BILL GRUCE PNL-2955 Vol.1 bution attelle **Columbus Laboratories** Assessment of E TO : 505 King Avenue **BPMD Library** Columbus, Ohio 43201 Reference Room 13-4-127 Mill DRUCE 614-424-7697 for a Salt D Volume 1 June 1982 As per your request, Return when finished As they are file copies. Sue C. Barber . 2.00 1. 1. 7.1-Prepared for the Office of Nuclear Waste Isolation under its contract with the U.S. Department of Energy **Pacific Northwest Laboratory Operated for the U.S. Department of Energy** by Battelle Memorial Institute **Battelle** 850222 504080204 PDR WM-16

Assessment of Effectiveness of Geologic Isolation Systems

REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

Mark A. Harwell Albin Brandstetter Gary L. Benson John R. Raymond Don J. Bradley R. Jeff Serne Joseph K. Soldat Charles R. Cole William J. Deutsch Sumant K. Gupta Christine C. Harwell Bruce A. Napier Andrew E. Reisenauer Leigh S. Prater C. Steve Simmons Dennis L. Strenge Jeffrey F. Washburn John T. Zellmer

June 1982

Prepared for the Office of Nuclear Waste Isolation Under its Contract with the U.S. Department of Energy DE-AC06-76RL0 1830

Pacific Northwest Laboratory Operated for the U.S. Department of Energy by Battelle Memorial Institute

PREFACE

The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program presents in this report a methodology demonstration applied as an initial assessment of a reference site for a salt dome nuclear waste repository. The information in this document is designed to support the Preliminary Information Report (PIR) being assembled by the Office of Nuclear Waste Isolation (ONWI).

This report presents an exercise of the AEGIS methodology, as applied to a hypothetical repository located in a reference salt dome site; it is not an actual site assessment. The salt dome referred to in this documentation has been excluded from consideration as a repository for nuclear waste.

ACKNOWLEDGMENTS

This research was supported by the Waste Isolation Safety Assessment Program (WISAP) conducted by Pacific Northwest Laboratory (PNL). The program was sponsored by the Office of Nuclear Waste Isolation (ONWI), which is managed by Battelle Memorial Institute under contract DE-ACO6-76RLO 1830 with the Department of Energy. On 1 October 1979, WISAP became the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program and the Waste/Rock Interaction Technology (WRIT) Program. This report is issued by AEGIS.

The following are the lead authors (and their contributions) of this report: M. A. Harwell and A. Brandstetter, coordination and integration; G. L. Benson, scenario analyses and external coordination; J. R. Raymond, consequence analysis; D. J. Bradley, leach rate data; R. J. Serne, sorption data; J. K. Soldat, dose analyses. The other authors are listed alphabetically: C. R. Cole, transport modeling; W. J. Deutsch, solubility limits; S. K. Gupta, near-dome simulations; C. C. Harwell, human intrusion and report coordination; B. A. Napier, dose calculations; A. E. Reisenauer regional hydrologic simulations; L. S. Prater, scenario development and report coordination; C. S. Simmons, radionuclide transport modeling; D. L. Strenge, dose calculations; J. F. Washburn, transport modeling; and J. T. Zellmer, scenario methodology.

In addition to the authors, contributions from other AEGIS and WRIT staff at PNL were made by the following individuals: L. L. Ames, C. O. Harvey, D. D. Hostetler, F. E. Kaszeta, Y. B. Katayama, J. W. Lindberg, W. J. Martin, R. W. Nelson, C. A. Newbill, G. M. Petrie, W. M. Phillips, J. F. Relyea, D. J. Silviera, J. A. Stottlemyre, R. P. Turcotte, R. W. Wallace, C. D. Washburne, K. M. Wilson, and J. T. Zuck. Contributions from the Los Alamos Scientific Laboratory (LASL) staff were headed by B. R. Erdal.

The AEGIS staff wish to acknowledge the invaluable support provided by the Water and Land Resources Department Word Processing staff, especially D. A. Berg and B. E. Roberts. This effort could not have been completed without the cooperation and assistance of the Law Engineering Testing Company, the NUS Corporation, and the Texas Bureau of Economic Geology. Finally, we wish to acknowledge the external reviewers who provided valuable feedback based on the working document of this report. Many of their comments and suggestions have been incorporated into this revised report and into the ongoing technology development of the AEGIS and WRIT programs.

Revisions two, three and four of the working draft of PNL-2955 were completed with M.A. Harwell retained as an AEGIS consultant under contract B-93866-A-U. Completion dates for the working draft revisions were as follows:

> Working Draft: 31 August 1979 Revision 1: December 1979 Revision 2: January 1981 Revision 3: August 1981 Revision 4: March 1982

> > ٧i

EXECUTIVE SUMMARY

As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS.

The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete.

The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional

vii

analyses indicated that doses well above background would occur from such a scenario, even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository site, either through direct institutional control or through the <u>effective</u> passive transfer of information.

A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome, through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository.

This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revision, based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented.

The exercise of the AEGIS methodology was successful in demonstrating the methodology, and thus, in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

viii

CONTENTS

P	PREFACE	•	٠	٠	•	•	•	•	•	•	•	•	•	•	iii
P	ACKNOWLED	GMENTS	5.	•	•	٠	•	•	•	•	•	•	•	•	v
E	EXECUTIVE	SUMM	ARY	•	•	•	•	•	•	•	•	•	•	•	vii
(CHAPTER 1	- OVI	ERVIEV	N	•	•	•	•	•	• ,	•	•	•	•	1.1
	SALT	DOME	REFER	RENCE	SITE	•	•	•	•	•	•	•	•	•	1.4
		Geol	ogy	•	•	•	•	•	•	•	•	•	•	•	1.4
		Subsi	urface	e Hydı	rology	1	•	•	•	•	•	•	•	•	1.6
	RELE	ASE SO	CENARI	O DEN	/ELOPI	MENT	•	•	•	•	•	•	•	•	1.9
		Туре	1 and	1 2 So	cenari	ios	•	•	•	•	•	•	•	•	1.10
		Туре	3 Sce	enario	0	•	•	•	•	•	•	•	•	•	1.11
	· .	Туре	3 Sce	enario	o Used	d in t	the Re	eferer	ice Si	te Ar	nalysi	is	•	•	1.14
	QUAN	[IFIC	ATION	0f 50	CENARI	10 COI	NDITIC	NS	•	•	•	•	•	•	1.15
	SOUR	CE TER	RM	•	•	•	•	•	•	•	•	•	•	•	1.16
	SORP	TION I	DATA	•	•	•	•	•	•	•	•	•	•	•	1.17
	CONSE	EQUEN	CE ANA	LYSE	5.	•	•	•	•	•	•	•	•	•	1.18
	• •	Conc	lusion	IS	•	•	•	•	•	•	•.	•	•	•	1.20
C	CHAPTER 2	- OVE	ERVIEW	0F 1	ihe ae	EGIS /	AND WF	RIT PR	OGRAM	is .	•	•	•	•	2.1
	RELE	ASE SI	CENARI	O AN	LYSIS	s (aei	GIS)	•	•	• .	•	•	•	•	2.3
	RELE	ASE CO	DNSEQL	JENCE	ANALY	YSIS ((AEGIS	5)	•	•	•	•	•	•	2.4
	•.	Waste	e Form	n Rele	ease F	Rate /	Analys	sis (h	RIT)	•	•	•	•	•	2.6
		Sorp	tion/D)esori	otion	Analy	ysis ((WRIT)	1	•	• .	•	•	•	2.7
	INTRO	DDUCT	ION TO) REFE	ERENCE	E SITI	e anal	.YS IS	•	•	•	•	•	•	2.8
C	CHAPTER 3	- ASS	SUMPTI	ONS	IN AEO	GIS S	ALT DO	ome re	FEREN	ICE SI	ITE AI	NALYSI	IS	•	3.1
	ASSU	MPTION	NS IN	AEGIS	S ANAL	YSES	•	•	•		•	•	•	•	3.3

 $\left(\right)$

	General .	•	•	•	•	•	•	•	•	•	•	3.3
	Source Term	•	•	٠	•	•	•	•	•	•	•	3.3
	Human Instru	usion So	cenari	0	•	•	•	•	•	•	•	3.4
	Geotransport	t.	•	•	•	•	٠	٠	•	•	•	3.6
NOTES	5 TO ASSUMPT	IONS	•	•	•	•	•	•	•	•	•	3.7
CHAPTER 4	- COMPONENTS	S OF REI	LEASE	SCENA	RIO A	NAL YS	IS	•	•	•	•	4.1
REFEI	RENCE GEOLOGI	IC DESCR	RIPTIC	N	•	•	•	•	•	•	•	4.5
	Regional Geo	ology	•	•	•	•	•	•	٠	٠	•	4.6
	Geology of t	the EAst	t Texa	is Sal	t Dom	e Bas	in	•	•	•	•	4.8
	Subsurface H	lydrolog	ју	•	•	•	•	•	•	•	•	4.9
GE OL (DGIC DISRUPT	IVE PHEN	NOMENA		•	•	•	•	•	•	•	4.10
	Denudation a	and Stre	eam Er	rosion	•	•	٠	•	•	•	•	4.10
	Sedimentatio	on.	•	•	•	•	•	•	•	•	•	4.11
	Flooding .	•	•	•	•	•	•	•	٠	•	•	4.12
	Climatic Flu	uctuatio	ons an	d Glad	ciati	on	•	•	•	•	•	4.12
	Diagenesis.	•	•	•	•	•	•	•	•	•	•	4.14
	Salt Dissolu	ution	•	•	•	•	•	•	•	•	•	4.16
	Salt Dome Gr	rowth or	r Diap	vir ism	•	•	•	•	•	•	•	4.22
	Epeirogenic	Displac	ement	•	•	•	•	•	•	•	•	4.23
	Orogenic Dia	astrophi	ां इम	•	•	•	•	•	•	•	•	4.24
	Faulting .	•	٠	•	•	•	•	•	•	•	•	4.25
	Metamorphism	n.	• .	•	•	•	•	•	•	•	•	4.30
	Magmatic Act	tivity	•	•	•	•	•	•	•	•	•	4.31
	Static Fract	turing	•	•	•	•	•	•	•	•	•	4.31
	Meteorites.	•	•	•	•	•	•	•	•	•	•	4.32
	Undetected f	Features	5.	•	•	•		•	•	•	•	4.33

x

HI IMA N	-TNULLCED DISPUDT	TVE DHEN									1 21
norman	-INDOLD DISKUP!			•	•	•	•	•	•	•	4.34
	Institutional Co	ntrol ar	nd Inf	ormat	ion T	ransf	er	•	•	•	4.35
	Intentional Brea	ching	•	•	•	•	•	•	•	•	4.36
- 1	Inadvertent Brea	ching	•	•	•	•	•	•	•	•	4.37
	Human Activities	Affecti	ing Br	eachi	ng	•	•	•	•	•	4.47
RATES	OF UTILIZATION	of Gulf	COAST	SALT	DOME	s.	•	•	•	•	4.49
CHAPTER 5	- RELEASE SCENAR	IOS .	•	•	•	•	•	•	•	•	5.1
METHO	DOLOGY USED FOR	SCENARIO) ANAL	YSIS	•	•	•	•	•	•	5.2
	Natural Dissolut	ion Scen	ario	•	•	•	•	•	•	•	5.4
	Solution Mining	Scenario).	•	•	• • •	•	•	•	•	5.7
-	Regional Scenari	ο.	•	•	•	: •	•	•	•	•	5.16
CHAPTER 6.	- NEAR-DOME HYDR	OLOGIC S	SIMULA	TION	•	•	•	•	•	•	6.1
HYDRO	GEOLOGY OF SUBRE	GION SUR	ROUND	ING S	ALT D	ome	•	٠	•	•	6.1
FORMU	LATION OF THE TE	ST CASES	5.	•	•	•	•	•	•	•	6.3
	Model for Determ Salt Dome Breach	ining th Opening	ne Flor J.	w Rate	e Out	of a	• 1000	-ft ²	•	•	6.4
	Model for Determ	ining Fl	low Af	ter S	alt D	ome C	ollap	se	•	•	6.8
CHAPTER 7	- REGIONAL HYDRO	LOGIC SI		ION	•	•	•	•	•	•	7.1
CONCE	PTUAL MODEL .	•	٠	•	•	•	•	•	•	•	7.1
	Model Boundaries	•	•	•	•	•	•	•	•••	•	7.2
2	Rainfall Infiltr	ation	•	•	•	•	•	•	•	•.	7.2
· .	Hydraulic Conduc	tivity-1	ransm	issiv	ity	•	•	•	•	•	7.4
	Stream Aquifer I	nteracti	on	• .	•	•	•	•	•	•	7.4
	Additional Stres	s on the	e Grou	nd Wa	ter	•	•	. •	•	•	7.7
	Potential Distri	bution	•	•	•	•	•	•	•	•	7.7
RESUL	TS OF HYDROLOGIC	SIMULAT	TIONS	•	•	•	•	•	•	•	7.7

 $\left(\begin{array}{c} \\ \\ \end{array} \right)$

	Base Case	•	•	•	•	•	•	•	•	•	•	•	7.8
	Second Ca	se	•	•	•	•	•	•	•	•	•	•	7.8
	Pumping W	le11 Sc	enar	io	•	•	•	•	•	•	•	•	7.11
CHAPT	ER 8 – TRANSPO	RT SIM	IULAT	ION	•	•	•	•	•	•	•	•	8.1
	TRANSPORT MODE	L	•	•	•	•	•	•	•	•	•	•	8.1
	Convectiv	e Tran	ispor	t and	Dispe	ersion	1.	•	•	•	•	•	8.2
	Geologica	1 Medi	a So	rption	n Equi	ilibri	ium	•	•	•	•	•	8.3
	Radioacti	ve Dec	ay	•	•	•	•	•	•	٠	•	•	8.3
1	RELEASE SOURCE	TERM	•	•	•	•	•	•	•	•	•	•	8.4
	CONCENTRATION	ESTIMA	TION	•	•	•	•	•	•	•	•	•	8.5
[RELEASE CONSEQ	UENCE	ANAL	YZED	•	•	•	•	•	•	•	•	8.5
i	MEASURES OF DI	SPERSI	ON U	SED IN	N THE	SIMUL	ATI O	NS	•	•	•	•	8.24
CHAPT	ER 9 - DOSE CA	LCULAT	IONS	•	•	•	•	•	•	•	•	•	9.1
ł	GENERAL POPULA	TION D	OSE	CALCUI	LATION	۹S	•	•	•	•	•	•	9.2
l	OCCUPATIONAL D	OSE CA	LCUL	ATIONS	5	•	•	•	•	•	•	•	9.8
l	LONG-TERM DOSE	CALCU	LATI	ons	•	•	•	•	•	•	•	•	9.15
CHAPT	ER 10 - SOURCE	TERM	•	•	•	•	•	•	•	•	•	•	10.1
	INTRODUCTION T	О МЕТН	ODOL	DGY	•	•	•	•	•	•	•	•	10.1
	Methodolo	gy Ava	ilab	le or	Under	Deve	lopme	ent	•		•	•	10.2
	Comprehen	sive W	aste	Form	Perfo	ormand	e Tes	sting	Metho	olobc	зy	•	10.5
1	LEACH VALUES P	ROV IDE	D FO	r the	REFER	RENCE	SITE	ANAL	SES	•	•	•	10.9
:	SOLUBILITY LIM	ITS	•	•	•	•	•	•	•	•	•	•	10.23
CHAPT	ER 11 - SORPTI	ON DAT	Ά	•	•	•	•	•	•	•	•	•	11.1
	INTRODUCTION T	O METH	ODOL	OGY	•	•	•	•	•	•	•	•	11.1
1	METHODOLOGY	•	•	•	•	•	•	•	•	•	•	•	11.2

1	NEED	FOR COMP	LETE CHA	RACT	ERIZA	TION	1 0F	ROCK A	ND					
(Groun	ID WATERS	• •	•	•	•	•	•	٠	•	•	٠	•	11.11
		Importan	t Geoche	emica	1 Cha	aract	eriz	ations	•	•	•	•	٠	11.12
		Less Imp	ortant G	ieoch	emica	al Cł	narac	teriza	tions	•	•	٠	٠	11.14
		Importan	t Physic	al o	r Hyc	irola	ogic (Charac	teriz	ation	5.	•	•	11.14
ł	DATA	PROCEDUR	ES FOR T	'HE R	EFERE	ENCE	SITE	ANAL Y	SIS	•	•	•	٠	11.15
		Geologic	Setting	I	•	•	•	•	•	•	•	•	•	11.15
-		Sampling	Procedu	ires	•	•	٠	•	•	٠	•	•	•	11.15
		Mineralo	gic Char	acte	rizat	ion	of O	utcrop	Samp	les	•	•	•	11.16
		Whole Sa	mple Che	mica	1 Ana	alyse	es.	•	•	٠	•	•	.•	11.17
		X-Ray Di	ffractio	n	•	•	•	•	•	•	•	•	•	11.17
		Electron	Micropr	obe	Felds	par	Chem	ical A	nalys	es	•	•	•	11.24
		Conclusi	ons .		•	•	•	•	•	•	•	•	•	11.24
(Groun	ID-WATER	CHARACTE	RIZA	TION	٠	•	•	•	•	•	•	•	11.32
E	BATCH	Kd EXPE	RIMENTS	0N T	he ol	JTCRO)p sai	MPLES	•	•	•	•	•	11.33
		Experime	ntal Res	ults	on C)utcr	op S	amples	•	•	•	•	•	11.35
		Interpre	tation o	of Ou	tcrop	Res	ults	•	•	•	•	•	•	11.37
I	Kd VA	LUES SEL	ECTED FO	ir Us	E IN	THE	REFE	RENCE	SITE	ANAL Y	SES	•	•	11.38
CHAPTE	ER 12	- EXTER	NAL REVI	EW O	F WOR	KING	G DOC	UMENT	PNL-2	955	•	٠	•	12.1
1	RE QUE	ST FOR P	EER REVI	EW	•	•	•	•	•	•	•	•	•	12.1
E	EXTER	NAL REVI	EWERS .		•	•	•	٠	•	•	•	•	•	12.6
· f	EXTER	RNAL REVI	EWERS' R	ESPO	NSES	тос	QUEST	IONS	•	•	•	•	•	12.7
9	Summa	RY TO QU	ESTION F	ESPO	NSES	•	•	•	•	•	•	•	•	12.9
E	EXTER	RNAL REVI	EWERS AD	DITI	ONAL	COMM	ENTS	•	•	•	•	•	•	12.10
		Topic -	Human Ir	trus	ion 1	into	a Nu	clear	Waste	Repo	sitor	у		10 10
		LOCATE	anas	JID	naue	•	•	•	•	•	•	•	•	12.10

C

xiii

	Topic	; -	Soluti	on M	ining	Scena	rio	•	•	•	•	•	•	12.22
	Topic	: -	Dose (alcu	latio	ns and	Assu	mptio	ns	•	•	•	•	12.33
	Topic	-	Geotra	ins poi	rt Ana	alyses	•	•	•	•	•	•	•	12.40
	Topic	-	Natura	1 Di:	ssolut	tionin	g Sce	nario	•	•	•	•	•	12.46
	Topic	-	Engine	ered	Barri	ers	•	•	•	•	•	•	•	12.49
	Topic	- :	Source	Tem	n and	Retar	datio	n Ana	lyses	•	•	•	•	12.52
	Topic	- 9	Site C	harac	teriz	ation	•	•	•	•		•	•	12.60
	Topic	- 3	Scenar	io Ar	nalysi	s Meti	hodola	ogy	•	•	•	•	•	12.61
	Topic	- (Geotra	nspor	•t Ana	lysis	Metho	dolog	łУ	•	•	•	•	12.65
REFERENCES	;	•	•	•	•	•	•	•	•	•	•	•	•	Ref.1

FIGURES

1.1	WISAP Task Interrelationships	•	•	•	1.2
1.2	Regional Location Map	•	•	•	1.5
1.3	Site Cross-Section East-West	•	•	•	1.7
1.4	Areal Representation of the Hypothetical Nuclear Was Repository Located in the Hainesville Salt Dome .	te •	•	•	1.8
2.1	Consequence Analysis Schematic Diagram	•	•	•	2.5
4.1	Schematic Representation of the Multiple Barrier Sys	tem	•	•	4.2
4.2	Potential Competing Uses of Salt Domes	•	•	•	4.38
4.3	Hypothetical Solution Mining Operation	•	•	•	4.42
4.4	Areal Representation of the Hypothetical Nuclear Was Repository Located in the Hainesville Salt Dome .	te •	•	•	4.44
5.1	Schematic Representation of the Waste Repository and Host Environment	•	•	•	5.9
5.2	Schematic Representation of the Operational Phase Solution Mining Breach	•	•	•	5.13
5.3	Schematic Representation of the State of the Geologi System Following Solution Collapse	с	•	•	5.15
6.1	Schematic Representation of Salt Dome Hydrogeology.	•	•	•	6.2
6.2	Finite Element Grid with Closer Node Spacing Near th Dome Breach	e Salt	t.	•	6.5
6.3	Regional Stratifications Used for Simulation of Flow Through the Salt Dome Breach	•	. •	•	6.6
6.4	Three-Dimensional Stratifications of the Region Adjoining Salt Dome Used for Simulation of Flow Thro	ugh			6.7
6 5	Schematic Donnocontation of Collansed Salt Done	•	•	•	6 10
0.J	Uniform Finite Flowert Chid for Simulation of Flower	•	•	•	0.10
0.0	after Salt Dome Collapse	•	•	•	6.11
6.7	Regional Stratifications Used for Simulation of Flow		:	_	6,12

6.8	Three-Dimensional Stratifications of the Region Adjoining Salt Dome after Collapse	•	•	6.13
7.1	Geometry and Boundary Conditions for the Wilcox-Carrizo	•	•	7.3
7.2	Net-Sand Map of the Undivided Wilcox Group	٠	•	7.6
7.3	Modeled Ground-Water Aquifer Showing Potential Contours and Flow Tubes from the Hainesville Salt Dome, Case 1	•	•	7.9
7.4	Modeled Aquifer Showing Potential Contours and Flow Tubes From the Hainesville Salt Dome, Case 2	•	•	7.10
7.5	Subregion Model With Plotted Contours and Flow Tubes from the Edge of the Salt Dome to a Pumping Well .	•	•	7.12
8.1	Isotope C-14, Concentration vs Time	•	٠	8.11
8.2	Isotope C-14, Concentration vs Time	•	•	8.12
8.3	Isotope C-129, Concentration vs Time	•	•	8.13
8.4a	Isotope Cs-135, Concentration vs Time	•	•	8.15
8.4b	Isotope Cs-135, Concentration vs Time	•		8.16
8.4c	Isotope Cs-135, Concentration vs Time	•	•	8.17
8.5	Isotope Tc-99, Concentration vs Time	•	•	8.18
8.6a	Isotope Np-237, Concentration vs Time	•	•	8.19
8.6b	Isotope Np-237, Concentration vs Time	•	•	8.20
8.6c	Isotope Np-237, Concentration vs Time	•	•	8.21
8.7	Isotope U-233, Concentration vs Time	•	•	8.22
8.8	Isotope Th-229, Concentration vs Time	•	•	8.23
10.1	Multiple Barrier System, Near-Field Region	•	•	10.6
10.2	Appearance of Spent Fuel with a Burnup of 28.0 MWd/KgU	•	•	10.11
10.3	Fragment of H. B. Robinson II Fuel, 28.0 MWd/kgU, Showing Microprobe Step-Scanning Path, A to B	•	•	10.12
10.4	Microprobe Measured X-Ray Intensities for Plutonium, Technetium, and Barium	•	•	10.13

10.5	Microprobe Measured X-Ray Intensities for Cesium, Zirconium, and Iodine
10.6	Microprobe Measured X-Ray Intensities for Ruthenium, Tellurium, and Cerium
10.7	IAEA Leach Test Container
10.8	Spent Fuel - IAEA Leach Test, WIPP "B" Brine 10.2
10.9	Day Upon Which Solubility Limit Becomes Dominant 10.23
10.10	Fraction of Waste Exposed Needed to Reach Solubility Limitations for Specific Flow Rates and Leach Rate Constants
11.1	Distribution of Sr (II) Between Montmorillonite and Sodium Chloride - 0.1 <u>M</u> Sodium Acetate Solutions Low Loading Sr (II)
11.2	High Pressure Sorption Apparatus
11.3	Radionuclide Interaction in Geologic Media 11.13
11.4	Optical Photomicrographs - Calvert Bluff Formation - Carrizo Sand
11.5	Optical Photomicrographs - Hooper Formation - Queen City Sand
11.6	Optical Photomicrographs - Reklaw Formation - Simsboro Formation
11.7	Calvert Bluff Formation - Elemental X-Ray Emission Photographs, 100X
11.8	Carrizo Sand - Elemental X-Ray Emission Photographs, 100X
11.9	Hooper Formation - Elemental X-Ray Emission Photographs, 100X
11.10	Queen City Sand - Elemental X-Ray Emission Photographs, 100X
11.11	Reklaw Formation - Elemental X-Ray Emission Photographs, 100X
11.12	Simsboro Formation - Elemental X-Ray Emission Photographs,

(

2

TABLES

1.1	Radiation Doses Calculated for Solution Mining Scenario	1.19
1.2	Radiation Doses Calculated for Solution Mining Scenario	1.19
1.3	Radiation Doses Calculated for Solution Mining Scenario	1.20
1.4	Radiation Doses Calculated for Solution Mining Scenario	1.20
1.5	Ingested Curies of Isotopes Delivered to Surface, 50 Years of Consumption of Table Salt	1.21
1.6	Cumulative Radiocontaminant Discharge After Geotransport in Curies for the Four Release Scenarios	1.23
1.7	Relative Total Body Dose Burdens Compared to Natural Radiation Background	1.24
4.1	Stratigraphic Column East Texas Basin	4.7
4.2	Operations in Gulf Coast Salt Domes	4.49
5.1	Parameters for Solution Mining Operational Phase Scenario .	5.12
5.2	Changes of Parameters to Account for Future Conditions	5.17
6.1	Estimation of Friction, Entrance, and Velocity Head Loss in Bore Hole Pipe	6.9
6.2	Effects of Size of Breach of Opening on Flow Rate	6.9
7.1	Arithmetic Mean Weather Data and Calculated AET, PET, and Excess Precipitation	7.5
7.2	Summary of Transmissivity, Permeability and Unit Thickness Data	7.5
7.3	Case 2 Flow Tube Data	7.11
8.1	Simulation Inventories, Half-Lives, and Kd Values	8.7
8.2	Case 1. East Texas Oil Field; Case 2. Sabine River and Big Cypress Bayou; Case 3. Well Pumping Case	8.8
8.3	Cumulative Radiocontaminant Discharge in Curies for the Four Release Scenarios After Geotransport Based on Solution Mining Beginning at Time 100 Years After Closure	8.9
9.1	Radiation Doses Calculated for Solution Mining Scenario	9.6

 $\left(\right)$

9.2	Radiation Doses Calculated for Solution Mining Scenario .	•	9.6
9.3	Radiation Doses Calculated for Solution Mining Scenario .	•	9.7
9.4	Radiation Doses Calculated for Solution Mining Scenario .	•	9.7
9.5	Total Curies of Isotopes Delivered to Surface, 50 Years of Solution Mining	•	9.9
9.6	Ingested Curies of Isotopes for 50 Years of Consumption of Table Salt	•	9.11
9.7	Estimated Total Body Occupational Dose Rates from Immersion in Effluent Salt Brine from Solution Mining	•	9.14
9.8	Estimated Occupational Radiation Doses from Inhalation of Salt Particluates from Solution Mining	•	9.15
9.9	Long-Term Population Dose Burdens from Solution Mining into the Hainesville Salt Dome	•	9.17
9.10	Long-Term Individual Dose Burdens from Solution Mining into the Hainesville Salt Dome	•	9.18
9.11	Relative Total Body Dose Burdens Compared to Natural Radiation Background	•	9.19
10.1	Particle-Size Distribution, 28,000 MWd/MTU Spent Fuel .	•	10.10
10.2	IAEA Leach Test Schedule	•	10.17
10.3	Chemical and Ionic Composition of Salt Brine	•	10.19
10.4	IAEA Leach Test, Spent Fuel, WIPP "B" Brine	•	10.21
11.1	Precision of X-Ray Fluorescence Analyses at 95% Confidence Limits	•	11.18
11.2	Whole Sample Chemical Analyses of the Outcrop Samples .	•	11.18
11.3	Mineral Phases Found in the X-Ray Diffraction Tracings of As-Received Hainesville Outcrop Samples	•	11.26
11.4	Electron Microprobe Chemical Analyses of the Feldspars Commonly Found in the Hainesville Salt Dome Samples	•	11.23
11.5	Ground-Water Analyses	•	11.33
11.6	Experimental Kd Values (ml/g) After 21 Days of Shaking .	•	11.36
11.7	Kd Values for Reference Site Analyses	•	11.40

CHAPTER 1

OVERVIEW

The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) is developing and applying the methodology for assessing the post-closure safety of deep geologic nuclear waste repositories. During FY-1979 the predecessor to AEGIS, the Waste Isolation Safety Assessment Program (WISAP), was divided into four tasks, two associated with data development and two directed toward simulation of the repository hydrologic and geologic system. These tasks were designed to interact concurrently, so that a systematic methodology/data system would emerge (Figure 1.1). Beginning 1 October 1979, WISAP was divided into the AEGIS and Waste/Rock Interaction Technology (WRIT) programs. AEGIS is essentially a continuation of Tasks 1 and 3 of WISAP.

Since its inception, WISAP worked toward the development of methodology for assessing the far-field aspect of the repository/geologic system. WISAP did not develop the methodology to include the repository- and waste-induced effects on the system nor to inspect the processes internal to the confines of the repository. These aspects are being considered in other DOE programs and will ultimately be integrated with the AEGIS methodology. Further, WISAP originated as a methodology development effort, with site applications scheduled for subsequent years. In practice, WISAP began the transition to a siteapplications orientation at the end of FY-1978. This initial effort involved the exercise of the geotransport models based on site data and scenarios that were provided to WISAP and that were associated with the Paradox Basin (Raymond et al. 1980).

During FY-1979 AEGIS performed one site-applied exercise of the total AEGIS and WRIT methodology. That exercise is the subject of this AEGIS report, representing the first time the full AEGIS and WRIT expertise has been focused on a single problem. This was the initial effort by DOE to indicate what it believes is necessary for a preliminary site license application, and was

FIGURE 1.1. WISAP* Task Interrelationships

* Note: The left half of this diagram now is in the AEGIS program, and the right half is in the WRIT program.

collated by ONWI into the Preliminary Information Report (PIR). The PIR was designed to be analogous to a Preliminary Safety Analysis Report (PSAR) for a repository to be built in an Interior Gulf Coast salt dome. The site chosen for this PIR analysis, however, would not be considered for an actual potential nuclear waste repository, largely because of past human activities that have affected the integrity of the salt dome. One of the important concerns of a PSAR or PIR is the post-closure safety of the repository. AEGIS efforts, then, were to exercise its methodology and simultaneously provide the base for the post-closure safety chapter of the PIR being prepared by other ONWI contractors.

This methodology exercise has been performed within the context of certain key assumptions, including:

- The presence of engineered barriers was not considered in order to provide a baseline for subsequent evaluations of the effectivness of engineered barriers.
- Waste- and repository-induced effects were not explicitly considered in this study, as these were outside the scope of the programs at the time of the analyses.
- In the development of the human intrusion scenario, assumptions concerning the effect of future human activities were based on the currently available draft EPA standards on nuclear waste management. Institutional controls were not assumed to be effective beyond 100 years post-closure, and no reliance was placed on active or passive controls preventing intrusion after that time.
- In quantifying the solution mining operation, only the physical limits of the system itself were relied upon; no specific level of technology nor specific technique of mining was assumed (except that a minimum level of mining capability was implicit). In addition, no specific monitoring of the brine for radioactivity was assumed.

More detailed discussion of the assumptions used is included throughout the text of Volume 1 of this report, and a compiled list of assumptions is provided in Chapter 3.

Again, this was an exercise of the AEGIS and WRIT methodology and an evaluation of a hypothetical repository in a reference salt dome, not an actual site assessment. The data used for this exercise are not adequate for an actual site assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geologic system surrounding the repository. As this was the first exercise of the complete AEGIS and WRIT methodology, this report provided the initial opportunity for the AEGIS methodology, specifically applied to a site, to be reviewed by the community outside of AEGIS and WRIT. This review has resulted in some changes in this document and has provided significant guidance for future AEGIS and WRIT activities. Representative comments and AEGIS responses to the reviewers' comments are presented in Chapter 12. Continued review will assist in improving the methodology. Finally, this exercise was a substantial learning experience for the AEGIS team.

SALT DOME REFERENCE SITE

This reference site initial assessment is based upon the Hainesville Salt Dome, which is not being considered for a nuclear waste repository. This salt dome is located in the central part of Wood County in East Texas (Figure 1.2), with the regional surface sloping generally from northwest to southeast. The Hainesville Salt Dome is one of 26 salt domes in the East Texas Salt Dome basin. Within 200 miles of Hainesville are four cities with a population of over 100,000: Dallas, Fort Worth, Shreveport, and Waco.

Geology

The sediments of the East Texas Salt Dome basin record a series of marine transgressions and regressions, superimposed on a progradational depositional basin. The basin contains a very thick formation of Louann salt, and most of the local structures in the basin are probably related to movements of salt from the Louann.

The Hainesville Salt Dome is the northernmost shallow piercement salt dome in the basin. Its site area consists of approximately 542 square miles of rolling hill topography. Within this area the data used to characterize the salt dome include 11 wells penetrating the salt, one seismic reflection line, a basin gravity survey, and a number of wells in the vicinity of the salt dome.

FIGURE 1.2. Regional Location Map

The salt dome pierces 16,000 ft of strata, ranging from Late Jurassic to Early Tertiary in age (Figure 1.3). Caprock is believed to cover the top of the salt dome, with thickness ranging from 50 ft to more than 250 ft. This caprock is composed of a top zone of disseminated pyrite in carbonate, a middle zone of gray shaley carbonate, and a lower zone of clear, very dense anhydrite. The salt dome itself is made of halite, with some evidence of shale inclusions on the periphery of the salt dome. At the repository depth, the salt dome is assumed to be approximately 2100 acres in cross-sectional area. Of this area, the repository would occupy about 1370 acres surrounded by an 800 ft buffer zone (Figure 1.4).

Subsurface Hydrology

The hydrologic system in the vicinity of the salt dome consists of the following:

<u>Geologic Unit</u>	
Sparta Formation	aquifer
Weches Formation	aquitard/aquiclude
Queen City Formation	aquifer
Recklaw Formation	aquitard/aquiclude
Carrizo Formation	aquifer
Wilcox Group	aquifer
Midway Group	aquiclude

The Midway extends well below the repository level, and all aquifers below the Midway are quite saline. Thus, lower aquifer systems are not considered important in this preliminary safety analysis, since they are not likely to be tapped for human usage and they are not likely to come in contact with the repository waste.

The Sparta and Queen City Formations were taken to be a single unit. Similarly, the Carrizo and Wilcox were treated as a single unit because the Weches is an incomplete barrier between them. The Wilcox-Carrizo aquifer is the most important aquifer in the study area for human utilization. Most of

Source: Law Engineering Testing Company 1979b

FIGURE 1-4. Areal Reportsentation of the Hypothetical Nuclear Waste Repository Located in the Hainesville Salt Dome

the larger municipalities and industries in the region obtain their water from this aquifer. Importantly, this aquifer surrounds the salt dome at repository depth.

The Wilcox-Carrizo is very thick, and thus has a moderate transmissivity despite a relatively low hydraulic conductivity of its sands. Pumping tests conducted in the aquifer in Wood County from eight wells indicated the following characteristics:

Transmissivity	600-19,000 gpd/ft
Well discharge rates	50~500 gpm
Specific capacities	0.8-9.7 gpm/ft of drawdown
Hydraulic conductivity	4-700 gpd/ft ² (50 gpd/ft ² average)
Storage Coefficient	0.00007-0.00027 (unitless)

Using these site geologic and hydrologic characteristics, including considerably more information provided by the site Geologic Project Manager (GPM), Law Engineering Testing Company (LETCO), AEGIS conducted a preliminary reference site assessment of a repository situated within the Hainesville Salt Dome. Briefly, the procedures involved the examination of potentially disruptive geological and human-induced phenomena, selection of release scenarios, simulation of the near-dome hydrologic system, simulation of the regional hydrologic system, simulation of the transport of released radioisotopes to aquifer discharge points, and calculations of dose burdens based on one portion of a release scenario.

RELEASE SCENARIO DEVELOPMENT

The release scenarios were developed by a team of AEGIS staff and consultants addressing the three categories of release scenarios:

- Type 1 Scenario resulting from a natural, continuous sequence of geological processes ultimately disrupting the repository
- Type 2 Scenario resulting from catastrophic impact of a discrete event such as meteorite impact
- Type 3 Scenario resulting from human-induced phenomena.

The scenario team used the logic structure of the scenario analysis model now under development by AEGIS as the basic framework for consideration of Types 1 and 2 scenarios. This model is not yet fully operational and has been developed based on the characteristics of a basalt host medium (see Appendix A). However, the approach built into the model was followed: specifically, AEGIS staff systematically examined geological phenomena that potentially could disrupt a repository. These phenomena were selected or rejected by the scenario team as being capable of resulting in a breach in the reference salt dome repository.

Type 1 and 2 Scenarios

This systematic consideration of the potential Type 1 and 2 phenomena for the Hainesville Salt Dome indicated there are no plausible mechanisms for a Type 1 or 2 breach within the million-year time frame under AEGIS consideration. Therefore, for that time frame, no natural geologic breach scenario is considered by the AEGIS scenario team to be credible for the reference site. However, this conclusion is based on an analysis that did not consider repository construction- nor waste-induced effects. A separate analysis would have to be performed to determine if those effects could lead to plausible Type 1 or Type 2 breach scenarios. Additional and more detailed geologic investigations would be required to substantiate this conclusion.

Natural dissolutioning of the salt dome by the ground water flowing past the dome was considered to be a plausible breach mechanism in the few-to-many million year time frame. Thus, to provide an exercise of a natural geologic scenario causing a breach, and a subsequent exercise of the consequence analyses, and to provide a conservative bound on the geologic system, AEGIS selected a natural dissolutioning scenario occurring at a time 1×10^6 years postclosure as one that would require further consideration. As of the date of this report though, consequence analyses on this natural geologic scenario have not been performed.

The scenario actually selected for of the consequence analysis, dissolutioning caused by solution mining activities, was considered by the scenario team to be the most plausible breaching scenario to occur within the given

million-year time frame, as discussed below. The scenario actually analyzed exposes the repository contents to the same hydrologic system involved in natural dissolutioning. The consequences of any natural dissolutioning scenario are expected to be of less magnitude than the consequences of the solution mining scenario because of radioactive decay of the repository inventory by the later time of the natural dissolutioning.

Type 3 Scenario

A comprehensive assessment of the safety of a waste repository must include some analysis of how humans might cause a future interaction between remaining radioactive materials and the human environment. The consequences of deliberate or inadvertent human intrusion, in terms of radionuclides released, could far outweigh the consequences of release through gradual ground-water contamination. For this reason, consideration of how future human activities might affect the repository integrity must be incorporated, into potential release scenario analyses.

At the time of this assessment a structured methodology for dealing with potential human-induced repository breaches had not been developed; however, it seems unlikely that the probabilities for such events could be guantified as events in the geologic process currently are. The history of human activities is extremely brief in comparison with geologic history. While the probability of occurrence of geologic activities can be quantified based on long-term histories of those activities, human activities cannot be similarly treated. Geologic processes are often dated in many millions of years; hominid predecessors, <u>Australopithecus</u> and <u>Homo habilis</u>, however, have existed only within the past few million years. The appearance of modern humans is dated from about fifty thousand years ago, while the existence of agricultural systems and the recording by humans of history can be traced for only ten thousand years or less. Any analysis that would attempt to categorize past human activities and project those categorizations into the future must currently be qualitative in nature and highly uncertain in its predictions.

An analysis of future human-induced activities that might compromise the integrity of a repository sited in a salt dome can be structured to discuss a

range of potentialities. The methodology involves an examination of the range of known past human activities that might, if repeated, breach the repository. Separate analyses can be made of those activities that would breach the repository intentionally and those that would result in an inadvertent breach. Finally, any analysis of human-induced phenomena is highly time-dependent in character, as related to the presence and quality of institutional controls and passive information transfer.

There exist at least three phases of institutional control based on pre-

- <u>short term</u> (less than 50 years after closure of repository) -Reasonable predictions can be made about stability, goals, and operation of human institutions, as well as degree of uncertainty.
- <u>intermediate term</u> (100-200 years after closure of repository) -Predictions are based largely on extrapolation or projection of present trends; there is a limited degree of confidence, which decreases with time.
- <u>long term</u> (more than 100-200 years after closure of the repository) -Uncertainties dominate.

Draft Environmental Protection Agency (EPA) regulations on disposal of high-level radioactive waste, available at the time of scenario development, stated that controls for the repository that are based on institutional functions cannot be relied upon for longer than 100 years after closure. AEGIS neither endorses nor rejects the tenets of these EPA draft standards; however, for purposes of this analysis, loss of institutional control, regardless of cause, is presumed at 100 years after repository closure. One of the purposes of control of the repository site is the transfer of information about the nature of the repository and the dangers inherent in the release of the radioactive materials it contains. Implicit in the loss of physical control of the site is the possibility that the effective intergenerational transfer of information would be lost, or that only a partial transfer would be made. Current EPA draft regulations require supplemental controls to be designed using the most permanent markers and records practicable to communicate the nature and hazard of the material and its location. In spite of these precautions, the possibility remains that information transfer might not effectively survive, intact and intelligible, for any period significantly longer than that presumed for institutional control to the degree necessary for reliance in protecting the environment from the radioactive waste.

Based upon these considerations the AEGIS team considered the possibilities of deliberate intrusion of a repository. Probable knowledge of the nature of the repository contents can be inferred from the society's technological capability and desire to intrude deliberately into the repository. This scenario was discarded for further consequence analysis on the basis that a future society intruding into a repository, while fully knowing the nature of the repository, assumes upon itself the inherent risk burden of such activity. Draft federal regulations support this decision.

Inadvertent Intrusion

Inadvertent human intrusion is defined to include those activities of a future society carried out without adequate knowledge of the presence or nature of the repository. The hazard of such inadvertent intrusion exists after a loss of institutional control over the repository site. One of the primary reasons for geologic disposal is to keep the waste and humans separated. Implicit in this is a judgment that it is incumbent on the present society to minimize the risk of future inadvertent intrusion; hence, consideration of inadvertent human intrusion was deemed essential to a post-closure safety analysis. Draft federal regulations support this decision, suggesting that for an actual site analysis involved in the licensing process a human intrusion analysis would be required.

The physical features that make a salt dome attractive as a repository for nuclear waste isolation also make it attractive for current, and, presumably, future alternative uses. Salt domes are large, accessible concentrations of a relatively pure mineral that has biological and cultural value to humans. Other mineral deposits are frequently associated with salt domes. Also, salt domes are a valuable resource for the geologic stability of cavities created within them for storage of such materials as compressed air,

petroleum, and natural gas. The rate of such utilization has been increasing for several years, and current rates of salt dome utilization indicate that all Interior Gulf Coast salt domes will be significantly exploited in the next few centuries (Griswold 1980).

AEGIS scenario staff looked at potential uses of salt domes and at potential means of such utilization. Key to this part of the scenario development is the nature of solution mining. This technique was found to have a long historical record and to require a relatively unsophisticated technology, to be an efficient means of removal of the contents of the salt dome without the physical presence of humans within the geomedia, and to be a commonly used practice in many salt domes in the Interior Gulf Coast, as in other areas. These factors led to the conclusion that a remote-controlled, solution mining intrusion into a salt dome containing a repository, subsequent to loss of institutional control is a guite plausible Type 3 scenario.

Type 3 Scenario Used in the Reference Site Analysis

Based upon this conclusion, the AEGIS staff designed a Type 3 scenario in the level of detail needed to perform consequence analyses. The specifics of the scenario analyzed are not of primary importance; AEGIS is not predicting that this particular sequence of events will occur. Rather, AEGIS is using the scenario as representative of the processes involved in human-intrusion scenarios of which there are a large number of potential specific scenarios.

The specific human-intrusion scenario of this analysis involves the solution mining of the salt dome for the purpose of producing salt. The initial intrusion was assumed to immediately follow the loss of institutional control, i.e., 100 years. However, to illustrate the effect of that timing on the consequences, an identical scenario was analyzed, initiating 1000 years after closure. In addition, analyses of the consequences of human intrusion over the very long term are presented in this revised report. The solution mine was assumed to remain operational until it breached the side of the salt dome, opening a pathway from the surface or Queen City-Sparta aquifer, through the salt dome, to an exit into the Wilcox-Carrizo aquifer.

In this scenario there are two pathways to the surface for contaminated water: 1) by leaching of radionuclides into the brine that is pumped to the

surface during the operational phase of the mine, and 2) by subsequent leaching of contaminated brine into the Wilcox-Carrizo aquifer and geotransport to the aquifer discharge sites. Pathway 1 is generic to salt domes, whereas pathway 2 must be analyzed in a site-specific assessment. The latter pathway has three phases: 1) leaching into the aquifer system based on an intact conduit as input from the surface water system, 2) leaching into the aquifer system after partial collapse of the geosystem above the cavity, and 3) leaching into the aquifer after total dissolution of the salt dome and concomitant collapse of the overlying strata. Because of the time contraints and the exercise nature of this consequence analysis, this three-phase scenario was simplified into two phases by assuming the collapse does not occur until the salt dome dissolves down to the level of the repository. Note that the rate for such salt dome dissolutioning subsequent to a breach through the interior does not correspond to the rate of natural dissolutioning over the top and caprock of the salt dome. Specifically, total salt dome dissolutioning down to the level of the repository after the human intrusion was calculated to occur as soon as 15,000 years after breach, in contrast to the millions of years required for the natural scenario.

The scenario analysis provided the base case, solution mining scenario, with initiation at 100 and 1000 years after closure. In addition, a regional scenario was developed, showing the possible effects on the geotransport system of changes that could occur before the breach (e.g., climatic changes and elimination of a current, major water withdrawal by human activities). Some of these aspects were included, or may be addressed in future simulations, as variations on the base case scenario.

QUANTIFICATION OF SCENARIO CONDITIONS

Translation of the scenarios into the initial conditions of the consequence models proved to be a more difficult exercise than had been anticipated. Specific questions that had to be addressed included:

• estimation of the cavity size, shape, water turnover times, and flow rates at the exit into the aquifer

- estimation of the distribution coefficient (Kd values) associated with retardation of the radionuclides by the geomedia
- estimation of the solubility limits imposed on the transport system
- estimation of the salt dome dissolutioning rate and subsequent collapse
- estimation of the near-dome hydrologic system before and subsequent to collapse of the salt dome
- estimation of the effects on the regional hydrologic system of eliminating the current human activities affecting the Wilcox-Carrizo aquifer.

SOURCE TERM

Briefly, these estimates were made as described below. Leach rates were measured by the WRIT program using the International Atomic Energy Agency (IAEA) standardized procedure for spent fuel that had been pushed out of its cladding. Data taken after 467 days of leaching showed that essentially congruent dissolutioning of the spent fuel occurs at the rate of uranium leaching. This rate is a function of surface area; therefore, particle size distribution was measured by WRIT on pushed-out spent fuel by sieving a sample in the hot cell. The particle size distribution and leach rates were included in an AEGIS leaching computer model. This model includes compensation for temperature effects, based on an Arrhenius function, and for decreasing surface area as each particle dissolves. Results from this simulation indicated the entire repository contents could be dissolved in a few tens of years; however, results showed the potential for the solubility limits to be exceeded.

To address this possibility, the near-dome hydrology had to be simulated by AEGIS using the three-dimensional finite element model to provide an estimate of the water flow rates through the repository. Initial simulations gave rates for the first phase of the geotransport of a few hundred gallons per minute. To assess the sensitivity of the results to the size of the aperture at the side of the salt dome opening into the Wilcox-Carrizo aquifer, sensitivity analyses were performed using various sizes of openings. Results showed that a very large increase in the aperture size only increased the flow rates by 10-20%. Hence, it was concluded that the flow rates through the repository

are primarily limited by the physical nature of the receiving aquifer. As such, the flow rates are not sensitive to the particular opening site assumed.

Using the estimates of the flow rates during phase one of the geotransport simulation, it was calculated that the uranium would have to be in solution orders of magnitude above the best estimates of solubility limits for the ground-water system to deliver the quantity of material in the time predicted by the leaching model. Therefore, the source term of uranium is limited by a solubility ceiling, not by leach rates from the spent fuel.

The WRIT leach data had shown congruent dissolutioning of the radioisotopes in the spent fuel at the rate of uranium leaching. This seems reasonable, in that most of the radionuclides are bound within the uranium oxide matrix that constitutes the bulk of the spent fuel. Thus, the source term of the non-uranium isotopes was taken to be proportional to the fractional release of uranium. Because of this, each individual isotope does not necessarily reach its own solubility limit.

Further AEGIS calculations showed that the solution mining operational phase also becomes solubility limited within a short period after initiation of the intrusion. According to these calculations the solubility limitation at the flow rates assumed for the solution mining operation is reached with only a small fraction of the repository being exposed. This leads to the conclusion that after this small fraction is exposed, any further increase in the exposure of the repository will have no effect on the quantity of radioisotopes delivered to the surface. In fact, a solution mining event with only 1/50 of the exposed fraction of the scenario used here would produce the same dose results.

SORPTION DATA

The data (other than source term and site characteristics) needed for geotransport calculations are associated with the retardation of radioisotopes by the geomedia through which the ground-water passes. WRIT obtained from the Geologic Program Manager (GPM) some outcrop samples of the aquifers associated with the Hainesville area for determination of the distribution coefficients (Kd values). Inspection of these samples suggested that excessive weathering and the presence of organics might make their measured sorptive properties not

representative of the actual geomedia. Kd measurements were performed on these by WRIT, and many values seemed unrepresentative (nonconservatively high). Based on WRIT's mineral characterization of these samples, all were found to be essentially quartz, with secondary minor inclusions. Therefore, to provide a representative, conservative assessment, Kd values on quartz in brine and bicarbonate waters were selected from the WRIT generic data bank for use in this analysis. As such, the Kd values used may differ significantly from the values for actual geomedia. If this were an actual site analysis accompanying a site license application, Kd values would have been measured on actual uncontaminated core samples from the various formations involved. Thus, the results from the geotransport part of this reference site analysis may not be representative of actual geotransport; however, these geotransport analyses do demonstrate the types of analyses that would be performed by WRIT and AEGIS.

CONSEQUENCE ANALYSES

Using these scenarios and data, the consequence analyses were performed by AEGIS, including the operational phase of the solution mining scenario and the geotransport phase subsequent to the breach of the salt dome. Because of the inherent limitations of dose calculations (related to the time scale of demographic and societal changes that affect dose values), AEGIS initially limited dose-to-human calculations to the time period then specified in the EPA draft standards for health effects, 1000 years. (It should be noted that more recent EPA draft standards do not have this 1000-year criterion.) Thus, dose calculations were initially presented for the operational phase of the solution mining at times 100 and 1000 years after closure. In this revised report, doses are calculated for solution mining over the very long term. No dose calculations were performed for radioisotopes entering the biosphere after geotransport, because such transport took, at a minimum, about 15,000 years after the breach occurs.

For this analysis, the calculated doses are summarized in Tables 1.1 through 1.5. For the geotransport analyses, simulations were run for a base case and several variations. Output was obtained for each radionuclide for each scenario variation and is presented in Appendices G and H. A summary of the quantity released via geotransport to the surface is listed in Table 1.6.
<u>TABLE 1.1</u>. Radiation Doses Calculated for Solution Mining Scenario (Uranium Solubility Limited, 50-year Ingestion--Base Case)

	Organ of Reference				
Decay Time	Total Body	Bone	Lung	Thyroid	
100 Years	1.6×10^{11}	6.5×10^{11}	2.8 x 10 ⁹	4.7 x 10 ⁶	
1000 Years	1.3 x 10 ⁹	3.0×10^{10}	3.7×10^4	4.7 × 10 ⁶	
В.	B. <u>70-Year Individual Dose Commitments, rem</u>				
100 Years	1.1×10^4	4.4 x 10^4	1.8×10^2	3.2×10^{-1}	
1000 Years	8.4 x 10 ¹	2.0 x 10^3	2.5×10^{-3}	3.1×10^{-1}	

A. 70-Year Population Dose,* man-rem

* Based on affected population of 15 million.

<u>TABLE 1.2</u>. Radiation Doses Calculated for Solution Mining Scenario (Uranium Solubility Limited, 1-year Ingestion)

A. 70-Year Population Dose, man-rem

	Organ of Reference				
<u>Decay Time</u>	Total Body	Bone	Lung	Thyroid	
100 Years	3.3×10^9	1.4×10^{10}	5.5 x 10^7	9.5 x 10^4	
1000 Years	3.5×10^7	8.6 x 10^8	7.5×10^2	9.4 x 10^4	
	B. <u>70-Yea</u>	ur Individual D	lose, rem		
100 Years	2.2 x 10^{2}	9.6 x 10 ²	3.7	6.3 x 10-3	
1000 Years	2.3	5.7 x 10 ¹	5.0 x 10 ⁻⁵	6.3 x 10-3	

TABLE 1.3.	Radiation	Doses (Calculated	for Sol	ution	Mining	Scenario
	(Uranium So	lubility	/Limited,	10-year	Inge	stion)	

		Organ of	Reference		
Decay Time	Total Body	Bone	Lung	Thyroid	
100 Years	3.3×10^{10}	1.4×10^{11}	5.5 x 10 ⁸	9.5 x 10 ⁵	
1000 Years	3.3 x 10 ⁸	8.2 x 10 ⁹	7.5 x 10^3	9.4 x 10 ⁵	
Β.	B. <u>70-Year Individual Dose Commitments, rem</u>				
100 Years	2.2 x 10^3	9.5 x 10^3	3.7×10^{1}	6.3 x 10 ⁻²	
1000 Years	2.2×10^{1}	5.5×10^2	5.0×10^{-4}	6.3 x 10 ⁻²	

A. 70-Year Population Dose, man-rem

<u>TABLE 1.4</u>. Radiation Doses Calculated for Solution Mining Scenario (Uranium Solubility Limited, 25-year Ingestion)

A. 70-Year Population Dose, man-rem

		Organ of Reference				
Decay Time	Total Body	Bone	Lung	Thyroid		
100 Years	8.3 x 1010	3.5×10^{11}	1.4 x 10 ⁹	2.4 x 106		
1000 Years	7.7 x 10 ⁸	1.9 x 10 ¹⁰	1.9×10^4	2.4 x 10 ⁶		
	B. <u>70-Year Individual Dose Commitments, rem</u>					
100 Years	5.5×10^3	2.3×10^4	9.2 x 10 ¹	1.6×10^{-1}		
1000 Years	5.1 \times 10 ¹	1.2×10^3	1.2×10^{-3}	1.6×10^{-1}		

For this revised report, the total-body doses have been compared to the total-body doses received from natural background radiation. These comparisons have been made for times of human intrusion long after closure. These results are presented in Table 1.7.

Conclusions

A primary goal of this work, the exercising of the AEGIS methodology, was a success both in terms of demonstrating the methodology and thereby providing

. .		<u> </u>	e	
<u>Isotope</u>	100 Years	<u>1000 Years</u>	10,000 Years	30,000 Years
. H3	62	. 0	0	0
C14	32	29	9.8	0.9
C136	0.3	0.3	0.2	0.2
Fe55	2.1×10^{-7}	0	0	0
Co60	0.3	0	0	0
N159	72	72	66	56
N163	4.9 x 10^3	5.6	0	0
Se79	8.9	8.5	7.7	6.2
Kr85	310	. 0 _	0	0
Sr90	1.4×10^5	3.1×10^{-5}	0	0
Y9 0	1.4×10^5	3.1×10^{-5}	0	0
Zr93	69	69	68	67
Nb93m	. 58	58	58	57
Nb94	22	21	16	7.8
Mo93	0.5	0.4	4.9×10^{-2}	4.8×10^{-4}
Tc99	280	280	270	250
Pd107	2.4	2.4	2.4	2.4
Sn121m	2.7	1.1×10^{-5}	0	0
Sb125	3.4×10^{-6}	· 0	0	0
Tel25m	8.2 x 10^{-7}	0	0	0
Sn126	16	16	15	13
Sb126	2.3	2.3	2.1	1.8
Sb126m	16	16	15	13
I129	0.7	0.7	0.7	0.7
Cs135	8.2	8.2	8.2	8.1
Cs137	2.2 x 10^5	2.2×10^{-4}	0	0
Ba1 <u>3</u> 7	2.1 x 10^5	2.1×10^{-4}	0	0
Pm147	9.7 x 10 ⁻⁶	0	0	0
Sm151	3.8×10^3	4.6	0	0
Eu154	68	0	0	0
Eu155	<u>5.3 x 10⁻²</u>	0	0	0
Subtotal	7.2 x 10 ⁵	6.0 x 10^2	5.4 x 10^2	4.8 x 10^2

TABLE 1.5. Ingested Curies of Isotopes Delivered to Surface, 50 Years of Consumption of Table Salt

		Time	9	
Isotope	100 Years	1000 Years	10,000 Years	30,000 Years
Pb210	3.0×10^{-4}	6.1×10^{-2}	2.6	9.1
Pb214	5.3×10^{-4}	6.1 x 10^{-2}	2.6	9.1
Bi210	3.0×10^{-4}	6.1×10^{-2}	2.6	9.1
Bi214	5.3×10^{-4}	6.1×10^{-2}	2.6	9.1
Po210	3.0×10^{-4}	6.1×10^{-2}	2.6	9.1
Po214	5.3×10^{-4}	6.1×10^{-2}	2.6	9.1
Po218	5.3×10^{-4}	6.1 x 10^{-2}	2.6	9.1
Rn222	5.3×10^{-4}	6.1×10^{-2}	2.6	9.1
Ra226	5.3×10^{-4}	6.1 x 10^{-2}	2.6	9.1
Th230	2.6 x 10^{-2}	0.3	3.3	9.0
Th234	7.1	7.1	7.1	7.1
Pa233	8.7	21	25	25
Pa234m	7.1	7.1	7.1	7.1
U234	33	41	40	38
U236	5.3	5.6	7.3	8.3
U238	7.1	7.1	7.1	7.1
Np237	8.7	21	25	25
Np239	330	310	140	22
Pu238	2.2×10^4	1.0×10^4	4.0×10^3	510
Pu239	6.8 x 10^3	6.6×10^3	5.2 x 10^3	3.0×10^3
Pu240	1.1×10^4	1.0×10^4	4.0 x 10^3	510
Pu241	2.3 x 10^4	0.4	0.2	3.5×10^{-2}
Pu242	48	38	37	36
Am241	8.1×10^4	1.9×10^4	0.2	9.5 x 10^{-3}
Am243	330	310	140	22
Cm242	51	0.8	0	0
Cm244	660	0	0	0
Subtotal	1.5×10^5	3.6×10^4	9.7 x 10 ³	3.8×10^3
TOTAL OF				
CONSUMED	8.7 x 10 ⁵	3.7×10^4	1.0×10^4	4.3×10^3

TABLE 1.5. (contd)

		Sim	ulation Nur	nber	
<u>Nuclide</u>	(1)	<u>(2a)</u>	<u>(2b)</u>	(3)	(4)
14 _C	5.21E3**	8.90E1	1.52E2	2.50E4	8.88E1
⁷⁹ Se	0	0	· 0	0	0
⁹⁹ Tc	5.43E5	2.46E5	3.88E5	4.32E5	2.46E5
¹²⁹ I	2.28E3	1.14E3	1.14E3	2.28E3	1.10E3
135 _{Cs}	2.49E4	7.74E3	7.71E3	1.66E4	7.68E3
240 _{Pu}	0	0	0	0	0
236 _U	2.90E4	1.44E4	1.44E4	2.91E4	1.44E4
232 _{Th}	1.13E-1	4.73E-2	4.84E-2	4.84E-2	3.87E-1
241 Am	0	0	0	1.07E6	0
237 _{Np}	8.05E4	3.53E4	3.50E4	8.67E4	4.0E4
233 _U	7.31E4	4.90E4	5.12E4	1.52E4	2.84E4
229 _{Th}	4.47E3	2.08E3	1.95E3	7.49E2	1.17E3
242 _{Pu}	0	0	0	0	0
²³⁸ ປ	2.45E4	1.22E4	1.22E4	2.45E4	1.22E4
²³⁴ U	9.64E4	2.83E4	3.06E4	1.31E5	3.39E4
230 _{Th}	4.33E3	1.24E3	1.37E3	3.59E3	1.07E3
226 _{Ra}	9.48E3	2.55E3	3.19E3	8.30E3	1.73E3
243 _{Am}	8.75E4	3.08E3	4.55E3	3.29E5	3.08E3
239 _{Pu}	2.26E2	8.36	6.81	3.89E2	9.27
235 _U	8.16E2	4.12E2	6.00E5	7.82E2	5.50E5
231 _{Pa}	2.75E1	7.48	1.26E1	2.96E1	5.93

<u>Cumulative Discharge (curies)</u>

<u>TABLE 1.6</u>. Cumulative Radiocontaminant Discharge after Geotransport Curies for the Four Release Scenarios

(1) Base Case. East Texas oil field discharge.
(2a) Base Case. Sabine River discharge.*
(2b) Base Case. Big Cypress Bayou discharge.*
(3) Base Case. Well pumping case.
(4) Base Case. Sabine River discharge. Lower bound Kd.
* Represents half of released inventory.
** Computer notation for 5.21 x 10³.

Time of Intrusion (yr after closure)	Multipliers Above Background* (50 yr ingestion) (individual doses)
100	1,571.4
1,000	12.0
10,000	6.7
50,000	27.1
100,000	41.4
500,000	37.1
1,000,000	20.0

TABLE 1.7.	Relative T	otal	Body	Dose	Burdens	Compared	to	Natural
	Radiation	Backg	round	l		·		

* Background here is taken to be 100 mrem/yr, or approximately 7 rem/70 yr lifetime. Actual background varies from this depending on the location of the individual.

a basis for substantive peer review and in terms of further developing the capability for site assessment. In the process of performing this, the evaluations led to some preliminary conclusions concerning the salt dome reference site repository. These conclusions are subject to the limitations of the data used:

- Human intrusion, involving solution mining and a subsequent breach, potentially could deliver a substantial quantity of the nuclear waste inventory to the accessible environment, based on plausible scenarios.
- Engineered barriers that are totally effective in providing containment could alleviate the operational-phase consequences of a solution mining intrusion, if the intrusion occurred during the life of the barrier. For example, if the intrusion occurred at 100 yr after closure and if all barriers lasted more than 150 yr no radioisotopes would be delivered to the surface during the mining operations. Geotransport of the radioisotopes, however, could still occur after the engineered barriers were no longer effective, because

a pathway to the accessible environment might exist. It is outside the scope of this work to determine if engineered barriers could be developed that would be totally effective throughout the physically disruptive breach scenario.

- Engineered barriers that are totally effective for 1000 yr would have very little impact on the consequences of geotransport of the radionuclides to the surface, compared with having no barriers at all. (This is based on geotransport simulations initiated at 100 yr and 1000 yr after closure, the latter being analogous to an earlier intrusion which had no release until 1000 yr because of the engineered barrier.) This lack of effect results from the long geotransport time to the surface (about 15,000 yr) for this reference site, and thus, this conclusion may not be true for other salt dome sites. It is outside the scope of AEGIS to determine if engineered barriers could be designed to be totally effective for 1000 yr.
- The insensitivity of the geotransport consequences to initiation at 100 yr versus 1000 yr after closure indicates that geotransport to the surface is not strongly sensitive to the timing of the loss of institutional control, for this salt dome site.
- Calculations based on the limitations imposed by the ground-water system for this reference site indicate that solubility limits are the determinants of the source term, where spent fuel is the waste form. If those solubility limits did not apply, the consequences from solution mining could be more severe.
- Because of this solubility-limited situation, the dose calculations are remarkably insensitive to many of the quantifying parameters that would have been expected to be critical. For instance, the size of the solution mined cavity that intercepts the nuclear waste repository could be reduced by a factor of 50 without reducing the individual or population doses. The size of the solution mining operation itself (in terms of brine production) could be reduced by

a factor of 50 without reducing the doses to individuals. Importantly, the size of the solution mining operation could be reduced by a factor of 30, while increasing the fraction of brine going to culinary salt to the more realistic factor of 90%, without changing the doses to individuals or to the general population.

- The calculated occupational doses to operators of a solution mining operation are not sufficiently acute to cause termination of the solution mining operations. Thus, solution mining provides a remotecontrolled means of delivering radionuclides to contact with the accessible environment. This contrasts with in-situ conventional mining (room and pillar), where the deleterious thermal and radiation effects would force the termination of mining activities in the repository.
- The long-term dose calculations indicate that the potential for adverse consequences from a human intrusion event involving solution mining exists beyond the one million year time frame. This conclusion is contrary to the view that the hazards of a nuclear waste repository are no greater than the hazards of a comparable natural ore body after 10,000 yr. The difference is that the latter may be true for geotransport consequences, but not for the direct consequences of human intrusion into an edible host medium.
- The geology of the salt dome provides no barrier to the human intrusion scenario; indeed, salt domes are very localized, attractive resources, enhancing the likelihood of eventual human intrusion. The sole barriers then would have to be effective intergenerational transfer of information and/or almost totally effective engineered barriers that provided a substantial reduction in the source term for an exceedingly long period of time.

Again it should be emphasized that the AEGIS efforts for this reference site analysis were an exercise of the AEGIS methodology. The intent was not to conduct an actual site evaluation to the depth that would be appropriate for a site qualification or licensing. Rather, what is presented here is an example of the utilization of AEGIS methodology for site evaluations, based on a hypothetical repository located in a reference salt dome. It is expected that the methodology will have progressed and the data will be adequate by the time of an actual site selection and licensing to reduce the uncertainties and to provide a sound assessment of the long-term post-closure safety of nuclear waste repositories. Nevertheless, these reference site analyses do provide a strong indication of the generic potential for human intrusion into a nuclear waste repository located in a salt dome.

CHAPTER 2

OVERVIEW OF THE AEGIS AND WRIT PROGRAMS

Associated with commercial nuclear power production in the United States is the generation of hazardous radioactive wastes. The Department of Energy (DOE), through the National Waste Terminal Storage (NWTS) Program, is seeking to develop nuclear waste isolation systems in geologic formations with the objective of precluding contact of waste radionuclides with the biosphere in concentrations that are sufficient to cause deleterious impact on humans or their environments. Comprehensive analyses of specific isolation systems are needed to assess the expectations of meeting that objective. The Waste Isolation Safety Assessment Program (WISAP) was established at the Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute, for developing the capability of making those post-closure analyses. In FY-80, WISAP was divided into the AEGIS and WRIT programs.

Among the analyses required for isolation system evaluation is the detailed assessment of the post-closure performance of nuclear waste repositories in geologic formations. This post-closure assessment is essential because it is concerned with aspects of the nuclear power program which previously have not been addressed and that have potential long-term consequences. Specifically, the nature of the isolation systems and the time-scales necessary for isolation dictate the development, demonstration, and application of novel assessment capabilities. The assessment methodology needs to be thorough, flexible, objective, and scientifically defensible. Further, the data used must be accurate, documented, reproducible, and based on sound scientific principles.

The objectives of AEGIS and WRIT are to: 1) develop the capabilities needed to assess the post-closure safety of geologic repositories, 2) obtain scientifically defensible generic and site-specific data necessary for safety assessments, 3) provide, as needed, studies to further support these data and analyses, 4) demonstrate the assessment capabilities by performing analyses of

reference sites, 5) apply the assessment methodology to assist the National Waste Terminal Storage Program in site selection, and 6) perform repository site analyses responsive to the time schedule and to the level of sophistication required to meet the licensing needs of the National Waste Terminal Storage Program.

Post-closure safety assessments will be required with differing levels of detail as the repository site selection, qualification, and licensing processes develop. Thus, the safety assessment program will continue to evolve to match the requirements for technical detail and sophistication of the assessment input for the various site qualification and licensing stages. A post-closure safety assessment program must advance the state of the art for generic assessment capabilities while providing the credible assessments required to evaluate specific geologic isolation systems.

There are two basic components of repository post-closure safety assessments:

- identification and analyses of breach scenarios and the pattern of events and processes causing each breach
- identification and analyses of the environmental consequences of radionuclide transport and interactions subsequent to a repository breach.

The scope of AEGIS at the time of this analysis was limited to long-term, post-closure analyses. It excluded the consideration of waste-induced and repository-induced processes that may affect the repository integrity, and it excluded the consideration of nuclear waste isolation alternatives other than geologic isolation repositories. The near-field/near-term aspects of geologic repositories are being considered by the Office of Nuclear Waste Isolation (ONWI)/DOE under separate programs. They are being integrated with the AEGIS methodology for the actual site-specific repository safety analyses.

The Waste Isolation Safety Assessment Program was divided into a management task and four technical tasks (Figure 1.1). These tasks were designed to be integrated to produce the needed assessment methodology and site analyses,

as described below. The current AEGIS program involves the left half of this diagram, and the current WRIT program involves the right half.

RELEASE SCENARIO ANALYSIS (AEGIS)

AEGIS Release Scenario Analysis uses geoscientist teams and mathematical models to identify and provide bounds to the events and processes that could potentially affect the repository integrity. This includes the analysis of the interactions and consequences of phenomena that could result in a loss of containment by the repository. Based on the particular nature of a release sequence of phenomena, the condition of the geology surrounding the repository at the time of the breach will be determined as initial conditions for the consequence analysis.

The purpose of the determination of nuclear waste repository release scenarios is to evaluate geologic events and processes, human-induced events and processes, and the impact of these on the integrity of the repository. Events such as earthquakes, faulting, and human intrusion, and processes such as erosion, uplift, and diapirism, could, alone or in concert, significantly alter the geology surrounding the repository and lead to a loss of repository integrity. The output from scenario analyses will establish the conditions of the geology and hydrology surrounding the repository at the time of an identified breach, providing the major geologic boundary conditions for input into the consequence analysis models.

Development of the release scenario analytical capability is performed in a two-stage approach. An <u>ad hoc</u> team of geoscientists is generating release scenarios for reference sites as inputs to reference site analysis. Concurrently, release scenario models are being developed so that in subsequent years the models can be used to assist the scenario team in the generation of release scenarios. These two approaches are intimately interrelated so that the information and data developed from the effort of the geoscientists are being used to aid in the conceptualization of the differing geologic parameters incorporated in the developing models. Conversely, the expert team efforts are using the intermediate stages of the models being developed to aid in focusing the scenario generation.

The generic phase of scenario methodology development has provided the baseline from which actual release scenarios for reference site initial analyses are being generated. The development and testing of the generic computer program during the initial phase of scenario analysis formed the basis for the development of geology-specific, second generation models. Thus, while sophisticated scenario models are not currently available for site applications, prerequisite steps have been completed that will simultaneously allow ad hoc team use of AEGIS technology for site scenario analyses and continuation of release scenario model development.

RELEASE CONSEQUENCE ANALYSIS (AEGIS)

AEGIS Release Consequence Analysis is using ground-water and radionuclide migration models to simulate the pathways and transit times of each radionuclide to the accessible environment. For radionuclides reaching the accessible environment, radiological dose models are used to compute exposures to humans and their environment. The release consequence analyses include:

- simulations of water movement through the geosphere from the areas near the repository
- simulations of the transport of radionuclides through the geosphere, driven by the water flow
- providing source terms for the radiological dose models
- predicting anticipated radiological dose levels for humans and their environment based on the geosphere simulations.

It is assumed that the movement of radionuclides through the geosphere would be primarily by water transport. Thus, the geosphere transport aspect of this task has two components: 1) the identification, through simulation, of the potential ground-water pathways and transit times, and 2) the juxtaposition of the actual radionuclide movement onto this hydrologic regime, taking into consideration factors affecting chain decay and transport. Added onto the output of these geosphere models are radiological dose models, so that three model sets are involved in this task. Figure 2.1 is a schematic flow diagram for the release consequence analysis. Additionally, within each

FIGURE 2.1. Consequence Analysis Schematic Diagram

model grouping are models of differing levels of complexity, so that the degree of model sophistication can be attuned to the adequacy of the data base for each particular analysis and to the purpose of the analysis (e.g., preliminary planning, site selection, licensing of specific site). Thus, AEGIS currently provides a flexible capability for consequence analysis.

A major objective of this task is to use these existing models to perform reference site initial analyses to enhance the model development effort. The objectives are to increase the efficiency, defensibility, and credibility of the models so that later, more complete site-specific analyses can be performed to the depth required for the licensing process.

AEGIS efforts have brought release consequence analysis to the point where actual site-specific analyses can now be made. Specifically, the data base system has been established on a flexible data retrieval system. Generic data have been compiled for test case model runs and verification. Sitespecific data for reference sites have been added to the system. The hydrologic, radionuclide-transport, and dose models selected for AEGIS use have been implemented; sensitivity analyses have been performed; and test cases have been run for verification.

Waste Form Release Rate Analysis (WRIT)

WRIT Waste Form Release Rate Analysis staff are investigating the leaching rates and processes of radionuclide release from nuclear waste forms, providing essential source terms for radionuclide movement. These rates are of major importance to breach consequences, because slower leach rates add time delays before the hydrologic transport of the radionuclide inventory. Such delays can be important factors in isolation, especially for radionuclides of rapid or intermediate decay rates. Leach rates are dependent on the characteristics of the waste forms and the extant physico-chemical conditions within the repository at the time of breach. The functions of the leaching studies are to:

- simulate actual repository physico-chemical conditions during the leach rate measurement
- perform leaching measurements on the anticipated waste forms, geomedia, and ground waters of specific sites for use by consequence analyses

- provide actual leachate solutions for sorption measurements
- investigate the fundamental physico-chemical phenomena governing waste form leaching under repository conditions for the development of a model for prediction of long-term waste form behavior
- develop mathematical relationships of waste leaching for incorporation into the AEGIS radionuclide transport models.

At the present time the waste forms being investigated by WRIT include spent fuel, high level waste (HLW) glass, and, for transuranics (TRU), concrete, bitumen, urea-formaldehyde, and polymers.

The activities necessary for the acquisition of data include: 1) preparation and characterization of waste form samples, 2) measurement of leach rates of selected radionuclides using leaching solutions and physical parameters that span the range anticipated for waste repositories, 3) development of a data base from leach measurements, 4) mechanistic modeling studies for ultimate use in consequence analyses, and 5) preparation of leachate from actual waste forms for use in sorption studies.

Sorption/Desorption Analysis (WRIT)

 $\left(\right)$

WRIT Sorption/Desorption Analysis staff are investigating radionuclide sorption processes. If radionuclides are actually released into a transporting ground water, they may be sorbed by the geomedia that they contact. Irreversible sorption would act to remove the radionuclide from the ground water. Reversible sorption would act in a manner similar to waste form leaching, by providing time delays to the migration of radionuclides. Geomedia of sufficient sorptive capability could provide isolation of the waste from the accessible environment by extending transit times to very long periods. As with leaching, sorption/desorption by geomedia is dependent on the specific radionuclide involved and the physico-chemical characteristics of the geomedia and transporting solutions. Sorption analysis includes:

 investigating the fundamental phenomena governing sorption/ desorption of radionuclides by geomedia

- providing measured values of sorption distributions for specific nuclides and media
- developing predictive equations for sorption distribution extrapolations for non-measured situations.

INTRODUCTION TO REFERENCE SITE ANALYSIS

The Preliminary Information Report (PIR) was the initial effort by ONWI designed to exercise the methodologies under development for performing safety assessments for waste repository licensing. ONWI's PIR was to be in the format of an eventual Preliminary Safety Analysis Report (PSAR), which would be one of the documents submitted with an actual repository license application to the Nuclear Regulatory Commission. The AEGIS reference site analysis was designed to assess the safety of a reference repository site considered by ONWI in the PIR as part of AEGIS's methodology exercise. The site assessed is based on the Hainesville Salt Dome, an Interior Gulf Coast salt dome, which is <u>not</u> being considered for a potential nuclear waste repository site, largely because of past human activities on this salt dome.

During FY-1979, AEGIS performed for the PIR the first site-applied exercise of the total AEGIS and WRIT methodology operative to date. The AEGIS efforts in the exercise of its methodology were performed to provide the bases for the post-closure safety chapter, Chapter 7 of the final PIR; however, the preparation of the PIR is being done by other ONWI contractors.

Briefly, the procedures AEGIS followed for this exercise included the examination of potentially disruptive geological and human-induced phenomena, selection of plausible release scenarios, simulation of the near-dome hydrologic system, simulation of the regional hydrologic system, simulation of the transport of released radioisotopes directly to the surface or to aquifer discharge points, and calculations of doses based on portions of a release scenario.

This report represents an exercise of AEGIS and WRIT methodology for a hypothetical repository located in a reference salt dome, not an actual site assessment. The data used for this exercise are not adequate for an actual

assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WRIT methodology, this report provides the initial opportunity for the AEGIS methodology, specifically applied to a site, to be reviewed by the community outside of AEGIS. This review to date has resulted in some changes in this document and has provided significant guidance for future AEGIS and WRIT activities. Further review will assist in improving the methodology. Finally, this exercise was a substantial learning experience for the AEGIS team.

The analyses performed for this exercise are described in the subsequent chapters of Volume 1. Chapter 1 provides an overview of this report. Chapter 3 gives a thorough listing of the assumptions used in the analyses. Chapter 4 discusses the aspects of potential disruptive phenomena that need to be considered in developing release scenarios for the Hainesville Salt Dome site. Chapter 5 follows with a description of the scenarios developed, emphasizing the scenarios analyzed as being representative of release mechanisms. The near-dome simulations done to help quantify the scenarios are discussed in Chapter 6, and the actual simulations of the geotransport of released radioisotopes are presented in Chapters 7 (hydrology) and 8 (transport). Dose calculations were performed only on the operational phase of a human intrusion scenario; these are presented in Chapter 9. Chapters 10 and 11 discuss the WRIT methodology and the values actually chosen for quantification of the source term of the radioisotope leaching into the ground water and the subsequent retardation of those isotopes by the geological media. Chapter 12 presents a thorough set of comments received from the external review of the working document and responses to those comment by AEGIS.

Appendices presented in Volume 2 describe the scenario methodology under development that would be used for an actual site assessment, summary documentations of the AEGIS hydrological, transport, and dose models used, the input data and conceptual models used for the simulations, the graphical and computer listing of results from the geotransport of released nuclides, the detailed output from the dose calculations, a description of the site characteristics, and detailed inventories and dose calculations for the long-term.

CHAPTER 3

ASSUMPTIONS IN AEGIS SALT DOME REFERENCE SITE ANALYSIS

Included in this chapter is a list of the assumptions involved in the post-closure safety analyses of this report. These assumptions are grouped into categories and have been annotated to indicate whether they are considered by the AEGIS staff to be conservative, nonconservative, or reasonable. Conservative is here defined as an assumption that would increase the severity of consequences. In general, the approach taken was to select the bounding type of scenario for analysis. Specifically, the class of scenarios involving human intrusion into a salt dome repository via solution mining for the purpose of producing culinary salt was selected to be the conservative bound to the larger range of possible human intrusion scenarios. Within that class of scenarios the scenario analyzed was not the most conservative bounding one possible, as it involved both conservative and nonconversative assumptions. The reasonable values and assumptions used that were not conservative were used whenever the data or sound logic indicated they were appropriate. Thus, in our judgement, the scenario analyzed represents a conservatively realistic example of the conservatively bounding class of scenarios resulting in releases to the accessible environment.

Upon review of these assumptions, it was concluded by the AEGIS staff that the <u>geotransport</u> aspects of the consequence analyses are site-specific, involve some very conservative assumptions, and represent consequences worse than reasonably would be expected. The potential for human intrusion via solution mining, on the other hand, is generic to salt domes. This form of intrusion represents a plausible and potentially highly consequential scenario. The specific analyses of this scenario include both conservative and nonconservative assumptions and values. Thus the operational phase consequences of this scenario do not represent the worst possible situation for solution mining. At present, it appears to AEGIS staff that this is conservatively representative of the consequences of a human intrusion via solution mining into a repository contained within a salt dome. Further parametric runs would be

necessary to define better the bounds of consequences from such a mechanism of breach. However, the scenario class is felt to be plausible and the consequences to be a reasonable quantification of such an intrusion.

There are a few key assumptions from which this analysis follows. First, AEGIS did not consider the potential containment afforded by engineered barriers to provide a basis for subsequent barrier performance evaluation. The analyses in this report should provide a basis for considering the engineering design of a repository with respect to mitigating the consequences. Other key assumptions relate to the plausibility and timing of loss of institutional controls, the question of whether passive information transfer can be relied upon for any or a fixed amount of time, and the question of whether active monitoring of radioisotopes in the salt brine or of health effects could lead to a discovery of the source of contamination and to a cessation of mining operations. For the purposes of this report, AEGIS relied upon drafts of the proposed EPA standards, which were interpreted to mean that no reliance on institutional control can be placed beyond 100 years post-closure, that passive information transfer is required but is only a supplementary protection (not the single line of defense), and that if no reliance can be placed on institutional controls beyond 100 years, none should be placed on specific technical knowledge that could lead to active monitoring.

Such limitations on the reliance on human activities are properly the responsibility of the appropriate regulatory agencies and must involve societal decisions. AEGIS neither endorses nor rejects the tenets of the EPA draft standards; we do recognize the qualitative difference between reliance on human versus geologic characteristics.

ASSUMPTIONS IN AEGIS ANALYSES

	Assumption	Class	Comments	Key Assumption
Gen	eral			
1)	Natural phenomena considered for 10 ⁶ years	Conservative	Not important since no natural breach in 10 ⁶ years	*
2)	Natural phenomena consistent with past few 10 ⁶ year record	Reasonab le		
3)	Natural dissolution scenario at time = 10 ⁶ years	Conservative	After that long, results not sensitive to time; bounded by solution mining scenario	
4)	Waste-induced effects not addressed	Nonconservative	Not strictly true, since had to consider some near-field aspects. Could significantly affect natural dissolutioning	*
5)	Insufficient data to characterize geohydrology	May be conservative or nonconservative	•	
6)	Disregard complexity of near-dome hydrology	May be conservative or nonconservative	Could significantly affect natural scenarios	*
7)	Ignore human effects on natural dissolutioning rate	Nonconservative	Bounded by human intrusion scenario. Could significantly affect natural scenarios	*
8)	Ignore repository- induced effects on geosystem (e.g., construction)	May be nonconservative	Bounded by human intrusion scenario	
9)	Ignore synergisms and multiple occurrences of natural phenomena	May be nonconservative	Bounded by human intrusion scenario	
10)	Several assumptions in how each natural phenomenon treated	Mixed	Unimportant to results since natural solution and solution mining are bounding scenarios	
11)	No human mitigation of geotransport conse- quences subsequent to breach	Reasonab le	Consistent with assumptions re human intrusion. Could significanlty affect dose results	*
Sou	rce Term		•	
12)	Raw spent fuel	Conservative	Not as important as apparent; see Note 1	*

Note: The key assumptions in this analysis are indicated by an asterisk in the right column

	Assumption	Class	Comments	Key Assumption
13)	Solubility limited	Nonconservative	If the system were leach limited, all of the repository could be dissolved during the operational phase of solution mining; also, the geotransport source term would be reduced from 10^5 years to less than 10^2 years	* ,
14)	Solubility limit of 6 ppm for U	Nonconservative	See Note 2. Could signifi- cantly affect dose results	*
15)	Congruent dissolu- tioning	Nonconservative	See Note 3. Could signifi- cantly affect dose results	*
16)	Gaseous effluent not considered	Nonconservative		
17)	Particulates not considered	Nonconservative		
18)	Inorganic system only	Nonconservative	See Note 4. Could signifi- cantly affect dose results	
19)	WRIT Leach data based on IAEA testing	Reasonable	Best available data; see Note 5	
20)	WRIT Leach data using HB Robinson II fuel	Reasonable	Best available; burnup 28,000 MWD/MTU; see Note 5	
21)	Particle size based on WRIT sieve data	Reasonable	Best available; confirm GEIS data; photos show no effect from preparation; see Note 5	n sample
22)	Temperature effects for leaching: 10X increase 25°C to 125°C	Nonconservative	Best available data; Arrhen ius relationship; 125°C esti- mate of temperature after contact with water; see Note 5	
Hum	an Instrusion Scenario			
23)	Institutional control lost at 100 years	Conservative	Based on draft EPA standards; provides lower bound	*
24)	Institutional control lost at 1000 years	Nonconservative	Provides upper bound	*
25)	Salt domes continue to be resource	Reasonab le	See Note 6	*
26)	Lower than present technology needed for solution mining	Reasonab le	See Note 7	
27)	Solution mining at repository level	Conservative but reasonable	See Note 8	

	Assumption	Class	Comments	Key Assumption		
28)	Solution mining would intercept the repository	Reasonable	Repository occupies 2/3 of dome area at its depth (800-ft buf- fer zone at edge, but mining would try to avoid the edge)	*		
29)	Cavity formed for salt, not storage	Conservative May be nonconservative	Eating is most direct vector Relates to Note 4 and presence of organics to in- crease source terms	* .		
30)	Preferential dissolu- tion of repository volume	Conservative	See Note 9. Not critical since solubility limited			
31)	Not preferential dis- solution of interior of rooms	Nonconservative	See Note 10. Note critical since solubility limited			
32)	410,000 ppm salt in brine	Conservative Nonconservative-	Exposure rate Relative amount of radio- isotopes per unit weight of table salt			
33)	Salt production 1 x 10 ⁶ tons/yr salt	Nonconservative	GEIS: 2.4 x 10 ⁶ Some current production several times higher	*		
34)	50-year life of solution mining	Conservative	Same as GEIS	*		
35)	50-year consumption of salt	Conservative	See Note 11	*		
36)	1200 gpm rate of solution mining	Reasonable	Based on 10 ⁶ tons per year production			
37)	3% of mined salt to culinary usage	Nonconservative	Recent information shows that for a salt dome being used for culinary salt production, almost all (80-90%) of the brine would go to culinary salt This would linearly increase the dose	• •		
38)	1800 g/yr per person salt consumed	Nonconservative	New data show current U.S. usage is 5000-6000 g/yr per person; also, see comment for Assumption 37	*		
39)	15 x 10 ⁶ population affected	Conservative	Assumes all of salt in that population's diet comes from single source			
40)	Isotopes also at 3% usage	??	Processing could eliminate or concentrate isotopes in table salt	*		

3.5

-

Assumption		Class	Comments	Key Assumption		
41)	Usage of 97% of con- taminated mined salt not considered	Nonconservative	Could be considered in future; could lead to other vectors to humans; also, see comment for Assumption 37	* r		
42)	Dose limited to single lifetime (70 yrs)	Nonconservative	Ignores genetic effects, potential for recycling in ecological systems			
Geo	transport					
43)	50-ft head maintained for 15K years before collapse	Very conservative	Dome collapse reduces source term by factor of ten. Could significantly affect source term for geotransport	*		
44)	Salinity not considered with respect to density and viscosity	Conservative				
45)	Inadequate data on where surface dis- charge point would be	??	Better data not available			
46)	Discharge to E. Texas Oil field	Very conservative	Requires human activity; bounded by Case 2			
47)	Breach dome at end of 50 years mining	Conservative	Timing not very important to geotransport results, for breach delay up to 1000 years			
48)	Breach downflow side of dome	Conservative				
49)	Near-dome model based on regional hydrologic values	??	No near-dome information. Could significantly affect source term for geotransport	*		
50)	Maximum regional trans- missivities used for near-dome model	??	No near-dome information			
51)	Breach opening 1000 ft ²	??	Sensitivity studies showed not important variable between 1000 and 13,000 ft ²			
52)	Channeling in aquifer ignored	??	Not homogeneous system; rather clay with sand lenses; could retard or increase ground-water flow velocities. Could significantly affect geotransport consequences	y 5		
53)	After collapse, water	??				

twice height of canister is saturated with U

Assumption		Class	Comments	Assumption
54)	After collapse, above dome permeability doubles	Conservative		
55)	Anhydrites (in salt left behind from solution mining) not affect source	Conservative	Only few cm would cover bottom of cavity at time of total repository exposure	
56)	WRIT Kd values done on quartz with artificial ground water	Conservative	Available outcrop samples too weathered for reliable Kd values	
57)	WRIT Kd values selected were lower of each pair of anoxic/aerobic	Conservative	No data to characterize water as aerobic or anoxic	
58)	Well scenario done at 6 km	Conservative then nonconservative	See Note 12	• •
59)	Well pump rate 400 gpm	Conservative		
60)	No other change in hydrologic system in 10 ⁵ -10 ⁶ year time frame	Nonconservative	Discharge points could have shorter travel paths	

NOTES TO ASSUMPTIONS

1. There are many important aspects involved with reaching the solubility limit rather than having a leach limited source term. A key factor is the surface area required to saturate the 1200 gpm of water involved in the solution mining operational phase. This amounts to about 1.5% of the surface area of the spent fuel in the repository. Because 1.2% of the repository could be exposed per year, after a little more than one year of operation an increase in the surface area exposed has no effect on the dose values. Thus, the conclusion that 62% of the repository would be exposed during the operational phase is unimportant. Stated another way, if only 1/50 of the effective surface area is available compared with what we calculated could be available, exactly the same dose values would result. Similarly, if a cladding or other barrier were assumed to be present, and if such a barrier reduced the effectively exposed surface area by a factor of 50, precisely the same dose values as raw spent fuel would result. When the dynamic nature of the solution mining scenario is considered, fracturing of the engineered barrier to expose effectively

1/50 of the surface is not an unreasonable event. Such dynamics include the potential effect of the floor being dissolved out from under the waste in other solution mining scenarios, allowing it to fall to the bottom of the cavity, and the effect of spalling from the top of the cavity. Spalling is a common problem in solution mining, where substantial chunks of rock salt fall to the bottom of the cavity, often damaging the solution mining apparatus.

2. The value of 6 ppm solubility limit for U was selected as representative of the values in the literature (ranging from 3 to 10 ppm). In addition, leach values were based on WRIT IAEA tests that are not static and, thus, not solubility limited. Actual analyses of the leachate from these IAEA tests using spent fuel are summarized below:

<u>Solution</u>	<u>Range of U (ppm)</u>	<u>pH Range</u>
WIPP Brine	0.4 - 4	4 - 7
NaCl (dilute)	0.3 - 17	4.5 - 5.0
CaCl ₂	0.1 - 18	4.3 - 5.7
NaHCO3	0.2 - 13	8.6 - 9.7
Deionized Water	0.3 - 27	3.9 - 5

Note that these numbers do not necessarily represent the maximum U that could go into solution; rather, they show examples actually found in nonstatic tests. The value of 6 ppm is seen to be average and not a conservative bound. The dose result would be essentially linear with the limit chosen. Thus, choosing the highest measured value would increase doses by nearly a factor of 5.

An additional source of information is cited in Davis and DeWiest (1966), where the concentration of U in actual ground water in the vicinity of U-rich sandstones is 18 ppm.

3. Congruent dissolutioning means that the non-uranium isotopes cannot go into solution any faster than uranium can. Because U represents the vast majority by weight of the waste form, each of the other isotopes is allowed to go into solution at considerably lower mass per time. This means the other isotopes are not solubility limited. This is, for example, very important for highly soluble fission products such as Cs, which provide a substantial portion of early doses. If these were allowed to go into solution up to their own solubility limit, considerably higher doses would result.

- 4. We assumed no organics were present at the source or during geotransport. This could be nonconservative in that organics could reduce the sorption of the radioisotopes during geotransport. More importantly, organics could allow more radioisotopes to go into solution than the solubility limit of uranium would allow. Certain chelators could increase the source term by orders of magnitude. Potential sources of organics include: residue from repository construction phase, the oil cap around the waste, the use of an oil layer during the solution mining operation (frequently done today), the presence of organics from wastes other than spent fuel (e.g., low level, TRU), the use of the cavity for storage of organic compounds, and hydrocarbon pools adjacent to the salt dome. A particular problem with regard to low level waste would be the presence of decontamination agents (e.g., EDTA).
- 5. The spent fuel leach data were not used in the source term because since solubility limits were assumed. However, these data did provide the basis for estimating the bounds on solubility limit. When the solubility limit is reached; the assumption of congruent dissolutioning; how much water is necessary for the system not to be solubility limited. These bounds were so broad that it is highly unlikely that variation in the leach values would change the source term.
- 6. The continuing use of salt domes as resources is influenced by the multiplicity of uses associated with them (e.g., salt, hydrocarbon deposits, stable storage cavities). Salt has been a culinary and preservative resource throughout cultural evolution, and it has a biological basis, including a metabolic requirement for existence. Salt domes are sources of highly pure salt, are identifiable from the surface, and are not spatially homogeneous (i.e., the very nature of salt domes concentrates the resources at very localized sources). The current utilization of salt domes in the Gulf Coast indicates that all usable salt domes

(Griswold 1980) will be used in the next three centuries. The salt domes under consideration for nuclear waste storage are also under consideration for compressed air energy storage and for strategic petroleum reserves.

- 7. Solution mining is a means of remote-controlled removal of salt and has been used for several millenia. More recently, many of the salt domes in the Gulf Coast Interior Basin have been solution mined. This includes the solution mining and collapse of some domes in the early years of this century before general knowledge of nuclear phenomena. Thus, the historical record substantiates the fact that a technology level capable of dealing with nuclear waste is not a concomitant development with solution mining technologies.
- 8. The depth of placement of a cavity in a salt dome, whether for a nuclear waste repository or for other usages, is limited by the physical nature of the salt dome. It is necessary to maintain a sufficient overburden of the dome above a cavity to help preclude salt dome collapse; thus, a cavity optimally will not be at a depth much less than for the repository. Additionally, a cavity cannot as easily be maintained at greater depths, because the increased pressures result in faster creep rates; thus, a cavity will not optimally be at a much greater depth than for the repository. Many current solution mining operations occur at depths comparable to the repository.
- 9. The cavity formation was assumed to occur within the volume of 1370 acres x 20 feet, representing the height of the room times the spatial extent. This assumption seems reasonable in that the repository is to be backfilled to 80% with crushed salt. The creep may not make that volume homogeneous and more soluble than the intact host rock salt by the time (100 and 1000 years) of the intrusion. As discussed in Note 1, were this assumption relaxed so that 1.5% rather than 62% of the waste was exposed, the source term and results would not change.
- 10. Preferential dissolutioning of the backfilled material would dissolve the interior of the rooms, not the volume of intact host rock between rooms.

Thus, the entire 1370 acres need not be dissolved to dissolve all the previously open repository. This is inconsistent with Assumption 30, done deliberately to provide offsetting effects.

- 11. Implicit in this assumption is that the population does not become aware of contamination of salt by radioisotopes. As in Note 7, the society could do this mining without being cognizant of nuclear phenomena. Even if it knows about nuclear phenomena, the society may not monitor its salt for radiation. Currently, virtually no salt productions monitor their brine for radiation. To bound the question of length of salt consumption, doses were calculated for 1, 10, and 25 years of consumption. A possibility existed that the operational doses are high enough to provide short term health effects on the mine operators, thereby leading to termination of salt production. Such dose calculations have been made for this revised report. They show the occupational doses are not high enough to result in termination of the solution mine operations.
- 12. The saline plume during the first 15,000 years would not be potable, all the way to the discharge point. However, after the salt dome dissolves, the water may be potable even immediately above the waste. Recent draft regulations, however, would include even the nonpotable salt plume in the accessible environment and, thus, subject to numerical limits.

CHAPTER 4

COMPONENTS OF RELEASE SCENARIO ANALYSIS

The development of potential release scenarios is an integral component of any repository safety analysis. A release scenario describes in detail how a variety of natural geologic, human-induced, and waste-induced phenomena could alone or in concert cause a loss of isolation within the repository boundaries and host medium. A release scenario describes the state of the geologic and hydrologic system at the time of a breach. This information is used as input into the geohydrologic transport models, which simulate the movement of the radionuclides through the geohydrologic system to the accessible environment.

The scenarios developed for the salt dome reference site analysis assume both a multiple barrier system and no long-term human mitigation of the disruptive phenomena. The analysis also addresses the various disruptive phenomena over a one-million-year time frame and assumes a loss of institutional control after 100 yr (based on the EPA draft standards available at the time of scenario development and subsequently repeated in later EPA drafts). The near-field or waste-induced phenomena are outside the scope and are not systematically addressed within this analysis. However, to define the state of the geosystem at the time of a breach for the geohydrologic transport runs, several near-field considerations had to be addressed. The near-field assumptions are detailed in the release scenario descriptions in Chapter 5.

The multiple barrier concept is illustrated in Figure 4.1 and comprises several components. The waste form represents the spent fuel assemblies from Pressure Water Reactors (PWR) and from Boiling Water Reactors (BWR). The engineered barriers, for purposes of this discussion, represent the canisters surrounding the waste form, along with any overpack or engineered backfill placed around the canisters. The host repository medium is the Hainesville Salt Dome located in the East Texas Salt Dome Basin. Surrounding the repository and its host salt dome is the geosphere, which consists of the geological and hydrological systems of the following units: Queen City, Recklaw, Carrizo,

FIGURE 4.1. Schematic Representation of the Multiple Barrier System

Wilcox, and Midway Formations. For the purposes of this analysis, the biosphere is defined as that portion of the system starting at the earth's surface including surface hydrologic systems (i.e., rivers and streams). The accessible environment includes all parts of the biosphere plus those parts of the hydrogeologic system that are potential underground sources of drinking water.

There are three system states described in this safety assessment report: perturbation, breach, and failure. A perturbation is any change in the state of the geosystem as a result of some dynamic phenomenon, either natural or human-induced, acting upon the system. A perturbation of the system does not mean that there has been any loss of repository integrity. On the contrary, perturbations of the geosystem are assumed and expected to occur because of the dynamic nature of the geosystem.

A single perturbation or series of perturbations severe enough to cause a loss of containment within the confines of the repository boundaries constitutes a breach of the repository. A breach consists of a pathway for the movement of radionuclides and a transport medium (i.e., ground water) with sufficient potential to move them along the pathway. It is the description of the state of the geosystem at the time of the breach that is needed as input into the geohydrologic transport models for the consequence analysis.

These consequence analysis models simulate the movement of the radionuclides within the geohydrologic system until they ultimately leave the geosphere, enter the accessible environment, and potentially come in contact with human populations. This situation is considered to be a failure of the repository.

In short, a perturbation is any change in the geosystem; it may not alter the containment provided by the repository and host media. A breach is a single perturbation or combination of perturbations of sufficient severity to cause a loss of containment of the repository from the host medium; however, the geosphere may still isolate the waste from the accessible environment. An isolation failure is manifested when the radionuclides ultimately travel to reach the accessible environment.

When characterizing a breach of a repository and creating a release scenario, the pathway, transport media, time of occurrence and overall state of the geosystem at the time of the breach must be identified.

This analysis did not address the possible perturbation to the system induced by the original mining of the repository for the placement of the waste. Nor were the various waste-induced phenomena that could perturb the near-field environment of the repository considered. Inclusion of waste- or repository-induced effects could significantly alter the conclusions in this chapter concerning the incidence of natural breach scenarios. Further, the far-field analysis presented within this report assumed no engineered barriers, canisters, or waste forms other than the raw spent fuel assemblies.

The approach used to develop the release scenarios for use in this analysis was a modified Delphi/expert opinion approach. Currently under development by AEGIS is a more thorough and auditable scenario development methodology, which is scheduled to be ready for use in the actual repository licensing phase. Details on the release scenario methodology being developed are discussed in Appendix A.

The expert opinion approach for developing the release scenarios for this reference site analysis used the basic philosophy and methodology that are currently being developed by AEGIS. Because of the timing of developing the

scenarios for this analysis, the full computer-assisted approach described in Appendix A was not sufficiently developed. However, several components of this AEGIS system were used in both qualitative and quantitative assessments of various phenomena. For example, parts of the climate and sea level submodels of the developing computerized methodology were used to describe the future states of these parameters.

In general, the scenarios were developed by the AEGIS staff and a team of consultants. The scenarios were then reviewed and revised by several organizations working on the overall PIR for ONWI and a consensus was achieved on a set of final scenarios. This process is described in detail in Chapter 5, Release Scenarios.

Because this was only a reference site analysis, no detailed site investigations were conducted. Rather, summary investigations were conducted by Law Engineering and Testing Company to gather available literature on the Hainesville Salt Dome. Additionally, information for other salt domes in the Gulf Coast of a similar nature were extrapolated to fit the Hainesville Salt Dome. A brief discription of the Hainesville Salt Dome and its surrounding geologic system is presented in the following section. A more detailed discussion is available in Appendix K. The scenarios developed for this analysis were based on limited geological site information and data and should not be construed to be totally complete and final. The scenarios and the approach should be considered as a representative case of a developing methodology.

When describing potential release scenarios it is important to focus on the mechanisms of the release. For this analysis the primary mechanisms addressed are: direct surface release of the radionuclides and long-term geohydrologic transport via communication between either the upper Queen City and the lower Wilcox aquifer, or direct communication through the salt dome between different portions of the Wilcox aquifer. While analyzing the potentially disruptive phenomena described in the following section, those credible phenomena that would influence and ultimately bound these release mechanisms were identified.

The scenarios for this analysis were developed using the following steps:

- identification of potentially disruptive phenomena
- description of phenomena interactions
- characterization of perturbations of the repository system
- characterization of potential breaches.

The remainder of this chapter deals with the first three scenario development steps listed above. Before formulating and postulating the scenarios for use in this safety assessment, a wide range of geologic and human-induced phenomena were identified and investigated in the context of perturbing the Hainesville Salt Dome. Most of the phenomena described were dismissed as either not having the potential to breach the repository or not being credible within the time frame considered and within the realm of the regional and local geologic setting. Some, however, did have the potential for disrupting a salt dome repository and were expanded, as described in Chapter 5, into release scenarios for input into the geotransport models for consequence analysis.

REFERENCE GEOLOGIC DESCRIPTION

This section contains a summary of the important geological and hydrological characteristics of the Hainesville Salt Dome and the surrounding region. The following discussion summarizes the local and regional geological information that is necessary for evaluating the suitability of siting an underground nuclear waste repository within a Gulf Coast salt dome. A more detailed presentation of this information is available in Appendix K. Because this is only a reference site analysis no actual field investigations were conducted at the site. This information was gathered from available literature, previous geologic investigations at the site, and information extrapolated from other similar salt dome locations. Unless otherwise noted, the geologic description of the Hainesville Salt Dome and its geologic environment is taken from a report prepared by the Law Engineering and Testing Company (1979b).

This reference site assessment is based on the Hainesville Salt Dome. This salt dome is located in the central part of Wood County in Northeast Texas (Figure 1.2), with the regional surface sloping generally from northwest to southeast. The Hainesville Salt Dome is one of 26 salt domes in the East Texas

Salt Dome basin. Within 200 miles of Hainesville are four cities with a population of over 100,000: Dallas, Fort Worth, Shreveport, and Waco.

Regional Geology

The East Texas Salt Dome Basin is part of the Gulf Coast geosyncline. This geosyncline was initiated in Late Triassic by a combination of block faulting and rifting in the continental crust. Subsequent sedimentation into the geosyncline resulted in the formation of what is now the Gulf Coastal Plain, an area of low relief that borders the Gulf of Mexico.

Depositional patterns in the northern Gulf Coastal Plain consist of periods of inundation, characterized mainly by deposition of limestone, alternating with periods of delta progradation and deposition of clastics. Stratographic units for this area have been correlated and are listed in Table 4.1.

Post-salt inundations began with the Smackover carbonates in the Jurassic and continued into the Cretaceous. A subsequent period of deltaic deposition culminated in the deposition of the Wilcox Group in Early Tertiary. Succeeding deposits were alternatively marine and non-marine. Late Cenozoic deposition consisted of terrace and valley-filling alluvial deposits in the interior salt basins. These deposits grade into marginal shoreline deposits and ultimately into marine sediments offshore. The sediments generally have a regional dip of about one degree to the south; however, posiments and negaments interrupt this pattern and form the predominant structural elements in the Gulf Coast basin.

During the Mesozoic, subsidence initiated the development of a boundary fault system above pre-existing basement faults. Subsidence on a geosynclinal scale began in the Lower Gulf Coast Basin during the Cenozoic. This period of subsidence initiated several new fault zones in the Gulf Coast Basin.

The development of salt domes has caused localized structural features. Movement of salt (to form salt ridges) within the Louann Formation began during the later part of the Jurassic Smackover deposition, and continued as additional sedimentation occurred. Diapirism was initiated in places where the salt was sufficiently thick. In the interior salt basin, diapirism climaxed during the Mesozoic, but diapirism in the coastal salt basin did not climax until the Late Tertiary.

TABLE 4.1. Stratigraphic Column East Texas Basin

ŀ

1

Source: Law Engineering Testing Company 1979b.

	ATER-	R	ECENT														
1	2 Z	PI	EISTO	CENE	· .						<u> </u>						
			N	¥	SPAR	TA FM.			1	, ,							
	TERTIARY SYSTEM		t Is	85	WECHES FM.				l						PALUXY FM.		
5 .		s	123	ξĕ.	QUEEN	QUEEN CITY FM.					B		Ч		<u> </u>		
		RE	TE V	បី	CARRI	70 FM.		1			Ϋ́Υ						
Ī		SE	3	<u> </u>							Z				GLEN ROSE FM.		
) ĝ		EOCENE	Šχ		UNDIFF. IN NORTHEAST						Ē						
5			EOC SPARNAC CUISIAI	05							₹		OSE	MA	SSIVE ANNHYDRITE		
				Т. Б. С	TE	TEXAS			W								
		PALEOCENE SERIES	DANIAN	¥₽	UPPER	WILLS POINT		EOUS SYSTE	ERIES	N W	l	LEN R	FM.	RODESSA MEMBER			
				MIDW GROI	LOWER	KINCAID			EOUS		APTI STA(LOWER GLEN ROSE	JAMES		
\square			IIAN	<u>°</u>	UPPER	NAVARRO			ETAC	IVNO		d D					
			ICHT	ROUP	NACAT	OCH SAND			Ğ	ľ		CRO			SHALE		
			TST	ž	LOWER	NAVARRO					TAGE	NITY			TRANSITION ZONE		
	CRETACEOUS SYSTEM	GULF SERIES	IAN M	HAN M	UPPER T	AYLOR GP.		ERA	X		AN S	TR			94. 1		
					PECAN	GAP CHALK		<u>-</u>			WO	il –					
- /			IPAI	Υ ^Γ ο	WOLFE CITY SD. LOWER TAYLOR GP.		020			E0C			TRAVIS PEAK FM.				
•			CA	T.				MES	1	-	^z						
				NO CP	GOBER CHALK							F					
			ACIAN	TIN C	MIDDLI	MIDDLE AUSTIN					ONIAN	VILLE)P /ALLE		SHULER FM.		
۲.			AGE TURONIAN CONI	AUS	ECTOR	CHALK FM.				TITH	NO	CRO		BOSSIER FM.			
U U				TURONIAN STAGE 1 EAGLE FORD GROUP	REUN SUBCL	ARKSVILLE SAND	1			ties	N	E	10		COTTON VALLEY LS.		
20201						DDLE		STEN	C SEI		ľ		·	BUCKNER FM.			
¥						OWER	ļ		SIC S	RASSI	X						
				E S	LEWISVILLE FM.		i i		NSS	2	<u>- a</u>				NORPHLET FM.		
			NN ST		DEXT	TER FM.	1		Ĩ						LOUANN SALT		
		COMANCHE SERIES		MANI	<u> </u>	MANES			ľ		-				÷	WERNER FM.	
			R I		GRAYSO	N SHALE	1				1	.		•	EAGLE MILLS FM.		
			<u> </u>		MAIN STREE		1		<u></u>								
				GE IASHIT/ IGETOW	WENO-PAW P	AW LIMESTONE]										
			w l		DENTO	N SHALE											
			STA		FORT WORT		1			T	RIASS	IC	AN	D/OR	PERMIAN		
			8	8	BIAN	DEU DEU	KIAMICI	HI SHALE	1			REDE	GEDS QU	ANI	D F HI1	ALEC	DZOIC ROCKS ACIES
					2	ROUP	GOODLAND L	SEDWARDS LS.	1								
لحضما	u	L	<u>.t</u>	FREDELT	<u></u>	· · · · · · · · · · · · · · · · · · ·	1	1	<u> </u>						<u> </u>		
Geology of the East Texas Salt Dome Basin

The East Texas Salt Dome Basin occupies the central portion of the East Texas embayment. The embayment is a coastal depression that occupies about 44,000 square miles of northeastern Texas. Embayment boundaries are defined by the Sabine uplift on the east and the Angelina-Caldwell flexure on the south. Sediments contained in the embayment range from Jurrasic to Mid-Tertiary and Quaternary in age. The East Texas embayment is thought to be controlled by negative down-faulted blocks on the southeast margin of the Ouachita foldbelt.

The limits of the East Texas Salt Dome Basin are rather arbitrarily defined, but the basin occupies about 10% of the East Texas embayment. Elevations within the salt dome basin range from 200 ft above sea level in the south to between 400 to 500 ft toward the Sabine uplift in the east and the Mexia-Talco fault zone in the west.

The basin is characterized by a marked thickening of Mesozoic and Cenozoic strata toward its center. The strata generally dip toward the Gulf at angles slightly steeper than the regional slope of the land surface. Tertiary strata form concentric outcrop patterns in the basin, being younger in the center and progressively older toward the borders.

The sediments of the East Texas Salt Dome Basin record a series of marine transgressions and regressions, superimposed on a progradational depositional basin. The basin contains a very thick formation of Louann salt, and most of the local structures in the basin are probably related to movements of salt from the Louann.

Geology of the Hainesville Salt Dome

The Hainesville Salt Dome is the northernmost shallow piercement salt dome in the basin. Its site area consists of approximately 542 square miles of rolling hill topography. Within this area the data used to characterize the salt dome include 11 wells penetrating the salt, one seismic reflection line, a basin gravity survey, and a number of wells in the vicinity of the salt dome.

The salt dome pierces 16,000 ft of strata, ranging from Late Jurassic to Early Tertiary in age. Caprock is believed to cover the top of the salt dome, with thickness ranging from 50 ft to more than 250 ft. This caprock is composed of a top zone of disseminated pyrite in carbonate, a middle zone of gray shaley limestone, and a lower zone of clear, very dense anhydriate. The salt dome itself is made of halite, with some evidence of shale inclusions on the periphery of the salt dome. At the repository depth, the salt dome is assumed to be approximately 2100 acres in cross section. Of this area, the repository would occupy about 1370 acres surrounded by an 800-ft buffer zone. An overhang exists from -10,000 ft MSL to near the salt dome top, with the largest diameter of the overhang occurring between -3000 ft to -5000 ft MSL. Below -10,000 ft MSL the salt dome develops a broad shoulder-like base down to -17,000 ft MSL, where the salt dome stock connects with the top of the Louann salt.

Subsurface mapping indicates a rim syncline adjacent to the salt dome. Some peripheral faulting at the boundaries of the site area is indicative of rim synclines in Late Lower Cretaceous to Early Upper Creataceous rocks. Subsurface mapping of the Woodbine and Austin Group indicates two peripheral, normal faults, which are related to rim syncline development during Lower Woodbine deposition. These faults have a displacement of 100-200 ft and are confined primarily to Upper Cretaceous rocks. Well data and published reports also show a fault offsetting Early Tertiary strata. This may be related to deeper Middle Cretaceous faulting (Dillard 1963). No central graben or radial faults have been mapped; however, they are assumed to be present under the recent sediments. A more complete discussion of local faulting is available in Appendix K.

Subsurface Hydrology

The hydrologic system in the vicinity of the salt dome consists of the following:

Geologic Unit		
Sparta Formation		
Weches Formation		
Queen City Formation		
Recklaw Formation		

aquifer aquitard/aquiclude aquifer aquitard/aquiclude

<u>Geologic Unit</u>	
Carrizo Formation	aquifer
Wilcox Group	aquifer
Midway Group	aquiclude

The Midway extends well below the repository level and all aquifers below the Midway are quite saline. Thus, lower aquifer systems are not considered important in this preliminary safety analysis because they are not likely to be tapped for human usage and they are not likely to come in contact with the repository waste.

The Sparta and Queen City Formations were taken to be a single unit. Similarly, the Carrizo and Wilcox are treated as a single unit because the Weches is an incomplete barrier between them. The Wilcox-Carrizo aquifer is the most important aquifer in the study area. Most of the larger municipalities and industries in the region obtain their water from this aquifer. Further, this aquifer surrounds the salt dome at repository depth.

The Wilcox-Carrizo is very thick, so it has a moderate transmissivity despite a relatively low hydraulic conductivity of its sands. Pumping tests conducted in the aquifer in Wood County from eight wells indicated the following characteristics:

Transmissivity	600-19,000 gpd/ft
Well discharge rates	50-500 gpm
Specific capacities	0.8-9.7 gpm/ft of drawdown
Hydraulic conductivity	4-700 gpd/ft ² (50 gpd/ft ² average)
Storage Coefficient	0.00007-0.00027 (unitless)

GEOLOGIC DISRUPTIVE PHENOMENA

This section contains a summary of the geologic processes that alone or in concert could affect a salt dome repository.

Denudation and Stream Erosion

Denudation and stream erosion are both processes by which earth material is moved on the earth's surface. Denudation is considered over long time periods (>1000 years) and consists of the processes by which relief or elevation differences are reduced. Erosion consists of the processes by which earth

material is loosened or dissolved and moved on the earth's surface. Stream erosion is that erosion performed by running water in streams or rivers and generally results in deepening the river or stream channels by downcutting.

Maximum rates of total erosion have been projected for the next 10^6 years for both denudation and river entrenchment (Mara 1980). Average values were also estimated. For the Gulf Coast region, denudation rates were given as 150 meters maximum and 50 meters average. These entrenchment values were given for the Mississippi River, both near its mouth and 200 km upstream (Mara 1980). The upstream values were chosen as more representative of the Gulf Coast Interior Salt Dome basins, and the possible rates were 40 meters maximum and 30 meters average. The values represent the river erosion occurring during each full glacial period. Also, it should be noted that a period of aggradation (deposition or building up of sediment) follows the erosion as the ice sheets melt and sea level rises. This period of aggradation replaces sediment removed during the preceding phase of erosion. Entrenchment values are probably lower for smaller rivers, and streams that drain smaller areas have less flow and carry less sediment. Denudation and stream erosion would not lead to a breach in the reference salt dome repository.

Sedimentation

Sedimentation, as a process in the Gulf Coast Interior Salt Dome region, is expected to occur primarily in the form of aggradation of river and stream beds. This sedimentation is a result of the ongoing process of land surface reduction by geomorphic agents, and of the transport of material to lower elevations. In a humid climate, such as the Gulf Coast now has, the most active geomorphic agent is running water. Therefore, most aggradation will occur in connection with rivers and streams. The Gulf Coast, in general, is an area of low relief, and it is unlikely that a large enough thickness of sedimentary material would accumulate to affect a salt dome repository at 600 meters or more in depth.

Considerable changes in sedimentation patterns are associated with episodes of continental glaciation (Mara 1980). Based on the known extent of past ice sheets, the Gulf Coast should be affected only indirectly by glacial phenomena, such as by changes in sea level and increased flow from meltwater in the major drainageways (e.g., the Mississippi River Valley).

A lowering of sea level and base level during major ice sheet growth would cause rivers and streams to deepen their channels and to remove material rather than deposit it. During the waning stages of glaciation, large volumes of water carrying large amounts of sediment would be available to the rivers that drain the area of melting ice. As the sea level gradually rises and river gradients are reduced, sediment would be deposited. However, the main effect for the central United States would probably be in the Mississippi River Valley. The Gulf Coast Interior Salt Dome region, with its general elevation of 100-plus meters above present sea level, should not be seriously affected by sedimentation associated with glaciation.

In summary, unless major or catastrophic changes occur in the geologic setting of the Interior Salt Dome area of the Gulf Coast, it is unlikely that a sufficient thickness of sedimentary material could accumulate to affect a salt dome repository.

Flooding

Flooding could possibly affect a salt dome repository, either by acting as a source of recharge water and increasing ground-water flow, or by attaining a sufficient depth of water for hydrostatic pressure effects to extend to repository depth. Both of these effects are considered unlikely to disrupt a repository at 600-plus meters in depth.

In general, surface floods are transient events. Their time duration is measured in days, at most, and then only along the major river systems. Smaller river systems without large, high elevation catchment areas for rain and snow, such as those in the Interior Salt Dome region of the Gulf Coast, would not be expected to generate larger or long-lasting floods. This lack of potential for large, long-lasting floods, plus the time lag associated with water infiltration and percolation, makes it unlikely that flooding would affect a salt dome repository after sealing. It is beyond the scope of this report to consider the effects of flooding before closure of a repository.

Climatic Fluctuations and Glaciation

The world climate varies considerably on a variety of time scales. Correlations have been found between past climatic changes and the periodicity of the earth's orbital parameters (at least to 0.4-0.6 million years before present). Solar activity has also been correlated with some past climatic effects. Even though it is not known how the various factors link together, or exactly how the climate system operates, observations from studies of the past one million years' (m.y.) climate can be used to estimate some of the possibilities for the next one million years. Human-caused climatic changes, as from increased CO_2 in the atmosphere or destruction of the ozone layer, are excluded from consideration here.

Some observations on record of the past one m.y. suggest that for only about 10% of the time was the climate as warm or warmer than at present. Also, the past record suggests that no interval of global climate with temperatures as warm or warmer than present lasted uninterruptedly for more than about 15,000 years. Past precipitation has been estimated indirectly from pollen studies, which indicate the type of vegetation that existed in the past. These studies have shown that during the cold stages of the Pleistocene, much of the U.S. was considerably wetter than at present.

Kukla (1978) has summarized potentially disruptive climatic processes for the next one million years. From the information contained in that study, it seems probable that future climatic changes will be toward a wetter, cooler climate. There is also sedimentary evidence of drier periods during parts of the Pleistocene. However, because drier conditions are not considered as likely to affect waste containment, a wetter climate is considered here.

Based on the climate record of the past one m.y., a cycle of continental glaciation can be expected to be completed about once in every 10^5 years. A glacial cycle consists of a glacial period (90-110 x 10^3 years) and an interglacial period (10-30 x 10^3 years) (Kukla 1978). For discussion purposes, only one glacial cycle is considered here. The change to a glacial period is believed to be the most significant and widespread climatic change, with respect to the integrity of a salt dome repository.

During a glacial period, the regional effects expected for the Gulf Coast Interior Salt Dome region would be:

- precipitation increase by less than a factor of 2
- temperature decrease of 3-4°C over the oceans (-10°C over land masses)
- sea level decrease of 100-150 meters.

Local effects would be the same as regional effects for precipitation and temperature, resulting in more rainfall and less evaporation-transpiration caused by lower temperatures. Sea level decrease would occur gradually, and the main local effect would be to lower the erosional base level and increase downcutting by rivers and streams. The increased erosion has been estimated to be 10-20 meters, with a maximum of 50 meters for the southeastern coastal U.S. (Kukla 1978).

These effects are not considered a threat to a salt dome repository at the proposed depth. An interglacial period would follow a glacial period, with warmer temperatures, less precipitation, and a rise in sea level causing aggradation or deposition. These processes would tend to replace some material removed by erosion. The fact that Gulf Coast salt domes have survived a number of glacial cycles during the past one million years is good empirical evidence that they have not been seriously affected.

There is no evidence of past glaciations having reached to the Gulf Coast, so the effects of an ice sheet lobe on the area (ice loading, scour, outwash flooding) are not considered in this report.

Diagenesis

Diagenesis is "all the chemical, physical, and biologic changes, modifications, or transformations undergone by a sediment after its initial deposition during and after its lithification, exclusive of surficial alteration (weathering) and metamorphism. It embraces those nondestructive or reconstructive processes (such a consolidation, compaction, cementation, reworking, authigenesis, replacement, solution, precipitation, crystallization, recrystallization, oxidation, reduction, leaching, hydration, dehydration, polymerization, adsorption, bacterial action and formation of concretions) that occur under conditions of pressure (up to 1 kb) and temperature (maximum range 100°C to 300°C) that are normal to the superficial or outer part of the Earth's crust, and may include changes occurring after lithification under the same conditions of temperature and pressure" (Gary, McAfee, and Wolf 1974). As used here, diagenesis also includes modifications experienced at the forming of the salt dome caprock, which is not a sediment.

Diagenetic processes are very active in and near the salt dome environment. Sediments above and adjacent to shallow salt domes (less than 1 km in depth) are generally drastically different from their surroundings as a result of two marked, diagenesis-promoting circumstances: unusual heat and unusual chemical concentration.

Salt domes often display locally elevated temperatures compared to surrounding sediments. These thermal anomalies are a result of the relatively high thermal conductivity of halite compared to Gulf Coastal sediments. Thermal conductivities of the sediments average 4×10^{-3} cal/cm²-sec C, whereas rock salt averages 12.5×10^{-3} cal/cm²-sec C (Law Engineering Testing Co. 1979a). Because salt is several times more efficient in transporting heat from depth than the sediments, salt domes act as heat conductors, elevating the temperature of the rock above and around the salt domes.

An important factor in salt dome diagenesis is the presence of flowing ground water. Diagenetic effects (and caprock) are most common near shallow salt domes because of the abundant supply of fresh ground water available. The effects are more obvious in the fast-moving shallow aquifer systems, because the approach to chemical equilibrium is more rapid. Ground-water velocities in near-surface aquifers may be on the order of 1 cm/day, as compared with 1 cm/year in aquifers occurring at greater depths (Etter 1978).

Chemical gradients required for diagenesis are commonly present in the salt dome environment, afforded by hydrocarbon compounds, brines, and trace constituents of the salt stock that are liberated by dissolution.

Hydrocarbon compounds are common constituents of the salt dome environment, and they play a complex and important role in near-dome diagenetic processes. Organic fluids, having a low viscosity as a result of the salt stock's high temperature, migrate along fracture systems and through tilted beds above and adjacent to the salt dome. Concentrations of methane and hydrogenous compounds serve as reducing agents, thereby promoting transformation of sulphates, such as anhydrite, to elemental sulphur, pyrite, or H_2S gas.

Brines, which may move upward from depth along the salt dome flank and via fracture systems, provide a source for the chemical constituents of some

of the exotic minerals occasionally found in caprock. For example, celestite $(SrCO_4)$ may be precipitated upon upward movement of ground water that has picked up large concentrations of Sr^{++} at depth.

Diagenetic processes such as those mentioned above can be expected to occur in the next one million years. However, the changes brought about by diagenesis are usually slow and relatively subtle and, hence, should not affect the integrity of a salt dome repository.

Salt Dissolution

Salt dissolutioning is perhaps the most obvious of potential disruptive processes for a salt dome nuclear waste repository. The fact that many of the Gulf Coast Interior salt domes have existed for tens of millions of years attests to the concept that massive dissolution by laterally or vertically moving ground waters is unlikely. However, this concept must be verified by detailed studies of salt dome dissolution mechanisms before a definitive safety assessment can be made. Dissolution may be initiated or even controlled by a variety of human-caused events or processes (e.g., solution mining) as well as by the natural action of ground water flowing over and around a salt dome. This discussion is limited to the description of the mechanisms and potential effects of salt dissolution occurring without the intervention of humans.

For rapid dissolution to occur, dome salt must be in direct contact with flowing ground water. Impervious barriers such as dense anhydrite caprock, clays, or marls must be absent. Ground-water flux at the zone of dissolutioning must be great enough to remove saturated brines and to supply incoming fresh or undersaturated ground waters. Clearly, the greater the ground-water flux of fresh or undersaturated water, the greater the potential for salt dissolution. The basic conditions for salt dissolution are potentially fulfilled wherever a salt dome intersects an aquifer system, or where structural features such as upturned beds and faults allow vertical ground-water movement along the salt-host interface. Accurate determination of the perturbing effect of dissolutioning upon a salt dome requires detailed knowledge of regional and near-dome hydrology, salt-sediment interface lithologies, and near-dome structure. That information is not available for this reference site assessment.

In the East Texas basin, only two aquifer systems appear capable of promoting active salt dome dissolutioning. These aquifers are the Woodbine Formation and the Carrizo-Wilcox Group.

The Woodbine consists of interbedded sandstones and clays with an average thickness of about 900 ft. Ground waters are saline, wth total dissolved solids attaining 100,000 ppm in the center of the basin. Average permeabilities are about 18 gpd/ft^2 . Average porosities can reach 25%.

Typically, the Woodbine lies below the level of any nuclear waste repository. Average depths to the top of the Woodbine in Wood County range from -3700 ft to -4500 ft. However, faulting or folding associated with salt dome intrusion may have locally uplifted the Woodbine to repository depths. Definition of near-dome structure is, therefore, required to identify dissolution hazards posed by the Woodbine.

In some salt domes the Woodbine coincides with occurrence of salt dome overhangs. This situation has led to speculation that salt dissolution by Woodbine waters has produced the overhang configuration. However, regional studies of Cl/Mg ratios in Woodbine ground water suggest that such large-scale dissolution has not occurred. Most authorities relate salt dome overhangs to the mechanics of salt diapirism.

Woodbine waters rising along faults or upturned beds could also cause some salt dissolution. Saline springs present over some salt domes may be the result of such an occurrence. However, many other plausible explanations can be advanced for saline springs. For example, the salinity may be from salt dissolutioning via a fresh water aquifer, or may constitute a surface release of saline Woodbine waters without any active dissolutioning.

The Carrizo-Wilcox aquifer system is the most prolific fresh water horizon in Northeast Texas. Composed of complexly interfingering sands, clays, and lignite, the system has a thickness of several thousand feet. The aquifer is confined by the overlying Reklaw aquitard and often produces artesian well conditions in the center of the East Texas basin. Average permeabilities range from 50 to 184 gpd/ft². Regionally, the aquifer has a hydraulic gradient of about 3 ft/mile. Flow is typically downdip to the southeast, although salt dome structures may locally produce flow perturbations.

A number of East Texas salt domes appear to intersect the Carrizo-Wilcox at repository depths. Because of the aquifer's high permeability and low salinity, salt dissolution caused by this system can be viewed as the bounding case. Determination of the hazard posed by salt dissolutioning to a nuclear waste repository in a salt dome can thus be determined by defining the past and present dissolution rates caused by the Carrizo-Wilcox system. Probabilities for future dissolutioning may be estimated by determining the frequency of ongoing or past dissolutioning among Interior Gulf Coast salt domes possessing equivalent geological environments.

A variety of methods have been suggested for determining whether a salt dome has or is experiencing salt dissolutioning. They include: definition of faults, up-turned beds, sink holes, breccias and topographic features caused by solution collapse; calculation of dissolution rates based on caprock thicknesses; and mapping of saline plumes in the Carrizo-Wilcox aquifer. For repository safety assessments to have a technically sound basis, the assumptions and limitations of each method must be fully recognized.

A number of Interior Gulf Coast salt domes possess structural features suggestive of solution collapse caused by salt dissolutioning. In detail, the geology of each of these salt domes is quite distinct. All share some combination of faults, steeply inclined strata, sinkholes, breccias, and topographic features that are mechanically compatible with extension related to salt dissolution and attendant solution collapse. The Chestnut Salt Dome of northeast Louisiana exhibits perhaps the most compelling evidence of widespread solution collapse. At the Chestnut Salt Dome, the Eocene Cane River Formation has been rotated to nearly vertical, and fault thickened and thinned by a collapse affecting much of the top of the salt dome. Significantly, Pleistocene terrace deposits fill a portion of the graben, which is approximately one mile in width.

In contrast, the Vacherie Salt Dome of northeast Louisiana has only subtle structural features in unconsolidated Tertiary sediments that may be the result of only limited solution collapse. Because deformation associated with salt dome intrusion or growth may produce geometrically similar structures, further study is required to substantiate claims that Vacherie has undergone dissolutioning-induced collapse.

Other Interior Gulf Coast salt domes show topographic evidence of possible solution collapse. For example, a lake at the surface over the Palestine Salt dome of northeast Texas perhaps is indicative of widespread subsidence caused by solution collapse. Most salt domes possessing marked topographic expression are shallow (only several hundred feet below the surface) and may be exposed to dissolutioning by water table aquifers.

Although definition of the structural geology of any given salt dome may indicate whether widespread dissolution has occurred in the past, such a method is clearly an imprecise indicator of rates and probabilities for the next one million years. Structural features caused by salt dome growth may be confused with dissolution-induced deformation. Furthermore, because the age of deformed sediments are not known with great precision, it is not generally possible to place accurate limits on the timing and duration of a dissolution episode. Thus, discussion of dissolution mechanisms in a one million year time frame is typically not possible.

Caprock composed of stratified anhydrite, gypsum, and calcite is commonly present on salt domes. Caprock formation is most commonly attributed to largescale dissolution of salt and attendant concentration of relatively insoluble impurities (sulphates and carbonates). Based upon the observation that dome salt is very pure (98.6% halite is a widely quoted figure), rates of salt dome dissolution can be calculated if the time period of dissolutioning is known. Most calculations use the assumption that the caprock formed during the time from Carrizo-Wilcox deposition to the present, which is a span of about 50 million years. Rates calculated by this method range from 0.031 to 0.183 mm/ year. The maximum rate would breach a repository possessing an 800-ft thick buffer zone of salt in 1.3 million years.

The underlying assumptions caused the calculation of dissolution rates based upon caprock thicknesses are suspect in many ways. For example, the concentration of insolubles in dome salt is inadequately known. Individual salt domes may have quite different insoluble concentrations. A representative sampling of dome salt and definition of possible intradome compositional variations are needed to resolve this problem.

Another assumption requiring justification is the notion that all caprock formed in the last 50 million years. Convincing evidence exists that at least the Interior Gulf Coast salt dome considered in this reference site analysis (Hainesville Salt Dome) actually reached the surface and was truncated by surface erosion and dissolutioning. If this is the general case for Interior salt domes, then caprock may be a result of an extrusion episode occurring as long ago as Woodbine time (about 92 million years B.P.). Calculated rates of dissolution, based on a maximum caprock age of 92 million years, are a factor of two less than those based on a 50-million-year time span. Resolution of this uncertainty requires accurate dating of caprock and/or waters contained within the caprock.

Any salt dome that is currently undergoing dissolutioning should propagate a saline plume into the surrounding aquifer. Down-gradient measurement of water salinity (for instance, using suitably calibrated resistivity methods) should define this saline plume. This method has been used extensively to determine the extent (if any) of salt dissolutioning effected by the Carrizo-Wilcox aquifer system. Preliminary results indicate that from four to six salt domes in the East Texas basin are experiencing some degree of active dissolutioning.

Where saline plumes have been located, total dissolved solids concentrations can be used to estimate dissolution rates. The precision of this method is strictly dependent on the accuracy of ground-water parameters because the method is essentially an application of Darcy's Law. Using calculations of this type for a group of northeast Texas salt domes, it can be shown that an 800-ft salt buffer zone could be breached in about 2.7 million years. Assuming climatic changes that increase hydraulic gradients, such a breach could be moved up to about 2 million years.

The uncertainties inherent in this method raise questions as to its applicability for a safety assessment. Specifically, ground-water parameters are not well known for the near-dome environment. Values are usually those cited as average for the regional ground-water system. Such values are commonly distributed lognormally in natural systems, so that considerable variation is probable. Furthermore, resistivity methods may not be measuring saline plumes

around salt domes, since they measure only ion concentrations. Ions may be present in the ground water from sources other than dissolution of a salt dome. For instance, though the Carrizo-Wilcox system is typically fresh, saline waters of unknown origin are occasionally penetrated by wells. Such waters may represent a local stagnation in ground-water flow, rather than a saline plume caused by the salt dome dissolutioning. Conversely, vertical movement of deeper saline waters into the aquifer is also a possibility. Near-dome environments typically contain numerous faults and upturned beds that may promote both upward migration of saline waters and local flow retardation.

Critical examination of rates of dissolution determined by methods described above reveals that they may be too great to extrapolate over long periods. Salt domes in the Interior Gulf Coast appear to develop from large massifs or pillows of salt. The volume of such salt pillows can be estimated by variation in sediment thicknesses around the salt dome. For example, it has been calculated that the initial salt pillow at Hainesville contained about 45 cubic miles of salt. The present Hainesville salt pillar contains about 9 cubic miles of salt. The remainder was lost through erosion or dissolutioning. Extrapolating the dissolution rates calculated above to the Hainesville case reveals that if they were operative throughout the salt dome's history, <u>all</u> of the salt in the salt dome would have been dissolved. Clearly, such rates are either incorrect, operated over a shorter span of time, or operated intermittently. Thus, it is vital to recognize that dissolution rates may accelerate or decelerate over time as a function of changing ground-water conditions.

In summary, calculation of credible, accurate dissolution rates is a major problem for salt dome assessment. Current methods may be adequate for giving an order of magnitude for potential salt dissolution, suggesting that natural salt dissolutioning poses little threat to a salt dome repository. However, the uncertainties inherent in current rate calculations are so high that a dissolution release scenario should be analyzed for its consequence in a safety assessment. The details for the natural dissolution scenario will be discussed in Chapter 5.

Salt Dome Growth or Diapirism

A number of theories have been suggested as the controlling mechanisms for salt dome growth. Among the more notable theories that have been postulated are Barton's (1933) theory of isostatic down-building and a similar theory by Nettleton (1934), known as the fluid mechanical concept. Halbouty and Hardin (1956) also propose several new ideas while building on these previous works. These salt dome growth theories, along with other proposed concepts and ideas, are discussed in some detail in Halbouty (1967). Some of the more recent work that has been done in the area of salt dome growth was done by Loocke (1978) and focused on the Hainesville Salt Dome. This resulted in a growth history for the Hainesville Salt Dome, along with other new ideas about the stability of many piercement salt domes within the Gulf Interior Salt Basin.

The following discussion was taken from Kehle (1980):

Many "piercement" salt domes of the northern interior salt basins could serve as safe permanent storage sites for both nuclear and chemically toxic wastes. Suitable domes are stable and inactive, having reached their final evolutionary configuration at least 30 million years ago. They are buried to depths below the level to which erosion will penetrate during the prescribed storage period, and they are not subject to reactivation in the future. The cores of these salt domes are impermeable, permitting neither the entry nor exit of ground water or other unwanted material.

Stable Salt Domes

Stable domes are those that have reached their final evolutionary configuration. This status is characterized by a salt spine protruding from an eroded hole in the roof of a collapsed salt pillow, the latter being the reservoir that fed salt to the spine during an earlier period of maximum uplift. Such domes are not capable of reactivation because the reservoir of salt feeding the growth of the spine (the underlying salt pillow) has been completely evacuated. Neither additional sediment loading nor submergence will reactivate such a dome, because the original pillow has already collapsed entirely. Like a flat tire from which all air has escaped, no further collapse of the initial salt pillow is possible once all the salt has been squeezed from it.

Nor will the salt spine float up through the overlying sedimentary rocks. In fact, buoyancy, per se, is never really operative in the evolutionary history of a dome. The stresses caused by buoyancy are insufficient to rupture the cover of sedimentary rocks. More importantly, the sediments surrounding the dome will not flow into the void that would be created if the dome should begin to rise. In fact, the salt spine itself, being more fluid than the surrounding sediments, would flow back into the void, thus terminating any tendency for the spine to ascend.

<u>Recognizing Stable Salt Domes</u>: Stable domes are characterized by three factors: 1) a completely evacuated predecessor structure, 2) steep or overhanging flanks, and 3) continuous sedimentary layers across the crest of the structure.

Determining the growth history of a candidate dome verifies its evolutionary state. This is accomplished by reconstructing the growth history, step by step, using high-quality reflection seismic profiles. The profiles need to cross the dome as well as the surrounding area in a variety of directions. This affords the required data to permit a complete three-dimensional reconstruction.

Use of this method permits the identification of a predecessor salt structure for each piercement dome. These predecessors may be pillows, anticlines or similar structures. The time at which the sedimentary cover of the predecessor structure is breached is readily ascertained from seismic data. The collapse of the predecessor structure can also be tracked. This tracking of the predecessor's collapse establishes conclusively whether all or most of the salt has been evacuated from the predecessor structure, which in turn demonstrates whether there is any possibility of the reactivation of dome growth. At the same time, the rate of uplift of the salt stock can be determined by dividing the surface area of the stock by the volume reduction of the predecessor structure at a number of successive times. A plot of uplift rate versus time for a mature dome will exhibit a maximum in the rate of uplift (as much as 2000 feet per million years) during periods of maximum salt extrusion. A steady reduction of the uplift rate occurs after this maximum. The uplift rate declines to zero when all the salt has been evacuated from the predecessor structure.

Each dome follows this evolutionary history. Once a dome is past the extrusion phase, it is incapable of reactivation. Deceleration of the growth rate continues until it ceases altogether. Our observational skills are inadequate to identify the final date at which the last millimeter of uplift occurred, but that final date has no bearing on the problem at hand. Once the growth rate of a dome decelerates to a negligible value, the potential for further growth is limited to such a small value as to have no bearing on the safety of a repository.

Epeirogenic Displacement

Epeirogenic activity consists of broad, gentle movements of the crust that occur in stable cratonic areas, as opposed to the intense, orogenic deformations that occur within mobile belts.

Since Middle Triassic time, the Gulf Coast region has been the site of a small amount of crustal warping in the form of subsidence. According to R. O. Kehle, ^(a) tectonic subsidence (produced by cooling of a thermal anomaly) prevailed until Early Tertiary. Subsidence of the Interior salt basins ceased at that time because sedimentation in these basins had kept pace with subsidence. As a result, the Interior basins have been essentially filled and, therefore, have no potential for further subsidence resulting from sediment loading. In contrast, sedimentation in the Central basin (present Gulf of Mexico) during Mesozoic time was slower than subsidence. Although tectonic subsidence ceased by Early Tertiary, the Central basin continued to subside because of sediment loading. Load-induced subsidence of the crust beneath the northern Gulf of Mexico still occurs today, as the Mississippi River dumps large volumes of sediment into the basin. Subsidence should cause no concern with respect to safety of a waste repository in a salt dome, because the Interior salt domes, not the Gulf Coast domes, are being considered as possible sites. It has been suggested that the Gulf Coast is a potential site of lithosphere uncoupling and subduction because of the loading and thermal effects from the sediment prism that has been deposited in the Gulf of Mexico. This could happen during the next million years; however, it is a virtual certainty in the more distant future. Because of this and the possible effects it could have on both the epeirogenic displacement and faulting, it should be studied in more detail during future analyses of the Gulf Coast salt domes.

Orogenic Diastrophism

According to Kehle (1978):

The northern interior salt basins of the Gulf of Mexico region are generally free of diastrophic activity that might pose a hazard to the safe storage of nuclear wastes. This fact is not surprising because these basins are located well within the North American tectonic plate, far away from both interplate and intraplate tectonic activity. Although the sediments in each of these basins are

⁽a) From an unpublished report to Law Engineering Testing Company, Marietta, Georgia, entitled Tectonic Framework and History, Gulf of Mexico Region (1978).

moderately deformed, most of the deformation resulted from nondiastrophic causes, principally movement within underlying salt layers. Those few structures resulting from crustal deformation are no longer active, being related to one of several ancient periods of deformation in the region. The only movement continuing today is subsidence of the coastal basin, which results in oceanward-tilting of the entire region. This tilting, in turn, causes some adjustment between basement blocks. These adjustments are accompanied by the release of seismic energy, but the resultant low-magnitude earthquakes pose no hazard to man-made structures.

The conclusion is that diastrophism will not breach a repository located in the reference salt dome.

Faulting

(

The danger presented to a nuclear waste repository by faulting is a commonly expressed concern. As will be shown below, however, faulting and attendant vibratory shaking do not present a credible hazard to a waste repository located within an East Texas salt dome.

Assessment of the danger posed by faulting and seismic activity requires examination of the following factors:

- location, age, displacement, and causes of faulting
- recorded seismicity
- effects of vibratory shaking and fault displacement on an underground facility.

Nature of Known Faults in the Gulf Coast Region

In the Gulf Coast region as a whole, four types of faults are present:

- 1. basement faults initiated in the Late Triassic by continental rifting associated with opening of the Atlantic and of the Gulf of Mexico;
- 2. flexure or boundary graben faults resulting from hinge-line bending and/ or downdip salt flowage;
- 3. growth or penecontemporaneous faults developed in areas of rapid, thick sediment accumulation; and
- faults associated with salt dome formation, denoted here as dome- or piercement-induced faults.

According to Kehle (1978a):

There was major pervasive extensional faulting throughout the Gulf region during the early Mesozoic. This faulting resulted in significant crustal attenuation, thereby converting the previous continental area into the series of basins that exist today. This episode of major crustal disruption ceased entirely during the middle Jurassic, about 150 million years ago. Some faults within this system were reactivated during the middle Cretaceous, about 100 million years ago. But this latter episode was short-lived, probably confined to less than a 5 million year interval.

Throughout the history of the area, these same basement faults served as the locus for adjustments between basement blocks during periods of basin subsidence. They accommodated differential subsidence of crustal blocks of different thickness by permitting decoupling between the blocks. Although the interior basins ceased subsiding about 45 million years ago, some decoupling still occurs today. This decoupling is the result of active subsidence of the Gulf basin to the South. Decoupling is accommodated piecemeal by small movements along the old faults, accompanied by minor releases of seismic energy. This kind of activity is likely the cause of the few minor earthquakes reported from this region.

Three major fault systems are located on the periphery of the basin. Of interest here are the Balcones Fault System, the Mexia-Talco Fault Zone, and the Mt. Enterprise Fault System. The Balcones, Mexia-Talco, and Mt. Enterprise fault systems are flexure or boundary graben faults. Though all of these fault systems are on the periphery of the East Texas basin, they will be briefly described for the sake of completeness.

The following paragraphs on the Balcones system were taken from Kehle (1978a):

The Balcones fault system, which separates the Edwards Plateau from the Gulf of Mexico province, was active during the Miocene and possibly into the Pliocene. But no offsets of Pleistocene fans or terraces have been observed, indicating that the system has been inactive for several million years at least. Presumably, the faulting was related to the epeirogenic uplift of the western United States. Although related tectonic activity continues today, it apparently does not result in further tilting of the High Plains of Texas. Consequently, the Balcones fault system is no longer active.

The Balcones fault system is capable of reactivation, should uplift of New Mexico and Trans-Pecos Texas resume. Whether this is likely is highly problematic. Details of the evolutionary history of incipient rifts are inadequately known to allow making absolute statements regarding the future history of this area. Because the Balcones fault system is located far from most candidate domes, this fault system poses no direct hazard to storage facilities located within the basins....

The Mexia-Talco and Mt. Enterprise systems are most commonly represented by a complex graben. The following general discussion is taken from Kehle (1978b):

The system of faults bounding the northern interior salt basin is only indirectly related to the basement-fault systems. The boundary faults are at the outer periphery of the Triassic blockfaulted terrain. They have a long evolutionary history, being active about 110 million years from mid-Jurassic through Eocene time. Movement along the faults within the boundary-fault system apparently resulted from either salt flow away from a buried basement scarp, or from bending (because of differential subsidence) across a boundary between thin crust underlying the basins and thick crust underlying the surrounding continental mass.

Neither process is operative today. 1) There is no bending because there is no subsidence. This is because the basins are filled to capacity with sediment, so no accommodation by subsidence is necessary. 2) No salt flows from beneath the fault system because all the salt has been evacuated previously. This evacuation is shown by both seismic and well data.

ĩ

Because of the nature of the causitive mechanisms, the faults in the boundary system are not subject to reactivation. For example, because all salt has been evacuated from beneath the boundary faults, no more can escape. Thus, this mechanism cannot cause further displacements. Similarly, because the basins are already full to capacity, no additional subsidence can occur. This lack of potential for subsidence can be explained by the fact that the basin, as well as the surrounding continental land masses, is in isostatic equilibrium. The absence of offsets in Pleistocene alluvial fans and river terraces along the boundary-fault system confirms the lack of movement in the recent geologic past. Our understanding of the cause of movement along the boundary-system faults allow us to state unequivocally that no future movement is possible until the tectonic regime changes.

Growth faults, like the fault systems discussed above, are not present in the East Texas basin. They occur as a result of thick sediment accumulation in the coastal plain, continental shelf, and the continental slope areas of the Gulf Coast region (Kehle 1978a). Growth faults that move aseismically are caused by sedimentary instability; hence, displacement generally ceases when the unstable shelf-edge environment builds farther gulfward (Law Engineering Testing Company 1978b). Faulting is commonly associated with piercement salt dome formation. According to Kehle (1978b):

Movement within the salt is accommodated by deformation in the overlying sediments. Structures of this type are local, and their formation is aseismic. Ground displacement is the only hazard they pose to man-made structures. Consequently, the only structures that need to be considered are those associated with candidate domes. Generally, these faults occur only within the sediments surrounding a dome and do not penetrate the salt core itself. Where this is true the faults would not affect the structural integrity of a repository. The faults will offset ground water flow, which may or may not be of consequence in the selection and design of a repository. Such determination will need to be made on a site-by-site basis.

Recorded Seismicity

The entire northern Gulf Coastal Plain is assigned a seismic risk of Zone O (no damage) or Zone 1 (minor damage), which corresponds to intensities V and VI of the Modified Mercalli (MM) Scale. The East Texas Basin and the Mississippi Basin straddle the Zone O-Zone 1 boundary. The North Louisiana Basin is within Zone 1. This is the result of its proximity to the New Madrid seismic province.

Within the extent of the Gulf Coastal Plain seismic province, the maximum historic earthquake, less than VI MM, is the 1930 Donaldsonville event (southern Louisiana). VII MM events occurred in the adjacent Ouachita System seismic province, which extends inland from the peripheral flexure faults.

In general, the minor seismic events recorded in eastern Texas are not appended to known structures (e.g., the Mt. Enterprise Fault System). Exceptions include activity caused by growth faults in the Houston area, and events probably caused by pressurized brine injection into producing oil fields. Surface displacements have also never been associated with any recorded seismic event.

Effects of Vibratory Shaking and Fault Displacement

Sensitive surface facilities, such as nuclear reactors, require extensive engineering to withstand potential vibratory shaking induced by earthquakes. One would expect a subsurface facility, backfilled to entirely eliminate free surfaces, to experience very little vibratory excitation. In fact, data from underground nuclear explosions conducted at the Nevada Test Site indicate that open subsurface tunnels and boreholes experience no significant vibratory damage, even when ground motion is up to several tens of g (Wight 1978). The only significant damage reported in the 40 tunnels examined at the Nevada Test Site was caused by fault displacement rather than vibratory excitation. Given the low intensity of Gulf Coast seismic events, and assuming proper backfilling procedures, vibratory shaking is excluded as a credible hazard to a northeast Texas salt dome repository in a one-million-year time frame.

Because recorded seismicity in East Texas is not appended to known structures, it is possible to consider low intensity events as occurring randomly through the region. Thus, small displacement, normal faulting (high-angle reverse or thrust faults are virtually unknown in the Gulf Coast) can be assigned an occurrence probability in the salt dome vicinity over the next one million years. The probability of such an event is a function of the recorded frequency for the region.

The effect of small displacement, normal faulting upon the salt dome environment is a topic of current research. Indications are that such a structure would be, in essence, analogous to a salt dome-induced fault in geometry and probable effect. The mechanisms of such a fault would not, however, be related to salt dome growth. Differential sediment compaction, solution collapse, or secular motion on a flexure fault could conceivably cause small normal displacements. The Hainesville Salt Dome has existed for at least 38 million years (age of the youngest faulted near-dome sediments) with such fault structures nearby.

Conclusions on Faulting

Throughout this discussion, it has been assumed that the regional stress state of the East Texas region will not change in the next one million years. This assumption is compatible with both observed plate tectonic velocities of several centimeters/year and the millions of years of tectonic quiescence demonstrated in the geologic record.

The effects of near- and far-field faulting on a salt dome nulcear waste repository are not deemed credible release hazards for a million-year time frame. Specifically:

- Available evidence indicates that known faults in the East Texas basin are inactive.
- Recorded seismicity for the entire Gulf Coast is very low in intensity (maximum = VI MM).
- Vibratory shaking hazards for a properly backfilled subsurface facility are negligible even for very strong ground motion.
- Normal faulting of small displacement in the salt dome vicinity is assumed to have a finite occurrence probability over a one-million-year time period. The consequence of such faulting is not considered a credible disruptive event because of the existence of many similar faults that have not produced salt dome disruption over at least a 38 million-year time span.

Metamorphism

Metamorphism is the process by which consolidated rocks are altered in composition, texture, or internal structure by conditions and forces not resulting solely from burial and the weight of subsequently accumulated overburden. Pressure, heat, and the introduction of new chemical substances are the principle causes of metamorphism. The resulting changes, which generally include the development of new minerals, are a thermodynamic response to a greatly altered environment. Rocks can be affected by contact metamorphism or by regional metamorphism, both of which are related to orogeny or tectonism. The Gulf Coast region has been reasonably stable for a very long time. As stated by Law Engineering Testing Company (1978b), "...the Gulf Coast region does not show evidence of igneous activity since the end of the Cretaceous period, approximately 70 million years ago." The only crustal activity in the Gulf Coastal Plain at present is a very slow subsidence, and there is no indication that a change is imminent. Major orogenic activity and subsequent metamorphism cannot be expected to affect the Gulf Coastal region in the next one million years, and, hence, do not represent a credible breach scenario for the salt dome.

Magmatic Activity

Magmatic activity, both extrusive and intrusive, cannot be expected to affect a nuclear waste repository in a Gulf Coast salt dome within the next one million years. The Gulf Coastal Plain is not characterized by mobility; the only crustal activity at present is a very slow subsidence. The last magmatic activity in the Gulf Coast area occurred many millions of years ago. According to Law Engineering Testing Company (1978b), "...the Gulf Coast region does not show evidence of igneous activity since the end of the Cretaceous period, approximately 70 millions years ago." There is no indication that an increase in activity in the Gulf Coastal area is imminent, and magmatic activity cannot reasonably be expected to occur in this area within the next one million years.

Static Fracturing

Salt has the capacity to creep slowly and thereby to heal static fractures that might occur. Two types of static fracturing are surficial fissuring and hydraulic fracturing. These fracture mechanisms are non-tectonic.

Surficial Fissuring

According to Davis (1980), surficial fissures are near-surface fractures that result from tensile failure. They may be produced by stresses related to phenomena such as differential compaction of deep dessication sediments, changes of temperature, and short-term stresses from nearby earthquakes. These fissures are most common in valleys of the Southwest that contain nonindurated sediments. They are commonly found in Arizona, California, and Nevada. Surficial fissures are believed to extend to depths of about 100 meters. This type of feature should not affect a nuclear waste repository at a depth of several hundred meters. Furthermore, the ability of salt to self-heal would minimize the damage caused by these fissures if they could somehow reach to repository depth.

Hydraulic Fracturing

Hydraulic fracturing is often used to increase the permeability of a rock unit. Water is pumped into the formation until the strength of the rock is

exceeded. The rocks fail by fracturing. Hydro-fracturing possibly may be induced in the rocks surrounding a salt dome, but there would be no reason to initiate such fracturing in the salt dome itself. Salt domes are obviously not good aquifers; they are rather impermeable, and any water obtained from a salt dome would be salt-saturated and unsuitable for drinking. It is, therefore, unlikely that humans would attempt to obtain water from a salt dome by initiating hydraulic fracturing. Salt domes might, however, be exploited for the minerals which they contain. Mining of salt domes will be addressed in Chapter 5.

Meteorites

Meteorite impacts are disruptive to the surface and near-surface of the earth, as such places as Meteor Crater in Arizona testify. The frequency of meteorite impacts is quite well documented from studies of both the earth and moon's surfaces, and the expected number of impacts for a given time period can be calculated from results of these studies (Hartmann 1978; Claiborne and Gera 1974).

The probability of a meteorite large enough to disrupt a repository at a depth of about 600 meters has been given as $2 \times 10^{-6}-10^{-7}$ per million years, depending somewhat on the area of the repository being considered.

There is not universal agreement at this time on how the energy of a meteorite impact is dissipated. One recent study has suggested that about 40% goes to heating of the material, about 50% into crushing or plastic deformation, and about 10% into ejecta kinetic energy (O'Keefe and Ahrons 1977). The largest part of the ejecta-related energy goes into lifting shattered material, most of which falls back into or near the crater, and probably less than 1-3% of ejected material should be considered airborne.

Fracturing of material below the actual crater depth occurs in material that yields by brittle fracture. For high energy impacts, the fracturing can extend to 0.6 crater diameter in depth. If an impact occurred directly over a salt dome repository, fractures could extend to repository depth even though the crater itself did not reach the repository. Assuming fractures occurred and remained open, they could act as conduits for ground water, if present, and the scenario would become a variation of the dissolution case.

The low probability associated with the impact of a meteorite large enough to breach a salt dome repository makes this so unlikely that it should not be considered with other more likely events. Because of this low probability $(10^{-6}-10^{-7} \text{ per million years})$, plus the fact that the probability is well established from observed data and is independent of terrestrial events, this phenomenon is not considered further here.

Undetected Features

An assumption implicit in the above discussions is that the best geological and engineering methods or judgments will be used during repository site selection and construction. However, human error or negligence cannot be entirely ruled out as a contributing factor in any given repository release scenario. Possible examples of engineering error include:

- failure to backfill and seal correctly portions of the repository or repository shafts
- construction-induced fracturing of the salt buffer zone around the repository
- incorrect spacing of waste canisters leading to local thermal and radiation gradients that exceed design limits.

Some of the above examples of engineering error may fall outside of the currently defined scope of AEGIS (i.e., covered under waste-induced effects and operational phase safety assessments). They are still of considerable interest to AEGIS because they may significantly alter the initial boundary conditions of the repository long-term isolation phase.

A possibility also exists that, despite best available geological and engineering judgment, important features or processes will remain undetected during repository site selection and construction. Examples include:

- on-going salt dissolution
- undocumented boreholes
- permeable zones (shear zones) within the salt dome.

Shear zones are vertically oriented planes within the salt dome along which sediment inclusions, anhydrite, and coarsely recrystallized halite are localized. In several mines located in coastal salt domes, shear zones have contained significant amounts of brine. Studies are currently being conducted to determine if the source of the brine is connate or exterior. Shear zones are believed to form during the process of salt dome growth (Kupfer 1974). As no further salt dome growth is possible in East Texas basin salt domes (see the section on diapirism), shear zones will not form in the future. The danger to the repository is from shear zones that may be undetected during repository site selection and construction.

Note that all these undetected features that would promote the same disruptive processes (i.e., dissolution) are actually analyzed in the dissolution scenario. Once credible probabilities are assigned to the occurrence of undetected features, they may be treated as subsets of fundamental disruptive phenomena.

HUMAN-INDUCED DISRUPTIVE PHENOMENA

A comprehensive assessment of the safety of a nuclear waste repository must include some analysis of how humans might cause a future interaction between remaining radioactive materials and the human environment. The consequences and likelihood of deliberate or inadvertent human intrusion, in terms of radionuclides released, could far outweigh the consequences of release through gradual ground-water contamination. For this reason, consideration of how future human activities might affect repository safety must be incorporated, in some manner, into potential Type 3 release scenario analyses.

At this time a structured methodology for dealing with potential humaninduced repository breaches has not been developed. It seems unlikely that the probabilities for such events could be quantified as the events and processes in the geologic realm currently are. The history of human activities is extremely brief in comparison with geologic history. While the probability of occurrence of geologic activities can be quantified based on long-term histories of those activities, human activities cannot be similarly treated. Geologic processes are dated in millions of years; hominid predecessors, <u>Australopithecus</u> and <u>Homo habilis</u>, however, have existed only within the past few

million years. The appearance of modern man is dated from about fifty thousand years ago, while the existence of agricultural systems and the recording by man of history can be traced for only a few thousand years. Any analysis that would attempt to categorize past human activities and project those categorizations into the future must currently be qualitative in nature and highly uncertain in its predictions.

An analysis of future human-induced activities that might compromise the integrity of a repository sited in a salt dome can be structured to discuss a range of potentialities. The methodology involves an examination of the range of known past human activities that might, if repeated, breach the repository. Separate analyses can be made of those activities that would breach the repository intentionally and those that would result in an inadvertent breach. In addition, some conclusions can be drawn about the probabilities of both types of breaches while the repository remains under the control of some governmental or institutional entity and while information about the nature of the repository and the materials it contains, is available for effective use.

Institutional Control and Information Transfer

• •

There exist at least three phases of institutional control based on predictive reliability:

- <u>short term</u> (less than 50 yr after closure of repository)--reasonable predictions can be made about stability, goals and operation of human institutions, as well as degree of uncertainty
- <u>intermediate term</u> (100-200 yr after closure of repository)--predictions are based largely on extrapolation or projection of present trends; there is a limited degree of confidence, which decreases with time
- <u>long term</u> (more than 100-200 yr after closure of the repository)--uncertainties dominate.

Draft Environmental Protection Agency (EPA) regulations on disposal of high-level radioactive waste, available at the time of scenario development and in subsequent drafts, state that controls for the repository that are based on institutional functions cannot be relied on for longer than 100 yr after closure. For purposes of this analysis, loss of institutional control, regardless of cause, is presumed at 100 yr after repository closure.

One of the purposes of control of the repository site is the transfer of information about the nature of the repository and the dangers inherent in the release of the radioactive materials it contains. Implicit in the loss of physical control of the site is the possibility that effective intergenerational transfer of information would be lost, or that only a partial transfer through written records would be made. Current EPA draft regulations require supplemental controls to be designed using the most permanent markers and records practicable to communicate the nature and hazard of the material and its location. In spite of these precautions, some probability exists that information transfer might not effectively survive, intact and intelligible, for any period significantly longer than that presumed for institutional control to the degree necessary for reliance in protecting the accessible environment from the radioactive wastes.

The remainder of this analysis will look at the various potential reasons the site could be intentionally breached, the possibilities and results of potential inadvertent breaching, and the interactions of both institutional control and available information with the potentialities for breaches.

Intentional Breaching

Breaching a salt dome repository intentionally can be postulated for both short- and long-term periods of time. Such an intentional breach is here defined as a knowing intrusion into the repository structure for some deliberate purpose. In the short-term, it is presumed that institutional controls would still be in place and would be designed adequately to deter or repel any attempt at deliberate invasion of the repository site. More importantly, consensual deliberate intrusion while the repository is under institutional control would involve a contemporary societal decision to assume the burden of those actions. Hence, the onus of risk falls onto that society rather than today's.

Deliberate intrusion at some time in the future beyond that point at which institutional controls must be presumed lost is a more likely scenario. Given the complete loss of institutional control over the location and loss of hazard warnings, future human activities could deliberately intrude in such repositories without having or using reconnaissance technologies that would advise caution against radiation exposure. The comparative danger of intentional human intervention following waste emplacement and repository closure would probably be much greater if the wastes were in a surface or near-surface repository rather than in deep burial. Future societies capable of deep penetrations of geologic media would likely have a range of reconnaissance tools available and mechanical techniques for probing the environment near economic development activities. A society capable of intentionally breaching a repository as a known anomaly with unknown contents could be capable of assessing beforehand the possible consequences of that breach and thus assuming the risks inherent in such a breach.

On the other hand, the geologic repository program is based on a judgment that it is incumbent upon the present society, which is benefiting from the processes that generate hazardous materials, to minimize the danger to future societies from those materials. Therefore, <u>inadvertent</u> human intrusion must be addressed in assessing the post-closure safety of a nuclear waste repository.

Inadvertent Breaching

For purposes of this analysis, inadvertent breaches are those caused by activities carried out without knowledge of the presence or purpose of the repository, thus assuming that enough time has passed to make loss of institutional controls and/or effective information about the repository likely. The physical features that make a salt dome attractive as a repository for nuclear waste isolation also make it attractive for future alternative uses. Salt domes are large, accessible concentrations of a relatively pure mineral, making them valuable natural resources. Also, salt domes are attractive for underground storage space because of their impermeability, plasticity, relatively high thermal conductivity and geologic stability. Figure 4.2 depicts the potential competing uses of salt domes.

FIGURE 4.2. Potential Competing Uses of Salt Domes

4.38

٦

The geologic advantages of salt domes for long-term isolation of radioactive wastes could be offset by the potential for inadvertent breaches caused by the known past and probable future competing uses of salt domes. The utility of salt domes for underground storage and as a valuable source of accessible minerals will encourage future use. Therefore, future human activities in or near a salt dome have a reasonable chance of occurring.

Exploration and extraction of minerals from a salt dome containing a nuclear waste repository could potentially result in the breach of that repository. The severity of the breach and the amount of waste material released into the accessible environment are dependent upon the method of exploration and extraction used, the location of exploration and/or extraction with respect to the repository, and the society's level of technology and/or ability to monitor for radioactivity. Even though a society does attain the ability to monitor for radioactivity, there is no reason to assume that monitoring would occur during routine exploration for, or extraction of, minerals. The human activities that lead to future unintentional intrusion into a salt dome repository are discussed in the following section.

Mineral Resource Exploration and Acquisition

Salt dome formations are frequently associated with deposits of shale, sulfur, oil, natural gas, and commonly very high grade salt (>95% NaCl). The minerals associated with a salt dome can vary greatly, depending on its depth, location, and the length of time since the salt dome was active. Historically, a number of salt domes have been involved in mineral exploration and mineral extraction. The methods and processes for exploration and extraction differ according to such factors as mineral type, depth to minerals, level of technology available, and economics. Basically, these methods include conventional mining and excavation (room and pillar), solution mining, and drilling.

Sulphur has been commercially mined or recovered from salt domes since about 1920. A typical salt dome sulphur deposit is contained in sulphurbearing limestones in the caprock overlying the salt. Sulphur is extracted from salt dome formations using the Frasch Process. The Frasch Process, developed in 1894, involves drilling a well into the sulphur-bearing caprock, pumping hot water into the well to melt the sulphur, and withdrawing-the sulphur slurry. The caprock creates a sealed vessel, so bleed-water wells are placed at the flanks to reduce pressure. Mining for sulphur in this manner would not result in the direct breach of a repository located in a salt dome; however, it could produce secondary effects (e.g., pressure-induced fractures) that could provide a pathway of radioactive material transport to the accessible environment.

Oil and natural gas deposits are commonly situated at the flanks of the salt dome formations. The Woodbine sand, which is several hundred feet thick in the interior of the Gulf Coast salt dome region (East Texas basin, Sabine uplift, and the region of the Mexia-Talco fault zone) has been known to carry oil and gas in great quantities. This formation and the oil and gas deposits are often associated with salt domes or along the fault zones caused by the rising of the salt dome. Pockets of oil and gas discovered within the salt dome are rare; most exploration occurs around the periphery of the salt dome. The probability of directly penetrating a canister when drilling randomly over the repository site is small. Secondary effects (e.g., ground-water alterations) caused by the drilling operations could provide pathways of radionuclide transport to the accessible environment. Such a scenario would have consequences less extensive than the scenario presented below and, therefore, is not further considered here. It would need to be addressed in an actual site assessment.

Historically, salt has been very important. Besides being biologically essential to humans and other animals, salt has been used in ancient civilizations as the basis of monetary systems (hence, the word <u>salary</u>). Almost five millenia ago, the earliest known treatise on pharmacology was published in China, a major portion of which was devoted to a discussion of more than 40 kinds of salt. The first patent issued by the British crown to an American settler gave a Massachusetts colonist the exclusive right to make salt by his particular method for 10 yr. The value of salt as an essential mineral resource to man is obvious. With increasing world populations, the demand for salt is also increasing.

Salt is mined from salt domes using both conventional mining operations (room and pillar) and solution mining methods. Conventional mining and excavation often reach depths of 1000 ft into the salt dome. Conventional mining could result in exposure of a small part of the repository. However, because this technique involves human presence within the mine, the thermal and radiation effects would limit the exposed volume, with direct deleterious effects on the mining personnel. Such a scenario would have consequences less extensive than the scenario presented below and, therefore, is not further considered here. It would need to be considered in an actual site assessment.

Solution mining is the predominant method of mining for salt in salt domes. It is also the most effective method of constructing caverns to provide storage space in salt domes. Solution mining can be performed without a high level of technology. The Chinese drilled wells for saturated brine to depths of 1000 to 2000 ft as early as 2000 B.C. Historically, solution mining in one form or another has provided an efficient method of obtaining salt brine.

Basically, solution mining is the removal of salts and evaporates by dissolution. Fresh water is injected into a salt deposit and brine is extracted. The methods of solution mining differ with application, but the controlling physical processes are the same. Diffusion and natural convection operate together to dissolve and transport salts within the underground cavity. Figure 4.3 shows a hypothetical solution mining operation. The less saline water at the top of the rock salt surface dissolves the salt. This dissolved salt increases the fluid density of the water and causes it to fall along the wall, continuing to dissolve and transport salt. The most dense, saturated brines are concentrated at the bottom of the cavity. This brine is removed to the surface.

The depths of the wells, the quantity of salt removed, and the size of the cavity constructed depend on the mining technique and the characteristics of the geologic medium. The applied mining technique is a function of the level of technology of that society. Present cavity volumes range in the millions of cubic meters. Acoustic and laser techniques are applied today to help control cavity shapes.

FIGURE 4.3. Hypothetical Solution Mining Operation

There are a number of conditions resulting from solution mining that could potentially directly breach a repository located in a salt dome and create a pathway of radionuclide movement to the accessible environment. The most immediate effects of solution mining in a salt dome are the evacuation of a large cavity, the use of large volumes of available fresh water, and the production of brine. Given that the solution process intersects the repository and that the contaminated brine is intended for consumptive use, the most immediate consequences would result from direct contamination of a human population from ingestion of table salt.

The probability of solution mining directly intersecting a nuclear waste repository is a function of the size and depth of both the underground cavity and the repository. The size and shape of the cavity depend on the method, proficiency, and technological abilities of the miners and on the character of the host media. The reference repository of this study occupies over 65% of the horizontal cross-sectional area of the salt dome (Figure 4.4). Because the depth of the repository and the depth of common solution mining are comparable, the probability of a repository breach seems extremely high, should solution mining occur in the repository salt dome.

In addition, potential secondary effects of solution mining such as induced hydraulic fracturing, accelerated natural dissolution rates, groundwater alterations, ground subsidence, and surface collapse could provide a pathway for radionuclide transport to the accessible environment. The impacts from these secondary effects would be evidenced over the long term. These would be analyzed in an actual site assessment.

Because solution mining for salt is a plausible method by which remotecontrolled operations could expose sizeable portions of a nuclear waste repository without immediate recognition by the miners, a scenario was developed for consequence analysis. This scenario is described in Chapter 5.

Energy Storage and Production

Salt domes have been receiving increased attention for their value as underground storage media. The characteristics that make salt domes attractive for waste isolation (e.g., impermeability, plasticity, and relatively high

Areal Representation of the Hypothetical Nuclear Waste Repository Located in the Hainesville Salt Dome

thermal conductivity) also make them attractive for energy storage and production. Currently, technologies and activities to store and produce energy in salt dome cavities include compressed air energy storage (CAES), natural gas storage, and the Strategic Petroleum Reserve (SPR). Also, salt dome caverns have been suggested for use in salinity gradient energy production. Each of these technologies requires the use of an underground storage space or cavity. The predominant method of creating such underground cavities in rock salt formations is solution mining.

At times of surplus energy production large quantities of energy can be stored underground in the form of compressed air. During periods of peak demand this energy can be recovered. The 290 MW storage plant in Huntorf, West Germany, currently operates with two solution mined caverns. The 1,800-ftdeep caverns have a combined volume of 10,000,000 ft³ and maintain air pressures between 650 and 1000 psi. The minimum depth requirement depends on the maximum pressure planned for the cavity. The most severe potential impacts on the repository, should a CAES cavern be located in the same dome, would occur from construction (solution mining) of the cavern. Operation of CAES at exceedingly high pressures or over long periods of time could produce fractures in the formation that might provide a pathway for radionuclide release to the accessible environment. Also, cavern or wellhead failure could lead to an atmospheric release of radionuclides.

Salt dome caverns are attractive underground space for storage of hydrocarbons. The Strategic Petroleum Reserve (SPR) program would create a reserve of crude oil in the U.S. through storage in underground space. Most of the SPR's 500 million barrels of oil is planned to be stored in salt domes. Currently, 300 million barrels of storage space exists in a variety of formations. In the past, natural gas has also been stored in salt dome cavities. One salt cavern in Saskatchewan contains 290,000 barrels of natural gas to a depth of 3700 ft. Twin caverns in the Emminence Salt Dome containing natural gas have a depth of 5700 to 6700 ft. The severity of potential future impacts in the accessible environment resulting from energy storage and production in a salt dome containing a nuclear waste repository is a function of the technique used in mining the cavity, location of the cavity, and the level of technology attained by the society constructing the cavity. The main impact on the

repository from the storage of hydrocarbons in salt domes would result from solution mining a cavern. In addition, contaminated oil or gas distributed and consumed as an energy source would directly contaminate the accessible environment.

For the purposes of this exercise, the scenario of solution mining for salt is considered representative of the scenario of solution mining for the creation of a storage cavity. However, in an actual site assessment, such a set of scenarios would need to be analyzed.

Weapons Testing

The characteristics that make a salt dome desirable for weapons testing include high inherent plasticity, relative impermeability, and good radiation shielding. The Tatum Salt Dome in Mississippi has been used in the past for weapons tesing. Weapons testing (either nuclear or non-nuclear) would indicate a relatively high level of technology. A society with this level of technology may be able to detect radioactivity before the testing. However, the impacts on the repository from weapons testing in a society unable to detect radioactivity would probably be more severe. Secondary effects on the surrounding geology such as induced seismic activity or fracturing might also result in a radionuclide pathway to the accessible environment. The severity of the impacts is a function of the type of weapon tested, the magnitude of the explosion, and the location of the test in relation to the repository, in addition to the level of technology in the society and condition of the waste in the repository. The solution mining scenario is considered to be both more plausible and consequential than weapons testing, which is not further considered here. However, it would need to be analyzed in an actual site assessment.

Non-Nuclear Waste Disposal

Salt domes are attractive formations for the disposal of hazardous or toxic non-nuclear wastes. Production of hazardous wastes and the frequency and magnitude of disposal operations can be correlated to the level of technology in that society. However, an advanced society capable of producing large quantities of hazardous waste material would not necessarily be able or willing to provide monitoring to detect radioactivity. Liquid waste injection

into the salt dome containing a repository could cause fluids to migrate or induce natural dissolution to create a pathway for movement of radionuclides to the ground water. The release of radionuclides as a result of non-nuclear waste disposal is a function of the depth and method of disposal, amount and types of wastes, and location of disposal in relation to the repository, in addition to the level of technology in the society and condition of the waste in the repository. The solution mining scenario is considered to be both more plausible and consequential than utilization for non-nuclear waste disposal, which is not further considered here. However, it would need to be analyzed in an actual site assessment.

Human Activities Affecting Breaching

In addition to deliberate and inadvertent breaches of repositories, future human activities in the area near the repository site could affect the longterm integrity of the repository. While the activities may not directly cause a breach, their cumulative effect could assist in magnifying the probability and/or consequences of a naturally induced breach.

The flow of underground waters can be altered to some extent by a number of human activities that affect the geologic media containing the ground-water system. Many of the activities previously discussed, such as conventional or solution mining, drilling, waste disposal, and energy production and storage, could potentially alter the ground-water system and provide a pathway for radionuclide movement. In addition to these activities, agricultural irrigation, creation of reservoirs, artificial recharge, and location of population centers in the vicinity of the salt dome containing the repository may affect the ground-water system pathways for radionuclide movement subsequent to a breach induced by other events.

Irrigation could possibly perturb ground-water flow systems in two ways: induced recharge to shallow unconfined aquifers by percolation of irrigation water, and a lowering of the water levels in an aquifer by withdrawing large volumes from irrigation wells, creating a sink. For irrigation to affect an unconfined system, the quantities of excess water must be sufficient to raise the zone of saturation. The resulting ground-water mound would locally have

different hydraulic gradients than the undisturbed system. As a result, ground water would flow outward and downward from the mound until the local gradients are reestablished and the mound dispersed.

Pumping of large quantities of ground water could lower water levels and affect potentiometric surfaces. The extent of this effect would depend on the number of wells, the depth of the wells, the pumping rate, and the yield properties of the aquifer being used. Hydraulic gradients would change as water is withdrawn from the well(s). The effects of these alterations on a salt dome repository would depend on the well's distance from the salt dome and the neardome hydrologic flow system. The near-dome hydrology would have to be determined from study of a particular salt dome. Also, alteration of the groundwater system in the area of the salt dome may induce or increase natural dissolution of the rock salt.

Reservoirs created by naturally occurring phenomena or human activities such as damming a river could alter the ground-water system by increased percolation of water to shallow aquifers, resulting in increased flow and increased ground-water level. Also, the weight from the additional water in the pool could cause loading and pressure effects on the land surface.

Population centers require sufficient supplies of fresh water to support domestic, urban, and industrial needs. The availability of an adequate water supply is often a determining factor in the growth of a population center. If a large population center were to develop near a salt dome repository, at least part of the water supply would probably be ground water from wells. The wells would probably be large in diameter, fairly deep, and open to several aquifer zones for large volume yields. The withdrawal and consumption of large quantities of water by these population centers could potentially result in the alteration of the ground-water system.

These activities and the resulting potential alteration of ground-water systems and impacts on the salt dome repository are dependent upon a number of factors. Some of these factors include the size of the human population, level of technology in the society performing the activity, location of activity in respect to the repository, and possible combination with naturally occurring

phenomena. Some effects of such human activities will be addressed in alterations of the scenarios described in Chapter 5. In an actual site assessment, their consequences for direct or indirect release to the accessible environment would need to be analyzed.

RATES OF UTILIZATION OF GULF COAST SALT DOMES

As a part of the AEGIS scenario analysis task, Griswold (1980) investigated the current rates of utilization of salt domes in the Gulf Coast region of the United States. This information provides perspective on the likelihood of human exploitation or exploration into a salt dome containing a nuclear waste repository. This section largely follows from Griswold's report.

Salt domes are restricted to the Gulf Coast Embayment, which includes southern Arkansas, Mississippi, Alabama, Louisiana, and eastern and southern Texas. There are more than 300 salt domes known to occur in this area. The U.S. Bureau of Mines has compiled a summary of 329 known salt domes in the Gulf Coast Embayment (Hawkins and Jirik, 1966). As of 1965, mining or storage operations were being operated in 48 of the salt domes as indicated in Table 4.2.

The Bureau estimated that 130 of the 329 salt domes in the Gulf Coast Embayment offer potential for mining, brine operations, and/or creation of underground storage. In other words, 82 salt domes await exploitation by humans. The other 200 or so salt domes have features that would not make them appropriate for usage, including for a nuclear waste repository.

The U.S. produced a total of 4.4×10^7 tons of salt in 1978. Louisiana and Texas accounted for 55.5% of this production, all of which came from salt

TABLE 4.2. Operations in Gulf Coast Salt Domes (as of 1965)

Operation	Number	
Conventional Mines Only	3	
Conventional and Solution Mining	5	
Solution Mining Only	16	
LPG Storage	24	
Total Salt Domes in Use	48	

domes. About 75% of that quantity came from solution mining, the other 25% from conventional mining. The primary usage of brine is for chlorine-based chemical production; the primary use of conventionally mined salt is for road de-icing. The salt also goes to culinary usage.

Currently there are about 900 underground caverns in use for LPG storage in the U.S., with a total storage capacity of 3×10^8 barrels. About half that capacity is in salt domes in the Gulf Coast Embayment. Liquid petroleum storage is expected to increase dramatically in the next several years. The SPR program may require 7.5 x 10^8 barrels of storage, expected to be available by the year 2000. It is reasonable to assume Gulf Coast salt domes will continue to provide 50% of that capacity.

Calculations by Griswold (1980) indicate that of the 82 salt domes available for usage, <u>all</u> will be used within the next four centuries, based on current rates of utilization. These calculations were made on the basis of conservative assumptions. However, taking a less conservative approach, Griswold states that it is difficult to forecast any of the salt domes not being exploited (not just explored) in less than 1000 yr.

The conclusion is not that the probability of intruding a particular salt dome containing a nuclear waste repository necessarily is 1/400 or 1/1000 per year for the next few centuries. Site specific characteristics could make a salt dome chosen for a nuclear waste repository to be less, or more likely, more subject to exploitation for other usages. The conclusion is that the scenario of a human intrusion into a nuclear waste repository is highly credible and reasonable over the next few centuries, if not sooner, and virtually certain over the longer times of concern. The way to preclude such an intrusion is for continued control over the repository site, either through direct institutional control or through the <u>effective</u> passive transfer of information. Even if information exists that is designed to prevent some intrusion, however, intrusion can still occur.

CHAPTER 5

RELEASE SCENARIOS

A qualitative description of release mechanisms is an important part of release scenario development. The release mechanism can be discussed without reference to any disruptive phenomenon by describing qualitatively the pathway and transport medium influencing radionuclide movement. They are, in essence, the basis for the formulation of the release scenarios discussed in this chapter and for the evaluation of the breach consequences. Because of the exercise nature of this analysis and the data limitations for assessment of the potential disruptive phenomena, the potential release mechanism is the most important aspect of the release scenarios. Once the mechanism is described, the influence of the various potential disruptive phenomena can be postulated and addressed as parametric variations of the original mechanistic base case.

There are basically three categories of release mechanisms discussed and analyzed as scenarios. The first mechanism involves direct communication between the repository and the accessible environment. For the scenarios of this reference site analysis, this communication is the result of solution mining operations that occur following the loss of institutional control at 100 yr after closure. This scenario is referred to as the "solution mining operational phase scenario."

4

°,

The second mechanism used in the release scenarios of this analysis involves communication between the upper Queen City aquifer system, the repository, and the Wilcox-Carizzo aquifer system. This occurs subsequent to the solution mining operational phase scenario and is based on the assumption that the solution mined cavity could potentially breach the side of the salt dome and provide the necessary flow-through pathway. It immediately follows the solution mining operational phase scenario and provides a mechanism for the long-term release of radionuclides to the geosphere for the geohydrologic transport models.

The third release mechanism used in this analysis describes communication through the repository by ground waters of the Wilcox-Carizzo aquifer system. The disruptive phenomenon involved in this scenario is the natural dissolutioning of the salt dome over long periods of time (i.e., one million years). Because of the low gradients in the Wilcox aquifer and the long time frame over which natural dissolution would probably occur, the consequences of this scenario will be bounded by the long-term flow-through solution mining scenario.

To model the consequences from one of these basic qualitative release mechanisms, it is necessary to quantify the various parameters involved. This requires quantification of various disruptive phenomena that could induce such a mechanism and postulation of a series of events both before and after the breach. The following detailed scenarios are presented in this manner. The basic mechanisms are considered to be both credible and viable; however, there is some uncertainty in the detailed description of the sequence of events postulated for the individual scenarios.

The series of events presented in the following release scenarios should not be considered as a prediction of the future state of the geosystem. Rather, the scenarios have been developed only to provide a quantification of the mechanism for the consequence analysis. Information in this report is intended to be realistic but conservative in developing these release scenarios, and existing scientific and engineering evidence has been used whenever possible. While the confidence in the release mechanisms is considered relatively high (i.e., they are considered to be credible, viable, and defensible for the existing geological environment), confidence in the specific details of the scenarios is significantly lower. For an actual license application SAR, the increased level of basic information on the site and the further detailed investigation of the release mechanisms and disruptive phenomena involved would help in limiting the uncertainty associated with the scenarios.

METHODOLOGY USED FOR SCENARIO ANALYSIS

The scenarios were developed using primarily an expert opinion and peerreview process. The AEGIS scenario team, along with assistance from several AEGIS consultants, developed a set of initial release scenarios. A draft

document was developed that presented the various phenomena and their interactions, addressed their potential perturbations to the repository geosystem, and identified several release scenarios. Upon completion of this draft scenario report, a formal scenario review meeting was held at the Pacific Northwest Laboratory with personnel from AEGIS, ONWI, NUS Corporation (ONWI Repository Project Manager), Bechtel National Inc. (BNI) (ONWI Repository Project Manager), and Law Engineering Testing Company (LETCO) (ONWI Gulf Coast Geologic Project Manager) to discuss and review the preliminary scenarios. As a result, the scenarios were expanded and modified by the AEGIS staff based on the comments received during this meeting.

A revised draft scenario report was then formulated and reviewed at a second formal scenario review meeting held at the LETCO Offices in Marietta, Georgia. This meeting was attended by representatives from AEGIS, NUS, BNI, LETCO, and a group of consultants from the LETCO advisory review board. A third review meeting was held in Austin, Texas, with personnel from the Texas Bureau of Economic Geology (TBEG) to refine further the potential release scenarios. The revised scenarios were altered according to the comments from these two review meetings.

.

١.,

 \mathbf{N}

1

A final set of base case, far-field release scenarios was then developed and approved at the last scenario review meeting held at BNI offices in San Francisco, California. At this meeting the base-case release scenarios that resulted from the scenario development process were presented by the AEGIS staff to representatives from ONWI, BNI, NUS, and LETCO, and approved for use in the ensuing safety analysis. As a result of this meeting, two base case scenarios were identified: a human-induced solution mining scenario, which included both short-term and long-term releases of radionuclides, and a natural geological, long-term salt dissolution scenario. These scenarios were then further quantified by PNL and are discussed in detail below.

The final scenarios used for the safety analysis are considered to envelope the possible breaches of the reference salt dome repository. In particular the human-induced solution mining scenario, as described in this chapter, is considered by the AEGIS team to bound potential inadvertent human intrusion into the repository such as petroleum exploration, other resource development

activities, and cavity creation. As such, this scenario breach is not dependent on the salt dome chosen for a repository. The solution mining, humanintrusion scenario is generic to salt domes. However, the natural geologicbased scenarios are much more dependent on the actual salt dome in question and its relationship to the surrounding geologic system. While the aspects of natural salt dissolution must be addressed for any Gulf Coast salt dome, other phenomena that were not identified as being credible disrupting phenomena at the Hainesville Salt Dome could play a significant role at other potential sites. As such the geological scenario developed for use in this reference site analysis should not be considered necessarily appropriate for other salt dome sites. The other major limiting factor for the geological natural dissolutioning scenario is the absence of consideration of repository- and wasteinduced effects. These could significantly alter that scenario and others. In an actual site assessment, such effects would be explicitly included.

Natural Dissolution Scenario

Salt domes of the Gulf Coast Interior Basin possess many characteristics such as high inherent plasticity, extremely low porosity, and low hydraulic conductivity that make them attractive in terms of use as nuclear waste repositories. A potential weakness of salt, with respect to long-term waste isolation, is the high solubility of salt in water. Therefore, salt dissolutioning is an important consideration in the assessment of the stability of a nuclear waste repository located in a salt dome. Salt dissolution may be initiated or even controlled by a variety of human-caused events or processes (e.g., solution mining), as well as by the natural action of ground water flowing over or around a salt dome. This discussion is limited to the description of the mechanism and potential effects of salt dissolution occurring without the intervention of humans.

Calculations of dissolution rates have been made, based upon caprock thicknesses and concentrations of total dissolved solids in saline plumes. Assuming that caprock consists of insoluble, anhydritic impurities that are left behind when salt dissolutioning occurs, and assuming that these insoluble impurities constitute approximately 1% of the rock salt, Netherland, Sewell and Associates, Inc. (1976) calculated dissolution rates for northeast Texas

salt domes. To obtain the observed thicknesses of caprock on some of the salt domes, maximum dissolution rates must have been about 6 x 10^{-4} ft/yr, provided that the caprock formed by dissolutioning during the last 50 million yr. Using that rate, it would take 1.3 million yr to dissolve an 800-ft buffer zone around the repository. Dissolution rates have also been calculated using concentrations of total dissolved solids in saline plumes. This method has been used to calculate dissolution rates for several northeast Texas salt domes. Using the maximum dissolution rate estimated for current climatic conditions (75 ft per 250,000 yr), the 800-ft buffer zone could be dissolved in 2.7 million yr. Under glacial climatic conditions, when hydraulic gradients would be increased, the maximum dissolution rate could also be increased. Therefore, under glacial conditions, the buffer zone could be dissolved in 2 million yr. Given that the climate will fluctuate during the next 1 million yr, the amount of time needed to dissolve the buffer zone is between 2 and 2.7 million yr. Therefore, salt dissolution is probably not a threat to repository intergrity for a 1-million yr isolation phase, even if the most conservative dissolution time is used (1.3 m.y.). However, because of the uncertainties in knowledge of dissolution mechanisms, the lack of information about the regional and neardome hydrology and near-dome structure, and the lack of consideration of repository- and waste-induced effects, natural dissolution cannot be dismissed at this time as a potential release scenario for the Hainesville Salt Dome.

It is assumed that fresh water zones are in direct contact with the salt stock and that dissolved salt is being carried away from the salt dome by the flow of subsurface water in the Wilcox. Dissolution occurs where the salt dome intersects a fresh water or unsaturated saline aquifer or where structural features such as upturned beds or faults could allow vertical ground-water movement along the salt-host rock interface. Ground-water flux at the zone of dissolutioning is assumed to be great enough to remove saturated brines and to supply incoming fresh or undersaturated ground waters. The dissolved salt could be carried downstream through the aquifer. Dissolutioning of Northeast Texas salt domes should occur at or near the top of the salt dome, where the Wilcox aquifer is likely to come into contact with the salt. The dissolution should occur preferentially on the up-gradient (northwest) side of the salt

dome, where the water first encounters the salt. As it flows over the top of the salt dome, the water will continue to dissolve salt, so that material would be removed from the top of the salt dome as well as from the flanks. Solution collapse would occur where significant amounts of salt were dissolved, so that the outer portions of the salt dome would become rubbly. At least part of the 800-ft buffer zone could be affected by the solution collapse. Dissolutioning of the buffer zone would be enhanced by the solution collapse, because permeability of the salt would be greatly increased. Thus, solution collapse could enable water to encounter the waste canisters even before all of the buffer zone had been dissolved and carried away. Near-saturated saline brines would be flowing over and around the waste canisters. After flowing through the repository, the brines would continue to move down gradient (to the southeast), probably flowing at the base of the Wilcox aquifer because of density differences.

This natural dissolutioning scenario assumes that at time one million yr the entire volume of waste within the repository is exposed for leaching by ground water. Even though the entire repository volume should not be exposed immediately when the breach occurs, the time required to expose the rest of the repository, probably on the order of 10^3-10^4 years, is insignificant compared to the 10^6 -yr time frame required to initiate the containment failure.

The natural dissolutioning scenario is unlikely to occur within the 10° -yr time frame, absent repository- and waste-induced effects. As discussed in Chapter 4, the reasonably expected time for dissolution to occur is closer to the order of 10^{7} yr, or up to an order of magnitude greater than that used for this scenario. There appears to be no reasonable way the natural dissolutioning could occur in less than one million yr (absent human intervention). Thus, a 10° -yr period is considered to be the lowest bound on this scenario. This is based on not considering the effects of the construction of the repository nor the effects of the nuclear waste itself. Should these repository- and waste-induced effects be considered, the time to natural dissolutioning might be shortened considerably.

As of the date of this salt dome reference site analysis, the consequences of such a natural dissolutioning scenario have not been evaluated. These consequences are obviously of less magnitude than those of the solution mining scenario discussed in the next section. Consequence analyses of the natural dissolutioning scenario could be performed in future work, and would need to be performed for actual site assessments.

Solution Mining Scenario

According to discussions from Chapter 4, following a loss of institutional control, future solution mining could perturb a salt dome containing a nuclear waste repository. Because of the many uncertainties inherent in dealing with potential mining technologies, it has been assumed that any such solution mining would intersect the waste repository and threaten a breach of isolation. Accordingly, the following release scenario has been developed. While the release mechanisms discussed in the remainder of this section are highly likely, the specific postulated sequence of events is uncertain.

Solution mining is used for a variety of purposes, including commercial salt production, storage cavity development, and petroleum production purposes. This scenario has been developed under the assumption that the solution mining is for commercial salt production (brining) because: 1) brining requires a relatively low technology base for commercial operations; 2) solution mining of salt domes at repository depths has occurred repeatedly before the technology level associated with the knowledge of nuclear phenomena and thus, could plausibly recur in the future without necessarily requiring a sophisticated technological base cognizant of nuclear science; 3) historically, there has been little control exercised over cavity shapes and dimensions; 4) there are a number of known sinkholes and solution collapse features associated with past brining operations in the Gulf Coast; and 5) it provides the most direct path for radionuclides to enter both the accessible environment and the human food chain through the consumption of culinary salt. Current trends in solution mining technology have been directed at controlling and monitoring cavity shapes and dimensions for better engineering control. However, for the purpose of this scenario, a conservative assumption has been based on the uncertainties in describing how the dissolutioning around the repository might take

place. Because the waste-induced effects were not explicitly examined, it is conservatively assumed that all dissolutioning occurs within the repository area. The results are not sensitive to that assumption.

For the purposes of this scenario, the portion of the salt dome subject to the scenario at the repository depth is considered to be a 20-ft high, 2000-acre horizontal slice, with a total salt volume of 1.74×10^9 ft³. The actual repository is represented by a 1375 acre by 20 ft high slice, with a salt volume of 1.2×10^9 ft³. The repository is surrounded by an 800-foot buffer zone of salt (see Figure 5.1).

After the loss of institutional control, it is postulated that a solution mining (brining) operation starts production (post-closure time of 100 yr). This facility produces one million tons (15 x 10^6 ft³) of salt per year for commercial purposes. This value is representative of a current large scale solution mining operation for salt. It is assumed that 3% of the total production 'is used as culinary salt. The 3% fraction is based on the percentage of the current total U.S. salt production used for human consumption (Bates 1969). This assumption received considerable comment by the outside reviewers of the working draft of this document, in that it nonconservatively results in a dose reduction by a factor of 33, and in that the other 97% of the contaminated brine was not considered in dose-to-human pathways. However, changing this to total consumption of the salt could be compensated as discussed below. The brining operation is assumed to have an operational life of 50 yr. At the end of the 50-yr mine life, approximately 61% of the repository could be exposed, based on the one million t/yr production cycle. Therefore, the waste could be exposed at a rate of 1.2% of the entire repository inventory for each year of the 50-yr operational life.

To produce one million tons of salt per year, the water flow removed for the solution mining process would be approximately 1200 gpm; the injection flow volume would be approximately 1400 gpm, with the additional 200 gpm replacing the salt volume removed. These flow rates could be derived through three or four production wells operating at a rate of 400 to 300 gpm per well, or through any other combination of wells and production rates.

FIGURE 5.1. Schematic Representation of the Waste Repository and Host Environment

5.9

)

Comment was also received on the scale of such an operation. One review group (see Chapter 12) felt that such a large scale operation would be inconsistent with an apparent lack of control over the cavity shape. This and the problem with the 3% consumption assumption can readily be alleviated by considering a solution mining operation of scale reduced by a factor of 30, but for which virtually all the salt would go for culinary use. This latter assumption is more representative of current culinary salt productions from the highly pure salt found in salt domes, but the scale would be more in accord with a poorly controlled cavity. Under these alternative assumptions, there would be no change in the dose values calculated originally. This revised report reflects the calculations done on either the larger scale, less proportionate use of culinary salt assumptions, or on the reduced scale assumptions. Thus, either set of assumptions can be considered applicable to these analyses.

These estimates assume that the salt is removed specifically in the area of the repository, because near-field waste-induced processes might prompt this type of dissolutioning. If the crushed salt backfill was nonhomogeneous at the time of the solution mining intrusion, it could also promote preferential dissolutioning within the repository boundaries resulting from a higher permeability than the host salt. It is also possible that the additional thermal loading induced by the presence of the waste could accelerate the creep of the surrounding host salt and homogenize the crushed salt backfill within a relatively short (100-1000 yr) time frame. If this homogenization were to occur. the dissolutioning might not be totally concentrated in the repository boundaries. As such, the fraction of the repository exposed during the brining operation could be reduced by significant amounts. However, as the wasteinduced near-field analyses are currently beyond the scope of this program, the conservative case will be assumed (i.e., up to 61% of the repository could be exposed after 50 yr of mining). As indicated later, however, the actual portion of the inventory that could possibly be exposed becomes unimportant because of to solubility constraints on the brine solution and on Uranium-238, which comprises approximately 98% of the repository inventory. For the purposes of evaluating the consequences of the operational phase of the solution

Ż

-

mining scenario, the parameters used for the scenario are outlined in Table 5.1. Again, either the assumptions orignally used or the alternative assumptions lead to identical consequences.

1

. . After 50 yr of solution mining, the brining operation is assumed to cease production. Such a production halt could result from a number of different reasons, including effects of economics, an altered technology base, a shift in demand, or operational problems caused by solution collapse, sinkhole formation, or by a breach of the salt dome itself. At the conclusion of the brining operation, it is assumed that one or more of the solution-mined cavities has breached the side of the salt dome, as illustrated in Figure 5.2. Thus, the stage is set for the proposed long-term release scenario.

To approximate the resulting hydrologic flow through the repository, the Finite Element Three-Dimensional Ground Water (FE3DGW) model was used. A discussion of the FE3DGW model and a detailed description of how it was used in this analysis are included in Chapter 6.

Given the assumption that fresh water will continue to flow through the repository and out into the Wilcox aquifer, the following chain of events is postulated as part of the long-term release resulting from the solution mining. After the halt of solution mining, it is assumed that the repository area continues to be dissolutioned by the flow of water from the Queen City aquifer. Water from the aguifer flows into the salt dome via the abandoned solution mining well casing, through the repository, and out through the breach in the side of the salt dome into the Wilcox aguifer. In the region surrounding the salt dome, the overlying Sparta-Queen City aquifer generally has a 50 ft higher hydraulic head than the Wilcox system. The head differential between the Queen City and the Wilcox is assumed to remain at 50 ft. For purposes of this analysis, the area of the opening into the Wilcox aquifer from the salt dome was arbitrarily assumed to be 1000 ft^2 . The size of this opening and its effect on the scenario were analyzed using the FE3DGW model, and the results are presented in Chapter 6. Given a flow rate through the repository of approximately 260 gpm (calculated using the FE3DGW), it would take about 120 yr (assuming 61% is exposed initially) to expose the rest of the inventory, provided that

TABLE 5.1. Parameters for Solution Mining Operational Phase Scenario

Original Scenario Assumptions Operational life of solution mine = 50 yr Production per year = 1 million t/yr; 1.5 x 10⁷ ft³/yr Percent salt used for culinary uses = 3% of salt production Repository depth = 2100 ft below land surface Repository volume (1375 acres x 20 ft) = 1.2×10^9 ft³ Water injection flow rate = 1400 gpm Solution withdrawal rate = 1200 gpm Percent of inventory exposed per year = 1.2%Percent of inventory exposed after 50 yr = 61% Solubility limit for Uranium = 6 ppm Alternative Assumptions Leading to Same Dose Consequences Production of salt per year = 33,333 t/yr Percent salt used for culinary use = 90% Solution withdrawal rate = 40 gpmInventory exposure = 0.041%/yr = 2.0% in 50 yr Other assumptions remain unchanged.

solutioning were to continue within the confines of the repository boundaries. With such extensive internal dissolutioning occurring over a 170-yr time frame, major solution-induced collapse of the overlying salt would almost certainly occur, ultimately rupturing the abandoned solution mining well casing. It is impossible to quantify how and when this type of collapse would occur.

The stability of the cavern would be very dependent on the actual cavity geometry. Assuming that the repository is preferentially dissolutioned, collapse features would probably begin occurring during the actual brining operation. Solution collapse could cause a permanent halt in production if the

E

collapse features were sufficiently severe. Collapse features, either occurring during the brining operation or some time after abandonment, could rupture the well casings and allow the 50-ft head between the Queen City aquifer and the Wilcox to be dispersed through the salt dome and into the Wilcox aquifer. This would mean that the water flow across the salt dome and the repository might be reduced by up to one order of magnitude. As a result, the time required to expose the entire repository inventory and concurrent dissolutioning of the salt dome would be increased accordingly. However, to simplify the near-dome FE3DGW hydrologic model, and because of the inherent uncertainties and the conservative nature of this analysis, it is assumed that the 260 gpm flow continues for a period of about 15,000 yr. During this period of time, the entire salt dome immediately above the repository could be removed. Once the top of the salt dome has dissolved, a major collapse feature would exist over the remaining portion of the salt dome, providing a connection, with a 50-ft head differential, between the Queen City aquifer and the Wilcox aquifer. However, unlike the previous system in which the abandoned brining operation's well casings provided a direct path for the flow into the repository, the head would now be dispersed over a 2700-ft high section of Wilcox-Carrizo. For this stage of the scenario, it is assumed that the inventory is concentrated over the 1375 acres of the former repository, within 30 ft of the top of the remaining salt dome. Because the head would be dispersed over almost the entire thickness of the combined Wilcox-Carrizo aguifer, the flow over the inventory was again calculated using the FE3DGW model (Chapter 6). The calculated flow over the inventory would be about 36 gpm. This scenario is depicted in Figure 5.3.

The flow rate is assumed to continue to flow over the waste, leaching the radionuclides at a saturation level of 6 ppm for uranium until the waste is dissolved. This then represents the long-term release, where for approximately the first 15,000 yr the flow over the inventory would be 260 gpm; then follow-ing major solution collapse, the flow would be reduced to about 36 gpm. Because of its higher solubility limit (410,000 ppm) salt will be dissolved much faster than the spent fuel, with an assumed uranium solubility limit of

FIGURE 5.3. Schematic Representation of the State of the Geologic System Following Solution Collapse

6 ppm. Because of this, it is necessary to model the radionuclide transport in the scenario after the top of the salt dome has been removed, leaving the large portion of remaining waste inventory exposed.

The insoluble anhydrite residue from the salt dissolution could slow, and possibly halt, the salt dissolution following major solution collapse. Assuming a total salt volume in the salt dome above the repository level (including buffer zone) of 5.5×10^{10} ft², and 2% insoluble anhydrite in the salt formation, a total of 1.1×10^9 ft³ of anhydrite would be present following dissolution of the entire salt dome above the repository. Assuming that these insolubles are dispersed evenly over the entire 2000 acres of salt dome at the repository level, the accumulation depth would be about 12 ft. (This assumes a density similar to the original salt.) For purposes of this scenario, the effects of the anhydrite accumulation were only accounted for after the total collapse occurred, and only then for providing a mechanism for slowing that the anhydrite would impede the flow across the remaining spent fuel inventory.

Regional Scenario

2

A hydrologic model has been developed for the purpose of making predictions concerning the transport of radioactive contaminants from the Hainesville Salt Dome in the event that the nuclear waste repository is breached (see Chapter 7). The model simulates the actual hydrogeologic system and allows determination of certain properties of the system that cannot be directly measured. Parameters of the hydrogeologic system can be changed so that movement of ground water, as the transporting fluid for the radioactive contaminants, can be estimated for several different sets of conditions. In particular, parameters must be altered to allow for future changes in the hydrogeologic system.

To simulate ground-water movement at the time of a future breach, hydrologists must use parameters that describe the future system. Accordingly, changes in hydrogeologic parameters over time and in response to various geologic phenomena must be described. Specifically, bounding conditions for the future system must be established so that they can be used as input for the hydrologic transport models.

A base case, which simulates as closely as possible the present hydrogeologic system, has been established (refer to Chapter 7). Three elements of the system must be changed to account for future conditions. These elements are: 1) amount of precipitation, 2) base level and hydraulic gradients, and 3) location of discharge areas. Table 5.2 summarizes the changes that might occur in these parameters. Values of a fourth element, transmissivity, must be bounded for the hydrologic and transport modeling.

_

According to Davis (1980), future compaction, weathering, fracturing, and cementation could change present-day transmissivities by several orders of magnitude. However, for the purposes of this analysis, transmissivities are assumed to stay within the measured ranges. A more thorough analysis would require better definition of the range of values for transmissivity, but detailed, site-specific data would be necessary for that sort of analysis.

The advent of a glacial episode and the associated climatic changes are considered to be among the more important phenomena that could influence the geohydrologic system surrounding a salt dome repository. Under potential future climatic conditions, precipitation in the Interior Gulf Coast salt dome area could be expected to increase by less than a factor of 2 (Kukla 1978). Such an increase in precipitation should cause very little increase in the amount of water that enters the ground as recharge. At present, only a small

Parameter	Change Increased by less than a factor of 2 (under glacial conditions); very little increase in infiltration	
Precipitation		
Base Level and Hydraulic Gradients	Increased slightly as a result of sea level lowering and increased erosion (induced by glaciation)	
Discharge Area	Water would discharge into Sabine River as a result of decreased water withdrawal at East Texas Oil Field	

TABLE 5.2. Changes of Parameters to Account for Future Conditions

percentage of East Texas rainfall infiltrates into the ground-water system; most of the water that is available for recharge goes to surface runoff and evapotranspiration. In the hydrologic model the maximum amount of infiltration that could be accepted by the soil (according to its reported transmissive properties) was less than one inch. A precipitation increase of less than a factor of 2 should cause very little increase in the amount of infiltration because of the saturated nature of the present system. Hence, most of the increase should show up as additional runoff.

Glaciation would result in a lowering of sea level. However, according to Davis (1980), a drop in sea level will not drastically alter the hydraulic gradients in aquifers 100 to 200 miles inland. Because of the shallow coastal waters, lowering of sea level will cause the shoreline to move to the south far offshore of the current coastline. Increased distance of travel will offset the added head differences, which result from sea level lowering, so that hydraulic gradients in the deep, regional, confined aquifers should not be increased by more than about 30%.

Lowering of sea level would also result in increased downcutting by rivers and streams. Increased erosion would lower the local base levels and could provide head drops sufficient to increase hydraulic gradients in near-surface aquifers, such as the Queen City, by 40% to 60%. Gradients in aquifers that are deeper than a few hundred feet, such as the Wilcox-Carrizo, would probably be increased by less than 10% (Davis 1980).

A change in discharge area could be induced by a cessation or decrease of water withdrawal in the vicinity of the East Texas Oil Field. Currently, there is a depression of the ground-water potential contours in Gregg and Upshur Counties as a result of withdrawal of water for industrial and municipal purposes. If the depression were still in existence at the time of a breach, the radionuclides would be transported from the salt dome toward the depression. A future decrease of water withdrawal at the East Texas Oil Field would allow discharge of water into the Sabine River and into the Big Cypress Bayou. Under those conditions, the radionuclides would be transported from the salt dome toward the new discharge areas.

The only regional scenario modeled for this analysis to date is for elimination of the East Texas Oil Field with subsequent water flow into the Sabine River and Big Cypress Bayou. Other alterations of the regional hydrology may be simulated in later analyses and would be simulated in an actual site assessment.

CHAPTER 6

NEAR-DOME HYDROLOGIC SIMULATION

In the region surrounding the salt dome, the overlying Sparta-Queen City aquifer generally has a 50 ft higher hydraulic head than the Wilcox aquifer system, which is in contact with the salt dome. The solution mining breach scenario initiates ground-water flow through the repository with this 50-ft hydraulic head differential between the Queen City and Wilcox aquifers. The ground-water flow patterns near the salt dome were simulated using the Finite Element Three-Dimensional Ground-Water (FE3DGW) flow model (see Appendix B). For this near-dome study, which has point source/intensive subregional recharge and vertical variation in thickness and hydraulic properties, the FE3DGW provides the means to represent effectively the problem by varying the node spacing both horizontally and vertically.

HYDROGEOLOGY OF SUBREGION SURROUNDING THE SALT DOME

To provide a reasonable, conservative assessment of the geotransport consequences from the solution mining scenario, the maximum (47,000 gal/day/ft) transmissivity measured for the Wilcox-Carrizo aquifer was used. The top 100 ft of the aquifer (referred to as the Carrizo sands) has a measured average hydraulic conductivity of 99 gal/day/ft² (transmissivity of 9900 gal/day/ft). The remaining transmissivity (47,000-9900 = 37,100 gal/day/ft) is assigned to the Wilcox aquifer (average thickness of 2000 ft). This gives a hydraulic conductivity of 18.55 gal/day/ft² for the Wilcox aquifer.

The salt dome is actually egg-shaped in cross section; however, for this simulation it was approximated by a truncated conical section of 11,350 ft diameter at -2100 ft elevation, with 8350 ft diameter at -900 ft elevation at the top of the dome. For a circular repository of 8750 ft diameter (1375 acres) at -1700 ft elevation, the salt dome provides an 800 ft circular buffer zone. Figure 6.1 is the schematic description of the hydrogeology of region surrounding the Hainesville salt dome.

5

- 4

N,

The regional ground-water gradient of 1 ft/1000 ft is used for defining the boundary conditions of the subregion. The subregion modeled is extended (up and down gradient and laterally) beyond the effects of local perturbations caused by the solution mining induced breach. Because there is bilateral symmetry, only half of the region was simulated.

FORMULATION OF THE TEST CASES

The first of two near-dome scenarios was modeled with a 1000 ft^2 breach area and no reduction of the hydraulic conductivity around the breach. This is a conservative assumption because:

- the breach area will increase gradually, but the adjoining material may collapse and reduce the effective opening. In the simulation the size of 1000 ft^2 was maintained for the determination of the ground-water flow.
- the concentrated salt solution from the salt dome will reduce the hydraulic conductivity in the region around the breach because of a change in viscosity and a precipitation of salt. For this simulation no such reductions were considered.

The second near-dome scenario was modeled assuming that:

- the flow through the abandoned solution mining bore hole has dissolved all of the salt dome above the level of the repository. the cavity thus created is filled with material assumed to have twice the permeability of the original Wilcox aquifer, the increase in permeability being attributed to the collapse.
- the Sparta-Queen City aquifer, or the lake formed in the depression after a collapse, continually provides an unlimited reservoir with 50-ft higher head than the regional ground-water potential at the center of the salt dome.
- the recharge is occurring in all of the region above the circular repository of 8750 ft diameter (1375 acres) and in the 800 ft buffer zone around the repository.

All the above conditions are conservative assumptions because:

- to dissolve the entire salt dome above the repository, the flow through the abandoned bore would hole will have to occur continuously for approximately 15,000 yr, with the assumption that 260 gpm (predicted by near-dome simulation) of fresh water leaves at the saturated concentration of 410,000 ppm. This is a conservative assumption because such an abandoned bore hole may get clogged with debris or may collapse because of corrosion.
- the present differential head between the Queen City and Wilcox aquifers is 50 ft; but with the flow into the collapsed material, the head difference will not remain constant.

The following are the brief details of hydrologic modeling of the two near-dome simulation cases.

Model for Determining the Flow Rate Out of a 1000-ft² Salt Dome Breach Opening

The Wilcox-Carrizo subregion considered is 80,000 ft in length in the direction of the general ground-water flow (25,000 ft up gradient and 55,000 ft down gradient from the center of the salt dome) and 35,000 ft in width. For the general region, a grid of 5000 ft was used, and the salt dome was represented by radially oriented elements (Figure 6.2). The three inner circles represent the top of the salt dome (Figure 6.3). The diameter of radially oriented elements was varied to account for abrupt changes in the thickness of the Wilcox aquifer overlying and adjoining the area of the salt dome. For vertical representation, the general model used only three vertical nodes, to represent the Carrizo and Wilcox aquifers. In the area with radial elements, however, the vertical subdivision was increased to five nodes below each surface node. At the salt dome breach an element of 500 ft² (31.62 ft vertical and 15.8 ft horizontal, to represent half the hole in the simulated zone) was established. Figure 6.3 is the general representation of the stratification details that were used for the whole subregion. Figure 6.4 shows the stratification near the salt dome, illustrating the variable grid used to simulate the salt dome and the breach.

 $= - (\widehat{\Box} - (\widehat{\Box}))^{-1} + (\widehat{\Box} - \widehat{\Box})^{-1} + (\widehat{\Box})^{-1} + ($

١

6.5

1

A steady-state simulation of the hydrology was done, assuming no breach. Then the rate of flow through the salt dome breach opening was adjusted until the differential driving head at the hole was 50 ft. A flow rate of approximately 25,050 ft³/day from the hole was found to be necessary to attain the 50-ft differential head. Because only half the simulated region was modeled, this flow rate was doubled; the equivalent flow rate thus derived is 260 gpm. This represents the rate at which ground water flows from the Sparta-Queen City aquifer, into the repository cavity, and out into the Wilcox aquifer system.

In the solution mining scenario, a 1-ft diameter pipe of approximately 1700 ft in length was assumed. The head loss in the pipe (bore hole transporting water from the surface to the cavity), resulting from friction, entrance, and velocity head loss is approximately 0.32 ft (Table 6.1) for 260 gpm. No adjustment of flow to account for the head loss through the pipe was made because the magnitude of this effect is not significant.

The effect of the size of the breach opening on the rate of flow was not examined specifically for this simulation because an earlier simulation with a smaller salt dome (7000-ft-diameter base, 5000-ft-diameter top and 1000-ft height) showed that an increase in the size of the breach opening did not increase the rate of flow linearly. Table 6.2 presents the summary of the results with regard to the size of the opening, based on the previously modeled smaller salt dome. With the 13.5 times larger breach opening, the corresponding increase in flow rate was only 15%. Therefore, the size of the opening appears not to be a critical factor. The most critical factors affecting the rate of flow out of the breach are the permeability adjoining the breached area and the differential head that provides the driving force.

Model for Determining Flow After Salt Dome Collapse

This test case was fomulated assuming that the salt dome down to the repository elevation (-1700 ft) has been dissolved subsequent to 15,000 yr of salt dissolutioning after the breach caused by solution mining. The cavity of 10,350-ft-diameter (1930 acres) is filled with collapsed material of twice the permeability of the original Wilcox aquifer (Figure 6.5). The Queen City

<u>TABLE 6.1</u>. Estimation of Friction, Entrance, and Velocity Head Loss in Bore Hole Pipe

Q = 260 gpm = 0.58 cfs L = 1700 ft D = 1 ft $V = \frac{40}{D^2}$ K = 0.5 factor for sharp-cornered entrance $K_s = 0.36 = \text{ factor for new welded continuous}$ steel pipe Velocity head loss = H_v = $\frac{V^2}{2g}$ = .0085 ft

Entrance (sharp corner) head loss = $H_E = K \frac{V^2}{2g} = .0043$ ft

Friction losses (Scobey formula)

$$H_F = K_s \frac{v^{1.9}}{n^{1.1}} \times L = .31$$

Total head loss = H_v + H_E + H_F = 0.32 ft

TABLE 6.2. Effects of Size of Breach on Opening on Flow Rate*

Size of Opening into Wilcox Aquifer (ft ²)	Rate of Flow (50-ft Head Differential) (gpm)
1,000	316
3,364	332
13,465	364

* Results of earlier study with a somewhat smaller salt dome and a continuous permeable sand layer at the breach elevation.

FIGURE 6.5. Schematic Representation of Collapsed Salt Dome

aquifer and the lake formed subsequent to the collapse of the salt dome provide an unlimited source to recharge with a 50 ft differential head across the entire 10,350-ft diameter.

Because the general ground-water gradient in the Wilcox aquifer is 1 ft/1000 ft, the 50-ft additional driving force may significantly affect the flow pattern up to 50,000 ft up gradient. The subregional boundary was kept 80,000 ft (Figure 6.6) from the center of the salt dome. The down gradient boundary was defined at 110,000 ft. A 90,000-ft width was considered from the center of the salt dome.

Unlike the point source used to represent the flow through the salt dome breach, the recharge for this case takes place over the entire 1930 acres. For general aquifer representation a grid of 10,000 ft² was used. Near the salt dome radially oriented elements (each representing 1/8 segment for the half circle) were defined. Figures 6.7 and 6.8 describe the regional and local stratification around the salt dome after the collapse.

6.11

1

()

2

FIGURE 6.8. Three-Dimensional Stratifications of the Region Adjoining Salt Dome After Collapse

For estimation of flow through a 30-ft-thick layer over the repository (chosen to represent twice the height of the waste canisters), vertical logs in all the radially oriented elements near the salt dome have nodes at -1670 and -1700 ft MSL. Steady-state three-dimensional simulation, using the FE3DGW model, was done to estimate the hydraulic head distribution under the pre-scribed conditions.

A computer program was used to calculate the flow vector in the x-, y-, and z- directions at the center of each element. The radial outward flow between -1670 ft and -1700 ft MSL elevation around the repository was estimated to be 3426 ft³/day. Because half of the subregion is simulated, this flow was doubled for use in the regional flow model. The converted figure for horizontal flow over the 30 ft high layer is 35.6 gpm. Because the primary objective here was to account for maximal flow, no density effects were considered. With density-dependent simulation the flow rates would be somewhat less than the predicted results.

CHAPTER 7

REGIONAL HYDROLOGIC SIMULATION

Prediction of radioactive contaminant transport requires an estimation of water movement, because water is the primary carrier of waste in hydrogeologic systems. Any release from the Hainesville Salt Dome would enter the Wilcox-Carrizo aquifer, and the contaminants from such a release would flow with the ground water to some point of release to the accessible environment. The purpose of the hydrologic modeling is to simulate the pressure head response of the real-world system and to predict the flow paths and velocities of groundwater movement. To accomplish this objective, a region must be modeled that is large enough to include the natural phenomena that play a significant part in the hydrologic system. Those phenomena, which cannot be included because of size limitations, must be introduced through the boundary conditions.

Specifically, the regional hydrology model was used to define the potential distribution, the streamlines of flow, flow tubes, and travel times from input data describing the hydrogeologic system and release scenario chosen. The East Texas region was modeled with the steady-state version of the Variable Thickness Transient (VTT) Model (see Appendix C).

CONCEPTUAL MODEL

The region modeled is approximately 120 miles by 130 miles, so that a regular finite difference grid of nodes, each 2 miles on a side, was used. The geologic configuration shows a multi-aquifer system where the surface aquifer, the Sparta-Queen City, is isolated by a semi-confining Reklaw clay layer. Neither of these formations extends over the entire region. Because of this isolation, it was deemed unnecessary to include the Sparta-Queen City aquifer in the model. Beneath the Reklaw lies the Carrizo and Wilcox Formations, which combined form the primary regional aquifer. Below the Wilcox, the Midway

Formation provides an effective bottom boundary to the system. Where the Reklaw does not overlay the Carrizo, the aquifer is unconfined (see Figure 7.1). In the unconfined area the water table is in contact with surface streams, receiving rainfall infiltration. To simulate the stream interaction with the aquifer, a two-layer conceptual model was postulated. The Carrizo and Wilcox sands constitute the modeled aquifer, and the second layer consists only of the streams. This arrangement permits the use of an inter-aquifer transfer coefficient to control stream bed effectiveness and thereby eliminates the necessity of assuming that streams fully intercept the aquifer. The elevations of the streams were taken from topographic maps and were interpolated between contours. The inter-aquifer transfer coefficients and permeability distributions were adjusted in calibration of the model to yield a reasonable base flow from the ground-water system to the streams of the region.

Beneath the Wilcox-Carrizo aquifer lies the Midway Formation, which consists of clays with hydraulic characteristics too small to be measured accurately. Thus the Midway was chosen as the bottom boundary for the ground-water model.

Model Boundaries

The boundaries chosen for the hydrologic model were held potential (Dirichlet) boundaries along the northwest, northeast, and south side, as shown in Figure 7.1. Between these held potential boundaries, boundaries that allow no flow to cross were chosen. These were chosen along what appeared to be streamlines of flow rather than along an impermeable geologic boundary. The northwestern boundary had a value to 450 ft above mean sea level, with one area on the west held at 500 ft. The boundaries on the northeast and south were held along a potential line at 200 ft. Flow would enter from the higher potential and exit the lower potential, affected in between by infiltration, transmissivity of the aquifer, leakage to streams, and injection and withdrawal of water.

Rainfall Infiltration

Within the modeled region in the areas where the Wilcox-Carrizo aquifer outcrops, infiltration from rainfall influences the ground-water elevations. Even though the East Texas area receives high annual rainfall, only a small

percentage infiltrates to ground water. Table 7.1 shows potential evapotranspiration (PET) and actual evapotranspiration (AET) values calculated, using a modified Thorntwaite & Mather method from monthly weather data collected at Longview and Palestine, Texas.

Runoff accounts for a large percentage of the amount available for recharge. Initial simulations arbitraily using 4 in. of infiltration in the model showed that the reported transmissivity properties of the soil would not accept this amount. The infiltration was adjusted in the unconfined area to vary between 0.25 in on the northwestern edge to 0.9 in. on the eastern side.

Hydraulic Conductivity-Transmissivity

Transmissivity is one of the most difficult parameters of a ground-water system to quantify. Well pumping tests yield only single point measurements and are influenced by many local factors, whereas regional data are needed. Table 7.2 summarizes the available measured values of transmissivity, permeability, and thickness of the major aquifer. There are too few measurements to characterize adequately this area of over 10,000 square miles. These measurements did provide minimum, maximum, and average values for the primary aquifer. The transmissivity distribution was developed using the map of the net sand (Figure 7.2), which covers the confined area of the model. To cover the remainder of the area, the map was extended outward toward the boundaries. The map was digitized and used as the measure of the aquifer thickness, and this was used as the initial distribution for permeability. These values were adjusted in some areas during the calibration phase of the modeling process to realize a better match of the potential surface with existing field data.

Stream Aquifer Interaction

Streams were modeled over the unconfined parts of the Wilcox aquifer by holding the potential head of the streams at the land surface according to elevations from topography maps. An inter-aquifer transfer coefficient was used between the streams and the aquifer to control the effective transmission of the water to or from the stream. The model was adjusted so that approximately .01 of the mean annual flow of the streams was seepage from ground

<u>TABLE 7.1</u> .	Arithmetic Mean Weather	Data a	and Calculated	AET, PE	T and
	Excess Precipitation				

	Longview, Texas	<u>Palestine, Texas</u>	
Arithmetic Mean Annual Temperature	66.4°F (19.1°C)	66.6°F (19.2°C)	
Precipitation	46.2 in. (1172.5 mm)	40.5 in. (1032 mm)	
Potential Evapotranspiration	40.9 in. (1039.8 mm)	40.6 in. (1031.8 mm)	
Actual Evapotranspiration	32.1 in. (814.6 mm)	33.5 in. (851.1 mm)	
Available for Runoff and Recharge	14.1 in. (357.2 mm)	7.1 in. (181.3 mm)	
Percent of Precipitation as Runoff and Recharge	31%	17%	

TABLE 7.2. Summary of Transmissivity, Permeability and Unit Thickness Data

	<u>Wilcox</u>	<u>Carrizo</u>	<u>Carrizo-Wilcox</u>
<u>Transmissivity (gal/day/ft)</u>			· · ·
Number of Measurements	44	14	23
Average Value	8,076	13,078	12,097
Minimum Value	600	2,000	2,970
Maximum Value	47,000	20,800	38,000
Standard Deviation	10,140	5,143	8,322
<u>Permeability (gal/day/ft²)</u>			
Number of Measurements	39	14	10
Average Value	76	185	99
Minimum Value	3	22	56
Maximum Value	338	450	244
Standard Deviation	80	92	54
Thickness of Unit (ft)			
Number of Measurements	42	14	10
Average Value	116	75	91
Minimum Value	15	40	30
Maximum Value	633	110	141
Standard Deviation	124	22	33

FIGURE 7.2. Net-Sand Map of the Undivided Wilcox Group. Wilcox outcrop from Barnes, 1965, 1966, and 1967.

water. This was based on data from the USGS (1959) which show minimum flow in streams in the Sabine River Basin to be about 1% of the flood stage flows.

Additional Stress on the Ground Water

A notable feature of the ground-water potential contours of the Wilcox-Carrizo aquifer is the depression in Gregg and Upshur Counties, which contain a major part of the East Texas Oil Field. Broom (1969) reported that for municipal purposes in Gregg and Upshur Counties in 1966, about 1.1 mgd (1200 acre-ft/yr) of water was being used for domestic purposes and about 1.6 mgd (1800 acre-ft/yr) was used for industrial purposes. The model calibration required that about 1600 acre-ft of water per year be withdrawn to create a similar ground-water depression.

Potential Distribution

A potentiometric surface map was drawn for the Wilcox-Carrizo aquifer from 717 head measurements. This map was digitized and used as the starting potentiometric surface for the modeling. Calibration of the model included checking how closely the hand-drawn potentials checked with the well measurements. When modeling a ground-water system, an attempt is made to adjust the model so that the potential surface has nearly the same or better accuracy than the hand-drawn potentials, when compared statistically to the well measurements. The hand-drawn potentials have an average difference of 26.7 ft, with a root mean square of 38.7 ft. The calibrated model results for the same wells show an average difference of 32 ft and a root mean square of 45 ft. This was considered sufficient to predict flow directions and travel times for the release consequence analyses.

RESULTS OF HYDROLOGIC SIMULATIONS

Three scenarios were chosen for hydrologic simulation: the base case, simulating the current ground-water system; a second case, postulating the end of water removal from the aquifer in Gregg and Upshur Counties; and a pumping well scenario, postulating a domestic pumping water well 6 km down gradient of the edge of a salt dome.

Base Case

A base case chosen for the first scenario was the case that simulates the present day ground-water system, including the depression in Gregg and Upshur Counties. Flow that originates at or passes over the Hainesville Salt Dome in the Wilcox-Carrizo aquifer travels in a southeasterly direction, then eastward into this depression. Figure 7.3 shows the streamlines drawn between these areas.

According to the near-dome hydrologic modeling (see Chapter 6) and release scenario analyses (see Chapter 5), a flow of 260 gpm is released from the salt dome. Integration around the salt dome on the down gradient side captured equal flow totaling 260 gpm within the seven flow tubes.

For the transport simulations, the seven flow tubes were combined into a one-dimensional tube of appropriate size and length. A dispersion length was calculated, which accounts for the variation within the two-dimensional flow system. This is because the results of interest are the rate of release of radioactivity per unit time into the surface water system and the distribution of that release in time, rather than the spatial variation among the paths. The observed travel time variation in the seven flow tubes was used to determine an average travel time and velocity. The maximum and minimum travel time was 18,800 years and 11,900 years, respectively. The flow tube lengths were from 21,900 ft to 18,300 ft. Velocity variation was from 11.66 ft/yr to 15.33 ft/yr, with an average of 13.26 ft/yr. The macroscopic dispersivity was calculated from the velocity variation to be equal to 770 ft.

Second Case

The second case was postulated with the discontinuance of water being removed from the aquifer in Gregg and Upshur Counties. This would permit the water passing the Hainesville Salt Dome to discharge into the Sabine River and the Big Cypress Bayou near the northeastern model boundary. Figure 7.4 shows the new contours of potential and the calculated flow tubes containing the 260 gpm flow released from the salt dome breach.

FIGURE 7.3. Modeled Ground-water Aquifer Showing Potential Contours and Flow Tubes from the Hainesville Salt Dome, Case 1

FIGURE 7.4. Modeled Aquifer Showing Potential Contours and Flow Tubes from the Hainesville Salt Dome, Case 2

The flow from the salt dome proceeds southeasterly and divides to enter the Sabine River and the Big Cypress Bayou at the edge of the confining Reklaw Formation. The center streamline terminates at the stagnation point that divides the two flow systems. The average flow velocities, travel times, and lengths of the flow tubes are shown in Table 7.3.

Pumping Well Scenario

A domestic pumping water well was postulated at a distance of 6 km down gradient of the edge of the salt dome, based on the location that can currently provide potable water. (In an actual site assessment, this would be changed to match the requirements of federal regulations.) The contaminated water was assumed to be picked up in a 400 gpm well discharge.

One feature of the VTT code used for these simulations is the ability to do more detailed simulations in the area of interest by focusing on a subregion of the modeled area, creating a smaller area of higher resolution. This is done by first simulating the large area of low resolution to provide the boundary condition for the small area, high resolution region. The new subregion model is then run to predict in more detail the potential contours for this region.

Figure 7.5 illustrates such an expanded smaller region. The node spacing for this region was 1320 ft. Point source data for the release and pumping are the same as in the large region model. Flow originates from the release point at the Hainesville Salt Dome and enters the well near the 344-ft contour.

Flow tubes were generated and travel times for each streamline were computed. The average flow tube length was 22,900 ft and the travel time was 1050 yr. The flow tubes are numbered on Figure 7.5.

TABLE 7.3. Case 2 Flow Tube Data

	<u>Sabine Discharge</u>	Big Cypress Discharge
Average travel time	43,000 yr	38,550 yr
Average length	326,500 ft	343,400 ft
Average velocity	7.59 ft/yr	8.91 ft/yr

FIGURE 7.5. Subregion Model With Plotted Contours and Flow Tubes from the Edge of the Salt Dome to a Pumping Well

Simulation of this scenario is rather inconsistent in that subsequent to the breach in the salt dome, the ground water is nearly saturated with brine. Thus, the well at 6 km could not yield potable water. Indeed, the salt plume is calculated to last about 15,000 yr along a pathway for which it also (by chance) takes about 15,000 yr to travel. During this period there is no location along the streamlines that will give potable water. However, subsequent to the dissolutioning of the salt dome, potable water could be obtained directly above the repository. For this analysis this inconsistency was not resolved. The well at the current potable location was arbitarily selected to demonstrate the methodology used to analyze a well scenario. In an actual site assessment the well analysis would be in accord with the appropriate regulations defining the accessible environment.

CHAPTER 8

TRANSPORT SIMULATION

Ground-water flow patterns and velocities ultimately determine the dispersal and arrival times of dissolved radioisotopes leached from a geologic repository. In principle, the classical convective-diffusion equation depending on the ground-water velocity at each aquifer location and each geological stratum can be solved for the concentration of transported radioisotopes over time. Such a calculation would, however, require a thorough knowledge of the release rates from the breached repository, the hydrodynamic dispersivity defined over the entire region, and a complete characterization of the chemical phenomena of contaminant sorption on geological media. Acquisition of all such data on a geological scale is not currently achievable. In predictions of contaminant transport through a ground-water system, the inherent spatial variability of media properties is an additional obstacle. This stochastic aspect affects the assumed validity of the classical transport equation when applied to large regions for predictions over thousands of years.

In view of the limits and uncertainties in the site characterization data, a one-dimensional transport model having a stochastic formulation was used for the far-field transport simulations of this reference site analysis. The specific geometry of the repository is considered to be not important in the farfield. Only the near-dome simulation warranted three-dimensional analysis; however, in an actual site assessment, if the data are sufficient, the threedimensional model could be used for far-field simulations.

TRANSPORT MODEL

A one-dimensional Multicomponent Mass Transport model (MMT1D--see Appendix D), based on the method of discrete parcel random walk, was used to simulate the movement and to predict the concentrations of radioisotopes released by the nuclear waste repository. The basic operational concepts incorporated in the model are:

- convective transport and dispersion
- soil media sorption equilibrium
- radioactive decay of contaminants
- repository release rates.

The one-dimensional model is made to represent a real system's threedimensional flow by associating a width and height with the lines of travel, which are the streamlines obtained from the hydrologic modeling of the water flow (see Chapter 7). A collection of streamlines beginning at the repository and ending at a release region at the surface water systems is collectively called a flow tube. The flow tube's width and height represents the extent of lateral transport (dispersion) expected during transit along that flow tube length. Furthermore, flow tubes are dimensioned to be mass conservative by requiring all material released by the repository to remain within a tube until exiting.

Convective Transport and Dispersion

The mass of radioisotopes is subdivided by the model into many parcels that are released into the ground-water stream according to a specified repository release rate, which was determined from the breach scenario, near-dome simulation, and leaching/solubility considerations. Parcels of radionuclides not interacting with the porous media are transported away with a velocity equal to the average of velocity of the ground water along the streamlines defining the flow tube. Radionuclides that are adsorbed move with a retarded velocity equal to the average velocity divided by a retardation factor K, given by:

K = 1 + Kd

•••

where Kd is the sorption equilibrium constant for the particular radionuclide and is the ratio of geomedia bulk density to geomedia porosity.

Dispersion can be defined most simply as the phenomenon associated with the mixing between different concentration regions. It is a consequence of random motions deviating from the mean flow velocity. The extent of dispersion for a particular system is quantified by the dispersion length or dispersivity. A random walk process is used by the model to simulate the dispersion of

radioisotopes. During transit with a retarded average flow velocity, parcels are given random displacements as a function of the dispersion length. Such a random process generates the concentration solution to the partial differential equations of transport. In order that dispersion in a one-dimensional flow tube might represent the combined effects of both dispersion and velocity variation between streamlines, an effective macroscopic dispersion length parameter was employed. This parameter represents the velocity variance of parcels traveling along different streamlines comprising the flow tube.

Geological Media Sorption Equilibrium

The Kd values represent the ratio of the activity of the radioisotope sorbed onto a geologic medium to that remaining in solution under equilibrium conditions. Immobilization is primarily viewed as an adsorption process but can occur by other chemical mechanisms. It is assumed that the water velocity is low enough that the equilibrium assumption is valid.

The geotransport aspect of the salt dome repository scenario requires consideration of two sets of Kd values for some of the radionuclides present in the inventory. As nuclear waste is released by the dissolving salt dome, the Kd used is that measured in concentrated salt solution; when the salt dome dissolution is complete, the Kd used is that measured in ground water containing bicarbonate. Generally, the Kd value of variable sorption nuclides is greater in bicarbonate ground water than in a salt solution. (A notable exception is Tc, which has its greater value in salt solution.) The result is lower retardation for radioisotopes traveling along within the salt plume, resulting in shorter travel times than would be the case for the bicarbonate solution. To handle this change in Kd values subsequent to passage of the salt plume, alterations of the original MMT model were made to include dependence of Kd on the location of the released salt plume.

Radioactive Decay

.....

÷.,

The radioisotopes contained in both the repository and the flow tubes undergo radioactive decay. Released parcels of fission or activation products have their mass reduced according to a simple first-order exponential decay as they transit the flow tube. Transuranic radionuclides are involved in four

decay chains: the actinide series, the uranium series, the neptunium series, and the thorium series. Mass balance is maintained in the MMT model by creating daughter parcels with total activity equal to that derived from chain decay. Only parent and daughter nuclides with relatively long half-lives are considered for transport simulations. Daughter nuclides with relatively short half-lives that are in secular equilibrium have the location and spatial distribution of their parents.

RELEASE SOURCE TERM

A release source term curve reflects the details of the release scenario and is the primary factor establishing the initial radioisotope concentrations during transport simulation. Without the effects of sorption and dispersion, released concentration levels propagate along the flow tube with the groundwater flow velocity, altered only by radioactive decay. Sorption differences among radionuclides and dispersion cause separation in the concentration distributions.

The release source term of each radionuclide is a function of exposed surface area, leach rate, solubility, and water flow rate exiting from the repository. For the base case salt dome breach scenarios, the exposed surface area was found not to be limiting. A solubility limit of 6 ppm for uranium was assumed, while all of the other radionuclides were assumed to be released at proportional rates, resulting in congruent dissolution for all radionuclides at a single fractional release curve (see Chapter 10).

The rate of waste dissolution in metric tons (1000 kg) per year was determined as follows:

- Leaching rate (metric t/yr) = 0.002 x flow rate (gpm) x solubility (ppm). Total uranium inventory calculated from the assemblies list equaled 7.8 x 10^4 metric tons. Assuming a constant flow rate yields:
- Leaching time $(yr) = 3.9 \times 10^7$ /flow rate (gpm) x solubility (ppm). Similarly, with 410,000 ppm as the solubility of salt, the rate of dissolution of the salt dome in ft³/yr in terms of flow rate in gpm is:

- Salt dissolution rate $(ft^3/yr/gpm) = 1.4 \times 10^4 (ft^3/yr/gpm of flow)$. Using the volume of a truncated cone from the top of the salt dome to the repository depth, the volume of salt was estimated to equal 5.5 x 10^{10} ft³. Again assuming a constant flow through the salt dome, the time for dissolution above the repository is:
- Salt dome dissolution time $(yr) = 3.8 \times 10^6$ /flow rate (gpm).

Near-dome simulation (Chapter 6) of the hydrologic system provided an estimate for the water flow rate of 260 gpm during salt dome dissolution. After the salt dome collapse and the resultant termination of the salt release, the flow rate penetrating the nuclear waste region equaled 35.6 gpm. At a flow rate of 260 gpm, the salt dome dissolves in 14,700 yr. During this period, the fraction of the nuclear waste inventory leached at 6 ppm concentration is 0.59. The remaining 0.41 of the waste is leached in 75,000 more years by the 35.6 gpm flow at 6 ppm for uranium.

CONCENTRATION ESTIMATION

Concentrations of radioisotopes were calculated by a summation of parcel weights over time intervals as the parcels exit the flow tube. The parcel flux obtained from that summation was divided by the total Darcy flow within the tube to obtain concentration. Because the summation of parcel weights constitutes sampling a random walk transport process, the primary concentration versus time curve displays statistical fluctuations. The expected concentration curve was obtained by averaging the primary curve with a time series filter to remove most of these fluctuations. As a result of this methodology, the concentration graphs include small variations.

RELEASE CONSEQUENCES ANALYZED

Geotransport was evaluated for four cases:

Case 1. Base Case, with the exit point in the East Texas Oil Field as in the present hydrologic system. Breach occurs at 150 yr and at 1050 yr after the repository closure (i.e., after 50 years of solution mining which begins at time 100 or 1000 yr after closure).

- Case 2. Base Case, with the East Texas Oil Field removed from the hydrologic model. This gives exit points in the Sabine River and Big Cypress Bayou. Only the release at 150 yr post-closure was analyzed.
- Case 3. Well Pumping Case, with the well located 6 km from the salt dome. Only the release at 150 yr post-closure was analyzed.
- Case 4. Base Case with the East Texas Oil Field removed, exit into the Sabine River only, using lower bound Kd values.

The nuclides considered in the four scenarios are listed in Table 8.1. The initial inventory is the total inventory from the PIR assemblies list (provided to AEGIS by BNI) of 10 yr old waste at the beginning of emplacement in the repository. The 200-yr inventory is that of 200-yr-old waste in the repository, with geotransport beginning at that time. Radioisotope half-lives and average Kd values are also provided in Table 8.1. Simulations were run to 2 million yr, except the well pumping case terminated at 150,000 yr. This was done because residual radionuclides with large retardation factors would have decayed before exiting to the surface. A beta value of 6.0 and an effective porosity value of 0.2 were used in all runs. The effective porosity was provided by the water flow modeling (Chapter 7) and is used to convert water velocity (Table 8.2) into Darcy water flux by mulitplication.

The elimination of the East Texas Oil Field resulted equally in a Sabine River discharge and a Big Cypress Bayou discharge. Release inventory, therefore, was divided equally between two flow tubes. In all cases, the flow tube dimensions were calculated to subtend the repository and include 260 gpm $(1.8 \times 10^7 \text{ ft}^3/\text{year})$ of ground-water flow. The transport parameters are provided in Table 8.2.

The tube dimensions, flow velocities, and travel times given in Table 8.2 are average values based on the streamlines of the flow tubes. The dissolved salt release begins at year 200 and ends with year 14,917. (Note that dates in this section refer to the age of the waste.) The region of concentrated salt solution moves with the ground-water velocity in each case and requires the given travel time to traverse the flow tube. The dispersion parameters represent the macroscopic velocity variation over streamlines comprising each flow tube; they are not the porous media dispersivity.

TABLE 8.1. Simulation Inventories, Half-Lives, and Kd Values

<u>____</u>

<u>Nuclide</u>	Half-Life (years)	Initial Inventory (curies)	Decayed* Inventory (curies)	Ko (ml) Salt	j** /g) <u>Water</u>
3 _H	12.35	3.45E7	4.59E2	0	0
14 _C	5730	1.14E5	1.11E5	0	0
79 _{Se}	6.5E4	2.98E4	2.97E4	24	24
90 _{Sr}	28.5	4.30E9	3.32E7	Ó	270
99 _{Tc}	2.13E5	9.72E5	9.71E5	1.6	0
129 ₁	1.57E7	2.29E3	2.29E3	D	0
135 _{Cs}	2.3E6	2.84E4	2.84E4	0	11
		Decay Ch	ains_		
Thorium	Series:				
240 _{Pu}	. 6540	3.85E7	3.77E7	250	73
236U	2.34E7	1.84E4	1.86E4	1.5	1.5
232Th	1.4E10	0	1.83E-4	40	40
Neptuni	um Series:				
241 _{Am}	433	3.26E8	2.37E8	0	75
237 _{Np}	2.14E6	2.25E4	4.05E4	0	6.6
233 _U	1.58E5	0	2.80E1	1.5	1.5
229 _{Th}	7340	0	2.34E-1	40	40
Uranium	Series:				
242 _{Pu}	3.87E5	1.31E5	1.30E5	250	73
238 _U	4.47E9	2.45E4	2.45E4	1.5	1.5
230 _{Th}	7.7E4	9.01	8.43E1	40	40
226 _{Ra}	1600	2.41E-2	3.94	15	15
Actiniu	m Series:	· .			
243 _{Am}	7370	1.16E6	1.14E6	° 0	75
239 _{Pu}	2.44E4	2.36E7	2.35E7	250	73
239 _U	7.04E8	0	4.63	1.5	1.5
231 _{Pa}	3.25E4	0	9.52E-3	40	40

Fission and Activation Products

* Decayed inventory for 200 year-old waste at time 150 years post-closure. **See Chapter 11.

TABLE 8.2.

Caca 1

uase I. Last lexas	VII FIEIU.
Path length	196,700 ft
Flow tube dimensions	29, 400 x 234 ft
Travel time	14,800 yr
Flow velocity	13.26 ft/yr
Dispersion parameter	770 ft

Fast Toyas (i) Fiold.

Case 2. Sabine River and Big Cypress Bayou:

<u>Sabine</u>	<u>Cypress</u>	
326,500 ft	343,400 ft	
20,900 x 288 ft	30,600 x 167 ft	
43,000 yr	38,550 yr	
7.6 ft/yr	8.9 ft/yr	
164 ft	504 ft	
130 gpm	130 gpm	
	Sabine 326,500 ft 20,900 x 288 ft 43,000 yr 7.6 ft/yr 164 ft 130 gpm	

Case 3. Well Pumping Case:

Path length	22,900 ft		
Flow tube dimensions	10,000 x 418 ft		
Travel time	1,050 yr		
Flow velocity	21.8 ft/yr		
Dispersion parameter	162 ft		
Flow	260 gpm		
Pumping rate	400 gpm		

The concentrations of radioisotopes are based on the flow rate through each tube, except that in the well pumping case, the exit concentrations are diluted by the 400 gpm removal rate. Additional water is assumed to enter the well.

Graphs of concentration versus time for five simulation runs representing the four cases are provided in the appendices. In those graphs, the initial inventory is that at 200 yr, and the cumulative release (present inventory) is defined as the total inventory under the graph, equaling the total curies exiting before decay takes place to the surface (Table 8.3).

TABLE 8.3. Cumulative Radiocontaminant Discharge in Curies for the Four Release Scenarios After Geotransport Based on Solution Mining Beginning at Time 100 Years After Closure

	Simulation Number					
<u>Nuclide</u>	(1)	<u>(2a)</u>	(2b)	(3)	(4)	
¹⁴ c	5.21E3	8.90E1	1.52E2	2.50E4	8.88E1	
⁷⁹ Se	0	0	0	· 0	0	
⁹⁹ Tc	5.43E5	2.46E5	3.88E5	4.32E5	2.46E5	
¹²⁹ I	2.28E3	1.14E3	1.14E3	2.28E3	1.10E3	
¹³⁵ Cs	2.49E4	7.74E3	7.71E3	1.66E4	7.68E3	
240 _{Pu}	0	0	0	0	-0	
236 _U	2.90E4	1.44E4	1.44E4	2.91E4	1.44E4	
²³² Th	1.13E-1	4.73E-2	4.84E-2	7.96E-3	3.87E-1	
241 _{Am}	0	0	0	1.07E6	0	
237 _{ND}	8.05E4	3.53E4	3.50E4	8.67E4	4.0E4	
233 _ປ ໌	7.31E4	4.90E4	5.12E4	1.52E4	2.84E4	
²²⁹ Th	4.47E3	2.08E3	1.95E3	7.49E2	1.17E3	
242 _{Pu}	0	0	0	O	0	
238 _U	2.45E4	1.22E4	1.22E4	2.45E4	1.22E4	
²³⁴ U	9.64E4	2.83E4	3.06E4	1.31E5	3.39E4	
230 _{Th}	4.33E3	1.24E3	1.37E3	3.59E3	1.07E3	
226 _{Ra}	9.48E3	2.55E3	3.19E3	8.30E3	1.73E3	
243 _{Am}	8.75E4	3.08E3	4.55E3	3.29E5	3.08E3	
239 _{Pu}	2.26E2	8.36	6.81	3.89E2	9.27	
235 _U	8.16E2	4.12E2	6.00E5	7.82E2	5.50E5	
231 _{Pa}	2.75E1	7.48	1.26E1	2.96E1	5.93	

Cumulative Discharge (curies)

(1) Case 1. East Texas Oil Field discharge.
(2a) Case 2. Sabine River discharge.*
(2b) Case 2. Big Cypress Bayou discharge.*
(3) Case 3. Well pumping case.
(4) Case 4. Sabine River discharge.* Lower bound Kd.
* Represents half of released inventory.

<u>NOTE</u>: The format used here is analogous to scientific notation, e.g., $5.21E3 = 5.21 \times 10^3$

Unusual effects of salt concentration affecting the sorption Kd are observed for the fission products. In all cases, 3 H and 90 Sr decay before exiting to the surface. Carbon-14 has the shortest half-life of the activation products that exit. It moves at the water velocity in both the salt solution and bicarbonated water.

Figure 8.1 shows carbon concentrations for Case 1. As a consequence of a substantial macroscopic dispersion parameter, ${}^{14}C$ arrives at the exit about 2000 yr sooner than predicted by an average water travel time. The extended tail on the graph results from the protracted release at a reduced rate between times 15,000 to 90,000 yr, after the salt dome has dissolved. The short half-life causes ${}^{14}C$ to vanish after 30,000 yr.

Figure 8.2 displays 14 C concentration under the same hydrologic conditions, but including initiation of the solution mining at 1000 yr after closure. The exit inventory is 92% of that in Figure 8.1. In view of the fact that all radionuclides with a longer half-life, including the transuranics, will not decay more quickly than 14 C, a 1000 yr delay before geotransport would yield little difference in consequences over the minimal 15,000-yr travel time. The differences are even less for long half-life nuclides with non-zero Kd values. Thus the 100- and 1000 yr solution mining scenarios would yield essentially equivalent consequence results from geotransport. This is an important result, in that it shows the geotransport consequences of a breach are not affected by whether it initiates at 100 or 1000 yr after closure. Additionally, this shows that engineered barriers totally effective for 1000 yr after closure (assuming they could be designed) would not significantly reduce the consequences via geotransport from a repository breach, if the transport time to the accessible environment is as long as in this system.

Figure 8.3 shows 129 I, a long-lived isotope, also with no sorption retardation. Iodine arrives as two, joined square pulses, resulting from the corresponding periods of constant release rates; that is, 59% of the inventory between 200 and 15,000 yr, and 41% between 15,000 to 90,000 yr.

FIGURE 8.1. Isotope C-14, Concentration vs Time

8.12

÷

FIGURE 8.3. Isotope I-129, Concentration vs Time

8.13

1

Nuclides having a greater Kd in bicarbonate water than in salt solution display an unusual behavior. Initially released in salt solution, they travel faster than in bicarbonated ground water, where the travel times are subsequently decreased. On the other hand, effective macroscopic dispersion spreading is increased by the time of exiting of the salt plume's trailing edge, with retarded velocity. Figure 8.4a-c illustrates that behavior for 135 Cs as a result of zero Kd in salt solution. Cesium released into the salt plume is carried away at water velocity, whereas the cesium released after salt dome dissolution is complete travels with a substantially reduced velocity. The opposite situation occurs for 99 Tc, which has a greater Kd in salt than in water. This reversed variation of Kd causes the nuclide to accumulate behind the salt plume's trailing edge. Figure 8.5 shows 99 Tc concentration.

Analysis of the decay chain concentration distributions is further complicated by the same behavior observed for fission activation products. Absence of initial inventories provided to AEGIS for the nuclides 232 Th, 233 U, and 235 U is noteworthy. These long-lived chain members are eventually included by parent chain decay. Nuclides with a short half-life at the top of the chains typically do not exit before decaying in Cases 1, 2, and 4. An exception is 243 Am, because it has a Kd value of zero in salt solution.

A particularly interesting example is provided by decay chain 2 of the base case (Case 1 simulation). Figure 8.6 shows that 237 Np has a fractured release. The daughter nuclide concentration of 233 U shown in Figure 8.7 is a consequence of three distinct decay periods. Between 15,000 and 150,000 yr, the uranium derives from decay of the first 237 Np pulse traveling with the salt plume. In the period 150,000 to 240,000 yr, uranium accumulated near the repository from the bicarbonate water retarded 237 Np, producing a peak value near 200,000 yr. The second 237 Np pulse approaching the discharge creates a second uranium peak between 500,000 to 600,000 yr. The last chain member, 229 Th (Figure 8.8) duplicates the parent 233 U concentration distribution. This is caused by the sorption retardation and short half-life of 229 Th.

8.15

1

 Δ

1

.

FIGURE 8.6c. Isotope NP-237, Concentration vs Time

FIGURE 8.8. Isotope TH-229, Concentration vs Time

Case 3, the Well Pumping Case, represents the consequence of a relatively early radioisotope release, as only a thousand years is required for some nuclides to reach the well at a distance of 6 km. The conservative assumption was made that all of the nuclides exiting the repository are withdrawn at the well. The graphs for these simulation runs illustrate the results, which differ from the other scenarios having considerably longer travel times.

Case 4 simulation runs represent the effects of decreased sorption on the geotransport of the radioisotopes. These runs use the lower bound Kd values. Only the Sabine River discharge part of the scenario is used for comparison with simulation runs of Case 2. Travel times are predictably reduced by ratios of the changed retardation factor(s) to the original average value(s). The fission products do not yield very different results, but uranium arrives about 100,000 yr sooner with the lower bound Kd. Daughter nuclides appear to acquire greater concentration when their parents have a longer decay period, corresponding to greater travel time. Low initial daughter inventories and long half-life contribute to that effect. An exception occurs for 235 U, in that a greater quantity of parent nuclide 239 Pu decays near the salt dome, producing more curies of 235 U during the simulation period.

The MMT model has the capability of producing information on radioisotope concentration as a function of distance from the repository. This is achieved by summing parcel weight within distance intervals. Concentration levels over the flow tube length propagate toward the discharge point with their apparent retarded velocities. Appendix G contains some sample graphs for 15,000 and 30,000 yr following the repository breach in the well pumping case. Salt dissolution terminates at 15,000 yr, and those nuclides having variable Kd's display a release pattern caused by retention of nuclides near the repository. Neptunium and cesium isotopes provide good examples. In the cases of nuclides not exiting in 2 million years for the other scenarios, concentration versus distance graphs are included with those for time, provided in Appendix G.

MEASURES OF DISPERSION USED IN THE SIMULATIONS

The hydrodynamic dispersion coefficient D, required as a parameter for the transport model, must be empirically evaluated using the specific geological media involved. Commonly its value is not available. In a three-dimensional

flow, the lateral dispersion coefficient establishes the transfer rate of radioisotopes between streamlines of varying flow velocity. In a macroscopic flow tube the dispersion caused by velocity variation between streamlines usually dominates the porous media longitudinal dispersion, which is a microscopic scale phenomenon. Thus, from the perspective of a one-dimensional flow tube representation of a real three-dimensional flow, dispersion is mainly a consequence of the macroscopic variation in convective transport of nuclides. Radioisotopes entering a specified flow tube are assumed to follow with equal likelihood any streamline within. On the other hand, concentrations of discharged nuclides having variable transit times are determined by the flow tube's entire discharge volume. This is because exiting parcels of radioisotopes cannot be localized with any greater accuracy than the tube's crosssectional area.

In view of those considerations, an effective macroscopic dispersion parameter is constructed as follows. Let p denote the pth streamline comprising a flow tube having P streamlines. Streamline length is L, and travel time is t. An estimate of an effective dispersion parameter, D*, is obtained by equating the random walk variance in parcel locations and that derived from convective velocity variation.

Let:

$$t = \frac{1}{p} \sum_{p=1}^{p} tp$$
 (8.1)
 $L = \frac{1}{p} \sum_{p=1}^{p} Lp$ (8.2)

denote average values. Travel time variance is:

$$\sigma_t^2 = \frac{1}{P-1} \sum_{p=1}^{P} (t-t_p)^2$$
 (8.3)

Average flow tube velocity is:

 $v = L/t \tag{8.4}$

The estimate of variance in location is:

$$(v \sigma_t)^2 = 8 D^* t$$
 (8.5)

Then, the estimated effective dispersion length d is:

$$d = v \sigma_{+} / 8 t.$$
 (8.6)

Unlike the true hydrodynamic dispersion length, the effective value depends on travel time. The complete location variance equals the sum of variances because of hydrodynamic dispersion and travel time; thus, the complete dispersion coefficient equals $D + D^*$.

Required means and variances for streamline lengths and travel times were obtained from hydrologic modeling. Effective dispersion was assumed to dominate the transport.

CHAPTER 9

DOSE CALCULATIONS

As discussed in the section on human intrusion (Chapter 4), there are significantly different time frames involved with the safety assessment of a nuclear waste repository. Over the million-year time frame with which AEGIS scenario methodology deals, geological events and processes occur. This time frame exceeds what is necessary for biological evolution. The 10^5 -yr time frame corresponds to full cycles of climate changes, and also is adequate for biological evolution and speciation. The biologically identical equivalent of modern man, Cro-Magnon, dates from about 50,000 yr before present; in the last 50,000 yr there has been essentially no biological evolution for <u>Homo sapiens</u>. During that period, cultural evolution has predominated. Only within the last 10,000 yr or so has there been a planned agricultural food base for any human populations. Finally, the cultural evolution within the last few centuries has been explosive, as measured by such parameters as population density and mobility, utilization of resources, and information content.

Because of this wide divergence in the time frames applicable to cultural versus geological processes, it is not appropriate to predict cultural impacts over geological times. One such cultural impact is measured as dose to individuals or to populations. Such dose calculations are dependent on demography or diet and on the recyling through ecological systems of those radioisotopes that are analogous to nutrient elements. As the demographic patterns, feeding habits, and ecosystem recycling pathways may change rapidly in periods as short as a few centuries, it is misleading to provide dose calculations for 10^6_{yr} in the future based on the current social structure. The AEGIS team believes dose predictions should be limited to only the early period of post-closure safety assessments. Nevertheless, based on a number of comments received from the external peer reviewers, this revised report does contain dose calculations

out to one million years. These are presented not as predictions of what the expected doses actually would be; rather, they provide an indication of the effects of long-term nuclear decay on the consequences of the analyzed scenarios relative to current population parameters.

GENERAL POPULATION DOSE CALCULATIONS

12

1

For this reference site analysis, AEGIS chose the limit of 1000-yr postclosure based on the draft of proposed EPA standards available at the time of this work, which stated that health effects need only be addressed for 1000 yr. (That limit no longer remains in more recent drafts of the EPA standards.) The result of this limitation is that dose calculations were originally presented only for the operational aspects of the solution mining scenario at times 100 yr and 1000 yr after closure. The revised report has doses for later intrusion periods. No dose calculations were performed for radioisotopes that subsequent to the solution mining intrusion were transported through the geosystem.

The solution mining scenario involves the extraction of salt and radioactive wastes from the salt dome repository. The salt is removed as a brine solution, with the salt recovered by several methods, such as the vacuum pan and grainier processes, or by solar driven evaporation of the brine. The main use of salt is as an industrial chemical in production of soda ash (for glass), caustic soda (for the paper industry), and other industrial chemicals such as chlorine, chlorates and hydrochloric acid (Bates 1969). Salt is also used for the production of soap, in the textile industry, for water treatment, and for ice control. The food industry uses salt in refrigeration, meat packing, fish curing, dairy product processing, and as table salt.

For this analysis, the main route of exposure of the general population from contaminated salt brines is taken to be the use of salt in the food industry, as the ingestion of salt is the most direct and probably most consequential, pathway. To date other pathways leading to dose to humans have not been investigated. In an actual site assessment, some other vectors would be addressed. The exposure pathway here is ingestion of culinary salt, including salt present in cured meats and fish and processed dairy products. During the

preparation of salt for culinary use, some of the radionuclide activity might be removed as impurities; however, no credit was taken for removal in the consequence analysis because such purification might be highly dependent on the particular technology used.

The assumptions used in the base case dose consequence analysis include:

- Salt mine production is one million tons of salt per year.
- The mine operates for 50 yr without detection of radioactive wastes.
- Three percent of production is used as culinary salt and ingested by humans.
- Each person ingests 1800 g salt per year.

The alternative set of assumptions leading to identical consequences are:
Salt mine production is 33,333 tons/yr.

• The mine operates for 50 yr.

٠,

- 90% of production is used for culinary salt.
- Each person ingests 1800 g/yr.

These assumptions are based on the following considerations. The one million tons of salt per year is representative of a current large scale salt production effort. Up to 3×10^6 tons/yr have been produced from a solution mine, and the Commercial Waste Management Study (CWMS 1980) assumed a production of 2.6 $\times 10^6$ tons/yr. Such a level of salt production is unlikely for a 50-yr period. The 50-yr lifetime for the solution mine operation was arbitrarily chosen, and this value coincides with the CWMS value. Also, the 3% and 1800 g/yr per person values reflect the numbers used in the CWMS study. The 3% level is based on the fraction of total salt produced in the United States that is directly ingested, and the 1800 g/yr is based on consumption of 5 g/day in table salt or as a part of processed foods. (More recent data indicate this value should be increased by about a factor of 3, which would likewise increase the individual doses by a factor of three.)

The alternative assumptions address an apparent inconsistency between the size of the mining operation and the uncontrolled cavity formation. For a salt dome being used to produce culinary salt, up to 90% of the brine is used for

culinary salt. Thus, increasing the 3% factor to 90% allows a reduction of the scale of mine operations 30-fold, even though the dose consequences would be identical.

Based on either set of these assumptions, the population served by the annual mine production is calculated to be 15 million persons. Note that this population level is demographic-independent: the number of persons exposed depends on the amount of salt available rather than on particular population distributions. The population level was calculated as follows:

 0.03×10^{6} tons/yr x 2000 $\frac{1bs}{ton} \times 454 \frac{q}{1bs} \times \frac{1 \text{ person}}{1800 \text{ g/yr}} = 1.5 \times 10^{7}$ persons

The fraction of wastes in the repository removed during the 50 yr of operation was calculated to be 0.97%. This fraction is based on the solubility limit for uranium of 6 ppm (see Chapter 10) and an effluent water flow rate of 1200 gpm for the brining operations, and was calculated as follows:

$$6 \times 10^{-6} \frac{\text{parts}}{\text{part}} \times 1200 \frac{\text{gal}}{\text{min}} \times 5.260 \times 10^5 \frac{\text{min}}{\text{yr}} \times 50 \text{ yr} \times 3785 \frac{\text{g}}{\text{gal}}$$
$$= 7.2 \times 10^8 \text{ g}$$

The total weight of uranium in the repository is 7.4 x 10^{10} g. Thus, the fraction of the uranium leached during 50 yr of solution mining is:

$$\frac{7.2 \times 10^8 \text{ g (leached)}}{7.4 \times 10^{10} \text{ g (in repository)}} = 9.7 \times 10^{-3}$$

The fraction of the inventory consumed with culinary salt is then 3% of 9.7 x 10^{-3} , as only 3% of the mined salt is used as culinary salt.

9.7 x 10^{-3} x 0.03 = 2.94 x 10^{-4} = fraction of inventory consumed.

Similar calculations using the alternative set of assumptions would also result in the same fraction of the inventory being consumed.

The fraction consumed can also be expressed as an equivalent number of fuel assemblies. The hypothetical repository will contain 1.52×10^5 BWR fuel assemblies and 1.08×10^5 PWR fuel assemblies, according to information provided to AEGIS from BNI. Thus,

 $1.52 \times 10^5 \times 2.94 \times 10^{-4} = 44$ BWR assemblies 1.08 x $10^5 \times 2.94 \times 10^{-4} = 31$ PWR assemblies

Using these estimates, 70-yr radiation dose commitments were calculated for individuals and for the population consuming culinary salt over various time periods during the 50-yr mine operational period. Tables 9.1 through 9.4 list the 70-yr radiation doses calculated for salt ingestion periods of 50, 1, 10, and 25 yr, respectively. The metabolic models and data presented in ICRP Publication 2 (1959) were used to estimate organ doses for intake via direct ingestion (using the computer code PABLM--Napier et al. 1980). Listed are the doses to individuals and the population for the solution mining scenario with mining starting 100 yr and 1000 yr after closure. (See Appendix J for details of these dose calculations.) All dose values in Table 9.1 through 9.11 (except 9.5) are appropriate for either the original assumptions or the alternative assumptions.

The CWMS analysis assumed discovery of the contamination of the culinary salt after one year of consumption. For this analysis, however, The AEGIS staff assumed that the contamination would not necessarily be discovered. Because the solution mining intrusion could occur by a population that has a technological base less sophisticated than today's or that has no knowledge of nuclear phenomena. Alternatively, the society could be aware of nuclear technology, but because of loss of effective information about the repository, no monitoring of the salt for radioactivity would occur. This is supported by the fact that today essentially none of the solution mining productions of salt in the United States are monitored for radioactivity.

TABLE 9.1. Radiation Doses Calculated for Solution Mining Scenario

(Uranium Solubility Limited, 50-year Ingestion--Base Case)

		Organ of Reference				
Decay Time	Total Body	Bone	Lung	Thyroid		
100 Years	1.6×10^{11}	6.5 x 10 ¹¹	2.8 x 10 ⁹	4.7 x 10 ⁶		
1000 Years	1.3 x 10 ⁹	3.0 x 10 ¹⁰	3.7×10^4	4.7 x 10 ⁶		
	B. <u>70-Year Ind</u>	ividual Dose Co	mmitments, rem	•		
100 Years	1.1×10^4	4.4×10^4	1.8×10^2	3.2×10^{-1}		
1000 Years	8.4×10^{1}	2.0×10^3	2.5×10^{-3}	3.1×10^{-1}		

Α.	70-Year	Popui	lation	Dose,	,* man-rem

* Based on affected population of 15 million. All figures in Tables 9.1 through 9.11 (except 9.5) are appropriate for either the original assumptions or the alternative assumptions.

<u>TABLE 9.2</u>. Radiation Doses Calculated for Solution Mining Scenario (Uranium Solubility Limited, 1-year Ingestion)

A. 70-Year Population Dose, man-rem

	Organ of Reference					
<u>Decay Time</u>	Total Body	Bone	Lung	Thyroid		
100 Years	3.3 x 10 ⁹	1.4×10^{10}	5.5 x 10 ⁷	9.5 x 10^4		
1000 Years	3.5×10^7	8.6 x 10 ⁸	7.5×10^2	9.4 x 10^4		
	B. <u>70-Yea</u>	nr Individual [<u>lose, rem</u>	·		
100 Years	2.2 x 10^2	9.6 x 10 ²	3.7	6.3×10^{-3}		
1000 Years	2.3	5.7 x 10 ¹	5.0 x 10 ⁻⁵	6.3×10^{-3}		

<u>TABLE 9.3</u>. Radiation Doses Calculated for Solution Mining Scenario (Uranium Solubility Limited, 10-year Ingestion)

		Organ of	Reference	
<u>Decay Time</u>	Total Body	Bone	Lung	Thyroid
100 Years	3.3×10^{10}	1.4×10^{11}	5.5 x 10 ⁸	9.5 x 10^5
1000 Years	3.3×10^8	8.2 x 10 ⁹	7.5 x 10^3	9.4 x 10 ⁵
B	. <u>70-Year Indi</u>	ividual Dose Co	mmitments, rem	1
100 Years	2.2 x 10^3	9.5 x 10^3	3.7×10^{1}	6.3 x 10 ⁻²
1000 Years	2.2×10^{1}	5.5×10^2	5.0 x 10^{-4}	6.3×10^{-2}

A. 70-Year Population Dose, man-rem

<u>TABLE 9.4</u>. Radiation Doses Calculated for Solution Mining Scenario (Uranium Solubility Limited, 25-year Ingestion)

A. <u>70-Year Population Dose, man-rem</u>

		Organ of	Reference	
Decay Time	Total Body	Bone	Lung	Thyroid
100 Years	8.3 x 10 ¹⁰	3.5 x 10 ¹¹	1.4 x 10 ⁹	2.4 x 10^{6}
1000 Years	7.7 x 10 ⁸	1.9 x 10 ¹⁰	1.9×10^4	2.4 x 10 ⁶
Β.	<u>70-Year Indi</u>	vidual Dose Co	mmitments, rem	
100 Years	5.5 x 10 ³	2.3×10^4	9.2 x 10^{1}	1.6×10^{-1}
1000 Years	5.1 x 10^{1}	1.2×10^3	1.2×10^{-3}	1.6 x 10 ⁻¹

To see the effect of this nonmonitoring assumption on dose burdens, the dose calculations were also performed for consumption periods of 1, 10, and 25 yr, i.e., less than the mining operation period of 50 yr. The direct comparison between these results and the CWMS results (see CWMS 1980, Table 3.1.53) can be made by inspecting Table 9.1B for the 1000-yr dose to whole body. The value of 2.3 rem of this study compares with the CWMS value of 0.49 rem. The CWMS study assumed a larger salt production and higher water solutioning flow rates than this analysis. CWMS also assumed a leach rate times surface area source term, whereas this analysis shows solubility to be limiting. Additionally, there are differences between the assumed inventories of the CWMS and this study. The net effect is less than a factor of 5 higher estimate in this study than in the CWMS study.

Another factor needs to be considered in this dose analysis. Calculations are shown for the original assumptions only on the 3% of the radioisotopes delivered to the surface. The other 97% of the waste at the surface are disregarded in the dose calculations. What actually would happen to that 97% has not been resolved to date, except for the analysis of doses to the solution mine operators by direct exposure. Future calculations could consider possible dose burdens from this source of 97% of the radioisotopes delivered to the accessible environment. This is not as important a problem for the alternative assumptions, where only 10% of the radioisotopes would not go to direct culinary pathways.

Finally, data are shown for the total quantity (curies) of each isotope delivered to the surface (Table 9.5) and ingested as table salt (Table 9.6) associated with 50 yr of solution mining operatons.

OCCUPATIONAL DOSE CALCULATIONS

The dose levels shown in Tables 9.1 through 9.4 could indicate levels of radioactivity high enough to cause lethal effects on the operators of the solution mine. This could result from direct exposure or from inhalation of particulates. This latter factor would be exacerbated considering that climatic conditions in the region of the Hainesville Salt Dome are likely to have humidities that would preclude natural evaporation of the brine. If so, the salt production could involve forced heating of the brine, with concomitant

_	Time After Closure					
Isotope	100 Years	1000 Years	10,000 Years	<u>30,000 Years</u>		
НЗ	2.1×10^3	0	0	0		
C14	1.1×10^3	9 67	327	29		
C136	10	10	6.7	6.7		
Fe55	7.0 \times 10 ⁻⁶	0	0	0		
Co60	10	0	0	0		
N159	2.4 x 10^{3}	2.4 \times 10 ³	2.2 x 10^3	1.9×10^3		
N163	1.6 x 10 ⁵	187	0	0		
Se79	297	283	257	207		
Kr85	1.0×10^4	0	0	0		
Sr90	4.7 \times 10 ⁶	1.0×10^{-3}	0	0		
Y9 0	4.7×10^{6}	1.0×10^{-3}	0	0		
Zr93	2.3×10^3	2.3×10^3	2.3×10^3	2.2×10^3		
Nb93m	1.9×10^{3}	1.9×10^{3}	1.9×10^3	1.9 x 10^3		
Nb94	733	700	533	260		
Mo93	17	13	1.6	1.6×10^{-2}		
Tc99	9.3 x 10^3	9.3 x 10 ³	9.0 x 10^3	8.3 x 10^3		
Pd107	80	80	80	80		
Sn121m	90	3.7×10^{-4}	0	· 0		
Sb125	1.1×10^{-4}	0	0	0		
Tel25m	2.7×10^{-5}	0	0	0		
Sn126	533	533	500	433		
Sb126	77	77	70	60		
Sb126m	533	533	500	433		
1129	23	23	23	23		
Cs135	273	273	273	270		
Cs137	7.3×10^{6}	7.3×10^{-3}	• 0	0		
Ba137	7.0×10^{6}	7.0×10^{-3}	0	0		
Pm147	3.2×10^{-4}	.0	0	0		
Sm151	1.3×10^{5}	153	0	0		
Eu154	2.3×10^3	0	0.	0		
Eu155	1.8	0	0	0		
Subtotal	2.4 \times 10 ⁷	2.0×10^4	1.8×10^{4}	1.6×10^4		

TABLE 9.5. Total Curies of Isotopes Delivered to Surface, 50 Years of Solution Mining (Large Scale Operations Assumptions)

r

.

	Time After Closure				
Isotope	100 Years	1000 Years	10,000 Years	30,000 Years	
Pb210	1.0×10^{-2}	2.0	87	303	
РЬ214	1.8×10^{-2}	2.0	87	303	
Bi210	1.0×10^{-2}	2.0	87	303	
Bi214	1.8×10^{-2}	2.0	87	303	
Po210	1.0×10^{-2}	2.0	87	303	
Po214	1.8×10^{-2}	2.0	87	303	
Po218	1.8×10^{-2}	2.0	87	303	
Rn222	1.8×10^{-2}	2.0	87	303	
Ra226	1.8×10^{-2}	2.0	87	303	
Th230	0.9	1.0	330	300	
Th234	237	237	237	237	
Pa233	290	700	833	833	
Pa234m ·	237	237	237	237	
U234	1.1×10^3	1.4×10^{3}	1.3×10^3	1.3×10^3	
U236	177	187	243	277	
U238	237	237	237	237	
Np237	290	700	833	833	
Np239	1.1×10^4	1.0×10^4	4.7 x 10^3	733	
Pu238	7.3 x 10^5	733	0	0	
Pu239	2.3 x 10^{5}	2.2×10^5	1.7×10^5	1.0×10^5	
Pu240	3.7 x 10^{5}	3.3 x 10 ⁵	1.3×10^5	1.7×10^4	
Pu241	7.7 x 10^5	13	7.0	1.2	
Pu242	1.6×10^3	1.3×10^3	1.2×10^3	1.2×10^3	
Am241	2.7 x 10^{6}	6.3 x 10 ⁵	6.7	0.3	
Am243	1.1×10^4	1.0×10^4	4.7×10^3	733	
Cm242	1.7×10^3	27	0	0	
Cm244	<u>2.2 x 10</u> 4	0	0	0	
Subtotal	4.8 x 10 ⁶	1.2×10^{6}	3.2×10^5	1.3×10^{5}	
TOTAL OF					
ALL ISOTOPES	2.9 x 10/	1.22 x 106	3.4 x 105	1.5 x 105	

TABLE 9.5. (contd)

	Time After Closure				
Isotope	100 Years	1000 Years	10,000 Years	30,000 Years	
Н3	62	· 0 .	0	0	
C14	32	29	9.8	0.9	
C136	0.3	0.3	0.2	0.2	
Fe55	2.1×10^{-7}	0	`	0	
Co6 0	0.3	0	0	0	
N159	72	72 ·	66	56	
N163	4.9 x 10^3	5.6	0	0	
Se79	8.9	8.5	7.7	6.2	
Kr85	310	0	0	0	
Sr90	1.4 x 10 ⁵	3.1×10^{-5}	0	0	
Y90	1.4×10^5	3.1×10^{-5}	0	0	
Zr93	69	69	68	67	
Nb93m	58	58	58	57	
Nb94	22	21 ·	16	7.8	
Mo93	0.5	0.4	4.9×10^{-2}	4.8×10^{-4}	
Tc99	280	280	270	250	
Pd107	2.4	2.4	2.4	2.4	
Sn121m	2.7	1.1×10^{-5}	0	0	
Sb125	3.4×10^{-6}	0	0	0	
Tel25m	8.2×10^{-7}	0	0	0	
Sn126	16	16	15	13	
Sb126	2.3	2.3	2.1	1.8	
Sb126m	16	16	15	13	
1129	0.7	0.7	0.7	0.7	
Cs135	8.2	8.2	8.2	8.1	
Cs137	2.2 x 10^{5}	2.2×10^{-4}	0	0	
Ba137	2.1 x 10^5	2.1×10^{-4}	0	0	
Pm147	9.7×10^{-6}	0	0	0	
Sm151	3.8×10^3	4.6	0	0	
Eu154	68	0	0	0	
Eu155	<u>5.3 x 10⁻²</u>	0	0	0	
Subtotal	7.2 x 10 ⁵	6.0 x 10^2	5.4 x 10^2	4.8 x 10^2	

TABLE 9.6. Ingested Curies of Isotopes for 50 Years of Consumption of Table Salt (Either Large or Small Scale Assumptions)

, *•*

(

Time After Closu				
Isotope	100 Years	1000 Years	10,000 Years	30,000 Years
Pb210	3.0×10^{-4}	6.1×10^{-2}	2.6	9,1
РЬ214	5.3×10^{-4}	6.1×10^{-2}	2.6	9.1
B1210	3.0×10^{-4}	6.1×10^{-2}	2.6	9.1
B1214	5.3×10^{-4}	6.1×10^{-2}	2.6	9.1
Po210	3.0×10^{-4}	6.1×10^{-2}	2.6	9,1
Po214	5.3 x 10^{-4}	6.1×10^{-2}	2.6	9.1
Po218	5.3×10^{-4}	6.1×10^{-2}	2.6	9 1
Rn222	5.3 x 10^{-4}	6.1×10^{-2}	2.6	9.1
Ra226	5.3 x 10^{-4}	6.1×10^{-2}	2.6	9 1
Th230	2.6 x 10^{-2}	0.3	3.3	9.1
Th234	7.1	7.1	7.1	7 1
Pa233	8.7	21	25	25
Pa234m	7.1	7.1	7.1	7 1
U234	33	41	40	38
U236	5.3	5.6	7.3	83
U238	7.1	7.1	7.1	7 1
Np237	8.7	21	25	25
Np239	330	310	140	23
Pu238	2.2 \times 10 ⁴	22	0	0
Pu239	6.8 x 10 ³	6.6 x 10 ³	5.2×10^3	3.0×10^{3}
Pu240	1.1×10^4	1.0×10^4	4.0×10^3	510
Pu241	2.3 x 10^4	0.4	0.2	35×10^{-2}
Pu242	38	38	37	35 7 10
Am241	8.1×10^4	1.9×10^4	0.2	9.5 × 10 ⁻³
Am243	330	310	140	22
Cm242	51	0.8	0	0
Cm244	660	0	0	0
Subtotal	1.5×10^5	3.6×10^4	9.7 x 10 ³	$\frac{3.8 \times 10^3}{3.8 \times 10^3}$
TOTAL OF				
CONSUMED	8.7 x 10 ⁵	3.7×10^4	1.0×10^4	4.3 x 103

TABLE 9.6. (contd)

increase in the aerosol production. These and other occupational factors could possibly result in direct, short-term health effects on the miners. If the brine, which yields such high population and individual doses via salt consumption, consitutues a major direct health hazard itself, then a mechanism would exist whereby the mine operations would terminate before general population exposure. This cessation of operations would occur irrespective of the level of sophistication of the technology of the extant society; i.e., no active monitoring for radioactivity would need be ongoing. Rather, short-term, major health effects or deaths readily identifiable with the salt mine operation would cause any society to cease operations. The consequences of the intrusion would be so immediate and deleterious locally that mitigation of broader impacts would ensue. Based on these consideration, AEGIS calculated the estimated doses to the solution mine operators.

One of the premises of AEGIS's human intrusion evaluations is to minimize the dependency of the results on specific technological levels or practices. This presents problems in estimating occupational doses, because such doses would be highly sensitive to the nature of the job being performed, the spatial distribution and size of brine storage areas, and the nature of the brine transportation and handling activities. To avoid this problem, AEGIS calculated the maximum exposure that the brine could provide to an operator, assuming conditions unrealistically conservative for any mining technology. Should these very conservative doses prove inadequate to cause mine cessation, any more reasonable exposure would result in lower doses and would also be inadequate.

To provide this maximum bound on the external exposure that a worker could receive, it was assumed that the external dose rate from any storage vessels, tank trucks, pipelines, open vats, or other operational structures containing contaminated brine could not be as high as the external dose rate that could be obtained by a worker being immersed in a large volume of the brine itself. Thus, the maximum bound was based on a worker being inside the brine solution for 8 hr/day, 5 day/wk, 50 wk/yr, or a total of 2000 hr/yr. While it may be possible that precipitation of radioactive solids from the brine could create a local source of higher radioactivity than the brine, it is felt that total

immersion in a large volume of the brine for continuous exposure throughout the year would more than compensate for any such spatial differences.

The results from the external dose calculations are presented in Table 9.7. Values are presented for the two different times of initial human intrusion for both annual and total mine lifetime periods. Again, the values presented in these tables are valid for either the original or alternative assumptions.

The other potential dose pathway to mine operators involves inhalation of the air in the vicinity of the brine, in which contaminated brine contributes particulates as aerosols. To provide a very conservative upper bound on the aerosol dose rates, it was assumed that the air contained one milligram of salt particles, each one micron in diameter, per cubic meter of air. This density was based on the particulates representative of a substantial dust storm at the Pacific Northwest Laboratory facilities. Again, continuous exposure for 2000 hr/yr was assumed. As in the case for the external dose calculations, this calculation was felt to be many times greater than would reasonably be expected for an actual solution mine operation. Total mine lifetime doses for this inhalation vector are listed in Table 9.8.

If the health effects from these exposures could be predicted to occur in a short enough time period and with distinct enough symptoms, then it could reasonably be concluded that the effluent brine from the solution mining operation itself would be a signal to the intruding population that it must terminate operations, thereby mitigating the general population consequences. However, it is the opinion of the AEGIS staff that the radiation doses presented in Table 9.7 and 9.8 are not sufficiently acute to ensure that any serious

<u>TABLE 9.7</u>. Estimated Total Body Occupational Dose Rates from Immersion in Effluent Salt Brine From Solution Mining

Time of Intrusion	<u>Dose Rates (rem/yr)</u>	<u>50-yr dose (rem)</u>
100 yr	1.2×10^2	6.0×10^3
1000 yr	5.2×10^{-1}	2.6 x 10^{1}

_, _, ,		<u>50-yr Dos</u>	se (rem)			
Time of Intrusion		Organ of Reference				
	Total Body	Bone	Lung	Thyroid		
100 yr	4.1 x 10^2	9.0 x 10^3	5.6 x 10^2	3.9 x 10-4		
1000 yr	1.2×10^2	2.7 x 10^3	1.6×10^2	3.9×10^{-4}		

<u>TABLE 9.8</u>. Estimated Occupational Radiation Doses from Inhalation of Salt Particulates from Solution Mining

health effects would be produced and recognized in a time span of less than several years. The connection of long-term health effects or deaths to the source of radiation exposure would be tenuous and cannot be relied upon to trigger the early termination of the mine operations. Serious health effects within the large, general population of consumers of the contaminated culinary salt would probably be inevitable before the effects from external and inhalation exposures would be identified for the mine operators, even under the conservatively unrealistic exposure conditions assumed for these occupational calculations.

LONG-TERM DOSE CALCULATIONS

One of the basic premises of AEGIS dose calculations is that they become more uncertain as a function of time into the future. This relates to the fact that the parameters controlling doses to humans are often highly dependent on culture and demography. Thus, extrapolations of current food trophic structures, human consumption patterns, and demographic characteristics are tenuous into the long term. AEGIS has a general policy not to perform dose analyses beyond 1000 yr. Nevertheless, in the review of the working draft of this report, it was widely suggested that dose calculations be performed for periods further into the future, as indicators of the relative hazard of the nuclear waste repository over the long term. It is in that context that the calculations in this section are presented; i.e., they provide an indication of the consequences of the postulated scenario, given current populational parameters, but taking place after the spent fuel has decayed for periods of 10,000 yr to 1,000,000 yr. These calculations should not be construed as providing the same level of certainty as similar calculations for earlier time periods.

A new inventory was required for these calculations to be performed because the ORIGEN-generated inventories originally provided to AEGIS from BNI only covered periods up to 30,000 yr post-closure. The long-term inventories were generated by the version of the ORIGEN code operational at PNL. The input to the PNL ORIGEN runs was based on the characteristics provided to AEGIS of the spent fuel entering the repository, obtained from the CRRD (1979) document. ORIGEN runs were then made and repeated with minor adjustments so the PNL ORIGEN output for 10,000 yr approximated the comparable output from the BNIprovided ORIGEN runs. The differences in these runs are so minor that there is no effect on the resulting dose calculations reported below.

The output from the PNL ORIGEN runs is listed in Appendix L. This information was used to produce source terms for the dose calculations precisely as described above for times 100 yr and 1,000 yr after closure. The results from the dose computer runs are listed in Appendices L and M, and they are summarized in Tables 9.9 and 9.10. Table 9.11 is presented to show how the dose burdens received from ingestion of contaminated culinary salt compares with the total body dose burdens received from background.

Predictions of doses to individuals and populations are very tenuous for time periods far into the future. However, the comparisons seen in these tables suggest that, all other factors being equal, the adversely consequential aspects associated with a solution mine operation from an inadvertent human intrusion into a nuclear waste (spent fuel) repository located in a salt dome are not mitigated by the passage of time. Even at one million years after closure, the total body doses from the human intrusion scenario developed here for solution mining into a salt dome repository would be twenty times background for an individual every day of a 70 yr lifetime, and there would be sufficient quantity for that to apply to 15,000,000 such individuals.

This trend is counter to the prevalent idea that after a certain period of time (usually taken to be 10,000 yr) the potential hazards of nuclear waste are less than for the original, natural ore bodies. The key reason for this divergence is that the calculations presented here are for a spent fuel repository located in a medium that is edible, providing a potential, direct vector

Α.	Base Case	70 yr Bonul at	Ingestion		
D (Ti	ecay Time (yr) me of Intrusion)	Total Body	Bone	Lung	Thyroid
	100	1.6 x 10 ¹¹	6.5 × 10 ¹¹	2.8 x 10 ⁹	4.7 x 10 ⁶
	1,000	1.3 x 10 ⁹	3.0 x 10 ¹⁰	3.7×10^4	4.7 x 10 ⁶
	10,000	7.0 x 10 ⁸	4.4 x 10 ⁹	3.1×10^4	4.7 x 10 ⁶
	50,000	2.8 x 10 ⁹	4.8 x 10 ⁹	2.5×10^4	4.7 × 106
	100,000	4.3×10^9	6.5×10^9	2.4 x 10^4	4.7 x 10 ⁶
	500,000	3.8 x 10^9	5.8 x 10 ⁹	2.0 x 10^4	4.6×10^{6}
	1,000,000	2.1 x 10 ⁹	3.3 x 10 ⁹	1.6 x 10^4	4.5 x 10 ⁶
B.	Base Case	<u>1 yr Ir</u> 70 yr Populati	igestion ion Dose (man-	-rem)	
	100	3.3 x 10 ⁹	1.4×10^{10}	5.5 x 10 ⁷	9.5 x 10^4
	1,000	3.5×10^7	8.6 x 10^8	7.5×10^2	9.4 x 10^4
	10,000	1.8×10^7	1.2×10^8	6.3×10^2	9.4 × 10^4
	50,000	6.9 x 10 ⁷	1.3×10^8	5.0 x 10^2	9.4 x 10^4
	100,000	1.0×10^{8}	1.7 x 10 ⁸	4.9×10^2	9.4 × 10^4
	500,000	9.3 x 10 ⁷	1.5 x 10 ⁸	3.9×10^2	9.1 x 10^4
	1,000,000	5.1 x 10 ⁷	8.7 x 10 ⁷	3.3×10^2	9.0 x 10^4

TABLE 9.9. Long-Term Population Dose Burdens from Solution Mining into the Hainesville Salt Dome

for the highly localized radioactive wastes to reach and be ingested by humans. The natural ore bodies, on the other hand, are relatively dispersed and, more importantly, are not edible.

Α.	Base Case	<u>50 yr 1</u>	Ingestion					
70 yr Individual Dose (rem)								
Decay Time (yr) (Time of Intrusion)		Total Body	Bone	Lung	Thyroid			
- <u>-</u>	100	1.1×10^4	4.4×10^4	1.8×10^2	3.2 x 10-1			
	1,000	8.4 x 10^{1}	2.0 x 10^3	2.5×10^{-3}	3.1×10^{-1}			
	10,000	4.7 x 10 ¹	2.9×10^2	2.1×10^{-3}	3.1×10^{-1}			
	50,000	1.9×10^2	3.2×10^2	1.7×10^{-3}	3.1×10^{-1}			
	100,000	2.9 x 10^2	4.3×10^2	1.6×10^{-3}	3.1 x 10-1			
	500,000	2.6 x 10^2	3.9×10^2	1.3×10^{-3}	3.0×10^{-1}			
	1,000,000	1.4×10^2	2.2×10^2	1.1×10^{-3}	3.0×10^{-1}			
Β.	. Base Case <u>1 yr Ingestion</u> 70 yr Individual Dose (rem)							
	100	2.2×10^2	9.6 x 10 ²	3.7	6.3×10^{-3}			
	1,000	2.3	5.7 x 10^{1}	5.0 x 10^{-5}	6.3×10^{-3}			
	10,000	1.2	8.3	4.2×10^{-5}	6.3 x 10-3			
	50,000	4.6	8.5	3.4×10^{-5}	6.3×10^{-3}			
	100,000	7.0	1.2×10^{1}	3.2×10^{-5}	6.3×10^{-3}			
	500,000	6.2	1.0×10^{1}	2.6×10^{-5}	6.1 x 10 ⁻³			
	1,000,000	3.4	5.8	2.2 x 10 ⁻⁵	6.0 x 10 ⁻³			

<u>TABLE 9.10</u>. Long-Term Individual Dose Burdens from Solution Mining into the Hainesville Salt Dome

The rates of use of this edible medium, salt domes, strongly suggest their full exploration and depletion will occur in a relatively short time frame (in a few centuries). Further, the medium itself does not provide a barrier to the delivery of the radioisotopes to the accessible environment; indeed, the medium provides a rather strong attraction for such an event.

Time of Intrusion (yr after closure)	Factors Above Background* (50-yr ingestion individual doses)		
100	1,571.4 x		
1,000	12.0 x		
10,000	6.7 x		
50,000	27.1 ×		
100,000	41.4 x		
500,000	37.1 x		
1,000,000	20.0 x		

TABLE 9.11. Relative Total Body Dose Burdens Compared to Natural Radiation Background

* Background is here taken to be 100 mrem/yr, or approximately 7 rem per 70 yr lifetime. Actual background varies from this depending on the location of the individual.

Further, the medium can be extensively exploited without early health effects on the intruders, because the remote-controlled operations do not yield acute occupational doses. Therefore, only specific engineered measures to preclude the inadvertent use of a specific salt dome containing a nuclear waste repository could provide the barrier to that vector. Such measures would include information systems to preclude entry, engineered barriers to provide containment, or other measures to shorten the period of exploitation of the salt dome. However, the calculations presented in this section show that such engineered measures must be effective over geologic times exceeding one million years to prevent the adversely consequential impacts on future populations by the radioactive wastes in a salt dome repository. This conclusion is generic to, and applicable only for, salt domes.

CHAPTER 10

SOURCE TERM

Chapters 4 through 9, describing the methodology used in this analysis, have specifically involved components of the AEGIS program. Chapters 10 through 11 relate to the source term and sorption data being developed by the WRIT program for use by AEGIS in its post-closure analyses.

This chapter deals with the source term of radioisotopes leaching from the waste and entering the ground-water system, and begins with a description of the methodology WRIT has, or will have before licensing a repository. This is followed by a discussion of the leach data and solubility limits used for this analysis.

INTRODUCTION TO METHODOLOGY

In the design of a nuclear waste isolation system, the waste form itself constitutes the innermost barrier to the release of radionuclides. The waste form is the provider of the source term of radionuclides that is used in AEGIS release consequence models to assess the safety of a nuclear waste repository. One objective of waste form release studies is to quantify radionuclide release rates under anticipated repository conditions and to investigate the mechanisms of release. The key to predicting waste form behavior from short-term laboratory tests lies in the understanding of the mechanisms of waste form alteration and the stability of the reaction products to further change.

The radionuclide source term is the physical input to migration and sorption studies. Because actual leachate solutions have different properties from a synthetically prepared solution, a more realistic estimate of radionuclide migration behavior is gained by the use of actual leach solutions. Thus, a second objective of waste form release studies is to provide characterized leachate solutions for sorption studies.

To be responsive to the needs of AEGIS release consequence analyses, two major types of conditions must be addressed:

- an "open" system, where an event has caused failure of all barriers, and solution contacts the bare waste form; fracture flow allows for minimal chemical alteration and sorption reactions between the waste form and surrounding barriers (canister, engineered barriers, backfill, and host rock)
- a "closed" system, where solution gradually permeates toward the waste form, chemically altering the various barrier materials in the process; the effects of chemical alteration and nuclide sorption reactions are brought to bear in this systems approach, integrating all barriers to radionuclide release.

In the first case, the simple system of waste form plus solution, release is commonly described by a leach rate. In the latter case, release is a combination of leaching and sorption/desorption interactions complicated by recrystallization and precipitation reactions, resulting in a system release rate.

Methodology Available or Under Development

WRIT has been conducting experiments to date centered on studying waste form-generic solution interactions corresponding to the "open" system. The main parameters of concern are time, temperature, solution chemistry, and solution flow rate. Because site-specific information was not available at the time these tests were started, a range of solutions was chosen:

- WIPP "B" salt brine (Dosch and Lynch 1978)
- NaCl solution, 1.76 g/l
- CaCl, solution, 1.66 g/l
- NaHCO₃ solution, 2.52 g/l
- deionized water.

To try to standardize the testing methods, three tests have been used to study radionuclide release:

- a modification (more frequent sampling) of the International Atomic Energy Agency (IAEA) (Hespe 1971) leach test procedure that simulates a changing flow rate of solution
- static leach tests, which are sampled as a geometric progression in time; these tests simulate a non-flowing solution and address solubility and approach to steady-state phenomena
- continuous flow leach tests that model velocities that could be attained in aquifers.

The effects of temperature are being considered by studying a range from 25 C to 250 C. The waste forms being studied in this first stage of WRIT experiments on waste form-solution interactions are:

- High-level wastes:
 - a. Spent Fuel: 1) static and IAEA leach tests on irradiated spent fuel;
 2) effects of solution oxidation potential on UO₂ matrix dissolution; and 3) chemical distribution in irradiated spent fuel
 - b. High-level Waste Glass: 1) static, IAEA, and continuous-flow tests on actinide-doped waste glass; and 2) effects of solution oxidation potential on radionuclide release.

• Transuranic waste forms:

a. static and IAEA tests on concrete, polymers, glass, urea-formaldehyde, and bitumen prepared with actual TRU-contaminated incinerator ash.

The repository design presented to AEGIS and WRIT included only spent fuel in the inventory.

The spent fuel oxidation study is designed to measure the radionuclide release rates after oxidation of the spent fuels in various storage solutions and to identify the release mechanism at single crystal UO_2 surfaces. The first task will determine the congruent dissolution period and release rate for spent fuels oxidized in solutions. The increase of radionuclide release rate, which may be caused by oxidation of the UO_2 matrix to UO_3 XH₂O, will be related to the amount of dissolved oxygen content in water. The second task will

compare the oxidation and leaching kinetics at elevated temperatures for single crystal UO_2 surfaces and other uranium surfaces. The composition and microstructure of the uranium oxide and uranium oxide-hydrate films will be characterized and correlated to the leaching kinetics. A high activation-energy oxidation path will be sought for stabilization of the UO₂ surfaces in the presence of oxygen in storage solutions.

Predicting releases from spent fuel requires an assumption of the distribution of radionuclides at the leachate-spent fuel interface. This fission product distribution is heterogeneous and is dependent on burnup and irradiation temperatures. There is a need to know the leach rate variation with the degree of inhomogeneity of the radionculides. The first phase of studies on this problem will involve the measurement of fission product chemistry distribution in spent fuel with known in-reactor parameters. This distribution, based on temperature and burnup, will be compared to modeling based on thermodynamic predictions. The second phase will involve measurement of leach rates for spent fuel samples with known chemical distribution and a repetition of the chemical distribution analysis to detect the changes in the surface chemistry.

The effects of radiation are being incorporated in these studies by tests using nonradioactive, isotope-doped material for studying elements without radiochemical interferences, and using fully radioactive wastes. Thus, for spent fuel, both UO_2 and actual spent fuel are being used. For waste glass, actinide and special fission product-doped glasses are being studied to maximize solution and surface data collection without high radiation field and radiochemical interferences. The results will be verified by a more limited series of tests on fully radioactive waste glass. The radiation levels are low enough to do all work on actual TRU wastes.

In addition to performing radiochemical solution analyses from which leach rates may be calculated, it is necessary to understand the major processes involved when a waste form is in contact with a solution, to extrapolate shortterm laboratory tests to relatively short geologic times of several hundred years. Thus, WRIT is starting detailed solid state and solution analyses to gain knowledge of the mechanisms of release. In addition to isotope release

concentrations, valence state and nuclide solution species experiments are being performed. Solid state analysis will include detailed mineralogic studies to identify alteration products such as recrystallized minerals.

WRIT has started its second phase of studies that addresses the interactions of the waste form with the surrounding barriers to be incorporated into repository design, such as the waste canister, engineered barriers, backfill material, and host rock media. Figure 10.1 illustrates a simple multiple barrier system. These integrated tests, which more accurately reflect the real repository, will provide an understanding of the effect of this complex system on the degradation of the waste form, release of radioisotopes, and their interactions with the immediate surroundings.

Comprehensive Waste Form Performance Testing Methodology

1

27

Ξ.

The study of waste-media interactions requires a multidisciplinary approach, involving aspects of geology, chemistry, materials sciences, and physics. There are few theories or mathematical descriptions that to date adequately describe waste leaching, corrosion, adsorption, or desorption. The bulk of the endeavors in waste-media interaction studies is typified as being experimental in nature.

As water migrates toward a waste form, it is changed chemically by the geochemical, thermal, and radiation fields it encounters. To describe the solution that finally reaches the waste form, the material in the solutions path must be characterized. This includes the waste form, canister, engineered barriers, backfill, and host rocks.

Basic physical, mechanical, and chemical properties of the parts of the waste-rock system need to be measured, including the variability in parameters and functional dependency on temperature, pressure, time, and moisture content. Parameters include elemental composition, valence state distribution in the solid, specific surface area, thermal conductivity, shear strength, permeability, pH, Eh, crystalline phases present, and their composition. In the case of the waste form, the effects of self-radiation damage and element transmutation also need to be studied.

FIGURE 10.1. Multiple Barrier System, Near-Field Region

۲. .

> Information on the binary rock-water system is needed as a function of temperature, pressure, time, ground-water composition, and quantity of water influx rate. Physical attributes that need to be monitored include thermal expansion, permeability, and stress-strain changes. Chemical characteristics to be monitored as a function of the identified variables include mineralogic changes and radionuclide sorption changes. The resulting solution would

interact with backfill and engineered barrier materials. The effects of radiation fields need to be added to the parameter effects at this point because of the proximity to the waste form.

Evaluations of the water-backfill interaction must be performed, whether the backfill is host-rock material or artificially introduced, getter materials such as clays, sands, host rock, or combinations thereof. The getter-backfill material may have the additional property of minimizing, delaying, or eliminating waste-water or waste-canister-water-geomedia interactions, which would occur if the backfill material were not present. The backfill material may be viewed as an engineered secondary barrier. Three of its major purposes are: providing a barrier to water intrusion (e.g., a swelling, low porosity clay); chemically or physically sorbing radioactive species in solution; or chemically buffering the near canister physico-chemical environment.

Engineered barrier interactions to be studied include water-barrier interactions, canister-overpack interactions, barrier-backfill-geomedia interactions, and engineered barrier physico-chemical durability or corrosion resistance. Interactions need to be investigated as a function of ground-water composition, chemistry, flow rate, temperature, pressure, radiolysis effects, and time. All engineered barriers are considered to be segments of the multibarrier concept. The hydrothermal interactions and radiation-induced interactions affecting backfill materials will be evaluated. Sorption/ desorption of leached nuclides under repository temperature and redox conditions should be experimentally analyzed. The effect of corrosion products formed on nuclide adsorption needs to be addressed. Solutions generated by these tests must be thoroughly characterized as they (along with the solutions generated from water-rock interactions) are the leach solutions that will contact the waste form and its canister. Physical properties such as gas and liquid permeability, thermal conductivity, stress and strain changes, and water absorption properties need to be studied along with chemical properties such as mineral or chemical stability and nuclide adsorption properties.

The radioactive waste canister is another segment of the multibarrier concept. The adequacy of the canister should be assessed relative to its intended

purpose--a shipping canister, limited lifetime container (e.g., for approximately 50 yr for retrievability purposes), or extended lifetime container (e.g., for 500-1000 yr, past the thermal period of fission products). For the last purpose, the extent to which the canister can physically delay or minimize water-waste interactions could be of great importance.

Using metallurgical and associated techniques, candidate waste canister materials need to be evaluated for general corrosion, pitting, crevice corrosion, stress corrosion cracking, and effectiveness as a barrier for retarding near-field interaction leading to radionuclide migration. The effects of temperature, pressure, radiation, solution chemistry, aqueous phase (dry, moist, inundated), stresses, sensitization and welding, and effects of optimum emplacement or credible accident conditions should be studied.

Nuclear waste forms in contact with ground water may have a tendency for chemical reaction, depending on the temperature and composition of the waste. Likewise, there will be a tendency for chemical reaction between the waste and the minerals that make up the repository wall rock, reactions which, in general, are greatly enhanced by the presence of water and heat. Should water enter a breach in the canister, the chemistry would be dominated by the chemistry of the waste, and could be called a "waste-water" interaction. As the reaction zone proceeds outward from the canister, the chemistry comes to be dominated more and more by the chemistry of the rock. These reaction zones can, therefore, be identified as:

- waste form canister solution alteration; waste form dominates
- waste fluid engineered barrier reactions; engineered barrier dominates
- waste fluid engineered barrier host rock interactions; host rock dominates
- waste fluid host rock reactions away from engineered barriers, but still under the influence of temperature and radiation fields
- waste fluid multiple rock media interactions at ambient temperature and away from radiation fields.

Although these zones blend continuously into each other as a function of distance outward radially from the canister, they are useful distinctions for the understanding of geochemical interactions.

LEACH VALUES PROVIDED FOR THE REFERENCE SITE ANALYSES

×...

IAEA leach testing of spent fuel fragments was initiated in FY-1978 at PNL. The material originated from the HB Robinson II reactor, coming from a fuel bundle discharged on 6 June 1974 with an average burnup of 28,026 MWD/MTU. After the rods were cut into 4 in. sections, the fuel was removed by push rods. The resulting material was packaged for shipment to PNL. Upon receipt at PNL, the material was sized by WRIT staff into +8 mesh particles for leach testing. Another sample, taken at random, was dissolved and radiochemically analyzed so that the starting element concentrations would be known. Samples were also mounted, polished, and examined by metallography for microstructural characterization of the fuel.

A sample taken at random from the as-received spent fuel was screened in the hot cell to provide a particle-size distribution for surface area calculation. This distribution is shown in Table 10.1.

Metallographical examination of the spent fuel fragments showed the presence of closed porosity (Figure 10.2). Cathodic etching of the surface showed grains with little change in size from the pellet center to outer edge (magnified portion of Figure 10.2).

Chemical concentration profiles for selected radionuclides were recorded as fluorescence x-ray intensities on a shielded electron-beam microprobe x-ray analyzer. Various fuel fragments, typical of the samples in the leach tests, are now being analyzed. The data presented here are for a fragment of spent fuel, with a burnup of 28.0 MWd/kgU, and show a segment of a transverse section (see Figure 10.3). The microprobe was programmed to step-scan the sample from Point A, at the outside diameter of the pellet, to Point B near the center of the pellet. Concentration profiles for elements measured by step-scanning are expressed as x-ray intensities in Figures 10.4 through 10.6. Elemental profile across the transverse section from point A to B (see Figure 10.3) yield the following information: TABLE 10.1. Particle-Size Distribution, 28,000 MWd/MTU Spent Fuel

	Sieve Opening	wt	
<u>Sieve #</u>	(mm)	<u>(gms)</u>	Fraction Retained (%)
3	6.73	0	0
4	4.73	192.883	10.07
5	4.00	634.765	33.31
10	2.00	1031.170	53.84
20	0.841	35.205	1.84
40	0.420	11.242	0.587
60	0.250	4.979	0.0260
80	0.177	1.424	0.0743
100	0.149	1.042	0.0544
140	0.105	1.204	0.0629
200	0.074	0.769	0.0402
200	0.074	0.737	0.0345

Sample size = 1915.42 gms

Plutonium

The plutonium is enriched at the outside diameter (OD) of the spent fuel pellet by a factor of 3, compared to the concentration at the center of the pellet. There is a 47% reduction in plutonium concentration 300 m inward from the OD, and the concentration drops another 28% over the next 3600 m (Point B).

- <u>Cesium</u> The cesium distribution in the spent fuel fragment was uniform from the OD to the center. All evidence of surface enrichment is absent. Any cesium iodide that may have been present at the OD-zircalloy-clad gap after reactor discharge could have been removed from the OD surface during decladding.
- <u>Ruthenium</u> The concentration of ruthenium at the OD is 27% higher than at 100 m inward. Within the next 600 m the ruthenium concentration drops 13%, and then remains essentially constant through to the center of the fuel pellets.

FIGURE 10.2. Appearance of Spent Fuel with a Burnup of 28.0 MWd/KgU (Photo # 7903589-5)

Technetium and Barium (Photo #7903589-4)

FIGURE 10.5. Microprobe Measured X-ray Intensities for Cesium, Zirconium and Iodine (Photo #7903589-2)

(Photo #7903589-3)

<u>Tellurium</u>	The tellurium concentration is uniform throughout the spent fuel pellet.
<u>Cerium</u>	The cerium concentration is about 30% higher at the OD and at about 20 m inside the OD. From the 200 m mark to the center the concentration is uniform.
<u>Technetium</u>	The technetium concentration is about 30% higher at the OD than in the remainder of the pellet. This enriched zone is about 100 m wide.
<u>Barium</u>	The barium concentration is about 30% higher at the OD than in the remainder of the pellet. This enriched zone is about 150 m wide.
<u>Zirconium</u>	The zirconium concentration is uniform throughout the spent fuel pellet.
<u>Iodine</u>	The iodine concentration is uniform through the spent fuel pellet.

The IAEA leach test procedure includes immersion of a sample in a solution, according to a fixed ratio of exposed surface area of sample to volume of solution of 1 to 10 $(\text{cm}^2/\text{cm}^3 \text{ basis})$. The solution is then left in contact with the sample according to progressively longer time intervals. Table 10.2 shows the sampling schedule for the IAEA test used. For the spent fuel tests, approximately 15 grams were used per test, having a geometric surface area of approximately 30 cm. Figure 10.7 shows the leach tests container details. For these tests the solution volume was 300 ml and leaching was at 25 C. The air-saturated leachate solutions used for the spent fuel leach tests are as follows:

- WIPP "B" natural salt brine (Table 10.3)
- synthetic high ionic strength calcium ground water (1.66 g/l CaCl₂)
- synthetic high bicarbonate ground water (2.52 g/l NaHCO₂)
- synthetic high ionic strength sodium ground water (1.76 g/1 NaCl)
- deionized water.

TABLE 10.2.	IAEA	Leach	Test	Schedule

Cumulative Time	Time Intervals for Leach <u>Solution Changing</u>	Series <u>Number</u>	Number of Leach Solutions Analyzed
Days	1	1	1
	2	2	2
	3	3	3
	4	4	4
Weeks	2	5	5
	3	6	6
	4	7	7
	5	8	8
	6	9	
	7	10	9
	8	11	
	9	12	10
Months	3	13	11
	4	14	
	5	15	12
	6	16	
	7	17	13
	8	18	,
	9	19	14
	10	20	
	11	21	15
	12	22	

The tests were run in triplicate, resulting in a total of 15 tests. On a given sampling day, the basket holding the beads was carefully removed and a sample withdrawn after swirling the jar of solution. This sample was then acidified to a pH of 1, using concentrated nitric acid, to prevent radionuclides from adhering to the wall of the glass sample container. To verify

that the nitric acid was effective in preventing loss of radionuclides on the sample container walls, the sample container was emptied of solution, releached in nitric acid, and samples of the resulting solution and the sample container were counted. The results showed that the pH 1 solution of nitric acid was very effective, as insignificant amounts of radionuclides were found on the container walls.

The original polyethylene jar (Figure 10.7) was next filled with 300 ml of 5 M HNO₃ + 0.05 M HF. This solution was used to remove any isotopes that had adhered to the jar walls. After a period of time equal to the original leaching period, a sample was withdrawn and analyzed. The result of this radionuclide analysis was added to that from the original leach solution to arrive at a leach rate of a given radionuclide from the spent fuel.

|--|

Chemical and Ionic Composition of Salt Brine

Compound	Concentration (g/l)	Ion	Concentration (mole/1)
NaC1	287.0	Na ⁺	5.0
Na ₂ SO ₄	0.0062	к+	0.00038
Na2B407 10H20	0.0160	Rb ⁺	0.000012
NaHCO	0.0140	Cs ⁺	0.00008
NaBr	0.5200	Mg ⁺⁺	0.00041
КСТ	0.0290	Ca ⁺⁺	0.022
КІ	0.0130	Sr ⁺⁺	0.00017
MgC1,	0.0400	Fe ⁺⁺⁺	0.000036
CaC1, 2H,0	0.0033	C1	4.94
FeCla	0.0060	Br	0.0050
SrC1, 2H20	0.0330	I_	0.000079
Rb ₂ SO ₄	0.0016	HCO2	0.00016
CsCl	0.0013	so ₄	0.036
		•	

TOTAL DISSOLVED SOLIDS

297.2 g/1

pH (adjusted)

6.5

The measurements of radionuclides were all made using accepted radioanalytical methods. Gamma emitters were measured by gamma energy analysis using a multichannel analyzer with a Ge-Li detector. To improve the measurement of minor constituents, the majority of the cesium was removed by extraction with tetraphenylboron in amylacetate (Finston 1961) and the sample recounted.

Plutonium and curium concentrations, with the exception of the brine samples, were determined by alpha energy analysis of a direct mount of the sample. In brine samples, the plutonium was extracted into TTA-xylene (Moore 1957), plated, and counted on an alpha proportional counter. Curium was separated by ion exchange, plated, and alpha counted. Strontium was separated by ion exchange and beta counted; repeat counts were made and the strontium-90 was calculated from the yttrium-90 ingrowth (Koltoft and Elving 1966). Uranium was determined by fluorometry (Centanni and De Sesa 1956; Price, Ferreti, and Sgartz 1953). The equation used to calculate the isotopic leach rates is as follows:

$$R_{i} = \frac{a_{0}}{A_{0}St}$$
(10.1)

where:

 R_i = incremental leach rate $(g/cm^2 - day)$ a_0 = activity of isotope in leachate, (counts sec⁻¹) A_0 = specific activity of isotope in sample (counts sec⁻¹ - g⁻¹) S = geometric surface area of sample (cm²) t = leaching time (day).

Table 10.4 shows the leach rate information on the radionuclide release from spent fuel available at the time of the reference site consequence analysis. Figure 10.8 shows the leach rate plots.

Based on these spent fuel leach data and some recent literature, the following conclusions were reached for this reference site analysis:

- The maximum expected U concentration in solution, based on the leachate analysis and references (Grandstaff 1976; Holland and Brush 1978), is _10 ppm in oxidizing conditions and pH 6.0. Such conditions are expected for this scenario, where surface or nearsurface water would be in contact with the waste. Once this concentration is reached, further spent fuel dissolution occurs only by ingress of fresh water (i.e., solubility provides an upper bound on the source term). For this analysis, 6 ppm was taken to be the representative base case value. More recent data suggest this value should be higher.
- The leach rate data shown in Figure 10.8 suggest congruent dissolutioning of the spent fuel is occurring. A major consideration in this statement is a recognition that Pu, Cm, Ce, and Eu almost certainly are incorporated as a homogeneous solid solution in UO₂. Hence, there is no logical reason to expect any significant leach rate difference for these elements. Because the leach rates for the

TABLE 10.4. IAEA Leach Test, Spent Fuel, WIPP "B" Brine (g/cm²-day)

Leach Time (days)						
	1	2	3	4	· <u> </u>	467
239,240 _{Pu}	2.4×10^{-5}	9.2 x 10 ⁻⁶	9.7 x 10 ⁻⁶	5.9 x 10^{-6}	2.3×10^{-6}	3.7×10^{-6}
²⁴⁴ Cm	1.2×10^{-4}	1.2×10^{-5}	2.6 x 10^{-5}	1.1×10^{-5}	7.1 x 10^{-6}	1.0×10^{-6}
⁹⁰ Sr, ⁹⁰ Y	1.5×10^{-4}	$2/1 \times 10^{-5}$	2.5×10^{-5}	1.2×10^{-6}	6.8×10^{-6}	3.1×10^{-6}
U	4.0 x 10^{-5}	8.0×10^{-6}	3.0×10^{-5}	2.0 x 10 ⁻⁵	3.0×10^{-6}	6.0×10^{-7}
¹³⁴ Cs	1.3×10^{-3}	6.0×10^{-5}	4.6×10^{-5}	1.3×10^{-5}	8.9 x 10 ⁻⁶	2.6 × 10^{-6}
¹³⁷ Cs	1.2×10^{-3}	5.9 x 10^{-5}	5.1 x 10^{-5}	2.0 x 10 ⁻⁵	1.2×10^{-5}	3.8×10^{-6}
¹⁴⁴ Ce	8.2 x 10^{-5}	4.9×10^{-6}	1.3×10^{-5}	3.2 x 10 ⁻⁶	2.3×10^{-6}	2.6 x 10^{-7}
106 _{Ru}	2.4×10^{-5}	3.5×10^{-6}	1.1×10^{-5}	3.6 x 10 ⁻⁶	2.9 x 10 ⁻⁶	2.7×10^{-7}
¹²⁵ Sb	1.0×10^{-4}	4.1×10^{-5}	2.3 x 10 ⁻⁵	1.1×10^{-5}	4.4 x 10^{-6}	2.8×10^{-6}
¹⁵⁴ Eu	1.4×10^{-4}	7.8 x 10 ⁻⁶	2.8×10^{-5}	1.2×10^{-5}	7.0×10^{-6}	1.3×10^{-6}

fission products fall within the band of the matrix elements, the effective leach rates approximately follow a congruent dissolution mechanism. The average of the experimental leach rates is 1.0 x 10^{-6} g/cm²-day at 25 C at 467 days, and this was still decreasing monotonically.

- A reasonable upper boundary of $1 \times 10^{-5} \text{ g/cm}^2$ -day at 25 C is based on current WRIT work (leach rates in simulated ground water, brine, and deionized water have never exceeded $1 \times 10^{-5} \text{ g/cm}^2$ -day) and the literature (Grandstaff 1976; Holland and Brush 1978), provided the pH does not fall below 6. In low pH, total carbonate concentration becomes very important.
- A lower effective leach rate of $1 \times 10^{-8} \text{ g/cm}^2$ -day at 25 C is an upper bound on leach rates. This would be the case if low oxygen content solutions are encountered. As shown by Grandstaff (1976), lowering the oxygen content reduces the uranium solubility.
- The temperature dependence used for this analysis assumes an activation energy of 14 ± 2 kcal/mole, as given by Grandstaff (1976). For temperature expressed in K, and a leach rate of 1×10^{-6} g/cm²-day at 25 C, the expression including the temperature dependence is:

$$R(g/cm^2-day) = 1.6 \times 10^4 \exp -7000/T(K)$$
 (10.2)

The concentration of all elements in solution is determined by the spent fuel composition; we assume congruent dissolution up to the assumed 6 ppm solubility limit for uranium. When the solubility limit of U is achieved, the amount of each radionuclide going into solution is proportional to the rate of uranium release, as described below.

SOLUBILITY LIMITS

The rate at which nuclear waste dissolves in solution is limited by both the solubility of the various elements and by the leach rate constant. This constant has units of mass per time per surface area. Therefore, as the surface area exposed to leaching increases, the amount removed in solution will increase. As the solubility limit of an element is approached, the amount of material dissolving becomes balanced by an equal amount precipitating. Consequently, only the concentration at or below the solubility limit can be removed from the repository. Given a repository that is being exposed incrementally (e.g., during the solution mining operation), a given leach rate constant will limit the dissolution rate until sufficient surface area is exposed. At this point, the amount of an element going into solution will be at the solubility limit, and from then on the dissolution rate will be governed solely by the solubility of the elements. If the rate is known at which the repository is being exposed to dissolution, then the point in time at which the solubility limit is reached is a function only of that solubility and the leach rate constant.

Dissolution Rate Based on Solubility

Dissolution Rate $\left(\frac{q}{day}\right)$ = Solubility (ppm) x Flow Rate (gpm)

$$x \frac{1440 \text{ min}}{\text{day}} \times \frac{3.78 \text{ l}}{\text{gal}} \times \frac{19}{10^3 \text{mg}}$$

$$= \frac{5.44 \text{ min} \text{ l} \text{ g}}{\text{day} \text{ gal} \text{ mg}} \times \text{ Solubility (ppm)}$$

$$x \text{ Flow Rate (gpm)}$$

$$(10.3)$$

Dissolution Rate Based on Leach Rate Constant

Dissolution Rate
$$(\frac{q}{day})$$
 = Leach Rate Constant $(\frac{q}{cm^2-day})$
x Total Source Area (cm^2) x Fraction Exposed
= 2.1 x 10¹¹ (cm^2) x Leach Rate Constant $(\frac{q}{cm^2-day})$
x Fraction Exposed (10.4)

where:

Total Surface Area = 2.1 x
$$10^{11}$$
 cm²

In the salt dome solution mining scenario, the fraction exposed can be determined from the salt removal rate (= 410 g salt per liter of water). It is assumed that the salt is being removed in a direction within the salt dome that increases the exposure of the waste to the solution. Then,

The repository has an area of 1375 acres and is 20 ft high. Therefore, Total Salt Weight (g) = $\frac{1375 \text{ acres}}{640 \text{ acres/sq mi}} \times \frac{(5,280 \text{ ft})^2}{\text{sq mi}} \times 2.83 \times 10^4 \frac{\text{cm}^3}{\text{ft}^3}$ $\times 2.16 \text{ g/cm}^3 \times 20 \text{ ft} = 7.3 \times 10^{13} \text{g}$ (10.5)

Fraction Exposed =
$$\frac{410 \text{ g/l}}{7.33 \times 10^{13} \text{g}} \times 3.78 \frac{1}{\text{gal}} \times (\text{Flow Rate gpm})$$
$$\times \frac{1440 \text{ min}}{\text{day}} \times \text{D. E. day} = 3.1 \times 10^{-8} \frac{\text{min}}{\text{gal-day}}$$
$$\times (\text{Flow Rate gpm}) \times \text{D.E. day} \qquad (10.6)$$

Equations 10.4 and 10.6:

Dissolution Rate $(g/day) = \frac{6.5 \times 10^3}{gal-day} \frac{min-cm^2}{min-cm^2} \times \text{Leach Rate Constant}(\frac{g}{cm^2-day})$ x Flow Rate $(gpm) \times (D.E. day)$ (10.7)

Dividing Equation 10.3 by 10.7:

Dissolution Rate from Solubility Limit Dissolution Rate from Leach Rate Constant

 $= \frac{5.44 \frac{\text{min-l-q}}{\text{day-gal-mg}} \times \text{Solubility (ppm) x Flow Rate (gpm)}}{6.5 \times 10^3 \frac{\text{min-cm}^2}{\text{gal-day}} \times \text{Leach Rate Const } (-\frac{q}{\text{cm}^2-\text{day}}) \times \text{Flow Rate (gpm) x D.E.}}$ $= 8.4 \times 10^{-4} \frac{1-q}{\text{mg-cm}^2} \times \frac{\text{Solubility (ppm)}}{\text{Leach Rate Constant}(-\frac{q}{\text{cm}-\text{day}}) \times \text{D.E.}}$ (10.8)

The rates will equal each other when the solubility limit is reached, (i.e., the ratio of the rates will be 1). The time at which this occurs is:

Time = 8.4 x
$$10^{-4} \frac{1-g}{mg-cm^2} \frac{\text{Solubility (ppm)}}{\text{Leach Rate Constant}(\frac{g}{cm^2-day})}$$
 (10.9)

This is the time after initial exposure on which solubility begins to control the dissolution rate. This relationship is shown in Figure 10.9.

Equations 10.3 and 10.4 can be combined to determine the fraction of the waste exposed at which the solubility limit is reached for a given leach rate constant. This will also be a function of the flow rate.

Equations 10.3 and 10.4:

5.44
$$\frac{\min - 1 - q}{day - ga1 - mg}$$
 x Solubility (ppm) x Flow Rate (gpm) =
Leach Rate Constant ($\frac{q}{cm^2 - day}$) x Total Surface Area (cm²)
x Fraction Exposed (10.10)

Consider a solubility for uranium of 6 ppm:

1.6 x 10⁻¹⁰
$$\underline{\text{min-g}}_{\text{day-gal-cm}^2}$$
 x $\underline{\text{Flow Rate (gpm)}}_{\text{Leach Rate Constant }}$ = Fraction Exposed
(10.11)

10.27

(

This relationship is shown in Figure 10.10. Note that for the reference repository base case, the source term is solubility limited within 1.5 yr of the beginning of the operational phase of the solution mining intrusion. This is based on a leach rate of 10^{-6} g/cm²-day at 25 C, adjusted for temperature effects to approximately 10^{-5} g/cm²-day. This leach rate coincides with the value used in the CWMS study. Subsequent to cessation of this operational phase and rupture of the side of the salt dome, the flow through the repository into the aquifer is solubility limited throughout the source term period (i.e., during the 15,000-yr period of salt dome dissolutioning and the subsequent 75,000-yr period of waste dissolutioning).

For this revised report, the alternative set of assumptions, of a smaller solution mine rate but increased culinary salt production, would lead to a smaller amount of the repository being exposed (by a factor of 30). The water flow-through rate would be equally reduced, so that the incidence of and timing of solubility limitation would not change.

1

 $\int \nabla$

CHAPTER 11

SORPTION DATA

This chapter deals with the sorption of radioisotopes by the geological media through which they may transit; it begins with a description of Kd methodology and its limitations. This is followed by a description of the procedures used to acquire sorption data for this analysis by the WRIT program.

INTRODUCTION TO METHODOLOGY

The migration rates and adsorption-precipitation processes describing the fate of leached radionuclides percolating through geomedia are being determined by parts of the WRIT program. To quantify migration rates for radionuclides, the distribution coefficient (Kd) has been used, defined as the ratio of the quantity of nuclide adsorbed onto the geomedia to the quantity of nuclide remaining in the contacting solution. The retardation coefficient (R) is defined as the ratio of the velocity of the ground-water movement to the velocity of the nuclide movement. For flow in porous media the relationship is

(11.1)

$$R = \frac{V_{gw}}{V_{puc}}, V_{nuc} = \frac{V_{gw}}{1 + \rho_b/\theta \ Kd}$$

where:

Vnuc = velocity of nuclide NgW = average velocity of ground water ρb = media bulk density θ = media porosity Kd = distribution coefficient (mass basis).

For flow in fractured media the relationship is:

$$R = \frac{V_{gw}}{V_{nuc}}, V_{nuc} = V_{gw} / 1 + \frac{FV}{FA} Kd(a)$$
(11.2)

where:

FA = fracture surface area

FV = fracture volume

Kd(a) = distribution coefficient (surface area basis).

The variables used in Equation 11.1 are commonly measured in hydrologic studies (V_{gW} , ρ_b , θ) for porous media. Thus, with an empirical measurement of Kd for the nuclide of interest, the V_{nuc} and R are readily calculated. The variables in Equation 11.2 (V_{gW} , FA, FV) would be needed to predict hydrologic properties for flow through fractured media. Measurements for FA and FV to date have not been routinely determined. Assuming FA and FV are obtainable, the nuclide migration velocity is again calculable if the Kd(a) has been measured.

METHODOLOGY

In principle it is straightforward to measure the Kd for a nuclide by laboratory experimentation. Although there are some unresolved issues concerning standard technique to obtain Kd values, experimenters have traditionally used two types of procedures: static and dynamic. Studies are currently underway within WRIT to evaluate the various methodologies and to form a consensus on standard procedures.

The static or batch method for measuring Kd values involves contacting an adsorbent (rock) with a liquid adsorbate (nuclide in ground water) within a container. Usually, the experimental system is continually agitated to facilitate mixing and solution contact with the absorbent. At specified times the solid and solution are separated and the resultant distribution of adsorbate is determined. Critical examination of the batch method has shown several complications and potential limitations. WRIT has explored several of the complications to determine their effects on the prediction of nuclide retardation by geomedia. Specifically, the effects of solid-liquid phase separation techniques, container adsorption of tracer, method of tracer addition to ground water, and calculational schemes used to produce Kd values have been assessed.

To evaluate the Kd value for a radionuclide by batch methods, the solid adsorbent must be separated from the liquid. Two methods are used for making this phase separation: centrifugation and filtration. The definitions of soluble and suspended solids have not been rigidly established, nor is it clear, for purposes of nuclide migration, what molecular size would be so large that migration would be most influenced by physical filtration rather than by chemical sorption processes. Using some simplifying assumptions, one can ascertain the most likely maximum particle size in the centrate or filtrate and adjust techniques to give comparable results.

In the past WRIT experiments have often shown that centrifugation yields sporadic Kd results. In general, the variation appears to be caused by uncentrifuged particles with adsorbed or innate radioactivity appearing in the counted solution. The WRIT techniques are for phases to be separated by centrifugation, followed by filtration through 0.4 μ m or smaller polycarbonate membranes.

Filtration of centrates often removes the variability in measured activity and can reduce the observed solution activity. More studies need to be performed to evaluate the apparent discrepancy between the observed larger-thanexpected particulates in centrate versus the maximum-expected particulate size predicted from Stokes' falling velocity theory.

Blanks are commonly run with batch Kd experiments to account for container adsorption. The blank is a container without the sediment or rock present, in which the nuclide-spiked solution is treated in a similar fashion to other samples. A percentage of the activity originally present in the ground water will often be removed after contact with the blank container, especially for rare earth and actinide elements. At least two removal mechanisms are operating: container adsorption and solid formation (e.g., precipitation, polymer formation). This latter precipitation process will be a major contributor in the real world as temperature, pH, and redox conditions of the ground water change. The observed loss in solution activity is used to adjust the influent activity value used to calculate the Kd.

The present WRIT procedure usually is to count only the liquids, influent and effluent, and estimate the amount adsorbed on the solid by calculating the difference. A few WRIT subcontractors have proposed that the sample effluent and solid adsorbent be counted directly to calculate the Kd. This approach alleviates the need for container adsorption corrections but introduces the logistical problems of solid counting. Two approaches are used to count the solids: removing all the solids from the container and placing them in a suitable counting vial, or taking a known weight of a representative aliquot. The former procedure is often quite tedious for disaggregated materials, especially if the material is caked in the bottom of a centrifuge tube. The latter procedure is difficult when the adsorbent is heterogeneous, disaggregated material. During centrifugation or filtration, the disaggregated media will sort by particle size; thus, obtaining a representative subsample may prove difficult. Alpha, beta, weak gamma, and x-ray radiation will suffer from sample self-adsorption, so that obtaining an accurate count of radioactivity on the solid may be difficult or impossible.

The Kd value obtained by the batch method for certain elements appears to be sensitive to how the radiotracer is added to the ground water and/or geomedia. Some research indicates that for solubility-limited elements such as the rare earths and actinides, the tracer should be added to the ground water, equilibrated for several days, and filtered just before contact with the geomedia. This approach should remove any oversaturation-precipitation events that-would appear like adsorption if the tracer had been added directly to the rock-ground-water slurry in the batch container, although further complications have been identified (Erdal et al. 1979).

Two equations may be applied to determine a Kd value from batch data. When only liquid samples are analyzed, Equation 11.3 applies. When both the liquid effluent and solid are counted, Equation 11.4 applies.

$Kd = \frac{rAi - Ae}{Ae} \frac{V}{W}$	(11.3)
$Kd = \frac{Ad}{Ae} \frac{V}{W}$	(11.4)

Ai = activity of tracer in influent or blank

Ae = activity of tracer in effluent after phase separation

- r = correction factor for excess wash solution remaining if rock
 samples were pre-equilibrated with water without tracer before
 the sorption experiment
- V = total volume of solution = (volume of Ai + residual wash solution)
- W = for Equation 11.3, total weight of solid adsorbate used; for Equation 11.4, total weight of solid counted

Ad = activity of solid adsorbate.

For weakly penetrating radioactivity, the effects of self absorption can complicate accurate measurement.

The time dependence of Kd is conveniently studied by static methods. For many geomedia-ground-water-nuclide systems, adsorption reactions appear to reach equilibrium rapidly (within a few hours). For other systems (crushed basalt, granite, argillite) the values vary with time. In general the Kd values increase with time, possibly from weathering processes. The alteration products formed from weathering of primary minerals, in general, exhibit larger surface areas and higher exchange capacities. In a few instances, the Kd value for an element appears to decrease with time. One apparent reason for this is colloid formation that may be encouraged by physical grinding effects during shaking. Whether colloid formation will be important in the real world has not been ascertained. Months or years may be required to attain sorption equilibrium in some systems as secondary minerals are formed. Studies need to be made to identify those slow reactions that could reduce sorption measured in short-term laboratory experiments.

Batch experiments are more precise when the change in tracer solution concentration upon contact with the geologic material is neither very small nor large. If the Kd value is very small, the effluent activity is nearly the same as the influent, and counting statistics significantly affect calculations. If

where

the Kd value is very great, the effluent will have very little activity left, and counting difficulties will result. By varying the solution to geologic media ratio over a range of 2 to 100, with an effluent/influent ratio of 0.2 to 0.8, researchers have discovered that batch Kd experiments are best used to measure Kd values between 1.25 and 400 ml/g.

The most commonly used dynamic method for determining Kd values is the low pressure column method on disaggregated materials. The method has been used for many years to substantiate Kd values determined by batch methods for sand soils. Within WRIT, the modification of the procedure to allow experimentation on intact or fissured core materials is being undertaken. By increasing the hydrostatic head with pressurized pumps, flow through intact cores of slightly to moderately permeable rocks can be attained.

Dynamic flow-through column experiments allow observation of nuclide migra tion rates and allow the calculation of nuclide Kd values for porous materials without significant sample alteration. Reversibility, multiple oxidation states, and multiple species can be observed. Physical transport of colloids and fine particulates can be studied, and realistic solution-to-solid ratios for both porous and fracture flow may be studied. Unsaturated as well as saturated flow can be studied. Disadvantages include the length of time necessary to perform the experiment (especially for strongly sorbed nuclides), the inability to create practical flow rates in tight rock materials, experimental artifacts such as channeling and wall effects caused by use of small column sizes, greater difficulty in control of Eh and pH, and lack of a data reduction scheme for nonideal (chromatographic) curves.

Normal flow rates for laboratory columns of permeable rock or soil $(10^{-3}$ to 10^{-1} cm/sec) may require weeks or months for the nuclide to break through into the effluent. Flow rates in geologic media are expected to be several orders of magnitude slower $(10^{-7}$ to 10^{-3} cm/sec). To produce short-term results, higher than realistic flow rates are used, and frequently kinetic effects are thought to dominate results. Under these accelerated conditions, the effective porosity of the media and the radionuclide residence time in the media decrease with increasing flow rates. This diminishes the measured radio-nuclide retardation and tends to make results conservative.

In FY-1978, dynamic Kd experiments using crushed montmorillonite percolated by either calcium chloride or sodium chloride were shown to yield comparable values with results obtained by batch and axial filtration techniques. One example of the comparison is shown in Figure 11.1 (Meyer et al. 1978).

1

Gravity flow column experiments sometimes exhibit a variable flow rate over time. Usually the observed flow rate will decrease with time, possibly caused by column plugging by fine grained materials. Often the flow rate drops to zero. Data reduction of breakthrough curves from a column under variable flow conditions is more difficult than under constant flow conditions.

FIGURE 11.1. Distribution of Sr (II) Between Montmorillonite and Sodium Chloride - 0.1 <u>M</u> Sodium Acetate Solutions Low Loading Sr (II)

Typically, column experiments are performed to validate the migration potentials obtained from simpler static adsorption tests. The observed results of laboratory column experiments are affected by both the chemical interactions and hydrodynamic characteristics of the media placed within the column. Thus, to validate the chemical aspects, the hydrodynamic aspects must be understood and measured. A classical method of elucidating hydrodynamic properties, such as apparent porosity and dispersion, is to use tritiated water as a water tracer. In some cases, though, tritium migration does not appear to mimic the bulk water (Francis et al. 1979).

High pressure intact core methods are under study (Figure 11.2). For most deep geologic scenarios, this technique would apparently better simulate actual expected conditions than the static or packed columns methodologies.

Mathematical calculations show that for intact crystalline rock, extremely large pressures would be necessary to force water through the grain boundaries. For crystalline rocks, fracture flow appears to be the most feasible mechanism for nuclide transport. Proper experimental methodology to use in studies of flow through fractures or cracks will need to be assessed.

Dynamic experiments on machined (smooth) fissures have been performed in the laboratory (Seitz et al. 1979). Preliminary static experiments have been performed to ascertain the time needed to reach equilibrium and to obtain surface adsorption and desorption coefficients for the nuclide Am.

Fissure infiltration experiments at three velocities have been performed. Observed results were compared with a computer model, which includes firstorder kinetic terms (Strickert et al. 1979). The general shape of the observed Am distribution on the fissure surface is predicted by the computer model, but in each instance the observed distribution exhibits a larger tail protruding down the fissure. Autoradiographs of the fissures showed that the adsorption was not uniform across the cross section. This was probably caused by nonuniform flow (wall effects) and grain edge and mineral-filled vein boundaries, but these effects were secondary. The conclusion drawn from the fissure experiments is that migration of nuclides in rock fissures is tractable and can be approximated by data from static experiments obtained on similar geometries, as

FIGURE 11.2. High Pressure Sorption Apparatus

long as kinetics are analyzed. The results show that the measurements of kinetic parameters are as important to understanding migration behavior as are measurements of the equilibrium adsorption values.

To date the retardation factors used in mathematical transport models have assumed reversibility (i.e., Kd for adsorption equals Kd desorption, and the rate of adsorption equals the rate of desorption). Experimental studies performed in WRIT by both static and dynamic methods (Burkholder et al. 1979; Brandstetter et al. 1979) have shown that for certain elements, the rate of desorption in short-term laboratory studies is slower than the rate of adsorption. When apparent steady-state conditions are met, the resultant Kd for desorption is higher than the Kd for adsorption. Thus, safety assessments based on Kd adsorption and reversibility may be conservative by up to one

order of magnitude for nuclide retardation. Currentl results on dynamic Kd experiments on intact cores, although few in number, appear to give measurements of retardation lower (by a factor of 0.2 to 0.5) than for batch Kd or dynamic experiments on disaggregated material. The discrepancy and measurement difficulties are under continued investigation with the objective of developing standard methods and nuclide migration predictions. In-situ nuclide migration experiments will need to be performed at selected sites to verify the extrapolation of laboratory data to field conditions.

The two methods (static and dynamic) for radionuclide-geologic media interaction studies are complementary. The static method is most useful for screening investigations of radionuclide behavior in a variety of systems and for estimating the time needed to attain equilibrium. Static radionuclide adsorption distributions may then be compared to retardation factors obtained from dynamic systems under similar conditions to verify results. Crushed or uncrushed material may be used in either method, and equilibrium solution compositions obtained from static tests may be used in dynamic experiments. The most pressing current need is an understanding and a measurement method to relate Kd values obtained on crushed material or manufactured tablets to the variable and tortuous fissures and cracks that are expected to be the environment through which water would flow away from a deep repository situated in crystalline rock.

Until standard methods are agreed on, the proposed actions needed to obtain adequate sorption data to assess the consequences of disposal in a proposed repository include:

- laboratory study performed on the fresh, unweathered rock and on actual weathered rock or the types of secondary minerals that are expected to be formed
- reliance on many screening studies using the batch Kd method on disaggregated rock and a wide range of ground-water types and environmental conditions for all important nuclides. With proper experimental design and media-water characterization, statistical

methods can be used to relate the dependent variable (migration rate or Kd) to independent variables (rock type and solution type). From Kd data on a limited number of rock-water permutations, estimates can be made for Kd values for other conditions not studied. This statistical technique will facilitiate objective and quantitative sensitivity analysis.

7

- some additional dynamic sorption studies on dissaggregated rock and intact core for selected nuclides that appeared to be potentially relatively mobile
- a few dynamic sorption experiments of larger scale and duration or actual in-situ verification.

These will provide the empirical data required to assess migration from repositories and the predictor equations that can be used to assess the effect of varying factors (such as pH, Eh, geomedia type) on adsorption. The equations relating the adsorption distributions to different solution and geomedia properties are being developed by fitting a polynomial to the multidimensional curve that can be produced from the sorption experiments and rock and groundwater characteristics.

These nuclide migration data rely on laboratory analyses characterized by relatively short time spans. The applicability of scaling these results to the million-year time frame must be addressed. The short-term laboratory results will be used in computer transport models where the time extrapolation is performed. The model results will be compared against known theoretical concepts such as weathering, ore geochemistry, mineral stability, and thermodynamic Eh-pH diagrams.

NEED FOR COMPLETE CHARACTERIZATION OF ROCK AND GROUND WATERS

In most instances Kd values are sensitive to geomedia properties such as surface area, mineral composition, amorphous oxide, and organic content, and to ground-water properties such as the pH, Eh, and chemical composition. The Kd is also dependent on the species of nuclide present, its concentration, and the hydrodynamics of the system. The interactions that occur as the soluble radionuclides percolate through geomedia are presented in Figure 11.3. Therefore, to identify, interpret, or use a Kd value for any nuclide properly, a large amount of supplementary information is necessary. Ideally, all the parameters listed below would be determined; in reality as many of the parameters as possible should be measured.

Numerous characterizations should be performed on geologic media and their pore waters to allow calculations of migration rates or Kd values. The characterizations can be broken into two broad categories: physical or hydrologic, and geochemical. A list of characterizations and their relative importance to Kd value determination follows. If only partial geochemical characterization is possible, priority should be placed on the first seven items. For the physical and hydrologic characteristics, items 4, 5, and 6 or 7 are most important. It cannot be overemphasized that accurate characterization of field pH and Eh is critical and that laboratory simulations must control these two critical parameters at the appropriate values.

Important Geochemical Characterizations

- 1. Qualitative and quantitative mineralogy is needed, including primary and secondary crystalline materials, amorphous coatings, determined primarily by x-ray diffraction, x-ray fluorescence, chemical treatment techniques, and petrographic examination. Total oxides SiO_2 , Al_2O_3 , TiO_2 , FeO, MnO, CaO, MgO, K_2O , Na_2O , P_2O_5 are typically determined. Calcium carbonate content, hydrous oxide content (amorphous and crystalline), and aluminosilicate contents are also important. Scanning electron microscopy and microprobes can be used to determine the microstructural mineralogy. These techniques can be very important in assessing the differences between the mineralogy and the weathering environments of cracks and fractures of the bulk rock material.
- 2. Cation-exchange capacity at appropriate pH values.
- 3. Ground-water pH, Eh, dissolved 0_2 , and/or species distribution of important redox couples (i.e., $Fe^{2+}-Fe^{3+}$, $S^{2-}-S^{6+}$, $Mn^{4+}-Mn^{2+}$), and temperature.

FIGURE 11.3. Radionuclide Interaction in Geologic Media

- 4. Ground-water major cation content (Na⁺, Ca²⁺, Mg²⁺, K⁺).
- 5. Ground-water major anion content (C1⁻, HCO_3^- , CO^{2-} , SO^{2-} , NO_3^-).
- 6. Ground-water SiO₂ content.
- 7. Organic content of geologic material.

Less Important Geochemical Characterizations

- 1. Anion exchange capacity at appropriate pH values.
- 2. Distribution of major cations on exchange sites.
- 3. Ground-water organic content, especially potential ligands (e.g., humic, fulvic acids).
- 4. Ground-water minor constituents, especially naturally occurring isotopes of important waste nuclides (Sr, Cs, I, U, Ra), chemically similar elements (Ba, Rb, Br, F), and potentially reactive elements (Fe, Mn, S, $P[PO_A]$).

Important Physical or Hydrologic Characterizations

- 1. Hydraulic conductivity.
- 2. Percent saturation.
- 3. Permeability.
- 4. Water velocities.
- 5. Surface area and particle size distribution (unconsolidated materials).
- 6. Porosity.
- 7. Percent fractures or fissures (consolidated material).
- 8. In-situ temperature.

To perform the necessary rock and ground-water characterization and subsequent nuclide adsorption experiments, the following sampling requirements are offered. For a thorough assessment of a specific site, 10-100 lb of each important rock material along the possible pathway back to the accessible environment is necessary. A portion of the rock (\geq 10 lb) should be intact core material with a minimum of contamination from drilling muds and fluids on which intact core sorption experiments can be performed. Where possible, the rest of the material (e.g., cuttings) should be as free of drilling muds as feasible. Complete recipes (important parameters have been discussed above) for probable ground waters or gallon-sized samples (split and preserved by standard methods--Brown et al. 1970) should be supplied.

DATA PROCEDURES FOR THE REFERENCE SITE ANALYSIS

A description of the actions taken to produce the data used in the reference salt dome analysis follows. Because this is a reference site analysis, not an actual effort to license a repository, experimental measurements are limited. Throughout the description, annotation will be given on what further work would be performed if the exercise were to supply information for an actual repository site assessment. An assessment will be given as to whether the methodology needed is at hand or needs to be developed.

Geologic Setting

1

Based on the stratigraphic data provided to AEGIS and WRIT by Law Engineering Testing Company (LETCO), the release scenario and conceptual hydrologic models were used to develop the layered earth model. For purposes of the reference site analysis, the layered earth model assumes that the salt dome intersects the following strata listed from the top to bottom: aquitard (Reklaw Formation), high permeability aquifer (Carrizo and Calvert Bluff Formations), lower permeability aquifer (Simsboro and Hooper Formations), and aquitard (Midway Group Formations). Because all the scenarios of interest were found to have probable paths to the accessible environment within these formations, nuclide adsorption-desorption work was concentrated on these units.

Sampling Procedures

Only outcrop samples of relevant formations were available. All samples were gathered by LETCO at either road cuts or stream bank cuts and were provided to WRIT. An attempt was made by LETCO to collect samples that were representative of each formation. In most cases, at least two outcrop sites were visted in different parts of the basin for each complete sample. An average of about 15 lb was collected for each formation and enclosed in airtight plastic bags. A geologic map that indicates sampling locations was also provided to AEGIS and WRIT staff.

For an actual site assessment, core material from the repository depth would be required. Ideally, the material should be obtained without the use of drilling muds and complex chemical fluids that contaminate the samples and affect the sorption processes. Currently it is felt that such techniques exist, especially when coring shallow strata (<300 ft), but an actual demonstration in the unconsolidated Gulf Coast salt dome areas is needed. Another acceptable method would be to take large diameter field cores into the laboratory and under core a smaller diameter sample that does not contain significant amounts of drilling fluids and mud. For other more consolidated rocks (e.g., crystalline granite, basalt), the need for drilling muds should present fewer problems than those expected in the Gulf Coast salt dome sites. A study will be performed soon to investigate the feasibility of identifying, quantifying, and removing drilling mud contamination from small side wall cores drill cuttings, and cores from salt dome and bedded salt associated samples. The effects of drilling mud contamination on Kd determinations will also be studied. This will allow a more objective analysis of the necessity for specialized drilling in the formations surrounding potential repository sites.

Mineralogic Characterization of Outcrop Samples

Some general descriptive geology (qualitative mineralogy, physical size distributions, and aggregation status) was made available from LETCO. In addition, several of the outcrop samples were further characterized at PNL. Appropriate samples were air dried and disaggregated to pass through a 20 mesh screen. Large pieces of organic material were hand picked and discarded. Large rocks retained on the sieve were discarded. The samples that were dried were from outcroppings of the following formations:

Calvert Bluff	Simsboro
Carrizo	Reklaw
Hooper	Queen City.

The samples in general exhibited extensive weathering alteration. Red iron stains were quite visible. The Reklaw Formation is known to be an aquitard but the outcrop sample was quite sandy. The Lower Wilcox, comprised of the Hooper and Simsboro, is known to be a good aquifer, yet the outcrop samples

11.16

• • • were quite claylike. Texas Bureau of Economic Geology (TBEG) personnel noted that the Lower Wilcox does contain much fine material and that the flowing aquifer comprises interconnected sand lenses. The iron stains are not observed in drill cuttings of the actual subsurface strata.

Whole Sample Chemical Analyses

Chemical analyses of whole samples were performed at Washington State University on the dried and sieved Hainesville sediments. Approximately 20 g of a sample were placed in a swing mill and ground for six minutes. This provided a fine, even-grained powder to produce homogeneous samples. Seven grams of lithium tetraborate and 3.5 g of the rock powder were thoroughly mixed and fused in a graphite crucible at 1000°C for five minutes. Upon cooling, the lithium tetraborate bead was removed from the crucible, and the basal surface of the bead was ground flat. The flat bead surface was irradiated in a Philips P.W. 1410 manual x-ray spectrometer with a chromium tube. The count rate recorded for each major element was related to the calibration curves derived from the count rates of similar analyzed samples supplied by the U.S. Geologic Survey and the National Bureau of Standards. A computer program was used to make spectral corrections and to determine the elemental oxide values. The precision for each major element is given in Table 11.1, calculated from + two standard deviations of triplicate analyses.

The whole sample chemical analyses are given in Table 11.2 for the six outcrop samples. The principal elements present were silicon, aluminum, and iron. Alkalies and alkaline earth elements were unusually low in concentration. The iron was reported as ferric iron because these sediments are well oxidized.

X-Ray Diffraction

÷-

Sample preparation for x-ray diffraction analyses included crushing and grinding a representative rock sample in an alumina mortar. The minus 200 mesh whole-rock powder was placed in a tray, and a Norelco x-ray diffraction unit was used to obtain an x-ray diffraction tracing. Diffraction peak heights and spacings were matched to those given in the powder diffraction data for minerals (Joint Committee on Powder Diffraction Standards 1980). Only mineral group names were identified. The feldspars and pyroxenes, for example, were not
TABLE 11.1.	Precision of X-Ray Fluorescence Analyses at 95% Confidence
	Limits (Thirteen Sets of Triplicate Beads Were Used)

Major Elements	Total Analytical Precision, 20 (fraction)
S10 ₂	0.550
A1203	0.310
TiO2	0.050
Fe0 (Total)	0.350
MnO	0.010
CaO	0.220
MgO	0.150
K ₂ 0	0.030
Na ₂ 0	0.160
P205	0.014

TABLE 11.2. Whole Sample Chemical Analyses of the Outcrop Samples

			Wt	%		
Oxide	<u>a</u>	<u>b</u>	<u> </u>	. <u>d</u>	e	f
SiO ₂	79.83	70.06	76.77	86.59	83.79	84.64
TiO	0.57	0.71	0.70	0.38	1.07	0.57
A1203	10.23	11.85	14.10	7.15	8.08	9.46
Fe ₂ 0 ₃	6.07	15.14	3.89	4.33	5.18	2.36
MnO	0.06	0.01	0.01	0.00	0.02	0.01
CaO	0.24	0.13	0.21	0.00	0.00	0.12
Mg0	0.76	0.99	1.04	0.36	0.68	0.66
к ₂ 0	1.40	0.39	2.16	0.75	0.51	1.49
Na ₂ 0	0.82	0.57	1.07	0.39	0.58	0.65
P205	0.05	0.15	0.05	0.05	0.09	0.04
TOTAL*	100.00	100.00	100.00	100.00	100.00	100.00

a	= Calbert Bluff Formation	d = Oueen City Sand
b	= Carrizo Sand	e = Reklaw Formation
С	= Hooper Formation	f = Simsboro Formation
*	These totals are based only	on the analyzed oxides.
	Because H ₂ O and Carbon were	not done, the actual totals
	will be less than 100% unti	I water is figured into the
	totals. Clays are present.	-

further classified because the variety of feldspar and pyroxene is more easily determined by other techniques. Quartz (SiO_2) is the principal mineral phase in all of the samples (see Table 11.3).

An unusual aspect of the data of Table 11.3 is the occurrence of a smectite clay with kaolinite. The two clay mineral types usually do not occur together because they are characteristic of two different genetic environments (Millot 1970). Well-leached environments with acidic, low ionic strength solutions yield kaolinite; environments with alkaline, higher ionic strength solutions yield smectites and illite. The occasional presence of opal also suggests that the Hainesville outcrop sediments are still being weathered.

Optical Examination

1

Optical examinations and photography were performed on polished thin sections of the Hainesville outcrop samples. A few grams of a representative sample were mixed with a thermal-setting epoxy resin, solidified at 80°C, and the face of the mount containing the sample was ground and polished. Photographs of selected areas of the mount, as viewed in a Zeiss Ultraphot IIIB petrographic microscope, were obtained at 12x and 100x normal size.

Figures 11.4 through 11.6 show optical views at 12x and 100x under bright field, polarized light for the six Hainesville outcrop sediment mounts.

Calvert Bluff Formation

The Calvert Bluff mount photographs show many small, subangular mineral grains, principally quartz according to x-ray diffraction data, partly embedded in a very fine-grained matrix. The light gray material showing an occasional scratch is the embedding epoxy plastic. There is little apparent difference between this sample and the following Carrizo sand mount.

Carrizo Sand

This mount also shows a relatively monomineralic sediment composed of subangular, fine mineral fragments, which are mainly quartz. A coating layer can be seen on the exterior of some of the mineral fragment sections in the mount. The 100x magnification photograph shows predominately embedding plastic.

Optical Photomicrographs

FIGURE 11.5. Optical Photomicrographs - Hooper Formation - Queen City Sand (Original Photomicrograph recuced to 75%)

Optical Photomicrographs

<u>TABLE 11.3</u>. Mineral Phases Found in the X-Ray Diffraction Tracings of As-Received Hainesville Outcrop Samples

Sample	Mineral Phases
Calvert Bluff Formation	Mainly quartz; minor illite, smectite, kaolinite, feldspar
Carrizo Sand	Mainly quartz; minor smectite, kaolinite, illite, feldspar
Hooper Formation	Mainly quartz; some feldspar; minor smectite, kaolinite, illite
Queen City Sand	Mainly quartz; minor feldspar, smectite, opal (-cristobalite)
Reklaw Formation	Mainly quartz; some opal (-cristobalite); minor kaolinite, smectite, illite
Simsboro Formation	Mainly quartz; minor feldspar, smectite, kaolinite, illite.

Hooper Formation

The Hooper material is more fine-grained than the Calvert Bluff or Carrizo sand. It contains many areas of clay-size particles surrounding predominately quartz mineral fragments.

Queen City Sand

This sample mount shows a better sorted, less angular, predominately quartz soil. According to the whole sample analyses of Table 11.2, the Queen City sand contains more than 86 wt% of silica, which is also a good estimate of its quartz content.

Reklaw Formation

The Reklaw sample mount shows a less well-sorted, mostly quartz sand, the fragments of which are often coated on their exterior surfaces by clays or amorphous materials. The nature of these coatings was investigated during the elemental x-ray emission work, and is reported under that following section.

Simsboro Formation

Quartz is the predominate mineral in the area of the mount examined. A few potassium feldspar fragments can be seen in the potassium emission photograph. Calcium is very low in content. High aluminum areas can be seen in the aluminum x-ray emission photograph, probably corresponding to gibbsite or amorphous aluminum areas. The white line across the lower right-hand corner of the electron scattering photograph is a mount coating artifact.

Electron Microprobe Feldspar Chemical Analyses

Two of the potassium-containing fragments seen in each of the six Hainesville outcrop samples were analyzed with the microprobe, with the results shown in Figures 11.7 through 11.12 and in Table 11.4. All were potassium feldspars, either microcline or orthoclase. Both feldspars are the same in chemical composition, but differ in structure. No plagioclase feldspars were seen, with the possible exception of a single fragment containing calcium in the mount of Calvert Bluff Formation sample. The potassium feldspar content of the Hainesville samples was not large, but it is still the second largest fragment mineral. Quartz is the most prevalent fragment mineral.

Conclusions

んちんちょう 一、後にたちちちを

The Hainesville samples as received by WRIT from LETCO are soils developing on the outcrops of the six stratigraphic units. The weathering involved is of the lateritic or ferrallitic type (see Millot 1970). As lateritic weathering progresses, silicates are completely hydrolyzed, and quartz is finally solubilized, releasing silicon, aluminum, magnesium, calcium, sodium and potassium ions. Iron, aluminum, and silicon are partially retained to form the three main constituents of laterites, hydrated iron oxides, hydrated aluminum oxides and aluminosilicates in the form of kaolinite. The alkalies and alkaline earths are removed in solution.

The Hainesville samples have begun the lateritic weathering process, so that there has been enough weathering and oxidation to cause considerable differences in chemical and mineralogical constituents between the original

(

FIGURE 11.8. Carrizo Sand - Elemental X-Ray Emission Photographs, 100X (Original Photomicrograph recuced to 75%)

FIGURE 11.9. Hooper Formation - Elemental X-Ray Emission Photographs, 100X (Original Photomicrograph recuced to 75%)

.

QUEEN CITY 5AND Elemental X-Ray Emission Photographs, 100X

FIGURE 11.12. Simsboro Formation - Elemental X-Ray Emission Photographs, 100X (Original Photomicrograph recuced to 75%)

TABLE 11.4. Electron Microprobe Chemical Analyses of the Feldspars Commonly Found in the Hainesville Samples (The Cationic Contents of a Feldspar Molecule Containing 32 Oxygen Atoms Also is Given to Allow Comparisons. All of the Feldspars are Microclines or Orthoclases.)

			_			Wt	%					
<u>Oxides</u>	<u>A1</u>	<u>A2</u>	<u></u> B1	<u>B2</u>	<u></u>	<u>C2</u>	<u>D1</u>	<u>D2</u>	<u>E1</u>	<u>E2</u>	_ <u>F1</u>	<u>F2</u>
S102	65.5	64.4	65.3	64.3	65.2	64.9	63.0	64.7	67.3	64.7	63.4	66.3
T102	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
A1203	18.4	18.3	16.3	16.8	15.5	17.5	22.3	19.0	16.0	16.5	19.1	19.5
BaO	0.4	0.9	0.5	0.4	0.2	0.3	0.2	0.1	0.4	0.6	0.4	0.9
CaO	0.1	0.1	0.1	0.1	0.1	0.1	0.7	0.1	0.1	0.1	0.1	0.1
Mg0	0.1	. 0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Fe0	0.2	0.1	0.6	0.3	0.2	0.1	0.2	0.2	0.1	0.1	0.1	0.2
K ₂ 0	14.1	15.7	15.0	15.6	16.4	16.8	11.4	16.0	16.4	16.1	15.7	15.2
Na ₂ 0	1.4	0.6	1.0	0.3	0.3	0.4	3.5	0.8	0.3	0.4	0.4	0.4

A1 = Calvert Bluff formation; $(K_3.73, Na0.22)(A14.02, Si12.00)032$ A2 = Calvert Bluff formation; $(K_3.73, Na0.48)(A13.98, Si12.06)032$ B1 = Carrizo Sand; $(K_3.62, Na0.36)(A13.62, Si12.31)032$ B2 = Carrizo Sand; $(K_3.78, Na0.20)(A13.77, Si12.22)032$ C1 = Hooper Formation; $(K_3.96, Na0.6)(A13.47, Si12.38)032$ C2 = Hooper Formation; $(K_3.98, Na0.15)(A13.85, Si12.07)032$ D1 = Queen City Sand; $(K_2.65, Na1.23)(A14.78, Si11.45)032$ D2 = Queen City Sand; $(K_3.76, Na0.28)(A14.11, Si11.91)032$ E1 = Reklaw Formation; $(K_3.85, Na0.12)(A13.47, Si12.41)032$ E2 = Reklaw Formation; $(K_3.74, Na0.16)(A13.69, Si12.28)032$ F1 = Simsboro Formation; $(K_3.54, Na0.16)(A14.19, Si12.09)032$

1:

source rocks and the soils developing on them. Presumably radionuclide Kd values determined on the soil and original rock could differ considerably as well, most likely nonconservatively.

Additional work performed in an actual site assessment to characterize the geologic samples would include: determination of cation-exchange capacity, surface area, and quantitative mineralogy, including hydrous iron oxides, carbonate and organic contents. Methods for each of these determinations are quite standard, and thus readily available and well suited for usage on

sedimentary materials. Time and cost constraints, coupled with the earlier characterization results that led to questioning the appropriateness of the outcrop samples, all contributed to the decision not to perform the total geologic media characterization. If this were an actual site assessment such characterization would have been performed.

GROUND-WATER CHARACTERIZATION

Samples of ground water from the Wilcox aquifer were not available for this study. In lieu of this, two samples of ground water from the vicinity of the Avery Island Salt Dome were analyzed. Cations were determined by inductively coupled plasma emission spectroscopy (ICP). Anions were not determined. but would be analyzed by ion chromatography and standard colorimetric techniques in an actual site analysis. The cation concentrations for the two Avery Island samples are shown in Table 11.5. Sample #1 was from a well near the salt dome. Sample #3 was collected from a pool on the floor of the conventionally mined salt mine. The results shown in Table 11.5 give an estimate of the detection limits of trace metals within the brine matrix. The results for Cu and Zn are suspiciously high, while analysis of K is not very reliable. Determination of K will necessitate separate analysis by atomic absorption (AA). Analysis of brine by ICP and/or atomic absorption is adequate for the safety assessment needs. Fresh waters are even more amenable to analysis by ICP or AA. The measurements of dissolved oxygen content, Eh, and pH were not performed because these measurements should be made in-situ or soon after sample collection. For an actual site assessment, ground-water sampling and analyses should be performed on waters from existing aquifers following methods prescribed by USGS (Brown et al. 1970).

For the Hainesville Salt Dome reference site analysis, information from TBEG and from the release scenarios developed by AEGIS was used to synthesize two appropriate ground waters. The first is a brine solution, to represent the high density plume that drops off the shoulder of the salt dome. This plume is continually diluted by Wilcox aquifer water, and thus does not have constant salinity. WRIT chose a value of 10,000 ppm NaCl as a working value. Under present dissolution conditions, the 10,000 ppm iso-concentation line extends about 1 km from the salt dome. Subsequent consequence analyses,

TABLE 11.5. Ground-water Analyses (Concentrations mg/1)

	Sample #1	Sample #3
Na	40,850	111.650
Ca	625	2,195
ĸ	300	*
Ma	100	520
Sr	6.5	27
Li	2.5	2.5
Al, Si, P, Fe	5	5
B	3.5	2.5
Mn	3.5	20
Ba, Ag, Cd, Co, Ni	0.5	0.5
As	1.5	0.5
Cr, Ti, Zr	2.5	2.5
Cu	3.5	3.5
Mo	25	25
Pb, Sb, Se, Sn, Th	5	5
TI	5	22.5
U	2.5	11.5
Zn	25	40

*interference

however, showed that after the breach the saline plume would extend to the point of discharge (see Chapter 7). The salt brine recipe used is:

10,000 ppm NaCl "Brine" 10 ppm CaSO,

The second ground water represents the existing Wilcox aquifer, several kilometers away from the salt dome, where the brine influence is diluted. The water is sodium bicarbonate dominated and has the following recipe:

1,260 ppm NaHCO₃ "Wilcox" 7 ppm CaSO₄

BATCH Kd EXPERIMENTS ON THE OUTCROP SAMPLES

Preliminary mineralogy results showed all samples to be mainly quartz, with minor amounts of secondary clays. From visual (color) and textural

(sand vs. clay) indications, the following formations were mixed together and given generic names "aquifer" and "aquitard."

"Aquifer"	mixed	403.07 g	Calvert Bluff
		403.07 g	Carrizo
"Aquitard"	mixed	403.13 g	Hooper
		403.11 g	Simsboro

Subsamples of the "aquifer" and "aquitard" and ground waters were given to PNL and LASL personnel. The following "cookbook" batch Kd directions were provided to the experimenters:

- One g samples of "aquifer" and "aquitard" are to be weighed into 50 ml polycarbonate Oak Ridge-style centrifuge tubes.
- Two cold washes of the appropriate ground water are to be performed. The first wash (30 ml) will last for 4 days (<u>+8</u> hr). The second wash (20 ml) will last for 3 days (<u>+8</u> hr).
- 3. Separation will be made by centrifugation, at least 16,000 g for 20 minutes.

4. The weight of residual cold solution will be measured.

<u>___</u>

- 5. Traced ground waters will be made by adding trace amounts of radioisotopes and pre-equilibrating for 3 days before use. Just before use, the ground water will be filtered through 0.4 µm Nucleopore filters. The spikes may be added by directly injecting small quantities of acid stock or by drying the tracer and adding ground water. The amount of tracer should be kept low and the molarity reported.
- 6. The contact time of the batch experiments will be 21 <u>+1</u> days. The experiments will be performed at room temperature. One half of the experiments will be performed in air and one half the experiments will be performed in anoxic chambers.
- 7. The final solids to solution ratio will be 1 g/ 30 ml spiked water. At 21 days pH, Eh, and T° will be recorded. Solutions will be separated by centrifugation, at least 16,000 g for at least 20 minutes.

- 8. Blank (without soils) containers will be run in triplicate at each Eh to check for container adsorption. Soil samples themselves may be counted to double check container adsorption. Blanks will be treated as follows: two cold washes of 10 ml each followed by 30 ml hot solution. Only 10 ml are to be used at first to conserve the solution.
- 9. Kd values will be reported for both blank-corrected or direct counted soils if the values differ significantly.
- 10. Optionally, samples may be filtered after initial counting to check for colloids.
- 11. Results on the triplicates will be reported as a mean + 1 standard deviation. Other options include: a) measurement of macro and trace elements in ground waters at the end of the experiment, b) measurement of Kd at other (extra times), both shorter or longer than 21 days, and c) desorption experiments.

Experimental Results on Outcrop Samples

The average batch Kd values (corrected for blank container wall adsorption) are reported in Table 11.6 for the most important long-lived fission, activation product, and actinide elements. To was omitted because of a delay in the arrival of the needed tracer. Ba is currently used as an analog for Ra. The averages are based on the triplicate analyses. The \pm values signify one standard deviation. All results were determined in the adsorption direction; desorption experiments were not performed. In addition to Kd value, the final solution pH, final ground-water composition, percentage of nuclide adsorbed on blank container walls, and initial tracer molarity were measured.

If this were an actual site assessment, several more experiments would have been completed. Several additional ground waters would have been run to provide more data on the effects of variable ground-water composition. Kd adsorption at various times would have been collected to address sorption time dependency. Desorption experiments would have been performed to assess the degree of reversibility. After preliminary batch Kd values had been evaluated, subsequent dynamic flow-through column or intact core sorption

TABLE II.V. EADELINGICAL AU TAIDES (MIT/U/ ALEEL LI DATS OF SDAKE	TABLE	11.6.	Experimental	Kď	Values	(m1/a)	After	21	Davs	of	Shaki	no
---	-------	-------	--------------	----	--------	--------	-------	----	------	----	-------	----

		Agulfer-1	Wilcox	Aquife	r-Brine	"Aquitar	d"-Wilcox	"Aquitard	-Brine
Nuclide	Laboratory	Oxic	Anoxic	Oxic	Anoxic	Oxic	Anoxic	Oxic	Anoxic
Se	PNL	80 <u>+</u> 9	76 <u>+</u> 1	1,230 <u>+</u> 210	940 <u>+</u> 210	24 <u>+</u> 3	35 <u>+</u> 7	890 <u>+</u> 250	750 <u>+</u> 90
Sr	PNL	420 <u>+</u> 20	≥1,600	10.0 <u>+</u> 0.3	10.7 <u>+</u> 1.3	250 <u>+</u> 20	≥1,600	7.7 <u>+</u> 0.5	7.7 <u>+</u> 0.3
I	LASL	463 <u>+</u> 7	633 <u>+</u> 15	7.7 <u>+</u> 1.0	7.6 <u>+</u> 0.4	415 <u>+</u> 10	434 <u>+</u> 5	10.0 <u>+</u> 0.6	9.8 <u>+</u> 0.4
Cs	PNL	≥1,800	≥5,400	3,650 <u>+</u> 390	≥1,530	930 <u>+</u> 120	1,580 <u>+</u> 720	7,670 <u>+</u> 2,530	≥5,100
Ba	LASL	2,170 <u>+</u> 26	3,320 <u>+</u> 60	24 <u>+</u> 1	25 <u>+</u> 0.5	830 <u>+</u> 15	845 <u>+</u> 15	16.8 <u>+</u> 0.8	15.7 <u>+</u> 0.4
Ce	LASL	2,600 <u>+</u> 1,140	14,000 <u>+</u> 800	995 <u>+</u> 58	400 <u>+</u> 100	317 <u>+</u> 92	1,270 <u>+</u> 60	340 <u>+</u> 20	120 <u>+</u> 40
Eu	LASL	17,500 <u>+</u> 510	20,200 <u>+</u> 485	1,430 <u>+</u> 105	490 <u>+</u> 150	1,490 <u>+</u> 65	1,670 <u>+</u> 33	330 <u>+</u> 12	84 <u>+</u> 34
U	LASL	120 <u>+</u> 35	7.2 <u>+</u> 1.6	9,200 <u>+</u> 760	5,730 <u>+</u> 60	3.3 <u>+</u> 1.4	1.44 <u>+</u> 1.32	577 <u>+</u> 25	240 <u>+</u> 15
Np	PNL	440 <u>+</u> 18	2,090 <u>+</u> 260	75 <u>+</u> 12	86 <u>+</u> 2	77 <u>+</u> 4	1,020 <u>+</u> 400	1.8 <u>+</u> 0.1	1.5 <u>+</u> 0.2
Pu	PNL	5,750 <u>+</u> 420	139 <u>+</u> 5	450 <u>+</u> 10	690 <u>+</u> 180	620 <u>+</u> 150	60 <u>+</u> 2	350 <u>+</u> 40	1,090 <u>+</u> 50
Am*	LASL	21,200 <u>+</u> 870	3,830 <u>+</u> 30	1,840 <u>+</u> 70	-	1,730 <u>+</u> 55	609 <u>+</u> 27	318 <u>+</u> 5	-

1

*Data are preliminary and subject to change -Data were not available at time of writing

•

 $\sum_{i=1}^{n} e_{i}$

experiments would be performed to verify batch results. Emphasis would be placed on those combinations of nuclides-sediment-ground waters that gave the highest mobility.

Interpretation of Outcrop Results

There are very few values for Se adsorption reported in the literature. From general chemistry principles, Se would be expected to be sensitive to pH and possibly Eh changes in the ground water. Over most of the Eh-pH domain, Se would be expected to be present as an anion $(SeO^{2-}, SeO^{2-}, HSeO^{2-})$ and thus potentially mobile. Experimental results show the adsorption of Se to be moderate from the Wilcox ground water and high from the salt brine. As the pH of these two solutions differed significantly, possible pH-dependent reactions are occurring instead of ionic strength-dependent reactions. There does not appear to be any large dependency on Eh and only a small dependency on geologic media. The higher than expected adsorption, assuming Se is present as an anion, might reflect adsorption on hydrous iron oxides in a manner similar to phosphate adsorption.

As expected, the Sr results show a significant dependence on ground-water ionic strength and very little dependence on oxygen conditions. There is little dependence on sediment type, based on these data. The comparison between PNL and LASL data is satisfactory.

The iodide adsorption results show some adsorption occurring. There is no clear dependency on ground-water type, sediment type, or oxygen conditions. Currently, the observed non-zero adsorption is unexplainable. Assuming I⁻ is the predominate species, one would expect Kd values <1.

The cesium data show that considerable adsorption occurs under any conditions, with no apparent dependencies. The aggreement between PNL and LASL data is satisfactory.

Like Sr, Ba (Ra analog) shows a strong dependence on ground-water composition, with sorption decreasing as the salt content increases. The "aquifer" sediment appears to be more selective in Ba adsorption than the "aquitard" sediment. The cerium and europium data show a large variability caused by the blank correction. Neither Eu nor Ce remains in solution at the neutral to basic pH under study. Adsorption is very high to moderate for all cases. There appears to be slight dependencies on ground-water composition (sorption decreases as salt content increases) and sediment type ("aquifer" greater adsorption than "aquitard").

The adsorption of U appears to be sensitive to ground-water type (higher adsorption from brine), oxygen condition (higher adsorption under oxidizing conditions), and sediment type ("aquifer" higher than "aquitard"). The higher mobility of U in the Wilcox water may result from soluble carbonate complexation. The relationship to oxygen conditions is dramatically opposed to trends in nature, where U is much less mobile under reducing conditions. Some of the discrepancy may have resulted from sorption of hydrous iron oxides and the blank correction methods of calculating Kd, but these results are unexpected.

Np sorption on the "aquifer" sediment is much larger than on the "aquitard" sample. As expected, Np appears to be more readily adsorbed under anoxic conditions with the "aquifer" sediment. Np adsorption appears to decrease significantly as the water increases in salt content. The oxygen sensitivity does not appear during adsorption onto the "aquitard."

The Pu results show moderate to strong adsorption. The expected trend of significantly enhanced adsorption under anoxic conditions is not observed, possibly because of blank correction. Very little Pu could be kept in solution in the blanks under anoxic conditions. Maximum observed Pu concentrations might be reported as well as Kd values when discussing Pu, as Pu concentrations are extremely small at solubility limit.

In general Am is readily adsorbed quite under all conditions, but all results were not available at the time of this writing.

Kd VALUES SELECTED FOR USE IN THE REFERENCE SITE ANALYSES

5

The laboratory determinations of Kd values for the outcrop samples provide a demonstration of the methods that would be used for an actual site evaluation. However, several factors led to a decision not to use the outcrop measured Kd values for this analysis:

- The outcrop samples were visibly weathered and contained visible organic particles. The clay and organic fractions would likely give erroneously high sorption measurements (i.e., error in the nonconservative direction).
- The sample associated with aquifers had more clay than that associated with aquitards.
- Experiments had to be performed in a very limited time frame, with minimal replication.

In addition, uncertainty exists with respect to the probable redox conditions of the ground waters and with respect to the ionic constituents of each ground water. For these reasons, to provide conservatively representative Kd data for the reference site analyses, the results of the sample characterization were used as the basis of selecting from the WRIT generic Kd data bank, Kd values associated with quartz in saline and bicarbonate solutions. Thus the Kd values shown in Table 11.7 were used in base case reference site assessments in lieu of the measurements on the outcrop samples.

These Kd values were selected by considering that the actual geologic media are similar to pure quartz, on which generic WRIT Kd data are available (Serne 1978; Relyea 1979) for a 0.03 N NaHCO₃ and 5.13 N NaCl waters. The bicarbonate solution is about twice the strength of the Wilcox aquifer, and the brine is about 25 times more salty than the proposed Hainesville recipe. However, this value more closely reflects the concentration later determined to be appropriate for the salt brine being dissolved from the breached salt dome. As it is not certain whether the probable redox conditions will be oxidizing or reducing, the lower Kd was chosen.

There are no WRIT generic Kd values for H, C, Se, Ra, Th, Pa, U, or Cm. Se, Ba(Ra) and U Kd values were the lowest values of those measured on the outcrop samples (Table 11.6). Barium is used as an analog for radium, based on the National Academy of Sciences publication on the radiochemistry of radium (Kirby and Salutsky 1964). It is assumed that 3 H and 14 C would be found

TABLE 11.7

1.7. Kd Values for the Reference Site Analyses* (ml/g)

	<u>Ground-Wa</u>	ater Type
	Wilcox	
Element	<u>Aquifer</u>	<u>Brine</u>
Н	0	0
C	0	0
Se	24 (21)	24 (21)
Sr	270 (250)	0
Тс	0	1.6 (0.7)
Ι	0	0
Cs	11 (18)	0
Ba(Ra)	15	15
Th	40	40
Pa	40	40
บ	1.4 (1.1)	1.4 (1.1)
Np	6.6 (2.3)	0
Pu	73 (47)	250 (90)
Am	75 (68)	0
Cm	75 (68)	0

* The values in parentheses represent mean Kd values minus one standard deviation, as taken from the WRIT generic Kd data bank. These values, where they exist, were taken to be the lower bound on Kd values used in one of the consequence analyses.

as tritiated water and bicarbonate-carbonate anions, respectively, and thus these were given a Kd value of zero. For the 14 C, this approach ignores potential carbonate precipitation and thus could be conservative. The Kd for Th-was from a literature value for sand (Nishiwaki et al. 1972). The chemistry of Pa and Cm were assumed to be similar enough to Th and Am, respectively, to use their data as analogs.

CHAPTER 12

EXTERNAL REVIEW OF WORKING DOCUMENT PNL-2955

This document was distributed to a number of individuals to provide a peer review of its contents before final publication. That working document of December 1979 was revised in response to the comments received. Chapter 12 is provided so that the reader can note key questions unresolved with respect to long-term effectiveness assessments, diverse opinions on some issues, technical and philosophical criticisms of this work. It should be understood that this report represents the first complete application of the AEGIS methodology (which is undergoing development), that there were insufficient data and time for the level of analysis that will be done for the later stages of site qualification and licensing, and that the intent of this work was to demonstrate the AEGIS and WRIT approaches to nuclear waste repository assessments. This report is not meant to be the final analysis of a nuclear waste repository located in a salt dome; however, the report does present the major areas of potential problems for salt dome repositories.

REQUEST FOR PEER REVIEW

The following is a copy of the letter sent to the external (outside PNL) reviewers of the working document of this report.

3 January 1980

AEGIS-80-010

Subject: Request for Peer Review of PNL-2955

Dear

The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program is conducted at Battelle, Pacific Northwest Laboratory (PNL) under contract with the Office of Nuclear Waste Isolation (ONWI), which is managing nuclear waste isolation programs for the Department of Energy (DOE). The objective of AEGIS is to develop and apply methodology for evaluating the post-closure effectiveness of deep geologic isolation of nuclear waste. During FY-1979 the predecessor to AEGIS, the Waste Isolation Safety Assessment Program (WISAP), performed an initial assessment of a hypothetical nuclear waste repository in a reference salt dome. This preliminary reference site analysis is enclosed in a working document form as PNL-2955, Volumes 1 and 2.

This document represents the demonstration of the AEGIS methodology for a site taken to be representative of interior Gulf Coast salt domes. This report is the first part of an analysis which will include sensitivity evaluations of important parameters and assumptions. The complete AEGIS analysis is to be used as part of the safety assessment for the Preliminary Information Report (PIR) being assembled by ONWI. This PIR is analogous to a Preliminary Safety Assessment Report (PSAR) accompanying a license application except that it provides either example cases or methods for providing the information considered necessary for an actual PSAR. The amount of information available on the example site used in this study is considerably less than would be available for a true candidate dome proposed for licensing with the Nuclear Regulatory Commission.

The application described in PNL-2955 is intended to be a methodology demonstration. While many of the points of this study may have generic applicability to salt domes, this is not an actual site assessment. The application was performed to provide perspective on the performance of system barriers when the system is subjected to human intrusion. During the next several months, ONWI and PNL will be evaluating the sensitivity of the analysis to key assumptions concerning aspects of human activities in the future. In addition, engineered barrier concepts will be evaluated for any effect that they might have on the source term of radioisotopes being transported to the biosphere. In this context, the results of PNL-2955 will provide a base case to be used in later considerations of the effectiveness of engineered barriers and of the effects of institutional controls or passive information systems which could be employed. PNL-2955 was first completed in August 1979, and in the subsequent months the report has been subjected to several reviews. These reviews have included consideration by all of the AEGIS staff, by management at PNL, DOE, and ONWI, and by a few consultants. Based on these reviews, the document was revised slightly to its current form to show more clearly the assumptions in the analysis. This working document is being sent to you and to others on the limited distribution list (attached) for the purpose of expanding the independent review of the work. We are especially seeking peer review of the overall methodology used and of the details of the reference site assessment, including the data, interpretations, and assumptions. Examples of specific areas of our report on which we are seeking comments are:

- 1. Is the overall approach in this report appropriate for evaluating the long-term effectiveness of a nuclear waste repository?
- 2. Were the potential natural breach scenarios treated adequately?
- 3. Is the human intrusion scenario credible?
- 4. Are the mining operation scenario assumptions appropriate? Are they conservative or nonconservative?
- 5. Have the draft EPA criteria* been interpreted correctly in the development of the scenario?

In addition, we are seeking comments on the broader framework for long-term assessments. Specifically, examples of questions for which we would like your comments are:

- 1. Is it appropriate to assume complete loss of institutional control or memory after 100 or 1000 years?
- 2. Is it appropriate to take no credit for the use of passive markers at the repository site?
- 3. Is it appropriate not to include engineered barriers in a base-case analysis?
- 4. Is it appropriate to assume no monitoring and/or discovery of radioactive materials by a future humanity which intrudes into the repository?

The salt dome analysis is the first exercise of the integrated AEGIS methodology. AEGIS is aware of a need for a scientific consensus of the adequacy of the methodology to be used in the licensing process. It is for this reason that we need a thorough review of our work at this stage of development. I request that you send any comments you might have to me prior to 15 March 1980.

In addition, we welcome suggestions of others who should be involved in this peer review process. This document will be revised as appropriate based on the comments of the reviewers.

Thank you for your consideration of this report.

Sincerely,

Albin Brandstetter, Ph.D. Manager Assessment of Effectiveness of Geologic Isolation Systems (AEGIS)

AB:jp Attachments

*The draft EPA information used for PNL-2955 included:

EPA Background Report. Considerations of Environmental Protection Criteria for Radioactive Waste. February 1978.

EPA Criteria for Radioactive Wastes. Recommendations for Federal Radiation Guidance. 43 FR 53262. 15 November 1978.

EPA draft standards for the management, storage, and disposal of spent fuel and high-level waste. 29 June 1979.

EPA draft of Proposed Criteria for Radioactive Waste Disposal (Federal Radiation Guidance). 13 July 1979.

Distribution List for Working Document PNL-2955

M. Bell, NRC J. Bird, Cornell University

P. Brannen, Sandia - WIPP

C. Bull, Ohio State University

N. Cook, University of California

B. Crowe, LASL S. Davis, University of Arizona

D. Egan, EPA

R. Gastil, Freedom House G. Griswold, Tecolote Corp. G. Hunt, RHO - BWIP

R. Kehle, Kehle Associates

C. Kreitler, Texas Bureau of Economic Geology

G. Kukla, Lamont-Doherty Observatory D. Kupfer, Louisiana State University

T. Lash, NRDC

J. Martinez, Louisiana State University M. Merritt, Sandia - WIPP F. Parker, Vanderbilt University G. Pinder, Princeton University

H. Ragsdale, Emory University

D. Schreiber, consultant

H. Shaw, USGS

H. Stephens, Sandia - NTS D. Stewart, USGS

M. Tierney, Sandia - WIPP N. Trask, USGS

G. Wermund, Texas Bureau of Economic Geology

P. Witherspoon, LBL

EXTERNAL REVIEWERS

Comments were received from the following individuals or groups:

Dr. Michael J. Bell and Staff High-Level Waste Technical Development Branch Waste Management Division Nuclear Regulatory Commission Washington DC 20555

Dr. John M. Bird, Geologist

Dr. Neville G. W. Cook Professor of Mining Engineering University of California Hearst Mining Building Berkeley, CA 94720

Dr. Stanley N. Davis, Hydrologist The University of Arizona College of Earth Sciences 6540 W. Box Canyon Drive Tucson, AZ 85705

Mr. Daniel Egan* Criteria and Standards Division Office of Radiation Programs U.S. Environmental Protection Agency Washington DC 20460

Dr. Raymond Gastil Freedom House 8 Frontier Road Cos Cob, CT 06807

Dr. George Kukla Lamont-Doherty Geological Observatory of Columbia University Palisades, NY 10964

Dr. Donald H. Kupfer Louisiana State University Shreveport, LA 71105 Dr. Terry Lash and Staff Staff Scientist Natural Resources Defense Council 25 Kearney Street San Francisco, CA 94108

Dr. Frank L. Parker Vanderbilt University Nashville, TN 37235

Dr. David Perkins Branch of Probabilistic Risk Assessment U.S. Department of the Interior Geological Survey Reston, VA 22902

Dr. George F. Pinder Consulting Hydrologist 343 Prospect Avenue Princeton, NJ 05540

Dr. Robert O. Pohl Cornell University Laboratory of Atomic and Solid State Physics Clark Hall Ithaca, NY 14853

Dr. Harvey L. Ragsdale Associate Professor Emory University Atlanta, GA 30322

Dr. David L. Schreiber Consulting Hydraulic Engineer P.O. Box 1087 (c/o the Colony) Coeur d'Alene, ID 83814

^{*} Comments provided via phone conversation only.

Dr. Herbert R. Shaw U.S. Department of the Interior Geological Survey Branch of Experimental Geochem. and Mineralogy 345 Middlefield Road Menlow Park, CA 94025

Mr. Arthur J. Soinski Technology Assessments Project Office State of California Energy Resources Conservation and Development Commission 1111 Howe Avenue Sacramento, CA 95825

Dr. Howard P. Stephens and Staff NTS Waste Management Overview Div. 4538 Sandia Laboratories Albuquerque, NM 87115

Dr. David B. Stewart and Staff Geologic Division Coordinator Radioactive Waste Management U.S. Department of the Interior 959 National Center Reston, VA 22092 Dr. Martin S. Tierney Environmental Assessment Division 4514 Sandia Laboratories Albuguergue, NM 87115

Dr. Newell J. Trask, Geologist U.S. Department of the Interior Geological Survey Reston, VA 22092

Dr. Bob E. Watt (Physics)

Dr. Paul Witherspoon and Staff Earth Sciences Division Lawrence Berkeley Laboratory University of California Berkeley, CA 94720

In addition to these reviewers, the Office of Nuclear Waste Isolation (ONWI), which manages the research, development, design, and selection of salt dome nuclear waste repositories for the U.S. Department of Energy and which is the sponsor for AEGIS, assembled an <u>ad hoc</u> group (ONWI Task Force) for the review of the working draft of PNL-2955. This group was led by Dr. C. Ping Chen, ONWI, Battelle Memorial Institute, 505 King Avenue, Columbus, OH 43201, and consisted of ONWI staff, contractors, and consultants.

EXTERNAL REVIEWERS' RESPONSES TO QUESTIONS

The comments from all the external reviewers were grouped according to the nine questions asked in the transmittal letter, and responses were prepared by AEGIS. In addition, many other general and technical comments were received, which are also summarized in the next section. Other comments not discussed below related to changes in the text that have been made for this final version or relate to very technical questions now are under consideration by AEGIS staff in the continued methodology development.

<u>Question 1</u>: Is the overall approach in this report appropriate for evaluating the long-term effectiveness of a nuclear waste repository?

Of the 22 comments received from the external reviewers, 16 either directly answered this question or the answer was inferred from the content of the overall response. Of those, 14 answered that the overall approach is appropriate, although many responses were qualified.

<u>Question 2</u>: Were the potential natural breach scenarios treated adequately?

Only eight commentors either specifically addressed this question, or had comments from which a position could be inferred. All eight answered yes, though again with some qualifications.

Question 3: Is the human intrusion scenario credible?

For this question, eight responses were yes; two were no.

<u>Question 4</u>: Are the mining operation scenario assumptions appropriate? Are they conservative or nonconservative?

For this question, seven answered yes; three answered no.

<u>Question 5</u>: Have the draft EPA criteria been interpreted correctly in the development of the scenario?

In evaluating this question, it should be understood that the regulations appliable to nuclear waste disposal are in the development stage. Thus, the drafts available to AEGIS at the time of this work have been supplanted by differing, more recent drafts.

The EPA (oral) response was that while the draft standards have changed in the interim, the interpretations AEGIS did of the contemporaneous standards were definitely appropriate.

Of the written comments received, only five addressed this question, four answering yes.

<u>Question 6</u>: Is it appropriate to assume complete loss of institutional control or memory after 100 or 1000 years?

This question received different answers for the two time periods. For 100 yr, seven responses were yes; five were no. For 1000 yr, eight were yes and three were no.

<u>Question 7:</u> Is it appropriate to take no credit for the use of passive markers at the repository site?

For this question, seven responded yes, three no. In addition, one reviewer said yes for 1000 years, but no for 100 years.

<u>Question 8</u>: Is it appropriate not to include engineered barriers in a base case analysis?

A total of eight reviewers responded yes to this question, four responded no.

<u>Question 9</u>: Is it appropriate to assume no monitoring and/or discovery of radioactive materials by a future humanity which intrudes into the repository?

This question resulted in fewer comments than the others. Six responded yes, four no.

SUMMARY TO QUESTION RESPONSES

The specific questions put to the reviewers provided a focus for their positions. Responses varied from as few as seven direct answers to as many as fifteen. The consistent pattern among those responding to the questions was support for the assumptions and approach used in this study. Only a single reviewer was consistently, strongly negative about the AEGIS approach and the specifics of the human intrusion analysis, but he was equally negative about the regulatory considerations and about having to worry about the nuclear waste at all once it was emplaced. This overall positive review must be tempered in that, as one reviewer said, the results of a Delphi process can be dependent on the particular experts involved, a similar situation exists for the peer review of a complex, multi-disciplinary work such as this one. Nevertheless, this peer review can be interpreted as an acceptance of the overall approach of the AEGIS program at its current state of development.

EXTERNAL REVIEWERS' ADDITIONAL COMMENTS

Most of the external reviewers provided comments in addition to those specifically pertaining to the questions addressed to them. Included in this section are summaries of these comments received. Comments relating to specific items that were changed from the review document to this final report and comments of a highly technical nature, which are undergoing further consid- eration by AEGIS staff, are not included in this section. Also not included here are comments pertaining to the DOE or ONWI programs beyond the scope of AEGIS or of this report.

The comments presented below are mostly verbatim from the commenters, although occasionally they represent summaries or paraphrases of the specific comments received. Responses to many of these comments have been provided by the AEGIS and WRIT staffs. The comments have been grouped according to topic area.

Topic - Human Intrusion Into A Nuclear Waste Repository Located In A Salt Dome

Comment

• As a general conclusion, the task force has determined that the PNL-2955 report <u>does not</u> represent a sufficiently rigorous technical justification for determining that solution mining intrusions inherently result in credible and unacceptable consequences. This justification awaits development. PNL-2955 does provide a highly conservative, first-cut, rough assessment, however. Had the results been acceptable, further consideration of solution mining intrusions would be unwarranted.

AEGIS Response

• The intent of the AEGIS analyses was to demonstrate current technology under development for the licensing process. Available site specific data and generally conservative assumptions were used to complete the analyses on schedule. We believe the work does successfully meet that intent. The numbers might vary with improved data. But, lacking total reliance on information transfer and/or on engineered barriers for extremely long periods of time into the future, the conclusion is sound that there is a potential for substantial adverse consequences from human intrusion by solution mining into a nuclear waste repository located in a salt dome. This potential is sufficiently high for human intrusion into a salt dome to be evaluated in the actual licensing process.

Comment

• We agree with the discussion of future alternative uses of salt domes. This generic characteristic of salt domes is one of the potentially adverse conditions identified in the drafts of NRC's Technical Criteria of 10 CFR 60 Subpart E. This should be considered in comparing salt domes against alternative media before a site is selected.

AEGIS Response

None.

Comment

• We agree with the statement that "the geology of the salt dome provides no barrier to the human intrusion scenario; indeed, salt domes are very localized, attractive resources, enhancing the likelihood of human intrusion." The protection offered by a multiple barrier approach is diminished by removing the natural barrier.

AEGIS Response

None.

Comment

• One of the geologists on the NAS-NRC panel that recommended nuclear waste disposal in bedded salt told me they did not consider human actions in their studies. Scenarios involving human actions, such as solution mining, are important contributions to the field of nuclear waste disposal.

AEGIS Response

None.

Comment

• It is reasonable to assume that markers can be emplaced at the repository that will communicate its hazard to subsequent generations. These markers could in some cases provide a basis for further controls.

AEGIS Response

• Such passive information concerning a site and its hazards should not be considered to be perfectly effective for the indefinite periods of time (hundreds of thousands to millions of years after closure), which would be needed before the consequences of an inadvertent human intrusion, such as the one presented in this report, could be not severely adverse to the general population. Secondly, credit for such information transfer was not taken into account in this study, since the influence of passive markers would be on the likelihood of intrusion, not on the consequences subsequent to the intrusion. This work did not include analysis of the probability of specific human intrusion scenarios, since there is little basis for such probability estimations. Rather, a qualitative decision was made as to whether or not a human intrusion scenario, exemplified by the particular scenario here, is plausible and credible.

Comment

• A solution mining intrusion of some type may be a credible event in the absence of controls to promote societal awareness and should be addressed in a safety analysis for a repository in salt.

AEGIS Response

• Even if controls exist to promote general societal awareness, human intrusion can still occur unless the site itself is under active control. Thus, although information may be in place in archives or elsewhere in the region of the repository as well as distributed throughout the world, for that information to preclude human intrusion into a repository located in a salt dome, there would have to

be some degree of physical control at the site itself. Physical control itself acts as some information and would provide the incentive to seek further information before proceeding with an intrusive activity. However, consider the recent example of a Gulf Coast salt dome which had an oil well intercept a known and currently operating salt mine facility. The fact that this underground activity was intruded inadvertently by resource exploration activities provides a dramatic case in point of the non-transfer or non-use of information which was important, even though institutional controls were obviously in place at the time of this event.

An additional point pertinent to this and the previous comment is that as the apparent protective usefulness of information decreases overtime, the maintenance of that information or the reliance on it may well diminish. As an example, the information of what naturallyoccurring plants are poisonous probably passed over many generations, even before the existence of written records and information systems, because such information was selectively advantageous and provided protection to the existing societies. Currently, however, in this country the knowledge of such plants is not widespread, as it rarely affects a society that consumes packaged food products and has developed widely available antidotes. As the apparent need for the information lessened, the information was lost in a practical sense for individuals in the society, although such information certainly exists in various, widely distributed locations, such as libraries. Similarly, as the time elapses over several generations after all nuclear wastes are disposed of and, therefore, are of no immediate threat. the value to societies of information about them will diminish.

Comment

• The interpretation of "loss of institutional control" as a complete loss of societal memory after only 100 yr is, in our opinion, unreasonably conservative and not consistent with the intent of EPA. This point needs to be considered and clarified further.
• The interpretation of "loss of institutional control" used <u>was</u> a correct interpretation of the EPA draft standards available at the time of the working document, according to EPA staff developing the standards. Subsequent EPA drafts refer to a less conservative position, where only <u>active</u> institutional controls of a site cannot be relied upon past a given time. However, this issue of active versus passive institutional controls remains unresolved currently. Should there be a prohibition against reliance on active institutional controls only (after 100 yr), it remains unclear what impact that would have on the AEGIS analyses, since there is no guidance on how much reliance could be placed on passive controls, or for how long. The comments and responses presented above are also germane.

Comment

• The solution mining scenario in this report may be bounding from an initiating event and single scenario occurrence view, but it is not bounding for long-term considerations. The results of the report indicate that at the end of the 50-yr operational solution mining scenario, about 95% of the nuclear waste remains unleached in the salt dome. In fact, this scenario exposes the waste and makes it more vulnerable to future release mechanisms. Repeated occurrences of solution mining or other activities would cause additional and potentially large releases and a hazard over a much longer time period. We conclude that assessments should consider cumulative releases from multiple or repeated scenarios over the 10,000-yr period.

AEGIS Response

• We agree with this comment, although time constraints prevented such analyses. Such analyses would be done if this were an actual nuclear waste repository site assessment.

Comment

• We disagree with the omission of analyses of the consequences of human intrusion other than solution mining. The unsupported conclusion that the solution mining scenario is both more plausible and consequential is insufficient justification for not assessing the probabilities and consequences of other types of human intrusion. Therefore, add additional human intrusion scenarios, e.g., the use of the salt dome for a hazardous chemical waste disposal facility, strategic petroleum reserve, or exploration for other natural resources.

AEGIS Response

We do not propose that the <u>specific</u> human intrusion scenario is the most plausible such scenario that can occur for a salt dome repository. Other human intrusion scenarios might occur with greater frequency. Further, we do not believe that reasonable estimations can be made for particular human activities far into the future.

The specific scenario presented here is not predicted necessarily to occur. Rather, the scenario is offered as being a reasonable-toconservative representative of the class of human intrusions involving remote controlled removal of salt, at least part of which would be consumed by the general public. We believe that class of scenarios is very plausible, certainly enough so that it warrants consequence analyses.

Also, that class of scenarios appears to be the most consequential, primarily because the vector of exposure to humans is essentially direct consumption of part of the nuclear waste. Other human intrusion scenarios would be further considered in an actual site assessment, including those involving remote removal of salt for purposes other than direct salt consumption, such as for storage of other materials in the mined cavity. However, we believe the analyzed scenario is, as a class, bounding to other human intrusion scenario classes, even though they are also very plausible classes. Certainly if the particular scenario class analyzed here could be precluded or the consequences mitigated to acceptable levels, then other human intrusion scenarios would have to be analyzed.

Comments

 Although other human intrusion scenarios appear not to be worstcases, they should not be precluded from further investigation.

It might be useful in future work to calculate the consequences for a range of human intrusion scenarios, so that a spread of outcomes is apparent even without relying on probabilities.

AEGIS Response

See response to preceding comment.

Conment

• Similar scenarios, albeit based on different motivations, may be credible in other geologic media besides salt.

AEGIS Response

 Similar solution mining scenarios may be credible in geological media other than salt. However, the likelihood of occurrence in other media is significantly lower compared to that for salt domes, even for the other salt medium under consideration, bedded salt. This is because of the spatial distribution of bedded salt compared with salt domes. Bedded salt is relatively uniformly distributed in continuous formations over very extensive areas. The result is that intrusion into a bedded salt located at random has a low probability of intercepting a repository. That probability can be reduced considerably further if the bedded salt repository is located in an area of reduced resource value compared with the bedded salt region in general. By contrast, salt domes are essentially point sources over a region of very limited extent and number. Thus, regionally in the Gulf Coast, if one is to exploit a salt medium, there are only a few hundred such areas available, and even fewer with the characteristics inviting exploration (especially the rather shallow depth salt

domes which coincide with those under consideration for nuclear waste repositories). Further, given that a salt dome containing a repository is to be exploited, the likelihood is very high of intercepting the repository itself; it would be difficult not to hit the repository considering its areal extent relative to the salt domes's size, and considering its depth.

The extent of a human intrusion solution mining breach into a nonsalt medium would be significantly reduced or nonexistent, since the non-salt media under consideration are far less soluble than salt. And, importantly, the other geological media are not edible.

Scenarios not involving solution mining as the intrusion mechanism, in media other than salt, will likely be addressed in assessments of the effectiveness of repositories in those media but are beyond the scope of this document.

Comment

• In a report by Johnson and Gonzales (1978) it was stated that of 150 salt domes potentially suitable for a HLW repository in the Gulf Coast region, 95 have to date undergone industrial development. This means that in the approximately 100 yr of geotechnical activity, 66% have been drilled into. It follows that within 100 yr after the location of the repository is forgotten, the chances are about two out of three that our descendents will drill into the salt dome hosting a given repository. In 300 yr, the chances are 95% for a human activity which could jeopardize the integrity of this disposal site. Consequently, I urge DOE to abandon salt formations from its consideration as quickly as possible, before more funds, and even more importantly, more public confidence have been expended in nursing this non-viable option.

AEGIS Response

None.

Comment

• Exception is taken to the rationalization that the probabilities of human-induced repository breaches cannot be quantified. There is sufficient documented past experience with solution mining of salt domes that an estimate of the probabilities can be calculated.

AEGIS Response

• We do not feel that the probability of a specific scenario, for which consequence analyses are performed, can be estimated with any degree of certitude. On the other hand, the rate of use of salt domes in the Gulf Coast certainly suggests that human intrusion into a salt dome is highly plausible.

Comments

. .

- The probability of human intrusion must equal one, since you cannot assume any other probability distribution, because you cannot defend any other probability distribution.
- A number of mechanisms exist that can reduce the likelihood and postulated consequences of the scenario. A defense-in-depth philosophy can be adopted.

AEGIS Response

• There is no disagreement with these statements, except that they should be qualified somewhat. Reduction of the likelihood of a human intrusion scenario may be realized by certain measures; however, it is very unlikely the probabilities can be reduced to the point where such human intrusion scenarios become both incredible and unreasonable and, therefore, do not have to be considered.

Comment

• It is an important assumption that no human mitigation is assumed or allowed. Why shouldn't one allow human mitigation?

1

• The possibility of some activities by the extant population mitigating the consequences of the human intrusion certainly exists. Such actions would require the population to be cognizant of the cause of recognized adverse health effects. If that were the case, then presumably the solution mining would cease, and perhaps some additional measures would be taken, such as to identify and dispose of contaminated inventories of salt, to decontaminate the facilities, to detoxify the population, and so on.

However, to assume that those activities would occur, in performing an analysis like this, is to rely upon the activities of a future population as providing a major barrier to the nuclear waste. This is inconsistent with the whole pupose of a nuclear waste repository, which is to isolate contemporary wastes so that distant generations will not have to be burdened with them. Such an assumption is also inconsistent with the requirement of nonreliance on institutional controls beyond the near term. Further, a population could reasonably have a technology capable of a solution mining intrusion but not be cognizant of the hazards of radioactivity. That such a society could exist is demonstrated by the fact that it did exist at the beginning of this century. In performing these kinds of analyses, reliance should not be placed on the future continuation of a technology that is very newly developed and may not persist, for a wide variety of possible reasons.

It should be recalled that calculations are presented in this report (although not in the working document, to which the comments referred) that indicate that the doses to the solution mine operators from inhalation and external exposure would not be high enough to cause early detection of the brine's hazard. It would seem likely, however, that if this scenario were to occur only 100 yr after closure, the dose burdens to the consumers of the culinary salt would be so high as possibly to lead to a recognition of the contaminant. In that case, mitigation by direct human actions would seem more likely. But it should be recognized that the mechanism triggering such human mitigation would be the severely adverse impacts on the health of a general population.

Comment

• The human intrusion analyses should be expanded to show health effects and monetary costs. My estimates are enclosed. For costbenefit comparisons, using the OMB (NRC) value of \$1,000/man-rem avoided gives estimates of up to 1.6×10^{14} , more than the value of the energy produced.

AEGIS Response

• It is outside the scope of AEGIS to determine cost-benefits or to determine specific health effects. AEGIS is designed to evaluate the plausible scenarios of nuclear waste repository disruptions, and the quantities and concentrations of radionuclides subsequently released to the accessible environment. This is in accord with the current versions of the regulations being developed by EPA and NRC. In addition, AEGIS does, where appropriate, evaluate the dose burdens which could be incurred by the population existing at the time of the release to the accessible environment. Those doses can be compared with natural background, to provide perspective on the severity of the consequences.

Comment

 Introduction of anomalous materials into the repository could, by several means, announce the hazard. Candidate materials can be identified, but further research on their performance is warranted. This approach should not be required, but is an option that is available.

AEGIS Response

• We agree that study should be given to the development of engineered factors which could cause the intruding population to terminate operations earlier than otherwise would be the case. On the other hand, reliance should not be placed on such alerting mechanisms, since predicting their reliability and predicting the specific response to be made by the intruders for the time frames for which human intrusion is dangerous (in the million-year-plus time frame) is fraught with great uncertainty. As with passive information systems designed to reduce the likelihood of intrusion in the first place, we believe these and similar measures would be useful measures to be taken <u>in</u> <u>addition</u> to the defense-in-depth approach to nuclear waste isolation. However, we do not believe such information measures could be demonstrably reliable for them to be considered barriers unto themselves.

A second point is that an anomalous material with respect to one use of the salt in a salt dome may not be cause for termination of use of the salt dome for another purpose. For example, noxious or strangely colored inclusions in the brine is an approach mentioned for this anomalous material notification system. That might cause an intruder not to use the brine for culinary purposes. On the other hand, an intruder who is solution mining to develop a cavity for petroleum storage, a common current practice, might be totally unconcerned about such a phenomenon. He might then proceed with the operation, merely dumping the unusual brine into surface water or aquifer systems, where other vectors could lead to the radionuclides coming in contact with the general population.

A third point is that such anomalous indicators could reasonably result in the piqued curiosity of the intruders, increasing the exploration of the salt dome.

Finally, the scenario analyzed in this report represents the bounding class of human intrusion scenarios, quantified in a conservatively representative way, in which contaminated salt is directly consumed by a general population. Other classes of scenarios exist which were not considered here but which would have to be addressed in an actual site assessment. Among those is the class where a human intrusion exists that degrades the integrity of the repository but

does not necessarily immediately result in the release of radionuclides to the surface. Here, if an anomalous indicator were present, solution mining would have occurred, opening up pathways for subsequent ground-water intrusion into the soluble host medium, even if that solution mining were to cease upon recognition of the anomalous material. For salt domes currently existing that have had a previous history of some human exploration, these are now excluded from further consideration for use as a nuclear waste repository (cf. Patchick 1980), because the primary barrier (the salt dome) has been compromised. It would not seem reasonable to consider that a repository in a salt dome, which was briefly intruded but which intrusion terminated because of some anomalous indicator, would be considered acceptable as a repository for all times subsequently. In this sense, the indicators would become a barrier briefly, but at the expense of the primary barrier thereafter. It should be kept in mind that multiple intrusions over the first 10,000 yr, and obviously over the million years or so of hazard, are likely.

Topic - Solution Mining Scenario

Comments

- Solution mining technology has undergone rapid sophistication in the past two decades. For a solution mining intrusion that is highproduction, long-duration (such as that posulated in PNL-2955), the technology required includes expertise in geologic investigations, rock mechanics, process chemistry, sophisticated instrumentation, metallurgy, fabrication processes, and materials science. This is not "unsophisticated" technology.
- The postulated solution cavern geometry is inconsistent with assumed production rates and operational periods. Conversely, the assumption of large production of salt over an extended period implies the need for the technology of present practice, namely, controlled production of elongated frustums of cones of controlled diameter. Adoption of an internally consistent set of assumptions will significantly limit the source term of the scenario.

• These two comments represent a valid criticism of the original AEGIS analysis in that the scope of the solution mining activity as presented in the working document seems to be inconsistent with the lack of sophisticated control over the cavern geometry. The presumption is that an intruder with the sophisticated technology required for such extensive salt brine extraction would be able to detect the existence of the nuclear waste repository, or, failing that, would develop a relatively narrow conical cavity which would intercept a smaller fraction of the nuclear waste repository.

There are two separate aspects to this point, however. First, as the commenting group suggested, solution mining practices have markedly changed in the last several years. The logical extension of that fact is that the solution mining practices of 100 yr from now, 1000 yr from now, or far longer into the future, will be markedly changed from the current practices. Thus, developing a scenario which is rigidly linked to today's cavern development (as opposed to a considerably different such development of the 1950's, for instance) cannot be relied upon as providing protection from human intrusion far into the future.

The AEGIS policy is, to the greatest extent possible, not to rely upon specific levels of sophistication of technologies to limit the occurrence or extent of a human intrusion event, but, rather, to limit such intrusions by the characteristics of the physical system itself. Thus, the question of the size and shape of the original solution mining cavity should not be "is that what current mining practices would do?" Rather, the question is "what geometry of cavity can the salt dome allow?" The bounding scenario should be based on the physical bounds, not on the current specific, controlled technologies. After all, even today not all cavities are governed by the state of the art in cavern geometry control. Thus, predicting the optimal (least interception of the repository) geometry, based on current controlled practices, into a future with totally uncertain

technologies does not provide the requisite conservative analysis of human intrusion by solution mining into a salt dome. If it could be demonstrated that the size and shape of the original cavity proposed in this report could not physically occur, that would be adequate grounds for reducing that scenario.

The second point concerning these comments is that there is an appearance of an inconsistency between the scale of the solution mining operations and the assumptions about the population not necessarily having a sophisticated technology base. To address this inconsistency, this revised report indicated that an altered scenario, using the much more realistic assumption that most of the brine goes to culinary uses, could involve a greatly reduced scope of the solution mining operations. In this scenario, having all of the brine go to culinary uses would increase the dose burdens to the consuming individuals by 30-fold, since the original assumption was for only 3% of the brine to be consumed. That 3% value was based upon the total quantity of brine of all qualities produced in the U.S. divided into the total culinary salt consumed. However, practices at current culinary salt mines in salt domes are for most (80%-90%) of the salt to be consumed, since the salt domes are sources of very pure salt. Offsetting that increase and eliminating the inconsistency, the size of the solution mining could be reduced by 30-fold, resulting in precisely the same dose to individuals and populations as calculated in this report, with an operation whose scale could have readily been achieved with a technology far less sophisticated than currently used.

Comment

• Sophisticated analytical tools are currently available that predict solution cavern growth. These tools benefit from large amounts of empirical data, and are sufficiently flexible to allow modeling preferential dissolution of unconsolidated areas.

• The difficulty in using such cavern geometry models is that the results are intimately linked to the specifics of the mining activities (e.g., particular flow rates, relative positions of influent and effluent pipes, time and frequency of reversing the water flow) Solution mining technology <u>has</u> undergone significant alteration in the last several decades, suggesting that prediction now of very specific technical activities occurring in hundreds or thousands of years into the future is fraught with uncertainty. In an analysis of human intrusion, the consistent aim of AEGIS is to limit the nature of the breach by the constraints of the physical system, rather than to rely on a very specific set of technical activities.

Comment

• Solution mining is today in the U.S. a declining source of salt production, principally for economic reasons.

AEGIS Response

• The rate of utilization of salt domes by solution mining is on the increase, largely in providing storage cavities (cf. Griswold 1980). While a human intrusion by solution mining might be for reasons other than culinary salt (e.g., cavity production for storage of wastes or hydrocarbons, chlorine production), some of the resulting brine could still go to culinary use. Further, vectors exist for doses to humans other than by direct consumption. In any event, a solution mining intrusion would result in transport of the radioisotopes to the accessible environment.

Comment

For normal drilling technology associated with starting a solution mining operation, it is doubtful that peculiar conditions in the repository (e.g., elevated temperatures) would be either noticed by or cause for alarm in the drilling crew. Put another way, the existence of the repository will not be obvious as a result of random drilling.

None.

Comment

• Domes that are relatively near the surface will be more prone to solution mining than domes that are deeper. Deep placement of the repository within a shallow dome may be just as effective, but further study is required.

AEGIS Response

None.

Comment

• The scenario does not consider dynamic processes going on inside the solution cavern. Specifically, deposition of anhydrite and other impurities (including spent fuel assemblies) will occur at the base of the cavern in a sump region. The phenomenon of reburial of exposed fuel by subsequent anhydrite deposition is not considered in the present form of the scenario. The effect of considering this phenomenon will be to limit the availability of nuclides to the brine solution for leaching. Once reburied in the sump, nuclide release will most likely be controlled by porous medium diffusion processes.

AEGIS Response

• Such near-field considerations were outside the scope of the program at the time of the analyses. However, calculations have shown that for the geometry of the cavern in the base case scenario, the layer of anhydrite at the bottom would not cover the nuclear wastes. For other cavern geometries, the anhydrites could provide at least a partial reduction in the surface area of the wastes available for dissolutioning. Even in that case, however, since the source term was based on a solubility limited situation, such a reduction in the surface area exposed for dissolutioning would have to be below a very small fraction (1.5%) of the potential surface area to begin to provide a reduction in the amounts of isotopes delivered to the accessible environment.

Comment

• For solution mining scenarios, one would have to indicate whether or not there is sufficient non-saline water there to allow the solution mining operation.

AEGIS Response

• The amount of water calculated in the original scenario development as being needed to deliver the assumed amount of salt produced is approximately 1400 gpm. This quantity is very small compared to the available water in the surface systems and near-surface aquifers at the Hainesville area. Further, even if that water were not available, seawater could be used (i.e., non-saline water is not required). Seawater is used in some solution mining operations, requiring somewhat greater volume because of its reduced efficiency in dissolving the salt dome. The insufficient availability of solution mining water might limit or preclude such activities in quite arid regions, far removed from large bodies of water. Such a situation does not apply to the salt domes under consideration for nuclear waste repositories.

Comment

• It seems too conservative to assume that the salt mine operates for 50 yr without detection of the radioactive wastes.

AEGIS Response

• The 50-yr period was chosen as being representative of the lifetime of salt mines in the U.S. Mines of longer and shorter duration frequently exist. Thus, the assumed value is somewhat arbitrary. That the lifetime of the salt mine could be realized before discovery of the mine as being a source of adverse health effects would be highly dependent on the nature of the monitoring technology extant during those 50 yr, the nature of the distribution systems, the nature of the social systems, and so on.

A key factor in this is the time after closure at which the human intrusion occurs. Should the event happen after only 100 yr, the health effects might be so severe that they could be traced to the solution mine, and the operations would terminate. At later times, however, the health effects might take considerably longer to become manifested, resulting in a greater degree of difficulty in identifying the source. Also, consider that the sources of most of today's cancer cannot be specifically identified, even in locales where the incidence of specific cancers greatly exceeds that of a national average. It is conservative to assume no detection of the contamination, but we do not believe it is excessively conservative.

Comment

 Technology is available today to measure impurities such as radionuclides at the ppm and ppb levels. Analysis of salt products is becoming increasingly sophisticated in response to consumer demands.

AEGIS Response

 To the best of AEGIS' determination, solution mining activities for salt today are not monitored routinely for radioactivity. It does not seem reasonable to rely on such monitoring indefinitely into the future as a means of mitigating the consequences of a human intrusion into a salt dome.

Comment

• It is too conservative to assume the solution mining cavity will be located primarily in the repository zone.

AEGIS Response

• The physical nature of salt domes limits the depths for solution mining activities. If the mine is too shallow, there is an insufficient dome above the cavity to support the weight of the overlying sediments, and collapse ensues. If it is too deep, the rates of salt creep make it very difficult to maintain a cavity. Thus, the depths of the solution mine are bounded by the same factors which control the placement of a nuclear waste repository. In addition, repositories in salt domes as currently envisioned cover a large part of the salt dome's areal extent, increasing the opportunity for intrusion into the repository when the salt dome is intruded.

A second point is that the effects of excavating the repository and the effects of the wastes having been in place for 100 yr, 1000 yr, or longer would suggest an increased proclivity for dissolutioning in the vicinity of the repository.

Also, as discussed above, there is no physical reason why the cavity could not occur as presented. Evidence has shown one salt dome in the Gulf Coast to have a solution-mined cavity of lens shape, similar to the one here.

Finally, it should be recalled that after exposing only about 1.5% of the spent fuel surface area in the repository, the quantity of radionuclides delivered to the surface does not increase upon exposing a greater surface area. (This is because of the assumptions of uranium solubility limits of 6 ppm and of congruent dissolutioning of the spent fuel particles.) Thus, the assumption of the cavity occurring in the repository zone does not have an impact on the dose burdens, after only a small portion of the spent fuel surface area is contacted by water.

Comment

• As the scenario is described in PNL-2955, the nuclides may not be affected at all if preferential dissolution of backfill occurs. The drifts should be affected first and these are separated from the nuclides.

• The AEGIS analyses did not rely on preferential dissolutioning; rather, to be conservative, the volume of rock affected by the solution mining operation was chosen to conform to the overall extent of the mined repository. Certainly a scenario could be envisioned in which the cavity never breaches the repository (although, because of depth considerations and the lateral extent of the repository in the salt dome, this is unlikely). By the same token, a scenario could be envisioned of intrusion into an adjacent salt dome that does not even have a nuclear waste repository. Neither case would be very instructive to the question of what are the consequences, based on a conservative analysis, of a human intrusion by solution mining into a nuclear waste repository located in a salt dome. Also, see the response to the previous comment.

Comment

• It is stated that only 61% of the repository would be exposed by the mining operation. It would seem to be much more realistic to expect that the incompletely homogenized passageways of the repository would channel the brine flow such that about 100% could be so exposed.

AEGIS Response

 Such near-field analyses of the specific channelization of the dissolutioning are beyond the scope allowed AEGIS in this analysis. However, as discussed above, exposing 100% versus 61% or even 1.5% of the surface area of the spent fuel would not result in any higher doses to the individuals consuming the salt.

Comment

 The solution mining scenario is not confined to salt domes. Solution mining is common in bedded salt today, and defending against such a scenario may be easier in domes that in bedded salt. This is balanced by the observation that the probability of occurrence may be higher in domes as they are readily identifiable geologic structures of limited extent.

• Solution mining in bedded salt formations will not lead to the complete utilization of those geological formations in any foreseeable length of time. On the other hand, solution mining in salt domes will lead to their complete exploitation in the next few centuries, based on current trends. Saying the "probability of occurrence may be higher in domes" is a considerable understatement.

The key difference to keep in mind between salt domes and bedded salt are their spatial extents. Bedded salt extends continuously over large areas. Indeed, the Louann salt bed, from which the Hainesville and other Gulf Coast salt domes evolved, extends for tens of thousands of square miles. On the other hand, salt domes extend upward as a limited number of pinpoints on a landscape of that scale.

Further, given that a salt dome is to be exploited, it is almost certain the repository would be intercepted. By contrast, given that a bedded salt basin is to be exploited, it is highly unlikely that a randomly located repository would be intercepted, and even less likely if a bedded salt repository were deliberately located to avoid resource utilization.

Comments

 Solution mining can also be used in salt beds, with very little change in other parts of the scenario. Accordingly it would be useful to slightly expand the sections dealing with human intrusion scenarios to include salt beds as well as salt domes.

AEGIS Response

• This analysis represents the first full reference site assessment of a geological medium under consideration for nuclear waste repositories. Salt domes were chosen because they were most advanced with respect to locating a site and with respect to data availability. Other reference site analyses are being completed by AEGIS, including for basalt and bedded salt repositories. It is beyond the scope of this document to discuss those analyses.

Comment

 In the process of solution mining, a residual pocket of lower solubility material may accumulate in the bottom of the brine cavity. There is a very small but finite chance that criticality might develop.

AEGIS Response

It is beyond the scope of AEGIS to consider criticality effects.

Comment

 A chemical analysis of the different halites in the salt dome would be useful, since concentrations of impurities may have important effects.

AEGIS Response

• Since this was a reference site analysis, such determinations were not made. If this were an actual site assessment, that information would be acquired, although by contractors other than AEGIS or WRIT.

Comment

• Domes with relatively high levels of anhydrite and other impurities will perform better than domes with low levels of impurities in terms of limiting nuclide release to the brine solution and be less likely used as a source of culinary salt.

AEGIS Response

• It seems unlikely that there would be present in a salt dome enough impurities that are highly sorptive that could significantly alter the concentration of radionuclides in the solubility-limited (for U) brine of the scenario. The likelihood of utilization of such a salt dome increases as time continues and as fewer nonutilized salt domes

remain. However, highly impure salt could require additional processing which could inadvertently process out more of the radionuclides contaminating the brine before their distribution in culinary salt. Nevertheless, those removed radionuclides would still be in the accessible environment and subject to impacts on humans and the environment.

Comment

• The lack of sound information on possible near-field effects of the solution mining process is unfortunate. There was no discussion of possible thermal effects in a heat gradient from the repository.

AEGIS Response

 AEGIS was not provided with information concerning the near-field characteristics of the salt dome. AEGIS was excluded from considering the repository- and waste-induced effects.

Topic - Dose Calculations and Assumptions

Comments

- I found the inattention to the other 97% of the brine was worrisome; the argument for what happens to this should have been worked out a little further.
- Leaving 97% of the wastes dangling is not a good idea. If one finds such difficulty in 3% of the salt, then what sort of problems can one find with the rest.
- It should be stressed that the 3% limit for culinary consumption is quite arbitrary. A conservative assumption would be that all of the salt produced from that salt dome would be sold for this purpose, thus increasing the radiation exposure 33-fold.
- Is the 3% fraction true for each solution mining activity, or is this an average over the entire salt mining industry? Could one find solution mining where no salt was used for table purposes?

• In response to these four comments (and other similar ones received), we would have treated this parameter differently, were we to do the original analyses now. The 3% factor came from taking the total quantity of salt produced in the U.S. divided into the total quantity consumed as culinary salt. (This procedure was based on calculations presented in the CWMS 1980 document.) Direct ingestion of contaminated salt is the most obvious and consequential vector for health effects to a general public; hence, that vector was the one concentrated on. When it was apparent that the consequences from this vector could be so severe, and because of time constraints on the original analyses, evaluations of doses from other vectors were not performed.

In an actual site assessment that would be done; however, such evaluations would be more tenuous than for the direct consumption vector, since they would relate to specific technologies or activities. For instance, the other 97% could go to chlorine production, to other chemical processes, to salt for highways for winter usage, and so on. Or it could be directly injected into aquifer systems for disposal, released uncontrolled to the land or to surface water systems, and so on. For that matter, the radionuclides consumed directly in culinary salt would be eliminated from the body and re-enter the accessible environment, possibly to other pathways to humans. The point is that there is high uncertainty in the quantification of such vectors, and pathway analysis is virtually unbounded. On the other hand, the dose vector of direct consumption is relatively well quantifiable, even far into the future, since the ingestion of salt is bounded by physiological needs. Even here cultural factors can alter the ingestion rates, such as changes in diet, in food preservation methods, and so on. Nevertheless, the consumption vector is reasonably well limited.

After the original analyses were done, it was determined that for a salt dome used for the production of culinary salt, the actual fraction used is much higher (80 to 90%). Considering this, a conservative assessment would have all of the salt brine being used for culinary salt production, linearly increasing the dose burdens over those presented here.

With respect to the last comment, solution mining in salt domes certainly could and does occur for reasons other than producing culinary salt (see Griswold 1980). However, analysis of such operations would not represent the bounding plausible consequences of human intrusion into a salt dome repository. If this were an actual site assessment, such scenarios would also be considered.

Comment

• Since no calculations were performed for isotopes entering the biosphere beyond 1000 yr after closure, this biases the results against the alpha-emitters and, therefore, underestimates the total dosage that would be incurred. However, the doses from the solution mining scenario are so great, one does not need to worry about underestimates.

AEGIS Response

• Unlike the working document to which the commenter responded, this revised report does show the effects of human intrusion into a nuclear waste repository located in a salt dome for periods up to one million years after closure.

Comment

• The assumptions concerning salt production, etc, are average values. It is not clear that this occurs at every solution site and especially at the site we are concerned with. Distances that salt is shipped are limited unless it is on a major river. The population ingesting salt may be limited in the future. All these uncertainties need to be spelled out so that one is not completely taken aback by the dosages incurred in these scenarios.

• See the response to the previous comments. In addition, it should be understood that the doses to individuals are not affected by the distribution system nor the limits on the population size in the future. The population doses were based upon how many people could consume the quantity of salt produced, not upon any particular demographic pattern or distribution system. This minimizes the cultural impacts on the population doses. It should also be noted here that the original consumption rates per year were based on the value in the CWMS (1980) of 1800 g/yr, or about 5 g/day. Subsequently, we have learned that an FDA report to be released estimates the actual culinary ingestion rate for salt in the U.S. is about three times the value we used. Changing the ingestion rate to reflect this would have no impact on the population dose, but 1/3 as many people would on average receive three times the dosage shown in the calculations here for individual doses.

With respect to the final comment, the assumptions of this analysis are detailed in Chapter 2.

Comment

How realistic is the use of a population of 15,000,000 for dose assessments, especially since the water path is dominant?

AEGIS Response

• See the response to the previous comments.

Comment

• The assumption that people eating contaminated salts do not discover it is somewhat unlikely since the doses are so high that the radiation effects should be almost immediately apparent.

AEGIS Response

• As discussed previously, this is a possibility, especially for an intrusion occurring after only 100 yr, since then the doses would be

exceedingly high. However, the impacts then, and especially at later times, might not be recognized as having derived from a particular salt product. More importantly, relying on the severe, immediate effect from acute doses to a general public is not the optimal way of reducing population doses.

Similarly, in a case where there was enough radiation exposure to a group to cause, say, 500 deaths but there were only 100 individuals in the group, each individual cannot die five times over. The conclusion that the population dosage was mitigated by there only being 100 deaths misses the point that severe consequences were occurring for that popuation. (Please note these numbers are for example only; they do not represent the consequences of the scenario analyzed in this report.)

Comment

• The dose calculations are not put into perspective with respect to applicable standards.

AEGIS Response

• In the working document, the doses were not compared with anything. In the current document, comparisons are made with natural background to provide perspective. However, comparison cannot be made with applicable standards, since none now exist for nuclear waste disposal. The draft regulations being prepared by EPA, as of this writing, do not establish dose or health effects standards; rather, limits are placed on the quantities of radionuclides which would cumulatively enter the accessible environment, including underground sources of drinking water, over the 10,000-yr period following closure. Cumulative quantities are presented in this report for comparison with the standards set by the eventual regulations. These values do exceed the current EPA draft numerical limits for releases to the accessible environment.

Comment

• An EPA regulatory trend which should be considered in analyzing the consequences of release is the accessible environment, including ground water. The results of this analysis can be compared with the standards.

AEGIS Response

See the response to the previous comment. In addition, at the time of the geotransport consequence analyses, it was not clear to us that aquifers would be considered to be in the accessible environment nor that cumulative releases there would be the criterion. Thus, the geotransport analyses output concentrations of radionuclides entering the surface water systems and the cumulative quantity of such releases to the surface. If the draft regulations currently existing become promulgated with those provisions, then the AEGIS analyses can readily accommodate such output.

Comment

• The fact that no credit for the reduction of radioactivity was given for purification of salt from solution mining brine is considered to be a major defect in the scenario. A mining operation producing and marketing such a large volume of salt must be sophisticated enough to go through more than just a single stage crystallization process.

AEGIS Response

• As discussed in response to previous comments about the level of sophistication of the solution mining operation compared with its large-sized scale, the consequences of the human intrusion with respect to individual doses would be identical for a greatly reduced scale operation but which had a higher and more realistic fraction of its brine going to culinary salt. Thus, sophisticated technology need not be assumed.

Again in accordance with the AEGIS policy of deemphasizing technology and relying on the physical characteristics of the system, it should be noted that the salt in salt domes is rather pure. For most salt domes, no processing of the salt is necessary to yield directly edible salt. The best information we have suggests that salt dome brine needs just to precipitate out by drying to produce marketable salt. Additional purification may occur if excessive impurities exist, but that should not be relied on as providing a barrier to contact of nuclear waste with human populations.

The actual process of precipitation may result in the reduction of the concentration of some radioisotopes; similarly, it may result in the increase in the concentration of others. This would seem to increase the early time period doses, when the mostly highly soluble fission products dominate, and to decrease the later doses, when transuranics dominate. For an actual site assessment, this phenomenon would be further investigated.

Also, those radionuclides that were purified from the brine would still be in the accessible environment and could affect humans by vectors other than direct consumption.

Comment

• A more rigorous analysis will probably show consequences that are much less severe than currently indicated and quite possibly acceptable.

AEGIS Response

• Although improvements in data and other aspects could certainly be made, the AEGIS report does present a current analyses. Severely reduced consequences would require differing assumptions and perspectives. We believe, however, that choosing assumptions that would lead to severely reduced consequences, to the level where the health effects would be considered acceptable (definition needed), would not be consistent with the performance of conservative, though reasonable, analyses. If our analyses had been based strictly on conservative assumptions, with none of the reasonable nonconservative assumptions we used such as solubility limits, congruent dissolutioning, rates of salt production, and others, the consequences would have been considerably higher.

Using differing assumptions or more refined data would give differing numerical results. However, we believe the conclusions of these analyses would not change unless a series of quite nonconservative assumptions was contrived. We believe the basic conclusion is sound, that human intrusion into a nuclear waste repository located in a salt dome could reasonably lead to consequences that would be considered unacceptable by virtually any criterion. Further, the potential for such adverse impacts on future populations exists far beyond periods of reliable institutional control, information transfer, or engineered barriers, and far beyond the period for which the hazards of nuclear waste repositories are presumed to exceed that of natural ore bodies.

Topic - Geotransport Analyses

Comment

 Geotransport calculations in PNL-2955 assume the repository level at a depth coincident with a subsurface aquifer. In practice, this situation could be avoided.

AEGIS Response

• The Hainesville Salt Dome was analyzed as a reference site, representative of salt domes. Specific characteristics of the site might well be different for an actual proposed salt dome. Such characteristics would be determined based on site exploration, and the detail of information characterizing the site would be greater than presented here for the Hainesville site. Even if a major aquifer were not at the same depth as the repository, geotransport pathways could exist through aquifers of greater or lesser depths, depending on the specific aquifer systems and on repository- and waste-induced effects. Comment

• Water of usable quality is an inexact term. Quality for differing uses varies (e.g., cooling towers at less than 200 ppm, human consumption at 0 to 1000 ppm, stock watering up to 10,000 ppm). It is suggested that a table with analyses for all aquifers be added to the text.

AEGIS Response

Such information was not provided to AEGIS, although it would be for an actual site assessment. Current drafts of regulations affecting nuclear waste disposal refer to underground sources of drinking water as being a part of the accessible environment and, therefore, subject to numerical release limits. These current drafts set the water quality criterion, with some exceptions, as water with <10,000 ppm total dissolved solids. These draft regulations are, however, subject to change.

Comment

• The range of values for transmissivity, permeability, etc, makes one wonder how good it is to use average conditions.

AEGIS Response

• These parameters frequently have a wide range of values. AEGIS used the best information made available to us. We have the capability to use very complex sets of data, so that AEGIS models can handle as detailed and heterogeneous data as could be determined from site characterizations. In an actual site analysis, it would be expected that AEGIS would be provided more detailed information.

Comment

• While it may be true that pumping tests are point measurements, values of transmissivity and storage coefficients so derived are representative of the aquifer within the area of influence of the pumped well.

• The point made here is well taken. However, as was pointed out in the text, too few transmissivity measurements were made available to AEGIS to develop or draw a good contour map. Ideally, data need to be supplied at all the nodes in the ground-water model.

Comment

• It should be explained as to why model calibration of a 1600-acre/ft withdrawal simulated the depression resulting from an actual withdrawal of 3000-acre/feet.

AEGIS Response

• The data available from 1966 in the Broom (1969) article could not be correlated to the water levels taken from data measured in the period 1952 to 1977. An attempt was made to duplicate the potential contours provided to AEGIS drawn by geologists over these same well data.

Comment

• Can one have much confidence in the models when the potentials have differences of approximately 30 ft? What does this say about which direction the ground water will flow?

AEGIS Response

• As was pointed out in the text, the area modeled covers 10,000 mi², and ground-water elevations range from 200 ft in the south and east, to 500 ft in the west, and 450 ft in the northwest. The water levels were taken from historical data covering the period 1952 to 1977. Controls on the well casing elevations were generally taken from topographic maps. The point was made in the text that the model matched the well measurements nearly as well as the hand-drawn contours provided by the field hydrologists.

Comment

• It appears the effects of lower aquifers have been dismissed too quickly. If the text is accurate, then some of the lower aquifers are probably artesian near the dome. If the water is actually saline, not brine, then use of the water should not be ruled out and dissolution of the salt dome could occur if water from the aquifer is accidentally introduced through, for example, an improperly plugged exploration hole.

AEGIS Response

• The information provided to AEGIS concerning the lower aquifers was sparse and not highly reliable. If this were an actual site assessment, the data would be more extensive. If warranted, a scenario such as that proposed in the comment would be addressed.

Comment

 You indicate total salt dome dissolution has occurred within 15,000 yr after the breach. Can it be shown that the solubility limit of the intruding water was not exceeded to accomplish this?

AEGIS Response

• The calculation for the time of salt dome dissolutioning at and above the level of the repository was done by estimating the magnitude of the ground-water flow through the breach and assuming the water leaving the salt dome was essentially saturated with salt. Thus, the 15,000-yr figure is how long it would take for that quantity of salt to be carried away, given the estimated flow, for water near the solubility limit.

Comment

• There should be some indication of the aquifers' water chemistry and whether or not saline plumes have been found.

• The water chemistry of the major aquifers was simulated in the solutions used for Kd determinations (see Chapter 11). More complete characterizations were not provided to AEGIS, but would be in an actual site assessment. It is our understanding that saline plumes have been found near the Hainesville Salt Dome. However, our understanding is that the caprock of the Hainesville Salt Dome has been used as an area for pumping saline water underground. Therefore, the source of the saline plumes is uncertain for this salt dome.

Comment

• It is assumed that major solution collapse will reduce the inflow from 260 to 36 gpm (after 15,000 yr). For a conservative analysis, I would think that solution collapse might well be assumed to open up new pathways and increase the flow.

AEGIS Response

• The flow of 260 gpm actually is as conservative as could be used, considering the data available to us and considering that there was no information regarding the near-dome hydrology. That is because the 260 gpm is the calculated flow which is the maximum the Wilcox aquifer could accept, given the 50-ft head driving force. The reason for this reduction of the flow subsequent to the collapse around the original pathway, which was sealed through the overlying sediments and through the Wilcox formation from its top to the top of the salt dome, is that the latter area in the Wilcox would now be open for water from the Queen City to enter without passing over the waste. The total quantity of water entering the Wilcox would not change substantially after the collapse, but only a fraction of it would now contact the residual nuclear waste.

Comment

• Although I have not verified it, the salinity of the well-water pumped in the case of such a massive breach would appear to be so high as to preclude large-scale human consumption.

• As indicated in the text, the water in the salt plume resulting from the breach in the side of the salt dome would be nearly saturated with salt, as shown by AEGIS geotransport modeling for Na, and, thus, would not be consumable. However, current draft regulations would consider that water to be part of the accessible environment since it would be so designated before the breach and would remain so designated subsequent to a breach.

Comment

 Reasonable dose estimates can be calculated from contaminated wells. Along the edge of the salt plume will be contaminated water which will nevertheless be potable. No exact location would be necessary to produce useful information.

AEGIS Response

• The point is well taken. However, based on the current draft regulations, as discussed above, the numerical standards would apply even to the salt-saturated ground water. These draft standards do not require dose estimates or health effect estimates to be made.

Comment

• The report states that geotransport after 100-yr or 1000-yr breaches gives essentially equivalent consequences. If this, in fact, is true as a general proposition, then the proposed 10 CFR 60 requirement that no leakage be allowed for the first 1000 yr is ludicrous and a waste of time.

AEGIS Response

• The conclusion concerning a 100 yr or 1000 yr initiation time for geotransport is specific to this analysis and may or may not be applicable to other repository sites. The reason for this conclusion is that the ground-water travel time to the surface water systems is rather long, 15,000 yr. Thus, beginning at time 100 vs 1000 yr does not substantially affect the timing or concentrations of the radioisotopes reaching the surface, especially considering that most have retardation factors above zero, further delaying their release to the surface water systems. At other repository sites which might have much shorter geotransport times, the timing of the initial event becomes more important.

Another point is crucial here, however. The conclusion was made with respect to the time of entry to the surface water systems, not to the time of entry to the accessible environment as defined by current draft regulations. The latter includes underground sources of drinking water, perhaps modified somewhat to mean such sources beyond a minimum distance from the repository. Under that standard, the conclusion would be different, in that the Wilcox aquifer itself would constitute a part of the accessible environment. In that situation, the time of entry of 100 yr versus 1000 yr would make a considerable difference in terms of the quantity and types of radioisotopes released and subject to the draft numerical limits.

Similarly, for any scenario involving a direct pathway from the salt dome repository to the surface (e.g., the solution mining scenario) the timing of the initiation of the event has a marked impact on the results.

Topic - Natural Dissolutioning Scenario

Comments

• The statements of salt dome stability for tens of millions of years and of exceedingly slow dissolutioning rates and the clear implications of the impossibility of significant increase in the dissolutioning rate seem overly optimistic to me, for several reasons.

One million years might not be realistic or conservative when considering the potential for preferential dissolutioning together with waste heat effects.

 The rates of dissolutioning were based on the best available farfield information provided to AEGIS. For an actual site assessment, AEGIS would require better data to reduce the large uncertainty in these estimates.

Major factors might substantially affect the rates of natural dissolutioning, including the effects on the salt dome of the construction of the repository and the effects induced by the thermal and radioactive characteristics of the nuclear waste itself. AEGIS was excluded from considering these effects, so the conclusions presented in this document concerning the stability of the salt dome are tempered.

Other factors that could significantly reduce the time for natural dissolutioning relate to the near-dome hydrology and to the details of the structure of the periphery of the salt dome and the immediately surrounding medium. The necessary information concerning this geohydrology of the near field was not provided to AEGIS. Such information would be needed for an actual site assessment.

Comment

 Assuming the caprock formed during the Carrizo-Wilcox deposition to the present gives a longer dissolution time and, therefore, a lower dissolutioning rate. Why not use a higher rate? Couldn't dissolutioning have occurred in a shorter period of time?

AEGIS Response

• The rate of formation of the caprock was only one method used to estimate the rate of natural dissolutioning down to the level of the repository. All estimates gave values many times longer than the one million year time for which AEGIS addressed natural breach scenarios. To be conservative and to compensate for the uncertainty in these calculations, AEGIS chose a natural dissolutioning scenario occurring at one million years as a scenario which would have to be analyzed for consequences. Such analyses were not performed because of time constraints and because the geotransport part of the human intrusion scenario provided a detailed example of how such analyses would be done.

For an actual site assessment, such consequence analysis would be performed. As discussed above, the time of initiation of that scenario would be better refined based on better data characterizing the site and on consideration of repository- and waste-induced effects.

Comment

• The best conditions and effects are often assumed when dealing with limited information or poorly understood processes. For example, the inner- or near-dome structure and hydrology were disregarded in determining credible scenarios. Near-field geologic and hydrologic conditions may significantly influence determining critial pathways, particularly for salt domes.

AEGIS Response

 As discussed above, AEGIS was excluded from considering repositoryand waste-induced effects, and no information was provided to us concerning the near-field geologic and hydrologic systems.

Comment

• An unaddressed climatic consideration is whether change in climate could affect the forests in the area, which could change evapotranspiration, which could influence the ground-water travel times and direction.

AEGIS Response

• Considering the excess water available for recharge of the aquifers of concern but which leaves the area via surface runoff, it seems that any likely increase in the evapotranspiration rates would be offset by increased infiltration. Conversely, any decrease in the evapotranspiration rate would be accommodated by increase in surface runoff.

Comment

 Nuclear and non-nuclear explosions should be indicated. They could present a significant step initiating natural dissolutioning of the salt dome.

AEGIS Response

• These and other human activities which do not directly breach a repository but which enhance the natural forces which could breach a repository constitute a hybrid category of breach scenarios. That category is bounded by direct human intrusion and, hence, was not analyzed here. In an actual site assessment, that type of scenario would be addressed.

Topic - Engineered Barriers

Comment

• No credit was given to the canister and cladding as barriers to nuclide release, by direction from ONWI, as this study was intended to show where emphasis should be placed. This is an extreme case and does not, in fact, reflect reality as even a carbon steel canister would provide some protection based on recent data from ORNL. Similarly, zircalloy cladding, an integral part of spent fuel, and more advanced packaging and waste forms may totally eliminate the potential for release.

AEGIS Response

• This comment is valid for those times for which engineered barriers could provide <u>total</u> protection. It is beyond the scope of AEGIS to determine how long that period would be. Also, no information concerning engineered barriers was provided to AEGIS, and we were excluded from considering the effects of engineered barriers.

An additional point concerning this is that in this revised report, it is now shown what the dose consequences would be for this scenario to occur as far into the future as one million years. It would seem unreasonable to expect engineered barriers would be
totally reliable for that length of time, and beyond, which would be necessary for the consequences not to be severely adverse. Coupled with this is the consideration as discussed in the following comment, that the engineered barriers would have to reduce the available surface area effectively leaching radionuclides by a factor of 50 for the doses to even begin to be reduced.

Comments

• It is noted that if solubility limits the source term, then only 1.5% of the surface area of the original inventory is needed to saturate the system and give the doses reported. It is reasonable to assume that collapse of waste canisters or rock falls onto waste canisters caused by the solution mining process could cause exposure of 1.5% of the inventory. These results point out the severe vulnerability of engineered barriers to this scenario and set of assumptions and a possible need for a more conservative design specifically for this hazard.

The incremental burdens applied to a waste package by a solution mining scenario are definable and not particularly severe.

AEGIS Response

• The AEGIS report does not state that the internal environment of the solution mining cavity would necessarily be severe. However, our calculations do show that only a small fraction (1.5%) of the surface area of the spent fuel would need to be exposed to leaching to result in the calculated severe consequences of the base case scenario. Whether or not the scenario would result in enough physical disruption to expose such a small surface area from otherwise intact engineered barriers is not resolved. An exposure of 1.5% is equally applicable to the consequences calculated for one million years after closure.

Comment

• For analyzing the effects of engineered barriers, specific barrier designs should be devised and their failure probabilities should be estimated.

AEGIS Response

• It is beyond the scope of AEGIS to make engineered barrier designs or evaluate their failure rates. However, the base case scenarios do provide the opportunity for AEGIS to evaluate the effectiveness of engineered designs provided to us in terms of altering the consequences of human intrusion into a salt dome repository.

Comment

• Improved waste forms and package designs, currently a major element of DOE programs, offer a good and perhaps the best mechanism to mitigate the consequences of the scenario.

AEGIS Response

• At ONWI's direction, engineered barriers were not included in this study, so that a baseline could be established of what level of protection, and for how long a period of time, such engineered barriers would have to provide. Calculations presented here suggest their effectiveness would be needed for very long periods of time, and they would have to provide a very effective reduction (50-fold) in the surface area potentially available for leaching before any <u>reduction</u> in the consequences would ensue. That period of time considerably exceeds the period of fission product activity, the time for which engineered barriers are currently being designed. Indeed, that period of time extends into geologic time scales. While AEGIS cannot make a definitive conclusion until specific engineered barrier characteristics are provided, it would seem that relying on such thorough effectiveness for such long periods of time would be a very stringent requirement for engineered barriers.

Another point is that there is not defense-in-depth to the scenario of human intrusion by solution mining in a repository located in a salt dome. The geological formation itself (the salt dome) is not a barrier to this scenario; in fact, it provides the attractant. Thus, either some information transfer mechanism must preclude the human intrusion itself, or the engineered systems alone must provide very effective mitigation of the consequences.

Topic - Source Term and Retardation Analyses

Comments

• Great importance is placed on the laboratory evidence of a solubility limit of 6 ppm for uranium from the dissolution of spent fuel elements. This solubility is crucial, I agree, but I believe the use of 6 ppm in the calculations is hardly a conservative assumption, in view of the data given. The effects of radiolysis at the surface of a large mass of waste will differ from those in the standard IAEA tests and conceivably could result in higher dissolutioning rates.

Applying the nonconservative assumptions of an average uranium solubility limit and congruent dissolutioning moderates the results of the consequence analyses by lowering the doses.

AEGIS Response

It is quite correct that a great deal of importance was placed on the phenomena of solubility limits and congruent dissolutioning for spent fuel. The initial calculations of the leaching of radionuclides from the spent fuel involved measured leach rates for a number of radionuclides. These rates were measured on a per surface area basis. Likewise, the surface area was directly measured for spent fuel (see the following comment). Simple extrapolation of the leach rates to the scale of surface area available in the repository resulted in predictions that the entire contents of the exposed repository would dissolve in a matter of a few decades.

Based on this, calculations were made to see if the quantity of water delivered to the surface could carry that much of the radionuclides. These showed that the concentrations of the heavy metals would be very excessive, indicating that the limits on the quantity of radionuclides delivered to the surface would be imposed by the ability of the water to carry them, rather than by the leaching characteristics of the waste form. This severely reduced the critical role that the extent of exposure of the nuclear wastes would have made, since only a small fraction of the wastes need to be exposed to saturate the solution mining brine. And this now made the solubility limit chosen central to the source term.

We agree that the solubility limit chosen for 6 ppm is not conservative. At the time these source term calculations were made, that value was based on the only actual data available to us. The data WRIT has collected since that time indicate a higher solubility limit should be assumed. Currently the value chosen would probably be 18 ppm, based on the uranium concentrations actually analyzed by WRIT in their spent fuel leach tests, although even those data are not based on static tests, for which saturation could be expected.

In considering the effects of using different uranium solubility limits, the source term will change essentially linearly with the solubility limit. (This is not strictly true, because of the leaching which occurs before exposure of enough surface area to result in saturation, i.e., the first year or so of solution mining. However, the difference is not important.) Thus, raising the assumed solubility limit to 18 ppm would triple the dose burdens.

The assumption of congruent dissolutioning also is not conservative. The best data available at the time of the source term calculations, based on WRIT leaching of spent fuel, indicated that although the early stages of leaching show different leach rates for different radionuclides, after a year or so of leaching, the leach rates of all radionuclides approach that of uranium. This is consistent with the prediction of congruent dissolutioning, based on considering that most of the radionuclides in spent fuel are physically bound within the uranium oxide matrix. Thus, they can be released no faster than that matrix is released. More recent data from WRIT studies suggest that this constraint on the other radionuclides in spent fuel may not be so stringent, allowing an increased source term and increased doses.

With respect to radiolysis effects, recent data have shown that enhanced dissolution of UO_2 can be expected. However, what effect this would have on solubility limits and the degree of enhanced leaching has not yet been determined.

Comment

According to Table 10.1, the spent fuel is highly fractured; over 3% has particle sizes <1 mm. Was the fraction intentionally crushed? What fraction of the radionuclides in the fuel pins was measured? Give references for this work.

AEGIS Response

• This work was done specifically for this reference site analysis; therefore, it is not published elsewhere.

The spent fuel was not crushed. The analyses were done by WRIT staff, taking spent fuel received from the HB Robinson II reactor. That spent fuel had been cut into short lengths before shipment to PNL. On receipt, WRIT staff photographed the exposed spent fuel surfaces to provide a control. Then the spent fuel was pushed out of the rods and sifted through a series of sieves, and the results were as recorded in the table in this report. A check with the photographs was made, assuring that the particle sizes measured are consistent with the condition of the spent fuel before being pushed out.

The results of the WRIT surface area determinations showed the surface area of the spent fuel to be almost five times the surface area of intact pellets. This fracturing occurs as a part of the fuel burnup, not as an artifact of measurement. The numbers were independently verified in the work done earlier for the CWMS (1980) document. There, actual hot cell measurements were not made. Rather, a number of photographs of cross sections of spent fuel was carefully analyzed to determine the particle sizes. These analyses also indicated a spent fuel surface area to intact fuel pellet surface area ratio of almost five.

Comment

• Implicit in the results are important effects from spent fuel rather than reprocessed waste as the source. These implied effects can be seen in Table 1.5, where the total curies of radioisotopes delivered to the surface after 50 yr of solution mining of a spent fuel repository is 2.98 x 10^7 , 1.22 x 10^6 , 3.4 x 10^5 , and 1.5 x 10^5 for times 100, 1000, 10,000, and 30,000 yr, respectively. Crudely, my calculations show burying high-level reprocessed wastes would give curies on the order of 2.4 x 10^7 , 2.0 x 10^4 , 1.8 x 10^4 , and 1.6 x 10^4 . This gives some indications about the importance of waste form.

AEGIS Response

• The AEGIS analyses originally were done, by direction, only on a repository containing spent fuel. Recent calculations have been done on a repository located in the Hainesville Salt Dome, which contains reprocessed HLW in the quantity comparable to the spent fuel inventory used here. As of the writing of this report, those calculations have not yet been completed.

One consideration in making such HLW dose calculations is that the source terms from HLW would not be uranium solubility limited. Also, congruent dissolutioning is not evident in the data available concerning leaching of HLW glass forms. This effectively removes a very important ceiling on the source term. On the other hand, the quantity of HLW waste in terms of volume and surface area is reduced from spent fuel, and the long-term inventory would be substantially different.

Comment

• • • •

• The effects of pressure on the leach tests are not indicated. The McCarthy-type studies should be used instead of the open, nonpressurized tests. The doubts expressed about the state of knowledge are important and serious. However, it should be pointed out if

limiting rate theory holds and if only one of the rates is zero, then the total flow within the system is zero. One could possibly engineer around some of these unresolved scientific problems.

AEGIS Response

• The effects of pressure are not indicated because there are none that can be detected within the errors of experimentation. Obviously, pressure was used at elevated temperatures (above 100°C) if leaching was to be conducted in a liquid phase. The elevated temperature tests were conducted by WRIT in an identical fashion to those of McCarthy, and in fact they agree very well with his results where similar samples, leachates, and temperatures were used.

None of the WRIT tests were open, unpressurized tests. The IAEA test is one example of the tests used by WRIT. It is not open, but, rather, involves sealed systems. The pressure varied from atmospheric at room temperature to 2000 psi at temperatures above 100°C. There was no observable effect over this pressure range.

Comment

• The section on mineralogy is unacceptable and should be redone.

AEGIS Response

 This section was presented to demonstrate the types of analyses
 which would be done for an actual site assessment. The WRIT program is currently enhancing its capability in this area, and were those analyses to be done now, they would be substantially improved.

Comment

• The Kd determinations appears fraught with uncertainty. It certainly does not instill confidence in the ability to measure these parameters.

AEGIS Response

• The WRIT program has developed a very substantial expertise in measuring sorption and desorption processes. The large uncertainties apparent in this document reflect the presentation to WRIT of samples that are very nonrepresentative of the actual geological media of concern. Time constraints prevented better samples being provided to WRIT. Nevertheless, the sections dealing with the outcrop samples do demonstrate the types of analyses which would be performed for actual site assessments, for which appropriate samples would be available.

The secondary source of information, for those situations where actual samples are not available for WRIT analyses, involves the WRIT Kd data base, and the predictor equations WRIT has derived based on those data. That data base is quite extensive, and it covers a wide variety of radionuclides, geomedia, and ground waters. The predictor equations derived empirically continue to be improved in their predictive capabilities.

Comment

÷

• It cannot be over-emphasized that the validity of using Kd values measured on crushed or even uncrushed material in short-term laboratory experiments to predict long-term in-situ migration is tenuous at best. The WRIT program has not solved this problem. Also, depending on the pathways through the host rock, the Kd values of the bulk material may not be at all appropriate for the weathered surfaces that the radionuclides may actually contact.

AEGIS Response

• The first statements reflect a purist viewpoint versus a more practical viewpoint. WRIT has not solved the aspects of nuclide sorption to the level of undeniable first principles, of course. But the predictors of nuclide sorption developed by WRIT are reasonably reliable and continue to be more so.

Comment

• The determination of the acid dissociation and electrolyte exchange constants of the sorbing surfaces through acid/base titrations can

be useful in interpreting or predicting the variation of exchange capacity with pH and concentration of sorbing ions.

AEGIS Response

 This is a valid comment, but ion exchange is the key to only a few nuclides. Thus, it would add a lot of meticulous work for little net benefit.

Connent

• A statement is made that the rate of desorption in short-term laboratory studies is slower than the rate of adsorption for some elements. One explanation of this phenomenon is that the radionuclide is adsorbed in one form but must be desorbed in quite another form. For example, an oxygenated uranium solution containing $U0_2^{+2}$ salts will be adsorbed by limestone. In this reaction, however, the $U0_2(C0_3)_3^{-4}$ complex is possibly formed. As a result of this complexation, the desorption Kd will probably not equal the adsorption Kd (the assumption used in mathematical transport models) because of the two (or maybe even more) separate uranium species involved in the adsorption/desorption process.

AEGIS Response

• This explanation is less likely than Neretnieks' concept that diffusion into the bulk rocks occurs when the radionuclides are absorbing under a large concentration gradient. It then takes longer to diffuse out on desorption when the concentration gradient is lower. Also, redox sorption/precipitation, such as Dhan Rai et al. (1980) of WRIT has shown for $Pu(VI,V) \rightarrow Pu(III,IV)$, holds onto the adsorbed radionuclides strongly.

Comment

• The importance of surface area and surface reactions has not been emphasized strongly enough. The concept of ion migration (in this case, radionuclide migration) in geological materials essentially involves both bulk and surface phenomena: the initial step in the mechanism of radionuclide adsorption by a mineral <u>must</u> involve a

radionuclide/mineral interface followed by subsequent reactions with the bulk. The initial surface reaction will be heavily dependent on the amount of surface available as a reaction site. For example, quartz, a major component of several of the samples of oolitic limestone and argillaceous shale used in the WRIT program, has been shown to undergo reactions whose rates are severely dependent on the surface area. The surface areas for oolitic limestone and argillaceous shale (using the B.E.T. method on 20 to 50 mesh samples), however, are 0.75 and 20.7 m²/g for the two samples, respectively.

AEGIS Response

• Whether surface area reactions should be stressed more is subjective. One could just as well argue that the allowable time of reaction in a real world geotransport situation is so long that the kinetic effect one observes in the laboratory would have gone to completion very long before the radionuclides would reach the surface. This point is basically a physical hydrology point, not a chemical problem.

Comment

 Assuming that one has the fracture surface area and the fracture volume are very big "ifs". You should reference the Stripa work. You should also point out that the laboratory studies give different results than field studies. One should be going to the field for corroboration.

AEGIS Response

• To the knowledge of the WRIT staff, there is no radionuclide migration work performed at Stripa to date. Laboratory studies do not necessarily give different results than field studies. See the KBS-110 study by Landstrom et al. (1978) for work at Studsvik. Within experimental and field uncertainties, Kd values for most elements agreed. The migration of radionuclides from OKLO also agree with thermodynamic calculations.

Topic - Site Characterization

Comments

• The chaper on site characterization contains sufficient information as a demonstration, but it is not put together in a thoughtful manner. I get the impression it is taken from an engineering report. The section reads like a commercial geology report and as such does not inspire confidence in the reader that a fundamental understanding of the geology of the region has been attained.

Far-field characteristics are missing important types of information regarding the geologic, hydrologic, and geochemical characteristics of the site, the site's resource potential, and the source term. In many cases the boundaries of the geological and hydrological investigations are inappropriate since they do not coincide with the input needs of scenario and consequence analysis.

The site characterization section omitted important types of data, including resources and extraction, reservoirs, salt dome stability and growth history, dissolution processes, hydrogeologic parameters and controlling factors, geochemistry of surrounding rock units, inner dome structure, permeability, and water content. A characterization better suited for this type of assessment report would be one which more directly supports the scenario and consequence analysis.

AEGIS Response

• Each of these comments, and other similar ones received, are quite valid. In an actual site assessment, the quality and depth of site characterization data would be considerably improved. As noted in the report, site characterization information is provided to AEGIS by other ONWI contractors. This reference site analysis provided useful experience in determining for AEGIS what types of data could be expected and for the site investigators what types of data AEGIS and WRIT require. The data being provided on the current reference site analysis in a different geological medium are considerably better attuned to the needs for scenario and consequence analyses.

<u>Topic - Scenario Analysis Methodology</u>

Comment

• Scenario anaysis should 1) identify all credible release scenarios, 2) conceptualize for each credible scenario the sequence of events leading from the initiating disruptive event to a release, 3) quantify this sequence of events, and 4) through modeling exercises, including sensitivity analysis, determine the initial and bounding detailed scenarios. The approach to scenario analysis in this report falls short of what is needed by only presenting final and bounding scenarios resulting from a Delphi/expert opinion and peer review process. Other important scenarios might be overlooked or unnecessarily deemphasized.

AEGIS Response

• The AEGIS scenario methodology is continuing to be developed. The direction of the approach is indicated in Appendix A, describing the computer-assisted methodology under development. That methodology is to provide an auditable, systematic way to identify credible scenarios, involving sequences of events and processes. However, the methodology was not in place at the time of scenario analysis for this reference salt dome assessment. In an actual site assessment, the AEGIS scenario analysis methodology should be fully developed.

With respect to the elements of a scenario analysis, it should be understood that all possible, credible scenarios cannot be specified, quantified, and have their consequences analyzed, since there are an infinite number of such scenarios. Rather, credible scenarios will have to be grouped in a way appropriate for a particular geological medium and a particular repository site. Then for those groups of scenarios, realistic and upper and lower bounding specific scenarios should be determined, quantified, and analyzed. Sensitivity analyses should then be performed to identify the important parameters affecting the consequences of each scenario group. The final point here is that the scenario analysis of this report determined what scenarios were plausible and eliminated others as being implausible. Among the plausible types of scenarios, the major type chosen for analysis represents a bounding class of scenarios, that of human intrusion by solution mining for culinary salt production. Within that bounding class of scenarios, a conservatively representative set of parameters was chosen quantifying the scenario; i.e., the most bounding parameters were not chosen. The approach in this report 1) provided an example of the types of scenario development and exclusion done by AEGIS, 2) provided an example of how a chosen scenario type would be quantified and analyzed, and 3) provided information on key scenario problems for locating a repository in a salt dome. We do not purport to have considered all scenario groups in the detail necessary for an actual site assessment.

Comment

• The solution mining scenario is somewhat similar to a loss-of-coolant accident in a nuclear reactor. A more thorough discussion of secondary effects is important. Sequences of several minor mishaps can, however, lead to similar major consequences, and it is crucial that the reader not be left with the impression that releases of waste from a repository would be most likely to occur in a single step.

AEGIS Response

• This is a valid comment. As discussed for the previous comment, the AEGIS scenario methodology is being developed to treat systematically sequences of events leading to a release to the accessible environment as well as single event releases.

Comment

 One troublesome feature of the scenario approach is the reliance on the Delphi method for identifying branch scenarios. Presumably the modified Delphi method will include a way to demonstrate convergence of opinion among several sets of "experts". If not, the procedure is questionable, since it will be totally dependent on selection of the "perfect" set of experts, a most unlikely event.

AEGIS Response

• It is apparent that an ideal set of experts is not attainable. However, AEGIS intends to optimize its expert opinion considerations by using a variety of experts in an auditable way, using the computer code to assist in scenario analysis, and subjecting its scenario analyses to extensive peer review.

Comment

• In the climate section, the possibility of human-induced changes (e.g., ozone layer and CO_2) in climate are excluded. Although there is much unknown about what could or will happen, it still seems essential to attempt a quantitative evaluation of those changes.

AEGIS Response

• The climate considerations are largely based on a very long geological record that indicates patterns and causal mechanisms for climatic changes and that bounds the probable climatic conditions over the next one million years. Cultural impacts on climate have an extremely short historical record, and extrapolation into the future based on that record cannot now be done beyond a few decades.

Another point is that for this reference salt dome, climatic change is not a sensitive parameter with respect to affecting the integrity of the repository. For a different site for which climate was a major factor, an attempt would be made to address human-induced climatic changes insofar as possible.

Conment

• Appendix A, describing the methodology under development, employs basalt as an example problem. This is confusing and largely irrelevant.

AEGIS Response

Basalt is used as the example because as of the date of writing this report, that is the only geological medium for which a scenario analysis computer code has been developed. AEGIS chose basalt for initial development because 1) it is a medium that has been under study for some time, so we know the most about it, 2) it is under serious consideration for a repository, and 3) its geological considerations are complex, so that use of a computer is most advantageous. If warranted for other geologic media, the code will be modified to be applicable for other media.

Comment

• In Appendix A a brute-force stochastic approach is outlined. Although this may give the appearance of greater objectivity than the opinion approach, it does not necessarily incorporate better source data, and the problem remains of deciding the level of improbability at which an event can be disregarded. It does possess the advantage of facilitating the handling of coupled or interactive events.

AEGIS Response

• This is a valid comment. The intent of the computer-assisted methodology is not to provide a sophisticated output which obscures a lack of understanding of the geological processes involved. Rather, the computer code is designed to provide an auditable way of treating the information, input from empirical data as well as from the subjective judgment of geoscientists, and tracing the scenario developed back to that input information. Additionally, it provides a way of treating the multiple interactions among the various processes and events.

It also should be emphasized that the subjective judgment of experts is a major basis for AEGIS scenario analysis. Many of the phenomena of interest cannot be quantified explicitly to provide specific, reliable predictions as to the magnitude or timing of events. Hence, many phenomena are treated as probability distribution functions, which rely upon that subjective judgment. The interactive and userdetermined nature of the AEGIS code optimizes the utilization of differing experts with differing judgments, thus providing a way to evaluate the sensitivity of the analysis to expert opinions.

<u>Topic - Geotransport Analysis Methodology</u>

Comment

• We have been concerned about model verification for some time. I think that model verification by means of field testing is very important and should be done as part of your program. The discussion about "conservative" assumptions is meaningless unless it can be shown that the models accurately reproduce reality. Model verification should precede sensitivity analysis.

AEGIS Response

• The AEGIS program is committed to developing as much independent verification of its geotransport models as possible. This includes a wide range of such verification, from simple benchmark comparisons of computer models against analytical solutions, and test cases of models to assure correct solution of particular computer runs, to more complex comparisons of computer model predictions against real world data on the specific processes being addressed, and finally to validations of computer model predictions for phenomena on the time, complexity, or spatial scales appropriate for geotransport analysis. It should be understood, however, that it may not be possible to validate some aspects of geotransport using empirical data, since there is no way to collect data for the next thousands of years.

With respect to the comment about conservative assumptions, we disagree that they are meaningless without final validation of models. The assumptions listed in this report largely can be evaluated as to their conservative or nonconservative quality without resorting to specific model predictions. Thus, for an assumption which involves, for example, a solubility limit on uranium placing a ceiling on the release of all radioisotopes below what could have been released under unrestricted leaching, it can confidently be stated that is a nonconservative assumption, because the contrary assumption would lead to increased doses.

Similarly, the assumption that all of the ground water flowing from the Queen City to the Wilcox occurs through a narrow, sealed pipe and passes directly over the exposed spent fuel is a conservative assumption, because if any part of the water passed into the Wilcox without dissolving some radionuclides, the dose values would be decreased. Both of these conservative versus nonconservative assessments, as well as a large number of other assumptions, are valid irrespective of the accuracy or precision of models of geotransport.

Finally, we do not agree that model verification should precede sensitivity analyses. Both represent needed aspects of consequence analysis, but they are not necessarily causally dependent. Thus, sensitivity analyses, which are much easier to perform, can be done while verification has not yet been completed.

In addition, sensitivity analyses can indicate the phenomena or parameters which make a major impact on calculated predictions, as well as those which have little effect on results. This can be useful information in designing and performing empirical validations of models, in indicating physical phenomena that need to be better understood, in assisting the design and conceptualization of the engineered repository system, in assisting the selection of criteria for site selection, and so on.

Comment

 It is not clear why the finite difference model was used instead of using 3DFEGW throughout, since the far-field geometry is still difficult.

AEGIS Response

• AEGIS geotransport methodology is based on having a number of interactive computer models, ranging from simple, analytical one-dimensional models to the complex three-dimensional models capable of handling heterogeneities over time and space. The use of particular models is determined by the specific application as well as the complexity of the available data. For the far-field analyses, the data did not warrant using the three-dimensional model, so two-dimensional flow was simulated by using multiple, simultaneous analyses of one-dimensional tubes flow. On the other hand, the near-dome hydrology provided an opportunity to demonstrate the capability of the 3DFEGW model.

Comment

• Is the one-dimensional transport model conservative? If so, by how much?

AEGIS Response

• By most definitions, a conservative model will consistently overestimate concentration or flux levels within the flow pathway, and especially at the entry of the radionuclides into the accessible environment. Note that here the accessible environment may include an entire aquifer.

Restriction of the entire dissolved contaminant mass to a tube flow (hypothetical 1-D system with cross-sectional dimensions) representing the most direct convective flow path seems to provide conservative estimates, at least within the specified tube flow. However, concentration levels outside the tube flow are not conservative, because they are zero (i.e., not estimated). For the salt dome geotransport simulation, the exit rate to the surface water system, however, was the emphasized quantity. The outflow is reported in terms of exit concentration, based on the water velocity.

The quantitative degree of conservatism cannot be assessed without simulating the actual three-dimensional system, for which data were insufficient. An approximate 3-D system composed of multiple flow tubes could be used to study this question in the future. However, it seems reasonable to assume that concentration or flux levels established by transverse (lateral) dispersive effects within the actual system would never exceed those modeled in a flow tube connecting the repository and preselected observation locations.

In terms of contaminant arrival time along a flow tube, it is not certain if the shortest travel time for the actual system is predicted. But this uncertainty is unavoidable without additional real data, and is the basis for using an effective dispersion parameter.

Comment

• What is the justification for the statement that effective dispersion was assumed to dominate the transport?

AEGIS Response

• Present research seems to indicate that megascopic dispersion effects can be related to the velocity variation or flow uncertainity in a ground-water system. The dispersion parameter for that length scale is typically orders of magnitude greater than that constituted by a local hydrodynamic dispersion coefficient, which is usually determined on media samples. Megascopic dispersion is a result of global variations and is a characteristic of a particular flow system, whereas true hydrodynamic dispersion is viewed as an intrinsic property of local hydrogeologic media. In principle, if complete information on flow was obtainable at a megascopic scale, then fluid velocity and a hydrodynamic dispersion coefficient (in general, a tensor) would suffice to characterize dispersive transport. However, fluid velocity is always measured on realized systems, as an average quantity. The velocity variation from that average is ultimately responsible for dispersive behavior that can not be explained by an average velocity and a locally measured hydrodynamic dispersion coefficient as used in the classical transport equation. Thus, the insufficiency of data and uncertainty about the actual flow system compel introduction of a megascopic dispersion phenomenon, and hence of an effective dispersion coefficient.

In the application in this report, the velocity streamlines obtained from hydrologic modeling defining a flow tube were taken to be equally probable as transport pathways. Then the flow velocity variation (travel time variation) over streamlines was identified with the megascopic spatial dispersion variance, 2D*T. Independent simulations for each component streamline with equally divided released contaminants, would achieve the same total simulation objective, but not as efficiently as a single flow tube representation employing the effective dispersion parameter D*. A theoretical basis for this approach is discussed in Simmons (1980).

Comment

• I am confused by the discussion in Chapter 8 which attempts (without success) to dismiss the need for two-dimensional transport and the presentation of Appendix D which appears to discuss a two-dimensional simulation. Note in this regard that the uncertainty arguments used to dismiss the need for sophisticated transport model in Chapter 8 also hold for flow calcuations. I find the entire discussion of transport unacceptable.

AEGIS Response

• The introductory discussion on transport was not meant to dismiss the need for two-dimensional transport analysis. It indicates instead the difficulty with proceeding beyond one-dimension with an inadequate basis of information. Without a reasonable estimate of the dispersion tensor components applicable to the required megascopic scale, it does not seem appropriate to proceed with the pretense of complete knowledge suggested by a solution for the

two- or three-dimensional convective-dispersion equation. Moreover, at this time the very foundation for applying that classical transport equation to the scale of an aquifer is being questioned. As interested and serious researchers in the subject, we are also disappointed in the failed opportunity to perform a higher dimensional analysis of the system. The transport by convective flow could have been simulated directly. But in a laminar flow system without lateral dispersive exchange between streamlines, the accumulated one-dimensional transport along individual streamlines should represent the same results. Furthermore, only the streamlines intercepting the release region would need to be included in any such convective flow system. An attempt, however, was made to reintroduce the effects of lateral dispersion by allowing the random exchange of solute between streamlines containing a megascopic flow tube. Effects of lateral dispersion as represented by the crosssectional dimensions of the flow tube were thereby included in an effective (forward) dispersion parameter. It is emphasized for this method that the one-dimensional transport algorithm, however, is not altered; a dispersion parameter with a different physical origin is employed. The objective is estimation of a biosphere entry flux, and an exact calculation of solute concentration within the region was not required.

Appendix D describes both the general 2-D MMT-DPRW transport model and some more specific details used in the 1-D version. There should be nothing unusual in describing the general features of the model and the selected restriction of application to a 1-D case. Appendix D was extracted from a Battelle report (Washburn et al. 1980), and it is a continuation of the subject begun in Ahlstrom et al. (1977). The commenter should have received copies of those reports.

We believe the reviewer's comment that the uncertainty restrictions placed on transport modeling apply as well to the water flow modeling to be absolutely incorrect. The nature of these problems is entirely different. Ground-water modeling of the system (Chapter 7) included

relatively detailed information on transmissivities and the potential field. The associated flow velocity field (streamlines) is the backbone of the transport process, regardless of the dimensionality of the transport representation. It is generally accepted that water flow in a steady or quasi-steady flow state is adequately described at aquifer scale by hydraulic properties averaged over large subregional elements, although an important current research topic is the influence of uncertainty or spatial variability of parameters (Neuman 1979; Sagar 1978). On the other hand, averaged quantities may not correctly describe the dispersive details of an advancing solute front, which is sensitive to detailed flow variations about the average. In particular, current transport research indicates there is more than mere uncertainty of input parameters such as dispersivity. Indeed, the validity of Ficks' law and the classical transport equation applied at megascopic scale are under question (Matheron and DeMarsily 1980; Smith and Schwartz 1980). The indicated concepts employed in this report's admittedly simplified transport analysis is discussed at length in another report (Simmons 1980).

In summary, we do not wish to dismiss the need for more sophisticated transport modeling. No sincere scientist should avoid using the best available mathematical models for so important an application as a nuclear waste repository analysis. However, we do object to applying a higher dimensional model without the necessary valid input parameters.

Comment

- I could write a book on why the discussion on mass transport is unacceptable: to summarize let me point out...
 - 1. the method developed by Pinder and Cooper attempts to solve the transport equation
 - 2. the particles are injected to trace the characteristic curves
 - this approach may conserve mass <u>but</u> this is only a necessary not sufficient condition to assure one has solved the transport equation

- 4. the method as proposed does not purport to solve the transport equation (at least I have never seen any proof to that effect)
- 5. I abandoned the particle approach 10 yr ago because one could not obtain an error estimate; i.e., one could not demonstrate rigorously either consistency or convergence. The method presented suffers from the same limitation. I see no mathematical foundation to this approach.
- 6. Inasmush as one does not explicitly solve the transport equation but rather try and represent the physics by analogy, why bother with all the preceding discussion devoted to developing and explaining the transport equation?
- 7. One of the classic problems with this approach arises in a divergent flow regime, e.g., near an injection well. The particles move further and further apart until the solution within a cell becomes meaningless. To add particles is to add mass, thus a dilemma arises.
- In <u>my opinion</u>, many of the steps taken to obtain a solution using this approach are closer to witchcraft than science, e.g., the location of new parcels as on D-23.

AEGIS Response

- 1. The one-dimensional MMT model as it now stands, based on discrete parcels of mass, does solve the classical convectivediffusion equation. A design was developed that emphasizes calculation of exit solute flux, although the spatial concentration distribution is obtained also with somewhat less accuracy and efficiency. Comparison runs with an analytical model were described elsewhere (Washburn et al. 1980). Comparison tests have also been made (not reported) using the velocity ensemble development reported by Simmons (1980), and agreement was very good.
- 2. It seems obvious that particles will trace characteristic curves (streamlines) when assumed a priori that solute is carried without deviation by the fluid stream. This is the very basis for

representing 3-D convective transport as a finite number of 1-D systems. If a particle transfer mechanism is known between streamlines, the transport is still representable by a collection (ensemble) of pathways through the system. The classical or Fickian dispersion mechanism is described stochastically by a random walk relative to a coordinate frame moving along characteristic curves with the water velocity.

- 3. This statement is true in any context--mass should be conserved. But the condition does not guarantee a solution to any particular phenomenological (dynamic) transport equation.
- 4. The method employed here is a direct extension of a fundamental theorem on stochastic processes describing the relationship between a stochastic differential equation of the Wiener process (Brownian motion) and the diffusion equation (Fokker-Plank). A book by Cox and Miller (1965) is an excellent reference to fundamental literature, and the classical work in Wax (1954) is basic.
- 5. The method used here is not that applied by Pinder and Cooper (1970). Rigorous statements of consistency (defined how?) and convergence are found in the realm of stochastic processes, not in finite element or difference mathematics. Limitations on attainment of theoretical results, however, are imposed by approximations required by computer codes. But all mathematical methods suffer the same problem. A random walk approach allows for a more fundamental error estimate based on sampling a stochastic process which is perceived as an analog of the actual physical system, rather than based on convergence of a series approximation.

A random walk simulation generates one possible realization of a continuum system actually composed of particles, whereas a solution of the classical equation represents the ensemble average. Note that it is not claimed that the particles need

actually be atoms nor that a random walk is the microscopic movement process within the real fluid system. In some cases, the random walk particle model may appear to be more like the actual system. When observing an actual system composed of clouds of particles, one is more likely to observe only one member of the concentration distribution ensemble than its average. This is a main reason why measurements seldom match theoretical limits at various physical scales, excluding of course effects of instrument measurement error.

The accuracy and convergence of the MMT-DPRW model can be tested in a way similar to other numerical models. Convergence is tested by increasing the number of parcels and by refinement of the movement time step. Finite difference or finite element methods do not solve the transport equation exactly either. All methods implemented by computer codes produce approximations.

- The discussion in Appendix D was meant only to contrast the usual equation-based approach and the direct simulation approach.
- 7. The dilemma of sampling concentration in a divergent flow can be resolved by injecting more particles of smaller mass at initialization of the simulation. If it is known at the beginning that concentration is to be sampled in a given cell, then the model itself can be applied to estimate how many particles must be released to achieve an accurate estimate. Indeed, if statistically independent simulations are accumulated within any cell and averaged, the desired accuracy could be attained. This approach is usually very inefficient with computer time, but it will work. Admittedly, the random walk approach is currently slower than other equation-solving methods, but new generations of parallel processing computers may change the situation. An outstanding attribute of the direct simulation

approach is its application flexibility. In this salt dome application, a simple alteration of the code allowed retardation of radionuclides to be controlled by the presence or absence of a dissolved salt plume. The approach easily solves an advancing front problem, whereas the other methods suffer numerical difficulty.

8. Certainly a weakness in the MMT 1-D model is its lack of theoretical verification for describing transport subject to chain decay and chemical absorption. But direct comparisons with exact analytic solutions have shown that basic mechanisms are accounted for. We do not consider kinematics with respect to a moving reference frame as witchcraft. Equation 17 on page D-22 is based on the relative motions of both parent and daughter radionuclides. If the time steps were made sufficiently small, then consideration of such relative motions could be eliminated. However, Equation 17 is employed to allow larger, more efficient time steps.

Comment

Many of the graphs in Appendix G illustrate rather unusual curves.
 I assume the behavior to be real rather than numerical, and I think
 a discussion of these curves would be in order. Consider, for
 example, G-20, G-22, G-28, G-38, G-40, and G-90.

AEGIS Response

• The graphs in Appendix G are the result of applying a running average time series filter (smoothing) to the MMT 1-D flux estimation output. The residual statistical fluctuations are evident as smaller period variations on the overall graph, and are statistical artifacts. Such variations could have been further smoothed, but with the cost of possibly altering the overall curve. Random fluctuations are a normal and correct feature of the random walk approach, but similar behavior in a numerical finite element or finite difference equation represents a failure of the algorithm. For example, all features shown on G-16 for carbon-14 are real behavior. G-19 was not smoothed properly and should have looked like G-18. The top of G-20 should be nearly flat, and an enlarged smoothing based on more points shows this in G-21. Difficulty in reading such curves does present a problem in some cases. However, it was not the objective of these simulations to obtain precise curve shapes, but only approximate estimates of peak values within ranges of time for dose calculations. Cases with borderline results can be decided by further simulation.

Comment

• The statement that the dispersion caused by velocity variation between streamlines usually dominates the porous media longitudinal dispersion, which is a microscopic phenomenon seems to suggest that transverse dispersion is greater than longitudinal--contrary to observation and established theory.

AEGIS Response

• On the contrary, the flow tube model is based on a relatively large longitudinal and small transverse dispersion coefficient. Transverse dispersion is represented by spreading within cross-sectional dimensions during a transversing of the flow tube length (a travel time).

Comment

• What is the meaning of D+D* (end of Chapter 8)?

AEGIS Response

• The meaning of D+D* is the sum of both dispersion coefficients for global and local variations in velocity.

Comment

• I disagree with the statement that the level of complexity of a model used for simulating actual release consequences is not justi-fied beyond the complexity and quality of the input data. You need

the complexity necessary to describe the physics to the degree required to answer whatever question is being posed. Then you obtain the best estimate of the required parameters.

AEGIS Response

We agree with the reviewers' comment about the need entirely to describe the physics. However, when related parameters are not available or are even of questionable validity, it may be better to elimate a physical process such as lateral dispersion temporarily until further information becomes available. The judgmental process of including or excluding parameters from a physical model seems to depend on predictive objectives. In this application the objective was to emphasize a bounding case of movement of radiocontaminants toward specified environmental entry points. The conservative judgment was to minimize solute dilution by removing the effects of lateral dispersion. Such a choice seems to warrant selection of a one-dimensional, simplified model transporting directly between release and observation locations. The dispersion parameter used for the longitudinal direction was selected to represent an extreme of variation in the flow direction. If the objective had been instead to simulate a worst case dispersal throughout the aquifer region, then a two-dimensional simulation using a greatest possible lateral dispersion parameter based on flow direction uncertainty would seem to be called for. A 2-D simulation could not be avoided then.

REFERENCES TO VOLUME 1

- Ahlstrom, S. W., et al. 1977. <u>Multiple Component Mass Transport Model:</u> <u>Theory and Numerical Implementation (Discrete - Parcel - Random - Walk - Version)</u>. PNL-2127, Pacific Northwest Laboratory, Richland, Washington.
- Barton, D. E. 1933. "Mechanics of Formation of Salt Domes with Special Reference to Gulf Coast Salt Domes of Texas and Louisiana." Bull. AAPG v. 17, no. 9, pp. 1025-1083.
- Bates, R. C. 1969. <u>Geology of Industrial Rocks and Minerals</u>. Dover Publications, New York.
- Brandstetter, A. et al. 1979. <u>Waste Isolation Safety Assessment Program</u> <u>Technical Progress Report for FY-1978</u>. PNL-2874, Pacific Northwest Laboratory, Richland, Washington.
- Broom, M. E. 1969. "Ground-Water Resources of Gregg and Upshur Counties, Texas." Rept. No. 101, Texas Water Devel. Board.
- Brown, E., et al. 1970. <u>Methods for Collection and Analysis of Water Samples</u> for Dissolved Minerals and Gases. Book 5, Laboratory Analysis. U.S. Government Printing Office, Washington DC.
- Burkholder, H. C. et al. 1979. <u>Waste Isolation Safety Assessment Program</u> <u>Technical Progress Report for FY-1977</u>. PNL-2642, Pacific Northwest Laboratory, Richland, Washington.
- Centanni, R. A. M., and M. A. DeSesa. 1956. "Flourometric Determination of Uranium." <u>Anal. Chem. 28</u>(11):1651-1657.
- Claiborne, H. C. and F. Gera. 1974. <u>Potential Containment Failure Mechanisms</u> and Their Consequence at a Radioactive Waste Repository in Bedded Salt in <u>New Mexico</u>. ORNL-TM-4639. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
- Cox, D. R., and H. D. Miller. 1965. <u>The Theory of Stochastic Processes</u>. John Wiley & Sons Inc., New York.
- CRRD. 1979. <u>Conceptual Reference Repository Description</u>. Prepared for Battelle Memorial Institute, Office of Nuclear Waste Isolation by Bechtel National, Inc., San Francisco, California.
- CWMS. 1980. <u>Final Environmental Impact Statement, Management of Commercially</u> <u>Generated Radioactive Waste</u>. DOE/EIS-0046F, U.S. Dept. of Energy, Washington D.C.

Ref.1

- Davis, S. N. 1980. <u>Hydrogeologic Effects of Natural Disruptive Events on</u> <u>Nuclear Repositories</u>. PNL 2858, Pacific Northwest Laboratory, Richland, Washington.
- Davis, S. N. and R. J. M. DeWiest. 1966. <u>Hydrogeology</u>. John Wiley & Sons, New York.
- Dillard, J. W. 1963. "Availability and Quality of Groundwater in Smith County, Texas." Texas Water Comm. Bull. 6302.
- Dosch, R. G., and A. W. Lynch. 1978. <u>Interaction of Radionuclides with</u> <u>Geomedia Associated with the Waste Isolation Pilot Plant (WIPP) Site in New</u> <u>Mexico</u>. SAND 78-0297, Sandia Laboratories, Albuquerque, New Mexico.
- Erdal, B. R., et al. 1979. <u>Laboratory Studies of Radionuclide Distribution</u> <u>Between Selected Groundwaters and Geologic Media</u>. Quarterly Technical Progress Report, Oct. 1-Dec. 31, 1978, LA-7638-PR, Los Alamos Laboratory, Los Alamos, New Mexico.
- Etter, E. M., ed. 1978. <u>Field Trip to Damon Mound</u>. Houston Geological Society Guidebook, Houston, Texas.
- Finston, H. L. 1961. <u>The Radiochemistry of Cesium</u>. NAS-NA 3035, Nuclear Sciences Series.
- Francis, C. W., et al. 1979. "Chromatographic Kd Values of Radionuclides and the Effect of Redox Potentials on Sorption of Radionuclides by Geologic Media." In: <u>WISAP Task 4 Second Constructor Meeting Proceedings</u>, ed. R. J. Serne, PNL-SA-7352, Pacific Northwest Laboratory, Richland, Washington.
- Gary, M., K. McAfee, Jr. and C. L. Wolf, eds. 1974. <u>Glossary of Geology</u>, American Geological Institute, Washington, D.C.
- Grandstaff, D. E. 1976. "A Kinetic Study of the Dissolution of Uraninite." Econ. Geol. <u>71</u>:1493.
- Griswold, G. B. 1980. <u>Solution Mining in Salt Domes of the Gulf Coast</u> <u>Embayment</u>. PNL-3190, Pacific Northwest Laboratory, Richland, Washington.
- Halbouty, Michel T., and George C Hardin, Jr. 1956. "Genesis of Salt Domes of Gulf Coastal Plain," Bull., AAPG, v. 40, no. 4, pp. 737-746.
- Halbouty, Michel T. 1967. <u>Salt Domes Gulf Region-United States and Mexico</u>. Gulf Publishing Company, Houston, Texas.
- Hartmann, W. K. 1978. "Long-Term Meteorite Hazards to Buried Nuclear Waste Materials." In <u>A Summary of FY-1978 Consultant Input for Scenario</u> <u>Methodology Development</u>. ed. Scott et al., PNL-2851, Pacific Northwest Laboratory, Richland, Washington.

- Hawkins, M. E., and C. J. Jirik. 1966. "Salt Domes in Texas, Louisiana, Mississippi, Alabama, and Offshore Tidelands, A Survey." Info. Circ. 8313, U.S. Bureau of Mines.
- Hespe, E. D., ed. 1971. "Leach Testing of Immobilized Radioactive Waste Solids, A Proposal for a Standard Method." <u>Atomic Energy Review</u>, <u>9</u>:1.
- Holland, H. D., and L. H. Brush. 1978. "Uranium Oxides in Ores and Spent Fuels." In <u>Proceedings of High Level Radioactive Solid Waste Forms</u>, ed. L. A. Casey, NUREG/CP-0005, p 597. Denver, Colorado.
- ICRP (International Commission on Radiological Protection). 1959. <u>Report of</u> <u>Committee II on Permissible Dose for Internal Radiation</u>. ICRP Publication 2, Pergamon Press, New York.
- Johnson, K. S., and S. Gonzales. 1978. <u>Salt Deposits in the U.S. and Regional</u> <u>Geologic Characteristics Important for Storage of Radioactive Waste.</u> OWI/SUB-7414/1.
- Joint Committee on Powder Diffraction Standards. 1980. <u>Mineral Powder</u> <u>Diffraction File</u>. Joint Committe on Powder Diffraction Standards, Swarthmore, Pennsylvania.
- Kehle, R. O. 1980. <u>Assessment of Tectonic Hazards to Waste Storage in</u> <u>Interior-Basin Salt Domes</u>. PNL-2864, Pacific Northwest Laboratory, Richland, Washington.
- Kirby, H. W., and M. L. Salutsky. 1964. <u>The Radiochemistry of Radium</u>. NAS-NS-3057.
- Koltoft, I. M., and P. J. Elving. 1966. <u>Treatise on Analytical Chemistry</u>. Part II, Volume 4, Intersciences Publishers, Inc., New York.
- Kupfer, D. H. 1974. "Shear Zones in the Gulf Coast Salt Delineate Spines of Movement." Transactions - Gulf Coast Association of Geological Societies, v. XXIV.
- Kukla, G. 1978. "Probability of Expected Climate Stresses in North America in the Next One Million Years." In <u>A Sumary of FY-1978 Consultant Input for</u> <u>Scenario Methodology Development</u>. ed. Scott et al., PNL-2851 Pacific Northwest Laboratory, Richland, Washington.
- Landstrom, O. 1978. "In-Situ Experiments on Nuclide Migration in Fractured Crystalline Rocks." KBS Technical Report 110, Stockholm, Sweden.
- Law Engineering Testing Company. 1979a. <u>Gulf Coast Salt Dome Geothermal</u> <u>Study</u>. Marietta, Georgia.

and a second

- Law Engineering Testing Company. 1979b. Preliminary Report on the Geology and Hydrology of the Hainesville Dome, Wood County, Texas. Marietta, Georgia.
- Loocke, J. E. 1978. <u>Growth History of the Hainesville Salt Dome, Wood</u> <u>County, Texas</u>. Masters Thesis, Univ. Texas. Austin, Texas.
- Mara, S. J. 1980. <u>Geologic Factors in the Isolation of Nuclear Waste:</u> <u>Evaluation of Long Term Geomorphic Processes and Catastrophic Events</u>. PNL-2854, Pacific Northwest Laboratory, Richland, Washington.
- Matherson, G., and G. De Marsily. 1980. "Is Transport in Porous Media Always Diffusive?" Water Res. Research 16:901-917.
- Meyer, R. E. et al. 1978. "Systematic Study of Nuclide Sorption on Select Geologic Media." In <u>WISAP Task 4 Contractor Meeting Proceedings</u>, ed. R. J. Serne, PNL-SA-6957, Pacific Northwest Laboratory, Richland, Washington.
- Millot, G. 1970. <u>Geology of Clays</u>. Springer-Verlag Publishing, Berlin, Germany.
- Moore, F. L. 1957. Anal. Chem., 29:1767.

.....

- Napier, B. A. et al. 1980. <u>PABLM-A Computer Program to Calculate Accumulated</u> <u>Radiation Doses From Radionuclides in the Environment</u>. PNL-3209, Pacific Northwest Laboratory, Richland, Washington.
- Netherland, Sewell, and Associates, Inc. 1976. <u>Geologic Study of the</u> <u>Interior Salt Domes of Northeast Texas Salt Dome Basin to Investigate Their</u> <u>Suitability for Possible Storage of Radioactive Waste Material as of May,</u> <u>1976</u>. Prep. for Office of Waste Isolation, Union Carbide Corp., Nuclear Div., Energy Res. Devel. Admin., Oak Ridge, Tennessee.
- Nettleton, L. L. 1934. "Fluid Mechanics of Salt Dome." Bull., AAPG, v. 18, no. 9, pp. 1175-1204.
- Neuman, S. P. 1979. "Statistical Characterization of Aquifer Heterogenetics: An Overview." In <u>Symposium on Recent Trends in Hydrogeology Honoring</u> <u>P. A. Witherspoon's Sixtieth Birthday</u>. Geological Society of America, New York.
- Nishiwaki, Y., et al. 1972. "Behavior and Distribution of Radioactive Substances in Coastal and Estuarine Waters." In <u>Radioactive Contamination</u> of the Marine Environment. IAEA-SM-158/11, pp. 177-193.
- O'Keefe, J. D., and T. J. Ahrons. 1977. "Impact-Induced Energy Partitioning, Melting and Vaporization on Terrestrial Planets." In <u>Proceedings Lunar</u> Science Conference, <u>8</u>:3357.

- Patchick, P. F. 1980. <u>The Suitability of Palestine Salt Dome, Anderson Co.,</u> <u>Texas for Disposal of High-Level Radioactive Waste</u>. ONWI-74, Office of Nuclear Waste Isolation, Columbus, Ohio.
- Pinder, G. F., and H. H. Cooper, Jr. 1970. "A Numerical Technique for Calculating the Transient Postion of the Saltwater Front." <u>Water Resources</u> <u>Research</u>, 6(3), pp. 875-882.
- Price, G. R., G. R. Ferreti, and S. Swartz. 1953. "Flourophometric Determination of Uranium." Anal. Chem., 25(2):322-331.
- Rai, D., R. J. Serne and D. A. Moore. 1980. <u>Interactions of Plutonyl (VI)</u> with Soil Minerals. PNL-SA-8448, Pacific Northwest Laboratory, Richland, Washington.
- Raymond, J. R., et al. 1980. <u>Test Case Release Consequence Analysis for a</u> <u>Spent Fuel Geologic Repository</u>. PNL-2782, Pacific Northwest Laboratory, Richland, Washington.
- Relyea, J. F. 1979. <u>Sorption Behavior of 85Sr, 137Cs and 95mTc Under</u> <u>Normal Atmospheric and Reduced Oxygen Levels</u>. PNL-SA-7928, Pacific Northwest Laboratory, Richland, Washington.
- Sagar, B. 1978. "Galerkin Finite Element Procedure for Analyzing Flow Through Random Media." <u>Water Resour. Res</u>. 14(6):1035-1044.
- Scott, B. L., G. L. Benson, and M. A. Harwell. 1979. <u>A Summary of FY-1978</u> <u>Consultant Input for Scenario Methodology Development</u>. PNL-2851, Pacific Northwest Laboratory, Richland, Washington.
- Seitz, M. G., et al. 1979. "Transport Properties of Nuclear Waste in Geologic Media." In <u>WISAP Task 4 Second Constructor Meeting Proceedings</u>, ed. R. J. Serne, <u>PNL-SA-7352</u>, Pacific Northwest Laboratory, Richland, Washington.
- Serne, R. J., ed. 1978. <u>Waste Isolation Safety Assessment Program Task 4</u> <u>Contractor Information Meeting Proceedings</u>. PNL-SA-6957, Pacific Northwest Laboratory, Richland, Washington.
- Simmons, C. 1980. <u>Relationships of Dispersive Mass Transport and Stochastic</u> <u>Convective Flow Through Hydrologic Systems</u>. PNL-3300, Pacific Northwest Laboratory, Richland, Washington.
- Smith, L., and F. W. Schwartz. 1980. "Mass Transport I: A Stochastic Analysis of Macroscopic Dispersion." <u>Water Res. Research</u>, 16:303-313.
- Strickert, R. G., et al. 1979. <u>ARDISC: Computer Programs to Calculate the</u> <u>Distribution of Trace Element Migration in Partially Equilibrating Media</u>. <u>ANL-79-25</u>, Argonne National Laboratory, Argonne, Illinois.

- USGS. 1959. "Western Gulf of Mexico Basins." United States Geological Survey Water Suppply Paper.
- Washburn, J. F., et al. 1980. <u>Multicomponent Mass Transport Model: A Model</u> <u>Simulating Migration of Radionuclides in Ground Water</u>. PNL-3179, Pacific Northwest Laboratory, Richland, Washington.
- Wax, N. 1954. <u>Selected Papers on Noise and Stochastic Processes</u>. Dover Pub., New York.
- Wight, L. H. 1978. "Analysis of the Seismic Hazard to an Underground Waste Repository. In <u>A Summary of FY-1978 Consultant Input for Scenario</u> <u>Methodology Development</u>, ed. Scott et al., PNL-2851, Pacific Northwest Laboratory, Richland, Washington.

PNL-2955 Volume 1 Special Distribution

DISTRIBUTION

No. of Copies

OFFSITE

UNITED STATES

A. A. Churm DOE Chicago Patent Group 9800 South Cass Avenue Argonne, IL 60439

10 Battelle Memorial Institute Office of Nuclear Waste Isolation Attn: Beverly Rawles 505 King Avenue Columbus, OH 43201

> Michael J. Bell, Chief High-Level Waste Technical Development Branch Waste Management Division U.S. Nuclear Regulatory Commission Washington, DC 20555

Gary Benson c/o Baker Construction Co. 2800 S. Post Oak Houston, Texas 77056

John Bird Geology Department Cornell University Ithaca, NY 14853

Charles L. Blalock Mississippi Department of Natural Resources Box 20305 Jackson, MS 39209

Albin Brandstetter Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

No. of Copies

Colin Bull Office of the Dean College of Math and Physics Sciences 154 Denny Hall 164 West 17th Avenue Columbus, OH 43210

Wayne A. Carbiener Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

Roger Casperson National Academy of Sciences National Research Council 2101 Constitution Avenue Washington, DC 20418

C. Ping Chen Task Force Vice Chairman Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

Neville G. W. Cook Department of Materials Science and Mineral Engineering Hearst Mining Building University of California Berkeley, CA 94720

Carl R. Cooley DOE Office of Nuclear Waste Management Washington, DC 20545

Bruce Crowe Geological Research Group G-6 Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, NM 87545

Distr-1

No. of Copies

Stanley N. Davis, Hydrologist The University of Arizona College of Earth Sciences 6540 W. Box Canyon Drive Tucson, AZ 85705

J. O. Duguid Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

Dan Egan Environmental Protection Agency Office of Radiation Programs Technology Assessment Division M/S AW 559 Washington, DC 20460

Bruce R. Erdal Los Alamos Scientific Laboratory P.O. Box 1663 (Mail Stop-514) Los Alamos, NM 87545

E. S. Fuente Division of Radiological Health Mississippi Department of Health 247 Vanderwood Building Jackson, MS 39208

R. Gastil Freedom House 8 Frontier Road Cos Cob, CT 06807

John H. Gervers, Coordinator State of New Mexico Radioactive Waste Consultant Tank Force Room 247, State Capitol Sante Fe, NM 87503

George B. Griswold Tecolote Corporation 531 Wagontrain Drive, S.E. Albuquerque, NM 87123

No. of Copies

J. T. Halloway National Academy of Sciences 2101 Constitution Avenue N.W. Washington, DC 20418

William K. Hartmann

Christine C. Harwell

5 Mark A. Harwell Ecosystems Research Center E221 Biological Sciences Bldg. Cornell University Ithaca, NY 14853

> Colin A Heath NUS Corporation 4 Research Place Rockville, MD 20850

William M. Hewitt Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

Peter L. Hofman Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

G. Hunt Office of Licensing Systems Integration Basalt Waste Isolation Project Rockwell Hanford Operations P.O. Box 800 Richland, WA 99352
.....

15

Maureen Kaplan TASC 6 Jacob Way Reading, MA 01867

Ralph Kehle Turk, Kehle and Associates 7800 Schoal Creek Blvd Suite 270-S Austin, TX 78752

Muzaffer Kehnemuyi Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43021

John F. Kircher Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

Malcom R. Knapp U.S. Nuclear Regulatory Commission Washington, DC 20555

C. Kreitler Texas Bureau of Economic Geology University Station P.O. Box X Austin, TX 78712

George Kukla Lamont-Doherty Geological Observatory of Columbia University Palisades, NY 10964

Donald H. Kupfer Louisiana State University Shreveport, LA 71105

Terry R. Lash Director of Science and Public Policy Keystone Center Box 38 Keystone, CO 80435

No. of <u>Copies</u>

Joseph A. Lieberman Nuclear Safety Associates 5101 River Road Bethesda, MD 20016

Susan J. Mara SRI International 333 Ravenswood Ave. Menlo Park, CA 94024

J. Martinez Louisiana State University Shreveport, LA 71105

John T. McGinnis Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

M. Merritt WIPP Sandia Laboratories Albuquerque, NM 87115

Vernon Minchew Mississippi Mineral Resources Inst. U. of Mississipi Oxford, MS 38677

Jack Mobley Scientific Liaison Officer State of New Mexico Environmental Evaluation Group 320 E. Marcy Street Sante Fe, NM 87503

Barry N. Naft NUS Corporation 4 Research Pl. Rockville, MD 20850

J. O. Neff Department of Energy Columbus Program Office 505 King Avenue Columbus, OH 43201

Distr-3

Robert H. Neill Environmental Evaluation Group State of New Mexico P.O. Box 968 Sante Fe, NM 87503

Neil A. Norman Environmental Services Department Bechtel National, Inc. P.O. Box 3965 San Francisco, CA 94119

John D. Osnes RE/SPEC Inc. P.O. Box 725 Rapid City, SD 57709

Frank L. Parker Department of Environmental Eng. Vanderbilt University Nashville, TN 37235

T. H. Pigford University of California Berkeley, CA 94720

George F. Pinder Department of Civil Engineering Princeton University Princeton, NJ 08540

Robert O. Pohl Laboratory of Atomic and Solid State Physics Cornell University Ithaca, NY 14853

B. J. Porter
Louisiana Office of Environmental Affairs
Nuclear Energy Division
P.O. Box 14690
Baton Rouge, LA 70898

H. L. Ragsdale Department of Biology Emory University Atlanta, GA 30322

No. of Copies

Marvin Resnikoff Sierra Club Box 64, Station G Buffalo, NY 14213

David L. Schreiber Consulting Hydraulic Engineer P.O. Box 1087 (c/o the Colony) Couer D'Alene, ID 83814

Dorner T. Schueler, Manager Waste Isolation Pilot Project Albuquerque Operations Office U.S. Department of Energy P.O. Box 5400 Albuquerque, NM 87115

Herbert R. Shaw U.S. Department of the Interior Geological Survey Branch of Experimental Geochem. and Mineralogy 345 Middlefield Road Menlow Park, CA 94025

D. B. Shipler Battelle Memorial Institute Office of Nuclear Wate Isolation 505 King Avenue Columbus, OH 43201

Raymond Siever Hoffman Laboratory Harvard University Cambridge, MA 02138

Arthur J. Soinski State of California Energy Resources Conservation and Development Commission 1111 Howe Avenue Sacramento, CA 95825

Howard P. Stephens NTS Waste Management Overview Division 4538 Sandia Laboratorties Albuquerque, NM 87115

> David B. Stewart Geologic Division Coordinator Radioactive Waste Management U.S. Department of the Interior 959 National Center Reston, VA 22092

Martin S. Tierney Environmental Assessment Division 4514 Sandia Laboratories Albuquerque, NM 87115

Newell J. Trask, Geologist U.S. Department of the Interior Geological Survey Reston, VA 22092

Morton E. Wacks Department of Nuclear Engineering University of Arizona Tucson, AZ 85721

Peter J. Walley Office of Energy Commission Suite 228, Barefield Complex 455 N. Lamar Street Jackson, MS 39201

Bob E. Watt

G. Wermund Texas Bureau of Economic Geology University Station P.O. Box X Austin, TX 78712

Lawrence Wight TERA Corporation 2150 Shattuck Avenue Berkeley, CA 94704 No. of Copies

> R. E. Wilems INTERA Environmental Consultants, Inc. 11999 Katy Freeway, Suite 610 Houston, TX 77079

John Winchester Department of Oceanography Florida State University Tallahassee, FL 32306

Paul Witherspoon Head, Earth Sciences Division Lawrence Berkeley Laboratory University of Califonria Berkeley, CA 94720

Georgia Yuan Natural Resources Defense Council, Inc. 25 Kearny Street San Francisco, CA 94108

ONSITE

2

5 DOE Richland Operations Office

- 0. J. Elgert
- R. B. Goranson
- H. E. Ransom
- J. J. Schreiber
- F. R. Standerfer
- DOE Technical Information Center

Hanford Engineering Development Laboratory

M. J. Barr

Rockwell Hanford Operations

R. A. Deju

No. of Copies

55	Pacifi	ic Nort	hwest La	boratorv

- D. J. Bradley
- T. D. Chikalla
- C. R. Cole
- W. J. Deutsch
- F. H. Dove
- M. G. Foley (20)
- S. K. Gupta
- M. R. Kreiter B. K. Marshall
- B. A. Napier
- L. S. Prater

- J. R. Raymond A. E. Reisenauer R. J. Serne D. V. Silviera C. S. Simmons

- J. K. Soldat
- D. L. Strenge J. T. Zellmer
- Technical Information
- Library (5) Publishing Coordination (2)
- Water and Land Resources Department Library (10)

SALT REPOSITORY PROJECT OFFICE

Page <u>1</u> of <u>1</u>

Document Transmittal Record

(Transmittal Date)

SALT REPOSITORY PROJECT

To: Bill Altman (Name) NRC (Organization)	From: <u>Jerry Reese</u> (Name) <u>DOE-SRPO</u> (Organization)
ITEM	REV. DATE NO. OF COPY COPIES NO.
PNL Report 2955, Reference Site Initial Assessment for a Salt Dome Repository	June, I-Vol.II Copies 1982 I-Vol.II Copies
	 . •
Remarks	RETURN COPY TO SENDER
Please sign receipt w/ estimated return date;	Material listed on this transmittal has been received. An estimated return date to SRPO is
these are file copies. Thanks, J.R.	(Signature) (Date)

5675B

PNL-2955 Vol. 2 Special Distribution

Assessment of Effectiveness of Geologic Isolation Systems

REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

Mark A. Harwell Albin Brandstetter Gary L. Benson John R. Raymond Don J. Bradley R. Jeff Serne Joseph K. Soldat Charles R. Cole William J. Deutsch Sumant K. Gupta Christine C. Harwell Bruce A. Napier Andrew E. Reisenauer Leigh S. Prater C. Steve Simmons Dennis L. Strenge Jeff F. Washburn John T. Zellmer

June 1982

Prepared for the Office of Nuclear Waste Isolation Under its Contract with the U.S. Department of Energy DE-AC06-76RL0 1830

Pacific Northwest Laboratory Operated for the U.S. Department of Energy by Battelle Memorial Institute

PREFACE

The Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program presents in this report methodology demonstration applied as an initial assessment of a reference site for a salt dome nuclear waste repository. The information in this document was designed to support the Preliminary Information Report (PIR) being assembled by the Office of Nuclear Waste Isolation (ONWI).

This report presents an exercise of the AEGIS methodology as applied to a hypothetical repository located in a reference salt dome site. It is not an actual site assessment. The salt dome considered in this assessment has been excluded from consideration as a repository for nuclear waste.

ACKNOWLEDGMENTS

This research was supported by the Waste Isolation Safety Assessment Program conducted by Pacific Northwest Laboratory. This program was sponsored by the Office of Nuclear Waste Isolation, which is managed by Battelle Memorial Institute under contract DE-ACO6-76RLO 1830 with the Department of Energy. On 1 October 1979, WISAP became the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program and the Waste/Rock Interaction Technology (WRIT) Program. This report is issued by AEGIS.

The contents of this report are the culmination of the efforts of many individuals. The contributions of the authors include the following lead personnel: M. A. Harwell and A. Brandstetter, coordination and integration; G. L. Benson, scenario analyses and external coordination; J. R. Raymond, consequence analysis; D. J. Bradley, leach rate data; R. J. Serne, sorption data; J. K. Soldat, dose analyses. The other authors are listed alphabetically, including their roles: C. R. Cole, transport modeling; W. J. Deutsch, solubility limits; S. K. Gupta, near-dome simulations; C. C. Harwell, human intrusion and report coordination; B. A. Napier, dose calculations; A. E. Reisenauer regional hydrologic simulations; L. S. Prater, scenario development and report coordination; G. S. Simmons, radionuclide transport modeling; D. L. Strenge, dose calculations; J. F. Washburn, transport modeling; and J. T. Zellmer, scenario methodology.

In addition to the authors, contributions from other AEGIS and WRIT staff at PNL included the following individuals: L. L. Ames, C. O. Harvey, D. D. Hostetler, F. E. Kaszeta, Y. B. Katayama, J. W. Lindberg, W. J. Martin, R. W. Nelson, C. A. Newbill, G. M. Petrie, W. M. Phillips, J. F. Relyea, D. J. Silviera, J. A. Stottlemyre, R. P. Turcotte, R. W. Wallace, C. D. Washburne, K. M. Wilson, and J. T. Zuck. Contributions from LASL staff were headed by B. R. Erdal.

The AEGIS staff wish to acknowledge the invaluable support provided by the Water and Land Resources Department Word Processing staff, especially D. A. Berg and B. E. Roberts.

V

This effort could not have been completed without the cooperation and assistance of the Law Engineering Testing Company, the NUS Corporation, and the Texas Bureau of Economic Geology. Finally, we wish to acknowledge the external reviewers who provided valuable feedback based on the working document of this report. Many of their comments and suggestions have been incorporated into this revised report and into the ongoing technology development of the AEGIS and WRIT programs.

Revisions two, three and four of the working draft of PNL-2955 were completed with M.A. Harwell retained as an AEGIS consultant under contract B-93866-A-U. Completion dates for the working draft revisions were as follows:

> Working Draft: 31 August 1979 Revision 1: December 1979 Revision 2: January 1981 Revision 3: August 1981 Revision 4: March 1982

CONTENTS

PREFA	ACE	•	, •	•	•	•	•	٠		•	•	٠	•	•	٠	٠	iii
ACKNO	OWLE	DGME	NTS		•	•	. •	•		•	•	. •	•	•	•	•	v
APPEN	NDIX	A -	REL	EASE	e so	CENAR:	to Me	THOD	olog	YU	NDER	DEVEL	OPMENT	•	•	•	A.1
	MET	HODO	LOGY	UNE	DER	DEVE	OPME	INT .		•	٠	. •	•	•	. •	•	A.2
APPEN	DIX	B -	FIN MODI	ITE El	ELE •	EMENT.	, THR	REE-D	IMEN	SI0	NAL G	ROUND •	-WATER	(FE •	3DGW)	FLOW	B.1
	NEE	d fo	RA	THRE	EE C	DIMENS	SIONA	L, F	INIT	E E	LEMEN	it Mod	EL	•	٠	•	B.2
	GAL	ERKII	N FII	NITE	E EL	EMENT	f <mark>fo</mark> r	MULA	TION	OF	THRE	E-DIM	ENSION	AL F	LOW	•	B.2
	GAL	ERKI	Ν ΑΡΙ	PROX	(IMA	TION	•	•		•	•	٠	•	•	•	•	B.3
	BAS		UNCT	ION	•	•	•	•		•	•	•	•	•	•	•	B.4
		Co	rner	Noc	ies	•	•			•		¹⁵ .●	•	•	•	•	B.5 .
		No	des /	Alor	ng t	he S	ides	of E	leme	nts	•	•	•	•	•	•	B.5
	GAL	ERKI	N API	PROX	(IMA	TION	FOR	GROU	ND-W	ATE	R FLO	W EQU	ATION	•	•	•	B.6
	INT	EGRA	TION	0F	APP	ROXI	MATIN	IG EQ	UATI	ONS	. •	•	•	•	•	•	B.8
	F ORI	MATI	on of	= MA	TRI	CES	•	•		•	•	•	•	•	•	•	B.11
	COM REQ	PUTA UIREI	TION/ MENT:	AL C S AN)rga Id E		FION FION	OF TI TIME	HE P	ROGI	RAM F	OR RE	DUCING	COR	E STO	RAGE	B.13
	PRO	gram	ORG	ANIZ	ATI	ONTO	D REP	UCE	Memo	RY	REQUI	REMEN	TS	•,	•	•	B.13
		In	put l	Data	1	٠	. •	. •		•		٠	•	•	•	•	B.13
		Dat	ta U	sed	at	Rando	om .	•		•	•	٠	, . •	•	•	•	B.13
•.		Da	ta u	sed	in	Seque	entia	l Fo	rm -	•	•	•	•	•	•	•	B.13
		Sy	stem	Mat	rix		•	•		•	•	•	•	•	•	•	B.13
	RED	UCTI	DN OI	F PR	ROCE	SSOR	TIME	•		•	•	٠	•	•	•	•	B.15
•		Ste or	orage Stei	e of ady-	F In Sta	nterme ate So	ediat oluti	e Re	sult	s N	eeded •	Repe	atedly	for	Tran	sient •	B.15
		So	1+		.F (vetor	n Mot	riv.	with	M÷	nimal	Ari+	hmotic	One	ratio	n	R 16

. - -

	DIVIS	SION	OF	THE	MODE	EL II	NTO	INC	EPE	NDE	NT :	SUBP	ROGRAM	15	•	•	•	B.16
	MAIN DESCI	FEA RIPT	TURES	S PR OF A	OVIC GI\)ed /en (IN T GROU	'he Ind-	MOD Wat	EL ER	FOR SYS	CON TEM	VENIEN •	NT MATI	HEMAT	ICAL	•	B.1 8
	SUPP(S IMU	ORTI LATI	VE PF ON	Rogr •	AMS	DEVI	ELOP •	ED	то •	VER	IFY	THE	INPUT	F DATA	USED	IN •	•	B.20
		Plo Ver	tting tica	g of I Lo	' Noc Igs	ie Lo	ocat •	ton	is, ·	Ele	men	ts, i ·	and •	•	•	•	•	B. 20
		Con Top	tour , Ele	and evat	Thr ion	ree-l and	Dime Thi	ensi ckn	ona iess	1 P of	lot Ma	ting teria	of In als	nitial •	Head,	•	•	B.22
		P1o Con	tting ditio	g He ons	ld F	ote: •	ntia •	il a	nd •	Pre	scr	ibed •	Flux •	Bounda •	ary •	•	•	B.22
		Dis	play	of	Resu	ılts	•		•	•		•	•	•	•	•	•	B.22
APPE	NDIX	C -	VARI# HYDRC	ABLE DLOG	THI IC N	i CKNI Model	ESS	TRA	NSI •	ENT	(V.	Π) (•	GROUNE)-WATEI •	R	•	•	C.1
	MATHI (VTT)	emat) Mo	ICAL DEL	FOR	MULA	NT I ON •	N FO	RT	HE	VAR •	IAB	LE TH	HICKNE	SS TR/	ANSIE!	TI	•	C.2
	ASSU	MPTI	ONS	•		•	•		•	•		•	•	•	•	•	•	C.5
	SPEC	IFIC	DATA	A RE	QUIR	REMEN	NTS	FOR	тн	ΕP	HYS	ICAL	PARAM	IETERS	•	•	•	C.7
		Ini	tial	Con	diti	ions	•		•	•		•	•	•	•	•	•	C. 8
		Bou	ndary	y Co	ndit	ions	s.		•	•		•	•	•	•	•	•	C.9
	RECH/	ARGE	- D]	ISCH	ARGE	E 1.00	CATI	ONS	AN	DR	ATES	5	•	•	•	•		C.9
	NUME	RICA	L FOF	RMUL	ATIC	ON OF	: TH	ES	YST	EM	EQU/	ATION	IS	•	•	•	•	C.10
		Bou	ndary	v De	fini	itior	าร		•		-	•	•	•	•	•		C.15
		So1	utior	1 Te	chni	iques	5.		_									C. 16
	י עדחוי			 	CNT		050	CDT	DTI	- ∩N	05 1	ruc 1	• #11 TTC		• :NT M/	•	•	0.10
	NUIN I	- 0	TRANS	SPOR	T (M	MT)	MOD	EL	•	•	UI.	•	•	•	-191 194 •	•	•	D.1
	MODEL	L EQ	UATIO	A NC	PPRC	ACH	•		•	•		•	•	•	•	•	•	D.2
		Sim	plify	/ing	Ass	umpt	tion	S	•	•		•	•	•	•	•	•	D.3

THE DIRECT SIMULATION APPROACE	H	•	•	•	•	•	•	•	D.9
Particles of Mass .	•	•	•	• •	•	•	•	•	D.9
Convective Transport	•	•	•	•	•	•	•	•	D.10
Dispersive Transport	•	•	•	•	•	•	•	•	D.11
Total Particle Movement	•	•	•	•	•	•	•	•	0.11
Concentration Distribution	on	•	•	•	•	•	•	•	D.11
Source/Sink Terms .	•	•	•	•	•	•	•	•	D.12
Boundary Conditions .	•	•	•	•	•	•	•	•	D.12
ADVANTAGES OF THE DIRECT SIMUL	LATION	APPF	ROACH	•	•	•	•	•	D.12
DISADVANTAGES OF THE DIRECT ST APPROACH	IMULAT	FION •	•	•	•.	•		•	D.15
NUMERICAL IMPLEMENTATION .	•	•	•	•	•	•	•	•	D.16
Convection Component	•	•	•	•	•	•	•	•	D.17
Dispersive Component	•	•	•	•	•	•	•	•	D.18
Conversion to Intensive	Values	5	•	•	•	•	•	•	D.19
Source/Sink Contribution	•	•	•	•	•	•	•	•	D.21
Radioactive Decay Losses	of Co	ontril	oution	าร	•	•	•	•	D.21
Sorption	•	•	•	•	•	•	•	•	D.23
APPENDIX E - DOSE MODELS	•	•	•	•	•	•	•	•	E.1
TERRESTRIAL FOODS	•	•	•	•	•	•	•	•	E.2
AQUATIC FOODS	•	•	•	•	•	•	•	•	E.3
EXTERNAL DOSES	•	•	•	•	•	•	•	•	E.3
INTERNAL DOSES	•	•	•	•	•	•	•	•	E.4
APPENDIX F - MODEL INPUT PARAMETERS	s and	DATA	USED	`•	•	•	•	•	F.1
F-1: VTT MODEL PARAMETERS ANI DATA	D INPL	лт •	•	•		•	•	•	F.1

	F-2:	INPUT Dome	FILES	S FOR	DETERI ELEMEN	MINATI T THRE	ON OF E-DIM	FLOW	NEAR	SALT	-WATE	R		
•		(FE30)GW) Fl	LOW M	ODEL	•	•	•	•	•	•	•	•	F.71
	F-3:	REPOS	SITORY	INVE	NTORIE	5.	•	•	•	•	•	•	•	F.119
APPE	NDIX G	i - GR/	PHICAL	RES	ults oi	f hydr	OLOGI	C AND	TRAN	SPORT	SIMU	LATIO	NS.	G.1
	APPEN	IDIX G-	-1 and	G-2:	OUTP	JT FRO	м утт	HYDRO	OLOGI	C MOD	EL	•	•	G.2
	APPEN	IDIX G-	-3: Ol	JTPUT	FROM	MMT TR	ANSPO	rt moi	DEL	•	•	•	•	G.15
		Append	lix_G-3	3-1:	Scena	rio 1	•	•	•	•	•	•	•	G.15
		Append	iix G-3	3-2:	Scena	rio 2	•	•	•	•	•	•	•	G.41
		Append	lix G-3	3-3:	Scena	rio 3	•	•	•	•	•	•	•	G.86
		Append	lix G-3	3-4:	Scena	rio 4	•	•	•	•	•	•	•	G.106
		Append	lix G-3	3-5:	Scena	rio 5	•	•	•	•	•	•	•	G.129
APPE	NDIX H	I - TAE	BULAR I	ISTS	OF DI	SCHARG	E RAT	ES FOR	R THE	FIVE	SIMU	LATIO	N	
•		KUN	IS COMP	K121	NG IHE	FUUR	KELEA	SE SU	LNAKI	05.	٠	•	•	H.1
	H -1 :	EAST	TEXAS	0IL	FIELD	DISCHA	RGE S	ITE (I	Base (Case)	•	•	•	H.2
	H-2:	EAST	TEXAS	0IL (FIELD	REMOVE	D.	•	•	•	•	•	•	H.43
	H-3:	WELL	PUMPIN	NG CA	SE.	•	•	•	•	•	•	•	•	H.122
	H-4:	SABIN	NE RIVE	ER DI	SCHARGI	E SITE	•	•	•	•	•	•	•	H.163
APPE	NDIX 1	– NEA	\R-DOME	e hydi	ROLOGI	C SIMU	LATIO	N OUTI	PUTS	•	•	•	•	I.1
	I-1:	PROG	L-OUTPI	л.	•	•	•	•	•	•	•	•	•	I.1
	I-2:	PLOTE	L-OUT	PUT .	•	•	•	•	•	٠	•	•	•	I.37
	I-3:	PROG2	2-OUTPI	л.	•	•	•	•	•	•	•	•	٠	I.40
	I-4:	PROG	3-OUTPI	л.	•	•	•	•	•	٠	•	•	٠	I.55
	I-5:	PROG	3-OUTPl	л.	•	•	•	•	•	•	•	•	•	I.65
	I-6:	PROG	L-OUTPI	л.	•	•	•	•	•	٠	•	•	٠	I.75

х

	I-7:	NEWM	AT-OUTPUT	Γ.	•	•	•	•	•	٠	•	•	•	1.127
	I-8:	PROG	2 -OUTPUT	•	•	•	•	•	•	•	. •	•	•	1.130
	I-9:	PROG	3-OUTPUT	•	•	•	•	•	•	٠	•	•	•	I.140
APPE	NDIX J	I - DOS RESULT	SE RESULT	S		_			::					
ADDE			CE CHADAC	• •	• •	•	•	•	•	•	•	•	•	U.I
AFFE	NUIX N	511	E UNARAU	IEKIZI	41 I UN	•	•	•	•	•	•	•	•	K.1
	REGIO	onal Ge	OLOGY	•	•	•	•	•	•	•	•	•	•	К.1
	REGIO	INAL GE	OLOGIC S	ETTING	5	•	•	•	•	•	•	• •	•	K.5
		Pre-Me	sozoic G	eology	1	•	•	٠	•	•	•	•	•	K.5
		Mesozo	vic and P	ost-Me	esozo	ic Ge	ology	/ •	•	•	•	•	•	K.5
	LOCAL	GEOLO	IGY .	•	•	•	•	•	•	•	•	•	•	K.9
		East T	exas Sal	t Dome	Bas	in	•	•	•	•	•	•	•	K-9
	SITE	GEOLOG	iy and su	BSURFA	CE H	YDROL	DGY	•	. •	•	•	•	•	K.13
		Site S	urface G	eology	,	•	•	•	•	•	•	•	•	K.13
		Site S	ubsurfac	e Geol	ogy	•	•	•	•	•	•	•	•	K.14
	SALT	dome d	EVELOPME	NT	•	•	•	•	•	•	•	•	•	K.22
	MINER	AL RES	OURCES	•	•	•	•	•	•	•	•	•	•	K.23
	FAULT	ING AN	D SEISMI	C CONS	IDER	ATIONS	5	•	•	•	•	•	•	K.26
	1	Bounda	ry Fault	Syste	ms	•	•	•	•	•	•	•	•	K.26
		Faulti	ng Relato	ed to	Basir	n Salt	t	•	•	•	•	•	•	K.29
	l	Faulti	ng Relate	ed to	Sedin	nental	ion	and	Subsid	ence	•	•	•	K.30
•	:	Seismi	c Conside	eratio	ns	•	•	•	•	•	•	•	•	K.31
	SURFA	CE HYD	ROLOGY	•	•	•	•	•	•	•	•	•	•	K.33
	SUBSU	RFACE	HYDROLOG	r	•	•	•	•	•	•	•	•	•	K.35
	. [Region	al Charac	cteris	tics	•	•	•	•	•	•	•	•	K.35
	(Ground	-Water Fl	low	•	•	•	•	•	•	•	•		K.38

Pot	ention	etri	c Sur	faces	and	Flow	Direc	tions	•	•	•	•	K.38
APPENDIX L - INVENTOR	ORIGEN IES	OUT •	PUT L	ONG-T	ERM S	PENT	FUEL	. •	•	٠	•	•	L.1
APPENDIX M - I	LONG-T	ERM G SC	DOSE	CALCU	LATIO	NS FO	R LON	G-TER	M				
20201100	11714714		FINULT	03	•	•	•	•	•	•	•	•	M•T
REFERENCES	•	•	•	•	•	•	•	•	•	•	•	•	Ref 1

FIGURES

A.1.	Continental Glaciation Logic	Flow	Chart	•	•	•	•	•	•	A.6
A.2.	Alpine Glaciation Logic Flow	Chart	•	•	•	•	•	•	•	A.7
A.3.	Example Data Distributions	•	•	• .	•	•	•	•	•	A.9
A.4.	Conceptualization of Glacial	Recha	rge	•	•	•	•	•	•	A.10
B.1.	Illustrative Sample Plot of Western Subregion of Long Is	Vertic land	al Sti •	ratif	icatio	on in	Part •	of •	•	B.21
C.1.	Nodal Recharge/Withdrawal Ph	enomen	a	•	• '	•	•	•	•	C.11
C.2.	The Finite Difference Grid w	rith th	e Noda	al Nur	nberiı	ng Sys	stem	•	•	C.12
C.3.	Schematic Showing Shapes and Condition Types	Rotat	ion of	f Ava [.]	ilable •	e Boui	ndary	•	•	C.14
К.1	Regional Location Map .	•	•	•.	•	•	•	•	• •	K.2
K.2 .	Regional Topographic Map .	•	•	•	•	•	•	•	•	К.З
K.3	Regional Physiographic Map	•	•	•	•	•	•	•	•	к.4
K.4	Regional Surface Geology Map	•	•	•	•	٠	•	•	•	K.7
K.5	Site Geologic Map	•	•	•	•	•	•	•	•	к.15
K.6	Site Cross Section East-West	•	•	•	•	•	•	•	•	K.16
К.7	Site Cross Section North-Sou	ith.	•	•	•	•	•	٠	•	К.17
K.8	Site Structure Contour Map,	Top of	Wood	bine (Group	•	•	• '	•	K.18
K.9	Basin Oil and Gas Map .	•	•	•	•	•	•	• ·	•	К.25
к.10	Regional Fault Map	•	•	•	•	•	•	•	•	K.27
K.11	Regional Seismicity	•	•	•	•	•	•	•	•	K.32
K.12	Index Map Showing Sabine Riv	er Dra	inage	Basiı	n.	•	•	•	•	K.34
к.13	Geologic Map of Wood County	•	•	•	•	•	•	•	•	к.37

TABLES

B.1.	Parameters of β_{ϵ} , β_{η} , and β_{ζ} for Mixed Corner	B.5
B.2.	Abscissae and Weight Coefficients of the Gaussian Quadrature Formula	B.12
F.1A.	VTT Model Input Control File	F.2
F.18.	Streambed Transfer Coefficients	F.3
F.1C.	Well Location and Ground Water Elevation File	F.10
F.1D.	Digitized Potentials Before Model Calibration	F.26
F.1E.	Held Elevation of Streams in the Model	F.36
F.1F.	Interaquifer Transfer	F.41
F.1G.	Transmissivity Distribution for East Texas Oil Field Discharge	F.46
F.1H.	Stress Distribution for East Texas Oil Field Discharge Case .	F.51
F.11.	Stress Distribution for Sabine-Big Cypress Discharge Case	F.56
F.1J.	Effective Thickness as Defined by Net-Sand Map	F.66
F.2A.	HAIN3 OUT: Input File Used in PROG1 for Determination of Flow Through Dome Breach	F.72
F.2B.	HSTEDY CRD: Input File for PROG3I to Define as Steady-State Simulation	F.91
F.2C.	HAIN3LECH OUT: Input File Used in PROG1 for Determining Flow After Salt Dome Collapse	F.92
F.3A.	Grams of Fission-Product Elements in a BWR Assembly	F.120
F.3B.	Grams of Heavy Elements in a BWR Assembly	F.121
F.3C.	Curies of Light-Element Isotopes in a BWR Assembly	F.122
F.3D.	Curies of Fission-Product Isotopes in a BWR Assembly	F.123
F.3E.	Curies of Heavy-Element Isotopes in a BWR Assembly	F.124

F.3F.	Grams of Fission-Product Elements in a PWR Assembly .	•	•	F.125
F.3G.	Grams of Heavy Elements in a PWR Assembly	•	•	F.126
F.3H.	Curies of Light-Element Isotopes in a PWR Assembly .	•	•	F.127
F.3I.	Curies of Fission-Product Isotopes in a PWR Assembly .	•	•	F.128
F.3J.	Curies of Heavy-Element Isotopes in a PWR Assembly .	•	•	F.129
G.1.	Printer Map of Model Results for Sabine-Big Cypress Bayou Discharge	•	•	G.3
G.2.	Printer Map of Model Results for East Texas Oil Field Area Discharge	•	•	G.9
к.1.	Stratigraphic Column East Texas Basin	•	•	к.8
K.2.	Summary of Basin Stratigraphy	•	•	к.11
L.1.	Curies of Light-Element Isotopes in a BWR Assembly .	•	•	L.1
L.2.	Curies of Fission-Product Isotopes in a BWR Assembly .	•	•	L.3
L.3.	Curies of Heavy-Element Isotopes in a BWR Assembly .	•	•	L.5
L.4.	Curies of Light-Element Isotopes in a PWR Assembly .	•	•	L.8
L.5.	Curies of Fission-Product Isotopes in a PWR Assembly .	•	•	L.10
L.6.	Curies of Heavy-Element Isotopes in a PWR Assembly .	•	•	L.12

APPENDIX A

RELEASE SCENARIO METHODOLOGY UNDER DEVELOPMENT

(

APPENDIX A

RELEASE SCENARIO METHODOLOGY UNDER DEVELOPMENT

Long-term safety analyses for underground nuclear waste repositories rely on two basic components: 1) release scenario analyses, and 2) consequence analyses. The objective of the release scenario analysis is to identify, quantify, and characterize potential breaches of the repository as input into the consequence analyses models. The objective of the consequence analysis is to assess the fate of any radionuclides that might be released into the geosphere by a breach of the repository. Consequence analysis is accomplished through the application of sophisticated geohydrological transport models that simulate the movement of radionuclides through the hydrologic system and determine the potential time and amount of radionuclide release into the accessible environment. These models use the initial breach conditions defined by the release scenario analysis.

Numerous methods have been used in the past to develop release scenarios. Traditionally these methods have been based on event/fault tree or Delphi/expert opinion approaches. Such approaches are limited by their inherent inability to quantitatively bound the uncertainties and complexities characteristic of geologic systems. This weakness is compounded by the long $(10^{6}$ -yr) time frame over which quantitative release scenarios are to be developed.

Geologic systems tend to be highly complex, and in many respects inadequately understood. Consequently, the science of geology often tends to be qualitative, and as such, lacks the ability quantitatively to provide long-term predictions of the future states of geologic systems. In addition, geologic systems are dynamical over the time frame under consideration, making fault tree analysis insufficient for scenario development. However, based on the past geologic record and the present state of the geologic systems, it may

be possible to bound the future geologic system states with some degree of confidence. This involves assessments of numerous disruptive geologic and related phenomena. These phenomena must be addressed not simply as discrete occurrences but also in the context of potential phenomena synergisms. Such a task will be difficult at best because of the complex, dynamic nature of the geologic system.

The methodology being developed by AEGIS attempts to bound the future geologic system states and provide a measure of the uncertainties inherent in release scenario analysis. The uncertainties tend to increase dramatically as the time frame of the analysis and the complexity of the geologic system increase.

Because release scenario analysis provides the initial geologic conditions for use by the consequence analysis transport models, it is necessary that the initial conditions or ranges of initial conditions be realistic, defensible, and based on state-of-the-art knowledge and practices. The AEGIS methodology being developed to deal with these challenging problems of release scenario analysis will be discussed in the remainder of this appendix.

METHODOLOGY UNDER DEVELOPMENT

The scenario analysis methodology under development is a brute-force, stochastic approach incorporating Monte Carlo Simulation, qualitative event/fault tree, and Delphi/expert opinion components. The objectives of the program are three-fold: 1) to develop and apply a methodology to analyze how disruptive events may, alone or in concert, affect a waste repository, 2) to identify the perturbations or sequence of perturbations, resulting in the breach of a waste repository, and 3) to describe the state of the geologic system at the time of breach as initial conditions for consequence analysis. The current scope of the AEGIS program is to address only far-field/non waste-induced parameters. Near-field/waste-induced phenomena will be integrated into future release scenario methodology efforts.

The Repository Simulation Model will ultimately be used as a decisionmaking tool in the repository licensing process. As such the methodology must be designed to incorporate the wide range of criteria that will be imposed upon it. Some of these criteria are: 1) auditability, 2) ability to accommodate objective and subjective input, 3) facilitation of parametric and sensitivity studies, 4) facilitation or assistance in describing breach scenarios and frequencies, 5) establishment of limits and/or initial conditions for input into the consequence analysis transport models, and 6) flexibility to accommodate an increasing data base. The incorporation of such criteria will assist in the development of the Repository Simulation Model and enhance its use as a generic methodology for repository licensing.

Any methodology developed for use in formulating disruptive release scenarios must address the problem acknowledging certain geological and hydrological system restraints. The identification, understanding, and bounding of these restraints are primary goals of release scenario development. Some of the important restraints that must be considered are: 1) significant phenomena synergisms and event couplings, 2) time dependence of geological and hydrological processes and events, 3) limited data base for postulating future system states, and 4) the high degree of quantitative and qualitative system uncertainties. Such restraints tend to be inherent in any geological or hydrological study because of the complex nature and inadequate understanding of most geologic systems. Consequently, release scenario analysis necessarily relies on state-of-the-art knowledge as well as sound geologic input from experts.

The Repository Simulation Model being developed by AEGIS to meet these many requirements has several basic components. These include: 1) characterization of individual disruptive phenomena, 2) identification of system synergisms, 3) characterization of the layered earth model (LEM), 4) development of system response rules, 5) simulation and layered earth model evolution, and 6) characterization of potential breach scenarios. These components provide a logical framework within which the user may develop sequences of events and processes leading to Type 1 and 2 repository breaches. This framework also provides a method of assessing the effects of perturbations to the geologic

system and setting hydrological system bounds on these effects so that they may be used as input to the consequence analysis transport models.

Because of the complexity of geologic systems and the large amount of data that must be manipulated, the Repository Simulation Model is a computerized methodology. It is composed of several submodels (e.g., climate, faulting) and is being designed to work in two simulation models: 1) user interactive and 2) a stochastic multiple simulation. When in the interactive mode, the user can pick the input parameters, select a set of system response rules, and highlight particular submodels for a single simulation run. In this fashion, the geoscientist users will be able to use the model as both a stochastic and a deterministic tool to facilitate understanding of the geological system surrounding the repository. The interactive mode will also be used to analyze specific breach scenarios developed during the multiple simulation operation. In this manner, the sensitive components of the geological and hydrological system can be identified for additional parametric and sensitivity analysis.

The multiple simulation (Monte Carlo) mode will allow a large number of independent simulations to be analyzed while choosing geological parameters from probability distributions and density functions. In this manner, the potential system response space that results from long term interaction of the various geological phenomena can be mapped. Within this response space, potential repository breaches can be catagorized into appropriate scenarios for use as input into the consequence analysis hydrologic transport and data models.

An example of the methodology under development is taken from the model being developed for repositories located in layered basalt. This simulation model is composed of eleven submodels, each of which addresses a class of disruptive phenomena. These submodels are: 1) climate, 2) continental glaciation, 3) hydrology, 4) sea level fluctuations, 5) geomorphic events, 6) deformation, 7) sub-basalt basement faulting, 8) shaft seal failure, 9) undetected features, 10) magmatic activity, and 11) meteorite impact. These submodels

address the disruptive natural phenomena that may, alone or in concert, affect the safety of a waste repository located in a layered basalt geologic system during a period of one million years. The submodels chosen for this example are continental and alpine glaciation (Figures A.1 and A.2).

To estimate the recurrence frequency of glacial activity over the next 10^6 years or so, three separate theories were explored and ultimately combined to result in a time dependent driving function for glaciation. Results from the Milankovitch theory of orbital physics (solar insolation impinging upon the earth's surface), and harmonic analyses of past glacial activity and intense volcanic activity were combined to estimate the frequency of future episodes of glacial activity.

To address the impact on the repository of any given episode as provided by the glacial driving function, it is necessary to become somewhat site specific. For illustrative purposes, the PNL laboratory in Richland, Washington, was chosen as the example site. The following discussions are strictly to demonstrate the form of the methodology and do not indicate actual scenarios for this site.

Data on past glacial activity resulted in the approximate curves shown in Figure A.3. The first curve gives an average rate of ice advancement rate in km/yr. The second curve shows the minimum distance from the edge of the continental ice sheets to the chosen site at the time of maximum ice advancement. A similar distribution is given for some recharge areas of deep confined aquifers.

During major episodes of continental glaciation, there is only a $10^{-7}/yr$ probability of the repository site being covered by ice. The cumulative probability is on the order of 0.1 for 10^6 yr and the maximum ice thickness is estimated at 200-300 m. Should the basin area be glaciated, however, a vertical recharge pressure of up to 27 bars (0.09 bars/m of ice) might be expected. Furthermore, under a wet based glacier, a perpetual supply of liquid water might be expected.

FIGURE A.1. Continental Glaciation Logic Flow Chart

の「二日の一日の一日の

.

:

.

No. .

Glacial loading of the deep aquifer recharge areas, on the other hand, supports a 10^{-5} yr⁻¹ probability and a cumulative figure approaching 1.0 in 10^{6} yr. Maximum ice thickness in this case is estimated at 500-1000 meters and the recharge factor is also 0.09 bars m⁻¹. Figure A.4 is an artist's conceptualization of these two potentially independent glacial phenomena.

WET-BASED GLACIAL RECHARGE

INCREMENTAL PRESSURE = $(0.9 \frac{\text{bars}}{\text{m}})$ (ICE THICKNESS IN METERS)

FIGURE A.4. Conceptualization of Glacial Recharge

The response of the confined aquifer system will depend primarily on its hydrological properties such as conductivity and storage potential. However, regardless of how the heads and/or volumetric flows are perturbed, the repository (embedded in a relatively impermeable zone) should not be affected unless a pathway exists or is created between aquifers supporting differing potentials. Such a pathway might be associated with fault rupture, but for the moment the discussion will be restricted to the possibility of surficial fracturing beyond the edge of large continental ice sheets.

Given an ice sheet 3 km thick at its centerpoint and 1450 km in radius, overlaying a 37 km elastic crustal shell superimposed on a viscous liquid interior, it is possible to compute the radial, tangential, and shear stresses

that might exist beneath and just beyond the edge of the ice sheet. Beyond the edge of the ice sheet, tensional stresses on the order of 10-30 bars might conceivably exist. These stresses appear to be sufficient to cause surface cracking (Peltier and Andrews 1976). Such fracturing may be responsible for the initiation of the Great Lakes and Finger Lakes, and other lakes marginal to the Laurentide ice sheet (Bull 1978). Faults along the coast of Maine, probably initiated by ice sheet margin stresses, are still active, because of isostatic rebound (Rand and Gerber 1976).

Other possible results associated with large scale glaciation are high levels of meltwater runoff and even catastrophic flooding such as occurred several times in the state of Washington. Seven to nine massive Missoula-type floods are anticipated in southeast Washington in the next 10^6 years (Tubbs 1978). At the hypothetical site in question, a tem- porary lake upwards of 300-350 m in depth would be associated with each flood. Recharge pressure to the unconfined aquifer zone would be on the order of 0.11 bars m⁻¹ of lake depth.

Ice scouring and selective stream erosion are also distinct possibilities. Average denudation might be on the order of 15 to 110 m per 10^6 yr at the area in question. Deep selective stream erosion might vary from zero to 0.15 mm yr⁻¹ if anticlinal uplift is not occurring. With such uplift, the erosion rate could be from 0.2 to 0.7 mm yr⁻¹.

Finally, there is a possibility for sub-basal ground-water flow from beneath the ice sheet to the edge of the ice sheet. Such flow could, on the average, be under 0.25 bar km^{-1} horizontal gradient and water might be forced upwards at the edge of the ice sheets. It is also possible to relate sea level fluctuations to glacial episodes. In general, a <u>+</u> 100 m variation is estimated (Schwartz 1978).

The above is a brief example of the application of the continental and alpine glaciation submodels to a layered basalt medium. However, in actual use the Repository Simulation Model will make use of all eleven submodels. The model assesses the potential effects of each submodel as well as the

effects of interrelationships that may exist among the various submodels during the entire one-million-year time frame of the model run. These effects are determined, updated, and recorded at the end of each 100-year time step. In this way, time histories of the evolution of the geologic system are developed. Analyses of these time histories provide a method of determining the events or sequences of events that may ultimately lead to breaching of the repository. Consequently, the primary goal of the Repository Simulation Model is to identify and estimate the probabilities associated with disruptive events which, alone or in concert, might compromise the isolation status of a nuclear waste repository and to describe the possible geological and hydrological system states at the time of a breach. Such information can then be supplied as initial conditions to the release consequence transport models by developing plausible scenarios and identifying the bounds to be used in the parameters of the transport models.

The current status of the AEGIS release scenario analysis model is a second generation computer model that has been developed for a basalt repository. This model is currently being revised, with additional statistical capabilities being incorporated. The models for salt dome and bedded salt media are still in the conceptualization phase.

The methodology being developed is not being designed to predict the future geologic and hydrologic system. Instead, its objective is to attempt to bound, in a logical and auditable fashion, the set of potential future system states that could result in a repository breach. In addition to describing potential repository breaches, the output from this methodology will assist in describing the bounds for parametric and sensitivity analyses for the geohydrologic transport models. Thus, the consequence of potential repository breaches and the ultimate release of radionuclides to the accessible environment can be systematically analyzed.

APPENDIX B

FINITE ELEMENT, THREE-DIMENSIONAL GROUND WATER (FE3DGW) FLOW MODEL

 $\left(\right)$

APPENDIX B

FINITE ELEMENT, THREE-DIMENSIONAL GROUND WATER (FE3DGW) FLOW MODEL

The objective of transport modeling for the AEGIS Program is to develop an integrated modeling system to predict, in the event of a breach, the movement of radioactive contaminants from a nuclear waste repository located in geologic media through the geosphere to the accessible environment. Prediction of radioisotope transport requires an estimation of water movement, because water is the primary driving force for waste movement in a hydrogeologic system. Hydrologic models define water flow paths and travel times from the input data provided by repository release scenario analysis. Four levels of the hydrologic models have been categorized (Raymond 1977) to handle varying complexities and availability of input parameters. The first level is for the simplest one-dimensional models having analytical solutions; the second level includes idealized analytic or hybrid analytic models for single aquifer systems with scanty input data; the third level deals with more complex single or quasi-multilayered systems; and the fourth level is for complex multilayered systems.

The three-dimensional, finite element, ground water model described in this report falls within the fourth level of AEGIS hydrologic models. This model is capable of simulating single-layered systems having variable thickness or multilayered systems, where thickness and the number of layers can be changed to agree with the vertical geologic section. Also, spacing of the model nodes can be varied as required. The source or sink terms can be defined at a given point (e.g., at a well), along a given line (e.g., rivers, streams), or for a given region (variable surface infiltration from natural precipitation or irrigation). Pumping stresses in each layer of the subregion can be defined as a function of time. The geologic input data for such complex multilayered systems are reduced to well-log descriptions at each surface node and to subdivisions of the entire region into two-dimensional elements. Supportive

B.1

programs have been developed to plot grid values, contour maps, and threedimensional charts of both the input data used in simulation and the results obtained.

NEED FOR A THREE-DIMENSIONAL, FINITE ELEMENT MODEL

Geohydrologic systems and surface water bodies (e.g., lakes, rivers) usually have irregular boundaries, and the finite element method provides a powerful tool for space and boundary definition. The spacing of the nodes near the repository, pumping wells, or surface water bodies can be narrowed, and the hydraulic conductivities can change abruptly from element to element so that fault zones and confining layers are represented.

GALERKIN FINITE ELEMENT FORMULATION OF THREE-DIMENSIONAL FLOW

Three-dimensional, non-steady flow is defined by the following equation (Jacob 1950):

 $\frac{\partial}{\partial x} \left(K_{x} \frac{\partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(K_{y} \frac{\partial h}{\partial y} \right) + \frac{\partial}{\partial z} \left(K_{z} \frac{\partial h}{\partial z} \right) - Q = S_{s} \frac{\partial h}{\partial t}$ (1) $S_{s} = \text{specific storage } L^{-1}$ $= \rho g \left(\alpha_{p} + \Theta \beta_{p} \right)$ $g = \text{gravity field strength, } L T^{-2}$ h = head above common datum, L $= z + \frac{1}{2} \int_{0}^{p} \frac{dp}{dp}$

$$z + \frac{1}{g} \int_{P_0}^{P} \frac{dp}{(p)}$$

 K_x , K_y , K_z = represents hydraulic conductivity of the saturated flow in the x, y, and z direction, L T⁻¹

 $p = fluid pressure, M L^{-1} T^{-2}$

Q = strength of sink function defined by T⁻¹ = $\sum_{i=1}^{n} Q_w(x_i, y_i, z_i, t)$ (x-x_i) (y-y_i) (z-z_i) Q_w = the well discharge from the aquifer, L³ T⁻¹ δ = Dirac delta function t = time, T z = elevation above given datum, L Θ = porosity of medium, dimensionless α_{ρ} = compressibility of medium, LT² M⁻¹ β_{ρ} = compressibility of liquid, LT² M⁻¹

 ρ = density of fluid, M L⁻³

GALERKIN APPROXIMATION

Equation (1) can be rewritten in a more compact form as:

$$L(h) = \frac{\partial}{\partial x_{\alpha}} \left(K_{\alpha\beta} \frac{\partial h}{\partial x\beta} \right) - Q - S_{s} \frac{\partial h}{\partial t} = 0$$
(2)
$$\alpha, \beta = 1, 2, 3$$

In the above equation and in subsequent equations, subscripts α and β are used to describe the three-dimensional flow equation in condensed form.

To solve L(h) = 0 by the Galerkin method, a trial solution of the following form is assumed:

$$h(x_{\alpha},t) \approx h'(x_{\alpha},t) = \sum_{j=1}^{n} H_{j}(t) V_{j}(x_{\alpha})$$
(3)

where $V_i(x_{\alpha})$ (i=1, 2...n) is a system of functions (basis functions or bases) chosen beforehand and satisfying the essential boundary conditions imposed on Equation (1). The functions $V_i(x_{\alpha})$ (i=1, 2...n) are assumed to be linearly

independent and to represent the first n functions of some system of functions that is complete in the given region. The functions $H_i(t)$ are undetermined coefficients that, as shown later, are the solution of Equation (1) at specified points (or nodes) in region .

The approximating function h'(x, t) will be an exact solution to Equation (1) only if L(h') is equal to zero. This can be best achieved in a variational sense using the definition of orthogonal functions. The orthogonality of expression L(h') is required to all the basis functions $V_i(x)$ (i=1, 2...n) or:

$$\iiint_{\Omega} L(h'[x_{\alpha},t]) V_{i}(x_{\alpha}) d\Omega = 0$$
(4)

i=1, 2...n

Because only n basis functions have been selected, there are n undetermined coefficients $H_i(t)$ (i=1, 2...n) and therefore only n conditions of orthogonality can be satisfied. These conditions are stated as:

$$\iiint_{\Omega} L(h'[x_{\alpha},t]) V_{i}(x_{\alpha}) d\Omega = \iiint_{\Omega} L(\sum_{j=1}^{n} H_{j}[t] V_{j}[x_{\alpha}]) V_{i}(x_{\alpha}) d\Omega = 0 \quad (4a)$$

i=1, 2...n

Assuming that the appropriate integrations can be performed, the desired solution of Equation (2) is obtained by substituting the values of $H_i(t)$ into Equation (3).

The above-mentioned formulation of the Galerkin equation was applied by Pinder and Frind (1972) to ground-water simulation. This was also applied to three-dimensional ground-water flow by Gupta, Tanji and Luthin (1975).

BASIS FUNCTION

The suitability of the Galerkin approximation for computer application is largely based on the choice of basis functions $V_i(x_\alpha)$. Efficient numerical

8.4
schemes can be developed when continuous piecewise polynomial functions are used (e.g., Price, Cavendish and Varga 1968, Cavendish, Price and Varga 1968, and Culham and Varga 1970). In selecting these functions a series of nodes is chosen in the domain, and basis functions are defined such that $V_i(x)$ is unity at node i and zero at all other nodes. When functions are chosen with these constraints, the undetermined coefficients $H_i(t)$ (i=1, 2...n) are then the required function h'(x, t) at the n points.

The three-dimensional mixed basis functions (Gupta, Tanji and Luthin 1975) are given below.

Corner Nodes

 $V_{i}(\xi, \eta, \zeta) = \alpha_{i}\beta_{i}$

where

$$\alpha_{i} = \frac{1}{8} (1 + \xi \xi_{i}) (1 + \eta \eta_{i}) (1 + \zeta \zeta_{i})$$

 $\beta_{i} = \beta_{\xi} + \beta_{\eta} + \beta_{\zeta}$

Values of β_{ξ} , β_{η} and β_{ζ} are determined by the order of the element sides $(\zeta = \pm 1, \eta = \pm 1)$, $(\zeta = \pm 1, \xi = \pm 1)$ and $(\xi = \pm 1, \eta = \pm 1)$, respectively, in conjunction with information from Table 1.

Nodes Along the Sides of Elements

A typical midside node of a quadratic side:

 $v_i = \frac{1}{4} (1 - \xi^2) (1 + n\eta_i) (1 + \zeta\zeta_i)$ for $\xi_i = 0, \eta_i = \pm 1, \zeta_i = \pm 1$

IABLE 1.Parameters of β_{ξ} , β_{η} and β_{ζ} for Mixed CornerOrder of Side β_{ξ} β_{η} β_{ζ} Linear $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ Quadratic $\xi\xi_i - \frac{2}{3}$ $\eta\eta_i - \frac{2}{3}$ $\zeta\zeta_i - \frac{2}{3}$ Cubic $\frac{9}{8} \xi^2 - \frac{19}{24}$ $\frac{9}{8} \eta^2 - \frac{19}{24}$ $\frac{9}{8} \zeta^2 - \frac{19}{24}$

B.5

$$V_{i} = \frac{1}{4} (1 + \xi_{i}\xi) (1 - n^{2}) (1 + \zeta\zeta_{i}) \text{ for } \xi_{i} = \pm 1, n_{i} = 0, \zeta_{i} = \pm 1$$
$$V_{i} = \frac{1}{4} (1 + \xi_{i}\xi) (1 + nn_{i}) (1 - \zeta^{2}) \text{ for } \xi_{i} = \pm 1, n_{i} = \pm 1, \zeta_{i} = 0$$

A typical midside node of a cubic side:

$$V_{i} = \frac{9}{64} (1-\xi^{2}) (1+9\xi\xi_{i}) (1+n\eta_{i}) (1+\zeta\zeta_{i}) \text{ for } \xi_{i} = \pm \frac{1}{3}, \eta_{i} = \pm 1, \zeta_{i} = \pm 1$$

$$V_{i} = \frac{9}{64} (1+\xi\xi_{i}) (1-\eta^{2}) (1+9\eta\eta_{i}) (1+\zeta\zeta_{i}) \text{ for } \xi_{i} = \pm 1, \eta_{i} = \pm \frac{1}{3}, \zeta_{i} = \pm 1$$

$$V_{i} = \frac{9}{64} (1+\xi\xi_{i}) (1+\eta\eta_{i}) (1-\zeta^{2}) (1+9\zeta\zeta_{i}) \text{ for } \xi_{i} = \pm 1, \eta_{i} = \pm 1, \zeta = \pm \frac{1}{3}$$

A convenient method of establishing the coordinate transformations from Cartesian to local ξ , η , ζ , space is to use the basis functions given above. The points with coordinates, x, y, z, will lie at corresponding point, ξ , η , ζ , in the element as given by the general definitions of the basis functions. By these relationships, each set of local coordinates will correspond to a set of global Cartesian coordinates and in general to only one such set. Nonuniqueness arises only with violent element distortions.

GALERKIN APPROXIMATION FOR GROUND-WATER FLOW EQUATION

After generating the appropriate basis function for each node in domain Ω , it is necessary to solve Equation (4) for the undetermined coefficients $H_i(t)$. By substituting Equations (2) and (3) in Equation (4a) along with the assumption that the principal components of the hydraulic conductivity tensor are co-linear with x, y and z, the following is obtained for three dimensions:

$$\iiint_{\Omega} \left\{ \frac{\partial}{\partial x_{\alpha}} \left(K_{\alpha\beta} \frac{\partial}{\partial x_{\beta}} \sum_{j=1}^{n} H_{j} V_{j} \right) - S_{s} \frac{\partial}{\partial t} \sum_{j=1}^{n} H_{j} V_{j} - Q \right\} V_{j} d\Omega = 0$$
(4b)
i=1, 2...n

where the domain Ω is composed of all elements over which the ith basis function is defined.

To eliminate the second derivatives in Equation (4b), Green's theorem in the following form can be used:

$$\iiint_{\Omega} \left[\psi \frac{\partial^2 \phi}{\partial x_{\alpha}^2} \right] d\Omega = - \iiint_{\Omega} \frac{\partial \phi}{\partial x_{\alpha}} \frac{\partial \psi}{\partial x_{\alpha}} d\Omega + \iint_{\lambda} \psi \frac{\partial \phi}{\partial x_{\alpha}} \ell_{\alpha} d\lambda$$
(5)

Assuming $K_{\alpha\beta}$ to be constant over each domain of integration and noting that H_j is a function of time only, and using Green's theorem Equation (5), Equation (4b) can be written as:

$$\iiint_{\Omega} \sum_{j=1}^{n} (K_{\alpha\beta} \frac{\partial V_{i}}{\partial x_{\alpha}} \frac{\partial V_{j}}{\partial x_{\beta}}) H_{j} d\Omega + \iiint_{\Omega} S_{s} V_{i} \sum_{j=1}^{n} V_{j} \frac{\partial H_{j}}{\partial t} d\Omega$$
$$+ \iiint_{\Omega} QV_{i} d\Omega - \iint_{\lambda} V_{i} \sum_{j=1}^{n} (K_{\alpha\beta} \frac{\partial V_{j}}{\partial x_{\beta}} \ell_{\alpha}) H_{j} d\lambda = 0$$
(6)
1=1, 2...n

The n Equations in (6) can be written in the matrix form as:

$$[P] \{H\} + [R] \{dH/dt\} + \{U\} = 0$$
(7)

where [P] and [R] are n x n matrices in which:

$$P_{ij} = \iiint_{\Omega} (K_{\alpha\beta} \frac{\partial V_{i}}{\partial x_{\alpha}} \frac{\partial V_{j}}{\partial x_{\beta}}) d\Omega$$
$$R_{ij} = \iiint_{\Omega} S_{s} V_{i} V_{j} d\Omega$$

and $\{U\}$ is a vector in which:

B.7

$$U_{i} = \iiint_{\lambda} QV_{i} d\Omega - \iint_{\lambda} V_{i} \sum_{j=1}^{n} (K_{\alpha\beta} \frac{\partial V_{j}}{\partial x_{\beta}} \ell_{\alpha}) H_{j} d\lambda$$
(8)

The last term in Equation (8) incorporates the Neumann boundary condition:

$$- K_{\alpha\beta} \frac{\partial h}{\partial x} \ell_{\alpha} = q_{n}$$

where q_n is the flux of water per unit area of boundary S, L/T. This last term is formed only when q_n is nonzero, in which case it takes the form of:

Under these conditions, the flux prescribed along the boundary can be integrated, and the weighted average value for each node of total outward flux used for the specific node under consideration. At nodes where a Dirichlet or constant-head boundary condition is encountered, Equation (6) is not generated. The matrices of Equation (7) are partitioned to account for these passive nodes to minimize the number of operations required for solution.

INTEGRATION OF APPROXIMATING EQUATIONS

The finite element process converges if integration is sufficient to evaluate exactly the volume of the elements. The Gaussian quadrature scheme is generally used for numerical integration. Numerically integrated finite elements provide greater versatility than those employing analytical integration. For a general class of problems, the matrices are always of the same form in terms of the shape function and its derivatives. In the computer program, the shape functions and their derivatives are specified, along with the order of integration (number of Gaussian points). The use of universal shape function routines has a unique practical advantage in that, once the routine is checked decisively for errors, the computer works efficiently in dealing with any new situation or problem. Numerical approximation is carried out with respect to the nodal values, and each node is described in terms of shape factor V_i given in local coordinates; thus, we have the following relationships considering each element as a domain:

$$x = \sum_{i=1}^{n} V_{i}(\xi, \eta, \zeta) x_{i}$$
 (9)

$$y = \sum_{i=1}^{n} V_{i}(\xi, \eta, \zeta) y_{i}$$
 (10)

$$z = \sum_{i=1}^{n} V_i(\xi, \eta, \zeta) z_i$$
 (11)

$$h' = \sum_{i=1}^{n} V_i(\xi, \eta, \zeta) H_i$$
 (12)

where x_i , y_i , and z_i are actual values of nodal Cartesian coordinates and n is the number of nodes in the element under consideration. H_i (as defined earlier) is the actual value of the required function h'(x, y, z, t).

Considering the set of local coordinates ξ , η , and ζ and a corresponding set of global coordinates x, y, and z, by usual rules of partial differentiation, we can write, for instance, the ξ derivatives as:

$$\frac{\partial V_{i}}{\partial \varepsilon} = \frac{\partial V_{i}}{\partial x} \frac{\partial x}{\partial \varepsilon} + \frac{\partial V_{i}}{\partial y} \frac{\partial y}{\partial \varepsilon} + \frac{\partial V_{i}}{\partial z} \frac{\partial z}{\partial \varepsilon}$$
(13)

Performing the same differentiation with respect to the other two coordinates and writing in matrix form we have:

B.9

$$\begin{bmatrix} \frac{\partial V_{i}}{\partial \xi} \\ \frac{\partial V_{i}}{\partial \eta} \\ \frac{\partial V_{i}}{\partial \xi} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \xi}, & \frac{\partial y}{\partial \xi}, & \frac{\partial z}{\partial \xi} \\ \frac{\partial x}{\partial \eta}, & \frac{\partial y}{\partial \eta}, & \frac{\partial z}{\partial \eta} \\ \frac{\partial x}{\partial \xi}, & \frac{\partial y}{\partial \zeta}, & \frac{\partial z}{\partial \zeta} \end{bmatrix} \begin{bmatrix} \frac{\partial V_{i}}{\partial x} \\ \frac{\partial V_{i}}{\partial y} \\ \frac{\partial V_{i}}{\partial z} \end{bmatrix} = \begin{bmatrix} J \end{bmatrix} \begin{bmatrix} \frac{\partial V_{i}}{\partial x} \\ \frac{\partial V_{i}}{\partial y} \\ \frac{\partial V_{i}}{\partial z} \end{bmatrix}$$
(14)

In the above, the left-hand side can be evaluated because the functions V_i are specified in local coordinates. Furthermore, x, y, and z are explicitly given by the relation defining the curvilinear coordinates [Equations (9), (10), and (11)]. The matrix [J] can be formed explicitly in terms of local coordinates. This matrix is known as the Jacobian matrix.

To find the global derivatives, we invert [J] and write

$$\begin{cases} \frac{\partial V_{i}}{\partial x} \\ \frac{\partial V_{i}}{\partial y} \\ \frac{\partial V_{i}}{\partial z} \end{cases} = [J]^{-1} \begin{cases} \frac{\partial V_{i}}{\partial \xi} \\ \frac{\partial V_{i}}{\partial \eta} \\ \frac{\partial V_{i}}{\partial \zeta} \end{cases}$$
(15)

"In terms of the shape function defining the coordinate transformation [V'], which are identical with the shape functions [V] when isoparametric formulation is used, we have:

$$[J] = \begin{bmatrix} \sum_{i=1}^{\partial V_{i}} x_{i}, & \sum_{i=1}^{\partial V_{i}} y_{i}, & \sum_{i=1}^{\partial V_{i}} z_{i} \end{bmatrix}$$
$$\begin{bmatrix} J = \begin{bmatrix} \sum_{i=1}^{\partial V_{i}} x_{i}, & \sum_{i=1}^{\partial V_{i}} y_{i}, & \sum_{i=1}^{\partial V_{i}} z_{i} \end{bmatrix}$$
$$\begin{bmatrix} \sum_{i=1}^{\partial V_{i}} x_{i}, & \sum_{i=1}^{\partial V_{i}} y_{i}, & \sum_{i=1}^{\partial V_{i}} z_{i} \end{bmatrix}$$

8.10

The transformation of the variables and region, with respect to which integration is made, is achieved by the following:

dx dy dz = det [J] d ξ d η d ζ

which is valid irrespective of the number of coordinates used. Assuming that the inverse of [J] can be found, by transformation we have

$$P_{ij} = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \left(\left(K_{x} \frac{\partial V_{i}}{\partial x} \frac{\partial V_{j}}{\partial x} + K_{y} \frac{\partial V_{i}}{\partial y} \frac{\partial V_{j}}{\partial y} + K_{z} \frac{\partial V_{i}}{\partial z} \frac{\partial V_{j}}{\partial z} \right) \det \left[J \right] d\xi d\eta d\zeta$$
(16)

Similar expressions are developed for the remaining terms of Equation (8).

To perform an integration of the form indicated in Equation (16), a Gaussian quadrature scheme is used. In this technique a polynomial f(x) of degree 2N-1 may be integrated exactly as the weighted mean of its N particular values of specified points (Gaussian points). Examining in detail the form of Jacobian determinant (expressed in terms of shape function derivatives), and its order, the number of Gaussian points required for exact integration can be determined. Zienkiewicz and Cheung (1965) give a concise discussion of Gaussian quadrature and tables of required coefficients (Table 2). Zienkiewicz (1971) summarizes that if only a few elements are used to represent a region, more than a minimum number of Gaussian points is advised. If a large number of elements has to be used, the lowest necessary order of integration is economical. It is also reported that considerable improvement results from using a minimum integrating order. The computer program written has a choice of the use of 2, 3, or 5 Gaussian integration points in each dimension.

FORMATION OF MATRICES

Once the matrices of Equation (7) have been developed, the task is to solve for the undetermined coefficients $H_i(t)$ (i=1, 2...n). To eliminate the term dH/dt associated with the P matrices, a backward finite-difference approximation for the time is generally used with given initial values:

TABLE 2. Abscissae and Weight Coefficients of the Gaussian Quadrature Formula

$$\int_{-1}^{1} f(x) dx = \sum_{j=1}^{n} H_{j} f(a_{j}),$$

	<u>t</u> a		•	н	
			n = 2		
0.57735	02691	89626		1.00000 00000 00	000
			n = 3		
0.77459	66692	41483		0.55555 55555 55	556
0 00000	mnnn	00000		0 00000 00000 000	000
0.0000	00000	00000	1	V.00000 00000 000	003
	C 3 1 1 F		11 = 4		
0.86113	63115	94053		0.34785 48451 374	454
0.33998	10435	84856		0.65214 51548 62	546
			n = 5		
0,90617	98459	38664		0.23692 68850 56	189
0 53846	03101	05683		0 47962 96704 00	266
0.00000	33101	00000			200
0.00000	00000	00000		0.56888 88888 88	889
			n = 6		
0.93246	95142	03152		0.17132 44923 792	170
0.66120	93864	66265		0.36076 15730 48	139
0.23861	91860	83197		0.46791 39345 72	691
		00137	n = 7		
0 0/010	701 22	40750	11 - 7	0 10040 40001 00	070
0.94910	/9123	42/09	•	0.12948 49661 688	370
0.74153	11855	99394		0.27970 53914 892	277
0.40584	51513	77397		0.38183 00505 051	119
0.00000	00000	00000		0.41795 91836 734	469
			n = 8		
0.96028	98564	97536		0 10122 85362 003	276
0 70666	61771	12627			370
0.79000	04//4	10027		0.22238 10344 533	2/4
0.52553	24099	16329		0.313/0 66458 778	387
0.18343	64624	95650		0.36268 37833 783	362
			n = 9		
0.96816	02395	07626		0.08127 43883 615	574
0.83603	11073	26636		0 18064 81606 949	267
0 61337	1/327	00500			126
0.01337	1402/	000000			133
0.32425	34234	03809		0.31234 /0//0 400	103
0.00000	00000	00000	_	0.33023 93550 012	260
			n = 10		
0.97390	65285	17172		0.06667 13443 086	588
0.86506	33666	88985		0.14945 13491 505	581
0 67940	95682	00024		0 21000 6262F 150	102
0 12220	5300E	22027		0.25026 63102 000	70 <u>C</u>
0.43339	55941	2924/		0.20920 0/193 099	190
0.14887	43389	81631		0.29552 42247 147	/53

 $[P] \{H\}_{t+\Delta t} + [R] (\{H\}_{t+\Delta t} - \{H\}_{t})/\Delta t + \{U\} = 0$

$$([P] + [R]/\Delta t) \{H\}_{t+\Delta t} = [R]/\Delta t \{H\}_{t} - \{U\}$$
 (17)

where values occurring on the right-hand side are known.

For finite difference in time, the Crank-Nicolson or central-difference scheme can be used after the first initial step. In past versions of the model, backward difference was used for the initial time step, but in the present model, rather than simulation of H, the computer program has been modified to simulate changes during the time step.

COMPUTATIONAL ORGANIZATION OF THE PROGRAM FOR REDUCING CORE STORAGE REQUIREMENTS AND EXECUTION TIME

The three-dimensional, finite element method has the major limitations of requiring large organization and programming efforts and considerable core storage, limiting the size of problems handled on a given computer. In DAVIS-FE (Gupta et al. 1975) the core storage requirements and cost of computation for a three-dimensional ground-water flow were reduced by use of small independent subprograms, storing intermediate results which are needed repeatedly, and use of a partially compressed matrix for storing and solution of the sparse and unbanded system of equations. Further improvements of the DAVIS-FE and equation solver were made for application to multilayered ground-water systems beneath Long Island, New York (Gupta and Pinder 1978).

Under AEGIS, additional modifications were carried out and a new version, FE3DGW (Finite-Element 3-Dimensional Ground Water), was developed to simulate multilayered systems on a small computer (PDP-11/45 having maximum core storage of 32 K for 16-bit words). This section gives a brief description of the organization of the computer program.

PROGRAM ORGANIZATION TO REDUCE MEMORY REQUIREMENTS

Input Data

or

Reduction of core storage can be achieved by using a disk, provided the data are sequentially written and retrieved. Therefore, the input data for the finite element simulation were grouped into two major categories:

Data Used at Random

Data related to material properties, nodal coordinates and boundary conditions are needed at random, as per the nodes of the given elements. Therefore, this information is stored in the core memory of the given subroutine whenever possible. For simulation on a small computer, if all the nodal coordinates cannot be accommodated in core storage, they are read in as multiples of 256 integer (128 real) words, the equivalent of one record of disk block.

Data Used in Sequential Form

Element-related information forms the bulk of storage requirements. Because numerical integration is carried out sequentially element by element, the element-related information is handled through disks.

System Matrix

For a natural basin involving many layers of three-dimensional elements, the system stiffness matrix is large, sparse, and unbanded. The number of unknowns in a natural multiaquifer system may be as high as 1000 or more, whereas nonzero coefficients for linear, quadratic, and cubic order threedimensional elements are respectively only 27, 81, and 135. If mixed degree three-dimensional isoparametric elements are used, in general the number of unknowns in a given row is 40 to 60.

The use of two arrays, one for storing the nonzero elements and the other for column identifications, has been found to be very efficient in reducing the memory requirement for large sparse, unbanded and asymmetric systems of equations (Gupta and Tanji 1977). Because provision must be made for the longest row of nonzero coefficients, storage of a limited number of zeros is required in some of the rows, resulting in partially packed arrays. Such a storage scheme is economical if the longest row after elimination process contains less than 50% nonzero elements.

REDUCTION OF PROCESSOR TIME

Storage of Intermediate Results Needed Repeatedly for Transient or Steady-State Solution

Numerical approximation is carried out with respect to the nodal values, and each node is described in terms of shape factor V_i , given in local coordinates. Details of the steps involved in numerical integration have been given in the section on the Galerkin finite element formulation of threedimensional flow. Various components of Equation (17) are estimated in the following manner:

a. For a linear element a minimum of two Gaussian points in each direction are required, which warrants estimation of shape function V_i ,

 $\frac{\partial V_i}{\partial \xi}, \frac{\partial V_i}{\partial \eta}, \frac{\partial V_i}{\partial \zeta}$

and the matrix Jacobian [J], eight times for each element. For a quadratic or cubic order element, the minimum is 27.

b. In Equation (6), the only parameters required are:

 $\frac{\partial V_i}{\partial \xi} \frac{\partial V_j}{\partial \xi} \det [J], \frac{\partial V_i}{\partial \eta} \frac{\partial V_j}{\partial \eta} \det [J], \frac{\partial V_i}{\partial \zeta} \frac{\partial V_j}{\partial \zeta} \det [J], V_i V_j \det [J] \text{ and }$

 V_i det [J], respectively called FIFJ, GIGJ, HIHJ, XIXJOB, and XIJCOB. The values of these parameters are estimated at each Gaussian point and summed up for the given element before writing to disk. These parameters are functions of the x, y, and z coordinates of each node of the element and remain constant for steady-state and confined transient cases. The economy achieved by storing intermediate steps can be evident from the fact that Gaussian numerical integration requires 8 or 27 times estimations (depending on the order of the element) of the shape function, V_i , and its derivatives for each node of the element this amounts to 1188 times estimations of each of the integration parameters called FIFJ, GIGJ, HIHG, XIXJOB, and XIJCOB.

c. The element stiffness matrix is formed by rewriting Equation (17) in the following form:

 $P_{ij} = FIFJ \times K_{xx} = GIGJ \times K_{yy} + HIHJ \times K_{zz}$ $R_{ij} = Pg (\alpha_p + \phi\beta_p) \times XIXJOB$ $U_i = Q \times XIJCOB$

For each transient or steady-state problem, the stiffness matrix of the region is developed by reading the summed-up values of FIFJ, GIGJ, HIHJ, XIXJOB, and XIJCOB for each node of the given element.

Solution of System Matrix with Minimal Arithmetic Operation

In finite element formulation, the subroutine for the solution of simultaneous equations constitutes another major influence on computational cost. The computer program uses EQSOLV (Gupta and Tanji 1977) in which: 1) the row with the minimum number of nonzero elements is selected as the pivot row and to avoid instability, the largest absolute element in the pivotal row is used as the pivotal column; 2) the coefficients matrix is decomposed to the upper triangle, and sequential operations and coefficients for right-hand constant vector are stored such that, for constant time steps, repeated solutions are obtained by back substitution without decomposing the system matrix again; 3) the bulk of the program centers on a search of the partially packed column matrix to locate elements to be operated on, and thus actual arithmetic operations are minimal.

DIVISION OF THE MODEL INTO INDEPENDENT SUBPROGRAMS

For efficient handling of the input data for providing checks at various stages of simulations, the computer model has been subdivided into the following five independent subprograms.

1. <u>PROG1</u> - This program reads the input data, assigns a new number to each node for internal estimation, generates a three-dimensional mesh, estimates the number of unknowns and generates File-Q^(a) disk files for data processing in other subsequent programs.

⁽a) File-Q is a set of FORTRAN callable direct I/O subroutines written for use on PDP 11/45. The File-Q file structure for disk volumes is designed to minimize the overhead associated with direct access file operations. Once File-Q has been opened, only basic read-write limits are checked for each I/O operation and all direct access I/O transfers are started at the beginning of a physical (256 word) disk block boundary.

By making this program independent, the modeler is provided with a means of critically examining the input data before proceeding with execution of the other programs. In other programs, reduction of memory requirement is achieved by retrieval of only relevant information.

The computer output from large basins may run to several pages that may be needed only for the initial run and not for further additional minor modifications. Therefore, the computer program has varied options from no output to complete listing of various details.

- 2. <u>PROG2</u> This program calculates the integration parameters (described in Reduction of Processor Time Section) needed repeatedly but which remain constant for the given x, y, z coordinates. These integration parameters are stored sequentially for each element and are retrieved for transient or steady-state solutions with different boundary conditions or hydraulic properties.
- 3. <u>BAND</u> Simulation of ground-water basins involves a large, sparse and unbanded system of equations. The equation solver uses partially packed arrays by storing only nonzero elements in one matrix and their column identification in another matrix. Initially as well as during decomposition of the system matrix into upper triangular form, the nonzero columns of each row are arranged in ascending order, reducing processor time by conducting the search for specific elements until the column identification of the row being searched, is exceeded.

Through subprogram BAND, the preassigned locations of elements for initial formation of system matrix are calculated. This reduces considerably the computational efforts necessary in rearranging the columns during repeated formations of the system matrix.

4. <u>PROG31</u> - For a given problem it is usually desired to simulate potentials with different time steps, recharge rates and pumping stresses. PROG31 has been structured to read or to redefine these values for each simulation run. Thus PROG1, PROG2 and BAND are executed only once. Through PROG31 and PROG3, simulation for various combinations of time steps and boundary values are carried out. 5. <u>PROG3</u> - This is the main program, which calculates the potential head using File-Q disk data generated by PROG1, PROG2, BAND, and PROG3I. Maximum efforts in computation of head are involved in formation of element matrices, the system matrix and decomposition of the system matrix into an upper triangular form. For a constant time step simulation, the coefficients of the system matrix are invariant. PROG3 has been structured to decompose the system matrix only at changes of time step magnitude. For constant time steps, the solution is achieved by recalculating the right-hand constant vector as a function of boundary conditions, prescribed flux rates and pumping stresses, followed by back substitution into the decomposed upper triangular matrix.

MAIN FEATURES PROVIDED IN THE MODEL FOR CONVENIENT MATHEMATICAL DESCRIPTION OF A GIVEN GROUND-WATER SYSTEM

In contrast to surface-water supplies, ground-water reservoirs are interconnected over large areas, and their definition and analysis require difficult and extensive geologic investigations. Geologists and geohydrologists usually define various layering patterns by a few typical well logs (defining the vertical geologic section), interpreted cross sections and contour maps showing top elevation, bottom elevation, and/or thickness of each identified hydrogeologic unit in the given region.

To simplify the input data preparation, the model is structured on the basis of two-dimensional surface elements and well logs at each node. Threedimensional finite elements, describing geologic stratification, are generated by the model. Development of three-dimensional elements by the model ensures the continuity. Any discontinuity in adjoining three-dimensional elements results mathematically in an insulated, no flux, layer.

Characteristics of input data structure and steps involved in mathematical representation of the given ground-water system follow:

- Discontinuities, major breaks in slope or thickness, and fault zones of the hydrogeologic units are some of the controlling parameters affecting the ground-water flow regime. To define the geologic stratification for a given ground-water basin, these controlling parameters are identified by discrete nodes on each of the hydrogeologic units and then combined at the surface.
- 2. For proper presentation of the unknown function (head), increase in nodal concentration is necessary. This is done by placing additional nodes along surface water bodies (lakes, rivers, seashore), at important recharge or pumping wells, and for further subdidivsion of large uni-form region (for defining variable infiltration or pumping stresses).
- 3. At each surface node, well logs are prepared by using contour maps of hydrogeologic units. The depth increments are defined either in elevation above a given datum or in actual thickness of each material.
- 4. According to the geologic and surface water boundaries, the nodes are joined by straight (linear) or curved (quadratic or cubic) lines to subdivide a given region into isoparametric, two-dimensional, mixed-order elements. Mixed-order, isoparametric elements enable a mathematical description of straight, curved, or meandering boundaries with a minimum number of nodes.
- 5. Using two-dimensional surface elements and well log details at each node, three-dimensional elements are generated by the computer program.
- 6. Some of the stress conditions encountered in a ground-water system are:
 - potential boundary conditions; e.g., given water-level elevation of lakes, ponds, seashore
 - vertical infiltration at the top of the ground-water surface
 - pumping (or recharge) at given well locations (node)
 - pumping (or recharge) for a given subregion (element) from a given layer.

B.19

This model has the provision of defining steady state and transient 1) potential boundary conditions, 2) vertical infiltration rate at the surface and 3) pumping or recharge rate at a given location or element.

SUPPORTIVE PROGRAMS DEVELOPED TO VERIFY THE INPUT DATA USED IN SIMULATION

Digital finite element models provide a flexible means of defining a complex ground-water system. However, the probability of input errors always exists in computer simulations. When dealing with a large number of nodes, manual checking becomes tedious and time-consuming, and results are not guaranteed to be free of errors. Some means of editing the input data before simulation is essential.

Realizing the above needs as well as the fact that tabular output data are not adequate, the following supportive plotting programs have been developed. The input data deck initially designed for simulation is used in all plotting programs.

Plotting of Node Locations, Elements, and Vertical Logs

The subprogram (PLOTEL) has been developed to plot the locations of each node, two-dimensional surface elements, and the vertical log at each location. Finite element solution of the governing partial differential is obtained by Gaussian integration of each element. Any error in description of an element (by defining the wrong node number or sequence of the nodes of an element) results in an erroneous integration. Through this plotting package, the user achieves a positive check on correctness of geometry of nodes and finite elements.

The logs that describe the geologic section on which the three-dimensional elements are generated by the program are another place where errors can occur. To provide a visual check for the modeler and hydrogeologist, geologic sections are drawn at each node location. A horizontal tick mark is placed at the

interface of two hydrogeologic units on the section. The material between these tick marks (representing thickness of the hydrogeologic unit) is identified by an integer number assigned to the material (Figure B.1). By knowing the local stratigraphy, hydrogeologists can review these sections for errors. At locations where adequate data are not available, solutions can be obtained by redefining the geologic sections with alternative interpretations. Because three-dimensional elements are developed by the computer program itself, another formulation of the given ground-water system is easily obtained by changing vertical sections at disputed locations.

From the vertical sections and the element demarcations plotted by PLOTEL, fence diagrams can easily be developed.

FIGURE B.1.

. Illustrative Sample Plot of Vertical Stratification in Part of Western Subregion of Long Island. (This plot is made by supportive program PLOTE1 to check nodal geometry, element delineation, and vertical section defined at each node.)

Contour and Three-Dimensional Plotting of Initial Head, Top Elevation, and Thickness of Materials

When dealing with large multilayered reservoirs, it becomes difficult to evaluate errors from the tabulated printer output only. Contours and threedimensional plots of initial head, top elevation, and/or thickness of each hydrogeologic unit provide a useful tool for proper verifications of input and interpretation of the results. Most of the available computer graphics packages are, however, applicable only to regular grid values, while irregular grids usually are involved in finite element methods. To estimate the regular grid values, the reference plane is divided into linear elements. Using the principles of basis functions and search techniques, program GRIDIT finds the element associated with each grid and its local coordinate values. For a given basin, this program is executed only once to generate a binary output disk file, used by GRIDIN and GRIDH. Program GRIDIN estimates grid values of the parameter of interest (top elevation or thickness of any material) from the input data file and prepares a regular grid file that can be contoured or plotted three-dimensionally by the normal available graphics packages.

Plotting Held Potential and Prescribed Flux Boundary Conditions

Ground-water simulation is a boundary value problem, and, therefore, the results are functions of the held potential boundary conditions, as well as the flux stresses prescribed for the surface, nodes, and elements. Program PLOTBC plots the locations and values of held potential boundary conditions. PLFLUX plots the stresses prescribed for ground surface and in each element of each hydrogeologic unit. Because surface infiltration is usually described in terms of fraction of precipitation, the units of input are rate per unit area, while withdrawal and recharge from each element are in units of volume per unit time for that subregion.

Display of Results

Program GRIDIN was developed to estimate the head values at regular grid spacing for any given plane (at the surface or bottom of a hydrogeologic unit). From the data retrieved by GPIDH, contour maps, grid display, and/or three-dimensional plotting can be accomplished. Program DIFH estimates the difference between a given set of potentials (measured or prescribed) to model-predicted potentials.

APPENDIX C

VARIABLE THICKNESS TRANSIENT (VTT) GROUND-WATER HYDROLOGIC MODEL

APPENDIX C

VARIABLE THICKNESS TRANSIENT (VTT) GROUND-WATER HYDROLOGIC MODEL

Any modeling effort requires some simplifying assumptions to bridge the gap between reality and our current knowledge or understanding of the system being modeled. In most modeling fields certain basic simplifying assumptions are routinely accepted, whereas others require justification based on data gathered and observations made on the real-world system being modeled. In the set of equations in this appendix, a large amount of the modeling effort and associated assumptions have already been made (cf., Bear 1972). The set of assumptions and modeling effort discussed in Chapter 4 of Bear's report go from the complex world of porous media particles and the associated tortuous flow paths for ground water to the regime of representative elementary volumes and the fluid flow continuum. These assumptions are generally accepted in the field of ground-water hydrology and are complex enough that they will not be presented here. The equations we write to describe an aquifer system will be for a fluid flow continuum in porous media. However, it is not sufficient for a mathematical model to be based on a sound set of equations that describe the physical system. The model must also be based on technically sound hydrologic information and reasonable simplifying assumptions regarding these hydrologic interpretations. The advent of high-speed digital computers has paved the way for making computer simulation of complex ground-water systems a practical reality.

The digital computer model is designed to simulate the hydraulic head response to natural and man-made aquifer stresses in a multi-layered twodimensional aquifer system. The real ground-water system is, of course, a three-dimensional system, consisting of precipitation percolating from the surface through unsaturated soil into the uppermost aquifer. In some cases along rivers or streams or at the base of lakes and ponds, the aquifers are discharging into or being recharged from these surface-water bodies. These

C.1

conditions formulate one type of boundary condition for our mathematical model. The units we call separate aquifers are really water saturated layers in the soil and rock matrix, that make up the earth's crust. These units are generally more permeable than the geologic units directly below them and sometimes more permeable than those above. As a result, the water in an aquifer tends to flow in a horizontal direction along the bedding plane of the more permeable geologic formation because the resistance to flow is less. The less permeable (aquitard) or sometimes impermeable (aquiclude) layers below, and sometimes above, the aquifer materials retard or completely block the vertical flow. These less permeable layers are designated as the base and top of the aquifer unit. When a more permeable layer exists below the upper aquifer unit's base, another aquifer may exist. When the aquitard material between aquifers is somewhat permeable, there can be water transfer between the aquifer units, depending on the water potential or pressure in the units. For most regional ground-water models that are currently being used, a simplifying assumption is made that transforms this three-dimensional system to a layered two-dimensional system with interaquifer transfer via a potential-driven leakage term. The mathematical model that uses this set of simplifying assumptions is the multi-aquifer formulation of the Boussinesq equations.

MATHEMATICAL FORMULATION FOR THE VARIABLE THICKNESS TRANSIENT (VTT) MODEL

Often an exact solution of the general, three-dimensional, saturated flow equation and free-surface boundary condition is not required to obtain useful results. VTT uses the Dupuit-Forchhiemer or Boussinesq approximate method, which assumes a simplified, two-dimensional horizontal view of the ground-water system. This allows the free-surface boundary condition and the flow equation to be combined into a single equation amenable to practical numerical solution techniques. For simplicity we will refer to this method as the Boussinesq Flow Model.

Let x, y, z be the coordinates of a fluid particle, then dx/dt, dy/dt and dz/dt are the components of "pore velocity," and the Darcian seepage velocities are:

C.2

$$V_{x} = n_{e} \frac{dx}{dt}$$
(1)

$$V_{y} = n_{e} \frac{dy}{dt}$$
(2)

$$V_{z} = n_{e} \frac{dz}{dt}$$
(3)

where:

n_e = effective porosity.

Now, if we let z = h(x, y, t) represent the coordinate of the free surface and formally differentiate with respect to time, we have:

$$\frac{dz}{dt} = \frac{\partial h}{\partial x}\frac{dx}{dt} + \frac{\partial h}{\partial y}\frac{dy}{dt} + \frac{\partial h}{\partial t}$$
(4)

Substituting the Darcian velocities and rearranging we have:

$$n_{e} \frac{\partial h}{\partial t} + V_{x} \frac{\partial h}{\partial x} + V_{y} \frac{\partial h}{\partial y} - V_{z}(h) = 0$$
(5)

The Dupuit assumptions used in this model may be simply stated as: $\Phi(x, y, z, t) \otimes \Phi(x, y, \overline{z}, t)$ where \overline{z} = average height of the water particles above reference datum. This is equivalent to stating that flow is essentially horizontal, so that vertical flow components can be neglected and that the slope of the water table surface is slight (<5°). Darcy's law can be rewritten as:

$$V_{\rm X} = -\overline{K} \, \frac{\partial h}{\partial x} \tag{6}$$

$$V_{y} = -\overline{K} \frac{\partial h}{\partial y}$$
(7)

where:

٠..

K(x, y) = vertically averaged value of hydraulic conductivity at location (x, y) -

Substituting Equations (6) and (7) into (5) we have:

$$n_{e} \frac{\partial h}{\partial t} - K \left[\left(\frac{\partial h}{\partial x} \right)^{2} + \left(\frac{\partial h}{\partial y} \right)^{2} \right] - V_{z} (h) = 0$$
(8)

Now replacing V_z (h) with the expression obtained from substituting the results of Equations (6) and (7) into Equation (8):

$$n_{e} \frac{\partial h}{\partial t} - \overline{K} \left[\left(\frac{\partial h}{\partial x} \right)^{2} + \left(\frac{\partial h}{\partial y} \right)^{2} \right] - h \frac{\partial}{\partial x} \left[\left(\frac{\overline{K} \partial h}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\overline{K} \partial h}{y} \right) \right] = 0$$
(9)

Rearranging Equation (9) yields:

$$n_{e} \frac{\partial h}{\partial t} - \frac{\partial}{\partial x} \left(\frac{\overline{K}h \partial h}{\partial x} \right) - \frac{\partial}{\partial y} \left(\frac{\overline{K}h \partial h}{\partial y} \right) = 0$$
(10)

or in gradient vector notation:

$$n_{e} \frac{\partial h}{\partial t} - \nabla \cdot (\bar{K}h\nabla h) = 0$$
 (11)

Equation (10) is termed the Boussinesq equation. To this point for simplicity of development we did not include source terms and have assumed that the aquifer base elevation is the zero reference elevation. To expand Equations (10) or (11) to handle an aquifer with varying bottom elevation h_b (x, y), and to include source/sink or accretion terms, we must do the following:

- assume that the bottom slope is slight, as we did for the free-surface slope
- replace h in Equations (10) or (11), which was a result of integrating from z = 0 to z = h by $h-h_b$, because our integration is now done from $z = h_b$ to z = h
- add the accretion term, N.

C.4

The resulting equation is the Boussinesq equation for unsteady flow:

$$\overline{n}_{e} - \frac{h}{t} = \nabla \cdot \overline{K} (h - h_{b}) \nabla h + N$$

where:

- $n_e(x, y)$ = vertical average of the effective porosity of the aquifer (dimensionless)
- h (x, y) = elevation of the free surface from some reference elevation (L)

$$h_b(x, y) =$$
 elevation of the aquifer bottom from the reference elevation (L)

- N (x, y) = accretion rate (LT^{-1})
- K (x, y) = vertically averaged value for hydraulic conductivity at point (x, y) (LT^{-1})

ASSUMPTIONS

The basic assumptions of the Boussinesq flow model for describing saturated unconfined flow are:

- Flow is by an incompressible fluid that saturates a rigid, porous soil matrix.
- Compressibility effects of the fluid and soil matrix can be neglected under conditions of unconfined or free-surface flow; however, they are incorporated into the storage term for confined flow.
- Hydraulic conductivity and effective porosity can be represented by the vertical average values and are isotropic but inhomogeneous throughout the region.
- The free-surface slope and the aquifer bottom slope are both assumed to be slight (<5°).
- Vertical velocities are assumed to be small and therefore can be neglected.

(12)

- Coefficient distributions and dependent variables are assumed continuous over the simulation region.
- Flow in the capillary fringe is neglected.
- Seepage surfaces cannot be handled and are therefore neglected.

The Boussinesq formulation as presented above allows one to approximate the elevation of the free surface in a single unconfined aquifer at every (x, y) location. Many times in a real system one wishes to simulate a multiaquifer system, in which one or more of the aquifers are confined, although these confined aquifers may be unconfined in some places. Also there may be transfer of water between the aquifers. This kind of a multi-aquifer system can be handled by a multi-aquifer set of Boussinesq equations with potential driven interaquifer tranfer or leakage terms. For a multilayered system the equations would be:

$$S^{i} \frac{\partial h^{i}}{\partial t} = \frac{\partial}{\partial x} \left(T^{i} \frac{\partial h^{i}}{\partial x} \right) + \frac{\partial}{\partial y} \left(T^{i} \frac{\partial h^{i}}{\partial y} \right) + N^{i} + \sum_{j=1}^{-1} C_{j+i} \left(h^{j} - h^{i} \right)$$
$$+ \sum_{j=i+1}^{n} C_{j+i} \left(h^{j} - h^{i} \right)$$
(13)

where:

i = 1, 2, ... n

n = number of layers

$$C_{i \neq j} = C_{j \neq i} = \text{interaquifer transfer coefficient between layer } i$$

and j
$$S^{i} = n_{e}^{i} \text{ for unconfined system or storage coefficient for}$$

the confined system
$$T^{i} = \text{transmissivity for a confined system is } K^{i} \text{ times the}$$

thickness of aquifer or $K^{i}(h^{i} - h_{j})$ for an

unconfined or water table aquifer

 N^{i} = the flux or stress term applied to layer *i*

As with any mathematical model there are specific data requirements, boundary conditions, and initial conditions that must be specified. Equation (13) as presented is the transient equation. When the left-hand side of Equation (13) is replaced by zero, the steady-state equation results. As mentioned previously, the transient equation allows one to investigate the effects of seasonal fluctuations and rates of change, whereas the steady-state equation allows one to investigate the ultimate effect of any water use policy. Use of the transient model requires that the storage coefficient distribution be known, whereas the steady-state model does not require this distribution.

SPECIFIC DATA REQUIREMENTS FOR THE PHYSICAL PARAMETERS

The following are the specific data requirements:

 hydraulic conductivity (K=k/µ, where k = intrinic permeability and = fluid viscosity); transmissivity (T=Kb, where b = saturated thickness of the aquifer material)

The Boussinesq flow model requires as an input the saturated hydraulic conductivity or transmissivity distribution throughout the region being modeled and for each aquifer being modeled. The values required by the Boussinesq model must represent the vertical average of the K or T of the saturated thickness of the aquifer.

Hydraulic conductivity or transmissivity reflects the ability of the rock and soil matrix to allow water transmission. The K or T distribution is usually determined via appropriately conducted pumping tests, where the well is fully penetrating and perforated throughout saturated aquifer material. Data from these type of field measurements are expensive to obtain, and therefore the K or T distribution is extrapolated from a small number of these measurements. This initial distribution is further modified during the model calibration phase to obtain better agreement between model-predicted potentials and observed potentials. Hydraulic conductivity can also be estimated from laboratory studies of aquifer material samples, lithologic data, and inverse mathematical modeling methods. • storage coefficient (or effective porosity n_e and vertical compressibility of the soil matrix $[\alpha]$)

The transient form of the Boussinesq equation requires the distribution of the vertical averaged value of the storage coefficient for each aquifer throughout the region being modeled. This parameter controls the rate at which the water and disturbances in the potential surface propogate throughout the ground-water system. In the case of an unconfined system, the storage coefficient is dominated by the effective porosity of the aquifer's soil matrix. Contributions to the storage coefficient based on soil matrix compressibility and water compressibility are ignored. In the case of confined systems, the storage is a function of the aquifer soil matrix compressibility (α), effective porosity (n_e), with storage = $pg(\alpha + n_{\alpha}\beta)$.

Storage or effective porosity can be determined via pumping tests with observations wells, lithologic data from core samples, and laboratory or in-situ measurement techniques. In addition, storage coefficients can be determined during model calibration when adequate transient data on potentials exist.

• interaquifer transfer coefficients (C_{i+i}) .

The multiaquifer Boussinesq Flow Model requires an interaquifer transfer coefficient, which is a measure of the hydraulic interconnection between aquifer systems. This value is a function of the thickness and hydraulic conductivity of the aquitard separating the aquifer systems; it must be determined at each (x, y) location where an aquitard exists between the aquifers. This value arises naturally in the other three-dimensional formulations in the form of (x,y,z) hydraulic conductivity distributions. It is generally obtained via model calibration of inverse modeling techniques.

Initial Conditions

The Boussinesq flow model requires initial conditions. The Boussinesq flow model requires one average potential value for each aquifer for each (x, y) grid location throughout the region being modeled.

Boundary Conditions

Like other mathematical models, the Boussinesq model requires that boundary conditions be specified. Boundary conditions are difficult to formulate and result from interpretations of potential data, well logs, and lithologic data. The physical extent of the aquifer and or aquifers is defined. This includes a geometrical description of the positions in space of the aquifer materials such as:

- the lateral boundaries of the aquifer or aquifer systems
- contour maps of the base and top of the aquifer or aquifer systems.

Along each of the lateral boundaries, the conditions that describe the physical situation that exists must be determined. These include:

• Lateral Flow Boundary

This results from not extending the model to the geologic boundaries of the aquifer or aquifer systems. At these boundaries the rate that water is flowing into or out of the aquifer or aquifer system must be specified.

No Flow Boundaries

These occur when the model has been extended to the geologic boundaries of the aquifer where the aquifer materials and impermeable barriers meet.

• Held or Time-Varying Potential Boundaries

These occur at large lakes and rivers, where the saturated aquifer materials are in contact with large bodies of water whose water surface elevations are essentially unaffected by aquifer potentials.

RECHARGE - DISCHARGE LOCATIONS AND RATES

Typically, when modeling an aquifer system that extends to the major recharge areas of the aquifer, the following types of data are used to estimate aquifer recharge:

- precipitation records
- surface slope
- temperature record

- surface soil types
- vegetation cover and land use
- evapotranspiration data.

Human caused recharge or discharge must also be accounted for by determining:

- location of pumping and recharge wells
- use of water and infiltration mechanisms (e.g., septic tanks, irrigation infiltrations, settling ponds).

Along flow boundaries where the area being modeled does not extend to geologic boundaries, the flow across this boundary must be determined via pump test and geologic studies conducted along this boundary.

Figure C.1 illustrates graphically the phenomena that must be considered in calculating the distribution of aquifer stress values throughout the region being modeled.

NUMERICAL FORMULATION OF THE SYSTEM EQUATIONS

For numerical formulation, a horizontal x-y coordinate grid system was adopted with uniform nodal spacing. R represents the region of flow and r_{ij} the sub-area associated with node ij (Figure C.2).

The differential equation, Equation (8), is then converted to finite difference form by integrating around the node area r_{ij} . Now:

$$\int_{\mathbf{r}} \int_{\mathbf{ij}} \left[\underline{\nabla} \cdot \mathbf{K} (\mathbf{h} - \mathbf{h}^{\mathbf{b}}) \underline{\nabla} \mathbf{h} - {}^{\mathbf{n}} e \frac{\partial \mathbf{h}}{\partial t} + \mathbf{N} \right] dxdy = 0$$
(14)

By Green's theorem in the first form (Kellogg 1954):

$$\int_{\mathbf{r}} \int_{\mathbf{i}\mathbf{j}\underline{\nabla}} \cdot K(\mathbf{h} - \mathbf{h}^{\mathbf{b}}) \underline{\nabla} \mathbf{h} d\mathbf{x} d\mathbf{y} = \oint_{\Gamma_{\mathbf{i}\mathbf{j}}} K(\mathbf{h} - \mathbf{h}^{\mathbf{b}}) \frac{\partial \mathbf{h}}{\partial \mathbf{n}} d\mathbf{s}$$
(15)

where n denotes the outward pointing normal to the curve Γ which bounds the area r_{ij} . The line integral is taken in the anticlockwise direction. Using Equation (15), Equation (14) reduces to:

$$\oint_{\Gamma_{ij}} K(h - h^b) \frac{\partial h}{\partial n} ds - \int_{\Gamma} \int_{ij} (n_{e\partial t} - N) dx dy = 0$$
(16)

In Figure C.2 the corner points of the node area are at (i-1/2, j-1/2), (i+1/2, j-1/2), (i+1/2, j+1/2), and (i-1/2, j+1/2). The area of r_{ij} is $\Delta x \Delta y$. The integrals of Equation 16 are approximated as follows, with the integral along Γ_{ij} divided into the integrals along the four sides of r_{ij} :

$$\int_{i=1/2, j=1/2}^{j+1/2} K(h - h^{b}) \frac{\partial h}{\partial n} dx \approx (K\Delta h) \frac{h_{ij} - h_{i,j-1}}{-\Delta y} \Delta x$$
(17a)
$$\int_{i=1/2, j=1/2}^{j+1/2} K(h - h^{b}) \frac{\partial h}{\partial n} dy \approx (K\Delta h) \frac{h_{ij} - h_{i,j-1}}{i+1/2, j} \frac{h_{i+1, j} - h_{ij}}{\Delta x} \Delta y$$
(17b)

$$\int_{i+1/2, j+1/2}^{i-1/2, j+1/2} K(h - h^{b}) \frac{\partial h}{\partial n} dx \approx (K\Delta h) \qquad \qquad \frac{h_{i, j+1} - h_{ij}}{\Delta y} \Delta x \qquad (17c)$$

$$\int_{i-1/2, j+1/2}^{i-1/2, j-1/2} K(h - h^{b}) \frac{\partial h}{\partial n} dy \approx (K\Delta h) \frac{h_{ij} - h_{i-1,j}}{i-1/2, j} \Delta y \quad (17d)$$

$$\int_{r_{ij}} \int_{ij} (n_{e} \frac{h}{t} - N) dx dy \quad n_{e_{ij}} \frac{h_{ij}^{k} - h_{ij}^{k-1}}{\Delta t} \Delta x \Delta y - N_{ij} \Delta x \Delta y$$
(17e)

where the superscript \boldsymbol{k} denotes the iteration number

and where the $K\Delta h$ half way between node center in the j-1 direction is:

$$(K\Delta h)_{i,j-1/2} = 1/2 \left[K_{ij} (h_{ij}^{k} - h_{ij}^{b}) + K_{i,j-1} (h_{i,j-1}^{k} - h_{ij}^{b}) \right]$$

A fully implicit representation of the time derivative has been used in Equation (17e). Combining the above approximations results in the finite difference approximation to the Boussinesq equation for a square grid system, $\Delta x = \Delta y$:

$$-(K\Delta h)_{i-1/2,j} h_{i-1,j}^{k} + \left[(K\Delta h)_{i-1/2,j} + (K\Delta h)_{i+1/2,j} + (K\Delta h)_{i,j-1/2} \right]$$

+(K
$$\Delta$$
h)_{i,j}+1/2⁺ⁿe_{ij} $\frac{(\Delta x)^2}{\Delta t} h_{ij}^k$ -(K Δ h)_{i+1/2,j} $h_{i+1,j}^k$

$$= (K\Delta h)_{i,j-1/2} h_{i,j-1}^{k} + (K\Delta h)_{i,j+1/2} h_{i,j+1}^{k} + n_{e_{ij}} \frac{(\Delta x)^2}{\Delta t} h_{ij}^{k-1} + N_{ij}^{k-1} (\Delta x)^2$$
(18)

For node on boundaries along which the hydraulic potential is specified in time and space (and therefore no calculation is needed):

$$h_{ij}^{k} = H_{ij}^{k}$$

The impermeable boundaries of the region must be approximated in the grid system by shapes selected from Figure C.3. This avoids right angles, which cause stagnation points and singularities in the mathematical solution of the ground-water flow equation.

The boundary conditions are put into finite difference form by applying the technique described above to a node area at the boundary of the region R. The boundary types are illustrated in Figure C.3. The associated nodal area r_{ij} can be either inside or outside the octagon. The finite difference equations are derived by setting the appropriate portions of the integral on ij in Equation (15) to zero when the segment is impermeable. In finite difference form, 24 different equations correspond to each of the different boundary point subregions illustrated in Figure C.3. Either a specified flux or no flow can be imposed by each of the 24 equations. The accretion term,

whether infiltration or withdrawal, in finite difference form becomes $N_{ij} = q_{ij}(\Delta x)^2$ (units L^3/T) to be specified at each node. Accretion at the fractional boundary nodes must have the nodal area properly reduced from $(\Delta x)^2$.

The partial differential equation and boundary conditions subsequently become a set of \hat{N} finite difference equations, one for each node of the region R being modeled. The boundary conditions have been effectively absorbed into the equations for their respective boundary nodes.

The finite difference equations can be derived in the same form by other techniques, such as Taylor series expansion. The equations for nodes on impermeable boundaries are equivalent to those obtained by introduction of a point external to the region for purposes of forming the normal derivative.

Boundary Definitions

To simulate the system, a model depends on segmenting the physical continuum into a discrete grid. Each grid segment is then represented by a single node within the model. The VTT Model uses a finite difference algorithm with a uniform grid and requires that each node within the Cartesian coordinate system be marked with a calculation type as:

- within the aquifer
- external to the aquifer
- a water or held potential boundary node [h = H(x,y,t)]
- an impermeable boundary for the aquifer with q = 0. (Aquifer boundary nodes, where the flux is known, are treated as the mathematical equivalent to an impermeable boundary node with the appropriate accretion term; i.e., $q \neq 0$.)

To facilitate the marking of calculational boundary types to avoid right angles along no-flow boundaries, and to simplify representation of complex boundaries, a systematic method of representing interior, exterior, and boundary nodes was adopted. Figure C.3 illustrates the different kinds of nodal types used in the VTT code. There are basically four nodal types; others simply arise to handle the various shapes and orientations of the impermeable boundaries.

is a water boundary, i.e., held potential boundary node [h = H(x,y,t)].

Δ

is an external node outside of the aquifer.

is an internal or nonboundary node which lies within the aquifer.

with all their possible rotations, are used to represent the 24 7 kinds and shapes of impermeable boundary nodes.

Solution Techniques

Three different solution techniques were selected to solve essentially the same set of equations, thus resulting in three separate versions of the same model. Each of these is designed for use in specific problems. These will be described in general to avoid lengthy mathematical discussions.

The VTT version of the model solves the transient form of the system of finite difference equations by using the successive line overrelaxation technique. For transient problems the solution is stable and convergent with sufficient speed to make solution of large matrices practical.

The VTTSS3 version of the model solves the steady-state system of finite difference equations resulting from the integration of Equation (15) when the transient term $n_e \frac{\partial h}{\partial t}$ is set to zero. This set of equations is solved by using a Newton iteration technique (Kellogg 1954). This version is primarily used for a system of aquifers in which one is unconfined and, therefore, the equations are nonlinear. Convergence of this method is quadratic in nature and for most ground-water problems the solution is reached in four to five iterations.
The VTTSSZ version of the model solves the same system of steady-state equations discussed in the preceding paragraph, except that it uses a Colesky decomposition method (Kellogg 1954). This version is used when all the aquifers being simulated are confined. This method is many times faster than the Newton version, and because the system of equations will be linear, no iteration is required.

APPENDIX D

DEVELOPMENT AND DESCRIPTION OF THE MULTICOMPNENT MASS TRANSPORT (MMT) MODEL

(

APPENDIX D

DEVELOPMENT AND DESCRIPTION OF THE MULTICOMPONENT MASS TRANSPORT (MMT) MODEL

To date, mass transport modeling in a given physico-chemical system has been approached in two fundamental ways. One method is to describe the system with an appropriate mathematical equation and then solve the equation with initial and boundary conditions that characterize the system. The other approach is to attempt to define numerical structures that represent specific constituents or physical structures of the system and allow these numerical representations to interact with the system as determined by the physico-chemical driving forces that are active within the system, thereby creating a more direct simulation.

The first approach will be termed the "model-equation" method and usually leads to a complex set of partial-differential equations that are typically solved numerically by finite-difference or finite-element techniques, and more recently by integrated-finite-difference techniques (Narasimhan and Witherspoon 1976). The second or "direct-simulation" approach requires an efficient bookkeeping structure to control the numerical representations so that the initial conditions, boundary conditions, and other physical or chemical constraints are satisfied.

For AEGIS, the initial step was to review several ground-water mass transport models that used each of these funamental approaches and weigh their respective advantages and disadvantages with respect to consequence analysis of deep geologic repositories (Raymond 1977). The model-equation approach using finite difference or finite element techniques suffered from numerical dispersion, which could be exaggerated by the required long simulation times ($\sim 10^6$). Another disadvantage was a greater development time because all models would have required modification to take care of decay chains. The model developed by Pinder and Cooper (1970) using the method of characteristics was investigated. It suffered less from numerical dispersion; however, it had some stability and mass conservation problems.

The approach chosen was a direct simulation technique similar to that of Pinder and Cooper, except that the particles had mass associated with them instead of concentration, and the dispersion process was handled as a random process rather than solving finite-difference equations representing the diffusion equation. This method was adapted from a direct-simulation heat transport analog developed by Eliason and Foote (1972). The primary advantages of the subsequent model are:

- always mass conservative
- no cumulative numerical dispersion
- inherent numerical stability
- facilitiates handling of multicomponent systems.

The following is the conceptual development of both the model-equation and direct-simulation approaches. The direct-simulation method is actually derived from the differential equations. This will provide a basis for comparison of both methods.

MODEL EQUATION APPROACH

Equations of mass transfer are extensions of the continuity equation for a specific chemical species. Stated in non-mathematical terms for a given control volume:

Net rate of mass	Net rate of accumu-	Rate of chemical pro-
efflux of species A + from control volume	lation of A within -	 duction of A within = 0 the control volume

A general continuity equation developed by Gray (1975) for multiphase transport of species α is written for porous media as:

$$\varepsilon \frac{\partial < \rho \alpha >}{\partial t} + < \rho \alpha > \frac{\partial \varepsilon}{\partial t} + \nabla \cdot (< V > < \rho \alpha >) + \nabla \cdot < \hat{\rho} \alpha \hat{V} >$$

$$+ \frac{1}{V} \qquad \rho \alpha (V - W) \cdot \eta \alpha dA = -\nabla \cdot < J\alpha > -$$

$$\stackrel{A}{fs(t)}$$

$$\frac{1}{V} \qquad J\alpha \cdot \eta \alpha dA + \varepsilon < R\alpha > f$$

$$A_{fs(t)} \qquad (0.1)$$

where

- $p\alpha$ = Mass concentration of α in the fluid
- V = Fluid pore velocity
- W = Velocity of the interface
- $\varepsilon = Porosity$
- $J\alpha$ = Diffusive flux of α with respect to the fluid pore velocity
- $R\alpha$ = Rate of production of α in the fluid phase
- $n\alpha$ = Unit vector normal to the fluid-solid interface
- <> = Indicates the average of the quantity enclosed
 - ^ = The local fluctuations of the quantity.

The first term in the above equation is the accumulation term. The next term accounts for concentration changes caused by changes in porosity which is useful for unsaturated conditions. The third term accounts for convection of species α by movement of the fluid. The following term is the divergence of the average of the product of the local fluctuations of the mass concentration and pore velocity. This represents hydrodynamic dispersion as defined by Bear (1972). The last term on the lefthand side and the first term on the right in Equation (D.1) relate to the effect of geometry on diffusive flux (tortuosity) and the diffusive flux, respectively. The last two terms relate to interphase mass transport and chemical production respectively.

Simplifying Assumptions

Equation (D.1) represents a completely general transport equation; however, not all the terms in (D.1) are easily quantified given present technology. Several simplifying assumptions are necessary to obtain a usable formulation. Other justifications for simplifying Equation (D.1) include:

- The level of complexity of a model used for simulating actual release consequences is not justified beyond the complexity and quality of the input data.
- Reasonable computation time and economical constraints, based on present computing hardware capabilities, limit the level of complexity that can be considered by a model. The simplifying assumptions will be denoted with italics where they appear in the following text.

It is assumed that the effects of changing atmospheric pressure are negligible. This assumption should be valid for most situations to be considered.

A velocity field is required for input to the model. These data can be obtained from a flow model or from analysis of data produced from a field study program. In any case, the flow field is calculated before computing the mass transport simulation. Inherent in this procedure is the assumption that the flow patterns are independent of the chemical composition or temperature of the ground-water solution. This assumption is sound, providing the system is nearly isothermal and all solutes are at relatively low concentration. The concentrations of the solutes must be low enough to not significantly affect the viscosity of density of the solution. For many cases this assumption will be valid, but for instances concerning salt water intrusion or dissolution of salts from salt domes or bedded salt formations, this assumption is invalid.

The result of the above assumption is to allow decoupling the mass transport equations from the flow equations and heat transport equations, thus enabling simulation of each phenomenon separately rather than simultaneously. In near surface aquifers where diurnal temperature fluctuations may be important or in cases where heat sources are available, (such as a nuclear waste repository), this assumption may not be valid.

Resolution of the flow patterns below a certain scale in a regional aquifer is usually not feasible, if not impossible. This small scale uncertainty in the flow field results in the term called mechanical or hydrodynamic dispersion (Bear 1972).

Schwartz (1977) subdivided hydrodynamic dispersion by scale and called it microscopic, macroscopic, or megascopic dispersion. Each term represents the scale of heterogeneity in the ground-water system. At the microscopic scale, dispersion occurs because the complex network of interconnected passages that comprise the soil structure causes continuous division and re-division of the flowing fluid. On the macro-scale local variations in lithologic units are responsible for dispersion. Regional variations in lithology account for megascopic dispersion. In any case, the variation in hydraulic conductivity accounts for dispersion.

0.4

Harleman, Melhorn and Rumer (1963) correlated the dimensionless ratio of longitudinal dispersion to the kinematic viscosity with a grain-size Reynolds number and a permeability Reynolds number. The grain-size Reynolds number was calculated with d_{50} , the 50% grain size, and the permeability Reynolds number was calculated with the square root of the intrinsic permeability. For sand they found:

$$\frac{D_L}{v} = 0.90 R_{d_{EO}}^{1.2}$$

and

$$\frac{D_{L}}{v} = 88 R_{k}^{1.2}$$

where D_L/v is the inverse Schmidt number for longitudinal dispersion. Unfortunately, dispersion has been quantified primarily in laboratory column experiments, and a paucity of field dispersion experiments exists because of measurement difficulties.

The two larger scale dispersions are made of microscopic dispersion and have results similar to molecular diffusion. In fact, Bear (1972) concluded that after a sufficiently long period of time, hydrodynamic dispersion could be modeled as molecular diffusion. Therefore, for the MMT model, it was assumed that hydrodynamic dispersion processes can be included with molecular diffusion in the relative flux term. Furthermore, it is assumed that the relative mass flux can be adequately described by expressions of the form of Fick's First Law. Thus.

where

 ρ = total mass density of the solution \overline{D}_{α} = hydrodynamic dispersion tensor W_{α} = mass fraction of species $\alpha (\rho_{\alpha} / \alpha)$ Incorporating this assumption into Equation (D.1) results in:

$$\varepsilon \frac{\partial \langle \rho \alpha \rangle}{\partial t} + \langle \rho_{\alpha} \rangle \frac{\partial \varepsilon}{\partial t} + \nabla \cdot (\langle V \rangle \langle \rho_{\alpha} \rangle) =$$

$$\nabla \cdot (\rho \bar{D}_{\alpha} \cdot \nabla W_{\alpha}) + \varepsilon (R_{\alpha})^{f} \qquad (0.2)$$

Incorporated into Fick's First Law are the assumptions that the mixture is an ideal solution and that only binary interactions at the molecular level are significant.

The dispersivity tensor, \overline{D}_{α} , is a function of both space and time. If dispersion is assumed to be isotropic in the directions longitudinal and transverse to the direction of flow, then the components of \overline{D}_{α} can be represented by:

$$D_{XX}^{\alpha} = D_{L}^{\alpha} \cos^{2}\theta \cos\phi + D_{T}^{\alpha} (\sin^{2}\phi + \sin^{2}\theta \cos^{2}\phi)$$

$$D_{Xy}^{\alpha} = (D_{L}^{\alpha} D_{T}^{\alpha}) \sin\phi \cos\phi \cos^{2}\theta$$

$$D_{Xz}^{\alpha} = (D_{T}^{\alpha} - D_{L}^{\alpha}) \sin\theta \cos\phi \cos\phi$$

$$D_{yx}^{\alpha} = D_{Xy}^{\alpha}$$

$$D_{yy}^{\alpha} = D_{L}^{\alpha} \cos^{2}\theta \sin^{2}\phi + D_{T}^{\alpha} (\cos^{2}\phi + \sin^{2}\theta \sin^{2}\phi)$$

$$D_{yz}^{\alpha} = (D_{T}^{\alpha} - D_{L}^{\alpha}) \cos\theta \sin\theta \sin\phi$$

$$D_{zx}^{\alpha} = D_{xz}^{\alpha}$$

$$D_{zy}^{\alpha} = D_{yz}^{\alpha}$$

$$D_{zz}^{\alpha} = D_{L}^{\alpha} \sin^{2}\theta + D_{T}^{\alpha} \cos^{2}\theta$$

where

- ϕ = angle between the direction of flow and the (X,Y,Z) coordinate system in the X-Y plane measured from the X axis (see Figure III-2).
- θ = vertical angle between the direction of flow and the X-Y plane, measured from the X-Y plane.
- D_L^{α} = dispersion coefficient in the direction of flow L^2/T

 D_T = dispersion coefficient in the direction transverse to flow L^2/T

 D_L and D_T are commonly (Boersma, Lindstrom and Saxena 1973) assumed to be represented by:

$$D_{L} = a_{L} |\bar{v}|$$

$$D_{T} = a_{T} |\bar{v}|$$
(D.3)

where a_L and a_T are longitudinal and transverse dispersivities as defined by Bear (1972), which are functions of only a given porous medium. The implication is that \overline{D} is a function only of soil type, not of species α . The assumption made in Equation (D.3) is that the contribution of molecular diffusion is negligible or constant for all species.

The convective term can be expanded giving:

 $\nabla \cdot \rho_{\alpha} V = \rho_{\alpha} (\nabla \cdot V) + (V \cdot \nabla \rho_{\alpha})$ (D.4)

The pore velocity, V, can be expressed as q/ϕ where q is the seepage (or Darcy) velocity and ϕ is the volumetric moisture content or porosity for saturated flow. The assumption here is that *Darcy's Law holds for the description* of saturated ground-water flow. This should be a valid assumption for cases where pore sizes are greater than 20 µm. However, as Boersma, Lindstrom and Saxina (1973) point out for pore sizes less than 20 µm, there is a significant deviation from Darcy's law.

Expanding Equation (D.3) results in:

$$\nabla \cdot \rho_{\alpha} V = \rho_{\alpha} \frac{q}{\phi^2} + \frac{\rho_{\alpha}}{\phi} (\nabla \cdot q) + V \cdot \nabla \rho_{\alpha}$$
 (D.5)

If the transporting medium is assumed incompressible, which is valid except near the boiling point of water, then:

$$\nabla \cdot q = 0$$
 for saturated systems (D.6)

and

 $\nabla \cdot \mathbf{q} = -\frac{\partial \phi}{\partial t}$ for saturated systems.

For AEGIS applications the only region that would invalidate the above assumption would be near a nuclear waste repository and then only a relatively short time after implacement of the waste.

Incorporating the preceding assumptions and assuming that the total mass density of the mixture is relatively constant, Equation (D.1) becomes:

$$\frac{\partial \rho_{\alpha}}{\partial t} - \rho_{\alpha} \frac{V}{\phi} (\nabla \phi) + V \cdot \nabla \rho_{\alpha} = \nabla \cdot \vec{D} \nabla \rho_{\alpha} + r_{\alpha}$$
(D.8)

for saturated systems.

In ground-water systems the production term, r_{α} , is usually a complex function of several variables including soil or rock type, temperature, pressure, and concentration of all species found at any point in the system. This function is normally represented by a complex rate expression. However, for most problems of practical interest these expressions are not known; and because of very difficult experimental problems, these expressions are not likely to be obtained before a waste repository is put into operation. Fortunately, most ground water moves slowly, and reaction kinetics are rapid with respect to the flow velocity to enable the assumption that most ground-water systems are at or near chemical equilibrium at all times. Thus, at the end of each numerical time step, all species are constrained to be in equilibrium with each other.

Ground water has many constituents. Some of the species exist at concentrations high enough to affect the chemistry of other species in solution. These are called macroions. It is assumed that the radionuclides leached from a repository or naturally occurring exist only in minute quantities compared to macroions and do not appreciably affect the chemistry of other constituents in solution. These are referred to as microions. This assumption will be important in a later section dealing with how MMT handles the production term.

D.8

(0.7)

The equations that describe the current computerized versions of MMT are:

$$\frac{\partial \rho_{\alpha}}{\partial t} + V \frac{\partial \rho_{\alpha}}{\partial x} = D \frac{\partial^2 \rho_{\alpha}}{\partial x^2} + r_{\alpha}$$
(D.9)

for the one-dimensional model, and a vertically-averaged equation

$$\frac{\partial \rho_{\alpha}}{\mathbf{t}} + \mathbf{V} \cdot \nabla \rho_{\alpha} = \nabla \cdot \mathbf{\bar{\bar{D}}} \nabla \rho_{\alpha} + \mathbf{r}$$
 (D.10)

represents the 2-D version.

THE DIRECT SIMULATION APPROACH

The intent of the direct-simulation approach is to create a numerical analog that directly represents the physical behavior of a system. The model must satisfy the principle of mass conservation and it must account for all important physical constraints and driving forces present in the system. A direct simulation approach applicable to AEGIS ground-water transport is outlined in the following text. All assumptions will again be indicated by italics.

Particles of Mass

The first step in creating an analog of a mass transport system is to define a numerical construct that represents the chemical species of interest. It has proven useful to view material systems as comprising a number of discrete particles. Pinder and Cooper (1970), Bredehoeft and Pinder (1973), and Konikow and Bredehoeft (1974) chose to have these particles represent concentration. In Ahlstrom et al. (1977), these particles represent mass or radioactivity. The latter was chosen for the MMT models. Carried to the atomic or molecular scale, this concept has been established as a reliable description of the nature of matter.

It is not computationally feasible to consider molecular scale particles; however, the same concept can be used to create a satisfactory analog. The following assumptions apply to MMT:

- Material that is in solution in ground water can be represented by an ensemble of a finite number of discrete particles of mass.
- Water that is carrying the material is assumed to be a continuum, subject only to laminar flow.
- All particles are assumed to move with the continuum and at its velocity.
- All particles are independent of one another.
- Particle motion is governed by Newtonian rather than relativistic mechanics.

Because of computational restrictions, the number of particles is usually restricted to something on the order of $10^4 - 10^5$. The fourth assumption is valid only for dilute solutions, but is true for all except highly concentrated solutions. By definition the particles occupy zero volume.

Convective Transport

Convection of the particles is controlled by the motion of the host medium. It is assumed that the number or type of particles does not significantly alter the flow properties of the host medium. This implies that the momentum and mass transport equations are decoupled and that the motion of the particles is governed by the physical properties of the fluid and the geometry of the system.

The flow of water in a ground-water system is usually represented by a matrix of velocity components. This matrix must represent a mass conservative flow field to simulate correctly mass transport in subsurface flow systems. The flow field can be obtained by several methods, but most often it is obtained from a ground-water flow model. In the AEGIS suite of models these flow simulations can be made by PATHS, VTT, or FAST. Each particle is allowed to move for a time interval, Δt , as determined by its location in the flow field. The time step is restricted so that the maximum distance a particle can travel is no larger than one grid spacing of the grid upon which the velocity field is defined.

D.10

Dispersive Transport

This transport process, usually called diffusion or dispersion, results in a net flux relative to the ambient convective transport. A qualitative discussion of dispersion was previously presented. Here again this effect has been handled by different methods. Pinder and Cooper (1970), using the method of characteristics, obtained intermediate concentrations after convecting the particles and then solved an isotropic diffusion equation using those concentrations by finite differences. Ahlstrom et al. (1977) assumed the particles of mass are subject to various dispersive mechanisms which cause statistically random displacements. Justification for this approach is presented in Ahlstrom et al. (1977).

Total Particle Movement

To summarize particle movement, a particle of mass is defined that is assumed to be subject to displacements resulting from both convective and dispersive mechanisms during a given time step. If a large number of particles are released at a concentrated location after several time steps, an ellipsoidal cloud will result with a center point moving with the average flow velocity and the major semi-axis coincident with the direction of flow.

Based upon the assumptions presented above, the motion of a particle is dependent only on the nature of the flow system and not on the type of species being transported. This suggests that each particle can be tagged with more than one mass quantity, each representing a different species. By computing the movement of one set of particles, the transport of several species can be simulated simultaneously with considerable savings in computer time. However, for the AEGIS versions, to minimize run time and handle decay chains, it is more convenient to allow each species to have its own set of particles.

Concentration Distribution

At the end of any desired time step, the solution can be halted and the amount of mass residing within any defined volume can be tabulated, yielding an average concentration value for the volume. The solution can then continue transporting each particle from where it was halted, stopping again to compute another concentration distribution when desired. This procedure is completely mass conservative as opposed to some earlier Lagrangian solution techniques such as the PIC method (Pinder and Cooper 1970), which tags each particle with a concen- tration rather than a mass. Averaging a set of concentrations to calculate an overall cell concentration can often lead to serious mass conservation problems.

Source/Sink Terms

Injection or withdrawal of contaminants from a system is easily simulated by adding or removing particles at appropriate locations. Other types of source/sink mechanisms, such as radioactive decay or chemical reaction, require that the mass quantities with each particle be adjusted or redistributed. This applies to AEGIS applications except when reversible sorption and decay are the only source/sink terms. It is then possible to alter the velocity field by a retardation coefficient. This will be explained later in the text. The current soil-waste reaction chemical model used in the two-dimensional MMT is explained by Routson and Serne (1972).

Boundary Conditions

The boundary conditions for the direct approach model can be specified quite easily. Two distinct types can be identified:

- Free flow boundary Any particle transported out of the system across this type of boundary is assumed to have exited from the system. New particles with appropriate mass are created at inflow boundaries.
- Reflecting or no-flow boundary Any particle encountering this type of boundary is reflected back into the system.

ADVANTAGES OF THE DIRECT SIMULATION APPROACH

The direct approach to model development has been found to have the following significant advantages over more traditional model-equation based approaches:

• <u>Always Mass Conservative</u> - The fundamental approach of the algorithm is inherently mass conservative, in contrast to the somewhat similar PIC technique.

- <u>Inherent Stability</u> The response of this numerical analog is inherently stable, with respect to time step size and other model parameters such as the dispersion coefficient and the magnitude of the velocity (see Trent 1975).
- <u>No Cumulative Numerical Dispersion</u> Most of the numerical smearing problems often found in other numerical schemes are eliminated (see Trent 1975). The main reason for this is the Lagrangian approach to advection computation. Many of the stability and numerical dispersion problems of Eulerian methods arise from the approximations made to the advective term. This property was one of the primary motivating factors for development of the direct approach. The only numerical dispersion in this approach occurs when concentrations are computed. This results from calculating an average concentration for each grid cell. However, this numerical dispersion is not carried forward in time because particle positions and associated masses are not affected by this averaging process.
- Ease of Control of Solution Accuracy The accuracy of the solution can be easily controlled by specifying the number of particles to be used in the simulation. This allows a rough preliminary debugging solution to be computed for the full length of a simulation using only a few particles at a substantial reduction in cost compared to a more accurate run using a large number particles (see Ahlstrom, et al. 1977).
- <u>Solution Stacking</u> If nonlinear source/sink terms are not present in a given simulation (based upon the previously stated assumption, this is the only way nonlinearity can enter the problem), the results of one solution for a given problem may be averaged with subsequent solutions of the same case to give more accurate results. For instance, suppose that after computing a simulation it was apparent that too few particles had been used, the entire simulation need not be re-computed using more particles. Instead, an additional run of the same simulation can be computed (making sure the pseudo-random number generator continues where it left off) and its results averaged with the previous run. This process effectively increases the particle density in each cell and can be repeated as many times as necessary to achieve the desired solution accuracy.

- Adaptability to Small, Economical Computer System The fact that each particle is independent of any other makes this solution technique particularly easy to program for small computers with limited addressable memory but with fairly large mass storage (disk) resources. Only a few sets of particle data need to be in memory at any one time, with the remainder of the data residing on disk. The smaller machines, although somewhat slower than most larger systems, are usually much more cost effective and allow real-time user interaction. The independence of the particle trajectory calculations also makes this model attractive for use on computers designed with a high degree of parallelism.
- Ease to Coupling New Source/Sink Models The capability of being able to simply redistribute particle mass as a means of responding to an externally defined reaction scheme and the simplicity of adding or removing particles to simulate injection or withdrawal allow a great deal of flexibility.
- <u>Complicated Mathematical Structures are Avoided</u> The direct, discreteparticle solution approach is basically simple. The entire scheme can be described with a few algebraic expressions. The main task in implementing this algorithm is concerned with creating an efficient bookkeeping structure for keeping track of particles. This type of code is much easier for nonprofessional computer technicians to understand than complex numerical solution schemes necessary for solving the differential equations upon which models are usually based. This allows more rapid program development and debugging as well as making the resulting code easier to maintain and modify.

• <u>Easy to Use for Three-Dimensional Applications</u> - Assuming the accuracy is to remain constant, computation time increases linearly with the number of vertical levels used. This is a much less rapid increase in computation time than is the case with other methods. Also, problems that often arise from very high aspect ratios (the ratio of the horizontal size of a system to its vertical extent) are nonexistent.

D.14

• <u>Complex Boundaries are Easily Handled</u> - All that is necessary to account for boundaries is a knowledge of the coordinates of the boundaries and the location of each particle. When a boundary is encountered by a particle, appropriate action, as discussed above, is taken based on the boundary type.

DISADVANTAGES OF THE DIRECT SIMULATION APPROACH

In addition to these advantages, three primary disadvantages of the discrete particles method have been noted:

• <u>Computation Speed</u> - The primary drawback of the particle-based method outlined above is the computational speed. For circumstances where model parameters have values that are within the stability range of a finitedifference or finite-element solution schemes, these types of algorithms are usually faster for a given decree of accuracy, except perhaps for some three-dimensional cases. This problem is most acute when high accuracy solutions are required and nonlinear terms are present. The convergence of the discrete particle scheme improves only as the square root of computation time. (For example, four times as many particles must be used to double the accuracy.) When the problem is nonlinear, the entire solution set of particles must be brought forward in time before the next time step can be computed. This eliminates many of the advantages gained from the assumed independence of each particle.

The relatively large computation times are partially offset by the reliability of the algorithm for any combination of values of model parameters and by the compatibility of this method with small economical computer systems. However, this approach very likely is not the best method to use for problems requiring a solution with a very high degree of accuracy. Fortunately, most environmental simulation problems are not of this type. For most large-scale environmental simulations, the required input data are usually not known within an accuracy of better than a few percent. Consequently, a simulation using a relatively small number of particles is usually acceptable.

- Presence of Random Noise A certain amount of statistical random noise is always present in solutions computed with the direct simulation scheme. As more particles are added, the amplitude of the noise decreases; but because of the statistical nature of the random walk analog, it is always present to some degree. The random noise portion of the solution can be reduced, quite markedly in some instances, by post-processing the results with various smoothing or filtering methods.
- <u>Number of Particles</u> A general criterion has yet to be developed for selecting the number of particles needed to obtain acceptable solution accuracy. Although the solution stacking procedure can be helpful in this regard, much depends on the experience of the user.

Although the discrete particle approach has been shown to have several advantages and commendable properties, it should not be viewed as the best method for all problems. The possible applications of this scheme are quite broad, but it probably should not be used when the computed solution accuracy must be with 5% of the true value. However, for environmental simulations, where predictions that might be in error by a few percent are totally acceptable, this method holds a great deal of promise.

NUMERICAL IMPLEMENTATION

The numerical scheme resulting from the direct simulation approach is termed the Discrete-Parcel-Random-Walk (DPRW) method. The basic device or numerical tool employed by this procedure is a hypothetical entity referred to as a computational parcel. The term "parcel" was chosen to distinguish the numerical tool from the more general but slightly vague "particles" referred to in the previous section. The continuum of dissolved or suspended matter to be modeled is represented as consisting of a finite ensemble of these parcels. The parcels have, by definition, zero size, but each has associated with it a set of Cartesian spatial coordinates $(x_p^n, y_p^n, z_p^n)_k$ and a set of discrete quantities of mass $e^{k,n}$, where:

 $p = the parcel index (p = 1,2,3...N_p)$ where N_p is the total number of parcels used to represent a given quantity of matter

- k = the transported species index (k = 1,2,3...K) where K is the total number of constituents present in the system
- n = the time level index $(n = 1, 2, 3...N_t)$ where N_t is the number of time increments to be computed.

For example, the location of parcel 3 after five time steps is (x_3^5, x_3^5, z_3^5) . If the problem is concerned with five constituents, this process would be repeated for all the parcels associated with each constitutent.

During a given time step a new location for each parcel is computed as determined by advective and dispersive mechanisms, and the weights associated with each parcel are adjusted to account for any source/sink processes. The sequence of these computations is as follows:

- 1. First, the new location as determined by convective motion is calculated.
- 2. This new location is then modified by a random step to simulate dispersion.
- 3. Parcel weights are adjusted to account for first-order source/sink mechanisms such as decay.
- 4. The masses of all the parcels in each cell are added to obtain the total mass of each constituent in each cell.
- 5. Source/sink mechanisms such as radionuclide decay chains are then taken into account.

6. In the case of decay chains, parcels of daughters are then created.

Each of these steps is more fully explained in the following subsections.

Convection Component

The MMT-DPRW models require as input a mass conservative velocity field. At present the one-dimensional version requires a single constant velocity as its input, while the current 2-D version allows for spatially and time variant velocity fields. The components must be arranged on a regularly-spaced grid that remains stationary with time. One or two velocity components as required by the dimensionality of the problem are defined at each nodal point of the flow field. In the case of a spatially variant problem, the velocity field is linearly interpolated at points away from the node locations.

As defined in Pinder and Cooper (1970), for two dimensions the convective characteristic equations of Equation (0.7) are:

$$\frac{dx}{dt} = u \text{ and } \frac{dy}{dt} = v$$
 (0.11)

where

- u = velocity component in the x-direction
- v = velocity component in the y-direction

The convective transport contribution is therefore calculated by:

$$x_{p}^{\star} = x_{p}^{n} + \Delta t^{n} u^{n}$$

$$y_{p}^{\star} = y_{p}^{n} + \Delta t^{n} v^{n}$$

$$(0.12)$$

where

 Δt = the computational time step

 x_n = the x location of parcel, p, at the end of the nth time step

 $\frac{1}{4}$ = indicates an intermediate value of the new parcel location.

Dispersive Component

A dispersive transport component is then calculated for each parcel by assuming that the ensemble of parcels is subject to Brownian-like random motion resulting from the tortuous path that the host fluid takes through a complex medium such as soil. The equation that represents dispersion along the direction of flow is:

$$x_{0}^{*} = 24D_{1}\Delta t \ (0.5 - [R]_{0}^{1})$$
 (D.14)

This equation is sufficient for one-dimensional simulations, while dispersion in the direction normal to the direction of flow is represented by:

 $y'_{\rm p} = 24D_{\rm T}\Delta t \ (0.5 - [R]_{\rm O}^1)$ (D.15)

where

- x'_p = the location of parcel, p, along the X'-axis oriented in the direction of flow
- y'_p = the location of parcel, p, along the y'-axis oriented normal to the direction of flow
- $D_1 = 1$ ongitudinal dispersion coefficient
- D_{T} = transverse dispersion coefficient.

These equations are derived in Ahlstrom et al. (1977).

The remaining computation is to transform the dispersive components from the (x', y') coordinate system to the (x,y) coordinate system and add the dispersive contribution to the convective contribution to obtain the location of the parcel at the end of the current time step. The new location is calculated by:

$$X_{p}^{n+1} = X_{p}^{\star} + X_{p}^{i} \cos \phi - y_{p}^{i} \sin \phi \qquad (D.16)$$
$$y_{p}^{n+1} = y_{p}^{\star} + X_{p}^{i} \sin \phi + y_{p}^{i} \cos \phi \qquad (D.17)$$

where ϕ is the angle between the (x', y') coordinate system and the (x, y) coordinate system. Equation (D.16) is sufficient for one-dimensional systems where $\phi = 0$.

Conversion to Intensive Values

When the advective and dispersive computations have been completed for every parcel in the system, a grid network can be superimposed upon the spatially-distributed ensemble of parcels. The nodal points of the grid are labeled with i, j indices, as appropriate to the problem, where

1:	= 1,2,3 <i>I</i>	I = number	of nodal	points	in x-direction
j :	: 1,2,3 <i>J</i>	J = number	of nodal	points	in y-direction

The nodal points form the vertices for $(I-1) \times (J-1)$ rectangles which are referred to as cells. The dimensions of cell (i,j) are Δx_i by Δy_j by: where

$$\Delta x_{i} = x_{i+1} - x_{i}$$
 (D.18)
 $\Delta y_{j} = y_{j+1} - y_{j}$ (D.19)

Parcel "p" is said to lie within cell (i,j) if:

k.n+1

$$x_{i} \leq x^{k,n+1} < x_{i+1}$$
 (0.20)

$$y_j \stackrel{s}{=} y^{-1} \stackrel{s}{=} \stackrel{s}{=} \frac{y_j}{j+1} \tag{D.21}$$

$$z_{z} \leq z^{x, n+1} < y_{z+1}$$
 (0.22)

The total amount of mass of each species within a cell (as defined above) is computed by summing the mass quantitites associated with each parcel within that cell. If concentration is needed for calculation of a source/sink term, the total mass within each cell is divided by the volume of water within each cell. Thus, concentration within each cell for each species k is calculated by

$$C_{ij}^{\star} = \frac{G_{\varepsilon_{ij}}}{V_{ij \phi_{ij}}}$$
(D.23)

where

 $G_{\epsilon i j}$ a conversion factor from model distance units to those desired by the user (e.g., converting from Ci/ft³ to pCi/ml)

V_{ii} = volume of cell i,j

 ϕ_{ij} = pososity or volumetric water content of cell i,j

 ε_{ii} = the intermediate concentration of species α in cell *i*, *j*

This intermediate concentration is now used for source/sink calculations requiring concentration (e.g., cases where concentration differences provide the driving force).

Source/Sink Contribution

The source/sink phenomena accounted for by AEGIS versions of MMT are first order decay, radionuclide decay chains, and sorption.

Radioactive Decay Losses of Contributions

First-order decay is handled easily by adjusting each parcel's associated mass by

$$\varepsilon_{\alpha,p}^{n+1} = \varepsilon_{\alpha,p}^{n} e^{-\lambda_{\alpha} \Delta t}$$
(D.24)

where λ_{α} is the first-order decay constant of species α , and Δt is the time step. In the case of decay chains all current parcel weights are decayed by the above equation. In the case of chains, concentration is not required. The mass sums are then adjusted by analytically solving the appropriate set of simultaneous ordinary differential equations that describe the decay losses and additions for the chain of interest over the last time step. Because the current parcel weights have been first order decayed, the amount of a daughter to be created is the difference between the first order decayed weight sum, and the weight sum adjusted by the analytical solution describing the decay chain. The operation is described by:

$$\Delta \varepsilon_{\alpha} = \varepsilon_{\alpha,\rho} \sim \varepsilon_{\alpha,\rho} \qquad (D.25)$$

where, $\Delta\xi$, is the amount of α to be created, and * indicates the intermediate weight sum before adjustment by decay chain mechanism. $\Delta\xi_{\alpha}$ is then divided by the number of parcels the user desires to create to obtain the weight of the new parcels of α created by parents of α .

The remaining problem is to locate the created parcels in the system relative to the parents creating the parcel. This is done as a random time event relative to the center of mass within a cell of the parent nuclide. While summing the weights in a given cell, a center of mass for the parents is calculated by

$$x_{\alpha,c} = \frac{\sum_{m=1}^{m} x_{\alpha} \varepsilon_{\alpha,m}^{n}}{\sum_{m=1}^{m} \varepsilon_{\alpha,m}^{n}}$$

where X_{α} is the X-location of the parcel and $X_{\alpha,c}$ is the X-location of the center of mass in cell i,j. During the time step the center of mass of the parcels has moved a distance ΔX_p , while a postulated center of mass of daughter parcels starting from the same location would have moved a distance ΔX_d . Each created parcel is assumed to be created at some random time [R¹₀] during the time step, and is convected and dispersed during the remaining fraction of the time step after it was created. Thus, the location of a given parcel is calculated by

(0.26)

$$x_{d}^{n+1} = x_{p,c}^{n} + r\Delta x_{p} + \frac{V}{R_{d}} (1-r) \Delta t + \sqrt{24D_{L}(1-r)\Delta t} (0.5-[R]_{0})$$
(0.27)

where

- $r = [R]_0^1$ which is the fraction of the current time step when the daughter parcel was created
- R_d = retardation coefficient of the daughter

 $[R]_{0}^{1}$ = random walk dispersion movement random number.

Thus the new parcels are created and located as above. This operation is repeated for each cell containing parcels and every time step. When a parcel decays to a zero weight within the accuracy of the machine, it is eliminated from further consideration.

Sorption

When considering sorption of the radionuclides by the porous media through which the radionuclides and water are flowing, Equation (D.8) becomes for one-dimension and first-order decay:

$$\frac{\partial \rho \alpha}{\partial t} + \frac{B_{d}}{\phi} \frac{\partial^{S_{\alpha}}}{\partial t} = D \frac{\partial^{2} \rho \alpha}{\partial x^{2}} - V \frac{\partial \rho \alpha}{\partial x} - \lambda_{\alpha} \left(\rho_{\alpha} + \frac{B_{d}}{\phi}S\right)$$
(D.28)

where

 B_d = bulk density of the media

S = mass concentration of α sorbed to the porous media

 λ_{α} = decay constant

Since the concentration of radionuclides is assumed to be small, the sorption equilibrium curve should be nearly linear and is described by

$$S_{\alpha} = K_{d} \rho_{\alpha}$$
 (D.29)

where, K_d is the distribution coefficient. Thus, by substituting equation (D.29), the last term in equation (D.28) becomes $\lambda_{\alpha}(1 + \frac{B_d}{\phi}S)\rho_{\alpha}$. Because sorption is assumed to occur rapidly with respect to ground-water movement, equation (D.29) becomes

$$\frac{\partial S\alpha}{\partial t} = Kd \frac{\partial P_{\alpha}}{\partial t}$$
(D.30)

when differentiated with respect to time. This is only true when sorption occurs rapidly relative to the movement of the ground water or when the ground water is at or near equilibrium at all times. Thus, Equation (D.28) becomes

$$R_{\alpha} \frac{\partial \rho_{\alpha}}{\partial t} = D \frac{\partial^2 \rho_{\alpha}}{\partial x^2} - V \frac{\partial \rho_{\alpha}}{\partial x} - R_{\alpha} \lambda_{\alpha} \rho_{\alpha}$$
(D.31)

after substituting Equation (D.30); where R_{α} is the retardation coefficient equal to $1 + \frac{Bd}{\phi}$ Kd. For decay chain migration Equation (D.31) becomes

for linear chains, where N indicates activity concentration usually expressed in curies. Thus, the characteristic convection equations are

$$\frac{dX}{dt} = \frac{V_x}{R_\alpha} \text{ and } \frac{dy}{dt} = \frac{V_y}{R_\alpha}$$
(D.33)

The retardation of nuclide migration is accounted for by dividing the velocity and dispersion coefficient by the retardation coefficient. This gives an accurate result at the output of the ground water to the surface.

٠

APPENDIX E

DOSE MODELS

APPENDIX E

DOSE MODELS

The radiation doses calculated for the reference site analysis used the computer program PABLM. This program permits the calculation of the accumulated radiation dose to humans resulting from radioactive materials released to the accessible environment. Radiation doses from the chronic ingestion of salt and prepared foods containing salt that contain radionuclides are calculated. Selection of this dose methodology is specific to the scenario selected for analysis.

In addition to direct ingestion, for actual site analyses a total of 18 other ingestion pathways (or food products) may be selected with corresponding consumption rates, growing periods, and air or water concentrations and deposition rates. A total of four external exposure pathways may also be selected, with corresponding exposure times and soil or water concentrations. For all exposure pathways chosen, radionuclides may continue to be deposited and built up in the soil for the life of the releasing source. After the source is no longer emitting, the nuclides are assumed to remain in the soil and to be removed only by radioactive decay.

In any single case the program can be used to calculate accumulated radiation doses to a maximum of five possible body organs or tissues for up to a maximum of 100 radionuclides.

The computer output consists of summaries of radiation doses to the chosen organs listed by exposure pathway and by radionuclide. Dose summaries may also be obtained for all terrestrial food pathways combined and for all aquatic food pathways combined. In addition, an option exists for a complete listing of dose contribution by radionuclide by pathway. The complete listing includes the calculated radionuclide concentrations in all ingested plant and animal material.

E.1

TERRESTRIAL FOODS

The model for estimating the transfer of radionuclides (except for ${}^{3}\text{H}$ and ${}^{14}\text{C}$) from air or irrigation water to plants through both leaves and soil to food products was derived for a study of the potential doses to people from a nuclear power complex in the year 2000 (Fletcher and Dotson 1971; Baker, Hoenes and Soldat 1976).

The source of contamination on farm land or crops may be from either airborne or waterborne radionuclide releases or from residual environmental contamination after an acute or chronic release. In the absence of specific data for sites where irrigation is used, sprinkler irrigation is normally assumed, rather than ditch or flooding irrigation, because the sprinklers spray contaminated water directly onto plant surfaces, resulting in higher radionuclide concentrations in the plants. Other types of irrigation systems can be simulated, if desired, by setting the foliar retention factor in the program to zero.

For atmospheric contamination, a deposition velocity is assumed for the airborne radionuclides onto the plant foliage and ground. If the "initial" deposition mode is selected, the foliar contamination terms are automatically set equal to zero, and plant concentrations are derived from the soil concentrations using plant/soil concentration ratios.

The concentrations of radionuclides in animal feed crops and animal drinking water are used to calculate the concentrations in animal products such as milk, meat, or eggs. The calculation involves multiplying the total daily radionuclide intake by the animal by a transfer factor.

The radionuclides 3 H and 14 C are handled separately when calculating concentrations in terrestrial foods. They are assumed to be in equilibrium with their surroundings. Thus, the concentration of tritium or 14 C in the hydrogen or carbon in environmental exposure media (soil, plants, and animal products) is assumed to have the same specific activity as in the contaminating medium (air or water). The fractional content of hydrogen or carbon in a plant or animal product is then used to compute the concentration of tritium or 14 C in the food product under consideration (Baker, Hoenes and Soldat 1976).

E.2

AQUATIC FOODS

Radionuclide concentrations in aquatic food products are based on the radionuclide concentrations in the contaminated water. They are calculated using equilibrium concentration ratios between the food and the water, called bioaccumulation factors. The water concentration is based on the release rate of radionuclides from the source and the characteristics of the receiving water body. Formulae for the three most common reconcentration situations for receiving water bodies are included in the computer program (Soldat et al. 1974).

A simple model is used to predict the radionuclide concentrations in sediments of a river or lake. The model is based on the assumption that there is a constant water concentration during the release period. The deposition rate to the sediment is assumed to be dependent only on the water concentration. The only removal mechanism assumed for radionuclides in sediment is radioactive decay.

EXTERNAL DOSES

External doses from radionuclides deposited in farm fields are calculated assuming an infinite flat plane source model. A factor of 0.5 is included for shielding and scattering caused by surface roughness. For a person standing on the shoreline of a body of contaminated water, the dose from radionuclides deposited in the sediment is calculated using the same model as for a farm field, modified to include a factor that corrects for the fact that the shoreline is not an infinitely wide source (Soldat et al. 1974).

The dose from swimming in contaminated water is calculated using the assumption that the body of water is large enough to be considered an "infinite medium" relative to the range of emitted radiations. Persons boating on the water are assumed to be exposed to a dose rate half that of swimmers.

E.3

INTERNAL DOSES

Internal doses are calculated as a function of radionuclide concentration in food products, as described above, ingestion rates, and a radionuclidespecific dose commitment factor. The concentration in foods varies with time, release rate, and buildup and decay in the soil. The dietary level (i.e., kg/yr) is assumed to be constant. The dose commitment factors are calculated for each year of intake, to the end of the dose period, based on the model of ICRP Publication 2 (ICRP 1959). For purposes of this analysis, internal doses were based solely on direct consumption of salt.

A first year committed dose is calcuated as well as the accumulated dose for a selected number of years. The accumulated dose is the sum of a series of annual dose commitments from the time of ingestion to the end of the dose period. Doses may be calculted for either a maximum-exposed individual or for a population group. The doses calculated are accumulated doses from continuous, chronic exposure.

APPENDIX F

MODEL INPUT PARAMETERS AND DATA USED

ſ

APPENDIX F.1: VTT MODEL PARAMETERS AND INPUT DATA

.

.

.

.

TABLE F.1A. VTT Model Input Control File

PIR RUN 1 EAST TEXAS PUMPING AND 260 GPM INJECTION AT DOME PIR1,POT POT PIR1,BOT 807 NONE TOP PIR1.HYC HYC PIRICAL, TYP CAL TYP NONE STORAGE PIR1.TCF INTER AG XPER NONE OCEAN XFER 2,60,65, YN0,1300.,10560.,1000., 0,,0,, 0,0,1,50,50,9,0E-03,1,25 1990,5,1,0,0 1990,9,31,23,59 0,1,0,0, 1990,9,31,23,59,1,4 1,65,1, TOP 1,1,2+12 1,65,1, 1,1,E=12 1,65,1, STORAGE AG1 1,.0001 1,65,1, 1,.0001 1,65,1, OCEAN XFER 1,0, 1,65,1, 1,0,

F.2

-

. •

ŝ

٠

TABLE F.1B. Streambed Transfer Coefficients

001114,2717	IR11CF_AQ1								
6.0	45								
LIME# 1									8.0000
0.0000		8,8484	.	0. .	8,8480	N. FTTT			
6.0000	6.4749	8,8228	8,0080	0,0500	0. 0464	N. 2970	0.0400		
4.4499	8.0888	0.0000	Ø.9860	8,0064	8,9987	2.5222	5.5444	D C C C C C C C C C C C C C C C C C C C	
6.6888		0.4449	A. 8886	8,0008	8,9869	8+5522	8+5540	1. T.	U.VUTV
		8.8888	8,7668	0,0079	8.8263		5.55#B	0,7070 ·	Dever
d dans		8.9134	8.0000	8,000	6 . 020R	ø, 8699	0,0910	4.°4443	
Decrer 3		12	••	•	•				
71474 E			8.8684	8.8878	8.8895	8.8999	8.9548	0,0000	5*6245
		8.9884	8.8654	8.0000	0.0000	8,8898	8,2462	8,000f	u'Lass .
.	F. 7		8.88ed	8.8885	0.0000	8.8999	6,0900	6.4044	C.Coce
N , NNN		0.7978	8.885A	0.0000	0.0800	8.9998	8,8998	8,8888	N,9999
6,446a	2,9707		A.8884	8.8888	8.2080	8.8000	8,8775	n.2999	6,0000
n.0000	6.388M			8.0088	8.0009	M.0008	0,0000	R.848#	e,øres
	a ^e kean		r. vr.	~~~~			-		
FINE 3					8.5888	8.9898	8.5478	8,8989	A,0048
*****		0.000p			0.0008	8.8688	0.0000	8. P986-	8.0000
8,0878	8,884 0	** ****		8 8888	A. A668	6.8888	8.000	0.0000	8,50+0
8.88#R	n, aran	******			B. sard	4.4446	8.8488	8.8389	8.5000
8,8899	0,0007	n*6444	644444	0.0000				8,0008	0.0000
W . 4588	*****		8.2445	0,0000			0.9485	8.8978	8.8898
# # ####	*****	N. 2779	D e 바람원이						•
LINE 4					a`		8. F868	4.7878	6.0010
6,6096	8,8898	.	5*8488	8,0400 .	0,0000				6.0004
	#_####	*****	8.8666	.	0,0000				
8.0000	8,4888	R.8998	8,0594	6*6448	8*846a		00000 ·		
	8.0009	8.0009	# * ####	0,0000	8.2000	N			
	8.0000	8,000	0.0000	8,8676	6*6644	8.0000	8.8000		
0.000	8.8888	8.8978	8,0786	8,0001	8,898 4	0.0000	0.000a	D [.] Hown	e ^s tada
1 tHE									
	8.0000	0.6900	.	8,0606	8,9990	6.4644	8.5440	N.8778	0,0000
		8.8888	0.P299	9,0000	8,0078	8.8009	5.5220	0.0775	F. F. F. F. F.
		8. 0000	P, 9898	\$,8888	8,0005	6.6655	8.0000	स स्वाच्या स स्वाच्या	0.0000
		8.0986	8.0090	8.0000		8,8005	6.6668	0,0000	6.0040
* *****	A 4884	0.0000	A.DTaf	8.8978	8,9098	0,0678	0.000	8.6668	0.0000
r orro		6.6688		8.0000	0.0000	8,8895	8,9998	8.8445	840798
	0.000					•			
LINC			8.8886	8.6666	8.8888		0,0000	0.0779	8,5403
	<i><i><i>n</i>_e, <i>v</i>₀, <i>v</i></i></i>		0.0000	8.6666	8.6888	8,0110		8,9999	F. 000T
R . 	0.0000				8.9789	8.0978	8.8855	8.8499	6+0048
6.6686	0+9999	Petera	a. 8894	8.0005	8.0005	8.6999	0,0096	8.0008	0,0000
8,9877	0.0000	0.00440		8.4686	6.0005	A.8888	8.0079	8.8709	p,0099
6.0044	a'asaá				6.6866	8.8088	n.9988	#,#200	6,6664
6 .6 846	# <mark>.</mark> #899	a saut	6 ⁶ mailed						
LINE= T					A. 8848 .	8.8884	8.8475	6.6668	8,0008
<i>#</i>	带。中国内有	8,7878	6.000M	4 ,8440		A. 8886	0.0775	8.0998	0.0000
8,8888	P,8988	4,6658	*******	0,0000	0,000		0.0000	8.8880	2.2099
8,8888	8,8888	8,8668	5,7275	R.9575			8.8888	8.9876	A.8649
0.000	8,4888 ·	6'6888	S*AuSt				8.5128F-84		8.0000
6.0848	8,0000	*,****	0,4aún		0,0000 0,000	H 47777	0,3320L-84	8.8888	8.0888
0.0079	Ø, RP68	用。用以同步	N_0084		0,416a	neter.	Deprov	4. 9 4. 4: 1: I.	
LINES B	•								
		医上角切开的	****	8.0000	0,0000	8. 2 048			
	0.0848	8.9979	# . 2205	8,8988	0.0007	******			
4.888P		0.0004	8,9684	0,9870					
A. 683#	A.065F	6.6886		8,8888	n.re89	8,8975	D, 5000		
		8.8481	8.9008	8,008	8,8958	0,0000	8,33272484	#•33645444	
		8.6364	8.8004	8,4409	0,0000	0.0705	5 . 5 5 5 5	5.0 Paža	
			•••		-				
		8.848e	4.5084	8,0788		6.6964	8.0977	*	F
			8.80u#		8, 88 48	R.9898	8.8648	å [,] våån	6.6545
P. 9999	₹ , 9777 ₽		n . 40 m#		4.6646		#.800A	师, 对的劳得	# • 해외권원
					.	-			

ï

TABLE F.1B. (contd)

•	•	•	• • • • • • • • • • • • • • • • • • • •		·*	-*			0 61346-64
0,040A	0,0000	P. 888#	0,0440	a,reee	8,8839		8,7348E-84	e ^a sentes	8*33tet-he
#.512#E-#A	8.4884	6.8965	8.9668	8.5500	8.53246-84	8,6488	8,8983	8,8459	»,2000
1 1 1 4 4 4 4	•••				•				
					a	8.8340	0.4666	0.0080	8.8888
		4.9466	*****				a aaaa		A 3034
P.8 800	8,4946	8,8988	h'abud	8,9889		474244			
#.apaa		8.8888	8,888#	8,4084	0,88 <u>8</u> 4	8,8943	a'aa	4,2989	2,2822
		8.6464	8.7588		A. 8884	6.6866	a	a	8.8693
				0 4994			0 0000	8.8480	8.53282-84
*****	8. 3098								A 0040
9,99P8	8,8888	*,****	8433596-84	8,33806-84	a'abte	8°3356c-#d	é'sess	A ⁴ meetin	
LINË= 11									
	A. A484	8.8888	A. 6884	8.4444	4.8454	2.0504	8.8900	W.8444	A,9640
					A 8984	4 8488	0.0000	a. 4444	H. 8446
4 *8444									0 6636
P,889P	8,8488	*, #9##	a, 200a						
#_0080			8,5610	9,9449	8,8384	a, 58 88	9,0088	8, <u>9</u> 988	8.86+6
	8 6649	4.4364		à	4.9444	1.5320E+04	D.0000	9.4949	#.5328E+84
		# \$1348-0A	A 4444	6 6638	A . GAAA		8.61247.004	8.8484	8.6668
		a ⁴ 392braa4			*****	******			
LINEN 13									
*	4.6956		0.0100	4.4484	4,9919	¥,240¢	0,5038	8.8666	
		#	a.8948	8.883A	4.8444	8.8668	9.5550	ð.8968	8.8899
						a. 6444	a. saga	8.0444	9.6556
9 . 888 8	B*Hedt				A'nabe				
8.8u00	0.0644	W,#360	A,9694	8,8889	8,6368	8,53202-84			
4 8868			8.8844		0.0000	6.8668	8.0000	0.8554	8.8939
1 1 1 1 1 1 1 1								•	•
P1464 13		· · · · ·							
a'atte	B [*] vaud				4				
0 ,0888	9_04 04	P. ####	8,9488		4,0045	8,9699			
4.444		D. 8880	9.8448	0.000A	0.0040	4.6869	8.6668		9.8819
					A. 33385-84	4.11245-04	A. 532AF-84	0.000	# 844 8
					0 00000-04		* ****		
B°B5ak	4,0469				4*334AE.A4				
#_532#E-#4	*****	8.8884	0,8898	4,8989	W,6488	9,4044	4,8568	P,798#	*,9894
LINÊN 14	•	•							
							A. 8486	#.886	6.6889
a ^c uuu h	a"hane	e.mere							
	8,8498	9,#84A	R,8008	4,8944	0,8848	a,	9,6808	8,4046	6°3088
			8.8666	8.53298+84	8.33286+84	8.53292-84	0.53282+84	8.53282-44	0.5320£-04
					8.53365-84	A.4664		8.4449	0.0440
							A 81345-04		N 0084
*,9488	0,332PE+04		*,****	A ^t wath ·	*.***	*,****	********	A ⁺ 33%Pt AA4	
L1NE= 15									
		A. 884A	8.9888	4.6558	0.0000	8.6888	8.0090	0.8440	0.8636
	÷ ••••		8 8868		0 0040			9.8388	A. 4444
							0 0000	0.0000	0 0000
a'saaa	*****	, s *eaaa							
4,0044	8.4484	# . 44P#	•,9466	9,934A	4,9443	Ø,898Ø	8.8888		
#.5326E-84		P.8684	8.9848	8.9855	8,9688	#,2368	8.0000	9,8** *	# ,532 <i>4E-0</i> 4
	8 51245-84	8.41247-84	8.51346.004	4.51244-44	0.51266+##	A. 532AE-04	4.4444	8.554B	
F146 19									
9,6469	8,488	a'daww	e,ense	# . 6494	9,9998	8,5454		A. Auth	n'noun
0 .9879	DIAGOA	9.8888	8.9889	8.8248	Ø,9989	0.0000	8,8468	4.2728	ø . 8 299
		6.8560	B.BBAB	4.0004	a aàsa	4.8484	8.6446	W.# #####	n
				A 444	a 4444	0.4654	0 0304	A. A444	
	a theat							0.53355-04	a 6645
e.gaar	8,948 	*****	a'esta	a'sedt	¥,xecp	0,0444	m ² mmAh	A'33465 - #4	
¥.9379	BAAAA	4.9848	¥.9588	8,6888	.	M,8699	8,9484	8.9858	0.0000
1 7 4 4 4 1 7				•					
				4 4844			A 6668	A	8.0008
#_\$ \$\$\$\$	8,4AAA	a°4468	8,4688	6,4408	4,4464 ·	8,9398	a boak		6.0484
6.4346	u aran	ø,øøha	8.080 8	#. #68#	a,8xes	# . 4008	9,8442	두승무실위실	¥,0808
		B. BALL		0.300A	0.0000	4.4444	6.0869	Ø. 8480	P.0000
		A	0.0000		A AAAA		A 4934		
*****	*****	a ^t diam		4°#80#			*****		
8,8N9#		8,8884	P, FGA4	F, 800A	a, 8888	# . ####	4*6648	R ⁴ 슈퍼의한	M * 20 % % %
L1NĒ+ 18	•	-	-	•	-				
				8.836A		4.4586	8.8888	8.8888	8.8888
	****	*****	*****			# 4864	0 0000	4.0004	
	2.000		n •	** *****		******		******	
\$,98 5 \$	ក្នុរោធិមិត	P,8488	M_PAGA	8,9304	8,9968	6 48 80	ê * 6 4 4 5	*****	R · 이용 문문
	6. APISA	4.5888	8.9888	9.8480	0,0886	0.6940	#,6898	M, 888A	0,8840
					8.8844		A. ABAR	0.8488	P. 6588
			# \$15ds		6 63384-44	# #13#F-##	4 81305-04	A.5124/-A-	
a * an un	# * N IF # FT	********	************	afiiswarahd	0.33K48+84	+ * 23%LC = 9#	**********		1. ⁶

·.

1

F.4

•
TABLE F.1B. (contd)

 \sim

Ň

•

• •									
R_888 4	8,R\$98	8,8998	8, 72 85		8.6558	8.5566	8.8608	0,000 , 0	P,8908
8,8088	8.6889	0,8889	6,5688	8,8055	8.8998	8.8970	8,8656	0,0000	9,0000
0.000		8.4828	8.8888	6.0004	8.6980	A	8.0008	8.0000	6.0008
			4.8846				8.53287-84	8.51205-84	
		0,0070						0,5360,-04	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
P.33686+84	6*23545+Ad	6°23585-84	6,33505-44	0,3342*74	A'3350F-Ad	#+235HE+P4	0.33582-84	र: <u>-</u> स्थलस	n*BG##
8_####	8,11788	0,0309	*,****	0,53202-04	0 . 5328E-84	8.5588	8,8880	*** ***	8,0000
L L NË 0 - 20	-								
		8.0000	8.8648	8.8386	P. 8888	8.8888	8.9888	8.9998	8.0888
	0.0000	0.007D	0.0000		*******	846464		U. WYTP	C. DAAD
8,9884	******	8,9988	8.4454	6*4846	4 .4848	6.0440	0,000m	*****	u ⁶ 9262
Ø, \$899		9,9200	8,9868	8,8489	0.0007	7.5888	8.53285+84	8,0048	8.0000
A		8.8868	6.6684	8.8888	8.53285-88	A.	8.6988	8.53208-04	A. 33287+64
			8.31207-64		4.4800	A.5120F-84		8.0000	
N_3JEBE404	A ⁸ 23546444	10 8 10 M 10	**********	0.0000		#93356C-64			49hbab
C1464 51									
é"ések	******	# . 8579	e'ntfe	5*5444	5.0460	8.8465	6.6668	t *saut	# . 5545
n, ngas	0,0000	8.4688	8.0068	8.4958	0.0000	9.0025	8.8268	8,0000	8.0000
A BARA		8.0408	8.8498	8.9999	A.8988	8.8688	A. 6968	n enne	8.0888
	874 87 4 M	P . PT DD		P.0000	0,0000		0,33675-84	0.000	
	**	446460	5*****		5*1650	0.0400	5°£aāā	0+0140	
<u>,</u>	8,8088	8,53282+84	8,3328€+#4	8,8000	0,8608	8,53282-84			8,0000
1 TNČa 22					-		-	-	
		6.6646	s. Adad		A.8888	8.80AB	0.0868		8.8088
		0.0000							
a ^e abus	5 • • • • • • • • • • • • • • • • • • •	7 + CD + D	A*Abéa	C. BALA		1.0000	0,0000		0.0001
A*#66	0,0000	0,0079	8,7787	8,7598	.	0.0458	0 ,0202	0,7277	8 °6666
8.9898	6.6998	8.8618	8.2289	0,0000	0.2069	8,8998	0,0920	0.0000	8.0098
8.888A	0.0750	6. 6888	8.517FE-84	6.8888	6.0000		8.0069	8.8688	8.8888
						8.31285-84			0.0000
0.0079	a [*] Lauk	4 	4 6 33542404	0.000 m	0.0000	6833566-84		m a or wa	Dencen
FINGS S2	•								
8,8708	8,800	# _ ####	* ****	8,8558	6.6262	# *4228	0.01 50	0,0075	8.7922
0.4nC#	0.0000	0.8000	8.0706	8.8985	0.0000	8.0500	0.0000	8,9828	0.0000
	8.4565			A			6.8888	8.8###	0.0008
		0.0000							
e	8. N209		A ⁴ AAAA	0.4460	8.8650	0.0000	0.0000		P ⁴ 0000
8,8979	8,889F	*****	6,4666	₽,3328€-04	4 	5,500			6 ⁴ 8688
8,4888		0.8878	8.53282+84	8.8499	0,53202-04	8.8828	0_5320E=04	8,8488	M,0000
1 THE # 24	- •		•	·	-	•	-	•	
				.	8.4886		A	ñ. Ruso	8.0000
0.000	0.0000								
	10 · 10 · 10 · 10 · 10 · 10 · 10 · 10 ·	******	E. CEAN	0.0770		-B*D0042			0.0000
6,4698	8,8988	8,6559	8,9769	0,0000	0'baix	8.0000	8.00 4	n,este ·	T, TTTT
D.Dent	8.8888	8.4898	8,9899	R.8868	0.6065	8.0786	8.0008		P.0029
			8.8869	6.0000	8.91202-04	8.8888	8.0008	8.8888	6.8008
							0.0040	8.81748-84	
0 . VENT	6 ⁴ 10 0 0	स । सम्प्रस	44-33842-44		uscann .	m ² 23245-64		0.33505-04	0600VW
FINE# 52									
F_#000	P_+69A	8.8859	8,0708	e, 2226	8.9259	₽₽₽₽₽₽	8,6540	8,8898	L° LULA
8.8884	A. 8888	8.8888	8.8848	8.8888	8.8858	8.0778	6.0000	0.0000	8,0006
0.0000	8.8000								
*****	8, प्रदेश			0,0000	0.000a	#*****		USUNTO	0,0000
8,8875	0,4726E-A4	n,ettp	848688	U, #055	8.6422	8.23545-84	0.000D	0,0709	5.5500
A 848A		8.53208-84	N.000	A.9698	8,8899	# . 3327E~04	8,5979	8.53282=84	n,8868
1 1NF . 24		• • •	-	-	-	-			
A 4445	-	A 4444				A. 8888	8.8886		8.8888
0 . 	0,7007	0,0000	F•••••••••••••	0,0070					
P.0277	8.0000	8.5644	8.0000	학 : 강학 강철	8*8400	# • 00 H 0	D	n	1,0000
8.4653	8,4995	8.8888	8,9067	6,000	8,9950	A.6966	0,6789	0,0972	6*6668
0.000	0.0000	8.8620	8.8884	0.0225	0.0009	8.8988	0 ,0000	P. ####	P.0000
					A. 4844		8.33287-84	8.312HE-84	8.5328E+#4
B. WIESE BOA	P	~,	0,0000			A 61945-84			
0,33286-84	2,33207.+44	8*23565484	4 4 8 M 2 8	5. ⁶ 2446	0.000	8433565-64	0.0000	4.035 mE = 04	M [*] DC00
LINE+ 27	1								
8.8588	我,我想我把	R.8986	8.0708	8.0000	8,0009	8,2972	8.0900	*.	8,0000
	8.0888			0.0004	0.0680	8.8078	8.8768	8.8983	n.e000
			A 8864	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			8.8884		
2 ⁶ 48 2 8	유 속 김 방영적	******	******		******	******	460440		
6,0489	*****	# . #E##	# , 00%#	4.4806	등 * 음속 등 문	同事業業業の	P. 0000	0. 	1000000
A_8089	8.8088	0.67265-04	#,###	8,600N	6,0000	8,9098	0,5328E-84	0,53282+84	\$7 *328 2* 6 4
8.51288-84		6.8056	8.8899	8.8886	0.88840	A.3328E-84	8,4849	8.5328E-\$4	8.8088
1 1NE . 14								•	•
# _* 7978	말 속 한 한 하 바		4 . N . N . N	n • • • • • • •	0,000D	● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	0+0000	******	W. UVVU
8.8000	864n_8	R. AAPO	G, 0808	n,n y jø	4.0760	R. 7998		*****	F . 5225

F.5

.

.

7

•

			a`aaaa			a'aa.a	A		A. 8555	
					4 41345-00	6 61304-04	A 81365-64		8 3444	
						8 ⁴ 33546444	0,33606-04			
) ##	0,53288-84	0,0006	8,0497	e,ssee	9,0424	P,3329C-94	*****		d'atha
LINE+	59									
0, R <i>A</i>	ina -	8.0248	0,0300	# .0008	8,8898	8,8888	8,500\$	8,6990	0.0000	8.088#
8.80	a di seconda di s		<u>0.8480</u>	8.5444	8.8888	8.10.00	8.8888	8.5350	0,\$44 3	9.6338
			A 8444		9.0494	9.8868		6.4544	a .aaaa	9,9986
							4.4444	8 0844		
									A 4444	0 51201-01
	in the			B*cANN						·
4,99	時色	9,9999	P ,53202+84	#,0894	4,3000	8*23582-84	*********	4.8444	A ^t heeb	*****
LINE=	30									
	184	0.8000	8.8808	0.420N	8.0044	8.0049	8.5868	8,8888	9,845J	a.#249
a.a.	14	4.0884	0.0000		5.8965	9.9418	ø.8888	0.0050	4.0484	P.8989
						8.8388		A. 4444	6.4468	0.0444
				0.0000	5 3950	0.0000			8 8088	
	148		*,****					0 0000	# #1346-HA	0 0000
.		# * # #8#	4,8300			a faana	atese a		8433686484	
#,##		0,0000	8,53282-84	,	4,33282+84		8*8888	a'nnaa		4,0445
LINE=	31			1						
8.88	98	P.#98#	8.6868	0.0560	d ,9793	8,8499	8,8040	8,9869	0,0000	\$. 9878
8.84		A. 4884	8.8688		6.4444	9.1498	0.000	8,8888	0.0008	8.0006
			6.6888	A. 4040	8.8444	0.0000	9.4444	9.4888	0.0000	a. 6868
				0 4444		B 6844		8.8884	a. auaá	
		a bada		******			0 74748-0A	0.67365-08	0 8345	
4.48		a'teat	#********	8. 88/1E-44		44871E-84	8415142-84	a161582484		4.33245-04
	4.	\$,\$ 5 88	#"2259E-A4	a, vəcə		.	8*****	a'ntéé	h ^t hada	A ⁴ Shua
LINE=	32									
W. 62		8.6800	8.8968		U, 4889	4.040\$	g.0000	8,9944	8,9445	8,0040
a		8	0.adga		4.4444	8.6595	0.6000	8.68 999	8,8444	8.9834
		4.4444	9.6004	0.8444	8.8664	9.4469	8.4444	8.6566	0.4644	8.4444
		0 4949			4 4444	0.0000	8.4444	0.084A	8.8444	0.0444
			A 14717-84		0 0000	0 000	A 0088	0 0840	6 4843	A. 4034
- P. 33	202-94	. *****	4****	*****		a ^c anta	M ⁴ AAAA	n'észké		At LAwa
LINE	33									
	9 8	a susa	4,8286	0,042A	8.8898	8,8864		9,9988	9,0488	0,0000
	188	4.4444	8.8603	0.0840	0.0000	9.8688	8.6888	9,9498	8,8938	0,0079
		8.8888	6.8884		8.0448	A.9494	4.4849	8.4998	8.6088	A.A898
	6 0	8 8848			A. 6888		8.9485	8.8889	8.808H	8.8868
			0 0300			4 4444	A 6844	0 0000		0.0040
						4 9444		0 0000	A A044	A Ad33
8,23	202-04	e'dnah	0,00 44	N*nách		#*####			.*	
LINEO	34				_					
8,60	14 <u>6</u>	8.0824	# , qqnq		8,000	8,0445	8,8069	8,8489	P,400P	8,8998
P.80	1 PB	8,#884	P,8998	9,9898	8,8499	#,02#B	8.9984	8.4448	8,6558	9,0000
		8.8888	9,1000		0.0080	8.4440	0.8898	8,9458	# . 0088	
	i an	8. a88e	6. 6868		8.6898	4.844	0.0444	8.9958	8.9489	8.8988
	44		B. 8888			8.8488		9.9866	A. 4444	A. AA#A
	382-84					0 4444	* ****			
	202-04		*****							
L INE .	33		•							
	6.5	4.4782	.		w,5078	a'aeta	#.98#P		W, 888W	
ŧ, to	49	#_N###	8,8688	M.899A	9,4848	4,8989	8,0408	8,0804	5,5486	9,9396
	40	8,9886	B.8449	8,9898	8,0000	4,0498	ú, 1820	8,0084	9 , 9404	8,6422
		P		8.888A		8.8684	4.4484	8.8888	0.0000	0.0080
						8. 8444		8.6864		0.0440
	20.0	8	B 8338	- 4444			8.5454	2 0000	0.0400	0.0000
	24				*****			*****		
P 1 ME	30									'
		.	e'essa		**** *	*****		W. \$444	~ ~ 관계대해	W + W # M #
#,##	1 1 1	B,QR88	*,****	4.00M0	W. 8000	9.09 4 8	4.4078	#	4.4444	4,0444
	40		*,****	0.5904	0,8999	8,8484	0,8584	.	8,0040	.
8,48	PB	8.8898	8,4000	4.4888	0,000	0,8748		4.6662	9,9428	P.00¥0
0.04		8.8889			8.0000	4.0000	6.0400	8.0034		0.51202-04
		8	8.8886	8.5120F.AA	8.5128E-84	A. 51286-44	8.3326C+#A	8.6884	9.9498	
1 1 1 4 -			******			~ 4 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				
	17	•								
	37				6 61345					
0,98	37				0,5328E-04	4,5464	8,6446	8,5585	0,9000	0,8880
8.98 8.97	37 99 90	9.889.9 8.899.6	8.8998 8.8994	8.886A 8.886A	8,5328E-#4 8,0008	4,5464 9,4968	8.64#6 6.04#2	0,5373 M,0000	0,9969 4,8484	0,8880 8,8850
8,44 8,44 8,44	37 98 98	0,0889,0 0,0869,0 0,888,0	r, 4946 A, 4844 A, 4444	8, PAPA 8, Papa 8, 8888	9,5328E-#4 9,8888 8,8888	4,5464 9,6968 4,8593	2,4448 5,6442 8,8442	V, 1379 M, 6960 M, 6869	8,9999 4,8494 4,8494 4,8495	0,8896 8,8899 9,8899
8,48 9,94 9,84 9,88 8,49	37 40 40 40 40 40	0,8884 0,8884 0,8886 0,8866 0,8806	8.8848 8.8844 8.444 4.444	8,4874 8,9988 9,8888 8,8888 8,4888	9,5329E-\$4 9,9998 9,4982 8,8988	4,5484 9,4988 4,999 9,4034	8,6448 6,0442 9,8742 8,0285	0,5378 M,0000 U,0800 V,0843	0,0000 4,0004 9,4406 4,6499	0,500 8,000 9,000 9,000 9,001

ļ

F.6

 X_{\pm}

•

	•	•	•						·
LINE 38			· · ·			· · · · · ·			
8,3968	8,80 <u>8</u> 9	0,0000	61+ 248 0	8,5999	e'2356E+04	64666	0,6080	O'BAAM	10.000
8,8889	8,6996	0,0896	*,5588	e'ssee	e,erre	0,0200	8,8040	D.2999	6,0000
*,****	8,0000	H .89 48	6,9699	8,8088	8,0905	8,9999	0,0589	0,0800	8.0008
0,4040	8,8788	8,9995	8,7998	6,6908	0,0800	8.9999	0.00 00	8,6488	8,0078
0,000	#_n###	5,9849	6.9708	8,8088	8,0098	0,0909	8,9096	F. 8888	8.0555
0.0000	8.0748	P.0008	8,7799	8.0000	6,0505	0,000	6.6808	0,6779	8.0010
LINE 1 39	- • • ·			•	•			•	• • •
8.8468	6.88#6	8.6898	R.Ogen	8.8089	8.53282-84	6.0000	A.862A	8.53286-84	8.6666
8.8888		8.5888	A.Dees.	R. Burn	8.8888	8.8884	8.8988	8.8488	8.000
			8.8868	8.6888	0.4900	0.0000		6.0898	8.8655
						8.8444		8.8488	
		8 8668	4.8888	8.8386	R. ARAS	8.8866	8.8898	6.0498	6.6668
4 4444	* ****		A. 9844	8.35A78-8A	8.4848				0.0000
	D [®] nnad	*******							
	A					a airea			
retete .	5°04AH			0.0000	4,33201-04				
				0,2000			0,000		
8,4848	0.4454	440410	******	6.4444			0,0000		7,0040
F, 7899	5,8089	a*1048	8.9090	N. # 8 1 1	0,0000	8.6868	0.0440	# • #####	0,0000
C. 7069	6.9226	8.2623	8,8798	e,	5.504E	8.797H	8.5025	8.5000	* ****
0,0000		6 °6 220	8,9688	8.859 8	0,53282+04	4+8668	8,8798	8 ,86 49	a*Léss
LINE= 41				i				· · · · · ·	
6,6466	8.078 A		8,9788	8,8868	8,53282-84	8,8888	0.0000	0,000D	M.2356E-04
0,53286-04	0,53202-04	8,8488	8.2949	8,8288	A,898#	8,0900			8,8655
8,8889	y, gaga	0,0900	8.9999	8,0009	0,6995	8,8988	8,8898	8,8449	0,0008
8.8848	8,4998	8,0050	8,7990	8,8909	8,8888	8.0000	8,8789	8,8988	8,7988
0,9840		6.0008	0,0008	8,8000	8,8488	8,0008	8,0000	8,0000	8,8998
8.9840	8.532FE+84	8.0008	8,8988	8,8988	0,33282-84	8,8788	0,0000	0,7908	0,0000
LINET 42		•		•				· ,	
8.8478	6.0895	8.8488	8.5448	8.53282-04	8.5320E+84	8.9898	8.9796	0.0000	P.8666
	4.4994	8.41282-84	8.0088	8.8888	8.8868	8.6986	0.0000	8.9898	8.0008
6.6888	0.0580	8.8888		6.0988	8.0001	8.8008	8.8688	8.8888	0.0000
		6.6466		8.0086		A. 6888	8.8589	5.5569	8.8888
					8.8986				A. 0848
		0.0130x_0A	A. 8866					0.0000	6.6666
0,0000	a * 6 an to the	123205404							
L3424 43		A							
	*****	0.0000			F				4 8444
P.JJCPE-E4	8-736HE-84	0 0000			0,000				
		2 8 2 7 7 T	0.0000	0,000	4.8440		8 8 8 9 9 9 9		
		0,0000	0.2570	a		0,0770			
	8,1586	0.59959	0.0000	8.8468 8	0,070D	0.0400	0,000		
	F , 8728	8°688ô	666640	6 ⁸ 6848	8 ⁶ 4864	*****	0°6140	L ⁴ Anta	0,0040
FINED 44				·					
	6.8234	4,0278	N, 7999		#, #V#¥		0+33%#8+64	8+33545-64	0,33602904
0,532tE-P4	8,0788		8,0999	8.7975	0.0000	8.8844	0,0700	H *1044	8,0000
8.6608	8,8788	, -, -, -, -, -, -, -, -, -, -, -, -,	5 . F797	e.erte		5.0825	D. CV2D		
****	H.8489	8,8888	0,0009	6,2240	8,8460	H*2048	5.0000	8.8000	0*6524
8.8999	9,0096	0,8880	6*23566*84	8, 53202+04	8,53202+84	0.3328E-04	0,3320E+04	6.23565-04	R. 2072
8,088M		8,800	8,9868	*,0006	8,8985	6.0486	# * 每日每日	8 . nq88	8,8959
LINÉ+ 45							× .		
8.8829	₽_µ 月 世界	8.8889	0.0625	6,6080	0,53282+94	#,93286-84	8,53282+84	8,8978	0,0000
8,53286+84	8.879.8	0,0040	F.\$059	8.000	0.0995	# ,0 006	8,8778	8,8689	A.0000 ···
0.000	0.0000	8.8888		8.8888	0.0900	0,0008	0.8048	8.0009	8.8669
6.8556	8.8886	9.9888	8.9688	0,0390	0.0000	8.8995	8.9797	8.8885	6.0075
8.8834	6.53285-84	A.4328F-84		8.9985	0.0000	8.8886	8.8568	6.0044	8.9898
		8. 66RB		8.8888			0.8000	8.8488	0.0000
1 1M6 a 44	* • • • • • • • •		* 4 ···· • •	*******					
			4.51285-04	8.51205-44	A. 8988	A. 6848	8.93285-44		8.8948
Terrer Bead			###JCTL-04	8 81385-84	8.000	8.8066		A	8.8088
			******	******					
	******	*****		Perovo			0 00ron		A. 21385-54
	*****						0 0000 ·		
₩,73676+₩4	******	******	#######		0,0007		4 TTT		
	8.87.19	******	*****	4 • AAG M		176 <i>0</i> 042	#eongr	*****	. dan ga
LINEN 47									
6 °2496	*****	· #,5328E+#4	******	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	1. ⁶ 1.5 2.0	# * 88888	7.07799	4. 4 4 4 4 4	*****

F.7

,

1

.`

1 *

NY

								-	
a [*] 4434		• • ••••	a	a	a 0404	a aaaa	a.a.a.a.	a.a.a.a	8.8888
				à 4935	A 8444			6.53246-84	8.53286+84
					0.000		0 6048	A. A484	
						*****	a 6444	A 4444	A AAAA
8.8849	6,8+0P	a'asat	d [*] auta	# * ####	D⁴RAGA	u,,,, ,,,,,			
LINE= 48			_						
	8,8488	8,898A	*, \$\$\$\$	8,8884	0,0000	4,8338	8,0808		9,0000
8.8888	8,0840	0,33206-04	9,8988	0,0000	ø,øøga	4,0000	8,0008	ə, 8999	a,eeee
0.0000	6.4846	8.8688	8,8444	0.DDOX	0,0490	0,0000	0,9040	0,8484	*,04\$#
g 4.44		A. 8588		0.0000	0.0000	8.0000	8.4444	8.33246-84	9,9395
A 8994		8.8888		A. 8844	8.8848	0.0448		8.9444	8.8469
A AAAA		A		A. 6444	4.4448	a. aaaa		8.8489	8.8888
	•••••••						+++		••••
Clarke da							-	a.a.444	D. 3343
a	e Hent						0 0000	a aaaa	a aaaa
8°37466-444	8,53488.84				4			*	5 548 4
0,000#	0,0AUP	8,8998	0,0888		e,saaa	a'area	8,8688		
8,4858	a', mbga	W_#98#	,	8,8889	0,8840	0,0000	0,33566+84	0,33202404	
*****	6,0000	8,8300	8.8844	8,0046	9,9983	F,8888	9,9000	8,8484	0,0000
	8.849A	#, * \$\$#	J.8088	8,8848	9,9999	Ø,8448	8,8698	8,6664	ų, 84Ja
LINE SA	•	•							
A A4AA		8.8868	8.8868	8.8886	8.8884	0.53286-84	8.53272-84	8,53288+84	8,53262-84
6 5124F-44			A.4444	4.8888	8.9648		8.4854	8.4668	0.8008
A 4444			4.4444		8.6568	a. 5445	A. AAAA	8.0008	0.0000
		A	0 0000			8.93395-84	8.53287-84	0.5124F-BA	D.0000
				A 2000		a 5940		0.0444	a. 8448
			. N ^a anga					0 0463	a 6444
	8,848A	a'bawa .	· • • • • • • • • • • • • • • • • • • •	*****	a'ssin		84 899 8	a ^t aana	*****
LINEO 31			_						
.	8,0000	a''asse	8,4888	8,8999	0,33206-84			a'ssecond	M ⁴ 900A
e_aaae	0,5320E+04	8,8284	#, 8884	0,0000	0,0000	a, sess		8,8086	8,9968
8,8484	8,8548	G ,8888 ·	8,8088	8,800	a,8887	8,8988	8,8349	, , , , , , , , , , , , , , , , , , ,	9 . 4968
8.6298	P. 494P	8.8898		8,8449	8,33282-84	9,6078	0,0004	8,8494	8,8508
		8.9566	8.6648	8.0000	8.8848	6.4928	0,0000	8,8988	8.8844
	A 8848		A. 8448		4.0444	A. 688A	4.8948	8.8888	8.8880
1 146 6 52					******			•	
LINE 3E				0 8444			A SIJAF-GA	0.0446	0.5120F-84
							0 6440	a 2082	6.0006
	A*23%wE+A4	******							
4.0004	0,8480	.	914864		a'anaa				
.	8,0798	#_\$8 8 \$	8,9888	0,53242-04	0,0000	8,0560	8,8484		
8,8580	8,0899	8,8993	P .9888	8,8888	a,eese	4,6444		*** ***	
8,1888	0,8860	9,5620	8,8484	8,8488	0,6244	4,8868	0,0000	a*6848	a'eess
LINË# 53	•			· ·					
	8.8888	W.8898	8.9888	0.0000	8,6868	8.9989	9,9 888	(), #¥##A	0,0000
8.4888	8.5328E+84	8.8688	8.8088	8.6944	9.9646	8.8888	aa	0.0000	8,6384
		8.8669	8.8444	0.4000	9.8848		0.0844	0.0000	a
A 8894	A		8.51365-44	8.8348	0.0000	A444	8.8464	4.5464	8.0866
			d \$444	6 6664	a aaaa	4. 8844			4.5944
6 6660		A	à 6445		3 3405			A. 8444	
	*****	a ² news	******	*****	afense.		n ⁴ naau		
FINE® 24									
8,8+00	8,8798	*,****	•,•	0,0000	8,8999	8,5554			M+0444
# . #HA#	8,8848	8,8888	8,8998	8,8648	4,8998	2,0004	F, 8489	5	a'aaa
0,8200	0,004A		0,898A	8,888	5933,	5933.	5933,	5933.	9.8999
0,0840	0.0040	0.53202-84	0,0000	8,8698	A, 8968	0,0000	4.4448	8,9459	8,8978
		a nana	8,8888	8.008	8,0008	A,4488	0.0400	Ø,9088	4.89##
6.4000		8.8688	A.9868	8.8668	9.8469	8.6868	8.4396	6,8588	4,4868
LINCA SS									-
					A. 8588		4.8848	9.8549	a.saaa
				8 3844			8 8888	8.9448	
.			0.0000 0.0000						A 83386-84
	M.746M		H . 4005			e ²			# #340 # #340
P,532FE-P4	H"23546-A4			a'ttu	9,0444	b * <i>bd#8</i>	A ⁴ enth		
8,84A8	*****	8,8889	*.988 4	6,63 0 6	8,8865	0,000	9,0864	-,.upp	4.9684
N, 809A	0,8#04		. ####	Ø, 8984	8,9468	a,5489	a . 8888	# . #####	u, pesp
LINË= S6	· -			•	-	-			•
A. 4848	8.0000		0.0660		8.0060	8.0845	8.3649	0,0404	0.0000
	A 9984				B. 8868		6.6848	4.0000	H. 8644
A Auta	A 0004	A AAAA	4.8005		A. 8844	A. 8484			
A 3444		*****					A. AAAA	A. A446	
******	4".736.664.468	******	~ _ ㅋㅋㅋㅋ		******				

F.8

Λ.,

TABLE F.1B. (contd)

							-		
8, 9eAs		0,000	8,8888		6,6888	A.8588	0,8008	8,8288	8,0049
LINÉ= ST							•		
0,9880		8,6678	8.2029	8,9048	8,0089	0,000%	8.2779	 .	r, 996r
P., 997 P	8,6908	8,0000	8,7600	0,2656	0.0000	8.8888	8,7720	8,2788	A.6666
6,4848	6,5886	N. 27799	8,8080	0,7499		2,0009	0.0040	2.2000 2.2000	0,7770
M, 9889	#.5328E-84		4.4666	9,9980	4.0040	0.0000		8.8648	0.0000
C, TRAD		<u>, 4848</u>	8,0268	A*8884		Deter	8.8448	******	R. 8999
0,0000	********	8 ₉ 8998	54000		e • • • • • • • •	n	8°5446	8. ⁸ 6.668	위 _속 한필정법
CINE# 20									
0,4000		4 ,2777		0,000	0.0000		0.0000	0.0000	0,0000
D, 4840				D	0,0040	n. çç ç	0.0000		0,7700
	.	0.7707		0, P400	e tere	# • 100	0.0000		0.0000
0,0000	2,33KHE+#4		0.0000	0,0000	8.9000 8.9000	n	0,0040		8.0425
r, trup	8.8759	0.0000	0,0000	0.0000	0,0004	N. VVVV	0,000		
8,8678	8. 9 9 9 9 9 9	0.0070	6 ⁶ A 10 10	a ⁺ weez	6 [.] 6028	S ^a sals	0.000	******	
F146a 34					A		A		
	N , N N N	0.0000	#4P#20	D, DECH.				0,0000	
			040700			0.00070			
0,0000 0 01200-00									
0,336FC+++									
	* *****	0,0000			P.0004			0.0049	
I INFA AD	8 6 8 4 1 8			0.0000	u t a a a a a a	*****			0,000
			8.9868						
				8 6688			6.0000	8.8688	8.6868
		A. 0586	0.0000	8.8486	8.8888	A. 2026	9.0000	8.8088	6.8680
			8.48es	8.8849		8.8848	A	1.6488	6.6666
0.0000	8.4898		8.8266	8.9356	6.6886	8.0858	8.0046	8.0084	
8.8888	8.4888	6.6466	0.0000	8.8888	0.0008	8.8928	8.6998	0.000	0.0000
I THE AT									
0.5888	6.0808	A. 6898	8.0008	0.4868	6.6668	8.6888	8.8968	8.0000	8.0000
8.0468	6.6064		8.8888	8.8866	8.8668	8.8488	8.8888	8.8684	8.0000
	6.4549	8.8688	8.0000	8.0000	8.8868		8.0008	8.8888	8.8008
		8.8888	8.5686		8.8888		0.0000	8.53292+84	8.33202-94
8.5320E-84	8.53288-84	8.53288-84	8.0000	0.0000	8.0000	0.0000	0.0000	8.0005	8.6655
8.6889	0.0000	6.6556	8.0000	8.0000	8.0000	8.0780	-8.0906	8.8898	8.8666
LINES 62									
N. TOPN	8.8888	0.0000	6.9686	8.000	8.0700	6.0000	6.0985	A.0000	8.0000
8.9998	8.4778	8.9950	8.0090	0.0000	6.6728	8,0000	0.8998	0,0970	8.0008
P. 0008	0.0000	6.0008	8.0000	9.0009	8.0908		0.0000	8,0000	0.0009
0.0000	8.4779	A.8880	8.0898	8.0988	6,33262-84	0,53292+84	0.53200-04	R.8979	0,5329E+04
0,000	B. BRRB	0.00AN	8.0000	6.0000	8.8668	6,8898	8,8869		8.0009
0,0000		8.8848	8	P.9698	8.8988	0,0000	8,8968	. A , 2000	0,0000
LINE= 63						1		, i	
8,8485	8.4000	8.0008	8,0007	0,0500	8.9980	0,0000	0,0700	0.8000	8,0000
6.6446	8,*769	9,9000 ·	8,0000	0,7700	0,0000	.	6,8800	8,0264	B. SQUQ
8.8889	0,##88	*****	8.0098	9,0000	0,0000	0.0000	6,8998	8.0870	8,0092
A.8688		8,53282-84	8,53288-84	0,53202-04	###\$328E+#4	8,8694	0,7900	0.0070	e.,0868
P,08AA	F	8.8878	0,7507	0,0090	0.000	8,6906	8.0000	P.0090	8.9889
R, 980P	8,0080	8,8898	8,8768	8,0009	0,0000	a"uuuuu	a.284A	8,8668	0,0000
L1HE= 64	-								
8,4379	8,#₹##	1,0000	8.9998	0,808A	6.8688	8,8888	0.0000	8.2228	8.4698
n, en en	9,970F	9,8989	# . 087#	8,6900	8,0000	7,5869	8,8988	8.8888	6.0668
R.9890	.	0,6680	****	8,0000	8,0000	8,0040	8.#848	8.4849	A.0260
8,8840	8,0908	8,0000	0,04N0	8,8708	8,8989	8,8808		0,0004	0.004\$
6,0000	0, 978 7	9 . 0279	8.8488	8,9009		8,8788	8.000	6,6999	0.0000
8,9848	M_0A70	A.8848	8°6804	8,8888	8,0088		n,000 7	W.8888	# .0978
L1NE= 65									
	M, MADO	8,4210		W. 8888	0,0709	W, 8583	5,0009	n	
#,8696	B_##U#	a * wasa	. , VO9 .	0.000		7.9978		8 • 6 • 6 • 6 • 6	*****
8,8846		a , #8 ##	R. 884A	0,0000	8,008	8,9979	8.2688		0.FF20
	P.(1900	8,8498	8,0840	等。伊朗伊奇		0.0000	5.57 7 7	0,0440	N
8,8488	# . nP##		F, F\$(M	0.9J##	*,0***		비송한위원학	*****	*****
	F., ####	F.46NB	9,4988	0,0096	# . ##88	4.6865	日。日町時間	#*****	5° 6 6 6 6 6
		40 0 40 0 Ada 5 40							

1.

. •

Ì

TABLE F.1C. Well Location and Ground Water Elevation File

100471		TH REFUSTION OF	1161 L S
PORMIT.		UATEN ELEV	V510
	7 LULA	974 3	
11343"1	0707,0		27
440341	131/3,3	34818	20
13717,1	55876,8	2519.8	11
12558,7	51429,1	254.2	71
13652.0	86561,0	292,0	71
11933.4	89 873 ,4	275,0	71
38268.1	87597.3	235,4	71
31914.4	76255.5	178,9	69
35828.5	57147.5	255.3	71
46951.5	29243.7	257.0	59
43676.7	28389.1	267.9	57
53407.7	33180.1	247.9	52
55418.4	34785.8	242.0	71
76940.8	54885.9	252.0	60
49458.4	62459.6	229.9	56
56824.1	79850 1	249.0	71
77813.0	66447 Q	248.8	71
1.000 1	1813 1	A (A (A	58
78470 . 3	49733 0	219 0	4.0
1013183	04732 0		20
441343	74/72.4	541.0	/ L 4 3
17929.4	100000.0	281 2	54
12043.2	120944.0	237,8	
14052-9	124030'0	200.0	84
28294.5	124191 9	319.8	n
9455.8	165856,4	528.3	59
5489.2	168416_2	237.0	71
1844.4	169312.7	249.0	71
17831.4	171319.8	426.0	71
29384.9	176953.5	350 a	. 64
42157.8	178268.7	290.3	71
\$6705.4	177868.5	295.8	71
38825.5	161863.4	269.3	71
42468.5	160187.7	259.9	71
48512.7	157826.6	285.9	71
27225.7	154926 5	315.0	23
28825.1	154428 9	311.0	56
29144.1	145984 4	347.3	71
44145.3	134488 6	258.2	41
57404.8	141099 1	394.0	71
54188 7	126326 3	255 4	67
54100g7	124310 0	53318 251 g	74
33133 3	121210.0		7.0
7212282	447844 7	578 4	<u> </u>
40927.1	10/200./	232,8	11
44033,4	103601.4	84348	11
04/02.9	103105 3	66713	71
92221,9	97917,9	400.U	. 64
72747.2	41345"2	524 0	71
3630,1	184283,5	237.8	65
4986.1	191503,8	255,9	71
11036,3	4,520588	255,0	71
23247,5	196892.5	355,0	71
15399.8	214809 0	389,0	71
18353.0	214491 2	298.0	69
2949.2	215930.8	257.2	65
1913.5	222945 3	271.0	71
6536.1	232380.6	285.0	71
19238.1	240294 5	285.2	71
17472.0	250374 7	322.4	71
12325.1	254850.3	324.9	71
3741.4	26481% 1	292.4	71
			* •

	ABLE F.IC.	(conta)		
*****	391636 3	333 #		
30033,1	265746.9	365.0		71
41398.7	257798.0	142.9		71
39309.4	254888.9	210.0		66
34809,3	255534,3	268.0		68
48838,0	257863,6	322,6		71
51909,2	257284.2	100.0		11
43344,4	C3EC41,7	469,0 315 A	1	68
31103.4	241538.3	317.6		64
19874.2	229407.6	313.6		71
24186.8	222662.1	423,6		71
39515,2	226258,0	360.0		71
32536,9	210683,8	466.0		71
35619,6	213169,0	291,0		
4/030,1	209714 3	315.0		71
51396.7	184116.8	295.0		71
56131.9	283169.0	372,8		71
62666,6	208408 7	322.0		71
65947.7	207792,2	316.0		11
65296,8	202703.5	TAT B		
77486.9	192625.7	315.0		67
68145.8	218023.3	323.6	•	ŤÌ
71746.8	217988.6	319,0		71
64889,8	229434,1	321.0		71
53803,3	236784,7	386,6		71
46196.1	242182.5	313.D		71
	244306,3	225.8		71 66
69848.7	269340.2	483.8		71
63912.5	271293.8	324.0		71
45562,5	257177,2	424,0		71
8969,3	273035,6	356,0		68
6499,2	274841,2	350,0		67
23903,6	212201,0	363,0	а. -	71
4626.5	294217 0	328.0		71
10893.7	294942.7	365.0		67
21519,2	296963 3	348,8		69
13873,6	30689,8	543,0		71
1878.0	389741 7	338,8		69
43007,4 Salat.5	10000].4 105121 5	103.A	,	¥1
51794.0	294191.6	385.8		71
48699,8	296395 8	359,0		71
47236,2	288654 5	395.0		68
46829,6	285386,8	481.0	. *	63
58173,6	274818,6	351,0	·	71
44400.1	277075 3	303 ₂ 0 448.0		71
62672.5	278645.0	342.8		71
78597.4	280737.4	379.0		71
76575,1	298374 2	364,6		71
78296,5	308721,4	403,0		71
59643,3	306582.6	432,8		71
10450.7	313300,3 316819 E	404.0		11
16995.7	322877.A	431.0		51
26862.3	326148.4	491.0		Īī
3710,5	333497.5	445.0		71
2938,7	337866.9	433,0		71
5511.5	338703,2	425,0		58
2192,8	344461,4	461,E		71

,

	TABLE F.IC.	(conta)	
22469.5	300386 A	527.4	
13786.8	355943.3	479.3	
2584.5	358754.8	447.0	
18274,5	358232,2	446.3	
19922,7	360210.8	476.0	
5722939 9	357554,5	467.0	•
45927,1	354574,4	30/ 90	
32011'4	347/38.1 114467 1	320 8	
3013746	119414 7	498.0	
31524.0	326344.2	572.8	
34060.1	313114.9	465 3	
45755.9	320436,1	453,0	
43125,5	326183,3	539,0	
53552.4	335370,5	431,9	
34437.8	JJJ400,9	410 ₉ 0 481 a	
45431.0	337373 ₁ 2 141437 4	552.9	
73759.8	357591.3	522.0	
73020.2	343627.5	469.0	
64866.6	333589.5	275.0	
4309.5	372673 8	441.0	
5478,8	374234,9	463,8	
19378,3	386528,2	443.8	
11943.2	398214 9	461.0	
26132.2	398322.0	453.0	
43542.5	396168.3	450,9	
22750,0	492763,1	455,0	
30095,2	405400.3	525,0	
35972,8	407022.5	540,0	
34/44.0	407100.0	43/60	
20115 6	4154343	484.0	
31214.1	419990.1	503.0	
58545.1	419594.0	452.9	
33136,8	431473 0	484,0	
32512,4	430841,3	487.9	
31589,8	429533.0	479.0	
14787.4	420414,3	444 8	
43370.1	440JE1 7	399.0	
46191.3	435563.5	488.0	
43302.1	432957.3	435,0	
43738,3	431139,8	415,8	
42320,5	426594,3	442,3	
62607.1	430085,1	599.0	
72353.3 44745 7	420000.0 428128 8	330,0 137 d	
71594.5	431845.5	358.9	
75397.5	427071.1	423.8	
56204.6	425416.8	411.0	
55371,6	421605,9	399.0	
69311,8	416330,9	432,0	
59747.3	411792.0	440,0	
20410.0	40/3/8.3 40/327 2	428.0 414.0	
72602.3	396872 2	421.0	
78157-4	394263.9	444.0	
74980.5	385750.7	418.0	
69108.8	385642 8	418.8	
71883,2	383679,2	418,8	
68817,8	383326,5	450,0	
b344148	585057.0	435,0	
3780/.1	394341,0	498.4	

.

:

70407 8	100099 0			
34467.0	307916,0	46196		
36447.7	368412,8	423,8		- 71
42479.7	384018.3	396.8		61
44184.3	SEMESE 5	416.6		64
24873 4	110006783			4.0
300/144	916314 0			
33306,2	571830_4	550,0		71
19773.9	391149.4	444.8		66
14521 7	384300 8	A74 8		68
1413041	300/77.0			
55690 [°] 1	363713.0	440.0		
18648.8	380846.9	461.0		- 71
19615.9	374875.6	474.0		71
10110 8	176001 7	454 0		- 21
478178	413011			
20100,Y	310010 1	423.6		D 7
14373,7	366201.7	450.0		68
44016.8	373599.2	444.0		58
R#148.0	170521 7	521 0		71
42100.1	20112112	360.0		
54438,3	374169_9	522.0		- 71
64343.7	367633.8	421.6	•	58
76448 7	347845 7	514		- Ŧ.
13000.1	39131211			
76774,4	316634°0	230.0		11
76230,3	373744_6	579,0		- 71
76962.5	399261.1	466.0		71
A0117 0	404575 Q	455.0		21
0313167	400313,4			
63366,0	412000.0	474,8		- 74
65727.5	417825.0	466,8		71
73714.2	417699.8	475.0		71
73743 8	A15711 1	441 8		
10590.0	424837.1	201.0		11
75750.7	432999.2	402.8		71
75846.3	444187 0	452.8		71
46070 1	8 A 4 7 8 A C	244 4		
03017.3	441108-3		÷	
78314,2	445333,4	303,0.		03
55371.9	451196.4	417.0		71
54212.4	454040 8	378.0		71
		TEA A		
03713,0	NB0C71,0	33445		- 11
P152A ⁴ 4	477474 6	434,0		66
67440,6	479577.3	407.1		66
54248.1	480151.7	487.8		71
54862 4	###E36 A	A11 0.		
- 3403E.0	404323,0	-33,0		
06264.1	484303.1	423,0		11
73496.3	506521.1	463,8		71
75618.1	525932.1	480.8		71
124181 8	573180 0	443 0		72
15010140		40540		
A4621 8	200248,8	466,0		76
139268.4	549949.9	410,0		- 73
118226.9	537335.1	432.8		73
87417 6	571708 1			9.1
	533384 1			
00400.4	>34773,>	421,0		- 71
95526.v	533860.4	455 B		71
183713.4	528320 4	405.6		71
ANEADT A	598411-1	842 H		
1000704*		70690		11
114543.5	250114'1	210.0	· .	71
: 115857.1	52649511	368.0		71
132162.0	524831 8	656.8		65
LALALS A	514500 E	396.0		74
		47940 ARD 4		
132447.7	2141124	426.0		63
12395123	516970.2	378,6		66
131814.4	517225 4	367.8		65
121220 /	516607 A	800 a		
10905744	-1-001 0			
127391,6	216923 4	346,0		65
146659.2	504380.9	373,0		65
105542.2	51 5145 1	378 R		71
104224 2		174 4		74
10461443	307746.1	# F B 4 U		- ! !
100724.7	916951°P	40740		00

TA	BLE F.1C.	(contd)	
$\begin{array}{c} TA\\ 133075, 5\\ 154547, 3\\ 1515427, 3\\ 155547, 3\\ 155547, 3\\ 155547, 3\\ 155547, 3\\ 155627, 3\\ 155627, 3\\ 155627, 3\\ 155627, 3\\ 135269, 4\\ 135269, 4\\ 135253, 3\\ 13505, 9\\ 107048, 4\\ 113793, 4\\ 12373, 1\\ 97955, 5\\ 10373, 1\\ 97955, 5\\ 10373, 1\\ 97955, 5\\ 10373, 1\\ 97955, 5\\ 10373, 5\\ 10373, 1\\ 97955, 5\\ 10373, 5$	BLE F.1C. 491939,0 484198,0 484198,0 484198,0 477039,9 477153,0 466322,0 455272,2 453472,1 455473,3 469493,7 471715,7 480561,3 490322,5 490322,5 490323,7 490322,5 490333,7 509603,3 509603,3 509603,3 509603,3 509603,3 509603,3 509603,3 509603,3 509603,3 509603,3 509603,3 509603,3 509603,3 509603,3 509603,3 455256,4 455256,4 440966,8 455256,4 440966,8 455256,4 4566,8 424584,2 45643,0 424584,2 425828,1 45643,0 42458,0	(contd) 348, 4 379, 9 357, 9 357, 9 351, 9 379, 9 449, 9 365, 3 365, 3 365, 9 357, 9 361, 9 403, 9 355, 9 355, 9 355, 9 326, 3 355, 9 326, 3 355, 9 325, 9 35, 9	6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
89142,9 100752,3 90937,3 94348,2 95561,0 100829,5 100829,5 107939,4 108252,0 107939,4 108252,0 113627,1 11325,0 113627,1 113073,9 113627,0 113944,9 110949,8 11494,9 113947,4 12948,9 12948,5 129448,9 129448,9 129448,9 129443,9 130066,8			71 63 71 71 71 71 71 71 71 71 71 71 71 71 71

• . .

•

. F.14

Τ	AB	LE	F.	.1	С.	(co	ntd)

		8 at 1		
126336,5	422751.7	346 0		11
144457.0	426759.6	348.8		65
	434474 7	111 A		60
1-11-10-0				
148839,6	434528,5	378,0		07
136833.3	444602.8	359.8		- 65
	AR6804 4	428 0	· .	48
13103190	44047181	450,0		
9775C.Ø	361557.7	436.0		71
414794 5	140149 B	488.0		62
19191946	300100.0			
126499,4	350036.0	404. 1 0		71
114683.4	350858.0	486.8		71
	143465 4	442 4		
4704144	34518341	40698		
94653.5	342481.0	586.0		- T1
114888 A	115171 T	362.8		71
		155 0		
40101.0	214222*0	733 44		
184604.9	307788.2	358.0		71
AATSI K	104126 0	144.0		- 9 Í
0715143	3043E3 . 7			- 11
01000,3	303245,2	.395'10		71
124811.6	301057 9	332.0		71
		161 4		- ÷ i
191631*0	201530 3	333.0		- 11
148721.6	298354.3	175.Ø		71
121204.1	200071 5	532.8		61
		268 8		- 22
46055,5	246040,1	23340		61
79938.4	282527.5	336.0	· ·	- 71
104043 A	286898 6	381.8		71
100000.44	200070.0			
145384,0	26/157.4	715.0		
144768.5	284658.7	341.8		- 71
ITALES D	27:46 87 0	115.0		71
19683696	E10003.7			
121395,5	265191,8	394,8		- 71
113609.3	261967 6	314.8		71
		1 1 6 1	1.1.1	
00152*0	<pre>coup1*c</pre>	a/a,0		
93369.9	242201.4	293.0		- 71
104044 7	241745 1	3 A.D. M		71
10404411				
120326 4	247013,4	71446		11
64662.3	235185.2	318.8		71
151858 0	999896 7	111 0		94
161614.0	EEE863, 1			
112954.8	213382.4	314.0		71
100924.9	206927.8	311.6		71
		1 2 2 4		
137000*1	CC1104.1	19340		
134061.5	218856_9	171.0		71
111168 8	212511 8	23.0.0		91
14310743				- 11
127986,9	207812.4	CDD*n		- 71
83325.8	214477.1	10S.K		71
04344 4	IROSTT T	270 6		7.4
VUEDU#3		210 0		
¥8344,1	100040.0	C10 0		01
95687.6	189601.6	325.6		71
155679.1	PROSUD 1	194.0		71
		57742.		
193005,5	140300.0	C11,0		11
146273.6	19475311	59578.		67
108845 2	182278 2		· · ·	4.0
14040345				
137019.1	172704.5	240.0		- 71
182328.9	154968 8	300.0		69
ATRAL "	144849 4	241 0		91
4388344	*******	66495		
¥2247_4	137172,3	435,8		- 76
114657 4	142855 A	264 B		71
	*******	346 4		4.0
1+0023*1	130241 0	£/3,0	•	00
145039.6	111286_0	-255_0	· ·	- 71
112971.4	184994 4	279 8		72

120112.4	100011 5	207,0		- 71
106486.4	105629 4	232.8		71
84151 1	124874 7	TAA A		

105086.7	94283,5	231.0		- 71
187734.1	93965 4	162.0		58
		350 0	•	
112153.6	100147.7	63670		- 11
116353.2	94652.0	231.8		68
116353,2	90652.C	231,8		68

<u>TA</u>	BLE F.1C.	(contd)	
91370,4 115957,7 118437,6	84343.0 84516.6 84597.0	334,0 334,0 236,4	
131559.7	84619,6 84489,1	319 A 248 3	
151821.3	\$4793,8 63084,7	215,0 244,0	
111967.4	57834.0 54278.2	237.0	
96242.4	53738,5 60738,0	236,0 241.0	
82806,1	62542.6 63849.5	188,9	
53783,1 83528,9	12829.6	200.0	
5365,3 87168,5	2773,3	209.3	
89877.1	12643,5	229,0	
106255.3	3835,1	244,7	
133468,2	45613,7	238.9	
151391,1	1456,5	284,9	
199795.4	45276.4	247.0	
16997.3	45517.6	231,9	
152387.5	47924 4	273,9	
175271.4	91615.6	258,2	
159276,3	132113.4	251,0	
160551.5	174863.8	284,9	
106034,5	147077 1	252,9	
192518,8 289745,9	129794 5 95793 4	248,2 239,3	
213234,3 220187,5	98758.3 111175.5	244.3 247.0	
294275,9	1915111 4	211,3 115,8	
222957,7	165263,9 195828,6	176,2 259,0	
159235,8 159995,9	195159 9	345,0 270,0	
173453,9	197994.0 201324.8	253,0 279,2	
166792.2	212125,7 213639,1	254,0 244,0	
160806,3 216113,4	228483,9 227645,5	279,0 279,0	:
158593,4 158539,6	230364 0 258786 2	295,3 312,3	
215832.3	263412,5 252711,1	258.0 212.9	:
224948.1	260372.9	312,4 313,0	
177512,2	271488.3	330,0 285,9	
196362,5	284792 2 294424 9	286,8	1
	396830 3		

TABLE	F.1C.	(contd)
	the second s	

IABEER A	383874 N	220 8	
18543894	E13030,0		
194145.1	266421	363.6	
173810.6	296341.7	313,0	
195371.1	296435.8	386.8	
102147 1	298075 2	318.8	
17310393			
201114,4	SA4102*1	316,0	
216766.4	296127.2	322.8	
228676 8	294256.2	326.0	
311817 6	10.503 1	314 8	
CI1013.3	301305 1	310+0	
209549,7	306417.7	322.0	
221318.1	306568.3	314.6	
213713.8	304554 9	312.0	
5131339V			
Enoconto	300/13,2	30/ 0	
199428.9	311988.5	320,0	
286452.3	314996.2	311.0	
	118040 L	111 8	
10411191	310707.0		
1445233,6	323176.9	336.D	
165605.9	347335.1	349,8	
117958 6	150054 1	245.0	
		34.0 4	
14141401	347313,3	ECUeU	
196146.1	336589,8	287.6	
211203.4	316586.3	288.6	
318034 9	346144 7	127.8	
227185,2	324234,9	c11, c	
185769.7	368782.1	307.0	
184213.6	36BR7R M	289.8	
1 8 4 6 7 6 4	TROOPY 3	130 0	
100314 1	305433"1	are,e	
178072.5	393128,4	330,6	
163664.8	398697.7	341.0	
143343 4	1003#1 0	TAT A	
TARSOLLG	37760317		
100011.0	400141,1	313.0	
159367.6	420188_9	314,6	
186346.9	417829.3	344.6	
104450 3		11 <i>0</i> 0	
170420.C	411130,0	31010	
246437.7	406708,6	228.6	
214698.6	400345_2	310,0	
229776 B	427137.3	329.6	
104724 1	AAREA A	346 8	
1-0130-1	443300.0	24040	
158243,5	455655,2	336*6	
157625.6	457421.0	361.0	
171818.3	A68371 8	126.8	
113431.0	410345.0	346,0	
158697,8	478856.0	346,8	
158833.1	483857 8	249.9	
Takos &	644851 4	TuT d	
	50-0000 A	44.7	
124544 . 6	210541 0	413.0	
176340.0	500179,2	395.6	
176855.3	507533.6	447.6	
174134 8	SISCAL D	468 8	
L'Cars,o	273301 4	40440	
174061.4	255181 6	42648	
176886.3	527456.4	462.8	
193105.6	52575R 1	442.6	
108467 0	SATTLE T	415 4	
14000144	223300 3	****	
102513,0	303402.3	423.8	
195449.2	490694[3]	403.8	
198688.5	485742 0	396.8	
486143 -			
14337298		450,0	
171851,4	473635_6	355,8	
201906.9	480723_8	35210	
224261.4	477378 3	360 B	
331602 *	*****	112 0	
223288.4	-174/617	3/3.0	
215832,4	516403,3	461,6	
213953.2	526517.7	411.0	
310181 0	627324 8	824 6	
510JC///	451451 J	428 0	

C

.

Ţ	ABLE F.1C.	(contd)	
225154,5	542008.3	412,9	
162989,6 187388.8	538487.6	455,8 464,8	
158392,5	571355,2	462.8	
284071.5	382324,4 549138.7	311.0	
305557.6	526957.4	335.8	
279582,3	597743.7	361,8	
306239,2	598712 8	398 9 322 9	
273142.7	534919,7	345.0	
292542.8	523248,8	322.9 311.9	
240728,5	524439 8 525387 0	429,0	
259271.1	499424,2	386.0	
301851,6	443667,3 598651,0	375,0 295,0	
292295,7	498368,0	324,9	
279832.5	454802.3	327,9	
287475,4	431176,4 438426,7	318,3 284.0	
266297.8	421577.4	325,0	
247345,5	399245,9	277.0	
261045,5	395174,8 374425.4	398,8 293,0	
267192,2	372986,4	295,9	
279044,3	372944.0	285,0 294.9	
253144,6	370237,2	294,0	
312987,4	383313,8 394863,8	259,0	
250086,2	359259,1 351671,3	225,9 297.8	
276442.8	356869 3	251.9	
290844.6	340846.1	265,0	
276470.7 268188.5	341874 9 340248.1	296,0	
254865.0	344772.2	293,3	,
253855,8	338757,5	290.0	
252003,3	337540,3 336022,0	286.0 260.0	
283977.6	339894 2	315,0	
278370.0	518965.3	271.8	1
249224,7	506106,5	260,3	-
244788,5	294520 4	305.0	i
294823.0	271812.3	525°0 252°0	1
298645.8	302848 5	237,2	1
296918,5	500025.7	285,9	1
294095.7	295196,5	311,0 319,0	1
293958,1	585893.6	258.3	1
247185.2	262881_5	287.0	1
278455,2 295478.4	263109,4 264952.8	342.0 243.0	

<u>T</u> A	BLE F.1C.	(contd)	
303538.8 243373,5 289546.9 260267.4 266289.5 205958.5 296343.9 274233.2	257818,5 261708,3 264403,1 251590,8 252969,1 249564,9 252533,6 258212,8	282.0 278.0 215.0 267.0 265.0 265.0 276.0 333.0	
266200,8 258745,4 256895,2 265342,7 871936,6 271516,4 267182,1 271683,7 236704,4	246988,4 235987,9 235402,2 235179,5 233362,5 232162,2 2224994,2 223739,1 212355,2	336,0 321,0 324,0 334,0 274,0 274,0 335,0 335,0 255,0	
252656.6 260227.3 297893,5 386716,8 298334,9 389876,8 282128,1 273986,7 2739845,2 264434.1	211323.6 211374.7 220505,1 216558.6 206382.6 196521.7 163753.6 207584.8 207584.8	241.0 260.0 367.0 385.0 371.0 341.0 295.0 384.0 295.0 384.0	
256845,7 272984,1 286346,7 285588,3 315673,7 312577,3 309867,5 304396,3 297031,7	202073 173175 2171432 217432 2176130 4 156275 3 46091 7 132604 4 127653 1 121233 5	248.8 275.8 279.8 279.8 299.8 377.8 277.8 257.8 255.8	
293729.8 297619.5 273093.7 272047.6 278664.0 268557.0 268557.0 264231.7 265535.8 25957.2	105151,4 92526,6 105424,1 109543,3 110849,4 107669,9 109598,1 110318,7 108767,5 129596,5	242.00 242.00 242.00 245.00 245.00 225.0000000000	
269867,3 277772,7 251655,4 283668,3 250749,4 266157,3 289580,9 289956,6 291869,1	139431.6 143033.2 159799.6 122514.2 67384.7 76856.8 56729.9 55046.1 53449.4	2598.0 298.0 279.0 279.0 279.0 279.0 279.0 279.0 290.0 290.0 202.0 202.0 202.0 202.0	
271294,3 252160,1 246866,8 79124,7 23633,1 356213,1 356213,1 356929,3 366155,8 355452,1	52119,0 46748,4 49345,4 498852,5 156177,1 25195,9 37933,6 53973,3 56419,8	232.0 206.0 266.0 512.0 120.0 120.0 134.0 215.0 195.0 195.0	

F.19

۰.

TAE	BLE F.1C.	(contd)	
352797.1 367514.2	59279,9 69520,8	213,0 297,0 184-3	64 71 63
350297,4	84118.4	265.0	65
391964,1	198539,1	437.3	59
366879,5 340971,5	112469,3 115938,7	535'0	97 72
369930.2	141842.6	358,9 338,4	75 75
387233,5	177125.6	352,0	76
336357.8	193895.5	292,0	75
370735.8 387419.1	197143.2 197092.5	592°3 295°3	72 72
361839,7	201437,4	431.0	72
375918.8	212183,1	342.0	72
393200,5 380997,6	224732.9 234199.7	230.8 143.9	72
333111,2	229534 3	318,9 258,9	72 72
369736,3	255304.6	427.0	72
334667.9	279543,5	149.0	72
373659.6 345938.8	272572,8 289280,4	269,3	12
349189,5	292773,5 303421,5	253,8 278,8	72 76
351803,9	315598,5	237.0	58
355463,1	320117.3	134,8	65
350505.6 346932.9	321592.5 320755.1	179,0	60 68
345589,6	322395 2	244 8	64 55
338278,6	323662.3	235,4	71
339245,9 377026,0	325687,5	253 , 9	50 55
388162,9	326434,2 341954,4	260,0 232.0	63 56
360395,2	337636.7	243,9	71
339763,1	339251,7	241,0	66
329175,9	342454,8 341927,7	210,8	55
377717,9	347959 3 353732 4	234,9 221,9	56 55
334315,7	357074 4	239,0	55
373197,3	341579,8	316,8	66
359955.3	383145,4 364406,9	249,9 249,9	55 55
354410.3	365593.5	131.0	61 56
357865.1	373863,9	249.0	55
320363,3	374225,3	251,0	5 B 5 S
331727.2 324964.3	375449,5 380321.6	252,0 254.0	65 64
321981,3	380534 4	256,3	55
344971,1	383834,1	295,0	64
375991.9	392463,7 395951.5	253,9 245,9	5 5 5 5

TABL	EF.	1C.	(contd)

159916.1	489587 4	174.0		67
			,	
13412140	auxo14*a	cte*e		96
344208.3	424471.4	230.0		64
345386.3	426825.2	232.6		63
		248 0		
300300*3	474403*0	E40 0		
331991.1	437803_6	166.0		71
331947.4	415012 4	162.8		71
	~~~~			
76.4060°0	4400/3,C	110.0		80
329855.5	444698_8	161.6		- 66 -
127121 4	AA5AB8 1	101.6		4.4
71005011	444303.3	531.0		<b>D</b> 1
333431.4	450997_7	175,6		66
114694.1	453349 9	183.0		66
710878 1	475070 3	144 4		
31463493	4/3736,6	304 8		11
328463,7	4989999	. 272,0		71
328272.2	50991911	898.0		71
316867.8	521788 4	371.6		71
31003340				- 11
323386,7	230709.4	776*6		71
321112.6	540266.3	9,055		71
TTGAAD.A	546381 6	264.9		78
******	CECTON A	598 6		
30160111	333304.1	61310		11
373543,9	571948.1	8,785		71
395549.8	555497.6	387.0		75
115310 A	EQDAEd A	277 0		
313637,6	377030,0	CIII0		
327786,5	624554,1	426,0		71
353029.5	611972.4	369.0		71
367400 6	A10867 2	429.0	;	÷1
		746 8		
376401,4	013776,6	393,0		71
374769.7	628048_3	314,0		-71
498741.8	A 22426 4	272.0		75
		365 0		
24261344	033378.4	303.0		
346875.3	638494.6	352,0		71
353268.8	645296.8	299.0		71
		301 0		
363300,1	OFDERE, O	E1(+0		11
346016,1	666818.5	276,8		71
392821.7	453541.4	821.8		71
ALATLE B	494657 8	346 0		
404303.0	020033.0	- Lose		00
376439,9	615776,0	39346		71
421488.6	610777.8	320.6		67
422201.1	615441 T	344.4	,	
420314,7	081431.4	300 0		00
452284.5	686884.6	206,0		67
441836 B	575544.9	267.6		71
	571750 1	340 0		
31331340	311100.1	E01.0		11
301177.6	555258,1	275 <u>.</u> 0		71
438124.5	543448.6	241.8		67
A10334 A	643849 8	267 0		14
********	#46V4/87	Ealey Bac		91
48113248	31410241	210.0		71
3995521D	471111_E	268.8		71
ALLAN .	471781 4	210 8		
	411101.4	62798	•	
400501,1	433480.0	223.0	•	68
453760.2	44820217	242.8		66
437922.4	426496 4	244.1		64
AA1875 4	A 3 A 3 L A 3	214 8		
4418/690	454704.7	639,0		11
403340,7	102732_3	235.0		65
461529.6	367174-6	267.0		71
430611.0	353021 6	352		6.0
244351'2	340115,6	626,0		71
421095.0	345716.9	251.8		64
455117.A	359799 8	319.0		71
403808 3	1 30014 4	564 4		
antano'C	SERAID'R	E30*0		
426826.3	210053,3	246_8		66
428594.P	319227 8	254.2		61
4.1111.0	124861 3	241 0		- ¥ -
	360433,6	<b>K74</b> 50		11
#30400 <b>,</b> 0	701142°N	K D Q . N		76

<u>T/</u>	ABLE F.1C.	(contd)	
426805.5	293505,0	350,9	
433401.3	290723.7	278,0	
441198.4	258143.7	230.0	
469989,1	254795,7	259,9	
419660,9	251476,2	123.0	
489757.5	224751.4	413.0	
397839,9	201425.3	360.0	
450131.3	201355,2	235.9	
408835.4	184188,7	278,9	
419885.8 454744.2	182454.9	334,9 324 0	
416458,1	153874,4	352.9	
461435.9	154462 4	365.0	
419070.8	110334.4	337.9 465.9	
426510.8	116075.6	449,2	
409815.4	193279,3	408,0	
421958.8	95441.5	275.9	
463149,5	99563,3	378,0	
402941.0	73004,0 92759,6	150.0	
429417.5	78367.5	315,2	
437616,3	88419 <b>.</b> 6 77979.4	253,9 119.0	
464343.3	72828 1	269,9	
426988,9	70003.8	399,9	
405455,2	67376,2 68899 6	158,0	
425652,1	52561 8	277,9	
436936,P	33897 1	265,9	
466505.2	47563.1	212.9	
418668,2	37646.1	530,2	
422823,2	39239.4 36258 A	88,0 A70 0	
403813,0	28202 3	310,0	
416714.8	24280.8	24,1	
413216.5	15294.5	71.2	
414559,1	12471.1	44,9	
411/37.5	9968,9 5444.3	71,2	
464421.4	55835 0	139,0	
462511.8 468741.5	3810,0 N35207 h	459.0 274 2	
468441.9	629449_1	385.9	
478998.6	1,542156	189,8	
477380 ₈ 8 478441.8	DZZ384 9 624731 8	170,9	
478991,8	627631.6	153,0	
93479,2	513031,9	267,0	
313445.1 513446.1	014444,4 613437 4	217,0 227.0	
513541,1	624992 9	286,9	
213843,8 543348.4	833943,9 634444 9	237,0 192 #	
513339,5	545984 9	201.3	
510478.8	542565.5	192,0	
384/7¥,3 544623.2	510923 1	193,0 138,0	
510265 A	498966 3	220 9	

TABLE	F.1C.	(contd)

		A # 12 14		
223230,0	473213.4	122**		
476889.1	459669.0	238.6		67
ERGTOR 4	457050 5	183.8		68
203234000				
21255614	42201292	104.0	•	
517388.7	430536.3	234_8		71
STOTAL K	426772 5	242.0		6.8
36410013	46919644	EVE .		
517174,8	421456_9	276,0		24
514814.7	415700.3	238.0		- 64
ELABEA A	A12778 1	336 6		LR
214224 8	416930*3	66348		
516449.7	411117_0	238,0		-64
	486804 9	254.9		6.4
474777,5	344344,0	201.0		
510363.5	376065.8	295.0		-64
	TTARAR 4	264 8		24
31400110	370303.7			
507164,5	371457_0	221 4		20
507414.6	369132.4	289.6		68
	144486 1	381 8		
470336,4	30040441			
- 523723.4	366444.8	254.0		- 64
494871 7	160111 8	278.0		71
		753 4		- 62
213064,0	724245"0	323,0		
535901.9	356159.2	283,6		-60
RIALTT O	RACOOT A	311.0	· .	71
31441314				
343050,Z	342814.2	£7440		30
536888.4	335477,9	266,0-		64
- ETATAS T	X 71017 K	268.8		64
		307 6		
217546"4	16263213	24990		<b>D D</b>
516487.6	322087.3	881.0		68
K10881 2	132714 5	235.6		60
31770145				
- 523510,1	320064.4	530.0		04
527964.4	319386.2	243.6		- 64
231 74 8 4	1	318 6		
2603040	35105341	Eau U		
531034.6	328266 8	265,5		-64
831276.1	109580 0	245.0		75
				142
21024141	202110.0	61/98		11
482186.7	272728.8	262.0		-71
647464 4	250477 6	202.6		71
.94119194				
473451.0	570545'0	E43 0		11
471597.8	232343.3	237.0		71
EATTOR E	219241 1	310 6		÷÷.
303670.3	CJVENTAL			
589179.2	234767.6	£16°e		11
520029.3	248242.1	232.0		71
ETAGEA 6	333407 3	343 4		
33403400	EEELDIJE			- 11
506764,2	514012 ⁴	142.0		73
492917.8	196761.7	263.8		- 77
ETATTA O	201855 Q	214.4		- ¥ 4
330314,7	201033.1			
534280,2	146666,7	240,0		71
520402.4	1901783	24410		71
406111 4	177174 2	212 8		91
42333114	47737346			
491254*0	120354 8	334*0		71
583127.4	147624 9	264 E		71
	444764 6	250 4		
20100103	144133 3	237,2		
519819,6	151633_0	278.0		- 71
511684.8	131800.3	315.0		71
ARAAGE #	191948 4	204 6		
#0105340	123400-1	EAD ¹		
482218.3	119688_8	246,0		- 69
476464.3	119475.1	264.8		69
	443444	144 4		
473396,2	11/104,4	70c°A		11
505563.7	121865.8	367_0		- 71
612000 2	115700 6	302 4		71
	4 4 4 4 5 5 1 5	B0		
247414"1	110055 1	CTO B		11
489213_3	101934_7	250.0		67
471511.1	166814 6	302.0		68
406497.0	T4275.4	E4748		71
491263.7	47539.7	835.0		56
A87008 1	##800 B	241.8		

-	TABLE F.1C.	(contd)	
43453555555555555555555555555555555555	TABLE         F.1C.           23.1 $35783.1$ 15.0 $27136.3$ 23.0 $27136.3$ 23.0 $22711.5$ 33.0 $3849.7$ 34.2 $-112.5$ 74.6 $672.9$ 74.6 $672.9$ 74.6 $672.9$ 74.6 $672.9$ 74.6 $572.9$ 74.6 $572.9$ 74.6 $572.9$ 74.6 $572.9$ 74.6 $572.9$ 74.6 $572.9$ 74.6 $572.9$ 75.7 $583334.3$ 75.7 $549334.3$ 75.7 $549337.3$ 75.7 $549337.3$ 75.7 $503568.2$ 75.7 $507368.4$ 75.7 $507368.3$ 75.7 $577378.3$ 75.7 $7378.3$ 75.7 $435438.5$ 76.7 $424640.6$ 77.1 $424640.6$ <td< th=""><th>(contd) 285,0 252,0 135,0 225,0 198,0 198,0 198,0 198,0 198,0 199,0 193,0 200,0 247,0 143,0 71,0 152,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 1</th><th>7676677757666676856565655756565657676566676665</th></td<>	(contd) 285,0 252,0 135,0 225,0 198,0 198,0 198,0 198,0 198,0 199,0 193,0 200,0 247,0 143,0 71,0 152,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 154,0 1	7676677757666676856565655756565657676566676665
576979 549940 549940 549940 549940 549940 549940 539040 539000 5390000 539000000 539000000000000000000000000000000000000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	157,3 196,3 354,3 291,9 302,9 237,8 176,9 153,3 228,3 259,3 245,3 245,3 245,3 245,3 348,0 348,0 348,0 329,0 316,0 321,0 284,8 254,3 313,4 254,0 314,0 254,0 313,4 254,0 314,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,0 254,00 254,00 254,00 254,00 254,00 254,00 254,00 254,00 254,00 254,00 254,00 254,00 254,00 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,000 254,0000 254,0000 254,0000 254,0000 254,0000 254,0000 254,00000 254,000000000000000000000000000000000000	56677484419944441151 567746667468844411151

.

<u>_</u>	ABLE F.IC.	(contd)	
599740,4	254122.4	248.8	73
582569.2	231818.1	229.0	77
577471.5	219632.9	213.0	71
567295.7	207013.1	248.8	71
554561.4	195148.2	287.8	71
568513.9	170678.8	174.8	71
601064.1	142350.6	212.0	71
606273.9	139697.5	181.6	72
603702.5	132007.6	247.R	71
554125.1	112550 2	341.0	
567363.4	INGTAT A	tin a	
595141.7	182675 4	255 8	
677267 4	71347 0		
400000 1	A1030 A	147 B	
446307 4	410/4 4	20100 248 0	
	33403,3	C0740	71
370070,7	38438,1	357.0	<u>11</u>
371117,3	52414 5	371,0	71
92146120	14463.6	366.8	71

.

۰.

<u>.</u>

### <u>TABLE F.1D</u>. Digitized Potentials Before Model Calibration (Actual Elevation = Value - 1300)

POTENTIAL SOLUTION (PT) BIAS- 1308.800

	<b>i</b> .	2	3	٠	3	٠	7	٠	٠	10	11	12
44			8.465	8.048	8.846	8.888	8.885	0.010		<b>9.</b> 688	8,948	9.008
44	9,898		P, 484	8,009	9,054	0,800		0,648	0,008	4,684	Ø,980	0.600
43		8,848	8,844	8,984	8,868	0,569	8,540	0,040	0,000	0.004	0.840	8,948
62	8,488	9,888	0,040	9,644	0.644	0,640	8,848	9,600	0,000	0,000	0,040	0.944
41	9,889	8,898	8,998		0,040	<b>U.U</b> 00 A AAA	4,000	8.648	V.500	8.898	9.646	0.040
	<b></b>	8 483		9.844		9.838	a. 644	8.544	8.648	8.499	0.004	6.000
54	8.884		0.044	8.658	8.540	8.608	0.044	0,040	9,664	8,888	8,644	8,889
37	0,000	W,000		N.60#	9,960	0,680	8,548	8,998	8,848	8.998	£,546	8,648
56			8,688	8,008	8,808	8,688		8.644	0,000		8,898	
55	8,888	0,080	6,000	<b>5,60</b>	9,840		8,900	<b>, 494</b>		1754 444	1749.460	1738.948
24	P.988	0,000	0.000	9,965	4.484	8.648	1758.668	1758.044	1745.146	1740.629	1736.923	1733.674
52	8.888		9, 988	0.000	0,000	1750.000	1744.668	1740.324	1734,159	1728,474	1724,143	1721,228
51	0,698	4 460	8,648	8,604	1750,000	1747.344	1740,195	1731,907	1723,474	1716.346	1711.232	1788.428
50	8,448		0,840	8,609	1750,000	1741-819	1734,210	1725,967	1714,447	1707.567	1647,224	1643 342
47	8,868	0,009	4,800	1750,090	1742, 110	1732,020	1720,733	1715.744	1712.448	1707.322	1741.832	1447.274
		4.944	1758.848	1744.241	1721.492	1747.544	1745.499	1745.742	1784.674	1784.441	1785.135	1474.034
44	8.844	8,848	1758.000	1739.767	1710.751	1447.795	1681.945	1484,346	1466.199	1498,919	1698,965	1697.852
45	4,624	8,844	1754,480	1740,250	1789,421	1644,441	1657.210	1654,029	1458,713	1666,933	1678.647	1482,526
44	4,488	9,962	1758,800	1746.175	1719,341	1692,734	1672,239	1445.137	1924 954	1621,344	1920,574	1662,664
43	*,***	0,000	8,640	1750,060	1732,393	1711-074	1674,478	1863,479	1073,303	1000,000	1071,001	1644.144
44		4,000	a 444	8.544	1/47,463	1758.844	1734.427	1714.735	1491.799	1441.555	1445.479	1679.446
24	8.969				0.444	1756.048	1741.979	1730.043	1718.146	1698.814	1718.441	1786,922
39		8,000	4,848	8,644	1750,040	1751,974	1758.576	1743,973	1732,554	1728,334	1734,249	1726,444
34	4,408	8,688	# <b>,</b> #4#	1758,988	1756,490	1761.004	1763,546	1762,998	1762,400	1765,848	1749,835	1749,123
37	4,000	n,889	8,448	1756.400	1765,488	1779.334	1746,744	1792,257	1797,499	1868,888	1466,098	1/63,430
36	0,098	0,949	8,848	0.500	8,488	0,000 0 000	<b>4.000</b>			1774.124	1745.144	1734.245
33	8.470	4.444	8.446	8.844	8.644	6.005	1448.444	1779.049	1743.233	1733.720	1763.111	1697.241
<b>5</b> 3		A.088	4.648	8.800	0.940	1588.000	1775.159	1756.803	1736,803	1707,844	1489,147	\$664,849
35	8,828	6,888	8,498	8,468	1440,084	1741,234	1740,341	1739,338	1717.677	1692,925	1640,249	1673,364
31	8,688	a,480		1751,269	1144 .151	\$159,831	1744,416	1134.417	1782.124	1679,641	1669,967	1662,834
30	8,448		9,849	1713.404	1714,203	1753,433	1717.443	1783.394			1033,417	1634.447
57	8.868	a. 444		4,900	1.844	1666.948	1454.499	1451.154	1444.134	1434.017	1433.229	1638.465
27	8.886	8.888	8.868	8,849	0.000	8.666	1643.514	1446.730	1636,905	1632,177	1627,702	1624.447
26	9,448	8,888	8,888	0,000	8,648	9,948	1635,444	1433,943	1631,663	1427,129	1423,144	1619,634
25		#,888	8,848	8.000		8,448	1430,042	1427,497	1625,574	1422,737	1419,140	1613,740
-24	6,888	6,868	A, 888	9,968	<b>4,9</b> 24	8,648	0,045	1422,791	1020,485	1010,041	1017.900	1012.114
23	9,949		8,888 8 848	<b>U</b> ,090	N . 884	8.884 8.859	8,965	8.808	1-1-110	1409.137	1497.778	1484.759
21	8.658		8.608	8.000	6.044	8.969	9.944	8.688	0.040	1684.116	1482,914	1599,796
20	A, A#0	9,000		8,000	0,040	8,848	0,000		8,000	1598,041	1596,541	1592,956
19	<b>0,0</b> 00	4,408	8,448	W, 60A	4,848	8,548	8,888	8,845	8,888	1592.431	1591,057	1547,948
14	0,000	8,848	8,848	4,484	0,048	0.449	8,484	0,404	9,444	1544,351	1504,005	1204,202
H.	P.849	9,499	<b>0</b> , 768	N, SDN	<b>7,900</b>		<b>V</b> , 854	8.636		1383,017	1977.778	1376.045
15	8.888		6.044	8.448	8.656	6.948	9.966	8.644	0.040	1574.574	1172.838	1571.848
11	A	0.000			0,000		9,044		9,659	8,888	1567.496	1547,117
11		8,848	10,160	6,484	8,943	A, 849	8,048	Ø, 868	8,838		1542,728	1545,186
15	4,686		4.484	8.668	A, 669	8,600	0,084				1554,543	1557,095
11	8,489		4,894	<b>U.U</b> #R		6,898	8,008	6,898	0,040	<b>9,49</b>	<b>0,005</b>	1332,862
1	可。PP\$P	#.###	8.544 A.444	4.600	8,034 8,034	0,044 0,044	4.444	8.994	0,844		8.448 9.448	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
i.	8,083	8,444	0.003	0.042	8.884	6.000	0.000	8.044		0.084	0.464	6.639
Ŧ		8,983	8.884	8.688	. 8,930	0,044	0.000	8.044	9,939	8.888	8,000	8,868
•		a , Aaij		0,000	8,944	8,448	8,048		0,004	6,884	0,040	0,040
5	4,838	0,088	0,000	2,004	0,000	6,666	0,668	8,934	8.965	8,643	8,909	8,938
-	<b></b>	<b>8.89</b>	<b>U,896</b>	0,898	<b></b>	<b>9,888</b>	<b>U, 588</b>	<b>F</b> .800	<b>U,080</b>	<b>U,56</b>	# <b>.</b> ####	W, 998
1	8.90 <b>4</b>	0.004	8,033	0,000 0,000	0.844	0,000 0,000	<b>0.044</b>	0,844 0,844	8,000	0.000		a
1	B. 648	0.440	8.434	8.94A	9,040	6.940	0.444	0.000	a	8.044	6.488	0.000

 $X_{i,j} \neq 0$ 

١

.

• • *

-

.

ing a star an an an an an an an an

..

POTENTIAL BOLUTION (FT) BIASS 1308.000

	13	. 14	1. 15	10	17 .	18	19	20	21	22	23	24
65			4,744	8.278	6,828	0.008	8,868	8,668	0,000	0,000	8.846	
-64	0,009				0,010	8.879	8.876	0,000	0,000	8,089	6.688	8.868
63	8,788	8,668	8,888	6.448	0,709	8,788	8.000	6,669	8.008	0.000	8.555	6.000
	0,070	0.000	·	8.885	0.070	0,000		6.660	0,000			<b>2</b> ,272
	5.888	8.000	8.899		6.223	8.898	6.000	8.885	0.005	0.668	8.898	8.672
39	1,688	8,848		8,969	8,009	8,498	8,080	0,000	0.000	0,000	8,999	0.075
54	8,499	0,008	0,734	8.000	8,958	0.000	8,008	8,800	0.000	8,000	8,860	1750,000
37	8,480	0,000	8,898	8.558	6,648	. 0,000		8,009	0,000	0,700	1750,000	1744.941
20	****** 1750.man	1150.800	888.877	W. UUW M. BAA	. <b>0</b> ,400	8.848	0.000		8.888	1798.688	1737.889	1721149
- 11	1742.417	1741.419	1743.275	1790.000	0.00ŏ	0.004	0,690	0.008	1750.000	1741.759	1720.004	1711.005
93 -	1731,655	1730,047	1733,140	1741,198	1750,600	0,000	0,000	1750.000	1744,490	1733,041	1719,198	1703.039
52	1719,068	1710,403	1721.397	1720.691	1739,145	1738,800	1136*645	1141,772	1734,320	1154.010	1711,171	1097,223
21	1491.488	1700.417	1491.349	1699.429	1748.239	1712.498	1716-419	1710.912	1712.414	1704.324	1495.419	1072,147
49	1674,478	1672.597	1473.945	1403.345	1672.251	1474.467	1702.445	1707.522	1701.732	1693.198	1686.983	1681.270
46	1666,156	1676,621	1661,349	1478.548	1476,706	1601.151	1484.876	1699,371	1684,345	1679,616	1677,799	1673,294
47	1679,139	1621.585	1670,003	1496.276	1441,515	1445,227	1666,484	1663,004	1661,659	1465,672	1667,018	1664.377
45	16/7.873	1000 140	1440.404	1451.000	1040,001	1047.211	1640,319	1040.012	1047.070	1641.989	1020.320	1074,347
14	1443.420	1445.943	1663.217	1455.390	1646.480	1640.783	1436.382	1634.354	1635.514	1637.194	1638.066	1437-013
43	1452,735	1456.063	1658.615	1653,919	1645,613	1639,813	1633,465	1629,340	1627,547	1630,487	1630,739	1630,072
42	1448,574	1947.967	1678.206	1847.835	1641,643	1635,624	1638,038	1652,397	1453,401	1653,475	1952'328	1655 846
41	1650,383	1646.636	1943,204	1040.434	1636,453	1631,133	1952.040	1956,004	10174321	1010.797	1010.007	1013,447
10	10/0./3/	1874.0/1	1443,017	1446.771	1648.948	1631-612	1622.619	1413.275	1487.113	1463.514	1641.418	1608.738
38	1714.378	1686.367	1474.322	1464.450	1694.333	1433.004	1617.474	1685.617	1570, 150	1596,348	1594.610	1393,667
37	1733,566	1700,190	1895.655	1607.300	1467,559	1634,711	1608,688	1598,385	1594,459	1591,031	1589,949	1508.440
36	1741,414	1725,002	1716,984	1703,763	1674.637	1631,417	1488,733	1394,533	1241 *510	1200.200	1303.007	1293.414
37	1/22,242	1710,704	1711.700	1440.414	100/0023	1627,129	1549.445	1373.003	1398-191	1303.067	1943.884	1979,798
ii ii	1683.301	1482.925	1687.672	1673.476	1661.229	1640.188	1411.310	1597.253	1592.944	1987.198	1965.796	1502.373
52	1671.738	1971,367	1678,777	1448.453	1664,063	1494,440	1431,338	1403,376	1595,942	1592,411	1799,353	1565,980
31	1668,138	1659,433	1639,182	1658,191	1655,736	1649,328	1431,718	1614,463	1601,448	1397,848	1993.418	1598.556
30	1444.775	1643.772	1443,073	1944+193	1037,320	1031,007	3622,407	3912,223	1007,207	1449.736	1277,741	1279,1/5
26	1425.013	1474.869	1624.424	1622.844	1618.474	1613.098	1485.574	1578.787	1576.413	1395.697	1595,104	1374.447
27	1622.837	1620,083	1418.223	1616.891	1013,467	1410.164	1606,215	1602.378	1598,781	1595,637	1592,646	1589,694
24	1617,246	1419,096	1613,202	1611.190	1609,130	1687.120	1684,487	1401.953	1400,442	1599,838	1997,462	1575,627
52	1613,889	1418,783	1600,487	1606,021	1603,211	1600,773	1376.843	1372,324	1342.024	1773.731	1370,800	1690,413
2	1677,037	1606,317	1002.070	13754933	1340,104	1294,776	1566.983	1200,231	1573.817	1576.553	1565.085	1593.631
22	1600.135	1591.710	1992.673	1576.176	1557.093	1551.543	1553,240	1560,952	1566,147	1971,799	1578,204	1506.756
21	1392,945	1584.407	1575,141	1564,318	1552,484	1548.388	1547.002	1553,852	1558.942	1563,317	1949,789	1374,624
58	1567,492	1388,461	1572,689	1564.708	1396.172	1547, 535	1947,424	1548.901	1550.540	1553,100	1737,466	1564,785
17	1203.013	17/7.273	1772,140	1707.012	1220 104	1331.02/	124/1725	1245.641	134/.20/	1945.282	1546.810	1547.435
17	1576.922	1973.171	1548.955	1364.191	1559.019	1553.194	1547.000	1544.755	1542,747	1542.619	1943.471	1544.767
16	1572.933	1569,868	1564.001	1560.411	1555,515	1350,922	1546,226	1543,270	1541.190	1548,776	1542,124	1543,915
15	1569,397	1969,528	1761.174	1556.449	1551,725	1547,241	1343.447	1348,989	1737,351	1548,493	1742,756	1545,260
14	1366,037	1762,436	1336,403	1223,5510	1547,670	1343,331	1348,146	1330,040	173/ 034	1240,010	12434230	134/4761
13	1554.811	1227.7/4	1553.942	19344773	1342,786	1536.463	1531.907	1530.040	1511.830	1533.576	1537.776	1542.085
ii	1551.548	1554.674	1548.544	1544.605	1539.002	1532,300	1527.053	1524,988	1525,347	1527,926	1538,947	1535,975
10	1546,462	1745,065	1342,644	1539.926	1514,141	1258,532	1523,302	1520,936	1520,004	1521,741	1525,465	1530,337
2	1542,585	1540,388	1537,474	1533, 127	1529,207	1524,339	1520,711	1517.641	1516.694	1217-242	1529,744	1222.427
	4.400	1220,021	1333,704	17676783	1363,0 1	1517.644	171/1/03	12146010 1811.98A	131212123	1110,111	1910.114	1513.968
	8.844	9.008	1525.404	1922.244	1518.247	1514.542	1511.051	1507.847	1505.338	1984.075	1503.032	1505,257
Ī	9,000	0.040	\$921.462	1517.921	1514,178	1510.557	1507,304	1504,140	1500,000	1500,000	0,020	1500.000
	8,848	8,884	0,044	1512.721	1287,642	1506,136	1993,148	1508,008	0,000	9.000	8,844	0.000
3	9,889	8,889	8.84%	1200.159	1304,742	1200.040	1232,000	P.648			17.048 A.A24	0,000 8,020
۲.		0,000	8-848 8-848	₩ <b>.</b> 755	1304*442	0,070 8.8ss	8.88A	8.845	0.000	0.454	6.846	6.040
•	*****											

٠

F.27

Ć.

•

## TABLE F.1D. (contd)

### POTENTIAL SOLUTION (FT) BIAS- 1388.000

	52	. 26	27	59	84	30	31	25	33	34	35	34
65	0,000	4,884	0,000	4,684	4.994	5.533	0,598.	0.000	8.848	0.550	1545.891	1513.810
64	4,000	a,999	8,888	4,888	0,000	0,800	8,694	0,840	1594,354	1540,144	1565,964	1549,218
61	8,8A4	4,040	a, 46a	8,648	4,994	8,898	0,886	1668,475	1626,428	1600,726	1545,441	1572,391
68	8,889	0,050	0,440	1750.000	1750,000	1758,868	1707,470	1493,493	1444,229	1647,748	1614.305	1596,724
61		0,054	1750,940	1723,477	1643,428	1463,534	1446,726	1495,884	1662,645	1667,964	1655,131	1642.955
4 <b>P</b>	0,000	1750,000	1727,348	1689,321	1653,696	1631,694	1641.283	1662,311	1478,344	1667,657	1665.671	1454,075
37	1739,004	1736.469	1790,320	1478,243	1434,728	1011.647	1607,935	1623,756	1647,446	1656,688	1657,871	1656.682
2.	1/46,344	1716,107	1003.407	1630,043	1023,363	1400,273	1343,237	1370,633	1688,368	1625,973	1437.741	1641.012
21		1/81,1/8			10174207	1310,014	1392,439	1345'344	1343,431	1680,847	1011,000	1617,086
20	1743 414		14KA KAA		10124004	1378,143	1371,170	1300,007	1247,720	1372,980	12121101	1244 954
54	1491.414	1473.444	1451 431	1411.444	1516.515	1443 878	1242.484	1200,011	1204,037	12703,/67		1200,100
-	1647.143	1449.957	1451.414	1413.741	1424.444	1447.241	1544.454	1544.547	1541.741	1474.734	1972.044	1548.451
52	1643.268	1668.014	1411.449	1437.197	1624.414	1612.372	1449.929	1391.271	1543.144	1575.041	1547.411	1541.588
51	1688,756	1668,674	1435.953	1648.964	1624.774	1617.230	1483.984	1594.447	1543.474	1975.504	1545.843	1554.477
5#	1674,101	1447,465	1656,719	1443,344	1431,531	1420.511	1644,171	1594,445	1546,344	1576,018	1545,437	1556.301
49	1473,414	1664,494	1455,031	1642.472	1631,374	1428,342	1649,142	1597,848	1544,647	1577,47k	1544,719	1549,775
44	1447,547	1468,895	1451,831	1640,624	1430,875	1619,934	1489.476	1597,582	1546,711	1579,296	1572,319	1565,483
47	1637,207	1433,147	1644,446	1436.203	1424,147	1419,455	1611,265	1401.343	1545,524	1574.379	1571,111	1567.255
	1040,7/8	1939.979	1937,874	1030,141	1622,744	10121153	1480,132	1597,437	1377,441	1568,125	1544,054	1561.600
47	1844,351	1833,174	1027,075	1922,938	1010,021.	1497,347	1597,188	1577.734	. 1241,871	1353,925	1552,701	1552,257
	1437 474	1429,100	1041,010	14174/8/	1242 124	. 137/.387	1376,143	. 1371.410.	1244,474	1341,714	1341,167	1348,721
	1421.424	1414 498		1444.588		1207.075	. 1347,6/1	1342,814.	1230,770	1330,407	1334,073	1232,748
ii.	1415.192	1414.243	1418.314	1442.773	1544.842	1542.443	1944.344	1210.311	1535.512	1333,000	1231,040	1328,337
40	1408.848	1487.432	1485.744	1399.443	1343.444	1547.444	-1552.455	1541.914	1534.454	1511.414	1432.446	1514.415
39	1600.797	1400.475	1997.762	1592.497	1541.479	1578.344	1334.437	1546.436	1538.238	1533.014	1531.443	1334.312
34	1593,826	1592,292	1549,999	1545,417	1979,313	1571.178	1562.649	1553.307	1940.024	1529.443	1525.195	1531.424
37	1547,256	1565,947	1543,597	1979,444	1574,597	1567,934	1548,428	1551,461	1536,627	1521.196	1511,649	1321.000
36	1295'501	1584,334	1577,477	1973,947	1568,484	1542,345	1554,421	\$343,447	1929,199	1513,014	1504, 553	1515,617
35	1210,554	1575,790	1572,429	1568,683	1948,744	1556,498	1947,447	1937.697	1254****	1511,579	1545,444	1513.412
34	1576.436	1573,190	3367,868	1364,278	1530,508	1551,394	1942,502	1533,445	1523,488	1514,141	1510,654	1319.075
	17/4,478	13/3,434	13/0,011	1303,862	1227, 744	1247,477	1948,747	1532,691	1252,589	1521,141	1251,064	1254.974
36	1946,783	13/7.300	12/4,203	1399,444	1200,728	1224.401	1344,141	1219'231	1238,519	1327,332	1232,744	1537.642
14	1501.741	1919.411	1843 144	1 3 7 4 4 3 6 7		1770,001	1241,7/8	1218,122	1212,264	1230,707	1341,747	1991-631
29	1668.399	1593.319	1941.944	1571.450	1543.393	1553.444	1947.941	1544.344	1547.745	1557.1A1	1572.771	1544.641
24	1392.765	1547.918	1977.716	1545.991	1555.754	1549.517	1546.225	1544.416	1558.857	1372.648	1592.945	1431.242
27	1546.537	1542.041	1575,049	1565.1#5	1552.114	1344.919	1558.323	1557.311	1549.173	1545.353	1614.447	1451.944
54	1593,154	1549,297	1944,995	1575,940	1544,218	1541,535	1563,444	1544,434	1574,275	1594,646	1432,434	1656.194
25	1441.043	1488,170	1594,867	1392,949	1545,704	1579,795	1378,494	1579,421	1545,241	1599,598	1433,094	1452,120
24	1682.784	1604,355	1605,033	1664.648	1401.979	1597,598	1594,435	1592.514	1244,291	1407,593	1427,452	1649,344
22	3983.449	3603.417-	1687,614	16074147	1687,476	1410,413	1610.734	1610.337	1412,711	1451.943	1629,550	1434,174
	1240,834	1023,706	1980,443	1011.207	1019,923	10100112	1022.448	1027.044	1433,721	1043,378	1044,042	1444,847
28	1974.685	1992 191				1421 844	1030,070		1021,201	1033.700	1833,307	1637,338
11	1564.196	1588.479	1594.713	1448.214	1612.945	1617.783	1423.878	1417.411	1642.287	1031.016	1034,3/4	1444.357
j# -	1551.391	1545.941	1586.191	1448.483	1445.441	1411.135	1422.444	1411-418	1434.434	1419.142	1642.696	1646.117
17	1546,919	1551.743	1564,133	1583.763	1593.047	1401.347	1414.221	1424.992	1631.399	1435.685	1639.748	1443.139
10	1545,969	1549,143	1568,843	1575,298	1502.477	1591.420	1403,473	1616.576	1423.731	1630.311	1616.625	1642.985
15	1948,368	1553,534	1561,844	1579.434	1577,428	1545,818	1593,675	1681.134	1419,381	1424.177	1631,395	1642.016
14	1553,844	1558,185	1568,443	1566,806	1571,907	1579,259	1504,005	1591.814	1595,447	1441,005	1418,824	1438,996
13	1352,748	1553,744	1534,441	1554,294	1202.588	1215,945	1574,944	1542,777	1546,458	1591,084	1599,864	1625,337
ić	1242,3/3	1346,466	1347,464	1332,093	1559,938	1566,956	1571.127	1574,495	1378,365	1542,549	1568,178	1601.015
11	1514 441	1241,107	1243,///	1348,067	1534,748	1537,730	1942,832	1566,882	1347,443	1374,817	1979,884	1585,545
1	1929.944	37394193 (411 A14	1214 618	12431734	1347.5232	1331,162	1333,741	1337,130	1364,730	1264,248	1348,458	1373.016
i.	1524.419	1524.712	1611-211	1511.543	1514.914	1634-137	1224.877		1347,367	1236.803	1632 641	1000,100
Ť	1517.765	1522.444	1524.424	1523.944	1520.104	1614.554	1549.974	1642.424	1944.444	1544.444	1548.844	
÷.	1508,478	1511.447	1513.455	1511.721	1547.172	1544.444	1548.884	8.844	0.584	à, 542	2,242	2.5×3
5	1548,800	1500,000	1500,000	1500,000	1500.004	8.844	8,884	8,044	8.864	8.689	0.844	0.044
4	8,494	0,888	8,994	0.004	0,000	8.844	5,484	8.448	9,993	8,844	8,000	0.000
3		a, 930	0,843	8,884	8,834	0,030	0,000	A.440	0.000	0.030	0,040	0,040
8	9.994	8.899	0,000	8,344	8,888	0,000	à,889	0,044	9,999	0,918	8,688	9,999
1	9.64à	à.888	8.633		a.aaa	<b>B</b> 0.0.0	A. A3A	6.000	6 660	0.040	· 0. Lug	0.840

()

X.

TABLE F.1D. (contd)
POTENTIAL SOLUTION (PT) BIAS- 1300.000

POTENTIAL	SOLUTION	(71)	E I A S B	1368*840	

	37	38	39	48	41	42	43	. 44 .	45	46	47	46
45	15.4. 484	a. 544	A. 1996	0.000		6.600	0.000	8.668	8.048	8.846	0.0 <del>00</del>	8.008
14	1522.478	1588.988	1396.000	8.009	8.888	8.000	8.009	0.000	8.008		0.000	0.000
63	1554,128	1531,923	1716,181	1308.000	D,000	0.000	0,000	0,000	0,019	8.899	4,899	8,1140
62	1578,734	1763,406	1540,517	1529,177	1300.000	1500.000	5,000	6,608	8,898	0,#08	8.849	6.640
61	1489,854	1269 045	1215,449	1760,310	1550,357	1529.542	1500,000	1508,699	9,600	0.000	1,275	8,000
60	1645.378	1616,700	1244,711	1700,004	1210,530	1221.100	1226,241	1211-054	1280,000	8,000		8.000
37	1847,748	1639,342	1018,717	1340,405	1203,707	13/1.000	1373.769	1247,371	1933.748	1818.241	1946.886	0.000
50 87	1620.430	1419.815	4417.754	1411.130	1488.844	1561.424	1548.243	1992.398	1314.095	1321.407	1511.448	1500.000
56	1693.455	1605.747	1609.057	1464.700	1377.068	1505.417	1971.646	1559.117	1543.844	1530,776	1920,045	1509.903
59	1589.429	1391.202	1594,414	1595,504	1598,631	1503,066	1573.299	1561,783	1349,634	1535,566	312,5321	1513,403
54	1577.645	1577,003	1579,941	1981,193	1501,845	1578,454	1571.871	1261,303	1228,542	1534,842	1923,078	1515.037
53	1546,476	1568,475	1565,139	1766,676	1568,494	1540,783	1944,776	1556,750	1546.863	1734,781	1253,955	1515.727
58	1556,324	1221 . 154	1551.177	1553.132	1556,278	1557.677	1576,842	1220,005	[342,070	[3]2,270	1322,//3	1210.174
31	1247,313	1548,347	1343,781	1343.449	1244,231	1347.637	1343,374	1912.927	1330,020	1525.346	13264019	1313.076
49	1553.418	1747.888	1543.233	1538.678	1534.854	1531-476	1528.239	1524.479	1522.479	1528.676	1517.263	1512.954
49	1559-113	1553.012	1546.191	1537.626	1932.932	1526.516	1523.042	1928.667	1318.914	1517.236	1514,579	1510.055
47	1502.465	1537,317	1558,044	1541.407	1532,237	1524,312	1529,713	1518,115	1313,000	1514,020	1511.543	1508,474
44	1360,207	1558,430	1553,610	1543,887	1532,117	1253,230	1519,734	1516,547	1513,897	1511,943	1399.498	1244-354
45	152.283	1758,293	1558,242	1541,305	1539,756	1923,046	1517.372	1514,727	1715,146	1212.004	1307.797	1505,200
44	1348,745	1230 400	1234.478	1251 450	1253*001	1351.440	1517,134	1317,004	1210,053	1212.002	1311.753	1202,011
	1254,424	1720.940	1254*214	1723,007	1722,071	1722.060	1722,797	1723.117	1722,779	1721,330	171/4/77	1712.021
46	1267.017	1363,061	1227,316	17274032	1910.497	1327,343	1941.057	1741.447	1541.376	1540.442	1538.497	1916.986
	1548.351	1547.492	1550.349	1551.447	1551.700	1551.828	1551.993	1552.237	1592.593	1552.307	1578.094	1549.448
39	1547.788	1554.945	1576.448	1557.516	1550.002	1550.343	1558.746	1559,909	1561.392	1763,875	1763,928	1543.419
<b>j6</b> :	1544,205	1553,004	1557,007	1559.760	1961,319	1562,924	1542,049	1544,255	1944,707	1210,025	1975, 923	1576,200
37	1534,769	1544,928	1553,423	1556,508	1541,451	1563,721	1564,055	1346,331	1569,044	1574,437	1205,377	1206.029
36	1527.446	1530,165	1940,047	1757,140	1761,174	1743,494	1565,279	1200,827	1367.027	1373,477	1201.030	1370,871
35	1254,488	1536,070	1747.277	1356,797	1767.751	1205.950	1244.242	1200.011	1247.721	1271.072	17//,718	1209,189
- 11	1327,270	1337,703	1547,710	1220+111	1200.740	1791.374	1766.427	1203,000	1223,202	10014361	1541.800	13/0,0/6
33	1230,073	124/.340	1770,737	12001100	1740,288	1551.394	1549.201	1549.158	1549.414	1549.814	1558.794	1553.138
31	1564.058	1569.161	1570.431	1971.723	1547.872	1538.391	1353.285	1558.909	1549.349	1547 .021	1544.340	1346.334
3i	1542.535	1983.895	1503.341	1500.050	1507.759	1593.284	1978,029	1571,914	1563.053	1555,621	1559,178	1547,300
29	1416,489	1617,171	1616,502	1627,990	1443,443	1442,645	1453,152	1592,076	1974,799	1547.134	1559,593	1551,036
50	1451,285	1654,669	1653,437	1652,061	1450,274	1644,927	1453,453	1574,201	1201.014	1372,763	1762.773	1552.656
51	1063,570	1666,075	1670,736	1949,791	1950,013	1945,343	1373,078	179/./**	1370,134	13/04777	17414073	1771.696
	1554 156	1007,475	1076,777	1010,777	127/2072	1371,477	1201.018	1284.493	1370.543	1547.999	1997.681	1545.545
	1031-041	1456.155	1459.418	1444.924	1428.457	1683.7#4	1997.771	1998.423	1588.784	1569.728	1558.244	1548.767
5	1618.253	1439.472	1644.953	1451.764	1648.322	1635.333	1414.045	1575.216	1992.741	1579,933	1999,175	1549.358
11	1445.745	1445.121	1646.429	1653,020	1472,524	1440,724	1604,364	1971,354	1501,354	1578,385	1559,064	1549,464
- ži	1657,794	1458,598	1454,075	1653,016	1642,764	1407.347	1593.799	1904,923	1570,608	1569,495	1559.716	1320,127
20	1448,400	1445,717	1920 946	1437,893	1410,782	1375,210	1294,525	1203.725	1377, 563	1573,312	1794,787	1579,777
- !!	1440,325	1448,107	1421,157	1652'011	1240,453	1241.003	1378,134	1307,470	1241 * 722	1362.040	17/4,175	1203.713
1	1947,217	1647,705	1041,013	1017,040	1377,4/3	1370,03/	1390,000	13774433	1370.040	13736711	1488.384	1545.155
	1043,313	1443,035	1455.005	1458.271	1453.622	1458.771	1447.878	1443.324	1637.368	1626.301	1611.998	1592.310
i.	1656.047	1672.524	1487.128	1497.328	1693.367	1604.813	1673.519	1663.026	1647.715	1631,998	1613,140	1594,509
- 13 -	1665.405	1710.716	1751.056	1777.940	1758,674	1725,175	1494,029	1675,200	1651,978	1428,837	1445,200	1592,348
j\$ .	1676,125	1731,400	1781,424	1797.681	1782,2871	1733,489	1717.507	1403,422	1021,215	1420,492	1594,931	1200.405
15	1453,845	1717,942	1758,034	1756,152	1747,029	1735,800	1714,630	1905'150	1047,540	1013,177	1254,448	1378,637
- 11	1684.235	1669,426	1700,251	1691,299	1471,675	1688,864	1684,421	1660,737	1030,730	1901,203	1797,991	1034.376
17.	1374,147	. 1374,343	1001,394	1779,384	1901,102	1034.700	1077.327	1438 AAS	14671318 1418 ARE	1569.417	1559.177	1548-878
I	1374,836	1262,147	3794,753	1299,774	19814917	1997,223	1894.573	1488.712	1465.437	1507.397	1541.341	1544.754
;	1			1688.844	1545.561	-1568.221	1\$77.358.	1540.58	1501.475	1376.429	1549.119	1544.455
i.	8.829	0.214	8.8em	8.999	1509.865	1548.012	1555.511	1555.493	1555.802	1557.463	1552,944	1541.307
š	8.090	8,010	8,098	8,098	0,900	1500,000	1500,000	1900,000	1588,884	1529,422	1534,445	1531.704
- Ā	8.008	8,079	8,000	8,000	0,000	8,000	D, 279	0,090	0,090	1500,808	1515,743	1519,196
3		8,098	8,040	8,098	6,000	0,000	<b>P</b> , <b>D9</b>	0,099	<b>0.000</b>	0.000	1265*668	1587.447
	8,079	<b></b>	<b></b>	<b>*</b> • <b>*</b> * <b>*</b>	0,000		8.84 <u>8</u>	0.040	D. D	P.770		1300*000
1	2,540	****	0,000	<b>4</b> ,070	64888	# <b>*</b> 618						**** <b>D</b>

.

F.29

÷.

The second second the

TABLE	F.1D.	(contd)

POTENTIAL BOLUTION (FT) BIAS+ 1388,000

	49	50	51	52	53	54	53	54	\$7	58	59	64
65	6,640	<b></b>	0,000		8,648	8,048		8,848	8,888	0,040		8.848
64	8,934	8,448	8,698	\$,988	- <b></b> ,000	9,848	0,000	8,848	a	0,000	9,480	0,040
63	0,000	8,944	Ø,800	8,888			P.000		0,000	0,000	0,980	8,948
<b>45</b>	8,044	¥,844	4,668	8,699	0,840	9,669	8,898	8,800	0,010	0,800	<b>e</b> ,use	
41	4,440	B, 888	8,000	¥,000	8.668	8.668	8,800	0,000	8,848	8,800	9,009	0,000
<b>6</b> 0	ø,øng	4,644	W,844	8,599	8,995	0,840	P,900	0,940	0,403	8,000		8,048
59	0,400	8,889	9,648	8,548	8,448	8,043	9,000	8.648		*,***	a, 944	8.428
54	4,445	8,948	8,644	8.989	0,040		8,998	6,846	0,000	8,865	5,900	. 6,848
\$7	_ 0,040	8,888	0,000	8,884	0,004	0,000	8,688	0.000	8,868	8,848	8,048	0,608
54	1248.644	6,999	8,449	8,900	9,000	8,000	0.043	. 0,000				
55	1299'925	1548,888		<b>0,000</b>	<b></b>	0,044	e, sor	9,869	0.000		8.000	8,848
- 54	1547,765	1500,794	8,868	8,898			<b></b>		8,000			
55	1265*189	1300,000			9,949							
25	1204 466	1266.068						<b></b>			8,040	
21	1284,452	1504,975	1300,000			7,707					4 844	
	1797,200	1343,757	1904,440	2,992							0.844	0.948
	1200,030	1706,700	1300,040						A 834	6.044	6.644	6.000
	1200,403							4.844			5.544	0.040
	12044043	1240, 776						0.055				A. 844
	12461113	1364 600		0 444			0 000		3.004	8.444	8.844	
	1504 444			, <b>T T T</b>				6.045	8.848	A. 844	8.844	
	1647 634	1484 444	1544 444	6.444		0.443	0.044	4.044		8.844	×.644	6.664
	1001,304	1300,000			4544 444		A 444	8.848	6.655	à. 544	8.849	6.844
	1919.011	1413 441	1535.465	141.441	1919.114	1348.449	1100.000	1544.444	8.845	8.685	8.844	8.889
		1447 471	1514 544	1430.441	1511.414	1524.344	1414.417	1514.444	1544.646	1348.849	1544.844	
	1542.121	I ALA ALA	1544.143	1555.141	1642.142	1944.444	1544.432	1334.344	1527.746	1828.618	1513.544	1583.145
- 14	1974.441	1475.744	1444.247	1545.121	1542.452	1559.314	1555.419	1954.944	1941.649	1526.128	1513.809	1344.004
÷.	1344.844	1444.812	1541.554	1574.444	1578.449	1547.453	1542.838	1555.977	1545.349	1540.044	1504.000	9.884
14	1597.447	1499.423	1591.778	1544.141	1879.543	1374.644	1142.492	1544.933	1546.646	8.840	8,968	8.886
	1394.944	1401.111	1515.155	1544.442	1541.349	1576.548	1548.527	1538.248	1515.432	8,888	0,000	8.000
14	1345.449	1849.741	1547.395	1544.914	1378.249	1549.243	1554.374	1535.474	1814,321	1548.949	8,698	8,685
ŝī	1571.627	1574.344	1573.114	1548.443	1542.010	1530.046	1541.672	1532.019	1526.444	1549,899	1500,000	8,644
32	1554.717	1559.275	1537.543	1551.595	1546.643	1548.973	1535.654	1529.344	1522,147	1514.744	1507,462	1508,000
31	1547.254	1547.844	1547.159	1544.193	1548.671	1534.698	1532.324	1527.756	1522.700	1517.343	1915,954	1507.391
Sē	1944.520	1543.241	1942.311	1540.047	1537.146	1533.444	1530,344	1526,742	1522,424	1518,818	1514,934	1511,467
29	1545.579	1541.736	1939,239	1937.150	1934,761	1532,047	1529,131	1526,079	1523,013	1519,942	1516,759	1514,226
24	1546,251	1541,996	1534,267	1535,840	1932,942	1538,694	1524,232	1525,677	1523,144	1528,733	1518,376	1210,500
27	1545,968	1542,185	1930,054	1534,999	1931,099	1527,710	1527,576	1525,425	1253*215	1251,355	1210.010	1517,446
26	1545,352	1541,454	1530,401	1535,244	1538,156	1527,355	1327,160	1525,277	1252.212	1251,144	1259'513	1216,757
24	1544, 953	1541,655	1930,410	1535,470	1932,875	1954.475	1327,344	1525,304	1523,443	1255,142	1520,042	1214.013
24	1545,155	1541,947	1530,947	1536.031	1233,257	1530,450	1528,219	1259,010	1254.664	1255.014	1251+443	1256.311
21	1545,545	1542,533	1539,680	1232.953	1534,197	1531,722	1254,245	1527.640	1225,776	1254.420	1253 616	1221+745
<b>2</b> 2	1545,857	1542,975	1540,222	1537,798	1535,504	1222,243	1531,467	1247,733	1254.044	1240.361	12624281	1224,214
81	1346,444	1544,119	1541,749	1339,345	1231 '535	1232.321	1233,374	12314545	1230,177	1940.044	126/,030	1240,203
- 22	1244,429	1945,887	1243,273	1341,134	1337,202	1337.437	1232,37/	1333,030	1936,376	1231.183	12384841	
17	1221,872	1547,200	1248,100	1243,250	1201,242	1234.463	133/ .327	1336.613	1934,039		12364610	6 3 3 6
	1337,730	1220,240	1247,124	1242422/	1242,63(	1221-315	1337,973	1330 632	1030,000	13335364	1414 710	A 444
11	1313,401	1201,935	1224 414	13411884	1342,114	1212-115	1241.073					
	13014043	13/3,040	1394,414	13394790	13411146	1242,2/3	1344,104	1146,033	1541,604	1843.334	1241.841	
12	1304,311	12024010	17/7,745	13041100	1376,100	1544 744	1510 511	1241 613	-1545 448	1944.341	1545.343	0.000
11	1344434	1941.4713	1340,104	1200,000	10/01/024	13341104	1214 1200		1547 414	1841.746		5.205
12	1463,463	1016.775	1911,830	14241331		1303,746		1336,444	1868 444	1561.518		
14	13414611	1011,145		10231443	10414002	1010,730			1542 484	1579.744	8.846	8.844
	19174419	1991,293	1010,500	1434 614	1010,013	1030,373				8.844	a	6.444
	17714683	13// 199			1193,340	1443.012	1474.847	1443.474	1667.174		<b>B</b> ,845	8.844
	1543,032	1221-121		1	1618.644			11111111	1414.1333	8.444		6.844
	1519 11-	1610 443	12271431 1847-812		1563.554	1130-111		1449.717	1447.644	8.844		
Ĩ		1616 144	1449 444	1554.434	1575-674	1944.614	1417.114	1437-715	AAA.4	0. BAA		
	1534.744		1617.344	1546.144	1513.635	1978.619	1111.111	1111.41	0.000	8.844	A.BAM	6.64
1	1521.544	1424-474	1414.472	1534-317	1552.444	1544-414	1515.934	<b>6.</b> 604	6.814	9.844		
	1513.214	1414.414	1428.218	1525.414	1515.644	1945.419	1839.648	A. 844	8.949	8.844	6.584	ě. 644
	1545.547	1611.414	1547.944	1549.941	1512.974	1515.771	8.844		8.948	<b></b>	8,848	9,600
ī	1500.000	1540.044	1500.044	1548.688	1548.944	1500.848		0,845	0,000	8,000	8,668	8,640
-											÷ · · ·	

K

11

-

 $\sim$ 

.

 $\cdot: : \cdot$ 

POTENTIAL SOLUTION (PT) DIAS- 1388.000

en de la s

•->

1

. • ;

	<b>41</b>	. 62	63.	64	65	\$6	67 -	68	69	78	71	12 ,
65	.,,,,,	0.075	Ø, 899	5.590	0.000	0.008		8.000		0.679	8.945	0,719
Å4 -	0,000	0,810	8,879	8,009	9,078	0,000	0,070	0,000		9,698	8,978	0.078
63	8,888	6,600	0,009	0,000	0,000	0,011	0.079		0,000	0,000		0,618
55	6,008	0.070	<b>0,899</b>	2.005		*,***	0,040	8,674	2.007	8,048	8,859	8,800
	0 030.		5,577	P. TTU	V.UVU		0,779			P.040		
	8.888	0.049	0.000	A.886	8.848	0.848	0.000	8.675	8.846	8.898	8.886	8.292
58	0.009	0.000	8.000		0.000	0.410	0.005	8.000	8.008	9.098		0.688
57		8,010	0,000	0,000	8,898	0,079	0,000	0.070	8,899			8,000
56			0,079	0.009	0.000		0,000		0,000	8,000		8.008
55	6,600	0,000	0,000.			0.000		8,898	8.879	8.898	8,848	8.090
24	8,646	8,070	0,899	0,000	8,876	0.500	0,040	0.000	84007			D,070
33	0.000 0.000		8.664	F4770	1748.008	8.848	8.888	1718.808	8.888	1728.868	8.986	1724.680
51	0.958	1784.688	0.009	0.005	8.999	1733.348	0.273	8.070	1715.000	0.799	8.098	1787.000
<u>50</u>	0,090	1709,999	0,079		8,898	8.805	1726,700	1728,000	1713,300	1704,798	1700,000	8,598
47	8.868	1673,400	0,949	0,000	0,000	8,009	0,000	8,809	8,899	9.779	1708,098	1493,390
48	8,869	1679,099	0,900	<b>.</b>	0,005	8,098	0,220	0,009	8,279	8,794	6.698	8,898
47	4.000		1040.344	#4970 *****	<b>0,000</b>	0,000	0.000	UTU.			0,000	
24	8.000		8.000	14417160	8.888	1472.548	1447.988	1441.380	8.888	8.000	1454.000	0.000
14 -	0.000	0.000	8.998	9.003	8.885	A.685	8.648	1445.000	1458.800	1454.208	1452.999	0.000
43	0.000	8.899	0.099	8.955		1645.000	1645,898	8,098	0,975	8,745	1449,600	1445,000
42	8,898	0,899	0,000	1599,889	1475,000	1670,998	8,819	0,009	8,895	8,898	8,009	8,000
41		8,008	6,860	8,829		1665.000	6,675	0,000	P,868	1658.840	1647,500	1643,900
48	8.868	8,840		84853	8,878	1670,000	0,079	8,875		1095,575	0,000	0,000
37	0.000		6 997			1704.000	8.888	8.688	1++D+000	8.848	8.846	0.000
17.	8.898	8.868	0.000	8.888	1768.000	6.880	8.000	8.010	5.955	8.678	8.988	8.885
36		8.999	0.000	8.008	8.090	8.008	0.008	0.000	8,989	0,610	8,078	8,000
35	0,000	8,999	8,008	8,000	è,#08	B,825	8,698		8,979	8,000	8,878	8,890
34		8,000	8,898		0,000	0,005	8,000	8,098	8,808	0,070	8,000	8,885
33	0.000	8,859	6,946	0,000	8,868	8,889	8,000	8,805	0,000	P.077		
15	5,775		<b>D</b> . <b>DV</b> <i>T</i>	<b>1</b> ,			0,000			0,000	8.888	
ii i	8.888	8.000		8.888	8.818	6.000		8.000	0.000	8.000	8.096	
27	8.008		0.000	8,800	A			0,000	0,000	8,098	0,799	8,878
20	0,008	0,098	8,000	8,075	8,899	6,819	8,878	0,600	8,000	8,998	0,010	6.000
27	8,835	P.94N	8,409	0.000	8,000	8,845	. 0,010	8,898	5,980	P.899	8,989	8,600
26	0,000	0,075	<b>*</b> .000	8.011		0,777		0,000	0,900			
22		0,000			5,570			0.000		n, see		
51	8.088	8.888	8.848	0.000	8.888	0.000	8.829	8.888		8.898	8.999	8.008
žž –	8.978	R. 895	0.975	0,099	8.075	0,000	8,998	8.980	. 0,000	8,898	B. 898	8,800
žĨ	8,800	P. 000	0,000	0.000	8,000	5,600	0,090	0,000	. 0,000	0,018	0,000	e,008
50	P. 898	0,000	8,048	0,078	8,846	8.088	8,608	8,978	. 0,000	. 0.870	<b>*</b> ,***	8,008
17	8.840	9.005	0,000	8,898		9,889	8,075	0,000		8,575	8,975	0,000
15	n						P			8.885	8.000	8.889
	A.Shi		0.000	A. 684	8.686	A.888	0.000	0.000		8.888	8.898	0.700
iš	8.748	6.000	8.806	8.885		0.085	8.899	8.008	0.000	0.000	8,898	8,800
ji –	8,000	0,090	P.000	8,886	8,808	8.008	8,828	8,968	8,000	8,848	8,005	6,675
15	#,PTP	8,898			0,000	8,895	8,888	8,000		8,875	0,729	6.965
15	8.000	0,007	6.669	8,000	8,090	0.000	0.000	0,000	0,000	8.875		0,000
	<b>*</b> , <b>*</b> *	F, 899			0.000	. 0,000					0,0VD	8.898
17	0.004			8.844			0.000	8.000	8.858	8.888	8.008	8.542
i	8.998	8.098	8.848	0.000		0.000	8,000	8,000	0,008	8,800	8,000	0,000
Ť	8,099			8,808	- 8,015			8,845	8,895	8,000	8,848	8,778
•	0,009	0,000				8,994	8,808	8,999	8.000	8.800	B,000	8.458
5	0,007		8,819	8,898		0,000		9,679	5,509	#, <b>240</b>	8,070	<b>0,040</b>
1	9,999	#, <b>9</b> 94	8,999	<b>F</b> , 925	<b>7,79</b>	<b>0,99</b>	p, <b>590</b>	4,842		<b></b>	8,770	#, 775 A. 464
1	8.848	7,001	7,777	0,000			# . # # # #		8.844	0.244	8.844	8.865
		0		· · · · · · · · · · · · · · · · · · ·		8.444	8.884		8.884	8.888	8.889	0.090
			~	*****		~ * * * * *						

1

. z

and the second s

POTENTIAL BOLUTION (FT) BEALS 1300.000

	73	- 74	75	76	11	78	79	40	41	62	83	84
45	<b></b>	0.000		8.888	Ø.000		0,648	8,998	5,500	0,800	0,040	8,838
64	8,800	8,860	8,888	8,858	0,000	8,860	8,888	0,880	0,040		8,055	8,844
45	0,000	8,800	8,888	6,868	8,408	8,588	5,955	8,888	9,948	8.045		<b></b>
•••			0,000				8,848	8,800	8,848			8,000
<u>*1</u>	8,846		<b>,</b>				<b>.</b>			<b></b>	0.844	8.444
			0.040	a. 444	4.444	8.444		8.443	9.648	8.944	4.844	5.646
	9.644	8.844	8.844	8.995	8.848	1.111	9.649	8.640		6.500	8.040	
57	9.000	8.884	0,000	8.868	0.040	8.888	8.048	0.005	8,995	8,888	5,848	
56	4,868	9,300	0,000	0,600	0,600	8,888	8,848	8,848	9,448	Ø,840	• 0,000	0,000
55	8,868		8,458	8,848	9,838	. 5,940	8,868	8,908	0,000	8,844	0,848	0.348
54		0,000	8,500		<b>a</b> ••••		<b>0.00</b>	<b></b>	0,000	0,000	8,666	8,948
22	<b>P</b> ,				<b>.</b>			0.005	0.000		8.80S	8.448
36				8.044	8.444	6.648		8.848	A. 448	<b></b>	8.844	8.444
54		1.114	8.654	6.644	6.644	5.144	8.848	8.848	8.868	8.648	8,040	0.000
<b>49</b>	8,888	8,888	8,448	0.000	8,344	0,000	8,688	8,848	0,008	#,94#	8,948	8,945
40	1646.700	4,960	8,644	6,865	0,333	8,838	8,848	0,040	8,848	8,888	5,445	5,553
47	0,000	1448,848	0,640	8,040	6,848	6,614	6,668	8,848	8,658	Ø,888		8,848
46	8,000	8,884	1673,340	9,658	8,848	0,500	0,840	6,040	8,848			8,668
43		8,800	<b></b>	<b>4,64</b>				8,545	0,000			<b>U</b> , <b>DU</b>
										*,***		0.444
**	1446.444		0.000				A.444	8.818	8.68 <b>8</b>	8.444		8.040
	8.844		0.640	6.444	1	4.444	6.666	8.044	0.040		8.944	8,944
44	0.000	8.444	0.440	8.444	6.558	8.840	8.000	0.004	0.040	5,000	0,000	8,005
39	8,900	0,000	8,888	5.554	0,440	8,888	6,000	0,948		8,888	8,000	8,888
34	8,998	8,889	¥,448	8,000	8,888	0,640	0,000	5,540		8.888	0,060	
37		8,848		0,660	0,800	0,414	8,999	8,868	8,600	0,000	0,445	8,998
36	0,000		8,884	0.000	e, see	0.000	8,840	8,644	8,086	5,665	8,980	8,900
35	8,888	4,994	8,999	9,000		0,040	0,030	8,848	0.000		4.555	
34			8,455						8.646		9.844	0.044
ü	8.8A8	8.644				4.444	8.844	8.838		8.984	8.844	8.004
ii -	9.844	1.144	8.644	8.644	8.844	8.649		8.848	8.444	8.968	0.568	8,000
<u>18</u>	8,848	4,444	8,848	5,000	8,860	5,849	6,848	0,000	8,888	8,888	0,948	0,00a
21	0,000	8,438	8,844	8,888	8,000	6,848	0,040	4,944	8,988	5,833	8,935	0.000
51	0,040	<b></b>	<b>D</b> ,848	0,040	0,000	8,840	0,000	0,000		0,040	8,846	6,668
<u></u>	0,000	<b></b>	0,000	8,886	5,500	<b></b>	0,640	9,889			8,900	5.405
5			8.044	8.543	8.844		8.008		0.000	4.444	6.644	8.644
54	A. 634	A. 848		A. 544	4.844		4.844	8.644	5.444		6.884	8.048
ži	5.846	8.959	8.888	8.000	8.884	8.800	8.044	0.044	0.000		8,804	6,640
22	8,840	8,564	8,896	8,986	0,800	0,340	0,000	6,868	0,088	Ø,888	8,988	8,888
15	0,640	8,500		8,948	9,504	0,800	8,848	8.848	6,448		5,548	8,858
50	0,070		8,948	8,938	0,330	0,844	4,640	0,040	8,688	0,688	8,846	0,005
17	0.000	8,944	8,548	8,996	6,668	6,969	6,989	9,800	8,848	8,996		0.000
	4.044				<b>0,000</b>							a.444
H.	0.644	4.444	8.044	8. 8AA	4.444	a. 848	5.644		8.948	6.444	8.844	5.193
iš –	9.000	6.944	5.555	5.440	8.888	8.048	8.644	8.844	8.044	8.844	6.884	8,948
14 -	P.A.M	0.800	0.048	8.000	8,948	8.845	8,865	9.994	0,040	5,800	8,808	6,848
j1 -	0,80g	9,844	4,442	0,646	6,840	8,884	0,040	9,444	8,888	8,808	a,vaa	6,944
15	8,848	6,944	8,948	8,868	5,988	<b></b>	0,000	4.944	8,888	4.000	0,004	8,948
11	9,805		1,684		0,000		8,845	0.964	8,650		8,938	0,040
19	0,000	<b>0</b> ,000	6,668	8,848	8.995		0,034	<b>a,88</b>	0,000	<b></b>		<b>0,040</b>
	<b></b>	8,600 A 444	0.400	8.868	0,000	8.444	9,968	8.698 8.698	0,000 0,000	0.000	0.000 0.040	
;	8-464 8-464	. 6. 653	2,242 2,242	0.000 0.000	• #.#3#	<b>4</b> , 244 .			6.000			4.444
Ă.	8.844	6.044	6. 86A	8. 84P		4.644		6.444	6.644	6.66	6.6.6	0.000
š	9,664	0,540	8.840	8,889	8.888		8.684	0.040	8,648		8,850	6,848
-	9,000	0,010	8.434	6,644	0.000	6,650	0,000	0,000	8,880	0.040	8,44 <b>8</b>	8,888
3	0,088	4,488	6,840	9,999	8,808	0,940			8,848	9,648	8.889	8,848
5	9,994	4,434	0,000	0,000	0,000		8,840	6,088	0,000			9,998
1	a , aaa	8,884	8,800	8,844	<b>8</b> ,448	8,448	8,948	\$,638	8,994	8,939	# <b>.</b> 888	8,488

Ż

F.32

Ν.

. •

POTENTIAL BOLUTION (FT) BIAS- 1388.080

and the second second

.

	85 .		87		89	9#	<b>91</b> -	98	93	94	95	96
63	<b>.</b>	6,978	6,868	8.800	8,808	0,000	8,885	8,848	0,000			0.000
44	8,000	· 0,800	A, 894	8,899	8,009	0,000	8,019	8,078	0,698	8,699	8,999	0.000
63	8,888		8,884	8,011	8,808	0,008	8,019	1501,808	1579,500	1211 \$00	1574,770	1372.700
65				0,000		0,010	A.658	0,000	0,040		#.###	1578,498
61	R,888		0,000	0,004	9,895	0,000	8,000	8,048		8,054	0,044	8,011
60	8,798	6,89 <b>8</b>	8,048	0,010	8,000	0,000	8,090	0,948	8,898			0,04D
27	0,649	0,044		8,548	8,848	8,000	1000,300	0,000	0,070	0.000		0,000
21	8,848	0,075	8,000		4,900	D.04D		1901.090	8,079	0,000		
37	4.070		. 민유지카락		0,000	0,000	0,070	1377,100	9,000			
39	0,000				0,000		4844 100	1881 848				8.848
57						0.000	6.680	8.848	1577.100	6.888	8.000	8.000
íi -	8.668	8.845	8.678	8.868		8.899	6.005	8.008	6.955	1572.700	8.999	0.010
<u></u>	8.858	8.000	8.005	0.000	0.000	0.019	8.878	0.000	8.000	8.888	1568.244	0.000
ši	8.698	8.008		0.005	0.000	0.095	0.079	8.009	0.000	8.979	8,098	1763.698
50 · · ·	0.008	0.000	<b></b> .	0.000	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	8.000	0,000	8,069	0,000	8,015	8,898	0,000
ŧ9	8.699	8.08%	8,898	Ø, 090.			<b>0,079</b>	8,099	0,011		<b>#</b> ,889	Q,982
48 -	8,009	#,###	# <b>,</b> ###	0,000	0,000		0,000	ê,879	8,893	Ø,699	- 0,099	8,800
47	8,848	8,008	<b></b>	8,008		8,898	8,098	8,078	0,091	0,009	8,819	
46	0.00M	M.000	8,008	<b>0</b> ,090	8,890	8,885	0,000	0,000	0.009	0,000	0,000	
43	0.000	8,899	0,069	0.790	8,875	8,880	8,849	8,890	8,009		8,849	
44	6,668	a'ssa	4,844			8.89Q	0,045	0,779		0,000	9,00¥	8,840
43	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4,800	6,648		9,205	0.000	8,878	8,868	6,540	8.000	8.009	8,860
45	9,646	8,977				0,000	2.072	<b>D</b> . <b>U</b> UU	8,000	0.000		8.540
91	8,893	8.044				8,000	D, TTT				0,000	
9 <b>2</b>	<b>W</b> . <b>BOP</b>	8,003		<b>D0</b> 7777				0,000				8.400
17	<b></b>	0.000	6 68B				8.888	8.868	8.888		8.769	6.000
39						8.865	8.888	8.848	8.448	8.088	8.018	8.848
14			0.000		à. anà	0.000	0.000	8.866	0.009	8.001	8.005	8.888
15		4.999	6.001	8.868		8.846	8.800	8.000	0.000	8.000	8.019	8.848
šá	8.899	8.990	8.008	0.000	6.000	8.000	8.000	0.000	0.000	8.908		6.005
<u>ii</u>	0.099	8.000	8.889	0.000	0.000	8.000	0.010	0,000	0,690		8,868	8.008
32	8.979	6.000		6.019		8.000	0,878	8,098	0,019	0,998		8,000
31	6,068	6,809	0,0tu	0.000	9,898	8,999	0,061	8,805	8,005	0,000	8,829	- <b>0,010</b>
38	8,080	8,020	0,000	8,898	8,008	0,008		8,048	8,055		8,268	8,070
27	8,898	8,008	8,879	8,929	8,995	8.000	0,000	8,829	6,869	8,949	8,075	
59	9,888	<b>#</b> .00 <b>#</b>	8,889	8,848 .	0,800	8,820	8,848	0,000	0,000	8,665	6, 50 <u>5</u>	8,898
27	8,808	0,800	8,000	0,000	*,***	0,000	8,005	8,829	8,895		8,895	0,000
59	8,000	8,886	0,044	8.798.	0,000	8.000	8,071	5.444	8.848	5.777	0,000	
52	8.888	9,999	. 8,875	<b>0.66</b>	0,000	<b>*</b> , <b>*</b> *	0,070	0.005	8,222	0,000		
24	8.849	8,854	4.747	# # # # # # #	8,070	2,072	<b>D</b> , <b>D D</b>		0,000	0.000		
23	0.041	8,858	8,900	0.074	4,000	0,000		0.000	0,000			
55	키 _은 한민원	8,844	2,044	0.010	0,077	0,000	0,000	0.000				6.000
	<b>0</b> ,007	<b>N</b> ,							0,000	8.000	6.000	8.008
	0,000			0,000 ·			8.888	8.000	8.865	4.000	8.858	8.995
				8.848	6.668	8.845	6.666	0.000	6.625	8.969		8.000
			6.665	6.866		0.000	6.000	8.866	6.869	0.005	6.890	8.888
	D. 000		0.018	0.000		8.868	6.008	8.805		8.898	6.600	8.008
ii	8.099	0.000		0.078	0.000	0.005	8.000	0.000	8.078	0.009	8,008	8.899
ii	8,000		0.684		8.900	8.895	6,610	6,000	8,86\$	0,090	1505,800	1510.000
ii –	0.000	6.000	8.856	0.998	8.000	8,025	8,008	0.000	8,899		8,898	1418,000
ii 👘	8,800	0,000	8,855	8,899	0,000	8,889	0,874	8,008	0,009	8,000	8,975	8.842
Í1 -	8,000	# <b>.</b> ###	0,1109	8.999	8,486	0,000		0.000	· A.865	8,898	8,998	
18	<b>R, 848</b> -	8,440	0.000	0.000	8,299	8,009	0,098	8,898	0.000	8.043	Ø,940	0.000
9	W, 699	8,044	8,864	8,819	9,848	8,097		0,0y0	0,000		<b>.</b>	8,845
6	8,8 <b>4</b> 8	8,849		8,848	8,000		8,898	8,800			8,840	0.299
1	<b>8,8</b> 4 <u>8</u> .	4,804	0,849	8,850				8,009				<b>D</b>
•	8,968	8.005	8,899	8.988	0,040	0,000	<b>0,950</b>	P, 900	<u>.</u>	<b></b>		
5	8,488	A.45A.	4,844	<b>#</b> ,898	R,090	<b>0,000</b>	8,975	2,772	8.648	W, VdV		
•	8,835	8,290	8,844		4,858	8,899	8,890		8,995	<b>0,940</b>		
1	8,908	8,498	0,094	8+608	7,799	<b>8</b> •868	8.000		0,000		0,700	
2	0,000		教会教授事		8,900	8.005	<b>2,703</b>		W, 767		0,044	0,040
1	*,#98	a, 894	****	W , CV ()	4,748	백·민우민	4****	<b>4</b> ,77 <b>4</b>	병응한학법	~~~~~	H to the second se	4044B

	*16	in .		:53	
<u></u>	ABLE	F.1	LD.	(c	ontd)

POTENTIAL BOLUTION (FT) BIAS+ 1380.080

	97	94	99.	100	101	145	183	144 .	195.	186	187	184
45	8.078				4,444	6,668	8,965	9,848	ø, 259	9,885	8,966	8,588
64	0,430		¥, 688	8,888	8,560		0,000	8,800	8,884	8,849	0,040	8,448
63	a, 404	#, 898	0,444	4,954			8,888	8,888	0,000	0,008	4,948	8,848
62	1978,488	1544,180	8,448	1543,548	8,00A	0,040	9,008	#,#88	4,948	8,984	8,448	
61	8,849	8,949	1343, 848	1343,560	1241,540	1224,000	1557,600	8,848	ø,449		8,400	0.000
6.	8,444	A . 660		0,000	<b></b>	0,660	5,960	3,278	Ø, 292		# <b>,</b> #88	8,040
37	8,884	4,084	<b>0,88</b> 0	ü.040	<b>8,0</b> 80	8,648	<b>0,</b> 869	0,000	8.048	8,840	0,964	8,968
58	8,886		0,404	4,444	6,668	4,668	8,000	0,040	0,000	8,688		9,040
57	•,864		a, 804	4,086	8,966	8,840	8,804	-0,666	8,888	3,999	8,800	0,040
56	8,866	A, 588	0,880	9,999	0,888	8,968		0,000	<b>0,000</b>		5,008	8,998
55	9,89#	2,000	8,000	0,004	9,644		9,969	8,898	<b></b>	8,808		8,008
25	#, #0 <b>#</b>	8,848	<b>4</b> ,000									6.840
22	4.778								4 444			0.844
26				0.444					8.044		4.944	
31	1556 104	1816 044	1558.000	8.644	0.444			8.844				0.048
ii.	8.894	1334.844	1554.844	8.444			6.844	8.449	0.045	8.944	8.944	
-	0.644		1558.948	9.444	8.944	8.644	0.848	8.444	8.448	6.646	8.648	5.643
47	8.884		1550.060	1558.000	8.644	8.448	8.868	0.000	0.040	8.444	6.684	6.665
46	8.044	0.044	8.844	1558.688	1558.889	0.000	8.668	0.000	8.000	0.860	6.064	0,000
43	4,000	8.600	0.000	6.644	0.944	1556.040	1354.008	9,948	8,880	8.040	8,000	6,000
44	6,040	8,698		8,888	0.000	8.449	8,848	1550,000	1550,000	1252,000	1251,000	1518,084
43	9,846	8,648	0,468	6,666	8,444	6,983	8,343	0,840	8,000	6,608	6,640	8,848
42	8,444		#,asa	9,000	8,044	0,040	0,680	8,548	- 0,808	ë,994	4,664	8,848
41	8,646	- 4,444	8,638	9,980		8,448	8,660	8,005	9,049	8,000	<b>0,93</b> 9	8,849
40	8,944	# <b>`</b> \$\$\$	8,448	0,680	5,644	8,848		5,805		8,888	#.08#	8,008
39	8,8#8	8,882	0,888	4,040	9,668	8,568	6,900	8,968	0,600		6,448	8,668
38	0,044	8,848	a, 440	8,444	9,914	8,988	8,830	0,000	\$,855	8,744	0.540	8,653
37	8,885	0,000	8,610	9,848	6,68#	8,888	0,640	8,400	8,644	8,406	6,686	8,668
36	9,084	4,944	8,805	0,988	0,000	0,040	8,948	8,808	0,600	8,648	0,000	
35	0.04 <i>0</i>	8,940	Ø,80A	8,848	0,040	8,448	8,656	9,000	0,004	8,800	8,840	8,868
34	9,000	0,040	0,440	8,444	9,848	0,040	0,000	0,004			8.000	6,664
33	8,644	0,000	8,998	9,666	9,868	0,800	8,868	8,048	8,888			8,000
34				4,000	8,998		1340,000	1344,800	8,999			
11	9,840	8,999		•,•••	2,222		1340,000	1344 900	1348.000	1330,000	1232,040	1764,040
38					<b>4</b> , <b>5</b> 44				8.444	6.644	8.888	6.669
5			7,444		0.040				1540.044	1578.004	1548.048	0.040
57		a	0.444	8.654	0.044		1424.844				8.844	1545.548
54	8.684			4.544	1525.844	1420.648	1410.040	6.646	8.844	8.444	8.844	1544.444
23	0.000	6.844	8.86Å	A	8.648	1424.644	8.846	5.344	8.844	8.848	1555.044	5.848
24	8.884		8.668	8.044	1424.648	8.840		8.848	0.040	1578.844	4.956	4.948
21	8.694	9.655	8.644	6.644	8.845	8.588	8.848	A. 844	1343.040	8.844	8.466	0.000
22	8,844	8.899		8.844	8.864	8.844	9.640	1400.040	9.868	6,000	8,466	5,548
21	0.000	1603.000	8.835	8.888	0.444	8,688	8,648	0,840	8,848	8,848	5,548	8,848
50	0,988	1677,888	<b>#</b> ,\$4#	6,500	4,444	8,648	8,888	0,000	- D,038	1243,888	5,808	8,000
14	1679,830	1674,848	1660,080	8,546	1468,898	1638,888	1480,900	1575,840	1565,044	1545,040	1565,000	1550,448
10	8,844	0,000		4,444	4,666	8,988	0,000	#,+48	0,448	0,405	<b>*</b> ,448	8,844
17			0,040	6,644	4,6+4	8,988	0,040	8,848	8,688		5,946	8,548
14	0,000	<b>n,</b> 034	8,646	8,840	8,998	0,000	0,850		9,948			
15	0,000	0,000	9,999	0,000	1942'699		8,866		0,000	<b>9,809</b>	<b></b>	8,000
	1010,000	1648,888	1002,404	1993,000		0,040	8,840			13431000		9,000
11	1.53,888	1943,000		4,978	<b>0,46</b>		0,044			1203.084		D4493
14	# <b>.####</b>		# <b>.</b> ####	<b>0,000</b>			0,900	<b>8.848</b>	8.449		1874 AZA	
		<b>4,908</b>			<b></b>	<b></b>		W. <b>5</b> 900			121419999 121410	
12	<b>.</b>			4.500 6.604		W. 988			<b>4.04</b>	<b>0.750</b>	13149444	1540.040
		A. 684	8.000	0.0AA	A. AAA	3.044	8.203	8.884	4.445	<b>A</b> . <b>A</b> AA	8.844	1551.440
;	0.044	4.444	6.644	<u><u> </u></u>	0.844	. 4.644					a.a4a	ICAL BAS
	<b>B. 4</b> 44	. uaa	<u>ā</u> . 444	g.sam	0.344	B. 444	g. 444	6.044	g.a.a.a		A	ميم م
š	8.844	0.4AA	4.844	8.84A		6.644	4.444	8.934	8.844	8.644	8.644	8.848
ĩ	6.644	0.424	8.664	8.94A		8.044	8.844	0.000	0.000	8.664	6.944	
i	8.844			6.444	9.001	8.948	8.848	8.844	6.444	6.844		6.844
ž	8.844		8.6µA	e, gaa	8.844	8,844	8.844		0.044	9.944	8.644	6.943
1		A 0.04			6 6 6 6		0.04	A AAA				6.6.6

F.34

1

TABLE F.1D. (contd) POTENTIAL POLUTION (FT) BIASO 13P0.000

and the second sec

•

		189	110	111	118	113	114	115	114	117	118	119	128 .
	49	8.8E8					6.645	8.848		A.865	0.000	0.878	
	ĂĂ	8.844	8.004		0.000		8.225	0.009	8.676	0.009	8.688	8.000	9.866
	- 63	9.075	0.000	6.000	8.000	0.008	8.000	0.000	8.008	8.009	8.999	8.999	8.999
	- <b>52</b> .	8,098	8,000	8,091	8.000	8.899		8,889	8,889	8,000	0,000	8,099	8,940
	61	9,000	0,000	8,044		8,999	8,929	6,999	0,000	8,098	8,0 <del>48</del>	8,968	8,898
	60.	0.888	8,078	0,000		0,099	8,629	0,075		8.879		8,000	8.899
	59	0,079	0,005		8,000	0,009	0.979	0,000	8,829	8,869	0,000	8,079	8,000
	20	P, 899	8,000	0,900	. 0,650	8,090	- 8,670	8,998	8,000	0,000	8.000	8,857	8.668
	37	8,858		8.004	<b>0,000</b>	<b>*</b> ****		8,978	<b>0.040</b>	0.777	8,898	8,778	
	- 25 -		8,000		4,554		2,272		0.000	8,000			0,707
	32	*******				0,000				0.000			
		0.000		6.666		8.885	6.665			8.888	8.889	6.000	6.676
		6.000	8.815	8.059	6.666	8.000	8.000	6.008	8.272	8.875	8.000	6.009	8.000
	ŝi	8.000	8.008	0.000	8.009	0.099	0.000	0.000	8.003	8.000	8.000	8,895	0.000
	50	0.000	8.000	0.799.	9,100	0,000		8,000		0.000	8.000	8,098	
	49	0.000	0,990	0,099	0,000	0,899			. 0,775	6,079	8,698	8,716	0,000
	48	7,000	6,611	8,844	0,818		8,898		0.000		8,890	8,898	
	47	8,008	0,000	0,000	8,898	8,898	8,879	8.005	<b>p</b> ,999	0,000	8.005		0.000
	45	<b>.</b>	A. 898	8,027	8,895	0,000		8,000		8,078	8,725	8,998	<b>0,000</b>
	45	0,001	8,779		0,928	0,000	8,860	6,999	8,000	8,858	0,975	0,000	8.844
		8,626	8,011	0.004	6,407	8,828	8,885	0,000	8.070	0,000			0.440
	43	8,899			11040	0,000	0,000	0,074		0,077			0,000
					4108 000	<b>0,070</b>	0,00V	0,000	<i>0.000</i>	<b>5</b> ,577	0.000		
				8.84 <b>9</b>	8-488	4.000	A. 669	0.000	1928.848	8.875	8.005	6.801	0.000
				8.888		0.000	8.000	1915.800	6.686	0.000	0.000	8.005	8.669
		8.000	8.889	6.048	8.868	8.889	8.000	6.000	0.000	8.886	8.005	0.000	8.000
5         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700         6,700 <th6,700< th="">         6,700         6,70</th6,700<>	37 .	8.000	8.999	8.860	9.008	8.000	8.969	0.000	· 0.000	8,005	0.000	8.898	8,848
	36		1500.000	0,000	8.898	0,000	1600.008	1566.000	1569,008-	1551,000	1334,000	1517,898	1308.000
	35	8,520	8,000	1783,008	8,899	8,679	0,000	0,000	8,998	8,888	0,000	8,878	8,875
	34	8,778	8,008	1979,000	8,988	8,000	6.640		8,009	0,000	8,884	8,000	8,000
	33	8,070	0,000	1558,000	6.000	8,000	0.000	8,090	0,000	8.007	8,698	6,500	0,000
	35	0,000	6,000	1743,000	9,008	0,000	8,867.	0,000	0,000	8,640			
1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924       1924	31	8,671	1220,000	0,000	6,000	1290.040		8,878	0,000	8,070		8,040	
2         6         7         7         7         1         7         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	34	1254 488	6,775	8,877	4.772	1202.040	8.978	1010.000		9779			0.070
1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1	57	8.008	3358.640	<b><i><b>U</b></i></b> , <b><i>T</i>U</b>		1240,810	<b>V</b> , VIV	W. 000	1000.000	10029000		4.800	8.458
1322,000       1310,000       1300,000       1300,000       0,000       0,000       1300,000       0,000       1300,000       0,000       1300,000       0,000       1300,000       0,000       1300,000       0,000       1300,000       0,000       1300,000       0,000       1300,000       0,000       1300,000       0,000       1300,000       0,000       1300,000       0,000       1300,000       0,000       1300,000       0,000       0,000       1300,000       0,000       0,000       1300,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000			1710,000	1212 844	12631666		- 0.000		6.646	1548.468	6.666	1548.048	8.008
23       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24       24 <td< td=""><td></td><td>1337,770</td><td>1917 888</td><td>1965.666</td><td>1364.000</td><td>1500.000</td><td>8.848</td><td>8.000</td><td>8.000</td><td>1540.000</td><td>8.000</td><td>1548.000</td><td>8.000</td></td<>		1337,770	1917 888	1965.666	1364.000	1500.000	8.848	8.000	8.000	1540.000	8.000	1548.000	8.000
2         3,000         0,000         0,000         0,000         1,410,000         0,000         1,220,000         0,000         1,536,000         0,000         1,536,000         0,000         1,536,000         0,000         1,536,000         0,000         1,526,000         0,000         1,526,000         0,000         1,526,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000	54	6.000	0.000	6.675	8.998	1499.000	8.009	0.072		1548.000	8.000	1348.000	
23         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th="">         0         0         0</th0<>	24	8.000	0.046	8.000	0.079	8.019	1478.078	8.075	0.000	1536.000	8,850'	1534,099	8,899
2         6         700         6         700         6         700         6         700         6         700         6         700         6         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         700         70	23	4.000	9,005	8.000	8.872	6.000	1497,008	0,000	1924,000	0,000	1584,688	8,848	8,000
P:         P:<           14        15 </td <td>žž</td> <td></td> <td>8,000</td> <td></td> <td>0,000</td> <td><b>*</b>, 220</td> <td>1474,290</td> <td>0,000</td> <td>0,000</td> <td>1512,000</td> <td>8,198</td> <td></td> <td>0,000</td>	žž		8,000		0,000	<b>*</b> , 220	1474,290	0,000	0,000	1512,000	8,198		0,000
1344,000       1312,000       0,000       1433,000       0,000       1491,000       0,000       1491,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000	21	0,000	n, 668	6,010	0,000	1900,000	1493.089		0,000	1500,000	8,008	<b>8</b> ,899	
10         0.000         0.000         0.000         0.000         140.000         140.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000         0.000 <t< td=""><td>50</td><td>1548,000</td><td>1536,000</td><td>1254,040</td><td>1512,000</td><td></td><td>1493,000</td><td>8,998</td><td><b>5,650</b></td><td>1493,000</td><td>6,646</td><td></td><td>8.648</td></t<>	50	1548,000	1536,000	1254,040	1512,000		1493,000	8,998	<b>5,650</b>	1493,000	6,646		8.648
	17	8,000	8,898	0,070	. 0,640	8,570	0,007	1491,000	1470,070	0,000		N,984	
1       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.000       0.0	10	0,874	0,570	0,244		12134466	1268.648	1473,000	1447.040	1400.000	1403,000	1440'220	
		1515 000		0.000	0,000		8.000		0,000				1477,000
		1340*044		686 2484		1915.000	1538.848	1317.000	1981.888	1701.000		R. 888	8.695
13       6,847       6,078       1376,000       6,020       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070       9,070 <td< td=""><td>12</td><td>0.000</td><td>8.888</td><td>A. 888</td><td>1948.888</td><td>8.658</td><td>8.868</td><td>8.876</td><td>6.899</td><td>8.885</td><td>1495.000</td><td>1418.078</td><td>6.000</td></td<>	12	0.000	8.888	A. 888	1948.888	8.658	8.868	8.876	6.899	8.885	1495.000	1418.078	6.000
12       0,000       0,000       0,000       0,000       0,000       0,000       1516,000       0,000         11       0,000       1355,000       0,000       0,000       1,000       0,000       1,516,000       0,000       1,516,000       0,000       1,516,000       0,000       1,516,000       0,000       1,516,000       0,000       1,516,000       0,000       0,000       1,516,000       0,000       1,516,000       0,000       0,000       1,516,000       0,000       0,000       1,516,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,0	16	8.886	8.8e8	1378.888	8.848	8.888	8.888	8.000	8.565	6.890	0.000	8.005	1468.000
1       0,800       1595,000       0,000       1548,000       0,000       0,000       0,000       1548,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000	iž	8.000	0.000	0.000	8.000	8.008	8.099	0.070	8.008	0.000	8,879	1518,800	6,000
10         0,000         1315,000         0,000         0,000         1340,000         0,000         1344,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000         0,000	ii	0.420	1595.000	8.848	8.688	1548.000	8.888	8.008	8.009	0.000	1535.008		8,899
0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 <th0< th=""> <th0< th=""> <th0< th=""> <th0< th=""></th0<></th0<></th0<></th0<>	1÷	0,000	1575.000	0,000	0,070	6,668	1550,000	1548,000	8,899	1544,228	8,875	8,898	8,678
4       1551,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000       0,000			1565,000	1175,008	8,846	8,005	8,000	0,000	1346;898	0.999	8,019		0,990
	•	1551,000	8,848	8,041	0,010	0,000	8,999	8,996	8,003	8,009	8,898	8,755	8,000
•         P.505         P.505 <thp.505< th="">         P.505         P.50</thp.505<>	1	0,000.	8,844		.8,879				· <b>0,000</b>	0,598			8,948
3 V.CTU T.VVV V.VVV V.VVV C.VSN 0.070 0.070 0.070 0.770 D.VVV D.800 0.500 0.500 0.500 4 D.DOS 0.000 D.DOS 0.000 0.000 0.000 D.DOS 0.000 0.000 D.000 D.000 3 D.DOS 0.000 D.DOS 0.000 0.000 D.000 D.000 D.000 D.000 D.000 2 D.TU 0.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 D.000 1 D.DOS D.000 D.0	•	B, 898	7,755	#, 8¥\$	0,074	8,040	8,809	#, #¥\$	<b>0,000</b>	8.840	W, WW	6,800	8,905
,,,,,,,, .	ž	<b></b>	8,000		0,000	8,840	<b>0,000</b>		8,778	0,000	8.843	0,010	U
2 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0 1 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840 0,840	- 1			0,040			0,440	<b>0,070</b>	0,048				
	1		4.745		4.040	4,004	8,777	W. UVV	8.84 <b>0</b>	A 444			8.84 <b>8</b>
	-								8.88A	B. 884	A. 444	8.844	0.000
	•							~					

F.35

1

TABLE F.1E. Held Elevation of Streams in the Model (Elevation = Value - 1300)

#### POTENTIAL BOLUTION (FT) BIASS 1308.888

	61	5. 62	63	64	65	66	67	68	67	78	TL	72
65	0,660	<b>4,600</b>	8,000	0.000	8,666		0,000	8,048	u, 664	8,500	8,840	9,808
64	5,500	8,888	0,840	*.***	8,004	8,899	0,540				a 64a	
63	6,000		8,040	0,400	61000				2,202			8.010
62 ·	8,858	8,000	0,640		8,000		8,845					8.000
61	8,868			4,884							6.044	6.640
60	0,0A#	8,840	6,000	6,000	8,968	0,000					5.646	4.444
57	8,644	6,668	8,964	8,888			•,•••					
58	8,689	0,000	0,000		0,000					8.84A	a. 648	5.444
57	0,004	4,669	a, 993	4,969						8.844	8.644	1.144
56	8,868	6, 568	8,888					8.848		5.434	. a.a.	
22	8,880							1.444		8.848	5.600	8.800
24				6.440				8.846	<b>5.44</b>	8.885	0.000	1738,800
22				8.044	1748.645	4.444	8.948	1710.000	0.000	1720,000	8,846	1724,940
26					4.844	1733.344	4.444	0.440	1715.640	8,000	5,948	1707,840
21	0.000	1144.644	4.444	8.644	5.544	8.448	1725.748	1720,040	1713,300	1704,700	1705,845	5,548
	8.844	1495.400	8.048	6.650	8,888	0.848	5,545	0,840		6,889	1700.440	1693,340
<u> </u>	8.844	1444.444	5.555	8,886	0.049	9,948	6,940	0,668	ē,648	5,560		6,688
47	0.004	4.885	1666.300	0,568	8,848	5,500	8,888	0,040	#,205	8,998	8,889	1,853
44	9.565	8.569	8,649	1601,700	1677,100	8,458	8,888	1678,888	4,000	8,900	0,000	6,000
45		8,845	8,988	8,884	8,848	1672,540	1447,988	1663,388		8,888	1039,588	
44	÷, 888	8,888	8,448	8,488	8,005	0,640	0,043	1692,860	1020	1024.588	1934 400	
45	4,000	9,849	0,440	4,846	4,466	1645.658	1465,880	0,007	0,800		1947,988	1043,000
42	8,848	0,000	9,440	1410,000	1675,800	1678.048	0,808		9,997			1643.000
41	8,000	0,800	8,848	0,844		1663,988	8,808			1030.000		
40	8,864			4,868	8,000	1070,000				8.844	8.844	0.000
39	0,000	0,004	0,049	5,545	0,708	1700.000					8.844	9.140
34	0,000	8,898				1100.000		6.644	4.444		8.884	0.008
11					1100,000		A. 844	8.844	4:444	5.003	8.948	
34	8,998				0 644	8 648	6.644		0.004	8.888	1.044	0.000
22						4 844			A. 644		8.644	8.859
			a aa	8. Aga		8.844		1.111	8.858	8.000		0,040
33		2.444	8.444	4.444	8.858	A. 848	8.644	8.048	8.868	8.888	8,968	
36		8.844	8.000	6.644	8.844	8.848	8.684	8.868	8,860	8,953	\$,868	
ii -	4.444	8.948	8.668	8.884	0.000	8.449	8,949	0,046	5,648	0,048	6,925	B,800
	8.048	0.000	0.000	8,939	0,848	0,850	8,844	8,668	4.864	8,840	8,848	8,000
11	8,668	<u>.</u>	8,888	8,444	4,868	0,300	6,600	<b>#</b> ,83#	8,008	8,000		6,844
27	0,000	ų, 860	0,600	8,848		¥,840	8,988	6,889	8,898	0,000	8,893	8,000
24	8,004	#,480	8,488	8,888	8,008	8,688		8,844				
25	8,860		8,800	8,800	0,644	8,865	8,845	8,845	2,675			
54		8,848		8,660		5,665	8,000		2,010	5 0.05	5.644	
23	0,620	6,648		4,444		9,999				4.044	6.844	
15	6,766							8.044			8.844	
21	a'uta						8.448	6.044	8.444	8.668	5.145	5.845
					1.114	1.444			8.84Å	8.648	8,648	5,605
						4.444	8.844	8.544	8.868	8.000	8,000	8,000
			9.459		8.444	4.444	6.644	8.894	0.000	8.845	8,648	
			8.844	6.644	8.644	6.848	5.548	8,840	8.848	0,040	Ø,044	
15	8.844	8.948	8.004	0.044		8.848	8,848	8,804	6,808		4,888	6,688
11	0.000	8.894	8.444	5.845	8.908	0.000	0.000	0,844	à, 200	5,545	<b>6,94</b>	0,606
- iii		8.556	# 848	4.848	0,844	0,000	0,644		0,808		5,845	
iž	0.044	8.849	8.800		8,058	0,050	0,040	8,808	8,695	ð,688	8,868	0,000
ii	8,868	8,844		8,800	0,868	4,040	5,658	5,945	9,895		0,045	g,800
10	9,008	4,889	0,044	6,800	8,840	0,949	0,800	8,000	8,848	0.004	6,566	0,000
Ĩ.	0,000			6,608	0,444	0,048		5,845	<b>5.56</b>	<b></b>	2. 892	
	8.448	0,548	8.898	8,848	0,000	8,888	8,688			<b>말 : 문문문 문</b>		
7			a, 880	8,668	6,558	8,648	···	···· 10, 899				. A.A.A.
6		8,689		5.530	0,000				80888 10 000			8.844
5	0,000	0,000	0,840	<b>4,555</b>	8,880	8,848		<b>F</b> 4 <b>F</b> 4 <b>F</b>	<b>.</b>		5.604	4.444
4	8.040	0,000		<b>.</b>	¥,848	0,008		· · · · · · · · · · · · · · · · · · ·	- 00-3	- <u></u>	5,044	
1	6,464	8.868		<b></b>			g 044	a 644	A-444	A.43A	6.100	
		월 <b>8 4 8</b>		<b></b>	T. T.			4.848	9.644		6.844	
1	10,10,00	10.10	8.85									

1

(contd) TABLE F.1E.

· .

111

18.1

÷.,

1300.000

9 . <del>4</del> . 7

POTENTIAL SOLUTION (FT) BIAS-11 . 74 75 76 78 79 81 58 83 84 77 88 8.000 ..... 8,844 .... 0.000 0.000 0.000 8.598 6.000 8.888 .... 8,000 65 8.098 69 0.000 ..... 0,000 8.070 0,010 8.898 8,000 8,005 0,000 8,808 8,000 8.875 63 0.078 8,899 P.000 0,000 8,000 8,888 0.000 0,000 8.848 0,000 62 ..... 8,999 8.000 8.898 è.048 8.880 6.005 6.000 8.808 8.845 e, tos 8.000 61 ..... 8,005 8,898 .... 0,908 .... 0,999 0,200 0.096 8,988 0,006 8,988 68 37 34 37 .... 8,899 .... 0,000 0,009 0.000 8,800 8,008 0.000 8.998 0,000 ..... 1,000 8,888 Ŧ, ### 8.884 .... ..... .... 8,000 .... 0,000 0,999 0,995 0,000 ..... 8,000 0,000 0,010 8,909 8,898 8.000 8,879 9,009 8,000 0.000 8,849 0,000 8,000 0,011 0,000 .... 0,000 ..... 8,079 8.998 0.000 54 .... 0.000 0.001 0.000 8.000 .... 9,909 8.000 8.000 9.000 0.000 0.081 0,000 9,000 0,000 53 8.009 8.899 0,000 0,000 0.000 8,698 0.009 8.899 8.888 8,008 8,070 8,848 8,998 8,998 8,808 ..... 0.000 0.090 *.*** *.*** .... 8,011 54 53 8,772 8,000 0,998 1,111 8,999 .... 6,000 8,989 0,004 0,999 0,000 2,000 1.119 52 8,000 8,890 0,009 8,999 8,849 0,869 0,000 1,111 8,000 0.000 8.999 9.999 51 0.000 9,824 0,878 8,000 1,010 8,800 8,000 8,099 0,000 0,000 50 0.000 0.000 0,079 0.000 9,000 8.888 0,000 0.028 0,000 0,000 1400,000 8.000 0,000 49 0.000 ..... 0,808 8,582 0.000 0.000 8.000 0.000 1.010 0,000 40 1484.700 8,899 .... 8.008 8.078 ..... 8,008 0,000 8,000 ..... 8,699 0,005 0,010 .... àŤ 0,004 8,098 8,890 8,898 8,898 0,000 .... 46 8,488 8,099 1673,378 8,000 8,869 6,998 8,841 8,000 8.008 8,888 8,000 .... 45 4,000 8,000 8.004 8,00Q 0,001 ÷,*** ..... 8,808 8.000 9,899 8,999 8.800 8.899 8,995 0,000 0.000 .... 0.000 0,000 8.898 8.878 44 \$,009 8.658 0,000 0,800 8,000 8,999 0.000 8,879 8,879 0,000 9,000 43 8,991 8,979 8,888 0,828 .... 8,879 .... 2,011 42 0,000 8,998 **,**,,,,, 8,000 0,000 8,808 8,895 41 8,805 8,000 8,881 9,889 0,000 8,000 8,008 9,000 8,008 0.009 40 8,689 1,000 ..... 0,000 8,879 0.000 0,000 2.005 0,008 \$,800 8,898 8.968 .... 8,800 39 8,888 4,000 8,100 8.075 8,849 8.888 0,000 0.000 8,819 8,999 0,000 0,000 0,000 .... 38 37 0,000 8,979 0.000 8,000 0,000 1,118 0,779 0,000 8,000 .... 0,099 0,000 8,888 0,008 8,000 8,000 ő, éss .... 8,005 8,200 8,898 8,878 9,949 36 8,009 8,929 8,008 8,000 8,090 8,228 35 6,008 0,998 0,000 ..... 0,000 8.000 1,000 8.809 0,000 0,019 8.078 8.898 8,879 8.000 8,800 8,000 0,000 8,098 8,099 8,000 34 0,000 0.044 8.000 N.000 9,00ŭ 1,001 8,011 33 8,798 8,005 8,079 8,878 8,019 8.578 8.099 0.010 8,884 1,000 .... 0,000 0,000 8,899 6,699 0.000 8,802 8,072 0,040 4,688 31 0,005 6,696 8,604 .... 0.000 8,878 8,688 ...... 8,819 *,*** 8.000 38 6,886 8,894 0,000 ..... 1,090 8,000 0,098 0,000 8,805 8,898 6.018 ž7 0,000 8,000 0,879 9.000 0,679 9,195 0,099 ..... 6.000 0.001 ŧ,000 8,000 0,000 8,899 8,899 8,898 8,898 28 27 ..... .... 8.899 8.878 8.878 8.000 0.008 0,000 9.998 8,575 8,000 .... .... 9,000 8,998 8,908 8,008 8,891 ..... 8.000 0,998 8,000 0,100 8,008 8,098 ..... 8,000 .... 26 8,898 8,849 4,000 8,898 0,000 8,998 25 0.000 0,000 0,009 8,999 0,970 . . . . 8,998 0,000 1,878 8.878 8,000 0,000 8.009 9.818 9,898 .... 8,009 24 8,880 0,000 8.889 0.208 8,999 í. 0,000 ..... 8,000 8.000 8,000 8.000 8.879 8.999 0,000 8,079 8,011 0.000 8.008 ..... 8,879 22 8,888 0,040 8,000 0,000 0,000 0,019 A. .... 0.820 .... 8,808 8,888 0,000 15 8.000 **.**.... 8,070 0,000 0,020 ..... 8,875 8,889 8,000 žė 8,899 8.899 8,001 8,000 9,019 0,000 8,888 0,0ta 0,000 8,000 6,688 19 18 17 2,044 0.498 C. 899 0.000 P. 778 0.000 8,888 0,000 8,088 8,000 A.009 ¢, 878 0.000 0,071 0,879 0,879 ..... 8.899 0,012 1.119 8.000 0,000 0,001 8,889 8,001 8,888 8.898 8, 889 8,675 0,979 8,889 8,000 8.000 9,009 .... 8,000 8,868 8,000 0,000 ..... 8,008 .... 8,678 16 8,000 \$**,**888 8,000 .... ÷,098 15 ..... 8,000 ê, 888 8,000 8,000 0.000 8,019 0,001 0,000 8,882 8.800 8,828 0.000 8,998 8,019 8.899 8,000 8,899 14 8,898 8,086 8,690 8,000 0,000 8,998 13 0.000 1,800 8.001 8.005 8.905 8,998 8,998 8.005 8,200 8,868 8,819 0,001 0,000 0,000 0,990 8,849 8,000 0,000 12 0,000 8,998 8,889 8,884 1,100 8,700 11 0,000 **.**.... 8,044 0,000 8,800 8,008 ..... 8,898 8,898 8,075 .... 6,000 .... 8,988 0.049 0,000 ..... 8,899 n,eee 8,000 8,809 10 8.000 0,001 8,898 .... 8.009 8.844 8,898 8.005 8,990 0,790 8,899 8,999 0,800 e, iii 8,000 8,888 .... 0,972 0,972 8.999 8,899 0,000 8,988 e, oca *,984 .... .... 8,999 8,000 8,000 8,991 8,809 .... \$,987 8,779 0,001 0,000 8,008 6,898 0,000 8,928 8,000 8,698 à, 996 .... ..... e,020 0,100 8,848 0,770 0,011 8,999 9,999 0.010 8,998 \$,818 0,015 8,000 8,898 8,999 0,008 8,800 8,800 8,810 8,999 0,008 0,000 9,999 9,009 8,998 8,000 .,... 8,000 6,019 0,000 8,099 0,000 8,000 9,999 8,800 8,968 .... .... 0,000 0,009 ŧ, 000 8,000 .,,,, 0,000 9,000 1,118 0,999 8,899 0,000 1,111 8,989 8,818 0,000 8,808 8,905 8.810 .... .... 1.019 8,999 8,988 4,014

.

POTENTIAL SOLUTION (PT) BLASS 1388.846

	<b>65</b> -	84	87	. · ••	59	10	41	92	° #3	94	45	, <b>96</b>
45	4.684	#.###	Ø. 888 -	8.888	0.000	0,680	4,995	5,566	3,553	9,900	\$,060	6,048
11	8,658	0.000	0,000	0,000	8,000	0,000	0,000	8,889		8,844	9,568	6,986
63	A, 888	0,440	8,484	9,608	9,888	8,608	0,848	1541,400	1379,500	1277,200	1574,968	1572,740
68	0,000	0,040	#, 666	· #, ###	0,000	8,040	5,665	5,560		0,040	0,688	1378,468
<u>61</u>	8,844	a, asa	8,668	8,054				8,888	8,898	8,504		
		e, use	<b>5,395</b>				4444 <b>44</b> 4					6.035
27			<b>0</b> .044	9.444	a. 444		1000,300	1441.448	5.045		5.844	6.444
ä	4.848	8.848	8.644	6.844	0.644	8.646	8.848	1575.164	5,844	8.444	8.864	8.945
54		0.040	4.458	8,658	8,848	8,000	5,048	1544,544	8,844	0,670	0,869	8,440
55	8,948	0.040	4,044		0,040	1210,948	1546.388	1541,808	0,000	Ď, 848	9,848	8,600
54	9,669		0,984	8,888	0,000	0,000	8.808	0,000	1211.200	5,600	5,846	5,055
53	0,440	0,444	0.000	8,898	9,949	8,888	6,668	<b>•</b> ,•••	6,685	1215,745		8,004
55	8,800	0,000	. 0,048	0,000		8,848	5,555	P, 999		<b>0,845</b>	1200,600	4515.485
21					0.000		6.644	8.648	6.844	6.644		4.448
41	4.444			5.444	8.444	6.444	8.869	9.448	8.444	8.848	8.848	6.040
44	8.578		8,888	8.838	0.644	0.444	6.000	6.844	0.000	6,868	9,840	8,848
47	0,000	4,444	\$,554	8,888	8,808	8,848	8,888	0,040	8,008	8,888	8,845	1,000
46	0,070		8,800	8,948	8,644	0,840	6,669	8,888		5,845	6,844	6,018
45	8.800		6,868		0,000	9,848	8,848	8,668	E,844	8,848	8,888	8,859
44	9,944	<b>0,000</b>	4,588	0,000		0,668			8,845	8,858	<b>5.000</b>	8.000
43	9,848	<b></b>				U, UQU			8,848	0,000	W. 844	8.644
	8.488		A. 444	8.644				8.544	6.648	5.444	8.866	6.044
	6.644	6.944	6.444	5.555	8.644		1.444	8.948	5.000	8.848	0.088	6.649
39	8.868	8.676	8.444	8.848	9.944	8.644	8.958	8.860	8,638	8,880	8,848	8.888
34	8,500	8,558	0,000		8,846	8,888	Ū,400	0,040	8,944	8,846	8,866	8,848
37	0,000	0,080	6,999	8,868	0,000	8,848	0,000	0,000	0,680	8.844	<b>8.60</b>	8,444
56	0,000	0,000	0,000	8,044	a,964	8,565	\$,900	8,938	0,000	8,000	0,640	0.044
35	*,002		0,600	8,646			8,645	a,	8,999	5,595	9,940	
34	8,838	8,886	5,889	8,800	0,000	0,000		8,845			9,946	8,846
13	8.848			8,848	0,000				8.648			
ii –	0.000		4.544						0.000		6.844	8.444
je –	8.834	0.000	8.000	4.044	0.660	8.668	8.888	8,998	0.000	8.000	8.648	8,044
29	8,804	0,000	8,808	0,044	8,848	8,848	8,998	8,558	8,040	8,945	8,844	8,688
24		8,000	8.498	0,000	8,000	0,688	8,888	0,808	9,044	8.945	8,846	8,888
<u>.</u>	9,999	6,466		8,868	9,940	0,040		•,040	0,000	9,570		8,600
20						4,004			8,999			
22	0.000		4 444		8.834		8.844		8.84 <b>6</b>	8.844	#. BA#	4.004
ii -	4.944		0.462	8.888	8.844	8.994	8.848	8.944	0.048	8.648	8.844	8.868
n	9.940	0.000	8,000		0.000	0.660	8,848	8,944	8,668	8,848	0,140	8,848
11	8,648	8,889	9,668	<b>D</b> , 988	8,948	8,848	0,848	8,088	0,444	8,868	6,448	6,448
20	8,550		0,000	8,004	5,060	6,695	5,888	8,834	8,034	8,800	6,848	8,808
12	4,844		0,000		0,004	E, 680		8,808	5,945	8,805		6,550
	9,976	8.885	5,550	8,888				1.11			8,888	6,000
				0.0AA					6.658	5.335	0.000	4.494
13	a. 644	9.844	4.888	8.444		0.644	4.444		8.844	9.648	8.949	A
ii		0.444	8.939	8.958		8.848	8.944	8.000	8.000		1545.044	1518.008
11	4.474	4,649	8,840	8.984	8.644	9,859	8.842	8,000	0.884	8.850	6.856	1610,000
12	9,449	8,00A	8,889	8,688	8,944	6,000	8,884	8,688	8,686	8,548	8,888	8,988
11	4,484	4,458	9,900	P. 888	0,044	0,000	8,848	\$,688		8,888	4,444	\$,446
10	8.888		0.840	4,444	4,846	8,968	9.000		8,644	4,894	8.500	6.660
X	0,000 0.245	8,600		<b></b>	<b>0,848</b>	<b>.</b>	2.241	5,535	8,888	B. 633		
<b>i</b> .	8,04A	8,845 8,844		6.444	<b>6</b> , 44#				8.000 8.000	8.434 8.434	# . B4A	6.044
- <b>i</b> '	0.000	a. 532	4.034	6.640		6. 6AB	6.0AA.	4.444	0.000	0,010 0,010	<b>3.244</b>	6.044
š	0,444	3,944	8.448	9.444	0.41A	0.444				0.444		6.984
Ĩ.	8,638	0,088	0.000	0.044		5,545	0.040	0,040	6,948		0,040	6,888
1	9,000		8,868	9,048	5,544	6,440	8,944	6,664	8,838	0,820	8,438	8,488
	8,944	9,999	0,000	0,000	6,000	6,444	<b>8</b> ,848	8,048	8,004	8,848		8,548
1	0,034	a, 888	8,948	8,988	8,643	8,848	8,838	8,848	6,044	8,948	<b>8.848</b>	8,666

.

.

j.

F.38

х. Х.

•

- Y -

5. .

.

and the second

POTENTIAL BOLUTION (FT) BIAS+ 1388,888

	47	. 98	99	109	101	165	183	184	105	185	187	160
63	6,009	0.079		8,000	0,015	8,008	0,000	8,888	8,004	8,008	8,048	
6	0.000	0.000	0,000	6,019	0,005	0,995	6,000	0,000	81666	8,000		0,000
12		0,089	8,885	070.8	0,000	8,800	0,000	5,275			8.888	0.000
	8.000	9.000	1545.000	1543.548	1361.200	1559.000	1559.000	8,999	8.848	9.049	8,000	8.000
48	8,488	8,000	5,280	0,048	0,075	8,990	8,949	8.008	0,000	0,000	8,849	8,000
59	4,498	8,886	0,004	0,000	0,000		0.000	8,008	0,070	0,828	8,879	8,845
39	8,778	0,171		<b>7,777</b>	0.000		0,000	0,000	0.000	8.000	8.675	6.626
34	8.000	8.980	8.048	0.005	0.000	8.000	8.000	8.000	0.000		8,008	8.075
55	9,000	8,090		8,408	0,000	8,775	0,009		0,000	6,070		8,990
54	0,005	8,884	8,805	0,009	0,000		81688	0,900	8,809	8,077	8,875	8,698
53	0,000	8,000			8,074 8,888	8.888	8.200	8.856	6.000	8.888		8.000
51	8.698		8,448	A.008	0.000	6,690	8,000	0,000.	8,000	0,000	8,800	0,000
50	1559,100	1558,000	1750,000	8,999	8,000		0,078	8,800	0,000	9,000	- 8,098 -	8,678
49	8,005	1958,880	1320,008	. 6,029		8,723		8,000	0,000	8.055		8.000
40			1558.000	1998.027	8.000	8.200	0.000	8.908	6.623	0.000	P.419	8.009
46			0.099	1558.000	1959,008	8,988	8,000			8,898		8,898
45	8,000	0,000	8,999	8,898		1558,888	1550,010	8,815	8,898	8,008	9,099	
44	8,978	8,910	8,000	0,070		0,000		1228.668	1220*668	1252*644	1721.040	1219*444
13	0,008	8,870	8,577	0,000		V.VVV	0.010	0,000	0.000	8.858	8.648	0.000
41	8.000	0.000	6.799	. 8.665	8.270	0.975	8.000	0.000	8,800	8,008	0,000	8,818
40 -		6,948		0,009	0,000	8,668	8,510	0,075	8.005	\$,678	8.018	
39	0.000	8,899	8,888	8,008	0,000		0,000	B.885	0,000		0,018	0,995
38			8,875	0,070	8,975							8.886
37	5.8PS	0.000	8.888	8.999	8.828	8.715	0.079	8.955	0.000		8,000	8,008
jij -	0.000	A.899	8.000	8.000	0.000	8,000	8,000	8,000	8,000	0,818	8,898	0,010
34	0,000	0,000	8.668	8,989	8,008	8,000	0,000	8,860.	0,000	0,990	0,009	6,078
33	0,000	9,889		0,099	8,977	8,888	0,070				N. TVD	0.000
35	8,000	,	6.000		0.000	8.060	1748.000	1544.099	1348.000	1535.089	1532.000	1528.000
<u></u>	6.279	8.009				8,998	8,879	0,000	0,000	8,008		8,999
29	8,898	8,000	8,898	8,000	8,898	8,998		8,618	8,825	8,678	9,849	8,915
88	4,009	8,819	6,648	8,895	\$,998	8,865	0,000	1348.008	1200,000	1218,000	1740,000	1945.040
<u></u>	8,775			T	1425.000	1428.888	1418.800	8.000	0.000	8.800	8.075	1548.898
55	8.698	8.000	8.848	8.808	8.008	1620,000	0,000		0,000		1555.000	8,692
žĀ	8,000	6,000			1420,000	0.000	8,898	8.588	0,000	1978,000		9,000
53		8.000		0.009	8,855	8,809	8,668	0,700	1393,000	5,773	8.070	
55 -	8.899	8,898	6,625	0,007	0,000			1000,000	6.005	0.011	0.000	8.603
20	8.608	1477.009	8,009	4.555		8.000	8,998	9,800	8,098	1545,879	ā, 900	9,648
17	1479.000	1674.998	1488,889	8,646	1668,078	1430,000	1400.000	1575,490	1765,809	1545,898	1202.000	1550,000
10 -	8.049	6,709	9,899	8,808	6,898	8,845	0,000	0,070	0.000			
17	5,000	7.997	0,090				0,000		8.889	8.000	0.700	8.896
10	0.000	0.000	8.995	8.858	1695.000	8.028	8.600	8,000	0.000	8,000	8,875	0,000
ii	1610.000	1648.089	1665.000	1443,000	8,098	8.000	8,896	8,078	8,898	1515.000	0,909	6,000
13	1425,000	1645,000		8.099	8,004	8.009	8,896	8,000	. 0,000	1585,008	8,589	0,875
15	1,079	1.000	9,955		0,005	8.000	5.575	0.070	0,000	8.858	1578.000	8.000
	0,777 0,880			8.688		0.001	8.885	0.000	8.985	8,611	1574.000	8,009
1	<b>8.86</b> R	0.019				8,019		0.008	8,895		8,899	1560.008
Ť.	8,899			0,000	0,000		8,898	0,818		0,041	8,890	1551.008
1			- 0,070			- 0,000			- D. TTT		0,000	1245.000
1	8,200	a, <b>79</b> 4					8.88A		8.668	8.999	8,978	8.001
1	\$.\$ <b>9</b> 4	8.005	8.869	0.044	9,009	0.005		8,005	8,808	0,000	8,894	2,000
ì	8,845	8,999	8.889	9,099	8,009	8,009	9,800		0,046			
÷.	8,000	8,888	8,889	8,008	8,079	8,000		0,000	8,015	D.00A		W.878
		8.000	0.000	6.668	8.099	8.669	8,868		8.059	0.07 <b>4</b>	*****	5°02.02.0

F.39

1

### POTENTIAL BOLUTION (PT) BRADA 1300.000

POTENTIAL BOLUTION (PT) BLASH 1388.000												
	189	- 110	111	118	113	114	115	114	117	118	119	LZA
65	8,888	8,888	8,600	5,988	0,884	8,500		0,564	0,400	8,688	0,000	8,848
44	8,862		8,555	8,560	8,800		8,848	8,444	0.040	<b>0,0</b> 00	8,868	5,003
	5,044			0.000	9,844	9,884	8,898	8,898	8,000	8.688	8,444	6.938
	0,000	4.444		5.544	a. 222	9.040	6.000	9.444	8.444	8.800	8,946	0.000
ii -	6,000	0.000	8.000	6.644	0.049	8,448	8,648	9,833	8,040	8,000	8,844	8,444
51	8,888	8,888	0,000	8,848	8,886		8.544	W,844	8,860	8,884	5,508	5,553
54	0,666	8,985	9,000	8,033	9.009	8,040	<b>8.999</b>	0,004	0,000	6,688	8,000	9,608
27	6,848		0,000	2,010	<b>5,800</b>	0,840	8,848		0,000	8.000 8.000	4,000	4.444
24	0.000		8.994	8.448	9.848	8.040	8.848	6.046	8.944	8.000	0,000	8.848
ŝi -	8,000	6,860	0,000	8,844	8,848	0,540	· 0,000	5,544	9,949	9,999		0,000
53	9,944	8,888	8,400	0,840	0,044		8,048	8,000	8,840	8,000	0,040	5,849
52	9,644	4,940	8,540	8,500	9,999		5,000	<b>.</b>	<b>.</b>			<b></b>
21	9,000	0,000	9.534		0.044		6.648	8.844		6.444	8.644	6.644
41	8.840			8.944	4.640	8,648	8,848	8,004	9,048	8,848	8,664	8,000
48	8,488	9,940	5,648	8,844	8,840	8,844	8,848	8,844	0,000	8,948	9,942	6,800
41	8,648	8,968	5,500	8,888	0,000	8,848	8,840	8,848	0,640	8,668	8,648	6,046
44	8,868	8,989	8,868	3,846	6,668	9,500	0,800	9,865	0,050	8.808	0,900 8,800	0,000 0,000
	8.444	9.848	1.000	8.844					0.048	9.444	6.688	6.040
43	0.008		8.546	8,844	0.040	9,644	5.565	8,868	8,848	8,849	4,544	9,848
42	8,888		8,648	8,844		8,848	8,404	8,868	0,404	8,443	8,644	8.800
41	0,000	8,800	6,848	1505,888	5,005	0,840	8,688	1518,000	8,844		9,948	8.948
40	9,664	0,000	0,840	<b></b>	9,000	9,684	5,550	1248,999	8,885	<b>D</b> ,800	4,988	<b>0.000</b>
	#_ <b>*</b> ###	6.644	9.988	8.111	1.344	8.5AB	1333,000	8.844	9.644	8.000	6.644	6.666
<u>ji</u>	0.000	0.000	0.400	8.540	8,888		8,444	8,688	8,889	8,968	0,048	8,000
36	9,998	1600,000	0,A00	8,688	0,640	1460,800	1346,800	1549,000	1551,000	1934,800	1217,008	1588,858
35	8,888	0,888	1243,448	8,668	8,888	D, 880	9,978	0,000	8,888	<b>.</b>	0,008	8,844
34	9,894	<b></b>	1579,000		<b></b>	<b></b>	5,605	5,555	2, 242	2,242	· • • • • • • •	9,000
	8,000		1545.644	8.855	3.344	<b>7.00</b>	4.844		4.944	A. A04	8.644	
ii -	0.000	1530.000	0.000	8.844	1344.044	8.848	5.595	5.838	8,000	b.890	6,638	9,949
38	1524,000	0,000	9,468	0,000	1565,040	8,088	1618,888	8,884	0,000	8,848		6,004
29	0,000	1948,448	8,000	6,906	1548,649	8.888	9,000	1403,038	1485,888	0,000	8.848	6,600
20	8,889	1516,000	5,600	1252,000			8,648	8,004	1544 444		1546 444	6.885
51	1585.484	1517.884	1544.646	1544.444	1544.844	3.345		8.838	1549.844	6.944	1564.644	6.638
23	0,464	8,899	0,805	8,848	1499,844	8,844	8,844	4,944	1548,648	5,989	1544,800	6,600
24	8,585	8,865	0,000	8,444	0,040	1498.948	8,480	5,840	1536,868	0,888	1534.040	8,800
21	8,848	*,944	4, 540	8,000		1497,846	8,865	1524,843	0,040	1224,040	.948	8,604
	<b>4,988</b>	<b>5,000</b>			848 948 A	1470,000		0,000	1316,060	8.848		6.040
5	1548.444	1534.044	1324.000	1312.044	2.644	1413.844	8.846	6.840	1413.040	8.884	8.646	8.000
19	8,898		0,844	8,848	0,600	7,848	1491,000	1478,804	8,445	8,885	8,964	8,000
14	4,448	0,000	9,855	8,908	1212,000	1500.000	1495,068	1469,058	1444,888	1403,000	1440,000	0,000
11	8,958	8,808	2,865	9,844	0,805	9,556	8,800	0,825	8,848	<b>5.00</b>	<b>U</b> + <b>V</b> 90 <b>a</b> aaa	1477.000
12	12049444	1978 844	1545 444	1553.000	1111.111	1124.44	1117.644	1583.644	1541.644	0.040		9.848
ii	8.444	8.555	0.000	1560.000	8.000	8.865	8.496	8.868	8.004	1495,000	1410,000	8.000
j3 -	Q,68A	8,640	1570,040	8,660	\$,946	8,836	8,868	0,000	8,840	6,662	8,496	1480,880
15	# <b>_</b> # <b>4</b> #	4,800		<b>F.54</b> 3	9,994	0,048	0,000	8,840	0,640	8,669	1210,000	8.044
11	N.49A	1595,000	0,000	9,044	1540,404	9,844	8,500	0,000	9,840	1212'909		
1	9,000	1575,800	694,9	<b>4,508</b>	0,888	1558,848	1544.988		1344,888	<b>F</b> • <b>F</b> • <b>C</b> • <b>C</b> • • • • • • • • • • • • • • • • • • •		0.000 0.111
	8,584	1242,848	13/3,908	7,700 0.545	U, 996		- 44A	43404088	8.444	D. 384	0.884	9.000
i	8.844	6.844	. 6. 888		- <b>516</b> 84		4,444		6,804	8,644	6,044	6,648
6	8,840	9,866	8,563	4,999		0,140	5,008	5,844	8,008	0,800	8,500	0,000
5	8,886		6,800		8,944	8,644	9.645	5,555	8,969	<b>0,980</b>	8,008	0.014
•	••••	<b>.</b>	<b>4</b> ,000	<b></b>	9,998	0 * 7 * 7 *	₩ <b>,680</b>	<b>.</b>	0.000 1.84A	8.444	4.000 4.444	<u>6.684</u>
2	₩ <b>. 84</b>	0.844	1444 e	8.63A	8.8AA	8.444		8.644	6.644	8.844	9,888	0,000
7		A 404	6 680		a aaa	6 6 6 8			a. 444		8.664	0.000
<u>TABLE F.1F</u>. Interaquifer Transfer ( $ft^3/day$ )

					INI	TRACUTFER	TRANS. (CI	703				
	1.		3		5	6	7	•	, [°] •	1.	- 11	12
	-	-		<b>.</b>						. 8.	Đ.	
#7 4 #			<b>6</b> .				, i		. 0		8.	<u>.</u> .
13		Ð.		Ø.,				• 1		. 0,		В.
42		<b>8</b> .	<b>P</b> +		6,							8.
<b>61</b>			7.						i i			
80		0.	ň.	Ϋ.		, i	· •					P.
98	ē,		8.	•		, •	• 2					
57	<u>.</u>	2.					: ;	: 1		i, é,	. <b>.</b>	Ŵ.
20						, i	. 8				. 8.	2.
54		Ξ.	Ø,			· 0	• •	•				-4873.
53	<b>8</b> ,		<b>9.</b>	<u>.</u>		•				12651-		-2340.
35	<u>.</u>				Ĩ	-12121			+1126		0.	-18355,
51 98			6,		Ū.		•9351		+19424	-16566.	-27333.	
41	0					. 1	• . 5	•			•1/1=04	-330702
44		<b>2.</b>	24	<b>P</b> 4						j <b>i</b>		8,
			6.	-46822.	-35748	ĕ		-43674		. P.	<b>#</b> *	
iš	<b>i.</b> .	ē,	8,	ė,	•	-28963	24821	• • • • • • • • • • • • • • • • • • • •		-14544	-12186.	
44	9,	<b>P</b> +	<b>6</b> .					10		. 8	-33170.	-54976,
43	<b>P.</b> 1	2.			i							
42 At -		8.	8.	ï.	Ē		. 1			-45819	, #35158,	-57837.
46		8.	Ø.	¢.		•				1, +13st#(		
39	<b>8</b> .	<b>9.</b>	. <u>.</u> .	<u>.</u>	1	-12291				. Đ	Ū,	<b>B</b> .
30					ĕ							. 💁
37		<b>0</b>	ě.,					•	. j			
33	Ű,					•						Ĩ,
34	0 j	<u>-</u>	<b>.</b>							, O	j é,	
		8.	ě.	Ĩ.	ĕ						, !,	·
ñ	<b>i</b> ,	÷.		8.				i i	•			
10	0,	<b>.</b>	P.	<b>!</b> •		•				i. i		
27	<b>5</b> .	<b>P</b> 4		8.	•			<b>.</b> .	D., 1	6, P		j 🛃
27		Ű.	Ū,	Ű,	- 6				8,		•. 📲	
24	0,					•						
51	ė.	<u>.</u>							ě, i	i, i		<b>4</b>
24	<b>8</b> . 1				ē		<b>i,</b> (			0)	• •	
ii i	<b>n</b>	8.	8.			•	•	2.	ę, 6-			5.
21		<b>*</b> •							 8.	ő. Ť	. Ū.	i i i i i i i i i i i i i i i i i i i
50	2.	2.			ì			<b>.</b>	Ū.	8, 9	• •	. <b>P</b> •
10		i.	ē.	÷,	l l		. !		8.	<u>.                                    </u>	• •	
ii	8,								₹, 8.			
14	<b>e</b> ,	<u>.</u>						<b>D</b> .	8.	ē, ē	. 6	<b>#</b> •
17		n de la companya de						D.	8.	\$, <b>9</b>	. 5	
ii		Ð.		8,	1		P	<b>0</b> , '	¢.			
18		<b>R</b> .	<b>.</b>	<u>e</u> .		• .	7.	0.		<b>1</b> . <b>7</b>		
11			7. 8-				h,	ē,	6.	0. G		<b>.</b>
1				ť.			V,	<b>.</b>	<b>.</b>	<u>e.                                    </u>	• 1	· 1:
i	÷.	ē,	i.	Ĵ,			0.					
Ŧ	é,		- <b>-</b>			4	P	П., А.	P,			
4	2.		<b>.</b>				79 8.		8.	ā, ī		
3		7.				<b>.</b>	i.		1.	<u>ti</u> (		
3	ē,	ē,		į.		ļ.	•	1.	1.			
I			<b>.</b> .	· · · · ·					<b>W</b> A			



1.

.

1

INTERAQUIFER TRANS. (CFO)

	13	. 14	15	16	17	14	19	24	51	22	23	24
65	۰,	۰.	ø.		٥.	8.	٠.				0,	ø.
64	A.			<b>4</b> .		P.			8. 8.		4. 9.	ш. И.
68		j.		j,	0,		ē.	i,	ē.	<b>.</b>		
4L 40									U. 4.	9.	¥.	
39	ų.	÷.	<b>0</b> ,	Đ,			0.	ě,	<b>.</b>		0,	
54											8. 8.	Ű.
Śó	ē,	į,	Ű,	ě,		÷.	Ŭ.	Ū,	j.			j.
55	2	8,	<b>9</b> .		<b>8.</b> R-						<b>.</b>	
ŝì	i,			i:		÷.		i,	ē.	<b>.</b>		
52	ê,	<b>4</b> .	9e 4.		0.	8. 8.		8.				
58	a,		ā,		2,	ā,	ā;	ā,	Ϊ.	- i,	ä,	
49	-11444		<b>U</b> .,	<b>.</b>	<b>5</b> .		B.		<b>.</b>	<b>0</b> .	<u>.</u>	
47	θ,	-24485,	ä,	ē,	Ξ.		i;	i,	;;	ä,	ä,	. ii
46	<u>,</u>		-34246.			6 e		<u>+</u> -	<b>V</b> .	5,	8.	0.
44	ā.	<i>.</i> ,			ā,	i.	Ξ.			ē,	ë,	Ξ,
43	e,						<b>.</b>			9,	<b>.</b>	
41	+/3/3 <b>4</b> ,			¥.							· · · · · · · · · · · · · · · · · · ·	9.
44						8.			j,			<u>.</u>
39	<b>.</b>		8.			<u>.</u>	<b>.</b>					
ji i	ā,		ē.	i,	ě,	9.		<b>i</b> ,	i.	Ū.		Ø.
36			<b>.</b>									9. 1.
34			ā,	Ξ.	<b>;</b> ;	÷.	ā;	Ξ.	i,	ē,	i,	<b>9</b> .
11			<b>*</b> •	9.	1			<b>1</b>			Ű,	
ii	÷,	ā.	ā,	β.		Ξ,	ī;	7,		i,	Ξ.	· · •,
30	9,		4.	<b>4.</b>	<b>.</b>				<b>.</b>	<b>.</b>	<b>8</b> .	<b>6</b> ,
24		ā,	÷.	1. 1.			ā,	ä.	i,		ī,	
2/					<b>.</b>	<b>8</b> .		U,	<b>5</b> .	9,		
25	ē.	Ξ,	Ξ.	ē.		ï.	ē,	Ξ.				
24		<b>P.</b>			<b>2</b>	<b>.</b>	<b>.</b> .		<b>.</b>	<b>!</b> •	<b>•</b> •	<u>.</u>
22	5,	Ξ.	Ξ.	ā,			I.			Ϊ,	ā,	
21	0,	<u>.</u>		. 9.	<b>.</b>			9.	· •	<u>.</u>		ę.
ii			9,		ē.			ā.		ē.	Ξ.	
11						6.		<u>e</u> ,	<u>.</u>			
16					a.	8.						
15		<b>.</b>		<i>.</i>	ē.	<b>0</b> ,		<b>.</b>	Ø.	<u>.</u>	<u>.</u>	Ű,
14				8.	9. 8.	0. 5.		u. d.	• •			
ii	ē.				ē.	ē,	ē,	a,	Ű,		Ū.	j.
11	<b>8</b> ,	<b>9.</b>			8.	<b>8</b> 4						
	ē,	ü.,	<b>4</b> .		8,	e.	ī,	a,	Ŧ.	ě,	ě,	
•			<b>6</b> .	<u>.</u>	<b>8</b> .	0.		e,	<b>6</b>	9.		Ŭ.,
i	<u>.</u>				ā.	ę,	5.	Ξ,	Ξ.	ē.	Ξ.	
Š	9,	0.	ġ.	<b>.</b>	9,		ė,	9,	<b>9</b> .		0.	
;		<u>и.</u> Д.	а. Д	ų.,		R.		9.		3.		51
i	ī,	ű,	š.	i.	ě,	ē,	ē,	ë,	Ĭ,	ă,	Ū,	ĺ,

٩,

TABLE F.1F. (contd)

INTERAQUIPER TRANS (CFD) 30 31 23 32 33 85 65 64 63 62 -33991. Br . . 10749. -57041. -27 61 ۶Ň 59 58 57 96 35 ٠. Š4 ŜŜ 52 51 38 47 49 49 46 43 43 43 48 ;, ;, !, 41 49 39 39 37 33333333222222222222211111 e, 8. 84 84 ۰. 

: . .<del>.</del> . . . . .

#### TABLE F.1F. (contd)

INTERAQUIFER TRANS, (CFD)

	37	. 30	39	48	41	41	43	44	45	44	42	48
63 64 62 62 62 62 62 53 54 55 55 55 55 55	0, -;0443; 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8	8, 9, 9, 9, 9, 9, 6, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6	5104	6450						8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
54 53 52 51 54 49 40 47 40 47 40	-9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9402, -9400, -9400, -9400, -9400, -9400, -9400, -9400, -9400, -9400, -9	8. 6. 9. -24463. -24696. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8. 8.	6. 9. 9. -12145. -1254. -12956. -17749. 6. 8.	-3447 -1847 -	-55	-		· · · · · · · · · · · · · · · · · · ·			-12638	5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5
43 42 41 39 34 37 34 35		0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0										
33 32 31 34	8, 9, 8,	9, 9, 9, 9,	4. 9. 5. 9.	6. 6. 9.			-16017 -30332	-33740 -34763	-4741	-36643	-75444	-49244
24 27 24 23 24 23 24 23 23		8. 8. 9. 8. 8.			3541	3139 1731	-5377 26410	6448 81723	-1813 -1857	-26885	-7618 6 6 754094 8 8	6 -18484 -33191 2 8 8 8 9
21 24 19 14 17	47441. 9. 9.	35687. 44524. 6. 8.	4 4 4 4 4 4 4		7074	777	-63787	-117987 -117987	-191933 0	-55786 -48846	-15453	-59976, 0,
15 54 13 12 11 10		8, -4415, 51292, 8, 8,	54344 54344 8 8 9 9 9 9	83927 63927 6 6	129549 0 0 0					-34383, -48724, -68724, -68724, -	-51709 -47444 -37772	6. 6. 6. 6. 6. 6. 6. 6. 6. 7.
• 7 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5 • 5	- , ,	8. 8. 8. 8. 8. 8.	0. 0. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.								8	-61115 -36755 -36755 -36 -36 -55 -55 -55 -55 -55 -55 -55 -55 -55 -5

.

F.44

.

Χ.,

1

---

. •

TABLE F.1F. (contd)

(070) INTERAQUIPER TRANS. 89 58 51 52 53 54 93 96 57 59 59 69 65 ۰. ۴. η, 8. ۰. ۰. ٥. 64 63 62 ۴. \$, 9, 8, ٩, ۰. 9. 9. 9. 8. 7. 7. 7. ۰. ŧ. ēİ. ٥. 11 57 ٠. ۶. ė, ē, 8, 8, 9, 58 57 ۶, ۰, 9÷ ě. 54 ۶, 8. 8. 8. 8. 53 54 ٤, ٥, Ê, 1, Ĵ. Š3 52 51 ø, 8, ¢, ė. R. 2 ł, 90 Ť, Ĩ1 ÷, ė, s, s, 47 Ő, 46 àŠ ۶. ... ŧ. ŧ, 1, Ξ. 43 ē. ۰, 87 -45249, Î, 81 37 3, 37 ٩, :, 430£, 8, 8, 8, 36 35 34 35 37 ٥, 27348, •4927, •58787, -89648, 339787454522222871074543 1397874545222871074543 -18578, -67661, 76422, 5720, -14777, -11979, -148463. -113871. 498819, -119738. -79769. -79789. -43498. -51987. ř. 8. -620525, -62052, -99953, -43218, -44733, ٩, ė, -57672. ۶. -47597, 8, 8, 7, 8, 7, 7, 8, 8, -63769. -45514, ÷. -54001. -39177. -57416 -351 8, 9, +65119, ė, . . -17472, -47489, -49911, -54170, ۶, -44792. ٥, 441. -34783 ٩. 1 8. -46977, 12 11 10 -79811. ١, F. -16411, B. B. B. B. B. B. B. ۶. . 8 ۹, *** 

F.45

ì

TABLE F.1G. Transmissivity Distribution for East Texas Oil Field Discharge Case (gallons/day - ft)

					TRANA	H1581VITY						
	•	2	3	· · · ·	5	6	846/841+	FT	٠	1#	51	12
	•	-		-				<b>a</b> .		8.		
43 43						i.			8.	<b>.</b>	θ,	ø.
43		- i,	i,	ē.	Ö,		6,	<b>.</b>	<b>U.</b>		<u>.</u> .	
ii -	ě,	÷.	¥.		<b>Ø</b> .							1
61	•,	<u>.</u>		<u>.</u> .	<u>.</u>							
6 <b>0</b>									i.		Ű.	
37 44	T.				i.	Ĭ,	Ū,					. <b>.</b> .
ŝī	ě,	i,		Ű.		<b>4</b>	<u>ų</u> .		<u>.</u>			<b>1</b>
56		<b>.</b>	Į.	<b>.</b>		<u>5</u> .	<b>.</b>				4.	2367.
\$5	2,								2105.	2976.	2163,	2747.
41	<b>.</b>				ē.	i.	. 1953.	8455	8031,	1984.	2256,	2954.
52	i,	i,		÷.	0,	654.	944.	1934,	1654.	2721.	3933,	4737.
\$1	8,	<u>.</u> .		<u>.</u> .	1630,	486.	7484	243V.	20104	14452.	21953.	22544.
54	<b>.</b> .			4444	20234	4454.	4415.	17847.	19443.	22319,	23244,	25471.
**	1			3463.	4972.	6626.	9418.	14542,	11749,	12296.	14241	28472.
41	ē.	÷.	8934,	2440.	3302.	3495.	7434.	seies.	7537.	4347.	7564,	120744
44	<b>.</b>		3446.	11114	2618.	3336,	7043,	14431.	21474.	19278.	12473.	13544.
45	<b>9</b> .		2772.	1844.	1444.	4444.	A497.	14444.	33686	24977.	22636.	22973.
				2179.	1992.	2073.	3735.	9839.	15443.	24552.	22444,	25496.
ii .	ē.	i.	Ŭ,		1227,	2449,	2244.	5004.	7362,	2491.	12536,	28384.
41	Ŭ,	Ű.	<b>4</b> .		<b>.</b>	2419.	8478.	4366,	7230,	3487.		13494.
48	•	<u>.</u>		· •	<b>8</b> ,	2634.	2470.	\$471.	4544.	4547.	5419.	9784.
19	24			3002	2449.	1111	2033.	2473.	3096.	3414,	4733.	9950.
37		- II.		3334.	3254,	3443,	3127,	6732,	6845,	6832.	7147.	4403.
36	ā',	÷.		<b>U</b> .		<b>.</b>	<u>.</u>			12707.	11429.	7321. 19475.
35	<b>4</b>	. <u>.</u> .					4151	11114	14432		\$44 <b>#</b> .	11934.
14							3946.	7514.	9232.	10795	18454.	13359.
32					5936.	5461,	4/43	7944	4941.	11354,	13463,	17431.
31	Ū,	4.	a,	17125.	12449.	12497,	13444.	15107.	15693,	16443.	28277	21037.
34		<u>.</u> .	<b>.</b>	geegi.	34371.	31404,	34110.	37693, A4341,	A7437.	A7579.	52454	54432.
27	<b>"</b> "					34347.	41126.	44514.	49351.	44444	34818.	50451.
ii -		- i.	i,	÷.	ä,	8.	43349,	49442.	\$3352.	51451.	51851,	50518.
21	Ű.	Ű.	0,	¥.	4,		44410.	34317,	37647.	54354,	68843.	3788/.
25		<b>.</b>	<u>.</u> .	<u>.</u> .		21	51351.	34833,	511074	42144.	42469.	63522.
20	<b>.</b> .						31		\$9354,	65147.	67190.	A7457.
22			ē.		ě.	Ŭ,	÷.	9.	9,	65949,	67691.	73142.
21		j,					<b>.</b>	4.		68617.	72136,	74020.
50	8,	<u>.</u> .	<b>.</b>	<u>.</u> .	· •					77212.	25137.	44157.
11										76990,	71136.	61#21.
								÷.	9.	77244,	78443,	44144.
ii	ě.		Ŭ,	Ū,	Ŭ,		0.			79465,	74526,	64523,
15	θ,		<u>.</u> ,	<b>5</b> .	<u>.</u> .	<u>.</u> .				77673.	11366.	12692.
14	•					<b>.</b>					84474	76542.
12							ē,	ě,	ë,		45474,	19150.
ii		<b>.</b>	Ũ,	ė,	÷.	¥,	θ.	9,	- <b>5</b>		<b>.</b>	41762.
10	•,	<u>.</u>			<b>9</b> .	<u>.</u> ,	<b>!</b> •			<b>V</b> .	<b>.</b>	122210
1	9,	<b>.</b>	<b>.</b>	<b>.</b>			<b>.</b>			a.	5.	
;	<u>.</u> r	<b>.</b>									ũ.	Ű.
	31	5.	ă:	ă.		8.	ē,	Ĵ,	Ĭ,	<u>.</u>	<u>.</u>	Ψ.
Ĭ.	ě,	i,	÷.	·	ã,		E,	9.	<u>t</u> i	<u>.</u> .	<b>P</b> ,	Į.
4	<b>0</b> ,	<b>.</b>		8.	<u>.</u> .	<u>.</u> .	ų,			₩. #	1	
1	<u>.</u> ,	1			7.	1		<b>.</b>		<u>.</u>		
	<b>7</b>							Ă.	i.			Ű.

, 1

1

TABLE F.1G. (contd)

.'

TRANSMISSIVITY RALADAV-FY												
	13 -	. 14	15	16	17	18	19	58 .	21	22	83	24
63				0.	8,		8,	۰.			<b>6.</b>	8.
64	<b>.</b>			. 📲	<b>9</b> • .	<b>6</b> .	2.		<b>9</b> •	<u>e</u> .	<b>.</b>	
			20		<b>.</b>							
AL												
69.	ě.	j,			Ĵ.		ē.	6,	ě.	ī.	Ï.	
59	• • • • • • •	<b>.</b>	<b>1</b>	÷.	6,	8.	<b>#</b>	÷.		8.	0,	8.
58	<b>.</b>	<b>P</b> .	<b>1</b> .	Đ.,	<b>.</b> .	e.	. <b>P</b> .	<u>.</u> .	<b>8.</b>	<b>.</b>	6,	4530,
37	<b>2</b> •	2.		<b>.</b>		2.		<b></b>		<b>P</b>	2175.	2347+
44	3294	3999.	7434.					- <b>-</b>		4703	4165.	A189.
54	4914	5727.	9768.	****	i.				4304.	4051	\$\$52.	3711.
53	5566	4516.	11072.	14110	7578	÷.		4551, .	4558.	4467.	\$195,	4633.
25	6917,	4938.	11969.	11764.	10940.		<b>7867</b> ,	4478.	T163.	0950,	7992.	7786.
31	10003.	22418	102490	17275.	17171.	17777*	77776	78484		11270.	14638*	7870.
	24343.	24343.	45101.	47936.	54019.	54555.	41325.	26838.	26075.	23248.	24468.	23161.
48	25725	26676.	49633,	47934	99581		63793	53133.	57229	57373.	94375	44974.
47	\$5412	\$4337.	45916.	47717.	97876.	68474	69413,	80340.	79145.	93199.	85367.	64934,
		26576.	50210	33347.	34013,	41101.	47104,	242324	61378,	37707,	34783.	43978,
	263136	24518.	14144	33716	373779	424176	477274	024234	44128.	81168.	71100. AA91A.	42733.
43	20343	31844.	33312.	32349.	33176.	38513.	47517.	52183.	46016.	37681.	38513.	35346.
42	29167	32011.	35346.	36346.	39914,	41845.	47858	47359,	30513.	32911.	32170,	28677,
41 -	34793,	39843.	37400.	414915	48184,	59510.	52518.	46370.	35846.	276774	24474.	55341*
49	38511,	40320.	37847.	43485.	51710,	52017.	53852.	46683.	37814.	32670.	25842.	2200a.
37.5	23700. 	44346.	41004a	72754.	31003.	33106.	47973 ₆	201005	363476	27044.	2/5476	2/0074
ii ii	9536.	19951.	26189.	38979.		49991.	39346.	31511.	37513.	42181.	36179.	36344
34	9351	11225.	12301.	17648.	29453.	40507.	36272.	36046.	44350,	49851.	43015.	36177.
35	11910,	12730.	11761.	20795.	44824,	51438,	27214.	40514,	40050.	46683.	38688.	34679.
34 .	82522	32448,	24274.	31003.	48886,	40200,	36346,	37847,	45182,	40347,	35512,	34312,
	2/001,	37444,	37184,	49974.	37331.	44547.	343474	41048.	444136	3704/0	37713.	39712.
ii ii	48660	A1 894.	47004	91391	99921.	82918.	42348.	45816.	38313.	32345.	29677.	29010.
ji	54145.	34104	47916	43462.	49517.	52952.	45154.	50010.	42348	34499	35344	35012.
57	41100,	47628.	51919,	37681.	41191.	25192*	56520.	57187.	49517.	42515.	39347.	30100,
50	53519,	57520.	20323,	47463.	41914.	40070.		\$292 <b>2</b> ,	32032.	40517.	44692.	43515.
	47104	94471.	777784	74733.	473714		343674	30007.	491024	49101	44712.	47016-
25	59521	57153.	55184.	51518	53852	57233.	56697.	28328.	54693.	47016.	91018.	47917.
24 1	43149	62689.	\$1689,	91195,	59931,	51144	50407	40521.	61921.	52352,	54019,	48517.
53	65189	64856.	64189.	23025	47684	53352.	47488.	43374, -	\$3376,	54#19,	35819.	51910.
31	<b>0</b> 2171 <b>.</b>	\$7376;	\$3836.		33372.	7307E.	\$2722,	87823.	874234	742170	39329.	39242.
21	A9823	A4474.	401000	545142	40188.	44491-	16929.	49923.	45856.	57191.	40521-	61616.
	57688.			92018.	34353.	47923.	47478.	60921.	69924.	61021.	45523.	66179.
10	55519		64923.	57853.	64354,	78925.	71025.	44022.	46057.	57520.	65674.	70191.
17	56607,	46357.	67023,	61921.	· 61921.	\$6578.	75193,	75693, -	80193.	10051.	01062,	79695.
15	62689	68377.	61377.	25410*	72418,	67755.	75368.	80328.	04063,	03636*	81395.	13256,
12	67178 ₂	89353 ₈	- 3/8348 69821-	4444	33103,	43144-	48824.	71334	177204	78144.	88158.	A7698.
ii	66523.	46470.	65024	64523.	43854.	63923.	44357.	11178.	70691.	74637.	76416.	52874.
ii	69358	71172.	74359.	71350.	73926,	71350,	71672.	78961,	75193.	19750.	19472.	59318.
11	76516	76167.	77494.	75560.	84476.	774414	73657.	40473,	17260.	85838,	\$7\$64,	20332.
10	07371.	47973.	70300.	67737.	74327.		\$43 <b>7</b> 7.	11023.	711274	· 79947#	743784	415674
7	*****	89053,	44+4L	77647. A#\$21	111614	A7636.	42542.	85844	41224	74514-	43317-	32423-
i	I.	199989 1	13794	42344	44402	81810.			82779.	76537	59199.	29211-
	<b>5</b> 1	ē.	27680.	27433.	47839.	69892.	17936,	75342.	76175.	71939.	51568.	29449,
Ŝ		÷.	29433.	27759	\$3437	49726.	47299,	37326.	63509,	64714.		38785,
	9,	9.		24139,	39436,	42965,	66833,	6165 <u>8</u> ,	<u>*</u> •	<b>!</b> .	<b>.</b>	<u>.</u> .
				20107.	32217.	43437.	· 621774	21		<b>7</b>		
	1	<b>P</b> .			343434	<b>P0</b>	<b>.</b>					

TABLE F.1G. (contd)

TRANSMISSIVITY

1.1

							BAL/QAY-	41				
	25	- 24	87	24	29 - EP	5. 50	· · 31	- 35	. ş- <b>33</b>	34	39	36
	a'		8.		8.		8.			¥.	16886.	14684.
		i.	÷.	Ū,	i,	Ű.	ê,	- <b>0</b> ,	12748.	17242.	19454.	19999.
63								5134,	6653.		9568.	10459.
62	۹,	•.		3090,	3414.	3723,	3224.	4313,	3134.	5132.	5112	5114.
- <u>61</u>			20/1.	3300,	4444.	53/44		4114.	AIAA.	BI 67.	5130.	SI 30.
	3445	8442.		6934.	4442	7244.	1944.	15479.	11668.	6947.	\$346	5130,
	7011	4434.	18561.	10/33.	10733,	11044.	14178.	21949,	20101.	13154.	7417.	\$304.
šī.	13147.	10340.	21994.	22412,	82618.	22412.	23237,	24431.	23284.	20103,	12124.	
54	13452,	18356.	22794.	23471	26827.	26363,	24343,	26676,	20387,	23337.	1483/8	1161
55	eriz,	4348,	12116.	377994		23414	20207	31176.	14144.	19444	22174	14349.
- 21	7597.	4166.	5574.	6781	11244.		19424.	19345.	16839.	16506.	17440.	17339.
52	A749.	ŝii.	6541.	7455.	12097.	15723.	19622,	20044,	17334.	16172	16339,	14314.
<u>si</u>	10411.	4473.	6926.	\$497,	14451.	18372,	22700,	19974,	16437.	16339.	17440.	14444,
5#	14949,	\$234.	4535.	11674,	16608.	10342,	195924	16771.	17414.	10344,	82091.	241/24
49	21445,	18475.	11142+	14644.	13611.	13383.	13424,		21111	34117.	27514	24444
	13730. 11731	10076	14363.		1744	19428.		14451	34441	33442.	36177.	24344.
	11144.	34544.	26201.	11412	15455.	14919.	14747.	18345.	27457.	33174.	33345,	34477.
45	35474	34435.	24522.	20163,	16339.	15104.	<u>(</u> 6233,	17997.	43675.	29510.	33674,	34679.
- 44	35743,	35946.	27514,	26174,	17673.	16673.	17673.	18348.	20007.	25676.	31344,	36848.
43	33345	31011.	21674.	18348,	21007,	19173,	21174.	82174.	202014	23007,	24443,	33816.
48	24319,	24842.	10073.	11111	22000,	185864	11111	21091,	2340 <b>7</b> .	12174.	22243	24514.
	23342,	241744	14280			14434	14334.	14544.	24004	31344.	30011.	29344.
10	24174	31675	34142.	10174.	24344.	17446.	17675.	17339.		16676	31344,	33174.
ši	24010	23866.	23444.	21564	19547.	19440.	21674,	\$1341.	23342.	22004.	26676	33015,
31	26449	22444,	19340.	14340.	24174	24442.	24676.	27643,	27676.	19199.	20041.	24315.
36	29344,	21674.	17173.	10173,	24675.	31511.	31511.	32411.	27310.	19340,	171674	27343.
12	32011,	24642.	[0340,	14473.	200434	34013.	33846.	343434	8/3434	34477.	32474.	32411.
- 22	32043,	243474	8828/4	27141	13911	A1414.	12144	27119.	29414.	33345.	34679.	34177.
12	27510	24510.	33012.	35544	19014.	43515.	- 37160.	29344.	21117.	14479,	33676,	28677.
ii 🗌	26677	29010.	33478,	34513,	44815,	45349,	37513.	21510,	38844.	35346.	31844.	27510.
30	33845,	34511.	\$1011.	37640,	45483,	47517.	39347,	31478.	36440.	1944[,	33474,	. <u></u>
	34144,	34177.	51011.	37684,	47850.	33519.	44516.	348794	40314	30307	24137	12741.
	42442,	36668,	31311.	30347.	370314	41422	4/31/4	364135	44914.	34174.	21437	9349.
24	AAAIA'	SASIR.	16864	44514	54354.	45494.	\$1351.	42344	47515.	38489.	13494	6547.
ž	48814.	34413.	42257.	54245.	68632.	62411.	44745,	43662,	44014.	21107.	11689.	7697.
24	42344,	48514,	48344.	51544,	\$7669.	52462.	43444	43497,	48194,	30494.	13564.	\$545.
53	43142,	24944,	24337.	24434,	30005,	25999.	\$2023*	35084,	30750.	24444	11444	11384,
22	48441,	24566.	10776,	10133,	19467			41547.	14741	4435.	\$437.	11557.
34	49251	27632.	19444.	ialaa.	13459.	13274.	12312.	11939.	10301.	11858.	12184.	12762.
19	62341	51011.	25413.	14374.	15017.	13723.	12741.	12234,	12144,	\$2633,	13378,	13115.
11	73458,	64642.	31334,	17942,	11114.	14556.	13443,	13274,	12633.	12457.	13595.	12435.
17	79026	79158.	61942.	24420.	16567,	12999.	14332.	12584,	11543.	12697.	12741.	11358.
15	71830,	75326.	67994.	31204,	17373.	16944,	19011,	11959.	12000	138474	11697.	10104.
17	63767	63767.			11413,	122834	19300.	11444.	11222	7431-	7494	
	14741	11425.	25443.	17641	15278.	14394	13417.	12549.	12472.	4974.	\$471.	10593.
iž	15448.	34743.	24186.	17537.	14111.	15999.	15447	15775.	15554.	14616.	LASTI,	18930.
ii	36945,	27985,	20161.	14845,	16249,	15666.	15467.	15464.	15657.	19804.	10742.	10746.
19	24473,	18681,	14444,	14253.	13449,	13424.	11627.	14172+	14311.	19423.		
2	11411,	12501.	13575.	14718,	12450.	19338.			25116-	16444.	14264	22254
;	19343,	17641.	14612	16941		34346-	13554.	44442.	45362-	29906-	27140.	
1	23474	23443-	26284.	27442	12244.	41224.	64753	8.		0.	8.	Ŭ.
i	41125	43182	46934.	47452.	46192.	8.		ě,	Ŭ,	Ū,		
	<b>e</b> ,	8,	ę.,	9,	8,			Į,	0,	0,	<u>.</u> .	
1		8.			<u>.</u>	<b>9</b> .		<b>.</b>		ę,	<b>.</b>	<u>₹</u> •
		<u>.</u>	<b>P</b> •	<b>g.</b>			<b>.</b>	<b>.</b>				<b>.</b>
1	۳,	<b>#</b> .	••	U,	۳,	<b>#</b> \$	<b>4</b>		¥.	<b>*</b> *		

.

\$

TABLE F.1G. (contd)

and the second s

•

					TRANS	YTÉVZBEZN						
	37	38	- 39	•0	41	42	8#L/04Y= 43	44 ·	45	45	47	46
65	9120,		۴.			· · \$.	<b>0.</b>	۰.		Ø., 1	B.,	0,1
<b>44</b>	19123,	19867.	19378,		- <b>D</b>	<b>0</b> •1	<b></b>	· • •	<b>.</b>	· · •		<b>2</b> •
	17430,	20123.	27777	27732,		11004		<b></b>				
41	5611.	7134	8368.	10585.	11533.	11019.	1014.	8885.	8.	Ű.		ě,
60	5130	7270.	5944.	5037.	\$417.	2477.	5389.	7054.	4370.		0.	<b>9</b> .
37	5138,	5970.	9481.	3391.	3318.	3290, 1	3397.	4643 .	4036.	7171.		
57	5130.	2005.	4423,	2221,	3172.	37/84	31100	33710	31470	3374	26304	1201.
54	5354	4136.	3455	3751.	4012.	3399.	3206.	3783.	2066.	Éint.	2046.	2454.
55	7186	9194.	4693.	4715,	4205.	3527.	3463.	4425,	2943.	2693,	2145,	1759.
54	11662,	7710.	5346.	4971+	4361.	2443.	3559.	4585,	2674.	5525*	1078,	1769.
53.	14730,	12476.	77376	3717.	3070.	3210.	31034	4595.	2093.	1887.	1991.	1414.
91	16596	16172.	19604.	14729.	11206.	11490.	11100.	6935.	2499.	2496	2152.	2933.
59	20174.	18784.	17440.	19473.	24133,	24340,	25324.	19374.	5660.	3151.	6149	4359.
49 -	28910,	24009.	22679.	24999	31344	32175.	27071.	18384,	14203.	12470.	12370.	
44	33012.	14145-	29797.	37344	361794 - 24989-	20174-	17986-	19587-	14585.	14893-	14245	11292.
46	30677	33345	28393	89499	20340	19173.	20141.	22050.	13405,	11994.	19744.	\$168.
65	31178	31012.	26843.	27674.	20474,	25042.	26518.	24175,	12304.	10784	9412.	7469.
44	33678,	33518.	27174.	22702,	24343.	21711+	33012.	28343.	14303.	12909.	19212.	74876
43 -	30000	33817.	37168	11478-	24477	29984	19848.	14439.	9783.	7648.	9349.	7462.
41	36946	43102.	41515.	39912.	29477.	24599	18348.	14172.	7413.		8034	5048.
48 :	32470	49914.	37.913.	39911.	26676.	23175.	10006.	19655*	8218.	6475.	5398.	3788.
21	32511,	35679.	31411.	27510.	87175.	21700.	10767.	16493,	17613.	8836.	3364,	3776.
38	33346,	38348.	323474	25142.	24343.	2707E.	27439.	273744 227744	12249.	4995.	3204.	3878.
36	34345	33345.	24476.	20174.	10506.	84174	24042.	25467	19297.	7948.	4953,	3598.
35	32178.	29344.	23475.	10173.	17026.	19840.	24542,	26343,	23566.	14133,	7489,	2786.
34	27518,	\$7642.	\$1508.	10040.	17674.	23391.	26176.	24307.	24307.	17739,	13730.	13178.
33	27393,	245743,	23777.	24307.	24992.	24674-	24955.	24339.	25444.	20443.	isisi.	14973.
31	24339	24337.	24139.	24339	26371.	26019.	24255	22463.	21674.	16879.	12056.	13514.
38	23140,	. **555	22217.	. 47255	82598.	20993.	15967.	12745, -	15347	17576.	17015	16543,
51	18936	7843,	9635,	19744,	11675.	10773.		6417.	7757.	7271.	7877.	767Z.
20	6477 <i>.</i>	3373,	4230, 7946-	12812.	14730	10741e 20807-	22454-	7737.	22822.	19748-	13439.	8097.
26	4072	7301	12411-	22477	24463.	25929	24339,	84339.	21337,	25447.	22542.	19699.
25	7422	7631.	10797.	20748	25390,	24339,	24337,	26676.	26676.	27344.	30348.	44504,
24	9857	9797.	7938.	12276.	19334,	21763.	23399,	26803.	27344.	49014.	36728 <b>.</b>	54100.
23	17013.	22217.	124210.	1992.	9777a 9753-	12985.	146499	31469-	310//0 '	45748-	49358-	66635.
£1 ·	20361	33937.	24140.	10766	10067.	21315.	20041.	41346	\$9035.	42834,	67837,	64141.
20	15369,	24743.	£9201.	34127	34793,	32130.	48347	52824.	51949.	43929,	52462,	68276.
12	13942	22873.	37475.	#6577.	48878,	45016.	53157,	59477.	31437.	17741,	14436-	373¥7.
12	10344	67477. 11548.	20707 <i>4</i> 25862.	43384.	53948.	49299-	31182.	18190.	14243.	14749.	19862.	17410.
<b>ii</b> *	14140	11203.	14572.	21170.	24704.	23393.	16413.	14196.	14749.	15242.	19370.	15398.
19	7745	8420.	9388.	10761.	18678.	11072.	10401.	10250.	10706.	10773.	10773,	10076.
14	9337.	9785.	19257.	19584.	10706,	10731.	10751.	19731.	10773.	11143-	11143.	19851.
	18474	12793-	18771-	18773-	10773-	10771-	10773-	10773-	10076.	13001.	26921	54078.
ii	10504	19588.	10555.	19588.	10394.	10584	19574,	10504.	11211.	18384.	40195,	50841.
i	7636,	9439.	.1500		8992.	8786.	8858,	8886,	9453,	16392.	37773,	43085,
!	13914;	13453.	18613.	10271.		1134.	7672.	<u>.</u>	7154.	14440,	32373,	42972, 34294.
· •	24636	23507.	27071.	14726,	14777,	77738. 1849a	67/8g	4317 -	20100	17717,	11471-	23836.
i i	1		¥.	1 4 7 3 4 A	14956.	15440-	12798.	13203-	12941	9534.	9301.	14373.
i	i:	ī.	ē.	ē.	<b>.</b>	22130.	ereis,	22027,	19470,	12497.	9928.	11401.
	Ĭ,				<u>.</u>		<u>e</u> ,	<b>.</b>	<u>.</u>	12473	12747.	10747.
3		1.			<b>.</b>			· · ·	<u>.</u>		34793.	19012.
1									5.	ī.		

F.49

.

# TABLE F.1G. (contd)

				5.	TRANE	VIIVIE	<b>*</b> , *		÷.			
	44	58	51	58	- \$3	54	646/DAY-F 53	T 54	\$7	56	59	66
63	•,						e.	<b>.</b>	۹.		<b>.</b>	
44 43	8. 9.					- 6.			¥. \$.			
67			<b>.</b>		ě,		Ø.	9.		<b>.</b>	<b>.</b>	
41 40					2			ē,	ų,	Ξ,	<b>.</b>	
<u> </u>	<u>s</u> ,	9.	9.			6.		2			· <b>F</b> .	8
30 57	9.				1		;;		;;	į,	ē,	
54	2546,	0. 1473.		<u><u></u></u>	5		<b>9</b> .		8.	<b>8</b> .	9. 8.	8
54	2259	4879,	i,		i,		ē.	ē.		i,	Ű,	ē
53 43	2661.	4958,	Ű.		<b>.</b>				1			
ŝi	\$363,	3414,	3594.	ě.	i.	š.						Ē
38 49	2672.	257L. 4192.	4619.	2							7.	, u
44	9494.	6656.			Į,	4.		<u>.</u>				Ē
47 46	6473	6133. 5678.				· •						
45	6887,	9,			j,			<u>.</u>	Ű,			
44 A3	5737 <u>.</u> 6134.	4367.	3444.			4.				3,		ä
48	5447,	3273,	3141,	4207.	5355,		0,					
41	3505. 2778.	2443.	2347.	3848.	7495.	4473.	7845.	7715.	\$749.	4370,	4144,	
ji –	3495,	3544,	4546,	8336,	13793,	14210.	11354,	18427.	6928,	4947,	5473,	9120
30	3143,	5178.	11442.	19343.	15545.	15439,	13934.	8995	5942,	4272,	4724	
34	3462,	5340,	11395,	15404.	14444;	14464.	15565.	13922,	11124,			9
33	11562.	7326,	4512,	13360	13970,	14386	20074,	14588,	47396,	5555i,	i,	
<u>.</u>	19344;	11594.	8295.	14942.	17664.	22341.	36346.	54614,	64654.	61898. A7481.	38169. 38169.	9 14534
ii –	15756	16825,	19997,	24744	14514,	\$5453.	55694,	69358,	41524.	69624,	\$9049,	16496
30	14171	17420.	26416,	39847.	56020,	66690.	69358,	69691. 71358.	71354.	72025. 17027.	62689. 65521.	16966
24	3741	1544,	isisi,	54445,	66162.	69354,	74425,	73424,	76927.	74694,	66823,	16006
27 26	14954	14926.	17010.	33901.	53874,	66718, 55349.	72692.	76694.	79320. 84428.	79020. 79428.	66823.	16076
25	33155	18562.	13949,	13/95,	19425,	37616.	68118,	76694.	66928,	74778.	62744,	23434
24 23	52452.	24010. 52099.	17249,	14434.	15878,	21768.	39822 <b>.</b>	62650. 19469.	74517.	77944 <u>4</u> 66378,	84885. 36168.	23939 23939
žž	64299	33894,	22255,	17131.	15566,	15396.	15919.	20007.	24439,	33217.	38647.	23939
21 28	61981.	34#73, A252#.	19946. 21947.	15919.	15394.	15398,	13378.	15398.	15398.	13566.	15384.	23,939
ii –		\$9139.	32424,	18348,	15566,	15398.	15394.	15398.	15390,	15390,	15390,	÷.
! <b>!</b>	54955, 27510,	57729, 35104.	39670. 14410.	21778. 28768.	13919.	15344.	13394.	15390.	15398.	15390.	19378.	
<u>ii</u> –	16400,	18576.	25410.	22348	17153,	\$5544.	15390.	15390,	15398.	15340,	15448.	ē
17	19773,	18773.	11727.	16396.	18773.	10773.	14773.	10773.	10173.	18437. 9868.	7994	
11	13441.	10496.	18773.	10773.	14773,	14771.	10773.	18773.	11861.	11910.	д.	
	24576, 39207,	12894.	19773.	10773.	19773.	19773.	18773.	18364.	11761.	12746.		Ĭ
jė	39146,	21472,	11130.	\$\$4.8.			\$444,	4444,	4978.		<b>.</b>	. i
4	43316.	33384, 42553.	31444.	14640.	9144.	8418.	8618.	\$618.	\$618.	2	₩4. ₩4	
Ť	56917.	42450.	34696.	15017.	9144	4414.	4614,	4414,	4414,	<u>.</u>	<b>0</b> ,	
•	32772,	24917-	23424. 17401.	19172.	8717.	8618. 6618.	8638. 8618.	4414.	8.	¥.	9.	2
-4	14140,	17134.	11796.	9184,			1111,	0.	ē.	ē.	ē.	ē
2	13036,	13447. 16468.	18912.	18378.	18149.	11222. 16778.	<b>*137.</b>			8. 8.		
Ĭ	15444	13444	13444.	11444	13444	13444.	ā.			Ű.	ē.	ā

1

Stress Distribution for East Texas Oil Field Discharge Case (ft³/day) STRESS (CFD) 10 11 12 . ¢ 1 2 3 6110. 6110. Ø, 9 \$110,S 6110. 61182 6110.3 6118.3 6110,3 6110,3 6110,3 6110,3 118. 5118 6118,3 4110,3 4110,3 4110,3 4110,3 4110,3 4110,3 4110,3 4110,3 4110,3 4110,3 4110,3 4110,3 4110,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 410,3 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40,0 40 4110,3 Lİ 18. Lt10.1 SIIO. 6110. 6110,3 6110.5 1 14 13 18 ii

TABLE F.1H.

11

TABLE F.1H. (contd)

÷.

• •

15

				1 S.	, STRE	14 (CFQ)	, •	Å				
	13	14	15	1.6	17	10	19	20	51	88	\$3	24
43	8.0 8.8	u.a 8.9	8,0	8.8 8.9	8.8 8.8	8,8 8,8	4.4 8.8	\$,5 8,5	8,8 8,8	\$,\$ \$,8	0,9 0,0	. B,
ij		<b>0</b> ,0	j j	0,0 8,0	đ, đ 4. 9	6,6	5.5	8,8	0,0 8,0	8,8 8,8	8,8 9,8	5. 5.
ii -		ā, ģ	Į,			Į,		5,5	6.5			Ē
;;	 	ā, ā		ë, t	6,6	5,5		5,5				
54 57	<b>4.</b> 8	8.0 9.4	8.8 5.5	8,8 8,8	8,8 9,8		8,8	9,9 8,8	8,8 8,8		6110,3	4110, 4110,
56		6.0	8,0	<b>.</b>		0,0	6,5	8,8	8.C	6118.3	6116,3	6118, 6118,
<u>.</u>	4110,3	•i i i i i	611 <b>6</b> .3	• • • • •		į,	i,	8,8	6118.3	6119.3	6118.3	6110.
52 52	6110,3	6114,3	6110,3	6110,3	6110,3	6118.3	4110,3	4,4	4,4	5,5	9,5	
51	6110,3 6110,3	6110.3 6110.3	6110,3 6110,3	6110,3 6110,3	6110,3 6110,3	6118,3 8,8		8,8 8,8	,	3,5	0,0 0,0	
ii -	6110.3	6110,3	6110.3	6110.3	4110.3		0,0	6,6	6,6		6 ( 9 8 ( 8	Ű.
47	6110,3	6110.3	<b>i</b> ii <b>i</b> , i	6116,3	liia,s				<u>.</u>			÷.
44	6118,3 6118,3	6118,3 8,8	6110,3	6119,3	1,1	1,5	0,0	5,0			i,i	
44	6110.3	0,0 0.0	0,0	5,5		0,0	8,8 8.8	8,8 	<b>5,0</b> 6,1	0,0 6.0	8,8 8,8	
42	6118,3	9,9	<b>0</b> ,0	0,0		i.i		4,0		<b>.</b>		
41	8,8 8,9	8,6	0,4		, . , .	1,0		3,3	9,9		ī,i	i.
19	0,0 4118-1	0,0 8,0		6,6	6 j 8 8 j 8	5,5		8,8 8,8	8,9 8,8		8,8 8,8	;;
ÿ	4110,1	4,4	1.1	4.4	5,0				0,0			
<u>};</u>	•11•.3 #,#	8,0										
14 11	0,0	8.8 8.5	8,8 8,8	0.0	8,8		8,8	· 0,0			8,8	- 1,
32		0,0		0,0	9,6	0.0	0.0	0,0 0,0	6 . 6 4 . 6	8,8 184448.8	8,8 8,8	
30						i,i			<b>.</b>	-144499.9	8,9	, i
27 24		9,9	6,3	, a 1, a	3,3			9,5	5,9			
27	0,4	0.0	8,9	8,8		0,0 1,5	8,8 9,9	8,5 8,9	0,6 8,0		9,8 6,0	5.
23		0.0						0,0	6,8	0,9		<b>1</b>
23						<b>i</b> ,i					ě,ě	š.
22	8,9 9,9	4,0				4,4	4,6	8,8	5,5	8,8		
25	6,8 8,8	9,9 0.d	8,8 8,8	0,0 8.8	0,0	0,0	<b>0,5</b> 8,8	<b>8,8</b> 9,9	0,0 1.1	8.8 5.5	8,8 9,8	
ij.				6,0		ē,ē	0,0			<b>.</b>	<b>8,9</b>	
16	4,4	9,9	0,0	4,4	1,1	7, a	0,0	0,0		0,0	1,0	Į.
15	0 ( 0 8 , 0	8.4	a,a 8,4	9,9	6,0	8.0	8,8 8,8	0,6 0,0	8,8 9,8	8,8 8,8		
ii –	4.4	8.9	6,6			9,9	0,0	0,0	8.8	0,0		
ii	ē, i	<b>9</b> , q	4,4	9,6	0,0	0,0	6,6	0,0			<b>.</b>	
1	· 8.8	8,9	1,5	4,0	8,8 8,8	1,1		8,0	0,0		, <b>a</b>	
•	8.8 8.9	8.8 22.3	6,0	0,0 4.4	8,0		6,6 8,8	\$ <b>,</b> 8	5,5	8,0 8,8	9,0	
į.	ŭ, i	ð, <b>s</b>		ā, 1		5,8	<b>6</b> ,9		0.0	0,0	<u>.</u>	Į,
I.	<b></b>		a,4	6118,3	6110.3		6110,3	8,8	, <b>.</b>	<b>4</b> ,4	4,4 9,8	
3	8,6 9,4	0,0 0,0	8,8 8,8	6110,3	6118,1 6118,3	6110,3	6110,3	0,0	8.6 8.4	0,0	8,8 8,8	
ī	0,0	ē, ē	ě, ě	ē. ē		ā.a	ē.ē	ě.i	8,8	ē.ē		

F.52

i,

•••⁷*• 7**\$** 

TABLE F.1H. (contd)

 $t^{+}$ 

		÷		· ·	TAB	E F.1H	• (cor	ntd)				
					STREE	18 (CFD)		:	t			
	83	- 24 -	87	24 - 1	89	29	31	35	33	34	35	34
	23 , A. A. A. A. A. A. A. A. A. A. A. A. A.								33 10331,0 10331,0 10331,0 10331,0 10331,0 10331,0 10331,0 10331,0 0,100,3 0,100,3 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,	34 P.8 10331.0 10331.0 10331.0 10331.0 10331.0 10331.0 10331.0 10331.0 0.00 0.00 0.0 0.0 0.0 0.0 0.0	33 10331,0 10331,0 10331,0 10331,0 10331,0 10331,0 10331,0 10331,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	
13211707654321												

建建建 计正确编制 化化化合金 化结果剂

TABLE F.1H. (contd)

STALSS (CPD)

63   16331.0   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6   6.6 <t< th=""><th></th><th></th></t<>		
\$2 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$6333 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 \$66 </td <td></td> <td></td>		
		5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0
36 0,6 0,6 0,6 0,6 0,6 0,9 0,9 0,0		8,0 6,0 8,0 8,0 8,0 8,0 8,0
	0.0 0.0   0.0 0.0   0.0 0.0   0.0 0.0   0.0 0.0   0.0 0.0   0.0 0.0   0.0 0.0	8,8 5,8 5,8 5,8 5,9 5,9
		5,0 5,0 5,0
		6,9
	8.0 <b>8.0</b>	2.2
	6.8 8.8	8,8
		6,8
		8,8
	1,4 1,0	ē,ē
	0,0 U,0	6,6
	8,8 8,8 4.4 8.9	
	6.9 6.0	6.0
	8,8 8,8	
	<b>6,6 7.6</b>	9,9
	- <b>8,8</b> - <b>8,</b> 8	ė, ė
	<b></b>	
		4.4
	0,0 18331,0	14331,0
	114,3 14331,9	18331,9
	110.3 14331.0	14331.0
30 4,8 6,6 4,8 6,4 6,6 6,6 6,6 6,10,3 6,10,3 6,10,3 6	5118,3 14331,0	14331,0
27 -50000,0 0,0 0,0 0,0 0,0 0,0 0,10,3 6110,3 6110,3		6110,3
	6116.3 6114.3	6116.3
	114,3 4118,3	6110,3
		6110,3
23 6119.3 6119.3 6119.3 6119.3 6119.3 6118.3 6119.3 6119.3 6119.3	4110.3 6110.3	611 <b>5</b> .3
	110,3 4110,3	6110.3
21 6110,3 6110,3 6110,3 6110,3 6110,3 6110,3 6110,3 6110,3 6110,3	118,3 6110,3	6110.3
19 6118.3 6118.3 6118.3 6118.3 6118.3 6118.3 6118.3 6118.3 6118.3	118.3 6118.3	6116.3
je 6114,3 6114,3 6114,3 6114,3 6114,3 6114,3 6114,3 6114,3 6114,3	110,3 6110,3	6110,3
	5.6 9.9	
	0.0 10331.0	18331.0
14 14331,0 14331,0 14331,0 14331,0 0,0 0,0 14331,0 14331,0 14331,0 1	331,0 14351,0	14331,8
13 18331,0 18331,0 4,0 9,9 9,0 9,0 9,0 18331,0 18331,0 1		10331.0
	331.6 18331.0	14331.9
	331.0 10331.0	14331,0
	331.8 16331.8	18331.0
	8,8 9.8	14331.0
	a.u u.u	9,9
⊐ vie vie 9,6 9,5 9,9 8,9 9,8 9,8 9,8 9,8	8.0 8.0	
	6.0 9.0	8.8
i dia dia dia dia dia dia dia dia dia di		

F.54

١,

TABLE FilH. (contd)

the second second second second second second second second second second second second second second second se

				BTHE!	9\$ (CFD)							
	47	58	<b>51</b> .	58	93 -	94	55	56	57	58	59	60
67	6,8	0,0	<b>6.0</b>		8.8	0,0		0.0	8.9			0,0
44 A 1	7,0		8,8		P.T.	0.0		5,5	8.8	P.D	<b>7.5</b>	
		0,0	8,9	6,6	0,0	ē. #	8,8	6,6	ě, ě		0,0	. ē,ē
61	P. 8	0,0	8,8			8,8	<b>9,</b>	5,5	0,0	6.6	1.8	
	<b>U</b> _0	8.8		8.0	8.8			6.0		8.8	<b>\$</b> ,0	0.6
58	n,e	0,0	0,0	0,0	ē, ē	8,0	0,0	8,8	0,0	0,0		0,6
57	7.0	0.0	7,8	0,0	<b></b>	8.0	2,5	8,8	6,8		P.0	
55	8.8	8.0	0.9	8.8	6.0	0.0		0.8		6,8	8,8	
54	8.8	0.0	8.0		0.0	0,8		0.0	0,8.	9,8		
53		8,8	<b>N</b> . <b>N</b>	0,0		8,0	7,0		5.5			<b>7</b> ,0
51	8.6	0.0		9, 9	6.0	0, D	0,0	<b>0</b> ,0		õ, õ	ē,ē	÷.,
58	0,0	8,8		0,0								
		<b>7.</b>					8.0	8.8	0.0	8.8		9.6
ùř.	8,6	8,0.	8.9.		0.0			<b>.</b>		B.# -	0.0	0,0
46		8.8	<b>A</b> .8		8.8	:::	8,0		8.8		<b>7.5</b>	<b>.</b>
43.	74V.	0.0	8.4		0.8	0.0	5.8	8.6	0.0	0.0	0,0	
45	<b>.</b>	8,8		9,4		ê, 0	0,0	0,0	0,0			
42	1.1	<b>.</b>	<u>.</u>	10331.0	10331.0		9,6	14331.0				
48	9.8	8.0	0.0		18331.0	10331.9	16331.0	10331.0	10331.0	10331.0	14331.0	
39	n.e	0,0	8.0	8.0	16331.0	18331,0	18331,0	10331.0	10331.0	18331,0	10331.0	18331.0
36				10111.0	22713.0	22113.0	22713.0	22713.0	22913.0	22913.6	22913.8	8.5
36		18331.6	10331.0	18331.0	22913.0	8,8115,8	22713.0	22113.0	82713.0	0,0		0.0
35		196670 8	18331.8	19331.9	2291348	\$5413.0	22913.0	22713.0	22713.0		2,0	
34 .	10331.0	10331.0	1033140	10331.0	22713,0	22913.4	22713,9	22913.6	22913.0	22913.4	22913.8	
šē	14331.0	10331.0	18331.8	16331.0	22913,0	22913,0	22713.0	8,2115,6	22713.4	22713.4	\$\$913.0	22913.4
31	18331,6	14331.0	18331.0	18331.4	55413.0	22913,8	22713,4	55422.0	22713.8	22713,0	22713,5	22713,8
34	4110.3	4116.3	4110.3	4110.3	7637.9	7637.9	7637.9	7437.9	7637.9	7637.9	7437.9	7637.9
29	6110.3	4118,3	4119.3	6110.3	7637.9	7637,9	7437.9	7437.9	7637.9	7637.9	7437,9	1437.5
51	4118.3	6118,3	6110,3	6110,3	7637.7	7637.7	7837.9	7637.7	7637.7	7637.7	7637.9	7637 ₆ 7
23	4110.3	6110.3	6110.3	4110.3	6110.3	4110.3	6110.3	4119.3	6110.3	6110.3	4118.3	6119.3
24	4110,3	4118,3	4110,3	6118,3	4119,3	6119,3	4119.3	6110,3	6110,3	6119.3	6119.3	4110,3
23	6110,3	6110,3	6117.3	6114,3	6110.3	6110,3	\$110 ₂ 3	6118.3 A118.3	A110.3	6110,3 A118.5	4110.3	6110.3
21	4119.3	6119.3	4114.3	6110,3	4110.3	4110,3	6119,3	6110.3	6119,3	4110,3	6110,3	6110,1
20	4118.3	6110,3	6110,3	6110.3	6118.3	6110.3	6118.3	4110.3	\$110.3	4119.3	6119,3	8,8
17	6110,3	6110,3 A110,3	A110.3	6110,3	4110.3	4110.3	4110.3	6110.3	4110.3	6118.3	4119.3	
iř	0.0	6118,3	6110,3	6119,3	4110,3	6118,3	4110,3	6110.3	6110.3	6110.3	6119,3	
16 -	6117.3	6110.3	4119.3	6110,3	6117.3	6110,3	6110,3	6110,3	6110.3	6119.3	6110,3	
17	18331.4	14331.0	10331.0	18331.0	18331.0	18331.0	14331.0	10331.0	10331.0	16331.0	18331,P	
13	10331,4	14331.0	10331.0	10331.0	18331.0	10331.0	14331.0	10331.0	10331.0	18331.0		
15	14331.0	14331.4	. 10331.0	10331.4	16331.0	18331,8	10331,0	18331.0	18331.0	18331.0	N.N.	
10	18331.0	18331.0	10331.0	16331.0	18331.0	10331.0	18331.9	10331.0	18331.0	9.9	0.0	
	14331.0	14331.0	14331,4	14331.8	14331.0	10331.0	11331,0	10331.0	14331,8			
	18331,0	18331.8	18325*4	10311.0	14331,0	14331.4	10331.0	18331.0	10331.0	1.1		
	0.8	8.4			0.0	ā:ē			0,0		8.0	
5	ē, 6		3,1			0,0	<b>1</b>		6,9		<b></b>	
			2.1	8,0	9.0						8.1	
ž	5.A	7.7	i.i	ē.5	ē.ē			8,4	0,0	1,1	0,0	. <b>.</b>
								<b>.</b>	<b>.</b>		8.8	

F.55

.

 $\mathbf{\tilde{x}}$ 

8,8

<u>TABLE F.11</u>. Stress Distribution for Sabine-Big Cypress Discharge Case  $(ft^3/day)$ 

					aters	a (CFD)	•					
	1	2	3	4	ŝ		1			10	11	12
15		8.0	<b>8.</b> 4		0,0		6,5	8,8	0,0		8,9	8,8
14	6, <b>6</b>	6,0		6,0	9,0	a, a	0,4	4.9			8.0	
63								1.1	ē,ē	0,0	0,0	Ø,Ŭ
64 61	1.1	5.5	5.5		ē, ē			0,0				
ië 👘	Ū,Ū		0.0					9.g				
51									ē, 9	ē,ē		· • • •
34 57	8.8	6.6	6.0	8.0	0,0	8,0	0,0	8,0		0,8	9.4	. <b>.</b>
54	8, <b>8</b>		8,6	8,8		0,0					· • •	4114.3
55				9,				6.4	4118.3	6115.3	6119,3	6115,3
33 53	1.5		1.7	1.1	ā,ā	i,	6118,3	6110,3	6110,3	6110,3	6110.3	- 6110,3
ŝž	0,0			á,a	0,0	6110,3	411 <b>6</b> •3	6110.3	6110.3	6110,3	6110.3 A118.3	6110.3
51		5.5	1.1			6118.3	2112.3	6114.3	6110.3	6110.3	6110,3	6110,3
30 49	0.0	6.6	2.0	4110.3	6110.3	6110.3	6110,3	14331.4	18331.6	6118,3	6118.3	6110.3
44	8,8	0,0		4110.3	6110,3	6118,3	6110.1	14331.0	10331,4	4110.3	6110,3	- 5110,3 5118,3
47	4,8		611 <b>8</b> -1	6118-3		6110,J	A110.3		4118.3	6110.3	6118.3	- ijij.j
44	4.4		4110.3	6110.3	6116.3	4110.3	6110,3	6110,3	6110,3	6118.3	6110,3	6110,3
44	9,9	Ŭ, Õ	4118,3	6119,3	6110,3	4110.3	6110,3	6110.3	6118.3	.6118.3	6118,3	6119.3 4148-1
43	0,0	e.e		6118,3	• •110,3	4110,3	6110,3	6118,3 A118,3	Alla_3	4118.3	4119.3	6110.3
42		9.0	8.9	9,4	8,14,3	11115	2115.5	6118.3	6118,3	4110,3	6118,3	6110,3
48				i, i	ě, ě	6110,3	6110,3	6110,3	6110,3	611813	<u>6118-3</u>	6110.3
39	4,8		0,0	0.0	4110.3	6110,I	6110.3	6110,3	4118.3	6118.3	4118.3	6118.3
34	6,8			<b>6110,3</b>	A118,3	4114.3	4110.3	6110.3	6110.3	6110.3	6110.3	6110,3
37	8.6	5.5		8,6	9,9	9,9				6118.3	6110.3	6110,3
35	6,6			4.6				411 <b>8,3</b>	4110,3			1.1
34	0,0					A110.3	6110,3	4.4				ė, i
13					4110.3	4110,3	ē,ē	ē, ē	0.0	0.0		
ii 👘	Ŭ,Ē	<b>.</b> ,		6118.3	4118,3	6118,3	· •	<u>9.9</u>	<b>9, 9</b>		8.8	8 - 10 10 - 10
34	<b>*</b> • <b>*</b>	8,8		6118,3	6110,3	A118.3		1.4		9.9		· · · ·
54						<b>0</b> ,0	ē,ē	ě, i		6,5		5.
ii 👘		Ū,Ū			6,6	8,0		<b></b>	ē.ē			
56	<b>.</b>		<b>.</b>	4.9	8,8	8,0						6,0
23					ē.ē	i,i	ā,ā	8,8	ē, i		5,5	
ii -	4,4	ě, Ö						6.9	<b>1</b> , <b>1</b>	<b></b>		
22				<u>.</u>		9, <b>9</b>			8.1			8,9
21				1.0	<b></b>		6.6	ă,ă	ē,ē	ē, i	4,4	6,0
īī		ē,ā	ē, ē	4,0		6,0	6.0		4.4	<b></b>	9,6	5.5
i i i i i i i i i i i i i i i i i i i			8.4		<b></b>			8.4				
<u>17</u>	0.0							1.1	1,1	8,8	8,8	8,8
ii		0.0		1.4	ē, ē	a, a	8,8		6,6	0,0		9,0
<b>j</b> i			8,0	0.4		8,0	9,9	6.6	4,9			
8	<b>e.e</b>			0,0				3.5		i,i	8,4	
11			ā, ā	0,4	ē, ē	ě, ě	<b>.</b>		8,9		<b></b>	<b>.</b>
19		0,0	0,0	9.9			<b>0.0</b>	0.0		11	1:1	e, ë
1	<b>U , B</b>	и. 4.4	0.0	<b>.</b>				8,8	õ, õ	8,0		
;	3.4	<b>U</b> _ <b>U</b>	5.5	9,9	0,0	ă,ă	6,6	8,4	0,0	<b>8.0</b>	<b></b>	
	0,0	<b>6</b> ,8	8,6		9,9	8,9	¥• <u>₹</u>	<b>b</b> •9	9,9	8.0 2.1	9.9 8.4	
5	0,0	<b>.</b>	<b>8</b> .4	<b>.</b>	Ű, Ű	a.a		g.1	4,4			9,9
1		4.4		0.0	0,0	ē, ē	ē,ē	ā.0	0,0	0,4		
ā	i,i	6.6	ū,ā		<b>.</b>		0,0	<u>0,0</u>	<u>.</u>			₩.0 #.4
1		0,0	8.4	<b>\$,4</b>	8,8	9,9	₽₽₽					

1

TABLE F.11. (contd)

. '

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$ 

•

.

					*1469	13 (CPD)							
	13	14	15	14	17	18	19	20	21	22	23	24	
65	9.8	0.0		9.6	9.8	8.0	8.8	0.8	8.0			8,6	
44	<b>0.</b> #					<b>.</b>		9.9	<b>.</b>	0,0		0,9	
63	8.8	5.4	8.4	9,6				5.0					
61	0.0	8,8		8.9		ē,6	8,0	ě, é	0,0	ē, ē	. 0,0	8,0	
49	0.0	8,9	8,8	6,0				6,6				<b>.</b>	
37	0,9							0.0				A118-3	
ŠŤ –	0,0	0,0	ė,ė	0.0	0,8	0.0	ē, ē	6,5	6,6	õ, i	4119.3	6110,3	
54				<b>•</b> •••			<b>.</b>	0,0		· • • • •	6119,3	6119.3	
37	4118.3	4110.3	A110.3	4110.3				<b>0</b> ,0	A110.3	4110.3	4110.3	4110.3	
53	6110,3	6110.3	6118,3	6110,3	6119,3	ê. 6		4110,3	4110,3	4110,3	4110.3	6114.3	
52	<u>6118.3</u>	411 <b>2</b> .3	6118,3	6110,3	4110,3	•••••	4112.3	0.0			2.2	<b></b>	
59	A110.3	4110.3	6118.3	\$110.3	4110.3	8.8	8.8		8.9		4.8		
49	6118,3	4117.3	4118,3	6110,3	4110,3	8,8		0.0	0,0				
48	<u>•112.3</u>	•11 <b>•</b> •3	6110,7	1112.3									
44	4119.3	4119.3	6110.3	4116.S	¢,0	i.i		8,8	. iji			ē.ē	
45 -	6110,3	0,9		8,8	9,0			0,0			9,9	9,8	
44	4119,3												
12	6110.3			9.8	<b>.</b>	ā. š	·	8.4	ē.ē	0.0		i.i	
41		0,9		0.0	<b>.</b>	<b>.</b>			0,0	<b>.</b>		0,0	
40	<b></b>	2.2		- <b>-</b>						<b>6</b> , <b>8</b>			
30 30	6110.3	6.0	0.9		6.6	0.5	0.0	6.8	. 6,0	0.0	4,8	0,0	
37	6119.3	9,0	0.0	0,0		<b>8</b> ,8	0.0	8,8	6,8		6.0		
14	+11 <u>0,3</u>	<b>0</b> .0	<b></b>	8.8		0.0	8.8	8.0	. 0.0	<b>7,7</b>	<b>8</b> .0	8.0	
<u>ji</u>	0.0	8,8		0.0	0.6	0.0	ě.ě	6.0	6.0	8,8	8,6	0,0	
33	0.0	6.0		0,0	8,8	0.0	0.0	0.0	6,6		<b>1</b> .		
36		9.0		0.0		6.6	6.6	5.5	0,0	.2000.0			
ji		ē. ē	ő, ő	ě, n	ē. 5	9,8 .	0,0	8.6	8,8	-100000,P	9.8	<b>.</b>	
54	0,0	0.0		0.0	<b>6</b> .e	8.0	0.0	0,0		0.0	· • • •	8.8	
28	<b>5</b> .5	0.0		8.0		0.0	8.0	8.5	0.8	. 8.8		8.8	
26	0.0		0.0	0.0		0,0	0,0	0.0	6,6	8,9	8,8	8.8	
52	<b>n.e</b>	0.0	2.2			0.0			8,0	0. <u>0</u>		6.0	
24	8.8				8.6	0.0			8.8		. 8.8	8.8	
ž2 -	0,0	8,0	0.0	8,0			ē,ā	<b>8</b> ,0	0,0	·	0,0		
21	0,0	9,0	<b>*</b> • <b>*</b>	6.6	<b>8.</b> #	<b></b>	9.8	8.8 -		<b>5.9</b>			
19		8.0		8.0		8.0	0.0	f.C					
ii -	0,0	0,0	P.0	ē, ē		ē,ē -	0.0	8.0	0,0	0.9	0,0	0.0	
17	0.0	<b>7.6</b>	<b>D</b> , <b>H</b> ·	8.8	0.0		0.0	0.0	0,0	2+2	-30200,0	<b>.</b>	
15		6.6		247 5.5.	7. H	<b>7</b> , <b>7</b>	8.9	8.8	0.4		6.6	8.0	
ji –	0.0	0,0	8,8	0,0	0,0	8,0	0,0	0.0	0,0	0,0	÷.n	4,8	
17	8.0		÷.6	0,0	8.8	8,0	8,6	6,6	8,6		6,8		
17		8.8	0.0.		0.0	6.6	8.8	. 8.8	0.0		R.8	2.0	
10	4,8	8,8		. 0,4	9,0	8.0	8,8	0.0	ę.,	8,8			
1		1.1			11	1.1		8.8 ·	- 11 L				
Ţ				8.0				8.5		• 715	8,8	8,0	
i.	i,e	ŭ, Ü	ē.ē	0,0	i,i	i,i	8,8	ē, ī	ē,ē		9.0		
3	6,8								<u>.</u>			8,8	
3	W, Ø			4110.3	A110.3		4110.3	8.6		0.0	2,5	7,7	
ž	ě, i	ī,i	ē. ē	4,4	6114,3	ē, ē		ē, ā	8,8		8,8		
			• •	<b>A</b> ⁻ <b>A</b>				A A					

TABLE F.11. (contd)

..

. ;

					STREE	A (CPD)	•		<b>v</b>			
	25	26	27	24	29	30	31	32	33	34	35	34
0 4 4 4 4 4 5 5 5 5 5 5 5 5 5 4 4 4 4 4					29 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,					34 0,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14331,0 14351,0 14351,0 14351,0 14351,0 14351,0 14351,0 14351,0 14351,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,0 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,00 1435,000 1435,000 1435,000 1435,000 1435,000 1435,000 1435,0000,0000,0000,0000,0000,0000,0000,0		34 14331.0 14331.0 14331.0 14331.0 14331.0 14331.0 14331.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
2224476543210967654321												

マノ

.

F.58

1. J.

	37	- 38	39 . 1	48	41	48	43	44	45	46	47	46
••• •• •• •• •• •• •• •• •• •• •• •• ••	10331,0 10331,0 10331,0 10331,0 10331,0 10331,0 10331,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0											
#4433333333338282828282828282828282828282	8,648,709,809,809,809,809,809,809,809,809,809,8											•, •, •, •, •, •, •, •, •, •, •, •, •, •
10 13 13 11 11 11 10 17 15 17 17 17 17 17 17 17 17 17 17 17 17 17	0,0 0331,0 10331,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0									C, C       (P)       10331,0       10331,0       10331,0       10331,0       10331,0       10331,0       0,0331,0       0,0331,0       0,030,0       0,00       0,00       0,00       0,00       0,00       0,00       0,00       0,00       0,00       0,00       0,00       0,00       0,00       0,00       0,00       0,00		10331.0 10331.0 10331.0 10331.0 10331.0 10331.0 10331.0 10331.0 10331.0 10331.0 10331.0 10331.0 0.0 0.0 0.0

.

.

N

TABLE F.1I. (contd)

atheas (CFD) 1-\$ 11 38 54 55 57 49 58 \$1 53 56 58 59 68 65 ... 8,8 8,8 8,6 ... ... ... ... 64 1,5 8,0 8,8 8,8 8,8 0,0 9.9 5.8 ... 8,8 8,8 8,8 43 42 41 8.8 1.9 1.8 0,0 9,9 0,0 9.1 ... 8, s 8, B ¥,8 0,8 8,8 ė, s #.O ٠.0 8.8 8.8 9,1 9,1 8,8 8,8 0,9 ¥, 9 e, e 2,8 Ø. i 64 59 54 37 s, ė 1,1 6,0 4,8 8,5 ۳,۵ 5,8 8,8 8,8 8.0 1,1 ÷.. 0,0 ٩,٩ .... ۰.. Ū, J 8,8 8,8 8,8 8,8 i,i 8,8 5.5 () () () ۰, ۱ t.s 8,8 Ü, Ö 8,6 Ü, I 0,8 8,8 8.8 ò,8 54 55 54 53 52 51 8,8 9,9 4,8 \$,S Ű.( ... .... 8,8 0,0 #, B .... Ű.Ű ۰,۰ 1,9 8,8 9,8 9,8 ñ,8 ¥,\$ ... 8,8 8,8 ۵, ۵ 8,6 0;1 8,1 ĕ,I ė, s ė.i 5,8 8,9 .... ¢,a 4,9 ê, i 8,8 ė, i 8,8 1,8 0, 0 8, 0 8,8 8,8 8,8 0,1 0,1 0,1 1,0 8,8 5,5 8,8 5,6 59 49 8,8 ÷.8 i.i 5.8 i,i **.**... 6.S ė,ė Ū,Ū 8,8 44 8.0 ... 8,8 5,5 \$,5 1,1 ø,8 ... .,. 0,8 4Ť 0,0 1,1 8,8 8,8 **.**,# ĕ, t .... 1,1 1,1 6,4 8,8 \$<u>,</u>8 6,0 44 1;t 6,0 1,1 Ű,Ö 8,8 8,8 .... 45 0,0 8,8 8,8 uja. 8,8 5,6 1,1 8, X 8,8 8,8 8, X ۳,۵ 8,8 1,¢ 8,8 ā, 1 8,8 1,0 8,8 8,8 8,8 5,5 0, A 43 1,0 1.1 8,8 ... 8,8 8,8 8,8 .... 0,1 8,8 1,1 8,9 18331,0 D,8 D,8 16331,8 16331,8 22913,8 42 ... 6,0 16331,8 14331,6 8,8 8,8 14331,0 ٥,٩ 8,8 5,8 5,ù ... #,# 14331,# 14331.# 22913,# 22913,# 0,8 18331.0 18331.0 82913.8 #,8 8,8 14331.4 8,8 14331,0 18331.0 14331,8 8,8 4.0 9.0 4.331.0 1.0331.0 1.0331.0 1.0331.0 8,0 9,8 8,8 18331,8 18331,8 28713,6 14331.4 14331.4 22913.4 40 a, a 18331.0 ... 8,9 14331.0 22313.4 18331.8 14331.4 8,8 34 22913,8 ... 37 34 35 34 22913.4 22913.4 22913.4 18331.0 22113,4 11113.4 8,8 14331,8 22413.6 22913,4 22413,4 ... 12713,1 ۵,۵ 4,8 22113,8 22913;8 22913,8 8.8 8,8 188488.0 10331.0 **#**,# 22915,8 22713,8 55413.8 12112.8 ... 8,0 8.6 22913,8 22913,8 22913,8 22913,8 18331,8 18331.8 18331,8 22113,4 22+13,8 22713,4 22113,4 12915,0 1,1 ... 18331.8 18331.8 18331.8 18331.0 18331.0 18331.0 18331.0 18331.0 6110.3 22913,8 22913,8 22913,8 22913,8 22953,8 22953,8 22953,8 22953,8 11 18535.0 18331,8 22913.8 22913.4 12913.4 22913,4 D.D 14331.4 14331.0 14331.0 14331.0 6110.3 22913,4 12113.0 32 22913,1 22913.4 22913.4 ĪĪ 22913.0 14913.4 22913.0 18331,0 ji 18331.0 22913.8 22113,4 22413.4 22113,4 42913,4 7437,9 22413,4 22913,8 29 7437.9 7637,9 7637.9 7637,9 1437,9 7637.9 7637.9 6118.3 6118.3 6110,3 6119,3 6118,3 6110,3 7637,9 1631,1 7637.1 7637.9 7637.9 1637.4 7637.9 Ž7 4110,3 61 [0],3 4110,1 6110.3 1637,9 7637.1 7637.1 7437.9 1611,9 7631.9 1637,7 6118,3 6118,3 6118,3 24 4114,3 4110.3 6110.3 4110.3 6110.3 6118.1 4110,3 4110,3 6110.3 6118.3 6118.3 6118.3 6110,3 6110,3 6110,3 žŚ 6110,3 6110.3 4118,3 6118,3 6110.3 6110.3 6110.3 6110.3 6110.3 6110,3 Ž4 4110,3 6118,3 6110,1 4110,1 6119,3 23 6118,3 4110,3 6110,3 6110,3 6118.3 6110,3 6110,3 6110,3 22 21 6118,3 4110,3 4110,3 4119,3 6110,3 6110.3 6110,3 6110.3 6110.3 6110.3 6110.3 4110,3 6110,3 6110,3 4110,3 4110.3 4110,3 6118.3 6110,3 4110,3 6110,3 6110,3 6110,3 6110,3 6110,3 6110,3 6110,3 6118.3 50 4118,3 6110,3 4110,3 6110,3 6110.3 6110,3 Ŭ.Ŭ 6119.3 6118.3 4118.3 4114,3 4118,3 19 4118,3 6110,3 6110,3 6110.3 8,8 ii. 6318,3 4118,3 4118,3 4118,3 6119,3 1110,3 6110,3 6118,3 6110,3 0,0 ir 6110,3 4118.3 6110,3 .... 4110,3 6110,3 6110,3 6118.3 6119,3 6110.3 6110.3 8.9 4110.3 6110,3 10331,0 10331,0 6110.3 16331.0 18331.0 14 6110,3 4110,3 18331,8 4110,3 6110,3 6110.3 6110,3 6118,3 6110.3 ē,4 16331,8 14331.0 18331,8 18331,8 18331,8 14331,4 18331.8 10331,0 e, e 15331,0 14 10331,8 14331,8 14131.8 11111,0 8,8 10331.0 iinii, 14331,0 18331,0 14331,0 14331,0 14331.4 18331.0 (4331,6 13 10331,0 14331.0 18331,8 16331,0 9.1 ۰,۵ 11331,0 ii 18331,8 18331,0 18331,4 16331.0 14331,0 9,8 8,Ŭ 18331,0 18331,0 1433).0 1933),0 18331.0 14331.4 11 (433),8 15331,8 11331,0 18331,0 iiii, o 8,8 18331,0 18331.4 (1331,0 14331.8 9,8 8,8 Ť.Ť 18535.9 18331.8 18331,8 18331,8 11331,8 11331.0 14331,0 18331.8 14331,8 14131.8 19331'a 0,0 Ŭ, 4 Û.Ŭ 18331.8 18331.8 lāššī;a 11111.8 11331,0 11331**,** a lijii.e 14331.0 8, B 8, B 8,8 9,9 14331,9 8,8 8,8 8,8 14331,0 14331.0 9,8 Ø,A 0.0 0,0 0,0 9,9 0,9 8,9 8,8 8,0 #**,** 8 9,4 ê, ê 8,0 8,8 8.8 8,8 8,4 8,8 8,9 8,8 8,8 8,8 8,8 8,8 8,8 8,8 0.0 ۰,۵ 0,0 9,1 8,8 8,9 9,0 8,8 8,8 V.8 V.8 8.8 V.8 8,9 8,9 8,9 8,9 0,4 0,8 0,8 ă.e 8,9 9,9 9,9 9,8 9,8 0,0 8,0 8,8 0.0 \$,0 8,4 8,9 U,A A, 0 a,a 9.9 0,0 0,8 8,4 8,8

TABLE F.11. (contd)

1

λţ.

.

		•					• (00)	ruj	`			
				BTRES	9 (CFD)		-		-			
	41	58	43	64	65	55	67	65	69	79	71	72
5	5.9	4,8		8.8	8,8		0.0	0,6	0,0	f. P	<b>4</b> ,8	8,8
;	9.P	6,6		0,0	ē.ā		8.0	0.0		ē.9	0,0	8,6
2	P_5	0,8 8.8	8,8 0.8	0,8	8.8 8.8	0.7	8.8 8.0	8.8 8.6	0,9 0.8	9,8 6.8	0,8 0.8	8.8 8.1
ò	<b>9.0</b>	0,0	0,0	0.0	0,0	0,0	ā, ē	6,6	0,0	0,0	i.n	
:	8. <del>7</del>		#.# #.#	8.8 8.8	5.0 8.0	8,8 8,8	8.0	5,7	9,0 8,9	8,8	1.1	
İ.		0.0	6,6	0,0	0,0		2.2	0,0	0,0	0.0	0.0	
5	9,6	8,8		8.8.	P.8	6,0	8,6	8.8	ē,ē	4,0		0,0
9	<b></b>			6,6	8,9	8, B					8.8	
2		5,5		8,9		0,0	0,0	6,8	8,9	8,0	ī,ē	ē, i
1		8,8	8,8	0,0	8,8	5,8			0,0	9,0	8,8	
•	0.0	8,8		6,0	8,8	ē, ē	8.9	1.1		1.1	į.į	
8 7	8,8	6,6	8,8	0,0	8,8		8,8	<b>5.</b> 8		8.9	<b>7</b> ,0	9.9
i.				<b>.</b>	0.0		ē, i	ě,		ē, ē	<b>.</b>	
3 8	₩ <b>.</b> ₩ . ₩.₩	P.9	8.8	0.0	<b>.</b>	0.0	0.0		ě. ě	0.0	7.0	
Í.		8,8	0,0		0,0	<b>8,8</b>	9,9	0,0	0.0			
2	<b>.</b>		8,8	8.8	0.9		6,8	8,8	0,1	ē. ē	1,5	
ė	8.0	8.8	0.0	0.0	2.0	0,0	0,0		0,0			0,0
7			8.0	6,6		4.6	6,6	ē, ē	ē.3	ē, ē	i,i	
Ť	0.4			<b>.</b>	8,8		8,8	0,0	9,0		<b>8,1</b>	P.1
5	8.8	8,8		8,8	i,i	<b>7</b> ,8		6,0	0,0	0,0	0,0	8,6
4	2.0			0.0	8,8		0,9 0.1	8.8 8.8	0,0	8.R 8.1	8,8	0,0
ž	8,5	8,0	0.0	0.0	0,0	0.0	0,0	0,0	0,0	8.8		
1		8.8	0.0	6,8	0,8 8.8	9,9	P.0	8.8	5,5	8,8	<b>7,8</b> <b>1</b> ,0	8.0 P.1
9		0,0	į,				0.0	0.0	0,0	0,0		
8	9.8 8.8	8.8 8.8	8,8		8,8		0.0	8.8	8.6	9.0	<b>7</b> ,0 <b>7</b> ,1	
<b>.</b>		0,0	ē.	0,0		<u>,</u>	8,8			0,0	8,8	9,0
7	8,8 . 8.8	849 . 848	P, 0 9, 5	8.8 5.8	<b>0.0</b>		9.9	8.8	8.0	0.6	0.0	
Ś	<b>7</b> .7	0.0	8.8	0.0 .	6,8	ñ, 0	0,0	0,0	<b>.</b>			8,8
2 1	9.6	8.8		6.8	0.0	9.8	0.0	0,9	0,0	<b>;</b> ;	P, #	0,0
,				<u>. 19</u>		0,6	0,0	8,8 .	8,9	8,8	8,8	8,9
8	#.#	6,8	6.0	8,8	8,8	0,0	8,9	0,0	8,9	0,8	8,8	ē, ē
7	9,9			8,6	<b>2</b> ,8	2,8	11.0	8,9	0,0	A.B	0.0	<b>9.0</b>
5	8,8	8,8	N.6	8,5	8,8	6,5	0.0	8.0	0.0	0.0	0,0	
•	9,7		<b>8</b> .4	<b>F</b> .8	<b>F</b> . B	9,9	8,8	0,8	0,0 0.0	8.8 8.9	0,0	8.9 0.1
ź	P.8	<b>.</b>	<b>7</b> ,0	9,8		0,0	0.0	0.0	0,0	8,8	0,0	9.0
1 .	8.8	6,8	11 A	6.0 ···	8,8 . 8.8	8.8	8.8 8.8	8,8	8.8	8.9 0.8	<b>7</b> , <b>7</b>	
5		0.0		0.0	8,8		6,8	<b>0,0</b>	8,0	8,0	9,9	8,0
	<b>8.6</b> ·	8,4 8.0	€;# 8.#	8.8 8.8	8,8 8,8	<b>,</b> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0,0	0,0	8,8	e's	9,0 9,6	818
	0,6	e, i	0,9	ē, 1				0,0	0,0	8,6	8,9	B,6
5	P, P	<b>b</b> , <b>0</b>	8.#	8.8	8,8	<b>5,5</b>		8,9 8.8	8,8 9.6	₽,9 8.9	19.9) 15.11	
	8.8		n. u	0,8	0,0		8,8	0,8		0.0		n.0
2	0.0	6,0	8,#	6,5	9 <b>.</b> 9		0,0	<b>6.6</b>	0,0	9,0 8.0	<b>7</b> , <b>1</b>	

F.61

<u>____</u>

Ì,

TABLE F.11. (contd)

٠.

÷

					STRES	a (CFD)	•	- 1	4.15			
	73	74	75	76	ÍT	76	19	<b>##</b> `	é1	62	85	44
65	4,4		8,8			8.8	0.0					<b>.</b>
64 63	8,9	0,0 9,5	0,8 8.0	0,0 0.0		9,0 9,0	. 0,0	0,0	0,0		0,0	
4	0.0	8,0	4,0	· • •	<b>.</b>	6,6	0,0		9,9	4,4	8,9	
68	 		1,1	ā, i	ā, i	<b>i</b> ,i		6,8	0,0	ē,ē	8.6	Į,
59			0,0		8,0		0,0		<b>5,5</b>	5,5 8,5	8,0 8,8	· 1
51			6,9	6,6	0,0	6,0	5,5	9,0	i,i	Į.Į	1.0	į,
55 55	8.5 #.0	0,0 0,0	8.0	U, U U, U	0,0 0,0		9,0	8,9 8,8	8,0		8,8	
<u>.</u>				<u>, , , , , , , , , , , , , , , , , , , </u>	9,8							
51		i,i	i,i	3,5	3, 5	i,i	9,8	i,i	<b>.</b>	ē, ē	ä, ö	Į,
51			<b>8.0</b>	6,0			Ø,0	<b>.</b> .	<b>8.0</b>	8,5	0.0	
49	ē, ī		0,0		0,0			ē,ē				į.
44	<b>.</b>		8.0							0,0 0,0	9,8	
44		0,0		ē, ē	<b>.</b>		8.8	<b>.</b>				
44		<b>;</b> ;;	a, a	a, a	ē,5		i.i	i,i	8,8	i,i	ē,ē	i,
43		6,6		8,0	8,0			0,0		6,6	8,4	<b>.</b>
41	4,8	3;ā		i;i	ī,ī	1,0	6,6	i,i	ē, ē	ā, ē		ē,
44		<b>0</b> ,0	8,8 8,8	8.8	8.8 8.8		0,0 8.8	6,8			8.0	
<u>34</u>	<b>8</b> ,a	6,4	ā, ī	6,6	4,4	<b>i</b> ,i	8.8	5,5	8,9	6,6	0,0	
37	<b>.</b>	8,8 8,8	<b>*</b> .0	8,8 4.4	9,8 9,8	8,8		<b>.</b>			8.8	
35		8,8	0,0	<u>, i</u>	9,0	ē, ē	6.9	0,0	0,0	4,4		
34		8,0 8,0	6,6	8,8	8,8	8,9	8,8		i,i	8,8		
32				Ŭ, Ŭ	6,0				<b>1</b> ,1			
34		ā; ā	ā, ā	ā, ū	i,i	ā, ē	ē, ē	i,i	ē, ē	8,6	4.4	i.
29	4,8	9,6 1,9	8.0 8.8	Ú. U D. D			0.0	5,5	8.8 8.8	0,0 1.1	8.0	
27						ē,ē	<b></b>	ě, ě			0,0	
25				8.6		8.8		8,8		8.9		
24			8.0			0,0		4.4	Ŭ,Ŭ	1.1	4,6	19
22	4,8	4,0	1,4	0,0	<b>i</b> ,i		8,8	i,i				· • • •
21	6,0		9,9		6.0	8.0	0,0 1.1	<b>4,0</b> 8,6	6,8		1.1	
i.	0,0	0,0		ā, ā	0,0			0,0	4,0	4,0	4,4	
14	0,0	8,0 8,8	<b>8.9</b>	6,0	4,0	8,9	8,8 8,8	0,0	0,0	8,8		
ii	<b>0</b> , n					0,0			8,8	ē.ē	i.i	
13	8.0 8.0	8,8	5,8 4,8	8,8 6.6	8,8 8,6	9,9	8,8 8,5	8,0 6,5	8.8	8,8	8,8 9,1	5.
11		0,0	0,0	8,8		4,0	6.0	4.6	0,0			
11	4,6	a, 4	ā. a	9,0	1,1	i;i	a, a	8,0	6,8	a, a	9,8	- 53
1	<b>1</b>				0.0	0.0		0.0 8.8		P.8		#. 9.
ŧ.	0,0		ě, 9		0,0		0.0	ē, i	<b>.</b>		¥,8	. į
	8,8 8.9	9,0 8.4	<b>4.4</b>	8,6	9,0 8.1	8,8 8,8	9.9 9.4		9.8 9.8	9,8 9.8	8.8	
Ť.	0,4		0,0		ē, i	i, i	8.8		8.8	0,0	<b>.</b>	<u> </u>
i	4,8 4,8	8,8	a.u	0,0	8,8	, a	0.0	6,4	8,8	8,8	u, e	
2		9.0	0,0				8,8	0,0		<b>0</b> . U		

N.

F.62

N,

	85 .	86	87	84	89	98	91	92	93	94	45	96
63		*.*	8.8	8,8	8,6	0.0	8.8		e,e	8,6	1.0	
63	9.0	0.0	8.0	0.6	6.6	5.0		8.8	8.8		0.9	
62	8,0	9.0	0.0	0,0	0.0	<b>.</b>	8.8	8,8	0,0	<u>.</u>		
61	8,P	8.0	8.9	8.8		<b>7</b> .4		0.0	8.8	8.8		
59				8.0	8,0	<b>.</b>		0,0	ē, ē	0,0		8,0
58 .	0,0	0.8	8,8	8.5	0,0	<b>.</b>	0.0	8.0		0,0	8.6	0.0
56	ě,ě	8,8		ř,	0,6	9,9	8.0	ě.e	ě,ě	8,6	¥,8	·
55	P.0		6,6	8,8	6,8	8,8	6,8	0.0	8.6	2.2		8,8
53	6.6		4,4	8.9	0.0	ē.•	9.9	8.9		8,9		9.9
58	<b>.</b>		8,0	8,0	8,8	0,0	0.0	0.0	0,4	0,0	0,6	9,6
51. 58	<b>U</b> .N	8.0	₩.₩ 8.8	<b>7.</b> 7		8.4	<b>0.0</b>	2.2 8.8	0,0 0.0	8.9		
49	9.0		n. D	0.0	9,0	9,8	0.0	6,8			ũ, ũ	0.0
45	0.0	0.0 0.0	1.8	8.8		8.8	8.8		D.9	P. 8	<b>0,6</b>	5,5
44	0,0	8.8	n.a .	ñ. 6	0,0	<b>8</b> ,0	7,5	8,8	0,0	ö, ä	5.0	
45	<b>8</b> ,8	2.2	8.0	8.8			<b>.</b>				<b>1.</b>	
43	.6.8		6.5	6.8		0.0	8.8	8.6	5.9	0.0	8.1	8.8
47	0.0	0,0	0,0		<b>.</b>		0,0	0,6	8,8			0,0
41	8.8 ·			0.0	8.6		. 0.0	8.8	0,0	8.8		
37	0,0	0,0	ü. Ö		ē.ē	ė, į	÷, •	8,8	0,0		0,0	. i,i
38	A.A			- 0,0	0,0	8,8	8,9	8.8	8,9		<b></b>	
34	8.8				ī.ĭ		6.0	0.0	8.0	6.8	1.4	6,8
33		8,6	8,8	0.0			0,0	0.0	8,6	8,6	4,8	
33	5.6	8.8	0.0	8.9			0.8	6.6	6.6	8.8		0.0
38	0,0	<b>8</b> ,8	0.0	ñ. 0	0,0	0,0		<b>0.</b>	8,8		0,6	
31				<b>0.0</b>	8.8	0.0		8.8	8.8	8.8	<b>7.5</b>	
21	8,8		8,0		0,0		8,9		0,0	8,0		
23		8,9			<b>.</b>	2.2	<b></b>	0.8				
24			ñ,ē	i,i	ě,ě	8.0	<b>8.8</b> -	÷, i	0,0	0,0	i,i	
52	6.8	0.0	<b></b>	2.2	2.2	<b>9</b> .8	2+ <b>2</b>				4.0	
23	9.8		a.e	6.6				0.0	5.5	4.0	1.6	
22	<b>6</b> .6	<b>0,6</b> -	8,0		0,8		8.8	9.0	8,0	0,0		
21	<b>0</b> ,0	8.8			6.6	<i></i>	0.0	0.0 ·	8.8	8.0		
17		0,0	Ū,Ū	6 <b>,</b> 6	0,0		0,0	9,0	8.9	8,8	<b>9,4</b>	
10	9.5	<b>B, P</b> , .	2.7	8,8	0,0	<b>.</b>						2,1
ii	ñ.n	8,0	n.a ·	0.0			i,i	P,e	0, <del>-</del>	ě,ē	i i i	
13	0,0			8.8					8,9			
8.	8.8	9.8	6.0	8.8	6.0		5.9	8.2	0.0			
iž				0.0	8,9		9.9	0.0	0.0		6.0	0,0
11		8,0		P.0	0.0	8.0	U.U.	5,5	<b>7</b> ,7	0.F	8.5	
	8,8		ě,ě					9,8	ě, ě	ē, ē	0,6	0,8
<u>.</u>		8,8		<b>4</b> , <b>7</b> .	•.•	0,0	8.9	0,6	0,0		1.4	
Ľ		8.0	8.6	8.6	6.6	8.8		8.8	8.8	8.6	6.8	8.8
Š.	0,0		0,0	0.0	8,9	ē, ē	1.1	1,1		0,0	0,0	0,0
1	7,8	16 g U 11 a P	0,0	<b>8,8</b>	<b>1</b> ,0	1.0		<b>9,8</b>	P.6	<b>8,0</b>		
1	9,0	ē, #	6,6	8,9	8,8	0,0	i,i		<b>i</b> ,i	ŏ, a	0, P -	0,0
ŧ		8.8	₿ <b>,</b> ø	8,8	<b>P</b> , <b>P</b>		9,9	0,0	0,0	8,C	0,8	0,0

(contd) TABLE F.11. 87RE83 (CFO)

210

,

1. a)	1. 3	• •	2

TABLE F.11. (contd)

e ...

;

378288 (CFD)

	47	76		100	101	192	183	184	185	196	187	194
65	<b>e.</b> #				8,8	W, B		8,9	8.9			
<b>.</b>		5,5		i,i		1,1	i,i	ē,ā	4,9	8,8	ī,ī	4,4
42			9 <b>9</b>	<b>0</b> ,0	0,0			9,4		9,0	0,0	8,8
		1,1	1,1	1,1	3,3		i,i	i,i	i,i		ě, š	ā. i
51		5,5	1,9		0,8	8,8			0,0		<b>8,6</b>	6,6
37		ā, ā		i,i	i,i	i,i	i,i	ā,ā		<b>1</b> ,0		
56	g.e		5,9	4,0	0,0	0,0			U,Q	8,5	<b>7,8</b>	9,8
54		i,i	- i,i	i,i	ē,ē	6,9	ē.ē	Đ, 8	Ū.Ū			
55	0.0	2,0			<b>8,8</b>	6,0		9,8 8,8	8,8	<b>7.5</b>	<b>1,3</b>	
5i	ā, ā	i,i	ē,ē	i,i	ij,ŭ		÷.•	ă,ă		8,6	0,0	
54		0.0	0,0		<b>8,8</b>			4,4	5,5	5,5		
44		ā, ā	ē,ē	i,i	9,6	i,i	i,i	ē,ē	i,i	0,0		6,0
47		0.0				0,0	5.5	1.5			8,0	
45	ē,ē	i,i	i,i	9,9	0,0	i,i	ē, ē	ü, i	1,1	ē,ē		ē,ē
44	• • • •	<b></b>				4,4	*.*	1.1	<b>b</b> , <b>B</b>	0,0	<b>7,0</b>	0,0
44	u, a	6,6	5,9	9.8.0			1.1			ũ,ũ	1,0	9,5
41		6,0	<b>u</b> ,a	5 <b>8 8</b>		· • •						
39		8.8	U, U U, U		8.8		9, 9	0,0 0,6			1.1	
34			8,5		<b>1</b> , <b>1</b>	<u> </u>						
36				11	1.1						÷,5	
35	0,0	0.0		9,8		<u>i</u> it		9,8		4.4	8,8	
<b>3</b> 3												
35	8,8	<b>8,8</b>		<u>.</u>	0,0	0.0	0.0	9,8		6,6		
30						1.1		5.5			<b>5</b> .5	
29	8,8		<b>i</b> ,a	9,9		<u>.</u>			0.0		<b>1</b>	
<b></b>		8.8		6.9	5.5	1.5					1.1	
26		<u> </u>		0,0	<b>1</b> .4	<u>i</u> i	0.0	\$ <b>.</b> \$	6.8	÷,•		
1		1.1		6.6	8.5	8.8						
23	<b>4</b> , <b>4</b>	0.0		<u>, , , , , , , , , , , , , , , , , , , </u>	0,0	<u>, , , , , , , , , , , , , , , , , , , </u>		1,5	9,8			1.1
21				1.1	U, U U, U	V.9 V.9						
20		8,8		ė,	9,9	<b>0</b> ,8	8,8					
17		8.8	1.1		0.0	8.0	6,9	0.9			6.6	5.5
17	0.0	0.0		<b>1</b> ,1	9,9	9,9				6,8		0.0
15		8,9 8,9							8.9		1.5	5.5
14		é. i		4.4			9,0			0.0	9,4	8,6
	<b>8.5</b>		8,8 6,8		9.9	8,8	<b>P.</b> 0	0,8 8,4	8,5 9,1			
ii	4,4	4,4		0,0							ě, i	
1	0.9 8.8	<b>.</b>	1.5		1.1	1.1				9,8 9,8	¥,5	5,5
Í	0,0	8.4	5,9	ā, i	0,0	<b>i</b> ,õ	<b>1</b> , <b>1</b>		1.1	0,0	<b>4</b> ,0	8,8
Z	8.8 8.8	0.0 0.0	<b>.</b>	6,6 6,6		9,9 8,4	5.4		<b>.</b>	7,0 7,1	9,4	8_8
Ţ.			ě, ě		ē,	ě.		<u>, i</u>		1.1	<b>0</b> ,0	
1	6.8 8.4	0.0 0.0	8.0 8.0		8,8 8,8	9,9			6.6	<b>1</b> , <b>1</b>		
i	8,0	1.0	ē, ē	ē,ē	ē, ē	0,0	4,0	4,4	<b>i</b> ,i	<b>1</b> ,1	1, i	
l	8,8	¥.9	<b>8,</b> #	ð,ð	8,8		6,0	5,5		848	_ <b>4,</b> 6	#,#

TABLE F.11. (contd)

 $\langle \cdot \rangle$ 

111

·

•

.* *

				•		STRES.	s (CPD)			,		~	
		189	11#	111	112	113	114	115	114	117	118	119	120
	49	0,6			<b>1.</b> 8	8.8	8.8		8,8				
		8471 848		8.0		<b>0</b> .0	<b>0</b> ,0		8.8	D.D			
	62	0,0	ē.ē	0,0	Ū,ē	0,0	0,0	0,0	ē, ē	0,8	0,0	0,8	6,
	61		9,8	· 8.0		2.0		8.8	6,0	0,8	0.0	5.6	
							0.0	D.9		0.0	8.9	0.0	
	59		0,0	0,0		ë,ë	0,0	8,8	8,6	0,0	8,6	8,8	Ű,
	57	8,0	<b>6.6</b> .	9,0	0,0		1.1	- 0,0		8,8	0,0	0,0	
	55	n, p			<b>9</b> ,9	0.0	· <b>F</b> , P	0.0	8.8		0,0	8.8	
	54	8,8	Ū, 0	0,0		0,0	0,9	8,8	0,0	0,0	0,0	Đ, Đ	· · · · ·
	53	0,0	<b>0,0</b>	8,0		0,0	0.0	8,8	n, e		0,6	0.8	Π,
	56	<b></b>				0.0	<b>0.0</b>	8.8		6.0	<b>5</b> ,8	U. 1	
	50	0,0	0,0	ě,ě	Ŭ,Ű	ē, 6		0,0	0,0		ē.ē		
		0,0	8,8		0.0	0,0	0,0			6.0	8,0	8,8	0,
			5.V		0.0			¥.5	8.5			8.0	. 8.
	- 74		6,0	ě,			8,8	8,8	6,6	ě,ā	· 0,0	0, ñ	
	45	. 8,8	8.8		<b>0</b> ,0			8,8	0,0		0.0	8,8	0,
					<b>7,0</b>				8.8	<b>V</b> . <b>V</b>		0.0	
	48	8.0	0,0			0.0	0,0	8,9	0,0	8.6	0,0	0,0	Ĩ,
	#1				0,9	0,0	0,0	<b>1</b> , <b>1</b>	8,8	0.0	0,0	8, p	
	411							0.0		0.0	0,0	9.0	
	34		6,6	ě.ě	8.0	0.0	<b>i</b> .e	0.0		0,0	6,0	0.0	Ű,
	37	0,0		8,8	6.0	4,0	8,8	8,6	8.8	9,0	0,0	0.0	
	36	<u>.</u>			2.0	2.2						0.0	
	34	5.8	0.0	8.8	0.0	0.0	6.8		0.1	4.9		i,i	8,
	33			F. 0	8.0	0,0	8,8	6,6	0.8		0,0		
	31	<b>.</b>				<b>5</b> .0			0.0	0.0	<b>7</b> ,7	0.0	
	30	8.8	8.9		8.8		8.0	6.8	6.0		0.0	- 0,0	,
	27		0,0		0,0	0.0	8,8	8,8	6,6	8.0	0.0	6.6	- <u>-</u>
	59	2.2			2.2	8,8	1.1	. 8.0.	6,8				
	51	1.1 1	0.0	0.0	8.8	8.8	8.5.	6.0	0,0	4.0	6.0		Ű,
	25.	0,8	0,0		8,8	0,0	0,0	0.0	0.0	6,6	6.8		
	- 29	P.#	1.1			9.9		· •	8,8	0.0	8,8		
	- 6	8.8	8.8			8.8	0.0	6.8	0.0	8.8			ě.
	21			0.8	0,0	0.0	0,0	8,8	8,8	8.0			
	50	5.5		2.1					0,0	8.8.			
	14	9.6	8.6		0.0 0.8	8.0	0.0	0.0	8.8	0.0	6.0	9.9	ē,
	17		0,0	0,0	8,8	0.0	0,0	0,9		0.0	n, 9	0,0	
	14	.0,0	8.8.	8,8	0.0	5.6	2.5	0,0	<u>8</u> .2		8.9	0.0	P.
	12	T.T.		6.8		6.6	8.8	8.8	0.0	6.8	0.0		
	13	6,8	0,0	8,8	0,0	0,0		8,9	8,0	0,0	0,0		
	15	8,0	6.6	6,8	0.0	<b>0.0</b> .	£.8	<b>7,8</b>	212	<b></b>	8.0	2.2	
				R.0	0.0			6.6	8.6	6.6	6.0	8.6	
			9,9	8,6	0,0	Ň,Ŭ	8,0	8,0	<b>.</b>	0.0	<b>8</b> ,8		
	6	4,8							6,0	5.P			
		<b>.</b>								8.8		0.0	
	5	9.4				ē, ē	6,6	8,0	ë, i	ē.0	ē,ē		6
3 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	Ĩ								8,8	0.0	<b></b>		. <u>.</u>
	3		<u>.</u>	<b>.</b> .	1.1			<b>7</b> ,7		0,0 8.8		8.8	
	Ĩ	8.8	8.8	F_9	8_#	8.8	6.0	0.0	e, e	0,0	8,1	8,6	

.

1 TOTAL STREES GPH- 24412,14

F.65

٦)

.

# TABLE F.1J. Effective Thickness as Defined by Net-Sand Map

#### THECKNEES (FT) (+=UNCONF, -=CONF,)

	1	2	3	4	5		7		٠	19	11	12
	38											
	35.444	35.044	24.645	28.843	35.844	24.444	35.000	26 444	38.000	23,000	25.000	23,440
	25.000	25.844	35.444	35.544	35.548	25.044	38.444	25.844	25.448	25.444	25.644	25.844
15	25.444	31.444	35.944	15.444	25.444	25.644	34.844	24.644	29.444	38.644	25.844	25.644
A 8	25.044	21.044	25.944	25.600	25.844	25.648	35.848	25.844	25.844	23.844	23.844	25.044
ii -	25.884	25.400	25.650	25.000	23.044	25.448	25.044	29.644	25.844	25.644	23.844	25.444
šš —	25.888	15.100	25.840	25.800	25.420	25.044	25.840	25.000	23.848	23.045	22.640	25.844
54	25,600	25.830	25,000	23.540	25.000	45.840	25.840	25.440	25.040	25.848	25.048	25.444
<u>\$</u> 7	25,894	25.000	25,800	25.800	25.808	25.040	25.888	25.000	25.848	25.000	25.644	25.040
54	25,00a	25,000	52,000	25,400	25,840	25,848	25,084	25,008	25,000	25,588	23,868	25,444
55	25,444	25,998	25,448	25,694	25,500	25,800	23,838	52,068	25,048	25,808	25,644	-150,000
54	25,000	25,000	25,040	25,800	25,800	25,248	23,440	25,565	-250,648	-250,000	+254,648	+258,008
51	25,000	53,666	52,669	25,804	15,860	35,800	-130,840	+529,999	-230,000	+258,848	+258,808	-250,00#
25	27,000	27,940	\$2,969	\$2,844	25,444	-234,868	-250,800	-250,000	-220.000	-226,040	+224,848	*258,948
31	63,995	23,000	\$2,260	23,099	-426,895	+239,889	-259,880	*230,640	-238,888	-236,068	+230,000	+258,488
24	57,000					-130,000	*230,550	-230,868	****	-630,808	-238,808	+258,888
					-144 044			-244 -008	-240.000	-430,000		-220,000
	25	34.044		-254.648	-164 845	-353.010	-324 844	-224 844	-254 640		-350 848	-360 000
	26.644	28.444	-258.844	-264.000	-354.444			-254 444		-254 848	-150.000	-262 843
25 - E	25.444	25.844	-234.644	-254.544	-354.849	.258.222	-313.333		-234.448	-358.823	.258.848	-240.000
44	21.044	21.844	4158.844	-254.644	-254.844	-254.446	-214.044	-253.043	-250.040	-258.448	-256.648	-250.000
41	25.888	25.588	25.543	-234.440	-254.844	-254.048	-254.844	•258.444	-254.848	-258.044	-254.044	-214.444
ē2	25.000	25.648	45.640	25.644	-254.644	-354.044	-234.844	-254.044	-210.000	-218.648	.254.844	-254.944
ài 🗌	25.849	25.109	23.844	23.844	45.844		-254.844	-258.044	-258.848	-255.604	-254.848	-254.444
44	25.040	25.000	25.644	25.046	25.844	.258.848	-254.844	-250.444	-250.644	-214.444	.254.844	-354.844
34	25.800	25.884	25.848	25.844	-234.944	.234.844		+254.864	.258.888	-254.844	.258.888	-354.844
3 <i>1</i>	25,000	25,500	25.000	-258,888	-258.844	-250.000	-258,800	-259,849	-250.040	-250.000	-250.644	-154.449
37	25,484	25,988	25,668	+250,884	-210,000	-258.848	-258.888	-250.000	-250.000	-250.000	+250.800	+258,808
36	25,000	25,400	25,844	23,800	29,000	25,948	25,000	15,000	840,25	-250,808	+258,968	-258,840
35	25,998	25,808	52,000	25,058	25,680	25,840	25,840	-358,868	-350,000	+250,880	-250,000	+250,890
34	25,004	25,688	25,800	25,000	25,000	25,040	+258,888	-350,000	-458,088	-350,048	-250,808	+258.409
33	25,600	25,998	52.000	25,849	25,840	+250,860	-250,840	-258,888	-358,888	-450,000	+458,848	-254.948
36	23,000	\$2,020	23,000	23,000	+526,868	-236,688	+258,888	+258,668	+258,888	-450,888	+556,808	-458,888
31	C7,844	27,000	27.000		**3*, ***	-230,885	-230,040	*430,000	*<38,888	****	+439,868	+558,888
37	36 000		23,000	-338,899	-338,888	• 330,000	-350,080	****	4430,000	*338,888	-428,888	-228,468
	25 888	24.444		23,000	-337,000	-335,000	-111 644		-430,080	-430,040		-358,888
	35.045	25.006	35.844	35.844	28,000	-3204000	-160 600	-430,000	-550 044	-436,666	-450 444	****
3í	25.844	25.044	25.644	25.844	25.644	35.844	-458.838	-430,000	-558.000	-558.848	-458.608	-458.848
žŠ	25.844	25.846	25.148	25.048	25.000	25.044	-454.848	-114.848	-554.444	-554.848	-554.044	
24	25.000	25.040	25.044	25.844	25.844	21.444	23.244	+454.444	-454.444	-458.848	-554.844	-554.344
21	25.046	25.560	25,010	25.000	25.888	25.840	21.444	25.000	-534.444	+458.448	+654.844	-458.688
55	25,000	25, 600	25,000	25.000	25,800	25,840	25.940	25.844	25.000	-558.444	+450.448	-758.944
21	25.048	25,999	25,808	25,000	25,000	22.000	25.000	25.340	25.868	+454.848	+458.808	-758.848
20	25,800	25,030	25,000	25,504	25,000	25,868	25,940	25,800	25,888	+658,888	-750,808	-650,808
19	25,NDO	25,600	25,000	25,834	25,004	25,049	25,868	29,000	25,000	-758,808	-758,488	-450,848
1.	25,000	S2,040	25,040	25.884	25,044	25,668	25,048	25,900	25,634	+758,808	+458,848	-550,888
17	25,408	25,040	25,040	25,440	25,844	.25,50#	25,884	25,898	25,868	-758,848	-658,888	*558,888
16	25,000	25,000	25,849	52,040	25,040	25,848	25,404	25,400	52,664	+758,668	-758,848	-558,828
13	25,940	22,000	23,880	25,809	\$2,840	23,648	25,008	23,469	\$5,648	-75#,848	+758,608	-458.888
	£3,000	23.050	23,940	\$2,400	25,980	25,060	83,848	25,840	\$2,044	25,848	+758,684	-658,888
	27,949	23,000	27.040	23,000	82,000	52.040	25,628	25,000	52,664	25,004	-430,949	-758.448
	22,000	34 848	£7,000	23,000	63, <b>94</b> 4	23,004	23,440	63,988	23,884	53,500	P929,998	+738.404
	25.844	24.884	25,044	24.024	25,224	87,989 54.444	47,900 56 607	20,000		63,70 <i>3</i>	874999 18.404	-850 000
	25.004	25.835	25.444	23.604	38.844	34.444	88.834	22.444	83.855		#74790 34.404	
	15.044	25.424	15.000	25.844	25.044	25.848	15.844	26.014	28.0.0	25.114	25.04#	25, 205
Ť	25.900	25.824	25,934	25.000	25.044	46.030	24 844	34.645	58 844	26.644	25.044	25.044
4	25.000	25.444	25.004	25.884	25.044	26.444	35.344	24.444	25.804	26.414	35,984	25.104
1	15.800	25,956	85.BAA	25.044	25.144	14.444	25.544	25.444	25.004	25.444	25.444	25.448
4	25.000	25.000	25.444	25.044	25.044	25.044	25.844	25.944	28.944	25.141	25.888	25.444
3	25,000	29,433	23,848	25.000	25.040	25.844	25.844	25.444	23.444	25.040	25.044	25.848
5	25,640	25,400	25,030	25,000	-25,844	25.644	15,004	25.044	15.944	25.864	25.840	25.814
1	25,830	52,000	25,044	25,000	25,848	25,444	25,000	25,844	25,084	23,094	25.644	25,840

TABLE F.1J. (contd)

ree 🖅

. ...

🖞 🖞 THÌCKHÉBS	(FT)	C+-UNCONF.	CONF.)	
---------------	------	------------	--------	--

	13	14	15	14	17	18	19	50	81	22	\$3	24
45	25.000	25.000	23.000	25.228	25.868	25.009	25.008	25.000	25.008	23.894	25.090	23.890
69	85.000	23.004	25,000	83,000	25,000	23,000	25.029	25,000	25,010	25,018	25,000	25,000
63	25,008	23.000	25.000	25,885	23,000	23,000	23,000	25,000	23,989	25,078	25,470	25,000
52	25,000	\$9 <b>4</b> ,25	22,009	25,988	25,000	25,914	25,998	25,000	52,620	52,668	\$2,668	52,008
- 61	25,000	25, 678	23,019	25,87#	52,608	25,925	25,898	52,610	25,010	25,999	\$2,488	52,000
69	23,998	52,659	\$2,848	27.000	52,000	85,011	52,648	25,090	52,660	52,040	52,008	52.058
57	25,890	52,904	52,848	23,800	52,840	52,000	52*646	23,848	23,911	534848	23,000	979,65
22	52,000	23,444	53.644	23,979	23,000	23,044	23,474	234006	534444	27.000	-740 444	-388 000
- 21	22,000		27,070	23,000	27,000	22,000	23,000	23.000	25.005	25.000	-250,870	-256.896
- 66	-158.000	-159.000		23.486	25.846	25.645	25.688	25.668	23.018	+258.898	.258.895	-250.000
54	-258.000	-238.049	-255.000	+250.000	23.019	25.000	23.990	25.000	+258.000	-258.008	.259.808	+250.000
53	-230,090	-250,092	+250,000	-250,008	+250,040	25,019	25,878	+258.098	+258,000	-258,998	-250,000	+250,700
35	-254,888	-250,000	-230,000	-230,000	-230,000	-258,808	-230,008	+258,848	-250,000	-378,898	-279,009	-238,888
51	-250,800	-278,000	-258,088	-270,000	-239,999	-238,888	+358,888	+356,999	-256,820	-350,000	+258,086	-220,040
- 59	-278,888	-238,009	+525,666.	-270,000	-524,688	+520,000	*520°640	-478,898	+370,000	. +430.000	-320,000	-320,000
- 11	-237,090	+237,079	-230,040	+230,890	-330,048	•370,070	-370,775	****	+430,00V	-420,000	*430*048	
	-254.636	-154 689	-246.838	-256.868	-216.040	-358.000	-330,000	-146.000	-458.888	-558.000	-550.004	
	+258.888	-259.099	-258.049	+359.046	-156.000	-350.000	-430.000	-558.898	-358.898	-550.000	+458.098	-458.800
45	+258,000	-258,998		+350,008	+358,000	-450,000	-458,008	-538,866	-550,000	-458.899	-456,808	-350,000
44	-258,888	-258,088	-230,000	-358,888	-359,888	-330,009	+458,000	-558,880	-450,000	-458.000	+450,000	-350,000
43	-258,888	+358,898	-359,800	-250,808	+250,000	+358,848	-458,878	-558,800	-450,000	+358,898	-359,898	+350,000
48	+254,888	-228,668	-350,000	-359,879	-358,888	-378,000	+430,000	+450,000	-350,008	-230,000	+358,898	-258,098
41	-358,998	-338,898	=358,808	+378,888	-550,000	-428,868	-350,250	-428,888	-528,648	*228*468	-270,720	-120,090
40	+478,880	+338,808	-370,840	+150,000	+458,876	-370,000	•730,000	+470,000	-324 000	-320,048	4230,090	-178,000
34.	+338,779			-370,770	*270,070	-530,000	-100,000	-256,000	-258.000	-356.888	+458.988	-458.888
17	-256.800	-358.000	-114.000	-450.000	-458.988	+550.000		-258.801	-358.049	+458.898	.239.298	-150.000
36	-258.898	-258.008	+358.078	.750.000	+559.000	+558.000	+210.000	-338,898	450.000	-550,878	+470,000	-450,040
35	-256,608	-275.000	-350,000	+350,000	-550,008	+558,888	-378,898	-358,898	-556,298	-458.798	+359,888	-230,008
- <u>j</u> ą -	-358,774	-A50.898	-250,000	+150,000	450,000	+559,008	-239,000	-358,888	-458,000	-350,000	-5250,000	-359,800
33	-520,050	-350,000	-450,968	+450,870	-659,888	-356,608	-230,000	-458,890	-450.000	-359,009	+450,009	+350,000
35	-328.666	-278,848	+326,446	-472,592	-936.845	+370,000	-239,878	+430,000	+330,000	• 330,000	-237,278	-230,000
31	-424,279	-320,000	+377,800	+3704VVV		+220445F	-375,000		-168 888	-226.000	-190.000	-150.000
30	4228.008			-250.000	-140.000	-530.000	-558.688		-418.000	-158.898	-350.000	-358.000
28	-458.888	-156.668	-458.800	+450.000	-258.866	-438.868	-458.968	+658.898	+558.000	-559.000	-450.009	-358.690
27	-458.000	-458.898	-458.888	+650.888.	470.000	-350.000	-550.000	-550.000	-259,008	+378,8*8	-358,090	-558,898
- 26 -	-458,098	-454,000	+450,000	-458,000	+450,000	+458,898	-550,000	-658,898	+450,022	-350,000	-458.88%	-450,000
52	-550,878	-550,000	-558,000	+450,998	-439,000	-430,000	-450,000	-558,880	-558,000	350,800	+558,878	-458.090
- 54	-638,898	-550,000	-\$58,800	-450,000	.432,070	-335,555	-730,800	-350,000	+070,000	*****		
- 22 -	+720,1700	-627,770			9435 665	-430,000		-450 000 -450 000			-320,000	
		-480 000	-210,000		-458.000	-558.888	-498.888	a798.888	-458.888	+458.688	-538.000	-558.008
	+578.889	-758.889	-558.809	+458.008	-558.848	-758.848	-758.008	-558.808	-658.008	+458.899	.558,808	+658,888
17	+450,000	+730,008	+550,888	-458,888	-458,888	-630,000	-558,000	+458.808	-150,098	-450,000	-650,800	-450,400
18	-458,988	-438,889	+550,000	-450,000	-550,000	+150,008	+130,000	+476,000	+758,888	-158,098	+639,890	-558,098
17 -	-458,898	-658,088	+658.748	-650.000	-430,000	-550,008	-750,000	*758,808	+758,828	-050,000	+858,878	+050,000
16	+226,668	+758,099		-470,000	+379,800	-370,070	•734,878	-120,000	+030.040		-130,004	
12		-630,000	+377,979	- 378,878	-330,000					-450.000	-858.888	-148.888
	-556 840	-150 000		-450.000		-450.000	-538.888	-458.888	-456.688	-658.858	-856.896	.958.990
	-558.888	-150.000	-156.889	+450.000	+458.878	+458.888		-658.888	+458.898	-758.699	-858,478	-850,000
ii	.718.848	-750.898	-758.898	+650.099	+759,000	-750,000	-\$58,888	-858,598	+458,888	-858,809		-756,208
10	-750,848	-758,098	+858,878	+450,010	-1050,800	-758,888	-658,898	-850,000	-750,000	+850,000	-1059.808	-658,898
	-858,878	-750,000	-1070,080	-758,448	-1959,000	-650,111	+758,848	+759,809	•770,000	+758,899	-1220+899	
-	25,899	-759,000	-958,800	+#50,998	-1920,980	-750,780	-1624.040	-1938,899	*735,598	-938,840		-1858.80-
	25,090	\$2,500	-1479.994	+020,000	+426*668	-1220,000		41030,000				-1648.200
	23,799	27,779	-1450 470				-1226.000	-1250.070	-1258.000	-1258.858	23.744	-1050.000
7	22.044	25.044	38.000	-1050.000		-956.645	-1858.889	-1258.2**	25.000	25.004	25.091	25.000
	25.000	25.000	25.000	-1950.000	-1950.000	-1050,428	-1290,000	25,698	25,800	25,000	25,008	25,090
ž	25,998	25,000	25,000	23,890	.1250,000	25,000	25,010	25,849	25,898	\$5,000	23,0es	25,000
i.	25,000	52,000	25,019	25,811	25,000	\$5,809	25,979	25,808	25,949	52*848	52,540	52*688

1

the traces and septist

### TABLE F.1J. (contd)

THICKNESS (FT) (+=UNCONF, -=CONF,)

	25	26	21	24.	29.	30	31	35	33	34	35	34
65	25,848	25,888	23.900	25,600	25.000	25,600	25.004	25.064	25,848	\$60,85	-156,648	-158,008
64	25,400	25,599	25,800	25,941	23,840	25,846	25,000	29,84	-150,000	-258,848	-258,844	-258,888
	25,604	23,000	23,844	25,940	25,668	25,984	25,684	-256,880	-250,600	-159,989	-258,888	N230,040
	21 444	23,488 96 aaa	-154 884	, -138,844 , -258,44		-244.644	-250 888	-258,884	-356.000	-228,000	-254,000	•230,000
	25.040	-250.844	-254.894	.258.444	-258.044	-254.044	-258.944	-251.000	-258.884	-254.848	-258.884	-254.844
- 59	-238,868	-154,000	-254,844	+250,844	-238,884	-258,844	-258,884	-254,000	-250,040	-250,400	-254,044	-258.680
54	-254,888	-250,000	-254,000	+250,000	-250,040	-250,648	+250,644	-258,686	-250,940	-250,668	-256,006	-258,880
- 57	-258,888	-270,800	-238,000	-230,000	-250,048	-230,000	-250,644	+258,884	-250,888	-250,048	+258,088	+250,860
- 11	-254.644		-258,644		-258.844	-254.844	-240.000	-258.54	250.000	-368,000	-256.000	-258.868
54	-258.868	+258.808	-254.444	+254.644	.258.844	-256.888	+258.89	-250.000	+150.888	-150.000	+254.844	-258.008
55	-250,000	-250,000	-250,800	-258,844	-350,000	+850,000	-150,000	-150,680	-150,640	-158,888	-150,000	+158,644
52	-250,600	-255,549	-356,860	-355,884	-250,808	-150,000	-158,888	-250,801	-150,883	-155,848	-158,898	-138,840
21	-434, <b>888</b>	-328,888	-330,080	-238,888	-145 400	-239,889	-338,888	-150,988	-138,888	+158,985	-128,688	-360.440
ii	-458.868	+158.888	-158.644	+258.444	-254.844	-254.444	-158.888	-154.896	-258.998	-158.888	-234.044	-338.849
46	.330,960	+250,040	-250,644	+258,988	-250,400	-250,000	-150,040	-150,000	-358,088	-250,940	+250,840	-258,444
47	-350,000	-258,889	-358,888	-250,800	+258,888	-158,880	-150,800	-250,000	-350,960	-350,000	-250,808	-250,000
	-350,440	-250,000	-250,000	+158,686	-150,000	+150,044	-158,888	-150,004	-254,000	-350,808	-358,848	~258,888
	-256.044	-140.000	-250,000	-158.84	-154 844	-150.000	-150,000	-154.000	-154.444	-354.995	-352,040	
-	-354.944	-154.444	-154.044	-158.448	-258.844	=154.444	-234.044	-254.644	-158.444	-215.255	-258.000	-334.444
42	-250,000	-258,808	+150.400	+158,844	-255.268	+150.868	+155,388	-238,884	-150,000	-254,004	-258,800	-250,000
41	-250,000	-154,940	-150,000	-158,688	+258,884	-150,840	-158,840	-154,888	-358,868	-350,440	-250,648	-250,644
44	-238,645	-158,884	+253,998	-250,880	•158,888	-150,840	-159,800	+154,806	-250,800	-350,840	+258,842	-250,000
37	-210,049	-250,000	-250,868	-150,644	-258,044	-130,688	-154,699	-154,600	-138,688	-258,888	-356,859	-350,008
	-254.444		-150.000	-150.444	-130,400 -158,888			-130,000	358.848		-154.344	-256,000
36	.250,000	-150.000	-154,444	+158,040	+255,888	+356.848	+258.888	-354.000	-258,989	-150.048	-158,686	+259.944
15	-350,608	-250,000	-154,494	-158,848	-255,800	-358,888	-350,800	-350,800	-258,848	-150,410	-250,000	-250,000
	-350,860	-250,000	-150,800	+150,848	-250,000	-458,868	-358,888	-358,644	-254,000	-256,668	+354,998	-358,968
ü	-258.000	-258.884	-150.000	-336.666	-158.845	-438,088	-330,000	-230,004	-250,000	-318,889	-320,000	4238,848 -230.040
31	-258,868	+250,000	+358,888	+358.886	-458.688	-454.444	-154.684	-254.844	.254.444	-354.844	-258.848	-254.844
30	-350,600	+254,864	-256,000	-356,646	+450,860	-458,886	-358,848	-250,800	-358,888	+450,800	+350,848	-250,000
- 57	+334,688	-354,040	-250,000	-350,800	-458,800	-558,840	-450,800	-250,000	-450,000	-358,888	+258,888	-250,444
<b>2</b>	-420,000	-154 444	-230,000	-120,000		-559,888	*********	•230,000	<459,988 	-144 000	-230,898	+258,848
24	-316.664	-258.488	-110.444	+458.044	-338.844	-754.844	-458.848	-130.000	-558.444	-252.645	-250,000	-258,000
19	-354,800	-150,000	-354,644	+458,848	-558,888	-450,608	+454.448	-116,604	-558,848	+258.868	-256.988	+358,888
54	-358,000	+450,000	-330,000	-558.008	+750,660	-534,840	+458,868	-350,000	-550,948	-358,888	+450,080	+350,000
23	-130,800	+450,000	-358,888		+654,404	-558,888	+158,869	+458,948	-550,000	-258,940	-338,66#	+250,888
21	-554.644	-458.444		-118.844	-110,000	-554.844	-154.044		-458.444	-310,000	+138,994 +118,318	-429,888 -464,888
20	-458,900	-454,448	-650,800	+754,008	-754,444	-638.668	-458.844	+414.844	-458.448	-558.948	+158.845	-458.888
19	-554,868	-450,800	-750,840	-450,000	-550,000	-758,648	-554,840	+558,404	+658,648	-658,888	+650,000	-450,880
1	+738,64#	+450,000	-759,848	-554,044	-558,888	-754,448	-658,698	-758,080	-458,888	-338,848	-758,008	-650,668
<u></u>	-/38,888	+730,980			-758,688		•758,888	-558,800	-458,889	-658,868	-458,888	+559,440
ii	-558.888			-558.844	-158.844	-754.844	-758.888	-130,040	-758.045		-338,000	~438,898
ji -	-458,488	-454,840	-\$58,888	+658,968	-150,800	+750,040	+558.888	+554,844	+458.000	+458.688	458.448	-550.040
13	-450,600	-854,840	-750,440	+638,848	-758,948	-658,988	-158,848	-558,888	-550,040	-458,888	+158,848	+458,848
17	-738,840	-758,588	-750,000	+750,400	-750,440	-458,088	-458,848	-459,000	-150,044	-758,888	-758,000	-758,608
10	*********		-770,000 -750,040	*********		-738,848	-128,448	-739,508	-138,988	+73 <b>8,898</b>	-750,988	4758,8 <b>88</b>
	-958,644		-158,844	+958,888	-758,844	-130.044	-958.844	+156,846	.958.444	-954.844		-458.844
(	-150,644	-156,836	-750,000	+150,008	+450,944	+1450,848	-1450,044	-1054,004	.1058,044	+1456,888	-158,844	-150,848
	-954,634	-154,868	-+58,000	- 150,080	-1950,808	-1250,680	-1250,004	-1250,630	-1250,908	-1450,000	-1858,488	25,844
1	-1450,000	-1050 880	-1250,000	-1254 4-7	+1258,048	-1250,840	-1258,888	25,865	25,202	25,888	25,080	25,840
ĩ	444,944,-	28.642	25.641	-;=>F;=##################################	24.444 74.444	25.044	23,000	29,900 29,000	23,000	23,900	25.0 <i>0</i> 8 25.444	25.800
Ĵ.	25,040	25,600	25,000	25.940	25,844	25.044	25.844	25.844	25.628	25,044	25.844	25,844
	25,000	25,888	25,000	25,848	25,940	25,044	25,004	25,000	25,040	25,800	25,448	25,444
1	25.úúá	25.444	25.644	25.042	36.800	28.840	56. AAN	36.444	88.444	34.444	26.444	36.840

 $\rightarrow X = 2$ 

. *

Υ.

TABLE F.1J. (contd)

the appropriate and the state

THICKNESS (FT) {+=UNCONF, -=CONF,)

	37	38	39	. 49	41	42	43	- 44	45	46	47	48 .
65	-158,728	25,088	27,019	25.000	.52,569	25.009	. 52.040	23.079	25.000	23.000	23.900	25.045
64	-250,000	-250,090	-250,000	25,000	25,000	25,000	25,899	25,000	23,600	23,900	25,404	25,000
63	+259,098	*230,000	-250,000	-254,888	25,000	25,669	23,000	23,000	27,878.	25,898	25,848	25,000
	-250,777	-220,000	-224,575	*239,078	-150,000	-139,000	52,640	25,000	52,688	23,899	25,999	52,000.
	+258,888	-258.888	-230,000	+158,888	-156.079	*179,990	-130,000	-138,079	-130.000	23,000	23,000	23,777 29,960
31	*258,889	-258,999	-250,000	+150,800	-198,899	-159,869	.139,998	130.000	-258,889	+258.005	25.000	25.995
50	-258,888	-250,000	-258,099	-150.000	-150,008	-150,090	+130,000	+178,888	.230,000	-250,000	-258,988	25,000
- 27	-220,600	-226,888	-170,098	-139,008	-159,559	-150,000	-150,890	-150,500	+238,865	+250,009	-526,998	-150.000
44	-258.886			-226.000	-250.500	-130,000		-124.448	-210 000	-220,000	-130,000	-170.000
54	+258.008	-250.004	.750.044	-254.000	-250,078	+130.040	+130.000	*258.888	+238.898	+158.899	+150.000	-158.098
53	-158,888	-150,000	-159,009	-150,000	-150,000	-198,898	-178,808	+278,888	-130,000	-159,000	+158,898	-158.099
55	-150,000	-158,898	-138,888	+158,888	-150,000	-150,800	-236,000	-\$26,868	-130,000	-150,000	-158,000	-150,000
21	-150.000	4127,578	-130,770	-198.408		-230,949	• 3 3 9 , 9 9 9	-120,010	+170,970	-150,677	-130,479	-250.000
- 69 -	-236.000	-258.898	+238.848	-198.888	.151.681	.356.888	*210.008	-15010FV	-194.888	-218.888	*248.886	-158.008
Â.	+350,000	-358,880	-159,000	+330,810	-396,000	-259,080	-130,000	-158.808	-210,000	-250,608	+259,899	.258.000
47	+358,698	-379,699	*250,988	-370,000	.250,000	-158,888	-150,090	+158,000	-520,040	-258,889	-258,888	-250,808
	-230,070	-337,247			-130,207	•137,999	+170,000	*276,008	+230,000	-177,978	-150,800	-150.999
	-258.066	-358.688	-293.000	#158.888	-258.888	-118.848	-110.000	-130,000	-238.888	-256.000	-158.668	-128.049
- 63	-358.000	.350.070	+238,089	-258.888	-390,040	-238.009	+258.000	+150.008	+130.000	-158.098	-158.888	-158.888
48	-450,800	-350,800	-359,848	-338,008	-258,688	-258,800	+179,009	-120,000	-130,000	-150,000	-158,828	-138.008
41	-356,647	-450,800	+450,070	-350.000	+250,000	-250,900	-150,010	+139,000	-120,000	-150,008	-158.098	-159,000
	-227,000	-150 000	-320,000	-250,070	-250,000	-235,555	-130,000	*120*008	+178,929	*152,899	+158,898	*239,990
34	-356.000	-150.000	-378.844	-258.898	+230,000	-258.848	-130,000	-170.000	+258.000	-248.648	********	-198.800
ji	+358,000	370,000	-299,000	-254.000	-258.899	-230.999	-278.898	*****	+258.008	-158.000	-158,808	-158.688
36	-358,807	-350,000	-230,000	+158,09D	.198,998	-159,000	-230,000	-258.000	+238,868	-150,000	-150,000	+150,000
35	-359,888	-239,000	+250,889	+150,000	+138,008	-120,000	*558,000	-278,898	+226*666	-159,849	-150.099	-158,014
	-274,847	-270.000	-248.898	-170,070	-130,000	-220,000	-220,000	-229,010	+230,070	-120,940	-177,978	-130,000
- šž	-228.000	-239,889	+259.800	-250-000	-236.988	-258.880	+238.898	~258.888	-236.000	-258.008	+158.005	-158.000
31	-258,898	-250,998	-259,044	-258.998	.230,089	-250,000	+258,999	*279,070	+238,889	+259,000	-238,978	-258,888
30	-520,000	+270,000	-278,889	-270,079	-238,998	-250,989	-250,879	+250,050	.238.898	-528.848	-250,029	+278,848
- 27	-220,000	-279,999		-239,920	-350,879	-357,808	-250.909	~258,978	+230,009	+259,849	+170,999	-278,848
57	-250.000	-250.000	-150.000		-348.000	-298.888	-298.888	-238.000	-256.000	#2704000. # <b>2</b> 58.000	-258.000	-238,898
74	-250,000	-350,000	-430,840	-358,088	-250,000	.250,000	-230,000	-250,000	-250,000	-258,409	-250,000	-258.088
85	-458,800	-379,898	-350,010	-258,008	-250,000	-230,999	-258,000	*258,898	-230,000	*250,041	-258,811	-458,948
- 24	-259,908	-238,848	+277,899	+230+680	-234,048	+258,999	-250,970	*258,888	-278,989	-250,999	****	-458,929.
- 23	+630,009	-498.848	-270,000	********		-290,000		-232,000	#658,898	0030,00V	-458.848	
ži	-559,999	-559.000	+539,988	-450.078	-450.008	-259.000	-230.000	*238,858	+458.000	+459,992	-930.000	-630.090
28	-659,000	+559,888	-550,098	+458,888	-450,040	*258,999	-250,000	+450,800	-459,898	+658,829	-450,999	+458,878
11	+350,000	-550,280	-458,089	+458,491	+478,899	-258,889	+638,888	-458,879	-450,009	-458,899	+459,899	+750,899
	+378,988	-459,994	****	*450,900	**70,000	**37.090	-470,000	*630,000	****	**30,009	****	*750,700
- H	-458.888	-55.884	-550.000		-430.000			4530,000	-758.000	.758.828	•758.009	-758.828
iš	-550.000	-450,998	+650,000	+459,898	.758.088	-758.988	-730.000	.750.008	-750,000	-758.879	+759,899	.759.019
- <u>1</u> 4 -	-550,000	-657,999	+128,818	-750,998	-758,799	-758,890	+739,008	-758,008	-750,008	-750,000	-759,899	-150,998
12	-#50,807	*754,88#	-750,070	+750,002	+759,999	-750,899	-75#,999	*738,889	+758,889	+758,899	•750,800	-758.999
15	-758 888	-758.577	-130,000	-799.007	-758.899	-150,000	*730,000	-730,000	-756.800	-758.848	-730,000	-758.888
10	-759.844	-759,684	-750.098	+750.074	.150.091	+759.048	-759.874	+758.891	.739.894	+758.944	+759.999	-750.008
Ţ.	-154,004	-159,999		++58,899	.750,000	.158,860	+750,890	+151,000	•130,000	-750,848	-758,905	+158,898
	-750,090		+455,885	-458,868	-154,014	+#58,890	+758,899	+759,898	+739,888	-758,848	-750,079	#758,8¥8
I	53,500	25,000	27,799					4750.005	-755 -808	-739,949	-739.9##	-759.200
	63,849 25.000	67,879 25,884	25,277	27,000 25,000			-936.984	-170,170		-758.000	-170,000 -150,804	.758.888
í	25.000	25.494	25.044	25.000	25.899	25.604	25.009	25.415	25.004	-150.249	-759.090	.750.015
- <b>Š</b>	25,000	23,000	23,000	25,000	25,000	25,000	25,000	25,000	25,010	25,000	-758.005	+158.008
	25,808	52,804	25,998	\$3,900	25,000	52,998	52,000	25,001	52,000	23,889	25,B#4	+750,840
1	23,499	27,799	23,8 <b>4</b> 0	\$3,999	52,248	80,8 <b>4</b> 8	\$3,8¥8	52,848	\$2 <b>*</b> 848	52,849	52*448	52*448

TABLE	F.1J.	(contd)
and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	And a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	• •

THICHNESS (FT) (++UNCONF. -+CONF.)

	49	30	<b>\$L</b>	52	51	54	55	56	37	29	59	60
45	23.800	85.444	25.840	25.666	25,800	25,334	23,440	25,000	25,949	25,844	25,044	25.400
44	25.444	25.844	15.000	25.500	25,000	25,448	25,444	25,466	25,864	25,933	25,000	23,000
43	25.800	25,000	25.840	25.000	25,640	25,688	25,888	25,000	83,849	25,000	\$2,844	52,800
52	25.884	25,484	12,009	25,040	25,980	25,888	25,000	25,000	82,600	25,000	52,464	25,000
- 1 i	25,608	25,944	\$5,808	25,840	\$5,948	\$5,440	\$5,888	25,848	25,568	52,000	52,808	23,980
<u>ii</u>	25,000	23,803	25,899	25,640	25,000	25,014	25,840	25,008	25,040	25,868	22,000	52,044
51	25,449	85,98ê	25,044	23,684	25,800	15,948	25,995	23,949	25,000	\$3,000	23,848	23,898
58	25,008	25,040	25,000	25,648	25,900	25,000	25,805	52,408	11,000	23,000	#3 <b>,59</b> #	23,484
57	23,848	35,869	\$3,800	<u>52,000</u>	25,605	52,400	32,999	23,000	23,000	23,900.	23,000	26.600
54	-150,848	82,000	23,000	53,668	23,945	634889	23,000		45 444	15.000	36.844	25.000
55	-130,000	-130,000	23,945	22,000	52,000	67,888	234 <b>040</b>	32 044		88.848	24.644	21.444
31	-128,898	•130,000		23,000	22,000		35.044	28.444	39.643	25.000	23.044	28.444
22		-242 838	38 644	24.444	31 444	25.000	35,046	21.000	25.004	23.444	25.444	25.949
26	-250 000		-166 044	35.444	36.844	33.444	33.344	25.044	25.844	25.000	25.000	25.040
51	-154.848		-154.444	13.010	25: 844	25.040	25.444	29.944	15.945	25.228	23.004	25.000
	-150.000		-214.844	23.000	25.044	23.949	25.848	15.000	29.000	25.040	25,848	25,808
AA .	-254.484	-254-444	45.644	25.444	41.444	15.545	25.939	23.000	23,000	25,000	25,404	25,668
. 17	-154.948	-154.444	23.040	25.000	25.040	25,900	25,000	25,604	25,000	25,898	25,000	25,828
44	-158.808	-150.888	25,840	25,000	13,000	25,640	25,040	25,044	23,000	- 25,000	25,888	25,800
45	-150,000	25,000	85,045	25,000	25,040	25,828	25,800	\$5,000	25,643	25,930	25,080	82.849
44	-150,000	25,000	25,400	23,008	15,000	23,048	25,044	25,044	\$5,440	25,988	25,500	52,988
41	-150,000	-150,980	-120,000	23,949	25,040	25,949	£5,348	25,000	25,844	25,848	25,000	25,944
48	-150,000	-150,000	+150,000	-150,018	¥158,888	25,944	23,808	25,000	85,000	52,848	25,000	25.044
41	-150,000	-154,000	-258,868	+258,058	-250,000	-258,888	+138,008	-129,000	\$2,666	22,898	23,000	
40	-250,004	-254,998	-158,848	+150,000	-138,638	+158,848	-154,800	-158,988	•128,088	-150,000	-129 -000	-150 040
39	-150,000	-150,060	-150,000	+154,040	-150,000	+138,948	+150,500	-138,883	120,000	-130,000	-150,800	
34	-138,898	-120,000	4156,868	+130,888	*138,808	-136*998	-120,000	41344048	4128,408	-126,548	-120 444	34 494
37	-138,008	-136,000	-130,000	-130,000	+138,888	-150,000	*****		-154 644	28,828	25.644	25.044
	-134,000	-130,500	-142 033		-120,000	-154 040	-164 444	-154.444	-154.004	35.644	28.000	25.844
33		-154 444			-113 453	-150.800	-138.888	-154.444	-458.888		25.644	25.889
	-124 000	-130,400	-140,000	-150,000	-154 454	-154.444	-258.644	-450.644	-458.534		-434.984	25.84
- ii	-139.900	-158.888	-158.844	-158.444	-258.844	-254.444	+454.444	+158.668	-458.868	-450.800	-454,644	-458.888
<b></b>	-256.000	-234.448	-258.444	-254.444	-219.949	+150.020	+458.888	-458,888	+650.000	+450,000	+654,688	-150,404
34	259.644	-254.444	-258.000	+250.000	-450.000	-450.000	+458.000	-450.000	+450,840	+450,000	+758,986	-158,848
29	-254.844	-259.646	+258,040	+158.888	+450.000	-658,848	-458,888	-456,888	-754,008	*750,888	-753,888	-150,000
24	-250,000	-250,400	+658,040	-458,484	-458,889	+659,968	-658,998	+450,848	-150,688	+758,848	+758,000	+150,000
27	-250,000	+450,000	+458,888	+658,888	-438,948	-630,040	-458,888	=754,864	-750,448	+129,998	+759,999	-150,040
24	-658,968	-159,888	-638,809	+620,000	-630,000	-458,848	-758,000	+750,000	+750,800	-750,900	-750,408	-128,894
52	-\$54,808	-438,848	-658,888	+638,484	+654,844	*730,688	-734,888	+738,888	-730,000	*750,000	-120,000	-150,000
	-858,888	-458,800	+438,800	+130,840	*758,448	*/38.888	-750,000	-738,000	-750,080	-1354068	-750 804	-754 844
52	-+30,000	-438,898	-638,488	*****	+750,000		-730,000	-730,990	-150 800		-714.844	-1304-004
22	-+74,844	-630,000	-738,468	-738,988	-163 -040	-154 -444		-130,000	-154.444	-150.640	-754.004	-154.444
	-164 444			.758.444	-156 666	-153.543	-750.000	-114.044	-758.844	.758.688	-758.636	25.686
	-158.848	-754 444	-765,064	.753.044	-164.000	-754.444	-154.644	.754.844	.754.844	.154.868	.756.908	25.004
	-158.444		-758.884	.754.444		.754.844	-754.844	.754.844	-758.644	.758.400	-750.044	21.440
17	-758.858	-754.848	-754.444	.758.444	-114.444	-758.668	-750.800	+710.048	.758.844	-155.008	-754.890	25.984
	-150.040	-753 844	-744.444	-758.444	-758.888	.758.648	-158.844	.754.464	-758.998	*758.888	.750.000	25,000
ii -	-758.644	-158.888	.114.880	.750.004	-758.949	-758.448	.758.880	-750.000	+758.848	-758,848	+754,044	26,000
14	-754.004	.150.840	-150.040	-758.004	+158.898	-750.880	-758,988	+758,000	-150,040	+750,000	+15#,444	25,044
13	-750.000	-758.988	-750.000	-754,004	.750.000	-758.088	+730,000	+150,000	-754,444	-758,000	25,644	25,844
- jā	-750,000	-750,844	-150,000	+158,888	-750,000	-758,888	-150,000	-758,948	-759,968	-758,900	25,000	25,944
11	-756,860	+758,888	+758,888	+750,648	-758,848	-750,848	-158,888	-758,888	-758,888	-750,000	25,000	25,684
10	+75P, BOA	-758,88#	-750,000	-150,040	-750,800	-758,000	+758,000	-750,000	-754,484	25,680	25.940	25,800
•	-758,848	-150,833	-750,000	-758,998	.730,000	-750,984	-750,000	-758,844	+750,040	25,000	23,048	22 034
	-751,600	-756,468	-750,000	-750,004	-152,040	-750,698	-759,940	+758,860	+738,888	23,968	43,000	22,040
7	+750,684	-758,800	-750,040	-750,000	-758,834	-758,884	-754,000	•750,030	-738,888	23,040	(1) 日本市	도구·아무희 고도 사고프
4	-758,884	-758,800	-129,466	•759,838	-759,682	+738,828	-759,844	*738,888	#3,888	23,949	674888 51 DAA	57.0000 38.000
5	-758,048	-758,800	+758,839	-750,640	*758,888	+758,848	+758,888	4128,888	43 <b>.070</b>	25.844	25.444	25,000
	+/39,898	-758,83#	-738,849	-154,908	#738,908	-368.44	-160 644	38	26 AUM 23 494	24 444	26.444	25.444
1	-758,094	+758,44#	-138,844	-134,908	-150,000	-164 044	26 444	22,050	53,848 35,844	25.044	25.044	25.000
	-738,898 -150 0-2	-150,000 -160 A24	-738,000	-130,000	-752,000	-135.448	25,444	25,000	25.844	25.844	25.684	25.844

F.70

٢

APPENDIX F.2: INPUT FILES FOR DETERMINATION OF FLOW NEAR SALT DOME BY FINITE ELEMENT THREE-DIMENSIONAL GROUND-WATER (FE3DGW) FLOW MODEL

1.5

-

1.00

	TABLE F.2A.	HAIN3•OUT: Inp of Flow Through	out File Used in Dome Breach	n PROG1 for I	Determination
FILE NAMED HA	IN3, OUT	ender en en en en en en en en en en en en en			
SOLUTION MINI 1 0	NIG - HAIN 1.00	3.0UT FOR DET 1.00	ERHINATION OF	FLOW THR	DUGH BREACH
1CARRIZZO 0,1323E+020,1	AQUIFER	323E+020.1000	E+000.1000E+0	10.1000E+(	010.1000E+010.1000E=03
2WILCOX A 0,2480E+010.2	QUIFER 2480E+010.2 0007850	480E+010,1000	E+000,1000E+0	510 <b>.</b> 1000E+(	010.1000E+010.1000E=03
0,2480E+010,2 4wilcox A	480E+010.2 Guifer	480E+010 <b>.</b> 1000	E+000 <b>.</b> 1000E+0	10.1000E+0	010,1000E+010,1000E=03
0,2480E+010,2 5WILCOX A	480E+010.2 QUIFER	480E+010,1000	e+000 <b>,1</b> 000e+0	10 <b>.</b> 1000 <b>E</b> +(	010.1000E+010.1000E=03
0,2480E+010,2 6WILCOX A	480E+010.2 QUIFER	450E+010.1000	e+000,1000e+6	010 <b>.</b> 10002+(	010.1000E+010,1000E=03
0,2480E+010,2 7WILCOX A	480E+010.2 QUIFER	4805+010,1000	2+000,1000E+(	)10,1000E+(	
8HOLE MAT 10000.0 100	ERIAL 100_0 100	00.0 0.1000	E+000.1000E+0	10.1000C+0	10.1000C+010.1000C+03
1 0,	00 0.	00 100,00	-2100.00	1 3	1
0,0 102 2 5000	=100,0 00 0,	200 -2100,0	-2100,00	1 3	1
3 10000. 0-0 102	00 0 ₄ 0 00 0 ₄ 0	200 =2100,0 00 = 90,00	-2100.00	1 3	1
4 15000 0.0 102	00 0. •100.0	00 65.00 200 -2100.0	-2100,00	1 3	1
6 25000. 0.0 102	00 0.	00 75.00 200 -900.0	-900.00	t 3	1
8 33000 8,0 102 9 40000	00 0. •100.0	00 65,00 200 <b>-</b> 2100,0	-2100,00	1 3	1

2

F.72

N,

· · ·

.

•

	0.0	102 .	100.0	200	-210	0.0					
9	10 450	00.00	0	.00	5	5.00	+2100.0	0	1	3	1
1	0,0	102 -	100.0	200	-210	0.0	-				
-	11 5000	00.00	. 0	.00	5	0.00	-2100,0	0	1	3	1
	0.0	10Ž -	100.0	200	-210	0.0	-			_	
-	12 550	00,00	· 0	.00	4	5.00	-2100.0	Ø	1	3	1
	0.0	102 •	100.0	500	+210	0.0				_	
	13 6000	00,00	0	.00	4	0.00	-5100.0	0	1	3	1
	0.0	102 •	.100.0	200	-210	0.0				•	
	14 650	00,00	0	.00	3	00.00	-5100.0	<b>D</b>	1	3	1
	0,0	102 •	•100 <b>.</b> 0	200	•210	0,00	-2100 0			2	•
	15 700	00,00	0	.00	310		4510050		Ŧ	2	ă.
		102 <b>9</b> 7	-100°0 •	200	4610	10 <u>0</u> 0	-2100-0	a	4	<b>R</b> 1	4
	10 (20)	102 - 102 -	-100 0	200	-210	10_0 10_0			•	•*	•
	17 800	105 ' 00.00	₩100 ⁸ 0	. 00		0.00	-2100-0	0	1	3	1
	020 1. 000	102	•100_0	200	-217	0.0		-	-	-	-
	18	0.00	5000	.00	10	0.00	-2100.0	0	1	3	1
	0.0	102	-100.0	200	+210	0.0			-		-
	19 50	00.00	5000	.00	ģ	9.00	-2100.0	0	1	3	1
	0.0	102	-100.0	200	-210	0,0	•		•		
	20 100	00.00	5000	.00	Ş	10.00	-2100.0	0	1	3	1
	0.0	102 0	-100.0	200	-210	0.0				_	
	21 150	00.00	5000	.00		85.00	-2100.0	10	1	.3	1
	0,0	102	-100,0	500	-216	0.0		• •	•	•	•
	25 350	00,00	5000	.00	(	5,00	•5100.6	10 .	1	3	1
	0.0	102	-100.0	500	-216	80,0		-	•	•	•
	59 400	00,00	5000	.00		50.00	•2100 _• 8	90	1	5	1
	0,0	102	-100.0	200	•216	0,00	- 24.00			•	
	27 450	00.00	5000	.00		55,00	-5100	р <b>М</b>	1	2	1
	0.0	102	-100-0	500	-21	00,0	-3100 (	<b>7 a</b>	•		•
	28 200	00,00	5000	00	-944		4610040	^b O	1	4	•
	0.0	102	#100 ₀ 0	200	-61		-2100 0	70	•	1	
	84 220	105	1000 -100 -	900 1900		47 <u>8</u> 00			•	<b>.</b>	•
	10 600	105	-100°0'-	200		10 . 00	-2188-0	20	•	3	1
	20 0 00	192 100 000	-100 A	200		~~~~~~ 00.0	-210001	<b>.</b>		~	•
	0.00	106	-104-0	E U U							

F.73

,... i

Ň.

2

31	6500	00,00	5000.00	35,00	•2100 <b>.</b> 00	1	3	1
	0.0 10	02 <b>-</b> 10	0_0 208	0.00120				
35	7000	00.0	5000.00	30,00	-2100.00	1	. 3	. 1
	0.0 10	82 -10	10 <b>-</b> 0 506	0_2100_0				
33	7500	8.00	5000.00	25.00	-2100.00	1	3	1
	0.0 1	72 -10	0 0 200	-2100.0		•	-	•
24	8000	7 <b>0</b> 0	5000 00	20 00	-2100 00	•	۲.	
34			3000,00		42100-00	-	3	1
~ ~	0.0 1			-2100.0			-	_
- 35	· ·	0.00 1	0000,00	100.00	-2100.00	1	3	1
	0.0 10	82 -10	0_0 200	0,0012-				
- 36	500	3.00 1	0000.00	95.00	-2100.00	1	3	1
	0.0 10	02 <b>-1</b> 0	0.0 200	-2100.0		•	-	•
37	1000	4.00	0000 00	90.00	-2100.00	6	۲	•
	a a 40			-2100 0		•		•
-							-	
20	12001	0.00 1	0000.00	85,00	-5100-00	1	- 2	1
	0.0 10	02 -10	0,0 200	-2100,0				
- 39	20000	0.00 1	0000.00	80.00	-2100.00	1	3	1
	0.0 10	0Ž -10	0_0 200	-2100.0	•	•		•
40	25000	3.00 1	9000.00	75.00	-2100.00	•		4
	a a 10	79 - 10	a a 200	-2100 0		•		
A 4	1000 L	3 00 A	0000 BUL		-2100 00			
41	30000	0.00 1	0000.00	10.00	-2100-00	1	2	1
	0.0 10	95 •10	0.0 506	0.0015-				
42	3500(	0,00 1	0000.00	65,00	-2100,00	1	3	1
	0.0 10	82 -10	0.0 200	-2100.0				
43	4000	0.00 1	0000.00	60.00	w2100.00	ŧ	3	1
• •	0.0 10	32 -10	0 0 200	-2100.0		•	-	•
л Л	48000	2 00 4			-2100.00			
44			0000000	23900	=C100 ⁺ 00	1	3	Ŧ
	0.0 1	06 -10		•4100.0				_
45	50000	0,00 1	0000.00	50,00	-5100-00	1	3	1
	0.0 10	0 <b>1</b> - 50	0.0 200	-2100.0				
46	55000	0.00 1	0000.00	45.00	-2100.00	1	3	1
•	0.0 10	82 -10	0.0 200	-2100.0		•	-	•
<b>Д 7</b>	60000		auga aa	40 00	-2100.00		¥	
-						•		•
		05 010	0.0 200					
40	02000	0.00 1	0000.00	35,00	-5100,00	1	3	1
	0.0 10	02 <b>-</b> 10	0.0 500	-2100.0				
-49	7000	3,00 1	0000.00	30.00	-2100.00	1	3	1
	0.0 10	92 <b>-</b> 10	0.0 200	-2100.0		-	-	-
50	75000	8.00 .	0000.00	25.00	-2100.00		۲	4
				29820		•		٠

F.74

Ň

-

..

·

0.0 102 m100.0 200	-2100.0					
51 80000.00 10000.00	20.00	-2100.00	1	3	<b>1</b>	
0.0 102 -100.0 200	-2100.0					
52 0.00 15000.00	100.00	+2100 <b>.</b> 00	1	3	1	
0.0 102 -100.0 200	-2100.0			_		
53 5000,00 15000,00	95,00	-2100.00	1	3	1	
0.0 102 -100.0 200	+2100.0		-	-	•	
54 10000,00 15000,00	90,00	=2100,00	1	3	1	
0.0 102 -100,0 200	-2100,0			-	•	
55 15000.00 15000.00	85.00	-5100-00	1	3	1	
0,0 102 -100,0 200	0,0015-		•	-	•	
56 20000.00 \$5000.00	00,00	45100 ⁶ 00	1	2	3	
0.0 102 +100.0 200	•2100 _. 0			-	•	
57 25000,00 15000,00	75,00	#5100 ⁸ 00	1	2	1	
0.0 102 •100.0 200	•2100.0	-3100 00			•	
58 30000,00 15000,00	70,00	A5100000	*	3	•	
		-2100.00	•	1	ŧ	
24 22000,00 12000,00	-2400 0	*******			•	
0 100 - 100 00 COU	**************************************	-2100-00		٩.	•	
00 40000000 100000000	-3400 0		•		•	
0 100 TOC #10000 COU		-2100.00	•		•	
	55000 1 - 2100.0		•	-	•	
43 \$000 00 100 00 1000 00	R0.00	-2100.00	1	3	1	
02 200000000 12000000	-2100.0		•	-	•	
AS 55000 00 15000 00	45.00	-2100.00	1	3	1	
0.0 102 -100.0 200	-2100.0	~		-	-	
60 60000 00 5000 00	40.08	-2100.00	1	3	1	
0-0 102 -100-0 200	-2100.0				•	
45 65000.00 15000.00	35.00	-2100.00	1	3	1	
0.0 102 -100.0 201	2100.0		-			
66 70000.00 15000.00	30.00	-2100.00	1	3	1	
0.0 102 -100.0 200	.2100.0	··· •	-			
67 75000.00 15000.00	25.00	-2100.00	1	3	1	•
0.0 102 -100.0 200	0 -2100.0	-				
68 80000.00 15000.00	20.00	-2100.00	1	3	1	
0.0 102 -100.0 200	0.0015- 0	· · · ·				
69 0,00 20000,00	100.00	•2100 <b>.</b> 00	1	3	1	
a a 192 -198 a 291	8 -2100.0					

じ

		(001104)		
70 5000.00 20000.00 95.00	-2100.00	1	3	1
0.0015-0000 0.001- 501 0.0	, <b>-</b>			
71 10000.00 20000.00 400.00	-2100,00	1	3	1
0.0 102 -100.0 200 -2100.0				
72 15000.00 20000.00 85.00	-2100,00	1	3	1
0.0 102 -100.0 200 -2100.0				-
75 20000.00 20000.00 80.00	-2100.00	1	3	1
0.0 102 -100.0 200 -2100.0				-
74 25000.00 20000.00 75.00	•2100 <b>.</b> 00 '	1	3	1
0.0 102 -100.0 200 -2100.0				•
75 30000.00 20000.00 70.00	#2100 <b>,</b> 00	1	3	1
0.0 102 -100.0 200 -2100.0				•
76 35000.00 20000.00 65.00	-2100,00	t	3	1
0.0 102 -100.0 200 -2100.0	-	-		-
77 40000.00 20000.00 60.00	-2100,00	· 1	3	1
0.0012 0.001 0.00				·
78 45000.00 20000.00 55.00	•2100 <b>.</b> 00	1	3	1
0.0012=002 0.001=201 0.0				-
79 50000,00 20000,00 50,00	-2100,00	1	3	1
0.0012-100.0 200-2100.0				-
80 55000,00 20000,00 45,00	-2100,00	1	3	1
0.0 102 -100.0 200 -2100.0				
61 66666,66 20000,66 40,60	-2100,00	1	3	1
0.0 102 -100.0 200 -2100.0				-
82 65000,00 20000,00 35,00	-2100,00	1	3	1
0.0 102 -100.0 200 -2100.0				-
85 70000,00 20000,00 30,00	-5100.00	1	3	1
0.0 102 -100.0 200 -2100.0				
64 75000.00 20000.00 25.00	-2100,00	1	3	1
00,00,00,00,00,00,00,00,00	=2100,00	1	3	1
0.0 10c =100.0 200 =2100.0				
80 0.00 25000.00 100.00	-2100,00	1	3	1
0.0 102 -100.0 200 -2100.0				
0/ 5000.00 25000.00 95.00	-2100,00	1	3	1
0.0 102 -100.0 200 -2100.0				
00 10000 00 22000 00 90.00	-2100.00	1	3	1
	<b>_</b>			-
1000.00 2000.00 85.00	•2100 _• 00	1	3	1
0.0 INC -100.0 200 -2100.0				-
b = c

•

					•						
	90	200	00,0	Ø	25000.0	00	80,00	-2100,00	1	3	1
	0,	Ø	102	- in 1	00.0	200	-2100.0				
	91	220	00.00	0	25000.0	00	75.00	-2100.00	1	3	1
	Ø	0	102	- = 1	00.0	200	-2100.0	•	-		-
	92	300	00.0	0	25000.0	80	70.00	-2100.00	1	3	1
		0	102		00.0	200	-2100.0		-	-	-
	93	350	00.0	ø	25400-0	10	69.00	-2100.00	•		•
	. 0.	0	102	• 1	00.0	200	-2100.0		•		•
	94	400	00.0	៙ື້	25000	20	60.00	-2100-00	6		•
	์ ด.	0	102		00.0	500	-2100.0		•		•
	95	250	00.0	a" .	25000.0	30	SS_00	-2100.00	•		
		0	102	~_•	00 0 1	500	-2100 0	-6400000	•	2	•
	06	500	00.0	ຄື.	25000 0	30	-CT0000	-2100 00		-	
	, ju	200	102	"_4	2000.	มน วภัต	-2100 0	*******	3	2	7
	07	E E A	105 0 0 0	~~1 @	DEGOG (	200 3	-6100.0	-9100 00		•	
	71	220	10000	U 	62000.0	10 300	43,00	-CI00*00	1	3	1
	00	4 0 0	105 105	~~3	00,0	200	#C100-0	-3445 44	•	•	
		000	4000	U	23000	110 0 <b>0</b> 0	40.00		7	5	1
	~~ ^Ø •	V A RA	102	~~1	00.0	200	-2100.0	•••••	•	-	
	99	020	00.0	ש	22000	00	35.00	-5100-00	1	3	1
	0.	0	102	_•1	00.0	200	-2100-0			_	_
1	00	700	00.0	Ø	52000	<u>80</u>	30,00	#2100,00	1	3	1
	0.	0	102	_=1	00.0	200	•2100.0			-	
1	01	750	00.0	0	25000.0	00	25.00	•2100.00	. 1	3 -	1
	0.	Ø	102	-1	00,0 8	500	-2100,0				
	95	800	00,00	0	25000.0	00	50,00	-2100,00	1	3	1
	0.	0	105	- # 1	00,0 0	200	-2100.0	- '			
1	03		0.0	Ø	30000.0	30	100.00	-2100.00	1	3	1
	Ø.	Ø	102	-1	00.0 8	200	-2100,0				
1	04	50	00,0	0	30000.0	30	95,00	-2100.00	1 -	3 -	1
	Ø,	0	102	-1	00.0 2	200	-2100.0	-	-		•
1	05	100	00.00	0	30000.0	30	90.00	#2100.00	1	3	1
	0.	0 -	10Ž -		00.0	200	-2100.0		-	-	-
1	06	150	00.00	0	30000-0	90	85.00	-2100.00	1	3	1
-	0.	0	102	~•1	00.0	200	-2100-0		•		-
1	07	200	00.0	α ້	30000-0	10	80.00	-2100.00	1	3 :	1
-	0-	Ø	102	• 1	00.0	200	-2100.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-		-
1	08	250	00.0	Ø	30000-0	00	75.00	-2100-00	•	3	•
-	Ø_	0	102	<b>_</b> •1	00_0 5	00	-2100.0		•		
	~ ~ •	-		+	~~ <u>~</u> ~		~ ********				

1.1

4

109	300	00.00	30000.00	70,00	=2100,00	1	3	1
	0.0	102	-100.0 200	-2100.0				
110	356	00,00	30000,00	65,00	•2100 <u>.</u> 00	1	3	1
	0.0	102	-100.0 200	-2100.0				
111	408	00,00	30000.00	60,00	-2100.00	1	3	1
	0.0	102	-100.0 200	0,0015-				
115	450	200.00	30000.00	55,00	-2100,00	1	3	1
	0.0	105	-100.0 200	-2100.0				
113	500	300,00	30000.00	50.00	#2100.00	1	3	1
	0.0	102	-100,0 200	-2100.0				
114	556	00,00	30000.00	45,00	=2100,00	1	-3	1
	0.0	105	-100,0 200	-2100.0				
115	i 600	00,00	30000,00	40,00	-2100,00	1	3	1
	0.0	102	-100,0 200	-2100.0	-			
116	656	300.00	30000.00	35,00	-2100.00	1	3	1
	0.0	102	-100.0 200	-2100.0	-	•		_
117	' 700	00,00	30000.00	30.00	-2100.00	1	3	1
•	0.0	102	-100.0 200	-2100.0		•		•
118	750	00.00	30000.00	25.00	-2100.00	1	3	1
-	0.0	102	-100.0 200	-2100.0	- •	•	·	•
119	808	00,00	30000.00	20.00	-2100.00	1	3	1
	0.0	102	-100.0 200	-2100.0	•	• ·		•
120	)	0.00	35000.00	100.00	-2100.00	1	3	1
	0.0	102	-100.0 200	-2100.0	- •	-		-
121	56	00.00	35000.00	95.00	-2100.00	1	3	1
	0.0	10Ž	-100.0 200	-2100.0		-		-
122	100	300.00	35000.00	90.00	-2100.00	1	3	1
	0.0	102	-100.0 200	-2100.0		•	-	•
123	150	300.00	35000.00	85.00	w2100.00	1	3	1
-	0.0	102	-100.0 200	-2100.0		•	-	•
124	200	800.00	35000.00	80.00	-2100.00	1	3	1
	0.0	102	-100.0 200	-2100.0		•	-	•
125	250	300.00	35000.00	75.00	-2100.00	1	3	1
-	0.0	102	-100.0 -200	-2100×0		<b>.</b>	·· · · · · ·	
126	300	00.00	35000.00	70.00	-2100.00	t	3	1
. –	0.0	102	-100.0 200	-2100.0		-	-	-
127	350	00.00	35000.00	65.00	-2100.00	1	3	1
. —	0.0	102	-100.0 200	-2100.0		-	•	-
	- <b>-</b> -							

.

607

12	8	40	000	.0	Ø	35(	900	00	60,00	*S*	00	.00	1	3	1			
	0,	Ø	16	35		100,	.0	200	-2100,0									
15	9	45	000	.0	0	35(	000,	00	55,00	-21	00	.00	1	3.	- 1			
.,	Ø,	0	. 19	SS	់ ត	100,	.0	200	•2100 <b>.</b> 0			•						
13	0	50	000	0,0	0	350	100	00	50,00	- = 21	00	.00	1	3	1			
	Ø,	0	19	50		100,	Ø	200	-2100,0			•						
13	1	55	000	0.0	Ø	35	000	00	45,00	•21	00	.00	1	- 3	1			
	Ø.	0	19	SŜ -	- <b>#</b> {	100	.0	200	-2100.0									
13	2	60	000	0.0	0	35	000,	00	40,00	-21	00	.00	1	3	- 1			
	0.	0	18	- Št	-	100	.0	200	-2100.0									
13	3	65	000	0.0	0	39	000.	.00	35.00	-21	00	.00	1	3	. 1			
	0.	0	19	9Ž-	់ត	100,	.0	200	-2100.0			-			_			
13	4	70	000	0.0	Ø	35	.000	00	30.00	•21	00	.00	1	3	1			
	0.	0	10	sē	Ü 🗰 🖞	100	0	200	-2100.0			•			-			
13	5	75	000	.0	0	350	000	00	25.00		00	.00	1	3 '	<b>1</b>			
	0.	0	10	sē ,		100.	.0	200	-2100.0			•			-			
13	6	80	000	0.0	0	350	000	.00	20,00	-21	00	.00	1	3	1	÷		
	0.	0.	10	- Т	•	100	.0	200	-2100.0						-			
20	0	52	500	0.0	Ø		0.	00	77.50	- 5	900	00	1.	3	1			
	Ø.	0	16	JŽ –		100.	.0	200	-900-0			-	_					
20	1	21	ØØ	0.0	Ø		0	00	79.00	•	900	.00	1	3	1			
	<b>.</b>	0	1 9	SS.		100.	.0 ``	200	-900-0				•	. –	-			
20	ຂື່	20	825	5.0	Ø		<b>~</b> 0,	.00	79.18	<b>*</b>	00	.02	1	3	1			
	0.	0	1	Se		100.	.0	200	-900-0			•	-					
20	3	20	000	0.0	0		<b>~</b> 0,	.00	80.00	•1!	560	.00	1	3	1			
	0.	0	16	s	•	100	.0	200	-1560-0			•			-			
20	4 ً	19	82	5.0	0		0.	.00	80.18	-17	100	.00	1	6	1			
	Ì٥.	ō	1	ss.		100.	_0_'	203	-1250.0	304	-1	600.	0 Ã0'	5 =10	68.8	506	-1705.0	
20	5 [ັ] ່	19	750	0_0	0		0	.00	80.25	•17	140	.00	1	7	1	• • •	*****	-
	ā.	. Ø	10	22 20		100	ຸດີ່	203	#1250-0	30A	-1	600.	0 40	5 =16	68.8	506	-1700-0	8
-17	40.	0.			-					•	-	<b>-</b>						
20	6	19	121	5.0	a		Ø	.00	80-68	#21	00	- 00	1	9	· • •			
	Čα.	. n´	10	λŽ	~	. 00	ູດັ່	203	-1250.0	300	•1	600-	0 . 40	5 .21	100.0	1		
20	7 .	1.8	añ	7 0	ด		- a	. 99	82.00		100	00		5	1	,		
	<b>.</b>	. n	10	λ2 Γ	-	100	ຸດັ່	203	-1250.0	304		600-	0 40	5 -21	00-0			
20	A	17	aå	ລີດ ຄິ	ື່	e U V .	<b>6</b>	.00	A3_00	.2	100	.00		<b>R</b>	1			
U	<b>α</b> .	.0	10	າຂັ້		100	.0	203	-1250.0	304		609.	0 00	3 .21	00-0	1		
20	0 "	, v 1 4	000	ລັດ	ຄື		<b>~</b> a		A0_00		190	.00			1			
	΄a.	. a	10	797	- -	100	ຸດັ່	201	m1250.0	394		600.	0 00	R	100.å			
			• •	-	-	8 <b>1</b> 1 1 1	ęΨ	<b>1</b>				~~~*	~ 70	er — 16 6		,		

F.79

.

É

•

. .....

21	Ø	232	22.2	:3	17	67.	77	76.77	49	00.00	Ø	1	3	1			
	ø.	Ø	102		100.	0 8	200	-900.0									
51	1	551	71,5	57	- 28	-28 - (	43	277.83	•9	00.0	Ø	1	<b>3</b>	1			
	Ø.	Ø	102		100.	0 7	200	-900.0									
- 51	5	556	147.8	3	59	52.	17	77.95	- 9	00.0	Ø	1	3	1			
	Ø.	Ø	102	•	100.	0 1	200	-900.0		•		-		•			
21	3	214	164_4	7	- 39	35.	53	78.54	+15	60.0	0	1	3	1			
	0.	0	102	- = 1	100.	0	200	-1560.0	-	•		•	·	•			
51	4 - 1	213	\$40.7	.5	36	59.1	28	78.66	=17	00.0	ø	1	6	1			
-	0.	Ø	102		100.	ø [	203	-1250.0	304	-160	0_0	405	-166	8.8	506	-1700.0	
21	5	212	287 .6	9	37	12.	31	78.71	=17	40.0	ø –	1	7	1			
- •	0.	Ø	102		100	0	203	-1250.0	304	w160	ē.ø	405	=166	8-8	506	-1700.0	607
=17	40.	ø		-		•				··· •.• •							•••
21	6 -	209	87.1	7	40	12.1	83	79.01	=21	00.0	Ø	1	5	1			
	ā.	Ø	102			ø	203	-1250.0	304	-160	a_a	405	-210	10.0			
21	7 .	200	150.2	5	49	49.1	75	79.95	154	00.0	Ø	1	_ <u>_</u>	1			
	И.	ø	102	- -	100	a 1	203	-1250.0	304	-160	0.0	405	-210	0.0			
21	8 .	193	43_1	5	56	56_/	85	80.66	-21	88.8	a	4	- <b>R</b>	1			
	-a_	a	102		100	<b>B</b>	203	-1250.0	304	-160	a a	404	-210	ia à			
21	• •	184	36.0	2	,	63.	06	A1_34	-21	00.0	a .	405	R				
	้ด_	a	102	· • •	100	0.000	202	-1250 Q	104	-160	о а а	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-210				
20	a <b>"</b> •	250		0	26	00 1	543 70	76 00	-0		a .	403	4610				
	6	530	1/32		inini N	00.1	500 500	-000 0	7	00.00	U	7	2	•			
33		250	196	<b>w</b> 1	100	00 (	5 <b>00</b> 34	<b>4400</b> 00		<b>66</b>	•	•	-				
55	1	236	100.0		40 1 a a	00.1	99 200	12,00	- 4	00.00	0	1	3	1		ч	
22	- <b>2</b> -	250	195		, 00 e	10 ( 11 - 1	500	-400.0			A			•	•		
EC	<b>6</b>	676	102		41	79.1	90 500	75.00		00.00	0	1	2	1			
	- ¹⁰ •	19 2160	100	_ <b>•</b> 1	00	0	200	-400.0		10.0	~						
CC.	2	276	00.00		שפ המי	00.0	00	75.00	-13	90 · 0	6	1	3	1			
	, Ø •	0	105		00		200	-1300-0		<b>a</b>	-						
EC	4	674	100.0		21	72.1	00	75.00		00.00	0	1	. 0	_ 1			
	_0.	0	102		100	0 i	202	-1250.0	304	-100	0.0	405	+166	0.0	506	-1700,0	
55	ວຼ	236	00.00	Ø	25	50,1	90	75.00	-17	40,0	0	1	7	1			
	Ø.	0	105		,00	0 i	502	•1250 <b>.</b> 0	304	-100	0,0	405	-166	ō, ō	506	=1700,0	687
#17	40.	0		_	-						_		-				
55	0	250	00.00	Ø	56	75.6	00	75,00	12+	00,0	Ø	1	5	1			
<b>.</b>	_0,	Ø	102	_=1	100.	0	203	-1250.0	304	-160	0.0	405	-210	0.0			
55,	7	250	00.00	Ø	70	00.6	00	75.00	150	00.00	0	1	5	1			
<b>.</b>	_0.	0	108	_•1	.00.	0 i	203	-150.0	304	-160	0,0	405	w218	0,0			
55	8	250	00.00	0	80	00.6	80	75.00		00.00	0	1	5	1			
	0.	0	105	1	,00.	ø i	203	-1250.0	304	=168	0.0	405	-210	0.0		_	

F.80

...

Υ,

	•			•				•						
554	250	00.00	0 9	1000	00	75,00	-21	00,00	1	5	1			
	0.0	10Ź	+102	0.0	203	-1250.0	304	+1600.0	405	-210	0.0			
230	267	67.7	7 1	1767.	.77	73.23	*	00.00	1	3	1			
	0.0	102	=102	.0	200	-900.0		•	•	-	-			
231	278	28.4	3	2828	.43	72.17	•	00.00	1	3	1			
	a. 0	102	-100	3_0	200	-900 0				-	•		·	
272	>`` <u></u> 970	52.1	7 2	2002	. 17	72.05		00.00	•	8	4			
ية في جد	้ด ดี	102			200	-900.0			•	<b>.</b>	•.			
221	t 2AR	39.9	4	1929	51	71.46	-19	Ka. 90		1	•	:		
	a.0	102		3 0	500	-1840.0	~ <b>*</b> •		•	-	•			
22/	1 284	RO D	A 1	LARO	28	74 2/	- 1 1	00 00	4		e i			
50	- LOU	102		1037( 1 a	201	-1380.0	200		1	-144		804	-1700 0	
391	10 9 0 9 10 9 0 9	105	-198		203	-163090	204	-1000 <u>-</u> 0	403	*****		200	-110050	
r 3:	201	16.3	1 2		31	11,27	-11	40,00	1	1			- 4899 0	
	0.0	105	•100	9 <b>0</b>	203	-1250.0	204	•1000.0	403	<b>N700</b>	0,0	200	•1100 _• 0	047
e174	10.0								•		•			
526	5 296	12,0	3 4	1012	.63	70,99	124	00,00	1	3	_ 1			
<b>.</b>	0.0	102	•100	0.0	203	=1250.0	304	-1000.0	405	#S10	0.0			
- 531	7 299	149.7	5 4	1949	.75	70,05	12+	00,00	1	5	1			
	0.0	102	=100	9,0	203	=1250,0	304	•1600,0	405	#210	0,0			
536	3 306	56,8	6 1	5656,	.85	69,34	-51	00,00	1	5	1			
	0,0	102	-100	8.0	203	-1250,0	304	⇒1600 <b>.</b> 0	405	*210	0,0			
- 538	7 313	163.9	6 👘 6	5363,	96	68,64	51	00,00	1 - L	. 5	1			
	0,0	102	=108	0,0	203	-1250.0	304	-1600,0	405	-210	0,0			
246	273	109.7	0	956	.71	78.69	÷,	00.00	1	3 -	1			
	0.0	102	-100	0.0	200	=900.0								
241	286	95.5	2	1 <u>9</u> 30,	.73	71.30		00.00	1	3	1			+
	0.0	10Ž	-100	9.0	200	-900.0					-			
242	2 288	57.2	0 1	1397.	.70	71.14		00.00	1	3	1			•
	0.0	102		0.0	200	-900-0			-		-			
241	5 296	19.4	0	913.	. 42	78.38	-15	60.00	1	3	1			
	0.0	102	-100	2.0	200	-1560.0			•	•••	-			
240	297	81.0	A	980	.39	70.22	•17	00.00	1	6	1			
	ิล_ดี	102	-100	3.0	203	-1250.0	304	-1600.0	485	-166	A	506	.1700-0	
245	1.201	50.3	7 2	paag.	_ 09	70.19	-17	40.00	4	7				
<b>1</b> 4 77 4	0.0	102	_100		JAT	-1280.0	100	-1680 0	ARE	-144	a. i	884		407
_ 1 7 /	10 0	AUC	and first	n <b>e</b> in	E H J	4163050	<i></i>		443	~	0.0	200		4
- 1 / " 9 / 4	1000	0.3 . 0	9		72	40 94	- 24	00.00		æ				
C40	, JUC	:7380 :7380		51/1 ₎ 1 A	- 1 7 - 50 %	07110				-91A	a a			
	. u . u	100	-104		203 46	#1C3000	204	-1000 B	403	-41V	0.0			
641	519	10/01		5070	. / 0	90,33	- 72) 70/	-1400 -	1	3				
	Ø,0	102	•100		203	•1230,0	304	-1900-0	405	*K10	0.0			
246	253	141.0	4 3	5061	.47	67,61		00,00		- 7	<u> </u>			
	0.0	102		7.07	201		170			2 1 Ø	0.0			

			_		-		
249	32700.00 3800.00	66.69	-2100.00	1	5 1		
	0.0 102 -100.0 203	-1250.0	304 -1600.0	405	-2100.0	·	
250	27451.96 487.73	72.55	-900.00	1	3 \$		
	0.0 102 -100.0 200	-900.0	•	-			
251	28923.14 780.36	71.05	-900,00	1	3 1		
	0.0 102 -100.0 200	-900.0	•		•		
252	2 29094.78 814.50		-900.00	- <b>1</b>	- S	a constraint a constraint a constraint a constraint a constraint a constraint a constraint a constraint a const	
	0.0 102 -100.0 200	-900.0	•	-			
253	29903.93 975.45	70.10	<b>41560.00</b>	1	3 1		
	0.0 102 -100.0 200	-1560.0	- •	•			
254	30075.56 1009.59	69.92	=1700.00	1	6 1		
	0.0 102 -100.0 203	-1250.0	304 -1600.0	405	-1665.4	506 -1700,0	
255	5 30149.12 1024.22	69.85	-1740.00	1	7 1	•	
	0.0 102 -100.0 203	-1250.0	304 -1600.0	405	+1668.4	506 -1700,0	607
-174	0.0		•		_	•	
256	5 30565,96 1107,14	69.43	-2100,00	1	5 1		
	0.0 102 -100.0 203	-1250.0	304 -1600.0	405	-2100.0		
257	31865,50 1365,63	65,13	=2100,00 [°]	1	5 1		
	0.0 102 -100.0 203	-1250.0	304 -1600.0	405	-5100.0		
256	32846,29 1960,72	67,15	-2100,00	1	51		
	0,0 102 -100,0 203	-1250.0	304 -1600.0	405	•2100,0		
259	33827,07 1755,81	66.17	•2100,00	1 -	5 1		
	0,0 102 100,0 203	-1250,0	304 -1600.0	405	•2100.0		
566	8 27487,96 245,04	72,51	-900,00	1	3 1		
	0.0 102 -100.0 200	-900.0					
- 561	1 28980,74 392,07	71.02	<b>-900,00</b>	1	3 1		
	0,0 102 -100,0 200	<b>-</b> 900.0					
595	2 29154,90 409,22	70.85	-900,00	1	3 1		
	0.0 102 -100.0 200	<b>~</b> 900 <b>,</b> 0					
- 593	5 29975,92 100.00	70,02	=1560,00	1	- 3 - 1	Y= ADJUSTED	
	0.0 102 -100.0 200	<b>=1560_0</b>				_	
- 264	30150.08 100.00	69,85	=1700.00	1	6 1	Y=ADJUSTED	
	0.0 102 -100.0 203	-1250.0	304 -1600.0	405	+1668,4	506 -1700.0	
592	5 30224,72 100,00	69.78	-1740,00	1	7 1	Y-ADJUSTED	
	0.0 102 -100.0 203	-1250.0	304 =1600,0	405	=1665.4	504 =1700.0	607
-174	40.0	-			_		
- 566	5 30647,67 556,25	69.35	=2100,00	1	5 1		
	0.0 102 -100.0 203	-1250.0	304 -1600.0	405	-2100.0		

•

.

F.82

•

V.

267 31966,29 68.03 =2100.00 686.12 0.0 102 +100.0 203 -1250.0 304 -1600.0 405 +2100.0 268 32961.48 784_14 67.04 -2100.00 5 0.0 102 -100.0 203 -1250.0 304 -1600.0 409 -2100.0 269 33956.66 882.15 66.04 #2100.00 1 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 122.94 270 27496.97 72.50 -900.00 3 0.0 102 -100.0 200 -900.0 -900.00 271 28995.16 196.71 71.00 3 0.0 102 -100.0 200 -900.0 272 29169.95 205.32 -900.00 3 70.83 1 0.0 102 -100.0 200 **•900.0** 273 29993.95 15.81 70.01 3 -1560.00 1 1 Y-ADJUSTED 0.0 102 -100.0 200 -1560.0 274 30168.74 15.81 69,83 =1700,00 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -1668.4 506 +1700.0 275 30243.65 15.81 69.76 =1740.00 1 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 +1668,4 506 +1700,0 407 +1740.0 276 30668,13 50,00 69.33 #2100.00 5 1 Y#ADJUSTED 405 #2100.0 0.0 102 =100.0 203 =1250.0 304 =1600.0 277 31991.53 344 24 66.01 =2100.00 5 1 . 0.0 102 +100.0 203 +1250.0 304 +1600.0 405 +2100.0 278 32990.32 393.42 67.01 =2100.00 1 0,0 102 +100,0 203 +1250,0 304 +1600,0 405 +2100.0 279 33500.00 442.60 -2100.00 66,01 1 0.0 102 +100.0 203 +1250.0 304 +1600.0 405 -2100.0 280 27500,00 -900.00 0.00 72.50 1 3 0.0 102 -100.0 200 **~**900**.**0 -980.00 0,00 281 29000.00 71.00 3 0.0 102 -100.0 200 -900.0 3 282 29175,00 0.00 70,82 -900.00 0.0 102 -100.0 200 **~900.0** 283 30000.00 -1360.00 3 0.00 70.00 1 0.0 102 •100.0 200. •1560.0 284 30175,00 0.00 69.82 \$1700.00 1 : 🗣 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -1468.4 505 #1700.0 285 30250.00 0,00 69.75 -1740.00 1 0,0 102 +100,0 203 +1250,0 304 +1600,0 405 +1668.4 506 =1700.0 607

**.**83

ũ

-1740.0 69,32 -2100.00 286 30675.00 0.00 5 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 5 0.00 68.00 -2100.00 287 32000.00 1 405 -2100.0 0.0 102 -100.0 203 -1250.0 304 -1600.0 67.00 -2100.00 288 33000,00 0.00 1 5 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 66.00 -2100.00 289 34000.00 0,00 1 5 405 =2100.0 0.0 102 -100.0 203 -1250.0 304 -1600.0 5 Ø 1 100.0 1001 100 0 2001 100.0 18 100.0 1018 100.0 2018 100.0 35 100.0 1035 100.0 2035 100.0 52 100.0 1052 100.0 . 2052 100.0 69 100.0 1069 100 0 2069 100.0 86 100.0 1086 100.0 2086 100.0 103 100.0 1103 100.0 2103 100.0 120 100.0 1120 100.0 2120 100.0 17 20.00 1017 20.00 2017 20.00

34 20.00 1034 20,00 2034 20.00 51 20.00 1051 20,00 2051 20,00 68 20,00 1068 20.00 2068 20.00 85 20.00 1005 20.00 2085 20.00 102 20.00 1102 20.00 2102 20.00 119 20.00 1119 20.00 2119 20,00 136 20,00 1136 20.00 2136 20.00 4274 0.0 5274 0.0 4284 0.0 5284 0.0 

. **.** . . . . . . .

. . .

1

12	1	4	71	88	87	70	
13	Ĭ	4	88	105	104	87	
14	Ĩ	4	105	155	121	104	
15	Ĩ	4	2	19	18	1	
16	Ĩ	4	19	36	35	18	
17	Ĩ	4	36	53	52	35	
18	1	4	53	70	69	52	
19	ī	4	70	87	86	69	
ŽØ	Ĩ	4	87	194	103	86	
21	Ĩ	4	194	121	120	103	
22	Í.	4	42	59	58	41	
23	1	4	59	76	75	58	
24	1	4	76	93	95	75	
25	1	4	93	110	109	92	
26	1	4	110	127	126	109	
27	1	4	41	56	57	40	
<b>2</b> 8	1	4	58	75	74	57	
59	1	4	75	98	91	. 74	
30	1	4	92	109	108	91	
31	1	4	109	126	125	108	
32	1	4	40	57	56	39	
33	Ĩ.	4	57	74	73	56	
34	1	4	74	91	90	73	
35	Í.	4	91	108	107	98	
36	1	4	108	152	124	107	
37	1	4	39	56	55	38	
38	1	4	56	73	72	55	
39	1	4	73	90	89	15	
40	- 1	4	90	107	106	89	
41	1	4	107	124	123	106	
42	1	4	17	34	33	16	
43	1	4	34	51	50	33	
44	1	4	51	68	67	50	
45	1	4	68	85	84	67	
46	1	4	85	102	101	84	
47	1	4	102	119	118	101	
48	1	4	119	136	135	118	
49	1	4	16	33	32	15	

F.86

X

 $\frown$ 

88	Ì	4	79	96	95	78
89	ī	4	96	113	112	95
90	1	à	113	130	129	112
91	Ĩ	4	10	27	26	- 9
92	Ĩ	4	27	44	43	26
93	ī	4	44	61	60	43
94	ī	4	61	78	77	60
95	ī	à	78	95	94	77
96	Ĩ	4	95	112	111	94
97	Ē	ġ.	112	129	128	111
98	Ē	4	9	26	25	. 8
99	ī	à	26	43	42	25
100	ī	4	43	60	59	42
101	ī	4	60	77	76	. 59
102	Ĩ	4	77	94	93	76
103	ī	4	94	111	110	93
104	ī	ġ.	111	128	127	110
105	Ĩ	4	280	261	271	270
106	Ĭ	4	281	282	272	271
107	1	4	282	283	273	272
108	1	4	283	284	274	273
109	1	4	284	285	275	274
110	1	4	285	286	276	275
111	1	4	286	287	277	276
112	Ī	4	287	288	278	277
113	1	4	288	289	279	278
114	1	4	270	271	261	868
115	1	4	271	272	292	261
116	1	4	515	573	592	292
117	1	4	273	274	264	592
118	1	4	274	275	265	264
119	1	4	512	276	266	265
120	1	4	276	277	267	<b>662</b>
121	1	4	277	278	268	267
155	1	4	278	279	598	592
123	1	4	598	261	251	250
124	•	Δ	261	262	292	261

Ĭ,

			- *	,			TABLE F.2A.	(contd)		
125	1	4	595	263	253	252		-		
159	1	4	563	264	254	523				
127	1	4	264	592	522	254				
851	1	4	592	-596	250	255				
129	1	4	560	- 267 ·	257	556	··· · ·	• • • • • • • • • • • •	······	- ·-·· ·
130	1	4	267	598	258	257				
131	1	4	598	269	529	529				
132	1	4	250	251	241	240				
135	1	4	251	525	242	241	•			
134	1	4	225	253	243	242				
135	1	4	253	254	244	243				
136	1	4	254	255	245	244				
137	1	4	255	256	245	245	·			
138	1	4	520	257	247	246				
139	1	4	257	528	248	247				
140	1	4	258	259	249	248				
141	1	4	540	241	231	520				
142	1	4	241	242	535	231				
143	1	4	242	243	233	535				
144	1	4	243	244	234	533				
145	1	4	244	245	235	234				
146	1	4	245	246	530	-532	·			
147	1	4	246	247	237	539				
148	1	4	247	248	538	237			•	
149	1	4	248	249	239	538				
150	1	4	520	231	551	<b>5</b> 50				
151	1	4	231	535	555	551				
152	1	4	535	233	552	222				
153	1	4	522	234	224	552				
154	1	4	234	532	552	554				
155	1	4	532	536	559	552				
156	. 1	4	236	237	551	559				
157	1	4	237	539	<b>559</b>	252				
158	1	4	538	239	555	559				
159	1	4	550	221	511	510				
160	1	4	551	555	212	511				
161	1	4	555	553	513	515				

F.89

ŧ

 $N_{\rm c}/$ 

162	1	4	552	224	214	513
163	1	4	224	552	215	214
164	1	4	555	556	216	215
165	1	4	550	227	217	516
166	1	4	551	558	218	217
167	1	4	558	558	219	218
168	1	4	210	511	201	200
169	1	4	211	515	505	201
170	1	4	212	513	203	202
171	1	4	213	214	204	503
172	1	4	214	215	205	204
173	1	4	215	210	206	205
174	1	4	216	217	207	206
175	1	4	217	518	208	201
176	1	4	<b>51</b> 8	219	509	805
177	1	4	239	25	42	41
178	1	4	559	239	41	40
179	1	4	229	40	39	219
180	1	4	219	39	38	21
181	1	4	4	209	519	51
182	1	4	6	550	510	200
183	1	4	6	240	230	550
184	1	4	6	260	250	240
185	1	4	6	280	270	260
187	1	4	259	569	8	25
186	1	4	279	289	8	269
188	1	4	239	249	259	25
	-					-

6

٨.,

TABLE F.2B. HSTEDY•CRD: Input File for PROG3I to Define as Steady-State Simulation

FILE NAMES HSTEDY, CRD

STEADY STATE SOLUTION WITH NO SURFACE FLUX 0 0 1 1 0 0 TABLE F.2C. HAIN3LECHOUT: Input File Used in PROG1 for Determining Flow After Salt Dome Collapse

FILE NAME = HAINBLECH_OUT

HAINSVILLE SA	LT DOME -	LUNG TERM	EVALUATION	AFTER DESOLU	ITION TO -1700	FT. ELEV.
1 0	1.00	1,00	1,00	1,00		
1CARRIZZO	AQUÍFER					
0,1323E+020,1	3236+020,1.	323E+020 <b>.</b> 1(	300E+000 <b>.</b> 10	00E+010,1000	)E+010,1000E+0	10,1000E=03
SMILCOX V	QUIPER					
0.2480E+010.2	4806+010.2	480E+010 <b>,</b> 10	300E+000,10	002+010.1000	E+010,1000E+0	10.1000E-03
SUTI COX A	6UT\$F\$	-	-	-	-	-

0,2480E+010,2480E+010,2480E+010,1000E+000,1000E+010,1000E+010,1000E+010,1000E+010,1000E+030 4WILCOX AQUIFER

0,2480E+010,2480E+010,2480E+010,1000E+000,1000E+010,1000E+010,1000E+010,1000E+010,1000E=03 Swilcox Aduifer

0,2480E+010,2480E+010,2480E+010,1000E+000,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+0000E+0000E+0000

0.2480E+010.2480E+010.2480E+010.1000E+000.1000E+010.1000E+010.1000E+010.1000E+030. 7WILCOX AUNIFER

0.2480E+010.2480E+010.2480E+010.1000E+000.1000E+010.1000E+010.1000E+010.1000E=03 BCOLLAPSED MATERIAL (2 TIMES PERMEABLE THAN SURROUNDING)

0,4960E+010,4960E+010,4960E+010,1000E+000,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+010,1000E+03

1	0,00	0,00	200.00	-2100.00	1	3	1
0.	0 102 -100	0 203	•2100.0				
5	10000.00	0.00	190.00	-2100.00	1	3	1
Ø.(	0 102 -100	.0 203	-2100.0				
3 8	50000.00	0,00	180,00	-2100.00	1	3	1
0.0	0 102 -100	.0 203	-2100.0	-			-
4	30000.00	0,00	170.00	-2100.00	1	3	1
0.0	0 10 <del>2</del> -100	0 203	-2100.0	-			-
5 (	40000.00	0.00	160.00	-2100.00	1	3	1
0.0	0 102 -100	.0 203	-2100.0		-	-	•
6	50000.00	0.00	150.00	-2100.00	1	3	1
0.0	0 102 -100	0 203	-2100.0		•	-	•
7 0	6000.00		140.00	-2100.00	1	3	1
0.(	0 102 -100	.0 203	-2100.0		•	-	•
9 1	80000.00	0.00	120,00	-1700.00	1	9	1

100

-

· • •

·

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
11 100000,00 0,00 100,00 -2100,00 1 3 0.0 102 -100,0 203 -2100,0 12 110000,00 0,00 9,00 97,00 -2100,00 1 3 0.0 102 -100,0 203 -2100,0 14 130000,00 0,00 0,00 -2100,00 1 3 0.0 102 -100,0 203 -2100,0 15 140000,00 0,00 60,00 -2100,00 1 3 0.0 102 -100,0 203 -2100,0 15 140000,00 0,00 50,00 -2100,00 1 3 0.0 102 -100,0 203 -2100,0 16 150000,00 0,00 30,00 -2100,00 1 3 0.0 102 -100,0 203 -2100,0 16 150000,00 0,00 30,00 -2100,00 1 3 0.0 102 -100,0 203 -2100,0 16 150000,00 0,00 30,00 -2100,00 1 3 0.0 102 -100,0 205 -2100,0 17 160000,00 0,00 30,00 -2100,00 1 3 0.0 102 -100,0 205 -2100,0 18 170000,00 0,00 30,00 -2100,00 1 3 0.0 102 -100,0 205 -2100,0 18 170000,00 0,00 30,00 -2100,00 1 3	
0.01102 - 100.02203 + 2100.01 $12110000.000$ $0.000$ $97.00 - 2100.00$ $13120000.000$ $0.001$ $80.000 - 2100.00$ $13120000.000$ $0.001$ $80.000 - 2100.00$ $13120000.000$ $0.001$ $80.000 - 2100.00$ $3120000.000$ $14130000.001$ $0.001$ $203 - 2100.00$ $31200.001$ $14130000.001$ $0.001$ $0.001 - 2100.001$ $31200.001$ $14130000.001$ $0.001$ $0.001 - 2100.001$ $31200.001$ $14130000.001$ $0.001$ $0.001 - 2100.001$ $31200.001$ $151400000.001$ $0.001$ $0.001 - 2100.001$ $31200.001$ $151400000.001$ $0.001 - 200.001$ $31200.001$ $31200.001$ $151400000.001$ $0.001 - 2000.001$ $31200.001$ $31200.001$ $161500000.001$ $0.001 - 2000.001$ $31200.001$ $31200.001$ $31200.001$ $17160000.000$ $0.000 - 30.001 - 2100.001$ $31200.001$ $31200.001$ $31200.001$ $181700000.000$ $0.000 - 30.000 - 21000.001$ $31200.001$ $31200.001$ $31200.001$ $181700000.000$ $0.000 - 300.0$	,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0, 0 $102 + 100, 0$ $203 + 2100, 0$ $13$ $120000, 00$ $0, 00$ $80, 00 - 2100, 00$ $1$ $0, 0$ $102 - 100, 0$ $203 - 2100, 0$ $1$ $3$ $14$ $130000, 00$ $0, 00$ $70, 00 - 2100, 00$ $1$ $3$ $0, 0$ $102 - 100, 0$ $203 - 2100, 0$ $1$ $3$ $1$ $0, 0$ $102 - 100, 0$ $203 - 2100, 0$ $1$ $3$ $1$ $0, 0$ $102 - 100, 0$ $203 - 2100, 0$ $1$ $3$ $1$ $0, 0$ $102 - 100, 0$ $203 - 2100, 0$ $1$ $3$ $1$ $0, 0$ $102 - 100, 0$ $203 - 2100, 0$ $1$ $3$ $1$ $0, 0$ $102 - 100, 0$ $203 - 2100, 0$ $1$ $3$ $1$ $0, 0$ $102 - 100, 0$ $0, 00 - 30, 00 - 2100, 00$ $1$ $3$ $1$ $0, 0$ $102 - 100, 0 - 203 - 2100, 0$ $1$ $3$ $1$ $1$ $0, 0$ $102 - 100, 0 - 203 - 2100, 0$ $1$ $3$ $1$ $1$ $1$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
0       0       102 $-100$ 0 $203$ $-2100$ 0       1       3       1         14       130000       00       0       00       70       00 $-2100$ 00       1       3       1         0       0       102 $-100$ 0       203 $-2100$ 0       1       3       1         0       0       102 $-100$ 0       60       00 $-2100$ 00       1       3       1         0       0       102 $-100$ 0       203 $-2100$ 0       1       3       1         0       0       102 $+100$ 0       203 $-2100$ 0       1       3       1         0       102 $+100$ 0       203 $-2100$ 0       1       3       1         0       0       102 $-100$ 0       30       00 $-2100$ 00       1       3       1         0       0       102 $-100$ 0       30       00 $-2100$ 00       1       3       1 </td <td></td>	
14 130000,00 0,00 70,00 -2100,00 1 3 0,0 102 -100,0 203 -2100,0 15 140000,00 0,00 60,00 2100,00 1 3 0,0 102 -100,0 203 -2100,0 16 150000,00 0,00 30,00 -2100,00 1 3 0,0 102 +100,0 203 -2100,0 17 160000,00 0,00 40,00 -2100,00 1 3 0,0 102 -100,0 205 -2100,0 18 170000,00 0,00 203 -2100,0 18 170000,00 0,00 203 -2100,0 18 170000,00 0,00 203 -2100,0 18 170000,00 0,00 203 -2100,0 18 170000,00 0,00 203 -2100,0 19 100,00 0,00 0,00 30,00 -2100,00 1 3	
0       0       102       -100       0       203       -2100       0         15       140000       0       0       0       0       0       203       -2100       0       1       3       1         0       0       102       -100       0       203       -2100       0       1       3       1         0       0       102       -100       0       203       -2100       0       1       3       1         0       0       102       +100       0       203       -2100       0       1       3       1         0       0       102       -100       0       203       -2100       0       1       3       1         0       0       102       -100       0       203       -2100       0       1       3       1         0       0       102       -100       0       30       0       -2100       0       1       3       1         18       170000       0       203       -2100       0       1       3       1         0       0       102       -100       203       -21	
15 140000,00 0,00 60,00 2100,00 1 3 9 0.0 102 -100,0 203 -2100,0 16 150000,00 0,00 50,00 -2100,00 1 3 1 0.0 102 +100,0 203 -2100,0 17 160000,00 0,00 40,00 -2100,00 1 3 1 0.0 102 -100,0 205 -2100,0 18 170000,00 0,00 30,00 -2100,00 1 3 1 0.0 102 -100,0 203 -2100,0	
0,0 102 -100,0 203 -2100,0 16 150000,00 0,00 50,00 -2100,00 1 3 1 0,0 102 +100,0 203 -2100,0 17 160000,00 0,00 203 -2100,0 17 160000,00 0,00 205 -2100,0 18 170000,00 0,00 30,00 -2100,00 1 3 1 0,0 102 -100,0 203 -2100,0	
16 150000,00 0,00 50,00 -2100,00 1 3 1 0.0 102 +100,0 203 -2100,0 17 160000,00 0,00 0,00 40,00 -2100,00 1 3 1 0.0 102 -100,0 205 -2100,0 18 170000,00 0,00 30,00 -2100,00 1 3 1 0.0 102 -100,0 203 -2100,0	
0,0 102 +100,0 203 -2100,0 17 160000,00 0,00 40,00 +2100,00 1 3 1 0,0 102 -100,0 205 -2100,0 18 170000,00 0,00 30,00 -2100,00 1 3 1 0,0 102 -100,0 203 -2100,0	
17 160000.00 0.00 40.00 -2100.00 1 3 1 0.0 102 -100.0 205 -2100.0 18 170000.00 0.00 30.00 -2100.00 1 3 1 0.0 102 -100.0 203 -2100.0	
0.0 102 -100,0 205 -2100,0 18 170000,00 0,00 30,00 -2100,00 1 3 1 0.0 102 -100,0 203 -2100,0	
18 170000,00 0,00 30,00 =2100,00 1 3 1 0,0 102 =100,0 203 =2100,0	
0.0 102 -100.0 203 -2100.0	l
	,
19 180000.00 0.00 20.00 -2100.00 1 3	
0.0 102 -100.0 203 -2100.0	
20 190000.00 0.00 10.00 +2100.00 1 3 1	l
0.0 102 -100.0 203 -2100.0	
21 0.00 10000.00 200.00 -2100.00 1 3	
0.0 102 -100.0 203 -2100.0	
22 10000 00 10000 00 190 00 -2100 00 1 3 1	l
0.0 102 -100.0 203 -2100.0	
23 20000.00 10000.00 180.00 -2100.00 1 3	l
0.0 102 -100.0 203 -2100.0	'
24 30000 00 10000 00 170.00 -2100.00 1 3 1	ł
0.0 102 -100.0 203 -2100.0	,
25 40000 00 10000 00 160 00 +2100.00 1 3	l
0.0 102 -100.0 203 -2100.0	
26 50000.00 10000.00 150.00 =2100.00 1 3	1
0.0.102 -100.0 203 -2100.0	•
27 60000_00 10000_00 140_00 +2100_00 1 3	1
0.0 102 -100.0 243 -2100.0	'
R1 100000,00 10000 00 100200 -2100200 1 3 1	
	,

F.93

ï

32 110	000.00 10000.00	90,00	-2100,00	1	3	1
0.0	102 -100,0 203	-2100.0			-	
22 ICA	102 -100 00 10000 00	-2100 0	•<100,00	1	3	1
34 130	000.00 10000.00	70.00	-2100.00	1	3	1
0.0	102 -100,0 203	-2100.0		•	-	
35 140	000.00 10000.00	60,00	-2100.00	1	3	1
0.0	102 ~100,0 203	-2100.0			•	•
0.0. 0.0	102 -100.0 203 102 -100.0 203	20.00	■<100 ° 00	1	\$	1
37 160	000.00 10000.00	40.00	-2100.00	1	3	1
0.0	102 +100,0 205	-2100.0		-	-	•
38 170	000.00 10000.00	30,00	-2100.00	1	3	1
	102 m100 ₀ 0 203	-2100,0 20,00		•	-	
0_0	102 -100.0.203	-2100.0	ACT NAT NO	*	3	1
40 190	000,00 10000,00	10.00	-2100.00	1	3	1
0.0	102 +100.0 203	-2100.0		-	-	-
41	0.00 20000.00	200.00	-2100.00	1	3	1
42 10	102 +100,0 203	-2100.0			-	
42 10	102 -100.0 203	-2100.0	-5100°00.	1	2	1
43 200	000 00 20000 00	180,00	-2100.00	1	3	1
0.0	102 -100,0 203	-2100.0		-		•
44 30	000,00 20000,00	170,00	-2100.00	1	3	1
0.0 0.0	102 =100,0 203	#2100,0	-2100 00	4	•	
43 40	102 -100.0 203	=2100.0	********	1	3	7
46 50	00.00 20000.00	150.00	-2100.00	1	3	1
0.0	102 -100,0 203	-2100.0	· ·	-	_	•
47 600	00,00 20000,00	140,00	-2100,00	1	3	1
48 70	10C =100,00 CD3	#C100_0	-2100 00	•	*	
0.0	102 -100.0 203	-2100.0		4	<b>,</b>	
49 800	100.00 20000.00	120,00	-2100,00	1	3	1
0.0	102 -100.0 203	-2100.0		-		-
50 900	00,000 20000,00	110,00	-2100.00	1	3	1
0.0.	100 0100 0 203	-0.100				

F.94

51 100000.00 20000 00.	100 00	-2100 00							
0.0 102 -100 0.00				2	1				
52 110000,00 20000 00		-2100 80	•	1					
0.0 102 -100.0 203	-2108-0	-2100,00	4	3	*				
55 120000.00 20000.00	80.00	-2100 00	•	1					
0_0 102 _100.0 200	-2100 0	- CAONEOU	*	2	a l				
54 130000 00 20000 00	70 00	-2100 00		T					
a.a 102 -100.0 203			1	2	1				
55 140000 00 20000 00	40.00	-2100 00							
0.0 102 -100.0 203	-2100.0		-	3	1				
56 150000.00 20000.00		-2100 00		1					
0.0 102 -100 0 POR	-2100.0	~~~~~~	*	2	4				
57 160000 00 20000 00	40.00	-2100.00	4	*					
0-0 102 -100-0 203	=2100 0		4		•				
38 170000 00 20000 00	30.00	-2100.00	•	1	4				
0.0 102 -100.0 203	-2100.0		•	**	•				
59 180000.00 20000.00	20.00	-2100-00	ţ.	3	4	-			
0.0 102 -100.0 203	-2100.0		•	•	•				
60 190000.00 20000.00	10,00	-2100.00	1	۲.					
0.0 102 -100.7 203	-2100.0		•	-	•				
61 0.00 30000.00	200.00	-2100.00	1	3	•				
0.0 102 -100.0 203	+2100.0			-	•				
62 19000.00 30000.00	190.00	-2100.00	1	3	9				
0.0 102 -100.0 203	-2100 Q			-					
63 20000 00 30000 00	180.00	n2100.00	1	3	1				
205 0.001- 501 0.0	-2107.0		-		•				
64 30000.00 30000.00	170.00	-2100.00	ŧ	3	1				
205 0.001- S01 0.9	-2100.0		•	-	•				
65 47000.00 30000.00	160.00	-2100.00	5	3	1				
0.9 192 -199.0 293	-2100.0			. •	÷				
66 50000,00 30000.00	150.00	-2100.00	1	3	1				
645 0.041- 501 9.0	-2100.0		v		4				
67 60000.00 30000.00	140.00	-2100-00		3	1			•	
205 0.001- 501 0.0	-2100.0		-	-	•				
68 70000.00 30000.00	130.00	-2100.00	1	3	1		•		
0.0 102 -100.0 203	+2100.0		-	-	-				
69 80000,00 30000,00	150.00	-2100.00	1	3	1				•
0.0 102 -100.0 203	-2100.0		-	-	-				

F.95

(

• ,

+ + t :

i

÷ :-

70	9000	10.90	30000.0	80	110.00	-2100.00	1	3	1
6	0.0 1	02 w	100°0 i	502 4	-5100°0	· .			
71	16000	10,00	30000.0	00	100,00	-2100.00	1	3	- 1
6	0,0 1	.02 +1	00.0	203 .	-2100.0				
72	11000	10.00	30000.0	00	90.00	-2100,00	1	3	1
5	3,0 1	.02 +1	0.00	203 1	-2103,0				
73	15000	10.00	30000.0	90	80,00	-2100,00	1	3	1
6	0.0 1	02 -1	00.0	503 .	-2100.0				
74	13000	0.00	30000.0	00	70.00	-2100.00	1	3	1
C	0.0 1	02 #1	100.0	203 .	2100.0		-	-	-
75	14000	0.00	30000.0	00	60.00	-2100.00	•	3	1
6	1.0		90.0	203	2100.0		•	-	•
76	15000	0.00	20000	20	50 00	-2100 00	•	۲.	
	3 D 1	0.2 _ (		301 .	-2100 0		•	4	•
	16000	10 - 10 - 1 10 - 10 - 10		5883 . 1401	101 01A	-2100 00		-	
	10000	00 00 00	30000.	2142 	00 <u>0</u> 00	-CI00.00	1	2	2
	0	96 VI	00.0	203 (	PC100.0		-	-	
10	1/000	0.00	50000.0	00	50.00	-2100.00	1	5	1
	0.0 1	65 -1	00.0	202 .	-2100.0				
79	18000	0.00	30000.0	94	50,00	-2100.00	1	3	1
6	0.0 1	.02 -1	100.0	503 -	-5100.0				
80	19000	10.00	30000.1	919	10.00	-2100,00	1	3	1
6	0.0 1	65 #1	00.0	203 .	-5100.0				
81		0.00	40000.0	812	200.00	-5100.00	1	3	1
. 9	1.0 1	02 -1	00.0	203 •	0.0015				
58	1000	0.40	40000.0	88	190.00	-2100.00	1	3	1
ſ	0.0 1	62 -1	00.0	203 .	2100.0		•	•	•
83	2000	0.00	40000.0	80	180.00	-2100.00	1	3	1
e	.0 1	ØŽ +1	00.0	203 .	2100.0	•••••	•	-	
84	3000	0.00	40000	10	170.00	-2100-00	1	3	1
	1_8_1	42 -1	00.0	203.	2100 0		•	-	-
AS	4000	6 99	10000	a Di	140 00	-2100 00		T	•
				50 X .	-2100 0		ě	2	
¥ مد	500 I 5000	WE		SPP-P 1 NA	120.00 22100000	-2100 00			
00	3899 104	000	444998 <b>.</b> 4	שט געב	2100 0	-CIN6 NO	I	2	1
0 ¥	1 W 1	₩ <b>⊊ ₩]</b> \/} (4()	000 g 0 4	543 ( 144)				-	
01	0000	100 B	40000.	010 D (1) 7	140.00	-CINN [®] NN	1	3	1
		10 C - 1	00.0		6100.0				
88	7000	0.00	40000.0	00	130,00	-5100.00	1	3	1
l l	1,0 1	02 <b>-1</b>	100 <b>.</b> 0 2	203 .	2100.0				

F.96

۲

. 1

		•					
89	80000.00	40000.00	150.00	-2100.00	1	3	.1
0	.0 102 -	100.0 203	-5100.0			_	
90	90000,00	40000,00	110.00	-2100.00	1	3	1
0	• 102 •	100 0 203	-2100.0			-	
91	100000,00	400000.00	100,00	-5100.00	X	5	1
0.2	•0 10C	10000 502	-5100-0		•		•
75	0 102 -V	47909 00 100 0 30E	-2102 0 90 800	#6100 00	1	3	1
৽ৼ৾	120000.00	100 80 503 100 80 603	80.00 80.00	-2100.00	•	x	•
, "	.6 102 -0	100.0 203	-2100-0		•	2	•
94	130000.00	40002.00	70.00	-2100-00	•	3	
୍ଷ	.0 102 -	100.0 203	-2100.0		•	÷	•
95	140000 .00	40020.00	60.00	-2100.00	1	3	1
Ø	P 102 -	100.0 203	-2100.0		-	-	-
96	150000.00	40000.00	50.00	-2100.00	1	3	1
Ø	.e 102 -	100.0 203	-2100.0				
97	160000.00	<u></u>	40,00	-5100,00	1	3	1
0	.6 102 -	100.0 203	-2100.0				
.98	170000.00	40400.00	30,00	-5100,00	1	3	1
N.	.0 102 -	100 0 203	*S100.0		•	-	•
99	100000.00	40000,00	54.04	-5100.00	1	. 3	1
100	,0 106 *3 199496 am	10000 603	-6100.0	-3100 00			
100		40000 <u>+</u> 00 40000 <u>+</u> 00	-2104 W		1	3	1
101	9 E 19 E	100 gr 203	200 00	-2100.00	•	2	
101	.0 102 -	100.0 203	-2100.0		•	3	4
102	10000.00	50000-00	190.00	-2100-00	4	3	4
a	. 102 -	100-0 203	-2100.0		•		•
103	20000.00	50000.00	180.00	-2100.00	1	3	1
Ø	.0 102 -	100.0 203	-2100.0		-		•
104	30000.00	50000.00	170,00	-2100,00	1	3	1
· £	.0 102 -1	100.0 203	-5100.0				
105	40000.00	50000,00	160.00	-2100,00	1	3	1
0	- 201 9.	100.0 203	-5102-0		<i>.</i>	_	
105	20000.00	50000.00	150,00	-2100.00	1	3	1
0	- 102 -	170 0 203	-5169.0	- 34.00 00	•	-	•
107	00000,00	50000.00	142,00	<2100°00 <	1	3	1
<b>71</b>	-0 10d •	100 0 203	-6106-0				

F.97

.

and the second

.

1 .

t ; ...

108 70000.00 50000.00	130.00	-2100,00	1	3	1	
0.0 102 -100.0 20	5 -2100.0	51.00 00	•	-	•	
104 00000°00 20000°00 104 00000°00 20000°00	150°00 750°00	#4100 800	1	2	1	
110 90000.00 50000.00	110.00	-2100.00	•	x	•	
0.0 102 -100.0 20	5 -2100.0		•		•	
111 100000 00 50000 00	100.00	-2100.00	1	3	1	
0.0 102 -100.0 203	5 -2100,0		-		•	
112 110000,00 50000,00	90.00	-5100.00	1	3	1	
0.0 102 -100.0 20	5 -2100.0			-		
113 129000,00 50000,00	80,00	-2100.00	1	3	1	
444 130000 00 50000 00	70 00 34 34 4					
114 13000000000 300000000000000000000000	70.00 -2100.0	-5100.00	1	3	1	
115 140000 00 50000 00	6100-00	-2100.00	•	×	•	
0.4 102 -100.0 20	5 -2100.0		•	•	•	
116 150000,00 50000,00	50.00	-2100.00	1	3	1	
0.0 102 -100.0 203	8 -2100.0	• •			•	
117 160000,08 50000.00	40.00	-5100.00	1	3	1	
0.0 195 -100 0 503	5 -2100.0			_		
110 17000,00 50000,00	30,00	-2100,00	1	3	1	
449 186 186 0186 68 28. 149 186688 88 58668 88	20 00 20 00	-3140 00				
0 C 102 -100 B 2000-00	20000 5 -2100.0	-5109-00	1	3	Ŧ	
120 190000.00 50000.00	10.00	-2100.00	4	5	•	
0.0 102 -100.0 20	5 -2100.0		•	•	•	
121 0,00 60000,00	200,00	-2100.00	1	3	1	
0.0 102 -100.0 203	5 -2100,0		•		•	
155 10000.00 00000.00	190.00	-2100,00	1	3	1	
0.0 102 -100.0 203	-2100.0	and a set of a set of		_	_	
152 50000 00 20000 00	180,00	~2100°00	1	3	1	
124 30000 00 40000 00 124 30000 00 40000 00	1 20 00 1 200 00	-5100 00		*	4	
0_0 102 ~100_0 00	170000 170000	45100.00	1	3	1	
125 40000.00 60000.00	160.00	-2100-00	1	X	8	-
0.0 102 ~100.0 20	5 -2100.0		•	-		-
126 50000,00 60000,00	150.00	-2100.00	1	3	1	
0.0 102 -100.0 203	5 -2100.0		•	-	-	

F.98

.

÷,

127 60000.00 60000.00	140.00	-2100,00	1	3	1
0.0 102 -100.0 203	-5100.0				
128 70000,00 60000,00	130.00	-2100.00	1	3	1
E05 6.001- 501 9.0	-2100-0		•		
129 80000.00 60000.00	120.00	-2100.00	1	3	1
0.0 102 -100 - 203	-2100-4		-	•	•
130 90000 00 60000 00	110.00	-2100.00	1	3	1
0.0 102 -100 0 203	+2100.0		•	-	•
131 100000.00 60000.00	100.00	-2100.00	1	3	1
0.0 102 -100 0 203	-2100.0		-	-	-
132 110000 30 60000 00	00.00	-2100.00	•		4
0.0 102 -100 0 205	-2100.0		•	-	•
133 120000,00 60000,00	RØ_00	-2100.00	•		4
0_0 102 _100.0 203	-2100.0		•	-	•
130 130000 00 60000 00	70.00	-2100.00		3	•
0.0 102 -100.0 203	-2100.0		-	-	•
135 140000 00 40000 00	60.00	-2100.00	1	3	
0.0 102 -100.0 203	-2100.0		•	•	•
136 150000.00 60000.00	50.00	-2100.00	4	8	
A G 102 -100 A 203	-2100.0				•
127 160000 00 60000 00	40 00	-2100.00	•		•
A A 1	-2166 6	-6400940	•		<b>.</b> .
178 170000 VA 40000 00		-2100 00			•
120 110000 00 00000 00	-2100 Q	-CTADE00	¥.	3	•
		-2100 00		1	
134 100000	60,90 3100 0	-2100-00	1	5	*
0.0 102 -100.0 205	-CINN*0		•		
140 140000 00 20000 00	10.00	•<100,00	1	2	1
0.0 165 -100.0 502	-2100.0			-	
141 0.00 70000.00	202,00	•5100,00	1	5	1
0.0 102 -100.0 205	-2100.0		•	-	•
142 10000 00 70000 00	190,00	-5100.00	1	3	1
0.0 102 -100,0 203	-2100-0		_	_	
143 20000,00 70000,00	180,00	#2100 <b>.</b> 00	1	3	1
0.0 1NS -100.0 503	-2109.0		_	-	
144 30000,00 70000,00	170.00	-2100.00	1	3	1
0.0 102 -100.0 203	-5100.0			_	
145 40000,00 70000,00	160.00	#2100 <b>.</b> 00	1	3	1
0.0 102 -100.0 203	-2100,0				

.

F.99

.

(

146 50000.00 7000	9.00	150,00	-2100.00	1	3	1
0.0 102 -100.0	203	-2100.0	-	-		•
147 60000,00 70000	9*89	140.00	-2100.00	1	3	1
0.0 102 -100.0	203	-2100.0				_
148 70000,00 70000	00,00	130,00	-2100,00	1	3	1
	203	-2100.0	<b>.</b>			
	.00	120.00	-2100.00	1	3	1
120 00000 00 40000 0 0 100 00 4000	203	•<100,0	21.22 02		_	
1000, 000, 00 70000 0.0 102 - 100 0	1.00 2011	-2100 0	-4100,00	1	3	1
151 100000 00 70000	203	100 00 4610090	-2100 00		-	
0_0 102 -100.0	203	-2100 0	-C100 * D0	I	2	L
152 110000.00 70000		90.00	-2100.00		T	
0.0 102 -100.0	203	-2100.0		*	•	•
153 120000,00 70000	.00	80.00	-2100.00	1	3	
0.0 102 -100.0	203	-2100.0	•••••	•	•	•
154 130000,00 70000	.00	70,00	-2100.00	1	3	1
0.0 102 -100.0	203	-2100.0	-	•		•
155 140000,00 70000	.00	60.00	-5100.00	1	3	1
	203	-2100,0				
120 1200000 00 70000	.00	50,00	=2100,00	1	3	1
157 160000 00 90000	- 203 ·	-2100.0	21.55 45		_	_
	-00 201	-2100 0	-5100-00	1	3	1
158 170000 00 70000	203 ·	-CINN®Q	-2100 00		-	
0.0 102 -100.0	203 .	-2100.0	+E100*00	1	2	1
159 180000.00 70000	.00	20.00	-2100-00	•	τ	
0.0 102 -100.0	203	2100.0		•	-	٠
160 190000.00 70000	.00	10.00	-2100.00	1	3	1
0.0 102 -100.0	203	2100.0		•	-	•
161 0.00 80000	.00	500,00	-2100.00	1	3	1
0.0 102 -100.0	203 .	0,0015-		•		•
162 10000,00 80000	.00	190,00	-5100.00	1	3	1
0.0102 -100.0	503	2100.0				
103 CODAO'DO 80000	.00	180.00	-2100.00	1	3	1
164 30000 00 50000	245 4	-<100.0	<b>NA MA</b>		_	_
0.0 102 _ (00 a	- 00 - 247	170,00	-5100.00	1	3	1
wen the Aton [®] A	- EVJ 4	etaa"a				

F.100

2.

(

			•	-		(00.007	·.	
1	5 4000	0.00	80000.00	160.00	-2100,00	. 1	3	1
	0.01	1- 50	0N_0 203	-2100.0				
1	56 5000	0.00	80000.00	150.70	-2100.00	1	3	1
	0.0 1	1. SN	00 <u>0 203</u>	-2100,0				
1	67 6000	0.00	80000.00	140.00	-2100,00	1	3	1
	0.0 1	02 =1	00.0 203	-2100.0				
1	68 7000	0.00	80000 NO	130.00	-2100.00	- 1	3	1
	0.0 1	1- SU	00.0 203	-2100.0				
1	69 8000	0.00	80000.00	150,00	-2100.00	1	3	1
	0.0 1	02 -1	00,0 203	-5100.0				
1	70 9000	0.00	80000,00	110.00	-2100,00	1	3	1
	0.0 1	1- 50	00.0 203	-2100.0				
1	71 İQQQQ	0.00	80000.00	100,00	-5100,00	1	3	1
	0.0 1	1- 50	00.0 203	-2100.0				
1	72 11000	0.00	80000,00	90 <b>.</b> 00	-2100,00	1	3	1
	0.0 1	1- 50	00.0 203	-5100.0				
1	73 12000	0.00	80000 <b>.</b> 00	80,00	-2100.00	1	3	1
	0.0 1	02 -1	00.0 203	-2100.0	• •			
1	74 13000	0.00	80000.00	70,00	+2100,00	1	3	1
	0.0 1	02 -1	00.0 203	+2100.0				
1	75 14000	0.00	80000.00	60.00	-2100.00	1	3	1
-	0.0 1	1- 50	00.0 203	-2100.0	· -	•		
1	76 15000	0.00	80000.00	50.00	-2100.00	1	3	1
-	0.0 1	02 -1	00.0 203	-2100.0	·· •			
1	77 16000	0.00	80000.00	40.00	+2100.00	1	3	1
•	0.6 1	02 -1	00.0 203	-2100.0				
1	78 17000	10.00	80400.00	30.00	-2100.00	1	3	1
	0.0 1	1+ 50	NO.0 203	-2100.0				
1	79 18000	0.00	80000.00	20.00	-2100.00	1	3	1
-	0.0 1	1- 50	00.0 203	-2100.0	-			
1	80 19900	0.00	80000.00	10.00	-2100.00	1	3	1
•	0.0 1	02 -1	00.0 203	-2100.0	· · · · · · ·			
1	81	0.00	90000.00	200.00	-2100,00	1	3	1
-	0.0 1	1- 50	00.0 203	-2100.0	··· ••			
1	82 1990	00.00	90000_00	190.00	-2100.00	1	3	1
•	0.0 1	1- 50	10.0 203	-2100.0	-	-		
1	83 2000	00.00	90000.00	180.04	-2100.00	1	3	1
	0.0 1	1- SQ	00.0 203	-2100.0	* -	-		
						•		

ŧ

	184	3	30	00	0	00		90	00	0.0	90		11	10	. 0	Ø	-2	100	.00		1	3	1	
		Ø	0	1	øā		+1	90	.0	Ē	03	-2	Í	66	. 0	1		•	•					
	185	5	40	ØØ	0	00		90	00	0.0	90		10	50	.0	Ø	•2	100	.00		1	3	1	
		Ø	.0	1	ØŻ	?	•1	00	.9	ë	203	-2	10	00	. 0	)								
	18(	6	50	00	Ø,	00		90	691	0.0	10		1:	50	.0	0	<b>w</b> 2:	00	.00		1	3	1	
		0,	.0	1	195	}	#t	00	.0	ĉ	203	-5	10	30	, Ø									
	187	1	60	00	0.	,00		90	00	0.0	90		£ (	40	• 8	10	+2	100	.00		1	3	1	
		Ø	.0	1	65	2	<del>-</del> 1	Q Q	.0	ë	203	<b>~</b> 5	10	90	. (	)	_	•						
	18(	8	7Ø	00	0	00		90	ØØ	0.0	90	-	1	30	. Ø	10	-2	00	.00		1	3	1	
		Ø	.0	1	05		-1	00	.0	į	203	45	1(	30	• 4							_		
	189	9	89	60	0	00		90	00	0.0	90		1	20	• 6	0	#2	100	• 00		1	3	1	
	•	_Ø	.0	1	35	) 	-1	00	•0	į	203	-5	1	88		)			0.0			-		
	190	0	90	00	0	00		90	09	0,9			1	10	• 6		•2	100	.00		1	2	1	
		6	• Ø	- 1	20		#1	00	.0	<b>6</b> 13 7	:03	W C	11	00	<b>ک</b> و م				(A a			-		
	14)	ູ	100	60		, 66		90	1010	0 <b>.</b> 4	910 1 (a m	. 1	11	00	¥ و. م	102	• ¢	100	.00		<b>1</b> ·	<b>.</b>	•	 -
	4	. الا د		100	Ψe		41	200	•¥	a 6	;03 10	ΨĘ	1	00	¥و م	) 1 (3)	<b> _</b>	1 0 0	an				4	
	140	F (1)		40	197 () 17 ()	, w ø 1		38	00	<b>u</b> . t	שפ אנגננ		•	20	¥ و 17		ΨĢ	1.00	100		•	4	٠	
	• • •	20	₩ €⊃α	40	10 E	: 00	<b>m</b> 1	00	•4 0 0	а 6 а 6	3 62 (2) 1 ()	ΨE	+ 1	5 (3) 5 (3)	ية الا 17	1		100	00		•	τ.	•	
	14	3 	160	100	000 002	, 10 10 )		90	90) 	<b>ب</b> و 1	2 W K	2	•	00 00	9 4 0		ΨG				•	4	•	
	1 9	a 🖌	6 P 1 3 M	លព	ю.	130	<b>~</b> 1	00	00	0.0	210	*6	•	74	- 0	, 101	-2	1 00	.00		1	3	1	
	• •	- CA	. 4	1	0.2	) " •		0.0	a		203		•	aa	.0	\ \					•	-	•	
	1 9 9	5	140	00	0	้ผด	<b>-</b> 1	90	60	9.0	0		•	50		ø	-2	100	.00		1	3	1	
	• •	ືອ	.0	1	0	)	-1	<b>a</b> 0	_ 0		203	<b>"</b> 2	1	00	.2	1	-				•	•	•	
	19/	6	150	00	10	60		90	00	0.0	0			50			•2	100	.00		1	3	1	
	•	ัย	.0	1	102		-1	00	.0	-	203	-2	1	00		)		•			•	-	•	
	197	7	160	00	0	00	-	90	00	0.0	0		-	40		0	-2	100	.00		1	3	1	
		Ø	.0	1	Ø		-1	00	.0	Ĩ	203	+2	1	80	.4	)			-					
	19	8	Ī7Ø	09	Ø,	00		90	ũa.	0.0	08		1	30	.0	0	+2	100	.00		1	3	1	
		Ø	.0	1	Øð		<del>~</del> 1	00	.0	Ĩ	203	42	1	90	. 2	)								
	199	9	180	00	0.	,00		90	ÖØ	0.0	06		i	50	.0	0	-5	100	.00		1	3	1	
		Ø	.0	1	65	2	=1	40	.0	i	203	45	1	80	. 6	}								
	20(	3	190	02	0.	00	I	90	00	0.0	90	-		10	• 6	90	*5	100	.00		1	3	1	
	•	Ø	• @	1	02	<b>!</b>	-1	00	•0	í	203	+5	1	00	• 6	) 	<b>.</b>	-				<u>^</u>		
_	201		71	50	0	.00	-	-		0.6	90	-	1	55	• 1	0	•1	700	.00		1	y ( a b	1	
0,	<u>ر ا</u>	82	• • 1	ØØ	•	20	s,	w 3	00	••	504,	· # 5	0	0	, 4	105,	•7	00,	, 20	6,91	.000.	0071		
-1	3Ø( 2~'	d .	,70	0,	₩ <b>1</b>	07	ω.	<b>,</b> d	40	<b>, -</b> )	1700 14	1 ij 8		34	~	. /3	_4	***			•	0		
	600	2	70	60	0.	,00				Ø., I	90		1	<b>E4</b>	۶ ۲	90	<b>#1</b>	100	.00		1	7	L	

0,,102,-100,,203,~300,,304,~500,,405,~700,,506,~1000,,607, -1300, 708, -1679, 800, -1700, 203 75000.00 0.00 125.00 -1700.00 0.,102,-100.,203,-300.,304,-500.,405,-700.,506,-1000.,607, -1300 ,708 ,- 1670 , 800 ,- 1700 ., 204 74825.00 0.00 125.17 -1700.00 0.,102,-100.,203,-300.,304,-500.,405,-700.,506,-1000.,607, #1300_,708,=1670_,800,=1700_, 125.25 -1740.00 205 74750.00 0.00 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -1670.0 506 -1700.0 607 -1740.0 125.67 -2100.00 206 74325.00 0.00 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 501 13009 00 157.00 -5100.00 9.90 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 205 71000,00 0.00 159.00 -5100.00 ۵ 1 0.0 102 -100.0 203 -1250.0 300 +2100.0 209 67000.00 0.00 133.00 -2100.00 0.0 102 -ind 0 203 -2100.0 510 65090 00 0.00 •2100.00 138.00 0.0 102 -100.0 203 -2100.0 211 77690.30 956.71 122.31 =1700.00 1 9 0.,102,-100.,203,-300.,304,-500.,405,-700.,506,-1000.,607, +1300,,T08,+1670,,800,+1700,, 1530.73 212 76304.48 153.10 -1100.00 0,,102,-107,,203,-300,,304,-500,,405,+700,,506,-1000,,607, -1300,,708,-1079,,800,-1700,, 213 75380,60 1913.42 124.62 -1700.00 0.,192,-190.,243,-300.,304,-500.,405,+700.,506,-1000.,607, -1300.,708,-1070.,800,-1700., 214 75218.92 1980.39 124.78 -1700.00 0.,102,-100.,203,-300.,304,-500.,405,-700.,506,-1000.,607, +1300,,708,-1670,,800,-1700,, 215 75149,63 2009,09 124,85 -1740,00 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -1670.0 506 =1700.0 607

-1740.0 216 74756,98 2171,73 125,24 -2100,00 405 -2100.0 0.0 102 -100.0 203 -1250.0 304 -1600.0 4 217 73532,84 2678,78 126.47 -2100.00 1 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 218 71685.09 3444.15 128.31 +2100.00 ۵. 1 0.0 102 -100.0 203 -1250.0 300 -2100.0 4974.88 219 67989.57 132.01 -2100.00 3 0.0 102 -100.0 203 -2100.0 220 63370,17 3 6888.30 136.63 -2100.00 0.0 102 -100.0 203 -2100.0 221 78232,23 1767,77 121.77 -1700.00 0,,102,~100,,203,-300,,304,~500,,405,-700,,506,~1000,,607, w1300,,708, w1670,,800, w1700,, 222 77171,57 2828,43 122.83 -1700.00 1 0,,102,-100,,203,-308,,304,-500,,405,-700,,506,-1000,,607, -1300,,708,-1670,,800,-1700,, 223 76464.47 3535.53 123,54 +1700,00 1 0,,102,-100,,203,-300,,304,-500,,405,-700,,506,-1000,,607, -1300,,708,-1670,,800,-1700,, 224 76340,72 3659,28 123.66 -1700.00 1 0.,102,-100,,203,-300,,304,-500,,405,-700,,506,-1000,,607, -1300,,708,-1670,,800,-1700,, 123,71 -1740.00 225 76287.69 3712.31 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -1670.0 506 -1700.0 6078 -1740.0 226 75987.17 4012.83 124.01 +2100.00 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 4949.75 227 75050_25 124.95 -2100.00 5. 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 228 73636.04 6363,96 156.36 -5100.00 4 1 0.0 102 -100.0 203 -1250.0 300 -2100.0 229 70807.61 9192_39 129,19 -2100,00 3 0.0 102 -100.0 203 -2100.0 230 67272.08 12727.92 132.73 -2100.00 3 0.0 102 -100.0 203 -2100.0 231 79043,29 2309,70 120.96 -1700.00 9 1

F.104

1

TABLE F.2C. (contd)

```
0,,102,-100,,203,-300,,304,-500,,405,-700,,506,-1000,,607,
-1300,,708,-1670,,800,-1700,,
  232 78469.27
                 3695.52
                            121.53 -1700.00
                                                          1
0_,102,-107,,203,-300,,304,-500,,405,-700,,506,-1000,,607,
+1300.,708,-1670.,A00,-1700.,
  233 78080.59
                 4619.40
                            121,91 -1700,00
                                                1
0,102,-100,203,-300,304,-500,405,-700,506,-1000,607,
-1300,,708,-1670,,800,-1700,,
                 4781.08
  234 78019.62
                            121.98 =1700,00
                                                1
0_,102,-100,203,-300,304,-500,405,-700,506,-1000,607,
-1300,708,-1670,800,-1700,
  235 77990_91
                 4850.37
                            155-01 -126-00
                                                1
     0.0 102 -100.0 203 -1250.0 304 -1600.0
                                                405 -1670.0
                                                             506 -1700.0 607
 -1740.0
  236 77828,27
                  5243.02
                            155-12 -5100-00
                                                1
                                                     5
     0.0 102 -100.0 203 -1250.0
                                                405 -2100.0
                                   304 -1600.0
  237 77321,22
                  6467.16
                           155.68 +5100.00
     0.0 102 -100.0 203 -1250.0 304 -1600.0
                                                405 -2100.0
                 8314.92
                            123.44 -2100.00
  238 76555.85
     0.0 102 -100.0 203 -1250.0
                                   300 -2100.0
  239 75025,12 12019,45
                            124.97
                                   -2100.00
     0.0 102 -100.0 205 -2100.0
  240 73111 70 16629 83
                           156.89 -5100.00
                                                     3
     0.0 102 -100.0 203 -2100.0
  241 80000.00
                  2500.00
                            120.00 -1700.00
                                                1
0,,102,-100,,205,-300,,304,-500,,405,-700,,506,-1000,.607.
+1300, 708, -1670, 800, -1700,
  242 80000.00
                 4000.00
                            120.00 -1700.00
0,,102,=100,,203,=300,,304,=500,,405,=700,,506,=1000,,607,
-1300,,708,-1670,,800,-1700,,
  243 80000,00 5000,00
                            120,00 -1700,00
                                                1
0.,102,-100.,203,-300.,304,-500.,405,-700.,506,-1000.,607,
-1300,,708,-1670,,800,-1700,,
                  5175.00
                            129,00 -1700,00
  244 80000.00
                                                1
0.,102,=100.,203,=300.,304,=500.,405,=700.,506,=1000.,607,
+1300 ... 708, -1570 ... 800, -1700 ...
  245 80000.00
                 5250.00
                            120.00 -1740.00
                                                1
     0.0 102 -100.0 203 -1250.0 304 -1600.0
                                                405 -1670.0
                                                             506 -1700.0 607
```

-1740.0 5 246 80000.00 5675.00 150.00 -5100.00 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 7000,00 120.00 -2100.00 1 5 247 80000.00 0.0 102 -100.0 203 -1250.0 504 -1600.0 405 -2100.0 4 248 60000.00 9000.00 159.00 -2100.00 0.0 102 -130.0 203 -1250.0 300 -2100.0 249 80000.00 13000.00 120.00 -2100.00 3 0.0 102 -100.0 203 -2100.0 -2100.00 3 250 80000.00 18000.00 120.00 0.0 102 -100.0 203 -2100.0 251 80956.71 2309.70 119.04 -1700.00 0,,102,-100,,203,-300,,304,-500,,405,-700,,506,-1000,,607, 252 81530.73 3695,52 118.47 -1700.00 9 1 0,,102,-100,,203,-300,,304,-500,,405,-700,,506,-1000,,607, -1300, 708, -1670, 300, -1700, 253 81915,41 4619,40 118.09 -1700.00 9 1 1 0,,102,~100,,203,~300,,304,~500,,405,~700,,506,~1000,,607, -1300.,708,-1670.,800,-1700., 254 81980.39 4781.08 118,02 -1700_00 1 0.,102,-100.,203,-300.,304,-500.,405,-700.,506,-1000.,607, -1300, 708, -1674, 800, -1700, 117.99 .1740.00 255 82609.09 4850.37 0_0 102 -100_0 203 -1250_0 304 -1600_0 405 -1670_0 506 +1700.0 607 +1740.0 256 82171.73 5243.02 117.83 -2100.00 5 405 -2100.0 0.0 102 -100.0 203 -1250.0 304 -1600.0 257 82678.78 6467.16 117.32 -2100.00 5 1 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 258 83444_15 8314_92 116_56 =2100_00 4 0.0 102 +109.0 203 +1250.0 300 +2100.0 259 84974_88 12010_43 115.03 -2100.00 3 0.0 102 -100.0 203 -2100.0 -2100.00 260 86888,30 16629,83 3 115.11 ŧ 1 0 6 105 -100 0 503 -5100 0 9 261 81767.77 1767.77 118_23 #1700,00 1 1

0,,102,-100,,203,-300,,304,-500,,403,-700,,506,-1000,,607, -1300,,708,-1670,,800,-1700., 262 82828.43 2828.43 117.17 -1700.00 9 1 0,,102,-100,,203,-309,,304,-500,,405,-700,,506,-1000,,607, +1300,,708,-1670,,800,-1700,, 263 83535,53 3535.53 116.46 =1700.00 0,,102,-100,,203,-300,,304,-500,,405,-700,,506,-1000,,607, **=1300,,708,-1670,,800,-1700,,** 264 83659,28 3659.28 116.34 -1700.00 1 0.,102,-100.,203,-300.,304,-500.,405,-700.,506,-1000.,607, +1300,,708,-1670,,890,-1700,, 265 83712.31 3712.31 116.29 -1740.00 7 0.0 102 -140.0 203 -1250.0 304 -1600.0 405 -1670.0 506 -1708.0 607 -1740.0 266 84012.83 4012.83 115,99 -2100.00 0.0 102 -140.0 205 -1250.0 304 +1600.0 405 +2100.0 267 84949.75 4949.75 115.05 -2100.00 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 268 86363,96 6363.96 113.64 -2100.00 4 1. 0.0 102 -100.0 203 -1250.0 300 -2100.0 269 89192,39 9192,39 -2100.00 110.81 3 0.0 102 -100.0 203 -2100.0 270 92727,92 12727,92 107.27 -2100.00 3 0.0 102 -100.0 203 -2100.0 271 82309,70 956.71 117.69 =1700.00 9 0.,102,-100,,203,-300,,304,-500,,405,-700,,506,-1000,607, **=1300_,708,=1670_,800,=1700_,** 272 83695,52 1530,73 116.30 +1700.00 0.,102,-100,,203,-300.,304,-500.,405,+700,,506,-1000.,607, -1300,,708,-1670,,800,-1700,, 115.38 =1700.00 273 84619.40 1913.42 0.,102,-100.,203,-300.,304,-500.,405,-700.,506,-1000.,607. **=1300,,708,=1670,,800,=1700,,** 274 84781.08 1980.39 115,22 -1700,00 0.,102,-100,,203,-300,,304,-500,,405,-700,,506,-1000,,607, -1300.,728,-1670.,800,-1700., 275 84650,37 2009,09 115.15 -1740.00 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -1670.0 506 -1700.0 607

.... .107

-1740.0 276 85243.02 2171.73 114.76 =2100.00 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 277 86467.16 2678.78 113.53 -2100.00 5 1 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 3444.15 278 88314.91 111.69 -2100.00 Δ. 0.0 102 -100.0 203 -1250.0 300 -2100.0 279 92010,44 4974_88 107.99 -2100.00 3 0.0 102 -100.0 203 -2100.0 6888,30 280 96629,84 103.37 -2100.00 3 0.0 102 -100.0 203 -2100.0 0,00 281 82500.00 117,50 -1700,00 0,,102,-100,203,-300,304,-500,405,-700,506,-1000,607,-1300,,708,-1670,,800,-1700,, 282 84000,00 0.00 116.00 -1700.00 0,,102,-100,,203,-300,,304,-500,,405,-700,,506,-1000,,607, -1300,,708,-1670,,800,-1700,, 283 85000.00 0.00 115.00 -1700.00 0 1 1 0,,102,-100,,203,-300,,304,-500,,405,-700,,506,-1000,,607, #1300,,708,=1670,,800,=1700,, 284 85175.00 0.00 114_82 -1700_00 1 1 0_,102,-100_,203,-309_,304,-500_,405,-700_,506,-1000_,607, w1300,,708, w1670, 800, w1700,, 285 85250.00 0.00 114.75 -1740.00 1 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -1670.0 506 -1700.0 607 -1740.0 286 85675,00 0.00 114.32 -2100.00 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 .2100.0 0.00 287 87000.00 113.00 -2100.00 0.0 102 -100.0 203 -1250.0 304 -1600.0 405 -2100.0 288 89000.00 0.00 111.00 -2100.00 4 0.0 102 -100.0 203 -1250.0 300 -2100.0 289 93000_00 0.00 107.00 -2100.00 3 0.0 102 -100.0 203 -2100.0 290 98000.00 3 0.00 102.00 -2100.00 1 1 0.0 102 -100.0 203 -2100.0 2

F.108

• Ø

TABLE F.2C. (contd)

1 200.0 1001 200.0 2001 200.0 51 500.0 1051 560 0 5051 500.0 41 200.0 1041 200 0 2041 200.0 61 200.0 1061 200.0 5691 505 4 81 200 8 1081 260.0 5091 560.0 101 200.0 1101 200,0 2101 200.0 151 500.0 1151 560.0 8121 200 P 141 200.0 1141 200,0 2141 200.0 161 200.0 1161 200.0 2161 200 0 181 200.0 1181 200.0 0.005 1815 20 18,00 1020 10.00 5050 10.00 40 10,00 1040 10.00 2040 10,00 60 10.00

7

1.1

18

1060 10.00 2060 10.00 80 10.00 1080 10.00 2080 10.00 100 10.00 1100 10,00 2100 10.00 120 10,00 1120 10,00 5150 10.00 140 10,00 1140 10.00 2149 10,00 160 10,00 1160 10.00 2160 10.00 180 10.00 1180 10.00 2180 10.00 200 10.00 1200 10,00 2200 10.00 9 170.0 201 170,0 202 170.0 203 170 0 204 170 0 211 170 0 212 170 0 213 170.0 214 170.0 221 170.0 222 170.0 223 170,0 224 170.0 231 170.0 232 170.0

233 170.0 234 170.0 241 170 0 242 170,0 243 170.0 240 170.0 251 170.0 252 170.0 253 170.0 254 170.0 261 170.0 262 170.9 263 170 0 264 170.0 271 170.0 272 170,0 273 170.0 214 170 0 201 170.0 232 170.0 203 170.0 204 170.0 1. a 13 

.

F.111

14	1	4	86	196	105	85	
15	1	4	196	126	125	105	
16	1	4	126	146	145	125	
17	1	4	146	166	165	145	
18	Ĩ	4	166	186	185	165	
19	ī	4	5	25	24	4	
20	1	4	25	45	44	24	
Ž1	Ĭ	4	45	65	64	44	
22	Í	4	65	85	84	64	
52	1	4	85	105	194	84	
24	1	4	105	125	124	104	
25	1	4	125	145	144	124	
26	1	4	145	165	164	144	
27	1	4	165	185	184	164	
28	1	4	4	24	52	- 3	
29	1	4	24	44	43	52	
30	1	4	44	64	63	43	
31	1	4	64	84	83	63	
32	1	4	84	184	103	83	
33	1	4	104	124	123	103	
34	1	4	124	144	143	152	
35	1	4	144	164	163	143	
36	1	4	164	184	183	163	
37	1	4	3	23	55	2	
38	1	4	53	43	42	55	
39	1	4	43	63	62	42	
40	1	4	63	83	82	62	
41	1	4	83	103	102	82	
42	1	4	103	153	155	102	
43	1	4	153	143	142	155	
44	1	4	143	163	162	142	
45	1	4	163	183	182	195	
46	1	4	2	55	21	1	
47	1	4	55	42	41	21	
48	1	4	42	63	61	41	
49	1	4	62	82	81	61	
50	1	4	85	102	101	81	
51	1	4	102	122	121	101	
. '

F.113

89	1	4	140	160	159	139
98	1	4	160	180	179	159
91	1	4	180	200	199.	179
92	1	4	19	39	38	18
93	1	4	39	59	58	38
94	1	4	59	79	78	58
95	1	4	79	99	98	78
96	1	4	99	119	118	98
97	1	4	119	139	138	118
98	1	4	139	159	158	138
99	1	4	159	179	178	158
100	1	4	179	199	198	178
101	1	4	18	38	37	17
102	1	4	38	58	57	37
103	1	4	58	78	. 77	57
104	1	4	. 78	98	97	77
105	1	4	98	118	117	97
106	1	4	118	138	137	117
107	1	4	138	158	157	137
108	1	4	158	178	177	157
109	1	4	178	198	197	177
110	1	4	17	37	36	16
111	1	4	37	57	56	36
112	1	4	57	11	76	56
113	1	4	77	97	- 96	76
114	1	4	97	117	116	96
115	1	4	117	137	136	116
116	1	4	1 37	157	156	136
117	1	4	157	177	176	156
118	1	4	177	197	196	176
119	1	4	16	36	35	15
120	1	4	36	56	55	35
121	1	4	56	76	75	55
122	ĺ	4	76	96	95	75
123	Ī	4	96	116	115	95
124	1	4	116	136	135	115
125	1	4	136	156	155	135
126	Ū.	Δ	156	176	175	155

١

TABLE F.2C. (c

(contd)

F.115

۰.

j

165	1	4	285	583	273	512
166	1	4	283	284	274	273
167	1	4	284	285	275	274
168	1	. 4	285	590	276	275
169	1	4	286	287	277	276
170	1	4	287	<b>588</b>	278	277
171	1	4	288	289	279	278
172	1	4	289	590	280	279
173	1	4	271	272	265	261
174	1	4	272	273	563	595
175	1	4	273	274	264	592
176	1	4	274	275	265	264
177	1	4	275	276	266	265
178	1	4	276	511	267	566
179	1	4	277	278	268	267
180	1	4	278	518	.568	268
181	1	4	279	280	270	269
185	1	- 4	561	595	252	251
183	1	4	595	563	253	225
184	1	4	592	264	254	522
185	1	4	264	592	255	254
186	1	4	265	566	256	255
187	1	4	560	591	257	256
188	1	4	267	528	258	257
189	1	4	268	593	259	258
190	1	4	569	270	590	259
191	1	4	521	252	242	241
192	1	4	252	523	243	245
193	1	4	253	254	244	243
194	1	4	254	255	245	244
195	1	4	255	256	246	245
196	1	4	226	257	247	246
197	1	4	257	256	248	247
198	1	4	228	259	249	248
199	1	4	259	590	250	249
200	1	4	241	545	525	231
201	1	4	242	243	233	525

X. J.

 $\langle \widehat{C} \rangle$ 

``

•

•

. 1

١

505	1	4	243	244	234	533
542	Ī	4	244	245	235	234
204	1	a	245	246	236	235
205	ī	4	246	247	237	236
206	i	4	247	248	238	237
207	i	4	248	249	239	238
508	ī	4	249	250	240	239
209	i	4	231	232	555	155
210	i	4	232	235	225	222
211	i	4	233	234	224	223
212	i	4	234	235	225	224
213	Ĩ	4	235	236	256	225
214	ĺ	4	236	237	227	556
215	i	4	237	238	228	227
216	1	4	238	239	229	828
217	i	4	239	240	230	229
815	Ĩ	4	221	222	515	211
219	ī	4	255	223	213	515
550	i	4	223	224	214	513
155	Ĩ	4	224	225	215	214
525	1	4	255	550	216	515
553	i	4	556	227	217	<b>516</b>
224	i	4	227	828	218	715
225	i	4	855	229	219	218
556	1	4	955	230	955	219
227	Ĩ	4	115	515	202	201
558	1	4	515	513	203	202
559	1	4	213	214	204	203
230	ī	4	214	215	205	204
231	1	4	512	516	500	205
535	1	4	216	217	207	506
533	1	4	217	218	805	207
534	1	4	815	519	209	208
235	1	4	219	550	510	209
236	1	4	510	858	27	7
237	1	4	550	230	47	27
238	1	4	530	240	48	47

· ·

F.117

TABLE F.2C. (contd)

239	1	4	240	250	49	48
240	1	4	250	2619	50	49
241	1 1	4	260	270	51	50
242	Ĩ	4	290	11	31	280
243	Ĭ	4	280	31	51	270
244	ī	4	9	551	211	201
245	ī	4	9	241	231	155
246	i	4	9	261	251	241
247	ĩ	4	9	281	271	261
	•				•	

5

F.118

#### APPENDIX F.3: REPOSITORY INVENTORIES

The following ORIGEN output tables were provided by BNI to represent the inventory in the repository for the first 30,000 yr. For periods after that (up to  $10^6$  yr) PNL generated inventories using ORIGEN. These are listed in Appendix L.

These inventions are given for BWR and PWR assemblies. The repository for the reference site analysis is assumed to contain the following:

	Spent Fuel Assemblies	<u>Canisters</u>
BWR	151,513	75,757
PWR	107,917	107,917
TOTAL	257,430	183,674

TABLE F.3A. Grams of Fission-Product Elements in a BWR Assembly

DISCHARGE 1. TR 2. YR 5. TR 10. TR 30. YR 100. TR 300. TR 1000. TR 3000. TR 10000. TR 30000. TR 8.590x-03 8.120x-03 7.675x-03 6.481x-03 4.890x-03 1.584x-03 3.065x-05 3.906x-10 2.883x-27 0.0 0.0 0_0 LI BE 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-05 2.2018-4.0112-06 4.0112-06 4.0102-06 4.0092-06 4.0062-06 3.9972-06 3.9632-06 3.8682-06 3.5542-06 2.7902-06 1.1972-06 1.0652-07 C CO 1.7198-13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ИI 6. 3328-11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 CO 5.7832-10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 ΖN 8.3228-06 5.7118-09 5.7118-09 5.7118-09 5.7118-09 5.7118-09 5.7118-09 5.7118-09 5.7118-09 5.7118-09 5.7118-09 5.7118-09 5.7118-09 4. 624E-06 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 1. 379E-07 GA GE 9.8488-02 9.8438-02 9.8438-02 9.8438-02 9.8438-02 9.8438-02 9.8438-02 9.8438-02 9.8438-02 9.8438-02 9.8438-02 9.8438-02 3.011E-02 2.979E-02 AS 8. 5662 00 8. 5662 00 8. 5662 00 8. 5662 00 8. 5662 00 8. 5662 00 8. 5652 00 8. 5632 00 8. 5372 00 8. 5382 00 8. 4762 00 8. 3228 00 SE 3. 31 28 00 3. 31 18 00 3. 31 18 00 3. 31 18 00 3. 31 18 00 3. 31 18 00 3. 31 18 00 3. 31 38 00 3. 3208 00 3. 3398 00 3. 40 18 00 3.558 00 BR K R 5.6028 01 5.5788 01 5.5578 01 5.5018 01 5.4298 01 5.2928 01 5.2418 01 5.2408 01 5.2408 01 5.2408 01 5.2408 01 5.2408 01 5. 1898 01 5. 2128 01 5. 2332 01 5. 2892 01 5. 3612 01 5. 4982 01 5. 5498 01 5. 5502 01 5. 5508 01 5. 5508 01 5. 5502 01 5. 5502 01 82 SR 1. 3788 02 1. 32 38 02 1. 30 38 02 1. 2488 02 1. 1658 02 9. 1918 01 6. 0188 01 5. 3378 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 5. 3328 01 7. 12 38 01 6. 94 18 01 6. 9378 01 6. 9368 01 6. 9368 01 6. 9368 01 6. 9358 01 6. 9358 01 6. 9358 01 6. 9358 01 6. 9358 01 6. 9358 01 T 22 5. 30 7E 02 5. 372E 02 5. 390E 02 5. 445E 02 5.528E 02 5. 774E 02 6.091E 02 6. 159E 02 6. 159E 02 6. 157E 02 6. 152E 02 6. 136E 02 NB 4.8978 00 2.1358-01 5.0928-03 6.5058-04 1.0518-03 2.6518-03 8.2538-03 2.4268-02 8.0258-02 2.4018-01 7.9768-01 2.3758 00 MC N. 9488 02 5.0808 02 5.0842 02 5.0842 02 5.0842 02 5.0842 02 5.0842 02 5.0842 02 5.0842 02 5.0842 02 5.0842 02 5.0842 02 5.0842 02 TC 1. 1998 02 1-2038 02 1-2038 02 1-2038 02 1-2038 02 1-2038 02 1-2038 02 1-2038 02 1-1998 02 1-1918 02 1-1648 02 1-0918 02 RÜ 3.6048 02 3.4298 02 3.3702 02 3.3188 02 3.3118 02 3.3118 02 3.3118 02 3.3128 02 3.3158 02 3.3228 02 3.3498 02 3.4238 02 RA 6.8558 01 7.4298 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 7.4308 01 1.8518 02 1.9698 02 2.0278 02 2.0798 02 2.0668 02 2.0868 02 2.0868 02 2.0868 02 2.0868 02 2.0868 02 2.0868 02 2.0868 02 2.0858 02 PD 1. 22 8E 01 1. 217E 01 1. 214E 01 1. 213E 01 1. 212E 01 1. 213E 01 1. 213E 01 1. 213E 01 1. 213E 01 1. 213E 01 1. 214E 01 1. 216E 01 1. 223E 01 λG CD 1.5338 01 1.5458 01 1.5478 01 1.5488 01 1.5488 01 1.5488 01 1.5468 01 1.5468 01 1.5468 01 1.5468 01 1.5468 01 1.5468 01 IN 3.6118-01 3.7858-01 3.8022-01 3.8468-01 3.9078-01 4.0468 01 8.1372-01 4.1348-01 4.1348-01 4.1348-01 4.1348-01 1. 31 12 01 1. 2988 01 1. 2968 01 1. 2968 01 1. 2968 01 1. 2968 01 1. 2958 01 1. 2958 01 1. 2938 01 1. 2978 01 1. 2688 01 1. 2198 01 SH S B 4. 54 58 00 4. 16 48 00 3. 8358 00 3. 2018 00 2. 8008 00 2. 6458 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6448 00 2. 6488 00 00 2. 6488 00 2. 6488 00 2. 6488 00 2. 6488 00 2. 6488 00 2. 6488 00 2. 6488 00 2. 6488 00 2. 6488 00 2. 648 7. 2948 01 7. 2298 01 7. 2628 01 7. 3258 01 7. 3658 01 7. 3818 01 7. 3818 01 7. 3828 01 7. 3848 01 7. 3898 01 7. 4088 01 7. 4578 01 TE 3.6578 01 3.5928 01 3.5948 01 3.5948 01 3.5948 01 3.5948 01 3.5948 01 3.5948 01 3.5948 01 3.5948 01 3.5948 01 3.5938 01 3.5918 01 I 8.015E 02 8.017E 02 8.017E 02 8.017E 02 8.017E 02 8.017E 02 8.017E 02 8.017E 02 8.017E 02 8.017E 02 8.017E 02 8.017E 02 8.017E 02 XE C S 4.274B 02 4.204B 02 4.131B 02 3.964E 02 3.764E 02 3.226E 02 2.496E 02 2.316E 02 2.314E 02 2.314E 02 2.313E 02 2.313E 02 2.309E 02 2. 12 38 02 2. 18 38 02 2. 2558 02 2. 4228 02 2. 6228 02 3. 16 18 02 3. 8908 02 4.0708 02 4.0728 02 4.0728 02 4.0748 02 4.0748 02 4.0778 02 BA 1.86 3E 02 1.859E 02 1.859E 02 1.859E 02 1.859E 02 1.859E 02 1.859E 02 1.859E 02 1.859E 02 1.859E 02 1.859E 02 1.859E 02 1.859E 02 LA CZ 4. 1648 02 3.8338 02 3.7138 02 3.6358 02 3.6308 02 3.6308 02 3.6308 02 3.6308 02 3.6308 02 3.6308 02 3.6308 02 3.6308 02 1.6698 02 1.7108 02 1.7108 02 1.7108 02 1.7108 02 1.7108 02 1.7108 02 1.7108 02 1.7108 02 1.7108 02 1.7108 02 1.7108 02 1.7108 02 PR 5.616E 02 5.927E 02 6.047E 02 6.125E 02 6.130E 02 6.131E 02 6.131E 02 6.130E 02 6.130E 02 6.130E 02 6.130E 02 6.130E 02 6.130E 02 ND PN 2.289E 01 1.784E 01 1.370E 01 6.201E 00 1.654E 00 8.394E-03 7.777E-11 0.0 0.0 0.0 0.0 0.0 SH 1. 116E 02 1. 175E 02 1.216B 02 1.291E 02 1.335E 02 1.349E 02 1.342E 02 1.333E 02 1.331E 02 1.331E 02 1.331E 02 1.331E 02 20 2.3968 01 2.3038 01 2.2418 01 2.0928 01 1.9268 01 1.7128 01 1.7348 01 1.8178 01 1.8428 01 1.8428 01 1.8428 01 1.8428 01 1. 138E 01 1.245E 01 1.308E 01 1.462E 01 1.636E 01 1.879E 01 1.930E 01 1.931E 01 1.931E 01 1.931E 01 1.931E 01 1.931E 01 GD 3. 9938-01 3. 8908-01 3. 8868-01 3. 8878-01 3. 8878-01 3. 4878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 3. 8878-01 8 ŤΒ 1.9392-01 2.0492-01 2.0522-01 2.0522-01 2.0522-01 2.0522-01 2.0522-01 2.0522-01 2.0522-01 2.0522-01 2.0522-01 2.0522-01 DT 1. 930E-02 1. 929E-02 1. 929E-02 1. 929E-02 1. 929E-02 1. 928E-02 1. 928E-02 1. 926E-02 1. 928E-02 1. 918E-02 1. 911E-02 1. 911E-02 HO 28 7.4902-03 7.5292-03 7.5292-03 7.5302-03 7.5302-03 7.5322-03 7.5392-03 7.5572-03 7.6072-03 7.6742-03 7.7052-03 7.7062-03 7. 39 32-06 7.0052-06 6.8912-06 6.8532-06 6.8442-06 6.8422-06 6.8422-06 6.8422-06 6.8422-06 6.8422-06 6.8422-06 TH 1.0902-06 1.8082-06 1.9212-06 1.9592-06 1.9682-06 1.9702-06 1.9702-06 1.9702-06 1.9702-06 1.9702-06 1.9702-06 1.9702-06 T B 5. 1998 03 5. 1998 03 5. 1998 03 5. 1998 03 5. 1998 03 5. 1998 03 5. 1998 03 5. 1998 03 5. 1998 03 5. 1998 03 5. 1998 03 5. 1998 03 TOTAL

TABLE F.3B. Grams of Heavy Elements in a BWR Assembly

	DISCHARGE	1.	TR	2. TP	5.	- TR	10. TR	30. TR	100. TR	300. TR	1000. TR	3000. YR	10000. TH 3	10000. IR
	a. a182-02	7. 39 18	!- 02	8. 1602-02	1.0341	:-01	1.3518-01	2. 8028-01	8.0828-01	1. 974E 00	4, 2278 00	6.9352 00	1.1888 01 1	.9042 01
	2 2182-07	8-8037	-07	5.8002-07	9. 1861	5-07	1.3982-06	2.6378-06	3.8158-06	4,5122-06	6.5852-06	1.1882-05	2.5292-05 4	-5588-05
5r	2 6 2 7 - 12	5 78 18	-11	A. 7998-11	1.610	- 17	2. 1918-12	2.1178-12	1.1118-12	2.5982-13	3,4598-13	1.0148-12	3.3872-12 9	.8222-12
16	2.3736-13	3 03 61	- 07	A 3067-07	1 6041	- 16	8.9768-06	1.9582-05	5. 48 32-05	8.8502-05	1.6632-04	1.6422-03	3.3038-02 3	.8322-01
6.6	6. /39E-UO	2.0241	5-07	4.3900-07	4 3301	- 10	1 8779-10	3 56 18-10	7.5748-09	5.0162-08	2. 1972-06	8.8002-05	3.5938+03 1	1998-02
BI	2.4518-11	4.7030		0.0335-11	1. 2271	5-10	1.0275-10	3 3030-11	B 0007-10	6.9088-09	9.771P+08	7.2028-07	8.1578-06 1	-4532-05
PO	3, 3112-14	6, 66 10	5 Y W	1.0402-13	3. 1990		1. 30 36-12	2. 2720-11	4.900E-10	7 6007-10	1 1807-17	1 8397-16	1.5898-15	2192-15
AT :	1. 97 JE-20	6.5778	8-21	6.8232-21	7, 6461	8-21	9.2425-21	1.8465-20	9.0046-20	7.005-17	1.1002-17	3 108 2-08	1 2168-07 6	2528-07
RB	2.0858-13	5.4041	s-13	8.288t-13	1. 5551	2-12	2. 2918-12	4.2718-12	2-032-11	2.4902-10	2.0346-04	4 3608.43		E139_11
78	2.0972-16	1. 19 41	2-16	1.5182-16	2.4841	2-16	4.074E-16	1.0328-15	3.3032-15	1.4135-14	1, 32 16-13	1.3076-12		
RA	4. 3382-09	8.091	-09	1.2402-08	2. P801	2-08	6.6658-08	3.8588-07	3.9928-06	3.8752-05	4.4532-04	3.2028-03	1.0955-02 0	0.0236-02
10	1.0838-09	2.2211	-09	3. 3528-09	6.6951	e-09	1.2122-08	3.239E-08	9.5822-08	2.6852-07	8.9922-07	2.617E-06	0.5102-00	2.1708-05
	2 48 28-04	1. 85 1	2-08	8.4302-04	7.3841	#0-3	1.2382-03	3. 3228-03	1.1512-02	3.8835-02	1.423E-01	4,3922-01	1.4658 00 4	1. 16 ZE 00
10	5 03 30-05	6 07 3	-05	6. 1067-05	6. 501	2-05	7.1678-05	9.8258-05	1.9158-04	4,5742-04	1.3848-03	4.0098-03	1.2982-02	3.6028-02
P.A.	3.0235-03	9 94 61		1 7458 65	1 7651		1.7658 05	1.7658 05	1.7658 05	1.7658 05	1.7658 05	1.767E 05	1,769E 05	1.7738 05
0	1. /0 75 07	1.70 31	5 03		6 33 6		£ 3807 01	6 7719 01	8.7808 01	1. 3668 02	2.2448.02	2.650E 02	2.6618 02 2	2.6442 02
N P	7. 3358 01	0.307	5 01	0. JIIE 01	0.320	5 01		4 9079 03	4 3849 03	1.7258 01	1.2802 03	1.1708 03	8.7958 02 1	-673E 02
60	1.546B 03	1.550	E 03	1.541E 03	1. 516	E U J	1.4026 03	1.4036 03	1.J405 VJ	1.J270 VJ	E 3000 01	1 0679 01	A 7278 00	7.7192-01
AÐ .	1, 84 08 01	2.76 81	e 01	3.6512 01	6.035	6 01	9.3456 01	1.0376 02			343706 01	1. 100	A 4559-03	1 18 18-01
CH	9. 27 9E 00	2.718	E 00	2.3168 00	1.996	r 00	1.655E 00	7.0092-01	8.022E-02	2.4015-02	2.2128-02	1.7045402		
BE	8.1222-09	3.6841	2-09	1.6708-09	1.556	2- 10	2.9788-12	3.9998-19	8.7192-24	0.6508-24	0.4128-24	7. 167 E-24	3.0//5-24	2.0702-24
<b>C</b> 1	3 2158-09	7.512	2-09	9.3852-09	1.054	8-09	1.0248-08	9.1748-09	7.6928-09	5.2132-09	1.3612-09	4.2992-11	8. 2008-14	1.1128-19
CT	3 4449-13	2 150	8-19	1.2558-15	7.986	8-17	6. 1022-19	8. 5598-27	0.0	0.0	0.0	0.0	0.0	0.0
53	3.0005-13	3 70 1		4 7849 65	1 781	- 05	1.7618 05	1.7818 05	1.781E 05	1.7812 05	1.7818 05	1,7818 05	1.781E 05	1.7818 05
TOTAL	1.7816 05	1. 14 1	5 03	1,7016 03	Te /0 I	6 03							100 A 100 A	

F.121

HE 5P TL PB BI PO AT

# TABLE F.3C. Curies of Light-Element Isotopes in a BWR Assembly

	DISCHARGE	1.	TR	2. 1	R 5.	YR.	10. 1	T R	30. TR	100. TR	300. TR	1000. TR	3000. TR	10000. TR	30000. TH
н 3	4.752E 01	4. 49 18	01	4. 2452 0	1 3.585	: 01	2.705E	01	8.7632 00	1.6962-01	2. 16 18-06	1.5958-23	0.0	0.0	0.0
C 14	2.6348-01	2.6318	-01	2.6338-0	1 2. 632	2-01	2.631E-	01	2.6248-01	2.6028-01	2.5408-01	2.3348-01	1.8328-01	7.8568-02	6.9902-03
CL 36	1. 96 82-03	1.9688	-03	1.9682-0	3 1.967	2-03	1.9672-0	03	1.9672-03	1.9672-03	1.9662-03	1.9632-03	1.9542-03	1.9248-03	1.8402-03
88 54	2. 46 72 01	1.07 CE	01	4.6392 0	0 3.782	5-01	5.7992-0	03	3. 2052-10	0.0	0.0	0.0	0.0	0.0	0.0
77 55	2. 1528 02	1.6488	02	1. 2632 0	2 5.675	E 01	1.4968	01	7.2282-02	5.6808-10	0.0	0.0	0.0	0.0	0.0
CO 58	1. 58 8E 02	4. 557B	00	1.3082-0	1 3.092	2-06	6.023E-	14	0.0	0.0	0.0	0.0	0.0	0.0	0.0
CQ 60	4. 1798 02	3. 66 3E	02	3.2118 0	2 2. 162	8 02	1. 1198	02	8.0202 00	7.9082-04	2.8328-15	0.0	0.0	0.0	0.0
NT 59	1. 508E-01	1.5088	-01	1.508E-0	1 1.508	E-01	1.5088-	01	1.5078-01	1.5062-01	1.5048-01	1.4958-01	1.4698-01	1.3832-01	1.1638-01
WI 63	2. 2972 01	2.2808	01	2.2638 0	1 2.212	E 01	2.1308	0.1	1.832E 01	1.0818 01	2.3968 00	1.2278-02	3.5058-09	0.0	0.0
ZN 65	2.020E 01	7. 18 98	00	2.558E 0	0 1.152	8-01	6.577E-0	04	6.9578-13	0.0	0.0	0.0	0.0	0.0	0.0
28 93	9.300E-02	9.3008	-02	9.3002-0	2 9. 300	1-02	9.300E-	02	9.3002-02	9.2998-02	9.2988-02	9.2932-02	9.280 E-02	9.2328-02	9.0992-02
28 95	1. 50 8E 04	3. 16 OE	02	6.622E 0	0 6.094	8-05	2.4638-	13	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NB 93M	7.0322-03	1.160B	-02	1.5912-0	2 2.744	E-02	4.273E-(	02	7.3998-02	8.809E-02	8.8335-02	8.8298-02	8.8162-02	8.771E-02	8.6442-02
#B 94	5.8898-02	5.8892	-02	5.8892-0	2 5.888	2-02	5.8872-	02	5.8832-02	5.8698-02	5.8282-02	5.6898-02	5.3072-02	4. 1638-02	2.0812-02
NB 95	1. 500E 04	6.68 1B	02	1.4682 0	1 1. 314	-04	5.3108-	13	0.0	0.0	0.0	0.0	0.0	0.0	0.0
NB 95M	1.869E 02	4.013E	00	8.4102-0	2 7.739	E-07	3.127E-	15	0.0	0.0	0.0	0.0	0.0	0.0	0.0
80 93	1. 4348-03	1.4332	-03	1.433E-0	3 1. 432	2-03	1.430E-	03	1.4242-03	1.401E-03	1.3388-03	1.1302-03	7.168 E-04	1.422E-04	1.3982-06
IN1138	2. 895E 02	3. 204E	01	3. 5442 0	0 4.919	2-03	8.155E-0	60	6.1582-27	Ú. 0	0.0	6.0	0.0	0.0	0.0
SH113	2.894E 02	3. 202E	01	3.542E 0	0 4.916)	2-03	8.150E-	80	6.1558-27	0.0	0.0	0.0	0.0	0.0	0.0
5 H 1 19H	2. 22 48 03	7.915B	02	2.8172 0	2 1.269	2 01	7.2432-0	02	7.676E-11	0.0	0.0	0.0	0.0	0.0	0.0
501218	2.4302-01	2. 3972	-01	2.3642-0	1 2.267	2-01	2.1158-0	01	1.6032-01	6.0712-02	3.7892-03	2.3002-07	2.0608-19	0.0	0.0
SN123	1.0548 02	1.4828	01	2.0842 0	0 5.792	2-03	3. 1832-	07	2.9032-24	0.0	0.0	0.0	0.0	0.0	0.0
SB125	6. 318E 02	4.9548	02	3.8432 0	2 1.794	2 02	5.0418	01	3. 1472-01	6.0122-09	0.0	0.0	0.0	0.0	0.0
TE125H	1.369E 02	1.2078	02	9.3852 0	1 4. 382	2 01	1.2318	01	7.6852-02	1.468E-09	0.0	0.0	0.0	0.0	0.0
B0154	2.8308 01	2.6118	01	2. 409E 0	1 1.891	E 01	1.263E	01	2.5178 00	8.8602-03	8.7448-10	0.0	0.0	0.0	0.0
EU 155	1.5798 01	1.3678	01	1.1832 0	1 7.668	E 00	3.7238	00	2.0708-01	8.3902-06	2.3698-18	0.0	0.0	0.0	0.0
GD153	2.5778 02	9.0042	01	3. 146E 0	1 1.341	E 00	7.004E-	03	5. 1402-12	0.0	0.0	0.0	0.0	0.0	0.0
TB160	1. 1942 03	3.6018	01	1.0868 0	0 2.975	B-05	7.415E-	13	0.0	0.0	0.0	0.0	0.0	0.0	0.0
SUNTOT	3. 6358 04	3. 26 3E	03	1. 3798 0	3 5.961	B 02	2.5528	02	3.9102 01	1.1718 01	3.0478 00	6.3638-01	5.6688-01	4.4058-01	3.2332-01
TOTAL	1.1758 05	3.2678	03	1. 3802 0	3 5, 96 2	R 02	2. 552K	02	3. 9102 01	1.1718 01	1.04 BK 00	6.3678-01	5.6718-01	8.8088-01	3.2368-01

1

F.122

N,

## <u>TABLE F.3D</u>. Curies of Fission-Product Isotopes in a BWR Assembly

	DI SCHARGE	1.	TR	2.	T B	5.	TR	10.	TR	3Ó.	T R	100. TR	300. T	R 1	1000.	TR	3000.	TR	10000. TR	30000. TR
W 3	8.3268 01	7.8705	01	7. 4 392	0 1	6.2828	01	8.7198	01	1.5358	01	2.9712-01	3.7862-0	6 2.	7958-	.23	0.0			
ST 79	6.2122-02	6.212B	-02	6.2125-	02	6.2128	-02	6.2128	-02	6.211E-	07	6. 2068-02	6.1938-0	ž 6.	1872-	.02	6.0178-0	02	5.548P-02	8 5118-07
KR 85	1.4148 03	1. 32 62	03	1.2438	03	1.0248	03	7.4158	02	2.037E	02	2. 21 38 00	5.4172-0	6 1.	2438-	-25	0.0	-	0.0	0.0
SR 89	9.9038 04	7.6128	02	5.8532	00	2.657E	-06	7.1228	-17	0.0		0.0	0.0	0.	0		0.0		0.0	0.0
SR 90	1. 14 4g 04	1, 1168	04	1.0892	04	1.011E	04	8. 939E	03	5.458E	03	9.7098 02	6.9892 0	0 2.	2178-	-07	8.335E-	29	0.0	0.0
T 90	1.1832 04	1.1168	- QÅ	1.089E	04	1.0118	04	8.941E	03	5.459E	03	9.7118 02	6.9958 0	0 Z.	2178-	07	8.3378-	29	0.0	0.0
τ 91	1.301E 05	1_74 18	03	2.3158	01	5. 4402	-05	2.2598	- 14	0.0		0.0	0.0 1	0.	0		0.0	- : .	0.0	0.0
ZR 93	4. 4382-01	4.44 0E	-01	4,8408-	01	8. 880B	-01		-01		01	N. N402-01	4.4392-0	1 4.	4378-	01	4.4302-	01	4.4082-01	4.3448-01
ND 938	3.7072-02	5, 86 6E	-02	7.908E-	02	1. 337E	-01	2.0602	-01	3.5392-	01	4.2068-01	4.2178-0	1 4:	2158-	-01	4.2092-0	01	8.188E-01	4.1272-01
ZR 95	1. 68 32 05	<b>3. 94 6</b> 8	03	8.2702	01	7.610E	-04	3.075E	- 12	0.0		0.0	0.0	0.	0.		0.0		0.0	0.0
NB 95	1.911E 05	0. 34 6E	03	1.8335	02	1.6418	-03	6.6328	-12	0.0		0.0	0.0	· 0.	0		0.0		0.0	0.0
TC 99	2.0428 00	2.0508	00	2.050e	00	2.0502	00	2.050B	00	2.0508	00	2.0998 00	2.0402 0	0 2.	0432	00	2.0308	00	1.9548 00	1.0582 00
80103	1.8892 05	3, 1588	02	5,1712-	01	2.4158	-09	3. 15 1E	-23	0.0		0.0	0.0	÷ 0.	0		0.0		0.0	0.0
RH1035	1. 8908 05	3. 16 12	02	5. 204E-	01	2. 4178	-09	3.1548	-23	0.0		0.0	0.0	0.	. 0		0.0		0.0	0.0
KE106	7.8105 04	3.9338	04	1,9802	04	2.528E	03	8. 101E	01	8.9762-	05	1.2428-25	0.0	0.	.0		0.0		0.0	0.0
RR105	8. 38 3E 04	3.9338	04	1.9508	04	2.5288	03	8.181E	01	8.976E-	-05	1.2922-25	0.0	0.	.0		0.0		0.0	0.0
PD107	1.7392-02	1.7395	-02	1.7392-	02	1.7398	-02	1.739E	-02	1.7398-	02	1.739E-02	1.7392-0	2 1.	7392-	02	1.7308-0	02	1.7378-02	1.7338-02
58125	2.0642 03	1.6135	03	1.2518	03	5.0928	02	1.641B	02	1.024E	00	1.9568-08	0.0	· 0.	.0		0.0		0.0	0.0
TE1258	4.4538 02	3.9318	02	3.0568	02	1.4278	02	4.0085	01	2.501z-	-01	4.7778-09	0.0	0.	.0		0.0		0.0	0.0
5N126	1.158E-01	1.1502	-01	1. 158E-	01	1.1568	-01	1.1588	-01	1.1572-	01	1.1578-01	1.1558-0	1 1.	. 150E-	-01	1.134B-0	01	1.0002-01	9.4028-02
S 8126	1.2738 02	1.6218	-02	1.62TE-	02	1.6218	-02	1.6218	-02	1.6202-	02	1.620E-02	1.6178-0	2 1.	610E-	-02	1.5878-	02	1.5128-02	1,3162-02
SB1268	6. 310B 01	1.150E	-01	1.1502-	01	1.1508	-01	1,1588	-01	1.1578-	-01	1.1578-01	1.1558-0	1 1.	. 1502-	-01	1.1342-0	01	1.0802-01	9.4022-02
I 129	4.74 22-03	4.0002	-03	4.000Z-	03	4.000	-03	4.005	-03	4.8008-	03	4.0002-03	4.8002-0	3 4.	600E-	•03	4.8002-	03	4.7982-03	4.7942-03
C5134	2.0352 04	1.4548	04	1.0372	09	3.7858	03	7.0372	.0Z	0.7712-	.01	5.1778-11	0.0	0.	0		0.0		0.0	0.0
CS135	6.522E-02	6. 5322	-02	6.5328-	02	6.5328	-02	6.5328	-0Z	6.5328-	-0 Z	6.5322-02	6.5318-0	Z 6.	530E-	-0Z	6.5268-	0Z	6.5128-02	6.4732-02
C3137	1.577E 04	1.5418	04	1.5068	04	1.4068	04	1.2538	04	7.9042	03	1.5772 03	1.5762 0	1 1.	. 573E	-06	1.568E-	26	0.0	0.0
BA1378	1, 4958 04	1.4505	04	1.4258	04	1.3308	.04	1.1050	0.	7.4778	03	1.49ZE 03	1.4315 0	1 1.	4995-	-06	1.4038-	Z 6	0.0	0.0
CE144	1.30 4E US	6.50 1E	04	2.0098	04	1.847E	03	2-1768	01	3. 7002-	07	0.0	0.0	σ.	.0		0.0		0.0	0.0
26144	1.592E 05	6.50ZE	04	2.6692	04	1.8478	03	2.1568	01	3.3002-	.07	0.0	0.0	0.	.0		0.0		0.0	0.0
PR1448	1.902E 03	7. CU 25	02	3.2030	02	2.2165	01	2.30/6	-01	9. /005-	-03	0.0	0.0	σ.	.0		0.0		0.0	0.0
21147	2.0688.04	1-6558	04	1.2718	04	5.7518	03	1.5348	03	7.7058	00	7.2132-00	0.0	_ <u>7</u> .	.0		0.0		0.0	0.0
51151	5.702E 01	5.7438	01	5./00Z	01	3.3748	01	5. 3708	01	9.0268	01	Z. /958 01	0.176E 0	υ 3.	3365-	-0Z	1.1108-0	09	0.0	0.0
50124	1. 4798 03	1.3035	03	1.2758	03	1.0016	03	0.0905	UZ	1. J JJE	UZ	4.033E-01	9.3928-0	00.	0		0.0		0.0	0.0
EU155	7.0005 02	0. 3/0E	02	7-2518	UZ	4./018	02	2.2018	UZ	1.2075		3.1448-04	1.4525-1				0.0		0.0	0.0
SUNTOT	1. 3/08 06	J. 1405	05	1. /2/8	υS	0. 7235	04	4.0025	04	2.0/2E	04	3.0448 03	3.919 <u>8</u> 0	1 3.	5578	00	3.2098	00	3.2168 00	J.0346 00

TOTAL

1. 9982 07 3. 1492 05 1.7292 05 6.9248 04 4.6662 04 2.6738 04 5.0448 03 5.4148 01 3.3378 00 3.2848 00 3.2182 00 3.0392 00

F.123

· i

# TABLE F.3E. Curies of Heavy-Element Isotopes in a BWR Assembly

	DI SCHARGE	1.	TR	2. TR	5.	TR	10. YR	30. TR	100. IR	300. TR	1000. TR	3000. Y#	10000. TR	30000. TP
P 82 10	2.4172-10	3.7598	-10	5.737E-10	1. 816z	-09	7.1202-09	1.0332-07	2.2452-06	3.1142-05	4.404E-04	3.2472-03	1.8742-02	6.5508-02
PP214	2.9952-09	5. 132E	-09	7.9422-09	2.0432	-08	5.4978-08	3.7102-07	3.9438-06	3.8332-05	4.404E-04	3.2472-03	1.874E-02	6.5502~02
BI210	2.4288-10	3. 76 12	- 10	5.739E-10	1.816	-09	7.1212-09	1.0336-07	2.2452-06	3. 1142-05	4.404E-04	3.2478-03	1.874E-02	6.5502-02
81214	2.9958-09	5. 1328	-09	7.9422-09	2.0436	-08	5.4972-08	3.7102-07	3.9432-06	3.8338-05	4.4042-04	3.2478-03	1.8742-02	6.5502-02
PO2 10	1.465E-10	2.9428	- 10	4. 5928-10	1.5158	-09	7.1212-09	1.033E-07	2.2452-06	3.1148-05	4 <b>.</b> 4042-04	3.247E-03	1.8748-02	6.5508-02
P0214	7.683E-09	5. 1322	-09	7.9428-09	2.0438	-08	5.497E-08	3.710E-07	3.9438-06	3.833z-05	4,404 <u>8</u> -04	3.2472-03	1.0742-02	6.5508-02
P0218	2.9958-09	5. 1322	-09	7.9422-09	2.0435	-08	5.4978-08	3.7108-07	3.9432-06	3.8332-05	4.404E-04	3.247E-03	1.8742-02	6.550Z-02
R#222	2.995E-09	5. 1328-	-09	7.9428-09	2.04 3E	-08	5.497Z-08	3.7108-07	3.9438-06	3.8332-05	4,404E-04	3.2478-03	1.8742-02	6.5502-02
RA226	2.9932-09	5.1328	-09	7.9422-09	2.043E	-08	5.4978-08	3.7108-07	3.9438-06	3.8338-05	8.404K-04	3.247 E-03	1.874E-02	6.5502-02
T 8230	4. 1672-06	5. 71 6E	-06	7.2738-06	1. 199E	-05	2.000E-05	5.3782-05	1.8932-04	6.5202-04	2.4168-03	7.4178-03	2.4088-02	6.509E-02
TH234	5.8162-02	5.8122	-02	5.8132-02	5.8122	-02	5.8122-02	5.8128-02	5.8128-02	5-8128-02	5.0128-02	5.0128-02	5.8128-02	5.8132-02
P1233	4.2478-02	4.448E	-02	4.4502-02	4.4628	-02	4.4998-02	4.7752-02	6.1638-02	9.630E-02	1.5822-01	1.8682-01	1 <u>.</u> 8762-01	1.8642-01
PA2348	5.861E-02	5.0128	-02	5,8138-02	5.8128	-02	5.8122-02	5.8128-02	5.8128-02	5.8128-02	5.0128-02	5.0128-02	5.8128-02	5.0132-02
0234	1.7848-01	1.7922	-01	1.801z-01	1.8282	-01	1.8702-01	2.0258-01	2.411E-01	2.8332-01	2.9428-01	2.929E-01	2.863E-01	2.7582-01
U236	3.8528-02	3.8528	-02	3,8522-02	3.853E	-02	3.8548-02	3.8592-02	3.876E-02	3.925E-02	4.0872-02	4.4908-02	5.3982-02	6.1498-02
0238	5.8128-02	5.8128	-02	5.0128-02	5.8122	-02	5.8128-02	5.0128-02	5.8122-02	5.6122-02	5.8128-02	5.8122-02	5.8128-02	5.8132-02
NP237	4.3668-02	4.4482	-02	4.450E-02	4.4622	-02	4.4998-02	4.7758-02	6. 16 32-02	9.630z-02	1.5022-01	1.868E-01	1.0762-01	1.8642-01
#P239	2.630E 06	2.2508	00	2.250E 00	2.2498	00	2.2488 00	2.2448 00	2.2308 00	2.190g 00	2.0552 OO	1.7158 00	9.0942-01	1.4852-01
PU238	2.8852 02	3.130E	02	3,158g 02	3.0998	02	2.9818 02	2.5528 02	1.4812 02	3. 1408 01	1.501E-01	1.9078-06	2.58 1E-20	0.0
P0239	5.361E 01	5.4318	01	5.4318 01	5.4308	01	5.4308 01	5.427E 01	5.4178 01	5.3878 01	5.285E 01	5.004E 01	4.124E 01	2.353E 01
P0240	6.481E 01	8.4828	01	8,4832 01	8.485E	01	8.4882 01	8.4902 01	8.444E 01	8.273g 01	7.7002 01	6.273E 01	3.0602 01	3.9362 00
P0241	2.0392 04	1.9458	04	1.8542 04	1.608	04	1.2688 04	4.9082 03	1.768E 02	1.582E-02	2.375E-03	2.0098-03	1.1172-03	2.0878-04
PU242	2.7082-01	2.708E	-01	2.708E-01	2.708	-01	2.7088-01	2.7082-01	2.708E-01	2.7078-01	2.704E-01	2.6942-01	2.660B-01	2.5642-01
A#241	2. 267E 01	5.4498	01	8.4772 01	1.6728	02	2.7998 02	5.285E 02	6.1948 02	4.5422 02	1.481E 02	6.030E 00	1, 1998-03	2.0872-04
1H243	2.2482 00	2.250E	00	2.250E 00	2.2498	00	2.2488 00	2.244E 00	2.230E 00	2. 1902 00	2.0558 00	1.715E 00	9.0948-01	1.4858-01
CH242	6.1992 03	1.3208	03	2.7998 02	3. 3088	00	6.5132-01	5.9332-01	4.3118-01	1.7328-01	7.1158-03	7, 808 <b>5-</b> 97	1.0708-20	0.0
C8244	1. 8958 02	1. 82 42	02	1,7568 02	1.5658	02	1.2928 02	6.0098 01	4.117# 00	1.9428-03	4.4288-15	0.0	0.0	0.0
s untot	2.6578 06	2. 14 6E	04	1.9542 04	1.6862	04	1.3548 04	5.8972 03	1.0932 03	6.277E 02	2.8338 02	1.2348 02	7.5018 01	2.956E 01

TOTAL 5.4748 06 2.1468 04 1.9558 04 1.6878 04 1.3548 04 5.8998 03 1.0948 03 6.2828 02 2.8348 02 1.2348 02 7.5068 01 2.9738 01

F.124

TABLE F.3F. Grams of Fission-Product Elements in a PWR Assembly

. •

 $\mathbf{i}$ 

.... دولا و . 77

•

	DISCHARGE		1. 1	R	2.	TR	5.	TR		10.	TR		30. 1	r R	100.	TR	300	TR	1000.	TR	3000.	ŦR	10000. TR	30000. TR
Ħ	2.6398-02	2.49	42-0	2 2	. 3572-	02	1. 99 18	-02	1.5	022	- 02	4.0	662-0	03 9		- 05	1.2002-	09	0.0592-	-27	0.0		0.0	0.0
LI	8.9342-05	0.93	<b>\$8</b> ≁0	5 6	).934 <u>8</u> -	05	8.934E	-05	8.9	34B	-05	8.9	392-0	<b>75</b> (	3.9348	-05	8.9348-	05	8.9342	-05	8.9348	-05	8.9342-05	0.9342-05
88	6.8958-05	6.89	52-0	15 6	i. 8958-	05	6.8958	-05	6.0	95 E	-05	6.8	958-0	05 (	5.8958	-05	6.8942-	05	6.0932-	-0 -	6.0908	-05	6.0785-05	6.8152-05
c	1.2122-05	1.21	22-0	15 1	. 2128-	05	1.2128	-05	1. 2	! <b>11</b> 8	-05	1.2	C85-(	05 .	1.1982	-05	1.1692-	05	1.074E-	-05	0.4338	-06	3.6162-06	3.2182-07
CC	7.2992-13	0.0		0	.0		0.0		0.0	)		0.0		(	0.0		0.0		0.0		0.0		0.0	0.0
HI.	2.6198-10	0.0		0	.0	·	0.0		0.0	)		0.0		•	).0		0.0		0.0		0.0		0.0	0.0
Cū	2.3298-09	0.0		6	.0		0.0		0.0	)		0.0	)	•	D.0		0.0		0.0		0.0		0.0	0.0
ZN	3. 27 3E-05	1.74	38-0	10 1	. 7432-	80	1.7438	-08	1.7	432	-08	1.7	432-0	<b>78</b> '	1.7432	-08	1.7432-	00	1.7438-	-08	1.7438	-08	1.7432-08	1.7432-08
GA .	1.7948-05	4.09	32-0	17 4	. 0935-	07	4.0938	-07	۹. (	193E	-07	4.0	932-(	07 (	4.093E	-07	4.0938-	07	4.0938	-07	A. 093E	-07	4.0932-07	4.0932-07
GE	3.0472-01	3.04	58-0	)1 3	1.0458-	01	3.0458	-01	3.0	1958	-01	3.0	452-0	01 :	3.0458	-01	3.0458-	01	3.0452	-01	3.0458	-01	3.0452-01	3.0952-01
A S	9, 3982-02	9.22	98-0	2 9	), 2292-	02	9.2298	-02	9.2	298	-02	9. 2	298-0	D2 1	9. 2298	-02	9.2292-	02	9.2292	-02	9.2298	-02	9.2292-02	9.2298-02
SE	2.598B 01	2.59	0 Z 0	1 2	. 598e	01	2.5788	01	2.5	198 B	01	2.5	985 (	01 :	2.5988	: 01	2.5978	01	2.5958	01	2.5098	01	2.5708 01	2.524E 01
88	9.9908 00	9.90	45 0	0 9	.90 <b>4</b> 2	00	9.984E	00	9.9	845	00	9.9	85E (	00 1	9.9872	; 00	9.9922	00	1.0018	01	1.007E	01	1.0268 01	1.073E 01
K B	1.703E 02	1.69	68 Q	<b>12</b> 1	-689 <u>2</u>	02	1.6728	02	1.6	50 B	02	1.6	085 (	02	1. 5922	: 02	1. 59 1E	02	1. 591E	02	1.591E	02	1.5918 02	1.591E 02
RE	1.5728 02	1.57	98 Q	2 1	- 586E	02	1.603g	02	1.6	258	02	1.6	688 6	02	1.6848	: 02	1.6048	02	1.6842	02	1.6848	02	1.6848 02	1.6848 02
S 8	4.2198 02	4.02	<b>35 0</b>	<b>)</b> 2 3	.9705	02	3-8055	02	3.5	492	02	2.7	978 C	02	1.0202	: 02	1.6208	02	1.6198	02	1-6198	02	1.6198 02	1.6192 02
Ť	Z. 1748 02	2.10	78 0	2 2	. 105E	0 Z	Z. 105E	02	2.1	055	02	2.1	05E (	02 :	2. 105E	: OZ	2. 1058	02	2. 105E	02	2.1055	02	2.1058 02	2.1058 02
2 R	1.631E 03	1.62	42 Q	3 1	• 630 <del>8</del>	03	1.647g	03	1.6	5722	03	1.7	478 (	03	1.0942	; 03	1.8658	03	1.0652	03	1.0648	03	1.0632 03	1.858E 03
<b>N 8</b>	1.7978 01	7.81	25-0	21 1	.83024	02	1. 806E	-03	3.0	96Ë	-03	7.9	368-0	03	2. 4872	:-0Z	7.3262-	02	2.4268	-01	7.2508	-01	2.4128 00	7.1612 00
10	1.4858 03	1.53	JE C	)3 1	.535g	03	1.5358	: 03	1.5	i352	03	1.5	35E (	03	1.5355	; 03	1.535E	03	1.5358	03	1.5358	03	1.5358 03	1.5352 03
ŤC.	3. 5788 02	3. 59	45 0	2 3	. 5992	0 Z	3. 5948	02	3-5	594B	02	3.5	99 <u>8</u>	02	3.5932	02	3.5908	02	3-265	02	3.5598	02	3.4782 02	3.2502 02
RU	1. 1048 03	1.09	48 (	13 1	. 0Z42	03	1.0078	03	1.0	105 e	03	1.0	058	03	1.0052	: 03	1-0052	03	1.0062	03	1.0085	03	1.0168 Q3	1.0382 03
R (1	1.9662 02	2.17	58 C	2 2	L. 1758	02	2.1758	02	2.1	75B	02	Z. 1	758 (	OZ :	2.1758	02	2.1758	0Z	2.1758	OZ	2. 175E	OZ	Z. 1758 02	2.1752 02
PD	5. 525E 02	5.91	62 C	12 C	5.110E	02	6.2022	0Z	6.3	107 E	0 Z	6.3	ICOE (	02 (	6.3081	5 OZ	6.3088	0Z	6.307E	02	6. 307E	02	6. 3068 VZ	6.304E 0Z
AG	3.5042 01	3.54	35 0	1 3	.5342	01	3.5288	01	3.5	205	01	3.5	205 (	01.	3.5201	5 01	3.5288	01	3.529E	01	3.5318	01	3.5392 01	3.560E 01
CD	4.607E 01	4. 92	98 0	01 4	.9385	01	4.9422	01	4.9	14 1B	01	9.9	368	01	9.9332	10	4.7338	01	4-9338	01	4.7338	01	4.7338 01	4.9332 01
IN	1.056E 00	1. 12	42 (	70	- 1292	00	1.1448	00	1-1	164E	00	1.2	108	00	1.2378	00	1.2305	00	1.2308	00	1. 238 8	00	1.2308 00	1,2385 00
SN	4.152E 01	4.13	15 0		+ 125E	01	9.1248	01		ZJE	01		238	01	4. 12 JI	01	4. 12 1B	01	4- 115B	01	4.0705	01	4.0372 01	3.00/2 01
58	1.4652 01	1.34			2365	01	1.0278	01	8.3	14 7 B	00	0.9	345	00	0.9312	00	0.4326	00	0.4326	00	0.4JZB	00	0.4525 00	0.45ZE 00
TZ	2. 2108 02	2.10	58 0	72 Z	. 1955	02	2.2165	UZ	Z-2	27E	02	Z. Z	(39 <u>6</u> (	02	2.2571	5 02	2.2375	02	2.2375	02	2.23/5	UZ	2.2435 02	2.2502 02
I	1.1068 02	1.00	ZE Q	Z	- 00 JE	UZ	1.0035	02	1.0	36 01	02	1.0	DJE (	02	1.0931	5 UZ	1.0035	22	1.0035	02	1-0038			1.00ZE 0Z
X Z	2. 4462 03	2.44	OB C	337	C. TOP	03	Z. 4465	03		190E	03	2.5	INDE I	<b>UJ</b>	2.990	5 03	2.4405	03	2.9905	03	2.4405		4.4405 VJ	6 6668 03
CS	1.2692 03	1	DE C		-2250		1.1/05	0.0				. y. q	1926 1	02	1. 251	5 02	9.0035	22	0.0/75	02			0.0/35 02	0.0005 VZ
BR	6. <i>3</i> 07E 02	0. 3/		22 9	009E	02	7.3372		4.3	/)/8 :**=		743	7795	VZ.		5 03	1.2375	03	1-2305	03	6 6 9 9 9	. 03	**************************************	5 6139 63
LA	5.6205 02	2.01	35 (		3.0135	02	3.0130		2.0	)   35 184 0	02	3.5		02 03	1 084	5 02	3.0135	04	3.9135	01	1 0968		1 0040 01	
CB	1. 20 DE UJ	1_ 10	05 0			03	1.U702	; U3 68 1		170 G	03	E 1	1706 V	03 01	6 46au	5 UJ	5 46 mm	03	E 1589	03	E 456 H	03	5 45 80 AS	5 150705 UJ
6 H	5.00JE 02	3.13	45 (			02	J. 1340			1345	02	2.1	1346 '	02	3.1341 4 BEES	5 02	3.1345		1 8568		1 8568		1 8647 61	1 8847 A3
ND D	1.0/55 03	1./0			.0405	03			1.0	779 <i>8</i>	03	1.0	1205 I	03	1.0301	5 03	1.0205	03	1.0305	03	1.0300	. 03	<b>A A</b>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20	0.00JE U1	3.21	75 0			01	1.0122			)]][			1366-V	0 Z	6. 610X	- 10	2.000	02	2 074-	A7	7 8768		1 474# 41	2 8789 87
50	J. JOUE UZ	3.74			5.04/E	02	3.0070		3.7	7775	02		100	0 Z	4.0125 5 3861	5 02	5 6 9 8 9		5 4839		5 6838		3.7770 VZ	S 4977 A1
6U 6D	7.3002 01	1.23			- VJJC	01	0.70JE		0+1 6 1	/105 988-			105 ' 1869 (	ăi -	J.J. J. D. D.I. 6 . J.K.E.S		6.256	01	6.256		6.2564		6.2568 01	6.2562 01
6 <i>0</i>	3.0235 01	4.00	05 ( Am 4	<b>, , , ,</b>		50	4 475	5 UI	- 3e 4	1775	01	4	1705 ·	ăn -	9.4908	5 UT	9 9770	or.	1 1730	00	1 1744		1 1738 64	1.1739 00
10		4 11	45 ( 88-4	70 1 1 1	1.1725		4 3865			****			1109-4	<b>N</b> 4	6.760		6.3808-		6.386#	-00	6. 3804		6.2808-01	6.3808-01
U1		0.J4	02-1		5 <b>. ]]</b> 5 <b>. ]</b> 5 <b>. ]</b>		C. 3992	-01		77VC	-01		) 40 5 41	01	C. 3901		6 7868-		6 3688	-07	6 3884		6.3128-01	6.7112-07
n V 80	0.JVJE-02	0.27	02*(	12 1	7. ∡7054 7. \$384-		7 634	5-V2	2.4	6705 5389	-02	2.4	5 7 7 5 ° '	82	2 6314	5~VZ	7.5mm=	.02		-02	2.585	-01		,
5.E	2. 3105-02	2.33	:45+( }#w4	) <u>/</u> /	[# 2395- 3 833	02	2.2340	-02	2.	,,,,,, 100-	-02	- 2 - 3	, J 75 - 1 190 - 1	ňŚ.	3.8001	-04	2.19975-	.05	2. 8999	-15	2. 8985	-05	2.2998-05	2.8997-05
10	2. 14 /5403	2.01	100-4	16 -	1 778	.03	7 0004	-04		777E	-0-3 -04	7		06	7 9641	6-0J 6-04	7.9689	.06	7.9644	-04	7.968	2	7.9612-04	7.9642-06
	J. 7/25-VD	- 7.21 - 9.21		70 ( 18		00	4 574	,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				<b>Ah</b>	1 6741		1.571=	02	1 6710		1 5748		1.5718 01	1.5719 04
10186	16 J/ 15 V4	, in 31	46 <b>1</b>		44 J F 65	0.4	- Te 27 18	; <b>v</b> =		,, , C			, 96 J	**		5 V4	**				** 3 * * 0	, v,		

F.125

	DISCHARGE	1. Y	r 2. 11	5 <b>. 1</b> 8	10. YR	30. TB	100. TR 300.	FR 1000. YR	3000. YB 100	00. TH 30000. TH
48	1. 04 18-0 1	1.9038-0	1 2. 2282-01	2.8285-01	3.8258-01	8.231E-01	2. 3642 00 5.6742	00 1.194z 01	1.9102 01 3.2	832 01 5,210¥ 01
52	5.654Z-07	1.2948-0	6 1 <b>.7962-</b> 06	3-0518-06	4.8332-06	9.4242-06	1.3678-05 1.5838-	)5 <b>2.2108-05</b>	3.8082-05 7.8	342-05 1.3948-04
TL	5. 64 8E-13	1.633E-1	2 2.010x-12	5.9898-12	8,775E-12	8.739E-12	4.5422-12 9.2078-	13 9.1748-13	2.6958-12 9.0	218-12 2.6238-11
PB	1.0482-07	4. 55 0Z-0	7 1.1782-06	5.5702-06	1.8028-05	7.8432-05	2.2408-04 3.6008-	)4 5.966 <b>2-0</b> 4	5.0578-03 1.0	06z-01 1.168z 00
BI	4-9068-11	1. 19 28-1	D 1.9362-10	3.9762-10	6.0702-10	9.7842-10	6.5518-09 1.451E-	D7 6.981x-06	2.5838-04 1.0	452-02 2.0882-01
PO	2. 87 3X-14	7. 84 3E-1	4 1.5892-13	7, 3392-13	3.9932-12	6.3398-11	1.4402-09 2.0542-	08 2.9648-07	2.1998-06 1.2	728-05 4.4438-05
1T	4. 89 12-20	1.3402-2	0 1.3812-20	1.5312-20	1.8538-20	4.0572-20	2.4438-19 2.2518-	18 3. 5032-17	4.2108-16 4.6	158-15 2.6728-14
88	5.3708-13	1.5148-1	2 2.608E-12	5.6248-12	8.6982-12	1.446E-11	7.8292-11 7.418E-	10 8.6748-09	6.4362-08 3.7	228-07 1.3008-06
28	5. 09 1E- 1 €	2.6158-1	6 3.4282-16	5.8592-16	9.885z-16	2.596E-15	8.9228-15 3.9558-	14 3,846E-13	4,0448-12 4.2	905-11 2.4662-10
88	8.790K-09	1.9418-0	8 3.2592-08	8. 1982-08	1.9178-07	1.097E-06	1. 1602-05 1. 1542-0	04 1.3518-03	1.0021-02 5.7	948-02 2.0258-01
AC	2.2832-09	5.2098-0	9 8.1178-09	1.673z-08	3.0742-08	8.3532-08	2.5098-07 7.1018-0	07 2.384E-06	6,9458-06 2.2	618-05 6.3098-05
Ť A	5. 84 58~04	8- 66 12-0	4 1.1508-03	2.0082-03	3,4632-03	9.5718-03	3.3942-02 1.1678-	01 4.3258-01	1.3398 00 4.4	60E 00 1.263E 01
PL	1.5018-04	1.5428-0	4 1.578z-04	1.6838-04	1.859E-04	2.5652-04	5.0428-04 1.2118-0	3 3,6712-03	1.0648-02 3.4	448-02 9.5468-02
0	4.412E 05	4.4128 0	5 4.4128 05	4.4128 05	4.412E 05	4.4128 05	4.4128 05 4.4138	05 4.414E 05	4.4178 05 4.4	252 05 4.4368 05
NP	2. 39 2E 02	2.036E 0	2 2.0378 02	2.041E 02	2.056E 02	2. 1658 02	2.7142 02 4.0882	02 6.5418 02	7.6768 02 7.7	078 02 7.6578 02
60	4. 18 72 03	4.2068 0	3 4. 181g 03	4. 1128 03	4.0168 03	3.7928 03	3.630g 03 3.568g	3 3.4478 03	3. 1468 03 2.3	648 03 1.2628 03
24	5.449E 01	8.0628 0	1 1.0552 02	1.7318 02	2.6572 02	4.6972 02	5.4448 02 4.0908	02 1.570x 02	3.5148 01 1.6	038 01 2.6188 00
CH	1.425B 01	9.7768 0	0 8.5748 00	7.451E 00	6.1762 00	2.9448 00	3.0528-01 9.8358-	02 9.073E-02	7.3098-02 3.5	338-02 5.4618-03
BK	4.6112-08	2.0928-0	8 9.4822-09	8.8338-10	1.691E-11	2. 2718-18	6.3228-23 6.2718-2	23 6.0998-23	5.6328-23 4.2	618-23 1.9218-23
CY	1.6912-08	4. 1312-0	8 5, 1958-08	5.8528-08	5.6832-08	5.0928-08	4.2682-08 2.8932-	08 7.561E-09	2.4058-10 4.6	628-13 7.7898-19
B S	2.5618-12	2.3288+1	9.2548-15	5.8878-16	5.9688-18	6. 3058-26	0.0 0.0	0.0	0.0 0.0	0.0
TCTAL	4.4578 05	4.4578 0	5 4.4578 05	4.4578 05	4.4578 05	4.457E 05	4.4578 05 4.4578	05 4.457E 05	4.4578 05 4.4	578 05 4.4578 05

1.1

TABLE F.3G. Grams of Heavy Elements in a PWR Assembly

F.126

Ν

TABLE F.3H. Curies of Light-Element Isotopes in a PWR Assembly

DISCHARGE 300. TR 1000. TR 3000. TR 10000. TR 30000. TR 1. 18 2. 18 5. TR 10. TR 30. TR 100. TR 8 3 1. 2148 02 1. 1488 02 1. 0858 02 9. 1618 01 6. 9118 01 2. 2398 01 4. 3348-01 5. 5228-06 4. 0778-23 0.0 0.0 0.0 6.8538-01 6.8528-01 6.8518-01 6.8488-01 6.8448-01 6.8288-01 6.7702-01 6.6088-01 6.0728-01 4.7678-01 2.0448-01 1.8198-02 C 14 5. 1268-03 5. 1268-03 5. 1268-03 5. 1268-03 5. 1268-03 5. 1268-03 5. 1258-03 5. 1238-03 5. 1158-03 5. 0928-03 5. 0138-03 4. 7948-03 CL 36 HN 54 4.5328 01 1.9658 01 8.5228 00 6.9488-01 1.0668-02 5.0898-10 0.0 0.0 0.0 0.0 0.0 0.0 28 55 2. 5728 03 1. 9708 03 1. 5098 03 6. 7028 02 1. 7088 02 8. 6448-01 6. 7938-09 0.0 0.0 0.0 0.0 0.0 3. 1578 03 9. 0628 01 2. 6018 00 6. 1508-05 1. 1988-12 0.0 0.0 0.0 0.0 0.0 C0 50 0.0 0.0 3.6292 03 3.1812 03 2.7002 03 1.0702 03 9.7162 02 6.9642 01 6.0672-03 2.4592-14 0.0 CO 60 0.0 0.0 0.0 2.1188 00 2.1188 00 2.1188 00 2.1178 00 2.1178 00 2.1178 00 2.1168 00 2.1128 00 2.0998 00 2.0638 00 1.9428 00 1.6338 00 NI 59 3. 06 18 02 3. 03 88 02 3. 0158 02 2. 9488 02 2. 8398 02 2. 4428 02 1. 44 18 02 3. 1938 01 1. 6378-01 4. 6778-08 0.0 0.0 NI 63 88 65 6.346E 01 2.259E 01 8.037E 00 3.620E-01 2.068E-03 2.187E-12 0.0 0.0 0.0 0.0 0.0 0.0 1.099E-01 1.099E-01 1.099E-01 1.099E-01 1.099E-01 1.099E-01 1.099E-01 1.099E-01 1.099E-01 1.097E-01 1.097E-01 1.097E-01 1.097E-01 22 93 2. 1428 04 4.4898 02 9.4068 00 8.6568-05 3.4968-13 0.0 0.0 0.0 0.0 0.0 0.0 ZR 95 0.0 6.576E-03 1.181E-02 1.674E-02 2.995E-02 4.746E-02 8.325E-02 9.940E-02 9.967E-02 9.962E-02 9.948E-02 9.097E-02 9.753E-02 RB 931 6.2428-01 6.2428-01 6.2428-01 6.2418-01 6.2408-01 6.2368-01 6.2208-01 6.1778-01 6.0298-01 5.6258-01 4.4138-01 2.2058-01 #B 99 2. 1908 04 9. 4948 02 2. 0858 01 1.8678-04 7.5438-13 0.0 0.0 HB 95 0.0 0.0 0.0 0.0 0.0 1. 3962-02 1. 3962-02 1. 3965-02 1. 3952-02 1. 3932-02 1. 3672-02 1. 3642-02 1. 3032-02 1. 1082-02 6. 9812-03 1. 3852-03 1. 3622-05 10 93 TC 99 4. 1282 02 4. 5682 01 5.0542 00 6.8448-03 1. 1052-07 8. 34 12-27 0.0 211137 0.0 0.0 0.0 0.0 0.0 4. 1268 02 4.5658 01 5.0518 00 6.6598-03 1.1048-07 8.3368-27 0.0 58113 0.0 0.0 0.0 0.0 0.0 3. 08 28 03 1. 0978 03 3. 9028 02 1. 7588 01 1.0058-01 1.0668-10 0.0 5#1191 0.0 0.0 0.0 0.0 0.0 58123 1.489E 02 2.094E 01 2.944E 00 8.160E-03 4.484E-07 4.090E-24 0.0 0.0 0.0 0.0 0.0 0.0 7.8758 02 6, 1878 02 4, 8008 02 2, 2418 02 6, 2968 01 3.9278-01 7.5018-09 0.0 0.0 0.0 0.0 0.0 S 2125 TE1258 1.6712 02 1.5072 02 1.1722 02 5.4722 01 1.5302 01 9.5892-02 1.8322-09 0.0 0.0 0.0 0.0 0.0 5. 02 3E 04 9. 08 2E 03 5. 76 1E 03 3. 24 3E 03 1. 56 5E 03 3. 4 1 2E 02 1. 46 2E 02 3. 55 5E 01 3. 696E 00 3. 32 1E 00 2. 000 B 00 2. 07 9E 00 SUNTOT 2.070E 05 9.098E 03 5,762E 03 3.244E 03 1.586E 03 3.414E 02 1.402E 02 3.555E 01 3.696E 00 3.321E 00 2.000E 00 2.079E 00 TCTAL

# TABLE F.31. Curies of Fission-Product Isotopes in a PWR Assembly

	DISCHARGE	1.	TR	2.	Y R	5.	TR	10. TS	R .	30. YP	100. YR	300. YR	1000. TR	3000. YR	10000. YR	30000. TR
чэ	2.5578 02	2.8178	02	7. 2852	02	1. 9298	02	1.456K 02	) A	7162 01	9-1298-01	1.1638-05	8.5868-23	0.0	0.0	0.0
< ¥ 79	1 98 84-01	1. 88.68	.01	1. 8888-		1. 6885	.01	1.8888-01	11	- 8878-01	1.0868-01	1.8828-01	1.8682-01	1.8288-01	1.6978-01	1.3718-01
KD 85	4.3678.03	# 095m		3 8 199	ăì	3. 1628	63	2.2898 03	iż	. 7898 07	6.8348 00	1.6732-05	1.8198-25	0.0	0.0	0.0
<p 99<="" td=""><td>3 6410 05</td><td>2 700</td><td>03</td><td>2 1698</td><td><b>1</b></td><td>9 756 .</td><td>.06</td><td>2.6158-14</td><td>ŝ</td><td></td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></p>	3 6410 05	2 700	03	2 1698	<b>1</b>	9 756 .	.06	2.6158-14	ŝ		0.0	0.0	0.0	0.0	0.0	0.0
58 60	3.4932 04	3.4088	0.	1. 125	Ő.	3.0878	0.	2.7298 04			2.9688 01	2. 1388 01	6.7808-07	2. 5898-78	0.0	0.0
¥ 90	3. 68.88 DA	1.4092	0.	3. 125#	0.	1.0888	04	2.7308 0		. 6672 04	2.965# 03	2.138z 01	6.7828-07	2.5508-28	0.0	0.0
¥ 91	4.78AH 05	6.4038	a1	A. 511E	01	2.000#-	-04	A. 1088-14			0.0	0.0	0.0	0.0	0.0	0.0
<b>XD 93</b>	1 3428 00	1. 34 12	00	1. 3432	00	1.3438	00	1.3438 00	0 1	. 1818 00	1. 3428 00	1. 342# 00	1. 3428 00	1. 3408 00	1. 1318 00	1.1138 00
WR 934	9. 6772-07	1.6068	-01	7. 2328-	.01	1. 90AR-	-01	6.1788-01	ii	. 0678 00	1.2728 00	1-2758 00	1. 2758 00	1. 2738 00	1.2668 00	1.2849 00
78 95	6.8932 05	1. 4452	0.	1.027#	0.2	2.7868.		1.1268-11	1 0	. 0	0.0	0 0	0.0	0.0	0.0	0.0
WE 95	7.013# 85	3.05.6#	04	6.7108	82	6.007R-	.03	7.8288-11	iŏ	. 0	0.0	0.0	0.0	0.0	9.0	9.0
#C 99	6.095# 00	6.12AE	00	6. 1748	00	6. 1242	00	6.1248 G	6 6	1288 00	6.1228 00	6.118# 00	6. 104 × 00	6.065# 00	5.927# 00	5.5528 00
BØ 10 3	6.8728.05	1. 14 92	03	1.9558	00	9.1308-	.09	1. 1918-22	20		0.0	0.0	0.0	0.0	9.0	0_0
RH 103M	6.8742 05	1. 1508	43	1.9578	00	9.1392-	-09	1.1928-22	20	. 0	0.0	0.0	0.0	0.0	9.0	0.0
80106	2.597# 05	1. 3088	05	6. 5848	0.	A. 605E	őí	2.7208 02	2 2	9858~04	6.1308-25	0.0	0.0	0.0	0.0	0.0 /
88106	2.8678 05	1. 3088	05	6. 5842	04	8.4058	03	2.7208 02	2 2	9452-04	4. 1308-25	0.0	0.0	0.0	0.0	0.0
PD107	5.1808-02	5. 18 18	-0.2	5. 1812-	.0.2	5. 1818-	-02	5-1818-02	2 5	. 1812-02	5. 18 18-02	5. 18 18-02	5. 1808-02	5. 1798-02	5. 1758-02	5-1648-07
SB125	6.0028 03	5. 32 38	03	4.1298	03	1. 92AR	03	5.4168 02	2 3	3768 00	6.4458-08	0.0	0.0	0.0	0.0	0.0
T #1258	1. 4398 03	1.2978	03	1.0088	03	4.70AE	02	1. 32 38 02	28	. 2428-01	1.5748-08	0.0	0.0	0.0	9.0	0_0
5#126	3.5778-01	3.5778	-01	3.5778-	01	3. 5778-	-01	3. 5778-01	īš	.576E-01	3. 5758-01	3. 5708-01	3.5538-01	3. 5048-01	3.3388-01	2-9058-01
S#126	5.0678.02	5.0088	-02	5.0082-	02	5.0088-	02	5.0088-02	2 5	0078-07	5-0052-02	8.998E-02	8.9738-02	9.9058-02	4.6732-02	4.0678-02
SB126M	2. 28 38 02	3. 5778-	-01	3. 5778-	01	3.5778-	-01	3-5778-01	īī	- 576E-01	3. 5758-01	3. 5708-01	3.5528-01	3.5048-01	3. 1382-01	2.9058-01
1129	1.4228-02	1.4448	-02	1.4448-	02	1.4448-	-02	1.4448-02	2 1	4442-02	1.4442-02	1.4448-02	1.4448-02	1.4432-02	1.4432-02	1.4422-02
CS 134	7. 1278 04	5. 09 1E	04	3.6378	04	1. 3258	04	2.4648 0	3 3	.003E 00	1.7738-10	0.0	0.0	0.0	0.0	0.0
CS135	1.7118-01	1.7148	-01	1.7148-	01	1.7148-	01	1.7148-01	ĪĪ	714E-01	1.7148-01	1.7148-01	1.7188-01	1.7138-01	1.7098-01	1-6998-01
C\$137	4.786X 04	4.6778	04	4.5708	Ô4	4. 2658	04	3.8018 00	ŝ 2	. 3982 04	4.7852 03	4.7838 01	4.7772-06	4.7598-26	0.0	0.0
BA1378	4. 5378 04	4.4248	04	4.3248	04	4.0358	04	3.5968 04	2	.269E 04	4.5262 03	4.5258 01	4.5198-06	4.5028-26	0.0	0.0
CE144	5.5778 05	2.2902	05	9.4008	04	6.504E	03	7.5878 01	1 1	. 4042-06	0.0	0.0	0.0	0.0	0.0	0.0
P2144	5.6188 05	2.2908	05	9.400g	04	6. 5048	03	7.5878 0	1 1		0.0	0.0	0.0	0.0	0.0	0.0
P2144#	6.699E 03	2.7488	03	1. 128g	03	7.8058	01	9.1042-01	ii	- 6842-08	0.0	0.0	0.0	0.0	0.0	0.0
PH147	5.9808 04	8.837z	04	3.714Z	04	1.6812	04	4.4858 03	32	.2808 01	2. 1128-07	0.0	0.0	0.0	0.0	0.0
S#151	1.7318 02	1.7498	Ô2	1.7362	02	1.6972	02	1.6358 02	2 1	4098 02	8.358E 01	1.8812 01	1.0178-01	3. 383 8-08	0.0	0.0
80154	4.9028 03	4. 52 28	03	4.1728	03	3.2758	03	2.1888 01	3 4	. 360E 02	1.5338 00	1.5138-07	0.0	0.0	0.0	0.0
80155	3.2058 03	2.7748	03	2. 4012	03	1.556E	03	7.5578 02	2 4	.2028 01	1.703E-03	4.8088-16	0.0	0.0	0.0	0.0
SUNTOT	5. 5988 06	1.056E	06	5.6682	05	2.155E	05	1.4248 0	5 8	. 1342 04	1.5348 04	1.646E 02	1.0012 01	9.6478 00	9.6478 00	9.108# 00

TOTAL 7. 2938 07 1. 0598 06 5. 6738 05 2. 1558 05 1. 4258 05 8. 1358 04 1. 5348 04 1. 6468 02 1. 0018 01 9. 8478 00 9. 6478 00 9. 1088 00

•)

X

	DISCHARGE	1.	TR	2.	YR	5.	TR	10. 1	ŧ	30.	r#	100 <b>.</b> TR	300 <b>.</b> TR	1000.	TR	3000.	T 8	10000.	18	30000.	TR
P 2 10	2. 20 6E- 10	a. 88 28	- 10	9.3965	-10	3. 9962	-09	1.7908-0	8 2	. 8562-0	07	6.4892-06	9.2598-05	1.3368	-03	9.9148-	03	5.7332	-02	2.00 32	-01
P8219	5.8732-09	1. 104E	-06	1.814g	-08	5. 1138	-08	1.4578-0	17 1	1.0412-	06	1,1458-05	1. 1422-04	1, 3362	-03	9.9148-	03	5.7338	-02	2.0038	-01
81210	2.2272-10	4.885E	~ 10	9.4002	- 10	3.9972	-09	1.7912-0	18 1	2.0562-	07	6.4898-05	9.2598-05	1.3368	-03	9.9142-	03	5.7332	-02	2.0032	-01
81214	5. 87 38-09	1. 1048	-08	1.8145	- 08	5.113E	-08	1.4572-0	7 1	1.0412-0	06	1.1452-05	1. 1428-04	1.3368	-03	9.9148-	03	5.7338	-02	2.0038	-01
P0210	1.2352-10	3. 36 3E	-10	6.862E	- 10	3. 2458	-09	1.7912-0	0 2	2.8562-	07	6. 4898-06	9.2598-05	1.3362	-03	9.9148-	03	5.7338	-02	2.0018	-01
P0214	8, 3202-09	1. 10 .8	-08	1.0142	-08	5. 113E	-08	1.4572-0	17	.0418-	06	1.1458-05	1.1428-04	1.3362	-03	9.9148-	03	5.7332	-02	2.0018	-01
P0218	5. 87 38-09	1. 10 *8	-08	1.8148	-08	5.113E	-08	1.4572-0	7 1	.0416-0	06	1. 1458-05	1. 1428-04	1.3368	-03	9.9142-	03	5.7338	-02	2.0018	-01
R#222	5.8738-09	1. 1042	-08	1.8148	-08	5. 1138	-08	1.4572-0	7	. 04 18-	06	1.1458-05	1.1428-04	1.3368	-03	9.9148-	ŏĩ.	5.7118	.07	2.0032	-01
RA226	5. 6672-09	1. 10 48	-08	1.0142	- 08	5.1138	-08	1.4578-0	7 1	0418-	06	1. 1458-05	1.1828-04	1.3368	-03	9.9188-	ă.	5.7118	.07	2.0018	-01
TH230	9.7172-06	1. 4178	-05	1.0658	-05	3. 2248	-05	5.5382-0	5 1	. 5388-0	80	5.5648-04	1. 9602-03	7.3588	-03	2-2678-	02	7.3682	-07	1.9902	-01
TH234	1.4538-01	1.4518	-01	1.4522	-01	1. 1518	-01	1.8512-0	<u>,</u>	1.8518-	01	1.4518-01	1-8518-01	1.4518	-01	1.4518-	ñī.	1.0518	-01	1.8512	-01
PA233	1.3462-01	1. 4368	-01	1.9368	-01	1.4408	-01	1.4502-0	1	5268-	01	1.9142-01	2.8838-01	8.6132	-01	5.8118-	01	5. 8358	-01	5.0002	-01
PA2348	1.4722-01	1. 45 18	-01	1.4528	-01	1.4518	-01	1.4518-0	1	. 4512-	01	1.4518-01	1. 85 18-01	1.4518	-01	1.8518-	01	1.0518	-01	1.4512	-01
11234	5.1252-01	5. 1542	-01	5. 18 12	-01	5. 2728	-01	5. 8158-0	ni e	5.9352-	01	7.2318-01	8.6835-01	9.0088	-01	8.968 8-	<b>.</b>	A. 8212	-01	8.8192	-01
0236	1. 1592-01	1. 15 98	-01	1.1598	-01	1.160E	-01	1.160E-0		. 161E-0	01	1. 1668-01	1. 1605-01	1.2758	-01	1. 1178-	ă1	1.5908	. ň t	1.7492	-01
0238	1.4512-01	1. 45 18	-01	1. 45 18	-01	1.4516	-01	1.4512-0	HÎ -		0 t	1.8518-01	1.4518-01	1. 1518	-01	1.8518-	01	1.8512	-01	1.8512	+11
#\$237	1.4038-01	1. 1368	-01	1. 4368	-01	1. 1102	-01	1.8508+0	1	- 5268-	ō1	1.9182-01	2.8838-01	8.6112	-01	5.8132-	ăi.	5.4752	-01	5.8002	- 11
1239	9. 2368 06	7.6318	00	7.6308	00	7. 6288	00	7.6258 0	0 1	.611E	00	7. 56 38 00	7. 1278 00	6.9718	00	5.8158	00	1.0848	00	5.0168	-01
20238	9.8328 02	1.0548	03	1.0618	03	1.0408	03	1.001R C	13 1	564E	02	8.970E 02	1-0528 02	8.8678	-01	8.561R-	ňě.	6.1898	-20	0.0	
Pm239	1.4008.02	1. 82 82	02	1.8712	02	1.8288	07	1.8288 0	2.1	. 8238	ñ2	1. 8718 07	1.4138 02	1.3878	ñ2	1.1140	ñž.	1.04.52	67	6. 2819	
P#240	2. 1588 02	2. 35 88	02	7. 1598	02	2. 1608	07	2.3618 0	2	7. 161E	n2	2. 1528 02	2. 3058 02	7.1858	ň2	1.7878	ñ2	8 5252	ňi	1.0075	
P#781	5.7362.04	5. 87 08	08	5. 2168	0.4	8. 5788	0.	3.5688 C	10	1. 3808	0.	8.975E 02	4.7588-02	9.5818	-Ň3	8. 10 18.				8.8191	
Pm282	R. 2948-01	A. 29 52	-01	8.2958	-01	8.2958	-01	8.2958-0	ñ 1	1. 2982-	0 t	5.2942-01	8.2012-01	8.2618	-01	8 7518-		8 1878.	-01	7 8559	
17261	5.0158.01	1. 1978	02	7.7898	87	4.5678	62	7.7408 0			n t	1.7318	1.2698 01	A. 139P	0.2	1.6852	01	8 7389		8.8197	-01
1 # 28 2	7.6717.00	7 6312		7.6300	ňň	7. 5789	60	7 6758 6		6118	ññ.	7 5632 00	7 8279 86	6 9710	00	5 8159	ňň	3 0882	00	8 034	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 74 38 04	1 71 70	01	7.0505	62	9.0205		1 6619 6	n -	1. 8170 (	ññ	1.0267 00	A 1778-01	1.4989	- 6.7	1 4562-	.04	3.0040	. 26	7.VJ0E	5-01
CU272	7 0010 07	5.477P		A \$700	02	5 6570	0.0	R 816P F	19 .	3 3880 ·	n 3	1 5819 61	7 7680-01	1 1 JJ775	- 48	1.0375*	90	6 - 24 OD	- 40	8 8	
SURTOT	9. 31 3E 06 (5.068E	04	5. 5298	04	4.7728	04	3.0332 0)ų -	1.676E	04	3.1372 03	1.764E 03	7.047B	02	3:301E	02	2.0388	02	7.9312	. 01
TCTAL	1.9328 07	6. 06 92	04	5.5302	04	4.773e	04	3.8342 0	.	1.6768	04	3. 140E 03	1.765E 03	7.8482	02	3.3812	02	2.0402	02	7.9782	: 01

TABLE F.3J. Curies of Heavy-Element Isotopes in a PWR Assembly

2 m - 41 **3 *** 44

١

F.129

ò

APPENDIX G

GRAPHICAL RESULTS OF HYDROLOGIC AND TRANSPORT SIMULATIONS

. (

APPENDIX G GRAPHICAL RESULTS OF HYDROLOGIC AND TRANSPORT SIMULATIONS

This appendix shows the output from the VTT hydrologic model, and shows the plots of concentration versus time for the geotransported radioisotopes as simulated by the MMT model. The scenarios used in this appendix are:

PIR1, base case, times 200 and 1000 (Scenario 1)

PIR2, East Texas field removed, Sabine discharge (Scenario 2)

PIR3, East Texas field removed, Big Cypress discharge (Scenario 2)

PIR4, well scenario (Scenario 3)

PIR5, PIR2, but lower Kd values (Scenario 4)

APPENDIX G.1 AND G.2: OUTPUT FROM VTT HYDROLOGIC MODEL

TABLE G.1. Printer Map of Model Results for Sabine-Big Cypress Bayou Discharge. Model generated aquifer potentiometric surface (ft MSL)

COLUMN	*****	*****			-			***							***				****	****	***	***	****	*****
LINE	,	•		•	•				, 11			. 11		. 83					68	6 1	22	23	24	27
63.																								
64+																								
63+																								
62+																								
614																								
68.																								
59+																								450
58+																							458	432
57+																						458	437	420
564																						450	431	414
55+											458	438	438	458							458	443	427	411
54+								434	450	449	451	458	458	449	450					458	443	433	418	485
534						45R	458	458	446	443	439	442	442	442	444	458			458	435	425	415	484	395
52+	i i			•	458	468	415	431	422	425	424	428	438	429	431	435	458	438	42\$	415	486	398	398	382
51+				458	435	448	426	417	415	413	418	415	415	414	416	414	417	414	485	398	392	386	379	372
50+				458	442	428	421	415	416	485	463	487	467	487	486	485	482	399	393	387	385	377	372	346
494			454	445	437	424	423	418	418	483	399	488	401	488	399	397	394	391	386	381	376	372	367	363
48+			45A	439	430	422	419	415	492	462	397	393	394	344	393	345	389	385	381	377	373	369	365	361
47+		458	435	*55	416	418	484	482	399	395	392	388	385	384	388	387	384	381	378	374	371	367	364	359
46+		450	344	383	394	388	377	385	391	385	382	385	381	388	382	342	388	378	375	372	369	365	361	354
45+		258	427	498	377	315	369	370	388	365	378	374	375	376	377	374	375	374	372	369	366	363	359	354
44+		450	442	414	364	373	368	364	368	358	363	367	378	371	372	372	372	371	369	367	364	368	354	351
434			45A	427	37#	344	315	344	342	355	355	341	345	367	368	368	368	368	368	365	361	358	353	349
42+				459	374	395	382	312	364	358	356	355	365	365	366	365	365	364	363	361	358	354	350	346
41+					458	423	484	385	358	353	354	361	364	364	364	363	365	361	360	357	334	351	347	342
494					450	436	410	398	363	378	371	368	367	365	363	361	368	354	356	354	351	347	343	3.59
394				424	447	638	432	498	412	446	388	376	378	366	362	36#	357	355	351	350	346	343	339	336
34-			434	421	413	437	406	483	495	444	411	392	373	354	391	337	322	332	349	346	342	340	.336	333
			430	483	474	487	476	447	388	280	433	346	373	392	337	\$22	125	349	343	342	339	336	334 -	338
34.							Ras	1 44	388	467	427	397	373	393	333	331	343	345	341	372	336	332 -	331	351
344						S (1.6	481		4/3			373	397	334	391	347	344	341	330	332	333	330	320	343
33.					548	471	452	417		144	175	313	305	111	144	344	341	330	234	336	367 198	321	329	322
32+				588	456	438	415	462	388	374	34.2	355	354 358	344	346	117	337	118	126	320	821	323	301	317
31+			425	438	416	481	389	379	378	361	353	344	344	345	334	313	330	324	122	767 318	314	314	313	213 112
39+			434	488	398	387	377	368	368	333	344	344	348	336	133	329	326	122	316	314	326	349	318	314
29+				398	387	377	368	361	354	348	344	.348	336	332	329	325	322	318	315	312	389	388	388	3#7
28+					377	367	340	353	344	343	339	335	331	328	324	321	318	315	313	318	388	387	386	386
27+						356	351	346	342	337	334	330	327	323	328	317	314	312	318	398	384	365	384	384
26+						345	343	348	336	132	328	325	322	319	316	313	311	388	106	323	383	382	382	342

G.3

52+	348 337	334	338	358	323	328	317	314	315	384	387	395	383	381	388	299	299	299
24+	333	83E	324	328	317	315	312	318	397	383	383	391	299	298	297	596	295	296
4 2 5		353	318	315	315	318	387	385	385	381	544	297	295	294	213	293	292	293
5			311	344	384	384	382	381	298	295	294	293	291	298	298	289	289	224
410			383	392	381	388	278	296	294	292	278	249	287	284	285	285	254	285
29+			297	297	295	293	293	241	298	288	286	285	285	282	281	288	283	213
194			292	291	291	898	285	287	285	283	282	289	279	278	277	276	275	276
18+			287	286	286	285	285	282	289	279	277	276	275	273	272	272	272	212
17+			282	242	281	888	279	278	274	275	273	272	278	269	885	267	263	269
16+			518	278	277	276	274	273	272	278	269	267	266	263	265	264	262	266
15+			275	274	273	271	279	269	257	264	254	263	245	59S	501	561	261	265
14+				279	594	267	266	264	242	261	248	259	258	257	257	257	257	\$29
13+				266	592	263	262	263	238	254	855	254	253	272	828	252	293	254
124				592	261	260	25A	256	254	258	251	249	248	247	247	247	247	248
11+					258	257	255	252	258	248	246	245	243	242	242	242	242	243
18+					522	253	251	249	245	244	241	239	528	237	236	236	237	257
94						521	248	245	545	\$24	520	234	5 39	528	538	528	524	645
							245	541	531	234	531	558	559	55 4	553	555	555	591
7.4								532	575	554	559	553	550	21 4	519	514	214	515.
64								554	556	553	558	217	214	518	207	283	245	582
5=								225	8 55	511	214	215	592	58 8	594		586	5×8
4=									512	515	288	245	208					
3+									584	285	588	208						
2+										59 u								
1+																		

G.4

MODELEO POTENTIALE FOR THE SABINE - BIG CYPRESS BAYOU DISCHARGE MAX= R,5RARE+RS MIN= B,19192+85 RAB= B,38426263 PLUS MEANS NEW IS MIGHER Avg= G,2882+R3 P Active Nodes= 2703 Avg POS= 296,8679 PDS= 2763 Avg NEG= 8,8888 B HEG= 8 RABE FILE NAME NULL,FIL NEW FILE NAMEDPITPIR3POT.481

27• 324 304 304 304 305 305 306 306 306 307 308 311 314 315 315 314 369 301 294 285 276 265 248 233 224 26. 342 302 303 304 304 305 305 307 308 318 314 328 324 325 323 322 317 308 297 287 276 264 249 236 225 25+ 304 301 302 303 344 385 307 304 311 314 322 338 334 332 328 324 316 308 298 286 275 266 258 251 203 24. 247 244 388 382 384 385 386 318 318 319 329 348 345 345 334 327 319 388 297 286 275 268 262 257 251 23+ 244 244 244 341 383 385 385 311 315 324 337 347 352 358 343 332 328 387 284 285 287 278 264 257 254 224 248 243 245 248 381 384 368 318 318 318 344 333 358 356 364 336 381 388 246 286 278 271 265 268 254 21. 285 287 298 293 297 342 347 313 321 334 347 359 367 368 351 339 324 389 296 286 277 271 264 259 252 28+ 284 281 285 289 293 298 304 312 322 333 347 361 369 361 351 341 326 318 296 285 274 269 262 256 266 19. 276 477 288 284 289 294 381 389 318 331 343 343 343 344 332 345 329 311 293 282 273 248 248 257 253 16. 272 273 275 279 284 298 297 305 315 326 338 352 357 355 349 342 332 319 346 294 264 274 266 261 257 170 209 274 271 275 279 243 291 308 319 336 342 349 351 346 343 335 324 315 301 281 282 274 267 261 16+ 266 267 268 274 274 275 283 293 302 312 323 334 344 358 351 344 338 328 317 326 296 291 285 278 267 15. 263 264 265 264 267 278 284 292 302 313 327 302 353 361 373 394 331 321 311 303 301 297 298 276 14. 259 268 268 261 265 266 278 275 262 289 299 317 341 359 371 353 358 352 325 315 361 364 383 299 291 13. 254 255 255 255 256 257 268 264 272 284 305 321 336 334 336 324 328 319 312 295 299 308 308 295 12- 246 244 246 246 246 251 254 264 269 262 293 362 366 388 386 386 386 386 297 291 294 296 297 11+ 243 242 241 248 248 248 243 247 253 248 267 273 278 283 284 284 291 293 296 292 286 289 293 293 18- 235 233 232 231 238 238 238 232 234 237 248 244 249 257 264 269 274 276 282 284 283 281 282 281 9. 226 226 224 223 221 219 216 217 217 217 215 216 216 222 231 241 249 256 262 268 275 474 471 273 273 s. 219 217 216 216 211 218 288 287 286 285 285 288 288 288 211 222 231 238 244 252 261 265 261 263 264 145 425 425 525 545 255 755 555 715 115 045 74 211 209 246 245 245 246 242 239 284 248 64 204 205 203 202 200 200 216 248 268 211 215 225 217 246 251 253 289 289 288 288 218 222 234 241 244 3+ 288 295 288 288 248 289 228 229 233 84 244 288 215 219 34 208 281 289 24 288 248 14

TABLE G.1. (contd)

COLUMN ************************************	••••••••••••••••••••••••••••••••••••••
LINE	
63*	
64+	
63•	
62+	
61•	
68* 884	· · · ·
37- 8A e	
57±	
56+	
55+	
34+	
33+	
324	
51+ 288	
32+ 295	· ·
49+ 283	
48.	
47-	
454	
48+	
43+ 204	
424 289 208 244	
41+ 223 213 224 288 288 288	
48º 253 254 258 248 257 223 248 288 288	
39+ 274 276 278 252 258 248 230 218 21	M S
38* 28* 28* 291 287 276 264 256 233 214 25	80
374 273 276 384 276 268 275 236 288 1.4 398 341 383 888 289 245 389	
15+ 265 297 299 293 278 252 288	·
34. 276 298 293 286 273 249 223 289	
33+ 246 202 205 284 269 253 236 228 288	
32+ 257 274 276 276 276 261 258 257 222 20	88
31+ 259 268 274 274 273 268 268 251 243 21	35
38+ 254 261 266 271 278 274 269 262 258 23	58
29+ 246 251 257 264 271 278 276 269 265 28	56
28+ 236 241 253 257 264 269 273 269 264 26	56
27+ 223 234 242 234 236 251 266 263 267 26	st

٠.

TABLE G.2. Printer Map of Model Results for East Texas Oil Field Area Discharge. Model generated aquifer potentiometric surface (ft MSL).

COLUMN	*****			****		****		••••	****	****		****		****				****	****		****	••••	****	*****
LINE	•	e 3	•	3	•	• •	•		10	11	11	13	34	19		1.	14	14	<i>c</i> •	# 1	22	23	24	12
													·											
4.4.4																								
4.74																•								
• • • •																								
414																								
49.																								
594																								
574																								- JU A 1 3
574																	•						436	426
561																						***	430	412
95.														4 a f							488	- ,0	***	
544								452	***	445	421	450	446	4.49	450			·			443	413	444	
514						458	414	450			439			441		***			410	415	421	413	442	142
521					452		415	431	422	425	424		474	429		411	AR <i>A</i>		427	412	483	384	184	378
51+				450	435	448	426	417	A15	413	418	414	415	415	414	414	A15	411	481	195	388	142	175	34.8
58+				450	441	425	421	415	483	485	485	486	485	625	484	422	489	396	392	383	376	373	347	341
49+			458	845	437	128	423	418		403	199	199	199	395	197	395	381	147	382	376	371	347	348	357
48+			458	439	43P	422	419	415	428	481	396	392	393	392	391	389	325	381	374	372	368	364	349	395
47+		438	435	422	416	499	424	482	398	395	391	388	385	386	185	384	381	377	373	349	365	365	358	393
464		450	190	363	394	348	377	382	381	345	381	381	388	379	385	378	376	173	378	366	343	359	155	358
45=	•	458	427	448	377	372	369	378	368	362	378	373	373	373	373	373	371	369	366	363	368	356	352	346
44+		459	442	414	384	373	368	364	360	357	362	366	367	368	368	368	347	369	364	361	357	353	349	343
43+			458	427	378	369	372	368	362	355	354	359	362	364	364	364	363	362	362	358	354	350	345	348
42+				458	379	392	385	375	364	357	355	353	359	361	341	368	359	350	357	354	359	346	341	336
414					458	423	484	385	354	353	353	356	368	368	358	357	355	354	352	349	346	341	337	331
					458	436	418	398	382	377	366	364	362	368	357	355	152	358	348	345	341	336	338	326
19+				454	487	458	432	4#8	412	485	384	371	365	368	356	352	349	347	384	348	336	331	321	522
38+			458	451	413	459	468	46Z	454	445	487	361	367	36C	354	349	346	543	339	335	331	327	323	319
374			456	465	479	487	472	499	588	388	429	391	369	358	351	346	342	339	334	338	325	323	319	315
34+									588	467	424	391	368	355	345	341	338	334	329	325	355	319	315	311
35+							580	588	473	443	487	379	364	349	341	336	333	338	325	385	318	315	311	344
34+						508	488	467	444	413	384	365	353	344	337	333	329	325	321	317	314	311	387	384
\$3+					58A	469	450	434	411	388	367	155	346	339	333	329	325	321	316	312	389	386	362	348
32+				588	454	426	418	397	382	367	354	346	348	334	329	325	351	316	312	387	385	398	299	296
31+			429	425	411	395	383	372	362	353	345	339	335	339	325	321	317	312	367	381-	291	294	294	243
30+			489	483	392	388	378	361	353	345	334	334	330	324	322	318	313	388	384	295	286	291	545	891
115				345	381	374	361	353	346	349	335	338	326	322	316	314	389	305	321	297	893	291	241	298
* 65					378	368	352	346	348	335	338	359	322	314	314	318	385	382	299	599	293	542	299	289
27+						348	343	338	333	329	325	351	317	313	318	384	383	386	897	294	292	298	284	288
26+						337	335	331	327	323	319	316	312	337	386	362	299	297	294	272	298	288	287	286

G.9

25+	315 3	525 45	351	318	314	311	387	385	385	211	296	273	145	284	287	286	285	285
24+	3	25 328	316	315	389	396	393	385	278	295	272	298	288	522	185	234	293	283
53 +		315	318	386	383	381	218	294	294	271	287	287	285	583	282	281	213	288
55+			383	388	298	296	294	192	289	287	285	283	281	288	279	278	277	277
1			295	294	293	195	229	287	285	283	281	277	278	277	275	275	274	274
28+			289	48S	885	287	285	293	281	279	277	276	275	273	272	271	271	275
19+			284	445	283	282	288	279	877	275	274	272	271	264	268	267	267	867
181			279	274	278	277	276	275	273	271	275	253	267	265	264	264	264	264
17+			275	275	274	275	272	278	269	267	265	264	263	262	261	259	248	261
184			271	271	278	269	245	264	265	263	242	201	268	259	258	237	258	258
15+			269	247	266	265	264	242	593	259	258	257	254	255	255	254	522	256
14+				594	263	261	262	858	528	255	234	253	525	251	251	521	291	252
13+				518	524	258	254	854	252	521	258	249	248	247	247	247	247	243
12+				257	524	254	523	251	249	247	246	244	243	243	242	242	242	243
11+					523	251	249	247	245	243	2+2	248	115	258	828	238	238	238
184					254	248	246	244	242	524	237	536	234	233	233	233	233	233
						246	243	241	238	235	233	239	554	228	227	227	227	225
4+							245	237	254	231	228	22\$	224	222	221	858	552	219
7+								515	229	455	552	155	118	519	21 4	213	515	211
								225	224	155	818	215	212	289	287	283	285	584
5+								155	219	215	213	219	269	258	258		289	249
4.									214	211	287	294	208					
3=									289	245	288	268						
2+										283								
1.																		

•

G.10

MOUELED POTENTIALS FOR THE EAST TEXAS OIL FIELD DISCHARGE CASE

.ED POTENTIALS PON THE EAST TEXAS DIL FIELD DISUMANUE COSC | R.STRBE+B3 MING B.J919E+B3 RHSG B.29864E+B3 PLUS MEANS NEW IS MIGHER | B.292E+M3 B ACTIVE NODESG 2783 AVG POSG 292.3422 B POSG 2783 AVG NEGG B.4 |BE FILE MAME MULL.FIL MEM FILE NAMEDPIIPIRIPOT.AB1 B.ERBS 4 NEG. AVGe BASE FILE MAME NULL,FIL

COLUMN LIME

200 205 205 205 205 205 205 201 202 201 208 278 277 275 201 207 201 203 203 203 209 200 271 201 231 238 223 27. 287 286 285 285 285 285 284 284 284 283 298 298 398 384 388 389 386 381 294 289 276 265 248 233 224 26- 246 285 285 285 286 286 287 287 288 298 295 385 312 317 317 328 316 387 297 287 276 244 249 236 223 200 203 200 204 205 207 208 201 203 207 304 317 331 330 337 331 327 318 308 207 203 273 268 262 257 251 230 241 242 243 243 247 249 292 295 381 311 328 341 347 346 348 338 319 347 295 243 277 278 264 259 254 22. 278 288 281 284 286 298 298 298 386 328 337 349 354 353 347 335 321 387 296 286 278 271 263 268 254 21 - 274 274 274 281 285 284 294 381 312 324 342 354 366 338 338 328 338 328 284 284 277 271 264 257 252 200 273 275 275 275 282 288 294 303 314 327 343 359 368 351 341 326 318 296 285 274 269 262 256 248 19+ 2+7 2+6 271 275 288 283 293 382 313 326 342 342 345 345 353 345 324 311 245 202 273 268 268 257 253 18+ 264 265 267 271 276 282 290 299 309 322 335 358 355 369 342 331 319 326 294 284 274 266 261 257 17- 762 262 264 267 272 278 283 294 384 314 328 348 349 338 343 333 334 324 312 391 282 274 267 261 16+ 259 264 261 264 268 273 288 288 298 399 328 333 344 349 351 344 358 328 317 386 298 291 285 278 261 15. 256 257 258 268 263 268 273 288 289 388 312 326 361 353 361 373 344 331 321 313 383 381 297 298 278 14. 253 254 254 254 254 261 266 271 279 289 299 317 341 359 371 353 338 332 325 315 381 384 383 299 291 134 249 249 249 258 251 254 257 262 270 285 385 321 336 334 335 538 524 328 319 512 295 299 388 388 285 12. 244 244 244 244 244 246 248 252 258 268 281 293 382 386 388 388 386 386 385 287 291 294 296 297 11+ 239 230 247 237 238 239 241 246 252 259 267 273 278 265 266 268 291 293 296 292 266 289 298 293 184 235 237 229 229 229 228 228 229 231 234 236 249 244 249 272 264 269 274 245 262 264 269 261 261 261 261 261 ** 225 224 222 221 214 214 217 216 217 216 215 216 218 222 231 241 249 255 262 268 275 274 271 273 273 4* 217 216 214 213 211 209 206 206 205 205 209 209 209 209 201 222 231 238 244 252 261 265 261 263 268 ANT BAS 485 505 545 445 445 785 785 845 815 -7 288 211 217 222 227 233 243 252 254 259 241 P# 5## 5#3 583 585 58# 5## 218 288 289 211 215 225 237 246 251 253 288 248 248 248 218 222 234 241 244 248 299 228 229 253 34 208 288 215 214 2. 288 285 289 1. 209 208

G.12

TABLE G.2. (contd)

COLUMN		
LINE		
454		· .
641		
434		
424		
614		
484		
594		
55-		
57 •		
56*		
55*		
541		
53+		
52+		
51+	5 M M	
50+	849	
49.	896	
45*		
47=		
46.	· · · · · · · · · · · · · · · · · · ·	
45		
44=		
45+	260	
424	504 500 500	
41+	224 213 224 288 200 200	
42+	252 253 254 247 237 223 200 204 200	
39=	272 275 276 278 252 258 244 234 236 243	
38+	P84 248 201 287 278 269 234 233 216 288	
37+	292 298 299 295 286 278 236 288 288	
36+	297 301 382 298 285 262 288	
35+	285 297 299 293 278 252 288	
34+	276 298 293 286 273 249 223 280	
33+	246 582 285 274 264 255 238 224 28A	
32+	257 274 278 276 278 261 258 237 222 288	
31=	259 268 274 274 273 268 268 251 243 23B	
\$8×	254 261 266 271 278 274 269 262 258 258	
294	246 251 257 264 271 278 276 269 265 266	
59+	236 241 258 257 264 269 273 269 268 268	
27+	223 234 242 254 256 261 266 265 267 267	
52+	218 219 225 241 248 253 257 258 259 268	
25+	234 226 218 233 241 246 248 258 258 251	

. (

٠.

APPENDIX G.3: OUTPUT FROM MMT TRANSPORT MODEL

Scenario 1. Base Case. Discharge in the East Texas Oil Field. Release at 200 years and 1000 years. Simulation runs PIR1. (Concentration versus time)

> Pages G.14 through G.12 show concentration relationships between 200- and 1000-year releases. Pages G.22 through G.39 are concentration versus time plots for 200-year releases.

200-Year Release

G.16

í

· · ·

6.17

200-Year Release

G.18

X.

.

 $\langle \gamma \rangle$

200-Year Release

1000-Year Release

ISOTOPE CS-135

CONCENTRATION VS TIME

2

λ.

TIME(YEARS)

Ĵ

.

) <u>.</u>

1.1

G.34

1

ISOTOPE TH-230 CONCENTRATION VS TIME 8.000E-08 5.000E-08 CONCENTRATIONCMICROCURIES/ML) 4.000E-08 3.000E-08 2.000E-08 1.000E-08 Ø. 7.000E+05 4.000E-05 5.000E.05 1.000E-05 2.000E.05 3.000E+05 6.000E+05 TIME(YEARS)

שנ ט

CONCENTRATION CMICROCURIES/ML)

G. 37

×

 $Z^{(1)} = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1$

CONCENTRATION CMICROCURIES/ML)

G.40

1

Scenario 2. Base Case. East Texas Oil Field removed from hydrologic model Discharge points in the Sabine River and Big Cypress Bayou. Release at 200 years. Simulation runs PIR2 and PIR3 are for Sabine River and Big Cypress Bayou, respectively. (Concentration versus time)

j

•

×.

 $X_{i,j} = \ell$

ISOTOPE TH-232 CONCENTRATION VS DISTANCE AT 2.00E+06 YEARS 3.000E-13 IN THE WATER=1.1495E-03 ,ON SOIL=2.7587E-01. CONCENTRATION CHICROCURIES/ML) 2.000E-13 1.000E-13 Ø. 0.300 0.500 0.800 1.00 1.10 0.200 0.800 0.700 0.900 0.100 0.400

FRACTIONAL DISTANCE TO DISCHARGE SITE

G.49

1

×

.

TIME(YEARS)

TIME (YEARS)

 $\langle \gamma \rangle$

 $X_{i,j} \neq 0$

1

1

 $\langle \widehat{} \rangle$

•

6.64

١.

)

CONCENTRATION CMICROCURIES/ML)

N. 2

G.68

٢

TIME(YEARS)

14 3

6.71

TIME(YEARS)

CONCENTRATION (MICROCURIES/ML)

.

6.83

ĺ

Scenario 3. Well pumping case. Well located 6 km from salt dome. Release at 200 years. Simulation runs PIR4. (Concentration versus time)

.

ŕ

١.

1

TIME(YEARS)

6.90

11

 $\langle \hat{a} \rangle$

`

6.95

λ

6.97

 \sim

-

۰.

Ņ

 $\langle \widehat{} \rangle$

. •

Ì

Scenario 3. (contd) Well pumping case at 15,000 and 30,000 years (Concentration versus distance)

 $\langle \widehat{\ } \rangle$

×.,

 \bigcirc

1

6.113

í

1.1

Ν

-

λ /

)

-4

.

G.123

 $\langle \cdot \cdot \rangle$

a

1

1

6.127

Scenario 4. Sabine River discharge of Scenario 2 with lower bound kd values. Simulation runs PIR5. (Concentration versus time)

1.2

CONCENTRATION CMICROCURIES/ML)

٠,

4

•

G.136

١,

061 3

G.138

.

/

6.141

1. K. P.

.

G.142

Ν.

)

 $\widehat{}$

CONCENTRATION CMI CROCURIES/MLJ

G.143

TIME(YEARS)

X J

CONCENTRATION CMI CROCURIES/ML)

G.145

145

ò

ŧ,

6.150

j

G.151

1

 $X_{\omega} \hat{J}$

G.152

X

APPENDIX H

TABULAR LISTS OF DISCHARGE RATES FOR THE FIVE SIMULATION RUNS COMPRISING THE FOUR RELEASE SCENARIOS

 $\boldsymbol{\vartheta}$

APPENDIX H

TABULAR LISTS OF DISCHARGE RATES FOR THE FIVE SIMULATION RUNS COMPRISING THE FOUR RELEASE SCENARIOS

This appendix lists the concentration versus time outputs of the MMT simulations of geotransport of radioisotopes. The simulation run titles used in this appendix are:

Run	1:	PIR1, base case solution mining at time 100
Run	2:	PIR2, base case, but East Texas Oil field removed, Sabine River discharge
Kun	3:	PIR3, base case, but East Texas Oil field removed, Big Cypress discharge
Run	4:	PIR4, well scenario at 6 km from dome
Run	5:	PIR5, same as PIR2, but lower Kd values.

APPENDIX H.1: EAST TEXAS OIL FIELD DISCHARGE SITE

Simulation Run 1.

PLTCVT PROGRAM DATA SUMMARY PIR 1 (TOTAL FUEL ASSEMBLIES) RASE CASE IFISSION PRODUCTS CONTAMINANT & C++4 TONS OF HEAVY METAL FACTOR = 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW # 1.0000000000404 TIME HIGHE 4.0000000000404 NUMBER OF CELLS # 400 DELTA TIME INCREMENT # 7.50000000401

RAW DATA AND BLUCKED DATA FACTURS: MAX. TIME = . 7.6649E+04 NIN. TIME = 1.2729E+04 TOTAL PARCELS = TOTAL WEIGHT # 5,2921E+03 1387.0 PEAK WEIGHT E 113.085 PEAK WEIGHT TIME = 1.71638+04 PEAK PARCELS = PEAK PARCELS TIME = 1.7163E+04 11,000 WT. LUW'= 0.0000E-01 WT. HI = 4.0251E+01 ND. PARCELS LOW = 0.0 NO. PARCELS HI = 2032.0 SMOOTHING WINDOW (CELLS) = 8

TOTAL INVENTORY (CURIES) = 5,332363E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 5.1824946+03 PERCENT OF TOTAL INVENTORY = 97.189

TIME OF MAXIMUM CONCENTRATION (YEARS) # 1.6937502+04 MAXIMUM CONCENTRATION (MICHOCURIES/ML) = 9.718569E-07 MAXIMUM HATE (CUNTES/YEAR) = 5.027392E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 1,9331236-06

CONTAMINANT # C+14

TIME (YEARS) AND PATE COURLES/YEARS FOR THE

100 POINTS

TIME CYRD.	PATE (CULTR)	TIME (VR)	RATE (CULVR)
1.2738E+04	4.14102-12	2.6350E+04	1.72616+01
1.3010E+04	0.3964t-02	2.00225+04	1.64R8E-01
1.32876+04	1.0175E=01	2.0895E+04	1.5607E=01
1.50348404	1.43556=01	2.71678+04	1,5191E-01
1,40006404	1.84242=01	2.7439E+04	1.4605E-P1
1.43718+04	2 4770mmai	2.7/118+04	1.4008E-01
1.46432+04	3 99416-041	2 H35454N4	1.3365E=01
1.4916E+04	3.4974Em01	2 822222404 2 82282404	1,26482+01
	and a second second	E E D A E D E A N A	1 1 1 0 4 3 5 4 0 1

1.31335-000	3 87425-41	3	1 00875-01
1 211002-04	9.21405-41 3.21462-61	5 04375 M4	1 4 4 3 3 5 4 6 1
1,10005704	4 2 C 1 M 4 C 4 M 1	2.90/32794	4,44455=02
1,3/326704	4,49725-01	2.4343E+N4	8,99062-02
1.50052+04	4,71772-01	2.9517E+04	7,9724E+02
1.6277E+04	4, A772E=01	2.9889E+04	6 , 9726 E- 02
1.6549E+04	4,97592-01	3.0162E+04	6,0200E+02
1,68212+04	5,02132-01	3,0434E+04	5,1403E-02
1.7094E+04	5.92385-01	3 . 0796E+04	4,3518E=Ø2
1,7366E+04	4,99198-01	3 , 0978E+04	3,66738=02
1,76382+94	4,9342E-01	3,1251E+04	3.09188+02
1.79102+04	4,85582-01	3.15232+04	2.6212E-02
1.81838+04	4.70922-01	3,17952+04	2.2458E+02
1.84552+04	4.65768-01	3.2467E+04	1.95778-02
1.8727E+04	4.53098=01	3.2340E+04	1.73555-02
1.8999E+04	4.40598-01	3.2612E+04	1.5647E+92
1.92728+04	4 28228=01	3-28846+04	1.43385-02
1.95448+04	4-10536-01	3.31568+04	1 22755-02
1.93168+44	4.06286=01	3,3429F404	1,22058-02
2.00886+04	3.97345-01	8.37018404	1 14178-02
2.03618+04	3.89678-01	1.19775404	1 00775-02
2.06335+04	3.82708-01	1.42458404	1 073/6-02
2.09055+04	3.75738-41	3 4518E+04	9 80705-01
2.11778+04		2 47005300	7:00/05-03
2.1450F+04	3 59776-01	2 50628104	7,333325403 8 94765-07
2.17225+04	3 4936F-MI	3 57145104	8 64005-07
2 19945 444	3 34436-01	3 8 3 3 3 4 5 7 0 4 8 5 5 3 7 5 4 0 /l	C1975-03
2.22665404	3 37376-01	2 53705104	0,JJ465-03
2.25396+04	3 (5866-0)	2 61515404	7 99475-07
2 28115444	2 26465-64	2 64325404 2 64325404	7 4 - 745 - 77
2 RUARE ANA	3 9844Pm94	3 66965404 3 66965404	7,00/10#03
2 11555 LAA	2 22222204 2 2 2 1 1 2 2 4 1	3,00705724 7 60646404	7 347202+03
5 3133354V4	2 74575-04		1,20/05 003
5 JGEDE +04		3,76406704	1,0304E#05
2 44735 MA	2 87436-01	3./3125+04	6,8077E=03
		3.//002+04	0,53702-03
2 47175 LOA	2,404/2=01	3,003/6+04	0,20532+03
2 40405 MA	5 3344E 4VI	3.33296+04	5,8117E+03
3 83518 A34	C. 24325401	5.80012404	5,3093E+03
C # J C 7 1 C 7 U 4	C.1302C-01	5,88748+04	4,7084E=03
2 BBUEE +4	5 NI / AC = NI	5.91466+04	3,95818-03
2. 3000C704	1.91166=01	5.9418E+04	3,0763E=03
5. 5N1 NE +V4	t ₀ 8157k=01	3.90902+04	2,0713E=03

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME = 2.96E+04 MAX, TIME # 1,0885E+05 TOTAL PARCELS = TOTAL WEIGHT # 5,41755+45 1116.0 PEAK WEIGHT TIME = 3_0118E+04 35229,247 PEAK WEIGHT = PEAK PARCELS TIME = 3,0118E+04 PEAK PARCELS = 59.000 NO. PARCELS LOW # WT. LOW = 1.3410E+03 9,5 ND. PARCELS HI . WT. HI = 2.9628F+05 3880.0 7 SMOOTHING WINDOW (CELLS)=

TOTAL INVENTORY (CURIES) = 6,393758E+05 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 5,585626E+05 PERCENT OF TOTAL INVENTORY = 66,545

TIME OF MAXIMUM CONCENTRATION (YEARS) = 3.011750E+04 MAXIMUM CONCENTRATION (MICRUCURIES/ML) = 1.183251E+03 MAXIMUM RATE (CURJES/YEAR) = 5.120950E+02 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E-06

CONTAMINANT = TO=99

TIME (YEARS) AND PATE (CURIES/YEAR) FOR THE 100 PUINTS

TIME (YR)	RATE (CU/YW)	TIME (VR)	RATE (CU/YR)
2.45938+44	4 5438E+00	5.1556E+04	1.1153E+02
2.9611E+04	4 54386+00	3,16185+04	1.03296+92
2.96298+04	4.54386+499	3.17016+04	9.5901E+01
2.96486+64	4.5438E+00	3.1783E+04	8,9163E+01
2.96666+04	4 70132+00	3 18556+04	8.5450E+01
2.96852+04	5,49742+08	5.1948E+04	A.2361E+01
2.9703E+04	7.78698+400	3.20302+04	7.8920E+01
2.9721E+04	1,36276+01	3,2113E+04	7.4381E+01
2.9740E+04	P.1934E+01	3.2195E+04	6.9936E+01

3 07586×44	2 44355.444	3 33333.00	
	3.40032441	3, 22/12+44	5,5015E+01
2.9///2+04	4.80002+01	3,2360E+04	5,8948E+01
2,97952+04	6.65296+41	3.24428+04	5.3562E+01
2,9813E+04	8.11448+01	3.25248+04	4-8145E+01
2,9832E+04	9.36572+01	3.20075+04	4 20008-01
2.9850E+04	1.0258E+42	3.2689F+04	3 78/38-34
2.98595+04	1.0991	3.37718-04	2 24695544
2.9887F+04	1 15746-42	3 365146704 7 36515404	3,310/2701
2.09055404	1 31096405	7 7074 7 404	3,013/2+01
2 00345404	1 30445.40	3,27305704	5.00015+01
2 00435 MM	1,30412402	3,30186+04	2,3059E+01
2,99422704	1,40256+02	3 , 3078E+04	2,1162E+01
2.99016+04	1,56126+02	3,3139E+04	1,9537E+01
2 . 9979E+04	1,7215£+02	3 , 3199E+04	1.8220E+01
2,9997E+04	1,8908E+02	3,3259E+04	1.7490E+01
3,0016E+04	2,1428E+02	3.3319E+04	1.70798+01
3,00346+04	2.76136+02	3.3379E+04	1 6241 8401
3.0053E+04	3-417hE+22	5.3439F+04	1 61105131
3.0071E+04	4-10968+02	4 RAGGEARA	1 50005401
3.00406+04	4 9 4 4 2 6 + 1 2		1,34066401
3 A108F-AU	5 71066706	3,33376704	1,45282+01
7 (124543)	5 3543544C	5.30196.404	1.3947E+01
Jey ICOCYD4		5.30792+64	1.3595E+01
3841435784 7 01478-04	2,40016402	5.57346+04	1.2904E+01
3,01030404	3,54062+02	3,3799E+04	1.1811E+01
3,01022+04	5,1513E+42	3,3059E+0 <u>4</u>	1,0707E+01
3. P200E+04	4,83912+02	3,3920E+04	9,9160E+00
3.0218E+04	4_54742+02	3,3980E+04	9.1606E+00
3,03016+04	4 , 7411E+02	3,404NE+Ø4	8.8787E+00
3,0383E+04	3,69306+02	3.41302+04	8-5487E+00
3.0465E+04	3.25136+42	3.4160E+04	A. 2023F+00
3,0548E+04	3,41226+02	3.42246+04	7.8678F+00
3,06302+04	2.76312+42	3.42808+04	7 A292F+00
3.07138+04	2.56498+02	3.43405+04	7 97785-00
3.07956+04	2.39621+42	3 <u>44</u> 006104	P 05605.00
3.08778+04	2.21356402	2 44505404	7 94755-00
3. 99605+04	2 23946402	2 4533540A	7,70732400
3 10426+04		3.43595404	1,84/52+00
3 11246 444	1 76306+06	3,43002464	7,85412+00
2 12075134	1 13776 MAN	5.43402+04	7,9267E+00
2 13805 44		5.41002+04	7,9826E+00
2 12718×04	1 40495405	5.47018+04	7,9205E+90
2012/12784	1.54412+22	3.4821E+04	7,8341E+00
3•14345+Na	1,24546+95	3.40418+04	7,7545E+ØØ

H.6

N PLTCVT PROGRAM DATA SUMMARY PIR 1 (TOTAL FUEL ASSEMBLIES) BASE CASE IFISSION PRODUCTS CONTAMINANT = 1-129 TONS OF HEAVY METAL FACTOR # 1.000000 DATA BLOCKING FACTORSI ENTRY MODE (1 = T(LOW), UT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 5 TIME LOW . 1.000000000404 TIME HIGHS 1.10000000+05 NUMBER OF CELLS . 400 DELTA TIME INCREMENT . 2.500000E+02

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 1.0835E+05 MIN. TIME # 1.3101E+04 TOTAL WEIGHT . 2.28896+03 TOTAL PARCELS # 4998.0 PEAK WEIGHT TIME = 37.858 2.5875E+04 PEAK WEIGHT . PEAK PARCELS 25,000 PEAK PARCELS TIME = 7.2875E+04 NO. PARCELS LOW . WT. LOW . 0.0000E-01 0.0 WT. HI = 0.0000E-01 ND. PARCELS HI . 0.0 95 SMOOTHING WINDOW (CELLS)=

TOTAL INVENTORY (CURIES) = 2,280878E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2,304891E+03 PERCENT OF TOTAL INVENTORY = 101,053

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.887500E+04 MAXIMUM CUNCENTRATION (MICROCURIES/ML) = 1.841331E=07 MAXIMUM RATE (CURIES/YEAR) = 9.525160E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E=06

CUNTAMINANT = 1=129

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1.3125E+04	8.7238E=#3	6.6000E+04	1.2510E-02
1.36972+04	2.33516-02	6.8070E+04	1.2527E-02
1.42696+04	3.3044E-02	7.0000E+04	1.25626-02
1.4841E+04	4.10776-02	7.2000E+04	1.25536-02
1.5413E+04	5.47861-02	7.4000E+04	1.2468E=02
1.59852+04	6.70748-02	7.6000E+04	1.2455E=02
1.6557E+04	7.84846-02	7.8000E+04	1.2393E-02
1.71296+04	8.7454E=02	8.0000E+04	1.2350E-02
1.7701E+04	9 24646-02	8.2000E+04	1.23945+82
1-8273F+04	9.441 NE-02	B 4000F+04	1.2460F=02

1,8845E+04	9,5206E-02	8.6000E+04	1.2472E-02
1.9417E+04	9.44336=02	8.8000E+04	1.2516E-02
1.99896+444	9.3718E-02	9 MUMAF + QA	1 35318-03
3 05615404	9 378 6-33	0 30005×04	1 26322-03
2 44275×04	0 04045-40 7:0005-402	7920002404	1.27/22-02
	7.20702-02	4.40005+04	1,25072-02
2,1/072+04	4.14056=02	9.6000E+04	1,25555=02
2.2277E+04	9,0081E-02	9.8000E+04	1,2542E-02
2,28482+04	8,8605E=02	1,0000E+05	1.1614E-02
2,3420E+04	8,6585E-02	1.00252+05	1.10438-02
2.3992E+04	8.4180E=02	1.00512+05	1.0749E+02
2.4564E+04	8.2505E=42	1.00755+05	1.06395-02
2.51366+44	8 34795-42	1 01028-08	1 09425-02
3.570AF+44		1 41378408	1 17775-02
2 13805 - UA	3 71536-43	1 01676703	1,13/25-02
	0.11355-05	1,01325403	1.1/092+02
2.09762704	a.10055+05	1.41786+05	1,1887E-02
2.14242+94	" . h1772 - H2	1.96936+03	1,2123E-02
2.7996F+04	N.1402E=+2	1,02288+05	1,2199E-02
5.42995+94	7.30618=02	1,0254E+05	1.1768E-02
2.9140E+04	6.36292-02	1.02795+05	1.1287E-02
2.9712E+04	5.36742-82	1,03052+05	1.0728E+02
3.02842+04	4.4221E-02	1.03302+05	9.8102E-03
3.0856E+04	3-52506-02	1.43556+05	A . 8227F=03
3.14286+04	2.8451E-02	1 43815+05	A 1512F-01
3.20006+04	2 37566-02	1 34355335	7 71166-03
3 4000FA04	1 34/81	1 04316546	4 5-035-03
1 40005404	1 EF146-43	1994916403	8,35632=03
3 84005 A04	1.30/00-02	1.047/2407	0,04012-03
3,00000704	- 1,34776-02	1.4482E+05	5,7289E=03
4.00002-94	1.2/452=02	1.45082+05	5,4057E-03
4,20002+34	1,24998#02	1.0533E+05	5,2315E-03
4,40002+04	1.24836-02	1,25582+05	4,9641E=03
4.60002+04	1,25326-02	1.45846+05	4,52908-03
4.80002+04	1.25792=02	1.06092+05	3.81888=03
5.00002+04	1.20906-02	1.06346+05	3-02628-03
5.20002+04	1.25736-02	1 . 4660E+05	2.26305-03
5.4200E+04	1.2534E+02	1.05852+05	1 57995-01
5.6000++44	1 24535-42	1 37145105	4 9 J 7 776 4 J J 0 844 44 4 - 0 4
5 RANDESAL	1 24262-02	キョウ・キキビナビゴー キョウ・キキビナビゴー	7,04036704 6 00676-04
5.0000E-04	1 34116 mm 3	1 47616146 1941396743	7,770/CFU4
L 3000005704	1 32016-02	1.01010707	3,4//32+04
0 8 8 8 9 9 5 7 9 4	1.63715-05	1.0/5/6+05	1,74402-04
0.4000C+44	1,24716-02	1.10126+05	7,0188E-U5

PLTCVT PROGRAM DATA SUMMARY PIR 1 (TOTAL FUEL ASSEMBLIES) BASE CASE IFISSION PRODUCTS CONTAMINANT = CS-135 TONS OF MEAVY METAL FACTOR = 1.0000000 DATA BLOCKING FACTORSI ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 1.300000E+04 TIME HIGH= 3.200000E+04 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 4.750000E+01

RAW DATA AND BLOCKED DATA FACTORS: MAX. TIME = 1.3996E+06 MIN. TIME = 1.4940E+04 TOTAL WEIGHT = 1.5451E+04 TOTAL PARCELS . 760,0 PEAK WEIGHT # 142.435 PEAK WEIGHT TIME . 2.0481E+04 PEAK PARCELS = 7.000 PEAK PARCELS TIME = 2.0481E+04 WT. LOW = 0.0000E=01 NO. PARCELS LOW . 0.0 WT. HI = 9.4709E+03 ND. PARCELS HI = 4238.0 SMOUTHING WINDOW (CELLS)= 30

TOTAL INVENTORY (CURIES) = 2.492221E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1.478504E+04 PERCENT OF TOTAL INVENTORY = 59.325

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.962625E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2.336063E=06 MAXIMUM RATE (CURIES/YEAR) = 1.208439E+00 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E=06

CUNTAMINANT = CS=135

TIME (YEARS) AND PATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YK)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1.4924E+04	7.68541=01	2.1426E+04	1,1690E+00
1.4944E+04	7.66546-01	5.2350E+N4	1,1629E+00
1.4965E+04	7.68546-01	2.2715E+04	1,1595E+00
1.49856+04	7 4790E=01	2.3109E+04	1,1586E+00
1.50066+04	7,15428=01	2.3503E+04	1,1560E+00
1.50266+04	6.9044E=01	2.3897E+04	1.1507E+90
1.50476+04	6.77H2E=01	2.4291E+04	1,1417E+00
1.50672+04	6.6300E=01	2.46856+04	1,1292E+00
1.5088E+04	6.3690E=01	2.50746+04	1,1125E+00
1.5108E+04	6.10802-01	2.54736+04	1.0906E+00
1 5129F+04	5.9709E-01	2.58685404	1.0624E+00

H.9
1,5149E+04	5,8802E=01	5.6262E+94	1.0272E+00
1,5170E+04	5,8327E-01	2,66568+04	9.83238-01
1.5190E+04	5,84756-01	2,70502+04	9.3092E=01
1,52112+04	5_8729E=J1	2,74445+04	8.6556E-01
1,52318+04	6,0U24E-01	2,78382+04	7.81798-01
1,5252E+04	6,1319E=U1	2.82326+04	7.9244E=01
1,5272E+04	6,2815E=01	2.8626E+04	5.99465-01
1,5293E+04	6,4370E=01	2,9020E+04	4.4430E=01
1,5313E+04	6,56A7E=01	2,90402+04	4.36648-01
1.5334E+04	6.6724E=01	2.9060E+04	4.29598-01
1.5354E+04	0,7633E=91	2,90792+04	4.2257E=01
1.5375E+04	6,8206E-01	2.90998+04	4.1664E+01
1,53952+04	6 . 8724£=01	2,9119E+04	4.1071E-01
1.54162+04	5,8704E-01	2.9138E+04	4.0518E=01
1.5436E+04	5,8566E=01	2.9158E+04	3.9990E=01
1.54578+94	6_93046=01	1.4178E+84	3,94838-01
1.54778+04	5.7919E=01	2,9197E+04	3.90596-01
1.54986+04	5.7524E=01	2.921/E+04	3.8635E-Ø1
1.5518E+04	6.7084E-01	2.92376+04	3.8278E+01
1.55398+04	6.6643E=01	2.92566+04	3,79398-01
1.55592+04	6.65688-01	2.9276E+04	3.7611E-01
1,55802+04	6.6548E=01	2 . 9296E+04	3,7302E-01
1.56006+04	6,6745E=01	2 .9315E+0 4	3.6993E-01
1.56206+04	5.7114E-01	2.4335E+04	3,6717E-01
1.60152+04	O NO SOLONI	2, 7355c+04	3,64438-01
1,64096+04	9,0316E-01 .	2 . 9374E+04	3,6185E-01
1.58032+04	9,7510L-01	2,93942+04	3,5939E=01
1.71972+04	1,9435E+00	2.94142+04	3,5726E=01
1,7591E+04	1,10156+00	2,9433E+04	3,5753E-01
1.79852+04	1.14308+00	? . 9453E+04	3,5779E-01
1.8379E+04	1,17252+60	2.9473E+04	3,5707E=01
1,8773E+04	1.19248+90	2,9492E+04	3,5595E-01
1,91582+04	1,20366+00	2 . 9512E+04	3,5480E=01
1,43026+04	1.50855+00	2,9532E+04	3,5355E=01
1.44365+04	1.20622+00	2,9551E+04	3,5230E-01
	1.19912+00	2,9571E+04	3,5083E-01
C. N/442+04	1,19028+00	2.9591E+04	3,4932E=01
2,11302+44	1.10276+00	2,9610E+04	3,4775E-01
C.17365+04	1.17616+00	2 . 963NE+04	3,46112-01

PLTCVT PROGRAM DATA SUMMARY PIR 1 (TOTAL FUEL ASSEMBLIES) BASE CASE IFISSION PRODUCTS CONTAMINANT = CS=135 TONS OF HEAVY METAL FACTOR . 1,000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW # 8.00000000000 1.3000006+06 TIME HIGHE NUMBER OF CELLS . 200 DELTA TIME INCREMENT # 2.500000E+03

RAW DATA AND BLOCKED DATA FACTORS: MAX, TIME = 1,3996E+06 MIN. TIME # 1.4940E+04 TOTAL WEIGHT = 8,8067E+03 TOTAL PARCELS 4180.0 PEAK WEIGHT # 135.226 PEAK WEIGHT TIME # 1.0763E+06 PEAK PARCELS = 62.000 PEAK PANCELS TIME 1.0763E+06 WT. LOW = 1.6087E+04 ND. PARCELS LOW = 803.0 WT. HI = 2.8195E+01 NO. PARCELS HI . 15.0 SMOOTHING WINDOW (CELLS) = 10

TOTAL INVENTORY (CURIES) = 2.492221E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 0.716415E+03 PERCENT OF TOTAL INVENTORY = 34.974

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.031250E+06 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 6.983555E=08 MAXIMUM RATE (CURIES/YEAR) = 3.612576E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E=06

CONTAMINANT = CS-135

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR) RATE (CU/YR) TIME (YR) RATE: (CU/YR) 8.01256+05 9.07052-04 1.05008+05 3.5453E=02 8.06232+05 1.04916-03 1.0550E+06 3.5065E=02 8.1120E+05 1.36648=43 1.000000+06 3.4595E-02 8.1616E+05 1.7354E=03 1.0649E+06 3.4047E-02 8.21156+05 2.1535L=/3 1.06996+06 3,3425E-02 8.2613E+05 5.6560F=03 1. 47498+96 3,2734E=02 8.31106+05 3.1170E=03 1.07998+06 3,1981E-02 8.3608E+05 3.6081t=03 1.08486+06 3.1172E-02 8.4105E+05 4.1343E=03 1.08966+06 3,0312E-02 8.4603E+05 4.69598-03 1-04488+06 2.9498E=02 8.5100E+05 5.29256-03 1.09986+06 2.8466E=02

8-55986+05	5,92378-03	1,10475+06	2 7494F=02
A . 5095E+05	6.59426-43	1.10972+06	2 6499F-02
8.65935+45	7.34736-03	1.11475+06	3 5487F-03
A 7090E+05	A 0645F-03	1.11976406	2 AA6AF-02
A 75845445	A 85736-41	1 12455405	3 7/375-/33
	9 71608-03	1 13072702	2,34376-06
	1 36115-03	4 4 7 4 5 7 9 5 7 9 9	2 1 2 9 5 - 2 2
0 00005405	1 15235-33	1,13405700	2,13035442
0 05785105	1,13325=02	1.13762700	2,03072=02
0 97785 AUR	1,27,355-42	1.14432700	1,93005=02
Y,00/35703	1.33836-02	1,14932,400	1,838/2+02
9,03/38+05	1.40285=02	1,15452+05	1,73898-02
9,10702+05	1,57292=02	1.15952+00	1,6428E=02
9.15682+05	1.68586=02	1,10442+06	1,5486E=02
9,20652+05	1.80132-02	1.1594E+06	1,4565E-02
9,2563E+05	1,91858-02	1,1744E+06	1,3666E=02
9,30606+05	5,0369E=05	1 . 1794E+06	1,2790E-02
9,3558E+05	2,15582-02	1 . 1843E+06	1,1941E+02
9,4055E+05	2,27466-02	1 . 1893E+06	1,1121E-02
9,4553E+05	5.39565=05	1,1943E+05	1,0331E-02
9,5050E+05	2,50908-02	1 . 1993E+06	9,5726E-03
9,5348E+d5	2.6231E-02	1.2042E+06	8,8487E=03
9,60455+05	2,7341E=02	1.2095E+06	8,1590E=03
9,5543E+05	2.8415E=02	1.2142E+06	7,5052E=03
9,70402+05	2,94436=02	1,2192E+05	6.8882E-03
9,75382+05	3,94211-02	1.2241E+06	6,3065E=03
9,80352+05	3.1340E-02	1.2291E+06	5,76178=03
9,8533E+05	3,21956-02	1,2341E+06	5.25118-03
9,90308+05	3,29778-02	1,2391E+06	4.7718E+03
9,95286+05	3,36826-02	1.24402+06	4.32348=03
1,00038+06	3.43036-02	1.24902+06	3.9035E-03
1.00522+06	3 48396-02	1.2540E+06	3-50565-03
1.01026+06	3.5284E-02	1.2590E+06	3.1280E+03
1.01522+05	3.56376-02	1.2639E+06	2.7715E=03
1.02028+05	3.50946-02	1.2609E+06	2.4335E=03
1.02518+06	3. 50568-02	1.2739E+06	2.11448-03
1.03018+06	3.61216-42	1.27898+06	1.7634E+03
1,0351E+06	3,60916-02	1.2838E+06	1.4485E-03
1.0401E+06	3.5968E-02	1.20886+06	1.1570E-03
1,04502+06	3,57558-02	1.2938E+06	9.1724E-04
·	-		

1

PLTCVT PROGRAM DATA SUMMARY PIR 1 (TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 1 CONTAMINANT = U=236 TONS DF HEAVY METAL FACTOR = 1.000000 DATA BLOCKING FACTOR8: ENTRY MODE (1 = T(LDW),DT,NCELLS) (2 = T(LDW),T(HI),NCELLS) MODE = 2 TIME LOW = 1.000000E+05 TIME HIGH= 3.000000E+05 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 1.000000E+03

RAW DATA AND BLOCKED DATA FACTORS: MAX. TIME = 3.0456E+05 MIN. TIME = 1.1067E+05 TOTAL WEIGHT = 2_8984E+04 TOTAL PARCELS = 6556.0 PEAK WEIGHT = PEAK WEIGHT TIME = 636.435 1.5350E+05 PEAK PARCELS . 124,000 PEAK PARCELS TIME = 1.5850E+05 WT. LOW . 0. DOBDE-M1 ND. PARCELS LOW . 0.0 WT HI = 3.2242E-04 NO. PARCELS HI . 1.0 SMODTHING WINDOW (CELLS) = S

TOTAL INVENTORY (CURIES) = 2.896357E+84 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2.897827E+84 PERCENT OF TOTAL INVENTORY = 99.982

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1,575000E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 9,460819E=07 MAXIMUM RATE (CURIES/YEAR) = 4,894058E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 1,933123E=06

CONTAMINANT = U=236

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1.1050E+05	1,20466=03	2.0350E+05	1.6873E=01
1.1236E+05	1.70096=03	2. 45366+05	1.6988E=01
1.14226+05	3.3007E=03	2.07226+05	1.7108E=01
1.1608E+05	5.8946t=V3	2.0908E+05	1.7155E=01
1.1794E+05	9.62676-03	2.10946+05	1.7088E=01
1.1980E+05	1.48668-02	2.12846+05	1.6878E+01
1.2166E+05	5.20565-02	2.1466E+05	1.6498E=01
1.2352E+05	3.15216-02	2.1052E+05	1.5934E+01
1.2538E+05	4.3674E-42	2.1838E+05	1.5271E=01

1,27248+05	5,95188-02	5,20242+05	1,4433E=01
1.2910E+05	7.94825=02	2.2210E+05	1.36298-01
1.30966+05	1_0398E=01	2.23968404	1 28648-01
1 33835405	1 739+6-31	3 35935405	1 34868-01
1136066703	1935916-41	2.23022403	1,21075-01
1,34002703	1.02425=01	2,27582+05	1,1390E=01
1.3654E+05	2,02562=01	2 . 2954E+05	1,1044E=01
1,3840E+05	2,41756-01	2.3140E+05	1.0520E=01
1.49262+05	2.81152-41	2.33268+05	9-96628-02
1.42128+05	3.19736-01	2 35128405	9 34945-03
1.43985-448	3 86886-04	3 16985406	A 67875-02
4 45345405	3 90832-44	2 200000000	0.03376-02
1.43046703	2 6 4 9 2 4 9 1	2,30842+03	7.85116+02
1.4//02+03	a .14205=01	2.40/02+05	7,0195E=02
1,49562+05	4,4429E=01	2,4256E+05	6,1554E+02
1,51428+05	4,63966=01	2,4442E+05	5.3065E+02
1,53286+05	4.7784E-01	2.4628E+05	4.5031E-02
1.5514E+05	4-86288+01	2.48145-05	T 7808E-03
1 . 57005 405	A 99765-01	3 50005105	
1 223453/R	4 96035-JA		3,140/2402
1,30082403	4.00725401	5,31005403	5,34515+05
1,00/22,703	4.79972=01	2,53722+05	2,13492-02
1.6258E+05	4,69368=01	2,55582+05	1,7542E-02
1.6444E+05	4,5598E=01	2,57448+05	1,4407E-02
1.66302+05	4,39498=01	2.5930E+05	1.1740E+02
1.6816E+05	4-2421E=01	2-61168+05	9.46125-03
1.70028+05	3.98996-01	2.63025405	7 45448-47
1 71225-05	7 76756-64	2 6/130EL/03	
1 7 7 7 / C / G / G /	3 83446 04	C.0400E+03	3,12146-03
1.73742403	3,32/42-01	2.00/45+03	4,25595=03
1.73002+03	2°50545-N1	50+3005 A	3,0472E+03
1.77462+05	3,94592-01	2,70462+05	2 , 1041E⇒03
1,7932E+05	2,92751-01	2,72322+05	1.4040E+03
1,8118E+05	2.63095-01	2.74182+05	9.4006E=04
1.8304E+05	2 45328-01	2.75048+05	6.6198F-04
1 8490F+08	2 29311-01	3 7790F105	5 11125-04
4 84745448	2 46876-M4	2 70748.0E	3.11135-04
1 884 95 145	2,13736-01	2.17/05703	4,20405=04
1,00022403	e. 03470-01	5,91056+02	3,7292E=04
1,90486+05	1,93996-01	2,8348£+05	3,4473E=04
1.92348+05	1,8432E=01	2.8534E+05	2,96515=04
1,9420E+05	1,77478-01	2,8720E+05	2.2809E#04
1,96062+05	1,7266E=01	2.89055+05	1.5793E+04
1.97922+05	1.59641=01	2.90925+05	9 8086F-04
1.99786+45	1.68305-01	2 92785188	3 79045_02
2 01545405	1 68006-44	5 175795793 5 04645105	5 20705 4U
C \$ 11 10 4 C + 12 3	1 9 0 0 1 2 0 0 1	5° 440464N3	2,26212-05

н.14

RAW DATA AND BLOCKED DATA FACTURSI MIN. TIME = 1.1560E+05 MAX. TIME # 1.9999E+06 TOTAL WEIGHT = 1,1469E=01 TOTAL PARCELS = 4641.0 0.001 PEAK WEIGHT # PEAK WEIGHT TIME # 1.3873E+06 PEAK PARCELS PEAK PARCELS TIME = 1.3018E+06 50.000 NO. PARCELS LON . WT. LOW . 0.0000E=01 0.0 NO. PARCELS HI . WT. HI . 0.0000E=01 . 0.0 20 SMODTHING WINDUW (CELLS) =

TOTAL INVENTORY (CURTES) = 1.146909E=01 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1.137978E=01 PERCENT OF TOTAL INVENTORY = 99.221

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.995250E+06 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.251273E=13 MAXIMUM RATE (CURIES/YEAR) = 6.472806E+08 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E=06

CONTAMINANT = TH-232

TIME (YR)	PATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1.14258+05	7.24548-49	9.5554E+Ø5	6.35598+08
1.16858+05	7.24546-09	1.0026E+06	6.3710E=08
1.1945E+05	7.24546-09	1.0497E+06	6.3815E-08
1.22056+05	7 24546-09	1.0967E+06	6.3913E-08
1.24641+05	7.82176-09	1.1438E+06	6.3949E=08
1.27246+45	9.4967E=49	1.19086+06	6.3920E-08
1.29846+05	1.11728-08	1.2379E+06	6.3862E-08
1.3244E+05	1.2847E-98	1.2850E+06	6.3712E+08
1.35046+05	1.40806-08	1.3320E+06	6.3466E=08
1.3764E+05	1.5114E-08	1.3791E+06	6.3205E=08

	•		
1,4023E+05	1,61478+08	1 , 4261E+06	6 . 2956E#08
1.42032+05	1.7209E=08	1_4732E+06	6.2713E#08
1.45436+05	1.9120E=0H	1-52425+06	6.2521E-08
1.48035444	2 (11725-04	1 56735406	6 33768-09
1 20435103	3 39///6-09		5 33E3E-00
1 4 3 4 3 3 2 4 4 3	2 40034	1 9 9 1 4 4 5 4 9 9	0,22522+00
1.33232.403	5,40535408	1.00142+00	0,22305+08
1.55832+05	2.65492-48	1,70852+06	6,2393E-0B
1,5842E+05	2,84755=08	1.7555E+06	6 , 2499E+Ø8
1,6102E+05	3,03005-08	1.80262+06	6,2727E=08
1,63622+05	3.20395-08	1,8085E+06	6.2774E-98
1.66228+05	3.37456-08	1.81448+06	6.2821E=Ø8
1.68822+05	3-54506-08	1.8203E+06	6.2874E-08
1.71425+05	3.7130E.00A	1.82635+06	6 29278-08
1 74026 +445	7 84735-44	1 84225406	6 2002F-00
4 74648408	2 07305-44	1 94815184	6 70/28-00
1 - 70346403			0,30435400
1.7212703	4,10245-08	1.84406708	0,31002=08
1,81812+05	4,21852=08	1.84992+08	5,31742-28
1,8441E+05	4,3134E=08	1,3558E+06	6,3243E-08
1.8701E+05	4,40826=08	1.8618E+06	6 , 3314E-08
1.89512+05	4.50316=08	1.86778+06	6 , 3393E+08
1.92206+05	4.57368-08	1.8736E+06	6,3474E+08
1,94846+35	4.63622-08	1.8795E+06	6.356ØE=Ø8
1,97402+05	4,69876-08	1, 38542+06	6.3649E+08
2.0000E+05	4 7588E-08	1.8913E+06	6.3737E-08
2.02505+05	4.79595-0A	1.49735+06	6.3824F-48
2 49665+45	5 25298-04	1,90325+06	6 TRTTF-0A
2 96725+45	5 AA25F-MR	1 00915-06	6 37635-08
2 /2775448		1 01505-04	6 7974E-04
7 00975405		1 03305+00	0,3021E-00
3,90036403	3,01605400	1.92096400	0,38742#08
4.5/072703	7,7506-00	1.94096+00	6,39642-08
4,84952+05	5.04912-48	1,9528E+05	6,4032E=08
5,32012+05	6,1216E-08	1.93872+06	6 , 4099E=08
5,7907E+05	6,1795E+08	1.94468+06	5 , 4162E-08
6,26138+05	6 , 2207E-08	1.95052+06	5,4221E+08
6,7319E+05	5,24952=08	1.95642+06	6,4277E=08
7.20252+05	6,2708E=08	1.96236+06	6,4331E-P8
7.67308+05	5.29026-08	1,90832+06	6.4387E-08
8.1436E+05	6 3066E-0A	1.9/42E+06	6.4447E-08
8.51428+05	5.3212L-08	1.90018+00	6.4513E-08
9.08485+05	6_3375F=0A	1.48608404	L //E2//5_00
a first a set a set a		* * * * * * * * * * * *	0 ⁸ #30#C#NU

PLTCVT PROGRAM DATA SUMMARY PIR 1 Chain 2 CONTAMINANT = NP=237 TONS OF HEAVY METAL FACTOR . 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), UT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 1.000000000404 TIME HIGHE 8.100900E+05 NUMBER OF CELLS = 400 DELTA TIME INCREMENT . 2.00000000+03

RAW DATA AND BLOCKED DATA FACTORS: MAX_ TIME = 8.79248+45 MIN. TIME = 1.4905E+04 TOTAL WEIGHT = 8_0537E+04 TOTAL PARCELS = 8132.0 PEAK WEIGHT # 7291,560 PEAK WEIGHT TIME . 1,9000E+04 PEAK PARCELS TIME # 1.7000E+04 PEAK PARCELS # 1728,000 WT. LOW = 0.0000E-01 NO. PARCELS LOW E 0.0 NO. PARCELS HI = WT_ NI = 1.9153E+02 13.0 SMOOTHING WINDOW (CELLS) = 1

TOTAL INVENTORY (CURIES) = 8.072884E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 8.384621E+04 PERCENT OF TOTAL INVENTURY = 103.864

TIME OF MAXIMUM CONCENTRATION (YEARS) = 2,100000E+04 MAXIMUM CONCENTRATION IMICROCURIES/ML) = 6,948634E+06 MAXIMUM RATE (CURIES/YEAR) = 3,594511E+00 CONVERSION FACTOR RATE TO CONCENTRATION = 1,933123E=06

TIME (YEARS) AND NATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YH)	TIME (VR)	RATE (CULVES
1.5000E+04	3,4136E+00	5.0000F+05	
1.7576E+24	3.43556+00	11746406	0444045403
2.0152F+V4	3 55305+444		3,8403E=03
2 37376+W/	2	3.23356463	5,3503E-03
	2+22146+92	3.35292+05	1,3238E-03
C+2203C+04	3.3178E+00	3.4706E+05	6.8067E-03
2.7879E+04	2.29551+40	3.56826+05	A STARE-ON
3.0455E+04	8_832HE-01	5.7059E+05	
3 . 3030E+04	1.63686-03	3.82356405	7 7800E-03
3.56062+04	2.39476-03	3,04126405	2 80705 0Y
3.8182E+04	3.64125-03	A BEREFEIS	2.84302-03
4.07585+44	2 000000000	4.00002403	4,82766=03
	3.444.46.403	4.1/65E405	3_6440E=03
4,33232704	1.46446=03	4.29415+05	8.6316E-03
4.54046+04	1,40601-03	4-4118E+05	2.12535-01
4.84856+04	2,9467E-03	4.52946+05	1.5594E=03

5,1061E+04	2,98555=03	4,5471E+05	7.28018-03
5,3636E+04	4.58326+03	4,76472+05	5.6052E+03
5.0212E+04	3.40156-03	4,8824£+05	4.53932-03
5,8788E+04	1.1368E-03	5.00002+05	1.94556+92
6.1364E+04	9,9931E=04	5.0930E+05	1.62186+02
6.3939E+04	9.89968-04	5.1861E+05	1.66056-02
6.6515E+04	9.9754E-04	5.2791E+05	1.60045-02
6.9091E+04	1.0072E=03	5.37218+05	2,82826-02
7.1667E+04	3.7344E=03	5.46528+05	4.4924F=03
7.42425+04	5-25556-03	5-55826+05	A 32995-02
7.6818E+44	3-56356-03	5-65128+05	4 7202F-02
7.93948+04	1 44645-03	5 74425-05	7 10018-02
8.1970E+04	1.44916=03	5 A3735 AAS	1 = 17715=05 1 = 548.05=04
8.4545E+04	2.93926-03	5 94238405	1 90032-01
8.7121E+04	5.41435-43	5 02235405	1 39315-01
A. 96975+04	h LhAGh-MZ		1,30515401
9.22775404	A 59555-03	6 30045405 9844945405	1,07735#01
Q ARARFAMA	3 8354F-03	D B E D 74 E 7 E J A X(1) / E A G E	1,04/05=01
9.74245444	2 01075-32	0,30545403 6 3956546	1,74002=01
1.00005443	2 1 A 365 - A 2	0 <u>8</u> 3 7 7 7 5 7 0 7 4 4 4 9 5 5 4 8 5	1,42/35=01
1.11766+05	1 74816-03	4 5A165105	C, 3/005+01
1.23536405	3 3AASE_03	8 81/22702 8 90122403	1,97342-01
1.35295+25		5 75765+05	C,JC012401
1.47065+45	3 3/436-03	0 1 7 0 0 0 VIJ	1,74232401
1 58835445	5 3 3 4 4 2 5 - 0 3 1 3 5 5 5 6 - 0 3	6 05365505	1,20306-01
1 70595405	1 24325-01	237JJ0E70J	1,40000=01
1 82385405	1 13835-03	7 13075 406	1,19626-01
1.94125+45	3 33496-23	1 33376408 1 33376408	1,00010-01
2 05885445	1 78996-22	1 13545403	7,32025-02
2.17656405	2 8 6 7 6 6 6 6 7 8 7 8 9 6 6 6 6 7 8 7 8 9 6 9 6 6 6 7 8 7 8 9 6 6 6 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7	(3 3 4 3 0 5 4 4 3 7 4 1 8 4 5 4 6 5	4,0/146=02
2,39415445	2 20045-02	1 51105-05	4,02152-02
2_41185405		1 8 7 1 1 9 5 4 9 5 1 8 7 1 9 5 4 9 5	3,//Y82-02
2 52945445	1999376493 5 00116_J2	/ 3 0 8405703 7 60705505	4,00/40402
2 64716446	2 27626-22	1 10005 00	2,343/2+92
2.76476425	5 8 7 9 9 5 4 V 3	1.01707E707 7.04105405	2,01572-02
2. 28245408 5910-15700	2431746983 6 37646983	1 01115 PDG	1,29598-02
6 1 4 4 6 4 6 4 V 1	6 - 1 - 6 3 5 4 4 3	7.377702903	7 96765207

PLTCVT PROGRAM DATA SUMMARY PIR 1 Chain 2 CONTAMINANT = NP=237 TONS OF HEAVY METAL FACTUR = 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 1.0000000E+04 TIME HIGHE 4.000000E+04 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 1.500000E+02

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME = 1.4905E+04 MAX. TIME = 8.7924E+05 TOTAL WEIGHT = 4.8509E+04 TOTAL PARCELS . 6128.0 PEAK WEIGHT # 738.427 PEAK WEIGHT TIME = 2.3875E+04 PEAK PARCELS = 191.000 PEAK PARCELS TIME = 1.5325E+04 WT. LOW = 0.0000E=01 NO. PARCELS LOW = 0.0 WT. HI = 3.2220E+04 ND. PARCELS HI = 2017.0 SMOOTHING WINDOW (CELLS)= 15

* TOTAL INVENTORY (CURIES) = 6.072869E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 4.849314E+04 PERCENT OF TOTAL INVENTORY = 60.069

TIME OF MAXIMUM CONCENTRATION (YEARS) = 2.162500E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 6.864691E=06 MAXIMUM RATE (CURIES/YEAR) = 3.551088E+00 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E=06

TIME (VE)	BATE (CULTR)	TIME (VP)	RATE (CU/YR)
1 18755400	5 6154F+16M	2.1750F+04	3.5503E+00
1 // 80/52404	3 £150F400	2 2118F404	3.5469F+MA
1 40135404	2 6154F+39	2.2485F+04	3.5371F+00
1 49325404	2 6154F400	2.28635404	3.5234F+00
1 49515404	2 6154F400	2.32215+04	3.5126E+00
1.49705+04	2.6154E+00	2.3556E+04	3.4998E+00
1.49895+04	2.6154E+00	2.3956E+04	3.4770E+00
1.5006E+04	2.6154E+WM	2.43246+04	3.4494E+00
1.5027E+04	2.6179E+00	2.4691E+04	3.4179E+00
1.50456+04	2.65000000	2.5059E+04	3.3759E+00
1.50646+04	5.685NF+ND	2.54265+04	3,3329E+00

1 , 5083E+04	2,71402+00	2,57948+04	3.2845E+00-
1,5102E+04	2,74612+00	2.6162E+04	3.23692+00
1,5121E+04	2,7781E+00	2,65292+04	3.1875E+00
1,5140E+04	2,8102E+00	2.6897E+04	3.1279E+00
1,5159E+04	2.84226+00	2.7265E+04	3.0537E+00
1,5178E+04	2,8755E+00	2,7632E+04	2.9776E+00
1,5197E+04	2,91546+00	2.80032+04	2.9110E+00
1,5216E+04	2,9553E+00	2.8368E+04	2.8166E+00
1,5235E+04	2,99526+00	2.8720E+04	2.3685E+00
1.5254E+04	3.0350E+00	2.9072E+04	1.73192+00
1,5273E+04	3,0749E+00	2.9424E+04	1.1490E+00
1,5292E+04	3,1148E+00	2,9777E+04	5.4471E=01
1,5311E+04	3,15478+40	3.0129E+04	1.24895+01
1.5330E+04	3,1924E+00	3,0481E+04	2.10655-03
1,5348E+04	3,22355+00	3,0834E+04	2.0710E-03
1,5367E+04	3,25452+00	3,11862+04	2.0633E-03
1.5386E+04	3,2855E+00	3,1538E+04	2.1025E+03
1,54052+04	3,31652+00	3,1890E+04	2.10778-03
1.5424E+04	3,3475E+00	3,2243E+04	2.0948E-03
1,5443E+04	3,3785E+00	3,2595E+04	2.0816E=03
1,5462E+04	3,4095E+00	3.24472+04	2,0776E+03
1.5481E+04	3.43446+00	3,32992+04	2,1026E+03
1.5500E+04	3,4463E+00	3_3652E+04	2.0830E-03
1.58682+04	3,50626+00	3,40046+04	2,0776E-03
1,62358+04	3,47398+00	3 . 4356E+04	2,08142-03
1.6503E+04	3,4763E+00	3,47092+04	2,1077E+03
1.69712+04	3,4773E+00	3,5061 E +04	2,0820E-03
1,7338E+04	3.47732+00	3,5413E+04	2,05238-03
1.7706E+04	3,49348+44	3,57652+04	2,0915E+93
1.8074E+04	3,49802+40	3 . 6118E+04	2,0892E=03
1.8441E+04	3,4925E+00	3.6470E+04	2,4308E=03
1,8709E+04	3,50028+00	3.6822E+04	3,4999E=03
1,91762+04	3,51158+00	3,7174E+04	4,66596-03
1,95442+04	3,52092+60	3.7527E+04	5,1790E=03
1,99128+04	3,52616+00	3,78792+04	5,1489E=03
2.02792+04	3.53342+00	3,8231E+04	5,1615E+03
2.00472+04	5,5411E+00	3.85846+04	5,1489E-03
2.10138704	5.54426+00	3.8936E+04	5,1432E=03
2,13822+04	3,54832+00	3.92385+04	5,15638-03

PLTCVT PROGRAM DATA SUMMARY PIR 1 Chain 2 CONTAMINANT = NP=237 TONS OF HEAVY METAL FACTOR = 1.000000 DATA BLOCKING FACTORS: ENTRY MDDE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 4.5000000E+05 TIME HIGH= 6.000000E+05 NUMBER OF CELLS = 300 DELTA TIME INCREMENT = 1.1666667E+03

RAW DATA AND BLOCKED DATA FACTORS: MAX. TIME = 8.79248+05 MTN. TIME # 1.4905E+04 TOTAL WEIGHT = 3.0379E+04 TOTAL PARCELS . 1883.0 PEAK WEIGHT = 361.549 PEAK WEIGHT TIME . 6,6408E+05 PEAK PARCELS = PEAK PARCELS TIME . 6.6408E+05 55.000 WT. LOW . 5.0075E+04 ND. PARCELS LOW # 6243.0 ND, PARCELS HI = WT. HI = 2.7506F+02 19.0 111 SMOOTHING WINDOW (CELLS)=

(

"TOTAL INVENTORY (CURTES) = 8.072870E+04 Inventory under the current graph (curtes) = 3.040654E+04 Percent of total inventury = 37.665

TIME OF MAXIMUM CONCENTRATION (YEARS) = 6,535833E+05 MAXIMUM CONCENTRATION (MICHOCURIES/ML) = 3,826608E=07 MAXIMUM RATE (CUPIES/YEAR) = 1,979495E=01 CONVERSION FACTOR RATE TO CUNCENTRATION = 1,933123E=06

TIME (YEARS) AND HATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	HATE COULTRY	TIME (VO)	
4. SAKAELOS		THE TIKE	RATE (CU/YR)
4124005403	D	6.51482+05	1.97776-01
4.58516+05	6-4641F=NK	A BRHDEADE	
A LONTE AUE		0104455460	1,97916-01
H CETSET	0.6004E=05	6.57366405	1 97265-01
4.07358405	6 72378-MZ	1 1 3 4 3 5 4 5 5	1491300-01
A 71770	0,10,10,003	0.00345+62	1.9607E=01
4.11/2425	6.947AE=03	6-65246405	1 BAREF-DA
4.76196405	7 75616-101		144635401
	1 # 300 TE # 43 2	6.0019E405	1.9135E-01
4.00016+05	7.93946-03	A. 6914F405	1 000/5-01
4-BSKAF+AS	R ADLANDUR		1ªCONDE-01
	C D D T NE M 2	6.7201E+05	1.8428F=01
4.89466+35	9.6655Ewdis	6 THATELME	
A GIGRELIAS		0 * 1 201 C + 113	1.8011E=01
4 7 30 0L Y 0 3	1.00//ピールピ	6.7795E+05	1.75678-01
4.96306+65	1.251 (Faula)	A HANDEADE	
5 0373-4/IE		0 * 0 0 0 4 2 4 6 3	3.7107E-01
36KE166403	1-24256-45	5.3303E+05	1.6638E-01

5 07145+05	1 \$7798-03	6 8577610E	1 64678-04
3801345703	1.37796-08	0,00//2403	1.01035-01
5,11572+05	1,77982=02	5.8972E+05	1,5684E=01
5,15998+05	5-00355-05	5,92662+05	1,5201E=01
5.2041E+05	2,2547E=02	6 . 9560E+05	1,4712E+01
5,2483E+05	2,54316-02	6 . 9854E+05	1,4214E-01
5.29252+05	2.8763E=02	7.01482+05	1.3705E=01
5.33672+05	3.25966-02	7.0442E+05	1.3184E-01
5.3810E+05	3-69686-42	7.0736E+05	1-24515-01
5.4252E+05	4.19018-42	7.10318+05	1.21055-01
5.46942+45	4.73828-02	7.13256+05	1 15495-01
5.51366405	5 74175-02	7 16195-05	1 309RE-31
E EE725105	5 30375-33	7 10175-08	
2122105402	5 30575-03	7,17136703	1,04155-01
3900E8E403	0.72335-02	1.26012703	9.84100#02
3,04036703	7,51142=02	7,23022+05	9,2690E=02
5.69052+05	8,3579E=02	7.2796E+05	8 . 7004E-02
5,7347E+05	9,25792-02	7.3090E+05	8,13906-02
5,77892+05	1,01935-01	7 , 3384E+05	7,5893E+02
5,82312+05	1.11468=01	7 . 3678E+05	7,0553E+02
5.8673E+05	1,20985-01	7,3973E+05	6.5414E=02
5,91162+05	1_30266-01	7.42672+05	5.0519E+02
5,95582+05	1.39126-01	7.4561E+05	5.5894E-02
0. NAAAE+05	1.4742E-01	7.48556+05	5-15758-02
6.0442E+05	1.55048-01	7.51496+05	4.75738-02
6.0736E+05	1.59678-01	7.54446+05	4 39028-02
5.1030E+05	1.63945-01	7.57346+05	A 05415-02
6.1324F+45	1 67848-31	7	7 7/075-00
6 1610F-04	1 71/445-04	7 - 3346408	J 4736=02
6.10176405	1 74656-34	7.532636703	3,47002-02
5 33075445	1 77676-01	7 <u>* 0020546</u> 403	3,22035402
0 1 2 2 2 4 7 5 7 0 J	1,77936-01	7.07146.403	2,74212402
0,23016703	1.0000000101	7,72092+03	2,78592-02
0,21735703	1.86965-01	7,75032+05	2,6018E=02
0,50845+05	1,85365=01	7.7797E+05	2,44052-02
6,3383E+05	1,8773E=01	7.80916+05	5,2966E-05
6,3677E+05	1,90008=01	7.83856+05	2 . 1684E=Ø2
6.3972E+05	1 . 9214E-01	7,8680E+05	2,1201E+02
6.42665+05	1 , 9408c=01	7,89742+05	2,0252E-02
6.456ØE+05	1,95748-01	7,9268E+05	1,94508-02
6.4854E+95	1.97008-01	7,9562E+05	1.8775E-02

PLTEVT PROGRAM DATA SUMMARY PIR 1 Chain 2 CONTAMINANT = U=233 TONS OF HEAVY METAL FACTUR = 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LUW).DT.NCELLS) (2 = T(LUW).T(HI).NCELLS) MODE = 2 TIME LOW = 1.000000E+04 TIME HIGH= 8.000000E+05 NUMBER OF CELLS = 500 DELTA TIME INCREMENT = 1.580000E+03

RAW DATA AND BLOCKED DATA FACTORSE MIN. TIME = 1.6584E+04 MAX, TIME = 8,7037E+05 27225.0 TOTAL PARCELS = TOTAL WEIGHT = 7.3028E+04 4,6741E+05 PEAK WEIGHT TIME = 464.687 PEAK WEIGHT # PEAK PARCELS TIME # 1.4509E+05 373.000 PEAK PARCELS # ND. PARCELS LOW & 0.0 WT. LOW # 0.0000E=01 ND. PARCELS HI 0,158 WT. HI = 3.7536E+01 20 SMOOTHING WINDUW (CELLS) #

TOTAL INVENTORY (CURIES) = 7.306534E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 7.309506E+04 PERCENT OF TOTAL INVENTORY = 100.041

TIME OF MAXIMUM CONCENTRATION (YEARS) = 5.084900E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2.918823E=07 MAXIMUM RATE (CURIES/YEAR) = 1.509900E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E=06

1

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CUATR)-	TIME (YR)	RATE (CU/YR)
1.711PE+04	1,40751-02	4.00006+05	1.3975E-01
2.32586+64	1.58524=42	4,10596+05	1.40998-01
2.9406E+04	1.95291-02	4.21106+05	1.4229E-01
3.55558+04	2.165BE-02	4.3177E+25	1.4367E+01
4.1703E+04	2.15716-02	4.42356+05	1.4508E-01
4.78516+04	2.104NE-02	4.52946+05	1.4649E=01
5.39996+04	2 25458-92	4.03536+05	1.4782E-01
6.0147E+64	2.25392-02	4.7412E+05	1.4901E+01
0.62956+04	2.12286-02	4.84715+05	1.4998E=01
7.2444E+04	2.03772-02	4.9529E+05	1.5065E=01
7.8592E+04	2. 49951-62	5. 1588E+05	1.5096E-01

8,4740E+04	2,20756-02	5.1647E+05	1.5089E+01
9,0388E+04	2.25328-02	5.27062+05	1.50378+01
9,70362+04	2,2509E-02	5.37652+05	1.4944E+01
1.03186+05	2.23368-02	5.4824E+05	1.4806E-01
1.0933E+05	2.21968=02	5.50822+05	1.4619E=01
1.1548E+05	2.20185-02	5.69418+05	1.44158-01
1.2153E+05	2.2472E-02	5.89092+05	1.4126E=01
1.2778E+05	2.40998=02	5-8664E+05	1.377AF=01
1.33932+05	2.75108-02	5,93295+05	1 33325-01
1.4007E+05	3.3275E-02	9,99936+09	1 24545-01
1.46228+05	4.01678-02	5.0657F+05	1 24168-01
1.5237E+05	4.65352-02	6.13212+05	1.20058-01
1.58522+05	5.1505E=02	5.19868+05	1 13408-01
1.64672+05	5.70878-02	5.25548+45	1 00015-01
1.7081E+05	5-5169E-02	6.33146+05	1 02178-01
1.76962+05	7.45408-02	6.39795405	0 45315-00
1.8311E+05	8.44115-02	6.48438405	8 77316-86
1.89262+05	9.27946-02	N.53078405	8 01536-02
1.95418+05	1.0597E=01	A. 5971F+05	7 1000F-02
2.0156E+05	1.22618=01	6.66366+05	6 6898F-02
2.07702+05	1.3759E=01	6.7300E+05	8.04558-02
2.1385E+05	1.4711E-01	6.7964E+05	5,2110F-02
2.2000E+05	1.4998E-01	6.8628E+05	4.59328-02
2.30595+05	1.4737E-01	6.9293E+05	4,01325-02
2.41186+05	1.4455E-01	6.9957E+05	3.4210F-02
2.5176E+05	1.4202E-01	7.06212+05	3,03365=02
2.6235E+05	1.39495-01	7.12862+05	2.57278-02
2.72948+05	1.37336-01	7.1950E+05	2.15598-02
2,83538+05	1.35696-01	7.26142+05	1.79485-02
2.9412E+05	1,3434E=01	7.3278E+05	1.48842-02
3,04712+05	1.3357E-01	7.3943E+05	1.2298E=02
3,15298+05	1.33276-01	7.4607E+05	1.01205-02
3,25886+05	1.3338E-01	7.52718+05	8.31085-03
3,3647E+05	1.3582E-01	7.5935E+05	6.7892E+03
3,47262+05	1,34528-01	7.0000E+05	5.4359E-03
3,5765E+05	1.35408-01	7.7264E+05	4.3971E-03
3.68248+45	1.36398-01	7.7928E+05	3.5139E-03
3,7882E+05	1.3746E=01	7.85936+05	2.8443E=03
3,89416+05	1.38586-01	7,92576+05	2.4541E=03

PLTCVT PROGRAM DATA SUMMARY PIR 1 Chain 2 CONTAMINANT = TH=229 TONS OF HEAVY METAL FACTOR = 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 1.000000E+04 TIME HIGH= 8.000000E+05 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 1.975000E+03

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME = 1.5814E+04 MAX. TIME = 1.05128+06 TOTAL WEIGHT = 4.0226E+03 TOTAL PARCELS # 29241.0 3.7439E+05 PEAK WEIGHT TIME . PEAK WEIGHT = 50.002 PEAK PARCELS TIME = 1.6306E+05 PEAK PARCELS . 183,000 ND. PARCELS LOW = WT. LOW = 0.0000E-01 0.0 WT. HI = 3.2539E+00 ND. PARCELS HI = 9691.0 . 20 SMOOTHING WINDOW (CELLS) #

TOTAL INVENTORY (CURIES) = 4.0256866403 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 4.0025296403 PERCENT OF TOTAL INVENTORY = 99.420

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4.909125E+05 MAXIMUM CONCENTRATION (MICRUCURIES/ML) = 1.587910E=08 MAXIMUM RATE (CURIES/YEAR) = 6.214217E=03 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E=06

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1.4936E+04	2.3525E=04	4. NUDUE+05	7.7212E-03
2.11526+04	4.04162-04	4.1059E+05	7.8421E=03
2.7366E+04	5.32946-04	4.2118E+05	7,9456E=03
3.35808+04	9.1661E=#4	4.3176E+05	8.0301E-03
3.97942+04	1.1315E-03	4.4235E+95	8.0961E=03
4.6008E+04	1.25446-43	4.5294E+05	8.1448E-03
5.22228+04	1.3347E=03	4.6353E+05	8.1790E-03
5.8436E+04	1.36536-03	4.7412E+05	8.2010E-03
6.4650E+04	1.38192-05	4.8471E+05	8.2123E-03
7.08642+04	1.3356L-03	4.95292+05	8.2133E+03
7.7078E+04	1.29216-03	5.0588E+05	6.2019E=03

8.3292E+04	1.28518=03	5.1547E+05	8.1740E=03
8,95066+04	1,31246-03	5.2706E+05	8-1310E-03
9,57202+04	1,34516-03	5.3765E+05	8.06665-03
1,0193E+05	1.3590E-03	5.4824E+05	7.96286-03
1.0815E+05	1.30138-03	5.58822+05	7-86288-03
1.14368+05	1.30776-43	5.69412+05	7.73128-03
1,20586+05	1.3764E=03	5. 50006+05	7.53258-03
1.2679E+05	1.39362-03	5.80046+05	7 29765-03
1.33006+05	1.45651-03	5.93278+05	7.04425-03
1,39228+05	1.60955-03	5.49912+05	6.8293F-03
1.45436+05	1.86946-05	6.0655E+05	6,6571F-03
1.51658+05	5.220WE-03	6.13188+05	6.50575-03
1.57862+05	2.63466-03	6.19826+05	6.31925-01
1.6407E+05	3.12148=03	6.26468+05	A 07285-03
1.70292+05	3.61205-03	6.33096+05	5.78118-03
1.76502+05	4.1145E-03	5.3973E+05	5 49425-92
1,82728+05	4.50678-03	6.40372+05	5.24838-03
1.88936+05	4.73998-03	5.5300E+05	5.04495-03
1.95146+05	4.9691E=03	6.5964E+05	4.84315-03
2.01366+05	5.47956-03	5.55282+05	4,5949E=03
2.07576+05	0,35622-03	6.7291E+05	4.2715E-03
2,13796+05	7,2963E=03	6.7955E+05	3-88068-03
5.50066+05	7.8099E-03	6.8019E+05	3-45026-03
2.30596+05	7.84716-03	0.9283E+05	3.0071E-03
2,4118E+05	7.74836-03	6.9946E+05	2.5726E=03
2,5176E+05	7,61038-03	7.00102+05	2.16278-03
2.62356+05	7.52062-03	7.12748+05	1.7963E-03
2 . 7294E+05	7,3766E-03	7,19378+05	1.4870E-03
2,8353£+05	7.24926-03	7,26016+05	1.2403E-03
2.94126+05	7 . 12646-03	7.3265£+05	1.0500E-03
3.04715+05	7.0387E-03	7.5428E+05	8.98748-04
3-15296+45	6.9073t-03	7.45928+05	7.7003E-04
3.2588E+05	6.9783E=43	7.5256E+05	5,5459E-04
3.36478+45	7.0100E-03	7.5919E+05	5.4843E-04
3.47056+05	7.0814E=03	7.6503E+05	4,5410E-04
3.57652+05	7.18342-915	7.72476+05	3,74568-04
3.6A24E+05	7.30836=05	7.7910E+05	3,1094E=04
3.7882E+05	7.44018-03	7.85746+05	2.65085-04
3.89416+65	7.536AE-05	7.92366+45	2.3962E-04

PLTCVT PROGRAM DATA SUMMARY PIRI(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 3 CONTAMINANT = U=238 TONS DF HEAVY METAL FACTOR = 1,000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 1,000000E+05 TIME HIGH= 3,000000E+05 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 5,000000E+02

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 1,9999E+06 MIN. TIME # 1.1201E+05 TOTAL WEIGHT = 2.4460E+04 TOTAL PARCELS # 10735.0 PEAK WEIGHT . 282.065 PEAK WEIGHT TIME = 1.5125E+05 PEAK PARCELS . 70.000 PEAK PARCELS TIME . 1.51258+05 WT. LOW = 0.0000E=01 NO. PARCELS LOW . 0.0 WT. HI = 8.1773E+00 NO. PARCELS HI = 13228.0 SMOOTHING WINDOW (CELLS) = 5

TOTAL INVENTORY (CURIES) = 2,446779E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2,445368E+04 PERCENT OF TOTAL INVENTORY = 99,942

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.562500E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 8.614734E=07 MAXIMUM RATE (CURIES/YEAR) = 4.456580E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E=06

CONTAMINANT # U=238

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1,1225E+05	7.8678E=04	2.0600E+05	1.3976E-01
1.1413E+05	1.6477E+03	2.0788E+05	1.3823E-01
1.1600E+05	3 . 6103E-03	2.0975E+05	1.3627E=01
1,1788E+05	6.7275E+03	2.1163E+Ø5	1,3472E+01
1,1975E+05	1.1390E=02	2.1350E+05	1,3425E=01
1.2163E+05	1.7719E=02	2.1538E+05	1,3449E=01
1,2350E+05	2,5657E+02	2.1725E+05	1.3390E=01
1.25382+05	3,5531E+02	2.1913E+05	1,3050E-01
1.27632705	4.82752-02	5.5100E+05	1,2367E=01
1,27132703	6,52402=02	50+38855°2	1,1448E=01
1.531602403	0.72752402	2.2475E+05	1.0522E-01
1.32002403	1,1452C#01 1,15565-01	2.2063E+05	9,7939E=02
********	+ + + 5 3 0 2 4 5 1	C.CO305403	Y,5592L+02

1,3663E+05	1,79998=01	2,3038E+05	9.9629E=02
1,3850E+05	2,1556E=Ø1	2,32255+05	8.7901E-02
1,4038E+05	2,3409E=01	2,34132+05	8.3724E=02
1,4225E+05	2,9101E-01	2,36002+05	7.78218+02
1,4413E+05	3,2556E=01	2.3788E+05	7.0585E-02
1,4600E+05	3,5687E+01	2.3975E+05	6.2472E=02
1,4788E+09	3,8456E+01	2,4163E+05	5.3898E=02
1,4975E+05	4,08158-01	2,4350E+05	4.56062-02
1,5163E+05	4 . 2652E=01	2.45382+05	3.8541E-02
1,53502+05	4,3889E+01	2,4725E+05	3.3199E-02
1.5538E+45	4 4495E-01	2,4913E+05	2.9074E-02
1,5725E+05	4,4471E=01	2,51002+05	2.5374E-02
1,5913E+05	4,38286+01	2.52885+05	2.15918-02
1.6108E+05	4,20265+01	2.5475E+05	1.7713E-02
1,6288E+05	4,09795=01	2,5663E+05	1.4186E=02
1.64758+05	3,90016-01	2.5850E+05	1.1138Em02
1,66632+05	3,6791E-01	2.6038E+05	8.4762E.03
1,6850E+05	3,4421E-01	2.6225E+05	5.2103E=01
1,7038E+05	3,1962E-01	2.6413E+05	4.4131E=03
1,7225E+05	2,9460E+01	2.55002+05	3.1861E-03
1,7413E+05	2,69298-01	2.67882+05	2.4531E=03
1,7600E+05	2,43968-01	2,69752+05	2.02128-03
1,7788E+05	2,1991E=01	2,7163E+05	1.71918=03
1,7975E+05	1,9942E=01	2,7350E+05	1.4848E=03
1,81632+05	1,8454E+01	2,7538E+05	1.31648=03
1,8350E+05	1 . 7505E+01	2,77252+05	1.19698#03
1,8538E+05	1,6875E-01	2,79132+05	1.96615+93
1,8725E+05	1,6293E+01	2,8190E+05	8.7697E+04
1,8913E+05	1.5612E=J1	2,8288E+05	5.3138E=04
1,9100E+05	1,4877E-01	2,84756+95	3.9144E=04
1,9288E+05	1,4224E-01	2,8663E+05	2.03258-04
1,9475E+05	1,3786E-01	2,8850E+05	9,03322-05
1,9663E+05	1,36132=01	2,9038E+95	3,5756E+05
1.9850E+05	1,3663E+01	2,92252+05	2,2383E+05
2,00382+05	1,3824E=01	2,9413E+05	1,7878E-05
2,02255+45	1,3975E-01	2,9600E+05	1,69378+05
2,0413E+05	1,4033E#01	2,97882+05	1.1292E=05

.

PLTCVT PROGRAM DATA SUMMARY PIRI(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 3 CONTAMINANT # U=234 TONS OF HEAVY METAL FACTUR = 1.000000 DATA BLOCKING FACTORS: ENTRY HODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) HODE . 2 TIME LOW # 1.0000000000 TIME HIGHE 3,000000E+05 NUMBER OF CELLS . 400 DELTA TIME INCREMENT . 5.00000000000

RAW DATA AND BLOCKED DATA FACTORS: HAX. TIME = 2.0000E+06 MIN. TIME # 1.8747E+05 TOTAL WEIGHT = 9.6430E+04 TOTAL PARCELS = 20565.0 PEAK WEIGHT # 1133. N24 PEAK WEIGHT TIME # 1.5125E+05 PEAK PARCELS PEAK PARCELS TIME # 1.5125E+05 115,000 WT. LOW = 0.0000E-01 NO. PARCELS LOW . 0.0 NO. PARCELS HI . WT. HI = 2.5367E+00 8512,0 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 9.043279E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 9.642510E+04 PERCENT OF TOTAL INVENTORY = 99.992

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.542500E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 3.420995E+06 MAXIMUM RATE (CURIES/YEAR) = 1.769672E+00 CONVERSION FACTUR RATE TU CONCENTRATION = 1.933123E+06

CONTAMINANT = U=234

TIME (YR)	RATE (CU/YR)	TIME (VR)	RATE (CU/YR)
1.0725E+05	2.3010E-03	2.0350E+05	5.11716-01
1.0918E+05	4.26665+43	2.0543E+05	5.0518E=01
1.1110E+05	6.5708L-03	2.0735E+05	4.9884E-01
1.1303E+05	1.46386-62	2.0928E+05	4.9225E-01
1.1495E+05	2.3950E=02	2.1120E+05	4.8462E=01
1.16886+05	3.6620E=02	2.1313E+05	4.7594E=01
1.1880E+05	5,36898-02	2.1505E+05	4.6668E+01
1.2073E+05	7.69398-02	2.1698E+05	4.5620E-01
1,22656+05	1.08678-01	2.1890E+05	4.4388E=01
1.2458E+05	1.51986-01	2.2083E+05	4.2935E+01

1,2650E+05	2,1040E+01	2,2275E+05	4.1191E#01
1.2843E+05	5°9252=01	2,24682+05	3,91598=01
1.3035E+05	3.8059E=01	2,25602+05	3.6390E=01
1,32282+05	4.92558-01	2,2853E+05	3,43648+01
1.3420E+05	6,1899E=01	2.3045E+09	3,1704E-01
1,3613E+05	7 . 5597E+01	2,32388+05	2.90012=01
1.38052+05	8,9930E=01	2,3430E+05	2.6362E-01
1,3998E+05	1,9468E+99	2,3623E+05	2.38798-01
1,4190E+05	1 . 1952E+00	2,3815E+05	2,14935-01
1 , 4383E+05	1 . 3408E+00	2,4008E+05	1.9144E=01
1,4575E+05	1,4774E+00	2,42002+05	1.6779E+01
1,4768E+05	1 . 5942E+00	2,4393E+05	1.44298#01
1.4960E+05	1,68372+90	2,45852+05	1.2224E=01
1,5153E+05	1,7410E+00	2,4778E+05	1.0267E+01
1.5345E+05	1,7566E+00	2,4970E+05	8.60855=02
1.5538E+05	1.75722+00	2,51632+05	7.2269E-02
1,5730E+05	1 . 7480E+00	2,5355E+05	6,0327E=02
1,59232+05	1,71322+00	2,55488+05	4,96788+02
1.6115E+05	1,5637E+00	2,5740E+05	4,0193E+02
1,63082+05	1,5988E+00	2,59332+05	3,1847E+02
1.6500E+05	1,5192E+00	2.61252+05	2,48268+02
1,6693E+05	1,4270E+00	2 . 6318E+05	1,9310E-02
1,6885E+05	1,3275E+00	2,65102+05	1,5257E+02
1,7078E+U5	1,2271E+00	2,57032+05	1,2573E+02
1,7270E+05	1,13142+00	2,68952+05	1,08942=02
1,7463E+05	1,0426E+00	2 . 7088E+05	9,60158-03
1,76552+05	9,6159E=01	2,7280E+05	8,2247E=03
1,78482+05	8,8543E=01	2,7473E+05	6,5272E+03
1,80402+05	8,1335E=01	2.76652+05	4.62802-03
1,8233E+05	7,4614E=01	2,78582+05	2,8575E=03
1,84252+05	5,8648E=01	2.80502+95	1,46792-03
1.80182+05	6,3830E+01	2,8243£+05	6,4512E-04
1,88102+05	5,0285E-01	2.8435E+05	2 , 3185E-04
1,90038+05	5,7906E+01	5,32585+02	6,17278-05
1,91952+05	5,6430E-01	2,88202+05	6,0221 E =05
1.45882+05	5,5448E-01	2,9013E+05	4,1402E-05
1,93002+05	3,4522E-01	2,9205E+05	3,0111E=05
1,91/52405	5,3762E=01	2,9398E+05	8,2804E+06
1,47036703	3,2848E=U1	2,9590E+05	1,5055E-05
C.01295402	7,19452-01	2,9783E+05	9,0000E=01

PLTCVT PROGRAM DATA SUMMARY PIRI(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 3 CONTAMINANT = TH=230 TONS OF HEAVY METAL FACTUR = 1.000008 DATA BLOCKING FACTORSI ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW # 1,0000006+05 TIME HIGHE 7.00000E+05 NUMBER OF CELLS . 400 DELTA TIME INCREMENT . 1.500000000403

- ÷ .

RAW DATA AND BLOCKED DATA FACTORS: MAX, TIME = 1,9998E+06 MIN. TIME # 1.1130E+05 TOTAL WEIGHT = 4,2971E+03 TOTAL PARCELS . 9657.0 PEAK WEIGHT = 59.522 PEAK WEIGHT TIME = 1.9375E+05 PEAK PANCELS = PEAK PARCELS TIME = 5.3575E+05 61.000 WT. LOW = 0.000000001 NO. PARCELS LOW # 0.0 WT. HI = 3.1003E+01 NO. PARCELS HI = 13620.0 SMOUTHING WINDOW (CELLS) = 10

TOTAL INVENTORY (CURIES) = 4.328140E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 4.324328E+03 PERCENT OF TOTAL INVENTORY = 99.912

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.937500E+05 MAXIMUM CUNCENTRATION (MICROCURIES/ML) = 5.410652E+08 MAXIMUM RATE (CURIES/YEAR) = 2.798917E+02 CONVERSION FACTOR RATE TU CONCENTRATION = 1.933123E+06

CONTAMINANT = TH-230

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CUZYR)	TIME (YR)	RATE (CUZYR)
1.1125E+05	3.6420E-05	2.9681E+05	1.1555E+02
1.1394E+05	1 . 2185E=04	3.02692+05	1.1164E=02
1.16632+05	2.5791E=04	3.0857E+05	1.0789E-02
1.1932E+05	4 . 3231E-N4	3.1445E+05	1.0409E-02
1.2201E+05	6.6718E=04	3.2034E+05	9.9916E+03
1.24706+05	1.04205-03	3,2622E+05	9.5196E=03
1,2739E+05	1.52946-03	3,3210E+05	9.0021E-03
1.50082405	2 . 1360E-03	3.3798E+05	8.4908E-03
1.32778+05	2.8837E=03	3.4387E+05	7.9983E=03
1.35456+05	3.7468L-93	3.4975E+05	7.5560E-03

1,3814E+05	4,6894E=03	3,55632+05	7.1174E=03
1,4083E+05	5.74478-03	3.61518+05	6.73315-03
1,4352E+05	6.9584E-03	3-67498+09	6 3704E-07
1,46212+05	8.31662-03	3.73288+05	
1,4890E+85	9.7395E=03	3.79168-04	0,027/5403 2 67/07-07
1.51598+05	1.12318=02	3 350AGADS	3,5/402403
1.5428E+05	1.28418-02	1 00035+08	3,33322403
1.5697E+05	1.49228-02	J 06945×08	2.03042-03
1-59665+05	1.41638-03	3940015483	4,7652E=03
1.62356498	1 76908-03	4.05075403	4,4799E=03
1.45046405	1 04545-00	4.11/62+05	4,0730E+03
1 17775105	1,71345#02	4,50936+02	3,6894E+03
1 70035100	4.0014E+05	4,2989E+85	3 , 3462E=Ø3
1 77118108	2,17282402	4,38962+05	3,0558E-03
1.73112703	2.27855=02	4 , 4803E+05	2.8078E-03
1,/2006+02	2,3770E=02	4,37102+05	2.60248-03
1,78482+05	2,4734E+02	4,66172+05	2.4235E+03
1,81172+05	2,56098-02	4,75232+05	2.2789E+03
1,83866+05	2,6412E=02	4,8430E+05	2.15695-03
1,8655E+05	2,7115E-02	4,93372+05	2.04535-03
1,89242+05	2,7661E=02	5.42448+05	1.92258-07
1.9193E+05	2,7947E=02	5.1151E+Ø5	1.78368-03
1,94628+05	2,79545-02	5.29588+05	1. 43948-47
1,9731E+05	2,7731E+02	5.2964E+05	1 44355-02
2,0000E+05	2.73198+02	5.38718+05	1 34958-07
2,02692+05	2.6760E-02	5.47788405	1 33768-03
2,08572+65	2.5617E-02	5.56858408	1 1 2 2 5 5 - 2 3
2,1445E+05	2.44815-92	5.65928408	1.12005403
2,20346+05	2.3465E=02	5.7494FA08	1,02822#03
2,26222+05	2.2549E-02	5. 84055400	7,30342-04
2,32102+05	2.1504E-42	5 93135488	0,1940E#04
2.3798E+05	2.05545-02	5 73125703 4 73125448	0,09022=04
2.4387E+05	1.96625-02		7.3901E-04
2.49755+45	1 85575-03	0,11005703	0:1350E+04
2.55536+45	1 73515-03	0.20335483	6,1849E=04
2.61516+45	+	0,27372+05	5,7015E+04
2.67405445		D. 5046E+05	5,2606E+04
2.7324ELGE	1,70435702	- 5,47538+05	4,7843E=04
3.79165105	1,407/2442	6,506ØE+Ø5	4,2869E-04
5 17105703 3 15005105	1,21,495+65	6,6567E+05	3,8289E=04
5 6003845703 3 60035×425	1.22026-02	6 . 7473E+05	3,45238+04
C)70755703	1.14285465	6,8389E+05	3,1877E-04

PLTCVT PROGRAM DATA SUMMARY PIRI(TOTAL FUEL ASSEMBLIES) BASE CASES CHAIN 3 CONTAMINANT = RA-226 TONS OF HEAVY METAL FACTOR = 1.000000 DATA BLOCKING FACTORSI ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 1.0000008+05 TIME HIGHE 7.000000E+05 NUMBER OF CELLS 280 DELTA TIME INCREMENT 3.00000000003

RAW DATA AND BLOCKED DATA FACTORS: MAX. TIME = 1.9996E+06 MIN. TIME = 1.0955E+05 TOTAL WEIGHT = 9,3993E+03 TOTAL PARCELS . 5314:0 PEAK WEIGHT = 271.119 PEAK WEIGHT TIME = 1.7950E+05 PEAK PARCELS = PEAK PARCELS TIME = 2,1850E+05 119,000 WT. LOW = 0.000RE=01 NO. PARCELS LOW . 0.0 ND. PARCELS HI = WT. HI = 7,8388E+01 1455.0 SMOOTHING WINDOW (CELLS)=

TOTAL INVENTORY (CURIES) = 9.477718E+83 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 9.227598E+83 PERCENT OF TOTAL INVENTORY = 97.361

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.975000E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.237114E=07 MAXIMUM RATE (CURIES/YEAR) = 6.399560E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E=06

CONTAMINANT = RA-226

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1.1050E+05	6.7199E=05	2.50006+05	4.6187E=02
1.1230E+05	6.7199E-05	2.5471E+05	4.3406E-02
1.1411E+05	8,72738-05	2.5941E+05	4.0643E-02
1.15916+05	1.46998-04	2.6412E+05	3.7932E+02
1.1771E+05	2,25536=04	2.6882E+05	3.5315E+02
1.1952E+65	3.1411E-04	2,7353E+05	3.2838E-02
1-21326+05	5.0441E-04	2.7824E+05	3.0550E-02
1.23122405	7.3226E=04	2.8294E+05	2.8511E=02
1.04761+05	1,0316E=03	2.8765E+05	2,6686E=02
1.20/51405	1.4696E-03	2.4535E+05	2,5031E=02
1.20232405	1.97688-03	2.97066+05	2.3471E=02

H.33

£

4 70775105	3 93445-47	9 31345400	3 34445 44
1,30335703	2,72405-03	3.01105-03	5,20255+05
1.32142+05	3,5028E#03	3,0647E+05	2,0644E+02
1,3394E+05	4,5893E+03	3 . 1118E+05	1,9307E+02
1,35742+05	5,78712-03	3,1588E+05	1.8023E-02
1,37552+05	7,11082=03	3.20596+05	1.6791E=02
1.3935E+05	8,8399E=03	3.25292+05	1.5587E+02
1.4115E+05	1.0687E+02	3.30002+05	1.4399E+02
1.4295E+05	1.2741E=02	3.3471E+05	1.32366-02
1.44762+05	1.5016E+02	3.45872+05	1.08035-02
1.46562+05	1.7399E=02	3.5704E+05	8.9876E+03
1.48368+05	2.91225-92	3.6821F+05	7 71685-81
1.50175+05	2.2978F=02	3.79375+09	5 3030E-07
1.51975+05	2.40405-02	1_0054F+05	6 1307E-03
1.83775+08	2 92845-43	A 01716-00	8 17778-07
4 4545550	1 38785-03	4 4 3876408	D 24 408 - 07
1 E728EAGE	2 40405-03	4,160/6400	2,30465703
1 80498408		4.24045403	3,41036405
1,37102703	3.43245-05	4,37216+95	5,74732-03
1.00406403	4,34002-02	4,46376+05	5,8343E=03
1,00/92705	4,63412=02	4,5754E+05	5,5829E=03
1.64592+05	4,9496E=02	4,6871E+05	4 . 8615E=03
1,6639E+05	5,2112E=02	4.79872+05	3,7162E=03
1.68292+05	5,4255E=02	4,9104E+05	2,6846E=03
1,7000E+05	5 , 5648E=02	5,0221E+05	1,8875E+03
1.7471E+05	2,85512+05	3,1337E+05	1,3795E+03
1.7941E+05	6,0008E=02	5,24542+05	1.2054E-03
1.84122+05	6,1446E=02	5,35712+05	1.1729E+03
1,8882E+05	5,3060E=02	5.46872+05	1.2257E+03
1,9353E+05	6.3746E=02	5.58042+05	1.3083E+03
1.98248+05	6.39928-02	5.6921E+05	1.31998+03
2.02948+05	5.3857E=02	5.8037E+05	1.25708+03
2.07656+05	6.3409E-02	5-91546+05	1.12916-03
2.12355+05	6.2588E+02	6-02715+05	9.8477F-04
2.17055+05	6.1404E-02	A.1387E+95	A.0642F-04
2.2176E+05	3-99698-02	6.2504F+05	
2.26478+05	5.82638-02	6.3621F+05	5 23775-01
2.31185+05	5.62978-02	5_4737F405	- 0-015-04 5 0-015-04
2.3588F+05	5.4080F=#2	537757570703 5 588845505	マネシネマゴビデジサー オーズロンコビデジタ
2.10305145	5 48675-43	5 10345703 1 10715105	7,30465704
2 A8305108	4 80185-03 	0 0 0 7 7 1 5 7 0 5 0 0 0 7 7 1 5 7 0 5	3,13636#04
E JE76 J	440112E405	9 ª 0 M 0 1 2 4 M D	3,39438+04

PLTCVT PROGRAM DATA SUMMARY PIR 1 (TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 4 CONTAMINANT = AM=243 TONS DF HEAVY METAL FACTUR = 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 1.4000000E+04 TIME HIGH= 3.200000E+04 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 9.000000E+01

RAW DATA AND BLOCKED DATA FACTORSE MIN. TIME = 1.4907E+04 MAX. TIME = 3.0167E+04 TOTAL WEIGHT = 8,7575E+04 TOTAL PARCELS = 1523.0 1.6205E+04 PEAK WEIGHT TIME . PEAK WEIGHT = 1474.076 PEAK PARCELS TIME = 18.000 PEAK PARCELS 2,1785E+04 WT. LOW = 0.0000E-01 ND. PARCELS LOW . 0.0 ND, PARCELS HI WT. HI = 0.0000E-01 0.0 SMOOTHING WINDOW (CELLS) = 59

TOTAL INVENTORY (CURIES) = 8.757455E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 8.875613E+04 PERCENT OF TOTAL INVENTORY = 101.349

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.494500E+04 MAXIMUM CUNCENTRATION (MICRUCURIES/ML) = 2.071308E=05 MAXIMUM RATE (CURIES/YEAR) = 1.071482E+01 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E=06

CONTAMINANT = AM-243

TIME (YR)	RATE (CU/YK)	TIME (YR)	RATE (CU/YR)
1.4945E+04	1.07150+01	2.1500E+04	6.1842E+00
1.4977E+04	1.07156+01	2.10246+04	5.9977E+00
1.50096+04	1.07158+01	2.2147E+84	5,7817E+00
1.50416+04	1.07126+01	2.2471E+R4	5,5797E+00
1.5073E+04	1.06976+91	2.2794E+04	5.3993E+00
1.5105E+04	1.06825+01	2.31186+04	5,2254E+00
1.5137E+04	1.06686+01	2.3441E+04	5,0704E+00
1.51696+04	1.06508+01	2.3765E+04	4.9273E+00
1.52016+04	1.0048E+01	2.4088E+94	4.7961E+00

1.5233E+04	1 96445+01	2.44128+04	4.6608 F +00
1.5265E+04	1.06468+01	2.47358+04	4,53128400
1.52976+04	1.06478+01	2.50595404	A 4366F+00
1.5329E+04	1.06415+01	2.53825+04	A 1005F100
1.53616+04	1.06336+01	2 97365304	A 18/68-00
1.53936+04	1.06256+01	2 6029F+04	4 310405700 A 310405700
1.50258434	1 26275-01	5 6 7 8 7 5 - 0 4 5 6 7 8 7 5 - 0 4	7 04076.400 7 04076.400
1.54575404	1 (13205-0) 1 (13205-0)	2 66768404	3,74635700
1.54885404	1 0870EL01	2 70005+04	2.01626488
1 55305-04	1 02442744		3,04175+00
1 2 2 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4	1.03415+01	2,73245704	3,30302+00
1 8 3 7 3 5 5 7 9 4	1.00132701	2.74192+04	3,27132+00
1 2 3 3 3 4 5 7 8 4	1.04032701	2.73132704	3,17262+00
1,30105704	1,04602+01	2.7510E+04	3,0655E+00
1.30402704	1,94362+91	2.77062+04	2,9524E+00
1,50002+04	1,0402E+01	2,7802E+04	2,8329E+00
1.5/12E+04	1,0358E+01	2,7897E+04	2,7054E+00
1.57442+04	1,0314E+01	2,7993E+04	2,5836E+00
1,5//62+04	1.0270E+01	2 . 8988E+94	2,4670E+00
1,58082+04	1,02252+01	2.8184E+04	2,3517E+00
1.55402+04	1.0180E+01	2.82802+04	2,2379E+00
1,5872E+04	1,0134E+01	2,3375E+04	2,1231E+00
1,5904E+04	1,0088E+01	2,84712+04	2,0161E+00
1,39362+04	1,0042E+01	2,85662+04	1,9091E+00
1,5968E+04	1,0008E+01	2 , 8662E+04	1,8045E+00
1,5000E+04	9,9733E+00	2.87585+04	1,7906E+00
1.6324E+04	9,7789E+00	2,8453E+04	1,60402+00
1.6547E+04	9,55322+00	2.89492+04	1,5106E+00
1.6971E+04	9,3328E+00	2.90445+04	1.4178E+00
1,7294E+04	9.1144E+00	2 . 9140E+04	1.3255E+00
1.75182+04	8,8534E+00	2,92362+04	1,2339E+00
1.7941E+04	8 ,61 86E+00	2.9331E+04	1.25612+00
1,82652+04	A_4064E+00	2,9427E+04	1,1952E+00
1 . 8588E+04	8,1386E+00	2,95228+04	1.1189E+00
1,8912E+04	7,95312+00	2.9518E+04	1.0465E+00
1,92358+04	7.71995+00	2,9714E+04	9.7971E+01
1,95598+04	7.49462+00	2.98092+04	9.1663E=01
1,9882E+04	7,26702+00	2,9905E+04	8.5670E-01
2,02056+04	7,03972+00	3.00002+04	8.0112E-01
2.0529E+04	5,8122E+00	3,00965+04	7.4688E-01
2.08532+04	6,5882E+00	3,01922+04	6.9174E+01
2.1176E+04	6.3872E+00	3.02875+04	6.3659E=01
		-	

PLTCVT PROGRAM DATA SUMMARY PIR 1 (TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 4 CONTAMINANT = PU=239 TUNS DF HEAVY METAL FACTOR = 1.000000 DATA BLOCKING FACTORS: ENTRY MDDE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 1.000000E+04 TIME HIGHE 1.700000E+04 TIME HIGHE 1.700000E+05 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 6.000000E+02

RAW DATA AND BLOCKED DATA FACTORS: MAX. TIME # 4.26326+05 MIN. TIME = 1.6733E+04 TOTAL WEIGHT = 2,7583E+02 TOTAL PARCELS 24.0 PEAK WEIGHT # 80.261 PEAK WEIGHT TIME . 4.1600E+04 PEAK PARCELS # 5.000 PEAK PARCELS TIME = 4,2400E+04 WT. LOW = 0.0000E-01 NO. PARCELS LOW # 0.0 NO. PARCELS HI . NT. HI = 4.9434F.+00 23.0 SMOOTHING WINNOW (CELLS) =

TOTAL INVENTORY (CURIES) = 2.807703E+02 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2.442220E+02 PERCENT OF TOTAL INVENTORY = 86.983

TIME OF MAXIMUM CONCENTRATION (YEARS) = 3.920000E+04 MAXIMUM CONCENTRATION (MICKOCURIES/ML) = 2.906475E=08 MAXIMUM RATE (CURIES/YEAR) = 1.503512E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E=06

CONTAMINANT = PU+239

1

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1.6800E+04	2.0327E-03	8.9600E+04	9.4184E=05
1.82566+04	2.4710E=03	9.1056E+04	2.08556=04
1,9712E+04	3,21066-03	9,25126+04	4.0458E-04
2.1168E+04	2.9981L-03	9.3968E+04	6.7272E=04
5.56546+04	2.19018-03	9.5424E+04	9.09608-04
2.40695+04	1,23656-03	9.6880E+04	1.0048E-03
2.5536E+04	5.8176t=04	9.8336E+04	9.3806E=04
2.6992E+04	2.59546=04	9.9792E+04	1.22258-04
2.84486+04	1.8930E=04	1.01256+05	4.8451E=04

2 , 9904E+04	5.34585-04	1.02705+05	3.15278-04
3,1360E+04	1,5163E=03	1.0416E+05	2.3183E+04
3,28162+04	3,44768=03	1.05622+05	2.3103E-04
3,42726+04	6.40678-03	1.07076+05	2.7980E-04
3.5728E+04	9.8393E=03	1.08536+05	3.4751E-04
3,71848+04	1.24938-02	1.49986+05	4.2106E-04
3.8640E+94	1.47568=02	1.11446+05	4.8749E-04
4,00962+04	1.4796E-02	1.12906+05	5.34408-04
4.1552E+04	1.2913E-02	1.14352+05	5.593AE=04
4.30082+04	9.83326-03	1.15812+05	5.66518=04
4.44542+04	6.4779E-03	1.17262+05	5.5829E=04
4.5920E+04	3.64942-03	1.1872E+05	5.3589E-04
4,7376E+04	2.20158-03	1.20186+05	4.9705F=04
4.8832E+04	2.34A3E-03	1.2163E+05	4.48556-04
5,02888+44	3.63216-03	1.23096+05	4.0340E-04
5.17448+04	5.54648=03	1.24542+05	3.6648E=04
5.32002+04	6.6484E=H3	1.2600E+05	3.41265-04
5.46562+04	5,53582-03	1.2746E+05	3.0939E=04
5,61128+04	5,39866-03	1.2891E+05	2.5831E-04
5,75686+04	3,36162-03	1.30376+05	1.92798-04
5,90248+04	1.7030E=03	1,31822+05	1.1847E-04
6.0480E+04	7,88186-04	1.33286+45	6.0986E-05
6.1936E+04	4.74046-04	1.3474E+05	2.6674E-05
6.3392E+04	4.27456=04	1,30192+05	1,9586E=05
6.4848E+04	4.64066=04	1.37656+95	8.08646-06
6 . 6304E+94	4 . 3894E=04	1.3910E+05	8,1381E=06
6.7760E+04	3.77426-04	1,4056E+05	8,12758-06
6 . 9215E+04	3,01648-44	1.4202E+05	8,0875E-06
7,05725+04	2.33951-04	1.43476+05	8,1158E=05
7,21286+04	1 . 8914E-04	1 . 4493E+05	8,1111E=06
7.35848+04	1.67011-04	1,4038E+05	8,11528-06
7,5040E+04	1,52016-04	1,47846+05	8,1099E-05
7,6496E+04	1,3434E=04	1,4930E+05	8,12288=06
7,79526+24	1.110HE=04	1.5075E+05	8,1899E=06
7.940AE+04	8.41416-05	1.52212+05	9,4008E=06
8.08642+04	6.44262-43	1.53066+05	1,2973E-05
8.23202+44	5.31114=05	1.5>128+05	2,0504E-05
R.3776E+04	4.89458-25	1.50586+05	3,19648-05
9.2225404	4,99112-05	1.58032+05	4,3419E=05
8.55882+44	5,26286-45	1.59496+05	4,9256E-05
8.81442+04	5_A1546-05	1.50946+05	4.24375-45

RAW DATA AND BLOCKED DATA FACTORSE MAX, TIME = 5.7310E+05 MIN. TIME = 1.6258E+04 TOTAL WEIGHT . 8.1607E+02 TOTAL PARCELS # 15775.0 PEAK WEIGHT = 21.727 PEAK WEIGHT TIME = 1.6625E+05 PEAK PARCELS ... PEAK PARCELS TIME = 1.4725E+05 136.000 WT. LOW = 6.6448E-01 NO. PARCELS LOW # 4560.0 WT. HI = 1.1963E+01 NO. PARCELS HI . 235.0 10 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 8.287918E+02 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 8.132722E+02 PERCENT OF TOTAL INVENTORY = 98.138

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.787500E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.876288E=08 MAXIMUM RATE (CURIES/YEAR) = 9.705989E=03 CONVERSION FACTOR RATE TU CONCENTRATION = 1.933123E=06

CONTAMINANT # U-235

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1.00256+05	6.2154E=06	2.0000E+05	7.7098E+03
1.02256+05	9,63596-06	2.0200E+05	7.5751E=03
1.04246+05	1,61236-05	2.0399E+05	7.4757E+03
1.06246+05	2.51456-05	2.05996+05	7.4008E+03
1,0823E+05	3.6932E=05	2. 4798E+05	7.3364E-03
1.10236+05	5,34756-05	2.09986+05	7.2657E=03
1+1555E+N2	7.67458=05	2.1197E+05	7.1737E=03
1.14226+05	1.0948E=04	2.1397E+05	7,0484E=03
1.16218+05	1.55046-04	2.1596E+P5	6.8834E-03
1.10216+05	2 . 1748E=04	2.1796E+05	6.6778E-03

1,2020E+05	3,0150E=04	2.1995E+05	6,4357E=03
1.2220E+05	4.1231E=04	2.2195E+05	6.1646E+03
1.24198+05	5.5538E=04	2.23948+05	5. A740E+03
1 26195+05	7 36385-04	2 25948-05	5 57296-01
1 38185798		5 37935×05	8 3600F-07
1 30105403	7 8 3 70 G 5 42 4	2 20075+05	
1.30105703	1.22/05-03	5.54435403	4,90012-03
1.341/2+05	1,54372-03	5.21955+03	4,67346-93
1,3417E+05	1,90562=03	2,33922+05	4,3861E=03
1,3616E+05	2,3095E=03	2,3591E+05	4 , 1065E-03
1,3816E+05	2 , 7484E=43	2 . 3791E+05	3,8339E=03
1,4015E+05	3,2130E=03	2 . 3990E+05	3,5675E+03
1.4215E+05	3.69248-03	2.4190E+05	3.3066E=03
1.4414E+05	4.17548=03	2.4389E+05	3.05088=03
1.46145+05	4 4522F-413	2.4589F+05	2 A004F-03
4 0.8135.05	5 11555-33	3 47XAF-05	3 55475-01
1 83135703	2 2 4 4 3 2 4 - 9 3 2 2 4 4 3 6 - 9 3	5 ABAREADE	2 20070-03
1,20135403	2 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 84975405 7 84975405	2,32036403
1,36165403	2,4002=03	C*21815402	C,094/E=03
1,54128+05	6,3992E=03	2,53872+05	1,88242-03
1,56112+05	6,79672=03	2,55862+05	1,6866E=03
1,5811E+05	7,1839E=03	2.5786E+05	1,5110E=03
1.6010E+05	7,56226=03	2,59852+05	1,3584E-03
1.6210E+05	7 . 9302E=03	2 . 6185E+05	1,2304E+03
1,5409E+05	8,2835£#43	2,6384E+05	1,1273E=03
1.66092+05	4,6153E-03	2,6584E+05	1.0477E-03
1.68082+05	8.9167E=03	2.67832+05	9.8827E-04
1.70082+05	9.17918-03	2.5983E+05	9.4466E+04
1.7207E+05	9.3943E=03	2.7182E+05	9.1144E=04
1.7407F+05	9.55612-43	2.73825+45	A. 8263E=04
1.76065+05	9.66015-03	2.75818+05	8 5390F-04
4 78045105	9 70425-02	3 77846405	A 30776-04
1 90055-05	9 4 3 9 5 5 - W 2	5 70835408	7 90005-04
1,00036403	7,00035-43	20/7005703 D 44435505	
1,02035403	7.01432=03	5.01005403	/ 3133E=04
1.84042703	4,40512-05	6.03/95903	0,74285-04
1,80042+03	9.30952-05	2,85/98+05	5,1008E=04
1,8803E+05	9,24356-03	2.87786+05	5,3996E+04
1,9003E+05	8 . 8496E=03	2,8973E+05	4 , 6611E=04
1,92028+05	3.5418E-03	2.4177E+05	3. 8889E=04
1,9402E+05	a.3352E-03	2.93776+05	3,1135E=04
1.96018+05	8,7951E=03	2, 3576E+05	2.2977E-04
1,98012+05	7 8839E-03	2,97762+05	1.53688-04
	•		

PLTCVT PROGRAM DATA SUMMARY PIR 1 (TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 4 CONTAMINANT # PA=231 TONS OF HEAVY METAL FACTOR # 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 # T(LUW),DT,NCELLS) (2 # T(LOW),T(HI),NCELLS) MODE # 2 TIME LUW # 1.000000E+04 TIME HIGH# 3.500000E+04 PLTCVT PROGRAM DATA SUMMARY PIR 1 (TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 4 CONTAMINANT # PA=231 TONS OF HEAVY METAL FACTOR # 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 # T(LUW),DT,NCELLS) (2 # T(LOW),T(HI),NCELLS) MODE # 2 TIME LUW # 1.000000E+04 TIME HIGH# 3.500000E+04

RAW DATA AND BLOCKED DATA FACTORS! MIN. TIME = 2.1407E+04 MAX. TIME # 1.6579E+06 1134.0 TOTAL PARCELS . TUTAL WEIGHT # 2.9273E+01 PEAK WEIGHT TIME . 1.8850E+05 6.991 PEAK WEIGHT # PEAK PARCELS TIME = 1.8850E+05 78,000 PEAK PARCELS = NO. PARCELS LON . 0.0 WT. LOW . 0.000000-01 ND. PARCELS NI . 1146.0 NT. HI . 4.8969E+00 3 SMOOTHING WINCOW (CELLS) =

TOTAL INVENTORY (CURIES) = 3.417012E+01 INVENTORY UNDER THE CURPENT GRAPH (CURIES) = 3.202435E+01 PERCENT OF TOTAL INVENTORY = 93.720

TIME OF MAXIMUM CONCENTRATION (YEARS) =: 1.885000E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 7.949189E=10 MAXIMUM RATE (CURTES/YEAR) = 4.112096E=04 CONVERSION FACTOR RATE TO CONCENTRATION = 1.933123E=06

CONTAMINANT = PA=231

TIME (YEARS) AND PATE (CURIES/YEAR) FUR THE 100 POINTS

TIME (YH) TIME LYRD" RATE LOUITR) RATE (CU/YH) 1.85006+04 5.42918-48 2.5000000+05 1-53662-04-1.4426E-04 5.42665464 5.62112-299 2.52448+05 1.34911-04 2.45668464 5.62110-04 2.53082+15 1,27752-04 3.500006+04 5.42014-08 5.9842E+03 8.75476-98 2.01706+45 1.21181-04 4.05066+04 1.14628-04 4.69892494 1.22051-17 2.04712+65 1.08865-24 2.01056+45 5.150PE+04 1.56516-97 1.01506-74 1.74502-1 5.70002+04 2.76598+45 1.89110-07 9.49611-25 0.2500E+04 2.1553E+45 6.8800E+04 2_\$344t +v 7 2.10416+05 9.06346-35

7,3500E+04	2,51298-47	2.79412+05	8,6314E-05
7.90002+04	3,11688-07	2,8235E+05	8,1991E-05
8.45002+44	3,72066-07	2,85292+05	7,76678-05
9.00002+04	3,87798-07	2.8824E+05	7,3344E-05
9.55002+04	3.7891L-07	2.91185+05	6.9531E-05
1.0100E+05	3.68236-07	2,9412E+05	6.7429E-05
1.00502+05	6.8862L-07	2.9706E+05	6.5326E-05
1.12006+05	1.28418-06	3.0000E+05	6.3224E-05
1.1750E+05	1.8797E-96	3.01262+05	6.2325E-05
1.2300E+05	5.95388-06	3.02528+05	6.1426E-05
1.28506+05	1.13226-45	3.0377E+05	6.0527E-05
1.3400E+05	1.75916-05	3.0503E+05	5,96282-05
1.39506+05	2.14665+45	3.06292+05	5.8730E-05
1.45002+05	1.96538=05	3.07556+05	5.7822E+05
1.5050E+05	1-82395-05	3,48808+05	5.66748=05
1.500000405	4-15356-45	3.1006E+WS	5.5527E+05
1.61596+05	1.3472E-W4	3-1132E+05	5.4380E-05
1.67008+05	2-19911-04	3,12586+05	5.32338-05
1.72506+25	2.94845=44	3-13636+05	5.2086E-05
1.76006+05	3 38125-04	3.15298+05	5.0938E-05
1.63546+45	3.75416-04	3-10356+05	4.97918-05
1.89000405	4.27916-04	3.1/616+05	4.8644E-05
1.9450E+05	3.7150E-04	5.10062+05	4.7497E=05
2. WHOUE +W5	3.35265-84	5-20122+05	4.6349E-05
2.02946+05	3.15836-04	3-21385+05	4.5202E-05
2.05886+05	2.9732E-04	3-22646+05	4.4055E-05
2.08822+05	2.84956-04	3.25898+45	4.2908E=05
2.11765+05	2.72591=04	3.25156+05	4.17198+05
2.1471E+05	2.60225=64	3.26416+05	4.0491E-05
2.17656+05	2.47354=04	3-27675+05	3.9264E+05
2.20592+05	2.35491=04	3.2892E+05	3.8036E-05
2.2353E+05	2.25012-04	3.3018E+05	3.48088-05
2.25472+05	2.1004E=04	3.3144E+05	3.55818-05
2.29416+05	2-1107E=04	3.3270E+05	3.4353E=05
2.32356+05	2.4414E=24	3.33956+05	3.3126E=05
2.35296+45	1.97136-04	5. 55218+45	3.18988+05
2.38241+45	1.90186-04	3.3647E+05	3.06708-05
2.41168+45	1.81816-04	3.3773E+05	2.9443E-09
2.44126+45	1.72436-04	3.3898E+05	2.8215E-05
2.47062+05	1.63956-04	3.40246+05	2.69878-05
	• • • • •		

APPENDIX H.2: EAST TEXAS OIL FIELD REMOVED Sabine River Discharge Site - Run 2. Big Cypress Bayou Discharge Site - Run 3.

.....

PLTCVT PROGRAM DATA SUMMARY PIR2(TOTAL FUEL ASSEMBLIES) BASE CASE IFISSION PRODUCTS CONTAMINANT = C=14 TONS OF MEAVY METAL FACTUR = 3,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(MI),NCELLS) MODE = 3 TIME LOW = 3,000000E+04 TIME HIGH= 7,000000E+04 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 2,000000E+02

RAW DATA AND BLOCKED DATA FACTORS! MAX, TIME = 7,5405E+04 MIN, TIME = 3,9656E+04 TOTAL WEIGHT = 8.8997E+01 TOTAL PARCELS = 2114.0 PEAK WEIGHT = PEAK WEIGHT TIME . 3.218 4,4300E+04 PEAK PARCELS = 59,000 PEAK PARCELS TIME . 4.7900E+04 WT, LOW = 0,0000E=01 WT, HI = 2,6141E=01 NO, PARCELS LOW # 0,0 NO. PARCELS HI = 356,0 SMOOTHING WINDOW (CELLS) = 5

TOTAL INVENTORY (CURIES) = 8,925854E+01 Inventory under the current graph (curies) = 8,828895E+01 Percent of total inventory = 98,914

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4.510000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 3.396670E=08 MAXIMUM RATE (CURIES/YEAR) = 8.813480E=03 CONVERSION FACTOR RATE TO CONCENTRATION = 3.853949E=06

CONTAMINANT = C=14

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TTME (VP)	BATE COULARD
3 07004 LAN		A PLAN PLANT	RAIE (LUTTR)
3811002704	4.11142-04	5.4800E+04	2 95645-02
4.00026404	A 94405-04		E # 73796403
	- 300645-64	3,51425+04	2.822AE-02 '
4.0.5048+04	7.14878-04	8 84 IAA 6	
	1 1 1 101 0-44	2*24845484	2.6765E=03
4 9 0 0 0 0 2 7 0 4	1.92396+03	5.57065304	3 50765 07
A BOOSELOA		3131956794	5,76005=03
4 2 2 7 1 0 5 7 1 4	1,40502-03	5.60082+04	2 36025-07
4.12105+04	4 33378-/47		E\$300EC-83
	1 4 4 5 4 3 5 4 8 3	5.65102+04	2.19875_dz
4.15126+04	つ スズオフジールマ		### /010-03
	E133312403	3,80125+04	2.0322E=03
4.1814E+04	2.93165-02	E 4014E.ma	
	ell	コキロントカビルのか	1.8596E#03
4.21108+04	3,49176-03	5 734655AA	
8 9/14 98 504		3812102404	1.07722=03
*******	4.3007E=03	5.75195500	1 00015 00
			1.47216#03

4.2720E+04	5.0416E=03	5.78206+04	5.3087E=03
4,3022E+04	5.79986-03	5.8122E+04	1.1297E+83
4.3324E+04	6.5394E+03	5.8424E+04	9.5755E+04
4.3626E+04	7.1974E+03	5.8726E+04	7.96738=04
4.3928E+04	7.7624E-03	5.9028E+04	6.5525E=04
4,4230E+04	8.2066E=83	5.9330E+04	5.34665+04
4,4532E+04	8.5364E-03	5.9632E+04	4.3632E=04
4.4834E+04	8,7380E=03	5.9934E+84	3.5654E=84
4.5136E+04	8.8109E=03	6.02365+04	2.9515E+04
4.5438E+04	8.7553E+03	6.0538E+04	2.4958E-04
4.5740E+04	8.6285E=03	6.0840E+04	2.1793E=04
4.68426+04	8.4478E-03	6.1142E+04	1.9533F=04
4 . 6344E+04	8.2282E=03	6.1444E+04	1.7936E#84
4.6646E+04	7.9882E+03	6.1746E+04	1.6831E=04
4.6948E+04	7.74286+83	6.2048E+04	1.60948-04
4.72506+04	7.49436+03	6.2350E+04	1.5588F-04
4.75526+04	7.25756+03	6.26522+04	1.52000-04
4.7854E+04	7.02466=03	6.2954E+04	1.48498#04
4.8156E+04	6.7848E=03	6.3256E+04	1.4495E-04
4,8458E+04	6 . 5423E=03	6.3558E+04	1.4113E+04
4.8760E+04	6,2886E+03	6.3860E+04	1.3656E=04
4,9062E+04	6.8259E=03	6.4162E+04	1.3186E-04
4,9364E+04	5.7686E=03	6.44642+04	1.2732E+04
4.9666E+04	5,5203E=03	6.4766E+84	1,2285E=04
4,9968E+04	5,2852E=03	6.5068E+04	1,18456+04
5.0270E+04	5.0608E-03	6.5370E+04	1.1417E-04
5.05726+04	4.8545E-03	6 . 5672E+04	1,1015E-04
5.0874E+04	4 . 6698E=03	6.5974E+04	1.0675E-04
5.1176E+04	4.5081E-03	6.6276E+04	1.0379E-04
5.1478E+04	4.3605E=03	6.6578E+84	1,0105E+04
5.1760E+04	4.2244E=03	6,6880E+04	9.8184E=05
2.20055404	4,0906E=03	6 . 7182E+04	9,5432E-05
5.23846484	3,9636E-03	6,7484E+04	9,2485E+R5
5,20061404	5.8401E+03	6.7786E+Ø4	8,9142E-05
3467005404 5 73006404	5.71742=03	6.8086E+04	8,4679E+05
5 55705704 5 55005404	5.59742-03	6.8392E+04	7,8661E=05
343372E704	3.48006-03	6+8692E+04	7.12968-05
3 5 5 5 7 4 5 7 0 4	3.33086-03	6.8994E+04	6,1647E-05
7.4170C704	5.2275E-03	6,9296E+04	4.959BE+05
3*******	2.02205-03	6.9598E+Ø4	3.8112E+05
•			

(
PLTCVT PROGRAM DATA SUMMARY PIR2(TOTAL FUEL ASSEMBLIES) BASE CASE IFISSION PRODUCTS CONTAMINANT = TC=99 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 5,800000E+04 TIME HIGH= 6,300000E+04 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 1,250000E+01

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME = 4.1253E+04 HAX, TIME = 1,3568E+05 1639,0 TOTAL PARCELS # TOTAL WEIGHT = 2,4568E+05 PEAK HEIGHT TIME = 5,8756E+04 PEAK WEIGHT = 3936,116 PEAK PARCELS .= 55,000 PEAK PARCELS TIME = 5,8756E+04 NO. PARCELS LOW # WT, LOW = 5,67388+02 3,0 NO, PARCELS HI = 4628.0 WT, HI = 1,3035E+05 SMOOTHING WINDUW (CELLS) = 30

TOTAL INVENTORY (CURIES) = 3,825980E+05 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2,511531E+05 PERCENT OF TOTAL INVENTORY = 65,644

TIME OF MAXIMUM CONCENTRATION (YEARS) = 5,860625E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 7,677078E=04 MAXIMUM RATE (CURIES/YEAR) = 1,992003E+02 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = TC=99

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
5.86266+04	1 . 9420E+02	5,8816E+04	1,9088E+02
5.8608E+94	1,99205+02	5,8825E+04	1,8997E+02
5,8609E+04	1,99206+02	5,8837E+04	1,8907E+02
5,8610E+04	1,9920E+02	5,88472+04	1,8816E+02
5.86121+04	1,9920E+02	5,8857E+04	1,8725E+02
5,8613E+04	1,99206+02	5.8867E+04	1,8633E+02
5,8614E+04	1,9920E+02	5,8878E+04	1,8542E+02
5,8616E+04	1,9920E+02	5.8888E+04	1,8445E+02
5,86172+04	1,99205+02	5,8898E+04	1,8345E+02
5.86188+04	1.9920E+02	5.8909E+04	1.82452+02

		•	
5.8619E+04	1_9909E+02	5.89196+04	1.8139E+02
5,86216+64	1,9888E+02	5.89296+04	1.8028E+02
5.8622E+Ø4	1,9868E+Ø2	5.8939E+04	1.7918E+02
5.8623E+04	1.9848E+02	5.8950E+04	1.7805E+02
5.8625E+Ø4	1.9827E+02	5.8960E+04	1.7692E+02
5.8626E+04	1,9807E+02	5.8970E+04	1.7581E+02
5,8627E+04	1.9787E+02	5.8981E+04	1.74736+02
5.8629E+04	1.9766E+02	5.8991E+84	1.7368E+02
5.8630E+04	1,9746E+02	5.9001E+04	1.7266E+02
5.8631E+04	1.9730E+02	5.9122E+04	1.6081E+02
5,8633E+04	1.9744E+02	5.9243E+04	1.4663E+82
5.8634E+04	1,9758E+02	5.9364E+04	1.3201E+02
5.8635E+04	1,9771E+02	5.9485E+04	1.1772E+02
5.8637E+04	1,9785E+02	5.9606E+04	1.0383E+02
5,8638E+04	1,97996+82	5,9727E+04	9.1249E+01
5.8639E+04	1.9813E+#2	5.9848E+04	7.9170E+01
5,8641E+04	1.9827E+02	5,9969E+04	6.9407E+01
5.86426+84	1.9840E+02	6.0090E+04	6.1134E+01
5.8643E+04	1.9854E+82	6.0211E+04	5.4173E+01
5.8645E+04	1.9853E+02	6.0332E+04	4.7902E+01
5.8646E+04	1,9846E+02	6.8454E+84	4.1977E+01
5,8647E+04	1,9838E+02	6.0575E+04	3.6909E+01
5.8649E+04	1,9830E+02	6.06966+04	3.2155E+01
5.8650E+04	1,98226+02	6.0817E+04	2.7998E+01
5.8651E+Ø4	1.9815E+02	6.0938E+04	2.3716E+01
5,8662E+04	1.97918+02	6.1059E+04	1.9916E+01
5.8672E+04	1.9817E+Ø2	6.1180E+04	1.7151E+01
5.8682E+04	1.9876E+02	6,1301E+04	1.4779E+01
5.8692E+04	1,9878E+02	6.1422E+04	1,2883E+01
5.8703E+04	1 . 9844E+02	6.1543E+04	1,1007E+01
5.8713E+04	1.9780E+02	6.1664E+04	9,6279E+00
5,8723E+04	1.9721E+02	6 .1785E+04	8,6119E+00
5.8734E+04	1.9682E+02	6 . 1906E+04	7.3179E+00
5.87442+04	1 . 9638E+02	6.2027E+04	6,2299E+00
5.8754E+04	1,9589E+02	6.2148E+04	5,2035E+00
5.8764E+04	1,95226+02	6.2269E+04	4,3916E+00
5.8775E+94	1.9448E+02	6.2390E+04	3.6881E+00
5.8785E+04	1,9367E+02	6.2511E+04	3,1169E+00
5.87956+04	1.9280E+82	6.2632E+04	2,8770E+00
5.8806E+04	1.9183E+02	6.2753E+04	2 6205F100

PLTEVT PROGRAM DATA SUMMARY PIR2(TDTAL FUEL ASSEMBLIES) BASE CASE IFISSION PRODUCTS CONTAMINANT = I=129 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 4,000000E+04 TIME HIGH= 1,400000E+04 TIME HIGH= 1,400000E+05 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 2,500000E+02

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 1,3546E+05 MIN, TIME = 3,9913E+04 TOTAL WEIGHT = 1,1385E+03 6269,0 TOTAL PARCELS = PEAK WEIGHT = 18,805 PEAK WEIGHT TIME = 5,06252+04 PEAK PARCELS = PEAK PARCELS TIME = 5.0625E+04 37,040 NO, PARCELS LOW = WT, LDW = 5,0848E+01 1,0 NT, HI = 0,0000E=01 NO, PARCELS HI = 0,0 29 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 1,139027E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1,140982E+03 PERCENT OF TOTAL INVENTORY = 100,172

TIME OF MAXIMUM CONCENTRATION (YEARS) = 5,037500E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1,993926E=07 MAXIMUM RATE (CURTES/YEAR) = 5,173722E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = 1=129

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CULVES
4.03752+04	2.5875L=03	9,3536E+04	6.2621E=Ø3
4,09702+04	3.6035E-03	9,55952+04	6,2495E=Ø3
4.10046404	5,29528+03	9,7653E+Ø4	5,2320E-03
4.27546404	1,19518=02	9,9712E+04	6,2092E+03
4.3348F+J4	2 71005-02	1,01/72+05	6,1729E=Ø3
4.39432+04	3.35666-02	1,05805403	6,1828E=03
4,45386+04	3.8922E+02	1,07952405	5,18742+03
4,51338+04	4,2726E-02	1.1001E+05	0161616403 6 31638-03
4,5727E+04	4,4814E-02	1,1247E+05	6.2202E-03

H.48

4.63226+04	4.5922E=02	1.1412E+05	6.2155E=Ø3	
4 . 6917E+04	4.3743E-02	1,1618E+05	6.2335E+03	
4,7511E+04	4.1393E-02	1.1824E+05	6.2421E+03	
4,8106E+04	3.8997E=02	1.2030E+05	6.2289E+03	
4,6701E+04	4. A861E-02	1.22368+05	6.2309E-03	
4,9295E+84	4.55558=02	1.2442E+05	6.1879E+03	
4.9890E+04	5.0126E+02	1.2648E+05	6.1441E-03	
5.0485E+04	5.1737E=02	1.2854E+05	6.1117E-03	
5 . 1080E+04	4 . 8918E#02	1.3059E+05	6.1626E-03	•
5.1674E+04	4.67998-02	1.3076E+05	6.0729E-03	
5 . 2269E+04	4 . 5442E-02	1.3092E+05	5,9692E=03	
5.2864E+04	4.5581E=02	1.3108E+05	5.8539E+03	
5.3458E+04	4.4558E+02	1.3125E+05	5,73798-03	
5 . 4053E+04	4.35346+02	1.3141E+05	5.60688-03	
5 . 4648E+04	4.3039E=02	1.3157E+#5	5.41926-03	
5.52426+64	4.3450E+02	1.3173E+05	5.19978-03	
5,5837E+04	4.36996-02	1.319HE+05	4.9574E=03	
5.6432E+04	4.1975E-42	1.3206E+05	4.6693E=03	
5.70266+04	3,6474E-02	1.3222E+05	4.4048E=03	
5.7621E+04	2.8422E-02	1.32398+05	4.1566E+03	•
5.8216E+04	1,9912E=02	1.32556+05	3.9208E-03	
5.8811E+Ø4	1.3717E=02	1.3271E+05	3.6752E-03	
5 . 9405e+04	9.64405-03	1.3287E+05	3,4212E-03	
6.0000E+04	7.9542E=03	1.3304E+05	3.0902E-03	
6.0545E+84	7,4549E+03	1.33206+05	2,7654E+03	
6,2653E+04	6:8773E=03	1.3336E+05	2.4481E+03	
6.4712E+04	6.5118E=03	1.3353E+05	2,1622E+03	
6+6771E+04	6 , 3747E=03	1.3369E+05	1.89826-03	
6.88302+04	6.3398E+03	1.3385E+05	1,6359E=03	
7.0889E+04	6,3318E+03	1.3401E+05	1.3982E-03	
7.2948E+04	6 . 3064E=03	1.3418E+05	1,1664E=03	
7.5006E+04	6.2699L-03	1,3434E+05	9.4096E-04	
7.7065E+04	6,28378+03	1.3450E+05	7.5628E-04	
7,9124E+04	6_2337E+03	1.3467E+05	6,1453E-04	
8,1183E+04	6.1644E=03	1.3463E+05	5.5150E+04	
6.3242E+04	6.1624E=03	1.3499E+05	4,7253E+04	
8.5307E+94	6.1678E=03	1.3516E+05	3,8861E=04	
8,7359E+04	6.1527E=03	1.3532E+05	3,1020E=04	
8.9418E+04	6.1932E=#3	1.3548E+05	2.3178E+84	
9,1477E+04	6.264ht=13	1,3564E+05	1.5337E+04	

•

.

.....

Ć

٠.

.

•

PLTCVT PROGRAM DATA SUMMARY PIR2(TOTAL FUEL ASSEMBLIES) BASE CASE :FISSION PRODUCTS CONTAMINANT = I=129 TONS OF HEAVY METAL FACTOR = 0,5000000 OATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 4,000000E+04 TIME HIGH= 5,000000E+04 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 1,000000E+02

RAW DATA AND BLOCKED DATA FACTORSI MIN, TIME . 3,9913E+04 MAX. TIME = 1.3546E+05 TOTAL PARCELS . 1459.0 TOTAL WEIGHT = 6,8244E+62 4,6450E+04 8.642 PEAK WEIGHT TIME . PEAK WEIGHT = 4,5450E+04 17,000 PEAK PARCELS TIME = PEAK PARCELS . NO. PARCELS LOW .= WT, LOW # 5,0848E-01 1,0 NO, PARCELS HI = 4810.0 WT. HI = 4,5608E+02 20 SMOUTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 1.139030E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 6.828842E+02 PERCENT OF TOTAL INVENTORY = 39.933

TIME OF MAXIMUM CONCENTRATION (YEARS) = 5,095000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1,760500E=07 MAXIMUM RATE (CURIES/YEAR) = 4,568041E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E#06

CONTAMINANT = 1-129

TIME (YR)	RATE (CU/YH)	TIME (YR)	RATE (CU/YR)
4.03502+04	2.7466E=03	5,0500E+04	4,5648E-92
4.0491E+04	2.72038-03	5,0824E+04	4 , 3676E-02
4.06328+64	2.63368+03	5.11472+04	4 , 5679E=02
A. 0773E+04	2.61088-03	5.14712+04	4,5653E+02
4.0914E+04	2,58526=03	5,1794E+04	4,55998+82
4.1055E+04	2.65908-03	5,21182+04	4,5519E+02
4.1195E+04	2.8846E-03	5,24412+04	4,5417E+Ø2
4.13362+04	3.29098-03	5,27652+04	4,52908+02
4.14778+04	3.93921-03	5.3088E+04	4,51426=02
4.1513E+04	4.3446E+03	5,3412E+04	4,4979E=02
1 17595+04	6.0158E=03	5.37358+04	4.4809E-02

* *******			•
4.1408E+04	7.4803E+03	5.4059E+04	4,4650E-02
4.2041E+04	9 . 1678E=03	5 .4382E+0 4	4,4502E+02
4.2162E+04	1,1060E-02	5 . 4706E+04	4,4315E+02
4 , 2323E+04	1,3069E=02	5.5030E+04	4.4136E=02
4,2464E+04	1.5139E=02	5.53536+04	4.3972E-82
4.2605E+04	1.7233E=02	5.56778+04	4.3855E+02
4.2745E+04	1,9337E=02	5.60006+04	4.3909E-02
4.2886E+04	2.1447E=02	5-61205+04	4.39955-02
4.3027E+04	2.355HE-02	5-62395+04	A ARAOF-02
4.3168E+04	2.5598E+02	5-6359F+04	A A000F-02
4.3309E+04	2.7507E=02	5.64795404	4 11915-02
4.3450E+04	2.9226E=82	5.6500F+04	4 31 43L40C
4.35918+04	3_0679F=02	5 6718FA04	1 26075-02
4.3732F+04	1.1954F=02	E LREREADA	
4.38736+04	T T147F-02	2 40555404	4 88085-83
0. 401 AF+HA	T ANIOF-02	5 98995484	N 004/2#02
A AISSELUA	2 E849E-03	5 91095404	3,02/32402
A ADDELDA	3 35455-US		3,01476402
4845725704 A AATAEADA	3,73000-02	5.73172404	5.3778E=02
4 844395784 8 88776408	3.46135406	5.74362404	3,12526+02
4443//2464	4,10082-02	5.75562404	2,8679E=02
4.41102404	4.25076=62	5.7676E+84	2.6196E+02
4.4834F+04	4.36332-02	5.7796E+04	2.3901E+02
4.500000404	4,42166-02	5.7915E+04	2.1865E-02
4.5324E+04	4.4455E-02	5.8035E+04	2,0127E=02
4.5647E+04	4.4523L-02	5,8155E+04	1,8696E=02
4.5971E+04	4,4582E+02	5,8274E+04	1,7538E+02
4-65946+84	4.46295-02	5,8394E+04	1.65458+82
4.6618E+04	4.46908-02	5.85142+04	1,5632E+02
a = 6941E+04	4.4838E=02	5 . 8633E+04	1.4725E+02
4.72656+04	4.4862E=02	5.8753E+04	1.3771E+02
4 . 7588E+04	4.49356-02	5,8673E+04	1.2742E+02
4.7912E+04	4.5005E-02	5.89922+04	1.1660E+02
4.82356+04	4.5088E=02	5.9112E+04	1.0569E+02
4.8559E+04	4.51816-02	5.92328+04	9.5210E-03
4.8882E+04	4.5274E-02	5.93526+04	8.5620E=03
4.92066+04	4.5363E-02	5.9471E+04	7.7709E-01
4.95296+04	4.5451E-02	5.95918+04	7.1193E=01
4.9853E+04	4.5531E+02	5.97116+04	6.7076F=01
5-0177E+04	4.5599E+02	5.98306404	6 . 37 666-02
• • • •	· · · · · · · · · · · · · · · · · · ·	** *****	vestoursd3

Ć

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 1,9981E+06 MIN. TIME = 4.2923E+04 TOTAL WEIGHT = 7,7351E+03 TOTAL PARCELS 1999,0 PEAK WEIGHT # PEAK WEIGHT TIME = 104,731 4.6050E+04 PEAK PARCELS = PEAK PARCELS TIME = 4,6050E+04 27.000 WT, LOW = 0,0000E=01 NO. PARCELS LOW # 0,0 NO, PARCELS HI = WT, HI = 1,6204E+02 61.0 SMOOTHING WINDOW (CELLS) = 50

TOTAL INVENTORY (CURIES) = 7,897135E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 7,712751E+03 PERCENT OF TOTAL INVENTORY = 97,665

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4.495000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2.540210E=06 MAXIMUM RATE (CURIES/YEAR) = 6.591187E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3.853949E=06

CONTAMINANT = CS=155

TIME (YEARS) AND PATE (CURIES/YEAR) FOR THE 100 POINTS

TINE (YR)	PATE (CU/YR)	TIME (VR)	RATE (CU/YR)
4,2950E+04	1,3594E=01	5,05006+04	5,69238+01
4,3006E+04	1,3594E=01	5.00352+04	5,67638-01
4,3062E+04	1,4089E=01	5,1171E+04	5.6594E=01
4,3118E+04	1,63768#0,	5.15062+04	5,63818-01
4,3174E+04	1,8177E-01	5,1841E+Ø4	5,60998-01
4,3230E+04	1,9342E=01	5,21772+04	5,57258-01
4,32855+04	2,06305-01	5.2512E+04	5,5272E=01
4,3342E+04	2,19846=01	5.20476+04	5,47258-01
4,3399E+44	2.2637E=01	5 , 3182E+04	5,4091E-01
4.3455E+04	2,3278E=01	5,35182+04	5,33668+01
4,35112+04	2,3042E=01	5,3853E+04	5,25398-01

H.52

4.3567E+04	2.6843E=01	5.4188E+04	5.1612E=01
4.3623E+04	2.8735E-01	5.4524E+04	5.0516E-01
4.36792+04	3.0690E=01	5.4859E+04	4.9512E=01
4.3735E+04	3.27066-01	5.5194E+04	4.8385E+01
4.3791E+04	3,48026-01	5.55296+84	4.7171E=01
4.3847E+04	3.6927E+01	5.5865E+04	4.5815E-01
4.3903E+04	3,9243E=01	5.62002+84	4.4061E-01
4.3959E+04	4.1570E=01	5.6256E+04	4.3597E+01
4.4015E+04	4.3892E-01	5.6312E+04	4.3019E-01
4.4071E+04	4.6187E=01	5.6368E+04	4.2387E+01
4.4127E+04	4,8437E=01	5.6424E+04	4.1644E=01
4,4183E+04	5.0617E-01	5.6480E+04	4.0820E-01
4 . 4239E+04	5.27508-01	5.6536E+84	3.9927E+01
4.4296E+04	5.4730E+01	5.6592E+04	3.8910E-01
4.4352E+04	5.6667E=01	5.66492+04	3.7855E=01
4.4408E+04	5.8339E-01	5.6705E+04	3.6688E=01
4.4464E+04	5.99476=01	5.6761E+04	3.5501E+01
A.4520E+04	6.1360E=01	5.6617E+04	3,4237E+01
4.4576E+04	6.2636E=01	5.66736+04	3.2950E=01
4,4632E+04	6.37528+01	5.69292404	3.1627E=01
4.4668E+04	6.4673E=01	5.6985E+04	3.0274E=01
4.4744E+04	6.5501E=01	5,7041E+04	2,8903E-01
4 . 4800E+04	6.5719E=U1	5,70976+04	2.7503E-01
4,5135E+04	6.5732E=01	5,7153E+04	2.6101E=01
4.5471E+04	6.5050E+01	5.7209E+84	2,4745E+01
4.5806E+04	6.4264E=01	5.7265E+04	2,3438E+01
4.6141E+04	6.3401E=01	5.7321E+04	2.2266E=01
4.6477E+00	6.2836E=01	5.7377E+04	2.1142E=01
4.6812E+04	6.551AE-A1	5.7433E+04	2.0068E=01
4.7147E+04	6 , 1332E=01	5 . 7489E+04	1.9060E+01
4.7482E+04	6.0507E=01	5.7546E+04	1.8079E+01
4,7818E+04	5,9778E=01	5,7602E+04	1,7158E-01
4.8153E+04	5.9164E=01	5.7658E+Ø4	1,6328E+01
4.8488E+04	5.8648E+01	5,7714E+04	1.6041E=01
4.8824E+84	5,8183E=01	5.7778E+84	1.5614E-01
4,9159E+04	5.7804E=01	5,7826E+04	1.4931E=01
4.9494E+04	5,7499E=01	5,7882E+04	1.4327E=01
4. 78276414	5.7264E=01	5.7938E+04	1,3783E-01
5.0165E+04	5.70828#01	5.79948+04	

.

•

٠,

.

Ć.,

.

.

PLTCVT PROGRAM DATA SUMMARY PIR2(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 1 CONTAMINANT = U=236 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),OT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,900000E+05 TIME HIGH= 5,500000E+05 NUMBER OF CELLS = 400 OELTA TIME INCREMENT = 4,000000E+02

2

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 5,7068E+05 MIN. TIME = 3.9071E+05 TOTAL PARCELS TOTAL WEIGHT = 1,4364E+04 6846.0 PEAK WEIGHT . 168,684 PEAK WEIGHT TIME = 4,4300E+05 67.900 PEAK PARCELS = PEAK PARCELS TIME = 4,4300E+03 WT. LOW = 0.0000E-01 NO. PARCELS LOW = 0.0 NT, HI = 7,0924E+00 ND. PARCELS HI = 30,0 5 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 1.437144E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1.435503E+04 PERCENT OF TOTAL INVENTORY = 99.886

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,398000E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 9,646501E=07 MAXIMUM RATE (CURIES/YEAR) = 2,303017E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,833949E=06

CONTAMINANT = U=236

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
3,90696+05	3,9101E=04	4,7020E+05	1,0911E-01
3,9219E+05	7.87408-04	4,71792+03	1,0334E=01
3,93782+45	1.51066-03	4,7338E+05	9,7931E+02
3,95386+05	2,41758-03	4 , 7498E+05	9,32056-02
3,96976+05	3,6362E=03	4,7657E+05	8,9405E-02
3,9856E+U5	5,27886=03	4,78162+05	8,65926+02
4,00152+05	7.4367E=03	4,79755+05	8,4648E+02
4,01748+05	1,02066-02	4,81342+05	8,3400E-02
4,0334E+U5	1,3725E=02	4,8294E+05	8,25905-02
4.0493E+05	1,81818=02	4,8453E+05	8,2370E-02
4,06526+05	2,3746E+02	4.8612E+05	8,2260E+02

4,0811E+05	3.0510E-02	4.8771E+05	50-30515.8
4.0970E+05	3.846SE+02	4.8930E+05	8.1717E=Ø2
4.1130E+05	4,7536E+62	4.9090E+05	8.0961E=02
4.1289E+05	5.7646E=02	4.9249E+05	7.9898E=02
4.1448E+Ø5	6-8721E-02	4.9408E+05	7.8682F+02
4.1607E+05	8-0663E-02	4-8567F+05	7.7461F=02
4.1766E+05	9.3327E-02	4.9726E+05	7.6245F=02
4-1926E+05	1.06565-01	4.9886E+05	7.49605-02
4.2085E+05	1-2022E=01	5-00456+05	7.3480F-02
4-22448+05	1.34236-01	5.02046+05	7.1814F-82
4.24036+05	1.48486-01	5.03635+05	7 0011E-02
4.25626+05	1.62855-01	5,05226405	6 8317F-03
4.27226+05	1.77146-01	5.0682F405	6 6440F=02
4.2881E+05	1.91085-01	5.0841F405	6 AAQAE-02
A. 3040F+05	2.04415-01	S INODELBE	4 20105-02
4.21095405	2 46815-01	5 1150FA05	5 8775E-03
4.33586405	2 27015-01	E 1310-00	5 14445-02
4.35185405	2 172AF-01	5 (4785×85	5 0011E-03
A 16716105	2 44436-01	3814/05403 8 16778408	3 5 5 1 1 E - 0 C
A TATLETOS	2 /ARTE-04	34103/CVU3 6 (7046+06	4,33136406
4 10055405	2 60395-0+	341/702703	4,10305-02
N A15A5100	C.JUCDC-U1 D ABEA5-04	3 4 1 7 3 3 E T 13 3	74/3205405
4 8 4 1 3 4 5 T U J A A T 6 A 5 4 5 T U J	2 479945-01 2 479945-01	5 23345405	3,41430+02
4 4 4 3 3 4 5 4 5 3 3	2 74 845 - 04 2 74 845 - 04		3,12332402
4 4 4 4 7 3E 7 8 3 A A6 7 5E 4 0E	5 30045-01	5.64355403	5.85546-05
4 8 40 200 403		2,63466403	2.50901-02
4 40 FOL + 0 F	2,10462-01	5.27516+05	2,1967E=02
4 4 4 7 3 9 5 4 9 5	C 0033C=01	5.24102405	1,9096E=02
4,31102703	1.46036-01	5.30702+05	1,6675E-02
4,3CD7C703	1.6/602=01	5.3229E+05	1,4700E=02
4,54202+05	1.77256=01	5.3388E+05	1,3006E=02
4,500/6+05	1.6736E=01	5.5547E+05	1,1372E=02
4,57462+05	1,5840E=01	5.3706E+05	9,6622E=03
4.59066405	1.5065E=01	5,3866E+05	7.8723E-03
4.60052+05	1.4408E-01	5,4025E+05	6,1034E+03
4.62242+05	1.3807E-41	5,4184E+05	4,5016E-03
4.6565E+05	1.3239E=01	5.4343E+05	3,1592E=Ø3
4.65426+05	1.26696-01	5,4502E+05	2,0976E=03
4.67022+05	1.2089E=01	5,4662E+05	1,2963E=03
4.68616+05	1.1500E=01	5,48216+05	6.9466E=04

PLTCVT PROGRAM DATA SUMMARY PIR2(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 1 CONTAMINANT = TH=232 TONS OF HEAVY METAL FACTOR = 0,5900000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LUW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 4,000000E+05 TIME HIGH= 2,000000E+05 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 8,000000E+03

RAW DATA AND BLOCKED DATA FACTORSI MIN, TIME . MAX, TIME = 1,9992E+06 4.21198+05 TOTAL WEIGHT . 4,7333E-02 TOTAL PARCELS 2663.0 PEAK WEIGHT TIME = 1.8920E+06 PEAK WEIGHT . 0.001 53,000 PEAK PARCELS TIME = 8,44002+05 PEAK PARCELS = NO, PARCELS LOW = WT. LOW = 0.0000E-01 0.0 WT. HI = 0,0000E-01 NO, PARCELS HI . 0.3 2Ø SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 4,733297E+02 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 4,714636E=02 PERCENT OF TOTAL INVENTORY = 99,606

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1,996000E+96 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1,232157E=13 MAXIMUM RATE (CURIES/YEAR) = 3,197128E=08 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = TH-232

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
4,20002+05	1 . 1470E=UB	9 , 3487E+05	3,0715E=08
4.25456+05	1,1470E=08	9,55452+05	3,0770E-08
4.30916+05	1,3169E=08	9,7604E+05	3,0824E-08
4.36362+05	1.51858-08	9,96632+05	3,08598=08
4.41826+05	1,6803E=08	1,0172E+Ø6	3,0901E-08
4,47276+05	1,7423E=08	1,03782+05	3,0928E+08
4,52732+05	1,80436=08	1.05842+06	3,0955E+08
4,5818E+05	1,86655=08	1,0790E+06	3,0984E-08
4.63646+05	1,87945-08	1,0996E+06	3,1010E+08
4,59095+05	1.8894E=08	1,1202E+06	3,1024E=08
4.74556+05	1.98625#08	1.14072+06	3.10215-08

4.8800E+05	2.0634E=08	1,1613E+06	3.1001E-08
4.85456+05	2.1334E=08	1.18192+06	3.0970E=08
4,9091E+05	2.2031E=06	1.20256+06	3.09298-08
4,9636E+05	2.2715E-06	1.2231E+06	3.0880E=08
5.0182E+05	2.3386E=08	1.2437E+06	3.0831E+08
5.07276+05	2.4035E=08	1.2643E+06	3.0783E+06
5.1273E+05	2.4703E-08	1.2849E+06	3.0736E=08
5.1818E+05	2.5333E-08	1.3055E+06	3.0689E.08
5.2364E+05	2.5902E+08	1.3265E+06	3.0647E+08
5.2909E+05	2.6421E-08	1.3476E+06	3.0609E=08
5.3455E+05	2.6908E=08	1-3687E+06	3.0569E=08
5.4000E+05	2.7362E=08	1.3898E+06	3.0522E=08
5.45456+05	2.7768E=08	1.4109E+06	3.0464E-08
5.5091E+05	2.8121E+08	1.43205+06	3.04066-08
5.56366+05	2.8445E=08	1.45316+06	3.0359E-0A
5.6182E+05	2.8711E-08	1.47428+06	3.03316+08
5.6727E+05	2.8936E+08	1.49536+86	3.0324E+08
5.7273E+05	2.9127E-08	1.51646+06	3-0325E-0A
5.7818E+05	2.9265E=08	1.5375E+06	3.0330E-08
5.8364E+05	2.9375E=08	1.55856+06	3.0337E+08
5.8909E+05	2,9465E=08	1.5796E+06	3.0341E+08
5.94556+05	2.9531E=08	1.6007E+06	3.0343E+08
6,0000E+05	2.9579E=08	1.6218E+06	3-0349E-08
6.0545E+05	2.9621E=08	1.6429E+06	3.0366E=08
6.26P4E+05	2,9759E=08	1.6640E+06	3.0401E-08
6,4663E+05	2,9851E=08	1.6851E+06	3.0442E-08
6.6722E+85	2,9914E+08	1,7062E+06	3.0481E=08
6.8781E+05	2.9978E+08	1.7273E+06	3,0547E-08
7.0840E+05	3.0050E=08	1.7484E+06	3.0637E+08
7 . 2898E+85	3.0136E=08	1.7695E+06	3,0741E-08
7.4957E+05	3 . 0210E=08	1.79056+06	3,0857E+08
7,7016E+05	3.0267E+08	1.8116E+06	3,0986E+08
7 e9875E+05	3 , 0326E=08	1.8327E+06	3,1138E+08
8.1134E+05	3.0385E=08	1 . 8536E+06	3,0995E+08
8.3193E+05	3.0437E=08	1.8749E+06	3,1097E=08
8.52516+05	3.0487E-08	1.8960E+06	3,1218E+08
8,73102+05	3.0535E+08	1.9171E+06	3.1354E=08
8,9369E+05	3.0593E-08	1.9382E+06	3.1499E=08
9.1428E+05	3.0654E=0A	1.9593E+06	3.1647E=ØB

.

Ċ

٠.

PLTCVT PROGRAM DATA SUMMARY PIR2(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 2 CONTAMINANT = NP=237 TONS OF HEAVY NETAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 4,000000E+04 TIME HIGHD 6,000000E+04 NUMBER OF CELLS = 100 DELTA TIME INCREMENT = 2,000000E+02

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME # 1,98948+06 MIN. TIME = 4.27682+04 TOTAL WEIGHT + 2,40582+04 TOTAL PARCELS . 5598,0 PEAK WEIGHT = 511,864 PEAK WEIGHT TIME . 4.57002+04 PEAK PARCELS . 333,000 PEAK PARCELS TINE . 4.47002+04 WT, LOW = 0.00000000 NO. PARCELS LOW . 0.0 WT. HI = 1,12558+04 NO, PARCELS HI # 1248.0 SMOOTHING WINDOW (CELLS) = 20

TOTAL INVENTORY (CURIES) # 3,531257E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) # 2,398276E+04 PERCENT OF TOTAL INVENTORY # 67,916

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,490000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 7,907540E=06 MAXIMUM RATE (CURIES/YEAR) = 2,051802E+00 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT P NP-237

TIME (YR).	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
4.27002+04	2,23385-01	5,02462+94	1.7514E+00
4.27702+04	2.23388-01	5,05702+04	1.73968+00
4,2839E+04	2.23382-01	5.08932+04	1.7277E+00
4.29896+84	2.34612-01	5.12175+04	1.71752+00
4,29792+04	3,20748+01	5.15402+04	1.70552+00
4,3048E+04	4,9688E-01	5.13642+04	1.6920E+00
4,3118E+94	4 8475E-01	5,2187E+04	1.66912+00
4,31882+94	3.3919E+01	5.25112+04	1.6500E+00
4.32582+94	5,93642=01	5.28345+94	1.63638+00
4,33272+04	5.63732-01	5.31582+04	1.62472+00
4.3397E+84	7 58368-01	5.34818+04	1.51378-00

A \$867548A	8 83015-04		
	0.32432401	3.30035404	1 BUDACADO
4.33302+04	9.4333E=01	5.4129E+04	1,5845E+00
4.3606E+04	1 . 0299E+06	5 . 4452E+04	1,5664E+00
4 .36 76E+04	1.1165E+00	5.4776E+04	1.5466E+00
- 4 . 3745E+04	1.2005E+00	5.50992+04	1.5245E+08
4.3815E+04	1.28318+08	5.54236+04	1.49216400
4.38855+84	1.3658F+88	5-5746F+84	1 44036400
4. 3955F+04	1_44195+00	E 60705+00	
A_AR2AF4RA	1 51425400	5 4 6 5 1 5 4 5 4	
	1 50045+00	3401615404	1.30302400
4 4 4 5 4 5 4 5 4 5 4	1,37065400	3.01/35404	1.28621.408
4 4 1 0 4 5 4 0 4	1.04545400	5.62242.004	1,2687E+00
4.42332+04	1.69946400	5 , 6276E+04	1.2513E+00
4 . 4303E+04	1 . 7525E+00	5 .6327E+0 4	1.2380E+00
4 . 4373E+04	1.7963E+80	5.6379E+04	1.22828+00
4 . 4442E+04	1,8401E+00	5.6430E+04	1.2185E+00
4.4512E+04	1.8831E+00	5.64822+04	1.2087E+00
4.45822+04	1.92256+00	5.65532+04	1.20215+00
4.4651E+04	1.9618E+00	5.6585F+04	1 (9735400
4.4721E+04	1.99586+00	8.66865404	1 10245400
4.4701F404	2 01748400	C VYBBEVUU	1 1 4 7 5 7 6 7 6 6
A. 48615404	2 81045400 C(CI/CC+00	2200005404 E 47705404	1.10/25400
A AORACADA	2 04045400	310/375404	1,18272400
4 EGODE+04		3.0/715484	1.17746400
	2.04462.00	5.6842E+84	1.1731E+00
4.30/02404	C.8343E+08	5.6894E+04	1 . 1683E+00
4.5393E+04	2.0075E+00	5.6945E+04	1.1545E+00
4,5717E+04	1,97598+00	5,6997E+04	1,1394E+00
4 ₂ 6940E+04	1 . 9541E+00	5.70492+04	1.1243E+08
4 .63 64E+04	1,9345E+00	5.7100E+04	1.1092E+00
4.6687E+04	1.9179E+00	5.7152E+04	1.07366+08
4.7011E+04	1.9003E+00	5.72036+00	1.01215400
4.7334E+04	1.8815E+00	5.78555+04	1.00255400
4.7658F+84	1.86545400	C TRALFLAA	5 40145-01
4.7981E+04	1 85205400		0 E0710E401
4.83055404	1 <u>80</u> 5555700	5 78905404 5 78985×8#	
4 86 38 54 04	4 83855×80	5 48445484 3414645484	4.3628C#81
A BOESCADA	1.05635400	3.74012404	9,1985t#81
4807355704 A 0396840A		3.73122404	8,9709E+81
4875/05704	1.74022400	5.7364E+04	8,5382E+01-
4.43445404	1.7791E+00	5.7615E+04	. 8,1055E+01
4 4 4 4 5 3 E + 104 · · ·	1.7647E+08	5.7667E+04-	7.6728E=01
		•	

:

٠.

PLTCVT PROGRAM DATA SUMMARY PIR2(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 2 CONTAMINANT P NP+237 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 1,650000E+06 TIME HIGH= 1,950000E+06 NUMBER OF CELLS = 100 DELTA TIME INCREMENT = 3,000000E+03

RAW DATA AND BLOCKED DATA FACTORS! MAX, TIME = 1,9894E+06 HIN, TIME # 4,2768E+04 TOTAL WEIGHT = 1,0196E+04 TOTAL PARCELS # 1151.0 PEAK WEIGHT = 269,027 PEAK WEIGHT TIME = 1.8075E+06 PEAK PARCELS # 30,000 PEAK PARCELS TIME = 1,80752+06 WT, LOW = 2,9064E+04 NO, PARCELS LOW # 5684,0 WT. HI = 9.31092+01 NO, PARCELS HI . 11.0 SMOOTHING WINDOW (CELLS) = 5

TOTAL INVENTORY (CURIES) = 3,531258E+04 Inventory under the current graph (curies) = 9,991452E+03 Percent of total inventory = 28,294

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.792508E+06 MAXIMUM CONCENTRATION (MICROCURIES/HL) = 2.538891E=07 MAXIMUM RATE (CURIES/YEAR) = 6.337765E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 3.853949E=06

CONTAMINANT = NP+237

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1,65158+06	2,7964E=03	1.80002+06	6.5441E+02
1.65458+06	2,7964E#03	1,80302+06	6.4939E+02
1.65748+06	3,59382=03	1.80592+06	6.4259E+02
1,6604E+06	4,3021E=03	1,80892+06	5.3414E.02
1.6634E+06	5,5188E=03	1.81192+06	6.2420E=92
1.66642+06	5.5486E=03	1,8149E+05	6.1294E=02
1,6693E+06	7,89528+03	1,8178E+95	6.0051E.02
1,6723E+06	9,027 <u>2</u> E=03	1,8208E+06	5.8710E+02
1.6733E+06	1,02012-02	1,8238E+06	5.7289E=02
1.5782E+06	1,1422E=02	1,8267E+06	5.58068=02
1,5312E+06	1,26858=02	1,82972+06	3.4276E=02

1.6842E+06	1 . 3983E=82	1.6327E+06	5.2715E=02
1.6671E+06	1.5307E=02	1.6356E+06	5.1135E+02
1.6901E+06	1.6669E=02	1.8386E+06	4.9543E002
1,6931E+06	1.8063E+82	1.8416E+06	4.7946E=02
1.6961E+06	1.94858=02	1.8446E+06	4.6346E-82
1.6990E+06	2,0938E=02	1.84752+06	4.4746E-02
1.7020E+06	2,2393E-02	1.8505E+06	4.3145E-02
1.7050E+06	2.3669E=02	1.85352+06	4.1543E+02
1.7079E+06	2,5356E+82	1.85642+06	3.9938E=02
1.7109E+06	2,6851E=02	1,8594E+06	3.8328E+02
1.7139E+86	2.6351E=02	1.8624E+06	3.6711E=02
1,7168E+06	2.9857E=02	1.86532+06	3.5086E+02
1,7198E+06	3,1368E+02	1.8683E+06	3.3455E+02
1.72285+06	3.2890E-02	1.8713E+06	3.1623E-02
1.7258E+06	3,4429E+02	1.8743E+86	3.0193E+02
1.7287E+06	3,5991E-02	1.8772E+06	2.8573E=02
1.7317E+06	3,75826+02	1.8802E+06	2.6972E=02
1,7347E+06	3,9208E=02	1,8832E+06	2.5397E+02
1.7376E+06	4,0872E=02	1,8861E+06	2,38555=02
1.7406E+06	4 2575E+02	1,8891E+06	2.2355E-02
1.7436E+06	4.4316E-02	1,8921E+06	2,0903E=02
1.7465E+06	4,6091E=02	1.6950E+06	1,9507E=02
1,7495E+06	4,7891E=02	1.6960E+06	1.8170E+02
1.7525E+06	4 9705E-02	1.9010E+06	1.6897E+02
1.7555E+06	5,1517E+02	1.9040E+86	1.56678-82
1,7584E+06	5.3307E=02	1.90692+06	1.4538E+82
1.7614E+06	5,5056E=82	1.90996406	1.3447E=02
1.7644E+86	5,6741E=02	1,91292+06	1.2409E=02
1.7673E+06	5.8339E=82	1.9158E+06	1.1421E=02
1.7703E+06	5,9831E+02	1.9188E+06	1,0475E=02
1.7733E+06	6.1194E=02	1 . 9218E+06	9,5558E=03
1.7762E+06	6.2410E=02	1,9247E+06	8,6634E=03
1.7792E+06	6.3460E+02	1.92778+06	7,7977E+03
1.75222+86	6.4332E=02	1.9307E+06	6,9608E=83
1.7852E+86	6.5015E+02	1.9337E+06	6,1425E+03
1,7881E+86	6.5502E-02	1.9366E+86	5,2101E+03
1.7911E+86	6,5787E+82	1,9396E+06	4,3569E=03
1.7941E+86	6.5871E+02	1.9426E+86	3.5797E+03
1.7970E+06	6,5754E=02	1.9455E+06	2.8777E=03

:.

PLTCVT PROGRAM DATA SUMMARY PIR'2(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 2 CONTAMINANT = U=233 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCXING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 4,000000E+04 TIME HIGH= 2,000000E+04 TIME HIGH= 2,000000E+06 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 4,900000E+03

RAW DATA AND BLOCKED DATA FACTORS! MAX, TIME #. 1,9892E+06 MIN. TIME = 4,6214E+04 TOTAL WEIGHT = 4,90372+04 TOTAL PARCELS # 33303,0 PEAK WEIGHT TIME = 1,4831E+06 PEAK WEIGHT = 369,769 PEAK PARCELS . 1000,000 PEAK PARCELS TIME =. 4,1975E+05 WT, LOW = 0,0000E+01 NO. PARCELS LOW . 0,0 NT, HI = 0.0000E-01 NO. PARCELS HI = 3,0 SMOOTHING WINDOW (CELLS) = 20

TOTAL INVENTORY (CURIES) # 4,903742E+04 Inventory under the current graph (curies) # 4,909436E+04 Percent of total inventory # 100.115

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.644750E+06 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.951557E+07 MAXIMUM RATE (CURIES/YEAR) = 5.063786E+02 CONVERSION FACTOR RATE TO CONCENTRATION = 3.853949E+06

CONTAMINANT # U+233

TIME (YR)	RATE (CU/YR)	TINE (YR)	RATE (CU/YR)
4,73502+04	8,56032-03	1,10002+06	3,17538=02
5,4097E+04	9,8347E=03	1.13945+06	3,2753E+02
3,0844E+04	1,0244E=02	1,1588E+06	3,36718+02
9,75912+04	1,2081E=02	1,1882E+06	3,44758+02
1,1434E+05	9,5302E=03	1,2176E+06	3,54808=02
1,3108E+05	8,76262=03	1,2471E+05	3,63498=02
1,4783E+09	8,82152=03	1,27652+06	3,72718+02
1,64382+05	8,1169E+Ø3	1 . 3059E+06	3,8268E+02
1,3133E+05	7 , 3903E=03	1,3353E+06	3,91348+02
1,98072+05	7,24352-03	1,3047E+06	4,0133E=02

2.1482E+05	6.4239E-83	1.39416486	4.1300F=02
2.3157E+05	6.2746E=03	1.42356+06	4.2473F-02
2.4831E+85	6.14316.83	1.4529E486	4.3123E-02
2.6506E+05	5.7063E-03	1.48246406	4.49365-02
2,81816+05	5.7441E+03	1.5118E+64	4.6168E=02
2,98552+05	5.4158E+03	1.5418E+06	4.7422E=02
3,1530E+05	4.9961E=83	1.5706E+06	4.8676E+82
3,3205E+85	4.8328E=03	1.6000E+06	4.9771E-82
3,4680E+05	4.8758E+03	1.62942406	5.04628-02
3.6554E+05	4.5710E-03	1.6418E+06	5.06265-02
3,8229E+05	4.6557E=03	1.65296406	5.0608E-02
3,9904E+05	4.7688E=03	1.5647E+06	5.0509E+02
4.1578E+05	5.6055E=03	1.6764E+86	5.01768-02
4.32536+05	7.78938-83	1.68822406	4.9483E+02
4.49282+05	1,8938E-82	1.69992+06	4.8495E+62
4,6682E+85	1.4077E-02	1.7117E+06	4.7176E+02
4.8277E+05	1.7933E=02	1.7234E+06	4.5506E=02
4.9952E+05	2.1981E=02	1.7352E+06	4.3402E.02
5.1627E+05	2,1558E=02	1.7469E+06	4.0893E-02
5.3301E+05	2,1700E=02	1.7587E+86	3.8202E-02
5,4976E+05	1,9433E+02	1.7784E+06	3.5058E+02
5.6651E+05	1.8575E-02	1.7622E+06	3.1661E-02
5.8325E+05	1,9054E-02	1.79396+06	2.8285E+02
6,0000E+05	2,0729E-02	1.88576+06	2.4767E+02
6 . 2941E+05	2.1019E=02	1.8174E+06	2.14216-82
6,5882E+05	2,1614E=02	1.82928+86	1.8208E-02
6.8854E+85	2.2170E-02	1.8409E+06	1.5287E-02
7.1765E+05	2,2662E=82	1,8527E+06	1.2504E-02
7 ₊ 4706E+05	2.3278E-02	1,8644E+06	1.00222-02
7.7647E+05	2,3893E+82	1,8762E+86	7.9496E-03
8.0588E+05	2,4435E+02	1,8879E+86	6.2073E=03
8,3529E+05	2,50866=82	1.8997E+06	4.7299E=03
8,6471E+05	2.5815E+02	1,9114E+86	3.5882E=03
6.9412E+85	2.6403E+02	1.92325+06	2,6249E+03
9,2353E+85	2.7097E-02	1.93492+06	1,8841E=03
9.5294E+05	2.7770E-02	1 . 9467E+06	1,5503E=03
9,8235E+05	2.8582E+02	1.9584E+06	1.0750E+03
1.0118E+06	2,9308E+82	1.9702E+06	7,2423E=04
1.0412E+06	3.8073E-02	1.9819E+06	4.4383E-04
1.0706E+06	3,0921E=02	1.99378+86	1.7827E-84-

.

.

٠,

PLTCVT PROGRAM DATA SUMMARY PIR2(TOTAL FUEL ASSEMBLIES) BASE CASE; CHAIN 2 CONTAMINANT = TH=229 TONS OF HEAVY HETAL FACTOR = 0,5000000 DATA BLOCXING FACTORS; ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 4,0000002+04 TIME HIGH= 2,0000002+06 NUMBER OF CELLS = 25 DELTA TIME INCREMENT = 7,840000E+04

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME = 4.8462E+04 NAX, TIME = 1,9996E+06 TOTAL PARCELS . TOTAL WEIGHT = 2,0782E+03 1302.0 241,459 PEAK WEIGHT TIME # 1,72566+86 PEAK WEIGHT # PEAK PARCELS = 181.000 PEAK PARCELS TIME = 1,9760E+05 WT. LOW = 0.0000E=01 NO. PARCELS LOW = 0.0 $WT_{\bullet} HI = 0_{\bullet}0000E=01$ NO, PARCELS HI = 0,0 10 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) # 2,073176E+03 Inventory under the current graph (curies) # 1,683538E+03 Percent of Total Inventory # 81,010

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1,020000E+06 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 4,676529E=09 MAXIMUM RATE (CURIES/YEAR) = 1,213438E=03 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = TH=229

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
7,9200E+04	4,18552=04	1,02092+06	1.2134E-03
9,3016E+04	4 , 1865E=04	1,0388E+06	1.21312-03
1.1683E+05	4.1865E+04	1,0576E+06	1,2127E+03
1,35652+05	4,18652=04	1,07642+06	1,2124E-03
1.34462+03	4 . 1865E=04	1,0953E+06	1,21208-03
1.7323E+05	4 . 2134E=04	1,1141E+Ø6	1.21098=03
1,9210E+05	4 , 2458E=04	1,13292+06	1,2096E+03
2,1091E+03	4 . 2781E=04	1,1517E+06	1,2083E+03
2.2973E+05	4.31942-04	1.1705E+06	1,28698-03
2,4854E+85	4 , 3439E=04	1,1893E+06	1,2040E+03
2,67362+05	4.37732+64	1.29822+06	1.20028-03

2,8618E+05	4.4118E=04	1.2270E+06	1.19658-03
3.8499E+85	4.4458E-84	1.24566406	1.19275-01
3,2381E+05	4.4890E-04	1.26462486	1.19058-03
3,4262E+05	4.5413E-04	1.2834E+06	1.18968=03
3.6144E+05	4.9937Eu04	1.30226406	1. LARAF-DT
3,8026E+05	4.6460E=04	1.32116406	1. LARDE-DT
3.9987E+05	4.7862E484	1.3399E+06	1. LAASFmat
4.1789E+05	5.1020E-04	1.35876406	1.1504Fe03
4,3670E+05	5.4179E=04	1.37752+06	1.13848-03
4,55522+05	5.7337E=04	1.3963E+06	1.1173E-03
4.7434E+05	6.0162E+04	1.41516006	1.00005-01
4,9315E+05	6.1320E-04	1.4340E+06	1.09455-03
5.1197E+05	6.2478E=04	1.4528E+06	1. GAOOF-AT
5.3078E+05	6.3636E+04	1.47168406	1.0854F-03
5.4968E+85	6.4794E-04	1.49046+06	1.08085-03
5.6842E+05	6.6604E-04	1.50922406	1.05455-03
5.8723E+05	6.8414E=04	1.52886+06	1.0283E=03
6.0605E+05	7.02248-04	1.54682+06	1.00205.03
6.2486E+05	7.2034E+04	1.5657E+06	9.7572E+84
6.4368E+Ø5	7 4624E=84	1.5845E+06	9.6166En84
6.6250E+05	7.7378E+04	1.6033E+06	9.5005E.04
6.8131E+05	8,0117E-04	1.62212+06	9.3643E+04
7,0013E+05	8,2863E+04	1.6489E+86	9.2681E+84
7.1894E+05	8.5090E=04	1.65976+06	9.1468E+84
7.3776E+05	8 ₁ 7057E=04	1.67868+06	9.0229E=04
7,5658E+05	8 . 9024E=04	1.6974E+06	8.8991E-04
7,7539E+05	9.8992E=84	1.7162E+06	8.7752E+04
7,9421E+05	9.3033E+04	1.73506+06	8.6611E=04
8,1302E+05	9 .51 48E=04	1,7538E+06	8.5568E+04
8.3184E+05	9,7263E=04	1.7726E+06	8.4525E=04
8,5066E+05	9 ₂ 9377E=04	1.7915E+06	8.3482E-04
8,6947E+05	1,0196E=03	1.8103E+06	8.2678E=04
8,88292+85	1.0548E+03	1.8291E+06	8,23558-04
9.0710E+05	1.0900003	1 . 8479E+06	8,2032E-04
9,25926+05	1.12528+03	1,8667E+06	8,1709E-04
¥.4474E+05	1.1569E=03	1.88555+06	8,1382E-04
9,6355E+05	1.1718E+03	1.90442+06	8,1043E+04
Y,82376405	1,18526+03	1.92326+06	8.8703E-84
1.00155+00	1.19936+03	1,94206+06	8.0363E=B4

.

H.65

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME = 3.92622+05 MAX, TIME = 1,9986E+06 TOTAL PARCELS . TOTAL WEIGHT # 1,22312+04 3725.0 216,371 PEAK WEIGHT TIME . 4.39582+05 PEAK WEIGHT = PEAK PARCELS . PEAK PARCELS TIME = 4,3958E+05 50,000 NO, PARCELS LOW WT, LOW = 0,00002-01 0.0 WT, HI = 3,6988E+00 NO, PARCELS HI = 3622.0 SMOOTHING WINDOW (CELLS) #

TOTAL INVENTORY (CURIES) = 1,223426E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1,220793E+04 PERCENT OF TOTAL INVENTORY = 99,785

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,379167E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 7,976323E=07 MAXIMUM RATE (CURIES/YEAR) = 2,069649E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = U=238

TIME (VR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
3,9292E+05	2,3915E+03	4,96252+05	6.3844E=02
3,9498E+05	3,3911E#03	4,9832E+05	5.3700E+02
3,9705E+05	6,2686E=Ø3	5,00382+05	6.31482=02
3,99122+05	9,7591E+03	5,0245E+03	6,1998E=02
4.0118E+05	1,39728+02	3,0452E+05	5,0269E=02
4,03256+05	1,9174E=02	5,0658E+05	3,79748=02
4,05325+05	2,54516-02	5,08652+05	5,5224E+02
4,07382+05	3,2968E=02	5.1072E+05	5,20912-02
4,0945E+05	4,17738-02	5,1278E+05	4,3509E+02
4.11528+05	5,2000E=02	3,14852+05	4,47532+02
4,1338E+95	6 , 3637E=02	5,1692E+05	4,0545E+02

4.1565E+05	7.6757E+02	5,18982+05	J.6046E=02
4.1772E+05	9.1178E-02	5.21056+05	3.1386E+02
4,1978E+05	1,0670E-01	5.23126+05	2.6774E=82
4,2185E+05	1.2296E=01	5.2518E+05	2.2412E=02
4.23922+05	1.39428-01	5.2725E+05	1.84726-02
4,2598E+05	1,5543E=01	5.2932E+05	1.58666-82
4,2805E+05	1,7832E-01	5.3138E+05	1.2230E+02
4,3012E+05	1.8333E-01	5.33452+05	9.9558E+03
4,3218E+05	1,9388E=01	5.35528+05	8.1553E+03
4.3425E+85	2.0143E=01	5.3758E+05	6.7568E.83
4.3632E+85	2.0583E+01	5.5965E+05	5.6437E=83
4,3838E+85	2.0687E=01	5.4172E+05	4.7074E=83
4,4045E+05	2.0495E=01	5.4378E+05	3.8766E#83
4,4252E+05	2.00285-01	5.4585E+05	3.1039E-03
4.4458E+85	1,93516-01	5.4792E+05	2.3789EpØ3
4.4665E+85	1.8508E-01	5.4998E+05	1.7324E=03
4,4872E+05	1,7568E=01	5.5205E+05	1.1863E=03
4.5078E+05	1,6538E+01	5,5412E+05	7.6342E=84
4.5285E+05	1.5479E=01	5,5618E+05	4.5798E=04
4 . 5492E+85	1.4404E=01	5.58256+05	2.5924E+84
4.5698E+85	1,3329E+81	5,60322+85	1.3632E-04
4.5905E+05	1.2280E=01	5,6238E+05	6,9405E=05
4.6112E+05	1.1275E=01	5.64452+05	3,2966E=05
4,6318E+05	1.0334E=01	5,6652E+05	1,6426E=05
4+65256+05	9.4776E=02	5,68582+05	9,0628E=06
4.6732E+05	8 _e 7231E=02	5.706SE+05	6,6077E=06
4.69382+05	8,0818E=02	20+35757,2	6,8345E=06
4.7145E+05	7,5651E+02	5.7478E+05	7.32538+86
4,73526+05	7.1751E=02	5,7685E+05	6,6077E=06
4.7558E+05	6,9005E-02	5,7892E+05	6,6077E=06
4.7765E+05	6,7240E=62	5,8098E+05	7,2121E=06
4.79726405	6,6167E-02	5.6305E+05	9,7798E=06
4.81762+05	6.5486E=02	5.8512E+05	7.8916E=86
4,83832405	0.4964E=02	5.8718E+05	8,2691E=86
4.83426405	0.4508L-02	5.8925E+05	7.3629E=06
4 67 YEL 405	6.41626+02	5,9132E+05	7.4761E=06
4.90031+05	0.3620E+02	519338E+05	6.1924E-06
4,92126+05	6,3728E=02	5,9545E+05	3.8137E=06
4,94186405	6,3783E=02	5,97526+05	2.3789E+06

PLTCVT PROGRAM DATA SUMMARY PIR2(TOTAL FUEL ASSEMBLIES) BASE CASES CHAIN 3 CONTAMINANT = U=234 TONS OF HEAVY METAL FACTUR = 0,5000000 OATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,500000E+05 TIME HIGH= 6,000000E+05 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 6,250000E+02

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 1,9968E+06 MIN. TIME = 3,7646E+05 TOTAL WEIGHT # 2,8387E+04 TOTAL PARCELS 12685.0 397,751 PEAK WEIGHT TIME = 4,3719E+05 PEAK WEIGHT = PEAK PARCELS = PEAK PARCELS TIME = 4,3719E+05 150,000 NO. PARCELS LOW 3 WT. LOW = 2.0000E-01 0.0 WT. HI = 2.5911E+00 NO, PARCELS HI = 7667,0 5 SMOOTHING WINDUW (CELLS) =

TOTAL INVENTORY (CURIES) = 2,838995E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2,838758E+04 PERCENT OF TOTAL INVENTORY = 99,992

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4.378125E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.978333E+06 MAXIMUM RATE (CURIES/YEAR) = 5.133262E-01 CONVERSION FACTOR RATE TO CONCENTRATION = 3.853949E+06

CONTAMINANT = U=234

TIME (YR)	RATE (CU/YR)	TIME (VR)	RATE (CU/YR)
3,76566+05	4,13226-05	4.8813E+05	1.4311E=01
3,78792+05	1.04236-04	4,9035E+05	1,3963E-01
3,81036+05	2,9031E-04	4,9259E+05	1.3625E-01
3,83268+05	6,6095E-04	4,94822+05	1,33318-01
3,85496+05	1,2849E-03	4,9705E+05	1,3130E-01
3.87726+05	2.1776E=03	4 , 9928E+05	1,3021E-01
3.89956+05	3,32078-03	5.0151E+05	1,2921E=01
3,92186+05	4.75316-03	5.33748+05	1,2593E=01
3.94416+05	5, A127E-03	5.0598E+05	1,2246E=01
3.96648+05	1,01576-02	5,08216+05	1,1550E-01

3 . 9888E+05	1.57666-02	5.1044E+05	1.0670E=01
4.0111E+05	2,4456E-02	5.1267E+05	9.6976E=02
4,0334E+05	3.6656E-02	5.14906+05	8.7198E+02
4,0557E+05	5.23446-02	5.1713E+05	7.7861E+02
4,0780E+05	7.1240E+02	5.1936E+05	6.9127E-82
4,1003E+05	9.3607E-02	5.2159E+05	6.0886F=02
4,12266+05	1.2021E=01	5.23836+05	5.2906E+02
4.1449E+05	1.5268E-01	5.2606E+05	4.49A8E=02
4.1673E+05	1.9214E-01	5.28295+05	3.7173E-02
4.1896E+05	2.3806E=01	5.3052E+05	2.9856F=02
4.21196+05	2.8727E=01	5.3275E+05	2.35326-02
4.2342E+05	3.3507E=01	5.3498E+05	1.8571E=02
4.2565E+05	3.7769E=01	5.3721E+05	1.4893E-02
4.2788E+05	4.1457E-01	5.3944E+05	1. 22045-02
4.3011E+05	4.4720E-01	5.4168E+05	1.0065E-02
4.32346+05	4.76296-01	5.4391E+05	8.16435-03
4.3458E+Ø5	4.9946E=01	5.46146485	6.3763E=03
4.3681E+05	5.1200E-01	5.48376+05	4.7122F-01
4,3904E+05	5.1084E-01	5.50602405	3. 2054F-03
4,4127E+05	4.9646E-01	5.52836+05	2.1A24F=03
4,4350E+05	4.7381E=01	5.5506E+05	1.3018F-03
4.45738+05	4.4832E-01	5.57296+05	8.4413F-04
4.4796E+05	4.2319E-01	5.59536+05	4.7568F=04
4.5019E+05	3.9830E+01	5-6176E+05	2.45326-04
4.5243E+05	3.7167E=01	5.63996+05	1.1690F=04
4.5466E+05	3.4239E=01	5.66222+05	5.7015E+05
4.5689E+05	3.1148E=01	5.6845E+05	3.01316-05
4,5912E+05	2.8140E+01	5.7068E+05	2.04276-05
4.6135E+05	2.5427E-01	5.7291E+05	1.1328E-05
4.6358E+05	2.3111E-01	5.7514E+05	8.5712E+06
4.65812+05	2,1225E=01	5.7738E+05	6.4189E=06
4.6804E+05	1.9760E=01	5.7961E+05	3.7758E+06
4.7028E+05	1.8653E-01	5.8184E+05	5.8903E-06
4 . 7251E+05	1.7812E=01	5.8407E+05	3.7758E-06
4.7474E+05	1.7131E=01	5.8630E+05	3.7758E+06
4.7697E+05	1.6545E-01	5.8853E+05	6.9853E+06
4,7920E+05	1,6019E-01	5.9076E+05	4.8331E-06
4.8143E+05	1,55336+01	5,9299E+05	3.7758E-06
4.8366E+05	1.5084E+01	5,9523E+05	7.02316-06
4.8589E+05	1.4677E=01	5.9746E+Ø5	2.15226-06

• *

PLTCVT PROGRAM DATA SUMMARY PIR2(TOTAL FUEL ASSEMBLIES) BASE CASE; CHAIN 3 CONTAMINANT = TH=230 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLCCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 1,000000E+04 TIME HIGH= 1,010000E+06 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 5,000000E+03

RAW DATA AND BLOCKED DATA FACTORSI MIN, TIME = 3,9392E+05 MAX, TIME = 1,9965E+06 TOTAL WEIGHT = 1,2353E+03 TOTAL PARCELS # 1193.0 PEAK WEIGHT TIME # 5,0250E+05 PEAK WEIGHT = 73.177 9,8250E+05 PEAK PARCELS = 24,000 PEAK PARCELS TIME # WT. LOW = 0.0000E-01 NO, PARCELS LOW = 0.0 WT, HI = 7,57398+00 NO, PARCELS HI = 1546,0 SMOOTHING WINDOW (CELLS) = 10

TOTAL INVENTORY (CURIES) = 1,242910E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1,189764E+03 PERCENT OF TOTAL INVENTORY = 95,724

TIME OF MAXIMUM CONCENTRATION (YEARS) = 5,125000E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2,081921E=08 MAXIMUM RATE (CURIES/YEAR) = 5,402048E=03 CONVERSION FACTOR RATE TO CONCENTRATION = 3.853949E=06

CONTAMINANT = TH=230

TIME (VEARS) AND RATE (CURIES/VEAR) FOR THE 100 POINTS

TYME (VD)	DATE (CU/VR)	TIME (YP)	PATE (CULVR)
ITAC LINI	MAIE (CUPIN)	THE CIST	HALF FOOTINT
3.9250E+05	1,61348=04	6 . 1500E+05	3,0762E=03
3.93646+05	1.61346-04	6.25882+05	2.7702E-03
3.9477E+05	1.6134E=04	6.3077E+05	5.4690E-03
3.95912+05	1-61348=04	6.4765E+05	2.2140E-03
3.97056+05	1.5134E=04	6.5853E+05	1.9751E-03
3.9818E+05	2 89076-04	6.6941E+05	1.74948-03
3.99325+45	5-21942-04	6.8429E+05	1.5462E-03
4.00452+45	7-14802-04	6.9118E+05	1.3882E-03
4.01596+05	9-27666-04	7.02062+05	1.24268-03
4.02735+45	1.11956=03	7.1294E+05	1.10148-03
4.03865+05	1 22726-03	7.2382E+05	9.7047E-04

H.70

4.0500E+05	1,3350E+03	7.34716+05	8.7500F=04
4,0614E+05	1.44276-03	7.4559E+05	7.0628F-04
4.0727E+05	1.55046-03	7.56476+05	7.1741F-04
4.0841E+05	1.6370E-03	7.67356+85	6.4705F-04
4,0955E+05	1.7164E=03	7.78246+05	5.84105-04
4,1068E+05	1.7998E+03	7.8912E+05	5.25835-84
4.1182E+05	1.8811E=03	8-0000E+05	4.7320F-04
4.12956+05	1.93026+03	8.06296+05	4.4070F-04
4.1409E+05	1.9310E=03	8.1258E+05	4.2813F-04
4.1523E+05	1.93178=03	8.1886E+ØS	4.0804F=04
4,1636E+05	1.93246+03	8.25156+05	T. ONTOF-DA
4.1750E+05	1,93316+03	8.3144E+05	3.7248F=84
4.1864E+05	2.0261E-03	8.3773E+05	3.5208E=04
4.1977E+05	2.1191E=03	8.4482E+05	3.3337F-04
4.2091E+05	2.2121E=03	8.50306+05	3.1710F-04
4.22056+05	2.3051E+03	8.5659E+05	3.0189F-04
4.2318E+05	2.3907E-03	8-6288E+05	2.8666F=04
4.2432E+05	2.4714E=03	8.6917E+05	2.7177F=04
4.2545E+05	2.5521E-03	8.7546E+05	2.58266-04
4.2659E+05	2.6329E-03	8.8174E+05	2.4514F-04
4.2773E+05	2.7102E=03	8.8843E+05	2.3138E=04
4.2886E+05	2.7743E=03	8.9432E+05	2.1816E=Ø4
4 . 3000E+05	2.83836-03	9.0061E+05	2.0513E-04
4.4088E+05	3.46096-03	9.86892+85	1.92176-04
4.5177E+05	3.9618E=Ø3	9.1318E+05	1.7994E-04
4.6265E+05	4.3641E=03	9.1947E+05	1.6875E=04
4.7353E+05	4.7443E-03	9.2576E+05	1.5785E-04
4.8441E+05	5,0226E-03	9,3205E+05	1.4755E=04
4.9529E+05	5.25466-03	9,3833E+05	1.3786E-04
5,0618E+05	5.3888E=03	9,4462E+05	1.2911E-04
5.1706E+05	5,3941E+03	9.5091E+05	1.2018E-04
5.27946+05	5,3091E=03	9 . 5720E+05	1.1170E-04
5.3862E+05	5.1325E=03	9.6349E+05	1.1234E-04
5.4971E+05	4.9059£=03	9.6977E+05	1,0526E-04
3.6059E+05	4.6763E=13	9.7606E+05	9,91096-05
3.7147E+05	4.4149E=03	9,8235E+05	9,3425E-05
3.02352+05	4.0971E-03	9,8864E+05	8,8160E-05
5.9324E+05	3,7325E+03	9.9493E+05	8,2874E-05
0.0412L+05	3,3791E+03	1.0012E+06	7,7412E-05

.

·.

.

-

PLTCVT PROGRAM DATA SUMMARY PIR 2(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 3 CONTAMINANT = RA=226 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 1,000000E+04 TIME HIGH= 1,010000E+04 NUMBER OF CELLS = 100 DELTA TIME INCREMENT = 1,000000E+04

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME = 3.8646E+05 MAX, TIME = 1,9942E+06 TOTAL PARCELS 1885.0 TOTAL WEIGHT = 2,5497E+03 PEAK WEIGHT TIME = 5.05002+05 PEAK WEIGHT = 187.724 PEAK PANCELS TIME # 5.9500E+05 PEAK PARCELS # 69.000 NO. PARCELS LOW = WT. LOW = 0,0000E-01 0.0 NO, PARCELS HI = 184.0 WT. HI = 2,8499E+00 10 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 2.552591E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2.687442E+03 PERCENT OF TOTAL INVENTORY = 105.283

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4.950000E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 6.224496E=08 MAXIMUM RATE (CURIES/YEAR) = 1.615096E=02 CONVERSION FACTOR NATE TO CONCENTRATION = 3.853949E=06

CONTAMINANT = RA-226

TIME (YN)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
3,85002+05	1,9333E=04	6,2113E+05	6.5357E-03
3.88486+05	1,9333L=04	6,2848E+05	6,1898E=93
3.9197E+05	1.9333E=04	5.3584E+05	5.86338=03
3,95458+05	2,33928+04	6,4319E+05	5,48298-03
3,98946+05	5.3733E=04	5,5054E+05	5,06458-03
4.0242E+05	8.4165E=04	6,579ØE+Ø5	4.65698-03
4.05918+05	1,12666-03	6.65252+05	4.2821E=03
4.09392+05	1.3568E=03	6.7260E+05	3,8226E+03
4,128AE+05	1.58702-03	6,79962+05	3.5516E-03
4.16366+05	1,95402=03	6,87312+05	3,3412E=03
4,19856+05	2.5339E=03	5,94662+05	3.0637E=03

4 . 2333E+05	3.1137E-03	7.02016+05	2.1720E=03
4,2682E+05	3.6741E-03	7.0937E+05	2.5182F=01
4.30306+05	4.2166E#03	7.16728+05	2. 3036F-03
4,3379E+05	4.7591E+03	7.24076+05	2.1314Fm03
4.3727E+05	5.3480E+03	7.31436+05	1.02405-01
4,4076E+05	5.9615E+03	7.3878F+05	1.75016-03
4,4424E+05	6.5750E-03	7.46136+05	1.61585-01
4.4773E+05	7.4169E+03	7.53486+85	1.5057F=01
4,5121E+05	8.3221E=03	7.61216+05	1.3625F-03
4.5470E+05	9.22746-03	7.6894E+05	1.2011F-01
4.5818E+05	9.9470E-03	7.76676405	1 03705-03
4.6167E+05	1.06492-02	7.84396+05	8 6735F-04
4,6515E+05	1.1352E+02	7-92125+05	7.88465-00
4.68642+05	1.2076E+02	7.99856+05	6.4871E-04
4.7212E+05	1.2799E-02	8.0758E+05	5.630AF-04
4,7561E+05	1.3528E=02	8.15306405	0.7571F=84
4.79092+05	1.4280E-02	8.2303E+05	A. 1266F-04
4.8258E+05	1.5032E-02	8.30766405	T TERREDA
4.8606E+05	1.5619E=02	8.3848E+05	2.74912-04
4.8955E+05	1.5826E+02	8.4621E+05	2_4494C+04
4.9303E+05	1.6034E=02	6.5394E+05	2.3050F=04
4.9652E+05	1.5914E-02	8.6167E+05	2.0506F=04
5.0000E+05	1.5370E+02	6.6939E+05	1.7730E-04
5.0348E+05	1.48266-02	8.7712E+05	1.53116+04
5,1084E+05	1.42836+02	8.8485E+05	1.38986-04
5.1819E+05	1.3807E-02	8.9258E+05	1.1768E+04
5,2554E+05	1.32196-02	9.0030E+05	7.94758-05
5,3290E+05	1,2719E-02	9,08032+05	5.2719E.05
5,4025E+Ø5	1.20985~02	9.1576E+05	5.5174E+05
5,4760E+05	1.1456E-02	9.2348E+05	5.3784E+05
5.5496E+115	1.0866E=02	9.31216+05	5.1532E-05
5,6231E+05	1.0334E-02	9,3894E+05	4.7862E-05
5.6966E+05	9.8949E=03	9.4667E+05	4.2715E+05
5.7701E+05	9,4913E=03	9,5439E+05	3.6424E-05
5.8437E+05	9.0386E-03	9,62126+05	3.0090E+05
5.9172E+05	8.6187E=03	9,6985E+05	2.5756E-05
5.9407E+05	8.1162E-03	9.7757E+05	2.3028E+05
6.0643E+05	7.5397E=03	9.8530E+05	2.1104E-05
6.1378E+05	6.9430E=03	9.9303E+05	1.8415E-05

۰.

.

•

.

PLTCVT PROGRAM DATA SUMMARY PIR 2(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 4 CONTAMINANT = AM=243 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 4,000000E+04 TIME HIGH= 6,000000E+04 NUMBER OF CELLS = 100 DELTA TIME INCREMENT = 2,000000E+02

RAW DATA AND BLOCKED DATA FACTORS: MAX_ TIME = 5,7341E+04 MIN. TIME # 4.2874E+04 TOTAL WEIGHT = 3,0798E+03 TOTAL PARCELS # 3350,0 PEAK WEIGHT = 97.717 PEAK WEIGHT TINE = 4.5100E+04 PEAX PARCELS = 71,000 PEAK PARCELS TIME = 4,5100E+04 WT. LOW = 0,00002=01 NO, PARCELS LOW . 0,0 WT, HI = 0,0000E-01 NO. PARCELS HI = 9,0 10 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 3,0758342+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 3,161992E+03 PERCENT OF TOTAL INVENTORY = 102,301

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,490000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1,614601E=06 MAXIMUM RATE (CURIES/YEAR) = 4,189473E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = AM+243

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
4,2900E+04	1.12158-01	5,00302+04	2.11325-01
4,29542+04	1 . 1215E#01	5,02946+04	2.05625-01
4,30272+04	1,12152-01	5,0588E+04	2,0045E-01
4,3091E+04	1.1215E-01	5,08822+04	1.95295-01
4,3155E+04	1,20742-01	5,1176E+04	1,90438=01
4,32182+04	1,30772=01	5.1471E+04	1,85602-01
4,32822+04	1,43805+91	5 . 1763E+04	1,8114E=01
4,33432704	1.49395=01	5,20592+94	1,75692=01
4.34996+04	1.57418=01	5,23532+04	1,7248E=01
4,34732+04	1.65432=01	5.26472+04	1,58112=01
4,33306+04	1,77332=01	5,2941E+04	1.63432-01

r.					
	4.3600E+04	1.9214E=01	5.3235E+04	1.5877E=01	
	4.3664E+Ø4	2.06945-01	5,3529£+04	1.5357E=01	
	4.3727E+04	2,22295-01	5,3824E+Ø4	1,4814E-01	
	4.3791E+04	2,3836E=01	5,4118E+04	1,4332E+01	
	4.3855E+04	2,5443E=01	5.4412E+04	1,37956+01	
	4.3918E+04	2.7069E=01	5.4706E+04	1.3249E=01	
	4.3982E+04	2.874ØE-01	5,5000E+04	1.26402-01	
	4 . 4045E+04	3.0411E-01	5,5294E+04	1.1633E=01	
•	4_4109E+04	3.2042E-01	5.5382E+04	1.15676+01	
	4 . 4173E+84	3.34266+01	5,547ØE+04	1.13016=01	
	4.42366+04	3,4810E+01	5.55582+04	1.1015E+01	
	4 4 3 0 0 E + 0 4	3.61946-01	5,5646E+04	1.0718E=01	
	4 . 4364E+04	3,7275E=01	5.5734E+04	1.0412E.01	
	4 . 4427E+04	3.8357E=01	5.5821E+04	1.00906-01	
	4,4491E+04	3.9438E-01	5.5909E+04	9.77056-02	
	4.4555E+04	4.0063E-01	5.5997E+04	9.47116-02	
,	4,4618E+04	4.0612E-01	5.6085E+04	9.1717E-02	
	4.4682E+04	4.1161E-01	5.6173E+04	8.8669E.072	
	4.4745E+04	4,14498-01	5.6261E+84	8-56116-82	
	4 . 4809E+04	4.1633E+01	5.6349E+04	8.2572E+02	
•	4.4673E+04	4.1816E-01	5.6437E+04	7.95506-02	
. .	4.4936E+04	4.1690E-01	5.6524E+04	7.6532E082	
	4.5000E+04	4.1332E-01	5.6612E+Ø4	7.3524F=02	
	4.5294E+04	3.9771E#01	5.6700E+04	T.0517Ee02	
1	4.5588E+04	3.8071E-01	5.6768E+04	6.7387En02	
	4.5882E+04	3.6503E-01	5.6876E+04	6.4257F=02	
`	4.6176E+84	3.5044E+01	5.69646+04	6.3205F=02	
	4.6471E+04	3.3655E+01	5.70526+04	6.5150F=02	
	4.6765E+84	3.2383E+81	5.7140F+04	6 1907F=00	
	4.7059E+04	3.0956E+01	5.72275404	5 9726F-82	
	4.7353E+04	2.9614E-01	5.7315E+04	5.67665-83	
	4.7647E+84	2.8358E=01	5.74036+04	5.4115-03	
	4.7941E+04	2.7186E-01	5.74916+04	5 tassf_02	
	4.8235E+04	2.6079E=01	5.75796+04	A 95495-85	
	4.8529E+04	2.5108E-01	5.76678+04	4173076-02	
	4.86246+04	2.42306-01	5.7755F+04	A F390F-02	
	4.9118E+04	2.33676-01	E TRASFAGA	4 20070700 1 20120-00	
	4.9412E+04	2.2598E-01	5.79305+04	413C13C40C	
	4.9706E+04	2.1858E+01	5_80185+04	4,1310CV0E 7 0360C-00	
			280-106-04	3 ¹ 430 MC 4 MC	
		•			
			,		
		•			
		• •			
			<u>,</u>		
•					

* *

PLTCVT PROGRAM DATA SUMMARY PIR'2(TOTAL FUEL ASSEMBLIES) BASE CASE; CHAIN 4 CONTAMINANT = PU=239 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS; ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 1,000000E+04 TIME HIGH= 2,000000E+04 TIME HIGH= 2,000000E+03 NUMBER OF CELLS = 10 DELTA TIME INCREMENT = 1,900000E+04

RAW DATA AND BLOCKED DATA FACTORSI HAX_ TIME = 1_7637E+05 MIN, TIME # 6.2560E+04 TOTAL WEIGHT = 8,3640E+00 TOTAL PARCELS . 10.0 PEAK WEIGHT = 2.541 PEAK WEIGHT TIME = 7.6500E+04 PEAK PARCELS # PEAK PARCELS TIME P. 7.6500E+04 5,000 WT, LOW = 0.0000E=01NO. PARCELS LOW . 0,0 NO, PARCELS HI = WT, HI = 0,0000E-01 0,0 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 8,364018E+00 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 8,882326E+00 PERCENT OF TOTAL INVENTORY = 106,197

TIME OF MAXIMUM CONCENTRATION (YEARS) = 5,750000E+04 MAXIMUM CONCENTRATION (MICROCUPIES/ML) = 5,153578E=10 MAXIMUM RATE (CURIES/YEAR) = 1,337220E=04 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT # PU=239

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
5,75002+04	1.3372E-04	1.14502+05	3.7346E=05
5,8640E+04	1.3372E=04	1,1564E+05	3.58865.05
5,9780E+04	1.3372E=04	1.1678E+05	3.44268+05
6,0920E+04	1,3372E=04	1,17922+05	3.29678-05
6,2060E+04	1,3372E=04	1,19862+85	3.15078+05
6,3200E+04	1,3372E=04	1,20202+05	3.00478+05
6 4340E+04	1,33728+04	1.21342+05	2.85878+05
6,5480E+04	1,33725=04	1.2248E+05	2.71288+05
6,56202+04	1,33726-04	1,2362E+05	2.56682-05
6,7760E+04	1,33728+04	1.24758+05	2.42088+05
6,8900E+04	1.33726-04	1.25902+05	2.27486+05

7.0040E+04	1,5372E-04	1.2704E+05	2.1289E=05
7.1180E+04	1,3372E-04	1.2818E+05	1.9829E=05
7.2320E +04	1.3372E-04	1.29326+05	1.8369Em25
7.3460E+04	1.3372E-04	1.30466+05	1.6989E.85
7.4600E+04	1.33726-04	1.31602+05	1.5458E-05
7.57408+04	1.3372E-04	1.32746+05	1.3008E-85
7,6880E+04	1.3333E-04	1.33882+05	1.3174E+05
7 . 8020e+04	1.3217E-04	1.35028+05	1.36478=05
7.9160E+04	1.3101E=04	1.3616E+05	1.4120E-05
8 .0300E+04	1.29858-04	1.3730E+05	1.45936-05
8,1440E+04	1.2868E=04	1.3844E+05	1.58665-85
8,2580E+04	1.2752E+04	1.3956E+05	1.553AE=05
8 . 3720E+04	1.2636E=04	1.4072E405	1.60118-05
8,4860E+04	1.25206-04	1.4186E+05	1.6484F=05
8,6000E+04	1.2403E-04	1.4300E+05	1.6957En05
8,7140E+04	1.2287E=04	1.4414E+05	1.7430E-05
8.82805+04	1.2171E-04	1.4528E+05	1.7962E+05
8.9420E+04	1,2055E+04	1.4642E+05	1.63756-05
9 . 0560E+04	1.1938E+04	1.47562+85	1.66486=05
9 . 1700E+04	1.1822E-04	1.4870E+05	1.95216-05
9 . 2840E+04	1.1706E+04	1.49842+05	1.9794E-05
9.3980E+04	1,1589E=04	1.5098E+05	2.0267E-85
9,51202+04	1.1473E-04	1.52128+05	2.07396-65
9 . 6260E+04	1,11266-04	1.53266+05	2.06396-05
9,7400E+04	1.0664E-04	1.5440E+05	2.82526-05
9.8540E+04	1.02026-04	1.5554E+05	1.9864E+25
9,9680E+04	9,7405E-05	1.5668E+05	1.94776-05
1,0082E+05	9 2785E-05	1,57822+05	1.90906-05
1.01962+05	8_8165E=05	1.5896E+05	1.8703E-05
1.0310E+05	8.35458-05	1.6010E+05	1.8315E-05
1,0424E+05	7,8925E+05	1.6124E+05	1.79286-05
1.0538E+05	7_4305E=05	1.6238E+05	1.7541E-05
1.0652E+05	6,9685E=Ø5	1,6352E+05	1.7154E-05
1,0766E+05	6,5065E+05	1.64668+05	1.6766E-05
1.05802+05	6.0445E+05	1.6580E+05	1,6379E+05
1.0794E+05	5,5826E+85	1.66942+05	1,59928+85
1.1108E+05	5.1206E-05	1.6608E+05	1,5605E+05
1.12225+05	4.6586E=05	1.69226405	1,5217E+05
1.13368+05	4.1966E+05	1.7036E+05	1.4830E-05
·			

Ċ

H.77

·

•

PLTCVT PROGRAM DATA SUMMARY PIR'2(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 4 CONTAMINANT # U=235 TONS OF HEAVY METAL PACTOR # 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE # 2 TIME LOW # 3,500000E+05 TIME HIGH# 6,500000E+05 NUMBER OF CELLS # 400 DELTA TIME INCREMENT # 7,500000E+02

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME = 4.78282+04 NAX, TINE = 8,5035E+05 TOTAL WEIGHT = 4,1315E+02 TOTAL PARCELS . 18277,0 PEAK WEIGHT . 16.671 PEAK WEIGHT TIME = 4,56132+05 PEAK PARCELS TIME = 4,3138E+05 PEAK PARCELS # 191.000 WT, LOW = 5,39642-01 NO, PARCELS LOW . 6188,9 WT. HI & 9.69478-01 ND, PARCELS HI = 5035.0 SMOOTHING WINDOW (CELLS) = 10

TOTAL INVENTORY (CURIES) = 4.146562E+02 . INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 4.120681E+02 PERCENT OF TOTAL INVENTORY = 99.376

TIME OF MAXIMUM CONCENTRATION (YEARS) # 4,673750E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1,899718E=08 MAXIMUM RATE (CURIES/YEAR) = 4,929278E=03 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = U=235

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

YR)
=03
•03
-03
-03
-03
-03
-83
-03
-03
-03

H.78

			•
3.8025E+0S	8.2779E=06	5.30072+05	1.1533E=03
3.8297E+05	8-8501E+06	5.31308+05	8.7536E-04
3.8568F+05	9.6542F=86	5. 3654F485	A. PALAF-AA
3 RR405405	I AGALF-AR	5.39776405	T BAGAF-AA
2 0111EABE			6 00705-6A
3491115403	1,3110C403	3449015403	5 1410K-04
3,43035403	C.0737C=05	3440232403	2.11150-04
3,90552+05	5.19221-03	5.4448E+03	4,1996E#04
3.9926E+05	8,8378E+85	5.5272E+05	3.1305E+84
4.0198E+05	1 . 2907E-04	5 . 5573E+05	2,3933E+04
4.0469E+05	1.7069E=04	5.5875E+05	2.4073E=84
4.0741E+05	2.2468E-84	5.6177E+05	2.90846-04
4.1012E+05	3.2112E-04	5.64792+05	3.2007E-04
4.1284E+05	4.8945E+84	5.6781E+05	2.8665E+84
4.1556F+85	7.4581E+04	5.7083E+05	2.26456-04
A 1827F485	1 BAALF-BT	5.7385F405	2. BAGAF-BA
A 3000CA0E	1 40045-83	E 7687840E	3 / RILE_RA
480776403	1 01 005-27	3810015403	E 40105404
4 23/02703	1.40205-03	3414045403	3,10032-04
4.20422+05	2.44336003	5.86416+03	3.2353E=04
4.2914E+85	2,8818E-03	5,8592E+05	2.6148E+04
4,3185E+05	3,1903E-03	5.8894E+05	1.6952E=04
4.3457E+05	3.3141E-03	5.91962+05	1,01662=04
4 . 3728E+05	3. 3237E=03	5 . 9498E+05	7,1320E+05
4.4000E+03	3,3702E+03	5.9800E+05	5.3385E-05
4.4272E+05	3,5644E=03	6.0102E+05	3.3165E+05
4.4595E+05	3.8004E-03	6.0404E+05	1.4987E+05
4.4919E+05	4.0720E+03	6.0706E+05	1.1345E+05
4.5242E+05	4.3360E+03	6.1008E+05	2.5156E+05
4.55662+05	4.5650E-03	6.1309E+05	5.0190E+05
4.5889E+05	4.7281E=03	6-1611F+85	7.1042F=05
4.6213F+85	4.84315-03	A. 1911F405	7 410AF-05
A LEILEADR	A 01/11E-03	4 32155485	E 004/E_#E
A LALACIAS	4 63555-MX	4 35176×05	3877896463 A 6888
4 8 1 8 7 C 4 8 5	4 876336-03 A 87896-87	0,231/2403	4 4 4 4 4 5 - 4 C
4 4 1 3 0 3 C 7 0 3	4.01022403 4.47405-07	0 ⁴ C014R403	3,10316403
4,730/2403	0.1/125002	0,31616463	3,07316005
4.7030E+03	4.3417E#03	6.34232+05	5,1134E+05
4,8134E+05	4.35876-03	6.3725E+05	2,56822-05
4.8477E+05	4.1115E-03	6,4026E+05	1.6263E+05
4,8801E+05	3 . 8758E+03	6,4328E+05	6.9948E=06
4.9125E+05	3,6634E=03	6.4630E+05	

PLTCVT PROGRAM DATA SUMMARY PIR 2(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 4 CONTAMINANT = PA=23: TONS OF HEAVY METAL PACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 4,000000E+05 TIME HIGH= 7,000000E+05 NUMBER OF CELLS = 20 DELTA TIME INCREMENT = 1,500000E+04

RAW DATA AND BLOCKED DATA FACTORSI MAX, TINE . 1,8223E+06 MIN, TIME + 5-5841E+04 TOTAL WEIGHT = 7,8014E+00 TOTAL PARCELS 300,0 PEAK WEIGHT = 5.958 PEAK WEIGHT TIME = 4.67502+05 PEAK PARCELS = 51,889 PEAK PARCELS TIME = 5.72502+05 WT. LOW = 2.7587E-02 NO, PARCELS LOW # 238,0 WT. HI = 4.6006E-02 NO, PARCELS HI # 272,0 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 7,875027E+00 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 8,460175E+00 PERCENT OF TOTAL INVENTORY = 107,430

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4.525000E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 3.481995E=10 MAXIMUM RATE (CURIES/YEAR) = 9.034875E=05 CONVERSION FACTOR RATE TO CONCENTRATION = 3.853949E=06

CONTAMINANT = PA=231

TTME (YR)	RATE (CU/YR)	TINE (YR)	RATE (CU/YR)
4.0750E+05	3.17622-08	4,9835E+05	5,2595E=05
A . 08798+05	3.17628=88	5,01292+05	5,1080E-05
A. 19988+95	3.17626-08	5,0423E+05	4,9566E-85
A.1136E+05	3.17628-08	5,0717E+05	4,80512-05
4.12656+05	3.17625-08	5,1011E+05	4,65375+85
4.13945+05	3.17625-08	5,13052+05	4,50698-05
4.15238+05	3.17628-08	5,15998+05	4,3802E+05
4.1652E+05	3.1762E=08	5,1894E+05	4,2535E+05
4.1780E+05	3.17628-08	5,21886+05	4,1268E=05
A. 19892+05	3.1762E-08	5,2482E+05	4,20012-05
4. 2038F+05	3 17628-08	5.2776E+05	3,88162+05

4,2167E+05	3,1762E-08	5.3070E+05	3.8473E=05
4,2295E+05	2,2345E+86	5,3364E+85	3.8131E-85
4,2424E+05	8,4762E=86	5,3658E+05	3,7789E+05
4,2553E+85	1,4718E=05	5,3952E+85	3,7446E-05
4,2682E+05	2,0960E=05	5.42466+05	3,7104E+05
4,2811E+05	2,7201E=05	5.45412+05	3,4015E=05
4 . 2939E+05	3,3443E=05	5,4835E+05	3,08922*05
4 . 3068E+05	3,9685E=05	5.5129E+85	2,7770E+05
4.3197E+05	4 , 5927E+05	5.5561E+05	2,3185E=05
4.3326E+05	5,2168E+05	5,5992 E +05	2,1084E-05
4,3455E+05	5,8410E=05	5,6424E+05	2.0924E+05
4 . 3583E+05	6 . 4652E-05	5.6856E+05	2,0763E=05
4.3712E+05	7,0894E=05	5,72882+05	2,0453E=05
4.3841E+05	7,3798E+05	5.7720E+05	1,8590E=05
4.3970E+05	7,5310E+05	5.01526+05	1,6727E#05
4, 4094E+05	7,60232+05	5.8983E+Ø5	1,48636+09
4.45516+05	7 , 8336E#85	5,9015E+05	1.3479E+05
4.4356E+85	7,9848E=05	5.9447E+05	1,2395E+05
4,44852+05	8,1361E-05	5,9879E+05	1.1311E=05
4,4614E+05	8,28745-05	6.0311E+05	1,0313E-05
4.4742E+05	8,4387E=05	6.0T42E+05	9.8438E=06
4,4871E+05	8,5899E=05	6.1174E+05	9.3748E+06
4,50002+05	8,7412E-05	6,1636E+05	8:9057E=06
4.51296+05	8,8925E=05	6,2038E+05	7,9894E-06
4,5423E+05	8.81916-85	6.2470E+05	6 ₂ 8494E=06
4.5717E+05	8,4520E-05	6.2902E+05	5,7095E+06
4.6011E+05	8,0848E=05	6 . 3333E+05	4.7627E-06
4,6305E+05	7.7177E-05	6,3765E+05	4 . 6228E=86
4,6599E+05	7,3506E=05	6.4197E+05	4,4828E=06
4,6893E+05	7,0561E=05	6.4629E+05	4.3429E+06
4,7188E+05	6,8379E=05	6,5061E+05	4,1109E=06
4.74826+05	6,6196E#05	6.5492E+05	3,8430E=06
4.77762+05	6,4814E=05	6,5924E+05	3.5751E=06
4.8070E+05	6,1832E+85	6.6356E405	3,3728E=06
4 8 8 3 8 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	5,9728L+K5	6.6788E+05	3,37218=06
4+003024V5	3,84642-05	0.7C20E+05	3,3713E=06
4,07322705	5,7001L=05	6.7658E+05	3,3705E=06
4, 7840LTU3	3,33572445	6.8083E+05	3,4135E+06
4 4 7 7 4 1 5 4 1 7	3,40736-05	6.85155+05	3.4693E+86
PLTEVT PROGRAM DATA SUMMARY PIR3 (TOTAL FUEL ASSEMBLIES) BASE CASE (FISSION PRODUCTS CONTAMINANT = C-14 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA ALDCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 2,000000E+04 TIME HIGH= 7,000000E+04 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 2,500000E+02

RAW DATA AND BLOCKED DATA FACTORS: MAX. TIME = 7.7475E+04 MIN: TIME = 3.4197E+04 TOTAL HEIGHT = 1.51798+02 TOTAL PARCELS # 1777.0 PEAK WEIGHT = 4,835 PEAK WEIGHT TIME # 4.0875E+04 PEAK PAPCELS = 25.000 PEAK PARCELS TIME = 6.6125E+04 WT. LOW = 0.0000E-01 NO, PARCELS LOW . 0.0 WT, HI = 3,2468E-01 NO, PARCELS HI = 410,0 SMOOTHING WINDOW (CELLS) # 5

TOTAL INVENTORY (CURIES) = 1.521160E+02 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1,502798E+02 PERCENT OF TOTAL INVENTORY = 98,793

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4.137500E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 5.013158E=08 MAXIMUM RATE (CURIES/YEAR) = 1.293252E+02 CONVERSION FACTOR RATE TO CONCENTRATION = 3.876398E=06

CONTAMINANT = C=14

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (VR)	RATE (CU/YR)
3,41256+04	8,58596=04	5.20048+04	3,2844E=03
3.44836+04	9,7862E=04	5,2358E+04	2,9480E-03
3.4840E+94	1,41348=03	5.2715E+04	2,6318E=03
3,5198E+04	1,94638=03	5.3073E+04	2,3413E+03
3,55556+44	2,58442-03	5,3430E+04	2,0770E=03
3,59136+44	3.25048-03	5.37888+04	1,8307E=03
3,62796+04	3,95646-03	5,41452+04	1,60148+03
3,66288+04	4.71098-03	5,4503E+04	1,3437E+03
3,69858+44	5,49486-13	5.48602+04	1,20385-03
3,73436+04	8,29552=03	5,52188+04	1,03818-03
3.7700E+04	7-12356-05	5.55758+04	A. 9145E-04

H.82

3.80586+04	7,9541E=03	5.5933E+04	7.6409E-04
3.8415E+04	8.7646E=03	5.6290E+04	6.5552E+04
3.8773E+04	9.55956+43	5.6648E+04	5.6410E-R4
3.91306+04	1.0321E=02	5.70056+04	4.9084E=04
3.9488E+M4	-1.1013E+02	5.7363E+04	4.3026E+84
3.98456404	1.1540E=02	5.7720E+04	3.8329E+84
4.02035404	1.2148E=02	5.8078E+04	3.4487E=04
4.0560F+04	1.25336-02	5.84356+04	3.1406E+04
4.0018F404	1_2798F=02	5 87935+04	2.8857E+04
A 1275540A	1.3918F=02	5.91505+04	2.67315-04
A 46225404	1 38966-89	E OSORFADA	2 40ATF-04
4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	1 37535-05	5 0865F+04	2 3/515-04
4 <u>81</u> 7795404 ハーカエルロビムのハー・	1 35475-43	3 4003C+04	5 335/F-6/
4 C C C C C C C C C C C C C C C C C C C	1,0000000	0 0 0 C C C C C V V V	
4 <u>6 6 1 0 3 5 4 0 4</u>	- 1.5100CHUC	0 0 0 0 0 0 0 0 4 0 4 4 0 0 7 7 5 4 0 0	2 01835-04
4 20035704	1,10325-02	1 1 306540A	C C C C C C C C C C C C C C C C C C C
4.34285.464	1.14425#06		1 0 7 0 7 5 - 04
4.3778E404	1,100/0400	0 1 0 3 3 C 4 0 4	1 01035-04
4.41556404	1.00545+0C	DECUINETON	1,000/2404
4.44936+04	1.02446+62	6.23682484	1.75882=04
4.4850E+04	9.8636E=03	6.27252+04	1,66842484
4.5208E+04	9.5042L=03	6.3083E+04	1.59232+04
4.5565E+04	9.1484E=03	6.3440E+04	1.5179E=04
4.59236+04	8,7999E=03	6.3798E+04	1,4425E=04
4.62805+04	8,4772E=03	6.4155E+04	1.3676E#04
4.6638E+04	8.1790E=03	6.4513E+04	1.2940E+04
4 6995E+0 4 :	7,8888E=03	6.4870E+04	1.2239E=04
4 . 7353E+04	7.6132E+03	6.5228E+04	1,1587E-04
4 . 7710E+04	7,3557E+03	6,5585E+04	1.1008E-04
4.8068E+04	7.0971E=03	6.5943E+04	1.0464E+04
4.8425E+04	6,8310E=03	6.6300E+04	9,9563E-85
4.6783E+04	6.5506E=03	6.6658E+04	9.4662E=05
4.9140E+04	6,2429E=03	6.7015E+04	9.0016E=05
4 9498E+04	5.9084E-03	6.7373E+04	8,5377E=05
4.9855E+04	5.5574E=03	6,7730E+04	7,9915E+05
5.0213E+04	5.1833E+03	6.8088E+04	7,3912E=05
5.0570E+04	4.7872E=03	6.8445E+04	6.7098E=05
5.09286+44	4.3921E+03	6.8803E+04	5.7968E=05
5.1285E+04	4. 8080E=03	6.9160E+04	4.7197E+05
5.16432+04	3.6354E=03	6.9518E+04	3.6997E+05
-	-	-	-

(

H.83

PLTCVT PROGRAM DATA SUMMARY PIR3 (TUTAL FUEL ASSEMBLIES) BASE CASE IFISSION PRODUCTS CONTAMINANT = TC=99 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 5,000000E+04 TIME HIGH= 1,300000E+05 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 4,000000E+02

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 1,3331E+05 MIN, TIME = 3,7040E+04 TOTAL WEIGHT = 3,8617E+05 TOTAL PARCELS = 4938.0 PEAK WEIGHT = 67872.617 PEAK WEIGHT TIME # 5,4600E+04 PEAK PARCELS = PEAK PARCELS TIME = 5,4600E+04 586 940 NO. PARCELS LOW # WT, LOW = 0,57248+02 3.0 WT. HI = 7,6703E+02 NO, PARCELS HI . 27,0 SMOOTHING WINDOW (CELLS) = 10

TOTAL INVENTORY (CURIES) = 3,877973E+05 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 4,259603E+05 PERCENT OF TOTAL INVENTORY = 109,841

TIME OF MAXIMUM CONCENTRATION (YEARS) = 5,380000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 3,782511E=04 MAXIMUM RATE (CURIES/YEAR) = 9,757799E+01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,876398E=06

CONTAMINANT = TC=99

TIME (YH)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
5,3800E+04	9,75786+01	9.000AE+04	1.99388+00
5,39848+04	9.7578E+01	9.1765E+04	1.96778+00
5.41766+04	9.7578E+01	9.3529E+04	1.94825+00
5.4304E+04	9.60998+41	9.52948+04	1.9366E+00
5,45528+44	9.44022+01	9.7059E+04	1.92148+00
5.47398+44	9.14236+41	9.88232+04	1.92385+00
5.49278+04	8.79986+01	1.0059E+05	1.92336+00
5.51152+04	8.3979E+01	1.02355+05	1 92045400
5.53036+04	7.95846+01	1.04125+05	1.91668400
5.54916+44	7.41786+01	1.4588E+05	1 92055400
5.56798+44	6.76932+01	1.07658+05	1.9140F400
5.5867E+04	5.1560E+01	1.09412+05	1. A9A3F+00

5.6055E+04	5.6065E+01	1.1118E+05	1.8724E+00
5,6242E+04	5.04042+01	1.12946+05	1.8366E+00
5.6430E+04	4.4169E+01	1.1471E+05	1.7934E+00
5.6618E+04	3.8145E+01	1.1647E+05	1.7634E+00
5.6806E+04	3.4100E+01	1.18242+05	1.7425E+00
5.6994E+04	3.00546+01	1.2000E+05	1.7295E+80
5.7182E+04	2,70346+01	1.2176E+05	1.7428E+00
5,73706+04	2.4047E+01	1.2206E+05	1.7390E+00
5.7558E+04	2.1363E+01	1.2236E+05	1.7335E+00
5.7745E+04	1.8738E+01	1.2266E+05	1.7261E+00
5.7933E+04	1.6429E+01	20+32951	1.7137E+00
5,8121E+04	1.42506+01	1.2325E+05	1.6964E+00
5.8309E+04	1.2402E+01	1.23556+05	1.6829E+00
5.8497E+04	1.0794E+01	1.2384E+05	1.6740E+00
5.8685E+04	9.3456E+00	1,2414E+05	1,6640E+00
5.8873E+04	8,0921E+00	1.2444E+05	1.6458E+00
5.9061E+04	6.9679E+00	1.2473E+05	1,6235E+00
5.92482+04	6.1151E+00	1,2503E+05	1.5969E+80
5,9436E+04	5.3266E+00	1.2533E+05	1.5546E+00
5.9624E+04	4.8063£+00	1,2563E+05	1,5088E+00
5.9812E+04	4.3072E+00	1,2592E+05	1,4605E+00
6.000000404	4.1134E+00	1.2022E+05	1.4105E+00
6.1765E+04	3.1801E+00	1.2652E+05	1,3660E+00
6,3529E+04	2.6344E+00	1.2681E+05	1,3210E+00
6.5294E+04	2,33936+00	1,2711E+05	1,2745E+00
6.7059E+04	2.2080E+00	1.2741E+05	1,2255E+00
6.8824E+04	2,1218E+00	1.2770E+05	1,1698E+00
7.0588E+04	2,1115E+00	1.2800E+05	1.1509E+00
7,2353E+04	2.1060E+00	1.2830E+05	1 , 1320E+00
7.4118E+04	2.0905E+00	1.2859E+05	1.0775E+00
7.5882E+04	2.0751E+00	1,2869E+05	1.0280E+00
7.7647E+04	2.0868E+00	1,2919E+05	9.8468E+Ø1
7.9412E+04	2.0641E+00	1.2949E+05	9.4685E=01
8.1176E+04	2,0517E+00	1.2978E+05	9.1380E=01
8.29412+04	2.04241+00	1.3008E+05	R,8076E+01
8 4706E+04	2.0401E+00	1.3038E+05	8,4772E=01
0,64/12+04	2.01882400	1.3067E+05	8.1467E+01
0.85325404	5*01535400	1.3097E+05	7 ₈ 8163E=01
•		••• *]	

Magnetic

Ć

•

.

•

.

.

PLTCVT PROGRAM DATA SUMMARY PIR3 (TOTAL FUEL ASSEMBLIES) BASE CASE IFISSION PRODUCTS CONTAMINANT = TC=99 TONS OF HEAVY METAL FACTOR = P.5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 5,200000E+04 TIME HIGH= 6,000000E+04 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 4,000000E+01

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME = 3,7040E+04 MAX, TIME = 1,3331E+05 TOTAL PARCELS # 1228.0 TOTAL WEIGHT = 2,5119E+45 PEAK WEIGHT TIME = 5.4660E+04 19356,923 PEAK WEIGHT = 5,4660E+04 PEAK PARCELS TIME = 84,000 PEAK PARCELS = WT. LOW = 8,5724E+02 NO. PARCELS LOW # 3.0 NO, PARCELS HI = 3737,0 WT. HI = 1.3575E+05 SHODTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 3,877972E+05 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2,453661E+05 PERCENT OF TOTAL INVENTORY = 63,272

TIME OF MAXIMUM CONCENTRATION (YEARS) = 3.474000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 5.384575E-04 MAXIMUM RATE (CURIES/YEAR) = 1.647038E+02 CONVERSION FACTOR RATE TO CONCENTRATION = 3.876398E=06

CONTAMINANT = TC=99

TIME (YEARS) AND RATE (CURIES/YEAH) FUR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
5,37406+04	1_28498+01	5,4750E+04	1,63832+02
5.37638+04	1.24496+01	5,4765E+04	1,6255E+02
5.37866+84	1.3018E+d1	5,47798+04	1,61272+02
5,38098+04	1.36612+01	5.47948+04	1,5950E+02
5,3832E+04	1.4372E+01	5.4809E+04	1.5772E+02
5,38556+04	1,51458+01	5,48246+04	1,5583E+02
5.38786+44	1,57778+01	5,4838E+04	1,53638+02
5.39018+34	1.64196+01	5,48532+04	1,51448+02
5,39248+04	1,78966+41	5,4868E+04	1,4898E+02
5.39472+04	1,95878+41	5,4882E+04	1,4628E+02
5,39706+04	2,17436+01	5,4897E+04	1,43598+02
5.39932+44	2.41422+01	5.4912E+04	1.40602+92

H.86

	5,4016E+04	2.6718E+01	5.4927E+04	1.3754E+Ø2
	5,40396+04	2.9690E+01	5.4941E+04	1.3446E+02
	5.4062E+04	3.2743E+01	5.4956E+04	1.3116E+02
•	5.40856+04	3.5847E+01	5.4971E+04	1.2786E+02
	5.4109E+04	3.9033E+01	5.4985E+04	1.24456+82
	5.41326+04	4.2359E+01	5.5000E+04	1.20886402
	5.4155F+R4	4.56846+01	5.5151F404	8.77756401
	5.4178F+04	4 980AE+01	5-53025404	7.11716+01
	5-42016+04	5.21336+01	5-54535404	6 2270F+01
•	5.42245+04	5 51605401	5 56045404	E CAEGEADI
:	5.42475+04	5.77965401	5 5755FADA	5 31135481
	5 42705404	6 03736401	5 E9946404	A 0A076401
	5 13535+01	6 36376401	3837006404 6 48645404	4 84 975 TU1
	5 A3165404	C ABLLEADA	5 4 30 3 5 4 0 4	
	5 ATTOL + 04			4 71/05401 6 70005-04
	3843375784 5 47655408	0,3/045401	3.03305404	4.30402401
	3#43065404 6 #7986408	8 93055401 8 97055401	5.03045404	2.04045401
		1. CONDEAN1	5.00002404	5.24572+01
	5.44086404	8-8240E+01	5.00112404	5.48085401
	5.44516+04	8,50865+01	5.64626+04	2.8636E+01
	5-44546+94	4 5533E+01	5.7113E+04	2,6747E+01
	5.4477E+04	1.03352+02	5.72642+04	2,4661E+01
	5.45000+04	1.11976+02	5.7415E+04	2,2671E+01
	5.4515E+04	1,1705L+02	5.7566E+04	2,1215E+01
	5.45296+04	1,22136+42	5.7716E+04	1,8448E+01
/*	5=45446+04	1.2679E+02	5.70676+04	1,4955E+01
	5.4559E+04	1,30416+02	5,8018E+04	1.2148E+01
· ` ` `	5.4574E+04	1,3402E+02	5 . 8169E+04	1,1297E+01
	5,4588E+04	1.3774E+02	S.8320E+04	1,0491E+01
	5,46036+04	1,4155E+02	5,8471E+04	9,0938E+00
	5.4618E+04	1,4535E+02	5,8622E+04	7,2237E+00
	5.4632E+04	1.4891E+02	5,8773E+04	6,2557E+80
	5.4647E+04	1,5242E+02	5.8924E+04	5.5189E+00
	5.4662E+04	1,55798+82	5,9075E+04	4.8782E+00
	5.46778+04	1,5816E+02	5,92268+04	3.9799E+00
		-		
	5,4691E+04	1.6053E+02	5.9376E+04	3.3232E+00
	5.4691E+04 5.4706E+04	1.6053E+02 1.6235E+02	5.9376E+04 5.9527E+04	3,3232E+00 2,9553E+00
	5,4691E+04 5,4706E+04 5,4721E+04	1,6053E+02 1,6235E+02 1,6337E+02	5,9376E+04 5,9527E+04 5,9678E+04	3,3232E+00 2,9553E+00 3.0262E+00

PLTCVT PROGRAM DATA SUMMARY PIR3 (TOTAL FUEL ASSEMBLIES) BASE CASE :FISSION PRODUCTS CONTAMINANT = I=129 TONS OF MEAVY METAL FACTUR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),OT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,000000E+04 TIME HIGH= 1,400000E+05 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 5,500000E+02

RAW DATA AND REDCKED DATA FACTORS! MIN, TIME = 3.3626E+04 MAX, TIME = 1,3706E+05 TOTAL PARCELS = TOTAL WEIGHT # 1,1393E+03 4968.0 PEAK WEIGHT # 35.578 PFAK WEIGHT TIME = 4.34752+04 PEAK PAPCELS . 1,2488E+05 48,000 PEAK PARCELS TIME = WT. LOW = 0.0000E-01 NO, PARCELS LOW . 0.0 WT. HI = 0.0000E=01 NO, PARCELS HI = 0.0 žø. SMOOTHING WINDDW (CELLS) =

TOTAL INVENTORY (CURIES) = 1.139251E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1.133633E+03 PERCENT OF TOTAL INVENTORY = 99.507

TIME OF MAXIMUM.CONCENTRATION (YEARS) = 4.457500E+04 MAXIMUM CONCENTRATION (MICRUCURIES/ML) = 1.877773E=07 MAXIMUM RATE (CURIES/YEAR) = 4.844120E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 3.876398E=06

CONTAMINANT = 1-129

TIME (YEARS) AND PATE (CURIES/YEAR) FUR THE 100 POINTS

TIME (YR)	RATE (CU/YH)	TIME (VR)	RATE (CU/YR)
3,35756+04	1,39836=03	9.30J0E+04	6,2195E-33
3.4315E+64	1.90936=03	9.50592+04	6,27518+05
3,50558+04	4,24121-03	9,7118E+04	6,2305E-03
3,57956+84	h.2058E=03	4.9176E+P4	6.23218-03
3.65365+04	9,65662=43	1.01246+05	6,2334E-03
5,7216E+w4	1.40436-02	1,03298+05	6,2306E+03
3. 80166+44	1,84376-02	1.05358+05	6,2264E=95
3,87568+44	2.2884r = 02	1.07418+05	6,1948E=43
3.94956+04	2,73236-02	1.09476+05	5.1560E=03
4.02355+04	3.21000-12	1,1153E+05	6.1060E=03
4. 49778+44	3.64406-02	1.13596+05	6.0305E-03

H.88

4.1717E+04	4.0493E-02	1.1565E+05	5.9213E+03
4 2457E+04	4.4221E=02	1.1771E+05	5.6806E+03
4.3197E+04	4.6801E=02	1,1976E+05	5.4620E=03
4.3937E+04	4.8077E-02	1.21826+05	5.2842E-03
4.4677E+04	4.8366E#V2	1.2368E+05	4.9973E-03
4.5417E+04	4.7832E=02	1.2594E+05	4.5847E-03
4.6158E+04	4.6651E+02	1.2800E+05	3.5640E-03
4.6898E+04	4.5468E+02	1.3006E+05	1.756PE=03
4.7638E+04	4.4379E+02	1.3033E+05	1.54536+03
4.8378E+04	4.3233E+02	1.3060E+05	1.34716-03
4.9118E+04	4.1787E-02	1.3087E+05	1.1514E+03
4.9858E+04	4.0574E+02	1.3115E+05	9.82816-04
5.0599E+04	3.8840E+02	1.31426+05	8.2038E=04
5.1339E+04	3.6225E+02	1.3169E+05	6.8600E+04
5.2079E+04	3.2875E+02	1.31966405	5.58968-04
5.2819E+04	2.9276E+02	1.32236+05	4.5962E=04
5.3559E+04	2.4676E+02	1.32516+05	3.6855E+84
5.42996+04	2.0148E-02	1.3276E+05	2.9995E+84
5.50396+04	1.5979E+02	1.3305E+05	2.3893E=04
5.57608+04	1.2648E=02	1.33326+05	1.92056-04
5.6520E+04	1.0016E-02	1.3359E+05	1.5051E=04
5.7260E+04	8,2341E+03	1.3387E+05	1.2057E=04
5.800000404	7.3071E+03	1.3414E+25	9.5505E+05
6.0059E+04	6.8224E=03	1.3441E+05	7.7953E+05
6.2118E+04	6,6343E=03	1.3468E+05	6.3914E=05
6,4177E+04	6.5406E+03	1.3495E+05	5.5609E+05
6.6235E+04	6,5023E+03	1.3523E+05	5.0272E+05
6.8294E+34	6.3204E+03	1.3550E+05	4.6338E+05
7.0353E+04	6,2658E+03	1.35776+05	4.3206E-05
7.2412E+04	6,2620E=03	1.36042+05	3.9432E=05
7.4471E+04	6.2464E=03	1.3631E+05	3.5255E-05
7.65296+04	6.2374E=03	1.3659E+05	3.1422E-05
T.8588E+04	6,2366E#03	1.36862+05	2.78266-05
8.0647E+04	6,2362E-03	1,3713E+05	2.4229E=05
8,2706E+04	6,2285L=03	1.3740E+05	2.0632E-05
8,4765E+04	6,2284E+03	1,3767E+05	1.7036E+05
8.6824E+04	6,2094E=03	1,37956+05	1,34398-05
8.8882E+04	6.2003E=03	1.3822E+05 ···	9.8426E+Ø6
9_09#1F+0#	6 2068F-03	1 TRADEARE	6 SALAE-AL

ŧ

PLTCVT PROGRAM DATA SUMMARY PIR3 (TOTAL FUEL ASSEMBLIES) BASE CASE :FISSION PRODUCTS CONTAMINANT = CS=135 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,0000000E+004 TIME HIGH= 6,0000000E+004 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 1,5000000E+02

RAW DATA AND BLOCKED DATA FACTORS! NAX, TIME = 1.9572E+06 MIN. TIME = 3,8579E+04 TOTAL WEIGHT = 7,3290E+03 TOTAL PARCELS 790.0 PEAK WEIGHT . 156,826 PEAK WEIGHT TIME = 4,92752+04 PEAK PARCELS # 17,000 PEAK PARCELS TIME = 4,92752+04 WT. LOW = 0.0000E+01 NO. PARCELS LOW = 0,0 WT. HI = 3.8519E+02 NO, PARCELS HI . 59,0 SMOOTHING WINDOW (CELLS) = 10

TOTAL INVENTORY (CURIES) = 7,714209E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 7,301982E+03 PERCENT OF TOTAL INVENTORY = 94,656

TIME OF MAXIMUM CONCENTRATION (VEARS) = 4,357500E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2,294437E=06 MAXIMUM RATE (CURIES/YEAR) = 5,918992E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,876398E=06

CONTAMINANT = CS=135

TIME (YH)	RATE (CU/YR)	TIME (VR)	RATE (CU/YR)
3,8025E+04	2.27108-01	4.50002+04	5.82738-01
3,86672+04	2.27106-01	4.52948+04	5.8254E-01
3.87088+04	2,27188-01	4.55886+04	5.8090E-01
3,87506+04	2.2710E-01	4,5882E+04	5.7430E+01
3,87926+04	5.3596E-41	4,6177E+04	5.5616E+01
3,8833E+04	2,47591=01	4.6471E+04	5.63218-01
3.8875E+04	5.4553E-01	4.6765E+04	5.6161E=01
3.89176+04	2.7687E-01	4.70595+04	5,6334E-01
3.89585+44	2 . 8476E-01	4.73556+04	5,6693E=01
3.90006+04	2,90978-01	4.76472+04	5.7161E-01
3,90426+04	2,97186-01	4,79416+94	5.7453E-01

3.90635+04	3.0537E-01	4.82356+04	5.7797E+01
3.91256+04	3.2146E-01	4.8529E+04	5.7462E+01
3.9167E+04	3.37556+01	4.88246+04	5.7217E-01
3.9208E+04	3.53646-01	4.9118E+04	5.7980E+01
3.9250E+04	3.6711E-01	4.9412E+04	5.8241E=01
3.9292E+04	3.7883E=01	4.9706E+04	5.7543E=01
3.93336+04	3.9056E-01	5.0000E+04	5.52698-01
3.9375E+04	4 . 0228E=01	5.0110E+04	5.3636E=01
3.9417E+04	4.1400E=01	5.0220E+04	5.1511E=01
3.9458E+04	4.2572E-01	5.0330E+04	4.8957E-01
3.9500E+04	4.3744E=01	5.0439E+04	4.6788E=01
3.95426+04	4.5055E=01	5.05496+04	4.4877E=01
3.95836+04	4.6571E+01	5.0659E+04	4.2948E-01
3.96256+04	4.8088E-01	5.0769E+04	4.0707E=01
3.9667E+04	4.96056-01	5-08796+04	3.8067E+01
3.9708E+04	5.0585E-01	5.0989E+04	3.5034F=Ø1
3.975RE+04	5-1432E-01	5.1099E+04	3.43456-01
3.9792E+04	5.2279E=01	5-1208E+04	3.3337E-01
3.9833E+04	5.30456+01	5-1318E+04	3.2242E=01
3.9875E+04	5.3489E-01	5.1428E+04	3.0995E-01
3.9917E+04	5.3932E-01	5.1538E+04	2.9616E=01
3.9958E+04	5.4376E+01	5.1648E+04	2.6351E=01
4.00001404	5.4728E=01	5.1758E+04	2.6955E+01
4.82946+94	5.6358E=01	5.1867E+04	2.5651E=01
4 0588E+04	5.7000E=01	5.1977E+84	2.4541E+01
4.08826+04	5.73628=01	5.2087E+04	2.2527E=01
4.1177E+04	5.7764E-01	5.21976+04	2.9634E-01
4,1471E+04	5.8507E-01	5.2307E+04	1.8864E=01
4.1765E+04	5.8343E=01	5,2417E+04	1.7240E+01
4.2059E+04	5_8433E=01	5,25276+04	1.5897E=01
4.2353E+04	5,84238=01	5.26362+04	1.4602E+01
4.26472+04	5.8637E+01	5,2746E+04	1.3387E+01
4.29416+04	5,9110E=01	5,2856E+04	1.2420E-01
4.32356+04	5.9P80E=01	5.2966E+Ø4	1,1131E=01
4.35292+44	5,9165E-01	5.3076E+04	9,9596E=02
4.3824E+04	5,90476-01	5.5186E+04	9,0760E-02
4.4118E+04	5.8701E=01	5.3295E+Ø4	8.8656E=02
4.44126+04	5.8499E=01	5.3405E+04	8,2017E=02
4.47066+04	5.8402E=01	5.3515E+04	7 2709F-02

PLTCVT PROGRAM DATA SUMMARY PIR3(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN : CONTAMINANT = U-236 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,000000E+05 TIME HIGH= 5,500000E+05 NUMBER OF CELLS = 150 DELTA TIME INCREMENT = 1,666667E+03

RAW DATA AND BLOCKED DATA FACTORSI NAX, TIME = 5,4949E+05 MIN. TIME = 3:2052E+05 TOTAL WEIGHT = 1_43908+04 TOTAL PARCELS # 6956;0 PEAK WEIGHT = 354,052 PEAK WEIGHT TINE # 4.0750E+05 PEAK PARCELS . 159,000 PEAK PARCELS TIME = 3,9917E+05 WT. LOW . 0,0000E-01 NO, PARCELS LOW = 0,0 WT, HI = 0,0000E.01 NO, PARCELS HI = 5 0,0 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 1.439013E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1.437596E+04 PERCENT OF TOTAL INVENTORY = 99.901

TIME OF MAXIMUM CONCENTRATION (YEARS) = 3,991667E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 6,622095E=07 MAXIMUM RATE (CURIES/YEAR) = 1,708311E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,876398E=06

CONTAMINANT = U=236

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
3,20832+05	1,03355-03	4,3500E+05	1.05638-01
3,2312E+05	1,1664E=03	4,37282+05	1,0067E=01
3,25402+05	1,7162E#03	4,3957E+05	9,3920E-02
3.2768E+05	2,4313E-83	4 . 4185E+05	9,1380E=02
3,2997E+05	3,3699E=03	4,4413E+05	8,70472-02
3,355256+95	4,4819E+03	4 , 4542E+05	8,2961E+Ø2
3,34532+05	5,8450E=03	4,4870E+05	7,90738+02
3,36822+05	7 , 5320E=03	4,5098E+05	7.5373E+02
3,3910E+05	9,5567E=03	4,5327E+05	7.18448-02
3,4138E+05	1,2082E=02	4,55552+05	6.8429E+02
3,4367E+05	1,5077E=02	4,5783E+05	6.5105E=02

3,4595E+05	1.8615E+02	4.6012E+05	6.1632E+02
3,4823E+05	2.28256+02	4-62406+05	5.8576E=02
3.5052E+05	2.7650E+02	4-6468E+05	5.531AF=02
3-5260E+05	3.31A1E002	4.6697F405	5 90005-02
3.5508E+05	3.9435E=02	A . 6998F405	
3.57376+05	4.4332F=92	4 7151FLAR	
1.50655405		4 71036405	4,34305402
1.4193F+05	6 9133F-83	4 8 / 20EL 403	4,61/36406
1.44225405		42/4105703	3.04145.02
2 LLEOFLOS			3.37335462
2100305403 2100305403		4,80872403	3.26325405
3 8 0 0 1 0 C T U 3	0, VC/3EWD2	4.05435483	2.9657E=02
34/10/2403	7.07425402	4.07236+09	2,6522E=02
5.73376703	1,0016E=01	4.8752E+05	2,4138E-02
3.7303L+03	1.1738E#01	6.8480E+05	2,1648E=02
3,77922403	1,2621E#01	4,9208E+05	1.93276=02
3-80545+02	1,3452E=01	4 = 9437E+05	1,7189E+02
3.8248E+05	1.4224E+01	4.9665E+05	1,5241E=02
3.8477E+05	1.4910E=01	4.98936+85	1,3455E+02
3.8705E+05	1,5516E=Ø1	5.0122E+05	1,1840E=02
3.8933E+05	1,6030E=01	5.0350E+05	1.0376E+02
3,9162E+05	1,6439E=01	5.0578E+05	9,0442E-03
3,9390E+05	1 . 6754E+01	5.0807E+05	7.8534E=03
3,9618E+05'	1.6962E=01	5.1035E+05	6.7736E+03
3,9847E+05	1,7065E+01	5,18636+05	5.8002E=03
4,0075E+05	1 _e 7074E=01	5,1492E+05	4,9341E+03
4.0303E+05	1.6976E=81	5,17206+05	4.1572E+03
4,0532E+05	1,6792E-01	5.1948E+05	3.4730E-03
4,0760E+05	1,6529E=01	5.2177E+05	2.8741E+03
4.0988E+05	1.6186E=01	5.24056+05	2.35036-03
4.1217E+05	1.5786E=01	5.2633E+05	1.90756-03
4.1445E+05	1.5334E+01	5.28626+05	1.5303E=03
4.1673E+05	1-4842E-01	5.30906+05	1.2140E-03
4.19026+05	1.43236-01	5.33186+05	9.5698F=04
4.2130E+05	1.3786E-01	5.35476+05	7. AATTE-GA
4.2358E+05	1.3238E=01	5.3775F+05	5.7%80F-04
4,2587E+05	1.2689E=01	5.4003E+05	4.3025F_04
4.2815E+05	1.21426-01	5.42526+05	3.2501F-04
4.3043E+05	1.16036-01	5.4460F+05	
4.32726+05	1.1075E+01	5_4688F#ØR	
		MELAAAAAAAA	1800/35404

. (. .

H.93

RAW DATA AND BLOCKED DATA FACTORS! MAX, TIME = 1,9991E+06 MIN, TIME . 3,29902+05 TOTAL WEIGHT = 4.8362E=02 TOTAL PARCELS # 3497.0 PEAK WEIGHT = 0.001 PEAK WEIGHT TIME . 1.0905E+06 PEAK PARCELS # 55.000 PEAK PARCELS TIME . 1,9915E+06 WT. LOW = 0.0000E-01 NO, PARCELS LOW . 0.0 WT. HI = 0.0000E-01 NO. PARCELS HI = 0.0 SMOOTHING WINDOW (CELLS) * 20

TOTAL INVENTORY (CURIES) = 4,836214E=02 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 4,817145E=02 PERCENT OF TOTAL INVENTORY = 99,606

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.090500E+06 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.245488E=13 MAXIMUM RATE (CURIES/YEAR) = 3.213004E=08 CONVERSION FACTOR RATE TO CONCENTRATION = 3.876398E=06

CONTAMINANT = TH+232

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
3,25508+45	1,8945E+09	1.07302+06	3.1702E=08
3,3079E+05	1,0945E+09	1,10532+06	3,16962=08
3,3608E+05	1.0945E=09	1,14062+06	3,14018=08
3,4136E+05	1,0945E=09	1,1759E+06	3.1501E=08
3.4665E+05	1,6208E+09	1,2112E+06	3,1452E=08
3,51942+05	2,2912E-09	1,2465E+06	3,13056-08
3,5723E+05	2,9616E=09	1,2818E+06	3,1119E=08
3,6252E+05	3,85472=09	1,3171E+06	3,09285=08
3.6780E+05	4,91378+09	1,3523E+06	3,1039E=08
3.7309E+05	5,9768E=09	1,38762+06	3,11332-08
3,7838E+09	7,21398+09	1.4229E+06	3,11732=08
3.83672+05	8.7708E#49	1.45828+06	3 0461F-08

3,8895E+05	1,0328E-08	1.49356+06	3.8221E-84
3 , 9424E+05	1.1798E+08	1.52885+06	3.03365-08
3,9953E+05	1.27416-08	1.5641E+06	3.80966008
4,0482E+05	1,3685E#08	1.59946+06	2.9950E-0A
4.1011E+05	1,4628E-08	1.6347E+06	3.0479E-06
4 , 1539E+85	1,5632E=08	1.6700E+06	3.0427E+0A
4 . 2868E+05	1,7057E=08	1.7053E+06	3.00046-08
4 .25 97E+05	1,8281E=08	1.71412+06	2.9868E+08
4.3126E+05	1 . 9904E+08	1,7230E+06	2.9789E.08
4,3655E+05	2.1689E#88	1.7318E+06	2.9799E.08
4 . 4183E+85	2 . 3474E=08	1.7406E+06	2.9744E-88
4.4712E+05	2.4727E-08	1.74952+06	8.9614E+08
4,5241E+05	2.5436E+06	1.7583E+06	2.9625E+08
4.5770E+05	2.6146E+08	1.7671E+06	2.9753E+06
4.62986+05	2:6634E=08	1.7760E+86	2.9855E+08
4.6827E+05	2.6554E=08	1.7848E+06	2.9940Ee08
4,7356E+05	2.6473E=08	1.7936E+06	2.9901E-08
4,78852+85	2.6400E⇒08	1,80255+06	2.9608E+06
4.8414E+05	2.6419E-08	1.8113E+06	2.9779E-08
4,8942E+05	2,6439E+08	1.6201E+06	2,97698-08
4,9471E+05	2,6459E+08	1.8290E+06	2,9718E=08
5.00096+05	2.6939E=08	1.83782+06	2,9660E=06
5,05298+05	2.7501E-06	1.8466E+B6	2.9571E-08
5,4058E+05	2.9348E=Ø8	1.8555E+06	2.9479E-08
3.73082403	2.9129E=08	1.8043E+06	2,9443E=08
0,11172+05	2.8993E+88	1.8731E+06	2,9409E+08
0,40402+03	2,9407E+08	1.88202+06	2,9386E=Ø8
0,01/02405	5.0340E-08	1.8908E+06	2,9380E+08
1.1/032+03	5,0305L+08	1.8996E+86	2,9464E=08
1 2 2 2 3 3 C 7 0 3	3.0171E=08	1,9085E+06	2,9517E-08
1 1 0 1 0 4 E 4 4 3	7,00000000	1,9173E+86	2.9460E=08
01EE13E103	3,10376408	1.9261E+06	2,93626=08
0,70636403 4 01636446	3.0/00C=08	1,9350E+06	E. 9167E+08
0,777765707 0,98896106	J,]JUJE408 T 80505-00	1.94386406	2,9003E+08
9 6611540E	3400342408 8 04005-de	1.92266406	2,8893E=08
0 0084Ex400	1 00475488	1.90156406	2,8823E-08
7 877415703 (01175104	3808482408	1,9783E+06	2,8803E-08
1103412400	3,13175+08	1.9791E+86	- 2,8594E=Ø8

C

H.95

PLTCYT PROGRAM DATA SUMMARY PIR3 (TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 2 CONTAMINANT # NP=237 TONS OF MEAVY METAL FACTOR # 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 # T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE # 2 TIME LOW = 1,000000E+04 TIME HIGH= 1,900000E+04 TIME HIGH= 1,900000E+06 NUMBER UF CELLS = 400 DELTA TIME INCREMENT = 4,725000E+03

RAW DATA AND BLOCKED DATA FACTORS: HAX, TIME = 1,91822+06 MIN, TIME = 3,8315E+04 TOTAL WEIGHT = 3,56998+04 TOTAL PARCELS # 9613,0 PEAK WEIGHT = 8045,227 PEAK WEIGHT TIME = 4,5438E+04 PEAK PARCELS # 4042,000 PEAK PARCELS TINE . 4.07132+04 WT. LOW = 0,0000E=01 NO. PARCELS LOW # 0.0 WT HI = 1.37962+01 NO, PARCELS HI . 4,0 SMOUTHING WINDOW (CELLS) # 1

TOTAL INVENTORY (CURIES) # 3,3714692+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) # 3,837943E+04 PERCENT OF TOTAL INVENTORY # 107,461

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,943750E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 6,229741E=06 MAXIMUM RAYE (CURIES/YEAR) = 1,607095E+00 CONVERSION FACTOR RATE TO CONCENTRATION = 3,876398E=06

CONTAMINANT = NP=237

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
3,5988E+04	1 . 0981E+00	9,66312+05	5.3166E+04
5,4604E+04	5, 7090E+01	9,85432+85	5.65888+94
7.3221E+04	1,4914E+33	1.0040E+06	5.52688-04
9,1837E+04	7,4815E=04	1.0227E+06	8.9232E+04
1,10452+05	2,53475-04	1.0413E+05	9.93406.04
1,2907E+05	3,72588-04	1,05996+06	1.2937E-03
1,47696+05	5,04538-44	1.07852+06	1.01102.03
1.66392+05	1.31425-03	1.0971E+06	1.1407E-03
1.84926+05	5,92752+04	1,11572+06	3.9060E-04
2,03546+09	1,4500E-04	1.13442+06	1.44528-03
2,2215E+05	1_8957E-04	1,1530E+06	1.79202-03
2,40772+05	9,19502=04	1,1716E+06	7.75848-04

2.5939E+05	6.1203E+84	1-19025406	1.0600F=01
2.7800E+05	4.7159E=04	1.20885+06	LAREF-AT
2.9662E+85	5.9713E=84	1.22746+06	P. TTOSEDAT
3,1524E+05	4.6668E+04	1.24612+06	1.66666.083
3.3385E+05	6.2654E+04	1.26476+06	2.4284F-01
3.5247E+05	1.23205-03	1.28336+06	\$_4076F=01
3.7108E+05	7.06346-04	1.30196+06	1.XXR6EeDX
3.8970E+05	1.14566-03	1.32056+06	1.47526-01
4,0832E+05	4.6962E-04	1.33912+06	2.0894E=03
4.2693E+05	3.2300E-04	1.3578E+06	2.51676-03
4.4555E+05	4.7923E-04	1.3764E+06	2.9989E-01
4.6417E+05	1.3410E-03	1.3950E+06	3.9896E-83
4.6278E+85	9.8677E-04	1.4136E+06	4.7731E+83
5.0140E+05	2,19616+04	1.43226+06	T.8526E+03
5,20026+05	4.2976E-04	1.4508E+06	1.06205-02
5.38632+05	2.0466E-03	1.4695E+86	1.41295-02
5,5725E+05	5.2546E-04	1.4881E+D6	2.25935-62
5.7567E+05	1,1416E=03	1.5067E+06	2.4450E=02
5,9448E+05	5.3119E=04	1.52536+06	2.63186-02
6,1310E+05	7.0296E-04	1.5439E+06	3.73665082
6,3172E+05	1,2480E=03	1.5625E+06	4.2362E+02
6,5033E+05	3.7209E-04	1.5812E+06	4.6834E-02
6.6895E+05	2.7686E+04	1.5998E+06	5.0999E=02
6.8757E+05	2,7686E=04	1,6184E+06	5.42556-02
7.0618E+05	6.1926E=04	1.6370E+06	4,4206E-02
7,2480E+05	1.2321E=03	1.6556E+06	29+39536 Z
7,4341E+05	2,0098E=03	1.6742E+06	3,9921E+82
7.6203E+05	1.1478E=03	1.6929E+06	3,6119E-02
7.8065E+05	4.9524E-04	1.7115E+06	2.6196E+82
7,9926E+05	3.9835E=04	1 . 7301E+06	1,9941E+02
8.1788E+05	5.2565E404	1.7487E+06	1,6986E+02
8,3650E+05	1.3916E=03	1.7673E+06	9;5011E+03
8.5511E+05	7.4980E-04	1.7859E+06	8,6248E=03
8,7373E+05	8.3540E=04	1.8046E+06	6,4020E=03
8,92352405	3.8867E=04	1,8232E+86	2,4500E=03
9.1096E+05	1.6863E+03	1.8418E+06	2.5724E+83
9.2958E+05	1.1306E+03	1.8604E+06	1.J864E=83
A9566+02	3,3612E=84	1.6790E+06	6,46T5E-84

.

••

(

٠.

PLTCVT PROGRAM DATA SUMMARY PIR3 (TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 2 CONTAMINANT = NP+237 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,5000000E+04 TIME HIGHE 6,0000000E+04 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 1,250000E+02

RAW DATA AND BLOCKED DATA FACTORS: MAX, TIME = 1,9182E+06 MIN, TIME # 3.83158+04 TOTAL WEIGHT = 2,31732+04 TOTAL PARCELS 6768.0 PEAK WEIGHT = 326,393 PEAK WEIGHT TIME = 5.05638+04 PEAK PARCELS = PEAK PARCELS TIME # 4,0313E+04 171.000 NO. PARCELS LOW . WT. LOW = 0.0000E-01 0.0 WT, HI = 1,2542E+04 NO, PARCELS HI # 2849.0 SMOOTHING WINDOW (CELLS) . 20

TOTAL INVENTORY (CURIES) = 3,5714712+04 Inventory under the current graph (curies) = 2,3211702+04 Percent of total inventory = 54,992

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,068750E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 7,312789E=06 MAXIMUM RATE (CURIES/YEAR) = 1,886491E+00 CONVERSION FACTOR RATE TO CONCENTRATION = 3,876398E=06

CONTAMINANT = NP=237

TIME (VR)	RATE (CU/YR)	TIME (YR)	RATE (CHIVEN
3,8313E+04	3.1614E-01	4-50002+04	1 75175.00
3,8364 <u>E+0</u> 4	3,1614E=01	4.52948+04	1 74448-44
3,8415E+04	3,16148-01	4.5588E+04	1,73978-00
3,84662+04	3,4750E=01	4.58826+04	1 73438400
3 . 8517E+04	4,04228=01	4.6176E+94	1 72085-00
3,85682+04	4.56718-01	A.6471F+04	+ 7 7 7 3 C 7 0 0
3,8619E+04	4.7614E+01	4.6765E+04	1 72178-00
3,8670E+04	4.95578-01	4.70598+04	1 71708+00
3.8722E+04	5.30688+01	4.73535+04	1 71 345 400
3,8773E+04	5.7363E+01	4.76478+04	1 70945-00
3,8824E+04	6,1330E#01	4.7941E+04	1,7042700

3.8875E+04	6,4155E=81	4 . 8235E+04	1,7061E+00
3.8926E+04	6.6980E-01	4.8529E+04	1.7843E+00
3.8977E+04	6.9649E#01	4.8624E+04	1.7007E+00
3.9028E+04	10=35755, T	4.9118E+04	1.70056+00
3.9080E+04	7.5326E+01	4.9412E+04	1.6976E+00
3.9131E+84	7.9238E+01	4.9706E404	1.69442+00
3.9162E+04	8.3150E+01	5.0000E+04	1.68496400
3.9233E+04	6.7707E=01	5.0294E+04	1.6630E+00
3.9284E+04	9.2345E-01	5.0406E+04	1.6512E+00
3.9335E+04	9.7594E+01	5.0518E+04	1.6357E+00
3.9386E+04	1.0361E+00	5.0629E+04	1.6147E+00
3.9438E+Ø4	1.09626+00	5-0741E+04	1.5981E+08
3.9489F+84	1.1710E+00	5.08536+04	1.5625E+00
3.9540E+04	1.2457E+00	5-0965E+04	1.5293E+00
3.9591F+04	1.3267E+88	5-1076E+04	1.4884E+00
3.9642F+04	1.4127E+00	5.1188E+04	1.44296+80
3.9693F+04	1.4977E+00	5.1300E+04	1.3864E+00
3.07445+04	1.57436+00	5.14126404	1.32376+00
3.97955+84	1.45096+08	5.15236484	1-2626E+00
3.9847E+84	1.7134E+00	5.1635E+04	1.20665+00
3.9898E+04	1.7689E+00	5.1747E+04	1.14968+00
3.9949E+04	1.8156E+00	5.1859E+Ø4	1.09036+00
4-000000+04	1.8317E+00	5.1970E+04	1.03146+00
4.8294E+04	1.8666E+80	5.20822+04	9.6948E=Ø1
4.0588E+04	1.8859E+00	5.2194E+84	9.0052E+01
4.0882E+04	1.8840E+00	5.2305E+04	8.3216E+01
4.1176E+84	1.8766E+00	5.2417E+04	7.6480E+01
4.1471E+64	1.6647E+00	5.2529E+Ø4	7.0193E=01
4.1765E+04	1.8543E+00	5.2641E+04	6.4555E=01
4.2059E+04	1.8463E+00	5.2752E+04	5.9367E+01
4.2353E+04	1.8484E+00	5.2864E+04	5,3976E+01
4.2647E+04	1.8399E+00	5.2976E+04	4.8044E-01
4.2941E+04	1.8252E+00	5.3088E+04	4.3043E-01
4.3235E+04	1.6134E+00	5.3199E+04	4.1621E+01
4.3529E+04	1.8028E+00	5.3311E+04	3,6578E=01
4.3824E+04	1,7906E+00	5.34236+04	3,2520E+01
4,4118E+04	1.7794E+00	5,3535E+0A	2,9067E-01
4,4412E+Ø4	1.7700E+00	5.36466+04	2.58156-01
4.4786E+04.	1.7604E+00	-5.3758E+04	2.2600E-01

PLTCVT PROGRAM DATA SUMMARY PIR3 (TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 2 CONTAMINANT = NP=237 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 1,300000000000 TIME LOW = 1,30000000000 NUMBER OF CELLS = 150 DELTA TIME INCREMENT = 4,0000000000

RAW DATA AND BLOCKED DATA FACTORS: MAX, TIME = 1,9182E+06 MIN. TIME # 3.8315E+04 TOTAL WEIGHT = 1,1361E+04 TOTAL PARCELS # 2641.0 PEAK WEIGHT # 258.395 PEAK WEIGHT TIME . 1,63002+06 PEAK PARCELS # PEAK PARCELS TIME = 1,6300E+06 61,000 WT, LOW = 2,43382+04 NO. PARCELS LOW # 6972.0 WT. HI = 1.5796E+01 NO. PARCELS HI = 4.0 SMOOTHING WINDOW (CELLS) = 5

TOTAL INVENTORY (CURIES) = 3.571473E+04 Inventory under the current graph (curies) = 1.131240E+04 Percent of Total Inventory = 31.674

TIME OF HAXIMUM CONCENTRATION (YEARS) = 1.610000E+06 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.874323E=07 MAXIMUM RATE (CURIES/YEAR) = 4.835219E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 3.876398E=06

CONTAMINANT = NP=237

TIME (VR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1,3020E+06	5,83952=04	1,500000+06	4.7762E-02
1,3080E+06	6,6053E=04	1.6060E+06	4.82228-02
1,3139E+06	9 , 0725E+04	1,61195+06	4.8348E+02
1,3199E+06	1,1873E=03	1.6179E+06	4.8208E+02
1,3258E+96	1,49282-03	1,6238E+06	4.7765E-02
1,3318E+06	1,7384E=03	1,6298E+06	4.71028-02
1,3378E+06	1.9756E+03	1,0358E+06	4.6218E+02
1.34372+05	2,20192-03	1,54172+05	4,5188E=02
1.34772+95	2,4168E-93	1,64772+06	4,4028E+02
1,33362+95	2,6291E-03	1,0536E+06	4,2788E+02
1*20105+00	2 . 8466£#43	1,6596E+06	4,1482E-02

1.3676E+86	3.0787E.03	1.6656E+86	4.0130E+82
1.3735E+06	3.3320E=03	1.6715E+06	5.8723E+02
1.37956+86	3.6181E=03	1.6775E+06	3.7264E-02
1.38546+06	3,9408E+03	1.6834E+86	3.5737E+02
1.3914E+06	4,3127E=03	1.6894E+06	1.4145E-82
1.3974E+06	4,7363E+03	1.6954E+06	3.2479E+02
1,4033E+06	5,22276+03	1.7013E+06	3.0748E-02
1.4093E+06	5,7716E+03	1.7073E+06	2,8959E+02
1,4152E+06	6,3908E=03	1,7132E+06	2.71316402
1,4212E+06	7,0796E+03	1.71926+06	2.5288E-02
1.4272E+06	7,8452E+03	1.72522+06	2.34526-02
1.4331E+06	8,6877E+03	1.73116+06	2.1647E+02
1 4391E+06	9_6120E=03	1.7371E+06	1,98916+02
1.4450E+06	1,0617E=02	1.7430E+86	1,8201E-02
1.4510E+06	1,1705E=02	1.7498E+06	1,6590E-02
1,4570E+06	1,2674E#02	1.7550E+06	1,5070E+82
1.4629E+06	1,4120E=02	1.7609E+06	1,3647E+82
1.4689E+86	1.5438E-02	1.7669E+Ø6	1,2319E=02
1.4748E+06	1.6814E+02	1.7728E+06	1,1090E-02
1 4808E+06	1.8236E+02	1,7788E+06	9,9568E=03
1.4868E+06	1,9692E=02	1.7848E+06	8,9211E+03
1.4927E+06	50+3171E+02	1.7907E+06	7,9722E-03
1.4987E+06	5°59936'2	1.7967E+06	7,1093E+03
1.5046E+06	2.4159E=02	1.8026E+06	6.3193E+03
1.5106E+06	2,5660E=02	1,8066E+06	5,6033E=03
1.5166E+86	2.7171E+02	1.81462+06	4,9506E=03
1.5225E+06	5.8699E+82	1.8205E+06	4.3608E=03
1.5285E+06	3.02556-02	1.82656+86	3,8235E+03
1.53442+06	3,18426+02	1,8324E+06	3,3390E=03
1.5404E+06	3.3468E=02	1.8384E+06	2.6996E+03
1,5464E+86	3.5130E-02	1.8444E+06	2.5075E=03
1.5523E+06	3,6823E+82	1.85036+06	2,1532E+83
1,00051+00	3,8328L-02	1.62032406	1,85862+03
1.00422700	4,02102402	1.80222406	1,55152=03
1 DINCLAND	4,18585402	1.00022406	1,29386=03
1.21066700	4 8 3 4 0 0 E - 0 C		1,03476403
1 - E 0 E 1 E + 04	₩ ₂ 40105902 8 / #775		0 4170C+04
1,70015700	4 40003E402	1,0001570D	0.31502#04
1934466460	~~~.	- <u>1</u> - 0 - KOC - NO	4.582114404

,

PLTCVT PROGRAM DATA SUMMARY PIR3 (TOTAL FUEL ASSEMBLIES) BASE CASE: CMAIN 2 CONTAMINANT = U=233 TONS OF HEAVY METAL FACTOR = 0,3000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,000000E+04 TIME HIGH= 2,000000E+06 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 4,925000E+03

4

RAW DATA AND BLOCKED DATA FACTORS: MAX, TIME = 1,9934E+06 MIN_ TIME = 4,22932+04 TOTAL WEIGHT = 5.12108+04 TOTAL PARCELS = 44197.0 PEAK WEIGHT = 413,956 PEAK WEIGHT TIME = 1,3819E+06 PEAK PARCELS = 1065,000 PEAK PARCELS TIME . 3,72292+05 WT, LOW = 0,0000E=01 NO. PARCELS LOW . 0.0 WT. HI = 0.0000E-01 NO. PARCELS HI = 9.0 SMOOTHING WINDOW (CELLS) = 20

TOTAL INVENTORY (CURIES) = 5,120995E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 5,094494E+04 PERCENT OF TOTAL INVENTORY = 99,483

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.445938E+06 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2.026791E=07 MAXIMUM RATE (CURIES/YEAR) = 5.228542E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 3.876398E=06

CONTAMINANT = U=233

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
4,2313e+04	9,5930E=43	9,1015E+05	3,54318-02
5 , 3758E+04	1.02348-02	9,4645E+05	3,6338E+02
6,5203E+04	1,0472E-02	9.7574E+05	3.7408E=02
7,6648E+04	9,6855E-03	1,00702+06	3,86312-02
8.8093E+04	9,2364E=03	1,03732+05	3,9747E-02
9,9538E+04	9,2760E+03	1,0676E+06	4,06412.02
1,1298E+05	9,2684E=03	1,09792+06	4,17398-02
1,2243E+05	9,1420E=03	1.1383E+06	4.29398=02
1.3387E+05	8,8392E=Ø3	1.1585E+06	4,4063E+02
1,45322+05	8,3394£=03	1,1888E+06	4,5075E+02
1,56762+03	7.96098+03	1.2191E+06	4.60608-02

		1	
1.6821E+05	7.8026E+03	1.24946+06	4.7149E=02
1.7965E+05	7.7133E=03	1.27976+06	4.8168E=02
1.9110E+05	7.51316-03	1.31002+06	4.9018E=02
2.0254E+05	7.2156E=03	1.3403E+06	5.0028E.02
2,1399E+85	6.9301E-03	1.3706E+06	5.0A62E=02
2,2543E+05	6.7316E=03	1.40096+06	5.1526F-02
2.3688E+05	6.7327E=03	1.43126+06	
2,4832E+05	6.75816-03	1.46146406	5.10036-02
2.5977E+05	6.5568E=03	1.4779E+06	5.1210Fa82
2,71216+05	6.3986E=03	1.49436+06	A. COMAF-02
2.8266E+05	6.36986-83	1.51886+86	4. A (37 F=0 2
2,9410E+05	6.3062E-03	1.52726406	4.6005F=02
3,0555E+05	6.2205E-03	1.54375+06	
3.16996+05	6.2270E-03	1.56018406	4 1005-00
3.2844E+85	6.2179E-03	1.57656406	7 8 4 6 7 7 5 4 0 C
3.3988E+05	6.3852E=03	1-59305406	- 1 4708F-05
3.5133E+05	6.8866E=03	1.60945406	3 137(E-R3
3.6277E+05	7.7191E=03	1.6259F+04	3 73575-03
3.74228+05	6.7840E=03	1.64215486	
3.85662+05	1.03016-02	1.4588F404	C 24155405
3.9711E+05	1.22695-02	1.67525+06	1 170465906
4.0855E+05	1.43796-02	1.68168406	1,03/45405
4.20002+05	1.7290E-02	1. THAIFAGE	1 07878-02
4.3144E+05	1.9850E#02	1.72056486	
4.6174E+05	2.26865-02	1.7410FAD6	6 17205-04
4.9203E+05	2.4229E-02	1 75745486	0.51330CH03
5.2233E+05	2.5753E-02	1.7780F406	4431105403
5.5262E+Ø5	2.6849E-02	1.79038406	- 31C00/C403
5.8292E+85	2.7561E-02	1_60676406	6 6 6 7 8 5 - 0 7
6.1321E+05	2.82746+02	1.82325486	1 1/01/05=03
6.4350E+05	2.88696-02	1_83668+84	1 14010403
6.7380E+05	2.9426E=82	1.85615406	5 37685-84
7.0409E+05	3-0022F-02	1 87255404	3151005404
7.3439E+05	T BARAFARA	1 68006×04	3,46292-86
7.6468E+05	3.13246-82	4 00545400	
7.9497E+05	3.1906E-02	1.0212548400	1:42010000 0 03505-07
8.2527E+05	3.2593F=02	1 01215700 ·	7 8 7 5 1 0 5 . C -
8.5556E+Ø5	3.3483E-02	1.95475100 1.95475101	3 10775-05 A 10775-05
8.85866+05	3.44926-02	4 074 35104	410//5405
	-laisenane	1 6 7 1 L C 400 ·	C_0007E#05

÷

۰.

H.103

PLTCVT PROGRAM DATA SUMMARY PIR3 (TOTAL FUEL ASSEMBLIES) BASE CASES CHAIN 2 CONTAMINANT * TH=229 TONS OF HEAVY HETAL FACTOR = 0,5000000 OATA BLOCKING FACTORSS ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,000000E+04 TIME HIGH= 2,000000E+04 TIME HIGH= 2,000000E+06 NUMBER OF CELLS = 100 DELTA TIME INCREMENT = 1,970000E+04

RAW DATA AND BLOCKED DATA FACTORSI MIN, TIME # 5,1598E+04 HAX, TIME = 1,9998E+06 3049,0 TOTAL PARCELS # TOTAL WEIGHT = 1,9528E+03 PEAK WEIGHT TIME = 1,5371E+06 PEAK WEIGHT . 164,075 PEAK PARCELS TIME = 1,7775E+05 PEAK PARCELS . 110,000 NO, PARCELS LOW . 0.0 WT. LON = 0,0000E-01 ND. PARCELS HI = 0,0 WT. HI = 0.0000E-01 50 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 1.9527682+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1.7862652+03 PERCENT OF TOTAL INVENTORY = 91.473

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1,280950E+06 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 5,506379E+09 MAXIMUM RATE (CURIES/YEAR) = 1,420489E=03 CONVERSION FACTOR RATE TU CONCENTRATION = 3,876398E=06

CONTAMINANT = TH-229

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
5.9550E+04	2.2441E+04	1,02498+06	1,3053E+03
7.88566+84	2.2441E-04	1,04422+06	1,3209E=03
9.81622+04	2.3909E=04	1,00352+06	1,33552+03
1.17478+05	2.5405E-04	1,08285+06	1,34982=03
1.36778+05	2.69552#04	1.14515+06	1,36302-03
1.56082+45	2.86425-94	1,12148+06	1.3754E=03
1.75398+45	3.03875-04	1.1407E+06	1.3860E+03
1.9469E+05	3.21648-04	1,16002+06	1.39438+03
2.1400E+05	3.40728-84	1,17932+86	1.40098=03
2.33302+05	3.6023E+04	1.19862+06	1.40712=03
2.92615405	3.8019E-04	1.2179E+06	1.4129E-03

	2.7192E+05	6.0021F=04	1 37736444	
	2.91226485	A 3043F-04	1.03/82400	1.41792-03
	1.1051F405		1,63032400	1,4198E=03
	T. DORTELAS	4 4 4 1 3 1 5 4 5 4	1,21562406	1,4204E=03
	- 1 AQ(AELAE	4.00000404	1.2951E+86	1,4200E+03
	2 4 8 4 6 6 4 0 P. 3 6 4 3 1 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	4103125404	1.31442+06	1,41846-03
	3,00432703	5,00316=04	1.33376+06	1.41556-03
	3101/32403	5.3172E-04	1 . 3531E+06	1.4107E-03
	4.01002-03	5.5512E+04	1 . 3724E+06	1.4055E+83
	4,2036E+05	5,7867E=04	1.3917E+06	1.4000E.03
	4.4567E+05	6.0348E-04	1.41102+06	1.3019E-83
	4.6498E+05	6 . 2906E=04	1,43036+06	1.3818E-83
	4,8428E+05	6.5149E=04	1.4496E+06	1.3712F-01
Ĭ	5.0359E+05	6.7149E+84	1.46896+06	1.3588F_83
ł	5.2289E+05	6.9181E-04	1.48822+06	1. 3421F-01
	5,4220E+05	7.1266E=04	1.5075E+06	1. 1207F-01
	5.6151E+05	7.3231E-04	1.5268E+06	1.20715-01
	5.8081E+05	7.50526-04	1-54615406	1 34645-07
	6,0012E+05	7.6956E+04	1.56546486	1 22422-04
	6.1942E+05	7.8952E+04	1 68876+04	1103432463
	6.3873E+05	8.0885F=04	1 _ MAREARA	1.14145463
	6.5804E+05	8.2775E=04	1 63226466	1.15/82-03
	6.7734E+85	8. ABAAF - DA	4 4 0 4 3 3 4 9 4 9 4	1.11246+03
	6.9665E+@5	8.71445-04	1.04605400	1.0737E=03
	7.15956405	R QSASK-AA		1,0312E+03
	7.3526E+05	9,20515-004	1 43648406	9,8878Ee84
	7.5457E+05		1.70051405	9.4689E=04
	7.7387E+05	6 46436-0A	1.71996+06	9.0565E=04
	7.9318F+05	1 DUETE-04	1.73422+00	8,6460E=04
	R. 1248F405	1 01455-07	1.75852+06	8,2436E+04
	A. TITOFAME	1,03435-03	1.7778E+06	7.8555E+84
	8.51105405	1.00305403	1.74716+86	7.4747E=84
	2.70405+05	1,07632=03	1.8164E+06	7,1014E=04
	A ACTICADE	1,12132403	1.8357E+06	6,7436E=04
	0 000115403	1.14412403	1.8550E+06	6,3924E-04
	0 38135105	1,17555003	1.8743E+06	6,8470E-04
	A TATEADE	1,20152-03	1.8936E+06	5,7043E=04
	7447935403 9 44975405	1.22632-03	1.91298+06	5,3686E=04
	1 8073CV03	1,2482E=03	1.93226+06	5.0383E+04
	7 0 0 0 0 4 5 4 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6	1.26896403	1.95158+06	4.7184E+84
	1406335489	1.28876+03	1.9708E406	A

۲

•

.

-

٠.

1

·

.

PLTCVT PROGRAM DATA SUMMARY PIR3(TOTAL FUEL ASSEMBLIES) BASE FALLS CHAIN 3 CONTAMINANT = U=238 TONS OF HEAVY METAL FACTUR = 0,50000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LUW = 3,300000E+05 TIME HIGH= 5,300000E+05 NUMBER DF CELLS = 400 DELTA TIME INCREMENT = 5,000000E+02

RAW DATA AND BLOCKED DATA FACTORS: MAX, TIME = 1,99988+06 MIN, TIME = 3,2093E+05 TOTAL WEIGHT = 1,22198+44 TOTAL PARCELS = 7542.0 PEAK WEIGHT TIME = 4,0175E+05 PEAK WEIGHT # 115,912 PEAK PARCELS = 95.680 PEAK PARCELS TIME = 4,9175E+05 WT. LOW = 8,1069E+00 ND. PARCELS LOW = 4.0 NO. PARCELS HI . 9139,0 WT. HI = 8.28432+00 SMOOTHING WINDOW (CELLS) = 14

TOTAL INVENTORY (CURIES) = 1,223504E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1,220578E+04 PERCENT OF TOTAL INVENTORY = 99,761

TIME OF MAXIMUM CONCENTRATION (YEARS) = 3,967500E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 5,895563E=07 MAXIMUM RATE (CURIES/YEAR) = 1,520887E=01 CONVERSION FACTUR RATE TO CONCENTRATION = 3,876398E=06

CONTAMINANT = U=238

TIME (YH)	RATE (CULYR)	TIME (YR)	RATE (CU/YR)
3.3185E+45	9_2224E=04	4.30346+05	SN-35566 8
3,33246+05	1,43186=03	4.32498+05	A, 6769E-02
3,35226+45	2,35168-05	4.54472+45	A. 3834E-02
3,37216+05	3,56832-03	4. 3646E+05	8.1136E-92
3,39198+05	5,00232-03	4.38442+05	7.86548-42
3,4118E+45	5,7775E=05	4.4043E+05	7.63388-02
3,4316E+35	8,93868-03	4.4241E+05	7.4118E-02
3,4515E+45	1,15455-05	4.44402+05	7.1918E=02
3.47138+45	1,40758-42	4.46382+45	6.9683E-02
3,4912E+05	1.8358E=02	4.48372+05	6.7377E-02
3.51106+05	2.20348=42	4.50358+05	6.4994E-02

3.5309E+05	2.7508E=02	4.52345465	6 356UE-03
3.5507E+05	3.29646-02	4.54125+05	6 6100E-02
3.57066+05	3.8962E=02	4 56215405	5 74705-02
3.5984E+85	4.5434E=02	A ER205405	5 57875-02
3.6103F+05	5.23175-02	A AROBEARE	5 30735-0"
3-63016+05	5.0513F=03	A 43345485	2 4 4 2 C 4 NC
3.65006+05	6 6902F-02	4 48366403	3100345=05
1.4698F+05	T //507F_//3	4 6 6 4 6 3 C 7 0 3	4,03445=02
1.68976405	8 31125-03	4 t 8 2 3 5 4 6 6	4.01961-02
3.70956405	R DAADE-DE	4 109555403 4 109555403	4.40386402
3,73945445	0 TA0/E-A0	4,70000403	4.1905E=02
2 74835145	1 0//205-04	4,16146403	3.9774E=02
3474766403 7 74046406	1	4.74172403	3,7597E=02
T TRROCAGE	1.11000-01	4.70162405	3,5339E+02
3 8 7 00 45 4 03 -	1.1/935=01	4.7614E405	3.2979E-82
3.00005403	1.24255=01	4.8013E+85	3.0506E-02
3,00000000	1.50156=01	4,8211E+05	2.7949E-02
3,8403LT63	1.35576=01	4.8410E+05	2,5359E+02
3,00035403	1.4/402-01	4.8608E+05	2,2795E-02
3.00025705	1.44511-01	4.8807E+05	5.0356E+05
3.90002405	1.4780E=01	4,9005E+05	1,7992E-02
3.96196405	1.50176-01	4.92046405	1.5826E=#2
3,94//2405	1.51596-01	4.9402E+05	1.384ME=02
3,90706405	1.52096-01	4,9601E+05	1,2034E+02
3.40/42+05	1.5173E=01	4.97998+05	1,0397E=02
4.00752+05	1.5460E=01	4,99986+05	8,9286E=Ø3
4,02/12+05	1.4877E-91	5.0196E+05	7,6253E=03
4.04702405	1.4633E=01	5,0395E+05	6,4805E=03
4.00001405	1,43296=01	5,0593E+05	5,4834E-03
4.0867E+05	1.3966E=01	5.07926+05	4,6281E+03
4.10652+05	1.3548E=01	5 . 0990E+05	3,8996E=Ø3
4.10042405	1.3083E=01	5,1189E+05	3,28198-03
4.14626+05	1.25816=01	5.1387E+05	2,7599E=03
4,1661E+05	1-50605-01	5.1586E+05	2,3141E-03
4.18546485	1.1539E=01	5.1784E+05	1,9328E=03
4.2058E+05	1.1035E=01	5.1983E+05	1.5957E=03
4.22362+05	1.0560E=01	5,2181E+05	1,2962E-03
4.24552405	1.01198-01	5.23802+05	1,021PE=03
4.2653E+05	9.7137E=02	5.25788+05	7.4851E=04
4.28526405	9.3401F=02	5_2/775105	A DECRE_AA

.

,

PLICVI PROGRAM DATA SUMMANY PIR3(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 3 CONTAMINANT = U=234 TONS DF HEAVY METAL FACTUR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MORE (1 = T(LUW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,1000000E+05 TIME HIGH= 5,000000E+05 NUMMER OF CELLS = 400 DELTA TIME INCREMENT = 7,253000E+02

RAW DATA AND BLOCKED DATA FACTORS: MAX_ TIME = 1,9964E+06 MIN. TIME = 3,0954E+05 TOTAL WEIGHT = 3,0556E+94 TOTAL PARCELS = 15857.0 PEAK WEIGHT = 350,338 PEAK WEIGHT TIME B 3,96648+05 PEAK PARCELS = 112,000 PEAK PARCELS TIME = 3,8576E+05 WT. LUW = N.5390E-03 NO. PARCELS LOW 3 1.0 WT. HI = 2.2478E+00 NO, PARCELS HI = 7322,0 SMOOTHING WINDOW (CELLS) = 7

TOTAL INVENTORY (CURTES) = 3.055844E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 3.055127E+04 PERCENT OF TOTAL INVENTORY = 99.977

TIME OF MAXIMUM CONCENTRATION (YEARS) = 3.973625E+05 MAXIMUM CONCENTRATION (MICHOCURIES/ML) = 1.501328E=06 MAXIMUM RATE (CUNTES/YEAR) = 3.872999E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3.876398E=06

CONTAMINANT = U=234

TIME (YR)	PATE (CU/YR)	TIME (VR)	RATE (CU/YR)
3.13266+45	1,73716=04	4.50456+05	1.3718E-01
3,1613E+85	3.6449E-04	4,5931E+05	1,29558-01
3.1899E+HS	8,3225L-04	4,62182+05	1.2146E-01
3.21856+05	1 AURTE-US	4.6504E+05	1.13148-01
3.24726+45	2,76A0E-03	4.67912+05	1.0477E-01
3.27586+05	4.34368-03	4.70776+05	9.6398E=02
3.30458+05	5.36162-03	4.7363E+05	8.7871E=02
3,33318+05	8 94011-03	4.7550E+05	7.90098+02
3,36176+05	1.23776-42	4.79362+05	6.9752E-02
3.39846+05	1.71325-02	4.8222E+05	6.43058-02
3.4190E+05	2.37588-02	4.85748+05	5.14628+02

		•	· · · · · · · · · · · ·
3.44762+05	3.27296-02	4.8795E+05	4,2464E e 02
3:4763E+05	4 . 4368E-02	4.9082E+05	3 , 4871E=02
3,50496+05	5.8872E-02	4 . 9368E+05	2,84376+02
3,53368+05	7.43676=02	4.9654E+05	2,3161E=02
3.5622E+05	9.6992E=02	4,99418+05	1.8861E=02
3.590BE+05	1.2079E-01	- 5.0227E+05	1.53586-02
3.61952+05	1.4755E=01	5.0513E+05	1.2456E=02
3.64816+05	1.7664E=01	5.0800E+05	9.9863E=03
3.6767E+05	2.9691E-01	5.1086E+05	7.8453E+03
3.7054E+05	2.3695E=01	5.1373E+05	5.9782E-03
3.7340E+05	2.65378=01	5.1659E+05	4.3897E=03
3.7627E+05	2.9119E+01	5.19456+05	3.09256-01
3.7913E+05	3.1402E+01	5.22326+05	2.09756-03
3.81996+05	3.3390E-01	5.25186+85	1.3030F=01
3-84666405	3.5096E+01	5.28045+05	9 1972F-84
3.8772E+05	3.65208=01	5.30916405	6.2316F-00
3.9058E+05	3.76298-01	5.33775+05	4 2405F-04
3.93456+05	3.83755=01	5. 36645405	2 8718F-00
2.06216405	3 87126-01	5 10504L+03	6 6/06F_0/
3.001AF+35	3 86075-01	5 ADTLEADE	1 38885-00
4.02046+05	3 RHADE-01	5 /5316+05	1 5 5 5 6 5 m D 4
A DAGDEANS	3 7050F-01	3143636403 6 Akroeare	/ 05575~05
4 07776+45	Z CHERENI	- E EXQEEXAE	4 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
A. 10636+05	2 ANSHE-N1	5 63835405 ·	3443475-05
4. 13496405	3 - 40206-01 3 - 51786-01	5 64486406	
A 16366405	T 03676-04	543000E403	
4 4022F+NE	2 88845-04	212723E407 6 43016488	1,36405403
4.17866-00	2 45475-01 2 45475-01	3886416403 6 46376486	0,3010C=00
A 34655405	5 8830246401 5803046401	5 4 8 4 4 6 4 4 5	
A 378164 15	5 71805-01	20014E403	3,44335#06
A TRADICION	2 17332-01 5 ⁸ 31005-01	2 11005403	1.3080E=06
N TIENELNE	2 01075-01	3 2 / 3 0 0 E 4 (1 3	5.81875-06
4 5 3 3 3 3 4 5 4 9 3 A 76 A 86 4 6 6	C 019/C=01	5.70736405	7.50802-06
4 8 30 4 92 4 93 / 203764.35	1 40005-044	5.77746403	7.50802-06
4 8 37 57 57 57 57 57 57 57 57 57 57 57 57 57	1 * / D Y C = V1	3.8648E403	2.02782=06
4 8 4 5 1 3 5 7 0 7	1./0525#01	3.63326+05	3.7540E=06
4443002703 1 17818405	J 6316L#01	5.80182405	5.75408-06
4 <u>6</u> 47002707 A ERTONEADE	1,00026=01	5.41052+05	6.9449E=Ø6
4 50185 100°	1,50055401	5,93912405	7,1326E=06
4 8 2 3 2 7 2 F 4 2 3] _e 4418t=01	5.9677E+Ø5	1.8770E=07
· .			

• 4 A

/

.

. (

۰,

PLI VT PROGRAM OATA SUMMARY PIR3(10TAL FUEL ASSEMBLIES) BASE CASE: CHAIN 3 CONTAMINANT = TH=230 TONS OF HEAVY HE AL FACTOR = 0,5000000 DATA BLOCXING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 3,3000.0F+05 TIME HIGH= 1,000000c+06 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 3,350000E+03

RAW DATA AND BLOCKED DATA FACTORSI NIN, TIME = 3,2312E+05 MAX, TIME = 1,9973E+06 TOTAL PARCELS P 1999,0 TOTAL WEIGHT = 1,3679#*03 PEAK WEIGHT TIME . 4.59638+09 PEAK WEIGHT 4 43.594 9,84938+09 PEAR PARCELS # PEAK PARCELS TIME . 26,000 NO, PARCELS LOW a W7, LOW = 9,61602-02 3.0 NO, PARCELS HI = WT, HI = 5,43962+00 2050,0 10 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 1,373437E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1,369095E+03 PERCENT OF TOTAL INVENTORY = 99,684

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,6232500+05 MAXIMUM CONCENTRATION (NICROCURIES/ML) = 2,499375E=08 MAXIMUM RATE (CURIES/YEAR) =: 6,437355E=03 CONVERSION FACTOR RATE TO CONCENTRATION = 3.876398E=06

CONTAMINANT = TH#230

TINE (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
3,3168E+05	1.6671E=04	6,00002+03	2,1705E+03
3,33752+05	1,6671E#04	6,11772+05	1,88438=03
3,3582E+05	1,7820E=04	6,2393E+09	1,6423E=03
3.3789E+05	2,0828E+04	6,3929E+09	1,4366E=03
3,39962+05	2,2709E=04	6,4706E+09	1,26172-03
3,42032+05	2,44495=04	6,9882 2 +09	1,1244E+03
3,4418E+05	2,7708E=04	6,7939E+03	1,0191E=03
3,46172+05	3,13842=04	6,8235E+05	9,3389E+04
3,48242+05	3,5468E#04	6,9412E+09	8 , 65072=04
3,30312+05	4,06725=04	7,0588E+05	8,9498E=04
3,52382+05	4 , 6474 E =04	7 , 1765E+05	7 . 45812=04
3.44490+09	9.34972-04	7,29412405	6.86598-04

3,56526+05	6.2193E=Ø4	7.4118E+05	6.2451F-04
3.5859E+05	7.1989E-04	7.5294E+05	5.6000F-04
3.60666+05	8.5348E=Ø4	7.6471E+05	4.9756F-04
3.62736+05	9.9707E-04	7.76476+05	4. 3026F=04
3.6488E+05	1.15356-03	7.88246405	3.8876F-04
3.6687E+05	1.3407E-03	5.0000E+05	1.4555F-0A
3,6894E+05	1.5460E+03	8.0601E+05	3,2622F-04
3.7101E+05	1.7958E+03	8-12026+05	T. GATAF-DA
3.7308E+05	2.0841E+03	8-18036405	
3.7515E+05	2.399BE=03	8.2484F+05	2 76715-0A
3.7723E+05	2.7354E+03	8.3005F+05	2 4307E-04
3.7930E+05	3.0900E=03	A. 3636F+85	
3.8137E+05	3.4791E-03	A_4227E+05	2 1740E-04
3.8344E+05	3.8813E=03	8.4808F405	2 25565-04
3,8551E+05	4.2814E-03	8.54096405	2 1750F-04
3.6758E+05	4.6250E=03	8.6010F405	2 8102F-04
3.8965E+05	4.9084E=03	8.66116405	
3,9172E+05	5.1300E-03	8-7212F+05	1.7044C+04
3,93796+05	5.2939E=03	8.7813E+H5	1.6883F-04
3,9586E+05	5.4269E=03	8-8414E+05	1 58805-00
3.97936+05	5.4946E-H3	6.9015E+05	1,4044F=04
4.0000E+05	5.5304L-03	8.96165405	1 4020F-04
4.1177E+05	5.7335E+03	9-02176+05	1.31555-04
4.2353E+05	5.9739E=03	9.0818E+05	1.23468-04
4.35296+05	6.1657E-03	9.14196+05	1.1506F=04
4.4706E+05	6.3423E-03	9.20206+05	1.0010F=04
4.58826+05	6.4327E-03	9.26216405	1.0300F-04
4.7059E+45	6.4196E=03	9.32222405	9.7632F-05
4.82356+05	6.2812E-03	9.38235+05	9.2752E=05
4,94126+05	6.0154E=03	9.4424E+05	A. 8242F-05
5.05886+05	5.64946-03	9.50256+05	A ADDAF-DS
5.17658+05	5.21126-03	9.56266405	R_0112F-05
5.29418+05	4.7495E-03	9-62272+05	7.6585E=05
5.4118E+05	4.2448E-03	9.68282+05	7.6118E-05
5.52948+05	3.7518L-03	9.7429E+05	7.3377E+05
5.64712+05	3.2977E-03	9.8030E+05	7.1008E+05
5.76476+05	2,88768-03	9.8631E+05	6.8823E405
5.88246+05	2.5110E=03	9,9232E+05	6.6708E-05
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

.

:

۰.

H.111

•

RAW DATA AND BLOCKED DATA FACTORS: MAX, TIME = 1,9924E+06 MIN. TIME = 3.2354E+05 TOTAL WEIGHT = 3,12448+03 TOTAL PARCELS 5339,0 PEAK WEIGHT = PEAK WEIGHT TIME = 4,3458E+05 108,075 PEAK PARCELS TIME = 4,3458E+05 PEAK PARCELS = 39,000 WT, LOW = 8,0015E-02 NO. PARCELS LOW a 6.0 WT, HI = 6,2234E+01 NO, PARCELS HI = 333,0 7 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 3,186702E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 3,120973E+03 PERCENT OF TOTAL INVENTORY = 97,937

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,510250E+05 MAXIMUM CONCENTRATION (MICRUCURIES/ML) = 7,412791E+08 MAXIMUM RATE (CURIES/YFAR) = 1,912289E+02 CONVERSION FACTOR RATE TU CONCENTRATION = 3,876398E+06

CONTAMINANT = RA-226

TIME (VR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
3,31186+05	2 <b>.</b> 1863E-04	5,65002+05	6.9734E+03
3.35856+05	5,95956-04	5.69682+05	6.5176E-03
3,40536+05	4,92886-04	5,74356+05	6,1504E-03
3.4520E+05	7 <b>.</b> 7750E-04	5.79038+05	5.8505E-03
3,498AE+05	1,15816-03	5,83716+05	5.60648-03
3,54562+05	1,63252-03	5,88386+05	5,3849E=03
3,59238+45	2,22798-03	5.9316E+05	5,1460E=03
3.63912+45	2 <b>,</b> 9383E=03	5,97748+05	4,90308-03
3.68592+05	3,73178-03	6,02415+05	4.64458-03
3,73266+09	4,58416=03	6,0704E+05	4.33355-03
3.77946+05	5,48505+03	5.1177E+05	3.9838F=01

		4	
3,8262E+05	6,4134E+03	6.1644E+05	3.6128E=03
3.8729E+05	7.4037E=03	6,2112E+05	3.2409E=03
3,9197E+05	8,4283E=03	6.2579E+05	2.8900E+03
3,9665E+05	9,4812E-03	6.3047E+05	2.5801E=03
4.0132E+05	1.0566E=02	6.3515E+05	2.3108E=03
4.0600E+05	1.1704E-02	6.3982E+05	2.1009E=03
4.1068E+05	1.2856E-02	6.4450E+05	1.9529E=03
4.1535E+05	1.4054E-02	6.4918E+05	1.8514E=03
4.2003E+05	1,52286+02	6,5385E+Ø5	1.7835E+03
4.2471E+05	1.6268E=02	6,5853E+05	1,7380E-03
4.2938E+85	1.7170E-02	6.6321E+05	1.7002E-03
4.3406E+05	1,7896E=02	6.6788E+05	1.6562E-03
4.3873E+05	1,8456E=02	6.7256E+05	1,6046E=03
4,4341E+05	1.8857E+02	6,7724E+05	1,5317E=03
4,48092+05	1,9085E=02	6,8191E+05	1.4472E=03
4.5276E+05	1,9108E=02	6.8659E+05	1,3496E=03
4.5744E+05	1.9028E=02	6.9127E+Ø5	1,2453E+03
4,6212E+05	1.88985-02	6.9594E+05	1,13876-03
4.6679E+05	1.86916-02	7.0062E+05	1.0403E-03
4.7147E+05	1_8393E=02	7.0530E+05	9.5058E+04
4 <b>.</b> 7615E+05	1.799%8#02	7.0997E+05	8.6857E+04
4.8082E+05	1.7518E+02	7.1465E+05	7,9057E=04
4,8550E+05	1.6985E=02	7.19326+05	7,1783E+04
4.9018E+05	1.6403E-02	7.2400E+05	6,5064E=04
4 <b>,</b> 9485E+05	1,5752E=02	7 <b>.</b> 2868E+05	5.8455E+04
4.9953E+05	1,50598+02	7.3335E+05	5,2025E+04
5.0421E+05	1,4385E-02	7.3803E+05	4.5526E-04
5,0888E+05	1,3755E+02	7,4271E+05	3,9364E=04
5.13566+05	1,31576-02	7.4738E+05	3 <b>.</b> 3761E=04
5.1824E+05	1.2569E=02	7.5206E+05	2.9283E+04
5.2291E+05	1.1995E=02	7.5674E+05	2.5612E-04
5.2759E+05	1.1446E=02	7.6141E+05	5.5815E+04
5.3226E+05	1,0928E=02	7.6609E+05	2.0835E=04
5,3694E+05	1,0382E=02	7.7077E+05	1,9255E+04
5.4162E+05	9.8039E=03	7.7544E+Ø5	1,7857E=04
5.46292+05	9,19426-03	7.8012E+05	1.6512E+04
5,50976+05	8,5861E=03	7.8480E+05	1,4496E=84
5.5565E+05	8.0199E=03	7.8947E+05	1,1964E=04
5.60328405	7.48576601	7.94156485	0 ATAIF_0C

۰.

.

PLTCVT PROGRAM DATA SUMMARY PIR3(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 4 CONTAMINANT = AM=243 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),OT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,000000E+04 TIME HIGH= 6,000000E+04 NUMBER OF CELLS = 100 DELTA TIME INCREMENT = 3,000000E+02

RAW DATA AND BLOCKED DATA FACTORSI MAX. TIME = 5.4016E+04 MIN, TIME # 3,8421E+04 TOTAL WEIGHT = 4,54632+03 TOTAL PARCELS # 3162,0 195.675 PEAK WEIGHT = PEAK WEIGHT TIME = 4.0350E+04 PEAK PARCELS ... PEAK PARCELS TIME W 90,000 4.9050E+04 NO. PARCELS LOW . WT, LOW = 9,0000E-01 0,0 WT, HI = 0,00002-01 NO, PARCELS HI = 0,0 ĩ0 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 4,546324E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 4,726858E+03 PERCENT OF TOTAL INVENTORY = 103,971

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,035000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2,315268E=06 MAXIMUM RATE (CURIES/YEAR) = 3,975363E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,876398E=06

CONTAMINANT = AM=243

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR).	RATE (CU/YR)
3,85502+04	2,3201E-01	4,5310E+04	3,41906=01
3,86248+04	2,3201E-01	4,5574E+04	3,3254E=01
3,86982+04	2,32015-01	4,58392+04	3.2334E=01
3,87732+04	2.3201E+01	4.61042+04	3.1430E=01
3,8847E+04	2,3201E=01	4,63685+04	3,0585E+01
3,8921E+04	2,51448-01	4,66332+84	2,9775E=01
3,89952+04	2,7169E=01	4.68982+04	2.8983E=01
3,90702+04	2,9195E+01	4,7162E+04	2.8204E+01
3,9144E+04	3,12206-01	4,7427E+04	2.7405E=01
3,9218E+04	3,3668E+01	4.7692E+84	2.6616E-01
3.92922+04	3.6152E=01	4.79578+04	2.5875E=01

H.114

á.

3.9367E+04	3,8637E=81	4.8221E+04	2.5183E=01
3.9441E+04	4.1122E=01	4.6486E+04	2.4516E-01
3,9515E+04	4.3588E+01	4,6751E+04	2.3847E-01
3.9589E+04	4,6034E+01	4.9015E+04	2.3129E=01
3.9664E+D4	4.8488E+01	4.9280E+04	2.2470E=01
3,9738E+04	5.09436-01	4.95456+04	2.1862E-81
3,9812E+04	5.2385E+01	4.9810E+04	2.1358E.01
3.9886E+Ø4	5,3629E=01	5.80746+84	2.0608E=01
3,9961E+04	5,4873E=01	5.0200E+04	2.00895+01
4,0035E+04	5,6118E-01	5.0326E+04	1.9485E=01
4,0109E+04	5,7038E+01	5.04528+04	1.8825E+01
4.0183E+04	5,7875E+01	5.0577E+04	1.8150E-01
4,0258E+04	5.8712E-01	5.0703E+04	1.7419E+01
4.0332E+04	5,9549E+01	5.0829E+04	1.6688E#01
4.8406E+04	5,9663E-01	5.0955E+04	1.5935En01
4.0480E+84	5.9543E+01	5.1080E+04	1.5178En01
4,0555E+04	5.9422E-01	5.1206E+04	1.00456-01
4.86298+84	5,93028+01	5.1332E+04	1.3701E+01
4,0703E+04	5.8974E-01	5.1458E+04	1.3039E.01
4.0777E+04	5.8564E=01	5.1583E+84	1.23092-01
4.0852E+04	5.8153E=Ø1	5.1789E+84	1.1658E+01
4.0926E+04	5,7742E+01	5.1835E+04	1.0941E+01
4.1000E+84	5.7105E=01	5.1961E+04	1.0212E+01
4,1074E+04	5,6359E+81	5.20866+04	9.4843E=82
4 <b>.</b> 1339E+04	5,3859E+01	5.2212E+04	8.7606E-02
<b>4,1604E+04</b>	5,1775E+01	5,2338E+04	6.0368E+02
4 <b>.1868E+04</b> .	5,0896E=81	5.2464E+04	7.2942E-02
4.21336+84	4,8645E+01	5.2589E+04	6.5497E=02
4.2398E+04	4,7257E-01	5.2715E+04	5.8319E+02
<b>4.2662E+04</b>	4.5881E=01	5,2841E+04	5.1390E-02
4.2927E+04	4,4557E#01	5.29672404	4,4609E#02
4,3192E+04	4,3311E=01	5.3092E+04	3,8799E+02
4.3457E+04	4,2152E=01	5.3218E+04	3.2989E-02
4.3721E+04	4.0991E=01	5,33446+04	2.8192E-02
4 <b>.</b> 3986E+84	3,9670E=01	5.3470E+04	2,3739E=02
4,4251E+04	3,8425E+U1	5.3595E+04	2,0001E#02
4,4515E+04	3.7254E=01	5 <b>,</b> 3721E+04	1.7525E-02
4.4780E+04	3.6178E=01	5,3847E+04	1.50498-02
4.5045E+04	3,5160E-01	5.3973E404	1.2751E-02

4

· .

. (****

*_*__

PLTCVT PROGRAM DATA SUMMARY PIR3(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 4 CONTAMINANT = PU=239 TONS OF HEAVY METAL FACTOR = 0,3000000 DATA BLOCXING FACTORS: ENTRY MODE (1 = T(LOW),0T,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 2,000000E+04 TIME HIGH= 2,000000E+04 TIME HIGH= 2,000000E+03 NUMBER OF CELLS = 10 DELTA TIME INCREMENT = 1,000000E+04

RAW DATA AND BLOCKED DATA FACTORSI MIN, TIME = 4,9050E+04 MAX, TIME = 1,5187E+05 15.0 TOTAL PARCELS # TOTAL WEIGHT = 6,8111E+00 PEAK WEIGHT = PEAK WEIGHT TIME # 6.50002+04 3.616 5,998 PEAK PARCELS TIME . 6,5000E+04 PEAK PARCELS = NO. PARCELS LOW . WT. LOW = 0.0000E-01 0.0 NO, PARCELS HI . WT. HI = 0.0000E-01 0,0 Ø SMOOTHING WINDOW (CELLS)

TOTAL INVENTORY (CURIES) = 5.811129E+00 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 9.463253E+00 PERCENT OF TOTAL INVENTORY = 138.938

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,700000E+04 MAXIMUM CONCENTRATION (MICRUCURIES/ML) = 7,788292E=10 MAXIMUM RATE (CURIES/YEAR) = 2,009157E=04 CONVERSION FACTOR RATE TO CONCENTRATION = 3,876398E=06

CONTAMINANT = PU=239

TTHE (YH)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
4. 70005 +04	2.00926=04	1,41802+05	2,6412E=05
4. 80802+04	2.0092E=04	1.0208E+05	2,5174E=05
4.91602+04	2.0092E-04	1,0316E+05	2,3936E=05
5.02402+04	2.0092E-04	1.04245+05	2,26982=05
5.1320E+04	2.00928-04	1,0532E+05	2,1460E=05
5.2400E+04	2.00926-04	1.06402+05	5,05515-02
5. 3480E+04	2.00926-04	1.0748E+05	1,8983E+05
5.4560E+04	2.00925-04	1,0856E+05	1,7745E+05
5.5640E+04	2,00925-04	1.0964E+05	1,6507E+05
5.6720E+04	2,00922-04	1,10722+05	1,52698=05
5.78002+04	5,30925-04	1.1100E+05	1,4031E=05

5.8680E+04	2,0092E=04	1.1268E+05	1.2793E+05
5,9968E+04	2.0092E=04	1.1396E+05	1.1555E+05
6.1040E+04	2.0092E-00	1.15842+05	1.0316E+05
6.21208+04	2.0092E=04	1.1612E+05	9.0763E+06
6.3200E+04	2.00928-04	1.1720E+05	7.8402Em06
6.4280E+04	2.0092E=04	1.18286+05	6.6828E=86
6.5360E+04	1.9785E-04	1.19366+85	5.8957E+84
6.6440E+04	1.8864E=04	1.20446+05	6.2531E+06
6.7520E+04	1.7943E=04	1.21526+05	6.61BAEBBA
6.8600E+04	1.7622E=04	1.22608405	6.9677E=06
6.9680E+04	1.61018-04	1.23686405	7.3251F=06
7.0760E+04	1.5180E=04	1.24765+05	T. 6824EeBA
7.1840E+04	1.4260E=04	1.25842+05	8.0397E=06
7.2920E+84	1.3339E=04	1.20926405	8.3971E=06
7.4080E+04	1.2418E=04	1.2800E+05	8.7544E=06
7.5080E+04	1.1497E-04	1.29086+05	9.1117E#06
7.6160E+04	1.0576E=04	1.3016E+05	9.46915-06
7.7240E+04	9.6552E-05	1.31246+05	9.6264E686
7.8320E+04	8.7344E=05	1.32326+05	1.0184E-05
7.9400E+04	7.8135E+05	1.3340E+05	1.05416-05
8.0480E+04	6.8927E=05	1.3448E+05	1.08985-05
8,1560E+04	5.9718E-05	1.3556E+05	1.12568-05
8,2640E+04	5.05106-05	1.3664E+05	1.1613E=05
8,3720E+04	4.6599E=05	1.3772E+05	1.2565E+05
8.4800E+04	4.5337E+05	1.3880E+05	1.3813E=05
8,5880E+04	4,4076E-05	1.3988E+05	1.5062E=05
8,6960E+04	4,2814E-05	1,4096E+85	1.6311E-05
8,8840E+04	4.1552E=05	1.4284E+05	1.7559E+05
8,9120E+04	4.0291E-05	1,4312E+05	1.88085-05
9.0200E+04	3,90296+05	1,4420E+05	2.0057E-05
9 <b>.</b> 1280E+04	3,77678-05	1,4528E+Ø5	2.1305E+05
9,2360E+04	3.6586E=05	1,4636E+05	2.2554E+05
9,3440E+04	3.52446+05	1.4744E+05	2.3803E-05
9,4520E+04	3,3982E=Ø5	1,4852E+05	2,5051E+05
9,5600E+04	3.2721E+05	1.49602+05	2.6300E=85
9.6680E+04	3,1459E=05	1.5068E+05	2.7549E-05
9.7768E+04	3.01972-05	1.5176E+05	2.8798E=05
9 8840E+04	2.8935E=05	1.5284E+Ø5	3,0046E=05
9.9920E+04	2,7674E=05	1.53926+05	3.12952+05

.4

.

(

۰.

٠.
PLTCVT PROGRAM DATA SUMMARY PIR 3(TOTAL FUEL ASSEMULIES) BASE CASE: CHAIN 4 CONTAMINANT = U=235 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),OT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,000000E+05 TIME HIGH= 7,000000E+05 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 1,000000E+03

RAW DATA AND BLOCKED DATA FACTORS! MIN, TIME = 4,1726E+04 MAX, TIME = 8,3036E+05 TOTAL WEIGHT = 4,1413E+02 TOTAL PARCELS . 21369,0 PEAK WEIGHT * PEAK WEIGHT TIME = 4,5050E+05 12,590 PEAK PARCELS = 215,000 PEAK PARCELS TIME = 3,8350E+05 WT. LOW = 4,7584E-01 NO, PARCELS LOW # 6145,0 WT, NI = 5,0361E=02 NO, PARCELS HI 3 1715,0 SMOOTHING WINDOW (CELLS) = 10

TCTAL INVENTORY (CURIES) = 4,146364E+02 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 4,140642E+02 PERCENT OF TOTAL INVENTORY = 99,837

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,335000E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.722498E=08 MAXIMUM RATE (CURIES/YEAR) = 4.443553E=03 CONVERSION FACTOR RATE TO CONCENTRATION = 3.876398E=06

CONTAMINANT = U=235

TIME (YH)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
3,0050E+05	2,01818-05	5,0000E+05	7.29558=04
3,04496+45	2,9922E-05	5,03992+05	6,1756E=04
3,08482+05	4,64832-96	5.07986+05	5,26758+04
3.1247E+05	6,7881E=06	5.11972+05	4,5093E+04
3.1546E+05	9,4470E=06	5,1596E+Ø5	3,8531E+04
3,2045E+05	1,35558=45	5,19952+05	3,2743E-04
3,24446+05	2,03168=05	5,23948+05	2,7734E=04
3.28436+05	3.1548E=05	5,27938+05	2,3570E+04
3.32425+95	4,90352405	5,3192E+05	2,02878+04
3,3641E+05	7,7508E=05	5,3591E+05	1,78612-04
<b>3,</b> 4040E+05	1 <b>.</b> 1835E-04	5,3990E+05	1,5166E=04

3,44396+05	1.7549E-84	5.4389E+Ø5	1.4942E+84
3,4838E+05	2.52388-04	5.4788E+05	1.3926E=64
3.52376+05	3.52356+04	5.5187E+85	1.29446-04
3,5636E+05	4.7838E-84	5.5586E+05	1.1871E=04
3.6035E+05	6.3306E=04	5.59856+05	1.06648-04
3.6434E+05	8.1733E+04	5-63846+05	0.1036F-05
3.6833E+05	1.0297E+03	5-6783E+05	A.1376F-05
3.7232E+05	1.2668E=03	5.71826405	6.94198-05
3,7631E+05	1.5190E-03	5.7581E+05	5.8402E-05
3.8030E+05	1.7785E+03	5.79801+05	4.8623E-05
3,84298+05	2.0353E=03	5.83796+05	3.9944F=85
3.8828E+85	2.2832E=03	5.8778E+05	3.24516-05
3.92271+05	2.5201E-03	5.9177E+05	2.62816-05
3,96266+05	2.7488E+03	5.95766+05	2.15618-05
4.0025E+05	2.9771E+03	5.9975E+05	1.82936-05
4.0424E+05	3.2116E+03	6.0374E+05	1.6178E-05
4.86236+05	3.4523E+03	6-0773E+05	1.497AE-05
4.12225+05	3.6942E=03	6.1172E+05	1.41726-05
4.16216+05	3.9257E+03	6.1571E+05	1.3462E=05
4.20206+05	4.1284E=03	6.1970E+05	1.25528-05
4.2419E+05	4.2861E+03	6.23696465	1.1446E=05
4.2818E+05	4.3907E-03	6.27686+05	1.02256-05
4.32176+05	4.4394E-03	6.3167E+05	8.9245E=06
4,3616E+05	4.4333E+03	6.3566E+85	7.7590E-06
4.4015E+05	4.3801E=03	6.3965E+05	6.7938E+06
4,4414E+85	4,2863E=43	6.4364E+05	6.0210E=06
4.4613E+05	4.1511E=03	6,4763E+05	5.5201E+06
4 <b>.</b> 5212E+05	3,9724E+03	6,5162E+05	5.1113E=06
4,5611E+05	3,7500E+03	6.55616+05	4.7772E+86
4.6010E+05	3,4840E+03	6 <b>.5960E+0</b> 5	4.5898E=06
4.6409E+05	3.1774E-03	6.6359E+05	4.2819E=06
4.6808E+05	2.8425E=03	6 <b>.</b> 6758E+05	4,0379E-06
4,7207E+05	2.4947E=03	6.7157E+05	3,6933E+06
4,7606E+05	2.1492E-03	6.7556E+85	3,3416E=06
4,8005E+05	1.8209E-03	6.7955E+85	2.9871E=06
a.8404E+05	1,5236E=03	6.8354E+05	2.5750E+06
4.6803E405	1,2648E-03	6.8753E+05	2,1081E=06
4.92022+05	1.0472E-03	6,9152E+05	1.5509E#06
4.96016+05	8,7028E+04	6.9511E+05	I UKALFIAL

ſ

۰.

RAW DATA AND BLOCKED DATA FACTORSI MAX. TIME = 1.5413E+06 MIN, TIME = 4,0800E+04 TOTAL WEIGHT = 4,5076E+00 TOTAL PARCELS # 1786.0 PEAK WEIGHT = PEAK WEIGHT TIME # 0.407 4.09002+05 PEAK PARCELS . PEAK PARCELS TIME # 4.1300E+05 32,000 WT. LON = 1,4309E=02 NO, PARCELS LOW # 1345.0 WT. HI = 8,0174E+00 NO. PARCELS HI . 2384,0 5 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 1,263927E+01 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 4,479630E+00 PERCENT OF TOTAL INVENTORY = 35,442

TIME OF MAXIMUM CONCENTRATION (YEARS) # 4,110000E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) # 2,406968E=10 MAXIMUM RATE (CURIES/YEAR) # 6,209291E+05 CONVERSION FACTOR RATE TO CONCENTRATION # 3,876398E=06

CONTAMINANT # PA+231

TIME (YEAR\$) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (VR)	0175 /PU/VON
3,0100E+05	6.2025E#08	4.0030F+08	
3.02982+05	6 30355-45	4100005403	2,34581905
7 94946405	0.50535400	4,01985+05	5.5819E905
3.14702+03	7,84598+08	4.0396E+05	5 90035-00
3.06942+05	9.5654F-04	A 050A5.00	2.00035403
T. DAGOEANS	* * * * * * * * * * * * * * * * * * *	4 0 3 4 4 5 4 0 3	5,97578+05
3.00762703	1,14085907	4.0792E+05	6.10378-08
3.10902+05	1.35296+07	4.0990F+05	
3.1288E+05	1 97915-37		a*10195+82
7 4/845145		4-11006+03	6.2088E*05
J.14005703.	1.77028-07	4.13866+09	6 18665-05
3,10842+85	1.97528+07	A 15808-08	0110005-03
3.1882F+45	2 20486-42	7812046793	0.11020+05
7 30805.00	CBERAGEMAL	4.1/826+03	5.0079E-05
1.20002.403	2,47116-47	4 <b>,</b> 1980E+05	5,86128-05

3.2278E+05	2.7903E+07	4.21782+05	5.68465+03
3.2476E+05	3.1832E-07	4.2376E+05	5.4857E-05
3.2674E+05	3-6807E-07	4.2574E+05	5.2717E-05
3.28726405	4.3147E=07	4.2772E+05	5.0494E+05
1,10706+05	5.1202E=07	4.297HE+#5	6.8257F+05
T. TPARFAR	6 63645-07	A. 3168F+05	4 6062F-05
3 30446405	7 98286-07	A TRAAFADE	A 10555-05
3 34666403	A 6090F-07	A 1564F405	4,37336403 1 16685-88
2 28706702	t a7515-01	4 27625405	A 8121F-85
38300EL+03 7 #848E48E	1 39/76-84	4 10LOEA05	T 84245400
3440005403		4 81605+05	3 6 9 4 5 4 5 4 5 9 5 5 5 5 5 5 5 5 5 5 5 5
3446306403	1,33305=00	4841305403	3,00/35003
3,44305403		4.43365403	3,34035403
3,40346403	2.20302000	4,43346403	3,41070405
3.48522405	2.60001-06	4,47322+03	3,29000405
3.50502+05	3.04752-06	4.44502+05	3.18376-05
3.5248E+05	3.5498E=06	4.51482+05	3,0756L+05
3,5446E+05	4.1121E=06	4.5346E+05	2,9705E=05
3,56446+05	4.7411E=06	4.5544E+05	2,6667E+05
3,5842E+05	5.4453E+06	4.5742E+05	2,7629E+05
3.6040E+05	6.2346E-06	4.5940E+05	2.6503E=05
3,6238E+05	7 <b>.1194E=0</b> 6	4,6138E+05	2,5526E+05
3+6436E+05	8.1117E=06	4 <b>.</b> 6336E+05	2.4460E+05
3.6634E+05	9.2265E=06	4,6534E+Ø5	2,3389E+05
3.6832E+05	1,0482E=05	4 <b>.</b> 6732E+05	2,2320E=05
3.7030E+05	1 <b>,1</b> 898E-05	4.6930E+05	2 <b>,</b> 1261E+05
3.72286+05	1.3497E+05	4.7128E+05	2,0213E+05
3.7426E+05	1.5296E-05	4 <b>.</b> 7326E+05	1,9179E+05
3,7624E+Ø5	1.7308E=05	4,7524E+05	1,8159E#05
3,78226+05	1.9543E-05	4,7722E+05	1,7150E+05
1,8020E+05	2.2004E=05	4.7920E+05	1,6147E+05
3,8218E+05	2.4685E+05	4.8118E+05	1.5115E=05
3.8416E+05	2.75756-05	4.8316E+05	1.4059E=05
3.8614E+05	3.0653E-05	4.8514E+@5	1,2979E+05
3.8812E+05	3.3887E-05	4.8712E+05	1.1879E=05
3.9010E+05	3.7229E+05	4.8918E+85	1.0745E+05
3.9208E+05	4.0619E=05	4,9108E+85	9.2868E+86
3.9406E+05	4.3990E-05	4.4306E+05	7.9157E+06
3.9604E+05	4.7269E-05	4,9504E+85	6.6277E+86
3,98r2E+05	5.0384E-05	4.91022+05	5.4266E+06
-	-	-	

APPENDIX H.3: WELL PUMPING CASE Simulation Run 4.

PLTCVT PROGRAM DATA SUMMARY PIR 4 Fission PIR 4 CONTAMINANT = C=14 TONS OF HEAVY METAL FACTOR = 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 1.000000E+03 TIME HIGH 2.500000E+04 NUMBER OF CELLS . 500 DELTA TIME INCREMENT . 4.8000000000

RAW DATA-AND BLUCKED DATA FACTORSI MAX. TIME = 9.1321E+04 MIN. TIME # 1.0206E+03 TOTAL HEIGHT = 2.7430E+04 TOTAL PARCELS = 8937.0 PEAK WEIGHT . PEAK WEIGHT TIME = 2.2240E+03 258,987 PEAK PARCELS . PEAK PARCELS TIME = 3.8560E+03 31,000 WT. LOW = 0.0000E=01 ND. PARCELS LOW E 0.0 WT. HI = 2.5045E+02 NO. PARCELS HI = 24863.0 SMODTHING WINDOW (CELLS) # 20

TOTAL INVENTORY (CURIES) = 2.768001E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2.757593E+04 PERCENT OF TOTAL INVENTURY = 99.624

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.744000E+03 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 4_426165E+06 MAXIMUM RATE (CUMIES/YEAR) = 3,694952E+00 CONVERSION FACTOR RATE TO CONCENTRATION = 1.197895E-06

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CUZYR)	TIME IVEL	PATE (PH/VP)
1.02406+03	8.8980E=01	8.3176E+Ø3	1.6706E+00
1,0475E+03	8.8980E=01	8.7235E+03	1.5934E+00
1.0710E+03	8.8980E-01	9.12946+03	1.5139E+00
1.0945E+03	1 06446+00	9.5353E+03	1.4404E+00
1.1181E+#3	1.2465E+00	9.9412E+03	1.3716E+00
1.14168+83	1.3547E+00	1.0547E+04	1.3075E+00
1.16518+03	1.45646+99	1.4755E+04	1.2466E+00
1.18866403	1.40186+90	1.1159E+04	1.1855E+00
1-51516+03	1_85185400	1.15652+04	1.1320E+00
1.2356E+03	2.9470E+00	1.19716+04	1.0731E+00
1.25926+03	2.2014E+N0	1.23768+04	1 0224F+00

н.123

1 38378adt	5 38598AUG	+ 37538.00 "	
1 30138-03	5,372/6790	1941042404	9,73472=01
1,30022403	4.40072400	1.31082+04	9,2726E+01
1.35418403	2,53244+08	1,35946+04	8,80372-01
1,35326+03	2 <b>.</b> 7886E+00	1,40086+04	8.4106E-01
1.37678+03	2.91392+00	1.44068+04	7.99498-01
1,4002E+03	3.02668+00	1.4812E+04	7.59175-01
1.42386+03	3.11398+80	1.52188+04	7 22106-01
1.44738+03	3-188AE+00	1.36248404	4 70088-01
1.47988+93	3 37838480	4 20022-07	0.1003E401
1.09038403	1 17648400	1 11030-04	4940412001
1 81708403		3.01745-04	1,54902-01
1931105703	3.40276400	1-04/02-04	8,91812=02
1934136403	3,34805+88	1.5/502+84	8,4646E=02
1,30486403	3,57742+00	1,70442+04	7,6335E=02
1.58842+03	3,5802E+00	1.73282+04	7,79098-02
1.6119E+03	3,5869 <b>E+0</b> 0	1.7612E+04	7.56708-02
1 <b>.</b> 6354E+03	3,59722+00	1,78962+04	6.9892E=02
1,65892+03	3.61862+00	1.8181E+04	6.77508-02
1,58242+83	3.65308+00	1.8465E+04	6.32435-02
1,70598+03	3.6774E+00	1.87498+04	A R0018-02
1,72958+03	3.68828400	1.90135+04	A RIGRE-03
1.75306+03	3.69268+00	1.93178+04	A 97785-02
1.77652+03	3-68638+08	1.9631F+04	8 03375-03
1.80002+03	3.47876440	4 QNARSJAA	
1.82358+03	3 46848400	3 01 505 504 3 01 505 504	3,03405=04
2.22949403	2 48485104	5 00075704 5 000075704	7,225/2=02
	2 2333C4406400		2.04136-05
2 07432403 1 07432403	3 * 3 # 3 2 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2.0/352+94	5,1137E=02
3104752403	3,17036700	2,19555+84	5,0032E+02
3,44/95703	2.05415+00	2,13066+04	4 <b>,</b> 7333E=02
3 82528483	2,89792+20	2,15902+04	4 <b>.</b> 3905E~02
4,23002403	2,76398+90	2,18746+04	4,41132=02
4.66476+03	2,6367E+00	2,21386+04	4.2741E=02
5,97062+03	2,4961E+00	2.2442E+04	4.17598-02
5,4765 <u>E</u> +03	2,36782+00	2.27272+04	3.92408-02
5,88235+03	2.24118+80	2.30112+04	3.8179F=02
6,28856+03	2.13162+00	2.32952+94	3.5531F=03
6.6941E+03	2.02048+00	2.35796+04	マリンシスシージム
7.10002+03	1.93098+00	2.38635404	3 44345-43
7.50598+03	1.83898400	2300036709 2.4147550A	Jg MUJHERUd ス コロイマピーハイ
7.9117E+03	1.75605404	5974715704 5 AAX185444	J; 531/5902 7 78748.00
<b></b>	* * * * * * * * * * *	E944392408	3,23/1E#05

PLTCVT PROGRAM DATA SHMMARY PIR 4 Fission PIR 4 CONTAMINANT = TC=99 TONS OF HEAVY METAL FACTUR = 1.000000 DATA HLOCKING FACTORS: ENTRY MODE (1 = T(LOW), UT, NCELLS) (2 = T(LDW), T(HI), NCELLS) MODE = 2 TIME LOW = 1.400000E+04 TIME HIGH= 1.700000E+04 NUMBER OF CELLS = 300 DELTA TIME INCREMENT = 1.000000E+01

<u>_</u>

RAW DATA AND BLOCKED DATA FACTORS: MAX, TIME = 9,11826+04 MTN. TIME = 1.06778+03 TOTAL WEIGHT # 4.3244E+05 TOTAL PARCELS = 4747.0 PEAK WEIGHT = 29853.873 PEAK WEIGHT TIME # 1.6015E+04 PEAK PARCELS TIME = 1.6015E+04 PEAK PARCELS F 307 .000 NO. PARCELS LOW . WT. LOW # 1.17638+05 1183.0 WT. HI = 3.3131E+05 NO. PARCELS HI . 27870.0 15 SMOUTHING WINDOW ICELLS) #

TOTAL INVENTORY (CURIES) = 8.813796E+05 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 4.606703E+05 PERCENT OF TOTAL INVENTORY = 52.267

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.602500E+04 MAXIMUM CONCENTRATION (MICRUCURIES/HL) = 3.275067E=03 MAXIMUM RATE (CUPTES/YEAR) = 2.754017E+03 CONVERSION FACTUR RATE OU CONCENTRATION = 1.197895E=06

TIME (YR)	RATE (CU/YK)	TIME (YR)	RATE (CU/YR)
1.4005E+04	4 94562+01	1-5430E+04	5°8953E+05
1.40618+04	3,91126+01	1.5903E+04	5.959NE+02
1.4117E+94	3 85846+41	1.5906E+04	3.0074E+02
1.4173E+84	3 43222+111	1.5909F+04	3.1144E+02
1.4554E+N4	3.84156+01	1.5912E+04	3.22146+05
1.42856+94	3.85216+0)	1.5915E+04	3,3285E+02
1.43496+64	3.89776+01	1.5918E+#4	3,4723E+82
1_4346E+04	3 <b>.</b> 90996+21	1.5921E+04	3.05NSE+05
1.44526+04	3.8556 <u>6</u> +41	1.59246+04	3.768VE+112
1.450RE+04	3.77718+01	1.59266+04	3,9518E+02
1.4564E+04	3,777ot+41	1.59292+04	4.1711E+02

1,4620E+04	3,7126E+01	1,5932E+04	4.3905E+02
1 <b>.</b> 4676E+04	3,6644E+01	1,5935E+04	4.62532+02
1.4732E+04	3,73332+01	1.5438E+04	4.9941E+02
1.4788E+04	3.7923E+01	1.5941E+04	5.36296+92
1.48442+04	3.82365+01	1.5944E+04	5.7317E+92
1.4900E+04	3,7561E+01	1.5947E+04	6.1155E+02
1.4955E+04	3,7835E+01	1.59502+04	6.5057E+02
1,5011E+04	3,7854E+01	1.59822+04	1.1632E+03
1.5067E+04	3,79582+01	1.6013E+04	2.6769E+03
1.5123E+04	3,8525E+01	1.60452+04	2.3219E+03
1,5179E+04	3.94806+01	1.6077E+04	1.6868E+03
1,5235E+04	4,92518+01	1.61086+04	1.0667E+03
1.52918+04	4,01406+01	1.61402+04	6.0681E+02
1.53476+04	4,75762+01	1.6172E+04	3.7238E+02
1.5403E+04	4,03756+01	1.6203E+04	2.21965+02
1,5459E+04	4, 77312+01	1.62356+04	1.20265+02
1,5515E+04	4,94178+01	1.62671+04	8.32926+01
1.55706+04	4.08888+01	1.52986+04	3.09898+01
1.56262+04	4,14576+01	1.6330E+04	2.2537E+01
1.56826+04	5.48526+41	1.6362E+04	1.3802E+01
1.57389+94	7,37816+01	1.63932+94	5.87078+00
1.57946+04	1.24978+02	1.64256+04	7.18376+00
1.58506+04	1,94126+02	1.54576+04	5.78958+00
1,58536+04	1,94156+02	1.64885+04	4.61102+00
1,58566+04	2.02486+02	1.65208+04	6.2159E+00
1.58596+04	5.47486+95	1.6552E+04	4,52946+00
1.58626+04	2,12486+42	1.05838+44	3.6758E+00
1.58658+04	2,17486+02	1.6015E+04	5,45272+90
1,5868E+24	5.43135+05	1.6047E+04	6,0821E+00
1.58718+04	5,58446+05	1.00786+04	4,72212+00
1.58748+04	2,3450L+02	1.5710E+04	5,3641E+00
1.58766+04	2.49336+02	1.67426+04	5.01A7E+00
1.58792+34	2,45146+02	1.67736+04	5,85886+20
1.54822+04	2,51956+02	1.0025E+04	4,02408+00
1.50852+04	2,57712+02	1.60376+04	3,94386+00
1.58886+94	5-95618+45	1.54686+04	3 <b>,</b> 7748E+00
1,5891E+04	5.6823E+42	1.59006+04	5.80776+00
1.50948+84	2.73442+02	1.6932E+04	6,5535E+00
1.5857E+24	2.79696+02	1.0903E+04	5.2592E+00

PLTCVT PROGRAM DATA SUMMARY PIR 4 Fission PIR 4 CONTAMINANT = I=129 TONS DF HEAVY METAL FACTOR = 1.0000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLB) MODE = 2 TIME LOW = 9.000000E+02 TIME HIGH= 1.000000E+02 NUMBER OF CELLS = 500 DELTA TIME INCREMENT = 1.982000E+02

RAW DATA AND BLOCKED DATA FACTORS: MIN. TIME = 9.9794E+02 MAX, TIME = 9,1189E+04 TOTAL PARCELS 33800.0 TOTAL WEIGHT . 2.2821E+03 PEAK WEIGHT TIME # 1.2891E+04 22,118 PEAK WEIGHT PEAK PARCELS TIME = 8,0279E+04 92,000 PEAK PARCELS = NO, PARCELS LOW . 0.0 WT. LOW = 0.0000E=01 ND. PARCELS HI . WT. HI . 0.0000E-01 0.0 15 SMOOTHING WINDOW (CELLS) =

TDTAL INVENTORY (CURIES) = 2.282146E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2.245961E+03 PERCENT OF TOTAL INVENTORY = 98.414

TIME OF MAXIMUM CONCENTRATION (YEARS) = 3.377500E+03 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.103832E=07 MAXIMUM RATE (CURIES/YEAR) = 9.214763E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 1.197895E=06

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
9,9910E+02	6,3092E=02	1.2760E+04	8.5166E-02
1,2537E+03	6.7992E=02	1.29556+04	8.3939E-02
1.50822+03	8.1972E=02	1.31498+04	8.2431E-02
1,7628E+03	8,5059E=02	1.3343E+04	8.0544E-02
2.0174E+03	8.4599E=02	1.3537E+04	7.8767E-02
2.2720E+03	8,9234E=02	1.3731E+04	7.7918E-02
2.5265E+03	9,0484E-02	1.3925E+04	7.6933E+02
2.7811E+03	9,9981E=02	1.4119E+84	7.5777E+02
3,0357E+03	9.19646-02	1.4313E+04	7.4429E+02
3.2903E+03	9.2115E-02	1.4508E+04	7.2827E-02
3.5448E+03	9.20836-02	1.4702E+04	7.0927E+02

$\begin{array}{cccccccccccccccccccccccccccccccccccc$				*
4.0540E+039.0960E-021.5090E+046.6748E-024.3035E+039.0879E-021.5284E+046.4355E-024.5631E+039.0470E-021.5572E+045.7421E-025.0723E+039.0565E+021.5072E+045.2116E-025.3264E+039.0704E-021.6060E+044.4116E-025.3814E+039.1011E-021.6339E+041.2490E-025.364E+039.1530E+022.0517E+041.2422E-026.3451E+039.1530E+022.2595E+041.2422E-026.3451E+039.1530E+022.2595E+041.2422E-026.3451E+039.1530E+022.2595E+041.2492E-026.3541E+039.1952E+023.2008E+041.2492E-026.3543E+039.1972E-223.2008E+041.2402E-027.108AE+039.1972E-223.6564E+041.2402E-027.3534E+039.1972E-223.6564E+041.2592E-023.5317E+039.1809E-224.1122E+041.2522E-023.517E+039.1809E-224.1122E+041.2522E-023.517E+039.157E+023.6554E+041.253E-029.4000E+039.1567E-025.0235E+041.253E-029.4000E+039.127E+025.251E+041.253E-029.4000E+039.127E+025.251E+041.2438E-029.4000E+039.127E+025.251E+041.253E-029.4000E+039.127E+025.251E+041.2438E-029.4000E+039.127E+025.251E+041.2438E-029.4000E+039.127E+025.251E+041.2438E-029.4000E+0	3.79946+03	9,15616-02	1,4896E+04	6,8819E=02
4.3085E+039.0879E-021.5284E+046.4355E-024.5631E+039.0879E-021.5476E+046.1342E-024.8177E+039.0704E-021.5672E+045.74216E-025.0723E+039.0565E+021.5066E+045.2116E-025.326AE+039.0704E-021.6060E+044.4116E-025.381AE+039.1011E-022.0517E+041.2490E-025.381AE+039.1534E-022.0517E+041.2492E-026.3451E+039.1534E-022.0517E+041.2492E-026.3451E+039.1694E-022.5175E+041.2492E-026.3451E+039.1052E-023.2408E+041.2492E-026.3451E+039.1052E-023.2408E+041.2542E-026.3451E+039.1052E-023.2408E+041.2544E-027.108AE+039.1072E-023.4236E+041.2544E-027.616E+039.2073E-023.6504E+041.2544E-027.616E+039.107E-023.6504E+041.2529E-028.1271E+039.1741E-023.6504E+041.2529E-028.3817E+039.1741E-023.0535E+041.2536E-029.4000E+039.157E-025.0233E+041.2536E-029.4000E+039.127E-025.0233E+041.2536E-029.4000E+039.127E-025.0233E+041.2536E-029.4000E+039.127E-025.0233E+041.2536E-029.4000E+039.127E-025.0233E+041.2536E-029.4154E+039.1396E-025.0233E+041.2508E-029.434E+039.127E-025.046E+041.2508E-02 <td< td=""><td>4.05402+03</td><td>9.09505-02</td><td>1-50946+04</td><td>5.6748E-02</td></td<>	4.05402+03	9.09505-02	1-50946+04	5.6748E-02
4.5631E+039.0470E-021.5476E+046.1342E-023.072E+039.0747E+021.5072E+045.7421E-023.072E+039.074E-021.5060E+044.4116E-023.056E+039.1732E+021.6060E+044.4116E-023.060E+039.1332E-022.0617E+041.2490E-025.041E+039.1530E+022.0517E+041.2432E-025.070E+039.1530E+022.2595E+041.2432E-025.070E+039.1530E+022.0517E+041.2432E-025.070E+039.1530E+022.7451E+041.2432E-025.070E+039.1952E-023.2408E+041.2504E-025.0545E+039.1952E-023.6564E+041.2544E-027.108AE+039.1952E-023.6564E+041.2544E-027.650E+039.1951E-023.6564E+041.2529E-028.1271E+039.1844E-024.1120E+041.2529E-028.3817E+039.1567E-024.5677E+041.2592E-028.484E+039.1567E-024.5677E+041.2592E-028.487E+039.1567E-025.0233E+041.2592E-029.4000E+039.127E+025.2511E+0A1.2592E-029.4000E+039.127E+025.9346E+041.2592E-029.4000E+039.127E+025.9346E+041.2592E-029.4000E+039.127E+025.9346E+041.2592E-029.4000E+039.127E+025.9346E+041.2508E-029.4000E+039.125E+025.9346E+041.2432E-029.4000E+039.125E+025.9346E+041.2432E-021.619E+04	4.30855+03	9.0879E=02	1.5284E+04	6.4355E+02
4.8177E+039.0747E-021.5572E+045.742E-025.0723E+039.0565E+021.5506E+044.4116E-025.326AE+039.0704E-021.6050E+044.4116E-025.3614E+039.1011E-021.6339E+041.2490E-025.8160E+039.1530E-022.65175E+041.2528E-026.3451E+039.1694E-022.2595E+041.2492E-026.3451E+039.1694E-022.25175E+041.2492E-026.3543E+039.1972E-023.2408E+041.2492E-027.108AE+039.1972E-023.6504E+041.2524E-027.6726E+039.1972E-023.6504E+041.2524E-027.6726E+039.1975E-023.6504E+041.2524E-027.6726E+039.1975E-023.6504E+041.2524E-027.6726E+039.1975E-023.6504E+041.2524E-027.6726E+039.1949E-024.1122E+041.2524E-027.6726E+039.1949E-024.5577E+041.2526E-028.633E+039.157E-023.6504E+041.2502E-028.635E+039.157E-024.5577E+041.2536E-029.1454E+039.157E-025.2511E+041.2536E-029.464E+039.1217E-025.2511E+041.2538E-029.464E+039.1231E-025.9346E+041.2438E-029.464E+039.1251E-025.9346E+041.2438E-029.464E+039.1251E-025.9346E+041.2438E-029.464E+039.1251E-025.9346E+041.2438E-021.364E+039.1251E-025.9346E+041.2438E-02 <td< td=""><td>4-56318+43</td><td>9 9874E-02</td><td>1.5478E+04</td><td>6.1342F=02</td></td<>	4-56318+43	9 9874E-02	1.5478E+04	6.1342F=02
$\begin{array}{c} 0,723E+03 & 9,0764E+02 & 1,5066E+04 & 5,2116E-02 \\ 5,326AE+03 & 9,0704E+02 & 1,6060E+04 & 4,4116E+02 \\ 5,3360E+03 & 9,1332E+02 & 2,0617E+04 & 1,2490E+02 \\ 5,360E+03 & 9,1332E+02 & 2,0617E+04 & 1,2492E+02 \\ 6,3451E+03 & 9,1694E+02 & 2,5175E+04 & 1,2492E+02 \\ 6,3451E+03 & 9,1692E+02 & 2,9730E+04 & 1,2492E+02 \\ 6,3543E+03 & 9,2059E+02 & 2,9730E+04 & 1,2492E+02 \\ 7,108AE+03 & 9,1972E+02 & 3,4206E+04 & 1,2492E+02 \\ 7,3634E+03 & 9,1972E+02 & 3,4206E+04 & 1,2594E+02 \\ 7,6160E+03 & 9,2073E+02 & 3,4236E+04 & 1,2592E+02 \\ 7,8726E+03 & 9,1995E+02 & 3,4236E+04 & 1,2592E+02 \\ 8,1271E+03 & 9,1899E+02 & 3,4042E+04 & 1,2592E+02 \\ 8,1271E+03 & 9,1899E+02 & 4,1120E+04 & 1,2592E+02 \\ 8,635E+03 & 9,1995E+02 & 4,5677E+04 & 1,2592E+02 \\ 8,635E+03 & 9,1567E+02 & 4,5677E+04 & 1,2536E+02 \\ 8,635E+03 & 9,1567E+02 & 4,7955E+04 & 1,2536E+02 \\ 9,1454E+03 & 9,1567E+02 & 5,2511E+004 & 1,2536E+02 \\ 9,1454E+03 & 9,1567E+02 & 5,2511E+004 & 1,2536E+02 \\ 9,1454E+03 & 9,1217E+02 & 5,2511E+04 & 1,2536E+02 \\ 9,4040E+03 & 9,1217E+02 & 5,27066E+04 & 1,2536E+02 \\ 9,4040E+03 & 9,1217E+02 & 5,2511E+04 & 1,2536E+02 \\ 1,0643E+04 & 9,1251E+02 & 5,9346E+04 & 1,2536E+02 \\ 1,0643E+04 & 9,1273E+02 & 6,1024E+04 & 1,2438E+02 \\ 1,0643E+04 & 9,1264E+02 & 5,9346E+04 & 1,2438E+02 \\ 1,0619E+04 & 9,1053E+02 & 6,8494E+04 & 1,2438E+02 \\ 1,0431E+04 & 9,1053E+02 & 7,5293E+04 & 1,2432E+02 \\ 1,143F+04 & 9,2056E+02 & 7,5293E+04 & 1,2432E+02 \\ 1,1462E+04 & 8,9465E+02 & 7,5293E+04 & 1,2438E+02 \\ 1,179E+04 & 8,8465E+02 & 7,5293E+04 & 1,2438E+02 \\ 1,1984E+04 & 8,8465E+02 & 7,5293E+04 & 1,2440E+02 \\ 1,2178E+04 & 8,8465E+02 & 7,5293E+04 & 1,2440E+02 \\ 1,2178E+04 & 8,8465E+02 & 7,9556E+04 & 1,2440E+02 \\ 1,2178E+04 & 8,612E+02 & 8,4406E+04 & 1,2465E+02 \\ 1,278E+04 & 8,612E+02 & 8,8406E+04 & 1,2465E+02 \\ 1,278E+04 & 8,612E+02 & 8,8406E+04 & 1,2465E+02 \\ 1,2656E+04 & 8,612E+02 & 8,8406E+04 & 1,2465E+02 \\ 1,2656E+04 & 8,612E+0$	4. A177E+33	9 07476-02	1-50728+04	5 74218-02
$\begin{array}{c} 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,$	5 47235301	9 35454-03	1 54665444	5 31165-05
$\begin{array}{c} 1, 3, 50, 50, 14, 50, 50, 14, 50, 50, 14, 50, 50, 14, 50, 50, 14, 50, 50, 14, 50, 50, 14, 50, 50, 14, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50$	5 73645447	0 0700E-02	1	1 4444 <u>2</u> -03
$3,36142+03$ $9,10312\pm02$ $1,3532+144$ $1,2492\pm02$ $5,36002+03$ $9,15342+02$ $2,00172+04$ $1,2492\pm02$ $6,34512+03$ $9,16942+02$ $2,25952+04$ $1,24922\pm02$ $6,34512+03$ $9,16942+02$ $2,74512+04$ $1,24922\pm02$ $6,35432+03$ $9,10972\pm02$ $2,97302+04$ $1,24922\pm02$ $6,35432+03$ $9,10972\pm02$ $2,97302+04$ $1,24402\pm02$ $7,10882+03$ $9,19722+02$ $3,2082+04$ $1,2540202$ $7,35342+03$ $9,19722+02$ $3,42362+04$ $1,2529202$ $7,61502+03$ $9,19722+02$ $3,65642+04$ $1,252920202$ $7,61502+03$ $9,19722+02$ $3,65642+04$ $1,250220202$ $7,61502+03$ $9,19722+02$ $3,65642+04$ $1,250220202$ $7,61502+03$ $9,19722+02$ $3,65642+04$ $1,250220202$ $7,61502+03$ $9,19722+02$ $3,6567204$ $1,224220202$ $8,58172+03$ $9,15672+02$ $4,79552+04$ $1,223922-022$ $9,16372+02$ $9,15672+02$ $4,79552+04$ $1,223922-022$ $9,14542+03$ $9,1272+02$ $5,25112+04$ $1,223922-022$ $9,404022+03$ $9,12721-02$ $5,93462+04$ $1,224322-022$ $9,404022+03$ $9,12721-02$ $5,93462+04$ $1,224322-022$ $9,404022+03$ $9,12732-02$ $5,93462+04$ $1,224322-022$ $1,004322+04$ $9,12732-02$ $5,93462+04$ $1,224322-022$ $1,004322+04$ $9,12732-02$ $5,93462+04$ $1,224922-022$ $1,05322-02$ $7,5712+04$ $1,24932-02$ <td>3 8 8 4 4 5 4 4 3 3 8 9 4 4 5 4 4 3</td> <td>7 80704C=0C</td> <td>1,00005-04</td> <td>4.34005-00</td>	3 8 8 4 4 5 4 4 3 3 8 9 4 4 5 4 4 3	7 80704C=0C	1,00005-04	4.34005-00
$\begin{array}{c} 2, 3, 3, 5, 0, 0, 1, 2, 5, 0, 2, 2, 0, 0, 1, 1, 2, 5, 0, 2, 2, 0, 0, 1, 1, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2,$	3,3014CTU3	9,19115-0g	1.03375704	1.24905-02
$\begin{array}{c} \mathbf{b}, \mathbf{y} \mathbf{v} \mathbf{v} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{c} \mathbf{c} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} v$	3.0300ET03	7.13325=02	2.001/2704	1,23685-02
b, 345112+03 $9, 16942-02$ $2, 51732+04$ $1, 24922-02$ $b, 35432+03$ $9, 20592-02$ $2, 97302+04$ $1, 25712-02$ $7, 10882+03$ $9, 10922-02$ $2, 97302+04$ $1, 25912-02$ $7, 36342+03$ $9, 10922-02$ $3, 42362+04$ $1, 25442-02$ $7, 56342+03$ $9, 10922-02$ $3, 42362+04$ $1, 25442-02$ $7, 57252+03$ $9, 10922-02$ $3, 65642+04$ $1, 25422-02$ $8, 12712+03$ $9, 10922-02$ $4, 11202+044$ $1, 23622-02$ $8, 38172+03$ $9, 10922-02$ $4, 11202+044$ $1, 23622-02$ $8, 58172+03$ $9, 17412-02$ $4, 53992+044$ $1, 23622-02$ $8, 63632+03$ $9, 17412-02$ $4, 539922-02$ $8, 63632+03$ $9, 15672-02$ $4, 79552+044$ $1, 25142-02$ $8, 63632+03$ $9, 15672-02$ $5, 02332+044$ $1, 253622-02$ $9, 14542+03$ $9, 1272-02$ $5, 02332+044$ $1, 25362-02$ $9, 40002+03$ $9, 12172-02$ $5, 02332+044$ $1, 25362-02$ $9, 40002+03$ $9, 12172-02$ $5, 25112+044$ $1, 24382-02$ $9, 40002+03$ $9, 12732-02$ $5, 93462+044$ $1, 24382-02$ $9, 40002+03$ $9, 12732-02$ $5, 93462+044$ $1, 24382-02$ $9, 40042+03$ $9, 12732-02$ $5, 93462+044$ $1, 24382-02$ $1, 04312+044$ $9, 12732-02$ $6, 614902+004$ $1, 24382-02$ $1, 04252+044$ $9, 12432-02$ $6, 614902+044$ $1, 24932-02$ $1, 04252+044$ $9, 12432-02$ $6, 614902+044$ $1, 24932-02$	5.N4002403	4,13346465	2.20435+14	1,24222=02
b.53976+03 $9.18522-42$ $2.74512+04$ $1.24922-02$ $b.85432+03$ $9.19722-32$ $3.20082+004$ $1.25712-02$ $7.36342+03$ $9.19722-32$ $3.20082+004$ $1.24602-02$ $7.61502+03$ $9.19722-02$ $3.64262+04$ $1.25442-02$ $7.61502+03$ $9.10732-02$ $3.65642+04$ $1.25242-02$ $8.12712+03$ $9.10922-02$ $4.11202+04$ $1.25292-02$ $8.12712+03$ $9.10922-02$ $4.11202+04$ $1.24422-02$ $8.6362+03$ $9.10922-02$ $4.11202+04$ $1.24422-02$ $8.6362+03$ $9.10922-02$ $4.56772+04$ $1.24422-02$ $8.64022+03$ $9.10572-02$ $4.56772+04$ $1.25362-02$ $9.14542+03$ $9.15672-02$ $5.02332+004$ $1.25362-02$ $9.40002+03$ $9.12172-02$ $5.02332+004$ $1.25362-02$ $9.40002+03$ $9.12172-02$ $5.02332+004$ $1.25362-02$ $9.40002+03$ $9.12172-02$ $5.02332+004$ $1.25352-02$ $9.40002+03$ $9.12512-02$ $5.02332+004$ $1.24382-02$ $9.40002+03$ $9.12732-02$ $5.03462+04$ $1.24382-02$ $1.30432+04$ $9.12512-02$ $5.03462+04$ $1.24382-02$ $1.30432+04$ $9.12732-02$ $5.93462+04$ $1.24382-02$ $1.4022+04$ $9.12432-02$ $5.93462+04$ $1.24382-02$ $1.4022+04$ $9.12432-02$ $5.93462+04$ $1.24382-02$ $1.4042+04$ $9.10532-02$ $6.10242+04$ $1.24322-02$ $1.4042+04$ $9.00502-02$ $7.52932+04$ $1.2432-02$ <	5.54512+45	9.10946-02	2.51752+04	1,2485E=02
6.8543E+03 $9.2059E-02$ $2.9730E+04$ $1.2571E-02$ $7.108AE+03$ $9.1972E-32$ $3.2008E+04$ $1.2460E-02$ $7.5A34E+03$ $9.1972E-32$ $3.4236E+04$ $1.2544E-02$ $7.5A34E+03$ $9.2073E-02$ $3.6564E+04$ $1.259E-02$ $7.5A34E+03$ $9.2073E-02$ $3.6564E+04$ $1.2529E-02$ $8.1271E+03$ $9.1849E-02$ $4.1120E+04$ $1.2262E-02$ $8.3817E+03$ $9.1741E-02$ $4.3399E+04$ $1.2442E-02$ $8.636E+03$ $9.1567E-02$ $4.5677E+04$ $1.2536E-02$ $8.640E+03$ $9.1567E-02$ $5.023E+04$ $1.2536E-02$ $9.400E+03$ $9.1217E-02$ $5.2511E+04$ $1.2536E-02$ $9.400E+03$ $9.1275E-02$ $5.2511E+04$ $1.2548E-02$ $9.400E+03$ $9.1217E-02$ $5.2511E+04$ $1.2548E-02$ $9.400E+03$ $9.1217E-02$ $5.2511E+04$ $1.2438E-02$ $9.400E+03$ $9.1224E-02$ $5.9346E+04$ $1.2548E-02$ $1.0043E+04$ $9.1251E-02$ $5.9346E+04$ $1.22438E-02$ $1.0237E+04$ $9.1273E-02$ $6.1024E+04$ $1.2429E-02$ $1.0431E+04$ $9.1264E-02$ $5.9346E+04$ $1.22429E-02$ $1.0431E+04$ $9.1264E-02$ $7.593E+04$ $1.2423E-02$ $1.042E+04$ $9.1053E-02$ $7.5293E+04$ $1.2423E-02$ $1.1045E+04$ $8.9465E-02$ $7.5293E+04$ $1.22428E-02$ $1.1204E+04$ $9.8500E-02$ $7.5293E+04$ $1.22428E-02$ $1.1790E+04$ $8.8500E-02$ $7.5293E+04$ $1.22428E-02$ </td <td>5.5997E+03</td> <td>9.18526-42</td> <td>2,7451E+04</td> <td>1,2492E=02</td>	5.5997E+03	9.18526-42	2,7451E+04	1,2492E=02
7.108AE+039.1972E-023.2008E+041.2460E-027.3634E+039.1995E-023.4236E+041.2544E-027.6150E+039.2073E-023.6554E+041.2529E-028.1271E+039.1844E-024.1120E+041.2362E-028.3817E+039.1741E-024.3399E+041.244E-028.6564E+041.244E-024.3299E-028.3817E+039.1741E-024.3399E+041.244E-028.6364E+039.1567E-024.7955E+041.2536E-029.1454E+039.1567E-025.0233E+041.2536E-029.4000E+039.1217E-025.2511E+041.2536E-029.4000E+039.1217E-025.9346E+041.2568E-029.4546E+039.1231E-025.9346E+041.2568E-021.30243E+049.1273E-026.1024E+041.2438E-021.4642E+049.1273E-026.1024E+041.249E-021.4642E+049.1273E-026.1024E+041.2438E-021.4642E+049.1273E-026.1024E+041.249E-021.4642E+049.1273E-026.1024E+041.2438E-021.4642E+049.1053E-027.3015E+041.2429E-021.4642E+049.4058E-027.5293E+041.2428E-021.1462E+048.9465E-027.5293E+041.2248E-021.1790E+048.8560E-027.5293E+041.2248E-021.1790E+048.8560E-027.5293E+041.2248E-021.1790E+048.8560E-027.5293E+041.2248E-021.1790E+048.8560E-027.5293E+041.2248E-021.1790E+04 </td <td>6.85435+03</td> <td>9,2059E-02</td> <td>2,9730E+04</td> <td>1,25718-02</td>	6.85435+03	9,2059E-02	2,9730E+04	1,25718-02
7.3634E+039.1495E-023.4236E+041.2544E-027.6180E+039.2073E-023.6564E+041.2529E-028.726E+039.1844E-023.8642E+041.2529E-028.1271E+039.1849E-024.1120E+041.2562E-028.3817E+039.1741E-024.3399E+041.2442E-028.636E+039.1567E-024.5677E+041.2514E-029.1454E+039.1567E-025.0233E+041.2536E-029.4546E+039.1217E-025.2511E+041.2536E-029.4546E+039.1276E-025.0233E+041.2536E-029.4546E+039.127E-025.2511E+041.2536E-029.4546E+039.1251E-025.9346E+041.2548E-021.3043E+049.1251E-025.9346E+041.2548E-021.4043E+049.1251E-025.9346E+041.2438E-021.4043E+049.1264E-026.6459E+041.2438E-021.4043E+049.1058E-027.3015E+041.2438E-021.4042E+049.464E-027.0737E+041.2438E-021.4042E+049.4050E-027.3015E+041.2438E-021.1205E+049.4050E-027.3015E+041.2438E-021.1407E+049.465E-027.5293E+041.2558E-021.1205E+048.9465E-027.5293E+041.2438E-021.1407E+048.9465E-027.9550E+041.2438E-021.1205E+048.9465E-027.5293E+041.2438E-021.1790E+048.9560E-027.9550E+041.2438E-021.1790E+048.7540E-028.4406E+041.2438E-02 <t< td=""><td>7,108AE+03</td><td>9,19725-82</td><td>3<b>.</b>2008E+04</td><td>1,2460E-02</td></t<>	7,108AE+03	9,19725-82	3 <b>.</b> 2008E+04	1,2460E-02
7. $\pm 1602 \pm 43$ 9. $20732 \pm -02$ 3. $65642 \pm 04$ 1. $24112 = 02$ 7. $87252 \pm 43$ 9. $18442 \pm 42$ 3. $80422 \pm 04$ 1. $25292 \pm 02$ 8. $12712 \pm 03$ 9. $18492 \pm 02$ 4. $11202 \pm 644$ 1. $23622 \pm 02$ 8. $36172 \pm 03$ 9. $17412 \pm 92$ 4. $33992 \pm 04$ 1. $24422 \pm 02$ 8. $63632 \pm 43$ 9. $15672 \pm 42$ 4. $56772 \pm 04$ 1. $22442 \pm 02$ 8. $63632 \pm 43$ 9. $15672 \pm 42$ 4. $79552 \pm 04$ 1. $223922 \pm 02$ 9. $14542 \pm 423$ 9. $15672 \pm 42$ 4. $79552 \pm 04$ 1. $25362 \pm 02$ 9. $44542 \pm 423$ 9. $1272 \pm 02$ 5. $25112 \pm 04$ 1. $25362 \pm 02$ 9. $40402 \pm 433$ 9. $1272 \pm 02$ 5. $47902 \pm 04$ 1. $25362 \pm 02$ 9. $40402 \pm 433$ 9. $1272 \pm 02$ 5. $47902 \pm 04$ 1. $25682 \pm 02$ 9. $5462 \pm 03$ 9. $12424 \pm 02$ 5. $70682 \pm 04$ 1. $25682 \pm 02$ 1. $90432 \pm 44$ 9. $12511 \pm 02$ 5. $93462 \pm 04$ 1. $24382 \pm 02$ 1. $90432 \pm 44$ 9. $12732 \pm 02$ 6. $16242 \pm 04$ 1. $24382 \pm 02$ 1. $9432 \pm 44$ 9. $12432 \pm 42$ 6. $51602 \pm 04$ 1. $24329 \pm 02$ 1. $9137 \pm 404$ 9. $10532 \pm 02$ 6. $84592 \pm 04$ 1. $24322 \pm 02$ 1. $9432 \pm 404$ 9. $10532 \pm 02$ 7. $51732 \pm 04$ 1. $24322 \pm 02$ 1. $10437 \pm 404$ 9. $4652 \pm 02$ 7. $52932 \pm 404$ 1. $24312 \pm 02$ 1. $17912 \pm 404$ 9. $90502 \pm 02$ 7. $52932 \pm 404$ 1. $2432 \pm 02$ 1. $17902 \pm 404$ 8. $95602 \pm 02$ 7. $95502 \pm 04$ 1. $24282 \pm 02$ 1. $17902 \pm 404$ 8.	7,36346+03	9,14958=02	3,4236E+04	1.2544E-02
7.8726E+039.1844E=023.8042E+041.2529E=028.1271E+039.1899E+024.1120E+041.2362E=028.3817E+039.1741E=924.3399E+041.2442E=028.6363E+039.1607E=024.5677E+041.2514E=028.6964E+039.1567E=024.7955E+041.2392E=029.1454E+039.127E=025.0233E+041.2536E=029.4000E+039.1217E=025.2511E+041.2595E=029.6546E+039.1224E=025.7068E+041.2568E=029.6546E+039.1251E=025.9346E+041.2668E=021.0043E+049.1251E=025.9346E+041.2668E=021.0043E+049.1273E=026.1624E+041.2438E=021.0431E+049.1266E=026.5160E+041.2408E=021.0431E+049.1266E=027.0737E+041.2438E=021.053E=027.0737E+041.2438E=021.0619E+049.1053E=027.0737E+041.2438E=021.1413F+049.0050E=027.5293E+041.2438E=021.1402E+048.9465E=027.5293E+041.2558E=021.1790E+048.860E=027.5293E+041.2438E=021.1790E+048.860E=027.5293E+041.2428E=021.1790E+048.860E=027.5293E+041.2428E=021.1784E+048.8560E=027.5293E+041.2428E=021.1784E+048.7544E=028.4406E+041.2509E=021.2778E+048.8560E=027.5268E+041.2428E=021.278E+048.7544E=028.4406E+041.2406E=021.278E+04	7.61806+03	9,20735-02	3,6564E+04	1,2411E=02
$B_{1}$ $1271$ $124493$ $9_{1}$ $18492$ $4_{1}$ $1232$ $12442$ $2622$ $2622$ $B_{1}$ $38172$ $9_{1}$ $17412$ $9_{1}$ $3992$ $402422$ $124422$ $26222$ $26222$ $B_{1}$ $89492$ $9_{1}$ $16972$ $4_{1}$ $79552$ $4_{1}$ $261422$ $26222$ $292222$ $B_{1}$ $89492$ $9_{1}$ $16972$ $4_{1}$ $79552$ $4_{1}$ $79552$ $1239222$ $2922222$ $9_{1}$ $145422$ $9_{1}$ $139522$ $9_{1}$ $253622222$ $29222222222222$ $2922222222222222222222222222222222222$	7.87262+03	9.18445-02	3.80428+04	1.2529E=02
a $3817E + 93$ 9 $1741E - 92$ 4 $3399E + 04$ 1 $2442E - 02$ a $6363E + 43$ 9 $167E - 42$ 4 $5677E + 04$ 1 $2614E - 02$ a $809E + 03$ 9 $1567E - 42$ 4 $7955E + 04$ 1 $2392E - 02$ 9 $1454E + 23$ 9 $139bE - 02$ 5 $9233E + 04$ 1 $2595E - 02$ 9 $4000E + 03$ 9 $1217E - 02$ 5 $2511E + 04$ 1 $2595E - 02$ 9 $5546E + 03$ 9 $1217E - 02$ 5 $2511E + 04$ 1 $2595E - 02$ 9 $546E + 03$ 9 $1224E - 02$ 5 $7068E + 04$ 1 $2568E - 02$ 1 $2043E + 04$ 9 $1251E - 02$ 5 $9346E + 04$ 1 $2438E - 02$ 1 $9043E + 04$ 9 $1273E - 02$ 5 $9346E + 04$ 1 $2438E - 02$ 1 $9043E + 04$ 9 $1273E - 02$ 5 $9346E + 04$ 1 $2458E - 02$ 1 $9043E + 04$ 9 $1273E - 02$ 5 $9346E + 04$ 1 $2423E - 02$ 1 $9043E + 04$ 9 $1243E - 02$ 5 $9026E + 04$ 1 $2423E - 02$ 1 $9043E + 04$ 9 $1053E - 02$ 7 $503E + 04$ 1 $2433E - 02$ 1 $1043E + 04$ 9 $9050E - 02$ 7 $503E + 04$ 1 $2433E - 02$ 1 $1402E + 04$ 8 $9465E - 02$ 7 $5293E + 04$ 1 $2433E - 02$ 1 $1402E + 04$ 8 <t< td=""><td>8.12716+03</td><td>9.18998-02</td><td>4.1120E+04</td><td>1.23628-02</td></t<>	8.12716+03	9.18998-02	4.1120E+04	1.23628-02
8.6363£+039.1507£-024.5077£+041.2514E-028.8909£+039.1567±-025.0233£+041.2536E-029.1454£+039.1395±-025.0233£+041.2536E-029.4000£+039.1217£-025.2511£+041.2595E-029.5546£+039.12824±-025.2511£+041.2538E-029.546£+039.1251£-025.9346±+041.2568E-029.546£+039.1251£-025.9346±+041.2568E-021.3043£+049.1251£-025.9346±+041.2438E-021.3043£+049.1273±-026.1024£+041.2438E-021.431±+049.1264±-326.3902£+041.24928=021.4525£+049.1243£-026.8459£+041.2498=021.4535£+049.1058±-026.8459£+041.2493E-021.4025£+049.1058±-027.3015£+041.2493E-021.4025£+049.2050±-027.3015£+041.2431E-021.1402£+048.9465£-027.5293£+041.2431E-021.1402£+048.9465£-027.9550£+041.2428E-021.1596±+048.9465£-027.9550£+041.2428E-021.1790±+048.8560±-027.9550£+041.2428E-021.1790±+048.8560±-027.9550£+041.2428E-021.178£+048.7540±-028.4406±+041.2406±-021.2178£+048.7540±-028.6044±+041.2456E-321.2372£+048.6091±-028.604±±041.2456E-321.2566±+048.6091±-028.604±±041.2456E-32	8.3817E+93	9.1741E-02	4.33995+04	1.24425-02
$B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0}$ $B_{0}^{0$	8.43636403	9 10076-02	9.5677F+04	1.26148-02
9,1454E+03 9,1396E-02 5,0233E+04 1,2536E-02   9,4000E+03 9,1217E-02 5,2511E+04 1,2536E-02   9,6546E+03 9,1217E-02 5,2511E+04 1,2538E-02   9,407E+03 9,1224E-02 5,7068E+04 1,2538E-02   9,4087E+03 9,1251E-02 5,9346E+04 1,2438E-02   9,4087E+03 9,1251E-02 5,9346E+04 1,2438E-02   1,0043E+04 9,1273E-02 6,1624E+04 1,2438E-02   1,0431E+04 9,1243E-02 6,5160E+04 1,2498E-02   1,0431E+04 9,1243E-02 6,6160E+04 1,2498E-02   1,0431E+04 9,1053E-02 6,6459E+04 1,2493E-02   1,0431E+04 9,1053E-02 6,6459E+04 1,2493E-02   1,0431E+04 9,1053E-02 7,5015E+04 1,2493E-02   1,0431F+04 9,0050E-02 7,5293E+04 1,2431E-02   1,1402E+04 8,9465E-02 7,5293E+04 1,2431E-02   1,1596E+04 8,8465E-02 7,9550E+04 1,2428E-02   1,1790E+04 8,8465E-02 7,9550E+04 1,2428E-02   1,1984E+04 8,8560E-02	8.89696+03	9-15676-02	4.79556+04	1.21928-02
9.4000000000000000000000000000000000000	9.14545+23	9.13965-02	5-02335+04	1 25365-02
9.5546E+03 9.1185E-02 5.4790E+04 1.2438E-02   9.4887E+03 9.1224E-02 5.7068E+04 1.2568E-02   1.3043E+04 9.1251E-02 5.9346E+04 1.2438E-02   1.4237E+04 9.1273E-02 5.9346E+04 1.2438E-02   1.4237E+04 9.1273E-02 5.9346E+04 1.2438E-02   1.4237E+04 9.1273E-02 5.9346E+04 1.2438E-02   1.431E+04 9.1273E-02 5.9346E+04 1.2438E-02   1.4431E+04 9.1243E-02 5.9346E+04 1.2438E-02   1.4525E+04 9.1243E-02 5.9346E+04 1.2408E-02   1.4619E+04 9.1058E-02 5.9346E+04 1.2408E-02   1.1462E+04 9.4614E-02 7.0737E+04 1.2493E-02   1.1268E+04 9.4614E-02 7.0737E+04 1.2431E-02   1.1462E+04 8.9465E-02 7.5293E+04 1.2358E-02   1.1596E+04 8.9465E-02 7.9550E+04 1.2428E-02   1.1596E+04 8.8465E-02 7.9550E+04 1.2428E-02   1.1596E+04 8.8465E-02 7.9550E+04 1.2428E-02   1.1790E+04 8.8560E-02	9. AUNAE+43	9 12178-02	5.25116+04	1 34055-02
9, A 4 B 7 E + 03 9, 1224 E = 02 5, 706 B E + 04 1, 256 B E = 02   1, 00 4 3 E + 04 9, 1251 E = 02 5, 9346 E + 04 1, 2438 E = 02   1, 02 3 7 E + 04 9, 1251 E = 02 5, 9346 E + 04 1, 2438 E = 02   1, 04 3 1 E + 04 9, 1273 E = 02 5, 9346 E + 04 1, 2438 E = 02   1, 04 3 1 E + 04 9, 126 3 E = 02 5, 9346 E + 04 1, 240 2 E = 02   1, 05 2 5 E + 04 9, 124 3 E = 02 5, 9346 E + 04 1, 240 2 E = 02   1, 05 2 5 E + 04 9, 124 3 E = 02 5, 9346 E + 04 1, 240 2 E = 02   1, 05 2 5 E + 04 9, 124 3 E = 02 5, 8459 E + 04 1, 240 2 E = 02   1, 05 2 5 + 04 9, 105 3 E = 02 7, 07 3 7 E + 04 1, 249 3 E = 02   1, 140 2 E + 04 9, 200 5 0 E = 02 7, 391 5 E + 04 1, 243 1 E = 02   1, 140 2 E + 04 8, 946 5 E = 02 7, 52 93 E + 04 1, 25 5 8 E = 02   1, 1596 E + 04 8, 896 3 E = 02 7, 75 7 1 E + 04 1, 24 2 8 E = 02   1, 1790 E + 04 8, 896 0 E = 02 7, 98 5 0 E + 04 1, 24 4 0 E = 02   1, 21 7 8 E + 04 8, 75 4 0 E = 02 8, 44 0 6 E + 04 1, 24 5 6 E = 02   1, 23 7 2	9.65465403	9 11855-03	5 07006-04	1 20285-02
1.3043E+04 9.1251E-02 5.9346E+04 1.2438E-02   1.4237E+04 9.1273E-02 5.9346E+04 1.2438E-02   1.6431E+04 9.1273E-02 5.9346E+04 1.2458E-02   1.6431E+04 9.1264E-02 5.9346E+04 1.2462E-02   1.6431E+04 9.1264E-02 5.9346E+04 1.2429E-02   1.6431E+04 9.1264E-02 5.9346E+04 1.2429E-02   1.6431E+04 9.1264E-02 5.9346E+04 1.2429E-02   1.6431E+04 9.1058E-02 5.8459E+04 1.2493E-02   1.6431E+04 9.4614E-02 7.0737E+04 1.2493E-02   1.1442E+04 9.4614E-02 7.3915E+04 1.2493E-02   1.1268E+04 9.4056E-02 7.5293E+04 1.2431E-02   1.1462E+04 8.9465E-02 7.5293E+04 1.2558E-02   1.1596E+04 8.8963E-02 7.9650E+04 1.2428E-02   1.1790E+04 8.8560E-02 7.9650E+04 1.2440E-02   1.2178E+04 8.7540E-02 8.4406E+04 1.2509E-02   1.2372E+04 8.6091E-02 8.6064E+04 1.24256E-02   1.2506E+04 8.6125E+02	0 90975402	0 100MP-000	2947906704 8 90696504	1 35436-03
1.000032000 9.12512002 3.93402000 1.24302002   1.02372000 9.12732002 5.102424004 1.24302002   1.04312000 9.1264202 5.39022004 1.24520202   1.04312000 9.1264202 5.39022004 1.24292002   1.04312000 9.12432002 5.51602 5.3902204 1.24292002   1.05252002 9.12432002 5.516022 5.61602004 1.25092002   1.05192002 9.10532002 5.6459204 1.24932002 1.24932002   1.14137402 9.36142002 7.07372004 1.24932002 1.24312002   1.12052000 9.36142002 7.3015204 1.2431202 1.2431202   1.12052000 9.3605000 7.52932004 1.2431202 1.2431202   1.14022000 9.3050000 7.52932004 1.23582002 1.25502002   1.159562004 8.39600000 7.9550204 1.24282002 1.24402002   1.17902004 8.3400000 8.212804 1.24400000 1.24400000   1.21782004 8.3560000 8.212804 1.25092002 1.24500000   1.2372004 8.60912002 8.		0 13818-00 7:12245-02	307030C704	
1. NE372+04 7.12732-02 5.10242+04 1.24622-02   1. 04316+04 9.12662-02 5.39022+04 1.24292-02   1. 06252+04 9.12432-02 5.51602+04 1.24292-02   1. 063192+04 9.10582-02 5.64592+04 1.24292-02   1. 063192+04 9.10582-02 5.84592+04 1.24292-02   1. 1413F+04 9.36142-02 7.07372+04 1.24932-02   1. 122642+04 9.30502-02 7.39152+04 1.24312-02   1. 122642+04 8.94652-02 7.52932+04 1.23582-02   1. 14022+04 8.94652-02 7.52932+04 1.25582-02   1. 15962+04 8.89632-02 7.95532+04 1.24282-02   1. 17902+04 8.89602-02 7.95532+04 1.24282-02   1. 179842+04 8.89602-02 7.95532+04 1.24282-02   1. 1782+04 8.75402-02 8.21282+04 1.2402-02   1. 21782+04 8.75402-02 8.44062+04 1.25092-02   1. 23722+04 8.60912-02 8.60642+04 1.24256-02   1. 25662+04 8.61252+02 8.89622+04 1.24256-02	1.0000000000	7.16316-02	3. 7340E V04	1,24305-02
1.0431E+04 9.1258E=02 5.3902E+04 1.2429E=02   1.0525E+04 9.1243E=02 5.5160E=04 1.2509E=02   1.05319E+04 9.1058E=02 5.6459E+04 1.2423E=02   1.05319E+04 9.3614E=02 7.0737E+04 1.2498E=02   1.1413F+04 9.3614E=02 7.3915E+04 1.2498E=02   1.1205E+04 9.2050E=02 7.3915E+04 1.2431E=02   1.1205E+04 8.9465E=02 7.5293E+04 1.2358E=02   1.1595E+04 8.8963E=02 7.7571E+04 1.2550E=02   1.1790E+04 8.8960E=02 7.9650E+04 1.2428E=02   1.1798E+04 8.8100E=02 7.9650E+04 1.2428E=02   1.178E+04 8.8100E=02 8.2128E+04 1.2440E=02   1.2178E+04 8.7540E=02 8.4406E+04 1.2509E=02   1.2372E+04 8.6091E=02 8.6064E+04 1.2425E=02   1.2566E+04 8.6091E=02 8.8962E+04 1.2425E=02	1.00710104	7,12/35-02	0.19242704	1,24022-02
1.0525±04 9.1245±02 5.5160±04 1.2509±02   1.0519±04 9.1058±02 6.8459±04 1.2423±02   1.1413F+04 9.3614±02 7.0737±04 1.2493±02   1.1413F+04 9.3614±02 7.0737±04 1.2493±02   1.1205±04 9.3614±02 7.3015±04 1.2493±02   1.1205±04 9.2050±02 7.3015±04 1.2431±02   1.1402±04 8.9465±02 7.5293±04 1.2358±02   1.1596±04 8.8965±02 7.5293±04 1.2358±02   1.1596±04 8.8965±02 7.96532±04 1.2428±02   1.1790±04 8.8560±02 7.96532±04 1.2428±02   1.1798±04 8.8190±02 8.2128±04 1.2440±02   1.2178±04 8.7540±02 8.4406±04 1.2509±02   1.2372±04 8.6091±02 8.6084±04 1.2456±02   1.2566±04 8.6125±02 8.8962±04 1.2425±02	1-04316-04	7.10700700	0-37066+04	1,24292=02
1.00196+04 9.10582-02 6.84596+04 1.24232-02   1.1013F+04 9.36146-02 7.07372+04 1.24932-02   1.12052+04 9.20502-02 7.30152+04 1.24312-02   1.12052+04 8.94652-02 7.52932+04 1.23582-02   1.14022+04 8.94652-02 7.52932+04 1.23582-02   1.15952+04 8.89632-02 7.95502+04 1.24282-02   1.17902+04 8.85602-02 7.95502+04 1.24282-02   1.19842+04 8.81902-02 8.21282+04 1.24402-02   1.21782+04 8.75402-02 8.44062+04 1.25092-02   1.23722+04 8.60912-02 8.60642+04 1.24562-02   1.255652+04 8.61252+02 8.89622+04 1.24256-02	1.07636704	7,12435-02	5,51502+04	1,25098-02
1.1913F+04 9.4614E-02 7.0737E+04 1.2493E-02   1.1205E+04 9.0050E-02 7.3015E+04 1.2431E-02   1.1402E+04 8.9465E-02 7.5293E+04 1.2358E-02   1.1595E+04 8.8963E-02 7.7571E+04 1.2550E-02   1.1790E+04 8.8560E-02 7.9650E+04 1.2428E-02   1.1790E+04 8.8560E-02 7.9650E+04 1.2428E-02   1.1790E+04 8.8100E-02 7.9650E+04 1.2428E-02   1.178E+04 8.8100E-02 8.2128E+04 1.2509E-02   1.2178E+04 8.7540E-02 8.4406E+04 1.2509E-02   1.2372E+04 8.6091E-02 8.6064E+04 1.2456E-02   1.2566E+04 8.6125E+02 8.8962E+04 1.2425E-02	1.00196+04	9,10585-02	6.8459E+04	1,2423E-02
1.12050004 9.00500000 7.3015000 1.2431000   1.1402000 8.9465000 7.5293000 1.2358000   1.1596000 8.9465000 7.5293000 1.2358000   1.1596000 8.8963000 7.9550000 1.2428000   1.1596000 8.8963000 7.9650000 1.2428000   1.17900000 8.8560000 7.9650000 1.2428000   1.179000000 8.8100000 8.2128000 1.24400000   1.1780000 8.7540000 8.4400000 1.2509000   1.2178000 8.75400000 8.4400000 1.2509000   1.2372000 8.6091000 8.6094000 1.24250000   1.25565000 8.6125000 8.8962000 1.24250000	1.1413F+04	9,46148-02	7.0737E+94	1 <b>.</b> 2493E+02
1.14022+04 8.94652-02 7.52932+04 1.23582-02   1.15962+04 8.89632-02 7.75712+04 1.25582-02   1.17902+04 8.89632-02 7.98502+04 1.24282-02   1.17902+04 8.85602-02 7.98502+04 1.24282-02   1.19842+04 8.81002-02 8.21282+04 1.24402-02   1.21782+04 8.75402-02 8.44062+04 1.25092-02   1.23722+04 8.60912-02 8.60642+04 1.24562-02   1.25662+04 8.61252-02 8.89622+04 1.24252-02	1.12685+04	9 <b>.</b> 00508-02	7.3015E+04	1.24318-02
1.1596E+04 8.8963E=02 7.7571E+04 1.2550E=02   1.1790E+04 3.8560E=02 7.9650E+04 1.2428E=02   1.1984E+04 4.8100E=02 8.2128E+04 1.2440E=02   1.2178E+04 8.7540E=02 8.4406E+04 1.2509E=02   1.2372E+04 8.6891E=02 8.6084E+04 1.2456E=02   1.2566E+04 8.6491E=02 8.8962E+04 1.2425E=02	1.14026+04	8,9465E-02	7,5293E+04	1,2358E=02
1.1790E+04 3.8560E=02 7.9550E+04 1.2428E=02   1.1984E+04 4.8100E=02 8.2128E+04 1.2440E=02   1.2178E+04 8.7540E=02 8.4406E+04 1.2509E=02   1.2372E+04 8.6091E=02 8.6084E+04 1.2456E=02   1.2566E+04 8.6125E=02 8.8962E+04 1.2425E=02	1.15966+04	8.84632-02	7.7571E+04	1,2558E-02
1.1984E+04 8.8190E=02 8.2128E+04 1.2440E=02   1.2178E+04 8.7540E=02 8.4406E+04 1.2509E=02   1.2372E+04 8.6891E=02 8.6684E+04 1.2456E=02   1.2566E+04 8.6125E=02 8.8962E+04 1.2425E=02	1.1790E+04	8.8560£-02	7,9850E+04	1,24285-02
1,2178E+04 8,7540E=02 8,4406E+04 1,2509E=02 1,2372E+04 8,6891E=02 8,66644E+04 1,2456E=02 1,2566E+04 8,6125E=02 8,8962E+04 1,2425E=02	1.1984E+04	8.810NE=NS	8.21286+04	1.24408-02
1.2372E+04 8.6091E=02 8.6084E+04 1.2456E=02 1.2566E+04 8.6125E=02 8.8962E+04 1.2425E=02	1.21788+04	8,75405-02	8,4406E+04	1.25096-02
1.25666+04 4.61256-02 8.89626+04 1.24256-02	1.2372E+04	8.60916-02	H. 60042+44	1.2456E-02
	1.25666+04	A. 0125E=02	5.8962E+#4	1.24256-02

PLTEVT PROGRAM DATA SUMMARY PIR 4 Fission PIR 4 CONTAMINANT = CS-135 TONS OF HEAVY METAL FACTUR E 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), UT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW # -1.000000000000 TIME HIGHE 2.0000006+64 NUMBER OF CELLS . 480 DELTA TIME INCREMENT # 4.750000E+01 - RAW DATA AND BLOCKED DATA FACTORSI MAX. TIME = 1.0626E+05 MIN, TIME # 1.2157E+03 TOTAL WEIGHT = 1_6579E+H4 TUTAL PARCELS = 5505.0 PEAK WEIGHT . 84,491 7.9588E+03 -PEAK WEIGHT TIME . PEAK PARCELS . PEAK PARCELS TIME # 59.000 7,9588E+03 NT. LOW & N. BRARE-01 NO, PARCELS LOW E 0.0 WT. HI # 3.3059E+03 ND. PARCELS HI = 8030.0 SMOOTHING WINDOW (CELLS) = 20 TOTAL INVENTORY (CURIES) = 1.988446E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1.660350E+04 PERCENT OF TOTAL INVENTIRY # 83.500 -TIME OF MAXIMUM CONCENTRATION (YEARS) = 2.353750E+03 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.368702E-06 MAXIMUM RATE (CURIES/YEAR) = 1.1425896+00 CONVERSION FACTOR RATE TU CUNCENTRATION # 1.197895E=06 TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS TIME (YR) RATE (CU/YR) TIME (YR): RATE (CU/YR) 1.21386+03 8,63356=01 8.1160E+93 1.1521E+00 1.22898+03 8_6335E=01 1,1327E+00 8.53226+03 8.6335E=01 1.22816+03 1.1325E+00 8.9483E+P3 1.23528+03 8_63356=01 9.36458+03 1.1300E+00 1.24248+03 8.63356-01 9.7407E+03 1.13046+00 1.2495E+03 6.6335E=V1 1.0197E+04 1,1310E+00 1.2567E+W3 8_6335E=01 1.0613E+04 1.1299E+00 1.26398+43 8_6937==*1 1.10296+04 1.1296E+00 1.27136+03 N.8584E=01 1.1445E+04 1,13358+00 1.27826+03 9-02316=01 1.18628+04 1.1337E+00 1.28536403 9.1878E=01 1.2278E+04 1,1329E+00

1.57525402	A"73525=A1	1*50442404	1,13336+00
1.2997E+03	9.51725-01	1 <b>.</b> 3110E+04	1.1317E+00
1. 306AE+03	9.6820E=01	1.3526E+04	1.12838+00
1 71405-02	0 77775-144	4 20435-04	1 1000E+00
1.31446703	4.//JJE=01	1,37425-04	1,12992700
1,35116+03	9.83752-01	1,43592+04	1,12848+00
1,32838+03	9,9017E=01	1.47752+04	1,1304E+00
1.33552+03	9,9659E#01	1-51912+04	1.13098+90
1 14265401	1 00305-00	1 56078-00	1 11715-03
1 7/095107	1 00005-00	1 27595704	
1,34702703	1.00945700	1,30305+04	1,0/212+00
1,3369E+03	1,01662+00	1.57082+04	1,02075+00
1,3641E+03	1,0304E+00	1,5759E+04	9,3753E-01
1.3712E+03	1.0442E+00	1.58092+04	8.1567E=01
1 17845-01	1 05318+00	1 58605-04	6 49488-91
1 78868437	1 42408704	4 20442404	0,47436-01
1.30305703	1.0/192400	1.34110404	4,79105-01
1,39278+03	1,08582+00	1,5951E+04	3,0682E=01
1,3999E+03	1,0996E+00	1,6012E+04	1,6603E-01
1.4070E+03	1.10792+00	1.60622+04	7.6372E=02
1.4142E+03	1.10986+00	1-61136+04	2.8092F=02
1 13415-03	1 41455400	1 61675504	7 73175-07
1946145700	1,11196790	1.01036704	1.36135403
1,42036703	1,11352+00	1.02142+04	2,13116-03
1,4357E+03	1,1154E+00	1,6265E+04	1,6555E=03
1,4423E+03	1,11728+00	1,6315E+04	1.6746E=03
1.4500E+03	1.1191E+00	1.6366E+04	1.67648-03
1.4572E+03	1.12962+49	1-64166+94	1.6738F=03
1 97775107	4 4/1425-00	· · · · · · · · · · · · · · · · · · ·	4 47785-07
1901335703	1,14136700	1,040/6404	1,03375403
5.30225492	1,13082+00	1.001/2+04	1,57542+03
2,7057E+03	1,13678+00	1,6568E+04	1.6704E+03
3.12198+03	1.1348E+00	1.6519E+04	1.6597E=03
3.5380E+03	1,13002+00	1.65692+04	1.6582E-03
3.95426+03	1.13298+40	1 67208+04	1.67068-03
n 77nAdaar	1 17615+00	4 47788400	
4931845483	1913015440	1,01102704	1.0/392-03
4,70002+05	1.13452+00	1.50212+04	1,6555E=03
5,2027E+03	1,1376E+00	1,6871E+04	1,6764E=Ø3
5.6189E+03	1.1395E+00	1.6922E+04	1.6594E=03
6.0351E+03	1.1343E+00	1.69735+04	1.67075-01
A.4513F+07	1 13368+00	1 79235-04	1 67638-02
6 96700-03	4 4 2 4 5 5 10 A	1 40348×04 11/1000	1 31 5 2 33
0,00/JETUJ	1,13455700	1.79745794	1,/1406#05
7,20302703	1,13006400	1.71242+04	1,5320E=03
7,6998E+03	1,1306E+00	1 <b>.</b> 7175E+04	1,6754E=03
	-		

PLTCVT PROGRAM DATA SUMMARY PIR 4 Chain 1 PIR 4 Chain 1 CONTAMINANT = U=236 TONS OF HEAVY METAL FACTUR = 1.0000000 DATA BLOCKING FACTURS: ENTRY MODE (1 = T(LUW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 8.000000E+03 TIME HIGH= 1.100000E+03 TIME HIGH= 1.100000E+05 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 2.550000E+02

RAW DATA AND BLOCKED DATA FACTURS: MAX. TIME . 1.4988E+05 MIN. TIME # 8:3545E+03 TOTAL WEIGHT = 2.91026+04 TOTAL PARCELS 11880.0 PEAK WEIGHT # PEAK WEIGHT TIME = 2.2916E+04 382,689 PEAK PARCELS PEAK PARCELS TIME . 74.000 2,2918E+04 WT. LOW = 0.0000E=01 ND. PARCELS LOW E 0.0 NO. PARCELS HI = WT. HI = 2.3395E-01 152,0 25 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 2.910240E+04 INVENTORY UNDER THE CURKENT GRAPH (CURIES) = 2.916672E+04 PERCENT OF TOTAL INVENTORY = 100.221

TIME OF HAXIMUM CONCENTRATION (YEARS) = 2.164250E+04 HAXIMUM CONCENTRATION (MICRUCURIES/ML) = 1.408673E=06 MAXIMUM RATE (CURIES/YEAR) = 1.175956E+00 CONVERSION FACTOR RATE TU CUNCENTRATION = 1.197895E=06

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 PDINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
8.3825E+03	5.0306E-02	6.2500E+04	1,6307E-01
9.0376E+03	1.96018-01	6.4412E+04	1.6209E+01
9.69276+03	2.8737E=01	6.6324E+04	1.6117E-01
1.0346E+04	3.7476E=01	6.8235E+04	1.6099E=01
1.10036+04	4 97592-01	7.0147E+04	1,6045E-01
1.1658E+04	6.2010E-01	7.2059E+04	1,6010E-01
1.2313E+04	7.44696=01	7.3971E+04	1.5965E=01
1.29686+04	8_4089E=01	7.5882E+04	1.5914E=01
1.36236+04	9.1558E=#1	7.7794E+04	1.5916E=01
1.42786+04	9.76726-01	7.4706E+04	1,5931E=01
1.4933E+04	1.01516+00	6.16188+04	1,5908E=01

1,55882+04	1_0419E+00	8 <b>.</b> 3529E+04	1.5885E#01
1 . 62435404	1.06576+00	8 44415+04	1 50118-01
4 4 9 0 9 5 1 0 4			********
1 90405484	1,00835400	8,13332+84	1,59342=01
1.75548+04	1,1001E+00	8,92552+04	1.5874E=01
1.82098+04	1 12478-00	9.11778+04	1 58248-01
1 99645-00	1 13985-00	0 30895404	
1100045404		7,30002+04	1.3//36401
1.93192704	1,14/02+00	9,50002+04	1,5360E+01
2,01745+04	<b>1,1647E+00</b>	9,54512+04	1.5450E=01
2.0829E+04	1.16846+00	9.5901E+04	1 97928-01
2.10805400	1 17888-00	0 61636404	1 20775-04
2 24 3046704		7,03326704	1,39735-01
6.61375704	1,10205+00	9.00032+04	1,62738=01
2,27948+04	1,1333E+90	9,7253E+Ø4	1.6384E=Ø1
2.34492+04	1.07852+00	9.7704E+04	1.59958-01
2.4194E+94	9.88118-01	9.81555+04	1 55778-01
3 A7EQELAA			193316-51
6141375484	0-03005-01	4.0003E+04	1.44000-01
2,54142+04	7,2626E=01	9,9056E+04	1,3132E+01
2,6070E+04	5.8540E=01	9.9507E+04	1.1588E=Ø1
2.6725E+04	4.5620E=01	9.9958E+04	9.63265-02
2.73805+04	8-6656F-01	1 04415-04	7 46428-03
3 10722540	7 03765-04		1993055465
E100335704	2.04/05-01	1,00005703	5,65462-02
2.80402+04	2.64042-01	1,0131E+05	4,0482E-02
2,9345E+04	2.4998E=01	1,0176E+05	2.8082E-02
3.0000E+04	2.4200E=01	1.0221E+05	1.85A7E=02
3.19125+04	2 24755-01	1 02665105	1 17848-03
7 72346.07	2 20205-04	1.02002403	1111000-05
3,30242704	5.50575+01	1.03115+05	5,510E+03
3,9/352+04	2 <b>.</b> 1098E-01	1,0356E+05	2 <b>,</b> 9681E⇒03
3,7647E+04	2.0315E=01	1,0401E+05	1.0701E=93
3.95598+04	1.9617E=01	1.04465+05	3.8880F-04
4. 1471F+04	1 90626-01	1 04015-05	E E7906_0E
1 72995.04	T ^B AAAEEEAAT	1 904372463	3,33005-03
4,33025404	1.931.45=01	1 * 02315+03	4 <b>,</b> 8592E=05
4,52942+04	1,81328-01	1.0582E+05	3.54442+05
4,7206E+04	1.7770E=01	1.06272+05	3.64448=05
4.9118E+04	1.74818-01	1.00725+05	2.1179F-05
5 10295-04	1 72145-31	4 47475405	
# 300115304	1 10005-01	1 92(32,42)	C.0031E=03
3827416704	1.160,45=01	1.01066+05	2,4296E-05
3,4933E+04	1,67318-01	1.0807E+05	2 <b>.</b> 4296E-05
5,6765E+04	1.6630E=01	1.0852E+05	2.79672+05
5,8676E+04	1.65028-01	1,0897E+05	2.99468-04
5.0588E+04	1 63995-01	1 19132302	4 30078-00
	***************************************	YIN142CARD'	4.50735-43

PLTCVT PROGRAM DATA SUMMARY PIR 4 Fission PIR 4 PIR 4 Chain 1 CONTAMINANT = TH=232 TONS DF HEAVY METAL FACTUR = 1.0000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LDW),DT,NCELLS) (2 = T(LDW),T(HI),NCELLS) MODE = 2 TIME LOW = 9.000000E+03 TIME LOW = 9.000000E+03 TIME HIGH= 1.500000E+05 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 7.050000E+02

RAW DATA AND BLOCKED DATA FACTORS: MAX. TIME = 1.5000E+05 MIN. TIME # 9.5542E+03 TOTAL WEIGHT = 7.0575E+03 TOTAL PARCELS = 4186.0 PEAK WEIGHT . 0.000 PEAK WEIGHT TIME . 9.7478E+Ø4 PEAK PARCELS . 45.000 PEAK PARCELS TIME = 1,3837E+05 NO. PARCELS LON . NT. LOW = 0.0000E=01 0.0 WT. HI . 0.0000E-01 ND, PARCELS HI . 0.0 SMOOTHING WINDOW (CELLS) = 10

TOTAL INVENTORY (CURIES) = 7.057547E=03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 7.021453E=03 PERCENT OF TOTAL INVENTORY = 99.489

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.122825E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 7.373095E=14 MAXIMUM RATE (CURIES/YEAK) = 6.155042E=08 CONVERSION FACTOR RATE TO CONCENTRATION = 1.197895E=06

CONTAMINANT = TH=232

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
9.3525E+03	3.9800E-04	5.4155E+04	4.7393E=08
9.9782E+03	3.9800E-09	5.5626E+04	4.7911E=08
1.06048+04	5.0668E=09	5.70962+04	4.8445E-08
1.12396+04	5.9734E-09	5.8567E+04	4,8989E=08
1.1855E+04	6.53276-04	6.0037E+04	4,9541E=08
1.24816+04	7.30698-09	6.1508E+04	5.0096E-08
1.3107E+04	8.46548-09	6.29792+04	5,0648E=08
1.3732E+04	9.68106-09	6.4449E+04	5.1189E=08
1.43586+04	1.10098-06	6.5920E+04	5.1713E-08
1.4984E+04	1.24966-08	6.7390E+04	5.22156-08
1.5609E+04	1.4051E=06	6.8861E+04	5 <b>.</b> 2688E=08

1.62352+04	1.52396-08	7-03322+04	5.31315-08
1.53516+04	1.73934-48	7.18026+04	5.35456-02
1.74866+04	1.899946-08	7-32738+04	5.3032F-0A
1.81122+04	2.06016-00	7.47438+04	5.4298F-08
1.87386+14	5.25098-98	7-62145+04	R ALARF-00
1.93632+04	2. 37678-08	7.76856404	
1.9989E+04	2.52658468	7.9155F+04	5 51265-00
2.0615E+04	2.55915-08	8.05255+04	5.54675-02
2,12402+84	2.80305-08	8.2736E+04	5.61695-08
2.18652+04	2.92908-118	8.48476+04	
2.24926+04	3.94798-88	8-69575+04	5 72378-00
2.3117E+04	3.16096-08	8,905AF+04	5 77475-04
2.3743E+04	3.26921-08	9-11746+04	5 87145-00
2.4369E+04	3.37378=48	9.32895+04	5,88245-00
2.49956+04	3.47468-44	9,53997+04	5 97005-09
2.56206+04	3.5722E=44	9.7510E+04	5,97375-02
2.02466+04	3.55598=00	9.96206304	5 91365-00
2.5872E+04	3.75438-08	1,01736+05	5 01075-04
2.7497E+04	3.0362E=WA	1_33A4F+05	6 08225-00
2.81236+04	3.90845-08	1_05956+05	6 1106EC-00
2.8749E+04	3.97005-00	1.00065+05	6.1336E-08
2,9374E+04	4-92116-98	1.10176+05	6.1492E=0A
3,00002+04	4.05836-08	1.12286+05	6.1550E-03
3,06262+04	4,0792E-08	1.14596+05	6.1493E-08
3.20965+04	4,12096-00	1.16502+05	6.1316E=0A
3,3567E+04	4.1585E=00	1.18622+05	6.14268-448
3,5037E+04	4,19738-08	1.24736+05	6.06396-08
3,6508E+04	4.2403E=08	1.2284E+05	5.0189E=08
3,7979E+04	4,2753E-08	1,24956+05	5.9715E=08
3.94476+04	4.3102E-08	1.27056+05	5.9262E+08
4.0920E+04	4,3465E-08	1,29176+05	5.8862E=Ø8
4,2390E+04	4,38446-08	1.31286+05	5.8538E+08
4.3861E+04	4,42296=08	1,33396+05	5,8297E=08
4,5332E+04	4,46306-08	1.3550E+05	5.8137E=08
4,68022+04	4.50496-48	1,37616+05	5,80492-08
4,8273E+04	4,5485E=08	1,3972E+05	5,80146-08
4,9743E+04	4 <b>.</b> 5937E=08	1.41832+05	5,8010E-08
5,1214E+04	4,64056-00	1.4394E+05	5,80098-08
5,2685E+04	4 <b>.</b> 5890E=08	1,4605E+05	5,80326-08

1.2783E+83	5.0013E+02	1.6438E+03	1.1210E+03
1.2839E+03	5,4436E+02	1.6526E+03	1.1052E+03
1.2894E+03	5.88606+02	1.6614E+03	1.0945E+03
1.2949E+03	6.3881E+02	1.6702E+03	1.0827E+03
1,3005E+03	6,9669E+02	1.6791E+03	1.0689E+03
1.306PE+03	7,54578+02	1.6879E+03	1.0532E+03
1.3115E+03	8,1730E+02	1.6967E+03	1.0363E+03
1.3170E+03	8.8186E+#2	1.7055E+03	1,0188E+03
1,3226E+03	9,46426+02	1.7750E+03	8,9127E+Ø2
1.32816+03	1.0114E+03	1.8445E+Ø3	7,8064E+02
1.3336E+03	1.0763E+03	1,9139E+03	6,8567E+02
1.3392E+03	1.1399E+03	1.9834E+03	6,0079E+02
1.3447E+03	1.2003E+03	2,0529E+03	5,2374E+02
1.35026+03	1,2606E+03	2,1223E+03	4,6065E+02
1,3558E+03	1,3153E+03	2,1918E+03	4,0924E+02
1.3613E+03	1.3660E+03	2,2613E+03	3,6446E+02
1.3668E+03	1,4167E+03	2,3308E+03	3,2763E+02
1.37236+03	1.4548E+03	2,4002E+03	2,9536E+02
1.3779E+03	1.4912E+03	2,4697E+03	2,6660E+02
1,3834E+03	1,52636+03	2,5392E+03	2.3962E+02
1.3889E+03	1.55536+03	2,68866+03	2.1658E+02
1.3945E+03	1.5642E+03	2.6781E+03	1,9676E+02
1.4000E+03	1.5964E+03	2.7476E+03	1,7784E+02
1.4055E+03	1.5881E+03	2.8170E+03	1.59692+02
1.4144E+03	1.5744E+03	2,8865E+03	1,4324E+02
1,42326+03	1,5591E+03	2.9560E+03	1,2770E+02
1.43202+03	1,54312+03	3,02556+03	1.1335E+02
1.44005+03	1.52652403	3.0949E+03	1,0037E+02
1.44901403	1.50742+03	3,1644E+03	6,9283E+01
1.43032405	1,48792403	3,2339E+03	7,9031E+01
1.40125483	1.40856483	3.3033E403	7,0016E+01
1.47012403	1,44932+03	3.37282403	6,2452E+01
1,40475703	1.43020403	3.44236+03	5,5942E+01
1.47302703	1,41156403	3,51176+03	5.0185E+01
1,770595703	1.34685483	3,30122403	4,5474E+01
1.53036407	1,3/335703 1 76846407	5.630/2403	4,13556401
1 1 JEVEL TUD	1,50010403	5.7C01t+03	4.02642401
1,36716703	1.34105403	3,7896E+03	3,7393E+01
14コンノンビービン	1.32442403	5.83Y12+03	3.4873E+01

i

PLTCVT PROGRAM DATA SUMMARY PIR 4 Chain 2 PIR 4 Chain 2 CONTAMINANT # AM=241 TONS OF HEAVY METAL FACTOR # 1,000000 DATA BLOCKING FACTORS: ENTRY MODE (1 # T(LOW),DT,NCELLS) (2 # T(LOW),T(HI),NCELLS) MODE #2 TIME LOW # 1,000000E+03 TIME HIGH# 4,000000E+03 NUMBER OF CELLS # 200 DELTA TIME INCREMENT # 1,500000E+01

RAW DATA AND BLOCKED DATA FACTORS: MAX, TIME = 5,9932E+03 MIN. TIME . 1.2132E+03 TOTAL WEIGHT = 1.0707E+06 TOTAL PARCELS = 1972.9 PEAK WEIGHT . 44005.074 PEAK WEIGHT TIME # 1.42752+03 PEAK PARCELS = 14,000 PEAK PARCELS TIME . 1.6225E+03 WT. LOW = 0.00002-01 NO, PARCELS LOW . 0.0 WT. HI = 1.3054E+04 NO, PARCELS HI . 797.9 SMOOTHING WINDOW (CELLS) = 50

TOTAL INVENTORY (CURIES) = 1,083800E+06 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1,126187E+06 Percent of Total Inventory = 103,911

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.397500E+03 MAXIMUM CONCENTRATION (MICHOCURIES/ML) = 1.916738E=03 MAXIMUM RATE (CURIES/YEAR) = 1.5000088E+03 CONVERSION FACTOR RATE TO CONCENTRATION = 1.197895E=06

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1.2175E+03	5,3292E+05	1,5467E+03	1.30668+03 '
1.2230E+03	5,32926+02	1,55558+03	1.2890E+03 '
1.2286E+03	5.32926+02	1.50442+03	1.2714E+03
1.2341E+03	2.4268E+02	1,5732E+03	1.25368+03
1,23968+03	5,76625+02	1.5820E+03	1,2357E+03
1,24528+43	3,10566+02	1.5908E+03	1,2179E+03
1,2507E+03	3,45625+42	1,5996E+03	1.20092+03
1.25625+03	3,84246+02	1,60852+03	1.1341E+03
1.2617E+03	4,21876+02	1.6173E+03	1.1680E+03
1,2573E+03	4,4815E+02	1,62618+93	1,1521E+03
1,27285+03	4,72562+62	1,6349E+03	1,1366E+03

PLTCVT PROGRAM DATA SUMMARY PIR4(TDTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 2 CONTAMINANT = NP=237 TONS DF HEAVY METAL FACTOR = 1.0000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE =2 TIME LOW = 1.000000E+03 TIME HIGH= 1.700000E+04 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 4.000000E+01

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME = 1.2044E+03 MAX, TIME = 1,4560E+05 TOTAL PARCELS TOTAL WEIGHT = 5,1448E+04 11361.0 PEAK WEIGHT TIME = 1.0700E+04 PEAK WEIGHT = 251,471 PEAK PARCELS TIME = 1.4200E+03 PEAK PARCELS = 154,000 WT. LDW = 0.0000E+01 NO. PARCELS LOW = 0.0 WT. HI # 3.5474E+04 ND. PARCELS HI = 4160.0 25 SMOOTHING WINDOW (CELLS) .

TOTAL INVENTORY (CURIES) = 8.692206E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 5.140218E+04 PERCENT OF TOTAL INVENTORY = 59.136

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.434000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 4.260102E=06 MAXIMUM RATE (CURIES/YEAR) = 3.556323E+00 CONVERSION FACTOR RATE TO CONCENTRATION = 1.197895E=06

CONTAMINANT = NP+237

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1-5500E+03	2.50146+00	8.400NE+03	3.5260E+00
1.22556+03	2.5014E+00	8.8118E+P3	3.5272E+00
1.23096+03	2,5014E+00	9,2235E+03	3.5256E+00
1.2364E+03	2,5014E+00	9.6353E+03	3.5242E+00
1.2418E+03	2.5014E+00	1.8047E+84	3.5256E+00
1.2473E+03	2 <b>.</b> 5014E+no	1.0459E+04	3.5236E+00
1.22546403	2.5014E+00	1.0671E+04	3.5230E+00
1.52956+03	2.5014E+00	1.1282E+04	3.5231E+00
1.26365+43	2 <b>.</b> 5289£+00	1.1694E+04	3.5219E+00
1.2691E+03	2.5701E+00	1.2106E+04	3.52066+00
1.2745E+03	2.6113E+00	1.2518E+04	3,52296+00

1.28002+43	2.65266+00	1.29295+04	3 83748-00
1.28556+93	2.69185+00	1.33418-04	7 57405400
1.29096+03	2.73508+00	1.37537+04	2 84675100 2 84675100
1.29646+03	2.77638+00	1.41656404	2 82218794
1.30145+03	2_8083F+00	4 AR76840A	3,33316400
1.30736+03	2,82215400	1 19825-01	3,34035700
1.31275+03		1 84008+04	3,32015400
1.31875403	3 8407F-00	1 54335+04	3,37382488
1 12745101	2 8578510700 2 85785100	1,34626704	3,34342+00
1.32915483	2 87776100	1,034435704	2,50416400
1.33455403	2 891156749	1 54075404	3,21232400
1.30005103	2 04425144	1 224282404	3,13482+00
1,74585107	2 0//05 - 08	1 22122404	3.09742+08
1 25006-02	3 074955×00	1,33332404	3,04032+00
1 15675703	7 71 38 5 400	1,333/2404	2,9875E+00
1 74185403		1,55/92+84	2,9360E+00
1 76776403	3 98432 100	1,50022+04	2,8918E+00
1,30/35703	3,904/2+99	1,5024E+94	2,8486E+00
1.3/8/2703	3,12072+00	1,56472+04	2,8096E+00
1,3/065703	3,130/2+00	1,56695+04	2,7701E+00
1,30302703	5,17492+88	1,5692E+04	2,7296E+00
1,071E403	3,10425+00	1.5714E+04	2,6830E+00
1	3,19356+48	1.57362+04	5,6326E+00
1 9149902793	3,20272+00	1.5759E+04	2,5641E+00
101102703	3,38278+00	1,57812+04	2.4906E+00
	3,42322+00	1,5804E+04	2,3918E+00
2.03335703	5,46862+00	1.58262+04	2 <b>.</b> 2876E+ØØ
3.04/12+05	3,48792+00	1,5848E+Ø4	2,1692E+00
3.43006+05	3,50372+00	1 <b>.</b> 5871E+Ø4	2 <b>.</b> 0427E+00
3,8/052+03	3,5154E+00	1,5893E+04	1,9079E+00
4.26248+03	3,52512+00	1,5916E+04	1,7707E+00
4,69412+05	3,5289E+00	1 <b>.</b> 5938E+04	1,63265+00
5,1059E+03	3,52802+00	1 <b>.</b> 5961E+04	1,4902E+00
5,5176E+03	3,52526+00	1,5983E+04	1,3482E+00
5,92948+03	3,52408+00	1,5005E+04	1,2112E+00
5,3412E+03	3,5210E+00	1.6028E+04	1,1018E+00
6,7529E+03	5,51942+00	1.6050E+04	1,0435E+00
7.1647E+03	3,5208E+00	1.60732+04	9,6080E-01
7,3765E+03	3,52368+00	1.6095E+04	8,5941E=01
7,9882E+03	3,5232E+00	1.6118E+04	7,6933E-01

PLTCVT PROGRAM DATA SUMMARY PIR 4 Chain 2 PIR 4 Chain 2 CONTAMINANT = NP=237 TONS CF HEAVY METAL FACTOR = 1.0000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE =2 TIME LOW = 1.000000E+03 TIME LOW = 1.000000E+03 TIME HIGH= 1.700000E+04 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 4.000000E+01

RAW DATA AND BLOCKED DATA FACTORSI MAX_ TIME # 1,4560E+05 MIN. TIME . 1.2044E+03 TOTAL WEIGHT . TOTAL PARCELS . 5.1446E+04 11361.0 PEAK WEIGHT . 251,471 PEAK WEIGHT TIME . 1.0700E+04 PEAK PARCELS PEAK PARCELS TIME . 154,000 1,4200E+03 WT. LOW # 0.0000E=01 NO. PARCELS LOW # 0.0 WT. HI # 3.5474E+04 NO. PARCELS HI = 4160.0 SMOOTHING WINDOW (CELLS) = 2S

TOTAL INVENTORY (CURIES) = 8.692206E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 5.129139E+04 PERCENT OF TOTAL INVENTORY = 59.000

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.362000E+04 MAXIMUM CONCENTRATION (MICROCUPIES/ML) = 4.235771E=06 MAXIMUM RATE (CURIES/YEAR) = 3.536011E+00 CONVERSION FACTOR RATE TO CONCENTRATION = 1.197895E=06

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR) RATE (CU/YR) TIME (YR) RATE (CU/YR) 1.2200E+03 2.0882E+00 8,5500E+03 3.5250E+00 1.2255E+03 2.0882E+00 8.9706E+03 3.5263E+00 1.2309E+03 5.08855E+N0 9.3912E+03 3.5290E+00 1.2364E+03 5-08855+00 9.8118E+Ø3 3,5262E+00 1.2418E+03 2.08826+00 1.0232E+04 3.5167E+00 1.2473E+03 2.0882E+00 1.0653E+04 3,5306E+00 1.25276+03 2.0882E+00 1.1074E+04 3,5236E+00 1.2582E+03 2.0882E+00 1.1494E+84 3.5237E+00 1.2636E+03 2.15216+89 1.1915E+04 3.5194E+00 1.2691E+03 2.2479E+00 1.2335E+04 3.5178E+00 1.27456+03 2,3436E+00 1.2756E+84 3.5172E+00

1.28008+03	2 4394F+00	1 21768-00	1 23075.00
1 38585463	2 22828400	1 35978304	3 83848400 8 83848400
1 30005403	5 1710F140	1 101125×04	3,333306740 7 B3045400
1 39645407	2 73495400	1 40295484	J 50055400
1 27045703	2 10755×00	1.44.305.404	3,30235400
1,30105703	2 04045×00	1,40345484	3,39902400
1,30/35703	6 01015700 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1,32/92704	3.200/2+00
1.316/6703	5 95045400 5 95045400	1.5/002+04	2,80712+40
1,31025703	C,33745780	1.01415404	4,43005.401
1,32305-43	2 0004 5 - 44 2 0004 5 - 44 4	1.01345704	4,13245-01
1,36716703	2,90006700		3,84852=01
	C, 72125700	1,01010+04	3,54412=91
1,34002703	C, 94105720	1.01/45+04	3,23498=01
1,34332743	5 942054NO	1,010/2+04	2,9357E=01
1,33046403	3,04822+00	1.52012+04	2,6316E=01
1,33046+03	5,10142+00	1,5214E+04	2,3274E=01
1,3618E+03	<b>3,1546E+00</b>	1.6227E+04	2,0232E=01
1,36732+03	3,20782+00	1.62412+04	1.71902-01
1.3727E+03	3,25102+00	1.02542+04	1,4149E=01
1,3782E+03	3,3141E+00	1,6267E+04	1,1107E=01
1,3836E+03	3,33552+00	1.6281E+04	8,0651E-02
1,38912+03	3,34092+00	1,6294E+04	5,0233E+02
1,39452+03	3,3463E+00	1,63072+04	1,9815E=02
1,4000E+03	3,35188+00	1.6321E+04	=1,0602E=02
1.85065+03	3,4274E+00	1,6334E+04 ·	-4 <b>,</b> 1020E=02
2.2412E+03	3,44926+00	1.5347E+04	=7 <b>,</b> 1437E=02
2.5618E+93	3,4690E+00	1.6361E+04	=1,0185E=01
3,08242+03	3,4843E+00	1.6374E+04	=1,3227E=01
3,50292+03	3.5123E+00	1.6387E+04	=1,6269E=01
3,9235E+03	3,5267E+00	1 <b>.</b> 6401E+04	=1,9311E=01
4,34412+03	3,5300E+00	1.54142+04	+2,2353E+01
4,7647E+03	3,52798+00	1.54278+04	-2,5395E+01
5,18532+03	3 <b>,</b> 5308E+00	1,6441E+04	=2,8437E+01
5.6059E+03	3,52708+00	1,5454E+04	=3,1479E=01
6.03652+03	3,51812+00	1,6467E+04	•3,4521E=01
6,4471E+03	3,5158E+00	1,6481E+Ø4	=3,7563E=01
6.8676E+03	3,5257E+40	1,6494E+04	=4,0605E=01
7,28822+03	3,5179E+00	1.6507E+04	=4,3647E=01
7,70882+03	3,52062+00	1.6521E+04	=4,5689E=01
8,1294E+Ø3	3,5311E+00	1.6534E+04	=4,9731E=01

PLTCVT PROGRAM DATA SUMMARY PIR 4 Chain 2 PIR 4 Chain 2 CONTAMINANT = NP=237 TONS OF HEAVY METAL FACTOR = 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MDDE =2 TIME LOW = 5.000000E+04 TIME HIGH= 1.400000E+05 NUMBER OF CELLS = 300 DELTA TIME INCREMENT = 3.000000E+02

RAW DATA AND BLOCKED DATA FACTORS! MAX. TIME = 1.4560E+05 MIN. TIME . 1.2044E+03 TOTAL WEIGHT = 3.5237E+04 TOTAL PARCELS # 4129.0 252,102 PEAK WEIGHT # PEAK WEIGHT TIME = 7.8350E+04 PEAK PARCELS . 29,000 PEAK PARCELS TIME . 7.5350E+04 WT. LOW # 5,1538E+04 ND. PARCELS LOW . 11373.0 WT. HI = 14725E+02 ND. PARCELS HI = 19.0 SMODTHING WINDOW (CELLS) = 10

TOTAL INVENTORY (CURIES) = 8.692206E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 3.429582E+04 PERCENT OF TOTAL INVENTORY = 39.456

TIME OF MAXIMUM CONCENTRATION (YEARS) = 7.835000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 5.854890E=07 MAXIMUM RATE (CURIES/YEAR) = 4.887648E=01 CONVERSION FACTOR RATE TU CONCENTRATION = 1.197895E=06

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
5.0150E+04	4.4512E-02	9.5000E+04	4.6417E=01
5.10476+04	5.8179E-02	9.5897E+04	4.6564E=01
5.19442+04	8,1817E=02	9.6794E+00	4.6703E-01
5.28416+84	1_0914E=01	9.7691E+04	4.6823E=01
5.37388+04	1,37958=01	9.8588E+04	4,6915E-01
5,4635E+04	1.6381E=01	9.9485E+04	4,6972E=01
5,5532E+04	1.8943E=01	1.00362+05	4,6990E=01
5.64292+04	2.1410E-01	1.0128E+05	4.6966E=01
5.7326E+04	2.3739E=01	1,0218E+05	4.6901E=01
5.6223E+04	2.59528=01	1.0307E+05	4.6801E=01
5.9120E+04	2,8032E-01	1.0397E+05	4.6671E-01

A 00178400	3 00748-01	4 9/127 E-445	A 48318-01
0,001/2704		1.04015403	4,03212401
0.84145484	2,11905=41	1.02102403	4.03000-001
6.1811E+94	3,34652=01	1.05555+05	4,6200E=01
6.27082+04	3,50212=01	1,07562+05	4.6050E=01
6.36052+04	3.6464E-01	1.05462+05	4,5919E+01
6.45028+04	3.7805E-01	1.0935E+05	4.58148+01
6.53992+04	3.9055E=01	1.10258+05	4.57398.01
6.62968.04	A 02278-01	1.11988408	A 3605F-01
5.7193840A	A 13305-01	1.12046-45	A 84785-01
L AGGGGAGA	4 33696-01	6 63348×48	N 81336-01
D 0 0 7 7 0 5 7 9 4	* *********	1 1 2 4 4 5 4 6 T U J	4 9 20055±01
0 2 0 7 0 / 5 7 0 4	4,33315793	1.13045703	4,30972=01
0,40042+84	4,42762+41	1.14/32+03	4,57062401
7.0781E+04	4,5140E=01	1.15632+05	4,56962+01
7,1678E+04	4,5937E+01	1,16538+05	4 <b>.</b> 5644E=01
7.25752+04	4,6639E=01	1.17432+05	4,53298-01
7.3472E+04	4.7293E+01	1.1832E+05	4.5332E+01
7.43698+04	4.7832E=01	1.19226+05	4.50298-01
7.52668+04	4.82648-01	1.2012E+05	4.4601E=01
7.6163E+04	4.8582E+01	1-21012+05	4.4029E-01
7.70602+04	4 8785E-01	1.21916+05	4.3302E-01
7.79578+04	4 8872E=01	1.22816+05	4.24055-01
7.48945+04	4 ABRONE-01	1.23705+05	4 12275-01
7 97545404	4 97705-01	1 34505-05	1 0003F-01
	A 33376-01	* 28505703	2 2674E-01
0 4 GASSAGA	V 83202.0-01	1 3500CTUJ	3,00/15401
0 34436704 0 1 3 4 3 6 4 8 4	4 30462-01	1 27205208	3 83338-01
0,24425704	4.7402-01	1.27676703	5,73376=01
8,53342+84	4,70105401	1.50145+03	3,34426401
8,42362+04	4.72722=01	1.29092+05	3,1416E=01
8,51332+04	4,59498-01	1.29982+05	2,9273E=01
B,6030E+04	4,6656E=01	1,3088E+05	2 <b>.</b> 7033E=01
8.69272+04	4,6407E=01	1,3178E+05	2 <b>,</b> 4716E=01
8,78242+04	4,6209E-01	1 <b>,</b> 3267E+05	2,2339E+01
a.8721E+04	4 <b>,</b> 6068E=01	1,3357E+05	1,9924E=01
8,96182+04	4,5984E=01	1,3447E+05	1,7431E-01
9.05152+04	4.5955E=01	1,35376+05	1.5017E=01
9,1412E+04	4.5978E=01	1.36262+05	1.2596E+01
9.2309E+04	4 68448-81	1-37162+05	1.01168-01
9.32066+04	4-61468-01	1.38065405	7 62118-02
0 A1035-4A	A 63746-04	1 XXQR510A	5 NADAG_00 5 NADAG_00
2 ² 41636284	- ⁸ 05146461	1130138483	3**000E#05

PLTCVT PROGRAM DATA SUMMARY PIR 4 Chain 2 PIR 4 Chain 2 CONTAMINANT = U=233 TONS OF HEAVY METAL FACTOR = 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE =2 TIME LOW = 2.0000000E+03 TIME HIGH= 1.300000E+03 TIME HIGH= 1.300000E+03 NUMBER DF CELLS = 500 DELTA TIME INCREMENT = 2.560000E+02

RAW DATA AND BLOCKED DATA FACTORSI HAX, TINE = 1.3705E+05 MIN. TIME # 1.8632E+03 TOTAL WEIGHT = 1.5191E+04 TOTAL PARCELS = 12695.0 PEAK WEIGHT TIME = 9.4800E+04 PEAK NEIGHT . 101.149 153.000 PEAK PARCELS TIME = 1.6208E+04 PEAK PARCELS NO. PARCELS LOW . 4.0 WT. LOW # 4.6720E-01 ND. PARCELS HI . 9.0 WT. HI = 1.5057E+01 SMOOTHING WINDOW (CELLS) . 56

TOTAL INVENTORY (CURIES) = 1.520654E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1.515843E+04 PERCENT OF TOTAL INVENTORY = 99.684

TIME OF MAXIMUM CONCENTRATION (YEARS) = 9,454400E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2,762254E=07 MAXIMUM RATE (CURIES/YEAR) = 2,255835E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 1,197895E=06

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
2.1280E+03	2.15056=03	6.1433E+04	1,7337E=01
2.9726E+03	2 <b>.</b> 8911E=03	6.3345E+04	1.7707E=01
3.8172E+03	4.3433E=03	6,5256E+04	1,8236E=01
4.6616E+03	5,9231E=03	6.7168E+04	1,8718E=01
5.5064E+03	6 <b>.</b> 9368E=03	6.9080E+04	1,9129E=01
6.3510E+03	8,2874E-03	7.0992E+04	1,9485E=01
7,19568+03	1.01128-02	7.2903E+04	1,9827E=01
8,0402E+03	1.1800E-02	7.4815E+04	2.0071E-01
8.8848E+03	1 <b>,</b> 3708E=02	7.6727E+04	2,0239E-01
9,7295E+03	1.7478E-02	7,8639E+04	2,0388E=01
1.05748+04	5.5424E=05	8.0551E+04	2.0598E=01

1.1419E+04	2.8494E=02	8,2462E+Ø4	2.0853E=01
1.22638+04	3.7145E-02	8.43742+04	2.10096=01
1.31082+04	4.80428-02	8.62862+04	2.13366+01
1.3952E+04	5.9299E=02	8.8198E+04	2.17428=01
1.47972+94	7.23526-02	9.01092+04	2.1997E=01
1.5642E+04	8.8877E=02	9.20212+04	2.2240E-01
1.64866+04	1.0333E=01	9.3933E+04	2.2468E=01
1,73312+04	1.1246E=01	9.5845E+Ø4	2.1840E=01
1,8176E+04	1.20348=01	9.6870E+04	2.09356-01
1,9020E+04	1.28932-01	9,7896E+04	1.9748E-01
1,98652+04	1,3226E=01	9.89222+04	1.8278E+01
2,0709E+04	1,3918E=01	9,9947E+Ø4	1.5340E-01
2,1554E+04	1,54638=01	1,00972+05	1.4335E=01
2,2399E+04	1,7183E=01	1,02002+05	1.24598-01
2,3243E+04	1,7516E=01	1,03022+05	1.0944E-01
2.40882+04	1,5716E=01	1.04052+05	9,7863E=02
2,49328+04	1,2455E=01	1,2508E+05	8.6806E-02
2.5777E+04	8,9249E#02	1,0610E+05	7.8002E=02
2.66222+04	6,1148E=02	1.0713E+05	7.30978-02
2,74666+04	4,7729E=02	1,08152+05	6.9813E=02
2,8311E+04	4,72232=02	1.0913E+05	5,5005E=02
2,9155E+04	4,96135=02	1,10206+05	6,3876E=02
3,09006+04	5,3305E+02	1.1123E+05	6,1533E=02
3,08452+04	5,70226-02	1,1226E+05	5,0094E=02
3,27562+04	6.44952-02	1,1328E+05	5,86462-02
3,4668E+04	7.2412E-02	1.14315+05	5,5249E=02
3,6580E+04	8,0629E+02	1.1533E+05	5,0802E=02
3,8492E+04	3,8703E=02	1,1636E+05	4,6386E+02
4,0403E+04	9,7579E=02	1,1738E+05	4,1538E=02
4,2315E+04	1,0584E=01	1.1841E+05	3,8001E-02
4,4227E+04	1,1489E-01	1.19442+05	3,4901E=02
4,61392+04	1,2330E=01	1.2046E+05	3,2392E-02
4.80502+94	1,31648=01	1.2149E+05	3,1365E-02
4.9962E+84	1,3923E=01	1.2251E+05	3,0493E-02
5,18748+04	1,4708E=01	1.23542+05	2 <b>.</b> 9036E=02
5.3786E+04	1,5412E=01	1,2456E+05	2,6134E-02
5.56482+04	1,59242=01	1,2559E+05	2,3089E+02
3,76092+04	1,6443E=01	1,2662E+05	2,1845E-02
5,95212+04	1,69102=01	1,2764E+05	1,70228-02

PLTCVT PROGRAM DATA SUMMARY PIR 4 Chain 2 PIR 4 Chain 2 CONTAMINANT = TH-229 TONS DF HEAVY METAL FACTOR = 1.000000 DATA BLOCKING FACTORS: ENTRY MDDE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE =2 TIME LOW = 1.000000E+04 TIME HIGHE 1.500000E+05 NUMBER DF CELLS = 100 DELTA TIME INCREMENT = 1.400000E+03

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME . 1.4974E+05 MIN. TIME . 1.9676E+03 TOTAL WEIGHT = 7,4882E+02 TOTAL PARCELS 974.0 PEAK WEIGHT . 57.434 PEAK WEIGHT TIME . 1.1850E+05 PEAK PARCELS TIME . 6,5300E+04 PEAK PARCELS = 25,000 WT. LOW # 1.1732E+00 NO. PARCELS LOW . 26.0 WT. HI = 0.0000E-01 NO. PARCELS HI ... 0.0 SMOOTHING WINDOW (CELLS) * 10

TOTAL INVENTORY (CURIES) = 7,499958E+82 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 7,038610E+02 PERCENT OF TOTAL INVENTORY = 93,849

TIME OF MAXIMUM CONCENTRATION (YEARS) = 8,070000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 9,861395E=09 MAXIMUM RATE (CURIES/YEAR) = 8,232269E=03 CONVERSION FACTOR RATE TO CONCENTRATION = 1,197895E=06

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 PDINTS

5

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
1.0709E+04	9.3460E=04	8.000DE+04	8.2289E-03
1.20862+04	9.3460E+04	8.1386E+04	8,2301E+03
1.3472E+04	1.07286-03	8.2772E+04	8.2204E-03
1.4858E+04	1.22148-03	6.4158E+04	8.1995E=03
1.62446+04	1.3792E-03	8.5544E+04	8.1672E=03
1.7630E+04	1.5462E=03	8.69302+04	8.1236E-03
1.9016E+04	1.72256-03	8.8316E+04	8.0685E=03
2.0402E+04	1.9082E=03	8.9702E+04	8.0022E-03
2.1788E+04	2.1034E-03	9.1088E+04	7.9246E-03
2.3174E+04	2.3080E-03	9.2474E+04	7.8361E=03
2.4560E+04	2.5221E+03	9.3860E+04	7.7370E=03

2,5946E+04	2.74942-03	9.52462+04	7.6275E=03
2.7332E+04	2.93868+03	9.66322+94	7.5080E+03
2.8718E+94	3.13016=03	9.8018E+04	7.3789E+03
3.0104E+04	3.3238E=03	9.9484E+84	7.24088-03
3.1490E+04	3.51906-03	1.00792+05	7.09402-03
3,28762+94	3.71528+03	1.02182+05	6.9390E+03
3.42622+94	3.9118E=03	1.03562+05	6.7754E+03
3,5648E+84	4,1083E=03	1.0495E+05	6.6066E#03
3.7034E+04	4.3040E=03	1.2633E+05	6.4300E=03
3.8420E+94	4.49838-03	1.07728+05	6.2473E+03
3,9806E+04	4,6906E=03	1.0911E+05	6.0594E+03
4,1192E+04	4.8800E=03	1,19492+95	5.8667E=03
4.2578E+04	5,0678E=03	1.11886+05	5.67012-03
4,39648+04	5.25376-03	1.1326E+05	5.4705E+03
4,53502+04	5.4374E+03	1.14652+05	5.2684E=03
4.67368+04	5.6185E=03	1.1604E+05	5.0647E+03
4,81228+94	5.7964E=03	1.1742E+05	4.8601E=03
4.9508E+04	5,97098+03	1.18812+05	4.6550E+03
5.28942+04	6.1414E=03	1.20192+05	4.4503E+03
5,2280E+04	6,3078E=03	1.2158E+05	4.2460E=03
5,36668+04	6,4695E=03	1,2297E+05	4.0417E+03
5,5052E+04	6,6263E=Q3	1,2435E+05	3,83822=03
5,64382+04	6,7780E+03	1,25742+05	3,6360E=03
5,78242+04	6 <b>.</b> 9243E=03	1,27122+05	3,4358E+03
5,9210E+04	7 <b>,</b> 0647E-03	1.28515+05	3,2381E-03
6,0596E+04	7,1989E=03	1,2990E+05	3,04352-03
6.1982E+04	7,3265E+03	1,31282+05	2 <b>.</b> 8525E=03
6,3368E+04	7,4472E=03	1,3267E+05	2,6657E=03
6,4754E+04	7,5606E=03	1.3409E+05	2,4834E=03
6,5140E+04	7,6663E=03	1.3544E+05	2,3033E=03
5,7526E+04	7,7639E=03	1,36832+05	2,1034E=03
6,8912E+04	7,8531E=03	1.38212+05	1,9137E-03
7.02982+04	7,9335E=03	1,3960E+05	1,7340E=03
7,1584E+04	8,0048E=03	1.4098E+05	1,5642E=03
7,50702+04	0,75682=43	1.42372+05	1,4040E-03
7.44302+04	0,11932=03	1.43762+05	1,2533E=03
7,58422+04	8,16196=03	1.45142+05	1,1118E=03
7.72202+04	0,19452=03	1,46536+05	9,7930E=04
1 90145404	0.51105+N2	1.4/912903	8,55642-04

PLTCVT PROGRAM DATA SUMMARY PIR4(TOTAL FUEL ASSEMBLIES) BABE CASE: CHAIN 3 CONTAMINANT = U=238 TONS DF HEAVY METAL FACTOR = 1.0000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 7.000000E+03 TIME HIGH= 1.100000E+03 TIME HIGH= 1.100000E+05 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 5.150000E+02

RAW DATA AND BLOCKED DATA FACTORSI MAX. TIME = 1.4971E+05 MIN, TIME = 8,3672E+03 TOTAL WEIGHT = 2.4461E+04 TOTAL PARCELS # 5816.0 PEAK WEIGHT = 636,759 PEAK WEIGHT TIME = 1.7043E+04 PEAK PARCELS . 129.000 PEAK PARCELS TIME = 1.6588E+04 WT. LOW = 0.000PE=01 NO. PARCELS LOW = 0.0 WT. HI . 7.0768E-01 NO, PARCELS HI . 136,0 SMOOTHING WINDOW (CELLS) = 20

TOTAL INVENTORY (CURIES) = 2.446161E+84 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2.452136E+84 PERCENT OF TOTAL INVENTORY = 108.244

TIME DF MAXIMUM CONCENTRATION (YEAR8) = 1.961750E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.208078E=06 MAXIMUM RATE (CURIES/YEAR) = 1.008501E+00 CONVERSION FACTOR RATE TO CONCENTRATION = 1.197895E=06

CONTAMINANT = U=238

TIME (YR)	RATE (CU/YR)	TIME (VR)	RATE (CU/YR)
8.2875E+@3	1,7848E=01	6.2366E+04	1.3440E=01
9:0061E+03	2.6606E=01	6.4219E+04	1.3446E=01
9.7246E+03	4.5116E=01	6.6072E+04	1.3452E+01
1.0443E+04	5.29046-01	6.7924E+04	1.34295-01
1,1162E+04	5.82516+01	6.9777E+84	1.34035-01
1,1880E+04	6.8142E=01	7.1630E+04	1.3401F-01
1.25996+04	7.5948E=01	7.3483F+04	1 34176-01
1.3317E+04	8.2980E=01	7.5336F+04	1 24336-01
1.40366+04	8.9171E=01	7.71896404	1 11085-01
1.4755E+04	9.3141E=01	7.90426+04	1.33400401

1,5473E+04	9,57238-01	8,08952+04	1.3379E=01
1,5192E+04	9,7825E×01	8,27482+04	1.3363E#01
1,6910E+04	9,9514E=01	8.46012+04	1.3289E+01
1.76298+04	9.9815E=01	8.6454E+04	1.3175E=01
1,8347E+04	1.00168+00	8.8307E+04	1.3132E=01
1,90662+04	1.00575+00	9.0160E+04	1.30128-01
1.9784E+04	1.0084E+00	9.2013E+04	1.28978-01
2,0503E+04	1.9010E+00	9.3866E+04	1.25368=01
2.1222E+04	9.7907E+01	9.5719E+04	1.23248-01
2.19402+04	9.4233E-01	9.6165E+04	1,23308-01
2.2659E+04	8.9124E-01	9.6612E+04	1.23208-01
2.33778+04	8.1848E=01	9.74596+04	1.22408-01
2.40945+04	7.2576E+01	9.75055+04	1.20438-01
2.4814E+04	6.2121E=01	9,7952F+04	1.12218-01
2.55338+44	5.1401E-01	9,83998+04	1.15105-01
2.62528+04	4 1345E-01	9-8846F+04	1,07078-01
2.6970E+04	3.26748-01	9,92926+04	9.78426-02
2.7689E+04	2.55428-01	9.97395404	A 45058-03
2.84072+04	2.01448=01	1-0419E+05	7 80845-03
2.9125E+04	1.6946E-01	1.00636+05	5,3771F-02
2.9844E+04	1.5123E=01	1.01085-05	5 2505F_02
3.05632+04	1.4370E=01	1.01532+05	1.0720F-02
3.1281E+04	1.40516-01	1.01978+05	2.94735-02
3.2000E+04	1.40128-01	1.02422+05	2.07028-02
3.2719E+04	1.4020E-01	1.02876+05	1.44338-03
3.4572E+04	1.3867E=01	1.03318+05	9.6574F-0%
3.6424E+04	1.3781E=01	1.03765+05	4.86768-03
3.8277E+04	1.37178-01	1.04218+05	2.92818-03
4.0130E+04	· 1.3626E=01	1.0465E+05	8,00258-04
4,1983E+04	1.36056-01	1.0510E+05	7.008AF-05
4,3836E+04	1.35228-01	1.05552+05	2.0A13E=09
4,56898+04	1.34555-01	1.05996+05	1.68828-05
4,75426+04	1.34398-01	1.40446+05	1.69718-05
4,9395E+04	1.3443E-01	1.06896+05	1.68398-05
5,12482+04	1.3452E-01	1.0733E+05	1.4204F-05
5,31012+04	1,34226-01	1.0778E+05	1.27268-04
5,49546+04	1,3401E=01	1.08232+05	1.5184F=04
5,68072+04	1,3403E=01	1.08672+05	1.51858-09
5.86502+04	1,34382=01	1.0912E+05	1.27778=05
6,0513E+04	1,34568+01	1,09576+05	1.2148E+05

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 1.4879E+05 MIN. TIME # 7.8283E+03 TOTAL WEIGHT . 1,30622+05 TOTAL PARCELS 5809.0 PEAK WEIGHT = 3541.084 PEAK WEIGHT TIME . 1.6220E+04 PEAK PARCELS .= PEAK PARCELS TIME = 1.1460E+04 146,000 WT. LOW = 0.0000E=01 ND. PARCELS LOW # 0.0 WT. HI = 1.5189E=02 ND. PARCELS HI .= 40.0 SMOOTHING WINDOW (CELLS) # 20

TOTAL INVENTORY (CURIES) = 1.306189E+05 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1.310632E+05 PERCENT OF TOTAL INVENTORY = 100.340

TIME OF MAXIMUM CONCENTRATION (YEAR8) = 1.978000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 6.661860E=06 MAXIMUM RATE (CURIES/YEAR) = 5.561304E+00 CONVERSION FACTOR RATE TO CUNCENTRATION = 1.197895E=06

CONTAMINANT = U+234

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

RATE (CU/YR) TIME (YR) TIME (YR) RATE (CU/YR) 7.8200E+03 5,9107E=01 6.2202E+04 6.7621E=01 8.4921E+03 7.6736E=01 6.4172E+04 6.7271E#01 1.4584E+00 -9.1642E+03 6.6143E+04 6_6986E=01 9.8364E+03 1,8506E+00 6,8113E+04 6.6711E=01 1.0508E+04 2.5526E+00 7.00846+04 6.6284E+01 3.29328+00 1.1181E+04 6.5949E=01 7.2054E+04 1.1853E+04 4,0110E+00 7.40251+04 6,5456E=01 1.2525E+04 4.5991E+00 7.5996E+04 6.5024E=01 1,3197E+04 5.0293E+00 7.7966E+04 6.4776E=01 1.38692+04 5.2792E+00 7.9937E+04 6.4359E=01 1.4541E+04 5.40316+00 8.1907E+04 6.3989E#01

1,5213E+04	3,4258E+00	8,3878E+04	5,3682E=01
1,58852+04	5,4207E+00	8,58492+04	5.33022+01
1,6558E+04	5,40166+00	8.7819E+04	6.3154E=01
1,7230E+04	5,4083E+00	8.979ØE+04	6.2797E+01
1,79022+04	5,47578+00	9.1760E+04	5.2597E+01
1.85748+04	5.51862+00	9.3731E+04	6.22528-01
1,92466+04	5,54266+00	9.5702E+04	6.2255E+01
1,9918E+04	5,5612E+00	9,76722+04	5.8877E+01
2,05906+04	5,53712+00	9,8458E+94	5.6523E+01
2,1262E+04	5,4345E+00	9,8444E+04	5.34572+01
2,1935E+04	5,24252+00	9,8830E+04	4,9489E+01
2,2607E+04	4,9740E+00	9,92162+04	4.5427E=01
2,3279E+04	4,6244E+00	9,9602E+04	4,09432-01
2,39512+04	4,17332+00	9,9988E+04	3.6207E=01
2,4623E+04	3.6347E+00	1,0037E+05	3.1362E#01
2,5295E+04	3,0523E+00	1,00762+05	2.6773E+01
2,59672+04	2,4977E+00	1.01152+05	2.2480E=01
2.6639E+04	1,9744E+00	1,01532+05	1.8400E=01
2,7312E+04	1,5291E+00	1.0192E+05	1.44338+01
2,7984E+04	1,1822E+00	1,02302+05	1.1200E+01
2,8656E+04	9,6122E=01	1,0269E+05	8,0031E+02
2,9328E+04	8,2242E-01	1,0308E+05	5,50098+02
3,0000E+04	7 <b>.</b> 6448E-01	1,0346E+05	3,6647E=02
3,06722+04	7,5185E=01	1,03852+05	2,4662E+02
3.26432+04	7,3737E#01	1,0424E+05	1.6147E+02
3,4613E+04	7,2815E+01	1,0452E+0 <b>5</b>	1,0087E-02
3,6584E+04	7,22798=01	1.0501E+05	4,9100E=03
3.8554E+04	7.1862E=01	1,05398+05	2,3809E+03
4,0525E+04	7,07328-01	1,0578E+05	8,3880E-04
4,2495E+04	7,0540E-01	1,0617E+05	0,0000E+01
4,4466E+04	7,9254E-01	1,0555=+05	0,0000E-01
4,6437E+04	6 <b>.</b> 9843E=01	1.0694E+05	0,0000E=01
4.8407E+04	5,96452-01	1.0732E+05	9,0000E=01
5.0378E+04	6,9430E-01	1.0771E+05	0,0000E-01
5,23492+04	6,9192E-01	1,0810E+05	0,0000E+01
5.43198+04	6,9055E=01	1.0848E+05	0,0000E=01
5.62902+04	6,8629E=01	1,0887E+05	9,0000E-01
5,8260E+04	5,8264£=01	1,09252+05	0,0000E=01
0,0231E+04	6,7907E+01	1.0964E+05	0,0000E+01

.

RAW DATA AND BLOCKED DATA FACTORSI MAX. TIME . 1.4985E+05 MIN. TIME = 8.6008E+03-TOTAL WEIGHT = 3,5873E+03 TOTAL PARCELS 1168.0 PEAK WEIGHT # PEAK WEIGHT TIME . 61.072 2.6105E+04 PEAK PARCELS ... 1,2622E+05 19,000 PEAK PARCELS TIME = WT. LOW = 0.0000E=01 NO. PARCELS LOW = 0.0 WT. HI = 0.0000E-01 ND, PARCELS HI . 0,0 15 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 3.587342E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 3.492420E+03 PERCENT OF TOTAL INVENTORY = 97.354

TIME OF MAXIMUM CONCENTRATION (YEAR8) = 4.811500E+04 MAXIMUM CONCENTRATION (MICROCURIE8/ML) = 3.734272E=08 MAXIMUM RATE (CURIES/YEAR) = 3.117361E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 1.197895E=06

CONTAMINANT = TH=230

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR) RATE (CU/YR) RATE (CU/YR) TIME (YR) 8.3550E+03 1.4611E+03 2,9271E-02 6.8000E+04 8.5867E+03 1.4611E=03 7.1059E+04 2.8764E+82 8.8183E+03 7.4118E+04 1.4611E=Ø3 2.8326E*02 9.0500E+03 2,7946E+02 1.4611E=03 7.7176E+04 9.28176+03 2.7692E-02 1.84628-03 8.0235E+04 9.5133E+03 2.2579E-03 8.3294E+04 2,7576E+02 9.745PE+03 2.6696E=03 2.7593E+02 8.6353E+04 9,97676403 2,9141E=03 8.9412E+04 2.7623E#02 1.02086+04 3.1336E=03. 9.2471E+04 2.7528E+02 1.0440E+04 3.3531E=03 9.55296+04 2.7302E+02 1.0672E+04 3.7184E=03 9.8588E+04 2.6992E-02

1,0903E+04	4,11885-93	1.01652+05	2.6496E#02
1.1135E+04	4.51925-03	1.04712+05	2.5830E=02
1,1367E+04	4,9014E=03	1.0776E+05	2.5054E-02
1,15986+04	5,2773E=03	1.1082E+05	2.42548=02
1.18302+04	5.65326+03	1.13888+05	2.3496F=02
1,20625+04	6.04292-03	1.16942+05	2.28328-02
1.2293E+04	6.4390E=03	1.2000E+05	2.22065-02
1,25258+04	6.83526+03	1.2306E+05	2.16775-02
1,2757E+04	7.20368-03	1.2396E+05	2.15438-02
1,2988E+04	7.55448+03	1.2486E+05	2.14208-02
1,3220E+04	7,90526-03	1.25752+05	2.13068-02
1,3452E+04	8.23256=03	1.2065E+05	2.12028-02
1,3683E+04	8.54038-03	1.27555+05	2.1104F=02
1,3915E+04	8.8481E+93	1.28455+05	2.10146-02
1.41472+04	9.1491E=03	1.29352+05	2,00208-02
1.4378E+04	9.44271=03	1.30256+05	2.0840F-02
1.4610E+04	9.7362E=03	1.31145+05	2 07728-02
1.4842E+04	1.90285-02	1.3204F+05	2 07028-02
1.5073E+04	1.0316E-02	1.32945+05	2 94345-92
1.53052+04	1.06048-02	1.33846+05	2 05755-05
1,55376+04	1.09528-02	1.3474E+05	2 05125-02
1.5768E+04	1.1411E-02	1.35648+05	2,0440F-02
1.50002+04	1.1871E-02	1.36532+05	2.03875-02
1,90596+04	1.7079E+02	1.37436+05	2.032AF-02
2,21182+04	2,06575+02	1.3833E+05	2,02758-02
2,5176E+04	2.32668-02	1.39236+05	2,02525-02
2,8235E+04	2.60148-02	1.40132+05	2,02565-02
3.1294E+04	2,7907E-02	1.4103E+05	2.02148-02
3,43538+84	2,9185E-02	1.4192E+05	2.01798=02
3,7412E+04	3,00155-02	1.4282E+05	2.0138E=02
4,0471E+04	3,05368-02	1.4372E+05	2.01058-02
4,35298+04	3,0906E=02	1.44626+05	2.00738-02
4.6588E+04	3,1137E-02	1.4552E+05	2.00425-02
4,9647E+04	3,1168E=02	1.46422+05	2.00106-02
5,2706E+04	3,11148-02	1,4731E+05	1.9979E+02
5.5765E+04	3,0986E-02	1,4821E+05	1.9948E+02
5,8824E+04	3,0803E-02	1,4911E+05	1.9916E+02
6.1882E+04	3,0469E-02	1,5001E+05	1.9883E+02
6.4941E+Ø4	5,98995=05	1,50912+05	1.98508-02
		-	

PLTCVT PROGRAM DATA SUMMARY PIR4(TOTAL FUEL ASSEMBLIES) BASE CASEI CHAIN 3 CONTAMINANT = RA=226 TONS OF HEAVY METAL FACTOR = 1.000000 DATA BLOCKING FACTORSI ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE =2 TIME LOW = 8.000000E+03 TIME HIGH= 1.500000E+05 NUMBER OF CELLS = 100 DELTA TIME INCREMENT = 1.420000E+03

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME . 8.3876E+03 HAX, TIME = 1.4985E+85 TOTAL PARCELS . 1581.0 TOTAL WEIGHT = 8,3023E+03 PEAK WEIGHT TIME = 1.0527E+05 PEAK WEIGHT ... 264,938 PEAK PARCELS TIME # 3.9950E+04 36.000 PEAK PARCELS . ND. PARCELS LOW . WT. LOW = 0.0000E=01 NT. HI = 0.0000E=01 0.0 ND. PARCELS HI . 0.0 SMOOTHING WINDOW (CELLS) = ĪØ

TOTAL INVENTORY (CURIES) = 8.302277E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 7.880475E+03 PERCENT OF TOTAL INVENTORY = 94.919

TIME OF MAXIMUM CONCENTRATION (YEARS) = 5.841000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 9.829432E=08 MAXIMUM RATE (CURIES/YEAR) = 8.205585E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 1.197895E+06

CONTAMINANT = RA=226

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
8,7109E+03	1.44276-02	7.9000E+04	7.3430E-02
1.0116E+04	1,44276-02	8.0406E+04	7.2509E+02
1.15222+04	1.6612E=02	8,1812E+04	7,1546E=02
1.29276+04	1.89718-02	8.3217E+04	7.0564E+02
1.4333E+04	2.1490E+02	8.4623E+04	6.9567E+02
1,5739E+04	2.4157E=02	8.6029E+04	6.8568E+02
1.7145E+04	2.6957E-02	8.7435E+Ø4	6.7578E=02
1.8551E+04	2,98968+02	8.8841E+04	6.6598E+02
1.99562+04	3.2966E=02	9.0246E+04	6,5639E.02
2.1362E+04	3.6143E=02	9.1652E+04	6.4694E+02
2.2768E+04	3.9429E=02	9.305BE+04	6.3756E+02
3 44748444	A 39478-43		
----------------------------	-----------------------------	-------------	---------------------------------------------
5941145484	4,20135#82	9,44642404	6,2833E+02
5,2200E+04	4,57092+02	9,5870E+04	6,1933E+02
2,6985E+04	4,85212-02	9.7275E+04	6.1066E=02
2,8391E+04	5,1292E-02	9,8681E+04	6.0238E=02
2,9797E+04	5,40112+02	1.0009E+05	5.94438-02
3,1203E+04	5.66626-02	1.0149E+05	5. 3659F-02
3.2609E+04	5.9245E+42	1.02908+05	
3.4014E+04	6.1756E-02	1.04305+05	R 7064E-00
3 5429E+04	6.4174E-02	1.05718+05	S 40446-02
3.68262+04	5-6463E-02	1.07128405	
3-8232E+04	6-86018-02	1 (18525105	2 1 2 2 2 2 - 2 2 2 2 3 2 2 2 0 C = 40 C
3.9638F+04	7 08875-03	1 40036748	
A. 10435404	7 34408-03	11011322403	244405445
4 37405 AMA	1 107422-30 1 1244102402	1.11332-03	3,34468=02
4 324476704 A 3428540A	1 88348-00 1 9400025905	1.12/42+05	5,2818E=02
4 8 30 3 3 C 4 0 0	7,00045902	1,14142+05	5,2178E+02
4.36012704	1.09525-05	1,1555E+05	3,1510E-02
4,000/2+04	7.79626=02	1.1096E+05	5,0807E-02
4.80/20+04	7,8938E+02	1,18362+05	3,0070E+02
4,94782+04	7,9763E=02	1.19772+05	4.9291E=02
5,08842+04	8,0468E-02	1,2117E+05	4.8443E=02
5,22906+04	8 <b>.</b> 1036E=02	1,2258E+05	4.7516E+02
5,3696E+04	8.1473E=02	1,2399E+05	4.65028-02
5.5101E+04	8,1788E+02	1.2539E+05	4.34006-02
5,55072+04	8,1975L-02	1.26802+05	4-4199E-02
5,79138+04	8,20458-02	1.2820E+05	4.2895E-02
5.9319E+04	8.2301E-02	1.2961E+05	4 14925-02
5,0725E+04	8.1847E-02	1.31012+05	4.00255-02
6.213AE+04	8.1588E-92	1.32428+05	3 85058-03
6.3536E+04	8.1223E+02	1.33838405	
6.4942E+04	8.0759E-02	1.35235405	きょしょうごにゃむに て ビコルドにつひつ
6.6348E+04	8.02168-02	1 36648408	3 30338-43
6.7754E+04	7.96075-02	1 28046405	3.24475-02
6.9159E+04	7.89116-02	1 29/55105	3,001/2-02
7.05656+04	7 92058-02	1 10005703	C,8348E=02
7.19715-04	・ 9 はらびコムママピ ア・アルルムボニクラ	1944005403	c.0103E-02
7.28776404	7 66906-00 7 66906-00	1,45205+03	2,38885+92
7.478784404	7 80148-00	1,430/2703	d.1724E=02
7 L1225704	1 21345-000	1.43072+05	1,9629E-02
7 901000704 7 780/6 504	1,31246402	1.40482+05	1 <b>,</b> 7602E=02
111345404	1,42962=02	1,4788E+05	1,5642E=02

PLTCVT PROGRAM DATA SUMMARY PIR 4 Chain 4 PIR 4 Chain 4 CONTAMINANT = AM=P43 TONS DF HEAVY METAL FACTOR = 1.0000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE =2 TIME LOW = 8.000000E+02 TIME LOW = 8.000000E+02 TIME HIGH= 1.700000E+04 NUMBER OF CELLS = 300 DELTA TIME INCREMENT = 5.400000E+01

RAW DATA AND BLOCKED DATA FACTORS: MAX. TIME = 1.6135E+04 MIN. TIME = 1.2291E+03 TOTAL PARCELS # TOTAL WEIGHT = 3_2877E+05 5755.0 3941,435 PEAK WEIGHT TIME = 1.4210E+03 PEAK WEIGHT # PEAK PARCELS TIME = 1.4210E+03 PEAK PARCELS = 36.000 ND. PARCELS LOW . NT. LOW = 0.0000E+01 0.0 WT. HI . 0.0000E-91 ND. PARCELS HI . 0.0 20 SMOOTHING WINDOW (CELLS)=

TOTAL INVENTORY (CURIES) = 3,287672E+05 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 3,309197E+05 PERCENT OF TOTAL INVENTORY = 100,655

TIME OF MAXIMUM CONCENTRATION (YEARS) = 1.475000E+03 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 4.991681E+05 MAXIMUM RATE (CURIES/YEAR) = 4.167043E+01 CONVERSION FACTOR RATE TO CONCENTRATION = 1.197095E+06

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR) RATE (CU/YR) TIME (YR) RATE (CU/YR) 1,20506+03 2.69522+01 8.6000E+03 2,0750E+01 1.2170E+03 2.69526+01 9.0118E+03 1,9912E+01 1.22892+03 2,6952E+01 9.4235E+03 1,9158E+01 1.2409E+03 2.6952E+01 9,8353E+03 1.8436E+01 1.2529E+03 2.6952E+01 1.0247E+04 1.7729E+01 1.2648E+03 2.7825E+01 1.0659E+04 1,7114E+01 2.9613E+01 1.2768E+03 1.1071E+04 1.6500E+01 1.2888E+03 3.1401E+01 1,1482E+04 1.5860E+01 1.3008E+03 1,1894E+04 3.3189E+01 1,5212E+01 1.3127E+03 3,49776+01 1.2306E+04 1.4646E+01 1.3247E+03 3.53262+01 1.2718E+04 1.4104E+01

1,3367E+03	3,56416+01	1.31296+04	1.35696+01
1,34862+03	3,5955E+01	1.3541E+04	1.3047E+01
1.36662+03	3.62706+01	1.3953E+04	1.25878+01
1.37266+03	3.69265+01	1.43658+04	1.19825-01
1,38456+03	3.79746+01	1.47766+04	1.11768401
1,39658+03	3,90228+01	1.51886+04	1.04315+01
1.4085E+03	4,0069E+01	1.56006+04	9.13135-00
1,42052+03	4.1117E+01	1.5515E+04	9,03975+00
1,43248+03	4,12716+01	1.56316+04	8.9222F+00
1.4444E+03	4.1384E+01	1.56462+04	A. A061F+00
1,45646+03	4.14968+01	1.56626+04	A AAQOFAAA
1.4683E+03	4.1608E+01	1.5677E+04	8.57368+00
1,4803E+03	4.16526+01	1.56936+04	A ARAQEARA
1,49235+03	4.16096+01	1.57086+04	A 2882F102
1.50428+03	4.15662+01	1.57238+04	A.1485F400
1,5162E+03	4.1524E+01	1.57398+04	7.98455400
1,52822+03	4.14816+01	1.5754E+04	7.81155400
1,5402E+03	4,13256+01	1.57702+04	7.63698+00
1,5521E+03	4.11596+01	1.57856+04	7_4614E+00
1.5641E+03	4,09946+41	1.5801E+04	7.26128+00
1,5761E+03	4,08296+01	1,5816E+04	7.06108+00
1,5880E+03	4.0708E+01	1.5831E+04	6.8608E+00
1,6000E+03	4 <b>.</b> 0546E+01	1,5847E+04	5.7756E+00
2,01182+03	3,86532+01	1.5862E+94	6.8034E+00
2,4235E+03	3,71602+01	1,5878E+04	6.8311E+00
2,8353E+03	3,564ØE+01	1,5893E+04	6.8582E+00
3,2471E+03	3 <b>.</b> 4308E+01	1.59082+04	6.6839E+00
3,6588E+03	3,3033E+01	1,59248+04	6.5096E+00
4,0706E+03	3,18246+91	1,5939E+04	6.33522+00
4,4824E+03	3,0660E+01	1.5955E+04	6.1559E+00
4,8941E+03	2,9585E+01	1 <b>,</b> 5970E+04	5,9716E+00
5,3059E+03	2,84885+01	1.5986E+04	5,7873E+02
5,7176E+03	2,7434E+01	1.6001E+04	5.6030E+00
6,1294E+03	2.64256+01	1.5016E+04	5,42958+00
D, 5412E+03	2,5396E+01	1 <b>.</b> 6032E+04	5,2561E+00
0,99292403	2,4439E+01	1,6047E+04	5,0827E+00
1,36472+03	2,3479E+01	1.6463E+04	4,9066E+00
1,11056+03	2,2571E+01	1,60782+04	4,7278E+00
0,10042+03	2,10562+01	1.5094E+04	4,5491E+00

PLTCVT PROGRAM DATA SUMMARY PIR 4 Chain 4 PIR 4 Chain 4 CONTAMINANT = PU=239 TONS OF HEAVY METAL FACTOR = 1.0000000 DATA BLOCKING FACTORSI ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE =2 TIME LOW = 2.000000E+03 TIME HIGH= 5.000000E+04 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 2.400000E+02

RAN DATA AND BLOCKED DATA FACTORSI MIN. TIME = 2.2850E+03 MAX. TIME # 4.6862E+04 .TOTAL WEIGHT = 3,8941E+02 TOTAL PARCELS # 1024.0 PEAK WEIGHT . PEAK WEIGHT TIME = 2.3720E+04 9,403 PEAK PARCELS = 23.000 PEAK PARCELS TIME = 2.3720E+04 WT. LOW . 0.0000E=01 NO. PARCELS LOW a 0.0 WT. HI = 0.0000E=01 NO. PARCELS HI . 0.0 SMOOTHING WINDOW (CELLS) # 10

TOTAL INVENTORY (CURIES) = 3.694141E+82 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 3.778886E+02 PERCENT OF TOTAL INVENTORY = 97.038

TIME OF MAXIMUM CONCENTRATION (YEARS) = 2.228000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.699334E=08 MAXIMUM RATE (CURIES/YEAR) = 1.418600E=02 CONVERSION FACTUR RATE TO CONCENTRATION = 1.197895E=06

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
2.36006+03	1.20976-03	2.4560E+04	1.3769E=02
2.8040E+03	1.3610E=03	2.5004E+04	1.3617E=02
3.24806+03	1,7154E=03	2.5448E+04	1.34558-02
3.6920E+03	2,10456-03	2.5892E+04	1.3264E=02
4.13606+03	2,5251E-03	2.63362+04	1.3039E=02
4.580000403	2.9795E=03	2.6780E+04	1.2803E=02
5.02406+03	3,46318-03	2.7224E+04	1.2561E+02
5.46802+03	3.8659E=03	2.7668E+04	1.2317E+02
5.9120E+03	4 26456-03	2.8112E+04	1.2075E-02
6.356HE+03	4.65276-03	2.8556E+04	1.1838E=02
6.8000E+03	5.0258E-03	2.90085+04	1.1612E=02

7_24495+93	5 377 <i>15403</i>	2 94445-04	1 12048-00
7 48805403	R 10715-07	5 08898.00	1,13905-02
A 13306-01	2307116=93 2 04005-07	2 01707.00	1,110/2002
0 87408307	5,70002-03	3.03342.404	1,09/85,002
0,01002700	0,24495*03	3.01152+04	1,0782E=02
A . RERNETAS	5.45952=03	3,12202+04	1,0604E=02
9.46402+03	6.6602E=13	3 <b>.</b> 1664E+04	1,04306+02
9,9080E+03	6,8106E=03	3,2108E+04	1,0250E=02
1,0352E+04	6,92432-03	3,2552E+04	1,0067E+02
1,0796E+04	7 <b>,</b> 0133E=03	3,2996E+04	9.8751E=03
1 <b>.</b> 1240E+04	7,78516-03	3.3440E+04	9.6729E-03
1.1584E+94	7.1466E=03	3.38842+04	9.46508-03
1,2128E+04	7.20516-03	3.4328E+04	9.2542E-03
1.25728+04	7.27518+03	3.4772E+04	9.04025-03
1.3016E+04	7.3711E+03	3.52168+04	A. 8/97F=01
1.3460E+04	7.50866-03	3.56608+04	A AARTR-OT
1.39048+04	7.69958-03	3 61045104	0,04JJC-03
1.43485+94	7 94855-01	3 64046404 7 6408404	0 8 4 2 7 0 5 4 0 3 - 0 7 1
1.47925404	A 36408-32	3,03405404 7 60005404	0,21102-03
1 53365404	8 LEDDE-17	3.37722704	1,9902E#03
1 26305-04	0,0000E-00	3,74352784	7,78852=03
1,30005704	7 N7025-03	3,70002+04	7.5812E=03
1 201545404	* 00785-00	3,83242+94	7.37842=03
1 70126404	1,00/35-02	3,87882+04	7,17952-03
1 1/5/5/24	1 * NONSCHAS	3.92128+04	6,9779E=03
1 70005104	1.11255405	3,96562+04	6,7746E=Ø3
1.79002904	1,10088-02	4.01002+04	6,5662E-03
1.85448+04	1.21916-02	4.0544E+04	6 <b>,</b> 3550E=03
1.8788E+04	1,2645E=02	4 <b>,</b> 0988E+04	5,1480E-03
1,9232E+04	1,3044E+02	4 <b>.</b> 1432E+04	5,94468=03
1,9576E+04	1,3382E=02	4 <b>.</b> 1876E+04	5.7393E-03
2,0120E+04	1,3650E=02	4.23202+04	5.5170E+03
2,0564E+04	1,3847E=02	4,2754E+04	5.27018-03
2.10086+04	1,4001E=02	4.32082+04	4.99998-03
2,1452E+04	1,41125-02	4.36522+04	4.70326-03
2,1895E+04	1,4170E-02	4.40962+04	4.38362=03
2,23406+04	1.41848-02	4.45402+04	3.97748-03
2,2784E+04	1,4154E-02	4.49842+04	3.48375-07
2,32288+04	1.40948-02	4.54285404	3.000AF_01
2,3672E+04	1.40136-02	4.58726+04	2 KGARFLOZ
2.4116E+04	1.39058-02	4.63165404	5 11722-47
			C*114 5C#N3

PLTCVT PROGRAM DATA SUMMARY PIR 4 Chain 4 PIR 4 Chain 4 CONTAMINANT # U+235 TONS OF HEAVY METAL FACTOR . 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LON # 2.000000E+03 TIME HIGHE 1,100000E+05 NUMBER OF CELLS . 500 DELTA TIME INCREMENT = 2.160000E+02

RAW DATA AND BLOCKED DATA FACTORS: MAX. TIME = 1.4992E+05 MIN. TIME . 2.6171E+03 TOTAL WEIGHT . 7.8186E+02 TOTAL PARCELS = 10486,0 3.06206+04 PEAK WEIGHT . PEAK WEIGHT TIME . 28.233 PEAK PARCEL'S TIME . 1.4420E+04 PEAK PARCELS # 109.000 WT. LOW = 0.0000E=01 ND. PARCELS LOW . 0.0 ND. PARCELS HI . WT. HI = 2.6866E+01 12.0 20 SMOOTHING WINDOW (CELLS) #

TOTAL INVENTORY (CURIES) = 8.087227E+02 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 7.891524E+02 PERCENT OF TOTAL INVENTORY = 97.580

TIME OF MAXIMUM CONCENTRATION (YEARS) = 2.198000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.668911E=08 MAXIMUM RATE (CURIES/YEAR) = 1.393203E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 1.197895E=06

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
2,54006+03	9,6030E-08	5.8500E+04	8,0477E=03
3,12976+03	2.1837E=06	6.0647E+04	7,8902E=03
3.7194E+03	2.4274E=05	6,2794E+04	7,7617E+03
4.3091E+03	4.6369E=05	6.4941E+04	7.6690E=03
4,8988E+03	6.8803E-05	6.7088E+04	7,5982E=03
5.4885E+03	1,1309E-04	6.9235E+04	7,5229E=03
6.0782E+03	1.7973E=04	7.1382E+04	7 4253E=03
6.6679E+03	2.7448E=04	7,3529E+04	7.2949E=03
7.2576E+03	4.05576-04	7.5676E+04	7,1350E-03
7.8473E+03	5.8141E=04	7.7824E+04	6.9616E=03
8,4370E+03	8,0879E-04	7.9971E+84	6,7890E+03

	,		-
9.0267E+03	1,09486+03	8.21182+04	6.6347E=03
9.61645+03	1 4476E=03	A_4265E+04	6.51652=03
1 02055300	1 26028-12	B 64125404	6 44955-03
1 945042+84	3 34445-03	9 92802744 0104158104	5 8 6 4 7 3 6 7 9 3 4 8 6 4 9 5 - 7 7
1.0/902704	5-30105-83	0.03345404	7 4300E 43
1,15856+94	5.95535=03	9,0/062+04	6,94892=03
1,1975E+04	3,5511E=03	9,2853E+04	6,7316E=03
1,2565E+04	4,2394E-03	9.50002+04	. 7,03668=03
1,3155E+04	4,9791E=03	9,54452+04	7.1655E-03
1.37442+04	5.7610E-03	9.38902+04	7.2923E#03
1.4334E+04	5.5732E-03	9.6334E+04	7.38888-03
1.49248+04	7.40312-03	9-57795+94	7.41358-93
1.55138+84	A. 2386E-03	9.72245+94	7 33238-03
1 14036-00		0 7662504	7 **#6#_43
1,01036704		7,1000E+04	1 34045-03
1,00735704	7.01276-03	APO1135484	0,14005=03
1,72022+04	1.00442-02	9,89382+04	0.53415-03
1.7872E+04	1,1365E=02	9,9003E+04	5,61402-03
1.8462E+Ø4	1.2018E-02	9 <b>.</b> 9447E+04	4,9115E=03
1,9052E+04	1,2591E-02	9 <b>.</b> 9892E+04	4,1802E-03
1,9641E+04	1,30735-02	1,0034E+05	3.46852=03
2.0231E+04	1.3450E-02	1.90782+05	2.8186E=03
2.0821E+04	1.37118=02	1.91238+05	2.2576E=93
2.1410E+04	1.38688=02	1.01572+05	1.80096-03
2 2000F+04	1 19395-03	1.02128-08	1 45335-03
3 41478+04	1 2/2/5-33	1 33565405	1 31305-03
5 4 5 Q A E + Q A	1 70786-02	1 01015407 4 01015408	1,21205403
C 0 0 4 0 4 5 4 0 4	1.30306-05	1.03016403	1,0/005=03
2,04412+04	1.24342-02	1,03432403	1,02212=03
3.03086+44	1.18736-03	1.0359E+05	1,0637E=03
3,2735E+04	1,13045=02	1,04342+05	1,1891E=03
3,4882E+04	1,07395-02	1.0478E+05	1,3829E=03
3,70298+04	1.0182E=02	1,05238+05	1.62752-03
3.91768+04	9.6660E=03	1.05672+05	1.8942E=03
4.1324E+04	9.2330E-03	1.0612E+05	2.1470E+03
4.3471E+00	8.9197E-03	1.0656E+05	2.3517E=03
4 SAIRE-04	A 73795-43	1.07015+05	2 48768-03
4.7755F+04	8 A249F=43	1,37455-05	2 RA318-02
A 9913540A	A SKOAF-01	1 J7GHELAK	C   J 7636-03 3 83386-03
4877846704 6 30506104	5 n 3 3 5 5 - 12 3 9 n 3 3 5 5 - 12 3	1 397 705 70J 1 393 185 585	5 ALEEE-03
3 8 8 3 7 5 7 5 4 4	は。4日ピアに甲ジス 9、ファットニークス	1 4 4 5 7 6 5 4 5 7 6 5	2,40775703
3,42002704	0,5/015=45	1.00145403	e,41532=03
2*07225+84	9,51975=03	1,04576+02	2,3283E+03
			• • •

PLTCVT PROGRAM DATA SUMMARY PIR 4 Chain 4 PIR 4 Chain 4 CONTAMINANT # PA-231 TONS OF HEAVY METAL FACTOR # 1.000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW # 2.000000E+03 TIME HIGH# 1.600000E+03 TIME HIGH# 1.600000E+05 NUMBER OF CELLS # 200 DELTA TIME INCREMENT = 7.900000E+02

RAW DATA AND BLOCKED DATA FACTORS: MIN. TIME = 2.66486403 MAX. TIME = 1.5000E+05 TOTAL PARCELS = 2553.0 TOTAL WEIGHT = 2.9597E+01 4.50556+04 PEAK WEIGHT TIME = P. 504 PEAK WEIGHT . 9.0085E+04 PEAK PARCELS TIME # 33.000 PEAK PARCELS NO. PARCELS LOW # 0.0 NT. LOW . 0.0000E-01 NO. PARCELS HI . 0.0 NT. HI = 0.0000E-01 10 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 2.959672E+81 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2.871982E+81 PERCENT OF TOTAL INVENTORY = 97.837

TIME OF MAXIMUM CONCENTRATION (YEARS) = 8.376500E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 3.488800E+10 MAXIMUM RATE (CURIES/YEAR) = 2.912442E+04 CONVERSION FACTOR RATE TO CONCENTRATION = 1.197895E+06

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
2.3950E+03	1.23401-05	7.62602+04.	2.8519E-04
3.8723E+03	1.4259E=05	7.7737E+04	2.8719E=04
5.3496E+03	1.89718-05	7.9215E+04	2.88865-04
6.8269E+03	2.4566E-05	8.06925+04	2.9012E=04
8.30425+03	3.11198-05	8.2169E+04	2.9093E-04
9.78152+03	3.46616-95	8.3646E+04	2.9123E-04
1-12596+04	4.7196E-05	8.5124E+04	2.9101E=04
1.27366+04	5.59156-05	8.6001E+04	2.9025E+04
1.42136+04	6.53544-05	8.8078E+04	2.8893E=04
1.56918+04	7.55266-05	8.95562+04	2.8706E+04
1.7168E+04	8.62108-45	9.1035E+04	2.8463E-04

1.86452+04	9.7307E=05	9.25102+04	2.8167E+04
2.0123E+04	1.0868E=04	9.39888+04	2.7817E=04
2.1600E+04	1 20225-04	9.54652+04	2.7417E=04
2.34772+04	1.31788-04	9.69425+04	2.6972E+04
2.45558+04	1_41256-04	9.44192+04	2.6495F=04
2.60326+04	1.54478-04	9.9897E+04	2.5959F-04
2.75098404	1.65341-04	1.01376+05	2.54028-04
2.8986F+04	1 73758-04	1.02455405	2 4816P-04
3.04646404	1_85608=004	1.04535+05	2,4209F-04
1.19415404	1 94846-44	1 05818405	2 18976-04
2 24195404	2 0342F-04	1 37386105	2 2054F-04
T A204E104	2 11245-34	1 04762400 1	2 22245-04
1 12725104	2 * \$4000-04 2 * \$4000-04	4 48245405	5 46055-04
3 38608404	2 310470-04	1 11735-08	2 10736404 2 10736404
3 07000E704	こ マルマンビージャ	1.11/55703	2,10//2404
3,73205704	5 38705-34 5 38765-34	1,13175703	5 8 8 4 7 4 C = 84
4 300035+04	2,33795404	1,140/6703	1,90915=04
4,22005704	2,40215-04	1.10136+03	1,95522=04
4,5/346704	2,44002404	1.1/022403	1,87985=04
4,52572+04	2.47202-04	1,1910E+05	1,82891+04
4,67142+04	2,49985+04	1.20582+05	1,7805E=04
4.81412+04	2,52091-04	1,22055+05	1,73412+04
4,90092+04	2,53406-04	1,23532+05	1,68962=04
5,11462+94	2.33305=94	1.20012+00	1.04532=94
5,20236704	2.50015=44	1.20492+09	1,5037E=04
5,4101E+04	2,57548=44	1.2797E+05	1,5609E=04
5.55782+04	2,53538=04	1.29446+05	1,5167E=04
5,70552+04	2,59512-04	1.30922+05	1,4703E=04
5,85322+04	2.60495-04	1,3240E+05	1,4206E=04
6,00102+04	2,6162E=04	1,3387E+Ø5	1,3669E=04
6,1487E+04	2,62935=04	1,3535E+05	1,3073E=04
6.29648+04	2,6447E=04	1,3683E+05	1,2401E-04
5,4442€+04	5.20545-44	1,38312+05	1,1659E=04
5,5919E+04	5 <b>,</b> 4834E=N4	1.39782+05	1,0851E=04
6,7396E+04	2,70456+04	1,4126E+05	9,9861E=05
6,8874E+04	2,7283E+04	1.4274E+05	8,9692E=05
7,0351E+04	2,75358-04	1,44222+05	7,76658+05
7,18285+04	2 <b>.</b> 7791E=04	1.45592+05	6,6179E=05
7.3305E+04	2,80476-04	1.4717E+05	5,5296E=05
7,4783E+04	2,8292E-04	1.48656+05	4.3083E=05
•	•		<b>—</b>

APPENDIX H.4: SABINE RIVER DISCHARGE SITE Lower bound Ke values used. Simulation Run 5. PLTCVT PROGRAM DATA SUMMARY PIR5(TOTAL FUEL ASSEMBLIES) BASE CASE IFISSION PRODUCTS CONTAMINANT = C-14 TONS OF HEAVY METAL FACTOR 3 0,5000000 DATA BLOCKING FACTORSI ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE 8 2 TIME LOW = 3,000000E+04 TIME HIGH= 7,000000E+04 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 2,000000E+02

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME # 4.0561E+04 MAX, TIME = 1,36488+09 TOTAL WEIGHT # 8,8817E+01 TOTAL PARCELS = 2108.0 4,49885+94 PEAK WEIGHT TIME . 2,663 PEAK WEIGHT = PEAK PARCELS TIME = 4,6700E+04 27.000 PEAK PARCELS 4 WT. LOM . 0.0000E-01 NO, PARCELS LOH = 0.0 NO, PARCELS HI = WT. HI = 5,4829E-01 4162,0 5 SMOOTHING WINDOW (CELLS) .

TOTAL INVENTORY (CURIES) = 8,936533E+01 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 8,778386E+01 PERCENT OF TOTAL INVENTORY = 98,230

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,510000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 3,312263E=08 MAXIMUM RATE (CURIES/YEAR) = 8,594465E=03 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTANINANT = C=14

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
4.0500E+04	9.1765E-04	5,52002+04	2,8538E=03
4.0794E+04	1.05368-03	5.34948+04	2.67682=03
4.19888+94	1.52458=03	5.37882+04	2,48628=03
4.13828+94	2.19362-93	5.69822+94	2.28472=03
4.15767+94	2.76995-03	5.6376E+04	2.0751E+03
A 1970E+04	3.43168.03	5.66702+04	1.8671E=03
4. 22647+04	4.14278-03	5.69642+04	1.66912-03
n SESARAGA	4. 8847E=03	5.7258E+04	1.4712E+03
A DREDELAGA	R_A1898-03	5.75328+04	1.2850E=03
4464366794	4 1041F-03	3.7846R+04	1.10948-03
4931492704 A 37492704	6 0242F-03	5.81402+04	9.50058-04

4.3734E+04	7,4629E-03	5.8434E+04	8.1165E+04
4.40282+04	7,9537E+83	5.8728E+04	6.9084E=04
4,4322E+04	8.3007E=03	5.90226+04	5.6752E+84
4,¢616E+04	8.5008E=03	5.9316E+04	4.9868E-04
4.4910E+04	8,5895E=03	5.9618E+04	4.2421E-04
4.5204E+04	6.5610E-03	5.9984E+04	3.6370E-04
4.5498E+04	8.5139E+03	6.0198E+04	3.1705E+04
4.5792E+04	8.3695E+03	6.0492E+04	2.7787E.004
4.6086E+04	8.1589E-03	6.0786E+04	2.4610E.04
4,6380E+04	7.9181E=03	6.1050E+04	2.1983E=04
4.6674E+84	7.6830E-03	6.1374E+04	1.9996E-84
4.6968E+84	7.4480E-03	6.1668E+04	1.8527E=04
4,7262E+04	7.2068E=03	6.1962E+04	1.7435E+04
4.7556E+04	6.9522E+03	6.2256E+04	1.6556E+04
4,7858E+04	6.6937E=03	6.2550E+04	1.5867E=04
4.8144E+94	6.4603E-03	6.2844E+04	1.5370E-04
4,8438E+Ø4	6.2559E#83	6.3138E+04	1.5013E=04
4.8732E+04	6.0576E-03	6.3432E+04	1.4738E=04
4.9826E+04	5.6734E-03	6.3726E+04	1-4441E=04
4,9320E+04	5.7101E-03	6.4020E+04	1.41236-04
4.9614E+84	5.5776E+03	6.4314E+04	1.3807E-04
4,9908E+04	5.4687E+03	6.4608E+04	1.3462E=04
5,02022+04	5,3676E=03	6.4902E+04	1.3086E=04
5,0496E+04	5,2458E+03	6,5196E+04	1.2655E+04
5,0790E+04	5.1117E-03	6.5498E+04	1.2179E-04
5,1084E+04	4,9680E=03	6.5784E+84	1.1695E=84
5.1378E+04	4.8061E=03	6.6078E+04	1.1205E-04
5,1672E+04	4.6333E=03	6.6372E+04	1.0691E=04
5,1966E+04	4,4437E=03	6.6666E+04	1.0190E=04
5,2260E+04	4.2513E=03	6.6960E+04	9.7022E-05
5 <b>,</b> 2554E+04	4.0762E=03	6,7254E+84	9,2206E=05
5,2848E+04	3,9238E=Ø3	6.7548E+04	8,7312E=05
5.3142E+04	3 <b>.</b> 7820E=03	6,7842E+04	8,2459E+05
5,3436E+04	3.6544E-03	6.8136E+04	7.6927E=05
5,3730E+04	3,5357E+03	6.8430E+04	7,07C3E+05
5.4824E+04	3.4207E+03	6.8724E+04	6,3865E=05
5.4318E+04	<b>J.</b> 3038E=03	6.9018E+04	5,4936E+05
5.4612E+04	3.1718E=03	6.9312E+04	4.4219E=05
5.4906E+04	<b>3.</b> 0209E=03	6.9606E+04	3.4303Ee05

ŗ

PLTCVT PROGRAM DATA SUMMARY PIR5(TOTAL FUEL ASSEMBLIES) BASE CASE IFISSION PRODUCTS CONTAMINANT = TC=99 TONS OF HEAVY HETAL FACTOR = 0,5000000 DATA BLOCKING FACTORSI ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 5,800000E+04 TIME HIGH= 6,300000E+04 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 2,500000E+01

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME # 1,3630E+03 MIN_ TINE + 3.9436E+04 TOTAL WEIGHT . 2,4643E+05 TOTAL PARCELS = 1655.0 PEAK WEIGHT . 7729.911 PEAK WEIGHT TIME . 5,3638E+04 PEAK PARCELS . 44,000 PEAK PARCELS TIME = 5,8638E+94 WT, LOW = 5.6780E+02 NO, PARCELS LOW . 3,0 WT. HI # 1.3566E+05 NO. PARCELS HI . 4612,0 SMOOTHING WINDOW (CELLS) -10

TOTAL INVENTORY (CURIES) = 3.826528E+85 Inventory under the current graph (curies) = 2.568296E+85 Percent of total inventory = 67.118

TIME OF MAXIMUM CONCENTRATION (YEARS) = 5.858750E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 9.596348E=04 MAXIMUM RATE (CURIES/YEAR) = 2.490004E+02 CONVERSION FACTOR RATE TO CONCENTRATION = 3.853949E=06

CONTAMINANT = TC=99

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR) RATE (CU/YR) TIME (YR) RATE (CU/YR). 5,85888+84 2.4900E+02 5.93502+04 1,2639E+02 5.8591E+Ø4 2,49002+02 5.93888+04 1,20962+02 5.85948+84 2,4900E+02 5,94262+04 1,1542E+02, 5.8598E+04 2,4900E+02 5.94552+04 1,0990E+02 5.86012+04 2,4900E+02 5.9503E+04 1,0461E+02 5,86052+04 2,4900E+02 5,95412+04 9,9534E+01 5.8408E+04 2,49002+02 5,95792+04 9,4836E+01 5.36112+04 2.4900E+02 5.9618E+04 9,0215E+01 5,8615E+04 2,4871E+02 5,96562+04 8.5856E+01 5,86182+04 2,48278+92 5,96942+04 8.1790E+01 5,86225+04 2,4783E+02 5.9732E+04 7,7894E+01 5,86252+04 2,4739E+02 5.97712+84 7.43992+01

5 ₂ 8628E+04	5°49427405	5,90092+04	7,10532+01
5,8632E+04	2.4651E+82	5 <b>.</b> 9847E+84	6.7771E+01
5.8635E+84	2.4607E+82	5.9865E+04	6.4796E+81
C. ALTOFARA	2 45805402	R. DOPAFARA	6 2037F401
2 86 8 9 7 5 4 0 4		F 00695484	5 047#5+01
3,00466704	664304E40C	3,77065.404	3,40/45481
5 8645E+04	2.45896+02	6.0000E+04	5,7650E+01
5.86492+04	2,4593E+02	6.0091E+04	5,33102+01
5,8652E+04	2,4598E+82	6.0181E+04	4.9071E+01
5.8656E+Ø4	2.4602E+82	6.0272E+04	4.5170E+01
5.8659E+04	2.4607E+02	6.03622+04	4.1738E+01
5-86635+04	2-4611E+02	6-04535+04	3.8653E+01
E BLLLEARA	2 161 TFARS	4.05435484	3 5300F+01
E 5445E404	5 44485+05	4 66345484	7 22705401
3,00072404	6.4013EV02		
5.00732+04	2.40172+02	6.07242404	5.43332401
5,8676E+04	E.4619E+02	6.08155+04	2.6274E+01
5,8680E+04	2,4621E+02	6,09052+04	2,2745E+01
5,8683E+04	2,4624E+02	6 <b>.0996E+0</b> 4	1.9309E+01
5.86862+04	2.4626E+82	6.1086E+04	1.6203E+01
5.86902+04	2.4600E+82	6.1177E+04	1.3446E+01
5.8693F+84	2.4562E+02	6.1267E+04	1.1355E+01
5 86975+00	3 45345403	4 1358F480	C BARTFARR
5 69005404		4 4000E+04	A ARZAE+00
3401005404		D. 1 6 7 0 7 0 4	
5.87302+84	2.34446+62	0.13346404	1.40020400
5.6777E+04	5.3143E+85	6.1630E+04	7.3364E+00
5 ₂ 8815E+04	2.2383E+02	6 <b>.</b> 1720E+04	6.7413E+00
5,8853E+04	2,1597E+02	6 <b>.</b> 1811E+04	6.1526E+00
5.8891E+04	2.0808E+82	6.1901E+04	5.4675E+00
5-8929E+04	2.0128E+02	6.19922+84	4.8728E+00
5.8968F+04	1.94256+02	6-2082E+04	4 5054E+00
5.00065+04	1.8658F+82	6-2173F+04	4.2112F+00
		4 324 XEARA	T 89405488
344046404		0486036704 (	3,00076400
3.400EE+04	1.71436404	0.23345404	3.02232400
5.91212+04	1,64122402	6.2444L+84	3,4365C+00
5.9159E+84	1.5705E+02	6,2535E+04	3,1999E+00
5 <b>.</b> 9197E+04	1.5052E+02	6.2625E+04	2 <b>.</b> 9273E+00
5.9235E+04	1.44246+02	6.2716E+04	2,6732E+00
5,9274E+04	1.3793E+02	6.2806E+04	2,5648E+00
5.9312E+04	1.3190E+02	6.2897E+04	2.3240E+00

PLTCVT PROGRAM DATA SUMMARY PIR5(TOTAL FUEL ASSEMBLIES) BASE CASE IFISSION PRODUCTS CONTAMINANT = I=129 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 4,000000E+04 TIME HIGHT 1,400000E+04 TIME HIGHT 1,400000E+05 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 2,500000E+02

RAW DATA AND BLOCKED DATA FACTORSI MAX_ TIME = 1,3623E+05 MIN, TIME # 4,0567E+04 TOTAL PARCELS = TOTAL WEIGHT = 1,1398E+83 6270.0 PEAK WEIGHT = 16,267 PEAK WEIGHT TIME . 4.61252+04 PEAK PARCELS . 35,000 PEAK PARCELS TIME. = 4.61252+04 NO, PARCELS LOW . WT, LOW = 0.0000E-01 9.9 NO, PARCELS HI WT. HI = 0.0000E-01 8,0 ŽØ SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 1,139028E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1,140647E+03 PERCENT OF TOTAL INVENTORY = 100,142

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4.962500E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1.694850E=07 MAXIMUM RATE (CURIES/YEAR) = 4.916646E=02 CONVERSION FACTOR RATE TO CONCENTRATION = 3.853949E=06

CONTAMINANT = I=129

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
4,8623E+04	4.6390E-03	9,35282+04	6,1756E-03
4,1212E+04	6,0260E=03	9,55872+04	6,2003E-03
4,17992+04	8,9483E#Ø3	9 <b>,</b> 7546E+04	6,1983E-03
4,2385E+04	1,4075E=02	9,9705E+04	6,2036E+03
4,2973E+04	2 <b>,</b> 1395E=02	1,0176E+05	6,2434E=03
4,3561E+04	2,8929E=02	1,03822+05	6,2637E+03
4 <b>.</b> 4148E+04	3,3521£#02	1,0588E+05	6,23842+03
4,4735E+04	3.64778=02	1,0794E+05	6,25452+03
4 <b>,</b> 5322E+04	3,9397E=02	1,1000E+05	6,24272+03
4,59092+04	4 <b>,</b> 2090E=02	1,12062+05	6,23772+03
4,64962+84	4 <b>.</b> 4866E-02	1.1412E+05	6,2587E+03
4.70838+04	4.63028-02	1.16188488	んごコテマムダーのマ

4 <b>.</b> 7670E+04	4.6987E=02	1.16236+05	6.2602E=03
4.8258E+04	4.7522E+82	1.28295+05	6.2961F=01
4.8845E+84	4.8027E=02	1.22356+05	6.2403F=03
4.9432E+04	4.8718E+82	1.24418405	4 (A(15-03
5.0019E+04	4.4553E=82	1.26475405	6 00155-03
5.0606E+04	4.A523E=02	1.28515405	6 81175-07
5.11936+04	4.7%45F=02	4 30505455	2101135403 E 10475-07
5.17802+04	4.61A0F-02	4 20776+03	3 <b>810435403</b> 2 18475-07
5.P367E+04	4.4138F=02	1 200/12403	3,1303E+03 E 1014E-04
5.29556484	A . 3467E-02	4 31448408	
5.15426404	A AARTE-AS	1,34145403	3,0377603
5.41295+64	A <b>KYTTE</b> -RD	1 11825405	3,0013E=03
5.47168404	4 51905-49	1,31362403	4.00072=03
5.5787610A	4 5127EHDC	1.31702+03	4,6784E=03
S SAGAELAA	4 88895-89	1,31045+03	4 4454E+83
5 LA77ELAA		1.34076403	4,2947E=03
5 78475404	3.0000L=00	1.36605403	4.0757E-03
5 7453540H	3,37605402	1.32442+05	3.8021E-03
3119365404 6 93706404	2,94042002	1.3263E+05	3.4915E+03
2 06345404 3605345404	C.1450E-02	1.32816+05	3,1769E+03
3,000000404 5 00195404	1.40652-62	1.33006+05	2.8820E+03
3 94135404	1,00916+02	1.3319E+05	2 <b>.</b> 6138E=03
0.000NE+04	7.9562E=03	1,33372+05	2 <b>.</b> 3808E=03
0.03072404	7.4009E=03	1.3356E+05	2.1814E+03
6,2046E+04	6.8047E=03	1.3374E+05	1.9446E+03
6.4705E+04	6.4465E=03	1,3393E+05	1.7018E=03
6.6764E+84	6,3268E=03	1.3411E+05	1,4996E+03
6,8522E+04	6 ₈ 3048E=03	1 <b>.</b> 3430E+05	1,3205E=03
7.0881E+04	6 <b>.</b> 3183E+03	1.3448E+05	1.1656E=Ø3
7.2940E+04	6 <b>.</b> 2774E-03	1.34672+05	1.0261E+03
7,4999E+84	6 ₂ 2777E=03	1,34862+05	8.8520E=04
7.7058E+04	6,2462E+03	1.3504E+05	7.3395E+04
7.9117E+04	6 <b>.</b> 2268E=Ø3	1.3523E+05	6.0005E=04
8.1175E+04	6,1925E+#3	1,3541E+05	4.9791E+04
8.3234E+04	6.2108E+03	1.3560E+05	4.6077E-04
8,5293E+04	6,1942E+83	1,3578E+05	3.9660E+04
8 <b>.7352E+0</b> 4	6.2071E+03	1.3597E+05	3.2738E-04
8.9411E+04	6.2081E=03	1.3616E+05	2.5765E+84
9.1469E+04	6,1951E=03	1.3634E+85	1.8791E+04

PLTCVT PROGRAM DATA SUMMARY PIR5(TOTAL FUEL ASSEMBLIES) BASE CASE IFISSION PRODUCTS CONTAMINANT = CS+135 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 3 TIME LOW = 4,000000E+04 TIME HIGH= 6,000000E+04 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 5,000000E+01

RAW DATA AND BLOCKED DATA FACTORSI MIN. TIME # 4.3177E+04 MAX, TIME = 1,9998E+06 1233,0 TOTAL PARCELS # TOTAL WEIGHT = 7,5815E+03 5,32758+04 87,191 PEAK WEIGHT TIME = PEAK WEIGHT = 5,32752+04 PEAK PARCELS TIME # PEAK PARCELS = 14,000 WT. LOW # 0.0000E-01 NO. PARCELS LOW B 0,0 NO, PARCELS HI B WT. HI # 3.7069E+02 134,0 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 0,0521672+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 7,6388632+03 PERCENT OF TOTAL INVENTORY = 94,867

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4.477500E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2.631266E=06 MAXIMUM RATE (CURIES/YEAR) = 6.827436E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3.853949E=06

CONTAMINANT = CS=135

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
4.3175E+04	2,53848-01	5,02142+04	5,6848E=01
4.32242+04	2,5384E=01	5,95492+04	5,6862E=01
4.32732+04	2,6128E+01	5,38852+04	5,69328-01
4.33232+04	2 <b>,</b> 7008 <b>E-0</b> 1	5,1220E+04	5,7081E=01
4,3372E+04	2,8021E=01	5,1555E+04	5,72982=01
4.34212+04	2,8446E=01	5 <b>,</b> 1890E+04	5,7549E=01
4,3470E+04	2,9685E=01	5,2226E+04	5,7784E=01
4,35202+04	3,1895E=01	5,2561E+04	5,7929E=01
4,35692+04	3,2594E=01	5,28962+04	5,7883E+01
4,3618E+04	3,4159E=01	<b>5,</b> 3232E+04	5,7565E#01
4.3657E+04	3.58536-01	3,35672+04	5,6916E-01

			-
4,3717E+04	3.7584E=01	5,39826+84	5.5899E-01
4.3766E+Ø4	3,9325E=01	5.4237E+04	5.4490E-01
4.3815E+04	4.1066E-01	5.45738+04	5.2643E+01
4.3864E+04	4.2796E-01	5.49882+04	5.0415E+01
4.3914E+04	4.4500E+01	5.5243E+04	4.7784E-01
4.3963E+84	4.6177E=01	5.5579E+04	4.4632E=01
4.4012E+04	4.7835E=01	5.5914E+04	4.1223E-01
4.4061E+04	4.9485E-01	5-62496+84	3.6091Ee01
4.4111E+04	5.1134E=01	5.63056404	3.4794F=81
4.4160E+04	5.2783E=01	5-63602+04	3.3467E-01
4.4209E+84	5.4434E=01	5-64156404	1.2100F=01
4.4258E+84	5.60816=01	5.64705+04	3,0011F=01
4-4308E+04	5.7718E=01	5.45268404	2 QA04F=01
4.4357E+84	5.932AF-01	5.65815404	2 ARTAF-01
4.44865+84	6.0890F=01	5.66367684	2 A124Fm01
A_AA55F4AA	6.23726-01	5 66000L-04	5 78345-01
A. ASA8540A	6 37A7E-01		- 5 908/5-01
A.A5545+04	6 A087E-01	380/4/6704 8 68838488	2 47715-61
A ALORELOA	6 60545-01	2000025404 2 49882408	5 60731C+01
A. 16525404	2 20034C+01	50030EVU4 6 40178404	D 44805-04
A_AT02F40A	6.7597E-01	5 49456404 5 997136704	2 E800E-01 Efotoccw01
A. A751E+0A	6 8081F-01	5 7037FA0A	2 55A35-01
	6 83675-01	5 9090E+0A	5 F0715-64
A ARAGE+04	6 8100E_04	3 1 1 1 7 5 4 0 4 8 7 1 8 4 8 4 8 4 8 4	2 4 4 5 4 5 - 6 4
A 61855404	6 66790CH01	5 71805404 3871945404	5 74788-04
A EESAETAAN	6 68785-01	5 T3458404	2 27285-04
A CREEFLAA	4 ¥8855_01	5 7388840A	
4 50552+04 4 61905+04	6 5100F-01	5 7355540A	2 01(15-01
A. 65265404	6 0005F-01	5 TAILEADA	C BBBBE-GI
4.68615484	5.06745-01	5 74665404 5 74665404	1 91/(E-A(
4.7196F+84	5 868/5-01	E 75318404	1 87775-01
A.7532F+RA	5 7859F-01	5 75775404	1,01336401
4.78675404	5 78245-64	2112115404 8 7633540A	1 3E11E-01
A_R2R2F+R4	5 70125-01	5 76875404	( (0205-0) 1 ¹ 23102401
4.85376484	S. CRECTUL	5.100/E+04 6.7749640A	0 400300403 1110300403
A. 8873F+04	5.4837F=01	C TTQLEADA	A ABOSE-RS
4.920AF+04	5. 6830F=01	5.78575404 5.78575404	V 40736402 Y 78455-09
A.Q543F+MA	5 ARAAF-RE	5470396704 6-79885188	7 86175-05
A_0870F+04		5.70645404 ···	1 000100-0C

PLTCVT PROGRAM DATA SUMMARY PIR 5(TOTAL FUEL ASSEMBLIES) BASE CASE; CHAIN 1 CONTAMINANT = U=234 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS; ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,000000E+05 TIME HIGH= 4,500000E+05 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 7,500000E+02

RAW DATA AND BLOCKED DATA FACTORSI HAX, TIME = 4,6966E+05 HIN. TIME # 2.9265E+05 TOTAL PARCELS . TOTAL WEIGHT = 1,4410E+04 6879.8 PEAK WEIGHT = 294,766 PEAK WEIGHT TINE . 3,38632+05 PEAK PARCELS . PEAK PARCELS TINE = 124,000 3,38638+05 WT, LOW = 5,6391E+09 NO, PARCELS LOW . 4.0 NO, PARCELS HI . WT, HI = 1,3808E-02 19.0 SMOOTHING WINDOW (CELLS) .

TOTAL INVENTORY (CURIES) = 1,441536E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1,438215E+04 PERCENT OF TOTAL INVENTORY = 99,770

TIME OF MAXIMUM CONCENTRATION (YEARS) = 3,363750E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1,090322E=06 MAXIMUM RATE (CURIES/YEAR) = 2,829184E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = U=235

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
3,01132+05	4,93362+03	3,75382+05	8,2469E=82
3,02612+05	5,4665E=03	3,76862+05	8.1790E=02
3,04102+05	1,0376E-02	3.78352+05	8.1124E=02
3,05582+05	1,35868+02	3,79832+05	8.94222-92
3,07072+05	2,1464E=02	3,81322+05	7,9693E=02
3,08552+05	2,8619E=02	3,82805+05	7,9000E=02
3,10042+05	3,7189E=02	3,84295+05	7.8437E=02
3,11522+05	4.73526-02	3,85778+05	7.8075E+02
3,13012+05	5,92138=42	3,87268+85	7.7946E+02
3,14492+05	7.2755E=02	3,8874E+05	7.8003E+02
1.1998E+85	8.7473E=02	3.90235+04	7 31428-02

3.17462+85	1.0437E=01	3,9171E+05	7.8211E+02
3.1895E+05	1.21988-01	3.93202+05	7.8061E=02
3.2043E+05	1.4036E=01	3,94682+85	7.7560E=02
3.2192E+05	1.5916E-01	3.9617E+05	7.6636E=82
3.23402+05	1.7605E+01	3.97652+05	7.5383E+82
3.2489F+85	1.9663EnØ1	3.9914E+85	7.3643E=02
3.2637F+05	2.1448E=01	4.00622405	7.1767E+82
3.2786E+05	2.3120E+81	4.8211E+85	6.9761E=02
3.29346+05	2.4634E+01	A. 83596485	6.7666E=02
3.30835+05	2.5940E-01	4.0508E+05	6.5460E+02
3.3231F+05	2.6993E+01	4.06562405	6.3123E+82
3.3380F+05	2.7750E=91	4.9885E+85	6.0487E-02
1.1528E+05	2.8183E#01	4.0953E+05	5.7494E+82
3.3677F+05	2.6269E=01	4.11022405	5.4122E-82
3.3825F+85	2.8009E+01	4.1250E+05	5.0403E-02
3.3974F+05	2.7428E=01	4.13996405	4.64196.02
3.41225+05	2.6569E=01	4.15472405	4.2304E-02
3.42716+05	2.5489E=01	4.1696E+05	3.8190E-0P
1.44196+05	2.4261E=01	4.1844E485	3.6189E=02
3.4568E+05	2.2959E=01	4.19932+05	3.03662.02
3.4716E+05	2.1646EaØ1	4.21412+05	2.6770E+02
3.4865E+05	2.0372E=01	4.22982+05	2.34205-02
3.5013E+05	1.9169E-01	4.2438E+05	2.0313E+82
3.5162E+05	1.8050E-01	4.2587E+05	1.7443E-02
3.5310E+05	1.7008E-01	4.2735E+05	1.4813E-02
3.5459E+05	1.6032E-01	4.2884E+05	1.2417E-02
3.5607E+05	1.5107E-01	4,30322+05	1,0255E+02
3,5756E+05	1.4218E-01	4.3181E+05	8,3262E=83
3,5904E+05	1.33558-01	4,33296+05	6,6321E=03
3,6053E+05	1.2521E-01	4.3478E+05	5,1661E+03
3,6201E+05	1.1726E=01	4,36262+85	3,9258E+03
3,6350E+05	1.0985E=01	4.3775E+05	2,9041E=03
3,6498E+05	1,0317E+01	4.39232+05	2,0847E+83
3.6647E+85	9,7389E+82	4.4072E+85	1.4500E-03
3.6795E+05	9,2659E+82	4,42205+05	9.7813E=04
3,6944E+85	8,9006E=02	4.4369E+05	6.4091E=04
3.7092E+05	8,6344E+82	4.4517E+05	4.0636E=04
3.7241E+Ø5	8.4514E-02	4.46665+85	2.4679E-04
3.73892+05	8.3395E=02	4 <b>.</b> 4814E#05.	1.4088E=04

PLTCVT PROGRAM DATA SUMMARY PIRS(TOTAL FUEL ASSEMBLIES) BASE CASE) CHAIN 1 CONTAMINANT = TH=232 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 3,000000E+05 TIME HIGH= 2,000000E+05 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 0,500000E+03

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 1,9994E+06 MIN, TIME # 3,17458+05 TOTAL PARCELS . 1868.9 TOTAL WEIGHT # 3,5736E=02 8.85755+85 0,001 PEAK WEIGHT TIME . PEAK WEIGHT 🗰 1,06935+06 PEAK PARCELS TINE = 19,000 PEAK PARCELS = NO, PARCELS LOW . 0.0 WT, LOW = 0.0000E-01 NO, PARCELS HI . WT, HI = 0,0000E-01 8.8 30 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 3,873644E=02 INVENTORY UNDER THE CURRENT GRAPH (CURIES) 9 3,805251E=02 PERCENT OF TOTAL INVENTORY = 98,234

TIME OF MAXIMUM CONCENTRATION (YEARS) = 8,993500E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 9,355277E=14 MAXIMUM RATE (CURIES/YEAR) = 2,427452E=00 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = TH-235

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
3,21258+05	1,37058=08	8,5000£+05	2,4219E+08
3,2364E+05	1,3705E=08	8,7647E+05	2.42632=08
3,26022+05	1,3705E-08	9,02942+05	2,42742-08
3,28412+05	1,3705E=08	9,29412+85	2,4256E=08
3,30802+05	1,4107E=08	9, <b>5588E+05</b>	2.42138+08
3,3318E+05	1,5025E=08	9,82352+05	2,4148E+08
3,35572+05	1,59428-08	1,00882+06	2,4064E=08
3,3795E+05	1,6860E=08	1,83532+06	8,3967E+08
3,4034E+05	1,7054E=08	1,0618E+06	2,3861E+08
3,42732+05	1,7146E=08	1,0882E+06	2,3748E=08
3,4511E+05	1,7237E=08	1,1147E+06	2,3633E+08
3,47502+05	1 <b>.</b> 7322E=98	1.1412E+06	2,35158+08
7.4989F+05	1.7393E-0A	1.15758486	2 11947-08

3,5227E+05	1,7463E=08	1.1941E+06	2.3280E+08
3,54662+05	1,7533E=08	1,22062+06	2.3167E+08
3.5705E+05	1,7589E=08	1.2471E+06	2.3062E+08
1,5943E+05	1,7641E=06	1.2735E+06	2.2963E+06
3.6182E+05	1.7693E=08	1.30002+06	8.2672E+06
3.6420E+05	1,7719E+08	1,32112+06	2.2808E+08
3,66592+05	1,7631E=08	1.3422E+06	2.2750E+06
3,68982+05	1.7542E=08	1.3633E+06	2,2705E+86
3.7136E+05	1.7454E=08	1.3843E+86	2.2671E+D6
3.73752+05	1,7533E=08	1.40546+06	2.2650E=06
3 ₄ 7614E+05	1,7710E-08	1 4265E+06	2,2639E+88
3.7852E+05	1,7687E+88	1.4476E+86	2,2637E+08
3.8091E+05	1.8056E+08	1.4687E+06	2,2642E=08
3,8330E+05	1.8102E=08	1.4898E+06	8,2653E=08
3.8568E+05	1.8148E=08	1.5108E+06	2,2665E+08
3.8807E+05	1.8195E=08	1.5319E+06	2.2682E+08
3,9045E+05	1 _e 8241E=08	1 <b>.</b> 5530E+06	2,2703E+86
3,9284E+05	1 <b>.</b> 8286E•Ø8	1.5741E+86	8.2726E=08
3,9523E+05	1.8332E•08	1.5952E+06	2,2756E+08
3,9761E+05	1.6378E=08	1.6163E+86	2,2787E=08
4,00002+05	1.8435E=08	1.6373E+06	2,2620E+06
4.2647E+05	1.9074E=08	1.6584E+06	2,2854E=06
4,5294E+05	1,9655E=08	1.6795E+06	2,2890E+86
4,7941E+85	2,0196E=88	1.7006E+06	88=385\$S,S
5.0588E+05	2.0695E=08	1.7217E+06	2,2968E=06
5,32356+05	2.1151E=08	1.74282+06	2,2991E=08
5,50828+05	2.1564E=08	1.7638E+06	2.2965E+08
5,8529E+05	2.19136-08	1.7849E+B6	2,3005E=08
D.1177E905	2,22072-08	1.80602406	- 2,3047E+08
0,30242403	2,23646+08	1.84712486	2,3089E408
0,04/12703	5°58A5Fe08	1.84822+06	2,3126E=08
D 4 7 1 1 0 L 7 0 D	C.JC022000	1,80736+86	2.3163E-06
1 1 1 1 D D C T U D	C, 3406C408	1.04036406	2.3196E+08
14416L483 4 48606+88	C. 3003L008	1,41146486	2,J224E+0&
1 8 1 8 3 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	5 //975-00	1443536486	C. 32441+08
A STRIETOS	2 41705-00	143305480	2,32722+08
티 슈 문 그 그 그 도 문 왕 그	··尼亚基本 5 马马尼亚的名	3.244472808	y typeyani

•••••

۰.

2

PLTCVT PROGRAM DATA SUMMARY PIR5(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 2 CONTAMINANT = NP+237 TONS OF HEAVY NETAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 1,000000E+04 TIME HIGHE 2,000000E+04 TIME HIGHE 2,000000E+06 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 9,950000E+03

RAW DATA AND BLOCKED DATA FACTORSI HAX, TIME # 7.8534E+05 NIN, TIME # 4,3019E+04 TOTAL PARCEUS D 19258.0 TOTAL WEIGHT = 3,99522+04 PEAK WEIGHT # 12512,462 PEAK WEIGHT TINE # 5.4775E+04 4,48855+94 5441,800 PEAK PARCELS TIME . PEAK PARCELS = NO, PARCELS LOW 9 WT, LOW # 0,2000E=01 9.0 NO, PARCELS HI . WT, HI = 0,0000E=01 0.0 1 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 3,995167E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2,846111E+04 PERCENT OF TOTAL INVENTORY = 71,239

TIME OF MAXIMUM CONCENTRATION (YEARS) = 6,472500E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1,618013E=06 MAXIMUM RATE (CURIES/YEAR) = 4,198325E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT # NP+237

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TTHE (VO)	BATE (CULVR)	TIME (YR)	RATE (CU/YR)
ITWE CIMA	AAIS COUFINE		3 99488-07
4.48252+04	4.19518#01	4.14992=93	4ª11738=83
5.2188E+04	4.19515-01	4 20342+03	3,3450E=03
4.9551E+04	4.1966E+01	4,2770E+05	3,62582-03
L 10148-04	3.27718+01	4.3596E+05	3.53398=03
7.42778494	1.78398-02	4.4243E+05	2-9359E+03
3 14A05-0A	1.31478=03	4.4979E+05	2.76262=03
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 16345-43	4.5715E+05	2.44482-03
0344872444	1134848444		3 44848-48
9.63666+04	1.26062=03	4.04342493	5 ² 11302=03
1.03732+05	1.09828-03	4,7188E+05	2,1086E=03
1.11098+05	7.93238=04	4,79248+05	2,48098#03
1 1345-03	7.30138-04	4.86612+05	5,95348-03
1.25A2F+05	9.46965-04	4.93975+05	3,02122=03
1954057.09		• • • • • • • •	-

1,3318E+05	1,4193E=03	5,0133E+85	2.8746E=03
1.4054E+05	1,4945E+03	5,08692+05	2.8547E-83
1.4791E+05	1.6446E=83	5,16862405	2.7259E+03
1,5527E+Ø5	1,6700E+83	5,2342E+85	2.5499E+83
1.6263E+05	1,5520E+03	5.30762+05	2.9746E+03
1.7000E+05	1,60392=03	5,3819E+85	2.9504E=03
1,7736E+05	1,5543E+03	5,4551E+05	3,1155E+03
1.8472E+05	1,2878E-03	5 <b>.</b> 5287E+05	3,6109E+03
1.9209E+05	1.5948E=03	5.60246+05	3,1894E=03
1.9945E+05	1.6744E+03	5,6760E+05	3,2596E+B3
2,0681E+05	1.6713E+03	5.7496E+05	3,49992+03
2.1417E+05	1,6642E#03	5,8232E+05	3,5864E=83
2.2154E+05	1.5060E=03	5,89692+85	4,1304E=03
2.2890E+05	1.3494E+03	5,9705E+05	4,03046-03
2,3626E+05	1,1937E=03	6.0441E+05	5,4409E=03
2,43636405	1.8383E483	6.1178E+85	1.05198=02
5,50495+05	7.3404E-04	6,1914E+05	1.95528-02
2,5835E+05	8.0483E=04	6,2658E+Ø5	3.4618E=02
2.6572E+05	1.1876E#03	6.3387E+05	5,4102E=02
E.7308E+05	1.7898E403	6,4123E+05	7.5780E+02
2.8044E+05	1,9752E#03	6,48592+05	9,8020E+02
E.8780E+05	1,9515E+03	6,5595E+05	1,1772E=01
2.42116483	1.7316E=03	6,6332E+05	1.3573E=01
3,00532+05	1,2762E=03	6,70682+05	1,5472E=01
2404045402	1,34111403	6.7004E+05	1.6962E=81
311/202403 7 3/436406	1,40712403	6.8541E+85	1.7846E#01
3 8 CADCEAD3	1 03CAC403	6.9277E+05	1.7972E=01
3 <b>8</b> 31705703 7 70765105	1 03435-07	7.00135405	1.6634E+01
3137332703 1 A4115405	1 g VE12EVU3	7.0/302003	1,4968L001
3 <del>8</del> 40/15703 7 5/075105	5 131/5403	7,1406L405	1,26521=01
3134012403	2 56475-07		1,00405401
X LARACIUS	2 ₄ 30436403		0,1704L002
X 44146405	L 02115-01	1 6 30435403	5.67715902
X_A352F+05	1 <b>1</b> 784F401	1 844315403 7 8464015403	
X. QDAGE+05	0.27K0F#04	7 800A8402 7 800A8402	5 1 3 5 1 5 4 5 C
1.9825FW05	1_{012F_01	7 <u>6</u> 37046703 7 <u>6640</u> 5405	1,5003C#02
4.0561E405	1.750AF-01	7 8871840C	A 247775483
~ 물 씨 두 두 돈 것 가 두 것	a.물 7 # 약 책 약 제 같 ^	, . , <del>.</del>	***********

PLTCVT PROGRAM DATA SUMMARY PIR5(TOTAL FUEL ASSEMBLIES) BASE CASE; CHAIN 2 CONTAMINANT = NP=237 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS; ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 4,000000E+04 TIME HIGH= 5,800000E+04 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 9,000000E+01

RAW DATA AND BLOCKED DATA FACTORS: NIN. TIME . 4.3019E+04 MAX, TIME = .7,8534E+05 TOTAL PARCELS TOTAL WEIGHT = 2,3997E+04 7374.0 PEAK WEIGHT TIME . 276,645 4.44552+04 PEAK WEIGHT 4 4,47252+04 PEAK PARCELS . 174,000 PEAK PARCELS TINE NO. PARCELS LOW # WT. LOW = 0.0000E-01 0.0 NO, PARCELS HI . WT. HI = 1.5954E+04 2884,9 20 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 3,995163E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2,311015E+04 PERCENT OF TOTAL INVENTORY = 57,845

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4.607500E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 7.192517E=06 MAXIMUM RATE (CURIES/YEAR) = 1.866272E+00 CONVERSION FACTOR RATE TO CONCENTRATION = 3.853949E=06

CONTAMINANT = NP=237

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
4,30152+04	5,3679E=01	5 <b>.</b> 0371E+04	1,7364E+00
4,3057E+04	5,36798=01	5,07425+04	1,7318E+00
4.3099E+04	5,3679E+Ø1	5.1113E+04	1,7268E+00
4.3141E+04	6,1839E=01	5,1483E+04	1,72052+00
4.3183E+04	7,1378E+01	5,1854E+04	1,7119E+00
4.3225E+04	7.6491E=01	5,2224E+04	1,7000E+00
4.3267E+94	7,9807E=01	5,25952+04	1,68392+00
4.3309E+04	8 32712-01	5,2966E+04	1,6628E+00
4.33512+04	8,6847E=01	5,33362+04	1,6358E+00
4.3393E+04	a 9239E=01	5,3707E+04	1,6013E+00
4.3435E+04	9 <b>,</b> 8010e=81	5,4077E+04	1,33942+00
4,3477E+04	9,1965E+01	3,4448 <b>2+0</b> 4	1,5103E+00

4.3519E+04	9.7004E=81	5.48182+84	1.4526E+00
4.3561E+04	1.0196E+00	5.5189E+04	1.3841E+08
4.3603E+04	1.0643E+00	5-5560E+04	1.20946.000
4.3645E+04	1. IBAGE+BR	5.59305484	( \$246F480
4.3687F+84	1.15468488	E_ABOLEAGE	1 11515400
4.3728E+84	( 3801E+00	8.46768404	1 0 10 1 F + 00
4 17705+04	1 94415488		
4. 381 PF+04	1 9010F400	2 TOTCETOT	
A. <b>TAKAF</b> 40A	1 TTORF430	K TIBOKANA	
A TROLEADA	4 38815400	E 91205484	0144185401
A 10106-04	1 43405+66	3414575V04 8 91868404	
N TOROSADA	1 /8075400	2814305454	
4 8 3 7 0 0 C 7 0 4 A A A A A A A A A	1 E370E+00	3114015404	1.1435-01
A ADECETON		5./2102404	7,73162-01
4 40045704	1,30476400	3.72432404	7.2508£=01
4.41002404	1.60435408	5.72732+84	T.3743E-01
4.4148E+84	1.6401E+00	5.7382E+04	7 <b>.</b> 1979E=81
4.419BE+D4	1,6754E+00	5,73312+84	7 <b>.</b> 0207E=01
4.4232E+04	1,7059E+00	5 <b>.</b> 7360E+04	6,8411E-01
4.4274E+04	1.7365E+00	5.7389E+04	6.6616E=01
4.4316E+84	1,7614E+00	5.74182+84	6.4825E=01
4 <b>.</b> 4358E+04	1,7861E+00	5 <b>.</b> 7447E+04	6.3080E=01
4 <b>.</b> 4400E+04	1.7984E+00	5.74762+04	6,1335E+01
4 <b>.</b> 4442E+04	1.8083E+60	5.7505E+04	5.9589E+01
4.4813E+04	1.8497E+00	5.75342+04	5.79296-01
4,5183E+04	1,8611E+00	5.75632+04	5.6270E+01
4.5554E+04	1.8596E+00	5.75922+04	5.4610E-01
4,5924E+04	1,86195+00	5.76212+04	5.4008E-01
4.6295E+04	1,8634E+00	5,76502+04	5.3538E+01
4.6665E+Ø4	1.8510E+00	5.7679E+84	5.3068E+01
4,7036E+04	1.8361E+00	5.7708E+04	5.1929E-01
4.7407E+04	1.8207E+00	5.77362+04	5.0600E.01
4.7777E+84	1.8058E+00	5.77652+04	4.9272E+01
4.8148E+04	1.7905E+00	5.7794E+04	4.8053Ee01
4.8518E+04	1.7767E+80	5.78232+04	4.6888E+81
4.8889E+04	1.7650E+00	5.7852E+04	4.5724E.01
4.9260E+84	1.7553E+00	5.7881E404	4.4647E=01
4.96302+04	1.7476E+00	5.7910E+04	4.3640E-01
5.0001E+04	A.7415E+00	5.7939E+B4	4.2633E-01
			· · · · · · · · · · · · · · · · · · ·

٠.

PLTCVT PROGRAM DATA SUMMARY PIRS(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 2 CONTAMINANT = NP=237 TONS OF HEAVY METAL FACTOR = 0,3000000 DATA BLOCKING FACTORS: ENTRY MODE (I = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 6,000000E+05 TIME HIGH= 7,500000E+05 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 7,500000E+02

RAW DATA AND BLOCKED DATA FACTORS: MAX, TIME = 7,8534E+05 MIN, T MIN, TIME = 4,30198+04 TOTAL WEIGHT # 1,4596E+04 TOTAL PARCELS 5 2646,0 503,230 PEAK WEIGHT . PEAK WEIGHT TIME # 6,9488E+05 PEAK PARCELS = 37,000 PEAN PARCELS TIME + 6.9488E+05 WT, LOW = 2,5093E+04 NO, PARCELS LOW 4 7559.0 WT, HI = 2,53328+02 NO, PARCELS HI 9 53.0 10 SMOOTHING WINDOW (C2LLS) #

TOTAL INVENTORY (CURIES) # 3,995152E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) # 1,435759E+04 PERCENT OF TOTAL INVENTORY # 35,937

TIME OF MAXIMUM CONCENTRATION (YEARS) = 6,896250E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 6,881710E=07 MAXIMUM RATE (CURIES/YEAR) = 1,785626E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT # NP=237

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
6,0188E+05	2,29395+03	6,7575E+05	1,6352E=01
6,0335E+05	2,66872=03	6 <b>,</b> 7723E+05	1,6640E=01
6,0483E+05	3,33678=03	6,7871E+05	1,6904E=01
6,06312+05	4,36265=03	6,8018E+05	1,7141E=01
6,Ø779E+Ø5	5,76298=03	6,8156E+Ø5	1,7347E=01
6,0926E+05	7,1545E=03	6,8314E+05	1,7521E+01
6,1074E+05	8,6743E=03	6,8462E+05	1,7660E=01
6,1222E+09	1,0263E=02	5 <b>,</b> 8609E+03	1,7763E=01
6,1370E+05	1,20178=02	6 <b>.</b> 8757E+05	1,7828E=01
6,1517E+05	1 <b>,</b> 3940 <b>E</b> =02	6 <b>.</b> 8905E+05	1,7855E+01
5,1565E+05	1,50342-02	6,9033E+05	1,7844E=01

H.18C

6.1813E+05	1.8296E=02 -	6.9200E+05 *	1.7793E+01
6,1961E+05	2,6735E=02	6.9348E+85	1.7705E-01
6,2108E+05	2.3358E=02	6.94962+05	1.7579E-01
6,2256E+05	2.6164E-02	6.9644E+85	1.7418E.01
6.2404E+05	2.9155E-02	6.9791E+05	1.78205-01
6.2552E+05	3.2331E=02	6.9939E+05	1.69855-01
6.2699E+85	3.5690E=02	7.0087E+05	1.6721E=R1
6.2847E+85	3.9230E-02	7.82356+05	1.6421E=01
6.2995E+05	4.2946E=82	7.03826405	1.6001E-01
6.3143E+05	4.6829E-02	7.0530E+05	1.5734E+01
6.3290E+05	5.0868E=02	7-0678E+05	1.5350E#01
6.3438E+05	5.5051E+02	7.0826E+05	1.49455-01
6.3586E+05	5.9360E-02	7.0973E+05	1.4519E-01
6.3734E+85	6.3775E-02	7.1121E+05	1.4077E=01
6.3881E+05	6.8272E+02	7.1269E+05	1.36218-01
6,4029E+05	7.2823E-02	7.1417E+05	1.31566-01
6.4177E+05	7.7397E=02	7.1564E405	1.26846-01
6.4325E+05	8.1966E+02	7.1712E+05	1.22085-01
6.4472E+85	8.6497E+82	7.1860E+05	1.1730E+01
6.4620E+05	9.0964E+02	7.2008E+05	1.1252E+01
6,4768E+05	9.5344E+02	7.2155E+05	1.0773E-01
6.4916E+05	9,9616E-02	7,23032+05	1.0295E-01
6.5063E+05	1.0377E=01	7.2451E+05	9.8184E=62
6,5211E+05	1.0779E=01	7,25992+05	9.3419E+02
6 <b>.</b> 5359E+05	1.11698-01	7.27468+85	8.8650E-02
6.5507E+05	1,1547E=01	7.28942405	8.3860E+02
6 <b>.</b> 5654E+05	1,1914E=01	7,30422+05	7.9036E+02
6.5802E+05.	1.2274E-01	7.3198E+05	7.4163E=02
6.5958E+85	1,2627E-01	7,3337E+05	6.9243E=62
6.6098E+05	1.2975E-01	7,3485E+05	6.4270E-02
6.6245E+05	1.33228-01	7.3633E+05	5.9186E=B2
6.6393E+05	1 <b>.</b> 3668E=01	7,3781E+05	5,4018E+02
6.6541E+05	1_4014E=01	7,3928E+05	4.8810E-02
6.6689E+05	1,4361E=01	7.4076E+05	4.3619E-02
6.68362+85	1_4708E=01	7.4224E+05	3,8483E=02
6.6984E+85	1,5052E=01	7.4372E+05	3,2413E-02
6.7132E+05	1.5392E+01	T.4519E+05	2,68995+02
6.7260E+05	1,5724E=01	T.4667E+05	2,1875E+82
6.7437E+Ø5	1.6045E=01	7.48156685	1.7339E402

۰.

۰.

.

PLTCVT PROGRAM DATA SUMMARY PIR 5(TOTAL FUEL ASSEMBLIES) BABE CASEI CHAIN 2 CONTAMINANT # U=233 TONS OF HEAVY METAL FACTOR # 0,5000000 DATA BLOCKING FACTORS? ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE # 2 TIME LOW # 1,000000E+04 TIME HIGH= 2,000000E+04 TIME HIGH= 2,000000E+04 NUMBER OF CELLS # 400 DELTA TIME INCREMENT = 4,975000E+03

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 7,86238+05 MIN, TIME . 4**.**3895E+04 TOTAL WEIGHT = TOTAL PARCELS . 3,1540E+04 37687.0 PEAK WEIGHT TIME # 6.29392+05 678.911 PEAK WEIGHT = PEAK PARCELS . 1581,000 PEAK PARCELS TIME 5 3,2591E+05 NO. PARCELS LOW # WT, LOW = 0,00008-01 8,0 NO, PARCELS HI = WT. NI = 0.00002=01 0,0 SMOOTHING WINDOW (CELLS) #

TOTAL INVENTORY (CURIES) = 3,154041E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 3,155322E+04 PERCENT OF TOTAL INVENTORY = 100,041

TIME OF MAXIMUM CONCENTRATION (YEARS) = 6.343625E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 4.932845E=07 MAXIMUM RATE (CURIES/YEAR) = 1.279946E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3.853949E=06

CONTAMINANT = U=233

TIME (YR)	RATE (CU/YR)	TINE (YR)	RATE (CU/YR)
4,2338E+04	5,5905E+03	3,1847E+05	1,1044E=02
4,2570E+04	5,5905E+03	3,35238+05	1,4682E+02
4.2802E+04	5,5995E=03	3,52002+05	5,0396E+03
4,3034E+04	5,59052+03	3,68762+85	2,7990E=02
4,32668+94	5,5905E=03	3,8553E+05	3,6038E+02
4,3498E+04	5,59058+03	4,0229E+05	4,3184E=02
4,37312+04	5,59052=03	4 <b>,</b> 1906E+05	4,8155E+02
4,39632+04	5,59058=03	4,35822+05	5,1356E+02
4,4195E+04	3,5905E=03	4,5259E+05	5,4558E=02
4,44272+04	5,5905E=03	4,69352+05	5,8227E=02
4,4659E+04	5,5905E=03	4,86112+05	6,3703E=02
4.48922+84	5.59052=03	5.02882+05	6.9704E=02

4.5124E+04	5.5905E-D3	5.1964E+85	7,6080E=02
4.5356E+04	5.5905Ee03	5.36412485	8.2671E=02
4.5588E+04	5.5985E+81	5.5317E+85	6.9279E+62
4.5820F+04	5.5905E-03	5.69946+85	0.6579E=02
4.6053F+04	5.59056-03	5.86786485	1.0504E=01
A LOADELGA		4.0347F+05	( (AtpFnR)
A LEITELAN	S EQREFART	4 2021F408	1 \$4038-01
4 6 8 3 1 1 C 4 C 4	5 60666-01	4 35885448	( 2401F-01
A CRICTON	5 50055-07	L TAKELOU	1 37/1F-01
4.04015404	3,37036403	0 8 20 4 3 6 4 0 3 4 9 6 6 4 4 6 6	
4.72145-04	3434035403		
4.7440E+04	340034C483	6.40072403	1°50A3CA01
4,7676E+04	5,8464L=03	6.43782483	1.8234E.001
4.7910E+04	6.0090E=03	5.5068E+03	1.85126-01
4.8142E+04	6,1715E+03	6.5599E+85	1,1733E+01
4.8375E+04	6.3341E=03	6,6110E+05	1.1193E#01
4 <b>.</b> 8607E+04	6,4966E=03	6 <b>.</b> 6621E+05	1,0663E=01
4,8839E+04	6,6592E-03	6,7132E+85	1,0050E=01
4,9871E+84	6,8217E=03	6,76432+05	9.4064E-02
4,9303E+04	6,9843E+03	6.81542+05	8,7573E+62
4,9536E+04	7,1468E=Ø3	6,86652+05	8,0114E-02
4.9768E+04	7.30946-03	6,9175E+05	7.1311E-62
5.0000E+04	7.47198-03	6,9686E+05	6.2259E+02
5.0232E+04	7.6345E-03	7.0197E+05	5.34158-02
6.6997E+84	1.3149E+02	7.8788E+05	4.4587E+02
8.3762E+84	1.6089E-02	7.1219E+05	3.6458E+62
1.0053E+05	1.5969E-02	7.1730E+05	2.94295-02
1.1729E+05	1.48056-02	7.22418405	2.3252E+02
1.34065+05	1.35366-02	7.27516405	1.7704E=0P
1.50825+05	1_25866=02	7.32626405	1.3231E-02
1_6759F405	1 1567F=02	7.37735405	9.5825E-01
1 84355445	1 07865-03	T_A284F+05	6.6600F=01
3 01115405	4 00155-00	7 47055405	0 100700-03
5 17885105	0 T0405-01	4 83668400	9 07685-07
C.1/005+03		7 8317548E	C 06415-07
5 81A15465	0 1 YE1 / EFU3	1 20115403 4 11385408	1 24505-57
C:3141E703	0 13402-04 0 13402-04	/ DJC05403	1 10175901.
C+001/L903	D.3C3YC4U3	1 B B B B B A B A B B A B B B B B B B B	0140475404
2.04742403	0,37502=03	7.73446903	3,47035404
3.0170E+05	9 <b>.</b> 1663E#03	7 . 70002+05	3,3470E-04

PLTCVT PROGRAM DATA SUMMARY PIR 5 Chain 2 CONTAMINANT = TH=229 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTONS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 1,000000E+04 TIME HIGH= 1,000000E+04 TIME HIGH= 1,000000E+04 DELTA TIME INCREMENT = 4,950000E+03

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 1,0945E+06 MIN. TIME = 4,6923E+04 TOTAL PARCELS . 2081.0 TOTAL NEIGHT = 1,0800E+03 6,1638E+05 PEAK WEIGHT TIME . PEAK WEIGHT # 105.571 PEAK PARCELS # 31,200 PEAK PARCELS TINE = 7,6983E+05 NO, PARCELS LOW # WT. LOW = 0.000000-01 0,0 52,0 NO, PARCELS HI = WT. HI = 1.2540E-10 7 SHOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 1.080002E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1.068648E+03 PERCENT OF TOTAL INVENTORY = 98.949

TIME OF MAXIMUM CONCENTRATION (YEARS) = 6,213250E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1,954749E=08 MAXIMUM RATE (CUPIES/YEAR) = 5,072067E=03 CONVERSION FACTOR RATE TO CUNCENTRATION = 3,853949E=06

CONTAMINANT = TH-229

TTHE (YR)	RATE COUVER	TIME (YR)	PATE (CULVEN
4.11232704	2,20315=84	2,25226+03	1,65892=03
5,66296+34	2 <b>.</b> 6245E-04	5,31832+05	1,9387E=03
6.6133E+04	3,42182-04	5,41336+05	2,28798-03
7,5637E+04	4.24412=44	5,52846+05	2.6986E-03
8.5141E+04	5,9586E-04	5,60348+05	3.1674E-03
9.46452+04	5,56022-04	5,64856+05	3.65666-03
1.0415E+05	5,88056-04	5,7935E+05	4.1118E-03
1.1365E+95	5,7385E=04	5.88852+05	4.50012-03
1.2316E+05	6.7366E-04	5.98366+05	4,7922E-03
1.32556+05	5 91721-04	6.0786E+05	4.9827E-03
1.4217E+05	5.71892-04	5.1737E+05	5.0661E=03
1.51672+05	5-46572=04	6-2637E+05	5.04008-03

	E ADDAR SHOT	M 76795185	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon
1.01172405	2.1000E-04	6.30376403	4.00435-03
1.7068E+05	4 8849E=04	6.4506E+05	4,62671-03
1.8018E+05	4 <b>,</b> 5918E=04	6.5538E+05	4.3061E=03
1.89698+05	4.32968-04	6.6489E+05	3,9560E-03
1.99196+05	a_0889E=04	6.7439E+05	3,5846E=03
2.0869E+05	3.8698E-04	6.8389E+05	3.1953E+03
2.1820E+05	3.65586-04	6.9340E+05	2.7902E=03
2-2779E+05	3.4638L-04	7.02906+05	2.3803E=03
2 37215405	3.2961E=04	7-12416+05	1.09435-03
3 46716406	T 18776-00	7 21016405	1 6382F-03
2 640116403	3 8 2 8 4 5 - 10 4 7 8 2 8 4 5 - 10 4	7 21016405	1 21145-02
		1 # 44426702 # 44036406	1 01/98-07
C.03/CET03	C. 4300C-04		1.014/6-03
2.13665403	2.8/472=04	7.50466405	
2.8473E+05	2.8996E-04	7,5993E+05	5,4163t-04
2.9423E+05	2,9919E=04	7.6943E+05	3,7496E=04
3.0373E+05	3,18126-04	7 <b>.</b> 7893E+05	2.5249E=04
3.13246+05	3.44895-24	7.8844E+05	1.6414E-04
3.22746+05	3.6046E=04	7.9794E+05	1.0166E+04
3.3225E+05	4.25476-04	8.0745E+Ø5	6.0532E+05
3.41756+05	4.8028E-04	8.1695E+05	3.4179E-05
3.51256+05	5.4327E-04	8.2045E+05	1.6014E=05
3.60766+05	6.04408-04	6.3596E+05	9.1895E+06
3 7026F+05	6.63298-04	8.4546E+05	4.4986E=06
2 79776445	7 22376-04	8.54976+05	2.1711E+06
T A937F+45	7 83435-04	8.6847F+05	0_6002F=07
3807676405 2 68776406	8 78336-04	A 73075+05	A 2124F=07
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 87765-01		4 BASTE-07
HEPPERLTUD		0 02005406405	7 79475-04
4 1770E+03		5 13155+95	3 04005-00
4.21275703	7.5775E=04	A* 854 454 63	C ⁶ 4444C=00
4.30/42+05	4 4454E=04	A 11 A A F + 6 2	4,12485-04
4.46296+05	1. 286E=03	9.21492+05	0,000CL=01
4,55806+05	1.0576E=03	9.3100E+05	0.0000E=01
4 <b>.</b> 6539E+05	1,08176-03	9 <b>,</b> 4050E+05	0,000e=01
4.7481E+05	1.1085E=03	9.50012+05	Ø,0000E=01
4.8431E+05	1.14376-23	9,5951E+05	1.0030E-08
4,9381E+05	1.20026-03	9.6901E+05	0.0000E-01
5.0332E+05	1.30086-03	9.7652E+05	0.0000E=01
5,12826+05	1.44778-03	9,88922+05	0.0000E-01
• • • • • • • • •	· · · · · · · · · · · · · · · · · · ·	• ·	

 $\left( \begin{array}{c} \\ \end{array} \right)$ 

۰.

PLICYT PROGRAM DATA SUMMARY PIRS(TOTAL FUEL ASSEMBLIES) BASE CASES CHAIN 3 CONTAMINANT = U=238 TONS OF HEAVY METAL FACTOR = 0.5000000 DATA BLOCKING FACTORSI ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 2.9000002+05 TIME LOW = 4,500000E+05 TIME HIGH= 400 NUMBER OF CELLS = 4.00000E+02 DELTA TIME INCREMENT =

RAW DATA AND BLOCKED DATA FACTORSI 2,97692+05 MIN, TIME # MAX, TIME = 1,9999E+06 1,2231E+04 TOTAL PARCELS . 6690.0 TOTAL WEIGHT = PEAK WEIGHT TIME = 3,33402+05 137,292 PEAK WEIGHT = 3,33402+05 68,809 PEAK PARCELS TIME = PEAK PARCELS # NO, PARCELS LOW . 0,0 WT, LOW = 0,9000E-01 WT, HI = 4,2393E+00 NO, PARCELS HI = 7518,0 ÍØ SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 1,223524E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1,220619E+04 PERCENT OF TOTAL INVENTORY = 99,763

TIME OF MAXIMUM CONCENTRATION (YEARS) = 3,342000E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 9,908181E=07 MAXIMUM RATE (CURIES/YEAR) = 2,570916E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = U-238

••

TTHE (VD)	DATE (CU/YR)	TIME (YR)	RATE (CU/YR)
- 07806405	1 69428-03	3.8631E+05	6.9038E+02
2 97005+05	2 20235-03	3.87198+05	6.8728E+92
28777570J 7 03195408	2 9274F-UT	3.88072+05	5.8376E+02
3 04378702 3 ⁸ 85105403	7 34948-03	3.88958+05	6.7985E+02
3 844306703 7 84444408	1.35768-02	3.8983E+05	6.7551E+02
3,00336+03 7 08746+05	2,32605-02	3.9072E+05	5.7076E+02
3 100742405	3. 4290E-02	3.9160E+05	6.65632-02
2 12125405	5.22278-02	3.9248E+05	6.6014E+02
2 15205+05	7.05376+02	3.9336E+05	6,54298-02
2 47495405	9.109AE=02	3.9425E+05	6.4814E+02
3.19682+05	1.1523E=01	3,9513E+05	6,4167E=02
3.21872+45	1.44752+01	3,9601E+05	6,3486E=02
		-	-

T DADEEADE	1 78475-01	TOLEOFARE	6 3766F-03
3 8 54035403 7 96976485	3 496426401	T 07785+06	4 3008F-02
3 58/3C+05	5 \$46+5_04	T DRAAFAME	L (1085-03
3 70436405	2 40425-04	34 4000C403	6 07795-da
3,30000000	C+474CC#01*	3677345703 / Auxorat	0,033CC+0C
343C015403	C 337/E#01	4 80455403	5 744035402 5 74475-00
3,34776703	C. 3002C=01	4 2 2 4 2 5 4 5 3	5 F/(05-05
3.3/102403	c. 3cosc.ec1	4,03445403	3,300000000
3.34376405	2,44105-01	4.04756405	3,34301-02
3,41305+05	2,30442401	4.00402403	3.04/35.02
3+43/36+05	2,12302=01	4.0/4/2403	4,63175+62
3.45932+05	1,9050E=01	4.09482+05	9,5504L=02
3,4812E+05	1.6694E=01	4.10992+05	4.2508L+02
3,5031E+05	1.4499E=01	4.1250E+05	3.96146-02
3,5250E+05	1.2744E=01	4,1400E+05	3,66226-02
3.5468E+05	1,1391E=01	4,1551E+05	3.3639E=02
3,5687E+05	1,0183E=01	4,1702E+05	3,0695E=02
3.5906E+05	8,9942E=02	4,1853E+85	2,7813E+02
3.615256+05	7 <b>,</b> 9534E×02	4.20042+05	2,5008E=02
3.6344E+05	7.2187E=02	4,2155E+Ø5	2,2298E=02
3.6562E+05	6,8292E=02	4 <b>.</b> 2306E+05	1,97068-02
3+6781E+05	6 <b>,</b> 7316E+02	4 <b>.</b> 2457E+05	1,7237E+02
3,7000E+05	6.8126E+02	4.2608E+05	1 <b>.</b> 4919E-02
3.7219E+Ø5	6.9148E=02	4 <b>.</b> 2759E+05	1,2765E=02
3.7307E+05	6.9498E=02	4 <b>.</b> 2910E+05	1.0779E=02
3,7395E+05	6,9806E=02	4.3060E+05	8,9757E=03
3,7483E+05	7.0847E=02	4 <b>.</b> 3211E+ØS	7,3720E=03
3,7572E+05	7,02326+02	4,3362E+05	5,9670E=03
3,7660E+05	7.03576-02	4 <b>.</b> 3513E+05	4 <b>.</b> 7624E <b>-</b> 03
3,7748E+05	7.0421E=02	4.36642+05	3.7481E=03
3.7836E+05	7.0434E=02	4 <b>.</b> 3815E+05	2,9251E=03
3.79258+05	7.0403E-02	4,3966E+05	2,2710E+03
3.8013E+05	7.0334E-02	4.4117E+05	1,7655E+03
3.81016+05	7,0235E=02	4.4268E+05	1,3927E+03
3,81896+05	7.0105E-02	4.4419E+85	1,1144E=03
3.8278E+05	6,9945E+02	4 <u>.</u> 4570E+05	9,2977E=04
3.8366E+85	6 <b>.</b> 9766E=02	4 <b>.</b> 4720E+05	8,3881E=84
3.8454E+05	6 <b>,</b> 9556E=02	4 <b>.</b> 4871E+05	7 <b>.</b> 4549E=04
3.8542E+05	6.9317E+02	4.50222+05	6.7679E=04

PLTCVT PROGRAM DATA SUMMARY PIRS(TOTAL FUEL ASSEMBLIES) BASE CASE; CHAIN 3 CONTAMINANT = U=234 TONS OF HEAVY METAL FACTOR = 0.5000000 DATA BLOCKING FACTORS; ENTRY MODE (1 = T(LOW),OT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 2.5000000E+05 TIME HIGH= 5.000000E+05 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 5.250000E+02

RAW DATA AND BLOCKED DATA FACTORSI MIN, TIME # 2.86748+05 MAX, TIME = 1,9990E+06 TOTAL PARCELS . TOTAL WEIGHT = 3,3895E+04 13214.0 PEAK WEIGHT 596,715 PEAK WEIGHT TIME = 3.38442+05 PEAK PARCELS TIME = 3,3469E+05 PEAK PARCELS # 138,000 NO, PARCELS LOW . WT, LOW = 0,0000E-01 0.8 WT. HI = 2,2189E+00 NO, PARCELS HI = 6655,0 5 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 3,389698E+04 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 3,389454E+04 PERCENT OF TOTAL INVENTORY = 99,993

TIME OF MAXIMUM CONCENTRATION (YEARS) = 3,353125E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2,840388E=06 MAXIMUM RATE (CURIES/YEAR) = 7,370073E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = U=234

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
2.86568+05	2.7867E=04	3,93132+05	1,7313E=01
2.8869E+05	5.75578+04	3,95262+05	1,6840E-01
2.90832+05	1.2904E-03	3,9739E+05	1,6224E=01
2.92966+05	2.43518-03	3,99522+05	1.5580E=01
2.95098+05	4.1779E-03	4.0165E+05	1.4981E=01
2.9722E+05	6.73298=03	4,0378E+05	1,4403E+01
2.9935E+05	1.0593E-02	4,05912+05	1,3775E=01
3.0148E+05	1.66178-02	4,0804E+05	1,3020E+01
3.03612+05	2.6438E+02	4,1018E+05	1,21008+01
3.05748+05	4,21108=02	4,1231E+05	1,1009E+01
3.0788E+05	6.5864E=42	4,14448+05	9,7529E+02
3.10012+05	9.95758+02	4.1657E+05	8.3805E-02

3,1214E+05	1.4364E=01	4.1870E+05	6.9784E=02
3,1427E+05	1,9751E-01	4,2083E+05	5.6544E+02
3.1640E+05	2,5897E=01	4.2296E+85	4.4943E+02
3,18532+05	3,2533E+01	4.2509E+05	3.5243E+02
3.2066E+05	3,9390E=01	4.2723E+05	2.7251E+02
3,2279E+05	4.6274E-01	4.29366+85	2.0662E=02
3,2493E+05	5,3009E=01	4.3149E+05	1.5257E+02
3,2706E+05	5,9402E+01	4.3362E+05	1.0886E=02
3,2919E+05	6,5096E=01	4.3575E+05	7.4452E-03
3,3132E+05	6,9661E=01	4.3788E+05	4.8518E+03
3.3345E+05	7,2665E=01	4.4001E+05	3.0024E=03
3.3558E+05	7.3696E+01	4.4214E+05	1.7510E+03
3.3771E+05	7.2620E-01	4.4428E+85	9.6541E=04
3,3984E+05	6,9430E=01	4.4641E+05	4.8803E=04
3,4198E+05	6.4484E-01	4.4854E+05	2.2867E+04
3,4411E+05	5,8401E-01	4.5067E+05	1.0576E+04
3.4624E+05	5,1933E=01	4.52802+05	4.5612E-05
3.4837E+05	4.5726E+01	4,5493E+05	2.4958E-05
3.5050E+05	4,0191E+01	4,5706E+85	1.5859E+05
3.5263E+05	3,5434E=01	4,59195+05	1,4310E=05
3.5476E+05	3,1432E=01	4.6133E+05	6.6455E-86
3.5689E+05	2,8103E=01	4.6346E+05	2.2655E=07
3,5903E+05	2.5325E-01	4.65592+05	5,8903E=06
3.6116E+05	2.3007E=01	4.6772E+05	6,9853E#86
3.6329E+05	2.1067E=01	4.6985E+05	4,7576E+06
3.6542E+05	1 <b>.</b> 9526E=01	4,7198E+Ø5	6,3057E+06
3+6755E+05	1.8442E-01	4.7411E+85	4.8779E-06
3.6968E+05	1,7820E=01	4 <b>.</b> 7624E+05	3,7758E-06
3,7181E+05	1.7580E=01	4 <b>.</b> 7838E+05	1,1328E+06
3.7394E+05	1.7531E=01	4.8051E+05	2.6053E+06
3,7608E+05	1.7511E=01	4,8264E+05	6,4945E#06
3,7621E+05	1.7442E-01	4.8477E+05	3,7758E-06
3.8034E+05	1.7348E=01	4.8690E+05	5.8148E=06
3,82478+05	1,7303E=01	4.8903E+05	7.3629E=06
3.84602+05	1.7349E-01	4.9116E+Ø5	1.3593E=06
3.8673E+05	1.7475E=01	4.93296+05	0.0000E=01
3.8886E+05	1.7584E=01	4,9543E+05	1,0648E=05
3.90996+05	1.7562E=01	4.9756F405	1 BARIF-BL

(
PLTCVT PROGRAM DATA SUMMARY PIR 5(TOTAL FUEL ASSEMBLIES) BASE CASE; CHAIN 3 CONTAMINANT = TH=230 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS; ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 2,900000E+05 TIME HIGH= 1,000000E+05 NUMBER OF CELLS = 200 DELTA TIME INCREMENT = 3,550000E+03

RAW DATA AND BLOCKED DATA FACTORSI MIN, TIME = 2,9259E+05 MAX, TIME = 1,9992E+06 TOTAL WEIGHT = 1,0659E+03 TOTAL PARCELS # 1604.0 PEAK WEIGHT TIME = 3,3793E+05 PEAK WEIGHT = 47.420 PEAK PARCELS = 18.000 PEAK PARCELS TIME . 7,0003E+05 NO, PARCELS LOW . WT. LOW = 0.0000E-01 0.0 NO, PARCELS HI = 1317,0 WT. HI = 2.3801E+0010 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 1.068286E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 1.087266E+03 PERCENT OF TOTAL INVENTORY = 101.777

TIME OF MAXIMUM CONCENTRATION (YEARS) = 3,769750E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2,434547E+08 MAXIMUM RATE (CURIES/YEAR) = 6,317019E+03' CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E+06

CONTAMINANT = TH=230

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
2.9178E+05	2,77756+05	4 <b>.</b> 5034E+05	3,4967E=03
2.95052+05	2,77758+05	4,5328E+05	3,4470E-03
2,9833E+05	8,5651E=05	4.56222+05	3,3977E=03
3.01612+05	1,7012E=04	4 <b>,</b> 5916E+05	3,3480E-03
3.04892+05	2,6452E=04	4,6210E+05	3,2984E=03
3.0817E+05	4,3362E=04	4.65042+05	3,2525E+03
3,11452+05	7,0173E-04	4,6799E+05	3,2088E+03
3.14736+65	1.0668E+03	4 <b>.</b> 7093E+05	3,1657E=03
3.18012+05	1.5141E-03	4,7387E+05	3,1221E=03
3.21292+05	2,0298E-03	4,7681E+05	3,0777E=03
3,2457E+05	2,60868-03	4,7975E+05	3,0326E+03
3,2785E+05	3,2211E=03	4 <b>.</b> 8269E+05	2.9872E+03

2 21125405	1 43405-07	A BELTELDE	5 64485-67
3,31136+03		4.03032403	C*4413C*63
3,34412703	4,30050403	4.80372+83	2.8954E#03
3.37046405	4 . 7447E#03	4,9151E+05	2.8488E=Ø3
3,4897E+05	5,0143E#03	4.9446E+85	2,8013E+03
3,44256+05	5.1947E+03	4.9740E+05	2.7525E+03
3,4753E+05	5,3039E+03	5.0034E+05	2.7020E+03
3,5081E+05	5.3534E+03	5.15446+05	2.42298-03
3.54096+05	5.3782E-03	5.30535405	2.1278F-03
3.57378+05	5-4172F-03	5.45636405	1 BASAF-01
3.68655+85	5 5120F-01	E 1973E105	1 50735-07
2 4 20 3C + 0 3	5 6 8 8 8 5 5 4 5 7 5 3 5 6 8 8 8 8 5 5 4 5 7 5 3	2 8 00 1 3 L 4 C 3	1,30325403
7 4 7 306 405	5 80045403 5 80045403		1+22326463
340/545403	3.07010-03	3.4042E403	1.10252403
3,70402703	D.0737E405	0.00021+03	1,00832=03
3.73766+05	6.2396E=03	6,2112E+05	0.8504E+04
3.7704E+05	6 <b>.</b> 3165E=Ø3	6,3622E+05	7,9328E+Ø4
3.8032E+05	6 <b>.</b> 2895E=Ø3	6.5132E+05	7.2372E+04
3.8360E+05	6.1836E+03	6.6641E+05	6.6451E=04
3.8688E+05	5,9869E=03	6.8151E+05	6.0480E-04
3.9016E+05	5.7324E-03	6-9661E+05	5.3709E-04
3.93446+05	5.44496-03	7-11716405	A SAZOF-RA
3.9672E+05	5.1618E=03	T. 2480F405	T 7127F-04
4.000000+05	4 0421F-91	T A1006+05	2 00165-01
A 01286105	A 78015-07	7 EMA 70E 703	C 77405404
4 8 8 3 5 0 5 4 0 3 A 8 6 3 5 5 4 8 5	* ( 7 7 1 C = 0 3	7.57002403	2,30032404
	4,0/22C#03	7.76102-03	1.90682-04
4.04102403	4.55946+03	7.8720E+05	1,6008E=04
4,1210E+05	4.4596E-03	8,0229E+05	1.4026E+04
4.1504E+05	4,3709E=03	- 8 <b>.</b> 1739E+05	1,2775E+04
4.1799E+05	4 <b>.</b> 2885E=03	8.3249E+05	1.1769E=04
4.20936+05	4.2119E-03	8.4759E+05	1.0840E+04
4,2387E+05	4.1303E-03	8.62682+05	9.9465E-05
4.2681E+05	4.0229E+03	8.7778E+05	9.04336-05
4.2975E+05	3.9328E+03	8.9288E+05	8.0943E-05
4.3269E+05	3-8521E-03	9.079AF+05	7.155AF-06
4.3563F+05	3. 7880F-02	D DIALINE	L 31002-02
4.3857F+05	3. 71645-01	0 1817F405	5 /15/F_AF
A. 41515105	7676046403 7 68605-27	783V116703	- 314/31C403
マモダインジナロマシン カーカカガムビムのビー	3 E0046_01	7837515703	4 8 0 0 3 4 C 4 0 3
464440 <u>5</u> 783 # #\$685=45	38377/6403 7 00077/6403	Y 00371403	4,43546405
4 4 4 1 4 11 4 43	3,54736=03	9.8347E+85	4.0307E+05

۰.

PLTCVT PROGRAM DATA SUMMARY PIR5(TOTAL FUEL ASSEMBLIES) BASE CASE; CHAIN 3 CONTAMINANT = RA=226 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW P 2,000000E+05 TIME HIGH= 1,000000E+05 TIME MIGH= 1,000000E+05 DELTA TIME INCREMENT = 8,000000E+03

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME # 1,9984E+06 Total Weight # 1,7290E+03 MIN, TIME # 2,9492E+05 TOTAL PARCELS 9 1872.0 PEAK WEIGHT TIME . 4.12008+05 PEAK WEIGHT # 111,036 4,92086+85 68,000 PEAK PARCELS 3 PEAK PARCELS TIME # NO. PARCELS LOW # WT, LON = 0,00002=01 0,0 NO, PARCELS HI . WT, HI = 7,9568E-01 186,0 iø ANOOTHING WINDOW (CELLS)

TOTAL INVENTORY (CURIES) # 1,7298198+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) # 1,6978212+03 PERCENT OF TOTAL INVENTORY # 98,150

TIME OF MAXIMUM CONCENTRATION (YEAR3) = 3,80000082+05 MAXIMUM CONCENTRATION (NICROCURIES/ML) = 3,0169198-08 MAXIMUM RATE (CURIES/YEAR) = 7,8281242=03 CONVERSION FACTOR RATE TO CONCENTRATION = 3,8539498=06

CONTAMINANT 9 RA-226

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
2.9200E+05	2.31628=04	4,6940E+05	6,25152-03
2.9376E+05	2.31628-04	4,76762+05	6,0227E=03
2.95522+05	2.31628=04	4.8411E+05	3,7836E=03
2.9727E+05	2.31628=04	4,9146E+05	5,5420E=03
2.9903E+05	2.31628-04	4,98822+05	5,2895E=03
3.00792+05	3.03318=04	5,06172+05	5,0270E=03
3.02556+05	4.63238=04	5,1392E+05	4,7581E=03
3.04302+05	5.23168-04	5,20872+05	4,48902=03
3.96962+95	7.83098=04	5,28238+05	4,2218E=03
1.07822+05	9.43018-04	5,3558E+05	3,95562=03
3.09582+05	1.11988-03	5,4293E+05	3,6919E=03
3,11332+05	1,29845-03	5,30292+05	3,4360E=03

3,1309E+05       1,4771E=03       5,5764E+05       3,1908E=03         3,1485E+05       1,6558E=03       5,6499E+05       2,9493E=03         3,1636E+05       2,1440E=03       5,7235E+05       2,7124E=03         3,1636E+05       2,1440E=03       5,770E+05       2,4025E=03         3,2012E+05       2,4214E=03       5,6705E+05       2,2775E+03         3,2168E+05       2,6980E=03       5,9440E+05       2,0859E=03         3,2168E+05       2,9746E=03       6,0176E+05       1,6028E=03         3,2539E+05       3,016E=03       6,1376E+05       1,6127E=03         3,2715E+05       3,6418E=03       6,2576E+05       1,3496E=03         3,2891E+05       3,9820E=03       6,3776E+05       1,1136E=03         3,3242E+05       4,6534E=03       6,4976E+05       9,0107E=04         3,3594E+05       5,2591E=03       6,6776E+05       3,6408E=03         3,3770E+05       5,8648E=03       7,0976E+05       3,6408E=04         3,418E+05       6,1423E=03       7,2176E+05       2,8454E=04         3,4121E+05       6,1423E=03       7,2176E+05       2,8454E=04         3,4121E+05       6,4085E=03       7,2176E+05       1,7658E=04	
3.1485E+05       1.6558E=03       5.6499E+05       2.9493E=03         3.1661E+05       1.8662E=03       5.7235E+05       2.7124E=03         3.1636E+05       2.1440E=03       5.7970E+05       2.4025E=03         3.2012E+05       2.4214E=03       5.9740E+05       2.2775E+03         3.2188E+05       2.6980E=03       5.9440E+05       2.2775E+03         3.2188E+05       2.6980E=03       5.9440E+05       2.0859E=03         3.2188E+05       2.9746E=03       6.0176E+05       1.9028E=03         3.2539E+05       3.3016E=03       6.1376E+05       1.6127E=03         3.2539E+05       3.6418E=03       6.2576E+05       1.3496E=03         3.2691E+05       3.6420E=03       6.3776E+05       1.6127E=03         3.2891E+05       3.6422E=03       6.2576E+05       1.3496E=03         3.2891E+05       3.9820E=03       6.3776E+05       1.1136E=03         3.3067E+05       4.6534E=03       6.6176E+05       1.8128E=03         3.3842E+05       4.6534E=03       6.6276E+05       3.8123E=04         3.3945E+05       5.8619E=03       6.8576E+05       3.6602E=04         3.3945E+05       5.8648E=03       7.0976E+05       3.6602E=04         3.4121E+05       6.1423E=03	
3.1661E+05       1.6662E=03       5.7235E+05       2.7124E=03         3.1636E+05       2.1440E=03       5.7970E+05       2.4625E+03         3.2012E+05       2.4214E=03       5.6705E+05       2.4625E+03         3.2108E+05       2.4214E=03       5.6705E+05       2.2775E+03         3.2108E+05       2.6980E=03       5.9440E+05       2.0859E=03         3.2108E+05       2.9746E=03       6.8176E+05       1.9028E=03         3.2539E+05       3.3016E=03       6.1376E+05       1.6127E=03         3.2539E+05       3.6418E=03       6.2576E+05       1.3496E=03         3.267E+05       3.6418E=03       6.2576E+05       1.3496E=03         3.2891E+05       3.9820E=03       6.3776E+05       1.1136E=03         3.3067E+05       4.6534E=03       6.6176E+05       7.2461E=04         3.3242E+05       4.6534E=03       6.6176E+05       8.8123E=04         3.3594E+05       5.2591E=03       6.9776E+05       3.6602E=04         3.3945E+05       5.8648E=03       7.0976E+05       3.6602E=04         3.3945E+05       5.8648E=03       7.8176E+05       3.6454E=04         3.4121E+05       6.1423E=03       7.3376E+05       1.7658E=04         3.4297E+05       6.4085E=03	
3.1636E+05       2.1448E+03       5.7970E+05       2.4622E+03         3.2012E+05       2.4214E+03       5.6705E+05       2.2775E+03         3.2188E+05       2.6980E+03       5.9440E+05       2.0859E+03         3.2364E+05       2.9746E+03       6.0176E+05       1.9028E+03         3.2539E+05       3.3016E+03       6.0176E+05       1.6127E+03         3.2715E+05       3.6418E+03       6.2576E+05       1.3496E+03         3.2891E+05       3.9820E+03       6.3776E+05       1.1136E+03         3.2891E+05       4.6534E+03       6.6176E+05       7.2461E+03         3.3242E+05       4.6534E+03       6.6176E+05       3.6408E+04         3.3594E+05       5.951E+03       6.9776E+05       3.6602E+04         3.3770E+05       5.8648E+03       7.0976E+05       3.6602E+04         3.3945E+05       5.8648E+03       7.0976E+05       3.6602E+04         3.4121E+05       6.1423E+03       7.2176E+05       2.2454E+04         3.4297E+05       6.4085E+03       7.3376E+05       1.7658E+04	
3.10360+05       2.14400+03       5.79700+05       2.4602503         3.20120+05       2.42140-03       5.67050+05       2.27750-03         3.21880+05       2.698000+03       5.944000+05       2.085900-03         3.23640+05       2.97460-03       6.01760+05       1.90280-03         3.253900+05       3.30160-03       6.1376005       1.61270-03         3.27150+05       3.64180-03       6.2576005       1.34960-03         3.28910+05       3.98200-03       6.37760+05       1.11360-03         3.28910+05       3.98200-03       6.37760+05       1.11360-03         3.28910+05       3.98200-03       6.37760+05       1.11360-03         3.30670+05       4.32220-03       6.61760+05       7.24610-04         3.32420+05       4.65340-03       6.61760+05       8.81230-04         3.35940+05       5.25910-03       6.73760+05       3.66020-04         3.35940+05       5.86480-03       7.09760+05       3.66020-04         3.39450+05       5.86480-03       7.09760+05       2.84540-04         3.41210+05       6.14230-03       7.21760+05       2.84540-04         3.41210+05       6.40850-03       7.33760-05       1.76580-04         3.41210+05       6.40850-03	
3.2012E+05       2.4214E=03       5.6705E+05       2.2775E+03         3.2188E+05       2.6980E=03       5.9440E+05       2.0859E=03         3.2364E+05       2.9746E=03       6.0176E+05       1.9028E=03         3.2539E+05       3.3016E=03       6.1376E+05       1.6127E=03         3.2715E+05       3.6416E=03       6.2576E+05       1.3496E=03         3.2891E+05       3.9820E=03       6.3776E+05       1.1136E=03         3.3067E+05       4.3222E=03       6.4976E+05       9.0107E=04         3.3242E+05       4.6534E=03       6.6176E+05       7.2461E=04         3.3594E+05       5.2591E=03       6.6176E+05       3.6408E=04         3.3770E+05       5.8648E=03       7.0976E+05       3.6602E=04         3.3945E+05       5.8648E=03       7.0976E+05       2.2454E=04         3.4121E+05       6.1423E=03       7.2176E+05       2.2454E=04         3.4297E+05       6.4085E=03       7.3376E+05       1.7658E=04	
3.2188E+05       2.6980E=03       5.9440E+05       2.0859E=03         3.2364E+05       2.9746E=03       6.0176E+05       1.9028E=03         3.2539E+05       3.3016E=03       6.1376E+05       1.6127E=03         3.2715E+05       3.6416E=03       6.2576E+05       1.3496E=03         3.2891E+05       3.9820E=03       6.3776E+05       1.1136E=03         3.3067E+05       4.3222E=03       6.4976E+05       9.0107E=04         3.3242E+05       4.6534E=03       6.6176E+05       9.2461E=04         3.3418E+05       4.9562E=03       6.6176E+05       8.8123E=04         3.3594E+05       5.2591E=03       6.9776E+05       3.6602E=04         3.3770E+05       5.8648E=03       7.0976E+05       8.8953E=04         3.4121E+05       6.1423E=03       7.2176E+05       8.2454E=04         3.4297E+05       6.4085E=03       7.3376E+05       1.7658E=04	
3.2364E+05       2.9746E=03       6.0176E+05       1.9026E=03         3.2539E+05       3.3016E=03       6.1376E+05       1.6127E=03         3.2715E+05       3.6416E=03       6.2576E+05       1.3496E=03         3.2891E+05       3.9820E=03       6.3776E+05       1.1136E=03         3.3067E+05       4.3222E=03       6.4976E+05       9.0107E=04         3.3242E+05       4.6534E=03       6.6176E+05       7.2461E=04         3.3418E+05       4.9562E=03       6.6376E+05       8.8123E=04         3.3594E+05       5.2591E=03       6.9776E+05       3.6406E=04         3.3770E+05       5.8648E=03       7.0976E+05       3.6402E=04         3.4121E+05       6.1423E=03       7.2176E+05       2.2454E=04         3.4297E+05       6.4085E=03       7.3376E+05       1.7658E=04	
3.2539E+05       3.3016E=03       6.1376E+05       1.6127E=03         3.2715E+05       3.6416E=03       6.2576E+05       1.3496E=03         3.2891E+05       3.9820E=03       6.3776E+05       1.1136E=03         3.3067E+05       4.3222E=03       6.4976E+05       9.0107E=04         3.3242E+05       4.6534E=03       6.6176E+05       7.2461E=04         3.3418E+05       4.9562E=03       6.6176E+05       8.8123E=04         3.3594E+05       5.2591E=03       6.9776E+05       3.6406E=04         3.3770E+05       5.8648E=03       7.0976E+05       3.6402E=04         3.4121E+05       6.1423E=03       7.2176E+05       2.2454E=04         3.4121E+05       6.4085E=03       7.3376E+05       1.7658E=04	
3.2715E+05       3.6416E+05       6.2576E+05       1.3496E+03         3.2891E+05       3.9820E+03       6.3776E+05       1.1136E+03         3.3067E+05       4.3222E+03       6.4976E+05       9.0107E+04         3.3242E+05       4.6534E+03       6.6176E+05       7.2461E+04         3.3418E+05       4.9562E+03       6.6176E+05       8.8123E+04         3.3594E+05       5.2591E+03       6.8576E+05       4.6166E+04         3.3770E+05       5.5619E+03       6.9776E+05       3.6602E+04         3.3945E+05       5.8648E+03       7.0976E+05       8.8953E+04         3.4121E+05       6.1423E+03       7.2176E+05       8.2454E+04         3.4297E+05       6.4085E+03       7.3376E+05       1.7658E+04	551111
3.2891E+05       3.9820E=03       6.3776E+05       1.1136E=03         3.3067E+05       4.3222E=03       6.4976E+05       9.0107E=04         3.3242E+05       4.6534E=03       6.6176E+05       7.2461E=04         3.3418E+05       4.9562E=03       6.6176E+05       8.8123E=04         3.3594E+05       5.2591E=03       6.8576E+05       4.6166E=04         3.3770E+05       5.5619E=03       6.9776E+05       3.6602E=04         3.3945E+05       5.8648E=03       7.0976E+05       8.8953E=04         3.4121E+05       6.1423E=03       7.2176E+05       8.2454E=04         3.4297E+05       6.4085E=03       7.3376E+05       1.7658E=04	
3.3067E+05       4.3222E+03       6.4976E+05       9.0107E+04         3.3242E+05       4.6534E+03       6.6176E+05       7.2461E+04         3.3418E+05       4.9562E+03       6.7376E+05       8.8123E+04         3.3594E+05       5.2591E+03       6.8576E+05       4.6166E+04         3.3594E+05       5.2591E+03       6.9776E+05       3.6602E+04         3.3770E+05       5.5619E+03       6.9776E+05       3.6602E+04         3.3945E+05       5.8648E+03       7.0976E+05       8.963E+04         3.4121E+05       6.1423E+03       7.2176E+05       8.2454E+04         3.4297E+05       6.4085E+03       7.3376E+05       1.7658E+04	
3.3007E+05       4.3222E+05       6.4076E+05       9.0107E+04         3.3242E+05       4.6534E=03       6.6176E+05       7.2461E=04         3.3418E+05       4.9562E=03       6.7376E+05       8.8123E=04         3.3594E+05       5.2591E=03       6.8576E+05       4.6166E=04         3.3770E+05       5.5619E=03       6.9776E+05       3.6602E=04         3.3945E+05       5.8648E=03       7.0976E+05       2.8953E=04         3.4121E+05       6.1423E=03       7.2176E+05       2.2454E=04         3.4297E+05       6.4085E=03       7.3376E+05       1.7658E=04	
3.3242E+05       4.6534E=03       6.6176E+05       7.2461E=04         3.3418E+05       4.9562E=03       6.7376E+05       5.8123E=04         3.3594E+05       5.2591E=03       6.8576E+05       4.6166E=04         3.3770E+05       5.5619E=03       6.9776E+05       3.6602E=04         3.3945E+05       5.8648E=03       7.0976E+05       2.8953E=04         3.4121E+05       6.1423E=03       7.2176E+05       2.2454E=04         3.4297E+05       6.4085E=03       7.3376E+05       1.7658E=04	1
3.3418E+05       4.9562E=03       6.7376E+05       5.8123E=04         3.3594E+05       5.2591E=03       6.8576E+05       4.6166E=04         3.3770E+05       5.5619E=03       6.9776E+05       3.6602E=04         3.3945E+05       5.8648E=03       7.0976E+05       2.8953E=04         3.4121E+05       6.1423E=03       7.2176E+05       2.2454E=04         3.4297E+05       6.4085E=03       7.3376E+05       1.7658E=04	1 2 3
3,3594E+85       5,2591E+83       6,8576E+85       4,6166E+84         3,3770E+85       5,5619E+83       6,9776E+85       3,6602E+84         3,3945E+85       5,8648E+83       7,0976E+85       2,8953E+84         3,4121E+85       6,1423E+83       7,2176E+85       2,2454E+84         3,4297E+85       6,4085E+83       7,3376E+85       1,7658E+84	3
3,3770E+05 5,5619E+03 6,9776E+05 3,6602E+04 3,3945E+05 5,8648E+03 7,0976E+05 2,8953E+04 3,4121E+05 6,1423E+03 7,2176E+05 2,2454E+04 3,4297E+05 6,4085E+03 7,3376E+05 1,7658E+04	}
3,3945E+05 5,8648E=03 7,0976E+05 2,8953E=04 3,4121E+05 6,1423E=03 7,2176E+05 2,2454E=04 3,4297E+05 6,4085E=03 7,3376E+05 1,7658E=04	•
3,4121E+05 6,1423E=03 7,2176E+05 2,2454E=04 3,4297E+05 6,4085E=03 7,3376E+05 1,7658E=04	4
3,4297E+05 6,4085E=03 7,3376E+05 1,7658E=04	, ,
	2 1
T DOTTENDAN A LYNYN ANY ' Y DEFECANT A WEDDI'. DA	•
2144125462 0101415462 1143105466 1130445464	<b>і</b> д.
3_4648E+05 6_9408E=03 7_5776E+05 1_0562E=94	<b>i</b> -
3,4824E+05 7,1831E=03 7,6976E+05 7,6718E=05	5
3.5000E+05 7.8756E+03 7.6176E+05 5.4645E+05	\$
3.5176E+85 7.3661E+83 7.9376E+85 4.PRD0E+08	Ĺ
T. SOULFARS T LEARFAR A DETLEARE T LEROFAR	₽ ₿
	7 4
	} •
3,/302E+C3 /,0122E+C3 8,24/6E+C3 2,4606E+C3	į.
3.8117E+05 7.8217E+03 8.4176E+05 2.6655E+05	İ.
3,8852E+05 7,7784E+03 8,5376E+05 2,3952E+05	į –
3.9567E+05 7.6981E=03 8.6576E+05 2.1219E=05	<b>1</b> -
4.0323E+05 7.5706E+03 8.7776E+05 1.8827E+05	1
4.1058E+05 7.4260E+03 8.8976E+05 1.7110E+05	
A TASEARS T ARRENT C STAFFARE I ELDEFAR	<i>i</i>
V DEDERVE A ATAVETAR NILATETUR I VAVVETUR Alfandering Jeneidering Iebergendi	
	1
* *************************************	i
4,3264E+05 7,2426E-03 9,2576E+05 1,5160E-05	i i
4,3264E+05 7,2426E=03 9,2576E+05 1,5160E=05 4,3999E+05 7,0841E=03 9,3776E+05 1,4657E=05	
4,3264E+05 7,2426E=03 9,2576E+05 1,5160E=05 4,3999E+05 7,0841E=03 9,3776E+05 1,4657E=05 4,4735E+05 6,9055E=03 9,4976E+05 1,4191E=05	
4,3264E+05 7,2426E=03 9,2576E+05 1,5160E=05 4,3999E+05 7,0841E=03 9,3776E+05 1,4657E=05 4,4735E+05 6,9055E=03 9,4976E+05 1,4191E=05 4,5470E+05 6,7003E=03 9,6176E+05 1,3609E=05	

PLTCVT PROGRAM DATA SUMMARY PIR 5(TOTAL FUEL ASSEMBLIES) BASE CASES CHAIN 4 CONTAMINANT # AM-243 ..... TONS OF HEAVY HETAL FACTOR = 0,5000000 DATA BLOCKING FACTORSI ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE # 3 TIME LOW = 4,0000082+04 TIME HIGH 6.200223E+04 NUMBER OF CELLS 200 DELTA TIME INCREMENT P 1,0000002+02

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 5,79288+04 MIN, TIME # 4.3119E+04 TOTAL WEIGHT = 3.07622+03 TOTAL PARCELS . 3174,0 PEAK WEIGHT = 56,982 PEAK WEIGHT TIME 4.4750E+04 38,000 PEAK PARCELS . PEAK PARCELS TINE . 4,4750E+04 WT, LOW = 0,0000E=01 NO. PARCELS LOW . 0,0 NO, PARCELS HI = WT, HI = 0,0000E=01 9.9 5 SMOOTHING WINDOW (CELLS) =

TOTAL INVENTORY (CURIES) = 3,076162E+03 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 2,985438E+03 PERCENT OF TOTAL INVENTORY = 97,051

TIME OF MAXIMUM CONCENTRATION (YEARS) = 4,515000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 1,495393E=06 MAXIMUM RATE (CURIES/YEAR) = 3,880158E=01 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = AH=243

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
4,3150E+04	7,9740E=02	5,05502+04	1,96572=01
4,3298E+04	9,2296E=02	5,0698E+04	1,9406E-01
4,3446E+04	1,2494E=01	3,0846E+04	1,9150E=01
4,33942+04	1,5453E=01	5,0994E+04	1,8896E=01
4.3742E+04	2,0777E=01	5,1142E+04	1,8645E=01
A,3890E+04	2,4328E+01	5,1290E+04	1,8401E#01
4,40382+94	2,7642E=01	5,1438E+04	1,8167E=01
4,41862+04	3,95942=01	5,15862+84	1,7945E=01
4,4334E+04	3,3104E=01	5,1734E+04	1,77378+01
4 <b>.</b> 4482E+94	3,51322-01	5 <b>.</b> 1882E+04	1,7542E=01
4,4630E+04	3,6714E=01	5,20302+04	1,7356E=01
4.4778E+04	3.78225+01	<b>5.21782+04</b>	1.7179E=01

4.49265484	S.RAGAEm01	5.2326E404"	1.700AE=01
4.50745+04	3.6781F=01	5.24745+04	1.6840E-DI
4.52225+04	1.8719F=01	5 26225404	1.66738=01
4.5370F404	J.ALALF-01	5.37705404	1.6506F=01
4.5518F+04	3. 7825F=01	5,29185+04	1.63395-01
4.5666F+04	3.71215-01	E. 3866F484	1.41616-01
4.58146404	3.6817F=81	5.32145484	I SORTFORI
A. 89695404	3.5470F=01	K. TTADFADA	( \$7005-8(
A.4110E404	3.4600F-01		1.54105-01
4.6258540A	1 1740F-04	5. 3658F+04	
4 . 6406F+04	1.2014F=01	5,3030L+04 5,3804F404	1.5208F-01
A_6554F+04	1.2115F-R1	5. <b>3054F</b> +04	(
4.6 <b>1</b> 0 <b>256</b> 04	3.(366Fa01	5 41 0 7 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5	1.47835-81
4.6850F+04	3.0618F-01	S APROFADA	1 AAOOF-01
A LOORFLAA	2 08015-01	5.45085404	( 42(AF-0)
A 7144540A	9 01846-01		4 20425-04
A_7204F404	2 ASUAF-01	. 2843405404 . 8.26682406	t 38966-01
	2 78705-01	5 4845846A	( 20(12°0(
4 1 4 4 5 5 4 0 4 A 7 8 9 8 5 4 6 A	2 72175-01	2840455404 E 40005404	t SALDE-DI
A 99386404	5 4613Cm01	2847705404 K K1185404	1 240140401
A. TRAAFARA	2.4040Fm01	E 53868404	1 10685-01
A = 80275404	5 5555-01	E EXT/ELGA	1 18175-01
4 600345404 A 6423540A	5°50/35~01	3534345404 6-5883540A	1 10585-01
A BITCELVDA	D ARTEF-AL	3433066404 5 57105404	1 08785-01
4 80330CVU4 A 8078F40A	5 VI2CE-01	S SRTASSAGA	1 880(7-81
A BEDEFOR	2 3403E-01	3,30705404 8 40345404	1 80071L+01
A RETALLAN	2 2222C-01	2 000000404 8 41905400	9 8782548E
N 5000EAGA	5 58445-04	3:04/45404	
4 80 FEEFU4	2 2/2/E-01		A 02482-00
A 63185404	2 91775-01	3804/06404 E 4418E48A	1 3405405 7 3405405
A 01445404	5 17405-01	5 4 4 4 4 5 4 0 4 J 8 D 0 1 0 5 4 0 4	/ <u> </u> J403540 <u>5</u>
4 8 7 3 0 0 E 7 0 4 A 0 5 ( A E 4 B A	2 1/00C=01	3 6 7 6 6 5 4 9 4	0,10705-02
4 5 43142404	2 11441E#01	2 20414E404	0,0400C=0C
4 8 90055 904	5 08775-04	Delborto4	24236486
A DORREADA	2 0627F=01	34/6106404 6 4366840A	T GOALE-DO
R_0106E+04	2 01205-01	5 48865404	3 14885-00
5.025AF40A	2.01015-01	8 74545404	3 11315-05
5.04005404		SATUDACTON S TRASPAGA	5441616406
ABUMULLYUM .	**************************************	STICHERADA'S	- 141041C-02
		• · · · · · · · · · · · · · · · · · · ·	

·

÷

•

۰.

•

PLTCVT PROGRAM DATA SUMMARY PIR 5(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 4 CONTAMINANT = PU+239 TONS OF HEAVY METAL FACTOR = 0.5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW), DT, NCELLS) (2 = T(LOW), T(HI), NCELLS) MODE = 2 TIME LOW = 1.000000E+04 TIME HIGH= 2.000000E+04 TIME HIGH= 2.000000E+05 NUMBER OF CELLS = 10 DELTA TIME INCREMENT = 1.900000E+04

RAW DATA AND BLOCKED DATA FACTORS: MAX, TIME = 1,73878+05 MIN. TIME # 4.8134E+04 TOTAL WEIGHT = 9,2658E+88 TOTAL PARCELS # 20,0 PEAK WEIGHT # 4.418 PEAK WEIGHT TIME . 5,75002+04 8,000 PEAK PARCELS # PEAK PARCELS TIME # 7.65908+04 WT, LOW = 0,0000E=01 NO, PARCELS LOW = 0,0  $WT_{0} HI = 0.0000E=01$ NO, PARCELS HI = 9,9 Ø SMOOTHING WINDOW (CELLS) #

TOTAL INVENTORY (CURIES) = 9.265795E+00 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 8.188638E+00 PERCENT OF TOTAL INVENTORY = 88.375

TIME OF MAXIMUM CONCENTRATION (YEARS) = 5,750000E+04 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 6,775651E=10 MAXIMUM RATE (CURIES/YEAR) = 1,758106E=04 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = PU=239

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
5,75002+04	1.7581E=04	1.1450E+05	3.4857E+09
5.3640E+04	1.7581E=04	1.15642+05	2.00655.06
5,9780E+04	1.75815-04	1.1578E+05	4.0096E.06
6,8928E+84	1,75818=04	1.17922+05	6.0126E=06
6.20602+04	1.75818=04	1.1906E+05	8.8157E+06
6.32002+04	1.75812-04	1.20202+05	1.00195+05
6.4348E+84	1.7581E#04	1.2134E+05	1.20228-05
6.5488E+04	1.7581E=04	1.22482+05	1.40252-05
6.5620E+04	1.75812=04	1.23622+05	1.6028E+09
6.7768E+04	1.75818+04	1.24762+05	1.80315.05
6.89082+04	1.75812-04	1.25905+05	2.00342-05
7.8848E+04	1.75812=04	1.27048+05	2.20375-05

7.1180E+84	1.7581E=04 T	1.2818E+05	2.4840E=85
T. 23PAF+AL	1.7581F=04	1.20125485	5 6048F-85
T RALDEAGA		4 20348468	
	1813015004	1.30405403	C.0040C.003
1,4000E+04	1.79812004	1.31002405	3 ₆ 0049E=05
7 <b>.</b> 5740E+04	1 <b>.</b> 7581E=04	1 <b>.</b> 3274E+05	<b>1,2052E=05</b>
7,6880E+04	1 <b>.</b> 7307E+04	1.33885+05	3.2790E-05
7.8020E+04	1.64868-04	1.35022+85	3.09975-05
7.91682+04	1.56655-04	1.36167485	2.92045-95
8.0300E+04	1.4844E=84	1. 37305405	2.7441F-0E
R. LAAREARA	6 40035-04		5 84408_AN
0 98007404	1 80000-04	1.30445403	C.3010C#03
	1.52022404	1.34305403	5.205255485
8.3720E+04	1,2361E+84	1 <b>.</b> 4072E+03	2,2032E=05
8 ₂ 4860E+04	1.1560E=04	1_4186E+05	2.02392-05
8_6000E+04	1.0739E-04	1.4300E+05	1.84468=05
8.7140E+04	9.9175E+85	1.4414E+05	1.66532.005
6.8280E+04	9.0964En05	1.45286+05	1.4889F-05
8.94205+04	A. 2753F-05	1.46425485	( <b>ROLLE-OF</b>
9.0560F+04	TAKAPE-DE	I ATELEADE	1 19985-05
D LTDAEAGA	1 499456453 6 499456908		1,12/32-09
	6,6331E#03	1.40105-03	4.4803E=06
A SCHOFAR4	3,81205405	1.44846+85	7.6673E=06
4.3480E+04	4,99092-05	1.5098E+0 <u>5</u>	5 <b>.</b> 8942E#86
9,5120E+04	4 <b>.</b> 1698E=Ø5	1.5212E+05	4.1012E-06
9.6260E+04	3.7403E-05	1.5326E+05	3.5035E+06
9.7400E+04	3.5066E+05	1.5440E+85	3.5835E=06
9-8540F+64	3.2728E-85	1.555AF+DE	I BOILE-OL
9.96805408	T 010(F_0E	6 84485408	3 80985-04
6 00825404	5 AGESE_00	1,30000403	3,30332406
		1.21025-02	3.20325400
1.01702403	2.5710E#05	1.30966405	3,5035E=06
1.03102405	2,3378L=05	1,6010E+05	3,5035E+06
1.0424E+05	2.1041E+05	1.6124E+05	3,50350-06
1 <b>.</b> 0538E+05	1,8703E+05	1,6238E+05	3,5035E=06
1.0652E+05	1.6366E#05	1.63522+05	5.5035E-06
1.0766E+05	1.4028E-05	1.64665495	3.5035F#06
1.08806+05	1.16916-05	I ASAGEADE	
1.09945+05	9. 1514F-04	1 . 660/FARE	2 SCTEE_AL
1.11086406	7 01505-04	6 68866488	3 <b>8</b> 0785-6/
1 19995406 ⁴	1 EULUTETUD A 470885-04	1.00005403	3,30336=00
1 15555703		1.04656403	3,50356=06
1.13302405	2.3410E#06	1.70362+05	3°5035E=06

•

**1** 

.

.

•

PLTCVT PROGRAM DATA SUMMARY PIR5(TOTAL FUEL ASSEMBLIES) BASE CASE: CHAIN 4 CONTAMINANT = U=235 TONS OF HEAVY METAL FACTOR = 0,5000000 DATA BLOCKING FACTORS: ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 2,500000E+05 TIME HIGH= 6,000000E+05 NUMBER OF CELLS = 400 DELTA TIME INCREMENT = 8,750000E+02

RAW DATA AND BLOCKED DATA FACTORSI MAX, TIME = 8,5372E+05 HIN, TIME # 4,7994E+04 TOTAL WEIGHT # 4,1419E+02 TOTAL PARCELS # 20888.0 PEAK WEIGHT TIME . 3,42312+05 PEAK WEIGHT = 11,131 3,27448+05 PEAK PARCELS = 272,000 PEAK PARCELS TIME # WT, LOW = 3,5468E=01 NO, PARCELS LOW # 4575.0 NO, PARCELS HI = WT, HI = 1,5525E=01 1370.0 SMOOTHING WINDOW (CELLS) = 20

TOTAL INVENTORY (CURIES) = 4,147037E+02 Inventory under the current graph (curies) = 4,191252E+02 Percent of total inventory = 101,066

TIME OF MAXIMUM CONCENTRATION (YEARS) = 3,466875E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2,156511E=08 MAXIMUM RATE (CURIES/YEAR) = 3,595589E=03 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = U=235

i

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TTHE (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
2.50448+05	5,8135E=06	4,00382+05	2,9431E=03
2.5345E+05	6.0531E=06	4,0302E+05	2,7901E=03
2.5647E+05	6.3792E-06	4,0596E+05	2,6495E=03
2.59492+05	6.8414E=06	4,9890E+05	2,5987E=03
2.42512+05	7.35338=96	4,1184E+05	2,36358+03
2.65528+85	7.78952-06	4,14782+05	2,1955E=03
2.68548+85	8.9070E-06	4,1772E+05	1,9944E=03
2.71562+05	8.94422-06	4,20662+05	1,79242+03
2.74578+05	7.9959E=86	4,2361E+05	1,5811E=03
2.77596+05	8.90175-06	4,2655E+05	1,38275=03
2.80612+05	8.27328+96	4,2949E+05	1,20962=03
2.83622+05	8,55185-85	4,3243E+05	1,0326E=03

			· · · · · · · · · · · · · · · · · · ·
2.6664E+85	9.5707E+06	4.3537E+05	9.2171E-84
2.8966F+05	1-066655-05	4.38315405	8.0015E+04
P.9268E405	1.2178E=05	4.41255405	6.8100F=04
9.05605405	1.47405-05	A_4419E+05	5 2860F-80
D DRYLEADE	1 01705-05	A ATERADE	A #9805_6A
2 81775405	3 0330E-0E	4 247330-03 8 20082480	4 8 3 C 0 4 C 4 C 4
3,01/32403	£ 75305403	4 20005403	3,77136-04
3404/45403		4,34016403	3,30415-04
3401102403	1.73045404		3 6 6 6 6 6 6 6 6 6
3.10/05-03		4.03072403	2.40032.404
3.13002405	5.98762-04	4.68201-85	1.9478E-04
3,16816+05	8,7803L-04	4.7274E+05	1.9230E+04
3.1983E+05	1,2505E=03	4.7727E+05	1.76902-04
3,2285E+05	1,7398E=03	4 <b>.</b> 6180E+05	1,5334E+04 ·
3.25862+05	2.3441E=03	4.86332+05	1.2131E-04
3,2888E+05	3.0327E=03	4 <b>.</b> 9087E+05	7.5272E-05
3.3190E+05	3,5683E+03	4.95406+05	4,7258E=05 °
3,3491E+05	4 <b>.</b> 1606E•03	4.99932+05	4,6381E-05
3,3793E+05	4,49596-03	5.0446E405	5.7153E+05 '
3.4095E+05	5.0159E=03	5.08992+05	7.7207E-05
3.4397E+05	5.2897E+03	5.1353E+05	7.8419E+05
3.4698E+05	5.5933E+03	5.1806E+05	6.7428E+05
3.5000E+05	5.3584E=03	5.2259E+05	5.2304E+05
3.5302E+05	5.1733E+03	5.2712E+05	2.9967E+05
3.5596E+05	5.0247E+03	5.31666+05	1.64522.05
3.58982+85	4.8438E+03	5.3619E+05	1.0055E+05
3.6184E+05	4.6839E-03	5.4072E+05	7.1314E-06
3.6478E+85	4.5369E+03	5.4525E+05	9.6078E+86
3.677PE+05	4.3939E+83	5.4978E+05	1.3300E=05
3.78666+05	4.2166E=03	5.54328405	1.55468-05
3.73605+05	4_0917F=81	S SAARFAOS	5703F-08
1.7655F405	T GAGOF-AT	E LIIRFLOG	1 1728F_0K
1 70405405	1 9010F-01	5 670(5405	1 114DE-0E
1.82415405	3 6010L=03	5 794AF+05	0 %706Fm84
7 6577FLAE	T ECARC-AT	8 96885408 8 96885408	T TOLVOO T TOLVOO
3800016400 1 88116400	3 <u>1</u> 33005403 T //b/6-07	2110705702 8 01818482	7 1027600 7 1065600
3800316403 1 01966406	3844046403 7 7/076-07	フォロムフスにキャンプ ビームトロルビーの単	A RETERACE
3 4 7 1 C 3 C 4 C 3	1 91972-01 9 ⁶ 94092489	3 00045403 6 08676105	0103115880 4 44685-04
3 74175403 7 87195405 - 14	3,C3C05403	34793/6783 • E 654/82/65 •	0101002400
3141195463	3°ROALEAD?	- 27 AD 115 AND	DEGIGALADO"
	· · · ·		

PLTCVT PROGRAM DATA SUMMARY PIR 5(TOTAL FUEL ASSEMBLIES) BASE CASE; CHAIN 4 CONTAMINANT = PA=231 TONS OF HEAVY NETAL FACTOR = 0,5000000 DATA BLOCKING FACTORS; ENTRY MODE (1 = T(LOW),DT,NCELLS) (2 = T(LOW),T(HI),NCELLS) MODE = 2 TIME LOW = 2,5000000E+05 TIME HIGH= 5,000000E+05 NUMBER OF CELLS = 50 DELTA TIME INCREMENT = 5,00000E+03

RAW DATA AND BLOCKED DATA FACTORS: MAX, TIME = 1,7273E+06 A.6288E+04 NIN. TIME # TOTAL WEIGHT = 5,9369E+00 TOTAL PARCELS # 1738.0 PEAK WEIGHT # PEAK WEIGHT TIME # 3.4750E+05 0.718 PEAK PARCELS = PEAK PARCELS TIME # 4,8750E+05 55,000 WT. LOW = 6.3969E=03 NO, PARCELS LOW . 724,0 WT. HI = 2.6895E+00 NO, PARCELS HI 1670,0 SMOOTHING WINDOW (CELLS) # ŽØ.

TOTAL INVENTORY (CURIES) = 8,632784E+00 INVENTORY UNDER THE CURRENT GRAPH (CURIES) = 6,093069E+00 PERCENT OF TOTAL INVENTORY = 70,381

TIME OF MAXIMUM CONCENTRATION (Y2ARS) = 3,525000E+05 MAXIMUM CONCENTRATION (MICROCURIES/ML) = 2,905933E=10 MAXIMUM RATE (CURIES/YEAR) = 7,539106E=05 CONVERSION FACTOR RATE TO CONCENTRATION = 3,853949E=06

CONTAMINANT = PA-231

TIME (YEARS) AND RATE (CURIES/YEAR) FOR THE 100 POINTS

TIME (YR)	RATE (CU/YR)	TIME (YR)	RATE (CU/YR)
2,52500+05	1,9697E=37	4,0001E+05	4,28762+05
2 <b>,</b> 5545E+05	1,9697E#07	4,0295E+05	4,11322=05
2 <b>.</b> 5841E+05	1,9435E=07	4.05902+05	3,95898+85
2,6136E+05	1,8585E=07	4,08842+05	3,81432+05
2.6432E+03	1,86892-07	4,1178E+05	3,70862=05
2,67278+05	1,9390E=07	4 <b>.</b> 1472E+05	3,58722-05
2 <b>.</b> 7023E+05	2,0187E-07	4,1766E+05	3,4678E=05
2,7318E+05	2.0671E=07	4 <b>.</b> 2060£+05	3,47138+05
2,7614E+05	2,0082E=07	4,2354E+Ø5	3,3780E=05
2,7909E+05	2,0144E=07	4,26482+05	3,10868=05
2 <b>,</b> 8295E+95	2,0764E=07	4,29432+05	2,9006E+05

2.8500E+05	2.3908E+07	4.3237E+05	2.7251E+85
2.8795E+05	2.6812E=07	4.3531E+05	2.3809E-05
2.9091E+05	2.5872E-07	4.3825E+05	2.0574E-05
2.9386E+05	2.7739E-07	4.41192+05	1.8180E.05
2.9682E+05	3.2883E-07	4.4413E+05	1.6319E-05
2.99772+05	3.8643E+07	4.4707E+05	1.4887E+05
3.0273E+05	4-6416E=07	4.5001E+05	1.44178-85
3.0568E+05	7.6140E-07	4.5145E+05	1.4267E.05
3.0864E+05	1.0417E-06	4.5289E+05	1.3070E#85
3.1159E+05	1.2951E+06	4.5433E+05	1.33236-85
3.1455E+05	2.4298E+06	4.55776+85	1.2667E=85
3.1750E+05	3.9565E+06	4.5721E+05	1.2011E#85
3.28455+05	6.3374E-86	4.5865E+05	1.13678=05
3.2341E+05	8.7982E=86	4.60896405	1.07265-05
3.2636E+05	1.1439E-05	4.6153E+05	1.00855-05
3.2932E+05	1.5492E-05	4.62976+85	9.5453E+86
3.3227E+05	2.04305-05	4.64412+05	9.2143EmB6
3.35236+05	3.6184E405	4.65856+85	8.8832E+86
3.3818E+05	5.0244E+05	4.6729E+85	8.5522E+86
3.4114E+05	5.5642E+05	4.68732+85	8.2163E+06
3.44096+05	6.3138E+05	4.7017E+05	7.8795E+86
3.4705E+05	7.2433E=05	4.7160E+05	7.54286-04
3.5000E+05	7.4628E+05	4.7384E+05	7.2252E=06
3.5295E+05	7.5182E+05	4.7448E+05	6.9395E+06
3.5590E+05	7.3829E-05	4.7592E+05	6.6537E+06
3.5884E+05	7.3396E+05	4.7736E+05	6.3679E.06
3.6178E+05	7.4067E+05	4.7880E+05	6.0759E+04
3.6472E+05	7.1432E-05	4.8024E+05	5.7832E=06
3,6766E+05	6.7821E=05	4.8168E+05	5.4905E=06
3,7060E+05	6.5974E=05	4.6312E+05	5.3506E=06
3,7354E+05	6,3740E=05	4.8456E+05	5.4126E+06
3,7648E+05	6.0802E=05	4.86002+05	5.4747E=86
3,7942E+05	5.7976E+85	4.8744E+85	5.5368E+06
3,8237E+05	5,52096+05	4.8888E+05	5.3620E-86
3,8531E+05	5,2938E+05	4,9832E+85	5.1766E=06
3.8825E+05	5,0708E+05	4,9176E+05	4,9911E=06
3,9119E+05	4,8531E+05	4,9320E+05	4.7340E-06
3.9413E+05	4.6526E+05	4,9463E+05	4.40005-06
3.9707E+05	4.46576-05	4.96872+05	4.0661E=86

# APPENDIX I

# NEAR-DOME HYDROLOGIC SIMULATION OUTPUTS

## APPENDIX I

## NEAR-DOME HYDROLOGIC SIMULATION OUTPUTS

## APPENDIX I-1: PROG1-OUTPUT

Hydraulic properties, model coordinates, held boundary conditions, element details, and summary regarding total number of nodes, elements, boundary nodes used for flow through dome breach. TINE= 14155125 DATE= 22-AUG-79

VALUES OF CONVERSION FACTORS SPECIFIED CONVERSION FACTOR FOR PERMEABILITY DATA 1,6000 CONVERSION FACTOR FOR XY-COORDINATES 1.0000 CONVERSION FACTOR FOR Z-COORDINATES 1,0000 CONVERSION FACTOR FOR HEAD(BOTH INITIAL AND B.C.) 1,00 XTYPE # 0 FLAG FOR CONTROLLING THE LEVEL OF PRINT OUTPUTS 3 ************************************

### PROPERTIES FOR MATERIAL 1 ########

CARRIZZO AQUIPER

K=X=	13.2399	L/T
K=Y=	13.2309	UT
X=Z=	13.2300	LIT
THETA=	0,100000	
HEDIUM COMPRESSIBILITY	1,00000	176
FLUID COMPRESSIBILTY	1,00000	116
REFERENCE PRESSURE HEAD OF THETA	1,99	Ĺ
SPECIFIC STORAGE COEFF=	0,1000008-03	116

PROPERTIES FOR MATERIAL 2

.....

>

WILCOX AQUIFER

KeXe	2,48000	L/T
K=Y#	2.48000	LIT
K+Z=	2.46000	Ĩ/T
THETAN	0.100000	
MEDIUM COMPRESSIBILITY	1.00000	17L
FLUID COMPRESSIBILTY	1.00000	1/L
REFERENCE PRESSURE HEAD OF THETA	1.00	Ľ.
SPECIFIC STORAGE COEFF	0.100000E=03	Ĩ/L

PROPERTIES FOR MATERIAL 3 ########

WILCOX AQUIFER

K=X=	2.48000	L/T
KeYa	2 48000	Ĩ/T
K=Z=	2,48000	L/T
THETAS	0.100000	
MEDIUM COMPRESSIBILITY	1.00000	176
FLUID COMPRESSIBILTY	1.00000	1/1
REFERENCE PRESSURE HEAD OF THETA	1.00	Ĺ
SPECIFIC STORAGE COEFF	0.10000E=03	1/L

## PROPERTIES FOR MATERIAL 4 #######

# WILCOX AQUIFER

KeXe (	2.48000	L/T
K = Y = C	2.48000	L/T
K=Z=S	2,48000	L/T
THETAR	0.100000	
MEDIUM COMPRESSIBILITY	1,00000	116
FLUID COMPRESSIBILTY -		176
REFERENCE PRESSURE NEAD OF THETA	1.00	L
SPECIFIC STORAGE COEFF=	0.100000E=03	1/L

# PROPERTIES FOR MATERIAL 5 ########

### WILCOX AQUIFER

XeXa	2,48000	レノて
K-X=	2,48000	L/T
K-Z=	2.48000	L/T
THETAS	0,100000	
MEDIUM COMPRESSIBILITY	1,20000	1/6
FLUID COMPRESSIBILTY	1.00000	176
REFERENCE PRESSURE HEAD OF THETA	1.30	Ľ.
SPECIFIC STORAGE COEFF4	0,10000E=03	1/L

#### PROPERTIES FOR MATERIAL 6 *******

WILCOX AQUIFER

X=X=	2,48090	LIT
X=Y=	2,48090	617
K=2=	2,48090	L/T
THETAD	0,100000	-
MEDIUN COMPRESSIBILITY	1,00000	116
FLUID COMPRESSIBILTY	1,00000	116
REPERENCE PRESSURE HEAD OF THETA	1,29	6
SPECIFIC STORAGE COEFF4	0,100000E=03	116

PROPERTIES FOR MATERIAL 7 ******

1.3

WILCOX AQUIFER

X-X=	2,48000	117
X=Y=	2,48000	LIT
X=Z=	2,48909	117
THETAS	0,100000	
MEDIUM COMPRESSIBILITY	1,00000	116
FLUID COMPRESSIBILTY	1,00000	116
REPERENCE PRESSURE HEAD OF THETA	1,90	L
SPECIFIC STORAGE CDEFF=	0,1000088-03	116

## PROPERTIES FOR MATERIAL 8 #######

HOLE MATERIAL

Kexe	10000.0	L/T
K=Ye	10008.0	L/T
K+Z=	10000.0	L/T
THETAR	0.100000	
MEDIUM COMPRESSIBILITY	1,00000	111
FLUID COMPRESSIBILTY	1,00000	1/L
REFERENCE PRESSURE NEAD OF THETA	1.00	L
SPECIFIC STORAGE COEFF.	0.100000E=03	1/6

COORDINATES AND OTHER DETAILS OF EACH NODE

INTERNAL NODE#	USER Node#	X=COORD.	Y=COORD.	Z=COORD.	INITIAL Head	TEMP C DEG
1 2	1 1001	0 e 0 0 e 0	0 . 0 0 . 0	0.0 = 100.0	100.0 100.0	
3	2001	0,0	0,0 =	2100.0	100.0	
4	2	5808.0	8.0	0.0	95,0	
5 6	1002 2002	5000.0 5000.0	0,0 •	•100.0 2100.0	95.0 95.0	
7	<b>T</b>		A . A.	R a	98.8	
8 9	1003 2003	10000.0	0,0 7,0 •	-100.0 2100.0	98.0 98.0	
•.						
10	4	15000.0	0.0	0.0	65.0	
11	1004	15000.0	0,0	-100.0	85,0	
12	2004	15000.0	0,0 •	2100.0	65,Ø	

20°8 20°8 20°8	0*0012• 0*00*0 0*0	0 * 0 7 * 0	0°00001 0°00001 0°00001	5102 5101 51	38 38 21
22°0 22°0 32°0	8°8 •180°8 8°8180°8	0°0 0°0 0°3	0°00059 0°00059 0°00059	4102 4101 41	9 <b>e</b> 5e 7e
8 * 87 8 * 87 8 * 87	8*8012* 8*88*8 8*8	8°8 6°8 8°8	0°00009 0°00009 0°00009	e102 E101 E1	32 35 31
0 * 5 † 0 * 5 † 0 * 5 †	0°0012= 0°0010 0°0	0°0 0°0 0°0	0°00055 0°00055 0°00055	5102 1015 15	20 59 59
20°0 20°0 20°0	0*0012= 0*00 0*0	0°0 0°0	0 * 00005 0 * 00005 0 * 00005	1102 1101 11	<b>5</b> 2 52 52
0°25 0°25 0°25	0°0012= 0°001= 0°0	0°0 0°0	8 * 80057 8 * 00057 8 * 00057	0102 0101 01	58 53 55
0 * 09 0 * 09 0 * 09	0°0012= 0°001= 0°0012=	0°0 0°0	0°00007 0°00007 0°00007	6002 6001 6	51 50 16
0°59 0°59 0°59	0°0°12• 0°001• 0°0	8 * 6 8 * 6	0°00055 0°0055 12005	8 8005 8005	81 25 91
0°51 0°51 0°51	0°006° 0°001= 0°0	6 * 6 6 * 6 6 * 6	52000°0 52000°0 52000°0	9002 9001 9	51 71 51

÷.

9.I

40	16	75000.0	0 , 0	8.8	25,6
41	1016	75000.0	0 , 0	•108.8	25,0
42	2016	75000.0	0 , 0	•2108.6	25,0
43	17	80000 • 0	0.0	0,0	20,0
44	1017	80000 • 0	0.0	=100,0	20,0
45	2017	80000 • 0	0.0	=2100,0	20,6
46	18	8 . 8	5000 • 0	0 0	100.0
47	1018	8 . 9	5000 • 0	• 102 • 0	100.0
48	2018	8 . 9	5000 • 0	• 2102 • 0	100.0
49	19	5000,0	5000.0	0,0	95.0
50	1019	5000,0	5000.0	0,0015=	95.0
51	2019	5000,0	5000.0	0,0015=	95.0
52	86	10008.0	5008.0	0.0	98 . 8
53	8691	10008.0	5000.0	0.0012	98 . 8
54	8585	10008.0	5000.0	0.0012	98 . 8
55	21	15000.0	5000.0	0 • 0	85,0
56	1021	15000.0	5000.0	9 • 00 1 •	85,0
57	2021	15000.0	5000.0	9 • 00 1 5 •	85,0
58	25	35000.0	5000.0	8°8	65;0
59	1025	35000.0	5000.0	0°60	65;0
60	2025	35000.0	5000.0	5°8312=	65;0
61	26	40000 • 0	5000,0	0.0	60.0
62	1926	40000 • 0	5000,0	=100.0	60.0
63	2926	40000 • 0	5000,0	=2100.0	60.0
64	27	45000.0	5000,0	0 0	55.0
65	1027	45000.0	5000,0	0 001=	55.0
66	2027	45000.0	5000,0	0 0015=	55.0

 $\left( \right)$ 

1.7

0*56	0°0012-	6 * 6666 1	0°0005	5039	83
8*56	0°0010	6 * 6666 1	0°0005	7039	85
8*56	0°0	6 * 6666 1	0°0005	39	81
0°001 0°001 0°001	0°031° 0°03° 0°03°	0°00001 0°00001 0°00001	0°0 0°0	5695 1933 38	88 98 89
50°0 50°0 50°0	0°00°2 0°00°0	0°0005 0°005 0°005	8 • 66666 8 • 66666 8 • 66666 8 • 66666	5034 1034 24	28 76 78
0 * 52	0*0012=	0°0005	0°00054	5033	87
0 * 52	0*001=	0°0005	0°00054	1033	87
5 2 * 0	0*0	0°0005	0°00054	23	85
20°9	0°0012-	0°0005	0°00001	5035	18
20°9	100°0	0°0005	0°00001	1035	88
20°9	0°0	0°0005	0°00001	35	61
22°0	0°0	0 ° 000 S	0°00059	5031	91
22°0	0°01=	2080 ° 0	0°00059	1031	81
22°0	0°0	2000 ° 0	0°00059	31	81
0 * 0 t 0 * 0 t 0 * 0 t	0°03° 0°03° 0°0	09005 00005 00005 00005	0 * 0000 * 0 * 0000 * 0 * 0000 * 0 * 0000 *	503 <b>0</b> 1030 20	51 51 51
8*57	-5188°8	2003°0	0°00055	5853	51
8*57	-188°8	2003°0	0°00055	6201	51
8*57	9°9	2000°0	0°00055	53	61
20°0	0°0012=	0 ° 0005	0°00005	5059	69
20°0	0°001=	0 ° 0005	200005	1959	89
20°0	0°0	0 ° 0005	200005	50	19

	· · · ·	۰ <b>۰۰</b>		• <b>*</b>	
94 05	37	10000.0	10000.0	9,9	90,0
96	2037		10000.0	-2100°0 9°0612=	98 <u>6</u> 98 <u>6</u>
97	38	15000 e D	10000.0	0.0	85.0
98	1038	15000 e D	10000.0	-100,0	85.0
99	2038	15000 e D	10000.0	-100,0	85.0
100	39	20008,0	10000.0	0.0	80 . 0
101	1839	20008,0	10000.0	•100.0	80 . 0
102	2839	20008,0	10000.0	•2108.0	86 . 0
103	40	25000,0	10000.0	8.0	75.0
104	1040	25000,0	10000.0	•108.0	75.0
105	2040	25000,0	10000.0	•2108.0	75.0
106 107 108	41 1041 2041	30008.0 30008.0	10000.0 10000.0 10000.0	0.0 190.0 2100.0	70.0 70.0 70.0
109	4 <b>2</b>	35000.0	10000.0	0.0	65,0
110	1042	35000.0	10000.0	-100.0	65,0
111	2042	<b>35</b> 000.0	10000.0	-2100.0	65,0
112	43	40000 <b>.</b> 0	10000 .0	0,0	60 e 0
113	1043	40000 <b>.</b> 0	10000 .0	•100,0	60 e 0
114	2043	40000 <b>.0</b>	10000 .0	•2100,0	60 e 0
115	44	45000.0	19000 - 0	0.00,0	55.0
116	1044	45000.0	19000 - 9	=100,0	55.0
117	2044	45000.0	19000 - 9	=2100,0	55.0
118	45	50000,0	10000,0	0 0	50.0
119	1045	50000,0	10000,0	= 100 , 0	50.0
120	2045	50000,0	10000,0	= 2100 , 0	50.0

1

Ć

0°06 0°06 0°06	8°8312= 8°851= 8°6	0*00051 0*00051 0*00051	6,69961 6,69661 6,69661	4202 7201 72	201 901 501
0°56 0°56 0°56	0*0012= 0*001= 0*0	0*00051 0*00051 0*00051	0 * 0005 2000 * 0 2000 * 0	502 507 25 25	801 E71 201
0 * 001 0 * 001 0 * 001	-5100°0 -100°0 0°0	0°00051 0°00651 0°0051	8°0 8°0 8°0	2202 222 22	141 041 129
9°92 9°92 9°92	0°0012- 0°001- 0°0	0°00001 0°00001 0°00001	ତ କ୍ଷତ୍ତ୍ତ୍ତ ତ କ୍ଷତ୍ତ୍ତ୍ତ ତ କ୍ଷତ୍ତ୍ତ୍ତ ତ କ୍ଷତ୍ତ୍ତ୍ତ	1502 1501 15	138 124 129
52°0 52°0 52°9	0°0012 0°001 0°0	0 * 00 00 1 0 * 00 00 1 0 * 00 00 1	0*00051 0*00051 0*00051	0202 0201 02	132 124 123
20°0 20°0 20°0	0°0012= 0°001= 0°0	0 * 0 0 0 0 1 0 * 0 0 0 0 1 0 * 0 0 0 0 1	0°00001 0°00001 0°00001	6782 6781 67	135 131 138
2°52 22°0 22°0	0°0012= 0°001= 0°0	0 * 00 0 0 1 0 * 00 0 0 1 0 * 00 0 0 1 0 * 00 0 0 1	0°00059 0°00059 0°00059	8482 8488 848 84	621 821 154
0 * 0 t 0 * 0 t 0 * 0 t	0°0012= 0°001= 0°0	0*00001 0*00001 0*00001	6 * 8888 9 8 * 8888 9 8 * 8888 9 8 * 8888 9 8 * 8888 9 8 * 8888 9 8 * 8888 9 8 * 8888 9 8 * 8888 9 8 * 8888 9 8 * 8888 9 8 * 8888 9 8 * 8888 9 8 * 8888 9 8 * 8888 9	1485 1481 14	159 159 154
0°57 0°57	0°0012= 0°001= 0°0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	0°00055 0°00055 0°00055	9782 9781 97	151 155 151

148	55	15000.0	15000,0	0,0	65.0
149	1055	15000.0	15000,0	108,0	85.0
150	2055	15000.0	15000,0	2108,6	85.0
151 152 153	56 1056 2056	20000,0 20000,0 20000,0	15000.0 15000.0 15000.0	0.0 -100.0 -2100.0	88 <u>8</u> 80 8 80 8 80 8
154 155 156	57 1057 2057	25000;0 25000;0 25000;0	15000 e 0 15000 e 0 15000 e 0	0,0 9,00 9,0025= 9,0025=	75.0 75.0 75.0
157	58	20000.0	15000 e 0	0.0	70.0
158	1058	20000.0	15000 e 0	=100.0	70.0
159	2058	20000.0	15000 e 0	=2100.0	70.0
160	59	35000.0	15000.0	0,0	65.0
161	1059	35000.0	15000.0	+100,0	65.0
162	2059	35000.0	15000.0	=2100,0	65.0
163 164 165	60 1060 2060	40900,0 40008.0 40008.0	15000.0 15000.0 15000.0	0,0 9,001= 9,0015= 0,0015=	60.0 60.0 60.0
166	61	45000,0	15000.0	0.0	55,0
167	1061	45000,0	15000.0	0.0015-	55,0
168	2061	45000,0	15000.0	0.0015-	55,0
169	62	50000,0	15000,0	0 • 0	50.0
170	1062	50000,0	15000,0	• 100 • 6	50.0
171	2068	50000,0	15000,0	• 2100 • 0	50.0
172	63	55000,0	15000.0	0,0	45.0
173	1063	55000,0	15000.0	0,001-	45.0
174	2063	55000,0	15000.0	0,001-	45.0

0 * 5 9	0*0012=	50000°0	0 * 0005 I	5785	501
0 * 5 9	0*001=	50000°0	0 * 0005 I	5761	500
0 * 5 9	0*0012=	50800°0	0 * 0005 I	57	166
0 ⁴ 06	0°00120	53699°9	8 * 0000 i	1705	861
0 ⁴ 06	•100°0	50899°9	8 * 0000 i	1701	161
0 ⁴ 06	0°0	53899°9	8 * 0000 i	17	961
0°56	0 * 00 1 2 =	50809°8	0°0005	8785	561
0°56	0 * 00 1 =	50809°8	0°0005	8781	761
0°56	0 * 0	50809°8	0°0005	87	561
0 * 00 1 0 * 00 1 0 * 00 1 0 * 00 1	-5130°8 9°80°8 9°8	84000 84000 84000 84000 84000	0 * 0 0 * 0	6982 6981 69	165 161 160
50°0	6°0012=	0*00051	6 • 00008	8982	781
50°0	8°801=	0*00051	9 • 00008	8981	861
50°0	8°8	0*00051	6 • 00008	89	981
52°8 52°8 52°8	8*8812= 8*881= 8*8	0°00051 0°00051 0°00051	6 86027 8 86027 8 80827 8 80827	1902 1901 19	981 281 481
28°8	8*8012-	0°00051	0°00001	9902	281
29°8	8*801-	0°00051	0°00001	9981	181
29°8	8*8	0°05051	0°0001	99	181
8'65 8'55 8'55 8'55	6,001= 6,6015= 6,6015=	0 * 60051 0 * 64651 0 * 84651	0°00859 8°00859 2°00059	6982 6981 69	871 871 881
5 • 84 8 • 84 6 • 84	0°0012- 0°0012-	2*20155 2*20151 8*20151	5°66009 5°66009 5°66069	t902 7901 t9	113 911 513

,

 $\left( \begin{array}{c} \end{array} \right)$ 

· .

		•	<b>•</b>		
202	. 73	20000.0	20000.0	6.6	68.6
203	1073	20000.0	20000.0	-100.0	80.0
284	2071	20000.0	200000 0	2106 C	AC.O
	2013	Contrat.	2000050	ACTAR ⁶ C	onto
385	7.4	95000 D	20000 0	A A	
203	14	2200010		-100 0	1540
200	1014	23000,0	20000.0		7360
201	2014	53000 ⁶ 0	CORDE CO	atime a	12.0
206	75	30000.0	20000.0	6.8	78.8
209	1075	30000.0	P0000.0	-198.8	78.0
210	2875	30008.0	20000 0	-2100.0	76.0
211	76	35000.0	20000-0	8-8	65.0
212	1876	35000.0	20002-0	-100.0	65.0
213	2076	35000.0	20000.0	-P186.6	65.0
214	77	40000.0	20000.0	8.6	60.0
215	1077	40000.0	20002.0	-100.0	68.0
216	2077	40000.0	20000.0	-2100,0	60.0
			•		
				•	
217	78	45860.0	20000.0	0.0	55,0
815	1078	45000.0	20000.0	-100,0	55,8
219	2076	45000.0	20008.0	-2188,8	55,0
			-	-	
935	79	50000,0	20000.0	0.0	50.0
221	1079	50000.0	20000.0	•100,6	50.0
222	2079	50000.0	20000.0-	-2100.0	50.0
		-	-	-	-
223	80	55800.0	20000.0.	0,0	45.0
224	1080	55000,0	20000.0	e100_0	45.0
255	2080	55000,0	20000,0	=2108_8	45,8
					-

 $\sum_{i=1}^{n}$ 

.

I.13

6 * 58 6 * 58 6 * 58	8*0012= 8*081= 8*0	0°00052 0°00052 0°00052 0°00052	0*00051 0*00051 0*00051	6902 6901 69	525 321 520
8°06	0°0012-	52000°0	6°88881	8805	249
8°06	0°001-	52000°0	6°88861	8801	248
8°06	0°0012-	52000°0	6°88861	88	248
6°56	0°0012=	0°00052	0 ° 0 0 0 5	7805	549
8°56	0°001=	0°00052	0 ° 0 0 0 5	7801	542
8°56	0°0	52000°0	0 ° 0 0 0 5	78	547
0 ° 00 1 0 ° 00 1 0 ° 00 1 0 ° 00 1	0°0012= 0°001= 0°0012=	0°00852 52000°0 52000°0	6 • 6 6 • 6 6 • 6	86 1086 2686	513 515 511
50°0 50°0 50°0	0°0 0°001= 0°0012=	53899 [°] 8 53899° 8 6 89995 538999	0 * 0000 8 8 * 0000 8 0 * 0000 8	58 5885 5885	540 536 538
52°0	8*8812=	38899°°	0°00054	46	532
52°0	8*881=	59899°9	0°00054	4861	532
52°5	8*8	59899°9	0°00054	4805	532
20°0	0°0012-	50000°0	0°00001	5902	536
20°0	0°0010	50000°0	0°00001	5901	532
20°0	0°0	50000°0	0°00001	59	535
2220 2220 2270	0°0 0°00 0°00 0°00 0°00 0°00 0°00 0°00	50000°0 50000°0 50000°0	0°00059 0°00059 0°00059	2802 2803 28	521 520 556
0 ⁶ 0 7	8°8812°	50000°0	6 • 0600 •	1802	822
0 ⁶ 0 7	8°881°	50000°0	6 • 0600 •	1801	292
0 ⁶ 0 7	8°8	50000°0	6 • 0600 •	18	359

41.I

		•	- *	•	
253	96	20000 • 0	25088.8	0,0	88,8
254	1098	20000 • 0	25088.8	0,0010	88,8
255	2096	20000 • 0	25000.0	0,0015-	88,8
256 257 258	91 1091 2091	25008,8 25000,0 25000,0	25000.0 25000.0 25000.0	8,8 8,891. 9,891.5= 9,991.5=	75.0 75.0 75.0
259	92	20000,0	25000.0	0°0	70.0
260	1092	20000,0	25000.0	= 100°0	70.0
261	2092	20000,0	25000.0	= 2100°0	70.0
262 263 264	93 1093 2093	35000 <b>. 6</b> 35000 <b>. 6</b> 35000 <b>.</b> 6	2500¢.0 2500¢.0 2500¢.0	0.0 4100.0 4100.0 4100.0	65,0 65,0 65,0
265	94	40000 e 0	25008 • 0	0.0	60,0
266	1894	40000 e 0	25000 • 0	100.0	60,0
267	2894	40000 e 0	25006 • 0	2100.0	60,0
268	95	45000,0	25000.0	0,0	55.0
269	1095	45000,0	25000.0	100,0	55.0
270	2095	45000,0	25000.0	•2100,0	55.0
271	96	50000.0	25000.0	0,0	50,0
272	1096	50000.0	25000.0	100,0	50,0
273	2096	50000.0	25000.0	2100,0	50,0
274 275 276	97 1097 2097	55000.0 55000.0 55000.0	25000°0 25000°0 25000°0	0,0 0,0010 0,0015= 0,0015=	45.0 45.0 45.0
277 278 279	98 1098 2098	60000 • 0 60000 • 0	25000 ± 0 25000 ± 0 25000 ± 0	0,0 0,001= 0,0013=	40,0 40,0 40,0

289	99	63000,0	25000,0	3,0	35,9
281	1099	65000,0	25000,0	=120,0	35,9
282	2099	63000,0	25000,0	=2105,2	35,9
283	100	78888,0	53888°8	0,0	30,0
284	1100	78088,0	52688°8	120,0	30,0
285	2100	78888,0	52688°8	+2100,0	30,0
286 287 288	191 1191 2191	75000,0 75000,0 75000,0	25000,0 25000,0 25000,0	0,0 0,100 0,0015 0,0015	25,0 25,0 25,0
289	102	90339°9	25889,9	0,0	29,9
290	1192	90339°9	25889,8	190,2	29,9
291	2192	90339°9	25889,9	0,0015*	29,9
292	103	3 • 9	30000,0	0,0	100,0
293	1103	9 • 9	30000,0	190,0	190,0
294	2103	9 • 9	30000,0	2190,0	190,0
295	104	5000,0	39999,9	0,0	95,0
296	1104	5000,0	39999,9	=100,0	95,0
297	2104	5000,0	39989,9	=2100,0	95,0
298	105	10000.0	30000,9	8 8 8 1 5 <del>-</del>	90,0
299	1105	10000.0	30990,9	8 8 8 1 <del>-</del>	90,0
300	2105	10000.0	30990,9	8 8 8 1 -	90,0
301	196	15000.0	30000,9	0,001+	85,0
302	1196	15000.0	30000,9	•100,0	85,0
303	2196	15000.0	30000,9	•2100,3	85,9
304	107	50900°9	30000,0	9,2	30 , 9
305	1107	50900°0	30000,0	•199,9	39 , 9
305	2107	50839°3	30000,0	•199,9	39 , 9

I.16

307	106	25000.0	20006 • 6	0.0	75.0
306	1108	25000.0	20006 • 6	100.0	75.0
309	2105	25006.0	20006 • 6	=2100.0	75.0
318	109	30000.0	20000°0	0.0	78,0
311	1109	30000.0	20000°0	100.0	70,0
312	2189	30000.0	20000°0	2100.0	70,8
313 314 315	110 1110 2110	35060.0 35000.0 35000.6	30000 • 0 30000 • 0 30008 • 0	8 - 8 8 - 80 - 8 9 - 88 - 8 9 - 88 - 8	65,0 65,0 65,0
316 317 316	111 1111 2111	4 2 2 2 2 2 0 4 2 2 2 2 2 0 4 2 2 2 2 2 0 4 2 2 2 2 2 0 4 2 2 2 2 0 4 2 2 2 2 0 4 2 2 2 2 0 4 2 2 2 2 0 4 2 2 2 2 0 4 2 2 2 2 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5	20008°0 20008°0 20008°0	0,0 0,001= 0,0015=	62,0 62,0 62,0
319	511	45000 °C	20000°0	0°0	55.0
320	51112	45000 °C	20000°0	•100°0	55.0
321	5112	45000 °C	20000°0	•5100°0	55.0
322	113	50000 • 0	20000 • 0	0,0	50.0
323	1113	50000 • 0	20000 • 0	= 100,0	50.0
324	2113	50000 • 0	20000 • 0	= 2100,0	50.0
325	114	55000.0	20000,0	0.0	45.0
326	1114	55000.0	20000,0	•100.0	45.0
327	2114	55000.0	20000,0	•2100.0	45.0
320 359 358	115 1115 2115	60800.0 60800.0 60800.0	20000,0 20000,0	0.0 +100.0 +2100.0	40.0 40.0 40.0
331	116	65000,0	30000,0	0 • 0	35,0
332	1116	65000,0	30000,0	• 100 • 0	35,0
333	2116	65000,0	30000,0	• 2100 • 0	35,0

0*51 0*51 0*51	8°0012* 8°001* 8°0	0°0005£ 0°0005£ 0°0005£	52000°0 52000°0 52000°0	5152 1152 152	298 226 228
0 * 08 0 * 08 0 * 08	0*0012= 0*001= 0*0	22000°0 22000°0 22000°0	50909°9 50909°9 50900°9	5159 1159 159	195 995 955
0 * 50 0 * 50 0 * 50	0°0012= 0°001= 0°0	0°00055 0°00055 0°00055	0°00051 0°00051 0°00051	5153 1153 153	324 323 325
0°06 0°06 0°06	0°0812= 0°001= 0°0	0°00055 0°00055 22000°0	6 • 6 6 6 6 1 6 • 6 6 6 6 1 6 • 6 6 6 6 1 6 • 6 6 6 6 1	5155 1155 155	155 855 876
0°56 0°56 0°56	0°0 0°001= 0°001=	22000°0 22000°0 22000°0	0 ° 0 0 0 5 0 ° 0 0 0 5 0 ° 0 0 0 5	1212 1211 121	975 976
0 * 00 1 0 * 00 1 0 * 00 1	0°0012= 0°001= 0°0	22000°0 22000°0 22000°0	0 * 0 0 * 0 0 * 0	8252 8255 825 825	575 775 575
50°0 50°0 50°5	0°00'2• 0°00'0 0°0	28080°8 28080°8 28080°8	0 * 00009 0 * 00009 0 * 00009	6112 6111 613	245 241 240
0 * 52 0 * 52 0 * 52 5 2 * 9	0°0812• 0°081• 0°0	20000°0 20000°0 20000°0	0°00054 0°00054 0°00054	611 6111 6115	338 338 332
29°3 20°3 20°3	6°0812= 6°081= 6°6	28000°0 20000°0 20000	0°00801 0°00801 0°00801	5112 5111 511	929 239

361 363	126 1126 2126	20006°C 20006°C 20006°C	35000,0 35000,0 35000,0	2.0 =100.0 =2100.0	76.0 76.0 76.0
364	127	35080°0	35096 • 8	6,8	65,0
365	1127	35080°0	35000 • 6	= 108,8	65,0
366	2127	35880°°0	35006 • 0	= 2186,8	65,0
367	128	40000 .0	35000.0	6.0	68 e 8
368	1128	40000 .0	35000.0	• 103.0	68 e 8
369	2126	40000 .0	35000.0	• 2105.0	68 e 8
370	129	45008.0	35008.0	0.0	55,0
371	1129	45000.0	35000.0	•100.0	55,0
372	2129	45000.0	35006.0	•2100.0	55,0
373	130	50008.0	35000.0	0,0	50,0
374	1130	50000.0	35000.0	108,0	50,0
375	2130	50000.0	35000.0	-2100,0	50,0
376	121	55008.0	35000.0	0.0	45.0
377	1131	55008.0	35000.0	#105,6	45.0
378	2131	55008.0	35000.0	#2106,6	45.0
379	132	68888.0	35000.0	0,0015=	40.0
380	1132	68888.0	35000.0	0,0015=	40.0
381	2132	68888.0	35000.0	0,0015=	40.5
382 383 384	133 1133 2133	65008,0 65000,0 65000,0	35000.0 35000.0 35000.0	0,0 100,0 0,0015= 0,0015=	35.0 35.0 35.0
385	134	70000.0	35000.0	0.0	30,0
386	1134	70000.0	35000.0	=100.0	30,0
387	2134	70000.0	35000.0	=2100.0	30,0

I.19

412 413 414 415 416 416 417 418	406 407 408 409 410 411	403 404 405	409 401 402	397 398 399	394 395 396	391 392 393	388 389 390
205 1205 2205 3205 4205 5205 5205	204 1204 2204 3204 4204 5204	293 1293 2293	202 1202 2202	201 1201 2201	200 1200 2200	136 1136 2136	139 1135 2139
19750,0 19750,0 19750,0 19750,0 19750,0 19750,0 19750,0	19825,0 19825,0 19825,0 19825,0 19825,0 19825,0	59368°0 59969°0 59968°0	20822°0 50852°0 50852°0	21000,0 21000,0 21000,0	22500,0 22500,0 22500,0	80800,0 80800,0 80800,0	75000,0 75000,0 75000,0
0,0 0,0 0,0 0,0 0,0 0,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0	3,3 3,3 3,3	3 ₉ 0 3 ₉ 0 3 ₉ 0	2 . 2 . 2 . 2 . 2	8 , 8 8 , 8 9 , 8	35000,0 35000,0 35000,0	35000,0 35000,0 35000,0
0,0 =120,0 =1250,0 =1600,0 =1668,3 =1700,0 =1740,0	0,0 120,0 1250,0 1600,0 1668,8 1700,0	0,0 =199,0 =1560,9	8 8 8 8 8 9 8 8 9 8 9 8 8 9 8	0,0 +190,0 +900,0	0,0 -100,0 -900,0	0,0 •100,0 •2100,0	0,0 +190,9 +2199,9
80,3 80,3 80,3 80,3 80,3 80,3 80,3	80,2 80,2 80,2 80,2 80,2 80,2	30,0 30,0 30,0	79,2 79,2 79,2	79,0 79,0 79,0	77 • 5 77 • 3 77 • 5	50°3 50°3 50°3	25,9 25,9 25,9

I.20

•

419	206	19325.0	8 e 0	6.8	86.7
420	1206	19325.0	8 e 0	•108.6	88.7
421	2206	19325.0	9 e 0	•1256.6	80.7
422	3206	19325.0	9 e 0	•1685.6	80.7
423	4206	19325.0	6 e 0	•2105.6	80.7
424 • 425 • 426 427 • 428	207 1207 2207 3207 4207	18090,0 18090,0 18090,0 18090,0 18090,0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8,6 -100,0 -1250,0 -1600,0 -2100,0	62,0 62,0 62,0 62,0 62,0
429 430 431 432 433	208 1208 2208 3206 4208	17000.0 17000.0 17000.0 17000.0 17000.0	0 - 0 0 - 0 0 - 0 0 - 0	0.0 -1250.0 -1250.0 -2100.0	63.0 83.0 83.0 83.0
434 435 436 437 438	209 1209 2209 3209 4209	16000,0 16000,0 16000,0 16000,0 16000,0	5 • 5 5 • 5 5 • 5 5 • 5	0.0 -100.0 -1250.0 -1600.0 -2100.0	84 = 8 84 = 8 64 = 8 84 = 8 84 = 8
439	210	53535°5	1767.8	0,0	76.8
440	1210	52525°5	1767.8	-100,0	76.8
441	2210	53525°5	1767.8	-900,0	76.8
442 443 444	211 1211 2211	22171,6 22171,6 22171,6 22171,6	2828,4 2828,4 2828,4	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	77 . 8 77 . 8 77 . 6
445	212	22047,8	2952.2	0 • 0	77 ± 9
446	1212	22047,6	2952.2	• 1 0 0 • 0	77 ± 9
447	2212	22047,8	2952.2	• 9 0 0 • 0	77 ± 9
446	213	21464 e 5	3535,5	0.0	78.5
449	1213	21464 e 5	3535,5	•190.0	78.5
450	2213	21464 e 5	3535,5	•1560.0	78.5

1.21

.

<u>___</u>

451 452 453 454 455 455	214 1214 2214 3214 4214 5214	21340,7 21340,7 21343,7 21340,7 21340,7 21340,7 21340,7	3059,3 3659,3 3659,3 3659,3 3659,3 3659,3	0,9 *129,9 *1250,9 *1509,9 *1568,3 *1700,9	78,7 78,7 78,7 78,7 78,7 78,7 78,7
457 450 459 460 461 462 463	215 1219 2215 3215 4219 5215 6219	21287,7 21287,7 21287,7 21287,7 21287,7 21287,7 21287,7	3712,3 5712,3 5712,3 3712,3 3712,3 3712,3 3712,3	0,0 +100,0 +1250,0 +1600,0 +1668,8 +1700,0 =1740,0	73 • 7 78 • 7 78 • 7 78 • 7 78 • 7 78 • 7 78 • 7 78 • 7
464 463 466 467 463	215 1215 2216 3216 4215	20987,2 20987,2 20987,2 20987,2 20987,2 20987,2	4012.8 4012.8 4012.8 4012.8 4012.8	0,0 =100,0 =1250,0 =1600,0 =2100,0	79,8 7910 79,0 79,0 79,0
469 470 471 472 473	217 1217 2217 3217 4217	20050,3 20050,3 20050,3 20050,3 20050,3	4949,8 4949,8 4949,8 4949,8 4949,8	3,0 -129,0 -1250,2 -1600,2 -2100,2	79,9 79,9 79,9 79,9 79,9
474 475 476 477 478	218 1218 2218 3218 4218	19343,2 19343,2 19343,2 19343,2 19343,2 19343,2	5656,9 5656,9 5636,9 5656,9 5656,9	0,0 -190,0 -1250,0 -1690,0 -2100,0	30,7 30,7 30,7 80,7 80,7
479 480 481 482 483	219 1219 2219 3219 4219	18636,0 18636,0 18636,0 18636,0 18636,0 18636,0	6354,0 5364,0 5364,0 5364,0 5364,0 5364,0	8,0 -120,0 -1250,0 -1600,0 -2100,0	81,4 81,4 31,4 31,4 31,4

I.22

•

			•	· · · · · ·	è
484	220	25000.0	2500.0	0,0	75.0
485	1220	25000,0	2500.0	a100,0 ·	75,0
486	8220	25000,0	2506.0	-906-0	75.0
		• •			
467	221	25000.0	4000.0	6,6	75.0
488	1221	25000.0	4000.0	0108.0	75.0
489	2221	25000,0	4060,0	# 9 2 8 ₈ 0	75 ₈ 0
					<b>t</b> r <i>a</i>
440	666	23000 ₀ 0 55000 0	417388	-100 8	40.0
471	2222	25000.0	4175.0	-900.0	75.0
		<b>uu</b> -			
493	225	25000.0	5000.0	0.0	75,0
494	1223	22000.0	5000.0	•108 _. 0	75,0
495	2223	25000 <b>.</b> B	5000.0	=1560 ₁ 0	75 ₈ 0
496	224	25009.0	5175.0	6.6	75.A
497	1224	25000.0	5175.0	-100.0	75.0
498	2224	25000.0	5175,0	01256.0	75.0
499	3224	22000.0	5175.0	-1608.0	75.0
500	4224	25000.0	5175.0	#1668.8	75.0
201	2224	22000.0	5175.0	#1100 ⁸ 0	1360
502	225	· 25008-0	5250.0	0.0	75.0
503	1225	25000.0	5250.0	=100.0	75.0
504	2225	25000.0	S250,0	-1250,0	75,0
505	3225	25000,0	5250.0	-1600.0	75.0
506	4225	25000.0	5250,0	•1668.8	75,0
501	- JCC3 - 1225	25000.0	5250.0	=1748.8	75.0
444	~ 2 6 3			*** - <b>n 8 n</b>	
509	556	25000.0	5675.0	6.6	75.0
510	1559	25000,0	5675.0	-100.0	75.0
511	5559	25000.0	5675.0	e1256,0	75.0
512	3556	25000.0	5675.0	-1600.0	75,0
513	4226	5000.0	5675 Ø	•2100 ₀ 0	75.0

I.23
		i grae			
514 515 516 517 518	227 1227 2227 3227 4227	52000,0 52000,0 52000,0 52000,0	7080,0 7080,0 7080,9 7080,9 7000,9 7000,9	0,0 *100,0 *1250,0 *1250,0 =1500,0 =2100,2	75,2 75,9 73,0 75,2 75,2
519 520 521 522 523	228 1228 2228 3228 4228	25000,0 25000,0 25000,0 25000,0 25000,0 25000,0	8202,2 8222,2 8222,2 8227,2 8223,2	0,0 =100,0 =1250,0 =1500,0 =2100,0	73,2 75,0 75,2 75,2 75,2
524 525 526 527 528	229 1229 2229 3229 4229	25000,0 25000,0 25000,0 25000,0 25000,0	9000,0 9000,0 9000,0 9000,0	0,2 •123,0 •1250,9 •1690,9 •2190,9	75,0 75,0 75,0 75,0 75,0
529 530 531	230 1230 2230	26767,8 26767,8 25767,8	1767.8 1767.8 1757.8	0,0 0,001 0,000 0,000	73,2 73,2 73,2
532 533 534	231 1231 2231	27828,4 27820,4 27828,4	2828,4 2828,4 3828,4	0,0 9120,0 9120,0 900,0	72;2 72;2 72;2
535 536 537	232 1232 2232	27952,2 27952,2 27952,2	2952,2 2952,2 2952,2	0,0 •100,0 •900,0	72,1 72,1 72,1
538 539 340	233 1233 2233	28535,5 28535,5 28535,5	3535,5 3535,5 3535,5	0,0 0,001= 0,0051=	71,5 71,5 71,3
541 542 543 544 545 346	234 1234 2234 3234 4234 5234	28659,3 28659,3 28659,3 28659,3 28659,3 28659,3 28659,3	3659,3 3659,3 3659,3 3659,3 3659,3 3659,3	9,9 -190,9 -1250,9 -1590,9 -1590,9 -1563,8 -1780,9	71,3 71,3 71,3 71,3 71,3 71,3 71,3

I.24

----

547       235       28712.3       5712.3 $=100.0$ 711         548       1215       28712.3       5712.3 $=100.0$ 711         550       3215       28712.3       5712.3 $=1250.0$ 711         551       4235       28712.3       5712.3 $=1600.0$ 711         552       5235       28712.3       5712.3 $=1600.0$ 711         553       6235       28712.5       5712.3 $=1740.0$ 711         554       235       28712.5 $=1740.0$ 711         555       6235       28712.5 $=1740.0$ 711         556       2236       29012.6       4012.6 $=100.0$ 711         556       2236       29012.6       4012.6 $=1250.0$ 711         557       3236       29012.6       4012.6 $=1250.0$ 711         558       4236       29012.6       4012.6 $=1250.0$ 711         559       237       29049.6       4949.6 $=1250.0$ 711         560       1237       29949.6       4949.6 $=1250.0$ 711         561 <th></th> <th></th> <th>٠</th> <th>•</th> <th>· •</th> <th></th>			٠	•	· •	
548       1235       26712.3 $3712.3$ $=1250.6$ $71.50.6$ 550       3235       26712.3 $3712.3$ $=1600.6$ $71.50.6$ 551       4235       26712.3 $3712.3$ $=1600.6$ $71.50.6$ 552       5235       26712.3 $3712.3$ $=1700.6$ $71.55.6$ 553       6235       26712.3 $3712.3$ $=1700.6$ $71.55.6$ 553       6235       26712.6       4012.6 $=100.6$ $71.55.6$ 554       236       29012.6       4012.6 $=100.6$ $71.55.6$ 556       2236       29012.6       4012.6 $=100.6$ $71.55.6$ 557       3236       29012.6       4012.6 $=100.6$ $71.55.6$ 558       4236       29012.6       4012.6 $=100.6$ $71.55.6$ 558       4236       29012.6       4012.6 $=100.6$ $71.55.6$ 557       3237       29049.6       4949.6 $=100.6$ $76.55.6$ 561       2238       30656.9       5656.9 $=1250.6$ $67.65.75.75.75.75.75.75.75.75.75.75.75.75.75$	567	235	26712.3	5712.5	6.8	71.5
250       2235       26712.3       3712.3 $=1256.0$ 71         550       3235       26712.3       3712.3 $=1666.6$ 71         551       4235       26712.3       3712.3 $=1666.6$ 71         553       6235       26712.3       3712.3 $=1746.6$ 71         553       6235       26712.3       3712.3 $=1746.6$ 71         554       236       29012.6       4012.6 $=100.6$ 71         555       1236       29012.6       4012.6 $=1256.6$ 71         556       2236       29012.6       4012.6 $=1256.6$ 71         557       3236       29012.6       4012.6 $=1256.6$ 71         558       4236       29012.6       4012.6 $=1256.6$ 71         558       4236       29012.6       4012.6 $=100.6$ 71         557       3236       29049.6       4949.6 $=100.6$ 76         560       1237       29949.6       4949.6 $=1266.6$ 76         562       3237       29949.6       4949.6 $=1260.6$ 76	6 d R	3701	28712 X	8712.5	-186.8	91.5
550       223       2012.5       2112.3       1600.0       11         551       4235       2012.3       3712.3       -1600.0       71         552       5235       20712.3       3712.3       -1700.0       71         553       6235       20712.3       3712.3       -1700.0       71         553       6235       20712.3       3712.3       -1740.0       71         553       6235       20712.3       3712.5       -1740.0       71         553       6235       20712.6       4012.6       -1250.0       71         554       236       20012.6       4012.6       -1250.0       71         556       236       20012.6       4012.6       -1250.0       71         557       3236       20012.6       4012.6       -1250.0       71         558       4236       20012.6       4012.6       -100.0       70         556       2357       237       20949.6       4049.6       -100.0       70         561       237       20949.6       4049.6       -1200.0       70         562       3237       20949.6       4049.6       -1200.0       70	540	227C	52742 2	27(0 5	n1250 0	71.5
320         323         26712.3         3712.3 $1000.0$ 71           551         4235         26712.3         3712.3 $1700.6$ 71           553         6235         26712.3         3712.3 $1700.6$ 71           553         6235         26712.3         3712.3 $1700.6$ 71           554         236         29012.6         4012.6 $1700.6$ 71           556         2236         29012.6         4012.6 $1250.6$ 71           556         2236         29012.6         4012.6 $1250.6$ 71           556         2236         29012.6         4012.6 $1250.6$ 71           556         2237         29949.6         4949.6 $602.6$ 71           561         2237         29949.6         4949.6 $1250.6$ 76           562         2337         29949.6         4949.6 $2102.6$ 76           562         238         30656.9         5656.9 $1200.6$ 69           564         238         30656.9         5656.9 $2100.6$ 69 <tr< td=""><td>341</td><td>5633</td><td></td><td>211015</td><td></td><td>7680</td></tr<>	341	5633		211015		7680
551       4235       26712.3 $5712.3$ $e1700.6$ $71$ 552       5235       26712.3 $5712.3$ $e1700.6$ $71$ 553       6235       26712.3 $5712.3$ $e1700.6$ $71$ 553       6235       26712.3 $5712.3$ $e1700.6$ $71$ 553       6235       26712.3 $5712.3$ $e1700.6$ $71$ 554       236       29012.6       4012.6 $e100.6$ $71$ 556       2236       29012.6       4012.6 $e1250.6$ $71$ 556       2236       29012.6       4012.6 $e1200.6$ $71$ 556       2236       29012.6       4012.6 $e1200.6$ $71$ 556       4236       29012.6       4012.6 $e100.6$ $76$ 560       1237       29949.6       4949.6 $e1200.6$ $76$ 561       2237       29949.6       4949.6 $e1200.6$ $76$ 562       3237       29949.6       4949.6 $e100.6$ $76$ 564       238       30656.9       5656.9	330	3233	2011523	311013		1193
552       5235       28712.3 $5712.3$ $5712.3$ $e1780.6$ $71$ 553       6235       28712.3 $5712.3$ $e1746.6$ $71$ 553       6235       28712.5 $5712.3$ $e1746.6$ $71$ 555       1236       29812.6       4812.6 $e100.6$ $71$ 556       2236       29812.6       4812.6 $e1286.6$ $71$ 556       2236       29812.6       4912.6 $e1600.6$ $71$ 556       2236       29812.6       4912.6 $e1600.6$ $71$ 556       2236       29812.6       4912.6 $e1600.6$ $71$ 558       4236       29812.6       4949.6 $e100.6$ $76$ 561       2237       29949.6       4949.6 $e100.6$ $76$ 562       3237       29949.6       4949.6 $e100.6$ $76$ 563       4238       30656.9       5656.9 $e1600.6$ $76$ 564       238       30656.9       5656.9 $e100.6$ $66$ 566       4236       30656.9       5656	551	4235	26712.3	2115-2	#1000gB	7100
553       6235       26712.3 $3712.3$ $*1740.6$ $71.$ 554       236       29012.6       4012.6 $60.0$ $71.$ 555       1236       29012.6       4012.6 $*1250.0$ $71.$ 557       3236       29012.6       4012.6 $*1250.0$ $71.$ 557       3236       29012.6       4012.6 $*100.0$ $71.$ 558       4236       29012.6       4012.6 $*100.0$ $70.$ 550       237       29949.6       4949.6 $*100.0$ $70.$ 561       2237       29949.6       4949.6 $*1250.0$ $76.$ 562       3237       29949.6       4949.6 $*1250.0$ $76.$ 563       4238       30656.9       5656.9 $*100.0$ $76.$ 564       238       30656.9       5656.9 $*100.0$ $76.$ 564       238       30656.9       5656.9 $*100.0$ $69.$ 566       238       30656.9       5656.9 $*100.0$ $69.$ 566       239       31364.0       6364.0 $*100.0$	552	5235	28712 <b>.</b> 3	3712,3	#1700 B	71.3
554       236       29012.6       4012.6       612.6       6.0       71         555       1236       29012.6       4012.6 $=1250.6$ 71         557       3236       29012.6       4012.6 $=1250.6$ 71         558       4236       29012.6       4012.6 $=1250.6$ 71         558       4236       29012.6       4012.6 $=1250.6$ 71         558       4236       29012.6       4012.6 $=1200.6$ 71         558       4236       29012.6       4012.6 $=1200.6$ 71         558       4236       29012.6       4012.6 $=1200.6$ 71         558       4236       29012.6       4012.6 $=1200.6$ 70         561       237       29949.6       4949.6 $=1200.6$ 70         562       3237       29949.6       4949.8 $=1200.6$ 70         563       4238       30656.9       5656.9 $=100.6$ 69         566       238       30656.9       5656.9 $=1200.6$ 69         566       239       31364.6       6364.6 $=100.6$ <t< td=""><td>553</td><td>6235</td><td>28712.5</td><td>5712, S</td><td>#1740 B</td><td>71,5</td></t<>	553	6235	28712.5	5712, S	#1740 B	71,5
554       236       29012.6       4012.6 $4012.6$ $100.6$ 71         555       1236       29012.6       4012.6 $100.6$ 71         556       2236       29012.6       4012.6 $100.6$ 71         557       3236       29012.6       4012.6 $100.6$ 71         556       4236       29012.6       4012.6 $100.6$ 71         556       4236       29012.6       4012.6 $100.6$ 71         556       4236       29012.6       4012.6 $100.6$ 71         556       4236       29012.6       4012.6 $100.6$ 71         557       3237       29949.6       4949.6 $-100.6$ 70         561       237       29949.8       4949.6 $-100.6$ 76         562       3237       29949.8       4949.6 $-1600.6$ 76         563       4238       30656.9       5656.9 $e100.6$ 66         564       238       30656.9       5656.9 $e100.6$ 67         566       4238       30656.9       5656.9 $e100.6$ 69			•	•	•	•
554       236       29012.6       6012.6 $0012.6$ $0012.6$ $0012.6$ $100.6$ $71.6$ 555       1236       29012.6       4012.6 $-1250.6$ $71.6$ 557       3236       29012.6       4012.6 $-1250.6$ $71.6$ 556       4236       29012.6       4012.6 $-1250.6$ $71.6$ 556       4236       29012.6       4012.6 $-2100.6$ $71.6$ 556       4236       29012.6       4049.6 $-100.6$ $70.6$ 561       2237       29949.6       4949.6 $-1250.6$ $70.6$ 562       3237       29949.6       4949.6 $-1250.6$ $70.6$ 563       4237       29949.6       4949.6 $-1250.6$ $76.7$ 564       238       30656.9       5656.9 $-100.6$ $66.6$ 565       1238       30656.9       5656.9 $-100.6$ $69.6$ 564       238       30656.9       5656.9 $-100.6$ $69.6$ 566       238       30656.9       5656.9 $-100.6$ $66.6$ 571						
554       236       29012.6       4012.6       4012.6       100.6       71         555       1236       29012.6       4012.6 $=1256.8$ 71         557       3236       29012.6       4012.6 $=1608.6$ 71         558       4236       29012.6       4012.6 $=1608.6$ 71         558       4236       29012.6       4012.6 $=1608.6$ 71         558       4236       29012.6       4012.6 $=1608.6$ 71         558       4236       29012.6       4012.6 $=1608.6$ 71         558       4236       29012.6       4012.6 $=1608.6$ 71         558       4236       29012.6       4012.6 $=1608.6$ 71         558       4236       29012.6       4012.6 $=1608.6$ 71         561       237       29949.6       4949.6 $=1250.6$ 76         562       3237       29949.6       4949.6 $=1250.6$ 76         564       236       30656.9       5656.9 $=108.6$ 69         566       2236       30656.9       5656.9 $=108.6$						
332       1236       29012.6       4012.6       100.6       71         555       1236       29012.6       4012.6       100.6       71         557       3236       29012.6       4012.6       100.6       71         558       4236       29012.6       4012.6       100.6       71         558       4236       29012.6       4012.6       100.6       71         558       4236       29012.6       4012.6       100.6       71         556       1237       29949.6       4949.6       100.6       70         561       2237       29949.6       4949.6       1250.0       70         562       3237       29949.8       4949.6       1200.0       76         563       4237       29949.8       4949.6       1200.0       76         564       238       30656.9       5656.9       1200.0       76         565       1238       30656.9       5656.9       1600.0       69         566       4238       30656.9       5656.9       1600.0       69         566       4238       30656.9       5656.9       1600.0       66         571       23	EEA	584	905(3 R	A 6 1 A A	6 6	71.8
333 $1250$ $2012.0$ $4012.0$ $1250.0$ $71.$ $556$ $2236$ $29012.0$ $4012.8$ $=1600.0$ $71.$ $556$ $4236$ $29012.0$ $4012.8$ $=1600.0$ $71.$ $556$ $4236$ $29012.6$ $4012.6$ $=2186.6$ $71.$ $556$ $4236$ $29012.6$ $4012.6$ $=100.6$ $71.$ $560$ $1237$ $29949.6$ $4949.6$ $=100.6$ $70.$ $561$ $2237$ $29949.6$ $4949.6$ $=1250.6$ $76.$ $562$ $3237$ $29949.6$ $4949.6$ $=1250.6$ $76.$ $563$ $4237$ $29949.6$ $4949.6$ $=1250.6$ $76.$ $563$ $4237$ $29949.6$ $4949.6$ $=1200.6$ $76.$ $564$ $238$ $30656.9$ $5656.9$ $=100.6$ $69.$ $566$ $4238$ $30656.9$ $5656.9$ $=100.6$ $69.$ $566$ $4238$ $30656.9$ $5656.9$ $=1002.6$ $66.$	224	1974	20012 8	ARID R	-180 6	71.6
536 $2256$ $29012.0$ $4012.6$ $61250.0$ $711$ 557 $3236$ $29012.6$ $4012.6$ $=1600.0$ $711$ 556 $4236$ $29012.6$ $4012.6$ $=1600.0$ $711$ 556 $4236$ $29012.6$ $4012.6$ $=2100.0$ $711$ 556 $4237$ $29949.6$ $4949.6$ $=100.0$ $701$ 561 $2237$ $29949.6$ $4949.6$ $=1250.0$ $701$ 562 $3237$ $29949.6$ $4949.6$ $=1250.0$ $701$ 563 $4237$ $29949.6$ $4949.6$ $=1250.0$ $701$ 564 $238$ $30656.9$ $5656.9$ $=1250.0$ $701$ 565 $1238$ $30656.9$ $5656.9$ $=100.0$ $691$ 566 $2236$ $30656.9$ $5656.9$ $=100.0$ $691$ 566 $2238$ $30656.9$ $5656.9$ $=100.0$ $691$ 576 $2239$ $31364.0$ $6364.0$ $=1250.0$ $661$ 573<	333	1630	5401250	401260		
557 $5236$ $29012.0$ $4012.6$ $=1000.0$ $71$ 558 $4236$ $29012.6$ $4012.6$ $=2100.0$ $71$ 558 $4236$ $29012.6$ $4012.6$ $=2100.0$ $71$ 560 $1237$ $29949.6$ $4949.6$ $=100.0$ $70$ 561 $2237$ $29949.6$ $4949.6$ $=1250.0$ $70$ 562 $3237$ $29949.6$ $4949.6$ $=1250.0$ $76$ 562 $3237$ $29949.6$ $4949.6$ $=1202.0$ $76$ 563 $4237$ $29949.6$ $4949.6$ $=100.0$ $76$ 564 $238$ $30656.9$ $5656.9$ $=100.0$ $66$ 566 $2238$ $30656.9$ $5656.9$ $=100.0$ $69$ 566 $4238$ $30656.9$ $5656.9$ $=100.0$ $69$ 566 $4238$ $30656.9$ $5656.9$ $=100.0$ $66$ 571 $2239$ $31364.0$ $6364.0$ $=1250.0$ $66$ 573	538	2230	5A01C ⁶ 0	4010.0	0123010	1110
556       4256       29812.6       4012.6       -2186.8       71         558       4256       237       29949.6       4949.6       -100.0       76         560       1237       29949.6       4949.6       -100.0       76         561       2237       29949.6       4949.6       -100.0       76         562       3237       29949.6       4949.6       -1250.0       76         563       4237       29949.6       4949.6       -1250.0       76         563       4237       29949.6       4949.6       -2100.0       76         564       238       30656.9       5656.9       -1250.0       69         566       2236       30656.9       5656.9       -1250.0       69         566       2236       30656.9       5656.9       -1200.0       69         566       2236       30656.9       5656.9       -1200.0       69         566       239       31364.0       6364.0       -1250.0       60         571       2299       31364.0       6364.0       -1250.0       60         572       3239       31364.0       6364.0       -1200.0       72	557	2526	5401540	4012.0	0100010	11.0
559       237       29949.6       4949.6 $-105.0$ 76         561       2237       29949.8       4949.6 $-105.0$ 76         561       2237       29949.8       4949.8 $-1250.0$ 76         562       3237       29949.8       4949.8 $-1250.0$ 76         563       4237       29949.8       4949.8 $-1250.0$ 76         563       4237       29949.8       4949.8 $-1202.0$ 76         564       238       30656.9       5656.9 $-1608.6$ 69         566       238       30656.9       5656.9 $-1608.6$ 69         566       238       30656.9       5656.9 $-1608.6$ 69         566       238       30656.9       5656.9 $-1608.6$ 69         566       238       30656.9       5656.9 $-1200.6$ 60         571       2289       31364.0       6364.8 $-100.6$ 66         571       229       31364.0       6364.8 $-100.6$ 68         573       4239       31364.0       6364.8 $-100.6$ 72	558	4236	29812.6	4012.8	•2186 ⁶ 6	71,0
559       237 $29949, 6$ $4949, 6$ $-103, 6$ 76         560       1237 $29949, 6$ $4949, 6$ $-103, 6$ 76         561       2237 $29949, 6$ $4949, 6$ $-103, 6$ 76         562       3237 $29949, 6$ $4949, 6$ $-1250, 6$ 76         563       4237 $29949, 6$ $4949, 6$ $-1250, 6$ 76         563       4237 $29949, 6$ $4949, 6$ $-2102, 6$ 76         564       236 $30656, 9$ $5656, 9$ $e102, 6$ 69         565       1238 $30656, 9$ $5656, 9$ $e102, 6$ 69         566       2236 $30656, 9$ $5656, 9$ $e100, 6$ 69         566       4236 $30656, 9$ $5656, 9$ $e100, 6$ 69         576       1239 $31364, 6$ $6364, 6$ $e100, 6$ 66         571       2239 $31364, 6$ $6364, 6$ $e100, 6$ 66         573       4239 $31364, 6$ $6364, 6$ $e100, 6$ 72         574       246 <td< td=""><td></td><td></td><td></td><td>·</td><td></td><td></td></td<>				·		
559       237       29949.6       4949.6 $6.0$ 76.         560       1237       29949.8       4949.6 $1250.0$ 76.         561       2237       29949.8       4949.8 $1250.0$ 76.         562       3237       29949.8       4949.8 $1250.0$ 76.         563       4237       29949.8       4949.8 $1600.0$ 76.         563       4237       29949.8       4949.8 $1600.0$ 76.         564       238       30656.9       5656.9 $100.0$ 76.         565       1238       30656.9       5656.9 $100.0$ 69.         566       236       30656.9       5656.9 $100.0$ 69.         566       4238       30656.9       5656.9 $100.0$ 69.         566       4238       30656.9       5656.9 $1000.0$ 69.         578       1239       31364.0       6364.0 $1250.0$ 60.         571       2239       31364.0       6364.0 $1250.0$ 66.         573       4239       31364.0       6364.0 $2100.0$ 72.						
559       237 $29949, 6$ $4949, 6$ $50$ $76$ 560       1237 $29949, 6$ $4949, 6$ $-100, 6$ $76$ 561       2237 $29949, 6$ $4949, 6$ $-1250, 6$ $76$ 562       3237 $29949, 6$ $4949, 6$ $-1250, 6$ $76$ 563       4237 $29949, 6$ $4949, 6$ $-1250, 6$ $76$ 563       4237 $29949, 6$ $4949, 6$ $-1200, 6$ $76$ 563       4237 $29949, 6$ $4949, 6$ $-1600, 6$ $76$ 564       238 $30656, 9$ $5656, 9$ $-1600, 6$ $69$ 566       238 $30656, 9$ $5656, 9$ $-1000, 6$ $69$ 566       4238 $30656, 9$ $5656, 9$ $-2100, 6$ $66$ 571       2239 $31364, 6$ $6364, 6$ $-1250, 6$ $66$ 572       2239 $31364, 6$ $6364, 6$ $-1206, 6$ $66$ 573       4239 $31364, 6$ $6364, 6$ $-1206, 6$ $72$ 574						
560 $1237$ $29949,8$ $4949,6$ $=100,0$ $76$ 561 $2237$ $29949,8$ $4949,8$ $=1250,0$ $76$ 562 $3237$ $29949,8$ $4949,8$ $=1600,0$ $76$ 563 $4237$ $29949,8$ $4949,8$ $=1600,0$ $76$ 563 $4237$ $29949,8$ $4949,8$ $=1250,0$ $69$ 565 $1238$ $30656,9$ $5656,9$ $=100,0$ $69$ 566 $2236$ $30656,9$ $5656,9$ $=100,0$ $69$ 566 $2236$ $30656,9$ $5656,9$ $=1000,0$ $69$ 566 $2236$ $30656,9$ $5656,9$ $=1000,0$ $69$ 568 $4236$ $30656,9$ $5656,9$ $=1000,0$ $69$ 576 $1239$ $31364,0$ $6364,0$ $=1250,0$ $66$ 571 $2239$ $31364,0$ $6364,0$ $=1200,0$ $66$ 573 $4239$ $31364,0$ $6364,0$ $=2108,0$ $66$ 575	<b>499</b>	237	29909.6	0949.8	6.0	70.1
561       2237       29949.6       4949.6       1250.6       76         562       3237       29949.6       4949.6       1600.0       76         563       4237       29949.6       4949.6       1600.0       76         563       4237       29949.6       4949.6       1600.0       76         563       4237       29949.6       4949.6       1600.0       76         565       1236       30656.9       5656.9       1600.0       69         566       2236       30656.9       5656.9       1250.0       69         567       3238       30656.9       5656.9       1600.0       69         568       4238       30656.9       5656.9       1600.0       69         568       4238       30656.9       5656.9       2100.0       69         571       2259       31364.0       6364.0       1250.0       60         572       3239       31364.0       6364.0       1200.0       60         573       4239       31364.0       6364.0       2100.0       72         574       240       27309.7       956.7       100.0       72         575       <	560	1237	29949 8	4949.6	-100.0	70.1
561       2237       29949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8       4949.8	561	2217	20040 8	A040 A	m1250.0	76.1
362       3237       29944.6       446.6       1000.0       76.         363       4237       29944.8       4944.8       -2100.0       76.         364       238       30656.9       5656.9       -100.0       69.         366       2238       30656.9       5656.9       -100.0       69.         366       2238       30656.9       5656.9       -1250.0       69.         566       2238       30656.9       5656.9       -1250.0       69.         566       2238       30656.9       5656.9       -1250.0       69.         566       2238       30656.9       5656.9       -1250.0       69.         566       2238       30656.9       5656.9       -100.0       69.         566       238       30656.9       5656.9       -2100.0       69.         571       2239       31364.0       6364.0       -1250.0       60.         572       3239       31364.0       6364.0       -1200.0       72.         573       4239       31364.0       6364.0       -2100.0       72.         574       240       27309.7       956.7       -900.0       72.	261	5621	2734760	474780	-1480 8	7012
563       4237       29944.8       4944.6       42100.0       70         564       236       30656.9       5656.9       0.8       69         565       1238       30656.9       5656.9       100.0       69         566       2236       30656.9       5656.9       1250.0       69         567       3238       30656.9       5656.9       1250.0       69         566       4238       30656.9       5656.9       1200.0       69         566       4238       30656.9       5656.9       1000.0       69         566       4238       30656.9       5656.9       1000.0       69         566       4238       30656.9       5656.9       1000.0       69         570       1239       31364.0       6364.0       1000.0       60         571       2239       31364.0       6364.0       1250.0       66         573       4239       31364.0       6364.0       2100.0       66         575       1240       27309.7       956.7       100.0       72         576       2240       27309.7       956.7       900.0       72         577       24	305	2631	C744480	446780		1061
564 $236$ $30656.9$ $5656.9$ $6.8$ $69$ $565$ $1236$ $30656.9$ $5656.9$ $-100.0$ $69$ $566$ $2236$ $30656.9$ $5656.9$ $-1250.0$ $69$ $567$ $3238$ $30656.9$ $5656.9$ $-1250.0$ $69$ $566$ $2236$ $30656.9$ $5656.9$ $-1200.0$ $69$ $568$ $4238$ $30656.9$ $5656.9$ $=2100.0$ $69$ $568$ $4238$ $30656.9$ $5656.9$ $=2100.0$ $69$ $578$ $1239$ $31364.0$ $6364.6$ $=100.0$ $66$ $571$ $2239$ $31364.0$ $6364.6$ $=1600.0$ $66$ $572$ $3239$ $31364.0$ $6364.6$ $=1600.0$ $66$ $573$ $4239$ $31364.0$ $6364.0$ $=2100.0$ $72$ $575$ $1240$ $27309.7$ $956.7$ $=100.0$ $72$ $576$ $2240$ $27309.7$ $956.7$ $=900.0$ $72$ <	563	4237	54444 ⁶ 0	444460	-C100°0	7541
564       238       30656.9       5656.9       0.8       69         565       1238       30656.9       5656.9       0.8       69         566       2238       30656.9       5656.9       0.8       69         566       2238       30656.9       5656.9       0.8       69         566       2238       30656.9       5656.9       0.8       69         566       4238       30656.9       5656.9       0.8       69         566       4238       30656.9       5656.9       0.8       69         566       4238       30656.9       5656.9       0.8       69         578       1239       31364.0       6364.8       0.8       66         571       2239       31364.0       6364.8       0.60       66         572       3239       31364.8       6364.8       0.60       72         573       4239       31364.8       6364.8       0.60       72         575       1246       27309.7       956.7       0.00       72         576       2248       27309.7       956.7       0.00       72         577       241       28695.5						
564       236       30656.9       5656.9       0       0.0       69         565       1238       30656.9       5656.9       0       000.0       69         566       2236       30656.9       5656.9       0       69       69         567       3238       30656.9       5656.9       0       69         566       4238       30656.9       5656.9       0       69         566       4238       30656.9       5656.9       0       60         578       1239       31364.0       6364.8       0       66         571       2239       31364.0       6364.8       0       66         572       3239       31364.0       6364.8       0       66         573       4239       31364.0       6364.8       0       66         574       248       27309.7       956.7       0.6       72         575       1248       27309.7       956.7       0.8       72         576       2248       27309.7       956.7       0.90.8       72         577       241       28695.5       1538.7       0.90.8       72         577 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
564       238       36656.9       5656.9       6.8       69         565       1238       30656.9       5656.9       •1250.0       69         566       2238       30656.9       5656.9       •1606.6       69         567       3238       30656.9       5656.9       •1606.6       69         566       4238       30656.9       5656.9       •1606.6       69         566       4238       30656.9       5656.9       •2100.6       69         568       4238       30656.9       5656.9       •2100.6       69         578       1239       31364.6       6364.6       •1250.6       66         571       2239       31364.6       6364.6       •1250.6       66         572       3239       31364.6       6364.6       •1600.6       72         573       4239       31364.6       6364.6       •1600.6       72         574       246       27309.7       956.7       •100.6       72         575       1240       27309.7       956.7       •100.6       72         576       2240       27309.7       956.7       •900.6       72         577	•			<u>i</u>		
565       1238       30656.9       5656.9       •100.0       69.         566       2238       30656.9       5656.9       •1250.0       69.         567       3238       30656.9       5656.9       •1000.0       69.         568       4238       30656.9       5656.9       •2100.0       69.         568       4238       30656.9       5656.9       •2100.0       69.         568       4238       30656.9       5656.9       •2100.0       69.         568       4238       30656.9       5656.9       •2100.0       69.         569       239       31364.0       6364.0       •1250.0       60.         571       2239       31364.0       6364.0       •1250.0       60.         572       3239       31364.0       6364.0       •1200.0       60.         573       4239       31364.0       6364.0       •2100.0       60.         574       240       27309.7       956.7       •100.0       72.         575       1240       27309.7       956.7       •900.0       72.         577       240       27309.7       956.7       •900.0       72.	564	238	30656.9	5656.9	0,0	69,3
566       2238       30656.9       5656.9       -1250.0       69         567       3238       30656.9       5656.9       -1608.0       69         566       4238       30656.9       5656.9       -2100.0       69         566       4238       30656.9       5656.9       -2100.0       69         566       4238       30656.9       5656.9       -2100.0       69         568       4238       30656.9       5656.9       -2100.0       69         578       1239       31364.0       6364.6       -100.0       66         571       2239       31364.0       6364.0       -1258.0       66         572       3239       31364.0       6364.0       -1258.0       66         573       4239       31364.0       6364.0       -2100.0       66         574       240       27309.7       956.7       -100.0       72         575       1240       27309.7       956.7       -100.0       72         577       240       27309.7       956.7       -100.0       72         577       240       27309.5       1530.7       0.0       74         577	565	1238	30656.9	5656.9	•100,0	69,5
567       3238       30656.9       5656.9       -1606.6       69         566       4236       30656.9       5656.9       -2100.0       69         566       4236       30656.9       5656.9       -2100.0       69         567       1239       31364.0       6364.0       6.0       66         578       1239       31364.0       6364.0       -100.0       66         571       2239       31364.0       6364.0       -1250.0       60         572       3239       31364.0       6364.0       -1250.0       60         572       3239       31364.0       6364.0       -1250.0       60         573       4239       31364.0       6364.0       -100.0       66         574       240       27309.7       956.7       -100.0       72         575       1240       27309.7       956.7       -100.0       72         577       240       27309.7       956.7       -100.0       72         577       240       27309.7       956.7       -100.0       72         577       240       27309.5       1530.7       8.0       71         578       12	566	2238	30656.9	5656.9	-1250.0	69.3
566       4236       30656.9       5656.9       -2100.0       69         569       239       31364.0       6364.0       6364.0       66         570       1239       31364.0       6564.0       -100.0       66         571       2239       31364.0       6564.0       -1250.0       66         572       3239       31364.0       6364.0       -1600.0       66         572       3239       31364.0       6364.0       -1600.0       66         573       4239       31364.0       6364.0       -1600.0       66         573       4239       31364.0       6364.0       -2100.0       72         574       240       27309.7       956.7       0.0       72         575       1240       27309.7       956.7       -100.0       72         576       2240       27309.7       956.7       -100.0       72         577       241       28695.5       1530.7       0.0       71         577       241       28695.5       1530.7       0.0       71	567	3238	30656.9	5656.9	-1606.6	69.3
569       239       51364.0       6364.8       6.0       66         578       1239       51364.0       6564.6       e100.0       66         571       2259       51364.0       6564.0       e1250.0       66         572       3239       51364.0       6364.0       e1600.0       66         573       4239       51364.0       6364.0       e1600.0       66         574       240       27309.7       956.7       0.0       72         575       1240       27309.7       956.7       e100.0       72         576       2240       27309.7       956.7       e900.0       72         577       241       28695.5       1530.7       6.0       71         577       241       28695.5       1530.7       6.0       71	SAA	4238	30656.8	5656 9	-2100 G	69.5
569       239       31364.0       6364.0       6.0       66         570       1239       31364.0       6364.0       e100.0       66         571       2259       31364.0       6364.0       e1250.0       66         572       3239       31364.0       6364.0       e1600.0       66         573       4239       31364.0       6364.0       e1600.0       66         573       4239       31364.0       6364.0       e2100.0       66         574       240       27309.7       956.7       0.0       72         575       1240       27309.7       956.7       e100.0       72         576       2240       27309.7       956.7       e900.0       72         577       241       28695.5       1530.7       6.0       71         577       241       28695.5       1530.7       6.0       71	300	7630	3003461	20208.		
569       239       51364.0       6364.8       6.0       66         578       1239       51364.6       6364.6       e180.0       66         571       2239       51364.0       6564.0       e1250.0       66         572       3239       51364.0       6364.0       e1600.0       66         573       4239       51364.0       6364.0       e1600.0       66         573       4239       51364.0       6364.0       e2100.0       66         575       1240       27309.7       956.7       0.0       72         576       2240       27309.7       956.7       e100.0       72         577       241       28695.5       1530.7       0.0       72         577       241       28695.5       1530.7       0.0       71						
569       239       51364.0       6364.8       6.0       66         578       1239       51364.6       6364.6       e100.0       66         571       2239       51364.0       6564.0       e1250.0       66         572       3239       31364.0       6364.0       e1600.0       66         573       4239       31364.0       6364.0       e1600.0       66         573       4239       31364.0       6364.0       e2100.0       66         575       1240       27309.7       956.7       e100.0       72         576       2240       27309.7       956.7       e100.0       72         577       241       28695.5       1530.7       0.0       72         577       241       28695.5       1530.7       0.0       71			1	÷		
574       240       21304.0       6364.0       e100.0       66         571       2239       31364.0       6364.0       e100.0       66         572       3239       31364.0       6364.0       e1600.0       66         573       4239       31364.0       6364.0       e1600.0       66         574       240       27309.7       956.7       0.0       72         575       1240       27309.7       956.7       e100.0       72         576       2240       27309.7       956.7       e100.0       72         576       2240       27309.7       956.7       e100.0       72         577       241       28695.5       1530.7       0.0       72         577       241       28695.5       1530.7       0.0       71	F40		<b>**</b>	1748 B		66 Å
578       1239       31364.0       6364.0       e100.0       66         571       2239       31364.0       6364.0       e100.0       66         572       3239       31364.0       6364.0       e100.0       66         573       4239       31364.0       6364.0       e2100.0       66         574       240       27309.7       956.7       0.0       72         575       1240       27309.7       956.7       e100.0       72         576       2240       27309.7       956.7       e100.0       72         577       241       28695.5       1530.7       0.0       71         577       241       28695.5       1530.7       0.0       71	307	234	2130440	0304,0		00.0
571       2239       31364.0       6364.0       #1250.0       66         572       3239       31364.0       6364.0       #1600.0       66         573       4239       31364.0       6364.0       #2100.0       66         574       240       27309.7       956.7       0.0       72         575       1240       27309.7       956.7       #100.0       72         576       2240       27309.7       956.7       #900.0       72         577       241       28695.5       1530.7       8.0       71         577       241       28695.5       1530.7       8.0       71	578	1239	31364,0	6364.0	0100.0	00.0
572       3239       31364.8       6364.8       e1600.8       66         573       4239       31364.8       6364.8       e1600.8       66         574       240       27309.7       956.7       0.8       72         575       1240       27309.7       956.7       e100.8       72         576       2240       27309.7       956.7       e100.8       72         577       240       27309.7       956.7       e100.8       72         577       240       27309.7       956.7       e900.8       72         577       241       28695.5       1530.7       8.6       71         577       241       28695.5       1530.7       8.6       71	571	2229	31364.0	6364 0	=1220,0	00,0
573       4239       31364.0       6364.0       *2100.0       66         574       240       27309.7       956.7       0.0       72         575       1240       27309.7       956.7       •100.0       72         576       2240       27309.7       956.7       •100.0       72         577       241       28695.5       1530.7       0.0       71         577       241       28695.5       1530.7       0.0       71	572	3239	31364.0	6364 _e B	=1600,0	66,6
574       240       27309.7       956.7       0.0       72         575       1240       27309.7       956.7       100.0       72         576       2240       27309.7       956.7       900.0       72         577       241       28695.5       1530.7       8.0       71         577       241       28695.5       1530.7       8.0       71	573	4239	31364.0	6364.0	•2100.0	68,6
574       240       27309.7       956.7       0.0       72         575       1240       27309.7       956.7       100.0       72         576       2240       27309.7       956.7       900.0       72         577       241       28695.5       1530.7       8.0       71         577       241       28695.5       1530.7       8.0       71						
574       240       27309.7       956.7       0.0       72         575       1240       27309.7       956.7       100.0       72         576       2240       27309.7       956.7       900.0       72         577       241       28695.5       1530.7       0.0       71         577       241       28695.5       1530.7       0.0       71						
574       240       27309.7       956.7       0.0       72         575       1240       27309.7       956.7       100.0       72         576       2240       27309.7       956.7       900.0       72         577       241       28695.5       1530.7       0.0       71         577       241       28695.5       1530.7       0.0       71						
575       1240       27309.7       956.7       100.0       72         576       2240       27309.7       956.7       900.0       72         577       241       28695.5       1530.7       0.0       71         577       241       28695.5       1530.7       0.0       71	574	240	27309.7	956.7	0.0	72.7
576 2240 27309,7 956,7 900,0 72 577 241 28695,5 1530,7 8,0 71	575	1240	27309.7	956.7	-100.0	72.7
577 241 28695,5 1530,7 8,0 71	576	2240	27709 7	QEA.T	-900_0	72.7
577 241 28695,5 1530,7 8,0 71	310	ت، ۳ V	CLARIGI	-2061	6-	1 m g 1
577 241 28695,5 1530,7 8,8 71						
577 241 28695,5 1530,7 8,8 71 578 1241 28695,5 1578,7 -188,8 71						
$\frac{1}{2}$			80/05 F			
医子丛 毛刀刀毛 雪鼠花口医 医三氯苯吗啡 医毛的皮 医毛	5/7	241	2004215	123011		1115
310 TENT CODJES TODAT, #10080 (1	578	1241	28695,5	1530,7	#100.0	71.3
579 2241 28695.5 1538.7 #908.8 71	579	2241	28695.5	1530.7	<b>~</b> 900 <b>,</b> 0	71.3

Ę

•

539 531 582	247 1242 2242	28857.2 28857.2 28857.2	1597.7 1397.7 1397.7	•980,3 •980,3	71,1 71,1 71,1
583 584 585	243 1243 2243	29619 <b>,4</b> 29619,4 29619,4	1913,4 1913,4 1913,4	9,9 ~190,0 •1560,9	70,4 79,4 70,4
586 587 588 589 599 591	244 1244 2244 3244 4244 5244	29781.1 29781.1 29781.1 29781.1 29781.1 29781.1	1980,4 1980,4 1980,4 1980,4 1980,4 1980,4	0,0 -120,0 -1250,0 -1600,0 -1668,3 -1700,9	70,2 70,2 78,2 79,2 79,2 76,2
592 593 594 595 596 596 597 598	245 1249 2249 3249 4249 5249 5249	29850,4 29850,4 29850,4 29859,4 29850,4 29850,4 29850,4	2009,1 2009,1 2009,1 2009,1 2009,1 2009,1 2009,1 2009,1	2,0 =100,0 =1250,0 =1600,0 =1668,8 =1790,0 =1749,0	79,2 79,2 79,2 79,2 79,2 79,2 79,2
599 600 601 502 603	246 1246 2246 3246 4246	30243,0 30243,0 30243,0 30243,0 30243,0 30243,0	2171,7 2171,7 2171,7 2171,7 2171,7	0,0 •190,0 •1250,8 •1609,0 •3100,0	69,8 69,3 69,3 69,3 69,3 69,3
504 505 505 507 508	247 1247 2247 3247 4247	31467,2 31467,2 31467,2 31467,2 31467,2	2678,8 2678,3 2678,3 2678,3 2678,3 2678,8	8,8 *190,8 *1250,9 *1600,8 *1600,8	68,9 68,9 68,5 68,5 68,5
609 610 611 612 613	248 1248 2248 3248 4248	32391,0 32391,0 32391,0 32391,0 32391,0 32391,0	3061,5 3061,5 3061,5 3061,5 3061,5 3061,5	0,0 =120,0 =1250,0 =1680,0 =2130,3	\$7,5 57,5 57,5 57,5 57,5

I.26

	1 - A				
614	249	32708.0	3808.0	0.0	66.7
615	1249	32700.0	3808.0	.188.8	66.7
616	2249	32706.0	3000,0	-1256,0	66.7
617	3249	32708.0	3880,0	-1608.8	66.7
616	4249	32700,0	3806,0	-2106,0	66.7
619	250	27452.0	487.7	6.0	78.6
620 621	1250 2250	27452,6 27452,6	467 • 7 487 • 7	●100°0 ●805°0	72,6 72,6
622	251	20923.1	780 ₆ 4	6.0	71.1
623 624	1251 2251	28923 <b>.1</b> 28923 <b>.</b> 1	788 ₆ 4 788 ₆ 4	•180.0 •988.0	71.1 71.1
625	252	29094 . 8	614,5	8.8	70.9
626 627	1252 2252	29094,8 29094,8	814,5 814,5	≈108.8 ≪988.8	76,9 76,9
626	253	29983.9	975.5	0.0	70.1
629 638	1253 2253	29903 <b>.</b> 9 29903 <b>.</b> 9	975,5 975,5	•108.0 •1568.6	70.1 70.1
631	254	30075.6	1009.6	0.6	69.9
638	1254	30075.6	1009.6	=100,0	69,9
633	2254	30075.6	1009.6	-1258,8	69.9
634	1254 1254	300/2.0	100460	-1448 /	40 0
636	5254	30075.6	1029.6	-1702.8	69.9
637	255	30149.1	1024.2	8.9	69.8
638	1255	30149,1	1024 2	-100,0	69.8
639	2255	30149.1	1024.2	-1250,0	69,8
640	3255	30149,1	1024.2	•1600.0	69,8
641	4233	30144.1	1024.2	11000 4	69,8
643	7677 6755	30147 ₀ 1 30142_1	106486 (894 9	-1740 0	0¥1Ü 40 n
	~~~~~	********	******	ームドマジムゼ	U74U

644 645 646 647 648	256 1255 2256 3256 4256	30966,0 30966,0 30966,0 30966,0 30966,0 30966,0	1107,1 1107,1 1107,1 1107,1 1107,1	9,3 -190,3 -1350,3 -1350,3 -1380,3 -1580,3	59,4 57,4 59,4 59,4 59,4
649 650 651 652 633	257 1257 2257 3257 4257	31865,5 31865,9 31865,5 31865,5 31865,5 31865,5	1365,0 1363,0 1365,0 1365,0 1365,0	0,0 =180,0 =1690,0 =2190,0	68,1 68,1 68,1 68,1 68,1
534 555 556 657 538	258 1258 2258 3258 4258	32846,3 32846,3 32846,3 32846,3 32846,3 32846,3	1360,7 1360,7 1360,7 1360,7 1360,7	3,3 •180,0 •1250,0 •1490,3 •2120,3	67,2 67,2 67,2 67,2 57,2
539 560 561 562 653	259 1259 2259 3259 4259	33827,1 33827,1 33827,1 33827,1 33827,1	1755,8 1753,8 1753,8 1753,8 1753,8	9,9 -139,9 =1250,9 =1309,9 =2130,3	66,2 66,2 66,2 66,2
564 553 555	260 1259 2260	27488,9 27488,9 27488,9	245,0 243,0 245,0	3,9 9130,0 #900,3	72,5 73,3 72,5
567 568 569	261 1261 2261	28980,7 28980,7 28980,7 28980,7	392,1 392,1 392,1	2,2 •130,2 •980,2	71,8 71,8 71,8
679 571 672	252 1262 2262	29154,9 29154,9 29134,9	409,2 409,2 409,2	3,3 •122,2 •920,3	70,3 70,3 79,3
673 574 673	263 1253 2263	29975,9 29975,9 29975,9	133,3 130,3 193,9	3,2 *120,3 *1560,2	73,9 79,9 79,9

						•	
	676 677	264 1264	30150.1 30150.1	160.0 100.0	0.0 • 190.0	69 e B 69 e B	
	678 679 680	2264 3264 4264	30150,1 30150,1 30150,1	100.0 100.0 100.0	=1600,0 =1600,0	69:5 69:5 69:6	
	681	5264	30150.1	100.0	-1780,8	69,6	
	682	265	38224.7	100.0	8,8 - 189-9	69.6 69.8	
	684	2265	30224.7 30224.7	100.0 100.0	=1250,0 =1600,0	69.8	
	686 687	4265 5265	30224.7 30224.7	100,0 100,0		69,8 69,8	
	000	0205	>₩664 g /	10040	-11-66	9789 9789	
•	689 690	266	30647.7 30647.7	556 ,3 556,3	0.0 -100.0	69.3 69.3	
	691 692	2266 3266	30647.7 38647.7	556,3 556,3	•1250.0 •1608.0	69,3 69,3	
,	643	4266	30647 .7	226*5	•5100°0	C∀∎≯	
	694	267	31966.3	686.1	6.0	68.0	
	696 697	2267	31966.3 31966.3	686.1 686.1	-1250.0 -1600.0	68.0 68.0	
	698	4267	51966.3	666.1	-2100.0	66.0	
	699	268	32961.5	764.1	0.0	67.0	
	701 702	2268 3268	52961.5 52961.5	784.1	=1250.0 =1600.0	67 8 67 8	
	703	4266	32961,5	784,1	-2100,0	67.0	
	704	269	33956.7	682.2	0.0	66.0	
	706 707	2269 2269	33956.7	885*5	=1250,6 =1600,8	66 . D	
	706	4269	33956,7	862,2	#2100,B	66.0	
						·	
		۰.		1.29			
		•	· · .	•			

709 710 711	270 1270 2 2 70	27497,0 27497,0 27497, 0	122,9 122,9 122,9	0,3 =100,0 =900,0	72,3 72,5 72,5
712 713 714	271 1271 2271	28995,2 28995,2 28995,2	196,7 196,7 196,7	0,0 8,002 0,009 0	71.0 71.0 71.0
715 716 717	272 1272 2272	29169,9 29169,9 29169,9	302°3 502°3 502°3	0,2 -100,0 -900,0	79,8 79,8 79,3
71a 719 729	273 1273 2273	29993 , 9 2999 3, 9 29993 , 9	13.8 13.8 15.8	0,0 *120,8 *1560,9	78,8 78,8 79,8
721 722 723 724 725 726	274 1274 2274 3274 4274 5274	30153,7 30158,7 30168,7 30163,7 30163,7 30163,7 30168,7	19,3 15,3 15,3 15,3 15,8 15,8	8,2 +120,0 +1250,0 +1600,0 +1660,3 +1668,4 +1790,8	69,8 69,3 59,3 59,3 69,3 69,3 69,3
727 728 729 730 731 732 733	275 1273 2275 3275 4275 5275 6275	30243,7 30243,7 30243,7 30243,7 30243,7 30243,7 30243,7 30243,7	15,8 15,8 15,3 15,8 15,8 15,8	0,0 -190,0 -1250,0 -1600,9 -1668,4 -1780,0 -1740,0	59,8 59,3 59,3 59,8 69,8 59,8 59,8
734 735 736 737 738	276 1276 2276 3276 4276	30668,1 30668,1 30668,1 30668,1 30668,1 30668,1	50,0 50,0 50,0 50,0 50,0	0,0 -190,0 -1250,0 -1600,0 -2100,0	69,3 69,3 69,3 69,3 69,3 69,3

739 760 741 742 743	277 1277 2277 3277 4277	51991.5 31991.5 51991.5 31991.5 31991.5 31991.5	346.2 344.2 344.2 344.2 344.2 344.2	0°6 •100°0 •1230°6 •1600°6 •2100°6	66.0 68.0 68.8 66.8 66.8
744 745 746 747 746	278 1278 2278 3278 4278	22998.3 22998.3 22998.3 22998.3	393.4 393.4 393.4 393.4 393.4 393.4	0.0 =100.0 =1250.0 =1600.0 =2100.0	67:0 67:0 67:0 67:0 67:0
749 750 751 752 753	279 1279 2279 3279 4279	33500.0 33500.0 33500.0 33500.0 33500.0 33500.0	442.6 442.6 442.6 442.6 442.6 442.6	0.0 #100.0 #1250.0 #1600.0 #2100.0	66.0 66.0 66.0 66.0 66.0 66.0
754 755 756	289 1286 2355	27500.0 27500.0 27500.0	ଟି - ପି ଟି - ପି ଟି - ସି	0 2 0 • 1 0 0 2 0 • 9 0 0 e 0	72,5 72,5 72,5
757 758 759	281 1281 285	29008 • 0 29008 • 0 29008 • 0	ତି _ହ ତି ତି _ହ ତି ତି _ହ ତି	6 e 8 e 1 8 0 e 8 e 9 8 6 9 e	71.0 71.0 71.0
760 761 762	282 1282 2825 2825	29175.0 29175.0 29175.0	8 e 8 8 e 8 8 e 8	0,0 0,001 0,009 0,009	70 e 6 70 e 6 70 e 6
763 764 765	283 1283 2283	20099°0 20090°0 20090°0	8 e 8 8 e 9 8 e 9	8°6 *188°8 *1268°8	70.0 70.0 70.0
766 767 768 769 770 771	284 1284 2284 3284 4284 5284	30175.0 30175.0 30175.0 30175.0 30175.0 30175.0 30175.0	8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8 8 2 8	0.0 -100.0 -1250.0 -1600.0 -1668.4 -1700.0	69:8 69:8 69:8 69:8 69:8 69:8 69:8

.

٠.

I.31

772 773 774 775 776 776 777 778	235 1205 2265 3285 4285 5285 5285	30250,0 30250,0 30250,0 30250,0 30250,0 30250,0 30250,0	0,9 9,9 0,9 0,9 0,9 0,9 0,9	0,0 1250,0 1250,0 1600,0 1668,4 1700,0 1700,0 1740,0	59,3 59,3 59,3 59,3 69,3 69,3 69,3
779 780 781 782 783	286 1286 2286 3285 4286	30675,8 30675,8 30675,8 30675,8 30675,8	7,0 9,9 9,0 9,0 9,0 9,0	0,9 -129,0 -1250,0 -1600,0 -2129,9	69,3 69,3 69,3
784 785 765 787 788	287 1287 2287 3287 4287	32000,0 32000,0 32000,0 32000,0 32000,0	0,0 0,3 0,3 0,3 0,3	0,0 =120,0 =1250,9 =1600,0 =2190,9	68,0 68,0 58,0 68,0 58,0
789 790 791 792 793	258 1283 2288 3288 4288	33000,0 33000,0 33000,0 33000,0 33000,0	3 9 3 0 9 9 0 9 9 9 9	0,0 =190,0 =1250,0 =1600,0 =2190,0	67,0 67,0 67,0 67,0 67,3
794 793 796 797 798	289 1289 2289 3289 4289	34000,0 34000,0 34000,0 34000,0 34000,0	3 * 7 3 * 3 3 * 3 5 * 3 5 * 3 5 * 5 5 * 5	0,0 =190,0 =1250,0 =1680,0 =1680,0 =2100,2	66,0 66,0 66,0 66,0 66,0
	TOTAL NODES NUMBER OF S MAXIMUM NUM	S IN SYSTEM# Suppace nodes HBER Assigned	TO THE	SURFACE	NODE

۰.

I.32

798 823 287

NODEs 1818 NODEs 2833 NODEs 2834 NODEs 2834 NODEs 2834 NODES 2834 NODES 2949 NODES 2194 NODES 2194 NODES 2194 NODES 2194 NODES 2015 NODES 2194 NODES 2015 LEMS 201 LEMS 201 LEMS 201 LEMS 201 LEMS 201 <t< th=""><th>READ: 180,85 READ: 182,85 MEAD: 182,85 MEAD: 182,85 MEAD: 180,85 MEAD: 180,85 MEAD: 180,85 MEAD: 28,85 MEAD: 28,85</th><th>NUDE SIGN NEAD NODES SE MEAD NODES SE MEAD NODES SE MEAD NODES SE MEAD NODES SIGN NEAD NODES SIGN NEAD SIGNAL NODES SIGNAL NODES</th><th>UN S S S S S S S S S S S S S S S S S S S</th><th>BUDI TEAD ISI ITAD <</th><th></th><th>JULU 1 JULU 2 JULU h><th>READ4 HEAD4 HEAD4 NEAD4 NEAD5 SI84 NEAD5 SI84 NEAD5 SI84 NEAD5 SI84 NEAD5 SI84</th><th>100,00 100,00 100,00 100,00 100,00 100,00 100,00 20</th></t<>	READ: 180,85 READ: 182,85 MEAD: 182,85 MEAD: 182,85 MEAD: 180,85 MEAD: 180,85 MEAD: 180,85 MEAD: 28,85 MEAD: 28,85	NUDE SIGN NEAD NODES SE MEAD NODES SE MEAD NODES SE MEAD NODES SE MEAD NODES SIGN NEAD NODES SIGN NEAD SIGNAL NODES SIGNAL NODES	UN S S S S S S S S S S S S S S S S S S S	BUDI TEAD ISI ITAD <		JULU 1 JULU 2 JULU READ4 HEAD4 HEAD4 NEAD4 NEAD5 SI84 NEAD5 SI84 NEAD5 SI84 NEAD5 SI84 NEAD5 SI84	100,00 100,00 100,00 100,00 100,00 100,00 100,00 20	
IDDES IDDES IDDES IDDES IDDES ISBA ILEMA I ILEMA I ILEMA I ILEMA I ILEMA I	MEAD- 165,05 MEAD- 165,05 MEAD- 25,05 MEAD- 25,05 MEAD- 25,05 MEAD- 25,05 MEAD- 25,05 MEAD- 28,05 MEAD-	NODEP 160 HEAD NODES 204 HEAD NODES 120 HEAD NODES 120 HEAD NODES 1417 HEAD NODES 1417 HEAD NODES 1403 HEAD NODES 1403 HEAD NODES 1403 HEAD NODES 134 HEAD NODES 134 HEAD NODES 134 HEAD NODES 1400E 1707AL NODES 1707AL NODES	SECORMER NODE: SECORMER NODE:	2884 HEAD 1823 MEAD 1823 MEAD 2837 HEAD 1838 MEAD 2883 MEAD 1834 MEAD 1834 MEAD 1834 MEAD 1834 MEAD 1834 MEAD 1835 MEAD 1834 MEAD 1834 MEAD 1834 MEAD 1834 MEAD 1835 MEAD 1834 MEAD 1835 MEAD 1835 MEAD 1835 MEAD 1836 MEAD 1835 MEAD 1836 MEAD 1837 MEAD 1838 MEAD 1838 <th>100.00 100.00<</th> <th>3 1954 1054 183 1054 183 1054 183 1054 183 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1055 166 1057 163 1058 1653 1058 163 1058 1658 1058 1658 1058 1658 1058 1658 1058 1658</th> <th>NZAD4 NZAD4 NZAD5 NZAD4 NZAD5 NZAD5 NZAD5 NZAD5 NZAD5 NZAD5 NZAD5 NZA5 NZA5 NZA5 NZA5 NZA5 NZA5 NZA5 NZA5 NZA5</th> <th>180,80 140,05 160,65 20,05</th>	100.00 100.00<	3 1954 1054 183 1054 183 1054 183 1054 183 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1054 163 1055 166 1057 163 1058 1653 1058 163 1058 1658 1058 1658 1058 1658 1058 1658 1058 1658	NZAD4 NZAD5 NZAD4 NZAD5 NZAD5 NZAD5 NZAD5 NZAD5 NZAD5 NZAD5 NZA5 NZA5 NZA5 NZA5 NZA5 NZA5 NZA5 NZA5 NZA5	180,80 140,05 160,65 20,05
IDDEC 2133 H IDDEC 2133 H IDDEC 233 H IDEMS 3 G IEMS 3 G	NEAD» 100,80 H NEAD» 20,80 H NEAD»	NDDES 120 MEAD NDDES 121 MEAD NDDES 201 MEAD NDDES 40 MEAD NDDES 40 MEAD NDDES 100 MEAD NDDES 134 MEAD NDDES 134 MEAD NDDES 134 MEAD NDDES 134 MEAD NDDES 134 MEAD NDDES 134 MEAD NDDES 134 MEAD NDDES 1074L NODES 1074L NODES	4 4 4 4 4 4 4 4 4 4 4 4 4 4	1120 HEAD 2817 HEAD 961 HEAD 1063 HEAD 1064 HEAD 1065 HEAD 1134 HEAD 1135 HEAD 1135 HEAD 1135 HEAD 1135 HEAD 1135 HEAD 1135 <th></th> <th>DIS 232 DIS 232 DIS 232 DIS 233 DIS 24 DIS 24 DIS 24 DIS 24 NODE 3 1904 3 1905 3 1904 3 1905 3 1905 3 1905 3 1905 3 1905 3 1905 3 19</th> <th>NZAD+ NZAD+ NZA+ NZA+</th> <th>LBC,05 20,05 20,05 20,05 25,05 2</th>		DIS 232 DIS 232 DIS 232 DIS 233 DIS 24 DIS 24 DIS 24 DIS 24 NODE 3 1904 3 1905 3 1904 3 1905 3 1905 3 1905 3 1905 3 1905 3 1905 3 19	NZAD+ NZA+	LBC,05 20,05 20,05 20,05 25,05 2
DDEG 1934 M DDEG 2931 M CDEG 238 DDEG 1922 M DDEG 2199 M DDEG 2199 M DDEG 2199 M DDEG 2199 M DDEG 2294 P DDEG 2004 M LEMG, 1 D LEMG, 2 D LEMG, 5 D LEMG, 5 D LEMG, 19 D LEMG, 19 D LEMG, 19 D LEMG, 19 D LEMG, 19 D LEMG, 19 D LEMG, 22 D LEMG, 20	MEADS ER, CS ANE ADS CONTRACTS OF A C C C A C C C A C C C C C C C C C C	NODES ESA HEAD NODES GENERAL NODES GENERAL MODES ELOS MEAD NODES ELOS MEAD NODES IN MEAD NODES IN MEAD NODES IN MEAD NODES SATA PL NODES SATA NODES I TOTAL NODES	A CORMER NODE: CORMER NODE:	Bi MEAD 1068 MEAD 2883 MEAD 139 MEAD 140 MEAD <th></th> <th>DEF 183 DEF 183 DEF 284 DEF 213 DEF 213 DEF 213 DEF 213 NDDE 3 1904 16 1651 17 163 4 1653 1 165 1 165 2 1603</th> <th>NZAD4 NZAD4</th> <th>20,00 20</th>		DEF 183 DEF 183 DEF 284 DEF 213 DEF 213 DEF 213 DEF 213 NDDE 3 1904 16 1651 17 163 4 1653 1 165 1 165 2 1603	NZAD4 NZAD4	20,00 20
CDEC 83 H DDEC 1152 M DDEC 1152 M CDEC 1152 M CDEC 1152 M TOTAL MUH TOTAL MUH TOTAL MUH TOTAL MUH CDEC 4274 F DDES 4274 F DD	MEAD ES, SS M MEAD MEAD ES, SS M M M M M M M M M M M M M M M M M M	NODES (835 WEAD NODES 2102 WEAD NODES 2102 WEAD NODES 336 WEAD WITH PLUX 6.C. NODES 5376 PL STOTAL NODES 5 TOTAL NODES	B CORMER NODE CORMER NODE	BBS NEAD 119 NEAD 1134 NEAD 1135 NEAD 1136 NEAD 1137 NEAD 1138	28,08 MG 28,68 MG 28,08 MG 28,08 MG 28,08 MG 20,080,000 20,080 20,0000000000	DEF DEF DEF DEF \$11' DEF \$11' DEF \$11' DEF \$11' DEF \$11' NODE \$11' NODE \$10' S \$100'	HIAD# MIAD# MIAD# HIAD# HIAD# SIE4 SIE4 HIAD# SIE4 HIAD# HIE3 HIE3 HIE5 HIE3 HIE3 HIE3 HIE3 HIE3 HIE3 HIE3 HIE3	20,05 20
DDE6 219 % DDE6 219 % TOTAL NUM TOTAL NUM DDE6 2274 % DDE6 200 % LEM8, 1 0 LEM8, 2 0 LEM8, 31 0 LEM8, 32 0 </th <th>MEAD: 28,65 M MEAD: 28,65 M MBER OF NODES I PLUX: R,890 PLUX: R,800 PLUX: R,80</th> <th>NODES 134 MEAD MITH PLUX 6,C, MODES 5276 PL MODES 5276 PL TOTAL NODES TOTAL NODES</th> <th>A REARIES NODEL</th> <th>4 1134 MEAD 4 1134 MEAD 4 113 4 11</th> <th>ES,08 MC</th> <th>NODE 3 1904 3 1905 3 1905</th> <th>MEAD#</th> <th>25,65 </th>	MEAD: 28,65 M MEAD: 28,65 M MBER OF NODES I PLUX: R,890 PLUX: R,800 PLUX: R,80	NODES 134 MEAD MITH PLUX 6,C, MODES 5276 PL MODES 5276 PL TOTAL NODES TOTAL NODES	A REARIES NODEL	4 1134 MEAD 4 1134 MEAD 4 113 4 11	ES,08 MC	NODE 3 1904 3 1905 3 1905	MEAD#	25,65
TOTAL NUM TOTAL NUM DDES 4274 P DDES LEMS, 1 D LEMS, 2 O LEMS, 3 O LEMS, 5 D LEMS, 6 D LEMS, 6 D LEMS, 7 O LEMS, 7 O LEMS, 7 O LEMS, 7 O LEMS, 10 D LEMS, 12 D LEMS, 13 O LEMS, 14 O LEMS, 15 D LEMS, 15 D LEMS, 15 D LEMS, 15 D LEMS, 15 D LEMS, 16 O LEMS, 17 D LEMS, 18 O LEMS, 19 D LEMS, 10 D LEMS,	PLUX- R.888 PLUX-	MITH PLUX 6,C, MITH PLUX 6,C, NODIO 5270 PL 3 TOTAL NODES 5 TOTAL NODES	A B CORNER NODEL B CORNER NODEL CORNER NODEL CORNER NODEL CORNER NODEL B CORNER NODEL	ADES 4284 RDES 4284 R1 3 38 5 72 6 65 16 165 16 3 7 5 37 5 37 5 37 5 37 5 37 5 37 5 37 5 37 5 37 5 37 5 37 5 37 5 38 5 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 58 5	PLUX= 8,488 37 37 54 71 85 185 185 182 19	NODE: NODE: 3 1904 10 1621 17 1638 4 1657 1 1672 13 1168 2 1603	1521 10 1535 10 1535 10 1535 10 1537 10 1537 10 1537 10 1537 10 1537 10 1537 10 1105 11 1625 11	/LUX5 6.888 //LUX5 6.888
TOTAL MUM TOTAL MUM DDES 8274 P DDES LEMS, 1 C LEMS, 2 C LEMS, 2 C LEMS, 3 C LEMS, 3 C LEMS, 5 C LEMS, 5 C LEMS, 1 C LEMS, 2 C C RMS, 2 C C C RMS, 2 C C C RMS, 2 C C C RMS, 2 C C C RMS, 2 C C C RMS, 2 C C C RMS, 2 C C C C RMS, 2 C C C C C C C C C C C C C C	REAR OF NODES I RLUX. R. 890 PLUX. R. 800 CRDENONE MATS CRDENONE MATS DRDENONE MATS	MITH PLUX &.C NODIO S370 PL STOTAL MODES STOTAL MODES STOTAL MODES STOTAL MODES TOTAL MODES TOTAL MODES STOTAL MODES STOTAL MODES STOTAL MODES STOTAL MODES STOTAL MODES STOTAL MODES STOTAL MODES STOTAL MODES STOTAL MODES	4 S CORMER NODEL C CORMER NODEL C CORMER NODEL C CORMER NODEL C CORMER NODEL C CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL S CORMER NODEL	ADDES 4284 ADDES 4284 81 3 53 7 72 8 16 12 37 5 37 5	PLUX= 6,665 37 34 71 88 105 122 10 19	XODE: XODE: 1621 7 1628 1653 1 1653 1 1653 1 165 2 1603	1821 18 1831 18 1833 18 1835 18 1835 18 1837 18 1837 18 1845 11 1825 11 1825 11	LUX» \$.881
DDEs 8274 P DDEs 100 LEMS, 1 00 LEMS, 2 00 LEMS, 3 00 LEMS, 5 00 LEMS, 5 00 LEMS, 6 00 LEMS, 7 00 LEMS, 8 00 LEMS, 10 00 LEMS, 12 00 LEMS, 13 00 LEMS, 14 00 LEMS, 15 00 LEMS, 16 00 LEMS, 17 00 LEMS, 18 00 LEMS, 19 00 LEMS, 10 00 LEMS, 14 00 LEMS, 15 00 LEMS, 16 00 LEMS, 20	PLUX • R.880 PLUX • R.880 CROTRONE MATE GROTRONE MATE GROTRONE MATE GROTRONE MATE GROTRONE MATE GROTRONE MATE BROTRONE MATE	NODIE SITE PL NODIE SITE PL I TOTAL NODES I TOTAL NODES	S CORNER NODEL CORNER NODEL	ADDER 4284 ADDER 4284 R1 3 35 7 72 6 65 16 165 16 28 3 37 5 37	PLUX= 6,485 27 37 54 38 185 185 122 10 19	NODE: 3 1904 12 1621 17 1628 14 1633 1 1672 13 1164 2 1603	1621 10 1621 10 1635 10 1675 10 1675 10 1675 10 1675 10 1105 11 1025 11	/LUX> \$,888 128 1083 137 1028 154 1037 15 1034 154 1034 15 1004 15 1004 15 1000000000
DDZ# 4274 7 DDZ# 1 0 LEM# 2 0 LEM# 3 0 LEM# 1 0 LEM# 2 0 LEM# 2 0 <td>PLUX- R.888 CROERONE MATE GROERONE MATE GROERONE MATE BROERONE MATE</td> <td>NODIO SITO FL TOTAL NODES TOTAL NODES</td> <td>ALVA S, 655 CORNER NODEL CORNER NODEL</td> <td>ADDES 4284 4 21 5 55 7 2 6 16 12 3 2 5 7 2 6 16 12 3 2 3 7 5 3 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7</td> <td>FLUX= 6,485 37 37 37 37 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38</td> <td>NODE: 3 1804 12 1621 14 1633 1 1672 18 1687 1 1672 18 1687 2 1603</td> <td>1821 12 1821 12 1833 10 1833 10 1857 10 1857 10 1844 10 1845 11 1825 10</td> <td>FLUX» 8.888 128 1863 137 1828 137 1828 138 1837 188 1873 188 1873 188 1873 19 1882 19 1882 19 1882</td>	PLUX- R.888 CROERONE MATE GROERONE MATE GROERONE MATE BROERONE MATE	NODIO SITO FL TOTAL NODES TOTAL NODES	ALVA S, 655 CORNER NODEL CORNER NODEL	ADDES 4284 4 21 5 55 7 2 6 16 12 3 2 5 7 2 6 16 12 3 2 3 7 5 3 7 5 5 7 7 5 5 7 7 5 5 7 7 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	FLUX= 6,485 37 37 37 37 38 37 38 38 38 38 38 38 38 38 38 38 38 38 38	NODE: 3 1804 12 1621 14 1633 1 1672 18 1687 1 1672 18 1687 2 1603	1821 12 1821 12 1833 10 1833 10 1857 10 1857 10 1844 10 1845 11 1825 10	FLUX» 8.888 128 1863 137 1828 137 1828 138 1837 188 1873 188 1873 188 1873 19 1882 19 1882 19 1882
LENS, 1 C LENS, 2 C LENS, 3 C LENS, 4 C LENS, 5 C LENS, 5 C LENS, 6 C LENS, 7 C LENS, 7 C LENS, 11 C LENS, 12 C LENS, 12 C LENS, 15 C LEN	DRDERONE MATE ORDERONE MATE DRDERONE MATE	1 TOTAL NODES 5 TOTAL NODES 5 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES 1 TOTAL NODES	S CORMER NODEL CORMER NODEL	4 2 2 2 3 3 55 7 72 6 65 16 165 16 3 2 3 37 5 54 7	20 37 34 71 305 322 8 39	3 1804 18 1821 17 1838 14 1833 11 1872 18 1885 18 1885 2 1803	1821 10 1835 10 1835 10 1874 10 1874 10 1874 10 1875 11 1825 12	122 1023 137 1022 134 1037 171 1034 183 1071 183 1071 183 1071 183 1088 22 1143 19 1002
LENG, 1 C LENG, 2 C LENG, 3 C LENG, 4 C LENG, 5 C LENG, 5 C LENG, 7 C LENG, 7 C LENG, 7 C LENG, 7 C LENG, 10 C LENG, 13 C LENG, 14 C LENG, 15 C LENG, 15 C LENG, 16 C LENG, 17 C LENG, 17 C LENG, 18 C LENG, 19 C LENG, 21 C LENG, 22 C LENG, 22 C LENG, 22 C	DRDENOME MATE GROEROME MATE DRDEROME MATS DRDEROME MATS	3 TOTAL MODES 5 TOTAL MODES 5 TOTAL MODES 1 TOTAL MODES 1 TOTAL MODES 1 TOTAL MODES 1 TOTAL MODES 1 TOTAL MODES 1 TOTAL MODES 1 TOTAL MODES 1 TOTAL MODES 1 TOTAL MODES 1 TOTAL MODES 1 TOTAL MODES 1 TOTAL MODES	B CORNER NODEL CORNER NODEL	4 2 21 3 55 7 72 6 164 16 164 16 37 5 37 5 37 5 37 5 37 5 37 5 37 5	20 37 37 37 17 10 30 10 10 10 10 10	3 1604 12 1621 14 1635 14 1635 14 1635 14 1635 14 1655 14 1655 15 1166 2 1605	1621 10 1638 10 1635 10 1674 10 1674 10 1087 10 1105 11 1025 10	828 1083 137 1028 134 1037 138 1037 188 1071 188 1071 188 1071 19 1088 19 1082
LENG, 4 00 LENG, 4 00 LENG, 5 00 LENG, 7 00 LENG, 7 00 LENG, 7 00 LENG, 7 00 LENG, 7 00 LENG, 7 00 LENG, 10 00 LEN	GROERONE MATS GROERONE MATS GROERONE MATS GROERONE MATS GROERONE MATS DROERONE MATS DROERONE MATS GROERONE MATS	TOTAL MODES TOTAL MODES	CORNER NODEL CORNER NODEL	LI 3 38 38 55 7 67 8 68 16 164 12 3 28 3 17 5 17 5	37 54 71 105 122 10 122 10	1621 17 1621 14 1633 14 1633 14 1633 15 164 15 1164 1603	1035 10 1035 10 1074 10 1087 10 1087 10 106 11 1103 11 1025 10	737 1828 734 1837 711 1834 883 1871 883 1888 82 1183 14 1882
ENS. S ENS. S	BRDEROME MAIS BRDEROME MAIS BRDEROME MAIS BRDEROME MAIS DROEROME MAIS BRDEROME MAIS BRDEROME MAIS BRDEROME MAIS BRDEROME MAIS BRDEROME MAIS BRDEROME MAIS BRDEROME MAIS BRDEROME MAIS	TOTAL NODES TOTAL NODES	CORNER NODEL CORNER NODEL S CORNER NODEL	35 72 0 72 0 16 12 1 16 12 12 2 2 3 2 3 37 5 34 7	105 122 12 17	1 1853 1 1872 18 1867 13 1166 2 1803	1874 18 1849 18 1185 11 1825 18	F71 1034 F81 1071 J03 1080 22 1143 J14 1082
ENG. 7 G ENG. 7 G ENG. 7 G ENG. 7 G ENG. 9 D ENG. 10 D ENG. 12 G ENG. 13 O ENG. 13 O ENG. 13 O ENG. 15 G ENG. 15 G ENG. 23 G ENG. 23 G ENG. 23 G	BROERONE MAID BROERONE MAID	I TOTAL HODES I TOTAL HODES I TOTAL HODES I TOTAL NODES I TOTAL NODES I TOTAL HODES I TOTAL HODES I TOTAL HODES I TOTAL MODES	CORNER MODEL CORNER MODEL CORNER MODES CORNER MODES CORNER MODES CORNER MODES CORNER MODES CORNER MODES	69 16 164 12 28 3 37 5 54 7		8 1887 3 1166 2 1603	1185 11 1183 11 1825 18	153 1588 122 1143 14 1882
End, 6 00 End, 7 00 End, 10 01 End, 20 01 End, 20 01 End, 20 01	DROERDNE MATØ DROERDNE MATØ DROERDNE MATØ DROERDNE MATØ DROERDNE MATØ DROERDNE MATØ DROERDNE MATØ DROERDNE MATØ DROERDNE MATØ	1 TDTAL MODES 1 TDTAL MODES 1 TDTAL MODES 1 TDTAL MODES 1 TDTAL MODES 1 TDTAL MODES 1 TDTAL MODES 1 TDTAL MODES	S CORNER NODES S CORNER NODES S CORNER NODES S CORNER NODES S CORNER NODES	3 8 88 3 37 5 54 7	E 17 .	2 1003	1025 10	19 1982
244 18 01 2444 11 01 2444 12 01 244 13 01 244 14 01 244 15 01 244 15 01 244 15 01 244 15 01 244 16 01 244 18 01 244 18 01 244 18 01 244 18 01 244 18 01 244 18 01 244 18 01 244 18 01 244 24 01 244 24 01 244 24 01	DROERONE MATA DROERONE MATA DROERONE MATA DROERONE MATA DROERONE MATA DROERONE MATA DROERONE MATA DROERONE MATA DROERONE MATA	I TOTAL NOOES S TOTAL NODES S TOTAL NODES S TOTAL NODES S TOTAL NODES I TOTAL NODES	CORNER NODES CORNER NODES CORNER NODES CORNER NODES	37 S 54 T		9 1828	1837 18	
Ens, 12 0 Ens, 13 0 Ens, 13 0 Ens, 15 0 Ens, 15 0 Ens, 15 0 Ens, 15 0 Ens, 16 0 Ens, 18 0 Ens, 18 0 Ens, 18 0 Ens, 21 0 Ens, 22 0	BROERONE MATS DROERONE MATS DROERONE MATS DROERONE MATS DROERONE MATS DROERONE MATS DROERONE MATS	S TOTAL NODES S TOTAL NODES 1 TOTAL NODES	S CORNER NODES		53 3	1 1837	1834 18	33 1836
EN4, 19 01 EN4, 19 01 EN4, 19 01 EN4, 19 01 EN4, 19 01 EN4, 19 01 EN4, 20 01 EN4, 20 01 EN4, 20 01	DRDERONE MATS DRDERONE MATS DRDERONE MATS DRDERONE MATS DRDERONE MATS	1 TOTAL NODES				E 1071	1088 10	187 1879
ENG. 15 01 ENG. 16 01 ENG. 17 01 ENG. 18 05 ENG. 19 05 ENG. 28 05 ENG. 23 05 ENG. 23 05	DROERONE MATS DROERONE MATS DROERONE MATS DROERONE MATS	E 78741 N88884	& CORNER NODES	162 18) <u>184</u> 8 1 181 10	4 1185	1163 11 1188 11	.84 1987 .21 1184
1944, 17 01 244, 16 05 244, 19 05 244, 20 05 244, 21 05 244, 21 05 244, 23 05	DADERONE MATA	1 TOTAL NODES	& CORNER NODES	17 3) 14 ·) 33 1	1 1082	1819 18 1236 18	18 1851 135 1614
ENS, 19 07 Ens, 28 07 Ens, 28 07 Ens, 28 07 Ens, 28 07		1 TOTAL NODES	& CORNER NODES	34 S 51 7	52 J	3 1836	1833 18 1878 18	32 1835
ENS. 21 01 ENS. 22 01 ENS. 23 01	JADERONE MATE	S TOTAL NODES	S CORNER NODES	78 8	86 6	1876	1087 18	16 1869
EMP. 23 0	RDESDNE MATS	S TOTAL HODES	& CORNER NODES	sii ii	ize se	3 1184	iiti ii	22 1103
B	DROERONE MATS	1 TOTAL NODES	S CORNER NODES	59 7	15 5	1 1035	1834 16	73 1851
ENS, 23 OF	DROERONE MATE	1 TOTAL NUDES	CORNER NODES	76 93 93 11	92 T 197 9	5 1874 2 1893	1693 18	98 1875 89 1892
,EMF, 86 GI ,EMF, 87 GI	DROEPONE MATE	I TOTAL NODES	CORNER NODES		126 10 57 4	9 1116 8 1841	1127 11	24 1189 57 1848
EHF, 28 07 EHF, 29 05	ROTIONE MATE	1 TOTAL MODES	& CORNER NODES	58 7	74 5	7 1036	1075 18	74 1857
ENS. 30 QX	RDERONE MATE	I TOTAL MODES	S CORNER NODES	12 18	in i	1 1012	1187 11	88 1971
EH4. 32 0A	RDERONE MATE	I TOTAL HODES	& CORNER NODES	48 S	123 12	8 (1104 9 1848	1186 11. 1857 18	23 1140 36 1839
EMS, 33 GR Ems, 34 Gr	ROERONE MATE	I TOTAL MODES 1 Total Nodes	G CORNER NODES	57 70 74 91	73 S 98 T	6 1637 ⁻ 3 1674	1874 18 1891 18	73 1831 96 1873
244, 35 GR Ekt, 36 GR	RDERONE MATH	1 TOTAL NODES 1 TOTAL NODER	& CORNER HODES	91 - 181 188 - 191	167 1	8 1691	1181 11	87 1892
ENS. 37 08	RDERONE MATE	1 TOTAL NODES	S CORNER MODES	39 5	55 3	8 1637	1636 18	55 1638
EM6, 39 OR	RDERONE MATS	S TOTAL NODES	ECORNER HODES	71 9	17 T	2 1873	1073 10	12 1655 89 1672
EM#, 41 08	RDERONE MATE	1 TOTAL MODES.	CORNER MODES	- 48 187 187 181	101 E 123 10	9 1 59 8 1 1167 -	1124 11	86 \$889 23 1186
EM#, 42 QR Em#, 43 DR	RDEROHE HATS	1 TOTAL NODES 1 TOTAL NODES	S CORNER MODES	17 34	33 1	1 1617	1834 18	13 1616 18 1833
ENS. 44 08	RDERONE MATE		CORNER NODES	51 61	67 5	1 1831	1868 18	67 1850
EHF. 46 DA	DDBRONE SAIT	1 TOTAL MODES		85 163	181 8	7 1611 4 1883	1883 18 1162 11	54 1267 61 1684
EMW, 47 OQ	RDERONE MATE	I TOTAL HODES I TOTAL HODES I TOTAL HODES	S CORNER NODES		116 18	1 1152 -	1117 11	18 1181
273, 48 QN	RDERONE MATS RDERONE MATS RDERONE MATS RDERONE MATS	1 TOTAL HODES 1 TOTAL HODES 1 TOTAL HODES 1 TOTAL HODES 1 TOTAL HODES	S CORNER NODES S CORNER NODES S CORNER NODES	119 114	135 11	i ii.	1136 1**	
EMP, 48 OM EMP, 49 OR EM4, 42 AA	RDERONE MATS RDERONE MATS RDERONE MATS RDERONE MATS RDERONE MATS RDERONE MATS	1 TOTAL HODES 1 TOTAL HODES 1 TOTAL HODES 1 TOTAL HODES 1 TOTAL HODES 1 TOTAL HODES 1 TOTAL HODES 1 TOTAL HODES	B CORNER NODES B CORNER NODES B CORNER NODES B CORNER NODES B CORNER NODES			6 1117 5 1016		32 1815

FI THE.	41	CROFERNE	MATE	I TOTAL NODES	1 1	CORNER NOD	ies s		-189	81	1988	. 1191	1153	1283
CL CHINA														
ELEN#.	34	DNORRONE	ma ja	P ADINE MODE		CORMER NOU	189 J.83	1 934	111	103	1101	1116	1111	1198
FLENS.	55	ORDEPONE	ната	1 TOTAL NODE) (CORNER NOO	i zs 1 1	8 133	114	117	1113	1133	1134	1117
24 2 4 4		ABBERONE	MATE	I TOTAL HOOF	i 1			1 19	11		iiii	1979	1 2 3 4	1218
CFCMA [®]	28	UNUERONE		I TUTAL HUUE		CONNEN HUU				17	1413	1034		
ELENS.	- 17	GROERGNE	HATE	L TOTAL NOOE		I CORMER NOO	1 23 31	E (4	C	31	1932	[547	1243	[1]]
Tt Tud		OPDERONE	HATH	T TOTAL MODES	i 1	CORMER NOO	189 A1	й AA	4.4	41	1111	1944		1043
erena.	20	ON DE ROME		I TOTAL HOUL					11	72	1177			1171
ELEM#,	- 59	OWDERONE	MATE	I TOTAL HOUE		I CONMEN MOD	769 BI	B - 43	42	• • 7	1235.	1113	1011	1293
FI PHR.	43	OBOERNYE	HATS	I TOTAL HODE	1 4	ECRNER NGO	2 2 8 9 9	1 1 1 2 2		- 12	1111	1129	1399	1212
				A POTAL NODE									1111	1.04.0
ELENG.	•1	CHORROW E		I TOTAL HOUSE		COMMEN NUL	ILS TAI		110		1101	1111	2114	1444
ELEN#.	42	ORDERDNE	HATƏ	1 TOTAL NODE:	1 1	I CORXER NOD	XX 111	7 134	133	116	1117	1134	1133	1115
		APACTONE		I TOTAL MOOP		PROVED VAN	174 1	11			inia	iéti	iäis	4 8 4 2
CPELLA .	•3	04054046		A TO ME HOVE		COMMEN NOU					1117			
ELEN#.	- 60	ORCERANE	нате	I TOTIL RODE:		DON REMADS	JES 31	1 43	47	- 23	1931	1049	3847	1938
Ri Fus		OBDEBANE	HATS	A TOTAL MOOPS	1 1	CORNEE NOD	1 73 4 1	8	11	27	1222	1848	1264	1947
		ORDER DIE					-	i X				1515	1117	
575444		04054045		I TOTAL HOUSE		GONNER HOU					1203	1044	1001	1000
ELEMG.	67	GRBERGNE	HATP	1 TOTAL NODE	1 1	F ECRNER NGO	183 - 83I	E 99			1212	1897	1898	1291
Ri Tue	Á.	02022012	HATA	1 TOTAL MOOT	1 1	CORVER NOT	172 81		111	- 1 Å .	1129	1114	1114	1965
CP FLAA		01061016												
ELEN4.	67	GROERINE	mei a	I TOTAL MODE		D CORMER NOD	JEJ 111	9 133	136	113	1113	[[]]]	1132	1113
ELENG.	79	ORGERONE	MATE	1 TOTAL NODE:	1 1	CORNER NOO	DEA 11	3 3 3 3	- 19	12	1111	1838	1629	1912
To Cana		OFFERN	MATE	I TOTAL NODE		CORVER NOT		i 17	74	17	1919	10.4	1	
ELEN.		Ounswing		I TOTAL HOUSE									1040	1057
ELEMP.	72	34028046	MATS	I TOTAL NODES		I COMMEN NGO	i ka 41	7 64	• 1	45	1247	1264	1293	1249
Fi Fxa	78	REDVERNE	MATE	1 TOTAL NODES	1 1) CORNER NOO	129 - 44	1 11		41	1848	1281	1223	1643
				1 TOTAL HODE						11		1993		
STEWA*	14	ONCENCHE		I TALE HOURS		CONNER HUD					4444			1948
ELENS.	- 75 -	ORDERONE	натя	I TOTAL NODE) - (CORNER NOD)E3 11	0 113			1973	1113	1114	1397
81 FM8.	76	ORDERONE'	MATE	1 TOTAL NOOD	1 1	ÈCRNFR NOC	23 11	1 1 1 2 2	131	111	1111	1112	iite	5118
C.C.		0.05.00.0									1112		1111	
EPENA ⁸	11	ANDENDAR	781V	P IDINE MODE		CONNEN HOD	158 I	E 57		¥1	1212	1847	1058	1411
ELTHO.	78	ORDERONE	MATO	1 TOTAL NODE	1	CORNER NOD	21 21	P 46	43	22	1329	1846	1845	1828
Ft Pmm	7.	OROFIONE	NAŤM	1 TOTAL MOOT	1	CORNER NOS	17 Å Å	L 44	43	Ă.	1844	IBAT	I BA P	1848
	11	ALAFAD.							11	72	1272	1272	1222	1171
ELEXS.	4	UNDERONE	MA (7	I TOTAL NOOT	1	CORNER NOD	/K# \$3	3 - T - T	77	42	1293	1968	1914	1295
ELENA		ORDERONE	HATP	& TOTAL NODPI	1 1	CORNER NOS	es si	8 47	44	71	1888	1547	1844	1279
		OBOFRANC	MATE	1 10714	i 1		i i	i					1112	
ELCH8.		UNVERURE		S TAINE MORE		SOUNDER HOD	- VI	<u>. 117</u>	112	78	177	1117		1070
ELEN#.	83	ORCERONE	MATE	I TOTAL NODE:	1 (I ÇORNER NOO	114 114	1 1 1 1	138	113	1114	6131	1158	1113
T) Pma		DEDITONE	NATE	1 TOTAL MODE	ı i		11 E.	1 34		- i i	iiii	i i i i	1837	inin
		ONOSHUNE.		L TOTAL HOUL		5000EN 000					1211		1	
ELENG.	87	UNDERONE	HAT	I TUTAL NOOE	, (CONNEN NOD	167 ZI	y - 45	44	27	1053	1943	1244	1241
EL ENG.	86	ORDERONE	HATE	1 TOTAL NODES	1 1	CORNER NOD	123 41	1 12	51	44	1843	1242	1241	1444
		COSC DONG							·	- 77			1111	
ELTHA.	91	ONDENONE	****	1 JOINT HODE		GUNNER HUU	169	1 17			1000	3417	7418	1991
ELEM#.		ORDERONE	HATO	I TOTAL NODE	1	CORNER NOD	2 23 7 1	, 18		78	1977	1996 -	1975	1973
TI CHA		ODDEPONE	MATE	4 TOTAL NOOR	1 3	CORMER NOD			112		1	1113		i net
ELENN,		UNDERUNE		I TOTAL GOOD				I - 111	112			1111		
	- 48	CHDENDHE	TALE.	I TOTAL MODE		I CONNEN NOO	769 I.I.I		147	112	- 1113 .	1179	1147	1112
ELENS.	91	ORCERONE	HATT	1 TOTAL NODES) (I CORNER NOD	1 23 11	1 17	25		1918	1827	1825	1589
EL EMA		ATOTACHE		I TOTAL MOOP					ĂŤ			1844		
EFENA [®]		UNUERUNE		A TOTAL MODE		LORNER NOU					1.441		1043	1964
ELEM#.	- 93	ORCERGNE	MATE	1 TOTAL NOCE	1	I CORNER NOD	3 12 44	I 61	6.8	43	1844	1291	1269	1843
ELENA.		OROFIONE	HATS	1 TOTAL NOOES	1	CORNER NOD	1 E3 A 1	1 73	77	6.0	1241	1878	1977	1248
		00000000											1111	1222
EFEWA*	72	RACE BOWE	1414	I TUTAL HOURS		LOWNER HOD	164 FI	73		<u> 1</u>	1	1645	1914	1911
ELEN#.	- 46 -	ORCERONE	HAT#	I TOTAL HODE) () CORNER NOO)E3 11	9 · 112	. 111		1893	1112	1111	1894
81 FM 8	67	OPOSSONS	MAPE	I TOTAL MODES				i i i i i					1121	
EFFL.		ONDERDHE		I TOTAL HOUSE		CONNER NOD	EB 311		182		3334			
ELENG.		OKDE#ONE.	MAI#	I TOTAL NOUL) COMMEN NOC	7 6 8 - 1	7 28	23		1254	1229	1243	1222
ELENØ.		ORDERONE	- MATO -	1 TOTAL NODES		I CORNER NGO)EB 21	L 41		23	1226	1283	184 2	1825
Pt Pmp		ADDE DONE		A TOTAL MOOT		CORNER NOR								
ETENA [®]	1.04	ANDERGHE		I TOTAL HOUSE		CORRER NOU			37	16	7449	1498	1034	1445
ELENG.	191	ORDERDNE	HATE	1 TOTAL NODE		I CORNER NOD	1 23 6 1	8 77	74	- 39	1210	1977	1975	1859
FI FNA	183	NEOFENKE	HATA	A TOTAL NODE	1 1	DOBNES NOT	1 FÚ - 2 1	i ii	- ÷ ÷ ÷ ÷	76	1877	i sia	inet	UNYA
	112	0.000.000												1111
265644	193	3MON30ND	MATA.	I TOTAL MODE:) (I COMMEN NOO	NG 8 - 94	• •••	11.	73	1114	1111	1119	1973
ELEND.	184	DROERONE	MATE	1 TOTAL NODE	1 1	CORNER HOD	23 11	1 123	127	tip	1111	1128	1127	1118
		OBS CONS		A RETAL MORE										
CPEHA!	163	ONDENDAE		T LOLAT HOOF		CONNEW HOU	E9 641		411		1409	1407	1411	121-
ELEN#.	186	ORDERONE	MATO	I TOTAL NODE) () CORNER NOD	168 8 8 1	585	272	471	1231	1252.	1272	1275
. Ri Cua'	191	OBREBONE		I TOTAL MODE	L 1	L CORMER NOO	168 283	5 241	373	373	1949	1281	1 9 7 S	1375
		ABBRICHE		I PATH MODE										
CLEUN.	- 2 4 4	GADE HOWE		I TOTAL HODE		CORNER HOD			214	413	1103	1494	1614	1413
ELEN#.	189	URDERCHE	M#£#	1 TOTAL HODES	i (CORNER NOD	7E9 284	542	273	274	1264	1285	1273	1274
	11.	ORBERONE	HATA	1 TOTAL NOOP	1		23 241	214		- įini	1244	1 2	1276	1974
		CHUCKU''L		A BARAS MODE	. 1				513		1643	1004	1212	45(7
ELEN#,	111	04054046		I TUTAL NODE	. (I COMMER NOO	NES 281	, <u>291</u>	217	276	1299	1297	1477	1279
ELEN#_	112	CADERONE	MATE	S TOTAL NODES	1 1	CORNER NOD	ES 241	7 282	278	277	1247	1288	1278	1277
FI FMA		OBALBONE		I TOTAL NOME			11	144	3 · · ·			1244		1274
		AND FROME		- INTHE WORK								44.97		
ELEN#_	114	CROENDNE	MATO	I TOTAL NODE	i (I CORNER HOD	123 11 1	F 271	251	Z18	1278 -	1271	1591	1269
ELENS	114	DROEBONE	HATS	L TOTAL NODES) (CORNER NOD	23 37	273	212	241	1271	1273	1213	1241
				4 TOTAL MARKS				112	272		1111	1112		
EFELAA*	110	ONDERGHE	79 F V	A TUINE HUDE		CONNER NOO	5 4 6 73	r 473	693	692	1212	1419	1699	1242
ELEN#	117	DROERONE	HATS	I TOTAL NODE	, 1	I CORNER NOD	27 27	3 174	214	263	1513	1274	1218	1592
FIFME	114	ORDEBONE	MATE	1 TOTAL NORS	1	CORNER NON	29 29	1 974	719	24.4	ižża	1274	1248	1944
NEEP		SHUERUNE.										1917		1644
ELENG,	119	URDERONE	MATE	I TOTAL MODE	. 1	I CORMEN NOO	767 ZY	3 Z7\$. 200	292	1213	1275	1244	1265
CLEH#	tże	ORDERONE		1 TOTAL NODE		CORNER NOT	21 21	1 277	217	214	1274	1277	1247	1244
		00000000						. 111			1117		1271	3594
CLEN#	141	UNDERONE	77 A U #	I TOTAL MODE		CON MEMBRO	169 ET	T ALA	** *	297	1411	1212	1268	1241
ELENS.	122	ORDERONE	HATP	1 TOTAL NODE:		CORNER NOO	28 271	274	219	253	1273	1279	1244	1248
	121	CROSSAN		I TOTAL NOR					<u>jii</u>	244	1913	1741	1944	
PFCMA				A TOTAL HOUSE		Sounda 400			275				1631	1534
ELEN#,	154	URDERONE	MATS	I TOTAL NODE	. 1	I CORNER HOO	24	L 212	125	251 -	1241	1145	1252	1521
ELFHA	124	ORDEBONE	NATE	1 TOTAL NORP		CORNER NOS	22 24	2 243	211	255	1249	1241	1241	1242
		ASSESSME	-	1 TOTAL MOOT					317		1111			
GLENW.	150		- a i +	1 10146 HUDE			160 ED3		624	638	14.83	1294	1424	1423
ELENS.	127	URDENNNE	MA78	1 TOTAL NODE:) 1	I CORNER NOD	23 26	1 253	522	122	1264	1572	1522	1234
FI FMA	124	DEOFEANE		I TOTAL MORE				1 94A	344	3		1	1 2 4 4	1964
FPRMA.	140	04VE7U"6	6715						230	633	1697		1634	1433 .
ELEM#.	121	ORDERONE	M 7 1 8	I TOTAL NOOL		COMMEN NOD	165 FJ	e 267	Z37	525	1244	1291	1237	1234
ELENE.	130	GROERGNE	нага	1 TOTAL NODE	1 4	CORNER NOO	128 281	7 241	121	237	1247	1248	1224	1237
		REALE		I TOTAL MARTI										
ELCH#,	141	NUCENUNE		A TOTAL HOOR		FURNER RUD		<u> </u>	437	234	1414	1447	1457	1430
ELZN#.	135	URDERONE	MATO	I TOTAL NOCE	1	I CORNER HOO	ICA S21	D 231	241	248	1238	1121	1241	1249
ELFHA	111	ORDEBONE	MATE	S TOTAL NORTH	1 1	CORNER NOD	23 24	ert 1	213	241	1941	1245	1943	1241
				I TOTAL NOOD				1 12	111	171	1311	1111	1222	
ELENG.	134	UNCENTRE	17 A T W	& TUTAL NUCES		COMMEN NOD	147 X31	E 421	\$43	272	1525	1422	1843	1242
ELENG	135	ORDERONE	HATO	S TOTAL NODE	1	I CORNER NOD	251 251	3 254	244	E43	1233	1254	1344	1243
Tt Fue	114	OBDERNHE		I TOTAL HOOP	i	CORNER NOA	en 24	l jeć	244	244	1234	1334	12.4	1244
555788	1 30	04064046		A TUTAL TUGE		Sound und	E4 E3		643		1434	1033	1643	1644
ELEN#.	137	ORCERONE	HATP	I TOTAL HOBE	1	I CORNER NOD	727 391	3 236	246	243	1253	1528	1245	1245
FI FMA	114	DROZBONE	MATE	A TOTAL NORP	ı i		193 3E	. <u>38</u> .	247	9 A A	I DRA	1947	1241	1244
				A SALAS TUDE				111	271	177	1638	2021	1271	
ELEN#.	137	UNDERONE	WATE	I TUTAL HODE	. 1	CORNER NOO	128 831	23 9	248	247	1521	1920	1448	1247
FITME	148	ORDEBONE	HATS	1 TOTAL NODE	1 1	CORNER HOD	ES 251	239	244	244	1238	1255	1245	1948

									*							
	***. 181	ORDERANE	KATE	1 1074		& CORNEL	NODES	245	241	831	238	1248	1241	1231	1239	
21	EX4. 142	DRDERONE	NATE	I YOTA	L NODES	& CORNEL	NODES	841	142	232	ĒĴį	1241	1242	1232	1231	
ĒL	EN8. 143	BRDERONZ	HATP	1 TOTA	L NODES	& CORNEL	NODES	242	843	£3 3	\$35	1242	1143	1533	1535	
EL	EH#, 144	ORDERONE	HAT#	1 1074	L NODES	& COANEI	NODES	143	844	234	133	1143	1244	1111	1111	•
EL.	ens, 143	. GROENOME	HATE	1 TOTA	L NODES	S CORNEL	NODES	844	243	233	E34	1244	1243	1632	1234	
EL	Ex#, 145	ORDERONE	MATE	1 TOTA	L NODES	S CORNEL	R NODEL	243	646 6.7	239	533	1642	1247	1230	1236	
EL.	EKF, 147	CROFTONE	MATE	I TOTA	L RUDES -	CORNEL	N NUVER		244	511		ijij	1225	1238	1237	
EL	EM2, 140		MATE	1 TOTA	L NODER	# CORNE	R KODFE	1 1 1 1	iii	217		iiii	1217	1239	1236	
	Ens, 147	ADDIG ONE	MATE	I TOTA	L NOBES	& CORNEL	R NODES	232	231	221	221	1239	1111	1221	1258	
	FRE. 181	ORDERONE	MATE	1 TOTA	L NODES	& CORNEL	NODES	231	ΪĴΪ.	222	- 821	iti	1232 -	1222	1531	
2L	ENF. 152	ORDERONE	MATE	1 TOTA	L NODES	& CORNEL	R NODES	232	233 .	\$53	222	1232	1833	1223	1155	
EL	EH#, 153	GROERONE	HATP	1 TOTA	L NODES	CORNE	R NODES .	233	834	824	553	1133	1111	1254	1153	
EL	ENC. 154	GROZEGNE	MATE	1 TOTA	L NODES	S CORNEL	NODES	- 234	513	113	224	1114	1633	1442	1664	
EL	EH\$, 155	ORDERONE	MATE	I TOTA	T NODER	S CORNEL	R NODES		\$30	225	123	1632	1230	1227	1224	
. EL	EM4, 135		MATE	1 101A	L NODIE		NODES	- 636	214	222	227	1217	1236	1226	1227	
511	FN#. 197	OROFHONE	MATE	1 7014	L NODES	& CORNEL	NODES	238	217	111	221	in	1239	1227	1228	
EL.	EN6. 159	ORDERONE	HATP	1 TOTA	NODES	CORNEL	NODES	225	153	211	21\$	1228	1251 -	1211	1216	
EL.	EN#, 148	ORDERONE	MATE	I TOTA	L NODER	& CORNEL	R NODES	-221	111	£1£	.211	1221	1555	1515	itii	
EL	EH#, 161	ORDERONE	MATE	1 TOTA	L NODES	S CORNE	NODES	522	553	\$13	- EIE	1125	1553	1213	1K1Z	
EL	EH#, 165	BADERONE	HATE	1 TOTA	L NODES	E CORNEL	R NODES	553		<u> </u>	- K13	1223	1664	1512	1213	
EL	EH4, 163	URDERONE	MATE	1 TOTA	L N0023	S CORNEL	NODES	229	827	212		1225	1224	1216	izis	
EL	274, 144			1 1014	1 NODES	B CORNEL	NODER	336	221	217	Ē	1226	1827	itit	itis	
61. 81	EM4, 143	REDERONE	MATE	1 1014	1 NODES	& CORNER	NODES	227	228	žiš	- Eij	1227	1121	1216	1217	
ĒL	ENS. 147	ORDERONE	MATE	I TOTA	NODES	& CORNEL	STOON N	855	129	115	- žiš	1228	1229	1217	1218	
EL	EH4. 168	GRDERONE	HATE	1 TOTA	L NODES	# CORNE	NODES	215	211	185	288	1516	1211	1201	1298	
EL	EH6, 149	ORDERONE	NAT#	L TOTA	L NODES	S CORNEL	NODES	\$11	\$15	282	281	1211	1215	1222	1501	
EL	EH4, 170	ORDERDHE	HATE	I TOTA	L NODES	& CORNEL	R NODES	212	113	113	282	1212	1613	1567	1202	
EL	EN4, 171	ORDERONE	HATP	1 TOTA	L NODEL	S CORNE	NODES	213		884	803		1112	1283	1284	
EL	EMC, 172	ORDERDWE	MA10	1 1014	L NUDES	A CORNEL			214	284	204	1215	1214	1284	1285	
	ENV, 173		HATA	1 1014	L NODES	e conve	R NODES	216	217	287	285	ižiš	1117	1207	1286	
EL.	EHS. 175	ORDERDHE	MATE	1 1074	L NODES	& CORNER	NODES:	zij -	211	285	103	E IZIT	1218	1203	1297	
EL.	EH8. 176	ORDERONE	HATE	I TOTA	L NODES	S CORNE	NODES	214	2j9	287	583	1514	1217	1289	1581	
EL.	EH4. 177	ORDERONE	MATS	1 TOTA	L'NODES	S CORNE	R NODES	237	53	42	- 41	1534	1052	1848	1041	
EL	EH4, 376	ORDERONE	MATE	1 TOTA	L NODES	E CORNEL	R NDDES	122	534	- 41		1124	1237	1841	1446	
EL	EH#, 179	DROERONE	HATE	E TOTA	L NODES	CORNE	NODER	227	48	37	- 219	1554	1545	1237	1617	
ELI	EN4, 180	ORDERONE	MATE	A YOTA	L WODEN	P COMMEN	T NODES		37	30	51	1617	1924	1214	1621	
	CHI. 181	ORDERDITE OPDERONE	MATE	1 1018	I NODES	E CORNEL	R MODES		222	218	288	1834	1226	ižio	1289	
EL.	FME. 181	DROFFONE	MATE	TOTA	L NOBES	6 CORNEL	RNODES	- i -	E42	Ejs.	229	1885	1248	1230	1220	
ËL	EH#. 184	ORDERONE	HATE	1 TOTA	L'NODES	. CORNEL	R NODES		212	238	242	1686	1260	1258	1348	
EL.	EH#, 185	ORDERONE	HATS-	1 TOTA	L NODES	S CORNE	8 NODES	1 ÷ 6 1	511 -	875	265	1004	1210	1278	1249	
EL	EH#, 387	ORDERONE	HATE	1 TOTA	L NODES	S CORNE	R NODES	259	.267		- 25	1524	1264	1833	1652	
EL	EH#, 185	ORDERONE	MATE	1 TOTA	L NODES	S COUNE	R NUDES		267		2 8 Y	1577	1667	1244	1697	
EL	EW8, 189	ORDERONE	MATE	1 1014	E MODES	a CORNE	A MONES	234		834	63	1834	1		1.05.3	
********				******					******		******					******
TOTAL	NUMBER 1		CI ANEN	7	36 THES	E NUDES	ARE AS S	IAEM BE	LON							
							*******	*******	,							
2	1992	2002	3	1893	2093		1824	2224		6	1886	8284			1898	2228
, i	1009	2289	19	1010	2816	11	1011	2811	1	ž	1812	2012	· .	13	1013	2813
14 .	1014	2414	15	1015	2815	16	1414	2816	i	•	1119	2819		20	1828	2828
21	1651	\$451	52	1845	5852	54	1625	5826		1	1627	2827		26	1828	5259
	3624	2227	38	1025	E938		1831	2031		2	1635	\$235		33	1833	5833
30	1030	2410	37	1842	2637	36	1838	2036			1837	2037			1848	8948
46	1846	2946	27	1847	2847		1246	2848	- 1		1614	2249		50	1859	2250
\$3	1053	2153	34	1834	2854	. 55	1835	2055	Š	1 .	1634	2836		37	1857	2837
58	1838	2428	<u>9</u> 7	1859	2059	48	1868	3685	ī	1	1861	2761	i	52	1862	2882
63	1863	8963	64	1860	5994	45	1865	2012	6	\$	1866	2066	(57	1867	2867
76	1410	2414	11	1471	anti -	78	1615	2015	I	3	1073	2873	1	74	1514	2814
13	1013	20/3			8876	11	1011	2017	<u>I</u>		1016	2274	2		1879	5414
47	1847	2887	88	1822	2218	R	1221	2329		8	1892	2203			1891	2441
92	1892	2892	93	1893	2893	94	1874	2874	i	5.	1875	2243			1896	2994
97	1897	2897	98	1898	2298	99	1099	2899	10	9	1168	2100	10	81	1101	2191
194	1184	5184	165	1162	2162	186	1106	£165	18	T	1187	2187	. ii	88	1108	2105
199	1169	5184	118	1118	2118	111	1111	- 8111	. 11	2	1111	5115	. 1	13	1113	2113
114	1114	6314	115	1117	5113	- 112	1111	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	11	T	1117	X17		16	1118	Z118
121	1121	2121 3134	127	1127	2122	123	1123	6153	12		1124	E154	11	23	1123	2125
111	1131	2131	132	\$132	2112	133	1111	8128			1167	 	1.	90	1130	2130
298	1208	2289	201	1851	2291	282	1282	2222	20	3	itel	2283	21		1204	2204
3284		Z = 1 = 1				****					- 222	1 4 4 1				4384
	4284 -	2524	K83	1202	e283	3603	4583	2263	9 E B	2	220	1605			3248	
207	4284	2521	883 3267	1265 4887	888	1509	8053	3208	428	3	289 .	1287	22	5 4	3289	4209
207	4284 1297 1219	2284 2287 2210	883 3287 811	1285 4887 1211	888 888 8211	1589	8205 1212	10253 1205 1253 1253	428	1	289 1213	1201	22	09 14	3289 1214	4209 8214

. . . .

• .

.

ĭ.35

217	1217	1155	3217	4217	612	1218	2210	3816	4218	219	1217	#219	3219	4219
550	1228	2228	155	1551	2221	525	1555	1555	153	1233	5553	224	1254	5554
227	1227	2227	1227	1223	335	3663	4263	2223	0227	229	1220	2220	3228	1524
230	1239	2219	231	1231	2231	212	1232	7212			2211	214	1211	7227
3234	4234	5234	233	1233	2233	3239	4233	5233	4233	235	1256	3236	3234	4234
237	1237	1237	3237	4237	238	1239	2238	3833	4238	237	1237	2237	3237	4239
248	1240	\$548	241	1841	1455	242	1242	2242	243	1243	2243	244	1244	2244
3544	4544	254#	243	1543	2243	3245	4249	5245	\$245	245	1246	2246	3246	4246
247	1247	2541	3247	8247	248	1244	5549	3248	4248	247	1247	2247	3249	4247
250	1528	5524	521	1921	\$528	525	1525	1525	122	. 1233 .	2253	254	1254	\$528
3674	1987	7234	733	1623	<233	3522	4233	3633	\$233	135	1928	11220	3528	4256
268	1248	2248	241	1241	2241	24.9	1343	3638	9638	1212	1437	2637	1234	4234
3264	4264	5264	249	1245	2265	1245	12249	1244	4245	215	1244	2246	8266	4264
267	1267	1055	3267	4267	268	1264	2248	3268	4268	24.9	1249	2244	1249	4210
278	1213	1.35	273	1271	2271	272	1212	2272	273	1273	2273	274	1274	2274
3274	4274	5274	275	1512	2273	3275	4275	5275	6273	274	1276	2276	3276	4216
511	1277	5511	3877	4217	87 4	1278	\$278	3518	4278	279	1277	2277	3279	4279
583	1200	2243	281	1501	5591	585	1505	2282	543	1283	5583	884	1584	2284
358.0	4204	2544	203	1532	5582	3582	4287	2592	6582	. 286	1586	5594	9825	4286
	1641	C247	3691	*<*/	294	1400	~280	3223	4288	284	1289	4855	2594	4284
014E	DIMENSIONS IN OTHER PROGRAMS HAVE TO BE BET FOR POLLOWING MAXIMUM VALUES TOTAL NUMBER OF SURFACE NODES(MISURF)= 221 MAXIMUM NUMBER ASSIGNED TO SURFACE MODES(LNPT)= 289 TOTAL NUDES IN THE SYSTEM (NTT)= 788 THE POLLOWING PARAMETERS ARE RELATED TO 8,C TOTAL MUMBER OF POTENTIAL B,C, PRESCRIBED (NOPTC)= 48 TOTAL MUMBER OF SURFACE NEEDED (NOPTC)= 4 TOTAL MUMBER OF STREAMS 8,C, PRESCRIBED (NOPTC)= 4 TOTAL MUMBER OF STREAMS 8,C, PRESCRIBED (NOPTC)= 4 TOTAL MUMBER OF STREAMS 8,C, PRESCRIBED (NOPTC)= 4 TOTAL MUMBER OF STREAMS 8,C, PRESCRIBED (NOTFTC)= 5 THE FOLLOWING THO PARAMETERS ARE RELATED TO STIFFNESS MATRIX TOTAL MUMBER OF UNKNOME(PTS)= 753												******	
	THE THE	FOLLOWING TQTAL MASIM TOTAL MASIM MASIM FOLLOWING	B PARANE NUMPER NUMPER NUM NUMBER NUM NUMBER NUM NUM NUM NUM	TERS ARE OF SURF! ER ADDIG! OF ELEXI ER OF NOT SERD NOT ATED TO P	ASSOCIAT AGE ELEME VED TO SU ENTEGNELE DES IN AN DES IN AN	IED WITH Ints(hes) Ints(he	ELEMENT: URF1 - LEMENT (N: UT (NODMA) UT (NONE)	D Delenja C)a Enja		181 181 321 1				
*******	••••••	HAX1H	IVN 111401	EN 13\$19) 199229996	NED TO HI	\TERIAL () #########	147N) +)) 	*******	******	******

TTHE LAISTEAL OATEN, ERMAUSORS :

APPENDIX I.2: PLOTEL-OUTPUT

Model and element map plotted using the input deck used for simulation of flow through dome breach.

Solution Mining - Determination of Flow Through Salt Dome Breach

Model and Element Map of Whole Region Excluding Salt Dome Subregion

124	.121	122	_123_	124	125	126	122	_123_	129	189	_181	_122_	123	184	_1E5	_106
21	14	7	41 -	36	31	26	164	97	93	83	76	69	62	55	48	
103	181	183	186	197	103	189	110	Ju.			115_	115	116	112	118_	119
20	19	6	43	35	39	25	163	95	69	82	75	68	61	54	47	
88	87		80	52				81		85	87_	_ 53	20	102	101	102
19	12	5	59	34	29	24	102	9 5	88	81	74	67	EJ	53	K S	
69	78		72		- 78-		75	77	78	70			102		88	85
18	11	4	38	33	28	23	101	94	87	88	79	66	59	52	45	
52	53		54	58	57			89		_ 62	-69	81	63	BB	87	63
17	10	9	37	32	27	22	100	89	86	79	72	65	58	51	64	
95	198	97	83	99		41		19_		65	- 23		ee		59	151
16	9	2					99	92	85	78	71	64	57	53	43	
18	119	20	21				25	26		28	23_	99			99	194
15	8	1					58	91	84	77	70	63	56	49	42	
<u>lı</u>	2		4		. 6		8	19	10	<u> </u>	112_	119	118	115	115	117

1

I.38

ŕ

APPENDIX I.3: PROG2-OUTPUT

Horizontal surface area and volume of the elements used in determination of flow through dome breach.

PT-004-55 #31AU 25110161 #3MIT

THESE DATA ARE PRINTED FOR INFORMATION OF USER TO MODIFY DIMENSIONS IF REQUIRED

SECONDLY IF DIHENSIONS ARE NOT ADEQUATE THE PROGRAM IS STOPPED

COORDINATES READ AT A TIME AREA	256HHILE PROGRAM IS DIMENSIONED FOR	256 NODES
MAXIMUM # OF NODES IN ELEN. ARE=	B WHILE THE PROGRAM IS DIMENSIONED FOR	44
MAXIMUM NON-ZERO NODES IN ELEM.ARE.	8 WHILE THE PROGRAM IS DIMENSIONED FOR	20
MAXIMUM SINK OR BOURCE IN A ELEN. ARE	B DIMENSIONED FOR	10

PLEASE NOTE-NOTE-IMPORTANT*****THE ABOVE INFORMATION ON DIMENSION PROVISION ARE TRUE ONLY IF REPEAT IF The values of NTT, Nodnax, Nonzer, and Now are updated

.

NE INN 8	NOD 4	21 20 3 1004 1021 1020	1003					
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR	ELENS	1		25000000.	BAREA AND	YOL 9 0.2582+10
XIJCOB FOR EL	EMENT 1					-		• • • •
1 0.12	5 0.12	3 0.12 4 0.12	5 0.12	6	0.12	7 0.12	8 0.12	
NE 1001 NN 8	NOD 1004	1921 1020 1003 2004 2021 2020	2003					
NE 2 NN 8	NOD 21	38 37 28 1021 1038 1037	1920					
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR	ELENA	2		25000002.	RAREA AND	VOL # 0.250E+10
NE 1002 NN 8	NOD 1021	1030 1037 1020 2021 2038 2037	2020					
NE 3 NN 8	NOD 38	55 54 37 1038 1055 1054	1037					
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR	ELENS	3		23000000.	WAREA AND	01+30550 # LOV
NE 1003 NN 8	NOD 1038	1055 1054 1037 2038 2055 2054	2037					
NE 4 NN 8	NOD 55	72 71 54 1055 1072 1071	1054					
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR	ELENS			25000000.	WAREA AND	VOL # 8.250E+10
NE 1004 NN 8	NOD 1055	1072 1071 1054 2055 2072 2071	2054	•				
NE SINN 8	ST 000	89 88 71 1072 1089 1088	1071					
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR	ELENA	5		25000002.	WAREA AND	YOL @ 0.250E+10
NE 1005 NN 8	NOD 1072	1009 1008 1071 2072 2089 2006	2071	-				
NE 6 NN 8	NOD 89	106 105 86 1089 1106 1105	1048					
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR	ELENO	6		2500000.	BAREA AND	VOL # 0.258E+10
NE 1006 NN 8	NOD 1089	1106 1105 1088 2089 2106 2103	2088					
NE 7 NN 8	NOD 106	5311 2311 6011 601 501 551 551	1103	·				
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR	ELENA	7		25000000.	BAREA AND	VOL 9 0.250E+10
NE 1007 NN 8	NOD 1106	1123 1122 1105 2106 2123 2122	2105	•				
NE 8 NN 8	NOD 3	PIDI 0501 2001 5 P1 05	1002	•				
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR	ELEMS	8		23000000.	WAREA AND	VOL # 0.250E+10
NE 1008 NN 8	NOD 1003	1020 1019 1002 2003 2020 2019	2002					••••
NE 9 NN 8	NOD 20	37 36 19 1828 1037 1036	1019					
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR	ELEMA	9		23000002-	BAREA AND	VOL 9 0.250E+10
NE 1009 NN &	NOD 1020	1037 1036 1019 2020 2037 2036	2019	-				i the strategic
NE 10 NN 8	NOD 37	54 53 36 1037 1054 1053	1036				· ·	•
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR	ELENØ	10		25000000.	WAREA AND	VOL . 0.250E+10
				• ••				

I.41

1

NE 1010 NN & NOD 1017 1054 1951 1016 2057 2054 2053 2036 NE 11 NN & NOD 54 71 78 53 1854 1871 1878 1853 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEN# 11 NE 1011 NN 8 NOD 1054 1071 1070 1053 2054 2071 2070 2053 NE 12 NN & NDD 71 88 87 78 1871 1988 1987 1978 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 12 NE 1912 NN & NOD 1871 1988 1987 1979 2071 2088 2087 2070 NE 13 NN & NOD 88 105 104 87 1068 1105 1144 1067 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEMS 13 NE 1013 NN 8 NOD 1088 1195 1104 1987 2088 2105 2104 2087 NE 14 NN & NOO 105 122 121 104 1105 1122 1121 1104 EBTIHATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEN# 14 NE 1014 NN & NOD 1105 1122 1121 1104 2105 2122 2121 2104 NE 15 NN 8 NOD 2 19 16 1 1002 1019 1018 1001 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 15 NE 1015 NN 8 NOD 1002 1019 1018 1001 2002 2019 2018 2001 NE 16 NN 8 NOD 19 36 35 18 1919 1036 1035 1018 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEH# 16 NE 1016 NN 8 NOD 1019 1036 1035 1018 2019 2036 2035 2018 NE 17 NN 8 NDD 36 33 52 33 1036 1033 1032 1035 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELENG 17 NE 1917 NN & NOD 1936 1933 1932 1935 2036 2933 2052 2033 NE 18 NN 8 NOD 53 79 69 52 1853 1878 1869 1852 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM# 18 NE 1016 NN 6 NOD 1053 1470 1069 1052 2853 2870 2069 2052 NE 19 NN 8 NOD 70 87 86 69 1070 1087 1086 1069 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 19 NE 1819 NN & NOO 1070 1087 1086 1069 2070 2087 2086 2069 NE 20 NN 8 NOD 57 104 103 86 1887 1184 1103 1986 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 28 NE 1020 NN 8 NOD 1087 1104 1103 1066 2067 2104 2105 2066 NE 21 NN 8 NOD 104 121 120 103 1104 1121 1120 1103 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEHS 21 NE 1021 NN 8 NOD 1104 1121 1120 1103 2104 2121 2120 2103 NE 22 NN 8 NOD 42 59 58 41 1042 1059 1058 1041 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 22 NE 1022 NN & NOD 1842 1039 1058 1041 2042 2059 2056 2041 NE 23 NN & NOD 39 76 75 58 1059 1076 1075 1038 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 23 NE 1923 NN 8 NOD 1859 1876 1875 1834 2859 2876 2875 2834 NE 24 NN 8 NOO 76 93 92 75 1876 1893 1892 1875 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DONE FOR ELEM# 24 NE 1024 NN 8 NOD 1876 1993 1992 1875 2076 2093 2092 2875 NE 25 NN 6 NOD 93 110 109 92 1093 1110 1109 1092 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 23 NE 1925 NN & NOD 1893 1118 1189 1892 2893 2118 2199 2092 NE 26 NN & NOD 110 127 126 109 1110 1127 1126 1109 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 24 NE 1926 NN 8 NON 1118 1127 1126 1189 2110 2127 2126 2189 NE 27 NN 6 NGQ 41 36 37 40 1041 1056 1057 1040 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEN# 27 NE 1027 NH 8 NOD 1041 1038 1037 1040 2041 2058 2057 2040 NE 28 NN 8 NOD 38 75 74 57 1858 1875 1874 1957 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELENS 28

23000004, BAREA AND VOL # 0,250E+10 25000006. #AREA AND VOL # 0.250E+10 25006000. #AREA AND VOL 4 0.2506+10 . 25020000. #AREA AND VOL # 0.2502+10 23000000. "AREA AND VOL " 0.250E+10 250000052. #AREA AND VOL # 0.2508+10 25000000. =AREA AND VOL = 0.250E+10 25000002, #AREA AND VOL # 0,2502+10 25080004, "AREA AND VOL . 0,250E+10 23000000. WAREA AND VOL # 0.2582+10 25008000, "AREA AND VOL = 0,2508+10 25080000. =AREA AND VOL = 0.250E+10 25080002. #AREA AND VOL # 0.2508+10 25000664, #AREA AND VOL # 0.2502+10 250000000. #AREA AND VOL = 0,2502+10 25000000, #AREA AND VOL # 0.2500+18 24999998. #AREA AND VOL # 0.250E+10 230000000 #AREA AND VOL = 0,250E+10

I.42

NE 1028 NN 8 NOD 1958 1075 1074 1057 2058 2075 2074 2057 NE 29 NN 8 NOD 75 92 91 74 1075 1092 1091 1074 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEH# 29 NE 1029 NN 8 NOD 1075 1092 1091 1074 2075 2092 2091 2014 . NE - 38 NN 8 NOD - 92 109 108 - 91 1092 1109 1108 1091 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 30 NE 1030 NN 8 NOO 1092 1109 1108 1091 2092 2109 2108 201 NE 31 NN 8 NO 189 126 125 108 1109 1126 1125 1188 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 31 NE 1031 NN 8 NOD 1109 1126 1125 1108 2109 2126 2125 2108 NE 32 NN 8 NOD 48 57 56 39 1040 1037 1056 1039 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 32 NE 1032 NN 8 NOD 1040 1057 1056 1059 2040 2057 2056 2059 NE 33 NN 8 NOD 57. 74 73 56 1057 1074 1075 1056 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM# 33 NE 1933 NN 8 NOD 1837 1074 1073 1036 2037 2074 2073 2036 NE 34 NN 6 NOD 74 91 90 73 1074 1091 1090 1073 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM# 34 NE 1034 NN 8 NOD 1074 1091 1090 1073 2074 2091 2090 2073 NE 35 NN 8 NOD 91 108 107 98 1091 1108 1107 1090 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 35 NE 1935 NN - 8 NOD 1991 1188 1197 1098 2091 2188 2187 2898 NE 36 NN 8 NO 188 123 124 187 1108 1125 1124 1107 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM# 36 NE 1936 NN 8 NOD 1108 1125 1124 1107 2108 2125 2124 2107 NE 37 NN 8 NOD 39 56 53 38 1839 1836 1853 1838 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 37 NE 1037 NN _8 NOD 1039 1056 1055 1056 2039 2056 2055 2038 NE 38 NN 8 NOD 56 73 72 55 1056 1073 1072 1055 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP. 38 NE 1038 NN 6 NOD 1036 1075 1072 1055 2036 2073 2072 2055 NE 39 NN 8 NDD 73 98 89 72 1073 1090 1089 1072 ESTIMATION OF GAUSSIAN INTEGRATION HAD BEEN DONE FOR ELEMA 39 NE 1939 NN 6 NOD 1073 1090 1009 1072 2073 2090 2089 2072 NE 40 NN 8 NOD 90 107 106 89 1090 1107 1106 1089 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEH# 40 NE 1940 NN 8 NOD 1897 1107 1106 1889 2898 2187 2186 2889 NE 41 NN 8 NOD 107 124 123 106 1107 1124 1123 1106 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEH# 41 NE 1941 NN 8 NOD 1197 1124 1123 1106 2107 2124 2123 2106 NE 42 NN 8 NOD 17 34 33 16 1017 1034 1033 1016 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 42 HE 1942 NN 0 NOD 1017 1034 1033 1016 2017 2034 2033 2016. NE 43 NN 8 NOD 34 31 58 33 1034 1031 1030 1033 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELENA 43 NE 1043 NN 8 NOD 1034 1051 1050 1033 2034 2051 2050 2033 NE 44 NN 8 NOD 51 68 67 59 1051 1068 1067 1058 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 88 NE 1044 NN 8 NDD 1051 1060 1067 1050 2051 2068 2067 2030 NE 45 NN 8 NOD 68 85 84 67 1868 1885 1884 1867 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 43

:

23000002, #AREA AND YOL # 0,2305+10 25000000. FAREA AND VOL # 0.230E+10 25000000. PAREA AND VOL = 0.230E+10 24999998. #AREA AND VOL # 0.2302+10 25000000, "APEA AND VOL = 0.250E+10 85000002. PAREA AND VOL = 0.255E+18 24999996 PAREA AND VOL = 0.250E410 24999998. AAREA AND VOL # 0.250E+10 25000000. *AREA AND VOL # 0.230E+10 23008002. AREA AND VOL . D.2302410 25000004. #AREA AND VOL # 0.230E+10 25000000. AREA AND VOL = 0.2302+10 83000000, *AREA AND YOL * 0.230E+10 29000916. #AREA AND YOL # 0.2302+10 23000018, #AREA AND VOL # 0,2302+10 29000016, *AREA AND VOL * 0.2302+10 25000010, #AREA AND YOL # 0,2302+10

I.43

NE 1945 NN & NOD 1468 1985 1984 1967 2968 2985 2984 2967 NE 46 NN 8 NOD 45 192 191 84 1885 1182 1181 1984 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 46 NE 1046 NN & NOD 1085 1102 1101 1084 2085 2102 2101 2084 NE 47 NN 6 NOD 192 119 116 191 1192 1119 1116 1191 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELENA 47 NE 1947 NN 6 NOD 1102 1119 1118 1101 2102 2119 2118 2101 NE 48 NN 8 NOD 119 136 135 118 1119 1136 1139 1118 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 48 NE 1948 NN 8 NOO 1119 1136 1135 1118 2119 2136 2135 2118 NE 49 NH 8 NOD 16 33 32 15 1016 1033 1032 1015 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 49 NE 1049 NN & NOD 1016 1033 1032 1015 2016 2033 2032 2015 NE 50 NN & NOD 33 50 49 32 1033 1050 1049 1032 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEHA 30 NE 1858 NN & NOD 1833 1858 1849 1832 2833 2858 2849 2832 NE 31 NN 8 NDD 39 67 66 49 1050 1067 1066 1049 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 51 NE 1051 NN 8 NOD 1050 1067 1866 1949 2850 2067 2066 2049 NE 52 NN 8 NOD 67 84 83 66 1967 1984 1983 1966 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 52 NE 1932 NN 8 NOD 1067 1934 1883 1866 2867 2884 2883 2866 NE 53 NN 8 NOD 84 101 100 83 1284 1101 1100 1883 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 53 NE 1853 NN & NOD 1984 1101 1100 1983 2084 2101 2100 2083 NE 54 NN 8 NOD 101 118 117 100 1101 1118 1117 1100 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 54 NE 1854 NN 8 NOD 1181 1118 1117 1188 2181 2118 2117 2188 NE 55 NN 8 NOD 118 135 134 117 1118 1135 1134 1117 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 55 NE 1853 NN & NOD 1118 1135 1134 1117 2118 2135 2134 2117 NE 56 NN 8 NOD 15 32 31 14 1815 1832 1831 1814 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 56 NE 1056 NN 6 NOD 1015 1032 1031 1014 2015 2032 2031 2014 NE 57 NN 8 NOD 32 49 48 31 1032 1049 1046 1031 ESTINATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 57 NE 1957 NN & NOD 1932 1949 1948 1931 2932 2949 2048 2931 NE 38 NN 8 NOD 49 66 65 48 1949 1966 1965 1948 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 58 NE 1858 NN 8 NOD 1849 1866 1865 1848 2849 2866 2865 2848 NE 59 NN 8 NOD 66 83 82 65 1066 1083 1082 1065 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 59 NE 1999 NN & NOD 1946 1983 1982 1965 2966 2983 2982 2963 NE 60 NN 8 NOD 83 100 99 82 1083 1100 1099 1082 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM# 60 NE 1960 NN & NOD 1983 1160 1999 1982 2983 2108 2899 2882 NE 61 NN 8 NOO 138 117 116 99 1188 1117 1116 1899 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 61 NÉ 1961 NN 6 NOD 1184 1117 1116 1999 2100 2117 2116 2099 HE 62 NN 8 NOD 117 134 133 116 1117 1134 1133 1116 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 62

290000020. WAREA AND VOL # 0.2502+10 25000010. WAREA AND VOL # 0.2502410 25000016. #AREA AND VOL # 0.2502+10 25000002. =AREA AND VOL = 0.2502+10 25000004. =AREA AND VOL = 0,2506+10 25000002. #AREA AND VOL = 0.2502+10 25020004. #AREA AND VOL # 0.2502+10 25000886, #AREA AND VOL # 0,2502+10 250000082. *AREA AND VOL * 0.250E+10 255555002. FAREA AND VOL # 0.2502+14 25000002. #AREA AND VOL # 0,2508+10 25000004. FAREA AND VOL # 0.2502+10 25000002. #AREA AND VOL # 0,2500+10 250000004. WAREA AND VOL # 0.2502+10 259999966. WAREA AND VOL - 0.2592412 25000002. =AREA AND VOL = 0.250E+10 25000002. #AREA AND VOL + 0,250E+13

[.44

NE 1062 NN 8 NOD 1117 1134 1133 1116 2117 2134 2133 2116 NE 63 NN 8 NOD 14 31 30 13 1014 1031 1030 1013 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEH* 63 NE 1763 NN 6 NDD 1014 1031 1037 1013 2014 2031 2030 2013 NE 64 NN 8 NOD 31 48 47 30 1031 1048 1047 1030 ESTIMATION OF GAUSSIAN INTEGRATION HAS DEEN DONE FOR ELEMA 68 NE 1964 NN 8 NOD 1031 1948 1947 1939 2031 2048 2047 2030 NE 65 NN 8 NOD 48 65 64 47 1048 1865 1864 1847 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 65 NE 1065 NN 6 NOD 1048 1065 1064 1047 2048 2065 2064 2047 NE 66 NN 8 NOD 65 82 81 64 1065 1082 1081 1064 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 66 NE 1066 NN 8 NOD 1065 1082 1081 1064 2065 2082 2081 2064 NE 67 NN 8 NDD 82 99 98 81 1082 1099 1098 1081 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 67 NE 1867 NN 8 NOD 1082 1899 1898 1881 2882 2899 2898 2881 NE 68 NN 8 NDD 99 116 113 98 1099 1116 1115 1098 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 68 NE 1968 NN 8 NOD 1999 1116 1115 1098 2099 2116 2115 2098 NE 67 NN 8 NOD 116 133 132 115 1116 1133 1132 1115 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 69 NE 1069 NN 8 NOD 1116 1133 1132 1115 2116 2133 2132 2115 NE 70 NN 8 NOD 13 30 29 12 1013 1030 1029 1012 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 70 NE 1070 NN 8 NUD 1013 1030 1029 1012 2013 2030 2029 2012 NE 71 NN 8 NOD 30 47 46 29 1030 1047 1046 1029 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 71 NE 1971 NN 8 NOD 1930 1947 1986 1929 2030 2047 2046 2029 72 NN 8 NOD AT 64 63 46 1847 1864 1863 1846 NE ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 72 NE 1072 NN 8 NOD 1047 1064 1063 1046 2047 2064 2063 2046 NE 73 NN 8 NOD 64 81 80 63 1064 1081 1080 1063 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 73 NE 1073 NN 8 NOD 1064 1081 1080 1063 2064 2081 2080 2063 NE 74 NN A NOD A1 98 97 80 1081 1098 1097 1080 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM# 74 NE 1074 NN 8 NOD 1051 1096 1097 1080 2081 2098 2097 2080 NE 75 NN 8 NDD 96 115 114 97 1098 1115 1114 1097 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 75 NE'1075 NN & NOD 1096 1115 1114 1097 2098 2115 2114 2097 NE 76 NN 8 NOD 115 132 131 114 1115 1132 1131 114 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 76 NE 1876 NN 8 NOD 1115,1132 1131 1114 2115 2132 2131 2114 77 NN 8 NOD 12 29 28 11 1012 1029 1028 1011 NE ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 77 NE 1077 NN 8 NOD 1012 1029 1026 1011 2012 2029 2028 2011 NE 78 NN 8 NDD 29 46 45 28 1029 1046 1045 1028 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELCH# 78 NE 1078 NN 8 NOD 1029 1046 1045 1028 2029 2046 2045 2028 46 63 62 45 1046 1063 1062 1045 NE 79 NN 8 NOD ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM# 79 NE 1079 NN 8 NOD 1846 1863 1862 1845 2846 2863 2862 2845 NE 80 NN 8 NOD 63 80 79 62 1863 1888 1879 1862 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM# 80

 $\gamma : \mathcal{A} \times \mathcal{A}$

23000000. *AREA AND YOL * 0.250E+10 23000008. *AREA AND YOL * 0.250E+10 23000000. #AREA AND VOL # 0.2302+10 2300000R. PAREA AND YOL P 0,230E+10 23020004. #AREA AND VOL # 0.2302+10 23000000. =AREA AND YOL = 0.2502+10 25000000. #AREA AND VOL # 0.250E+10 24999998. #AREA AND YOL # 0.2302+10 25000000. SAREA AND YOL = 0.250E+10 24999996. #AREA AND YOL # 8.250E+18 25000000. PAREA AND YOL P 0.2502+10 25000002. #AREA AND YOL # 0.2506+10 24999998. #AREA AND YOL # 0,250E+10 24999998, #AREA AND YOL # 0,250E+10 24999998. #AREA AND VOL # 0.2502+10 25020600. #AREA AND VOL # 0.250E+10 24999996. BAREA AND YOL # 8.258E+10 25000000, #AREA AND YOL # 0.250E+10

·檀书》(1993年19月1日)

NE 1080 NN 8 NUO 1063 1080 1079 1062 2063 2088 2079 2062 NE 81 NN 8 NDD 80 97 96 79 1080 1097 1096 1070 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 81 NE 1981 NN & NOD 1880 1997 1896 1979 2880 2897 2896 2879 NE 82 NN 8 NOD 97 114 113 96 1097 1114 1113 1096 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 25 NE 1982 NN 8 NOD 1097 1114 1113 1096 2097 2114 2113 2096 NE 83 NN 5 NOD 114 131 130 113 1114 1131 1130 1113 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 41 NE 1963 NN 6 NOD 1114 1131 1130 1113 2114 2131 2130 2113 NE 84 NN 8 NOD 11 28 27 10 1811 1828 1937 1819 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELENS 84 NE 1984 NN 8 NOD 1911 1828 1927 1819 2811 2828 2027 2018 NE 85 NN 8 NOD 28 45 44 27 1828 1845 1844 1827 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 85 NE 1985 NN 8 NOD 1828 1845 1844 1827 2828 2845 2844 2827 NE 86 NN 8 NOD 45 62 61 44 1045 1062 1061 1044 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 86 NE 1086 NN & NOD 1045 1862 1061 1844 2045 2062 2061 2844 NE AT NN 8 NOD 62 79 78 61 1862 1879 1878 1861 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 87 NE 1017 NN & NOD 1062 1079 1078 1061 2062 2079 2078 2061 NE 55 NN 5 NOO 79 96 95 78 1870 1896 1895 1876 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 88 NE 1986 NN & NOD 1979 1996 1995 1978 2079 2096 2095 2076 NE 89 NN 8 NOD 96 113 112 95 1896 1113 1112 1895 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 89 NE 1989 NN 8 NOD 1896 1113 1112 1895 2896 2113 2112 2895 NE 90 NN 8 NOD 113 130 129 112 1113 1138 1129 1112 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEN 90 NE 1090 NN 8 NOD 1113 1130 1129 1112 2113 2130 2129 2112 NE 91 NN 8 NOD 19 27 26 9 1919 1027 1026 1009 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 91 NE 1091 NN 6 NOD 1010 1027 1026 1009 2010 2027 2026 2004 NE 92 NN 8 NOD 27 44 43 26 1827 1844 1843 1826 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 92 NE 1092 NN & NOD 1027 1044 1043 1026 2027 2044 2043 2026 NE. 93 NN & NOD 44 61 68 43 1844 1861 1968 1845 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 91 NE 1093 NN & NOD 1044 1061 1060 1043 2044 2061 2060 2043 NE 94 NN 8 NOD 61 78 77 60 1861 1978 1877 1868 EBTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 94 NE 1994 NN 8 NOD 1961 1978 1977 1960 2861 2978 2977 2968 NE 95 NN 8 NDD 78 95 94 77 1078 1095 1096 1077 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 95 NE 1095 NN 5 NOD 1078 1095 1094 1077 2078 2095 2094 2077 NE 96 NN 8 NOD 95 112 111 99 1895 1112 1111 1894 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 96 NE 1096 NN 8 NOD 1895 1112 1111 1894 2095 2112 2111 2094 NE 97 NN 8 NOO 112 129 128 111 1112 1129 1128 1111 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 97 NE 1097 NN 8 NOD 1112 1120 1128 1111 2112 2129 2128 2111 NE 98 NN 8 NOD 9 26 25 8 1389 1826 1825 1886 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMB 98

25000002. CAREA AND VOL # 0,250E+10 24999998, #AREA AND VOL # 0,8506+10 24999998. BAREA AND VCL # 0.2502+18 25050016. #AREA AND VOL # 0.250E+10 25003016, WAREA AND VOL # 0.250E+10 25000016, #AREA AND VOL # 0,250E+10 25080816. WAREA AND VOL W 0.2508+10 25000020, WAREA AND VOL W 0,250E+10 25900014. WAREA AND VOL # 0.2502+10 25000016, WAREA AND VOL # 0.2502+10 24999994. WAREA AND VOL # 0.2506+10 24999994. WAREA AND VOL # 0.250E+10 24999992, WAREA AND VOL # 0,2502+10 24999994, WAREA AND VOL # 0,250E+10 24999998. PAREA AND VOL # 0,250E+18 24999992. WAREA AND VOL # 0.250E+10 24999994, #AREA AND VOL # 0,250E+10 25000002. MAREA AND YOL D 0,250E+10

25000002. *AREA AND VOL * 6,250E+10 25000000. *AREA AND VOL * 6,250E+10 25000000. *AREA AND VOL * 6,250E+10 25000002. *AREA AND VOL * 6,250E+10 25000002. *AREA AND VOL * 6,250E+10 25000002. *AREA AND VOL * 6,250E+10 25000002. *AREA AND VOL * 6,250E+10 25000002. *AREA AND VOL * 6,250E+10 25176. *AREA AND VOL * 6,250E+10 90435. *AREA AND VOL * 6,250E+07 2765. *AREA AND VOL * 6,277E+06

1185, #AREA AND YOL # 0,1198+86

14859. #AREA AND VOL # 8.1416+87

80+3545. # JOY DNA ANA# . 221538

368830. #AREA AND YOL # 0,369E+88

NE 1112 NN 6 NOD 1287 1288 1278 1277 2287 2288 2278 2277 NE 2112 NN & NOD 2287 2286 2278 2277 3287 3288 3278 3277 NE 3112 NN & NOD 3287 3268 3278 3277 4287 4264 4278 4277 NE 113 NN & NGD 266 269 279 275 1265 1269 1279 1276 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEMP 113 321797, #AREA AND VOL # 0,322E+08 NE 1113 NN 8 NOD 1248 1269 1279 1278 2288 2289 2279 2278 NE 2113 NH 8 NOD 2268 2269 2279 2275 3268 3249 3279 3278 NE 3113 NN & NOD 3288 3289 3279 3278: 4288 4289 4279 4278 NE 114 NN & NOD 273 271 261 368 1370 1271 1261 1260 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 114 RIGETR. BARCA AND VOL & 8,239E+88 NE 1114 NH & NOD 1270 1271 1261 1268 2270 2271 2261 2260 NE 115 HN & NOD AT1 272 262 261 1271 1272 1262 1261 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 113 35020, CAREA AND VOL # 0,350E+07 NE 1115 NH 8 NOD 1271 1272 1262 1261 2271 2272 2262 2261 NE 116 NN 8 NOD 272 273 263 262 1272 1273 1263 1262 ESTIMATION OF GAUSSIAN INTEGRATION HAB BEEN DONE FOR ELEMP 116 NE 1116 NN 8 NOD 1272 1273 1263 1262 2272 2273 2263 2262 NE 117 NN & NOD 273 274 264 263 1273 1274 1264 1263 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 117 NE 1117 NN 8 NOD 1273 1274 1264 1263 2273 2274 2264 2263 NE 2117 NH & NOD 2213 2274 2264 2263 2273 3274 3264 2263 NE 3117 NN & NOD 2273 3274 3264 2263 2273 4274 4264 2263 NE 4117 NN 8 NOD 2273 4274 4264 2268 2273 5274 5264 2263 NE 118 NN 8 NOD 274 275 265 264 1274 1275 1265 1864 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 110 NE 1118 NN & NOD 1274 1275 1265 1264 2274 2275 2265 2264 NE 2118 NN & NOD 2274 2275 2265 2264 3274 3275 3265 3264 NE 3118 NN 8 NOD 3274 3275 3265 3264 4274 4275 4265 4264 HE 4118 NN 8 NOD 4274 4275 4265 4264 5274 5275 5265 5264 NE 5118 NN 8 NOD 5274 5275 5265 5264 5274 6275 6265 5264 NE 119 NN 8 NOD 275 276 266 265 1275 1276 1266 1265 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEH# 119 NE 1119 NN 8 NOD 1275 1276 1266 1265 2275 2276 2266 2265 NE 2119 NN & NOD 2275 2276 2266 2265 3275 3276 3266 3268 NE 3119 NN & NOO 3275 3276 3266 3265 4275 4276 4266 4265 HE 4119 NH & NOO 4275 4276 4266 4265 5275 4276 4266 5265 NE 5119 NN 8 NOD 5275 4276 4266 5265 6275 4276 4266 6265 NE 120 NN 6 NOD 276 277 267 266 1276 1277 1267 1266 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMY 120 NE 1120 NN & NOO 1276 1377 1267 1266 2276 2277 2267 2266 NE 2128 NN & NOO 2276 2377 2267 2266 3276 3277 3267 3265 NE 3120 NN & NOO 3276 3277 3267 3266 4276 4277 4267 4266 NE 121 NN & NOD 277 278 268 267 1277 1278 1268 1267 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR BIFMA 121 Nº 1121 NN 8 NOO 1277 1278 1268 1267 2277 2278 2268 2267 NE 2121 NN 8 NOD 2277 2278 2268 2267 3277 3278 3266 3867 NE 3121 NN & NUO 3277 3278 3268 3267 4277 4278 4268 4267 NE 122 NN & NOD 278 279 269 268 1276 1279 1269 1268 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 122 NE 1122 NN 8 NOD 1278 1279 1269 1268 2278 2279 2269 2268 NE 2122 NN & NOD 2218 2219 2269 2268 3278 3279 3269 3268 NE 3122 NN & NOD 3278 3279 3269 3268 4278 4279 4269 4268 NE 123 NN & NOD 268 261 251 259 1268 1261 1251 1258 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 123

Abu Mita -

114354, #AREA AND YOL # 0,114E+88 14689. EAREA AND VOL # 0,147E+07 5295, BAREA AND VOL # 0.652E+06 129916, VAREA AND VOL # 8,130E+88 SASGAG, WAREA AND VOL # 0.565E+08 367188. BANSA AND VOL = 0,367E+88

296618. WAREA AND VOL # 0.297E+08

477638, WAREA AND VOL # 0,478E+04

48

1. J.

• • • • •

517053, #AREA AND YOL # 0,517E+06 155563, PAREA AND YOL # 0,156E+08 68492, #AREA AND YOL # 0,683E+87

TOILS, BAREA AND VOL B 0,701E+07

330899, BAREA AND VOL 8 8,3316+08

825065, FAREA AND VOL # 8,823E+08

735128, #AREA AND YOL # 0,735E+08

833139, #AREA AND VOL # 0,833E+88

931051, BAREA AND YOL # 0,951E+08

139550, #AREA AND VOL # 8,148E+86

738360. HAREA AND VOL + 0.7385+88

NE 1134 NN & NOD 1252 1253 1243 1242 2252 2253 2243 2 Ne 135 NN & NOO 253 254 244 245 1253 1254 1244 12 Estimation of Gaussian infegration has been done for ei Ne 135 NN & NOD 1253 1254 1244 1243 2253 2254 2244 2	242 243 LEM# 135 243	173689 . #A	RËA AND VOL = 0,174E+88
NE 2135 NN 8 NOD 2253 2254 2244 2243 2253 3254 3244 2 NE 3135 NN 8 NOD 2253 3254 3244 2243 2253 4254 4244 2 NE 4135 NN 8 NOD 2253 4254 4244 2243 2253 5254 5244 2 NE 136 NN 8 NOD 254 255 245 244 1254 1255 1245 1 Estimation of Gaussian Integration has been done for e	245 245 203 244 Lemp 136	76268 . #A	REA AND VOL # 4,763E+07
NE 1136 NN & NOD 1254 1255 1245 1244 2254 2255 2245 2 NE 2136 NN & NOD 2254 2255 2245 2244 3254 3255 3245 3 NE 3136 NN & NOD 3254 3255 3245 3244 4254 4255 4245 4 NE 4136 NN & NOD 4254 4255 4245 4244 6254 5255 5245 5 NE 5136 NN & NOD 5254 5255 5245 5244 6254 6255 6245 5	244 244 244 244 244		
NE 137 NN & NOD 233 234 240 243 223 236 2246 2 NE 1137 NN & NOD 1253 1256 1246 1245 2255 2256 2246 2 NE 2137 NN & NOD 1253 2256 2246 2245 3255 3256 3246 3 NE 3137 NN & NOD 3253 3256 3246 3245 4255 4256 4246 4 NE 3137 NN & NOD 3253 3256 3246 3245 4255 4256 4246 4	LEM# 137 245 245 245	452931 . # A	REA AND VOL D 8,453E+08
NE 4157 NN 8 NOD 2253 4236 4246 4245 4235 4236 4246 4 NE 5137 NN 8 NOD 5255 4256 4246 5245 4256 4256 4246 6 NE 138 NN 8 NOD 256 257 247 246 1256 1257 1247 1 Ebtimation of Gaussian Integration Has been done for e NE 1138 NN 8 NOD 1256 1257 1247 1246 2256 2257 2247 2 NE 1138 NN 8 NOD 2266 2247 2246 5256 5257 2247 2	245 246 LEHø 138 246 246	1638206 . #A	REA AND VOL # 8.1648+89
NE 3136 NN 6 NOO 3256 3257 3247 3246 4256 4257 4247 4 NE 139 NN 6 NOD 257 256 248 247 1257 1256 1248 1 Estimation uf Gaussian Integration has been done for e NE 1139 NN 8 NOD 1257 1258 1248 1247 2257 2256 2248 2 NE 2139 NN 8 NOD 2257 2258 2248 2247 3257 3256 3248 3	246 247 LEM# 139 247 247	1463183 . UA	REA AND VOL # 0,146E+09
NE 3139 NN & NOO 3257 3256 3246 3247 4257 4258 4348 4 NE 140 NN & NOO 356 259 249 346 1256 1259 1249 1 Ebtimation of Gaussian Integration has been done for e NE 1146 NN & NOO 1258 1259 1249 1248 2256 2259 2249 2 NE 2146 NN & NOO 2258 2259 2249 2246 3256 3259 3249 3	247 245 LEM# 140 245 245	1512334, =A	REA AND VOL # 8,151E+89
NE 3140 NN 6 NOO 3258 3259 3249 3248 4258 4259 4249 4 NE 141 NN 8 NOO 240 241 231 239 1240 1241 1231 1 Estimation of Gaussian Integration HAS been done for e NE 1441 NN 8 NOO 1240 1241 1231 1239 2240 2241 2231 2 NE 142 NN 8 NOO 241 242 232 231 1241 1242 1232 1	248 230 LEMU 141 230 231	1865386 . •A	REA AND VOL # 0,187E+89
ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR É NE 1142 NN 8 NOD 1241 1242 1252 1231 2241 2242 2252 2 NE 143 NN 8 NOD 242 245 233 252 1242 1243 1233 1 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR E NE 1143 NN 8 NOD 1242 1243 1233 1232 2242 2243 2233 2	535 (Feng 142 535 (Feng 145	273735, WA 1448342, WA	REA AND VOL & 0,274E+06 REA AND VOL & 0,145E+09
NE 144 NN 8 NOD 243 244 234 233 1243 1244 1234 1 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR C NE 1144 NN 8 NOD 1243 1244 1234 1233 2243 2244 2234 2 NE 2144 NN 8 NOD 2243 2244 2233 2243 3244 3234 2 NE 3144 NN 8 NOD 2243 3244 3234 2233 2243 4244 4234 2	233 LEM# 199 233 233	346711 . EA	REA AND VOL N 8,341E+33
NE 4144 NN & NOD 2243 4244 4234 2233 2243 5244 5234 2 NE 145 NN & NOD 244 245 235 234 1244 1245 1235 1 Estimation of Gaussian Integration has been done for e	:233 :234 :LEM# 143	149600 . «A	REA AND VOL # 0.1506+08

S. P

•

I.50

2

Sector inte

BBBRRES. #AREA AND YOL # 0.888E+88 3213472. #AREA AND VOL # 0.3216+09 2876128, #AREA AND VOL # 0,2876+09 2428160. #AREA AND YOL # 8,2425+89 3447147. #AREA AND YOL # 9,345E+09 595796. #AREA AND VOL # 0.5866+08 2476180. #AREA AND YOL # 8.268E+09 629337. WAREA AND VOL # #.430E+88 RT6428. RAREA AND VOL # 8.276E+06

1641991, #AREA AND VOL # #.1646+89

NE 1155 NN 8 NOD 1235 1236 1226 1225 2235 2236 2226 2223 NE 2155 NN 8 NOD 2235 2236 2226 2225 3235 3236 3226 3225 NE 3155 NN 8 NDD 3235 3236 3226 3225 4235 4236 4226 4225			
NE 4155 NN 8 NOD 4255 4236 4226 4225 5235 4236 4226 5225 NE 5155 NN 8 NOD 5235 4236 4226 5225 6235 4236 4226 6225 NE 156 NN 8 NOD 236 237 227 226 1236 1237 1237 1226			
ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMB NE 1156 NN 8 NOD 1236 1237 1227 1226 2236 2237 2227 2226 NE 2156 NN 8 NOD 2236 2237 2227 2226 3236 3237 3227 3226 NE 3156 NN 8 NOD 3236 3337 3227 3226 4235 4237 4224	156 59	37720, SARKA AND VOL (J 0.594E+09
NE 157 NN 8 NOD 237 238 228 227 1237 1238 1228 1227 Estimation of Gaussian integration has been done for eleme NE 1157 NN 8 Nod 1237 1238 1228 1227 2238 2228 2227	157 53	03269. BAREA AND VOL (0 ,530E+89
NE 2157 NN 8 NOD 2257 2236 2228 2227 3237 3238 3226 3227 NE 3157 NN 8 NOD 2387 3238 3228 3227 4237 4238 4228 4227 NE 156 NN 8 NOD 238 239 229 228 1238 1239 1229 1284 Estimation of Gaussian integration was been done for Piffa	144 LQ	10415	= 0.401F+00
NE 1158 NN 8 NOO 1238 1239 1229 1228 2238 2239 2220 2228 NE 2156 NN 8 NOO 2238 2239 2229 2228 3238 3239 3229 3226 NE 3158 NN 8 NOO 3238 3239 3229 3228 4238 4239 4229 4228		194199 ANDA MUD 405 4	
NE 159 NN & NOD 220 221 211 210 1220 1221 1211 1210 Estimation of Gaussian integration mas been done for elemp NE 1159 NN & Nod 1220 1221 1211 1210 2220 2221 2211 221	120 24	87147, WAREA AND VOL 1	F 8 . 345E+89
ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DONE FOR ELEMM NE 1160 NN 8 NOD 1221 1222 1212 1211 2221 2222 2212 2211 NE 161 NN 8 NOD 222 223 213 212 1222 1223 1213 1212	169 5	35795, BAREA AND VOL	0,506E+08
ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMO NE 1161 NN & NOD 1222 1223 1213 1212 2222 2233 2213 221	161 26	76170, BAREA AND VOL 4 29561, BAREA AND VOL 4	, 0,2682+04 , 0,638£+08
NE 1162 NN & NOD 1223 1224 1214 1213 2223 2224 2214 2213 NE 2162 NN & NOD 2223 2224 2214 2213 2223 3224 3214 2213 NE 3162 NN & NOD 2223 3224 3214 2213 2223 4224 4214 2213			••••
NE 416E NN & NOD 2223 4224 4214 2213 2223 3224 3214 2213 NE 163 NN & NOD 224 225 215 214 1224 1225 1214 Estimation of Gaussian Integration has been done for Elemy NE 1163 NN & NOD 1224 1225 1215 1214 2224 2225 2215 2214	103 5	V6429, WAREA AND VOL 1	• 0,276E+08
NE 2163 NH & NOD 2224 2228 2215 2214 3224 3225 3215 3214 NE 3163 NN & NOD 3224 3225 3215 3214 4224 4225 4215 4214 NE 4163 NN & NOD 4224 4225 4215 4214 5224 5225 5215 5214			
NE 3163 NN 8 NDD 3224 3623 3213 3214 3224 8223 6213 3214 NE 164 NN 8 NDD 225 226 216 215 1225 1226 1216 1213 Estimation of Gaussian integnation MAS Been Done for Eleme NE 1164 NN 8 NDD 1225 1226 1216 1215 2225 2226 2216 2215	164 16	41592. BAREA AND VOL (# 0,164E+09
NE 2164 NN & NOD 2225 2226 2216 2215 3226 3226 3216 3215 NE 3164 NN & NOD 3225 3226 3216 3215 4225 4226 4216 4815 NE 4164 NN & NOD 4225 4226 4216 4215 5225 4226 4216 5215			
NE 3164 NN & NUU 3223 4226 4216 3213 6223 4226 4216 6213 NE 165 NN & NOD 226 227 217 216 1226 1227 1217 1216 Estimation of Gaussian Integration has been done for Elem#	165 59	57719. DAREA AND VOL 1	v 0,594E+89

I.52

a marker of the

5303875. #AREA AND VOL # 0,5302+09 6818423. WAREA AND VOL # 8,681E+89 3447146. #AREA AND YOL # 0.3456+09 505792. #AREA AND VOL # 0,506E+08 2676171. #AREA AND VOL # 0.268E+89 \$29341, #AREA AND VOL # 8,638E+04 276433. #AREA AND VOL # 0.276E+08 1641390. #AREA AND VOL # 0.164E+09 5937717. #AREA AND VOL # 8.5946+89

5303274. #AREA AND VOL # 8.530E+09

4010426. #AREA AND YOL # 0.6018+09

NE 1176 NN & NOC 1213 1219 1209 1208 2218 2219 2209 2208 NE 2176 NN 8 NOD 2218 2219 2289 2288 3218 3219 3289 3288 NE 3176 NN 8 NOD 3218 3219 3209 3208 4218 4219 4209 4208 NE 177 NN 8 NOD 239 25 42 41 1239 1025 1042 1041 ESTIMATION OF GAUESIAN INTEGRATION HAS BEEN DONE FOR ELEMA 177 18188198, WAREA AND VOL # 0,1828+18 NE 1177 NN 8 NOD 1239 1025 1042 1041 2239 2025 2042 2041 NE 2177 NN & NOD 2239 2025 2042 2041 3239 2025 2042 2041 NE 3177 NN & NOD 3239 2025 2042 2041 4239 2029 2042 2041. HE 178 NN 8 NOD 229 239 41 40 1229 1239 1841 1848 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEME 176 12272080, WAREA AND VOL # 0,123E+10 NE 1176 NIL & NCO 1229 1239 1041 1040 2229 2239 2041 2040 HE 2176 NN 8 NC0 2229 2239 2041 2040 3229 3239 2441 2040 NE 3178 NN 8 NDD 3229 3239 2041 2040 4229 4239 8041 2040 NE 179 NH & NOD 229 40 39 219 1229 1848 1839 1819 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP 179 12272081, WAREA AND VOL # 0,123E+10 NE 1179 NN 8 NGO 1229 1040 1039 1219 2220 2040 2039 2219 NE 2179 NIL & NOD 2229 2040 2039 2219 3229 2040 2030 3219 NE 3179 NN 6 NOD 3229 2040 2039 3219 4229 2040 2039 4219 NE 180 NN 8 NOD 219 39 38 21 1219 1039 1238 1021 ECTIMATION OF GAUESIAN INTEGRATION HAS BEEN DONE FOR ELEMA 160 IBIECEOD, WAREA AND VOL # 0,1828+10 NE 1160 NN & NOD 1219 1039 1036 1021 2219 2039 2035 2021 NE 2166 NR 6 NOD 2219 2039 2038 2021 3219 2039 2036 2021 NE 3160 NN 6 NOO 3219 2039 2036 2021 4219 2039 2038 2021 NE 181 NN 8 NCC 4 289 219 21 1884 1289 1219 1821 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEME 161 12272078. WAREA AND VOL W 8,123E+10 HE 1161 NH & NOD 1004 1289 1219 1021 2004 2209 2219 2031 NE 2161 NE 8 NOD 2384 2289 2219 2821 2884 3289 3219 2821 NE 3181 NN 8 NOD 2034 3239 3219 2021 2004 4289 4219 2021 NE 182 NI 6 NOD & 220 210 200 1006 1220 1210 1200 ESTIMATION OF GAUCSIAN INTEGRATION HAS BEEN DONE FOR ELEME 102 4419426. WAREA AND VOL # 0,442E+09 NE 1182 NI. 8 NUD 1005 1220 1210 1208 2005 2220 2218 2200 NE 183 NH 8 HOD 6 240 230 220 1006 1240 1232 1220 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMB 183 3405599, #AREA AND VOL # 0,341E+09 HE 1183 NN 8 NOD 1006 1248 1238 1228 2086 2248 2238 2228 NE 164 NH 8 NCD 6 249 250 249 1006 1269 1250 1240 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELENS 184 915965, EAREA AND VOL B 8,916E+08 NE 1184 NH & NGD 1006 1260 1250 1240 2006 2260 2250 2240 NE 145 NH & NCD 6 280 270 260 1006 1280 1270 1269 386669. #AREA AND VOL = 8,387E+88 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA 185 HE 1185 NN & NOD 1076 1280 1279 1260 2006 2280 2279 2260 NE 147 HH & NOD 259 269 & 25 1259 1269 1004 1925 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM# 147 3330927, #AREA AND VOL # 0,333E+09 NE 1187 Nº 8 NOD 1259 1269 1008 1025 2259 2269 2008 2025 NE 2167 NO: 5 NOD 2299 2269 2068 2429 3259 3269 2008 2025 NE 3187 HH & NGD 3259 3269 2008 2023 4259 4269 2008 2025 NE 186 NN 8 NOD 279 289 8 269 1279 1269 1008 1269 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM# 186 652828. #AREA AND VOL # 8.652E+88 NE 1186 NN 8 NOD 1279 1289 1898 1269 2279 2289 2888 2269 NE 2166 NK & NOD 2279 2269 2008 2269 3279 3289 2008 3269 NC 3186 NN 8 NOD 3279 3289 2008 3269 4279 4289 2008 4269 NE 188 NN 8 NCD 239 249 259 25 1239 1249 1259 1025 ESTIMATICH OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELENG 188 6777840. #AHEA AND VOL # 8.6788+89 NE 1188 MM & NOD 1239 1249 1259 1825 2239 2249 2259 2025 NE 2188 MU 8 NOD 2239 2249 2299 2025 3239 3249 3259 2025 NE 3188 NN & NOD 3239 3249 3259 2825 4239 4249 4259 2025

TINE= 15198192 DATE= 22-AUG+79

S.

APPENDIX I.4: PROG3-OUTPUT

Simulated potentials with zero flow (condition before breach) through dome breach (node 4274, 5274, 4275, and 5275 define hole of 15.8 feet wide and 31.6 feet high).

STEADY STATE SOLUTION

POTENTIAL PRIOR TO BREACH (NO FLOW THROUGH HODES 4874,5276,4275,5275)

STEADY STATE SULUTION WITH NO SURFACE FLUX

******		******			****					**********	****
NODE	0EPTH	HE AD	NOQE	DEPTH	HE LQ	1008 1007	0ep th	HEAD	NODE	0EPTH	HEAD
1	\$.6805	: 60. 96	8	0,608 <i>8</i>	92,11	3	5,6548	78,29	4	8,8220	63,31
1981	-108.5	169.95	5001	-100,8	93,11	1883	-108,5	78,24	1954	-158,8	63,51
2991	-2199,	189.99	5005	-2100,	93,11	2883	-2168,5	78,24	2004	-2158,	83,51
9	8,6888	74.05	8	8,8393	64,13	9	0,8058	59,43	10	U,0000	54,57
19497	-188,8	74.05	1988	-188,8	64,15	1889	-168,8	59,43	1418	-108,8	54,57
19497	-988,8	74.85	8988	-2188,	64,15	2889	-2180,	59,43	2018	-2108,	54,57
11	P,0830	49,66	1012	8,6888	44,73	13	9,5586	39,80	14	8,4488	34,87
1911	-108,0	49,66	5105	•199,8	44,73	1813	-199,8	39,80	1014	•198,8	34,83
2911	-2189,	49,66	5105	•2188,	44,74	2813	-8199,	39,80	2014	•2188,	34,65
15 1915 2015	8,8889 -188,6 -2188,	29,98 29,78 29,88	16 1816 2916	0,0688 -198,8 -2188,	24,43 24,45 24,45	1817 4817	0,0896 •188,0 -2188,	£\$,88 88,88 25,36	18 1818 2818	0,6808 •106,0 •2180,	1 # 6 , 8 # 1 0 7 , 6 # 1 9 8 , 8 7
1819 2819	0.0696 •160.8 •2199,	\$3,8\$ \$5,8\$ 73,8\$	85 8581 850 8	8,4505 -188,5 -8188,	10,21 98,21 98,21	15 1521 4421	0,5580 -160,0 '-2100,	45,35 85,35 85,35	23 1925 : 2023	0,8488 -158,8 -2180,	64,31 64,31 64,31
45	8,8858	59,48	27	V,880 <i>8</i>	54,51	88	0,5888	49,67	89	4,8668	44.73
4501	-198,8	59,68	1927	-198,9	54,59	1828	•199,8	49,67	1929	-188,4	44.75
4505	-2198,	59,48	2927	-2188,	54,59	2928	•2198,	49,67	8929	-2168,	44.74
5424 [428 34	8,8888 -189,8 -2188,	39,84 39,84 39,81	31 1931 2631	8,8665 -198,8 -2158,	34,65 34,65 34,65	32 1032 2005 2005	0,0000 -100,0 -2100,	27,90 29,98 29,98	33 1833 2033	0,8888 -108,0 -2184,	84,93 84,93 84,93
34	0,0088	20,00	25	4,0000	107,60	34	4,6598	75,84	37	0,0000	40.13
1839	-180,8	20,00	1835	-100,0	106,60	1835	-188,8	73,84	1437	-190,0	40.13
2934	-2100,	20,00	2835	-2100,	108,60	2036	-8198,	75,87	8437	-2100,	40.13

;

NODE	DEPTH	HEAD	NODE	02PTH	HEAD	NODE	DEP1H	HEAD	NODE		HEAD
38	9.6779	63,17	37	8,8999	00.11	48	A. 5899	74,85	41	8,8998	69,39
1838	-179.9	65,17	1839	-170,8	40.11	1848	-155,0	74,85	1941	-198,8	69,39
2838	-2169,	85,17	2039	-2189,	60.18	2848	-2199,	74,85	2941	-2198,	69,60
63	8,5909	64,53	43	0,8989	51,57	44	8,8998	34,64	45	₽,8098	47,78
1842	-198,8	64,53	1943	-199,0	59,57	1944	-109,8	54,64	1945	-198,8	47,70
2993	-2198,	64,53	2943	-2199,	59,57	2844	-2189,	38,64	2745	-2198,	47,78
46	-198,8	44.76	47	8,8098	39,81	48	*.2004	34,84	49	0,0095	29,98
1846	-198,8	44.76	1947	-189,0	39,81	1849	*105.#	39,84	1897	-109,8	29,98
2846	8,8888	44.76	2347	-2189,	39,81	2848	*21#3,	34,84	2947	-2190,	29,98
54	8,8508	24,93	51	0,0000	28,89	92	0,0000	100,00	93	0,0000	75,83
1856	-168,8	24,95	1951	-105,0	29,84	1852	•199,8	100,00	1853	-194,0	75,83
2958	-2108,	24,95	2051	-2104,	28,84	2852	•2100,	100,00	2953	-2199,	75,83
54	0,0000	76,83	55	0,0090	\$\$,85	76	0,5909	79,98	\$7	8,6499	74,86
1854	-190,0	78,83	1875	-190,0	83,85	1956	-179,8	79,98	1857	-199,8	74,85
2854	-2190,	78,83	2855	-2100,	85,85	2856	-2199,	79,98	2857	-2199,	74,85
58	0,0000	69.74	57	0,0070	\$4,65	1860	8.8976	57,67	61	8,8975	96,69
1998	-140,0	69.74	1857	+109,0	\$9,59	1860	-188.0	39,67	1961	-199,0	54,69
2958	-2109,	69.74	2959	-2104,	\$8,68	2860	-2187.	39,67	2961	-2199,	54,69
58	0,690A	49,73	63	8,8079	44,77	54	8,8999	39,68	63	0,8998	34,86
1962	-190,0	49,73	1963	+198,8	48,77	1964	=170,8	29,68	1863	-198,8	38,06
2405	-2100,	49,73	2963	-8109,	48,77	2954	=2188,	39,68	2065	-2180,	34,86
66	8,8008	29,91	\$7	8,8049	24,45	88	0,0000	20.95	1947	0,800%	196,00
1766	-199,8	29,91	1867	-198,8	24,45	1858	-170,0	20.65	1947	-[06,0	200,00
2856	-2199,	29,91	2867	-2100,	24,95	2858	-2100,	20,59	1945	-2190,	108,00
78	6,8969	75.81	71	8.0978	te,81	T2	0,0000	84,78	73	0.0000	79,94
1078	-199,8	75.81	1973	-198,8	78,01	1872	-199,0	84,78	1073	-170.0	79,94
2970	-2199,	75.81	2971	-2108,	78,01	2972	-2100,	84,78	2073	-2196,	79,94

··· ·

.

.

.

,

POTENTIAL PRIOR TO BREACH (NO FLOW THROUGH NODE& 4214, 5214, 4275, 5215)

STEADY STATE SULUTION WITH NO SURFACE FLUX

۷

1.57

· · .

POTENTIAL PRIOR TO BREACH (NO FLOW THROUGH NODES 4214, 3214, 4215, 3275)

STEADY STATE BOLUTION HITH NO SURFACE FLUX

					<u></u>						
NODE	0EP1H	HEAD	NODE	DEPTH	HEAD	NODE	DLP1H	HEAD	N00E	DEPTH	HEÁD
74	0;0000	74.87	75	U,8008	67,68	76	4,5203	64.75	77	0,5640	5%,73
1974	-104,0	74.87	1875	-188,8	69,88	1976	-153,8	64.75	1877	-158,0	8%,73
2074	-2100,	74.87	8875	-2199,	67,68	2076	-2130,	64.75	8877	-2188,	5%,73
78	₽,6400	\$4,74		6,6086	49.76	63	0,9546	44.79	10	8,8008	34,43
1078	-100,6	54,74		-160,0	49,76	1965	-183,8	44.79	1001	-188,8	39,63
2978	-2150,	54,74		-2100,	49,76	2565	-2184,	44.79	1005	-2158,	34,63
58 5882 5885	0,8080 -160,0 -2160,	34,67 34,87 34,67	83 1883 2883	U, 8484 - 100, 0 - 2168,	29.91 29.91 29.91	64 1884 2984	8,8844 -198,8 -2188,	84,95 84,96 84,96	83 1945 2963	0,0060 -166.0 -2350,	18,63 28,55 20,63
86	0,0000	168.88	67	0,0448	94,99	88	0,6868	87,98	89	0,0000	64,96
1886	-100,0	188.88	1867	-168,0	94,99	1 4 8 8	-168,6	89,98	1887	•100,0	84,96
2885	-2150,	388.88	2867	-2169,	94,99	1 4 8 4	-2188,	87,98	2987	•2100,	84,96
90	8,6808	74,42	19	0,0050	74.87	98	0,6060	69.62	43	0,9408	64,79
1898	4166,6	74,42	1993	-100,0	74.87	1898	-100,0	69.62	1873	-186,8	64,79
2008	-2188,	74,42	2991	-2100,	74.87	2898	-2100,	67.84	2873	-2168,	64,79
44	0,6446	39,17	73	0,8000	54,77	\$6	8,8888	49.79	\$7	8,6684	44,83
4401	-[00,8	54,17	1875	-100,8	54,77	1095	-198,8	49.79	1897	-188,0	44,83
4485	-2100,	59,77	2875	-2188,	54,77	2096	-2138,	49.79	2997	-2188,	44,83
98 1991 1995	0,0000 -196,8 -2186,	37,84 37,84 37,54	99 1899 2899	#,600# -188,8 -2188;	34,64 34,64 34,68	160 1100 8107	8,9946 -104,8 -2190,	24, 92 29, 52 29, 52 29, 52	183 1983 2191	0,0688 -192,0 -2109,	24,96 24,96 24,96
192	0,0000	26,66	303	0,8099	188.82	184	0,5556	\$4,\$\$	195	0,4844	69,97
1192	-198,0	28,68	1103	-199,8	188.98	1184	-180,0	\$4,\$\$	1195	•167,4	89,97
2192	-2198,	28,08	8103	-2169,	168.49	2184	-2166,	\$8,\$\$	2195	•2187,	87,97
146	0,8040	84.75	147	8.8446	14,92	134	0,0042	74,87	197	0,0000	67.64
1196	-100,8	84,95	1147	-169.8	74,92	1100	-160,8	74,87	1187	-150,0	69.84
2186	-2104,	84,95	2147	-2160,	74,91	1100	-2190,	74,87	2187	-2184,	67.64

.)

POTENTIAL PRIOR TO BREACH (NO FLOW THROUGH NODES 4214,5214,4275,5215)

NODE	0EPTH	HEAD	NODE	DEPTH	H\$AD	NODE	DEPTH	HEAD	900H	DEPTH	HEAD
118 1118 2118		\$4,81 \$4,81 \$4,81	888 1888 2119	8,8779 -199,4 -2199,	59,79 39,79 39,79	5115 5115 5115	8,8709 -100,0 -2100,	54,79 24,79 54,79	113 1113 2113	8,8848 -168,6 -2188,	47,80 47,88 47,88
114 1114 2114	0,0000 -190,0 -2100,	44,62 44,62 44,62	115 1115 2115	9,2898 -189,8 -2100,	39,84 39,84 39,84	516 1116 2116	8,8998 -109,0 -2108,	34,88 34,88 34,88	1117 8117	8,8988 8189,8 8188,	89,92 89,92 89,92
811 8111 8115	8,0000 -100,0 -2100,	24,95 24,96 24,96	119 1119 2119	+,8099 -190,8 -2180,	20,00 20,00	1120 1120 2120	0,0009 -100,0 -2100,	188,28 185,82 185,82	121 1121 1121	0,0009 •199,9 •2199,	\$4,7\$ \$4,75 74,75
122 1122 2122	•.•*** -160,0 -2100,	89.97 89.97 89.97	183 1123 8123	\$,2075 -100,0 -2160,	64.99 84.94 84.94	124 1124 2124	0,0999 •198,8 •2108,	74,91 74,91 74,91	325 1125 2135	N, 2793 -155,8 -2179,	74,88 74,88 74,87
126 1126 2126	8,0078 -198,9 -2198,	\$7,84 \$7,84 \$7,64	127 1127 2127	P,8294 -189,9 -2189,	\$4,92 \$4,92 \$4,92	128 1128 1128	\$,0705 -193,5 -2109,	37,89 34,89 57,89	129 1129 2129	+2148, •188,8	34,88 34,88 34,88
130 1130 2139	8,8788 -168 ₈ 8 -2188,	47.81 47.81 47.81	131 1135 8131	#,9989 -188,0 -2188,	44,92 44,92 88,92	138 1188 8138	0,9075 -170,0 -2109,	29,84 29,84 39,84	133 1133 2133	8,8999 •168,8 •2149,	34,88 34,88 34,88
139 1139 2134	0,000 -150,0 -2100,	24, 92 29, 92 24, 92	115 1135 2135	0,0000 -190,0 -2198,	24,76 24,76 24,76	174 1174 2174	t,0175 -169,6 -2109,	50,09 50,09 50,09	895 8951 8955	8,8888 -188,8 -788,8	78,83 78,83 78,83
185 1951 1655	6.8989 •199.6 •988.8	79,91 79,91 88,86	202 1245 2262	8.8889 -189.8 -988.9	89,18 88,10 49,36	203 1263 2263	8,8889 •188,8 •1948,	48.97 88.97 81.44	204 1284 2284 3284 8284 8284 5284	f, ftff - 1 ff, f - 1 ff, f - 1 ff, - 1 ff, - 1 ff, - 1 ff,	#1.15 #1.15 #1.59 #1.59 #1.64

٠.

.

:

STEADY STATE BOLUTION WITH NO BURFACE FLUX

.

I.59

,
POTENTEAL PRIOR TO BREACH (NO FLOW THROUGH NOCED ALTA, SETA, 4275, SETS)

*

STEADY STATE BULUTION WITH NO BURFACE FLUX

NONE	DEPTH	HEAD	NODE	DEPTH	H& A D	NODE	0EPTH	HEAD	NODE	02PTH	043H
295		41,22	206	*.***	\$1.64	. 237	9,5669	\$2,84	203	*,0608	43,73
2582	-188,9 -1250.	41.52	1296	-1258.	81,83	1207	-100,0	82,64	2208	-163,0 -1253,	63,73 63,73
3285	-1400,	41.63	3285	-1488.	81,90	3207	-1458,	\$2.48	3568	-1409,	83,74
4285	-1867,	#1.67 #1.55	4206	-stos*	81,98	4227	-2169,	42,15	4208	-2160.	83,14
4285	-1749.	\$1,70									
209	#.eape	84.63	219	8.8368	77.11	211	8.030.8	78.43	212	6.2203	78.56
1594	-100,0	84,63	1818	-108.0	11.11	1211	-100.0	18.43	1515	-100.0	10,56
2289	-1230,	84,63 38,63	8218	-788,8	71.49	2511	-960.6	78,53	2212	-988,0	78,75
4209	-2199,	\$4,63									
215	A.8868	79.17	415	1.1040	19.38	815	0,6293	79.35	816	8,2003	79.65
1213	+160,0	79,17	1214	+18C.6	79,50	1219	-100,8	79,35	1216	-100,0	19,65
2213	-1360.	79.51	3214	+1232, +1488,	79.58 79.41	8213	•1250, •1423.	19,56	3214	-1252. -1628.	79,75
			4214	-1469,	19,64	4215	-1647,	79,60	4214	-2163.	19,81
			5214	+1768,	79,65	5215	•1700, -1140,	79,68 79,69			
							•	•-			
715	0,00 00		510		41.12	115	8,8568	61-75	\$50	0,8408	14.43
2217	+1 2 50.	48,49	4219	-1250.	41.13	2219	+10010 -10010	81.75	2228	-193 <u>.</u>	74.03
1156	-1600.	\$0.52	3218	-1688,	41.13	3219	-1400,	41.75			
• • • • •	-41444	****35	4414	**188,		4214	-sfeaf	41.78			
155	8,4100	74,85	523		74.85	223	4,8663	74.86	224	8,0403	74,86
1221	-100,0	74 .85 76 AR	1281	-100,0	T4,85 74,85	1223	-163.6	76,86	1224	-100.0	74,85
									3224	-1683,	14 45
									4224	-1669,	74,84
										~	

POTENTIAL PRIOR TO BREACH (NO FLOW THROUGH NODES 4214,5214,4275,5215)

STEADY STATE SOLUTION WITH HO SURFACE FLUX

.

*******								,	*************			
NODE	DEPTH		HEAD	NODE	DEPTH	HEAD	NODE	QEPTH	HEAD	NODE	DEPTH	HEAD
225	8.2629		74.86	856	0.6689	74 .0 9	227	0,7340	74.85	*2*	8,8889	74.85
1825	-198.8		74,86	1226	-199,9	74,85	1227	-100,0	74.85	1224	+188,0 -1258.	74,65
3252	-1600,		74,05	3554	-1698,	14,85	3221	-1498,	74,45	3550	-1488,	74,03
4229	-1669. -1768.		74,85 74,83	4224	-2168,	74,83	4227	-5166	74,83	4228	-216#,	74,85
6225	-1748,		74,84	•								
229	r.08v8		14.85	838	8,8683	72.59	115	8,8509	11.29	212	8,8003	71.14
1227	-109.0 -1250,		74,85 74,85	1275	-1 48.0 -968.0	72,54	1231	-109,0	71.27	1232	-158'8	79,48
1224	-1600,		74.45		•	•						•
YEEV												
£15	A. 2000		78.53	115	0,000	78.45	\$35	*,****	18.35	236	8,8449	78,86
2233	-1569,0		70,24	5534	-1259,	76.21	\$532	-1250,	70,17	\$536	-1258,	67,75
			-	3234	v1688.	78,14	3239	-1675,	78,10	3236	-142D. -2168.	69,90
				9150	-1788,	78,11	5522	-1799,	78.87			
							0233	*1/48*	10.01			
237			49,21	236	0,9989	48.59	839		67.94	249	0,9199	71.89
1237	-100,0 +1250.		69,21 69,19	2239	•105.0 •1250.	68,38 68,59	1237	-1250,	67,99	2348	• 980,8	71,91
3237	-1699		\$9,19	3238	-1600,	68,59	3239	-1699,	67.99		•	•
4831			•••••	4230								
241			78,15	242	0,0000	67,78	843	0,0000		244		97-51
1241 2845	-100,0 -9 <i>08</i> ,0		70,15 70,03	1242	-199,0 -980,8	67,78	2243	*1568,	\$7,17	2244	*1250,	40,74
	•	•			•			-	-	3844	-1698,	50,00
										3244	-1788.	48,58

•

I.61

1

POTENTIAL PRIOR TO BREACH (NO FLOW THRUUGH HODE& 4874,5274,4275,5275)

STEARY STATE SULUTION WITH NO SURFACE FLUX

NONE	DEPTH	HÊ AU	NODE	DEPTH	HEAD	NODE	DEPTH	HEAD	NQ02	DEPTH	HEAD
245	e, <u>u</u> ase	68.74	346		68,56	. 247	4, 2844	67.47	248	Ø,8482	46,66
1542	-198,A	68,94	1246	-188,8	68,56 68,56	1247	-100.0	67.47	1248	-108,8	66,66
3245	*1600.	44,56	3244	-1440.	44,34	3241	-1400.	41,44	3248	-1658.	44.44
4245	-1469.	68,54	4246	-2180,	68,27	4247	-2140,	47,49	4248	-2188,	44,44
6245	-1748,	68,53 68,58									
249		66.44	125	1,0009	71,70	851		47.44	\$58		41,67
1247	-1210.	66.44	1258	-188,8	11.18	1251	*188,8	67,83	1232	-108,0	\$7.57
3249	-1407	66,44									
*5+4	+2180,	66,44									
253	6.0800	48.82	234	8,0000	48.64	235		44.57	425		44,17
2253	-1568,	48,38	8254	-1250.	66,35	2255	-1256.	48,38	2251	-1250.	44,60
			3294	-1600.	44,23	3855	-1698,	44,17	3456	-1668,	67.94
			5254	-1788,	68.17	5255	-1788.	68.14	4139	******	07 ₁ 03
				-	•	4259	-1748,	66,13			
257		67,62	828	*,***	66,16	239		65,28	263		71.66
2257	-1258	66.99	2238	-1254.	88,18	1237	+125A.	67,28	2248	*193,5	71.44
3257	-1488,	66.78	3250	-1698,	64,13	3259	=1600,	45,23			
4237	-5188.	• • • • • •	4238	-4199.	46,13	4257	-2199.	03,23			
265	0,0070	69.78	262	H. 6580	67.57	263	8,0000	** .72	264	U, 0605	44,54
1455	-148,8	47,45	£242	-118,5	47,34	2243	-1544,	68,25	1244	-1250,	48,23
					-		-	-	3244	-1600,	<u>++-11</u>
									5244	-1748.	48.84

NODE	DEPTH	MEAD	NODE	DEPTH	HEAD	NODE	DEPTH	HEAD	NUDE	DEPTN	HEAD
263 1263 2263 9263 9263 6263	E, 0800 -100,8 -1258, -1668, -1668, -1780, -1740,	68.47 68.18 68.18 68.06 68.01 68.01 68.91	846 1266 2269 3266 9266	8,0070 -199,6 -1230, -1609, -2100,	60,07 60,87 67,99 67,83 67,75	267 1267 2267 3267 4267	8,8988 -160,8 -1514, -2188, -2188,	\$\$,90 64,70 64,87 64,87 64,87 45,80	269 1769 2269 3268 4268	8,8954 -1954, -1554, -1684, -2166,	44,03 44,83 44,82 44,82 44,82
249 1269 2267 3269 4247	0,0200 •100,0 •1250, •1600, •2100,	63,14 65,19 65,13 63,13 63,13	278 1278 2278	8.8886 -128.8 -769.8	71.63 71.69 71.69	271 1271 2271	\$,8889 ~[89,8 ~999,8	69,77 69,76 69,64	272 1272 2272	\$,\$\$85 -[53,\$ -193,5	69,57 67,57 67,34
273 1273 2273	8,8288 -188,8 -1368,	68.78 60.78 60.22	874 1874 2274 3874 4274 5274	8,8789 -199,9 -1999, -1669, -1669, -1709,	68,52 68,53 68,22 69,20 69,26 69,86	273 1875 2275 3275 4275 4275 4275	P,8298 -{ 298,8 -{ 298, -{ 699, -{ 669, -{ 199, -{ 199, -{ 199, -{ 199, -{ 199, -{ 199,	48,45 44,49 69,17 48,09 69,89 67,79 47,78	876 1276 2276 3276 4276	8,8488 -1258,8 -1258, -1469, -2189,	68,84 68,94 67,67 67,89 47,73
217 1217 2277 3217 4277	0,000 -100,0 -1230, -1400, -2100,	64,87 64,87 64,84 44,84 45,84	278 1970 2278 3278 4278	0,0290 •199,0 •1930, •1489, •1489,	65,20 63,99 63,99 63,99 63,99	279 1279 2279 3279 4279	0,0079 -1298,8 -1298, -1499, -2189,	65,34 65,34 65,53 65,53 63,53	1268 1925 1985	P, 8899 = 199, 8 = 999, 8	71,64 71,64 71,66
201 1281 2281	8,8488 -188,2 -998,3	69,76 69,76 69,63	282 2852 2853	8,8298 =192,8 =928,8	69,37 69,37 69,34	- 893 1203 2283	8,9009 -188,8 -1968,	68,79 68,79 68,21	204 1204 2294 4294 5294	0,9070 -100,0 -1950, -1950, -1665, -1700,	68,52 60,52 60,67 68,85 60,67 68,85 69,79

11 A

POTENTIAL PRIDE TO BREACH (NO PLOW THROUGH NODES 4274, 3274, 4275, 3275)

STEADY STATE SOLUTION WITH NO SURFACE FLUX

POTENTIAL PRIOR TO BREACH I NO FLOW THROUGH NODES 4274, 5274, 4275, 5275)

STEADY STATE SOLUTION WITH NO SURFACE FLUX

NOOE	OEFTH	HEAD	NODE	DEPTH	HEAD	NODE	DEPTH	HEAD	NODE	DLFTH	HEAD
203 1203 2203 3205 4203 5205 6205	8,0000 -158,8 -1588, -1588, -1588, -1668, -1788, -1740,	68.44 68.44 68.15 68.85 68.85 67.97 67.97	286 1286 2266 3286 . 4286	0, 4444 - 160, 8 - 1850, - 1850, - 1860, - 2150,	64,84 64,83 67,86 67,73	267. 1287 2247 3267 4287	8,800 0163,8 01234, 01669, 02189,	44,84 64,84 44,83 64,83 44,83 44,83	200 1280 2265 3268 4253	8,538 -188,8 -1858, -1856, -2158,	43,98 43,98 43,98 43,98 43,98 43,98
289 1289 2289 3289 4284	8,8008 -1230, -1230, -1600, -2108,	63,88 63,88 63,88 63,88 63,88									

TINE 13149185 * DATE= 22-AUG-74 ...

APPENDIX I.5: PROG3-OUTPUT

Simulated potentials with injected flow of 10,000, 2500, 3200, and 700 ft³/day, respectively, at node 4274, 5274, 4278, and 5278, which gave 50 ft additional head at the dome breach. The total flow of 16,400 ft³/day was increased arbitrarily by a safety factor of 1.5 and rounded to arrive at flow rate of 24,000 ft³/day.

STEADY STATE SOLUTION

POTENTIAL WITH G(4214)+18668 G(5214)+2588 G(4244)+5888 G(5284)+768 CU FT/DAY

ATEADY STATE SOLUTION WITH NO SURFACE FLUX

						*******					******
NODE	DEPTH	HEAD	NODE	DEPTH	H£AD	NODE	DEPTH -	HEAD	NODE	DEPTH	HEAD
1	0,8580	195.00	2	0,6005	43, 37	3	0,8888	48.78	1984	#,886#	64,33
1991	-158,8	598.66	1 5 0 2	-108,8	43, 37	14e3	•(68,8	48.78	1984	=190,8	86,33
1445	-2159,	195.67	2 6 0 2	-2198,	45, 37	2003	•2150,	48,78	2064	=2198,	84,39
6	0,8808	16.78	\$	U,8894	66.51	9	8,0058	41.11	18	8,8428	53,67
1886	-180,8	76.78	1388	-199,9	66.51	1899	-188,0	41.11	1819	•193.6	53,69
2786	-709,8	74.78	2888	-2149,	64.52	8987	-2188,	41.11	2518	•2188,	35,89
11	u, 8888	50.72	12	8,53#\$	43.34	13	0,6656	48,46	10	8,9388	33,34
1811	-100, 8	50,72	1012	-188,8	45,58	1013	-158,0	48,46	1014	-188,9	35,34
2011	-2100,	50,72	2012	-2158,	45,58	2013	-2500,	48,46	2014	-2182,	35,34
15	0,9665	34,82	16	8,6386	83.11	17	8,8688	25.85	1010	8,6648	140,60
1815	-199,0	34,22	1816	-146,8	83.11	1817	-168,8	25.25	1010	-180,8	100,60
2815	-2190,	34,22	2916	-2188,	89.11	8817	-2188,	25.35	2010	-2189,	140,40
5010	0,828A	95,36	20	8,8488	40.7C	15	8,8439	\$6.17	25	0,0070	66,30
1816	-188,0	95,36	1023	-168,8	98,74	1825	4183,6	86.17	1625	-108,6	66,39
14	-2188,	91,36	2428	-2198,	96,74	1882	4183,	86.17	8625	-2100,	66,30
45	ø.02#4	41.487	27	9,8086	55,67	28	0,0200	38.71		9,8888	45,58
4501	-194,8	51.07	1827	-108,8	55,67	1928	-168,0	38,71		-183,9	45,36
4545	-2169,	41.07	2027	-2108,	55,67	2928	-2169,	38,71		-2168,	43,38
38	0,0010	48,43	31	0,8888	35,33	1032	8,009 <i>4</i>	30,88	33	0,6088	85,11
1434	-140,0	46,43	1831	-158,8	35,33	1032	-188,0	30,88	1833	-[88,0	25,11
2038	-2100,	48,43	2831	-2188,	35,33	8038	-2180,	30,88	2833	-2188,	85,11
34	0,0000	29,80	35	V,8848	108.88	36	e,5846	73,31	37	#,####	90,63
1834	-100,0	23,84	1035	-169,6	188.48	1836	•108,4	73,31	1837	-180,0	90,63
2834	-2199,	28,84	2035	-2133,	188.48	2936	•2188,	75,31	2037	-2168,	90,63

POTENTIAL WITH OCA274)+10000 D(3274)42900 G(4284)+3200 G(3284)4700 CU PT/DAY

•

STEADY STATE SOLUTION WITH NO BURPACE PLUX

NODE	DEPTH	HEAD	NODE	DEPTH	HEAD	NOT	DEPTH	NEAD	NODE	BEPTH	HEAD
5420 1919 19	0,0000 -190,9 -2100,	83.19 87.98 85.94	19 1939 2039	0,0000 -100,0 +2100,	61,14 41,14 81,15	\$\$ 1848 2848	8,0779 • ##,0 • 2198,	76,23 76,23	4) 1941 8941	t, stes - 160, t - 2170,	78.10 73.10 71.10
99 5995 5995	* 0,0000 •190,0 •2100,	85,88 85,88 55,88	45 1843 8043	8,8978 -199,8 -2199,	67.74 87.75 87.75	84 1844 8544	010200 0120.0 0120.0	, 33.82 33.82 73,82	- 1945 2845	8,8778 •159,8 •2199,	50,69 59,60 50,48
86	9,0009	45,55	47	8,8978	\$2,4\$	1545	8,8868	39,39	89	-2162°6	10,25
1846	-199,0	43,55	1867	•199,8	\$2,44	1545	•198,8	39,39	1999	•762°6	30,25
2846	-2100,	43,56	2847	•2188,	\$2,44	1545	•2188,	39,39	2749	•762°6	30,21
58	8,8980	25.11	18	0,8988	29,99	32	0,0000	178,29	53	P. FCDD	#3,87
1858	•189,5	25.11	1851	4199,8	29,99	1032	+100,6	162,29	1853	•198.0	93,87
2858	-2100,	25.11	2831	+2198,	28,66	2833	+1389,	188,19	2053	•1100,	93,87
94 1094 2034	0,8999 -108,8 -2189,	78,92 79,92 78,52	1835 1835	0,5445 -173,0 -2147,	\$5,75 \$5,75 \$5,74	34 1874 2834	\$,5399 • \$C,\$ •2199,	80,98 80,95 88,95	97 1837 2837	0,0000 •198,0 •2190,	73,98 75,98 73,99
98	0,00rg	78,99	39	0,0909	63,94	\$4	8,8179	\$2.85	61	8,8979	53,76
1955	-100,0	78,99	1839	+177,0	63,74	1858	5179,8	\$2.85	1051	-178,9	53,76
2858	-2190,	78,98	2039	-2198,	63,79	2768		\$2.85	2751	-1188,	53,76
62	6,8688	58,64	63	0,0000	47,93	64	F. FTFF	45.43	85	0,8905	33,32
1462	-178,8	38,64	1863	-100,0	45,53	1064	- 175. A	45.43	1865	-108,0	35,32
2462	+2188,	39,64	2863	-2100,	45,93	7064	- 2189.	45.43	8265	-2188,	39,32
66	r,0099	38.81	67	8,8998	29,11	\$8	8,8998	28,25	69	P,0099	160,55
6581	-103,7	56.21	1867	-166,8	29,11	1050	-189,9	28,25	1867	• [08,0	160,65
6695	-2143,	59,21	2267	-2188,	23,15	2058	-2388,	28,38	2957	• 2108,	197,65
18 1878 2978	0.0000 -100.0 -7100.	15.22 13,22 75,22	71 1971 2975	8,8878 •189,8 •1105,	\$8,6\$ 98,43 98,43	72 1872 2072	\$,5599 -168,8 -2100,	\$3,63 83,63 83,61	73 1873 8873	0.8979 •195,8 •2150.	#8.75 80,75

I.67

,

POTENTIAL MITH (4274)-14688 0(5274)-2988 0(4244)-3888 8(5884)-788 CU FT/DAY

STEADY STATE SOLUTION WITH NO SUMFACE FLUX

******					448+****************************	******	**********				
NGDE	DEPTH	HEAD	NOD E	DEPTH	48AD	NGDE	DEPTH	HEAD	NODE	CEPTH	HEAD
74 1978 2074	u,8200 -198,4 -2198,	75,62 75,62 75,62	75 1875 2875	9,9649 -193,5 -2199,	70,69 70,63 70,63	1 8 7 6 2 8 7 5	8,820¢ •168,8 •2188,	65,63 67,63 65,83	77 1877 2877	¥,836\$ •15\$,\$ •2163,	66,70 60,73 60,74
78	9.8488	53,74	79	0.8588	56,61	65	0,3126	49,81	81	#,8000	40,43
1978	-168,8	53,76	1879	-188,0	58,61	1633	•175,6	48,81	1931	-160,0	40,41
2078	-2180,	53,70	8679	-2180,	32,61	8665	•2166,	45,83	8591	-8160,	45,41
58 5882 5885	9,6465 -199,9 -2199,	35,31 35,31 39,31	43 1683 4843	0,0543 •168,0 •2168,	30,88 1 30,88 30,80	44 1889 8884	0,6828 0108,0 -8168,	85,18 85,18 85,19 85,19	29 1985 2665	6,4045 -160,9 -8160,	48,56 29,60 23,40
48	N,9885	100,50	67	W, 0468	98,14	68	0,2860	42.37	87	0,0000	45,53
1886	-169.8	190,50	1987	-108, 0	95,14	1885	-160,0	40.17	1887	•124.0	45,53
1885	-8198,	180,50	8987	-2100,	98,19	2365	-2163,	40.17	2687	•4160,	43,53
44	0,0608	\$1,65	91	0,8889	75,75	92	9,9356	76,76	93	8.9499	45,75
1946	-160,8	\$8,65	1991	-198,0	15,75	1092	•169,9	70,76	1093	-189.9	45,75
9445	-2150,	\$8,69	2691	-2189,	75,73	2092	•2192,	70,76	8993	-8159,	45,75
99	8,6868	61.72	93	8,8488	53,64	96	U, COCO	30,90	47	0,658 <i>0</i>	43,49
9941	-188,9	60,72	1893	-158,8	53,66	1876	+194, U	30,90	1847	•188, 0	45,49
9785	-2168,	60,72	8895	#2180,	53,66	8876	+195,	80,98	8647	•2168,	45,49
98	5,6446	48,39	1	4,6948	35,30	198	0,6088	10,17	101	8,8888	25,10
1998	-196,5	48,39	1	-140,8	35,30	1180	•188,0	30,10	1181	=166,8	85,10
2998	-2190,	48,48	2	-2188,	35,30	2188	•1190,	30,19	2145	=2183,	2\$,10
541	0,6680	20,00	183	8,8840	198,88	104	0,0000	98,18	155	u, 6803	98,34
5411	-188,8	28,03	1183	-185,9	199,58	1194	-155,0	99,18	1165	-163, 8	98,34
5415	-2180,	29,03	2143	-2159,	193,95	8194	-2160,	95,18	2168	-2168,	98,34
186	8,084A	85,48	187	9,0095	88,68	183	8,2463	75,67	189	8, 6000	78,71
1921	-164,8	85,48	1187	-169,0	23,69	1185	-198,8	75,67	1189	-120,6	78,71
1925	-£188,	83,48	2187	-2164,	84,59	- 2184	-198,8	75,67	2199	-2100,	78,71

POTENTIAL WITH #{48743+189## 0{9874338998 #{428434998 0{928434788 CU #1/0Av

STEADY STATE BOLUTION WITH NO BURFACE FLUX

.

NODE	0EPTH	HÇAD	MODE	DEFTH	HEAD	4 HODZ 	DEPTH	+++++++++++++++++++++++++++++++++	•	DEPTH	HEAD
0111	0,0000	\$3.71	111	0,8780	\$7,\$\$	11#	0,0005	99.69		8,9978	38,35
0112	-109,4	\$3.71	111	•188,8	\$7,\$\$	111#	•107,7	97.69		-169,8	18,35
2110	-2149,	\$3.71	2111	•2188,	\$7,\$\$	811#	•1107,	77.63		-2169,	89,36
554 1118 2114	8,0978 -199,8 -2189,	4344 8 45,4 8 43,48	113 1115 2115	6,8778 •184,8 -2189,	18,39 65,39 49,39	\$14 \$156 \$156	9,9798 •128,8 •1189,	<u>1</u> 7, 29 75, 29 75, 29		C, C930 -109.0 -2129,	30,20 30,20
110	0,8950	23.1\$	119	8,8779	27.97	1129	0,8278	186.99	181	0,000	75.17
1113	-100,8	23.1\$	1117	-1874	55.98	1129	• 195,8	175,99	1181	•109,0	45.17
2113	-2189,	23.1\$	2117	-8177,	24.98	2129	• 2199,	178,99	8181	•2100,	45.17
191 1111 2112	8,8849 -188,8 -2188,	78,33 78,35 78,33	(3) (3) (3) (3)	0,8828 •189,8 •2197,	02.81 83.41 83.47	524 5124 2124	8,2259 •109,2 •1128,	\$6.\$1 \$9.5f 89.5f	129 1125 2125	8,8829 •189,9 •2194,	75.63 79.65 79.65
451	#,5598	10.64	187	0,0000	63,69	199	4,4175	80,61	127	0,0070	77,42
4511	-17#,6	78.64	1187	4100,0	63,69	1929	•]74,6	80,61	1127	-179,0	39,42
4515	-2188,	78.64	2187	82159,	63,69	2125	•R184,	87,61	2127	-2189,	39,42
139	0,0000	74,75	191	8,8978	49.87	178		48,38	173	\$, ***\$	39.29
1139	-100,0	58,35	1171	-107,8	49.47	1178		40,38	1173	•{*\$, *	39.29
2139	-2100,	38,35	2171	-2147,	47.47	2178		46,36	1173	•2\\$\$,	39,29
134	8,8068	38.2\$	139	8,8008	25,18	154	\$,\$***	25,99	883	¥, FTF	79,53
1134	-198,8	38.2\$	1139	-108,0	25,18	1135	•1**,#	29,29	1277	- 1 CT, F	79,53
2134	-2187,	38.2\$	2135	-2108,	25,18	2134	•21**,	29,00	1277	• 777, F	79,51
105 105 105 105 105	0.8009 -120.8 -709.0	81.29 81.29 81.33	292 1242 2282	0.0099 -109.0 -788.0	01,37 01,37 01,63	203 1203 2203	e,#### •\$6#;# •134#,	82,15 82,15 82,34	294 1254 2774 3204 4254 5244	\$,577\$ -195,8 -1295, -1669, -1669, -1755,	¢₹,32 \$1,32 \$1,61 \$2,75 \$2,75 \$2,75

POTENTIAL WITH #{44274}=18868 #(5274)=2548 @{4464}65468 @{5264}#768 CU #T/DAY

STEADY STATE SOLUTION WITH NO SURFACE FLUX

******	********	HÊAD	*******			•		************			******
NOQE	0471N	4640 	NGO# 	82PTH 	MEAD	1008 	DEP1H i	HEAD	1004 	DEPTH	HEAD
285 1285 2285 3205 4205 5285 6285	\$,600 -100,8 -1258, -1500, -1500, -1780, -1740,	82.39 82.57 82.45 82.71 82.81 82.81 82.81	265 1266 2286 3285 4285	0,8688 -188,0 -1830, -1830, -1608, -8108, -8108,	68.77 68.77 68.64 63.68 63.80	107 1207 8207 5207 5207 4207	0,0044 -164,0 -1834, -1684, -6166, -8166,	63,67 63,67 63,93 63,93 63,93	200 1208 2209 3496 4206	0, 644 - 54, 0 - 1354, - 1685, - 2186,	\$4,7 \$4,7 \$4,7 \$4,7 \$4,7
204 1267 2207 2267 2267 4869	0.0000 -100.0 -1230, -1660, -2180,	43,34 83,34 83,54 85,54 85,34	818 1818 8219	€,6666 •188,8 •786,8	76,64 78,69 74,67	811 1818 8418	5,5465 0153,5 0765,8	79,58 79,88 79,88	- 212 1818 8318	9,5303 - 193,9 - 493,9	79,94 79,94 80,18
813 1213 8213	4,6864 -180,9 -1560,	80.87 88.87 88.17	814 1814 8814 5814 5814 5814 5814	8,6608 -188,3 -1250, -1488, -1469, -1788,	88,39 88,39 88,78 88,86 84,88 84,88	219 1885 3215 3215 4219 4219 4219	0,6440 -100,0 -1853, -1608, -1608, -1708, -1740,	44,63 88,64 85,68 85,67 85,98 85,98 85,98 85,98	816 1816 8216 3816 4816	8,6448 -:06,8 -:238, -:688, -2188,	48,48 40,90 61,01 61,04 61,16 61,11
817 1817 8217 3817 4817	0,5000 -100,5 -1230, -1668, -8100,	61,65 61,65 61,66 61,66 61,68	218 1818 4218 3316 4818	¥,\$\$\$\$ \$143,0 \$1254, \$144, \$144,	\$2,22 \$2,22 \$2,23 \$2,23 \$2,23	819 1817 8819 3819 4319	D, 6888 - 198, 6 - 1838, - 1688, - 1688, - 2198,	\$2,5 \$2,5 \$2,5 \$2,5 \$2,5 \$2,5	828 1228 8229	8,8886 -154,8 -754,5	76,70 76,70 76,70
1251 1251 2251	0,0005 -100,0 -100,0	76,37 76,57 76,53	222 1222 2222	u, 1994 - 196, 9 - 786, 2	74,53 76,53 76,51	203 1283 4883	8,9469 189,9 1910,	76,49 76,49 76,43	224 1224 2224 3224 4224 5424	6,5868 -186,5 -1856, -1666, -1669, -1766,	76,48 76,48 76,43 76,43 76,43

POTENTIAL NITH B(4274)=10088 B(3274)=2588 B(4284)=3288 B(5284)4788 CU FT/DAY

BTEADY STATE SOLUTION WITH NO BURFACE FLUX

			-	-							
NODE	DEPTH	HEAD	HODE	DEPTH	HEAD	NODE	DEFTH	HEAD	HODE	DEPTH	CA3H
823 1223 2223 4223 5223 6223	8.8575 -169.8 -1259. -1269. -1269. -1769. -1769.	76.49 76.49 76.49 76.44 76.44 76.44 76.84	226 1226 2226 3226 4226	8,0988 •199,0 •1978, •1978, •2199,	74,43 74,45 74,45 74,43 74,42	227 1227 2227 3227 4227	9,0009 •109,0 •1690, •1690, •2100,	76.37 76.37 76.37 76.37 76.37	828 1220 1220 4720	8,8789 - 179,9 - 1399, - 1698, - 2189,	74, 32 76, 32 76, 32 76, 32 76, 31
229 1229 2229 3229 4729	010000 -100.0 -100. -1600. -2100.	76.27 76.27 76.27 76.27 76.27	839 1237 2239	8,0778 +129,8 +799,8	74.86 74.86 74.88	831 1831 - 8831	¥,0079 4109,0 4722,0	73,61 73,61 73,92	675 1675 675	9,8979 +127,9 -777,9	73,48 13,48 73,30
5872 1523 523	8, 88 08 -109,0 -1368,	78.00 72.84 72.59	\$34 1234 2234 3234 4234 7234	6.0000 -100et -100et -1505 -1505 -1505 -1709,	72,78 72,70 72,49 72,39 72,76 72,35	835 1835 8835 8835 8835 8835		72,64 72,64 72,45 72,35 72,35 72,31 72,31	876 1875 8876 3836 4836	8,9978 -198,9 -1298, -1498, -2198,	72,32 72,32 72,60 72,19 72,69
237 1237 2237 3237 4237	-100, -100, -100, -100, -100,	71.30 71.35 71.35 71.39 71.39 71.39	239 1230 2230 4230	0,0009 =100,0 =1230, =1600, =2190,	78,66 78,66 78,65 78,65 78,65	239 1239 2239 4239	F. FFCH +180.A +1820, +1680, 48180,	\$9, 43 69, 93 69, 93 69, 93 69, 93 69, 93	249 1249 2249	8,8171 - 199,9 - 779,9	74,38 74,38 74,39
241 1241 2241	8,8998 -188,8 -788,8	73.82 75.82 78,90	898 1848 8848	#,#### =100,8 =188,8	72,89 78,85 72,69	843 1243 2243	8,8408 -187,8 -1958,	78.16 78.19 71,70	244 1244 2244 3244 4244 7244	9,8879 -1298,9 -1298, -1689, -1689, -1689, -1788,	75.97 75.79 75.79 75.74 75.74 75.77 71.77

.

.

.

1.71

POTENTIAL WITH D(4274)-18488 D(5274)+2568 D(4164)+3268 D(5264)9768 &U \$T/DAY

STRADY STATE SOLUTION WITH NO SURFACE FLUX

					·						
NODE	DEPTH	HEAU	HODE	BEPTH	HEAD	NODE	D&PTH	HEAD	N008	0871H	HEAD
245 1243 2245 3245 4245 5245 6243	8,0608 -100,0 -1230, 41680, -1469, -1788, -1788,	75.02 75.02 75.60 75.66 75.66 75.66 75.65	845 1845 8245 3245 4245	6,6668 -188,9 -188,9 -1886, -1686, -2586,	74.01 71.01 71.03 71.53 71.53	847 1247 8847 3847 4847	C, GGG 0 50, U 0 50, U 0 50, U 0 50, 0 50,	16.19 76.19 76.18 76.18 76.28	848 1848 2246 3246 6248	8,8588 -168,8 -1689, -1689, -2186,	
249 1240 2249 3249 3249 4249	0,0000 -100,0 -1250, -1400, -2138,	68.77 68.77 68.77 68.77 68.77	850 1858 8858	0,0060 -110,0 -160,0	74,26 74,26 74,27	1251 1251 2251	8,8946 •155,8 •165,8	72,98 72,98 78,98	858 1338 2858	8,8388 =168,8 =168,8	72,83 78,63 72,67
233 1833 2331	8,6688 -188,8 -1568,	72.25 72.25 78.55	836 1838 2634 3634 4854 8234	0,4678 -160,4 -1838, -1888, -1888, -1888, -1798,	72,00 72,07 72,02 71,78 71,58 71,40	855 1855 8855 5855 4858 5859 6855	0,0030 - 250, - 250, - 1660, - 1660, - 1740, - 1740,	71.00 72.00 72.00 72.17 71.50 71.50 71.57 73.50	236 1838 2256 3256 4256	2,0140 0100,0 01256, 01256, 01468, 02158,	71,54 71,57 71,44 71,44 71,44
257 1257 8887 3857 4257	0,0000 -109,0 -1250, -1686, -2164,	70.85 70.05 70.12 70.13 70.15 70.15	838 1298 8358 3258 4258	U, 4400 4106, U 41238, 41660, 4158,	68,87 68,87 68,64 63,69 68,89	859 1859 8359 3859 4839	\$,065 -185,0 -1850, -1668, -1668,	67,73 67,73 67,34 67,34 67,74	240 1268 2269	8,8348 •158,8 •188,8	74,83 74,83 74,83
261 1261 2961	9,8609 -106,8 -156,8	72.99 72.99 72.99	141 1242 2452	¥,¥444 -194,8 -988,8	72,68 72,68 72,67	243 1263 4263	8,5869 -168.8 -1569,	72,63 72,60 73,57	244 1244 2264 3264 4264 5264	8,888 -168,6 -1854, -1854, -1608, -1668, -1768,	71.93 71.93 74.37 74.79 74.79 74.77

 $\sum_{i=1}^{n}$

POTENTIAL WITH GEARTASIERE GEARTASIERE GEARGASIERE BESERS TO CU PT/DAY

STEADY STATE SOLUTION WITH NO SURFACE FLUX

. '

NODE	DEPTH	HEAD	N002		HEAD	NODE 900%	+	HEAD 1	NODE	02PTH	HEAD
6263 6563 563 563 563 563 563 563 563 563	C. 2009 -199. A -1299. -1668. -1769. -1769. -1749.	71.00 71.00 74.49 70.27 74.10 74.10 78.94	205 1205 2266 3266 4266	8,8989 •129,8 •129,8 •1479, •2166,	11,23 71,90 72,05 72,05 72,44	267 1267 2267 7267 4267	9,7788 -199,8 -199,8 -1998, -1998, -2198,	78,64 78,64 79,18 79,85 79,85	265 1267 2268 3268 8266	8,8738 -128,8 -1589, -1689, -2128,	\$9,81 \$4,81 \$9,82 \$9,82 \$9,84 \$9,81
267 1267 2767 2767 2767 2767	0,0700 •199,0 •1290, •1479, •2100,	67.64 67.64 67.63 67.63 67.63	870 1879 - 8874 -	0,0970 -100.8 -700.0	74,22 74,22 74,23	#75 1971 8971	t,0770 6199,8 5988,8	74,99 72,99 73,03	E78 \$278 2272	t,CI78 +128,8 -984,8	72,03 72,04 73,04
873 1273 2273	P. CFF -129.T -1349,	72.04 72.07 75.27	874 1874 2874 3274 4874 5874	8.0059 4099.0 4099.0 4099. 4099. 4099. 4069. 4069. 4069. 406. 406. 406. 406. 406. 406. 406. 406	71.92 72.06 74.09 95.45 118.07 118.09	415 1015 2015 3215 4215 9215 4215 4215	0.0000 +100.0 -1250. -1560. -1560. -1760. -1760.	71.80 71.87 79.96 41.89 81.97 81.97	276 1276 2276 2276 4276	8,829 •172,8 •1238, •1888, •2168,	11,57 71,57 73,14 73,68 73,84
817 1877 2817 3817 4877	0,0070 +100,0 +100,0 +100,0 +100,0	78,84 78,84 78,89 78,89 78,89 76,19	276 1278 2278 3276 4275	6,0078 -108,0 -1098, -1409, -2189,	68,89 68,87 68,83 68,84 67,69	279 1779 2279 3279 4279	\$, \$\$T\$ •! \$\$, 6 •! \$\$\$, •! \$7\$, •! \$75, •! \$55,	56.27 58.29 66.27 66.27 66.27	269 1299 2299	0,2008 -125,0 -139,0	74,22 74,22 74,21
105 1051 1055	9,8995 • 199,8 • 989,8	78,99 78,99 73,83	103 103 203	2,8230 -160.0 -797.0	72.85 72,86 73,18	283 1293 2293 2293	0,6776 -169,6 -1549,	t2.05 t2,04 t9,31	294 1258 2284 3284 9284 5194	0,0108 -109,0 -1230, -1470, -1448, -1448, -1448,	71,93 72,83 74,14 83,74 19,89

.

I.73

POTENTIAL WITH Q(4274)+LOADD Q(3274)=2300 Q(4204)+3200 Q(5204)+760 CU PT/CAY

1

STEADY STATE SOLUTION WITH NO SUMPACE FLUX

	********	,					*===	******			
NODE	02PTH	nead 	NODE	DEPTH	HEAD	NODE	DEPTH	HEAD	NODE	DEPTH	HEAD
283 1243 2243 5243 5243 6243	5,0005 -100,0 -1250, -1660, -1660, -1740, -1740,	71.67 73.67 74.41 79.07 68.78 68.76 48.31	245 1985 2285 3285 6265	U, 466 189, 9 -189, 9 -189, -1699, -1699, -2199,	71,38 71,89 73,13 73,71 73,39	\$47 1887 8397 8397 8397	0,8564 - 168,0 - 1253, - 1253, - 1669, - 2180,	70,06 76,06 76,12 76,13 76,13	234 1234 2346 3388 448	0,8000 -160,0 -1550, -1660, -2164,	
269 1289 2289 3289 6269	8,9489 -100,0 -1258, -1463, -2100,	47.42 47.42 47.43 47.43 47.43									

And the

)

APPENDIX 1.6: PROG1-OUTPUT

Hydraulic properties, nodal coordinates, held boundary conditions, element details and summary regarding total number of nodes, elements, boundary nodes for determining flow after salt dome collapse. TIME 96117128 OATE 22-AUG-79

++++++++++++++++++++++++++++++++++++++	
VALUES OF CONVERSION FACTORS SPECIFIED	
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	*********************
CONVERSION FACTOR FOR PERMEASILITY DATA	1.0899
CONVERSION FACTOR FOR XV=COORDINATES	1,8689
CONVERSION FACTOR FOR Z=COORDINATES	1.2020
CONVERSION FACTOR FOR HEAD(BOTH INITIAL AND B.C.)	1,39
KTYPE -	9
PLAG FOR CONTROLLING THE LEVEL OF PRINT DUTPUTE	3

PROPERTIES FOR MATERIAL 1 ########

CARRIZZO AQUIFER

1.

KaXa	13.2300	1.17
Kala	13.2300	L/T
X=Z=	13,2300	LIT
THETAN	0,100000	-
MEDIUM COMPRESSIBILITY	1,20000	176
REPERENCE DOFRENCE HEAD OF THETA	1,00000	112
SPECIFIC STORAGE COFFE		6
	A.12000025003	1/5

## PROPERTIES FOR MATERIAL 2

*******

## WILCOX AGUIFER

K=X0	-2 <u>-</u> 46000	L/T
Kata	2.48088	LYT
K=Z=	2,48000	L/T
THETAN	5.100000	-
MEDIUM COMPRESSIBILITY	1,00080	1/L
FLUID COMPRESSIBILTY	1,09008	111
REFERENCE PRESSURE HEAD OF THETA	1.05	L
SPECIFIC STORAGE COEFFE	5.100008E=03	1/L

### PROPERTIES FOR MATERIAL 3 ########

### WILCOX AQUIFER

K = X =	2:48080	L/T
Keys	2 46088	L/T
K-Z-	8,48985	L/T
THETAR	0,100000	
HEDIUM COMPRESSIBILITY	1.00005	1/6
FLUID COMPRESSIBILTY	1,00000	1/6
REFERENCE PRESSURE HEAD OF THETA	1,00	L
SPECIFIC STORAGE COEFFE	0.10000E=03	116

## PROPERTIES FOR MATERIAL 4 ########

### WILCOX AGUIFER

Kaza	2,48000	LIT
Kale	2,48000	677
K#Z#	2.48080	L/T
THETAR	8.100000	
MEDIUM COMPRESSIBILITY	1.00000	1/L -
FLUID COMPRESSIBILTY		- 176
REFERENCE PRESSURE HEAD OF THETA	1.0	BL
SPECIFIC STORAGE COEFFE	6,1008002=0	8 I/L

### PROPERTIES FOR MATERIAL 5 ########

### WILCOX AQUIFER

X=X=	2.48039	LIT
X=Y=	2.48000	L/T
XeZa	2,48000	617
THETAD	a,100000	
MEDIUN COMPRESSIBILITY	1,00000	116
FLUID COMPRESSIBILTY	1,00000	1/6
REFERENCE PRESSURE HEAD OF THETA	1,00	L
SPECIFIC STORAGE COEFFR	0.10000E=03	1/6

### PROPERTIES FOR MATERIAL 6 #########

### WILCOX AQUIFER

KaXa	2.48890	677
XəXi	2,48930	617
X=Z=	2,48000	L/T
THETAA	9,199899	
MEDIUM COMPRESSIBILITY	1,00000	116
FLUID COMPRESSIBILTY	1 00000	116
REFERENCE PRESSURE HEAD OF THETA	1,00	Ĺ.
SPECIFIC STORAGE COEFFa	0,19000E=03	1/6

PROPERTIES FOR MATERIAL 7 ########

## WILCOX AGUIPER

X#XD	2,48000	L/T
Xata	2,48000	LIT
K=Z=	2,48999	617
THETAG	0,100000	
MEDIUM COMPRESSIBILITY	1,00000	116
FLUID COMPRESSIBILTY	1,00000	1/6
REFERENCE PRESSURE HEAD OF THETA	1.00	L.
SPECIFIC STORAGE COEFF#	0,100000E=03	116

# PROPERTIES FOR MATERIAL 6 PROPERTIES

COLLAPSED MATERIAL (2 TIMES PERMEABLE THAN SURROUNDING)

K K T M R 8	VE VE ZA HETAS EDIUM CI LUID CO EFERENCI PECIFIC ORDINAT	OMPRESSIBILI MPRESSIBILIY E PRESSURE H Storage Coe Es and other	TY EAD OF THETA FFe Details of Each Nod	6.96000 L/T 6.96000 L/T 6.96000 L/T 0.100000 1/L 1.00000 1/L 1.00000 1/L 0.100000E-03 1/L
INTERNAL Node#	USER Node#	X=CODRD _e	Y=COORD _e Z=COORD _e	INITIAL Head
1	i	8 • 8	0.0 ~2100.0	200.0
2	1001	8 • 8		200.0
3	2001	8 • 8		200.0
4	2	10080.0	0.0 0.0	198.0
5	1002	10000.0	0.0 100.0	198.0
6	2002	10000.0	0.0 02100.0	198.0
7	3	20000,0	5.0 8.0	180.0
8	1003	20000,0	8.0 108.0	180.0
9	2003	20000,0	8.0 2108.8	180.0
10	4	20000,0	0.0 0.0	176.0
11	1004	20000,0	0.0 -100.0	176.0
12	2004	20000,0	0.0 -2100.0	176.0
13	5	40008 = 0	0.0 - 0.0	160.0
14	1005	40008 = 0	0.0 - 100.0	160.0
15	2005	40006 = 0	0.0 - 2100.0	160.0

I.79

8*89 8*89 8*89	0°0012= 0°001= 0°0	6 ° 6 6 ° 6 6 ° 6	000001 000001 000001 000001	5102 5101 51	st VV Et
0°01 0°01 0°01	0°0012 0°001 0°0	0 ⁶ 0 0 ⁶ 0	120008°9 120009°9 120008°9	0182 7181 71	27 15 87
0 4 0 9 0 4 0 9 0 4 0 9 0 4 0 9	8°0 8°08° 8°08°	0 * 0 0 * 0 0 * 0	158088°8 158088°8 158888°8	5913 1912 12	65 95 71
0 ⁶ 0 6 0 ⁶ 0 6 0 ⁸ 0 6	0*0012* 0*001* 0*0	0 * 0 0 * 0 0 * 0	6*000611 6*000611 6*000611	3015 1015 15	39 23 34
0 * 00 1 0 * 00 1 0 * 00 1	0°0012= 0°0012= 0°0	0°0 0°0 0°0	6 * 66006 1 6 * 66006 1 6 * 66006 1	1102 1101 11	33 35 31
130°0 150°0 150°0 150°0 150°0 150°0 150°0	-1100°0 -1200°0 -1200°0 -1000°0 -200°0 -200°0 -200°0 -200°0 -200°0 -200°0 -200°0 -200°0		6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 00000 6 * 000000 6 * 00000 6 * 0000000000	6008 6082 6086 6086 6086 6085 6085 6085 6085 6	22 22 22 22 22 22 22 22 22 22 22 22 22
0*071 8*071 8*071	6*0012• 6*0012• 6*0	0 * 0 0 * 0 0 * 0	0°00009 0°00009 0°00009	1005 1001 1	31 58 61
6 * 06 1 6 * 06 1 6 * 06 1	6 • 06 15 • 6 • 06 1 = 6 • 6	8 ⁶ 8 8 ⁶ 8	28080°0 28080°0 28080°0	9882 9861 9	et 11 91

46 47 46	16 1016 2016	150000,0 150000,0 150800,0	8 <b>8</b> 8 <b>8</b> 8 8	0,0 0,0010 0,0019 0,0019	50,0 50,0 50,0
49	17	160000.0	8 - 6	0 e 6	40.0
50	1017	160000.0	8 - 6	= 106 e 6	40.0
51	2017	160000.0	8 - 9	= 2106 e 6	40.0
52	18	178000.0	8 - 8	0,0	30.0
53	1015	170000.0	5 - 6	=108,0	30.0
54	2018	170000.0	8 - 8	=2106,0	36.0
55	19	180000,0	0 • 0	0,0	20,0
56	1819	160000,0	8 • 0	•100,0	20,0
57	2819	180008,0	0 • 0	•2100,0	20,0
58	03	190600.0	8 • 8	0.0	10.0
59	0501	196600.0	9 • 9	=100.0	10.0
60	0505	196600.0	8 • 9	=2100.0	16.0
61	21	0 . 0	10000,0	0 = 0	200.0
62	1621	0 . 0	10000,0	= 100 = 0	200.0
63	2621	0 . 0	10000,0	= 200 1 5 =	200.0
64 65 66	23 1022 2022	10000 e0 10000 e0 10000 e0	10000.8 10000.0 10000.0	5 5 5 5 5 5 5 5 5 5 5 5 5 5	195.0 195.0 195.0
67	23	50000°0	10000 e 0	0,00	180,0
68	1025	50000°0	10000 e 0	0,0010	180,0
69	2023	50000°0	10000 e 0	100,0	180,0
70 71 72	24 1624 2024	30000.0 30000.0 30006.0	10000 e 0 10000 e 0	0,0 •100,0 •2100,0	170,0 170,0 170,0

0°05	6*0612*	0°00001	0*000851	5029	66
0°05	0*061*	0°00001	0*000051	7029	86
0°05	0*0	0°00001	0*000651	39	76
0 * 0 9 0 * 0 9 0 * 0 9	0°0012= 0°0012=	0°00001 0°00001 0°00001	0°080071 0°080071 0°080071	5828 5825 55	96 56 76
0°01 0°01 0°01	6°0 6°061= 6°061=	00001 0°00001 0°00001	120000°0 120000°0 120000°0	5824 1824 34	26 76
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	6°0612= 6°0612= 6°0612=	6 * 0008 1 6 * 0008 1 6 * 0008 1	150000°0 150000°0 150000°0	5033 1033 33	06 69 88
0 ° 06	0°0012=	6 * 0000 1	0°000011	9035	66
0 ° 06	0°0012=	6 * 0000 1	0°000011	1035	70
0 ° 06	0°0	6 * 0000 1	0°000011	35	70
0 * 00 1	0°0	0 * 00 00 1	000001	5031	85
0 * 00 1	0°0012	0 * 00 00 1	000001	1031	85
0 * 00 1	0°0012	0 * 00 00 1	000001	31	85
0°071	0°00120	0°00001	0°00009	5831	18
0°071	0°00120	0°0001	0°00009	1951	05
0°071	0°0	0°0001	0°00009	31	61
0*051	0°0	00001	0 * 00005	5859	81
0*051	• 100°0	00001	0 * 00005	1857	71
0*051	0°0	00001	0 * 00005	57	81
0°091 0°091 0°091	0°0012* 0°001* 0°0	6 8080 1 8 8080 1 8 8080 1	0°00007 0°00007	5052 1052 52	51 41 81

28.I

100   37   160000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6   10000.6 <td< th=""></td<>
103   36   170000.0   10000.0   0.0   30.0     104   1038   170000.0   10000.0   100.0   30.0     105   2036   170000.0   10000.0   2100.0   30.0     105   2036   170000.0   10000.0   2100.0   30.0
107 1039 180000.0 10000.0 -100.0 20.0 108 2039 180000.0 10000.0 -2100.0 20.0
109 40 190000.0 10000.0 0.0 10.0 110 1040 190000.0 10000.0 -100.0 10.0 111 2040 190000.0 10000.0 -2100.0 10.0
112 41 0.0 20000.0 0.0 200.0 113 1041 0.0 20000.0 c100.0 200.0 114 2041 0.0 20000.0 -2100.0 200.0
115 42 10000.0 20000.0 0.0 190.0 116 1042 10000.0 20000.0 -100.6 190.0 117 2042 10000.0 20000.0 -2100.0 190.0
118 43 20000.0 20000.0 0.0 150.0 119 1043 20000.0 20000.0 =100.0 160.0 120 2043 20000.0 20000.0 =2100.0 160.0
121 44 30000.0 20000.0 0.0 170.0 122 1044 30000.0 20000.0 -100.0 170.0 123 2044 30000.0 20000.0 -2100.0 170.0
124 45 40000.0 20000.0 0.0 160.0 125 1045 40000.0 20000.0 120.0 160.0 126 2045 40000.0 20000.0 -2100.0 160.0

۰.

0°01 0°01 0°01	0°001 <b>0</b> 0°001 0°0	50000°0 50000°0 50000°0	120009°9 120009°9 120009°9	7502 7601 75	122 125 121
0 ⁶ 0 9 0 ⁶ 0 9 0 ⁶ 0 9	•5188°8 •188°8 8°9	50000°0 50000°0 50000°0	150000°9 150000°9 150000°9	2502 2501 25	051 671 871
0 * 06 0 * 06 0 * 06	0°0012• 0°001= 0°0	50000°0 20000°0 30000°0	6*000011 6*000011 6*000011	5885 1825 25	201 901 501
0 * 00 1 0 * 00 1 0 * 00 1	0°0 0°001= 0°0012=	50000°0 50000°0 50000°0	000001 000001 000001 000001	1502 1501 15	144 142 145
0 ⁴ 0 1 1 0 ⁴ 0 1 1 0 ⁴ 0 1 1 0 ⁴ 0 1 1	-5130°0 -100°0 0°0	50080°0 50080°0 50080°0	0°00206 0°20206 0°00206	8582 1820 20	171 871 651
0°021 0°021 0°021	6*8012* 6*8012* 6*6	58889°3 59888°3 59886°3	0 * 00000 0 * 00000 0 * 00000 0 * 00000 0 * 00000	6782 6787 67	821 122 921
120°3 120°3 128°3	0°013= 0°0013= 0°0013=	50000°0 50000°0 50000°9	0°00001 0°00001 0°00001	8488 8481 84	128 124 123
0 ⁴ 0 7 1 0 ⁴ 0 7 1 0 ⁴ 0 7 1	0°0012= 0°001= 0°0	53339° 53339° 53339° 53339°	0 ° 0 0 0 0 9 0 ° 0 0 0 0 9 0 ° 0 0 0 0 9	1785 1761 17	125 121 120
0°061 0°061 0°051	0 100 1 Pa 0 100 1 = 0 10	50808 50808 50808 50808	0 00005 0 00005 0 00005	9705 9701 97	159 159 151

**48.**I

154 155 156	55 1055 2055	140000,0 140000,0 140000,0	20000,0 20000,0 20000,0	0.0 =100.0 =2100.0	0,00 0,00 60,0 60,0
157	56	150000.0	50009°0	0,0	50.0
158	1056	150000.0	50000°0	0,0010	50.0
159	2056	150000.0	50000°0	0,0015•	50.0
160	57	160000,0	50500 ° 0	0.0	40 e 0
161	1057	160000,0	50500 ° 0	9.0010	40 e 0
162	2057	160000,0	50500 ° 0	0.30150	40 e 0
163	58	170000.0	20000.0	0 - 0	30,0
164	1058	170000.0	20000.0	- 100 - 0	30,0
165	2058	170000.0	20000.0	- 2100 - 0	30,0
166 167 168	59 1059 2059	188080,8 188982,0 188986,8	20000 • 0 20000 • 0 0 • 00005	0,00 0,00 0,00 0,20	20.0 20.0 20.0
169	00	190000.0	20000.0	0.3	10.0
178	1960	190000.0	20000.0	0.301=	10.0
171	2965	190000.0	20000.0	0.3015=	10.0
172	61	0 • 0	30000.0	0,0	200,0
173	1061	0 • 0	30000.0	0,0015=	200,0
174	2061	0 • 0	30000.0	0,0015=	200,0
175	62	10000 .0	20000°0	0.0	190.0
176	1062	10005 .0	20000°0	-100.0	190.0
177	2062	10000 .0	20000°0	-2100.0	190.0
178	63	20800.0	20000°0	0,0	160.0
179	1063	20800.0	20000°0	•100,0	180.0
180	2063	20800.0	20000°0	•2100,0	180.0

1

۰.

I.85

2 * 26 2 * 26 2 * 26	6 - 0 8 - 92 i = 8 - 92 i =	20000°0 20000°0 20000°0	8 * 0000 1 1 8 * 0000 1 1 8 * 0000 1 1 9 * 0000 1 1	5701 5701 27	582 582 582
0°001 0°001 0°001	0°0012 0°001 0°0012	20000°0 20000°0 20000°0	000001 000001 000001 000001	1202 1201 12	587 582 585
0 ⁴ 011	8°0812=	20000°0	0°00006	0402	507
0 ⁴ 011	8°081=	20000°0	0°00006	0403	500
0 ⁶ 011	8°8	20000°0	0°00006	040	661
150°9 150°9 150°9	0°0012= 0°001= 0°0	08080 ⁸ 0 28080 ⁸ 0 28080 ⁸ 0	0 ° 0 0 0 0 9 0 ° 0 0 0 0 9 0 ° 0 0 0 0 9 0 ° 0 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 9 0 ° 0 0 9 0 ° 0 0 9 0 ° 0 0 9 0 ° 0 0 9 0 ° 0 0 9 0 ° 0 0 9 0 ° 0 0 9 0 ° 0 0 9 0 ° 0 0 9 0 ° 0 0 9 0 ° 0 0 9 0 ° 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 9 0 ° 0 0 0 0 0 9 0 ° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6982 6981 69	961 161 961
120°8	0*0017=	20000°9	0 ° 00001	8982	561
120°8	0*001=	20000°9	0 ° 00001	8981	761
120°0	6*0	20000°9	0 ° 00001	89	561
0°071	0°0	30000°°	0°00009	1902	261
0°071	1°0012=	30000°°	0°00009	1901	161
0°071	0°0012=	30000°°	0°00009	19	861
0°051	0°0012=	20000°0	0°00005	9982	681
0°051	0°001=	20000°0	0°00005	1869	881
0°051	0°0	20000°0	0°00005	99	781
0*091	0°0012=	20000°0	0 * 00000	<b>5982</b>	981
0*091	C°0012=	20000°0	0 * 00000	5981	581
0*091	C°0	20000°0	0 * 00000	59	781
0°011	0*0012=	20000°9	20000*0	7982	193
0°011	0*001=	20000°9	20000*0	7981	195
0°015	0*0	20000°9	20000*0	79	191

.1

208	73	120006.0	20096°8	6:0	80,6
209	1873	120000.0	20096°8	0:09:	80,6
210	2073	120000.0	20096°8	0:09:54	80,6
211	74	130008.0	30002.0	8,0	70.6
212	1074	130008.0	30002.0	=100,0	70.6
213	2074	130000.0	30086.0	=2100,0	70.8
214	75	140000.0	20000,0	0,0	60 e 0
215	1875	140000.0	20000,0	•100,0	60 e 0
216	2075	140000.0	20000,0	•20015=	60 e 0
217 216 219	76 1076 2076	150000.0 150000.0 150000.0	30000,0 30000,0	8.0 = 100.0 = 2106.0	50°0 50°0 50°0
829	77	160000.0	30000.0	0,0	40 e 0
155	1677	160000.0	30000.0	*100,0	40 e 0
555	2077	160008.0	30000.0	*2100,0	40 e 0
223	78	170000.0	30000,0	0,0	20°6
224	1078	170000.0	30000,0	•100,0	20°6
225	2076	170000.0	30000,0	•2100,0	20°6
226	79	180000.0	20006°0	0,0	26.6
227	1079	180000.0	20099°0	•108,0	26.0
228	2079	180000.0	20095°0	•2168,0	26.0
229 230 231	60 1080 2060	190080.0 190000.0 190000.0	20000,0 20000,0 20000,0	5,6 108,0 108,0 0,0015=	10.8 10.0 10.0
232 233 234	81 1081 2081	8 e 6 8 e 6 8 e 6	40008,0 40000,0 40000,0	6,0 6,00 100,0 100,0	200.0 200.0 200.0

۰.

I.87

0°011	0°180°2	0°00000	6*00006	8682	591
0°011	0°081=	0°00000	6*00006	8681	590
0°011	0°08	0°00000	6*00006	86	526
150*9 150*9 150*9	0°0012= 0°0012= 0°0	00000° 00000° 00000°	0 * 00000 0 * 00000 0 * 00000 0 * 00000	6882 6881 68	825 255 825
130°3	0°0012=	0 * 0000 t	0.00007	88	522
130°3	0°0018	0 * 0000 t	0.00007	8881	527
130°5	0°0	0 * 0000 t	0.00007	8881	522
0°0†1	6°0012=	0 * 00 00 t	0°00009	78	525
0°0†1	6°001=	0 * 00 00 t	0°00009	7801	521
0°0†1	6°0	0 * 00 00 t	0°00009	7805	520
0°051 0°051 0°051	6.0015= 6.001= 6.0015=	6 * 0080 * 6 * 0080 * 6 * 0080 * 6 * 0080 *	6*88085 6*88085 6*88085	9802 9801 98	549 549 547
0°091 0°091 0°091	0°0012= 0°001= 0°0	0 * 0000 t 0 * 0000 t 0 * 0000 t 0 * 0000 t	0 * 0000 t 8 * 0000 t 8 * 0000 t	5802 6801 66	579 572 577
0°011 0°011 0°011	6 ° 0 0 1 2 • 6 ° 0 0 1 • 6 ° 0 0 1 2 •	8 * 8888 * 8 8 * 8888 * 8 8 * 8888 * 8 8 * 8888 * 8	20000°3 20000°9 20000°9	4902 4901 49	542 543 541
0°001	0*0012=	6 * 66665	59698°	5802	578
0°001	0*001=	6 * 66665	59698°	5805	528
0°001	0*0	7 * 66665	56698°	58	528
6°661	0*8812=	6 * 88687	8 8006 1	5885	522
6°661	0*801=	6 * 86887	8 8006 1	1095	522
6°661	0*0	6 * 86887	8 8000 1	95	522

88.I

		· 🕐	•		
262	91	160000.0	40005.0	0.0	108.5
263	1091	160000.8	40000.0	-100.0	108-0
264	2091	100000.0	40000.0	-2108.0	100.0
	-	•••••	••••		
265	52	110000.0	40000.0	6.6	90.0
266	1092	110080.0	40000.0	-100.0	98.0
267	2092	110000,0	40000.0	-2106.0	98.8
		-	-	•	•
892	93	120000.0	40000.0	0.0	60.0
269	1093	120000.0	40000.0	-108,6	60,0
278	2093	120000.0	40000.0	=2100,0	86.8
271	94	130000.0	40000.0	0,0	70,0
212	1094	130000,0	40000.0	-100.0	70.0
613	6044	120000040	49696	-5100°0	70.0
974	00	1/0000 0	46676 G	6 <b>6</b>	(0.5
275	1005	140000 80		500 D	46 0
276	2005	140000000	40000 ₆ 0 40000 ₆ 0	-2196 6	60 e0
		14000040			00.0
			-		
277	96	150000.0	40000.0	9 - P	58.E
278	1096	150000.0	40000.0	-105.0	50.0
279	2096	150000.0	40000.0	-2108.0	50.0
		•	•		• - • -
280	97	160000.0	40000.0	0.0	40.0
281	1097	160000.0	40000.0	-100,0	40.0
295	2097	160000.0	40000.0	-2100.0	40.0
283	98	170000.0	40000.0	0 ₅ 0	50.0
284	1098	170000.0	40000.0	-100-0	30,0
282	2096	170000,0	40000.0	≈2108,0	30,0
	••				
20b 267	99	160000.0	49000.0	0.0	20,0
288	2000 1044	190000 0	40000.0	-2100-0	20,0
			밖 다 티 티 티 티 뉴 티	해 다 네 비 씨 씨	

.

Ċ

۰.

I.89

120°0 130°0 120°0	0°0012= 0°001= 0°0	6 * 00005 6 * 00005 6 * 00005	00001 00001 00001 00001	5189 1189 199	112 112 112 112
0*071	0°0012=	0°00085	6 * 8596 +	2012	215
0*071	0°0012=	0°00005	6 * 8596 +	2011	211
0*071	0°0	0°00005	6 * 8586 +	201	210
0 ⁴ 05 1	-100°0	20000°0	0 * 00005	9012	206
0 ⁴ 05 1	-100°0	20000°0	0 * 00005	9011	209
0 ⁴ 05 1	-0°0	20000°0	0 * 00005	901	201
0 * 0 9 1	0°0012=	0°00005	0 * 0000t	5012	902
0 * 0 9 1	0°0012=	0°00005	0 * 0000t	5011	282
0 * 0 9 1	0°0	200005	0 * 0000t	501	785
0°011	0°0012=	0°00005	28080°0	7812	202
0°011	0°001=	0°00005	28080°0	7811	205
0°011	0°0	0°00005	20080°0	781	201
0*001	0°0812=	0°00005	50000°0	58182	388
0*001	0°001=	0°00005	50000°0	1182	563
0*001	0°0	0°00005	50000°0	183	568
0°061 0°061 0°061	0°012= 0°0012= 0°0012=	0 * 00005 0 * 00005 0 * 00005	0 * 0 0 0 0 1 0 * 0 0 0 0 1 0 * 0 0 0 0 1 0 * 0 0 0 0 1	3105 71195 781	595 596 595
500°0	0*0012=	0 * 0 0 0 0 5	0 ° 0	1012	367
500°0	0*001=	0 * 0 0 0 0 5	0 ° 0	1011	562
500°0	0*0	0 * 0 0 0 0 5	0 ° 0	101	565
0*01 6*01	6°0012= 6°0012= 6°0	0 * 0000 t 0 * 0000 t 0 * 0000 t	6*000861 6*000861 6*00061	0012 1100 190	567 560 596

06'I

.

189	316	0 0.0	120.0
189	317	0 100.0	120.0
189	318	0 2100.0	120.0
110	319	.0 0.0	116.8
110	320	0 -100.0	110.0
110	321	0 -2100.0	118.0
	322	.0 C.C	100.0
	323	8 -100,0	100.0
	324	8 -2100,0	100.0
112	325	0.00	90 - 0
112	326	0.001 0.	90 - 0
112	327	0.0015 0.	90 - 0
113	328	0 0.0	80,8
	329	0 100.0	60,0
	338	0 2100.0	86,0
114	331	0 0.0	70,0
114	332	0 =100.0	70,0
114	333	0 =2100.0	76,0
115	334	0 0 0 0	60.0
	335	0 0100 0	60.0
	336	0 02100 0	60.0
16	337 338 339	0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 2 1 0 0	50,0 50,0 50,0
17	348	6 0,0	40.0
	341	6 -100.0	40.0
	342	0 -2100.0	40.0

•

.

{

۰.

٠

343   113   170000.0   30000.0   .100.0   30.0     344   1118   170000.0   30000.0   .100.0   30.0     343   2118   170000.0   30000.0   .100.0   30.0     344   119   100000.0   30000.0   .100.0   30.0     347   119   100000.0   50000.0   .100.0   20.0     348   2119   100000.0   50000.0   .100.0   20.0     348   2119   100000.0   50000.0   .100.0   20.0     350   120   100000.0   50000.0   .100.0   10.0     350   120   100000.0   50000.0   .100.0   10.0     351   2120   100000.0   50000.0   .100.0   10.0     353   121   0.0   60000.0   .100.0   200.0     353   122   10000.0   60000.0   .100.0   200.0     354   122   10000.0   60000.0   .100.0   100.0     355   122   10000.0   60000.0   .100.0   100.0		•				
346   119   130000.9   50000.9   .100.9   20.9     347   1119   130000.9   50000.9   .100.9   20.9     348   2119   130000.9   50000.9   .100.9   20.9     349   120   190000.9   50000.9   .100.9   10.0     359   120   190000.0   50000.9   .100.9   10.0     351   2120   190000.0   50000.9   .100.9   10.0     351   2120   190000.0   50000.9   .100.9   10.9     353   121   0.0   60000.9   .100.9   200.9     353   121   0.0   60000.9   .100.9   200.9     354   2121   3.0   60000.9   .100.9   200.9     355   122   19000.9   60000.9   .100.9   190.9     355   122   19000.9   60000.9   .100.9   190.9     356   122   19000.9   60000.9   .100.9   190.9     357   2122   19000.9   60000.9   .2100.9   190.9 <	343 344 349	113 1118 2118	170000,0 170000,0 170000,0	30000,9 50000,9 30000,9	6,0 0,001= 6,0015=	30,0 30,0 30,0
347     1119     130000,0     30000,0     -100,0     20,0       348     2119     130000,0     30000,0     -2100,0     20,0       350     120     190000,0     30000,0     -2100,0     20,0       351     120     190000,0     30000,0     -2100,0     10,0       351     2120     190000,0     30000,0     -2100,0     10,0       353     121     0,0     60000,0     -2100,0     10,0       353     121     0,0     60000,0     -2100,0     10,0       354     2121     0,0     60000,0     -200,0     200,0       355     122     10000,0     60000,0     -300,0     100,0     190,0       355     122     10000,0     60000,0     -2100,0     190,0       356     1122     10000,0     60000,0     -2100,0     190,0       357     2122     10000,0     60000,0     -2100,0     130,0       359     123     20000,0     60000,0     -2100,0 <td>746</td> <td></td> <td>1 30000 . 0</td> <td>80000.0</td> <td>0.0</td> <td>20.0</td>	746		1 30000 . 0	80000.0	0.0	20.0
349   120   190000,0   50000,0   .100,0   10,0     350   1120   190000,0   50000,0   .100,0   10,0     351   2120   190000,0   50000,0   .100,0   10,0     352   121   0,0   60000,0   .100,0   200,0     353   1121   0,0   60000,0   .100,0   200,0     354   2121   0,0   60000,0   .100,0   200,0     355   122   19000,0   60000,0   .100,0   190,0     355   122   19000,0   60000,0   .100,0   190,0     357   2122   19000,0   60000,0   .100,0   190,0     357   2122   19000,0   60000,0   .2100,0   190,0     358   123   20000,0   60000,0   .2100,0   190,0     359   1123   20000,0   60000,0   .200,0   130,0     360   2123   20000,0   60000,0   .100,0   130,0     364   124   30000,0   60000,0   .100,0   160,0	347 348	1119	138999,9 138999,9	50000,9 50000,9	-2188,8 0,8812- 0,9812-	50,9 50,9
351   2120   1900000.0   50000.0   -2100.0   19.0     352   121   0.0   60000.0   -100.0   200.0     353   1121   0.0   60000.0   -100.0   200.0     354   2121   0.0   60000.0   -100.0   200.0     355   122   19000.0   60000.0   -100.0   190.0     355   122   19000.0   60000.0   -100.0   190.0     356   122   19000.0   60000.0   -100.0   190.0     357   2122   19000.0   60000.0   -100.0   190.0     359   1123   20000.0   60000.0   -100.0   130.0     360   2123   20000.0   60000.0   -2100.0   170.0     361   124   30000.0   60000.0   -2100.0   170.0     363   2124   30000.0   60000.0   -2100.0   170.0     364   123   40000.0   60000.0   -100.0   160.0     364   123   40000.0   60000.0   -100.0   160.0	349 350	129 1120	190000,0 190000,0	50000,0 50000,0	0,0 •100,0	10,0 10,0
332   121   0.0   60000.0   0.0   200.0     353   1121   0.0   60000.0   -100.0   200.0     354   2121   0.0   60000.0   -2100.0   200.0     355   122   10000.0   60000.0   -2100.0   200.0     355   122   10000.0   60000.0   -2100.0   190.0     356   1122   10000.0   60000.0   -100.0   190.0     357   2122   10000.0   60000.0   -2100.0   190.0     359   123   20000.0   60000.0   -2100.0   130.0     360   2123   20000.0   60000.0   -2100.0   130.0     360   2123   20000.0   60000.0   -2100.0   130.0     361   124   30000.0   60000.0   -2100.0   170.0     363   124   30000.0   60000.0   -2100.0   170.0     364   124   30000.0   60000.0   -100.0   170.0     365   1129   40000.0   60000.0   -2100.0   160.0 <td>351</td> <td>2120</td> <td>190900,0</td> <td>50000,0</td> <td>=2190<b>.</b>0</td> <td>19,9</td>	351	2120	190900,0	50000,0	=2190 <b>.</b> 0	19,9
355   122   19000.0   60000.0   -100.0   190.0     356   1122   10000.0   60000.0   -100.0   190.0     357   2122   10000.0   60000.0   -2100.0   190.0     359   123   20000.0   60000.0   -2100.0   130.0     360   2123   20000.0   60000.0   -2100.0   130.0     360   2123   20000.0   60000.0   -2100.0   130.0     361   124   30000.0   60000.0   -2100.0   170.0     362   1124   30000.0   60000.0   -2100.0   170.0     363   2124   30000.0   60000.0   -2100.0   170.0     364   123   40000.0   60000.0   -2100.0   160.0     365   1123   40000.0   60000.0   -2100.0   160.0     364   123   40000.0   60000.0   -100.0   160.0     365   1123   40000.0   60000.0   -100.0   160.0     366   2135   40000.0   60000.0   -100.0	352 353 354	121 1121 2121	9,9 9,9 9,9	60000,0 60000,0 60000,0	0,9 =180,9 =180,9	200,0 200,0
356   1122   19603.0   50000.0   -100.0   190.0     357   2122   19000.0   50000.0   -2190.0   190.0     358   123   29000.0   50000.0   -2190.0   190.0     359   1123   29000.0   50000.0   -190.0   130.0     360   2123   29000.0   50000.0   -2190.0   130.0     364   124   30000.0   60000.0   -190.0   170.0     363   2124   30000.0   60000.0   -190.0   170.0     364   129   40000.0   60000.0   -190.0   170.0     364   129   40000.0   60000.0   -190.0   160.0     365   1123   40000.0   60000.0   -190.0   160.0     364   129   40000.0   60000.0   -190.0   160.0     365   1129   40000.0   60000.0   -190.0   160.0     366   2129   40000.0   60000.0   -190.0   160.0     366   1125   50000.0   60000.0   -3190.0 <t< td=""><td>355</td><td>122</td><td>19909,9</td><td>68338,0</td><td>9.9</td><td>190,0</td></t<>	355	122	19909,9	68338,0	9.9	190,0
353   123   20000,0   60000,0   3,0   180,0     359   1123   20000,0   60000,0   -100,0   130,0     360   2123   20000,0   60000,0   -2100,0   130,0     361   124   30000,0   60000,0   -2100,0   130,0     362   1124   30000,0   60000,0   -100,0   170,0     363   3124   30000,0   60000,0   -100,0   170,0     364   123   40000,0   60000,0   -2100,0   160,0     365   1129   40000,0   60000,0   -2100,0   160,0     366   2135   40000,0   60000,0   -2100,0   160,0     365   1129   40000,0   60000,0   -2100,0   160,0     366   2135   40000,0   60000,0   -2100,0   160,0     366   2135   40000,0   60000,0   -2100,0   150,0     366   2135   50000,0   60000,0   -2100,0   150,0     366   125   50000,0   60000,0   -2100,0	356 357	1122 2122	10000,0 10000,9	60000,0 60000,0	-100,0 -2100,0	190,0 190,0
365   2123   25555,5   36555,5   36555,5   3655,5   3655,5   3655,5   3655,5   3655,5   3655,5   3655,5   3655,5   3655,5   3655,5   3655,5   3655,5   3655,5   3657,5   3657,5   3657,5   3657,5   3657,5   3657,5   3657,5   3657,5   3657,5   3657,5   3657,5   3657,5   3657,5   3657,5   3667,5   3667,5   3667,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5   3677,5	358 359 760	123 1123	20000,0 20000,0	50000,0 60000,0	0,0 -100,0	180,0
361   124   30000,0   60000,0   3,0   170,0     362   1124   30000,0   60000,0   -100,0   170,0     363   2124   30000,0   60000,0   -2100,0   170,0     364   123   40000,0   60000,0   -2100,0   170,0     365   1123   40000,0   60000,0   -100,0   160,0     365   1123   40000,0   60000,0   -100,0   160,0     365   1123   40000,0   60000,0   -100,0   160,0     366   2125   40000,0   60000,0   -2100,0   150,0     366   1125   50000,0   50000,0   -2100,0   150,0     363   1125   50000,0   50000,0   -2100,0   150,0	100		50000 <b>8</b> 0		34784 <b>9</b> 3	10099
364   125   40000,0   60000,0   3,0   160,0     365   1129   40000,0   60000,0   -100,0   160,0     365   2125   40000,0   60000,0   -2100,0   160,0     366   2125   40000,0   60000,0   -2100,0   150,0     367   126   50000,0   50000,0   9,3   150,0     368   1125   50000,0   50000,0   -130,0   150,0	361 362 363	124 1124 3124	30000,0 30000,2 30000,9	63333,3 63333,3 63333,3	3,8 =100,0 =100,0	170,0 170,0 170,0
365   1125   48888,8   58888,8   188,8   188,8     366   2125   48888,8   68888,8   -2180,8   168,8     367   126   58888,8   68888,8   -2180,8   168,8     367   126   58888,8   68888,8   -2180,8   158,8     368   1125   58888,8   50888,8   -188,8   158,8     368   1125   58888,8   50888,8   -188,8   158,8	364	125	40000,0	60000,0	3,2	160,0
367 126 30000,0 60000,0 0,9 130,0 368 1126 50000,0 50000,0 =100,0 150,0 369 2126 8000,0 60000,0 =2000,0 150,0	365	1129 2135	40000,0	63333°3 94456°8	-3190-9	160,0 160,0
	367 368 368	126 1125	30000,0 50000,0	60000,0 50000,0	0,9 =190,0	130,0 150,0

		•	🔶 🔸 💊	•	-
570 371 372	751 1127 7125	60000 <b>.0</b> 60000 <b>.0</b> 60000 <b>.0</b>	60000,0 60000,0	0,0 0,001: 0,001:9	140.0 140.0 140.0
373	125	70000.0	60000 <b>6</b> 0000 <b>6</b> 0000 <b>6</b> 0000 <b>6</b> 0000 <b>6</b> 0000 <b>6</b> 00000 <b>6</b> 0000000000	0±0	130.0
374	1126	70003.0		=100±0	130.0
375	2128	70686.0		=2102=0	130.0
376	120	60000,0	66006°0	0.0	120.0
377	1129	60000,0	66006°0	c100.0	120.0
378	2129	60000,0	66006°8	e2106.0	125.0
379	130	90000,0	69880,0	2.00.0	110.0
380	1138	90680,0	69080,0	•200.0	110.0
381	2130	98680,0	69880,0	•2100.0	110.0
382	131	199999 - 9	60000 ° 0	0,0	100.0
383	1131	199999 - 9	60000 ° 0	0,00150	100.0
384	2131	199999 - 9	60000 ° 0	0,00150	100.0
385	132	110000.0	60000 8	0:0	90,0
386	1132	110000.0	60000 8	•180.0	90,0
387	2132	110000.0	60000 8	•2100.0	90,0
388 389 390	153 1133 2133	120000.0 120000.0 120000.0	68888.88 68888.8 68888.8 68888.8	0,8 =100,8 =2108,0	60.0 60.0 80.0
391 392 393	. 134 1134 2134	130000.0 130000.0 130000.0	68868 ° 0 69986 ° 0 68986 ° 0	0,0 0,001 0,0015= 0,0015=	70.0 70.0 70.0
394 395 396	135 1135 2135	140000.0 140000.0 140000.0	69000,0 60000,0	0,0 =100,0 =2100,0	60.0 60.0 60.0

1.93

0°011	0*0812=	6°60061	20000°0	22122	452
0°011	0*081=	6°60661	20000°0	2212	455
0°011	0*0812=	6°60661	20000°0	221	451
0 ° 0 0 1	6°8012=	0°00001	50000°0	5173	027
0 ° 0 0 1	8°801=	0°00001	50000°0	5717	617
0 ° 0 0 1	8°8	0°00001	50000°0	571	817
0°061	0 * 00 12=	0 * 00001	6 * 0000 i	5175	718
0°061	0 * 00 1=	0 * 00001	0 * 0000 i	7775	818
0°061	0 * 0	0 * 00001	0 * 0000 i	775 (	718
500°9	8*0012=	6,80867	0 * 0	1912	414
500°9	9*00*0	6,60867	6 * 0	1911	214
580°9	9*0012=	6,60867	6 * 0	191	214
0°01	0*001=	0 * 0 0 0 0 9	0°000061	8712	119
0°01	0*001=	0 * 0 0 0 0 9	0°000061	8711	819
0°01	0*0	0 * 0 0 0 0 9	0°000061	871	687
6°02	0*0012=	8 ⁴ 68889	6 • 00000 1	5128	887
6°02	0*001=	8 ⁴ 68889	9 • 00000 1	1128	187
90°0	0*0	8 ⁶ 68889	8 • 00000 1	128	987
20*0 20*0 20*9	0°0012= 0°001= 0°0	0 ⁶ 8 8 8 8 9 8 ⁸ 8 8 8 8 9 8 ⁶ 8 8 8 8 9 8 ⁶ 8 8 8 8 9 8 9 8 9 8 8 8 8 8 9 8 9 8 9 8	098071 0,008071 0,008071	5128 1129 129	507 707 507
0 * 0 t 0 * 0 t 0 * 0 t	6 <b>6 6 6 6 6</b> 6 <b>6 6 6 6</b> 6 <b>6</b>	6 6 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0000091 0000091 01900001 01900001	1515 1511 151	204 107 004
0°05	6°0012=	6°68864	0°00061	3139	266
0°05	6°601=	6°66869	0°00061	1139	269
0°05	6°6	8°68889	0°00061	139	265

Ć

46.I

		•		<b>4.</b>	· · · ·
424	145	40090,0	70008.0	6.6	160.0
425	1145	40005,0	70000.0	•108.6	160.0
426	2145	40005,0	70008.0	•2106.6	160.0
427	146	50000.0	76000 . 0	6.8	150.0
428	1146	50000.0	78200 . 9	-180.0	150.0
429	2146	50000.0	76098 . 9	-2100.0	150.0
438	147	68888.8	70836 - 8	2.0	148 . 0
431	1147	68888.8	70888 - 8	+180.6	148 . 0
432	2147	68888.8	70885 - 8	#2180.8	148 . 0
433	146	70000.0	78688 - 6	0 • 0	138.0
434	1146	70000.0	70888 - 8	• 1 0 0 • 0	138.8
435	2148	70000.0	78888 - 8	• 2 1 0 0 • 0	138.8
436	149	66008.0	70000.0	0.0	120.0
437	1149	66008.6	70000.0	-100.0	120.0
438	2149	86608.6	70000.0	-2100.0	120.0
439	150	98888,8	70000,0	0,0	110.0
448	1150	98888,8	70000,0	0,000	110.0
441	2150	98888,8	70000,0	0,0015=	110.0
442	151	100000.0	70008 e D	0,8	160.6
443	1151	100000.0	70008 e D	=108,0	100.0
444	2151	100000.0	70008 e D	=2100,0	100.0
445 446 447	152 1152 2152	110000,0 110000,0 110000,0	70000.0 70000.0 70000.0	0,0 0,00 0,0015=	90 - 8 90 - 8 90 - 8 90 - 8
448	153	120000.0	70000 • D	0,0	80.0
449	1153	120000.0	70000 • D	=188,0	80.0
450	2155	120000.0	70000 • D	=2186,0	80.0

I.95
0*061 0*061 0*061	0°0812= 0°081= 0°6	6 * 00 00 8 0 * 00 00 8 0 * 00 00 8 0 * 00 00 8	0 * 0 0 0 0 1 0 * 0 0 0 0 1 0 * 0 0 0 0 1 0 * 0 0 0 0 1	5175 51775 595	174 274 274
500°0 500°0 500°0	0°012 0°0012 0°0012	6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 6888 6 * 68886 6 * 68886 6 * 68886 6 * 68886 6 * 68866 6 * 68866 6 * 68866 6 * 688666 6 * 6886666 6 * 6886666666666	0 ° 0 0 ° 0 0 ° 0	1912 1911 191	574 274 274
0°01	0°0012#	0*00001	0 * 00006 \$	0912	1 L t
0°01	0°001*	0*00001	0 * 00006 \$	0911	0 L t
0°01	0°0012#	0*00001	0 * 00006 \$	091	6 9 t
50°0 50°0 50°0	8*8812* 8*188*8 8*8	6°00001 6°00001 6°00021	0 * 00000 1 0 * 00000 1 0 * 00000 1 0 * 00000 1	6512 6511 651	684 784 684
20°8	8*00*2	0°00001	0°000011	85128	59t
20°9	•190*8	0°00001	0°000011	8511	797
20°9	9*9	0°00001	0°000011	851	297
0 * 0 †	0°0012=	0 * 0000 & 0	000000°3	2512	264
0 * 0 †	0°001=	0 * 0000 & 0	190000°3	2511	164
0 * 0 †	0°0	0 * 0000 & 0	190000°3	251	066
0°05 0°05	0°0012= 0°001= 0°0	0°00001 0°00001 0°0001	0*000051 0*000051 0*000051	9512 9511 951	657 857 157
0 ⁶ 0 9	0°012=	0*00004	0 * 00000 1	5512	957
0 ⁶ 0 9	0°01=	0*00004	0 * 00000 1	5511	557
0 ⁶ 0 9	0°0	0*00004	0 * 00000 1	521	767
0°81	0°0012=	0*00002	130000°0	5127	25t
0°81	0°0010	10000	130000°0	511	25t
0°81	0°0	100002	130000°0	727	15t

96.I

•					
<u>.</u> 72	· · · · · · · · · · · · · · · · · · ·	 		<b>.</b>	188.6
479	1163	20000.0	60600.0	•108.6	166.0
488	2163	20008.0	60000.0	-2108.8	100.0
		••••••••			
481	166	30000.0	60000-0	6.0	170.0
482	1164	30000.0	669908.0	•108,0	170.0
483	2164	30008.0	80000,0	-2100,0	170,0
484	165	40008.0	66090.8	8.8	160.0
485	1165	48868.6	86606,0	-100.0	168.0
486	2165	40000 ₀ 0	80000.0	=5108°8	162.0
1 R T	166	E0000.0	80000 Ø	` <b>6</b> . 0	158.8
488	1166	50000.0	A0000.0	-100.0	156.6
489	2166	50006.0	80008_0	-2106.0	150.0
490	167	60008.0	80000.0	8.8	148.6
491	1167	60000.0	80000.0	-108.8	140.0
492	2167	60000,0	80008.0	-2100.0	140.0
			· • • • •		· • • • · · · · · · ·
493	168	70000.0	80000.0	0.0	130.0
494	1166	70000.0	80000,0	-108,8	130.0
495	2168	70005.0	89008.0	-2100,0	130,6
					106 6
470	104	00000000	80000,0	-100 0	160.0
A Q R	2160		60000 eV	-100.0	1 E U 2 U 1 P A . A
470	*****	<u>Anannen</u>	annnafn		
499	170	90000-0	82866-6	2.8	110-0
500	1170	90000.0	60000.0	-100.0	110.0
501	2170	98888.8	60000,0	-2108,0	110.0
	_				
502	171	100000.0	88886,8	0,0	100.0
503	1171	100000.0	80086.0	.108,6	100.0
504	2171	100000,6	60605 _e 0	#2100,0	10e _e o
	478 479 480 481 482 483 484 485 486 485 486 485 486 485 486 485 486 490 491 492 491 492 491 492 495 495 495 495 495 501 501 502 504	478       163         480       2163         480       2163         480       2163         481       164         482       1164         483       2164         483       2164         485       1165         485       1165         486       2165         485       1165         486       2165         487       166         488       1166         489       2166         490       167         491       1167         492       2167         492       2166         493       168         494       1166         495       2168         495       2168         495       2169         496       169         497       1169         498       2169         499       176         500       1176         501       2176         502       171         503       1171         504       2171	478       163       20002.6         480       2163       20002.6         481       164       30002.0         483       2164       30002.0         483       2164       30002.0         483       2164       30002.0         485       1165       40002.0         485       1165       40002.0         486       2165       40002.0         486       2165       40002.0         486       2165       40002.0         486       1166       50002.0         487       166       50002.0         486       2165       40000.0         487       166       50002.0         489       2166       50002.0         489       2166       50002.0         491       1167       60000.0         492       2166       70000.0         493       166       70000.0         494       1166       70000.0         495       2168       70000.0         496       169       80000.0         496       169       80000.0         496       1169       80000.0         <	478       163       20002.6       00002.6         480       2163       20002.6       00002.0         481       164       30002.6       00002.0         482       1164       30002.0       00002.0         483       2164       30002.0       00002.0         483       2164       30002.0       00002.0         483       2164       30002.0       00002.0         485       1165       40002.0       00002.0         486       2165       40002.0       00002.0         486       1165       40002.0       00002.0         486       1165       50002.0       60000.0         486       1165       50002.0       60000.0         486       1165       50002.0       60000.0         486       1165       50000.0       60000.0         490       167       60000.0       60000.0         491       1167       60000.0       60000.0         492       166       70000.0       60000.0         493       168       70000.0       60000.0         494       1166       70000.0       60000.0         495       2169       60000	478       163       20008.6       80008.6       80008.6       165.6         466       2163       20008.6       80008.6       80008.6       165.6         466       2163       20008.6       80008.6       80008.6       165.6         463       2164       30008.6       80008.6       80008.6       165.6         463       2164       30008.6       86000.6       165.6         465       1165       40008.6       86000.6       165.6         465       1165       40008.6       86000.6       165.6         465       1165       40008.6       86000.6       165.6         465       1165       40008.6       86000.6       165.6         465       1165       40008.6       86000.6       165.6         466       2165       40008.6       80008.6       165.6         467       166       50008.6       80008.6       165.6         468       1166       50008.6       80008.6       165.6         469       167       60088.6       80008.6       165.6         469       166       70008.6       80008.6       165.6         471       166       70008.6

0°01 0°01 0°01	-5188°8 -188°8 8°8	6 * 00005 6 * 00005 6 * 00005	6*889861 6*889861 6*888661 6*888661	0912 0011 001	230 230 256
50°0 50°0	0*0012= 0*001= 0*0	6 * 60668 6 * 60668 6 * 60668	0 * 00000 t 0 * 00000 t 0 * 00000 t 0 * 00000 t	6212 6711 972	528 526 526
30°8 38°0 38°0	0°0012= 0°001= 0°0	0 * 00000 0 * 00000 0 * 00000	6°000611 6°000611	8715 8711 871 871	252 257 252
0 * 0 †	6*0012=	0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0*000091	4238	253
0 * 0 †	6*001=		0*000091	4233	251
0 * 0 †	6*0		0*000091	423	250
0 * 05	0°0612=	6 • 06008	120000°0	9212	615
0 * 05	0°061=	6 • 00006	0°000051	9211	815
0 * 05	0°0	6 • 00006	0°000051	921	215
0°09	0°0012=	0°0000	0°000071	5212	915
0°09	0°0012=	0°00000	0°000071	5211	515
0°09	0°0	0°00000	0°000071	521	715
0°01	6*0012=	6 * 00009	120000°9	5715	213
0°01	6*0012=	9 * 00009	120000°9	1174	215
0°01	6*0	9 * 00009	120000°3	174	317
6 ° 0 8	-5180°0	0 * 00009	150008°0	5715	895
6 ° 0 8	-180°8	0 * 00009	150000°0	2717	685
6 ° 0 8	9°0	0 * 00009	150000°9	2717	895
0°06	6*6612#	0 ⁶ 80088	6*696611	571	185
0°06	6*661#	0 ⁶ 80088	6*696611	5715	985
0°06	6*6	0 ⁶ 80088	6*696611	5772	585

86.I

n - 532	181	8-9	98888-8	Ø.6	BOR-D
533	1161	6.6	90000.C	=100,8	206.6
534	2161		90000.C	=2106,8	206.C
535	162	10000.0	98088 <b>,</b> 8	0.0	198.8
536	1162	10000.0	98088 <b>,</b> 8	•108.0	198.8
537	2162	10000.0	98088 <b>,</b> 8	•2100.0	198.8
538	183	20088.0	95885,8	0,0	189,9
539	1183	20098.0	95886,8	•100,0	189,9
540	2163	20096.0	95885,8	•2100,5	189,9
541	184	30000,0	98888°8	0,0	178.0
542	1164	30000,0	98885°8	•190,0	178.0
543	2184	30000,0	98886°8	•2100,8	178.0
544 545 546	185 1105 2185	48588.8 48638.8 48688.8	98888 8 98888 8 98888 8 98888 8	0.00 = 100.0 = 2100.0	160.0 160.0 160.0
547	186	50000 • 8	90000 • 0	0.0	150,0
548	1186	50000 • 8	90000 • 0	=100.0	150,0
549	2186	50000 • 8	90000 • 0	=2100.0	150,0
550 551 552	187 1157 2187	60000 • 0 60000 • 0	98888 <mark>8</mark> 98888 8 98888 8 98888 8	0,0 •100,0 •2100,0	140.0 140.0 140.0
553	188	70000,0	90000 • 0	0.0	130.0
554	1188	70000,0	90000 • 0	=100.0	130.0
555	2188	70000,0	90000 • 0	=2100.0	130.0
556	189	80800 • 6	90808 e 0	8 • 8	126,0
557	1189	80800 • 6	90808 e 0	• 192 • 8	120,0
558	2189	80800 • 6	90808 e 0	• 2192 • 8	128,0
- •·					

• •

•

I.99

20°0	0°00°0	6 <b>*0</b> 0006	6,086071	8612	282
20°0	•100°0	0*00006	6,086071	8611	204
20°9	0°0	6*00006	6,086071	861	203
0 ° 07	0°00'2=	0°00006	0°000091	4612	295
0 ° 07	0°00'=	0°00006	0°000091	4611	295
0 ° 07	0°0	0°00006	0°000091	461	290
20°05	0°0012=	0°00006	0*000051	9612	672
0°05	0°0012=	0°00006	0*000051	9611	872
20°0	0°0012=	0°00006	0*000051	961	872
0 ° 0 9	0°0012=	0 ⁴ 00006	8 ⁴ 000071	5612	978
0 ° 0 9	0°001=	0 ⁴ 00006	8 ⁴ 000071	5611	878
0 ° 0 9	0°0	6 ⁴ 00006	8 ⁴ 000071	561	878
0°01	0°0012=	8°00006	128080°0	7612	512
0°01	0°001=	8°00006	128880°8	7611	512
0°01	.0°0	8°00006	128888°8	761	175
6 4 9 5 6 4 9 5 6 4 9 5	0°0012+ 0°001= 0°0	0 * 00006 0 * 00006 0 * 00006	150000°0 150000°0 150000°0	5173 51732 51732 51732	815 695 895
0°06 0°06 0°06	0°0012• 0°001• 0°0	8*00006 0*00006 8*00006	0°000011 0°000011 0°000011	5175 51755 51755 51755	195 995 595
0*001	0°0012=	0°00006	090001	1612	294
0*001	0°001=	0°00006	090001	1611	293
001	0°0	0°00006	090001	161	295
0*011	0°031=	8°88886	5°00006	8612	195
0*011	0°031=	8°88866	5°0006	8611	895
0*011	0°031=	8°88866	5°0006	861	655

586 587 588	199 1199 2199	160003.0 160000.0 160000.0	90000°0 90000°0 90000°0	0:0 0:00 0:0015=	0,03 0,03 0,03 0,04
569 590 591	200 1200 2200	190003,0 190000,0 190008,0	00000°0 00000°0 00000°0	0,0 100,0 100,0	10.0 10.0 10.0
593 5945 5945 5945 5945 5945 5945 5945 5	201 1201 2201 3201 4201 5201 6201 7201 8201	77508.0 77500.0 77500.0 77500.0 77500.0 77500.0 77500.0 77500.0		0.0 +100.0 •300.0 •500.0 •1000.0 •1300.0 •1300.0 •1670.0 •1700.0	122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 122.55 125 125 125 125 125 125 125 125 125 1
681 682 683 684 685 685 685 685 685 685	2022 2002 22002 22002 22002 2002 78002 2002 78002 2002 78002 2002	76000.0 76000.0 76000.0 76000.0 76000.0 76000.0 76000.0 76000.0 76000.0		6 • 0 • 1 0 0 • 0 • 3 0 0 • 0 • 5 0 0 • 0 • 1 0 0 0 • 0 • 1 5 0 0 • 0 • 1 5 0 0 • 0 • 1 7 0 • 0 • 1 7 0 0 • 0	124 124 124 124 124 124 124 124 124 124
610 611 612 613 614 615 616 617 618	203 1203 2203 4203 4203 5203 5203 7203 8203	75000.0 75000.0 75000.0 75000.0 75000.0 75000.0 75000.0 75000.0		0 8 100 0 200 8 500 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 1000 0 0 1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0	125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0 125.0

619 520 521 522 523 524 525 525 525	204 1204 2204 3204 4204 5204 5204 5204 5204 8204	74825,0 74825,0 74825,9 74825,9 74825,9 74825,9 74825,0 74825,0 74825,0		9,9 199,9 399,9 399,9 399,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,9 1203,	125,2 125,2 125,2 125,2 125,2 125,2 125,2 125,2 125,2 125,2
528 529 530 531 532 533 534	205 1295 2295 3295 4295 5295 5295 5295	74750,0 74750,0 74750,0 74750,0 74750,0 74750,0 74750,2	9 ° 9 9 ° 3 9 ° 3 9 ° 3 9 ° 3 9 ° 3 9 ° 3 9 ° 3	2,3 = 120,0 = 1250,0 = 1600,0 = 1670,0 = 1700,0 = 1740,0	125,3 125,3 125,3 125,3 125,3 125,3 125,3
633 636 637 638 639	296 1206 2206 3206 4206	74325,0 74325,0 74325,9 74325,9 74325,9	3 * 3 2 * 3 3 * 3 3 * 3 3 * 3 3 * 3 3 * 3	9,3 =1250,0 =1250,0 =1600,0 =2190,0	125,7 125,7 125,7 125,7 125,7
640 641 642 643 544	207 1207 2207 3207 4207	73900,0 73900,0 73920,2 73920,2 73920,2	0,3 0,3 0,3 0,3 0,3 0,3 0,3	0,0 p1250,0 p1250,0 p1600,0 p2100,0	127,0 127,0 127,0 127,0 127,0
645 646 647 548	298 1298 2298 3298	71000.0 71000.0 71000.0 71000.0 71000.0	0,0 0,0 0,0 2,3	0,0 =100,9 =1250,0 =2190,0	129,9 129,9 129,9 129,9 129,9
649 530 551	289 1209 2209	67000,0 57000,0 57000,0	0 ° 5 0 ° 3 0 ° 3	0,0 >100,0 >2190,2	133,0 133,0 133,0

652 653 654	818 1218 8210	62000,0 62000,0 62000,0	0 e 0 0 e 0 6 e 0	0,0 0,001= 0,0015=	138,0 136,0 138,0
655 656 657 659 660 661 662 663	211 1211 2211 3211 4211 5211 6211 6211	77698.3 77698.3 77698.3 77698.3 77698.3 77698.3 77698.3 77698.3 77698.3 77698.3	956.7 956.7 956.7 956.7 956.7 956.7 956.7 956.7 956.7	6.0 = 100.0 = 300.0 = 500.0 = 700.0 = 1000.0 = 1500.0 = 1670.0 = 1700.0	122,5 122,5 122,5 122,5 122,5 122,5 122,5 122,5 122,5 122,5
664 665 6667 6688 678 678 671 672	212 1212 2212 3212 4212 5212 6212 7212 8212	76304.5 76304.5 76304.5 76304.5 76304.5 76304.5 76304.5 76304.5 76304.5	1550,7 1530,7 1530,7 1550,7 1550,7 1530,7 1530,7 1530,7 1530,7	0 8 = 100 9 = 300 8 = 500 8 = 500 8 = 1000 8 = 1000 8 = 1700 8 = 1700 8	123,7 123,7 123,7 123,7 123,7 123,7 123,7 123,7 123,7 123,7
673 674 675 676 676 678 678 680 681	213 1213 2213 3213 4215 5213 6215 6215 6213	75388,6 75388,6 75388,6 75388,6 75388,6 75388,6 75388,6 75388,6 75388,6		0.0 100.0 300.0 500.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0 1000.0	
682 683 684 685 686 687 688 689 689	216 1214 2214 3214 5214 5214 6214 7214 8214	75218.9 75218.9 75218.9 75218.9 75218.9 75218.9 75218.9 75218.9 75218.9	1980 - 4 1980 - 4	0 0 0 100 0 0 300 0 0 500 0 0 700 0 0 1000 0 0 1500 0 0 1500 0 0 1700 0 0 1700 0	124 • 8 124 • 8 124 • 8 124 • 8 124 • 8 124 • 8 124 • 8 124 • 8 124 • 8

691 692 693 594 695 695 697	213 1215 2215 3215 4215 5215 6215	75149.5 75149.6 75149.6 73149.6 73149.6 75149.6 75149.6	2009,1 2009,1 2009,1 2009,1 2009,1 2009,1 2009,1 2009,1	0,3 =120,0 =1350,2 =1078,3 =1078,8 =1700,8 =1740,2	124,8 124,3 124,3 124,3 124,3 124,3 124,3
698 699 700 701 702	216 1215 2216 3216 4215	74737,0 74757,0 74757,0 74757,0 74757,0	2171,7 2171,7 2171,7 2171,7 2171,7 2171,7	8,8 120,3 1250,8 1690,8 2100,8	125,3 125,2 125,2 125,2
793 794 795 796 797	217 1217 2217 3217 4217	73532,8 73532,8 73532,8 73532,8 73532,8	2678,8 2678,3 2673,8 2673,3 2673,3	0,0 =100,0 =1250,0 =1690,0 =2100,0	126,5 126,5 126,5 126,3 126,3 126,3
708	218	71685,1	3444,1	8,0	128,3
709	1218	71685,1	3444,1	=100,0	128,3
719	2218	71685,1	3444,1	=1250,0	128,3
711	3213	71685,1	3444,1	=2190,0	128,3
712	219	67989,6	4974,9	95130°0	132,0
713	1219	67989,5	4974,9	#130°0	132,0
714	2219	67989,6	4974,9	8°0	132,0
715	220	63370,2	6888.3	0,0	135,5
716	1229	63370,2	6888.3	•190,0	136,5
717	2229	63379,2	6888.3	•190,0	136,6

716 719 720 721 722 723 725 725	221 1221 2221 2221 2221 4221 5221 6221 5221	70232,2 70232,2 70232,2 70232,2 70232,2 70232,2 70232,2 70232,2	1767.8 1767.8 1767.8 1767.8 1767.8 1767.8 1767.8 1767.8 1767.8	0.0 *100.0 *300.0 *505.0 *1000.0 *1300.0 *1470.0 *1700.0	121.8 121.8 121.8 121.8 121.8 121.6 121.6 121.6 121.6
727 728 729 730 731 732 733 734 735	822 1222 2222 3222 4222 5222 5222 6222 6222	77171.6 77171.6 77171.6 77171.6 77171.6 77171.6 77171.6 77171.6 77171.6	2828 • 4 2828 • 4 2823 • 4 2828 • 4 2828 • 4 2828 • 4 2828 • 4 2828 • 4 2828 • 4 2828 • 4 2828 • 4	6 : 8 ~ 100 : 8 ~ 300 : 8 ~ 500 : 6 ~ 765 : 8 ~ 1000 : 8 ~ 1500 : 8 ~ 1678 : 8 ~ 1700 : 8	122.6 122.8 122.8 122.8 122.6 122.6 122.6 122.6 122.6 122.6
736 737 736 748 748 742 743 743	223 2223 2223 2223 2223 2223 2223 2223	76464,5 76464,5 76464,5 76464,5 76464,5 76464,5 76464,5 76464,5 76464,5	3555,5 5555,5 3555,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3535,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 3555,5 35555,5 35555,5 35555,5 35555,5 35555,5 35555,5 355555,5 35555,5 35555,5	0.0 = 100.0 = 300.0 = 500.0 = 1000.0 = 1500.0 = 1670.0 = 1700.0	
745 746 748 751 751 752 753	224 1224 2224 3224 5224 5224 5224 5224 5224 5	76348,7 76348,7 76348,7 76348,7 76348,7 76348,7 76348,7 76348,7 76348,7	5659,3 5659,3 3659,3 3659,3 3659,3 3659,3 3659,3 3659,3 3659,3	6.0 106.0 506.0 705.0 1000.0 1340.0 1570.0 1700.0	123.7 123.7 123.7 123.7 123.7 123.7 123.7 123.7

754 755 756 757 758 759 759 760	225 1225 2225 3225 4225 5225 6225	76287.7 76287.7 76287.7 76287.7 76287.7 75287.7 76287.7	3712,3 3712,3 3712,3 3712,3 3712,3 3712,3 3712,3	2,3 =130,3 =1350,3 =1689,0 =1689,0 =1678,9 =1780,0 =1740,0	123,7 123,7 123,7 123,7 123,7 123,7 123,7
761 762 763 764 765	225 1226 2226 3226 4226	75987,2 75987,2 75987,2 75987,2 75987,2	4012,3 4012,3 4012,3 4012,3 4012,3 4012,3	8,3 =100,0 =1350,0 =1600,8 =2100,0	134,0 134,0 124,0 124,0 124,0
765 767 763 769 779	227 1227 2227 3227 4227	75050.3 75050.3 75050.3 75050.3 75050.3 75050.3	4949,8 4949,8 4949,3 4949,3 4949,3	8.0 •100.0 •1250.0 •1600.9 •2190.9	184,9 124,9 124,9 124,9 124,9
771	228	73636,9	6364,9	a193,9	126,4
772	1228	73636,9	5354,9	a193,9	126,4
773	2228	73636,9	6364,9	a1950,9	126,4
774	3228	73636,9	5364,9	a2190,9	126,4
775	229	70807.5	9192,4	8,8812*	129,2
775	1229	70807.5	9192,4	8,8812*	129,2
777	2229	70807.5	9192,4	8,9812*	139,2
778	1538	67272,1	12727,9	9,0	132,7
779	1538	67272,1	12727,9	9,0015=	132,7
780	538	67272,1	12727,9	0,0015=	132,7

		•		÷ •		
781	173	79062.J	838\$ ₈ 7	8,8	121.0	
763	1231	T9845.3	8309 _e 7	«388 _e 0	121.0	
784	3231	79843.3 *8843.3	2309.7 2809.7	=588 <u>.</u> 6	101.0 101.0	
786	5231	79063.3	2309.7	-1888.0	121.0	
787 788	6231 T251	79043.3	2309 <b>.</b> 7 2309.7	#1380 ₈ 8	121 ₀ 0 121.6	
789	6231	79043.3	2309,7	-1700,0	121,0	
			*405 E	6 A	1.91 E	
791	1832	78469.3	3695,5		121,5	
792	5253	78469.3	3695,5	<b>-588.8</b>	121,5	
794	4832	70469.3	3695,5	-700,0	121,5	
795	5232 6232	78469 <b>.3</b> 78469.3	3695.5 3695.5	01082.0 01300.0	181 ₆ 5 121.5	
797	7232	78469.3	3695,5	=1676.8	121.5	
798	6835	78469,3	3695.5	eitde ^e e	121.5	
790	233	76086,6	4618,4	8.0	121.9	
888 881	1233	78086,0 76086,6	4619.4	-100.0	121.9	
602	2233	78886.6	4619.4	-588,0	121,9	
603 804	4231 5277	78086,6 78086,6	4619.4	=708 ₌ 0 =1026_0	121.9 121.9	
885	6233	76886.6	4619.4	*1300.0	121.9	
886 887	7233 8253	78086.6 78086.t	4619 ₈ 4	•1678,8 •1788,8	121.9	
	•					
808	234	78819.6	4781.1	0.0	122.0 122.0	
810	2234	78819.6	4781.1	a386,8	0,551	
611 812	3234 6234	78019.6	4781.1	-500.0	122,6 122-8	
013	5234	78019.6	4781.1	#1000.0	182.0	
814	6234	78019.6	4781 <b>.1</b>	e1300,0	122.0	
616	1 E J 4 A 2 8 4	TARIQ_4	4781.1	e1700.6	122.6	

•

٠.

•

ľ

817	235	77990,9	4050,4	0.0	155.0
813	1235	77999.9	4850.,4	··· · <b>⇒1₽0-,-3</b>	122.0
819	2235	77990,9	4853,4	≈1520°0	122,9
820	3235	77990,9	4850,4	-1600,0	122,0
821	4233	77990,9	4350,4	=1670,0	123.8
822	5235	77990,9	4050,4	=1700.0	122.0
953	6235	77998,9	4850,4	-1740,0	122,0
		- - -	·	•	•
824	236	77828,3	5243,0	0.0	122,2
823	1235	77028,3	5243,0	-100,0	122.2
826	2536	77820.3	5243,9	»1250.0	155.5
827	3539	77828,3	5243,0	-1600.0	122.2
828	4236	77828,3	5243,0	=2199,9	122.2
			•	•	
829	237	77321.2	6467.2	0.0	122.7
832	1237	77331,2	6467 2	-100.0	122.7
831	2237	77331.2	6467.2	-1250.0	122.7
332	3237	77321,2	6467.2	-1509.0	122.7
833	4237	77321,2	5467,2	-2190,0	122.7
		-	-	-	
834	238	76555.9	8314.9	0.9	125.4
835	1238	76535.9	8314.9	-100.0	123.4
336	8238-	76555.9	8314.9	+1250.9	125.4
337	3238	76555.9	3314.9	-2120.0	123.4
					•••••
838	239	75025.1	12010.4	a_a	124.0
839	1239	75025.1	12010.4	-109.0	125.0
840	2239	75925.1	12818.3	-2100.0	125.0
341	240	72111.7	16630 2	a a	124 0
A42	1240	73111.7	14420.9	5180 G	124 0
843	2243	73414.7	15620 A	-2100 0	124 0
	14 H H	·******	4048714	-41-40-40	12234

		· •	• • •	• • • •	•
***		80000 Q	DEAS G	a . a	128.6
- <b>5 F</b>	641			-100 0	
845	1241	60000,0	2000.0		160,0
846	£241	88886.8	2500 _e 0	- 7 de ^s e	156,6
867	3841	60066.0	2500.0	•586,6	180.6
AAA	4944	ADDDE B	PROP G	-T06.8	182.6
040	5944			-1694 6	100 0
844	2641	00000590	600040	#1000 to	10010
650	6841	68888.0	2500 t	-1366-6	180,0
651	T241	60088.6	2506,0	•1670,C	126,0
A52	8241	80006.6	8508.0	e1788.8	128.6
				••••••	• • • •
855	242		4000.0	Ø. 8	126.0
854	1242	80000.0	4005.0	-100.0	120.0
855	2242	80000.0	4000 B	-396.9	128.8
124	1949	66666 P	4888.8	-508.8	120.0
030	2646				1.50 0
037	4242	00000.0			104 0
058	5242	60880 ₀ 8	4000.0	41000 ₀ 0	160.0.
859	6242	60008.0	4888.8	==1390 _e 0	126,0
860	7242	66666.6	4000.0	·•1678_8	126.6
A61	8242	88888.6	4888 8	e1788.6	128.0
•••		• • • -	• • •	•	•
862	243	80000.0	5000.0	6.6	188.0
863	1243	80808.0	5000.0	-106.8	128.0
866	2242	60006 B	5000 0	- 300 B	126.0
86E	***	66666	Fant A	-896 0	128.8
003	2643	00000000	2000.0	-100 6	100 0
800	4243	60000.0	3000.0	D70080	120,0
867	5843	68688° 0	5000.0	-1008.8	16640
868	6243	60000 <u>.</u> 6	5000.0	<b>e1306</b> .6	158,6
869	7263	66666.6	5000.0	<b>=1670.0</b>	120.0
ATE	8243	60066 0	5006.0	01700.0	120.0
Ψ <b></b>	₩ <b>₩</b> 7 <b>₩</b>	<b>-</b>			• <b>- - -</b>
671	244	60006.0	5175.0	0,0	126.6
672	1244	60000.0	5175.0	=100.0	120.0
ATS	2244	A0000-0	5175.0	S00.0	125.0
698			C142 D	-CD0:0	(20.0
074	3244		311340		100 D
875	4244	50000,0	5175,0	0100.0	12040
876	5244	5000C <u>;</u> 0	5175.8	e1000.0	150,0
677	6244	60000.0	5175.0	<b>#1308.0</b>	120.0
A78	7244	80068.0	5175.0	#1678_B	128.0
490	8544	60000.0	C176 0	-1788 8	120.0
~ / 4	~~~~		311340	평굴 김 태편(송원)	

•					-
989	243	80000.0	5250,0	0,0	120.0
881	1245	30000,0	5250,0	-100,0	120,9
306	3245	30090.9	5259,9	w1250,0	120,9
883 884	2043 4249	90000°0. 90000°0	2420 g		139,9
885	5245	80000.0	3240.0	a1790.3	120.0
886	5245	80000.0	5230.0	1740.0	120.0
	,	•			
887	246	80000,0	5675,0	0,0	120,0
888	1246	80000,0	5675,0	-100,0	120,0
307	3246	80000,0	5675,0	•1250,0	120,0
891	1240 1224	20000 0 20000 0	30/3.0 8479.0	-2123 3	130,0
	-4-0		201380	4610090	16090
892	247	88888,9	7030,0	0,0	120.0
893	1247	80000,9	7999,9	=100,0	120,0
394	2247	80200,0	7000,0	-1250,0	120,0
873 Aqa	3847 4347	39999,0	7000,0	-1690,9	120,0
070	~&~!	9996919	100010	ating!a	14030.
897	248	80000.0	9090.0	0.0	120.0
898	1248	30000,0	9000 0	-108,9	120.0
899	- 2248	89999,9	9009,3	•1250,3	120,0
900	. 3248	30000 <b>,</b> 0	9000,0	⇒2100,0	120,0
901	249	19999-9	13000.0	a a	120 0
902	1249	89999.2	13000.0	-122.2	120.0
903	2249	38889,8	13000,9	-2100,0	120,0
904	259	80000.0	18000.0		128.0
985	- 1250	80000.0-	- 18090 - 0		120,0
986	2250	89000,9	18900,0	-2128.8	120.2
		-	-		

907	251	80956.7	2300.7	C.B	119,0
906	1251	80956.7	2309.7	-108.0	119,8
909	2251	88956,7	2509,7	-306.0	119,0
910	3251	80956 T	ESB9 7	=500,8	119,6
911	4251	80956.7	eseq.7	e786,8	119,0
91E	5251	80956,7	2509.7	•1888.8	119.0
913	6251	88956,7	2309,7	w1300,0	119.0
914	7251	88956.7	2509.7	w1670.0	119.0
915	6251	80956.7	2509.7	=1700,0	119,0
916	252	81538.7	3695.5	0.0	116.5
917	1252	61538.7	3695.5	-108.8	118.5
916	2252	61530.7	3695.5	-500.0	118.5
919	3252	61536.7	3695.5	-500.6	118.5
920	4252	81538.7	3695,5	.700.0	118.5
921	5252	81530.7	3695.5	=1008.0	118.5
559	6252	81530,7	3695,5	a1300.0	116.5
220	7252	61530,7	3695.5	=1678,8	118.5
924	8252	81538.7	3695,5	=1708.0	116,5
<u>ç25</u>	253	B1913_4	4619.4	6.0	116.1
926	1253	81913.4	4619.4	108.0	116.1
927	2253	81915.4	4619.4	-300.0	116.1
928	3253	81913.4	4619.4	-500.0	118.1
929	4255	61913.6	4619.4	-786.0	116.1
930	5255	61913.4	4619.4	e1000.0	118.1
931	6253	61912.4	4619.4	=1306.0	118.1
932	7.253	81913.4	4619.4	#1678.0	118.1
933	8253	81913.4	4619.4	-1700.0	118,1
		. –			
934	254	81968.4	4781.1	0 ₀ 0	118.0
935	1254	81980 4	4781.1	-190,6	116,0
936	2254	81980.4	4781.1	-300,0	118.0
937	3254	81980.4	4781,1	•505,0	116.0
938	4254	61988,4	4781,1	•706,8	116,0
939	5254	81980.4	4781.1	-1006.0	118,0
940	6254	81980 ₂ 4	4761,1	=1300,0	116.8
941	7254	81968.4	4761,1	=1678,8	118,0
942	8254	81980.6	4781.1	e1788.6	118.0

	•		•	•-	
943	353	02009.1	4850.4	3.3	118-9
944	1255	32009,1	4858 4	-100.9	110.0
945	2255	32889,1	4350,4	-1250,0	110.0
946	3295	95089,1	4850,4	-1500,0	118.0
947	4255	95086,1	4890,4	=1570,0	113,0
948	5255	82089,1	4850,4	=1700,9	110,0
949	9522	85864.1	4838,4 ·	=1740,0	113,3
950	256	82171.7	5243,9	0,0	117,0
951	1256	95111.1	5243,8	=190,0	117,8
952	5529	82171,7	5243,0	-1250,0	117,8
953	3256	82171 7	5243,9	-1600,0	117.8
A24-	4430	8d171,7	° ≈ 5243 (9/ď		·····
955	257	32678.8	6467.2	-9.3	117.3
956	1257	82678.8	6467.2	-100.0	117.3
957	2257	82678,8	5867 3	a1250.0	117.3
998	3257	32678,3	5467,2	=1600,0	117,3
959	4257	32678,9	6467,2	*2169,9	117,3
949	280	B <b>R</b> AAA 1		<b>A</b> : <b>A</b>	•
965	1298	53444 ₈ 5	8214 87	- 100 C	110,0
962	2254	83444.1	8314.9	=1250.0	110,0
963	3258	83444.1	3314.9	-2189.9	116.5
964	259	34974,9	12010,4	0,0	115,0
965	1259	84974,9 *	12010,4	=190,B	115,0
900	2259	84974,9	12010,4	#3130 <b>,</b> 3	115,9
967	260	36888.3	16629.8	A. A.	117.1
968	1260	86888.3	15629-8	-100.0	113.1
969	5520	86888,3	16629,8	-2190.3	113.1
		-			

		•	• <b>•</b>	· · · · •	•.
678	261	A1767.6	1767 B	0.0	116.P
071	1261	RIVAT A	1747.8	-196.9	116.0
072	8594 8364	At747 8	2 7 2 7 4	- 700 0	((A.3
	2201		110100	-100 <u>0</u> 0	11010
412	2001	U2TB/ 4	1010	6200.0	IIUge
974	4261	6176T _c 6	1767 e	-708-0	3,011
975	5261	81767.8	1767.8	•1088 ₂ 8	116,2
976	6261	81767.6	1767.6	•1500,0	116.8
977	7261	81767.8	1767.8	-1678.0	115.2
976	6261	81767.6	1767.8	-1780.0	118.2
979	262	82828,4	2828.4	0.0	117.2
980	1262	82828.4	2628.4	e100.8	117.2
QR1	2262	APAPA.4	2628.4	-308-0	117.8
042	8063	82828.4	202014	-500.0	(19.D
101	4545			-705 0	
902 084		ADDDE A			
484	2505	6695664	5050 ⁶ 4		11/46
985	6595	82828 4	262044	#1200°0	11702
986	- 1595	82028.4	5058*4	•1670,0	117.2
987	6262	62626,4	2828,4	={700 _t 0	117.2
OBB	947	A 2 2 2 4 5	TERC S	0.0	116.5
400	E03.	03339 <b>8</b> 9	2233 <b>9</b> 8	-100 0	444 6
404	1503	03333 ₆ 3	9999 ⁶ 9	-100 0	
446	6603	0333383	333343	420010	110.3
441	3803	63535,5	1515,5	*200°0	110.0
995	4263	83535e5	3535,5	•700,0	110,5
662	5263	83535,5	3535#5	e:008,8	116,9
994	6263	83535,5	3535,9	-1300,0	116.5
995	7263	83535,5	3535,5	-1670,0	116.5
996	8263	83535,5	3535,5	-1708.0	116.5
• •••				n n i rapinanti i	غ يسع
997	264	83659.5	3659,3	0,0	116.3
998	1264	83659,3	3659,3	-106,0	116,3
<b>999</b>	2264	83659.3	365913	•306.0	116.3
1000	3264	83659.3	3659.3	-508.0	116.5
1001	626A	A3659.3	3650 I	.700.0	116.3
1002	SPAA	7.03AFA	1450.1	-1000 A	116.2
1001		0303713 D1403713	8680 B	-110010	
1004	962'A	0303¥ <b>8</b> 3 87460 7	547576 7 0378	-1470 D	44083 444 W
1004	1204	0303713	363499	-1700 C	
<b>1</b>	525A	<b>K 42 4 K</b> . 4			110-1

1905 1907 1908 1909 1919 1911 1912	265 1265 2265 3265 4265 5265 6269	83712,3 83712,3 83712,3 83712,3 83712,3 83712,3 83712,3 83712,3	3712,3 3712,3 3712,3 3712,3 3712,3 3712,3 3712,3 3712,3	9,9 •199,9 •1259,9 •1699,9 •1679,3 •1790,9 •1740,9	116,3 116,3 116,3 116,3 116,3 116,3 116,3
1913 1914 1915 1916 1917	266 1266 2266 3266 4266	84012,8 84012,8 84012,8 84012,8 84012,8 84012,8	4012, 8 4012, 9 4012, 3 4012, 3 4012, 8	0,0 =100,0 =1250,0 =1600,0 =2100,0	116,0 116,0 116,0 116,0 116,0
1918	267	84949 ₈ 8	4949,3	8,8	113:1
1919	1267	84949 ₈ 8	4949,3	•129,2	115:1
1929	2267	84949 ₈ 8	4949,3	•1250,2	113:1
1921	3267	84949 ₈ 8	4949,3	•1600,2	115:1
1922	4267	84949 ₈ 8	4949,3	•2120,9	115:1
1923 1024 1925 1926	268 1268 2268 3268	86364,9 86364,9 86364,9 86364,9 86364,9	5364,9 5364,9 5364,9 5364,9 5364,9	9,2 •190,9 •1250,9 •2120,3	113,5 113,5 113,6 113,6 113,6
1927	269	89192,4	9192,4	0,0	110,8
1928	1269	89192,4	9192,4	0,0015	110,3
1929	2269	89192,4	9192,4	8,0015	110,3
1030	279	92727,9	12727,9	0,0	107,3
1031	1270	92727,9	12727,9	0,0010	107,3
1032	2279	92727,9	12727,9	0,0015=	107,3

		•	<b>6</b> . • •	ñ <b>b</b>	· • 🖝
1033	271	62309.7	956.7	8.0	117.7
1034	1271	62309,7	<b>956,7</b>	*100 0	117.7
1035	1753	62309.7	<b>955,7</b>	e300,0	117.7
1036	3271	62309.7	956,7	=500,0	117.7
1037	4271	62309.7	956.7	e700 _e 0	117.7
1038	5271	62309.7	956.7	<1000 ₀ 0	117.7
1039	6271	62309,7	956.7	=1300,0	117.7
1040	1271	62309.7	956,7	<b>#1670,8</b>	117.7
1041	8271	8230V ₄ 7	956 <b>.</b> 7	•1700 ₀ 0	117 . Y
1042	272	85695.5	1550-7	n . 6	116.5
1643	1272	63695.5	1530.7	#100.0	116.5
1044	2272	83695.5	1559.7	-300.0	116.3
1045	3272	83695.5	1530.7	*500.Ø	116.5
1046	4272	83695.5	1530.7	.700.0	116.3
1847	5272	83695,5	1530,7	e1000,0	116.3
1048	6272	83095,5	1530.7	e1300.0	116.3
1049	7272	83695,5	1530.7	a1678,6	116,5
1050	6272	63695:5	1530,7	-1708.0	116.3
1051	273	84619.4	1915.4	0.6	115.4
1052	1273	84619.4	1915.4	.106.6	115.4
1053	2273	64619.4	1913.4	-300.0	115.4
1054	3273	84619.4	1913.4	-500,0	115.4
1055	4273	84619.4	1913.4	•700.0	115.4
1056	5273	64619.4	1913 _e 4	-1008.0	115.4
1057	6273	84619.4	1913.4	=1300.0	115.4
1058	7273	64619.4	1913,4	-1670.0	115,4
1074	6273	8461944	1913.4	=1700 <u>+</u> 0	115.4
1060	274	84781.1	1980.4	6.0	115.2
1061	1274	84781.1	1980.4	-108.0	115.2
1062	2274	84781.1	1980.4	-300.0	115.2
1863	3274	84781.1	1988.4	-500.0	115.2
1064	4274	84781.1	1980.4	-700.0	115.2
1065	5274	84781,1	1960.4	-1006.0	115,2
1066	6274	84781.1	1980.4	-1300,0	115.2
1067	7274	84781.1	1980.4	-1670,B	115.2
1068	8274	84781.1	1950.4	-1708,0	115,2

•

				•	•
1969 1979 1971 1972 1973 1973	275 1275 2275 3275 4275 4275 4275	84890,4 84890,4 34890,4 84890,4 84890,4 84890,4 84890,4	2009,1 2909,1 2909,1 2909,1 2909,1 2909,1 2909,1	0,0 190,0 1250,0 1490,0 1490,0 1490,0 1700,0 1740,0	115,2 115,2 115,2 115,2 115,2 115,2
1075 1077 1073 1079 1080	276 1276 2276 3276 4276	85243,9 85243,9 85243,9 85243,9 85243,9 85243,9	2171,7 2171,7 2171,7 2171,7 2171,7 2171,7	0,0 =190,0 =1250,0 =1600,0 =2190,0	
1981 1982 1983 - 1984 1985	277 1277 2277 3277 4277	86467,2 86467,2 86467,2 86467,2 86467,2	2678,8 2678,8 2678,8 2678,8 2678,8	0,0, 4100,0 41250,0 41250,0 41600,9 8100,0	113,9 113,5 113,5 113,5 113,5 113,9
1086 1087 1088 1089	278 1278 2278 3273	88314,9 88314,9 88314,9 88314,9 88314,9	3444,1 3444,1 3444,1 3444,1 3444,1	0,0 •100,0 •1250,0 •2190,0	111.7 111.7 111.7 111.7 111.7
1999 1991 1992	279 1279 2279	72819,4 72819,4 92810,4	4974,9 4974,9 4974,9	0,0 100,0 0,0015~	108,0 108,0 108,0
1093 1094 1095	280 1280 2280	96629,8 96629,8 96629,8	6888,3 6888,3 6888,3	•5786 •6881 •6881	103.4 103.4 103.4

17 14

		•	•		
1096	261	62500.0	'8, Ø	°0_0	117.5
1097	1281	62500.0	0.0	-100.0	117.5
1098	2281	A2500.0	0.0	•300.B	117.5
1099	3284	62508.0	6.6	-500.0	117.5
1100	1384	A 3560 A	6 Ø .	-700 0	117.6
4400	4601	0020010	6 6	-1660 6	147 6
1101	9C01	0530040	010	-1200 0	
1105	0201	8628646	0.0	W1300.0	
1103	7281	62300.0	0.0	#16/0 ₁ 0	117.5
1104	1838	82500 ₈ 0	0.0	#1100 g	117,5
		· · · ·			
1105	262	64000.0	0.0	0,0	116.0
1106	1282	84888.8	0.0	-100.0	116.0
1107	2282	64080.0	0.0	-306.0	116.0
1108	3262	84888.6	6.0	-500.0	116.0
1109	4262	A4690.8	0.0	-700.0	116.0
1118	SPAR	AAAAA. 0	6.6		116.8
6 4 4 4	6965	64666	0.0	-1300.6	116.0
****	7565		0 0	-1670 0	116 0
4442	1202	61666 B			11080
1113		04000.00		-110060	11080
1114	283	45000.0	6.6	0.0	115.0
1115	1263	85080.0	8.8	e180.0	115.0
1116	PPAT	65000-0	6.6	-300.0	115.0
1117	TOAT	A5000.0	8.8	-500.0	115.0
1118	4203	85000 Q	6.6	-700 0	(15.0
4440	4003 8003			-1000 0	115 0
1117	7603 4964	63000 ₁ 0			
1160	0203	62000 ⁶ 0	0.0	m1200 ⁶ 0	112,0
1121	7263	83000.0	668	=1018 ⁶ 8	113.0
1122	6283	62000°0	6.60	e1706.0	115.0
1123	28A	85175-0	0-0	0.0	114.8
1124	(DAA	45175.9	8. A	-100 0	114.4
4405	4504 3304	0317360	<b>n</b> 0	-100 0	1 C / B
4153	1004	021/2tn VEIAE V	0 C		11460
1100	3204 Arra	031/3th			11460
110/	4204	031/3,0			11448
1160	7284	621/2.0	0.0	-10A0 ⁶ 0	114 85
1129	6284	85175.0	6,6	.1308.8	114.8
1130	7284	85175.0	0.0	-1670,0	114.6
1131	8284	85175.0	0.0	=1708.0	114.8

1132 1133 1134 1135 1135 1135 1137 1138	28585250,0128585250,0228585250,0328585250,0428585250,0528585250,0528585250,0528585250,0	0.0     0.0       0.0     120.0       0.0     1250.0       0.0     1600.0       0.0     1670.0       0.0     1700.0       0.0     1740.0	
1139 1140 1141 1142 1143	286 85675,0 1286 83675,0 2286 85675,0 3286 85675,0 4286 85675,0	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0	114,3 114,3 114,3 114,3 114,3 114,3
1144	287 87000,0	0,8 3,8	113,0
1145	1287 87000,0	3,3 ±123,8	113,0
1146	2287 87000,0	3,3 ±1250,9	113,0
1147	3287 87000,0	0,3 ±1680,8	113,0
1148	4287 87000,0	0,8 ±2120,8	113,0
1149	288 89000,0	0,0 9,2	111,0
1130	1288 89000,0	0,3 -100,0	111,0
1151	2288 89000,0	0,0 -1250,0	111,0
1152	3288 89000,0	0,0 -2100,0	111,0
1153	289 93000,0	3,3 3,3	107,0
1254	1289 93000,0	3,3 ±199,3	107,0
1155	2289 93000,0	3,8 =2190,3	107,0
1156 1157 1158	290 98000,0 1290 98000,0 2290 98000,0 Total Nodes in System= Number of Surface Nodes	9,0 0,0 9,0 =100,0 9,0 =2100,0	102,0 102,0 102,0

I.118

			.'														
- 70		IMAFR OF		 #17:		**	++	AD 8.C.	 185=		,		*****	*****	****	****	********
	*****		******			****		*******				******	*****	*****			
_			: .		· .		_										
DE#	1	HEAD	200.00	NODI	E# 100	A HEAD		200,00	NODE#	2001	HEADe	549.00	NODES	21	HEAD	260	.00
DEP	1851	HEADE	200.00	NOD	E# 202	HEAL		200.00	NODE#	41	HEADY	500.00	NODE	1041	HEAD	200	.00
DEF	5041	MEADE	200.00	NOOI		A HEAL		200.00	NODEP	1001	HEADY	500.00	NODE	2001	MEAD	005 (	.00
DEF	81	MEADE	560 . 60	NOOI	198 - 198 - 198	I HEAL		500.00	NODE	2001	HEADY	200,00	NODE	101	TEAD!	200	.00
	1101	HEADA	200.00	NODI	5 <b>4</b> 210	IL HEAL	)9 	200,00	NUDEF	121	HEAD	500.00	NUDE	1161	MEADI	200	
	«141	NEADA	200,00	NODI		16 116 AU	yw Na	200,00	NOOFA	1191	MEADE	200.00	NODE	E 1 4 1	MEAD		.00
	101	NEADA	200 00	NOOI	14 111 74 .914	1 11574 1 MØAI	Ne -		NODEA	5171	NEADH	200100	NODE	, 1030 101	HEAD	100 E E E E E	-08
	2426	NEADA	18.60	NODI	LP (235 78 8	0 NFA	Ne	10.00	NODER	1040	HEADE	10.00	NODE	2010	HFAN		400 .00
DF#	AØ	HEADE	10.00	NOD		B HEAL	5.	10.00	NODE	2860	HEAD	10.00	NODE	80	HEAD	10	.00
DEF	1000	HEADs	10.00	NOD	201	O HEAT	D.m.	10.00	NODE	100	HEADS	10.00	NODE	1100	HEAD	10	. 60
DE#	2100	HEAD	10.00	NODI	20 11	D HEAL	De	10.00	NODER	1120	HEAD	10.00	NODE	2120	HEAD	1 iõ	.00
DE	148	HEADS	10.00	NOD	ÉØ 114	O HEAL	D 🗰 👘	10.00	NODER	2140	HEADY	10.00	NODE	160	HEADI	10	.00
DEP	1160	HEAD	10,00	NODI	en žie	U HEAT	D.	10,00	NODER	180	HEADE	10,00	NODE	1180	HEAD	10	.08
DE#	2180	HEADP	10,00	NOD	28 83	O HEAD	)*.	10,00	NODER	1200	HEAD	10.00	NODE	0055	HEAD	19	.00
DE#	9	HEADu	170.00	NOD	:# 20	I HEAL	Dei	170,00	NOĐE#	202	HEADE	170,00	NODE	203	HEADI	170	.68
DE#	204	HEAD	170.00	NODI	2# 21	1 HEAD	Din -	170,00	NODEP	£15	HEADu	170,00	NODEA	) <b>21</b> 7	HEADE	) <b>1</b> 70	.00
DEP	214	HEAD	170,00	NODI	L# 61	S HEAD		170.00	NODE#	222	HEADR	170,00	NODE	552	HEADI	1 170	.00
DEF	224	HEAD	178,00	NOD	:# R3	A HEAD	De	170,00	NODE#	535	HEAD	170,00	NODE	523	HEAD	110	.89
DEF	234	HEAD	170.00	NOD	5 <b>4 2</b> 4	1 HEAL	D III	170,00	NODEF	242	HEADE	170.00	NODE	543	HEAD	: 170	.00
DE#	244	HEADP	170,00	NOD	2: <u>2:</u>	I HEAL	09	170,00	NODER	525	HEAD	170.00	NODE	523	HEAD	170	.00
DE#	254	HEADS	178,00	NOD	5 <b>0</b> - 20	A HEAL	DŴ	170.00	NODEP	262	HEADT	170,00	NODE	263	HEADI	170	.00
DEF	264	HEADP	170.00	NODI	1 <b>0</b> 21	1 HEAL	04	170,00	NODE	212	HEADR	170,00	NODE	- <b>-</b>	HEAD	170	.00
DEF	274	MEADR	170.00	NODI	50 CC	I UKAI		110.00	NODER	x a x	READE	110.00	NODKI	¥03	TEADI	110	• 8 M
UE #	204	115, AU #	110.00	NUUI	6 <b>4</b> 1												·
				<b></b>		*****			*****	*****				******	*****		*******
							,						••••				•
EH#.	1	ORDERON	IE MAT	# 1	TOTAL	NODES	0	CORNER	NODES	7	75	54	6	1007	1951	1059	1806
,em#,	Ś	ORDERON	IE MAT	# 1	TOTAL	NODES	8	CORNER	NODES	22	47	46	63	1887	1047	1846	1826
,EM#.	3	ORDERON	IE. MAT	# 1	TOTAL	NODES	8	CORNER	NODES	. 47	67	66	46	1047	1067	1044	1046
EH#.	4	ORDERON	E MAT	<b>•</b> 1	TOTAL	NODES	· 5	CORNER	NODES	67	. 87	. 66	66	1067	1007	1086	1066
EN#,	5	ORDERON	IE HAT		TOTAL	NDDE2	ğ	CORNER	NDDES		107	105	05	1007	1107	1100	1066
EN#.	6	URDERON	IE MAT	<u>, i</u>	TOTAL	63001	5	CORNER	NODES	107	127	150	100	1107	1147 .	1120	1100
277.	Ţ	UNDERON	IE HAT	7 I	TUTAL	10023		CURNER	NUDES	-127	197	140	160	1147	1147	1140	1140
	5	UNDERON	IE MAT	7 1	TUTAL	10023	. 0	CUKNER	NUULO	197	107.	100	340	1147	1107	1100	1140
2117.	.7	UNUERON	IC MAT	7	TUTAL		9	CUXNER	NODES	197	107	350	100	1107	1107	1100	1100
	10	UNUTHON		7 1	TOTAL	10023		CURNEN	NODEA		K.D.	KJ A1	2	1000	1020	1063	1622
577		UNUCHON			TOTAL	NODES	0		NODEA	2D	014	40 40	67	1040	4044	1042	1007 1448
577. Em#	16	000500	15 17A1 18 MAT	Z 1	TOTAL	NODES			NODES	40		77	40 40	1049	1004	1042	1047
671## 844	13		15 17AT	7 1 8 4	TOTAL	NODES	9			97 84	00 401	07 188		1000	1186	1105	1848
617## #44#	14		15 17AT 16 mat		TOTAL	NODER	9	CURRER CORRER	NODER	00 404	100	192	182	1101	1126	4497	1107
6717 <b>.</b> 2844	12		15 11A1 16 MAY	- I 	10186	NODEE		CORNER	NODER	100	100	442	192	4100	1144	1153 11AR	4128
Ente Ente	10		16 NAT	7	TOTAL	NODER		CORNER	NONFA	100	440	147 142	142	1162	1144	1143 1144	1144
611 <b>7</b> e.		ABASAAL	15 FIAT		TATAL	NODER		CODNES	NONEE	140	100	103	142	4444	1184	1184	1168
	10	UNUSRUN NRNTOAN	16 TAT		TOTAL	NODFE	Ä	CORNER	NODES	140	100 100	205	Δ	1005	1025	1024	1004
THA		UNUERUN	tai 17/6∦	- 4	1.011.5%			<b>UNING</b>	110050		43	57				1222	
EM#	30	APAPPA	IT MAT	* *	TOTAL	NODFR.		COQNEE.	NODES	32	<b>.</b>	84	28		10263	1046	1924
EN#. EN#.	20	ORDERON	IE MAT	# 1	TOTAL	NODES NODES	- 0 R	CORNER	NODES	25 	45 64	44 68	24	1045	1065	1044	1924 1844

•

. .

-

			A 1. 1		
- C A - M	4		• • •		
- C - C -		÷	· · · · · ·		
		· · ·		•	

						*.	(5- <b>5</b>	相接 翰	- * 		:						
ELEH#	23	ORDERONE	HAT#	1	TOTAL	NODES	8	CORNER	NOOKS	45	185	194	44	1845	1105	1184	1684
ELEH#	24	ORDERONE	HAT#	Ī	TOTAL	NODES	8	CORNER	NODES	105	125	124	104	1105	1125	1124	1104
ELEH#.	25	GROERONE	HATH	4	TOTAL	NODES	6	CORNER	NODES	125	145	144	124	1125	1145	1144	1124
ELEN#.	36	ORDERONE	HAT#	1	TOTAL	NODES		CORNER	NODES	145	165	164	144	1145	1165	1164	1144
515H#0 F154#	21	OBOEDONE	MATH	Ĩ	TOTAL	NODIA	Å	CORNER	NUDER	193	103 24	23	104	1694	1624	1823	1003
ELEH#	29	ORDERONE	HAT#	i	TOTAL	NODES	5	CORNER	NODES	24	44	43	- 25	1824	1044	1043	1023
ELEH#,	30	ORDERONE	HAT#	Ē	TOTAL	NODES	8	CORNER	NODES	44	64	63	43	1844	1064	1963	1943
ELEH#	31	ORDERONE	HAT#	1	TOTAL	NODES	8	CORNER	NODES	E.S. 64-		63	- 63	1964	1084	- 1012.	1863
ELEHØ,	35	ORDERONE	HATP	1	TOTAL	NODES	0	COANER	NODES	84	194	183	- <b>83</b> .	1664	1100	1103	1003
51 848 e	33	OBDERDNE Obderdne	NATE NATE	1	TOTAL	NODER	Ā	CURNER	NODES	124	144	141	121	1124	1144	. 11AX.	1121
ELEH#.	- 35	ORDERONE	нати	i	TOTAL	NODES	5	CORNER	NODES	144	164	163	143	1144	1164	-1165	1143
ELEN#.	36	ORDERONE	HAT	Ī	TOTAL	NODES	8	CORNER	NDD28	164	184	103	163:	1164	1164	1103	1163
ELEH#,	37	ORDERONE	HAT#	4	TOTAL	NODES	8	CORNER	NODES	3	83 .	\$5	5	1003	1052	1033	1692
ELEH#.	38	ORDERONE	HATS	1	TOTAL	NGDES	8	CORNER	NODES	. 21	43	42	- 33	1633	1043	1042	1822
ELENG. Birinn.	14 20	OBURDUNE OKOFKOME	MATE	1	TOTAL	NOOFS	- P A	CONNEN	NODES	43 63	6 6 A 1	<b>88</b> 82	42	1043	1003	1004	1045
ELEN#.	41	ORDERONE	HATE	i	TOTAL	NODES	- 5	CORNER	NODES	Ă3	103	102	82	1063	1103	1102	1842
ELEN#,	42	ORDERONE	HATE	Ĩ	TOTAL	NODES	8	CORNER	NODES	101	121	122	192	1101	1123	1122	1102
ELEH#,	43	ORDERONE	HATP	1	TOTAL	NODES	8	CORNER	NODES	123	143	142	122	1192	1143.	1142	1122
ELEH#.	44	ORDERONE	HAT#	1	TOTAL	NODES	8	CORNER	NODES	143	163	162	142	1143	1163	1162	1142
ELEN#.	43	OPOSPONE	HATP	1	TOTAL	NUDES		CONNER	NUUED	103	103	104	165	1163	1103	1168	1108
ELEH#.	47	OHDERONE	HAT#	i	TOTAL	NODES	Ă	CORNER	NODES	22	42	41	21	1022	1022	1041	1021
ELEH#	48	ORDERONE	HATE	ī	TOTAL	NODES	ā	CORNER	NODES	42	62	61	41	1842	1062	1061	1841
ELEH#,	49	ORDERONE	HATE	Ĩ	TOTAL	NODES	8	CORNER	NODES	62	62	61	61	1842	1888	1001	1061
ELEN#.	50	ORDERONE	HAT#	1	TOTAL	NODES	ő	CORNER	NODES	88	102	101	61	1082	1102	1101	1051
ELEH#,	51	ORDERONE	HAT	1	TOTAL	NODES	Ö	CORNER	NODES	102	122	151	101	1102	1122	1121	1181
ELEN# _a Bižna.	78 41	OPDEPONE	HATE	1	TOTAL	NODES	8	POPUPP	NODER	144	144	343	141	1144	1146	1141	1141
ELEH#.	54	ORDERDNE	HAT#	i	TOTAL	NODES	- 5	CORNER	NODES	162	182	141	161	1162	1182	1161	1161
ELEH#.	55	ORDERONE	HAT#	Ĩ	TOTAL	NODES	8	CORNER	NODES	51	71	70	50	1051	1071	1070	1050
ELEH#,	56	ORDERDNE	НАТИ	1	TOTAL	NODES		CORNER	NODES	71		98	70	1871	1001	1898	1070
	37	ORDERONE	HĂTP	1	TOTAL	NODES		CONNER	NODES	. 91	111	110	98	1091		1110	1898
ELEND, Elend.	39	ORDENUNZ Orderonz	MATA	1	TOTAL	NODES	- 0 A	CORNER	NODER	111		150	110		1131	1110	1110
ELEN#	60	ORDERONE	HAT#	. i	TOTAL	NODES	- 5	CORNER	NODES	151	171	178	150	1151	1171	1178	1158
ELEH#.	61	ORDERONE	HATE	Ī	TOTAL	NODES	ő	CORNER	NODES	171	191	198	170	iiii	1191	1190	1178
ELEH#,	62	ORDERONE	HAT#	1	TOTAL	NODES	8	CORNER	NODES	50	78	69	49	1050	1670	1869	1849
ELEH#.	63	ORDERONE	HATØ	1	TOTAL	NODES	ğ	CORNER	NODES	70	98	89	69	1070	1090	1889	1869
ELEND.	64 4.#	OPOEDONE	HATE	1	TOTAL	NODER		CONNER	NGDES	- 98	118	184	69	1090	1118	1189	1009
ELEN#.	600	ORDERUNE Orderune	HATH	1	TOTAL	NODES	8	CORNER	NUDER	110	150	149	124	1110	1130	1140 1140	1104
ELEH#	67	ORDERONE	HATA	ì	TOTAL	NODES	ā	CORNER	NODES	158	174	169	144	1158	1178	iiii	1149
ELEH#,	68	ORDERDNE	HATS	Ĩ	TOTAL	NODES	ő	CORNER	NODES	170	198	119	169	1170	1190	1111	1169
ELEH#.	69	ORDERONE	HATS	Į	TOTAL	NDDES	8	CORNER	NODES	49	69	68	48	1049	1869	1068	1045
ELEH#	70	ORDERONE	HAT	1	TOTAL	NODES	ļ	CORNER	NODES	69	89	68	68	1869	1869	1888	1868
ELEN#.	71	ORDENUN <b>ë</b> Groenur	NAT#	-	TUTAL		р ж		NUUEB	10V	109	100	68	1009	1100	1100	1000
ELEN#-	13	ORDERONE	HATH	1	TOTAL	NODES	8	CORNER	NODES	120	149	144	124	1190	1140	1144	1100 112A
ELEN#	74	ORDERONE	HATE	ī	TOTAL	NODES		CORNER	NODES	149	164	165	146	1149	1169	1166	1144
				Ţ						• • •	• • •		• • •	••••	1		

I.120

 $\lambda_{\rm eff}$ 

J

ELEN#.	75	ORDERONE	HAT#	1	TOTAL	NODES	5	CORNER	NODES	169	169 -	188	168	1169	1189	1188	1168
ELEM#.	76	ORDERONE	HATE	ī	TOTAL	NODES	Ē	CORNER	NODES	48	68	67	47	1046	1068	1067	1047
FIENS.	77.	ORDERONE	MATE	ī	TOTAL	NODES	ā	CORNER	NODES	- 68	88	- A7		1068	1088	1087	1967
TI FNA	78	ARREPONE	MATE	:	TOTAL	NOOFS	Ā	CARNER	NODER	AR .	104	187	ÂŢ	1848	1108	4107	1047
FI ENA		APACAANE	MATE		TOTAL	NADER	Ă	POBNED	NODES	168	198	1.37	189	1184			4404
ELECTER .		AUDERONE	MATE	- 2	TOTAL	NOOFE	Ĭ	CORNER	10050	130	146		139			1961	1101
CLCH#	-00	ORDERONE	1181F	1	TOTAL	NODES		CORNER	NODES	160	140	141		1160		1141	1151
CLCH#	01		- 1785P		TUTAL	NADES	-	CURNER	NODER	140	100	101		1140	1100	1197	1147
CLENT	00	ORDERUNE	11A   P	1	TOTAL	NOOF	-	CURNER	NUUCO	100	100	101	101.	1100	1100	1101	1101
CLCH#		UNDERUNE	TATE		TUTAL	NODED		GUNNEN	NUUEO	64	10	37.	17	1020	1040	1034	1014
CLCH##	04	UNDERONE	TATE		TUTAL	NULS		CURNER	NUUES	- 40	00	. 37	37	1040	1000	1024	1034
ELEN#.	02	ORDENONE	77817	- 1.	TUTAL	NUUCO	_ <u>a</u>	CUNNEH	NUDES	90	00	17	- 77	1090	1000	1014	1037
CLEN4.	. 86	ORDERONE	MATE	1	TOTAL	NODES	0	CORNER	NUUES	80	100	99	. 17	1090	1100	1099	1014
ELEN#,	67	ORDERONE	. MAT#	1	TOTAL	NODES	. 6	CORNER	NODES	100	120	117 .		1100	1120	1117	1099
ELEN#.	88	ORDERONE	MATE	1	TOTAL	NODES		CORNER	NODES	120	140	124:	117	1120	1140	1117	1119
ELEH#.	89	ORDERDNE	MAT#	1	TOTAL	NODES	ģ	CORNER	NODES	140	160	137	139	1140	1160	\$139	1139
ELEN#.	90	ORDERONE	MATP	1	TOTAL	NODES	. 6	CORNER	NODES	168	100	179	159	1160	1160	1179	1159
ELEN#.	91	ORDERONE	HATP	1	TOTAL	NODES		CORNER	NODES	180	209	197	179	1180	1200	1199	1179
ELEH#.	56	ORDERONE	MATP	1	TOTAL	NODES	8	CORNER	NODES	19	39	30	18	1017	1634	1030	1010
ELEN#.	93	ORDERONE	MAT#	1	TOTAL	NODES	. 8	CORNER	NODES	19	59	58	38	1039	1059	1058	1030
ELEN#.	94	ORDERONE	HATP	- <b>1</b>	TOTAL	NODEB	8	CORNER	NODES	59	79	78	58	1039	1079	1078	1858
ELEN#.	. 95	ORDERDNE	HATP	- 1	TOTAL	NODES	6	CORNER	NODES	79		- 98	78	1079	1099	1098	1078
ELEN#.	96-	ORDERONE	HAT#	- 1	TOTAL	NODES		CORNER	NODES	99	- 119 -	- 118-	<b>78</b>	1664	1119	1118-	1078
ELEH#.	97	ORDERONE	MAT#	1	TOTAL	NODES	8	CORNER	NODES	119	139	138	118	1119	1139	1138	1118
ELEN#.	98-	ORDERONE	HAT#	1	TOTAL	NODES	8	CORNER	NODES	139	159	158	138	1139	1159	1158	1138
ELEN#.	99	ORDERONE	HATP	1	TOTAL	NODES	8	CORNER	NODES	159	179	178	158	1139	1179	1178	1150
ELEN#.	100	ORDEHONE	HATH	Ì	TOTAL	NODES	8	CORNER	NODES	179	199	198	178	1179	1199	1198	1178
ELEN#.	101	ORDERONE	MATE	Ĩ	TOTAL	NODES	8	CORNER	NODES	18	38	37	17	1018	1030	1037	1017
ELEN#.	102	ORDERONE	HATE	Ī	TOTAL	NODES	8	CORNER	NODES	38	58	Š7	37	1018	1050	1037	1037
ELEN#.	103	ORDERONE	MAT#	ī	TOTAL	NOCES	8	CORNER	NODES	58	78	77	57	1058	1078	1077	1037
FI FHE.	194	ORDERONE	HAT#	i	TOTAL	NODES	- 8	CORNER	HODES	78	98	97	11	1078	1898	1097	1077
FI FHS.	185	ORDERONE	MATE	i	TOTAL	NODES	ā	CORNER	NODES	98	118	117	97	1098	1118	1117	1097
FIFH#	186	ORDERONE	MATE	i	TOTAL	NODES	Ā	CORNER	NODES	118	138 -	117	117	1118	1138	1137	1117
FL FH#	187	ORDERONE	MATE	i	TOTAL	NODES	Ā	CORNER	NODES	138	158	157	137	1138	1158	1157	1137
EL EMA	100	OBREDONE	MATE	- 1	TOTAL	NODES	Ā	CORNER	NODES	158	178	177	157	1158	1178	1177	1157
ELCI+	160	ABREDANE	MATE	- 1	TOTAL	NOOFS	Ă	CODNER	NODES	178	198	197	177	1178	1108	1197	1177
	1107	APPERANE	MATH	- 1	70741	NODES	Ă	CORNER	NODES		17	- 36	16	1617	1037	1014	1016
SI EMA		APPERANE	MATE	- 1	TOTAL	NODES	Ă	COUNER	NODER		87	- 56	34	1017	1057	1034	1036
BIEMA .		OPACONE			TOTAL	NODES	- Ă	COBNER	NODES		i.	76	56	1037	1877	1076	1056
ELCOP.	416	OPPERONE	*185# MAT#		TOTAL	NOOFS	Ă	CORNER	NODES	77	97	- 04	74	1077	1007	1004	1076
ELCH#	113	ORDERONE	71617		TOTAL	NADES		COANER						10//	4144	4444	4684
CLCH#	117	ORDERONE			TUTAL	NODES	-	CURNER	NABER	.14			114	1071			
CLCH#.	413			1	TOTAL	NODER		GUNNER	NODES	111		1 30			****	4484	
CLCN#.	110	UNDERONE	TATE.	1	TUIAL			CURNER	NUVCO	131	121	130	130	1131	1131	1110	4484
CLEMP.	111	ONDERONE	TATE		TUTAL	NUDEa	- 2	CONNER	NUUCO	121		110	120	.1121.			1170
ELENP.	110	ORDERONE	MATE		TOTAL	NODES	. 9	CONNER	NONE 2		191	140	- 179-		1141	1140	1110
ELEN#.	117	ONDERONE	HAT	1	TOTAL	NODES	ğ	CONNER	RONC S	12	30	33	12	1010	1630	1033	1012
ELEN#.	150	UNDERONE	TAT	ļ	TOTAL	NODES	đ	CORNER	NODES	- 39	50	22	32	1030	1030	1022	1033
ELEH#.	121	ORDERONE	HAT	1	TOTAL	<b>NODE</b>	5	CONNER	NODES	29	76	75	. 22	1020	1010	1013	1023
ELEN#.	155	ORDERONE	MATE	1	TOTAL	NODES	ģ	CORNER	NODES	7.	75	72	12	1076	1076	1095	1012
ELEN#.	152	URDERONE	MAT	ļ	TOTAL	NODES	Ģ	CORNER	NODES	96	110	112	42	1075	1116	1112	1642
ELEM#.	124	URDERONE	HAT	1	TOTAL	NODE	ģ	CORNER	NODES	110	130	122	112	1110	1136	1135	1112
ELEN#.	152	ORDERONE	MAT#	1	TOTAL	NODES		CORNER	NODES	136	156	155	135	1136	1136	1122	1132
ELEN#.	126	ORDERONE	MAT# -	. 1	TOTAL	NODES	8	CORNER	NODES	156	176	175	155	1156	1176	1175	1122

· · · 中国王 [1-

. •

ELEMA. 127	OBOERONE	HATH	1	TOTAL	NODEE	à	CÓRNRÉ	NODES	174	191	195	175	1176	1164	1195	1175
ELEUX 154		4194	- 2	*0*11	NODES	- Ā	RABUED	NODEE			84		iiii ii	IATE	1014	1014
EFELA ⁶ 150	UNUERUNE			TUTAL	NOVES		CURREN	NOULO	12			17				1217
ELEMP. 384	ONDENONE	HATE	- 1	TOTAL	NUUES		CONNER	NUDES	32	55	24	- 34	1075	1033	1034	1034
ELEH#, 130	ORDERONE	натя	1	TOTAL	NDDES	- 5	CORNER	NDDEB	55	75	74	54	1855	1975	1874	1854
ELEH#, 131	Orderone	HAT#	1	TOTAL	NODES		CORNER	HODES	75	•5	•4	. 74	1875	1695	1094	1074
ELEN#, 132	ORDERONE	HATE	÷.	TOTAL	NODES	8	CORNER	NÓDZĚ	65	115	. 114	64	1865	1115	- 4114 -	1094
FIFMA 133	<b>ABAFPANF</b>	MATE	ī	TOTAL	NODES	Ă	CORNER	NODER		ită	184	114	1115	1115	1114	i i i A
	AUNTRANE	11 1 2 2	1		NOOTE			LIGINER								
ELEND. 134	UNUERUNE			TUTAL	HUDES		CORNER	NUUE9	149	152	. 124	124	1135	1122	1124	1127
ELEH#, 133	UNDENDNE	HAT	1	TUTAL	NUDES		CONNEN	NUUCO	133	112	114	194	1155	11/2	1179	1124
ELEH#, 136	orderone	HAT#	1	TOTAL	NODES	•	CORNEN	NODES	175	195	. 194 -	. 174	1175	1195	1194	1174
ELEH#, 137	ORDERONE	HATS	1	TOTAL	NODES	۰.	CORNEN	HODES	14	. 34	33	S 13	1014	1034	1833	1013
ELEND. 13A	ORDERONE	HATØ	Í	TOTAL	NODES		CORNER	NODES	54	54.	<u>88</u>	ŚŚ	1034	1854	1053	1011
FIFUE: 110	ORDENAUE	MATE	- ī	TOTAL	NODER	Ā	COBNER	NODER	5 BA	· •	71	61	1064	INTA	1073	1051
	ADDEDAUE	MAYM	- 7	40411	NOOZE	Ā	COULTR	NOOFE		6.4			1074	1004	1441	iait
EFEND [®] 940	ODDZDAUZ			TUTAL			LUNNER	NONED	14				* 10/4	1074	1043	1013
BLEHR, 141	UNUERDHE	HATP		TOTAL	NODES	. 6	CUNNEN	NUDES		114	113		1094	1114	1113	1043
ELEK#, 142	ONDERONE	HATS	1	TOTAL	NODES	- 6	CORNER	NOUES	114	-134	111	113	1114	1134	1133	1113
ELEH#, 143	Orderone	HATØ	1	TOTAL	NODES	- 6	CORNER	NODES	134	- 154 -	153	133	1134	1154	1153	1133
ELEND. 144	ORDERONE	HATO	1	YOTAL	NODES	8	CORNER	NODES	154	174	173	153	1154	1174	1173	1153
ELEH# 145	ORDERONE	HATA	Ĩ	TOTAL	NODEA		CONNER	NODES	174	194.	193	173	1174	1194	1103	1173
FIFHA 146	OPOFDANE	MATA	- 7	TOTAL	NOOFE	Ā	COBUER	NUDES		11	1.5	115	init.	1011	1412	1013
		***		10185	NODER	17	SURIES .	NODES				12		4463	4053	1012
ELEND, 147	URUGNUNG	MAIO	÷	TUTAL	NUDEO	. Š	LOKNEN	NUUSO		23	26	24	1033	1933	1634	1036
ELEHS, 140	OKDERONE	HATP	1	TOTAL	NODES	- 8	CORNER	NODES	22	73	18	52	1853	1073	1072	1052
ELEH#, 149	Orderone	HAT#	1	TOTAL	NODES	6	CORNER	NGDES	75	93	92	72	1073 -	1093	1945	1972
ELEH#, 150	Orderone	HAT#	1	TOTAL	NODES	- 8	CORNER	NODES	93	. 113	112	92	1893	1113	1112	1892
ELEHØ, 151	ORDERONE	HATB	- Í	TOTAL	NODES	ő	CORNER	HODES	113	133	112	113	Ĩ.	1133	1132	1112
ELENA, 152	OPDERANE	HATA	ī	TOTAL	NODES	Ā	CORNER	NODES	133	151	182	115	1133	1161	1142	
	ADASDAUS	HATA	- 1	70741	NODE	Ā	PÁBLED	NODRE		155	111	125				1123
				TUTAL			LUKNEN	NUUSO	133	113	1/5	194	1133			1136
ELEN#, 134	ONDERONE	MATE	1	TOTAL	NUUE		CURNER	NODED	173	142	145	174	1173	1143	1145	1172
ELEH#, 155	ORDERONE	HATS	1	TOTAL	NODES	- Ş.	CORNER	NDDES	13	25	- 31	11	1018	1032	1011	1011
ELEH#, 156	ORDERONE	HATØ	1	TOTAL	NODES		CORNER	NODES	32	52	51	31	1632	1852	1051	1831
ELEH#, 157	ORDERONE	HATS	1	TOTAL	NODES	8	CORNER	NODES	52	72	71	- 51	1052	1072	1071	1051
ELEH#. 158	ORDERONE	HATA	Ē	TOTAL	NODEL	Ā	COBNER	NODES	72	92	91	Ť	1472	1092	1401	1071
FIFUE ISG	OPOSDONS	MATE	1	TOTAL	NODES	Ā	COBUER	NODEE	69				1003	1115	1771	1001
	ONDERGINE	111 T 4	1	TOTAL.	NOOFE		SURNER	NODE	· •	4 4 5						
	DADEKONE -			TUTAL	NUUSe		CONNER	NUUSO	116	134	1 2 3		1115	1198		
CLENN, 101	OKUEHONE	HATS	1	TOTAL	NODEA		CORNER	NODES	138	122	151	131	1135	1125	1121	1131
ELEH#, 162	orderone	нати	1	TOTAL	NGDES	6	Corner	NODES	125	- 172 -	171	151	1152	1172	1171	1151
ELEN# <u>, 163</u> -	GROËRONE	HAT#	1	TOTAL	NODES	ð	CORNER	NODES	172 -	fa 192 - e	· 191 ·	- + <b>* 171</b> -	\$172	·1192 /·	* 1191 +	1171
ELEN#, 164	ORDERONE	HATS	Ť.	TOTAL	NODES	8	CORNER	NODES	. ŽŧĪ	212	272	271	1111	1262	1272	1271
ELEND, 165	DRDERONE	HATS	1	TOTAL	NODES	8	COANER	NODES	282	283	273	272	1242	1283	1273	1272
ELENA. 144	ORDERONE	HATA	ī	TOTAL	NODER	ě	CORNER	NODER	263	244	274	273	1203	1284	1274	1273
FIEMA 14.4	OPARDALE	MATE	- 1	TOTAL	NODER	Ā	COALER	NODER	344	544		374	1944	1345	1978	1974
	ANDERUNE ANDERUNE	781P	-	10186	179959 1101120		ACRIMENT.	NODES		***			4444	1344	4994	4378
ELEND, 100	UNDENONE	na i e	1	TUTAL	NUUEB		CUNNER	NUUÇO	203	409	615	<b>613</b>	1493	1290	15/2	16/3
EFENA ⁹ 198	UNDEHONE	MATU	Į.	TUTAL	NUULO	ģ	CONNER	NOULO	. 200	807		SI .	1500	1401	1211	1270
ELEH#, 170	ORDERONE	HAT#	1	TOTAL	NODE8	ð	CORNER	NODES	287	892	274	277	1257	1599	1876	1277
ELEH#, 171	ORDERONE	HAT#	1	TOTAL	NODES	ā	CORNER	NODES	266	289	279	278	1200	1598	1279	1276
ELEH#. 172	ORDERONE	нати	1	TOTAL	NODES	5	CORNER	NODES	249	290	200	279	1249	1290	1268	1219
ELEHS. 17%	ORDERONE	HATP	ī	TOTAL	NODER	Ä	CORNER	NODER	271	272	262	244	1271	1272	1262	1211
FLEME 17A	NPD# DAHE	MATE	- 1	70741	NUDEE	Ā	CODULE	NOTE		571		31.2	1372	1972	6944	1949
		11.4 T #	-	TOTAL				NUMBER		57 <i>7</i>			****			4505
FFE64 113	ANDERUNE	1783W		14145			LUKNEN	MUVEO	613	6/4	494		1619	1614	1 694	1693
ELEH#, 176	UNDERONE	HAT	1	TOTAL	NUDE	ē	CORNER	NODES	274	375	265	864	1274	1512	1592	1204
ELEH#, 177	ORDERONE	MATP	1	TOTAL	NODES	- <b>Ş</b>	CORNER	HODES	275	276	266	265	\$275	1276	1266	1262
ELEH#, 178	ORDERONE	HAT#	1	TOTAL	NODES	8	CORNER	NODES	276	277	267	266	1276	\$277	1267	1266
ELEN#, 179	ORDERONE	NAT#	Ĩ	TOTAL	NDDES	8	CORNER	NODES	277	278	244	267	1277	1271	1268	1267

 $\chi_{\rm max}$ 

E1 8 14 1		ABBENANE				NADER											
CL CTIN .	100	UNDERDNE	<b></b>	1	TUTAL	HOUED	. 6	CORNER	NUDEO	\$10	414	207	200	1210	1279	1267	1200
CLCNP.	101	ORDERONE	MAT#	- 1	TOTAL	02COM	0	CORNER	NODĘS	279	280	870	267	1279	1260	1270	1269
ELEM#,	195	ORDERONE	MAT#	- 1	TOTAL	NODES	8	CORNER	NODES	261	262	252	251	1261	1262	1232	1951
ELEN#	103	ORDERONE	HATS	Ē	TOTAL	NODES	8	CORNER	NODES	PAP	PAY	293	232	1242	1943	4.281	1989
EL EH#.	184	ORDERONE	MATE	i	TOTAL	NODER	- Ā	PODNED	NODER	94.9		984				1678	1696
FI TME		ARAFRANE		- 1	70741	NDDEB		CURITER	Nente	203	604	224	. 433	1605	1604	1634	1622
	103	UNULNUNL			TUTAL	HUUES	0	CORNER	10050	624	203	822	234	1224	1263	1822	1234
CLEN#.	100	ORDERONE	TAT	1	TUTAL	NODES		CORNER	NODES	265	266	256	255	15921	1266 -	1256	1235
ELEM#,	187	ORDERONE	MATE	- 1	TOTAL	NODES	8	CORNER	NODZS	266	591	237	256	1266	1267	1257	1256
ELEN#.	188	ORDERONE	HAT#	- Í	TOTAL	NODES	8	CORNER	NODES	267	258	273	297	1867	1248	1244	1087
ELEN#.	189	ORDERONE	MATE	Ē	TOTAL	NODEA	- Ř	CORNER	NODER	248	240		984		1340	1988	4004
EL EMA	10.0	ABAERANE	MATE	- 1	TOTAL	MODEE		0000000	NODES		607	237	134	1600	1607	1624	1630
		ORDERUNE			TUTAL	HOULD		CORNER	NUULO	£07 .	#10	690	834	1504	1610	1600	1524
CLERK	141	UNDERGNE	TATE	1	TOTAL	NODE2		CORNER	NODES	Z21	225 -	242	291	1521	1425	1242	1241
ELEND,	172	ORDERONE	МАТ#	1	TOTAL	NODES	- <b>P</b>	CORNER	NODES	523	253	243	242	1232	1253	1243	1242
ELEH#	193	ORDERONE	HAT#	1	TOTAL	NODES		CORNER	NODES	233	25A	244	843	1233	1254	1244	1243
ELENA	194	ORDERONE	HATS	Ť	TOTAL	NODES	- À	CORNER	NODES	244	288	9.4	944	1988	1358		
FI EM#	188	ABBERONE	MATE		TOTAL	Nonda	ž	660468	NODES	96.0				1009	1000	88.47	3644
CLCIV.	173				TUTAL	NOUEG	2	CURNER	NUUES	233	620	640	242	1622	1020	1240	3242
CLCH#,	140	UNDERONE	TATE	- 1	TOTAL	HUDES		CORNER	NUDES	620	837	297	240	1620	1521	\$247	1240
ELEN#.	197	ORDERONE	HAT#	- 1	TUTAL	NODES		CORNER	NODEC	257	256	240.	247	1837	1528	1248	1847
ELEM#.	178	ORDERONE	HAT#	1	TOTAL	NODES		CORNER	NODES	258 .	828	247	298	1238	1239	1249	1248
ELEN#.	199	ORDERONE	MAT#	Í	TOTAL	NODES	8	CORNER	NODES	259	269	250	249	1299	1260	1250	1249
FI FHR.	200	ORDERONE	HATE	Ť	TOTAL	NODER	8	CORNER	NODFA	244	242	319	· •	1741	1949	1212	1931
81 8 M 8	201	ARAEBANE	MAYE	- 1	70741	NODES	- X	COSMER	Nonga							1000	1631
CLCH#	EUI	UNDERUNE		. !	TUTAL	NUDES		CORNER	NUUED	292	642	233	263	1848	1643	1622	1C2K
ELCHE.	265	UNDERONE	<b>MAIM</b>	- 1	TOTAL	HOOF2		CORNER	NUDES	243	544	234	E33	1243	1544	1234	1522
ELEN#.	203	Orderone	HAT#	- 1	TOTAL	NODES	. 8	CORNER	NODES	244	245	532	234	1244	1243	1833	1234
ELEM#.	284	ORDERONE	HAT#	1	TOTAL	NODES	8	CORNER	NODES	249	246	536	235	1245	1246	1236	1235
ELEN#.	205	ORDERONE	MATE	-i	TOTAL	NODES	8	CORNER	NODES	246	PAT	237	236	1246	1247	1217	1236
FIENS	204	OPOFRANE	MATE	÷	TOTAL	NODER	- Ă	COBNER	NODER	247					1940	1998	4 3 3 3
	500	OFOFOENE		:		NOOCO		CONNEN	NOOF	641	240	620	- K - I	1241	1640	1230	1631
CLCH#.	207	UNDENDNE		1	TUTAL	NUUES	-	CURNER	NODES	£40	299	63.7	430	1240	1299	1239	1530
ELEMP.	509	ORDERONE	HATE	1	TOTAL	HUDCO	2	CURNER	10020	247	630	240	237	1247	1020	1540	1239
ELEM?.	209	CRDERONE	HAT#	- 1	TOTAL	NODES	0	CORNER	NOOCS	231	523	355	153	1531	1235	1222	1221
ELEN#.	210	ORDERONE	MAT#	1	TOTAL	NODES		CDRNER	NODED	225	233	552	855	1232	1233	1553	5551
FIEHE	211	ORDERONE	HATP	Ĩ	TOTAL	NODES	8	CURNER	NODES	233	234	224	223	1233	1234	1220	1223
EL ENA	919	APATRANE	HATH	- i	TOTAL	NODES	8	CORNER	NODES	234	235	223	224	1234	1234	1225	1220
ELCH#	212	DRUCKUNG		- 1	70741	NODEG	- Ā	COONER	HODES	914	236		228	4928	1314	1774	1000
ELEN#.	512	OKOEHONE	TAL .	1	TUTAL	NODEO		CUNNER OF	NODES		517	897	884	4633	1.20	1000	1662
ELEM#.	214	CRDERONE	MATE	1	TOTAL	10020	g	CURPER	NUUES	230	631	CCI.	ECU	1630	1631	1651	1269
ELEN#	215	ORDERONE	MAT#	1	TOTAL	NODES	9	CORNER	NUCES	165	230	850	221	1531	1230	1220	1227
FI FH#	216	ORDERONE	MATØ	1	TOTAL	NODES	8	CORNER	NODES	238	237	622	828	1236	1239	1555	1228
EL EN #	217	ORDERONE	HATE	Ĩ	TOTAL	NODES	8	CORNER	NODES	239	240	230	552	1239	1240	1230	1229
555148	344	ABASBANS	MATE		TOTAL	NODER	8	CORNER	NODES	221	282	212	211	1281	1222	1212	1211
CTCUS*	610	UNDERDING			10176	NODER		CODNED	NODER	292	221	513		10.00	1997		
ELEN#,	219	UNDERONE	<b>TAT</b> #	I	TUTAL	111120		007725	NAARA	565	398	613	645 64 4	1000	1663	1613	1616
ELEN#.	850	ORDERONE	MAT#	1	TOTAL	6300M	. 0	CORNER	NUVES	- 223	864	C14 .	<b>C13</b>	1552	1824	1214	1512
ELEN#.	155	ORDERONE	натя	1	TOTAL	NODES	8	CORNER	NOOES	224	852	512	214	1224	1252	1213	1814
EL EM#	222	ARDERONE	HATA		TOTAL	NODES	8	CORNER	NODES	225	226	216	215	1225	1556	1216	1215
	555			1	10100	NUDER	Ă	CORNER	NODER	224	221	217	214	1226	1227	1217	1216
ELCHE.	663	UNUERONE	四天主要。	. !	IUIAL					557	224		914	1337	1228	1214	1217
ELEN#.	224	UNDERONE	MATE	- 1	TOTAL	NUULS	ģ	CONNEN	NUDEO	CCI -	660	610	511	4667	1944	1914	
ELEN#	552	ORDERONE	MAT#	1	TOTAL	NODES	ā	CORNER	NODE2	228	227	217	<b>410</b>	1559	1667	1414	1610
ELEN#	556	ORDERONE	HAT#	. 1	TOTAL	NODES	8	CORNER	NODES	554	230	220	219	1554	1530	0551	1514
FIFHE	227	ORDERONE	MATE	Ĭ	TOTAL	NODES		CORNER	HODES	211	515	202	105	1211	1515	1505	1201
21 2 mail	334	ADDEDANE	MATA	÷	10741	NODER	, A	COBNER	NODER			283	202	. 1212	1213	1203 -	1202
CLURN	FCO ·		1103 T.P.		10186	110050		60011GN	NODEE	945	31A	204	344	1311	1214	1204	1203
ELEN#.	829	ONDERONE	PAT	1	TUTAL	NUD25	Q	CONNEN	HUUC3	613 -	614	504 647	603	1613	4644	4404	1988
ELEM#.	520	ORDERONE	MAT#	1	TOTAL	NODES	6	CORNER	NODES	514	212	200	204	1514	1413	1003	1204
ELEN#	231	ORDERONE	MATP	Í	TOTAL	NODES	8	CORNER	NODES	215	216	506	205	1512	1210	1500	1502
DI EM#	212	ORDEDONE	HATE	ē	TOTAL	NODER		CORNER	NODER	216	217	267	286	1216	1217	1207	1206
		ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AND ALL AN	4 · 1 • 1 • • • •	•	1.41.11		-	* - · · · · - · ·									

7

54.0

ELEM#.       233         ELEM#.       236         ELEM#.       236         ELEM#.       236         ELEM#.       237         ELEM#.       236         ELEM#.       236         ELEM#.       237         ELEM#.       236         ELEM#.       243         ELEM#.       243         ELEM#.       243         ELEM#.       244         ELEM#.       243         ELEM#.       243         ELEM#.       243         ELEM#.       244         ELEM#.       245         ELEM#.       245	A CROERO CROERO CROERO CROERO CROERO CROERO CROERO CROERO CROERO CROERO CROERO CROERO CROERO CROERO CROERO CROERO	NE HAT# NE HAT# NE HAT# NE HAT# NE HAT# NE HAT# NE MAT# NE MAT# NE MAT# NE MAT# NE MAT# NE MAT#		AL NODES AL NODES AL NODES AL NODES AL NODES AL NODES AL NODES AL NODES AL NODES AL NODES AL NODES AL NODES	5 CORNE 5 CORNE 5 CORNE 5 CORNE 5 CORNE 5 CORNE 5 CORNE 5 CORNE 5 CORNE 5 CORNE 5 CORNE 5 CORNE 5 CORNE 5 CORNE 5 CORNE	n nodes R nodes R nodes R nodes R nodes R nodes R nodes R nodes R nodes R nodes R nodes R nodes R nodes R nodes R nodes R nodes R nodes		210 220 220 230 240 250 250 250 250 250 250 250 251 251 251 251 251 251 251 251 251 251	208 209 210 210 47 45 49 51 51 211 251 251 251 251 251 251	207 208 209 47 47 48 50 210 201 221 201 221 221 221 221 221 22	$ \begin{array}{c} 1217 \\ 1218 \\ 1219 \\ 1219 \\ 1229 \\ 1229 \\ 1229 \\ 1229 \\ 1229 \\ 1229 \\ 1229 \\ 1229 \\ 1229 \\ 1299 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1009 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1000 \\ 1$	$ \begin{array}{c} 1210 \\ 1210 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1220 \\ 1$	1200       1200         1200       1200         1210       1200         1027       1607         1047       1627         1040       1627         1045       1640         1050       1640         1051       1250         1051       1250         1251       1241         1251       1241         1271       1261		
TOTAL	NUHBER O	F UNKNOW	NS ARE#			NODES	ARE AS	GIVEN B		• <del>* * • • • • •</del>	*****				
2	1002	2982	3	1003	2003	4	1604	2004		5	1085	2005	5 6	1986	2005
7	1007	2007	1009	2999	1004	4004	3889	1009	70		000 <b>7</b>				10
1016	2017	13	1012	201A	19	1019	2019	22	10		2022	21	1921	2023	24
1024	2824	25	1825	2025	26	1826	2026	. ii	ie	17	2027	. 31	1931	2831	22
1035	2032	33	1933	2033	34	1934	2034	35	10	19 1	2035	30	1036	2836	37
1037	2937	38	1035	2036	39	1039	2039	42	10	12	2042	41	1043	2043	44
1844	2044	45	1845	2045	46	1046	2046	47	10	17	2047	41	1044	2048	. 49
1049	2049	28	1050	2838	51	1051	2051	25	10		2052	51	1853	2033	24
1054	2054	35	1855	2033	36	1838	2020	27	10		2097 1614	20	) 1030 I IALK	2010	24
1034	2037	67 67	1247	2045		1048	2012	10	10		2049	7	i tara	2870	
1071	2071	72	1872	2072	73	1973	2073	74	10	4	2074		5 1075	1075	76
1976	2076	ÌÌ	1977	2077	74	1078	2074	19	19	79 1	2079		1945	2002	83
1043	2043	84	1064	2004	65	1885	2005	86	18	36 i	2086		1087	2887	58
1988	2856	89	1989	2889	10	1090.	2090	91	10	1	2841		1892	2092	93
1093	2893	94	1094	2894		1095	2095	96	18		2096		1097	2097	98
1998	2098	99	1899	2099	192	1102	2102	103	11		E103.	184		2109	103
1103	2142	100	1100	2111	107	1112	2107	100	44		2110	10		2114	115
1115	2118	111	1111	2116	117		2117				5115		iiiā -	2119	122
1122	2122	123	iiii	2121	124	1124	2124	125	ii	15	1125		1126	2126	127
1127	2127	126	1128	2126	129	1129	2129	130	- <b>i</b> i	ið i	2130	13	1131	2131	132
1132	2132	133	1133	2133	134	1134	2134	135	11	15	2135	13	1136	2136	137
1137	2137	138	1138	2130	139	1139	2139	142	11	12 1	2142	141	1 1 1 4 3	2143	144
1144	2144	145	1145	2145	146	1146	2146	147	11	17	8147	141	5 1148	2148	149
1149	2149	150	1150	2150	151	1151	2151	125	11		5125	151	1103	\$123	154
1154	2154	155	1155	8155	136	1176	2136	177	. 11	17	2157	150	1150	2120	138
1124	8134 2144	195	1162	2102	163	1163	2103	164	11		5116 9116	101		2107 1170	100
1100	2171	107	1107	#197 2193	100	1100	2192	189	880		519¥	111	5 1170 L 119K	2174	174

				-											
	1176	2176	177	1177	2177	178	1178	2178	179	1179	2179	102	1102	2162	183
	1183	2103	184	1184	2184	185	1185	2185	186	1186	2186	187	1187	2187	188
	1188	2100	189	1189	2189	190	1198	2190	191	1191	8191	192	1172	2192	193
	1193	2193	194	1194	2194	193	1195	2195	196	1196	8196	197	1197	2197	170
	1198 -	8198	199	1197	2199	1201	2201	3201	4201	5201	6201	7201	8501	1565	2055
	3505	4202	25055	6505	2027	9505	1503	205	3503	4203	5203	6203	7293	8203	1294
	2294	3204	4204	5204	6204	7204	8204	203	1205	2205	3205	4205	2502	6203	206
	1586	5586	3206	4206	207	1567	2501	3501	4207	803	1669	8055	1500	209	1209
	2503	510	1210	5510	1511	2511	3211	4211	5211	6211	7211	8211	1212	5125	3212
	4212	2515	5129	7212	8215	1213	5512	3513	4813	2512	6213	7213	8213	1514	2214
	3214	4214	5214	6214	7214	6214	213	1215	2215	2512	4610	5515	6219	<b>512</b>	1216
	5510	3516	4516	217	1217	2511	3512	4217	218	1218	2518	3210	819	1619	2219
	055.	1229	9222	1221	1555	3551	- 4221	1535	1550	7221	1550	1222	2222	2555	5554
	2225	5529	5557	5550	1222	5222	3223	4223	2522	9552	7223	8223	1559	2224	3224
	4254	2224	6224	P224	0229	255	1552	55522	2222	9225	5225	0229	922	1226	5222
	3220	9220	155	1221	2627	1555	1539	220	1550	0555	9220	253	1553	2553	530
	1630	2234	1521	2231	2631	9231	7631	0231	1531	0231	1535	2232	3535	9252	2525
	0232	1232	5650	1233	2033	2635	4233 888	3233	0233	1233	6233	1230	2234	3254	9234
	2634	811	1234	0239	233 7317	1233	2633	3233	5629	7637	5632	237	1220	223D	2520
	9230	63/ 19/1	25241	1241	3531	4944	4941	1630	6230	3230	2343	1627	8624	640 8949	1640
	7343	8949	1941	2241	4541	8341 8341	8241	4941	7341	1545	1944	3246	4645	9646 A 240	0546 8944
	6248	1246	8344	205	1248	2247	3243	A24%	1643 8388	4345	984	1206	3244	1004	2244
	247	1 247	2247	1247	8247	543	1948	924J 924R	1245	240	1240	2203	2240	1250	2250
	1241	2251	1251	4251	9291	6251	7341	8241	1252	2242	1252	4252	5250	6250	7289
	8292	1253	2253	32933	4253	5383	6293	7253	8253	1250	2288	8253	A 2 7 4	8250	6250
	7254	8254	255	1255	2255	3255	4255	5255	6255	256	1256	2236	3255	4858	257
	1257	2257	3257	4257	258	1258	8258	3256	259	1259	2259	265	1260	EEAD	1261
)	2261	3261	4261	5261	1056	7261	8261	1262	2623	3262	4262	5262	6262	7862	5262
	1263	5563	3263	4863	5263	6263	7263	8263	1864	2664	3264	4254	5264	6269	7264
	8264	265	1265	2265	3865	4263	3263	6265	865	1266	2266	3266	1255	267	1267
	252	3267	4267	268	1268	8665	3268	263	1269	2269	270	1270	2270	1271	1755
	3271	4871	5271	6271	1271	0271	1272	2272	3878	4272	3272	6272	7210	8272	1273
	2273	3273	4273	5273	6273	1273	8273	1274	2274	327A	4274	5274	6274	7274	0274
	275	1275	2275	3275	4275	5275	6275	276	1276	2216	3576	4276	877	1511	2512
	3277	4277	278	1519	2270	3278	279	1879	6133	200	1500	6523	1281	1853	3501
	4281	2591	1050	1881	0281	1595	2023	3505	4202	2525	6202	7202	8282	1502	8583
	3283	4263	2592	6283	7283	0283	1594	5594	3284	4254	3204	6264	7200	6284	592
	1285	5592	3592	4283	2592	6263	266	1599	2200	3209	4226	267	1237	2502	3867
	4287	208	1200	5598	3598	289	1594	2289	540	1690	2290				
	*******	********	*******	*********	*******	*******	*******	*******	c########	505050##	*******	*******		*******	******
	DIMEN	SIGNS IN	OTHER 1	ROGRAMS	HAVE TO	BE BET P		HING MAX	INUH VAL	VES					
			TOTAL	NUMBER O	F SURFAC	E NODES	NTSURF)				203				
			MAXIN	JM NUMBER	ASSIGNE	o to sun	FACE NOD	ES(LNPT)	*		250				
			TOTAL	NODES IN	THE SYS	TEN (NTT	) =				1128				
		THE FO	LLOWING	PARAHETE	R8 ARE R	ELATED T	0 8.0			• •					
			TOTAL	NUMBER O	F PUTENT	IAL D.C.	PRESCRI	DED INDP	10]#		41				
			TOTAL	NUMBER O	IF FLUX B IF STREAM	8 8,C.	PRESCRIB	ED (NSTR	en) =		ម ប				
		18 <b>8</b> 80			HETERS A	RE RELAT	FD TO 81	TEENESS	MATRTY						
		106 10	TOTAL	NUMBER O	VNKNOW	N (NPT) =					1961				
	*******	********	*******	*******	*******		*******	*******	********	********	******	********	*******	*******	*****
															• •
										•					

1.54

 $\sim$ 

.

.

I.125

C .

.

. •

1

THE FOLLOWING PARAHETERS ARE ASSOCIATED WITH ELEMENTS	
TOTAL NUMBER OF SURFACE ELEMENTS (NESURF)	247
MAXIHUM NUMBER ABBIGNED TO SURFACE ELEMENT(NSELEM)=	247
TOTAL NUHBER OF ELEMENYS (NELEH) D	782
MAXIMUM NUMBER OF NODES IN ANY ELEMENT (NODMAX) *	6
HAXIHUH NDN-ZERO NODES IN ANY ELEHENTS (NDNZER)	
THE FOLLOWING IS RELATED TO HATERIAL NUMBER ASSIGNED	
HAXIMUM NUNBER ABBIGNED TO MATCHIAL (MATN) #	8

1.1

A.

## APPENDIX 1.7: NEWMAT-OUTPUT

Material number associated with each element. All the elements below 164, 165, 166, 173, 174, 175, 182, 183, 184, 191, 192, 193, 200, 201, 202, 209, 210, 211, 218, 219, 220, 227, 228, 229, 244, 245, 246, and 247, surface elements are associated with the collapsed region and, therefore, are assigned material number 8, which has twice the hydraulic conductivity as that of the Wilcox aquifer.

MATEN	TUR	, NUMI		AS RE	AU.				• •	· ·					_				-
1	1	1001	5	2	1	1002	5	3	1	1003	2	4	1	1004	2	5	1	1005	2
6	1	1006	2	7	1	1007	2	. 8	1	1008	5	9	1	1009	3	10	<b>1</b>	1010	2
11	1	1011	5	12	1	1012	- 5	13	1	1013	5	14	1	1014	8	15	۲.	1015	5
16	1	1016	5	17	Ľ.	1017	- 2	18	1	1010	5	19	1	1019	5	<b>3</b> 0	1	1020	5
21	1	1021	2	55	1	1022	2	23	1	1023	2	24	1	1024	2	25	1	1025	2
26	1	1026	2	27	Ē	1027	2	28	1	1028	2	89	1	1029	2	30	ŝ.	1030	5
31	1	1031	2	32	1	1032	2	33	1	1033	Ż	34	1	1034	8	35 -	Ĩ	1035	8
36	Ĩ	1036	2	37	ī	1037	2	38	Ĭ	1838	2	39	Ē	1039	Ž	40	Ť	1040	2
41	ī	1041	2	42	ī	1042	2	43	Ī	1643	2	44	Ť	1844	ž	45	1	1045	2
46	i	1046	2	47	1	1047	Z	48	Ī	1048	ā	49	Ĩ	1049	ž	50	ī	1050	2
51	•	1051	2	52	i	1052	2	53	Ī	1053	2	54	- 1	1054	2	55	Ē	1055	2
54	:	1054	2	57	i	1057	2	<b>SA</b>	-	1058	2		ī	1050	ž	60	Ē	1068	2
61	ī	1061	2	62	•	1062	2	63	Ē	1063	5	64	Ē	1064	ž	65	Ē	1065	2
66	:	1066	2	67		1047	2	ÅR	-	1068	5	69	ī	1069	2	70	ī	1070	2
7.	•	1071	2	72		1972	5	73	-	1073	5	74	ī	1074	2	75	ī	1075	2
76	ī	1076	2	77	i	1077	2	78	ī	1078	2	79	ī	1079	ž	80	Ē	1846	2
Â	ī	1081		82	i	1082	5	83	-	1083	2	84	- 1	1084	2	45	ī	1085	2
AL	i	1086	2	AY	:	1087	5	88	ł	1086	2	80	i	1049	5	90	Ĩ	1896	-2
91	:	1001	5	92	i	1092	5	63	i	1093	5	94	ī	1094	2	95	i	1095	2
Q.	-	1004	5	97	i	1097	2	9.4	-	1098	5	60	ī	1699	5	100	1	1100	2
101	1	1101	2	102	ŧ	1102	5	101	-	1103	2	100	i	1100	5	105	•	1105	2
104	:	1106	2	107	i	1107	2	104	i	1108	2	100	Ē	(100	2	110	-	1110	2
111	-		2	(12	-	1112	5	112	i	1115	2	444	i	( 1 1 A	2	(18	i	(115	2
116	1	1116	2	417	- 1	1 1 1 7	2	41A		1115	2	110	1		ž	(20		1120	2
121	1	1121	2	122	:	1122	2	127	- 1	1123	2	124	ī	1124	5	125	-	(125	2
126	•	1126	- 5	127	- 1	1127	9	125	:	(128	5	120	- 7	1120	2	130	÷	1130	5
• * •	i	1121	2	132	:	1132	5	122	- 1	1133	3	434	ī	1134	3	135	-	1138	2
1 2 4	â	4426	5	1 7 7	-	1127	- 5	4 2 8		4438	5	1 3 4	- :	1120	2	140	1	1140	2
130	-	4444	- 5	442	÷	1142	- 5	122	:	4 4 4 3	2	4 <b>4</b> 4	- :	1 1 <u>4</u> 4	- 5	+ 4 K	- :	1146	5
6 / A	i	1446	5	4 /1 9	:	4445	- 44 - 3	1 4 8	:	4 4 <u>A</u> A	5	1.0	- 7	4440	2	150	1	1180	2
161	-	1140	2	142	-	4452	- 5	150	:	1151	5	4 5 4		11RA		169	i	1155	2
***	-	4466	- 9	144	•	1157	- 5	184	-	4458	2	120	:	1 1 R G		160	:	1160	2
144		1120	2	142	4	4462	- 5	142	1	1163	2	448		1147 1144		3164	å	116A	Ā
191			<b>د</b>	100	1	7447	6	103	Å.	1165		2444		4476 7704		244K	A A	8186	A
4144 4194	Å	2104 3104		444	9	1174	4	2177	ц Д	8166 8166	2	6143 A114	A	8177 9169		4144-	ŭ,	4477	ź
144	-	1173	2	100	9	2124	Q N	6100 1164	9	817A	0 4	4447		4474 3700		0100		1110	2
2160	ż	TIT	С Л	2107 2468	3	RILA	- 44 - 14	4101		1110	9	2140	Ť	<b>X</b> (LO	Д	100	-	1100	Å
2124 E100/	7	3100	н Л	4100	3	9100	9	2141	-	472	<b>G</b>	6104	بھ ج	144	<b>به</b>	110		7145 111	A
6170	3	31. <u>[</u> 0.		171	1	31/1	- C	61/1	- 3	1/4	1	11/6	- C		•	11/3	0	61/3	<b>U</b>

 $X_{i}$ 

I.128

3173       6       6       7173       6       7173       6       1174       6       1174       6       1174       6       1174       6       1174       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6       1175       6			_	.•																
5174       6       6       175       6       2175       6       2175       6       3175       6       4175       6       5176       6       6176       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7 </td <td>3173</td> <td>. 8</td> <td>4173</td> <td>8</td> <td>5173</td> <td></td> <td>01/5</td> <td>8</td> <td>7173</td> <td>8</td> <td>174</td> <td>. 8</td> <td>1174</td> <td>8</td> <td>8174</td> <td></td> <td>3174</td> <td>80</td> <td>4174</td> <td>8</td>	3173	. 8	4173	8	5173		01/5	8	7173	8	174	. 8	1174	8	8174		3174	80	4174	8
7175       8       177       2       2177       3       3177       4       4175       5       5176       6       6176       7       1176       2       1177       2       2177       3       3177       4       4177       5       5177       6       1176       2       2176       3       3176       4       4177       5       5177       6       1176       2       2176       3       3176       4       4177       5       2160       3       1161       1       1161       2       162       6       1162       6       1162       6       1163       6       164       6       164       6       163       6       1163       6       163       6       163       6       163       6       163       6       163       6       163       6       163       6       163       6       163       6       163       6       163       6       163       163       163       163       163       163       163       163       163       163       163       163       163       163       163       163       163       163       163       163       163       163<	5174	8	6174	8	7174		175	0	1175	8	2175	8	3175	8	4175	8	5175	8	6175	
1177       2       2       2       3       3       177       4       4177       5       5       1       1176       2       2       177       3       3177       4       4177       5       5       177       1       1176       2       2179       3       3177       4       4179       1       1160       2       1260       3       161       1       163       2       162       6       1182       8       163       6       1183       8       164       6       164       6       164       6       164       6       164       6       164       6       164       6       164       6       164       6       164       6       164       6       164       6       164       6       164       6       164       6       164       1       167       2       167       3       167       1       167       2       167       3       167       1       167       2       167       3       167       1       167       2       167       3       167       1       167       2       167       3       167       1       167       2	7175	8	176	1	1176	S	2176	3	3176	4	4176	5	5176	6	6176	7	7176	8	177	1
1179       2       2779       3       3779       4       100       1       1100       2       100       3       101       1       101       2       102       6       103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       1103       6       11033       6       1103       6<	1177	Ş	2177	3	3177	4	4177	- 5	5177	. 6	\$78	1	1178	Ż	8178	3	3178	4	179	1
2102       0       3102       0       4103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       1103       0       0       1103       0       1103       0       0       1103       0       0       1103       0       0       0       1103       0       0       0       1103       0       0       0       1103       0       0       0       1103       0       0       0       1103       0       0       0       1103       0       0       0       1103       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0	1179	S	2179	3	3179	4	160	1	1180	S	5190	3	181	1	1101	2	105	. 8	1108	
4133       0       5133       0       6104       0       5164       6       4164       6       5164       6       4165       5       6       6       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7       7 <td>5195</td> <td></td> <td>3195</td> <td>8</td> <td>4182</td> <td></td> <td>5182</td> <td></td> <td>6182</td> <td>8</td> <td>2912</td> <td>8</td> <td>103</td> <td>8</td> <td>1183</td> <td>18</td> <td><b>E103</b></td> <td>. 8</td> <td>3183</td> <td>8</td>	5195		3195	8	4182		5182		6182	8	2912	8	103	8	1183	18	<b>E103</b>	. 8	3183	8
0184       0       7184       8       185       1       1185       2       2185       3       3185       4       4185       5       5185       6       6187       1       1187       2       2187       3       3187       4       4186       5       5185       6       1877       1       1187       2       2187       3       3187       4       4185       5       1187       2       2187       3       3187       4       4187       8       1197       8       1192       8       1192       8       1192       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193       8       1193 <t< td=""><td>4183</td><td></td><td>5183</td><td>0</td><td>6183</td><td></td><td>7183</td><td>8</td><td>184</td><td>8</td><td>1184</td><td></td><td>2184</td><td></td><td>3184</td><td>8</td><td>4184</td><td>8</td><td>5184</td><td>8</td></t<>	4183		5183	0	6183		7183	8	184	8	1184		2184		3184	8	4184	8	5184	8
166       1       1186       2       2186       3       3186       4       4186       5       5185       6       187       1       1197       2       2187       3       3187       4         1181       1       1186       2       2186       3       3186       4       189       1       1197       2       2187       3       197       8       197       8       197       8       197       8       197       8       1197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       8       197       1       197       2       197       3       197       1       197       1       197       2       197       3       1	6184		7184	8	185	1	1105	2	5102	_ 3	3185	4	A185	5	5185	6	6165	7	7185	8
186       1       1187       2       2189       3       190       1       1190       2       191       8         1191       6       2191       6       3191       6       191       6       191       6       191       6       191       6       192       6       192       6       192       6       192       6       192       6       192       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       194       1       194       2       2194       3       194       4       197       8       197       8       197       3       197       4       193       5       5193       6       196       1       196       2       2196       3       190       1       1197       2       2197       3       197       4       190       1       1196       2       2198       3       190       1       1197       2       2196       3       200       8       200       8       200       8       200       8       200       1       200       2       2	186	1	1186	S	5199	3	3186	4	4166	5	5180	6	187	1	1187	2	2187	- 3	3107	4
1191       6       2191       6       3191       6       6191       6       191       6       192       6       192       6       192       6       192       6       192       6       192       6       192       6       192       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       6       193       1	188	1	1188	2	2188	3	3188	4	189	1	1189	2	2189	3	190	1	1190	5	191	8
3172       8       4172       8       1972       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1170       2       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       8       1973       <	1191		2191	8	3191	. 8	4171	8	5191	Q	6191	8	7191		192	8	1198	8	5145	8
5173       6       6193       6       7173       8       194       1       1194       2       2194       3       3194       4       4194       5       5194       6       6194       7         7194       8       195       1       1197       2       2195       3       3194       4       193       5       1195       2       197       3       197       4       190       1       1196       2       2196       3       197       4       190       1       1196       2       2196       3       197       1       1197       2       2195       3       190       1       1198       2       2196       3       197       1       1197       2       2196       3       2107       3       197       1       197       1       1197       2       197       3       197       1       197       1       1197       2       2107       3       197       1       197       1       1197       2       2103       3       2203       3       2203       3       2203       3       2203       3       2203       3       2203       3       2203	3192	8	4192	8	5192		6192	8	7192	8	193		1193	8	5162		3193	8	4193	8
7194       8       195       1       1195       2       2195       3       3195       4       4195       5       5195       6       196       1       1196       2       2196       3         3196       4       197       1       1197       2       2197       3       3197       4       198       1       1196       2       199       1       1196       2       2196       3       199       1       1196       2       2196       3       199       1       1196       2       2196       3       199       1       1196       2       2196       3       199       1       1196       2       2198       3       199       1       1196       2       2198       3       199       1       1196       2       1197       2       1197       2       1197       2       1197       2       2103       3       200       6       2203       3       3203       4       4203       5       2207       3       2208       3       2208       3       2208       3       2208       3       2208       3       2208       3       2208       3       2208	5193	8	6193		7193	8	194	1	1194	2	2194	- 3	3194	4	4194	5	5194	6	6194	7
3196       4       197       1       1197       2       2197       3       197       4       198       1       1198       2       2196       3       199       1       1199       2         260       8       1200       8       2200       8       1200       8       2201       8       2202       6       2202       6       2202       6       2202       6       2202       6       2202       6       2202       6       2202       6       2202       6       2202       6       2203       3       3203       4       4203       5       5203       6       2207       3       2203       3       3204       4       4204       5       5207       3       2205       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       2207       3       220	7194	8	195	1	1195	5	2195	3	3195	4	4195	5	5195	6	196	1	1196	5	<b>51</b> 96	3
200       8       1200       8       3200       6       4200       6       5200       6       6200       6       700       6       2201       6       3201       8       4201       6       4202       6       5202       8       1202       8       2201       6       3201       8       6201       6       701       6       202       8       1202       8       2202       8       3202       6       1203       1       1203       2       2203       3       3203       4       4203       5       5203       6       6203       1       1207       2       2203       3       3204       4       4204       5       5207       3       206       1       1209       2       2003       3       3204       4       4204       5       5207       3       206       1       1209       2       2007       3       2007       8       5207       3       2008       1       1209       2       2007       3       2007       8       2007       8       2107       3       211       8       1210       8       2207       3       211       1207       2       2007<	3196	4	197	1	1197	5	2197	- 3	3197	4	198	1	1198	5	2198	3	199	1	1199	2
2201       6       5201       6       5201       6       5201       6       7201       6       202       6       1202       6       2202       6       1202       6       2203       3       3203       4       4203       5       5203       6       6       6       6       203       1       1203       2       2203       3       3203       4       4203       5       5203       6       2203       3       3203       4       4203       5       5207       3       206       1       1204       2       2204       3       3204       4       4204       6       203       1       1207       2       2207       3       206       1       1204       2       2204       3       3204       4       4204       6       203       6       203       6       203       6       203       1       1207       2       2207       3       206       1       1205       2       203       1       1205       2       203       1       1205       2       203       1       1205       2       203       1       1205       2       203       1       1203 <t< td=""><td>200</td><td>8</td><td>1500</td><td>8</td><td>5500</td><td>8</td><td>3200</td><td>8</td><td>4200</td><td>8</td><td>2500</td><td>8</td><td>9569</td><td>8</td><td>7200</td><td>5</td><td>201</td><td>8</td><td>1201</td><td>8</td></t<>	200	8	1500	8	5500	8	3200	8	4200	8	2500	8	9569	8	7200	5	201	8	1201	8
4202       6       5202       6       6202       6       7022       6       203       1       1203       2       2203       3       3203       4       4203       5       5203       6         6203       7       7203       8       204       1       1204       2       2204       3       3204       4       4204       5       5264       6       205       1       1205       2       2206       3       2206       4       207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       206       1       1207       2       210       1       1217       1       2217       1       1216	2501	8	3501	8	4201	8	5201	8	9501	8	7201	8	505	8	1505		5505	8	3505	8
6203       7       7203       6       204       1       1204       2       2204       3       3204       4       4204       5       5284       6       203       1       1205       2       206       1       1206       2       207       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       206       1       1207       2       2207       3       207       6       1101       207       6       2101       6       211       6       2217       3       2217       6       2217       1       1213       2       2213       3       3       3       2217       4       2213       5       2217       6       2217       6       2217       6       2217	4202	8	2505	8	6505	6	2031	8	503	1	1503	S	5503	3	2503	·4	4203	· 5	2503	6
2205       3       3205       4       206       1       1206       2       2206       3       3206       4       207       1       1207       2       2207       3       206       1         1208       2       209       8       1209       8       1209       8       1209       8       1209       8       1209       8       1209       8       1210       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       1211       8       12	6203	7	7203	8	204	1	1204	5	2204	3	3204	4	4204	-5	3284	6	203	1	1205	5
1206       2       209       6       1209       6       3209       6       4209       8       5209       6       6209       8       7209       6       210       8         3210       6       3210       6       4210       6       5210       6       7210       6       211       6       2211       6       2211       6       2211       6       2211       6       2211       6       2211       6       2211       6       2211       6       2211       6       2212       3       3212       4       4212       5       5213       6       214       1       1213       2       2213       3       3213       4       4213       5       5213       6       214       1       1214       2       2214       3       3214       4       215       1       1215       2       2215       3       3215       4       216       1       1216       2216       3       2216       3       2216       3       2216       6       2216       6       2217       6       2217       6       2217       6       2211       1       12212       2       2221       3	2502	3	3502	4	506	1	1506	5	5500	3	3500	4	207	1	1501	2	2207	° 3	208	1
1210       6       2210       6       3210       6       4210       6       5210       6       7210       6       211       6       1211       6       1211       6       1211       6       2212       3       3212       6       4211       6       2211       6       2212       3       3212       6       4211       6       2211       8       2121       1       1212       2       2212       3       3212       6       4213       5       5       5       5       6       214       1       1213       2       2215       3       3213       4       4213       5       5213       6       214       1       1217       2       218       8       1215       2       2215       3       3215       4       213       6       2214       3       2214       4       2215       3       3217       6       2217       8       3217       8       4219       8       5219       6       6219       6       7219       8       220       8       7219       8       220       8       7219       8       2201       3       3221       6       2211       1221	1208	2	209	8	1509	8	5503		3508	8	4209	8	2563	8	6209	8	7209	1 <b>B</b>	510.	
3211       8       4211       8       5211       8       6211       8       7211       8       212       1       1212       2       2212       3       3212       4       4813       5       5       5       6       614       1         1214       2       2214       3       3214       4       215       1       1213       2       2215       3       3213       4       4813       5       5213       6       814       1         1214       2       2214       3       3214       4       215       1       1215       2       2215       3       3215       4       4813       5       5214       6       814       1       1216       8       8216       3       6       8216       3       8       1       1217       8       8219       8       4218       6       6219       6       7219       8       820       8       8216       8       8       8       8       8       8       8       8       8       8       1       1221       8       2222       3       3224       4       8       8       8       8       8 <td< td=""><td>1210</td><td>8</td><td>2510</td><td>8</td><td>3210</td><td>8</td><td>4210</td><td>8</td><td>5210</td><td>8</td><td>6210</td><td>8</td><td>7210</td><td>8</td><td>211</td><td>8</td><td>1511</td><td>8</td><td>8811</td><td>8</td></td<>	1210	8	2510	8	3210	8	4210	8	5210	8	6210	8	7210	8	211	8	1511	8	8811	8
5212       6       6212       7       7212       6       213       1       1213       2       2213       3       3213       4       4213       5       5213       5       5       5       5       6       214       1       1213       2       2215       3       3215       4       216       1       1213       2       2215       3       3215       4       216       1       1216       8       2216       3       3215       4       216       1       1216       8       2216       6       3216       6       4216       1       1216       8       2216       6       3217       6       2217       8       3217       8       4216       8       7       7216       8       2217       8       7217       8       2226       6       3226       8       7227       8       2221       3       3223       4       224       1       1224       2       2224       3       3224       4       2225       1       1225       8       2227       8       3227       6       2227       8       3227       6       2227       8       3226       6       2227	3214	8	4211		5211		6211	8	7211	•	212	•	1212	,	2212	R	3012	4	4212	<b>R</b> '
1214       2       214       3       3214       4       215       1       1215       2       2215       3       3215       4       216       1       1216       R       2216       3       3215       4       216       1       1216       R       2216       3       3215       4       216       6       6216       6       6216       6       6216       6       6216       6       6217       6       6217       6       6217       6       6217       6       6217       6       6217       6       6217       6       6217       6       7217       6       220       6       3220       6       4221       5       5221       6       6220       8       7227       6       2217       7       7221       6       2227       6       3227       6       4227       6       5287       6       2227       6       3227       6       4227       6       5287       6       227       6       2287       6       2287       6       2287       6       2287       6       2287       6       2287       6       2287       6       2287       6       2287       6 <td>5212</td> <td>Ă</td> <td>6212</td> <td>ž</td> <td>7212</td> <td>Ă</td> <td>213</td> <td>ĭ</td> <td>1213</td> <td></td> <td>. 2213</td> <td>. i</td> <td>3213</td> <td>ă</td> <td>. 4213 -</td> <td> 🦷</td> <td>9913</td> <td></td> <td>214</td> <td><b>1</b></td>	5212	Ă	6212	ž	7212	Ă	213	ĭ	1213		. 2213	. i	3213	ă	. 4213 -	🦷	9913		214	<b>1</b>
217       1       1217       2       218       6       1218       6       2216       6       3216       6       4216       6       3217       6       6217       6       3217       6       1217       6       1217       6       1217       6       1217       6       1217       6       1217       6       1217       6       1217       6       1217       6       1217       6       1217       6       1217       6       1217       6       1217       6       1217       6       1217       6       1217       6       11121       2       2221       3       3221       4       1227       6       2211       1       1221       2       2221       3       3222       4       4221       5       5221       6       6221       7       7221       8       2221       1       1227       8       2227       3       3224       4       2251       1       1225       2       223       1       1223       2       2227       6       5227       6       5227       6       5227       6       5227       6       5227       6       5228       6       5228 <td< td=""><td>1214</td><td>2</td><td>2214</td><td>ż</td><td>1914</td><td>Ă</td><td>215</td><td>i</td><td>1215</td><td>- 2</td><td>2215</td><td>- 1</td><td>3215</td><td>Å</td><td>216</td><td>- 1</td><td>1216</td><td></td><td>2216</td><td>· i</td></td<>	1214	2	2214	ż	1914	Ă	215	i	1215	- 2	2215	- 1	3215	Å	216	- 1	1216		2216	· i
219       6       1219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3219       6       3211       1       1221       2       2221       3       3221       4       222       1       1222       2       2221       3       3222       4       2221       3       3222       3       3223       4       222       3       3223       4       2221       3       3223       4       4221       5       5227       6       2221       6       2223       3       3223       4       2231       1       1223       2       2231       1       1223       2       2230       1       1230       2       230       1       1230       2       230       1       1230       2       2303       1       1230       2<	217	· ·	1217	Ď	218	Ř	1218	Å	2218	Ā	3218	Ā	021A	Ā	RDIA	Ā	6916	Ä	721Å	Ā
2220       6       3220       6       6220       6       7220       6       2221       1       1221       2       2221       3       3221       6       6221       7       7221       6       222       1       1222       2       2222       3       3222       4       4222       2       2223       3       3223       4       224       1       1224       2       2224       3       3224       4       225       1       1223       2       2223       3       3223       4       224       1       1224       2       2224       3       3224       4       225       1       1225       2       223       1       1223       2       2223       3       3223       4       224       1       1224       2       224       3       3224       4       225       1       1225       8       2227       8       3227       6       6227       6       6228       6       6228       6       6228       6       6228       6       6228       6       7227       6       230       1       1230       2       230       1       1230       2       230       1	219	Ā	1219	Ā	2219	Ă	3210	Ă	4219	Ă	5819	Ă	6219	8	7219	Ă	820	Ă	1220	ă
4221       5       5221       6       6221       7       7221       8       222       1       1222       2       2223       3       3223       4       224       1       1224       2       2224       3       3224       4       2225       3       2223       3       3223       4       224       1       1224       2       2224       3       3224       4       2225       1       1223       2       223       3       3223       4       224       1       1224       2       2224       3       3224       4       2255       1       1225       8       3227       6       4227       6       3227       6       4227       6       5287       6       4227       6       2280       8       2280       8       3228       6       4227       6       2280       6       2287       8       3287       6       4287       6       2287       8       2287       8       3287       6       4287       8       2280       3       3230       1       1230       2       2331       1       1231       2       2331       1       12333       2       2333       1	2220	ă	3220	Ă	4220	Ă	5220	ă	6220	ā	7220	ž	221	Ĩ	1221	2	2221	ž	1852	ā
223       1       1223       2       223       3       3223       4       224       1       1224       2       2224       3       3223       4       224       1       1224       2       2224       3       3224       4       225       3       226       1       1226       2       227       8       1227       8       2227       6       3227       6       4227       6       5227       8       3227       6       4227       6       5227       8       3228       6       4227       6       5227       6       5227       8       3228       6       4227       6       5227       8       228       8       228       8       228       8       228       8       228       8       228       8       228       8       228       8       228       8       228       8       228       8       228       8       228       8       228       8       228       8       228       8       228       8       228       8       228       3       3283       1       1283       230       1       1283       230       1       1283       233       1 </td <td>4224</td> <td>Š</td> <td>5921</td> <td>Ă</td> <td>6221</td> <td>7</td> <td>7221</td> <td>Ă</td> <td>222</td> <td>Ť</td> <td>1222</td> <td>- <u>,</u></td> <td>2222</td> <td>3</td> <td>3222</td> <td>Ā</td> <td>4722</td> <td>ģ</td> <td>9222</td> <td>6</td>	4224	Š	5921	Ă	6221	7	7221	Ă	222	Ť	1222	- <u>,</u>	2222	3	3222	Ā	4722	ģ	9222	6
2225       3       226       1       1226       2       227       8       1227       8       3227       8       4227       6       5287       8       6427       6       5287       8       6427       6       5287       8       6427       6       5287       8       6427       6       5287       8       6427       6       5287       8       6427       6       5287       8       6427       6       5287       8       6427       6       5287       8       6427       6       5287       8       6427       6       5287       8       6427       6       5287       8       64287       8       5287       8       64287       8       5287       8       64287       8       5287       8       64287       8       5287       8       5287       8       5287       8       5287       8       5287       8       5287       8       5287       8       5287       8       5287       3       5287       3       5287       3       5287       3       5287       3       5287       3       5287       3       5287       3       5287       3       5287	223	- 1	1223	ž	2223	ų.	3223	Ă	224	- ī	1224	2	2220	3	3224	A	225	Ē	1225	Ξ.
7227       8       228       8       1228       8       2228       8       3228       8       4220       8       3228       8       4220       8       3228       8       4229       8       2229       8       2229       8       3229       8       4229       8       3229       8       4229       8       3229       8       4229       8       3229       8       4229       8       3229       8       4229       8       3230       1       1230       2       230       1       1230       2       230       1       1230       2       231       1       1230       2       233       3       2       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3	2225	3	226	- 1	1226	ž	227	Ā	1227	ā	7555	Ā	3227	ā	6227	8	5227	ā	6227	ã
1229       8       2229       8       3230       8       4229       8       5229       8       6229       8       7229       8       230       1       1230       2       230       1       1230       2       230       1       1230       2       230       1       1230       2       231       1       1231       2       231       3       3231       4       4231       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3       3	7227	Ā	228	Ā	1228	Ä	8228	Ā	3228	Ā	4220	Ā	5228	Ē	6228	ā	7228	Ē	229	Ā
3230       4       4230       5       5230       6       6230       7       7230       8       231       1       1231       8       2231       3       3231       4       6231       5         5231       6       232       1       1232       8       2232       3       3232       4       233       1       1233       8       2233       3       3233       4       234       1         1234       2       2234       3       235       1       1235       2       235       1       1237       8       236       1       1236       2       235       1       1238       8       237       1       1237       8       236       1       1238       8       243       1       1243       8         239       1       1239       2       240       1       1240       2       241       1       1241       2       2428       1       1243       8       243       1       1243       8         244       6       1244       8       3244       8       4245       8       5244       8       5244       8       5245       6	1229	Ā	2229	Ā	3229	8	A229	Ă	5229	Ē	6229	Ā	7229	Ā	230	Ĩ	1230	Ā	2230	3
5231       6       232       1       1232       2       2322       3       3232       4       233       1       1233       2       2233       3       3233       4       234       1         1234       2       2234       3       235       1       1236       2       237       1       1237       2       236       1       1236       2       235       1       1238       2       235       1       1238       2       235       1       1238       2       235       1       1238       2       235       1       1238       2       235       1       1238       2       235       1       1238       2       235       1       1238       2       235       1       1238       2       235       1       1238       2       235       1       1243       2       244       6       1242       2       243       1       1243       2       244       6       1243       8       1243       8       245       6       1243       8       1243       8       1243       8       1243       8       1243       8       1243       8       1243 <td< td=""><td>3230</td><td>ă</td><td>4230</td><td>Š</td><td>5230</td><td>Ă</td><td>6230</td><td>Ť</td><td>7230</td><td>Ă</td><td>231</td><td>Ĩ</td><td>1231</td><td>· ē</td><td>2231</td><td>. 3</td><td>3831</td><td>1</td><td>6231</td><td>ŝ</td></td<>	3230	ă	4230	Š	5230	Ă	6230	Ť	7230	Ă	231	Ĩ	1231	· ē	2231	. 3	3831	1	6231	ŝ
1234 2 2234 3 235 1 1235 2 236 1 1236 2 237 1 1237 2 238 1 1238 2 239 1 1239 2 240 1 1240 2 241 1 1241 2 242 1 1242 2 243 1 1243 2 244 8 1244 8 2244 8 3244 8 4244 8 5244 8 6244 8 7244 8 243 8 1243 2 2245 8 3245 8 4243 8 3244 8 4244 8 5245 8 246 8 1246 8 245 8 3246 8 2245 8 3246 8 6246 8 7246 8 247 8 1247 8 2247 8 3247 8 4247 8 5247 8	5231	ĥ	232	4	1212	Ř	2232	÷.	3232	Ă	833	i	1233	2	2233	1	3233	- 4	234	Ī
239       1       1239       2       240       1       1240       2       241       1       1241       2       242       1       1242       2       243       1       1243       2         244       6       1244       6       2244       6       1244       6       2243       6       1243       2       243       1       1243       2       244       6       1244       6       243       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245       6       1245 <td>1234</td> <td>2</td> <td>2234</td> <td>3</td> <td>235</td> <td>Ĩ</td> <td>1235</td> <td>ž</td> <td>236</td> <td>1</td> <td>1236</td> <td>Ż</td> <td>237</td> <td>ī</td> <td>1237</td> <td>ē</td> <td>234</td> <td>1</td> <td>1238</td> <td>ź</td>	1234	2	2234	3	235	Ĩ	1235	ž	236	1	1236	Ż	237	ī	1237	ē	234	1	1238	ź
244 8 1244 8 2244 8 3244 8 4244 8 5244 8 6244 8 7244 8 245 8 1245 8 2245 8 3245 8 4245 8 5845 8 6245 8 7245 8 246 8 1246 8 2246 8 3246 8 4246 8 3246 8 6246 8 7246 8 247 8 1247 8 2247 8 3247 8 4247 8 5847 8	210	Ĩ	1239	ő	240		1240	2	241	i	1201	2	202	ī	1242	2	PAR	- 1	1243	ž
2245 8 3245 8 4245 8 5845 8 6245 8 7245 8 246 8 1246 8 2246 8 3246 8 4246 8 3246 8 6246 8 7246 8 247 8 1247 8 2247 8 3247 8 4247 8 5247 8	200	Ř	1200	Ā	2244	Å	3200	Ā	4244	Ā	5244	Ã	6244	ā	7204	8	205		1245	8
4246 8 5246 8 6246 8 7246 8 247 8 1247 8 2247 8 3247 8 4247 8 5247 8	2244	Ă	RDAR	Ă	2244	Ă	5845	Ă	6248	Ă	7245	Ă	244	ā	1246	ă	2244	i Ă	3246	ě
a and a warm of a different of the second of the second of the second of a second of a second of a second of th	4244	Ä	SPAA	A	- A244	.Ă	7244	Ă	247	Ā	1247	Ä	2247	Š	3247	ā	4247	·	5247	
KD47 8 7947 8	· 6047	Ă	7247	Ā	48.7W	-	* 16 * U		<b>**</b> * *	ъ <b>т</b>		н <b>ч</b>	**************************************	<b>⊺</b> .		-	TT BARTE B	15	₩ ⁻ ₩ ⁻ ⁻ ₩	

•

•

Ύ.

## APPENDIX I.8: PROG2-OUTPUT

Horizontal area and volume of the surface elements used for determination of flow after salt dome collapse.

TINE= 14156145 DATE: 21-AUG-79

2 4.12

PLEASE NOTE-NOTE-JEPORTANT-SOOSTME ABOVE INFORMATION ON DIMENSION PROVISION ARE TRUE CHLY IF REPEAT IF The values of NTT, Nodmax, Nonzer, and Now are updated

REAWAILE PROGRAM IS DIMENSIONED FOR

6.12

& BINENSTONED FOR

1

2

18

\$1

12

11

14 13

16

17

18

19

22

21

22

6.12

A WHILE THE PROGRAM IS DIMENSIONED FOR

& WHILE THE PROGRAM IS DIMENSIONED FOR

8.12

THESE BATA ARE PRINTED FOR INFORMATION OF USER TO HODIFY DIMENSIONS IF REQUIRED

SECONDLY IF DIMENSIONS ARE NOT ADEQUATE THE PROCEAN TO STOPPED

COOPDINATES READ AT A TIME ARE.

MATTHUM & OF HODES IN ELEM. ARE.

NE 1 WH 8 MOD 4 21 20 3 1004 1021 5828 1083 Estimation of Gaussian integration has been done for elena Xijcon for Element 1

MAYTMUH NON-ZERO NODES IN ELEM.ARE.

MATINUM SINK OR BOURCE IN & ELEM. ARE

Collumitie A. ANA349m.	A THIRDWALLOW HAN DECH DONE LAN PERIA	•
NE 1404 NN 8 NOD 185	1 1#72 1#71 1#34 2#33 2#72 2#71 2034	
NE 5 NN 8 NDD 78	2 87 88 76 1872 6889 1888 1871	
ESTIMATION OF GAUSSIA	INTEGRATION HAS BEEN DONE FOR ELEMS	5
NE SHAS NN & NOD TET	1884 1885 1871 2872 2884 2888 2071	5
NE & WN & NON 81	184 183 88 1889 1186 1185 1888	
ESTEMATION OF CAUSSIA	I INTERPATION MAS REEN DONE FOR ELENF	6
NE 1846 NN 8 NOD 188	8885 2915 2815 7885 2889 2186 2183 2888	
NE 7 MN 6 NOD 18	123 122 185 1186 1123 1122 1185	
ESTIMATION OF PAURSIA	I INTERRATION HAS SEEN DONE FOR ELEMP	<b>y</b> '
NE 1807 NH & NOD 114	51123 1122 1145 2184 2123 2122 2145	
NE B.NN & NOD	20 19 2 1823 1824 1819 1982	1 - 1
ESTIMATION OF BAUSSIA	INTERPATION HAS BEEN DONE FOR ELEMA	

NE 1807 NN NE 8 NN NOD 1144 ME 8 MM 8 NOD 3 20 19 6 1803 1820 1810 1810 ESTIMATION OF BAUBSIAN INTERPATION MAS BEEN DOME FOR ELEM ME 1968 MM 8 NOD 1883 1828 1819 1882 2833 2820 2819 2842 ME 9 MM 8 NOD 28 37 36 19 1820 1837 1836 1919 ESTIMATION OF GAUSSIAN INTERPATION MAS BEEN DOME FOR ELEM ME 190 MM 8 NOD 1820 1937 1836 1919 2820 2837 2836 281 ME 190 MM 8 NOD 187 34 53 36 1937 1836 1833 1836 ESTIMATION OF GAUSSIAN INTERPATION MAS BEEN DOME FOR ELEM ME 190 MM 8 NOD 17 34 53 36 1937 1836 1831 1836 ESTIMATION OF GAUSSIAN INTERPATION MAS BEEN DOME FOR ELEM ME 4800 MM 8 NOD 187 1896 1931 1836 2837 2856 2853 2836 NOD ELENS ESTINATION OF GAUSSIAN INTERNATION AS BEEN OUNE FOR ELECT NE 1818 NN & NOD 1873 1894 1833 1836 2837 2858 2853 2874 NE 13 NN & NOD 1873 1894 1833 1836 2837 2858 2831 1878 1833 ESTINATION OF RAUSSIAN INTERNATION AS BEEN DONE FOR ELEMA NE 1811 NN & NOD 1876 1871 1878 1835 2834 2871 2878 2833 NE 52 NN & NOD 171 88 87 79 1871 1888 1887 1878 ELENS THE THE WE BOUND TO SEE THE THE THE STATION WAS BEEN DONE FOR ELEMS ESTIMATION OF GAUSSIAN INTEGRATION WAS BEEN DONE FOR ELEMS WE 151 MM & NOD 148 1122 1121 1144 2105 2122.2121 2164 WE 155 MM & NOD 2 19 18 1 1682 1619 1616 1891 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS NE 165 MM & NOD 192 1919 1916 1931 2020 2018 2001 NE 16 MM & NOD 19 36 35 16 1019 1936 1035 1618 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DUNE FOR ELEMS ME 161 MM & NOD 19 36 35 16 1019 1936 1035 1618 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DUNE FOR ELEMS OF GAUSSIAN INTEGRATION HAN GEEN DUNE FOR ELENG B NOD 1819 1436 1833 1818 2419 2236 2833 2818 B NOD 36 53 52 53 1438 1833 1828 1823 OF GAUSSIAN INTEGRATION HAN BZEN DONE FOR ELENG 6 NOD 1636 1833 1432 1635 2636 2633 2852 2035 9 NOD 53 70 69 52 1833 1873 1869 1832 UF GAUSSIAN INTEGRATION HAN BZEN DONE FOR ELENG 6 NOD 1833 1476 1869 1632 2853 2876 2867 2852 NOD 78 67 66 69 1873 1874 1864 1853 0 F GAUSSIAN INTEGRATION HAN BZEN DONE FOR ELENG 6 NOD 1853 1476 1869 1632 2853 2876 2867 2852 NOD 78 67 66 69 1878 1887 1884 1865 0 F GAUSSIAN INTEGRATION HAN BEEN DONE FOR ELENG 6 NOD 1878 1487 1868 1857 5184 1183 1886 0 F GAUSSIAN INTEGRATION HAN BEEN DONE FOR ELENG 6 NOD 67 184 163 86 3887 5184 1183 1886 0 F GAUSSIAN INTEGRATION HAN BEEN DONE FOR ELENG 8 NOD 67 184 163 86 3887 5184 1183 1886 0 F GAUSSIAN INTEGRATION HAN BEEN DONE FOR ELENG NE 1816 NN B NE 17 NH B ESTENATION OF NE 1817 NH NE 18 NN ESTIMATION OF 1818 NN 19 NN NE ESTIMATION OF NE 1019 MN NE 20 MN **NE** NE 1628 NN & NOD 164 121 128 103 188 2887 2184 2183 2886 NE 21 MN & NOD 164 121 128 103 184 2183 2886 NE 21 MN & NOD 164 121 128 103 1184 1121 1128 1183 ESTIMATION DP 643821AN INTEGRATION MAS SEEN DONE FOR ELEM NE 1821 NN & NOD 1188 1121 4126 441 456 457 ESTIMATION OF ÉLFRA ESTIMATION DF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEM NE 1921 NN & HOD 1164 1121 1123 1183 2184 2121 2128 2143 NE 22 NN & MOD 62 39 38 61 1942 1939 1938 1941 ESTIMATION OF SAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM NE 1922 NN & HOD 1842 1859 1858 1941 2842 2859 2853 2864 NE 23 4H & HOD 59 76 75 58 1859 1874 1879 1834 ELEKI

258888888. #AREA AND VOL # 4.2388+18 PREBERER, MAREA AND VOL + 8.238E+10 258868888. #AREA AND VOL # #,2582+18 258094888. PAREA AND VOL - 8,2542+18 PRASSARA. MAREA AND VOL & R. PSOF+18 ESBERERE. #AREA AND VOL # #.2582+1# 258888888 . WAREA AND VOL . 8.2582+18 256888884. #AREA AND YOL # 8.258E+16 PSEBARRS. #AREA AND YOL # P.2582+1# PSARANNO, MAREA AND VOL - 9.2596+18 258282828 - PAREA AND VOL + 8.2582+10 25460088. WAREA AND VOL # 8.2581+1P 25098882, #AREA AND YOL # 8,2582+18 258088888. PAREA AND VOL P 8.258E+18 25888882. #AREA AND VOL . 8.238E+18 23888884, PAREA AND VOL . 8,2582+18 25080000. =AREA AND VOL = 8,2502+18 25GEP8BS. WAREA AND VOL . 6.238E+16 25088888, WAREA AND VOL . 8,258E+18

254 NODER

44

28

10

ESREBBBB, PAREA AND VOL . E.ESHE+18

2.12

REPRESE . . AREA AND VOL . C.25RE+16

250888888. MAREA AND VOL . S.2582+18
ESTIMATION OF GAUSSIAN INTEGRATION HAS DEEN DONE FOR ELEMS NE 1323 MN & NOD 1059 1876 1873 1856 2839 2876 2875 2858 NE 24 MN & NOD 76 95 92 75 1876 1893 1892 1875 ESTIMATION OF GAUSSIAN INTEGRATION HAS DEEN DONE FOR ELEMS NE 1824 MN & NOD 1876 1893 1892 1875 2876 2895 2892 2875 HE 25 MM & NOD 1876 1893 1892 1875 2876 2895 2892 2875 HE 25 MM & NOD 1876 1893 1892 1875 2876 2895 2892 2875 HE 25 MM & NOD 183 118 189 92 1893 1118 1189 1892 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEMS NE 1825 MM & NOD 183 118 1189 1892 2893 2118 2189 2892 NE 28 NN & NOD 118 129 126 129 1218 2189 2892 NE 28 NN & NOD 118 127 126 129 1118 1127 126 1189 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEMS NE 1826 NN & NOD 118 127 126 129 2128 2129 222 2189 23 28 23 25 NOD 1119 1127 1126 1147 2119 2127 226 2184 NOD 41 39 37 49 1241 1032 1257 [743 NE 1826 NM 1 NE AUD 41 33 37 40 143 1434 1437 1848 GAUSSIN INTEGRATION AS SEEN DONE FOR ELEMS MOD 1041 1858 1857 1848 2441 2558 2857 2849 NOD 58 73 74 57 1858 1873 1874 1857 GAUSSIAN INTEGRATION HAS SEEM DONE FOR ELEMS ESTIMATION OF 27 NE TEST NU 8 NE 28 NN 8 ESTIMATION OF ESTIMATION OF GAUSSIAN INTEGRATION MAS SEEM GONE FOR ELEMB NE 1828 NM & NOD 1953 1973 1876 1837 2958 2973 2974 2957 NE 29 NM & NOD 75 32 91 76 1873 1826 1891 1974 ESTIMATION OF GAUSSIAN INTEGRATION MAS SEEM DONE FOR ELEMB NE 1828 NM & NOD 1873 1892 1891 1974 2873 2892 2891 2874 NE 38 NM & NOD 1875 1892 1891 1974 2873 2892 2891 2874 ESTIMATION OF GAUSSIAN INTEGRATION MAS SEEM DONE FOR ELEMB NE 1838 NM & NOD 1892 1189 1188 1891 2187 2189 2188 2891 NE 31 NM & NOD 1992 1189 1189 1287 2189 2188 2891 ESTIMATION OF GAUSSIAN INTEGRATION MAS SEEM DONE FOR ELEMB NE 1838 NM & NOD 1892 1189 1183 1189 1189 1123 1188 ESTIMATION OF GAUSSIAN INTEGRATION MAS SEEM DONE FOR ELEMB H 1831 NM & NOD 1892 124 125 1184 1189 124 123 128 59 21 38 31 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMP ME 1931 NN & NOD 139 125 1123 138 2189 2125 2123 NE 32 NN & NOD 49 37 35 39 3349 1937 1355 139 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMP NE 133 NN & NOD 1048 1957 1355 1397 2036 2037 2356 2039 NE 33 NN & NOD 1057 174 73 55 1397 1374 1973 1356 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMP NE 133 NN & NOD 197 137 1356 2037 2374 2473 2656 NE 134 NN & NOD 197 137 1356 2037 2374 2473 2656 NE 34 NN & NOD 197 137 1397 1395 2637 2374 2473 2656 NE 34 NN & NOD 197 137 1397 1395 2637 2374 2473 2656 NE 34 NN & NOD 197 137 1397 1397 1396 2637 2674 2473 2656 NE 34 NN & NOD 197 137 1397 1397 1396 2637 2676 2677 2676 2677 NE 34 NN & NOD 197 1374 1397 1396 2637 2676 2677 2676 2677 NE 34 NN & NOD 197 1976 1377 1396 2637 2677 2676 2677 NE 34 NN & NOD 197 1976 1377 1396 2637 2677 2676 2677 NE 34 NN & NOD 197 1976 1377 1396 2637 2677 2676 2677 NE 34 NN & NOD 1977 1976 1977 1977 1977 1976 1975 1976 1975 1821 NH 12 33 NE 34 NN 6 NOD 74 48 49 73 1974 1991 1999 1973 Esitation up gaugtan integration mas been gong for eleve Ne 1934 NN 6 Nod 1974 1991 1998 1973 2974 2991 2979 2975 Ne 35 NN 6 Nod 91 188 187 98 1991 1168 1187 1898 Esitation op gaussian integration mas been dowe for eleve 34 33 ESTINATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEMP ME 1935 NM & HOD 1991 1888 1197 1898 2091 2188 2197 2878 NE 36 HH & HOD 1991 1888 1197 1898 1297 1287 ESTINATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMP NE 1936 HM & HOD 1168 1225 1126 1197 2198 2125 2192 2197 NE 37 HM & HOD 1168 1225 1126 1197 2198 2195 2192 2197 HE 37 HM & HOD 1198 1956 1953 1938 2295 2095 2095 NE 37 HM & HOD 1956 1955 1956 2916 2935 2038 NE 1937 HM & HOD 1939 1956 1953 1956 1953 1972 1953 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEMP NE 1937 HM & HOD 1939 1956 1953 1956 1973 1972 1953 ESTIMATION OF RAURGIAN INTEGRATION HAS SEEN DONE FOR ELEMP NE 38 HM & HOD 1966 1973 1973 1973 2973 2979 2979 STIMATION OF RAURGIAN INTEGRATION HAS SEEN DONE FOR ELEMP 14 57 38 39 28 41 12 41 44 45 ESTIMATION OF GAUSSIAN INFEGRATION HAS SEEN ODNE FOR ELEMS NE 1645 HN & NOB 1068 1005 1006 1467 2068 2059 2064 2067 NE 46 NN & NOB 5162 101 64 1053 1102 1101 1084 ESTUMATION OF GAUSSIAN INFEGRATION HAS BEEN DONE FOR ELEMS NE 1666 HM & NOD 1005 1168 1191 1084 2005 2112 2101 2064 NE 1666 HM & NOD 1005 1168 1191 1084 2005 2112 2101 2064 NE 1647 HN & NUD 1172 119 1101 1101 2102 2119 2118 2101 NE 1447 NH & NUD 1172 119 1110 1101 2102 2119 2118 2101 NE 440 HN & NUD 1172 119 1101 1101 1101 1131 1131 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS NE 440 HN & NUD 1172 119 1101 1101 1101 1131 1131 1131 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS NE 440 HN & NUD 1172 1119 1110 1110 1110 1130 1133 1130 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS 46 47 48 NE 1948 NN & MOD 1119 1136 1139 1118 2119 2136 2133 2118 NE 49 NN & NOR 16 33 32 15 1816 1833 1832 1915 Estimation of Baussian integration has been dure for Eleme 49 NOD 1816 1833 1832 1813 2816 2833 2832 2815 NOD 33 58 49 32 1833 1858 1849 1832 1 1849 HM 98 NM NE NĒ 
 NOD
 33
 58
 49
 36
 1034
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 1075
 <th1075</th>
 <th1075</th>
 <th1075</th>
 ESTIMATION OF 5# NE 1858 NN NE 51 NN -GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELENG ESTIMATION OF 31 NE 1851 WH & HOD 1858 1867 1866 1847 2850 2867 2866 2887 NE 52 WH & HOP 67 88 83 66 1867 1884 1883 1866 Estimation of Gaussiam integration was seem onne for Elema 52 GAUSSIAN [MEGWATION HAS BEEN DURG FOR CEEN HOD 1467 1984 1983 1464 2067 2786 2083 2066 HOD 44 181 148 83 1844 1181 1188 1883 GAUSSIAN INTEGRATION HAS BEEN DOME FOR CLEME HOD 1646 1101 1190 1183 2084 2101 2188 2483 HOD 141 118 117 189 1181 1114 1117 1184 NE 1952 NH Ne 43 NH ESTIMATION OF 53 NE 1853 NH 8 NQB 8 NQB **5.8** MM

25888882. #AREA AND YOL . 8.2546+18 25888884. *AREA AND YOL * #,2588+18 252888888. BAREA AND VOL # 8.2586+19 25020888. #AREA AND VOL = #.258E+18 24999993. HAREA AND YOL - J.258E+18 25888888. PAREA AND YOL . S.258E+18 258888882. TAREA AND VOL # #.258E+18 25889888. PAREA AND YOL . 8,258E+18 258888888. AAREA AND VOL - #.2588418 2499998. #AREA AND VOL # 8.2588+18 258888888. #AREA AND YOL # 8,2581+18 253888882. - #AREA AND YOL # 8.2582+18 24999996. #AREA AND VOL # 8.23PE+19 24999998. #ARPA AND YOL # 8.2582+18 238888888. #AREA AND VOL # #,2588+18 255888882. + AREA AND YOL = 8,2588+18 #AREA AND VOL # 0.25RE+1# 230888884 25888888. -AREA AND VOL . 4.25PE+18 25008008. *AREA AND YOL # 8.2582+18 25688819. PAREA AND VOL # 8.2362+18 23988816. #AREA AND VOL # 8.2388+18 25686818. FAREA AND VOL . R.2586+18 25888828. #AREA AND VOL # #.2582+19 2588##14. +AREA AND YOL = 8,258E+18 258888816. +AFEA AND VOL + 0.2588+18 25888882. *AREA AND YOL * \$.258E+18 25888884. #AREA AND VOL # 8.2348+18 232888882. -AREA AND VOL - 8.238E+18 258888884. #AREA AND VOL # 8.2582418 25888884. = AREA AND VOL = 8.2582+18 E371MATION OF GAURDIAM INTEGRATION HAR GEEN DONE FOR ELEME ME 1834 MM & NOD 1181 118 1817 1186 2181 2118 2117 2188 ME S5 MM & NOD 118 135 134 117 118 1135 1134 117 E871MATION OF GAURDIAH INTEGRATION MAS BEEN DOME FOR ELEMA ME 1855 MM & NOD 118 135 1134 1137 818 2117 NE 56 MM & NOD 115 32 31 14 1815 1857 1831 1814

. ...

ESTIMATION OF RAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMS NE 1956 NH & NOO 1815 1832 1831 1914 2015 2832 2831 2014 NE 57 NH & NOO 32 49 48 31 1832 1844 1846 1931 Estimation of caussian integration has been done for Eleme MC \$7 MN & MOD \$2 49 45 31 1832 1644 1948 1931 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMA MI 1657 NM & MOD 352 5849 3845 1831 2832 2849 2848 2831 MI 56 NN & MOD 352 5849 3845 1831 2832 2849 2848 2831 MI 56 NN & MOD 49 66 85 46 1849 1666 1865 1648 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMA MI 1959 NN & NOD 66 83 42 65 1866 1833 1882 2865 ESTIMATION OF GAUSSIAN INTEGRATION MAS BIEN DOME FOR ELEMA MI 1959 NN & NOD 186 1883 1882 1865 2866 2865 2846 MI 1959 NN & NOD 186 1883 1882 1865 2866 2865 2846 MI 1959 NN & NOD 186 1883 1882 1865 2866 2865 2846 MI 1959 NN & NOD 186 1883 1882 1865 2866 2863 2882 2865 ESTIMATION OF GAUSSIAN INTEGRATION MAS BIEN DOME FOR ELEMA MI 1964 NN & MOD 187 187 116 47 1188 117 1116 1879 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMA MI 1866 NN & MOD 187 117 116 1879 2168 2117 2116 2899 HE 68 NN & MOD 117 134 133 116 117 1134 1133 116 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMA MI 1865 NN & MOD 118 117 1134 1133 116 117 2134 2133 2136 ME 63 NN & MOD 117 134 133 116 2117 2134 2133 2136 MI 1865 NN & MOD 114 31 .33 13 1814 8131 1938 2136 MI 1865 NN & MOD 131 1936 1339 1813 2814 8213 2838 MI 64 NO NO 131 43 47 38 133 184 8131 483 1853 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMA MI 1865 NN & NOD 181 1931 9838 1847 1833 2831 2846 2847 2837 MI 64 NN & MOD 331 48 47 38 1331 2846 1847 1833 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMA MI 1865 NN & NOD 184 1831 9838 1847 1833 2831 2844 2837 2837 MI 64 NN & MOD 331 48 47 38 1331 1846 1847 1833 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMA MI 1865 NN & NOD 184 1833 1848 1847 1833 2831 2844 2847 2837 MI 66 NN & MOD 483 58 64 67 1848 2847 2837 2837 MI 66 NN & MOD 48 65 58 64 67 1848 2847 2837 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMA MI 1865 NN & NOD 68 65 58 64 67 1848 2847 2837 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMA MI 1865 NN & MOD 68 55 1864 1847 ESTIMATION OF GAUSSIAN INTEGRATION ESTIMATION OF SAUSSIAN INTERRATION MAS BEEN DOWE FOR ELEMP NE 1865 NH 8 MOD 1944 1865 1864 1847 2846 2865 2864 2847 NE 66 NH 8 MOD 65 82 81 64 1865 1882 1861 1864 ESTIMATION OF SAUSSIAN INTERRATION NAS BEEN DOWE FOR ELEMP NE 1866 NH 8 MOD 1865 1832 1861 1862 2869 2863 2863 NE 67 NH 8 NOD 82 97 98 81 1862 2899 1898 1861 ESTIMATION OF SAUSSIAN INTERRATION HAS BEEN DOWE FOR ELEMP NE 1867 NH 8 NOD 1862 1999 1898 1861 2852 2869 2868 2861 ESTIMATION OF SAUSSIAN INTERRATION HAS BEEN DOWE FOR ELEMP NE 66 NH 8 NOD 97 116 115 98 1899 116 115 1898 ESTIMATION OF SAUSSIAN INTERRATION HAS BEEN DOWE FOR ELEMP NE 166 NH 8 NOD 97 116 115 98 1899 2116 115 1898 ESTIMATION OF SAUSSIAN INTERRATION HAS BEEN COME FOR ELEMP NE 1868 NN 8 MOD 1899 1116 1119 1898 2899 2116 2113 2898 NE 49 MN 4 MOD 116 133 132 117 1116 1133 1132 1115 Estimation of Gaussian infegration was been dowe for elema ESTIMATION OF GAUSSIAN INTEGRATION MAS GEEN GONE FOR ÉLÈNG NE 1869 NH & MOD 1316 1335 1332 1313 2316 2333 2332 232 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN GONE FOR ELEMP NE 1878 NH & MOD 13 1835 1829 1812 2813 2836 1829 1829 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN GONE FOR ELEMP NE 1878 NH & MOD 33 47 46 29 1813 2830 8829 8812 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN GONE FOR ELEMP NE 1971 NH & NOD 37 47 46 29 1830 1827 1846 1827 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN GONE FOR ELEMP NE 1971 NH & NOD 47 69 63 46 1847 1864 1863 1846 ESTIMATION OF BAUSSIAN INTEGRATION MAS BEEN DONE FOR ELEMP NE 72 NH & NOD 47 69 63 46 1847 1864 1863 1846 ESTIMATION OF BAUSSIAN INTEGRATION MAS BEEN DONE FOR ELEMP NE 122 NH & NOD 47 69 63 46 1847 1864 1863 1846 ESTIMATION OF GAUSSIAN INTEGRATION WAS BEEN DONE FOR ELEME NE 1872 NN B MOD 1487 1864 1863 1846 2847 2864 2863 2846 NE 73 NN B MOD 64 81 88 63 1846 1853 1868 1863 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEME NE 74 NN B MOD 1864 1861 1888 1863 1864 1881 1875 1868 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEME NE 74 NN B MOD 1864 1861 1877 1868 2863 2868 2863 NE 74 NN B MOD 1864 1877 1868 2851 2868 2863 NE 75 NN B MOD 1861 1978 1877 1868 2851 2888 2863 NE 75 NN B MOD 1861 1877 1868 2851 2878 2878 2878 RE 1875 NN B MOD 1861 1978 1878 1878 1876 2877 2888 NE 75 NN B MOD 1861 1878 1877 1878 2851 2878 2878 2878 NE 75 NN B MOD 1863 1157 114 77 1878 2851 2878 2878 NE 76 NN B MOD 1873 115 1114 1179 1152 1131 1174 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEME NE 76 NN B MOD 1873 132 1131 1114 2115 2132 1331 114 ESTIMATION IF GAUSSIAN INTEGRATION NAS BEEN DONE FOR ELEME NE 76 NN B MOD 1173 132 1311 1114 2115 2132 2331 2116 ESTIMATION IN BAUSSIN INTEGRATION WAS BEEN DONE FOR ELEM-NE 1976 NN 6 NOT 115 1132 1131 1114 2115 2132 2133 2116 NE 77 NN 6 NOT 12 27 P8 11 1012 1024 1028 1011 ESTIMATION UP GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM-NE 1077 NN 6 NOT 10 40 40 40 40 102 1020 1020 1020 1020 NE 1077 NN 6 NOT 29 46 45 P8 1729 1046 1045 1020 ELEMA ME 78 NN 8 NOD 29 46 45 98 1779 1746 1845 1928 ESTEMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM NE 1878 NN 8 NOD 1829 1846 1845 1826 2829 2046 2945 2828 NE 79 NN 8 NOD 46 63 62 45 1846 1863 1862 1845 ESTEMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM NE 1877 NN 8 NOD 48 1845 1845 2845 2845 2845 2845 NE 68 NN 8 NOD 63 69 79 62 1853 1853 1879 1852 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM NE 68 NN 8 NOD 63 69 79 62 1853 2863 2879 2852 NE 88 NN 8 NOD 63 69 79 79 1858 2863 2879 2852 NE 81 NN 8 NOD 65 97 96 79 1858 2863 2879 2852 NE 81 NN 8 NOD 65 97 96 79 1858 1879 1856 1879 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA NE 81 NN 8 NOD 65 97 96 79 1858 2863 2879 2852 NE 81 NN 8 NOD 68 97 96 79 1858 1879 1876 1879 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEMA NE 1031 NN 8 NOD 1088 1997 1996 1979 2080 2097 2096 207 NE 82 NN 8 NOD 1088 1997 1996 1979 2080 2097 2096 207 NE 82 NN 8 NOD 97 196 193 96 1097 1936 1913 3096 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN COME FOR ELEMS NE 83 NN 8 NOD 1987 113 1913 1897 2097 2014 2113 2096 NE 83 NN 8 NOD 1887 131 136 113 1114 1331 1137 113

238888882. •AREA AND VOL • 8,2582+16 238666822. PAREA AND VOL . C.2582418 23048802. PAREA AND VOL # 8.2582+18 2388#864. +AREA AND VOL - R.25#E+18 23028ER2. WAREA AND VOL # 4.230E+10 238888894. HAREA AND YOL - 8,238E+18 23898884. #AREA AND VOL # 8,2392+18 ESCEREZ, MAREA AND VOL . C.238E+10 23888882. #AREA AND VOL # 8.2382+18 ESBERRE, WAREA AND VOL # 6.2562+14 235RBRARE, WAREA AND VOL # 8,2322+12 - 23888882, - #AREA AND VOL # 8.238E+16 - PROPORTAL - GARPA AND VOL 9 6-2382+18 238858888. #AREA AND YOL = 4,2382+18 ESSBEEDS. - WAREA AND VOL - 8.2382+18 28999998. WAREA AND YOL . E.2522+18 25282208, WAREA AND YOL # 6,2522+58 249999996. BAREA AND VOL # 8,2582+18 WAREA AND VOL # 8.2582410 23888882. 23489882. WAREA AND VOL # #.2382+18 24999998. BAREA AND VOL . P. 2382+14 24999998; - BAREA AND VOL # 8,2382+\$8 249999998. #AREA AND YOL # 8-2582+18 25868000. "AREA AND YOL . 0.2585+10 24999996. #AREA AND VOL # 8,2502+18 258888888 . MAREA AND VOL # 0.2582+18 258888882, PAREA AND YOL + 8,2582+14 24999998. #AREA AND VOL # 8,2582+18

34

35

34

57

39

4.8

61

62

41

68

63

44

47

48

44

78

11

72

73

73

76

17

18

79

81

82

43 ... 25 44 27 43 29 18 91 12 11 18 22 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DOWE FOR ELEMP NE 1946 NN & NOD 1953 1312 1111 1940 2355 2112 2111 2594 NE 97 NN & NOD 112 129 128 111 1112 1129 1123 1131 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DOME FOR ELEMP NE 1297 NN & NOD 9 20 23 8 1399 1926 1223 1313 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DUME FOR ELEMP NE 1297 NN & NOD 9 20 23 8 1399 1926 1223 1313 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DUME FOR ELEMP NE 1298 NN & NOD 9 20 23 8 1395 1325 1323 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DUME FOR ELEMP NE 1298 NN & NOD 1926 1925 1928 2099 2020 2323 2323 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DUME FOR ELEMP NE 1999 NN & NOD 1926 1923 1928 1925 2043 2352 2523 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DOME FOR ELEMP. NE 1999 NN & NOD 1925 1923 1928 1925 2043 2523 253 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DOME FOR ELEMP. NE 1999 NN & NOD 43 50 59 42 1245 1245 2522 2522 2523 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DOME FOR ELEMP. NE 1998 NN & NOD 43 50 59 42 1245 2642 2522 2642 2522 2642 2522 2642 2522 2642 2522 2642 2522 2642 2523 254 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DOME FOR ELEMP. ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DOME FOR ELEMP. ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DOME FOR ELEMP. ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DOME FOR 264 2050 2062 2052 2643 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2662 2652 2652 2652 2662 2652 2652 2652 2652 2652 2652 2652 2652 2652 2652 2 15 97 12 49 122 ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM NE 1154 HH & NOD 1111 1128 1127 1110 HILL 2128 2127 2110 NE 1155 NH & HOD 258 203 271 270 1220 1220 1217 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEM NE 1165 NH & NOD 201 1201 1272 2250 2201 2271 2279 NE 1165 NH & NOD 201 1201 1202 1271 2210 1220 1272 277 HE 1165 NH & NOD 201 1201 1202 1271 2210 1220 1272 277 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEM NE 1165 NH & NOD 201 1201 1202 1271 2211 2220 2272 271 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEM NE 1165 NH & NOD 201 1202 1272 1271 2201 2202 2272 271 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEM NE 1107 NH & NOD 223 242 273 272 1221 223 2273 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEM NE 1107 NH & NOD 223 242 273 272 123 1234 1273 277 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEM NE 1107 NH & NOD 223 244 274 273 123 1241 274 277 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEM NE 1107 NH & NOD 203 244 274 273 123 1241 277 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEM NE 1107 NH & NOD 210 1241 1241 124 1274 2242 2373 277 NE 100 ND 203 244 274 273 123 1241 274 277 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEM NE 1107 NH & NOD 210 24 124 1274 224 233 224 277 NE 100 ND 200 200 200 244 274 273 123 1241 274 274 275 247 ESTIMATION OF GAUSSIAN INTEGRATION HAS SEEN DONE FOR ELEM ELENA 185 ELENS 185 ÉLEXI 137 ELENS 125 NE 1188 NN HE SIER MM NE 4188 NM NE 109 NM 1PT NR NE 119 NM 6 NUD 200 253 273 274 1253 1273 1274 E517MA120M 07 SALSSIAN INISGRAITON HAS BEEN DORE FOR ELEM. HE 1199 NM 6 NUD 1284 1285 1273 1274 2284 2225 2273 2274 HE 2189 NM 6 NUD 3284 2285 3273 2274 3284 3225 3273 3274 HE 3189 NM 6 NUD 3284 3285 3273 5274 4284 4285 4273 4274 NE 4189 NM 6 NUD 4284 4285 4273 4274 5284 5285 3273 3274 NE 5189 NM 6 NUD 5284 3285 3273 5274 5284 5285 4273 5274 ELENS 183 275 1285 1286 1276 1275 118 . NOR 215 286 375

4

24999988. SAREA AND VOL & 8.2508+18 25888816. SAREA AND YOL . B.2502+19 25282818. 25428816. FAREA AND VOL & B.2346+18 25886818. PAREA AND YOL . 8,2382+18 25888828. BAREA AND YOL # 8,2388+18 23888814. VAREA AND YOL # 8.2382+18 258888886. PAREA AND VOL # 8.2398418 24999944, #AREA AND VOL # 8.2586+18 24999998. VAREA AND YOL # 5.2382+18 24999998. VAREA AND YOL # 3.2582418 24999998. WAREA AND YOL # #.2582418 24999998, FAREA AND YOL # #,2382+13 2499992, VARES AND VOL . S.25EELB 24999998. VAREA AND YOL # 8.2382418 256EEEE2. MAREA AND YOL . S.238E+18 CONSUMPL. MAKEA AND YUL M ......... 234202644. FAREA AND VOL # 8.2585+18 258888888. #AREA AND VOL # #.2586+18 23080884, *AREA AND YUL # 9,2582+18 256888822. HAREA AND YOL # 8.2586418 23862882. TAREA AND VOL . 8.2386+18 239738, *AREA AND YOL * 8,2486+88 33178. ***** AND YOL * 8,3528+#7 92535. PAREA AND VOL = 2.9866+27 2765. #AREA AND VOL # 8.2772+26

1185. PAREA AND VOL . P.1192+86

ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEP	1 11	14837.	PAREA AND VOL » N.1432+B7
NE 1118 HH & HOD 1255 1264 1276 1275 2265 2266 2276 2275			
NE 2110 NN & KOD 2285 2206 2276 2275 3255 3286 3276 3275			
NE 1148 MU 8 MUS 1281 1286 1274 1275 4265 5286 4376 423			
NE ALLA MU A MET 2005 ADAL ADAL ADAL ADAL ADAL ADAL 401.			
HE TILD ON A THIS TEST ADAL ADAL ADAL ADAL ADAL ADAL ADAL ADA			
NE 3110 MM 0 NUU JEUL 4240 4210 3210 6200 4200 4210 4010			
RE 111 MA & MUIT END EDT ETT ETT 1800 BEUT 1817 1810		PADIES	AAREA AND NOL & R. 2435488
ESIJANJUN UP SAUSSIAN INIEDRATIUN MAS BEEN DUNE PUR ELEP	• • • • • •		
NE III NN & NCD 1266 1287 1277 1276 4206 4207 2277 4276			
ME 2111 NN 8 NOD 8285 8267 2277 2276 3285 3267 3277 3278			
NE 3111 MN & NOD 3286 3287 3277 3276 4285 4287 4277 4276	·		
NZ 112 NN 8 NOD 267 268 278 277 1287 1284 1278 1277			
ESTIMATION OF GAUSSIAN INTEGRATION HAB BEEN DONE FOR ELEM	112 State	345839,	FARES AND YOL . 8,3492403
MF 1112 NM & NOD 1247 1268 1278 1277 2267 2288 2278 2271			
ME SILS MW & MOD BOAT BOAR DOTE SOTT SOLT SPAR SOTA 3271	· ·		
ME 1113 MU & NON 1387 1376 1377 1387 4387 4388 4378 4378 4378			
NE 113 NN B NUD 558 ECV EFV EFW JEDD 4EEV 1EFV 1EF		191981	AREA AND MOL & R. 323FARA
ESTIMATION OF GAUSSIAN INTEGNATION HAS BEEN DONE FOR ELEM	.e. 119		AND AND ADD - ABARCEADA
NE 1113 NH & NOD 1266 1264 1274 1278 2268 2259 2279 2276	· · · · ·		
NE 5113 KN 8 NOD 5588 5564 5514 5518 3588 3584 3514 3513			
NE 3113 NN & NOD 3288 3284 3279 3278 4288 4284 4279 4278			
NE 114 NN & NUD 278 271 261 268 1278 1271 1261 1260			
ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM	# 114	238672,	FAREA AND YOL + 8,239E+88
HE 1114 NW 8 NOD 1276 1271 1261 1268 2276 2271 2261 2265		•	
NF 115 MM & MOD 371 373 363 361 1871 1372 1462 1241			
FATTHATING OF GAUGGIAN INTEGRATION HAS BEEN DONE FOO FIFH		1111	AREA AND WOL & & TERSART
$\mathbf{U} \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ 0 \in \{1 \in \mathbb{N} \ : \ : \ 0 \in \{1 \in \mathbb{N} \ : \ : \ 0 \in \{1 \in \mathbb{N} \ : \ : \ : \ : \ : \ : \ : \ : \ : \ $		334544	
ME \$117 MIN 7 MUN 5613 1876 5646 1885 5813 5616 5676 6678			:
NC 110 WW D WOR ETE ETS COS PAC 1878 1875 1805 1400			
EDISTATION OF WAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM		114354.	ANU YUL - 6,1142+55
NE LIIG NN 6 NOD 1272 [273 [265] [262 00N 8 NN 6 [11			
NE 117 NH 0 NOD 273 274 264 263 1273 1276 1264 1263			
ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM	4 117	14689,	MAREA AND VOL . 8.147E+67
NE 1117 NN 8 NOD 1273 1274 1244 1263 2273 2274 2264 2263			
NF 2117 NN 8 NOD 2273 8876 2263 2313 3974 3274 3346 2363	-		
NE 1117 NH & NOD P271 1274 1264 2363 2273 4274 4264 2361			
AF AIT AL A MAN BOY ATTA ADA BOAT BTY GAVA BEA	a free and		•
NE AII AN PAUL EIS ACTA ACRA COS EES JESA JESA ECOS			
NE 110 MU 0 MUN 214 213 203 204 1214 1215 1293 1204			
ESTIMATION OF GAUSSIEN INTEGNATION HAS BEEN DONE FOR ELEM	119	6242*	TAREA AND YOL
NE 1110 MI & KOU 1274 1275 1265 1264 2274 2275 2265 2264			
ME 5318 NH & NCD 5514 5513 5503 5504 3514 3513 3563 3564		:	, ,
NE 3118 NN & NON 3274 3275 3265 3264 4274 4274 4269 4264			
NE 4118 NA & NOD 4274 4275 4265 4264 5274 5275 5265 5264			
NE 5116 NH & NOD 5274 5275 5265 5264 5274 6275 6265 5264			
NE 119 N/ 8 MOD 215 216 266 265 1275 1216 1755 1269		<i>c</i> :	
ESTIMATION OF CAUGHTAN INTERNATION MAD BEEN DONE FOR FLEN		124414	
AT THE MU & MODIFIEL STE 1354 HAR BEEN DEL TON THE COL	• •••	1611108	
WE STILL WE A MOD SELS FLID SELS FERS EELS CEID FEOD EEUS			
NE 2117 NN & HUU 2273 2214 2240 2243 3275 3214 3288 3263		1	
NE 3114 NN 8 NOD 3273 3276 3288 3269 8275 4276 6266 6269			
THE 4114 NH & NOO 4273 4276 4266 4263 \$275 4276 4266 5283			
NE 3117 NN & NOD 5275 4276 4266 5265 6275 4276 4266 6265	1 - 1 - 1		
NE 12# 4N 8 NOD 276 277 267 266 1276 1277 1267 1268		* +	
ESTIMATION OF GAUSSIAN INTERPATION HAS BEEN DONE FOR ELEM	• 125	365948. 4	PAREA AND VOL # 8,5652+88
NE 112P NN 8 NOO 1276 1277 1267 1266 2276 2277 2267 2268			· •
NE 2127 NH & HOD 2216 2217 2267 2266 3216 3217 3267 3266			
HE SIDE NN & NOD 3274 3277 3247 3266 4276 4277 8247 4265			
NE 121 NJ2 & NOV 277 278 248 267 1371 1276 1264 1267			4
FETIMATION OF RANGESAN INTERATION HAS BEEN DOWN FOR SIEN		347468	
No 151 No 4 Warden Internition and Deen Upic (Co Been	- 366	2411441	
THE ASES THE WITCH SETT SETT SETT AEST LEDI CEIT EETE EEDE EEDI NE BLST MAL D ANN BSTT STA STAT AEST SETT SETT SETT			
The cici The D MUD CCI CCID CCDU 2701 3611 3618 3268 3207	· · · ·		
TE 3123 MM 0 WUD JC71 3C18 3258 3257 4278 4268 4267			
NE 122 NN 8 NOT 215, 219 269 265 1276 1219 1269 1268			
LEVIMATION OF BAUSSIAH INTEGRATION HAS BEEN DONE FOR ELEN	- 155 -	546978*	PAREA AND VOL = 8.297E+88
NE 1155 MN 8 NOD 1278 1274 1264 1268 2278 2264 2265			
NE 2122 MN & NOD 2276 2219 2269 2268 3276 3279 3269 3269			
NE 3122 NN & NON 3278 3279 3269 5268 4278 4219 4269 4268			
NE 123 HN & NOD 268 261 251 258 1268 1261 1241 1248	· · ·		
ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DONE FOR FLAM	• 123	877838. ·	AREA AND VOL & BLATAKARA
NE 1125 NN & HILD 1248 1241 1341 1348 3248 2541 2541 354	+		the second second a second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec
ME 194 NN & NON PAL 369 369 361 654 1594 6671 6691 6691			
The set of a new set of the set set the star show the star set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of the set of			
The state of a number of a state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state state sta	- 164	141134	
TE 1164 NR 0 TUD 1601 1606 1632 1831 8601 6662 8831		1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	
TE 127 TH E TUN COL CD3 233 236 1202 1263 1233 1232	· · · · · ·		
ESTIMATION OF GAUSSIAN INTEGRATION HAB BEEN DONE FOR ELEM	- 152	317055.	***E4 AND YOL # 0.517E+#8
. NE 1123 NN 8 NDD 1262 1263 1253 1253 2262 7263 2253 2253			
NE 126 HN 8 NUN 263 264 294 293 1264 1254 1253			
ESTIMATION OF GAUSSIAN INTEGRATION HAS BEEN DONE FOR ELEM	. 126	155563,	AREA AND VOL . 0.1362+88
NE 1126 NN A NOD 1263 1264 1234 1233 2263 2264 2254 2253		-	
HE 2126 NN 0 NOD 2263 2264 2254 2253 2263 3264 3254 2253			
NE 3126 NN & NOD 2263 3264 3254 2253 2263 4264 4954 2253			
HE 4126 NH & NOD 2263 4264 4294 2253 2263 5264 4948 2255			
NE 127 NH & NOD 264 265 255 256 1244 1248 1354 1354			
ESTIMATION OF GAUGSIAN INTERBATION MAS REFN DOUR FOR SIEN	4 127	A	
NF 1127 NH & MID 1244 1245 1255 1248 1244 2248 2348 2468 4344		004754	
NE 2127 NH & NOD 2244 2248 2248 2248 1244 1248 1348 1344			
NE 1139 NU & MON 1344 1344 1384 1444 1444 1444 1447 14673 3633 3634			
ME AIDT NO. 0 HUN ASKA ADEE AGE AGE HELE EDJ 4233 4234 ME AIDT NO. 8 HAA ADEE AGE AGE HELE EDJ 4233 4234			
ME 180 MM 8 MUN 863 808 236 233 1265 1266 1256 1255			

.

· .

1

۰._

I.135

Last real type of a supplication real state type of a supplication real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real state real

 323863, *AREA AND VOL * 3,2238*83

 733188, *AREA AND VOL * 8,7338*88

 833139, *AREA AND VOL * 8,8338*88

 931851, *AREA AND VOL * 8,8338*88

 931851, *AREA AND VOL * 8,9318*88

 139538, *AREA AND VOL * 8,1448*88

 139538, *AREA AND VOL * 8,1548*88

 173688, *AREA AND VOL * 8,1748*88

 173688, *AREA AND VOL * 8,1748*88

 1638286, *AREA AND VOL * 8,1648*89

338899, #AREA AND YOL # 8,3312+88 .

:02

النين ا

1463183. *AREA AND YOL = 8,1462+89

1312334. +4REA AND VOL - 8,1518+89

18655386, •AREA AND VOL = 8.1872+89 275735, •AREA AND VOL = 8.2742+88 1998342, •AREA AND VOL = 8.1452+89 368711, •AREA AND VOL = 8.5412+88

149688. PAREA AND VOL . 8,1382+88

I.136

146 147 145 149 157 151 NE 151 NH 8 NE 152 NH 6 Estimation of 
 • With 1251
 1232
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1221
 1222
 1221
 1222
 1222
 1221
 1222
 1221
 1222
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1224
 1223
 1223
 1224
 1223
 1223
 1224
 1223
 1223
 1224
 1223
 1223
 1224
 1223
 1223
 1224
 1223
 1223
 1224
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 1223
 123
 123
 152 NE 1152 NN NE 153 NH ESTIMATION OF 133 NE 1153 NH NE 2153 NH NE 3153 NH NE 0155 NH 144 NH ESTIMATION OF 154 NE 1154 NN NE 2154 NN NE 3154 NN NE 4154 NN NE 5154 MN NE 155 NN ESTIMATION OF 155 NE 1155 NN NE 2155 NN NE 3155 NN NE 4155 NN NE 5155 NH 156 NN NE ESTIMATION OF 156 NE 1156 NN NE 2156 NN NE 3156 NN NE 3156 NN ESTIMATION OF 157 NE 1157 NN NE 2157 NN NE 3157 NN NE 158 NN ESTIMATION DE 158 NE 1158 NN NE 2158 NN NE 3158 NN NF 157 NN ESTIMATION OF 1159 NN 168 NN NE ESTIMATION OF 140 NE 1168 MN NE 161 MM ESTIMATION OF 161 NE 1161 NN NE 162 NN ESTIMATION OF NE 1962 NN 8 NE 2962 NN 8 NE 2962 NN 8 NE 4162 NN 8 NE 163 NN 8 Estimation of 163 
 Mun
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 Izz
 <thIz</th>
 <thIz</th>
 <thIz</th>
 NE 1163 NN NE 2163 NH NE 3163 NM 4163 NN NE 5163 NH NF 164 NÈ MH

\$88423, MAREA AND VOL = 5,8882+65

3213472. MAREA AND VOL . 8, 3218+89

2878128. AAREA AND VOL . 8.2878+84

2428368. «AREA AND VOL » 8.2422+89

3447147, *AREA AND VOL * 8,3452+89 393796, *AREA AND VOL * 8,8682+88 2676188, *AREA AND VOL * 8,2682+89

WARFA AND VOL & R.AMSEARS

A29557.

276428. BAREA AND VOL . P.RTAE+RS

1641591. #AREA AND VOL = 8,1642+89

573772#. #AREA AND VOL # #.5948+87

5383289. #AREA AND VOL # 8.9388+89

6818415, #AREA AND YOL # 8,6818+89

3447147. DAREA AND VOL D 0.3452489 505795. DAREA AND VOL D 8.5862488 2676178. DAREA AND VOL D 8.2682489 629561. DAREA AND VOL D 0.6322488

ETGART. MAREA AND VOL . 8,2762+88

ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR ELEHP	164	1641372.	PAREA AND	/OL + 8,1648+89
NE 1164 NH \$	5351 GDN	1550 1510 1513 5555 5556 5516 5515				
NE 2164 NN 8	C255 004	2220 2210 2213 3223 3220 3210 3213				
NE 3144 MM 8	100 4225	4226 4216 4215 5225 4226 4216 5215				
NE 5164 MN 8	5525 BON	4559 4519 2512 6552 4559 4519 9512				
NE 165 NN 8	NOD 224	227 217 210 1220 1227 1217 1218 Internation was been comp for flens	169	3737719.	AREA AND	VOL
ESILMATION OF	N00 1276	1227 1217 1216 2226 2227 2217 2216		• • • • • •	-	
NE 2165 NM 8	4555 0DH	2227 2217 2216 3226 3227 3217 3214				
NE 3165 NH 8	ARE DON	3227 3217 3218 4226 4227 4217 4216				
KE ISO NN B	NON. 227	THE STA STA STATION HAN BEEN DONE FOR ELEMA	166	5393273.	SAREA AND	VOL . 3,338E+34
NE 1166 NN 8	NCD 1227	1258 6155 6555 7558.7152 6152 6551		-		
NE 2166 NM B	1255 00H	2228 2218 2217 3227 3228 3218 3217				
HE STAG NH B	NOD 3227	3228 3218 3217 4227 4228 4218 4417				
ESTIMATION OF	RAUSSIAN	INTEGRATION HAS BEEN DONE FOR ELEMP	147	6818423.	BAREA AND	VQL + 8,681E+89"
NE 1167 NN \$	9521 DON	1229 1219 1218 8558 8259 2219 2210				
NE 2167 NN 6	NOU 5558	2224 2214 2218 3228 3227 3614 3614				
NE 148 NN 8	NOD 21#	A021 1881 1151 8181 885 1891 120P				
ESTIMATION OF	GAUSSIAN	INTEGRATION HAB BEEN DONE FOR ELENG	168	3447146,	OVER THE	ADF + #*2426+AA
NE 1148 NN \$	N00 1218	1211 1201 1200 2219 2211 2201 2200				
ESTIMATION OF	GAUSSIAN	INTERNATION HAD BEEN DONE FOR ELENA	164	585792.	AREA AND	VOL + 0,594E+R0
NE 1169 NH 8	NOD 1211	1812 1282 1201 2111 2212 2282 2281				
HE 173 NN 8	NOD 212		175	2575171.	PAREA AND	VOL + 8.2632+89
FALLOW ON T	NOD 1212	1213 1203 1202 2212 2213 2203 2202				
NE 171 NH \$	NOR 213	214 284 283 1213 1214 1284 1283				
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR ELEN	171	. 944291.	TAXEN AND	ANF = 5'8795+48
NE 1171 NN 0	NOD 1215	1214 1284 1283 2213 2214 2284 2283				
NE 3171 NN 8	\$155 00N	3214 3284 2283 2213 4214 4284 2263				
HE 4171 NN	E155 GOM	14 4214 2283 2213 5214 5284 2293				
NE 172 NN 8	NOR 214	215 285 284 1214 1215 1285 1284 Integration was seen done for fleht	172	276433.	-AREA AND	VOL
NE L172 NH 8	NCD 1214	1215 1285 1284 2214 2215 2285 2284	•••	•		
NE 2172 NH 8	N00 5514	2215 2285 2284 3214 3215 3285 3284				
NE 3572 NH 8	NOD 3514	3512 3282 3284 4514 4513 4283 4784				
NE 4376 MM 8 NE 4172 NN 8	NOD 5214	3213 3285 3286 3214 6213 6285 3284				
NE 175 NN 8	NOD 215	216 286 285 1215 1216 1246 1285				
EBTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR ELEME	173	1941248*	WAREA AND	TUC
NE 1173 NM #	NOD 1213	2216 2286 2283 3213 3216 3286 3285				
NE 3175 NN 8	NUD 3215	2424 4654 4154 2154 2855 4856 4855				
HE 4173 HN 8	P150 004	4216 4284 4285 2156 2858 4456 4296 5295				
NE 5175 NH 6	-155 DDM	217 287 286 1216 1217 1207 1206				
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR ELEMA	174	5937717.	#AREA AND	YOL
NE 1174 NH 8	NOD 1210	1217 1287 1286 2216 2217 2287 2206				
NE 2174 NN 8	- NUD 2210	3217 3287 3286 4216 4217 4287 4286				
NE 175 NN 8	NOD 217	TUSL 0851 A151 7151 785 885 815				
ESTIMATION OF	RAUSSIAN	INTEGRATION HAS SEEN DONE FOR ELEMA	175	5383274.	PAREA AND	AOF = \$*2345+84
NE 3173 AN 8	NOD 1217	2218 2288 2207 3217 3218 3288 3287				
NE 3175 NH .	NOD 3217	3218 3288 3207 4217 4218 4288 4207				
NE 176 114 8	NDD 518	8451 4651 4151 6151 665 445 415				
ESTIMATION OF	- 64U3314N - Nor 1218	1219 1254 1269 1269 2218 2219 2229 2258	17.			
HE 2176 NH 8	NOP 2218	2219 2209 2288 3218 3219 3289 3288				
NE 3176 NN 8	NOD 3210	3219 3289 3288 4218 4219 4289 4268				•
NE 177 NN O	NGD 534	: 53 45 45 1534 1853 1845 1846	1 77		BAREA AND	VOL # 8.1828+18
NE 1177 NN 8	NOD 1239	1025 1042 1441 2239 2542 2441				
NE 2177 NN 8	NOD 5534	1005 5005 2505 7252 1005 5005 2001				
NE 3177 NN #	NOD 3234	2823 2842 2841 4234 2825 2848 2841				
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS SEEN DONE FOR ELEMP	178	12272928.	HAREA AND	VOL + 8,1232+18
NE 1178 NH .	NOD 1221	1239 1841 1848 2229 2239 2841 2848	• • •			
NE 2178 NM 8	NOD 5554	2534 5841 5848 3554 2534 5841 5848				
NE JITE NU B	NON 3261	40 39 219 1229 1848 1839 1214				
ESTIMATION OF	SAUSSIAN	INTEGRATION HAB BEEN DONE FOR ELENS	179	12272##1.	PAREA AND	VOL = ##153E+13
NE 1177 NH 8	NON 1221	1948 1939 1219 2229 2848 2839 2219				
NE 2377 NN 8	NOD 1924	2448 2834 3214 4229 2848 2839 4214				
NE 188 NN 8	NON 814	39 38 21 1219 1939 1938 1921				
ESTIMATION OF	GAUSSIAN	INTEGRATION HAS BEEN DONE FOR ELEMA	188	18188288.	*AREA AND	YUL * #,182E+18
NE 3128 NH -	NOD 3219	, 1417 1834 1061 6617 6837 6838 6921 ) 2019 2018 2021 3219 2019 2018 2071				
NE 3168 NH 6	NOD 3214	1293 9205 9285 9151 4219 2839 2038 2821				
NE 181 NH 8	NON	249 219 21 1884 1289 1219 1721				VOL 9 8.1375444
ESTEMATION OF	GAUSHIAN Nor 1444	, INICARTION NEW DECH DOME FOR ELEMA 1980 1910 1821 3882 3980 9910 9891	141	15615A14*		
NE STAL NN	NOD 2844	1505 6125 6855 8885 1545 6155 6055				
NE 3181 NH 8	N00 2884	1205 6159 6859 6805 1545 9155 6055				
	100					

ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DONE FOR ELEMS NE 1362 MN & MOD 18P5 1226 1216 1260 2006 2228 2218 2200 NE 183 MN & MOD 6 248 239 220 1006 1248 1230 1220 NE 183 MN & MOD 6 248 239 220 1006 1248 1230 1220 NE 183 MN & MOD 6 248 239 220 1006 1248 1230 1220 NE 183 MN & MOD 6 248 239 220 2006 2248 2238 2238 NE 183 MN & MOD 6 248 1239 1220 2006 2248 2238 2238 NE 184 MN & MOD 6 248 1239 1220 2006 2248 2238 2238 NE 185 MN & MOD 6 248 1239 1220 2006 2248 2238 2238 NE 184 MN & MOD 6 AUSSIAN INTEGRATION MAS BEEN DOWE FOR ELEMS NE 185 MN & MOD 6 AUSSIAN INTEGRATION MAS BEEN DOWE FOR ELEMS NE 185 MN & MOD 6 AUSSIAN INTEGRATION MAS BEEN DOWE FOR ELEMS NE 185 MN & MOD 1886 1298 1278 248 2006 2248 2238 2248 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOWE FOR ELEMS NE 185 MN & MOD 186 1298 1279 1248 2068 2208 2278 2246 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOWE FOR ELEMS NE 185 MN & MOD 1859 2656 268 2259 264 268 1278 1268 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOWE FOR ELEMS NE 185 MN & MOD 1259 1269 1076 1025 2259 264 268 278 2264 NE 185 MN & MOD 1259 1269 1076 1025 2259 264 2688 278 2695 NE 186 MN & MOD 1259 1269 1076 1025 2259 264 2688 278 2655 NE 186 MN & MOD 2279 2268 2868 278 2259 2668 2625 NE 186 MN & MOD 2279 1289 1086 1289 279 2289 2868 2825 NE 186 MN & MOD 2279 1289 1086 1289 279 2289 2868 2869 NE 186 NN & MOD 2279 1289 1086 1289 279 2289 2868 2869 NE 186 NN & MOD 2279 1289 2868 2369 279 2269 2868 2649 NE 186 NN & MOD 237 3289 2868 3269 279 2269 2868 2649 NE 186 NN & MOD 237 3289 2868 3269 279 2269 2868 2649 NE 186 NN & MOD 237 3289 2868 3269 279 2269 2868 2649 NE 186 NN & MOD 238 2849 259 251 223 1249 1249 1259 1825 ESTIMATION OF GAUSSIAN INTEGRATION MAS BEEN DOME FOR ELEMS NE 186 NN & MOD 239 2849 259 251 223 1249 2269 2868 2649 NE 186 NN & MOD 239 2849 259 251 223 1249 2259 2868 2649 NE 186 NN & MOD 239 2849 259 251 223 1249 2259 2869 2869 NE 186 NN & MOD 239 2849 259 285 223 2249 2259 2825 NE 3188 NN & MOD 239 3849 3259 2825 2838 2849 4259 2835 NE 3188 N 185 183 184 185 187 186 188

TINE= 15169143 DATE: 21-AUG-79 4419426. #AREA AND VOL # 8,4422+87 3485599. #AREA AND VOL # #.3416+89 915945. HAREA AND YOL . R. 916E+88 386869. *AREA AND VOL + #,307E+88 3338927. #AREA AND VOL # 8.3338+89

PAREA AND YOL . 8,652E+88 652824.

ATTTRAD. DAREA AND YOL . 8.ATREARY

## APPENDIX I.9: PROG3-OUTPUT

Simulated potentials with 50-ft recharge head at the collapsed region.

#### STEADY STATE SOLUTION

#### MAINSVILLE BALT DDME - LONG TERM EVALUATION AFTER BEBOLUTION TO -1765 FT, ELEV.

STEADY STATE BOLUTION WITH NO SURFACE FLUX

NODE	BEPTH	'NE AD	NODE	BEPTH	NEAD	NODE	0271K	HEAD	NODE	QEPTH	MEAD
1881 2991	F. F988 -162.9 -2168.	252,62 252,62 253,62	2 1622 2932	e,6982 -162,5 -2158,	143.58 141.58 141.58	3 1883 8883	6,8888 -180,6 -2180,	187418 187418 187,18 187,18	4 1884 2884	\$,8855 -153,8 -2143,	188,91 188,91 188,91
5 1675 2705	\$,2088 -198,\$ -2198,	175,89 175,89 175,18	1835 2886	8,60#2 -196,8 -2188,	176,12 176,12 176,11	T 1887 8887	e, 8032 •185,8 •2188,	165,67 165,68 165,68	9 1889 2889 4557 5559 6557	C. 5020 -100.5 -332.5 -340.5 -1000. -1000. -1000.	175,82 176,82 169,93 169,93 169,98
. 13	E, 5379	130.23 130.23	52 1812	5,68#B	113,76	13	8,9558 -155-5	99,26	7809 6009	+1678, +1788, 6,8988	169,98 167,98 83,67
2811	-2169,	139,23	2012	-2189,	113.76	2513	-2188,	49,26	2814	-2163,	83,61
15 1615 2619	6,6598 -162,5 -2159,	72,97 72,97 72,97 72,97	1016 1016 2016	6,6886 -149,8 -2169,	57,77 59,77 59,77	1817 1817 2917	8,8888 -162,8 -2198,	47.21 47.21 47,21	1810 2816	8,6008 -169,6 -2197,	34,74 34,74 34,74
19	e,8878	22,34	8281	8,8278	10,62	15	8,8880	255.95	2563	8,8293	193,49
1819	4148,9	22,34	8281	-190,#	10,92	1581	-188,8	257.55	2581	-180,8	193,49
2819	-2185,	22,34	8282	-2193,	15,62	1585	-2188,	259.55	25	-2188,	193,49
23	5.450x	185.99	2824	8,8886	168.72	25	8,8039	174.82	25	8,8200	169,52
1823	-198.9	185.99	1924	-198,8	168.72	1825	-160,8	374.82	1825	-189,8	169,52
2823	-2187.	185.99	2824	-2180,	140.72	2825	-2158,	274.89	2025	-2182,	169,52
27	5,6876	163.29	31	C, C889	128,42	32	€,€3\$8	113.83	33	8,5228	48,81
1827	-398,A	165.29	1631	•162, A	128,42	1832	-168,9	113.83	1833	-198,8	48,61
2827	-2148,	163.29	8831	•2160,	128,37	2832	-2166,	113.83	8833	-2125,	48,81
34 1934 2834	8,480\$ -192,9 -2199,	43,42 83,42 83,42	8835 1835	E,8588 -188,8 -1168,	72,63 72,63 72,63	35 1836 2834	E,6288 -185,6 -2165,	37,69 37,69 39,69	37 1637 2837	6,8255 •198,8 •2183,	47,1 47,1 47,1
38	8,8888	34,71	31	8,8308	22,34	43	8,5888	15.55	4)	8,8893	200, A1
1838	-188,9	34,71	1837	-188,8	22,34	1845	•152,5	10.55	1821	+192,8	200, 84
2838	-2188,	34,71	2837	-2198,	22,34	2045	•2152,	15.65	2821	+2192,	200, A1
42	8,8888	173.31	43	n,8887	181.78	41	E,5585	188.54	43	8,8889	173,94
1842	-198,8	173.31	1845	-198,9	185.78	1544	-165,6	183.14	1943	-158,8	173,90
2842	-2199,	173.31	8943 /	-2168,	184.78	2544	-2165,	188.14	2945	-2188,	173,94
.46	8.85NP	167.97	47	8,8377	162,17	85	€,€988	136.51	47	0,8358	149,81
1846	-188,8	167.97	1847	+163,9	162,17	1848	-168,¶	136.51	1849	+159,8	149,01
2946	-2180,	167.97	2847	-2188,	162,17	2848	+2168,	136.51	2849	-2180,	149,01
54	1,6000	138,87	51	8,8888	124,61	52	8,8838	111.28	53	8,8869	97,83
1638	-176,6	138,87	1851	-188,P	124,61	1832	•183,8	315.28	1853	-188,8	97,83
2438	-2186,	138,94	8951	-2168,	124,61	2832	•2183,	311.28	2853	-2188,	97,84
54	\$,9999	\$4,\$2	55	0,6890	72,64	36	2,8222	89,45	57	5,5205	46,79
1854	-189,9	\$4,\$?	1855	•172,5	72,84	1836	-158,9	57,45	1857	-199,9	66,99
2854	-2188,	84,81	8755	•2193,	72,84	2836	-2158,	59,45	2857	-2199,	46,99
50	0,880A	34,62	51	5,6896	22,30	68	8,8509	10.05	61	8,5888	286,02
1858	-170,8	34,62	1857	-168,5	22,30	1868	-188,6	16.50	1861	-158,9	286,02
2850	-2190,	34,62	2857	-2184,	22,30	2867	-2190,	16.50	2761	-2158,	282,80
42	\$,688#	193,34	63	0,6840	186,32	68	€,6288	179.49	45	8,8858	172,7
1962	-188,#	193,34	1863	-198,0	186,32	1864	+168,6	579.49	1865	~198,8	172,7
2862	-2188,	193,14	2063	+2108,	186,31	2864	-2168,	179.49	2845	~2188,	172,7

I.141

HEAD NODE DEP	N HEAD NODE DEPTH HEA
159,28 48 9,08	9 131,35 69 9,8879 1
159,28 1868 4188	9 131,36 1259 179,9 1
159,28 2868 428	131,36 2269 2119,9 1
121,29 72 9,881	9 187,38 13 9,8829
121,29 1972 -159	9 187,39 1973 -189,9
121,38 2072 -8181	. 187,31 2873 -2158,
71,47 75 9,88	) 39,83 77 9,8889
71,49 1876 -189,	9 39,88 1077 -{89,8
71,49 2876 -218	, 19,88 1077 -\$108,
22,22 886 82,55 22,22 1888 92,55 22,22 1888 93,55 22,22 28,85	) 10,00 01 9,0000 2 5 10,00 1401 -100,5 2 , 10,00 2001 -2100, 2
105.84 88 9.881	) 175,72 83 9,0989 1
195.84 1888 -188	9 179,72 1989 -108,9 1
185.84 2884 -218	, 178,72 2983 -2199, 1
136,72 83 9,533	) 149,37 89 9,8899 1
156,72 1863 -189	9 148,57 1889 -188,8 1
196,72 2888 -2181	, 148,17 2889 -2188, 1
119,68 92 9,500	107,83 93 3,8889
119,68 1992 -169,	1 107,83 1893 -188,8
118,68 2992 -2181	1 107,83 2893 -2188,
75,85 96 8,080	) 38,67 97 9,3289
79,85 1896 -158,	1 38,67 1997 -198,8
78,85 2996 -8188	38,67 2897 -2(98,
22,13 100 9,801	19,39 191 9,8889 21
22,15 1180 -100,	1 18,88 199 +169,8 21
22,15 2180 -2100	19,88 2191 -2189, 21
167,48 184 9,581	) 177,98 183 9,8889 1
187,48 1184 -183	) 177,98 1183 -188,9 1
187,39 2184 -2181	, 177,98 2183 -2188, 1
154,73 188 9,801	1 146.19 189 8,3558 1
194,73 1188 -199,	1 146.19 1189 -198.3 1
194,73 2188 -2181	1 146.19 2189 -2188, 1
115,34 112 5,881	) 195,42 113 9,5589
116,36 1112 -158,	9 155,42 113 -195,5
116,34 2112 -2181	, 185,42 2113 -2199,
78,29 116 9,851	1 58,23 517 8,6888
79,29 1116 4,58	9 58,25 1117 -188,8
78,29 2116 4,58	, 58,25 2117 -2188,
22,80 129 9,88	) 19,88 121 0,3288 2
22,30 1120 -133,	) 19,88 1121 -159,8 2
22,38 2128 -2181	, 19,89 2121 -2199, 2
184,93 124 8,891	177.36 123 0.2080 1
194,93 1124 -158	177.35 1123 -138.8
184,94 8124 -218	177.36 2123 -2188.8
133,23 128 8,680	) 144,48 129 9,3888 13
133,23 1128 -188	9 344,48 3129 -119,8 5
153,24 2128 -219	, 144,48 2129 -2128, 1
115,01 132 0,000	194,14 133 9,4899
115,01 1132 -190	194,14 1133 -189,9
115,01 2132 -2191	194,14 2133 -2199,
49,78 136 9,39 49,78 1136 -168 49,78 2136 -219 7 142	1 77,87 137 8,8888 3 37,87 1337 -138,8 , 37,87 2137 -2188,

.

## MAINBVILLE BALT DOME - LONG TERM EVALUATION AFTER DESOLUTION TO -1785 FT. 2LEV.

STEADY STATE SOLUTION WITH NO SURFACE FLUX

.

## MAINSVILLE BALT DUME - LONG TERM EVALUATION AFTER DESOLUTION TO -ITER PT, ELEV.

STEARY STATE SOLUTION WITH NO BURFACE FLUX

300W	DEPTH	HE AD	NDDE	<b>ĐEPTH</b>	MEAD	NODE	DEPTH	NE AÖ	NODE	DEPTH	KEAD
138	8,8898	34,68	139	R, 5343	82,81	145	\$,5398	18,68	141	e, 4398	280,80
[138	-109,8	34,68	1139	-152, 6	82,61	1148	-168,6	18,68	1145	-144, 4	288,60
2138	-2188,	34,68	2139	-2182,	22,61	2143	+2168,	18,68	2141	-2144,	288,60
142 1142 2142	8,9875 -188,7 -2188,	1 42 , 37 1 42 , 37 1 42 , 37 1 42 , 37	143 1143 2143	e, 6889 -188, 9 -2165,	184,78 184,78 184,49	- 144 1144 2144	C, 6388 -188,8 -2168,	176.89 176.09 174.89	145 1145 2145	8,8898 -386,8 -2163,	168,91 160,91 166,91
346	#,#8986	166.75	147	4,6396	152,18	143	6,6388	143,32	149	e, 8999	133,91
1146	-189,#	169.75	1147	-194,6	152,18	1145	-168,6	143,32	1149	•187, 8	133,91
2145	-2188,	164.75	2147	-2165,	152,19	2145	-2185,	143,32	2145	•2187,	133,91
150 1150 2159	8,9889 •182,2 -2198,	124,19 124,19 184,19	131 1151 8131	t, 2293 -128, 2 -2158,	113.91 113.91 113.91	152 1152 2152	t, 6882 -162,8 -2183,	163,22 163,22	133 1153 2153	e,6932 -168,5 -2168,	92,10 92,10 92,10
154	8,63PA	88,63	155	8,8888	69,27	156	E,6998	. 57,57	1157	6,8848	43,71
1154	-146,8	88,63	1195	-198,8	69,27	1156	-150,6	57,57	1157	-198,8	45,71
2154	-2184,	88,83	2159	-2188,	69,27	2154	-2180,	57,57	2157	+2168,	45,71
155 1158 2138	4.8098 -168,f -2189,	33,68 33,68 33,68 33,68	159 1159 2159	E,8829 -183,8 -2163,	21,93 21,95 21,95	168 1168 2145	C, 6585 =162, A =2168,	16.85 16.82 18.42	161 1161 2161	8,8888 -189,6 -2183,	298,81 298,81 208,81
142	-190,9	192,26	163	8,4049	184,46	164	8,8882	176,61	165	6,9998	168,58
1162	-190,9	192,26	1163	-182,1	184,46	1164	-182,8	176,61	1165	-198,8	168,58
1163	-2107,	192,26	2163	-2188,	184,47	2164	-2158,	176,61	2163	-2192,	168,58
186	\$,682A	165,24	167	6,8086	151.59	168	E,6030	142.68	169	e.8039	133,31
1186	+148,9	168,26	1367	-183,9	131.39	1168	-163,R	142.68	1169	-158.9	133,3
2186	-2144,	169,26	2367	-2188,	151,64	2168	-2160,	142.61	2169	-2188.	133,3
178	0.0000	123.51	171	5,5805	113,26	172	-168,A	162,66	173	R,8248	\$1.71
1174	-100.0	123,51	1171	-198,5	113,26	1172	-168,A	182,66	1173	+180,8	\$1.71
2178	-2104.	123,51	2171	-2157,	113,27	2177	-2188,	182,67	2173	+2146,	\$1.71
174	E,8308	82,45	175	€,888#	69,81	176	E,6826	57,38	177	8,6248	43,4
1374	-198,9	83,48	1175	+182,€	69,81	1176	-162,6	57,38	1177	-160,9	45,6
2174	-2198,	83,48	2175	+2188,	69,81	8176	-2182,	87,38	8177	-2143,	45,6
178	2,0000	33,84	179	8,8282	21,41	1163	€,6233	16.68	101	8,8623	200,51
1178	-182,0	33,87	1179	•142,8	21,41	2165	+185.8	16.53	1161	-188,9	200,51
2178	-2100,	33,88	8179	•2188,	81,41	2165	+2185,	15.58	2161	-2183,	200,51
185	8,8508	145°53	183	€,8388	164,33	184	2,5038	176,81	185	-5163°	168,4
185	•148,6	145°53	1183	-162,6	154,33	1164	-152,2	176,51	1183	-198°4	168,4
185	•2168,	145°53	8163	-2168,	364,35	2164	-2153,	176,31	2185	9°8888	168,4
185	8,8999	160,87	1187	E,6282	151,43	888	8,8330	162,46	169	e,6083	133,81
J185	+144,8	160,87	1187	•182,8	151,43	8815	-183,8	142,46	1169	-100,7	133,61
2186	-2188,	190,87	8187	•2153,	151,43	8815	-2168,	142,46	2169	-2186,	133,61
190	-198,8	123,30	191	8,8905	113,84	192	8,8800	182,49	193	8,8598	41,50
1196	+198,8	123,36	1191	-183,8	113,84	1992	•163,8	162,49	1193	-168,8	91,30
2195	+2148,	123,29	2191	-2188,	113,84	2192	•2163,	162,43	2193	-2188,	91,50
194	-2148,	EZ,34	195	\$,6292	\$\$,\$3	196	8,8288	57,32	197	8,5909	45,5
1194	-146,8	42,36	1195	-162,6	\$\$,\$3	1196	•185,8	57,52	1197	-168,6	45,5
2194	-2148,	63,34	2195	-2162,	\$\$,\$3	2195	•2188,	57,52	2197	-2188,	45,5
198 1198 2198	8,6930 -[00,6 -2188,	33,77 33,77 33,77	199 1199 2199	8,8322 -183,8 -2162,	21,69 21,98 21,98 21,98	282 1285 2289	8,8828 -182,8 -2182,	16.55 16.50 18.65	201 1281 2281 3281 4281 5281 6281 6281	5.8486 -185.8 -383.8 -583.8 -383.8 -189.8 -1382. -1578.	

•

,

.

۰.

... *

HAINSVILLE BALT NOME	LONS TERM	EVALUATION AF	TER DESOLUTION	10 -1748	FT. ELEY.
----------------------	-----------	---------------	----------------	----------	-----------

STEARY STATE SOLUTION METH NO SURFACE FLUX

NGDE	DEPTW	NEAD	N002	DEPTH	NEAD	NODE	CEPTH	HEAD	NOCE	CEPTH	HEAD
292 1254 2252 3262 4262	+, 6889 -198, 6 -379, 8 -529, 4 -728, 4 -128	178,88 169,97 169,01 169,03 169,79	283 1293 2203 3285 4295 9295	9,8899 -129,3 -329,9 -559,9 -789,9 -189,9	178,88 144,91 144,76 144,54 144,54	284 1284 2284 3284 4284 5284	\$,3889 -122,8 -369,8 -789,8 -789,8	178,58 169,79 169,58 169,58 169,58	203 1283 2283 3283 4283 5243	8,889 -128,8 -1239, -1628, -1628, -1678,	169,73 169,72 169,17 169,82 168,99
6282 7282 3282	-1380, -1678, -1788,	167.63 167.66 167.66	6283 7293 3293	-1388, -1678, -1788,	169,31 169,29 169,28	6284 7284 8284	-1388, -1678, -1788,	169,23 169,18 169,18	6203	-1748,	168,97
295 1285 3286 3286 4286	R.8228 -129.9 -1259. -1429. -2189,	167,11 167,11 168,77 168,67 168,57	287 1287 2287 3287 4297	8,8558 -178,3 -1238, -1288, -1128, -2188,	167.79 167.79 167.75 167.74 167.74	288 1288 2288 3288	\$,6\$08 +169,9 -1259, -2159,	165,63 155,63 165,63 165,63	785 7751 7955	\$,\$268 -188,\$ -2128,	165,78 165,78 165,77
818 1818 2819	\$880,8 -129,8 -2199,	166,28 166,29 166,21	211 1211 2211 3211 4211 5211 6211 9211	8,8559 -129,9 -309,8 -729,9 -729,9 -1298, -1358, -1358, -1358, -1578, -1578,	178,88 169,99 359,96 169,92 169,92 169,87 169,87 169,87	212 1818 2812 3812 4818 5818 6818 7818 6818	9,8808 - 188,9 - 399,9 - 399,9 - 789,8 - 789,8 - 1869, - 1869, - 1398, - 1479,	178,00 167,97 167,90 167,80 167,80 167,80 167,87 167,67 167,62 167,62	213 1213 2213 3213 4213 5213 6213 6213 6213	8.8889 +183.9 -389.8 -389.9 -783.9 -1888. -1388. -1579. -1579.	178,69 169,73 169,73 169,89 169,89 169,83 169,24 169,16
214 1214 2214 3214 4214 5214 6214 7214 8214	8,839A -142,4 -344,9 -544,6 -788,6 -1888, -1304, -1504, -1784,	170.88 169.76 169.64 369.53 169.43 169.43 169.18 169.00 169.19	215 1213 2215 3215 4215 5213 6215	9,8879 -129,9 -1259, -1589, -1579, -1789, -1748,	169,73 169,68 169,97 163,91 163,85 168,85 168,85	216 1216 2216 3216 4216	8.690 •189.3 •1230. •1498. •2188.	169,20 169,00 160,53 160,54 160,41	217 1217 2217 3217 4217	9,8883 -139,0 -1258, -1258, -1168, -2168,	167, 52 167, 52 167, 47 367, 46 167, 46
818 1218 2218 3218	9,9929 -199,6 -1259, -2199,		115 1219 2219	9,8989 -169,9 -2199,	164,97 164,97 164,98	5558 7558 7558	9,8229 •129,9 •2129,	164,99 164,99 163,38	221 1821 2821 3821 4221 5281 6281 7221 4221	9,2229 •129,3 •329,4 •529,3 •799,0 •1999, •1999, •1999, •1999, •1999, •1999, •1999, •1999, •1999,	179,69 169,98 169,98 169,93 169,91 169,88 169,88 169,83
228 1228 2222 3228 4228 4228 5228 6228 7228	3,4383 -100,3 -352,8 -508,9 -708,8 -1000, -1300, -1300, -1300, -1400, -1400, -1400,	170,88 169,96 169,68 169,79 169,71 169,51 169,53 169,52	223 1223 2223 3223 4223 5223 4223 5223 4223 7223 8223	8,6803 -188,9 -328,8 -508,8 -708,8 -1808, -1808, -1878, -1878, -1794,	178,88 169,67 169,63 169,33 169,33 169,17 169,82 168,92 168,92	224 1224 2224 3224 4224 5224 4224 6224 7224 8224	0,8228 -168,9 -320,8 -520,8 -782,8 -1828, -1378, -1378, -1378,	179.88 169.69 169.38 169.26 169.37 169.37 168.72 168.78	225 1225 2225 1225 1225 4225 4225	8.8188 -189,8 -1258, -1668, -1678, -1748, -1748,	169,62 169,39 168,88 168,59 168,56 168,56 168,58
226 1226 2226 3226 4226	8,6288 -108,8 -1258, -1688, -2188,	168.72 168.70 168.23 166.11 167.94	227 1227 2227 3227 3227 4227	9,8989 -129,9 -1259, -1458, -2188,	166,73 166,73 166,67 166,66 166,66	222 1826 2226 3224	9,8389 -199,8 -1258, -2198,	164,88 164,88 164,83 164,84	1529 1529 1529	9,3939 -[99 ₆ 9 -2] <i>4</i> 9,	162,65 162,65 162,65
5838 1538 528	9,4899 -149,9 -2189,	161,34 161,34 161,35	231 1231 2231 2231 2231 2231 2231 2231	9,5289 -159,9 -389,9 -589,8 -738,8 -1588, -1588, -1588, -172, -1728,	178,88 169,74 169,94 169,83 169,83 169,83 169,83 169,88	232 1232 2232 4232 5232 6232 6232 4232	9,3089 -189,9 -389,9 -799,9 -1809, -1389, -1789,	178,83 169,93 169,84 169,72 169,62 169,41 169,81 169,35 169,35	833 1233 2233 3233 4233 4233 5233 6233 7233 4233	8,8983 -189,8 -389,8 -389,8 -389,8 -1889, -1588, -1588, -1788,	173, 33 169, 83 169, 53 169, 51 169, 13 168, 69 168, 69 168, 56

## MATHEVILLE BALT SUME + LONG TERM EVALUATION AFTER DESOLUTION TO +1788 FT, ELEY,

STEADY STATE SOLUTION WITH NO SURFACE PLUX

NGOE	0EPTH	HEAD	N09E	92PTH	NEAD	NODE	DEPTH	HEAD	NODE	02PTH	HEAD
834 1236 2239 3234 4234 5234 6234 7234 8234	t, AtAr - 168, t - 388, 8 - 388, 8 - 768, 9 - 1688, - 1388, - 1678, - 1678,	178.87 169.57 169.38 169.19 169.71 169.76 168.75 168.26	835 8 1235 - 2235 - 3235 - 4235 - 5235 - 6235 -	, 2244 142 , 6 1234 , 1680 , 1670 , 1749 , 1749 ,	169,48 169,43 186,48 186,12 168,83 168,83 168,83	236 1236 2236 3236 4256	6,6880 - 160,6 - 1230, - 1589, - 2188, - 2188,	168,23 168,23 167,65 167,46 167,23	237 1237 2237 3237 4237	5.60H6 -190.5 -1258, -1258, -2158, -2158,	165,5 165,5 165,4 165,4 165,4
238 1234 2238 3236	4,888 -188,8 -188, -2188,	142.79 162.79 142.62 142.62	239 8 1239 - 2239 -	, 1893 162, 9 2198,	199,23 199,23 199,21	243 1245 2241	8,8888 •162,8 •2188,	154.57 154.57 154.57	243 1741 2741 3741 3741 5741 6241 7241 8741	8,8938 •188,8 •388,8 •388,8 •781,8 •1688, •1688, •1688, •1788,	378, 169, 169, 169, 169, 169, 169, 169, 169
842 1242 2202 3262 4242 5242 5242 5242 6242 6242	\$. \$245 ~ 160,0 ~ 346,0 ~ 500,0 ~ 100,0 ~ 100,0 ~ 1300, ~ 1570, ~ 1750,	178.88 897.93 187.97 187.65 187.34 187.34 187.24 197.27	843 5 1243 - 2343 - 3243 - 4243 - 5243 - 4243 - 7245 - 8243 -	. 655 365 . 0 329 . 6 309 . 6 765 . 6 1676 . 1476 . 1476 . 1764 .	178,88 169,78 169,68 169,61 168,56 168,55 168,13 168,14	294 1264 2264 3294 6264 5244 6244 7846 6244	£, 5233 -198, 6 -392, 8 -522, 6 -752, 6 -1922, -1922, -1922, -1922, -1922, -1922, -1922, -1924, -1924, -1924, -1924, -1924, -1924, -192, 6 -192, 6	178,88 169,44 169,28 168,75 168,75 168,38 168,38 166,77 167,74	245 1245 2245 3245 4245 5245 5245 6845	6,828 -182,6 -1253, -1670, -1670, -1762, -1749,	167, 167, 167, 167, 167, 167,
246 1246 2246 3246	0,887 -\$46,8 -\$258, -\$688,	167.71 167.71 166.93 166.66	847 8 1847 - 8247 - 3247 -	, 8228 160, 8 1230, 1680,	364,15 164,15 164,54 164,54	845 1843 8243 3248	\$,\$\$8\$ •163,\$ •1238, •2163,	148,38 148,38 148,41 148,42	849 1249 2249	8,8230 -100,8 -2100,	153, 1 133, 1 153, (
230 1259 2238	-2306. 8.8840 -140.8 -2168,	150,34 150,51 150,51 150,51	231 8 1251 0 2251 0 2251 0 2251 0 2251 0 4251 0 6251 0 6251 0 6251 0	. 6845 180, 9 180, 9 180, 6 180, 6 1886, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1348, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1 1448, 1448, 1448, 1448, 1448, 1448, 1448, 1448, 1448, 1448,	144,83 170,65 169,97 169,92 169,82 169,82 169,82 169,73 164,73 164,78	252 1252 2252 3252 4252 5252 6252 7252 4252	8,8888 - 100,9 - 388,8 - 582,8 - 768,9 - 1880, - 1388, - 1476, - 1768,	176,00 167,91 167,73 167,35 167,35 167,25 167,25 167,25 167,21	251 1253 2253 3253 4253 5253 4253 7253 4253	5,5465 -165,5 -304,5 -504,5 -764,5 -1665, -1376, -1476, -1760,	178, f 369, 7 369, 2 388, 8 368, 6 168, 6 168, 6 167, 6 167, 6
254 1254 2254 3254 4254 4254 6254 6254 8254	0,6186 -108,0 -340,0 -509,0 -708,0 -1882, -1354, -1470, -1762,	178,08 164,33 164,91 164,78 164,48 164,41 167,65 167,21	235 C 1235 0 2255 0 3255 0 4235 0 5255 0 4235 0 4235 0	,8038 182,8 1238, 1488, 1478, 1748,	149,16 149,11 147,43 144,98 144,98 144,98 144,87 144,87	836 1836 8236 3256 4256	E,6838 -183,5 -1250, -1460, -2183,	167.16 167.16 166.19 165.89 165.52	251 1251 2251 3251 4251	8,8009 -198,8 -1258, -1680, -2168,	162,7 162,5 162,5 162,5 162,5
234 1234 2234 2234	\$,\$260 -[40,8 -252, -2162,	137,91 157,91 157,93 157,93	839 8, 1239 - 2239 -1	8225 82,5 122,	158,83 136,85 138,82	260 1265 2255	6,6008 -180,8 -2368,	144,15 144,15 144,15	241 1241 2261 3261 5261 5261 5261 5261 5261	5,6000 -180,0 -360,0 -563,6 -1653, -1553, -1578, -1578,	178.9 169.9 169.9 169.8 169.7 169.7 169.7 169.7 169.7
262 1262 262 262 262 262 262 262 262 262	6,8346 -148,8 -348,8 -348,8 -746,8 -1468, -1354, -1354, -1478, -178,	176,03 169,92 169,74 169,36 169,27 169,82 168,88 168,82 168,82	263 6, 1263 01 3263 01 3263 01 5263 01 5263 01 6263 01 7263 01 7263 01	.0393 103,6 103,6 103,6 103,6 103,6 103,6 103,6 103,6 103,6 103,6 103,6 103,6 103,6 103,6 103,6 103,6 103,6 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 103,7 10,7 10,7 10,7 10,7 10,7 10,7 10,7 10	178,89 149,69 149,15 148,78 148,28 147,25 147,25 147,25	264 1264 3264 3264 5264 5264 6264 7264	8,6008 •180,6 •308,6 •508,8 •1800, •1800, •1300, •1300, •1300,	175,69 167,82 168,43 168,45 168,11 167,17 166,72	265 5265 2265 3265 4265 5265 6265	0,800 •182,0 =1250, =1620, =1670, =1740, =1740,	167,8 168,9 166,9 166,4 166,4 166,2 166,2

I.145

#### MAINSVILLE SALT DOME - LONG TERM EVALUATION APTER DESOLUTION TO -1765 FT, ELEV,

.

-

STEADY STATE SOLUTION WITH HD SURFACE FLUE

.

NODE	DEPTH	HEAD	NUCE	uepth	KEAD	NOCE	CEPTH	HEAD	NODE	CEPTH	HEAD
			•••						•••		
1265	-199.3	158.65	1267	-129.8	161.48	1268	-138.3	155.89	1267	-199.3	147.1
2244	·1250,	165,53	2257	-1258,	161,32	2268	-1258,	155.84	2269	+2128,	147.1
4265	-1124	193,17	4267	•2199,	161,27	7594	+<123+	102494			
278		\$38,58	. 271	8,2828	179,89	272	1,3889	178.88	273	\$.945\$	178,8
2271	-2198,	138,34	2271	-388.5	167,88	2272	4389.8	169.72	2273	*188.3	167.8
	•	• • •	3271	-588,3	169,31	3272	-588,8	169,52	3273	-599,3	168,6
		,	3271	-1223.	159,72	5272	-1589.	168,94	5273	*1229,	167.6
			\$271	-1329,	\$\$9,\$7	6272	+1389	158,78	4273	-1389,	167,2
			\$273	•1799,	167,63	4272	-1789,	160,72	\$273	-17894	167,3
274	8,2323	178,38	275	8,0888	168,93	275	8,2589	166.37	277	8,8389	169,6
2274	-328.3	148.72	2275	-1258.	148,45	2276	-1259.	165.11	2277	-123 <b>.</b> 2	169,6
3274	-368,8	148,31	3512	-1695,	166,87	3276	-1688.	164,12	1211	-1658.	168,4
5274	-1423,	147,39	32/3	-1725,	145,71	4619	46164 ⁴	104452	4475	**!***	10884
4274	-1588,	144.91	4513	-1748,	165,88						
8274	-1789.	186,37									
- 278	8,0309	154,48	279	1,8889	144,76	203		135,81	291		179,8
2278	-142,7	134,40	2279	•2158.	144.78	2228	-132.8 -2188.	135,81	1291 2281	-138,8 -328,8	167,7
3278	-2183,	154,44		••••	• • • •			••	3281	-589.8	169,8
									5281	-1908.	149.7
									4241	-1389,	169,6
									14281	-1798,	167.6
282	9,0989 -182.8	179,38	283		178.89	. 284	*	178.28	285	3,8883	148,9
2212	-348,8	159,54	2283	-328,3	169,38	2234	-388,8	168.78	2283	-1258.	168,8
3282	-728,3 -799,3	169.22	5283 4283	+588,8 =788,8	168,51	3284	-120.8	168,39	3283	-1628.	166,2
2585	-1889,	168,76	5283	-1228.	167.69	5284	+1524,	147,40	\$283	-1723.	163,7
7252	-1678.	188.71	1213	•1389. •1578.	167.28 168.58	1284	+1388, -1478.	166,91	6283	+174 <b>#</b> .	145.4
8282	-1789,	160,71	\$283	-1788.	166,99	4244	•L789.	145,33			
286	9,8828 -188-3	166,25	287	8,8828	160,39	233		153.91	287	8,8848	143,9
1285	-1258,	145.99	2247	-1258,	140,21	1218	-1258,	153,91 153,99	1287	-120,0 -2110,	143,9
326 <b>6</b> 4886	-1053. -2159,	164,61	- 4287 - 4287	-1638. -2158.	168,17	3599	-2108,	153,99			9 - a <b>1</b> 0 1
279	a, 5898	133,81									
1548	-100,8 -2100,	133.81									

APPENDIX J

## DOSE RESULTS

C

• .

### APPENDIX J

## DOSE RESULTS

Listed in this appendix are the computer output from the PABLM dose model calculations. Dose burdens are reported by radionuclide, by organ, for times of intrusion 100 and 1000 yr after closure, and for differing time periods of ingestion. All doses presented are for total lifetimes, taken to be 70 yr.

The term "plant life" refers to the time of ingestion of salt. This is also included in the title information of 1/70, 10/70, 25/70, and 50/70, respectively, representing ingestions of 1, 10, 25, and 50 years for the 70-yr lifetime. The term "MI" stands for maximum individual, taken to be a person who consumes 1800 g of salt from the contaminated mine each year. The term "POP" stands for population doses, taken to be for 15 million such maximum individuals.

#### CUMBINED PATHWAT SUMMARY TOTALS PABLM VERSIONS (883)90 Iotals by Nuclide For Specified Organs (Internal Doses Only's Case Titles Run For Aisap Sulution Wining, Difect ingestion igs year decay, 1978 Mt Add Dose Commitmet Summary for Dose-Vear to OP & 1, year plant life 440

IRRIGATION CROP PATHWAYS	OFF
AIR DEPOSITION CROP PATHS	477
AUUATIE POODS PATHRAYS	CN .

			9831	LE AND TOTALE	REPORTS	ED IN AEM			
RADIO	NUCLIDE	TOTAL BODY	t	SONE	Ť.	LUNCA	8.	THYROID	1
		A	ii.		-			*********	
14	3	3.72-62				3.02-45	•	3.02-03	
C	14	2152-03		1.32-04		2.52-43	•	2.52+63	Ú.
- 41	59	1.68+84		9.42-84		.0	0		i i
- Mİ	63	2,88+95	Ū.	8.3E+61	Ĩ	10	•		Ì
31	79	5.02-04	U		ė				i i
PO	107	3.02+08	é		i	. 0	•	.0	ő
EU	154	4,8E-04		5,52-95	ō	ı İ			Ó
u	254	2,32+03		3,72+42	÷.	1		. 6	
Ų	236	3,62=04		5.82-03		•			i i
80	90	1,72102	68	7.22+02	79.	+0	6		ŧ.
	<b>4</b> #	4,8E-85		1,82*03		• 0	•		
23	43	7,6E+68		3.7E-08			•		
NB	42H	1.52-47		2.5E-03	• •			.0	•
10	44	1,72+03	•	#.7E*03	•	Sistia	•		•
불여	150	5.it+45		L.8E+#1	8	10	•	1.02-43	•
- 88	1254	• <b>•</b> ••••••••••••••••••••••••••••••••••	•					.0	6
- 58	159	3.02-08	9	1.22-07		• •		2,12-49	•
1	129	8;9E+68	•	\$166+##		4	•	8,3E+03	
- C3	113	1,58+15	•	2.)E-84		2+22-43	<b>Q</b>	14	•
_ <u>C</u> 1	137 -	5212401	•	8.3C+91	2	3.72+44			- • •
34	1378	•	•	.0	•	•	0	1.	•
\$H	191	1,42+63	•	3.5E+84		• 0		4	•
TH	530	2.7E-02		A.7E-03	•	+0	0	• <b>*</b>	
RA.	559	1,52+04		2.7E-04	•	.0	0	•	
88	222		•		•	• 0		9	
	612	5,52.47		8.2E-96	8	• 6			•
	210	1,1E=10		1.82-19		• 0		. 9	0
PO	210					. 4		.0	0
47	237	N, EE+04	0	1.45.45	•	• •	•	. 0	9
PA.	233	1, <u>0</u> E+ <b>0</b> #		4.0E-05	0	+ 0			0
	533		3		0	.0	8	• •	•
11	224	•		• •	•	• 0	0		•
	223	1 <b>1</b>		• 6	•	• 9		· •	•
45	223			• •	•	• 0		+0	0
	234	·		y, 42=03	•	• 0	a a	÷9	•
17	234	• •		•	0	• 0		••	0
	5384	• •		•	0	• 0		4 P	ņ
	234				0	• 0		• •	0
	245	4,12-03	U U	2.16-03		• 0		• 0	
	545	1.36-43		5.36-05			7	• 7	
	234					• •		•	
	344	3 16-43		1.36791	1	••	, i		
	344	C+10-46		0.at-41		••			
	644		•				4		3
v	240	•••	0	. 9	0			.0	0
	240	3,01-01	0	7.7E+00	9	• 0		• 0	0
A.4	543	5.45-05	0	7.9E-01	6	40	0	40	0
- NP	534	5,25.46	0	5.3E*07	8	• 0	0		
	234	5172+01	•	4.8E109	8	• 8	0	<b>4</b>	0
10	<41	1.45.05		2.52-01		.0	0	40	9
4.7	<b>(</b> 9]	7,22+0 <u>0</u>	3	1.96402	19	+0	8	.9	0
				********				*********	
- CQ (	45, W	«,« <u></u> ,« <u>,</u> + <u></u> ,«	100	7,9772	180	3.72+09	108	\$.3E-03	180

CUMBINED PATHWAT SUMMART TUTALS PABLM VERSIONS	682779
TOTALS BY NUCLIDE FUR SPECIFIED URGANS' LINTER	NAL DOSES ONLYS
CASE TITLES NUN FOR AISAP SOLUTION MINING, DINECT INGESTS	DN 100 YEAR DECAY, 1770 POP
ARE DOSE CUMMETMET SUMMARY FOR DOSE-YEAR TO DE A L	. VEAR PLANT LIFE

T.SE+01 3.8E+02 .0 .0

. 0

•0

• 8 • 8 • 8 • 8

...

11

\$.5E+07

..

-3.38762-5.58762

THYRDID

.....

1.02+62

.

2

9,52+04

-

T, SE+6T 3, 8E+07 9 0

X

0 đ õ

6

. . .

ŧ .

.

Ĭ - • •

:

....

60

:

z

i

8

Ì

8

Â

8

Ā

٥

ō

۵

100

. ē 8

.

éa.

8

•

49

¢

¢

ě.

0

0

0

8

Q Ô

4

0

۵

.

109

•

INRIGATIUN CROP PATHWAYS DFF Air Deposition Crop Paths off Awwatic Foods Pathways Gy

DJEE AND TOTALS REPORTED IN HAN-REH B BDHE E LUNGS

9 75

1.4E+04 1.4E+04 1.2E+07

1.8E+00 4.2E+01 3.5E+03 3.5E+08

.0 5.2E+03 1.3E+03 4.0E+03

2.92+95 9.0E=01

.0 .0 1.12+05

1.12+04 .0 3.12+04 3.42+05 .0 1.92+08 9.62+06

1.41+10

100

• **__** •• • • • •

RADIONUCLIDE

PU 244 PU 240 PU 240 An 243 NP 239 PU 241 An 241

TOTALS

.....

۰.

241 241

Ĺ

TOTAL BODY

.

----

7,32,763 3,42,463 4,42,693 4,42,693 7,52,493 7,52,493 7,32,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,42,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,44,493 2,4

7.6E-01 1.2E+02 1.3E+03 3.1E+00

2,25+02 4,05+01 2,75+03

5, 32, 40 1, 62 403 1, 52 404 1, 52 404 1, 52 404

+15E++3

4,52+05 4,52+05 4,52+05 4,52=01 3,52+05 1,62+05 1,12+06

3.32104

٥

٥

0000000

1...

-

1

84

!

J.3

#### CUMBINED PAINWAY SUMMARY TOTALS PABLM YERSIDNE (82370 TOTALS BY MUCLIDE FOR SPECIFIED ORGANS (INTERNAL DOSES OMLY) CASE TITLES RUN FOR FISER SOLUTION MINING, DIRECT INSERTION 100 YEAR DECAY, 10775 MI 400 DDBE COMMITMET SUMMARY FOR DOSE-YEAR 70 DF 4 30, YEAR PLANT LIPE 440

.

#### IRRIGATION CROP PATHWAYS OFF AIR OEPOSITIIN CROP PATHS OFF Aquatic podds Pathways om

			0011	IS AND TOTALS R	EPORTE	B IN AIN			
RADIO	MUCLIDE	TOTAL BOOT		BONE	Ť	LUNCS	1	1204010	1
ağêãe			ésè -			********		iterregard (	
H	3	9,0E-#\$	•			3.0E-43	•	3.02-43	
t	14	2,55+++	•	1.32+03	•	2,52-88	•	2,32-68	÷.
NE	39	1.11-03		9,42-93					Í
NZ	43	8,82+01	÷.	8.32+08	. Á	.0	•	. 0	Ĵ.
SE	79	3.02-83						40	ò
P0	107	3,02+07			j.			.0	ė.
EV	150	4,82-53	•	9,52-94	i.	- i İ		. 0	ė
U	234	2,32+02	÷.	3.75+81					÷.
U	539	3,62+03	•	3,82-92	Ú.				÷.
- 19	78	1,92103	15	7,22+03	75	.0	8	<u>.</u> .	÷.
T	98 .	8,8E-94		1.8E-02	•			<b>.</b> •	- <b>i</b>
ZR	73	7,8E+87		3.78-63			•		•
- 48	434	1,82-91		2.JE-03 ·			•	. 7	
10	11	1,72044	1	4,7E+48	•	3,82+43		4.2	•
8 N	159	5,12+84	•	1,38+02			•	1.02-04	•
- 58	1268			. <b>I</b> .	•	<b>4</b>	•		8
- 33	159	3,92-07		1,2E-96	0		•	2,51=08	8
1	154	3,02+43	•	2.5E+03		• •		6,\$E=02	
Ç 🕽	139	3,52+84	•	5,15-43	0	8,22-64	•	÷	
<b>C</b> .	137	5,12102	•	2,3E+02	5	3+7E+01	**		
- 14	137#	• !			•	10	•		
	151	1,42+94		3.5E+03	0	••	•	.0	
11	530	8.5E+43		8.25-08		• •	•		0
	226	1415-43		2,42-03		••		•	
	488				•	•		• •	
	210	5.25-83		\$.2E-83	•	+0	9	. 9	2
11		1975-84		1.52-07	•	••		••	•
	210	<b>1</b>				• 9		é.	
	231			1.05.41	•	• 0		••	
	233	1146-41		8,92-97	0	•0		••	•
	(3)	• •			ē.	• •		• • •	0
17		4 <u>1</u> .		•	9	•		+0	
	273	• •		•		•		•	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~				a			• •	
- <b>X</b>	<	4945.43		1.46-05	0	• •		••	
	234	• •				•			
	234.	• <u>*</u>		• 2					
	343					• •			
	343	1 28-42		2.15-12		••		• •	0
N	210	1986-06		2444-VI				•0	
<b>PU</b>	218	A. 18400					Å		
64	244	2 58-41	ž		1	•	×		
- <b>ž</b> u	244						Ň		
		••		••		••			
<u>.</u>	240			.0	ø			• 0	0
	240	3,42+00	•	7.46701	•	10		10	0
	243	5,52-01		7.52700	•	6 D		6 <b>0</b>	•
N	237	2,32.07		5.3E+06	ė.			10	9
PU	. 534	2,2E+00		4.5E+01	0	••			0
	<u>2</u> 41	1.52.01		2.75.99	.1	• •		14	•
914	<b>C</b> =1	0475741	3	[******	10	4		•	•
			***		104				
101		4746483	148	4,35443	100	3472441	144	n432-45 1	100

#### COMBINED PATHWAT SUMMARY TOTALS PABLM VERSION? Totals by muclide for specified organs (Internal Dobes omly) ease fitles mum for wisap solution mining, direct indestion iso year decay, 16770 pro 000 dobe commitmet summary for dobe-year to df a 10, year plant life 640

#### IRRIGATION CROP PATHWAY& OFP Air Deposition Crop Pathg Ofp Aguatic Poode Pathway& Dy

· •--

.

۰.

.

.

	•	·· ·	DOSES	AND TOTALS	REPORT	ED IN MANUEEH			
RADIO	NUCLIDE	TOTAL BODY		SONE	1	L'UNG\$	1 <b>t</b>	THYRDID	1 T
		80000-000	ès#			********	èse 👘		<b></b>
- 11	3	2°435405				7+5E+#2	1 <b>1</b>	7452+0E	•
C	14	3,82+03	0	1,92944	•	3.62+83		3.82+03	•
Ň1	<u>\$</u> 9	· 2.32+04	÷.	1.4E+05	0		, <b>t</b>		8
41	43	4,22106	i i	1122108	· 6	· •	8	40	•
88	79	7.52+62	° Ó		ē		•	40	
₽Ď.	147	8.32400	- <b>6</b>		- ē	11	•	49	- ÷
EU	iši	1.22402	i õ	6.2E+01	ň	1	•	40	. Ó
Ŭ.	234	3.42743	ă	5.52446			8		i i
Ū	235	5.42484	· 6	8.72445	é		6		, i
18 R	94	2.42410	BĂ	1.12111	73		0		Í
i.	90	7.21403	0	9.7E+83			Ó		- i
. żR	41	1.52481	i	3.4E482	· ě				- İ
NB	<b>4</b> 3H	2.82401	ě i	1.42482	. ě		ė		i i
ŤC.		2.42.43	i i	7.0E405	ě	6.82.42	i		ė
8N	125	7.78+43		#.7E+05	- 1 <b>-</b>	48	÷.	1.42403	- i
88	1218			114	ě.		i i	40	- i '
88	124	7.62400		1.82981	ě		1 i i i i i	5.72-01	ě
1	120	1.27+03		4.27402	ě	4.0	i i	5.82485	49
Č.	114	1.32+04		1.2E108	i	\$412+01	i.		
Ĕ	137	. A. LE+04	i.	1.36+09	· •	5.52408	- <b>9</b> 9		i i
	1374		i i		i	48		40	÷.
81	151	2.27+01		· 8.25+88		10	i		i
Ĩ.	210	3.92402		1.26104		40	i è i	4	, i
RA	224	2.42+04		1.92408			Ū.		- i
EN.	222				ě.		ė		i
PR	210	1.32401	i i	0.22402	, i		Ċ		ė
	210	1.62+82	ě	2.42-02	i	• 9	ò		i i
. Pu	210		i		ň	10	Ó		÷.
	217	1.22405	i.	7.75406	ň	.0	ō		Ō
	222					.0	. 0		
ū.	311		· .		ě		6		
- Ĩĸ	326		ě				ň		. i
	326		ě				0		ė
	225		ė		ě		ě		ă
	212	1 [°] 43.00		1.17484			ñ		é
ŤH	214		ò				0		ō
PA.	2344				ő				ò
PA.	214		ě	. 0	ň		ő		ő
C M	242	1.45+04	ō	3.18+85	ě				ē
PU	242	1.82+05	ŏ	3.6F+06	ň		ō	10	ě
NP.	314		ě	.0		1.40	i	-0	0
<b>P</b> U	314	8.18187	, i	1.95 409	ĩ	1.6	ō		Ó
CH.	200	6.86104		8.57407	÷		ŏ	.9	
- Pu	284		Ď	.0		.0	÷		ō
		• 7	-	••					
v	240	. 9	0	.1	•		0	0	•
₽Ų	240	5, JE107	•	1.1E+09	0		0	.0	0
AH	243	4,26+96	•	1.12+08	•	•0	0	•0	•
NP	237	4,32104	۲	7,9E+01		+ 0	0	.0	Q
<b>₽</b> U	.239	5, 3E+07	0	4.8210B	•		0	0	0
₽U	541	-1,5E+00	•	4.12+07			. 0	• • •	0
871	241	1,48+04	1	8.7E+10	10	- <b>- - -</b>	•	.0	0
		********						*********	
101	ALS.	3,32410	190	1.9E+11	100	2.25+08	100	4,35+83	100

-

· ·

•

# COMBINED PATHWAT SUMMART TOTALS PARLW YERSIONS 682579 Totals by Muclide for Specified Organs (Internal Doses only) case titles sum for Mesap Solution Mening, Direct indestion 100 year decay, 29378 ME and Dose commitmet Bunnary for Onse-year to Op A 28, year plant life 444

•

•

.

## IRRIGATION CROP PATHWAY; OPF AIR DEPOBLITION CROP PATH; OPF Aguatic foods pathway; On

.

•	<b>-</b> · •		0081	STATOT BAR SHE	REPORTI	LO IN REM				
RADIU	INUCLICE	TOTAL BODY	1	BONE	Ť.	LUNCE	<b>t</b>	THYPOID	1	
		4000040000	èeè .	<u>ditett</u>			ané –	iereessed		
	3	1,22-05	9		•	1+2E-04		1.22-04		
<u> </u>	14	4.5E-84	0	3.12-03	•	6.3E+04	•	4,32-44	•	
41	24	3,72+83	0	5.75-45			•	93		
	43	7,92+81		5416441	8			.0		
38	14	1978.44		1	•	•		. 0	•	
PD	197	7,32+07	•	49	•	•	•	.0	•	
En l	134	1151.04		[ 46-93	•	• •		10	•	
	234	2415-05		4.55.01	•	+ 0	•	. <b>↓</b> ♥	•	
	236 	8,75.41		3,42-01		• •		• •		
	44	4105743	*/	1,82704	11	• 0		<b>₩</b>		
_ !	11	1465-43		4438-65		• •		•		
	73	21«F=85		4.35-43		•		•	0	
	737	4705-48		3.15.42				+0		
10				1,45-43		1458-04		47		
89	1248	1436-43		4436-46	2	•		. 5195-44		
	134	1.18.00						1 10.00		
	120	3.08484		3.05-04						
	114	3.38-41								
	117	6.28442		2,32-13		3432404		47		
ii	1174			3606.08	<b>4</b>			•		
3.0	151	1.12.000		8.78941						
ĪH	23.0	5.48+45		1.95-01			ě.			
RA	226	4.22-83		4.00-03					×.	
RN	222		ě		ě		i i			
78	215	5.42+88		1.58-08					- 1	
81	710	2.0E+07	- i	4.48-99	ě		ō			
PU	210	. 0	, i	.0	ē		ē			
NP	237	1,02+02	•	4,12-91	ē	. 0	ė		, i	
PA	213	2,42+47		1.56-06		.0	6			
U	233		0	.0	i i	.0	ė		ě	
1 M	455	i i		. 0	à	.0	÷.		Ö	
PA.	552	, <u>Ú</u>		. 0	0	• 0	0	.0	Ó	
40	223	.0	0	.4	0	• 0		.0	8	
U	230	1,12-42	0	1.8E-01	0			.0	i i	
11	234	<b>ب</b>	0	.0		• 0		. 0		
<b>PA</b>	534"	•0	0	.0	0	• •	9	. 0		
PA	534		. <b>0</b>	.0	•	• B	Ø	.4		
- <u>C</u> M	245	5176+87	p	5,16+42	9		0	.4	•	
PU	245	5°1E+05	0	5,48+01	n	• 0	0	.0	0	
	238		•	• 0	8	• 0	0	• 9	0	
<b>PU</b>	534	1,32001	đ	5.9E+05	1	• •		. 0	0	
	244	8, 12 401		1.50.001	a	• 0		+0	0	
PU	244	•*	Ū.	.0		• 0	a	.0	0	
U	248	<b>,</b> 0	U	. 9	4	. 4		. #		
<b>?</b> U	248	8,02+00	0	1.76142						
¥1	243	6,42-91	Ŭ.	1.76+01	ĩ		ő			
NP	534	7,18-97	đ	1.32-05	i		ā	. 0		
PU	534	4,9E100	0	1.06102	i		ă	. 4		
PU	241	8.5L-01	Q	6.7E+90	ō	.4	ě			
- A4	241	1,02492	2	4,12103	11		ě			
		********		*********						
101	AL B	5,38+03	100	5°3E+04	198	4,2E+01	100	1.42-41	100	

J.6

#### COMBINED PAINWAY SUMMARY TOTALS PABLM VERSION? TOTALS BY NUCLIDE FOR SPECIFIED ORGANS (INTERNAL BOBES ONLY) Case fithes mun for WIBAP Solution Mining, Sifecy 190287104, 180 YEAR DECAY, 25/78, PUP *** DDBE COMMITMET SUMMARY FOR DOBE-YEAR 70 OF A 25, YEAR PLANT LIFE ***

#### IRRIGATION CROP PĂŢMŸĂYI OFF AIR DEPOSITION CROP PĂŢMI OFF Aquatic foode Pățmyayı om

		80128	AND TOTALS	REPORT	TED SH KAN-AZM			
RADIONUCLIDE	TOTAL BODY	1	EDNE	- İ	LUNCI	1	THYROID	t
6		64a	disessantes.		ABBA TRANKS	a sé		
н 3	1.92+01		.4		1497401		1.92405	
ë ia	4.47+81		2. 77 444	- I	<b>.</b>	i i	9.87481	
	R. Grant							
			3536703		••			
			3132.40		••		•	
	1476743		• •		••	v	47	
PD 147	1.12.701	0		•	•0	0	49	Q.
EV 154	1,42+03	0	5°7E44	•	• •		60	•
n 534	8,32183	0	1.42+07	•	•0			0
465 U	1,JE+#3	•	<b>5.</b> 25496	•	47		۰0	6
57 40	7,8X+10	67	8,7E+11	- 77	.+		<b>₽</b> ♥ .	
Y 90	1,62+04	0	6.72+05			6	.0	0
2# #3	3.7E+01		1.41+03	é	49	•	.0	
ND 43H	6.92+01	÷.	8.62182	ò				
TC 49	7.42+03	i i	1.82444	ò	8.37483	è		ő
EN 124	1.42408		A . 82 6 45			, i	1.07481	
88 1945						i i		
89 124	1.97401		4.97461	Ň			9.233-81	ě
1 124	1. draat		1.18441				2.17484	
	1. 27 4.4		7.81444		8.17481			
								X
							•7	
	2175773		1.35743		••			
17 630			2.02704		••		**	
NA 620			6.75709		• •		+7	
KN 202			• •	•	• •		• •	•
P# 219	8,21,41		2.35403	•			••	•
81 510	4195-95	0	8.45-05	0	+0		• <b>•</b> •	
PD 210	16	•	.0	•	40	•	• 7	•
NP 237	5°1E+02	•	6.32406		• 0	•	•9	0
PA 233	3,7E180	0	2.32+01	0	• 0	0	•0	
V 233	<b>, T</b>	8	.0	9		9	.0	•
14 229	, Ū	0	.0		.0	0		0
RJ 225		•	.0		• 0	A	.1	0
AC 225		0	. 9	0		0	.0	ð
U 235	1.42+95	0	2.52+86	8	.*	0	.0	
111 234		ė		é		ė.		
P4 23aM	. i	ő	.0	ő		6	.0	
PA 234	. d	i i						ň
EH 242	1.42+08		7.78405	ň			. 0	ň
PU 203		i.	8.18.844	Ň				. A
MP 318			- 0				. 0	
011 31A	2.184.08						. 0	Å
TH 384			3.35444					N N
PU 344			6.00.000				••	, in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s
	••	•	••				••	u
U 240	4 ^g	•	.•	0	• 0		, 9	0
PU 240	1,22+04	•	2.5E+0+		+0	0		0
E#5 MA	4,72+0+		2.52+08		.0	•	.0	
NP 234	1,12+01	•	3.02+02		+0	•	. 5	
PU 239	7.JE+07	•	1.52+09		•0	•		
PU - 241	5,4E+9+	•	1.02+08	•	• 0	•		
AM #41	5°4E+0#	2	a.12+10	17		0	.0	
					4946494924			
TUIALS	4,32+19	100	3,52+11	100	1,42+89	100	2,42+0+	180

... t

٠.

#### CUMEINED PATHWAY SUMMARY TOTALS PARLM VERSIONS TOTALS BY NUCLIDE FUR SPECIFIED DREAMS (INTERNAL DOSES ONLY) CASE TITLES RUN FOR HISP BULUTION MIMING, DIRECT INDESTION 100 YEAR DECAY, SAJ70 FOR *** ODSE CONMITMET SUMMARY FUR CORE-YEAR TO OF A 58, YEAR PLANT LIFE 644

#### IRRIGATION CROP PATHWAY OPP AIR DEPOSITION CROP PATHS OPP AQUATIC FOODS PATHWAYS DN

·· · ·	•	8081	IS AND TOTALS RI	EPORTE	D IN MANLEYM			
RADIONUCLICE	TOTAL BODY	1	BONE	1	LUNGS	<b>t</b>	THYRATA	•
**********		ii.		Rée	4300700074			
H 3	1.72+03				3,78,01		1.78+63	
C 14	1.92989	Ď	8.82+0A	i i	i.eriaa	i.	1.42488	X
41 Š9	1.22445	ň	TINTON					· •
N1 81 -	3.15467		1.87444	¥.		Ă	17	
17 76	1.87401					¥.		
80 447			•					
					••	- I		
. 54 134	5446783		2.12145		••		• •	
	1112104		2.05707		••		•0	
V 630	21/2103		443E706		••		40	•
8H 40	1,46431	57	3,21+11	74	4.		*0	ð
Y 96	7.82.04	•	1.32406	•	49		10	0
ZM 43	7,32+01	•	2+82403	•	• 6	•	•0	6
NB 93×	1142405	•	1.72+03		40	•	<b>4</b> 0	
16 99	1,92984	•	3.52+04	•	4.42403	•		ě
#N 126	<b>3,8219</b> 4		1.42406	ė.	48		7.92483	- i
88 355M		•		ě.	AD	ē		- i
83 126	3,62+01	Ú.	9.0E+01	i	40	÷.	1.87+90	
1 129	6.0E+03		F.12+01	ě.		÷.	8.75404	
CS 133	A.SE+#8	ň	1.67445		4.78444	ě.		
EB 137	1.82410		1.67410	š		8 Q		
8A 137H						1		
81 181	e İtens						• • •	
TH 914						ž	• • •	
84 334				2			*U	
	1112.0.1		1435705		• •		• 0	
							• 9	
	1102445		4,32+03				• 0	
WI 210	1146-45	•	1.42-01	•	49		• •	0
PU 210			•9		10 I.			•
NP 237	4,3E+03	C	9,92106	0	<b>9</b> 0	6	• 0	•
PA 233	7 <b>,</b> 92980	đ	4,52+01	•	0 O	•		
n 537	<b>1 T</b>	10	.9	8		0		- i i i i i
IH 229	. 6	0	.0			4		- i
RA 225		0	.0		48	0		
255 JA		0	.0	6	ÅÐ	6		à
U 236	· 1.3E+05	ė	8.5E 186	, i		- <b>6</b>		Ă
TH 234						6		
PA 2344					46			
PA 214								
fM 282	A. 83 A.M.		I BRAAA					
PU 242			1 15457				• 2	
NP 314			1.52.007		• 0		•0	
AL 235				•	• 0		• 9	
FU 230			7.12704	1	• 0	0	•	0
	1,00707	v	4.22+0H	0	• 0	"	• *	•
FD 644		0	• 0	0	• 0	p.	•0	
<b>U 24</b> 0		0		•			. 6	
Pu 240	1.45+A8	Ā	A. 18 664			1	• •	
AM 241	1.45487	· ·	4.16404	X	••		• •	
	1 1 K A A A		4415748		• 9		• •	
AF 637 A( 316	E, 15 791		4.02702		+0		• •	
FV 637	I SELVUD		2.32707		* •		•	•
	7495798		1472708		•9		• •	
	4 ¹ 45404		4*45470	15	• 9		<b>6</b>	•
					*********			
TUTALE	1**5+11	100	6,57411 - 1	199.	2,82+99 1	90	4,72+06	100

J.9

#### CUHRINGO PATHWAY BUHMARY TOTALS PABLM VERSIONS 082379 Totals by Nuclide Fur Bpecified Drgans (Internal Doses Only) Case fitles run fur Hisap Solution Hining, Difect Ingestion 1000 year decay, 1770 Hi BAB Dose Cuhmithef Summary Fur Dose-year 70 OF a 1, year plant life 444

#### IRHIGATION CROP PATHAAYS OFF AIR DEPOSITION CROP PATHS OFF AUUATIC FOODS PATHWAYS ON

#### DOSES AND TOTALS REPORTED IN REM

av +

RADIONUCLIDE	FUTAL BODY	¥ -	BONE	8	LUNGS	1	THYHDID	*
2000000000000	3 35-05	<b>.</b>			4895748244 1 35_A6	<b>**</b>	3 36_AK	***
N) 59	1 65 -04	ŭ	0 46 m 0 4	<b>U</b>	#+#E=V3		<b>E : E E - U 3</b>	v.
NI 66	5 26-05	Д	0 65×04	<b>v</b>	••	<b>.</b>		
SF 70	5 05406		¥,36-04			v ۵	• <b>U</b>	U A
963 147	1 01-00		• <b>V</b> 3	, v	• •	~	<b>a</b> v (	4
11 334	3,45-44							, v
U 214	1 65-04		4.96-95 5 65-01		• <b>v</b>		• •	u A
24 91			3.76-43		• •	Ň	• •	U A
NH DIM	1 46-07	0 0	3.76-08	, v	• •	~	• •	
10 430	1 95 405	Ň	6.36-40 A 78-65		8V 8.85-06			v
AN 134	6 18-05	, v	4.16-03		3105-08	11	1 05-05	
8H 13AM	3416-03	Ň	1.05-03	Ň	• 0		1.00-03	, v
AM 134	5 0F-0H	Ň	A 35 -0 3	, v	• •	, v	•₩ Э.//800	
1 120	3.05-00		3 46-04		• •			
1 167 64 136	8 68-05	Ň	2 15-04		19	. <b>V</b>	4.35-43	
AM 181			8.15-V4	v	2.22 -47	44		
1M 220		Ň		0	• 0	v A	• •	v
PA 236	2,46-02	¥.	1.15-03		• •	<b>u</b>	• •	
84 335	<b>*</b> • <b>ve</b> =v <b>e</b>	2	3.05-04	U A	• •	U A	• 0	, v
	1 48 - 0 E	0	• U • 35 m 0 T	0	• 0	0	• V	, v
FR 610	3 16-04	, v	1.25-03	0	• 0		* V	0
	641E-00		3.75-00		+ V		• 1	0
ND 314	3 15004	, u		0	• 0	0	• 0	0
HF 637 HA 311			4.05-12	, W	• •	v	• •	U
··· ···	5 4 0 5 4 U D	<b>U</b> 31	1,35-07		• 4	u A	• 1	
IM 330	• •	U N	• •	, v	• 4		• 0	0
PA 335	• •	v A	••	0	• •	U	• 0	0
AC 223	• "	U N	.0	Ð	•0	9	• 0	
		Ų,	• •	0	• 0	0	• 9	0
0 230 Tu 11/	4.42-04	U	7.46-03	0	•0	0	•0	0
175 gr 344 DA - 3 T (1-41	• •	0	• 0	0	*0	0	•0	0
FF 6344	• •	v	• 4	U	• 0	0	+0	0
FA 234	• • • • • • • • • • • • • • • • • • • •	U U		0	•0	0	•0	0
	1.35-00	U U	3.50-05	0	• 0	0	• 0	0
ND 310	1.35-03		5.25.05	0	• 0	0	s 0	0
	• •	v	• 9	0	+0	0	• 9	0
PU 040	0,40-04		1.35-02		• 0	9	• 0	0
	3.45401	14	7.12400	15	• 0	0		0
AFT 243	6,76-06	1	7.42-01	1	• 0	0	• D	0
NT 239	C. 72+08	Ű.	5.08-07	0	• 0	0	.0	0
En 534	8 JE = 0 I	¥.	7.82+00		• 0	ρ	• 0	Q
PU 241	1.08+07	Ű	4.8E=06	0	• 0	0	.0	0
AM 241	1.7E+QU	73	4,5E+01	77	• U	0	•0	0
TOTALS	2 35400	100	E 75401	100	***********	106		

1

#### 

CUMBINED PATHWAY SUMMARY TOTALS PARLM VERBIDY2 TJTALS BY NUCLIVE FOR SPECIFIED ORGANS (INTERNAL DOSES ONLY) CASE TITLES RUN FOR MISAP SOLUTION MINING, DIRECT INDESTION 1000 YEAR DECAY, 1770 POP ### DUSE COMMITMET SUMMARY FOR DOSE-YEAR 70 OF A 1. YEAR PLANT LIFE ###

•

1.00

÷.,

.

IRRIGATION CROP PATHWAYE	OFF	
AIR DEPOSITION CROP PATHE	OFF	
 AQUATIC FOODS PATHWAY	อีพี -	*

			DISES AND TOTALS REP	JRTED IN HANGREH		
RADIO	NUCLIDE	TOTAL BODY	V BONE	LUNGS	t thypoto	¥
с С	i d	E 16183	8			
NI	50	2.55405				0 A
NI	57	9.85+02	n 1_4F+n4	•0	й <u>а</u> й	A
8Ē	79	7.55+01		-0		•
PD	107	9.5E+01	ð o			· · · · ·
Ű	234	9.22+04	0 6.95+05			6
Ũ	236	5. 5E+03	A AF TOU			<u>×</u>
2.9	93	1.56+00	0 5.65+01			A
NA	93M	2.8E+00.	0 3.4E+01 (			X second production of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec
10	92	2.0438.5	0 7.0E+02	8-8E+01 1	.0	ò
<b>SN</b>	120	7.76+02	0 2.72+04	) •0	\$0+30.1	Č sa se se se se se se se se se se se se se
36	126M	.0	0 .0		.0	Ō
38	126	7.62=01	0 1.8E700		3.72=02	ð
1	129	1.26+02	0 4.2E+01 (	) +0	9.4E+04 9	
C 8	135	1.5E+03	0 3.2E+03	\$ \$042 A	• • • • • • • • • • • • • • • • • • •	ð
5 H	151	5.05-01	0 6.35400	)	.0	0
TH	230	5,1E+02	0 1.6E+04 i	a 0 11 1		Ó
RA	559	3.0E+05	U 4.5E+05 (	) •0 (	.0	0
RN.	222		0.0	.0	.0	0
<b>P</b> 8	210	5.5E+02	0 1.8E+04 (	) +0 (	, •0	0
61	210	3,2E+01	0 5.5E+01 (	•0 (	D +0 · · · · ·	0
₽U	210	• 0	0 .0 . (	) +0 (	• 0	0
NP	237	3,12+04	0 7.UE+05 (	) +Q (	5 .0	0
PA	233	3.8E=01	0 5*55+00 (	) +0 (	0	0
U	233	.0	.0	.0	.0	ñ
TH	554	• U	v .0 (	) +0 (	.0	0
<b>R4</b>	552	• Ū — — — —	0 .0 (	) •0 (	• 0	ð
AC	552	• U	0.0	•0 •	0	0
U	23A	6,5E+03	0 <u>1.1E+05</u>	) +0 (	<b>,</b> •0	0
TH	234	• U	U .0 (	•0	• 0	0
PA	2304	•0	0	•0	•0	0
PA	234		• • • • • • • • • • • • • • • • • • •	• • • •	•0	0
<u> </u>	242	5.35+01	0 5.2E+02 0	• • 0 . (	•0	0
PU	212	I. 46+04	0 3.8E+05 r	• • • •	•0	0
NP	239	.0	0 .0 (	• • • •	• 0	Ó
PU	230	9,32+03	0 1.9E+05 (	•0		0
PU	540	5,1E+06	19 1.1Et08 12	+0	•0	0
6, P ¹	243	a,1E+05	I 1.1E+07 (	•0	•0	0
NP DV	239	a.0F=01	P 7,4E+00 (		•0	0
PU	739	3,5E+05	7 7.25+07	• 0	• • •	0
PU	241	5.1E+Un	0 7.25+01 (	• • • • •	•0	0
₫ M	241	5+96+01	73 6.78+08 71	• 0	•0	0
	*******	P#72#7492# 41			· · · · · · · · · · · · · · · · · · ·	•
101	4L.S	3.5E+07 10	19 <u>5,6E+04 1</u> 00	) 7.5E+02 10	1 9,4E+04 10	ŋ

í

٠

-----

• .

.

## CUNBINED PATHWAY SUMMARY TOTALS PABLM VERSION2 082379 TOTALS BY NUCLIDE FUR SPECIFIED ORGANS (INTERNAL DOSES ONLY) CASE TITLES RUN FOR WISAP SOLUTION MINING, DINECT INGESTION 1000 YEAR DECAY, 10/70 HI #4# DOSE CONMITMET BUNMARY FOR DOSE-YEAR 70 OF A 19, YEAR PLANT LIFE ###

## INHIGATION CRUP PATHWAYE OFF AIR DEPOSITION CROP PATHS OFF AUDATIC FOODS PATHWAYS ON

DUSES AND TOTALS REPORTED IN REM

HADIUNUCLIDE	TUTAL BODY	8	BONE	x	LUNGS	x	THAKOID	8
	**********		**********			<b></b>	74 <b>44</b> 788844 3 35-0/	***
6 14 6 14	2,82+U4	U a)	1.1E-U3 0.46m01	0	£+22+U4	44	¢.28-04	
NT 11	1,05+03	U	4.46-03	Q .	• 4	<b>v</b>	• <b>u</b>	4
NI 03	3.55-04	v	4,32-03	Ŷ	••			×.
8E /7	3.05-03	U A	• 9	, v	• •	Ň	• II	
	3.02-07	V		0		u o	• •	v
u 234	C. DL -UZ	U	4.0E-U1	0	• 0	U O	• U	U U
U 236	3.02-03	0	2.46-05	0	•0		• U	
<u>ZK 43</u>	4.05.01	0	3.75-05	0	• 0		• 0	0
	1.02.00	0	5.3E-05	0	- 0		• 9	0
16 99	1.46.04	0	4.76-04	0	2.0E-02	11		9
DN 150	5.12-04	0	1.00-02	0	+ 0	ų	1.05-04	9
28 150m		0	• 0	0	• 0	0	<b>, 0</b>	0
20 156	5.02-07	0	1.22406	0	• 0	0	2.45-00	0
1 150	8.0E-05	0	2.82405	0	• 0	0	0,3E=0%	99
C8 135	8.9E+04	0	5-1E-01	0	5.3E+04	44	• 0	•
SM 151	1.7E=07	Q	4.22-06	0	• 0	0	• 0	0
TM 230	5. dE=04	Q	1.05+05	0	• 0	0	•0	0
RA 226	1,4E+01	0	2,9E+01	0	• 0	0	• 0	0
RN 222	• 0	0	•0	0	• 0	0	• 0	<b>Q</b>
PB 210	4. SE=04	0	1.2E-05	0	• 0	0	•0	0
<b>BI 510</b>	2,16+07	0	3.7E+07	0	• 0	0	+0	0
PU 210	•0	0	•0	0	• 0	0	• 0	0
NP 237	1.98-05	0	4.4E=01	0	• 4	0	• 0	Q
PA 233	3.4E=07	Q	1.5E=06	0	• 0	0	• 0	0
n 533	• ¥	0	• 0	0	• 0	0	• 0	0
IH 550	• 9	0	• 0	0	• 0	0	• 0	0
RA 225	• ^y	0	•0	9	• 0	0	• 0	0
AC 225	6 Û	0	• 0	0	• 0	0	• 0	0
U 238	4.4E=Q3	J	7.4E=02	0	• 0	0	• 0	0
TH 234	<b>.</b> U	Ű	• 0	· 0	• 0	0	<b>*</b> 0	0
PA 234M	• 9	0	.0	0	• 0	0	.0	0
PA 234	.0	0	<b>,</b> 0	0	• 0	0	,0	0
CM 242	1,52+05	Ų	3.56-04	0	• 9	0	• 0	¢.
PU 242	1,2E=02	0	<u>2.4E+01</u>	0	0	0	• 0	٥
NP 236	. 4	0	.0	0	• 0	0	• 0	0
PU 238	0,1E=03	0	1,2E=01	0	.0	0	• 0	0
PU 240	3.26+00	14	6.7E+01	12	.0	ð	.0	0
AM 243	2.68=01	1	7.0E+U0	1	. ()	0	.0	0
NP 239	2.7E+07	0	5.0E=06	ō	.0.	0	.0	0
PU 239	2.26+00	9	4.SE+01		• 0	ò	.0	ō
FU ENI	1. 30 -00	U	4.85-05	Ŏ	.0	ð		ò
AM 241	1.06+01	73	4.3E+02	17	<u>، ۵</u>	Û	.0	ā
	********		*********			***	*********	
TÜTALB	2.26+01	100	5.5F+02	100	5-05-04	100	6.35-02	100

١,

)

CUMBINED PATHWAY SUMMARY TOTALS PABLM VERSIONS 1JTALS BY NUCLIDE FUR SPECIFIED DRGANS (INTERNAL DDSES DNLY) CASE TITLES RUN FOR MISAP SOLUTION MINING, DIRECT INDESTION 1000 YEAR DECAY, 10770 FOP APA DDSE COMMITMET SUMMARY FOR DDSEWYEAR TO OF A 10. YEAR PLANT LIFE AAA

•_

#### IRRIGATION CROP PATHWAYS OPF AIR DEPOSITION CROP PATHS OFF AWUATIC FOODS PATHWAYS ON

5

#### DOSES AND TOTALS REPORTED IN HAN-REM

RADIUNUCLIDE	TOTAL BODY	R	BONE	X	LUNDS	*	THYROID	X
********				***	*********		********	
C 19	3.JE+03	0	1.76+04	0	3+3E+03	44	3.3E+03	0
AI 59	5°2E+04	Ū	1.46+05	0	• 0	0	.0	0
NI 63	4.9E+03	0	1.46+05	. 0	• 0	0	• 0	Q
3E 79	7.5E+02	0	• 0	0	• 0	0	• 0	0
PD 107	4,5E+00	0	•0	0	• 0	0	<b>●</b> 0	0
U 23a	4,2E+05	0	6.9E+06	0	• 0	0	.0	0
n 539	5,3E+04	0 '	8.8E+05	0	• 0	0	.0	0
ZR 93	1.55+01	0	20+36.C	0	+0	0	• Ū	0
NB 934	2,02401	0	3.4E+05	0	• 0	0	• 0	0
TC 99	5.02+03	0	7.0E+03	0	8+8E+02	11	• 0	0
SN 150	7.7E+03	0	2.7E+05	0	• 0	0	1+62+03	0
26 15PM	.0.	0	• 0	0	• 0	0	.0	0
88 156	7.62+00	0	1.8E+01	0	• 0	0	3.7E+01	0
1 129	1.26403	0	<b>4.2E+0</b> 2	0	• 0	0.	9,42+05	97.
CS 135	1.JE+04	0	3.2E+04	0	3+3E+03	44	<b>6</b> Ū	0
SM 151	5*9E40û	G	6.3E+01	0	• 0	0	. • 0	0
TH 230	4,8E+03	0	1.62+05	0	• 0	0	• 0	0
RA 226	5°42+0P	D	4.3E+06	0	.0	0	.0	0
8N 222	<b>0</b>	0	• 0	0	• 0	· • •	• 0	0
P8 210	6,5E+03	0	1.8E+05	0	• 0	0	.0	0
91 210	3,26+00	0	5.5E+00	0	• 0	0	• 0	0
PU 210		0	• 0	0	• 0	0	• 0	Ø
NP 237	2.96+05	0	6.6E+05	0	• 0	0	• 0	0
PA 233	3,8E+00	1	5.56+01	0	• 0	0	• 0	0
U 253	.0	0	• 4	¢	+ 0	0	• 0	0
P55 H1	.0	0	•0	0	• 0	0	.0	0
RA 225	0	0	_0	0	•0	9	.0	0
655 DA	0	U	.0	0	• 0	0	• 0	0
U 235	6.5E+04	0	1+1E+06	0	• 0	0	.0	0
1H 234	. U	0	• 0 · ·	ŋ	•0	0	.0	0
PA 2304	Ú Ú	0	.0 .	0 -	<b>j</b> Ū	0	• 0 -	0
PA 234	, Ó	0	0	0	• 0	0	.0	•
CM 295	50+36,5	(†	5.2E+03	0	# Q .	0	.0	0
PU 202	1.02+05	ŋ	3.62+06	0	• 0	0	.0	0
NP 238		0	.0	9	• 0	0	.0	0
PU 23P	9.1E+04	0	1.9E+06	0	• 0	0	.0	0
PU Zau	4.8E+07	19	1.0E+09	12	. 0	0	.0	0
A4 203	4.06+06	1	1.0E+08	1	. 0	ņ	.0	Ó
NP 239	1.0E+00	ō	7.4E+01	n		0	, ň	ō
PH 239	8.4E+07	9	A.8E+08	8		0		0
PU 241	2.7E+01	n	7.16402	ň	- 0	a	_0	. 6
AM 201	2.56408	71	A. 4E+09	11	.0	0	.0	ñ
	*********			***			*********	
TUTALS	5.52+18	100	8.25+09	100	7.5E+03	100	P.42+09	100

J.13

2

. •

#### CUMBINED PATHWAY SUMMARY TOTALS PARLM VERSION2 082379 TOTALS BY NUCLIDE FOR SPECIFIED ORGANS (INTERNAL DOSES ONLYS CASE TITLES RUN FOR WISAP SULUTION MINING, DIRECT INGESTION 1000 YEAR DECAY, 25/70 MI *** DUSE CUMMITMET SUMMARY FOR DOSE-YEAR 70 DF & 25, YEAR PLANT LIFE ***

#### IRHIGATIUN CROP PATHEAYS OFF AIR DEPOSITION CROP PATHS OFF Auuatic Puods Patheays on

#### DOSES AND TOTALS REPORTED IN REM

•-•

RADIONUCLIDE	TUTAL BUDY	*	BONE	X	LUNGS	x	THYROID	X
**********		***	*********	***		100010 11/1	***********	***
6 14 NT 50	3,35+44	, v	2.02-03	0	3+36+04	44	3135404	
	367C703 8 ufecu		2435742	ų A		Ň	.0	v 0
56 78	1 18-04	Ň	<b>E</b> +4+-4E	<b>v</b>		۰ ۵	••	
	7 58-07	Ň	• •	<b>v</b>	• •	ů 0	. 0	Å
U 234	7.15.02	Ň	1 15+00		••	ň	. 4	ŏ
U 286	7.15m02	Ň	1 25 401	<b>u</b>	- 0	۵ ۵		Ň
74 91	2.4E=06	Ň	0 160AS	v.	••	Ň		
NA GIM	# . 6E=06	0	2.7F=0E	Ň	•0	Ň	. 0	Ň
TC QD	4 78-118	0	1 25-01	Ň	1 55-00		. 0	ň
8N 126	1.45-61	0	A 55403	v A	1135-04		2.48+04	Ă
8H 126M		ă		0	••	ň	.0	6
58 126	1.35-04	0	3.05406	ŭ	.0	ŏ	6.1F=08	Å
1 120	2.45.04	ő	7.15405		• •	Ň	1.68=01	۵ŏ
CS 115	2.25-01	0	C. 15+01	Ň	K. Kr-04	4 <b>4</b>	.0	
84 151	4.45=07	0	1.15005	å	1125-04	6	.0	ň
[H 210	7.16=04	ō	3 45-02	0	40	ň	.0	
RA 226	A.6Fm01		6.46 06 6 68 401	0	.0	ň	. 0	Å
HN 222	- ()	ň		Ň	••	0	.0	~
PB 210	1. iF+03	ň	1.16402	Ň	••	ő	• •	ň
HT 210	5.55=07	ň	0 25 - 07	0	.0	0	. 0	0
PU 210	.0	0	7.EL V/	Å	••	ň	- 0	Ň
NP 237	4.45=02	ŏ	1.05+00	N N	••	ő	.0	<b>N</b>
PA 211	6.45.07	ő	2.75406	0	• 0	0	. 0	
U 211	.0	ŏ	. 6	Å	••	0	.0	ő
TH 229	, ii	ő	- 0	ň	.0	ŏ	.0	ň
RA 225		ă	••	ő	. 0	õ	- 0	Å
40 225	, Ď	ō	. 0	Δ	• •	ŏ	. 0	ŏ
LI 214	1.15+02	0	1.85+01	Ň	• 0	ŏ	.0	Ň
IM 234	. 0		0	0	••	0	.0	
PA 234M		0	- 0	Ň	• 0	ő		ŏ
PA 232	. 0	ō	••		.0	ů.	- 0	
CH 242	3.8E+05	đ	A. 65 404	. 0	••	ő		Ň
PU 242	2.7F=02	ő	S. 48-01	Ň	.0	ő	.0	Ň
NP 234	. 0	Ď	- 0	0	.0	Ň	.0	
PU 238	1.4E=02	ō	2.96+01	ő	•0	ň	. 0	Ň
PU 240	7.26+00	14	1.56+02	12	•0	Ő	.0	Ň
AH 243	6.15.01	1	1.65+01	· · ·	••	ň		0
NP 239	6.71.07	• 0	1 25+05	) = 0	.0	ő		
PU 239	4.42+00	<b>.</b> .	1.0E+02	Å	.0	ŏ	. 0	Ň
FU 241	4.46=06	. 0	1.25-04		•0	0	.0	6
AM 201	5.48+01	11	9.76402	77	• •	ŏ		
*********	********	***						
TUTALS	5.1E+01	100	1.26+03	100	1.25-93	109	1.6E-01	100

١.

#### COMBINED PATHWAY SUMMARY TOTALS PABLE VERSION? Totals by Nuclide for Specified Organs (Internal Duses Only) Case Titles Run for Hisap Solution Mining, Direct Indestion 1000 year Decay, 25/70 PDP A++ Duse Commitmet Summary for Duse-year to of a 25, year plant Lipe a++

IRRIGATION CROP PATHWAYS OFF AIR DEPOBITION CROP PATHS OFF Aquatic foods pathways on

۰ i

		DUSES	AND TOTALS	REPORTED	IN MANWREM			
RADIUNUCLIDE	TUTAL BODY	X	BONE	*	LUNGS	*	THYROID	*
**********	*********	***		***				
L ]4	0,32703	v	8.1ET04	0	0.36403	99	0.36+03	0
NI 34	245404	0	3.52705	O C	• 0	Q	• 0	0
41, 02	1.62404	0	3.02705	0		0	•0	0
3E /4	1,95403	0	• 0	n in the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	• 0	0	• 0	0
FD 107	1,12+01	U	•0	Ū	<b>♦ D</b>	0	•0	0
U 234	1,10+00	U	1.76+07	0	•0		• 0	0
	1.42703	0	2.25400	0	• 0	g	• 0	0
2F 73	3./CTU1	v	1.46703	0	• 0	0	• 0	<u>o</u>
10 00 ···	0.YCVU1		5,02-02	0	•0	0	• 0	0
16 77 96 - 496		0	J. DETUR	D	2.22.03	11	100	
84 120	1.75704	v	B. 01 TUS	U	• 0		3492403	0
21 150.	4 GEA01	, v		0	• 0		8 U	
1 130	1 0 7 5 T U 1	U D	4 48444	U	• •		7.55401	
1 167 79 112	J JULTUJ I JEANH	0	1.12103	0			2.52400	99
	3025704 6 68400	0	7.96104	0	0.3CTV3	ць в.	• 0	0
14 330		v	1.00.00	U	• 0		•0	
DA 334	1 05404	v	3.36403		•••	U.	• 0	2
44 CCO 9N 333	/ <b>*</b> VE * VO	U D	9,92400	. 0	• • •			Ū
PM 310		v v	*V	0	• •		• <b>U</b>	
	1 UL TU4		4.00100	-0	• •	Å	• •	
P(1 210	10,000	<b>n</b>	1		- 0	ě.	• • • •	0
NP 347	4 4 T 4 A T	0	A BRACT					
PA 311	0.65400	0	1.55101	U	•••	N N	• V	
··· 233		v	3+251.01	0	••	Ň	• •	
tu 220	• ¹¹		•0			Å	• [•] [•]	
PA 335	••	, v.	• *					
AF 267	•	ŏ	• •	U A		Š.	• •	2
	1 65+05	Ň	9 8F4n4	<b>V</b> .	•••	ň	•0	
TH 314	1000100		C+(F,60		.0	0	• 7	
PA JIAN		<b>0</b> .	• 7			Ň	••	
PA 244	- <b>- - - - - - - - - -</b>	ň	• •			ň	••	U 0
CM 289	8 75 +0.2		1 1540/	0	. 0	ň	- 0	Ň
PU 205	0 05+05	0	B 18+04		•0	ň	. 6	
NP 218	4.00103	ň	1.15.00	ő	. 0	ň		
PH 234	2 IF A115	ő	n 15+04		.0	ň	.0	
PH 260	1 18 448	1 4	3 36 400	13			• •	Ň
AM 201	9 15404		3 46406	16	• • •	ň	.0	Ä
VP 210	1.01401	4	1 06+03	· .	- 0	ň		
Pil 2to	7.48402		1 38403		• •	õ	• • • D	
Dil 384	7826797 5.55401		1.55462		- U	ň	• • •	
AM Žaj	5./#+08	7 1	1.41+10	77	- 1	ň	.0	ň
*********	*******	•=•	******		****		********	
TOTAL S	7.76+04	100	1.96+10	100	1.96+04	100	2.45+06	100

J.15

#### CUMBINED PATHWAY BUMMARY TOTALS PARLM VERSION2 TOTALS BY NUCLIDE FUR SPECIFIED URGANS (INTERNAL DUBES ONLY) CABE TITLES PUN FOR WISAP SOLUTION MINING, DIRECT INDESTION 1000 YEAR DECAY, 50/70 MI +AA DUBE CUMMITMET BUMMARY FOR DUBE-YEAR 70 OF 4 50. YEAR PLANT LIFE ALL

#### IRRIGATION CROP PATHWAYS OFF AIR DEPUSITION CROP PATHS OFF AQUATIC FOUDS PATHWAYS ON

#### DOSES AND TOTALS REPORTED IN REM

RADIONUCLIDE	TOTAL BUDY	x	BONE	×	LUNGS	ĸ	THYROID	x
********						<b></b>		
	1,12-03	0	5.56-03	U U	1+1E+03	44	1.12-03	0
NI 24	7.02-03	V	4.72-02	0	0	U	• 0	0
NI OS	1.05-03	U I	4.02-02	q	• 0	0	• 0	0
3E 74	2,32-04	0	•0	0	• 0	0	• 0	a
PV 107	1,22-00		• U	0	•0	0	• 0	0
11 234	1.45-01		6.3CTUV	0		U A	• 0	0
V <b>€3</b> 5		, v	2.9E-01	0	•0	4	• 0	0
6" 73 NH 01M	4 JE-0L	ů,	1.72-04	0	• U		• •	v
TC 08	9 4E-00		3.15-04	v.	4V 5 05-00		• •	0
94 136	7845-04 2 68401	Ň	6.35-03	ů,	ו**	11	€ 98-04	
89 1344	4 1 0 E - V J	Ň	4.45-46	v	• •	Ň	3156404	.,
SH 134	2 \$6-06			Ň	• U		1 25-07	
1 120		Ň		v	• •	Å	1.66407	
• (67 CS 110	4.46.004	Ň	1 15 #03		1.15-03	ь <u>а</u> .	.0	
37 151	H. 78 = 07	ň		, v	1416-44		••	Ň
TH 210	1.15-03	0 0	1 AF-03	0	• •	Ň	- 0	, u
KA 226	8.25401		1 16400	Ň	• *	ő	••	Ň
NN 222		ő	1.10	0	• •	Ň	• •	Л
PB 210	2.26+05	0	6.05-02	Ň	• •	ő	• 0	ŏ
81 210	1.15+06	0	1. AF #06	Ň	.0	Ň	.0	
P() 210		ō	.0	Ň	••	å	.0	ň
NP 237	7.1E+02	ŭ	1.65+00	0	•0	ō	.0	ŏ
PA 233	1.3E=06	ā	7.4E+06	ŏ	•0	ō	.0	ŏ
U 233		ō	•0	ñ	•0	ō	.0	ŏ
TH 229	Ĵ	Ó	.0	ő	• 0	ō	.0	
RA 225	, ů	ō	.0	ŏ	•0	ŏ	.0	ŏ
AC 225	. 0	ō	. 0	ŏ	.0	ŏ	. 0	ő
U 239	2.28=02	Ū	3.7E=01	ň	.0	ō	.0	ŏ
TH 254	.0	Ō	.0	Ó	• 0	0	. 0	Ő
PA 23414	. 0	Ů	.0	ŏ	•0	Ó	.0	ā
PA 234		U	. 0	Ď	•0	Ô	.0	ō
CH 242	7.76-05	ů	1.78-03	0	0	ō	.0	ŏ
PU 242	4.28+02	Ū	8.7E-01	ŏ	.0	Õ	.0	ō
NP 234	J.	Ű	0	Ö	.0	ő	.0	ō
PU 23A	2. SF=02	0	4.7E=01	Ó	• 0	Ó	• 0	ō
PU 240	1,12+01	13	2.4E+02	12	.0	Ó	.0	ġ
AM 243	1.UE+00	1	2.62+01	i	.0	0	.0	Ó
NP 239	1.36-00	U	2.5E-05	0	.0	0	.0	Ó
FJ 237	1.02+40	Ę	1.78+02	8	• 0	9	.0	ó
PU 241	8.1E=UD	U	2.26-04	0	• 0	ø	.0	ň
AM 241	6.3E+01	74	1.6E+03	17	+0	0	. 0	Ô
**********	********	***						-
TUTALS	8.4E+01	100	5.UE+05	100	2.5E+03	100	5,18-01	100

**.**...

	CUHBINED PATHWAY SUMMARY TOTALS PABLH VERSIONS 082379	
•	TOTALS BY NUCLIDE FOR SPECIFIED ORGANS (INTERNAL DUSES ONLY)	
CASE	TITLES RUN FUR WISAP BULUTION WINING, DIPECT INCESTION \$000 YEAR DECAY, 50/70	POP
	AAA DUSE COMMITMET SUMMARY FUR DOBE-YEAR TO OP A 50. YEAR PLANT LIPE AAA	

'n

IRRIGATION CROP PATHWAYS OPP AIR DEPOSITION CROP PATHS OPP ANUATIC FOODS PATHWAYS ON

		DOBES	AND TUTALS	REPORTED	IN MAN-REM			
RADIUNUCLIDE	TOTAL BUDY	*	BUNE	X	LUNGS	X	THYROID	*
***********	*********	***						
C 10	1 <u>./E</u> +04	0	8 <b>.3</b> E+04	0	1.72+04	6,4	1.7E+04	0
NI 59	1.22+05	0	7.02+05	0	• Ū	0	•0	0
NI 63	5.45+04	0	7.20105	0	• 0	0	• 0	0
SE 79	3.8E+03	0	•0	0	• 0	0	• 0	Ó
PD 107	2,SE+01	0	•0	n	• 9	0	• 0	0
U 234	5.1E+06	0	3.4E+07	0	• 0	0	.0	0
U 236	2.72+05	0	4.9E+06	0	• 0	0	•0	0
ZR 43	7.3E+01	D	2.5E+03	0	• 0	0	• 0	0
NB 95M	1,46405	0	1.76+03	0	.0	0	• 0	0
10 34	1.4E+04	ð	3.56+04	r i	4+42+03	11	.0	¢
an 156	3,8E+04	0	1.42+06	0	• 0	0	7.92403	0
20 150W	• 0	0	•0	Ø	• 0	0	• 0	0
38 126	3,5E+01	Q	9.0E+01	Ô	÷ 0	0	1,5E+00	0
1 129	6.UE+03	0	5.1E+03	Ø	• 0	0	4.72+00	99
C3 135	6,5E+04	0	1.6E+05	0	1.7E+04	9 9	0	Q
3M 151	1.32+01	0	3.25+05	ð	• 0	0	• 0	0
TH 230	1.7E+04	0	5.72+05	0	• 0	0	• 0	0
RA 276	1.22+07	Q	1.75+07	0	• 0	0	• 0	0
- RN 222	• 0	0	• 0	0	• 0	0	• 0	0
P8 210	3.SE+04	0	9.0E+05	D	• 0	0	• 0	0
81 210	1.6E+01	0	5°6E+01	0	e 0	n	• 0	0
PU 210	• 0	D	.0	n	• 0	0	• 0	0
NP 237	1.1E+06	0	2.4E+07	0	• 0	0	• 0	0
PA 233	1,92+01	0	1.16+02	0	+ Q	0	• 0	0
V 233	•0	0	• 0	0	• 0	0	• 9	0
1H 554	.0	0	•0	0	• 0	0	• 0	. 0
RA 225	• 0	0	•0	Ð	.0	0	• 0	0
AC 225	• 9	Q	• 0	0	• 0	0	+ O	0
0 2 3 N	3,3E+05	0	<b>5.5E+06</b>	n	• 0	0	<b>#</b> 0	9
TH 230	.0	D	. U	0	• 0	0	• 0	0
PA 234M	• Ú	0	.0	0	•0 .	0	• 0	0
PA 234	• 0	0	• 0	n n	• 0	<u> 0</u>	• 0	0
<u>Cw 595</u>	1.12+03	0	2.62+04	n	+ 0	0	• 9	0
PU 242	5.4E+05	0	1.3E+07	C	• 0	0	• 0	<u>n</u>
NP 25R	• 0	0	.0	Ø	• 0	n	• 0	0
PU 238	3,48+05	U	7.1E+06	ŋ	• 0	0	• 0	0
PU 240	1.7E+08	13	3.76+09	12	• 0	0	• 6	0
AM 203	1.52+07	1	<b>3.</b> 8E+08	1	• 9	0	• 0	0
4N 257	5°0E+01	U	3.76+02	n	• 0	0	• 0	0
PU 237	1.22+08	9	2.5E+09	м.	+ 0	0	•0	0
CA 541	1,25192	v	3+3E+03	n	• 0	D	• 0	n
AM 501	9,42108	74	5.46+10	17	• 0	0	• ()	0
**********	********	***	********	<b>w</b> = <i>w</i>	*********			
TUTALS	1.SE+09	100	3.06+10	100	3.78+04	100	a,7E+06	100

1 - A

## APPENDIX K

## SITE CHARACTERIZATION

#### APPENDIX K

## SITE CHARACTERIZATION

This section contains a summary of the important geological and hydrological characteristics of the Hainesville Salt Dome and the surrounding region. The following discussion provides the type of local and regional geological information that is necessary for evaluating the suitability of siting an underground nuclear waste repository within a Gulf Coast salt dome.

Unless otherwise noted, the material within this chapter has been taken from a report written and prepared by Law Engineering Testing Company LETCO--(1979b). Because this study is only a methodology exercise as applied to a reference salt dome, no detailed regional or local site investigations were performed. Rather, the geologic information was obtained from the existing literature and previous studies. For an actual site assessment, detailed geologic investigations would be conducted by ONWI to remove as much uncertainty as possible from the resulting analyses.

#### REGIONAL GEOGRAPHY

This discussion of the regional geology is restricted to the region within a 200 mile radius of the Hainesville Salt Dome. The salt dome itself is located in the central part of Wood County in northeast Texas (Figure K.1). The regional surface generally slopes from northwest to southeast (Figure K.2). Elevations range from more than 2000 ft MSL in the Ouachita Mountains to below 100 ft MSL near the coast.

The region surrounding the Hainesville Salt Dome is composed of the four physiographic provinces shown in Figure K.3. Within this region lie the following major cities with populations exceeding 100,000: Dallas, Texas; Fort Worth, Texas; Waco, Texas; and Shreveport, Louisiana. The northeastern portion of the region drains easterly into the Mississippi River through the



Explanation:

- Cities.
- A Proposed or existing nuclear power plant site.

0 48 96 kilometers 0 30 60 miles



Source: Law Engineering Testing Company 1979b



 Notes: Contour interval 500 feet, with

 supplementary contour at 100 feet.

 To convert miles to kilometers, multiply by

 1.609.

 To convert feet to meters, multiply by 0.3048.



FIGURE K.2. Regional Topographic Map

Source: Law Engineering Testing Company 1979b

(


...

.

.

FIGURE K.3. Regional Physiographic Map Source: Law Engineering Testing Company 1979b

К.4

Red, Ouachita, and Arkansas Rivers. The southwestern half of the region drains to the south toward the Gulf of Mexico, through the Sabine, Neches, Trinity, and Brazos Rivers.

# REGIONAL GEOLOGIC SETTING

# Pre-Mesozoic Geology

Precambrian outcrops occur only in the Arbuckle Mountains of Oklahoma and in the Llano uplift area of central Texas. The altered sedimentary rocks include metamorphosed sandstones, shales, and a limited amount of limestones. Intrusive igneous rocks, chiefly granite but also including diorite and more basic rocks, have intruded these Precambrian sediments.

During the Paleozoic, the Ouachita geosyncline formed along the southern margin of the North American Precambrian craton. Through most of the Paleozoic, sediments were eroded from the craton and were redeposited in the geosyncline. Sediments deposited in the interbasinal areas of the craton were mainly carbonates, with smaller interstratified beds of clastics. Sediments deposited into the geosyncline, however, were mostly clastics with small amounts of carbonates.

Geosynclinal sedimentation terminated with the Ouachita orogeny during Early Pennsylvanian. The Ouachita belt is a complexly deformed zone that developed as a result of northward oriented compressional forces. Most of the regional site area is south of the Ouachita orogenic belt. Knowledge of the Paleozoic history of this area is sketchy at best; however, deep wells have encountered unmetamorphosed Paleozoic sediments on the Sabine uplift. Other geophysical evidence shows that much of the area is attenuated continental crust bordering oceanic crust to the south.

### Mesozoic and Post-Mesozoic Geology

The Gulf Coast geosyncline was initiated in Late Triassic by the combination of block faulting and rifting of the continental crust. The northern boundary of the basin was faulted along the southern flank of the Late Paleozoic Ouachita orogenic belt. The Gulf Coastal Plain to the south of the Ouachita oroganic belt is an area of low relief that borders the Gulf of Mexico. It is underlain by sedimentary formations of Mesozoic and Cenozoic age (Figure K.4). Depositional patterns in the northern Gulf Coastal Plain consist of periods of inundation, characterized mainly by deposition of limestone, alternating with periods of delta progradation and deposition of clastics. A generalized geologic column of the stratigraphic units of the site region is shown in Table K.1.

Post-salt inundations began with the Smackover carbonates in the Jurassic and continued into the Cretaceous. A subsequent period of deltaic deposition culminated in the deposition of the Wilcox Group in Early Tertiary. Succeeding deposits were alternatively marine and non-marine. Late Cenozoic deposition consisted of terrace and valley-filling alluvial deposits in the interior salt basins. These deposits grade into marginal shoreline deposits, which parallel the present shoreline and grade into marine sediments offshore. The sediments generally have a regional dip of about one degree to the south; however, posiments and negaments interrupt this pattern and form the predominant structural elements in the Gulf Coast basin.

During the Mesozoic, subsidence initiated the development of a boundary fault system above pre-existing basement faults. Subsidence on a geosynclinal scale began in the Lower Gulf Coast basin during the Cenozoic. This period of subsidence initiated several new fault zones in the Gulf Coast basin.

The development of salt domes has caused localized structural features. Movement of salt (to form salt ridges) within the Louann Formation began during the later part of the Jurassic Smackover deposition, and continued as additional sedimentation occurred. Diapirism was initiated in places where salt was sufficiently thick. In the interior salt basin, diapirism climaxed during the Mesozoic. In the coastal sale basins, diapirism did not climax until the Late Tertiary.

Over the past 30 to 40 yr, surface level measurements in the Gulf Coastal Plain have shown recent vertical movements. These measurements are subject to variations of local, natural, or human-induced subsidence mechanisms. The cause and possible long-term effects of this movement are not yet conclusively



Source: Law Engineering Testing Company 1979b



TABLE K.1. Stratigraphic Column East Texas Basin

Source: Law Engineering Testing Company 1979b

known. However, studies of Quaternary terraces have shown that there are no significant variations in level of the terraces, indicating that there has not been subsidence or uplift resulting from recent tectonism.

# LOCAL GEOLOGY

# East Texas Salt Dome Basin

The East Texas Salt Dome basin occupies the central portion of the East Texas embayment. The embayment is a coastal depression which occupies about 44,000 square miles of northeastern Texas. Embayment boundaries are defined by the Sabine uplift on the east and the Angelina-Caldwell flexure on the south. Sediments in the embayment range from Jurrasic to Mid-Tertiary and Quaternary in age. The East Texas embayment is thought to be controlled by down-faulted blocks on the southeast margin of the Quachita foldbelt.

The limits of the East Texas Salt Dome basin are rather arbitrarily defined, but occupies about 4000 square miles (or about 10%) of the East Texas embayment. Elevations within the salt dome basin range from 200 ft above sea level in the south to between 400 to 500 ft toward the Sabine uplift to the east and the Mexia-Talco fault zone to the west.

The basin is characterized by a marked thickening of Mesozoic and Cenozoic strata toward its center. The strata generally dip toward the Gulf at angles slightly steeper than the regional slope of the land surface. Tertiary strata form concentric outcrop patterns in the basin, being younger in the center and progressively older toward the borders.

The sediments of the East Texas Salt Dome basin record a system of marine transgressions and regressions superimposed on a progradational depositional basin. A summary of stratigraphic units from Nichols (1964, 1968) is given in Table K.2.

As a result of subsidence, between 24,000 and 25,000 ft of sediment was deposited in the basin. From the Jurassic to the Late Mesozoic, sedimentation virtually kept pace with subsidence throughout the basin. Subsidence had essentially ceased by Mid-Tertiary.

Based on the average maximum sediment thickness over the basin, and assuming that subsidence is related to isostatic adjustment from the sediment loading that occurred since the Louann salt deposition, calculations indicate an average subsidence of 0.0358 mm/year. During the Tertiary, subsidence decreased significantly to an average rate of 0.0065 mm/year. This subsidence produced a gentle basin-wide warping of the sediments. As such, each successively younger bed is less warped than the older underlying beds.

The East Texas Salt Dome basin contains 14 shallow salt domes (within 2000 ft of the surface) and three intermediate salt domes (between 2000 and 6000 ft of the surface). There are nine deep salt domes (more than 6000 ft below the surface) that may or may not be diapiric structures. In addition, there are several salt ridges that trend parallel to the basin axis.

In general, there are five external features that are characteristic of most salt domes: the salt dome, central graben, growth faults, rim synclines, and unconformities. The salt dome or salt stock itself consists of a large column of salt extending from the source layer (Louann salt) to varying depths. below the surface. The diameter of the stock is usually at least one mile and is often much greater.

Central graben faults tend to be radial and bound the salt domes. Localized faulting adjacent to the sides of a salt dome is common and is believed to result from shearing of the sediments because of the relative upward movement of the salt dome. Salt domes located within the East Texas Salt Dome basin are not necessarily independent structures, but are often associated with larger salt ridges and pillows. In some cases, several salt domes will develop from the same salt ridge.

Rim synclines are structural depressions that partially or completely encircle most domes. The depressions are thought to be formed by the sinking of overlying sediments into the space left by the lateral flow of salt into the salt dome. The ages of the sediments that thicken into the syncline indicate when the salt flow began. Unconformities, which are localized above the salt dome, also help to indicate when salt flow and dome growth began. Each unconformity marks an interval of relative uplift of the dome area with respect to adjacent sediments in the basin where deposition was continuous.

Sourc	ce:	Law E	ngineeri	ng Testing Company 1979b	<b>-</b> ••	-
				UNIT	AGE MYBP	THICKNESS FEET
	0	UATER	NARY	RECENT AND PLEISTOCENE	< 1	LESS THAN SO
CENOZOIC	TERTIARY SYSTEM	EOCENE SERIES	CLAI- BORME GROUP	SPARTA FM.		t TO 254
				OUREN CITY FM.		0 TO 75
				REKLAW FN.		6 70 78
				CARRIZO FM.		8 YO 288
			WILCOX GROUP	UNDIFFERENTIATED		6 TO 3588+
		CENE SERIES	NIDWAY GROUP	UNDIFFERENTIATED		
	VSTEM	LF SERIES	HAVARRO	UPPER NAVARRO		8 TO 18884
				NACATOCH SAND		
1			GROUP	LOWER NAVARRO		
1			TAYLOR	UPPER TAYLOR		6 TO 1500+
			GROUP	PECAN GAP GRALK	76	
				LOWER TAYLOR		
	ິ		AUSTIN	GOBER CHALK	7	6 TO 1108
t l		2	CROUP EACLE FORD	MIDDLE AUSTIN		
				ECTOR CHALK		
<b>₹</b>	CRETACEOUS			SUB-CLARKSVILLE SAND		
Ш			WOODSINE GROUP	UNDIPPERENTIATED		6 TO 1290
		COMANCHE SERIES	•	MANESS SH.	1	e TO 118
			ИАВНІТА ВПОU Пеоная - Точн Виваль	BUDA LS.		6 TO 188
				NAIN STREET LS. WENO-FAW FAW LS. DENTON SM. FORT WORTH LS. DUCK CREEK LS.		6 TO 1160+
1			BURG	KIAMICHI SH.		28 TO 178
			CROUP	GOODLAND LE.	184	25 TO 388
			6.00 10 10 10 10 10 10 10 10 10 10 10 10 1		197	75 TO 780
<b>i</b> 1				UPPER GLER ROSE FR.	{	9 TO 340
OIC						A TO 619
						A TO 254
			TRINITY	Z L PINE ISLAND BH.	1	A TO 234
				B PETTER C.	f 112	
Ň	5		COTTON	SCHULER FM		8 TO 2188+
10	JURASSIC SYSTEI	UPPER JURASSIC	GROUP	BOSSIER FM.		. TO 1300
ШŬ				BUCKNER PM.		. TO 1288+
Σ				SMACKOVER LE.	143	8 TO 549
				NORPHLET FM.		58 TO 158
				LOUANN BALT		TO 5800
				WERNER FM		• TO 480
	?			EAGLE MILLS PM.		388 TO 4388
	TRIA	SIC AN	D/OR PERMI	1	2	
PALEDZOIC QUACHITA FACIES					1	•

Ċ

TABLE K.2. Summary of Basin Stratigraphy

к.11

The rock salt in most salt domes usually consists of elongated halite crystals (NaCl) between 0.25-0.5 in. in diameter. Water insoluble residues, such as anhydrite (CaSO₄), generally constitute 1 to 10% by weight of the rock salt. The salt is generally deposited in layers. The layers may be pure white, gray, or sometimes black (containing high amounts of impurities such as anhydrite). Layers range in thickness from one inch to tens of feet, and generally have gradational contacts. Observations in salt mines indicate that salt generally flows first laterally and then vertically upward to form the salt dome.

Boundary shear zones have been identified in almost all coastal salt domes. However, shear zones have not been identified in most of the interior domes. This lack of identifiable shear zones in the interior salt domes by no means conclusively suggests that they are completely lacking. Boundary shear zones were not recognized for the first 60 years of mining in the coastal domes. The existence of such boundary shear zones in the interior salt dome is probably more a matter of their not being looked for. Research could continue on the effect that these zones would have on the long-term isolation of radioactive waste and should be addressed more carefully in any actual site analysis.

Caprock is the term applied to the varied mass of rocks, predominantly anhydrite, which covers the top salt layers of many salt domes. Gypsum  $(CaSO_4 H_2O)$ , calcite  $(CaCO_3)$ , and sulphur are often common constituents. Caprock is generally brecciated and sheared. It may cover the entire top surface of the salt dome and in some instances may extend down one or more flanks of the salt dome. In addition, the caprock may be mushroomed to form overhangs, and in some cases the caprock may even extend under the overhangs.

Currently, there are three theories that account for the formation of caprock. The theory of residual accumulation is based on the assumption that the caprock is formed at the top of the salt dome as salt is dissolved away by ground water, leaving less soluble materials such as anhydrite. The hypothesis of precipitation in place assumes that salt brine rises along the salt dome

stock and precipitates the caprock on top of the salt dome when the dome top comes in contact with a fresh water aquifer. The modified precipitation in place hypothesis may suggest that some of the caprock material has been brought up along with the developing salt dome from beneath the mother salt bed.

Using a stratigraphic approach, it is possible to deduce the volume of salt that has moved per unit of time (Martinez et al. 1975, 1976, 1977; Loocke 1978). When this method was applied to the Vacherie salt dome in Louisiana, estimates indicated a vertical uplift rate of 0.2 mm/yr during Mid-Cretaceous, 0.02 mm/yr during Late Cretaceous, and cessation of movement about 30 million yr ago.

Netherland, Sewell and Associates (1976) studied rates of movement on six domes in the East Texas Salt Dome basin. They relied on structural data, measuring the amount of local uplift of a formation in the vicinity of each salt dome. Their results indicate that salt dome movement ceased in Late Paleocene-Early Eocene, and that rates were greatest in Late Jurassic and Early Cretaceous (0.153 mm/yr and 0.044 mm/yr), and then slowed with time.

Law Engineering Testing Company (1978a) performed a growth study on the Minden salt dome in the Louisiana Salt Dome basin and found maximum growth rates in the Middle Cretaceous with slower rates during the Mid-Tertiary.

While all three salt dome growth studies were carried out on different salt domes in different basins using different approaches, they all support the argument that dome growth ceased approxmately 30 million yr ago.

#### SITE GEOLOGY AND SUBSURFACE HYDROLOGY

#### Site Surface Geology

The Hainesville Salt Dome is the northernmost shallow piercement salt dome in the East Texas Salt Dome basin. The Hainsville Salt Dome has been excluded from consideration for a nuclear waste repository. The site area consists of rolling hills and prairies and encompasses approximately 542 square miles. The site area includes a structural feature known as the Mineola basin (Eaton 1952), which has been described as the area of influence or the rim synclinal area of the Hainesville Salt Dome. Only Eocene, Pleistocene, and recent strata crop out in the site area. The Eocene strata consist of alternative marine and non-marine sediments representing cyclic deposition, while the Pleistocene and recent deposits consist of alluvial sediments (Figure K.5). Generally, the youngest units, exclusive of Quaternary deposits, are exposed in the center of the area with the older units exposed around the periphery of the site area. No surface faults are described in the literature and none are shown on geologic maps.

## Site Subsurface Geology

# External Structure

The Hainesville Salt Dome is a shallow piercement salt dome located approximately in the center of the site area. Data used to decipher the size and properties of the salt dome include 11 wells penetrating the salt, one seismic reflection line crossing the salt dome in a southwest to northeast direction, a basin gravity survey, and data from other wells in the vicinity of the salt dome.

The dome pierces 16,000 ft of strata ranging from Late Jurassic to Early Tertiary in age. An overhang exists from -10,000 ft MSL to near the dome top, with the largest diameter of the overhang occurring between -3000 ft to -5000 ft MSL. Below -10,000 ft MSL the salt dome develops a broad shoulderlike base down to -17,000 ft MSL, where the salt dome stock connects with the top of the Louann salt (Figures K.6 and K.7).

Subsurface mapping indicates a rim syncline adjacent to the Hainesville salt dome. Some peripheral faulting at the boundaries of the site area is also indicative of rim synclines in Late Lower Cretaceous to Early Upper Cretaceous rocks, as shown in Figure K.8. This subsurface mapping of the Woodbine and Austin Group indicates two peripheral, normal faults, which are related to rim syncline development during Lower Woodbine deposition. These faults have a displacement of 100-200 ft and are confined primarily to Upper Cretaceous rocks. Well data and published reports also show a fault offsetting Early Tertiary strata. This may be related to deeper Middle Cretaceous faulting (Dillard 1963). No central graben or radial faults have been mapped.

**Explanation:** 



FIGURE K.5. Site Geologic Map Source: Law Engineering Testing Company 1979b



K.16





Notes: The figure presented represents an interpretation of subsurface conditions based on presently available data. Some variation from these conditions must be expected Depths measured in feet.

To convert feet to meters, multiply by 0.3048.

FIGURE K.7. Site Cross Section North-South Source: Law Engineering Testing Company 1979b

Law Engineering resting company 1979



Source: Law Engineering Testing Company 1979b

÷.

# Internal Salt Structure

Internal salt dome structures are those that are related to the character of the caprock and dome salt. Well logs describe the dome salt principally as crystalline halite. However, wells on the south portion of the salt dome indicate the presence of some shale inclusions; wells closer to the center of the salt dome do not indicate a similar presence of shale inclusions.

Caprock is believed to drape over the entire top of the salt dome. The thickness of the caprock ranges from 49 to 265 ft, with the thickest portion of the caprock being in the northeast quadrant of the salt dome. The caprock can be divided into three zones. The upper zone is disseminated pyrite (FeS₂) in carbonate, the middle zone is gray shaley carbonate, and the lower zone is white, clear, very dense anhydrite (CaSO₄).

# Host Sediments

The local stratigraphic section is made up of more than 18,000 ft of Mesozoic and Cenozoic sedimentary strata that overlie Paleozoic substrata. This discussion will concentrate on the Upper Cretaceous, Tertiary, and Quaternary rocks in the vicinity of the Hainesville Salt Dome. The stratigraphic groups within the following systems or series will be given in ascending order. All these groups are generally conformable and constitute a series of hydrologic aquifers and aquacludes. Because of their importance to the hydrologic analyses, the stratagraphic section which surrounds the Hainesville Salt Dome is presented below in additional detail.

Upper Cretaceous Series

- Woodbine Group: The Woodbine Group consists of sandstone interbedded with shales and mudstones. The thickness of the unit at the salt dome is about 70 ft. The Woodbine Group conformably underlies the Eagle Ford Group outside of the area of salt dome influence.
- Eagle Ford Group: This group is recognized as a group only at the outcrop and is recognized as a formation in the subsurface of the basin. The thickness of the formation at the salt dome is 690 ft, and the formation primarily consists of a thick shale sequence with lenses of porous and non-porous sands.

- Austin Group: This group is about 1795 ft thick and can be divided into three units. The lower and upper units are chalk, and the middle unit is marl (calcareous clay).
- Taylor Group: The Taylor Group is about 2235 ft thick at the salt dome and is divided into three units. The Lower Taylor consists of shale with an upper sand unit. The Pecan Gap is composed of thick, dense chalk, and the Upper Taylor is thick, uniform calcareous shale.
- Navarro Group: The Navarro Group is about 1550 ft thick and is divided into three units. The Upper and Lower Navarro are both shale and are interbedded with marly, calcareous sandstone containing thin bentonite layers. The Nacatoch sand is a massive quartz sandstone. The contact with the overlying Tertiary Midway Group is unconformable.
- Tertiary System.
  - Midway Group (Paleocene Series): This group is about 1695 ft thick at the British American #B-1 Weisenhunt well, and it consists mainly of calcareous and non-calcareous shales. At the salt dome, the group is a thick shale with thin discontinuous beds of sand. The Midway shales have a very low hydraulic conductivity, and in the study area is considered to be an aquiclude. The top of the Midway represents the bottom confining surface for the overlying Wilcox Group.
  - Wilcox Group (Eocene Series): The Wilcox Group consists chiefly of silts and sands interbedded with clay and a few thin beds of lignite. The group is about 735 ft thick at the British American #B-1 Weisenhunt well. The sands and shales of the Wilcox group are unconformably overlain by the Claiborne Group. On the northeast and southeast flanks of the basin, the Wilcox dips to the southeast.
  - Claiborne Group (Eocene Series): The Claiborne Group consists of five different formations and is generally composed of alternating sands, silts, and clays with occasional indurated layers. The five formations of the Claiborne Group are described below.

The Carrizo Formation is about 150 ft thick at the Hainesville Salt Dome and is the only formation that does not crop out in the site area. The formation is composed of interbedded sands, silts, and clays.

The combined Carrizo-Wilcox aquifer represents the most significant aquifer in the study area. Though in some places a shale layer separates the two aquifers, they are hydraulically connected and are generally considered to be one aquifer.

The Reklaw Formation has a total thickness of about 70-100 ft and often contains highly fossiliferous layers and some lignite in the upper portions of the formation. The Reklaw generally consists of slightly glauconitic clay with smaller portions of sand. Regionally, the Reklaw is assumed to be an aquitard, but this assumption has not yet been proven. The Reklaw is significant hydrologically as a semiconfining layer overlying the Carrizo-Wilcox aquifer.

The Queen City Formation is 200 to 500 ft thick, becoming thicker towards the salt dome. This formation sometimes contains petrified wood and some plant fossils, and is generally composed of interbedded sand, silt, and clay with some lignite. The Queen City aquifer is extensively used as a municipal water supply because of its thickness and areal extent. Coefficients of transmissivity range between 3000 and 12,000 gal/day/ft, and the hydraulic conductivity ranges between 10 and 130 gal/day/ft². A hydraulic conductivity of 50 gal/day/ft² is probably representative of the aquifer as a whole. Many of the wells giving these data were not screened through the entire sand thickness. (The percent of thickness screened for the pump test has an effect on the calculated coefficients.)

The Weches Formation contains highly fossiliferous strata and has a thickness of about 70-75 ft. The formation basically consists of glauconitic sand and clay with occasional layers of glauconite. The Weches Formation is not considered important to the hydrogeology of

the area. It has a very low hydraulic conductivity and is considered to be an aquiclude or aquitard, depending upon its location. The formation is generally an ineffective separator between the Sparta and Queen City Formations.

The Sparta Formation is composed chiefly of layered, unconsolidated sands, silt, and clay. This formation occasionally contains petrified wood and leaf fossils. The Sparta is only 50 ft thick at the site area. This aquifer is not very important, even though it has reasonably good hydraulic properties, because of its limited areal extent.

#### Quarternary System

A small, isolated, Pleistocene alluvial terrace deposit exists along the Sabine River, southwest of the salt dome. The deposit is about 60 ft thick and consists of sand, silt, clay and some gravel. Recent alluvium is also present along portions of most of the creeks in the area and consists of sands, silts, and clays.

## SALT DOME DEVELOPMENT

The following geologic history concerning the development of the Hainesville Salt Dome is primarily taken from Loocke (1978).

- <u>Upper Jurassic</u>. The Louann salt was deposited on a relatively flat area of a restricted marine environment in the East Texas Salt Dome basin. Flow of salt within the Louann formation resulted in a thicker salt bed in the site area. Salt pillow formation began as a response both to continued salt flow and to irregularities that existed in the pre-salt surface during this time.
- Lower Cretaceous (Comanchean Series). Deltaic progradation characterized the beginning of the Lower Cretaceous with deposition of the Travis Peak Formation. This major transgressive sequence marked the end of the Lower Cretaceous Comanchean Series and resulted in continued salt dome growth.

As the salt dome growth continued, the structure developed from an initial thick area of salt deposition into a low, broad salt pillow into a better defined and centralized salt structure. By the end of Lower Cretaceous deposition, the salt pillow had evolved into a salt ridge.

 <u>Upper Cretaceous (Gulf Series)</u>. The Upper Cretaceous is marked by deposition of the Woodbine Group during a regressive interval and by deposition of the Eagle Ford Group during a minor transgressive interval. During deposition of the Woodbine, salt dome growth reached its maximum rate of 800 ft/million years.

Erosion of the salt dome occurred in Late Woodbine time, when the top of the salt dome was several hundred feet to 1000 ft above sea level. Near the end of the Upper Cretaceous, salt extruded from an eroded hole in the underlying salt structure (Loocke 1978). The volume of salt lost during the extrusion stage resulted in collapse of the underlying salt structure (the original salt pillow). The collapse of the salt pillow created a space below the units undergoing contemporaneous deposition and resulted in the development of an inner rim syncline adjacent to the salt stock. Loocke suggests that this extrusion continued during the Tertiary. The growth rate slowed to 150 ft/million years by the close of the Cretaceous.

- <u>Tertiary</u>. Regression marked the beginning of the Tertiary and resulted in deposition of alluvial deltaic sediments. A permanent salt overhang developed during the Tertiary. This overhang was caused by lateral salt movement induced by collapse of the salt dome flanks during extrusion when vertical loads above the salt dome exceeded the lateral confining pressure.
- <u>Quaternary</u>. Sediments of Recent age overlying portions of the salt dome are unaffected by the salt dome, suggesting that the Hainesville Salt Dome has been stable throughout Recent time and possibly as far back as the Middle to Late Tertiary.

## MINERAL RESOURCES

On a regional scale, mineral resources include oil, gas, lignite, clay, salt, asphaltic sands, peat, iron ore, rock aggregate, sand, and gravel.

Oil and gas are by far the most important resources in the East Texas Salt Dome basin (Figure K.9). However, hydrocarbon accumulations are noticeably absent around shallow piercement salt domes. Commercial hydrocarbon occurrences within the immediate vicinity of salt domes have been sporadic and scattered (Netherland, Sewell, and Associates 1975). Sufficient drilling has been performed to prove that most of the interior salt domes are predominantly free of significant hydrocarbon accumulations. However, additional hydrocarbon resources may be concentrated on the sides of salt domes that have not yet been fully explored.

In the site area, exploration at the Hainesville Salt Dome has continued since the salt dome was first discovered in 1927. Oil was first produced in 1956 from the British American #1 Weisenhunt well in the southwest quadrant of the salt dome. A second producing well (British American #1 Amos) has been drilled northwest of the first producing well. As of 1977, these two wells have recovered 3,897 billion ft³ of gas, 191,301 barrels of condensate and 19,067 barrels of oil.

Production to date has been limited to the Lower Cretaceous Travis Peak, Lower Glen Rose, and Paluxy Formations, as well as the Upper Cretaceous, Woodbine, and Sub-Clarksville Formations. In 1978, three new producing wells were completed on the east flank of the salt dome. Five new wells are currently being completed in the area.

Lignite is a low-grade coal that is becoming a major energy resource in Texas. On the regional extent, near-surface deposits (less than 200 ft deep) occur in a bank following the outcrop pattern of the Wilcox Group, which essentially parallels the basin's western boundary. Geophysical evidence indicates that deep basin lignite deposits (greater than 200 ft deep) exist in the Wilcox Group throughout the basin. Regional development of these deep lignites would probably require some means of underground gasification, because of the limitations of present subsurface mining practices.

Sands comprising the Queen City Formation are abundant at the site, and do represent a resource. Development of these sand deposits could affect both the hydrologic characteristics of near-surface aquifers and the present



drainage system. However, because sand deposits are extensive elsewhere in the area, resource development at the site should not be necessary.

No commerical salt mining occurs in the Hainesville salt dome. However, the salt dome has been the site of gas storage since 1950. Caverns for the gas storage were created in the salt dome by solution mining.

# FAULTING AND SEISMIC CONSIDERATIONS

Several fault systems are present in the site region; however, none of them are considered to be capable. Capable faults are those which have the potential for generating significant ground motion at the site relative to the Integrity Basic Earthquake. Earthquakes that have occurred in the site region have been few in number and small in intensity. These minor seismic events have not been directly correlated with known faults.

#### Boundary Fault Systems

Boundary fault systems are those fault zones which tend to define the limits of the basin. They include the Mexia-Talco fault zone, the Balcones fault zone, the Mt. Enterprise fault zone and the Rodessa fault zone (Figure K.10).

## Mexia-Talco Fault Zone

This fault zone extends through east Texas. The zone, located 43 miles northwest of the site, extends from north of the Sabine uplift west towards Dallas, and then south into southern Texas. The zone forms a nearly continuous series of en echelon normal faults and grabens and is considered to represent a zone of major fracturing and graben formation associated with the upper portion of the Gulf Coast basin (Murray 1961). Displacements along the faults range from none at the strike termination of individual fault segments to 2500 ft at various places along the fault. Surface displacements are usually contained to Upper Cretaceous or Eocene beds and rarely exceed 300 ft. Movement on some faults may have occurred as late as mid-Tertiary. The amount of movement on the faults has generally decreased with time. Pleistocene terraces extend across the fault system without interruption, indicating that movement probably ceased about Eocene time.







## Balcones Fault Zone

The Balcones zone is situated east of the Ouachita frontal zone and overlies the Ouachita foldbelt, forming a great convex arc gulfward through central Texas and paralleling the outcrop of Upper Cretaceous strata. The individual faults are normal and generally dip down toward the coast. Maximum displacement of up to 1700 ft occurred across the fault zone in central Texas. Pliocene terrace deposits indicate that movement along individual faults probably ceased during Late Tertiary. It has been postulated that movement on the fault zone may be a result of uplift and tilting of the crust west of the Gulf region (Kehle 1978).^(a)

# Mount Enterprise Fault Zone

The Mount Enterprise system of faults is an en echelon series of displacements roughly parallel to the present coastline. The zone extends from the southwestern portion of the Sabine uplift westward along the southern edge of the East Texas Salt Dome basin. The faults generally have displacements ranging from about 35 to 60 ft. Movement began in Early Cretaceous. The Mount Enterprise system is probably closely related to the hinge line or transitional zone between the attentuated continental crust and the oceanic crust. The differential subsidence along this hinge line resulted in tensional stresses and the faulting that began in Early Cretaceous time. Possible recent faulting has been identified on the Elkhardt fault (part of the Mt. Enterprise system). Little information is available at this time and, as such, is not addressed in this report. Any additional studies in the area should focus on this faulting so that it can be considered in detail in future studies.

# Rodessa Fault Zone

The Rodessa zone is a series of en echelon down-to-the-basin faults comprising a zone on the north flank of the Sabine uplift. It extends partly into the East Texas Salt Dome basin. Faulting in the Rodessa zone is believed to have been initiated in the Early Cretaceous and to have ceased in the Middle Tertiary.

⁽a) Kehle, R. O. 1978. "Tectonic Framework and History, Gulf of Mexico Region." Unpublished report prepared for Law Engineering Testing Company, Marietta, Georgia.

## Faulting Related to Basin Salt

Faulting that resulted from movement of salt is common in the East Texas Salt Dome basin. The faults may be related to movement of salt at depth or in piercement salt domes near the surface. Both types of faulting exist in the site area. Because this type of faulting is related to the mobility of salt, these faults are considered non-tectonic in origin.

# Ginger Fault Zone

The Ginger fault zone extends from the southern edge of the salt dome basin northward and eastward, terminating east of the Hainesville Salt Dome. This zone is related to the movement of salt along a deep salt ridge. The faults do not have surface expression and die out in Cretaceous age rocks, indicating that movement ceased during the Mid-Cretaceous.

## Site Area Faults

Peripheral faulting associated with salt dome growth at the boundaries of the site area has been reported by Loocke (1978) and Eaton (1952). At the Hainesville Salt Dome, these peripheral faults are normal faults, upthrown toward the salt dome, with displacements of between 100 to 200 ft. The faulting occurs in Upper Cretaceous and Lower Tertiary rocks.

The central graben and radial fault patterns that are characteristic of many east Texas salt domes have not been mapped at the Hainesville Salt Dome. Fisher et al. (1965), however, describe a central graben overlying the salt dome. According to Fisher, the graben affects Tertiary age Claiborne rocks at the surface.

Nearly all of the fault systems in the region surrounding the site, with the exception of coastal growth faults, have not been active since before Late Tertiary (approximately 1.5 million yr ago). As the coastal growth faults are considered to be aseismic, there are no known capable faults within the region of study, with the possible exception of the recent movement on the Elkhardt fault, which is currently being investigated.

# Faulting Related to Sedimentation and Subsidence

Two other fault zones are also present in the site region but lie outside of the East Texas embayment. These two fault zones are associated with sedimentation and subsidence in the lower Gulf basin and are described below.

# Fisher Fault Zone

This fault zone has a length of 30 to 40 miles and trends west-southwest from Sabine Parish, Louisiana, across the Sabine River and into Sabine County, Texas. The fault zone is about 5 to 10 miles wide, and the maximum length of any fault segment is about 10 miles. The individual faults are shallow, normal faults that produce a series of horsts and grabens, and step faults that parallel the Angelina-Caldwell flexure (Durham and White 1960). Displacements vary from more than 250 ft in Louisiana to displacements on the order of tens of feet in Texas.

Initiation of movement is believed to be post-Cretaceous, because most of the faults die out above the Cretaceous. According to geological maps, faulting does not extend into Pleistocene terrace deposits, indicating that movement ceased in Late Tertiary. Movement appears to be related to extension of sediments, resulting from Tertiary sedimentation and subsidence in the lower Gulf basin.

# Growth Faults

The movement on growth faults produced by and occurring simultaneously with periods of sedimentation is rather slow, unlike the rapid movements that are generally associated with earthquake-generating faults. As sedimentation ends, so does the faulting. Major growth activity on these faults ceased in the Miocene, as sediment depocenters moved further gulfward. Recent movement of some of these faults has occurred, resulting in measurable fault scarps and movement rates. The recent fault movement has disrupted human-made structures over short time intervals. This recent fault movement is believed to be the result of subsidence associated with the withdrawal of ground water and hydrocarbons.

# Seismic Considerations

Investigations of the regional seismicity of the Hainesville site area have resulted in the following conclusions:

- The region is tectonically stable and subject to only occasional earthquakes of low intensity.
- There are no seismically active tectonic structures and/or capable faults within 200 miles of the site.
- An Integrity Basic Earthquake (IBE) equaling 0.10 g was conservatively selected for the site.
- The Operating Basis Earthquake (OBE) was estimated to be 0.05 g, with a return period of 470 yr.
- Acceleration and displacement time histories and design spectra were derived for the site's surface and subsurface structures.

## Historic Seismicity

Locations for epicenters of all recorded earthquakes that have occurred in the Hainesville site area with an intensity greater than IV-V on the Modified Mercalli scale (MM) are plotted on Figure K.11. As the figure illustrates, there have been 22 historical earthquakes within a 200 mile radius of the Hainesville Salt Dome.

The Gulf Coastal Plain has experienced only a few earthquakes during the historical period. The region has numerous surface and subsurface faults, but the faults are not directly correlative to earthquakes. The mechanisms underlying earthquakes in this region are not well understood. Therefore, all folded areas in the region are generally given an equal earthquake potential.

Historical evidence suggests that an intensity IV MM earthquake can probably be defined as the maximum earthquake for the Hainesville site.

# Integrity Basis Earthquake (IBE)

A conservative IBE having a surface acceleration of 0.10 (Intensity VI MM) was selected for the site. The IBE selection was based on a conservative evaluation of the amount of ground motion that is remotely possible, considering



**Explanation:** 

Earthquake epicenters

 Index numbers 1–22: see Table 2.2–7.
 Boundary between Gulf Coastal Plain and interior continental regions.

FIGURE K.11. Regional Seismicity Source: Law Engineering Testing Company 1979 seismic history and geological structure. This level of acceleration would not be exceeded during a size VI MM intensity earthquake (the intensity of the largest provincial event).

# Operating Basis Earthquake (OBE)

The Operating Basis Earthquake for the Hainesville site is postulated to have a peak horizontal acceleration of 0.05 g. This acceleration is equal to 1/2 the IBE.

## SURFACE HYDROLOGY

The Hainesville Salt Dome is located in the Sabine River drainage basin. It is bounded by the Neches and Trinity River drainage basins to the west, the Red River basin on the northeast, and the Calcasieu River basin on the east (Figure K.12). The Sabine River drainage basin drains an area of 9700 square miles. The Red River flows into the Mississippi River, whereas the Trinity, Neches, Sabine and Calcasieu Rivers discharge directly into the Gulf of Mexico (Figure K.12).

The Sabine River flows southeastward from its headwaters in Hunt and Collin Counties, Texas. Its course changes to southerly as it nears the Louisiana border to its mouth on an estuary of the Gulf of Mexico. The river meanders through its floodplain with numerous sloughs, overflow channels, and marshes.

The climate of the Sabine River basin is sub-humid to humid. Annual precipitation averages about 48 in. About 25% of the precipitation fills streams as surface runoff. The distribution of precipitation is often uneven, making the construction of reservoirs useful for flood control and water supplies. Lake Tawakoni Reservoir is located on the Sabine River. The total length of the dam is 5.6 miles. The Carl L. Estes Reservoir has been authorized for construction but has not yet been built. It will be located downstream of Lake Tawakoni.

The Lake Fork Creek is the largest tributary of the Sabine River and flows over the southwest rim of the Hainesville Salt Dome site. The Lake Fork Creek drainage basin has a watershed area of 685 square miles. Mean annual



FIGURE K.12. Index Map Showing Sabine River Drainage Basin Source: Law Engineering Testing Company 1979b

precipitation is about 43 in., and surface runoff is about 25% of the precipitation. Construction has already begun on the Lake Fork Dam. This will be an earthen dam with a reservoir capacity of 675,800 acre-ft.

Haines Creek is a very short creek, which, in addition to Lake Fork Creek, lies within the area above the Hainesville salt dome. The entire Haines Creek drainage basin lies within Wood County and covers an area of 24 square miles.

## SUBSURFACE HYDROLOGY

## **Regional Characteristics**

Of interest are all waters that conceivably could come within proximity of the repository site. The repository is assumed to be 2000 ft below land surface (-1600 ft MSL). Therefore, all water movements in geologic formations are above -3000 ft MSL were investigated. A sectional view through the Hainesville Salt Dome (Figure K.6) shows that the following formations and groups are important in this analysis:

	<u>Geologic Unit</u>	
1.	Sparta Formation	Aquifer
2.	Weches Formation	Aquitard/Aquiclude
3.	Queen City Formation	Aquifer
4.	Reklaw Formation	Aquitard/Aquiclude
5.	Carrizo Formation	Aquifer
6.	Wilcox Group	Aquifer
7.	Midway Group	Aquiclude

All aquifers below the Midway Group are quite saline and therefore are not used . to supply water.

The Carrizo-Wilcox aquifer is the most important aquifer in the study area. Most of the larger municipalities and industries in the region obtain their water from this aquifer. Some ground water is used for irrigation when rainfall is insufficient to meet area needs. In the study area, the portion of the Wilcox group that contains water of usable quality ranges from 0 to 2400 ft. Coefficients of transmissivity are dependent upon the aquifer thickness as well as upon the permeability. Because of its great thickness, the Wilcox portion of the aquifer exhibits large coefficients of transmissivity at some places within the study area, despite the relatively low permeability of its sands.

In the site area, the Carrizo-Wilcox aquifer crops out in the northwestern half of Wood County (Figure K.13). The water in the outcrop area is generally unconfined. However, artesian pressures may exist locally in places where water is confined beneath lenticular bodies of clay that have a limited areal extent. The water table is generally shallow (about 50 ft) and commonly is near the base of streams that cross the outcrop.

Pumping tests made on eight wells in Wood County produced the following aquifer characteristics:

Coefficient of transmissivity = 600 to 19,000 gal/day/ft Discharge rates = 50 to 490 gal/min Specific capacities = .8 to 9.7 gal/min/ft of drawdown Hydraulic conductivity = 4 to 700 gal/day/ft² (However, an average value of 50 gal/day/ft² is considered more realistic--Broom 1968).

The variations in transmissivity result not only from changes in hydraulic conductivity but also variations in sand thickness. None of the wells fully penetrated the aquifer, so the measured values are less than the true values.

Water levels in the Carrizo-Wilcox aquifer range from land surface to 300 ft below the land surface. In areas of heavy pumping, water levels have declined as pumpage has increased. This decline does not necessarily mean that the water will eventually be depleted nor that pumpage is exceeding recharge. Water moves through an aquifer at a rate that is proportional to the hydraulic gradient; therefore, if pumpage is increased, the water level must decline to a point where the gradient is sufficient to move water at a given pumping rate.



# EXPLANATION

Atturium Sand, sint, clay, and some good Not have to poll actor to wolk to report way, beaks or, probably capable of pooling anall quantings of man



DUATER

i i

E

Sporte Sand Sand, still and stay, Kassin to prote any small qualifies of unrer to report arou, but probably capable of protong maderiors quantities of head unrer forotty.

To Weckey Greensand Gowconthe and glowconthe city and and, secondary depends of dimpates in action was been because to yield water to with

Dueta City Sund Dueta City Sund Sand, still, and city and game deauto Trolds small to moderate deautities

al uster

farðtá **g**uðnillig



Glaucounts, slag and point num painds, hmostly in autorap area. Tields andy small quantities of water to water to multiop area, also where this new a downe of water subsets.

Carsica Sand

Sand, still, and stay. Violds moderate to large quantitus of water to wolld

Wikes Greep

Sand, 500, ctop, legalse, and amonto Viside modurate guantities of notor

> U D Fould U, upthoan old B, dawnibrown su

Centert

FIGURE K.13. Geologic Map of Wood County Source: Law Engineering Testing Company 1979b

Water levels in the Sparta-Queen City aquifers range from the land surface to approximately 150 ft below the land surface. Water level fluctuations result from variations in precipitation, evapotranspiration, and changes in pumping rate on the outcrop area. No apparent downward trend in water level exists in either the Carrizo-Wilcox or the Sparta-Queen City aquifers. This is an indication that neither aquifer is developed to its potential.

# Ground-Water Flow

The Physical Control Volume (PCV), through which ground water flows through the region, consists of a complicated layered system. The bottom layer is the Midway Group, an aquiclude which represents the bottom flow boundary. Above the Midway is the Carrizo-Wilcox aquifer, which is the primary aquifer in the PCV.

The remaining layers do not exist over the entire areal extent of the PCV. The next succeeding layer is the Reklaw Formation, which is an aquitard on a regional scale, but may locally be an aquiclude. The Reklaw separates the Carrizo-Wilcox aquifer from the Queen City sands. The Queen City aquifer is extensively tapped; however, its limited thickness and areal extent eliminate it as a primary aquifer. Above the Queen City is the Weches aquitard, which ineffectively separates it from the Sparta sands.

The Carrizo-Wilcox is an unconfined aquifer throughout its outcrop area but it is assumed to be leaky elsewhere in the PCV. The Queen City is also generally unconfined, but there are numerous local exceptions. The Weches Formation is an aquitard, and thus the Queen City is locally semi-confined. The Weches, however, is considered to be an ineffective separator between the Queen City and Sparta sands. The Sparta is an unconfined aquifer throughout its entire areal extent.

# Potentiometric Surfaces and Flow Directions

The overall flow pattern for the Physical Control Volume described above is so complex that more than one potentiometric surface can be measured; that is, waters flowing within the Carrizo-Wilcox aquifer have an identifiable potentiometric surface, while the waters flowing within the Queen City aquifer most likely have a different potentiometric surface.

In most of the region the Carrizo-Wilcox aquifer is under artesian conditions. The storage coefficient typically ranges between 0.00007 and 0.00027. The typical flow direction is toward a stream or pumped well. The flow in the southern portion of the study area appears to be controlled by the structural dip of the Wilcox Group which is toward the southeast.

Within the site area, the most important aquifer is the Carrizo-Wilcox aquifer. It can be seen from Figure K.6 that the Wilcox Group is in contact with the Hainesville Salt Dome caprock.

On a regional basis, the Queen City aquifer occurs under various water table conditions. Confined, semiconfined, and perched water tables exist locally, where layers of clay and shale hinder vertical movement of water. In other areas, where the water is not confined by impermeable layers, the movement of water is mainly controlled by the elevation of the land surface. In semi-confinement, the water usually moves in the direction of dip of the aquifer.

The Sparta aquifer is unconfined within the study region. Flow within the aquifer tends to be topographically controlled and is thus towards streams in the immediate area. In the site area, the Sparta-Queen City aquifer is unconfined throughout its areal extent. Because of hydrological difficulties and inaccuracies in the data, no potentiometric surfaces are available for either the Sparta or the Queen City aquifer. However, some of the waters in the Sparta-Queen City aquifer are discharging into nearby streams.
## APPENDIX L

## ORIGEN OUTPUT FOR LONG-TERM SPENT FUEL INVENTORIES

## TABLE L.1. Curies of Light-Element Isotopes in a BWR Assembly

	LNITIAL	1. Y	3. Y	tu. Y	30. Y	100. Y	300° Y	1000. Y
H 3	4.73+001	4.47+901	4.001001	2.69+001	8.73+000	1.09-001	2.16-004	1 610023
C 14	d.05-001	2.03=001	2.65-001	2.63-401	2.62-001	2 60-001	2 54-001	2 11-062
CL 36	1.90-005	1.96=005	1.90+003	1.95-003	1.96-001	1 95-007	2,344001	
MN 54	2.46+001	1.074001	2.011000	5 Adenat	1.33-610	1.0-003	1.704003	1.40-043
FE 55	2.15+002	1.5/14/02	9.654003	1	7 7 7 7 1 0 0 0 7	• UV	.00	• 70
CU 58	1.57+042	4.5.4.000	1 7 3 - 0 0 1		1+63-006	5.10-010	• 40	.00
CIL MA	4.474000			0.01-014	•00	.00	• 00	• O D
NI 50	1 51400	3.00.002	Reolituur	1.161002	000+50.0	7.92-004	5.82-012	•00
NT 57	1.7014000	1.31+090	1,314000	1,51+000	1.51+000	1,51+000	1,50+000	1,49+000
NT 03	2,29+071	5.681001	5.54+001	5.12+001	1.85+001	1,08+001	5,39+000	1,23-002
2N 95	E.00+001	7.151040	9.01.001	0.52-004	6.95-013	<u>,</u> 0v	00	.00
2H 42	2.58=005	9.28*1112	<b>8°59</b> -005	<b>8°52</b> -005	9.20=02	9.27-002	9,27-002	9.27-002
ZR 95	1.504004	200406.2	1.27=001	1,84-015	.00	.00	00	_00 -
NU 4311	7.02-095	1,13-042	1.92-002	4 14-002	7 45-002	9.27-002	9 32-002	9.31-002
NB 94 -	5,88-002	5.08=002	5.00-002	5.80-002	5.88+002	5.86-002	5 82-002	5 68-002
NH 75	.00	0.30+002	2.10-01.5	5.91-u14	.00	.00	000000 000000	04 04
MU 93	5.56=0.04	5.56-004	5.50+019	5.56-044	5.55-004	5.52-004	<b>5 00</b>	- UU 5 15-004
9N119M	2.22+043	0.05+002	1.00+002.	8 88-002		5456-004	3 4 4 4 4 V V 4	3413-004
SNIZIH	1.14+005	1.1.1.4.0.04	1.11+004	1 0/14002				.00
SN123	1 054002	t toannt		1 70-007		9 <b>1</b> 27 7 9 9 2	7.424001	1,25-001
98125	0.11404A	1. NA 400	2 0 2 4 9 6 0 1		4,300023		.00	.00
161364	4 264.502	449070VC	2.721002	4.04+001	2:05=001	4.50=009	• 00	.00
161670	1 . 2011VK		TACLEUVE	e, 01+001	1.18=001	1.06-009	.00	.00
300101	c. vc+904	4 eston? 5	+02+005 1	29+003 9	1 500+10 <mark>.</mark>	1_72+002 1	7_86+001	2.11+000
IUIAL	2.021004	4.221005	2.081003	1.29+003	9.07+002	4.721002	7.86+001	2.11+000

L.1

## TABLE L.1. (Contd)

• •

•

.

	INITIAL	5000. Y	10000. 7	30000. Y	54404. Y	10000U. Y	500000, Y	1,000,000 Y
C 14	2.53-441	1.85-041	1.85-042	0,99-005	a.22-v04	1.47-000		.00
CL 36	1.90-003	1.95-005	1.92-003	1,83-003	1.75-003	1.57-003	6.41-004	2.10-004
NI 59	1.444000	1.47+1100	1.34+000	1.101000	9.77=001	6.34-001	1.98=002	2.61-004
NI 63	1,23-042	3.52-009	. U U	,00	. ÜÜ	.00	00	.00
ZR 93 -	4.27-uud	4.66-142	4.25-002	9.15-002	9.06+002	8,80-002	7.36-002	5.84-002
NB 93M	4.51-002	9.50-012	4.25-002	9,15-002	9.00=002	8,80+002	7 36-002	5,84-002
MB 94	5.68-642	5,30-0.12	4.10=002	2.00-002	1.04-002	1,84-003	1.76-009	5.27-017
nu 93 -	5.15-004	4.42-004	2.50-004	5,54-005	1.10-005	2.52-007	1 06-050	.00
SN121M	1.25-001	1.51-109	. 40	00	.UÚ	.00	00	.00
SUBTOL	2.11+000	1.89+000	1.69+000	1.37+000	1.17+000	8.14-001	1.08-001	1.17-001
TUTAL	2,11+000	1.044000	1.09+000	1.37+000	1.17+040	8,14=001	1.08-041	1.17-001

1

L.2

TABLE L.2. Curies of Fission-Product Isotopes in a BWR Assembly

. .

	ENCTIAL	• • •	4. V	10. Y	50. Y	100. Y	300. Y	1000. Y
54 z	8 304nni	7.874001	7.004001	0 724001	1.53+001	2.96-001	3.78-006	2.82-023
aL 70	5 35-33J	5 05-002	5 150012	5 05-002	6.05-002	6.05-002	6.03-002	5.99=002
36,77 Ka 86	1 //24/014	1. 64 + 40 6	1.174004	7 50+002	2.08+002	2.33+000	6.21-006	1.93-025
00 40		7 6 4 4 4 4 3	4 46 8343	7 11-017	.00	.00	00	.00
38 04	7.007004	1.341008			5 //6AU/DE	0 74+662	7 00+000	2.23+007
34 40	1.14+004	1.151004		0,737903 H 011001	5 454003 6 454003	9 71 A MAS	7 004000	2.31-007
A A0	.00	1.12709.9	1.007004	1.43TUU3	3040TVU3	7.11TUUE	1 0 0 T 0 0 U	0.0
4 41	1.544012	1.707005	5.1/-001	<b>C.</b> 007014	#UU # #7_44#	+UV	+ 43-00t	/ /1 2 - 0/11
ZR 93	4,45+601	4.43-001	8.424001	4.43=001	4.43-001	4 43 - 001	4,43,400	4 41-001
NH 93M	3.71-000	5.73-002	A.41.005	1.44-001	5+33-001	4*41=001	4 <b>4 4 3 4 0 1</b>	443-001 An
ZR 95	1.87+005	2.01+003	1.24+000	2.24-015	• 00		• • • • • • •	• 00
NH 421	.00	8.08+001	3-32-015	4 86=014	•00	• UU.	• • • •	• 00
NH 95	1,904005	8.50+005	5.42+000	4.97=015	•00			
TC: 49	<b>5</b> *04+000	5.04+000	5.044000	5.64+000	5.04+000	2.04+000	2.04+000	C.05TUUU
RU103 /	1.881005	5.15+002	d.85-004	2.59-053	+00	.00	• 0 0	.00
RH103M	1.85+605	3.15+042	8.85-004	2.20-053	•00	.00	.00	• 00
RU106	7.80+004	3,91+004	9,85+005	7,84+001	8,06-005	8.70-026	.00	.00
8H1 06	8,39+004	2.41+904	9,85+00\$	7_80+001	8,06=405	8,70=026	.00	.00
PU107	1.74-642	1.79-002	500+11.1	1.74-002	1.74-002	1.74+002	1.74+002	1,74=002
98125	2.07+104	1.601004	9.57+005	1,59+003	9.36+000	1.47-007	.00	.00
TE125M	4.44+002	6.521005	5.971003	0.504002	3.88+000	0,11-008	.00	,00
921NC	1.10-001	1.15-001	1.15=001	1.10-001	1.10-001	1.15=001	1.16=001	1,15=001
58120M	0.29+041	1.16=001	1,10=001	1,16-001	1,16=901	1,15-001	1,16=001	1,15=001
58126	1.20102	1.15-001	1.15-001	1,15-001	1.15=001	1.15-001	1,14-001	1,14=001
I129	4.75-605	4.75=005	4.75-003	4.75-003	4.73-003	4,73=005	4.73-003	4.73-003
C8150	2.03+004	1,45+004	7,40+003	7 04+002	8,49-091	5,15-011	ູດບ	.00
C8135	8.51-002	8.51-002	8.51+002	8.51+002	8.51-002	8.51-002	8,51+002	8,50-002
C9137	1.59+004	1.55+004	1.40+004	1 20+004	7.95+003	1.57+003	1,55+001	1.47-000
RAI 47M	1.49+004	1.45+004	1.34+004	1.18+000	7.41+003	1.47+003	1 45+001	1,38-006
CE144	1.57+005	6.511004	1.09+004	2.14+001	3.88-007	.00	.00	.00
PRIJA	1.59+004	6.514004	1.09+004	2.14+001	3.88=+07	.00	.00	•00
PM1:17	1.974.004	1.514004	8.891003	1.40+003	7.04+000	6.40-005	00	.00
94151	n 174.31	h_13+uni	6.024001	5.694001	4.86+001	2.70+001	5.65+000	2,14-002
91151 81151	1 Kokoka		1 124004	9 714002	4.08+002	1.97+001	3.41-003	2.32-010
20124	1.7070703 6 5.5.0.1	· • • • • • • • • • • • • • • • • • • •	1 0 0 5 7 9 0 2 1 0 5 5 0 0 2	2 104004	9.93-001	2 28-014	00	.00
CU133	7,007006	1 121	2007006 2010106	HEFUNG	2.7.46n4 (	3.04+00%	5.31+001	3.45+000
augiul	1.427000	3. JET () U ]	1 30A008	7 # VQ7 VV4	5 134NGA	5 684003	5.11+001	3.45+000
IUTAL	1.427009	3.364003	エッピリエクリンプ	4 <b>6</b> 007004	6 O I U T U V H	20041003	~	

TABLE L.2. (Contd)

 $\mathcal{L}(\mathcal{G})$ 

. .....

i	INITJAL	\$000. Y	1000J. Y	30000. Y	50000. Y	100000 Y	500000 Y	1,000,000 Y
SE 79	5.99-002	5.86-002	5.44-002	4 40-002	3.55-002	2,08-002	2 93-004	1.42-006
ZR 43	4.45-011	4.43+001	4.41-001	4.37-001	4.35-001	4.23-001	3,52-001	2.79-001
NU 93M	4,43-001	4.43-001	4,41=001	4.37-001	4.33-001	4.23-001	3 52-001	2,79-001
TC 99	5.024000	2.02+000	1,95+000	1.85+000	1.73+000	1.47+000	3 98-001	7.77-002
PU107	1.74-042	1.74-002	1.74-002	1.73-002	1.73-002	1.72-002	1.65-002	1.57-002
651NE	1.15-001	1.13-041	1,08-001	9,41-002	8.19-002	5.79-002	3,62-003	1.13=004
58126N	1,15-001	1.13-001	1,00-001	41-002	8.19-002	5.79-002	1 62-003	1.13-004
38146	1.14-041	1.12-001	1.07-001	6,35-005	8,11-002	5.74-002	3 59-003	1.12-004
1158	4.75-045	4.73+003	4.75-045	4.75-003	4.72-003	4.71-003	4 64-003	4.54-005
68135	H.50-002	8.30-002	8.45-002	8.45-002	8.30-005	8,25-002	7 32-002	6.29-002
SM151	2.14-002	2.28-009	.00	00	.00	.00	00	.00
SU8101	3.45+000	5.41+000	3.34+000	5.10+000	5 944090	2.62+000	1.21+000	7,20-001
TUTAL	3.45+000	5.41+000	5.34+440	3.16+000	5.484000	2.62+000	1.21+000	7.20-001

L.4

## TABLE L.3. Curies of Heavy-Element Isotopes in a BWR Assembly

· .	INITIAL	1 • Y	5. Y	10. Y	30. Y	100. Y	300 Y	1000. Y
P8510	2.42-010	3.04-01u	8.55-010	7.14-009	1-03-007	2.24-006	3,10-005	4,39-004
P8514	2,98+089	5.13-409	1,14-005	5,49+008	5.70=007	3.93-006	3.82-005	4.39-004
81210	5.29-002	5.64-010	8.50-01V	7.10-009	1.03-007	2.24-006	3.10-005	4.39-004
<b>F1219</b>	2.98-009	5.13-049	1.14=908	5.49-008	3.70-007	3.93-000	3.82-005	4.39-004
015U9	1.47-010	5.19-094	8.13-005	7.12-009	1.03-007	2.24-006	3.10-005	4.39-004
PU214	6.20-019	5.13-007	1.14=008	5.49-098	3.70-007	3-93-006	3.82.005	4,39-004
PU218	5.99-004	5.13-009	1.14=000	5 49-008	3.70-007	3.95-006	3.82-005	4.39-004
RN222	2.99-004	5,13=009	1.14-008	5,49=008	3.70=007	3.93-006	3.82-005	4.39-004
RA226	3.00-004	5.13-009	1.11+005	5.49-008	3.70-007	3-93-006	1.82-005	4.39-004
U65HT	4.16-010	5.71-000	0.82-006	2.00-005	5.37-005	1.89-004	6.50-004	2.41-003
TH231	. 80	5.29-000	1.59=007	5.29-007	1.59-000	5.28-000	1.58-005	5.22+005
14234	5.80-002	5.01-002	5.81=002	5.81-002	5.81-002	5.81-002	5.81-002	5.81-002
PA233	4.17-yu2	4.55-902	4.37-002	4.41-002	4.69-002	6.09-002	9.60-002	1.59-001
PAZSAN	5.85-042	5.91-002	5.81-902	5.81-442	5.01-002	5.81-002	5.81-002	5,81-002
PA254	.00	5.81-005	5.81=005	5 81-005	5.81-005	5.01-005	5.81-005	5.81-005
U233	• 0 •)	2.00-007	5.00=007	1,91-006	5.80-005	2.19-005	8.98-005	4.88-004
U234	1.70-001	1.79-001	1.01-001	1.87-001	100-50-5	2.40-001	2.82-001	2.93-001
0235	• 90	5.29-000	1.59-007	5.29-007	1.59-000	5.20-006	1.58-005	5.22-005
U236	5,85-002	3.05-002	3.05-002	5.85-002	5.85-002	3.87-002	3.92-002	4.07-002
1520	• 00	4.57-001	4.45-001	3.19-001	1.25-001	4.72-003	4.04-007	2.36-021
86 SU	5.41-002	5.81 mu U2	5.01-002	5.81-002	5.01-002	5.81-002	5.81-002	5.81-002
7259N	4.50-042	4.50-042	4,37=002	4.41-002	4.09-002	6,09-002	500-00.6	1,59-001
NP259	2.01+010	2.15+000	2.15+000	2,15+000	2.14+000	2.13+000	2.09+000	1.96+000
PU258	2.89+062	5.11+002	3.15+002	2.90+002	2.54+002	1.47+002	3.10+001	1.33-001
PU239	5.35+041	5.42+091	5.42+001	5.42+601	5.41+001	5.40+001	5.37+001	5.27+001
PU240	9.25+001	8.25+001	8.201001	8.20+001	8.20+001	100+55.8	8.05+001	7.49+001
PU241	2.04+004	1.901004	1.774004	1.20+004	5.00+003	1.89+002	1.62-002	9_41-017
PU242	2,70-001	2.70=901	2.70-001	2.70-001	2.70-001	2.70-001	2.70-001	2.69-001
AM241	5.50+001	5.44+001	1.14+002	2.801002	5.32+002	6.27+002	4.60+002	1.50+002
AM243	2.15+000	2.15+040	2.15+000	2.15+000	2.14+400	2.13+000	2.09+000	1.96+000
CH242	0.10+095	1.51+005	5,00+001	1.11-003	3.62-017	.00	.00	.00
CM244	1.84+002	1.771002	1.641.02	1.20+012	5.841001	4.00+000	1.89-003	4,34+015
5V8101	2.04+006 2	-14+004 1	.05+004 1	. 10+104 5	.99+005	1.11+003	5.10+072	2.03+002
TUTAL	2.041000	2-14+004	1.05+004	1.35+004	5. 79+003	1.11+00%	6.10+002	S10+18-5

TABLE L.3. (Contd)

	INITIAL	Seva. Y	10000. Y	30000, Y	50000, Y 1	00000 Y	5000001 Y	1,000,000 y
TL207	5-55-407	4.82-1100	4.79-005	3.15+004	6.49-084	1.31-003	1.85-003	1.88-003
TI 208	7.01-010	2.21-009	8.30-009	2.90-008	5.07-008	1.05-007	5.40-007	1.08-000
TL209	4.15-007	5.13-030	5.70.005	3.31-444	6.33.004	1.29-003	3.31-003	3.21-003
<b>PH209</b>	1.80-405	2.31-444	2.59-003	1.50=002	2.48=332	5.88-002	1:50-001	1.46=001
PH210	4.59-604	3.23-403	1.07-002	0.52-002	9.05-002	1.52-001	1.38-001	7.91-002
PB211	5.55-001	4.04-000	4.80-005	- 3,10-004	0.51-004	1.32-003	1.84-005	1.88-003
Pb212	1.95-004	0.15-009	2.42+400	8.00-008	1.41-007	2.95-007	1.50-006	2.99-006
PH214	4.39-604	5.23=005	1.07+402	0.52-002	9.85-002	1.52-001	1 30-001	7.91-002
81210	4.39-004	3.24+005	1.07+002	6.52-002	9.85-002	1.52=001	1.38-001	7.91-002
11518	5.55+097	4.84=035	4.80-005	3.10+604	6.51-004	1.32-403	1.88-005	1.86-003
91515	1.95-1144	6.15-009	2.12-000	8.00-008	1.41-007	2.93-007	1.50-006	2.99-006
81213	1.88=005	2.33=004	2.59-003	1.50-002	2.80+002	5.80-002	1.50-001	1.46-001
81214	4.39-014	3.63-405	1.87-002	6.52-002	9.83-002	1.52-001	1.38-001	7.91-002
PU210	4-59-004	5.23-005	1.07-002	0.52-002	9-03-002	1-52-001	1.38-001	7 91-002
PU211	1.00-009	1.45-000	1.44-007	9.48-007	1.95-006	3.90-006	5.65-006	5.65-006
PU212	1.25-049	3.94-004	1.49-008	5.10-008	4.02-408	1.87-007	9.60-007	1,91=006
PU213	1.75=005	2.28-004	2.53-013	1.47-002	2.01-18.5	5.75-002	1.47-001	1.45=001
PU214	4-39-004	3.23-005	1.07-002	6.52-002	9.43-002	1.52-001	1.38-001	7.91-002
PU215	5.55=007	4.54-000	4.80-005	3.10-004	0.51-004	1.32-003	1.88-003	1.88-005
PU216	1.95-644	6,15=409	2.32+005	8,00-008	1.41-007	2.93-007	1.50-006	2,99=000
PU218	4.59-1,04	5.03-005	1.8/-402	0.52-002	9.03-002	1.52-001	1.38-001	7,91=002
47217	1.85-035	2.53-004	2.59-005	1.50-002	2.04-002	5.85-002	1.50-001	1.46=001
RN219	5.55+017	4,44+016	4.50=005	3.16-004	0.51-004	1.32-003	1 88-003	1.88-003
RNZCU	1.95-004	0.15=007	2.32-008	8 00+008	1.41-007	2.93-007	1 50-006	5.99-000
84555	4.39-004	3.23-003	1.47=002	6.52+002	9,83-002	1.52-001	1.38-001	7.91-002
FH221	1,40-005	2.33-004	2.59-003	1.50-002	2.85-002	5,88-002	1 50-001	1,46-001
FH553	7.77+vü4	6.17-008	0.72=001	4.45-006	9.12-006	1,85-005	2.64-005	2.64-005
RA223	5.53-007	4.84*005	4.80-005	5.10-004	0.51-004	1.32-003	1.88-005	1,88=003
RA224	1.45-004	0,15=009	2,52-008	ຊູດຕະບຸດສ	1.41-007	2.93-007	1 50-005	2,99=006
84558B	1.00-005	2.13-404	2.54=005	1.50-002	5.00-005	5,88-002	1,50-001	1.46=001
84559B	4.59-004	3,23-045	1.07=002	6,52-002	9,83-402	1.52+001	1,38-001	7.91-002
RA258	1.95-009	0 <b>,</b> 15+009	5.35-000	d.00=00H	1.41-007	2,93-007	1.50-006	2.99-006
AC225	1,89=002	2.33-904	2,54-003	1,50-002	2.00-002	5,88-002	1 50-001	1.46-001
AC227	5.55-007	4.04.000	4.80-005	3.10-004	0.51-004	1,32-003	1.88-003	1,88-005
AC228	1.95-009	0.15=UN9	5.15-008	8.004008	1.41-007	2.93-007	1.50-006	2,99=006
TH227	5.47-007	4.77=000	4,75-005	5,12-004	0.42-004	1.30-003	1.86-003	1,80-003
1H558	1.95-009	6.15-009	5.35-008	8.00-008	1.41-007	2.93-007	1,50-000	2,994004
TH224	1.00-005	2.35-004	2,59-003	1,50-002	5.08-005	5.86-002	1,50-401	1.46-001
1H320	2.41-1145	7.38-445	2.40=002	6.48+002	4.72-002	1.50-001	1.38-001	7,91+002
TH231	5.22-1145	1.52-004	4.62-004	1.00-003	1.45-003	1,77-003	1.88-403	1.88-005
LH525	1.45-009	0.15-004	2.32-008	8,00-006	1.41-007	2.95-007	1.50-006	5.00-009
Tn254	5.01-002	5.01-002	5.81-002	5.81-002	5.81-002	5.81-002	5,81-002	5.81-002

L.6

N. Z. J.

	INITIAL S	UUQ. Y	10000 <b>.</b> Y	30000. 1	50000 Y 1	00000, Y	500000, Y	,000,000 y
PA251	5.55+047 4	35=036	4.00+005	5_10=004	0.51=004	1,32-003	1.86-003	1,88=003
PA233	1.59-001 1	98-001	1.49-001	1.87-001	1.86+001	1,83=001	1.61-001	1.37=001
PAZSAM	5.01=002 5	-01-002	5.81-002	5.81-002	5.81-002	5,81-002	5,81-002	5.81-002.
PA234	5.81-005 5	01-005	5.81-005	5.81-005	5.81-005	5,81-005	5.81-005	-5.81-005
1253	4.68-004 2	.02-005	7.53-003	5.23-002	3.58-002	6.44-002	1.50-001	1,45-001
112 5 4	2.45-041 2	.92-001	2.87=001	2.75-001	2.63-001	2,30=001	1,16+001	7,23+002
11235	5.22-005 1	52-004	4.62-014	1.05-003	1.43=003	1,77-003	1.88-003	1,88-003
11245	a 17-002 d	47-112	5. 35-002	6.08-002	6,17=002	500-81.6	6,11-002	9.05+005
11248	5 81-002 5	81=002	5.01-002	5.81-002	5.81-002	5.81-002	5,01-002	5,81-002
10237	1 50mAd1 1	.88#001	1.89=001	1.87-041	1.00-001	1.83-001	1_01=001	1.37-001
7621	1 (054000) 1	. 58+uUU	8.69=001	1.42-001	2.32-002	2.50-004	4 59-020	.00
NPC37	1 24-041	4 Annalia	- 0.1	00	.00	.00	00	.00
PUC20	5 474 AUD 1 - 1		4.11+001	2.45+001	1.33+001	3.22+000	3.75-005	2.55-011
PU234		104001	2.964601	5.85+000	4.93=001	2.93-003	4,56=021	.00
PU240	1.474041		2 65-001	2 55-001	2.46=001	2.25-001	1 98+001	4,34=002
PU242		1 1 4		1 05-018	.00	.00		.00
AMEYL			8 69-003	1 02-001	2.32-002	2.50+004	4 59-020	.00
4M245	1,7010V · 1	1. <u>.</u>	7.404001	2.954001	1.62+001	6.35+000	3.54+000	2.75+000
300101	2007002 100	54TUV6 3110.3	i dakaat		1.624001	6.35+000	1.54+000	2.75+000
TUTAL	C.05700C 1	LETVUS	1070707	6.07.71.001				

TABLE L.3. (Contd)

· · ·

1.

۲.7

化达克 建铁合金 计分子计分析状态

ì

TABLE L.4. Curies of Light-Element Isotopes in a PWR Assembly

	INITIAL	1. 7	5. Y	10, Y	50, Y	100. Y	300. Y	1000. Y
н 3	500+15+1	1.14+002	1.02+002	5.88+u01	2.23+001	4.32-001	5.52-00/	6 4.11-023
C 14	0.87-001	0,87-001	0.86=001	6.66-001	6.84-001	6 78-001	6 62-00	
CL \$6	5.12-003	5.12-005	5.12-003	5.12-003	5.12.003	5 12-001		
MN 54	4.531001	1.964001	1.69+000	1 67-002	5.02-010		0 3 <b>.120</b> 00;	3 3 11 - 043
FE 55	2.40+005	1.901004	1.11+001	1 724003				.00
CU 58	3.114004	H. 454001	7 78-003	1 10-012	0.34-001	0,30,004		.00
Cil 6a		3.1.1.1.001	reso-uue	1.17-012	.00	• 00	• 0 0	• 0.0
VI KO	3.007003	2+194002	2.431405	A*02+005	6.92+001	6.84-003	1 2,46-014	• • • • • • •
11	2.201000	e.e01000	2.20+000	5 50+000	S*50+000	5°50+000	) 2,20+001	2,19+000
41 05	2.05+002	2-01+005	5.90+005	2.81+602	2.42+002	1.43+002	3 16+001	1.62-001
24 05	0.52+001	2.241001	2.84+000	2,05-003	2.10-012	.00	.00	.00
ZH 43	1.15+001	1.05+001	1.45-001	1.05-001	1.05-001	1.05-001	1.05-001	1.05=001
ZN 95	2.21+004	4.50+002	1,87-001	2.71-013	.00	.00	00	'AU
<u>HB 934</u>	0,57-005	1,17-002	500=11.5	4 70-002	8.70-002	1 09-001	1 09-001	1 09-001
NB 94	6.24-001	0.24-001	6.24-001	5.240001	6.23-001	A 21-004	6 17.000	
NB 95	2.19+004	9.72+002	3.950001	5 75-012	00	0.61-001	0,114001	0.05-001
11 91	5.40+004	5.00000		5 // Jan (1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	• <b>U</b> U E 10		- <b>00</b>	.04
Tr 99	2 53-004	20702042		3,40-003	2+24=003	5.50-003	5.28-003	3,00+095
SNELOH		E	E. 37-003	5.24-002	2.59-005	5.24-003	2,59-003	2,58-005
941171	3.077003	1.15.002	1.4/+002	1.23-001	1.98-010	.00	.00	.00
34163	1.40+002	3.404001	3,41-001	2.30-007	0.10-025	.00	,00	.00
36125	7.67+002	0+09+005	3.04+002	6.04+001	3.56-001	5.61-009	00	.00
TEISM	1.67+632	2.50+002	1,51+002	2.50+001	1.48-001	2.53-009	.00	.00
209101	5.001004 9	.02+005	4.01+005	1.58+005	3.30+002	1.47+002	3.54+001	3.78+000
TUTAL	5.00+004	9.02+0113	4.014034	1.58+403	1.184000	1 //74443	2 E-81AAAA	1 70+000

· • • • •

TABLE	L.4. (	(Contd)	
		•	

`

. . . .

.

	4	,		ę ,				
	× '							, ·
·	· · ·							•
			,	,				1. A. A.
			· .					
			TAD					
			TAB	<u>LE L.4</u> . (CO	ntd)			
			tana. M	1000C M			E	
r 14	10111100		3 05-006	30000 1	20000 Y	100000 Y	200000 1	1,000,000 Y
<b>6 1 4</b>		4.78-001	6 00 - VII	1.82-002	1.02=003	5.84=006	.00	•00
	3,11,4003		3.01=003	4.79=005	4.50-005	4.10=003	1.60.003	5,48=004
41 24	2.197000	C.15TUUU	2.027000	1.70+000	1+45+000	9.27-001	5,90=005	3.81=004
41 02	1.26-101	4,35,000	• 00	• 0 9	•00	0 0	.00	.00
ZH 95	1.02-001	1.05-001	1.04=001	1,05-001	1.02-001	9,99-005	8,31=002	6.59=002
NR ARM	1.09+001	1,08-001	1.00-001	1.04-001	1.02=001	1.00-001	8,31=002	6.59-002
NB 44	0.02-041	2.05+001	4,41=001	2,21+001	1.10-001	1.95-002	1.87.008	5.58-016
MU 43	5.00=005	4.29-005	2.50-005	5,36-004	1.15-004	2.45-006	1.03-019	.00
10 44	2,50-005	5.20-903	5.20403	2.34-003	2.19-005	1.80-003	4,97-004	9,55=005
SUBTUT	3,70+000 3	41+000	5-23+090	2,15+000	1.75+000	1,15+000	1,97=001	1,33-001
TUTAL	3.74+000	5.41+000	5-941000	2.15+000	1./54000	1.15+000	1.97-001	1.53-001
							, <b>`</b>	
		· .		•				
		n		,				

1

.*

## TABLE L.5. Curies of Fission Product Isotopes in a PWR Assembly

	INLTIAL	1. Y	5. Y	14. Y	30. Y	100. Y	300. V	1000. Y
H 3	2.55+042	2.41+002	2.15+002	1.45+002	4.70+001	9.10-001	1.16-005	8.66=023
SE 79	1.87-001	1.37-001	1.87-001	1.87-001	1.87-001	1.87-001	1.86-001	1.85-001
KR 85	4-54+045	4.07+005	5.54+405	2.20+005	6.33+002	7.09+000	1.89-005	5.89-025
98 89	5.64+005	2.00+005	1.00*001	2.64-016	.00	.00	.00	.0u
58 90	3,49+004	3.40+004	3.24+004	2.73+004	1.07+004	2.96+003	2.14+001	6.80-007
¥ 90	3.64+004	5.41+004	5.24+004	2.75+004	1.67+004	2.90+003	2-14+001	6.80-007
Ý 41	4.744005	0.451005	1.10+000	9.64-014	.00	.00	.00	.00
ZH 94	1.344000	1.54+000	1.34+000	1.34+000	1.344900	1.34+000	1.34+000	1.34+000
NH 93M	9.41-042	1.50-001	2.71+001	5.92-001	1.07+000	1.33+000	1.34+000	1.34+000
ZR 95	0.87+005	1.44+004	5.80+000	8.42-012	.00	.00	.00	.00
NB 95M	.00	2.97+002	1.25=001	1.79-013	• 0 11	00	00	.00
NH 95	7.02+505	3.05+004	1.20+001	1.85-011	.00	00	.00	.00
10 99	6.09+000	6,09+000	6.04+000	6 09+000	6.09+000	6.09+000	6 08+000	6.07+000
80103	0.43+1105	1.14+003	3.21-005	1.19-022	.00	.00	.00	.00
RHIUSH	0.75+005	1.15+003	5.22-103	1.19-022	.00	. Q U	00	.00
RU10้6	2.57+005	1.301005	3.2/+004	2.02+002	2.68-004	2.89-025	00	.00
RH1 06	2 . 844445	1. 10+003	5.27+004	5.05-005	2.65-004	2.89-025		.00
PULU7	5.10-002	5.15-002	5.10+002	5.10-002	5.10-002	5.10-002	5,10-002	5.16-002
36125	0.70+045	5.23+003	5.15+005	5,19+002	3.00+000	4.82-008	.00	.00
TE1254	1.45+005	2.15+003	1.30+003	2.15+002	1.27+000	2.00-008	00	.00
SN126	5.57-001	3.57-001	5.57-001	3.57-001	3.57-601	3.57-001	3.57-001	3.55-001
38156M	5-59+005	5.57-001	5.57-001	5.57-001	3.57-001	3.57-001	3.57-001	3,55-001
88126	5,05+002	5.54-001	3.54-001	5.54-001	3.54-001	3,53-001	3.53-001	3,51-001
1153	1.42-002	1.42-002	1.42-002	1.42-002	1.42-002	1.42-002	1,42-002	1,42=002
CS154	7.08+004	5.06+004	2.50+004	2.40+003	2.90+010	1.80-010	.00	.00
63135	2.22-001	5.55-001	2.22-001	2.22-001	2.22-001	2.22-001	2,22-001	2,22=001
C2137	4 82+004	4.71+004	4.49+004	\$ 82+004	2.41+004	4,78+003	4 71+001	4 47-005
BA1574	4.52+004	4.40+004	4,20+004	5.57+004	2.25+004	4.47+003	4 40+001	4.18-006
CE144	5.57+005	2.28+005	3.84+004	1.50+001	1.30-000	.00	00	.00
PH144	5.60+005	2.28+005	5.841004	7.50+001	1.30-000	.00	200	.00
PM147	5.71+004	4.58+004	2,58+004	4.05+003	2.04+001	1.80-007	00	.00
SH151	1,85+012	1 54+002	1 81+002	1 71+002	1,40+002	8 34+001	1 70+001	6.42-002
EU154	4.90tuv5	4.09+005	4.501003	5.17+003	1.34+003	6.44+001	1.11-002	7.58-016
Eu155	3.10+043	2.164005	1.00+305	6.87+001	3.25-002	7.45-014	.00	.00
308101	5.50+000	1.051000	3.59+005 1	.42+005 0	8.21+004	1.53+004	1.61+002	1.03+001
TUTAL	5.56+000	1.05+000	3.39+905	1.421005	8.21+004	1.53+004	500+14.1	1.03+001

L.10

Ν.,

# TABLE L.5. (Contd)

A B MAR

	INITIAL	3000. Y	10000. Y	30000. Y	50000 <b>.</b> Y	100000. Y	500000° Y	1,000,000 y
SE 79	1,05-001	1,01-041	1,68-001	1.30-001	1.10-901	6_44-002	9,05-004	4.38-006
ZH 93	1.54+000	1,54+000	1,33+000	0.00+52,1	1.31+000	1,28+000	1,06+000	8,44-001
NB 93M	1.34+000	1.544000	1.35+009	1,32+000	1.31+000	1.25+000	1.06+000	8,44-001
TC 99	6.07+000	6.03+000	5,87+000	5,52+000	5.17+000	4.39+000	1.19+000	2,32-001
PD107	5,10-002	5.16-002	5,10-002	5,15-002	5,13=002	5,11-002	4 91-002	4.67-002
90126	3.55-001	5.50-001	3,35-001	2,90-001	2.53-001	1.79+001	1,12-002	3,49=004
88126M	3.55=001	3.50-001	3.35-001	2.90-001	2.53-001	1.79-001	1,12=002	3,49-004
98159	3.51-001	3.40-091	3.30-001	2.87-001	2.50-001	1.77-001	1.11-002	3,46=004
1129	1.42-042	1.42-002	1,42=002	1,42-002	1.42=002	1.41-002	500-95.1	1.36-002
C5135	2.22-001	2.22-001	5155=001	5.50-001	100+01.5	2.10-001	1.91=001	1.65-001
54151	n.42=00¢	7.75-009	<b>∦</b> U ∪	.04	. 00	.00	00	.00
SUBTAT	1.03+001	1.02+001	1.00+001	9.45+000	8,94+000	7.83+000	3.60+000	2,15+000
TUTAL	1.05+001	1.02+001	1.004001	9.451000	8.94+000	7.83+000	3,60+000	2.15+000

L.11

V[dm9zzA XW9 & nf seqotosI tnemel3-vvseH to seiru) .1318AT

200+28*6	200422*1	£00+81 <b>*</b> 2	p00+02*1	670+58*8		t00+90*9	900+62*6	14101
\$42+0n5	L 500+LL	1 200+81.	£ +00+nL*	1 #00+58*	5 000+52*	5 600+00*	0*54+010 P	101808
810-29*1	£00-01°2	100+05*1	200+61•5	500+57.0	500+11.0	200+99*9	200426*0	77245
00*	U N *	00*	al0=£0*1	£00-p1*f	200+29*1	500451.2	400+9L*1	24245
000+02*9	009+71*2	7.57+000	7.32+000	000455.1	000+85*1	nau+ns • L	000465.*2	EHENE
4*10+005	1.53+003	\$00+52°1	\$00+Rh*1	S00+67.1	500+00 <b>.</b> č	200+00*1	100+10*5	[HZWV
8*51-001	100-85.8	8*58-0UI	8*54-001	100-45.8	8*50+001	8°534001	100-62.8	Shange
5*65-010	500-05°0	200+0 <b>£°</b> 5	600+10+1	100+65*1	ħ00+96°ħ	100+11"5	H00+51.5	19209
200+80 <b>.</b> 5	2,24+002	200402.5	24244045	500+65 <b>.</b> 5	240462*2	500+95.5	5*56+005	9620d
200+82*1	1*#1+005	1*45+005	500+54.1	500+50.1	500+50*1	500+5P.F	200+00*1	65 20d
100+++++	1,02+402	500+19 <b>.</b> p	5nu+74.4	9 <b>*</b> 89+005	200400*1	\$n04ba*1	200+14*6	85200
·non+0 <b>L*9</b>	000+11-2	7 <b>°</b> 51+700	1*35+nn0	000+22°L	000465 1	000+#5*L	900415.9	65541
4*85+001	2,87+001	100-68.1	100-67*1	1.00-54.1	100-00*1	Loomph*1	100-08-1	12291
100-5#*1	109 <b>-</b> 28 <b>1</b>	100-50-1	100-50-1	190-50 * 1	100+57*1	100-56*1	100-52-1	8550
<b>e*e</b> 2=051	900-01*1	1.33-002	100-22.5	100-96*8	000465.1	000+ <b>L\$*1</b>	0.0 *	7250
1.22+001	100-81.1	100-91-1	100-91-1	100-91.1	100+41.1	140+61.1	100-91*1	9450
1100+251	500"51"7	500-62.1	anu+a1.*#	400+62.1	100+11*0	100-65*1	00*	5120
100-96.8	100*09*8	1.21-001	100-26-5	lou-th*s	100-12*5	100+51*5	109-51 *5	<b>17520</b>
TU0=07°l	5 <b>*</b> 4*00#	500-06 9	200-98.1	900-51.0	000-29.1	L00+19*9	60.	1543
100-50-1	h0n=5n*1	₩0 <b>~</b> 58°T	#AN=\$#*I	h00+5h*1	n00 <b>=5n*1</b>	600+So*I	00*	1555A
100+57*1	100*57 1	100-50-1	100+57*1	100-57 1	100+\$0*1	100+58*1	100+20*1	H#\$SA9
100-29*7	100-76.S	100-68-1	107=67*1	100-20*1	100=07*1	100-04-1	100.455*1	55249
100-57*1	100*57 1	100-50 1	100-57-1	100-50-1	100-50-1	IND-Sh*I	100-50*1	442H]
400+22*1	500-51 7	500-62"1	900+95*#	907-65*1	600=61°#	100-05 *1	n () •	14231
7.52-003	200-261	#U0=55 <b>*</b> 5	100-15-1	500-25 5	21-002	500-50-1	400-01.0	14530
200-22 1	#Un=#1 <b>"</b>	500-01-1	901+n0 <b>*</b> 1	1 <u>"do-do</u>	800-11.5	800+01-1	600=98°G	45245
500-55*1	h00=h1 1	500+h1*1	000+00+1	700-dP.1	2,11+005	800+01+1	600+58*5	27285
200-22-1	b00=b1 1	500=h1 1	900+00*1	L00=97 1	800+17.5	800-01.1	600-a8°S	61509
200-22-1	#00 <b>*</b> #1 <b>*</b> 1	500-11"1	900-20-1	700-ap.1	800=17.5	800+01+1	<u> </u>	4120d
200-22-1	500*55.6	900-80 9	7.00×24.5	800-61.1	000+5h°L	2.45-004	119=55*1	01504
500-55*1	100=11=1	500-11-1	900-H0-I	700+d4.1	86U#17.5	800=01.1	600-56*5	b1516
200-22-1	500 <b>~£</b> 2 <b>*</b> 6	900+ <u>8</u> 7*9	L00+58*2	800-61.1	600-55-1	010-19*5	200-58.0	01516
200-22-1	790 <b>~</b> 71 <b>~</b> 1	SUD-01 1	a00+40.1	700-dp.1	800+17.S	600-11.t	600=54*5	0151d
1*22-042	500722002	900-90-9	760+28.5	600-97.1	600=\$9*1	010+08+4	010-05-5	01296
Y .0001	7 00E	A "001	Y .0E	X *01	X *5	1 • 1	TELLA	

 $f^{-1}\lambda$ 

1

TABLE L.6. (Contd)

	INITIAL	5JUU. Y.	10000 <b>.</b> Y	30000, Y	50000. 1 1	00000 Y	500000 Y 1	,000,000 y
TL207	1_45=000	1.27-005	1,20=034	8,29-004	1.71-003	3.46-003	4,95-003	4.95-005
TL208	5.11-013	0.03=009	2,48=008	8.54=008	1-49-007	3.09-007	1.58-006	3.15-006
1203	010-65.1	1.30-005	1.65-004	9.55-004	1.5-003	3.74-003	9.57-003	9,29-003
6959d	5,00-005	6_95=004	7.51-003	4 35-002	5.32-002	- 1.70-001	4.35-001	4.22=001
P8219	1.33-603	9.00-005	5.70-002	1 99-001	3.00-001	4.61-001	4,03-001	2.12+001
P8511	1,46=036	1,27-005	1,25=004	8,32-004	1.71-003	3.47-003	4.97-003	4,96=003
<b>bRS15</b>	5_85-004	1.84=008	6.09-008	2.37-007	4.14-007	8.50-007	4 39-006	8.74-006
P8214	1.35=003	9,56-005	5.70-002	1.99-001	3.00-001	4.61-001	4.03-001	100-51.5
01210	1.35-045	9.06-005	5.10-002	1,99=001	5.00-001	4.61+001	4.05-001	100-51,5
81511	1.40=000	1.27-005	1.20-004	8.32-004	1.71-003	3.47+003	4.97-003	4.96=003.
81212	5.85+004	1,04-008	0.07=008	2.37=007	4.14+007	8.58-007	4,39=000	8.74+005
81513	5.00-005	0.05=004	7.51-003	4.35-002	4.32-002	1.704001	4,35-001	4,22-001
81514	1.33-005	9.86-005	5.70-002	1_99+001	5.00-001	4,61=001	4_03=001	2,12-001
PU21n	1.53-043	9.36=003	5,70-002	1.99-001	3.00=001	4.61-001	4.03-001	5,15-001
PU211	4.37=009	5.01-000	5,79-007	5.42-000	5.14-000	1,04-005	1_49=005	1,49+005
PU215	5.75-014	1.18=000	4.41-008	1.52-007	2.65-007	5,49-007	5.81-006	5.60-006
PU213	5.48-005	0.07-004	7,35+003	4.20-002	8 <b>.13</b> +002	1.60-001	4,25-001	4.13-001
PU214	1.33-945	9.86-003	5,70=002	1,99-001	3.00-001	4.61-001	4,03-001	5.15-001
PU215	1,40=006	1.27-005	1.20-004	8,32-014	1.71-003	3.47-003	4.97-003	4.96-005
PU216	5.45=009	1.04=008	0.07+UUB	2.31-007	4.14=097	8,58-007	4,39-006	8.74-006
PUZIA	1.35-005	9.05-005	5.70-002	1.99-001	3+00=001	4.61-001	4,03+001	5,15-001
41217	2.00+002	0.05=004	7,51-005	a 32=002	8.35-005	1,70-001	4,35=001	4.22-001
KN219	1.40=040	1.27-045	1.25+014	8.32-004	1.71-003	3,47-103	4.97-003	4,96-003
84250	5.85-009	1.84-008	6.89-008	2.37-007	4-14-007	8 <b>.</b> 58-un7	4,39-006	8.74-006
BNSS5	1,33=005	9,56+003	5.70+002	1,94-001	3.00-001	4,61-001	4_03-001	5.15-001
FH221	5.00-005	0.25-004	7.51-003	4.35-002	4.32-002	1.70-001	4,35-001	4,22=001
FH553	d . 1)4 . (115	1.78#307	1.77-000	1.10-005	2.40.005	4.80+005	6.95-005	6,95+005
RA223	1.40=000	1.27-005	1.25=004	8.32-004	1+71=003	3.47-003	4,97=003	4,96=005
RAZZA	2.82+048	1,04=698	6,89+008	2.57-007	a.14=007	8.58-007	4,39-006	8.74-006
RAZZS	5.60-005	0.05.004	7.51=003	4.35-002	8-35-045	1.70-001	4,35=001	4,22-001
RAZZO	1.33-005	9.00-003	5,70-002	1,99-001	3.00-001.	4,61=001	4 03-001	5,15-001
RAZCO	2.42-0VY	1.74-008	9.84=308	2.57-007	4.14=007	8,55-007	4.39-006	8,74=006
40225	5.00-005	0.02+044	7,51=003	4,35+002	8.35-005	1.70=001	4_35=001	4.22-001
40227	1.46+006	1.27-005	1.20=004	8.32=004	1.71-003	3.47-003	4,97=003	4,96=003
ACZEÓ	5.85-014	1.84-038	6.49-005	2,37-007	4.14=007	8.58-007	4,39-006	8,74=000
THEET	1.44-000	1.45-005	1.24=004	M,20=004	1.69=403	3.45=003	4,90=003	4,89-003
14558	5.65-004	1,04-990	6.84=005	2.37-007	4.14-007	8.58-007	4,39=000	8,74=005
14558	2-20-002	0.05+004	7.51-093	4.35-002	8-35-005	1.70-001	4.35-001	4.55=001
TH2 SU	7.32-643	2.25-092	1-35+005	1,96=001	2.90-001	4.57-001	4.02-001	2.12-001
14521	1.37-004	4.08-094	1.55-003	5.84-083	3.76-005	4.68-003	4,97-003	9.96-005
14525	5.85-044	1.Եվանդգ	h.HY=J08	2.37-007	4.14-007	8,50-007	4.39-006	8,74+006
TH234	1,45=901	1,45=001	1.45-091	t_45+VU1	1.45=001	1.45-001	1.45-001	1,45=001

L.13

TABLE L.6. (Contd)

	INITIAL	5000. 1	10000, Y	30000, Y	50000 Y	100000, Y	500000 Y	1,000,000 y
PAZSI	1.40-000	1.27-005	1.20-004	8.32-004	1.71-003	3.47-003	4 97 003	4.96-003
PAZSS	4.02-041	5,43=001	5.45=001	5 42-001	5,38-601	5,29-001	4 65+001	5,96~001
PA254H	1.45-001	1,45=001	1.45-001	1.45-001	1.45-401	1.45-001	1,45-001	1.45-001
PA234	1.45-004	1.45-094	1.45=004	1,45+004	1.45=904	1.45-004	1.45-004	1.45-404
U233	1.44-005	5.87-005	5.10-005	n 40-002	1.04-691	1.80-001	4,33-001	4.20-001
4254	8.90-001	8.924001	8.77-001	· 6.57-001	7,99-001	7.14-001	3,30-001	1.91-001
U235	1.57-004	4.00~004	1,22+003	2.84-003	3.70-003	4.68-003	4,97-003	4.96-003
052U	1,22-001	1,33-001	1,50+001	1.78-001	1.81-001	1_81-001	1.79-001	1.76=001
1524	1,45-001	1.45=001	1.45-001	1.45+001	1.45=401	1.45-001	1,45-001	1.45=001
NH537	4,02-001	5,43-001	5.45-001	5 42+001	5.30-001	5.24-001	4 65-001	3.96-001
NB578	6.70+000	5.59+000	2.97+000	4.85-001	7.92-002	8,54-004	1.57-019	.00
PUS 2H	4,44-041	7.00-008	តមិប	.04	.00	200	.00	.00
60520	1.30+002	1.21+005	1.00+002	6.19+001	3.52+001	8,51+000	9.91-005	6,74-011
PU240	5.00+005	1.70+002	8,29+001	1.07+001	1.37+000	8,15-003	1.27-020	.00
PU242	8°52+0n1	8.24-001	3,14=001	7,84=001	7.50-001	6,90-001	3.32=001	1.33-001
AM241	4.17+095	1.71+001	2.35-004	410-59,5	.00	.QU	្វីបំព	.00
AM245	0.70+000	5.59+044	2.47+000	4.85-901	7.92-002	8,54-004	1.57-019	.00
900 [() [	2.021005	5.55+002	5-01+005	7.93+001	4.37+001	1.75+001	1.02+001	7.70+000
EUTAL	1.03+002	2.22+005	5.014035	7.93+001	4.57+041	1.78+001	1.02+001	7.70+000

÷,

### APPENDIX M

## LONG-TERM DOSE CALCULATIONS FOR SOLUTION MINING SCENARIOS

(

		IRRIGATION CRO Air deposition	CROP PATHNAY: OFF		
		AQUATIC FOOD	S PATHWAY: ON	····	
RADIONUCL IDE	TOTAL BODY	DOSES AND TOTALS REPORTE BONE 8	D IN REM LUNGS %	THYROLD %	
**********	7 15-04		7.1f-R4 17	7.15-06 0	
	2.75-00	1.6E-D3 0			• • •••
SE 79	9.4F-06	0 0. 0	0 2.	.0 E	-
MO 93	2.4E-08	•0 0	•0 0	•0 0	
PD 107	3.02-08	0 <u>0</u>	<u>. 0 0</u>	<u>.0</u> 0	
U 239	2 . 7E-03	0 \$0+\$2-02 0	• 0 0	•0 0	
U 236	. 4.8E-04	<u> </u>	• 0 0	QQ•	
ZR 93	9+9E-08	3.82-06 0	• T • 0	•0 0	
<u>NB 93H</u>	1.96-07	<u> </u>	• 0 0	• [ 0	·· +
TC 99	1+82-05	J 7+5E+05 0	3.0L-UD 13	•U U	
51 120	4.82-05				
50 120H	3.35+07		.0 0	1.65-08 0	
1 129	8 • DE - 06	2.85-06 0	•0	6.32-03 99	•
CS 135	1.16-09	2.85-04 0	2.98-05 69	•0 0	
TH 230	3.42-04	1.16-02 0	•0 0	.0 0.	
RA 226	8+6E-01 7	1.35+00 15	• 0 0	•0 0	
RN 222	•0	•0 0	•0 0	•0 0	
PB 210	1.92-03	5+3E-02 0	•0 6	•0	
BI 210	9.2E-07		• • • • •	-0 0	
PO 210	3 + UL = U4		· ·· ···· · · · · · · · · · · · · · ·	······	• •• •••
TH 235	1.45-12	1 3_5E-11 N	.0 0		
PA 231	1.72-06	4.7E-05 0	•0 0	•0 0	
AC 227	9.6E-07	0 1.5E-05 0	•0 0	•0 0	
TH 227	3.26-09	1.1E-07 0		•0 0	• • •
RA 223	7.92-06	0 4.02-05 0	u 0.	•0 0	• •• •
NP 237	2.52-03	5.62-02 0	•0 0	•0 0	
PA 233	3.1E-08	<u>1.8E-07 0</u>	.0.0	•00	
U 233	7.0E-05	D 1.2E-03 0	•• 0	•0 0	
TH 729	Z+9E+04		• 0 0	• 0 0	
RA 225	5 • YE-U4	U 3.02.403 U	•0 U		
AC 225		0 2002-00 U			
U 230 Th 216	7.35-07	0 7.6F=07 0	- B n		
	00 (		<u>-</u>	• • • • •	
PA 234	.0		• 0 0	.0 0	
PU 242	1.2E-J3	2.42-07 0	•Č Ö		• • •
NP 238	• 7	0 0.	• C 0	•0 0	
PÜ 238		6 7. 0	• 7 0	•0 0	
PU 240	1.3E-01 1	2.8E+UN 73	00	<u>.                                    </u>	
AM 243	1.26-02	3.1E-U1 3	• • • • • • • • • • • • • • • • • • • •	• 0 0	
NP 239	1.1E-UP		• <b>E</b>	4U D	

1

.

.

ï

	TOTALS O CASE TITLES AEGIS	NAT SOMARY TOTALS	IED ORGANS INTERN ARIO, SPENT FUEL & 1	AL DOSES ONLYS 0.000 VR. SALT INGE	STION, HI
	*** DOSE COM	ITTHET SUMMARY FOR DO	ISE-TEAP TO OF A SU.	TEAR PLANT LIPE .	••••••••••••••••••••••••••••••••••••••
		AIR DEPOSITION	CROP PATHEATE OFF		·····
		AQUATIC FOO	OS PATHWAYS ON		
		•			
		ES AND TOTALS REPORT	ED IN REM		
RADIONUCL IDE	TOTAL BODY - 8	BONE	LUNGS \$	THYROID 'S	
*********					
<u>C 14</u>	3.6E-04 0		<u> </u>	3.62-04 0	
NL 39 SF 70					
NO 93	1.2E-06 0				
PD 107	1.56-06 0	. a a	.0 0	.0 0	
U 234	1.46-01 0	2.2E+00 Q	• 0 0	.0 0	
<u> </u>	2.46-02 0	3.96-01 0	•0 0	•0 0	-
ZR 93	4.92-06 0	1.92-04 0	•0 0	•0 0	
<u>NB 93H</u>	9.4E-06 . 0	1.22-04 0	• 6 0	<u></u>	
1C 99 SN 126	9.02-04 U		2.81-04 13		
SR 126M					
SB 126	1.76-05 0	3.96-05 0	.0 0	8.0E-07 G	
I 129	4.02-04 0	1.46-04 0	•0 4	3.12-01 99	
CS 135	5.62-03 0	1.42-02 0	1.4E-G3 69	•0 0	
TH 230	1.1E-02 0	3.82-01 0	•0 0	.0 0	•••••••
<u>RA 226</u>	<u>3.5E+01 75</u>	<u> </u>	.0 0	.0 0	
RN ZZZ	0 0.	•0 0	•0 0	.0 0	
<u> </u>		2.62.400 U	• U U	•U U	
PO 210			•0 U	.0 U	
U 235	1.92-04 0	3.26-03 0			
TH 231	8.1E-11 0	1.86-09 0	.0 0	.0 0	
PA 231	5.8E-05 0	1.42-03 0	.0 0	.0 0	
AC 227	4.1E-05 O	6.6E-04 Q	•0 0	.0 0	
TH 227	1.6E-07 0	5.52-06 0	.0 0	•0 0	
RA 223	4.CE-04 G	2.02+03 0	• <u> </u>	•0 0	
NP 231				•U U	
	1.55-00 0		······································		
TH 229	8.16-03 0		.7 0	.0 0	
RA 225	3.02-02 0	1.52-01 0			
AC 225	6.7E-06 0	1.CE-04 0	.0 0	.0 0	
U 238	2.1E-02 0	3.6E-U1 Q	.C Ö	•0 0	
<u> </u>	<u>1.1E-06 G</u>	<u> </u>	<u> </u>	.00	-
PA 234H	•7 0	• 0 0		.0 0	
TA 234 Dii 343			• U U	•U	
NP 238					
PU 238	Č D				
PU 240	4.5E+00 9	9.6E+ü1 32	0 7.	.0 0	
AH 243	4.2E-01 U	1.16.01 3	• • • • • •	• • • •	
NP 239	5.6E-U7 C	1.CE-05 0	• 6 1	0 9.	
PU 239	6.78+00 12	1.3E+62 43	•F Ü		

• .•

M. 2

#### COMBINED PATHWAY SUMMARY TOTALS PABLE VERSION2 120580 TOTALS BY MUCLIDE FOP SPECIFIED ORGANS (INTERNAL DOSES ONLY) CASE TITLE: AEGIS SOLUTION MINING SCENARIO, SPENT FUEL & 10,000 YR, SALT INGESTION, POP *** DOSE COMMITMET SUMMARY FOR DOSE-YEAR 1 OF A 50, YEAR PLANT LIFE ***

P,

111

	IRRIGATION CROP	PATHWAY	OFF	
	AIR DEPOSITION C	ROP PATHE	OFF	
 	AQUATIC FOODS	PATHWAY:	ON	

 $(\cdot)$ 

- i

		DOSES AND TOTALS REPOR	TED IN MAN-REP		
RADIONUCLIDE	TOTAL BODY	BONE 8	LUNGS R	THYROID	3
**************************************	1.15+07		1.15402 17	1.15403	 ^
NT EG	8.05403				- <u>X</u>
SF 79	5 . 7F+01			.0	<b>.</b> .
MO 93	3-66-01				ă
PD 107	4.5E-01	0 0 0	•0	.0	ō
U 239	9 . 1E+04	0 6.72.05 0	• 0 0	• 0	Ö
U 236	7.22+03	0 1.2E+D5 0	• 0 • 0	.0	Ō
ZR 93	1.52.00	0 5.72+01 0	• 7 •	• 0	0
NB 93M	2.8E+G0	0 3.5E+01 0	•0 0	•0	0
TC 99	2.76.02	0 6.85+02 0	8.4E+UI 13	•0	Ö
SN 126	7 + 2E + 02	0 2.5E+U4 0	<u>• t 0</u>	1.5E+02	0
SB 126 M	•0	0 0	•0 0	•0	0
SB 126	5.72+00	0 1.22+01 0	• 0 / 0	2.92-01	0
I 129	1 • 2E + D2	0 4.22+01 0	•0	9+42+04	99
CS 135	1+7E+03	0 4.1E+03 0	4.3E+02 69	• 0	. <u>0</u>
TH 230	5+1E+03	0 1.72+05 0	0	• C	0
<u>RA 226</u>	<u>1.3E+07</u>	71 <u>1.9E+07 15</u>	•0 0	• 0	<u></u>
RN 222	• 🖸	0 0 0	• 0 0	•0	0.
PB 210	Z+8E+04	0 8.0E+05 0	• 🖉	• 0	<b>Q</b>
BI 210	1+96+01	0 2.4E+U1 0	•C 0	•0	0
P0 210	# • 5E+U3	0 1+92+04 0	•0		0
U 235	5+86+01	0 9.66+02 0	•0 0	.0	0
<u> </u>	2.96-05		<u> </u>	• 0	<u></u>
PA 231	2+5L+UI		•0 0	• U	
					ă · ·
111 221	4 0 / E - U Z		- P 0		0
KA 223	1+46706			· · · · · · · · · · · · · · · · · · ·	ă
DA: 312	8-45-01	0 2-6F4617 0		-0	ň
	1.16403	1.75 + 0.6	······································		- <u>n</u>
TH 220	3.45403	0 7.45+08 8	- <b>T</b>	• 0	ō
RA 225	8.96403	6 4.5E+04 d	• ti d	· · · · · · · · · · · · · · · · · · ·	ā ·
AC 225	2.05+00	0 3-05+01 0	0 2.	.0	Ō
U 238	6.4E+03	ü 1.1E+65 Ö	•0 0	• 0	Ō
TH 238	3 . 36 - 01	0 1.1E+U1 0	. Č	.0	Ō
PA 234M		0 0	······································	•	0
PA 234		0 • ₽ 0	.t u	.0	0
PÚ 242	1.82+04	0 3.76+65 0	•t 5	.0	Ö
NP 238	• 7	0 .0 0	ú 🤊 .	• C	0
PU 238		บ •ว 0	• the second second second second second second second second second second second second second second second	• 0	0
PU 240	Z . SE+06	11 4.22+17 33	• 🖸 👘	• 0	0
AH 243	1.72+05	U 4.7E+66 3	• 🗗 👘 🕡	•	0
NP 239	1.76-01	C 3+1E+0P D	• P	• 🖸	0
PU 239	2 • 7E+DE	14 5.5E+U7 ##	•t U	• *	D
	*********				
TOTALS	1.85+07	100 1.2E+08 100	8.3E+08. 100	9.9E+09 II	<b>70</b>

M. 3

#### COMBINED PAYHWAY SUMMARY TOTALS PABLM VERSION2 TOTALS BY NUCLIDE FOR SPECIFIED ORGANS (INTERNAL DOSES ONLY) CASE TITLE: AEGIS SOLUTION MINING SCENARIO, SPENT FUEL & 10,000 YR, SALT INGESTION, POP +++ DOSE COMMITMET SUMMARY FOR DOSE-YEAR 70 OF A 50, YEAR PLANT LIFE +++

IRRIGATION CROP PATHWAY: OFF
AIR DEPOSITION CROP PATHS CFF
 AQUATIC FOODS PATHWAYE ON

	DOS	ES AND TOTALS REPOR	TED IN MAN-REM		
WADI ONUCL IDE	TOTAL BODY X	BONE	LUNGS 4	THTROID	
C 18	5.354.)3 0	2-15-444 0	S. JEANE 17	6. 15401	n
	2.05405 0	1.25406 0			
SF 79	3-35+03 0	.0 0	- <b>n</b> - <b>n</b>	-0	ū .
NO 93	1.86+01 0				ă
PD 107	2.22+01 0	•0 D	<u>u</u> 0.	.0	ā
U 234	2.16+06 0	3.36+67 0	.0 0	• 0	0
U 236	3.62+05 0	5.82+06 0	ā ā.	• 0	ō
ZR 93	7.42+01 0	2.82+03 0	•0 0-	•0	0
NB 93H	1.46+02 0	1.82+03 0	• <b>0</b> 0	• 0	0
TC 99	1.42+04 0	3.42+04 0	4.2E+03 13	•0	0
	3.62+04 0	1.32+06 0	•0 0	7+4E+03	0
SB 126 M	•0 0	.0 0	.0 0	•0	0
<u>SB 126</u>	2.55+02 0	5.96+02 0	•0 Q•	1-2E+01	0
1 129	6.02+03 0	2.1E+03 0	•0 0	4.72+06	9
CS 135	8.5E+04 0	2.16+05 0	2.26+04 69	• 0	0
TH 230	1.72+05 0	5+7E+06 0	• Û - Û	•0	Ő
RA 226	<u>5.3E+08 75</u>	<u> </u>	• C 3	• 0	0
RN 222	•0 0	•0 0	•0 0	-0	V
PB 210	1.42.06 0	3.9E+07 0	•0 0	•0	0
BI 210	6.92+02 0	1.22+03 0	•0 0	• 0	0
PO 210	2.22+05 0	9.3E+35 0	•0 0	• 0	<u>0</u>
U 235	2.9E+03 0	4+8E+04 0	•0 0	•0	0
IH 231	1.2E-03 0	<u> </u>	• 0	• 0	Q
PA 231	8.72402 0	2.1E+04 0	•0 0	•0	0
AL 221		<b>Y • YE • U 3</b>	••••••••••••••••••••••••••••••••••••••	• • • • • • • • • • • • • • • • • • • •	U
			•U U	• U	U C
NA 63		3.02.404 0	• • • • • • • • • • • • • • • • • • •		<u>V</u>
PA 237			. •C L	•0	
11 211	5.35.04	<u> </u>		•••••••••••••••••••••••••••••••••••••••	X
TH 279	1.25405 0			- 0	<b>U</b>
RA 225					
AC 225	1.054.02 0	1.55413 0		-0	0
<u> </u>	3.26+05 0			•0	d .
TH 234	1.65+01 0	5-76+42 0	.0 0	** .0	ñ
PA 234N	.0				n
PA 234	•9 8		<b>. 0</b>	.0	ā
PU 242	6.2E+05 0	1.32+07 0	.0 .3	.0	ā
NP 238	• <b>7 U</b>	_n 0	•0 0		ō
PU 238			• C L	.0	ō
PU 240	6.7E+u7 9	1.42+49 32	•0 ú	.0	õ
AH 243	6.3E+U6 D	1.42+04	••••••••••••••••••••••••••••••••••••••		ð [.]
NP 239	8.4E+G0 0	1.6E+C? J		• •	ō
PU 239	9. TE+ 17 12	1.96+19 43	• t D	• 1	ō ···
**********					
TOTALS	7 65464 455		7 15 ANIL 100	" TEACL 1 P	a

M

 $\mathbf{x}$ 

······	COMBINED PAT TOTALS CASE TITLE: AEGI	THWAY SUMMARY TOTALS BY NUCLIDE FOR SPEC 5 SOLUTION MINING SC	PABLM VERSION2 IFIED ORBANS (INTER ENARIO, SPENT FUEL &	NAL DOSES ONLY 1 20580 SNAL DOSES ONLY 1 50.000 YR. SALT INGESTIO
	+++ DOSE CO	MITTET SUMMARY FOR	DOSE-YEAR 1 OF A 50	. YEAR PLANT LIFE ***
		IRRIGATION	CROP PATHWAY: OFF	•
	······	AI9 DEPOSITI	DN CROP PATHS FFF	
		AQUATIC F	DODS PATHWAY: ON	•••••••••••••••••••••••••••••••••••••••
	-			· · ·
PARTANUCI TOF	DI TOTAL BODY R	DSES AND TOTALS REPO	RTED IN REM	THYPATA B
<u>C 14</u>	7.46-08 0	<u> </u>	7.4E-08 D	7.95-08 0
NI 59	1.95-04 0	1.1E-03 0	• C • O	•0• 0
MO 93	1.10-09 0	•0 0		
PD 107	2.9E-U8 0	•0 0	.0 .0	•0 0
U 234	2.56-03 0	4 • 1E = 02 0	•0 0	•0 0
<u> </u>	5.56-09 0	8 • 9E - 03 0	• C • 0	• <u>0</u>
2K 75 NR 93M	1.9F=07 0	2.32-06 0	•C 0	
TC 99	1.62-05 0	4.0E-05 0	A.9E-06 14	•0 0
SN 126	3+7E-05 0	<u>1.3E-03 0</u>	•0 0	7.5E-06 0
SB 126H		•0 0	• • • •	•0 .0 •25=00 0
<u></u>			• <u>v</u>	6.3E-03 99
CS 135	1.12-04 0	2.72-04 0	2.92-05 85	•0 0
TH 230	1.46-03 0	4.5E-02 0	• C 0	•0 0
RA 226	4.5E+00 98	<u>6.7E+00 78</u>	<u> </u>	<u> </u>
RN 222	U 9.00-30-0	•1) U 2-85-01 1	•U U	•0 U
81 210	A . BE - D6 0	8.46-06 0	ŏ	
PO 210	1.6E-03 D	6.5E-03 0	•0 a	•0 0
U 235	1.22-05 0	2.CE-04 0	• 0 0	•0
<u>TH 231</u>	9.8E-12 0		• 0 0	• 0 0
AC 227	2+3E=05 U	2.15-04 0	-0 8	•0 0
TH 227		1.55-06 0		
RA 223	1+1E-04 0	5.96-09 0	0	•0 0
NP 237	2.40-03 0	5.56-02 0	0 2.	•9 0
PA 233	<u> </u>			
TH 229	2.7E+03 D	5.62-02 0	.0 0	•0 0
RA 225	6.7E-03 0	3.42-07 0	•0	•0 0
AC 225	1.5E-06 O	2.3E-05 0	• C 0	•0 0
U 230	4.JE-J4 0	7.32-63 0	• C U	- U
DA 234	2.22-08 0			
PA 234	•7 0	• <u>0</u> 0	. <b>.</b> Ĉ ŭ	.0 0
PU 242	1+1E-33 Ö	2.3E-02 0	. ୯ ၁	.7 0
NP 238	<u>.</u> <u>u</u>	•0 0	0	0 7.
PU 238	•7 0	• F () • 45 - 117 ()	• 🕻 🚽	•0 U
AM 241	3.1E-114 L			.0 0
NP 239	3.7E-10 0	5.65-49 0	С U	0 0.
PU 239	5.82-42 1	1.7E+07 14	0 · · · · · · · · · · · ·	• 7 0

.

#### COMBINED PATHWAY SUMMARY TOTALS PABLM VERSION2 120580 TOTALS BY NUCLIDE FOR SPECIFIED ORGANS (INTERNAL DOSES ONLY) CASE TITLE: AEGIS SOLUTION MINING SCENARIO, SPENT FUEL & 50,000 YR, SALT INGESTION, MI ### DOSE COMMITMET SUMMARY FOR DOSE-YEAR 70 OF A 50, YEAR PLANT LIFE ###

 IRRIGATION CROP PATHWAY:	OFF
 AIR DEPOSITION CROP PATHS	OFF
 AQUATIC FOODS PATHWAY:	ON

.

RADIONUCL IDE	TOTAL BODY	DOSES AND TOTALS 8 BONE	REPORTED IN	REM LUNGS &	THYROID	<b>k</b>
r 14	T.76=06	0 1.95=05		1.7Fm1.6 D	1.7F=06	•• D
UT 69	0.55-03	0 5.75-02	0		3076-00	-ă
SF 79	1.55-04	0 .0	0	.0 0	.0	ň
HO 93	5.50-08	0	ä			
PD 107	1.5E-06	0 .0	ā	. 0 ū	•0	ā
U 234	1.36-01	0 2,05+00	ā	• 0 0	• 0	0
U 236	2.75-02	0 4.4E-01	Ō	.0 0	• 0	ō
ZR 93	4.9E-06	0 1.9E-G4	Ö	.0 0	•0	Ő
NB 93M	9.32-16	0 1.28-04	0	•0 0	•0	0
TC 99	7.92-04	D 2.0E-03	0	2.5E-04 14	•0	Ő
<u>SN 126</u>	1.85-03	0 <u>6.4E-02</u>	<u> </u>	<u>.0 0</u>	3.72-04	0
SB 126M	•0	0.0	0	•0 4	.0	0
<u>SB 126</u>	1.3E-05	0 3.0E-05	0	• <u>0                                    </u>	6 • 1E - 07	0
I 129	4-02-34	0 1.4E-04	0	•0 0	3.12-01	99
<u>CS 135</u>	5.6E-03	0 1.4E-02	0	1.4E-03 85	•0	Q
TH 230	4.7E-02	0 1.6E+00	. 0	•0 0	•0	0
RA 226	1.9E+D2 9	2.56+02	78	•0 0	• U	0
RH 222	•0	0.0	Ŭ	•0 0	•0	u Ö
PB 210	4.96-01			• 0 0	• 0	<u>.</u>
B1 210	2.42-04	0 4.22-04	U	• 12 10	• "	0
PU 210	1.82-02	<u> </u>		<u></u>	• 0	
U 235 TH 231	0/2L=U4 3.85-10		μ · Ω	• U U	• •	U .
	7.95-04	0 1.95-07				-8
AC 227	5.75-04		5	-D D	-0	n i
TH 227	2.25-06	7.55-05				
RA 223	5.4E-03	0 2.75-02	ā	.0 0	•0	0
NP 237	8 . 4E - 02	D 1.9E+09	ä			· õ · · · · · · · · · · · ·
PA 233	1.52-06	G 8.7E+G6	ā -	.0 0	.0	ā
U 233	1.76-02	0 2.86-01	0	.0	•0	0
TH 229	9.16-02	0 1.9E+00	0	.0 0	• 0	Ö.
RA 225	3.46-01	U 1.7E+DH	<b></b>	•D 3	•0	0
AC 225	7.62-05	0 1.1E-03	0	.0 0	• 0	0
U 236	2.1E-02	0 3.6E-DT	Ö	•D Ü	•0	0
<u>TH 234</u>	1 . 18-06	0 3.8E-U5	0	0 7.	•0	0
PA 234H	• 0 · · · ·	ŭ •0	0	. C U	• 0	0
PA 234	<u>.</u>	0	0	•0 <u>0</u>	• 2	0
PU 242	3.86-02	0 7.8E-G1	0	.0 0	• 0	0
NP 238	• 5	Q •0		•1 0	• <b>P</b>	<b>U</b>
PU 238	•E	0 • J	0	•0 G	•0	U
PU 240	7.46-02	U 1.6E+00		• C		
AM 245	1 • IE=U2	U Z.9E-U1	Ű	• P 0	• 0	U O
NF 239	1.52-00	U Z. 686. m67	10 4 7	• P	• • • • •	¥
FU 237	1+76+00	1 4+16701	13		• U	<u>Y</u>
TOTALS	1.95+02 10	0 3,26+02	100	1.76-03 100	3.16-01 10	x0

Χ....

. .

		*** DOSE	COMMIT	THET SUMMARY FO		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
					DR DOSL	E-YEAR 1 OF A	50. YEAR PLANT LIF	E ###		
				IPRIGATIO	IN CROP	PATHWAY: OFF				
				AIR DEPOSI	TTION C	CROP PATHE CFF				
	AQUATIC FOODS PATHWAY? ON									
	DARTE AND TATALE BEBARTER TH WAN-AEU									
	RADIONUCL IDE	TOTAL BODY	303E	BONE	<u>.</u>	LUNGS	THYROID	1		
	¢ 14	1.1FAND		\$_AFAIR		1.15400	1.15400			
	NI 59	2.82+03	ŏ	1.76+04	ä	• C	Q +0			
	<u>SE 79</u>	N+4E+01	0	•0		· • <u>0</u>	<u>.</u>	Q		
	PD 107	I+76402 4.46401	0	•U •O	0	• U • D	UU	0		
	U 234	3.82+04	0	6.12+05	0	• 0	0.0	Ō		
	U 236	8 • 2E • 03		1.3E+D5		•0	0			
	NB 93M	2.85+00	. 0	3.52+01	0	• 0	0.0	ŏ		
	TC 99	2.42+02	Ö	5.9E+C2	Ő	7. 98+01	.0	0		
	5N 126 SB 126M	5.5E+02	<u> </u>	1. YE + D4		. C	U 1. IE+07			
	SB 126	3.8E+00	Ō	8.92+00	0	• 0	U 1.8E-01	0		
	I 129	1.22+02	0	4.2E+01	0	• 0 h. 254.03	0 9.4E+04	97		
:	th 23D	2.12+04		6.7E+05	- <u>ö</u>	• 0		ŏ		
1	RA 226	6.7E+07	98	1.0E+08	78	• 0	0.0	0		
	RN 222 PR 710	• 1] 1 _ 6F • 06	0	•U 8 - 25 464	3	• C	ນ •0 ຍິ່ງ	U 0		
	BI 210	7.22+01	ō	1.32+02	ō	· · · ·	ō	- <u>0</u>		
	PO 210	2.32+04	0	9.7E+04	0	• 0	0			
	th 231	7.3E+05	ŏ	1.62-03	0	•0	0.0			
	PA 231	3.5E+02	0	8.2E+03	0	•.0	6 • 0	0		
	AC 227 TH 337	2.0E+02	<u>0</u>	3.2E+03	. 0 0		<u>.u</u>			
	RA 223	1.66+03	Ö	8 + 1E +03	Ō	<b>.</b>	0	ō		
	NP 237	3.62.04	0	8.3E+U5	0	• C	0.0	0		
	U 233	5.1E+U3		6.4E+14		• • •	<u> </u>	0		
	TH 229	4 • 7E • 04	Ō	8.3E+D5	0	• 5	0.0	0		
	RA 225	1+0E+05	0	5. [E+65	0 n	• 5	U •0 0 _0	u 0		
	Ŭ 238	6+4E+03	ö	1.1E+05	ō	•b	0.0	ō		
	TH 234	3.36-01	<u> </u>	1.1E+G1	0	• C	0.0	0		
	PA 234M PA 234	• U • P	Ŭ	•U •O	ŭ	•U •P	u ∎0 u ∎0	Ö		
	PU 242	1.76+04	ē	3.46+45	Ö	• 0	ē .0	0		
	NP 238	•0	9 n	•0 20	-0	• °	0 •C	0 0		
	PU 230 PU 240	3 . SE+ 34	- U	6.9E+115	ō	• 17 •	J .0	ō		
	AH 243	4.72+03	ç	1.72+05	ក្ត	• •	9			
	NP 239 Bii 318	4.5E-13 819=138	. O 1	8 + 4E - C 7	U . 14	• C • P	u •0 ⊔ _∩	.u. 8		

## COMBINED PATHWAY SUMMARY TOTALS PABLM VERSION2 TOTALS BY NUCLIDE FOR SPECIFIED ORGANS (INTERNAL DOSES ONLY) CASE TITLE: AEGIS SOLUTION MINING SCENARIO, SPENY FUEL & 50,000 VR, SALT INGESTION, POP *** DOSE COMMITMET SUMMARY FOR DOSE-YEAR TO OF A 50. YEAR PLANT LIFE ***

 IRRIGATION CROP PATHWAY: OFF
AIR DEPOSITION CROP PATH: OFF
AQUATIC FOODS PATHWAYE ON

RADIONUCLIDE	TOTAL BODY	DOSES A	ND TOTALS BONE	REPORTED	IN MAN-REM	<u> </u>	THYROID	8
c 14	5-6FAN1		2.85482	 0	5. 6FAD1		5.65401	 0
NT EQ	1.46406		8.55+05	<u>-</u>				<u> </u>
55 79	2.26403	0	.0	<b>n</b>	-0	ň	- 0 ·	n
	A. 3E-01	<u> </u>			·	·····		
PD 107	2,25+01	ň		n		ā	.0	õ
U 234	1.92+06	0	3.05+07	0	• 0		•0	0
U 236	4.16+05	5	6 .6E +06	ā	.0	ā		ā
ZR 93	7.32+01	0	2.82+03	ā	.0		.0	
NB 93M	1.46+02	ō	1.72+03	ā	• 0	ũ	•0	ō
TC 99	1.26+04		3.0E+G4	0	3.76+03	14	•0	0
SN 126	2.76+04	ō	9.7E+05	õ	• 0	Ū.	5.6E+Q3	Ō
SB 126M	• 0	0	.0	0	.0	ũ	• 0	00
58 126	1.96+02	0	4.52+02	0	• 0	0	9.1E+00	0
1 129	6.02+03	0	2.12+03	0	,0	0	4.72+06	99
<u> </u>	8.42+04	0	2.0E+05	٥	2+1E+04	85	• 0	0
TH 230	7.0E+05	0	2.32+07	0	•0	U	.0	Ő
RA 226	2+8E+09	98	3.8E+09	78	.0	0	• 0	0
RN 222	•0	0	.0	0	• 0	0	•4	0
PB 21D	7.48+06	0	2.DE+08	4	.0	<u></u>	•0	0
BI 210	3.62+03	0	6-36+63	0	• 0	0	• 0	0
<u>P0 210</u>	1.2E+06	0	4.8E+06	0	• 0	0	• 0	0
U 235	9.26+03	0	1.52+05	0	• 0	0	• 0	0
<u> </u>	3.62-03	0	7.9E-02	0	• 0	0	• 0	0
PA 231	1.2E+04	0	2+8E+05	0	• 0	Q	•0	0
AC 227	<u>8.5E+03</u>	0	1+4E+U5	0	•0	<u> </u>	• <u>0</u>	Q <b>.</b>
TH 227	3.2E+01	0	1.1E+03	0	• 0	0	• 0	0
RA 223	<u>8 • 1E • 04</u>	0	4 . 1E + 05	Q	• 0	<u></u>	•0	
NP 237	1.3E+06	0	2.9E+07	0	0	0	•0	0
PA 233	2.32+01	0	1.3E+02	0	• 0		•0	
U 233	2.52405	Q	4.2E+06	a	• 9	0	•0	Q
IH 229	I. 4L+U6	<u> </u>	2.82407		<b></b>			
KA (2)	5.UE+U6	U i	2.52.447	Ŭ		Ŭ	•0	<u>v</u>
AL 223	1.10+03					<u> </u>		
· · · · · · · · · · · · · · · · · · ·	3.22.403	u N	5.46460	U A	• Ľ.	u c	• U	<b>u</b>
<u> </u>		<u> </u>	3.12 442	<u> </u>		<u> </u>	• <u>u</u>	
FR 2397	•17 D	U G	•0	<b>U</b>	• 1'	U.	• •	0
			1 26 40 9	. <u>v</u>		· · ·	• U	<b>X</b>
FU 272 ND 710	307ETU3 .9	<b>v</b>	1425.40.	0	• V - P		-0	
	• · · · · · · · · · · · · · · · · · · ·			. u		U I	• • • • • • • • • • • • • • • • • • •	- <b>b</b> -
FU 238 Dii 348	1 15AD4	U C		U A		U 0	• •	
AM 247	1.75405	<u> </u>		×			·····	
NP 210	1075-UD 2.16-01	U C	4 - 25 - 110 4 - 25 - 110	u a	• u - D	.) .)	• 17	ň
Pii 339		·		. 1t	- V 			<b>.</b>
					•••••••••••••••••••••••••••••••••••••••		8 17 19 19 19 19 19 19 19 19 19 19 19 19 19 1	
TOTALS	2.85+09	100	4-8E+09	100	2.55+04	100	4.76+06	100

M. 8

	COMBINED PAT TOTALS CASE TITLES AEGIS	HVAY SUMMARY TOTA By Nuclide for Sp Solution Mining	LS PABLH VERSION2 ECIFIED ORGANS (INTE SCENARIO, SPENT FUEL A	NAL DOSES ONLY ) 100,000 YR, SALY INGEST	0N. N
-	*** DOSE COM	NITHET SUMMARY FO	P DOSE-YEAR 1 OF A 50	D. YEAR PLANT LIFE +++	•••
		100164110	N COAD DATINAT. AFF		
		AIR DEFOSI	TION CROP PATHE OFF	الم المالية في الرواني وياد منه ح <u>ما المروو من المسلمان و الم المالية من الروانية المالية من المالية من من الم</u>	
		AQUATIC	FOODS PATHWAYE ON		
		SES AND TOTALS RE	PORIED IN REN	THYBATA S	
RADIONUCLIDE	TUTAL BOUT A				
C 14	1.76-10 0	8.7E-10	0 1.7E-10 0	1.7E-10 0	
<u></u>	1.26-04 0	7.45-04	0 . 0	•0 0	
SE 79	1.76-06 0	•0	00	•0 0	
HO 93.	2.4E-11 0	.0	0.00	.0 0	
PD 107	2.9E-08 0	•0	<u> </u>	• 0 0	
U 234	2.2E-03 0	3.6E-02	0.00	•0 0	
<u> </u>	5.55-09 0	8.7E+03	<u> </u>	• <u>v</u> <u>v</u>	· ·· · -
ZR. 93	Y+32-08 0	3.05-00 7.75-04	u +u u		
TC 00		1.45-05	0 9-25-06 12		
SN 126	2.65-05 0	9.15-04	0 0 0	5.32+06 0	
SB 126M	•0 0	•0	0 0.0	•0 0	
SB 126	1.8E-07 0	4.22-07	0 0.0	8+65-09 0	
I 129	8.05-06 0	2.8E-06	0 0 0	6.32-03 99	
CS 135	1.1E-34 0	2.7E-04	0 Z+8E+05 87	•00	
TH 230	2.1E-03 0	6.9E-02	a •0 0	•0 0	
<u>RA 226</u>	<u>6.9E+00 99</u>	1.00 + 01	<u>90 • 0 0</u>	•0 0	
RN ZZZ	•0 0	•U		- 0 0	
PB 210	7-55-02 0				• • • • •
P0 210	2.9E-U3 D	1.00-02	a	•0 0	
U 215	1.SE-05 0	2.55-04	0	•0 0	
TH 231	6.2E-12 D	1.3E-10	d •0 0	•0 0	-
PA 231	4.85-05 0	1.1E-03	a .o o	0	
AC 227	2.7E-J5 0	4.45-64	0 •0 •0		
TH 227	8.95-08 0	3.12-00		-0 U	
RA 223	Z . 2L-U9 U	1.12-03	и		· ·
NP 237		\$.7F+A7		.0 0	•
<u> </u>	6.1E-04 D	1.0E-02	<u> </u>	• 0 0	
TH 229	5.55-03 0	1.10-01	0 0. 0	•0 0	•
RA 225	I	6.9E=C2	J. J. J. J. J. J. J. J. J. J. J. J. J. J	• 0 · · · · · Ø · · · ·	·· · · · · · ·
AC 225	3.1E-U6 G	4.6E-U5	a .D u	• 0 • • 0	
U 238	4.2E-04 U	7.3E-03	0 •ť u	•0 0	
<u>TH 234</u>	2.22-38 0	7.6E-07	<u> </u>	• ℃ 0	, <u></u>
PA 234H	• •	<b>.</b> .	U •D ·G	•U U	
PA 234	• 12	●17 	U 0,0 U 0		
PU 242	1+42-03 0	€ + (R_ = 6		-0 D	
111 230 Dii 28		• • • • • • • • • • • • • • • • • • •	0 • ° 0	.0 0	
PU 230	1.75+05 0	2 7E-L4	<b>0 0</b> 0	.0 0	
AM 243	3.56-16	9.5E-05	0	• ɑ	
NP 239	3.5E-12 D	6.4E-11	0 0	•0 0	
PU 239	1.4E-02 0	2.98-01	2		

M. 9

____

	CASE TITLES AEGIS +++ DOSE COM	HUAY SUMMARY IUTALS By NUCLIDE FOR SPECIF Solution Mining Scen Hithet Summary For Do	IED ORGANS (INTE ARIO, SPENT FUEL & SE-YEAR 7D OF A 5	RNAL DOSES ONLY) 100,000 VR, SALY 11 D. YEAR PLANT LIFE	GESTION,
	· .	IRRIGATION CR	OP PATHWAY: OFF		
		AIR DEPOSITION	CROP PATHE OFF		
		Addalle Public	US PAINEATT VA		
	DO:	SES AND TOTALS REPORT	ED IN REM		
RADIONUCLIDE	TOTAL BODY X	BONE	LUNGS 8	THYNOID	
C 14	8.7E-D9 0	4.42-08 0	8.7E=09 ()	8-7F-09	0
NI 59	6.12-03 0	3.72-02 0	- 0 0		ā
SE 79	8.5E-05 D	.0 0	.0 0	•0	5
M0 93	1.2E-09 D	.0 0.	.0 0	•0	0
PD 167	1.52-06 0	00	.0 0	•0	0
U 234	1.1E-01 D	1.82+00 0	.0 0	•0	07
<u> </u>	2.76-02 0	4.48-01 0		•0	
ZR 93	4.8E-06 0	1.8E-04 0	•0 0	•0	
<u>NB 93N</u>	9.12-06 0	<u>1.1E-04 0</u>	•0 0	•0	0
TC 99	6.7E-04 0	1.76-03 0	2.48-64 12	•0	
SN 126	1.32-03 0	<u>4.62~UZ U</u>	.0.0	2. TE -04	<u>.</u>
20 130 20 130	•0 U		• • • •		
<u> </u>					9
- 147 rc 116		1.35-02 0	. 1.45-01 A7	- 10	). n
TH 210	7.25-02 0				
RA 226	2,95+02 99			-0	
RN 222	.0 0				
PB 210	7.62-01 0	2.16+01 4			5
BI 210	3.72-04 0-	6.5E-04 0			
PO 210	1.2E-01 0	5.0E-01 0	•0 0	-0 (	
U 235	7.42-04 0	1.26-02 0	•0 0	.0	
TH 231	3.1E-10 0	6.75-09 0	.0_0	•0	
PA 231	1.62-03 0	3.95-05 0	.0 0	• <b>d</b>	
AC 227	1.22-03 0	1.9E-02 0	.0 0	• 0	<u> </u>
TH 227	4.58-06 0	1.5E-04 0	.0 0	•0	3
NA 223	1.1E-02 0	5.65-07 0	•0 0	•0	
NP 231				• • •	2
		8,02-00 0	<u> </u>	• U	) 
14 229			•• •	• • • •	3
DA		1.65400 U	- 0 - 0	• •	
AC 225	1.55-04 0	2.35-07 0		-0 /	
<u> </u>	2.16-02 0	3.66-01 0			<b>.</b>
TH 234	1.16-06 0	3.8E-US D	. C 4	.0	3
PA 234H	.0 0	•0 0			·····
PA 234	• 0 0	•0 ū	.0 0	.0 (	3
PU 242	3.46-02 0	6.9E-11 0	°°° <b>i</b> ∎b i i ā	•0	1
NP 238	•0 0	•0 0	• 🗘 🛛 Û	-0 (	)
PU 238	•r. 0	•0 0	L <b>)</b>	•0	3
PU 240	4.4E-U4 0	9.4E-U3 0	<u>.                                    </u>	•0 (	)
AM 243	1.3E-04 J	3.38-03 0	• C U	.0	
NP ZJY		3.2E-U9 0		•0	
FU 639	4.72-01 0	I+ ** +UI 2	<u>• E</u>	• • • • • • • • • • • • • • • • • • • •	· · ·
********	***************	********	*********		•

1 j

M. 10

				·		
		COMBINED	PATHWAY SUNHARY TOTAL	S PABLH VERSION2		10580
	······	CASE TITLES A	EGIS SOLUTION MINING	SCENARIO, SPENT FUEL	à 100,000 YR, SALY 1	NGESTION, POP
		*** DOSE	CONTITUET SUMMARY FOR	DUSE-TEAR I OF A	50. YEAR PLANT LIFE	**** 
			AIR DEPOSI	TION CROP PATHWAYS OFF		, 
		· · · · · · · · · · · · · · · · · · ·	AQUATIC	FOODS PATHWAY: ON	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
	s na man santas ta mara sa na mara ang sa ang sa man ang sa sa sa sa sa sa sa sa sa sa sa sa sa	· · · · · · · · · · · · · · · · · · ·	DOSES AND TOTALS REP	PORTED IN MAN-REM		• • •••
	RADIONUCLIDE	TOTAL BODY	8 BONE	LUNGS	* THYROID	8
	C 14	2.6E-J3	0 1 • 3E - 02	0 2.6E-03	0 2.6E-03	0
	NI 59 SF 79	1.8E+03 2.6E+01	0 1.1E+04	0.0	0.0	
	M0 93	3.5E-04		0		0
	PD 107	4.4E-01	0 5.46+05	0 •0		<u> </u>
	U 236	8.2E+03	0 1.3E+05	0 - • 0	0.0	0
	ZR 93 NB 93M	1.46+00 2.76+00	0 5+5E+01 0 3+9E+01		u •0	0
	TC 99	2.02+02	0 5.0E+02	0 6. 3E+01	12 .0	0
	SB 126	<u> </u>	0 1.42 404	0.0	<u>0</u> .0	0
	SB 126	2.7E+00	0 6.35+00	.0	0 1.3E-01	0
7	I 129 CS 135	1.76+03	0 9.02+03	0 9+2E+02	0 9∙•€•0• 87 •0	0
1. 1	TH 230	3.26+04	0 1.0E+06	0.0	0.0	0
	RN 222	•0	0 • 0	0.0	0 0	0
	PB 210	2.3E+05	0 6.5E+06	3 • 0	0 • 0	0
	PO 210	3.62+04	0 1.5E+05	0.0	0.0	0
	U 235 TH 231	2 • 2E • 02 9 • 3E = 05	0 3.72+03	0.0	0 •0	
	PA 231	7 . 2E+02	0 1.72+64	7. 0	0.0	ō
	AC 227 TH 227	4 • 1E+02	0 6+6E+03	0	-0 •0 0 •0	
	RA 723	3.4E+U3	0 1.7E+D4	0	0	0
	NP 237 PA 233	3.6E+04 4.5E-01	U 8+1E+U5 D 2+6E+OC	U +U U +C	u .∪ Q .0	0
	U 233	9.1E+03	0 1.52+05	0	0.0	0
	TH 229 RÅ 225	2.16+05	0 1.CE+06	0.00	0	0
	AC 225	4+5E+01	0 6.92+07	0.0	0.0	0
	U 238 TH 239	3.36-01 .	0 1.12+61	0 +0	0 •0	ũ
	PA 234H	• 2	<b>0</b> 0	7. 0	0 .0	0
	PN 234 PU 242	j.SE+U4	u 3+9E+05	0 •€	ŭ <b>1</b> .	Č stati
	NP 238		0.07		0.0	0
	PU 240	2.06+02	U 4.1E+C3	<b>0</b> .C	7. 6	ō
	AH 243	5.7E+J1		J. D.	J .U	0
			- U	2		<b>ö</b> n –

#### COMBINED FATHWAY SUMMARY TOTALS PABLM VERSION2 TOTALS BY NUCLIDE FOR SPECIFIED ORGANS (INTERNAL DOSES ONLY) Case Title: Aegis Solution Mining Scenario, Spent fuel & 100,000 VP, SALY Ingestion, Pop +++ Dose commitmet summary for Dose-Year 70 of a 50, year plant life +++

IRRIGAT	ION CROP PATHWAY:	OFF
AIR DEPO	SITION CROP PATHE	DFF
AQUAT	IC FOODS PATHWAY:	ON
· · · · · · · · · · · · · · · · · · ·		

<u>.</u>! . . .....

RADIONUCL IDE	TOTAL BODY 1	BONE 3	LUNGS &	THYROID	<u>t</u>
**********					**
<u> </u>	1•7E=01 0	6+6E=U1 U	1.3E-C1 0	1+ 52-01	
NI 59	9.2E+04 D	5.5E+U5 U	•0 0	• 0	0
<u> </u>		•••••••••••••••••••••••••••••••••••••••		• • • • • • • • • • • • • • • • • • • •	
PD 107	1.05-UZ N 2.25401 D	- 0 U	•0 U	• U	0 A
<u> </u>		2.75407			<u></u>
U 234 II 376			• <b>·</b> •	- 0	
70 63	7.15401 0	2.15401 0		······································	
	1.4E+02 0	1.75+63 0	-0 0	-0	n i
16 99	1.05+04 0	2-56+04 0	3. 15+03 12		-8
SN 126	1-95+04 0	6-85+05 0	.0 0	\$.0E+03	ō
SB 126H					-0
SB 126	1-36+32 0	3-26+62 0	- C 0	6.56+00	ā
T 129	6.02+03 0	2.16+03 0		4.12+06	99
CS 135	8.36+34 0	2.05+05 0	2.1E+04 87	• 0	0
TH 230	1.12+06 0	3.6E+07 0	.0 0	•0	
RA 226	4.32+09 99	5.82+09 89	.0 0	.0	ā
28 222	.0 0		.0 0	. 0	3
PB 210	1.16+07 0	3.22+08 4	• 0 0	. 0	8
BI 210	5.52+03 0	9.76+63 0		•0	Örnen en som en som en som en som en som en som en som en som en som en som en som en som en som en som en som
PO 210	1.02+36 0	7.5E+06 Q	•0 •	• 0	0
Ú 235	1.16+04 0	1.82+05 0	•0 0	•0	0
TH 231	4.66-03 0	1.02-01 0	.0 G	• 0	0
PA 231	2.52+14 0	5.8E+05 0	0.0.	•0	0
AC 227	1.86+04 0	2+8E+05 0	.0 0	• 0	0
TH 227	6.7E+U1 0	2+3E+03 0	•0 0	•0	Ő .
RA 223	1.72.05 0	8.4E+05 0	•0 0	• 0	0
NP 237	1.22+06 0	2.8E+67 0	•C U	•0	0
PA 233	2.26+01 0	<u>1.3E+02 0</u>	.0 0	.0	0
U 233	4 • 5E+05 0	7.5E+06 0	.0 0	.0	0
TH 229	2.8E+06 0	5.7E+07 0	•0 0	• 0	0
RA 225	1+CE+07 0	5.2E+07 U	• C 0	•0	0
AC 225	2.32+03 0	3+5E+04 0	• 0 0	• 0	0
U 238	3.2E+05 0	5.42+06 0	• 0 • 0	• 0	0
<u>TH 234</u>	<u>1.6E+01 0</u>	<u>5.7E.+62</u> 0	• 0 0	.0	3
PA 234H	.0 0	•0 0	.0 0	•0	0
PA 234	• • • • • • •	•0 0	, n di di di di di di di di di di di di di	• 0	0
PU 242	5.1E+05 L	1+72+07 0	.0 0	• 0	U
NP 238	ų 5.		• C Ü	• 0	U
PU 238	•7 0	•0 0	• 0	• 0	0
PU 240		1.46425	• 🗗 🙀 🔐 🖓 🖓	•0	
AN 243	1.72+03 0	4.9E+44 0	• 🗗 🧯	•0	0
NP 239	2.6E-03 0	4.2E~CZ 0	• [	• 0	U S
PU 239		1.72768 2	• Ľ	• U	<u>v</u>
TOTALS	4.36+09 100	4.55+09 100	2.45+04 100	4.75+06 1/	

4.

	COMBINED PAT TOTALS CASE TITLE: AEGIS *** DOSE COP	THEAT SUMMARY TOTALS BY NUCLIDE FOR SPECI Solution mining SCE Thithet Summary for D	PABLM VERSION2 FIED ORGANS IINTER NARIO, SPENT FUEL A OSE-YEAR 1 OF A 50	RNAL DOSES ONLY! 500,000 yr, salt 3. year plant lifi	120500 INSESTION, N E +++
		IRRIGATION C	ROP PATHWAY: OFF		
		AIR DEPOSITIO	N CROP PATHE OFF		
er sente desente ara antes de la fordellitte agains sende artico contempo per arti					
and addition of children in a distance and a second second			TEN TH DEM		
RADIONUCLIDE	TOTAL BODY 2	BONE 3	LUNGS X	THYROID	*
*********					
<u>NI 59</u>	3.85-06 0	2 • 3E - 05 0	• 0 0		. 0
SL 79	Z:496-08 U 3 85-08 M	•U U	• 0 0	e U _ m	0
11 324	<u> </u>	1.75-02 0	······································	······································	
11 237	5.6F-03 U	A.8F=02 0		•• • •	0
ZR 93	7.96-08 0	3.02-06 0	0 9.	•0	<u> </u>
NB 93M	1.5E-07 D	1.95-06 0	.0 0	• 0	Ō
TC 99	3.6E-06 0	9.12-06 0	1.1E-06 4	•0	0
SN 126	1.6E-06 0	5.72-05 0	÷C 0	3 • 3E - 07	0
58 126M	• 7 0	0 D.	•0 0	•0	0
<u>SB 126</u>	• 0	<u>0 D</u>	•0 0	• 0	0
1 129	7.76-06 0	2.72-06 0	•0 0	6.15-03	99
CS 135	<u> </u>	2.4E-04 0	2.55-05 95	•0	0
TH 230	1.9E-J3 O	6.2E-02 0	•0 0	•0	0
RA 226	6 . JE+00 98	9.22 + 00 89	• 0	• <u>0</u>	
RN 222	•6 0	•0 0	•• •	• 0	0
<u>PB_210</u>	1.3E-02 0	3.85-01 3	······································	······································	<u> </u>
B1 210	6.6E-06 U		•U U		u o
P0 710			• • • • • • • • • • • • • • • • • • • •		· 🖌 · · · · · · · · · · · · · · · · ·
U 233	5-25-17 N	1.15-10 0			ñ
	6.55-12 D	1.55-03 0	······		
AC 227	3-75-05 0	5.95-09 0	.0 0		ă -
TH 227	1.25-47 0	4.2E-C6 0	• 0 0	•0	- <u>ō</u>
RA 223	3.02-04 0	1.5E-03 0		.0	Õ
NP 237	2.12-03 0	4.8E-02 0	• 0 0	• 0	Č. S Presidenti i s
PA 233	2.65-18 0	· 1.5E-67 0	•0 U	• 7	0
U 233	1.4E-U3 0	2.3E-02 0	• 0 0	•0	0
<u>TH 229</u>	1.9E-02 0	2.9E-01 2	<u> </u>	•0	
RA 225	3.5E-02 U	1.8E-01 1	• [ U	• 0	0
AC 225	7.92-06 0	1.2E-D9 0	• [] 0		<u>0</u>
U 236	4.3E+04 0	7.3E-03 0	• <u>a</u> <u>n</u>	•0	0
TH 239	Z.ZE-U8 0	7.6E+07 0	• 5 0	• • • • • • • • • • • • • • • • • • •	<u> </u>
PA 239 H	, • <u> </u>	•0 0	• Ľ Ú	• U	0 2
PA 234	U	<u> </u>		• • •	<del></del>
PU 292	<b>3</b> ,112+04 U	9.92 -U.S. U	- 0 0 - 0 n	• 11 _ ft	ñ
DII 318				· · · · · · · · · · · · · · · · · · ·	
PU 230	1-75-37	3.45-06 0			õ -
IV 6.37			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	

an and the first sector was and and and and and and the sector of the sector of the sector of the sector of the

 $\langle \hat{\gamma} \rangle_{ij} = 0$ 

•

. .

			CONBINED TOTA CASE TITLE: AE +++ DOSE	PATHW LS BY GIS S COMMI	ÀY SUHHÀRY TO NUCLIDE FOR DEUTION MININ THET SUMHÀRY I	TALS Specif G Scen For Do	PABLM VERSION2 IED ORGANS IINT RIO, SPENT FUEL SE-YEAR 70 OF A	ERNAL DOSES ONLY) 5 500,000 YR, SALT 50, YEAR PLANT LIF	120580 Ingestion, HI E +++
					IRRIGAT	ION CR	P PATHWAY: OFF		
					A14 DEPU	31710A 1 C FOO	SROP PRIDE UPP		
						<u></u>			
			the second second second second second second second second second second second second second second second s		· ·		÷. (		
				DOSE	S AND TOTALS	REPORT	D IN REM	na ana ana amin'ny sora amin'ny sora amin'ny sora amin'ny sora amin'ny sora amin'ny sora amin'ny sora amin'ny s	
R	ADIO	NUCL IDE	TOTAL BODY		BONE		LUNGS	thyroid	*
-			*******		********				<b>* * *</b>
	NI	59	1.92-04	۵	1.26-03	0	• 0	•0	0
	SE	79	1.25-06	0	•0	0	• 0	.0	8
	PD	107	1.4E-06	0	•0	0	• 0	0.0	0
	U	234	5+3E-02	0	8+5E-01	Ō	• 0 • 1	•0	0
	U	2 36	2.76-02	0	4.4E-01	0	•0	<u> </u>	0
	ZR	93	3.92-06	0	1.52-04	٥	•0	.0	0
	NB	93M	7.5E-06	0	9.42-05		• 0	0.0	0
	TC	99	1.8E-04	Ö D	4.5E-04	0	5.7E-65	• 0	Q
	\$ <u>N</u>	126	8.22-15	0	2.92-03	<u>0</u>	• 0	0 1.7E-05	0
	SB	126 H	•0	. 0	•0	٥	• 0	u .0	0
	<u>S</u> B	126		<u> </u>	.0	0	.0	•0	
	I	129	3.92-04	0	1.45-04	0	•0	0 3.DE-01	99 ·
	<u> </u>	135	4.98-03	<u> </u>	1.28-02	0	1.2E-03 9	•0	0
	TH	230	6.4E-02	0	2 <b>.</b> 1E + 00	Q	• 0	0.0	Q
	<u></u>	226	2.5E+02	98	3+4E+02	88	• 0	•0	0
	RN	222	• 0	0	• 0	9	•0	0.0	0
	_ <u>F8_</u>	210	6.7E-01	<u>0</u>	1,96+01	4	<u>•0</u>	••	
	81	210	3.3E-04	0	5.7E-04	Q	•0	g • g	0
	P0	210	1.12-01	<u>. 0</u>	<b>4.4E-D1</b>		• 0	• 0	
	U	235	7.4E-04	0	1+2E-02	Ő	•0	0 • 0	0
	ŢĤ.	231	3+1E+10	. 0	6.7E-09	Q	• <u>0</u>	<u>.</u>	
	PA	231	2.22-13	U a	5.36-62	ų	•0		0
	AC		1.6E-U3	<u> </u>	2.58-62	<u> </u>		• • •	<u> </u>
	TH	221	6 • 1E-U6	0	2.16-04	õ	•0		U
		223	1.56-02		/ • 6E = UZ		·····	• U	
	NP	431	7+22-UZ	<u>.</u>	1.00.00	ů.	• U	•••	U 0
	- <b>PA</b>	233	I.JL-UD	<u></u>	[+3L TUO		· · · · · · · · • · · · · · · · · · · ·	• U	
	1	233	70UL~UL 8 05-01		1+22+UC 0 75407	2	+V	•••	U.
<u></u>		226	1 85400	<u>-<u>v</u></u>		<u> </u>	• U	<u></u>	<u> </u>
	40 40	663 226		<u>u</u> .	0 4 82 Y UU 5 4 65 - 67	<b>6</b>	+U		
		510	7.16233	- #	3+76-03 1.20-03		• U • N		<u>М</u>
	TAA	2 J0 2 14	1.15-04	<b>u</b>	3405-VI 1.05-DF	Ň	+V (		0
· ·	D Å	5 J7 9 16 M	4 + 1L-U0	ž.	3.0C -U2	<b>u</b>	• U		
	P A	5 J 7 11 7 1 4	• U . C	0	• 0	ň	•u (		0
	PII	242	1.75 0.12					· · · · · · · · · · · · · · · · · · ·	
	NP	210		0	J 8 46 - V 8	n .	• U U		0
	PII	2 3 8	• •	č ·		ň			<b>v</b>
	PH	210	5.45-04	õ	1 . 25 - 1: =	ň	.0	) _0	0
•••									
	TOTA	ALS	2.62+02 1	60	3.46+02	100	1.36-05 100	3-05-01	100

-

. . ----

M.14

#### COMBINED PATHWAY SUMMARY TOTALS PABLE PERSION2 TOTALS BY NUCLIDE FOR SPECIFIED ORGANS (INTERNAL DOSES ONLY) CASE TITLE: AEGIS SOLUTION MINING SCENARIO, SPENT FUEL & SOD, DOD YP, SALT INGESTION, POP *** DOSE COMMITMET SUMMARY FOR DOSE-YEAR 1 OF A SD. YEAR PLANT LIFE ***

#### IRRIGATION CROP PATHWAY: OFF AIR DEPOSITION CROP PATH: DFF AQUATIC FOODS PATHWAY: ON

4

RADIONUCL IDE	TOTAL BODY	BONE	1 LU	NGS R	THYROID 1	
					**********	
<u>NI 59</u>	5.8E+01	0 <u>3.5E+D2</u>		]	•0 0	
SE 79	3.6E-01	• • • •	0	0 0	•0 0	
PD107	4.22-31	.0	•	0	• [] []	
U 234	1.66+04	D Z+6E+05	0 •1	C 0	•0 0	
<u> </u>	8.1E+03	1.3E+05	<u> </u>	<u> </u>	<u>•0</u> 0	
ZR 93	1.22+00	J 4.5E+D1	0 •1	D Q	•0 0	
<u>NB93M</u>	2.36+00	2.8E+D1		0	······	
TC 99	5.5E+01	0 1+4E+02	0 1.	76+01 4	•0 0	
<u>SN 126</u>	Z.4E+01	0 0.95 0 C	<u> </u>	<u> </u>	5.02.00 0	·
SB 126M	•0	•0	<b>0</b>	0 0	•0 0	
<u>SB 126</u>	• 17	•0	0 •	U U	<u>. U</u>	1
I 129	I • 2E+02	U 4.1E+U1	<u> </u>		9.16.404 99	
<u>CS 135</u>	1+5E+03	<b>3</b> •6E+D3	<u> </u>	/L+ CZ 75	•0	
TH 230	Z+9E+04	0 9+3E+05	<b>U</b> • ·		•0 0	
PA 226	9.ZE+07 9	1.4E+U8	87 .	<u> </u>	• <u>•</u> ••••••••••••••••••••••••••••••••••	
RN ZZZ	•0		0	0 . 0	•0 0	
<u>PB_210</u>	Z . CE+05	5 • 7E • D6		0	<u> </u>	
BI 210	9.8E+D1	D 1+7E+D2	• 0 •	0 0	•0. 0	
<u> </u>	3.26+04	0 <u>1.3E+05</u>		0	•0	
U 235	2 • 2E • U2	D 3.7E+D3	0		•0 0	
<u>TH 231</u>	9.3E-05	Z.DE-63		0	•0	
PA 231	9.7E+02	D Z+3E+04	· D •	<u>e</u> . <u>a</u>	•0 0	
<u>AC 227</u>	5.5E+JZ	0 8.9E+03		<u> </u>	<u> </u>	
TH 227	1.8E+00	0 6.32+01	0 •1	0	•0 0	
RA 223	4+6E+03	2 • 3E + 04	•	<u> </u>	• 7	
NP 237	3.1E+04	0 7.1E+05	0	a a	•0 • 0	1
PA 233	<u> </u>	D 2 - 3E + 0 ?	<u>     Q                               </u>	<u> </u>	•0 0	
U 233	2+1E+04	D 3.5E+05	. 0 .	0	• 0 0	
<u>TH 229</u>	Z • 1E+05 1	D 4.4E+66		0 0	00	
RA 225	5.3E+05	J 2+6E+05	1 .	D 0	•0 0	
AC 225	1.2E+02	D 1.8E+03	. 0	0	•0 0	_ · · ·
U 238	6+4E+U3	D 1.1E+05	0	0	• 0 0	
TH 234	3.3E-01	1.10+01	Q •1	ច្	•0 0	
PA 234H	• 0	0	0	C U	•0 0	
PA 234	.0.	.0	Q	DU	• 0 0	
PU 242	7.5E+03	0 1.5E+05	0	0 <b>0</b>	• <b>0</b> • 0	
NP 238	•3	•0	0	r û	• <b>0</b> 0	
PU 238	• 7	o i •0 , "	.0	D 🗳	0	
PU 239	2.56+00 1	5.28+01	. 0 . • !	C . 0 .	• 🕡 👘 🚺	-

. .

	C OHB I NE O To T	) PATH¥  Als by	AT SUMMARY, TO ' NUCLIDE FOR	TALS P SPECIFIE	ABLH YERSION D organs (1	Z IN TERNA	L DOSES ONLYS	1 4 11 2 11
·· <u></u>	CASE TITLE: A	EGIS S	OLUTION HININ	G SCENAR	TO, SPENT FU	EL 8 50	0.000 YP. SAL	T INGESTION
	*** DOSE	COHHI	THET SUNHARY	FOR DOSE	-YEAR 70 OF	A 50.	YEAR PLANT LI	FE 444
•			******			-		•
			1KK16A1	STATON C	PAINBATI UN	r 		
		1.4	ALK DEFU	TC F0005	PATHUAVA DH	r		
			······································					
		DOSE	S AND TOTALS	REPORTED	IN MAN-REM			
RADIONUCLIDE	TOTAL BODY	<u> </u>	BONE	1	LUNGS		THYROID	
	2.05403		1.75+04		. 0	••• n	. 11	0
<u> </u>	1.85401			····· 0				
	2.15401	ň	.0	ď	• C		.0	ŏ
11 234	7.054/15		1.35+07			5		
11 236	4.15405	័ព័	6.35+66			0	-0	ā
20 93	5,95+01	<u> </u>	2.36+03			<u> </u>	Ö	
NB 93H	1.1E+02	ā	1.46+03	õ	.0	ā	.0	Ō
TC 99	2.76+03	5	6.82+03	ā	8. 5E+U2	4	•0	
SN 126	1.2E+03	ā	4 . 3E + 04	Õ	• 0	0	2 . 5E + 02	0
SB 126H	-0	G	• 9	0	• C	0	•0	Ő
58 , 126	• 0	0	.0	Q	.0	0	· • 0	0
1 129	5.8E+03	0	2 . IE + 03	0	• 0	0	4.62+06	99
CS 135	7 • 3E+04	0	1.82+05	0	1.9E+04	95	• 0	0
TH 230	9.6E+Q5	0	3.22+07	0	• 0	0	•0	0
RA 226	3.82+09	98	5.1E+09	88	<u></u>	0	• 0	
RN 222	•0	Q	•0	0	• 0	0	• 0	ő
1.8 210	1.0E+U7	<u> </u>	2.32.+1.8		• U	<u> </u>	<u>+ ü</u>	
BT 510	4.9E+US	U N	8.0E TU 3	<u> </u>	• 0	, v	• 0	<b>u</b>
PU 210	1.02700	<u></u>	0+02700	<u> </u>				····
U 233 TH 231	8.65-03	ő	1.05-01	ă	.0	ñ	.0	ñ
PA 231	3.35+04		7.07+05					·
AC 227	2.46+04	0	3.8E+05	ă	.0	ā	.0	õ
TH 227	9.16+01	Ö	3-16+03	ā	• 0	0		ā
RA 223	2.36+05	ŏ.	1.1E+D6	ō	• C	ā	.0	Ō
NP 237	1 . IE+ 06	Ō	2.56+07	ġ	•0	Õ	•0	
PA 233	2 . DE+01	0	1.1E+02	٥	• 0	0	•0	Ũ
U 233	1.1E+06	U.	1.72+07	0	.0	0	•0	Ō
TH 229	7 . 1E+ 36	0	1.5E+U8	2	• 0	0	•0	0
RA 225	2.6E+07	0	1.32+08	5	• 0	0	•0	0
AC 225	5.96+03	0	8+8E+04	· . 0	•0	0	• 0	
U 238	3 • 2E + Q5	0	5.4E+66	0	• 0	Ű	• 0	0
TH 234	1.62+01	Õ	5.7E+02	Q	• C	<u>0</u>	• 0	
PA 234N	• [	Ű	•0	0	• 0	Ő	• 0	0
PA 234	• E	<u> </u>	• ¹ / ₂	<u> </u>		<u> </u>	• U	······································
PU 242 No 314	2 • 52 • UD	U o	3.2L+L't	u o	• 0	U C	• U	<b>V</b>
			• U . Ú	·	• U			0 ·
PU 230	8,354.11	ň	1.AF+1.3	a		a	, 1	0
		e e						-

.

M.16

.

. •

الر

 $\mathbf{u} = \sum_{i=1}^{n} u_i \mathbf{u} = \mathbf{u}$ 

• .	COMBINED PATHWAY SUMMARY TOTALS PABLM VERSION2 120580 TOTALS BY NUCLIDE FOR SPECIFIED ORGANS (INTERNAL DOSES ONLY) CASE TITLE: AEGIS SOLUTION MINING SCENARIO, SPENT FUEL & 1,000,000 VR, SALT INGESTION, MI							
	IRRIGATION CROP PATHWAY: OFF							
	AQUATIC FOODS PATHWAY: ON							
	DOSES AND TOTALS REPORTED IN REM							
	RADIONUCLIDE	TOTAL BODY	X BONE X	LUN65 X	THYROID			
	NI 59	5.CE-08	0 3.0E-07 0	<u>b</u> D.	•0			
	SE 79 PD 107	1+2E~1U 2.7E~08		•0 0	•0 0	3		
	U 234	6.32-04	0 1.02-02 0			j - · · ·		
	<u> </u>	5.42-04	0 8.72-03 0	.0 0	•0	}		
	NB 931	1.26-07		.0 0	•0 1	5		
	tc 99	7.12-07	0 1.8E-06 0	2.22-07 1	•0			
	SN 126	5+JE+08		•0 0	1+0E+08 (			
	SB 126	3.5E~10	0 8.3E-10 0	. 0 . 0	1.72-11	5		
X	1 129	7.6E-06	0 2.72-06 0	.0 0	6.05-03 9			
17	CS 135 TH 230	1.0E+03	0 2+0E=04 0 0 3+4E=07 0		•0			
-	RA 226	3.3E+00	98 5.0E+0C 86	0 0.	•0			
	RN 222	•0		•0 0	•0 0	3		
	B1 210	3.62-05	0 6.2E-01 0	.0 0	i	5		
	P0 710	1.2E-03	0 4.82-03 0	• C 0	•0	<b>)</b>		
	U 235 TH 231	1+36-05		•0 U	•0 L	)		
	PA 231	6.52-05	ā 1.5E-03 ā	•0 0	•0			
	AC 227	3.76-05		<u> </u>	•0			
	RA 223	3.02-04	0 1.5E-03 0	•0 D	, •0 C			
	NP 237	1.82-03	0 4.0E-02 0	• 0 0	•D			
•	PA 233	Z+2E-08		• U U	•0			
	TH 229	1.4E-02	e 10-38.5 0	.0 0	.0			
	RA 225	3.46-12	1 1.7E-01 2	0 0.	•0			
	U 238	4.32-04	0 1.12-04 0 0 7.32-03 0	• • • • • • • • • • • • • • • • • • • •		5		
	TH 234	2.22-08	U 7.6E-L7 0	•0 0	•0 0	2		
	PA 234H	•0	0 0. 0	•0 0	•n [	3		
	PU 242	2.92-04	C 4.0E-01 0		•0	5		
	NP 238	••	Ú	• 🖞 👘 🖞	•0			
	PU 238	•? •••••••••		• " U	••••			
	TOTALS	3.76+00	00 3.82700 100	2-25-05 100	8.0E-03 100	••••••		

í.

	UNE DOSE COMMI	THET SUMMARY FOR DO	SE-YEAR TO OF A S	Q. YEAR PLANT LIFE	••
	······································	IBRIGATION CE	OP PATHWAYE OFF		
	••••	AIR DEPOSITION	I CHOP PATHE UPP IDS PATHWAY: ON		
			······································		
	DOSE	S AND TOTALS REPORT	ED IN REM		
KAUI UNULLIUL					
NI 59	2.55-06 0	1.55-05 0	.0 0	0 0.	
SE 79	5.9E-09 0	•0 0	.0 0	•0 0	
_PD 107	1.3E-060	00	•00	•0 0	
U 234	3.16-02 0	5.1E-01 0	• 0 0	•0 0	
<u>U 236</u>	2.76-02 0	4.3E-01 0	• 12	•00	
4K 93	3.12°00 0	1+#6=04 U 7.55en# 0			
TC 99	<u> </u>	8.9E-05 0	1.16-05 1		
SN 126	2.66-06 0	9.0E-05 Q	.0 0	5.26-07 0	
SB 126H	.0 0	.0 0.	.0.0	.0 0	
SB 126	1.85-08 0	4.2E-08 0	• 0 0	8.5E-10 0	
I 129	3.8E-04 D	1.45-64 0	• 0 0	3.0E-01 99	
<u>C\$ 135</u>	4,26=03 0	1+0E=02 0	1.10-03 98	•0 0	
TH 230	3.5E-02 Q	1.2E+QC Q	• • • •		
NA 220		<u>1 + Yk * U£84</u>	······································	· · · · · · · · · · · · · · · · · · ·	
NN 666	3.76-01 D				
BI 210	1.85-04 0	3.16-04 0	.0	•0 0	
P0 210	5.8E-02 Q	2.46-01 0	.0 0	.0 .0	
U 235	7.4E-04 0,	1.22-02 0	• 0 • 0	.0 .0	
<u>TH 231</u>	3.16-10 0	<u>6.7E-09</u> 0	• 0 0	•0 0	
PA 231	2.2E-03 0	5.32-02 0	.0 0		
<u>× AC 227</u>		2.15-02 0	<u> </u>	<u> </u>	
DA 223	1.5F=(12 0	7.65+02 0	-0 0		`
NP 237	6 • 2E - 42 0	1.42+00 0			
PA 233 >	1.1E-06 0	6.4E-06 0	.0 0		
U 233	6.8E-02 0	1.1E+00 0	.0 0	.0 0	
TH 229	4.6E-01 0	9.46+01 4	• 00	.0 0	
RA 225	1.72+00 1	8.52+00 3	.0 0	.0 0	
AC 225	<u> </u>	5.76-03 0	· · • C · · · · · · · · · · · · · · · · · ·		
111 3 10 A 530		3.0L-UJ U 1.05-05 0	•U U		
PA 234H	1 • 1E-U0 U	<u></u>			
PA 234	-7 G	•0 D	.0 A	.0 0	
PU 242	6.7E-U3 U	1.4E-C1 0	.0 0		
NP 238	.0 U	.0 0	.0 0	.0 0	
PU 238	•0 0	•1 0	•C Ū	•0 0	
70711 6					
IUTALS	1.46402 100	2.2570Z 100	1.16-09 100	2.02-01 100	

ļ

•

M. 18

COMBINED PATHWAY SUMMARY TOTALS PABLM VERSION? 120580 TOTALS BY NUCLIDE FOP SPECIFIED ORGANS .(INTERNAL DOSES ONLY) CASE TITLE: AEGIS SOLUTION MINING SCENARIO, SPENT FUEL & 1,000,000 yr, SALT INGESTION, POP *** DOSE COMMITMET SUMMARY FOP DOSE-YEAR 1 OF A 50, YEAR PLANT LIFE ***

#### IRRIGATION CROP PATHWAYS OFF Air deposition crop paths off Aquatic foods pathways on

ł;

115

RADIONUCLIDE	DO TOTAL BODY .*	SES AND TOTALS REPOR BONE 8	TED IN MAN-REM LUNGS 2	THYROID *
*********				
<u>NI 59</u>	7.55-01 0	9+5E+00 0		· · · · · · · · · · · · · · · · · · ·
SE 79	1.8E-03 O	•0 • 0	•0 0	• 17 0
PD 107	9+0E-010	•0	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •
· U 234	9+4E+U3 O	1.5E+05 0	• 0 • 0	•0 0
<u> </u>	<u>8.7E+03</u>	1.3E+05_0	<u>• [</u>	• 0 0
ZR 93	9+4E-01 O	3.6E+UI 0	• ୯ ୩	•0 0
<u>NB 931</u>	1.8E+00 0	2 • 32 • 32 • 0	• 0	·
TC 99	1.12+01 0	2.72.01 0	3+3E+0C 1	
SN 126	7 • 7E-01 0	Z+7E+01 U_	• <u>y</u>	
SB 126M	•0 U	•0 0	• ť u	
<u></u>	5+3E-03 0	1.2E-U2 U		
I 129	1.16+02 0		U U U	
<u>CS 135</u>	1 • 3E • U3 U		36 2E 4 UZ 90	
TH 230	1.22+U4 U		• C U	
RA ZZB	5+02+07 98	(+5L+U/ 80		· · · · · · · · · · · · · · · · · · ·
RM 222	- U U		•U U	
<u>PB 210</u>	1.1L-U5 U	3.10.00 3		
81 210	5+5E+UI. U			
PU 210		7.75407 0		
U 235		2.05-07 0		
	763E-03 0			
PR 231	7672402 U 8 88402 D	8-9FANT 0		
		6.75401 D		
10 221 D1 223	1.45A01 0			
NO 217	7.75AUR ()	6.15.05 . 0		
04 933				i i i
II: 223	2-115418	1.45405 0		
TH 220	2.05405 0	8.25+06 8		
<u>111 267</u>	5.15+35 1	2.68+66 2	• 0	.0.0
AC 225	1.25+02 0	1.72+03 0		.0 0
11 238	6.4F+J3 D	1.12+05 0		j
74 2 Th	3.35-01 0	1.16+61 0	.0 .0	0 0
PÅ 23hM		.0 0		
PA 234	-	.0 0		.0 0
PII 242	3.76+43 11	6 . 0E + (14 0	• C C	•0 0
NP 238	•0 G	•0 0	• C C	0 9.
PU 238	•0	. <u>.</u>	. Č G	.0 0
TOTALS	5.16+07 100	B.7E+07 100	3. 30+ 02_ 100	9.0E+01 100

. . .

· · · · · · · · · · · · · · · · · · ·	COHBINE TO CASE TITLE: +++ DOS	D PATI TALS I AEGIS E COM	HUAY SUMMARY TOTALS PAB By Nuclide Fop Specified Solution Mining Scenario Nithet Summary For Dose-Y	LH VERSIO ORGANS , SPENT FI EAR 70 O	N2 4INTERNA UEL Ə İ, F A SO+	L DOSES ONLY! DOD.DOD YR. SA Year plant lif	120500 Lt Ingestion, Pol E ###
•	,	•	IRRIGATION CROP P	ATHNAY 2 DI	FF		
	· · · · · · · · · · · · · · · · · · ·		AIR DEPOSITION CRO	P PATHE D	FF		سيستعدن ووراكناتهمي معيادهما وعفال
			AQUATIC FOODS P	ATHUAYS O	N		
					• • • •		
· · ·							
		DO	SES AND TOTALS REPORTED I	N MAN-REP		TUNDATO	•
RADIUNUCLIDE	TOTAL BOUT		BUNE	LUNDS		1474010	
	1.76 + (1)		2.25462 0	. 0		.0	n
KF 79	9.95-07	. U		.0			
PD 107	2.05+01	ŭ	.0 0		ő	.0	ā
11 234	4.76405	· · ·	7.6E+06 0	. 6			Ď ·
U 236	4.DE+05	ā	6.58.406 0	.0	ā	.0	ă
ZR 93	4.7E+01	0	1.8E+03 0	• 0	0	.0	Ő
NB 93H	9.02+01	õ	1.1E+03 0	.0	ũ	•0	Ō
TC 99	5.36+02	Ö	1.32+03 0	1.78+62	1	• 0	
SN 126	3.8E+D1	0	1.46+63 0	• 0	ō	7.9E+00	٥
58 126M	.0	<u> </u>	•0 0	• 0	Ó	• 0	i d
SB 126	2.62-01	0	6.26-01 0	• 0	0	1.38-02	0
1 129	5.7E+U3	0	2.06+03 0	.0	Ű	9 . 5E + 06	99
CS 135	6.3E+04	0	1.52+05 0	1.65+04	98	• 0	0
TH 230	5+2E+U5	Ó	1+7E+07 0	• 🖬	0	.0	Ö
RA 226	2.16+09	97	2.8E+09 84	• 0	0	.0	0
PN 222	•0	۵ (	•0 0	• 0	Ő	s Ó	0
<u>PB 210</u>	5.5E+06	<u> </u>	<u>1.5E+08 4</u>	.0	<u> </u>	، ن	Li
BI 210	2.7E+03	0	4.7E+03 Q	• 0	0	•0	0
PO 210	8.7E+U5	0	3.6E+06 0	• 0	0	• 0	0
U 235	1.16+04	0	1.8E+0" G	• 0	0	• D	0
TH 231	4.66-03	O	1.02-01 0	• 0	0	• 0	0
PA 231	3 • 3E + 04	0	7+92+05 0	• 0	0	•0	0
<u>AC 227</u>	2.46.04		3+8E+05 0	<u> </u>	0	• 0	0
TH 227	9.1E+J1	<u> </u>	3+12+03 0	• 🖸	0	• 8	0
NA 223	Z . 3L+05	U		• 0		• U	U
NP 237	9 .ZE 4 US	ŭ		• U	2	• U	U O
PA 233	1.05.07	. ¥	- Y.02-UI U	• •	N N	• 2	<b>U</b>
U 233	1 + UE V UD 6 - OE A 114	ů,	1.AFAD9 #	• U • C		• U	ŭ
04 935	2 45 407	<u> </u>	1.154/4				
Ar 225	5.85407		8.5FADR D	.0	0	.0	0
1) 77A	3.254/15	ň			ň		Ō
TH 234	1_45+611	ň	5.76 + 42 0		ň	.0	ō
PA 234H	_0	ň			ň		ă
PA 234	.9	õ			ā	.0	ō
PU 242	1. 1.4		2.16+66 0				
NP 238	<u>,</u>	ū	•7 0		ā		Ō
PU 238	• 1	ũ	•9 ū	• 0	č	.0	0
TOTAL S	2.1e+07	100	3.36+09 100	1.68.01	100	4.52+06	100

•

H. 20

1
### APPENDIX REFERENCES

Ahlstrom, S. W., et al. 1977. <u>Multicomponent Mass Transport Model: Theory</u> and Numerical Implementation (Discrete-Parcel-Random-Walk Version). BNWL-2127. Pacific Northwest Laboratory, Richland, Washington.

Baker, D. A., G. R. Hoenes and J. K. Soldat. 1976. <u>FOOD - An Interactive</u> <u>Code to Calculate Internal Radiation Doses from Contaminated Food Products</u>. BNWL-SA-5532, Pacific Northwest Laboratory, Richland, Washington.

Bear, J., 1972. <u>Dynamics of Fluids in Porous Media</u>. American Elsevier Publishing Co., New York.

Boersma, L., F. T. Lindstrom and S. K. Saxena. 1973. "Limitations of Darcy's Law in Glass Bead Porous Media." SSSAP 37:333-336.

Boussinessq, J. J. 1904. "Recherches Theoriques sur l'ecoulement des Nappes d'Eau Infiltrees dans le Sol et sur Debit des Sources." <u>Journ. de</u> <u>Mathematiques Pures et Appliquees</u>. Series 5(10):5-78.

Bredehoeft, J. D. and G. F. Pinder. 1973. "Mass Transport in Flowing Ground Water." Water Resour. Res. 9(1):194-210.

Broom, M. E. 1968. "Ground-Water Resources of Wood County, Texas." Rept. No. 79, Texas Water Devel. Board.

Bull, C. 1978. Glaciological Parameters of Disruptive Event Analysis. PNL-2863, Pacific Northwest Laboratory, Richland, Washington.

- Cavendish, J. E., H. S. Price and R. S. Varga. 1968. "Variational Methods for Numerical Solution of Boundary Value Problems." Paper presented at Symposium on Numerical Simulation of Reservoir Performance, Soc. Petrol. Eng. April 22-23, Dallas, Texas.
- Culham, W. E. and R. S. Varga. 1970. "Numerical Methods for Time Dependent Nonlinear Boundary Value Problems." Paper presented at 2nd Symposium on Numerical Simulation of Reservoir Performance, Soc. Petrol. Eng., April 22, 23, Dallas, Texas.

Dillard, J. W. 1963. "Availability and Quality of Groundwater in Smith County, Texas." Texas Water Comm. Bull. 6302.

Durham, C. O. and W. S. White, Jr. 1960. "Guided Geological Tour Through North and Central Louisiana." In: <u>Interior Salt Domes and Tertiary</u> <u>Stratigraphy of North Louisiana</u>. <u>Shreveport Geol. Soc. Guidebook</u>, <u>Shreveport, Louisiana</u>.

Ref 1

- Eaton, R. W. 1952. "Preliminary Notes on the Geology of the Mineola Basin, Smith and Wood Counties, Texas." <u>Gulf Coast Assoc. Geol. Socs. Trans.</u>, v. 2, p. 16-180.
- Eliason, J. R. and H. P. Foote. 1972. Long Beach Generating Station Thermal <u>Transport Modeling Study</u>. Prepared for the Southern California Edison Company, 2120133F, Battelle, Pacific Northwest Laboratories, Richland, Washington.
- Fisher, W. L., et al. 1965. "Rock and Mineral Resources of East Texas." Rep. Inv., No. 54, Bur. Econ. Geology, Univ. Texas, Austin, Texas.
- Fletcher, J. F. and W. L. Dotson (compilers). 1971. "HERMES Digital Computer Code for Estimating Regional Radiological Effects from the Nuclear Power Industry." USAEC Report HEDL-TME-71-168, Hanford Engineering Development Laboratory, Richland, Washington.
- Gray, W. G. 1975. "A Derivation of the Equations of Multiphase Transport." Chem. Eng. Sci. 30:229-233.
- Griswold, G. B. 1981. <u>Solution Mining in Salt Domes of the Gulf Coast</u> Embayment. PNL-3190, Pacific Northwest Laboratory, Richland, Washington.
- Gupta, S. K., K. K. Tanji and J. N. Luthin. 1975. "A Three-dimensional Finite Element Ground Water Model." California Water Resource Center, Univ. of California, Davis, Contribution #152.
- Gupta, S. K. and K. K. Tanji. 1977. "Computer Program for Solution of Large, Sparse Unsymmetric Systems of Linear Equations." <u>Int. J. Num. Meth. in</u> <u>Eng.</u>, Vol. 11.
- Gupta, S. K., and G. F. Pinder. 1978. "Three-Dimensional Finite Element Model for Multilayered Ground-Water Reservoir of Long-Island, New York." Dept. of Civil Engineering, Princeton University, Princeton, New Jersey.
- Harleman, D. R. F., P. F. Melhorn and R. R. Rumer. 1963. "Dispersion-Permeability Correlation in Porous Media." <u>Journal of the Hydraulics</u> <u>Division, ASCE</u>, Vol. 89, No. H-12, Proc. Paper 3459.
- International Commission on Radiological Protection (ICRP). 1959. <u>Report of</u> <u>Committee II on Permissible Dose for Internal Radiation, International</u> <u>Commission on Radiological Protection</u>. ICRP Publication 2, Pergamon Press, New York.
- Jacob, C. E. 1950. Chapter 5. In: <u>Engineering Hydraulics</u>. ed. H. Rouse, p. 321-386, John Wiley and Sons, New York.

Kellogg, O. D. 1954. Foundations of Potential Theory. Dover, New York.

- Konikow, L. F., and J. D. Bredehoeft. 1974. "Modeling Flow and Chemical Quality Changes in an Irrigated Stream-Aquifer System." <u>Water Resour. Res.</u> 10(3):546-562.
- Law Engineering Testing Company. 1978a. <u>Geology and Growth History of Minden</u> Salt Dome, Webster Parish, Louisiana. Marietta, Georgia.
- Law Engineering Testing Company. 1978b. <u>Geologic Evaluation of Gulf Coast</u> Salt Domes. Marietta, Georgia.
- Law Engineering Testing Company. 1979a. <u>Gulf Coast Salt Dome Geothermal</u> Study. Marietta, Georgia.
- Law Engineering Testing Company. 1979b. Preliminary Report on the Geology and Hydrology of the Hainesville Dome, Wood County, Texas. Marietta, Georgia.
- Loocke, J. E. 1978. "Growth History of the Hainesville Salt Dome, Wood County, Texas." Masters Thesis, Univ. Texas, Austin, Texas.
- Martinez, J. D., et al. 1975. <u>An Investigation of the Utility of Gulf Coast</u> <u>Salt Domes for the Storage or Disposal of Radioactive Waste</u>. Inst. Env. Studies, Baton Rouge, Louisiana.
- Martinez, J. D., et al. 1976. <u>An Investigation of the Utility of Gulf Coast</u> <u>Salt Domes for the Storage or Disposal of Radioactive Waste</u>. Inst. Env. Studies, Baton Rouge, Louisiana.
- Martinez, J. D., et al. 1977. <u>An Investigation of the Utility of Gulf Coast</u> <u>Salt Domes for the Storage or Disposal of Radioactive Waste</u>. Inst. Env. Studies, Baton Rouge, Louisiana.
- Murray, G. E., Jr. 1961. <u>Geology of the Atlantic and Gulf Coastal Province</u> of North America. Harper and Brothers, Publishers, New York.
- Narasimhan, T, N. and P. A. Witherspoon. 1976. "An Integrated Finite Difference Method for Analyzing Fluid Flow in Porous Media." <u>Water Resour.</u> Res. 12(1):57-64.
- Netherland, Sewell, and Associates, Inc. 1975. <u>Preliminary Study of the</u> <u>Present and Possible Future Oil and Gas Development of Areas Immediately</u> <u>Surrounding the Interior Salt Domes, Upper Gulf Coast Salt Dome Basins of</u> <u>East Texas, North Louisiana, and Mississippi, as of December 1975</u>. Prep. for Union Carbide Corp., Nuclear Division, Oak Ridge National Laboratory, ORNL/SUB-75/87988.
- Netherland, Sewell, and Associates, Inc. 1976. <u>Geologic Study of the</u> <u>Interior Salt Domes of Northeast Texas Salt Dome Basin to Investigate Their</u> <u>Suitability for Possible Storage of Radioactive Waste Material as of May,</u> <u>1976</u>. Prep. for Office of Waste Isolation, Union Carbide Corp., Nuclear Div., Energy Res. Devel. Admin.

- Nichols, P. H. 1964. "The Remaining Frontiers for Exploration in Northeast Texas." <u>Gulf Coast Assoc., Geol. Socs., Trans.</u>, v. 14, p. 7-22.
- Nichols, P. H. 1968. "Summary of Subsurface Geology of Northeast Texas." In <u>Natural Gases of North America</u>. pp. 928-1004. Am. Assoc. Petroleum Geologists, Mem., no. 9, v. 2.
- Peltier, W. R. and J. T. Andrews. 1976. "Glacial-Isostatic Adjustment The Forward Problem." <u>Geophysical Journal of Royal Astronomical Society</u>, 46:605.
- Pinder, G. F. and E. O. Frind. 1972. "Application of Galerkin's Procedure To Aquifer Analysis." <u>Water Resour. Res.</u> 8(1):108-120.
- Pinder, G. F. and H. H. Cooper. 1970. "A Numerical Technique for Calculating the Transient Position of the Saltwater Front." <u>Water Resour. Res.</u> 6(3):875-882.
- Price, H. S., J. C. Cavendish and R. S. Varga. 1968. "Numerical Methods of Higher Order Accuracy for Diffusion-Convection Equations." <u>Soc. Petrol.</u> Eng. J. 8(3):293-303.
- Rand, J. R. and R. G. Gerber. 1976. "Sears Island Fault Investigation. Report to Maine Nuclear Power Station." Central Maine Power Company, Augusta, Maine.
- Raymond, J. R. (chairman). 1977. <u>Workshop on Transport Modeling for Nuclear</u>. <u>Waste Repositories</u>. PNL-SA-7468. Pacific Northwest Laboratory, Richland, Washington.
- Routson, R. C. and R. J. Serne. 1972. <u>One-Dimensional Model of the Movement</u> of Trace Radioactive Solute Through Soil Columns. BNWL-1718, Pacific Northwest Laboratory, Richland, Washington.
- Schwartz, F. W. 1977. "Macroscopic Dispersion in Porous Media: The Controlling Factors." <u>Water Resour. Res</u>. pp. 743-752.
- Schwartz, M. L. 1978. "Sea Level Report: Long-Term Meteorite Hazards to Buried Nuclear Waste, Report 2." In Summary of FY-1978 Consultant Input for Scenario Methodology Development. PNL-2851, Pacific Northwest Laboratory, Richland, Washington.
- Soldat, J. K., et al. 1974. <u>Models and Computer Codes for Evaluating</u> <u>Environmental Radiation Doses, USAEC Report</u>. BNWL-1754, Pacific Northwest Laboratory, Richland, Washington.
- Trent, D. S. 1975. <u>Mathematical Modeling of Transport Processes in Aquatic</u> <u>Systems</u>. BNWL-SA-5379, Pacific Northwest Laboratory, Richland, Washington.

Ref 4

Tubbs, D. W. 1979. "Pacific Northwest Geomorphology and Hydrology: Rates and Probabilities of Selected Processes and Events." In <u>Summary of FY-1978</u> <u>Consultant Input for Scenario Methodology Development</u>. PNL-2851, Pacific Northwest Laboratory, Richland, Washington.

Zienkiewicz, O. C., and Y. K. Cheung. 1965. "Finite Elements in the Solutions of Field Problems." <u>The Engineer</u>. pp. 507-510, September 1965.

Zienkiewicz, O. C. 1971. <u>The Finite Element Method in Engineering Science</u>. p. 129-153, McGraw-Hill, London.

•••••• • •

PNL-2955 Volume 2 Special Distribution

# DISTRIBUTION

No. of Copies

OFFSITE

### UNITED STATES

A. A. Churm DOE Chicago Patent Group 9800 South Cass Avenue Argonne, IL 60439

10 Battelle Memorial Institute Office of Nuclear Waste Isolation Attn: Beverly Rawles 505 King Avenue Columbus, OH 43201

> Michael J. Bell, Chief High-Level Waste Technical Development Branch Waste Management Division U.S. Nuclear Regulatory Commission Washington, DC 20555

Gary Benson c/o Baker Construction Co. 2800 S. Post Oak Houston, Texas 77056

John Bird Geology Department Cornell University Ithaca, NY 14853

Charles L. Blalock Mississippi Department of Natural Resources Box 20305 Jackson, MS 39209

Albin Brandstetter Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

### No. of Copies

Colin Bull Office of the Dean College of Math and Physics Sciences 154 Denny Hall 164 West 17th Avenue Columbus, OH 43210

Wayne A. Carbiener Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

Roger Casperson National Academy of Sciences National Research Council 2101 Constitution Avenue Washington, DC 20418

C. Ping Chen Task Force Vice Chairman Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

Neville G. W. Cook Department of Materials Science and Mineral Engineering Hearst Mining Building University of California Berkeley, CA 94720

Carl R. Cooley DOE Office of Nuclear Waste Management Washington, DC 20545

Bruce Crowe Geological Research Group G-6 Los Alamos Scientific Laboratory P.O. Box 1663 Los Alamos, NM 87545

No. of Copies

5

Stanley N. Davis, Hydrologist The University of Arizona College of Earth Sciences 6540 W. Box Canyon Drive Tucson, AZ 85705

J. O. Duguid Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

Dan Egan Environmental Protection Agency Office of Radiation Programs Technology Assessment Division M/S AW 559 Washington, DC 20460

Bruce R. Erdal Los Alamos Scientific Laboratory P.O. Box 1663 (Mail Stop-514) Los Alamos, NM 87545

E. S. Fuente Division of Radiological Health Mississippi Department of Health 247 Vanderwood Building Jackson, MS 39208

R. Gastil Freedom House 8 Frontier Road Cos Cob, CT 06807

John H. Gervers, Coordinator State of New Mexico Radioactive Waste Consultant Tank Force Room 247, State Capitol Sante Fe, NM 87503

George B. Griswold Tecolote Corporation 531 Wagontrain Drive, S.E. Albuquerque, NM 87123 J. T. Halloway National Academy of Sciences 2101 Constitution Avenue N.W. Washington, DC 20418

William K. Hartmann 2224 East 4th Street Tucson, AZ 85719

Christine C. Harwell 308 Salem Drive Ithaca, NY 14850

Mark A. Harwell Ecosystems Research Center E221 Biological Sciences Bldg. Cornell University Ithaca, NY 14853

Colin A Heath NUS Corporation 4 Research Place Rockville, MD 20850

William M. Hewitt Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

Peter L. Hofman Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

G. Hunt Office of Licensing Systems Integration Basalt Waste Isolation Project Rockwell Hanford Operations P.O. Box 800 Richland, WA 99352

Distr-2

> Maureen Kaplan TASC 6 Jacob Way Reading, MA 01867

Ralph Kehle Turk, Kehle and Associates 7800 Schoal Creek Blvd Suite 270-S Austin, TX 78752

Muzaffer Kehnemuyi Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43021

John F. Kircher Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

Malcom R. Knapp U.S. Nuclear Regulatory Commission Washington, DC 20555

C. Kreitler Texas Bureau of Economic Geology University Station P.O. Box X Austin, TX 78712

George Kukla Lamont-Doherty Geological Observatory of Columbia University Palisades, NY 10964

Donald H. Kupfer Louisiana State University Shreveport, LA 71105

Terry R. Lash Director of Science and Public Policy Keystone Center Box 38 Keystone, C0 80435 No. of Copies

> Joseph A. Lieberman Nuclear Safety Associates 5101 River Road Bethesda, MD 20016

Susan J. Mara SRI International 333 Ravenswood Ave. Menlo Park, CA 94024

J. Martinez Louisiana State University Shreveport, LA 71105

John T. McGinnis Battelle Memorial Institute Office of Nuclear Waste Isolation 505 King Avenue Columbus, OH 43201

M. Merritt WIPP Sandia Laboratories Albuquerque, NM 87115

Vernon Minchew Mississippi Mineral Resources Inst. U. of Mississipi Oxford, MS 38677

Jack Mobley Scientific Liaison Officer State of New Mexico Environmental Evaluation Group 320 E. Marcy Street Sante Fe, NM 87503

Barry N. Naft NUS Corporation 4 Research Pl. Rockville, MD 20850

J. O. Neff Department of Energy Columbus Program Office 505 King Avenue Columbus, OH 43201

Distr-3

No. of Copies

Robert H. Neill Environmental Evaluation Group State of New Mexico P.O. Box 968 Sante Fe, NM 87503

Neil A. Norman Environmental Services Department Bechtel National, Inc. P.O. Box 3965 San Francisco, CA 94119

John D. Osnes RE/SPEC Inc. P.O. Box 725 Rapid City, SD 57709

Frank L. Parker Department of Environmental Eng. Vanderbilt University Nashville, TN 37235

T. H. Pigford University of California Berkeley, CA 94720

George F. Pinder Department of Civil Engineering Princeton University Princeton, NJ 08540

Robert O. Pohl Laboratory of Atomic and Solid State Physics Cornell University Ithaca, NY 14853

B. J. Porter
Louisiana Office of Environmental Affairs
Nuclear Energy Division
P.O. Box 14690
Baton Rouge, LA 70898

H. L. Ragsdale Department of Biology Emory University Atlanta, GA 30322 Marvin Resnikoff Sierra Club Box 64, Station G Buffalo, NY 14213

David L. Schreiber Consulting Hydraulic Engineer P.O. Box 1087 (c/o the Colony) Couer D'Alene, ID 83814

Dorner T. Schueler, Manager Waste Isolation Pilot Project Albuquerque Operations Office U.S. Department of Energy P.O. Box 5400 Albuquerque, NM 87115

Herbert R. Shaw U.S. Department of the Interior Geological Survey Branch of Experimental Geochem. and Mineralogy 345 Middlefield Road Menlow Park, CA 94025

D. B. Shipler Battelle Memorial Institute Office of Nuclear Wate Isolation 505 King Avenue Columbus, OH 43201

Raymond Siever Hoffman Laboratory Harvard University Cambridge, MA 02138

Arthur J. Soinski State of California Energy Resources Conservation and Development Commission 1111 Howe Avenue Sacramento, CA 95825

Howard P. Stephens NTS Waste Management Overview Division 4538 Sandia Laboratorties Albuquerque, NM 87115

Distr-4

> David B. Stewart Geologic Division Coordinator Radioactive Waste Management U.S. Department of the Interior 959 National Center Reston, VA 22092

Martin S. Tierney Environmental Assessment Division 4514 Sandia Laboratories Albuquerque, NM 87115

Newell J. Trask, Geologist U.S. Department of the Interior Geological Survey Reston, VA 22092

Morton E. Wacks Department of Nuclear Engineering University of Arizona Tucson, AZ 85721

Peter J. Walley Office of Energy Commission Suite 228, Barefield Complex 455 N. Lamar Street Jackson, MS 39201

Bob E. Watt 1447 45th Street Los Alamos, NM 87544

G. Wermund Texas Bureau of Economic Geology University Station P.O. Box X Austin, TX 78712

Lawrence Wight TERA Corporation 2150 Shattuck Avenue Berkeley, CA 94704 No. of <u>Copies</u>

> R. E. Wilems INTERA Environmental Consultants, Inc. 11999 Katy Freeway, Suite 610 Houston, TX 77079

John Winchester Department of Oceanography Florida State University Tallahassee, FL 32306

Paul Witherspoon Head, Earth Sciences Division Lawrence Berkeley Laboratory University of Califonria Berkeley, CA 94720

Georgia Yuan Natural Resources Defense Council, Inc. 25 Kearny Street San Francisco, CA 94108

## ONSITE

5

#### DOE Richland Operations Office

- 0. J. Elgert
- R. B. Goranson
- H. E. Ransom
- J. J. Schreiber
- F. R. Standerfer
- 2 DOE Technical Information Center

Hanford Engineering Development Laboratory

M. J. Barr

## Rockwell Hanford Operations

## R. A. Deju

No. of Copies

## 55 Pacific Northwest Laboratory

D. J. Bradley

- T. D. Chikalla C. R. Cole
- W. J. Deutsch
- F. H. Dove
- M. G. Foley (20)
- S. K. Gupta
- M. R. Kreiter
- B. K. Marshall
- B. A. Napier
- L. S. Prater

J. R. Raymond A. E. Reisenauer R. J. Serne D. V. Silviera C. S. Simmons J. K. Soldat D. L. Strenge J. T. Zellmer Technical Information Library (5) Publishing Coordination (2) Water and Land Resources Department Library (10)

#### NRC REQUEST BY J. KENNEDY:

#### COPY OF SWEC PROCEDURE FOR UPGRADING DATA CLASSIFICATION

#### SWEC RESPONSE:

SWEC does not have a project specific written procedure for upgrading data classification. The Project has established a methodology for using data obtained by others in an unknown control manner (shelf data). This includes use of Project Technical Procedures and/or approved calculations as deemed warranted. The process used in a particular study is indicated in the Technical Report and the reviews employed include Independent Technical Review.

An example is drill stem test data obtained from thousands of wells in the Texas Panhandle and surrounding areas. A report entitled Hydrogeologic Investigations Based on Drill-Stem Test Data, Palo Duro Basin Area, Texas and New Mexico (copy enclosed) was issued based upon this data. The report presents the screening process and classification system devised and used to evaluate the quality of DST data obtained. This resulted in approximately only twenty percent of the data obtained being considered usable for the purposes of this hydrogeologic investigation. Sections 2 and 3 of the report primarily present the methodology used (as indicated in the attached copy) and the other sections present the results from same.

The Project is presently formulating a written procedure(s) that will entail the following:

- o Classification of procured data as to the level of confidence of same based upon Project participation in the controls used in obtaining data.
- o Guidelines and requirements for use of data for the various classification types.
- Classification of deliverables to indicate authors prescribed limitation(s) for the use of information (including data) contained in same.