SECTION 5

TABLE OF CONTENTS

GROUND WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

Page Number

5.0	UPP	ER CHIN	ILE AQUIFER MONITORING	5.1-1
	5.1	UPPER	CHINLE WELL COMPLETION	5.1-1
	5.2	UPPER	CHINLE WATER LEVELS	5.2-1
	5.3	UPPER	CHINLE WATER QUALITY	5.3-1
		5.3.1	SULFATE - UPPER CHINLE	5.3-1
		5.3.2	TOTAL DISSOLVED SOLIDS - UPPER CHINLE	5.3-2
		5.3.3	CHLORIDE - UPPER CHINLE	5.3-3
		5.3.4	URANIUM - UPPER CHINLE	5.3-4
		5.3.5	SELENIUM - UPPER CHINLE	5.3-4
		5.3.6	MOLYBDENUM - UPPER CHINLE	5.3-5
		5.3.7	NITRATE - UPPER CHINLE	5.3-6
		5.3.8	RADIUM-226 AND RADIUM-228 - UPPER CHINLE.	5.3-6
		5.3.9	VANADIUM - UPPER CHINLE	5.3-6
		5.3.10	THORIUM-230 - UPPER CHINLE	5.3-7

FIGURES

5.1-1	CHINLE AQUIFER WELL LOCATIONS	5.1-3
5.1-2	LIMITS OF UPPER CHINLE AQUIFER AND WELL LOCATIONS	5.1-4
5.1-3	TYPICAL GEOLOGIC CROSS SECTION	5.1-5
5.2-1	WATER-LEVEL ELEVATIONS OF THE UPPER CHINLE AQUIFER, FALL 2008, FT-MSL	5.2-3
5.2-2	LOCATION OF UPPER CHINLE WELLS WITH WATER-LEVEL PLOTS, 2008	5.2-4
5.2-3	WATER-LEVEL ELEVATION FOR WELLS 494, CE2, CW3, CE5, CW5, CW25 AND CW50	5.2-5
5.2-4	WATER-LEVEL ELEVATION FOR WELLS 929, 931, 934, CW13, CW18 AND CW40	5.2-6
5.3-1	SULFATE CONCENTRATIONS OF THE UPPER CHINLE AQUIFER, 2008, mg/l	5.3-8
5.3-2	LOCATION OF UPPER CHINLE WELLS WITH WATER QUALITY PLOTS, 2008	5.3-9
5.3-3	SULFATE CONCENTRATIONS FOR MIXING ZONE WELLS 494, CE2, CE5, CE11 AND CW50	5.3-10

SECTION 5

TABLE OF CONTENTS

GROUND WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

FIGURES (continued)

		Page Number
5.3-4	SULFATE CONCENTRATIONS FOR NON-MIXING ZONE WELLS 929, 934, CW3, CW18 AND CW40	5.3-11
5.3-5	TDS CONCENTRATIONS OF THE UPPER CHINLE AQUIFER, 2008, mg/l	5.3-12
5.3-6	TDS CONCENTRATIONS FOR MIXING ZONE WELLS 494, CE2, CE5, CE11 AND CW50	5.3-13
5.3-7	TDS CONCENTRATIONS FOR NON-MIXING ZONE WELLS 929, 934, CW3, CW18 AND CW40	5.3-14
5.3-8	CHLORIDE CONCENTRATIONS OF THE UPPER CHINLE AQUIFER, 2008, mg/l	5.3-15
5.3-9	CHLORIDE CONCENTRATIONS FOR MIXING ZONE WELLS 494, CE2, CE5, CE11 AND CW50	5.3-16
5.3-10	CHLORIDE CONCENTRATIONS FOR NON-MIXING ZONE WELLS 929, 934, CW3, CW18 AND CW40	5.3-17
5.3-11	URANIUM CONCENTRATIONS OF THE UPPER CHINLE AQUIFER, 2008, mg/1	5.3-18
5.3-12	URANIUM CONCENTRATIONS FOR MIXING ZONE WELLS 494, CE2, CE5, CE11 AND CW50	5.3-19
5.3-13	URANIUM CONCENTRATIONS FOR NON-MIXING ZONE WELLS 929, 934, CW3, CW18 AND CW40	5.3-20
5.3-14	SELENIUM CONCENTRATIONS OF THE UPPER CHINLE AQUIFER, 2008, mg/l	5.3-21
5.3-15	SELENIUM CONCENTRATIONS FOR MIXING ZONE WELLS 494, CE2, CE5, CE11 AND CW50	5.3-22
5.3-16	SELENIUM CONCENTRATIONS FOR NON-MIXING ZONE WELLS 929, 934, CW3, CW18 AND CW40	5.3-23
5.3-17	MOLYBDENUM CONCENTRATIONS OF THE UPPER CHINLE AQUIFER, 2008, mg/l	5.3-24
5.3-18	MOLYBDENUM CONCENTRATIONS FOR MIXING ZONE WELLS 494, CE2, CE5, CE11 AND CW50	5.3-25
5.3-19	MOLYBDENUM CONCENTRATIONS FOR NON-MIXING ZONE WELLS 929, 934, CW3, CW18 AND CW40	S 5.3-26

SECTION 5

TABLE OF CONTENTS

GROUND WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

FIGURES (continued)

Page Number

5.3-20	NITRATE CONCENTRATIONS OF THE UPPER CHINLE AQUIFER, 2008, mg/l5.3-	27
5.3-21	RADIUM-226 AND RADIUM-228 CONCENTRATIONS OF THE UPPER CHINLE AQUIFER, 2008, pCi/l	28
5.3-22	VANADIUM CONCENTRATIONS OF THE UPPER CHINLE AQUIFER, 2008, mg/l	29
5.3-23	THORIUM-230 CONCENTRATIONS OF THE UPPER CHINLE AQUIFER, 2008, pCi/l	30

TABLES

5.1-6	1-1 BASIC WELL DATA FOR THE CHINLE HOMESTAKE WELLS	5.1-
5.1-8	1-2 BASIC WELL DATA FOR THE CHINLE BROADVIEW AND FELICE ACRES WELLS	5.1-2
5.1-10	1-3 BASIC WELL DATA FOR THE CHINLE MURRAY ACRES AND PLEASANT VALLEY WELLS	5.1-3
	1-4 BASIC WELL DATA FOR THE CHINLE REGIONAL WELLS	5.1-4

5.0 5.1

UPPER CHINLE AQUIFER MONITORING

UPPER CHINLE WELL COMPLETION

Chinle aquifer well locations are shown on Figure 5.1-1. The Upper and Middle Chinle aquifers do not exist in the area west of Ralph Card Road. Table 5.1-1 presents basic information for the Chinle wells located on the Homestake property. This table indicates well coordinates, well depth, casing diameter, water level, measuring point in feet above land surface and elevation, and depth and elevation to the top of the Chinle aquifers. A "U" follows the elevation of the top of the Upper Chinle aquifer, and an "M" and an "L" have the same meaning for the Middle and Lower Chinle aquifers, respectively. Some of the wells have been used to define the depth to the base of the alluvium, and an "A" is presented following the elevation to denote that these values are for the base of the alluvium. The casing perforation interval and aquifer unit are also presented in this table.

Table 5.1-2 presents basic well data for Chinle wells in Broadview Acres and Felice Acres. Table 5.1-3 presents similar data for Murray Acres and Pleasant Valley Estates Chinle wells. Wells that are not located within the immediate Grants Project property or within the four subdivision boundaries are denoted on Table 5.1-4 as the regional Chinle wells (see Figure 5.1-1 for inner regional boundary shown in blue). No new Chinle wells were drilled by HMC in 2007.

An analysis of the background water quality for the Chinle aquifers was presented in Hydro-Engineering 2003b. Background values for the Chinle mixing zone and the Upper, Middle and Lower Chinle non-mixing zones were also defined in the previously cited report. These site standard values are listed in the title block of the water-quality figures in this report.

The location of Upper Chinle wells and the areal extent of the Upper Chinle aquifer at the Grants Project are shown on Figure 5.1-2. Upper Chinle wells CW4R, CW5, CW13 and CW25 are shown in green to denote that these are fresh-water injection wells. Upper Chinle wells CE2, CE5, CE6, CE11, CE12 and CW3 were pumped as a source of flushing water for the Large Tailings Pile in 2007 and are shown in orange. Well CW18 was used as a supply for fresh-water injection starting in late September of 2002 but was not used continuously after May of 2004. It was not used as a freshwater injection supply in 2007. Figure 5.1-2 also shows the location of the West and East Faults. A blue dot pattern is used to show the limits of the Upper Chinle sandstone where Chinle shale exists between the sandstone and the alluvium. Figure 5.1-

3 presents a typical geologic cross section to show the relative position of the alluvial and Chinle aquifers (see Figure 5.1-2 for the location of this cross section).

The subcrop of the Upper Chinle sandstone where the alluvium is saturated or unsaturated above the Upper Chinle sandstone is also shown on Figure 5.1-2. The Upper Chinle aquifer does not exist to the west and south of the subcrop area. The Upper Chinle sandstone, therefore, does not exist west of the West Fault.

Grants Reclamation Project 2008 Annual Report Monitoring / Performance Review

5.1-2

FIGURE 5.1-3. TYPICAL GEOLOGIC CROSS SECTION

TABLE 5.1-1. WELL DATA FOR THE CHINLE HOMESTAKE WELLS.

		<u></u>	WELL	CASING	w	ATER LE	VEL	MP ABOVE		DEPTH TO	ELEV. OF	CASING PERFOR-	
WELL NAME	NORTH. COORD.	EAST. COORD.	DEPTH (FT-MP)	DIAM (IN)	DATE	DEPTH (FT-MP)	elev. (FT-MSL)	LSD (FT)	MP ELEV. (FT-MSL)	AQUIFER (FT-LSD)	AQUIFER (FT-MSL)	ATIONS (FT-LSD)	AQUIFER
0930	1542848	494997	410.0	6.0	12/4/2008	128.65	6469.89	0.0	6598.54	30	6569	A -	
										335	6264	M 330-400	Middle
0931	1542461	495207	366.7	6.0	12/4/2008	65.87	6544.69	0.9	6610.56	339	6271	U -	Upper
0934	1540641	493941	293.0	6.0	12/29/2008	39.15	6546.44	2.0	6585.59	30	6554	Α -	
				•						282	6302	U 330-400	Upper
CE1	1541923	489979	137.0	5.0	12/4/2008	47.88	6522.31	4.4	6570.19	75	6491	A -	—
0=0	15 40 475	400404	440.7		40,00,0000	74.00	0504.00	4.0	0570.05	106	6460	0 98-138	Upper
CE2	1542475	490434	119.7	5.0	12/29/2008	/1.96	6504.39	1.8	6576.35	74 74	6501 6501	A -	
055	1541453	400605	140.0	5.0	12/20/2008	46.03	6522 52	16	6568 55	63	6504	Δ .	Орреі
025	1041400	430033	140.0	5.0	12/20/2000	40.00	0522.52	1.0	0000.00	103	6464	U 100-140	Upper
CE6	1541698	490433	140.0	6.0	12/29/2008	124.95	6440.24	1.5	6565.19	75	6489	U -	Upper
CE7	1542652	490079	120.0	6.0	12/29/2008	43.80	6532.19	1.9	6575.99	95	6479	U 100-140	Upper
CE8	1540704	491556	200.0	6.0	12/4/2008	42.11	6527.59	1.7	6569.70	90	6478	U 160-200	Upper
CE10	1541737	490177	130.0	6.0	12/4/2008	46.57	6524.29	2.3	6570.86	75	6494	U 90-130	Upper
CE11	1541487	490494	140.0	6.0	12/29/2008	78.10	6487.32	1.6	6565.42	90	6474	U 100-140	Upper
CE12	1541867	489642	120.0	6.0	12/29/2008	57.40	6514.83	2.1	6572.23	80	6490	U 80-120	Upper
CE13	1542693	490338	130.0	6.0	12/4/2008	43.75	6530.89	1.7	6574.64	95	6478	U 90-130	Upper
CW1	1545235	490295	325.0	5.0	12/29/2008	168.85	6416.37	0.7	6585.22	105	6480	Α-	
										272	6313	M 212-323	Middle
CW2	1545212	491302	355.0	5.0	12/29/2008	167.10	6418.38	1.7	6585.48	85	6499	A -	
										136	6448	U -	
										305	6279	M 306-353	Middle
CW2-1	1545212	491302	168.0	5.0	12/4/2008	48.02	6537.46	1.7	6585.48	85 136	6499 6448	A -	Liopor
CWO	4545200	402406	225.0	E 0	10/00/0000	56 A6	6520 72	0.7	6597 19	70	6516	0 243-255	Opper
CVVS	1949200	493490	230,0	5.0	12/29/2000	30.43	0550.75	0.7	0307.10	209	6377	U 210-235	 Upper
										348	6238	м -	
* CW4	1541682	490874	145.0	5.0	9/7/1994	39.06	6531.89	0.8	6570.95	70	6500	Α-	
										112	6458	U 110-145	Upper
CW4R	1541416	490787	138.9	6.0	12/29/2008	2.60	6566.13	1.3	6568.73	61	6506	Α-	
			÷							104	6463	U 102-142	Upper
CW5	1538729	490221	170.0	5.0	12/3/2007	2.41	6566.93	1.6	6569.34	65	6503	A -	
0					4014/0000					137	6431	0 135-170	Upper
CW6	1542588	488301	282.0	4.0	12/4/2008	121.48	6454.16	1.0	6575.64	236	6339	M 246-276	Middle
CW7	1545285	488773			10/17/1995	60.80	6522.79	0.0	6583.59			C 120-130	Chinle
CW8	1545009	491238	285.0	6.0	12/5/2000	38.90	6552.93	0.0	6591.83	95	6507	C 276-286	Chinle
CIMO	1542940	101015	180.0	50	12/1/2000	63 70	6520 12	0.0	6501 82	00	4307	11 130 190	Unnor
CMAA	1042040	491013	100.0	0.0	12/4/2000	02.70	0029.13	0.0	0031.03			0 130-100	opper

TABLE 5.1-1. WELL DATA FOR THE CHINLE HOMESTAKE WELLS. (cont'd.)

			WFU	CASING	W	ATERIE	VFI			DEPTH TO	ELEV. OF	CASING PERFOR-	
WELL NAME	NORTH. COORD.	EAST. COORD.	Depth (Ft-Mp)	DIAM (IN)	DATE	DEPTH (FT-MP)	ELEV. (FT-MSL)	LSD (FT)	MP ELEV. (FT-MSL)	AQUIFER (FT-LSD)	AQUIFER (FT-MSL)	ATIONS (FT-LSD)	AQUIFER
CW9	1542840	491015	180.0	5.0	12/4/2008	62.70	6529.13	0.0	6591.83	80	6512	A -	
* CW10	1542823	491803	185.0	5.0	11/13/1995	50.03	6537.86	0.0	6587.89	75	6513	Α-	_
										167	6421	U 155-185	Upper
CW13	1538349	491827	267.7	6.0	1/29/2007	72.70	6504.00	2.7	6576.70	230	6344	U 225-265	Upper
										378	6196	М -	
CW14	1538786	488884	360.9	6.0	10/27/2008	15.00	6551.09	2.9	6566.0 9	56	6507	Α-	_
										66	6497	U-	-
										310	6253	M 278-358	Middle
CW17	1545279	487771	108.0	5.0	12/4/2008	50.82	6538.50	3.1	6589.32	73	6513	Α -	
										85	6501	M 83-103	Middle
CW24	1545773	487760	118.0	5.0	12/4/2008	50.97	6537.70	3.0	6588.67	61	6525	A -	
										65	6521	M 78-118	Middle
CW25	1540802	488866	102.0	5.0	5/5/2008	5.33	6561.87	3.0	6567.20	53	6511	A -	
		400.000			40/4/0000					53	6511	0 62-102	Upper
CW32	1543413	483523	300.0	6.0	12/4/2008	140.10	6427.18	1.7	6567.28	70 157	6496 6400	A -	_
										157	6409	L 210-303	
CM33	15/391/	496347	347.0	6.0	12///2008	106 10	6468 70	1 8	6574 80	83	6400	A 100 100	LONCI
04433	1040014	400347	547.0	0.0	1214/2000	100.10	0400.15	1.0	0374.03	272	6301	n - 1 267-287	l ower
										272	6301	L 307-347	
CW34	1547827	487707	65.7	6.0	8/27/1996	65.65	6528.75	3.2	6594.40	20	6571	Α-	
,										40	6551	M 33-63	Middle
CW35	1547001	488794	120.0	5.0	12/4/2008	52.81	6538.36	1.9	6591.17	63	6526	A -	
										90	6499	M 93-118	Middle
CW50	1546687	491159	170.9	5.0	12/4/2008	50.86	6537.70	3.0	6588.56	128	6458	U 130-170	Upper
CW52	1548171	491887	180.0	5.0	12/4/2008	70.25	6522.15	2.0	6592.40	138	6452	U 140-180	Upper
										302	6288	м -	
WR25	1545267	487430	113.3	5.0	12/4/2008	48.28	6538.18	2.8	6586.46	50	6534	A -	
										71	6513	M 71-111	Middle

NOTE: A = Alluvial Aquifer, Base

U = Upper Chinle Aquifer, Top

· M = Middle Chinle Aquifer, Top

L = Lower Chinle Aquifer, Top

* = Abandoned

TABLE 5.1-2. WELL DATA FOR THE CHINLE BROADVIEW AND FELICE ACRES WELLS.

	·····		WELL	CASING	w	ATER LE	Vel	MP ABOVF		DEPTH TO	ELEV. OF	CASING PERFOR-	<u></u>
WELL NAME	NORTH. COORD.	EAST. COORD.	DEPTH (FT-MP)	DIAM (IN)	DATE	DEPTH (FT-MP)	ELEV. (FT-MSL)	LSD (FT)	MP ELEV. (FT-MSL)	AQUIFER (FT-LSD)	AQUIFER (FT-MSL)	ATIONS (FT-LSD)	AQUIFER
						Bi	oadview			- <u></u>	<u> </u>		
0430	1538469	490300	145.0				. 	0.0	6568.00	72 135	6496 6433	A - U -	Alluvium Upper
0431	1538045	490090	130.0	6.0	4/12/1994	35.00	6533.00	0.0	6568.00	60 118	6508 6450	A 125-130 U 125-130	Alluvium Upper
0434	1538370	489420	280.0	6.0	10/4/2007	39.51	6524.17	0.0	6563.68	75 265	6489 6299	A - M -	 Middle
0436	1538439	488947	295.0	5.0	10/29/1996	71.82	6490.91	0.0	6562.73	90 280	6473 6283	A - M 280-295	 Middle
0437	1537859	491128	340.0	5.0	10/29/1996	63.23	6508.77	1.8	6572.00	90 180 280	6480 6390 6290	A - U - M 240-300	 Midd le
0446	1537830	488960	110.0	6.0	9/8/1983	41.28	6518.72	0.0	6560,00	60 60	6500 6500	A 60-95 U 60-95	Alluvium Upper
0447	1537490	490480	142.0	6.0	4/11/1985	41.18	6526.82	0.0	6568.00	80 138	6488 6430	A 120-142 U 120-142	Alluvium Upper
0449	1537440	488830	267.0	6.0	12/5/1994	63.42	6496.58	0.0	6560.00			М -	Middle
0457	1538210	490000	300.0	5.0	7/2/2008	124.88	6446.12		6571.00			м -	Middle
CE9	1538203	489458	130.0	6.0	12/5/2008	37.20	6525.92	1.2	6563.12			U 90-130	Upper
CW55	1538283	489471	360.0	6.0	12/5/2008	40.95	6523.21	2.3	6564.16	260	6302	м -	Middle
						Fel	ice Acres						
0481	1538350	490180	320.0	4.0	-	_		0.0	6568.00	110 270	6458 6298	A 270-310 M 270-310	Alluvium Middle
0482	1536981	489579	260.0	5.0	12/5/2008	38.00	6524.66	0.0	6562.66	80 210	6483 6353	A 220-260 M 220-260	Alluvium Middle
0483	1536586	489753	280.0	5.0	10/1/2008	50.70	6511.96	0.0	6562.66	40 65 236	6523 6498 6327	A - U - M 270-300	Alluvium Middle
0484	1536448	490356	320.0	5.0	12/26/1996	39.43	6524.55	0.0	6563.98	38 129 280	6526 6435 6284	A - U - M 220-300	 Middle
0485	1535800	489630	260.0	6.0	7/18/1996	70.90	6494.10	0.0	6565.00	35 70 223	6530 6495 6342	A - U - M 220-260	 Middle
0486	1535800	489024	260.0	4.0	8/4/2004	90.40	6468.00	0.0	6558.40			M 200-260 U - A -	Middle
0487	1536175	488950	260.0		7/24/1996	49.20	6511.80	0.0	6561.00			M -	Middle
0488	1536500	488950	190.0	6.0	8/19/2003	113.80	6448.20	0.0	6562.00		_	м -	Middle

TABLE 5.1-2. WELL DATA FOR THE CHINLE BROADVIEW AND FELICE ACRES WELLS. (cont'd.)

,-

WELL NAME	NORTH. COORD.	EAST. COORD.	WELL Depth (Ft-Mp)	CASING DIAM (IN)	W	Ater Lev Depth (Ft-MP)	<mark>/el.</mark> Elev. (Ft-MSL)	MP ABOVE LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO AQUIFER (FT-LSD)	ELEV. OF AQUIFER (FT-MSL)	C, PE A (F	ASING RFOR- TIONS T-LSD)	AQUIFER
0489	1536850	488950						0.0	6562.00			М	-	Middle
0493	1536702	489492	300.0	5.0	12/23/2008	183.50	6376.78	0.9	6560.28	40	6519	Α	-	_
										65	6494	U	-	_
										236	6323	M 2	70-300	Middle
0494	1536689	489494	85.0	5.0	12/5/2008	36.25	6523.89	0.6	6560.14	40	6520	Α		_
										65	6495	U	65-85	Upper
0498	1534661	488953	150.0	6.0	12/3/2008	62.62	6497.97	2.0	6560.59	80	6479	Α 7	0-110	Alluvium
										80	6479	M 13	30-150	Middle
CW44	1535048	488891	208.0	6.0	12/5/2008	73.90	6486.84	2.5	6560.74	94	6464	Α	-	Alluvium
										130	6428	M 6	9-208	Middle
CW45	1535036	489494	193.0	5.0	12/5/2008	63.70	6497.61	0.6	6561.31	90	6471	A		
								`		166	6395	M 16	53-193	Middle
CW46	1534642	489595	187.3	5.0	12/18/2006	72.20	6490.06	1.5	6562.26	88	6473	A		
										112	6449	M 12	25-185	Middle
CW53	1536668	490262	157.0	5.0	12/5/2008	12.94	6552.00	3.0	6564.94	110	6452	U 11	17-157	Upper
NO	TE: A = Allı	vial Aquifer,	Base											

U = Upper Chinle Aquifer, Top

M = Middle Chinle Aquifer, Top

L = Lower Chinle Aquifer, Top

* = Abandoned

T

TABLE 5.1-3. WELL DATA FOR THE CHINLE MURRAY ACRES AND PLEASANT VALLEY WELLS.

	·····		WELL	CASING	W		VFI	MP	<u></u>	DEPTH TO	ELEV. OF	CASING	<u> </u>
WELL NAME	NORTH. COORD.	EAST. COORD.	DEPTH (FT-MP)	DIAM (IN)	DATE	DEPTH (FT-MP)	ELEV. (FT-MSL)	LSD (FT)	MP ELEV. (FT-MSL)	AQUIFER (FT-LSD)	AQUIFER (FT-MSL)	ATIONS (FT-LSD)	AQUIFER
							Murray						
0803	1540800	487430		6.0	9/19/1983	84.86	6476.14	0.0	6561.00			C 85-180	Chinle
0807	1540598	488610	287.0	6.0				0.0	6565.00	63	6502	A 65-160 A -	Alluvium
										275	6290	M 275-285	Middle
8080	1540080	487490	290.0	5.0				1.6	6561.00	85 255	6474 6304	A - M 260-290	 Middle
0812	1539910	488505	300.0	6.0				0.6	6566.00	68	6497	Α-	
										268	6297	M 264-284	Middle
0813	1539300	488620	280.0	6.0		_		、0.0	6565.00	63 230	6502 6335	A - M 235-255	 Middle
0814	1539030	488590	280.0	6.0				0.0	6565.00	_		м -	Middle
0816	1539110	487705	255.0	6.0	·			0.0	6557.00	35 240	6522 6317	A - M 240-250	 Middle
0817	1539190	487590		_	7/22/1995	70.34	6486.66	0.0	6557.00		_	M -	Middle
0818	1539085	487547	243.0	4.0	_			0.0	6557.00	62	6495	A -	
										230	6327	M 223-243	Middle
0819	1539000	487000	222.0	6.0				0.0	6557.00	62	6495	Α-	_
										210	6347	M 210-220	Middle
0820	1539254	486513	230.0		5/9/2002	99.20	6458.80	0.0	6558.00		-	M 125-230	Middle
0821	1538810	487320	260.0	7.0	11/1/1994	35.88	6524.12	0.0	6560.00			м -	Middle
0823	1540150	487720	265.0	6.0				0.0	6561.00		_	M 257-267	Middle
										40	6521	Α -	
ACW	1540235	488070	325.0	6.0	12/4/2008	133.00	6430.80	1.2	6563.80	40	6523	A -	-
										57 264	6299	U - M 265-325	Middle
AW	1540235	488015	156 0	60	12/4/2008	36 20	6527 23	0.1	6563.43	63	6500	A -	Alluvium
	10-10200	400010	100.0	0.0		00.20	0027.20	0.1	0000.10	100	6463	U 66-155	Upper
HCW	1541060	487785	295.0	6.0	7/20/2000	75.61	6486.39	1.0	6562.00	82	6479	A -	
										264	6297	M 264-295	Middle
WCW	1541045	488520	307.0	6.0	12/4/2008	134.50	6432.87	0.8	6567.37	83	64 8 4	Α-	
						Dises				254	6313	M 257-307	Middle
						Pleas	ant vane	¥.					
0530	1540229	484358	490.0	5.0	10/30/1998	95.78	6463.41	1.5	6559.19	265	6293	L -	Lower
0832	1539263	485629	280.0	4.0				0.0	6557.00	85	6472	A -	
	1510005	495959							0507.00	240	6317	L 238-278	Lower
0837	1540995	485950	200.0	5.0	9///1983	59.87	6507.13	0.0	6567.00	80 160	6487 6407	A -	
* 0842	1541650	483080	250.0					0.0	6558 00		U-107	1 .	LOWEI
0072	10-1000	00500	200.0				1 - 10	0.0	0000.00	. —		L ~	LUWCI

TABLE 5.1-3. WELL DATA FOR THE CHINLE MURRAY ACRES AND PLEASANT VALLEY WELLS. (cont'd.)

WELL NAME	NORTH. COORD.	EAST. COORD.	WELL Depth (Ft-MP)	CASING DIAM (IN)	W DATE	ATER LE DEPTH (FT-MP)	vel Elev. (FT- M SL)	MP ABOVE LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO AQUIFER (FT-LSD)	ELEV. OF AQUIFER (FT-MSL)	Casing Perfor- Ations (FT-LSD)	AQUIFER
0900	1540800	483700	172.1		7/24/1995	91.41	6468.59	1.5	6560.00			L -	Lower
NO	TE: A = All	uvial Aquifer,	Base										
	U = Up	per Chinle A	quifer,Top										
	M = Mi	iddle Chinle /	Aquifer, Top										
	L = Lov * = Aba	wer Chinle A andoned	quifer,Top										

TABLE 5.1-4. WELL DATA FOR THE CHINLE REGIONAL WELLS.

			WELL	LVGINU	w		VEI	MP		DEPTH TO	ELEV. OF		
WELL NAME	NORTH. Coord.	EAST. Coord.	DEPTH (FT-MP)	DIAM (IN)	DATE	DEPTH (FT-MP)	ELEV. (FT-MSL)	LSD (FT)	MP ELEV. (FT-MSL)	AQUIFER (FT-LSD)	AQUIFER (FT-MSL)	ATIONS (FT-LSD)	AQUIFER
0536	1539560	479701	160.0	5.0	9/12/2000	144.70	·····	-2.0				L -	Lower
0536R	1539888	479654	264.0	4.0	12/5/2007	139.06	6415.94	2.0	6555.00	62	6491	A -	·
										160	6393	L -	Lower
0538	1533486	486899	170.0	6.0	12/4/2008	82.21	6466.73	2.0	6548.94	95	6452	A 50-90	Alluvium
										133	6414	L 130-170	Lower
0539	1534014	487596	210.0	6.0	12/4/2008	86.77	6468.55	2.0	6555.32	100	6453	A 80-100	
										100	6453	A 50-70	Alluvium
										· 1/5	6378	L 170-210	Lower
0544	1535653	487570	80.0	4.0				-	6558.00	40		A -	
				·						60		M 60-80	Middle
0546	1536330	487560	160.0	5.0					6559.00	80		A -	Alluvium
										135	—	M 130-160	Middle
0547	1529133	483106	127.0			-			. —			L -	Lower
0548	1521230	482903	220.0									Ł -	Lower
0549	1528942	483572	313.0							—		L -	Lower
0580	1537700	492300	235.0	4.5					6579.00			U -	Upper
0653	1533283	486570	206.0	6.0	12/4/2008	80.02	6464.95	1.6	6544.97	97	6446	A 69-206	Alluvium
										135	6408	L -	Lower
0850	1534652	486044	54.0	5.0	12/4/2008	55.70	6493.45	3.2	6549.15	37	6509	M 29-54	Middle
										37	6509	A -	
0853	1532124	484824	95.0	5.0	12/4/2008	83.00	6458.38	1.7	6541.38	60	6480	Α-	,
										60	6480	L 55-95	Lower
0859	1534549	487426	83.0	5.0	12/4/2008	70.75	6482.01	2.7	6552.76	52	6498	M 50-83	Middle
0901	1531531	492847	270.0	5.0	11/4/1981	46.88	6552.12	0.0	6599.00	40	6559	Α-	
										190	6409	L 240-260	Lower
0902	1533700	488800	150.0	6.0	1/28/1995	52.10	6507.90	0.0	6560.00	72	6488	M 78-102	Middle
										72	6488	A -	
0903	1530250	486900	281.0	5.0				0.0	6559.00	220	6339	L 120-260	Lower
0904	1531100	487150	200.0	4.0				0.0	6560.00			L 170-200	Lower
0908	1534430	483325	282.8	5.0	11/3/1998	81.16	6463.21	1.5	6544.37	107	6436	A -	
										232	6311	L -	Lower
0927	1548300	491700			10/8/2008	160.00	6435.00	1.0	6595.00			м -	Middle
0929	1544684	495585	320.0	5.0	12/29/2008	45.30	6547.27	2.0	6592.57			U 290-320	Upper
0932	540436	495407	501.0	6.0	4/19/2001	86.73	6515.38	0.0	6602.11	354	62 48	U -	
										492	6110	M 450-490	Middle
0933	1540087	495231		5.0	12/29/2008	57.83	6542.68	0.5	6600.51	-		U -	Upper
0937	1542180	471478	182.0	5.0				0.0	6578.00	70	6508	A -	
										160	6418	L 95-182	Lower
	1620280	403001	300.0	5.0	12/1/2008	12.00	6576 61	16	6588 61	64	6523	٨	

TABLE 5.1-4. WELL DATA FOR THE CHINLE REGIONAL WELLS. (cont'd.)

	NORTH. COORD.	EAST. COORD.	WELL DEPTH (FT-MP)	CASING Diam (IN)	WATER LEVEL			MP		DEPTH TO	ELEV. OF	CASING PERFOR-	
WELL NAME					DATE	DEPTH (FT-MP)	elev. (FT-MSL)	LSD (FT)	MP ELEV. (FT-MSL)	AQUIFER (FT-LSD)	AQUIFER (FT-MSL)	ATIONS (FT-LSD)	AQUIFER
0944	1539280	493091	300.0	5.0	12/1/2008	12.00	6576.61	1.6	6588.61	252	6335	U 220-280	Upper
0945	1537986	493900	300.0		3/21/1985	92.41	6498.08	0.0	6590.49			·U -	Upper
0946	1537804	491754	260.0	5.0	10/17/1996	37.45	6541.59	0.0	6579.04	220	6359	U 230-260	Upper
0948	1535190	490400	255.0	5.0		·		0.0	6568.10	200	6368	M 200-255	Middle
0954	1534187	483910	307.0	5.0	12/27/1994	77.22	6467.78	0.0	6545.00	225	6320	L 285-307	Lower
0960	1534730	490110	305.0	6.0	4/5/1995	67.46	6497.54	0.0	6565.00	280	6285	M 285-305	Middle
0961	1534190	489720	240.0	5.0	4/5/1995	67.40	6497.60	6.9	6565.00	200	6358	M 200-240	Middle
0962	1533750	489796	238.0	6.0			_	0.0	6560.00	225	6335	M 220-238	Middle
0963	1532555	488792	_	4.0				0.0	6557.00			L -	Lower
0964	1531817	488371	200.0	6.0		. <u> </u>	-	0.0	6560.00	170	6390	L 170-200	Lower
0965	1531550	489100	200.0	4.0	8/21/2003	3.00	6572.00	0.0	6575.00	-	_	L 130-200	Lower
0966	1531300	489000						0.0	6575.00	_		Ľ -	Lower
0967	1530500	487600			_		_	0.0	6570.00			L -	Lower
0968	1529700	488400		-				0.0	6630.00	_	_	L -	Lower
0969	1529400	488450						0.0	6640.00		·	L -	Lower
0970	1529100	488500		5.0				0.0	6660.00			L -	Lower
0988	1538270	482400	155.0	5.0	7/18/1996	59.86	6489.14	1.3	6549.00	18	6530	A -	
										152	6396	L 152-155	Lower
0990	1537800	482840						0.5	6550.00	—		L -	Lower
CW15	1536259	485961	134.6	5.0	12/4/2008	102.12	6449.20	2.6	6551.32	50	6499	A -	• –
										91 211	6458	M 73-133	Middle
CINIAG	4524747	400507		5.0	12/26/1006	68.02	6400 52	0.0	6559 54	911	6477	L -	
CWIO	1004141	400007		5.0	12/20/1990	00.02	0430.32	0.0	0000.04	82	6477	M 112-152	Middle
CW18	1535924	491378	230.7	5.0	12/29/2008	17.80	6554.85	1.5	6572.65	90	6481	A -	
										190	6381	U 177-232	Upper
										340	6231	м -	
CW26	1534116	489593	300.0	5.0	12/4/2008	107.52	6453.91	0.5	6561.43	50	6511	М -	
										50	6511	A -	
014/07	4524400	490600	110.0	50	40/4/2009	70 55	6403 33	10	6560.00	231	0330	L 240-200	Lower
CVV2/	1534109	409600	110.0	5.0	12/4/2000	70.55	0492.33	1.9	0002.00	50 50	6511	A - M 80-110	 Middle
CW28	1535112	491008	370.0	5.0	12/29/2008	98,70	6472.98	1.9	6571.68	90	6480	A -	
01120	1000112	101000	01010	0.0		•••••	0112.000			110	6460	U -	
										294	6276	M 280-360	Middle
CW29	1534551	487435	290.0	5.0	12/4/2008	95.90	6456.32	1.7	6552.22	52	6499	м -	
										52	6499	A -	. —
			654 -					• •		228	6323	L 230-270	Lower
CW30	1536642	488704	251.5	5.0	12/14/2004	8.00	6550.31	2.0	6558.31	35	6521	A -	

TABLE 5.1-4. WELL DATA FOR THE CHINLE REGIONAL WELLS. (cont'd.)

WELL	NORTH. COORD.	EAST. COORD.	WELL Depth (FT-MP)	CASING DIAM (IN)	W DATE	<u>ater le</u> Depth (FT- M P)	vel Elev. (FT-MSL)	MP ABOVE LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO AQUIFER (FT-LSD)	ELEV. OF AQUIFER (FT-MSL)	CASING PERFOR- ATIONS (FT-LSD)	AQUIFER
CW30	1536642	488704	251.5	5.0	12/14/2004	8.00	6550.31	2.0	6558.31	220	6336	M 219-249	Middle
CW31	1540689	482738	311.0	6.0	12/4/2008	88.10	6472.16	2.0	6560.26	111	6447	Α -	_
										254	6304	L 136-156	Lower
										254	6304	L 231-271	
										254	6304	L 291-311	
CW36	1540053	481329	180.0	5.0	12/4/2008	79.55	6471.54	2.8	6551.09	96	6452	Α-	-
										152	6396	L 155-177	Lower
CW37	1537240	484853	150.1	5.0	12/4/2008	64.71	6486.46	1.3	6551.17	55	6495	Α-	
•						-				100	6450	L 100-150	Lower
CW38	1540103	483429	174 8	50	11/14/1997	55.18	6500 42	2.1	6555.60	108	6446	Α-	
01100	1010100	100120	11 1.0	0.0	1111111001	00.10	0000.12	_	0000.00	130	· 6424	L 133-173	Lower
CW20	1537260	193751	126 3	5.0	12///2008	66 68	6484.03	3.4	6550 71	40	6507	Δ	
0113	1557 200	4037.34	. 120.J	5.0	121412000	00.00	0404.00	J.4	0330.71	40 87	6460	 I 90-123	
014/40	4503004	404040	204.0	FO	4014/0000	00.05	6555 00	26	0570.04	75	0100	A .	LOWC
CVV4U	153/624	491819	204.0	5.0	12/4/2008	23.25	0000.09	2.0	63/8.94	220	6356	A - /	
										220	0300	0 224-204	Opper
CW41	1533174	488584	206.0	6.0	12/4/2008	101.60	6453.81	1.5	6555.41	59	6495	A -	
										138	6416	L 146-206	Lower
CW42	1533169	487177	205.0	6.0	12/4/2008	87.60	6461.18	0.0	6548.78	98	6451	A -	-
										124	6425	L 125-205	Lower
CW43	1537587	482493	104.1	5.0	12/4/2008	69.95	6478.84	2.0	6548.79	57	6490	L 81-101	Lower
										57	6490	A -	
CW54	1536645	488675	103.1	5.0	12/5/2008	26.30	6532.25	2.2	6558.55	70	6486	C 60-100	-Chinle

NOTE: A = Alluvial Aquifer, Base

U = Upper Chinle Aquifer, Top

M = Middle Chinle Aquifer, Top

L = Lower Chinle Aquifer, Top

* = Abandoned

5.2

UPPER CHINLE WATER LEVELS

Measured water levels in Homestake's Upper, Middle and Lower Chinle aquifer wells are presented in Appendix A. Table A.2-1 of Appendix A includes water levels for Homestake, subdivision, and regional Chinle wells. Figure 5.2-1 presents water-level elevation contours of the Upper Chinle aquifer during the fall of 2008. The blue arrows on Figure 5.2-1 show the direction of ground-water flow, which is greatly influenced by the fresh-water injection into the Upper Chinle at wells CW4R, CW5, CW13 and CW25 and collection from wells CE2, CE5, CE6, CE11 and CE12. Well CW13, an injection well on the east side of the East Fault, is in the high permeability zone of the Upper Chinle aquifer that parallels the East Fault. This high permeability zone extends to a distance of at least 1000 feet parallel and adjacent to the East Fault near well CW18. Injection of fresh water has created piezometric-surface mounds along the east side of the East Fault. The permeability is much smaller at greater distances to the east of the East Fault and, therefore, an easterly gradient occurs in the Upper Chinle away from the East Fault near injection well CW13. The CW13 injection affects water levels on the west side of the East Fault in the area of Upper Chinle well CW53. Water level changes in well CW53 respond quickly to change in levels in well CW13 showing that a good connection exists in the Upper Chinle where the East Fault pinches out south of well CW53.

Injection of fresh water into Upper Chinle well CW5 is causing ground water flow to the north and south of this area. The flow that moves to the south discharges to the alluvial aquifer in the subcrop area of the Upper Chinle, and the flow that moves to the north converges toward collection wells CE2, CE5, CE6, CE11 or CE12. Injection into Upper Chinle well CW25 was started in 2000, and this injection is causing ground water to flow from this well back toward these collection wells. The naturally occurring flow direction in the Upper Chinle aquifer west of the East Fault is from the north. Well CW3 has not been pumped since January 2007 and therefore does not intercept any of the flow from the north.

Figure 5.2-2 shows the location of the Upper Chinle wells that are used to monitor water-level changes with time. Figure 5.2-3 presents water-level elevations for Upper Chinle wells 494, CE2, CE7, CE10, CW3 and CW50. The water level in well CW3 remained high in 2008 without the pumping of this well. The changes in water levels from collection well CE2 are due to variations in pumping rate in this well and collection from wells CE5, CE6, CE11 and

CE12. This pumping has caused a small decline in the water levels in wells CE7 and CE10. Water levels in well 494 were overall steady in 2008 with a small affect from the irrigation supply pumping.

Figure 5.2-4 presents the water-level elevation changes for the Upper Chinle wells east of the East Fault. The variation in water levels in wells 929, 931, 934, CW18 and CW40 were due to variation in injection into well CW13 and pumping from well CW53 during 2008.

934, 944, CW18 AND CW40

5.2-6

5.3 UPPER CHINLE WATER QUALITY

Water-quality data for 2008 for the Chinle aquifers is presented in Tables B.5-1 and B.5-2 of Appendix B. The basic well data is presented in Tables 5.1-1 through 5.1-4 and Figure 5.1-2 shows locations of the Upper Chinle wells.

Concentrations of key constituents exceed site standards for the Upper Chinle aquifer in only a few locations. Sulfate concentrations have been adequately restored in the Upper Chinle aquifer except for an area near the Large Tailings Pile. Selenium concentrations during 2008 are less than the site standard in all Upper Chinle wells except wells CE2, CE6, CE7, CE12 and CE13 which are all near the LTP. Uranium concentrations exceed the site standard in twelve wells. The slower pace of restoration is attributed to leaching of this constituent from the formation. Molybdenum concentrations in the Upper Chinle aquifer exceed the site standard in ten wells in close proximity to the tailings piles.

5.3.1 SULFATE - UPPER CHINLE

Figure 5.3-1 presents sulfate concentrations in the Upper Chinle aquifer during 2008. Upper Chinle sulfate concentrations varied from 236 to 7190 mg/l. Only the values from wells CE7 and CE13 exceeded the site standards for the mixing zone of 1750 mg/l and no non-mixing zone wells exceeded the site standard of 914 mg/l in the Upper Chinle in 2008 (see Section 3 or the well grouping on Figure 5.3-2 for zone areas). Upper Chinle site standards based on background data are presented for sulfate in the legend of Figure 5.3-1. These site standards have a greater than sign in front of the numeric value which is associated with the pattern for the particular zone. Therefore, only an area in the western portion of the Large Tailings to the north side of the collection ponds requires restoration in the mixing zone. The information regarding the analysis of background results that were used to develop the background and related site standards is presented in Section 3 of this report.

The locations of wells used in the time plots of water quality are presented on Figure 5.3-2. The color and symbol of the individual wells correspond with those used on the various water-quality time plots. Sulfate time-plot figure numbers are also shown on Figure 5.3-2 for each group. The same color and symbol scheme is used for other constituents in the Upper Chinle discussed in this section. Notations on Figure 5.3-2 indicate that mixing zone Upper

Chinle wells 494, CE2, CE5, CE11 and CW50 are grouped together on the water-quality time plots, whereas the non-mixing zone wells 929, 934, CW3, CW18 and CW40 are grouped together on a second plot.

Figure 5.3-3 presents sulfate concentrations versus time for the mixing zone group of wells listed above. The sulfate concentrations in water sampled from each of these wells are less than the mixing-zone site standard (see Figure 5.3-3). Sulfate concentrations in well CE2, near the subcrop area south of the Large Tailings Pile, have been steady in 2008 but are still below the remainder of the Upper Chinle wells in this area. The sulfate concentrations in well CE5 were also steady in 2008. An increase in the sulfate concentration was observed in collection well CE11 and 494.

A plot of sulfate concentrations versus time for non-mixing zone Upper Chinle wells 929, 934, CW3, CW18 and CW40 is presented on Figure 5.3-4 (see Figure 5.3-2 for location of these wells). This plot shows some minor variability with a gradual increase in sulfate concentrations in these Upper Chinle wells in 2008 except for the steady value in well CW40. The sulfate concentration in 2007 in well CW3 declined to near the 2001 pre-pumping concentration in this well and has since gradually increased. Pumping of well CW3 ceased after January of 2007.

5.3.2 TOTAL DISSOLVED SOLIDS - UPPER CHINLE

Figure 5.3-5 presents contours of total dissolved solids (TDS) concentrations for the Upper Chinle aquifer during 2008. All concentrations are less than 2000 mg/l, with the exception of areas of the Upper Chinle near the Large Tailings Pile and east of State Highway 605 in Sections 35 and 36. The TDS concentration naturally increases with increasing distance east of the East Fault due to the slower movement of ground water in this less transmissive portion of the aquifer. The blue dashed pattern on Figure 5.3-5 shows where the Upper Chinle TDS concentrations are greater than 2010 mg/l, which is the non-mixing zone site standard. TDS concentrations in this area are natural and not attributable to the Grants site tailings piles. The sulfate concentrations exceed the mixing zone standard of 3140 mg/l near the Large Tailings in wells CE7 and CE13. The Upper Chinle aquifer near the Large Tailings Pile still requires restoration with respect to TDS concentration.

Figure 5.3-6 presents TDS concentrations for mixing zone Upper Chinle wells 494, CE2, CE5, CE11 and CW50. The TDS concentrations in well CE2 were steady in 2008 after increasing in 2006 and 2007. The TDS increased in well CE11 in 2008 due to the continuous pumping of this well. All of these wells contain water with TDS concentrations less than the mixing zone standard of 3140 mg/l.

1 × 5 5 1

Time plots of TDS concentrations for non-mixing zone wells 929, 934, CW3, CW18 and CW40 are presented in Figure 5.3-7. This figure shows overall steady TDS concentrations in these wells for 2008. The TDS concentrations in well CW3 in 2007 were close to their prepumping levels in 2001.

5.3.3 CHLORIDE – UPPER CHINLE

Chloride concentrations in the Upper Chinle aquifer during 2008 are presented on Figure 5.3-8. In the two up-gradient Upper Chinle wells CW50 and CW52, chloride concentrations are less than 100 mg/l. Typical measured chloride concentrations are between 100 and 220 mg/l in the Upper Chinle aquifer, because this range encompasses natural variations and the range of chloride concentrations in the injection water. Concentrations near the subcrop located under the western portion of the Large Tailings exceed 250 mg/l and require restoration in this area. Chloride concentrations east of the East Fault naturally increase due to the slower movement of ground water with increasing distance east of the East Fault and are not attributable to the Grants site.

The chloride concentrations in water collected from mixing zone Upper Chinle wells 494, CE2, CE5, CE11 and CW50 are presented on Figure 5.3-9. In Upper Chinle well CE2 chloride concentrations were steady in 2008 after increasing the previous two years. Overall, the chloride concentrations in wells 494 and CW50 have not changed significantly in 2008, while a small increase was observed in wells CE5 and CE11.

The chloride concentrations in the wells in the non-mixing zone are presented on Figure 5.3-10. This plot shows variable but fairly steady chloride concentrations in 2008. A decrease in concentrations in well CW3 has been observed due to the ceasing of pumping of this Upper Chinle well in January of 2007. The chloride concentration in well CW3 is still above the

pre-pumping levels in 2001.

5.3.4 URANIUM - UPPER CHINLE

Uranium is an important parameter for identifying impacts to the Upper Chinle aquifer. Figure 5.3-11 presents contours of uranium concentrations in the Upper Chinle aquifer for 2008. Twelve of the uranium concentrations measured in Upper Chinle water in 2008 exceeded the corresponding mixing or non-mixing zone site standards. These concentrations are expected to gradually decrease to below background concentrations with the ongoing ground water-quality restoration efforts in the Large Tailings Pile area. The highest value measured east of the East Fault in 2008 was observed in well 929 with a value of 0.06 mg/l. This value is below the corresponding non-mixing zone standard of 0.09 mg/l.

Plots of uranium concentrations versus time for Upper Chinle wells 494, CE2, CE5, CE11 and CW50 are presented on Figure 5.3-12 (see Figure 5.3-2 for location of these wells). This plot demonstrates that the uranium concentrations in Upper Chinle well CE11 increased in early 2008 and then slightly declined. Uranium concentrations in wells 494 and CW50 were overall steady in 2008. The uranium concentrations in Upper Chinle collection well CE2 increased in early 2008 and then decreased to its late 2007 value.

The uranium concentrations in all of the Upper Chinle wells in the non-mixing zone are very low except for a larger value measured in well CW3. The decrease in uranium concentration at well CW3 in 2007 is due to the cessation of pumping this well after January of 2007. Concentrations in well CW3 were fairly steady in 2008. Figure 5.3-13 shows uranium concentration plotted versus time for Upper Chinle wells 929, 934, CW3, CW18 and CW40. With the exception of well CW3, concentrations in these wells are less than the site standard.

5.3.5 SELENIUM - UPPER CHINLE

Contours of 2008 selenium concentrations in the Upper Chinle aquifer are presented on Figure 5.3-14. This figure shows that the selenium concentrations are less than the mixingzone site standard of 0.14 mg/l with the exception of wells CE2, CE6, CE7, CE12 and CE13. The non-mixing zone NRC site standard of 0.06 mg/l is not exceeded.

Figure 5.3-15 presents selenium concentrations for wells 494, CE2, CE5 and CW50. The selenium concentration in collection wells CE2 and CE11 slightly decreased in 2008 due to the pumping of these wells. The selenium concentrations for all of the remaining wells on this plot are low.

Figure 5.3-16 presents the selenium concentrations for Upper Chinle wells 929, 934, CW3, CW18 and CW40. This plot shows that selenium concentrations for these wells have remained low during 2008. The selenium concentration in water collected from Upper Chinle well CW3 declined in 2007 to a level that existed prior to its continuous pumping which started in 2001. The previously observed decreases in selenium concentrations in wells CW40 and CW18 were due to the injection of fresh water in Upper Chinle well CW13 east of the East Fault; selenium concentrations remain low in these wells. The higher selenium from well 929 in early 2007 is questionable because the value before and after is very small as with all previous observed concentrations.

5.3.6 MOLYBDENUM - UPPER CHINLE

Figure 5.3-17 presents the molybdenum concentrations in the Upper Chinle aquifer during 2008. Molybdenum concentrations near and underlying the Large Tailings Pile exceeded both the mixing and non-mixing zone site standards. Concentrations are greater than 1.0 mg/l in a region extending from the Upper Chinle-alluvium subcrop area, below the Large Tailings Pile, and toward well CW3. Additional restoration is needed in this area, and should be easily accomplished after the alluvial aquifer is restored in the subcrop area. All molybdenum concentrations south of the Small Tailings Pile and east of the East Fault in the Upper Chinle aquifer are below the site standards.

Figure 5.3-18 presents molybdenum concentrations for Upper Chinle wells from the mixing zone. In 2008, concentrations in wells 494 and CW50 were fairly similar to those observed in previous years. Concentrations increased at collection wells CE2, CE5 and CE11 in late 2007 and early 2008 due to their pumping but have since decreased somewhat.

Figure 5.3-19 contains time plots of molybdenum concentrations for wells 929, 934, CW3, CW18 and CW40. Small concentrations of molybdenum are generally present in each of these wells except for the larger values observed in well CW3. Molybdenum concentrations in well CW3 decreased in 2007 due to the ceasing of pumping this well but were fairly steady in 2008.

5.3.7 NITRATE - UPPER CHINLE

Nitrate concentrations for the Upper Chinle aquifer were measured in 2008 to confirm that concentrations are significantly below the site standards of 15 mg/l for the mixing zone. Figure 5.3-20 presents nitrate concentrations in the Upper Chinle aquifer during 2008. The largest nitrate concentration observed in 2008 was 13.6 mg/l in well CE13. Therefore, all of the nitrate concentrations are less than the site standard. Routine monitoring of nitrate concentrations in the Upper Chinle aquifer is only warranted near the west edge of the LTP because concentrations are well below levels of concern except near the subcrop area near the Large Tailings Pile.

Plots of nitrate concentration versus time were not prepared, because historic values in Upper Chinle wells are similar to the low concentrations measured in 2008. In the future, nitrate concentrations in the Upper Chinle aquifer are not expected to be significant because of the very limited extent of elevated concentrations in the alluvial aquifer. Therefore, a nitrate site standard for the non-mixing zone for the Upper Chinle aquifer is not considered necessary.

5.3.8 RADIUM-226 AND RADIUM-228 - UPPER CHINLE

All radium concentrations in the Upper Chinle aquifer have been low in past years. Radium concentrations were analyzed for all Upper Chinle wells in 2003 to update the database. Figure 5.3-21 presents the radium-226 and the radium-228 concentrations measured in 2008. The largest radium-226 concentration measured in the Upper Chinle wells in 2008 was 1.9 pCi/l in well CW13. All of the radium-228 values were less than one pCi/l. This data shows that radium-226 and radium-228 are not present at concentrations that are significant in the Upper Chinle aquifer at the Homestake site. No concentration plots were prepared for radium because observed concentrations have been low and remained so through 2008. A radium site standard is not considered to be necessary for the Upper Chinle aquifer and has therefore not been established.

5.3.9 VANADIUM - UPPER CHINLE

Vanadium concentrations have always been low in the Upper Chinle aquifer except the recent values in wells CW3, CE7 and CE13 that have been only slightly elevated above detection limits. The occurrence of significant concentrations in the Upper Chinle aquifer is unlikely because this constituent is not present at elevated concentrations in the alluvial aquifer with the exception of the immediate tailings area. Figure 5.3-22 shows that all of the 2008 measured vanadium concentrations are less than 0.01 mg/l except for the three wells previously mentioned. Vanadium was measured in wells CW3 and CE7 in 2008 at slightly above the site standard. A small amount of restoration is needed in the Large Tailings area for the Upper Chinle aquifer. A site standard was set for the Upper Chinle aquifer for vanadium because a small amount of restoration is needed close to the Large Tailings Pile.

5.3.10 THORIUM-230 - UPPER CHINLE

Thorium-230 concentrations have never been significant in the Upper Chinle aquifer. The values measured in 2008 are presented in Figure 5.3-23. This figure shows that all measured thorium-230 concentrations in 2008 were less than 0.2 except for values from wells CW3, CE7 and CE13. None of the concentrations in the last few years exceed the mixing zone or non-mixing zone background values except for the 2008 values from well CE7 and, therefore, a site standard for thorium has not been set for the Upper Chinle aquifer. No plots of the thorium-230 concentrations with time were developed due to the lack of any significant change in the low concentrations over the period of record. Thorium-230 levels do not warrant establishment of a site standard for this constituent.

5.3-11

5.3-13

SECTION 6

TABLE OF CONTENTS

GROUND WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

Page Number

6.0	MIDE	DLE CHI	NLE AQUIFER MONITORING	6.1-1
	6.1	MIDDL	E CHINLE WELL COMPLETION AND LOCATION	6.1-1
	6.2	MIDDL	E CHINLE WATER LEVELS	6.2-1
	6.3	MIDDL	E CHINLE WATER QUALITY	6.3-1
		6.3.1	SULFATE - MIDDLE CHINLE	6.3-1
		6.3.2	TOTAL DISSOLVED SOLIDS - MIDDLE CHINLE	6.3-2
		6.3.3	CHLORIDE - MIDDLE CHINLE	6.3-3
		6.3.4	URANIUM - MIDDLE CHINLE	6.3-3
		6.3.5	SELENIUM - MIDDLE CHINLE	6.3-4
		6.3.6	MOLYBDENUM - MIDDLE CHINLE	6.3-5
		6.3.7	NITRATE - MIDDLE CHINLE	6.3-6
		6.3.8	RADIUM-226 AND RADIUM-228 - MIDDLE CHINLE	E6.3-6
		6.3.9	VANADIUM - MIDDLE CHINLE	6.3-6
	,	6.3.10	THORIUM-230 - MIDDLE CHINLE	6.3-7

FIGURES

6.1-1	LIMITS OF MIDDLE CHINLE AQUIFER AND WELL LOCATIONS	6.1-2
6.2-1	WATER-LEVEL ELEVATIONS OF THE MIDDLE CHINLE AQUIFER, 2008, FT-MSL	6.2-3
6.2-2	LOCATION OF MIDDLE CHINLE WELLS WITH WATER-LEVEL PLOTS, 2008	6.2-4
6.2-3	WATER-LEVEL ELEVATION FOR WELLS 493, 859, CW15, CW27, CW28 AND CW45	6.2-5
6.2-4	WATER-LEVEL ELEVATION FOR WELLS CW1, CW2, CW17, CW24, CW35, WCW AND WR25	6.2-6
6.3-1	SULFATE CONCENTRATIONS OF THE MIDDLE CHINLE AQUIFER, 2008, mg/l	6.3-8
6.3-2	LOCATION OF MIDDLE CHINLE WELLS WITH WATER QUALITY PLOTS, 2008	6.3-9
6.3-3	SULFATE CONCENTRATIONS FOR MIXING ZONE WELLS 498, CW15, CW17, CW24, CW35 AND CW45	6.3-10
6.3-4	SULFATE CONCENTRATIONS FOR NON-MIXING ZONE WELLS 493, 930, CW1, CW2, CW28 AND WCW	6.3-11
6.3-5	TDS CONCENTRATIONS OF THE MIDDLE CHINLE AQUIFER, 2008, mg/1	6.3-12

6-i

SECTION 6

TABLE OF CONTENTS

GROUND WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

FIGURES (continued)

Page Number

6.3-6	TDS CONCENTRATIONS FOR MIXING ZONE WELLS 498, CW15, CW17, CW24, CW35 AND CW45	6.3-13
6.3-7	TDS CONCENTRATIONS FOR NON-MIXING ZONE WELLS 493, 930, CW1, CW2, CW28 AND WCW	6.3-14
6.3-8	CHLORIDE CONCENTRATIONS OF THE MIDDLE CHINLE AQUIFER, 2008, mg/l	6.3-15
6.3-9	CHLORIDE CONCENTRATIONS FOR MIXING ZONE WELLS 498, CW15, CW17, CW24, CW35 AND CW45	6.3-16
6.3-10	CHLORIDE CONCENTRATIONS FOR NON-MIXING ZONE WELLS 493, 930, CW1, CW2, CW28 AND WCW	6.3-17
6.3-11	URANIUM CONCENTRATIONS OF THE MIDDLE CHINLE AQUIFER, 2008, mg/1	6.3-18
6.3-12	URANIUM CONCENTRATIONS FOR MIXING ZONE WELLS 498, CW15, CW17, CW24, CW35 AND CW45	6.3-19
6.3-13	URANIUM CONCENTRATIONS FOR NON-MIXING ZONE WELLS 493, 930, CW1, CW2, CW28 AND WCW	6.3-20
6.3-14	SELENIUM CONCENTRATIONS OF THE MIDDLE CHINLE AQUIFER, 2008, mg/1	6.3-21
6.3-15	SELENIUM CONCENTRATIONS FOR MIXING ZONE WELLS 498, CW15, CW17, CW24, CW35 AND CW45	6.3-22
6.3-16	SELENIUM CONCENTRATIONS FOR NON-MIXING ZONE WELLS 493, 930, CW1, CW2, CW28 AND WCW	6.3-23
6.3-17	MOLYBDENUM CONCENTRATIONS OF THE MIDDLE CHINLE AQUIFER, 2008, mg/l	6.3-24
6.3-18	MOLYBDENUM CONCENTRATIONS FOR MIXING ZONE WELLS 498, CW15, CW17, CW24, CW35 AND CW45	6.3-25
6.3-19	MOLYBDENUM CONCENTRATIONS FOR NON-MIXING ZONE WELLS 493, 930, CW1, CW2, CW28 AND WCW	6.3-26
6.3-20	NITRATE CONCENTRATIONS OF THE MIDDLE CHINLE AQUIFER, 2008, mg/l	6.3-27

6.0

MIDDLE CHINLE AQUIFER MONITORING

6.1

MIDDLE CHINLE WELL COMPLETION AND LOCATION

Tables 5.1-1 through 5.1-4 (previous section) present the Middle Chinle well data along with other Chinle aquifer wells. Figure 6.1-1 shows the locations of the Middle Chinle wells and areas where the Middle Chinle aquifer exists at the Grants Project. The area where the alluvium is saturated and has direct contact with the Middle Chinle sandstone is very important with respect to transfer of water between these two aquifers and is shown with the red horizontal cross hatch pattern. The area where the Middle Chinle subcrops against alluvium that is not saturated is shown by the red plus (+) pattern.

The Middle Chinle aquifer also exists east of the extension of the East Fault (shown as a red pattern area on Figure 6.1-1) with an alluvium-Middle Chinle subcrop zone on the south side of this area. A limited area of Middle Chinle aquifer exists west of the West Fault. All three of these areas in the Middle Chinle aquifer act as separate ground water systems, except that there is some contact between two of the three areas of the Middle Chinle near the south end of the East Fault in the southwest corner of Section 35.

Middle Chinle wells CW1 and CW2 were used in 2008 as a source of water for the tailings flushing effort. Wells CW14, CW30 and CW46 were used for fresh-water injection in 2008. Wells 482, 483, 493, 498, CW44 and CW45 were used as irrigation supply wells. Middle Chinle well 493 was added to the irrigation supply wells in 2008.

6.2

MIDDLE CHINLE WATER LEVELS

Water levels in Homestake's Upper, Middle and Lower Chinle wells are presented in Appendix A. Fall 2008 water-level elevation contours for the Middle Chinle aquifer are presented on Figure 6.2-1. The hydraulic gradient in the Middle Chinle aquifer is steeper in its alluvial subcrop area in the southern portion of Felice Acres near wells 498, CW45 and CW46. This increase in gradient is due to an influx of water to the Middle Chinle aquifer from the alluvial aquifer. The red arrows on Figure 6.2-1 show the direction of ground water flow in the Middle Chinle aquifer. Flow on the east side of the East Fault is mainly toward well CW28 near the East Fault.

Ground water flow west of the West Fault in the Middle Chinle aquifer is mainly to the southwest, and it discharges into the alluvial aquifer. This prevents the alluvial aquifer from affecting the water quality of the Middle Chinle aquifer on the west side of the West Fault. This Middle Chinle water flows from up-gradient of the site into the area west of the Large Tailings Pile. The alluvial injection in the northern portion of Section 27 has temporarily reversed the gradient near wells CW17 and CW24 in 2006 through 2008. This has allowed some movement to the north until the water level elevation is increased in this area above those near wells CW17 and WR25. The remainder of the Middle Chinle aquifer is recharged by the alluvial aquifer south of Felice Acres.

The injection of fresh water into wells CW14 (north of Broadview Acres) and CW30 (west of Felice Acres) has created ground water mounds in their respective areas. These mounds cause the ground water to flow both north and south from these two wells. Collection of ground water from wells CW1 and CW2 intercepts the water flowing from the south in the Middle Chinle aquifer between the two faults. Pumping from these wells also draws water flow from the north. The head in the Middle Chinle aquifer on each side of the two faults is significantly different than the head between the two faults, which demonstrates that the ground water is not readily connected on each side of these faults.

Figure 6.2-2 shows the locations of the Middle Chinle wells that are used to monitor water-level changes with time. The colors and symbols used on this figure are the same as those used on the water-level elevation time plots. Figure 6.2-3 presents the water-level elevation changes versus time in Middle Chinle wells 493, 859, CW15, CW27, CW28 and CW45. The non-pumping water levels are higher in Middle Chinle well CW45 than they are farther north in well 493. The pumping of irrigation wells 482, 483, 493, 498, CW44 and CW45 has caused the

water levels in wells 493, 859 and CW15 to decline. The 12/5/08 water level for well 493 is thought to be a measurement error. Some of this decline could also be attributable collection of water from wells CW1 and CW2.

The water-level plots for the Middle Chinle wells located west of the West Fault and wells CW1, CW2 and WCW are presented on Figure 6.2-4. Water levels have been gradually increasing in the Middle Chinle aquifer west of the West Fault. Water levels were variable in pumping wells CW1 and CW2 in 2008 due to their variable pumping rates. Water levels have decreased in well WCW as a result of the pumping of wells CW1 and CW2 since 2001. As expected, water levels west of the West Fault have not responded to the pumping of water from wells CW1 and CW2 situated east of the West Fault.

6.2-2

.

6.2-5

6.2-6

6.3

MIDDLE CHINLE WATER QUALITY

The water-quality data for Homestake's Middle Chinle aquifer is presented with that of the other Chinle aquifer wells in Tables B.5-1 and B.5-2 of Appendix B. The Chinle aquifer water-quality results for subdivision wells are also presented in these tables. The basic well data for the Middle Chinle aquifer wells is presented in Tables 5.1-1 through 5.1-4 in the Upper Chinle aquifer monitoring section (Section 5).

The area of water-quality concern in the Middle Chinle aquifer exists in the western portion of Broadview Acres and Felice Acres. All sulfate concentrations are within the site standard except for the concentrations from wells CW17, CW24 and WR25, located in the mixing zone west of the West Fault where concentrations were natural until alluvial water has moved into this area. Uranium concentrations are above site standards in western Broadview Acres and Felice Acres, west of the West Fault and well CW1. One natural exceedance in uranium concentration exists west of the West Fault. Selenium concentrations also exceed the site standard in the Broadview and Felice Acres area in two wells, one well east of Felice Acres and one well west of the West Fault. The only significant molybdenum concentration identified in the Middle Chinle aquifer is at well CW17.

6.3.1 SULFATE - MIDDLE CHINLE

Figure 6.3-1 presents sulfate concentration contours for the Middle Chinle aquifer for 2008. This figure shows that the Middle Chinle sulfate concentrations range from 506 to a high of 2040 mg/l at well WR25. Sulfate site standard concentrations are given in the legend of Figure 6.3-1. All mixing-zone sulfate concentrations in the Middle Chinle aquifer are below the site standard of 1750 mg/l except for values in wells CW17, CW24 and WR25. Sulfate concentrations in these wells, which are located west of the West Fault have been recently affected by the alluvial water. The sulfates were naturally occurring in this area, until the increase in the head of the alluvial water in the subcrop area caused the alluvial water to flow into the Middle Chinle. Sulfate concentrations in the non-mixing zone of the Middle Chinle are within the natural background range and meet the site standards.

Figure 6.3-2 shows the locations of the Middle Chinle wells for which time concentration plots were developed for this report. The sulfate figure number is shown in the

group area to define the figure number for each group of wells. Two groups of wells for the Middle Chinle aquifer are presented. The colors and symbols on Figure 6.3-2 correspond to those used in the concentration time plots.

Figure 6.3-3 presents sulfate concentrations for the mixing zone Middle Chinle wells 498, CW15, CW17, CW24, CW35 and CW45. Fairly stable sulfate concentrations were observed in 2008 in wells 498, CW35 and CW45. The slightly higher sulfate concentrations in wells CW17 and CW24 are due to alluvial water moving into the Middle Chinle from the subcrop area.

Figure 6.3-4 presents the sulfate concentrations for non-mixing zone Middle Chinle wells 493, CW1, CW2 and WCW, located between the two faults, and wells 930 and CW28, which are located east of the East Fault. Data presented on this plot demonstrate that sulfate concentrations have been fairly steady over time in these wells.

6.3.2 TOTAL DISSOLVED SOLIDS - MIDDLE CHINLE

Total dissolved solids (TDS) and sulfate are used to define changes in major constituents at the Grants Project site. Figure 6.3-5 presents contours of TDS concentrations for the Middle Chinle aquifer during 2008 and shows that one value is above 2000 mg/l near the alluvial subcrop area to the west of Felice Acres.

Background data for the Middle Chinle aquifer were used to determine TDS site standards of 3140 and 1560 mg/l for the mixing and non-mixing zones, respectively. All of the TDS values measured in Middle Chinle aquifer water were less than these values in 2008, except for wells CW17 and WR25, located in the mixing zone, and wells 457, 482, 483 and ACW in the non-mixing zone.

Plots of TDS concentrations for Middle Chinle wells 498, CW15, CW17, CW24, CW35 and CW45 are presented in Figure 6.3-6. The TDS concentrations have been fairly steady during the last year in these wells.

Figure 6.3-7 presents TDS concentration-time plots for non-mixing zone Middle Chinle wells 493, 930, CW1, CW2, CW28 and WCW. Analysis of this data indicates stable TDS concentrations in water collected from these wells in 2008.

6.3.3 CHLORIDE - MIDDLE CHINLE

Figure 6.3-8 presents chloride concentrations in the Middle Chinle aquifer during 2008, and observed concentrations varied from roughly 50 to values slightly greater than 200 mg/l. None of the concentrations exceeded the site standard of 250 mg/l for the mixing and nonmixing zones of the Middle Chinle aquifer. Therefore, in general chloride concentrations are not useful for defining the degree of, or the need for, restoration of the Middle Chinle aquifer.

Time plots of chloride concentration are presented on Figure 6.3-9 for Middle Chinle wells 498, CW15, CW17, CW24, CW35 and CW45. Chloride concentrations increased in Middle Chinle well CW17 in 2006 through 2008 while they were fairly steady in the remainder of the wells. The chloride data from well CW24 indicates that the alluvial water has not affected the Middle Chinle water quality at well CW24.

A second set of chloride concentration plots for the Middle Chinle aquifer is presented in Figure 6.3-10. Data plotted on this figure shows fairly steady 2008 concentrations, except for a decrease in wells 930, CW1 and WCW. These small changes are deemed to be within natural variation in the Middle Chinle aquifer.

6.3.4 URANIUM - MIDDLE CHINLE

Uranium is an important constituent in the Middle Chinle aquifer due to the presence of elevated concentrations in the aquifer in western Broadview Acres and in the southern and western portions of Felice Acres. These elevated concentrations are a result of alluvial recharge to the Middle Chinle aquifer in this area. Water in the saturated portion of the alluvial aquifer flows across a subcrop of the Middle Chinle aquifer just south of Felice Acres, and alluvial ground water has entered the Middle Chinle aquifer in this area. Figure 6.3-11 presents contours of uranium concentrations in the Middle Chinle aquifer during 2008. An area of concentrations greater than the mixing-zone site standard exists in the southwestern portion of Felice Acres. Uranium concentrations in the Middle Chinle aquifer, west of the West Fault, northwest of the Large Tailings Pile, naturally exceed 0.1 mg/l but values in wells CW17 and WR25 have increased above this level from the movement of alluvial water in the subcrop to these wells. The 2008 value from well CW35 slightly exceeds the mixing-zone site standard concentration of 0.18 mg/l, but is naturally occurring because gradient in the Middle Chinle has not been reversed to well CW35. Flow in the Middle Chinle aquifer west of the West Fault moves from the area near well CW35 toward the subcrop area to the south. Uranium concentrations exceed 0.07 mg/l (non-mixing zone site standard) in an area of the Middle Chinle aquifer, at wells 457, 482, 483 and 493 in Broadview Acres and Felice Acres.

Figure 6.3-12 presents uranium concentration plots versus time for Middle Chinle wells 498, CW15, CW17, CW24, CW35 and CW45 (see Figure 6.3-2 for well locations). The 2008 uranium concentrations shown on this plot are fairly steady, except for variable uranium concentrations in wells 498 and CW45 and a decrease in well CW17. This plot shows that water taken from Middle Chinle collection wells 498 and CW45 contains significant concentrations of uranium and did not overall decline as observed in previous years. Additional monitoring of these wells with time will better define this collection-induced trend.

The uranium concentration plots for the Middle Chinle wells in the non-mixing zone are presented on Figure 6.3-13. Uranium concentrations were small in wells CW1, CW2, CW28 and WCW in 2008. The uranium concentration in well 493 water, which had increased for several years through 2007, declined in 2008.

6.3.5 SELENIUM - MIDDLE CHINLE

None of the Middle Chinle wells in the mixing zone contained water with selenium concentrations exceeding the 0.14 mg/l site standard in 2008, except well CW17 (see Figure 6.3-14). The higher selenium concentration in well CW17 is caused by movement of alluvial water in the subcrop area to this well. The selenium concentration in the non-mixing zone wells 457, 493 and CW28 currently exceeds the site standard of 0.07 mg/l. These areas of elevated concentrations have resulted from recharge to the Middle Chinle aquifer from the alluvium in the subcrop area just south of Felice Acres. Flow in the Middle Chinle aquifer in this locale is toward the north causing chemical constituents introduced into the Middle Chinle from the alluvium in the subcrop area to move to the north. Analysis of background selenium concentrations in the mixing and non-mixing zones resulted in setting site standards of 0.14 and 0.07 mg/l, respectively (see legend of Figure 6.3-14).

Selenium concentrations somewhat less than 0.1 mg/l have been measured in Middle Chinle wells west of the West Fault. These concentrations have been determined to be naturally occurring, because the flow prior to 2006 was from the north in this area, and therefore the ground water could not have been influenced by tailings seepage. The higher selenium observed in well CW17 is due to alluvial water flowing into this area of the Middle Chinle aquifer in 2006 through 2008. All other selenium concentrations in the Middle Chinle aquifer beyond these areas are low values.

Selenium concentrations with time for the mixing zone Middle Chinle wells 498, CW15, CW17, CW24, CW35 and CW45 are presented in Figure 6.3-15. Overall steady selenium concentrations have been observed in these wells in 2008 except the decrease in well CW17. The observed higher concentration in well CW17 is believed to be a short term result of the alluvial injection near the subcrop with the Middle Chinle.

Figure 6.3-16 presents the selenium concentrations for Middle Chinle wells in the non-mixing zone. Selenium concentrations in wells CW1 and CW2, which are located north of the Large Tailings Pile, have varied over the past few years, but their values are small. In 2008, selenium concentrations measured in water collected from wells 493 and CW28 were fairly steady in 2008. The connection between the alluvial aquifer and the Middle Chinle aquifer south of Felice Acres is the cause for the elevated concentrations in wells 493 and CW28. The injection of fresh water into Middle Chinle wells CW14, CW30 and CW46 and the use of Middle Chinle wells 482, 483, 493, 498, CW44 and CW45 for irrigation should cause these elevated concentrations to decrease.

6.3.6 MOLYBDENUM - MIDDLE CHINLE

The 2008 molybdenum concentrations in the Middle Chinle aquifer are presented on Figure 6.3-17. None of the molybdenum concentrations for 2008 exceed the site standard of 0.10 mg/l except well CW17. Some restoration of molybdenum in this area will be needed.

Figure 6.3-18 presents the molybdenum concentrations with time for Middle Chinle wells 498, CW15, CW17, CW24, CW35 and CW45, while Figure 6.3-19 presents the molybdenum concentrations with time for wells 493, 930, CW1, CW2, CW28 and WCW. These plots show that the concentration in each of these wells has been low for 2008 except for a large

increase in concentrations in well CW17. The increase in molybdenum concentrations in well CW17 will require some restoration of this constituent in the Middle Chinle aquifer.

6.3.7 NITRATE - MIDDLE CHINLE

Nitrate concentrations have always been low in the Middle Chinle aquifer and therefore are not routinely monitored. However, nitrate concentrations were measured in all of the Middle Chinle aquifer wells in 2003 and in a number of the wells in 2008 in order to update the database. Figure 6.3-20 presents the nitrate concentrations in the Middle Chinle aquifer and shows that the only notable levels of nitrate in the Middle Chinle aquifer are west of the West Fault. Nitrate concentrations are greater than 15 mg/l, the mixing zone site standard, in one (CW17) of the four Middle Chinle wells west of West Fault. Due to the change in flow direction in the Middle Chinle aquifer west of the West Fault since 2006, alluvial water has entered this portion of the Middle Chinle. The concentrations were naturally occurring prior to 2006. Some restoration of nitrate will be required in the area of well CW17 in the Middle Chinle due to the movement of alluvial water into the Middle Chinle in the subcrop area. This constituent does not require a site standard for the non-mixing zone of the Middle Chinle aquifer.

6.3.8 RADIUM-226 AND RADIUM-228 - MIDDLE CHINLE

Radium concentrations in the Middle Chinle aquifer have always been low, showing that these two parameters are not important relative to the restoration of the Middle Chinle aquifer. The 2003 updated radium-226 and radium-228 concentrations in the Middle Chinle aquifer showed that radium levels are remaining low. All of the radium-226 and radium-228 values measured in 2008 were less than detection or very small. Radium-226 and radium-228 are not important parameters relative to the Middle Chinle aquifer and a site standard is not warranted and has not been set for these two constituents.

6.3.9 VANADIUM - MIDDLE CHINLE

Vanadium concentrations in the Middle Chinle aquifer have always been low. Previous monitoring of vanadium in the Middle Chinle aquifer has demonstrated that vanadium is not a significant parameter in this aquifer and the 2003 updated vanadium measurements confirmed the low values. Monitoring of vanadium for the Middle Chinle should be eliminated, because only a few low values have previously been detected in the alluvial aquifer near the tailings piles. All of the 2008 vanadium measurements for the Middle Chinle aquifer are low levels near the detection limit. These values are consistent with values observed previously and, therefore, reinforce the conclusion that continued monitoring of vanadium concentrations in the Middle Chinle aquifer should not be required. A site standard for vanadium has therefore not been set for the Middle Chinle aquifer.

6.3.10 THORIUM-230 - MIDDLE CHINLE

Thorium-230 concentrations are not significant in the alluvial aquifer outside of the Large Tailings Pile. Therefore, the Middle Chinle aquifer does not have the potential for containing significant thorium concentrations from the tailings seepage. Thorium-230 is, therefore, not a significant parameter in the Middle Chinle aquifer and should be eliminated from future monitoring in the Middle Chinle aquifer. Thorium-230 concentrations were measured in all wells sampled from Middle Chinle wells in 2003, and all of these values were less than detection. All of the thorium-230 values measured in 2008 were very small. These thorium-230 levels are consistent with concentrations previously measured in the Middle Chinle aquifer, which shows that thorium-230 is not an important parameter in the Middle Chinle aquifer and thus a site standard has not been set.

CW17, CW24, CW35 AND CW45.

SECTION 7

TABLE OF CONTENTS

GROUND WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

Page Number

7.0	LOW	ER CHIN	ILE AQUIFER MONITORING	7.1-1
	7.1	LOWER	CHINLE WELL COMPLETION	7.1-1
	7.2	LOWER	CHINLE WATER LEVELS	7.2-1
	7.3	LOWER	CHINLE WATER QUALITY	7.3-1
		7.3.1	SULFATE - LOWER CHINLE	7.3-1
		7.3.2	TOTAL DISSOLVED SOLIDS - LOWER CHINLE	7.3-2
		7.3.3	CHLORIDE - LOWER CHINLE	7.3-2
		7.3.4	URANIUM - LOWER CHINLE	7.3-3
		7.3.5	SELENIUM - LOWER CHINLE	7.3-3
		7.3.6	MOLYBDENUM - LOWER CHINLE	7.3-4
		7.3.7	NITRATE - LOWER CHINLE	7.3-4
		7.3.8	RADIUM-226 AND RADIUM-228 - LOWER CHINLE	7.3-4
		7.3.9	VANADIUM - LOWER CHINLE	7.3-5
		7.3.10	THORIUM-230 - LOWER CHINLE	7.3-5

FIGURES

7.1-1	LIMITS OF LOWER CHINLE AQUIFER AND WELL LOCATIONS	7.1-2
7.2-1	WATER-LEVEL ELEVATIONS OF THE LOWER CHINLE AQUIFER, FALL 2008, FT-MSL	7.2-3
7.2-2	LOCATION OF LOWER CHINLE WELLS WITH WATER-LEVEL PLOTS, 2008	7.2-4
7.2-3	WATER-LEVEL ELEVATION FOR WELLS 653, CW26, CW29, CW41 AND CW42	7.2-5
7.2-4	WATER-LEVEL ELEVATION FOR WELLS CW31, CW32, CW33, CW36, CW37 AND CW43	7.2-6
7.3-1	SULFATE CONCENTRATIONS OF THE LOWER CHINLE AQUIFER, 2008, mg/1	7.3-6
7.3-2	LOCATION OF LOWER CHINLE WELLS WITH WATER-QUALITY PLOTS, 2008	7.3-7
7.3-3	SULFATE CONCENTRATIONS FOR MIXING ZONE WELLS 653, CW37, CW39 and CW42	7.3-8
7.3-4	SULFATE CONCENTRATIONS FOR NON-MIXING ZONE WELLS CW26, CW29, CW31, CW32, CW33 AND CW41	7.3-9

:

SECTION 7

TABLE OF CONTENTS

GROUND WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

FIGURES (continued)

Page Number

7.3-5	TDS CONCENTRATIONS OF THE LOWER CHINLE AQUIFER, 2008, mg/1	7.3-10
7.3-6	TDS CONCENTRATIONS FOR MIXING ZONE WELLS 653, CW37, CW39 AND CW42	7.3-11
7.3.7	TDS CONCENTRATIONS FOR NON-MIXING ZONE WELLS CW26, CW29, CW31, CW32, CW33 AND CW41	7.3-12
7.3 -8	URANIUM CONCENTRATIONS OF THE LOWER CHINLE AQUIFER, 2008, mg/1	7.3-13
7.3-9	URANIUM CONCENTRATIONS FOR MIXING ZONE WELLS 653, CW37, CW39 AND CW42	7.3-14
7.3-10	URANIUM CONCENTRATIONS FOR NON-MIXING ZONE WELLS CW26, CW29, CW31, CW32, CW33 AND CW41	7.3-15
7.3-11	SELENIUM CONCENTRATIONS OF THE LOWER CHINLE AQUIFER, 2008, mg/l	7.3-16
7.3-12	SELENIUM CONCENTRATIONS FOR MIXING ZONE WELLS 653, CW37, CW39 AND CW42	7.3-17
7.3-13	SELENIUM CONCENTRATIONS FOR NON-MIXING ZONE WELLS CW26, CW29, CW31, CW32, CW33 AND CW41	7.3-18
7.3-14	NITRATE CONCENTRATIONS OF THE LOWER CHINLE AQUIFER, 2008, mg/l	7.3-19

7.0

LOWER CHINLE AQUIFER MONITORING

7.1 LOWER CHINLE WELL COMPLETION

The Lower Chinle aquifer is a permeable zone in the Chinle shale which exists below the Middle Chinle sandstone and above the San Andres aquifer. The Lower Chinle aquifer becomes important west and southwest of the Homestake Grants Project area where this unit is present at shallower depths. The general permeability of the Lower Chinle aquifer can vary dramatically, because the transmitting ability of this aquifer depends on the presence of a fractured or altered shale that provides secondary permeability. Tables 5.1-1 through 5.1-4 present the Lower Chinle basic well data along with the other Chinle aquifer wells.

Wells that are completed in the Lower Chinle aquifer are shown on Figure 7.1-1. Chinle shale exists above the top of the Lower Chinle aquifer in the area with the dot pattern. This figure also shows the location of the Chinle shale subcrop underlying the alluvium. The cyan crosshatch pattern shows where the alluvium is saturated in the subcrop area, while the plus-sign pattern shows where the alluvium is not saturated in the subcrop area. Lower Chinle wells 538, 653, CW29 and CW42 were used as irrigation supply wells in 2008.

7.2 LOWER CHINLE WATER LEVELS

')

Water-level elevations in the Lower Chinle wells are presented along with the data for the Upper and Middle Chinle wells in Appendix A. Figure 7.2-1 presents water-level elevations in the Lower Chinle wells and the fall of 2008 water-level elevation contours. The West and East Faults are also shown on this figure. The approximate alluvial-Lower Chinle subcrop areas are also shown on this figure. Flow west of the West Fault in the Lower Chinle is mainly to the northeast. Flow between the two faults is to the northeast in the area of the tailings. The flow is to the northwest in the southern portion of the Lower Chinle aquifer between the faults. The northwesterly flow direction in this area indicates that the Lower Chinle water moves across the West Fault in the area west of Broadview Acres. Lower Chinle water levels in 2008 were lower in Section 3 as a result of continued pumping from wells CW42, CW29, 538 and 653 for the purpose of providing irrigation supply, and because of the drought.

The Lower Chinle wells for which water-level time plots were prepared are shown on Figure 7.2-2. Water levels are presented for Lower Chinle wells 653, CW26, CW29, CW41 and CW42 on Figure 7.2-3. Water levels in Lower Chinle well 653, which has been used as an irrigation supply well, vary due to the variable pumping rate but have generally declined during the last few years. Water levels gradually decreased in Lower Chinle well CW29 prior to its use as a fresh-water injection supply well in 2003 and irrigation supply in 2004 through 2008. Small overall water-level decreases had been observed over the last few years in Lower Chinle wells CW26, CW41 and CW42 but the late 2008 water levels were very similar to the late 2007 levels.

Figure 7.2-4 presents water-level elevations versus time for Lower Chinle wells CW31, CW32, CW33, CW37 and CW43 (see Figure 7.2-2 for location of these wells). Water levels have gradually declined over the last few years in wells CW31, CW36, CW37 and CW43 but slightly rose in 2008 in wells CW37 and CW43 near the subcrop area. Water levels in 2008 have been fairly steady in well CW33. Water levels have decreased in Lower Chinle well CW32 for several years, and this trend continued in 2008 at a rate similar to the last few years. The rate and magnitude of decrease in this Lower Chinle well is similar to that observed in the alluvial and San Andres aquifers to the west in Sections 29, 32 and 33. These declines are different than the steady alluvial water levels near well CW32. This indicates that the Lower Chinle aquifer

Grants Reclamation Project 2008 Annual Report Monitoring / Performance Review near well CW32 is hydrologically connected to the alluvial aquifer west of this area but is isolated from the alluvial aquifer in its immediate area.

1

7.2-2

WEST FAULT 1545500 21_22 28¹27 19,20 30¹29 COUNTY ROAD 63 20,21 22,23 27 CW32 ▲ ટે 1543500 FIG 7.2-4 PLEASANT-VALLEY ESTATES COLLECTION 1541500 CW31 CW36 COUNTY ROAD 25 * 29_28 32⁺33 30 29 28 27 URRAY - ACRES 1539500 VALLEVERDE BROADVIEW ACRES • 1537500 WEST FAULT 1535500 32,33 3 2 W26 FIG. 7.2-3 0 ♦ CW42 653 1533500 4 (485400 489,400 473400 475400 479,400 481400 487400 47400 SCALE: 1" = 1600' C:\PROJECTS\2009-06\ 1600LOW rts DATE: 3/25/09

7.2-5

7.2-6

7.3

LOWER CHINLE WATER QUALITY

Water-quality data for 2008 for the Lower Chinle aquifer are presented in Tables B.5-1 and B.5-2 of Appendix B along with water-quality data for the other Chinle aquifer wells. The basic well data presented in Tables 5.1-1 through 5.1-4, and the orientation of the well name on Figure 5.1-1 indicate which of the Chinle wells are completed in the Lower Chinle.

Constituent concentrations in the Lower Chinle aquifer exceed background conditions only in Section 3, except for some natural exceedances in the far down-gradient wells. Sulfate concentrations in the Lower Chinle aquifer are within the NRC standards except in far downgradient well CW33 where concentrations only slightly exceed the relevant non-mixing background value. These concentrations are deemed to be of natural origin and only slightly exceed the 95th percentile level of the data base. Uranium and selenium concentrations exceed the NRC site standards only in the northeastern and central portions of Section 3. Molybdenum concentrations in the Lower Chinle aquifer are all less than the limit of detection.

7.3.1 SULFATE – LOWER CHINLE

Figure 7.3-1 presents contours of sulfate concentrations in the Lower Chinle aquifer during 2008. Lower Chinle standards based on background data are presented for sulfate in the legend of Figure 7.3-1. The Lower Chinle concentrations varied from 296 to 2260 mg/l. Only the values from well CW33 exceeded the 2000 mg/l upper limit of background for the non-mixing zone. These concentrations are thought to be naturally occurring and likely exceed the full range of background because the data is limited in the downgradient portion of the Lower Chinle aquifer. None of the Lower Chinle concentrations in the mixing zone (see Section 3 and Figure 3.3-3 for zone areas) exceeded the mixing-zone sulfate site standard of 1750 mg/l. Therefore, the Lower Chinle aquifer does not require any restoration with respect to sulfate.

The locations of wells used in the plots of water quality for the Lower Chinle are presented on Figure 7.3-2. Figure 7.3-2 shows that data for mixing zone Lower Chinle wells 653, CW37, CW39 and CW42 are grouped together on the water-quality time plots, and data for non-mixing zone wells CW26, CW29, CW31, CW32, CW33 and CW41 are presented on a second plot.

Figure 7.3-3 presents sulfate concentrations plotted versus time for the Lower Chinle mixing-zone wells. The sulfate concentrations in water collected from each of these wells are less than that in the mixing-zone site standard, showing that sulfate restoration of the Lower Chinle is not needed in the southern portion of the aquifer.

Sulfate concentrations plotted for Lower Chinle wells CW26, CW29, CW31, CW32, CW33 and CW41 are presented on Figure 7.3-4 (see Figure 7.3-2 for location of these wells). Sulfate concentrations were fairly steady in 2008 in these Lower Chinle wells. The data collected since mid-2003 was not available when the background level was calculated. The exceedance in sulfate value from well CW33 is thought to be natural.

7.3.2 TOTAL DISSOLVED SOLIDS – LOWER CHINLE

Figure 7.3-5 presents the total dissolved solids (TDS) concentrations in the Lower Chinle aquifer during 2008. All concentrations for 2008 sampled wells are less than the nonmixing zone site standard value of 4140 mg/l. Concentrations are thought to naturally exceed this level farther down-gradient as shown by the cyan pattern. The TDS concentration naturally increases down-gradient due to the low permeability and correspondingly slow movement of water through this shale aquifer.

Figure 7.3-6 presents TDS concentrations for Upper Chinle wells 653, CW37, CW39 and CW42. TDS concentrations in these wells have been fairly steady in 2008. All of these concentrations are below the mixing-zone site standard of 3140 mg/l.

TDS concentrations for wells CW26, CW29, CW31, CW32, CW33 and CW41 are presented on Figure 7.3-7. This figure demonstrates that, overall, TDS concentrations have remained fairly stable during 2008. Additionally, these historical TDS concentrations are well within the range of natural fluctuation in the non-mixing zone of the Lower Chinle aquifer, except for the values from wells CW32 and CW33.

7.3.3 CHLORIDE – LOWER CHINLE

Chloride concentration data in the Lower Chinle aquifer were updated during 2003 to confirm that restoration for this constituent is not necessary in the Lower Chinle aquifer. The

chloride concentrations measured during 2008 continue to support this conclusion and are all less than the NRC standard.

7.3.4 URANIUM – LOWER CHINLE

Uranium concentration in the Lower Chinle aquifer is an important constituent with respect to aquifer restoration in Section 3. Figure 7.3-8 presents the uranium concentrations in the Lower Chinle aquifer for 2008. Only three of the uranium concentrations in the Lower Chinle exceeded the mixing-zone background concentration, and two exceeded the non-mixing zone background concentration. The highest values are in the northeast portion of Section 3 in water from collection wells 538, 653, CW29 and CW42. These concentrations should gradually decrease to less than background concentrations with the continuing use of this water in the irrigation program.

Uranium concentrations plotted versus time for Lower Chinle wells 653, CW37, CW39 and CW42 are presented on Figure 7.3-9. The small decrease in uranium concentration in well 653 and the larger decline in well CW42 are due to pumping of these wells to obtain a water supply for the irrigation system. Additional results with time will be needed to show when the restoration of this area is adequate. Uranium concentrations in well CW37 and CW39 have remained low.

The uranium concentrations in all of the Lower Chinle wells with data presented on Figure 7.3-10 have remained at low levels with a small increase in well CW29. Well CW29 is used to supply irrigation water and its pumping should eventually decrease these concentrations.

7.3.5 SELENIUM – LOWER CHINLE

Selenium concentrations in the Lower Chinle aquifer for 2008 are presented on Figure 7.3-11. None of the selenium concentrations in water from the Lower Chinle wells exceeded the site standards. The mixing and non-mixing zone site standards are 0.14 and 0.32 mg/l, respectively, for the Lower Chinle aquifer.

Figure 7.3-12 presents selenium concentration versus time plots for wells 653, CW37, CW39 and CW42. The selenium concentrations in these Lower Chinle aquifer wells were steady in 2008.

Figure 7.3-13 presents selenium concentrations plotted versus time for Lower Chinle wells CW26, CW29, CW31, CW32, CW33 and CW41. Selenium concentrations measured during 2008 were consistent with the 2007 levels for each of these wells.

7.3.6 MOLYBDENUM – LOWER CHINLE

Molybdenum concentrations in water samples collected from the Lower Chinle wells in 2008 were all low at levels near the detection limit and, therefore, no areal molybdenum concentration figures or time plots were prepared. The 2008 results are consistent with historical measurements of molybdenum in the Lower Chinle aquifer. Molybdenum is not a constituent of concern in the Lower Chinle aquifer.

7.3.7 NITRATE – LOWER CHINLE

Nitrate monitoring of the Lower Chinle aquifer was updated in 2003 to confirm that concentrations remain significantly below the site standard of 15 mg/l for the mixing zone. Nitrate concentrations measured in 2008 are presented in Figure 7.3-14 and are all significantly below the site standard.

Plots of nitrate concentrations versus time were not prepared, because historically, values measured in Lower Chinle wells contained very low concentrations, similar to those measured in 2008. Nitrate concentrations from the tailings seepage are not expected to be significant in the future and therefore the potential in the Lower Chinle aquifer does not exist due to the very limited extent of elevated concentrations in the alluvial aquifer. Establishment of a site standard for nitrate in the Lower Chinle non-mixing zone therefore has not been set.

7.3.8 RADIUM-226 AND RADIUM-228 – LOWER CHINLE

All radium concentrations have been low in past years in the Lower Chinle aquifer. Radium-226 and radium-228 are not important parameters relative to the Lower Chinle aquifer; therefore a site standard for the Lower Chinle has not been set. Radium concentrations were analyzed in all Lower Chinle wells in the 2003 update. These low levels of radium do not warrant the development of a figure presenting areal distribution of radium. Radium-228 analysis is typically more erratic than other constituents but the available data shows that radium226 and radium-228 are not significant constituents in the Lower Chinle aquifer at the Homestake site.

7.3.9 VANADIUM - LOWER CHINLE

Vanadium concentrations have always been low in the Lower Chinle aquifer. Significant concentrations in the Lower Chinle aquifer would not be expected because concentrations of this constituent have only been slightly elevated in the alluvial aquifer near the tailings. Vanadium concentrations in the Lower Chinle aquifer have never been large enough to support consideration of this constituent for setting a site standard. The vanadium concentration data was updated in 2003 for the Lower Chinle aquifer.

7.3.10 THORIUM-230 – LOWER CHINLE

Thorium-230 concentrations have never been significant in the Lower Chinle aquifer and, therefore, should be dropped from the Lower Chinle monitoring list and eliminated from consideration as a Lower Chinle standard. The thorium-230 concentrations measured in the Lower Chinle aquifer during 2003 were all very small. No plots of thorium-230 concentrations with time were prepared, because concentrations have historically been low.

FIGURE 7.3-4. SULFATE CONCENTRATIONS FOR NON-MIXING ZONE WELLS CW26, CW29, CW31, CW32, CW33 AND CW41.

WEST FAULT 1545500 21 22 COUNTY ROAD 63 19,20 30¹29 20,21 22,23 27 € € ©0.004 CW32 1543500 • PLEASANT-VALLEY ESTATES COLLECTION -1541500 900 033 0.01 CW31 © 0.003 99 CA39 C 5 COUNTY ROAD 25 29_28 32⁺33 30 29 28 2 9.0 MURRAY-ACRES 1539500 VALLE -BROADVIEW ACRES 00 1537500 CV43 0.03 © € > 0.03 @ CW37 WEST FAULT 1535500 32, 33 80 1533500 0.4 1520' 86 487400 © 0.04 475,400 485400 489400 479,400 481400 473,400 477400 SCALE: 1" = 1600' C:\PROJECTS\2009-06\ 1600LOW rts DATE: 3/25/09

653, CW37, CW42 AND CW43.

CW26, CW29, CW31, CW32, CW33 AND CW41.

WEST FAULT 1545500 21 22 COUNTY ROAD 63 19₁20 30¹29 29 21 22,23 27 2 © CV33 CW32 <0,005 1543500 0 <0.005 PLEASANT-VALLEY ESTATES COLLECTION 1541500 6837 <0.005 CW31 © COUNTY ROAD 25 CV36 29_28 32⁺33 30 29 MURRAY-ACRES 1539500 VALLEVERDE BROADVIEW ACRES 00 1537500 © m 0.07 0.05 137 @ WEST FAULT 1535500 0.12 34 35 80 0.04 0.06 1533500 0.10 0.05 0.13 1520' 8 853 485400 473400 475,400 477400 479,400 481400 487,400 489400 SCALE: 1" = 1600' C:\PROJECTS\2009-06\ 1600LOW rts DATE: 3/25/09

FIGURE 7.3-13. SELENIUM CONCENTRATIONS FOR NON-MIXING ZONE WELLS CW26, CW29, CW31, CW32, CW33 AND CW41.

WEST FAULT -1545500 21 22 19_20 30⁺29 20,21 29¹28 COUNTY ROAD 63 22,23 27 © ©≫⊃ <0.1 ຂ ⊛≯ວ ⊚ <0.1 1543500 PLEASANT-VALLEY ESTATES COLLECTION -1541500 83 0.1 98≈ 2 <0.1 COUNTY ROAD 25 29_28 32⁺33 30 29 MURRAY-ACRES 1539500 VALLEVVERDE BROADVIEW ACRES-00 1537500 0 m 5.9 LEM ©€ 5.6 WEST FAULT 1535500 32 34 35 80 0339 1533500 3.5 1520' 8

481400

853 ©

485400

487,400

489400

473400 SCALE: 1" = 1600' C:\PROJECTS\2009-06\ 1600LOW rts

475400

47400

479,400

DATE: 3/25/09

SECTION 8

TABLE OF CONTENTS

GROUND WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

	Page Num	iber
8.0	SAN ANDRES AQUIFER MONITORING 8.	.0-1
	FIGURES	
8.0-1	LOCATION OF SAN ANDRES WELLS AND WATER–LEVEL ELEVATION FOR THE SAN ANDRES AQUIFER, 2008, FT-MSL8.	.0-3
8.0-2	WATER QUALITY FOR THE SAN ANDRES AQUIFER, 2008, mg/l8.	.0-4
8.0-3	SULFATE CONCENTRATIONS FOR WELLS 943, 951, #1 DEEP AND #2 DEEP	.0-5

TABLES

8.0-1	BASIC WELL DATA FOR THE SAN ANDRES WE	LLS8.0-6
-------	---------------------------------------	----------

8.0

SAN ANDRES AQUIFER MONITORING

The San Andres aquifer is the most important regional aquifer in the Grants Project area. The Chinle Formation, which exists between the alluvium and the San Andres, is approximately 800 feet thick at the Homestake tailings site and is primarily a shale with a few sandstone lenses. Therefore, the alluvial aquifer and the San Andres aquifer are separated by a very thick aquitard. The difference in piezometric head between the alluvial and San Andres aquifers is in the range of 80 to 100 feet, which confirms that the flow between the two systems is restricted by the limited permeability of the Chinle Formation. The San Andres and alluvial aquifers are only in direct contact in the western portion of the area presented on Figure 8.0-1 (see magenta pattern area). With no areas of direct communication within the area where the alluvial aquifer is impacted by the Homestake tailings seepage, and only very limited hydraulic communication through the Chinle shale, the San Andres aquifer is not affected by tailings seepage. The San Andres aquifer has been used as the source for fresh-water injection into the alluvium and Chinle aquifers at the Grants Project, and as a result, a monitoring program was established for the San Andres aquifer.

Table 8.0-1 presents well completion information for the San Andres wells in this area. Homestake's two deep wells within the project area are San Andres wells, #1 Deep and #2 Deep. These wells are used to supply the fresh-water injection systems within the collection area. San Andres well 951 is used as the fresh-water injection supply for the injection system in Sections 28 and 29 while San Andres well 943 is used as the fresh water injection supply for the injection system in Sections 3 and 34 and Felice Acres. Figure 8.0-1 shows the locations of the San Andres wells relevant to this area. Recharge to the San Andres aquifer occurs mainly west of the area shown in the figure and in the far western portion of the figure. The structure of the San Andres aquifer dips to the east, and thus the ground water system becomes progressively deeper in the easterly direction. The water-level elevations measured during 2008 (Figure 8.0-1) show a very flat piezometric surface with the gradient being from the west-northwest to the east-southeast. The continuity of the gradient in this area indicates that the East and West faults do not significantly affect the ground water flow in the San Andres aquifer. The displacement at the faults is not large enough to completely displace the entire thickness of this aquifer system. The increase in gradient in the project area also indicates a decrease in transmissivity in the area of

the steeper gradient. The faults may cause a decrease in the transmitting ability of the San Andres aquifer in this area.

Figure 8.0-2 presents the most recent water-quality data for the San Andres aquifer. Tables B.6-1 and B.6-2 in Appendix B present the tabulation of the water-quality data for the San Andres aquifer. Figure 8.0-2 shows the 2008 data for sulfate, TDS, uranium and selenium concentrations in the San Andres aquifer. Sulfate concentrations vary from 336 mg/l to 738 mg/l in the San Andres aquifer. Sulfate concentrations are typically near 700 mg/l for Homestake #1 Deep and #2 Deep wells. TDS concentrations have varied from 823 to 1970 mg/l and generally increase in a down-gradient direction. The higher concentrations of sulfate and TDS to the east are natural and typical of a limestone aquifer where the extended contact time with the formation results in ongoing dissolution of major constituents. This increase in concentrations from the recharge area down dip is expected. Uranium concentrations were small in all of the San Andres wells monitored during 2008 with a slightly higher value of 0.05 mg/l from well 951. Selenium concentrations in the San Andres aquifer vary from 0.01 to 0.02 mg/l. All measured molybdenum concentrations are less than 0.03 mg/l.

Figure 8.0-3 presents sulfate concentrations with time for Homestake's wells 943, 951, Deep #1 and #2 wells. This data shows that sulfate concentrations in 2008 for these four San Andres wells were similar to their historical average since injection water supply has occurred.

8.0-5

TABLE 8.0-1. WELL DATA FOR THE SAN ANDRES WELLS.

			WELL	CASING	6V	ATER LE	VEL	MP ABOVE		DEPTH TO TOP OF	ELEV. TO TOP OF	I	CASING PERFOR-
WELL NAME	NORTH. COORD.	EAST. COORD.	DEPTH (FT-MP)	DIAM (IN)	DATE	Depth (FT-MP)	ELEV. (FT-MSL)	LSD (FT)	MP ELEV: (FT-MSL)	SAN ANDRES (FT-LSD)	SAN ANDRES (FT-MSL)		ATIONS (FT-LSD)
#1 Deep	1543307	493633	1000.0	10.0	12/12/2007	99.0800	6484.68	0.0	6583.76	130	6454	A	
										303	6281	U	
										433	6151	М	—
										597	5987	L	
										- 900	5629	S	919-999
#2 Deep	1542424	490972	870.0		5/4/2005	208.800	6366.86	0.0	6575.66	110	6466	A	
										800	5776	5	-
0534	1534589	476549	1000.0	16.0	12/4/2008	118.120	6434.45	0.0	6552.57			S	-
0535	1530100	478450	198.0	12.0	12/4/2008	114.800	6425.20	0.0	6540.00			S	-
0545	1540200	476600	0.0	8.0					6560.00		_	S	-
0806	1541120	486320	584.0	16.0				0.0	6567.00	90	6477	Α	
		•								520	6047	S	-
0806R	1541180	486320	600.0	16.0	3/5/2008	134.710	6432.29		6567.00			S	504-600
0822	1538920	488630	980.0	7.0	2/13/2008	135.600	6432.40	0.0	6568.00	790	5778	S	790-875
0907	1534250	480800	360.0	16.0	12/4/2008	116.900	6428.70	0.0	6545.60	123	6423	A	
										262	6284	s	295-360
0911	1534350	476800	188.0					0.0	6552.60			s	-
0918			725.0	4.0				0.0	6702.40	620	6082	s	635-655
0919			628.0	5.0				0.0	6684 00	35	6649	Α	
			•==•••							356	6328	s	364-571
0923	1552400	477900	330.0	5.0	4/6/1994	6464.97	157.63	0.0	6622.60	. 60	6563	A	
										- 229	6394	S	234-330
0928	1548250	491700	864.0		12/22/2008	169.300	6428.30	1.2	6597.60	138	6458	A	
										801	5795	s	-
0938	1539500	473040			12/17/2008	136.5	6432.30	0.0	6568.80	95	6474	A	
										120	6449	S	-
0943	1537222	487407	978.0	18.0	12/29/2008	133.300	6422.61	0.0	6555.91	。 704	5852	s	703-978
0949	1540350	483600	551.0	6.0	2/13/2008	130.600	6431.70	0.0	6562.30	112	6450	Α	
										460	6102	S	505-551
0951	1545500	473200	275.0	10.0	12/29/2008	150.279	6423.42	0.9	6573.70	110	6463	А	
										227	6346	S	241-275
0955	1537300	483700	498.0	5.0	11/3/1995	78.0500	6471.95	0.2 ~	6550.00	4 0.·	<u>6</u> 510-	A	
										- 420	6130	S	385-498
0986	1538008	483745	467.0	5.0	8/23/2008	12,4	6426.00	0.8	6550.00	65	6484	А	
										85	6464	L	
										415	6134	S	420-467
0987	1538240	483360	500.0	5.0	11/3/1995	54.4799	6495.52	1.0	6550.00	70	6479	Α	
										385	6164	S	425-470
0991	1538880	483630	500.0		8/26/2008	126.819	6424.18	1.4	6551.00			S	-

8.0 - 6

TABLE 8.0-1. WELL DATA FOR THE SAN ANDRES WELLS. (cont'd.)

WELL NAME	NORTH. COORD.	EAST. COORD.	WELL DEPTH (FT-MP)	CASING DIAM (IN)	M DATE	ATER LE DEPTH (FT-MP)	EVEL ELEV. (FT-MSL)	MP ABOVE LSD (FT)	MP ELEV. (FT-MSL)	DEPTH TO TOP OF SAN ANDRES (FT-LSD)	ELEV. TO TOP OF SAN ANDRES (FT-MSL)	(P /	ASING ERFOR- ATIONS FT-LSD)
0995	1540115	476594		-			_	- 0.0	6560.00			S	
0998	1533080	476450	145.0	16.0		_		0.0	6550.00			s	-
NOT	rE: A = Ba L = Lov S = Sa	se of Alluviu wer Chinle n Andres Ac	ım quifer										

r = Reported

* = Abandoned

SECTION 9

TABLE OF CONTENTS

GROUND WATER MONITORING FOR HOMESTAKE'S GRANTS PROJECT

9.0	REFERENCES	Q A_1

Page Number

9.0 **REFERENCES**

- Environmental Restoration Group, 1999a, Statistical Evaluation of Alluvial Groundwater Quality Upgradient of the Homestake Site near Grants, NM, Molybdenum, Selenium and Uranium, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Environmental Restoration Group, 1999b, Statistical Evaluation of Alluvial Groundwater Quality Upgradient of the Homestake Site near Grants, NM, Nitrate, Sulfate and Total Dissolved Solids, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Environmental Restoration Group, 2003, Grants Project, Statistical Evaluation of Chinle Aquifer Quality at the Homestake Site, Near Grants, NM, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hoffman, G.L., 1976, Groundwater Hydrology of the Alluvium, Consulting Report to Homestake Mining Company.
- Hoffman, G.L., 1977, Modeling, Design and Specifications of the Collection and Injection Systems, Consulting Report to Homestake Mining Company.
- Hydro-Engineering, 1981, Ground-Water Discharge Plan for Homestake's Mill near Milan, .New Mexico, DP-200, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1983, Ground-Water Discharge Plan for Homestake's Mill near Milan, New Mexico, DP-200, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1983a, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1983b, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1983c, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, Fourth Quarter 1983, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1984a, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, First Quarter 1984, Consulting Report for Homestake Mining Company, Grants, New Mexico.

Hydro-Engineering, 1984b, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, Second Quarter 1984, Consulting Report for Homestake Mining Company, Grants, New Mexico.

- Hydro-Engineering, 1984c, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, Third Quarter 1984, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1985a, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, Fourth Quarter 1984, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1985b, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, First Quarter 1985, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1985c, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, Second Quarter 1985, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1985d, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, Third Quarter 1985, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1986a, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, Fourth Quarter 1985, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1986b, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, First Quarter 1986, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1986c, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, Second Quarter 1986, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1987a, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, Third and Fourth Quarters 1986, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1987b, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, First and Second Quarters 1987, Consulting Report for Homestake Mining Company, Grants, New Mexico.

- Hydro-Engineering, 1988a, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, Third and Fourth Quarters 1987, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1988b, Ground-Water Monitoring for Homestake's Mill Discharge Plan, DP-200, First and Second Quarters 1988, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1988c, Renewal Ground-Water Discharge Plan, DP-200 for Homestake's Mill Near Milan, New Mexico, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1989, Corrective Action Plan for Homestake's Tailings, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1990, Ground-Water Monitoring for Homestake's Mill Discharge Plan DP-200 and NRC License SUA-1471, 1989, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1991, Ground-Water Monitoring for Homestake's Mill Discharge Plan DP-200 and NRC License SUA-1471, 1990, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1992, Ground-Water Monitoring for Homestake's Mill Discharge Plan DP-200 and NRC License SUA-1471, 1991, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1993a, Ground-Water Monitoring for Homestake's Mill Discharge Plan DP-200 and NRC License SUA-1471, 1992, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1993b, Water Quality Changes in the Alluvial Aquifer Adjacent to the Homestake Tailings, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1994, Ground-Water Monitoring for Homestake's Mill Discharge Plan DP-200 and NRC License SCA-1471, 1993, Consulting Report for Homestake Mining Company, Grants, New Mexico.
- Hydro-Engineering, 1995, Ground-Water Monitoring for Homestake's Mill Discharge Plan DP-200 and NRC License SUA-1471, 1994, Consulting Report for Homestake Mining Company, Grants, New Mexico.

- Hydro-Engineering, 1996. Ground-Water Monitoring for Homestake's Grants Project, NRC License SUA-1471, and Discharge Plan DP-200. Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C, 1997. Ground-Water Monitoring for Homestake's Grants Project, NRC License SUA-1471, and Discharge Plan DP-200, 1996. Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 1998, Ground-Water Monitoring and Performance Review for Homestake's Grants Project, NRC License SUA-1471, and Discharge Plan DP-200, 1997. Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 1999, Ground-Water Monitoring and Performance Review for Homestake's Grants Project, NRC License SUA-1471, and Discharge Plan DP-200, 1998. Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 2000a, Ground-Water Monitoring and Performance Review for Homestake's Grants Project, NRC License SUA-1471, and Discharge Plan DP-200, 1999. Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 2000b, Ground-Water Hydrology at the Grants Reclamation Site, Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 2001a, Ground-Water Monitoring and Performance Review for Homestake's Grants Project, NRC License SUA-1471, and Discharge Plan DP-200, 2000. Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 2001b, Ground-Water Hydrology and Restoration at the Grants Reclamation Site, 2001, Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 2001c, Ground-Water Hydrology for Support of Background Concentrations at the Grants Reclamation Site, 2001, Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 2002, Ground-Water Monitoring and Performance Review for Homestake's Grants Project, NRC License SUA-1471, and Discharge Plan DP-200, 2001. Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 2003a, Ground-Water Monitoring and Performance Review for Homestake's Grants Project, NRC License SUA-1471, and Discharge Plan DP-200, 2002. Consulting Report for Homestake Mining Company of California.

- Hydro-Engineering, L.L.C., 2003b, Grants Reclamation Project, Background Water Quality Evaluation of the Chinle Aquifers. Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 2004, Grants Reclamation Project, 2003 Annual Monitoring Report/Performance Review for Homestake's Grants Project Pursuant to NRC License SUA-1471 and Discharge Plan DP-200. Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 2005, Grants Reclamation Project, 2004 Annual Monitoring Report/Performance Review for Homestake's Grants Project Pursuant to NRC License SUA-1471 and Discharge Plan DP-200. Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 2006, Grants Reclamation Project, 2005 Annual Monitoring Report/Performance Review for Homestake's Grants Project Pursuant to NRC License SUA-1471 and Discharge Plan DP-200. Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 2007, Grants Reclamation Project, 2006 Annual Monitoring Report/Performance Review for Homestake's Grants Project Pursuant to NRC License SUA-1471 and Discharge Plan DP-200. Consulting Report for Homestake Mining Company of California.
- Hydro-Engineering, L.L.C., 2008, Grants Reclamation Project, 2007 Annual Monitoring Report/Performance Review for Homestake's Grants Project Pursuant to NRC License SUA-1471 and Discharge Plan DP-200. Consulting Report for Homestake Mining Company of California.

