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Figure 3.e.1-1 - Plan view of Comanche Peak upper containment CAD model
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Figure 3.e.1-1 - Plan view of Comanche Peak upper containment CAD model 
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Figure 3.e. 1-2 - Isometric view of area outside secondary shield wall
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Figure 3.e.1-2 - Isometric view of area outside secondary shield wall 
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Figure 3.e.1-3 - Cross-section View 1 of containment building
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Figure 3.e.1-3 - Cross-section View 1 of containment building 
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Figure 3.e.1-4 - Cross-section View 2 of containment building
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Figure 3.e.1-4 - Cross-section View 2 of containment building 
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Figure 3.e.1-5 - Plan view of Comanche Peak lower containment CAD model
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Figure 3.e.1-5 - Plan view of Comanche Peak lower containment CAD model 
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Figure 3.e.1-6 - Southwest isometric view of Comanche Peak lower containment
CAD model
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Figure 3.e.1-6 - Southwest isometric view of Comanche Peak lower containment 
CAD model 

ENR-2007-002743-20-02 



Attachment E
Page 29 of 49

Figure 3.e.1-7 - Close-up of sumps (outside secondary shield wall)
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Figure 3.e.1-7 - Close-up of sumps (outside secondary shield wall) 
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LOOPS 1 & 4 LOOPS 2 & 3

Figure 3.e.1.1-1 - Isometric view of grating in RCS loop rooms
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LOOPS 1 & 4 LOOPS 2 & 3 

Figure 3.e.1.1-1 - Isometric view of grating in ReS loop rooms 
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Figure 3.e. 1.1-2 - RCS loop room areas
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Figure 3.e.1.1-3 - RCS loop room grated areas
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Figure 3.e.1.1-4 
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Figure 3.e.1.1-6 
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Initial distribution for
small and large piece
debris not blown to
upper containment

5,932 fte

Figure 3.e. 1.1-7 - Distribution of small and large
piece debris not blown to upper containment
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Initial distribution for
smnal and large piece
debris not blown to
upper containment

3,644 "t2

Figure 3.e.1.1-8 - Distribution of small and large
piece debris not blown to upper containment
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Figure 3.e.1.1-8 - Distribution of small and large 
piece debris not blown to upper containment 

ENR-2007-002743-20-02 



Attachment E
Page 37 of 49

Initial
distribution for
debns washed
down refueling

canal drains

Initial distribution for
debris washed down
outside secondary

shield wall6,367 t

Initial distribution for
debris washed down
Inside RC$ loop bays

2,311 W

Figure 3.e. 1.1-9 - Distribution of debris washed
down from upper containment
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Figure 3.e.1.2-1 Northwest isometric view lower containment CAD model
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Figure 3.e.1.2-1 Northwest isometric view lower containment CAD model 

ENR -2007 -0027 4 3-20-02 



Attachment E
Page 39 of 49

Case 2: Loop 2
Break

~ Case 6: MSLB In
,,Coolina Unit Area

Case 4b: Loop 4
Cold Leg Break

Case 4a: Loop 4
Crossover Leg g

Break
Case 4c: Loop 4
Hot Leg Break

Case 4d: Loop 4
Surge Line Break

Case 8:
Letdown Line

Break

r Case lb: Loop I
Cold Leg Break

Case la: Loop I
Crossover Leg

Break

4 1 Case 7: SG
Case 5: MSLB in Blowdown Line
Penetration Area Break

Figure 3.e.1.2-2 Postulated Break Locations
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Figure 3.e.1.2-3 Diagram of significant features modeled
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Figure 3.e.1.2-4 Illustration of distinct floor levels
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Figure 3.e.1.2-4 Illustration of distinct floor levels 
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Refueling cavity
drains ,, Equipment hatch

L drain area

Inactive sump

Figure 3.e.1.2-5 Streamlines showing water origination
areas for each sump (Loop 4 LBLOCA, two trains)
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Figure 3.e.1.2-6 Vectors showing pool flow direction (Loop 4 LBLOCA Single Train Sump A)
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Figure 3.e.1.2-6 Vectors showing pool flow direction (Loop 4 LBLOCA Single Train Sump A) 
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Figure 3.e.1.2-7 Loop 4 LBLOCA Single Train Sump B
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Figure 3.e.1.2-7 Loop 4 LBLOCA Single Train Sump B 
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/
Figure 3.e.1.2-8 Loop 4 LBLOCA Single Train Sump A
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Figure 3.e.1.2-8 Loop 4 LBLOCA Single Train Sump A 
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Figure 3.f-1 Cutting Planes for Test Flume Modeling
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North Approach 
1 to 30 

Figure 3.f-1 Cutting Planes for Test Flume Modeling 
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Figure 3.f-2 Cutting Planes for Test Flume Modeling
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Figure 3.f-2 Cutting Planes for Test Flume Modeling 
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Figure 3.f-3 Prepared Large LDFG (Nukon) - Dry
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Figure 3.f-3 Prepared Large LDFG (Nukon) - Dry 
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L

Figure 3.f-4 Prepared Large LDFG (Nukon) - Wet
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Figure 3.f-4 Prepared Large LDFG (Nukon) - Wet 
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Recla~p
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" Turbulence and flow are related
- Literature treats suspension in terms of shear velocity

- Literature would indicate that at most pieces smaller than 1"x1"
could transport. All others cannot.

- Experimental values for TKE required for suspension are much
higher-than analytical values.

" TKE comparison between flume and containment
- Containment point sources of turbulence lead to higher

levels of TKE in containment vs. flume

- Containment TKE levels were reported on the flume
approach, not the prototypical approach path.

- Turbulent kinetic energy levels are low relative to what can
reasonably expected to affect transport.

0 Random velocity fluctuations are small relative to mean.
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44 ft diameter circles
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strainers.
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Prototypical single strainer approach

1 Look at four approaches to central strainers
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Prototypical single strainer approac 

• Look at four approaches to central strainers 
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Turbulence Approach TKE

Typical approach turbulence velocity is slightly lower

0.16

x

cc

.0

0.14

0.12

0.1

0.08

0.06

E Single Train Sump A

* Single Train Sump A

X Flume (effective)

*_ ._ . . .. - r - .... . . .. . .
*-.W

x

U

Ex.-W

0.04 XX
xxxxxxxxxxxxxxx

0.02

0i
0 5 10 15 20 25

1-ft increments back from Strainer Module / Test Strainer

ENR-2007-002743-20-02

Turbulence Approach TKE 

• Typical approach turbulence velocity is slightly lower 
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Typical Approach Velocity

• Flume approach is VERY conservative relative to
containment
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Typical Approach Velocity 

• Flume approach is VERY conservative relative to 
containment 

0.7 

0.6 

- 0.5 ~o::-----I---l - Flume Approach Velocity 
u 
cu 
en ........ 0.4 ~ 

1--------1 - Single Train Sump AApproach Avg 

-> .... ·u 
.2 

0.3 
cu 
> 0.2 

0.1 

0 

0 5 10 15 20 25 
Distance (ft) 

Solving flow problems since 1894 

ENR-2007-002743-20-02 



Attachment F
Page 7 of 24

Conclusiob.ns

C

* Flume turbulence is lower
- Importance is very questionable
- Magnitudes of random velocity fluctuations are low relative to mean

* The key to transport is BULK VELOCITY
- Flume velocity is DOUBLE relative to typical containment

approach velocity for singletrain sump A operation.

-i-

7

ALDE
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• Flume turbulence is lower 
,;PC Importance is very questionable 

- Magnitudes of random velocity fluctuations are low relative to mean 

, 

Ii. The key to transport is BULK VELOCITY 
i I L. _ . ___________ ...... ___ .J 

r " 
- , 

, 

Flume velocity is DOUBLE relative to typical containment 
approach velocity for singl~/ train sump A operation. 
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General Overview

I L1

* Discussion of conservative representation of containment
approach velocities in test flume

* Discussion of relevant physics of turbulence
- Role of turbulence in debris suspension

9 NEI 04/07

9 Open Literature

• Overview of CFD predicted containment turbulence
* Overview of CFD predicted flume turbulence
* Discussion

ENR-2007-002743-20-02
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General Overview 

• Discussion of conservative representation of containment 
approach velocities in test flume 

• Discussion of relevant physics of turbulence 
- Role of turbulence in debris suspension 

• NEI04/07 

• Open Literature 

• Overview of CFD predicted containment turbulence 

• Overview of CFD predicted flume turbulence 

• Discussion 
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RAI lO& 11

Are flume flow turbulence conditions
prototypical of conditions in
containment ?

-~1

* Are point sources of turbulence near
modeled areas of containment
accounted for in the flume ?

ALDE
*Sovn flo proles sic 1
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• Are flume flow turbulence conditions 
prototypical of conditions in 
containment? 1-- --" --, ------1 

I, I. Are point sources of turbulence near 
modeled areas of containment 
accounted for in the flume? 
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Containment Average Approach Velocity
Representation in Test Flume

At each 1 ft increment back from each strainer array along
the water approach path to the strainers, calculate the
weighted average of the velocity along a vertical plane:

L N

- The weighted average at each increment is weighted by twice
the fastest velocity at the increment under consideration.

- Low velocities in wake regions behind obstacles were ignored

- Only velocity vectors pointing towards the strainer array were
considered

- Low velocities in the near wall regions were ignored

ENR-2007-002743-20-02
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Containment Average Approach Velocity 
. Representation in Test Flume 

• At each 1 ft increment back from each strainer array along 
the water approach path to the strainers, calculate the 
weighted average of the velocity along a vertical plane: 

- The weighted average at each increment is weighted by twice 
the fastest velocity at the increment under consideration. 
Low velocities in wake regions behind obstacles were ignored 
Only velocity vectors pointing towards the strainer array were 
considered 
Low velocities in the near wall regions were ignored 
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Physics of Turbulence
Turbulent vs. Laminar Flow

Turbulent (Re > 2000) vs. Laminar Flow (Re < 2000)
- Re = URh/v > 2000 for open channel flow [1]

* U = Characteristic Velocity

• Rh = Characteristic Length Scale = Hydraulic Radius

• v =Kinematic Viscosity

-. Calculation for Containment and Flume

Flume Containment

Min Max Min Max
Velocity (ft/sec) 0.4 0.5 0.4 0.5

Width (ft) 0.3 0.45

Depth (ft) 4.17 4.17

Kinematic viscosity (ftA2/sec) 8E-06 3E-06

Hydraulic Radius (ft) 0.14 I0.21 4.17

Re 7240 13343 556000 695000

Conclusion: Flow in Flume is Turbulent

[1 Flo thog opncanls,-,KG.. c rw-il 91

ALDE
Soligfo prblm sic 1894
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Physics of Turbulence 
Turbulent vs. Laminar Flow 

• Turbulent (Re > 2000) VS. Laminar Flow (Re < 2000) 
Re = URh/v > 2000 for open channel flow [1] 

• U = Characteristic Velocity 

• Rh = Characteristic Length Scale = Hydraulic Radius 

• v = Kinematic Viscosity 

Calculation for Containment and Flume 

L __ .~ _______ ._" _____ ., Flume Containment 

Min Max Min Max 

Velocity (ft/secl 0.4 0.5 0.4 0.5 

Width (ftl 0.3 0.45 - -
Depth (ftl 4.17 4.17 

Kinematic viscosity (ftJ\2/secl BE-06 3E-06 

Hydraulic Radius (ftl 0.14 v 0.21 4.17 \ 

Re 7240 13343 .556000 695000 

- Conclusion: Flow in Flume is Turbulent 

A L DEN _ - _ _ [1] "Flow through open channels", RaJu, K G.R, McGraw-Hili, 1981, 
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Physics of Turbulence
"Magnitude" of Turbulence

Turbulence Level is a function of Shear Velocity [2]

i L 
J !

- By Definition [2]: U* S8
f - Darcy-Weisbach friction factor
u*- shear velocity

Magnitude of Turbulent Velocity Fluctuation:
* u' = u* (2.3 exp (-y/h)) for y/h < 0.1 [3]
. u' = u* (1.27 exp (-y/h)) for y/h => 0.1 [3]

Where:
u' = Turbulent Fluctuating Velocity
u* = Shear velocity

y = Vertical Length Scale
h = Depth of Flow

* Note:
- fcontainment" fflume

- Ycontainment = Yflurme and hcontainment = hflume

° Expected flow turbulence levels in the flume due to flowing
water are of the same order as containment

A L E [3 Neu I an Azra R. 'Truec Chrceitc an Ineacto bewe Patce
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Physics of Turbulence 
"Magnitude" of Turbulence 

Turbulence Level is a function of Shear Velocity [2] 

* f - Darcy-Weisbach friction factor F¥0 U2 

By Definition [2]: U = 8 u*- shear velocity 

Magnitude of Turbulent Velocity Fluctuation: 

• u' = u* ( 2.3 exp (-y/h) ) for y/h < 0.1 [3] 

• u' = u* ( 1.27 exp (-y/h) ) for y/h => 0.1 [3] 

Note: 

Where: 

u' = Turbulent Fluctuating Velocity 

u* = Shear velocity 

y = Vertical Length Scale 

h = Depth of Flow 

- fcontainment - fflume 

- Y containment = Yflume and hcontainment = hflume 

• Expected flow turbulence levels in the flume due to flowing 
water are of the same order as containment 

. - [2] The Hydraulics of Open Channel Flow. Chanson, H., Arnold, 1999. 

A L DEN - - - [3] ~ezu, I and Azuma, R , 'Turbulence Charactenstics and Interaction betw~en Particles 
- _ and Fluid in Particle-Laden Open Channel Flows", Journal of Hydraulic Engineering, 
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Role of Turbulence in Suspension
9 Turbulence studies have shown that the fluid shear velocity is

directly related to turbulence level [3]
* Onset of debris suspension is expected to occur when the

magnitude of the turbulent velocity fluctuation is greater by
some margin than the settling velocity of the debris as defined
by the following expression:

- > critical value
WO

wo - settling velocity

N

/

- Open literature brackets the range of critical values: 0.2 to 2.0 [2]

- Minimum Shear velocity, U* (Flume and Containment) - 0.031 ft/s

- Range of settling velocity susceptible to suspension:
* Material with settling velocity < 0.15 ft/sec (c.v. = 0.2)
• Material with settling velocity < 0.06 ft/sec (c.v. = 2)

ENR-2007-002743-20-02
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Role of Turbulence in Suspension 
• Turbulence studies have shown that the fluid shear velocity is 

directly related to turbulence level [3] 

• Onset of debris suspension is expected to occur when the 
magnitude of the turbulent velocity fluctuation is greater by 
some margin than the settling velocity of the debris as defined 
by the following expression: 

* 
~ > critical value 
Wo 

Wo - settling velocity 

Open literature brackets the range of critical values: 0.2 to 2.0 [2] 

- Minimum Shear velocity, U*(Flume and Containment) = 0.031 ftls 
Range of settling velocity susceptible to suspension: 

• Material with settling velocity < 0.15 ftlsec (c.v. = 0.2) 

• Material with settling velocity < 0.06 ft/sec (c.v. = 2) 
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Role of Turbulence in Suspension

6°

* Table 4-2, NEI 04/07
- Only loose fibers easily suspended

by turbulence (w0<O. 15 ft/s)

- Only 1/4" x ¼" clump turbulence
requirements verified experimentally
(Analytical TKE levels questionable
as indicated in SER)

- Experimental value tends much
higher than analytical value

Termninl TKE
Settling Required to

Density Velocity . Suspend
Debris Category/Type Size (Ibinlft3) (fWsec) (ft /sec)

A. Fibrous Insulation

1. Fiberglass - Generic

2. Fiberglass - a. 6" a. 2.4 a. 0.41 a. 0.084
Nsikon b. 4" b. 2.4 b. 0.40 b. 0,080

,c. 1" c. 2.4 c. 0.15 C. 0.011

d. 1/4"x d. 2.4 d. 0.175 d. 0.14
1/4"
Clumps 'e 175 e. 0.008 e. 3E-05

e. loose

fibers

ENR-2007-002743-20-02
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Role of Turbulence in Suspension 
Table 4-2, NEI 04/07 

Only loose fibers easily suspended 
by turbulence (wo <0.15 ft/s) 

Only %" x %" clump turbulence 
requirements verified experimentally 
(Analytical TKE levels questionable 
as indicated in SER) 
Experimental value tends much 
higher than analytical value 

\ 

De-bl"is Ca'('gol~'/Typ(' 

A. Fibl'ous Insulation 

1. Fiberglass - Generic 

2. Fibergl~ss -
Nukoll 

Size 

11_ 6" 

b. 4" 

c. 1" 

d. 1/4"x 
1/4" 
clumps 

e. loose 
fibers 

Minimum 
THmllllll TKE 
Settling Rl'qllil'ed 10 

Densit,· Velocit~- SIl~pelld 

(lbIB/C'~) (C,/sl'e) (C':/5('c 2) 

II. 2.4 II. 0.41 a. 0.084 

b. 2.4 b.O.40 b. 0.080 

c. 2.4 c. O.IS c. 0.011 

d. 2.4 d. O.liS d. 0.14 

e.1iS e. 0.008 e. 3E-05 
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Containment Turbulent Kinetic Energy
Two Train Operation

0.5 ft Above Floor

Start of Approach

APPROACH #2

F Start of Approach

APPROACH #1

End of
Approach

End of Approach

44 ft diameter circles
centered on array of
strainers.

ALDE
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Containment Turbulent Kinetic Energy 
Two Train Operation 

0.5 ft Above Floor 

Start of Approach 

APPROACH #2 

TKE (ft2/S2) 

0 .050 
0 .040 
0 .030 
0.020 
0 .010 
0.000 End of 

Approach 

Start of Approach 

APPROACH #1 

End of Approach 

___ ~ _______ ~ 44 ft diameter circles 

~ centered on array of 
strainers. 

Solving flow problems since 1894 

ENR-2007-002743-20-02 



Attachment F
Page 16 of 24

Containment Turbulent Kinetic Energy
Two Train Operation

3 ft Above Floor

Start of Approach

APPROACH #2

' Start of Approach

APPROACH #1

I End of Approach

44 ft diameter circles
centered on array of
strainers.
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Containment Turbulent Kinetic Energy 
Two Train Operation 

3 ft Above Floor 

Start of Approach 

TKE 

0.050 
0.040 
0 .030 
0.020 
0.010 
0.000 End of 

Approach 

Start of Approach 

APPROACH #1 

End of Approach 

~ 44 ft diameter circles 
-------~ centered on array of 

strainers. 

Solving flow problems since 1894 
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Containment Turbulent Kinetic Energy
One Train Operation (A)

0.5 ft Above Floor

Start of Approach

APPROACH #2

Start of Approach

APPROACH #1

End of Approach

44 ft diameter circles
centered on array of
strainers.

TKE gT2/s2)

0 040
o 030
0,o020

U00108
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Containment Turbulent Kinetic Energy 
One Train Operation (A) 

0.5 ft Above Floor 

Start of Approach 

APPROACH #2 

TKE (ft2/s2) , 
O.OSO 
0.040 
0.030 
0.020 
0.010 
0.0:10 

End of 
Approach 

Start of Approach 

APPROACH #1 

End of Approach 

~ 44 ft diameter circles 
~ centered on array of 

strainers. 

Solving flow problems since 1894 
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Containment Turbulent Kinetic Energy
One Train Operation (A)

3 ft Above Floor

APPROACH #2

Start of Approach

TKE (ft2/s2 ),
*00050

0.040
0.030
0.020

U0.000

F Start of Approach

APPROACH #1

End of Anoroach

44 ft diameter circles
centered on array of
strainers.
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ALDEN 

3 ft Above Floor 

APPROACH #2 

Start of Approach 

TKE (ft2/S2), 
0 .050 
0.040 
0.030 
0.020 
0.010 
0 .000 

Solving flow problems since 1894 

---~---------------------

Containment Turbulent Kinetic Energy 
One Train Operation (A) 

End of 
Approach 

Start of Approach 

APPROACH #1 

End of Approach 

~ 44 ft diameter circles 
~ centered on array of 

strainers. 
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Test Flume Turbulent Kinetic Energy
CFD Geometry

Curb
Test Module

/

Inflow Pipe
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Inflow Pipe 

tALDEN 
I 

Solving flow problems since 1894 

Test Flume Turbulent Kinetic Energy 
CFD Geometry 

Test Module 
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I Test Flume Turbulent Kinetic Energy

0.5 ft above floor

Ii
*.lh•,0J8 !.l•-,

* 3 ft above floor

231e-13 3A6~'U3 4.52u-13

1

S.fD31.92e-03 5.36.-f 9.230-03 1 .US.-02
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Test Flume Turbulent Kinetic Energy 

0.5 ft above floor 

O.Ue .. n Z.3le-Q3 8.920-03 8.08e-03 9.23111-0l l.aOe-02 ---

• 3 ft above floor 

ALDEN 
Solving flow problems since 1894 
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Turbulent Kinetic Energy Profiles

Area averaged quantities for planes
back from sump I strainer

0.035000

x

0.030000
E Two Train Sump A

Two Train Sump B
0.025000 3

mm * Single Train Sump A

• • X Flume

S0.020000u m

0.010000

0.005000
!+

xx XXXXxxx xxxXXx
0.000000

0 5 10 15 20 25

1-ft increments back from Strainer Module / Test Strainer
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Turbulent Kinetic Energy Profiles 

• Area averaged quantities for planes 
back from sump / strainer 

0.035000 

X 

0.030000 • 
••• • • Two Train Sump A 

0.025000 
Two Train Sump B 

• • Single Train Sump A • N • • X Flume 
< 0.020000 
'" -N ••• < 
:E. • UI 0.015000 
~ 

• • ••• • X 
0.010000 • • • •• • • • •• 0.005000 • 

;i(;~)l 

0.000000 

0 5 10 15 20 25 

1-ft increments back from Strainer Module I Test Strainer 

Solving flow problems since 1894 
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Summary of Comparison

C,
-C,

* Flume turbulence levels on par with Approach #2 to strainers
in containment for both one and two train operation.

• For one train operation, turbulence level in the flume is on the
order of that in the plant over most of Approach #1.

* The flume turbulence level near the test strainer is similar to
the higher turbulence in the field at the upstream end of the
array.

" For areas where flume turbulence is lower than containment:

- Greatest part of turbulent kinetic energy is below
estimated required level for suspension of 1" smalls
based on settling velocities

Fines are suspended by both flume and containment
turbulence levels

- Debris > 4" is not able to be suspended by either
containment or flume turbulence levels

--- C,
*

2/
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Summary of Comparison 
• Flume turbulence levels on par with Approach #2 to strainers 

in containment for both one and two train operation. 
• For one train operation, turbulence level in the flume is on the 

order of that in the plant over most of Approach #1. 
------1 • The flume turbulence level near the test strainer is similar to r---- . 
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: the higher turbulence in the field at the upstream end of the 
array. 

•. For areas where flume turbulence is lower than containment: 
- Greatest part of turbulent kinetic energy is below 

estimated required level for suspension of 1" smalls 
based on settling velocities 

< Fines are suspended by both flume and containment 
turbulence levels 

Debris> 4" is not able to be suspended by either 
containment or flume turbulence levels 
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Summary of Comparison (cont'd)
- Settling velocity is -proportional to the inverse of viscosity

Between flume (120F) and containment (-200F) viscosity is half

- Effective turbulence level in the flume is double due to
lower settling velocity in flume

'IV

.. ,
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Summary of Comparison (cont'd) 
Settling velocity is 'proportional to the inverse of viscosity 

• Between flume (120F) and containment (-200F) viscosity is half 

Effective turbulence level in the flume is double due to 
lower settling velocity in flume 
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RAI Response, Summary

Flume flow conditions are turbulent and are
representative of flow generated turbulence.

Turbulence levels observed are in general not sufficient
to keep smalls above 1" suspended in containment or
flume.

* Near strainer turbulence levels are higher in the flume
compared to containment calculated values.

" Point sources of turbulence from jetting located further
away from the strainers are not modeled in the flume.
However, blocking of debris by the flow structures
existing in this area is also not considered.

Point sources of turbulence are generally located outside
the mean radius of travel modeled in the flume.

F->
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• Flume flow conditions are turbulent and are 
~ representative of flow generated turbulence. 

~<' • Turbulence levels observed are in general not sufficient 
to keep smalls above 1 " suspended in containment or 

r-'-- -.. ,.------1 fl u me. 
)0 I 
! \' 

I,' • Near strainer turbulence levels are higher in the flume 
- -"~, 

I . i compared to containment calculated values. 
L. ----;:=l--r=-~_~-~J. Point sources of turbulence from jetting located further 

J/ ,~:. ~-.., "-, 

r /<' -" '" '. away from the strainers are not modeled in the flume. 
," ': However, blocking of debris by the flow structures 

, , 

'- existing in this area is also not considered. 

• Point sources of turbulence are generally located outside 
the mean radius of travel modeled in the flume. 
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