
Qualification and Test Plan of Class 1E Gas Turbine Generator System

Non Proprietary Version

November 2009

© 2009 Mitsubishi Heavy Industries, Ltd. All Rights Reserved

Revision History

Revision	Page	Description
0	All	Original issued
1	1-3	Changed frequency of overhaul "once or twice" to "several times" in Periodic Maintenance of Table 1.0-1 "Gas Turbine and Diesel Engine Comparison"
	2-1 through 2-3	Updated standards in item (5), (10), (13), (18), (19) of section 2.2 "Industry Standards - IEEE" and item (3), (4), (7), (15), (16), (19) of section 2.3 "Other Industry Standards" Added standard in item (29) of section 2.3 "Other Industry Standards" Eliminated standards "IEEE-494-2005", "ANSI C50.10-1990", "ANSI C50.12" form section 2.2 and 2.3 by withdrawn
	8-1	Updated Figure 8.0-1 "Qualification Schedule" to latest schedule
	10-1	Revised standard for fuel oil day tank "Underwriter's Laboratories Specification UL-142, Steel Aboveground Tanks for Flammable and Combustible Liquids" to "ASME Section III, Class 3" in item 3 of section 10.0 "REFERENCES"
"Dimensions and Weight"		Changed dimensions of engine in item (1) of section B.2.2 "Dimensions and Weight"
	B-11 through B-15	Changed Figure B.2.2-1 "Installation Drawing of Gas Turbine Assembly"
	B-16	Eliminated Figure B.2.2-1 "Installation Drawing of Gas Turbine Assembly (sheet 6)"
	B-16	Changed Figure B.3.1-1 "Fuel Flow Rate and EGT of Gas Turbine Assembly Nominal Performance"
	B-17	Changed Figure B.3.1-2 "Air Flow Rate and Compressor Discharge Pressure (CDP) of Gas Turbine Assembly Nominal Performance"
	B-19	Changed Figure B.3.2-1 "Pressure Loss Correction of Gas Turbine Assembly"
	B-21	Changed Figure B.4.1-1 "Fuel System Schematic for Gas Turbine Assembly
	B-23	Changed Figure B.4.2-1 "Main Lubricating Oil System Schematic for Gas Turbine Assembly"
	C-2	Added the protection devices in item (12) of section C.1.2 "Other Auxiliary Equipment"
	C-3	Added the description about conformance with R.G 1.9 to section C.2.1 "Summary"
	C-3	Revised entire description of item (5) in subsection C.2.1.3 "Performance Criteria"

_

Revision	Page	Description
	C-6	Revised standard for fuel oil day tank "Underwriter's Laboratories Specification UL-142, Steel Aboveground Tanks for Flammable and Combustible Liquids" to "ASME Section III, Class 3" in item (1) of subsection C.2.2.6.6 "Fuel Tank"
	C-13	Changed the title of subsection C.2.3.1.13 "Power Output Leads / Terminal Box" to "Power Output Leads" and eliminated the description about terminal box
	C-13	Added the word "AC" in 7 th item of subsection C.2.3.1.14 "Generator Assembly Manufacturer's Test"
	C-15	Added the description in item (2), (b) "ac power" of subsection C.2.3.6 "Motor Control Center and Auxiliary Power"
	C-17	Added the description in item (1), (e) of subsection C.2.4.2 "Protective Devices"
C-18		Added item (g) "Reverse power" in Generator of item (2) of subsection C.2.4.3 "Alarms"
	C-20	Eliminated section C.4.1 "Acceptance Tests"
	C-20	Changed the number of times of valid start and load tests "100" to "150" in item (a) "Reliability" of section C.4.1 "Factory test"
	C-20	Eliminated the description about Starting test in section C.4.1 "Factory test"
	C-21	Eliminated the description about Field tests in section C.4.0 "Acceptance tests"
	C-22 through C-29	Added the new section C.5.0 "Conformance with R.G 1.9"
	F-2, F-3	Updated Figure F.1.0-1 "Generator and Class 1E Qualification" to latest schedule in Appendix F "Production Schedule"
	G-1 through G-4	Eliminated Appendix G "Conformance to Regulatory Guide 1.9 Rev. 4

© 2007 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved

This document has been prepared by Mitsubishi Heavy Industries, Ltd. ("MHI") in connection with the U.S. Nuclear Regulatory Commission ("NRC") licensing review of MHI's US-APWR nuclear power plant design. No right to disclose, use or copy any of the information in this document, other that by the NRC and its contractors in support of the licensing review of the US-APWR, is authorized without the express written permission of MHI.

This document contains technology information and intellectual property relating to the US-APWR and it is delivered to the NRC on the express condition that it not be disclosed, copied or reproduced in whole or in part, or used for the benefit of anyone other than MHI without the express written permission of MHI, except as set forth in the previous paragraph.

This document is protected by the laws of Japan, U.S. copyright law, international treaties and conventions, and the applicable laws of any country where it is being used.

Mitsubishi Heavy Industries, Ltd. 16-5, Konan 2-chome, Minato-ku Tokyo 108-8215 Japan

Abstract

This technical report describes the design criteria, the design features, testing and qualification requirement for the Class 1E Gas Turbine Generator (GTG) units of US-APWR. MHI will perform the qualification program including tests with two partner companies. One has many years of experience of supplying commercial grade GTG. The other has extensive experiences of supplying Class 1E Diesel Generator (DG) units to US conventional nuclear power plants, as well as Commercial Grade Dedication per EPRI NP5652.

This report provides reasonable assurance that GTG is highly reliable and dependable and very well suited to perform their safety functions as required by the US codes and Standards. These include:

Code of Federal Regulations Regulatory Guides Branch Technical Positions NUREG-Series Publications IEEE-Standards Other Industry Standards

The GTG system requires no cooling water system. GTG is a very simple rotary engine which is much simpler than a diesel engine. There are also far fewer components, such as valves, pumps and pipes in the GTG support systems, compared to support systems for a DG. Thus, GTG is expected high reliability. The reliability of GTG system is expected to be higher than or at least equal to that the DG.

This technical report describes the followings

Design criteria Design features, specification Seismic analysis Reliability Class 1E qualification plan

MHI seeks NRC approval of this design criteria and qualification requirement for application to the Class 1E standby power supply system of the US-APWR.

Table of Contents

List	of Fiqu	es······iv res······v nyms······vi
1.0	ΙΝΤΙ	RODUCTION/OVERVIEW1-1
	1.1 1.2	Scope 1-4 Purpose 1-5
2.0	LIST	OF STANDARDS AND REGULATIONS2-1
	2.1 2.2 2.3	NRC Documents2-1Industry Standards – IEEE2-1Other Industry Standards2-2
3.0	DEFI	NITIONS
4.0	PRIN	CIPAL DESIGN CRITERIA4-1
	4.1 4.2 4.3 4.4 4.5	Capability
5.0	FACT	ORY PRODUCTION TESTING
	5.1 5.2 5.3 5.4 5.5	General5-1Gas Turbine Power Section Test5-1Gas Turbine Engine Assembly Test5-1Test Contents for Gas Turbine Power Section5-1Test Contents for Gas Turbine Engine Assembly Test5-3
6.0	SEISI	MIC ANALYSIS6-1
		Shock Loading Due to Seismic Events
7.0	RELI	ABILITY ANALYSIS
	7.1	General7-1

QUALIFICATION AND TEST PLAN OF CLASS 1E GAS TURBINE GENERATOR SYSTEM

		Reliability Derived from Industrial Field Data7-1
		Analysis
		Contributing Factor for Reliability
		Quoted Reliability Data from Other Reference Documents
	7.6	Conclusion
8.0	QUALI	FICATION SCHEDULE
9.0	CONC	LUSIONS9-1
10.0	REFE	RENCES
Арре	endix A	US-APWR Typical Load Profiles A-1
Арре	endix B	Gas Turbine Generator Technical SpecificationB-1
B.1.0	Intro	ductionB-1
B.2.0	Engi	ne Arrangement and SpecificationB-1
	B.2.1	Basic ArrangementB-1
	B.2.2	-
B.3.0	Perf	ormanceB-2
	B.3.1	Major PerformanceB-2
	B.3.2	-
	B.3.3	Allowable Ambient Air ConditionsB-3
B.4.0	Spec	cification of Components and SystemsB-4
	B.4.1	Fuel SystemB-4
	B.4.2	-
	B.4.3	Starting SystemB-5
B.5.0	Engi	ne Assembly InstallationB-5
	B.5.1	Overall StructureB-5
	B.5.2	Air Intake and Exhaust SystemB-5
	B.5.3	Heat RadiationB-5
	B.5.4	Sound Power LevelB-5
Арре	endix C	Gas Turbine Generator Class 1E Qualification Plan
C.1.0	Gen	eral Information C-1
	C.1.1	DescriptionC-1
	C.1.2	Other Auxiliary Equipment C-2
	C.1.3	Service Conditions

C.2.0	Desig	gn Requirements-General C	;-3
	C.2.1	Summary C)-3
	C.2.2	Design Requirements, Mechanical C)-4
	C.2.3	Design Requirements - Electrical C-	
	C.2.4	Control, Surveillance And Protection System C-	16
	C.2.5	Weights C-	19
	C.2.6	Welding C-	
	C.2.7	Cleaning C-	19
C.3.0	Qualit	ty ControlC-	19
C.4.0	Acce	ptance TestsC-	19
	C.4.1	Factory TestC-	20
	C.4.2	Performance of Tests C-	21
	C.4.3	Repair and Retesting C-	21
	C.4.4	Test Reports C-	21
	C.4.5	Records and DocumentationC-	22
C.5.0	Confe	ormance with R.G 1.9C-	22
Appe	ndix D	Gas Turbine Generator Failure Mode and Event Analysis)-1
Appe	ndix E	I&C System of Gas Turbine GeneratorE	5-1
E.1.0	Overa	allE	: -1
E.2.0	Syste	em DescriptionE	<u>-1</u>
	E.2.1	GTG-SLS (One sub-group of SLS for GTG control and monitoring function	
	E.2.2	Gas turbine local control boardE	<u>-</u> 3
Appe	ndix F	Production ScheduleF	[:] -1

List of Tables

Table 1.0-1 (Gas Turbine and Diesel Engine Comparison	. 1-3
Table 5.4-1 \$	Standard Operating Ranges for Gas Turbine Power Section	. 5-5
Table 6.2-1	Seismic Evaluation of Bearings Used for The Power Section	. 6-3
Table 6.3-1	Seismic of Bearings Used for the Intermediate Shaft and the Output Shaft of the	he
F	Reduction Gearbox	. 6-4
Table 7.2-1	Field Data of GTG Starting Reliability	. 7-1
Table 7.4-1 (Comparison of Quantity of Parts between GTG and DG	. 7-2
Table A.1.0-1	Class 1E GTG - LOCA Load List	.A-1
Table A.1.0-2	Class 1E GTG -LOOP Load List	.A-1
Table A.1.0-3	Class 1E GTG Starting Sequence Train A – LOCA	.A-2
Table A.1.0-4	Class 1E GTG Starting Sequence Train A – LOOP	.A-2
Table A.1.0-5	Class 1E GTG Starting Sequence Train B – LOCA	.A-3
Table A.1.0-6	Class 1E GTG Starting Sequence Train B – LOOP	.A-3
Table A.1.0-7	Class 1E GTG Starting Sequence Train C – LOCA	.A-4
Table A.1.0-8	Class 1E GTG Starting Sequence Train C – LOOP	.A-4
Table A.1.0-9	Class 1E GTG Starting Sequence Train D – LOCA	.A-5
Table A.1.0-10		
Table B.2.1-1	Main Parts of Fuel, Oil, and Air System	.B-6
Table B.2.1-2	Main Parts of Electric System	.B-7
Table B.4.2-1	Engine Operation Limit and Protective Device Set Value	.B-8
Table D.1.0-1	FMEA of Starting Reliability for GTG Set	D-2
Table G.1.0-1	Conformance of US-APWR GTG to RG 1.9	G-1

List of Figures

Figure 1.1-1	Scope Diagram	1-4
Figure 5.4-1	Corrected Fuel Flow Rate vs Corrected Output of Gas Turbine Power Sect	ion
-		5-6
Figure 5.4-2	Corrected EGT vs Corrected Output of Gas Turbine Power Section	5-7
Figure 6.2-1	Sectional Drawing of Power Section (Colored Section Shows the Rotor)	6-3
Figure 6.3-1	Sectional Drawing of Gear Box (Colored Section Shows the Rotor)	6-6
•	Qualification Schedule	
Figure A.1.0-1	LOCA Condition Class 1E GTG Load Profile (Train A)	
Figure A.1.0-2		
Figure A.1.0-3	LOCA Condition Class 1E GTG Load Profile (Train B)	
Figure A.1.0-4	LOOP Condition Class 1E GTG Load Profile (Train B)	A-9
Figure A.1.0-5	LOCA Condition Class 1E GTG Load Profile (Train C)	A-10
Figure A.1.0-6	LOOP Condition Class 1E GTG Load Profile (Train C)	A-11
Figure A.1.0-7	LOCA Condition Class 1E GTG Load Profile (Train D)	A-12
Figure A.1.0-8	LOOP Condition Class 1E GTG Load Profile (Train D)	A-13
Figure B.2.1-1	Cross Sectional View of Power Section	B-9
Figure B.2.1-2	Gear Train of Reduction Gear Box	B-10
Figure B.2.2-1	Installation Drawing of Gas Turbine Assembly	B-11
Figure B.3.1-1	Fuel Flow Rate and EGT of Gas Turbine Assembly Nominal Performance	e
Figure B.3.1-2		
	Assembly Nominal Performance	
Figure B.3.1-3		
Figure B.3.2-1		
Figure B.3.2-2		
Figure B.4.1-1	Fuel System Schematic for Gas Turbine Assembly	
Figure B.4.1-2		B-22
Figure B.4.2-1	Oil System Schematic for Gas Turbine Assembly	B-23
Figure B.5.4-1	Sound Power Level	
Figure E.1.0-1		
Figure F.1.0-1	Generator and Class 1E Qualification	
Figure F.1.0-2	Gas Turbine Engine	F-4

List of Acronyms

ac	Alternate Current
dc	Direct Current
CDP	Compressor Discharge Pressure
CPS	Control Protection and Surveillance systems
CPU	Central Processing Unit
CT	Current Transformer
DG	Diesel Generator
ECCS	Emergency Core Cooling System
EGT	Exhaust Gas Temperature
ESI	Engine System Inc.
ESFAS	Engineered Safety Features Actuation System
FMEA	Failure Modes and Effects Analysis
FOA	Fuel, Oil and Air
GTG	Gas Turbine Generator
I&C	Instrumentation and Control
I/O	Input/Output
IV&V	Independent Verification and Validation
KHI	Kawasaki Heavy Industries
LOCA	Loss of Coolant Accident
LOOP	Loss of Offsite Power
MCR	Main Control Room
MHI	Mitsubishi Heavy Industries
MTBF	Mean Time Between Failure
QA	Quality Assurance
RTD	Resistance Temperature Detector
SLS	Safety Logic System
UV	Under Voltage
VDU	Visual Display System
VDU	Visual Display System
VT	Voltage Transformer
	-

1.0 INTRODUCTION/OVERVIEW

The US-APWR uses Gas Turbine Generators (GTG), as Emergency Power Supply in lieu of the most commonly used Diesel Generators (DGs).

In a gas turbine, a pressurized gas spins the turbine. In all modern gas turbine engines, the engine produces its own pressurized gas, and it does this by burning its fuel. The heat that comes from burning the fuel expands air, and the high-speed rush of this hot air spins the turbine.

There are two (2) major advantages of the turbine over the diesel (a detailed comparison is presented in Table 1.0-1):

- Gas turbine engines have a great power-to-weight ratio compared to reciprocating engines. That is, the amount of power that comes out of the engine compared to the weight of the engine itself is very good.
- Gas turbine engines are smaller than their reciprocating counterparts of the same power.

The main disadvantage of gas turbines is that, compared to a reciprocating engine of the same size, they are expensive. Because they spin at such high speeds and because of the high operating temperatures, designing and manufacturing gas turbines is a tough problem from both the engineering and materials standpoint. Gas turbines also tend to use more fuel when they are idling. That makes gas turbines great for jet aircraft and power plants, but explains why they are not used in cars.

The Gas Turbine was selected for the US-APWR because the engines are, theoretically, extremely simple. They have three main parts:

- Compressor Compresses the incoming air to high pressure
- Combustion area Burns the fuel and produces high-pressure, high-velocity gas
- Turbine Extracts the energy from the high-pressure, high-velocity gas flowing from the combustion chamber

In the engine, air is sucked in from the compressor. The compressor is basically a cone-shaped cylinder with small fan blades attached in rows. As the air is forced through the compression stage its pressure rises significantly. In some engines, the pressure of the air can rise by a factor of 30.

As a result:

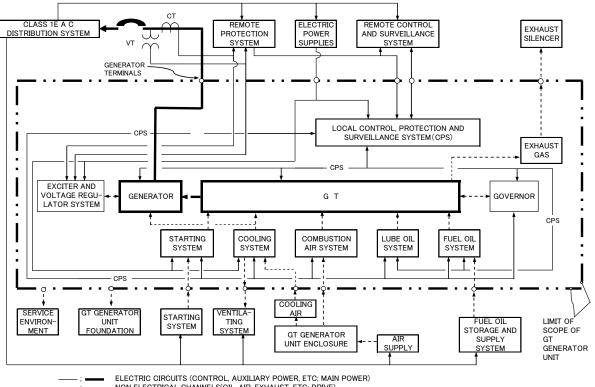
- The Gas Turbine is a very simple rotating engine with few components
- The GTG System consists only of the gas turbine, generator, fuel transport system, starting system and control/instrumentation system
- Water cooling system is not required
- The GTG, as described below, presents a high level of reliability.

The application of an aircraft derivative gas turbine for electrical power generation was required in order that the "fast start" requirement for emergency core cooling could be met. This resulted in the combination of an extremely reliable aircraft component with equally reliable industrial components such as reduction gears, electrical generator, governor, voltage regulator, relays and similar components.

The GTG components have demonstrated a high degree of reliability in starting and continuous power operation in aircraft and commercial applications over a long period of time. The Gas Turbine unit is maintained in a state of readiness through regular maintenance inspections and testing. The unit will be started and loaded once a month to demonstrate operational readiness. This requirement assures that the gas turbine unit is maintained in a state of functional readiness.

Mitsubishi Heavy Industries (MHI) applies the unit named GPS 6000. It is manufactured by Kawasaki Heavy Industries (KHI).

A brief comparison between a DG and a GTG is presented in the table 1.0-1 below:


	Gas Turbine	Diesel	Comments
Weight, Size	Gas Turbine		The gas turbine size is approximately one-fourth by weight and one-seventh by volume compared with the same range diesel engine.
Space	Compact	Large	See above
Noise Level	Gas Turbine		The main component of noise is the high frequency wave, which is easily silenced. As a result it is easier to reduce the noise level of the gas turbine.
Vibration	Gas Turbine		A gas turbine produces little vibration because the engine is not reciprocating , and just has a rotary motion
Cooling Water	Not Required	Required	The gas turbine does not need cooling water because the engine is air-cooled.
Reliability of Starting	Gas Turbine		Since the combustion system is a continuous combustion system with spark plugs, the engine starting reliability is high
Power Supply	Gas Turbine		Deviation in frequency is small, therefore the gas turbine supplies high quality power.
Exhaust Gas	Gas Turbine		The combustion efficiency is high, and harmful substances like NOx included in exhaust gas are small. Therefore the gas turbine is clean.
Fuel Consumption		Diesel	The diesel is superior to the gas turbine, because the fuel consumption of a gas turbine is higher than that of a diesel.
Periodic Maintenance	Overhaul is done several times during plant life	Periodic Overhaul Required	The Gas Turbine requires fewer overhauls than the Diesel units.
Reliability	Higher than DG	10 ⁻² (/d)	See Reliability report
Starting Time	40 sec	10 sec	The Gas Turbine unit requires a longer starting time but this time is within the core cooling requirements of the US-APWR. This starting time for the GTG is acceptable because the advance accumulator design of the US-APWR.

Iable 1.0-1 Gas Turbine and Diesel Engine Compariso	Table 1.0-1	Gas Turbine and Diesel Engine Comparison
---	-------------	--

Note : The design and analysis of Emergency Core Cooling System (ECCS) permits 100 seconds. Design requirement of GTG starting time is within 100 seconds.

1.1 Scope

This Technical Report describes the application, gualification and testing of the GTG units as Class 1E standby power supplies in nuclear power generating stations (US-APWR). Figure 1.1-1 shows the boundaries of systems and equipment included in the scope of this report.

cès

NON_ELECTRICAL CHANNELS(OIL, AIR, EXHAUST. ETC; DRIVE) LIMITED OF SCOPE OF GT GENERATOR UNIT WITH INTERFACE(->>)

CONTROL PROTECTION AND SURVEILLANCE SYSTEMS

Figure 1.1-1 Scope Diagram

1.2 Purpose

The purpose of this Technical Report is to provide the principal design criteria, the design features, testing, and qualification requirements for the GTG units that enable them to meet their functional requirements as part of the standby power supply system for the US-APWR, under the conditions produced by the design basis events cataloged in the Plant Safety Analysis. It is also intended to provide reasonable assurance that these units are highly reliable and dependable and very well suited to perform their safety functions as required by the applicable regulations. This Technical Report proves that the GTG selected for use in the US-APWR is an excellent alternative to the commonly used DGs.

2.0 LIST OF STANDARDS AND REGULATIONS

The requirements of various standards and regulations presently used for DGs that are pertinent to a GTG will be implemented in US-APWR design.

2.1 NRC Documents

- (1) Regulatory Guide 1.6 Rev 0. Independence Between Redundant Standby (Onsite) Power Sources and Between Their Distribution Systems (Safety Guide 6)
- (2) Regulatory Guide 1.9 Rev. 4 Application and Testing of Safety-Related Diesel Generators in Nuclear Power Plants
- (3) Regulatory Guide 1.28 Rev. 3 Quality Assurance Program Requirements
- (4) Regulatory Guide 1.32 Rev. 3. Criteria for Power Systems for Nuclear Power Plants
- (5) Regulatory Guide 1.38 Rev. 2 Quality Assurance Requirements for Packaging, Shipping, Receiving, Storage, and Handling of Items for Water-Cooled Nuclear Power Plants (Rev. 2)
- (6) Regulatory Guide 1.75 Rev. 3. Physical Independence of Electric Systems
- (7) Regulatory Guide 1.93 Rev. 0. Availability of Electric Power Sources
- (8) Regulatory Guide 1.118 Rev. 3. Periodic Testing of Electric Power and Protection Systems
- (9) Regulatory Guide 1.137 Rev. 1. Fuel-Oil Systems for Standby Diesel Generators
- (10) NUREG/CR-6928, Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power plant, February 2007
- (11) NRC Information Notice 2006-22 New Ultra-low-sulfur Diesel Fuel Oil Could Adversely Impact Diesel Engine Performance
- (12) 40CFR 50 NATIONAL PRIMARY AND SECONDARY AMBIENT AIR QUALITY STANDARDS
- (13) 40CFR 52 APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS
- (14) 40CFR 60 STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES
- (15) 40CFR 61 NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS
- (16) 40CFR 63 NATIONAL EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS FOR SOURCE CATEGORIES
- (17) 40CFR 68 CHEMICAL ACCIDENT PREVENTION PROVISIONS
- (18) 40CFR 70 STAGE OPERATING PERMIT PROGRAMS
- (19) 40CFR 71 FEDERAL OPERATING PERMIT PRGRAMS
- (20) 40CFR 81 DESIGNATION OF AREAS FOR AIR QUALITY PLANING PURPOSES

2.2 Industry Standards – IEEE

- (1) IEEE 1-2000, Recommended Practice General Principles for Temperature Limits in the Rating of Electrical Equipment and for the Evaluation of Electrical Insulation
- (2) IEEE 43-2000, Recommended Practice for Testing Insulation Resistance of Rotating Machinery
- (3) IEEE Std 96-1969, General Principles for Rating Electric Apparatus for Short-Time, Intermittent, or Varying Duty
- (4) IEEE Std 115-1995, Test Procedures for Synchronous Machines
- (5) IEEE 142-2007, Recommended Practice for Grounding of Industrial and Commercial Power Systems

- (6) IEEE 275-1992, Recommended Practice for Thermal Evaluation of Insulation Systems for Alternating-Current Electric Machinery Employing Form-Wound Preinsulated Stator Coils for Machines Rated 6900 V and Below
- (7) IEEE Std 308-2001 IEEE Standard Criteria for Class 1E Power Systems for Nuclear Power Generating Stations
- (8) IEEE Std 323-2003 IEEE Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations
- (9) IEEE 336-2005 IEEE Guide for Installation, Inspection, and Testing for Class 1E Power, Instrumentation, and Control Equipment at Nuclear Facilities
- (10) IEEE 338-2006 IEEE Standard Criteria for the Periodic Surveillance Testing of Nuclear Power Generating Station Safety Systems
- (11) IEEE-344-2004 IEEE Recommended Practice for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations
- (12) IEEE-379-2000 IEEE Standard Application of the Single Failure Criterion to Nuclear Power Generating Stations Safety Systems
- (13) IEEE Std 384-2008 IEEE Standard Criteria for Independence of Class 1E Equipment and Circuits
- (14) IEEE Std 387-1995 IEEE Standard Criteria for Diesel Generator Units Applied as Standby Power Supply for Nuclear Power Generating Stations.
- (15) IEEE-415-1986 IEEE Guide for Planning of Preoperational Testing Programs for Class 1E Power Systems for Nuclear Power Generating Stations.
- (16) IEEE-421.3-1997 IEEE Standard for High Potential Test Requirements for Excitation Systems for Synchronous Machines
- (17) IEEE-421.4-2004 IEEE Guide for the Preparation of Excitation System Specifications
- (18) IEEE 429-1994, Recommended Practice for Thermal Evaluation of Sealed Insulation Systems for AC Electric Machinery Employing Form-Wound Preinsulated Stator Coils for Machines Rated 6900 V and Below
- (19) IEEE-493-2007, Recommended Practice for the Design of Reliable Industrial and Commercial Power System
- (20) IEEE Std 500-1984 IEEE Guide to the Collection and Presentation of Electrical, Electronic, Sensing Component, and Mechanical Equipment Reliability Data for Nuclear-Power Generating Stations
- (21) IEEE-603-1998, IEEE Standard Criteria for Safety Systems for Nuclear Power Generating Stations
- (22) IEEE-627-1980, IEEE Standard Criteria for Design Qualification of Safety Equipment Used in Nuclear Power Generating Stations

2.3 Other Industry Standards

- (1) NEMA FU-1-2002 Low Voltage Cartridge Fuses
- (2) NEMA MG-1-2006 Motors and Generators
- (3) ANSI/ASME NQA-1-2008 Quality Assurance Requirements for Nuclear Facility Applicants
- (4) ANSI B31.1-2007 Power Piping
- (5) ANSI B37.20 Switchgear Assemblies including Metal Enclosed Bus
- (6) ANSI C37-90.1-2002 IEEE Standard for Surge Withstand Capabilities (SWC) Tests foor Relays and Relay Systems Associated with Electric Power Apparatus
- (7) ANSI C37-101-2006 IEEE Guide for Generator Ground Protection
- (8) ANSI C37.102-2006 IEEE Guide for AC Generator Protection
- (9) ANSI C50.13-2005 IEEE Standard for Cylindrical-Rotor 50 Hz and 60 Hz Synchronous Generators Rated 10 MVA and Above

- (10) ANSI C50.14-1977 American National Standard Requirements for Combustion Gas Turbine Driven Cylindrical Rotor Synchronous Generators
- (11) ANSI C57.13-1993 IEEE Standard Requirements for Instrument Transformers (if needed)
- (12) ANSI C62.92.2-1989 IEEE Guide for the Application Guide for Neutral Grounding in Electrical Utility Systems, Pt II - Grounding of Synchronous Generator Systems.
- (13) ANSI/ASME B16.11-2009, Forged Fittings, Socket Welding and Threaded.
- (14) ANSI/ASME B16.25-2007, Buttwelding Ends.
- (15) ANSI/ANS-59.51-1997, Fuel Oil Systems for Standby Diesel Generators
- (16) ASTM D975-1981, Standard Specification for Diesel Fuel Oils
- (17) ANSI/NFPA 37-2006, Combustion Engines and Gas Turbines, Stationary
- (18) ASME Boiler and Pressure Vessel Code
- (19) Standard Practices for Low and Medium Seed Stationary Diesel and Gas Engines, 6th Edition, p. 94, Diesel Engine Manufacturers Association (DEMA), 1972
- (20) TEMA Standards of the Tubular Exchanger Manufacturers Association, 9th Edition
- (21) ICEA S-19-81 (NEMA WC3) Rubber Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy
- (22) ICEA S-66-524 Cross-linked Thermosetting Polyethylene Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy
- (23) ICEA S-68-516 (NEMA WCB) Ethylene-Propylene-Rubber Insulated Wire and Cable for the Transmission and Distribution of Electrical Energy.
- (24) NFPA Vol. 1 Flammable Liquids Tank Storage
- (25) NFPA No. 30 Flammable and Combustible Liquids Code
- (26) NFPA No. 37 Standard for the Installation and Use of Stationary Combustion Engines and Gas Turbines
- (29) Boiler and Pressure Vessel Code. Section iii, Division 1, Nuclear Power Plant Components, ASME, 2001 Edition including Addenda through 2003.

3.0 DEFINITIONS

3.1 Acceptable:

Demonstrated to be adequate by the safety analysis of the plant.

3.2 Continuous Rating (of Unit):

The electric power output capability that the GTG unit can maintain in the service environment for 1,000 hrs of operation between overhauls only scheduled outages for maintenance.

3.3 Design Basis Events:

Postulated events used in the design to establish the performance requirements of the structures and systems.

3.4 Design Load:

That combination of electric loads (kW and kVAR), having the most severe power demand characteristic, which is provided with electric energy from a GTG unit for the operation of engineered safety features and other systems required during and following shutdown of the reactor.

3.5 Gas Turbine Generator Unit:

An independent source of standby electrical power that consists of a diesel-fueled internal combustion engine (or engines) coupled to an electrical generator (or generators) through a reducing gearbox; the associated mechanical and electrical auxiliary systems; and the control, protection, and surveillance systems.

3.6 Engine Equilibrium Temperature:

The conditions at which the lube oil temperatures are both within $\pm 5.5^{\circ}$ C (10°F) of their normal operating temperatures established by the engine manufacturer.

3.7 Load Profile:

The magnitude and duration of loads (kW and kVAR) applied in a prescribed time sequence, including the transient and steady-state characteristics of the individual loads.

3.8 Qualified Gas Turbine Generator Unit:

A GTG unit that meets the qualification requirements of the applicable standards and regulations.

3.9 Redundant Equipment or System:

An equipment or system that duplicates the essential function of another equipment or system to the extent that either may perform the required function regardless of the state of operation or failure of the other.

3.10 Service Environment:

The aggregate of conditions surrounding the GTG unit in its enclosure, while serving the design load during normal, accident, and post-accident operation.

3.11 Short-Time Rating (of Gas Turbine Generator Unit):

The electric power output capability that the GTG unit can maintain in the service environment for 300 hrs, without exceeding the manufacturer's design limits and without reducing the maintenance interval established for the continuous rating.

3.12 Slave Equipment:

Equipment not permanently installed, used for testing only.

3.13 Standby Power Supply:

The power supply that is selected to furnish electric energy when the preferred power supply is not available.

3.14 Start Signal:

That input signal to the GTG unit start logic that initiates a GTG unit start and run sequence.

3.15 Surveillance:

The determination of the state or condition of a system or subsystem.

4.0 PRINCIPAL DESIGN CRITERIA

4.1 Capability

4.1.1 General

When in service, the GTG unit has the capability of performing as a redundant unit of a standby power supply, in accordance with the requirements stated in IEEE Std 308.

4.1.2 Mechanical and Electrical Capabilities

The GTG unit has each of the following specific capabilities to meet the design, application, and qualification requirements of pertinent standards and regulations:

- (1) *Design conditions.* The unit is capable of operating during and after any design basis event without support from the preferred power supply. The following design conditions, including appropriate margins as required by subclause 6.3.1.5 of IEEE Std 323-1983, and shall include as a minimum:
 - (a) Operational cycles (6000 starts over a period of 60 years, unless otherwise specified , with scheduled maintenance activities)
 - (b) Operating hours (9,000 hrs over a period of 60 years, unless otherwise specified, with scheduled maintenance activities)
 - (c) Temperature at equipment locations (minimum and maximum with durations and average annual ambient)
 - (d) Seismic response spectra
 - (e) Radiation (1X10⁴ rd of gamma integrated dose over a period of 60 years, unless otherwise specified)
 - (f) Humidity (minimum and maximum with durations)
 - (g) Load profile, including allowable voltage and frequency variations (Appendix A)
 - (h) Absolute barometric pressure (altitude and tornado depressurization, duration, and magnitude)
 - (i) Combustion air contaminants (salt, sand, etc.)
 - (j) Fuel type and quality
 - (k) Auxiliary electrical power supply requirements
 - (I) Effect of fire protection actuation
- (2) *Starting and loading.* The unit is capable of starting, accelerating, and being loaded with the design load within the time required by the equipment specification (Appendix B).
 - (a) From the normal standby condition.
 - (b) On a restart with an initial engine temperature equal to the continuous rating full-load engine temperature.
- (3) *Light-load or no-load operation.* The unit is capable of accepting design load following operation at light load or no load for the time required by the equipment specification (Appendix B).
- (4) *Design load.* The unit is capable of carrying the design load for the time required by the equipment specification (Appendix B).

(5) *Quality of power.* The unit is capable of maintaining voltage and frequency at the generator terminals within limits that will not degrade the performance of any of the loads comprising the design load below their minimum requirements, including the duration of transients caused by load application or load removal.

4.2 Ratings

The US–APWR GTG is rated as follows:

4500 kW Continuous @ 1,000 hrs Engine Overhaul Interval, 115°F Air Intake Temperature 4950 kW Short Time @ 300 hrs Engine Overhaul Interval, 115°F Air Intake Temperature 6900 V, 3-phase, 60 Hz

4.2.1 Application

The GTG unit has continuous and short time ratings that reflect the output capabilities of the GTG unit in accordance with the requirements of Section 4.1 and the following:

- (1) Inspections and scheduled maintenance are performed periodically using the manufacturer's recommendations and procedures.
- (2) Unscheduled maintenance is performed in accordance with the need as indicated by the periodic inspections and operating experience.

4.2.2 Operation

The GTG units are utilized to the limit of their power capabilities, as defined by the continuous and short-time ratings. Unless time and load parameters for light-load and no-load operation are established by tests and documentation, the following precautions shall be taken:

- (1) When 4 hrs operation at 30% or less of the continuous rating have been accumulated (without at least 0.5 hrs operation above 50% of the continuous rating), the unit shall be operated at a load of at least 50% of the continuous rating for a minimum of 0.5 hrs.
- (2) Operating at 30% or greater of the continuous rating shall be restricted to the manufacturer's recommendations.

4.3 Starting Time

- (1) Starting time of GTG is required within 100 seconds by safety design and analysis of US-APWR. GTG to be reached set voltage and frequency, and GTG breaker should be closed within 100 seconds after starting signal is initiated.
- (2) GPS 6000 is reached set voltage and frequency within 40 seconds as its standard specification.

4.4 Interactions

Independence between units will not be compromised. Mechanical and electric system interactions between a particular GTG unit and other units of the standby power supply, the nuclear plant, the conventional plant, and the Class 1E electric system is coordinated in such a way that the GTG unit's design function, and capability requirements of Section 4.1, may be realized for any design basis event, except failure of that GTG unit.

4.5 Design Features

4.5.1 Mechanical and Electrical Design Features

4.5.1.1 Vibration

Vibration amplitudes are limited to be within the design capabilities of the GTG unit and auxiliary components. Solenoids, relays, and other devices are mounted in such a way to minimize vibration effects.

4.5.1.2 Torsional Vibration

Harmful torsional vibration stresses will not occur within a range from 10% above to 10% below rated idle speed and from 5% above to 5% below rated synchronous speed.

4.5.1.3 OverSpeed

Moving parts are designed to withstand that level of over-speed that results from a short-time rating load rejection. Margin is provided to allow the over-speed device to be set sufficiently high to guarantee that the unit will not trip on short-time rating load rejection. The generator rotor and exciter rotor are designed to withstand an over-speed of 25% without damage.

4.5.1.4 Governor Operation

The gas turbine engine is equipped to operate in both the isochronous and the droop mode. Provisions are included to automatically place the engine governor in the proper mode of operation when the GTG unit is required to operate automatically (see Subsection 4.5.2.2).

4.5.1.5 Voltage Regulator Operation

The voltage regulator is equipped to operate in the paralleled and non-paralleled modes. Provisions are included to automatically place the voltage regulator in the proper mode of operation when the GTG unit is required to operate automatically (see Subsection 4.5.2.2).

4.5.2 Control

4.5.2.1 Control Modes

The GTG unit is provided with control systems, permitting automatic and manual control.

4.5.2.2 Automatic Control

Upon receipt of an automatic start signal, the automatic control system provides automatic startup and automatic adjustment of speed and voltage to a ready-to-load condition.

- (1) ECCS Actuation signal overrides all other operating modes and return control of the GTG unit to the automatic control system.
- (2) An automatic start signal will not override any manual non-operating modes such as those for repair and maintenance.

4.5.2.3 Control Points

Provisions are made to control both from the control room and external to the control room.

4.5.3 Surveillance

4.5.3.1 Surveillance Systems

The GTG unit is provided with surveillance systems permitting remote and local alarms and indicating the occurrence of abnormal, pre-trip, or trip conditions.

4.5.3.2 Modes Surveyed

The following conditions are surveyed:

- (1) Unit not running
- (2) Unit running, not loaded
- (3) Unit running, loaded
- (4) Unit out of service

4.5.3.3 Surveillance Instrumentation

The following systems shall have sufficient mechanical and electric instrumentation to survey the variables required for successful operation and to generate the abnormal, pre-trip, and trip signals required for alarm of such conditions:

- (1) Starting system
- (2) Lubrication system
- (3) Fuel oil storage and transfer system
- (4) Combustion air intake and Exhaust system
- (5) Generator
- (6) Excitation system
- (7) Voltage regulation system
- (8) Governor system

4.5.4 Protection

The GTG unit shall be automatically tripped on an engine over-speed or generator differential current, or both and high exhaust gas temperature (EGT). Protective features, other than engine over-speed, generator differential current and high EGT, are blocked from automatically tripping the GTG unit during an accident condition, and are annunciated in the plant control room.

5.0 FACTORY PRODUCTION TESTING

5.1 General

This specification covers the requirements of the factory test including procedures for the gas turbine power section and the gas turbine engine assembly. The factory test for gas turbine power section is performed prior to assembling the Gas Turbine Generation System. The test procedures are developed by the manufacturer in accordance with ISO 2314.

5.2 Gas Turbine Power Section Test

The factory test of the gas turbine power section is performed at the manufacturer's test facility. The scope of the Gas Turbine Power Section factory testing includes only the power section and accessories directly installed on the gas turbine power section. This does not include the reduction gear box, accessory gear box, accessories installed on accessory gear box, and external systems (fuel system, lubrication oil system and electric system, etc.). The components not installed on the power section are not tested during the factory test of gas turbine power section. "Slave" equipment is used instead of these components. The load used for the factory test of the gas turbine power section is absorbed by means of a water dynamometer. Liquid fuel is used during the factory test.

5.3 Gas Turbine Engine Assembly Test

The factory test of the gas turbine engine assembly is performed by using "slave" test equipment at the manufacturer test facility.

The scope of the gas turbine engine assembly test includes the power section, reduction gear box, accessory gear box, accessories installed on accessory gear box, and external system (fuel system, lubrication oil system and electric system, etc.).

The load during pass off test of the gas turbine engine assembly is absorbed by means of water dynamometer.

5.4 Test Contents for Gas Turbine Power Section

- (1) Functional Test (refer to Subsection 5.4.1)
- (2) Performance Test (refer to Subsection 5.4.2)
- (3) Cycle Test (refer to Subsection 5.4.3)
- (4) Test Report (refer to Subsection 5.4.4)

5.4.1 Functional Test

5.4.1.1 Visual Check Before Test

The gas turbine shall be correctly assembled and configured according to the design drawings without any damage.

5.4.1.2 Operation and Inspection

The standard operating ranges are shown in Table 5.4-1.

(1) Purge test

Check for smooth acceleration and deceleration, and no abnormal noise.

- (2) Start-up test Check the maximum indicated Exhaust Gas Temperature (EGT). Measure the starting time.
- (3) Engine shutdown Measure the coast-down time.

5.4.1.3 Visual Inspection After Test

Check to ensure no leakage of fuel or lubricating oil inside the test unit. Check to ensure the turning motor operate following shutdown.

5.4.2 Performance Test

5.4.2.1 Test

Engine shall be run at 100% corrected rotor speed and at 6 load cases (minimum load, 4/8, 5/8, 6/8, 7/8, and maximum load).

5.4.2.2 Monitoring Data

The monitored data shall not exceed standard operating ranges shown in Table 5.4-1.

5.4.2.3 Correction to Standard Performance

The standard performance specified in this specification is the corrected value under the following conditions.

(1) Ambient Pressure	0.1013 MPa (14.7 psia)
(2) Intake Air Temperature	15°C (59°F)
(3) Intake Air Pressure Loss	0 Pa (0 psi)
(4) Exhaust Pressure Loss	2 kPa (0.29 psi)

(The exhaust pressure loss represents the total pressure loss at the outlet flange of the exhaust duct of the power section with a tail cone of the outlet diameter 662 mm.) The corrected fuel flow rate and EGT shall satisfy the requirements given in the following: The fuel flow rate corrected at standard operating condition of 15°C (59°F) intake air temperature and 0.1013 MPa (14.7 psia) ambient pressure is shown in Fig. 5.4-1. The measured fuel flow rate shall be corrected at standard operating condition. (refer to formula (3))

The corrected value shall be within the limit as shown in Fig. 5.4-1.

The EGT corrected at standard operating condition of 15°C (59°F) intake air temperature is shown in Fig. 5.4-2.

The measured EGT shall be corrected to standard operating condition. (refer to formula (4)) The corrected value shall be within the limit as shown in Fig. 5.4-2.

5.4.3 Cycle Test

The cycle test shall be performed for a total of three times. Start – Loading – 30 minutes running at rated load – Unloading – Stop

5.4.4 Test Report

The test results consisting of the following test reports shall be kept in the Quality Assurance (QA) Department.

- (1) Functional Test
- (2) Performance Test
- (3) Cycle Test

5.5 Test Contents for Gas Turbine Engine Assembly Test

- (1) Functional Test
- (2) Test Report

5.5.1 Functional Test

5.5.1.1 Visual Check Before Test

The gas turbine shall be correctly configured as shown in the design drawings without damage.

5.5.1.2 Operation and Inspection

Standard operating ranges is shown in Table 5.4-1.

(1) Purge test

Check for smooth acceleration and deceleration, and no abnormal noise.

- (2) Start-up test Check the maximum indicated EGT. Measure the starting time.
- (3) Engine test
 The Gas Turbine shall run at 100% rotation speed and minimum load rating for 1 hr.
 (4) Engine shutdown
 - Measure the coast-down time.

5.5.1.3 Visual Inspection After Test

Check to ensure no leakage of fuel or lubricating oil inside the test unit. Check to ensure the turning motor operate following shutdown.

5.5.1.4 Test Report

The test results consisting of the following test reports shall be kept in the QA Department.

(1) Functional Test

Item		Range (SI unit)	Range (English unit)
Rotor Speed (100%: 18000 min ⁻¹)		95 - 104%	95 - 104%
Indicated EGT	During Startup	Max. 750°C	Max. 1382°F
	After Startup	Max. 605°C	Max. 1121°F
Startup Time		Max. 60 sec.	Max. 60 sec.
Lube Oil Pressure (at oil manifold)		0.26 – 0.39 MPa	37.7 – 56.6 psig
Lube Oil Temp. (at oil manifold)		Max. 80°C (Toil)	Max. 176°F (Toil)
No.2 BRG. Scavenge Oil Temp.		Max. Toil+30°C	Max. Toil+54°F
	P/S Shaft	Max. 50 μm	Max. 2 mil
Vibration	G/B HSG	May 11 mm/a	May 0.42 inch/a
	(engine assembly)	Max. 11 mm/s	Max. 0.43 inch/s
Coast-down Time		Min. 240 sec.	Min. 240 sec.

Table 5.4-1 Standard Operating Ranges for Gas Turbine Power Section

Figure 5.4-1 Corrected Fuel Flow Rate vs Corrected Output of Gas Turbine Power Section

6.0 SEISMIC ANALYSIS

This seismic analysis includes the power section (Gas Turbine Engine assembly), and the Reduction Gearbox.

The following conditions are considered:

- Seismic loads applied to the GPS6000-Type GTG set while the generator set is running and it is stopped respectively.
- Shock loading of magnitude 1g in the axial direction (parallel to a shaft), as well as Shock loading of magnitude 1g in the radial direction (right angles to the shaft) were applied.

Then it was concluded from the evaluation results that the GPS6000-Type GTG Set is operable continuously and successfully after receiving the subject seismic shocks.

6.1 Shock Loading Due to Seismic Events

The GPS6000-Type Gas Turbine (including the power section and Reduction gearbox) has been developed for industrial use. The construction of the Gas Turbine is sufficiently strong. However, the rotor of the Gas Turbine, as well as the gear shaft of the Reduction gearbox is supported by bearings at both shaft ends. Since the contact area of the bearing is small, the bearings are very vulnerable against stresses such as seismic shocks. Therefore, the anti-seismic capability of the major bearings of the Power section and of the Reduction gearbox was evaluated.

The "Seismic Evaluation" methods are described below:

- (1) Load applied to bearings caused by seismic shocks are represented by "Shaft mass x Acceleration".
- (2) Because the above seismic shocks are applied instantaneously, the shock loads applied to bearings are defined as static loads.
- (3) Shock loads are applied to bearings in the axial direction (parallel to the shaft, magnitude 1g), and in the radial direction (at right angles to the shaft, magnitude 1g).
- (4) Referring to the below equation, the static equivalent radial load "Po" is obtained as follows and the larger value is selected.

Equation Po = Xo × Fr + Yo × Fa or Po = Fr (Larger value select) where, Po: Static equivalent radial load [kgf] Fr: Radial load [kgf] Fa: Axial load [kgf] Xo: Static radial load coefficient Yo: Static axial load coefficient

(5) Referring to the below equation, the Safety coefficient "So" is obtained. If the Safety coefficient "So" of a ball bearing is 2, 3 or more, and of a roller bearing is 3 or more, the bearing is safe to operate during shock loads applied by seismic events.

<u>Equation</u>: So = Co/Po

where, So:Safety factor Po:Static equivalent radial load [kgf] Co:Basic static rated load [kgf]

Note : 1 Xo, Yo and Co are characteristic values of bearings.

Note : 2 As for equations (4) and (5), for the larger safety factor, the bearing manufacturer's design standards are used.

6.2 Seismic Evaluation of the Power Section Bearings (Gas Turbines Engine Assembly)

The Seismic evaluation is provided on the No. 1 and No. 2 Bearings, which are shown in the Power section of Fig. 6.2-1.

The result of Seismic evaluation is presented in Table 6.2-1.

With the GTG Set both stopped and in running, the safety factor obtained are 2, 3 or more. As a result, the Power section is proved to be acceptable to continuously and successfully operate after the termination of the seismic event.

6.3 Seismic Evaluation of Reduction Gearbox Bearings

The Reduction gearbox, shown in Fig. 6.3-1, the Seismic Evaluation was performed on the bearings of the output shaft and the intermediate shaft.

The result of Seismic Evaluation is presented in Table 6.3-1.

While the Reduction gearbox is both stopped and in running, the safety factor obtained are 2, 3 or more.

As a result, the Reduction gearbox is proved to be acceptable to continuously, successfully operate after the termination of the seismic event.

Table 6.2-1Seismic Evaluation of Bearings Used for The Power Section (Gas Turbine
Assembly) (When a Shock Load 1g is Applied Horizontally, and a 1g is Applied
Vertically)

			No1		No2		
Item	Details	Factor and Equations	Running	Stop	Running	Stop	
Characteristics value of bearing	Basic static load rating[kgf]	Co	5650	5650	9100	9100	
	Static radial load factor	Хо	0.50	0.50	1.00	1.00	
	Static axial load factor	Yo	0.33	0.33	0.00	0.00	
weight	Weight of shaft[kgf]	W	300				
Loading conditions	Radial load	Fr=a+b	240	240	360	360	
	Load by shaft self-weight[kgf]	a=w*0.4or0.6	120 180				
	Acceleration (radial)	Gradial	1	1	1	1	
	Seismic load (radial) [kgf]	b=a × Gradial	120	120	180	180	
	Axial load	Fa=c+d	300	1100	0	0	
	Acceleration (axial)	Gaxial	1	1	1	1	
	Seismic load (axial) [kgf]	c=w × Gaxial	300	300	0	0	
	Thrust load in running[kgf]	d	0	800	0	0	
	Static equivalent load[kgf]	Po=XoFr+YoFa or Po=Fr (large select)	240	483	360	360	
Result	Safety factor	So=Co/Po	23.5	11.7	25.3	25.3	
Evaluation	When the safety factor is more than below, there is no problem [2:ball bearing] [3:roller bearing]		0	0	0	0	

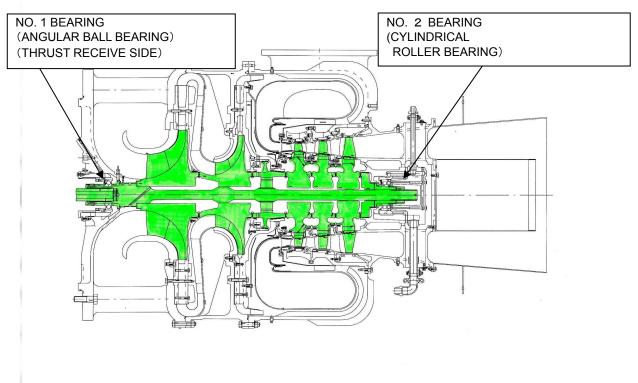


Figure 6.2-1 Sectional Drawing of Power Section (Colored Section Shows the Rotor)

Inter mediate s	haft		6324		NU324	
ltem	Details	Factor and Equations	Stop	Running	Stop	Running
Charasteristic value of bearing	Basic static load rating[kgf]	Co	18800	18800	52000	5200
	Static radial load factor	Хо	0.6	0.6	1.0	1.
	Static axial load factor	Yo	0.5	0.5	0.0	0.
weight	Weight of shaft[kgf]	w	308.8			
Loading conditions	Radial load	Fr=a+b+c	205.9	1489.9	411.7	3185.
	Load by shaft self-weight[kgf]	а	102.9		205.9	
	Acceleration (radial)	Gradial	1.0	1.0	1.0	1.
	Seismic load (radial) [kgf]	b=a × Gradial	102.9	102.9	205.9	205.
	Radial load in running[kgf]	с	0	1387	0	277
	Axial load	Fa=d+e	308.8	4130.8	0.0	0.
	Acceleration (axial)	Gaxial	1.0	1.0	1.0	1.
	Seismic load (axial) [kgf]	d=w × Gradial	308.8	308.8	0	
	Thrust load in running[kgf]	e	0	3822	0	
	Static equivalent load[kgf]	Po=XoFr+YoFa or Po=Fr (large select)	277.9	2959.4	411.7	3185
Result	Safety factor	So=Co/Po	67.6	6.4	126.3	16
Evaluation	When the safety factor is more than below, there is no problem [2:ball bearing] [3:roller bearing]		0	0	0	0
Output shaft			60	44	62	28
Item	Details	Factor and Equations	Stop	Running	Stop	Running
Characteristic	Basic static load rating[kgf]	Со	29400	29400	15300	1530
s value of bearing	Static radial load factor	Хо	0.6	0.6	0.6	0.
	Static axial load factor	Yo	0.5	0.5	0.5	0.
weight	Weight of shaft[kgf]	w		6	08	
Loading conditions	Radial load	Fr=a+b+c	912.0	3716.0	304.0	508
	Load by shaft self-weight[kgf]	а	456.0		152.0	
	Acceleration (radial)	Gradial	1.0	1.0	1.0	1.
	Seismic load (radial) [kgf]	b=a × Gradial	456.0	456.0	152.0	152
	Radial load in running[kgf]	с	0	2804	0	20
	Axial load	Fa=d+e	608.0	608.0	0.0	0.
	Acceleration (axial)	Gaxial	1.0	1.0	1.0	1.
	Seismic load (axial) [kgf]	d=w × Gradial	608.0	608.0	0	
	Thrust load in running[kgf]	e	0	0	0	
		Po=XoFr+YoFa or				

(large select) So=Co/Po

32.2

0

7.9

0

50.3

0

30.1

Ο

Table 6.3-1Seismic of Bearings Used for the Intermediate Shaft and the Output Shaft of
the Reduction Gearbox

Safety factor

there is no problem

[2:ball bearing] [3:roller bearing]

When the safety factor is more than below,

Result

Evaluation

QUALIFICATION AND TEST PLAN OF CLASS 1E GAS TURBINE GENERATOR SYSTEM

Inter mediate s	haft		63	24	NU	324
ltem	Details	Factor and Equations	Stop	Running	Stop	Running
Charasteristic	Basic static load rating[kgf]	Co	18800	18800	52000	5200
value of	Static radial load factor	Хо	0.6	0.6	1.0	1.
bearing	Static axial load factor	Yo	0.5	0.5	0.0	0.
weight	Weight of shaft[kgf]	w		30	8.8	
	Radial load	Fr=a+b+c	205.9	1489.9	411.7	3185.
	Load by shaft self-weight[kgf]	а	10	2.9	20	5.9
	Acceleration (radial)	Gradial	1.0	1.0	1.0	1.
	Seismic load (radial) [kgf]	b=a × Gradial	102.9	102.9	205.9	205
	Radial load in running[kgf]	с	0	1387	0	277
Loading	Axial load	Fa=d+e	308.8	4130.8	0.0	0.
conditions	Acceleration (axial)	Gaxial	1.0	1.0	1.0	1.
	Seismic load (axial) [kgf]	d=w × Gradial	308.8	308.8	0	
	Thrust load in running[kgf]	e	0	3822	0	
		Po=XoFr+YoFa				
	Static equivalent load[kgf]	or Da=En	277.9	2959.4	411.7	3185.
		Po=Fr (large select)				
Result	Safety factor	So=Co/Po	67.6	6.4	126.3	16.
	When the safety factor is more than below,					
Evaluation	there is no problem [2:ball bearing] [3:roller bearing]		0	0	0	0
Output shaft			60	44	62	28
	Details	Factor and Equations		44 Running	62 Stop	28 Running
Output shaft Item	Details Basic static load rating[kgf]	Factor and Equations				Running
			Stop	Running	Stop	Running 1530
Item Characteristic	Basic static load rating[kgf]	Co	Stop 29400	Running 29400	Stop 15300	Running 1530 0.
Item Characteristic s value of bearing	Basic static load rating[kgf] Static radial load factor Static axial load factor	Co Xo	Stop 29400 0.6	Running 29400 0.6 0.5	Stop 15300 0.6	Running 1530 0.
Item Characteristic s value of	Basic static load rating[kgf] Static radial load factor	Co Xo Yo	Stop 29400 0.6	Running 29400 0.6 0.5 6	Stop 15300 0.6 0.5	Running 1530 0. 0.
Item Characteristic s value of bearing	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf]	Co Xo Yo w	Stop 29400 0.6 0.5 912.0	Running 29400 0.6 0.5 6	Stop 15300 0.6 0.5 08 304.0	Running 1530 0. 0.
Item Characteristic s value of bearing	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load	Co Xo Yo w Fr=a+b+c	Stop 29400 0.6 0.5 912.0	Running 29400 0.6 0.5 6 3716.0 6.0	Stop 15300 0.6 0.5 08 304.0	Running 1530 0. 0. 508. 2.0
Item Characteristic s value of bearing	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load Load by shaft self-weight[kgf]	Co Xo Yo w Fr=a+b+c a	Stop 29400 0.6 0.5 912.0 45	Running 29400 0.6 0.5 6 3716.0 6.0	Stop 15300 0.6 0.5 08 304.0 15	Running 1530 0. 0. 508 2.0
Item Characteristic s value of bearing	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load Load by shaft self-weight[kgf] Acceleration (radial)	Co Xo Yo w Fr=a+b+c a Gradial	Stop 29400 0.6 0.5 912.0 45 1.0	Running 29400 0.6 0.5 6 3716.0 6.0 1.0	Stop 15300 0.6 0.5 08 304.0 15 1.0	Running 1530 0. 0. 508 2.0 1. 152
Item Characteristic s value of bearing weight	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load Load by shaft self-weight[kgf] Acceleration (radial) Seismic load (radial) [kgf]	Co Xo Yo w Fr=a+b+c a Gradial b=a × Gradial	Stop 29400 0.6 0.5 912.0 45 1.0 456.0	Running 29400 0.6 0.5 60 3716.0 6.0 1.0 456.0	Stop 15300 0.6 0.5 08 304.0 15 1.0 152.0	Running 1530 0 0 508 2.0 1. 152 2.0
Item Characteristic s value of bearing weight Loading	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load Load by shaft self-weight[kgf] Acceleration (radial) Seismic load (radial) [kgf] Radial load in running[kgf]	Co Xo Yo w Fr=a+b+c a Gradial b=a × Gradial c	Stop 29400 0.6 0.5 912.0 45 1.0 456.0 0	Running 29400 0.6 0.5 60 6.0 6.0 1.0 456.0 2804	Stop 15300 0.6 0.5 08 304.0 15 1.0 152.0 0	Running 1530 0 508 2.0 152 20 0
Item Characteristic s value of bearing weight Loading	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load Load by shaft self-weight[kgf] Acceleration (radial) Seismic load (radial) [kgf] Radial load Axial load	Co Xo Yo w Fr=a+b+c a Gradial b=a × Gradial c Fa=d+e	Stop 29400 0.6 0.5 912.0 45 1.0 456.0 0 608.0	Running 29400 0.6 0.5 60 6.0 1.0 456.0 2804 608.0	Stop 15300 0.6 0.5 08 304.0 15 1.0 152.0 0 0.0	Running 1530 0 508 2.0 1 152 20 0 0
Item Characteristic s value of bearing weight Loading	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load Load by shaft self-weight[kgf] Acceleration (radial) Seismic load (radial) [kgf] Radial load in running[kgf] Axial load Acceleration (axial)	Co Xo Yo w Fr=a+b+c a Gradial b=a × Gradial c Fa=d+e Gaxial	Stop 29400 0.6 0.5 912.0 45 1.0 456.0 0 608.0 1.0	Running 29400 0.6 0.5 60 6.0 1.0 456.0 2804 608.0 1.0	Stop 15300 0.6 0.5 08 304.0 15 1.0 152.0 0 0.0 0.0 1.0	Running 1530 0 0 508 2.0 1 1 52 20 0 0 1 1
Item Characteristic s value of bearing	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load Load by shaft self-weight[kgf] Acceleration (radial) Seismic load (radial) [kgf] Radial load in running[kgf] Axial load Acceleration (axial) Seismic load (axial) [kgf]	Co Xo Yo w Fr=a+b+c a Gradial b=a × Gradial c Fa=d+e Gaxial d=w × Gradial e Po=XoFr+YoFa	Stop 29400 0.6 0.5 912.0 45 1.0 456.0 0 608.0 1.0 608.0	Running 29400 0.6 0.5 60 6.0 1.0 456.0 2804 608.0 1.0 608.0	Stop 15300 0.6 0.5 08 304.0 15 1.0 152.0 0 0.0 1.0 0.0 0.0 0.0 0.0 0.0	Running 1530 0 0 508 2.0 1 1 52 20 0 0 1 1
Item Characteristic s value of bearing weight Loading	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load Load by shaft self-weight[kgf] Acceleration (radial) Seismic load (radial) [kgf] Radial load in running[kgf] Axial load Acceleration (axial) Seismic load (axial) [kgf]	Co Xo Yo w Fr=a+b+c a Gradial b=a × Gradial c Fa=d+e Gaxial d=w × Gradial e Po=XoFr+YoFa or	Stop 29400 0.6 0.5 912.0 45 1.0 456.0 0 608.0 1.0 608.0	Running 29400 0.6 0.5 60 3716.0 6.0 1.0 456.0 2804 608.0 1.0 608.0 0 0	Stop 15300 0.6 0.5 08 304.0 15 1.0 152.0 0 0.0 1.0 0.0 0.0 0.0 0.0 0.0	Running 1530 0 508 2.0 1. 152 200 0 1. 1. 200 0 1. 1. 200 0 1. 1. 2.0 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Item Characteristic s value of bearing weight Loading	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load Load by shaft self-weight[kgf] Acceleration (radial) Seismic load (radial) [kgf] Radial load Acceleration (axial) [kgf] Axial load Acceleration (axial) Seismic load (axial) [kgf] Thrust load in running[kgf]	Co Xo Yo w Fr=a+b+c a Gradial b=a × Gradial c Fa=d+e Gaxial d=w × Gradial e Po=XoFr+YoFa	Stop 29400 0.6 0.5 912.0 45 1.0 456.0 0 608.0 0 608.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Running 29400 0.6 0.5 60 3716.0 6.0 1.0 456.0 2804 608.0 1.0 608.0 0 0	Stop 15300 0.6 0.5 08 304.0 15 1.0 152.0 0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	Running 1530 0 508 2.0 1. 152 200 0 1. 1. 200 0 1. 1. 200 0 1. 1. 2.0 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
Item Characteristic s value of bearing weight Loading	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load Load by shaft self-weight[kgf] Acceleration (radial) Seismic load (radial) [kgf] Radial load Acceleration (axial) [kgf] Axial load Acceleration (axial) Seismic load (axial) [kgf] Thrust load in running[kgf]	Co Xo Yo W Fr=a+b+c a Gradial b=a × Gradial c Fa=d+e Gaxial d=w × Gradial e Po=XoFr+YoFa or Po=Fr	Stop 29400 0.6 0.5 912.0 45 1.0 456.0 0 608.0 0 608.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Running 29400 0.6 0.5 60 3716.0 6.0 1.0 456.0 2804 608.0 1.0 608.0 0 0	Stop 15300 0.6 0.5 08 304.0 15 1.0 152.0 0 0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0	Running 1530 0. 0. 508. 2.0 1. 152. 20 0. 1. 508.
Item Characteristic s value of bearing weight Loading conditions	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load Load by shaft self-weight[kgf] Acceleration (radial) Seismic load (radial) [kgf] Radial load Acceleration (axial) Seismic load (axial) [kgf] Thrust load in running[kgf] Static equivalent load[kgf]	Co Xo Yo w Fr=a+b+c a Gradial b=a × Gradial c Fa=d+e Gaxial d=w × Gradial e Po=XoFr+YoFa or Po=Fr (large select)	Stop 29400 0.6 0.5 912.0 455 1.0 456.0 0 608.0 0 608.0 0 912.0	Running 29400 0.6 0.5 60 6.0 1.0 456.0 2804 608.0 1.0 608.0 0 3716.0	Stop 15300 0.6 0.5 08 304.0 152.0 0 0.0 1.0 0 0 0.0 304.0	Running 1530 0 0 0 508 2.0 1. 152 20 0 0 1. 508
tem Characteristic s value of bearing weight Loading conditions	Basic static load rating[kgf] Static radial load factor Static axial load factor Weight of shaft[kgf] Radial load Load by shaft self-weight[kgf] Acceleration (radial) Seismic load (radial) [kgf] Radial load Acceleration (axial) Seismic load (axial) [kgf] Thrust load in running[kgf] Static equivalent load[kgf] Static equivalent load[kgf] Safety factor When the safety factor is more than below,	Co Xo Yo w Fr=a+b+c a Gradial b=a × Gradial c Fa=d+e Gaxial d=w × Gradial e Po=XoFr+YoFa or Po=Fr (large select)	Stop 29400 0.6 0.5 912.0 455 1.0 456.0 0 608.0 0 608.0 0 912.0 32.2	Running 29400 0.6 0.5 60 6.0 1.0 456.0 2804 608.0 1.0 608.0 0 3716.0 7.9	Stop 15300 0.6 0.5 08 304.0 152.0 0 0.0 1.0 0 0 0 304.0 50.3	Running 1530 0. 508. 2.0 1. 152. 20 0. 1. 508. 30.

Figure 6.3-1 Sectional Drawing of Gear Box (Colored Section Shows the Rotor)

7.0 RELIABILITY ANALYSIS

7.1 General

More than 6000 units of GPS Gas Turbine series have been supplied in worldwide facilities. The GPS Gas Turbine series had been developed aiming at Emergency or Backup generator usage. They are designed so that not only performance for power operation may be ensured but also reliability required of emergency start be achieved. As a result, those Gas turbine series have been provided with capability to start within 40 seconds as standard specification and also with highly reliability for emergency standby usage based on the experiences even on commercial grade basis.

7.2 Reliability Derived from Industrial Field Data

GPS GTG Packages have industrial based field data available for estimating the starting reliability which has been collected from the required starting events confirmed, as shown in table 7.2-1.

Number of Units (Generator Package Unit)	Start Attempts (Note)	Failed Starts
375	7394	2

Table 7.2-1 Field Data of GTG Starting Reliability

Note : This includes testing and actual demand on Loss of Offsite Power (LOOP)

Result of this field data, starting reliability is estimated as below; $(1 - 2/7394) \times 100 = 99.97\%$ 3.0×10^{-4} per demand

Two failed start events were caused respectively by a low voltage of starter batteries due to degradation of the battery and moisture interfusion in the liquid fuel system.

Although the field data regarding GTG are not sufficient the probability of failed start of the GPS GTG estimated above is lower in single figure than that of DGs $(3.5 \times 10^{-3} \text{ per demand})$ that is reported in NUREG/CR-6928 "Industry-Average Performance for Components and Initiating Events at U.S. Commercial Nuclear Power plant, February 2007". For US-APWR application the Class 1E GTG is designed so as to use air starting system and also the control power for the GTG operation is designed to be supplied from the Class 1E station batteries so that the reliability of the GTG starting system may be improved. Therefore the Class1E-qualified GTG is expected to be provided with higher reliability than that of the existing DGs.

7.3 Analysis

Table 7.3-1 shows failure rate analysis for the GTG on the basis of its composites, where the GTG set was divided into subsystems and components for developing Failure Modes and Effects Analysis (FMEA). The portions attributed to electrical power systems such as station batteries for control power source, generator circuit breaker and its protective relays were

excluded in the analysis because they are identical to those of DG. The failure rate available for the components relating to function of the GTG start are collected from IEEE Std 500-1984 "IEEE Guide to the Collection and Presentation of Electrical, Electronic, Sensing Component, and Mechanical Equipment Reliability Data for Nuclear-Power Generating Stations". However for the components in the turbine power section itself such as compressor, combustor and speed reduction gear, no statistical failure rate data for emergency start are available as of now. Therefore for the purpose of addressing the failure rates conservatively to those components herein typical assumption was made based on insights of their failure mechanisms and engineering judgments that consider the characteristics similar to passive components.

Result of this, the probability of the failed start of GTG is estimated at approximately 1.51×10⁻³ per demand.

The failure rate of the GTG start resulting from the analysis is higher than the aforementioned actual field data. It is considered in common that analytical results provide conservative or adverse levels compared to those collected from actual operating events. Furthermore it should be noted that the analytical results of GTG failure rate that are considered conservative is nearly equal to or lower than the probability of the DG failed start (3.5×10^{-3} per demand) that are collected from actual operating experiences on nuclear plants.

Accordingly it is reasonable to expect that the reliability of the GTG is higher than that of the existing DGs.

7.4 Contributing Factor for Reliability

Major contributing factor for the difference of reliability between Gas Turbine and Diesel Engine is the quantity of their composite parts. Gas Turbine is a simple rotational engine with rotor, stator and driving shaft, while DG has multiple cylinder blocks each of which needs to convert its reciprocating piston movement to rotary driving shaft through piston rod, crank mechanism and pertinent bearings. This inevitably leads to increase in quantity of composite parts of the DG compared to GTG. In addition to the difference of the engine itself it is the contributing factor of the quantity of composite parts that no water cooling system is required of gas turbine system while vice versa for diesel engine.

Table 7.4-1 shows the comparison of the composite parts between GTG and DG.

	GTG	DG
1. Engine Generator	273 sorts of parts (for the type applied to US-APWR)	More than 3 times of GTG
2. Starting System	Almost same as DG	base
3. Fuel System	Almost same as DG	base
4. Lubricant Oil System	Slightly less than DG	base
5. Air Intake and Exhaust System	Almost same as DG	Base (Room Ventilation system included)
6. Cooling Water System	None	Required

Table 7.4-1 Comparison of Quantity of Parts between GTG and DG

The reliability contributor other than the quantity of parts would be operating condition and related parameters. From viewpoint of operating condition higher operating temperature of the GTG could be the only adverse aspect that could impact especially on the exhausting

system. However this problem has to be resolved by design which reflects a lot of past operating experiences. Furthermore improved reliability can be achieved through implementing the class 1E qualification program scheduled in the near future.

Thus the GTG system can be expected more reliable as standby power supply than the DG System.

7.5 Quoted Reliability Data from Other Reference Documents

Some industrial basis data that addressed the reliability comparison of GTG and DGs are found in IEEE report as follows;

- (1) IEEE Std 500-1984 "IEEE Guide to the Collection and Presentation of Electrical, Electronic, Sensing Component, and Mechanical Equipment Reliability Data for Nuclear-Power Generating Stations".
 - (a) Failure Rate of Diesel Engine (4 stroke V Block; Page827): 4.67×10⁻³ per hour
 - (b) Failure Rate of Combustion Turbine (Over 5000Hp; Page841): 2.00×10^{-4} per hour
- (2) IEEE Std 493-1997 "Reliability Survey of 600 to 1800kW Diesel and Gas turbine Generating Units"
 - (a) Mean Time Between Failure (MTBF) of GTG for Standby Usage: 27,874.6 hrs
 - (b) MTBF of DG with Auxiliary Support Systems for Standby Usage: 6,857.4 hrs
 - (c) Failure Rate of DG (4 stroke V Block; Page827): 4.67×10⁻³ per hour

The above industrial basis data also show advantage in reliability of GTG.

7.6 Conclusion

As described above the reliability of GTG is expected to be higher than or at least equal to that of the DG.

8.0 QUALIFICATION SCHEDULE

MHI plans to start the Class 1E qualification of GTG on January 2008, and will complete it by December 2009. Gas Turbine Assembly (engine and gear box) is fabricated in Japan, and the other components are procured in the U.S. The detailed schedule of detail is shown in Appendix F. After assembly, GTG will be tested in accordance with Appendix C to dedicate the unit as Class 1E. Basic schedule of Class 1E qualification is shown in Fig. 8.0-1.

														Т	ime	Tab	ole													
Item		_	_	_				009			_	_				_	_	_)10					_		20		Remarks
	1	2	2	3	4	5	6	7	8	9	1	0	11	12	1	2	3	4	5	6	7	8	9	10	01	1 1:	2	1	2	
Technical Report													▼																	Revision 1 was submitted in November 2007.
Design of GTG					T																									
Production of Gas Turbine					ľ					T						-														See Appendix F
Production of Generator											Γ	7																		See Appendix F
Production of Auxiliary Portion																														See Appendix F
Assemble GTG set		Γ																							Τ					
Functional Test																														
Seismic Analysis		Γ																							┝	-	-			
Summary of test results																											Ý			
Report to NRC																														

Figure 8.0-1 Qualification Schedule

9.0 CONCLUSIONS

Based on the analysis provided herein this Technical Report it is concluded that the GTG unit provided by KHI and Class 1E qualified by Engine System Inc. (ESI) is adequate to support the safe and reliable operation on the US-APWR.

10.0 REFERENCES

In this section, references in this technical report except for applicable codes, standards and regulatory guidance in section 2 are listed.

- 1. ISO 2314
- 2. MIL-PRF-23699
- 3. ASME Section iii, Class 3
- 4. MIL-STD-705
- 5. AWS D1.1.
- 6. ASME Section IX
- 7. The requirements of MNES, Quality Assurance Administrative and System Requirements (Nuclear)
- 8. The requirements of MNES, Quality Assurance Administrative and System Requirements for Safety Related Electrical Equipment
- 9. MUAP-07004, Safety I&C System Description and Design Process
- 10. MUAP-07005, Safety System Digital Platform MELTAC-

Appendix A US-APWR Typical Load Profiles

Typical load profiles of Loss of Coolant Accident (LOCA) and LOOP are shown in Table A.1.0-1 to A.1.0-10 and Fig. A.1.0-1 to A.1.0-8

		Rated	Load	Efficiency	Power	Ratio of Starting	Power Factor	Load	Load
Load	Load Name	Output	Factor		Factor	Current to Normal	at Starting	Starting Capacity	Necessary Input
Group	Edad Name					Current			
		(kW)	(%)	(%)	(%)	(%)	(%)	(kW)	(kW)
1	Moter Control Center	861.0					30.0	258.3	
		371.0							371.0
2	MOV Operated by SI Signal MOV Operated by SP Signal	109.1		90.0	85.0	6.5	30.0	278.1	
3	Safety Injection Pump	900.0	95.0	90.0	85.0	6.5	25.0	1911.8	950.0
4	Componet Cooling Water Pump	610.0	95.0	90.0	85.0	6.5	25.0	1295.8	643.9
5	Service Water Pump	720.0	95.0	90.0	85.0	6.5	25.0	1529.4	760.0
6	Containment Spray/Residual Heat Removal Pump	400.0	95.0	90.0	85.0	6.5	25.0	849.7	422.2
7	Emergency Feed Water Pump	590.0	72.5	90.0	85.0	6.5	25.0	1253.3	475.0
8	Class 1E Electrical Room Air Handling Supply Fan	80.0	95.0	85.0	80.0	6.5	25.0	191.2	89.4
9	Safety Chiller Unit	290.0	95.0	85.0	80.0	6.5	25.0	693.0	324.1
10	Safety Chilled Water Pump	53.0	95.0	94.0	91.0	6.5	25.0	100.7	53.6

Table A.1.0-1 Class 1E GTG - LOCA Load List

Table A.1.0-2	Class 1E GTG -LOOP Load List
---------------	------------------------------

		Rated	Load	Efficiency	Power	Ratio of Starting	Power Factor	Load	Load
Load	Load Name	Output	Factor	-	Factor	Current to Normal	at Starting	Starting Capacity	Necessary Input
Group						Current	-		
		(kW)	(%)	(%)	(%)	(%)	(%)	(kW)	(kW)
1	Moter Control Center	687.0					30.0	206.1	55.0
		326.0							326.0
2	Componet Cooling Water Pump	610.0	95.0	90.0	85.0	6.5	25.0	1295.8	643.9
3	Service Water Pump	720.0	95.0	90.0	85.0	6.5	25.0	1529.4	760.0
4	Containment Spray/Residual Heat Removal Pump	400.0	95.0	90.0	85.0	6.5	25.0	849.7	422.2
5	Charging Pump	820.0	95.0	90.0	85.0	6.5	25.0	1741.8	865.6
6	Emergency Feed Water Pump	450.0	95.0	90.0	85.0	6.5	25.0	955.9	475.0
7	Class 1E Electrical Room Air Handling Supply Fan	80.0	95.0	85.0	80.0	6.5	25.0	191.2	89.4
8	Safety Chiller Unit	290.0	95.0	85.0	80.0	6.5	25.0	693.0	324.1
9	Plessurizer Heater	562.0	100.0	100.0	100.0			562.0	562.0
10	Safety Chilled Water Pump	53.0	95.0	94.0	91.0	6.5	25.0	100.7	53.6

LOCA Signal	LOCA Sequence		Refer	Base	Start	Max	Base
Initiated	Time	Invest Load	Load	Load1	Load	Load	Load2
Time [Sec]	[Sec]		Group	[KW]	[KW]	[KW]	[KW]
100	0	MOV Operated by SI Signal	2				
		MOV Operated by SP Signal		0	907	907	448
		Moter Control Center	1				
105	5	A Safety Injection Pump	3	448	1912	2360	1398
110	10	A Component Cooling Water Pump	4	1398	1296	2694	2042
		A Safety Chilled Water Pump	10				
115	15	A Service Water Pump	5	2042	1529	3571	2802
130	30	A Containment Spray/Residual Heat Removal Pump	6	2802	850	3652	3224
140	40	A Class 1E Electrical Room Supply Air Handling Unit	8	3224	191	3415	3313
150	50	A Safety Chiller Unit	9	3313	693	4006	3637
	Manual Start	Moter Control Center		3637	102	3739	3739

Table A.1.0-3 Class 1E GTG Starting Sequence Train A - LOCA

Table A.1.0-4 Class 1E GTG Starting Sequence Train A - LOOP

LOOP Signal	LOOP Sequence		Refer	Base	Start	Max	Base
Initiated	Time	Invest Load	Load	Load1	Load	Load	Load2
Time [Sec]	[Sec]		Group	[KW]	[KW]	[KW]	[KW]
100	0	Moter Control Center	1	0	532	532	381
105	5	A Charging Pump	5	381	1742	2123	1247
110	10	A Component Cooling Water Pump	2	1247	1296	2543	1891
115	15	A Service Water Pump	3	1891	1630	3521	2705
		A Safety Chilled Water Pump	10				
130	30	A Class 1E Electrical Room Supply Air Handling Unit	7	2705	191	2896	2794
140	40	A Safety Chiller Unit	8	2794	693	3487	3118
	Manual	Moter Control Center	1	3118	627	3745	3745
	Start	A Plessurizer Heater	9				

LOCA Signal	LOCA Sequence		Refer	Base	Start	Max	Base
Initiated	Time	Invest Load	Load	Load1	Load	Load	Load2
Time [Sec]	[Sec]		Group	[KW]	[KW]	[KW]	[KW]
100	0	MOV Operated by SI Signal	2				
		MOV Operated by SP Signal	2	0	907	907	448
		Moter Control Center	1				
105	5	B Safety Injection Pump	3	448	1912	2360	1398
110	10	B Component Cooling Water Pump	4	1398	1296	2694	2042
		B Safety Chilled Water Pump	10				
115	15	B Service Water Pump	5	2042	1529	3571	2802
120	20	B Emergency Feed Water Pump	7	2802	1253	4055	3277
130	30	B Containment Spray/Residual Heat Removal Pump	6	3277	850	4127	3699
140	40	B Class 1E Electrical Room Supply Air Handling Unit	8	3699	191	3890	3788
150	50	B Safety Chiller Unit	9	3788	693	4481	4112
	Manual Start	Moter Control Center		4112	102	4214	4214

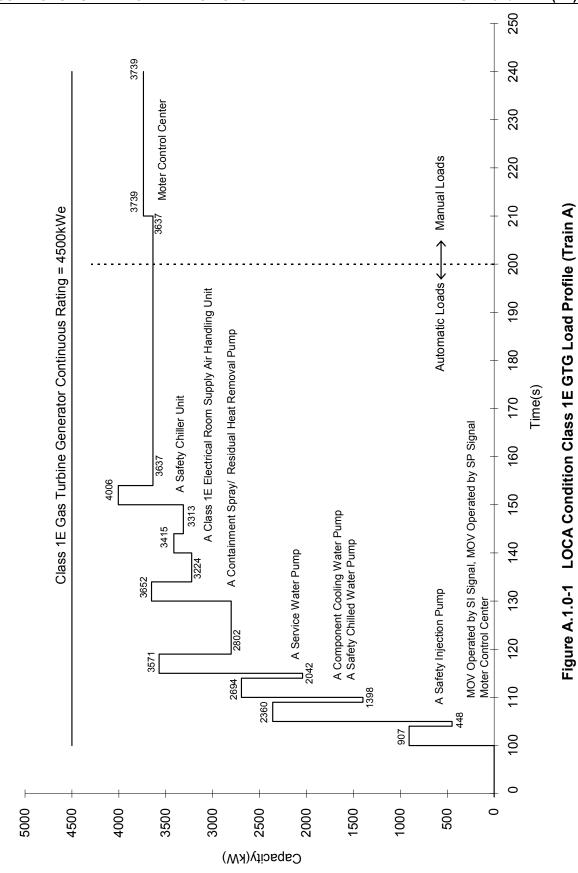
Table A.1.0-6 Class 1E GTG Starting Sequence Train B - LOOP

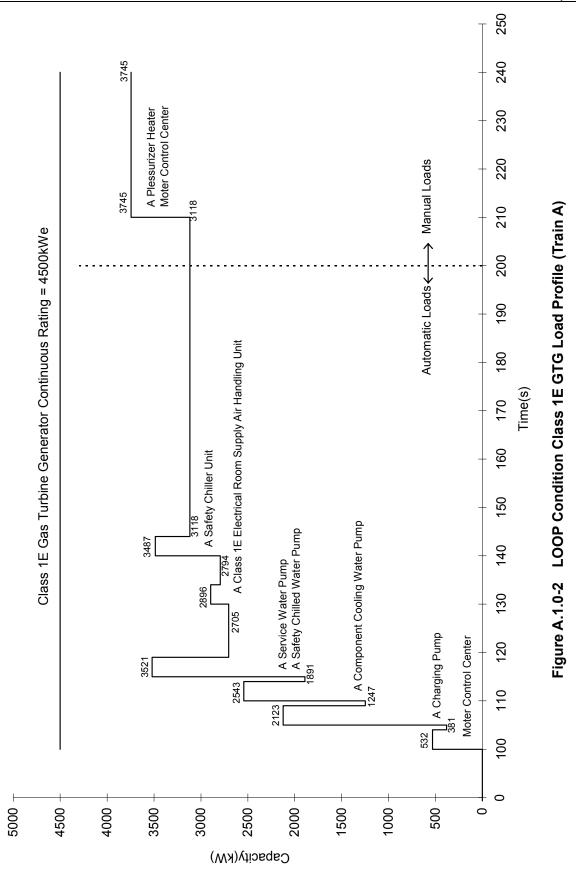
LOOP Signal	LOOP Sequence		Refer	Base	Start	Max	Base
Initiated	Time	Invest Load	Load	Load1	Load	Load	Load2
Time [Sec]	[Sec]		Group	[KW]	[KW]	[KW]	[KW]
100	0	Moter Control Center	1	0	532	532	381
110	10	B Component Cooling Water Pump	2	381	1296	1677	1025
115	15	B Service Water Pump	3	1025	1630	2655	1839
		B Safety Chilled Water Pump	10				
120	20	B Emergency Feed Water Pump	6	1839	956	2795	2314
130	30	B Class 1E Electrical Room Supply Air Handling Unit	7	2314	191	2505	2403
140	40	B Safety Chiller Unit	8	2403	693	3096	2727
	Manual	Moter Control Center	1	2727	627	3354	3354
	Start	B Plessurizer Heater	9				

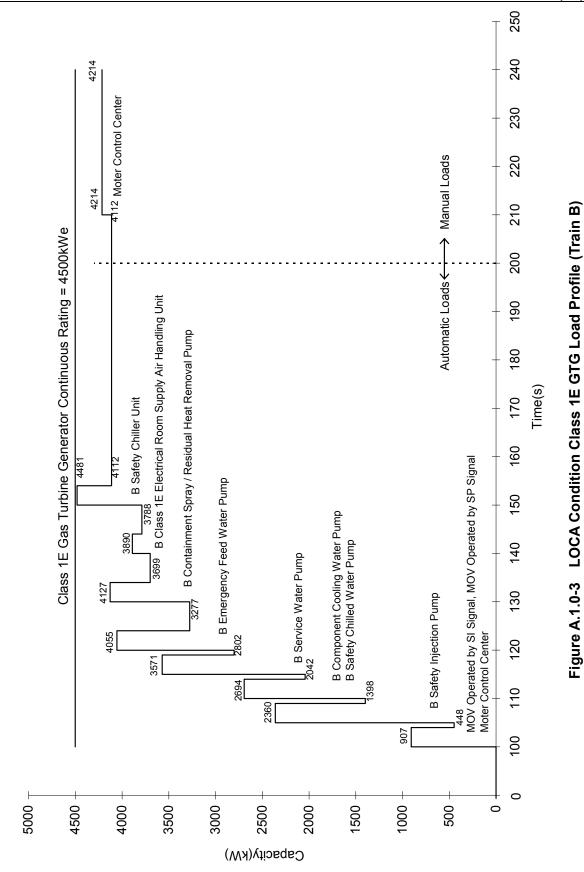
LOCA Signal	LOCA Sequence		Refer	Base	Start	Max	Base
Initiated	Time	Invest Load		Load1	Load	Load	Load2
Time [Sec]	[Sec]		Group	[KW]	[KW]	[KW]	[KW]
100	0	MOV Operated by SI Signal	- 2				
		MOV Operated by SP Signal		0	907	907	448
		Moter Control Center	1				
105	5	C Safety Injection Pump	3	448	1912	2360	1398
110	10	C Component Cooling Water Pump	4	1398	1296	2694	2042
		C Safety Chilled Water Pump	10				
115	15	C Service Water Pump	5	2042	1529	3571	2802
120	20	Emergency Feed Water Pump		2802	1253	4055	3277
130	30	Containment Spray/Residual Heat Removal Pump		3277	850	4127	3699
140	40	Class 1E Electrical Room Supply Air Handling Unit		3699	191	3890	3788
150	50	C Safety Chiller Unit	9	3788	693	4481	4112
	Manual Start	Moter Control Center		4112	102	4214	4214

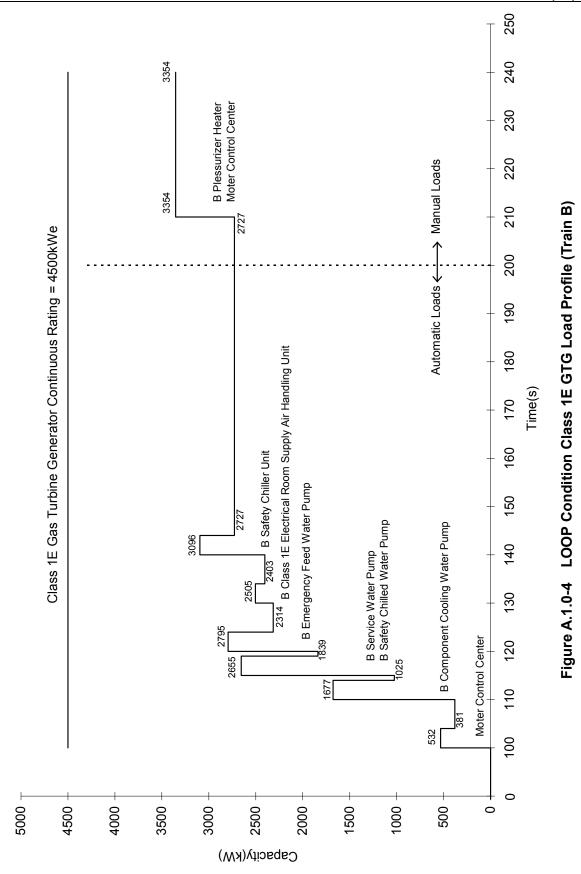
Table A.1.0-7 Class 1E GTG Starting Sequence Train C - LOCA

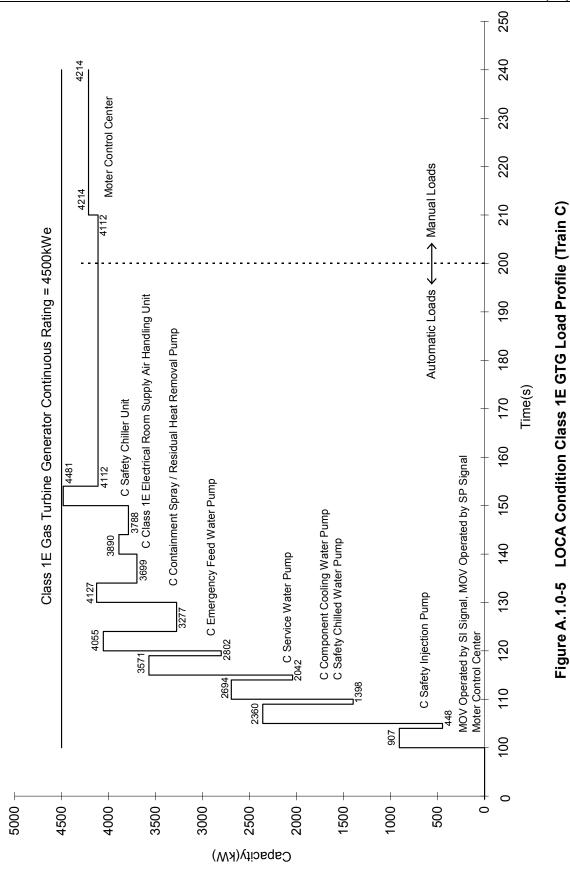
Table A.1.0-8 Class 1E GTG Starting Sequence Train C - LOOP

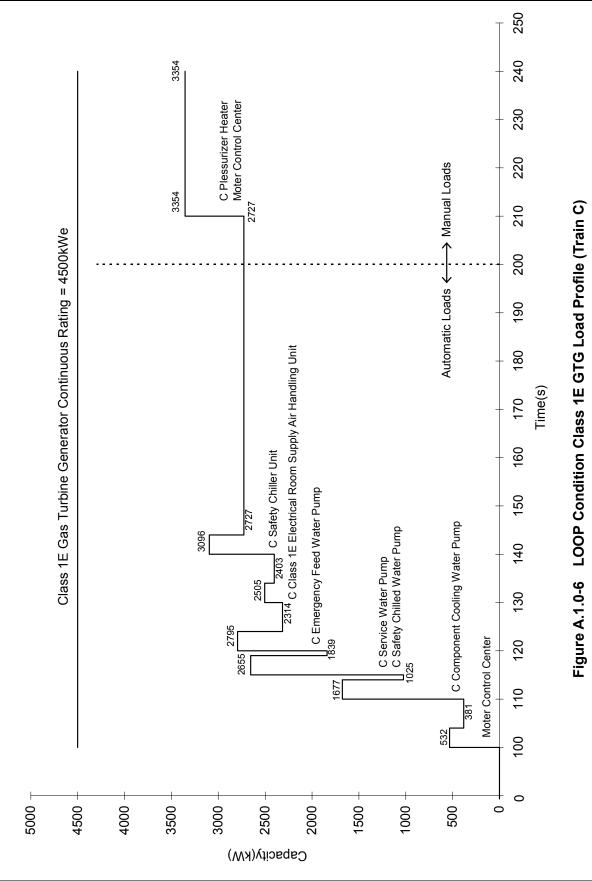

LOOP Signal	LOOP Sequence		Refer	Base	Start	Max	Base
Initiated	Time	Invest Load	Load	Load1	Load	Load	Load2
Time [Sec]	[Sec]		Group	[KW]	[KW]	[KW]	[KW]
100	0	Moter Control Center	1	0	532	532	381
110	10	C Component Cooling Water Pump	2	381	1296	1677	1025
115	15	C Service Water Pump	3	1025	1630	2655	1839
		C Safety Chilled Water Pump	10				
120	20	C Emergency Feed Water Pump	6	1839	956	2795	2314
130	30	C Class 1E Electrical Room Supply Air Handling Unit	7	2314	191	2505	2403
140	40	C Safety Chiller Unit 8 2403 693		3096	2727		
	Manual	Moter Control Center	1	2727	627	3354	3354
Start C Plessurizer Heater		C Plessurizer Heater	9				

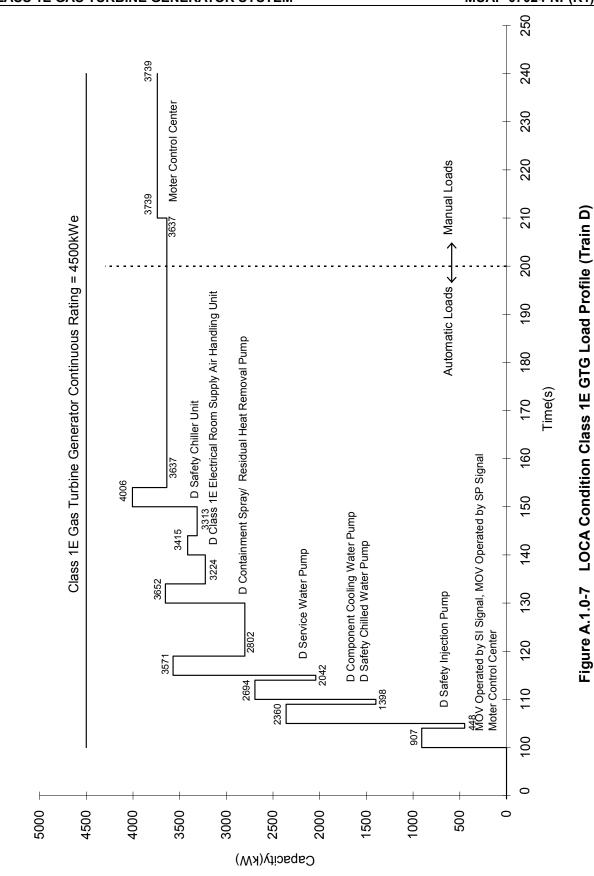

LOCA Signal	LOCA Sequence			Base	Start	Max	Base
Initiated	Time	Invest Load		Load1	Load	Load	Load2
Time [Sec]	[Sec]		Group	[KW]	[KW]	[KW]	[KW]
100	0	MOV Operated by SI Signal	- 2				
		MOV Operated by SP Signal	2	0	907	907	448
		Moter Control Center	1				
105	5	D Safety Injection Pump	3	448	1912	2360	1398
110	10	D Component Cooling Water Pump	4	1398	1296	2694	2042
		D Safety Chilled Water Pump 10					
115	15	D Service Water Pump	5	2042	1529	3571	2802
130	30	D Containment Spray/Residual Heat Removal Pump	6	2802	850	3652	3224
140	40	D Class 1E Electrical Room Supply Air Handling Unit	8	3224	191	3415	3313
150	50	D Safety Chiller Unit	9	3313	693	4006	3637
	Manual Start	Moter Control Center		3637	102	3739	3739

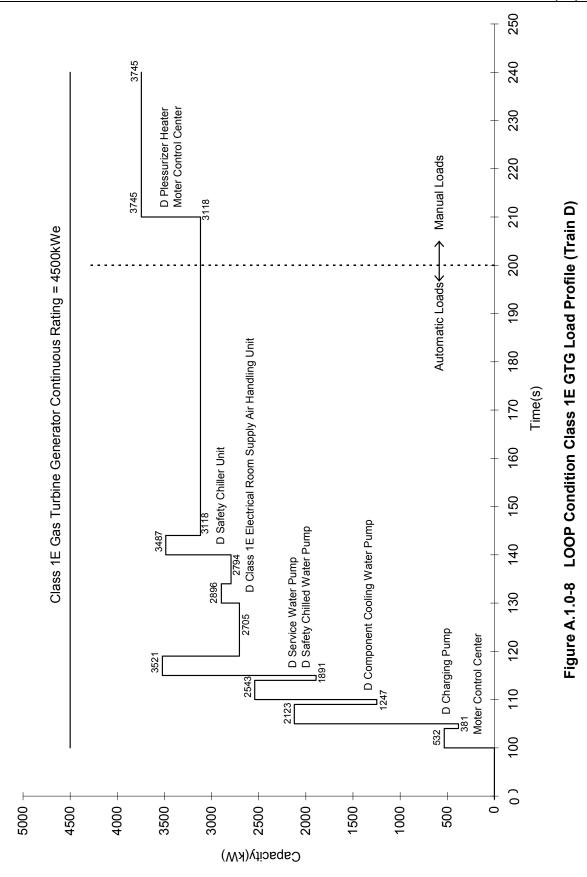

Table A.1.0-9 Class 1E GTG Starting Sequence Train D - LOCA


Table A.1.0-10 Class 1E GTG Starting Sequence Train D - LOOP


LOOP Signal	LOOP Sequence		Refer	Base	Start	Max	Base
Initiated	Time	Invest Load	Load	Load1	Load	Load	Load2
Time [Sec]	[Sec]		Group	[KW]	[KW]	[KW]	[KW]
100	0	Moter Control Center	1	0	532	532	381
105	5	D Charging Pump	5	381	1742	2123	1247
110	10	D Component Cooling Water Pump	2	1247	1296	2543	1891
115	15	D Service Water Pump	3	1891	1630	3521	2705
D S		D Safety Chilled Water Pump	10				
130	30	D Class 1E Electrical Room Supply Air Handling Unit 7 2705 191		2896	2794		
140	40	D Safety Chiller Unit	8	2794	693 3487 3118		3118
	Manual	Moter Control Center	1	3118	627	3745	3745
Start D Plessurizer Heater		D Plessurizer Heater	9				







Appendix B Gas Turbine Generator Technical Specification

B.1.0 Introduction

This Specification clearly specifies the performance, structure, etc. of GPS6000 GAS TURBINE, as well as describes data necessary for the driving units which are mainly available for generator system.

B.2.0 Engine Arrangement and Specification

B.2.1 Basic Arrangement

The engine of GPS6000 is a twin version of engine and two power sections are coupled to the reduction gearbox.

The following items are included in the engine:

- (1) Engine Assembly
 - (a) Power Section:

This is so-called a gas turbine component which consists of the following parts:

- Simple & open cycle single-shaft-type gas turbine
- Two-stage centrifugal compressor
- Single can type combustor
- Three-stage axial turbine
- Double-end-support bearings, etc.

The cross-sectional view of the power section is shown in Fig. B.2.1-1

(b) Reduction Gearbox:

The reduction gearbox assembly provides support for the two power sections. It contains the reduction gearing with epicyclic gear and parallel gear train that enables the power section to drive accessories and output shaft at appropriate speed. The gear train of reduction gear box is shown in Fig. B.2.1-2.

Two types of output shaft speed are available. One is 1,800 rpm (reduction gear ratio: 9.969, for 60 Hz generator) and the other is 1,500 rpm (reduction gear ratio: 11.991, for 50 Hz generator).

(c) Fuel, Oil and Air (FOA) system:

The fuel, oil, and air system consists of the following components:

- Main fuel pump
- -Electric starting fuel pump
- Starting fuel pump
- Fuel control valves
- Main lubricating oil pump
- Relief valve
- Pressure rising valve
- Air starter (in case of pneumatic starting system)
- Other small parts

The details of the main components are shown in Table B.2.1-1.

(d) Engine Electric System:

The engine electric system consists of the following components:

- Ignition system
- EGT harness
- Speed sensor
- Electric starter motor (in case of electric starting system)
- Turning motor
- Oil Temperature Sensor
- Oil Pressure Switch
- Other small parts

The main items of components are shown in Table B.2.1-2.

(e) Inlet collector:

This part composes a square-type air intake. The ignition exciter is mounted on its side panel.

B.2.2 Dimensions and Weight

(1) Dimensions (Details are referred to Fig. B.2.2-1):

- Overall length	: 2,877 mm
- Overall width	: 2,679 mm
 Overall height 	: 2,403 mm

(2) Weight:

- Engine assembly (in case of electric starting system)

: 13,500 kg

- Power section	: 2,540 kg ×2
(- Rotor assembly	: 300 kg ×2)
- Main reduction gearbox	: 8,500 kg

- (3) Rotational Speed and Direction:
 - (b) Rotational Speed:

- Rotor	: 17,944 rpm (60 Hz version)
	: 17,987 rpm (50 Hz version)
 Output shaft 	: 1,800 rpm (60 Hz version)
	: 1,500 rpm (50 Hz version)

- (c) Rotational Direction of Output Shaft: Counter-clockwise, facing to the output shaft
- (4) Rotational Inertia Moment: (GD² converted to the output shaft speed)
 : 3,580 kgm² (60 Hz version)
 : 5,120 kgm² (50 Hz version)

B.3.0 Performance

B.3.1 Major Performance

- Rated output	: 5,300 kW
- Fuel consumption	: 21,130 kW
- EGT	: 585°C

- Intake air f	low	: 25.4 kg/s

- Exhaust gas flow : 93.5 ton/hr

- Compressor discharge Pressure: 1.04×10⁶ Pa, abs

Standard Operating Condition:

 Ambient pressure 	: 1.0133×10⁵Pa
- Intake air temperature	: 40 °C
- Humidity	: 60 %
- Intake pressure loss	: 0 Pa
- Exhaust pressure loss	: 2×10 ³ Pa
(The exhaust pressure los	s means the total pressure loss at the outlet flange of the
· ·	section with a tail cone of the outlet diameter 662 mm.)
- Fuel	: Liguid fuel

- Bearing, power section : No.1 ball bearing & No.2 roller bearing

If the intake air temperature and output are varied, the applicable fuel flow rate, EGT, air flow rate and compressor discharge pressure are also varied as shown in Fig. B.3.1-1 and B.3.1-2. Performances at different operating conditions can be calculated according to Section B.3.2 (Performance Compensation Method).

Standard NOx value is shown in Fig. B.3.1-3. This value cannot be guaranteed, only for reference.

B.3.2 Performance Compensation Method

(1) Intake/exhaust Pressure Loss (See Fig. B.3.2-1)

The pressure loss corrections due to the pressure losses for the output power, fuel flow and EGT are shown in Fig. B.3.2-1. The intake air flow Ga [kg/s] is calculated from following equation:

Ga=Gao×(1-∆P∕P)

where Gao = Intake air flow without intake pressure loss [kg/s]

 ΔP = Intake pressure loss [Pa]

P = Ambient pressure [Pa]

(2) Ambient Pressure:

The ratio of the ambient pressure to the standard ambient pressure shall be specified as the elevation correction factor $[\delta]$ which is related to the altitude from the sea level. The variation of δ to the altitude shall be referred to Fig. B.3.2-2.

The output power, fuel flow and air flow, shall be corrected as follows:

Corrected value = Nominal value (output, fuel flow, air flow) × δ

(3) Intake air temperature: Referring to Fig. B.3.1-1 and B.3.1-2, the applicable variation shall be read out.

B.3.3 Allowable Ambient Air Conditions

- (1) Temperature : -20 to 50 °C
- (2) Pressure : 795 to 1037.5 hPa (Equivalent altitude : 2000 to -200 m)
- (3) Foreign matters in the intake air:

Grain size: less than 10μm (0.4μinch)Salt concentration: 0.02ppm max

B.4.0 Specification of Components and Systems

B.4.1 Fuel System

Fuel system schematic is shown in Fig. B.4.1-1.

- (1) Applicable fuel : Liquid fuel
- (2) Fuel supply pressure : 0.01 to 0.03 MPa [gage] (at the inlet port of the main fuel pump)

(3)	Fuel nozzle cooling system	
	To prevent the fuel coaking.	After engine stop, fuel nozzle must be cooled by air.
	Air supply pressure	: 0.49 to 0.69 MPa (Main)
		0.84 kPa (Primary)
	Air flow rate	: Min. 4.25 Nm3/hr for Gas Turbine Assembly E/G
	Purge operating time	: see Fig. B.4.1-2

B.4.2 Main Lubricating Oil System

Main Lubricating oil system schematic is shown in Fig. B.4.2-1.

(1) Applicable oil : Synthetic base oil, MIL-PRF-23699 or equivalent oil Recommended brands : Aero Shell ASTO 500 MOBIL JET-II CASTROL AERO 5000 **BP BPTO 2380** DAPHNY ALPHA Turbine Oil 26 (2) Working temperature range : 0 to 70°C (3) Oil supply pressure: During operation : see Table B.4.2-1. (4) Oil consumption: Approx. 0.2 L/hr (with KHI's oil mist separator) Tank capacity : Allowable maximum level : 370 L Allowable minimum level : 280 L (5) Oil mist: Allowable back pressure: 5000 Pa at the downstream from the gearbox port, including the pressure loss of oil mist separator. : 150 mesh (6) Oil filter : Pump suction section Pump discharging section : NOM. 10µm

B.4.3 Starting System

(1)	Pneumatic starting system	
	Starter	: TDI, 51H-21 × 4 Turbine starter (gear ratio 9:1)
	Compressed air pressure	: 0.98 MPa [gage] (10.0 kg/cm ² g)
		(at the inlet port of the starter)
	Air consumption	: approx. 120 Nm ³ per starting
	Limitation of generator department.	: The limitation is needed to be inquired to the engineering

B.5.0 Engine Assembly Installation

B.5.1 Overall Structure

The engine assembly installation shall be carried out in accordance with the requirements of the drawing refer to Fig. B.2.2-1.

In order to facilitate overhauling or repairing, the overall structure shall be designed to be able to remove the power section, accessory gearbox, upper case of the main reduction gearbox, and the internal gears.

B.5.2 Air Intake and Exhaust System

(1) Air Intake Duct System:

The amount of additional intake air pressure loss (at the upstream from the upper flange on the engine air intake duct) shall be less than 2000 Pa. If the air intake duct connected with the upper section of an enclosure is arranged transversely, special care shall be taken for the bent duct in order to maintain as uniform the airflow as possible.

(2) Exhaust Duct System:

The amount of additional exhaust pressure loss (at the down-stream from the rear flange on the engine exhaust duct) shall be less than 3000 Pa. The exhaust duct directly connected with this rear flange shall be removed easily so as to inspect the rear of the engine or to remove the power section.

B.5.3 Heat Radiation

- (1) Lubricating oil : 140 kW
- (2) Surfaces of engine : approx. 105 kW

B.5.4 Sound Power Level

The sound power levels of inlet, exhaust, and engine noises refer to Fig. B.5.4-1. The sound power level is calculated as follow equation;

Lw = $10 \log_{10} (W/W0)$ where Lw: sound power level (dB) W : sound output (W) W0: standard value of sound output $10^{-12} (W)$ Table B.2.1-1 Main Parts of Fuel, Oil, and Air System

Table B.2.1-2 Main Parts of Electric System

Table B.4.2-1 Engine Operation Limit and Protective Device Set Value

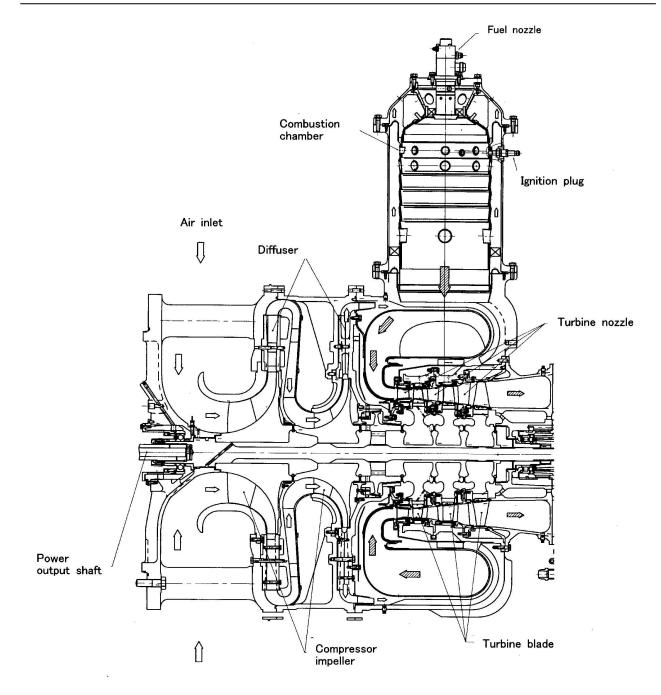
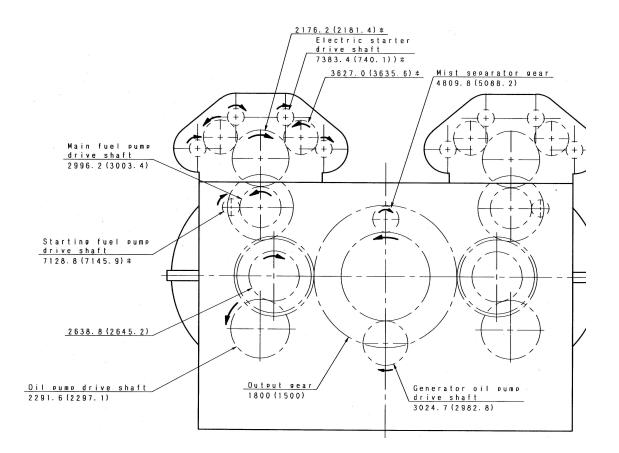
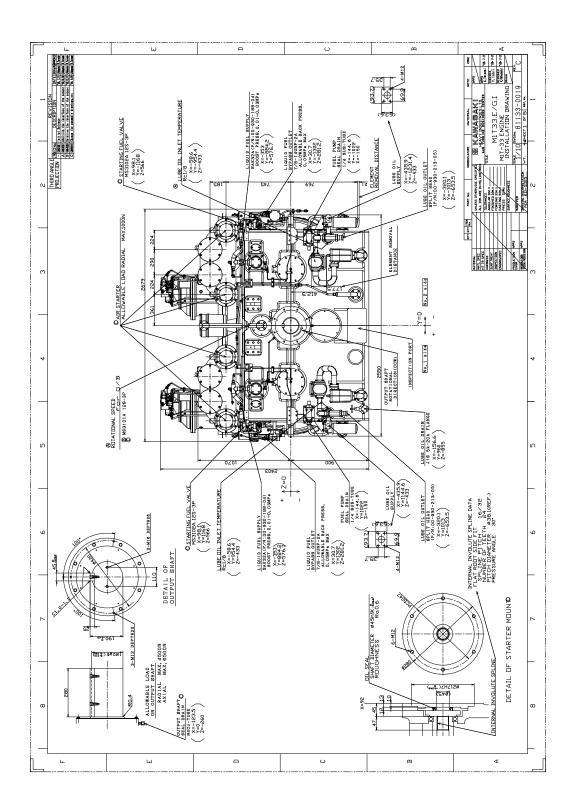



Figure B.2.1-1 Cross Sectional View of Power Section



- Note : 1 Figures show the revolution speed (rpm).
 - The values are for 60Hz version machine and the values shown in parentheses are for 50Hz version machine.
 - : 2 The parts shown in asterisk * are intercepted by 55% revolution in case of electric starting system and by 50% revolution in case of pneumatic starting system.

That is, revolution speed at starter cut-off is 0.55 times of the above-mentioned value in case of electric starting system and 0.50 times of the above-mentioned value in case of pneumatic starting system.

: 3 The rotating direction is specified when it was viewed from the output shaft side.

Figure B.2.1-2 Gear Train of Reduction Gear Box

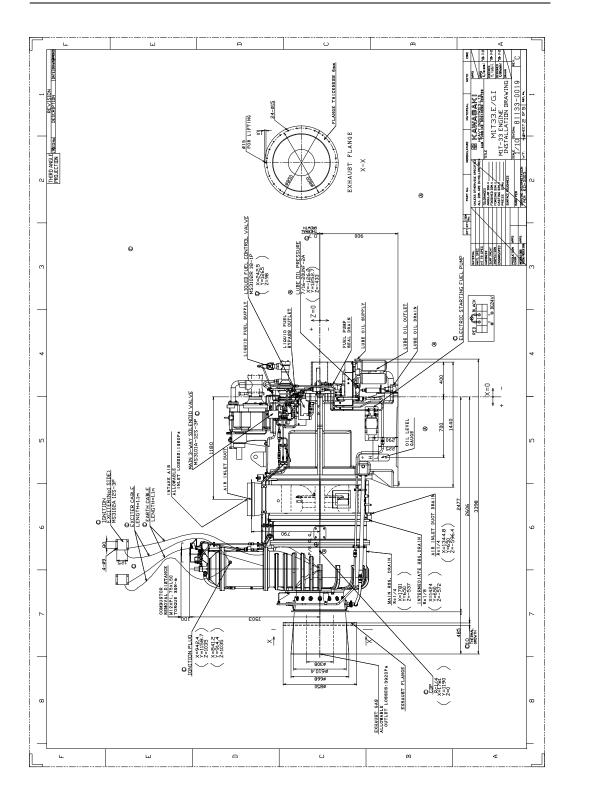


Figure B.2.2-1 Installation Drawing of Gas Turbine Assembly (sheet 2)

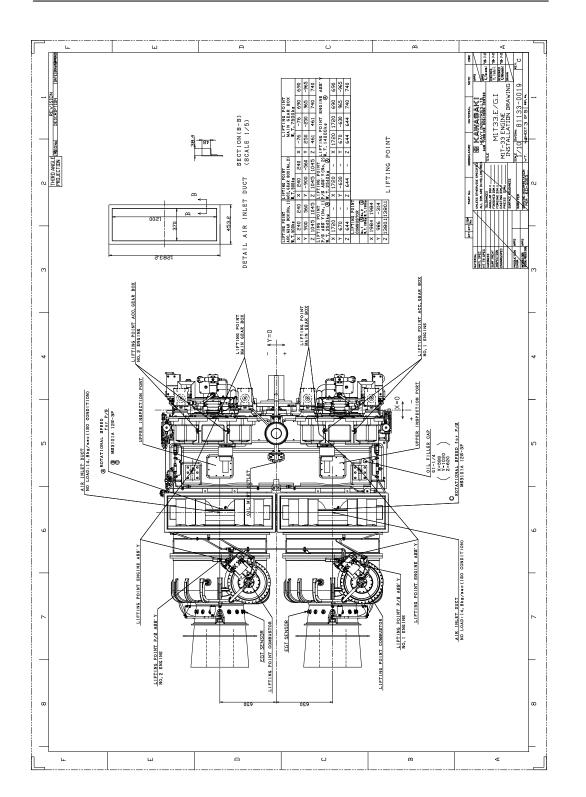
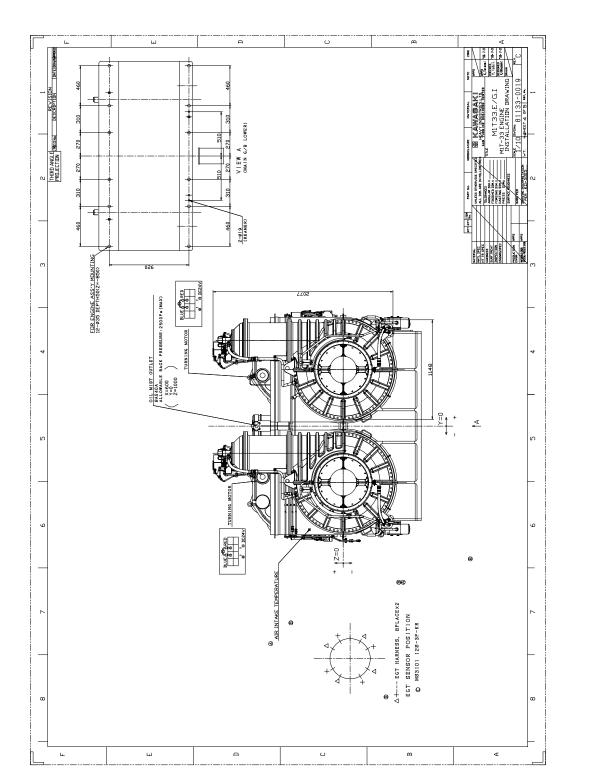



Figure B.2.2-1 Installation Drawing of Gas Turbine Assembly (sheet 3)

MUAP-07024-NP(R1)

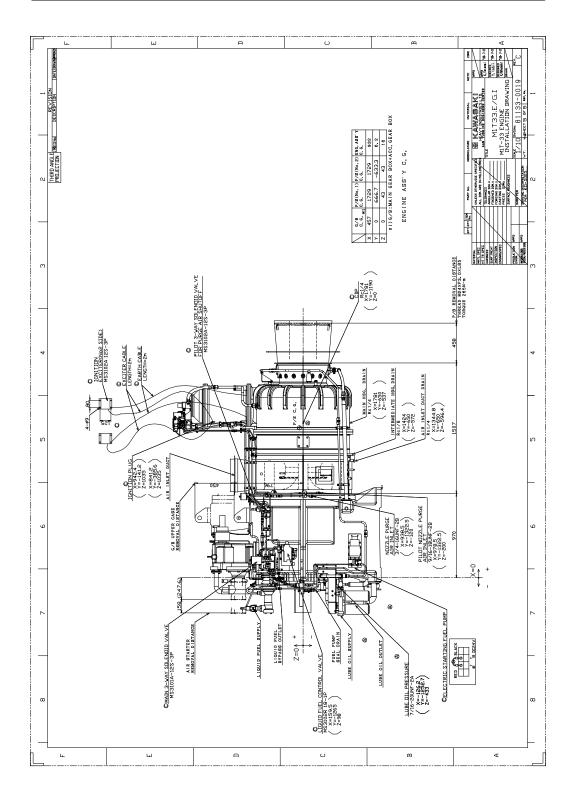


Figure B.2.2-1 Installation Drawing of Gas Turbine Assembly (sheet 5)

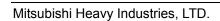

Figure B.3.1-1 Fuel Flow Rate and EGT of Gas Turbine Assembly Nominal Performance

Figure B.3.1-2 Air Flow Rate and Compressor Discharge Pressure (CDP) of Gas Turbine Assembly Nominal Performance

Figure B.3.1-3 Standard NOx Value

Figure B.3.2-1 Pressure Loss Correction of Gas Turbine Assembly

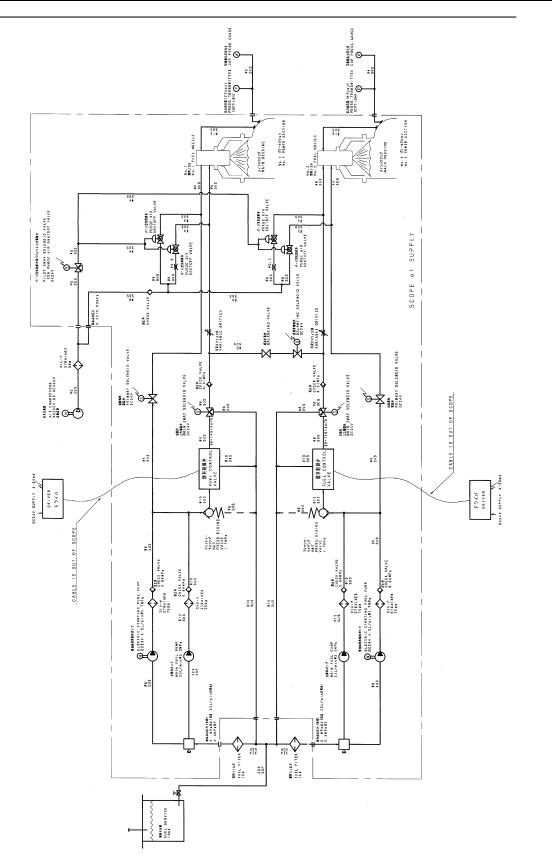
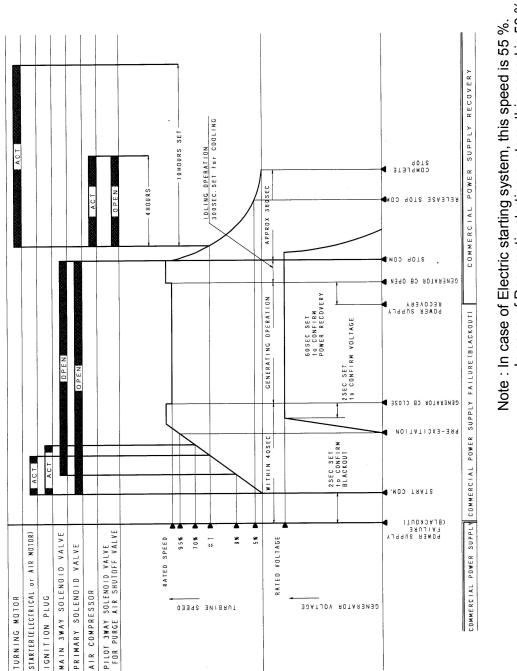



Figure B.4.1-1 Fuel System Schematic for Gas Turbine Assembly

Note : In case of Electric starting system, this speed is 55 %. In case of Pneumatic starting system, this speed is 50 %.

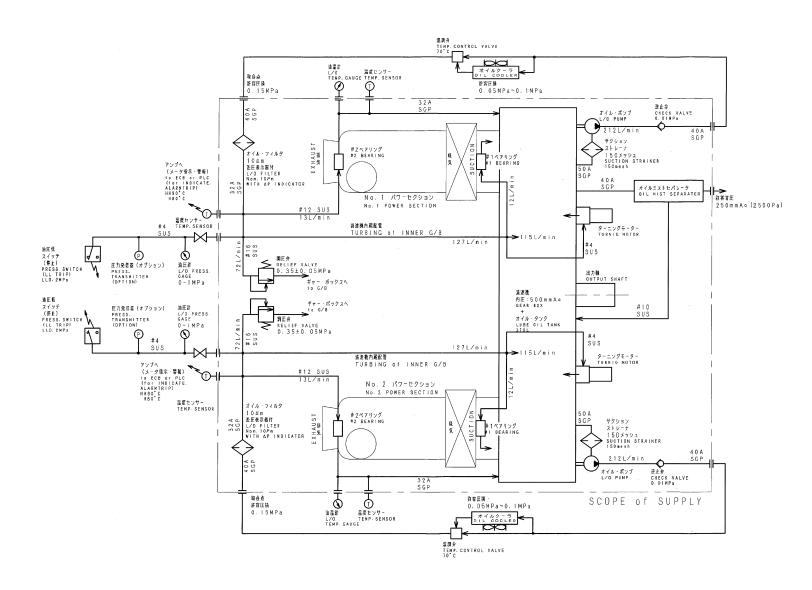


Figure B.4.2-1 Main Lubricating Oil System Schematic for Gas Turbine Assembly

(a) Sound Power Level (Inlet)

(b) Sound Power Level (Exhaust) Figure B.5.4-1 Sound Power Level (sheet 1) (c) Sound Power Level (Engine) Figure B.5.4-1 Sound Power Level (sheet 2)

Appendix C Gas Turbine Generator Class 1E Qualification Plan

C.1.0 General Information

C.1.1 Description

The Class 1E GTG is part of the standby power system. This specification is for a GTG, having a rating of 4500 kW, 6900 V, 3-phase, 60 Hz. The design meets or exceeds the requirements of U.S. NRC Regulatory Guide 1.9 Rev. 4. This Regulatory Guides was provided for Diesel Engine powered generators used as Emergency Power Supplies. Since there is no guidance available for Gas Turbine engine power generators used for same purposes, the existing Regulatory Guides are used and applied accordingly. The engine, generator and all auxiliaries shall be classified as Seismic Category Class I, and shall also where applicable meet the requirements of the documents listed in Section C.2.0.

- (1) The generator and other equipment whose operation is considered critical to the satisfactory starting and/or running of the GTG Unit shall be Class 1E. Furthermore, equipment whose operation is not considered critical to the satisfactory starting and/or running of the GTG Unit but which must maintain electrical integrity to prevent the compromising of a 1E circuit shall also be Class 1E.
- (2) The above GTG provide standby power system for each unit. Each system will be used to supply onsite power to safely shut down the reactor in case the off site power becomes unavailable.
- (3) No accessories or auxiliaries shall be shared between GTG systems.
- (4) Each GTG set shall be furnished complete with all necessary component parts, accessories, auxiliaries and appurtenances, including but not limited to the following:
 - (a) Skid mounted assembly consisting of the following: Dual Gas Turbine engine, reduction gear box, and generator. Fuel System complete with engine driven pumps. Lube Oil System complete with engine driven pumps, strainers, filter, instrumentation, etc. Combustion Air System complete with flexible connections, silencer and bird screen. Exhaust System complete with discharge expansion connector and silencer. Starting Air System, to include air start motors, start and stop control solenoid valves, "Y" strainers, and flexible connectors. All integral piping, valves, instrumentation, wiring of all Control, Auxiliary Power and Alarm Circuit.
 (b) Starting Air Compressor System - shall consist of motor driven compressors, air receivers, integral piping, valves, wiring, etc.
 (c) Control Panel, including turbine controls, exciter auxiliaries, voltage regulator, electrical
 - (c) Control Panel, including turbine controls, exciter auxiliaries, voltage regulator, electrical accessories and instrumentation.
 - (d) Mounting and wiring of current transformers for generator differential protection.
 - (e) Two complete sets of any special tools required for maintenance of the two GTG sets.
 - (f) Recommended spare parts list and quotation.
 - (g) Shop tests, inspection and field tests.
 - (h) Special tools and instruments for shop and field tests. Services of a field installation representative.
 - (i) Certified drawings, Schematics, data sheets, instruction and maintenance

manuals, parts list, Seismic Qualification Reports and any other documentation required by Section VIII of ASME Boiler and Pressure Vessel Code.

- (j) One copy of the manufacturers' data reports (required by the ASME Boiler and Pressure Vessel Code) shall be sent.
- (k) Mild environmental qualification reports in accordance with IEEE 323-1983 to environmental parameters stated in section C.1.3 of this specification.
- (I) Painting and protection for shipment and storage.
- (m) Fuel oil day tank, located off skid. (See Subsection C.2.2.6.6)

C.1.2 Other Auxiliary Equipment

- (1) Separate enclosure in Seismic Category Class I Building for housing each of the GTG units.
- (2) Interconnecting piping and wiring between GTG set and remotely located auxiliary equipment.
- (3) Fuel oil storage tanks (7 day) and fuel oil transfer pumps.
- (4) Hoists required for maintenance.
- (5) Furnishing and installation of cables for conveying power from the GTG units to the emergency busses.
- (6) Current transformers for generator differential, for mounting and wiring.
- (7) Distribution Panel for GTG auxiliaries.
- (8) Air ducting for room ventilation.
- (9) Remote control and surveillance stations.
- (10) All labor, fuel oil, lube oil, test equipment and other supplies required for field testing.
- (11) All cables required to interconnect the skid with motor control center, control panels and other remote equipment.
- (12) Furnishing and installation of generator overcurrent, differential current, loss of field, reverse power, negative-phase-sequence overcurrent, generator field ground and bus fault protective relays.

C.1.3 Service Conditions

Typical ambient conditions considered are as follows and will be adjusted as required by specific site:

(1) (2)	Temperature during Storage Temperature during Operation	0 to 88°F 50 to 120°F		
	For mild environmental qualification purposes, the GTG			
	versus time profile is expected to be as follows for a 60	year service life:		
	197,000 hours @ 80°F			
	2000 hours @ 100°F			
	100 hours @ 120°F			
	or use a weighted average temperature of 77°F			
(3)	Minimum Temperature during operation	-10°F		
. ,	(at Building Heating System failure)			
(4)	Elevation	+20 Feet above MSL		
(5)	Relative humidity range for environmental	3% to 100%		
• •	For mild environmental qualification purposes use 10% to 95% RH			
(6)	Ambient air intake temperature range	-4 to 115°F		
(7)	Barometric design pressure	29.92 inches Hg		
(8)	Radiation	1x10 ³ Tads TID		
(-)				

The GTG unit shall be designed and be capable of performing at all ratings under the above service conditions:

C.2.0 Design Requirements-General

C.2.1 Summary

Each GTG set shall be capable of meeting the following conditions. Also conformances with all requirements of R.G 1.9 are shown in Section C.5.0.

C.2.1.1 Type

- (1) The GTG units shall be of the piped and wired, skid mounted, fast starting, high field forcing type; capable of operating in either the parallel or isochronous modes, and shall have an integral control, surveillance and protection system.
- (2) The control, surveillance and protection system shall be housed on an off-skid control cabinet and shall be of the completely automatic type with provisions for semi-automatic and manual operation.

C.2.1.2 Rating - Gas Turbine Generator

(1) Ratings shall not be less than

4500 kW Continuous @ 1,000 hrs Engine Overhaul Interval, 115°F Air Intake Temperature

- 4950 kW Short time @ 300 hrs Engine Overhaul Interval, 115°F Air Intake Temperature
- (2) Service Indoor
- (3) Service Conditions See Section C.1.3

C.2.1.3 Performance Criteria

The GTG units shall have the capability of performing in accordance with each of the following criteria, singly or in any combination; in the service conditions specified.

- (1) Automatically or manually starting, being at set speed and voltage, and achieving a condition of "ready-to-load" within a maximum of 100 seconds after receiving a start signal in single operation.
- (2) Compliance with Factory and Field Acceptance Tests discussed in Section C.4.0.
- (3) Operating in parallel with the station 6.9 kV +10% auxiliary power system after being manually synchronized and manually loaded.
- (4) Operate continuously at rated speed and voltage with no load on the generator terminals for a maximum of 72 hours without loss of performance.
- (5) Providing a quality of power such that:

The Class 1E GTG should be designed such that the frequency will not decrease, at any time during the loading sequence, to less than 95 percent of nominal and the voltage will not decrease to less than 75 percent of nominal. (A larger decrease in voltage and frequency may be justified for a diesel generator that carries only one large connected load.) Frequency should be restored to within 2 percent of nominal in less than 60 percent

of each load-sequence interval for a stepload increase, and less than 80 percent of each load-sequence interval for disconnection of the single largest load. Voltage should be restored to within 10 percent of nominal within 60 percent of each load-sequence interval. The acceptance value of the frequency and voltage should be based on plant-specific analysis (where conservative values of voltage and frequency are measured) to prevent load interruption. (A greater percentage of the load-sequence interval should include sufficient margin for the accuracy and repeatability of the load-sequence timer.) During recovery from transients caused by disconnection of the largest single load, the speed of the diesel generator should not exceed the nominal speed plus 75 percent of nominal (whichever is lower). Furthermore, the transient following a complete loss of load should not cause the diesel generator speed to reach the overspeed trip set point.

- (6) Providing a quantity of power such that: The continuous rating may be utilized continuously and completely with no restrictions on duration except for scheduled outages for maintenance only.
- (7) The unit shall be free of harmful critical speed vibration in the range of +5% of the synchronous speed (1800 RPM generator)

Appropriate speed control shall be provided to avoid the possibility of extended operation in a resonant condition near critical speeds.

C.2.1.4 Seismic Requirements

All equipment, including assemblies, sub-assemblies, supports, piping, control panel, etc., shall satisfy the seismic requirements of the specific site.

C.2.2 Design Requirements, Mechanical

C.2.2.1 Engine

The generator set shall be driven by two gas turbines. The gas turbine shall be the heavy-duty, single-shaft, simple open cycle, and air cooled type. The engine shall be the manufacturer's standard model for the intended service and shall be designed to applicable code requirements. The gas turbine shall be suitable for conformance with seismic and other operational requirements as stated herein. A flexible coupling shall be installed between the engine and generator. A suitable removable guard shall be mounted over the coupling. Also necessary operating and access platforms, steps, stairs, handrails, toe plates, etc. shall be provided all as per OSHA requirements.

C.2.2.2 Governor

The governor (ELV) is an electric fuel valve to control the fuel flow to a small industrial gas turbine. This is an all electric liquid fuel valve, which discharges fuel from output port in proportion to the input signal to the ELV driver. The control of the ELV driver is by electric load sensing and shall act instantly to adjust the Gas Turbine engine output to the electric load to maintain constant generator speed. Precise control shall be provided to assure compliance with the performance criteria stated in Subsection C.2.1.3. The valve goes to the minimum fuel position to shutdown the prime mover in case of power supply failure, feedback signal

failure/short or actuator signal failure for fail-safe.

The governor response shall not be affected by the fluctuating service conditions indicated in Section C.1.3. Under all operating conditions the governors shall function primarily on automatic.

C.2.2.3 Engine Automatic Starting System

Each GTG set shall be capable of both manual and automatic starting. A completely independent and automatic start-up system shall be furnished for each engine requiring no operating personnel.

The engine shall be capable of being started by compressed air within 100 seconds after signal for start. The engine shall also start with all systems at 50°F.

There are six starting air compressors per engine and two receivers. The receivers capacity should be such that there is sufficient air at required pressure for three starts. The receivers are to be constructed in accordance with ASME Section VIII.

The manufacturer shall provide a set of receivers and compressors for each generating set piped. Compressors and receivers shall be furnished with all instrumentation, valving, relief valves, air dryer and other accessory equipment to provide a fully controlled and monitored air starting system.

Compressor final discharge shall be provided with a flexible connection to eliminate pipe vibrations caused by compressor operation.

The above air receivers, shall be designed, fabricated, and tested as per ASME Code for Pressure Vessels, Section VIII.

The starting system shall be designed to prevent rust within the receivers and piping, preferably with dryers, or proper selection of materials.

The compressor, receivers, valves, piping, and other accessory equipment shall be assembled on a common base. The air compressor and compressor motor shall be considered non safety related.

C.2.2.4 Air Intake System

Components:

Air intake system shall consist of duct, inlet duct, silencer, and bird screen.

Bird Screen:

A bird screen shall be furnished to prevent ingestion of foreign objects by the gas turbine.

Flexible Hose:

Flexible Hose with mounting clamps shall be furnished to absorb vibration and thermal expansion.

Silencer:

Silencer shall be furnished to absorb the gas turbine inlet noise.

C.2.2.5 Exhaust System

Components:

The exhaust outlet adapters, flexible connections and silencers for each generator set shall be furnished.

Flexible Connection:

Flexible metal, with flanged ends to assure expansion protection and vibration isolation.

Piping:

Interconnecting piping will be furnished by Purchaser.

C.2.2.6 Fuel System

C.2.2.6.1 General

A complete Gas Turbine engine fuel system shall be furnished in accordance with Section C.1.1.6.

C.2.2.6.2 Fuel

(1) Engine fuel will be commercial grade No. 2 fuel oil with limits as stated in ASTM Specification D-396 or kerosene.

C.2.2.6.3 Fuel Injection

(1) Pumps and nozzles shall require no adjustment while in service and shall be capable of quick replacement.

C.2.2.6.4 Fuel Oil Strainers and Filters

A full flow single strainer between the engine driven pump and header, a filter between the day tank and the engine driven pump and pressure gages on the skid panel to indicate fuel header pressure shall be provided.

High differential pressure switches shall be furnished across filter.

C.2.2.6.5 Main Fuel Oil Pump

- (1) A direct engine/gearbox driven, pump that will pump fuel oil from the day tank to the fuel control valve under any condition of operation specified herein shall be provided.
- (2) Pump inlet pressure shall be kept according to the gas turbine requirements

C.2.2.6.6 Fuel Tank

- Each GTG shall be provided with a welded steel day tank, to hold a total quantity of fuel required for 1.5 hours operation at the continuous rating (Approx. 2050 X 1.05 X 1.5 = 3229L = 853 Gal). Tanks shall be constructed in accordance with ASME Section Ⅲ, Class 3.
- (2) Tank shall be provided with fuel level gage, high and low level switches, automatic controls

for maintaining tank fuel oil level, overflow, flame arrestor, vent, pressure relief vent, drain, engine supply, engine pressure return, and one fill connection.

- (3) On normal low tank level, the automatic level controls shall be arranged to start the associated transfer pump that will pump the fuel from a 7-day storage tank to the day tank.
 - (a) On pre-determined low-low tank level, a level alarm switch shall be actuated.
- (4) On normal high level, the level control switch shall trip the fuel oil transfer pump.
 - (a) On high-high level a level switch shall be furnished to annunciate the condition.

C.2.2.7 Lubrication System

C.2.2.7.1 General

- (1) A complete lube oil system shall be furnished to supply oil under pressure to the engine bearings and reducing gear bearings.
- (2) Maximum stabilized oil temperature leaving the engine when the engine is carrying the overload in an ambient temperature of 115°F, shall not exceed the manufacturer's maximum safe value.

C.2.2.7.2 Main Lube Oil Pump

(1) Shall be engine-driven and a design which shall furnish lube oil at a constant pressure to all points requiring lubrication.

C.2.2.7.3 Filters

- (1) The lube oil flow shall be continually filtered and strained.
- (2) Filters (by-pass type) shall:
 - (a) Be cotton waste or cellulose type conveniently located to maintain oil purity.
 - (b) Have replaceable elements which can be changed without breaking the connecting piping.

C.2.2.7.4 Low Oil Pressure Protection

(1) A low oil pressure alarm shall be furnished in the system to signal when the lube oil pressure drops to the lowest safe operating level.

C.2.2.7.5 Lube Oil Cooler

- (1) A lube oil cooler shall be supplied to remove heat from the engine and speed reducer oil during operation.
- (2) The cooler shall be of the air to oil type and shall be driven by an electric motor driven fan, mounted close to the radiator core.
- (3) Design pressure and cooler size shall be determined by engine manufacturer.

C.2.2.7.6 Controls

Automatic oil temperature controls with high oil temperature alarm shall be furnished.

C.2.2.7.7 Drain

The oil tank shall be provided with suitable sump and drain to remove the lube oil.

C.2.2.7.8 Lube System Pressure Gauge

Pressure gauge shall be provided for engine lube.

C.2.2.7.9 Lube System Temperature Gauges

Temperature gauges shall be provided at inlet and outlet of oil cooler.

C.2.2.7.10 Level Indicator

Shall be provided in the oil tank.

C.2.2.8 Bearings - (Generator)

- (1) The generator shall be provided with two pedestal mounted sleeve bearing independent of the engine.
- (2) Bearings shall be of the split ring type with integral oil lubrication.
- (3) Close running shaft seals shall be provided on the generator shaft bearings to prevent oil leakage from the bearing area.
- (4) The outboard generator bearing pedestal shall be insulated to prevent shaft current circulation and resultant bearing damage.
- (5) Generator bearing oil lubrication system shall be provided with:
 - (a) Oil sight level gages with clear and indelible oil level markings for standstill and running conditions.
 - (b) Oil fill and drain plugs and inspection openings.
- (6) One 100 ohm (at 0°C) Resistance type platinum temperature detector shall be provided in the generator pedestal mounted bearing. Three Leads shall be brought out and connected to terminals in a conveniently located terminal box mounted on the GTG unit skid. Extension wire shall be shielded, twisted, 3/c, No. 16 AWG. Resistance Temperature Detector (RTD) shall be ungrounded.

C.2.2.9 Skid

- (1) The skid type base plate shall be fabricated of rolled steel sections welded together to form a rigid base for mounting the equipment and systems indicated in Subsection C.1.1.(4) (a) above and suitable for bolting to a reinforced concrete foundation.
- (2) The skid and equipment mounted thereon shall be completely assembled, piped and wired in the factory.
 - (a) Piping shall terminate in accessible positions for fitting-up of field connections.
 - (b) Wiring shall terminate in terminal boxes in accessible locations on the skid.
- (3) Walkways, platforms, ladders and/or stairways required for operator access to the skid mounted equipment shall be furnished and factory mounted.
 - (a) Where items may require separate shipping they should be assembled in the largest possible components.
- (4) Skid shall be equipped with lifting eyes and jacking provisions and shall be suitable for skidding in a direction parallel to or perpendicular to its longitudinal axis.

C.2.2.10 Piping

C.2.2.10.1 Scope

All integral piping systems for the GTG Skid Assembly as outlined in Section C.1.1.(4) (a) shall be furnished, fabricated and installed.

Also all interconnecting piping between each of above assemblies and also between the assemblies and remotely located equipment shall be furnished and installed.

C.2.2.10.2 Codes

All piping systems shall be designed, fabricated and erected in strict accordance as per listed below:

All on-skid, off-engine piping essential for starting and operating (portions of the starting air, lube oil and fuel oil systems) the seismic requirements of this specification

Remaining on-skid, off-engine piping non-essential for starting and operating, and all engine-mounted piping per Manufacturer's Standards

C.2.2.11 Air Starting System

Air stating system mainly consists of air starters, air compressors, starting valve units, and air tanks.

C.2.2.11.1 Air Starting Motor

Air starter is furnished with the engine. At starting of the generator set, this starter rotates the engine through the gear box. The following specification is the air starter for 6000kVA generator set.

(1)	The number of starters	4
(2)	Maximum limit pressure at inlet	142 PSIG (0.98MPaG)
(3)	Necessary air volume for 1 start	4250 Standard ft ³ (120 Nm ³)

C.2.2.11.2 Starting Manifold

The starting manifold assembly consists of reduction valves, pipes, gauges, Y-strainer, and control valves. This unit reduces air pressure at the inlet of this unit to the specified pressure (the secondary air pressure). The secondary air pressure depends on air starter's maximum limit pressure at inlet. The following is the specification for 6000kVA generator set.

The number of valve units
 The number of connecting ports
 Port size (inner diameter)
 2
 4 (2 for inlet and 2 for outlet)
 2.6" (67.9 mm)

C.2.2.11.3 Air Tank

The air tank has starting air in itself. A pressure switch is furnished with this tank, and the switch sends signals when air pressure inside it drops or rises to the specified values. The following is the specification for 6000kVA generator set.

(1) Necessary air volume 3

4238 ft3 (120 Nm³) / one start

Mitsubishi Heavy Industries, LTD.

- (2) Air pressure at standby state (Normal pressure) 426 psig (2.94 MPa)
- (3) Air pressure after 3 continuous starts

190 psig (1.31 MPa)

C.2.2.11.4 Air Compressor

The number of air compressors and capacity of each air compressor depends on air compressor's specification and the required receiver recharge time. The following specification is for reference.

(1)	Motor capacity	7.5 HP
(2)	Number of air compressors	6
(3)	Discharge rate of an air compressor	700 ft3/hr
141	$\mathbf{F}_{\mathbf{M}} = \mathbf{F}_{\mathbf{M}} + $	C Ia

(4) Filling time (190 to 426 psig) 5 hrs

Pipes from air tanks to the generator set shall be zinc coated to prevent pipes from rusting.

C.2.2.12 Ventilation System

C.2.2.12.1 Air Supply

Supplied air from outside is used for combustion, cooling in the enclosure, and cooling in the generator room. This air is introduced into the room with a fan.

- (1) Required air for combustion (6000kVA) 49,435 ft3/min (1,400 m3/min)
- (2) Required air for lube oil cooler (6000kVA) 14,124 ft3/min (400 m3/min) (reference)
- (3) Required air for cooling generator
- 17,655 ft3/min (500 m3/min) (reference)
- (4) Required air for cooling the generator room is calculated from heat discharge from exhaust duct and the exhaust silencer. Therefore, this volume depends on layout plan.
- (5) Exhaust gas volume and temperature $135,240 \text{ ft}^3/\text{min} (3,830 \text{ m}^3/\text{min}) (@ 595 ^{\circ}\text{C})$

C.2.2.12.2 Ventilation

Air for cooling in the enclosure is exhausted through duct with a ventilation fan. This volume is calculated supplied air volume and discharged heat in the enclosure.

C.2.2.12.3 Directly Connected Air Supply System

If fire suppression gas system in the generator room, combustion air for the turbine shall be taken through a separate duct connected to the inlet on the enclosure. This is to prevent the engine from ingesting the gas and disrupting the fire suppression system.

C.2.3 Design Requirements - Electrical

C.2.3.1 Generator

The generator is an alternating current synchronous generator of open drip proof construction, two bearing configuration, equipped with integral direct connected exciter and permanent magnet generator.

C.2.3.1.1 Rating of the Generator

The rating of the generator shall be as follows.

KVA:	6000 (6600 KVA overload capability for 2
	hrs / 24 hrs)
PF:	0.8 Rated
Voltage:	6900V
Phase	3
Connection:	Wye
Wire:	6
Frequency:	60 Hz
Amperes:	502 (552 overload)
Speed:	1800 RPM
Rotation:	CW facing shaft extension end
Temp Rise:	70°C over 50°C ambient for embedded
	detectors
Insulation:	Class F
Enclosure:	Drip proof

C.2.3.1.2 Generator Frame

The frame of the generator is of open drip proof, fully guarded construction and is provided with removable covers on each end and the sides to facilitate maintenance and troubleshooting. The stator and coils assembly are an integral part of the frame with the stator laminations welded directly to the frame structure. The generator frame is equipped with removable end frames which provide support for the rotating field assembly and exciter components. Two grounding pads are provided at opposite corners of the generator frame. The grounding connections accept 2-hole standard bolted lugs.

C.2.3.1.3 Ventilation

The generator is designed for axial ventilation type cooling, with ambient air drawn into the generator through openings at the exciter end of the frame and hot air exhausted through openings in the drive end of the frame. Air flow is provided by a fan assembly installed on the shaft of the rotating field assembly.

C.2.3.1.4 Bearings

The generator is of two bearing construction. The rotating field and shaft assembly is supported by a self aligning bearing installed at each end. The bearings are either oil lubricated or grease lubricated. The bearing on the connection end of the generator is capable of carrying axial loads in addition to the design radial loads. The rotor shaft is locked at the connection end to allow for thermal growth towards the non-connection end. The bearing located at exciter end is installed in an electrically insulated housing to prevent circulating currents. The housings are equipped with seals and include provisions for addition of lubricant or re-greasing during operation. Each bearing housing is also equipped with a 100 ohm platinum resistive temperature device for temperature monitoring.

C.2.3.1.5 Stator and Coils Assembly

The stator and coils assembly consists of coil groups embedded in slots within the laminated steel core of the stator. The stator coils are of form wound construction and interconnected on

the connection end of the stator. The stator of the generator is equipped with six 100-ohm platinum resistive temperature devices (two per phase) imbedded between the coils of the stator for temperature monitoring.

C.2.3.1.6 Rotating Field Assembly

The rotating field assembly consists of four salient poles connected in a series configuration. The field poles are bolted to the shaft assembly. The field poles consist of dc coils installed on laminated steel pole bodies. The field poles contain embedded copper amortisseur or damper windings that are interconnected between each pole.

C.2.3.1.7 Exciter Assembly

The exciter assembly consists of an exciter field, exciter armature and rotating rectifier, installed on the non connection end of the generator. The exciter field is stationary and secured to the generator end frame. The exciter field consists of dc coil assemblies installed on laminated poles. The exciter armature is installed on the shaft supporting the rotating field assembly. The exciter armature is constructed of Alternate Current (ac) coil groups installed on a rotating lamination stack and connected in a three phase, three wire, WYE configuration. The rotating rectifier is installed on the shaft supporting the rotating field assembly. The rotating rectifier consists of a three phase, full wave diode bridge mounted on a split plate.

C.2.3.1.8 Permanent Magnet Generator

The permanent magnet generator consists of a stator assembly and permanent magnet field assembly. They are installed outboard of the nonconnection end bearing. The permanent magnet generator stator is stationary and secured to the generator end frame. The permanent magnet generator stator consists of AC coils installed within a laminated steel core. The permanent magnet generator field is installed on the shaft supporting the rotating field assembly. The permanent magnet generator field consists of permanent magnets secured to a central hub.

C.2.3.1.9 Generator Electrical Characteristics

Generator reactance, exciter speed of response and field forcing voltage shall be sufficient to meet the starting and loading requirements. The maximum voltage dip during the design loading sequence shall be limited to 25% of nominal line-to-line voltage.

C.2.3.1.10 Prime Mover Connection

This generator is equipped with a solid circular input shaft for connecting to the output of the speed increaser through a flexible coupling.

C.2.3.1.11 Auxiliary Terminal Box

An auxiliary terminal box is mounted on the generator frame. The auxiliary terminal box provides terminal connections for the six stator resistive temperature devices, two bearing RTD's, space heaters, permanent magnet generator and exciter field.

C.2.3.1.12 Space Heaters

This generator shall be provided with space heaters to prevent moisture absorption in the generator windings when the machine is out of service. The space heaters are energized whenever the generator is not in use.

C.2.3.1.13 Power Output Leads

The generator is equipped with six power output leads for bus connection. Neutral grounding resistor and CTs are located switchgear of Class 1E onsite power system.

C.2.3.1.14 Generator Assembly Manufacturer's Test

The assembled generator shall be tested at the manufacturer to confirm proper operability and conformance to standards. All tests shall be performed in accordance with accepted standards (IEEE 115 or MIL-STD-705) and shall include, at a minimum, the following:

- Air Gap Measurement
- Resistance Temperature Device Test
- Winding Resistance Test
- Space Heater Test
- Insulation Resistance & Polarization Index Test
- Bearing Insulation Resistance Test
- AC High Potential Test
- Generator Dynamic Balance Test
- Phase Sequence Test
- Open Circuit Saturation Test
- Short Circuit Saturation Test
- Phase Balance Test
- Shaft Current Test
- Current Balance Test
- Temperature Rise Test
- Overspeed Test
- Vibration Test
- Assembled Unit Weight
- Shaft TIR
- Efficiency Testing Including Bearing Friction and Windage, Open Circuit Core Loss, Stator Loss, Armature I²R Loss, Field I²R Loss & Stray Load loss.

C.2.3.2 Automatic Voltage Regulator

The generator shall be equipped with a static automatic voltage regulator with necessary rheostats, switches, and accessories to control the amount of current supplied to the exciter field under all loading conditions. The automatic regulator shall be capable of controlling the steady-state generator terminal voltage within $\pm 2\%$ for a load variation from no load to full load, power factor variation from 0.8 lagging to unity. The generator terminal voltage is adjustable over a $\pm 10\%$ range of rated voltage. The voltage regulation system shall be equipped with provisions for parallel operation with the utility during exercise operation of the generator set.

C.2.3.3 Backup Voltage Regulator

The generator controls include a backup voltage regulator with necessary rheostats, switches, and accessories to control the amount of current supplied to the exciter field under all loading conditions. The backup voltage regulator is field-selectable by the operator and is capable of performing as a fully functional unit. The controls of the backup voltage regulator does not allow for switching from the automatic unit to the backup unit while the unit is in operation.

C.2.3.4 Excitation and Voltage Regulation System

- (1) The generator shall be equipped with an excitation and voltage regulation system providing high speed response to voltage and load changes to meet the requirements of these specifications, and shall work in conjunction with the specified governor to meet performance criteria, as stated in Subsection C.2.1.3. This system shall include necessary contactors and controls for manual and automatic field flashing from Owner's 125 volt dc source. There shall be minimum capability of 300 % field forcing and the system shall be sized to provide adequate excitation when the generator is operating at its short time rating and when it is operated in parallel with the station 6.9 kV bus.
- (2) Current and potential signal input to the metering and relaying will be provided.
- (3) All components including field forcing current transformers and power potential transformers shall be mounted and wired in the separate cubicle provided for the excitation and voltage regulation system.
- (4) Each exciter and/or voltage regulator shall have the inherent capability to sustain generator excitation during a 3 phase fault or line to line fault without switching to a different mode.
- (5) Each exciter and/or voltage regulator system shall be designed to fail "safe" to protect the generator from excessively high output voltages resulting from accidental interruption of the voltage-sensing network.
- (6) Each exciter and/or SEVR system shall not include any electronic tubes or electrolytic capacitors.
- (7) Precautions shall be taken to ensure that the silicon rectifiers are not subject to peak inverse voltages in excess of 80% of their rating under any condition of system operation, including transients. Surge protection shall be provided.
- (8) Power diodes shall be provided in sufficient number to allow for 100% redundancy. The failure of any diode shall cause an indicating light to illuminate. Provisions shall be included for the replacement of a failed power diode without removing the exciter from service.
- (9) The automatic voltage regulation system shall operate within +2% under steady state conditions for a load variation from no load to full load, power factor variation from 0.8 lagging to unity, and a generator field temperature rise from ambient (40°C) to the rated operating temperature rise.
- (10) The voltage regulator shall be capable of accepting and responding to a signal from a remote and local "raise-lower" control switch, independent of the automatic voltage regulator control

circuitry. The dc motor operated rheostat or similar device shall operate from 125V dc supply. The automatic voltage regulator shall override the manual voltage regulator whenever the GTG is in the automatic (emergency) mode.

(11) An exciter field circuit breaker or equivalent shall be provided to permit field de-energization when required. The breaker shall be operated manually with provision for remote tripping from a contact closure of a protective relay.

C.2.3.5 Control Panel

- (1) One free standing control panel shall be furnished. The control panel and its components shall satisfy the seismic requirements of the system.
- (2) The free standing control panel shall be comprised of the required number of cubicles to house the control, surveillance and protection logic, and the excitation and voltage regulation system.
- (3) Equipment shall be completely wired and tested at the factory.
- (4) One molded case, non automatic two pole, circuit breaker in each control panel, to serve as disconnect means for the incoming dc control power supply shall be furnished.
- (5) Individual control circuits shall be isolated from the control power by means of fusible pullouts with cartridge type fuses.

C.2.3.6 Motor Control Center and Auxiliary Power

- (1) The motor control center to supply power to motor driven auxiliaries will be provided. This motor control center will receive power from the GTG source under emergency conditions.
- (2) Auxiliary power available from plant power distribution system will be:

(a) dc control power	125 volt nominal	
	90 volt minimum 140 volt maximum	
	2 wire ungrounded system	
(b) ac power	460 Volt +10%, with a dip of -25% during motor starting,	
	solidly grounded, 3 phase, 3 wire 60Hz, 115V ±10%	

C.2.3.7 Auxiliary Motors

- (1) All auxiliary drive motors required to drive equipment as specified shall be furnished.
- (2) Motors shall be squirrel cage induction type, totally enclosed, non Class 1E and suitable for operation in the specified environment.

C.2.3.8 Space Heaters

C.2.3.8.1 Generator

- (1) Generator shall be equipped with a means for heating which shall be adequate to maintain the internal temperature above the dew point when the equipment is idle.
- (2) Space heaters shall be accessible for convenient inspection and replacement.
- (3) Leads shall be brought out to a terminal block in a space heater conduit box.

C.2.3.8.2 Space Heater Voltages

Heater kw	Voltage
Below 2 kW	120V, single phase
2 kW and above	480V, three phase

C.2.4 Control, Surveillance And Protection System

C.2.4.1 General

A free-standing control panel enclosing excitation and voltage regulation equipment, control, surveillance, and protective systems and devices shall be designed and furnished. This unit will be installed in the GTG room and all interconnecting wiring to and from it from other points of control and surveillance will be furnished and installed. There shall be one control panel for each GTG unit.

(1) There will also be one control and surveillance station for each generator in the Main Control Room (MCR).

The GTGs are normaly set to automatic operation mode, and can be operated manually in MCR. Major condition signals of each GTG and associated buses are indicated and alerted in MCR. For an additional operation mode, when the GTG is paralleled with offsite source for load testing, the GTG breaker can be operated in only MCR.

- (2) The control unit shall perform the following functions:
 - (a) Monitor and display all aspects of engine performance which would normally be required for attended or unattended operation of the unit, such as pressures, temperatures, speeds, loadings, voltage, frequency, etc. Unattended remote surveillance and operation will be from the MCR. The Seller's control shall be designed with sufficient terminal points to relay surveillance information to the MCR, and to permit complete remote operation of the unit.
 - (b) The modes of operation are as follows: Automatic - In this mode the engine is started on ECCS actuation signal and/or Under Voltage (UV) signal. Manual - In this mode the engine may be started locally or from the control room on a routine test basis, or in anticipation of accident conditions.
- (3) A key operated "REMOTE-LOCAL " selector switch shall be incorporated in the local control panel to prevent starting the engine during maintenance or repair intervals. This locking device shall not override the engine barring device or other accessory equipment required

for maintenance and repair. Wiring provision for remote indication of this condition shall also be made.

C.2.4.2 Protective Devices

- (1) The protective devices designed to trip the GTG shall be limited to the following:
 - (a) Overspeed
 - (b) Generator differential current
 - (c) High EGT
 - (d) Failed to start
 - (e) Overcurrent (phase and ground)
 - (f) Low pressure lube oil
 - (g) High temperature lube oil
 - (h) Anti motoring

These components are installed in the unit switchgear and are provided by others. The above devices will be bypassed during ECCS signal except for mechanical overspeed (1), generator differential current (2) and high EGT (3). The bypassed protective devices shall provide annunciation in any mode of operation.

(2) A GTG breaker trip is initiated by Items (a), (b), (c), (e), (f) and (g) with items (f), (g), (h), and (h) bypassed on ECCS signal.

An additional, operational only, trip of the GTG breaker assures isolation of the GTG on under frequency or ECCS signal if the GTG is paralleled with any of the offsite sources for load testing (i.e. with UAT or RAT breaker also closed).

C.2.4.3 Alarms

- (1) Each alarm shall be locally signalled on an individual window of an annunciator located in the free standing control panel.
- (2) The following alarm points shall be furnished.

Engine:

- (a) Lubricating oil low pressure
- (b) Lubricating oil high temperature
- (c) Starting air low pressure
- (d) Engine failure to start (after automatic attempt to start)
- (e) Overspeed
- (f) Low fuel oil day tank level
- (g) High fuel oil day tank level
- (h) High Fuel Oil Tank level
- (i) Low Fuel Oil Tank level
- (j) Governor Not Isochronous

Generator:

- (a) Generator differential
- (b) Overcurrent with voltage restraint, ground fault overcurrent (Inst.), reverse power**
- (c) Loss of excitation**

- (d) Stator high temperature
- (e) Bearing high temperature
- (f) Field ground fault
- (g) Reverse power

System status:

- (a) Loss of control power supply
- (b) Loss of 480V ac auxiliary power supply
- (c) GTG automatic start
- (d) GTG control-local
- (e) Any fault or irregularity occurring during the standby (ready to start) and running modes shall be annunciated at the local annunciator. All conditions preventing the unit from starting shall be annunciated.

C.2.4.4 Manual Control

- (1) The following manual controls shall be furnished:
 - (a) Start and stop switches for testing the Gas Turbine in the load test mode. Wiring provision for remote control shall also be made.
 - (b) An emergency stop switch is provided on gas turbine engine.
 - (c) Governor lower-off-raise selector switch wiring provisions for remote control shall be included.
 - (d) Voltage regulator selector switch with manual-auto positions and separate control switches for each regulator with lower-off-raise positions. These devices shall be wired to a terminal board for Purchaser's parallel remote devices.
 - (e) Field flashing and exciter shutdown pushbuttons.
 - (f) GTG and offsite power circuit breaker control switches with close-trip positions and provisions for wiring to remote switches.

C.2.4.5 Indicating Lights

- (1) The following indicating lights shall be furnished and mounted on the local free standing control panel:
 - (a) GTG not ready for Auto Start-on; i.e., all systems necessary for automatic operation are normal when indicating light is off.
 - (b) Gas Turbine unit parallel with auxiliary power distribution system.
 - (c) GTG operating mode.
 - i) Emergency Start
 - ii) Remote Control
 - iii) Local Control
 - iv) Gas Turbine on maintenance
 - v) Voltage Regulator in Auto
 - vi) Voltage Regulator in Manual
 - (d) Circuit breaker position
- (2) An independent initiating contact for duplicating the above indicating lights in the control room, except for (d) shall be furnished.

C.2.4.6 Instrumentation and Metering

The following is the partial list of instrumentation and metering to be furnished by the Seller. Certain instrumentation has been described in the specification and/or drawings under the various applicable systems and is not repeated here. The partial list provided here is a guide only and it is the responsibility of the seller to supply all instrumentation required for the safe, efficient and reliable operation of the GTG unit for automatic and manual operation.

- (1) Kilowatt meter (0-1 MA transducer by others) with test provision*
- (2) Ammeter and ammeter switch (three independent circuits with OFF position)*
- (3) Voltmeter (0-1 MA transducer by others)
- (4) Excitation amp transducer (with shunt) ammeter (with shunt)
- (5) Excitation volt transducer and voltmeter*
- (6) Frequency meter* (connected to transducer by others)
- (7) Engine Exhaust Temperature Measuring System:
- (8) Each engine shall be equipped with an exhaust temperature measuring system to measure the exhaust temperature leaving each engine.
- (9) Kilovar meter (0-1 MA transducer by others) with test provision*

Terminal points shall be furnished for items marked with an asterisk (*) for connection to remote indicators.

C.2.5 Weights

The followings shall be furnished:

- (1) Dry and operational weight and center of gravity of all assemblies and separate components.
- (2) Foundation loadings for all equipment.
- (3) Maximum weights of heaviest part for maintenance.

C.2.6 Welding

All structural welding shall be in accordance with AWS D1.1. All welders shall be qualified in accordance with ASME Section IX.

C.2.7 Cleaning

All equipment furnished shall be Grade C clean

Prior to shipment all equipment shall be given prime and finish coats of paint in accordance with manufacturer's standard procedure.

Corrosion resistant materials shall not be painted.

C.3.0 Quality Control

The requirements of MNES, "Quality Assurance Administrative and System Requirements (Nuclear)" and "Quality Assurance Administrative and System Requirements for Safety Related Electrical Equipment" apply to this specification in total, except where exempted by purchaser. The vendor shall certify in writing that all applicable codes, standards, and requirements of this specification are met.

C.4.0 Acceptance Tests

Mitsubishi Heavy Industries, LTD.

C.4.1 Factory Test

Each GTG set shall be completely assembled in the plant. For the purpose of these tests a completely assembled engine-generator set shall consist of a Gas Turbine engine, governor, generator, exciter and voltage regulator, start air system plus all controls, auxiliaries and special equipment within the scope of this specification which determines the performance of the unit.

- (1) Auxiliaries that do not affect the unit performance and are not mounted on the GTG skid may be other than those intended for use at the site of final installation.
- (2) Break in runs shall be performed on each GTG set in accordance with the Seller's best procedure and practice.
- (3) In addition to the manufacturer's standard tests, the following tests shall be performed on each unit prior to acceptance by the Purchaser.
 - (a) Reliability

Test results of a factory test consisting of 150 valid start & load tests on a prototype unit to demonstrate the ability of the GTGs to start, attain rated speed and voltage within 100 seconds and load to 50% of the continuous rating shall be submitted. A valid start and load test is defined as a start with loading to at least 50% of the continuous rating within 100 seconds and continued operation until temperature equilibrium is obtained.

At least 135 of the starts shall be performed with the unit at warm standby conditions. At least 15 of the starts shall be performed with the unit at normal operating temperatures.

A total of 150 valid start and load tests shall be performed with no failures allowed. Failure of the unit to successfully complete this series of tests will require further testing as well as a review of the System Design Adequacy.

The test as described above shall be performed on the first unit of the design

(b) Margin Test

To demonstrate the capability to accept the most severe load + 10% and to maintain voltage, speed, and frequency within limits specified in Subsection C.2.1.3. For this factory test, motor loads in combination with resistance loads shall be connected to the GTG to simulate the actual loading sequence indicated in Appendix A. This test shall be performed twice.

(c) Rated Load Test

To demonstrate the capability to carry the continuous rated load for 22 hours and to carry the 105% load rating (if applicable) for two hours. This test will be performed once.

(d) Load Rejection Test

To demonstrate the capability to reject the largest single load without exceeding the speed limits specified in Subsection C.2.1.3. This test will be performed twice.

(e) Air Receiver Capacity and compressor test

Shall demonstrate that the air receivers are sized to provide a minimum of 3 successful unit starts. The air compressors pump up time for the air receivers will be confirmed during this test.

(f) Electrical Test

Shall demonstrate that the electrical properties of the generator, excitation system, voltage regulation system, engine governor system and the control and surveillance systems are acceptable for the intended application.

(g) Functional Test

To demonstrate the capability of the control, surveillance and protection systems to perform in accordance with the requirements.

(h) Overspeed Test

Shall demonstrate the ability of the independent overspeed governor to perform in accordance with the requirements.

(i) Additional Factory Tests

That are unrelated to proving the GTG for Purchaser's application, and that are not part of the manufacturers standard tests, shall not be performed on the units without written permission from the Purchaser.

- (4) All the "Standard Factory Tests" both mechanical and electrical in written test procedures shall be listed and described.
- (5) Test shall be arranged so that ac generator may be operated at the various loadings.
- (6) All labor, fuel oil, lube oil, test equipment any other necessary supplies and load for the test shall be furnished.

C.4.2 Performance of Tests

- (1) Tests shall be performed in accordance with the procedures in the documents listed in Section 2.0.
- (2) Instruments used to measure and record tested variables and quantities shall be those which have been regularly and recently calibrated, using appropriate standards traceable to the National Bureau of Standards.
 - (a) Records of such calibration shall be available for inspection.
 - (b) In the event that test instruments used for performance testing specified in Section C.4.0, have not been calibrated within the six month period preceding testing, they shall be calibrated immediately before and after the testing.
 - (c) Purchaser reserves the right to compare such calibrations and reject results of testing if deviations in the calibrations are excessive, in his opinion.

C.4.3 Repair and Retesting

(1) If the various components or the assembled complete assembly fittings, auxiliary equipment and accessories fail to pass the tests specified, additional tests shall be made to locate the failure.

- (2) After rework or repair of the failure, and subject work is inspected and accepted by Quality Control, the specified tests shall be repeated to insure that the reworked or repaired equipment will meet the Specification in all respects.
- (3) A record of all failures detected during tests, rework or repair required, inspection reports and test data taken after rework or repairs have been completed shall be kept.
- (4) Rework or repairs shall be made in accordance with an approved procedure signed by that party responsible to give in-process disposition of such rework or repairs.

C.4.4 Test Reports

Certified test reports shall be furnished for all tests in Section C.4.0 of this Specification.

C.4.5 Records and Documentation

All documents and test results called for in this specification as well as in the referenced documents shall be available for review prior to shipment of the equipment.

All material certification, code data forms, QA check lists, non destructive examination results etc. shall be available for review prior to shipment of the equipment.

C.5.0 Conformance with R.G 1.9

Conformance with each regulatory position indicated in section C of R.G 1.9 is shown below:

(1) C 1.1

C 1.1 states as follows;

Clause 1.1.1, "Inclusions," of IEEE Std 387-1995 should be supplemented to include diesel generator auto controls, manual controls, and diesel generator output breaker.

The qualification will be performed in accordance with IEEEStd387-1995. However, generator breaker is an integral part of onsite Class 1E power system and will not be included in the type tests for the qualification GTG. The breaker will be connected and tested with the GTG for the site testing portion of the IEEE387 qualification.

(2) C 1.2, C1.3

C 1.2 states as follows;

When the characteristics of the required emergency diesel generator loads are not accurately known, such as during an early stage of design, each emergency diesel generator selected for an onsite power supply system should have a continuous load rating (as defined in Section 3.2 of IEEE Std 387-1995) equal to the sum of the conservatively estimated connected loads (nameplate rating) that the diesel generator would power at any one time, plus a 10- to 15-percent margin.

In the absence of fully substantiated performance characteristics for mechanical equipment such as pumps, the electric motor drive ratings should be calculated using conservative estimates of these characteristics (e.g., pump runout conditions and motor efficiencies of 90 percent or less, and power factors of 85 percent or less).

Also C 1.3 states as follows;

During the operating license or combined license stages of review, the maximum

design-basis loads should be within the continuous rating (as defined in Section 3.2 of IEEE Std 387-1995) of the diesel generator with sufficient margin (i.e., not less than 5 percent).

The Class 1E GTG complies with this requirement. The maximum design-basis loads are known accurately. However, equipment is not yet specified and/or purchased. As a result for conservatism the loads are estimated and calculated. The evaluation is shown in Table 8.3.1-4 of DCD Chapter 8. Worse case loading train is 4214 kW or 4252 kW at higher frequency. Therefore there is about 6% load margin.

(3) C 1.4

C 1.4 states as follows;

Clause 4.1.2 of IEEE Std 387-1995 pertains, in part, to the starting and load-accepting capabilities of the diesel generator. In conformance with Clause 4.1.2, each diesel generator should be capable of starting and accelerating to rated speed, in the required sequence, all the needed engineered safety features and emergency shutdown loads. The diesel generator should be designed such that the frequency will not decrease, at any time during the loading sequence, to less than 95 percent of nominal and the voltage will not decrease to less than 75 percent of nominal. (A larger decrease in voltage and frequency may be justified for a diesel generator that carries only one large connected load.) Frequency should be restored to within 2 percent of nominal in less than 60 percent of each load-sequence interval for a stepload increase, and less than 80 percent of each load-sequence interval for disconnection of the single largest load.

Voltage should be restored to within 10 percent of nominal within 60 percent of each load-sequence interval. The acceptance value of the frequency and voltage should be based on plant-specific analysis (where conservative values of voltage and frequency are measured) to prevent load interruption. (A greater percentage of the load-sequence interval may be used if it can be justified by analysis. However, the load-sequence interval should include sufficient margin for the accuracy and repeatability of the load-sequence timer.) During recovery from transients caused by disconnection of the largest single load, the speed of the diesel generator should not exceed the nominal speed plus 75 percent of the difference between nominal speed and the overspeed trip set point, or 115 percent of nominal (whichever is lower). Furthermore, the transient following a complete loss of load should not cause the diesel generator speed to reach the overspeed trip set point.

It is expected to comply with this requirement based on specification of this product and operating experiences. Therefore MHI will perform this functional test in this qualification program.

(4) C 1.5

C 1.5 states as follows;

Emergency diesel generators should be designed so that they can be tested as described in Regulatory Position 2. The design should allow testing of the diesel generators to simulate the parameters of operation (e.g., manual start, automatic start, load sequencing, load shedding, operation time), normal standby conditions, and environments (e.g., temperature, humidity) that would be expected if actual demand were placed on the system. If prelubrication systems or prewarming systems designed to maintain lube oil and jacket water cooling at certain temperatures (or both) are normally in operation, this would constitute normal standby conditions for the given plant.

The Class 1E GTG doesn't have cooling water system. Therefore the Class 1E GTG is designed for testing to comply with requirement described in Position 2.

(5) C 1.6

C 1.6 states as follows;

Design provisions should include the capability to test each emergency diesel generator independently of the redundant units. Test equipment should not cause a loss of independence between redundant diesel generators or between diesel generator load groups. Testability should be considered in selecting and locating instrumentation sensors and critical components (e.g., governor, starting system components). Instrumentation sensors should be readily accessible and designed so that their inspection and calibration can be verified in place. The overall design should include status indication and alarm features.

The US-APWR has four redundant Class 1E trains, with identical safety-related equipment on all four trains. The Class 1E GTGs in each train are physically separated and electrically isolated from the Class 1E GTGs of the other trains. The Class 1E GTGs are housed in separate rooms. Test of each Class 1E GTG can be performed independently of the other GTGs.

(6) C 1.7

C 1.7 states as follows;

Clause 4.5.3.1 of IEEE Std 387-1995 pertains to status indication of diesel generator unit conditions. The following paragraphs should supplement the guidance in this clause: (C 1.7.1 A) surveillance system should be provided with a remote indication in the control room to display emergency diesel generator status (i.e., under test, ready-standby, lockout). A means of communication should also be provided between diesel generator testing locations and the main control room to ensure that the operators know the status of the diesel generator under test.

(C 1.7.2) To facilitate the diagnosis of failure or malfunction, the surveillance system should indicate which of the emergency diesel generator protective trips has been activated first.

The Class 1E GTG and related system are designed in consideration of this requirement.

(7) C 1.8

C 1.8 states as follows;

The following should supplement Clause 4.5.4 of IEEE Std 387-1995, which pertains to bypassing emergency diesel generator protective trips during emergency conditions: The emergency diesel generator should be tripped automatically on engine overspeed and generator-differential overcurrent. A trip should be implemented with two or more measurements for each trip parameter with coincident logic provisions for trip actuation. The design of the coincident logic trip circuitry should include the capability to indicate individual sensor trips. The design of the bypass circuits, (2) trigger alarms in the control room for abnormal values of all bypass parameters (common trouble alarms may be used), and (3) manually reset the trip bypass function. The capability to automatically reset the bypass function is not acceptable.

Clause 4.5.4(b) of IEEE Std 387-1995, which pertains to retaining all protective devices during emergency diesel generator testing, does not apply to periodic tests [safety injection actuation system (SIAS), combined with SIAS and LOOP, and protective trip bypass] that demonstrate diesel generator system response under simulated design-basis events.

The Class 1E GTG complies with this requirement. Please see the C 2.4.2. The protective

devices are bypassed during ECCS signal except for "Overspeed", "Generator differential current" and "high exhaust temperature". Two sets of "High exhaust temperature" protection are installed.

(8) C 1.9

C 1.9 states as follows;

Clause 4.5.2.2 of IEEE Std 387-1995 should be modified to read as follows: Upon receipt of an emergency start-diesel signal, the automatic control system shall provide automatic startup and automatic adjustment of speed and voltage to a ready-to-load condition in the emergency (isochronous) mode.

The Class 1E GTG and related system are designed in consideration of this requirement.

(9) C 2.1

C 2.1 states as follows; C 2 Diesel Generator Testing

Figure 1 illustrates those components and systems that should be considered to be within the emergency diesel generator boundary when evaluating failures. Systems that support the emergency diesel generator and perform other plant functions are depicted as being outside this boundary.

IEEE Std 387-1995 provides similar definitions of components and system boundaries and may also be used as guidance; however, generator breakers should be considered as part of the diesel generator boundary.

The following definitions apply to the regulatory positions that address testing, recordkeeping, and reporting of emergency diesel generator performance:

Start demands: All valid and inadvertent start demands, including all start-only demands and all start demands that are followed by load-run demands, whether by automatic or manual initiation, are start demands. In a start-only demand, the emergency diesel generator is started, but no attempt is made to load the emergency diesel generator (see the exceptions below).

Start failures: Any failure within the emergency diesel generator system that prevents the generator from achieving a specified frequency (or speed) and voltage within specified time allowance is classified as a valid start failure. (For monthly surveillance tests, the emergency diesel generator can be brought to rated speed and voltage in the time recommended by the manufacturer to minimize stress and wear.) Any condition identified during maintenance inspections (with the emergency diesel generator in the standby mode) that would definitely have resulted in a start failure if a demand had occurred should count as a valid start demand and failure.

Load-run demands: To be valid, the load-run attempt should follow a successful start and meet one of the following criteria (see the exceptions below):

• a load-run of any duration that results from a real (i.e., not a test) automatic or manual signal

 $\cdot\,$ a load-run test to satisfy the plant's load and duration test specifications

 \cdot other operations (e.g., special tests) in which the emergency diesel generator is planned to run for at least 1 hour with at least 50 percent of design load

Load-run failures: A load-run failure should be counted when the emergency diesel generator starts but does not pick up the load and run successfully. Any failure during a valid load-run demand should count (see the exceptions below). (For monthly surveillance tests, the emergency diesel generator can be loaded at the rate recommended by the manufacturer to minimize stress and wear.) Any condition identified during maintenance inspections (with the emergency diesel generator in the standby mode) that definitely would have resulted in a

load-run failure if a demand had occurred should count as a valid load-run demand and failure.

Exceptions: Unsuccessful attempts to start or load-run should not count as valid demands or failures when they can definitely be attributed to any of the following:

- any operation of a trip that would be bypassed in the emergency operation mode (e.g., high cooling-water temperature trip)
- malfunction of equipment that is not required to operate during the emergency operating mode (e.g., synchronizing circuitry)
- intentional termination of the test because of alarmed or observed abnormal conditions (e.g., small water or oil leaks) that would not have ultimately resulted in significant damage or failure of the emergency generator
- component malfunctions or operating errors that did not prevent the emergency diesel generator from being restarted and brought to load within 5 minutes (i.e., without corrective maintenance or significant problem diagnosis)
- a failure to start because a portion of the starting system was disabled for test purposes, if followed by a successful start with the starting system in its normal alignment Each diesel generator valid failure that results in declaration of the emergency diesel generator as being inoperable should count as one demand and one failure. Exploratory tests during corrective or preventive maintenance should not count as demands or failures. However, the successful test that is performed to declare the emergency diesel generator operable should count as a demand.

The Class 1E GTG and related system are designed in consideration of this requirement.

(10) C 2.2, C 2.3

C 2.2, C 2.3 state as follows;

C 2.2 Test Descriptions

The table on site testing from the standard is repeated in this guide as Table 1 to address supplementary guidance when required. The following test descriptions should be used in conjunction with the preoperational and surveillance testing described in the table. The licensee should have detailed procedures for each test described herein. The procedures should identify special arrangements or changes in normal system configuration that must be made to put the emergency diesel generator under test. Jumpers and other nonstandard configurations or arrangements should not be used after initial equipment startup testing.

C 2.2.1 Starting Test

Clause 7.2.1.1 of IEEE Std 387-1995 should be supplemented as follows: The acceptance criteria for frequency and voltage should be equal to or higher than the minimum required voltage and frequency within specified time allowance for the safety-related loads.

C 2.2.2 Slow-Start Test

Clause 7.5.1 of IEEE Std 387-1995 should be supplemented as follows:

This test involves demonstrating proper startup from standby conditions, and verify that the required design voltage and frequency are attained. For this test, the emergency diesel generator can be slow-started and reach rated speed on a prescribed schedule to minimize stress and wear.

C 2.2.3 Load Run (Load Acceptance) Test Clause 7.5.2 of IEEE Std 387-1995 should be supplemented as follows: This test involves demonstrating 90–100 percent of the continuous rating of the emergency diesel generator, for an interval of not less than 1 hour and until attainment of temperature equilibrium.

This test may be accomplished by synchronizing the generator with offsite power. The loading and unloading of an emergency diesel generator during this test should be gradual and based on a prescribed schedule that is selected to minimize stress and wear on the diesel generator.

C 2.2.4 Rated Load Test

Clause 7.2.1.3 (a) of IEEE Std 387-1995 should be supplemented as follows: If the design-basis event loads are higher than the continuous rating of the emergency diesel generator, the test should be conducted at the worst case design-basis event loads.

C 2.2.5 LOOP Test

Clause 7.5.4 of IEEE Std 387-1995 should be supplemented as follows: This test involves simulating a LOOP to demonstrate that (1) the emergency buses are deenergized and the loads are shed from the emergency buses, and (2) the emergency diesel generator starts on the autostart signal from its standby conditions; attains the required voltage and frequency, and energizes permanently connected loads within acceptable limits and time; energizes all autoconnected shutdown loads through the load sequencer; and operates for greater than or equal to 5 minutes. If the required safety loads are not available, one or more equivalent load(s) may be used.

C 2.2.6 Combined SIAS and LOOP Test

Clause 7.5.6 of IEEE Std 387-1995 should be modified to read as follows: This test involves demonstrating that emergency diesel generator can satisfactorily respond to a LOOP in conjunction with SIAS in whatever sequence they might occur [e.g., loss-of-coolant accident (LOCA) followed by delayed LOOP or LOOP followed by LOCA]. A simultaneous LOOP/LOCA event would be demonstrated by verifying that the diesel generator unit starts on the auto-start signal from its standby conditions, attains the frequency and voltage within acceptable limits and time, energizes the auto-connected shutdown loads through the load sequencer within the acceptable limits of pump start time, and operates for a minimum of 5 minutes.

C 2.2.7 Largest Load Rejection Test

Clause 7.5.7 of IEEE Std-1995 should be supplemented as follows:

This test involves demonstrating the emergency diesel generator's capability to reject a load equal to loss of the largest single load while operating at its design load power factor and verify that the frequency and voltage requirements are met and the unit will not trip on overspeed.

C 2.2.8 Design-Load Rejection Test

Clause 7.5.8 of IEEE Std-1995 should be supplemented as follows:

This test involves demonstrating the emergency diesel generator's capability to reject a load equal to 90–100 percent of the continuous rating while operating at its design load power factor and verify that the voltage requirements are met and that the unit will not trip on overspeed.

C 2.2.9 Endurance and Load Margin Test

Clause 7.5.9 of IEEE Std 387-1995 should be supplemented as follows: This test involves demonstrating the capability of the emergency diesel generator at continuous rating and worst case power factor for an interval of not less than 24 hours. Of this period, 2 hours are at a load equal to 105–110 percent of the diesel generator's continuous rating, and 22 hours are at a load equal to 90–100 percent of the generator's continuous rating. The test process should verify that frequency and voltage requirements are maintained.

C 2.2.10 Hot Restart Test

Clause 7.5.10 of IEEE Std 387-1995 should be supplemented as follows: This test involves demonstrating the hot restart functional capability at full load-temperature conditions (after the emergency diesel generator has operated for 2 hours at continuous rating) by verifying that the emergency diesel generator starts on a manual or auto-start signal, attains the required frequency and voltage within acceptable limits and time, and operates for longer than 5 minutes. This test may be performed following the endurance and margin test described above.

C 2.2.11 Periodic-Trip Bypass Test

Clause 7.5.12 of IEEE Std 387-1995 should be supplemented as follows: This test involves demonstrating that automatic diesel generator unit trips are automatically bypassed as designed. Typically, engine overspend, generator differential current trip and those trips retained with coincident logic are not bypassed. This test should also verify that the critical protective trips that are not automatically bypassed perform their intended function.

C 2.3 Preoperational and Surveillance Testing

Table 1 relates preoperational and surveillance tests to the anticipated schedule for performance (e.g., preoperational, monthly surveillance, 6-month testing, scheduled refueling period, and 10-year testing).

A prelube period should precede all planned tests described in this regulatory guide. The tests should be in general accordance with the manufacturer's recommendations for reducing engine wear, including cooldown operation at reduced power followed by postoperation lubrication.

C 2.3.1 Preoperational Testing

A preoperational test program should be implemented for all emergency diesel generator systems following assembly and installation at the site. This program should include the tests identified in Table 1.

In addition, through a minimum of 25 valid start and load demands without failure on each installed emergency diesel generator, this test should demonstrate that the new emergency diesel generator has attained a level of reliability acceptable for entering into an operational category.

C 2.3.2 Surveillance Testing

After plants are licensed (after fuel load), periodic surveillance testing of each emergency diesel generator should demonstrate the continued capability and reliability of the diesel generator unit to perform its intended function. When the emergency diesel generator is declared operational in accordance with the plant's technical specifications, the following periodic test program should be implemented.

C 2.3.2.1 Monthly Testing

After completion of the reliability demonstration during preoperational testing, the emergency diesel generators should be periodically tested during normal plant operation.

Each diesel generator should be started as described in Regulatory Position 2.2.2 and loaded as described in Regulatory Position 2.2.3 at least once every 31 days (with the maximum allowable extension not to exceed 25 percent of the surveillance interval).

C 2.3.2.2 Six-Month (or 184-Day) Testing

This test may substitute for a monthly test. To demonstrate the capability of the emergency diesel generator to start from standby conditions and provide the necessary power to mitigate a LOCA coincident with a LOOP, each diesel generator should be started from standby conditions once every 6 months as described in Clause 7.5.3 of IEEE Std 387-1995. This will verify that the diesel generator reaches the required voltage and frequency within acceptable limits and time as specified in the plant technical specifications. Following this test, the emergency diesel generator should be loaded as described in Clause 7.5.2 of IEEE Std 387-1995 (see also Table 1).

C 2.3.2.3 Refueling Outage Testing

The capability of the overall emergency diesel generator design should be demonstrated during every refueling outage (or at a frequency of not more than every 24 months) by performing the tests identified in Table 1. Certain tests may be conducted during the operating mode with NRC approval if the tests can be safely performed without increasing the probability of plant trip, loss of power to the safety buses, or LOOP.

C 2.3.2.4 Ten-Year Testing

This testing involves demonstrating that the trains of standby electric power are independent at a frequency of once every 10 years (during a plant shutdown) or after any modifications that could affect emergency diesel generator independence (whichever is shorter) by starting all redundant units simultaneously to identify certain common-failure modes undetected in single diesel generator unit tests (see also Table 1).

C 2.2 and C 2.3 are requirements for site test program. MHI will prepare the procedures for site tests, and will perform all site tests required in these requirements

(11) C 3

- C 3 states as follows;
 - C 3 Reporting Criteria

Licensees must conform to the reporting requirements of 10 CFR Part 21, "Reporting of Defects and Noncompliance" (Ref. 2); 10 CFR 50.72, "Immediate Notification Requirements for Operating Nuclear Power Reactors"; and 10 CFR 50.73, "License Event Reporting System."

MHI should comply with this requirement.

Appendix D Gas Turbine Generator Failure Mode and Event Analysis

Reliability analysis is shown in Table D.1.0-1

1

Table D.1.0-1 FMEA of Starting Reliability for GTG Set

D-2

Mitsubishi Heavy Industries, LTD.

Appendix E I&C SYSTEM OF GAS TURBINE GENERATOR

E.1.0 Overall

The GTG is automatically started by ECCS and LOOP signals from ESFAS, and manually started and stopped by signals from the Main Control Room (MCR), the Remote Shutdown Room, and the GT Local Control Board. Stable operation of the GTG is maintained due to governor control by rotation speed. Also, an operation condition of the GTG is monitoring, and the necessary information for an operator is transmitted to the MCR. An emergency stop function of the GTG is also provided by protective signals.

The above GTG functions are provided from the following I&C system.

Safety VDU, Operational VDU and related equipment

- Manual GTG start/stop operation by operator
- Monitoring of GTG operating conditions (major parameters and typical alerts) by operator

ESF Actuation System (ESFAS)

• Generation of ECCS signal, LOOP signal

Safety Logic System (SLS) for GTG (GTG -SLS)

- Control circuit of incoming breaker to class 1E bus
- Monitoring of incoming breaker condition
- Control circuit (On-Off control) of component related to gas turbine start/stop operation
- · Control circuit (continuous control) of component related to gas turbine continuous control
- Operation monitoring of gas turbine
- · Generation of alert/interlock signals

Gas Turbine Local Control Board

- Manual GTG start/stop operation for maintenance
- Individual start/stop operation of related GTG components for maintenance
- Monitoring of GTG and related component parameters for maintenance

The overall configuration of the GTG I&C system is shown in Figure E.1.0-1.

E.2.0 System Description

The following systems are common to other I&C systems, and are described in the already submitted Topical Report (Safety I&C System description and Design: MUAP-07004), and detail descriptions refer to this TR.

- Safety VDU, Operational VDU and related equipment
- ESFAS

The GTG-SLS and the gas turbine local control board, which are I&C facilities unique to the GTG, are described here in detail.

E.2.1 GTG-SLS (One sub-group of SLS for GTG control and monitoring functions)

One group of the GTG-SLS for each GTG (4 sets in total) is installed in the safety I&C room.

These GTG-SLSs are classified into Class 1E according to their safety functions. The same digital platform (MELTAC) as for the safety I&C is applied. The following description applies to each GTG-SLS.

The GTG-SLS receives automatic start signals (ECCS, LOOP) from the ESFAS which is classified into the same train, and manual signals from the safety VDU or the operational VDU in the MCR, via a safety bus. Also, the controller receives the manual GTG start/stop signals and start/stop signals of individual components from the gas turbine local control board. When the controller receives automatic or manual signals, actual signals are transmitted to the related components (compressor air supply valve, fuel outlet valve, fuel pump etc.) of the GTG.

All parameters, alarms and component status that indicate GTG inoperability or inadequate safety performance can be monitored in the MCR. Other detail information and alarms for maintenance personnel (ie. conditions that indicate the need for preventative maintenance, but are not immediately critical to operations) are provided on the gas turbine local control board. Maintenance information will be used primarily by maintenance personnel, but should also be accessible to operators. Operators should also be informed of maintenance conditions via low priority summary alarms.

The GTG is stopped when equipment protective signals are received from the GTG monitoring functions. However, if the GTG is started by the ECCS or LOOP signal, the start signal has high priority and blocks the GTG protective signals which are initiated by several equipment protective circuits. But, the following equipment protection functions have high priority and the GTG is stopped by the following signals even when the ECCS or LOOP signal is initiated and so the GTG is automatically started, since the following equipment protective signals are suspected to cause catastrophic fault of the GTG.

- Generator Differential Current
- Mechanical Overspeed
- High Exhaust Temperature

The GTG-SLS performs the following functions which require high speed calculation.

- Governor control
- Detection of rotation speed

The GTG-SLS is a digital system, and almost all functions are provided by software logics, so the integrity of these software logics is continuously tested by self-diagnostic functions. Other functions including I/O units that are not checked by the self-diagnostic functions are confirmed of its integrity by the GTG actual operational test which is conducted once a month.

To enhance reliability, each train GTG-SLS consists of a duplex architecture using dual redundant CPUs. The GTG is controlled by the main CPU and automatically switches to the stand-by CPU if the main CPU fails. This architecture can provide continuous operation of the GTG even in the case of single failure.

The MELTAC Platform is applied to the GTG-SLS. The hardware (CPU module, Input/Output module, etc) of the MELTAC conforms to various requirements (seismic qualification, electromagnetic compatibility, etc), which is required for the Class 1E system. The basic software of the MELTAC conforms to various requirements (single task processing, uninterruptible processing) which realize deterministic processing that assures response time, which is required to the Class 1E system.

The application software reliability of the GTG-SLS is assured by the independent Verification and Validation (V&V) process at each design stage. The application software is automatically produced from the visible composite block diagrams which are made by the I&C engineer by utilizing a special engineering tool so that factors of human error are further decreased.

Detail descriptions of the duplex architecture, hardware/software specification, application software V&V process and software life cycle process of the MELTAC Platform are described in the Topical Report (Safety System Digital Platform MELTAC MUAP-07005).

E.2.2 Gas turbine local control board

One set of the local control board for each GTG (4 sets in total) is installed in the each GTG room. The GTG can be manually started under maintenance. A maintenance GTG bypass switch is installed to prevent the manual start signal initiated from the MCR. A GTG start switch, operation switches of individual components, and various indicator and detail alarms are provided in the gas turbine local control board. Also, sensing units to monitor the detailed inner status of the GTG for maintenance purposes are provided.

The GTG bypass switch for maintenance is classified into class 1E, because it has a bypass function of the safety protective function. While it is selecting the bypass position, manual or automatic start functions of the GTG from the PSMS are disabled. The bypass status of the GTG is displayed continuously in the MCR, in accordance with RG 1.47 Bypassed or Inoperable Status.

The emergency start switch classified into class 1E is provided to override the bypass condition in case that emergency start is needed during bypass for maintenance. Other functions are classified into the non-Class 1E because they have no safety functions. Operation signals (including the GTG start signal) from the gas turbine local control board maintains its function even while the above mentioned maintenance of the GTG bypass switch is under selection of bypass.

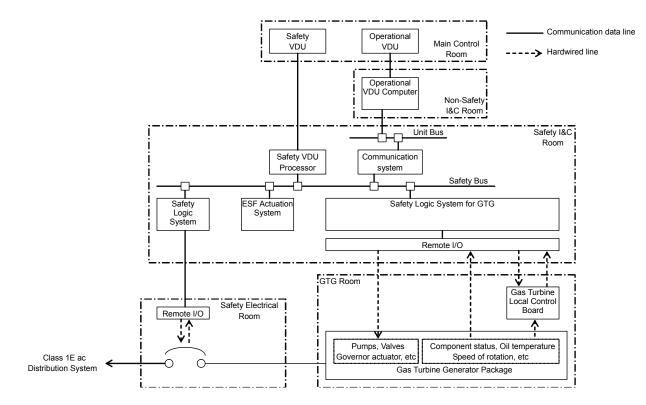
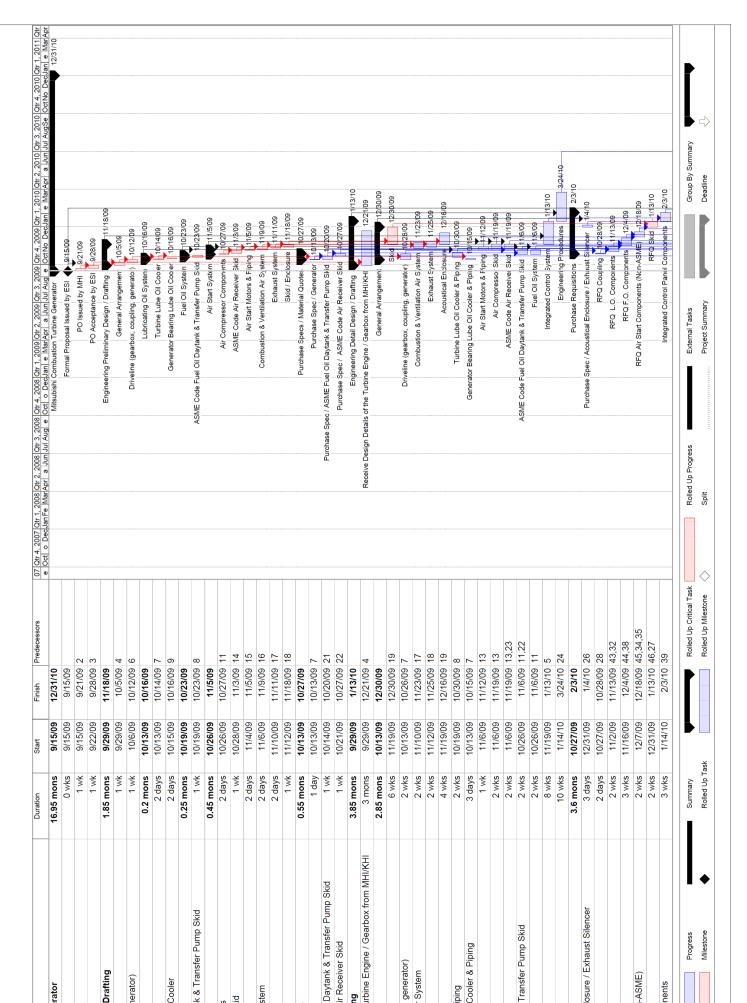



Figure E.1.0-1. Overall configuration of GTG I&C

Appendix F Production Schedule

Basic schedule of production and class 1E qualification as shown in Fig. F.1.0-1 and F.1.0-2

Figure F.1.0-1 Generator and Class 1E Qualification (sheet 1)

F-2

QUALIFICATION AND TEST PLAN OF CLASS 1E GAS TURBINE GENERATOR SYSTEM

-	•	Task Name
		Mitsubishi Combustion Turbine Gener
2		ed by ES
e		PO Issued by MHI
4		PO Acceptance by ESI
5		Engineering Preliminary Design / D
9		General Arrangement
~		Driveline (gearbox, coupling, gene
∞		Lubricating Oil System
6		
10		Generator Bearing Lube Oil C
7		Fuel Oil System
12		ASME Code Fuel Oil Daytank
13		Air Start System
4		Air Compressor Components
15		ASME Code Air Receiver Skic
16		Air Start Motors & Piping
17		Combustion & Ventilation Air Syst
18		Exhaust System
19		Skid / Enclosure
20		Purchase Specs / Material Quotes
21		
52		Purchase Spec / ASME Fuel Oil D
33		Purchase Spec / ASME Code Air
24		Engineering Detail Design / Drafting
25		Receive Design Details of the Tur
26		General Arrangement
27		Skid
28		Driveline (gearbox, coupling, g
29		Combustion & Ventilation Air 8
30		Exhaust System
31		Acoustical Enclosure
32		Turbine Lube Oil Cooler & Pip
33		Generator Bearing Lube Oil C
8		Air Start Motors & Piping
35		Air Compressor Skid
36		Code Air Receiver Skid
37		ASME Code Fuel Oil Daytank & T
œ		Fuel Oil System
39		Integrated Control System
6		Engineering Procedures
4		
7		Furchase Spec / Acoustical Enclo
64		
4		RFQ L.O. Components
45		F.O. Components
46		RFQ Air Start Components (Non-
47		
48		Integrated Control Panel Compon
		Task
		Critical Tack

Mitsubishi Heavy Industries, LTD.

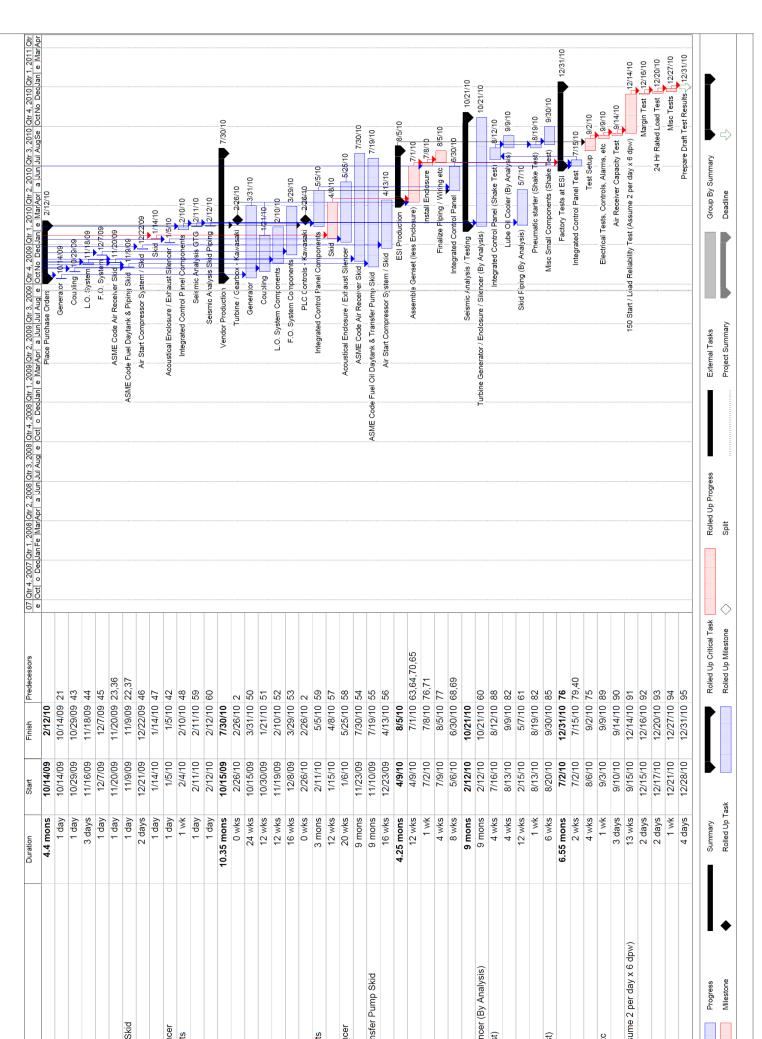


Figure F.1.0-1 Generator and Class 1E Qualification (sheet 2)

F-3

QUALIFICATION AND TEST PLAN OF CLASS 1E GAS TURBINE GENERATOR SYSTEM

49 Place Purchase Orders 50 Place Purchase Orders 51 Coupling 52 LO. System 53 F.O. System 54 ASME Code Fuel Daytank & Piping Sk 55 ASME Code Fuel Daytank & Piping Sk 56 ASME Code Fuel Daytank & Piping Sk 57 Asoustical Enclosure / Exhaust Silence 58 Air Start Compressor System / Skid 58 Anoustical Enclosure / Exhaust Silence 59 Asime / Analysis Skid Piping 59 Asime / As		₽	0	Task Name
Image: Comparison of Comparison of Compiling Comparison of Comparison		49		
Image: Coupling Coupling Image: Lo. System F.O. System F.O. System F.O. System Image: Side Code Air Receiver Skid ASME Code Fuel Daytank & Piping Aris Start Compressor System / Skid Aside Control Panel Componentical Enclosure / Exhaust Siler Image: Air Sitart Compressor System / Skid Image: Air Sitart Compressor System / Skid Seismic Analysis GTG Seismic Components F.O. System Co		50		Generator
L.O. System F.O. System ASME Code Air Receiver Skid ASME Code Air Receiver Skid ASME Code Fuel Daylank & Piping Aris Start Compressor System / Skid Acoustical Enclosure / Exhaust Siler Integrated Control Panel Component Seismic Analysis GTG Seismic Analysis Skid Piping Vendor Production Turbine / Gearbox - Kawasaki Generator Coupling L.O. System Components F.O. System Components <td></td> <th>51</th> <th></th> <td>Coupling</td>		51		Coupling
F.O. System ASME Code Fuel Daytank & Piping Asin Start Compressor System / Skid Acoustical Enclosure / Exhaust Siler Nic Start Compressor System / Skid Acoustical Enclosure / Exhaust Siler Integrated Control Panel Component Seismic Analysis GTG Seismic Analysis Skid Piping Vendor Production Turbine / Gearbox - Kawasaki Generator Coupling L.O. System Components F.O. System Components <td< td=""><td></td><th>52</th><th></th><td>L.O. System</td></td<>		52		L.O. System
ASME code Fuel Daytank & Piping ASME code Fuel Daytank & Piping Air Start Compressor System / Skid Acoustical Enclosure / Exhaust Siler Integrated Control Panel Componen Seismic Analysis Skid Piping Vendor Production Turbine / Gearbox - Kawasaki Generator Coupling L. O. System Components F. O. System Components Skid Finalize Piping / Wiring etc Integrated Control Panel (Shake Tes Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Misc Small Control Panel (Shake Tes Lube Oil Cooler (By Analysis) Skid Piping (By Analy		53		ystem
Aswit code rue Layvank & rping Aswit Start Compressor System / Skid Acoustical Enclosure / Exhaust Siler Integrated Control Panel Componen Seismic Analysis Skid Piping Vendor Production Turbine / Gaenbox - Kawasaki Generator Coupling L. O. System Components F. O. System Components Skid Astronoments F. O. System Components Skid Astronoments F. O. System Components Skid Astronoments F. O. System Components Skid Astronoments F. Components Skid F. D. System Components Skid F. D. System Components Skid F. D. Skid Piping (By Analysis) Install Enclosure Fradizer Components (Shake Test) Install Enclosure Fradizer Components (Shake Test) Misc Small Components (Shake Test) Misc Tests Misc Tests Mis		54		Code Air Receiver Skid
		ន្ល		ASME Code Fuel Daytank & Piping Sk
		8		Air Start Compressor System / Skid
		2		Skid
Imagrated Control Panel Components Seismic Analysis Skid Piping Vendor Production Turbine / Gearbox - Kawasaki Generator Coupling Unbine / Gearbox - Kawasaki Generator Coupling Lub System Components Fi.O. System Components Finalize Piping (Wiring etc Integrated Control Panel Control Skid Assmble Generator / Enclosure Finalize Piping (Wiring etc Integrated Control Panel (Shak Lube Oli Cooler (By Analysis) Skid Piping (By Analysis) <td< td=""><td>Imagrated Control Panel Components Seismic Analysis Skid Piping Vendor Production Turbine / Gearbox - Kawasaki Generator Coupling Unbine / Gearbox - Kawasaki Generator Coupling Lo: System Components F:O. System Components F:Inalize Piping (Wiring etc Integrated Control Panel (Shak Integrated Control Panel (Shak Control Panel (Shak Misc Small Components (Shak Integrated Control Panel (Shak Integrated Control Panel (Shak Integrated Control Panel Test Turbine Generator / Enclosure Integrated Control Panel Test Tirbine Generator / Enclosure Integrated Control Panel (Shak</td><th>x c</th><th></th><td>Acoustical Enclosure / Exhaust Silence</td></td<>	Imagrated Control Panel Components Seismic Analysis Skid Piping Vendor Production Turbine / Gearbox - Kawasaki Generator Coupling Unbine / Gearbox - Kawasaki Generator Coupling Lo: System Components F:O. System Components F:Inalize Piping (Wiring etc Integrated Control Panel (Shak Integrated Control Panel (Shak Control Panel (Shak Misc Small Components (Shak Integrated Control Panel (Shak Integrated Control Panel (Shak Integrated Control Panel Test Turbine Generator / Enclosure Integrated Control Panel Test Tirbine Generator / Enclosure Integrated Control Panel (Shak	x c		Acoustical Enclosure / Exhaust Silence
Analysis Skid Piping Seismic Analysis Skid Piping Vendor Production Turbine / Gearbox - Kawasaki Generator Coupling L.O. System Components F.O. System Components Skid AssmE Code Fue Oil Daylank Assmeble Genest (less Enclost Integrated Control Panel (Shak Assemble Genest (less Enclost Install Enclosture Integrated Control Panel (Shak Cube folion (By Analysis) Skid Piping (By Analysis) Skid Piping (By Analysis) Skid Piping (By Analysis) Preumatic starter (Shake Test) Misc Small Control Panel (Shak Integrated Control Panel (Shak Integrated Control Panel (Shak Integrated Control Panel (Shak Integrated Control Panel Test Turbine Generator / Leodor Rate Integrated Control Panel Test Integrated Control Panel Test Integrated Control	Analysis Skid Piping Seismic Analysis Skid Piping Vendor Production Turbine / Gearbox - Kawasaki Generator Coupling L.O. System Components F.O. System Components PLC Controls - Kawasaki Manager Components F.O. System Components PLC Controls - Kawasaki Manager Components F.O. System Components Skid Assemble Genest (less Enclost Integrated Control Panel Components Skid Assemble Genest (less Enclost Integrated Control Panel (Shak Misc Small Components (Shak Integrated Control Panel (Shak Misc Small Components (Shak Integrated Control Panel (Shak Integrated Control Panel (Shak Misc Small Components (Shak Integrated Control Panel (Shak <th>20</th> <th></th> <td>Integrated Control Panel Components</td>	20		Integrated Control Panel Components
Turbine / Gearbox - Kawasaki Turbine / Coupling Lo System Components F. O. System Components F. O. System Components PLC controls - Kawasaki Integrated Control Panel Comp Skid Acoustical Enclosure AsME Code Fuel Oil Daytank & Air Start Compressor System / Assemble Genest (less Enclosure Integrated Control Panel (Shak Distall Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Distall Piping (By Analysis) Skid Piping (By Analysi	Turbine / Gearbox - Kawasaki Turbine / Coupling Lo System Components F. O. System Components F. O. System Components PLC controls - Kawasaki Integrated Control Panel Comp Skid ASME Code Fuel Oil Daytank & Air Start Compressor System / Acoustical Enclosure ESI Production Assemble Genest (less Enclosure Integrated Control Panel (Shak Distall Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Distid Piping (By Analysis) Skid Piping	8 6		Seismic Analysis GTG Seismic Analysis Stid Dining
Image: Compliance of Compliance of Compliance of Compliance of Compliance of Components E.O. System Components F.O. System Components Skid Acoustical Enclosure F.S. Production Assemble Generator / Enclosure Integrated Control Panel (Shak Seismic Analysis / Testing Turbine Generator / Enclosure Integrated Control Panel (Shak Skid Piping (By Analysis)	Image: Trubine / Gearbox - Kawasaki Coupling L.O. System Components F.O. System Components F.O. System Components PLC controls - Kawasaki Integrated Control Panel Comp Skid Acoustical Enclosure / Exhaust ASME Code Fuel Oil Daytank 8 Air Start Compressor System / ASME Code Fuel Oil Daytank 8 Air Start Compressor System / Basemble Genest (less Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Integrated Control Panel (Shak Distall Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Distall Enclosure Finalize Piping (By Analysis) Skid Piping (By Analysis) <	5 6		okid
Image: Control System Components F.O. System Components Skid Acoustical Enclosure ASME Code Fuel Oil Daytank 8 Air Start Compressor System / Assemble Genset (less Enclosure Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Lube Oil Cooler (By Analysis) Skid Piping (By Analysis	Image: Complexity of the components F.O. System Components Skid Acoustical Enclosure ASME Code Fuel Oil Daytank & Air Start Compressor System / Assemble Genest (less Enclosure Integrated Control Panel (Shak Integra	63		×
Coupling L.O. System Components F.O. System Components PLC controls - Kawasaki Integrated Control Panel Comp Skid Acoustical Enclosure / Exhaust ASME Code Fuel Oil Daytank & ASME Code Fuel Oil Daytank & ASME Code Fuel Oil Daytank & Air Start Compressor System / Assemble Genset (less Enclosu Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Integrated Control Panel (Shak	Coupling L.O. System Components F.O. System Components PLC controls - Kawasaki Integrated Control Panel Comp Skid Acoustical Enclosure / Exhaust ASME Code Fuel Oil Daytank & ASME Code Fuel Oil Daytank & ASME Code Fuel Oil Daytank & Air Start Compressor System / Assemble Genset (less Enclosu Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Install Enclosure Finalize Piping / Mining etc Integrated Control Panel (Shak Integrated Contr	6		
L. O. System Components F. O. System Components PLC controls - Kawasaki Integrated Control Panel Comp Skid Acoustical Enclosure / Exhaust AsME Code Fuel Oil Daytank & AsME Code Fuel Oil Daytank & Arin Start Compressor System / ESI Production Assemble Genset (less Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Integrated Control Panel (Shak Curbine Generator / Enclosure Integrated Control Panel (Shak Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Skid Pi	L. O. System Components F. O. System Components PLC Controls - Kawasaki Integrated Control Panel Comp Skid Acoustical Enclosure / Exhaust ASME Code Fuel Oil Daytank 8 Air Start Compressor System / Assemble Genset (less Enclosure Assemble Genset (less Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Integrated Control Panel (Shak Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Ski	65		Compliand
F.O. System Components PLC Controls - Kawasaki Integrated Control Panel Comp Skid Acoustical Enclosure / Exhaust ASME Code Air Receiver Skid ASME Code Fuel Oil Daytank & ASME Code Fuel Oil Daytank & Air Start Compressor System / ASME Code Fuel Oil Daytank & Air Start Compressor System / ASME Code Fuel Oil Daytank & Air Start Compressor System / Assemble Genset (less Enclost Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Seismic Analysis / Testing Turbine Generator / Enclosure Integrated Control Panel (Shak Skid Piping (By Analysis) Skid Piping (By Analysis) <	F.O. System Components PLC Controls - Kawasaki Integrated Control Panel Comp Skid Acoustical Enclosure / Exhaust ASME Code Fuel Oil Daytank 8 ASME Code Fuel Oil Daytank 8 Asin Start Compressor System / ASME Code Fuel Oil Daytank 8 Air Start Compressor System / ASME Code Fuel Oil Daytank 8 Air Start Compressor System / Assemble Genset (less Enclost Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Distall Enclosure Finalize Piping / Wiring etc Integrated Control Panel (Shak Distall Problements (Shak Elsertical Problements (Shak Integrated Control Panel (Shak Distall Problements (Shak Integrated Control Panel (Shak Misc Small Components (Shak Integrated Control Panel (Stak Misc Small Components (Shak Integrated Control Panel (Stak Integrated Control Panel Test Misc Small Control Panel Test Misc Start / Load Reliability Test Margin Test Margin Test Margin Test	99		L.O. Svstem Components
Image: FLC Controls - Kawasaki Integrated Control Panel Comp Skid Acoustical Enclosure / Exhaust SKid Acoustical Enclosure / Exhaust ASME Code Fuel Oil Daytank & Air Start Compressor System / Assemble Genset (less Enclosu Install Enclosure Finalize Piping / Wiring etc Install Enclosure Finalize Piping / Wiring etc Image: Finalize Piping (By Analysis) Skid Piping	Image: FLC Controls - Kawasaki Integrated Control Panel Comp Skid Acoustical Enclosure / Exhaust SKid Acoustical Enclosure / Exhaust ASME Code Fuel Oil Daytank & Air Start Compressor System / Assemble Genset (less Enclosu Install Enclosure Finalize Piping / Wiring etc Install Enclosure Finalize Piping / Wiring etc Image: Finalize Piping (By Analysis) Skid Piping (By Analysis)	67		F.O. System Components
Integrated Control Panel Comp Skid Acoustical Enclosure / Exhaust SME Code Fuel Oil Daytank 8 ASME Code Fuel Oil Daytank 8 ASME Code Fuel Oil Daytank 8 Assemble Genset (less Enclosu Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure Integrated Control Panel (Shak Shak Piping (By Analysis) Skid Pipi	Integrated Control Panel Comp Skid Acoustical Enclosure / Exhaust SME Code Fuel Oil Daytank & ASME Code Fuel Oil Daytank & Air Start Compressor System / Air Start Compressor System / ESI Production ESI Production Assemble Genset (less Enclosu Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure Integrated Control Panel (Shak Rid Piping (By Analysis)) Skid Piping (By Analysis) Ning Erectory Tests at ESI Integrated Control Panel (Shak Factory Tests at ESI Integrated Control Panel Test Turbine Generator / Enclosure Integrated Control Panel (Shak Risc Small Control Panel (Shak Factory Tests at ESI Integrated Control Panel Test Test Setup Electrical Tests, Controls, Alam Air Receiver Capacity Test Margin Test Margin Test Prepare Draft Test Results Task Task Task Task Task Task Task Critical Test	88		PLC Controls - Kawasaki
Skid Skid Acoustical Enclosure / Exhaust ASME Code Fuel Oil Daytank & ASME Code Fuel Oil Daytank & Air Start Compressor System / ESI Production Assemble Genset (less Enclost Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure Integrated Control Panel (Shak Nickid Piping (By Analysis) Stid Piping (By Analysis) Stid Piping (By Analysis) Skid Piping (By Analysis) Misc Small Compo	Skid Skid Acoustical Enclosure / Exhaust ASME Code Fuel Oil Daytank & ASME Code Fuel Oil Daytank & Air Start Compressor System / Assemble Genset (less Enclost Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure Integrated Control Panel Skid Piping (By Analysis) Misc Small Co	69	1	Integrated Control Panel Components
Acoustical Enclosure / Exhaust ASME Code Air Receiver Skid ASME Code Fuel Oil Daytank Air Start Compressor System / Esl Production Assemble Genset (less Enclosu Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure Integrated Control Panel (Shak Preumatic starter (Shake Test) Misc Small Components (Shak Factory Tests at ESI Integrated Control Panel (Shak Electrical Tests, Controls, Alam Air Receiver Capacity Test Margin Test 24 Hr Rated Load Test Margin Test Prepare Draft Test Results Margin Test Task Critical Task Critical Task	Acoustical Enclosure / Exhaust ASME Code Air Receiver Skid ASME Code Fuel Oil Daytank Air Start Compressor System / Esl Production Assemble Genset (less Enclosu Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure Integrated Control Panel (Shak Preumatic started Control Panel (Shak Integrated Control Panel Integrated (Shak Int	20		Skid
ASME Code Air Receiver Skid ASME Code Fuel Oil Daytank & Air Start Compressor System / S ESI Production Assemble Genset (less Enclosu Install Enclosure Finalize Pipping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Integrated Control Panel (Shake Bractory Test at ESI Integrated Control Panel (Shake Integrated Control Panel (Shake Electrical Tests, Controls, Alarm Air Receiver Capacity Test Margin Test Margin Test Air Receiver Capacity Test Margin Test Margin Test Task Task	ASME Code Air Receiver Skid ASME Code Fuel Oil Daytank & Air Start Compressor System / S Air Start Compressor System / S ESI Production Assemble Genset (less Enclosu Install Enclosure Finalize Pipning / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Integrated Control Panel Test Integrated Control Panel Integrated Control Panel Integrated Test Integrated Control Panel Integrated I	71		Acoustical Enclosure / Exhaust Silence
ASME Code Fuel Oil Daytank & Air Start Compressor System / S Air Start Compressor System / S ESI Production Assemble Genset (less Enclosu Install Enclosure Finalize Pipping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Integrated Control Panel (Shake Integrated Control Panel (Shake Integrated Control Panel (Shake Enclosure / Misc Small Components (Shake Enclosure / Misc Small Components (Shake Factory Test at ESI Integrated Control Panel Test Test Setup Electrical Tests, Controls, Alarm Air Receiver Capacity Test Margin Test Margin Test Task Task Critical Task	ASME Code Fuel Oil Daytank & Air Start Compressor System / S Air Start Compressor System / S ESI Production Assemble Genset (less Enclosu Install Enclosure Finalize Pipping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Integrated Control Panel (Shake Integrated Control Panel (Shake Integrated Control Panel (Shake Enclosure / Misc Small Components (Shake Enclosure / Misc Small Components (Shake Factory Test at ESI Integrated Control Panel Test Test Setup Electrical Tests, Controls, Alarm Air Receiver Capacity Test Margin Test Margin Test Margin Test Task Task Critical Task	72		ASME Code Air Receiver Skid
Air Start Compressor System / S ESI Production Assemble Genset (less Enclosu Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Task Arresever Capacity Test Margin Test Arresever Capacity Test Margin Test Task Trask Critical Task	Air Start Compressor System / S ESI Production Assemble Genset (less Enclosu Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Trask Arrest (Shake Test) Margin Test Arrest Controls, Alarm Air Receiver Capacity Test Margin Test Margin Test Task Critical Task	73		
ESI Production Assemble Genset (less Enclosu Install Enclosure Install Enclosure Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Skid P	ESI Production Assemble Genset (less Enclosu Install Enclosure Install Enclosure Install Enclosure Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel Skid Piping (By Analysis) Breated Control Panel (Shake Eactory Tests at ESI Integrated Control Panel (Shake Eactory Tests at ESI Integrated Control Panel Test Task Air Receiver Capacity Test Margin Test Task Task Critical Task Critical Task	74		npressor System /
Assemble Genset (less Enclosu Install Enclosure Finalize Piping / Wring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Misc Small Components (Shake Test Setup Electrical Tests, Controls, Alarm Air Receiver Capacity Test Margin Test Z4 Hr Rated Load Test Margin Test Task Task Critical Task	Assemble Genset (less Enclosu Install Enclosure Finalize Piping / Wring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Skid Piping (By Analysis) Skid Piping (By Analysis) Skid Piping (By Analysis) Misc Small Components (Shake Test Setup Electrical Tests, Controls, Alarm Air Receiver Capacity Test Margin Test Z4 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	75		:
Install Enclosure Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Skid Piping (By Analysis) Misc Small Components (Shake Test Air Receiver Capacity Test Margin Test Air Receiver Capacity Test Margin Test Z4 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	Install Enclosure Finalize Piping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Skid Piping (By Analysis) Pneumatic starter (Shake Test) Misc Small Components (Shake Factory Test at ESI Integrated Control Panel Test Test Setup Electrical Tests, Controls, Alarm Air Receiver Capacity Test Margin Test Z4 Hr Rated Load Test Margin Test Z4 Hr Capacity Test Margin Test Task Task Critical Task	76		et (less
Finalize Pipng / Wirng etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Misc Small Components (Shake Test Misc Tests Misc Tests Prepare Draft Test Results Task Critical Task	Finalize Piping / Wiring etc Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Skid Piping (By Analysis) Pneumatic starter (Shake Test) Misc Small Components (Shake Factory Test at ESI Integrated Control Panel Test Test Setup Electrical Tests, Controls, Alarm Air Receiver Capacity Test Margin Test Margin Test Z4 Hr Rated Load Test Margin Test Task Task Critical Task	11		Install Enclosure
Integrated Control Panel Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Misc Small Components (Shake Test) Integrated Control Panel Test Test Setup Electrical Tests, Controls, Alarm Air Receiver Capacity Test Margin Test Margin Test Margin Test Misc Tests Prepare Draft Test Results Task Critical Task	Integrated Control Panel Integrated Control Panel Cating Turbine Generator / Enclosure / Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Skid Piping (By Analysis) Skid Piping (By Analysis) Skid Piping (By Analysis) Pineumatic starter (Shake Test) Misc Small Components (Shake Test Setup Electrical Tests, Controls, Alarm Air Receiver Capacity Test Air Receiver Capacity Test Margin Test Z4 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task Critical Task	8/		Finalize Piping / Wiring etc
Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Skid Piping (By Analysis) Skid Piping (By Analysis) Pneumatic starter (Shake Test) Misc Small Components (Shake Factory Tests at ESI Integrated Control Panel Test Test Setup Electrical Tests, Controls, Alarm Air Receiver Capacity Test Margin Test 24 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task	Seismic Analysis / Testing Turbine Generator / Enclosure / Integrated Control Panel (Shake Inbegrated Control Panel (Shake Iube Oil Cooler (By Analysis) Skid Piping (By Analysis) Misc Small Components (Shake Test) Integrated Control Panel Test Margin Test Margin Test Margin Test Misc Tests Prepare Draft Test Results Task Critical Task	6/		Integrated Control Panel
Iurbine Generator / Enclosure / Iurbine Generator / Enclosure / Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Rid Piping (By Analysis) Skid Piping (By Analysis) Pineumatic starter (Shake Test) Integrated Control Panel Test Test Setup Integrated Control Panel Test Test Setup Cester Capacity Test Air Receiver Capacity Test Margin Test Ador Reliability Test Margin Test Z4 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	Iurbine Generator / Enclosure / Iurbine Generator / Enclosure / Integrated Control Panel (Shake Lube Oil Cooler (By Analysis) Rid Piping (By Analysis) Skid Piping (By Analysis) Preprint Starter (Shake Test) Integrated Control Panel Test Electrical Tests, Controls, Alarm Air Receiver Capacity Test Air Receiver Capacity Test Margin Test Margin Test Margin Test Misc Tests Misc Tests Prepare Draft Test Results	8		Analysis / Testing
The provide the control Panel (control Panel (control Panel) (control Panel) (control Panel) (control Panel) (control Panel Teattory Tests at ESI Integrated Control Panel Test Setup Electrical Tests, Controls, Air Receiver Capacity Test Controls, Air Receiver Capacity Test 24 Hr grated Load Test Misc Tests Prepare Draft Test Results	The provided and the control rand (control rand) (contrand) (control rand) (control rand) (control rand) (contr	5		
Lube OII Cooler (by Analysis) Skid Piping (By Analysis) Sheared Piping (By Analysis) Skid Piping (By Analysis) Factory Tests at ESI Integrated Control Panel T Test Setup Electrical Tests, Controls, Air Receiver Capacity Test	Lube OII Cooler (by Analysis) Skid Piping (By Analysis) Pheumatic starter (Shake Misc Small Components (5 Factory Tests at ESI Integrated Control Panel T Test Setup Electrical Tests, Controls, Air Receiver Capacity Test 150 Start / Load Reliability Margin Test 24 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	20		Integrated Control Panel (Shake Lest)
Test	Test	3 2		Lube Oll Cooler (By Analysis) Skirt Pining (By Analysis)
Misc Small Components ((Factory Tests at ESI Integrated Control Panel T Test Setup Test Setup Electrical Tests, Controls, Air Receiver Capacity Test Air Receiver Capacity Test Air Receiver Capacity Test Air Receiver Capacity Test Air Setup Margin Test Misc Tests Prepare Draft Test Results Task Critical Task	Misc Small Components ((Factory Tests at ESI Integrated Control Panel T Test Setup Electrical Tests, Controls, Air Receiver Capacity Test Air Receiver Capacity Test Air Receiver Capacity Test Air Receiver Capacity Test Margin Test Misc Tests Prepare Draft Test Results Task Critical Task	85		
Factory Tests at ESI Integrated Control Panel T Test Setup Test Setup Electrical Tests, Controls, Air Receiver Capacity Test Air Receiver Capacity Test Margin Test Margin Test Misc Tests Prepare Draft Test Results Task Critical Task	Factory Tests at ESI Integrated Control Panel T Test Setup Test Setup Electrical Tests, Controls, Air Receiver Capacity Test Air Receiver Capacity Test Margin Test Margin Test Misc Tests Prepare Draft Test Results Task Critical Task	86		F
Integrated Control Panel T Test Setup Electrical Tests, Controls, Air Receiver Capacity Test 150 Start / Load Reliability Margin Test 24 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	Integrated Control Panel T Test Setup Electrical Tests, Controls, Air Receiver Capacity Test 150 Start / Load Reliability Margin Test 24 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	87		Factory Tests at ESI
Test Setup Electrical Tests, Controls, Air Receiver Capacity Test Air Receiver Capacity Test 150 Start / Load Reliability Margin Test 24 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	Test Setup Electrical Tests, Controls, Air Receiver Capacity Test Air Receiver Capacity Test 150 Start / Load Reliability Margin Test 24 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	88		Integrated Control Panel Test
Electrical Tests, Controls, Air Receiver Capacity Test 150 Start / Load Reliability Margin Test 24 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	Electrical Tests, Controls, Air Receiver Capacity Test 150 Start / Load Reliability Margin Test 24 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	89		Test Setup
Air Receiver Capacity Test 150 Start / Load Reliability Margin Test 24 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	Air Receiver Capacity Test 150 Start / Load Reliability Margin Test 24 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	66		Electrical Tests, Controls, Alarms, etc
150 Start / Load Reliability Margin Test 24 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	150 Start / Load Reliability Margin Test 24 Hr Rated Load Test Misc Tests Prepare Draft Test Results Task Critical Task	91		Air Receiver Capacity Test
Margin Test 24 Hr Rated L Misc Tests Prepare Draft Task Critical Task	Margin Test 24 Hr Rated L Misc Tests Prepare Draft Task Critical Task	92		oad Reliability
24 Hr Rated L Misc Tests Prepare Draft Task Critical Task	24 Hr Rated L Misc Tests Prepare Draft Task Critical Task	63		
Misc Tests Prepare Draft Task Critical Task	Misc Tests Prepare Draft Task Critical Task	8		Rated Load
Prepare Draft Task Critical Task	Prepare Draft Task Critical Task	8		ts
Task Critical Task	Task Critical Task	96		Draft
Critical Task	Critical Task			Task
				Critical Task

Mitsubishi Heavy Industries, LTD.

QUALIFICATION AND TEST PLAN OF CLASS 1E GAS TURBINE GENERATOR SYSTEM

	1	2	3	4	5	6	7	8	9	10	11	12	13
	Month												
1. Purchasing													
Material,		-						-					
Manufacturing													
2. Assembling													
3. Factory Inspection													
and Test													
4.Transportation													

Note : After detail specifications are decided, purchasing is be started.

Figure F.1.0-2 Gas Turbine Engine