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Figure 3.e.1-1 — Plan view of Comanche Peak upper containment CAD model
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Figure 3.e.1-2 — Isometric view of area outside secondary shield wall
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Figure 3.e.1-3 — Cross-section View 1 of containment building
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Figure 3.e.1-4 — Cross-section View 2 of containment building
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Figure 3.e.1-5 — Plan view of Comanche Peak lower containment CAD model
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Figure 3.e.1-6 — Southwest isometric view of Comanche Peak lower containment
CAD model
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Figure 3.e.1-7 — Close-up of sumps (outside secondary shield wall)
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LOOPS 1 & 4 LOOPS 2 & 3

Figure 3.e.1.1-1 — Isometric view of grating in RCS loop rooms
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Figure 3.e.1.1-2 — RCS loop room areas
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Figure 3.e.1.1-3 — RCS loop room grated areas
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Figure 3.e.1.1-4 —
- Combined fiberglass

logic trees with

existing transport -

fractions
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Figure 3.e.1.1-6 —
Combined fiberglass
logic trees with
alternate BWROG
washdown transport

fractions
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Initial distribution for
small and large piece
debris not blown to
upper containment
5,932 ft’

Figure 3.e.1.1-7 — Distribution of small and large
piece debris not blown to upper containment
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Initial distribution for
small and large piece
debris not blown to
upper containment
3,644 it

Figure 3.e.1.1-8 — Distribution of small and large
piece debris not blown to upper containment
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Figure 3.e.1.1-9 — Distribution of debris washed
down from upper containment
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Figure 3.e.1.2-1 Northwest isometric view lower containment CAD model
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Figure 3.e.1.2-2 Postulated Break Locations
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Figure 3.e.1.2-3 Diagram of significant features modeled
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Figure 3.e.1.2-4 lllustration of distinct floor levels
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Refueling cavity

drains Equipment hatch

drain area

Inactive sump

Figure 3.e.1.2-5 Streamlines showing water origination
areas for each sump (Loop 4 LBLOCA, two trains)
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Velocity (ft/s)

unit_vectors_over_combined bmp
2007-10-25

CPSES Case 4-EF

Figure 3.e.1.2-6 Vectors showing pool flow direction (Loop 4 LBLOCA Single Train Sump A)
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unit_vectors_over_combined.bmp
2007-10-23
CPSES Case 4-EF-B

Figure 3.e.1.2-7 Loop 4 LBLOCA Single Train Sump B
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unit_vectors_over_combined.bmp
2007-10-28
CPSES Case 4-EF

Figure 3.e.1.2-8 Loop 4 LBLOCA Single Train Sump A
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Sump B North Approach
Planes 1 to 30

Figure 3.f-1 Cutting Planes for Test Flume Modeling
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- Sump A South -
pproach Planes 1to® i

Plane 21

Figure 3.f-2 utting Planes for Test Flume Modeling
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Figure 3.f-3 Prepared Large LDFG (Nukon) - Dry
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Figure 3.f-4 Prepared Large LDFG (Nukon) - Wet
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 Turbulence and flow are related

— Literature treats suspension in terms of shear velocity

— Literature would indicate that at most pieces smaller than 1"x1”
could transport. All others cannot. | <

T — Experimental values for TKE required for suspension are much
o higher-than analytical values. | -

-+ TKE comparison between flume and containment

. B — Containment point sources of turbulence lead to higher

SR levels of TKE in containment vs. flume ~

S . — Containment TKE levels were reported on the flume
RO approach, not the prototypical approach path.

— Turbulent kinetic energy levels are low relative to what can
 reasonably expected to affect transport.
* Random velocity fluctuations are small relative to mean.

ALIEN

. -Solving flow problems since 1894 = - 7
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Containment Turbulent Kinetic Energy
One Train Operation (A)

3 ft Above Floor

Start of Approach
Start of Approach
FLUME FLUME
APPROACH #2 APPROACH #1
TKE (ft2/s?),
.8828 End of Approach
0.030
'0.020
g 0-010 ‘
0.000 End of .
Approach \ 44 ft diameter circles
centered on array of

strainers.
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Prototypical single strainer approach

* Look at four approaches to central strainers

ALDEN

Solving flow problems since 1894
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Turbulence Approach TKE

» Typical approach turbulence velocity is slightly lower
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Typical Approach Velocity

 Flume approach is VERY conservative relative to
containment
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Solving flow problems since 1894
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Conclusions

* Flume turbulence is lower
I — Importance is very questionable
— Magnitudes of random velocity fluctuations are low relative to mean

"I+ The key to transport is BULK VELOCITY

s e — Flume velocity is DOUBLE relative to typical containment
SR approach velocity for single train sump A operation.

a7

ALDEN

_ Solving flow problems since 1894
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General Overview

» Discussion of conservative representation of containment
“approach velocities in test flume

e « Discussion of relevant physics of turbulence
- — Role of turbulence in debris suspension
I O . NEI 04/07
- '+ Open Literature
i .+ Overview of CFD predicted' containment turbulence
i‘* ~-=== + Overview of CFD predicted flume turbulence

4 / R » Discussion

Solvirig flow problems since 1894 -

o~

ALDEN
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-+ Are flume flow turbulence conditions

prototypical of conditions in
I containment ?

[ | |
~* Are point sources of turbulence near
| - | modeled areas of containment
[~ accounted for in the flume ?

ALDEN

. Solving flow problems since 1894 -
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Containment Average Approach Velocity
'Representation in Test Flume

» Ateach 1 ftincrement back from each strainer array along
the water approach path to the strainers, calculate the
weighted average of the velocity along a vertical plane:

e — The weighted average at each increment is weighted by twice
R ‘the fastest velocity at the increment under consideration.

| — Low velocities in wake regions behind obstacles were ignored

[\\ — Only velocity vectors pointing towards the strainer array were
IR considered |

— Low velocities in the near wall regions were ignored

ALDEN

-Solving flow problems since 1894
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Physics of Turbulence

- Turbulent vs. Laminar Flow

« Turbulent (Re > 2000) vs. Laminar Flow (Re < 2000)

“ — Re = UR,/v > 2000 for open channel flow [1]
e — « U = Characteristic Velocity
Lo ‘ * R, = Characteristic Length Scale = Hydraulic Radius
- | « v = Kinematic Viscosity

A — Calculation for Containment and Flume

Lo — _ Flume Containment
SN Min Max Min Max
AR Velocity (ft/sec)| 0.4 0.5 0.4 0.5
P width(f)] 03 | 045 :
- 5 Depth {ft) 4.17 4.17
_____ ‘ Kinematic viscosity (ft*2/sec) 8E-06 3E-06
B Hydraulic Radius (ft)}] 0.14 |, 0.21 : 417
Re] 7240 | 13343 | 556000 | 695000
- — Conclusion: Flow in Flume is Turbulent

[1} *Flow through open channels”, Raju, K.G.R., McGraw-Hill, 1981.

ALDEN

Solving flow problems since 1894~ ™~ -
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Physics of Turbulence

“Magnitude” of Turbulence

* Turbulence Level is a function of Shear Velocity [2]

B : < o * f'U2 f — Darcy-Weisbach friction factor
— By Definition [2]: U™ =4|——— shear velocity

e 8
o { ' — Magnitude of Turbulent Velocity Fluctuation:

u =u* (2.3 exp (-y/h) ) for y/h < 0.1 [3]

u =u* (1.27 exp (-y/h) ) for y/h => 0.1 [3]

i Where:
e u' = Turbulent Fluctuating Velocity
TN u* = Shear velocity
i e TN .
Lo y = Vertical Length Scale
s L A h = Depth of Flow
?
' * Note:
fcontainment‘ fﬂume

. ' ycontainment = yﬂume and hcontainment = hﬂume
vt « Expected flow turbulence levels in the flume due to flowing
g water are of the same order as containment

=

[2] The Hydraulics of Open Channel'Flow, Chanson, H., Arnold, 1999:

l D I N B ) ) 3 o © ° " [3)Nezu, | and Azuma, R., Turbulence Characteristics and interaction between Particles

and Fluid in Particle-| Laden Open Channel Flows”, Journal of Hydrauhc ‘Engineering,

. -Solving flow problems since 1894 - . . Dctober 2004.
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Role of Turbulence in Suspension

« Turbulence studies have shown that the fluid shear velocity is
directly related to turbulence level [3]

~»  Onset of debris suspension is expected to occur when the
’ magnitude of the turbulent velocity fluctuation is greater by
— T some margin than the settling velocity of the debris as defined
i by the following expression:

u ..
— > critical value w, — settling velocity

| Wo
i

T — Open literature brackets the range of critical values: 0.2 to 2.0 [2]
LN ~ Minimum Shear velocity, U* iume and Containmeny = 0-031 /s
RN — Range of settling velocity susceptible to suspension:
o et » Material with settling velocity < 0.15 ft/sec (c.v. = 0.2)
o « Material with settling velocity < 0.06 ft/sec (c.v. = 2)

ALDEN

. -Solving flow problems since 1894 = "7 -

ENR-2007-002743-20-02



Attachment F

Paie14of24 |
‘Role of Turbulence in Suspension

. Table 4-2, NEI 04/07 - |

. ) Terminal TKE
. ~ — Only loose fibers easily suspended Densite | Veloust | Snapend
o by turbulence (WO<O15 ft/S) ’ Debris Categorv/Type Size (lbm/ﬂB) (ft/secj ' (fl:/serz)
(. = Only %" x ¥ clump turbulence & Frow Toowlnilon
requirements verified experimentally |} b - Cenenc |
T (Analytical TKE levels questionable [* Foerehes- a6 24 2 041 o 0.08
C . . . . 4" b. 2. b. 0.40 b. 0.080
o - ; as indicated in SER) o DR POER I
: : ; ¢ I" C. 2.4 ¢. 0.15 ¢. 0.
- — Experimental value tends much a1 ldo24 4075 ld ot
| higher than analytical value s [e 175 fe. 0008 . 3E-05
1 | ' .
1 : e. loose
LT ‘ - - fibers
4 \'- \ r ; \
R :
v ;
=
b

ALDEN

Solving flow problems since 1894 "~
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Containment Turbulent Kinetic Energy
Two Train Operation

0.5 ft Above Floor

| Start of Approach

Start of Approach

APPROACH #2

TKE (ft2/s?)

- APPROACH #1

End of Approach

End of e
Approach A 44 ft diameter circles
centered on array of

strainers.

Solving flow problems since 1894

ENR-2007-002743-20-02



Attachment F

Paie 16 of 24

Containment Turbulent Kinetic Energy
Two Train Operation

3 ft Above Floor

\ Start of Approach

APPROACH #1

| | B | P/ End of Approach
0.020 R & |
0

0.000 End of
Approach

44 ft diameter circles
centered on array of
strainers.

Solving flow problems since 1894
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Containment Turbulent Kinetic Energy
One Train Operation (A)

0.5 ft Above Floor

Start of Approach

Start of Approach

APPROACH #1
APPROACH #2

End of Approach

4 2.010 End of | _ ‘
0.000 Approach \ 44 ft diameter circles
centered on array of

strainers.

ALDEN

Solving flow problems since 1894
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Containment Turbulent Kinetic Energy
One Train Operation (A)

3 ft Above Floor

APPROACH #2 | Start of Approach

Start of Approach

APPROACH #1
TKE (ft¥/s?),

End of Approach

0.000 End of ; B
Approach \ 44 ft diameter circles
centered on array of

strainers.

Solving flow problems since 1894
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Test Flume Turbulent Kinetic Energy
CFD Geometry

Test Module

Inflow Pipe

ALDEN

Solving flow problems since 1894
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Test Flume Turbulent Kinetic Energy

. 0.5 ft above floor

0.00er08  L.152-0 231e-03  2dBe-03 9.23r-03 1.00e-02

. 3 ft above floor

8.77=-03 B.92e-03 8.08e

L

ALDEN

Solving flow problems since 1894
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Turbulent Kinetic Energy Profiles

« Area averaged quantities for planes
back from sump / strainer

ALDEN

TKE [ftA2/s72]
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Solving flow problems since 1894
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“Summary of Comparison

»  Flume turbulence levels on par with Approach #2 to strainers
~in containment for both one and two train operation.

« For one train operation, turbulence level in the flume is on the
order of that in the plant over most of Approach #1.

~= ===« The flume turbulence level near the test strainer is similar to
A the higher turbulence in the field at the upstream end of the
RN array. |
a - J *  For areas where flume turbulence is lower than containment:
ST — Greatest part of turbulent kinetic energy is below
R estimated required level for suspension of1 smalls
based on settling velocities

=~ Fines are suspended by both ﬂume and containment
turbulence levels

e — Debris > 4” is not able to be suspended by elther
| containment or flume turbulence levels

/\! g

w0 feh By

S “\r[\'}' Ay
3 ¥

| ALDEN

Solvmg flow problems since 1894
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Summary of Comparison (cont'd)

— Settling velocity is proportional to the inverse of viscosity
« Between flume (120F) and containment (~200F) viscosity is half

- Effebtive turbulence level in the flume is double due to
lower settling velocity in flume

ALDEN

_ -Solving flow problems since 1894
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RAI Response Summary

» Flume flow conditions are turbulent and are
- representative of flow generated turbulence.

,, .+ Turbulence levels observed are in general not sufficient
to keep smalls above 1" suspended in containment or
.~ flume.

« Near strainer turbulence levels are higher in the flume
| compared to containment calculated values.

TS "“L'::‘“ —« Point sources of turbulence from jetting located further
7.7 away from the strainers are not modeled in the flume.
"~ . 7 However, blocking of debris by the flow structures
existing in this area is also not considered.

- Point sources of turbulence are generally located outside
the mean radius of travel modeled in the flume.

et
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