NewYork Power
 Authority

J. Phillip Bayne

Director of Nuclear Reactor Regulation
U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Attention:	Mr. Steven A. Varga, Chief
	Operating Reactors Branch No. l
	Division of Licensing

Subject: Indian Point 3 Nuclear Power Plant Docket No. 50-286
Appendix R Fire Protection Program
Dear Sir:
As stated in our submittal dated December 13, 1983, IPN-83-99, the Authority and our consultant have undertaken a comprehensive review and re-evaluation of the Indian point 3 Appendix R compliance program. In the course of the review, two areas have been identified as requiring clarification. The specific areas of concern involve the seismic capability of the reactor coolant pump (RCP) oil spillage collection system and the quality assurance program utilized for the Authority's initial Section III.G review.

By letter dated November 16,1981, IPN-8l-86, the Authority stated that; based on visual examination of the system, there was reasonable assurance that the RCP oil spillage collection system would remain functional, and hence complied with Section III. 0 of Appendix R, during and after a safe shutdown earthquake. The seismic capability of the oil spillage collection system has been analyzed as part of the ongoing Appendix R activities. The results of the analysis indicate that this system will not fail during an earthquake of .15 g (see attached report). The Authority however, has decided to implement additional modifications to further enhance the seismic capability of the collection system.

The Authority's submittal dated July l, 1982, IPN-82-49, stated that a quality assurance procedure was adopted for development of the documentation used to prepare the "original" safe shutdown functional flow diagrams. Review of the documentation packets by the Authority's Appendix R Task Force indicates that a formal quality assurance procedure was not utilized for reviews performed by the Authority and our (then) consultant as part of the initial Section III.G review. The installation of Appendix R modifications and the so called "interim fire protection measures" were performed under the appropriate quality assurance program and are unaffected by the Task Force findings. The current Appendix R re-evaluation is being performed in accordance with the appropriate requirements of the Authority's quality assurance program and supercedes the previous efforts.

Should you or your staff have any questions regarding this matter, please contact Mr. P. Kokolakis of my staff.

Very truly yours,

cc: Resident Inspector's Office Indian Point 3
U. S. Nuclear Regulatory Commission
P. O. Box 66

Buchanan, New York 10511

Attachment A to IPN-84-29

New York Power Authority Indian Point 3 Nuclear Power Plant Docket No. 50-286

EVALUATION OF INDIAN POINT RCP LUBE OIL DRAIN SYSTEM

The reactor coolant punp lube oil drain system at Indian Point Unit 3 is designated a nonseismic category I system and had no specific provisions for seismic design. This system was identified in the Indian Point III System Interaction Study as being a potential missile source to impact Category I instrument lines.

SMA, as a subcontractor to Pickard, Lowe \& Garrick, made a simplified evaluation of the lube oil drain lines and drain tank for the Design Basis Earthquake, DBE, of 0.15 g . It was concluded that the postulated interactions could not occur on the basis that the drain tank, drain lines and drain line supports would not become a missile at the DBE level of seismic input.

The system interaction study concentrated upon the probability of a missile being dislodged and striking a target. Consideration was not given to missile function. In the case of the lube oil drain system, the system function is to collect leaking pump motor bearing lube oil and transfer the oil to a drain tank. The principal concern is one of fire. The lube oil system was therefore reexamined to assure that it would have a very high probability of performing its intended functions under a DBE of 0.15 g .

Lube Oil Drain System Descridtion

The lube oil drain system consists of $2^{\prime \prime}$ schedule 40 threaded pipe drain lines that connect a drain tank at elevation $48^{\prime}-51 / 2^{\prime \prime}$ to drip pans mounted on platforms around the pump and pump motor. The lowest elevation drain pan is at the 65'-0" level at about the pump upper bearing location. An additional drain pan is located on a platform around the pump motor at the 70'-0" level. Additional drain piping connects to the pump motor oil cooler and to oil collection pans on the pump motor. The piping is
normally empty and the oil level in the drain tank is variable.

Preliminary as-built drawings prepared by NYPA show the drain piping, drain tank and support system layout. The piping layouts for pumps 31 through 34 are similar but not identical. Likewise the support locations are not identical. Most supports are U-bolt clamps or pipe straps rigidly connecting the piping to structural steel members.

Figures 1 and 2 show a typical drain tank and support. Figure 3 shows the two drain lines connecting to the top of the drain tank and Figure 4 shows a typical vertical run of the two drain lines between the drain tank and the pump platform at the 65^{\prime} elevation. The copper colored line in Figure 3 and 4 connects to the drain pan at elevation 65' and the green line continues on to collect oil from drip pans at the 70 level and at pump motor connections above the $70{ }^{\prime}$ level. Typical piping detail between the 70' and 78' platforms is shown in Figures 5, 6 and 7.

Lube oil drain piping for pumps 31, 33 and 34 have three to five supports Tocated above the 70^{\prime} elevation. Pump 32 lube oil drain piping has only one vertical support at elevation 76'-2'.

Basis for Evaluation

NYPA is currently conducting a detailed design and analysis of the RCP lube oil drain system to upgrade it to seismic Category 1 status. The evaluation conducted by SMA is therefore not as detailed as would be done for current designs to rigorous code and licensing requirements. The objective of the evaluation was to determine whether the lube oil piping system would actually fail under a 0.15 g earthquake rather than to demonstrate compliance to current licensing criteria. The current system would likely not meet current licensing criteria if standard linear elastic response spectrum analysis methods were employed. If one takes a more objective look at the actual system and loading though, it appears
that there is adequate support of the piping to preclude failure at the DBE level.

The approach was to demonstrate that the current system would meet the intent of current licensing criteria using simplified analytical approaches. Support spacing charts developed "or threaded piping during the Indian Point III System Interaction Study were utilized to evaluate piping and some simple hand calculations were conducted to demonstrate adeqaute anchorage of the lube oil drain tanks.

The pipe support spacing charts for threaded pipe are included as appendices A, B and C to this report. The charts are based on simple geometric piping systems subjected to equal equivalent static load in three principal directions. In deriving a maximum allowable span for 2 " threaded pipe, 1.5 times the peak spectral acceleration for the 5% damped response spectrum at the highest elevation of the system was used as the basis for loading. This is conservative for two reasons. First, the 1.5 factor on peak spectral acceleration is considered an upper bound. Its conservatism is recognized and allowed for equivalent static analysis by the Standard Review Plans, Section 3.7.2 II $1(b)$. Secondly, spectra for the reactor building internal structure at $81^{\prime-6 "}$ were used. This is about the highest elevation of the piping system and bounds all lower elevations. Five percent damping was used on the basis that current data accumulation and recommendations by the Pressure Vessel Research Committee, PVRC, support 5\% damping for all sizes of piping for frequencies up to 10 Hz . The piping fundamental frequency is expected to be below 10 Hz .

Accounting for the fact that the piping charts in the Appendices are based on equal seismic input in each of three principal directions and the Indian Point structural response is dominated by one direction (NS), it was determined by interpolation of charts in the Appendices that an acceptable straight continuous span length for 2 inch diameter threaded pipe in the empty condition is about 37 feet. This is based upon meeting ASME Class 3
faulted condition stress acceptance triteria. Appendix A details the derivation of the allowable span lengths for continuous span straight sections. Curved and branch total spans may be determined from the charts in Appendix C.

The above criteria were applied to the ?ube oil drain piping geometry recognizing that the actual geometry is not nearly so simple as the base cases in the Appendices.

Drain piping for pumps 31,33 and 34 were determined to have spans between supports that would meet the span spacing acceptance criteria of the Appendices. The lube oil drain piping for pump 32 has only one support, a vertical sliding support at about elevation 76'-2" and the unsupport span of piping for loading in the lateral direction will not meet the acceptance criteria established. However, if large deflections are considered, lateral support is provided at elevations 65^{\prime} and 70^{\prime} as the piping passes through floor grating. The restraint offered by the floor grating is considered sufficient to keep the piping from sliding off of its only vertical support. The lateral support afforded at these floor levels also supports the piping adequately to prevent failure in a 0.15 g earthquake. If these locations are considerad to be active supports after taking up the gap between piping and grating, the unsupported spans will meet the pipe support spacing criteria.

The drain tank anchorage was evaluated for adequancy to withstand the 5% damped peak spectral acceleration for the base mat spectra at elevation 46'. The weak link in the tank anchorage was determined to be the $5 / 16$ diameter embedded expansion anchors on the tank legs. Using a safety factor of five on average pull out strength in 3000 psi concrete as an allowable bolt load, the tank anchorage was found to be adequate for the full tank condition.

Pipe supports were not analyzed in detail but were subjectively determined to be adequate on the basis of the small loading that could occur during the DBE. As an example, the empty pipe weighs only 0.415 pounds per foot. The peak spectral accelerations for 5% damping at elevation 81'-6" are $0.55 \mathrm{~g} \mathrm{NS}, 0.29 \mathrm{~g} \mathrm{EW}$ and 0.19 g V . The vector sum of 1.5 times these values is about 1 g . Thus, the average support reactions for a lg acceleration on a 37^{\prime} continuous span are less than 16 pounds. The U-bolt clamps and pipe straps used for supports can easily carry much more than this value.

Conclusions

By applying simple analytical approximations and conducting simple hand calculations, it was determined that the current RCP lube oil. drain system will not fail during a design basis earthquake of 0.15 g . In one instance, the supporting effect of a floor grating had to be considered to reach this conclusion. While mobilization of the floor grating as a support would not normally be considered in a piping system design, the beneficial effect is nevertheless present and should be considered in making estimates of the actual capacity of the system.

- BASIS FOR SEISMIC SUPPORT SPACING TABLES AND CHARTS

This Appendix presents a discussion of the analytical basis and procedures used for the development of tables and charts which can be employed to make an approximate evaluation of unsupported spans of non-seismic piping. In brief, the basic procedure to use the tables and charts is to first select a maximum allowable length between supports of an "equivalent" straight pipe for the particular pipe size, material, and seismic acceleration from the tables of Appendix 8 . With this length, and the configuration (one-bend; two-bend, in-plane; etc.) of the pipe being analyzed, the approximate maximum spacing between seisinic supports can be selected from the charts of Appendix. C. The basis for the tables and charts is as follows.

SPACING TAGLES - (APPENOIX B)

The tables of Appendix B are developed for the case of a continuous, straight, horizontal pipe of four equal spans. For this case, where the seismic load is assumed to act as a uniform load over all spans, the maxinum bending moment in a span is deternined by the relationsinip:

$$
\begin{equation*}
11=0.107 \mathrm{GN}^{2}{ }^{2} \tag{1}
\end{equation*}
$$

where:

```
    \therefore= bencing %onent (1b-in.),
    G = seis:it acceleration (multiple of gravity), not to be
        confis=i with icceleration uf gravity, g,
        w= unifirm weignt istribution of jipe (ib/in),
        &= ien?t! of pioe soan between supports (in!.
```


$$
\begin{equation*}
\frac{P D_{0}}{4 t_{m}}+\frac{0.75 i M_{A}}{z}+\frac{0.75 i M_{B}}{2}=2.4 S_{h} \tag{2}
\end{equation*}
$$

where:

P $\quad=$ Internal design pressure
$D_{0} \quad=\quad$ Outside dianeter of pipe
$t_{m} \quad=$ Wall thickness of pipe including corrosion allowance
$M_{A}=$ Moment due to sustained loads
$M_{B} \quad=$ Moment due to occasional loads (DBE, in this case)
$z=$ Section modulus of pipe
$\mathfrak{i} \quad=$ Stress intensification factor from the code
$S_{h}=$ Allowable stress from the Code Appendices

In addition, the product of 0.75 i can not be less than 1.0. In the case of straight pipe, $i=1.0$, therefore $0.75 \mathrm{i}=1.0$.

The seismically induced stress, J_{s}, for straight pipe is calculated as:

$$
\begin{equation*}
y_{s}=\frac{M_{B}}{Z} \tag{3}
\end{equation*}
$$

If the stress ${ }^{\prime}$ s is assuned to be a maximun pemissible seismic stress, then the inaximun span lengin between supports that is pernissijle aithout exceeding this stress san be otained by substituting Equation (3) into Equation (:) and soluing for: :...

$$
m_{m}=\left[\frac{3.35 s^{2}}{6 w}\right]^{1 / 2}
$$

Thus, if an allowable seismic stress σ_{s} and the seismic loading (as expressed by the acceleration G) can be selected, the maximum span length can obtained from Equation (4). The allowable stress and seisinic loading are discussed further in the following sections.

Allowable Stresses (σ_{s})

The allowable seismic stress used in Equation (4) is obtained by subtracting from an allowable total stress, allowances for deddweight stresses and pressure stresses. From the code acceptance criteria, the maxinum allowable stress permitted in the pipe is $2.4 S_{h}$. A reasonable approximate allowance for the deadweight stress is $0.1 S_{h}$, based on the normally used spacing for supports of piping systems as expressed in the B31.1 Power Piping code used in the original design of non seismic category piping.

The allowance for pressure stress was selected as $0.5 S_{h}$ based on the assumption that the pipe wall thickness was selected on the basis of pressure stress in the hoop direction by the simple relationship:

$$
\begin{equation*}
S_{h}=\frac{P D_{0}}{2 t_{m}} \tag{5}
\end{equation*}
$$

Since the stress in the longitudinal direction is equal to haif the hoop stress, it was assumed that one-half the allowable stress nargin in the longitudinal direction is "used" by the pressure in the pipe and the remainder is available for dead load and seisinic stresses. Equation (5) above, is a smplification of the s3i.1 Code criteria for aipe wall thickness, Paragrach 104, Equation j, anich rearranged, jiuas:

$$
\begin{equation*}
s_{h}=\frac{2\left(0_{0}-0.3 t_{\mathrm{in}}\right)}{2 t_{t i n}} \tag{5}
\end{equation*}
$$

Equation (5) is reasonable. Given the approximate nature of the method, the simplified version of the pressure stress fonmulation of Equation (5) was selected for all schedules and sizes of pipe.

Thus, using the above allowances for dead load and pressure, the maximum permissible seismic stress becomes:

$$
\begin{equation*}
\sigma_{s}=2.4 \mathrm{~S}_{h}-0.1 \mathrm{~s}_{h}-0.5 \mathrm{~S}_{h}=1.8 \mathrm{~S}_{h} \tag{7}
\end{equation*}
$$

If equation (7) is substituted into Equation (4), the expression for ${ }_{2}$ becomes:

$$
\begin{equation*}
\ell_{m}=\left[\frac{16.83 S_{h} Z}{G w}\right]^{1 / 2} \tag{8}
\end{equation*}
$$

The above equation was developed for faulted condition loading only where faulted condition is defined as nomal plus SSE loading. Load combinations for the OBE event are not considered in evaluating systen interactions.

For the case of threaded piping, a code specified stress intensification factor of 2.3 was applied to account for the possibility of threaded couplings occurring at the point of naximum moment. Considering the stress intensification factor to apply to deadweight and seismic stress, the equation for span length becomes:

$$
\begin{equation*}
i_{m}=\left[\frac{9.38 s_{h} z}{G w}\right]^{1 / 2} \tag{9}
\end{equation*}
$$

jeisinic coduing
Seisinic loading on the piping system is reoresented by the term an, Equation ill. The acceierations, a, used in this ippendix for

- Mran=nこs.

The above values are horizontal accelerations assumed to act in each direction. At lower levels where most of the piping under consideration is located, the peak vertical spectral accelerations are approximately $2 / 3$ of the horizontal peak spectral accelerations. For purposes of developing pipe support tables, vertical accelerations were assuned to be equal to the horizontal values. This is conservative at all elevations. Responses due to the two horizontal and one vertical. directions were combined by the square-root-of-the-sum-of-the-squares method to obtain total response. The appropriate acceleration level, G, to be employed in design should be selected as follows. First, select the appropriate floor response spectrum applicable at the points of support of the piping system in question. This step will automatically include the appropriate damping value for the piping. Second, select the acceleration G as a fraction of the peak spectral acceleration of the floor response spectrum. This can be expressed as

$$
\begin{equation*}
G=K_{s} S a_{p} \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
K_{s}= & \text { fraction of the peak of the applicable floor response } \\
& \text { spectrum, }
\end{aligned}
$$

$S a_{p}=$ peak (maximum) spectral acceleration of the applicable floor response spectrum.

The value of k_{s} to be used depends upon the degree of conservatisin that is required in the analysis. For final confimation of seisicic design adequacy, the J.S. Nuclear Pegulatory Cominssion requires that a conservative value of $K_{s}=1.5$ be used when an equivalent stitic coefficient methud, such as outlined in this ippendix, is used to verify design and further dynanic analyses are not performed (Reference $A-i$). :then dynamic inalyses are used to verify design of piping sistens which nave neen laid out and supported using procedures similar to those portrayed in this report, it has been determined statistica!? that it
can be expected that approximately one line in 50 , will be overstressed as determined by dynamic analysis when a coefficent of $\mathrm{K}_{\mathrm{s}}=0.6$ is used (Reference A-2).

Thus, in using the tables of Appendix E, peak floor response spectral acceleration, Sa_{p}, for the piping system being evaluated should be detemined and multiplied by K_{s}. For purposes of making field judgements as to the likelihood of failure of Indian Point Unit 3 non seismic piping, a value of K_{s} equal to unity was used. This is considered to be conservative and to result in `a very low probability of exceeding code allowable stress and essentially zero probability of pipe failure.

Table Series 82 was developed for threaded piping assuming a threaded joint at the point of maximum moment. A stress intensification factor of 2.3 from the ANSI B31.1 power piping code was applied at the threaded joint. Table Series B2 may also be used for piping of 2-inch diameter and less, connected by socket welds where inaximum moment is assumed to occur at the socket weld. The appropriate stress intensification factor for socket welds is 2.1 and the 2.3 factor used for threaded pipe bounds this value. Also, the allowable stress, S_{n}, for threaded pipe is 12 ksi based on an assuned inaterial of $\dot{\mathrm{h}}$-53-ûrade A .

Piping materials, sizes; schedule, and allowade stress, S_{h}, for which tables were developed are sumarized in Table $\dot{A}-1$.

Support span spacings for schedule 40 piping for 1 " and 2" diameters are almost identical to those ifsted in Table $\mathrm{H}-1$ for schecule 30. The strengthening effect of increased moment of inertia is negated by the increased pipe weight, thus, for all practical purposes, the $i^{\prime \prime}$ and 2 " diameter support spacing tables apol: to both Schedule io and schedule 30 piping.

DESIGN CHARTS FOR VARIOUS PIPE CONFIGURATIONS - (APPENDIX C)

Seismic support spacings in the tables of Appendix B were developed for straight, horizontal pipes continuous over multiple supports. These tables can be used to select maximum span lengths which will keep the stresses in the pipes within prescribed limits. Using these tables, modified by the charts of Appendix C, seismic support spacings can be obtained for other configurations of pipe. Specifically, in Appendix C, normalized, non-dimensional seismic design charts have been prepared for the following four basic configurations:

1. One-bend;
2. Two-bend, in-plane;
3. Two-bend, out-of-plane;
4. Branch connection of equal branch diameter

These configurations are shown in Figure A-1. The basic idea of the charts developed for Appendix C is that they permit evaluation of span spacing (Figure $A-1$) if 1_{m} (from Appendix B) and the ratios $1_{2} / l_{m}$ for one-bend or the ratios $1_{2} / 1_{m}$ and $1_{1} / 1_{\text {in }}$ for the other configurations are known.

Derivation of the Charts

The charts of Appendix C were derived by computer analysis of selected configurations and orientations. The charts in Appendix C are an Extension of previous work where a series of charts were prepared for a large number of pipe sizes, schedules, inaterials and tenperatures. The previous work, however, assumed constant stress intensification factors for ali sizes jf piping eloows and tees. The charts contained in Appendi، C Jithis repor: sisecifically address stress irtensification factors for : hreaded joints and for different pipe sizes. Some of the originjl wr: was scalej to more specific conditions being addressed and verificition canputer analyses were conducted to validate the scaling process. Esural jeneral appects of the deriation zf the charts are as fol10.05.

An earthquake in two horizontal directions and a simultaneous vertical earthquake with an acceleration equal to the horizontal acceleration have been considered. Internal moments from these directions have been combined on a square-root-of-the-sum-of-the-squares basis. The two horizontal seismic inertia forces were assumed to be oriented parallel and perpendicular to the horizontal runs of the piping system.

The branch connection fitting assumed in the preparation of Appendix B charts for full penetration butt welded piping is a butt welding tee per ANSI B16.9, as shown in the B31.l Code, Appendix D and uses a stress intensification factor as follows:

$$
i=0.9 /\left(4.4 t_{m} / r\right)^{2 / 3}
$$

where

$$
\begin{aligned}
& t_{m}=\text { wall thickness of the tee. } \\
& r=\text { mean radius of the tee. }
\end{aligned}
$$

The elbow fitting used is a long radius. $(R=1.5$ ciameter) welding elbow with a stress intensification factor as follows:

$$
i=0.9 /\left(t_{\mathrm{m}} R / r^{2}\right)^{2 / 3}
$$

For threaded piping all tee and elbow joints are threaced and a stress intensification factor of 2.3 is used. inis factor exceeds stress intensification factors for all tse and eloow fittings except the case of an 8 -inch schedule 40 elbow where the stress intensification factor is
2.44. The 2.3 factor for threaded pipe joints was considered sufficien:ly close to 2.44 for purioses of chart development that a special case iras not considered for 3 -inch schedule 40 elbows. Some sample $-3: ミ s$ were conducted to verify that support spans base on $\mathfrak{i}=2.3$:A not r三sult in an elbow uverstress conditicn for a-inch schedde 40
pipe. In the cases tested, maximum stress always occurred at the support locations and not the elbow when considering threaded joints to exist at or near the pipe supports.

Table A-2 summarizes the stress intensification factors calculated for all sizes of pipe considered. In order to minimize the number of cases to be run, stress intensification factors that bounded those in Table A-2 were utilized. To avoid unnecessary conservatism, the bounding was conducted by pipe size groups. Table A-3 shows the stress intensification factors used in the bounding analyses.

Use of the Charts
In general, the charts are used as follows:
a. Find the maximum length, l_{m}, from the tables of Appendix B.
b. Obtain the ratio l_{-2} / l_{m}, for the single bend or the ratios $1_{1} / 1_{m}$ and $1_{2} / 1_{m}$ for the other cases by direct calculation.
c. Refer to the charts of Appendix C to obtain l_{1} / l_{m} for the single bend or $1_{3} / 1_{\text {in }}$ for the other cases.
d. Calculate l_{1} (single bend) or l_{3} (other cases) which is the maximum permissible distance to the next seismic support.

As an approximation for large concentrated weights, it is suggested that the concentrated weight be replaced by an equivalent span length of pipe multiplied by l.5. For example, if a valve weighs 100 lb in a line having a unit weight of $2 \mathrm{lb} / \mathrm{in}$, the effective length is (1.5) $(100 / 2)=75 \mathrm{in}$. The coefficient of 1.5 is based on the ratio of maximum monent in a fixed-end beam with load at the center, : :i: $/ 8$, to the same zeam uniformif ioaded, $11 / 12$, where $:=W 2$ and w is the load per unit : ength of bedm.

The tables and charts provided do not consider any intermediate supports and restraints. In developing the tables and charts, it was assumed that the terminal ends of all support configurations were continuous, straight pipes.

REFERENCES

A-1 "Equivalent Static Load Method," U.S. Nuclear Regulatory Commission, Standard Review Plan, Section 3.7.2. II 1.6, June, 1975.

A-2. Stevenson, J. D., "Seismic Design of Small Diameter Pipe and tubing for Nuclear Power Plants," Paper No. 314, 5th World Conference on Earthquake Engineering, Rome, 1973.

a. One-bend

b. Two-bend, in-plane

FIGURE A-1 PIPING CONFIGURATIONS

TABLE A-1
APPLICABLE PIPE SIZES

System	Size	Schedule	Material	S_{h}
Full Penetration Butt Welded Piping	$1 "$	$!30$	$\begin{aligned} & \text { Seamless } \\ & \text { ASTM }-106 B \end{aligned}$	15 ksi
	2 "	80	\|	1
	3"	40		
	4"	40		
	$6 "$	40		
	8"	40	\dagger	\dagger
	2 "	80	Seamless ASTiM-A53 Gr A	12 ksi
Threaded Piping	2	80	ASM-A53 Gr A	
	2-1/2"	40		
	$3{ }^{\prime \prime}$			
	$4 "$			
	$6 "$			
	$8{ }^{\prime \prime}$,	\downarrow	\downarrow

TABLE A-2

STRESS INTENSIFICATION FACTORS FOR PIPE COMPONENTS

$\begin{gathered} \text { Nominal } \\ \text { Pide Size } \end{gathered}$	Schedule	$\begin{gathered} 0.0 . \\ \text { (inches) } \end{gathered}$	Stress Intensification Factor		
			Elbow**	Welding Tee	Threaded Joints
1	80	1.315	1.09*	1.0*	2.3
2	80	2.375	1.32*	1.0*	2.3
2-1/2	40	2.875	1.59	1.18	2.3
3	40	3.5	1.78	1.30	2.3
4	40	4.5	1.95	1.45	2.3
6	40	6.625	2.27	1.69	2.3
8	40	8.625	2.44	1.84	2.3

* Stress intensification factor of 2.1 should be used for fittings, under 2 inches if socket welds were used.
** Radius of the bend $=1.5 \times$ (nominal pipe diameter)

TABLE A-3

BOUNOING STRESS INTENSIFICATION FACTORS FOR PIPE COMPONENTS

Nominal Pipe Size	Schedule	Bounding Stress Intensification Factor			
		Welding Tee	Socket Weld	Threaded Joints	
1		1.33	1.33	2.3	2.3
2	80	1.33	1.33	2.3	2.3
$2-1 / 2$	40	1.8	1.33	$\mathrm{~N} / \mathrm{A}$	2.3
3	40	1.8	1.33	$\mathrm{~N} / \mathrm{A}$	2.3
4	40	2.15^{*}	1.66	$\mathrm{~N} / \mathrm{A}$	2.3
6	40	2.3	1.66	$\mathrm{~N} / \mathrm{A}$	2.3
8	40	2.3	1.84	$\mathrm{~N} / \mathrm{A}$	2.3

* This was an existing case from prior work, thus, special cases were not run for $i=1.95$ for $4^{\prime \prime}$ elbows

APPENDIX B

SPACING TABLES TO DEFINE SPAN LENGTH

FOR STRAIGHT PIPE CONFIGURATIONS

The tables in this appendix are organized by:

1. Piping Joint Type
2. Horizontal Input Acceleration Level
3. Pipe Schedule and Geometary

The combination of material and operating temperature defines the allowable stress. The material for full penetration butt welded pipe is assumed to be ASTM A-106 Grade B and the allowable stress, S_{h}, is constant up to $650^{\circ} \mathrm{F}$. Threaded pipe is assumed to be ASTM-A-53 Grade A and the allowable stress is constant up to $300^{\circ} \mathrm{F}$. None of these temperature limits are expected to be exceeded for any of the postulated sources. The specific series of tables provided are listed in Table B-1.

In the use of these tables, the appropriate span length, $]_{m}$, may be determined for ooth the empty and full cases. None of the cases considered insulation on the piping. For insulated piping, soan spacings may be adjusted by using equation 4 of Appendix A to ratio the support soacing for a new weight, !!.

TABLE B-1

SPACING TABLES FOR STRAIGHT PIPE

Table Series	System	Material	S_{h}, psi	Accel. Levels
B-1	Full Penetration Butt Welds B-2Threaded Piping 106 B (threaded joints in span or near support)	A 53 Gr. A	15,000	0.5 to 1.5 g

*Also used for l" and 2" diameter piping with socket welds

SYSTEM

MATERIAL

CODE

HORIZONTAL INPUT ACCELERATION

FULL PENETRATION BUTT WELDS (No Socket Welds)

ASTM A106, GRADE B CARBON STEEL, $S_{h}=15 \mathrm{ksi}$

ASME SECTION III, ND3600
0.5 g to 1.5 g

TABLE BI-I

HLUS L: $\because i$ O OR: STAIIC ANALYEIS USING PEAK SFECTRA ACCELERATION

SPACIJG TABLE TO GEFII:F SFAR: IFNGTH FOP STRAIGHT PIPE

GPACIHA，IGMLF TO DEFINE SPAN LFNGTH FOR STFAIGHT PIPE FUNS FLEEV ON STATIC ANALYSIS USING FEAK SPECTRA ACCELERATION
－

HOFINAL			cigut		SUPFORT SPACINC	
IPt こı？	かいT－1！「	－山らL	L．Stir	INCH	$1 \mathrm{NCH}$	
INCHE	－Clasioter	T TiCr	FAtit	FULL	EMFTY	FULL
$1 . i$	1．215	－17：	－181	． 207	3 3r． 101	372.325
\therefore י：	$\because \cdot{ }^{2} 7$	－210	．41．	． 525	55\％．35u	498.471
$\therefore \therefore$	2.687%	－20？	－40：	－655	627.423	538.4×5
\therefore－	$\therefore 0^{\circ} \mathrm{i}$	． 216	－6．31		ES．4．470	545.590
$4 . \%$	4．\quad リr．	． 237	－89－	1．${ }^{\text {r．}}$ ．μ	75H．RS？	6́4ラ．9¢5
＋． 0		． $2+0$	1．4n	2．f．te	570.46 .4	759．973
1．it	Hetirs	． 32 ？	$\therefore 3710$	4.174	1123.028	847.3

TABLE B1-3

SPACINC IAGLE TO DEFINE SFAR: LFNGTH FOK STRAIGHTPIPE
UUNS LASES ON STATIC LNALYSIC USING PEAK SPECTKA ACCELERATION

- $\quad \begin{gathered}\infty \\ 1 \\ 0\end{gathered}$
SYSTEMMATERIALCODEASME SECTION III, ND3600
HORIZONTAL INPUT ACCELERATION g 0.5 g to 1.5

. $\begin{aligned} & \infty \\ & 1 \\ & 0\end{aligned}$

GFACIL: TAbLY TO UZFINF $\because P A N$ LENGTH FOR STEAIGHT PIPE hUNS rAシEn ON SIAIIC ANALYSIS USING PEAK SPECTRA ACCELERATION

$\begin{array}{r}\quad \\ 0 \\ -\quad 1 \\ \hline\end{array}$

-	ivomIAAL	dimensions --inch		\triangle CIGHT		SUPPORT SPACINGINCHES	
	16icel2e	SUTE!De ifiavfteh	WhLL	LtS fich	INCH		
	inches		thick	fMPIY	FULL	EMPTY ${ }^{\text {INCHES }}$ full	
-	1.0	1.315	. 178 ,	.181	.207	215.070	201.145
-	\therefore :		. 218	. 414	-595	301.64?	269.294
	$2 \cdot 3$	C.0.75	. 233	-4a3	. 655	338.959	250.884
	3.0	3.502	. 214	.631	-898	377.347	316.359
-	4.0	$4 \cdot 513$.297	-t:ブ	1.328	421.572	351.132
	6.0	Sot 25	. 2 \& 0	1.5.51	2.626°	524.146	410.568
	H.0	ลิ.tit.	.3??	3.374	4.179	606.705	457.76A

APPENDIX C

CHARTS TO DETERMINE SUPPORT SPACING FOR ONE-BEND;

 TWO-BEND, IN-PLANE; TWO BEND, OUT-OF-PLANE, AND FULL SIZEOUTLET BRANCH CONNECTION CONFIGURATIONS

The charts are organized by piping system configuration (Figure $C-1$) and stress intensification factors. In brief, they are used as follows:

In the case of configuration 1 , knowing one leg of the run, 1_{2} the second leg l_{1} may be found from the charts as follows:

1. Given material, input acceleration as a function of g level, pipe geometry, determine l_{m} from the tables (appendix B).
2. Given l_{2} as the distance from the last located support to the center of the elbow, detemine the ratio $1_{2} / 1_{m}$.
3. Enter the charts in Appendix C for configuration 1 and read $1_{1} / 1_{m}$ on the abscissa.
4. Determine 1_{1} and locate the next support.

The treatment of configurations 2,3 , and 4 are similar; however, two legs must be known initially, l_{2} and l_{1}. The procedure in these cases is:

1. Given material, input acceleration, and pipe geometry, determine i_{m} from the tables (Appendix B).
2. Given 1_{2} and 1_{1}, determine the ratios $1_{2} / l_{m}$ and $1_{1} / l_{m}$.
3. Enter the charts for the appropriate configuration and read $i_{3} i_{m}$ on the abscissa.
4. Setermine 1_{3} as the allowable distance to the next support.

In the manner described above it is possible to sequentially locate seismic support spacings for piping systems. Charts are only shown for the threaded pipe cases. Charts developed for full penetration butt weld cases all indicate more liberal span spacings, thus the charts presented are conservative for evaluation of support spans. It can be seen from the charts that the combination of $l_{1}+l_{2}$ for the single bend in plane case or $1_{1}+l_{2}+1_{3}$ for the other cases is always greater than 1_{m}, thus for easy field observations and evaluations, all span combinations were compared to 1_{m} for threaded pipe.

FIGUPE C-1

CONFIGURATIONS AND COORDINATE AXES

Configuration 1: One-bend

Configuration 2: Two-bend, in-plane

Configuration 3: Two-bend, out-of-plane

Configuration 4: Welded tee

\& : \because

THREADCD PIPE - ALL SIZE PIPES (ONE-BEND)

CHART C-1
 --

CHART C- 3
C-7

Figure 1

Figure 2

Figure 3
$\because, 1$

Figure 4

Figure 5

RCS LUBE OIL DRAIN SYSTEM (continued)

0

Figure 6

Figure 7

RCS LUBE OIL DRAIN SYSTEM (continued)

