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1.0 Introduction

This report describes and provides results from a RLBLOCA analysis for the Calvert Cliffs

Nuclear Plant Unit 1 Cycle 21 and Unit 2 Cycle 19. The plant is a CE-designed 2737 MWt plant

with a large dry containment. AREVA NP will be the fuel supplier, starting with Unit 2 Cycle 19.

The plant is a 2X4 loop design - two hot legs and four cold legs. The loops contain four RCPs,

two U-tube steam generators and one pressurizer. The ECCS is provided by two independent

safety injection trains and four SITs.

The analysis supports operation for Unit 1 Cycle 21 as well as Unit 2 Cycle 19 and beyond with

AREVA NP's HTP 14X14 fuel design using standard U0 2 fuel with 2, 4, 6 and 8 w/o Gd 20 3 and

M5 cladding, unless changes in the Technical Specifications, Core Operating Limits Report,

core design, fuel design, plant hardware, or plant operation invalidate the results presented

herein. The analysis was performed in compliance with the NRC-approved RLBLOCA EM

(Reference 1) with exceptions noted below. Analysis results confirm the 10CFR50.46 (b)

acceptance criteria presented in Section 3.0 are met and serve as the basis for operation of the

Calvert Cliffs Nuclear Plant Units 1 and 2 with AREVA NP fuel.

The non-parametric statistical methods inherent in the AREVA NP RLBLOCA methodology

provide for the consideration of a full spectrum of break sizes, break configuration (guillotine or

split break), axial shapes, and plant operational parameters. A conservative loss of a diesel

assumption is applied in which LPSI inject into the broken loop and one intact loop and HPSI

inject into all four loops. Regardless of the failure assumption, all containment

pressure-reducing --systems are.. conservatively assumed,, fully,- functional-._ T h.e effects of

Gadolinia-bearing fuel rods and peak fuel rod exposures are considered.

The following are deviations from the approved RLBLOCA EM (Reference 1) that were

requested by the NRC.

The assumed reactor core power for the Calvert Cliffs realistic large break loss-of-coolant

accident is 2754 MWt. This value represents the plant rated thermal power (i.e., total reactor

core heat transfer rate to the reactor coolant system) of 2737 MWt with a maximum power

measurement uncertainty of 0.62% added to the rated thermal power. The power was not

sampled in the analysis. This is not expected to have a noticeable effect on the PCT results.
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The RLBLOCA analysis was performed with a version of S-RELAP5 that requires both the void

fraction to be less than 0.95 and the clad temperature to be less than 900'F before the rod is

allowed to quench. This may result in a slight increase in PCT results when compared to an

analysis not subject to these constraints.

The RLBLOCA analysis was performed with a version of S-RELAP5 that limits the contribution

of the Forslund-Rohsenow model to no more than 15 percent of the total heat transfer at and

above a void fraction of 0.9. This may result in a slight increase in PCT results when compared

to previous analyses for similar plants.

The split versus double-ended break type is no longer related to break area. In concurrence with

Regulatory Guide 1.157, both the split and the double-ended break will range in area between

the minimum break area (Amn) and an area of twice the, size of the broken pipe. The

determination of break configuration, split versus double-ended, will be made after the break

area is selected based on a uniform probability for each occurrence. Amin was calculated to be

28.7 percent of the DEGB area (see Section 4.6 for further discussion). This is not expected to

have a noticeable effect on PCT results.

In concurrence with the NRC's interpretation of GDC 35, a set of 59 cases was run with a LOOP

assumption and a second set with a No-LOOP assumption. The set of 59 cases that predicted

the highest PCT is reported in Section 2 and Section 3, herein. The results from both case sets

are shown in Figure 3-22. The effect on PCT results is expected to be minor.

During recent RLBLOCA EM modeling studies, it was noted that cold leg condensation

efficiency may be under-predicted. Water entering the DC post-SIT injection remained

sufficiently subcooled to absorb DC wall heat release without significant boiling. However, tests

(Reference 7) indicate that the steam and water entering the DC from the cold leg, subsequent

to the end of SIT injection, reach near saturation resulting from the condensation efficiency

ranging between 80 to 100 percent. To assure that cold leg condensation would not be under-

predicted, a RLBLOCA EM update was made. Noting that saturated fluid entering the DC is the

most conservative modeling scheme, steam and liquid multipliers were developed so as to

approximately saturate the cold leg fluid at cold leg pressure before it enters the DC. The

multipliers were developed through scoping studies using a number of plant configurations-

Westinghouse-designed 3- and 4-loop plants, and CE-designed plants. The results of the
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efficiency may be under-predicted. Water entering the DC post-SIT injection remained 

sufficiently subcooled to absorb DC wall heat release without significant boiling. However, tests 

(Reference 7) indicate that the steam and water entering the DC from the cold leg, subsequent 

to the end of SIT injection, reach near saturation resulting from the condensation efficiency 

ranging between 80 to 100 percent. To assure that cold leg condensation would not be under­

predicted, a RLBLOCA EM update was made. Noting that saturated fluid entering the DC is the 

most conservative modeling scheme, steam and liquid multipliers were developed so as to 

approximately saturate the cold leg fluid at cold leg pressure before it enters the DC. The 

multipliers were developed through scoping studies using a number of plant configurations­

Westinghouse-designed 3- and 4-loop plants, and CE-designed plants. The results of the 
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scoping study indicated that multipliers of 10 and 150 for liquid and steam, respectively, were

appropriate to produce saturated fluid entering the DC. This RLBLOCA EM departure was

recently discussed with the NRC and the NRC agreed that the approach described immediately

above was satisfactory in the interim. The modification is implemented post-SIT injection, 10

seconds after the vapor void fraction in the bottom of the SIT becomes greater than 90 percent.

Thus, the SITs have injected all their water into the cold legs, and the nitrogen cover gas has

entered the system and been mostly discharged through the break before the condensation

efficiency is increased by the factors of 10 and 150, for liquid and vapor respectively. Providing

saturated fluid conditions at the DC entrance conservatively reduces both the DC driving head

and the core flooding rate. Recall that test results indicate that fluid conditions entering the DC

range from saturated to slightly subcooled. Hence, it is conservative to force an approximation

of saturated conditions for fluid entering the DC.

AREVA Inc. has acknowledged an issue concerning fuel thermal conductivity degradation as a

function of burnup as raised by the NRC. In order to manage this issue, AREVA Inc. is

modifying the way RODEX3A temperatures are compensated in the RLBLOCA Revision

0/Transition package methodology. In the current process, the RLBLOCA computes PCTs at

many different times during an operating cycle. For each specific time in cycle, the fuel

conditions are computed using RODEX3A prior to starting the S-RELAP5 portion of the

analysis. A steady state condition for the given time in cycle using S-RELAP5 is established. A

base fuel centerline temperature is established in this process. Then two-transformation

adjustment to the base fuel centerline temperature is computed. The first transformation is a

linear adjustment-for an-exposure of 10 MWd/MTU or-higher. In the. new process, a polynomial

transformation is used in the first transformation instead of a linear transformation. The rest of

the RLBLOCA process for initializing the S-RELAP5 fuel rod temperature should not be altered

and the rest of LOCA transient should also continue in the original fashion. This approach has

been requested by the NRC.
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2.0 Summary

The limiting PCT analysis is based on the parameter specification given in Table 2-1. The

limiting PCT is 1670°F for a 4 w/o Gd 20 3 Rod in a case with LOOP conditions. U0 2 rods and

Gadolinia bearing rods of 2, 6 and 8 w/o were also analyzed, but, were found to be bounded.

This RLBLOCA result is based on a case set of 59 individual transient cases for LOOP and 59

individual transient cases for No-LOOP conditions. The core is composed of AREVA NP HTP

14x14 thermal hydraulically compatible fuel designs with existing Westinghouse fuel designs.

The analysis assumed full core power operation at 2754 MWt. The value represents the nominal

core power including measurement uncertainty of 0.0062. The analysis assumed a steam

generator tube plugging level of 10 percent in all steam generators, a total LHGR of 15.0 kW/ft

(no axial dependency), a total peaking factor (FQ) up to a value of 2.384, and a nuclear enthalpy

rise factor (FAH) up to a value of 1.81 (including 6% uncertainty). This analysis addresses typical

operational ranges or technical specification limits (whichever is applicable) with regard to

Pressurizer pressure and level; SIT pressure, temperature, and level; core average

temperature; core flow; containment pressure and temperature; and RWST.

The AREVA RLBLOCA methodology explicitly analyzes only fresh fuel assemblies (see

Reference 1, Appendix B). Previous analyses have shown that once- and twice-burnt fuel will

not be limiting up to peak rod average exposures of 62,000 MWd/MTU. The analysis

demonstrates that the 10 CFR 50.46(b) criteria listed in Section 3.0 are satisfied.

Table 2-1- Summary-of Major Parameters for-Limiting Transient

Core Average Burnup (EFPH) 15085.66

Core Power (MWt) 2754

Hot Rod LHGR, kW/ft 14.5450
Total Hot Rod Radial Peak (FrT) 1.810
ASI (Axial Shape Index) -0.0932

Break Type Guillotine

Break Size (ft2/side) 3.6978
Offsite Power Availability Not available

Decay Heat Model ANS 1979 Nominal

Decay Heat Multiplier 0.99364
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3.0 Analysis

The purpose of the analysis is to verify typical technical specification peaking factor limits and

the adequacy of the ECCS by demonstrating that the following 10CFR 50.46(b) criteria are met:

(1) The calculated maximum fuel element cladding temperature shall not exceed 2200'F.

(2) The calculated total oxidation of the cladding shall nowhere exceed 0.17 times the total
cladding thickness before oxidation.

(3) The calculated total amount of hydrogen generated from the chemical reaction. of the
cladding with water or steam shall not exceed 0.01 times the hypothetical amount that
would be generated if all of the metal in the cladding cylinders surrounding the fuel
excluding the cladding surrounding the plenum volume were to react.

(4) The calculated changes in core geometry shall be such that the core remains amenable

to cooling.

(5) Long-term cooling is not addressed in this calculation.

The analysis did not evaluate core coolability due to seismic events, nor did it consider the

1OCFR 50.46(b) long-term cooling criterion.

The RLBLOCA analysis conservatively considers blockage effects due to clad swelling and

rupture in the prediction of the hot fuel rod PCT. AREVA NP has previously performed an

analysis which demonstrates that for all cases of horizontal seismic and LOCA loads, the

resulting loads are below the spacer grid elastic load limit and thus the grids sustain no

permanent deformation.

The ECCS performance analysis for Calvert Cliffs Units 1 and 2 assures the core remains

amenable to cooling from the effects of fuel cladding rupture and swelling, and the effects of

LOCA and seismic loads. The RLBLOCA analysis conservatively considers blockage effects

due to clad swelling and rupture in the prediction of the hot fuel rod PCT. The effects of

combined loads (seismic and LOCA) on the fuel assembly components have been evaluated by

AREVA demonstrating that the resulting loads are below the allowable stress limit for all the

components, thus preventing permanent deformation. Therefore, the analysis demonstrates

compliance with Criterion (4).

Section 3.1 of this report describes the postulated LBLOCA event. Section 3.2 describes the

models used in the analysis. Section 3.3 describes the 2X4-loop PWR plant and summarizes
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the system parameters used in the analysis. Compliance to the SER is addressed in

Section 3.4. Section 3.5 summarizes the results of the RLBLOCA analysis.

3.1 Description of the LBLOCA Event

A LBLOCA is initiated by a postulated large rupture of the RCS primary piping. Based on

deterministic studies, the worst break location is in the cold leg piping between the reactor

coolant pump and the reactor vessel for the RCS loop containing the pressurizer. The break

initiates a rapid depressurization of the RCS. A reactor trip signal is initiated when the low

pressurizer pressure trip setpoint is reached; however, reactor trip is conservatively neglected in

the analysis. The reactor is shut down by coolant voiding in the core.

The plant is assumed to be operating normally at full power prior to the accident. The cold leg

break is assumed to open instantaneously. For this break, a rapid depressurization occurs,

along with a core flow stagnation and reversal. This causes the fuel rods to experience DNB.

Subsequently, the limiting fuel rods are cooled by film convection to steam. The coolant voiding

creates a strong negative reactivity effect and core criticality ends. As heat transfer from the.

fuel rods is reduced, the cladding temperature increases.

Coolant in all regions of the RCS begins to flash. At the break plane, the loss of subcooling in

the coolant results in substantially reduced break flow. This reduces the depressurization rate,

and leads to a period of positive core flow or reduced downflow as the RCPs in the intact loops

continue to supply water to the RV (in No-LOOP conditions). Cladding temperatures may be

reduced and some portions of the core may rewet during this period. The positive core flow or

reduced downflow period ends as two-phase conditions occur in the RCPs, reducing their

effectiveness. Once again, the core flow reverses as most of the vessel coolant inventory flows

out through the broken cold leg.

Mitigation of the LBLOCA begins when the SIAS is issued. This signal is initiated by either high

containment pressure or low Pressurizer pressure. Regulations require that a worst

single-failure be considered. This single-failure has been determined to be the loss of one

ECCS pumped injection train. The AREVA RLBLOCA methodology conservatively assumes an

on-time start and normal lineups of the containment spray to conservatively reduce containment

pressure and increase break flow. Hence, the analysis assumes loss of a diesel generator in
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which LPSI inject into the broken loop and one intact loop, HPSI inject into all four loops, and all

containment spray pumps are operating.

When the RCS pressure falls below the SIT pressure, fluid from the SITs is injected into the cold

legs. In the early delivery of SIT water, high pressure and high break flow will drive some of this

fluid to bypass the core. During this bypass period, core heat transfer remains poor and fuel rod

cladding temperatures increase. As RCS and containment pressures equilibrate, ECCS water

begins to fill the lower plenum and eventually the lower portions of the core; thus, core heat

transfer improves and cladding temperatures decrease.

Eventually, the relatively large volume of SIT water is exhausted and core recovery continues

relying solely on pumped ECCS injection. As the SITs empty, the nitrogen gas used to

pressurize the SITs exits through the break. This gas release may result in a short period of

improved core heat transfer as the nitrogen gas displaces water in the downcomer. After the

nitrogen gas has been expelled, the ECCS temporarily may not be able to sustain full core

cooling because of the core decay heat and the higher steam temperatures created by

quenching in the lower portions of the core. Peak fuel rod cladding temperatures may increase

for a short period until more energy is removed from the core by the HPSI and LPSI while the

decay heat continues to fall. Steam generated from fuel rod rewet will entrain liquid and pass

through the core, vessel upper plenum, the hot legs, the steam generators, and the reactor

coolant pumps before it is vented out the break. Some steam flow to the upper head and pass

through the pressurizer spray nozzles, which provide a vent path to the break. The resistance

of this flow path to the steam flow is balanced by the driving force of water filling the

downcomer. This resistance may act to retard the progression of the core reflood and postpone

core-wide cooling. Eventually (within a few minutes of the accident), the core reflood will

progress sufficiently to ensure core-wide cooling. Full core quench occurs within a few minutes

after core-wide cooling. Long-term cooling is then sustained with coolant provided by LPSI.

3.2 Description of Analytical Models

The RLBLOCA methodology is documented in EMF-2103 Realistic Large Break LOCA

Methodology (Reference 1). The methodology follows the Code Scaling, Applicability, and

Uncertainty (CSAU) evaluation approach (Reference 2). This method outlines an approach for

defining and qualifying a best-estimate thermal-hydraulic code and quantifies the uncertainties

in a LOCA analysis.
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The RLBLOCA methodology consists of the following computer codes:

RODEX3A for computation of the initial fuel stored energy, fission gas release, and
fuel-cladding gap conductance.

* S-RELAP5 for the system calculation (includes ICECON for containment response).

* AUTORLBLOCA for generation of ranged parameter values, transient input, transient
runs, and general output documentation.

The governing two-fluid (plus non-condensibles) model with conservation equations for mass,

energy, and momentum transfer is used. The reactor core is modeled in S-RELAP5 with heat

generation rates determined from reactor kinetics equations (point kinetics) with reactivity

feedback, and with actinide and decay heating.

The two-fluid formulation uses a separate set of conservation equations and constitutive

relations for each phase. The effects of one phase on the other are accounted for by interfacial

friction, and heat and mass transfer interaction terms in the equations. The conservation

equations have the same form for each phase; only the constitutive relations and physical

properties differ.

The modeling of plant components is performed by following guidelines developed to ensure

accurate accounting for physical dimensions and that the dominant phenomena expected during

the LBLOCA event are captured. The basic building blocks for modeling are hydraulic volumes

for fluid paths and heat structures for heat transfer. In addition, special purpose components

exist to represent specific components such as the RCPs or the steam generator separators.

All geometries are modeled at the resolution necessary to best resolve the flow field and the

phenomena being modeled within practical computational limitations.

System nodalization details are shown in Figures 3-1 through 3-5. A point of clarification: in

Figure 3-1, break modeling uses two junctions regardless of break type-split or guillotine; for

guillotine breaks, Junction 151 is deleted, it is retained fully open for split breaks. Hence, total

break area is the sum of the areas of both break junctions.

A typical calculation using S-RELAP5 begins with the establishment of a steady-state initial

condition with all loops intact. The input parameters and initial conditions for this steady-state

calculation are chosen to reflect plant technical specifications or to match measured data.
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Additionally, the RODEX3A code provides initial conditions for the S-RELAP5 fuel models.

Specific parameters are discussed in Section 3.3.

Following the establishment of an acceptable steady-state condition, the transient calculation is

initiated by introducing a break into one of the loops (specifically, the loop with the pressurizer).

The evolution of the transient through blowdown, refill and reflood is computed continuously

using S-RELAP5. Containment pressure is also calculated by S-RELAP5 using containment

models derived from ICECON (Reference 4), which is based on the CONTEMPT-LT code

(Reference 3) and has been updated for modeling ice condenser containments.

The methods used in the application of S-RELAP5 to the LBLOCA are described in

Reference 1. A detailed assessment of this computer code was made through comparisons to

experimental data, many benchmarks with cladding temperatures ranging from 1,700'F (or less)

to above 2,200$. These assessments were used to d evelop quantitative estimates of the

ability of the code to predict key physical phenomena in a PWR LBLOCA. Various models-for

example, the core heat transfer, the decay heat model and the fuel cladding oxidation

correlation-are defined based on code-to-data comparisons and are, hence, plant

independent.

The RV internals are modeled in detail (Figures 3-3 through 3-5) based on specific inputs

supplied by Constellation Energy. Nodes and connectivity, flow areas, resistances and heat

structures are all accurately modeled. The location of the hot assembly/hot pin(s) is

unrestricted; however, the channel is always modeled to restrict appreciable upper plenum

licq iiid-fall k ...ba.c.k*.

The final step of the best-estimate methodology is to combine all the uncertainties related to the

code and plant parameters, and estimate the PCT at a high probability level. The steps taken to

derive the POT uncertainty estimate are summarized below:

1. Base Plant Input File Development

First, base RODEX3A and S-RELAP5 input files for the plant (including the containment
input file) are developed. Code input development guidelines are applied to ensure that
model nodalization is consistent with the model nodalization used in the code validation.

2. Sampled Case Development
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Additionally, the RODEX3A code provides initial conditions for the S-RELAP5 fuel models. 

Specific parameters are discussed in Section 3.3. 

Following the establishment of an acceptable steady-state condition, the transient calculation is 

initiated by introducing a break into one of the loops (specifically, the loop with the pressurizer). 

The evolution of the transient through blowdown, refill and reflood is computed continuously 

using S~RELAP5. Containment pressure is also calculated by S-RELAP5 using containment 

models derived from ICECON (Reference 4), which is based on the CONTEMPT-LT code 

(Reference 3) and has been updated for modeling ice condenser containments. 

The methods used in the application of S-RELAP5 to the LBLOCA are described in 

. Reference 1. A detailed assessment of this computer code was made through comparisons to 

experimental data, many benchmarks with cladding temperatures ranging from 1 ,700'F (or less) 

to above 2,200'F. These assessments were used to develop quantitative estimates of the 

ability of the code to predict key physical phenomena in a PWR LBLOCA. Various models-for 

example, the core heat transfer, the decay heat model and the fuel cladding oxidation 

correlation-are defined based on code-to-data comparisons and are, hence, plant 

independent. 

The RV internals are modeled in detail (Figures 3-3 through 3-5) based on specific inputs 

supplied by Constellation Energy. Nodes and connectivity, flow areas, resistances and heat 

structures are all accurately modeled. The location of the hot assembly/hot pin(s) is 

unrestricted; however, the channel is always modeled to restrict appreciable upper plenum 
c liCfuid-falioack: ... ". - -... .... .... ... -... .... . '. 

The final step of the best-estimate methodology is to combine all the uncertainties related to the 

code and plant parameters, and estimate the PCT at a high probability level. The steps taken to 

derive the PCT uncertainty estimate are summarized below: 

1. Base Plant Input File Development 

First, base RODEX3A and S-RELAP5 input files for the plant (including the containment 
input file) are developed. Code input development guidelines are applied to ensure that 
model nodalization is consistent with the model nodalization used in the code validation. 

2. Sampled Case Development 
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The non-parametric statistical approach requires that many "sampled" cases be created
and processed. For every set of input created, each "key LOCA parameter" is randomly
sampled over a range established through code uncertainty assessment or expected
operating limits (provided by plant technical specifications or data). Those parameters
considered "key LOCA parameters" are listed in Table 3-1. This list includes both
parameters related to LOCA phenomena (based on the PIRT provided in Reference 1)
and to plant operating parameters.

3. Determination of Adequacy of ECCS

The RLBLOCA methodology uses a non-parametric statistical approach to determine
values of PCT at the 95 percent probability level. Total oxidation and total hydrogen are
based on the limiting PCT case. The adequacy of the ECCS is demonstrated when
these results satisfy the criteria set forth in Section 3.0.

3.3 Plant Description and Summary of Analysis Parameters

The plant analysis presented in this report is for a CE-designed PWR, which has 2X4-loop

arrangement. There are two hot legs each with a U-tube steam generator and four cold legs

each with a RCP 1. The RCS includes one Pressurizer connected to a hot leg. The core contains

217 thermal-hydraulic compatible AREVA HTP 14X14 fuel assemblies with 2, 4, 6 and 8 w/o

gadolinia pins. Both units of Calvert Cliffs' core contain co-resident Westinghouse and AREVA

Advanced CE14 HTP fuel. The two assembly types have different form loss coefficients for the

grid spacers and the upper and lower tie plates. Adjustments were made to these losses in the

basedeck to model the mixed core configuration. The ECCS includes one HPSI, one LPSI and

one SIT injection path per RCS loop. The break is modeled in the same loop as the pressurizer,

as directed by the RLBLOCA methodology. The RLBLOCA transients are of sufficiently short

duration that the switchover to sump cooling water (i.e., RAS) for ECCS pumped injection, need

not be considered

The S-RELAP5 model explicitly describes the RCS, RV, Pressurizer, and ECCS. The ECCS

includes a SIT path and a LPSI/HPSI path per RCS loop. The HPSI and LPSI feed into a

common header that connects to each cold leg pipe downstream of the RCP discharge. The

ECCS pumped injection is modeled as a table of flow versus backpressure. This model also

describes the secondary-side steam generator that is instantaneously isolated (closed MSIV

1 The RCPs are Byron-Jackson Type DFSS pumps are specified by Constellation Energy. The

homologous pump performance curves were input to the S-RELAP5 plant model; the built-in S-RELAP5
curves were not used.
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The non-parametric statistical approach requires that many "sampled" cases be created 
and processed. For every set of input created, each "key LOCA parameter" is randomly 
sampled over a range established through code uncertainty assessment or expected 
operating limits (provided by plant technical specifications or data). Those parameters 
considered "key LOCA parameters" are listed in Table 3-1. This list includes both 
parameters related to LOCA phenomena (based on the PIRT provided in Reference 1) 
and to plant operating parameters. 

3. Determination of Adequacy of ECCS 

The RLBLOCA methodology uses a non-parametric statistical approach to determine 
values of PCT at the 95 percent probability level. Total oxidation and total hydrogen are 
based on the limiting PCT case. The adequacy of the ECCS is demonstrated when 
these results satisfy the criteria set forth in Section 3.0. ' 

3.3 Plant Description and Summary of Analysis Parameters 

The plant analysis presented in this report is for aCE-designed PWR, which has 2X4-loop 

arrangement. There are two hot legs each with a U-tube steam generator and four cold legs 

each with a RCp1. The RCS includes one Pressurizer connected to a hot leg. The core contains 

217 thermal-hydraulic compatible AREVA HTP 14X14 fuel assemblies with 2, 4, 6 and 8 wlo 

gadolinia pins. Both units of Calvert Cliffs' core contain co-resident Westinghouse and AREVA 

Advanced CE14 HTP fuel. The two assembly types have different form loss coefficients for the 

grid spacers and the upper and lower tie plates. Adjustments were made to these losses in the 

basedeck to model the mixed core configuration. The ECCS includes one HPSI, one LPSI and 

one SIT injection path per RCS loop. The break is modeled in the same loop as the pressurizer, 

as directed by the RLBLOCA methodology. The RLBLOCA transients are of sufficiently short 

duration that the switchover to sump cooling water (Le., RAS) for ECCS pumped injection need 

not be considered 

The S-RELAP5 model explicitly describes the RCS, RV, Pressurizer, and ECCS. The ECCS 

includes a SIT path and a LPSI/HPSI path per RCS loop. The HPSI and LPSI feed into a 

common header that connects to each cold leg pipe downstream of the RCP discharge. The 

ECCS pumped injection is modeled as a table of flow versus backpressure. This model also 

describes the secondary-side steam generator that is instantaneously isolated (closed MSIV 

1 The RCPs are Byron-Jackson Type DFSS pumps are specified by Constellation Energy. The 
homologous pump performance curves were input to the S-RELAP5 plant model; the built-in S-RELAP5 
curves were not used. 
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and feedwater trip) at the time of the break. A symmetric steam generator tube plugging level of

10 percent per steam generator was assumed.

As described in the AREVA RLBLOCA methodology, many parameters associated with

LBLOCA phenomenological uncertainties and plant operation ranges are sampled. A summary

of those parameters is given in Table 3-1. The LBLOCA phenomenological uncertainties are

provided in Reference 1. Values for process or operational parameters, including ranges of

sampled process parameters, and fuel design parameters used in the analysis are given in

Table 3-2. Plant data are analyzed to develop uncertainties for the process parameters

sampled in the analysis. Table 3-3 presents a summary of the uncertainties used in the

analysis. Where applicable, the sampled parameter ranges are based on technical specification

limits or supporting plant calculations that provide more bounding values.

For the AREVA NP RLBLOCA EM, dominant containment parameters, as well as NSSS

parameters, were established via a PIRT process. Other model inputs are generally taken as

nominal or conservatively biased. The PIRT outcome yielded two important (relative to PCT)

Containment parameters-containment pressure and temperature. In many instances, the

conservative guidance of CSB 6-2 (Reference 5) was used in setting the remainder of the

containment model input parameters. As noted in Table 3-3, containment temperature is a

sampled parameter. Containment pressure response is indirectly ranged by sampling the

containment volume (Table 3-3). Containment heat sink data is given in Table 3-9. In

accordance with Reference 1, the condensing heat transfer coefficient is intended to be closer

to- a •t-e~tirf-at• ihste-d of a b6Jnhding high-value. A[[- Uchida heat transfer coefficient

multiplier was specifically validated for-use in Calvert Cliffs through application of the process

used in the RLBLOCA EM (Reference 1) sample problems.

The containment initial conditions and boundary conditions are given in Table 3-8. The building

spray is modeled at maximum heat removal capacity. All spray flow is delivered to the

containment.

3.4 SER Compliance

A number of requirements on the methodology are stipulated in the conclusions section of the

SER for the RLBLOCA methodology (Reference 1). These requirements have all been fulfilled

during the application of the methodology as addressed in Table 3-4.
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and feedwater trip) at the time of the break. A symmetric steam generator tube plugging level of 

10 percent per steam generator was assumed. 

As described in the AREVA RLBLOCA methodology, many parameters associated with 

LBLOCA phenomenological uncertainties and plant operation ranges are sampled. A summary 

of those parameters is given in Table 3-1. The LBLOCA phenomenological uncertainties are 

provided in Reference 1. Values for process or operational parameters, including ranges of 

sampled process parameters, and fuel design parameters used in the analysis are given in 

Table 3-2. Plant data are analyzed to develop uncertainties for the process parameters 

sampled in the analysis. Table 3-3 presents a summary of the uncertainties used in the 

analysis. Where applicable, the sampled parameter ranges are based on technical specification 

limits or supporting plant calculations that provide more bounding values. 

For the AREVA NP RLBLOCA EM, dominant containment parameters, as well as NSSS 

parameters, were established via a PIRT process. Other model inputs are generally taken as 

nominal or conservatively biased. The PIRT outcome yielded two important (relative to PCT) 

Containment parameters-containment pressure and temperature. In many instances, the 

conservative guidance of CSB 6-2 (Reference 5) was used in setting the remainder of the 

containment model input parameters. As noted in Table 3-3, containment temperature is a 

sampled parameter. Containment pressure response is indirectly ranged by sampling the 

containment volume (Table 3-3). Containment heat sink data is given in Table 3-9. In 

accordance with Reference 1, the condensing heat transfer coefficient is intended to be closer 

to- a··D"est-estrrifa'te'iiisfead'of a "boLihdin~rliigh"·value. Al ' "]Uchida heat transfer coefficient 

multiplier was specifically validated for'use in Calvert Cliffs through application of the process 

used in the RLBLOCA EM (Reference 1) sample problems. 

The containment initial conditions and boundary conditions are given in Table 3-8. The building 

spray is modeled at maximum heat removal capacity. All spray flow is delivered to the 

containment. 

3.4 SER Compliance 

A number of requirements on the methodology are stipulated in the conclusions section of the 

SER for the RLBLOCA methodology (Reference 1). These requirements have all been fulfilled 

during the application of the methodology as addressed in Table 3-4. 
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3.4.1 Item 7: Blowdown Quench

Three cases were potential candidates for blowdown quench and was closely inspected. For

this calculation, no evidence of blowdown quench was observed. Therefore, compliance to the

SER restriction has been demonstrated.

3.4.2 Item 8: Top-down Quench

Several provisions have been implemented in the S-RELAP5 model to prevent the top-down

quench. The upper plenum nodalization features include:

* the homogenous option is selected for the junction that connects the first axial level node
above the hot channel to the second axial level node above the hot channel;

P no cross-flow is allowed between the first axial level Upper Plenum nodes above the hot

channel to the average channel;

* the CCFL model is applied on all core exit junctions.

Fifteen cases were closely examined for top-down quench. No evidence of top-down quench

was observed. Therefore, compliance to the SER restriction has been demonstrated.

3.5 Realistic Large Break LOCA Results

Two case sets of 59 transient calculations were performed sampling the parameters listed in

Table 3-1. For each case set, PCT was calculated for a U02 rod and for Gadolinia-bearing rods

with concentrations of 2, 4, 6 and 8 w/o Gd 20 3. The limiting case set, that contained the PCT,

was the set with no offsite power available. The limiting PCT (1670 0 F) occurred in Case 5 for 4

w/o--Gd 203-rod..The- major -parameters for-the limiting -transient are presented in Table 2-1.

Table 3-5 lists the results of the limiting case. The fraction of total hydrogen generated was not

directly calculated; however, it is conservatively bounded by the calculated total percent

oxidation, which is well below the 1 percent limit. The best-estimate PCT case is Case 27, which

corresponded to the median case out of the 59-case set with no offsite power available. The

nominal PCT was 14351F for an 8 w/o Gd 20 3 rod. This result can be used to quantify the

relative conservatism in the limiting case result. In this analysis, it was 235°F.

The case results, event times and analysis plots for the limiting PCT case are shown in

Table 3-5, Table 3-6, and in Figure 3-11 through Figure 3-21. Figure 3-6 shows linear scatter

plots of the key parameters sampled for the 59 calculations. Parameter labels appear to the left

of each individual plot. These figures show the parameter ranges used in the analysis. Figure
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Three cases were potential candidates for blowdown quench and was closely inspected. For 

this calculation, no evidence of blowdown quench was observed. Therefore, compliance to the 

SER restriction has been demonstrated. 

3.4.2 Item 8: Top-down Quench 

Several provisions have been implemented in the S-RELAP5 model to prevent the top-down 

quench. The upper plenum nodalization features include: 

• the homogenous option is selected for the junction that connects the first axial level node 
above the hot channel to the second axial level node above the hot channel; 

• no cross-flow is allowed between the first axial level Upper Plenum nodes above the hot 
channel to the average channel; 

• the CCFL model is applied on all core exit junctions. 

Fifteen cases were closely examined for top-down quench. No evidence of top-down quench 

was observed. Therefore, compliance to the SER restriction has been demonstrated. 

3.5 Realistic Large Break LOCA Results 

Two case sets of 59 transient calculations were performed sampling the parameters listed in 

Table 3-1. For each case set, PCT was calculated for a U02 rod and for Gadolinia-bearing rods 

with concentrations of 2, 4, 6 and 8 wlo Gd20 3• The limiting case set, that contained the PCT, 

was the set with no offsite power available. The limiting peT (1670°F) occurred in Case 5 for 4 

-w/o--Gd20 3 -rod;-The- major"parameters for--the -limiting -transient are presented in Table 2-1. 

Table 3-5 lists the results of the limiting case. The fraction of total hydrogen generated was not 

directly calculated; however, it is conservatively bounded by the calculated total percent 

oxidation, which is well below the 1 percent limit. The best-estimate PCT case is Case 27, which 

corresponded to the median case out of the 59-case set with rio offsite power available. The 

nominal PCT was 1435°F for an 8 wlo Gd20 3 rod. This result can be used to quantify the 

relative conservatism in the limiting case result. In this analysis, it was 235°F. 

The case results, event times and analysis plots for the limiting PCT case are shown in 

Table 3-5, Table 3-6, and in Figure 3-11 through Figure 3-21. Figure 3-6 shows linear scatter 

plots of the key parameters sampled for the 59 calculations. Parameter labels appear to the left 

of each individual plot. These figures show the parameter ranges used in the analysis. Figure 
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3-7 and Figure 3-8 show the time of PCT and break size versus PCT scatter plots for the 59

calculations, respectively. Figure 3-9 and Figure 3-10 show the maximum oxidation and total

oxidation versus PCT scatter plots for the 59 calculations, respectively. Key parameters for the

limiting PCT case are shown in Figure 3-11 through Figure 3-21. Figure 3-11 is the plot of PCT

independent of elevation; this figure clearly indicates that the transient exhibits a sustained and

stable quench. A comparison of PCT results from both case sets is shown in Figure 3-22. As

seen in Figure 3-22, the peak PCT is from LOOP case.
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3-7 and Figure 3-8 show the time of peT and break size versus peT scatter plots for the 59 

calculations, respectively. Figure 3-9 and Figure 3-10 show the maximum oxidation and total 

oxidation versus peT scatter plots for the 59 calculations, respectively. Key parameters for the 

limiting peT case are shown in Figure 3-11 through Figure 3-21. Figure 3-11 is the plot of peT 

independent of elevation; this figure clearly indicates that the transient exhibits a sustained and 

stable quench. A comparison of peT results from both case sets is shown in Figure 3-22. As 

seen in Figure 3-22, the peak peT is from LOOP case. 
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Table 3-1 Sampled LBLOCA Parameters

Phenomenological

Time in cycle (peaking factors, axial shape, rod
properties, burnup)
Break type (guillotine versus split)
Critical flow discharge coefficients (break)
Decay heat

Critical flow discharge coefficients (surgeline)
Initial upper head temperature

Film boiling heat transfer
Dispersed film boiling heat transfer
Critical heat flux
Tmin (intersection of film and transition boiling)
Initial stored energy
Downcomer hot wall effects

Steam generator interfacial drag
Condensation interphase heat transfer
Metal-water reaction

Plant'

Offsite power availability2

Break size
Pressurizer pressure
Pressurizer liquid level

SIT pressure
SIT liquid level
SIT temperature (based on containment temperature)
Containment temperature

Containment volume
Initial RCS flow rate
Initial operating RCS temperature
Diesel start (for loss of offsite power only)

Uncertainties for plant parameters are based on typical plant-specific data with the exception of

"Offsite power availability," which is a binary result that is specified by the analysis methodology.
2 Not sampled, see Section 4.9.
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Uncertainties for plant parameters are based on typical plant-specific data with the exception of 
"Offsite power availability," which is a binary result that is specified by the analysis methodology. 

Not sampled, see Section 4.9. 
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Table 3-2 Plant Operating Range Supported by the LOCA Analysis

Event Operating Range

1.0 Plant Physical Description
1.1 Fuel
a) Cladding outside diameter 0.440 in.
b) Cladding inside diameter 0.387 in.
c) Cladding thickness 0.0265 in.
d) Pellet outside diameter 0.3805 in.
e) Pellet density 96 percent of theoretical
f) Active fuel length 136.7 in.
g) Resinter densification I ]
h) Gd 20 3 concentrations 2, 4, 6, 8 w/o
1.2 RCS

a) Flow resistance Analysis
b) Pressurizer location Analysis assumes location giving

most limiting PCT (broken loop)
c) Hot assembly location Anywhere in core
d) Hot assembly type 14X14 AREVA NP HTP fuel
e) SG tube plugging <10 percent

2.0 Plant Initial Operating Conditions
2.1 Reactor Power

a) Nominal reactor power 2754 MWt 1

b) LHR 15.0 kW/ft
c) FQ 1.6385

2.2 Fluid Conditions
a) Loop flow 139.5 Mlbm/hr < M < 159.2 Mlbm/hr

b) RCS Cold Leg temperature 535.0°F < T < 550.0°F

c) Pressurizer pressure 2164 psia < P < 2336 psia
d) Pressurizer level 32.2 percent < L < 67.2 percent
e) SIT pressure 194.7 psia < P < 264.7 psia

f) SIT liquid volume 1080 ft3 < V • 1179 ft3

g) SIT temperature 60°F < T 5 1250 F

(It's coupled with containment
temperature)

h) SIT resistance fL/D As-built piping configuration
i) Minimum ECCS boron >2300 ppm

1 Includes 0.62% uncertainties
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Table 3-2 Plant Operating Range Supported by the LOCA Analysis 

Event Operating Range 
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c) Cladding thickness 0.0265 in. 

d) Pellet outside diameter 0.3805 in. 
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2.0 Plant Initial Operating Conditions 

2.1 Reactor Power 

a) Nominal reactor power 2754 MWt1 

b) LHR 15.0kW/ft 
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Table 3-2 Plant Operating Range Supported by the LOCA Analysis (Continued)

Event Operating Range
3.0 Accident Boundary Conditions _

a) Break location Cold leg pump discharge piping
b) Break type Double-ended guillotine or split
c) Break size (each side, relative to cold 0.2869 _ A _ 1.0 full pipe area (split)
leg pipe area of 4.91 ft2) 0.2869 < A 5 1.0 full pipe area (guillotine)
d) Worst single-failure' Loss of a diesel generator
e) Offsite power On or Off
f) LPSI flow Minimum flow
g) HPSI flow Minimum flow
h) ECCS pumped injection temperature 100'F
i) HPSI pump delay 30.0 (w/ offsite power)

30.0 (w/o offsite power)
j) LPSI pump delay 45.0 (w/ offsite power)

45.0 (w/o offsite power)
k) Containment pressure 14.7 psia, nominal value
I) Containment temperature 60°F < T < 1250F
m) Containment sprays delay 20 s
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Table 3-2 Plant Operating Range Supported by the LOCA Analysis (Continued) 

Event Operating Range 
3.0 Accident Boundary Conditions 

a) Break location Cold leg pump discharge piping 
b) Break type Double-endedguillotine or split 
c) Break size (each side, relative to cold 0.2869 S; A S; 1.0 full pipe area (split) 
leg pipe area of 4.91 ft2) 0.2869 S; A S; 1.0 full pipe area (guillotine) 
d) Worst single-failure' Loss of a diesel generator 
e) Offsite power On or Off 
f) LPSI flow Minimum flow 
Q) HPSI flow Minimum flow 
h) ECCS pumped injection temperature 100'F 
i) HPSI pump delay 30.0 (wI offsite power) 

30.0 (w/o offsite power) 
j) LPSI pump delay 45.0 (wI offsite power) 

45.0 (w/o offsite power) 
k) Containment pressure 14.7 psia, nominal value 
I) Containment temperature 60°F S; T :::; 125°F 
m) Containment spra~s del~ 20 s 
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Table 3-3 Statistical Distributions Used for Process Parameters 1

Operational
Parameter Uncertainty Parameter Range

Distribution

Pressurizer Pressure (psia) Uniform 2164 -2336
Pressurizer Liquid Level (percent) Uniform 32.2 - 67.2

SIT Liquid Volume (ft3) Uniform 1080.0 - 1179.0

SIT Pressure (psia) Uniform 194.7 - 264.7
Containment Temperature ('F) Uniform 60- 125

Containment Volume (ft3) Uniform 1.989E+6 - 2.148E+6

Initial RCS Flow Rate (Mlbm/hr) Uniform 139.5 - 159.2

Initial RCS Operating Temperature Uniform 535.0 - 550.0
(TCold) (17)
RWST Temperature for ECCS (7F) Point 100

Offsite Power Availability2  Binary 0,1
Delay for Containment Spray (s) Point 20

LPSI Pump Delay (s) Point 30 (w/ offaite power)
30 (w/o offsite power)

HPSI Pump Delay (s) Point 45 (w/ offsite power)
45 w/o offsite power)

1

2
Note that core power is not sampled, see Section 1.0.
This is no longer a sampled parameter. One set of 59 cases is run with LOOP and one set of 59
cases is run with No-LOOP.
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Table 3-3 Statistical Distributions Used for Process Parameters 1 

2 

Operational 
Parameter Uncertainty Parameter Range 

Distribution 

Pressurizer Pressure (psia) Uniform 2164 - 2336 

Pressurizer Liquid Level (percent) Uniform 32.2 - 67.2 

SIT Liquid Volume (fe) Uniform 1080.0 - 1179.0 

SIT Pressure (psia) Uniform 194.7 - 264.7 

Containment Temperature ('F) Uniform 60 -125 

Containment Volume (fe) Uniform 1.989E+6 - 2.148E+6 

Initial RCS Flow Rate (Mlbm/hr) Uniform 139.5 - 159.2 

Initial RCS Operating Temperature 
Uniform 535.0 - 550.0 (Tcold) ('F) 

RWST Temperature for ECCS ('F) Point 100 

Offsite Power Availabilitl Binarv o 1 

Delay for Containment Spray (5) Point 20 

LPSI Pump Delay (s) Point 30 (wI offsite power) . 
30 (w/o offsite power) 

HPSI Pump Delay (s) Point 45 (wI offsite power) 
45 (w/o offsite power) 

Note that core power is not sampled, see Section 1.0. 

This is no longer a sampled parameter. One set of 59 cases is run with LOOP and one set of 59 
cases is run with No-LOOP. 
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Table 3-4 SER Conditions and Limitations

SER Conditions and Limitations Response

A CCFL violation warning will be added to alert the analyst There was no significant occurrence of CCFL violation in the
to CCFL violation in the downcomer should such occur. downcomer for this analysis. Violations of CCFL were noted

in a statistically insignificant number of time steps.
2. AREVA NP has agreed that it is not to use nodalization Hot leg nozzle gaps were not m6deled.

with hot leg to downcomer nozzle gaps.
3. If AREVA NP applies the RLBLOCA methodology to plants The PLHGR for Calvert Cliffs Units 1/2 is lower than that

using a higher planar linear heat generation rate (PLHGR) used in the development of the RLBLOCA EM (Reference
than used in the current analysis, or if the methodology is 1). An end-of-life calculation was not performed; thus, the
to be applied to an end-of-life analysis for which the pin need for a blowdown cladding rupture model was not
pressure is significantly higher, then the need for a reevaluated.
blowdown clad rupture model will be reevaluated. The
evaluation may be based on relevant engineering
experience and should be documented in either the
RLBLOCA guideline or plant specific calculation file.

4. Slot breaks on the top of the pipe have not been evaluated. For the Calvert Cliffs Units, the elevation of the cross-over
These breaks could cause the loop seals to refill during late piping top (ID) relative to the cold leg center line is -55
reflood and the core to uncover again. These break inches, and the elevation of the top of the active core
locations are an oxidation concern as opposed to a PCT relative to the cold leg center line is -66.925 inches.
concern since the top of the core can remain uncovered for Therefore, no evaluation is required.
extended periods of time. Should an analysis be
performed for a plant with loop seals with bottom elevations
that are below the top elevation of the core, AREVA NP will
evaluate the effect of the deep loop seal on the slot breaks.
The evaluation may be based on relevant engineering
experience and should be documented in either the
RLBLOCA guideline or plant-specific calculation file.

5. The model applies to 3 and 4 loop Westinghouse- and The plant is a CE-designed 2X4 loop plant.
CE-designed nuclear steam systems.

6. The model applies to bottom reflood plants only (cold side The plant is a bottom reflood plant.
injection into the cold legs at the reactor coolant discharge
piping).

7. The model is valid as long as blowdown quench does not The limiting case did not show any evidence of a blowdown
occur. If blowdown quench occurs, additional justification quench.
for the blowdown heat transfer model and uncertainty are
needed or the calculation is corrected. A blowdown
quench is characterized by a temperature reduction of the
peak cladding temperature (PCT) node to saturation
temperature during the blowdown period.

8. The reflood model applies to bottom-up quench behavior. Core quench initiated at the bottom of the core and
If a top-down quench occurs, the model is to be justified or proceeded upward.
corrected to remove top quench. A top-down quench is
characterized by the quench front moving from the top to
the bottom of the hot assembly.
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Table 3-4 SER Conditions and Limitations 

SER Conditions and Limitations 

1. A CCFL violation warning will be added to alert the analyst 
to CCFL violation in the downcomer should such occur. 

2. AREVA NP has agreed that it is not to use nodalization 
with hot leg to down comer nozzle gg~s. 

3. If AREVA NP applies the RLBLOCA methodology to plants 
using a higher planar linear heat generation rate (PLHGR) 
than used in the current analysis, or if the methodology is 
to be applied to an end-of-life analYSis for which the pin 
pressure is significantly higher, then the need for a 
blowdown clad rupture model will be reevaluated. The 
evaluation may be based on relevant engineering 
experience and should be documented in either the 
RLBLOCA guideline or plant specific calculation file. 

4. Slot breaks on the top of the pipe have not been evaluated. 
These breaks could cause the loop seals to refill during late 
reflood and the core to uncover again. These break 
locations are an oxidation concern as opposed to a peT 
concern since the top of the core can remain uncovered for 
extended periods of time. Should an analysis be 
performed for a plant with loop seals with bottom elevations 
that are below the top elevation of the core, AREVA NP will 
evaluate the effect of the deep loop seal on the slot breaks. 
The evaluation may be based on relevant engineering 
experience and should be documented in either the 
RLBLOCA guideline or plant-specific calculation file. 

5. The model applies to 3 and 4 loop Westinghouse- and 
CE-deslgned nuclear steam systems. 

6. The model applies to bottom reflood plants only (cold side 
injection into the cold legs at the reactor coolant discharge 
piping). 

7. The model is valid as long as blowdown quench does not 
occur. If blowdown quench occurs, additional justification 
for the blowdown heat transfer model and uncertainty are 
needed or the calculation is corrected. A blowdown 
quench is characterized by a temperature reduction of the 
peak cladding temperature (PCT) node to saturation 
temllerature during the blowdown period. 

8. The reflood model applies to bottom-up quench behavior. 
If a top-down quench occurs, the model is to be justified or 
corrected to remove top quench. A top-down quench is 
characterized by the quench front moving from the top to 
the bottom of the hot assembly. 

AREVA NP Inc. 

Res~onse 

There was no significant occurrence of CCFL violation in the 
downcomer for this analysis. Violations of CCFL were noted 
in a statistically insignificant number of time steps. 

Hot leg nozzle gaps were not modeled. 

The PLHGR for Calvert Cliffs Units 1/2 is lower than that 
used in the development of the RLBLOCA EM (Reference 
1). An end-of-life calculation was not performed; thus, the 
need for a blowdown cladding rupture model was not 
reevaluated. 

For the Calvert Cliffs Units, the elevation of the cross-over 
piping· top (I D) relative to the cold leg center line is -55 
inches, and the elevation of the top of the active core 
relative to the cold leg center line is -66.925 inches. 
Therefore, no evaluation is required. 

The plant is aCE-designed 2X4 loop plant. 

The plant is a bottom reflood plant. 

The limiting case did not show any evidence of a blowdown 
quench. 

Core quench initiated at the bottom of the core and 
proceeded upward. 
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Table 3-4 SER Conditions and Limitations (Continued)

SER Conditions and Limitations Response

9. The model does not determine whether Long-term cooling was not evaluated in this analysis.
Criterion 5 of 10 CFR 50.46, long term
cooling, has been satisfied. This will be
determined by each applicant or licensee as
part of its application of this methodology.

10. Specific guidelines must be used to develop The nodalization in the plant model is consistent with the CE-designed
the plant-specific nodalization. Deviations 2X4 loop sample calculation that was submitted to the NRC for review.
from the reference plant must be addressed. Figure 3-1 shows the loop noding used in this analysis. (Note only Loop 1

is shown in the figure; Loops 2 and 3 are identical to loop 1, except that
only Loop 1 contains the pressurizer and the break.) Figure 3-2 shows
the steam generator model. Figures 3-3, 3-4, and 3-5 show the reactor
vessel noding diagrams.

11. A table that contains the plant-specific Simulation of clad temperature response is a function of
parameters and the range of the values phenomenological correlations that have been derived either analytically
considered for the selected parameter during or experimentally. The important correlations have been validated for the
the topical report approval process must be RLBLOCA methodology and a statement of the range of applicability has
provided. When plant-specific parameters been documented. The correlations of interest are the set of heat transfer
are outside the range used in demonstrating correlations as described in Reference 1. Table 3-7 presents the
acceptable code performance, the licensee or summary of the full range of applicability for the important heat transfer
applicant will submit sensitivity studies to correlations, as well as the ranges calculated in the limiting case of this
show the effects of that deviation, analysis. Calculated values for other parameters of interest are also

provided. As is evident, the plant-specific parameters fall within the
methodology's range of applicability.

12. The licensee or applicant using the approved Analysis results are discussed in Section 3.5.
methodology must submit the results of the
plant-specific analyses, including the
calculated worst break size, PCT, and local
and total oxidation.

13. The licensee or applicant wishing to apply The plant will request an exemption for its operating with M5 clad fuel.
AREVA NP realistic large break loss-of-
coolant accident (RLBLOCA) methodology to
MS clad fuel must request an exemption for
its use until the planned rulemaking to modify
10 CFR 50.46(a)(i) to include M5 cladding

.material has been completed.
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Table 3-4 SER Conditions and Limitations (Continued) 

SER Conditions and limitations 

9. The model does not determine whether 
Criterion 5 of 10 CFR 50.46, long term 
cooling, has been satisfied. This will be 
determined by each applicant or licensee as 
part of its application of this methodoloQY. 

10. Specific guidelines must be used to develop 
the plant-specific nodalization. Deviations 
from the reference plant must be addressed. 

11. A table that contains the plant-specific 
parameters and the range of the values 
considered for the selected parameter during 
the topical report approval process must be 
provided. When plant-specific parameters 
are outside the range used in demonstrating 
acceptable code performance, the licensee or 
applicant will submit sensitivity studies to 
show the effects of that deviation. 

12. The licensee or applicant using the approved 
methodology must submit the results of the 
plant-specific analyses, including the 
calculated worst break size, PCT, and local 
and total oxidation. .-..... 

13. The licensee or applicant wishing to apply 
AREVA NP realistic large break loss-of­
coolant accident (RLBLOCA) methodology to 
M5 clad fuel must request an exemption for 
its use until the planned rulemaking to modify 
10 CFR 50.46(a)(i) to include M5 cladding 

.material has been completed. 

AREVA NP Inc. 

Response 

Long-term cooling was not evaluated in this analysis. 

The nodalization in the plant model is consistent with the CE-designed 
2X4 loop sample calculation that was submitted to the NRC for review. 
Figure 3-1 shows the loop noding used in this analysis. (Note only Loop 1 
is shown in the figure; Loops 2 and 3 are identical to loop 1, except that 
only Loop 1 contains the pressurizer and the break.) Figure 3-2 shows 
the steam generator model. Figures 3-3, 3-4, and 3-5 show the reactor 
vessel noding diagrams. 

Simulation of clad temperature response is a function of 
phenomenological correlations that have been derived either analytically 
or experimentally. The important correlations have been validated for the 
RLBLOCA methodology and a statement of the range of applicability has 
been documented. The correlations of interest are the set of heat transfer 
correlations as described in Reference 1. Table 3-7 presents the 
summary of the full range of applicability for the important heat transfer 
correlations, as well as the ranges calculated in the limiting case of this 
analysis. Calculated values for other parameters of interest are also 
provided. As is evident, the plant-specific parameters fall within the 
methodology's range of applicability. 

Analysis results are discussed in Section 3.5. 

The plant will request an exemption for its operating with M5 clad fuel. 
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Table 3-5 Summary of Results for the Limiting PCT Case

Case # 5 Rank 1

PCT

Temperature 1670°F

Time 35.0 s

Elevation 9.430 ft

Metal-Water Reaction

Percent Oxidation Maximum 0.907%

Percent Total Oxidation 0.011%

Table 3-6 Calculated Event Times for the Limiting PCT Case

Event Time (s)

Break Opened 0.0
RCP Trip N/A
SIAS Issued 0.6
Start of Broken Loop SIT.Injection 16.4
Start of Intact Loop SIT Injection 18.8, 18.8 and 18.8
(Loops 2, 3 and 4 respectively)
Broken Loop HPSI Delivery Began 30.6
Intact Loop HPSI Delivery Began 30.6, 30.6 and 30.6
(Loops 2, 3 and 4 respectively)

Beginning of Core Recovery (Beginning of Reflood) 31.0
PCT Occurred 35.0
Broken Loop LPSI Delivery Began 45.6

Intact Loop LPSI Delivery Began
(Loops 2, 3 and 4 respectively)
Intact Loop SITs Emptied 70.8, 68.1 and 68.6
(Loops 2, 3 and 4 respectively)
Broken Loop SIT Emptied 72.1
Transient Calculation Terminated 346.9

AREVA NP Inc.

Calvert Cliffs Nuclear Plant 
Unit 1 Cycle 21 &'Unit 2 Cycle 19 
Realistic Large Break LOCA Summary Report 

ANP-2834(NP) 
Revision 000 

Page 3-16 

Table 3-5 Summary of Results for the Limiting PCT Case 

Case # 5 Rank 1 

PCT 

Temperature 1670°F 

Time 35.0 s 

Elevation 9.430 ft 

Metal-Water Reaction 

Percent Oxidation Maximum 0.907% 

Percent Total Oxidation 0.011% 

Table 3-6 Calculated Event Times for the Limiting PCT Case 

Event Time (s) 

Break Opened 0.0 

RCP Trip N/A 

SIAS Issued 0.6 

Start of Broken Loop SIT-Injection 16.4 

Start of Intact Loop SIT Injection 
18.8,18.8 and 18.8 

(Loops 2, 3 and 4 respectively) 

Broken Loo~ HPSI Delive_ry_ Bellan 30.6 

Intact Loop HPSI Delivery Began 
30.6, 30.6 and 30.6 

(Loops 2, 3 and 4 respectively) 

Beginning of Core Recovery (Beginning of Reflood) 31.0 

PCT Occurred 35.0 

Broken Loop LPSI Delivery Began 45.6 

Intact Loop LPSI Delivery Began 
45.6, N/A and N/A 

(Loops 2, 3 and 4 respectively) 

Intact Loop SITs Emptied 
70.8, 68.1 and 68.6 

JLoo~s 2, 3 and 4 respectively) 

Broken Loop SIT Emptied 72.1 

Transient Calculation Terminated 346.9 
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Table 3-7 Heat Transfer Parameters for the Limiting Case
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Table 3-8 Containment Initial and Boundary Conditions

Containment Net Free Volume (ft3) 1,989,000 - 2,148,090

Initial Conditions

Containment Pressure (nominal) 14.7 psia
Containment Temperature 60°F - 1250F
Outside Temperature 10°F
Humidity 0.9

Containment Spray

Number of Pumps operating 2
Spray Flow Rate (Total, both pumps) 4,600 gpm
Minimum Spray Temperature 40°F
Fastest Post-LOCA initiation of spray 20 s
Initial Time for:

a) Spray Flow (minimum) a). 20 sec
b) Fans (minimum) b) 0 sec

AREVA NP Inc.
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Table 3-8 Containment Initial and Boundary Conditions 

Containment Net Free Volume (fe) 1,989,000 - 2,148,090 

Initial Conditions 

Containment Pressure (nominal) 14.7 psia 
Containment Temperature 60°F - 125°F 
Outside Temperature 10°F 
Humidity_ 0.9 

Containment ~pray_ 

Number of Pumps operating 2 
Spray Flow Rate (Total, both pumps) 4,600 gpm 
Minimum Spray Temperature 40°F 
Fastest Post~LOCA initiation of spray 20 s 
Initial Time for: 

a) Spray Flow (minimum) a) 20 sec 
b) Fans(minimum) b) o sec 
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Table 3-9 Passive Heat Sinks in Containment

Description Slab Material Thick. Area (ft2)Material (ft)

Paint 2.50E-04
Shell and Dome C Steel 2.08E-02 73230

Concrete 3.00E+00

Unlined Concrete Concrete 4.OOE+00 53000

Galvanized Steel Zinc 3.17E-04 100800C. Steel 8.33E-03

Painted Thin Steel Paint 2.50E-04 70250
C. Steel 2.07E-02

Painted Steel Paint 2.50E-04 55000C. Steel 5.25E-02
Painted Thick Steel Paint 2.50E-04 2966

C. Steel 2.01E-01

Paint 2.50E-04
Containment Penetration Area C. Steel 6.25E-02 3000

Concrete 3.75E+00
S. Steel 1 .56E-02

Stainless Steel Lined Concrete Cocrte 1.56E+02 7925Concrete 4.00E+00

Paint 2.50E-04
Containment Liner Plate Stiffeners C. Steel 6.67E-01 4000

Concrete 2.OOE+00

Base Slab Concrete 8.OOE+00 13300

Sump Strainer 1 S. Steel 1.31E-02 308.774

Sump Strainer 2 S. Steel 1.97E-02 161.338

Sump Strainer 3 S. Steel 9.83E-03 3

Sump Strainer 4 S. Steel 4.08E-03 3433.5'

Additional H/S 1 C. Steel 1.OOE-02 193.05

Paint 2,50E-04
Additional HIS 2 C. Steel 2.08E-02 42.79

Paint 2.50E-04Additional H/S 3 C. Steel 4.17E-02 56.54

Improvised H/S S. Steel 8.33E-02 10000

Volumetric Heat CapacityMaterial Properties Thermal Conductivity (BTUIhr-ft-°F) (BTUIft3 .OF)

Concrete 2.5 35
Carbon Steel 35 55

Stainless Steel 10 62
Zinc 70 45
Paint 1.5 32
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Table 3·9 Passive Heat Sinks in Containment 

Description 
Slab Material Thick. 

Area (fe) 
Material (tt) 

Paint 2.50E-04 
Shell and Dome C Steel 2.0BE-02 73230 

Concrete 3.00E+00 

Unlined Concrete Concrete 4.00E+00 53000 

Galvanized Steel 
Zinc 3.17E-04 100BOO 

C. Steel B.33E-03 

Painted Thin Steel 
Paint 2.50E-04 

70250 
C. Steel 2.07E-02 

Painted Steel 
Paint 2.50E-04 

55000 C. Steel 5.25E-02 

Painted Thick Steel 
Paint 2.50E-04 

2966 
C. Steel 2.01E-01 

Paint 2.50E-04 
Containment Penetration Area C. Steel 6.25E-02 3000 

Concrete 3.75E+00 

Stainless Steel Lined Concrete 
S. Steel 1.56E-02 

7925 
Concrete 4.00E+00 

Paint 2.50E-04 
Containment Liner Plate Stiffeners C. Steel 6.67E-01 4000 

Concrete 2.00E+00 

Base Slab Concrete B.OOE+OO 13300 

Sump Strainer 1 S. Steel 1.31 E-02 30B.774 

Sump Strainer 2 S. Steel 1.97E-02 161.33B 

Sump Strainer 3 S. Steel 9.B3E-03 3 

Sump Strainer 4 S. Steel 4.0BE-03 3433.5· 

Additional HIS 1 C. Steel 1.00E-02 193.05 

Additional HIS 2 
Paint 2.50E-04 

42.79 
C. Steel 2.0BE-02 

Additional HIS 3 
Paint 2.50E-04 

56.54 
C. Steel 4.17E-02 

Improvised HIS S. Steel B.33E-02 10000 

Material Properties Thermal Conductivity (BTU/hr.tt-OF) 
Volumetric Heat Capacity 

(BTU/tt3.oF) 

Concrete 2.5 35 

Carbon Steel 35 55 
Stainless Steel 10 62 

Zinc 70 45 

Paint 1.5 32 
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Figure 3-1 Primary System Noding
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Figure 3-2 Secondary System Noding
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Figure 3-3 Reactor Vessel Noding
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Figure 3-4 Core Noding Detail
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Figure 3-5 Upper Plenum Noding Detail
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Figure 3-17 Upper Plenum Pressure for the Limiting Case
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Figure 3-18 Collapsed Liquid Level in the Downcomer
for the Limiting Case
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Figure 3-19 Collapsed Liquid Level in the Lower Plenum
for the Limiting Case
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Figure 3-20 Collapsed Liquid Level in the Core
for the Limiting Case
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Figure 3-21 Containment and Loop Pressures for the Limiting Case
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4.0 Generic Support for Transition Package

The following sections are responses to typical RAI questions posed by the NRC on EMF-2103

Revision 0 plant applications. In some instances, these requests cross-referenced

documentation provided on dockets other than those for which the request is made. AREVA

discussed these and similar questions from the NRC draft SER for Revision 1 of EMF-2103 in a

meeting with the NRC on December 12, 2007. AREVA agreed to provide the following

additional information within new submittals of a Realistic Large Break LOCA report.

4.1 Reactor Power

Question: It is indicated in the RLBLOCA analyses that the assumed reactor core power

"includes uncertainties." The use of a reactor power assumption other than 102 percent,

regardless of BE or Appendix K methodology, is permitted by Title 10 of the Code of Federal

Regulations (10 CFR), Part 50, Appendix K.L.A, "Required and Acceptable Features of The

Evaluation Models, 'Sources of Heat During a LOCA." However, Appendix K.l.A also states: "...

An assumed power level lower than the level specified in this paragraph [1.02 times the licensed

power level], (but not less than the licensed power level) may be used provided. .. " Please

explain.

Response: As indicated in Item 2.1 of Table 3-2 herein, the assumed reactor core power for

the Calvert Cliffs Units 1 and 2 Realistic Large Break Loss-of-coolant Accident is 2754 MWt.

This value represents the plant rated thermal power of 2737 MWt with a maximum power

measurement uncertainty of 0.62% added to the rated thermal power..

4.2 Rod Quench

Question: Does the version of S-RELAP5 used to perform the computer runs assure that the

void fraction is less than 95 percent and the fuel cladding temperature is less than 9007F before

it allows rod quench?

Response: Yes, the version of S-RELAP5 employed for the Calvert Cliffs Units 1 and 2

requires that both the void fraction is less than 0.95 and the clad temperature is less than the

minimum temperature for film boiling heat transfer (Tmin) before the rod is allowed to quench.

Tmin is a sampled parameter in the RLBLOCA methodology that typically does not exceed 7550K
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The following sections are responses to typical RAI questions posed by the NRC on EMF-2103 

Revision 0 plant applications. In some instances, these requests cross-referenced 

documentation provided on dockets other than those for which the request is made. AREVA 

discussed these and similar questions from the NRC draft SER for Revision 1 of EMF-21 03 in a 

meeting with the NRC on December 12, 2007. AREVA agreed to provide the following 

additional information within new submittals of a Realistic Large Break LOCA report. 

4.1 Reactor Power 

Question: It is indicated in the RLBLOCA analyses that the assumed reactor core power 

"includes uncertainties." The use of a reactor power assumption other than 1 02 percent, 

regardless of BE or Appendix K methodology, is permitted by Title 10 of the Code of Federal 

Regulations (10 CFR) , Part 50, Appendix K.IA "Required and Acceptable Features of The 

Evaluation Models, 'Sources of Heat During a LOCA." However, Appendix K.I.A also states: " ... 

An assumed power level lower than the level specified in this paragraph [1.02 times the licensed 

power levelj, (but not less than the licensed power level) may be used provided . . ." Please 

explain. 

Response: As indicated in Item 2.1 of Table 3-2 herein, the assumed reactor core power for 

the Calvert Cliffs Units 1 and 2 Realistic Large Break Loss-of-coolant Accident is 2754 MWt. 

This value represents the plant rated thermal power of 2737 MWt with a maximum power 

measurement uncertainty of 0.62% added to the rated thermal power .. 

4.2 Rod Quench 

Question: Does the version of S-RELAP5 used to perform the computer runs assure that the 

void fraction is less than 95 percent and the fuel cladding temperature is less than 900F before 

it allows rod quench? 

Response: Yes, the version of S-RELAP5 employed for the Calvert Cliffs Units 1 and 2 

requires that both the void fraction is less than 0.95 and the clad temperature is less than the 

minimum temperature for film boiling heat transfer (T min) before the rod is allowed to quench. 

T min is a sampled parameter in the RLBLOCA methodology that typically does not exceed 755°K 
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(900'F). This is a change to the approved RLBLOCA EM (Reference 1). This feature is carried

forward into the UAPR09 version of S-RELAP5.

4.3 Rod-to-Rod Thermal Radiation

Question: Provide justification that the S-RELAP5 rod-to-rod thermal radiation model applies to

the Calvert Cliffs Units I and 2 core.

Response: The Realistic LBLOCA methodology, (Reference 1), does not provide modeling of

rod-to-rod radiation. The fuel rod surface heat transfer processes included in the solution at high

temperatures are: film boiling, convection to steam, rod to liquid radiation and rod to vapor

radiation. This heat transfer package was assessed against various experimental data sets

involving both moderate (1600'F - 2000'F) and high (2000'F to over 2200'F) peak cladding

temperatures and shown to be conservative when applied nominally. The normal distribution of

the experimental data was then determined. During the execution of an RLBLOCA evaluation,

the heat transferred from a fuel rod is determined by the application of a multiplier to the

nominal heat transfer model. This multiplier is determined by a random sampling of the normal

distribution of the experimental data benchmarked. Because the data include the effects of rod-

to-rod radiation, it is reasonable to conclude that the modeling implicitly includes an allocation

for rod-to-rod radiation effects. As will be demonstrated, the approach is reasonable because

the conditions within actual limiting fuel assemblies assure that the actual rod-to-rod radiation is

larger than the allocation provided through normalization to the experiments.

The FLECHT-SEASET tests evaluated covered a range of PCTs from 1,651 to 2,239cF and the

THTF tests covered a range of PCTs from 1,000 to 2,200'F. Since the test bundle in either

FLECHT-SEASET or THTF is surrounded by a test vessel, which is relatively cool compared to

the heater rods, substantial radiation from the periphery rods to the vessel wall can occur. The

rods selected for assessing the RLBLOCA reflood heat transfer package were chosen from the

interior of the test assemblies to minimize the impact of radiation heat transfer to the test vessel.

The result was that the assessment rods comprise a set which is primarily isolated from cold

wall effects by being surrounded by powered rods at reasonably high temperatures.

As a final assessment, three benchmarks independent of THTF and FLECHT-SEASET were

performed. These benchmarks were selected from the Cylindrical Core Test Facility (CCTF),

LOFT, and the Semiscale facilities. Because these facilities are more integral tests and
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together cover a wide range of scale, they also serve to show that scale effects are

accommodated within the code calculations.

The results of these calculations are provided in Section 4.3.4, Evaluation of Code Biases, page

4-100, of Reference 1. The CCTF results are shown in Figures 4.180 through 4.192, the LOFT

results in Figures 4.193 through 4.201, and the Semiscale results in Figures 4.202 through

4.207. As expected, these figures demonstrate that the comparison between the code

calculations and data is improved with the application of the derived biases. The CCTF, LOFT,

and Semiscale benchmarks further indicate that, whatever consideration of rod-to-rod radiation

is implicit in the S-RELAP5 reflood heat transfer modeling, it does not significantly effect code

predictions under conditions where radiation is minimized. The measured PCTs in these

assessments ranged from approximately 1,000 to 1,540cF. At these temperatures, there is little

rod-to-rod radiation. Given the good agreement between the biased code calculations and the

CCTF, LOFT, and Semiscale data, it can be concluded that there is no significant over

prediction of the total heat transfer coefficient.

Notwithstanding any conservatism evidenced by experimental benchmarks, the application of

the model to commercial nuclear power plants provides some additional margins due to

limitations within the experiments. The benchmarked experiments, FLECHET SEASET and

ORNL Thermal Hydraulic Test Facility (THTF), used to assess the S-RELAP5 heat transfer

model, Reference 1, incorporated constant rod powers across the experimental assembly.

Temperature differences that occurred were the result of guide tube, shroud or local heat

transfer effects. In the operation of a pressurized water reactor (PWR) and in the RLBLOCA

evaluation, a radial local peaking factor is present, creating power differences that tend to

enhance the temperature differences between rods. In turn, these temperature differences lead

to increases in net radiation heat transfer from the hotter rods. The expected rod-to-rod

radiation will likely exceed that embodied within the experimental results.

4.3.1 Assessment of Rod-to-Rod Radiation Implicit in the RLBLOCA Methodology

As discussed above, the FLECHT-SEASET and THTF tests were selected to assess and

determine the S-RELAP5 code heat transfer bias and uncertainty. Uniform radial power

distribution was used in these test bundles. Therefore, the rod-to-rod temperature variation in

the rods away from the vessel wall is caused primarily by the variation in the sub-channel fluid

conditions. In the real operating fuel bundle, on the other hand, there can be 5 to 10 percent

AREVA NP Inc.

Calvert Cliffs Nuclear Plant 
Unit 1 Cycle 21 & Unit 2 Cycle 19 
Realistic Large Break LOCA Summary Report 

ANP-2834(NP) 
Revision 000 

Page 4-3 

together cover a wide range of scale, they also serve to show that scale effects are 

accommodated within the code calculations. 

The results of these calculations are provided in Section 4.3.4, Evaluation of Code Biases, page 

4-100, of Reference 1. The CCTF results are shown in Figures 4.180 through 4.192, the LOFT 

results in Figures 4.193 through 4.201, and the Semiscale' results in Figures 4.202 through 

4.207. As expected, these figures demonstrate that the comparison between the code 

calculations and data is improved with the application of the derived biases. The CCTF, LOFT, 

and Semiscale benchmarks further indicate that, whatever consideration of rod-to-rodradiation 

is implicit in the S-RELAP5 reflood heat transfer modeling, it does not significantly effect code 

predictions under conditions where radiation is minimized. The measured PCTs in these 

assessments ranged from approximately 1,000 to 1,540'F. At these temperatures, there is little 

rod-to-rod radiation. Given the good agreement between the biased code calculations and the 

CCTF, LOFT, and Semiscale data, it can be concluded that there is no significant over 

prediction of the total heat transfer coefficient. 

Notwithstanding any conservatism evidenced by experimental benchmarks, the application of 

the model to commercial nuclear power plants provides some additional margins due to 

limitations within the experiments. The benchmarked experiments, FLECHET SEASET and 

ORNL Thermal Hydraulic Test Facility (THTF), used to assess the S-RELAP5 heat transfer 

model, Reference 1, incorporated constant rod powers across the experimental assembly. 

Temperature differences that occurred were the result of guide tube, shroud or local heat 

transfer effects. In the operation of a pressurized water reactor (PWR) and in the RLBLOCA 

evaluation, a radial local peaking factor is present, creating power differences that tend to 

enhance the temperature differences between rods. In turn, these temperature differences lead 

to increases in net radiation heat transfer from the hotter rods. The expected rod-to-rod 

radiation will likely exceed that embodied within the experimental results. 

4.3.1 Assessment of Rod-to-Rod Radiation Implicit in the RLBLOCA Methodology 

As discussed above, the FLECHT-SEASET and THTF tests were selected to assess and 

determine the S-RELAP5 code heat transfer bias and uncertainty. Uniform radial power 

distribution was used in these test bundles. Therefore, the rod-to-rod temperature variation in 

the rods away from the vessel wall is caused primarily by the variation in the sub-channel fluid 

conditions. In the real operating fuel bundle, on the other hand, there can be 5 to 10 percent 

AREVA NP Inc. 



Calvert Cliffs Nuclear Plant ANP-2834(NP)

Unit 1 Cycle 21 & Unit 2 Cycle 19 Revision 000

Realistic Large Break LOCA Summary Report Page 4-4

rod-to-rod power variation. In addition, the methodology includes a provision to apply the

uncertainty measurement to the hot pin. Table 4-1 provides the hot pin measurement

uncertainty and a representative local pin peaking factor for several plants. These factors,

however, relate the pin to the assembly average. To more properly assess the conditions under

which rod-to-rod radiation heat transfer occurs, a more local peaking assessment is required.

Therefore, the plant rod-to-rod radiation assessments herein set the average pin power for

those pins surrounding the hot pin at 96 percent of that of the peak pin. For pins further

removed the average power is set to 94 percent.

Table 4-1 Typical Measurement Uncertainties and Local Peaking
Factors

FAH Measurement Local Pin Peaking
Plant Uncertainty Factor

(percent)
1 4.0 1.068
2 4.0 1.050
3 6.0 1.149
4 4.0 1.113
5 4.25 1.135
6 4.0 1.058

4.3.2 Quantification of the Impact of Thermal Radiation using R2RRAD Code

The R2RRAD radiative heat transfer model was developed by Los Alamos National Laboratory

(LANL) to be incorporated in the BWR version of the TRAC code. The theoretical basis for this

code is given in References 8 and 11 and is similar to that developed in the HUXY rod heatup

code (Reference 10, Section 2.1.2) used by AREVA for BWR LOCA applications. The version

of R2RRAD used herein was obtained from the NRC to examine the rod-to-rod radiation

characteristics of a 5x5 rod segment of the 161 rod FLECHT-SEASET bundle. The output

provided by the R2RRAD code includes an estimate of the net radiation heat transfer from each

rod in the defined array. The code allows the input of different temperatures for each rod as well

as for a boundary surrounding the pin array. No geometry differences between pin locations are

allowed. Even though this limitation affects the view factor calculations for guide tubes,

R2RRAD is a reasonable tool to estimate rod-to-rod radiation heat transfer.
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The FLECHT-SEASET test series was intended to simulate a 17x17 fuel assembly and there is

a close similarity, Table 4-2, between the test bundle and a modern 17x17 assembly.

Table 4-2 FLECHT-SEASET & 17x17 FA Geometry Parameters

Design Parameter FLECHT-SEASET 17x17 Fuel Assembly

Rod Pitch (in) 0.496 0.496

Fuel Rod Diameter (in) 0.374 0.374

Guide Tube Diameter (in) 0.474 0.482

Five FLECHT-SEASET tests (Reference 6) were selected for evaluation and comparison with

expected plant behavior. Table 4-3 characterizes the results of each test. The 5x5 selected rod

array comprises the hot rod, 4 guide tubes and 20 near adjacent rods. The simulated hot rod is

rod 7J in the tests.

Guide Tube -

0
0
0
0
0

0
0
0
0
0

000
00 Hot Rod

Adjacent Rods

000

Figure 4-1 R2RRAD 5 x 5 Rod Segment

Two sets of runs were made simulating each of the five experiments and one set of cases was

run to simulate the RLBLOCA evaluation of a limiting fuel assembly in an operating plant. For

the simulation of Tests 31805, 31504, 31021, and 30817, the thimble tube (guide tube)

temperatures were set to the measured values. For Test 34420, the thimble tube temperature

was set equal to the measured vapor temperature. For the first experimental simulation set, the

temperature of all 21 rods and the exterior boundary was set to the measured PCT of the

simulated test. For the second experimental set, the hot rod temperature was set to the PCT
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value and the remaining 20 rods and the boundary were set to a temperature 25F cooler

providing a reasonable measure of the variation in surrounding temperatures. To estimate the

rod-to-rod radiation in a real fuel assembly at LOCA conditions and compare it to the

experimental results, each of the above cases was rerun with the hot rod PCT set to the

experimental result and the remaining rods conservatively set to temperatures expected within

the bundle. The guide tubes (thimble tubes) were removed for conservatism and because peak

rod powers frequently occur at fuel assembly corners away from either guide tubes or

instrument tubes. In line with the discussion in Section 4.3.1, the surrounding 24 rods were set

to a temperature estimated for rods of 4 percent lower power. The boundary temperature was

estimated based an average power 6 percent below the hot rod power. For both of these, the

temperature estimates were achieved using a ratio of pin power to the difference in temperature

between the saturation temperature and the PCT.

T24 rods = 0.96 (PCT - Tsar) + Tsat and

Tsurrounding region = 0.94 ° (PCT - Tsat) + Tsat.

Tsat was taken as 270 F.

Figure 4-2 shows the hot rod thermal radiation heat transfer for the two FLECHT-SEASET sets

and for the plant set. The figure shows that for PCTs greater than about 1700cF, the hot rod

thermal radiation in the plant cases exceeds that of the same component within the

experiments.

Table 4-3 FLECHT-SEASET Test Parameters

htc at Steam Thimble
t at GT (F Tie ( PCTtime Temperature -at Temperatureat 6-ft ('F) Time (s) (Btu/hr-ft2.-F) 71 (6-ft) ('F) at 6-ft (1F)

34420 2205 34 10 1850 1850*
31805 2150 110 10 1800 1800
31504 2033 100 10 1750 1750
31021 1684 29 9 1400 1350
30817 1440 70 13 900 750

• set to steam temp I
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Figure 4-2 Rod Thermal Radiation in FLECHT-SEASET Bundle and
in a 17x17 FA

4.3.3 Rod-to-Rod Radiation Summary

In summary, the conservatism of the heat transfer modeling established by benchmark can be

reasonably extended to plant applications, and the plant local peaking provides a physical

reason why rod-to-rod radiation should be more substantial within a plant environment than in

the test environment. Therefore, the lack of an explicit rod-to-rod radiation model, in the version

of S-RELAP5 applied for realistic LOCA calculations, does not invalidate the conclusion that the

cladding temperature and local cladding oxidation have been demonstrated to meet the criteria

of 10 CFR 50.46 with a high level of probability.
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reason why rod-to-rod radiation should be more substantial within a plant environment than in 

the test environment. Therefore, the lack of an explicit rod-to-rod radiation model, in the version 

of S-RELAP5 applied for realistic LOCA calculations, does not invalidate the conclusion that the 

cladding temperature and local cladding oxidation have been demonstrated to meet the criteria 
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4.4 Film Boiling Heat Transfer Limit

Question: In the Calvert Cliffs Unit I Cycle 21 and Unit 2 Cycle 19 calculations, is the

Forslund-Rohsenow model contribution to the heat transfer coefficient limited to less than or

equal to 15 percent when the void fraction is greater than or equal to 0.9?

Response: Yes, the version of S-RELAP5 employed for the Calvert Cliffs Units 1 and 2

RLBLOCA analysis limits the contribution of the Forslund-Rohsenow model to no more than-15

percent of the total heat transfer at and above a void fraction of 0.9. Because the limit is applied

at a void fraction of 0.9, the contribution of Forslund-Rohsenow within the 0.7 to 0.9 interpolation

range is limited to 15 percent or less. This is a change to the approved RLBLOCA EM

(Reference 1). This feature is carried forward into the UAPR09 version of S-RELAP5.

4.5 Downcomer Boiling

Question: If the PCT is greater than 1800'F or the containmen t pressure is less than 30 psia,

has the Calvert Cliffs Units I and 2 downcomer model been rebenchmarked by performing

sensitivity studies, assuming adequate downcomer noding in the water volume, vessel wall and

other heat structures?

Response: The downcomer model for Calvert Cliffs Units 1 and 2 has been established

generically as adequate for the computation of downcomer phenomena including the prediction

of potential local boiling effects. The model was benchmarked against the UPTF tests and the

LOFT facility in the RLBLOCA methodology, Revision 0 (Reference 1). Further, AREVA

addressed the effects of boiling in the downcomer in a letter, from James Malay to U.S. NRC,

April 4, 2003. The letter cites the lack of direct experimental evidence but contains sensitivity

studies on high and low pressure containments, the impact of additional azimuthal noding within

the downcomer, and the influence of flow loss coefficients. Of these, the study on azimuthal

noding is most germane to this question; indicating that additional azimuthal nodalization allows

higher liquid buildup in portions of the downcomer away from the broken cold leg and increases

the liquid driving head. Additionally, AREVA has conducted downcomer axial noding and wall

heat release studies. Each of these studies supports the Revision 0 methodology and is

documented later in this section.

This question is primarily concerned with the phenomena of downcomer boiling and the
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noding is most germane to this question; indicating that additional azimuthal nodalization allows 

higher liquid buildup in portions of the downcomer away from the broken cold leg and increases 

the liquid driving head. Additionally, AREVA has conducted downcomer axial noding and wall 

heat release studies. Each of these studies supports the Revision 0 methodology and is 

documented later in this section. 

This question is primarily concerned with the phenomena of downcomer boiling and the 
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extension of the Revision 0 methodology and sensitivity studies to plants with low containment

pressures and high cladding temperatures. Boiling, wherever it occurs, is a phenomenon that

codes like S-RELAP5 have been developed to predict. Downcomer boiling is the result of the

release of energy stored in vessel metal mass. Within S-RELAP5, downcomer boiling is

simulated in the nucleate boiling regime with the Chen correlation. This modeling has been

validated through the prediction of several assessments on boiling phenomenon provided in the

S-RELAP5 Code Verification and Validation document (Reference 12).

ECC

Figure 4-3 Reactor Vessel Downcomer Boiling Diagram

Hot downcomer walls penalize PCT by two mechanisms: by reducing subcooling of coolant

entering the core and throughthe reduction in downcomer hydraulic head which is the driving

force for core reflood. Although boiling in the downcomer occurs during blowdown, the biggest
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potential for impact on clad temperatures is during late reflood following the end of SIT injection.

At this time, there is a large step reduction in coolant flow from the ECC systems. As a result,

coolant entering the downcomer may be less subcooled. When the downcomer coolant

approaches saturation, boiling on the walls initiates, reducing the downcomer hydraulic static

level.

With the reduction of the downcomer level, the core inlet flow rate is reduced which, depending

on the existing core inventory, may result in a cladding temperature excursion or a slowing of

the core cooldown rate.

While downcomer boiling may impact clad temperatures, it is somewhat of a self-limiting

process. If cladding temperatures increase, less energy is transferred in the core boiling

process and the loop steam flows are reduced. This reduces the required driving head to

support continued core reflood and reduces the steam available to heat the ECCS water within

the cold legs resulting in greater subcooling of the water entering the downcomer.

The impact of downcomer boiling is primarily dependent on the wall heat release rate and on

the ability to slip steam up the downcomer and out of the break. The higher the downcomer wall

heat release, the more steam is generated within the downcomer and the larger the impact on

core reflooding. Similarly, the quicker the passage of steam up the downcomer, the less

resident volume within the downcomer is occupied by steam and the lower the impact on the

downcomer average density. Therefore, the ability to properly simulate downcomer boiling

depends on both the heat release (boiling) model and on the ability to track steam rising through

the downcomer. Consideration of both of these is provided in the following text. The heat

release modeling in S-RELAP5 is validated by a sensitivity study on wall mesh point spacing

and through benchmarking against a closed form solution. Steam tracking is validated through

both an axial and an azimuthal fluid control volume sensitivity study done at low pressures. The

results indicate that the modeling accuracy within the RLBLOCA methodology is sufficient to

resolve the effects of downcomer boiling and that, to the extent that boiling occurs; the

methodology properly resolves the impact on the cladding temperature and cladding oxidation

rates.

4.5.1 Wall Heat Release Rate
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The downcomer wall heat release rate during reflood is conduction limited and depends on the

vessel wall mesh spacing used in the S-RELAP5 model. The following two approaches are used

to evaluate the adequacy of the downcomer vessel wall mesh spacing used in the S-RELAP5

model.

4.5.1.1 Exact Solution

In this benchmark, the downcomer wall is considered as a semi-infinite plate. Because the

benchmark uses a closed form solution to verify the wall mesh spacing used in S-RELAP5, it is

assumed that the material has constant thermal properties, is initially at temperature Ti, and, at

time zero, has one surface, the surface simulating contact with the downcomer fluid, set to a

constant temperature, To, representing the fluid temperature. Section 4.3 of Reference 9 gives

the exact solution for the temperature profile as a function of time as

(T(x,t) - To) / (Ti - To) = erf {x / (2.(a t)° 5)}, (1)

where, a is the thermal diffusivity of the material given by

a = k/(p Cp),

k = thermal conductivity,

p = density,

Cp = specific heat, and

erf{} is the Gauss error function (given in Table A-1 of Reference 9).

The conditions of the benchmark are Ti = 500'F and To = 3000 F. The mesh spacing in S-

RELAP5 is the same as that used for the downcomer vessel wall in the RLBLOCA model.

Figure 4-4 shows the temperature distributions in the metal at 0.0, 100 and 300 seconds as

calculated by using Equation 1 and S-RELAP5, respectively. The solutions are identical

confirming the adequacy of the mesh spacing used in the downcomer wall.

AREVA NP Inc.

Calvert Cliffs Nuclear Plant 
Unit 1 Cycle 21 & Unit 2 Cycle 19 
Realistic Large Break LOCA Summary Report 

ANP-2834(NP) 
Revision 000 

Page 4-11 

The downcomer wall heat release rate during reflood is conduction limited and depends on the 

vessel wall mesh spacing used in the S-RELAP5 model. The following two approaches are used 

to evaluate the adequacy of the downcomer vessel wall mesh spacing used in the S-RELAP5 

model. 

4.5.1.1 Exact Solution 

In this benchmark, the downcomer wall is considered as a semi-infinite plate. Because the 

benchmark uses a closed form solution to verify the wall mesh spacing used in S-RELAP5, it is 

assumed that the material has constant thermal properties, is initially at temperature Tj, and, at 

time zero, has one surface, the surface simulating contact with the dowricomer fluid, set to a 

constant temperature, To, representing the fluid temperature. Section 4.3 of Reference 9 gives 

the exact solution for the temperature profile as a function of time as 

(T(x,t) - To) / (Tj - To) = erf {x / (20(0 t)o.s)}, (1) 

. where, 0 is the thermal diffusivity of the material given by 

0= k/(p Cp), 

k = thermal conductivity, 

p = density, 

Cp = specific heat, and 

erf{} is the Gauss error function (given in Table A-1 of Reference 9). 

The conditions of the benchmark are Tj = 500°F and To = 300°F. The mesh spacing in S­

RELAP5 is the same as that used for the downcomer vessel wall in the RLBLOCA model. 

Figure 4-4 shows the temperature distributions in the metal at 0.0, 100 and 300 seconds as 

calculated by using Equation 1 and S-RELAP5, respectively. The solutions are identical 

confirming the adequacy of the mesh spacing used in the downcomer wall. 

AREVA NP Inc. 



Calvert Cliffs Nuclear Plant
Unit 1 Cycle 21 & Unit 2 Cycle 19
Realistic Large Break LOCA Summary Report

ANP-2834(NP)
Revision 000

Paae 4-12

550

500

LL 450

C-

CL 400
Ea)
I--

350

300

250

-Closed Form, 0 s

- -Closed Form, 300 s

---O-0 S-RELAP5, 0 s

-0•- S-RELAP5, 100 s

-O S-RELAP5, 300 s

0.0 0.1 0.2 0.3 0.4 0.5

Distance from Inner Wall, feet

0.6 0.7 0.8

Figure 4-4 S-RELAP5 versus Closed Form Solution

AREVA NP Inc.

Calvert Cliffs Nuclear Plant 
Unit 1 Cycle 21 & Unit 2 Cycle 19 
Realistic Large Break LOCA Summary Report 

550 

500 

u.. 450 

~ 
:l -CIS ... 
CI) 

1-

/ 

~ 
~ A 

~ -
/' ~ 

V V 
/ E 400 

CI) 
~ ~ 

V 

AREVA NP Inc. 

CIS -CI) 

:E 350 

300 

250 

/ 
~~ 

0.0 0.1 

~Closed Form, 0 5 

-S--Closed Form, 1005 

-+-Closed Form, 300 5 

-o-S-RELAP5, 0 5 

-o-S-RELAP5,100s 

-() - S-RELAP5, 300 5 

I 1 
0.2 0.3 0.4 0.5 0.6 0.7 

Distance from Inner Wall, feet 

Figure 4-4 S-RELAP5 versus Closed Form Solution 

f-

f-

ANP-2834(NP) 
Revision 000 

Page 4-12 

0.8 



Calvert Cliffs Nuclear Plant
Unit 1 Cycle 21 & Unit 2 Cycle 19
Realistic Large Break LOCA Summary Report

ANP-2834(NP)
Revision 000

Paqe 4-13

4.5.1.2 Plant Model Sensitivity Study

As additional verification, a typical 4-loop plant case was used to evaluate the adequacy of the

mesh spacing within the downcomer wall heat structure. Each mesh interval in the base case

downcomer vessel wall was divided into two equal intervals. Thus, a new input model was

created by increasing the number of mesh intervals from 9 to 18. The following four figures

show the total downcomer metal heat release rate, PCT independent of elevation, downcomer

liquid level, and the core liquid level, respectively, for the base case and the modified case.

These results confirm the conclusion from the exact solution study that the mesh spacing used

in the plant model for the downcomer vessel wall is adequate.
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Figure 4-5 Downcomer Wall Heat Release - Wall Mesh Point
Sensitivity
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4.5.2 Downcomer Fluid Distribution

To justify the adequacy of the downcomer nodalization in calculating the fluid distribution in the

downcomer, two studies varying separately the axial and the azimuthal resolution with which the

downcomer is modeled have been conducted.

4.5.2.1 Azimuthal Nodalization

In a letter to the NRC dated April, 2003 (Reference 1), AREVA documented several studies on

downcomer boiling. Of significance here is the study on further azimuthal break up of the

downcomer noding. The study, based on a 3-loop plant with a containment pressure of

approximately 30 psia during reflood, consisted of several calculations examining the affects on

clad temperature and other parameters.

The base model, with 6 axial by 3 azimuthal regions, was expanded to 6 axial by 9 azimuthal

regions (Figure 4-9). The base calculation simulated the limiting PCT calculation given in the

EMF-2103 three-loop sample problem. This case was then repeated with the revised 6 x 9

downcomer noding.

The change resulted in an alteration of the blowdown evolution of the transient with little

evidence of any affect during reflood. To isolate any possible reflood impact that might have an

influence on downcomer boiling, the case was repeated with a slightly adjusted vessel-side

break flow. Again, little evidence of impact on the reflood portion of the transient was observed.

The study concluded that blowdown or near blowdown events could be impacted by refining the

azimuthal resolution in the downcomer but that reflood would not be impacted. Although the

study was performed for a somewhat elevated system pressure, the flow regimes within the

downcomer will not differ for pressures as low as atmospheric. Thus, the azimuthal downcomer

modeling employed for the RLBLOCA methodology is reasonably converged in its ability to

represent downcomer boiling phenomena.
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Figure 4-9 Azimuthal Noding

4.5.2.2 Axial Nodalization

The RLBLOCA methodology divides the downcomer into six nodes axially. In both 3-loop and

4-loop models, the downcomer segment at the active core elevation is represented by two equal

length nodes. For most operating plants, the active core length is 12 feet and the downcomer

segments at the active core elevation are each 6-feet high. (For a 14 foot core, these nodes

would be 7-feet high.) The model for the sensitivity study presented here comprises a 3-loop

plant with an ice condenser containment and a 12 foot core. For the study, the two nodes

spanning the active core height are divided in half, revising the model to include eight axial

nodes. Further, the refined noding is located within the potential boiling region of the
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downcomer where, if there is an axial resolution influence, the sensitivity to that impact would be

greatest.

The results show that the axial noding used in the base methodology is sufficient for plants

experiencing the very low system pressures characteristic of ice condenser containments.

Figure 4-10 provides the containment back pressure for the base modeling. Figure 4-11 through

Figure 4-14 show the total downcomer metal heat release rate, PCT independent of elevation,

downcomer liquid level, and the core liquid level, respectively, for the base case and the

modified case.

The results demonstrate that the axial resolution provided in the base case, 6 axial downcomer

node divisions with 2 divisions spanning the core active region, are sufficient to accurately

resolve void distributions within the downcomer. Thus, this modeling is sufficient for the

prediction of downcomer driving head and the resolution of downcomer boiling effects.
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4.5.3 Downcomer Boilinq Conclusions

To further justify the ability of the RLBLOCA methodology to predict the potential for and impact

of downcomer boiling, studies were performed on the downcomer wall heat release modeling

within the methodology and on the ability of S-RELAP5 to predict the migration of steam through

the downcomer. Both azimuthal and axial noding sensitivity studies were performed. The axial

noding study was based on, an ice condenser plant that is near atmospheric pressure during

reflood. These studies demonstrate that S-RELAP5 delivers energy to the downcomer liquid

volumes at an appropriate rate and that the downcomer noding detail is sufficient to track the

distribution of any steam formed. Thus, the required methodology for the prediction of

downcomer boiling at system pressures approximating those achieved in plants with pressures

as low as ice condenser containments has been demonstrated.
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4.6 Break Size

Question: Were all break sizes assumed greater than or equal to 1.0 ft2 ?

Response: Yes.

The NRC has requested that the break spectrum for the realistic LOCA evaluations be limited to

accidents that evolve through a range of phenomena similar to those encountered for the larger

break area accidents. This is a change to the approved RLBLOCA EM (Reference 1). The

larger break area LOCAs are typically characterized by the occurrence of dispersed flow film

boiling at the hot spot, which sets them apart from smaller break LOCAs. This occurs generally

in the vicinity of 0.2 DEGB (double-ended guillotine break) size (i.e., 0.2 times the total flow area

of the pipe on both sides of the break). However, this transitional break size varies from plant to

plant and is verified only after the break spectrum has been executed. AREVA NP has sought

to develop sufficient criteria for defining the minimum large break flow area prior to performing

the break spectrum. The purpose for doing so is to assure a valid break spectrum is performed.

4.6.1 Break / Transient Phenomena

In determining the AREVA NP criteria, the characteristics of larger break area LOCAs are

examined. These LOCA characteristics involve a rapid and chaotic depressurization of the

reactor coolant system (RCS) during which the three historical approximate states of the system

can be identified.

Blowdown The blowdown phase is defined as the time period from initiation of the break

until flow from the SITs begins. This definition is somewhat different from the traditional

definition of blowdown which extends the blowdown until the RCS pressure approaches

containment pressure.' The blowdown phase typically lasts about 12 to 25 seconds,

depending on the break size.

Refill is that period that starts with the end of blowdown, whichever definition is used,

and ends when water is first forced upward into the core. During this phase the core

experiences a near adiabatic heatup.

Reflood is that portion of the transient that starts with the end of refill, follows through the

filling of the core with water and ends with the achievement of complete core quench.
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Implicit in this break-down is that the core liquid inventory has been completely, or nearly so,

expelled from the primary system leaving the core in a state of near core-wide dispersed flow

film boiling and subsequent adiabatic heatup prior to the reflood phase. Although this break

down served as the basis for the original deterministic LOCA evaluation approaches and is valid

for most LOCAs that would classically be termed large breaks, as the break area decreases the

depressurization rate decreases such that these three phases overlap substantially. During

these smaller break events, the core liquid inventory is not reduced as much as that found in

larger breaks. Also, the adiabatic core heatup is not as extensive as in the larger breaks which

results in much lower cladding temperature excursions.

4.6.2 New Minimum Break Size Determination

No determination of the lower limit can be exact. The values of critical phenomena that control

the evolution of a LOCA transient will overlap and interplay. This is especially true in a

statistical evaluation where parameter values are varied randomly with a strong expectation that

the variations will affect results. In selecting the lower area of the RLBLOCA break spectrum,

AREVA sought to preserve the generality, of a complete or nearly complete core dry out

accompanied by a substantially reduced lower plenum liquid inventory. It was reasoned that

such conditions would be unlikely if the break flow rate was reduced to less than the reactor

coolant pump flow. That is, if the reactor coolant pumps are capable of forcing more coolant

toward the reactor vessel than the break can extract from the reactor vessel, the downcomer

and core must maintain some degree of positive flow (positive in the normal operations sense).

The circumstance is, of course, transitory. Break flow is altered as the RCS blows down and

the RC pump flow may decrease as the rotor and flywheel slow down if power is lost. However,

if the core flow was reduced to zero or became negative immediately after the break initiation,

then the event was quite likely to proceed with sufficient inertia to expel most of the reactor

vessel liquid to the break. The criteria base, thus established, consists of comparing the break

flow to the initial flow through all reactor coolant pumps and setting the minimum break area

such that these flows' match. This is done as follows:

Wbreak = Abreak * Gbreak = Npump * WRCP.

This gives
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Abreak = (Npump * WRcP)/Gbreak.

The break mass flux is determined from critical flow. Because the RCS pressure in the broken

cold leg will decrease rapidly during the first few seconds of the transient, the critical mass flux

is averaged between that appropriate for the initial operating conditions and that appropriate for

the initial cold leg enthalpy and the saturation pressure of coolant at that enthalpy.

Gbreak = (Gbreak(PO, HCLO) + Gbreak(PCLsat, HCLO))/ 2 .

The estimated minimum LBLOCA break area, Amin, is 2.817 ft2 and the break area percentage,

based on the full double-ended guillotine break total area, is 28.69 percent.

Table 4-4 provides a listing of the plant type, initial condition, and the fractional minimum

RLBLOCA break area, for all the plant types presented as generic representations in the next

section.

Table 4-4 Minimum Break Area for Large Break LOCA Spectrum

Spectrum Spectrum
Plant System Cold Leg Subcooled Saturated RCP flow Minimum Minimum
Decit Pressure Enthalpy Gbreak Gbreak (HEM) (Rbm/s) Break Area Break Area
Description (psia) (Btu/Ibm) (Ibm/ft2-s) (Ibm/ft2-s) Ims)ftak2) AreaGBrekAe

A 3-Loop W 2250 555.0 23190 5700 31417 2.18 0.26
Design

B 3-Loop W 2250 544.5 23880 5450 28124 1.92 0.23
Design

C 3-Loop W 2250 550.0 23540 5580 29743 2.04 0.25
Design

D 2x4 CE 2100 538.8 22860 5310 21522 1.53 0.24Design

E 2x4 CE 2055 535.8 22630 5230 37049 2.66 0.27Design

F 4-1oopW 2160 540.9 23290 5370 39500 2.76 0.33DesignIII

The split versus double-ended break type is no longer related to break area. In concurrence with

Regulatory Guide 1.157, both the split and the double-ended break will range in area between

the minimum break area (Amin) and an area of twice the size of the broken pipe. The

determination of break configuration, split versus double-ended, is made after the break area is

selected based on a uniform probability for each occurrence.
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4.6.3 Intermediate Break Size Disposition

With the revision of the smaller break area for the RLBLOCA analysis, the break range for small

breaks and large breaks are no longer contiguous. Typically the lower end of the large break

spectrum occurs at between 0.2 to 0.3 times the total area of a 100 percent double-ended

guillotine break (DEGB) and the upper end of the small break spectrum occurs at approximately

0.05 times the area of a 100 percent DEGB. This leaves a range of breaks that are not

specifically analyzed during a LOCA licensing analysis. The premise for allowing this gap is that

these breaks do not comprise accidents that develop high cladding temperature and thus do not

comprise accidents that critically challenge the emergency core cooling systems (ECCS).

Breaks within this range remain large enough to blowdown to low pressures. Resolution is

provided by the large break ECC systems and the pressure-dependent injection limitations that

determine critical small break performance are avoided. Further, these accidents develop

relatively slowly, assuring maximum effectiveness of those ECC systems.

A variety of plant types for which analysis within the intermediate range have been completed

were surveyed. Although statistical determinations are extracted from the consideration of

breaks with areas above the intermediate range, the AREVA best-estimate methodology

remains suitable to characterize the ECCS performance of breaks within the intermediate range.

Table 4-4 provides a listing of the plant type, initial condition, and the fractional minimum

RLBLOCA break area. Figure 4-15 through Figure 4-20 provide the enlarged break spectrum

results with the upper end of the small break spectrum and the lower end of the large break

spectrum indicated by bars. Table 4-5 provides differences between the true large break region

and the intermediate break region (break areas between that of the largest SBLOCA and the

smallest RLBLOCA). The minimum difference is 141'F; however, this case is not

representative of the general trend shown by the other comparisons. The next minimum

difference is 704'F (see Figure 4-15). Considering this point as an outlier, the table shows the

minimum difference between the highest intermediate break spectrum PCT and large break

spectrum PCT, for the six plants, as at least 463'F, and including this point would provide an

average difference of 427cF and a maximum differenc e of 840cF.

Thus, by both measures, the peak cladding temperatures within the intermediate break range

will be several hundred degrees below those in the true large break range. Therefore, these
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breaks will not provide a limit or a critical measure of the ECCS performance. Given that the

large break spectrum bounds the intermediate spectrum, the use of only the large break

spectrum meets the requirements of 10CFR50.46 for breaks within the intermediate break

LOCA spectrum, and the method demonstrates that the ECCS for a plant meets the criteria of

10CFR50.46 with high probability.

Table 4-5 Minimum PCT Temperature Difference - True Large and
Intermediate Breaks

Generic Maximum Maximum

Plant Plant PCT (I7) PCT (7) Delta PCT Average Delta

Description Label Intermediate Large Size (7) PCT ('F)

(Table 4-4) Size Break Break

A 17461 1887 1411

3-Loop W B 1273 1951 678 427'
Design

C 1326 1789 463

2x4CE D 984 1751 7672x4 CE767
Design E 869 1636 767

3-IoopW F 1127 1967 840 840
Design

Note: 1. The 2nd highest PCT was 11837F. This changes the Delta

average delta increases to 615'F.

PC T to 704'F and the
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4.7 Detailed information for Containment Model

Containment initial conditions and cooling system information are provided in Table 3-8 and

Heat Sinks are provided in Table 3-9. For Calvert Cliffs Units 1 and 2, the scatter plots of PCT

versus the sampled containment volumes and initial atmospheric temperature are shown in

Figure 4-21 and Figure 4-22. Containment pressure as a function of time for limiting case is

shown in Figure 4-23.
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4.8 Cross-References to North Anna

Question: In order to conduct its review of the Calvert Cliffs Units 1/2 application of AREVA's

realistic LBLOCA methods in an efficient manner, the NRC staff would like to make reference to

the responses to NRC staff requests for additional information that were developed for the

application of the AREVA methods to the North Anna Power Station, Units I and 2, and found

acceptable during that review. The NRC Staff safety evaluation was issued on April 1, 2004

(Agency-wide Documentation and Management System (ADAMS) accession number

ML040960040). The staff would like to make use of the information that was provided by the

North Anna licensee that is not applicable only to North Anna or only to subatmospheric

containments. This information is contained in letters to the NRC from the North Anna licensee

dated September 26, 2003 (ADAMS accession number ML032790396) and November 10, 2003

(ADAMS accession number ML033240451). The specific responses that the staff would like to

reference are:

September 26, 2003 letter: NRC Question I

NRC Question 2

NRC Question 4

NRC Question 6

November 10, 2003 letter: NRC Question 1

Please verify that the information in these letters is applicable to the AREVA model applied to

Calvert Cliffs Units 1/2 except for that information related specifically to North Anna and to sub-

atmospheric containments.

Response: The responses provided to questions 1, 2, 4, and 6 are generic and related to the

ability of ICECON to calculate containment pressures. They are applicable to the Calvert Cliffs

Units 1/2 RLBLOCA submittal.

Question 1 - Completely Applicable

Question 2 - Completely Applicable
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Question 4 - Completely Applicable (the reference to CSB 6-1 should now be to CSB

Technical Position 6-2). The NRC altered the identification of this branch technical position in

Revision 3 of NUREG-0800.

Question 6 - Completely applicable.

The supplemental request and response are applicable to Calvert Cliffs Units 1/2.

4.9 GDC 35 - LOOP and No-LOOP Case Sets

Question: IOCFR50, Appendix A, GDC [General Design Criterion] 35 [Emergency core

cooling] states that, "Suitable redundancy in components and features and suitable

interconnections, leak detection, isolation, and containment capabilities shall be provided to

assure that for onsite electric power system operation (assuming offsite electric power is not

available) and for offsite electric power operation (assuming onsite power is not available) the

system function can be accomplished, assuming a single failure."

The Staff interpretation is that two cases (loss of offsite power with onsite power available, and

loss of onsite power with offsite power available) must be run independently to satisfy GDC 35.

Each of these cases is separate from the other in that each case is represented by a different

statistical response spectrum. To accomplish the task of identifying the worst case would

require more runs. However, for LBLOCA analyses (only), the high likelihood of loss of onsite

power being the most limiting is so small that only loss of offsite power cases need be run. (This

is unless a particular plant design, e.g., CE [Combustion Engineering] plant design, is also

vulnerable to a loss of onsite power, in which situation the NRC may require that both cases be

analyzed separately. This would require more case runs to satisfy the statistical requirement

than forjust loss of offsite power.)

What is your basis for assuming a 50% probability of loss of offsite power? Your statistical runs

need to assume that offsite power is lost (in an independent set of runs). If, as stated above, it

has been determined that Palisades, being of CE design, is also vulnerable to a loss of onsite

power, this also should be addressed (with an independent set of runs).

Response: In concurrence with the NRC's interpretation of GDC 35, a set of 59 cases each

was run with a LOOP and No-LOOP assumption. The set of 59 cases that predicted the highest
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figure of merit, PCT, is reported in Section 2 and Section 3, herein. The results from both case

sets are shown in Figure 3-22. This is a change to the approved RLBLOCA EM (Reference 1).

4.10 Input Variables Statement

Question: Provide a statement confirming that Constellation Energy and its LBLOCA analyses

vendor have ongoing processes that assure that the input variables and ranges of parameters

for the LBLOCA analyses conservatively bound the values and ranges of those parameters for

the operated Calvert Cliffs Nuclear Plant Unit I (CCA) and Unit 2 (CCB). This statement

addresses certain programmatic requirements of 10 CFR 50.46, Section (c).

Response: Constellation Energy and the LBLOCA Analysis Vendor have an ongoing process

to ensure that all input variables and parameter ranges for the CCA'and CCB realistic large

break loss-of-coolant accident are verified as conservative with respect to plant operating and

design conditions. In accordance with Constellation Energy Quality Assurance program

requirements, this process involves

1) Definition of the required input variables and parameter ranges by the Analysis Vendor.

2) Compilation of the specific values from existing plant design input and output documents by

Constellation Energy and Vendor personnel in a formal analysis input summary document

issued by the Analysis Vendor and

3) Formal review and approval of the input summary document by Constellation Energy. Formal

Constellation Energy approval of the input document serves as the release for the Vendor to

perform the analysis.

Continuing review of the input summary document is performed by Constellation Energy as part

of the plant design change process and cycle-specific core design process. Changes to the

input summary required to support plant modifications or cycle-specific core alternations are

formally communicated to the Analysis Vendor by Constellation Energy. Revisions and updates

to the analysis parameters are documented and approved in accordance with the process

described above for the initial analysis.
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5.0 Conclusions

A RLBLOCA analysis was performed for the Calvert Cliffs Nuclear Plant Units 1 and 2 using

NRC - approved AREVA NP RLBLOCA methods (Reference 1). Analysis results show that the

limiting LOOP case has a PCT of 1670'F, and a maximum oxidation thickness and hydrogen

generation that fall well within regulatory requirements.

The analysis supports operation at a nominal power level of 2754 MWt (including 0.62%

uncertainty), a steam generator tube plugging level of up to 10 percent in all steam generators,

a total LHGR of 15.0 kW/ft, a total peaking factor (FQ) up to a value of 2.384, and a nuclear

enthalpy rise factor (FAH) up to a value of 1.81 including the 6% uncertainty with no axial or

burnup dependent power peaking.limit and peak rod average exposures of up to 62,000

MWd/MTU. For large break LOCA, the three 10CFR50.46 (b) criteria presented in Section 3.0

are met and operation of Calvert Cliffs Units 1 and 2 with AREVA NP-supplied 14x14 M5 clad

fuel is justified.
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Nomenclature

AOO Anticipated Operational Occurrence
BOC Beginning-of-Cycle

CE Combustion Engineering
CHF Critical Heat Flux

DTC Doppler Temperature Cofficient
DNB(R) Departure from Nucleate Boiling (Ratio)

HTP High Thermal Performance
HFP Hot Full Power
HZP Hot Zero Power

LOCF Loss of Forced Reactor Coolant Flow
LOOP Loss Of Offsite Power

MDNBR Minimum Departure from Nucleate Boiling Ratio
MTC Moderator Temperature Coefficient

PORV Power Operated Relief Valve

RCP Reactor Coolant Pump
RCS Reactor Coolant System
RPS Reactor Protection System
RTP Rated Thermal Power

SAFDL Specified Acceptable Fuel Design Limit

TS Technical Specification
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1.0 Introduction

The analysis documented herein describes a LOCF analysis for Calvert Cliffs Nuclear Power

Plant. This analysis demonstrates the application of the Reference 1 methodology to the

Calvert Cliffs Nuclear Power Plant. The methodology utilizes the S-RELAP5 computer code for

the thermal-hydraulic analysis to determine the plant transient response. The transient core

boundary conditions determined from the thermal-hydraulic analysis are used by the XCOBRA-

IIIC code (Reference 2) along with the HTP correlation (Reference 3) to determine the MDNBR.
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2.0 Conclusion

Based on the results of this analysis, margin exists to the DNB SAFDL. Because the core

power does not increase appreciably during this event, the challenge to the fuel centerline melt

SAFDL is not limiting. The pressurization transient does not present a severe challenge to the

maximum pressure criterion since system temperatures and pressure, increase less significantly

for a loss of flow event compared to complete loss of load type events. Therefore, the event

acceptance criteria are met.
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3.0 Analytical Methodology

The analysis is performed using the approved Reference 1 methodology. The S-RELAP5 code

is used to model the primary and secondary side systems of the Calvert Cliffs Nuclear Power

Plant and to calculate reactor power, total reactivity and RCS fluid conditions (such as coolant

flow rates, core inlet temperatures, pressurizer pressure and level). The MDNBR for the event

is calculated using the thermal-hydraulic conditions from the S-RELAP5 calculation as input to

the XCOBRA-IIIC code (Reference 2) along with the HTP CHF correlation (Reference 3).

3.1 Nodalization

The plant configuration is represented by an S-RELAP5 model. The S-RELAP5 model

nodalizes the primary and secondary sides into, control volumes representing reasonable

homogenous regions, interconnected by flow paths, or "junctions". The reactor vessel, RCS

piping and steam generator nodalization diagrams are shown in Figures 3.1 to 3.3. The current

analysis is based on a Calvert Cliffs Nuclear Power Plant specific model.

In general, the plant nodalization is defined to be consistent wherever possible for different plant

types. Calvert Cliffs is a CE 2x4 plant. The S-RELAP5 model used for the current Calvert Cliffs

Nuclear Plant analysis is based on the sample problem in Reference 1 which is for a CE 2x4

plant, with some modifications to account for plant-specific geometry.

The steam generator secondary and steam line models are nodalized slightly different between

the current model for Calvert Cliffs Nuclear Power Plant and the Reference 1 sample problem

model, namely, the steam generator downcomer and boiler regions in the current model each

contain one fewer node. Although the number of nodes decreased by one in each of these

regions, the characteristics of the steam generator, specifically the volume distribution in the

downcomer and the heat transfer to the boiler region, are more accurately captured. The

overall effect of these changes on the analysis is negligible for this event. Also, the MFW and

AFW connections to the SG downcomer are one node lower than the sample problem, to match

the Calvert Cliffs plant geometry.

Other plant specific differences include the number and location of the main steam safety

valves, the geometry of the pressurizer surgeline and the pressurizer PORV design.
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3.2 Chosen Parameters

The input parameters and equipment states are chosen to provide conservative initial and

boundary conditions for estimating the challenge to DNB. The biasing and assumptions for key

input parameters are consistent with the approved Reference 1 methodology. The key

assumptions are given in Table 3.1 and the biasing of key parameters is provided in Table 3.2.

The process of defining the biasing and assumptions for key input parameters is consistent with

the Reference 1 sample problem.

3.3 Sensitivity Studies

This event is controlled primarily by the primary system flow coast down. The S-RELAP5 code

assessments in Reference 1 validate the model relative to this controlling parameter. Thus, no

additional model sensitivity studies are needed for this application.

The biasing of input parameters is chosen to produce a conservative estimate of the challenge

to DNB for this application. Thus, no additional input parameter sensitivity studies are needed.

3.4 Definition of Event Analyzed and Bounding Input

The event is analyzed from full power initial conditions since the margin to the DNB limit is

minimized at the beginning of the event. The input parameter biasing and assumptions for this

event, shown in Tables 3.1 and 3.2, are consistent with the approved methodology.
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minimized at the beginning of the event. The input parameter biasing and assumptions for this 

event, shown in Tables 3.1 and 3.2, are consistent with the approved methodology. 
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Table 3.1 Key Assumptions

Parameter Assumption

Time of. loss-of-offsite power Offsite power is available

Isolated at event initiation, to allow
Main Feedwater MDNBR from this event to bound

MDNBR from LOOP event.
Mitigating systems

* Low Primary Flow Trip Available
• Pressurizer Spray Available

• Pressurizer PORVs Available
Operator Actions No operator actions credited

No single failure will adversely affect the
Single Failures .consequences of this event

Number of Operating Loops All loops are in operation consistent with
NumberofOperatingLoopsI HFP operation
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Table 3.2 Key Input Parameters Biases

Parameter Bias

Rated thermal power plus calorimetric
Initial reactor core power (MWt) uncertainty

Maximum TS value [ ] plusInitial RCS vessel average temperature measurement and control deadband
(°F) uncertainties [ I

Nominal value [ ] minus
Initial RCS pressure (psia) measurement and control deadband

uncertainties [ I
TS minimum accounting for measurement

Initial RCS flow rate (Mlbmlhr) uncertainty

Minimum HFP worth assuming the most
Scram reactivity (pcm) reactive rod is stuck out of the core
Moderator temperature coefficient Most positive TS value
(pcm/°F)

Doppler reactivity coefficient (pcm/°F) Nominal BOC [
Pellet-to-clad gap conductance and fuel
rod thermal properties (Btu/hr-ft2 -OF) 130C

RCS Low Flow RPS trip setpoint Nominal minus uncertainty
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Figure 3.1 S-RELAP5 Reactor Vessel Nodalization
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I

I
Figure 3.2 S-RELAP5 Reactor Coolant System Nodalization (Loop 1)
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Figure 3.2 S-RELAP5 Reactor Coolant System Nodalization (Loop 1) 
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[

Figure 3.3 S-RELAP5 Steam Generator Secondary System and
Steam Line Nodalization (Loop 1)
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4.0 Complete Loss of Forced Reactor Coolant Flow (UFSAR Event 14.9)

4.1 Identification of Causes and Event Description

The LOCF event is defined as a complete loss of forced reactor coolant through the core with

offsite power available, but without a seized Reactor Coolant Pump (RCP) rotor. The seized

RCP rotor event is discussed in the UFSAR (Section 14.16). A loss-of-coolant flow without

offsite power available is the same as the Loss of Offsite Power (LOOP) event discussed in the

UFSAR (Section 14.10).

A LOCF event may result from a simultaneous loss of electrical power to all four reactor coolant

pumps. If the reactor is at power at the time of the event, the immediate effect of loss of forced

reactor coolant flow is a rapid increase in the reactor coolant temperature. This increase could

result in DNB with subsequent fuel damage if the reactor is not tripped promptly.

A reactor trip on low primary flow is provided to trip the reactor for the loss of flow event. The

event initiated from Mode 1 conditions with the reactor at full power, bounds other modes of

operation because this provides the least DNBR margin.

Mitigation of this event is accomplished by timely reactor scram. Since the RPS has sufficient

redundancy, no single active failure will adversely affect the consequences of the event.

The key assumption in the analysis is to use a conservative RCP coastdown rate. The fastest

RCP coastdown rate is used based on benchmarking against plant data.

4.2 Acceptance Criteria

For Calvert Cliffs Nuclear Power Plant, the LOCF event is classified as an Anticipated

Operational Occurrence (AOO). For this event, the principally challenged acceptance criterion

is:

The fuel cladding integrity should be maintained by ensuring that fuel design
limits are not exceeded. This is demonstrated by assuring that the minimum
calculated departure from nucleate boiling ratio (DNBR) is not less than the
applicable limits of the DNBR correlation being used and that fuel centerline melt
does not occur.
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Mitigation of this event is accomplished by timely reactor scram. Since the RPS has sufficient 

redundancy, no single active failure will adversely affect the consequences of the event. 

The key assumption in the analysis is to use a conservative RCP coastdown rate. The fastest 

RCP coastdown rate is used based on benchmarking against plant data. 

4.2 Acceptance Criteria 

For Calvert Cliffs Nuclear Power Plant, the LOCF event is classified as an Anticipated 

Operational Occurrence (AOO). For this event, the principally challenged acceptance criterion 

is: 

The fuel cladding integrity should be maintained by ensuring that fuel design 
limits are not exceeded. This is demonstrated by assuring that the minimum 
calculated departure from nucleate boiling ratio (DNBR) is not less than the 
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does not occur. 
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The analysis documented herein demonstrates that the DNB SAFDL is met for this event. Fuel

centerline melt is not challenged since there is no appreciable increase in core power. System

overpressure is bounded by more challenging events.

4.3 Analysis Results

The results of the analysis indicate that the predicted MDNBR is greater than the safety limit. The

critical heat flux correlation limit ensures that, with 95% probability and 95% confidence, DNB is

not expected to occur; therefore, no fuel is expected to fail. The fuel centerline melt threshold is

not penetrated during this event. Thus, AOO acceptance criteria are met for this event.

The sequence of events is shown in Table 4.1. The transient history of key system variables are

given in Figure 4.1 to Figure 4.7.
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Table 4.1 Sequence of Events

Event Time (sec)
Initiate transient (all four pumps begin coastdown) 0.00

RCS low flow RPS Trip signal 0.91
Reactor scram (begin rod insertion) 1.40

Core power peaks 1.90
Pressurizer spray flow begins 2.95
MDNBR occurs 3.15
Pressurizer PORV opens 4.55
Pressurizer pressure peaks 4.60
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Figure 4.1 RCS Flow for Loss of Forced Reactor Coolant
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CCNPP LOCF Analysis
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Figure 4.2 Core Neutronic and Surface Power for Loss of Forced
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CCNPP LOUF Analysis
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Figure 4.3 Core Reactivity for Loss of Forced Reactor Coolant Flow
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Figure 4.3 Core Reactivity for Loss of Forced Reactor Coolant Flow 
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Figure 4.4 Primary and Secondary Pressure for Loss of Forced
Reactor Coolant Flow
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Figure 4.5 Reactor Coolant System Fluid Temperatures for Loss of
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Figure 4.5 Reactor Coolant System Fluid Temperatures for Loss of 
Forced Reactor Coolant Flow 
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Figure 4.6 Pressurizer Spray Flow for Loss of Forced Reactor
Coolant Flow
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Figure 4.6 Pressurizer Spray Flow for Loss of Forced Reactor 
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Figure 4.7 Pressurizer PORV Flow for Loss of Forced Reactor
Coolant Flow
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