Crystal River Unit #3 Containment Delamination Update

November 20th 2009

Agenda

- Introduction
- Plant Overview
- CR3 Containment Design Features
- SGR Opening Sequence & Identification of Delamination
- Investigative Approach
- Condition Assessment
- Root Cause Analysis (RCA)
- Operational Experience (OE)
- Design Basis Analysis (DBA)
- Repair Approach
- Summary Comments / Questions

Crystal River 3 Overview

- Babcock and Wilcox Pressurized Water Reactor
- Location: Crystal River Florida
- 2609 MW_{th}
- 838 MW_e
- Commercial Operations began 1976

2009 Crystal River 3 Outage Overview Building a nuclear future for Florida customers

- Routine refueling scope
 - Off line maintenance and fuel for 2 years
- Steam Generator Replacement (SGR)
- Extended Power Uprate (EPU) Phase 2
 - Extensive steam plant work
 - Taking advantage of longer OTSGR duration
 - Steam plant efficiencies
 - Part of total ~15% Uprate

Steam Generator Replacement (SGR) Work Breakdown

- **Containment Opening**
- Lifting and Rigging
- Cutting and welding

Extended Power Uprate (EPU) Work Breakdown

- Generator Replacement
 - Stator, Rotor, Exciter
- Moisture Separators
- MSR Drain Coolers
- Lube Oil Coolers
- Feed Water Heaters
- Iso-Phase cooling

CRYSTAL RIVER #3 DESIGN FEATURES

Fission Product Barriers Simplified Schematic

CR3 Containment Dimensions

Dimension	Value
Containment Outside Dimension (OD)	137 ft 0.75 in
Dome Thickness	36 in
Basemat Thickness	12 ft 6 in
Liner Thickness	0.375 in
Wall Thickness	42 in
Buttress Wall Thickness	5 ft 10 in
Vertical & Hoop Conduit OD	5.25 in
# of Vertical Tendons	144
# of Tendon Hoops	94
# of Tendons per Hoop	3
# of Prestressed Dome Tendons	123

SGR OPENING SEQUENCE & IDENTIFICATION OF DELAMINATION

Steam Generator Replacement (SGR) Opening (between Buttresses 3 and 4)

SGR Opening Dimensions

@ Liner 23' 6" x 24' 9"

@ Concrete Opening 25' 0" x 27" 0"

Concrete Removal

Concrete & Liner Removal Sequence

Delamination Close-up

Location of the Delamination

INVESTIGATION APPROACH

External Support

- Condition Assessment & Laboratory Testing
 - NDT Construction Technology Laboratories (CTL)
 - Labs MacTec, Soil& Materials Engineers (S&ME)
 - Other Field Data Sensing Systems, Inc; Core Visual Inspection Services (Core VIS), Nuclear Inspection & Consulting, Inc; Precision Surveillance; Gulf West Surveying Inc; AREVA
- Root Cause Analysis
 - Lead Performance Improvement International (PII)
 - Owner's Support Worley Parsons, Bechtel

External Support (continued)

Design Basis Analysis

- Lead MPR Associates, Inc.
- Owner's Support Worley Parsons

Repair Analysis

- Lead Structural Preservation Systems (SPS)
- Owner's Support Wiss, Janney, Elstner, Inc (WJE)

Industry Support

• Exelon, SCANA, and Southern Company

Organization – Functional View

Nuclear Safety Oversight Committee (NSOC) Containment Sub-Committee Membership

Member	Title
Bob Bazemore (PGN)	VP-Audit (Chairman)
Joe Donahue (PGN)	VP- Nuclear Oversight
Chris Burton (PGN)	VP – Harris
Greg Selby	Technical Director - EPRI
Dr. Shawn Hughes	VP - Shaw Stone and Webster
Dr. Paul Zia	Civil Engineering Professor, NCSU
Hub Miller	33 years industry oversight experience
Darrell Eisenhut	41 years industry operation and oversight experience

CONDITION ASSESSMENT

Condition Assessment Activities Completed or Planned

Determine Extent of Condition

- Characterize the extent of delamination at the SGR opening
- Determine condition of other portions of structure

Non Destructive Testing (NDT) of Containment Wall Surfaces

- Use of Impulse Response (IR) Method
- Comprehensive on external exposed surfaces
- Accessible areas in adjacent buildings

Condition Assessment Activities

Completed or Planned

Concrete Cores

- Used to confirm IR results (over 80 cores)
- Visual examination of core bore holes with boroscope to identify if delamination present
- ASME Section XI IWL visual inspection (affected areas)

Containment Dome Inspections

- NDT IR scans in segment above the SGR opening
- Concrete cores with boroscope examination of bore holes
- Physical survey with established benchmarks

Condition Assessment Techniques Impulse Response (IR)

- IR Equipment
 - Primary test method used in this evaluation

• IR Performed in the Field

Condition Assessment Techniques *Ground Penetrating Radar (GPR)*

- Ground Penetrating Radar (GPR) Equipment
 - Locates internal features (rebar, tendon conduits, etc.)
- GPR Performed in the Field

Condition Assessment Techniques *Core Bores & Boroscopic Examination*

Examination – Inward View

Examination – Side View

Core 51, Gap 1 Depth 5-1/4" Gap 1 Width Less than 1/8"

Condition Assessment Techniques Impact Echo (IE)

- IE Equipment
 - Ability to determine depth of delamination
- IE Performed in the Field

Containment "Unfolded" – Buttress 5 to 2 Updated Nov 18th 2009

Core Bores Buttress Spans 2 - 3 - 4 - 5 (as of Nov 17th 2009)

Core Bores Buttress Spans 5 - 6 - 1 - 2 (as of Nov 17th 2009)

Vertical Tendons

Additional tendons to be detensioned prior to closing SGR opening (preoutage plan)

CR3 Typical Tendon Schematic and Photo (for horizontal tendon # 53H27)

Tendon Pattern

Tendon Pattern at time of cutting SGR Opening

Removed Tendon

Tendon Pattern

Tendon Pattern at time of cutting SGR Opening

Removed Tendon

Equipment Hatch Opening Reinforcement Photo - 30 Nov 1972

ROOT CAUSE ANALYSIS

Root Cause Analysis – PII Metrics

Un-refuted Failure Modes as of Nov 17th 2009

Root Cause Analysis Field Data Acquisition

- Impulse Response (IR) Scans
- Boroscopic Inspections
 - Core bore holes
 - Inside the delaminated gap
- Visual inspections
 - Delamination cracks at SGR Opening
 - Larger fragments from concrete removal process
 - Containment external surface

Root Cause Analysis Field Data Acquisition (continued)

- Nearby energized tendons lift-off (vertical and horizontal)
- Containment dimension measurements
- Strain gauge measurements
- Linear variable displacement transducer (LVDT) gap monitoring
- Building natural frequency

Root Cause Analysis Field Data Acquisition (continued)

- Core bores laboratory analysis
 - Petrographic Examination
 - Modulus of Elasticity and Poisson's Ratio
 - Density, Absorption, and Voids
 - Compressive Strength, Splitting Tensile Strength, and Direct Tensile Strength
 - Accelerated Creep test
 - Accelerated Alkali Silica Reaction (ASR) test
 - Chemistry and contamination test
 - Scanning Electron Microscope (SEM) examination of microcracking

OPERATIONAL EXPERIENCE (OE)

Steam Generator Replacement (SGR) OE Type of Information Collected from the Industry

- Architect Engineer and Constructor
- Type of Containment and design pressure
- # of Buttresses
- Concrete design strength requirement
- Dimensions
 - Internal containment diameter and wall height
 - Containment cylinder wall and dome thickness
 - Tendons details (# vertical, # horizontal, # dome, strand diameter)
 - Liner thickness

Steam Generator Replacement (SGR) OE Type of Information Collected from the Industry (cont)

- Reinforcement details
- Whether concrete opening was made
 - Was hydro-excavation used
 - And if so, equipment operating parameters
- Detensioning details
 - # by cutting
 - # by relaxation
 - # of tendons removed/detensioned beyond the SGR opening

Concrete OE

Worley Parsons

1976 dome delamination investigation and repair (as Gilbert / Commonwealth)

Structural Preservation Systems (SPS)

- Largest Concrete Repair Contractor in the US, 2nd largest Concrete Contractor (of any type) in the US
 - Defects, Damage, and Deterioration
- Performs > 4,000 repair projects per year
- 3,000 employees in 27 offices Nationwide, and London, Dubai & Singapore

Wiss, Janney, Elstner, Inc (WJE)

- Structural engineering and materials science firm specializing in failure investigations and problem solving
- Specialist in structural condition assessments and design of repairs and retro-fits for reinforced and post tension concrete structures
- Conducted original CR3 Structural Integrity Test (SIT)
 - 450 employees in 20 offices nationwide

1976 Dome Delamination *Cause*⁽¹⁾

- Compression tension interaction failure occurred
- Contributing Effects
 - Radial tension due to prestressing
 - Thermal effects
 - Tendon alignment
 - Stress concentrations
 - Shrinkage
- Combined with biaxial compressive stresses and lower than normal⁽²⁾ direct tensile strength of concrete

 ⁽¹⁾Cause information taken from 1976 Final Report prepared by Gilbert / Commonwealth
⁽²⁾Lower than normal (or typical), but above design requirements

1976 Dome Delamination *Repair Approach*

- Tendons detensioned (18)
- Delaminated surface was removed
- Lower level cracks grouted with epoxy
- New reinforcement placed
- New cap poured and cured set
- Tendons partially retensioned (18)

DESIGN BASIS ANALYSIS

Design Basis

- Reinforced Post-Tensioned Concrete Structure
- Live and Dead Loads
- Wind (110mph @ 30' increasing to 179 mph @ 166'10")
- Tornado Wind (300 mph)
- Tornado pressure (external pressure of 3 psig)
- Tornado Missiles (35' utility pole or 1 ton car @ 150 mph)
- Seismic (OBE 0.05 and SSE 0.10)
- Temperature Loads
- Accident Pressure (55 psig)
- Accidental Containment Spray Actuation Press (- 6.0 psig)

CR3 FEA Model

180 degree Symmetric model

- Symmetry plane @ 150 degrees midway Between Buttress 3 & 4 / 1 & 6
- ½ Opening, ½ Damage & ½ Hatch Modeled Explicitly

Concrete Model

- Brick elements for all components
- Dome and Base modeled independently
- Simplified ring beam and buttress geometry
- Constraint equations used to join dome and ring girder for meshing efficiency
- Constraint equation used to model sloped surfaces of the hatch

CR3 FEA Model (continued)

Liner Model

- Shell mesh with variable thickness
- Shared nodes with containment inner surface

Tendon Modeling

- Hoop tendons modeled explicitly for release and retensioning
- Vertical Tendons modeled explicitly for release and retensioning
- Dome tendons modeled independently with forces ported to global model

ELEMENTS MAT NUM

Concrete Geometry Based on Gilbert Associates Drawings

NGG

60

Tendon Geometry Based on Prescon Drawings

61

Dome FEA Model

Ring Girder Model

Core Building Geometry – FEA Mesh Hoop Tendon Locations Defined

Core Building Geometry - Buttresses

Equipment Hatch Model

Liner

Tendon Loading

- The tendons are preloaded to a prescribed load magnitude.
- The application of the tendon loads is achieved in the analysis using initial strain input
- An empirical formula has been developed to account for the loss of load as the distance from the anchor point increases:

$$\mathbf{P} = \mathbf{P}_0 \, \mathrm{e}^{-(\mathrm{ma} + \mathrm{ks})}$$

- Where:
 - P_o = preload magnitude
 - m = friction coefficient
 - a = inflection angle (0.16)
 - k = wobble coefficient (0.0003)
 - s = distance from anchor point
- Tendon preloads used in analysis:
 - P_{0-dome}
- = 1635 Kips (1,215,000 lb. 40 years) = 1635 Kips (1,252,000 lb. 40 years)
- P_{0-horizontal} P_{0-vertical}
- = 1635 Kips (1,252,000 lb. 40 years) = 1635 Kips (1,149,000 lb. 40 years)

Dome Force Vectors Ported to Global Model

69

FEA Model – Vertical and Hoop Tendons

70

FEA Model – Vertical and Hoop Tendon Supports

FEA Model – Hoop Tendons Couples and Supports

72
Hoop Tendon Forces

73

Planned Analysis

Existing Design Cases for Comparison

- Gravity (.95 G)
- Internal Dead Load (200 psf)
- Tendons (1635 kips / tendon)
 - Include losses
- Internal Pressure (55.0 psi)
- Wind Pressure (0.568 psi)
- Seismic
- Accident Thermal

Planned Analysis Steps

- Dead Load + Tendons
- Remove Hoop + Vertical Tendons in SGR Opening
- Remove SGR Opening
- Delamination⁽¹⁾
- Remove Additional Hoop & Vertical Tendons
- Replace the SGR Plug⁽²⁾
- Repair⁽²⁾
- Re-tension Tendons
- SAVE Path Dependent Model for Starting point to Run 5 Controlling Design cases

 ⁽¹⁾ Analysis will consider timing of delamination and specific concrete properties
⁽²⁾ Sequence of replacing SGR concrete plug and repair may be adjusted

Design Basis Controlling Load Steps

- Restart the Re-tensioned Model and solve the following Controlling Load Steps
 - 1.5 Internal Pressure + Accident Thermal
 - 1.25 Wind + 1.25 Pressure + Accident Thermal
 - 1.25 Earthquake + 1.25 Pressure + Accident Thermal
 - 2.0 Wind + Pressure + Accident Thermal
 - SSE Earthquake + Pressure + Accident Thermal
- Run Comparison to original building elastic design results

Preliminary Comparison of FEA Results to Extent of Condition Measurements

76

REPAIR APPROACH

Repair Attributes

- Incorporates and is compatible with Root Cause Analysis findings
- Restores applicable design basis margins
- Incorporates Extended Life
 - Long Term Surveillance and/or Maintenance Requirements
 - License Renewal
- Constructability

Repair Alternatives Considered

- Use-as-ls Rejected
- Anchorage Only Rejected
- **Cementitious Grout** *Rejected*
- Epoxy Resin Rejected
- Delamination Removal and Replacement Selected

Simplified Overview of Engineering & Repair Work Flow Tentative – Subject to RCA and DBA Results

Post- Repair Testing *Tentative – Subject to RCA Results*

- Approach ILRT and System Pressure Test
- ASME Section XI IWE for the liner and IWL for the concrete
- Concrete exterior will be visually examined prior to pressurization and following de-pressurization
- Evaluating other additional instrumentation based on the final repair that is implemented, and as driven by:
 - Root cause analysis
- NDE will be required for restored liner plate

Stakeholder Interactions

- Prompt Notification of Regulator & Industry
- Engagement of Critical Industry Organizations
 - Nuclear Energy Institute (NEI)
 - Including Nuclear Safety Information Advisory Council (NSIAC)
 - Institute for Nuclear Power Operations (INPO)
 - Electric Power Research Institute (EPRI)
- Continued Transparency with Regulator
 - Special Inspection Team (SIT)
 - Region and NRR/RES technical discussions
- Periodic Updates with U.S. Licensees

Summary & Questions

Questions

