REGULATORY PERSPECTIVE ON COMPUTER CODE VALIDATION FOR BURNUP CREDIT CRITICALITY ANALYSES FOR SPENT NUCLEAR FUEL TRANSPORTATION PACKAGES

IAEA BUC Workshop
October 26-30
Cordoba, Spain

Meraj Rahimi, Zhian Li, Michel Call
Division of Spent Fuel Storage and Transportation
Office of Nuclear Material Safety and Safeguards
U.S. Nuclear Regulatory Commission
Overview

• Background
 – Regulations, History, Need for Burnup Credit

• Current Staff Guidance
 – ISG 8, Rev. 2

• ISG 8 Revision Considerations
 – New data available for depletion code benchmarking
 – New data available for criticality evaluation code benchmarking
 – Sources of critical benchmarks
 • New critical experiments added to the IHECSBE
 • Use of CRC data
 • Use of HTC and fission product data
Background: Regulations

• Title 10 of the Code of Federal Regulations Part 71, “Packaging and Transportation of Radioactive Material”

 – 71.55(b): subcritical with water leakage into containment system
 – 71.83: values of unknown properties of fissile material contents assumed to be those resulting in maximum reactivity
Background: History

- Criticality safety analyses typically made with the conservative fresh fuel assumption
 - Easy to demonstrate compliance with regulations
 - Severely limit the cask capacity
 - Unnecessarily conservative design

- Basis of Interim Staff Guidance (ISG-8)
 - Reactivity reduction as a result of burnup
Interim Staff Guidance 8

- “Burnup Credit in the Criticality Safety Analyses of PWR Spent Fuel in Transport and Storage Casks”
 - Accept burnup credit for actinides only
 - Code validation data were very limited for both:
 - Isotopic concentration prediction computer code
 - Criticality evaluation computer code

- Revision 2 published in 2002
 - Based on available validation data
 - Fission products as additional margin
Interim Staff Guidance 8 – Revision 2

• Sources of data for isotopic validation
 – Trino Vercellese, Turkey Point, Obrigheim, H.B. Robinson-2, Yankee Rowe, Calvert Cliffs, and Takahama-3

• Sources of data for criticality validation
 – Fresh UO$_2$
 – Fresh MOX
ISG-8, Revision 3

• NRC is considering revising the acceptance criteria for burnup credit to include fission products

• Areas to be examined

 – Isotopic benchmarking – new data and computational techniques available

 – Criticality computer code validation – new critical experiments
Major actinides: ^{235}U, ^{238}U, ^{238}Pu, ^{239}Pu, ^{240}Pu, ^{241}Pu, ^{242}Pu, and ^{241}Am

- represent roughly 75% of the net reduction in reactivity due to burnup

Major fission products: ^{149}Sm, ^{143}Nd, ^{103}Rh, ^{151}Sm, ^{133}Cs, and ^{155}Gd

- represent roughly the remaining 25% of the net reduction in reactivity

Other minor actinides and fission products
Currently reviewing available additional radiochemical assay data for depletion code validation

- ARIANE and REBUS UOX Fuel Programs
- Vandellós II Reactor
- Calvert Cliffs, Takahama, and Three Mile Island Reactors
- Malibu Program (UO₂ Fuel)
- REBUS Program
ISG-8, Rev. 3 – Data Sources for Criticality Computer Code Validation

• French Haut Taux de Combustion (HTC) critical experiment data
• Critical experiments in the IHECSBE
• Commercial Reactor Critical state points
ISG-8, Rev. 3, Criticality Computer Code Validation – HTC Data

 – Similar to spent UO$_2$ fuel in storage and handling operations
 – Adds significant amount of criticality data to existing UO$_2$ and MOX experiments used for burnup credit criticality validation
 – Supports the basis for actinide burnup credit
ISG-8, Rev. 3, Criticality Computer Code Validation - IHECSBE

- Critical experiments in the IHECSBE
 - LEU-COMP-THERM-050, IPSN-SRSC of Valduc CEA (France)
 - LEU-COMP-THERM-079, Sandia National Laboratories
 - LEU-MISC-THERM-005, Tokai Research Establishment of (JAERI)
 - A few other publically available critical experiments (LEU-MISC-THERM-001, 002, and 003, for example)
ISG-8, Rev. 3, Criticality Computer Code Validation – CRC Data

• Use of CRC data
 – Supplement to laboratory critical benchmark experiments
 – Includes all isotopes produced during irradiation
 – EOC criticals are similar to spent fuel casks in terms of isotopic composition
 – CRCs are very different from the casks in terms of temperature, moderator density, poison plates, and soluble boron (BOC and MOC) CRCs
ORNL is developing a new method of propagating nuclear data uncertainties into a Δk_{eff} estimate of bias and uncertainty due to fission product criticality evaluation

Will validate this approach using publicly available fission product critical experiments
Summary

• Burnup credit increasingly sought by industry to maximize the capacity of spent fuel transportation packages

• Code validation is a critical part of burnup credit criticality analyses

• NRC is working to expand the technical basis for accepting burnup credit for fission products

• Newly available radiochemical assay and critical experiment data, as well as new analytical techniques, will be used as part of the technical basis
Thank You