Wheeler_Surface_Areas_gdb_eek_rev0

NOTE: "gdb.txt" and "timestamps.txt" were renamed to aid retrieval from PDF electronic attachment storage. Remove ".txt" extension for use.

TVA

Calculation No. CDO000020080033	Rev: 0	Plant: GEN	Page: 1
Subject: Wheeler Geometry		Prepared	E.E.King
Appendix J	Checked	L.Wagner	

1. Purpose

The USACE provided data to TVA that represent the bottom of the Tennessee River at various locations. This data was used to verify and validate the river section geometry below the water surface for use in preparation of SOCH model input. The linear, crosssection orientation of these data present problems for the triangulation algorithms used in modern GIS software. This Appendix describes an alternate method of inspecting and using the source data without triangulation or interpolation.

2. Methodology

The USACE bathymetric survey data contains series of points generally perpendicular to the river channel flow, describing cross sections at roughly 500 foot intervals along the river. At any given SOCH model section location, a series of USACE data points should be no more than 250 feet away, shown by example in Figure J-1. These data points can be taken to describe an underwater section very nearly approximating the section that would be observed at the SOCH model section location.

Figure J-1
For two section locations along the Tennessee River in Wheeler Reservoir, TRM 309.44 and TRM 314.25, where triangulation anomalies were suspected in the observed crosssection extracted from USACE TINs (Att. D-1), two or three nearby USACE data point series were selected. Considering each series individually, the station of a data point along the section location line was defined as the intersection of a line perpendicular to the section location line and passing through the data point. This was accomplished in CAD software by plotting the 3D data points, then defining a view of the data with the

TVA

Calculation No. CDO000020080033	Rev: 0	Plant: GEN	Page: 2
Subject: Wheeler Geometry	Prepared	E.E.King	
Appendix J	Checked	L.Wagner	

X -axis oriented along the section location line, and the Y -axis corresponding to elevation, and the coordinate plane origin on the left bank. Using these stations paired with the elevations of the original data points, a section was defined. Each series defined a section, and these multiple underwater sections were compared to other data sources for verification and validation in Appendix D.

Calculation No. CDQ000020080033	Rev: 0	Plant: GEN	Page: 1
Subject: Wheeler Geometry		Prepared	E.E.King
Appendix K	Checked	L.Wagner	

1. Purpose

The purpose of this part of the calculation was to meet the requirements of NEDP-2 for the use of non-QA software in a QA application, specifically to confirm the acceptability of area measurements and cross-section profiles extracted using MicroStation and ArcGIS software.

2. Methodology

The elevations for the cross-sections came from two sources: digital elevation model data (DEM) from the USGS, and from underwater survey data collected by the USACE.

Using ArcGIS software, under water TIN surfaces were created from USAC data, and a raster mosaic of the above water DEM data was created. Using ArcGIS add-on tool EZ Profiler, a vertical section was then cut at the selected TRM stations from the two surfaces, producing a cross-section. Additionally, selected contour lines were generated from the DEM data using ArcGIS extension Spatial Analyst. These contours were subdivided into a polygonal area per contour elevation for each river reach between cross-section locations. The area of the generated polygons was calculated with ArcGIS "Calculate Geometry" tool.

In order to verify that the cross-sections and measured areas were correct, a similar procedure was followed using alternate software. DEM data were converted to MicroStation GeoPak TIN surfaces using the GeoPak Survey "Geodetic Coordinate Conversion" tool (Figure K-1). USACE point data was converted to a GeoPak TIN surface using the GeoPak "Extract XYZ" tool (Figure K-2). Cross-sections were extracted from these surfaces using the GeoPak Road "Ground Profile" tool and compared to the cross-section generated in ArcGIS by plotting both data sets into an Excel spreadsheet chart for visual comparison. Comparison plots are included at the end of this appendix.

Contours were generated from the DEM TIN using the GeoPak "Load TIN Features" tool. These contours were visually compared to contours generated in ArcGIS and exported to CAD in UTM Zone 16 N projection. No significant differences were observed. Additionally, the contours generated in ArcGIS were projected into Albers Equal Area projection and exported to CAD for confirmation of area measurements. Table K-1 summarizes the differences in area measurements for the sample of areas used to verify software operation.

3. Conclusion

Based on the results of this comparison, the procedure to produce cross-sections and calculate contour surface areas at selected TRM stations is verified.

TVA

Calculation No. CDQ000020080033	Rev: 0	Plant: GEN	Page: $\mathbf{2}$
Subject: Wheeler Geometry		Prepared	E.E.King
Appendix K		Checked	L.Wagner

Geodetic Coordinate Conversions
File User defined Systems Global Geodetics

Figure K-1 GeoPak Geodetic Coordinate Conversions

Figure K-2 GeoPak Extract XYZ

TVA

Calculation No. CDQ000020080033	Rev: 0	Plant: GEN	Page: 3
Subject: Wheeler Geometry	Prepared	E.E.King	
Appendix K	Checked	L.Wagner	

Table K-1 Area Measurement Summary
(strikethrough indicates revised areas not matching final table in Attachment I-2)

Section_Name	Portion	RvMi_Range	$\begin{aligned} & \text { GIS } \\ & 630 \end{aligned}$	$\begin{aligned} & C A D \\ & 630 \end{aligned}$	Difference
Section 1-2	Wheeler	TRM 349.00-346.94	2923.710	2923.713	-0.0001\%
Section 2-3	Wheeler	TRM 346.94-344.88	2698.022	2698.025	-0.0001\%
Section 3-4	Wheeler	TRM 344.88-342.83	51049.249	51049.304	-0.0001\%
Section 405	Wheeler	TRM34283-340.94	1665.030	1665.032	-0.0001\%
Section 5-6	Wheeler	TRM 340.94-338.71	41781.828	41781.873	-0.0001\%
Section 6-7	Wheeler	TRM 338.79 - 386.90	2066295	2066.297	-0.0001\%
Section 7-8	Wheeler	TRM 336.90-334.59	4163.830	4163.835	-0.0001\%
Section 8-9	Wheeler	TRM 334.59-332.53	6575.907	6575.914	¢0.0001\%
Section 9-10	Wheeler	TRM 332.53-330.02	7646.590	7646.598	-0.0001\%
Section 10-11	Wheeler	TRM 330.02-328.47	962037	962.088	0.0001\%
Section 11-12	Wheeler	TRM 328.47-326.36	4014.447	4014.451	-0.0001\%
Section 12-13	Wheeler	TRM 326.36-324.20	25558.863	25558.891	-0.0001\%
Section 13-14	Wheeler	TRM 324.20-322.24	12195.790	12195.804	-0.0001\%
Section 14-15	Wheeler	TRM 322.24-320.18	17703.199	17703.218	-0.0001\%
Section 15-16	Wheeler	TRM 320.18-317.83	38606.798	38606.840	-0.0001\%
Section 16-17	Wheeler	TRM 31783-316.07	8640.429	8640.488	-0.0001\%
Section 17-18	Wheeler	TRM 316.07-314.25	4314.443	4314.448	-0.0001\%
Section 180 19	Wheeler	TRM 314.25-3112.57	3190.804	3190.807	=0.0001\%
Section 19-20	Wheeler	TRM 312.57-309.44	49081.135	49081.188	-0.0001\%
Section 20-21	Wheeter	TRM309.44-307.73	497464598	907164.648	-0.0001\%
Section 21-22	Wheeler	TRM 307.73-305.78	6130.018	6130.025	-0.0001\%
Section 22023	Wheeler	TRM 305.78-303.72	3498.044	3498.045	-0.0001\%
Section 23-24	Wheeler	TRM 303.72-301.66	15284.321	15284.338	-0.0001\%
Section 24-25	Wheeler	TRM 301.66-29960	19986.638	19986.659	-0.0001\%
Section 25-26	Wheeler	TRM 299.60-297.54	14642.868	14642.884	-0.0001\%
Section 26-27	Wheeler	TRM 297.54-295.62	16577.498	16507.516	=0.0001\%
Section 27-28	Wheeler	TRM 295.62-293.75	5703.526	5703.532	-0.0001\%
Section 28-29	Wheeler	TRM 293.75-291.37	25752.454	25752482	-0.0001\%
Section 29-30	Wheeler	TRM 291.37-289.80	2559.416	2559.418	-0.0001\%
Section30-31	Wheeler	TRM 289.80-287.16	5757.108	5757114	-0.0001\%
Section 31-32	Wheeler	TRM 287.16-285.19	3617.952	3617.956	-0.0001\%
Section 32-33	Wheeler	TRM 285.19-283.13	61689.902	61689.969	-0.0001\%
Section 33-34	Wheeler	TRM 283.13-281.08	16835.307	16835.325	-0.0001\%
Section 34-35	Wheeler	TRM280.08-27860	3382.194	3382.198	-0.0001\%
Section 35-36	Wheeler	TRM 278.60-276.80	5284.482	5284.488	-0.0001\%
Section 36-37	Wheeler	TRM 276.80-274.90	6165.399	6165.399	0.0000\%
		Total	604870	604871	-0.0001\%

TRM 287.16

TRM 289.80

TRM 291.37

TRM 293.75

TRM 295.62

TRM 297.54

TRM 299.60

TRM 301.66

OPEN-CHANNEL HYDRAULICS

VEN TE CHOW, Ph.D.
Professor of Hydraulic Engineering
University of Illinois
> Ans
> McGRAW-HILL
> CLASSIC
> TEXTB@K
> REISSUE
> \&

McGraw-Hill Publishing Company

New York St. Louis San Francisco Auckland Bogotá
Caracas Hamburg Lisbon London Madrid Mexico Milan
Montreal New Delhi Oklahoma City. Paris San Juan
Sāo Paulo Singapore Sydney Tokyo Toronto

To

Humanity and Human Welfare

OPEN-CHANNEL HYDRAULICS

Copyright © 1959 by the McGraw-Hill Book Company, Inc. Reissued 1988 by the McGraw-Hill Book Company, Inc. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a data base or retrieval system, without the prior written permission of the publisher. Library of Congress Catalog Card Number 58-13860

Table 5-6. Values of the Rotghness Coffficient n (continued)

Type of channel and description	Minimum	Normal	Maximum
C. Excaratrd or Dredaed			
a. Earth, straight and uniform			
1. Clean, recently completed	0.016	0.018	0.020
2. Clean, after weathering	0.018	0.022	0.025
3. Gravel, uniform section, clean	0.022	0.025	0.030
4. With short grass, few weeds	0.022	0.027	0.033
b. Earth, winding and sluggish			
1. No vegetation	0.023	0.025	0.030
2. Grass, some weeds	0.025	0.030	0.033
3. Dense weeds or aquatic plants in deep channels	0.030	0.035	0.040
4. Earth bottom and rubble sides	0.028	0.030	0.035
5. Stony bottom and weedy banks	0.025	0.035	0.040
6. Cobble bottom and clean sides	0.030	0.040	0.050
c. Dragline-excavated or dredged			
1. No vegetation	0.025	0.028	0.033
2. Light brush on banks	0.035	0.050	0.060
d. Rock cuts 0.035			
1. Smooth and uniform	0.025	0.035	0.040
2. Jagged and irregular	0.035	0.040	0.050
e. Channels not maintained, weeds and brush uncut			
1. Dense weeds, high as flow depth	0.050	0.080	0.120
2. Clean bottom, brush on sides	0.040	0.050	0.080
3. Same, highest stage of flow	0.045	0.070	0.110
4. Dense brush, high stage	0.080	0.100	0.140
D. Natural Streams			
D-1. Minor streams (top width at flood stage $<100 \mathrm{ft}$)			
a. Streams on plain			
1. Clean, straight, full stage, no rifts or deep pools	0.025	0.030	0.033
2. Same as above, but more stones and weeds	0.030	0.035	0.040
3. Clean, winding, some pools and shoals	0.033	0.040	0.045
4. Same as above, but some weeds and stones	0.035	0.045	0.050
5. Same as above, lower stages, more ineffective slopes and sections	0.040	0.048	0.055
6. Same as 4 , but more stones	0.045	0.050	0.060
7. Sluggish reaches, weedy, deep pools	0.050	0.070	r. 080
8. Very weedy reaches, deep pools, or floodways with heavy stand of timber and underbrush	0.075	0.100	0.150

Table 5-6. Values of the Roughness Coefficient n (continued)

Type of channel and description	Minimum	Normal	Maximum
b. Mountain streams, no vegetation in channel, banks usually steep, trees and brush along banks submerged at high stages			
1. Bottom: gravels, cobbles, and few boulders	0.030	0.040	0.050
D-2. Flood plains a. Pasture, no brush			
1. Short grass	0.025	0.030	0.035
2. High grass	0.030	0.035	0.050
b. Cultivated areas			
1. No crop	0.020	0.030	0.040
2. Mature row crops	0.025	0.035	0.045
3. Mature field crops	0.030	0.040	0.050
c. Brush			
1. Scattered brush, heavy weeds	0.035	0.050	0.070
2. Light brush and trees, in winter	0.035	0.050	0.060
3. Light brush and trees, in summer	0.040	0.060	0.080
4. Medium to dense brush, in winter	0.045	0.070	0.110
5. Medium to dense brush, in summer	0.070	0.100	0.160
d. Trees			
1. Dense willows, summer, straight	0.110	0.150	0.200
2. Cleared land with tree stumps, no sprouts	0.030	0.040	0.050
3. Same as above, but with heavy growth of sprouts	0.050	0.060	0.080
4. Heavy stand of timber, a few down trees, little undergrowth, flood stage below branches	0.080	0.100	0.120
5. Same as above, but with flood stage reaching branches	0.100	0.120	0.100
D-3. Major streams (top width at flood stage $>100 \mathrm{ft}$). The n value is less than that for minor streams of similar description, because banks offer less effective resistance.			
a. Regular section with no boulders or brush	0.025		0.060
b. Irregular and rough section	0.035		0.100

CHAPTER 6

COMPUTATION OF UNIFORM FLOW

6-1. The Conveyance of a Channel Section. The discharge of uniform flow in a channel may be expressed as the product of the velocity, represented by Eq. (5-1), and the water area, or

$$
\begin{equation*}
Q=V A=C A R^{x} S^{y}=K S^{y} \tag{6-1}
\end{equation*}
$$

where

$$
\begin{equation*}
K=C A R^{x} \tag{6-2}
\end{equation*}
$$

The term K is known as the conveyance of the channel section; it is a measure of the carrying capacity of the channel section, since it is directly proportional to Q.

When either the Chezy formula or the Manning formula is used as the uniform-flow formula, i.e., when $y=1 / 2$, the discharge by Eq. (6-1) becomes

$$
\begin{equation*}
Q=K \sqrt{S} \tag{6-3}
\end{equation*}
$$

and the conveyance is

$$
\begin{equation*}
K=\frac{Q}{\sqrt{S}} \tag{6-4}
\end{equation*}
$$

This equation can be used to compute the conveyance when the discharge and slope of the channel are given.

When the Chézy formula is used, Eq. (6-2) becomes

$$
\begin{equation*}
K=C A R^{3 / 2} \tag{6-5}
\end{equation*}
$$

where C is Chézy's resistance factor. Similarly, when the Manning formula is used,

$$
\begin{equation*}
K=\frac{1.49}{n} A R^{33} \tag{6-6}
\end{equation*}
$$

The above two equations are used to compute the conveyance when the geometry of the water area and the resistance factor or roughness coefficient are given. Since the Manning formula is used extensively, most of the following discussions and computations will be based on Eq. (6-6).
6-2. The Section Factor for Uniform-flow Computation. The expression $A R^{3 /}$ is called the section factor for uniform-flow computation; it is an important element in the computation of uniform flow. From Eq.
(6-6), this factor may be expressed as
$\begin{aligned} A R^{3 / 3} & =\frac{n K}{1.49} \\ \text { and, from Eq. (6-4), } \quad A R^{3 / 3} & =\frac{n Q}{1.49 \sqrt{S}}\end{aligned}$
Primarily, Eq. (6-8) applies to a channel section when the flow is uniform. The right side of the equation contains the values of n, Q, and S; but the left side depends only on the geometry of the water area. Therefore, it shows that, for a given condition of n, Q, and S, there is only one possible depth for maintaining a uniform flow, provided that the value of $A R^{35}$ always increases with increase in depth, which is true in most cases. This depth is the normal depth. When n and S are known at a channel section, it can be seen from Eq. (6-8) that there can be only one discharge for maintaining a uniform flow through the section, provided that $A R^{3 /}$ always increases with increase of depth. ${ }^{1}$ This discharge is the normal discharge.

Equation (6-8) is a very useful tool for the computation and analysis of uniform flow. When the discharge, slope, and roughness are known, this equation gives the section factor $A_{n} R_{n}{ }^{3 / 4}$ and hence the normal depth y_{n}. On the other hand, when n, S, and the depth, hence the section factor, are given, the normal discharge Q_{n} can be computed from this equation in the following form:

$$
\begin{equation*}
Q=\frac{1.49}{n} A R^{33} \sqrt{S} \tag{6-9}
\end{equation*}
$$

This is essentially the product of the water area and the velocity defined by the Manning formula. The subscript n is sometimes used to specify the condition of uniform flow.

In order to simplify the computation, dimensionless curves showing the relation between depth and section factor $A R^{33}$ (Fig. 6-1) have been prepared for rectangular, trapezoidal, and circular channel sections. These self-explanatory curves will help to determine the depth for a given section factor $A R^{3 / 3}$, and vice versa. The $A R^{3 / 3}$ values for a circular section can also be found from the table in Appendix A.
${ }^{1}$ This is true for channels in which the value of $A R 35$ always increases with increase of depth, since Eq. ($6-8$) will give one value of $A R^{3 s}$, which in turn gives only one depth. In the case of a closed conduit having a gradually closing top, the value of $A R 33$ will first increase with depth and then decrease with depth when the full depth is approached, because a maximum value of $A R^{35}$ usually occurs in such a conduit at a depth slightly less than the full depth. Consequently, it is possible to have two depths for the same value of $A R^{33}$, one greater and the other less than the depth for the maximum value of $A R^{33}$. For further discussion on this subject see Art. 6-4.

SURVEYING, MAPPING AND RELATED ENGINEERING

Tennessee Valley Authority

TECHNICAL REPORT NO. 23

UNITED:STATES
GOVERNMENT PRINTING OFFICE
WASHINGTON : 1951

For anle by the Superintendent of Doicumentm, If. Si Government Primingofice ashington 25 D: C Price: 22.25 . Buckrain.

Tennessee Viliey Aumbomer.
Smorville, Temne August 4, 1000 .

Mr: Groroe F. Gant, General Munayer,
 Teniessce Vallcy Autherity, Lnoxville, Temu.

Dear Mr. Gant: Tedinical Report No 23, Süreeying, Mapp̈ing and Related Enganeering, is the third of a series of special reports being prepared tocover certan phases of engineeting and construction work common to all projects designed and constructed by TVA in the unified development of the water resources of the Temessee River system.

These special technical reports have been planned as a companion series to techmical reports on the individurl projects and record the results of experience gained on TVA projects in specialized fields over a period of yens. It is recommended that Technical Report No. 23 be printed as a public document.

Fours very truly,
C. E. Buee, (Chiof Engineer.

Medium-scale topographic surveys

A linge portion of the conse of the Tennessee River and several of its riblitaries had been moped by the United states Corps of Engineers betwen 1923 and 1980 . The maps were reproduced at an appoximate scale of 1 inch $=1: 20$ feet and show 5 - and 10 -foot contoms (fig. 21). Plamimetry was mapped to an elevation appoximately equal to that reacherling the greatest flow atong the man tiver and from 100 to 300 feet. verieally; above the low water elevation on tributary strams. The maps were reprodiced as a series of contignons sheets, the majority with over-all dimensions of 27 by 40 inches. In all, the Corps of Engineers compiled some 250 of these maps. This surey was probably the first one of such magnitude on which single lens photographs were used for plane table sheets and many of the survey and conpilation nethods leveloped in connection with the undertaking are still used in spite of the substantial advane that hare been made in the sciente of photogrammetry: While the series did not cover thé entheriver system, and considerable revision and remapping were reguived to extend the work to thgher elevations, the ntips were extensively nsed by the TVA in the earlier reservoirs for making studies and estimates, and for planing aetivities: A mumber of special topographic drawings prepared by the Corps of Enginegshave also proved useful.

Before 1037, when the Vidley-wide topographic mapping progum was started, the methods enployed by TVA to revise or extend the original floware mapping and to work previonsly umbped sections of the niver system varied a rreat deal, being influenced by the type of sonte data inmediately aralable, the cost, and the element of time incolved. Forinstance, when it becmenecessary to extend the orfor inal contom mapping to a higher elevatom along the reathes of the Temense River now indluded in the Kentagky Reservoir, because of the mrancy of the work and the absence of newer photogaphs, the origimal photography; tracings, and work methods employed by the Corps of Engineers in 19g-27 were agim used by the TVA in 1934. Throngh the use of the original some matemals it was possible to prepare very ecomonially maps satisfactory for many preliminary shadies. However, the usefulness of these matps was limited becnuse of position emors resulting from the lack of horizontal ground control in the orighal work; and the mitt costs of the additional fied surveys were ingreased as the result of having to work of of unationd photographs in an area where considenble culturat chage had taken place. imatige it both difhentatad time-comsmming to establish reliable bearingsand seale ratioson the photorraphs in the field:

In areas not previously mapped uniler the TV A-United States Geologigal Survey mapping program or by the Corps of Engincers, or where the eost of revising and extending the limits of eatiee surveys, exceeted the cost of complete remapping, new, Howage maps wete prepared by plame table methods. The diew thowae map senies differed from the earlier maps in that it mathed the appopriate stare plane coordimate grid system and was rigidly controlled through the use of transit-tape traverse networks, previously established for control of the Valley plamimetric map seties. Incomporation of the accuate control made possible the scale determination of contact aerial

The haborentrance is suept to itscomection with theman chamel and soundings taken with in depth recorder or a lad line. The size of the hatior is detemined from sweep drawings, and dredge.cut limes are laid out to reduce dredging to a mimum. Soundings and probings are then taken in strike areas within the dredge cut lines to determine the character of materials and quantities to be hedged.

For safety landing sites the areatong the bank is swept by moving. a barge ont with the bars down the required deptli. As the barge moves away from the bank each bar is checked to determine the approximate slope and to locate stumps, rock. boulders, or other obstroctions which would prove disastrons in boats if the water was lowered or they were rammed against the batik by atom while tied up. The entrance to the landing is swept wiso. In order to find 2,000 or 3,000 feet of areatong riwer hank in one stretch sutable for a safety liading, 4,000 to 6,000 feet miy beswent.

Somaling and probings are taken at 5 -and 10 -foot intervals to rock of: to a alepth of 2 feet below the proposed habor bottom elevations and, nomathy, on ranges of 100 feet; howerer, the range interval is changed, if neressary to aceurately locate ledre rock, rock outcrop, and boulders along the submerged hank.

The navigation contous, cultum features, mon migation aids are mapped by plane table stadia methods. The contour hiterval above wator is usmally 5 feet and contones me mapped to an elevation 5 to 15 feet above nomal pool, The contour interal below the watei surface varies betweell 3 and 5 fees and contours tire mapped to an elevation 10 to 15 feet below normad pool.

Purpose

SILT RANGES

The characteristics and amonts of silation in a reservon depend on such factois as the extent of forest cover and the type of som in the dranage basin; the state of its cultimation ;' the ormolient of the tributary streams and the slope of land adjacent to the reservoir: the number and type of reservoirs upstream: and the anome and peculiarities of minfall ineach resercoir hasin. Ta some of the older. reservoirs built before the creation of TVA and before much attention was given to terncing, contom plowing, and plating of cover crops, silt deposits hal destroyed minch of the storage capacity and had, in fact, almost completely filled one small reservir. Tia order to estimate the usefill life of stomge reservoissand cope with the problems of siltation in havigation clannels, nomate base lines or silt ranges are established before impoundage in TVA reservoins so that resurveys can be made from time to time to accurately measme the amount of silt deposits.

Preimpoundage surveys

Morizontal and vertical control.-Ranges are generally laid out at right angles to the direction of flow and are spaced about 1 mile apart in the upper half of the reservoir and on tributary streams. In the lower half of the reservir: the spacing is genemilly greater, in some instances as moh as 2 miles apat. Momments are spt to matk the ends of the ranges. They are standard preast concrete
markers, measuming 8 inches square at the top; 10 inches square at the bottom, 40 inclies long, and weghingabout 200 pomads. Each monument has embedded in its top a stmind cast-bronze tablet, in which is stamped the identifying range number. The markers are set well above and away from the reservoir shore line to ensure against being covered by silt in the upper renches of the main diver projects and from being disturbed by caving banks cansed by wave action in other locations. A detailed deseription is recorded for each momument which moludes the distance and bearing of the matke from a nimber of permanent and prominent features in the immeiliate vicinity to facilatate its recovery. Later, after it was found that some of the monuments were being destroyed by farm machinery enamel covered nietal survey maker signs boilted to 1 - by 1 -inch by 7 -foot angle inon fence posts were set adjacent to the markers to lielp preserve thom.

The horizontal position nud elevation of each monment wasestablished by baverseand levels of thind-omes accuracy. The horizontal control was adjusted to the state plane coordinate arid system mid the leveling to the mean sea level datum.

Firld methods and procedures-Distances along the muges were meanued by fom th-order transit ind tipe methods. Stations were established and matked on the gromed at each change in grade along the range. Distances across bodies of water were establishied by iniangulation. Underwater profiles weve established by itar lime distances from a station on the shore and undernater elevations obtained by conventional rod or Jead line sommlings.

Elevations of all breaks in made atong the hand sections of the ranges on the main-river projects, where the land to be flooded was generally flat to rolling, were detemined by spinit leveling. with the errots of closure between monmmented ends of ranges being limited to 0.2 foot: dll turning points were real to 0.01 foot and potile elexations to the nearest 0. 1 foot.

Elevations of breaks in grade along the steep monntain slopes in the stomare type reserwoms were established by rectprocal trigonometmic leveling over stations previonsly set by transit slopetaping methots, making ties to third-order reservoir control levelsat the toes of the slopes. Errors of closure were limited to 1 foot. The profiles across the relatively flat flood plains (where later silt survey data would be most reliable) between the steep hills, were established by spirit leveling.

Silt Fange surveys are delayed mal after clearing opentions are completed in order to minimize the amonnt of line clearing. In the reservoits where trees were left standing below the draw-down contour it is the pactice to clear 20 fret on each sule of the mange line, primanily for the comvenience in makng resurveys after impondage. In the case of lage tmbulent moutan streans, if las been found to be mone econominal and less hazadons to delaysomding the miver bed until reservoir filling begins. then sonnd the niver section of the ranges from a boat using a fig line for distance measurements from a station established on the bank. By stathog shortly after filling opeations begin, it is possible to work in shallow shack water throughout the entire length of the reservor area. It has atoo been found that the notes should include detail sketches showing the reconder's
view of the ground profile and the approximate location of features adjacent to the range that might be of nse in analyzing the results of resurveys after inipomblage. Large tree stmmps, flat rocks, and abrupt changes in ground elevation to the side of the center line are shown.

Rod soundings have been found to be more satisfactory in water less than 90 feet in depth. A bell-shaped lead weight suspended by $1 / 1 \mathrm{~g}^{\text {-inch }}$ wire cable or piano wire is used in deeper water. On the initial soundings the ground or bottom profile is dragged between soundings to avoid the omission of a change inground profile. Also, at each recorded somding the aren immednately surroinding the point is felt ont to locate abrupt changes that might be confusing in the resurveys should there be a small error in position of the soundingr during resurveys. Since silt is usually taid down in wedge-shaped layers with the thickest section, usually a conrse material, in the narrow upper reaches of the reservoir and the thinnest portion, made up. of a fine silt that will not support a heary sounding weight, in the broad sections close to the dam, both the omimimal profile and the resurveys are taken very earefully in the downstream ranges.

Postimpoundage soundings

Sereral methods or combinations of methods have been employed in making silt range resurseys. The ground above water level, including land exposed during draw-down (the time when resurveys are generally scheduled) is profiled using the same methods used in the mitial work. In the upper reaches of some of the storage type projects where silt deposits are heaviest, satisfactory underwater results have been obtained using electronic depth sounding equipment from a boat equipped with a piano wire tag line device, reeled off from the boat, for measuring the distance from a known station on the shore line. When this method is employed spot check sonndings with a lead line are made to detect any errors of adjusfment in the electronic equipment. In making resirveys a five-man party can hamdle both the bank profiling above the water level and the reservoir sounding.

For taking sommlings the boat crew is made up of a boat operator: tar-line man, a man to operate the electronic device, and the party chief who also keeps in communication with the trinsitman on the bank. The transitman keeps the boat on line: Allfive men take pat in the bunk surveys, making profile surveys above water on two ranges, and erecting sighals on silt range momments for back siphts before alternating the bank operations to the other side of the reservoir.

Where more necurateresnlts are reguived than can be obtained with the depth somding equipment, the sommings in shallow whter are male with a rod graduated to tenths of a foot and in deeper water with a lead line, using grachuted piano wire and a bell-shaped tend sounding weight. Care is exereised to prevent the weight from sinking below the surface of the silt deposit. Alinement for the soundings on the silt range is maintained by short wave radio communica(ion between the transitman on the monumented bank station and the bont erew. A graduated piano wire amohored to a station on the bunk is unreeled from the boat to determine the distance from the,
shore station. The manual sounding party generally consists of four men in the boat and a transitman and, like the party using echo depth. sounding eguipment, also makes the bank profile surveys. The party chief, in the boat, maintains constant commmication with the transitman and records the depth of water and registers distances from the station on the bank. One man takes the soundings, another operates the tag line distance measuring equipment, and the fourth man operates the boat. Depths are measured fromi water suiface and converted to mean sea level elevation: Accurate sounding can only be taken when there are no wind tides or large waves.

Results of successive resuryeys are all plotted on the same tracing on which the origimal silt range survey data was plotted for ease in measumg the total silt deposits as well as the deposits laid down between any two surveys.

SUBSURFACE EXPIORATIONS

Purpose and types

Subsurface investigations having to do with irregular earth and mineral deposits. stratified formations, and foundation studies for large structures usually involve the use of core drill and auxiliary equipment to obtain samples for laboratory tests and to establish the thickness and elevation of strata or deposits. The work includes the preparation of logs, columnar sections, topographic and geologic maps, the computation of quantities, and the investigation of ground water conditions. In general, test pits, rod' somdings. wash borings, auger borings, core drilling, calyx drilling, ov a combination of such methods are employed after surface geological investigations have been made to determine the structural conditions and to outline the area of interest.

Horizontal and vertical control

The initial points scheduled for subsurface explorations are usually established by plane table. A print of the site topography on which the geologist lias spotted the location of points when tests are to be made is used as a plane table sheet. Standard third-order horizontal and vertical control methods are then used to establish positions and ground elevations for the location of additional holes if more intensive investigations are indicated. The local grid system or range lines are first laid out graphically on the plane table slicets. Traverse and level lines are then ronted to the location by aseries of rectangular loops following the predetermined range or grid lines. Oak hubs or angle fron station markers are set at each hole location and the station identification is stenciled on a guard stake driven in the ground adjacent to the station marker.

Field procedures and equipment

In the investigation of earth or mineral deposits, the type of equipment used is largely dependent upon the characteristics of the overburden materials and the deposit itself, and how deep the investigation is to go. In deposits of earth or other soft materials and when dry samples are required the eath anger is used. Where the overburden material has a tendency to cave or otherwise make auger

INCLUDING DEWATERED AREAS				EXCLUDING DEWATERED AREAS					
$\begin{gathered} \text { ELEV } \\ \text { FT } \end{gathered}$	1936		1981	1936		1847	1953	1856	1981
	AREA $A C$	$\begin{aligned} & \text { VOLUME } \\ & \text { AC-FT } \end{aligned}$	$\begin{aligned} & \text { VOLUME } \\ & \text { AC-FT } \end{aligned}$	AREA AC	$\begin{aligned} & \text { VOLUME } \\ & \text { AC-FT } \end{aligned}$	$\begin{aligned} & \text { VOLUME } \\ & \text { AC-FT } \end{aligned}$	$\begin{aligned} & \text { VOLUME } \\ & \text { AC-FT } \end{aligned}$	VOLUME AC-FT	$\begin{aligned} & \text { VOLUME } \\ & A C-F T \end{aligned}$
560	89.100	1,429.000	1,358,000						
556.28	68,000	1,142,000	1,071,000	62.000	1,122.000				
556	67,070	1,121,000	1,050,000	61.190	1,108,000	1,058,000	1,048,000	1,047,000	1,037,000
550	45,430	792,000	120,000	44.810	190,000	740,000	727,000	728.000	718.000
545	33,090	596,000	528,000	33,080	590.000	549,000	538,000	538,000	528,000
541	27,280	472,000		27,260	472.000	432.000	420,000		
538	24,07.0	393,000	335,000	24,870	393,000	355,000	344,000	343.000	335,000
530	.18:600	220.000	171,000	18.600	220.000	190,000	178.000	177,000	
520	8,080	88,800	65,600	8,080	88,500	74,400	67.800	67.300	65,600
510	3.880	31, 300	18,500	3,680	31,300	22,200	19.800	18.100	18, 100
500	1,220	7,140	800	1.220	7,140	1,810	$1,240$	1.040	000
490	138	344	0	138	344	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0

USACE HYDROGRAPHIC SURVEY DATE DOCUMENTATION

DATE OF ACQUISITION:
June 23, 2009
PROJECT:
CC:
TVA SOCH CHANNEL VERIFICATION
Perry Maddux, TVA
Greg Lowe, TVA
PJ Nabors, TVA
Carrie Stokes, BWSC
Heather Smith-Sawyer, BWSC
File
BWSC FILE NO: 3410761

ITEMS RECEIVED:

On June 23, 2009 BWSC received an email from Bob Taphorn with the US Army Corps of Engineers in Nashville, Tennessee confirming the Tennessee River hydrographic survey collection dates within Wheeler Reservoir. Tennessee River miles 275 to 375 were surveyed between June 2006 and August 2006.

The survey horizontal and vertical datum is NAD83 and NGVD 29, respectively. The email indicated that survey points for Tennessee River miles 275 to 305 were provided in Alabama West State Plane coordinates, and survey points for Tennessee River miles 305 to 375 were provided in Alabama East State Plane coordinates. However, use and inspection of the data revealed the divide between Alabama East and West coordinate systems in the USACE hydrographic survey data coordinate files to occur at Tennessee River mile 308.

The original email from Bob Taphorn is enclosed.
Eric E. King, PE
BWSC

USACE Contact Information:
Bob Taphorn, Navigation Branch, CELRN-OP-N
PO Box 1070
Nashville, TN 37202-1070
Phone: 615.308.9742
Bob.Taphorn@,usace.army.mil

TVA SOCH
Page 2
File 3410761

```
-----Original Message-----
From: Taphorn, Bob LRN [mailto:Bob.Taphorn@usace.army.mil]
Sent: Tuesday, June 23, 2009 9:56 AM
To: Jeff Cundiff
Cc: Heather Smith Sawyer
Subject: RE: Wheeler - Bathymetric Data
Jeff
Data collected from June 06 to Aug 06. All xy's Al-west from 275 to 305. 305
to 375 are Al east NAD 83. All z values are NGVD 29.We use the Hwy 72 Bridge
in Decatur to separate Al East and West.
Bob
-----Original Message-----
From: Jeff Cundiff [mailto:Jeff.Cundiff@bwsc.net]
Sent: Friday, June 12, 2009 9:17 AM
To: Taphorn, Bob LRN
Cc: Heather Smith Sawyer
Subject: Wheeler - Bathymetric Data
Bob,
Do you know anything about the bathymetric data for Wheeler?
Specifically were looking for the coordinate system (AL State Plane?), dates
collected, any other pertinent information off hand.
Thank you,
Jeff
```


National Geodetic Survey (NGS) Height Conversion Methodology

This process is designed to provide datum shift between the NAVD 88 and NGVD 29 vertical datums at specified geographic position.

Dennis G. Milbert, Ph.D.
05/12/1999

METHOD

Program VERTCON computes the modeled difference in orthometric height between the North American Vertical Datum of 1988 (NAVD 88) and the National Geodetic Vertical Datum of 1929 (NGVD 29) for a given location specified by latitude and longitude.

The VERTCON 2.0 model was computed on May 5, 1994 using $\mathbf{3 8 1 , 8 3 3}$ datum difference values. A key part of the computation procedure was the development of the predictable, physical components of the differences between the NAVD 88 and NGVD 29 datums. This included models of refraction effects on geodetic leveling, and gravity and elevation influences on the new NAVD 88 datum. Tests of the predictive capability of the physical model show a 2.0 cm RMS agreement at our 381,833 data points. For this reason, the VERTCON 2.0 model can be considered accurate at the 2 cm (one sigma) level. Since 381,833 data values were used to develop the corrections to the physical model, VERTCON 2.0 will display even better overall accuracy than that displayed by the uncorrected physical model. This higher accuracy will be particularly noticable in the eastern United States.

It should be emphasized that VERTCON 2.0 is a datum transformation model, and can not maintain the full vertical control accuracy of geodetic leveling. Ideally, one should process level data using the latest reduction software and adjust it to established NAVD 88 control. However, VERTCON 2.0 accuracy is suitable for a variety of mapping and charting purposes.

Most horizontal positions of the bench marks used to generate VERTCON were scaled from USGS topographic maps. The estimated uncertainty of the scaled positions, $6^{\prime \prime}$, is greater than the differences between NAD 27 and NAD 83. Therefore, the latitude and longitude provided to VERTCON can be on either the NAD 27 or NAD 83 datum.

The VERTCON 2.0 model expresses datum differences between NAVD 88 and NGVD 29 due to removal of distortions in the level data, as well as due to the physical differences in the height systems. In some rare cases, these local NGVD 29 distortions could be 20 cm or more. If both ends of your old vertical survey were tied to one of these "problem" lines, then the datum difference of the problem line is appropriate to use to transform the survey data. If both ends of a vertical survey are tied to "undistorted lines", then it is appropriate
to use a slightly distant point to compute the transformation, no matter how close your survey data may approach a given problem line. The possible presence of a problem NGVD 29 line in the vicinity of your survey will become evident if dramatically different datum transformation values are computed within a small area.

It must also be emphasized that VERTCON 2.0 is not to be considered reliable beyond the boundaries of the lower 48 United States. Future versions of VERTCON may be extended into neighboring countries. The National Imagery and Mapping Agency (NIMA previously the Defense Mapping Agency) has been of immense help in this endeavor. NIMA has provided a major portion of the NGS land gravity data set. NIMA has also been instrumental in the creation of the various $30^{\prime \prime}$ elevation grids in existence. Although the work of the NIMA generally precludes public recognition, their cooperation in this work is gratefully acknowledged.

National Geodetic Survey (NGS)

Height Conversion Algebraic Sign Convention

This process is designed to provide the datum shift between the NAVD 88 and NGVD 29 vertical datums at a specified geographic position. The correct use of algebraic signs to convert NGVD 29 heights to NAVD 88 heights, or NAVD 88 heights to NGVD 29 heights, is illustrated with examples.

Rudolf J. Fury M.S.,M.Eng.

05/12/1999

```
Data grids of (NAVD 88 - NGVD 29) height differences represent the datum shift model.
from NGVD 29 ----> NAVD 88 |
If a NAVD 88 height is desired when a NGVD }29\mathrm{ height is given,
    ADD the model value ALGEBRAICALLY to the NGVD 29 height.
FORMULA: height (NAVD 88) = height (NGVD 29) + datum shift (correction) value
Examples:
    1. the NGVD 29 height is 500 meters (1640.420 feet) at
    36 10 35.0 latitude
    098 40 10.0 longitude
        After keying this position into VERTCON, the returned
        (NAVD 88 - NGVD 29) datum shift (correction) value is
                        +0.202 meter (+0.663 ft)
        ADD | this value ALGEBRAICALLY [ keep the sign ] to the NGVD 29 height:
        --.-.--
            500.000
            + 0.202
                            --------
            the NAVD 88 height is 500.202 meters (1641.083 feet).
2. the NGVD 29 height is 120 meters (393.701 feet) at
                                    36 10 35.0 latitude
                                    078 40 10.0 longitude
```

 After keying this position into VERTCON, the returned
 (NAVD 88 - NGVD 29) datum shift (correction) value is
 - 0.267 meter \((-0.876 \mathrm{ft})\)
    ```
    ADD | this value ALGEBRAICALLY [ keep the sign ] to the NGVD 29 height:
    --------
                        120.000
                                - 0.267
                                ---------
        the NAVD 88 height is 119.733 meters (392.825 feet).
            | from NAVD 88 ----> NGVD 29 |
    If a NGVD }29\mathrm{ height is desired when a NAVD }88\mathrm{ height is given,
        SUBTRACT the model value ALGEBRAICALLY from the NAVD }88\mathrm{ height.
        FORMULA: height (NGVD 29) = height (NAVD 88) - datum shift (correction) value
```


Examples:

```
1. the NAVD 88 height is 500.202 meters (1641.083 feet) at
\(36 \quad 10 \quad 35.0 \quad\) latitude
\(09840 \quad 10.0 \quad\) longitude
After keying this position into VERTCON, the returned (NAVD 88 - NGVD 29) datum shift (correction) value is
\[
+0.202 \text { meter } \quad(+0.663 \mathrm{ft})
\]
```

|SUBTRACT| this ALGEBRAICALLY [flip the sign] from the NGVD 29 height:
\qquad


```
2. the NAVD 88 height is 119.733 meters ( 392.825 feet) at
\begin{tabular}{rrrl}
36 & 10 & 35.0 & latitude \\
078 & 40 & 10.0 & longitude
\end{tabular}
After keying this position into VERTCON, the returned (NAVD 88 - NGVD 29) datum shift (correction) value is
\[
-0.267 \text { meter } \quad(-0.876 \mathrm{ft})
\]
|SUBTRACT| this ALGEBRAICALLY [ flip the sign ] from the NGVD 29 height:
```

\qquad

