U. S. Nuclear Regulatory Commission CP-200901587 TXNB-09073 11/24/2009

Attachment 2

Project Report, "Dynamic Profile," TXUT-001-PR-007, Revision 2

		NO. TXUT-0	01-PR-007
	PROJECT REPORT	REV.	2
ENERCON SERVICES, INC.	COVER SHEET	PAGE NO.	1 of 36

COMANCHE PEAK PROJECT REPORT

DYNAMIC PROFILE

No

Independent Review Required:

Prepared by:

Stephenie H. Rigp

Stephanie Briggs

Reviewed by:

Approved by:

Dennis Kelly

Frank Syms

Amanunelli

<u>X</u> Yes

Joe Mancinelli

	· .	
Date:	09-24-2009	<u></u>

09-24-2009 Date:

Date: 09-24-2009

			NO. TXUT-0	01-PR-007
	PROJECT	REPORT	REV. 2	
ENERCON SERVICES, INC.	1.00201		PAGE NO.	2 of 36
	· · · · · · · · · · · · · · · · · · ·			
	PROJECT REPO	RT REVISION S	TATUS	
REVISION		DATE		DESCRIPTION
рания О структично		12-02-07		Initial issue
1		09-16-09	Add	led Appendix 2 in
			Res	ponse to RAI
			02.0	5.04-14. Also made
			edit	orial changes
			thro	bughout the
n		·	doc	ument.
2		09-24-09	Inc	ornorates non-
. 4		<u></u>	eub	stantivo oditorial
			Sub	
			cna	nyes. Rev. I included
			ani	naepenaent Review
		•	for	technical content.
	· · · · ·		Rev	. 2 review pertains
•			only	y to editorial changes.
				n an an an an Araba. An Araba an Araba an Araba
			· · · ·	•
·			•	
			,,,,,,, _	
	PAGE RE	VISION STATUS	3	
PAGE NO.	REVISION	PAGE	NO.	REVISION
1-36	2			
(1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,		•		
1				
······		······································	<u>et</u>	
	APPENDIX F	REVISION STAT	US	
PPENDIX NO. PAGE NO.	REVISION NO.	APPENDIX NO). PAGE NO	. <u>REVISION NO.</u>
1 1-2	2			
0 1 0				

NO. TXUT-001-PR-007

REV. 2

ENERCON SERVICES, INC.

PAGE NO. 3 of 36

CONTENTS

Section

- 1.0 Purpose and Overview
- 2.0 Development of Shallow and Deep Stratigraphy
- 3.0 Velocity Profile Development
- 4.0 Dynamic Profile Development
- 5.0 References
- 6.0 Appendix

TABLES

Table 1	Stratigraphic picks used in estimating deep stratigraphy	18
	beneath Comanche Peak Facility	
Table 2	Calculated stratigraphic picks for CPNPP 3 & 4 and standard deviation	19
Table 3	Best estimate of deep stratigraphy and velocities	20
Table 4	Dynamic properties of subsurface rock materials - Sheet 1 of 4 Lithology and Stratigraphy	21
	Dynamic properties of subsurface rock materials - Sheet 2 of 4 - Shear – (V_s) and pressure-wave (V_p) velocity and Poisson's ratio (cont'd)	22
	Dynamic properties of subsurface rock materials - Sheet 3 of 4 - Additional dynamic properties	23
	Dynamic properties of subsurface rock materials - Sheet 4 of 4 - Notes to sheets 1-3	24
Table 5	Unit weight values	25

FIGURES

Figure 1	Borings location plan Units 3 & 4	26
Figure 2	Shallow stratigraphic profile	27
Figure 3	Velocity Data for Units 3 & 4 with Cross-hole Locations from Units 1 & 2	28
Figure 4	CP Units 1 & 2 Excavation Photos with Interpretted Units 3 & 4	29
	Engineering Stratigraphy	
Figure 5	Comparison of engineering stratigraphy	30
Figure 6	Map of well data used for deep stratigraphy velocity profile	31
Figure 7	Well V _p data	32
Figure 8	Shallow velocity profile – Regression	- 33
Figure 9	Suspension, downhole, and SASW log locations Units 3 & 4	. 34
Figure 10	Comparison of shallow velocity measurement	35
Figure 11	Deep velocity profile	36

APPENDIX

Appendix 1: Calculation of Vs for Atoka Unit Appendix 2: Non-linear Sensitivity Study

App. 1 App. 2

Page

4

4

8

12

16

17

N	O .	TXU	T-00	1-PR	-00	7	
	•		. *			•	
_							

ENERCON SERVICES, INC.

PAGE NO. 4 of 36

REV. 2

1.0 PURPOSE AND OVERVIEW

This document describes the methodology and data used to develop the Dynamic Profile for Comanche Peak Nuclear Power Plant Units 3 & 4 (CPNPP 3 & 4). The dynamic profile is provided as input to the ground motion studies for determining the Ground Motion Response Spectra (GMRS) and Foundation Input Response Spectra (FIRS) and consists of shear- and pressure-wave velocities and associated dynamic properties for the defined profile.

The profile is defined as the interval extending from near surface to seismic basement (defined by the depth at which a shear wave velocity of 9200 ft/sec and greater is reached) and is divided into the shallow profile and the deep profile. The shallow profile extends from near surface to about 550-ft depth and is characterized from borings, geophysical logs including suspension velocities, and laboratory test results. The deep profile extends from about 550-ft depth to seismic basement and is characterized from regional geologic maps and well data including core and geophysical logs. The resulting Dynamic Profile is composed of representative velocities and material properties including index, strength, and damping percentages.

Appendix 2 describes a sensitivity analysis performed to test the non-linear behavior of the site-specific profile including the input data and results.

2.0 DEVELOPMENT OF SHALLOW AND DEEP STRATIGRAPHY

The shallow stratigraphy was developed from geotechnical borings and geophysical logs. The deep stratigraphy was developed from information in the published literature and data from regional oil and gas wells.

2.1 Shallow Stratigraphy

One hundred and forty-five geotechnical borings (excluding cluster, off-set, and monitoring well borings) were drilled as part of the subsurface exploration activities for CPNPP 3 & 4 (Figure 1). A detailed description of the data and methodology for developing the shallow stratigraphy is provided in calculation TXUT-001-FSAR-2.5-CALC-004, *Engineering*

NO. TXUT-001-PR-007 REV. 2 PAGE NO. 5 of 36

ENERCON SERVICES, INC.

Stratigraphy. Velocity data for the shallow profile was acquired from 15 of the geotechnical borings (Figure 1). The velocity profile was developed through a correlation of velocity measurements with the engineering stratigraphy. A detailed discussion of the analysis is provided in the calculation TXUT-001-FSAR-2.5-CALC-003, *Shallow Velocity Profile Development Slope Method.*

Comparison of the geophysical data logs and the geotechnical boring logs provided the basis for developing the stratigraphic model at CPNPP 3 & 4. Suspension shear (V_s) and pressure (V_p) wave velocity, natural gamma radiation, and resistivity measurements, provided in GeoVision Report 6573-01 (GeoVision, 2007), were used to define stratigraphic units identified within the geotechnical boring logs. Ten major stratigraphic units were identified within the subsurface at CPNPP 3 & 4 between the ground surface and about 550 ft below ground surface (elevation 294 ft). As shown in Figure 2, these 10 units are divided among three geologic formations, in order of depth: the Glen Rose formation, Twin Mountains formation, and the Mineral Wells formation.

The Glen Rose formation is the uppermost formation encountered and outcrops at the surface of the site and within surrounding drainage cuts and exposures. The Glen Rose limestone was divided into engineering stratigraphic units A through E (E1 to E3). Based on the borings drilled for CPNPP 3 & 4, the Glen Rose formation has a thickness of 169 to 228 ft. This variable thickness is primarily due to topographic differences between borings. The upper portion of the Glen Rose (units A and B) is composed of alternating thin to massive beds of limestone and shale, with shale becoming more prevalent towards the basal portion of the section. The bottom portion (units C through E) is composed of a thick section of limestone that alternates between packstone and wackestone and has several thin shale interbeds, such as unit D (see Figure 2).

A lithologic transition from limestone to sandstone marks the boundary between the base of the Glen Rose and the top of the Twin Mountains formation. The sandstone at the top of unit F, which is composed of limestone, shale, and sandstone, marks the gradational contact between the two formations. The Twin Mountains formation is primarily composed of

NO. TXUT	-001-PR-	007	. :	
REV. 2			, 1 ₁₄ 4	,
PAGE NO	6 of 36	· · · · ·	• • •	×"

ENERCON SERVICES, INC.

interbedded sandstone and shale, ranges from 217 to 242 ft in thickness, and encompasses most of unit F and all of units G through I. Units G and I are composed of sandstone, and unit H is primarily shale with sandstone interbeds. Only one borehole (B-1012) was drilled deep enough (550 ft) to encounter the basal conglomerate of the Twin Mountains, Unit I, and the Pennsylvanian Mineral Wells formation. The top of the Mineral Wells formation was encountered at an elevation of 455 ft in depth (389 ft in elevation). The Mineral Wells formation is noted in this boring as a massive shale with interbeds of sandstone and is consistent with regional lithologic descriptions.

2.1.1 Correlation of the CPNPP 3 & 4 and CPSES 1 & 2 Stratigraphy

Qualitatively, the stratigraphic units identified in the Comanche Peak Steam Electric System Units 1 & 2 (CPSES 1 & 2) FSAR are very similar to the stratigraphic units picked for the current COLA investigation for CPNPP 3 & 4. Figure 3 shows the relative location of CPSES 1 & 2 to CPNPP 3 & 4. Construction photographs from CPSES 1 & 2, shown on Figure 4, show distinct beds of limestone and shale within the vertical exposures. The exposures of the Glen Rose formation documented in these photographs exhibit flat-lying (no apparent dip) limestone and shale beds of various thicknesses. Descriptions provided within the CPSES 1 & 2 FSAR correspond with descriptions of engineering layers A, B1 and B2, and C from the CPNPP 3 & 4 site.

Velocity data provided in the Dames & Moore Cross-Hole Data Report, *Generalized Subsurface Profile and Seismic Wave Velocities*, was also used to compare the site stratigraphy between CPSES 1 & 2 and CPNPP 3 & 4. Figure 5 compares the engineering stratigraphy layers of CPSES 1 & 2 and CPNPP 3 & 4, plotted at their respective elevations. The elevations of each engineering layer in CPSES 1 & 2 were found to differ by an average of 10 ft, or horizons in the profile from CPSES 1 & 2 have elevations about 10 ft below the elevations of the same horizons beneath CPNPP 3 & 4. Regional dip of the area is roughly 25 ft per mile to the southeast (Sellards et al., 1932). Given that CPNPP 3 & 4 are approximately 2000 ft NW (or updip) of CPSES 1 & 2, the difference is explained by and is consistent with the regional dip of the units. This comparison was then used as a basis to compare the

NO. TXUT-001-PR-007						
REV. 2						
PAGE NO.	7 of 36					

ENERCON SERVICES, INC.

stratigraphy between the site locations as well as to compare velocity profiles developed from independent measurements and techniques.

2.2 Deep Stratigraphy

A variety of regional information was used to determine the deep stratigraphy for CPNPP 3 & 4. Stratigraphic and velocity data were acquired from published literature and regional oil and gas wells. Figure 6 shows the location of wells used to determine deep stratigraphic units (summarized in Table 1 and Table 2) and the two wells that provided velocity data. Figure 7 shows the interpreted stratigraphy and V_p logs for two regional wells used to develop the deep profile.

The resulting deep stratigraphic profile (summarized in Table 3) begins in the lower Pennsylvanian Strawn group, which contains the Mineral Wells formation, the deepest unit defined as part of the shallow profile in Section 2.1. The remainder of the Strawn Series is lithologically similar to the Mineral Wells and consists of shales and intebedded sandstones and limestones. Included within the Strawn Series are the Garner and Millsap Lake formations. Below the Strawn is the Atoka Group which includes the Atoka Sand, the Smithwick Shale, and the Big Saline Conglomerate. The top of the Atoka Group, the Atoka sand, is shale interbedded with sands and limestones. The sandstone layers have an average thickness of about 30 ft (Thompson, 1982). To the north and west of the study area, the upper portion of the Atoka Group includes the Caddo Reef, a massive limestone. In Sommervell County, however, located closer to the Ouachita thrust belt, deposition was more terrigenous (Thompson, 1982). Beneath the Atoka sand, the Smithwick is primarily a black shale, with a thickness that varies from 300 to 600 ft (Sellards et al., 1932). Below the Smithwick shale, the Big Saline Conglomerate has a variable thickness and pinches out just southeast of the site, so that at CPNPP 3 & 4 it has a projected thickness of only about 40 ft. Underlying the Atoka Group is the Marble Falls limestone. The upper portion of this unit is a dark-colored fossiliferous limestone (Sellards et al., 1932). The lower portion of the Marble Falls is interbedded dark limestone and gray-black shale, sometimes referred to as the Comyn Formation (Montgomery et al., 2005), and sometimes considered part of the Barnett Shale (Rathje & Olsen, 2007), which is stratigraphically below the Marble Falls. The Mississippian

		NO. TXUT-001-PR-007
	PROJECT REPORT	REV. 2
ENERCON SERVICES, INC.		PAGE NO. 8 of 36

Barnett Shale (250 to 1000 ft thick, regionally) represents a gas source and reservoir in the region. The Barnett Shale unconformably overlies the top of the Ellenburger Group throughout most of the Fort Worth Basin, though in the northeastern portion of the basin the Upper Ordovician Viola and Simpson limestones intervene (Montgomery et al., 2005). The Cambrian to Ordovician Ellenburger limestone and a thin underlying clastic sequence rests unconformably on metamorphic basement in the Fort Worth Basin and was deposited in a passive continental margin setting (Montgomery et al., 2005).

The methods for determining stratigraphic elevations of units are listed in order of confidence and are noted in Table 2.

- A. The top of the Strawn was measured in wells logged by WLA as the top of the Mineral Wells formation.
- B. Using GEOMAP-stated elevations of horizons in the three nearest wells, the attitude of each horizon was determined and the elevation projected to the site location.
- C. The CPNPP 3 & 4 site was projected onto the line of section of GEOMAPS cross section through two nearby wells (Squaw Creek and 1-Davis).
- D. Horizon elevations determined from GEOMAPS structure contour maps.

For most stratigraphic units, more than one method was available for determining the elevation of a given horizon, and the standard deviation (σ_{top}) of the resulting elevations was used as an estimate of the error. Only a single elevation pick was determined for the top of the Big Saline and the top of the Atoka, thus, the average standard deviation in feet for the other stratigraphic units was applied as an estimate of the error for these units.

3.0 VELOCITY PROFILE DEVELOPMENT

Velocity data used to construct the Dynamic Profile consists of suspension shear (V_s) and pressure wave (V_p) velocities acquired from the 15 borings for the shallow profile; and principally pressure wave and limited shear wave data for the deep profile. The shallow

		NO. TXUT-001-PR-007	
	PROJECT REPORT	REV. 2	•
ENERCON SERVICES, INC.		PAGE NO. 9 of 36	

velocity profile was constructed from the 15 suspension borings drilled for the CPNPP 3 & 4 investigation to depths of 150 to 550 ft (GeoVision Report 6573-01, Comanche Peak COL Geophysical Logging Rev 0). The deep velocity profile was constructed from velocity data acquired from wells located 2 to as much as 40 miles from the site (Figure 6). Velocity data for the regional deep profile was provided by the Texas Railroad Commission.

3.1 Shallow Velocity Profile

Development of the site velocity profile is detailed in TXUT-001-FSAR-2.5-CALC-003, *Shallow Velocity Profile Development Slope Method*. This calculation demonstrated the correlation between the engineering stratigraphy developed for the site, and the shear-wave and pressure-wave velocity field stratification. Changes in the wave travel time gradients were demonstrated to correspond with engineering layer boundaries defined by major changes in lithology (primarily limestone, shale, and sandstones). The vertical correspondence of velocity to lithology is also correlated from borehole to borehole throughout the site, demonstrating the continuity of layers across the area.

Layer velocities for every layer, in each boring, were calculated using the inverse of the slope of a line fit through the simulated down-hole travel times through each individual layer. The geometrical means of the representative layer velocity measurements were calculated to develop the shallow velocity profile (Figure 8). Representative layer velocity variations for the shallow velocity profile are provided by transformed standard deviations of the log deviants of each layer.

3.1.1 Comparison of Velocity Methods for the Shallow Profile

The velocities acquired from the 15 suspension log velocities were compared to velocities acquired by other methods at four of the borings, as well as velocities acquired from cross-hole methods at CPSES 1 & 2. Shear wave velocities were obtained by inversion of surface wave dispersion curves (SASW) at B-1000, B-1001, B-1012, and B-2000. Down-hole velocities were also obtained to a depth of about 140 ft in B-1000 and B-2000. This data set of SASW and down-hole provided an independent velocity comparison for about the upper 100 ft of the profile of the companion suspension borings. Cross-hole velocities obtained for CPSES

	Call Control	¥	141
÷.		÷	
Ċ.			
1			
	C		

ENERCON SERVICES, INC.

1 & 2 provided a comparison of independently acquired velocities for most of the shallow profile (about 525 ft depth).

Analysis of the suspension log data showed that engineering layer C exhibited very low variability from hole to hole in terms of its representative layer velocities. The layer C interface was consistently detected by all techniques and provides a standard to compare the velocity results from each method. The results from all velocity measurement methods are shown on Figure 10. This figure shows suspension log data for all 15 borings, the average profile velocities developed from the suspension logs, the geometric mean of the SASW shear wave results along with the geometric mean of the downhole V_s and V_p velocities for layer C and cross-hole data from CPSES 1 & 2.

The representative profile velocities for layer C were 5685 ft/sec for the shear-wave and 11324 ft /sec for the pressure-wave velocities. These velocities demonstrate low variability $(5596-5803 V_s)$ and $10952-11709 V_p$ at the two-sigma range for the log deviates) between borings. For comparison, the shear wave velocities for layer C from the four SASW inversions. ranged from 5000-5250 ft /sec, which represents an approximately 10 percent lower result but. which more closely approximates the cross-hole shear wave velocities for this layer. The down-hole data suffered from a low signal-to-noise ratio in the shallow portion of section. However, the down-hole shear wave velocity for layer C in B-1000 was 5456 ft/sec, which closely matches the integrated profile velocity for this layer obtained from the suspension log data. In contrast, the down-hole shear wave velocity obtained from B-2000, 4415 ft /sec; is significantly lower than the other techniques and is probably in error because of the poor data quality. Comparison of the cross-hole and suspension log data throughout the rest of the section indicates that they are in general agreement but show local variations on the order as those discussed above. The largest discrepancy appears to be layer E2, which shows lower shear- and pressure-wave results. Similar variations on the order of about 10% are seen in the pressure-wave inter-method comparison.

The shallow profile velocities compare well with both the SASW and down-hole velocities acquired within companion suspension log borings as well as with the velocities acquired from

 CEDWILLC.	1811 -
	11412
,	

NO. TXUT	-001-PF	R-007	· '.
REV. 2			
		<u></u>	

PAGE NO. 11 of 36

the cross-hole survey completed for CPSES 1 & 2. The correlation of velocity gradient with the engineering stratigraphy and the lateral continuity of the engineering units suggests that the suspension log data provides reproducible measurements for the shallow profile. Thus, velocities acquired from the 15 suspension log borings have been used to define the shallow velocity profile (Figure 8) as provided in Table 4.

3.2 Development of Regional Deep Velocity Profile

Velocity data for the deep profile was obtained from the Bureau of Economic Geology, the University of Texas-Austin, and the Texas Railroad Commission. Velocity data used to develop the deep velocity profile (Figure 10) came from the two nearest wells with available data (Figure 6)—the Quicksilver 1-Officers Club well (located 7 miles to the ENE in Hood County) and the Sun 1-Hallmark well (located about 40 miles to the west in Erath County). The Officers Club well provided V_p and V_s data from an elevation of -4900 to -8900 ft including the Smithwick Shale, the Big Saline Conglomerate, the Marble Falls Limestone, the Barnett Shale and the Ellenburger Limestone. The Sun Hallmark-1 well provided V_p data from an elevation of 1100 ft to -2500 ft including the Strawn Series, the Atoka Sand, the Smithwick Shale, the Big Saline Conglomerates, the Marble Falls and the Barnett Shale. In addition, boring B-1012 from the geotechnical study at the site penetrated the Mineral Wells formation of the Strawn Series and provided V_p and V_s data which was applied to the entire Strawn Series, given that lithology is homogenous throughout (see stratigraphic discussion in Section 2.2).

Harmonic mean velocities were calculated for each stratigraphic unit using the relation $V = \Sigma$ d_i / Σ (d_i/v_i); where d is the distance between two measured velocity, v, data points. Harmonic mean V_s and V_p values (Table 3) for the Strawn came from the Mineral Wells formation data from boring B-1012, the V_s and V_p values for the Smithwick Shale, the Big Saline Conglomerate, the Marble Falls Limestone, the Barnett Shale and the Ellenburger Limestone were calculated from the Quicksilver 1-Officers Club well data, and the V_p value for the Atoka Sand was calculated from the Sun 1-Hallmark well data. The Atoka Sand is the only unit which did not have V_s data, and so a V_s value was estimated using a linear regression of the V_p and V_s data from the other units in Officers Club well (Appendix 1). In cases where there

		NO. TXUT-001-PR-007	
	PROJECT REPORT	REV. 2	- ¹ .* -
ENERCON SERVICES, INC.		PAGE NO. 12 of 36	

was more than one velocity log available for a given unit, the resulting harmonic velocities differed by generally less than 10%. For example, the Mineral Wells formation (part of the Strawn Series) logged at boring B-1012 has a harmonic velocity of 10485 ft/sec and the Strawn Series logged in the Sun Hallmark well has a harmonic velocity of 11188 ft/sec, a difference of about 6%.

For the velocity data error analysis, standard deviations from the harmonic mean of V_p and V_s within each stratigraphic unit were determined. The V_s standard deviation for the Atoka unit (which did not have V_s measurements) was calculated by applying the same proportion from the V_p standard deviation to the harmonic mean V_s value (e.g., $\sigma_{Vs} = V_s * (\sigma V_p / V_p)$).

3.2.1 Depth of Seismic Basement

At an elevation of about -3973 ft, the Marble Falls limestone records a V_s of about 10520 ft/sec. Though this unit is sufficiently fast to be considered seismic basement (V_s > 9200 ft/sec, shown with a grey bar in Figure 9), it is underlain by the seismically slow Barnett Shale. The top of the underlying Ellenburger limestone is mapped at an elevation of about -4443 \pm 73 ft, which has a V_s of about 10906 ft/sec and is the best estimate for the top of seismic basement beneath CPNPP. This unit is sufficiently thick regionally, and the nearby Officers Club well indicates greater than 3000 ft of material with shear wave velocities greater than 9200 ft/sec. Thus, basement is defined as the top of the Ellenburger formation for CPNPP 3 & 4.

4.0 DYNAMIC PROFILE DEVELOPMENT

The shallow and deep stratigraphy were combined to develop a layered model representative of the CPNPP site extending to seismic basement. Both aleatory and epistemic uncertainties were evaluated and formed the basis for assigning variability on both stratigraphic control as well as the dynamic properties developed for each layer.

	PROJECT REPORT	NO. TXUT-001-PR-007 REV. 2
ENERCON SERVICES, INC.		PAGE NO. 13 of 36

4.1 **Profile Construction**

The shallow and deep profiles, as described above, were combined by coupling the Strawn Group using the Mineral Wells formation, which is the deepest stratigraphic unit logged at CPNPP 3 & 4, and the shallowest unit characterized for the deep profile. Table 4 provides a summary of the Dynamic Profile including stratigraphic top elevations and associated velocities, as discussed in Sections 2.0 and 3.0, and material properties, as described in the following sections. Dynamic profiles for developing the Ground Motion Response Spectra (GMRS) and Foundation Input Response Spectra (FIRS) are described in TXUT-001-PR-011, *Foundation Interface Report*.

4.2 Stratigraphic Variance and Uncertainty

Site stratigraphy including the shallow and deep layering, shear and compression wave velocities, and dynamic properties are provided in Table 4. The uncertainties associated with the stratigraphy and velocities for the shallow profile are much less than those for the deep profile. Therefore, the range about the mean for the velocities reported in Table 3 has been treated differently.

The shallow profile has been extensively characterized from over 150 geotechnical borings and geologic mapping of the area. The profile has been stratified based on vertical changes in lithology that can be mapped laterally from boring to boring. Standard deviations for the top of each shallow profile layer are less than 2 ft for the upper 200 ft of the profile. The standard deviation for the layers defining the shallow profile from about 200 ft to about 500 ft range from about 1 to 5 ft. Velocity data for the shallow profile acquired from 15 suspension borings demonstrated a strong correlation between the layering and where simulated down-hole travel time gradient "breaks" occurred. The velocity measurements from the suspension log were also compared with down-hole, SASW and cross-hole measurements and were determined to provide the most repeatable measurements. This comparison between various methods was also used to develop the assigned variability as provided in Table 4. Details for development of the layering and corresponding velocities are provided in TXUT-001-FSAR-2.5-CALC-003, *Shallow Velocity Profile Development Slope Method*, and TXUT-001-FSAR-2.5-CALC-004, *Engineering Stratigraphy*.

	_

NO. TXUT	-001-P	R-00	7		•	
REV. 2	- - 					
PAGE NO	. 14 of	36	•	j.	1	

ENERCON SERVICES, INC.

The deep profile was developed from regional wells and results in a higher uncertainity in both the layering (stratigraphy) and velocity measurements as described above. Shear wave velocity measurements were available from a single well located about 6 miles from the site and was limited to about 4000 ft of data (from about 5000 ft depth to about 9000 ft depth). This data was used to develop a linear extrapolation to estimate shear wave velocity from available pressure wave velocities from other wells to complete the deep profile. Thus the epistemic uncertainty for the deep profile is much greater than the shallow profile.

The deep profile lacks a statistical basis for estimating a robust standard deviation for all layer velocities. The Coefficient of Variation (COV=standard deviation/mean) calculated as 31 percent for the Atoka formation demonstrated the highest COV for all deep profile layers. This is due, in part, to the bimodal distribution of rock types and corresponding velocities within this interbedded sand and shale unit. Nonetheless, the variability was conservatively estimated at 31 percent for all deep profile layers. The velocity range for the shallow profile was defined as 25 percent of the mean velocity of each layer. This range envelopes the suspension log R1-R2 velocities as well as the cross-hole, down-hole and SASW velocities providing a conservative means to capture both epistemic and aleatory uncertainty.

4.3 Calculation of Poisson's Ratio

Poisson's ratio (μ) for each stratigraphic layer was calculated from the representative shear (V_s) and pressure (V_p) wave velocity:

$$\mu = \frac{0.5 \left(\frac{Vp}{Vs}\right)^2 - 1}{\left(\frac{Vp}{Vs}\right)^2 - 1}$$

For the shallow profile, the Poisson's ratio was derived from the representative velocities calculated for each respective engineering layer (see TXUt-001-FSAR-2.5-CALC-003). Poisson's ratio for the deep profile utilized representative velocities for each of the regional stratigraphic units as described above in Section 3.2. The calculated Poisson's ratio values for

NO.	TXU	T-001-PR-007	

REV. 2

ENERCON SERVICES, INC.

PAGE NO. 15 of 36

each layer were compared to the general rock lithology as described above and are considered to be reasonable estimates.

4.4 Measurement of Unit Weights

Mean total (wet) unit weight values for each engineering layer for the shallow profile (Layer A to Strawn (MW)) was determined from laboratory testing. The number of tests by layer and the range of values is provided in Table 5.

No samples were available for the deep portions of the profile, thus unit weight values were estimated based on principal lithology of each unit and reasonable values were estimated based on engineering judgment. A value of 150 lbs/ft³ was determined as a reasonable estimate to represent the deep profile.

4.5 Determination of Dynamic Properties

All critical structures are to be founded directly on the limestone (Layer C) or fill concrete. The shallow velocity profile, as described in Section 3.1, demonstrates that the site is underlain by soft to firm rock with velocities ranging from greater than 6000 ft/sec for limestone to 3000 ft/sec and greater for sandstones and shale within the depth interval of about 550 ft below the site. Below 550-ft depth, the shear wave velocity profile, estimated from compression wave velocities obtained from regional wells, is greater than about 7500 ft/sec. The stiffness of these units is expected to behave linearly for low- to high-strain levels. However, to evaluate the site response respective to non-linear properties, the Ground Motion Response Spectra (GMRS) was tested using both linear and non-linear properties assigned for each of the layers described below. Results of this analysis will provide the basis for performing the remaining site response.

	_	
i ·		1
		· I say sound
4		28 64
11	ŝ	19
		L

NO. TXU	T-00	1-P	R-0	07	•	
REV. 2				•••	· . ·	
					- <u>h</u>	

ENERCON SERVICES, INC.

PAGE NO., 16 of 36

4.5.1 Shear Modulus (G) and Damping

Low-strain shear modulus (G) for the shallow profile was calculated from shear wave velocities acquired from the 15 suspension logs (*Shallow Velocity Profile Development*, TXUT-001-FSAR-2.5-CALC-003), applying unit weight values as described in Section 4.3. The deep profile (below 400 ft) was calculated from the estimated shear wave velocities and a unit weight of 150 lbs/ft³ for all deep layers. Material damping was estimated for each layer of the profile based on the principal lithology. To test the profile for sensitivity to non-linear behavior, a set of degredation curves based on lithology and depth were developed in consultation with Dr. Ken Stokoe. A sensitivity run using these non-linear properties is presented in Appendix 2. For the shallow profile, limestones, shales and sandstones were assigned damping ratios of 1.8, 3.2, and 2.5 respectively. For the deep profile, limestones, shales and sandstones were assigned damping rations of 0.8, 1.0, and 1.0 respectively. See Table 4 for lower and upper bound values estimated for shear modulus (G) and G_{max} and estimated damping percentages.

The fill concrete shear modulus has been calculated from an assumed mean shear wave velocity (see Appendix 1) and unit weight. The damping percentage of 1.0% is based on judgment and is reasonable for concrete.

The compacted fill has been stratified into three layers characterized by assumed differences in shear-wave velocity, as shown in Table 4. Shear modulus has been calculated from an assumed mean shear-wave velocity for each of the three layers and the assumed unit weight. Low-strain damping percentages were assigned as 1.5 for the upper two layers with the lowermost layer assigned 1.0. Degradation curves for the compacted fill are provided for shear modulus and damping with each appropriate curve listed in Table 4.

5.0 REFERENCES

Dames & Moore, 1986, Report: Cross-Hole Geophysical Survey, Comanche Peak Steam Electric Station, Glen Rose, Texas, Volume 1.

TXUT-001-FSAR-2.5-CALC-003, Shallow Velocity Profile Development Slope Method, Rev. 0. TXUT-001-FSAR-2.5-CALC-004, Engineering Stratigraphy, Rev. 0.

REV. 2

ENERCON SERVICES, INC.

PAGE NO. 17 of 36

- GEOMAPS Company, 2007, Structure contour maps from Barnett Shale, Central Texas and Fort Worth Basin Series.
- GeoVision, 2007, Comanche Peak COL Geophysical Logging (Revision A), Report 6573-01 Rev. A.
- Montgomery, S. L., Jarvie, D. M., Bowker, K. A., and Pollastro, R. M., 2005, Mississipian Barnett Shale, Fort Worth Basin, north-central Texas: Gas-shale play with multi-trillion cubic foot potential: *AAPG Bulletin*, v. 89, p. 155–175.
- Rathje, E. M., Olson, J. E., 2007, Technical issues related to hydraulic fracturing and fluid extraction/injection near the Comanche Peak Nuclear Facility in Texas: unpublished white paper, personal communication, September 2007.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The Geology of Texas, Volume 1, Stratigraphy; The University of Texas Bulletin, No. 3232, Austin, TX.
- Thompson, D. M., 1982, Atoka Group (Lower to Middle Pennsylvanian), Northern Fort Worth Basin, Texas: Terrigenous Depositional Systems, Diagenesis, and Reservoir Distribution and Quality; Bureau of Economic Geology Report of Investigations No. 125.

6.0 APPENDIX

Appendix 1. Calculation of V_s for Atoka Unit Appendix 2 Non-linear Sensitivity Study

				PROJ	FCT REPO	RT	NO. TXU	T-001-PR-007		
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			REV. 2			
ENER	CON SERVIC	ES, INC.					Page No	.18 of 36		
Table Operator	1. Stratigra _{Taylor}	phic picks u Dallas	ised in estim ^{Mid-}	ating deep _{Kadane}	stratigraphy k Quicksilver	peneath Co Davis	manche Peal Dorchester	k Facility. Sun	Davis	Mid-
.ease	2-B Cravens	1- Hubbard	Squaw Creek	1-Bùnl	Officers Club [‡]	1- Cousins	1-Davis	1-Hallmark‡	1-Cousinst	Squaw Creek†
Distance from site (miles)	2.4	2:7	4.6	5.1	6.1	6.6	6.7	39.8	6:6	4.6
Strawn		4544	4504	4700		4700			90	500
Smithwick		-1041	-1004	-1705		-1/ 90	-3368	41000		-1000
Big Saline	-3743	-3896	-001-4		-4240	-0000	-0000	-1779	-4040	-3860
Marble	-3831	-4006	-3856	-4155	-4405	-3979	-3583	-2105	-4040	-3970
Barnett		-4491	-4304	-4585	-4605	-4416	-3973	-2265	-4480	-4320
Ellenburger		-4691	-4514	-4825	-5070	-4633	-4223	-2409	-4690	-4520

+ Well with velocity data

1. Measured off GEOMAPS cross section

		NO. TXUT-001-PR-007]
		REV. 2	
 ENERCON SERVICES, INC.		Page No. 19 of 36	1

Table 2. Calculated stratigraphic picks for CPNPP 3 & 4 and standard deviation.

	· · · · · · · · · · · · · · · · · · ·		Method		
· · · ·	Α	В	С	D	σ
Strawn	388	and the second second	336		26
Atoka		-1814	-980		417
Smithwick		-3809	-3742		34
Big Saline			-3932		
Marble		-3973	-3998	-4060	37
Barnett		-4196	-4384	-4550	145
Ellenburger	· · · · ·	-4443	-4588	· · · ·	73

A. Drilled with WLA wells.
B. Projection of GEOMAPS-stated stratigraphic picks in three nearest wells.
C. Projection of stratigraphic picks measured off GEOMAPS cross section.
D. Read off GEOMAPS structure contour maps.
Standard deviation (σ) calculated for each horizon using multiple picks from different methods.

		NO. TXUT-001-PR-007					
	 PROJECT REPORT	REV. 2					
ENERGON SERVICES, INC.		Page No. 20 of 36					

Table 3. Best estimate of deep stratigraphy and velocities

Unit	Lithology	Elevation (ft)	σ_{top}	Thickness(ft) V	/ _p (ft/sec)	σ_{V_P}	V _s (ft/sec)	σ_{vs}	Poissons Ratio
Strawn	Shales with few sands and limestones beds	388.1	26	2202	10627	1042	5546	784	0.32
Atoka	Sands and shales interbedded	-1814	63 [†]	1995	13921	4278	7642	2375*	0.28
Smithwick	Shale	-3809	33	123	10894	1108	5557	533	0.32
Big Saline	Conglomerate	-3932	63 [†]	41	18004	1973	10247	813	0.26
Marble Falls	Limestone	-3973	37	223	19740	999	10520	481	0.30
Barnett	Shale	-4196	145	247	12858	1697	7783	997	0.21
Ellenburger	Limestone	-4443	73	>3000	20382	997	10906	896	0.30

Notes

¹Reported standard deviation in elevation (σ_{top}) is average of other units' standard deviations. Strawn unit V_p & V_s values are from Mineral Wells formation logged at CPNPP Units 3 & 4 Boring 1012. Compare V_p value to Sun Hallmark Well Strawn unit $V_p \approx V_s$ values are from Mineral Weils formation logged at CPNPP Units 3 & 4 Boring 1012. Compare V_p value to Sur harmonic mean of 11188. Atoka unit V_s values are calculated from regression of other units' V_p and Vs data. Smithwick unit V_p value reported from Officers Club well. Compare value to V_p harmonic mean from Sun Hallmark well of 11849. Standard deviation (σ) in V_s estimated from the standard deviation in V_p. * Standard deviation (σ) in V_s estimated from the standard deviation in V_p.

		NO. TXUT-001-PR-007	•
	PROJECT REPORT	REV. 2	
ENERCON SERVICES, INC.		Page No. 21 of 36	

Table 4. Dynamic properties of subsurface rock materials. Sheet 1 of 4: Lithology and stratigraphy

• •

	Unit	Lithology	Depth from YG ³	Mean Elv Top (MSL, ft)	Mean Elv Ơ, Top (ft)	Mean Thickness (ft)
	Fill Concrete	To be placed as needed from top of layer C	N/A	N/A	Ń/A	•
•			0.0	822.0	N/A	3.0
	Compacted Fill	Fill for excavation	. 3:0	819.0	N/A	17.0
		•	20.0	802.0	N/A	20.0
	Fill/Residuum	Fill/Residuum/weathered limestone		847.0	N/A	
	Α	Limestone (will be removed)		834.0	12.1	36.0
· .	B1	Shale (will be removed)	- 24.0	798.0	1.8	8.0.
	B2	Shale with limestone (will be removed)	32.0	790.0	1.8	8.0
Z	С	Limestone (foundation layer)	40.0	782.0	1.8	65.0
e e	D	Shale	105.0	717.0	1.5	3.0
Sil	* E1	Limestone	108.0	714.0	1.6	24.0
Ň	E2	Limestone	132.0	690.0	1.0	34.0
Sha	E3	Limestone	166.0	656.0	1.0	34.0
	F	Limestone with interbedded shales and sand	200.0	622.0	2.2	29.0
	G	Sandstone	229:0	593.0	4.0	80.0
	н	Shale	309.0	513.0	5.2	62.0
		Sandstone	371.0	451.0	3.3	63.0
i de la	Strawn (MW)	Shales with sandstone and limestone beds	434.0	388.1	26.0	2202.0
2	Atoka ¹²	Sands and shales interbedded	2636.0	-1814.0	417.0	1995.0
ofile	Smithwick	Shale	4631.0	-3809.0	34.0	123.0
Å,	Big Saline ¹²	Conglomerate and sandstones	4754.0	-3932.0	122.0	41.0
Site	Marble Falls	Limestone	4795.0	-3973.0	37.0	223.0
Geb	Barnett	Shale	5018.0	-4196.0	145.0	247.0
. .	Ellenburger	Limestone	5265.0	-4443.0	73.0	>3000

ι.

		NO. TXUT-001-PR-007
	PROJECT REPORT	REV. 2
ENERCON SERVICES, INC.		Page No. 22 of 36

Table 4. Dynamic properties of subsurface rock materials. Sheet 2 of 4: shear- (Vs) and pressure-wave (Vp) velocity and Poisson's ratio (cont.).

		Depth		+Variability ⁴	-Variability ⁴		+Variability ⁴	-Variability ⁴	
		from YG ³	Mean Vs			Mean Vp		-	Poisson's Ratio ⁶
		(ft)	(ft/sec)	(ft/sec)	(ft/sec)	(ft/sec)	(ft/sec)	(ft/sec)	
	Fill Concrete	N/A	6800.0	7300.0	6300.0	-	-	-	0.20
		0.0	650.0	975.0	325.0	•		· · · · · · · · · · · · · · · · · · ·	0.35
	Compacted Fill	3.0	800.0	1200.0	400.0	-			0.35
		20.0	1000.0	1500.0	500.0		•	-	0.35
	Fill/Residuum	-	-	•	-		•		
·	A	-	3548.0	4435.0	2661.0	8788.0	10985.0	6591.0	0.40
	B1	24.0	2609.0	3261.3	1956.8	6736.0	8420.0	5052.0	0:41
	B2	32.0	2716.0	3395:0	2037.0	7640.0	9550.0	5730.0	0.43
rofi	С	40.0	5685.0	7106.3	4263.8	11324.0	14155.0	8493.0	0.33
0. 	D	105.0	3019.0	3773.8	2264.3	8312.0	10390.0	6234.0	0.42
, Si	E1	108.0	4943.0	6178.8	3707.3	10486.0	13107.5	7864.5	0.36
llow	E2	132.0	6880.0	8600.0	5160.0	13164.0	16455.0	9873.0	0.31
Sha	E3	166.0	4042.0	5052.5	3031.5	9255.0	11568.8	6941.3	0.38
	J F	200.0	3061.0	3826.3	2295.8	7927.0	9908.8	5945.3	0.41
	G	229.0	3290.0	4112.5	2467.5	7593.0	9491.3	5694.8	0.38
	н	309.0	3429.0	4286.3	2571.8	8188.0	10235.0	6141.0	0.39
	t in the second s	371.0	3092.0	3865.0	2319.0	7686.0	9607.5	5764.5	0.40
	Strawn (MW)	434.0	5546.0	6932.5	4159.5	10627.0	13283.8	7970.3	0.32
8	Atoka ¹²	2636.0	7642.0	10011.0	5273.0	13921.0	18236.5	9605.5	0.28
lie	Smithwick	4631.0	5557.0	7279.7	3834.3	10894.0	14271.1	7516.9	0.32
Pro	Big Saline ¹²	4754.0	10247.0	13423.6	7070.4	18004.0	23585.2	12422.8	0.26
Site	Marble Falls	4795.0	10520.0	13781.2	7258.8	19740.0	25859.4	13620.6	0.30
eeb	Barnett	5018.0	7783.0	10195.7	5370.3	12858.0	16844.0	8872.0	0.21
	Ellenburger	5265.0	10906.0	14286.9	7525.1	20382.0	26700.4	14063.6	0.30

								NO. TXUT-00	1-PR-007		
				P	ROJE	ECT RE	PORT	REV. 2			
)N	SERVICES, INC.							Page No. 23 c	of 36		
D	ynamic properti	es of subs	surface ro	ock∶materia	ls. She	<u>et 3 of 4</u>	Additional dynam	nic properties.			
		Unit	Weight ⁹	Modulus ¹⁰	Shear	Modulus	G _{max} LB	UB		Damping	
	Unit	Wet (pcf)	Dry (pc)	Mean (ksi)	LB	UB	[G _{max} /(1+C _v)] (ksi)	[G _{max} x(1+C _v)] (ksi)	Low Strain D, Damping ¹¹ (%)	Variation with Strain Relation	Low Strain D _e Damping ¹³ (%)
	Fill Concrete	150.0	140.0	1495.9			and an and a second	and a set of the set o		N/A	
		125.0		11.4					1.5	Curve 1 ¹⁶	0.8
	Compacted Fill	125.0		17.3					1.5	Curve 1 16	0.8
		125.0		27.0					1.1	Curve 2 ¹⁶	0.6
	Fill/Residuum	-	-		-					-	-
	<u> </u>	145.0	135.0	393.7	0.8	0.6	218.7	629.9	1.8	Curve 3 ¹⁵	0.9
	B1	135.0	117.0	198.2	0.8	0.6	110.1	317.1	2.0	Curve 415	1.0
	B2	135.0	117.0	214.8	0.8	0.6	119.3	343.7	2.0	Curve 4 ¹⁵	1.0
	c	155.0	148.0	1080.4	0.8	0.6	600.2	1728.6	1.8	Curve 3 ¹⁵	0.9
;	D	135.0	117.0	265.4	0.8	0.6	147.4	424.6	2.0	Curve 4 ¹⁵	1.0
	E1 .	155.0	149.0	816.8	0.8	,0.6	453.8	1306.9	1.8	Curve 3 ¹⁵	0.9
	E2	155.0	149.0	1582.3	0.8	0.6	879.1	2531.7	1.8	Curve 3 ¹⁵	0.9
5	E3	150.0	+ 142:0	528.5	0.8	0:6	293:6	845.6	1.8	Curve 3 ¹⁵	0.9
	F A	130.0	112.0	262.7	0.8	0:6	145.9	420.3	2.0	Curve 4 ¹⁵	1.0 -
	G	135:0	120.0	315.1	0.8	0.6	175.1	504.2	2.0	Curve 515	-1.0
	and the second sec	140.0	130.0	355.0	0.8	0:6	197.2	568:0	2.0	Curve 4 ¹⁵	1.0
) [145.0	132.0	299.0	0.8	0.6	166.1	478.4	2.0	Curve 5 ¹⁵	1.0
Ì	Strawn (MW)	150.0		995.0	0.8	0.6	,552.8	1592.0	1.8	Curve 2 ¹⁵	0.9
	Atoka ¹²	150.0		1890.0	1.0	1.0	945.0	3780.0	1.0	Curve 215	0.5
	Smithwick	150.0		1000.0	1.0	1.0	500.0	2000.0	1.0	Curve 215	0.5
	Big Saline ¹²	150.0	مر مر حج	3400.0	1.0	1.0	1700.0	. 6800.0	1.0	Curve 215	0.5
*	Marble Falls	150.0		3580.0	- 10	1.0	1790.0	7160.0	0.8	Curve 115	0.4
1	Barnett	150.0		1960.0	1.0		980.0	3920'0	1.0	Curve 2 ¹⁵	0.5
~	1. Tanka		P 1 1 1 1 1 1 1 1	1	p • • • • • • •	p 1.0 35		00420.0	The second se	UUI VO Z	press of a U. Will will be

i ee die ge

in a star and a set of the set of

5 10 -

		NO. TXUT-001-PR-007	· · · · · · · · · · · · · · · · · · ·
	PROJECT REPORT	REV. 2	
ENERCON SERVICES, INC.		Page No. 24 of 36	
Table 4. Dynamic properties of subsur	face rock materials. Sheet 4 of 4: Notes to Sheets 1-	-3.	

Notes	
1.0	Shallow Site Profile derived from site specific data (Ref TXUT-001-FSAR-2.5-CALC-003 and TXUT-001- FSAR-2.5 CALC-004)
2.0	Deep Velocity Profile derived from regional wells as described in the preceeding text
3.0	Depth calculated from the difference between Yard Grade (822 ft MSL (Mean Sea Level)) and the average elevation
4.0	The selected Variability for Velocity is +/- 25% for shallow profile: +/- 50for the compacted fill) : +/- 31% for deep profile: and +/-500 fos for fill concrete
5.0	Yard Grade is the elevation to which the site will be cut = 822 ft MSL
6.0	Foundation Unit is the top of Layer C on which all critical structures will be founded (either directly or backfilled with concrete)
7 0	Max and Min elevation tops not available for deep site profile, which yielded only one estimate for the top each horizon
8.0	Poisson's Batio for Shallow Site Profile calculated from Vs and Vo suspension measurements (Ref TXUT-001-ESAR-2 5-CAI C-003 and TXUT-001-ESAR-2 5-CAI C-004)
	Deep Site Profile values estimated from deep regional well Vo data as described in the preceding text
.9.0	Unit weight values for Layers A through G estimated based on results of the laboration tests. Values for Layers H L and Strawn (MW) estimated from ESAB Table 2.5.4.5G
0.0	and based on lithology
10.0	G calculated based on suspension Vs or estimated Vs for Deen Site Profile Materials
11.0	Low Strain Damping Ratio in Shear estimated from lithology for Shallow Site Profile through discussion with Dr. Ken Stokes (Figure A2-2). Deen Site Profile values based on
	comparison of Vs and lithology of shallow site layers
12.0	Standard deviation in elevation of the top of Bin-Saline and top Atoka estimated from average standard deviation for other laver elevations
13.0	Damping Ratio in unconstrained compression D, should be taken as 0.5D, with a maximum value of 5%
14.0	Berommended minimum C. (shear modulus variation factor) values are based on +/2 25% variation in V or Min values recommended by DCD (0.5 if test data is available or
14.9	1 0 if fest data is not available) whichever is higher
15.0	Curves are assigned from Figure A2-2 in Annealty 2 of this report and were used for the bon-linear censitivity study
16.0	Can be all assigned in the figure A224 in Appendix 2 of this report and where take on the horizontal sensitivity study
	Li ni ouves shown on righte re-to were used to non-international of the compacted in navera
Cuba	
Subn	ores (changes based on meeting with Wei and Win) 1-7-08 in Princeton)
A	Increase COV for compacted backlill to 50%
B	Evaluate increase or compacted backnill vs as appropriate
	Lower damping % in deep prome to 1.0 for all units except immestone to be kept at 0.8
13	I ower damping with no dreater than 2 U (this is to increase the spectra in the high free range to lessen the dip of the spectra)

4

- Lower damping % to no greater than 2.0 (this is to COV for the shallow profile Vs increased to 25% Yard grade changed from 830 to 822 Ē

.

F ¹ 4		NO. TXUT-001-PR-007	
	PROJECT REPORT	REV. 2	
ENERCON SERVICES, INC.		Page No. 25 of 36	

Table 5. Unit weight values.

		Wet U	Unit Weigh nit Weight (po	ts cf)
		Avg	Min	Max
	Shale	141.6	128.8	161
	Limestone	155.3	129.8	164.5
L L	imestone/Shale	136.7	136.7	136.7
	Sandstone	132.7	124.4	140
	Soil			
Unit	A	151.1	130.2	162.4
Unit	В	143.3	128.8	162.9
Unit	C	155.1	129.8	164.5
Unit	D	143.4	133.1	157.8
Unit	E	152.1	135	161.2
Unit	F	129.6	124.4	132.5
Unit	G	135.8	131	140
Unit	Н	0	142	142
Unit		0	0	0

No. TXUT-001-PR-007 Rev. 2 Page 26 of 36

No. TXUT-001-PR-007 Rev. 2 Page 27 of 36

Shallow Stratigraphic Profile

A - Limestone with a thicker shale bed at the top and thinner shale beds at the base

B1- Bed of shale with thin interbed of limestone

B2 - Bed of limestone at top dominated with shale at base

C - Massive limestone

Engineering Unit

D - Two beds of shale with interbed of limestone

E - Massive limestone with subunits E1, E2, and E3 distinguished by changes in resistivity

F - Gradational zone: sandstone, shale, and limestone beds

G - Massive sandstone with interbeds of shale

H - Shale with thin bed of limestone at top and a bed of sandstone at base

I - Massive sandstone with basal conglomerate

MW - Mineral Wells Formation - Shale

Limestone

Shale

Sandstone

Elevation (830 ft) and Depth (20 ft) of Yard Grade

A Engineering Unit Symbol

Figure 2

No. TXUT-001-PR-007 Rev. 2 Page 28 of 36

No. TXUT-001-PR-007 Rev. 2 Page 29 of 36

Figure 4

CP Units 1 & 2 excavation photos with interpreted Units 3 & 4 Engineering Stratigraphy (see Fig. 2)

No. TXUT-001-PR-007 Rev. 2 Page 30 of 36

Comparison of Engineering Stratigraphy

Figure 5

No. TXUT-001-PR-007 Rev. 2 Page 31 of 36

tto 1x07-001-PR-C37 Rev. 2 Page 32 of 35

Well Vp Data

No. TXUT-001-PR-007 Rev. 2 Page 33 of 36

Shallow Velocity Profile -- Regression

Mean value and 2o, when available

Unit top and standard deviation

- - Elevation of Yard Grade

A Engineering Unit Symbol (see Fig. 2 for Unit descriptions)

Figure 8

No. TXUT-001-PR-007 Rev. 2 Page 34 of 36

P9_Velocity_Locations_Units354_RevA_112607 mzd

Comparison of Shallow Velocity Measurements

No. TXUT-001-PR-007 Rev. 2 Page 35 of 36

Figure 10

No. TXUT-001-PR-007 Rev. 2 Page 36 of 36

Figure 11

		NO. TXUT-001-PR-007-Appendix 1		
	PROJECT REPORT	REV. 2	T	
ENERCON SERVICES, INC.		Page No. 1 of 2		1

 $\begin{array}{c} \mbox{APPENDIX 1} \\ \mbox{Calculation of } V_s \mbox{ for Atoka Unit} \end{array}$

	PROJECT REPORT		NO. TXUT-001-PR-007-Appendix 1
ENERCON SERVICES, INC.			REV. 2
			Page No. 2 of 2
· · · · · · · · · · · · · · · · · · ·	•		
Unit	V.	٧.	
Mineral Wells	10485	5406	
Smithwick	10894	5557	
Big Saline	18004	10247	· ·
Marble Falls	19740	10520	
Barnett	12118	7620	
Ellenburger	20382	10906	
Atoka	13921	7642	

	NO. TXUT-001-PR-007-Appendix 2					
PROJECT REPORT	REV.	2				
	PAGE NO.	1	OF	7		
	QA File No.	TXUT-	001			

APPENDIX 2

Non-Linear Sensitivity Analysis

		NO. TXUT-001-PR	-007-Append	lix 2	,
	PROJECT REPORT	REV.	2		
ENERCON SERVICES, INC.		PAGE NO.	2	OF	7
	∂_{s}	QA File No.	TXUT-	001	

Non-linear Sensitivity Analysis

Overview

Site-specific and regional data indicate that the CPNPP site is underlain by a sequence of limestones, shales and sandstones with shear wave (Vs) velocities greater than about 5800 feet/sec. Because these velocities are about half of what would be measured for crystalline rock yet more than double than a typical soil site, the profile was tested for sensitivity to non-linear behavior.

Using shear wave velocity, rock lithology (limestone, shale and sandstone) and depth as discriminators, shear modulus (G/Gmax) and damping ratio (D) versus shear strain relationships were developed through consultation with Dr. Ken Stokoe, Professor University of Texas. These properties as summarized in Table 4 above and shown on Figures A2-1 and A2-2 were then used to generate a test case to compare the strains to a profile where the properties were assumed to behave linearly.

Estimation of Strain Dependent Properties

The profile was divided into lithologies within the upper 400 feet and those deeper than 400 feet to account for increasing confining stress and unit weight. The following relationships were determined with corresponding minimum damping ratio (D_{min}) defined:

	and the second		1	
Figure A2-1 and A2-2		Shear Strain %	G/G _{max}	, %
Curve	Material and Properties			
		0.0001	1.000	0.800
•		0.0010	1.000	0.800
4	Doop Limestone (Dooth > 400 ft)	0.0030	0.990	0.900
	Deep Linestone (Deptil > 400 ft)	0.0100	0.980	1.100
		0.0300	0.940	1.600
				5
		0.0001	1.000	1.800
		0.0002	1.000	1.800
		0.0005	1.000	1.800
		0.0010	0.990	1.900
2	Deep Shale & Sandstone (Depth >400 ft)	0.0020	0.985	2.000
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		0.0050	0.980	2.200
		0.0100	0.960	2.400
		0.0200	0.910	3.000

		··•				NO.	TXUT-001-PR	007-Append	lix 2	,
			PROJECT REP	ORT	n de la composition Nota de la composition	REV		2	· · · · · · · · · · · · · · · · · · ·	
ENER		ES. INC.				P	AGE NO.	3	OF	7
						QAF	ile No.	TXUT-	001	
				1	0.00	0.1	1 000	1 000		
				ŀ	0.00	01	1.000	1.000	·.	
				ŀ	0.00	02	1.000	1.000		
				.	0.00	105	0.000	1.000		•
	3	Shallow L	imestone (Denth <400 ft)	· ·	0.00	120	0.990	2 000	1	
	Ĵ	Chanow L		· · ·	0.00	150	0.000	2 200	an a	
				ŀ	0.00	00	0.960	2 400	forten og som Segnation	
				t t	0.02	200	0.910	3.000		
				ł			0.010			
					0.00	001	1.000	3.200		
			· •	· F	0.00	002	1.000	3.200		
				· [0.00	005	0.980	3.500		
				ľ	0.00	010	0.950	3.800	т.	•
	4	Shallow S	hale (Depth <400 ft)		0.00)20	0.900	4.200		÷.
					0.00)50	0.820	5.100		· ·
· .					0.01	00	0.730	6.200		
				[0.02	200	0.620	7.600		• •
1			A Contraction of the second	8						
					0.00	001	1.000	2.500		
					0.00	002	1.000	2.500		
					0.00	005	0.990	2.600		· ,
	5	Shallow S	andstone (Depth <400 ft)	· [0.00	010	0.980	2.700		
		Chanow O			0.00)20	0.950	2.900	· · · ·	· · ·
		· · · ·			0.00	050	0.910	3.200		
-				4 A.	0.0	100	0.850	4.000		
			····		0.02	200	0.770	5.000		

Calculations

Site-response calculations were performed using an equivalent-linear formulation and, using as rock input the 10⁻⁴ broadband spectrum from the probabilistic seismic hazard analysis, and considering a profile that extends from bedrock to Elevation 782 feet (top of Glen Rose Limestone Layer C). Calculations were performed for two separate cases, as follows: (1) a linear analysis, using the low-strain damping ratios from Table 4; and (2) a non-linear analysis, using the strain-dependent damping and stiffness properties given in Figures A2-1 and A2-2 and tabulated above.

Results

Figures A2-3 compares the spectra at the top of the profile, for the two sets of calculations. The linear results are slightly higher than the non-linear results. This is which is attributed mainly to the conscious conservative choice of damping ratios for the linear analysis (see Table 4, subnotes C

		NO. TXUT-001-PR-007-Appendix 2					
	PROJECT REPORT	REV.	2				
		PAGE NO.	4	OF	7		
ENERGON SERVICES, INC.		QA File No.	TXUT-	001			

and D). An additional contributor is the increased damping that accompanies nonlinear deformation.

Appendix 2 References

Risk Engineering, Inc. (2007). *High frequency and low frequency horizontal rock spectra*, REI QA record 0737-ACR-026.

Risk Engineering, Inc. (2008). Calculation of Site Response for Comanche Peak Units 2 and 3, Rev. 1. REI QA record 0737-ACR-030.

Figure A2-1: G/G_{max} vs. Strain for Rock Materials

	NO. TXUT-001-PR-007-Appendix 2					
PROJECT REPORT	REV.	2				
	PAGE NO.	5	OF	7		
	QA File No.	TXUT-	001			
	PROJECT REPORT	PROJECT REPORT PAGE NO. QA File No.	PROJECT REPORT REV. PAGE NO. QA File No. TXUT-001-PR-007-Append 2 PAGE NO. 5 QA File No. TXUT-	NO. TXUT-001-PR-007-Appendix 2 REV. 2 PAGE NO. 5 OF QA File No. TXUT- 001		

1		NO. TXUT-001-PR-007-Appendix 2					
F. 3	PROJECT REPORT	REV.	2				
		PAGE NO.	6	OF	7		
ENERGON SERVICES, NO.		QA File No.	TXUT-	001			

		NO. TXUT-001-PR-007-Appendix 2					
F. 3	PROJECT REPORT	REV.	2				
ENERCON SERVICES INC		PAGE NO.	7	OF	7		
		QA File No.	TXUT-	001			

Figure A2-4a: G/Qvs. Strain (Sand Characteristic Behaviour, EPRI 1993)

Figure A2-4b: Damping in Shear vs. Strain (Sand Characteristic Behaviour, EPRI 1993)

U. S. Nuclear Regulatory Commission CP-200901587 TXNB-09073 11/24/2009

.)

Attachment 3

SASSI Model of US-APWR Reactor Building, 4DS-CP34-20080048 Rev.1, Mitsubishi Heavy Industries, LTD, September 17, 2008

This calculation is proprietary and will be submitted by a separate letter.

U. S. Nuclear Regulatory Commission CP-200901587 TXNB-09073 11/24/2009

Attachment 4

Site Specific SSI Analysis of US-APWR Reactor Building, SSI-12-05-100-003 Rev. C, URS, November 13, 2009.

This calculation is proprietary and will be submitted by a separate letter.