137E+00 -33802E+0 -33505E+00 -33147E+C -34137E+00 33147E+C	0 • 33663E+00 0 • 32992E+00
• 3	7866E+00 8894E+00 9620E+00	• 37866E+00 • 38894E+00 • 39620E+00	• 37865E+00 • 38893E+00 • 39620E+00	• 37902E+00 • 38924E+00 • 39627E+00	• 35925E+00 • 37600E+00 • 39139E+00	- 35434E+00 - 35434E+00 - 37423E+00 - 37311E+0 - 39081E+0	00 • 35307E+00 00 • 37275E+00 00 • 37275E+00
4 .4 .4	0063F+00 0319E+00 0451E+00 0492E+00	- •40063E+00 •40319E+00 •40451E+00 •40491E+00				.40409E+00 .40513E+0 .41375E+00 .41542E+0 .41954E+00 .42L54E+0 .42147E+00 .42L54E+0 .42157E+0	• 40573E+00 • 41628E+00 • 4253E+00 • 42263E+00
	0451E+00 0320E+00 0056E+00 9624E+00	• 40451E+00 • 40320E+00 • 40066E+00 • 39624E+00	••••••••••••••••••••••••••••••••••••••		• 41837E+00 • 41296E+00 • 40394E+00 • 39149E+00	•41956E+00 •42156E+0 •41380E+00 •41547E+0 •40417E+00 •40522E+0 •39092E+00 •39092E+0	00 • 42256E+00 10 • 41633E+00 10 • 40592E+00 00 • 40592E+00
• 3	7311E+00	• 37423E+00	• 37607E+00	• 37886E+00	• 30844E+00 • 37769E:00	•38827E+00 •38827E+0 37748E+00 •37768E+0	00 • 38827E+00
	3802E+00 3147E+00	• 341 37E+00 	• 34533E+00	• 34994E+00	-36750E+00 -36317E+00	• 36740±+09 • 36740E+0 • 36300E+00 • 36301±+0	0 .36740E+00 10 .36301E+00
•	5401E+00 7311E+00	• 356 34E + 00 • 374 23E + 00	• 35940E+00 • 37607E+00	• 36318E+00 • 37886E+00	• 37769E+00 • 38844E+00	• 37748E+00 • 37749E+0 • 38827E+00 • 38827E+0	0 • 37749E+00 0 • 38827E+00
	9081E+00 0513E+00 1542E+00 2153E+00	• 39072E+00 • 40410E+00 • 41376E+00 • 41954F+00				• 39624E+00 • 39624E+(• 40127E+00 • 40126E+(• 40421E+00 • 40420E+(• 40573E+00 • 40420E+(00 • 40126E+00 00 • 40126E+00 00 • 40420E+00 00 • 40420E+00
	2357E+00 2156E+00 1547E+00					•40623E+00 •40621E+0 •40576E+00 •40574E+0 •40423E+00 •40421E+0	00 • 40621 E + 00 00 • 40574E + 00 00 • 40574E + 00 00 • 40421 E + 00
•	U522E+00	• +0417E+00	+40379E+00	•40471E+00	•40112E+00	•40129E+00 •40129E+(• 40129E+00

COLD WORK FOR STRAIN HARDENING EXPONENT DURING TIME STEP

•	53619E-02 43280E-02 35000E-02	•53620E-02 •43280E-02 •35000E-02	•53610E-02 •43270E-02 •34993E-02	•53962E-02 •43616E-02 •35243E-02	•40907E-02 •28413E-02 •20643E-02	.39388E-02 .26621E-02 .18884E-02	• 38461E-02 • 25258E-02 • 17453E-02	• 38160E-02 • 24730E-02 • 16885E-02
•	31801E-02 35001E-02 43282E-02 53623E-02	• 31801E-02 • 35001E-02 • 43282E-02 • 53623E-02	• 31795E-02 • 34993E-02 • 43271E-02 • 53613E-02	• 31989E-02 • 352 + 3E-02 • 436 16E-02	•17983E-02 •20543E-02 •28413E-02	•16260E-02 •16834i-02 •26620E+02	•14925E-02 •17453E-02 •2525FE-02	• 14372E + 02 • 16885E - 02 • 24730E - 02
	62178E-02	•62178E-02	.62177E-02	•62260E-02	•56308E+02	•55618E-02 •72801E-02	• 384 61 E - 02 • 55 7 2 1 E - 02 • 7 4 3 1 5 E - 02	• 38160E-02 • 55929E-02
•	73401E-02 73997E-02	•73400E-02	•73455E-02 •74057E-02	•72145E-02 •72145E-02 •72603E-02	•96076E-02 •99467E-02	•98282E-02 •10195E-01	• 90817E-02 • 10209E-01 • 10609E-01	•92330E-C2 •10403E-01 •10818E-01
• • •	71 525E-02 67996E-02 62230E-02	• 71524E-02 • 67996E-02 • 62230E-02	•73463E=02 •71565E=02 •68016E=02 •62231E=02	• 72154E-02 • 70647E-02 • 67619E-02	•96119E-02 •86606E-02 •72583E-02 •56499E-02	•98329E-02 •89035E-02 •72915E-02 •55737E-02	•10214E-01 •90914E-02 •74440E-02 •55851E-02	• 10408E-01 • 92431E-02 • 75327E-02
•	38461E-02 25258E-02	• 39389E-02 • 26619E-02	•40968E-02 •28503E-02	•43461E-02 •30996E-02	• 53079E-02 • 42403E-02	•52886E-02 •42213E-02	•52890E-02 •42217E-02	• 52890E-02 • 42216E-02
•	14925E-02 17453E-02	• 16883E-02 • 16259E-02 • 18883E-02	•18060E-02 •20711E-02	•23027E-02 •20265E-02 •23027E-02	• 34140E-02 • 30988E-02 • 34140E-02	• 33995E-02 • 30874E-02 • 33996E-02	• 33998E-02 • 30877E-02 • 33999E-02	
	38461E-02 55720E-02	• 39388E-02	• 28503E-02 • 40968E-02 • 56339E-02	• 30996E-02 • 43461E-02 • 58427E-02	•42403E-02 •53079E-02 •62272E-02	•42214E-02 •52889E-02 •62230E-02	•42218E-02 •52893E-02 •62230E-02	• 42218E-02 • 52893E-02
1.20	10115E-02 90817E-02 10209E-01	• 72808E-02 • 87957E-02 • 98293E-02	•72269E-02 •86162E-02 •95606E-02	•73605E-02 •86669E-02 •95496E-02	•68587E-02 •72426E-02 •74443E-02	.68827E-02 .72975E-02 .75225E-02	-68818E-02 -72957E-02 -75199E-02	•68818E-02 •72957E-02
•	10609E-01 10214E-01 90914E-02	•10197E-01 •98341E-02 •88045E-02	•98960E-02 •95649E-02 •86240E-02	.98622E-02 .95535E-02 .96742E-02	•75071E-02 •74454E-02 •72450E-02	.75938E+02 .75234E-02 .72977E-02	.75910E-02 .75208E-02 .72978E-02	75910E-02 75209E-02 72978E-02
•	558506-02	• 729211-02	•72372E-02 •56449E-02	.73700E-02	•68629E-02 •62335E-02	.68866E-02 .62291E-02	+68856E-02 +62290E-02	.62290E-02
	FAST NEUTRON	FLUENCE FOR ST	RENGTH DURING TI	ME STEP				
0.	FAST NEUTRON	FLUENCE FOR ST	RENGTH DURING TI	1E STEP		0.	0 • 0 •	0 .
0. 0. 0. 0.	FAST NEUTRON	FLUENCE FOR STI	RENGTH DURING TI	ME_STEP			0 • · · · · · · · · · · · · · · · · · ·	0 • · · · · · · · · · · · · · · · · · ·
	FAST NEUTRON	FLUENCE FOR STI	RENGTH DURING TI	ME STEP				
		FLUENCE FOR STI	RENGTH DURING TI	ME STEP				
		FLUENCE FOR STI	RENGTH DURING TI	ME STEP				
		FLUENCE FOR STI	RENGTH DURING TIN 0. <td< th=""><th>ME STEP</th><th></th><th></th><th></th><th></th></td<>	ME STEP				
		FLUENCE FOR \$TI	RENGTH DURING TI	ME STEP				
		FLUENCE FOR \$TI	RENGTH DURING TII	ME STEP				
		FLUENCE FOR STI	RENGTH DURING TII 0 </th <th>ME STEP</th> <th></th> <th></th> <th></th> <th></th>	ME STEP				
		FLUENCE FOR \$TI	RENGTH DURING TII 0 </th <th>ME STEP</th> <th></th> <th></th> <th></th> <th></th>	ME STEP				
		FLUENCE FOR STI	RENGTH DURING TII 0	ME STEP D				

FAST NEUTRON	FLUENCE FOR STRAIN HARDENING E	EXPONENT DURING TIME	STEP	. [*	
			0. 0. 0. 0. 0.		
8. 0 . 0		0	0. 0.	0.	0. 0. 0.
Č. Č. O C. O C. O C. O C. O C. O	Ŭ 0 0 0		0. 0. 0.		
					8-27
O. O. O. Maxial Node 1. Ave J. 1 Midwall Radius	0. 0. 0. RADIUS = .549451E-02 AVE WA = .52842E-02 WALL INICKNESS =	0. 0. 0. 1.L THICKNESS62 .6313925-03 DELZ .	0. 0. 9816E-03 CDN •491490E-02	Č. 0. 1 ACT-SWITCH1	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
J = 3 MIDWALL RADIUS J = 3 MIDWALL RADIUS J = 4 MIDWALL RADIUS J = 5 MIDWALL RADIUS J = 6 MIDWALL RADIUS J = 7 MIDWALL RADIUS	• .51307E-02 WALL IHICKNESS • • .50308E-02 WALL IHICKNESS • • .50308E-02 WALL THICKNESS • • .51307E-02 WALL THICKNESS • • .52842E-02 WALL THICKNESS •	•619213E~03 DELZ • •603960E-03 DELZ • •594465E~03 DELZ • •603960E-03 DELZ • •619214E-03 DELZ • •63193E~03 DELZ •	.484800E-02 .476336E-02 .470288E-02 .476337E-02 .484602E-02 .484602E-02	· · · · · · · · · · · · · · · · · · ·	
J • 0 MIDWALL RADIUS J • 0 MIDWALL RADIUS J • 10 MIDWALL RADIUS J • 11 MIDWALL RADIUS J • 12 MIDWALL RADIUS J • 13 MIDWALL PADIUS	 54715E-02 WALL THICKNESS 56654E-02 WALL THICKNESS 58351E-02 WALL THICKNESS 59513E-02 WALL THICKNESS 59928E-02 WALL THICKNESS 59928E-02 WALL THICKNESS 	•637039E-03 DELZ = •641067E-03 DELZ = •642635E-03 DELZ = •64366E-03 DELZ = •643502E-03 DELZ = •643502E-03 DELZ =	.494954E-02 .496457E-02 .497072E-02 .497333E-02 .497408E-02		
J = 14 MIDWALL RADIUS J = 15 MIDWALL RADIUS J = 16 MIDWALL RADIUS AXIAL NODE 2 AVE J = 1 MIDWALL RADIUS	• 50363E-02 WALL THICKNESS • 56669E-02 WALL THICKNESS • 5473IE-02 WALL THICKNESS RADIUS • 54945IE-02 AVE WA • 52842E-02 WALL THICKNESS	•642644E-03 DELZ = •641084E+03 DELZ = •637070E-03 DELZ = •61 THICKNESS = •62 •631391E+03 DELZ =	.497075E-02 .496464E-02 .496464E-02 .494971E-02 .9815E-03 .491490E-02	TACT SWITCH + 1 TCE	• •709E-01
J = 2 MIDWALL RADIUS J = 3 MIDWALL RADIUS J = 4 MIDWALL RADIUS J = 5 MIDWALL RADIUS J = 6 MIDWALL RADIUS J = 6 MIDWALL RADIUS	 51307E-02 WALL THICKNESS 50308E-02 WALL THICKNESS 49962E-02 WALL THICKNESS 50308E-02 WALL THICKNESS 51307E-02 WALL THICKNESS 	•619213E-03 DELZ = •603962E-03 DELZ = •594469E-03 DELZ = •603963E-03 DELZ = •619215E-03 DELZ =	.464801E-02 .476338E-02 .476338E-02 .470291E-02 .471335E-02 .464802E-02		
J = 0 MIDWALL RADIUS J = 0 MIDWALL RADIUS J = 0 MIDWALL RADIUS J = 10 MIDWALL RADIUS J = 11 MIDWALL RADIUS J = 12 MIDWALL PADYIS		• 631393E-03 DELZ = • 637836E-03 DELZ = • 64165E-03 DELZ = • 642634E-03 DELZ = • 643364E-03 DELZ =	.491491E-02 .494954E-02 .496456E-02 .497071E-02 .497333E-02	·····	
J -13 HIDWALL RADIUS J -14 HIDWALL RADIUS J -15 HIDWALL RADIUS J -16 HIDWALL RADIUS	• .59519E-OZ WALL THICKNESS • • .58363E-OZ WALL THICKNESS • • .56669E-OZ WALL THICKNESS • • .54731E-OZ WALL THICKNESS •	•643367E-03 DELZ = •642642E-03 DELZ = •641082E-03 DELZ = •637869E-03 DELZ =	.497334E-02 .497334E-02 .497074E-02 .496463E-02 .496971E-02	· · · · · · · · · · · · ·	n an

A TAL RUDE 3 AVE KAUTUS - 5477001-02 AVE J = 1 MIDWALL RADIUS - 52845E-02 WALL THICKNESS A = 2 MIDLALL PADIUS - 51200E-02 WALL THICKNESS	WALL THICKNESS = .629750E-03 = .631320E-03 DELZ = .491464E-02	CONTACT SWITCH = 1	TCE = •710E-01
J + 3 MIDWALL RADIUS + 50308E-02 WALL THICKNESS	• .603893E-03 CELZ • .476284E-02		
J = 5 MIDWALL RADIUS = .50308E-02 WALL THICKNESS	• .603893E-03 DELZ = .476284E-02	je tao – sta stanovno u p	
J = 7 MIDWALL RADIUS = .52845E-02 WALL THICKNESS 4 = 8 MIDWALL RADIUS = .54719E-02 WALL THICKNESS	• 631321E-C3 DELZ = .491465E-02 • 637774E+03 DELZ = .494919E-02 • 637774E+03 • 6377774E+03 • 637774E+03 • 6377774E+03 • 63777774E+03 • 63777774E+03 • 6377777777777777777777777777777777		
J • 9 MIDWALL RADIUS • .56661E-02 WALL THICKNESS 	 .641012E-03 DELZ .496431E-02 .642586E-03 DELZ .497051E-02 		
J =11 MIDWALL RADIUS = .59523E-02 WALL THICKNESS J =12 MIDWALL RADIUS = .59938E-02 WALL THICKNESS	= .643319E-03 DELZ = .497314E-02 = .643536E-03 DELZ = .497389E-02	1	
J = 13 MIDWALL RADIUS = .59529E-02 WALL THICKNESS	• .643322E-03 DELZ • .497315E-02 • .642594E+03 DELZ • .497654E-02	1 	·
J =16 MIDWALL RADIUS = .54735E-02 WALL THICKNESS	= .641029E+03 DELZ = .494938E+02 = .637812E+03 DELZ = .494938E+02		
J = 1 MIDWALL RADIUS = .52933E-02 WALL THICKNESS J = 2 MIDWALL RADIUS = .51352E-02 WALL THICKNESS	• .630474E-03 DELZ • .490950E-02 • .619008E-03 DELZ • .490950E-02	CONTACT JELICH - 1	
J = 3 MIDWALL RADIUS = .50325E-02 WALL THICKNESS J = 4 MIDWALL RADIUS = .49969E-02 WALL THICKNESS	• .604092E-03 DELZ • .476146E-02 • .595798E-03 DELZ • .471424E-02		
I = 5 MIDWALL RADIUS = .50325E-02 WALL THICKNESS I = 6 MIDWALL RADIUS = .51352E-02 WALL THICKNESS	= .604091E-03 DELZ = .476145E-02 = .619008E-03 DELZ = .484729E-02	a an a' a a shinar miya ku a ku miya ya a sa a ku ku miya ku ka ku	
J = 7 MIDWALL RADIUS = .52933E-02 WALL THICKNESS J = 8 MIDWALL RADIUS = .54862E-02 WALL THICKNESS	• •630473E-03 DELZ = •490949E-02 • •636424E-03 DELZ = •494131E-02		
J =10 MIOWALL RADIUS = .50014E-02 WALL INTERNESS	= .639179E-03 DELZ = .495514E-02 = .640407E-03 DELZ = .496046E-02		
J =12 MIDWALL RADIUS = .60243E-02 WALL THICKNESS J =13 MIDWALL RADIUS = .59821E-02 WALL THICKNESS	• .641020E-03 DELZ = .496201E-02	· · · · · · · · · · · · · · · · · · ·	
J =14 MIDWALL RADIUS = .58626E-02 WALL THICKNESS J =15 MIDWALL RADIUS = .56078E-02 WALL THICKNESS	• • • • • • • • • • • • • • • • • • •		
J =16 MIDWALL RADIUS = .540700-02 WALL THICKNESS AXIAL NODE 5 AVE RADIUS = .5776640-02 AVE	■ .636361E=03 DELZ = .494151E=02 WALL_THICKNESS = .615162E=03	CONTACT SWETCH	TCE
J = 1 MIDWALL RADIUS = .54151E-02 WALL THICKNESS J = 2 MIDWALL RADIUS = .51714E-02 WALL THICKNESS J = 3 MIDWALL RADIUS = .51514E-02 WALL THICKNESS	• • • • • • • • • • • • • • • • • • •	·	
	• • • • • • • • • • • • • • • • • • •	an an an an an an ann an ann an an ann an a	······
J = 6 MIDWALL RADIUS = .51714E-02 WALL THICKNESS J = 7 MIDWALL RADIUS = .54151E-02 WALL THICKNESS	• .593577E-03 DELZ • .470668E-02	· · · · ·	1
J = 8 MÍDWALL RADÍUS = .57182E-02 WALL THÍCKNESS J = 9 MÍDWALL RADÍUS = .60384E-02 WALL THÍCKNESS	 .634367E-03 DELZ = .493408E-00 .641818E-03 DELZ = .496913E-02 		
J =10 MIDWALL RADIUS = .63233E-02 WALL THICKNESS J =11 MIDWALL RADIUS = .65206E-02 WALL THICKNESS	= .645408E-03 DELZ = .498081E-02 = .647102E-03 DELZ = .498526E-02		
J = 12 HIDWALL RADIUS = .65915E-02 WALL THICKNESS J = 13 MIDWALL RADIUS = .65217E-02 WALL THICKNESS	• •647622E-03 DELZ • •498649E-02 • •647109E-03 DELZ • •498527E-02)	
J = 15 MIDWALL RADIUS = .60203E=02 WALL IHICKNESS	• • • • • • • • • • • • • • • • • • •		
AXIAL NODE 6 AVE RADIUS = .595663F-02 AVE J = 1 MIOWALL RADIUS = .54991E-02 WALL THICKNESS	WALL THICKNESS = 6064916-03	CONTACT SWITCH = 1	TCE = .163E+00
J = 2 MIDWALL RADIUS = .51987E-02 WALL THICKNESS J = 3 MIDWALL RADIUS = .50083E-02 WALL THICKNESS	• • • • • • • • • • • • • • • • • • •	·	
I = 4 MIOWALL RADIUS = .49433E-02 WALL THICKNESS I = 5 MIDWALL RADIUS = .50083E-02 WALL THICKNESS	• 488620E-03 DELZ = 404923E-02 • 524092E-03 DELZ = 428562E-02		
	= •592576E-03 DELZ = •464820E-02	, 	
J = 9 MIDWALL RADIUS = .62819E-02 WALL THICKNESS J = 10 MIDWALL RADIUS = .626452E-02 WALL THICKNESS	= .031340E=03 DELZ = .496324E=02 = .640360E=03 DELZ = .496324E=02 = .646330E=03 DELZ = .49739E=03		
J =12 MIDWALL RADIUS = .68986E-02 WALL THICKNESS			
J =13 MIDWALL RADIUS = .69000E-02 WALL THICKNESS J =14 MIDWALL RADIUS = .66478E=02 WALL THICKNESS	• .646316E-03 DELZ • .498314E-03 • .644398E-03 DELZ • .497794E-02		
J =12 MINWALL RADIUS = .62851E-02 WALL THICKNESS J =16 MINWALL RADIUS = .58807E-02 WALL THICKNESS	• •640199E-03 DELZ = •496340E-02 • •631639E-03 DELZ = •492125E-02		•

82-58

TABLE B-3. (CONTINUED)

•				· · · · · · · · · · · · · · · · · · ·
			1	
AXIAL	NODE 7 AVE RADIUS = .625506E-02 AVE WALL THICKNESS * .5	596999E-03	CONTACT SWETCH = 1	TCE = +221E+00
j = 1	MIDWALL RADIUS = .56179E+02 WALL THICKNESS = .611141E-03 DELZ =	.481450E-02	,	
	NIDWALL RADIUS = .52306E-02 WALL THICKNESS = .572753E-03 DELZ =	.458904E-02	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
1.1	MINUALI RADIUS = 498896-02 WALL THICKNESS = 4987636-03 DELZ =	• .412366F-02		
1	HIDWALL PADIUS - 49073E-02 WALL THICKNESS - 416520E-03 DEL7 -	.355612E-02		
1 1 2	MTDUALL DADTUS - LOBAGE 02 HALL THICKHESS - LOB776E-03 DEL7 -	41237AF-02		
1 1 1	$\frac{110}{10} = \frac{110}{10} = 1$			
Q	TIDWALL RADIUS - 523002-02 WALL THICKNESS - 5727002-03 UPC2 -	4 JOAL(E=02		
i • (MIDWALL RADIUS = +301/9E+02 WALL INICKNESS = +011144E+03 DEL2 =	•••		
1.08	WIDWALL RADIUS = +01121E-05 WALL THICKNESS = +030506E-03 DELC =	• • • • • • • • • • • • • • • • • • •		· · · ·
J = 9	- WIDAAFF BADIN2 = •002046-DS MAFF IHICKNEZZ = •0373406-D3 D6F5 =	• • 4 9 6 3 / UE - UZ		
I =10	MIDWALL RADIUS = .71498E-02 WALL THICKNESS = .644538E-03 DELZ =	■ <u>•4979136-02</u>		
J =11	MIDWALL RADIUS = •74971E~O2 WALL THICKNESS = •646603E~O3 DELZ =	.498440E-02		
J =12	MÍĎWALL RADIUS = .76229E-02 WALL THICKNESS = .647217E-03 DELZ =	.498579E-02	1	1
. j ∎iā	HIDWAII RADIUS = .74990E-02 WALL THICKNESS = .646610E-03 DELZ =	498442E-02		
. j "14	HIDWALL RADIUS = 71534F-07 WALL THICKNESS = 6644557F-03 DELZ =	497918E-02		
	- $ -$	- 496388F-02		
1 112	MTOWALL PADIUS = 611042 - 02 WALL THICKNESS = 630302E 03 DEL 7	4016746-02		1
	MODE = 0 AVE DADING A ATRESENCE AVE WALL THICKNESS = 10000000000000000000000000000000000	5882605-03	CONTACT SWITCH = 1	TCF = _313E+00
AATAL,	NOUE 0 AVE RADIUS - $0010010 - 000000 - 00000000000000000$		CONTRET SWATCH A	
	HIDWALL RADIUS = "JIADSE-OS HALL THICKNESS = 0105445-03 DELE			1
4 • 4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
	WIDMALE RADINS = +44/SIE-OS WALE INICKNESS = +4(1335E-O3 DEF =	• 39 101 5 02		•
4 * 5	HIDWALL RADIUS = +480806-05 WALL THICKNESS = +3314156-03 DELT -	-294029E-02		and the second
	NIDWALL RADIUS = •49721E-02 WALL INICKNESS = •471372E-03 DELC *	• • 393117E-02		······································
4 = 6	MIDWALL RADIUS = •52844E-02 WALL THICKNESS = •566226E-03 DELL =	 ++5588445-02 		
	- MIDWALL RADIUS = •57965E-02 WALL THICKNESS = •610304E-03 DELZ =	-481119E-02		
8	MIDWALL RADIUS = .64724E-02 WALL THICKNESS = .630935E-03 DELZ =	• •492104E-02		· · · · · · · · · · · · · · · · · · ·
• 9	MÍÐWALL RAÐÍUS = •72273E-02 WALL THICKNESS = •640910E-03 DELZ =	.496839E-02		
J • 10	HIDWALL RADIUS = .79286F-02 WALL THICKNESS = .645440E-03 DELZ =	.498215E-02		
. j +ii	HIDWALL RADIUS	498681E-02		
1 .13	MINUALL PADIUS - ACOSE-02 WALL THICKNESS - CAOOFE-03 DEL7 -	498805E+02		, m
1 - 15	HTUNEL DADIUS - BAJOAE-02 WALL THICKNESS - 647488E-03 DEL7	- 408683F-02		
	1100000000000000000000000000000000000	- 4982205-02		
1 112	$\frac{110}{10}$	- 4040556-02		
4 142	HIDWALL RADIUS = (123910 07 HALL HICKNESS = (33.047720 03 6017			
1 10	ALUWALL RADIUS = .04/030mU2 HALL THICKNESS = .0310772 03 UELL	5070015-07	CONTACT SHETCH - 1	TCE 221EA00
-AXIAL	RUDE 9 AVE RADIUS = +020MC2E VZ AVE WALL INICHESS = +	- (0)(/5(-0)	CONTACT JWETCH	THE - PEEKLYVU
- i • i	HIDMATT RADIOS	• • • • • • • • • • • • • • • • • • •		
↓ + Z	WID WALF RADINZ = +25306F-05 WALF THICKNESS = +24542416-03 AFF5 a	 ••>8903E=02 		
J • 3	MIDWALL RADIUS = •49890E-02 WALL THICKNESS = •498/83E-03 DEL2 •	• •412302E-UZ	,	
# # 6	MIDWALL RADIUS = +49073E-02 WALL THICKNESS = +416590E-03 DELZ +	■ •355667E-02		
J = 5	NIDWALL RADIUS = .49890E-02 WALL THICKNESS = .498794E-03 DELZ •	412393E-02		
J = 6	MIDWALL RADIUS = .52306E-02 WALL THICKNESS = .572758E-03 DELZ *	.458910E-02		
. j. • 7	' MIDWAEL RADIUS = •56178Ē∽02 WALL THICKNESS = •611137Ē−03 DĒLZ 4	.481448E-02		
i i i i	. HTDWATT RADIUS	=491618E-02		** ** ********************************
	MINUALI PADIUS - 66561E-02 WALL THICKNESS - 639938E-03 DEL7	496367E-02		
1	THE DADTIES - 71404E-02 WALL THICKNESS - 644632E-03 DELT	497911F-02		, ,
	$\frac{1}{10}$	408438E-03		
1 14	. NIURALL KAUIUS = 0749000-VC WALL THILNNESS = 00403710-VS UELL *			
		- 4094405-02		
	- UINAVE KANINS = +(4A03E_AC WAFF 1UIPVUESS = +0400A5E_AS HEF4 ;	- +7707702702		
	WINNALL KANINS = •\1530E-DS WALL THICKNESS = •044551E-D3 DECG	= • ? ? ! ? ! ? ! ? ! ~ ! ? !	·	
- J. +15	HINATI BANINZ = +00005E-05 MALT THICKNESS = +03888E=03 DEFS -	440304E-UZ	1 · · · ·	

. ...

.

TABLE B-3. (CONTINUED)

					•		
AXIA	. NG0 E 10	AVE RADIUS	208221-62 AVE	WALL HICKNISS +	. 6064466-03	CUNTACT SWITCH = 1	TCE = .163E+00
	2 MIDWALL	RADIUS = .549988-00 RADIUS = .519898-00 RADIUS = .500828-00	2 WALL THICKNESS 2 WALL THICKNESS 2 WALL THICKNESS	• .615065E-03 DFL2 • .582550E-03 DFL2	<pre>* • 48 32 78 E-02 * • 46 4 79 4 E-02</pre>		
j :	4 NEOWALL 5 MIDWALL	RADIUS = .49431E-0 RADIUS = .50082E-02	2 WALL THICKNESS 2 WALL THICKNESS	= .488271E-C3 DELZ = .523774E-C3 DELZ	• • • • • • • • • • • • • • • • • • •	·	
<u>ه</u> ال به الي	6 MIDWALL 7 MIDWALL	RADIUS = .51989E-02 RADIUS = .54998E-02	2 WALL THICKNESS 2 WALL THICKNESS	= .582554E-03 DEL2 = .615067E-03 DEL2	• .464798E-02 • .483279E-02	• 	
	9 MIDWALL 9 MIDWALL	RADIUS = .587878-02 RADIUS = .62839E-02 RADIUS = .66479E-02	2 WALL THICKNESS 2 WALL THICKNESS	• •631583E-03 DFLZ • •640191E-03 DELZ	= .492104E-02 = .496339E-02		
	1 MIDWALL	$\begin{array}{rcl} RADIUS &= & 69017E - 07\\ RADIUS &= & 69017E - 07\\ RADIUS &= & 69933E - 07\\ \end{array}$	2 WALL THICKNESS 2 WALL THICKNESS 2 WALL THICKNESS	 .644400E=03 DELZ .646333E=03 DELZ .646908E=03 DELZ 	= .497798E-02 = .498320E-02 = .498460E-02		· · · · · · · · · · · · · · · · · · ·
J = 1 J = 1	13 MIDWALL	RADIUS = .69032E-02 RADIUS = .66505E-02	2 WALL THICKNESS 2 WALL THICKNESS	= .64634CE-03 DELZ = .644424E-03 DELZ	■ .498322E-02 ■ .497804E-02		•
1 = L []]]]]]]	6 MIDWALL	RADIUS = .62871E-02 RADIUS = .58820E-02	2 WALL THICKNESS 2 WALL THICKNESS 2 TODE=02	• 640230E-03 DELZ • 631676E-03 DELZ	<pre>= .496355E-02 = .492150E-02</pre>		1
	1 MIDWALL 2 NIDWALL	RADIUS = .54142E-02 RADIUS = .51709E-02	2 WALL THICKNESS 2 WALL THICKNESS		•014014E-03 = •485270E-02 = •470976E-02	CUNIACT SHITCH = I	TCE = .126E+00
J =	3 MIDWALL 4 MIDWALL	RADIUS = .50150E-0 RADIUS = .49615E-0	WALL THICKNESS WALL THICKNESS	= .555037E-03 DELZ = .525100E-03 DELZ	<pre>= .447959E-02 = .426015E-02</pre>		
	6 NIDWALL 7 MIDWALL	RADIUS = .50150E-02 RADIUS = .51709E-02 RADIUS = .54142E-02	Z WALL THICKNESS Z WALL THICKNESS	* •555039E~03 DELZ • •593709E~03 DELZ • 194805-03 DELZ	= .447960E-02 = .470975E-02		1
· · ·	8 MIDWALL 9 MIDWALL	RADIUS = .57168E-0 RADIUS = .60365E-0	2 WALL THICKNESS 2 WALL THICKNESS	= .633200E-03 DELZ = .640714E-03 DELZ	= .492739E-02 = .496422E-02		
	LO MIDWALL	RADIUS = .63208E-02 RADIUS = .65178E-02	2 WALL THICKNESS 2 WALL THICKNESS	 .644465E-03 DELZ .645212E-03 DELZ 	= .497746E-02 = .498243E-02	ann a tama - Tahan - an an a suisteach an san dha ban ann a tama <mark>a fanan an an ann an a</mark>	
3	3 MIDWALL 4 MIDWALL	RADIUS = .65189E-02 RADIUS = .65189E-02 RADIUS = .63228E-02	2 WALL INICKNESS 2 WALL THICKNESS 2 WALL THICKNESS	* • 040739E=03 DELZ * • 646219E=03 DELZ * • 646482E=03 DELZ	= .498379E-02 = .498245E-02		
j =1	5 MIDWALL 6 MIDWALL	RADIUS = .60390E-02 RADIUS = .57194E-02	WALL THICKNESS WALL THICKNESS	• .640750E-03 DELZ • .633288E-03 DELZ	= .496436E-02 = .492781E-02		
AX LAU	1 MIDUL 12	AVE RADIUS = .50 RADIUS = .53591E-00	55408F-02 AVE VALL THICKNESS	WALL THICKNESS = = -= 623417F-03 2012	•621142E-03 • •487557E-02	CONTACT SWITCH = 1	TCE = .102E+00
j.	3 MIDWALL	RADIUS = .50211E-0RADIUS = .49754E-02	2 WALL THICKNESS 2 WALL THICKNESS 2 WALL THICKNESS	= .572666E-03 DELZ = .572666E-03 DELZ = .552867E-03 DELZ	<pre></pre>		
	5 MIDWALL 6 MIDWALL	RADIUS = .50211E-02 RADIUS = .51536E-02	WALL THICKNESS WALL THICKNESS	• .572566E-03 DELZ • .602372E-03 DELZ	= .457804E-02 = .475722E-02		
	6 MIDWALL 9 MIDWALL	RADIUS = .53591E-02 RADIUS = .56127E-02 RADIUS = .56783E-02	2 WALL THICKNESS 2 WALL THICKNESS 2 WALL THICKNESS	623018E-03 DELZ 635743E-03 DELZ	= .487557E-02 = .493966E-02		1
j +1 J +1	O MIDAALL	RADIUS = .51129E-02 RADIUS = .62747E-02	WALL THICKNESS WALL THICKNESS	= •645342E-03 DELZ = •645874E-03 DELZ = •645874E-03 DELZ	• 498018E-02 • 498018E-02		
J =] J =]	3 MIDWALL	RADIUS = .63327E-0 RADIUS = .62756E-02	2 WALL THICKNESS 2 WALL THICKNESS	= .647349E-03 DELZ = .646880E-03 DELZ	<pre>+ 498563E-02 + 498444E-02</pre>		• • •
J I	5 MIDWALL 6 MIDWALL	RADIUS = .58804E-02 RADIUS = .56148E-02	2 WALL THICKNESS 2 WALL THICKNESS 2 WALL THICKNESS	 642190E-03 DELZ 642190E-03 DELZ 635798E-03 DELZ 	= .498023E-02 = .496966E-02 = .493995E-02		
AXIAL	- NODE 13 1 MIDWALL	AVE RADIUS = .5 RADIUS = .52906E-0	0626E-02 AVE WALL THICKNESS	WALL THICKNESS = +630435E-03 DELZ	•628998E-03	CONTACT SWETCH - 1	TCE
• و • ل • ل	3 MIDWALL 4 MIDWALL	RADIUS # .51336E-02 RADIUS # .50315E-02 RADIUS # _40062E-03	2 WALL THICKNESS 2 WALL THICKNESS 2 WALL THICKNESS	<pre>* •618437E-03 DELZ * •602665E-03 DELZ * •5944145-03 DELZ</pre>	• 484364E-02 • 475629E-02		
	5 MIDWALL 6 MIDWALL	RADIUS = .50315E-02 RADIUS = .51336E-02	2 WALL THICKNESS 2 WALL THICKNESS	 • 602665E-03 DELZ • 618437E-03 DELZ 	770555E-02 475628E-02 484364E-02		
	7 MIDWALL 8 MIDWALL 9 MIDWALL	RADIUS = .52906E-02 RADIUS=54822E-02 RADIUS = .56808E-02	Z WALL THICKNESS WALL THICKNESS	• .630435E-03 DELZ •	• 490955E-02 • 494490E-02	· · · · · · · · · · · · · · · · · · ·	· • · · · · · · · · · · · · · · · · · ·
J =	O MIDWALL	RADIUS = .58546E+02 RADIUS = .59737E-02	WALL THICKNESS	= .6418872-03 0612 = .6418872-03 0612 = .6425786-03 0617	<pre>= .490084E-02 = .495721E-02 = .495976E-02</pre>		
	Z-MIDWALL 3 MIDWALL	RADIUS	2-WALE-THICKNESS WALL THICKNESS				· · · · · · · · · · · · · · · · · · ·
	5 MIDWALL	RADIUS = .56823E-02 -RADIUS = .56823E-02	WALL THICKNESS	 • 0+1842E-03 DELZ • 640338E-03 DELZ • 64775E-03 DELZ 	• 496724E-02 • 496092E-02		· · · · · · · · · · · · · · · · · · ·

.

TABLE B-3. (CONTINUED)

APPENDIX C

DERIVATION OF KRAMER AND DEITRICH'S EXPRESSION FOR STRESS

The theory of Kramer and Deitrich is summarized here because the theory is basic to understanding cladding deformation. In the Kramer and Deitrich approach, forces on an element of cladding are summed and set equal to zero as in any statics problem. However, Kramer and Deitrich express these forces as a function of a general transformation and they divide the transformation into two parts--a large symmetric deformation which preserves the cylindrical shape of the cladding and small perturbation terms which are a function of position. The cladding deformation is viewed as a transformation of an element of material from its initial coordinates to a new location

$$r = f_1(\theta_0, Z_0, t) = a(t) + \delta(\theta_0, Z_0, t)$$
 (C-la)

$$\theta = f_2(\theta_0, Z_0 t) = \theta_0$$
 (C-lb)

$$Z = f_3(\theta_0, Z_0, t) = \exp(\overline{\epsilon_Z}) Z_0 = \lambda(t)$$
 (C-lc)

where

(r,0,Z)	=	new coordinates of the element of material initially located at (r_0, θ_0, Z_0)
f ₁ ,f ₂ ,f ₃	=	functions describing a general transformation
a(t)	=	zero-th order, the radius one would find if the cylinder remained cylindrical

C-1

$$\delta(\theta_0, Z_0, t) = local perturbations of the radius
 $\overline{\epsilon}_Z = average axial strain component.$$$

Equation (C-lb) assumes radial displacement but that assumption is not used in this model. The quantity that is used is the position vector of the deformed element in cylindrical coordinates

$$\vec{r} = [a(t) + \delta(\theta_0, Z_0, t)] \hat{r} + \lambda (t) Z_0 \hat{Z}.$$
(C-2)

This position vector is used to define two (non-unit) basis vectors tangent to the deformed surface

$$\vec{B}_{1} = \frac{\partial \vec{r}}{\partial \theta_{0}} = \frac{\partial \delta}{\partial \theta_{0}} \hat{r} + [a(t) + \delta(\theta_{0}, Z_{0}, t)] \frac{\partial \hat{r}}{\partial \theta_{0}} + 0 + 0$$

$$= \frac{\partial \delta}{\partial \theta_{0}} \hat{r} + [a(t) + \delta(\theta_{0}, Z_{0}, t)] \hat{\theta} \qquad (C-3)$$

$$\vec{B}_{2} = \frac{\partial \vec{r}}{\partial Z_{0}} = \frac{\partial \delta}{\partial Z_{0}} \hat{r} + [a(t) + \delta(\theta_{0}, Z_{0}, t)] \frac{\partial \hat{r}}{\partial Z_{0}} + \lambda(t) \hat{Z}$$

$$= \frac{\partial \delta}{\partial Z_{0}} \hat{r} + \lambda(t) \hat{Z}. \qquad (C-4)$$

Figure C-1 illustrates typical orientations of \vec{r} , $\vec{\beta}_1$, and $\vec{\beta}_2$.

Bending stresses from thermal expansion and swelling are neglected so the forces on a surface element come from membrane stresses in the plane and pressures normal to the plane. The force per unit area on the edges of the surface element are the inner product of the stress tensor and a unit vector normal to the edge. The force per unit area on the Z₀ = constant and θ_0 = constant edges is

Figure C-1. Schematic illustration of the position vector, r, and two bases vectors tangent to the deformed surface element.

where

 \vec{F}_{Z_0} = force per unit area on the Z_0 = constant edge

= force per unit area on the θ_0 = constant edge

 $\frac{\beta^2}{\left|\frac{1}{\beta^2}\right|} = \text{unit vector normal to } Z_0 = \text{constant edge. The vector } \beta^2$ equals $\sqrt{Z_0}$.

 $\frac{\overline{\beta}}{\left|\frac{1}{\beta}\right|} = \text{unit vector normal to } \theta_0 = \text{constant edge. The vector } \beta^{1}$ equals $\overline{\forall} \theta_0$.

Figure C-2 shows typical orientations of $\frac{\overrightarrow{\beta^2}}{\left|\overrightarrow{\beta^2}\right|}$ and $\frac{\overrightarrow{\beta^1}}{\left|\overrightarrow{\beta^1}\right|}$.

 $\vec{F_Z}$ and $\vec{F_\theta}$ must be multiplied by the edge areas to find the force due to stress on the edges of the surface element under consideration. The length of each edge can be found by realizing that the differential vector connecting two neighboring points is

$$\vec{dr} = \frac{\vec{ar}}{\partial \theta_0} d\theta_0 + \frac{\vec{ar}}{\partial Z_0} dZ_0 . \qquad (C-7)$$

The differential arc length is the square root of

$$ds^{2} = \vec{dr} \cdot \vec{dr} = \left[\left(\frac{\partial \delta}{\partial \theta_{0}} \right)^{2} + \left[a(t) + \delta \left(\theta_{0}, Z_{0}, t \right) \right]^{2} \right] d\theta_{0}^{2}$$
$$+ 2 \frac{\partial \delta}{\partial \theta_{0}} \frac{\partial \delta}{\partial Z_{0}} d\theta_{0} dZ_{0} + \left[\left(\frac{\partial \delta}{\partial Z_{0}} \right)^{2} + \lambda(t)^{2} \right] dZ_{0}^{2} .$$
(C-8)

The Z₀ = constant edge is thus $\sqrt{E} d\theta_0$ long and the θ_0 = constant edge is $\sqrt{G} dZ_0$ long

where

$$E = \left(\frac{\partial \delta}{\partial \theta_{0}}\right)^{2} + \left[a(t) + \delta(\theta_{0}, Z_{0}, t)\right]^{2} = \left|\vec{\beta_{1}}\right|^{2}$$
(C-9)
$$G = \left(\frac{\partial \delta}{\partial Z_{0}}\right)^{2} + \lambda(t)^{2} = \left|\vec{\beta_{2}}\right|^{2}.$$
(C-10)

Thus for an element h thick, the forces on the Z₀ = constant and θ_0 = constant edges are

$$\vec{F}_{Z_0} = \vec{\sigma} \cdot \frac{\vec{\beta}^2}{|\vec{\beta}^2|} h \sqrt{E} d\theta_0$$
 (C-11)

and

$$\vec{F}_{\theta} = \vec{\sigma} \cdot \frac{\vec{\sigma}}{|\vec{\sigma}|} + \sqrt{G} dZ_{0}$$
 (C-12)

Using the orthonormal relations between $\vec{\beta}$, $\vec{\beta}$, $\vec{\beta}_1$, and $\vec{\beta}_2$,

$$\vec{\beta} \cdot \vec{\beta}_1 = 1$$
 (C-13a)

$$\vec{\beta^2} \cdot \vec{\beta_2} = 1$$
 (C-13b)

$$\beta^{-1} \cdot \beta_{2}^{-1} = 0$$
 (C-13c)

$$\vec{\beta^2} \cdot \vec{\beta_1} = 0$$
 (C-13d)

$$\vec{\beta}^{1} \cdot (\vec{\beta}_{1} \times \vec{\beta}_{2}) = 0 \qquad (C-13e)$$

$$\vec{\beta}^2 \cdot (\vec{\beta}_1 \times \vec{\beta}_2) = 0 \qquad (C-13f)$$

and the definitions of $\vec{\beta_1}$ and $\vec{\beta_2}$, it is possible to solve for the six unknown components of $\vec{\beta_1}$ and $\vec{\beta^2}$. The components can in turn be used to show

- $\left| \overrightarrow{\beta}^{1} \right| = \frac{\sqrt{G}}{H}$ (C-14)
- $\left|\overline{\beta^2}\right| = \frac{\sqrt{E}}{H}$ (C-15)

where

$$H = \sqrt{EG - 2 \frac{\partial \delta}{\partial \theta_0} \frac{\partial \delta}{\partial Z_0}} . \qquad (C-16)$$

Equations (C-11) and (C-12) can be rewritten using these expressions and the orthonormal relations

$$\vec{F}_{Z_0} = \vec{\sigma} \cdot \vec{\beta}^2 \, h \, H \, d\theta_0$$

$$= \left[\sigma^{12} \, \vec{\beta}_1 + \sigma^{22} \, \vec{\beta}_2\right] \, h \, H \, d\theta_0 \qquad (C-17)$$

and

$$F_{\theta_0} = \overline{\sigma} \cdot \beta h H dZ_0$$

 ζ

$$= \left[\sigma^{11} \frac{1}{\beta_{1}} + \sigma^{21} \frac{1}{\beta_{2}}\right] h H dZ_{0}.$$
 (C-18)

In addition to these stress-caused forces on the element there is a force exerted by the pressure on the element. The force due to pressure is

$$\vec{F}_{n} = \Delta P \ \vec{dA}$$
(C-19)

where

ΔP = the pressure inside the cladding minus the pressure outside the cladding

 \vec{dA} = the surface area of the element times a unit vector normal to the element.

Since $\vec{\beta_1} \times \vec{\beta_2}$ is normal to the surface and the edges have been shown to be $\left|\vec{\beta_1}\right| = d_0 = \sqrt{E} d_0$ and $\left|\vec{\beta_2}\right| = d_0 = \sqrt{G} d_0$ in length,

 $\vec{dA} = d\theta_0 \ dZ_0 \ \vec{B}_1 \ \times \ \vec{B}_2$ $= d\theta_0 \ dZ_0 \ H \ \hat{n}$ (C-20)

where \hat{n} is a unit normal to the surface,

$$\frac{\lambda(a + \delta) \hat{r} - \lambda \frac{\partial \delta}{\partial \theta_0} \hat{\theta} - (a + \delta) \frac{\partial \delta}{\partial Z_0} \hat{Z}}{H}$$

The force exerted by pressure is thus

$$\vec{F}_n = \Delta P H d\theta_0 dZ_0 \hat{n}$$
. (C-21)

Since the element is in equilibrium (small forces required to accelerate the cladding mass are neglected), the normal components of the stress-caused forces and the pressure-caused force must sum to zero.

$$\vec{F}_{n} \cdot \hat{n} = \frac{d \vec{F}_{Z_{0}}}{dZ_{0}} dZ_{0} \cdot \hat{n} + \frac{d \vec{F}_{\theta_{0}}}{d\theta_{0}} d\theta_{0} \cdot \hat{n} . \qquad (C-22)$$

The forces acting on the element are shown schematically in Figure C-3. Using expressions (C-17) and (C-18) for $\vec{F_Z}$ and $\vec{F_{\theta}}$, the fact that \hat{n} is orthogonal to $\vec{B_1}$ and $\vec{B_2}$, Equations (C-3) and (C-4) for $\vec{B_1}$ and $\vec{B_2}$, and the expression given after Equation (C-20) for \hat{n} in conjunction with Equation (C-22) leads to the expression

Figure C-3. Forces acting on an element of deformed cladding surface.

$$\frac{\Delta P}{h} = L \sigma^{11} + 2 M \sigma^{12} + N \sigma^{22}$$

where

$$L = \left[-(a + \delta) \left(\frac{\partial^2 \delta}{\partial \theta_0^2} - a - \delta \right) + 2 \left(\frac{\partial \delta}{\partial \theta_0} \right) \right] \frac{\lambda}{H}$$

$$M = \left[-(a + \delta) \frac{\partial^2 \delta}{\partial \theta_0^2 \partial Z_0} + \frac{\partial \delta}{\partial \theta_0} \frac{\partial \delta}{\partial Z_0} \right] \frac{\lambda}{H}$$

$$N = -(a + \delta) \frac{\partial^2 \delta}{\partial Z_0^2} \cdot \frac{\lambda}{H}$$

Although Equation (C-23) is only one equation in the three unknowns σ^{11} , σ^{12} , and σ^{22} , it will turn out that two of the three stress components have no first order change when the cladding shape is perturbed from cylindrical so the equation is sufficient to solve for the one non-zero component.

In order to get a convenient basis for the perturbation theory that will be used with the equilibrium relation, Equation (C-23), a new basis is defined

$$= \sigma^{ij} \overrightarrow{\beta_{i}} \overrightarrow{\beta_{j}} = \sigma^{i}_{j} \frac{\overrightarrow{\beta_{i}}}{|\overrightarrow{\beta_{i}}|} = \sigma^{i}_{j} \frac{\overrightarrow{\beta_{i}}}{|\overrightarrow{\beta_{i}}|} = \sigma^{i}_{j} |\overrightarrow{\beta_{j}}| .$$
 (C-24)

(C-23)

The new components, σ_{j}^{i} , can be related to the old using inner products along with the defining relation, Equation (C-24). The inner products are

$$\vec{\beta}_1 \cdot \vec{\beta}_1 = \vec{E}$$
 (C-25)

$$\vec{\beta}_2 \cdot \vec{\beta}_2 = G$$
 (C-26)

$$\vec{\beta}_1 \cdot \vec{\beta}_2 = 2 \frac{\partial \delta}{\partial \theta_0} \frac{\partial \delta}{\partial Z_0} \equiv F$$
 (C-27)

$$\vec{\beta}^{i} \cdot \vec{\beta}_{j} = \delta_{ij}.$$
 (C-28)

The new components expressed in terms of the old components are

$$\sigma_1^{1} = E \sigma_1^{11} + F \sigma_2^{12}$$
 (C-29)

$$\sigma_2^1 = \sqrt{\frac{E}{G}} \left(F \sigma^{11} + G \sigma^{12} \right) \tag{C-30}$$

$$\sigma_2^2 = F \sigma^{21} + G \sigma^{22}$$

= F \sigma^{12} + G \sigma^{22}. (C-31)

These components are convenient for the perturbation theory approach because they reduce to the familiar principal stress components in the limit of no perturbation:

As
$$\delta \rightarrow 0$$
,

L → a (C-32)

M + 0 (C-33)

$$N \neq 0$$
 (C-34)

$$E \rightarrow a^2$$
 (C-35)

$$E + \lambda^2$$
 (C-37)

and Equation (C-23) becomes

$$\frac{\Delta P}{n_{cyl}} = a \sigma^{11}.$$
 (C-38)

Thus, using Equations (C-29) to (C-38)

$$\sigma_1^1 \rightarrow a^2 \sigma_1^{11} = a \frac{\Delta P}{h_{cy1}}$$
 (C-39)

$$\sigma_2^1 + a\lambda \sigma^{12}$$
 (C-40)

$$\sigma_2^2 \rightarrow \lambda^2 \sigma^{22}. \tag{C-41}$$

The right side of (C-40) is zero. This can be seen by noting that as $\delta \neq 0$

$$\vec{\beta}_1 \neq a \hat{\theta}$$

$$\vec{\beta_2} + \lambda \hat{\vec{Z}}$$
 (C-43)

(C-42)

This means that in the limit $\delta \neq 0$

$$\sigma^{12} \neq \frac{1}{a\lambda} \sigma_{\theta Z_{cyl}} = 0 . \qquad (C-44)$$

Similar logic can be used to identify the limit of σ^{22} . From Equation (C-43),

$$\sigma^{22} \rightarrow \frac{1}{\lambda^2} \sigma_{ZZ_{cy1}}$$
 (C-45)

Combining Equations (C-39), (C-40), (C-41), (C-44), and (C-45) leads to the conclusion that σ_1^1 , σ_2^1 and σ_2^2 do reduce to the familiar principal stress components as $\delta \rightarrow 0$:

$$\sigma_1^1 + \frac{\Delta P}{h_{cyl}} a$$
 (C-46)

$$\sigma_2^1 \neq 0 \tag{C-47}$$

$$\sigma_2^2 \neq \sigma_{ZZ_{cvl}}$$

The final part of deriving the Kramer and Deitrich expression for stress is to carry out the perturbation approximation. In order to do this, the stress components σ^{i}_{j} are written as the sum of the cylindrical shape stresses given by Equations (C-46) to (C-48) and a small change where

 $\sigma_{j}^{i} = \sigma_{a_{i}}^{i} + \sigma_{\delta_{i}}^{i}$

°a_i

cylindrical shape stresses given as limits in Equations (C-46) to (C-48)

 $\sigma_{\delta_{j}}^{i} = \sigma_{j}^{i} - \sigma_{a_{j}}^{i}.$

A second preliminary step is to invert the transformation relations of Equations (C-29) to (C-31) and a third is to express the deformed wall thickness, h, as the cylinder wall thickness, h_{cyl} , less a small change of order s

$$h = h_{cyl} - h_{\delta}$$
 (C-50)

The perturbation calculation itself is carried out by substituting the expressions for σ^{ij} as functions of σ^{i}_{j} into Equation (C-23). With some algebra and subsequent use of Equations (C-49) and (C-50) the following expression is obtained:

$$\frac{\Delta P}{h_{cy1} - h_{\delta}} \left[GE - F^{2} \right]$$

$$= \left[LG - 2MF + NF^{2} \right] \left[\frac{\Delta P}{h_{cy1}} + \sigma_{\delta}^{-1} \right]$$

$$+ \sqrt{\frac{G}{E}} \left[-LF + 2ME - NF \frac{E}{G} \right] \left[0 + \sigma_{\delta}^{-1} \right]$$

$$+ N \left[E - \frac{F^{2}}{G} \right] \left[\sigma_{ZZ_{cy1}} + \sigma_{\delta}^{-2} \right]. \qquad (C-51)$$

Next the expressions following Equation (C-23) for L, M, and N and the defining equations for E, G, and F [Equations (C-9), (C-10) and (C-27)] are used to express L, M, N, G, E, and F in Equation (C-51) as functions of δ . The resultant expression is then expanded in orders of δ where

$$h_{\delta}, \frac{\partial^2 \delta}{\partial \theta_0^2}, \frac{\partial^2 \delta}{\partial Z_0^2}, \text{ and } \sigma_{\delta}^{i}_{j}$$

are considered to be or order δ . The zero-th order terms are an identity

$$\frac{\Delta P}{n_{cyl}} a = \frac{\Delta P}{n_{cyl}} a . \qquad (C-52)$$

The first order terms lead to the following expression

$$\sigma_{\delta}^{1} \approx \frac{\Delta P \delta}{h_{cyl}} - \frac{a \Delta P h_{\delta}}{n_{cyl}^{2}} + \frac{\Delta P}{h_{cyl}} \frac{\partial^{2} \delta}{\partial \theta_{0}^{2}} + \frac{\sigma_{ZZcyl}}{\lambda^{2}} a \frac{\partial^{2} \delta}{\partial Z_{0}^{2}}$$
(C-53)

which is the expression used for the change in hoop stress due to a change in shape. Since there are no first-order terms involving any other stress components, the cylinder expressions for these other components are correct to first order without modification.

APPENDIX D

DERIVATION OF MODEL FOR BENDING

This appendix is a derivation of Equation (29) of the main text, the expression used to model the effect of bending due to different changes in cladding length as the ballooning proceeds. A highly simplified model for this bending is employed. In this model the cladding is assumed to be bent into a circular arc of radius r_{z} as illustrated in Figure D-1. Since both the right and the left side subtend an angle ϕ ,

$$\phi = \frac{Z_r}{r_Z} \tag{D-1}$$

(D-2)

$$\phi = \frac{L}{r_Z + d}$$

where

ф.	=	angle subtended by the bending cladding
rZ	=	radius of curvature of the inside bend of the cladding viewed from the side
Zr	=	length of the right side of the cladding
zL	=	length of the left side of the cladding
d	a	cladding diameter.

D-1

Figure D-1. Cladding configuration assumed for bending model.

At the midpoint of the arc the right hand side of the cladding is displaced a distance

$$X_{\rm R} \approx r_{\rm Z} - r_{\rm Z} \cos\left(\frac{\Phi}{2}\right)$$
 (D-3a)

or

$$X_{\rm R} \approx r_{\rm Z} \frac{\phi^2}{8}$$
 (D-3b)

by the bending. X_R can be expressed in terms of Z_R and Z_L by eliminating ϕ and r_Z from Equations (D-1), (D-2), and (D-3b). The resultant expression is

$$X_{R} = \frac{Z_{R} (Z_{L} - Z_{R})}{8d}$$
 (D-4)

Similarly, the left hand side of the cladding is displaced a distance

$$X_{L} \approx \frac{Z_{L} (Z_{L} - Z_{R})}{8d}$$
 (D-5)

Equations (D-4) and (D-5) show that the average bending displacement at the center of the arc is

$$X = \left(\frac{Z_{L} + Z_{R}}{2}\right) \left(\frac{Z_{L} - Z_{R}}{8d}\right)$$
(D-6a)
= ZBEND $\frac{Z_{L} - Z_{R}}{8d}$ (D-6b)

where ZBEND is the average length contributing to the bending.

A complete calculation of cladding bending would have to ensure that length changes and local stresses are consistent all around the cladding circumference and allow for variation in strains over the length of the bowed cladding. This careful calculation of the cladding bending would be both expensive and inconsistent with the approximations made to model the effect of shape on the local stress of the ballooning cladding and to account for tangential displacement. The detailed calculation was avoided by assuming

$$Z_{R} \approx ZBEND \exp [\epsilon_{ZZ} (K,J)]$$
 (D-7)

$$Z_{L} \approx ZBEND \exp \left[e_{ZZ} \left(K, J + \frac{NJ}{2} \right) \right]$$

$$d \approx r_{0} \left\{ \exp \left[e_{\theta \theta} \left(K, J \right) \right] + \exp \left[e_{\theta \theta} \left(K, J + \frac{NJ}{2} \right) \right] \right\}$$

$$(D-8)$$

$$(D-9)$$

where

ε _{ZZ} (K,L)	=	axial component of strain of the cladding element at the K-th axial and L-th circumferential node
ε _{θθ} (K,L)	=	tangential component of strain of the cladding element at the K-th axial and L-th circumferential node
r _o	=	initial midwall radius of the cladding
IJ	=	number of circumferential nodes used to represent the cladding.

Equations (D-6b) to (D-9) can be combined to find the net displacement of the cladding midwall radius due to bending

$$X = \frac{ZBEND}{8r_{o}} \frac{\exp \left[\epsilon_{ZZ} \left(K, J + \frac{NJ}{2}\right)\right] - \exp \left[\epsilon_{ZZ} \left(K, J\right)\right]}{\exp \left[\epsilon_{\theta \theta} \left(K, J\right)\right] + \exp \left[\epsilon_{\theta \theta} \left(K, J + \frac{NJ}{2}\right)\right]}$$
(D-10)

D-4

Since the code is an incremental code, the expression actually used is the change in midwall radius during a time step. This change is obtained from Equation (D-10) and the chain rule:

$$dX = \frac{\partial X}{\partial \epsilon_{ZZ}(K,J)} d\epsilon_{ZZ}(K,J) + \frac{\partial X}{\partial \epsilon_{ZZ}(K,J + \frac{NJ}{2})} d\epsilon_{ZZ}(K,J + \frac{NJ}{2})$$
$$+ \frac{\partial X}{\partial \epsilon_{\theta\theta}(K,J)} d\epsilon_{\theta\theta}(K,J) + \frac{\partial X}{\partial \epsilon_{\theta\theta}(K,J + \frac{NJ}{2})} d\epsilon_{\theta\theta}(K,J + \frac{NJ}{2}). \quad (D-11)$$

The resultant expression is Equation (29) of the main text.