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What are the source rocks for the borehole sediments? What are the REE contents of the source
rocks? How do those contents compare to the REE contents of the sediments?

What are the REE contents of the local groundwaters? How do they compare to the alluvium
patterns? In Oasis Valley Johannesson et al. (1999) showed groundwater REE patterns that are
the opposite of our alluvium patterns (e.g., the waters are enriched in HREESs).

During weathering and transport of the alluvial sediments, what happens to the original REE
contents? REEs tend to be immobile during weathering. Some would be immobile because they
are contained within resistant minerals like zircon, monazite, and sphene. Other REEs would be
immobile because they sorb onto clays and iron oxides.

If the REEs we have measured in the fines from the alluvium are mainly on clays or iron oxides,
can that be interpreted, in part perhaps, in terms of colloidal transport on clay or iron oxide
particles in a fluvial, braided stream environment? - followed by deposition among the
conglomerates of the system and retention within the deposited sediments.

What are the REE contents of the SZ waters in contact with the REE-containing clays and iron
oxides? [it will be some very low number] Is the REE content of the waters consistent with the
REE abundances in/on the clays and iron oxides?

Is there any correlation between LREEs and clays? Duddy, 1980; Olivera-Pastor et al.,
1988 report adsorption of LREEs onto clays as a means of fixing LREEs during weathering.

Limited enrichment of MREEs were observed in Fe-rich nodules and Fe-Mn coatings in a
marine environment (e.g. Palmer and Enderfield, 1986).

**Where are the REEs hosted in the unaltered source rocks?

During weathering of the source rocks, the REE undergo some degree of redistribution from
their original minerals. The degree of redistribution of REEs that occurs during weathering may
be considerable (e.g., Banfield and Eggleton, 1989) or somewhat less (REF??) depending on the
composition of the original host minerals and the conditions under which weathering occurred.

- REE:s are used for provenance studies for shales. So REEs are more or less quantitatively
retained in the clays during transport and deposition, right?

- Need to do a heavy mineral separation on the fines to determine REEs in heavies vs REEs on

clays and iron oxides?

** Use SEM/EDS to examine representative samples of our fine fraction to rule out significant
heavy mineral contributions to REE contents.



Why normalize to PAAS?

Why normalize to chondrites?

** Check for correlations between LREE, MREE, and HREE variations and clay minerals (of
various types), FeOx MnOx minerals, and any others. Use those correlations (if any) to interpret
major modes of REE adsorption within the various horizons sampled in the well. Use REE
adsorption patterns as analogs for what might occur with actinides.

Our measurements of REEs in the fines of the alluvial sediments include REEs (i) retained
within minerals composing the sedimentary grains transported as suspended particles, (ii) sorbed
onto surfaces of the suspended sedimentary particles, and (iii) transported as colloids and
retained within the alluvium by filtration. We will not have measured those REEs transported in
the dissolved load, but the abundance of REEs in the dissolved load is most likely to have been
quite low compared to the abundance of REEs carried in the suspended and bed loads.

Our measured REE abundances in the fines will not have been strongly affected by post-
depositional interactions with REEs in groundwater moving through the sediments because the
concentrations in the sediments as deposited are large compared to the concentrations in the
groudwaters.

Interpretations:

Our measured REE abundances are generally enriched in LREEs relative to HREEs. The La/Lu
ratios for all samples are greater than 1.3. The highest La/Lu ratio is 2.19 and the lowest is 1.32.
What is special about the samples with the greatest and least degree of enrichment? How do
these observations compare to the experimental results of Benedict et al (1996)?

REEs in common rocks tend to occur as substitutions for Ca. In our samples, where is the Ca?
Plagioclase appears to be the main mineral that would likely have a significant Ca concentration,
but the measured REE concentrations are not well correlated with the abundance of plagioclase
in the samples. What else has significant Ca? There is only trace calcite in the XRD data. Could
the variability in calcite abundance at levels below XRD detection (e.g., less than about 5
volume percent) account for the REE abundances?

There is no correlation between REE abundances and the abundances of varioius clay minerals,
so there may be no preference for accomodation of the REEs among the clay minerals measured.

Try normalizing to average chondritic values. Might be better to just normalize to shales though,
if the differences between chondrite values and these samples is large.

Plot un-normalized concentrations to look for Oddo-Harkins rule (concentrations for even
numbered elements greater than their odd numbered neighbors).



It is unlikely that the REE concentrations in these samples are dominated by the influence of
heavy minerals. In these samples, Gd/Yb ratios vary from 1.08 to 1.40. This is consistent with
most commonly observed post-Archean sediment values (McLennan, 1989). Addition of even
minor amounts of monazite (0.005 % to sandstones and 0.02 % to shales) produces Gd/Yb
values greater than 2.0. Even limited zircon abundances would give rise to Gd/Yb ratios less
than 1.0. La/Yb ratios range from 1.34 to 2.22. This range is consistent with most post-Archean
sedimentary rocks. This La/Yb range is inconsistent with the inclusion of significant allanite.
Allanite abundances of 0.02 % and greater produce La/Yb ratios greater than 15 for low REE
abundance sediments such as these. Further, there is essentially no correlation among Zr, Hf, Th,
and Yb, suggesting minimal influence from zircon, allanite, or monazite in these samples.

Can quantify the Eu anomalies (McLennan chapter page 176)

Our measured samples (35 mesh??) may be just the fines from the original volcanic rock. The
clay content from XRD is low and the other minerals are likely from the original volcanics. That
is consistent with the REE patterns which make smoother curved when normalized against C1
chondrites (thought to be representative of igneous rocks??) than when normalized against
PAAS. Trends are similar, though. Enriched in LREEs and have a negative Eu anomaly.



Are our REE measurements dominated by heavy minerals (zircon, monazite, sphene, and such)?
- check for correlations with Zr, Ti, ...

If not in heavies, where are they?

We have REE concentrations for <35 mesh fines. What is this fraction mineralogically?
Where are these REEs, on clays or iron oxides or in minerals/rock fragments, heavies?
Is there a correlation between REE abundances and lithology or clast size?

What about REEs and iron oxides? Do they tend to be associated? REEs and zeolites? REEs and
clays?

If the REEs are mainly on clays or iron oxides, can that be interpreted, in part perhaps, in terms
of colloidal transport on clay or iron oxide particles in a fluvial, braided stream environment? -
followed by deposition among the conglomerates of the system and retention within the
deposited sediments. What are the REE contents of the SZ waters in contact with the REE-
containing clays and iron oxides? [it will be some very low number] Is the REE content of the
waters consistent with the REE abundances in/on the clays and iron oxides?

In the alluvium, there is uncertainty in the abundance of iron oxides because they can be
amorphous and not show on the XRDs.

Iron oxides could/shouid be more important to sorption than clays, yes?
What about anthropogenic REE inputs from “military activities”?

plutonium is in the same chemical family as the rare earth element samarium. Plutonium is
similar to uranium, neptunium, and americium in that all of these elements have four possible
oxidation (valence) states (i.e., +3, +4, +5, and +6).

rare earth elements (REE) as analogues to the long-lived actinides is also evaluated in groundwater

and rock samples at Olkiluoto (SW Finland).

V Marcos, N., 2002. Low-temperature mobility of rare earth elements, U and Th at the Olkiluoto
site, SW Finland. Mat. Res. Soc. Symp. Proc. 713, 825-832.

Johannesson K.H., Farnham I.M., Guo C., and Stetzenbach K.J., 1999. Rare earth element
fractionation and concentration variations along a groundwater flow path within a shallow,
basin-fill aquifer, southern Nevada, USA. Geochim. Cosmochim. Acta, 63, 2697-2708.

Krauskopf, K.B., 1986. Thorium and rare-earth metals as analogues for actinide elements. Chemical
Geology, 55, 323-335.
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revised Nopal REE summa

Sample La Ce Nd Sm Eu Th Yb Lu Hf Ta Th U Sc |ICP-Sc
Nopal Tuff 48.3 | 96.2 | 37.8 | 6.97 | 0.66 3.2 |0.49| 7.6 | 3.83|39.25.53{2.92]| 2.5
Aniel Nopal (f)] 46 91 9.1 [057|i.ii| 44 |0.61| 6.6 |2.74{34.4| 9.7

An. N. (e)80 m | 51 127 | 43 8.2 1072|095 | 3.1 [0.55]| 84 |2.26 | 34.1| 9.7

9.7/7.35 57.5| 107 | 49 | 8.67 | 0.67 3.38{0.53(8.19 | 3.59|42.8| 156.7 | 3.16 3.1
11.9/7.9 48 153 47 [ 13.3}| 1.2 [|2.42| 9.9 [1.36| 9.3 {0.74 | 56.7| 49 | 6.94 4.4
mass corr 11.9 [ 25.17[80.22124.64(6.973(0.6291.269(5.191{0.713|14.876|0.388]29.73 | 25.69|3.639

yield corr 11.9 30.359 | 96.768 | 29.726 | 8.4119| 0.759 | 1.5306| 6.2615 | 0.8602 | 5.882 | 0.468 | 35.861 | 30.991 | 4.3894 | 0.82699
17.0/7.5 59.2 | 94 25 14,04 0.2 1.9 3.1 10.48] 9.5 | 0.58 | 45.8 16.3 9.4
corr 17.0 21.4133.9(9.02|1.46(0.07{0.69|1.120.17 {1 3.43 | 0.21 | 16.5 5.88

yield corr 17.0 34.138 | 54.205 | 14.416| 2.3297| 0.1153 | 1.0956 | 1.7876 | 0.2785 | 5.4781 | 0.3345 | 26.41 9.3993 | 0.62556
8.45/13.82 39.1 77 33 112.611.45 5 57 074 7.7 10.75| 214 24.6
corr8.45 154 {30.3| 13 14.95{ 057196 2.24 | 0.29 | 3.03|0.29 | 84.1 9.67

avg yield corr 21.341 ] 42.026 | 18.011 | 6.877 | 0.7914! 2.729 | 3.111 | 0.4039{4.2026 | 0.4093| 116.8 13427 0.72

Bret Leslie 12/8/93




Chondrite-normalized REE (Nakamura 1974) for Slightly Altered Nopal Tuff
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Chondrite-normalized REE (Nakamura 1974) for Nopal Tuff
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Chondrite-normalized REE (Nakamura 1974) for Strongly Altered Nopal Tuff
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Chondrite-normalized REE (Nakamura 1974) for All Nopal Samples
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